STARTECH SEMICONDUCTOR, INC.

DATA BOOK 1993

STARTECH Component Data Catalog 1993

STARTECH semiconductor Inc. 1219 BORDEAUX Dr. SUNNYVALE, CA 94089 TEL (408) 745-0801 FAX (408) 745-1269 No part of this document may be copied or reproduced in any form or by means without the prior written consent of STARTECH Semiconductor Inc. The information in this document is subject to change without notice. STARTECH Semiconductor Inc. assumes no responsibility for any errors that may appear in this document and makes no commitment to update or to keep current the information contained in this document. STARTECH Semiconductor Inc. makes no warranty (express, statutory, implied, or by description) regarding the information set forth herein or regarding the freedom of the described device from patent infringement. STARTECH Semiconductor Inc. makes no warranty of merchantability or fitness for any purpose.

STARTECH Semiconductor Inc.'s products are not authorized for use as critical components in the life support devices or systems without the express written approval of the president of STARTECH Semiconductor Inc..

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform
 can be reasonably expected to cause the failure of the life support device or system, or to effect its
 safety or effectiveness.

286/386/486 is a trademark of Intel Corporation.

IBM PC/XT/AT, PS/2 is a trademark of International Business Machines Corporation.

WD is a trademark of Western Digital Corporation.

NS, INS, DS is a trademark of National Semiconductor Corporation.

VL is a trademark of VLSI Technologies Corporation.

CENTRONICS is a trademark of Centronics Data Computer Corporation.

XR is a trademark of Exar Corporation.

TL is trademark of Texas Instrument, Inc.

MC is a trademark of Motorola Semiconductor.

ICS is a trademark of Integrated Circuit Systems, Inc.

AV is a trademark of Averse Corporation.

SSI is a trademark of Silicon Systems Inc.

To our valued customer:

Startech Semiconductor was founded in 1990, with the charter to design, manufacture and market high performance data communication peripheral products in both the commercial and industrial semiconductor markets. Since then, Startech continues to follow that charter and enjoys a rapid growth.

Startech's products are marketed and distributed through a world-class network of representatives and distributors.

At Startech, we are dedicated to keeping your designs competitive with leading edge solutions. All our products are low power, high performance, CMOS ICs. Our commitment to you is to provide you with high quality and reliable ICs.

Unner

Ram K. Reddy President

Introduction

Dear customer,

Startech Semiconductor is proud to present you with our updated 1993 Data Book. Startech's technical staff have worked together to provide you with the most accurate, up-to-date information.

We believe that when you design our products in your systems, you have started a partnership with a company that is committed to work with the customers and deliver quality products. Startech offers to customize any of these standard products to meet your special requirements.

If you have any questions or comments, please call us directly.

Startech Semiconductor Technical Staff

achal.

Art Khachaturian Vice President

FREQUENCY SYNTHESIZERS

LINE DRIVERS / RECEIVERS

UARTS

COMMUNICATIONS

APPLICATION NOTES

QUALITY/RELIABILITY

ORDERING INFORMATION

PACKAGING INFORMATION

REPRESENTATIVES

Contents

FREQUENCY SYNTHESIZERS	
ST49C061	3
ST49C063	1
ST49C064	1
ST49C103	9
ST49C104	9
ST49C106	9
ST49C155	5
ST49C214	5
ST49C394	7
ST49C694	5
DIFFERENTIAL LINE DRIVERS	
ST26C31	3
ST34C87	9
DIFFERENTIAL LINE RECEIVERS	
ST26C32	9
ST34C86	3
DIFFERENTIAL LINE DRIVERS / RECEIVERS	
ST34C50	5
ST34C51	5
UARTS	
ST16C1450	3
ST16C1451	3
ST16C2450	5
ST16C450	3
ST16C454	1
UARTS WITH FIFO	
ST16C1550	3
ST16C1551	3
ST16C1552	3
ST16C2550	5
ST16C2552	7
ST16C550	3
ST16C554	3
ST68C454	1
ST68C554	7

UARTS WITH PRINTER

ST16C452AT	3-229
ST16C452PS	
ST16C552	
ST16C553	

PARALLEL I/O WITH FIFO

ST78C35	

ST84C72		A.1	5
0104072	***************************************	 	5

CROSS REFERENCE LIST

DIFFERENTIAL LINE DRIVERS

National Semiconductor DS26C31 DS34C86

DIFFERENTIAL LINE RECEIVERS

National Semiconductor DS26C32 DS34C37

DIFFERENTIAL LINE RECEIVERS / DRIVERS Motorola Semiconductor MC34050 MC34051

UARTS

National Semiconductor INS8250A INS82C50A NS16450 NS16C450 NS16550AF NS16C552

Silicon Systems SSI73M550 SSI73M1550 SSI73M2550

VLSI Technology, Inc. VL82C50A VL16C450 VL16C550

Western Digital Inc. WD16C450 WD16C550

Texas Instruments TL16C450 TL16C550A

Exar Corporation XR16C450 XR16C550 Startech Semiconductor ST26C31 ST34C86

Startech Semiconductor ST26C32 ST34C87

Startech Semiconductor ST34C50 ST34C51

Startech Semiconductor ST16C450 ST16C450 ST16C450 ST16C450 ST16C550 ST16C2552

Startech Semiconductor ST16C550 ST16C1450 / ST16C1550 ST16C1451 / ST16C1551

Startech Semiconductor ST16C450 ST16C450 ST16C550

Startech Semiconductor ST16C450 ST16C550

Startech Semiconductor ST16C450 ST16C550

Startech Semiconductor ST16C450 ST16C550

CROSS REFERENCE LIST

UARTS WITH PRINTER

VLSI Technology, Inc. VL16C452 VL16C552

Western Digital Inc. WD16C452 WD16C552

Texas Instruments TL16C452 TL16C552

Exar Corporation XR16C452 XR16C552

VIDEO DOT CLOCK GENERATOR

Integrated Circuit Systems, Inc. ICS1394XXX ICS2494XXX ICS9061AXXX ICS9063 ICS9064 ICS2694

Avasem Corporation AV9103-XX AV9104-XX AV9106 AV9155 Startech Semiconductor ST16C452 ST16C552 / ST16C553

Startech Semiconductor ST16C452 ST16C552 / ST16C553

Startech Semiconductor ST16C452 ST16C552

Startech Semiconductor ST16C452 ST16C552

Startech Semiconductor ST49C394-XX ST49C214-XX ST49C061-XX ST49C063 ST49C064 ST49C664

Startech Semiconductor ST49C103-XX ST49C104-XX ST49C106 ST49C155

FREQUENCY SYNTHESIZERS

Index

ST49C061	 1-3
ST49C063	 -11
ST49C064	 -11
ST49C104	 -19
ST49C106	 -29
ST49C155	 -35
ST49C214	 -45
ST49C694	 -65

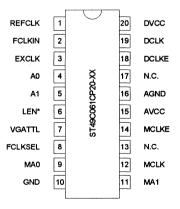
Printed May 17, 1993

PREPROGRAMMED DUAL VIDEO/MEMORY FREQUENCY GENERATOR

GENERAL DESCRIPTION

The ST49C061 is a monolithic analog CMOS device designed to generate dual frequency outputs from seven possible combinations for video Dot clock frequencies and four memory clock frequencies for high performance video display systems. The ST49C061 is a mask option programmable device to provide different output frequencies for custom applications. It is designed with 1.2μ process to achieve 130 MHz speed for high end frequencies.

The ST49C061 is designed to replace existing video clocks generated from individual oscillators, to reduce board space and number of oscillators. To provide high speed and low jitter clock, The ST49C061 utilizes high speed analog CMOS phase locked loop using 14.318 MHz system clock as reference clock (reference clock can be changed to generate optional frequencies from standard programmed device).


The ST49C061 can provide optional clock frequencies, utilizing single layer metal mask option. The programmed clock outputs are selectable via four address lines and address latch enable pin for video Dot clock selection and two address lines for memory clock selection.

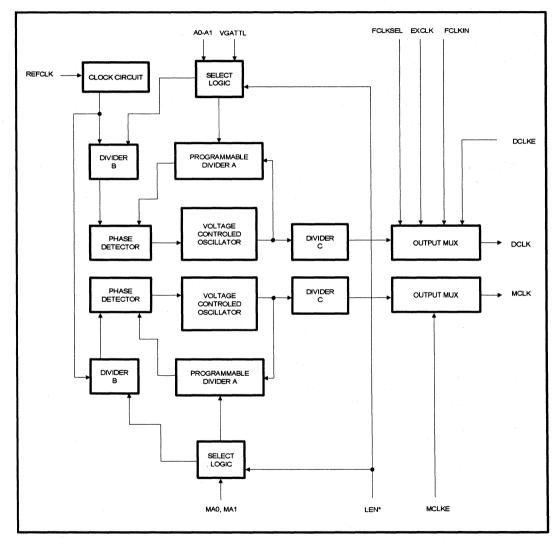
REFCLK 20 DVCC 1 2 FCLKIN 19 DCLK 3 EXCLK 18 DOLKE 17 AO 4 5T49C061CF20-XX N.C. 5 16 A1 15 LEN* 6 AVCC 14 7 VGATTL MCLKE 13 FCLKSEL 8 N.C. 12 9 MCLK MAO GND 10 11 MA1

SOIC Package

1

Plastic-DIP Package

FEATURES


- Can replace multiple oscillators/crystals
- Pin -to-pin compatible to ICS90C61A
- Programmable analog phase locked loop
- High speed (up to 130 MHz output)
- Low power single 5V CMOS technology
- 20 pin dip or SOIC package
- Compatible with Western Digital Imaging Video Graphics Array clock requirements.

ORDERING INFORMATION

Part number	Package	Oper	atin	g te	mperat	ure
ST49C061CP20-xx	Plastic-DIP	0°	С	to	+70°	С
ST49C061CF20-xx	SOIC	0°	С	to	+70°	С
ST49C061CJ20-xx	PLCC	0°	С	to	+70°	С

ST49C061

BLOCK DIAGRAM

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
REFCLK	1	I	External 14.318 MHz system reference clock input.
FCLKIN	2*	I	Feature clock input.
EXCLK	3*	I	External clock input. For additional clock frequency.
A0	4*	I	Dot clock Frequency select address 1.
A1	5*	I	Dot clock Frequency select address 2.
LEN*	6*	I	Address latch enable input (active low). To latch selected programmed clock output.
VGATTL	7*	ł	Control input for DCLK selection.
FCLKSEL	8*	, I	Control input for FCLK selection.
MA0	9*	1	Memory clock Frequency select address 1.
DGND	10	0	Digital ground.
MA1	11*	ł	Memory clock Frequency select address 2.
MCLK	12	о	Programmed memory clock output frequency.
N.C.	13		No connect.
MCLKE	14*	I	MCLK output enable.
AVCC	15	I	Analog supply voltage. Single +5 volts.
AGND	16	0	Analog ground.
N.C.	17		No connect.
DCLKE	18*	Į.	DCLK output enable.
DCLK	19	0	Programmed video clock output frequency.
DVCC	20	I.	Digital supply voltage. Single +5 volts.

* Have internal pull-up resistors on inputs.

GENERAL INFORMATION

The Western Digital Imaging VGA controllers normally have a status bit that indicates to the VGA controller that it is working with a clock chip. The VGA controller has capability to change two of its clock inputs VCLK1 and VCLK2 to outputs when working with a clock chip. These outputs are used to select the required video frequency.

The ST49C061 is programmed to generate different video clock frequencies using the inputs of A0 and A1. The VGATTL selects one of the two preprogrammed registers to provide four of eight clock frequencies.

The EXCLK and FCLKIN are additional inputs that may be internally connected to the DCLK output. The additional inputs are useful for supporting modes that require frequencies not provided by the ST49C061.

FREQUENCY SELECT CALCULATION

The ST49C061 contains an analog phase locked loop circuit with a digital closed loop divider and a final series divider to achieve desired dividing ratios for clock output.

The accuracy of the frequencies produced by the ST49C061 depends on the input frequency and final output frequency. The formula for calculating the exact output frequency is as follows:

DCLK = (Reference clock) X (A/B.C) MCLK = (Reference clock) X (A/B.C)

where A=1,2,3,......127, B=1,2,3,.....127, and C=1,2,4

For proper output frequency, the ST49C061 can accept reference frequency from 5 - 40 MHz and divider ratio up to 15.

MASK OPTIONS

The following mask options are provided for custom applications.

* Any frequency can be in any decoding position.

* DCLK, can control selection of the internal frequencies.

ABSOLUTE MAXIMUM RATINGS

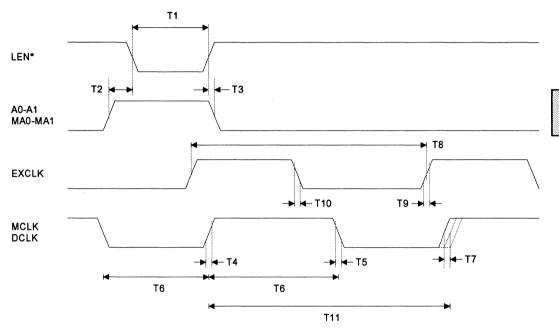
Supply range Voltage at any pin Operating temperature Storage temperature Package dissipation 7 Volts GND-0.3 V to VCC+0.3 V 0° C to +70° C -40° C to +150° C 500 mW

DC ELECTRICAL CHARACTERISTICS

 T_{A} =25° C, V_{cc} =5.0 V ± 5% unless otherwise specified.

Symbol	Parameter	Min	Limits Typ	Max	Units	Conditions
V _{IL} V _{IL} V _O H IL I _H CC	Input low level Input high level Output low level Output high level Input low current Input high current Operating current	2.0 2.4	20	0.8 0.4 -350 1 30	V V V µA mA	I _{oL} = 8.0 mA I _{OH} = 8.0 mA VIN=Vcc No load. DCLK=80MHz,
R _{IN}	Input pull-up resistance	15	20	25	KΩ	MCLK=40MHz

ST49C061


AC ELECTRICAL CHARACTERISTICS

 $\rm T_{A}=25^{\circ}$ C, $\rm ~V_{cc}=5.0~V\pm5\%$ unless otherwise specified.

Symbol	Parameter	Min	Limits	Мах	Units	Conditions
			Тур	wax		
Т,	Enable pulse width	20			ns	
T,	Setup time data to enable	20			ns	
T,	Hold time to data enable	10			ns	
T₄	Rise time		1	1.5	ns	0.8V - 2.0V
T,	Fall time		1	1.5	ns	2.0V - 0.8V
Ť	Duty cycle	40	48/52	60	%	1.4V switch point
Т _е ́	Duty cycle	45	48/52	55	%	Vcc/2 switch point
T,	Jitter		±85	±100	ps	
T,	Input frequency	14.318		32	MHz	
Т	Input clock rise time			20	ns	
T₁ T₂ T₄ T₅ T₀ T₀ T₀ T₃ T₃ T₃	Input clock fall time			20	ns	
T ₁₁	Output frequency change		0.005		%	

ST49C061

1

TIMING DIAGRAM

1-9

					ST49C061-01	ST49C061-02
Video clock address (Hex)	FCLKSEL	VGATTL	A1	A0	Frequency (MHz)	Frequency (MHz)
0 1 2 3 0 1 2 3 X	1 1 1 1 1 1 1 0	0 0 0 1 1 1 1 X	0 1 0 1 0 1 0 1 X	0 1 1 0 1 1 X	REFCLK 16.256 32.000 44.900 25.175 28.322 65.000 36.000 FCLKIN**	REFCLK 16.108 32.216 44.744 25.057 28.089 EXTCLK 36.242 FCLKIN**
Memory clock address (Hex)			MA1	MA0	Frequency (MHz)	Frequency (MHz)
0 1 2 3			0 0 1 1	0 1 0 1	40.000 37.500 36.000 44.900	41.612 37.585 36.242 44.744

Compatible with Video Controller

ICS-PR1

ICS-PR2 WD90C30

** Note: FCLKIN and EXCLK may be programmed to output custom frequencies.

ST49C063 ST49C064

Printed May 17, 1993

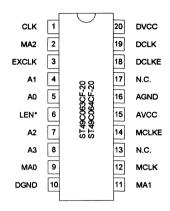
PREPROGRAMMED DUAL VIDEO/MEMORY FREQUENCY GENERATOR

GENERAL DESCRIPTION

The ST49C063/64 is a monolithic analog CMOS device designed to generate dual frequency outputs from fifteen possible combinations for video Dot clock frequencies and eight memory clock frequencies for high performance video display systems. The ST49C063/64 is a mask option programmable device to provide different output frequencies for custom applications. It is designed with 1.2μ process to achieve 130 MHz speed for high end frequencies.

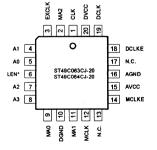
The ST49C063/64 is designed to replace existing video clocks generated from individual oscillators, to reduce board space and number of oscillators. To provide high speed and low jitter clock, The ST49C063/64 utilizes high speed analog CMOS phase locked loop using 14.318 MHz system clock as reference clock (reference clock can be changed to generate optional frequencies from standard programmed device).

The ST49C063/64 can provide optional clock frequencies, utilizing single layer metal mask option. The programmed clock outputs are selectable via four address lines and address latch enable pin for video Dot clock selection and three address lines for memory clock selection.

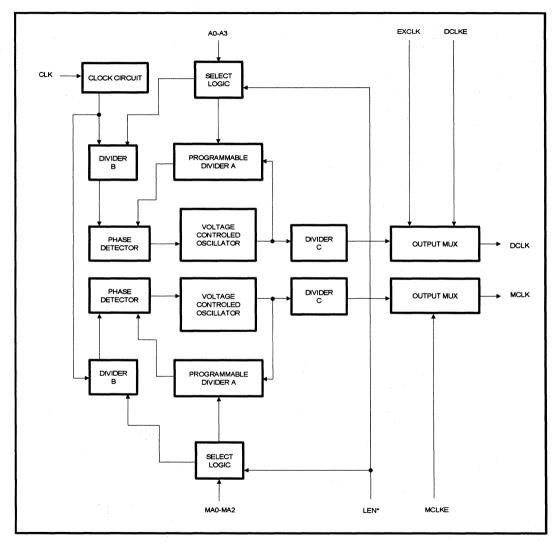

FEATURES

- Can replace multiple oscillators/crystals
- Pin -to-pin compatible to ICS90C63/64
- Programmable analog phase locked loop
- High speed (up to 130 MHz output)
- Low power single 5V CMOS technology
- 20 pin dip / SOIC / PLCC packages
- Compatible with Western Digital Imaging Video Graphics Array clock requirements.

ORDERING INFORMATION


Part number	Package	Operating temperature
ST49C063CP20-xx	Plastic-DIP	0°C to +70°C
ST49C063CF20-xx	SOIC	0°C to +70°C
ST49C063CJ20-xx	PLCC	0°C to +70°C
ST49C064CP20-xx	Plastic-DIP	0°C to +70°C
ST49C064CF20-xx	SOIC	0°C to +70°C
ST49C064CJ20-xx	PLCC	0° C to +70° C

SOIC Package



PLCC Package

ST49C063/64

BLOCK DIAGRAM

1

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
CLK	1	1	External 14.318 MHz system reference clock input.
MA2	2*	I	Memory clock Frequency select address 3.
EXCLK	3*	1	External clock input. For additional clock frequency.
A1	4*	I	Dot clock Frequency select address 2.
A0	5*	I	Dot clock Frequency select address 1.
LEN*	6*	I	Address latch enable input (active low). To latch selected programmed clock output.
A2	7*	I	Dot clock Frequency select address 3.
A3	8*	<u>,</u> 1	Dot clock Frequency select address 4.
MA0	9*	I	Memory clock Frequency select address 1.
DGND	10	0	Digital ground.
MA1	11*	I	Memory clock Frequency select address 2.
MCLK	12	0	Programmed memory clock output frequency.
N.C.	13		No connect.
MCLKE	14*	1	MCLK output enable.
AVCC	15	I	Analog supply voltage. Single +5 volts.
AGND	16	0	Analog ground.
N.C.	17		No connect.
DCLKE	18*	I	DCLK output enable.
DCLK	19	0	Programmed video clock output frequency.
DVCC	20	I	Digital supply voltage. Single +5 volts.

* Have internal pull-up resistors on inputs

GENERAL INFORMATION

The ST49C063/64 is programmed to generate 15 different video clock frequencies using the A0-A3 inputs and 8 different memory frequencies using M0-M2 inputs. The address lines A2-A3 can be connected to video controller like Western Digital Imaging VGA controllers. Address lines A0 and A1 are latched with LEN* pin which is generated from video controllers to select proper Dot clock output. All inputs to the ST49C063/64 contain internal pull-up resistors including CLK and EXCLK inputs.

The EXCLK is additional input that may be internally connected to the DCLK output. The additional input is useful for supporting modes that require frequencies not provided by the ST49C063/64.

FREQUENCY SELECT CALCULATION

The ST49C063/64 contains an analog phase locked loop circuit with a digital closed loop divider and a final series divider to achieve desired dividing ratios for clock output.

The accuracy of the frequencies produced by the ST49C063/64 depends on the input frequency and final output frequency. The formula for calculating the exact output frequency is as follows:

DCLK = (Reference clock) X (A/B.C) MCLK = (Reference clock) X (A/B.C)

where A=1,2,3,.....127, B=1,2,3,.....127, and C=1,2,4

For proper output frequency, the ST49C063/64 can accept reference frequency from 5 - 40 MHz and divider ratio up to 15.

MASK OPTIONS

The following mask options are provided for custom applications.

* Any frequency can be in any decoding position.

* DCLK, can control selection of the internal frequencies.

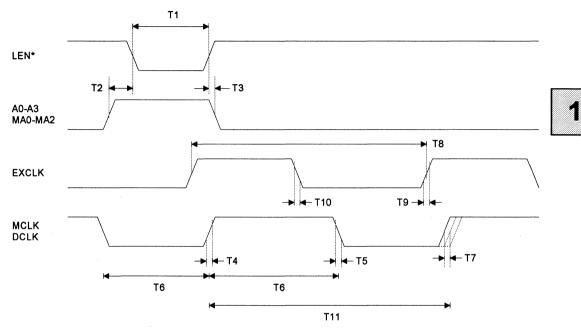
ABSOLUTE MAXIMUM RATINGS

Supply range Voltage at any pin Operating temperature Storage temperature Package dissipation 7 Volts GND-0.3 V to VCC+0.3 V 0° C to +70° C -40° C to +150° C 500 mW

DC ELECTRICAL CHARACTERISTICS

 T_{A} =25° C, V_{cc} =5.0 V ± 5% unless otherwise specified.

Symbol	Parameter	Min	Limits Typ	Max	Units	Conditions
V _{IL} V _{IH} V _{OL} V _{OH} I _{IL} I _{IH} I _{CC}	Input low level Input high level Output low level Output high level Input low current Input high current Operating current	2.0 2.4	20	0.8 0.4 -350 1 30	V V V µA mA	I _{ol} = 8.0 mA I _{OH} = 8.0 mA VIN=Vcc No load. DCLK=80MHz,
R_{in}	Internal pull-up resistance	15	20	25	kΩ	MCLK=40MHz


ST49C063/64

AC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Min	Limits Typ	Max	Units	Conditions
T_{1} T_{2} T_{3} T_{5} T_{6} T_{6} T_{7} T_{8} T_{9} T_{10} T_{11}	Enable pulse width Setup time data to enable Hold time to data enable Rise time Fall time Duty cycle Duty cycle Jitter Input frequency Input clock rise time Input clock fall time Output frequency change	20 20 10 40 45 14.318	1 1 48/52 48/52 ±85	1.5 1.5 60 55 ±100 32 20 20	ns ns ns ns % ps z MHz ns %	0.8V - 2.0V 2.0V - 0.8V 1.4V switch point Vcc/2 switch point

ST49C063/64

					ST49C063	ST49C064
Video clock address (Hex)	A3	A2	A1	A0	Frequency (MHz)	Frequency (MHz)
0 1 2 3 4 5 6 7 8 9 A B C D E F	0 0 0 0 0 1 1 1 1 1 1 1 1 1	0 0 1 1 1 1 0 0 0 1 1 1 1	0 0 1 1 0 0 1 1 0 0 1 1 0 1	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	30.000 77.250 EXCLK 80.000 31.500 36.000 75.000 50.000 40.000 50.000 32.000 44.900 25.175 28.322 65.000 36.000	30.000 77.250 EXCLK 80.000 31.500 36.000 75.000 50.000 40.000 50.000 32.000 44.900 25.175 28.322 65.000 36.000
Memory clock address (Hex)		MA2	MA1	MAO	Frequency (MHz)	Frequency (MHz)
0 1 2 3 4 5 6 7		0 0 0 1 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0	33.000 50.000 60.000 30.500 40.000 37.500 36.000 44.900	33.000 49.218 60.000 30.500 41.612 37.500 36.000 44.296

Compatible with Video Controller

ICS-90C63 WD90C30 ICS-90C64 WD90C30

ST49C103 ST49C104

Printed May 17, 1993

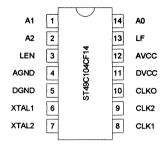
PREPROGRAMMED FREQUENCY GENERATOR \angle

DESCRIPTION

The ST49C103 and ST49C104 are mask programmable monolithic analog CMOS devices designed to generate up to 8 single frequency outputs from a single input clock. The ST49C104 will provide eight different output frequencies and the ST49C103 will provide four different output frequencies. They are designed in a 1.2μ process to achieve 130 MHz speed for high end frequencies.

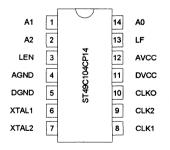
The ST49C103 and ST49C104 are designed to replace existing video clocks generated from individual oscillators in order to reduce board space and number of oscillators. To provide high speed and low jitter clock, the parts utilize a high speed analog CMOS phase locked loop using 14.318 MHz system clock as the reference clock (note that reference clock can be changed to generate optional frequencies from a standard programmed device). The programmed clock outputs are selectable via three address lines and address latch enable pin. The ST49C104 also includes a power on reset circuit which will cause the select logic to select the frequency at address "000" upon power up. The latch enable pin is also mask programmable to be active high, active low or rising or falling edge sensitive.

FEATURES

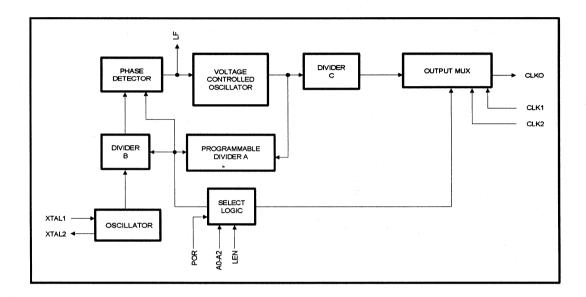

- Can replace up to 8 oscillators/crystals and a multiplexer
- Pin-to-pin compatible to Avasem AV9103/104
- Programmable analog phase locked loop
- Low power single 5V CMOS technology
- 8 or 14 pin DIP or SOIC package.

ORDERING INFORMATION

Part number	Package	Operating tempe	rature
ST49C103CP8	Plastic-DIP	0°C to +7	'0° C
ST49C103CF8	SOIC	0°C to +7	'0° C
ST49C104CP8	Plastic-DIP	0°C to +7	'0° C
ST49C104CF8	SOIC	0°C to +7	'0° C
ST49C104CP14	Plastic-DIP	0°C to +7	'0° C
ST49C104CF14	SOIC	0°C to +7	'0° C


SOIC Package

EVALUATION KIT AVAILABLE



Plastic-DIP package

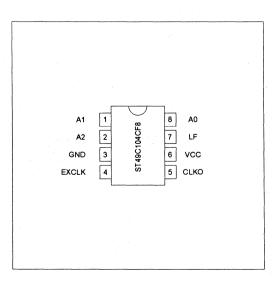
BLOCK DIAGRAM

1

SYMBOL DESCRIPTION (ST49C104 14 pin package)

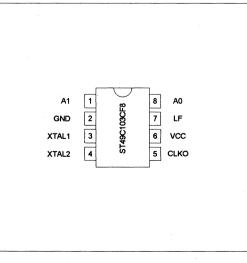
Symbol	Pin	Signal Type	Pin Description	
A1	1	I	Frequency select address input 2.	
A2	2*	1	Frequency select address input 3.	
LEN	3*	I	Address latch enable input. To latch selected programmed clock output.	
AGND	4	0	Analog ground.	
DGND	5	0	Digital ground.	
XTAL1	6	I	Crystal or external clock input. A crystal can be connect to this pin and XTAL2 pin to generate internal phase lock loop reference clock. For external 14.318 MHz clo XTAL2 is left open or used as buffered clock output.	
XTAL2	7	0	Crystal output.	
CLK1	8	1	External clock 1 input.	
CLK2	9	1	External clock 2 input / output select.	
сіко	10	0	Programmed output clock.	
DVCC	11	I	Digital supply voltage. Single +5 volts.	
AVCC	12	1	Analog supply voltage. Single +5 volts.	
LF	13	0	Loop filter.	
A0	14	1	Frequency select address input 1.	

* Have internal pull-up resistors on inputs.


1-21

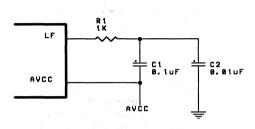
ST49C103/104

SYMBOL DESCRIPTION (ST49C104 8 pin package)


Symbol	Pin	Signal Type	Pin Description
A1	1		Frequency select address input 2.
A2	2*	l I	Frequency select address input 3.
GND	3	0	Digital ground.
EXCLK	4	I	External clock input. Internal phase locked loop reference clock .
сіко	5	0	Programmed output clock.
vcc	6 · · · · · · · · · · · · · · · · · · ·	a an Italian	Digital supply voltage. Single +5 volts.
LF		Ο	Loop filter.
A0	8	l i	Frequency select address input 1.

* Has internal pull-up resistor on input

SYMBOL DESCRIPTION (ST49C103 8pin package)


Symbol	Pin	Signal Type	Pin Description
A1	1	I	Frequency select address input 2.
GND	2	0	Digital ground.
XTAL1	3	1	Crystal or external clock input. A crystal can be connected to this pin and XTAL2 pin to generate internal phase locked loop reference clock. For external 14.318 MHz clock, XTAL2 is left open or used as buffered clock output.
XTAL2	4	0	Crystal output.
СГКО	5	0	Programmed output clock.
vcc	6	I	Digital supply voltage. Single +5 volts.
LF	7	0	Loop filter.
A0	8	I	Frequency select address input 1.

ST49C103/104

LOOP FILTER

The loop filter must be connected as follows for proper operation.

EXTERNAL CLOCK CONNECTION

To minimize the noise pickup, it is recommended to connect 0.047μ F capacitor to XTAL1, and keep the lead length of the capacitor to XTAL1 to a minimum to reduce noise susceptibility.

FREQUENCY SELECT CALCULATION

The ST49C104 contains an analog phase locked loop circuit with digital closed loop dividers and a final output multiplexer to achieve the desired dividing ratios for the clock output.

The accuracy of the frequencies produced by the ST49C104 depends on the input frequency and divider ratios. The formula for calculating the exact output frequency is as follows:

CLKO = (Reference clock) X A/(B.C)

where

A=1,2,3,.....127 B=8, 16, 32 ,64 C=1,2,4,8

For proper output frequency, the ST49C104 can accept a reference frequency from 5 - 40 MHz and divider ratio up to 15.

MASK OPTIONS

The following mask options are provided for custom applications.

* Latch Enable can be edge triggered or level sensitive.

- * Latch Enable can be active high or active low.
- * Any frequency can be in any decoding position.
- * CLK 1 and CLK 2 can be included in decoding table.
- * CLK2 can control selection of either CLK 1 or the internal frequencies.

FEATURE	ST49C104 14-pin	ST49C104 8-pin	ST49C103 8-pin
8 output frequencies	x	x	
4 output frequencies			X
Programmable LEN pin	X	X	X
Clock input only	e*		
Crystal or clock input	X		X
CLK1, CLK2 available for output mux	X		

Address latch (LEN)	State
ST49C104-1	Transparent for LEN high
ST49C104-2	Transparent for LEN low
ST49C104-3	Transparent for LEN low

1

ABSOLUTE MAXIMUM RATINGS

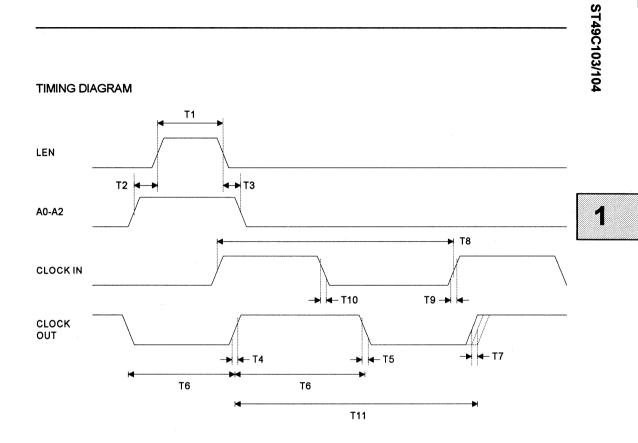
Supply range Voltage at any pin Operating temperature Storage temperature Package dissipation 7 Volts GND-0.3 V to VCC+0.3 V 0° C to +70° C -40° C to +150° C 500 mW

DC ELECTRICAL CHARACTERISTICS

 T_{A} =25° C, V_{cc} =5.0 V ± 5% unless otherwise specified.

Symbol	Parameter	Min	Limits Typ	Max	Units	Conditions
V _{IL} V _{IH} V _{OL} V _{OH}	Input low level			0.8	V	
. V ^{IH}	Input high level	2.0			V	
V _{OL}	Output low level			0.4	V	l _{oL} = 8.0 mA
V _{oH}	Output high level	2.4			V	I _{он} = 8.0 mA
l _{iL}	Input low current			-350	μA	Except crystal input
l _{in}	Input high current			1	μA	V _{IN} =Vcc
I _{cc}	Operating current		20	30	mA	No load. DCLK=80MHz
R _{IN}	Input pull-up resistance	15	20	25	KΩ	

ST49C103/104


ST49C103/104

AC ELECTRICAL CHARACTERISTICS

$T_{A}=25^{\circ}$ C, $V_{cc}=5.0$ V ± 5% unless other	wise specified.
--	-----------------

Symbol	Parameter	Min	Limits Typ	Max	Units	Conditions
T_{1}^{1} T_{2}^{2} T_{3}^{4} T_{5}^{6} T_{6}^{7} T_{8}^{9} T_{11}^{10}	Enable pulse width Setup time data to enable Hold time to data enable Rise time Fall time Duty cycle Duty cycle Jitter Input frequency Input clock rise time Input clock fall time Output frequency change	20 20 10 40 45 14.318	1 1 48/52 48/52 ±85 0.005	1.5 1.5 60 55 ±100 32 20 20	ns ns ns ns % % ps MHz ns s %	0.8V - 2.0V 2.0V - 0.8V 1.4V switch point Vcc/2 switch point

ST49C103/104

ST49C103/104

ST49C103/104

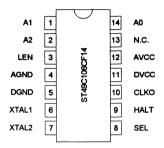
A2 A	11		ST49C	104-1 ACTUAL	ST490 NOMINAL	104-2 ACTUAL	ST49C	104-3 ACTUAL	ST49C NOMINAL		ST490 NORMAL	C103** ACTUAL
0 0 1 1	0 1 1	0 1 0 1 0 1 0 1	Xtal 16.257 Clk2 32.514 25.175 28.322 24.000 40.000	Xtal 16.331 Clk2 32.663 25.056 28.412 23.938 39.822	25.175 28.322 32.514 36.000 40.000 44.900 50.000 65.000	25.280 28.412 32.663 35.795 39.822 44.744 50.113 65.326	50.350 56.664 65.028 72.000 80.000 89.800 75.000 108.00	50.560 56.824 65.326 71.590 79.640 89.488 75.169 108.280	39.000 25.000 30.750 26.250 32.000 25.250 31.250 37.500	39.0000 25.000 30.750 26.250 32.000 25.250 31.250 37.500	32.000 40.00 50.00 1.00 N/A N/A N/A N/A	32.00 40.00 50.00 1.00

A2 A1 A0	ST49C104-6** Nominal Actual		
$\begin{array}{ccccccc} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{array}$	25.50025.50016.50016.50020.75020.75022.50022.50024.50024.50019.50019.50015.00015.00014.00014.000		

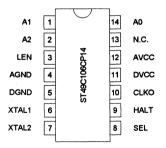
Input clock frequency = 14.318 MHz * Input clock frequency = 16.0 MHz ** Input clock frequency = 8.0 MHz

Printed May 17, 1993

EVALUATION KIT PREPROGRAMMED FREQUENCY GENERATOR


DESCRIPTION

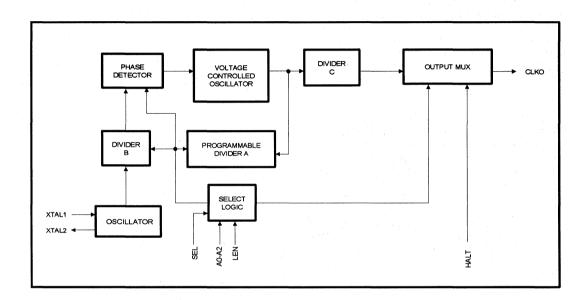
The ST49C106 is a mask programmable monolithic analog CMOS device designed to generate up to 8 single frequency outputs from a single input clock. The ST49C106 is designed in a 1.2µ process to achieve 130 MHz speed for high end frequencies.


The ST49C106 is designed to replace existing video clocks generated from individual oscillators in order to reduce board space and number of oscillators. To provide high speed and low jitter clock, the parts utilize a high speed analog CMOS phase locked loop using 14.318 MHz system clock as the reference clock (note that reference clock can be changed to generate optional frequencies from a standard programmed device). The programmed clock outputs are selectable via three address lines and address latch enable pin. The ST49C106 also includes a power on reset circuit which will cause the select logic to select the frequency at address "000" upon power up. The ST49C106 contains de-glitch circuit so that full clock cycles are provided whenever the HALT pin stops or starts the output clock.

SOIC Package

AVAILABLE

Plastic-DIP package


FEATURES

- . Can replace up to 8 oscillators/crystals and a multiplexer
- Pin-to-pin compatible to Avasem AV9106-14
- Programmable analog phase locked loop
- Low power single 5V CMOS technology
- 14 pin DIP or SOIC package.

ORDERING INFORMATION

Part number	Package	Operating temperature
ST49C106CP14	Plastic-DIP	0°C to +70°C
ST49C106CF14	SOIC	0° C to +70° C

BLOCK DIAGRAM

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
A1	1	l 1	Frequency select address input 2.
A2	2*	1	Frequency select address input 3.
LEN	3*	1	Address latch enable input. To latch selected programmed clock output.
AGND	4	0	Analog ground.
DGND	5	0	Digital ground.
XTAL1	6	I	Crystal or external clock input. A crystal can be connected to this pin and XTAL2 pin to generate internal phase locked loop reference clock. For external 14.318 MHz clock, XTAL2 is left open or used as buffered clock output.
XTAL2	7	0	Crystal output.
SEL	8	I	Clock level select / CLK1. When HALT is asserted, SEL selects whether the clock is high or low. This level must be selected before the clock is halted. SEL pin can be used as an xternal clock input when HALT is active.
HALT	9	1	Start / Stop output clock.
CLKO	10	0	Programmed output clock.
DVCC	11	1	Digital supply voltage. Single +5 volts.
AVCC	12	1	Analog supply voltage. Single +5 volts.
A0	14	1	Frequency select address input 1.

* Have internal pull-up resistors on inputs.

EXTERNAL CLOCK CONNECTION

To minimize the noise pickup, it is recommended to connect 0.047μ F capacitor to XTAL1, and keep the lead length of the capacitor to XTAL1 to a minimum to reduce noise susceptibility.

FREQUENCY SELECT CALCULATION

The ST49C106 contains an analog phase locked loop circuit with digital closed loop dividers and a final output multiplexer to achieve the desired dividing ratios for the clock output.

The accuracy of the frequencies produced by the ST49C106 depends on the input frequency and divider ratios. The formula for calculating the exact output frequency is as follows:

CLKO = (Reference clock) X A/(B.C)

where

A=1,2,3,.....127 B=8, 16, 32 ,64 C=1,2,4,8

For proper output frequency, the ST49C106 can accept a reference frequency from 5 - 40 MHz and divider ratio up to 15.

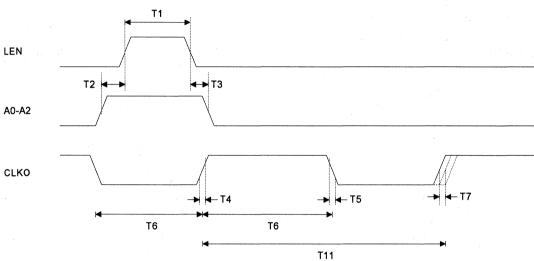
ABSOLUTE MAXIMUM RATINGS

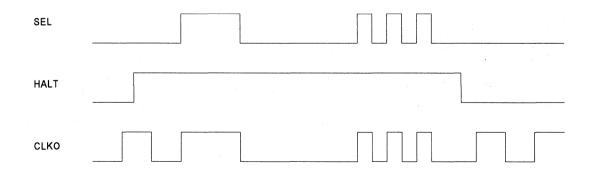
Supply range Voltage at any pin Operating temperature Storage temperature Package dissipation 7 Volts GND-0.3 V to VCC+0.3 V 0° C to +70° C -40° C to +150° C 500 mW

DC ELECTRICAL CHARACTERISTICS

 $T_a=25^{\circ}$ C, $V_{cc}=5.0$ V ± 5% unless otherwise specified.

Symbol	Parameter	Min	Limits Typ	Max	Units	Conditions
V _{IL} V _{IH} V _{OL} V _{OH}	Input low level Input high level Output low level Output high level	2.0 2.4		0.8 0.4	V V V	I _{оL} = 8.0 mA I _{он} = 8.0 mA
I _⊫ I _⊮ I _{cc}	Input low current Input high current Operating current	-	20	-350 1 30	μA μA mA	Except crystal input V _{IN} =Vcc No load.
R _{IN}	Input pull-up resistance	15	20	25	KΩ	DCLK=80MHz


AC ELECTRICAL CHARACTERISTICS

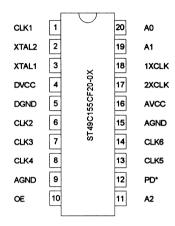

 $\rm T_{A}=25^{\circ}$ C, $\rm ~V_{cc}=5.0~V\pm5\%$ unless otherwise specified.

Symbol	Parameter	Min	Limits Typ	Max	Units	Conditions
T_{1} T_{2} T_{3} T_{4} T_{5} T_{6} T_{7} T_{8} T_{9} T_{10} T_{11}	Enable pulse width Setup time data to enable Hold time to data enable Rise time Fall time Duty cycle Duty cycle Jitter Input frequency Input clock rise time Input clock fall time Output frequency change	20 20 10 40 45 14.318	1 1 48/52 48/52 ±85	1.5 1.5 60 55 ±100 32 20 20	ns ns ns ns % % % MHz ns s %	0.8V - 2.0V 2.0V - 0.8V 1.4V switch point Vcc/2 switch point

A2	A1	AO	ST49C	106-5*
			NOMINAL	ACTUAL
0	0	0	39.000	39.000
0	0	1	25.000	25.000
0	1	0	30.750	30.750
0	1	1	26.250	26.250
1	0	0	32.000	32.000
1	0	1	25.250	25.250
1	1	0	31.250	31.250
1	1	1	37.500	37.500

Printed May, 1993

PREPROGRAMMED CPU MOTHERBOARD FREQUENCY GENERATOR


GENERAL DESCRIPTION

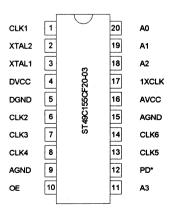
The ST49C155 is a monolithic analog CMOS device designed to generate eight simultaneous clock outputs for mother board applications. It is designed in a 1.2m process to achieve 130 MHz operation with low clock jitter.

The ST49C155 may be used to replace existing BUS and I/O clocks generated from individual oscillators so that board space and number of oscillators are reduced. The high speed analog CMOS phase locked loops use the 14.318 MHz system clock or external crystal connected between XTAL1 and XTAL2 as the reference clock (reference clock can be changed to generate non-standard frequencies from the standard programmed device).

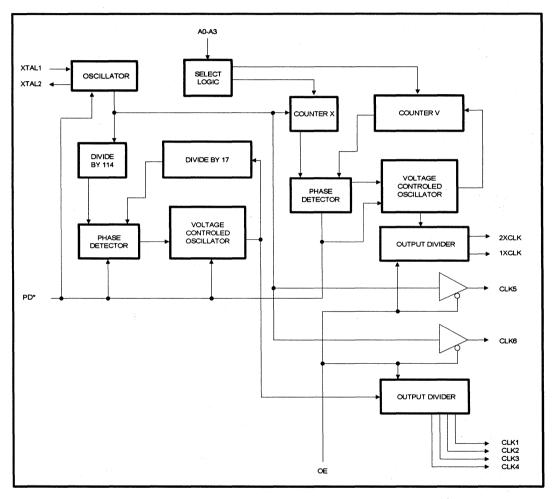
The ST49C155 is metal mask programmable to provide any custom set of CPUCLK frequencies. The programmed clock outputs are selectable via four address lines for 1XCLK / 2XCLK outputs.

SOIC Package

1


FEATURES

- Can replace multiple oscillators/crystals
- Pin -to-pin compatible to AV9155
- Compatible with 286, 386, and 486 CPUs
- Supports Turbo modes
- Generates communications clock, keyboard clock, floppy disk clock, system reference clock, bus clock and CPU clock
- Skew controlled 2X and 1X clocks
- · Programmable analog phase locked loop
- High speed (up to 130 MHz output)
- Low power single 5V CMOS technology
- 20 pin dip or SOIC package


ORDERING INFORMATION

Part number	Package	Opera	atin	g tei	mperati	ure
ST49C155CP20-xx	Plastic-DIP	0°	С	to	+70°	С
ST49C155CF20-xx	SOIC	0°	С	to	+70°	С
ST49C155CJ20-xx	PLCC	0°	С	to	+70°	С

BLOCK DIAGRAM

SYMBOL DESCRIPTION (ST49C155-01/-02)

Symbol	Pin	Signal Type	Pin Description
CLK1	1	0	1.8432 MHz clock output.
XTAL2	2	0	Crystal output.
XTAL1	3	1	Crystal or External clock input.
DVCC	4	I	Digital supply voltage. Single +5 volts.
DGND	5	o	Digital signal ground.
CLK2	6	0	16 MHz (ST49C155-01) or 32 MHz (ST49C155-02) clock output.
СLКЗ	7	0	24 MHz floppy disk clock output.
CLK4	8	0	12 MHz keyboard clock output.
AGND	9	0	Analog ground.
OE	10*	ο	Output Enable (active high). Low on this pin sets all the outputs to three state mode.
A2	11	ł	CPU clock frequency select address 2.
PD*	12*	1	Power down (active low). Shuts off entire chip when low.
CLK5	13	0	14.318 MHz reference clock output.
CLK6	14	0	14.318 MHz reference clock output.
AGND	15	0	Analog ground.
AVCC	16	l ·	Analog supply voltage. Single +5 volts.
2XCLK	17	1	2X CPU clock output.
1XCLK	18	I	1X CPU clock output.
A1	19	I	CPU clock frequency select address 1.
A0	20	. 1	CPU clock frequency select address 0.

*Have internal pull-up resistor on inputs

ST49C155

SYMBOL DESCRIPTION (ST49C155-03)

Symbol	Pin	Signal Type	Pin Description
CLK1	1	ο	6 MHz clock output.
XTAL2	2	0	Crystal output.
XTAL1	3	I	Crystal or External clock input.
DVCC	4	1	Digital supply voltage. Single +5 volts.
DGND	5	ο	Digital signal ground.
CLK2	6	0 · ·	24 MHz floppy disk clock output.
CLK3	7	ο	16 MHz bus clock output.
CLK4	8	0	8 MHz keyboard clock output.
AGND	9	0	Analog ground.
OE	10*	0	Output Enable (active high). Low on this pin sets all the outputs to three state mode.
A3	11	I	CPU clock frequency select address 3.
PD*	12*	I .	Power down (active low). Shuts off entire chip when low.
CLK5	13	ο	14.318 MHz reference clock output.
CLK6	14	0	14.318 MHz reference clock output.
AGND	15	0	Analog signal ground.
AVCC	16	l l	Analog supply voltage. Single +5 volts.
1XCLK	17	I	CPU clock output.
A2	18	I	CPU clock frequency select address 2.
A1	19	l I	CPU clock frequency select address 1.
A0	20	la de la constante de la consta La constante de la constante de	CPU clock frequency select address 0.

*Have internal pull-up resistor on inputs

1

CPU CLOCK TABLE FOR ST49C155-01, -02 (using 14.318 MHz input. All frequencies in MHz).

A2	A1	A0	2XCLK	1XCLK
0	0	0	8	4
0	0	1	16	8
0	1	0	32	16
0	1	1	40	20
1	0	0	50	25
1	0	1	66.66	33.33
1	1	0	80	40
1	1	1	100	50

CPU CLOCK TABLE FOR ST49C155-03(using 14.318 MHz input. All frequencies in MHz).

A3	A2	A1	A0	1XCLK
0	0	0	0	16
0	0	0	1	40
0	0	1	0	50
0	0	1	1	80
0	1	0	0	66.66
0	1	0	1	100
0	1	1	0	8
0	1	1	1	4
1	0	0	0	8
1	0	0	1	20
1	0	1	0	25
1	0	1	1	40
1	1	0	0	33.33
1	1	0	1	50
1	1	1	0	4
1	1	1	1	2

PERIPHERAL CLOCK TABLE CHART FOR ST49C155-01 (MHz)

CLK1	CLK2	CLK3	CLK4
1.8432	16	24	12

PERIPHERAL CLOCK TABLE CHART FOR ST49C155-02 (MHz)

CLK1	CLK2	CLK3	CLK4
1.8432	32	24	12

PERIPHERAL CLOCK TABLE CHART FOR ST49C155-03 (MHz)

CLK1	CLK2	CLK3	CLK4
6	16	24	8

ACTUAL OUTPUT FREQUENCIES

CPU CLOCK TABLE FOR ST49C155-01, -02 (using 14.318 MHz input. All frequencies in MHz).

A2	A1	A0	2XCLK	1XCLK
0	0	0	7.5	3.75
0	0	1	15.51	7.76
0	1	0	32.22	16.11
0	1	1	40.09	20.05
1	0	0	50.11	25.06
1	0	1	66.82	33.41
1	1	0	80.18	40.09
1	1	1	100.23	50.11

CPU CLOCK TABLE FOR ST49C155-03(using 14.318 MHz input. All frequencies in MHz).

A3	A2	A1	A0	1XCLK
0	0	0	0	15.51
0	0	0	1	40.09
0	0	1	0	50.11
0	0	1	1	80.18
0	1	0	0	66.82
0	1	0	1	100.23
0	1	1	0	7.58
0	1	1	1	4.30
1	0	0	0	7.76
1	0	0	1	20.05
1	0	1	0	25.06
1	0	1	1	40.09
1	1	0	0	33.41
1	1	0	1	50.11
1	1	1	0	3.79
1	1	1	1	2.15

PERIPHERAL CLOCK TABLE CHART FOR ST49C155-01 (MHz)

CLK1	CLK2	CLK3	CLK4
1.8432	16	23.71	11.86

PERIPHERAL CLOCK TABLE CHART FOR ST49C155-02 (MHz)

CLK1	CLK2	CLK3	CLK4
1.8432	32.01	24	12

PERIPHERAL CLOCK TABLE CHART FOR ST49C155-03 (MHz)

CLK1	CLK2	CLK3	CLK4
6	16	24	8

FREQUENCY TRANSITIONS

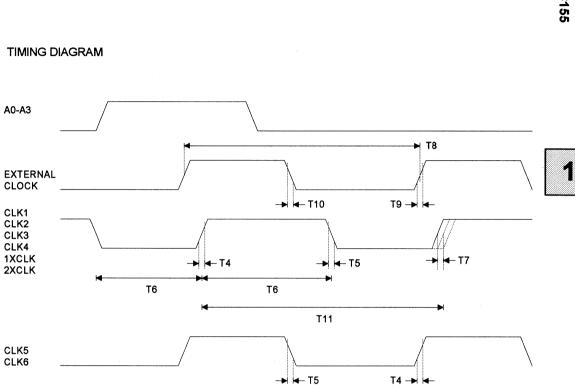
The ST49C155 is designed to provide smooth, glitchfree frequency transitions on the 1XCLK and 2XCLK clocks when the frequency select pins are changed. These frequency transitions are less than 0.1% frequency change per clock period.

ABSOLUTE MAXIMUM RATINGS

Supply voltage Voltage at any pin Operating temperature Storage temperature Package dissipation 7 Volts GND-0.3 V to VCC+0.3 V 0° C to +70° C -40° C to +150° C 500 mW

DC ELECTRICAL CHARACTERISTICS

 T_{A} =25° C, V_{cc} =5.0 V ± 5% unless otherwise specified.


Symbol	Parameter	Min	Limits Typ	Max	Units	Conditions
Z ³ ² ⁻ ² ² ² ² ² ² ² ² ²	Input low level Input high level Output low level Output high level Input low current Input high current Operating current Internal pull-up resistance	2.0 2.4	20 680	0.8 0.4 -1 1 30	 > > > <li< td=""><td>$I_{OL} = 8.0 \text{ mA}$ $I_{OH} = 8.0 \text{ mA}$ Except pins 2, 10, 12 $V_{IN} = V_{CC}$ No load. Pins 10, 12</td></li<>	$I_{OL} = 8.0 \text{ mA}$ $I_{OH} = 8.0 \text{ mA}$ Except pins 2, 10, 12 $V_{IN} = V_{CC}$ No load. Pins 10, 12

AC ELECTRICAL CHARACTERISTICS

 $T_{\rm A}{=}25^{\circ}$ C, $V_{\rm cc}{=}5.0$ V \pm 5% unless otherwise specified.

Symbol	Parameter	Min	Limits Typ	Max	Units	Conditions
T4 T5 T6 T6 T7 T8 T9 T10	Rise time Fall time Duty cycle Duty cycle Jitter Input frequency Input clock rise time Input clock fall time	40 40	1 1 48/52 48/52 ±85 14.318	1.5 1.5 60 55 ±100 20 20	ns ns % ps MHz ns ns ns	0.8V - 2.0V 2.0V - 0.8V 1.4V switch point Vcc/2 switch point

ST49C155

ST49C155

Printed May 17, 1993

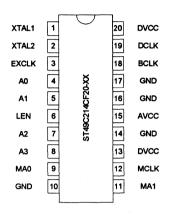
PREPROGRAMMED DUAL VIDEO/MEMORY FREQUENCY GENERATOR

GENERAL DESCRIPTION

The ST49C214 is a monolithic analog CMOS device designed to generate dual frequency outputs from sixteen possible combinations for video Dot clock frequencies and four memory clock frequencies for high performance video display systems. The ST49C214 is a mask option programmable device to provide different output frequencies for custom applications. It is designed with 1.2μ process to achieve 130 MHz speed for high end frequencies.

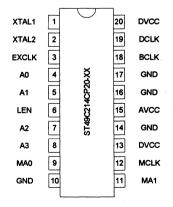
The ST49C214 is designed to replace existing video clocks generated from individual oscillators, to reduce board space and number of oscillators. To provide high speed and low jitter clock, The ST49C214 utilizes high speed analog CMOS phase locked loop using 14.318 MHz system clock as reference clock (reference clock can be changed to generate optional frequencies from standard programmed device) or external crystal connected between XTAL1 and XTAL2.

The ST49C214 can provide optional clock frequencies, utilizing single layer metal mask option. The programmed clock outputs are selectable via four address lines and address latch enable pin for video Dot clock selection and two address lines for memory clock selection.

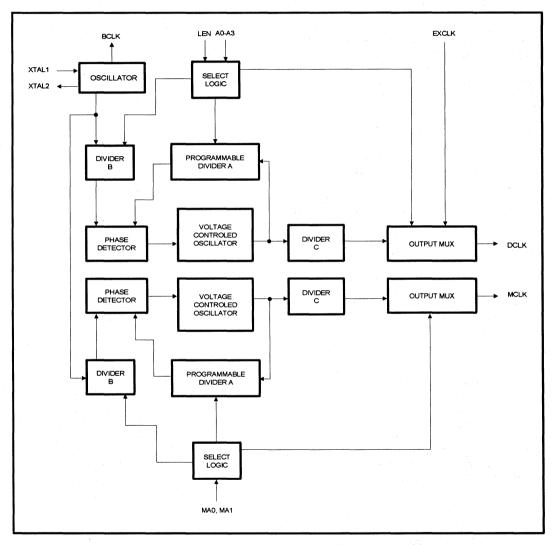

FEATURES

- · Can replace multiple oscillators/crystals
- Pin -to-pin compatible to ICS2494
- · Programmable analog phase locked loop
- High speed (up to 130 MHz output)
- Low power single 5V CMOS technology
- 20 pin dip or SOIC package

ORDERING INFORMATION


Part number	Package	Opera	atin	g tei	mperati	ure
ST49C214CP20-xx	Plastic-DIP	0°	С	to	+70°	С
ST49C214CF20-xx	SOIC	0°	С	to	+70°	С
ST49C214CJ20-xx	PLCC	0°	С	to	+70°	С

SOIC Package



1

Plastic-DIP Package

BLOCK DIAGRAM

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
XTAL1	1	I	Crystal or external clock input. A crystal can be connected to this pin and XTAL2 pin to generate internal phase locked loop reference clock. For external 14.318 MHz clock, XTAL2 is left open or used as buffered clock output.
XTAL2	2	0	Crystal output.
EXCLK	3*	1	External clock input.
A0	4*	1	Dot clock Frequency select address 1.
A1	5*	-	Dot clock Frequency select address 2.
LEN	6*	1	Address latch enable input (active high). To latch selected programmed clock output.
A2	7*	1	Dot clock Frequency select address 3.
A3	8*	I	Dot clock Frequency select address 4.
MA0	9*	I	Memory clock Frequency select address 1.
GND	10	0	Digital and Analog ground.
MA1	11*	1	Memory clock Frequency select address 2.
MCLK	12	0	Programmed memory clock output frequency.
DVCC	13	1	Digital supply voltage. Single +5 volts.
GND	14	0	Digital and Analog ground.
AVCC	15	I	Analog supply voltage. Single +5 volts.
GND	16	0	Digital and Analog ground.
GND	17	0	Digital and Analog ground.
BCLK	18*	0	Buffered crystal clock output frequency.
DCLK	19	0	Programmed video clock output frequency.
DVCC	20	i	Digital supply voltage. Single +5 volts.

ST49C214

1

* Have internal pull-up resistor on inputs.

ST49C214

FREQUENCY SELECT CALCULATION

The ST49C214 contains an analog phase locked loop circuit with a digital closed loop divider and a final series divider to achieve desired dividing ratios for clock output.

The accuracy of the frequencies produced by the ST49C214 depends on the input frequency and final output frequency. The formula for calculating the exact output frequency is as follows:

XCLK = (Reference clock) X (A/B.C)

where A=1,2,3,......127, B=1,2,3,.....127, AND C=1,2,4

For proper output frequency, the ST49C214 can accept reference frequency from 5 - 40 MHz and divider ratio up to 15.

MASK OPTIONS

The following mask option are provided for custom applications.

*Any frequency can be in any decoding position.

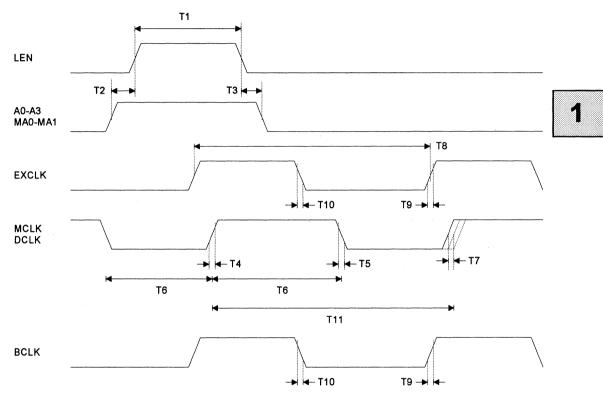
ABSOLUTE MAXIMUM RATINGS

Supply range Voltage at any pin Operating temperature Storage temperature Package dissipation 7 Volts GND-0.3 V to VCC+0.3 V 0° C to +70° C -40° C to +150° C 500 mW

DC ELECTRICAL CHARACTERISTICS

 T_{A} =25° C, V_{cc} =5.0 V ± 5% unless otherwise specified.

Symbol	Parameter	Min	Limits Typ	Max	Units	Conditions
V _{IL} V _{IH} V _{OL} I _{IL}	Input low level Input high level Output low level Output high level Input low current	2.0 2.4		0.8 0.4 -350	V V V μA	$I_{OL} = 8.0 \text{ mA}$ $I_{OH} = 8.0 \text{ mA}$ Except crystal input
I _⊮ I _{cc}	Input high current Operating current		20	1 30	μA mA	V _{IN} =Vcc No load. DCLK=80MHz, MCLK=40MHz
R _{in}	Internal pull-up resistance	15	20	25	KΩ	


AC ELECTRICAL CHARACTERISTICS

$T_{a}=25^{\circ}$ C, $V_{cc}=5.0$ V ± 5% unless otherwise specified.	T.=	25°	С,	V _c	_=5.0	v	±	5%	unless	otherwise	specified.
---	-----	-----	----	----------------	-------	---	---	----	--------	-----------	------------

Symbol	Parameter	Min	Limits Typ	Max	Units	Conditions
T ₁ T ₂ T ₃ T ₄ T ₅ T ₆ T ₆	Enable pulse width Setup time data to enable Hold time to data enable Rise time Fall time Duty cycle Duty cycle	20 20 10 40 45	1 1 48/52 48/52	1.5 1.5 60 55	ns ns ns ns % %	0.8V - 2.0V 2.0V - 0.8V 1.4V switch point Vcc/2 switch point
Τ ₇ Τ ₈ Τ ₉ Τ ₁₀ Τ ₁₁	Jitter Input frequency Input clock rise time Input clock fall time Output frequency change	14.318	±85 0.005	±100 32 20 20	ps MHz ns s %	

ST49C214

ST49C214- Frequency generator programming information

2. Please fill in the nominal frequencies required.

3. Crystal or input clock frequency

A3	A2	A1	A0	Nominal DCLKO	Actual DCLKO	
0 0 0 0 0 0 1 1 1 1 1 1	0 0 1 1 1 0 0 0 1 1 1	0 0 1 1 0 0 1 1 0 0 1 1 0 0	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1			
		MA1	MAO	Nominal MCLKO	Actual MCLKO	-
	e.	0 0 1 1 ·	0 1 0 1			

	ST49C214-1	ST49C214-2	ST49C214-3	ST49C214-4	ST49C214-
Video clock address (Hex)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)
0	XTAL	30,000	25.175	20.000	50.350
1	65.028	77.250	28.325	24.000	56.644
2	EXCLK	EXCLK	85.000	32.000	65.000
2 3	36.000	80.000	44.900	40.000	72.000
4	25.175	31.500	40.000	50.000	80.000
5	28.322	36.000	48.000	66.667	89.800
6	24.000	75.000	50.000	80.000	63.000
7	40.000	50.000	81.150	100.000	75.000
8	44.900	40.000	25.175	54.000	25.175
9	50.350	50.000	28.325	70.000	28.322
А	16.257	32.000	37.500	90.000	31.500
В	32.514	44.900	44.900	110.000	36.000
С	56.644	25.175	40.000	25.000	40.000
D	20.000	28.322	32.500	33.333	44.900
E	41.539	65.000	50.000	40.000	50.000
F	80.000	36.000	65.000	50.000	65.000
Memory clock address (Hex)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)
0	32.900	36.000	36.000	16.000	40.000
1	35.600	44.347	40.000	24.000	41.612
2 3	43.900	37.500	45.000	50.000	44.744
3	49.100	44.773	50.000	66.667	50.000

Compatible withICS-236ICS-242ICS-231ICS-244ICS-237Video ControllerGD6410WD90C30ET4000ET4000

1

1-53

ST49C214

V (1 1 1	ST49C214-6	ST49C214-8	ST49C214-9	ST49C214-10	ST49C214-16
Video clock address	Frequency	Frequency	Frequency	Frequency	Frequency
(Hex)	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)
0	25.175	25.175	25.175	30.250	XTAL
1	28.322	28.322	28.322	65.000	16.257
2	40.000	40.000	40.000	85.000	EXCLK
3	65.000	32.500	EXCLK	36.000	32.514
4	44.900	50.000	50.000	25.175	25.175
5	50.000	65.000	77.000	28.322	28.322
6	130.000	38.000	36.000	34.000	24.000
7	75.000	44.900	44.889	40.000	40.000
8	25.175	31.500	130.00	44.900	XTAL
9	28.322	36.000	120.00	50.350	16.257
А	EXCLK	80.000	80.000	31.500	EXCLK
В	EXCLK	63.000	31.500	32.500	36.000
С	60.000	50.000	110.00	63.000	25.175
D	80.000	100.000	65.000	72.000	28.322
E	EXCLK	76.000	75.000	75.000	24.000
F	EXCLK	110.000	72.000	80.000	40.000
Memory clock	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)
address (Hex)					
0	50.000	70.000	55.000	36.000	31.000
1	60.000	63.830	75.000	44.000	36.000
2	65.000	60.000	70.000	49.000	43.000
3	75.000	81,000	80.000	40.000	49.000

Compatible with	ICS-253		ICS-256	ICS-266	ICS-247
Video Controller	NCR77C22E	HT216	S3/86C911	GDS5410	GDS5320

	ST49C214-17	ST49C214-18	ST49C214-19	ST49C214-20	ST49C214-25
Video clock address (Hex)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)
0	25.175	25.175	25.175	50.350	25.175
1	28.322	28.322	28.322	56.644	28.322
2	28.636	40.000	40.000	33.250	40.000
3	36.000	EXCLK	EXCLK	52.000	72.000
4	40.000	50.000	50.000	80.000	50.000
5	42.954	77.000	77.000	63.000	77.000
6	44.900	36.000	36.000	EXCLK	36.000
7	57.272	44.889	44.889	75.000	44.900
8	60.000	130.00	130.00	25.175	130.00
9	63.960	120.00	120.00	28.322	120.00
А	75.000	80.000	80.000	31.500	80.000
в	80.000	31.500	31.500	36.000	31.500
С	85.000	110.00	110.00	40.000	110.00
D	99.000	65.000	65.000	44.900	65.000
E	102.00	75.000	75.000	50.000	75.000
F	108.00	94.500	94.500	65.000	94.500
Memory clock address (Hex)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)
0	64.000	45.000	55.000	40.000	55.000
1	40.830	38.000	75.000	33.333	65.000
2	48.000	52.000	70.000	44.000	70.000
3	60.000	50.000	80.000	50.000	80.000
	<u> </u>	L	1	I	1
4					45.000
5					40.000
6					60.000
7					50.000

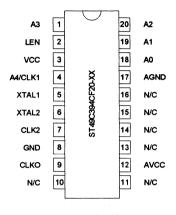
Compatible with	ICS-240	ICS-275	ICS-305	ICS-260	CH9294-G
Video Controller	TI/34010/20	S3/801/805	S3/924	WEITEK	S3/801/805
				W5186	

*= The External clock input pin has been changed to MA2 to privide four additional preprogrammed memory clock selections. When Pin-3 of the ST49C214-25 is connected to ground it is downward compatible to standard ST49C214-XX. This pin contains internal pull-up resistor.

ST49C214

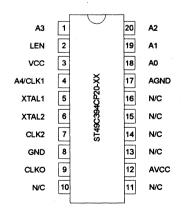
Printed May 17, 1993

PREPROGRAMMED VIDEO DOT CLOCK FREQUENCY GENERATOR


GENERAL DESCRIPTION

The ST49C394 is a monolithic analog CMOS device designed to generate dot clock frequency outputs from thirty two possible combinations in high performance video display systems. The ST49C394 is a mask programmable device that allows complete flexibility in frequency choice. It is designed in a 1.2μ process to achieve 135MHz speed for high end custom applications.

The ST49C394 is designed to replace existing video clocks generated from individual oscillators in order to reduce board space and number of oscillators. To provide high speed and low jitter, the ST49C394 utilizes a high speed analog CMOS phase locked loop that uses either the system clock or a crystal for its reference.


The programmed clock outputs are selectable via four address lines and an address latch enable pin.

SOIC Package

Plastic-DIP Package

FEATURES

- Can replace multiple crystals or oscillators
- Pin -to-pin compatible to ICS1394
- Programmable analog phase locked loop
- High speed (up to 135 MHz output)
- Low power single 5V CMOS technology
- 20 pin DIP or SOIC package

ORDERING INFORMATION

Part number	Package	Opera	atin	g tei	mperati	ure
ST49C394CP20-xx	Plastic-DIP	0°	С	to	+70°	С
ST49C394CF20-xx	SOIC	0°	С	to	+70°	С
ST49C394CJ20-xx	PLCC	0°	С	to	+70°	С

BLOCK DIAGRAM

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description		
XTAL1	5	I	Crystal or external clock input. A crystal can be connected to this pin and XTAL2 pin to generate internal phase locked loop reference clock. For external 14.318 MHz clock, XTAL2 is left open or used as buffered clock output.		
XTAL2	6	0	Crystal output.		
CLK2	7	i	External clock input 2.		
A0	18	1	Frequency select address 1.		
A1	19	I	Frequency select address 2.		
LEN	2		Address latch enable input (active high). May be disabled via internal option mask.		
A2	20	I	Frequency select address 3.		
A3	1	1	Frequency select address 4.		
A4/CLK1	4	I	Frequency select address 5 or external clock input 1		
GND	8	0	Digital ground.		
CLKO	9	0	Programmed clock output.		
vcc	3		Digital supply voltage. Single +5 volts.		
AGND	17	0	Analog ground.		
AVCC	12	1	Analog supply voltage. Single +5 volts.		

ST49C394

1

ST49C394

FUNCTIONAL DESCRIPTION

The ST49C394 is designed to output one of the 16 or 32 possible mask preprogrammable frequencies.

For one of 16 output selections, address lines A0-A3 and LEN (latch enable) are used and the selected address (A0-A3) is latched on the falling edge of LEN. For one of 32 output selections, address lines A0-A4 and LEN are used. The unused A4 address line in the one of 16 mode can be used (mask programmed) as an external clock input. The ST49C394 is designed to work with the existing ICS1394 footprint without modifing the art-work and components. The ST49C394 does not utilize pins11, 13, 14, 15, and 16 as these functions are implemented internally to reduce the external component count and noise problems.

POWER ON RESET

An internal power on reset is provided to set the latched address to "0000".

FREQUENCY SELECT CALCULATION

The ST49C394 contains an analog phase locked loop circuit with a digital closed loop divider and a final series divider to achieve desired dividing ratios for clock output.

The accuracy of the frequencies produced by the ST49C394 depends on the input frequency and final output frequency. The formula for calculating the exact output frequency is as follows:

CLKO=(Reference clock) X (A/BxC)

where

A=1,2,3,.....127, B=1,2,3,.....127,and C=1, 2, 4, 8, 16, 32, 64.

For proper operation, the ST49C394 can accept reference frequencies from 5 - 40 MHz and divider ratios up to 15.

MASK OPTIONS

The following mask options are provided for custom applications.

- * Address is latched utilizing the LEN pin.
- * Transparent address input.
- * CLK1 can be preprogrammed as external clock input.
- * Selectable/Programmable clock frequencies.

ABSOLUTE MAXIMUM RATINGS

Supply range Voltage at any pin Operating temperature Storage temperature Package dissipation 7 Volts GND-0.3 V to VCC+0.3 V 0° C to +70° C -40° C to +150° C 500 mW

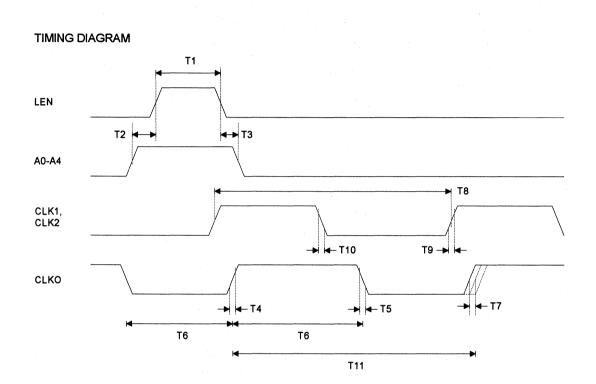
DC ELECTRICAL CHARACTERISTICS

 T_{A} =25° C, V_{cc} =5.0 V ± 5% unless otherwise specified.

Symbol	Parameter	Limits Min Typ Max			Units	Conditions
V [⊥] V ^H _H V ^{OL} _I I [⊥]	Input low level Input high level Output low level Output high level Input low current Input high current Operating current	2.0 2.4	20	0.8 0.4 -350 1 30	V V V µA mA	I _{ot} = 8.0 mA I _{oH} = 8.0 mA Except crystal input V _{IN} =Vcc No load. DCLK=80MHz

ST49C394

AC ELECTRICAL CHARACTERISTICS


 T_{A} =25° C, V_{cc} =5.0 V ± 5% unless otherwise specified.

Symbol	Parameter	Min	Limits Typ	Max	Units	Conditions
T, T,₂ T,₃ T,₄ T,₅ T,6 T,6	Enable pulse width Setup time address to enable Hold time to address enable Rise time Fall time Duty cycle Duty cycle	20 20 10 40 45	1 1 48/52 48/52	1.5 1.5 60 55	ns ns ns ns % %	0.8V - 2.0V 2.0V - 0.8V 1.4V switch point Vcc/2 switch point
Τ ₇ Τ ₈ Τ ₉ Τ ₁₀ Τ ₁₁	Jitter Input frequency Input clock rise time Input clock fall time Output frequency change	5	±85 0.005	±100 40 20 20	ps MHz ns ns %	

ST49C394-20	ST49C394-24	ST49C394-30	ST49C394-82	
Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	
05.475			· · · ·	
1				
		36.000	72.000	
	32.514	25.175	80.000	
1	28.322	28.322	89.800	
76.000	36.000	24.000	100.00	
44.900	65.000	40.000	65.000	
25.175	25.175	14.318	50.350	
44.900	28.322	65.028	56.644	
28.322	32.514	FREQ0	65.028	
38.000	36.000	36.000	72.000	
40.000	40.000	25.175	80.000	
46.000	44.900	28.322	89.800	
48.000	56.000	24.000	100.00	
60.000	65.000	40.000	75.000	
65.000	25.175	44.900	25.175	
72.000	28.322	50.344	28.322	
74.000	32.514		100.00	
76.000	40.000	32.514		
78.000	44.900	56.644		
80.000				
	Frequency (MHz) 25.175 28.322 40.000 32.500 50.350 65.000 38.000 44.900 25.175 28.322 80.000 32.500 50.350 65.000 76.000 44.900 25.175 44.900 25.175 44.900 28.322 38.000 40.000 46.000 48.000 65.000 72.000 74.000 78.000	Frequency (MHz) Frequency (MHz) 25.175 25.175 28.322 28.322 40.000 32.514 32.500 36.000 50.350 40.000 65.000 44.900 38.000 65.000 44.900 84.000 25.175 25.175 28.322 28.322 80.000 40.000 32.500 44.900 50.350 32.514 65.000 28.322 76.000 36.000 44.900 65.000 25.175 25.175 24.900 28.322 76.000 36.000 44.900 65.000 25.175 25.175 44.900 65.000 25.175 25.175 44.900 65.000 25.175 25.175 44.900 36.000 40.000 44.900 46.000 44.900 65.000 25.175	Frequency (MHz)Frequency (MHz)Frequency (MHz)25.17525.17514.31828.32228.32216.25740.00032.514FREQ032.50036.00032.51450.35040.00025.17565.00044.90028.32238.00065.00024.00044.90084.00040.00025.17514.31828.32228.32216.25780.00040.00044.90084.00040.000FREQ032.50044.90036.00025.17580.00040.00090.32.50044.90036.00028.322250044.90032.50044.90032.50044.90032.50044.90032.50044.90032.50044.90032.51425.17580.00024.00044.90065.00044.90028.32238.00036.00038.00036.00040.00044.90028.32232.51448.00056.00044.90028.32248.00056.00044.90028.32248.00056.00044.90028.32251.7544.90072.00028.32250.34474.00032.51476.00040.00032.51416.25776.00040.00032.51416.25776.0004	Frequency (MHz)Frequency (MHz)Frequency (MHz)Frequency (MHz)25.17525.17514.31825.17528.32228.32216.25728.32240.00032.514FREQO32.51432.50036.00032.51436.00050.35040.00025.17540.00065.00044.90028.32244.90038.00065.00024.00050.35044.90084.00040.00065.00025.17525.17514.31850.35028.32228.32216.25756.64480.00040.000FREQO65.02832.50044.90036.00072.00050.35032.51425.17580.00065.00028.32228.32289.80076.00036.00024.000100.0044.90028.322265.02856.64428.32232.514FREQO65.02838.00036.00036.00072.00044.90028.32265.02856.64428.32232.514FREQO65.02838.00036.00036.00072.00044.90028.32250.34428.32275.17514.31850.35044.90028.32250.34428.32232.514FREQO65.00025.17580.00065.00025.17580.00065.00025.17544.90077572.00028.32274.00032.51

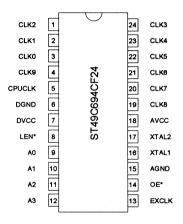
ST49C394

1

1-64

Printed May, 1993

PREPROGRAMMED CPU MOTHERBOARD FREQUENCY GENERATOR


GENERAL DESCRIPTION

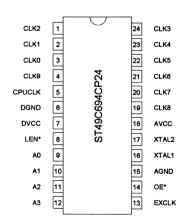
The ST49C694 is a monolithic analog CMOS device designed to generate ten simultaneous clock outputs for mother board applications. It is designed in a 1.2m process to achieve 130 MHz operation with low clock jitter.

The ST49C694 may be used to replace existing BUS and I/O clocks generated from individual oscillators so that board space and number of oscillators are reduced. The high speed analog CMOS phase locked loops use the 14.318 MHz system clock or an external crystal connected between XTAL1 and XTAL2 as the reference clock (reference clock can be changed to generate non-standard frequencies from the standard programmed device).

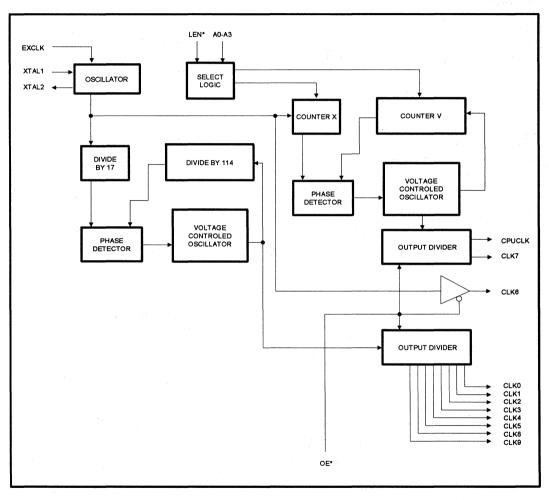
The ST49C694 is metal mask programmable to provide any custom set of CPUCLK frequencies. The programmed clock outputs are selectable via four address lines and address latch enable pin for CPUCLK output.

SOIC Package

1


Plastic-Dip Package

FEATURES


- Can replace multiple oscillators/crystals
- Pin -to-pin compatible to ICS2694
- Compatible with 286, 386, and 486 CPUs
- Supports Turbo modes
- Generates communications clock, keyboard clock, floppy disk clock, system reference clock, bus clock and CPU clock
- Programmable analog phase locked loop
- High speed (up to 130 MHz output)
- Low power single 5V CMOS technology
- 24 pin dip, SOIC or PLCC package

ORDERING INFORMATION

Part number	Package	Opera	atin	g te	mperate	ure
ST49C694CP24-xx	Plastic-DIP	0°	С	to	+70°	С
ST49C694CF24-xx	SOIC	0°	С	to	+70°	С
ST49C694CJ24-xx	PLCC	0°	С	to	+70°	С

BLOCK DIAGRAM

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
CLK2	1	0	Preprogrammed clock output (32 MHz).
CLK1	2	0	Preprogrammed clock output (1.846 MHz).
CLK0	3	ο	Preprogrammed clock output (24 MHz).
CLK9	- 4	ο	Preprogrammed clock output (6 MHz).
CPUCLK	5	0	CPU clock output.
DGND	6	0	Digital signal ground.
DVCC	7	1	Digital supply voltage. Single +5 volts.
LEN*	8*	I .	Address latch enable input (active low). To latch selected programmed CPUCLK clock output.
A0	9*	l e	CPU clock Frequency select address 0.
A1	10*	1	CPU clock Frequency select address 1.
A2	11*	1	CPU clock Frequency select address 2.
A3	12*	I	CPU clock Frequency select address 3.
EXCLK	13*	I	External reference clock. The crystal oscillator output and EXCLK are gated together to generate the reference clock for the VCO's. If EXCLK is used, XTAL1 should be held high and XTAL2 left open. If the internal oscillator is used, hold EXCLK high.
OE*	14*	o	Output Enable (active low). Low on this pin sets all the outputs to three state mode.
AGND	15	0	Analog ground.
XTAL1	16	I	Crystal input.
XTAL2	17	O,	Crystal output.
AVCC	18	I	Analog supply voltage. Single +5 volts.
CLK8	19	0	Preprogrammed clock output (1.19 MHz).

ST49C694

1

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
CLK7	20	0	CPUCLK/2 output.
CLK6	21	0	Buffered clock output (14.318 MHz).
CLK5	22	0	Preprogrammed clock output (9.6 MHz).
CLK4	23	0 0	Preprogrammed clock output (8 MHz).
CLK3	24	0	Preprogrammed clock output (16 MHz).

*Have internal pull-up resistors on inputs.

CPU CLOCK TABLE FOR ST49C694 (using 14.318 MHz input. All frequencies in MHz).

A3	A2	A1	A0	CPUCLK Nominal	CPUCLK Actual
0	0	0	0	2	1.997
0	Ó	0	1	10	10.022
0	0	1	0	20	20.045
0	0	1	1	24	23.865
0	1	0	0	25	25.056
0	1	0	1	32	31.818
0	1	1	0	33.33	33.409
0	1	1	1	40	39.772
1	0	0	0	48	48.323
1	0	0	1	50	50.113
1	0	1	0	54	54.090
1	0	1	1	66.66	66.818
1	1	0	0	68	67.499
1	1	0	1	80	80.181
1	1	1	0	100	100.22
1	1	1	1	16	16.022

ST49C694

ABSOLUTE MAXIMUM RATINGS

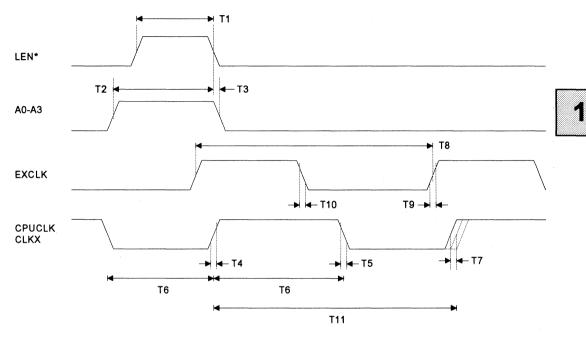
Supply Voltage Voltage at any pin Operating temperature Storage temperature Package dissipation 7 Volts GND-0.3 V to VCC+0.3 V 0° C to +70° C -40° C to +150° C 500 mW

DC ELECTRICAL CHARACTERISTICS

 $T_a=25^{\circ}$ C, $V_{cc}=5.0$ V ± 5% unless otherwise specified.

Symbol	Parameter	Min	Limits Typ	Max	Units	Conditions
V,≝, V, V, V, I, I, I, K, R, R,	Input low level Input high level Output low level Output high level Input low current Input high current Operating current Internal pull-up resistance	2.0 2.4 50	20	0.8 0.4 -100 1 30	V V PA pA mA KΩ	Except Xtal1 Except Xtal1 $I_{OL} = 8.0 \text{ mA}$ $I_{OH} = 8.0 \text{ mA}$ VIN=VCC No load. CPUCLK=80MHz Pin 8-14

1


AC ELECTRICAL CHARACTERISTICS

 $\rm T_{A}=25^{\circ}$ C, $\rm ~V_{cc}=5.0~V\pm5\%$ unless otherwise specified.

Symbol	Parameter	Limits Min Typ Max			Units	Conditions
T ₁ T ₂ T ₃ T ₄ T ₅ T ₆ T ₆	Enable pulse width Address setup time Address hold time Rise time Fall time Duty cycle Duty cycle		1 1 48/52 48/52	1.5 1.5 60 55	ns ns ns ns % %	0.8V - 2.0V 2.0V - 0.8V 1.4V switch point Vcc/2 switch point
T ₇ T ₈ T ₉ T ₁₀ T ₁₁	Jitter Input frequency Input clock rise time Input clock fall time Output frequency error		±85 14.318	±100 20 20 0.6	ps MHz ns ns %	

ST49C694

TIMING DIAGRAM

ST49C694

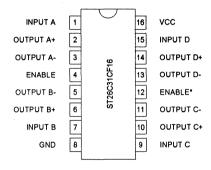
LINE DRIVERS / RECEIVERS

2

Index

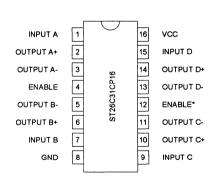
ST26C31	
ST26C32	
ST34C50	
ST34C51	
ST34C86	
ST34C87	

Printed May 18, 1993


QUAD RS-422 CMOS DIFFERENTIAL LINE DRIVER

DESCRIPTION

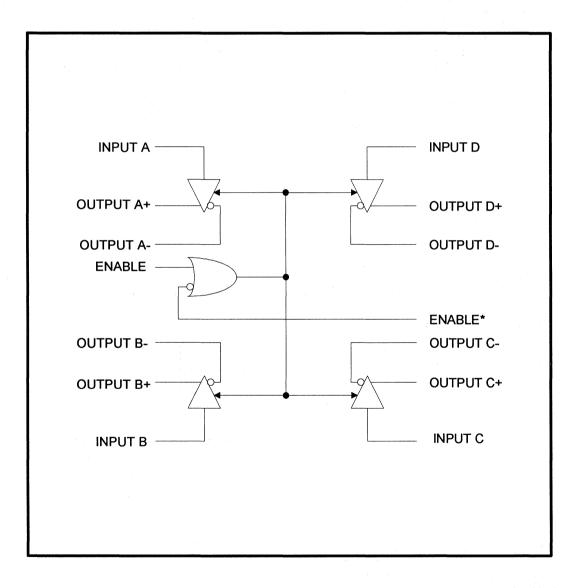
The ST26C31 is a CMOS quad differential line driver designed to meet the standard RS-422 requirements and digital data transmission over balanced lines. To improve noise margin and output stability for slow changing input signals special hysteresis is built in the ST26C31 circuit.


The ST26C31 is a high speed CMOS line driver designed to operate with MFM / RLL controllers and hard disk drives as well as RS-422 digital data transmission applications. ST26C31 is suitable for low power 5V operation with high input voltage protection devices.

SOIC package

FEATURES

- Pin-to-pin compatible with National DS26C31C
- Low power CMOS design
- Three-state outputs with enable pin
- Meets the EIA RS-422 requirements
- Low propagation delays
- High speed


Plastic-DIP package

ORDERING INFORMATION

Part number	Package	Operating temperature
ST26C31CP16	Plastic-DIP	0° C to + 70° C
ST26C31CF16	SOIC	0°C to +70°C

ST26C31

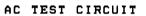
BLOCK DIAGRAM

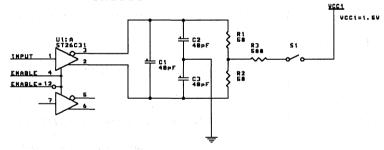
2-4

2-5

2

SYMBOL DESCRIPTION


Symbol	Pin	Signal Type	Pin Description
INPUT A	1	1	Driver A input pin.
OUTPUT A+	2	о	Driver A differential non-inverting output pin.
OUTPUT A-	3	о	Driver A differential inverting output pin.
ENABLE	4	I	Gate control (active high). This pin is one of the two control pins which enables or disables all four drivers. All four drivers are gated with two input or gate.
OUTPUT B-	5	о	Driver B differential inverting output pin.
OUTPUT B+	6	0	Driver B differential non-inverting output pin.
INPUT B	7	I	Driver B input pin.
GND	8	ο	Signal and power ground.
INPUT C	9	I	Driver C input pin.
OUTPUT C+	10	о	Driver C differential non-inverting output pin.
OUTPUT C-	11	о	Driver C differential inverting output pin.
ENABLE*	12	1	Gate control (active low). See ENABLE pin description.
OUTPUT D-	13	0	Driver D differential inverting output pin.
OUTPUT D+	14	0	Driver D differential non-inverting output pin.
INPUT D	15	I.	Driver D input pin.
vcc	16		Power supply pin.


Functional table

Enable	Enable*	Input	Differential Non-Inverting Output	Differential Inverting Output
L L H H H H	H L L L H H	X L H L H L H	Z L H L H L	Z H L H H L

X=Don't care

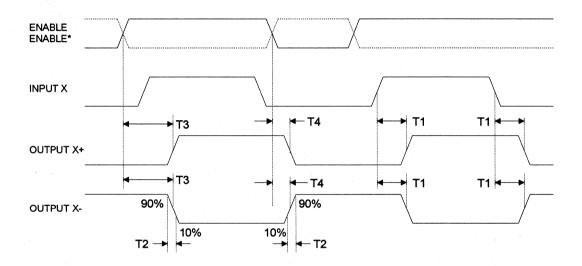
Z=Three state (high impedance)

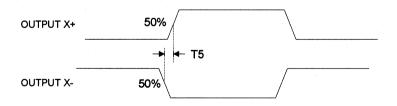
AC ELECTRICAL CHARACTERISTICS

 T_{A} =25° C, V_{cc} =5.0 V ± 5% unless otherwise specified.

Symbol			Limits Min Typ Max		Units	Conditions
T ₁ T ₂ T ₃ T ₄ T ₅	Propagation delay, input to output Differential output rise and fall time Output enable time Output disable time Skew		8 8 18 18 0.5	10 10 20 20	ns ns ns ns ns	S1 open S1 open S1 close S1 close S1 open

ABSOLUTE MAXIMUM RATINGS


Supply range Voltage at any pin Operating temperature Storage temperature Package dissipation 7 Volts GND-0.3 V to VCC+0.3 V 0° C to +70° C -40° C to +150° C 500 mW


DC ELECTRICAL CHARACTERISTICS

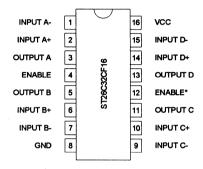
 T_{A} =25° C, V_{cc} =5.0 V ± 5% unless otherwise specified.

Symbol	Parameter	Min	Limits Typ	Max	Units	Conditions
IN	Input current			±1.0	μA	
	Operating current		200		μA	
	Three state output leakage		±2.0		μA	
I _{oz} V _{IH}	Input high level	2.0			V	
V,	Input low level			0.8	V	
V _{OH}	Output high level	2.5			V	
Vol	Output low level			0.5	V	
Vos	Differential output level	2.0			V	R _i =100 ohms
V	Common mode output voltage			3.0	V	R =100 ohms
V _{od}	Difference in common mode output			0.4	V	R _[=100 ohms
CIN	Input capacitance	7	10	15	pF	-
C _{PD}	Power dissipation capacitance		100		pF	
los	Output short current	-30		-150	mA	V _{IN} =VCC or GND
	Output leakage current power off			100	μA	Vout=6V
				-100	μA	Vout=0.25V
I _{DC}	Output current			±150	mA	

DIFFERENTIAL LINE DRIVER TIMING

2-8

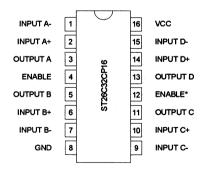
Printed May 18, 1993


QUAD RS-422, RS-423 CMOS DIFFERENTIAL LINE RECEIVER

DESCRIPTION

The ST26C32 is a CMOS quad differential line receiver designed to meet the standard RS-422, RS-423 requirements. The ST26C32 has an input sensitivity of 200mv over the common mode input voltage range of \pm 7V. To improve noise margin and output stability for slow changing input signal, special hysteresis is built in the ST26C32 circuit.

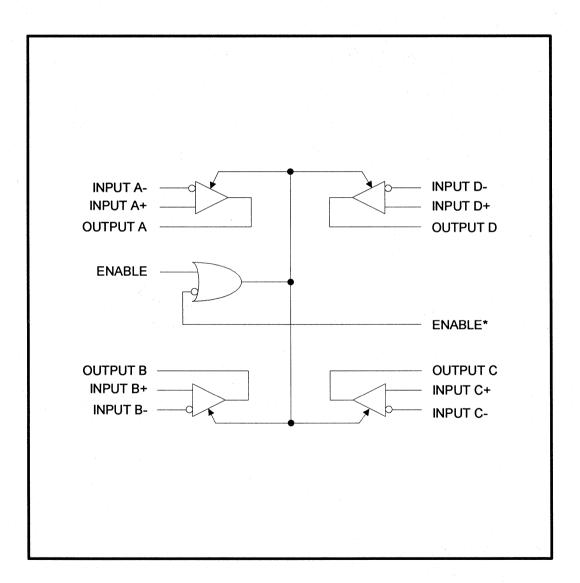
The ST26C32 is a high speed line receiver designed to operate with MFM / RLL controllers and hard disk drives as well as RS-422, and RS-423 differential applications. ST26C32 provides TTL compatible outputs to interface with standard 74LS and CMOS design environments. ST26C32 is suitable for low power 5V operation.


SOIC package

FEATURES

- Pin-to-pin compatible with National DS26C32C
- · Low power CMOS design
- Three-state outputs with enable pin
- Meets the EIA RS-422 requirements
- · Low propagation delays
- High speed

Plastic-DIP package



ORDERING INFORMATION

Part number	Package	Operating temperature
ST26C32CP16	Plastic-DIP	0°C to +70°C
ST26C32CF16	SOIC	0° C to + 70° C

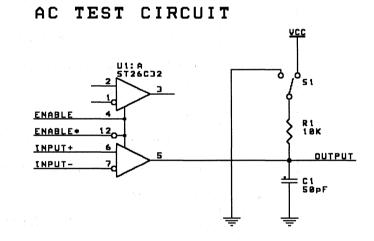
ST26C32

BLOCK DIAGRAM

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
INPUT A-	1	I	Receiver A differential inverting input pin.
INPUT A+	2	I	Receiver A differential non-inverting input pin.
OUTPUT A	3	0	Receiver A output pin.
ENABLE	4	I	Gate control (active high). This pin is one of the two control pins which enables or disables all four receivers.
INPUT B+	5	I	Receiver B differential non-inverting input pin.
INPUT B-	6	1	Receiver B differential inverting input pin.
OUTPUT B	7	0	Receiver B output pin.
GND	8	0	Signal and power ground.
INPUT C	9	I	Receiver C differential non-inverting input pin.
INPUT C-	10	I	Receiver C differential inverting input pin.
OUTPUT C	11	0	Receiver C output pin.
ENABLE *	12	I .	Gate control (active low). See ENABLE description
OUTPUT D	13	0	Receiver D output pin.
INPUT D+	14	l i L i	Receiver D differential non-inverting input pin.
INPUT D-	15	L.	Receiver D differential inverting input pin.
vcc	16		Power supply pin.

ST26C32


ST26C32

Functional table

Enable	Enable*	Output	Differential Non-Inverting Input	Differential Inverting Input
L	H	Z	X	X
H	L	L	L	H
H	L	H	H	L

X=Don't care

Z=Three state (high impedance)

AC ELECTRICAL CHARACTERISTICS

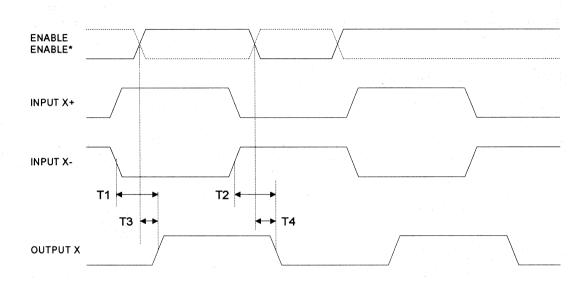
 T_{A} =25° C, V_{cc} =5.0 V ± 5% unless otherwise specified.

Symbol	Parameter	Min	Limits Typ	Мах	Units	Conditions
$\begin{array}{c} T_1 \\ T_2 \\ T_3 \\ T_4 \end{array}$	Propagation delay, input to output Propagation delay, input to putput Output enable time Output disable time		8 18 18 18	10 20 20 20	ns ns ns ns	S1=VCC S1=GND V _{DIF} =2.5V V _{DIF} =2.5V

ST26C32

2

ABSOLUTE MAXIMUM RATINGS


Supply range Voltage at any logic pin Operating temperature Storage temperature Package dissipation 7 Volts GND-0.3 V to VCC+0.3 V 0° C to +70° C -40° C to +150° C 500 mW

DC ELECTRICAL CHARACTERISTICS

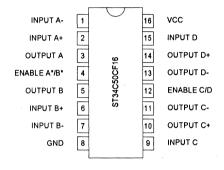
 T_{a} =25° C, V_{cc} =5.0 V ± 5% unless otherwise specified.

Symbol	Parameter	Min	Limits Typ	Max	Units	Conditions
V _{IH}	Enable high level	2.0			v	
V,	Enable low level			0.8	V	
V _{IL} V _{OH}	Output high level	3.8	4.2		V	ା _{ମ୍ୟ} = -6mA
V	Output low level		0.2	0.4	V	I _{он} = -6mA I _{он} = 6mA
V	Differential input level	-0.2		+0.2	V	-7V < V _{cm} < +7V
V _{oL} V _{ID} V _H	Input hysteresis		50		mV	
I _{IN}	Input current			±1.0	mA	
I _{cc}	Operating current		200		μA	V _{DIF} =+1V
l _{oz}	Three state output leakage		±1.0	±5.0	μA	V _{out} =VCC or GND
	Enable input current		±1.0		mA	V _{IN} =VCC or GND
I _{en} V _r	Input resistance		10		KΩ	-7̈́V < V _{cm} < +7V

DIFFERENTIAL LINE RECEIVER TIMING

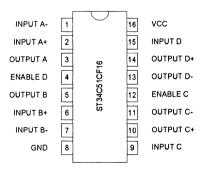
DUAL RS-422, RS-423 CMOS DIFFERENTIAL LINE RECEIVER AND DRIVER

GENERAL DESCRIPTION


The ST34C50/51 is a CMOS dual differential line receiver and driver, designed to meet the standard RS-422, RS-423 requirements and digital data transmission over balanced lines. The ST34C50/51 has an input sensitivity of 200my over the common mode input voltage range of \pm 7V. To improve noise margin and output stability for slow changing input signal. special hysteresis is built in the ST34C50/51 circuit. The ST34C50/51 is a high speed line receiver and driver, designed to operate with MFM / RLL controllers and hard disk drives as well as RS-422 and RS-423 differential applications. ST34C50/51 provides TTL compatible outputs to interface with standard 74LS and CMOS design environments. ST34C50/51 is suitable for low power 5V operation with minimum board space requirements. ST34C50/51 provides dual differential line receiver with three state control pin and dual line driver with three state control capability.

SOIC Package

ST34C50

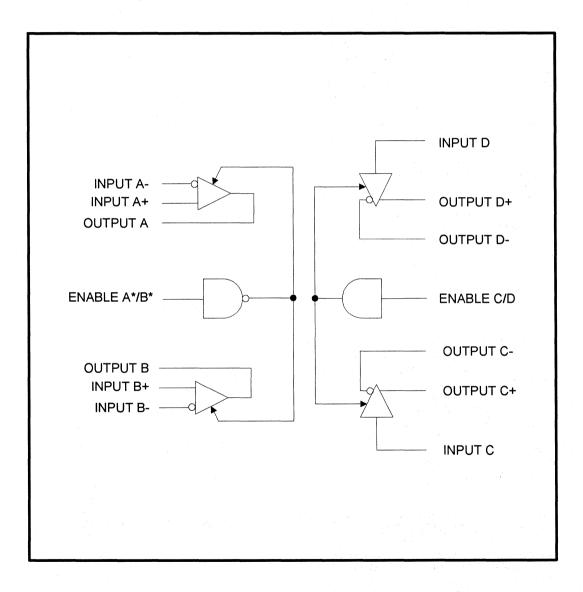

ST34C51 Printed May 18, 1993

2

ST34C50CF / ST34C50CP

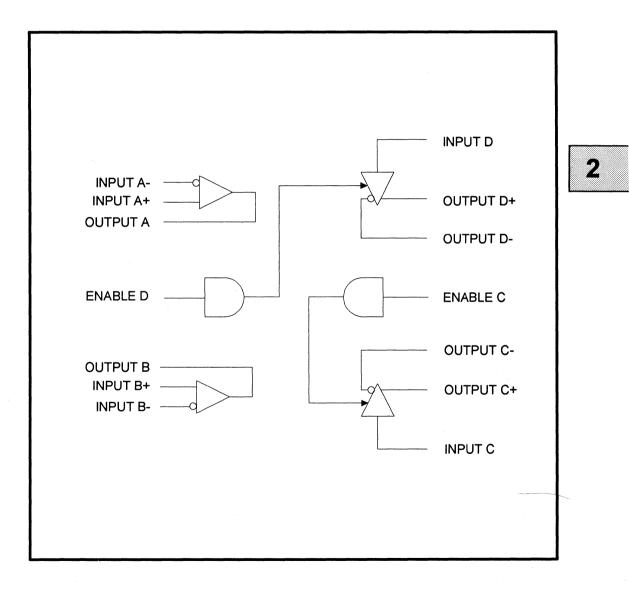
SOIC Package

ST34C51CF / ST34C51CP


FEATURES

- Pin -to-pin compatible to Motorola MC34050 and MC34051
- Low power CMOS design
- Three-state outputs with enable pin
- Meets the EIA RS-422/423 requirements
- Low propagation delays
- High speed
- Dual line receiver with three state control
- Dual line driver with three state control

ORDERING INFORMATION


Part number	Package	Operating temperature
ST34C50CP16	Plastic-DIP	0°C to +70°C
ST34C50CF16	SOIC	0°C to +70°C
ST34C51CP16	Plastic-DIP	0°C to +70°C
ST34C51CF16	SOIC	0°C to +70°C

ST34C50 BLOCK DIAGRAM

ST34C50/51

ST34C51 BLOCK DIAGRAM

2-17

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
INPUT A-	1	· I	Receiver A differential inverting input pin.
INPUT A+	2	I	Receiver A differential non-inverting input pin.
OUTPUT A	3	0	Receiver A output pin.
ENABLE A/B	4	l	Gate control (active low, ST34C50 only). This pin enables/ disables the two line receiver outputs (out A and out B of ST34C50).
ENABLE D	4*		Gate control (active high, ST34C51 only). This pin enables/ disables the ST34C51differential line driver D section.
OUTPUT B	5	0	Receiver B output pin.
INPUT B +	6	I	Receiver B differential non-inverting input pin.
INPUT B -	7	1	Receiver B differential inverting input pin.
GND	8	0	Signal and power ground.
INPUT C	9	Ĩ	Driver C input pin.
OUTPUT C+	10	0	Driver C differential non-inverted output pin.
OUTPUT C -	11	0	Driver C differential inverted output pin.
ENABLE C/D	12	, T	Gate control (active high, ST34C50 only). This pin enables/ disables the two line driver outputs (output C and output D of ST34C50).
ENABLE C	12*	I	Gate control (active high, ST34C51 only). This pin enables/ disables the ST34C51differential line driver C section.
OUTPUT D -	13	о	Driver D differential inverted output pin.
OUTPUT D+	14	Ο	Driver D differential non-inverted output pin.
INPUT D	15	n at each ann an 1990. I an Ann an A	Driver D input pin.
vcc	16	і. І. І.	Power supply pin.

Receiver Functional table (ST34C50 only)

Enable	Output	Differential Non-Inverting Input	Differential Inverting Input
н	z	x	х
L	L	L	н
L	н	н	L

X=Don't care

Z=Three state (high impedance)

Receive sections of the ST34C51 are enabled all the time.

Driver Functional table (ST34C50 only)

Enable C/D	Input	Differential Non-Inverted Output	Differential Inverted Output
L	х	Z	z
н	L	L	н
н	н	н	L

X=Don't care

Z=Three state (high impedance)

* for each section of ST34C51.

AC ELECTRICAL CHARACTERISTICS

 T_{A} =25° C, V_{cc} =5.0 V ± 5% unless otherwise specified.

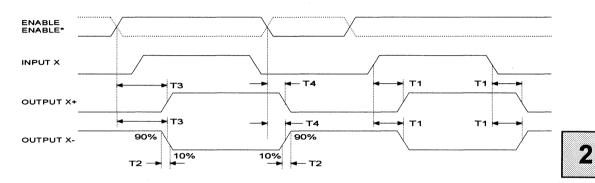
Symbol	Parameter	Limit Min Typ		Units	Conditions
T ₁	Propagation delay, input to output	8	10	ns	
T ₂	Differential output rise and fall time	8	10	ns	
T ₃	Output enable time	18	20	ns	
T ₄	Output disable time	18	20	ns	

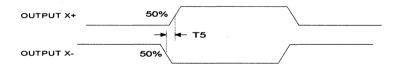
*Driver Functional table (ST34C51 only)

Enable C or D	Input	Differential Non-Inverted Output	Differential Inverted Output		
L	X	z	z		
н	L	L	н		
н	н	н	L		

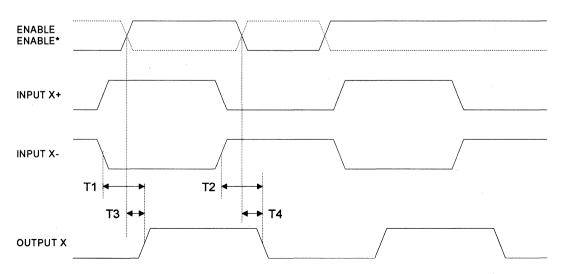
 $\mathbf{2}$

ABSOLUTE MAXIMUM RATINGS


Operating supply range Voltage at any pin Operating temperature Storage temperature Package dissipation 7 Volts ± 5% GND-0.3 V to VCC+0.3 V 0° C to +70° C -40° C to +150° C 500 mW


DC ELECTRICAL CHARACTERISTICS

 T_{A} =25° C, V_{cc} =5.0 V ± 5% unless otherwise specified.


Symbol	Parameter	Min	Limits Typ	Max	Units	Conditions
V _{IH}	Enable high level	2.0			v	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -
V _{IL} V _{ROH}	Enable low level			0.8	V	
	Receiver output high level	3.8			V	
VROL	Receiver output low level		•	0.4	V	
VRID	Receiver differential input level	-0.2	1	+0.2	V	R,=100 ohms
VRH	Receiver input hysteresis		50		mV	-
	Receiver input current			±1.0	mA	
V _{RR}	Receiver input resistance		10		KΩ	
I _{CC}	Operating current		200		μA	
I _{oz} V _{DOH}	Three state output leakage		±2.0		μA	4 A.
V _{DOH}	Driver input high level	2.5			V	
V _{DOL}	Driver output low level			0.5	V	
V	Driver differential output level	2.0			V	R ₁ =100 Ω
V _{DOC}	Driver Common mode output voltage			3.0	V	R =100 Ω
V _{DOD}	Driver difference in common mode output			0.4	V	R _[=100 Ω
I _{DIN}	Driver input current			±1.0	μA	

DIFFERENTIAL LINE DRIVER TIMING

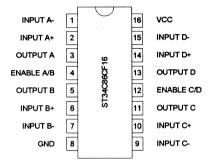
DIFFERENTIAL LINE RECEIVER TIMING

2-21

ST34C50/51

ST34C86

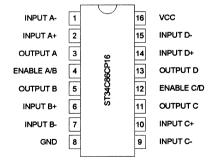
Printed May 18, 1993


QUAD RS-422, RS-423 CMOS DIFFERENTIAL LINE RECEIVER

GENERAL DESCRIPTION

The ST34C86 is a CMOS quad differential line receiver designed to meet the standard RS-422, RS-423 requirements. The ST34C86 has an input sensitivity of 200mv over the common mode input voltage range of \pm 7V. To improve noise margin and output stability for slow changing input signal, special hysteresis is built in the ST34C86 circuit.

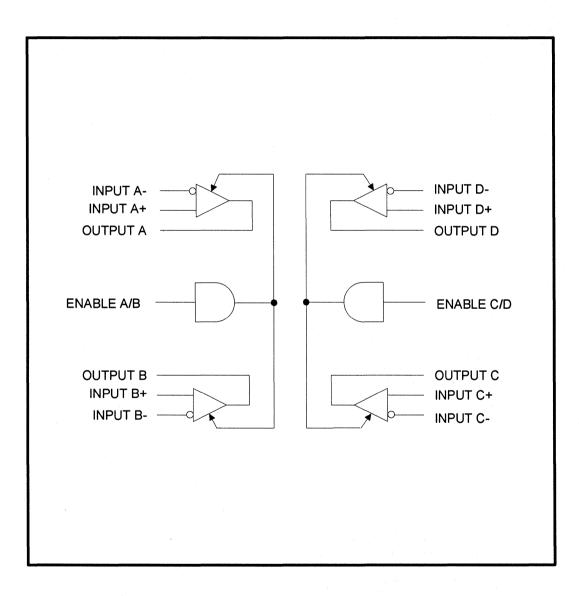
The ST34C86 is a high speed line receiver designed to operate with MFM / RLL controllers and hard disk drives as well as RS-422 and RS-423 differential applications. ST34C86 provides TTL compatible outputs to interface with standard 74LS and CMOS design environments. ST34C86 is suitable for low power 5V operation.


SOIC package

FEATURES

- Pin-to-pin compatible with National DS34C86
- · Low power CMOS design
- · Three-state outputs with enable pin
- Meets the EIA RS-422 requirements
- Low propagation delays
- · High speed

Plastic-DIP package



ORDERING INFORMATION

Part number	Package	Operating temperature
ST34C86CP16	Plastic-DIP	0°C to +70°C
ST34C86CF16	SOIC	0°C to +70°C

ST34C86

BLOCK DIAGRAM

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
INPUT A-	1	I	Receiver A differential inverting input pin.
INPUT A+	2	I	Receiver A differential non-inverting input pin.
OUTPUT A	3	0	Receiver A output pin.
ENABLE A/B	4	I	Gate control (active high). This pin enables/disables the two line receiver outputs (out A and out B).
INPUT B+	5	1	Receiver B differential non-inverting input pin.
INPUT B-	6	I	Receiver B differential inverting input pin.
OUTPUT B	7	о	Receiver B output pin.
GND	8	0	Signal and power ground.
INPUT C	9	I	Receiver C differential non-inverting input pin.
INPUT C-	10	I	Receiver C differential inverting input pin.
OUTPUT C	11	ο	Receiver C output pin.
ENABLE C/D	12	I	Gate control (active high). This pin enables/disables the two line receiver outputs (output C and output D).
OUTPUT D	13	ο	Receiver D output pin.
INPUT D+	14	¹ I	Receiver D differential non-inverting input pin.
INPUT D-	15	L L	Receiver D differential inverting input pin.
vcc	16	l	Power supply pin.

ST34C86

Functional table

Enable	Output	Differential Non-Inverting Input	Differential Inverting Input
L	z	х	x
н	L	L	н
Н	н	Н	L

X=Don't care

Z=Three state (high impedance)

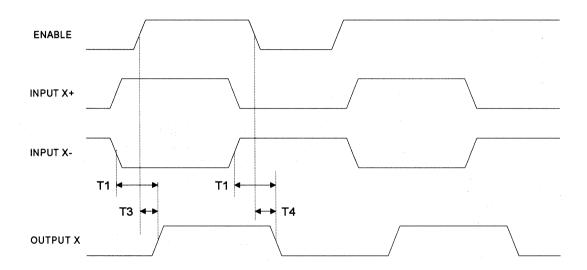
AC ELECTRICAL CHARACTERISTICS

 $\rm T_{A}=25^{\circ}$ C, $\rm ~V_{cc}=5.0~V\pm5\%$ unless otherwise specified.

Symbol	Parameter	Min	Limits Typ	Max	Units	Conditions	
$\begin{bmatrix} T_1 \\ T_3 \\ T_4 \end{bmatrix}$	Propagation delay, input to output Output enable time Output disable time		8 18 18	10 20 20	ns ns ns		

ABSOLUTE MAXIMUM RATINGS

Supply range Voltage at any logic pin Operating temperature Storage temperature Package dissipation 7 Volts GND-0.3 V to VCC+0.3 V 0° C to +70° C -40° C to +150° C 500 mW


DC ELECTRICAL CHARACTERISTICS

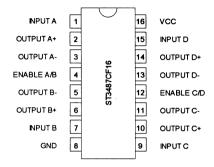
 T_{A} =25° C, V_{cc} =5.0 V ± 5% unless otherwise specified.

Symbol	Parameter	Min	Limits Typ	Max	Units	Conditions
V	Enable high level	2.0			v	
ν _μ ν _ο μ ν _ο ν _ο ν _ρ ν _μ	Enable low level			0.8	v	
V_0H	Output high level	3.8			V	I _{он} = -6mA
V	Output low level			0.4	v	ເ = 6mA
Vin	Differential input level	-0.2		+0.2	V	l _{он} = 6mA -7V < V _{см} < +7V
V,	Input hysteresis		50		mV	
I _{IN}	Input current			±1.0	mA	
l _{cc}	Operating current		200		μ A	
	Three state output leakage	1	±2.0		μA	
I _{oz} V _R	Input resistance		10		KΩ	-7V < V _{см} < +7V

2

DIFFERENTIAL LINE RECEIVER TIMING

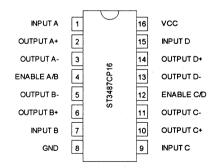
Printed May 18, 1993


QUAD RS-422 CMOS DIFFERENTIAL LINE DRIVER

GENERAL DESCRIPTION

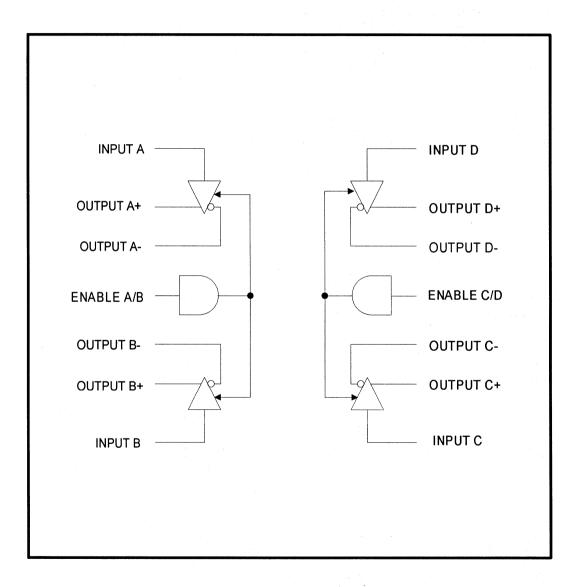
The ST34C87 is a CMOS quad differential line driver designed to meet the standard RS-422 requirements and digital data transmission over balanced lines. To improve noise margin and output stability for slow changing input signals special hysteresis is built in the ST34C87 circuit.

The ST34C87 is a high speed CMOS line driver designed to operate with MFM / RLL controllers and hard disk drives as well as RS-422 digital data transmission applications. ST34C87 is suitable for low power 5V operation with high input voltage protection devices.


SOIC package

FEATURES

- Pin-to-pin compatible with National DS34C87
- Low power CMOS design
- Three-state outputs with enable pin
- Meets the EIA RS-422 requirements
- Low propagation delays
- High speed


Plastic-DIP package

ORDERING INFORMATION

Part number	Package	Operating temperature
ST34C87CP16	Plastic-DIP	0°C to + 70°C
ST34C87CF16	SOIC	0°C to + 70°C

BLOCK DIAGRAM

2

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
INPUT A	1	I	Driver A input pin.
OUTPUT A +	2	о	Driver A differential non-inverting output pin.
OUTPUT A-	3	о	Driver A differential inverting output pin.
ENABLE A/B	4	I	Gate control (active high). This pin is one of the two control pins which enables or disables two/four drivers.
OUTPUT B-	5	о	Driver B differential inverting output pin.
OUTPUT B+	6	о	Driver B differential non-inverting output pin.
INPUT B	7	1	Driver B input pin.
GND	8	0	Signal and power ground.
INPUT C	9	I	Driver C input pin.
OUTPUT C+	10	о	Driver C differential non-inverting output pin.
OUTPUT C-	11	о	Driver C differential inverting output pin.
ENABLE C/D	12	I	Gate control (active high). See ENABLE A/B pin descrip- tion.
OUTPUT D*	13	О	Driver D differential inverting output pin.
OUTPUT D	14	о	Driver D differential non-inverting output pin.
INPUT D	15	I	Driver D input pin.
vcc	16	I	Power supply pin.

ST34C87

Functional table

Enable	Input	Differential Non-Inverting Output	Differential Inverting Output
L	X	Z	Z
H	L	L	H
H	H	H	L

X = Don't care

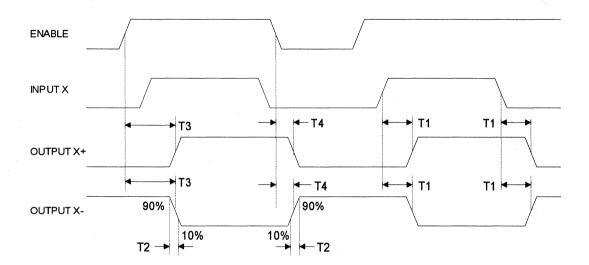
Z = Three state (high impedance)

AC ELECTRICAL CHARACTERISTICS

 $\rm T_{A}\,{=}\,25\,^{o}$ C, $\rm V_{cc}\,{=}\,5.0\,V\,{\pm}\,5\%$ unless otherwise specified.

Symbol	Parameter		ol Parameter Limits Min Typ Max				Units	Conditions
$\begin{array}{c} T_1 \\ T_2 \\ T_3 \\ T_4 \end{array}$	Propagation delay, input to output Differential output rise and fall time Output enable time Output disable time		8 8 18 18	10 10 20 20	ns ns ns ns			

ABSOLUTE MAXIMUM RATINGS


Supply range Voltage at any pin Operating temperature Storage temperature Package dissipation 7 Volts GND-0.3 V to VCC+0.3 V 0° C to +70° C -40° C to +150° C 500 mW

DC ELECTRICAL CHARACTERISTICS

 $\rm T_{A}\,{=}\,25\,^{o}$ C, $\rm V_{cc}\,{=}\,5.0\,V\,{\pm}\,5\,\%$ unless otherwise specified.

Symbol	Parameter	Min	Limits Typ	Мах	Units	Conditions
			τ	I		
V _н	Input high level	2.0			V	
V	Input low level			0.8	l v	
V _{IL} V _{он}	Output high level	2.5			V	
V	Output low level			0.5	V	
V _{oL} V _{os}	Differential output level	2.0			l v	R ₁ = 100 Ω
V _{oc}	Common mode output voltage			3.0	l v	$R_1 = 100 \Omega$
V _{oD}	Difference in common mode output			0.4	v	$R_{i} = 100 \Omega$
I _{IN}	Input current	1		±10	μΑ	
I _{cc}	Operating current		200		μA	
l _{oz}	Three state output leakage		±20		μΑ	

DIFFERENTIAL LINE DRIVER TIMING

UARTS

Index

ST16C1450	
ST16C1451	
ST16C1550	
ST16C1551	
ST16C1552	
ST16C2450	
ST16C2550	
ST16C2552	
ST16C450	
ST16C452AT	
ST16C452PS	
ST16C454	
ST16C550	
ST16C552	
ST16C553	
ST16C554	
ST68C454	
ST68C554	

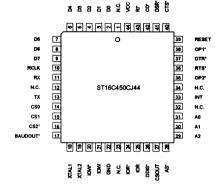
UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER

DESCRIPTION

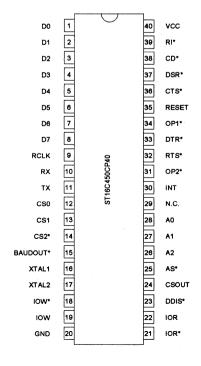
The ST16C450 is a universal asynchronous receiver and transmitter. A programmable baud rate generator is provided to select transmit and receive clock rates from 50Hz to 448kHz.

The ST16C450 is an improved version of the NS16C450 UART with higher operating speed and lower access time. The ST16C450 on board status registers provides the error conditions, type and status of the transfer operation being performed. Included is complete MODEM control capability, and a processor interrupt system that may be software tailored to the user's requirements. The ST16C450 provides internal loop-back capability for on board diagnostic testing.

The ST16C450 is fabricated in an advanced 1.2μ CMOS process to achieve low drain power and high speed requirements.

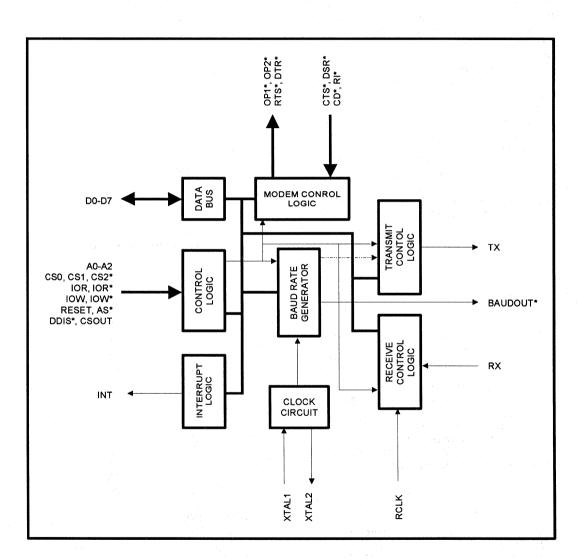

FEATURES

- Pin to pin and functional compatible to NS16450,VL16C450,WD16C450
- Modem control signals (CTS*, RTS*, DSR*, DTR*, RI*, CD*)
- Programmable character lengths (5, 6, 7, 8)
- Even, odd, or no parity bit generation and detection
 Status report register
- Independent transmit and receive control
- TTL compatible inputs, outputs
- 448 kHz transmit/receive operation with 7.372 MHz crystal or external clock source


ORDERING INFORMATION

Part number	Package	Operating	temperature
ST16C450CP40	Plastic-DIP	0° C	to + 70° C
ST16C450CJ44	PLCC	0° C	to + 70° C
* Industrial operating	range are av	vailable.	

PLCC Package



Plastic-DIP Package

3

BLOCK DIAGRAM

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
D0-D7	1-8	I/O	Bi-directional data bus. Eight bit, three state data bus to transfer information to or from the CPU. D0 is the least significant bit of the data bus and the first serial data bit to be received or transmitted.
RCLK	9	l 	Receive clock input. The external clock input to the ST16C450 receiver section if receiver data rate is different from transmitter data rate.
RX	10.	I	Serial data input. The serial information (data) received from serial port to ST16C450 receive input circuit. A mark (high) is logic one and a space (low) is logic zero. During the local loopback mode the RX input is disabled from external connection and connected to the TX output internally.
тх	11	0	Serial data output. The serial data is transmitted via this pin with additional start, stop and parity bits. The TX will be held in mark (high) state during reset, local loopback mode or when the transmitter is disabled.
CS0	12	I	Chip select 1 (active high). A high at this pin enables the ST16C450 / CPU data transfer operation.
CS1	13	I	Chip select 2 (active high). A high at this pin enables the ST16C450 / CPU data transfer operation.
CS2*	14	I .	Chip select 3 (active low). A low at this pin (while CS0=1 and CS1=1) will enable the ST16C450 / CPU data transfer operation.
BAUDOUT*	15	ο	Baud rate generator clock output. This output provides the 16x clock of the internal selected baud rate. RCLK pin is connected externally to BAUDOUT* pin to provide the receiver clock.
XTAL1	16		Crystal input 1 or external clock input. A crystal can be connected to this pin and XTAL2 pin to utilize the internal oscillator circuit. An external clock can be used to clock internal circuit and baud rate generator for custom transmis- sion rates.

3

ST16C450

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
XTAL2	17	I	Crystal input 2 or buffered clock output. See XTAL1.
IOW*	18	. I	Write strobe (active low). A low on this pin will transfer the contents of the CPU data bus to the addressed register.
IOW	19	1 	Write strobe (active high). Same as IOW*, but uses active high input. Note that only an active IOW* or IOW input is required to transfer data from CPU to ST16C450 during write operation. All the unused pin should be tied to VCC or GND.
GND	20	0	Signal and power ground.
IOR*	21	ł	Read strobe (active low). A low level on this pin transfers the contents of the ST16C450 data bus to the CPU.
IOR	22	1	Read strobe (active high). Same as IOR*, but uses active high input. Note that only an active IOR* or IOR input is required to transfer data from ST16C450 to CPU during read operation. All the unused pin should be tied to VCC or GND.
DDIS*	23	Ο	Drive disable (active low). This pin goes low when the CPU is reading data from the ST16C450 to disable the external transceiver or logic's.
CSOUT	24		Chip select out. A high on this pin indicates that the ST16C450 has been enabled by the chip select pin.
AS⁺	25	9 1 3 - 1997 - 19 - 19 - 19 - 19	Address strobe (active low). A low on this pin will latch the state of the chip selects and addressed register (A2-A0). This input is used when signals are not stable for the duration of a read or write operation. If not required, tie the AS* input permanently low.
A2	26	I	Address select line 2. To select internal registers.
A1	27		Address select line 1. To select internal registers.
A0	28	I	Address select line 0. To select internal registers.

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
N/C	29		No connection.
INT	30	0	Interrupt output (active high). This pin goes high (when enabled by the interrupt enable register) whenever a re- ceiver error, receiver data available, transmitter empty, or modem status condition flag is detected.
OP2*	31	0	General purpose output (active low). User defined output. See bit-3 modem control register (MCR bit-3).
RTS*	32	0	Request to send (active low). To indicate that the transmit- ter has data ready to send. Writing a "1" in the modem control register (MCR bit-1) will set this pin to a low state. After the reset this pin will be set to high. Note that this pin does not have any effect on the transmit or receive opera- tion.
DTR*	33	0	Data terminal ready (active low). To indicate that ST16C450 is ready to receive data. This pin can be controlled via the modem control register (MCR bit-0). Writing a "1" at the MCR bit-0 will set the DTR* output to low. This pin will be set to high state after writing a "0" to that register or after the reset. Note that this pin does not have any effect on the transmit or receive operation.
OP1*	34	0	General purpose output (active low). User defined output. See bit-2 of modem control register (MCR bit-2).
RESET	35	1	Master reset (active high). A high on this pin will reset all the outputs and internal registers. The transmitter output and the receiver input will be disabled during reset time.
СТЅ*	36	1 1000 - 1000	Clear to send (active low). The CTS* signal is a MODEM control function input whose conditions can be tested by reading the MSR BIT-4. CTS* has no effect on the transmit or receive operation.
DSR*	37	1	Data set ready (active low). A low on this pin indicates the MODEM is ready to exchange data with UART. This pin does not have any effect on the transmit or receive operation.

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
CD*	38	I	Carrier detect (active low). A low on this pin indicates the carrier has been detected by the modem.
RI*	39	1	Ring detect indicator (active low). A low on this pin indicates the modem has received a ringing signal from telephone line.
vcc	40	· I	Power supply input.

All unused input pins should be tied to VCC or GND.

PROGRAMMING TABLE

A2	A1	A0	READ MODE	WRITE MODE
0	0	0	Receive Holding Register	Transmit Holding Register
0	0	1		Interrupt Enable Register
0	1	0	Interrupt Status Register	
0	1	1		Line Control Register
1	0	0		Modem Control Register
1	0	1	Line Status Register	
1	1	0	Modem Status Register	
. 1	1	1	Scratchpad Register	Scratchpad Register
0	0	0		LSB of Divisor Latch
0	0	1		MSB of Divisor Latch

ST16C450 ACCESSIBLE REGISTERS

A2	A1	A0	Register	BIT-7	BIT-6	BIT-5	BIT-4	BIT-3	BIT-2	BIT-1	BIT-0
0	0	0	RHR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	0	THR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	1	IER	0	0	0	0	modem status interrupt	receive line status interrupt	transmit holding register	receive holding register
0	1	0	ISR	0	0	0	0	0	int priority bit-1	int priority bit-0	int status
0	1	1	LCR	divisor latch enable	set break	set parity	even parity	parity enable	stop bits	word length bit-1	word length bit-0
1	0	0	MCR	0	0	0	loop back	OP2*	OP1*	RTS*	DTR*
1	0	1	LSR	0	trans. empty	trans. holding empty	break interrupt	framing error	parity error	overrun error	receive data ready
1	1	0	MSR	CD	RI	DSR	CTS	delta CD*	delta RI*	delta DSR*	delta CTS*
1	1	1	SPR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	0	DLL	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	1	DLM	bit-15	bit-14	bit-13	bit-12	bit-11	bit-10	bit-9	bit-8

DLL and DLM are accessible only when LCR bit-7 is set to "1".

3

REGISTER FUNCTIONAL DESCRIPTIONS

TRANSMIT AND RECEIVE HOLDING REGISTER

The serial transmitter section consists of a Transmit Hold Register (THR) and Transmit Shift Register (TSR). The status of the transmit hold register is provided in the Line Status Register (LSR). Writing to this register (THR) will transfer the contents of data bus (D7-D0) to the Transmit holding register whenever the transmitter holding register or transmitter shift register is empty. The transmit holding register empty flag will be set to "1" when the transmitter is empty or data is transferred to the transmit shift register. Note that a write operation should be performed when the transmit holding register empty flag is set.

On the falling edge of the start bit, the receiver internal counter will start to count 7 1/2 clocks (16x clock) which is the center of the start bit. The start bit is valid if the RX is still low at the mid-bit sample of the start bit. Verifying the start bit prevents the receiver from assembling a false data character due to a low going noise spike on the RX input. Receiver status codes will be posted in the Line Status Register.

PROGRAMMABLE BAUD RATE GENERATOR

The ST16C450 contains a programmable Baud Rate Generator that is capable of taking any clock input from DC-8 MHz and dividing it by any divisor from 1 to 2^{16} -1. The output frequency of the Baudout* is equal to 16X of transmission baud rate (Baudout*=16 x Baud Rate). Customize Baud Rates can be achieved by selecting proper divisor values for MSB and LSB of baud rate generator.

INTERRUPT ENABLE REGISTER (IER)

The Interrupt Enable Register (IER) masks the incoming interrupts from receiver ready, transmitter empty, line status and modem status registers to the INT output pin.

IER BIT-0:

0=disable the receiver ready interrupt. 1=enable the receiver ready interrupt.

IER BIT-1:

0=disable the transmitter empty interrupt. 1=enable the transmitter empty interrupt.

IER BIT-2:

0=disable the receiver line status interrupt. 1=enable the receiver line status interrupt.

IER BIT-3:

0=disable the modem status register interrupt. 1=enable the modem status register interrupt.

IER BIT 7-4:

All these bits are set to logic zero.

INTERRUPT STATUS REGISTER (ISR)

The ST16C450 provides four level prioritized interrupt conditions to minimize software overhead during data character transfers. The Interrupt Status Register (ISR) provides the source of the interrupt in prioritized matter. During the read cycle the ST16C450 provides the highest interrupt level to be serviced by CPU. No other interrupts are acknowledged until the particular interrupt is serviced. The following are the prioritized interrupt levels:

Priority level

Ρ	D2	D1	D0	Source of the interrupt
1	1	1	0	LSR (Receiver Line Status Register)
2	1	0	0	RXRDY (Received Data
3	0	1	o	Ready) TXRDY(Transmitter Holding Register Empty)
4	0	0	0	MSR (Modem Status Regis- ter)

ISR BIT-0:

0=an interrupt is pending and the ISR contents may be used as a pointer to the appropriate interrupt service routine.

1=no interrupt pending.

ISR BIT 1-2:

Logical combination of these bits, provides the highest priority interrupt pending.

ISR BIT 3-7:

These bits are not used and are set to "0".

LINE CONTROL REGISTER (LCR)

The Line Control Register is used to specify the asynchronous data communication format. The number of the word length, stop bits, and parity can be selected by writing appropriate bits in this register.

LCR BIT1-0:

These two bits specify the word length to be transmitted or received.

BIT-1	BIT-0	Word length
0	0	5
0	1	6
1	0	7
1	1	8

LCR BIT-2:

The number of stop bits can be specified by this bit.

BIT-2	Word length	Stop bit(s)
0	5,6,7,8	1
1	5	1-1/2
1	6,7,8	2

LCR BIT-3:

Parity or no parity can be selected via this bit. 0=no parity

1=a parity bit is generated during the transmission, receiver also checks for received parity.

LCR BIT-4:

If the parity bit is enabled, LCR BIT-4 selects the even or odd parity format.

0=ODD parity is generated by forcing an odd number of 1's in the transmitted data, receiver also checks for same format.

1= EVEN parity bit is generated by forcing an even the number of 1's in the transmitted data, receiver also checks for same format.

LCR BIT-5:

If the parity bit is enabled, LCR BIT-5 selects the forced parity format.

LCR BIT-5=1 and LCR BIT-4=0, parity bit is forced to "1" in the transmitted and received data.

LCR BIT-5=1 and LCR BIT-4=1, parity bit is forced to "0" in the transmitted and received data.

LCR BIT-6:

Break control bit. It causes a break condition to be transmitted (the TX is forced to low state). 0=normal operating condition.

1=forces the transmitter output (TX) to go low to alert the communication terminal.

LCR BIT-7:

The internal baud rate counter latch enable (DLEN). 0=normal operation. 1=select divisor latch register.

MODEM CONTROL REGISTER (MCR)

This register controls the interface with the MODEM or a peripheral device (RS232).

MCR BIT-0:

0=force DTR* output to high. 1=force DTR* output to low.

MCR BIT-1:

0=force RTS* output to high. 1=force RTS* output to low.

MCR BIT-2:

0=set OP1* output to high. 1=set OP1* output to low.

MCR BIT-3:

0=set OP2* output to high. 1=set OP2* output to low.

MCR BIT-4:

0=normal operating mode.

1=enable local loop-back mode (diagnostics). The transmitter output (TX) is set high (Mark condition), the receiver input (RX), CTS*, DSR*, CD*, and RI* are disabled. Internally the transmitter output is connected to the receiver input and DTR*, RTS*, OP1* and OP2* are connected to modem control inputs. In this mode, the receiver and transmitter interrupts

are fully operational. The Modem Control Interrupts are also operational, but the interrupts sources are now the lower four bits of the Modem Control Register instead of the four Modem Control inputs. The interrupts are still controlled by the IER.

MCR BIT 5-7:

Not used. Are set to zero permanently.

LINE STATUS REGISTER (LSR)

This register provides the status of data transfer to CPU.

LSR BIT-0:

0=no data in receive holding register 1=data has been received and saved in the receive holding register.

LSR BIT-1:

0=no overrun error (normal).

1=overrun error, next character arrived before receive holding register was emptied.

LSR BIT-2:

0=no parity error (normal).

1=parity error, received data does not have correct parity information.

LSR BIT-3:

0=no framing error (normal). 1=framing error received, received data did not have a valid stop bit. In

LSR BIT-4:

0=no break condition (normal). 1=receiver received a break signal (RX was low for one character time frame).

LSR BIT-5:

0=transmit holding register is full. ST16C450 will not accept any data for transmission. 1=transmit holding register is empty. CPU can load the next character.

LSR BIT-6:

0=transmitter holding and shift registers are full. 1=transmitter holding and shift registers are empty. LSR BIT-7: Not used. Set to "0".

MODEM STATUS REGISTER (MSR)

This register provides the current state of the control lines from the modem or peripheral to the CPU. Four bits of this register are used to indicate the changed information. These bits are set to "1" whenever a control input from the MODEM changes state. They are set to "0" whenever the CPU reads this register.

MSR BIT-0:

Indicates that the CTS* input to the ST16C450 has changed state since the last time it was read.

MSR BIT-1:

Indicates that the DSR* input to the ST16C450 has changed state since the last time it was read.

MSR BIT-2:

Indicates that the RI* input to the ST16C450 has changed from a low to a high state.

MSR BIT-3:

Indicates that the CD* input to the ST16C450 has changed state since the last time it was read.

MSR BIT-4:

This bit is equivalent to RTS in the MCR during local loop-back mode. It is the compliment of the CTS* input.

MSR BIT-5:

This bit is equivalent to DTR in the MCR during local loop-back mode. It is the compliment of the DSR* input.

MSR BIT-6:

This bit is equivalent to OP1 in the MCR during local loop-back mode. It is the compliment of the RI* input.

MSR BIT-7:

This bit is equivalent to OP2 in the MCR during local loop-back mode. It is the compliment to the CD* input.

Note: Whenever MSR BIT3-0: is set to logic "1", a MODEM Status Interrupt is generated.

SCRATCHPAD REGISTER (SR)

ST16C450 provides a temporary data register to store 8 bits of information for variable use.

BAUD RATE GENERATOR PROGRAMMING TABLE (1.8432 MHz CLOCK):

BAUD RATE	16 x CLOCK DIVISOR	% ERROR
50	2304	
75	1536	
110	1047	0.026
134.5	857	0.058
150	768	
300	384	
600	192	
1200	96	
2400	48	
3600	32	
4800	24	
7200	16	
9600	12	
19.2K	6	
38.4K	3	
56K	2	2.86
115.2K	1	

ST16C450 EXTERNAL RESET CONDITION

REGISTERS	RESET STATE
IER	IER BITS 0-7=0
ISR	ISR BIT-0=1, ISR BITS 1-7=0
LCR	LCR BITS 0-7=0
MCR	MCR BITS 0-7=0
LSR	LSR BITS 0-4=0,
	LSR BITS 5-6=1 LSR, BIT 7=0
MSR	MSR BITS 0-3=0,
	MSR BITS 4-7=input signals

SIGNAL	RESET STATE
тх	High
OP1*	High
OP2*	High
RTS*	High
DTR*	High
INT	Low

3

ST16C450

AC ELECTRICAL CHARACTERISTICS

 $\rm T_{A}=25^{\circ}$ C, $\rm \ V_{cc}=5.0$ V \pm 5% unless otherwise specified.

Symbol	Parameter		Limits		Units	Conditions
-		Min	Тур	Max		
			1			
T_{1} T_{2}^{2} T_{3}^{4} T_{5}^{7} T_{6}^{7} T_{9}^{10} T_{11}^{11} T_{12}^{12}	Clock high pulse duration	50			ns	Note: 2
T ₂	Clock low pulse duration	50			ns	Note: 2
T ₃	Clock rise/fall time			10	ns	
T₄	Baud out rise/fall time			100	ns	100 pF load
T₅	Address strobe width	30			ns	
T ₆	Address setup time	15			ns	
Т,	Address hold time	15			ns	
T,	Chip select setup time	5			ns	
T,	Chip select hold time	0			ns	
T ₁₀	CSOUT delay from chip select			10	ns	
T,1	IOR* to DDIS* delay			35	ns	100 pF load
T,,	Data setup time	15			ns	Note: 1
T ₁₃ T ₁₄	Data hold time	15			ns	Note: 1
T,	IOW* delay from chip select	10			ns	Note: 1
T ₁₅	IOW* strobe width	55			ns	
T ₁₆	Chip select hold time from IOW*	0			ns	Note: 1
T ₁₇	Write cycle delay	55			ns	
ΤŴ	Write cycle=T ₁₅ +T ₁₇	105			ns	
T ₁₉	Data hold time	15			ns	
Т,	IOR* delay from chip select	25			ns	Note: 1
T ₂₁ T ₂₃	IOR* strobe width	65			ns	
T ₂₄ ²³	Chip select hold time from IOR*	0	1		ns	Note: 1
T	Read cycle delay	55		1.00	ns	
T ₂₅ Tr	Read cycle=T ₂₃ +T ₂₅	115			ns	
T ₂₆	Delay from IOR* to data	25			ns	100 pF load
T ₂₈	Delay from IOW* to output			50	ns	100 pF load
T ₂₉	Delay to set interrupt from MODEM			70	ns	100 pF load
• 29	input				110	
Т.,	Delay to reset interrupt from IOR*			70	ns	100 pF load
T	Delay from stop to set interrupt				*	100 pF load
T ³¹	Delay from IOR* to reset interrupt			1 _{Rc⊯} 200	ns	100 pF load
T ₃₀ T ₃₁ T ₃₂ T ₃₃	Delay from initial INT reset to transmit	8		200	*	i vo pi ivau
' 33	start	Ĭ		67		
	out					
			I			1

AC ELECTRICAL CHARACTERISTICS

 $T_{\rm A}{=}25^{\circ}$ C, $~V_{\rm cc}{=}5.0~V\pm5\%$ unless otherwise specified.

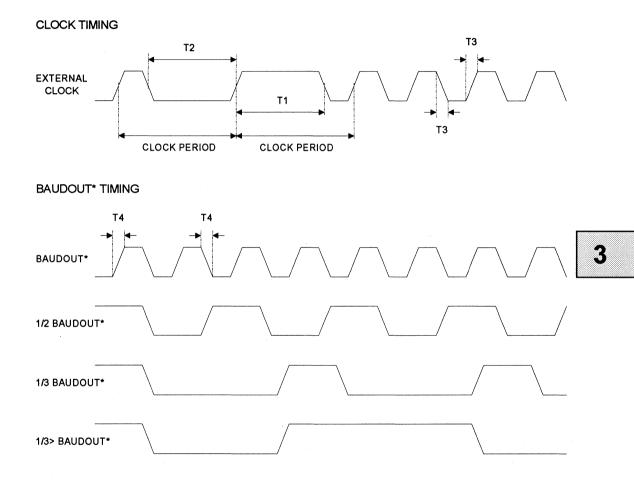
Symbol	Parameter	Min	Limits Typ	Max	Units	Conditions
T ₃₄ T ₃₅ N	Delay from stop to interrupt Delay from IOW* to reset interrupt Baud rate devisor	1		100 175 2 ¹⁶ -1	ns ns	

Note 1: Applicable only when AS* is tied low.

Note 2: 1.8432 Mhz crystal or External clock.

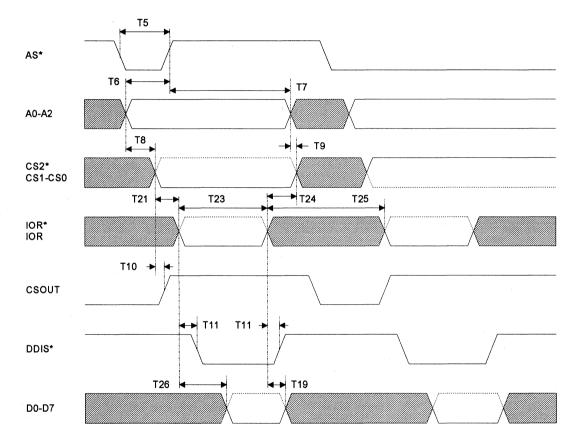
* = Baudout* cycle

3

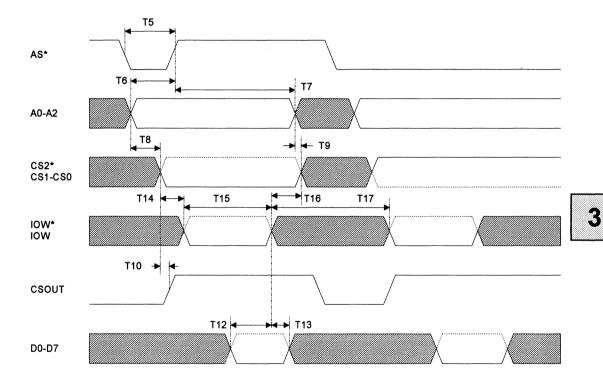

ABSOLUTE MAXIMUM RATINGS

Supply range Voltage at any pin Operating temperature Storage temperature Package dissipation 7 Volts GND-0.3 V to VCC+0.3 V 0° C to +70° C -40° C to +150° C 500 mW

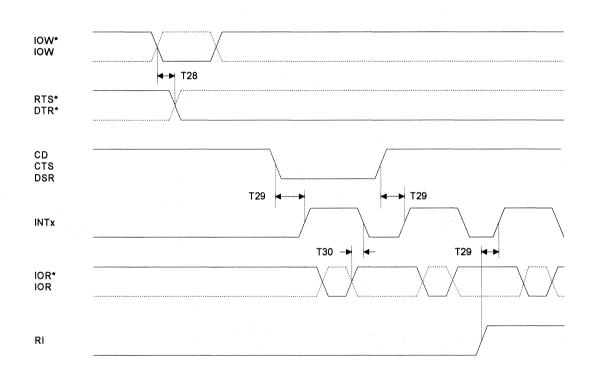
DC ELECTRICAL CHARACTERISTICS

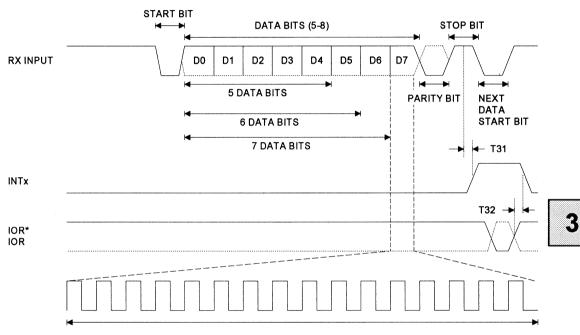

 $T_a=25^{\circ}$ C, $V_{cc}=5.0$ V ± 5% unless otherwise specified.

Symbol	Parameter		mits 「yp Max	Units	Conditions
V _{ILCK} V _{IHCK} V _{IL} V _{IH} Vol Voh I _{CC} I _{IL} I _{CL}	Clock input low level Clock input high level Input low level Input high level Output low level on all outputs Output high level Avg. power supply current Input leakage Clock leakage	-0.5 3.0 -0.5 2.2 2.4	0.6 VCC 0.8 VCC 0.4 6 ±10 ±10	₹£ ₹ < < < < <	I _{ol} = 6 mA I _{он} = -6 mA



3-17

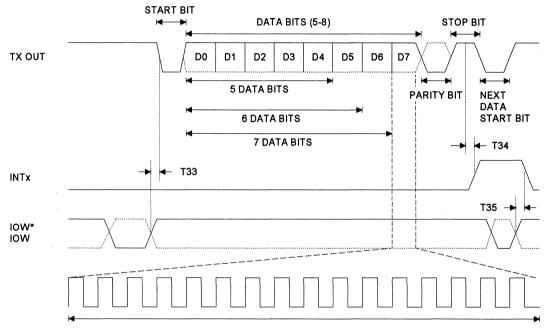

ST16C450



GENERAL WRITE TIMING

3-19

MODEM TIMING



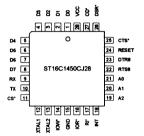
RECEIVE TIMING

16 BAUD RATE CLOCK

16 BAUD RATE CLOCK

Printed May 17, 1993

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER


DESCRIPTION

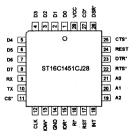
The ST16C1450/51 is a universal asynchronous receiver and transmitter. A programmable baud rate generator is provided to select transmit and receive clock rates from 50Hz to 448kHz.

The ST16C1450/51 is an improved version of the SSI 73M1550 and SSI 73M2550 UART with higher operating speed and lower access time. The ST16C1450/ 51 on board status registers provides the error conditions, type and status of the transfer operation being performed. Included is complete MODEM control capability, and a processor interrupt system that may be software tailored to the user's requirements. The ST16C1450/51 provides internal loop-back capability for on board diagnostic testing.

The ST16C1450/51 is fabricated in an advanced 1.2μ CMOS process to achieve low drain power and high speed requirements.

PLCC Package

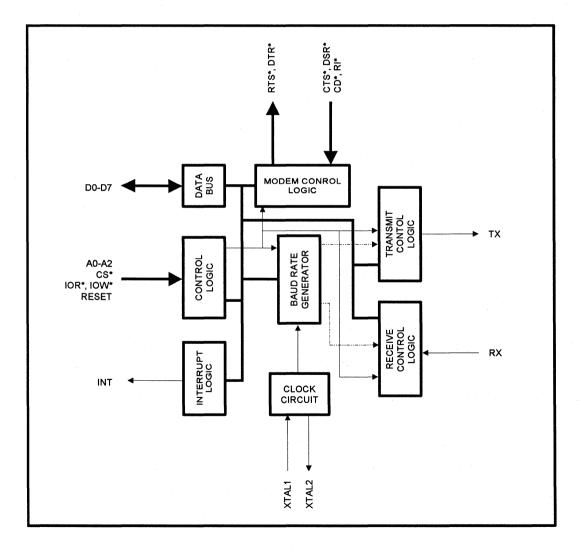
ST16C1450


FEATURES

- Pin to pin and functional compatible to SSI 73M1550/2550
- Modem control signals (CTS*, RTS*, DSR*, DTR*, RI*, CD*)
- Programmable character lengths (5, 6, 7, 8)
- Even, odd, or no parity bit generation and detection
- Software compatible with INS8250, NS16C550
- 448 kHz transmit/receive operation with 7.372 MHz crystal or external clock source
- 28 Pin plastic-Dip and PLCC package
- Pin-to-pin compatible to ST16C1550/1551

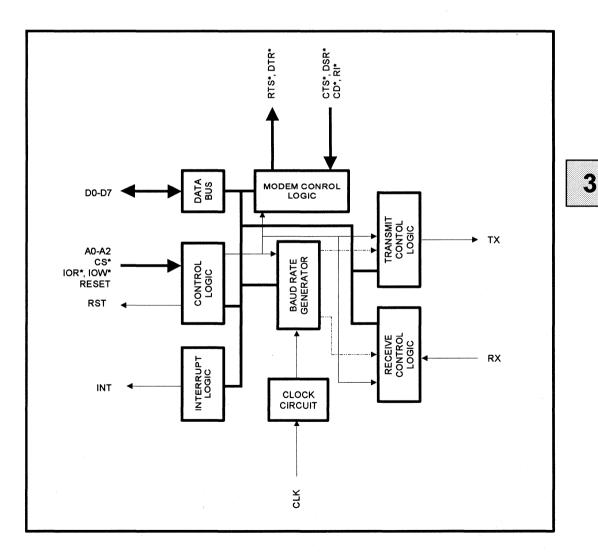
ORDERING INFORMATION

Part number	Package (Operating	temperature		
ST16C1450CP28	Plastic-DIP	0° C	to + 70° C		
ST16C1450CJ28	PLCC	0° C	to + 70° C		
ST16C1451CP28	Plastic-DIP	0° C	to + 70° C		
ST16C1451CJ28	PLCC	0° C	to + 70° C		
*Industrial operating range are available.					


PLCC Package

ST16C1451

ST16C1450/51


ST16C1450 BLOCK DIAGRAM

3-24

ST16C1450/51

ST16C1451 BLOCK DIAGRAM

3-25

ST16C1450/51

ST16C1450 SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
D0-D7	1-8	I/O	Bi-directional data bus. Eight bit, three state data bus to transfer information to or from the CPU. D0 is the least significant bit of the data bus and the first serial data bit to be received or transmitted.
RX	9	I	Serial data input. The serial information (data) received from serial port to ST16C1450 receive input circuit. A mark (high) is logic one and a space (low) is logic zero. During the local loopback mode the RX input is disabled from external connection and connected to the TX output internally.
тх	10	0	Serial data output. The serial data is transmitted via this pin with additional start, stop and parity bits. The TX will be held in mark (high) state during reset, local loopback mode or when the transmitter is disabled.
CS*	11	I A A	Chip select (active low). A low at this pin enables the ST16C1450 / CPU data transfer operation.
XTAL1	12	1	Crystal input 1 or external clock input. A crystal can be connected to this pin and XTAL2 pin to utilize the internal oscillator circuit. An external clock can be used to clock internal circuit and baud rate generator for custom transmis- sion rates.
XTAL2	13	I	Crystal input 2 or buffered clock output. See XTAL1.
IOW*	14	1	Write strobe (active low). A low on this pin will transfer the contents of the CPU data bus to the addressed register.
GND	15	0	Signal and power ground.
IOR*	16	1	Read strobe (active low). A low level on this pin transfers the contents of the ST16C1450 data bus to the CPU
RI*	17		Ring detect indicator (active low). A low on this pin indicates the modem has received a ringing signal from telephone line.
INT	18	0	Interrupt output. (three state / active high) This pin goes high

3

ST16C1450 ST16C1451

ST16C1450 SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
			(when enabled by the interrupt enable register) whenever a receiver error, receiver data available, transmitter empty, or modem status condition flag is detected.
A0-A2	21-19	1	Address select line. To select internal registers.
RTS*	22	0	Request to send (active low). To indicate that the transmit- ter has data ready to send. Writing a "1" in the modem control register (MCR bit-1) will set this pin to a low state. After the reset this pin will be set to high. Note that this pin does not have any effect on the transmit or receive opera- tion.
DTR*	23	0	Data terminal read (active low). To indicate that ST16C1450 is ready to receive data. This pin can be controlled via the modem control register (MCR bit-0). Writing a "1" at the MCR bit-0 will set the DTR* output to low. This pin will be set to high state after writing a "0" to that register or after the reset. Note that this pin does not have any effect on the transmit or receive operation.
RESET	24	1	Master reset (active high). A high on this pin will reset all the outputs and internal registers. The transmitter output and the receiver input will be disabled during reset time.
CTS*	25	1	Clear to send (active low). The CTS* signal is a MODEM control function input whose conditions can be tested by reading the MSR bit-4. CTS* has no effect on the transmit or receive operation.
DSR*	26	1	Data set ready (active low). A low on this pin indicates the MODEM is ready to exchange data with UART. This pin does not have any effect on the transmit or receive operation.
CD*	27	I	Carrier detect (active low). A low on this pin indicates the carrier has been detected by the modem.
vcc	28	I	Power supply input.

ST16C1451 SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
D0-D7	1-8	I/O	Bi-directional data bus. Eight bit, three state data bus to transfer information to or from the CPU. D0 is the least significant bit of the data bus and the first serial data bit to be received or transmitted.
RX	9	1	Serial data input. The serial information (data) received from serial port to ST16C1451 receive input circuit. A mark (high) is logic one and a space (low) is logic zero. During the local loopback mode the RX input is disabled from external connection and connected to the TX output internally.
тх	10	0	Serial data output. The serial data is transmitted via this pin with additional start, stop and parity bits. The TX will be held in mark (high) state during reset, local loopback mode or when the transmitter is disabled.
CS*	11	I	Chip select (active low). A low at this pin enables the ST16C1451 / CPU data transfer operation.
CLK	12		External clock input. An external clock can be used to clock internal circuit and baud rate generator for custom transmission rates.
IOW*	13	2	Write strobe (active low). A low on this pin will transfer the contents of the CPU data bus to the addressed register.
GND	14	0	Signal and power ground.
IOR*	15	la di seconda di second Seconda di seconda di se Seconda di seconda di se	Read strobe (active low). A low level on this pin transfers the contents of the ST16C1451 data bus to the CPU.
RI*	16		Ring detect indicator (active low). A low on this pin indicates the modem has received a ringing signal from telephone line.
RST	17	0	Reset output (active high). The ST16C1451 provides a buffered reset output which is gated internally with MCR bit-2.
		2	

3

ST16C1450 ST16C1451

ST16C1451 SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
INT	18	o	Interrupt output. (three state / active high) This pin goes high (when enabled by the interrupt enable register) whenever a receiver error, receiver data available, transmitter empty, or modem status condition flag is detected.
A0-A2	21-19	I	Address select line. To select internal registers.
RTS*	22	0	Request to send (active low). To indicate that the transmit- ter has data ready to send. Writing a "1" in the modem control register (MCR bit-1) will set this pin to a low state. After the reset this pin will be set to high. Note that this pin does not have any effect on the transmit or receive opera- tion.
DTR*	23	ο	Data terminal read (active low). To indicate that ST16C1451 is ready to receive data. This pin can be controlled via the modem control register (MCR bit-0). Writing a "1" at the MCR bit-0 will set the DTR* output to low. This pin will be set to high state after writing a "0" to that register or after the reset. Note that this pin does not have any effect on the transmit or receive operation.
RESET	24	I	Master reset (active high). A high on this pin will reset all the outputs and internal registers. The transmitter output and the receiver input will be disabled during reset time.
CTS*	25	1	Clear to send (active low). The CTS* signal is a MODEM control function input whose conditions can be tested by reading the MSR BIT-4. CTS* has no effect on the transmit or receive operation.
DSR*	26	l	Data set ready (active low). A low on this pin indicates the MODEM is ready to exchange data with UART. This pin does not have any effect on the transmit or receive operation.
CD*	27	i	Carrier detect (active low). A low on this pin indicates the carrier has been detected by the modem.
vcc	28	I	Power supply input.

PROGRAMMING TABLE

A2	A1	AO	READ MODE	WRITE MODE
0	0	0	Receive Holding Register	Transmit Holding Register
0	0	1		Interrupt Enable Register
0	1	0	Interrupt Status Register	· · · · -
0	1	1		Line Control Register
1	0	0		Modem Control Register
1	0	1	Line Status Register	-
1	1	0	Modem Status Register	
1	1	1	Scratchpad Register	Scratchpad Register
0	0	0		LSB of Divisor Latch
0	0	1		MSB of Divisor Latch

All unused input pins should be tied to VCC or GND.

3

ST16C1450 ST16C1451

ST16C1450 ACCESSIBLE REGISTERS

A2 A1 A0	Register	BIT-7	BIT-6	BIT-5	BIT-4	BIT-3	BIT-2	BIT-1	BIT-0
000	RHR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
000	THR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
001	IER	0	0	0/ special mode	0	modem status interrupt	receive line status interrupt	transmit holding register	receive holding register
0 1 0	ISR	0	0	0	0	0	int priority bit-1	int priority bit-0	int status
011	LCR	divisor latch enable	set break	set parity	even parity	parity enable	stop bits	word length bit-1	word length bit-0
100	MCR	0/power down	0	0	loop back	INT enable	SOFT reset	RTS*	DTR*
101	LSR	0	trans. empty	trans. holding empty	break interrupt	framing error	parity error	overrun error	receive data ready
1 1 0	MSR	CD	RI	DSR	стѕ	delta CD*	delta RI*	delta DSR*	delta CTS*
1 1 1	SPR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
000	DLL	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
001	DLM	bit-15	bit-14	bit-13	bit-12	bit-11	bit-10	bit-9	bit-8

DLL and DLM are accessible only when LCR bit-7 is set to "1".

ST16C1451 ACCESSIBLE REGISTERS

A2 A1 A0	Register	BIT-7	BIT-6	BIT-5	BIT-4	BIT-3	BIT-2	BIT-1	BIT-0
0 0 0	RHR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0 0 0	THR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
001	IER	0	0	0/ special mode	0	modem status interrupt	receive line status interrupt	transmit holding register	receive holding register
0 1 0	ISR	0	0	0	0	0	int priority bit-1	int priority bit-0	int status
0 1 1	LCR	divisor latch enable	set break	set parity	even parity	parity enable	stop bits	word length bit-1	word length bit-0
100	MCR	0/power down	0	0	loop back	INT enable	SOFT reset	RTS*	DTR*
101	LSR	0	trans. empty	trans. holding empty	break interrupt	framing error	parity error	overrun error	receive data ready
1 1 0	MSR	CD	RI	DSR	стѕ	delta CD*	delta RI*	delta DSR*	delta CTS*
1 1 1	SPR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
000	DLL	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
001	DLM	bit-15	bit-14	bit-13	bit-12	bit-11	bit-10	bit-9	bit-8

DLL and DLM are accessible only when LCR bit-7 is set to "1".

3

ST16C1450 ST16C1451

REGISTER FUNCTIONAL DESCRIPTIONS

TRANSMIT AND RECEIVE HOLDING REGISTER

The serial transmitter section consists of a Transmit Hold Register (THR) and Transmit Shift Register (TSR). The status of the transmit hold register is provided in the Line Status Register (LSR). Writing to this register (THR) will transfer the contents of data bus (D7-D0) to the Transmit holding register whenever the transmitter holding register or transmitter shift register is empty. The transmit holding register empty flag will be set to "1" when the transmitter is empty or data is transferred to the transmit shift register. Note that a write operation should be performed when the transmit holding register empty flag is set.

On the falling edge of the start bit, the receiver internal counter will start to count 7 1/2 clocks (16x clock) which is the center of the start bit. The start bit is valid if the RX is still low at the mid-bit sample of the start bit. Verifying the start bit prevents the receiver from assembling a false data character due to a low going noise spike on the RX input. Receiver status codes will be posted in the Line Status Register.

PROGRAMMABLE BAUD RATE GENERATOR

The ST16C1450/51 contains a programmable Baud Rate Generator that is capable of taking any clock input from DC-8 MHz and dividing it by any divisor from 1 to 2^{16} -1. The output frequency of the Baudout* is equal to 16X of transmission baud rate (Baudout*=16 x Baud Rate). Customize Baud Rates can be achieved by selecting proper divisor values for MSB and LSB of baud rate generator.

INTERRUPT ENABLE REGISTER (IER)

The Interrupt Enable Register (IER) masks the incoming interrupts from receiver ready, transmitter empty, line status and modem status registers to the INT output pin.

IER BIT-0:

0=disable the receiver ready interrupt. 1=enable the receiver ready interrupt.

IER BIT-1:

0=disable the transmitter empty interrupt. 1=enable the transmitter empty interrupt.

IER BIT-2:

0=disable the receiver line status interrupt. 1=enable the receiver line status interrupt.

IER BIT-3:

0=disable the modem status register interrupt. 1=enable the modem status register interrupt.

IER BIT-5:

0=normal ST16C450 mode. 1=special mode. Enable power down and SOFT rest.

IER BIT 4,6-7:

All these bits are set to logic zero.

INTERRUPT STATUS REGISTER (ISR)

The ST16C1450/51 provides four level prioritized interrupt conditions to minimize software overhead during data character transfers. The Interrupt Status Register (ISR) provides the source of the interrupt in prioritized matter. During the read cycle the ST16C1450/51 provides the highest interrupt level to be serviced by CPU. No other interrupts are acknowledged until the particular interrupt is serviced. The following are the prioritized interrupt levels:

Priority levels

Р	D2	D1	D0	Source of the interrupt
1	1	1	0	LSR (Receiver Line Status Register)
2	1	0	0	RXRDY (Received Data Ready)
3	0	1	0	TXRDY(Transmitter Holding Register Empty)
4	0	0	0	MSR (Modem Status Regis- ter)

ISR BIT-0:

0=an interrupt is pending and the ISR contents may be used as a pointer to the appropriate interrupt service routine.

1=no interrupt pending.

ISR BIT 1-2:

Logical combination of these bits, provides the highest priority interrupt pending.

ISR bit 3-7:

Not used

LINE CONTROL REGISTER (LCR)

The Line Control Register is used to specify the asynchronous data communication format. The number of the word length, stop bits, and parity can be selected by writing appropriate bits in this register.

LCR BIT1-0:

These two bits specify the word length to be transmitted or received.

BIT-1	BIT-0	Word length
0	0	5
0	1	6
1	0	7
1	1	8

LCR BIT-2:

The number of stop bits can be specified by this bit.

BIT-2	Word length	Stop bit(s)
0	5,6,7,8	1
1	5	1-1/2
1	6,7,8	2

LCR BIT-3:

Parity or no parity can be selected via this bit. 0=no parity

1=a parity bit is generated during the transmission, receiver also checks for received parity.

LCR BIT-4:

If the parity bit is enabled, LCR BIT-4 selects the even or odd parity format.

0=ODD parity is generated by forcing an odd number of 1's in the transmitted data, receiver also checks for same format.

1= EVEN parity bit is generated by forcing an even the number of 1's in the transmitted data, receiver also checks for same format.

LCR BIT-5:

If the parity bit is enabled, LCR BIT-5 selects the forced parity format.

LCR BIT-5=1 and LCR BIT-4=0, parity bit is forced to "1" in the transmitted and received data.

LCR BIT-5=1 and LCR BIT-4=1, parity bit is forced to "0" in the transmitted and received data.

LCR BIT-6:

Break control bit. It causes a break condition to be transmitted (the TX is forced to low state).

0=normal operating condition.

1=forces the transmitter output (TX) to go low to alert the communication terminal.

LCR BIT-7:

The internal baud rate counter latch enable (DLEN). 0=normal operation.

1=select divisor latch register.

2

ST16C1450 ST16C1451

MODEM CONTROL REGISTER (MCR)

This register controls the interface with the MODEM or a peripheral device (RS232).

MCR BIT-0:

0=force DTR* output to high. 1=force DTR* output to low.

MCR BIT-1:

0=force RTS* output to high. 1=force RTS* output to low.

MCR BIT-2:

0=normal operation. 1=software reset, set RST output to high.

MCR BIT-3:

0=set INT output pin to three state mode. 1=set INT output pin to normal operation mode.

MCR BIT-4:

0=normal operating mode.

1=enable local loop-back mode (diagnostics). The transmitter output (TX) is set high (Mark condition), the receiver input (RX), CTS*, DSR*, CD*, and RI* are disabled. Internally the transmitter output is connected to the receiver input and DTR*, RTS*, SOFT reset and INT enable are connected to modem control inputs.

In this mode, the receiver and transmitter interrupts are fully operational. The Modem Control Interrupts are also operational, but the interrupts sources are now the lower four bits of the Modem Control Register instead of the four Modem Control inputs. The interrupts are still controlled by the IER.

MCR BIT 5-6:

Not used. Are set to zero permanently.

MCR bit-7:

0=normal mode.

1=power down mode. XTAL1, XTAL2, and baud rate generators are disabled.

LINE STATUS REGISTER (LSR)

This register provides the status of data transfer to CPU.

LSR BIT-0:

0=no data in receive holding register 1=data has been received and saved in the receive holding register.

LSR BIT-1:

0=no overrun error (normal).

1=overrun error, next character arrived before receive holding register was emptied.

LSR BIT-2:

0=no parity error (normal). 1=parity error, received data does not have correct parity information.

LSR BIT-3:

0=no framing error (normal). 1=framing error received, received data did not have a valid stop bit.

LSR BIT-4:

0=no break condition (normal).

1=receiver received a break signal (RX was low for one character time frame).

LSR BIT-5:

0=transmit holding register is full. ST16C1450/51 will not accept any data for transmission.

1=transmit holding register is empty. CPU can load the next character.

LSR BIT-6:

0=transmitter holding and shift registers are full. 1=transmitter holding and shift registers are empty.

LSR BIT-7:

Not used.

MODEM STATUS REGISTER (MSR)

This register provides the current state of the control lines from the modem or peripheral to the CPU. Four bits of this register are used to indicate the changed information. These bits are set to "1" whenever a control input from the MODEM changes state. They are set to "0" whenever the CPU reads this register.

MSR BIT-0:

Indicates that the CTS* input to the ST16C1450/51 has changed state since the last time it was read.

MSR BIT-1:

Indicates that the DSR* input to the ST16C1450/51 has changed state since the last time it was read.

MSR BIT-2:

Indicates that the RI* input to the ST16C1450/51 has changed from a low to a high state.

MSR BIT-3:

Indicates that the CD* input to the ST16C1450/51 has changed state since the last time it was read.

MSR BIT-4:

This bit is equivalent to RTS in the MCR during local loop-back mode. It is the compliment of the CTS* input.

MSR BIT-5:

This bit is equivalent to DTR in the MCR during local loop-back mode. It is the compliment of the DSR* input.

MSR BIT-6:

This bit is equivalent to SOFT reset in the MCR during local loop-back mode. It is the compliment of the RI* input.

MSR BIT-7:

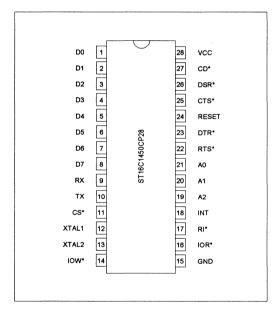
This bit is equivalent to INT enable in the MCR during local loop-back mode. It is the compliment to the CD* input.

Note: Whenever MSR BIT3-0: is set to logic "1", a MODEM Status Interrupt is generated.

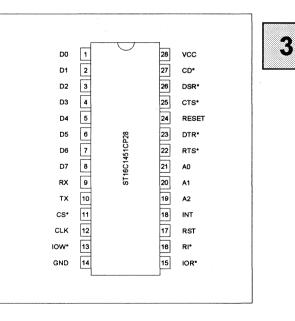
SCRATCHPAD REGISTER (SR)

ST16C1450/51 provides a temporary data register to store 8 bits of information for variable use.

BAUD RATE GENERATOR PROGRAMMING TABLE (1.8432 MHz CLOCK):


BAUD RATE	16 x CLOCK DIVISOR	% ERROR
50	2304	
75	1536	
110	1047	0.026
150	768	
300	384	
600	192	
1200	96	and the second second
2400	48	
3600	32	
4800	24	
7200	16	
9600	12	
19.2K	6	
38.4K	3	·
56K	2	2.86
115.2K	··· 1	

ST16C1450/51 EXTERNAL RESET CONDITION


REGISTERS	RESET STATE
IER	IER BITS 0-7=0
ISR	ISR BIT-0=1, ISR BITS 1-7=0
LCR	LCR BITS 0-7=0
MCR	MCR BITS 0-7=0
LSR	LSR BITS 0-4=0.
	LSR BITS 5-6=1 LSR, BIT 7=0
MSR	MSR BITS 0-3=0,
	MSR BITS 4-7=input signals

SIGNALS	RESET STATE
TX	High
SOFT reset	High
RTS*	High
DTR*	High
INT	Three state mode

ST16C1450 Plastic-DIP Package

ST16C1451 Plastic-DIP Package

ABSOLUTE MAXIMUM RATINGS

Supply range Voltage at any pin Operating temperature Storage temperature Package dissipation

ST16C1450/51

7 Volts GND-0.3 V to VCC+0.3 V 0° C to +70° C -40° C to +150° C 500 mW

DC ELECTRICAL CHARACTERISTICS

 $T_a=25^{\circ}$ C, $V_{cc}=5.0$ V ± 5% unless otherwise specified.

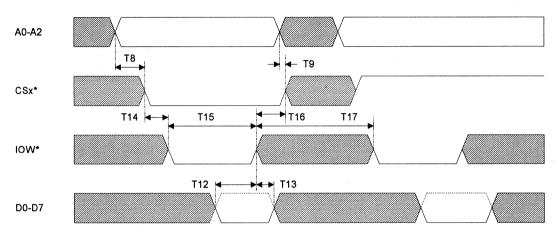
Symbol	Parameter		imits Typ Max	Units	Conditions
	Clock input low level	-0.5	0.6	v	
VIHCK	Clock input high level	3.0	VCC	v	
	Input low level	-0.5	0.8	V	
۷ ^۳	Input high level	2.2	VCC	v	
V _{IL} V _{IH} V _{OL} V _{OH}	Output low level on all outputs		0.4	v	I _{oL} = 6 mA
	Output high level	2.4		v	I_{OH}^{OL} = -6 mA
I _{cc}	Avg. power supply current		6	mA	On
	Input leakage		±10	μΑ	
I _L I _{CL}	Clock leakage		±10	μΑ	

3

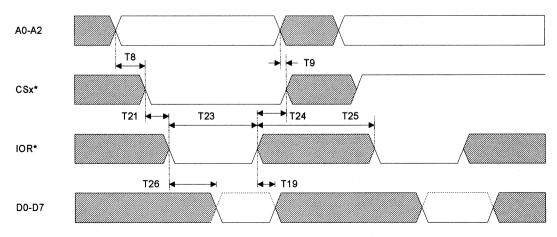
ST16C1450

ST16C1451

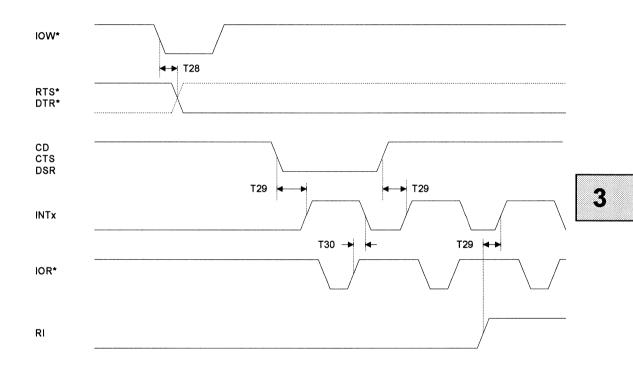
AC ELECTRICAL CHARACTERISTICS

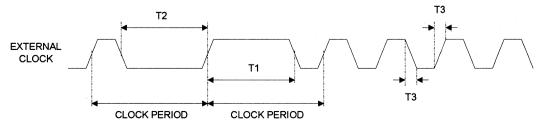

 T_{A} =25° C, V_{cc} =5.0 V ± 5% unless otherwise specified.

Symbol	Parameter		Limits		Units	Conditions	
		Min	Тур	Max			
Т.	Clock high pulse duration	50			ns	Note: 1	
Ť.	Clock low pulse duration	50			ns	Note: 1	
T_{\star}^{2}	Clock rise/fall time		•	10	ns		
T.	Chip select setup time	5			ns		
Ť.	Chip select hold time	ō			ns		
T ₁ T ₂ T ₃ T ₈ T ₉ T ₁₂	Data setup time	15			ns		
T ₁₃	Data hold time	15			ns		
T ₁₄	IOW* delay from chip select	10			ns		
T ₁₅	IOW* strobe width	50			ns		
T ¹⁵ ₁₆	Chip select hold time from IOW*	0			ns		
T ¹⁶	Write cycle delay	55			ns		
Τẅ́	Write cycle=T ₁₅ +T ₁₇	105			ns		
T ₁₉	Data hold time	15			ns		
T'3	IOR* delay from chip select	10			ns		
T	IOR* strobe width	65			ns		
T_{23}^{24} T_{24}^{25}	Chip select hold time from IOR*	0			ns		
T_	Read cycle delay	55			ns		
11	Read cycle=T ₂₃ +T ₂₅	105			ns		
Т ₂₆	Delay from IOR* to data			35	ns	100 pF load	
T ₂₈	Delay from IOW* to output			50	ns	100 pF load	
T ₂₉	Delay to set interrupt from MODEM input			70	ns	100 pF load	
T ₃₀	Delay to reset interrupt from IOR*			70	ns	100 pF load	
T,	Delay from stop to set interrupt			1 _{Rck}	*	100 pF load	
T ₃₁ T ₃₂	Delay from IOR* to reset interrupt			200	ns	100 pF load	
T ₃₃	Delay from initial INT reset to transmit start	8		24	*		
Т ₃₄	Delay from stop to interrupt			100	ns		
T ₃₅	Delay from IOW* to reset interrupt			175	ns		
N	Baud rate devisor	1		2 ¹⁶ -1			

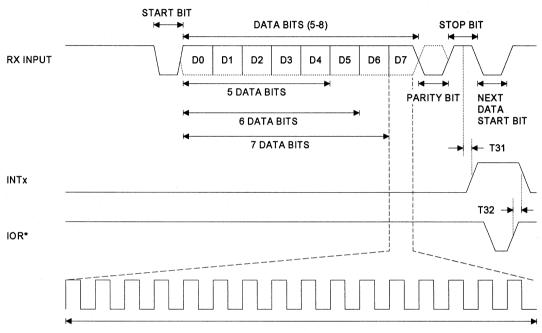

1.8432 MHz crystal or External clock * = Baudout* cycle Note 1:

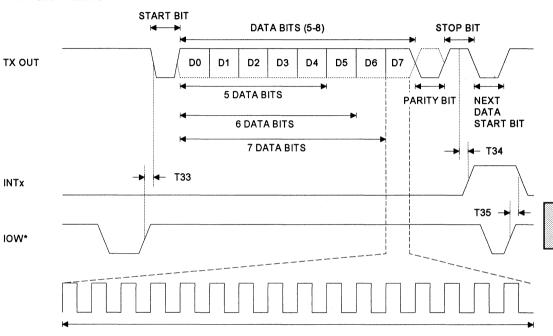
ST16C1450/51


GENERAL WRITE TIMING


GENERAL READ TIMING

MODEM TIMING




ST16C1450/51

RECEIVE TIMING

16 BAUD RATE CLOCK

3

TRANSMIT TIMING

16 BAUD RATE CLOCK

Printed May 17, 1993

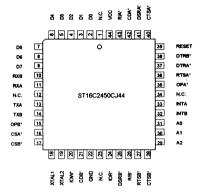
DUAL UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER

DESCRIPTION

The ST16C2450 is a dual universal asynchronous receiver and transmitter. Independent programmable baud rate generators are provided to select transmit and receive clock rates from 50Hz to 448kHz for each UART section.

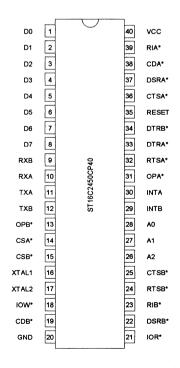
The ST16C2450 is an improved version of the NS16C450 UART with higher operating speed and lower access time. The ST16C2450 on board status registers provides the error conditions, type and status of the transfer operation being performed. Included is complete MODEM control capability, and a processor interrupt system that may be software tailored to the user's requirements. The ST16C2450 provides internal loop-back capability for on board diagnostic testing.

The ST16C2450 is fabricated in an advanced 1.2μ CMOS process to achieve low drain power and high speed requirements.

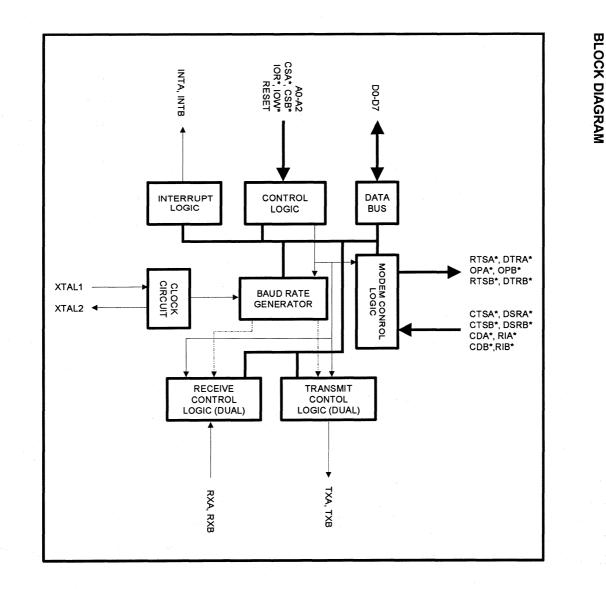

FEATURES

- Functional compatible to NS16450, VL16C450, WD16C450
- Modem control signals (CTS*, RTS*, DSR*, DTR*, RI*, CD*)
- Programmable character lengths (5, 6, 7, 8)
- Even, odd, or no parity bit generation and detection
- Status report register
- Independent transmit and receive control
- TTL compatible inputs, outputs
- 448 kHz transmit/receive operation with 7.372 MHz crystal or external clock source

ORDERING INFORMATION


Part number	Package	Operating	temperature
ST16C2450CP40	Plastic-DIP	0° C	to + 70° C
ST16C2450CJ44	PLCC	0° C	to + 70° C
*Industrial operating	range are av	/ailable	

PLCC Package



Plastic-DIP Package

3

ST16C2450

3-46

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
D0-D7	1-8	I/O	Bi-directional data bus. Eight bit, three state data bus to transfer information to or from the CPU. D0 is the least significant bit of the data bus and the first serial data bit to be received or transmitted.
RX A/B	10,9	1	Serial data input A/B. The serial information (data) received from serial port to ST16C2450 receive input circuit. A mark (high) is logic one and a space (low) is logic zero. During the local loopback mode the RX input is disabled from external connection and connected to the TX output internally.
TX A/B	11,12	ο	Serial data output A/B. The serial data is transmitted via this pin with additional start, stop and parity bits. The TX will be held in mark (high) state during reset, local loopback mode or when the transmitter is disabled.
CS A/B*	14,15	I	Chip select A/B. (active low) A low at this pin enables the ST16C2450 / CPU data transfer operation.
XTAL1	16	I	Crystal input 1 or external clock input. A crystal can be connected to this pin and XTAL2 pin to utilize the internal oscillator circuit. An external clock can be used to clock internal circuit and baud rate generator for custom transmis- sion rates.
XTAL2	17	I	Crystal input 2 or buffered clock output. See XTAL1.
IOW*	18	I	Write strobe. (active low) A low on this pin will transfer the contents of the CPU data bus to the addressed register.
IOR*	21	I	Read strobe. (active low) A low level on this pin transfers the contents of the ST16C2450 data bus to the CPU.
A0-A2	28-26	I	Address select lines. To select internal registers.
INT A/B	30,29	O	Interrupt output A/B. (active high) This pin goes high (when enabled by the interrupt enable register) whenever a re- ceiver error, receiver data available, transmitter empty, or modem status condition flag is detected.

3

ST16C2450

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
OP2 A/B*	31	0	Interrupt enable output (active low). This pin stays high when INT out pin is set to three state mode and goes low when INT pin is enabled via OP2*. See bit-3 modem control register (MCR bit-3).
RTS A/B*	32,24	ο	Request to send A/B (active low). To indicate that the transmitter has data ready to send. Writing a "1" in the modem control register (MCR bit-1) will set this pin to a low state. After the reset this pin will be set to high. Note that this pin does not have any effect on the transmit or receive operation.
DTR A/B*	33,34	Ο	Data terminal ready A/B (active low). To indicate that ST16C2450 is ready to receive data. This pin can be controlled via the modem control register (MCR bit-0). Writing a "1" at the MCR bit-0 will set the DTR* output to low. This pin will be set to high state after writing a "0" to that register or after the reset. Note that this pin does not have any effect on the transmit or receive operation.
RESET	35	1 	Master reset. (active high) A high on this pin will reset all the outputs and internal registers. The transmitter output and the receiver input will be disabled during reset time.
CTS A/B*	36,25		Clear to send A/B (active low). The CTS* signal is a MODEM control function input whose conditions can be tested by reading the MSR BIT-4. CTS* has no effect on the transmit or receive operation.
DSR A/B*	37,22	l t	Data set ready A/B (active low). A low on this pin indicates the MODEM is ready to exchange data with UART. This pin does not have any effect on the transmit or receive opera- tion.
CD A/B*	38,19	I	Carrier detect A/B (active low). A low on this pin indicates the carrier has been detected by the modem.
RI A/B*	39,23	1 1	Ring detect indicator A/B (active low). A low on this pin indicates the modem has received a ringing signal from telephone line.

3

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
vcc	40	I	Power supply input.
GND	20	0	Signal and power ground.

PROGRAMMING TABLE

A2	A1	A0	READ MODE	WRITE MODE
0	0	0	Receive Holding Register	Transmit Holding Register
0	0	1		Interrupt Enable Register
0	1	0	Interrupt Status Register	
0	1	1		Line Control Register
1	0	0		Modem Control Register
1	0	1	Line Status Register	C C
1	1	0	Modem Status Register	
1	1	1	Scratchpad Register	Scratchpad Register
0	0	0		LSB of Divisor Latch
0	0	1		MSB of Divisor Latch

ST16C2450 ACCESSIBLE REGISTERS A/B

A2	A1	A0	Register	BIT-7	BIT-6	BIT-5	BIT-4	BIT-3	BIT-2	BIT-1	BIT-0
0	0	0	RHR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	0	THR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	1	IER	0	0	0	0	modem status interrupt	receive line status interrupt	transmit holding register	receive holding register
0	1	0	ISR	0	0	0	0	0	int priority bit-1	int priority bit-0	int status
0	1	1	LCR	divisor latch enable	set break	set parity	even parity	parity enable	stop bits	word length bit-1	word length bit-0
1	0	0	MCR	0	0	0	loop back	INT enable	Not used	RTS*	DTR*
1	0	1	LSR	0	trans. empty	trans. holding empty	break interrupt	framing error	parity error	overrun error	receive data ready
1	1	0	MSR	CD	RI	DSR	CTS	delta CD*	delta RI*	delta DSR*	delta CTS*
1	1	1	SPR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	0	DLL	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	1	DLM	bit-15	bit-14	bit-13	bit-12	bit-11	bit-10	bit-9	bit-8

DLL and DLM are accessible only when LCR bit-7 is set to "1".

REGISTER FUNCTIONAL DESCRIPTIONS A/B

TRANSMIT AND RECEIVE HOLDING REGISTER

The serial transmitter section consists of a Transmit Hold Register (THR) and Transmit Shift Register (TSR). The status of the transmit hold register is provided in the Line Status Register (LSR). Writing to this register (THR) will transfer the contents of data bus (D7-D0) to the Transmit holding register whenever the transmitter holding register or transmitter shift register is empty. The transmit holding register empty flag will be set to "1" when the transmitter is empty or data is transferred to the transmit shift register. Note that a write operation should be performed when the transmit holding register empty flag is set.

On the falling edge of the start bit, the receiver internal counter will start to count 7 1/2 clocks (16x clock) which is the center of the start bit. The start bit is valid if the RX is still low at the mid-bit sample of the start bit. Verifying the start bit prevents the receiver from assembling a false data character due to a low going noise spike on the RX input. Receiver status codes will be posted in the Line Status Register.

PROGRAMMABLE BAUD RATE GENERATOR

The ST16C2450 contains a programmable Baud Rate Generator that is capable of taking any clock input from DC-8 MHz and dividing it by any divisor from 1 to 2^{16} -1. The output frequency of the Baudout* is equal to 16X of transmission baud rate (Baudout*=16 x Baud Rate). Customize Baud Rates can be achieved by selecting proper divisor values for MSB and LSB of baud rate generator.

INTERRUPT ENABLE REGISTER (IER)

The Interrupt Enable Register (IER) masks the incoming interrupts from receiver ready, transmitter empty, line status and modem status registers to the INT output pin.

IER BIT-0:

0=disable the receiver ready interrupt. 1=enable the receiver ready interrupt.

IER BIT-1:

0=disable the transmitter empty interrupt. 1=enable the transmitter empty interrupt.

IER BIT-2:

0=disable the receiver line status interrupt. 1=enable the receiver line status interrupt.

IER BIT-3:

0=disable the modem status register interrupt. 1=enable the modem status register interrupt.

IER BIT 4-7:

All these bits are set to logic zero.

INTERRUPT STATUS REGISTER (ISR)

The ST16C2450 provides four level prioritized interrupt conditions to minimize software overhead during data character transfers. The Interrupt Status Register (ISR) provides the source of the interrupt in prioritized matter. During the read cycle the ST16C2450 provides the highest interrupt level to be serviced by CPU. No other interrupts are acknowledged until the particular interrupt is serviced. The following are the prioritized interrupt levels:

Priority level

Ρ	D2	D1	D0	Source of the interrupt
1	1	1	0	LSR (Receiver Line Status Register)
2	1	0	0	RXRDY (Received Data Ready)
3	0	1	0	TXRDY(Transmitter Holding Register Empty)
4	0	0	0	MSR (Modem Status Regis- ter)

ISR BIT-0:

0=an interrupt is pending and the ISR contents may be used as a pointer to the appropriate interrupt service routine.

1=no interrupt pending.

ISR BIT 1-2:

Logical combination of these bits, provides the highest priority interrupt pending.

ISR BIT 3-7:

These bits are not used and are set to "0".

LINE CONTROL REGISTER (LCR)

The Line Control Register is used to specify the asynchronous data communication format. The number of the word length, stop bits, and parity can be selected by writing appropriate bits in this register.

LCR BIT1-0:

These two bits specify the word length to be transmitted or received.

BIT-1	BIT-0	Word length
0	0	5
0	1	6
1	0	7
1		8

LCR BIT-2:

The number of stop bits can be specified by this bit.

BIT-2	Word length	Stop bit(s)
0	5,6,7,8	1
1	5	1-1/2
1	6,7,8	2

LCR BIT-3:

Parity or no parity can be selected via this bit. 0=no parity

1=a parity bit is generated during the transmission, receiver also checks for received parity.

LCR BIT-4:

If the parity bit is enabled, LCR BIT-4 selects the even or odd parity format.

0=ODD parity is generated by forcing an odd number of 1's in the transmitted data, receiver also checks for same format.

1= EVEN parity bit is generated by forcing an even the number of 1's in the transmitted data, receiver also checks for same format.

LCR BIT-5:

If the parity bit is enabled, LCR BIT-5 selects the forced parity format.

LCR BIT-5=1 and LCR BIT-4=0, parity bit is forced to "1" in the transmitted and received data.

LCR BIT-5=1 and LCR BIT-4=1, parity bit is forced to "0" in the transmitted and received data.

LCR BIT-6:

Break control bit. It causes a break condition to be transmitted (the TX is forced to low state).

0=normal operating condition.

1=forces the transmitter output (TX) to go low to alert the communication terminal.

LCR BIT-7:

The internal baud rate counter latch enable (DLEN). 0=normal operation. 1=select divisor latch register.

MODEM CONTROL REGISTER (MCR)

This register controls the interface with the MODEM or a peripheral device (RS232).

MCR BIT-0:

0=force DTR* output to high. 1=force DTR* output to low.

3-53

MCR BIT-1: 0=force RTS* output to high. 1=force RTS* output to low.

MCR BIT-2:

not used except in local loop-back mode.

MCR BIT-3:

0=set INT output pin to three state mode and OP2* output to high.

1=set INT output pin to normal operating mode and OP2* output to low.

MCR BIT-4:

0=normal operating mode.

1=enable local loop-back mode (diagnostics). The transmitter output (TX) is set high (Mark condition), the receiver input (RX), CTS*, DSR*, CD*, and RI* are disabled. Internally the transmitter output is connected to the receiver input and DTR*, RTS*, OP1* and OP2* are connected to modem control inputs.

In this mode, the receiver and transmitter interrupts are fully operational. The Modem Control Interrupts are also operational, but the interrupts sources are now the lower four bits of the Modem Control Register instead of the four Modem Control inputs. The interrupts are still controlled by the IER.

MCR BIT 5-7:

Not used. Are set to zero permanently.

LINE STATUS REGISTER (LSR)

This register provides the status of data transfer to CPU.

LSR BIT-0:

0=no data in receive holding register 1=data has been received and saved in the receive holding register.

LSR BIT-1:

0=no overrun error (normal).

1=overrun error, next character arrived before receive holding register was emptied.

ST16C2450

LSR BIT-2:

0=no parity error (normal). 1=parity error, received data does not have correct parity information.

LSR BIT-3:

0=no framing error (normal). 1=framing error received, received data did not have a valid stop bit. In

LSR BIT-4:

0=no break condition (normal). 1=receiver received a break signal (RX was low for

one character time frame).

LSR BIT-5:

 $0{=}transmit\,holding\,register\,is\,full.\,ST16C2450\,will\,not$ accept any data for transmission.

1=transmit holding register is empty. CPU can load the next character.

LSR BIT-6:

0=transmitter holding and shift registers are full. 1=transmitter holding and shift registers are empty.

LSR BIT-7:

Not used. Set to "0".

MODEM STATUS REGISTER (MSR)

This register provides the current state of the control lines from the modem or peripheral to the CPU. Four bits of this register are used to indicate the changed information. These bits are set to "1" whenever a control input from the MODEM changes state. They are set to "0" whenever the CPU reads this register.

MSR BIT-0:

Indicates that the CTS* input to the ST16C2450 has changed state since the last time it was read.

3

MSR BIT-1:

Indicates that the DSR* input to the ST16C2450 has changed state since the last time it was read.

MSR BIT-2:

Indicates that the RI* input to the ST16C2450 has changed from a low to a high state.

MSR BIT-3:

Indicates that the CD* input to the ST16C2450 has changed state since the last time it was read.

MSR BIT-4:

This bit is equivalent to RTS in the MCR during local loop-back mode. It is the compliment of the CTS* input.

MSR BIT-5:

This bit is equivalent to DTR in the MCR during local loop-back mode. It is the compliment of the DSR* input.

MSR BIT-6:

This bit is equivalent to OP1 in the MCR during local loop-back mode. It is the compliment of the RI* input.

MSR BIT-7:

This bit is equivalent to OP2 in the MCR during local loop-back mode. It is the compliment to the CD* input.

Note: Whenever MSR BIT3-0: is set to logic "1", a MODEM Status Interrupt is generated.

SIGNALS	RESET STATE
TX	High
OP2*	High
RTS*	High
DTR*	High
INT	Three state mode

SCRATCHPAD REGISTER (SR)

ST16C2450 provides a temporary data register to store 8 bits of information for variable use.

BAUD RATE GENERATOR PROGRAMMING TABLE (1.8432 MHz CLOCK):

BAUD RATE	16 x CLOCK DIVISOR	% ERROR
50	2304	
75	1536	
110	1047	0.026
134.5	857	0.058
150	768	
300	384	
600	192	
1200	96	
2400	48	
3600	32	
4800	24	
7200	16	
9600	12	
19.2K	6	
38.4K	3	
56K	2	2.86
115.2K	1	

ST16C2450 EXTERNAL RESET CONDITION

REGISTERS	RESET STATE
IER	IER BITS 0-7=0
ISR	ISR BIT-0=1, ISR BITS 1-7=0
LCR	LCR BITS 0-7=0
MCR	MCR BITS 0-7=0
LSR	LSR BITS 0-4=0,
	LSR BITS 5-6=1 LSR, BIT 7=0
MSR	MSR BITS 0-3=0,
	MSR BITS 4-7=input signal

AC ELECTRICAL CHARACTERISTICS

 $\rm T_{A}=25^{\circ}$ C, $\rm ~V_{cc}=5.0~V\pm5\%$ unless otherwise specified.

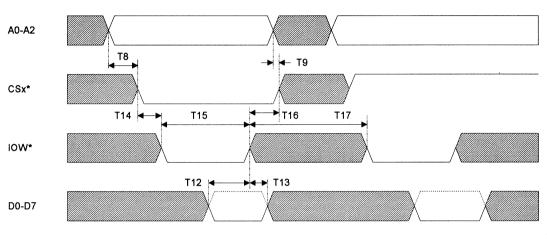
Symbol	Parameter	Limits			Units	Conditions	
		Min	Тур	Max			
Т,	Clock high pulse duration	50			ns		
Τ,	Clock low pulse duration	50			ns	External clock	
T₁ T₂ T₃ T₅ T₀	Clock rise/fall time			10	ns		
T,	Chip select setup time	15	[[ns		
Т	Chip select hold time	0			ns		
T ₁₂	Data set up time	15			ns		
T ₁₃	Data hold time	15			ns		
T ¹³	IOW* delay from chip select	10			ns		
T ¹⁵	IOW* strobe width	50			ns		
T ¹⁵	Chip select hold time from IOW*	0			ns		
T ¹⁰	Write cycle delay	55			ns		
Tw	Write cycle= $T_{15}+T_{17}$	105			ns		
T ₁₉	Data hold time	15			ns		
	IOR* delay from chip select	10			ns		
T.,	IOR* strobe width	65			ns		
T ₂₁ T ₂₃ T ₂₄ T ₂₅	Chip select hold time from IOR*	0			ns		
T	Read cycle delay	55			ns		
Τr	Read cycle=T ₂₃ +T ₂₅	115			ns		
	Delay from IOR* to data	_		35	ns	100 pF load	
Τ ₂₆ Τ ₂₈	Delay from IOW* to output			50	ns	100 pF load	
T ₂₉	Delay to set interrupt from MODEM input			70	ns	100 pF load	
T ₃₀	Delay to reset interrupt from IOR*		1 1	70	ns	100 pF load	
Τ ₃₀ Τ ₃₁	Delay from stop to set interrupt				ns	100 pF load	
T ₃₂	Delay from IOR* to reset interrupt			1 _{Rcik} 200	ns	100 pF load	
T ₃₃	Delay from initial INT reset to transmit	8		200	*		
33	start	ľ		27			
Т ₃₄	Delay from stop to interrupt			100	ns		
Τ ₃₅	Delay from IOW* to reset interrupt			175	ns		
35	boldy non note to resol interrupt			175	115		
N	Baud rate devisor	1		2 ¹⁶ -1			

Note 1: * = Baudout* cycle

3

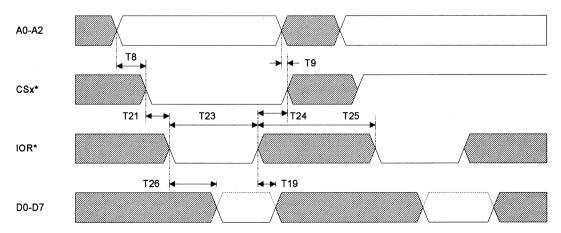
ABSOLUTE MAXIMUM RATINGS

Supply range Voltage at any pin Operating temperature Storage temperature Package dissipation 7 Volts GND-0.3 V to VCC+0.3 V 0° C to +70° C -40° C to +150° C 500 mW

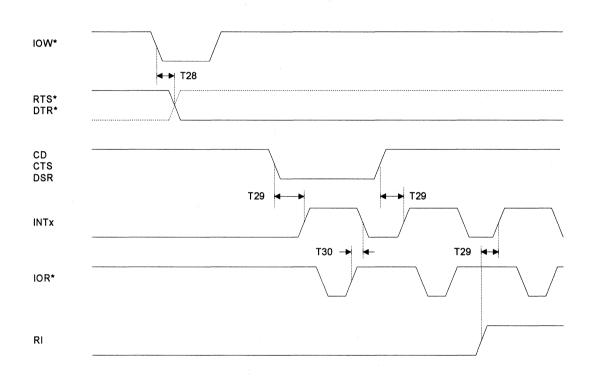

DC ELECTRICAL CHARACTERISTICS

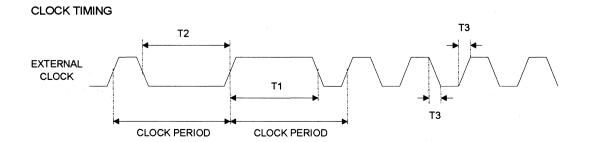
 $T_{\rm A}{=}25^{\circ}$ C, $V_{\rm cc}{=}5.0$ V \pm 5% unless otherwise specified.

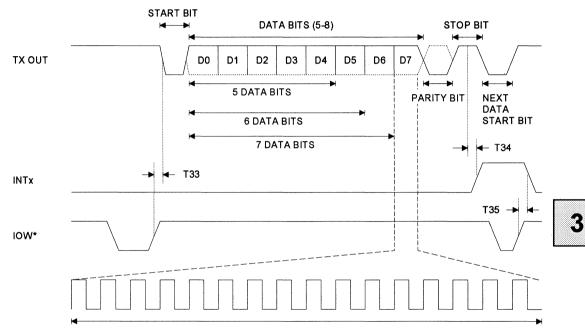
Symbol	Parameter		mits ſyp Max	Units	Conditions
V _{ILCK} V _{IHCK} V _{IL} V _{OL} V _{OL} V _{OH} I _{CC} I _{IL} I _{CL}	Clock input low level Clock input high level Input low level Input high level Output low level on all outputs Output high level Avg power supply current Input leakage Clock leakage	-0.5 3.0 -0.5 2.2 2.4	0.6 VCC 0.8 VCC 0.4 6 ±10 ±10	5 5 5 < < < < < <	I _{ог} = 6 mA I _{он} = -6 mA


ST16C2450

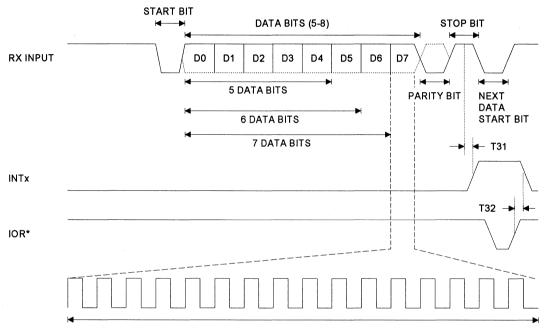
3




GENERAL WRITE TIMING


GENERAL READ TIMING

MODEM TIMING



TRANSMIT TIMING

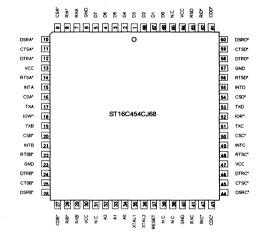
16 BAUD RATE CLOCK

RECEIVE TIMING

16 BAUD RATE CLOCK

Printed May 17, 1993

QUAD ASYNCHRONOUS RECEIVER AND TRANSMITTER

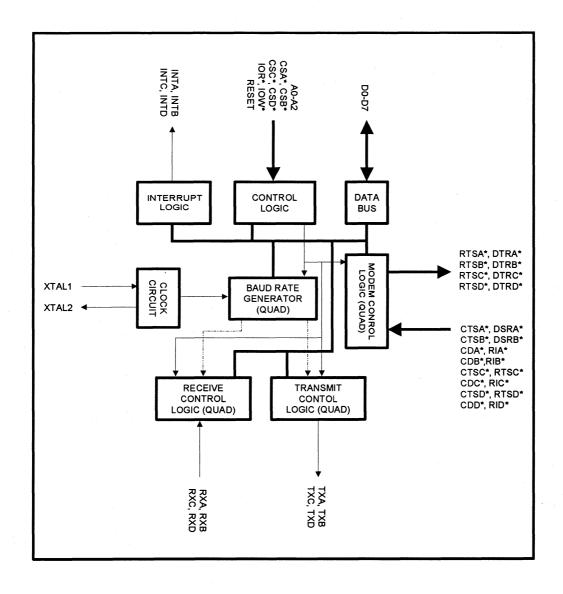

DESCRIPTION

The ST16C454 is a quad universal asynchronous receiver and transmitter. A programmable baud rate generator is provided to select transmit and receive clock rates from 50Hz to 448kHz.

The ST16C454 is an improved version of the NS16C450 UART with higher operating speed and lower access time. The ST16C454 on board status registers provides the error conditions, type and status of the transfer operation being performed. Included is complete MODEM control capability, and a processor interrupt system that may be software tailored to the user's requirements. The ST16C454 provides internal loop-back capability for on board diagnostic testing.

The ST16C454 is fabricated in an advanced 1.2μ CMOS process to achieve low drain power and high speed requirements.

PLCC Package


FEATURES

- Quad ST16C450
- Pin-to-pin compatible to ST16C554
- Modem control signals (CTS*, RTS*, DSR*, DTR*, RI*, CD*)
- Programmable character lengths (5, 6, 7, 8)
- Even, odd, or no parity bit generation and detection
- Status report register
- Independent transmit and receive control
- TTL compatible inputs, outputs
- 448 kHz transmit/receive operation with 7.372 MHz crystal or external clock source

ORDERING INFORMATION

Part number	Package	Operating	temperature
ST16C454CJ68	PLCC	0° C	to + 70° C
ST16C454IJ68	PLCC	-40° C	to + 85° C

BLOCK DIAGRAM

ST16C454

3

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
D0-D7	5-66	I/O	Bi-directional data bus. Eight bit, three state data bus to transfer information to or from the CPU. D0 is the least significant bit of the data bus and the first serial data bit to be received or transmitted.
RX A-B RX C-D	7,29 41,63	I	Serial data input. The serial information (data) received from serial port to ST16C454 receive input circuit. A mark (high) is logic one and a space (low) is logic zero. During the local loopback mode the RX input is disabled from external connection and connected to the TX output internally.
TX A-B TX C-D	17,19 51,53	ο	Serial data output. The serial data is transmitted via this pin with additional start, stop and parity bits. The TX will be held in mark (high) state during reset, local loopback mode or when the transmitter is disabled.
CS A-B* CS C-D*	16,20 50,54	I	Chip select. (active low) A low at this pin enables the ST16C454 / CPU data transfer operation. Each UART section of the ST16C454 can be accessed independently.
XTAL1	35	1	Crystal input 1 or external clock input. A crystal can be connected to this pin and XTAL2 pin to utilize the internal oscillator circuit. An external clock can be used to clock internal circuit and baud rate generator for custom transmis- sion rates.
XTAL2	36	ο	Crystal input 2 or buffered clock output. See XTAL1.
IOW*	18	I	Write strobe. (active low) A low on this pin will transfer the contents of the CPU data bus to the addressed register.
GND GND	6,23 40,61	0	Signal and power ground.
IOR*	52	Ι	Read strobe. (active low) A low level on this pin transfers the contents of the ST16C454 data bus to the CPU.

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
A2	32	l I	Address select line 2. To select internal registers.
A1	33	I	Address select line 1. To select internal registers.
A0	34	l	Address select line 0. To select internal registers.
INT A-B INT C-D	15,21 49,55	Ο	Interrupt output. (active high) This pin goes high (when enabled by the interrupt enable register) whenever a re- ceiver error, receiver data available, transmitter empty, or modem status condition flag is detected.
RTS A-B* RTS C-D*	14,22 48,56	Ο	Request to send. (active low) To indicate that the transmit- ter has data ready to send. Writing a "1" in the modem control register (MCR bit-1) will set this pin to a low state. After the reset this pin will be set to high. Note that this pin does not have any effect on the transmit or receive opera- tion.
DTR A-B* DTR C-D*	12,24 46,58	Ο	Data terminal ready. (active low) To indicate that ST16C454 is ready to receive data. This pin can be controlled via the modem control register (MCR bit-0). Writing a "1" at the MCR bit-0 will set the DTR* output to low. This pin will be set to high state after writing a "0" to that register or after the reset. Note that this pin does not have any effect on the transmit or receive operation.
RESET	37	I	Master reset. (active high) A high on this pin will reset all the outputs and internal registers. The transmitter output and the receiver input will be disabled during reset time.
CTS A-B* CTS C-D*	11,25 45,59		Clear to send. (active low) The CTS* signal is a MODEM control function input whose conditions can be tested by reading the MSR BIT-4. CTS* has no effect on the transmit or receive operation.

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
DSR A-B*	10,26		
DSR C-D*	44,60	I	Data set ready. (active low) A low on this pin indicates the MODEM is ready to exchange data with UART. This pin does not have any effect on the transmit or receive opera- tion.
CD A-B*	9,27		
CD C-D*	43,61	1	Carrier detect. (active low) A low on this pin indicates the carrier has been detected by the modem.
RI A-B*	8,28		
RI C-D*	42,62	I	Ring detect indicator. (active low) A low on this pin indicates the modem has received a ringing signal from telephone line.
VCC VCC	13,60 47,64	1	Power supply input.

PROGRAMMING TABLE

A2	A1	A0	READ MODE	WRITE MODE
0	0	0	Receive Holding Register	Transmit Holding Register
0	0	1	0 0	Interrupt Enable Register
0	1	0	Interrupt Status Register	· · ·
0	1	1	· · ·	Line Control Register
1	lo	0		Modem Control Register
1	0	1	Line Status Register	5
1	1	0	Modem Status Register	
1	1	1	Scratchpad Register	Scratchpad Register
0	0	0		LSB of Divisor Latch
0	0	1		MSB of Divisor Latch

ST16C454

3

ST16C454

ST16C454 ACCESSIBLE REGISTERS

A2 A1 A0	Register	BIT-7	BIT-6	BIT-5	BIT-4	BIT-3	BIT-2	BIT-1	BIT-0
0 0 0	RHR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0 0 0	THR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0 0 1	IER	0	0	0	0	modem status interrupt	receive line status interrupt	transmit holding register	receive holding register
010	ISR	0	0	0	0	0	int priority bit-1	int priority bit-0	int status
011	LCR	divisor latch enable	set break	set parity	even parity	parity enable	stop bits	word length bit-1	word length bit-0
100	MCR	0	0	0	loop back	INT enable	Not used	RTS*	DTR*
101	LSR	0	trans. empty	trans. holding empty	break interrupt	framing error	parity error	overrun error	receive data ready
1 1 0	MSR	CD	RI	DSR	стѕ	delta CD*	delta RI*	delta DSR*	delta CTS*
1 1 1	SPR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
000	DLL	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
001	DLM	bit-15	bit-14	bit-13	bit-12	bit-11	bit-10	bit-9	bit-8

DLL and DLM are accessible only when LCR bit-7 is set to "1".

REGISTER FUNCTIONAL DESCRIPTIONS

TRANSMIT AND RECEIVE HOLDING REGISTER

The serial transmitter section consists of a Transmit Hold Register (THR) and Transmit Shift Register (TSR). The status of the transmit hold register is provided in the Line Status Register (LSR). Writing to this register (THR) will transfer the contents of data bus (D7-D0) to the Transmit holding register whenever the transmitter holding register or transmitter shift register is empty. The transmit holding register empty flag will be set to "1" when the transmitter is empty or data is transferred to the transmit shift register. Note that a write operation should be performed when the transmit holding register empty flag is set.

On the falling edge of the start bit, the receiver internal counter will start to count 7 1/2 clocks (16x clock) which is the center of the start bit. The start bit is valid if the RX is still low at the mid-bit sample of the start bit. Verifying the start bit prevents the receiver from assembling a false data character due to a low going noise spike on the RX input. Receiver status codes will be posted in the Line Status Register.

PROGRAMMABLE BAUD RATE GENERATOR

The ST16C454 contains a programmable Baud Rate Generator that is capable of taking any clock input from DC-8 MHz and dividing it by any divisor from 1 to 2^{16} -1. The output frequency of the Baudout* is equal to 16X of transmission baud rate (Baudout*=16 x Baud Rate). Customize Baud Rates can be achieved by selecting proper divisor values for MSB and LSB of baud rate generator.

INTERRUPT ENABLE REGISTER (IER)

The Interrupt Enable Register (IER) masks the incoming interrupts from receiver ready, transmitter empty, line status and modem status registers to the INT output pin.

IER BIT-0:

0=disable the receiver ready interrupt. 1=enable the receiver ready interrupt.

IER BIT-1:

0=disable the transmitter empty interrupt. 1=enable the transmitter empty interrupt.

IER BIT-2:

0=disable the receiver line status interrupt. 1=enable the receiver line status interrupt.

IER BIT-3:

0=disable the modem status register interrupt. 1=enable the modem status register interrupt.

IER BIT 7-4:

All these bits are set to logic zero.

INTERRUPT STATUS REGISTER (ISR)

The ST16C454 provides four level prioritized interrupt conditions to minimize software overhead during data character transfers. The Interrupt Status Register (ISR) provides the source of the interrupt in prioritized matter. During the read cycle the ST16C454 provides the highest interrupt level to be serviced by CPU. No other interrupts are acknowledged until the particular interrupt is serviced. The following are the prioritized interrupt levels:

Priority level

Р	D2	D1	DO	Source of the interrupt
1	1	1	0	LSR (Receiver Line Status Register)
2	1	0	0	RXRDY (Received Data Ready)
3	0	1	0	TXRDY(Transmitter Holding Register Empty)
4	0	0	0	MSR (Modem Status Regis- ter)

ISR BIT-0:

3-67

0=an interrupt is pending and the ISR contents may be used as a pointer to the appropriate interrupt service routine.

1=no interrupt pending.

ISR BIT 1-2:

Logical combination of these bits, provides the highest priority interrupt pending.

ISR BIT 3-7:

These bits are not used and are set to "0".

LINE CONTROL REGISTER (LCR)

The Line Control Register is used to specify the asynchronous data communication format. The number of the word length, stop bits, and parity can be selected by writing appropriate bits in this register.

LCR BIT1-0:

These two bits specify the word length to be transmitted or received.

BIT-1	BIT-0	Word length
0	0	5
0	1	6
1	0	7 .
1	1	8

LCR BIT-2:

The number of stop bits can be specified by this bit.

BIT-2	Word length	Stop bit(s)
0	5,6,7,8	1
1	5	1-1/2
1	6,7,8	2

LCR BIT-3:

Parity or no parity can be selected via this bit. 0=no parity

1=a parity bit is generated during the transmission, receiver also checks for received parity.

LCR BIT-4:

If the parity bit is enabled, LCR BIT-4 selects the even or odd parity format.

0=ODD parity is generated by forcing an odd number of 1's in the transmitted data, receiver also checks for same format.

1= EVEN parity bit is generated by forcing an even the number of 1's in the transmitted data, receiver also checks for same format.

LCR BIT-5:

If the parity bit is enabled, LCR BIT-5 selects the forced parity format.

LCR BIT-5=1 and LCR BIT-4=0, parity bit is forced to "1" in the transmitted and received data.

LCR BIT-5=1 and LCR BIT-4=1, parity bit is forced to "0" in the transmitted and received data.

LCR BIT-6:

Break control bit. It causes a break condition to be transmitted (the TX is forced to low state). 0=normal operating condition.

1=forces the transmitter output (TX) to go low to alert the communication terminal.

LCR BIT-7:

The internal baud rate counter latch enable (DLEN). 0=normal operation. 1=select divisor latch register.

MODEM CONTROL REGISTER (MCR)

This register controls the interface with the MODEM or a peripheral device (RS232).

MCR BIT-0:

0=force DTR* output to high. 1=force DTR* output to low.

MCR BIT-1:

0=force RTS* output to high. 1=force RTS* output to low.

MCR BIT-2:

Not used except, in internal loop-back mode.

MCR BIT-3:

0=set INT output pin to three state mode. 1=set INT output pin to normal operating mode.

MCR BIT-4:

0=normal operating mode.

1=enable local loop-back mode (diagnostics). The transmitter output (TX) is set high (Mark condition), the receiver input (RX), CTS*, DSR*, CD*, and RI* are disabled. Internally the transmitter output is connected to the receiver input and DTR*, RTS*, OP1* and OP2* are connected to modem control inputs. In this mode, the receiver and transmitter interrupts are fully operational. The Modem Control Interrupts are also operational, but the interrupts sources are now the lower four bits of the Modem Control Register instead of the four Modem Control inputs. The interrupts are still controlled by the IER.

MCR BIT 5-7: Not used. Are set to zero permanently.

LINE STATUS REGISTER (LSR)

This register provides the status of data transfer to CPU.

LSR BIT-0:

0=no data in receive holding register 1=data has been received and saved in the receive holding register.

LSR BIT-1:

0=no overrun error (normal). 1=overrun error, next character arrived before receive holding register was emptied.

LSR BIT-2:

0=no parity error (normal). 1=parity error, received data does not have correct parity information.

LSR BIT-3:

0=no framing error (normal). 1=framing error received, received data did not have a valid stop bit. In

LSR BIT-4:

0=no break condition (normal). 1=receiver received a break signal (RX was low for one character time frame).

LSR BIT-5:

0=transmit holding register is full. ST16C454 will not accept any data for transmission. 1=transmit holding register is empty. CPU can load the next character.

LSR BIT-6:

0=transmitter holding and shift registers are full. 1=transmitter holding and shift registers are empty.

LSR BIT-7: Not used. Set to "0".

MODEM STATUS REGISTER (MSR)

This register provides the current state of the control lines from the modem or peripheral to the CPU. Four bits of this register are used to indicate the changed information. These bits are set to "1" whenever a control input from the MODEM changes state. They are set to "0" whenever the CPU reads this register.

MSR BIT-0:

Indicates that the CTS* input to the ST16C454 has changed state since the last time it was read.

MSR BIT-1:

Indicates that the DSR* input to the ST16C454 has changed state since the last time it was read. MSR BIT-2: Indicates that the RI* input to the ST16C454 has changed from a low to a high state.

MSR BIT-3:

Indicates that the CD* input to the ST16C454 has changed state since the last time it was read.

MSR BIT-4:

This bit is equivalent to RTS in the MCR during local loop-back mode. It is the compliment of the CTS* input.

MSR BIT-5:

This bit is equivalent to DTR in the MCR during local loop-back mode. It is the compliment of the DSR* input.

MSR BIT-6:

This bit is equivalent to OP1 in the MCR during local loop-back mode. It is the compliment of the RI* input.

MSR BIT-7:

This bit is equivalent to OP2 in the MCR during local loop-back mode. It is the compliment to the CD* input.

Note: Whenever MSR BIT3-0: is set to logic "1", a MODEM Status Interrupt is generated.

SCRATCHPAD REGISTER (SR)

ST16C454 provides a temporary data register to store 8 bits of information for variable use.

BAUD RATE GENERATOR PROGRAMMING TABLE (1.8432 MHz CLOCK):

BAUD RATE	16 x CLOCK DIVISOR	% ERROR
50	2304	
75	1536	
110	1047	0.026
134.5	857	0.058
150	768	
300	384	
600	192	·
1200	96	
2400	48	
3600	32	
4800	24	
7200	16	
9600	12	
19.2K	6	
38.4K	3	
56K	2	2.86
115.2K	1	

ST16C454 EXTERNAL RESET CONDITION

REGISTERS	RESET STATE
IER	IER BITS 0-7=0
ISR	ISR BIT-0=1, ISR BITS 1-7=0
LCR	LCR BITS 0-7=0
MCR	MCR BITS 0-7=0
LSR	LSR BITS 0-4=0,
	LSR BITS 5-6=1 LSR, BIT 7=0
MSR	MSR BITS 0-3=0,
MSR	BITS 4-7=input signals

SIGNALS	RESET STATE
тх	High
OP1*	High
OP2*	High
RTS*	High
DTR*	High
INT	Three state

AC ELECTRICAL CHARACTERISTICS

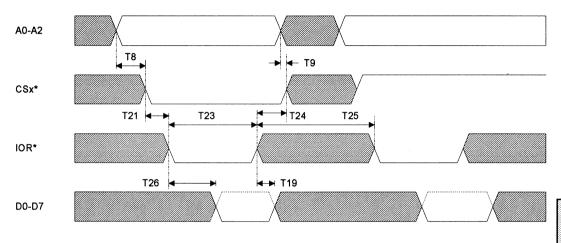
 $\rm T_{A}=25^{\circ}$ C, $\rm V_{cc}=5.0~V\pm5\%$ unless otherwise specified.

Symbol	Parameter		Limits		Units	Conditions	
		Min	Тур	Max			
т	Clock high pulse duration	50			ns		
-' T	Clock low pulse duration	50			ns	External clock	
\dot{T}^2	Clock rise/fall time			10	ns	External ofoon	
$ T_{1} \\ T_{2} \\ T_{3} \\ T_{8} \\ T_{9} \\ T_{12} $	Chip select setup time	15			ns		
T.	Chip select hold time	0			ns		
т.,	Data set up time	15			ns		
T ₁₃	Data hold time	15			ns		
T ¹³	IOW* delay from chip select	10			ns		
T ^{'*}	IOW* strobe width	50			ns		
T ¹⁵	Chip select hold time from IOW*	0			ns		
T ¹⁸	Write cycle delay	55			ns		
IW	Write cycle=T ₁₅ +T ₁₇	105			ns		
Т ₁₈	Data setup time	15			ns		
T ¹⁸ T	Data hold time	15			ns		
Τ,	IOR* delay from chip select	10			ns		
T_{21}^{T} T_{23}^{T} T_{24}^{T}	IOR* strobe width	65			ns		
T_24	Chip select hold time from IOR*	0			ns		
T_25	Read cycle delay	55			ns		
Tr	Read cycle=T ₂₃ +T ₂₅	115			ns		
T ₂₆	Delay from IOR* to data			35	ns	100 pF load	
T_28	Delay from IOW* to output			50	ns	100 pF load	
T ₂₉	Delay to set interrupt from MODEM input			70	ns	100 pF load	
Т ₃₀	Delay to reset interrupt from IOR*			70	ns	100 pF load	
Tĩ	Delay from stop to set interrupt			1 _{Rck}	ns	100 pF load	
T,2	Delay from IOR* to reset interrupt			200	ns	100 pF load	
T_{31}^{T} T_{32}^{T} T_{33}^{T}	Delay from initial INT reset to transmit start	8		24	*		
T ₃₄	Delay from stop to interrupt			100	ns		
T ₃₅	Delay from IOW* to reset interrupt			175	ns		
Ν	Baud rate devisor	1		2 ¹⁶ -1			

Note 1: * = Baudout* cycle

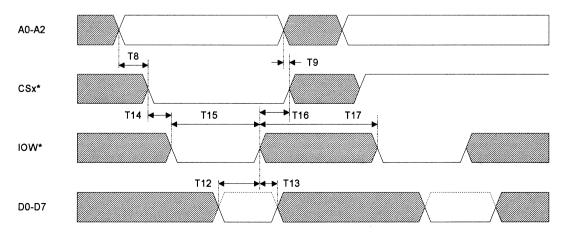
3

ABSOLUTE MAXIMUM RATINGS

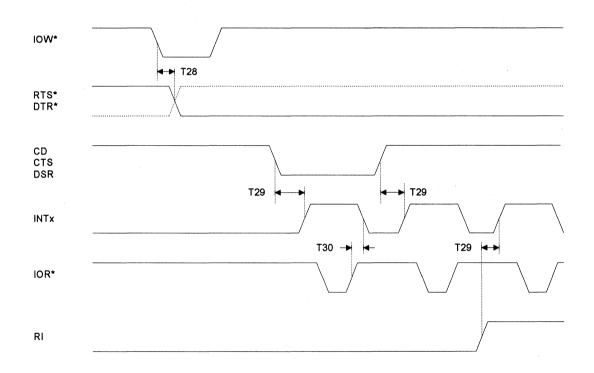

Supply range Voltage at any pin Operating temperature Storage temperature Package dissipation 7 Volts GND-0.3 V to VCC+0.3 V 0° C to +70° C -40° C to +150° C 500 mW

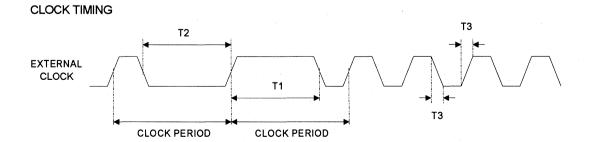
DC ELECTRICAL CHARACTERISTICS

 T_{A} =25° C, V_{cc} =5.0 V ± 5% unless otherwise specified.

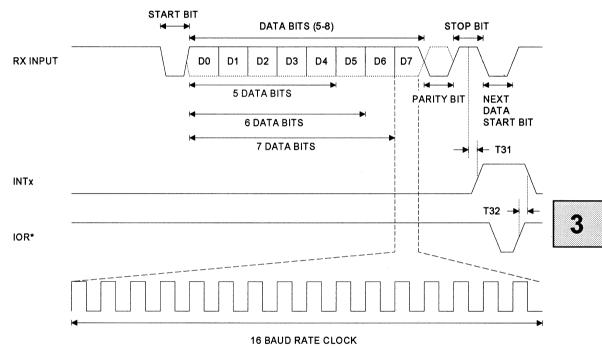

Symbol	Parameter		mits ſyp Max	Units	Conditions
V _{ILCK} V _{IHCK} V _{IL} V _{IH} V _{OL} V _{OH} I _{CC} I _L I _{CL}	Clock input low level Clock input high level Input low level Input high level Output low level on all outputs Output high level Avg. power supply current Input leakage Clock leakage	-0.5 3.0 -0.5 2.2 2.4	0.6 VCC 0.8 VCC 0.4 6 ±10 ±10	<u>کے ج</u>	I _{ог} = 6 mA I _{он} = -6 mA

3

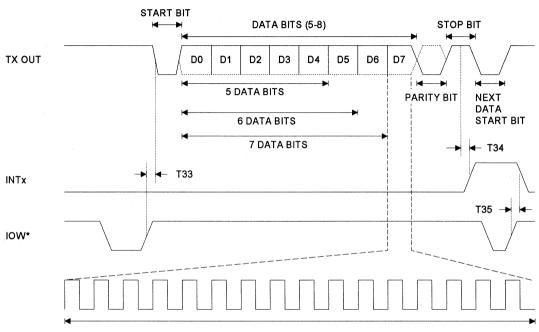



GENERAL READ TIMING

GENERAL WRITE TIMING



MODEM TIMING


RECEIVE TIMING

3-75

TRANSMIT TIMING

ST16C454

16 BAUD RATE CLOCK

3-76

Printed May 17, 1993

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER WITH FIFOs

DESCRIPTION

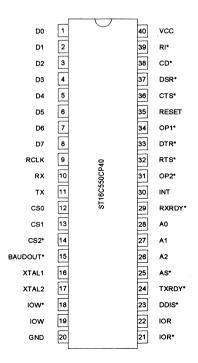
The ST16C550 is a universal asynchronous receiver and transmitter with 16 byte transmit and receive FIFO. A programmable baud rate generator is provided to select transmit and receive clock rates from 50Hz to 448kHz.

The ST16C550 is an improved version of the NS16C550 UART with higher operating speed and lower access time. The ST16C550 on board status registers provides the error conditions, type and status of the transfer operation being performed. Included is complete MODEM control capability, and a processor interrupt system that may be software tailored to the user's requirements. The ST16C550 provides internal loop-back capability for on board diagnostic testing.

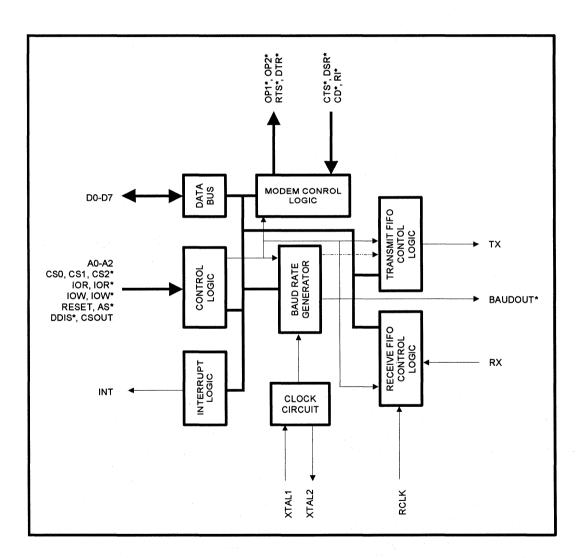
The ST16C550 is fabricated in an advanced 1.2μ CMOS process to achieve low drain power and high speed requirements.

FEATURES

- Pin to pin and functional compatible to NS16550,VL16C550,WD16C550
- 16 byte transmit FIFO
- 16 byte receive FIFO with error flags
- Modem control signals (CTS*, RTS*, DSR*, DTR*, RI*, CD*)
- Programmable character lengths (5, 6, 7, 8)
- Even, odd, or no parity bit generation and detection
- Independent transmit and receive control
- TTL compatible inputs, outputs
- Software compatible with INS8250, NS16C450
- 448 kHz transmit/receive operation with 7.372 MHz crystal or external clock source


	Ć	ŝ)	l	ł	2	C)	I	E	1	I	5	l	l	١	l	Ì	C	5	j	I	I	Ş	l	l	þ	ĺ	2)	I	5	Č	ľ	Į	1	2	l	١	Ï	I	(ŝ)	I	h	I		

Part number	Package	Operating	temperature
ST16C550CP40	Plastic-DIP	0° C	to + 70° C
ST16C550CJ44	PLCC	0° C	to + 70° C
ST16C550CQ52	QFP	0° C	to + 70° C
ST16C550CQ48	TQFP	0° C	to + 70° C
*Industrial operating	range are av	/ailable	


PLCC Package

Plastic-DIP Package

BLOCK DIAGRAM

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
D0-D7	1-8	I/O	Bi-directional data bus. Eight bit, three state data bus to transfer information to or from the CPU. D0 is the least significant bit of the data bus and the first serial data bit to be received or transmitted.
RCLK	9	I	Receive clock input. The external clock input to the ST16C550 receiver section if receiver data rate is different from transmitter data rate.
RX	10	I	Serial data input. The serial information (data) received from serial port to ST16C550 receive input circuit. A mark (high) is logic one and a space (low) is logic zero. During the local loopback mode the RX input is disabled from external connection and connected to the TX output internally.
тх	11	Ο	Serial data output. The serial data is transmitted via this pin with additional start, stop and parity bits. The TX will be held in mark (high) state during reset, local loopback mode or when the transmitter is disabled.
CS0	12	1	Chip select 1. (active high) A high at this pin enables the ST16C550 / CPU data transfer operation.
CS1	13	1	Chip select 2. (active high) A high at this pin enables the ST16C550 / CPU data transfer operation.
CS2*	14	Ľ	Chip select 3. (active low) A low at this pin (while CS0=1 and CS1=1) will enable the ST16C550 / CPU data transfer operation.
BAUDOUT*	15	O	Baud rate generator clock output. This output provides the 16x clock of the internal selected baud rate. RCLK pin is connected externally to BAUDOUT* pin to provide receive clock.
XTAL1	16	I	Crystal input 1 or external clock input. A crystal can be connected to this pin and XTAL2 pin to utilize the internal oscillator circuit. An external clock can be used to clock internal circuit and baud rate generator for custom transmis- sion rates.

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
XTAL2	17	I	Crystal input 2 or buffered clock output. See XTAL1.
IOW*	18	1	Write strobe. (active low) A low on this pin will transfer the contents of the CPU data bus to the addressed register.
IOW	19		Write strobe. (active high) Same as IOW*, but uses active high input. Note that only an active IOW* or IOW input is required to transfer data from CPU to ST16C550 during write operation. All the unused pin should be tied to VCC or GND.
GND	20	0	Signal and power ground.
IOR*	21	I	Read strobe. (active low) A low level on this pin transfers the contents of the ST16C550 data bus to the CPU.
IOR	22	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Read strobe. (active high) Same as IOR*, but uses active high input. Note that only an active IOR* or IOR input is required to transfer data from ST16C550 to CPU during read operation. All the unused pin should be tied to VCC or GND.
DDIS*	23		Drive disable. (active low) This pin goes low when the CPU is reading data from the ST16C550 to disable the external transceiver or logic's.
TXRDY	24	0	Transmit ready. (active high) This pin goes high when the transmit FIFO of the ST16C550 is full. It can be used as a single or multi-transfer.
AS*	25	1997 - 1 1997 - 1997 1997 - 1997 - 1997 1997 - 1997 - 1997 1997 - 1997 - 1997 1997 - 1997 - 1997 - 1997 1997 - 199 - 1997 - 19	Address strobe. (active low) A low on this pin will latch the state of the chip selects and addressed register (A2-A0). This input is used when signals are not stable for the duration of a read or write operation. If not required, tie the AS* input permanently low.
A2	26		Address select line 2. To select internal registers.
A1	27	1	Address select line 1. To select internal registers.

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
A0	28	1	Address select line 0. To select internal registers.
RXRDY*	29	0	Receive ready. (active low) This pin goes low when the receive FIFO is full. It can be used as a single or multi-
INT	30	0	transfer. Interrupt output. (active high) This pin goes high (when enabled by the interrupt enable register) whenever a re- ceiver error, receiver data available, transmitter empty, or modem status condition flag is detected.
OP2*	31	0	General purpose output. (active low) User defined output. See bit-3 modem control register (MCR bit-3).
RTS⁺	32	Ο	Request to send. (active low) To indicate that the transmit- ter has data ready to send. Writing a "1" in the modem control register (MCR bit-1) will set this pin to a low state. After the reset this pin will be set to high. Note that this pin does not have any effect on the transmit or receive opera- tion.
DTR*	33	Ο	Data terminal ready. (active low) To indicate that ST16C550 is ready to receive data. This pin can be controlled via the modem control register (MCR bit-0). Writing a "1" at the MCR bit-0 will set the DTR* output to low. This pin will be set to high state after writing a "0" to that register or after the reset. Note that this pin does not have any effect on the transmit or receive operation.
OP1*	34	0.	General purpose output. (active low) User defined output. See bit-2 of modem control register (MCR bit-2).
RESET	35	Ι	Master reset. (active high) A high on this pin will reset all the outputs and internal registers. The transmitter output and the receiver input will be disabled during reset time.
стѕ∗	36	I	Clear to send. (active low) The CTS* signal is a MODEM control function input whose conditions can be tested by reading the MSR BIT-4. CTS* has no effect on the transmit or receive operation.

3

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
DSR*	37	I	Data set ready. (active low) A low on this pin indicates the MODEM is ready to exchange data with UART. This pin does not have any effect on the transmit or receive operation.
CD*	38	. 1	Carrier detect. (active low) A low on this pin indicates the carrier has been detected by the modem.
RI*	39		Ring detect indicator. (active low) A low on this pin indicates the modem has received a ringing signal from telephone line.
vcc	40	Ĩ	Power supply input.

PROGRAMMING TABLE

A2	A1	A0	READ MODE	WRITE MODE
0	0	0	Receive Holding Register	Transmit Holding Register
0	0	1		Interrupt Enable Register
0	- 1	0	Interrupt Status Register	FIFO Control Register
0	1	1		Line Control Register
1	0	0		Modem Control Register
1	Ó	1	Line Status Register	C C
1	1	0	Modem Status Register	
1	1	1	Scratchpad Register	Scratchpad Register
0	0	0		LSB of Divisor Latch
0	0	1		MSB of Divisor Latch

ST16C550 ACCESSIBLE REGISTERS

A2	A1	A0	Register	BIT-7	BIT-6	BIT-5	BIT-4	BIT-3	BIT-2	BIT-1	BIT-0
0	0	0	RHR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	0	THR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	1	IER	0	0	0	0	modem status interrupt	receive line status interrupt	transmit holding register	receive holding register
0	1	0	FCR	RCVR trigger (MSB)	RCVR trigger (LSB)	0	0	DMA mode select	XMIT FIFO reset	RCVR FIFO reset	FIFO enable
0	1	0	ISR	0/ FIFOs enabled	0/ FIFOs enabled	0	0	int priority bit-2	int priority bit-1	int priority bit-0	int status
0	1	1	LCR	divisor latch enable	set break	set parity	even parity	parity enable	stop bits	word length bit-1	word length bit-0
1	0	0	MCR	0	0	0	loop back	OP2*	OP1*	RTS*	DTR*
1	0	1	LSR	0/ FIFO error	trans. empty	trans. holding empty	break interrupt	framing error	parity error	overrun error	receive data ready
1	1	0	MSR	CD	RI	DSR	стѕ	delta CD*	delta RI*	delta DSR*	delta CTS*
1	1	1	SPR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	0	DLL	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	1	DLM	bit-15	bit-14	bit-13	bit-12	bit-11	bit-10	bit-9	bit-8

DLL and DLM are accessible only when LCR bit-7 is set to "1".

ST16C550

REGISTER FUNCTIONAL DESCRIPTIONS

TRANSMIT AND RECEIVE HOLDING REGISTER

The serial transmitter section consists of a Transmit Hold Register (THR) and Transmit Shift Register (TSR). The status of the transmit hold register is provided in the Line Status Register (LSR). Writing to this register (THR) will transfer the contents of data bus (D7-D0) to the Transmit holding register whenever the transmitter holding register or transmitter shift register is empty. The transmit holding register empty flag will be set to "1" when the transmitter is empty or data is transferred to the transmit shift register. Note that a write operation should be performed when the transmit holding register empty flag is set.

On the falling edge of the start bit, the receiver internal counter will start to count 7 1/2 clocks (16x clock) which is the center of the start bit. The start bit is valid if the RX is still low at the mid-bit sample of the start bit. Verifying the start bit prevents the receiver from assembling a false data character due to a low going noise spike on the RX input. Receiver status codes will be posted in the Line Status Register.

FIFO INTERRUPT MODE OPERATION

When the receive FIFO (FCR BIT-0=1) and receive interrupts (IER BIT-0=1) are enabled, receiver interrupt will occur as follows:

A) The receive data available interrupts will be issued to the CPU when the FIFO has reached its programmed trigger level; it will be cleared as soon as the FIFO drops below its programmed trigger level.

B) The ISR receive data available indication also occurs when the FIFO trigger level is reached, and like the interrupt it is cleared when the FIFO drops below the trigger level.

C) The data ready bit (LSR BIT-0) is set as soon as a character is transferred from the shift register to the receiver FIFO. It is reset when the FIFO is empty.

FIFO POLLED MODE OPERATION

When FCR BIT-0=1; resetting IER BIT 3-0 to zero puts the ST16C550 in the FIFO polled mode of operation. Since the receiver and transmitter are controlled separately either one or both can be in the polled mode operation by utilizing the Line Status Register.

A) LSR BIT-0 will be set as long as there is one byte in the receive FIFO.

B) LSR BIT4-1 will specify which error(s) has occurred.

C) LSR BIT-5 will indicate when the transmit FIFO is empty.

D) LSR BIT-6 will indicate when both transmit FIFO and transmit shift register are empty.

E) LSR BIT-7 will indicate when there are any errors in the receive FIFO.

The ST16C550 requires to have two step FIFO enable operation in order to enable receive trigger levels.

PROGRAMMABLE BAUD RATE GENERATOR

The ST16C550 contains a programmable Baud Rate Generator that is capable of taking any clock input from DC-8 MHz and dividing it by any divisor from 1 to 2^{16} -1. The output frequency of the Baudout* is equal to 16X of transmission baud rate (Baudout*=16 x Baud Rate). Customize Baud Rates can be achieved by selecting proper divisor values for MSB and LSB of baud rate generator.

INTERRUPT ENABLE REGISTER (IER)

The Interrupt Enable Register (IER) masks the incoming interrupts from receiver ready, transmitter empty, line status and modem status registers to the INT output pin.

IER BIT-0:

0=disable the receiver ready interrupt. 1=enable the receiver ready interrupt.

IER BIT-1:

0=disable the transmitter empty interrupt. 1=enable the transmitter empty interrupt.

IER BIT-2:

0=disable the receiver line status interrupt. 1=enable the receiver line status interrupt.

IER BIT-3:

0=disable the modem status register interrupt. 1=enable the modem status register interrupt.

IER BIT 7-4:

All these bits are set to logic zero.

INTERRUPT STATUS REGISTER (ISR)

The ST16C550 provides four level prioritized interrupt conditions to minimize software overhead during data character transfers. The Interrupt Status Register (ISR) provides the source of the interrupt in prioritized matter. During the read cycle the ST16C550 provides the highest interrupt level to be serviced by CPU. No other interrupts are acknowledged until the particular interrupt is serviced. The following are the prioritized interrupt levels:

Priority level

Ρ	D3	D2	D1	D0	Source of the interrupt
1	0	1	1	0	LSR (Receiver Line Sta- tus Register)
2	0	1	0	0	RXRDY (Received Data Ready)
2	1	1	0	0	RXRDY (Receive Data time out)
3	0	0	1	0	TXRDY(Transmitter Holding Register Empty)
4	0	0	0	0	MSR (Modern Status Register)

ISR BIT-0:

0=an interrupt is pending and the ISR contents may be used as a pointer to the appropriate interrupt service routine.

1=no interrupt pending.

ISR BIT 1-3:

Logical combination of these bits, provides the highest priority interrupt pending.

ISR BIT 4-7:

These bits are not used and are set to zero in ST16C450 mode. **BIT 6-7:** are set to "1" in ST16C550 mode.

FIFO CONTROL REGISTER (FCR)

This register is used to enable the FIFOs, clear the FIFOs, set the receiver FIFO trigger level, and select the type of DMA signaling.

FCR BIT-0:

0=Disable the transmit and receive FIFO. 1=Enable the transmit and receive FIFO. This bit should be enabled before setting the FIFO trigger levels.

FCR BIT-1:

0=No change.

1=Clears the contents of the receive FIFO and resets its counter logic to 0 (the receive shift register is not cleared or altered). This bit will return to zero after clearing the FIFOs.

FCR BIT-2:

0=No change.

1=Clears the contents of the transmit FIFO and resets its counter logic to 0 (the transmit shift register is not cleared or altered). This bit will return to zero after clearing the FIFOs.

FCR BIT-3:

0=No change.

1=Changes RXRDY and TXRDY pins from mode "0" to mode "1".

Transmit operation in mode "0":

When ST16C550 is in ST16C450 mode (FCR bit-0=0) or in the FIFO mode (FCR bit-0=1, FCR bit-3=0) when there are no characters in the transmit FIFO or transmit holding register, the TXRDY* pin will go low. Once active the TXRDY* pin will go high (inactive) after the first character is loaded into the transmit holding register.

Receive operation in mode "0":

When ST16C550 is in ST16C450 mode (FCR bit-0=0) or in the FIFO mode (FCR bit-0=1, FCR bit-3=0) and there is at least 1 character in the receive FIFO, the RXRDY* pin will go low. Once active the RXRDY* pin will go high (inactive) when there are no more characters in the receiver.

Transmit operation in mode "1":

When ST16C550 is in FIFO mode (FCR bit-0=1, FCR bit-3=1) the TXRDY* pin will become high (inactive) when the transmit FIFO is completely full. It will be low if one or more FIFO locations are empty.

Receive operation in mode "1":

When ST16C550 is in FIFO mode (FCR bit-0=1, FCR bit-3=1) and the trigger level or the timeout has been reached, the RXRDY* pin will go low. Once it is activated it will go high (inactive) when there are no more characters in the FIFO.

FCR BIT 4-5:

Not used.

FCR BIT 6-7:

These bits are used to set the trigger level for the receiver FIFO interrupt.

BIT-7	BIT-6	FIFO trigger level
0	0	01
0	1	04
1	0 0	08
1	1	14

LINE CONTROL REGISTER (LCR)

The Line Control Register is used to specify the asynchronous data communication format. The number of the word length, stop bits, and parity can be selected by writing appropriate bits in this register.

LCR BIT1-0:

These two bits specify the word length to be transmitted or received.

BIT-1	BIT-0	Word length
0	0	5
0	1	6
1	0	7
1	1	8

LCR BIT-2:

The number of stop bits can be specified by this bit.

BIT-2	Word length	Stop bit(s)
0	5,6,7,8	1
1	5	1-1/2
1	6,7,8	2

LCR BIT-3:

Parity or no parity can be selected via this bit. 0=no parity

1=a parity bit is generated during the transmission, receiver also checks for received parity.

LCR BIT-4:

If the parity bit is enabled, LCR BIT-4 selects the even or odd parity format.

0=ODD parity is generated by forcing an odd number of 1's in the transmitted data, receiver also checks for same format.

1= EVEN parity bit is generated by forcing an even the number of 1's in the transmitted data, receiver also checks for same format.

2

LCR BIT-5:

If the parity bit is enabled, LCR BIT-5 selects the forced parity format.

LCR BIT-5=1 and LCR BIT-4=0, parity bit is forced to "1" in the transmitted and received data.

LCR BIT-5=1 and LCR BIT-4=1, parity bit is forced to "0" in the transmitted and received data.

LCR BIT-6:

Break control bit. It causes a break condition to be transmitted (the TX is forced to low state).

0=normal operating condition.

1=forces the transmitter output (TX) to go low to alert the communication terminal.

LCR BIT-7:

The internal baud rate counter latch enable (DLAB). 0=normal operation. 1=select divisor latch register.

MODEM CONTROL REGISTER (MCR)

This register controls the interface with the MODEM or a peripheral device (RS232).

MCR BIT-0:

0=force DTR* output to high. 1=force DTR* output to low.

MCR BIT-1:

0=force RTS* output to high. 1=force RTS* output to low.

MCR BIT-2:

0=set OP1* output to high. 1=set OP1* output to low.

MCR BIT-3:

0=set OP2* output to high. 1=set OP2* output to low.

MCR BIT-4:

0=normal operating mode.

1=enable local loop-back mode (diagnostics). The transmitter output (TX) is set high (Mark condition), the receiver input (RX), CTS*, DSR*, CD*, and RI* are disabled. Internally the transmitter output is con-

nected to the receiver input and DTR*, RTS*, OP1* and OP2* are connected to modem control inputs. In this mode, the receiver and transmitter interrupts are fully operational. The Modem Control Interrupts are also operational, but the interrupts sources are now the lower four bits of the Modem Control Register instead of the four Modem Control inputs. The interrupts are still controlled by the IER.

MCR BIT 5-7:

Not used. Are set to zero permanently.

LINE STATUS REGISTER (LSR)

This register provides the status of data transfer to CPU.

LSR BIT-0:

0=no data in receive holding register or FIFO. 1=data has been received and saved in the receive holding register or FIFO.

LSR BIT-1:

0=no overrun error (normal).

1=overrun error, next character arrived before receive holding register was emptied or if FIFOs are enabled, an overrun error will occur only after the FIFO is full and the next character has been completely received in the shift register. Note that character in the shift register is overwritten, but it is not transferred to the FIFO.

LSR BIT-2:

0=no parity error (normal).

1=parity error, received data does not have correct parity information. In the FIFO mode this error is associated with the character at the top of the FIFO.

LSR BIT-3:

0=no framing error (normal).

1=framing error received, received data did not have a valid stop bit. In the FIFO mode this error is associated with the character at the top of the FIFO.

LSR BIT-4:

0=no break condition (normal).

1=receiver received a break signal (RX was low for

one character time frame). In FIFO mode, only one zero character is loaded into the FIFO.

LSR BIT-5:

0=transmit holding register is full. ST16C550 will not accept any data for transmission.

1=transmit holding register (or FIFO) is empty. CPU can load the next character.

LSR BIT-6:

0=transmitter holding and shift registers are full. 1=transmitter holding and shift registers are empty. In FIFO mode this bit is set to one whenever the transmitter FIFO and transmit shift register are empty.

LSR BIT-7:

0=Normal.

1=At least one parity error, framing error or break indication in the FIFO. This bit is cleared when LSR is read.

MODEM STATUS REGISTER (MSR)

This register provides the current state of the control lines from the modem or peripheral to the CPU. Four bits of this register are used to indicate the changed information. These bits are set to "1" whenever a control input from the MODEM changes state. They are set to "0" whenever the CPU reads this register.

MSR BIT-0:

Indicates that the CTS* input to the ST16C550 has changed state since the last time it was read.

MSR BIT-1:

Indicates that the DSR* input to the ST16C550 has changed state since the last time it was read. MSR BIT-2:

Indicates that the RI* input to the ST16C550 has changed from a low to a high state.

MSR BIT-3:

Indicates that the CD* input to the ST16C550 has changed state since the last time it was read.

MSR BIT-4:

This bit is equivalent to RTS in the MCR during local loop-back mode. It is the compliment of the CTS* input.

MSR BIT-5:

This bit is equivalent to DTR in the MCR during local loop-back mode. It is the compliment of the DSR* input.

MSR BIT-6:

This bit is equivalent to OP1 in the MCR during local loop-back mode. It is the compliment of the RI* input.

MSR BIT-7:

This bit is equivalent to OP2 in the MCR during local loop-back mode. It is the compliment to the CD* input.

Note: Whenever MSR BIT3-0: is set to logic "1", a MODEM Status Interrupt is generated.

SCRATCHPAD REGISTER (SR)

ST16C550 provides a temporary data register to store 8 bits of information for variable use.

BAUD RATE GENERATOR PROGRAMMING TABLE (1.8432 MHz CLOCK):

BAUD RATE	16 x CLOCK DIVISOR	% ERROR
50	2304	
75	1536	
110	1047	0.026
134.5	857	0.058
150	768	
300	384	
600	192	
1200	96	
2400	48	
3600	32	
4800	24	
7200	16	
9600	12	
19.2K	6	
38.4K	3	
56K	2	2.86
115.2K	1	

ST16C550 EXTERNAL RESET CONDITION

REGISTERS	RESET STATE
IER	IER BITS 0-7=0
ISR	ISR BIT-0=1, ISR BITS 1-7=0
LCR	LCR BITS 0-7=0
MCR	MCR BITS 0-7=0
LSR	LSR BITS 0-4=0,
	LSR BITS 5-6=1 LSR, BIT 7=0
MSR	MSR BITS 0-3=0,
	MSR BITS 4-7=input signals
FCR	FCR BITS 0-7=0

SIGNALS	RESET STATE
тх	High
OP1*	High
OP2*	High
RTS*	High
DTR*	High
RXRDY*	High
TXRDY*	High
INT	Low

3

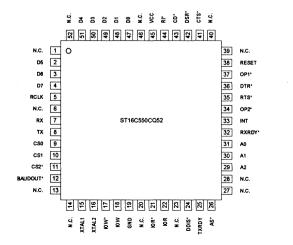
ST16C550

AC ELECTRICAL CHARACTERISTICS

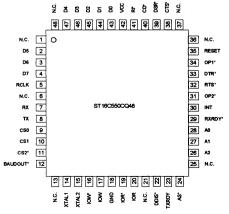
 $\rm T_{A}=25^{\circ}$ C, $\rm ~V_{cc}=5.0~V\pm5\%$ unless otherwise specified.

Symbol	Parameter	Min	Limits Typ	Max	Units	Conditions
т,	Clock high pulse duration	50			ns	94 - C.
T,	Clock low pulse duration	50			ns	External clock
T,	Clock rise/fall time			10	ns	
T,	Baud out rise/fall time			100	ns	100 pF load
T,	Address strobe width	30			ns	
Τ	Address setup time	30			ns	
Т,	Address hold time	5			ns	
T_{1} T_{2} T_{3} T_{4} T_{5} T_{6} T_{7} T_{8} T_{9} T_{10}	Chip select setup time	5			ns	
Т	Chip select hold time	0			ns	
T ₁₀	CSOUT delay from chip select	10		25	ns	
T ₁₁	IOR* to DDIS* delay			25	ns	100 pF load
T.	Data setup time	15			ns	Note: 1
T ¹²	Data hold time	15		4	ns	Note: 1
Т ₁₄	IOW* delay from chip select	10			ns	Note: 1
T ₁₅	IOW* strobe width	50			ns	
T ₁₆	Chip select hold time from IOW*	0		-	ns	Note: 1
T ₁₇	Write cycle delay	55			ns	
Tw	Write cycle=T ₁₅ +T ₁₇	105			ns	
Т ₁₈	Data setup time	10			ns	
I 10	Data hold time	15	1	25	ns	
T_21	IOR* delay from chip select	10			ns	Note: 1
T_23	IOR* strobe width	65			ns	
T ₂₄	Chip select hold time from IOR*	0			ns	Note: 1
T ₂₅	Read cycle delay	55			ns	
11	Read cycle=T ₂₃ +T ₂₅	115			ns	
T_26	Delay from IOR* to data			35	ns	100 pF load
T_28	Delay from IOW* to output			50	ns	100 pF load

AC ELECTRICAL CHARACTERISTICS


 $T_a=25^{\circ}$ C, $V_{cc}=5.0$ V ± 5% unless otherwise specified.

Symbol	Parameter	Min	Limits Typ	Max	Units	Conditions
T_{29} T_{30} T_{31} T_{32} T_{33} T_{34} T_{35} T_{44} T_{45} T_{46} T_{47}	Delay to set interrupt from MODEM Delay to reset interrupt from IOR* input Delay from stop to set interrupt Delay from IOR* to reset interrupt Delay from initial INT reset to transmit start Delay from stop to interrupt Delay from IOW* to reset interrupt Delay from IOR* to reset RxRdy Delay from IOR* to set TxRdy Delay from Start to reset TxRdy	8		70 70 1 _{RCK} 200 24 100 175 1 _{RCLK} 1 195 8	ns ns * ns ns μs ns *	100 pF load 100 pF load 100 pF load 100 pF load
Ν	Baud rate devisor	1		216-1		

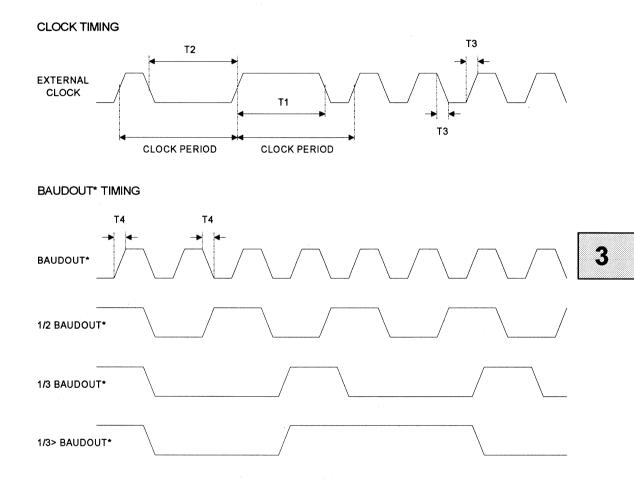

Note 1: Applicable only when AS* is tied low

* = Baudout* cycle

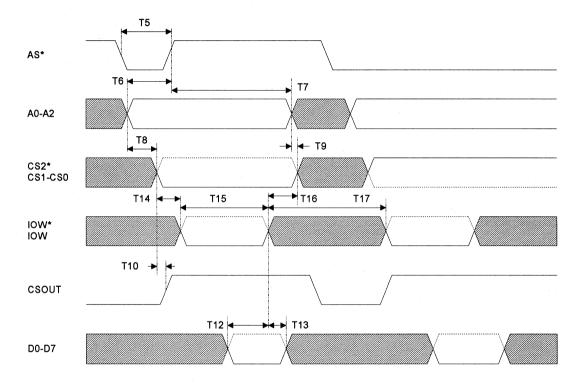
52 Pin QFP Package

48 Pin TQFP Package

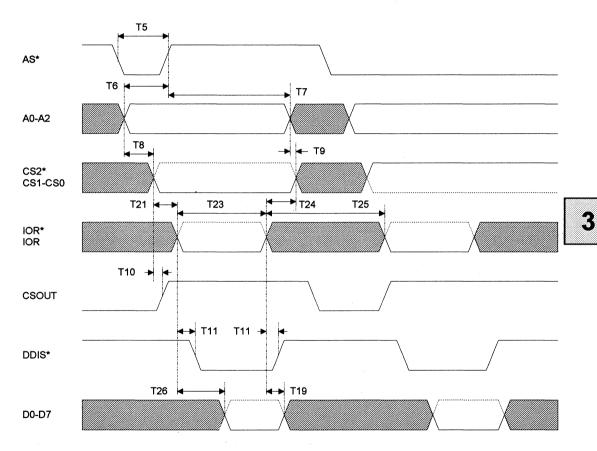
3


ABSOLUTE MAXIMUM RATINGS

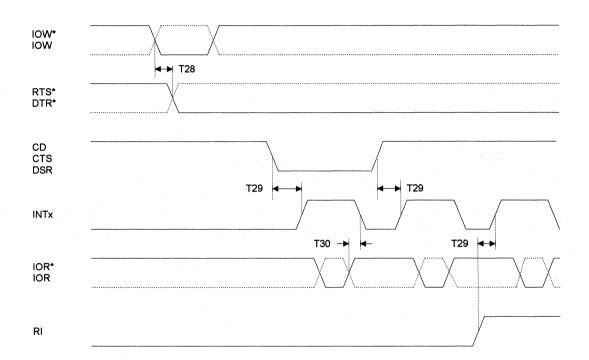
Supply range Voltage at any pin Operating temperature Storage temperature Package dissipation 7 Volts GND-0.3 V to VCC+0.3 V 0° C to +70° C -40° C to +150° C 500 mW

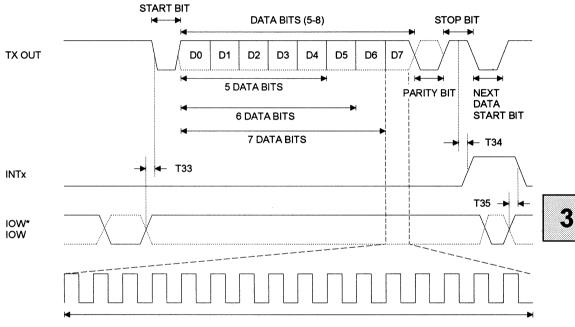

DC ELECTRICAL CHARACTERISTICS

 T_{A} =25° C, V_{cc} =5.0 V ± 5% unless otherwise specified.


Symbol	Parameter		nits yp Max	Units	Conditions
V	Clock input low level	-0.5	0.6	v	
	Clock input high level	3.0	VCC	V	
V.	Input low level	-0.5	0.8	v	
V.	Input high level	2.2	vcc	V	
V_	Output low level on all outputs		0.4	V	l _{ol} = 6 mA
V _{IL} V _{IH} V _{OL} V _{OH}	Output high level	2.4		· V	l _{он} = -6 mA
I _{CC}	Avg power supply current		6	mA	On
	Input leakage		±10	μA	
I _⊫ I _{⊂∟}	Clock leakage		±10	μA	

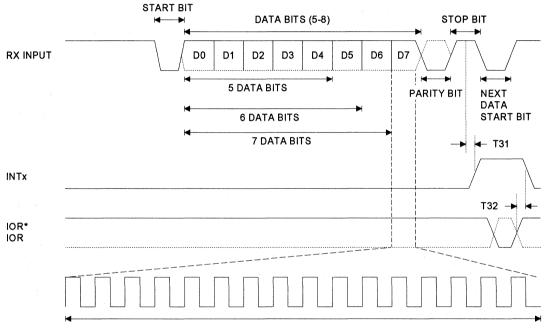
GENERAL WRITE TIMING


ST16C550

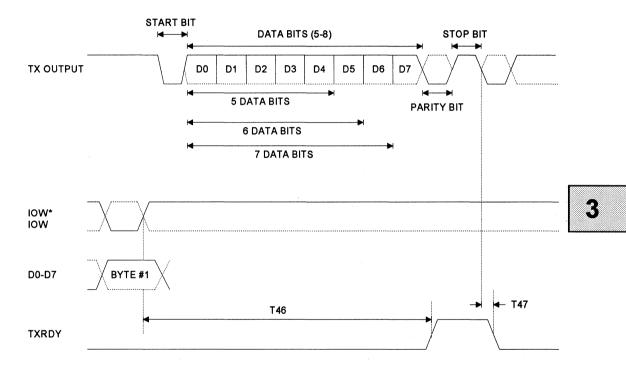

GENERAL READ TIMING

ST16C550

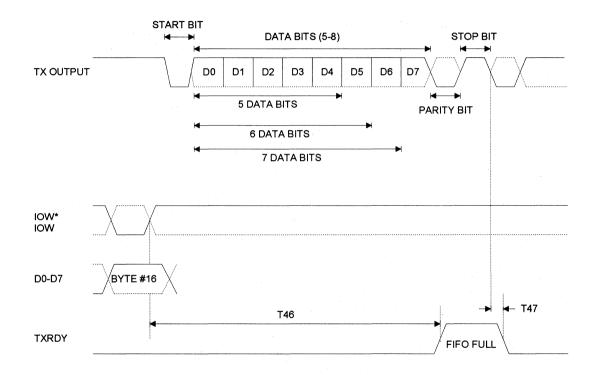
MODEM TIMING


ST16C550

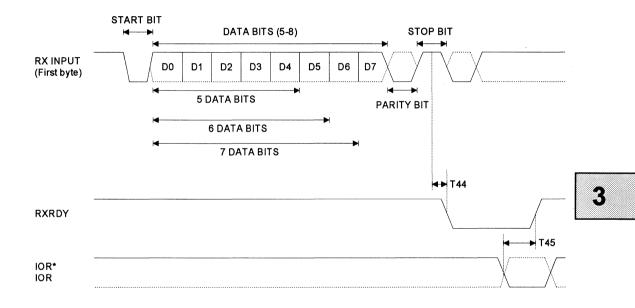
TRANSMIT TIMING

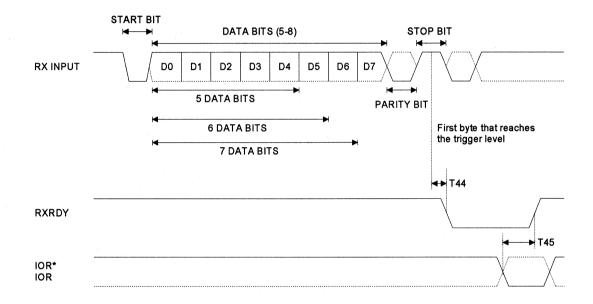

16 BAUD RATE CLOCK

RECEIVE TIMING



16 BAUD RATE CLOCK


TXRDY TIMING FOR MODE "0"


TXRDY TIMING FOR MODE "1"

RXRDY TIMING FOR MODE "0"

RXRDY TIMING FOR MODE "1"

Printed May 18, 1993

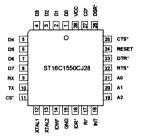
UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER WITH FIFOs

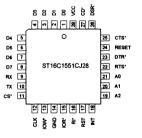
DESCRIPTION

The ST16C1550/51/52 is a universal asynchronous receiver and transmitter with 16 byte transmit and receive FIFO. A programmable baud rate generator is provided to select transmit and receive clock rates from 50Hz to 448kHz.

The ST16C1550/51/52 is an improved version of the SSI 73M1550 and SSI 73M2550 UART with higher operating speed and lower access time. The ST16C1550/51/52 on board status registers provides the error conditions, type and status of the transfer operation being performed. Included is complete MO-DEM control capability, and a processor interrupt system that may be software tailored to the user's requirements. The ST16C1550/51/52 provides internal loop-back capability for on board diagnostic testing.

The ST16C1550/51/52 is fabricated in an advanced 1.2μ CMOS process to achieve low drain power and high speed requirements.

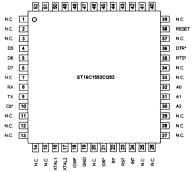

FEATURES

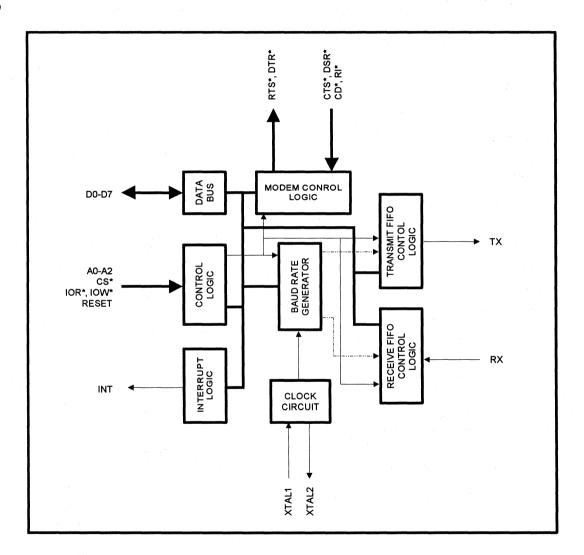

- Pin to pin and functional compatible to SSI 73M1550/2550
- 16 byte transmit FIFO
- 16 byte receive FIFO with error flags
- Modem control signals (CTS*, RTS*, DSR*, DTR*, RI*, CD*)
- Programmable character lengths (5, 6, 7, 8)
- Even, odd, or no parity bit generation and detection
- Software compatible with INS8250, NS16C550
- 448 kHz transmit/receive operation with 7.372 MHz crystal or external clock source
- 28 Pin plastic-Dip and PLCC package
- Pin-to-pin compatible to ST16C1450/1451

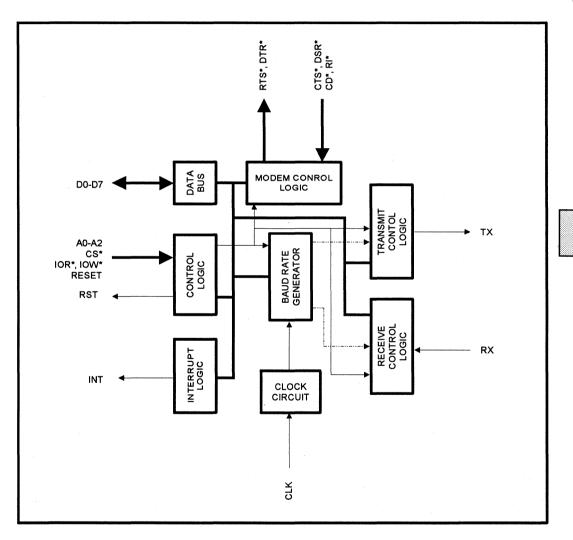
ORDERING INFORMATION

Part number	Package	Operating	temperature
ST16C1550CP28	Plastic-DIP	0° C	to + 70° C
ST16C1550CJ28	PLCC	0° C	to + 70° C
ST16C1551CP28	Plastic-Dip	0° C	to + 70° C
ST16C1551CJ28	PLCC	0° C	to + 70° C
ST16C1552CQ52	QFP	0° C	to + 70° C
*Industrial operating	range are av	ailable	

PLCC Package




3



ST16C1550 BLOCK DIAGRAM

ST16C1551 BLOCK DIAGRAM

3

ST16C1550/51/52

ST16C1550 ST16C1551/1552

ST16C1550 SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
D0-D7	1-8	I/O	Bi-directional data bus. Eight bit, three state data bus to transfer information to or from the CPU. D0 is the least significant bit of the data bus and the first serial data bit to be received or transmitted.
RX	9		Serial data input. The serial information (data) received from serial port to ST16C1550 receive input circuit. A mark (high) is logic one and a space (low) is logic zero. During the local loopback mode the RX input is disabled from external connection and connected to the TX output internally.
тх	10	0	Serial data output. The serial data is transmitted via this pin with additional start, stop and parity bits. The TX will be held in mark (high) state during reset, local loopback mode or when the transmitter is disabled.
CS*	11	I	Chip select (active low). A low at this pin enables the ST16C1550 / CPU data transfer operation.
XTAL1	12	I	Crystal input 1 or external clock input. A crystal can be connected to this pin and XTAL2 pin to utilize the internal oscillator circuit. An external clock can be used to clock internal circuit and baud rate generator for custom transmis- sion rates.
XTAL2	13	I	Crystal input 2 or buffered clock output. See XTAL1.
IOW*	14	I	Write strobe (active low). A low on this pin will transfer the contents of the CPU data bus to the addressed register.
GND	15	о	Signal and power ground.
IOR*	16	l I	Read strobe (active low). A low level on this pin transfers the contents of the ST16C1550 data bus to the CPU
RI*	17	I T	Ring detect indicator (active low). A low on this pin indicates the modem has received a ringing signal from telephone line.
INT	18	0	Interrupt output. (three state / active high) This pin goes high

3

ST16C1550 ST16C1551/1552

ST16C1550 SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
			(when enabled by the interrupt enable register) whenever a receiver error, receiver data available, transmitter empty, or modem status condition flag is detected.
A0-A2	21-19	I	Address select line. To select internal registers.
RTS*	22	0	Request to send (active low). To indicate that the transmit- ter has data ready to send. Writing a "1" in the modem control register (MCR bit-1) will set this pin to a low state. After the reset this pin will be set to high. Note that this pin does not have any effect on the transmit or receive opera- tion.
DTR*	23	0	Data terminal read (active low). To indicate that ST16C1550 is ready to receive data. This pin can be controlled via the modem control register (MCR bit-0). Writing a "1" at the MCR bit-0 will set the DTR* output to low. This pin will be set to high state after writing a "0" to that register or after the reset. Note that this pin does not have any effect on the transmit or receive operation.
RESET	24	I	Master reset (active high). A high on this pin will reset all the outputs and internal registers. The transmitter output and the receiver input will be disabled during reset time.
CTS*	25	- I	Clear to send (active low). The CTS* signal is a MODEM control function input whose conditions can be tested by reading the MSR bit-4. CTS* has no effect on the transmit or receive operation.
DSR*	26	1	Data set ready (active low). A low on this pin indicates the MODEM is ready to exchange data with UART. This pin does not have any effect on the transmit or receive operation.
CD*	27		Carrier detect (active low). A low on this pin indicates the carrier has been detected by the modem.
vcc	28	I	Power supply input.

ST16C1550/51/52

ST16C1550 ST16C1551/1552

ST16C1551 SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
D0-D7	1-8	1/0	Bi-directional data bus. Eight bit, three state data bus to transfer information to or from the CPU. D0 is the least significant bit of the data bus and the first serial data bit to be received or transmitted.
RX	9		Serial data input. The serial information (data) received from serial port to ST16C1551 receive input circuit. A mark (high) is logic one and a space (low) is logic zero. During the local loopback mode the RX input is disabled from external connection and connected to the TX output internally.
тх	10	0	Serial data output. The serial data is transmitted via this pin with additional start, stop and parity bits. The TX will be held in mark (high) state during reset, local loopback mode or when the transmitter is disabled.
CS*	11	l	Chip-select (active low). A low at this pin enables the ST16C1551 / CPU data transfer operation.
CLK	12	I	External clock input. An external clock can be used to clock internal circuit and baud rate generator for custom transmis- sion rates.
IOW*	13	.1	Write strobe (active low). A low on this pin will transfer the contents of the CPU data bus to the addressed register.
GND	14	0	Signal and power ground.
IOR*	15		Read strobe (active low). A low level on this pin transfers the contents of the ST16C1551 data bus to the CPU.
RI*	16		Ring detect indicator (active low). A low on this pin indicates the modem has received a ringing signal from telephone line.
RST	17	0	Reset output (active high). The ST16C1551 provides a buffered reset output which is gated internally with MCR bit- 2.
INT	18	0	Interrupt output. (three state / active high) This pin goes high

3

ST16C1550 ST16C1551/1552

ST16C1551 SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
			(when enabled by the interrupt enable register) whenever a receiver error, receiver data available, transmitter empty, or modem status condition flag is detected.
A0-A2	21-19	1	Address select line. To select internal registers.
RTS*	22	0	Request to send (active low). To indicate that the transmit- ter has data ready to send. Writing a "1" in the modem control register (MCR bit-1) will set this pin to a low state. After the reset this pin will be set to high. Note that this pin does not have any effect on the transmit or receive opera- tion.
DTR*	23	0	Data terminal read (active low). To indicate that ST16C1551 is ready to receive data. This pin can be controlled via the modem control register (MCR bit-0). Writing a "1" at the MCR bit-0 will set the DTR* output to low. This pin will be set to high state after writing a "0" to that register or after the reset. Note that this pin does not have any effect on the transmit or receive operation.
RESET	24	1	Master reset (active high). A high on this pin will reset all the outputs and internal registers. The transmitter output and the receiver input will be disabled during reset time.
CTS*	25	I	Clear to send (active low). The CTS* signal is a MODEM control function input whose conditions can be tested by reading the MSR BIT-4. CTS* has no effect on the transmit or receive operation.
DSR*	26	1	Data set ready (active low). A low on this pin indicates the MODEM is ready to exchange data with UART. This pin does not have any effect on the transmit or receive operation.
CD⁺	27	1	Carrier detect (active low). A low on this pin indicates the carrier has been detected by the modem.
vcc	28	1	Power supply input.

PROGRAMMING TABLE

A2	A1	AO	READ MODE	WRITE MODE
0	0	0	Receive Holding Register	Transmit Holding Register
0	.0	1		Interrupt Enable Register
0	1	0	Interrupt Status Register	FIFO Control Register
0	1	1		Line Control Register
1	0	0		Modem Control Register
1	0	1	Line Status Register	
1	1	0	Modem Status Register	
1	1	1	Scratchpad Register	Scratchpad Register
0	0	0		LSB of Divisor Latch
0	0	1		MSB of Divisor Latch

ST16C1550 ACCESSIBLE REGISTERS

A2	A1	A0	Register	BIT-7	BIT-6	BIT-5	BIT-4	BIT-3	BIT-2	BIT-1	BIT-0
0	0	0	RHR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	0	THR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	1	IER	0	0	0/ special mode	0	modem status interrupt	receive line status interrupt	transmit holding register	receive holding register
0	1	0	FCR	RCVR trigger (MSB)	RCVR trigger (LSB)	0 / TX trigger (MSB)	0 / TX trigger (LSB)	DMA mode select	XMIT FIFO reset	RCVR FIFO reset	FIFO enable
0	1	0	ISR	0/ FIFOs enabled	0/ FIFOs enabled	0/ RXRDY	0/ TXRDY	int priority bit-2	int priority bit-1	int priority bit-0	int status
0	1	1	LCR	divisor latch enable	set break	set parity	even parity	parity enable	stop bits	word length bit-1	word length bit-0
1	0	0	MCR	0/power down	0	0	loop back	INT enable	SOFT reset	RTS*	DTR*
1	0	1	LSR	0 / FIFO error	trans. empty	trans. holding empty	break interrupt	framing error	parity error	overrun error	receive data ready
1	1	0	MSR	CD	RI	DSR	стѕ	delta CD*	delta RI*	delta DSR*	delta CTS*
1	1	1	SPR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	0	DLL	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	1	DLM	bit-15	bit-14	bit-13	bit-12	bit-11	bit-10	bit-9	bit-8

DLL and DLM are accessible only when LCR bit-7 is set to "1".

3

ST16C1550/51/52

ST16C1550 ST16C1551/1552

ST16C1551/52 ACCESSIBLE REGISTERS

A2 A1 A0	Register	BIT-7	BIT-6	BIT-5	BIT-4	BIT-3	BIT-2	BIT-1	BIT-0
0 0 0	RHR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
000	THR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
001	IER		0	0 / special mode	0	modem status interrupt	receive line status interrupt	transmit holding register	receive holding register
010	FCR	RCVR trigger (MSB)	RCVR trigger (LSB)	0/TX trigger (MSB)	0/TX trigger (LSB)	DMA mode select	XMIT FIFO reset	RCVR FIFO reset	FIFO enable
010	ISR	0 / FIFOs enabled	0 / FIFOs enabled	0/ RXRDY	0/ TXRDY	int priority bit-2	int priority bit-1	int priority bit-0	int status
0 1 1	LCR	divisor latch enable	set break	set parity	even parity	parity enable	stop bits	word length bit-1	word length bit-0
100	MCR	0/power down	0	0	loop back	INT enable	SOFT reset	RTS*	DTR*
101	LSR	0/ FIFO error	trans. empty	trans. holding empty	break interrupt	framing error	parity error	overrun error	receive data ready
1 1 0	MSR	CD	RI	DSR	CTS	delta CD*	delta RI*	delta DSR*	delta CTS*
1 1 1	SPR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0 0 0	DLL	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
001	DLM	bit-15	bit-14	bit-13	bit-12	bit-11	bit-10	bit-9	bit-8

DLL and DLM are accessible only when LCR bit-7 is set to "1".

REGISTER FUNCTIONAL DESCRIPTIONS

TRANSMIT AND RECEIVE HOLDING REGISTER

The serial transmitter section consists of a Transmit Hold Register (THR) and Transmit Shift Register (TSR). The status of the transmit hold register is provided in the Line Status Register (LSR). Writing to this register (THR) will transfer the contents of data bus (D7-D0) to the Transmit holding register whenever the transmitter holding register or transmitter shift register is empty. The transmit holding register empty flag will be set to "1" when the transmitter is empty or data is transferred to the transmit shift register. Note that a write operation should be performed when the transmit holding register empty flag is set.

On the falling edge of the start bit, the receiver internal counter will start to count 7 1/2 clocks (16x clock) which is the center of the start bit. The start bit is valid if the RX is still low at the mid-bit sample of the start bit. Verifying the start bit prevents the receiver from assembling a false data character due to a low going noise spike on the RX input. Receiver status codes will be posted in the Line Status Register.

FIFO INTERRUPT MODE OPERATION

When the receive FIFO (FCR BIT-0=1) and receive interrupts (IER BIT-0=1) are enabled, receiver interrupt will occur as follows:

A) The receive data available interrupts will be issued to the CPU when the FIFO has reached its programmed trigger level; it will be cleared as soon as the FIFO drops below its programmed trigger level.

B) The ISR receive data available indication also occurs when the FIFO trigger level is reached, and like the interrupt it is cleared when the FIFO drops below the trigger level.

C) The data ready bit (LSR BIT-0) is set as soon as a character is transferred from the shift register to the receiver FIFO. It is reset when the FIFO is empty.

FIFO POLLED MODE OPERATION

When FCR BIT-0=1; resetting IER BIT 3-0 to zero puts the ST16C1550/51/52 in the FIFO polled mode of operation. Since the receiver and transmitter are controlled separately either one or both can be in the polled mode operation by utilizing the Line Status Register.

A) LSR BIT-0 will be set as long as there is one byte in the receive FIFO.

B) LSR BIT4-1 will specify which error(s) has occurred.

C) LSR BIT-5 will indicate when the transmit FIFO is empty.

D) LSR BIT-6 will indicate when both transmit FIFO and transmit shift register are empty.

E) LSR BIT-7 will indicate when there are any errors in the receive FIFO.

The ST16C1550/51/52 requires to have two step FIFO enable operation in order to enable receive trigger levels.

PROGRAMMABLE BAUD RATE GENERATOR

The ST16C1550/51/52 contains a programmable Baud Rate Generator that is capable of taking any clock input from DC-8 MHz and dividing it by any divisor from 1 to 2^{16} -1. The output frequency of the Baudout* is equal to 16X of transmission baud rate (Baudout*=16 x Baud Rate). Customize Baud Rates can be achieved by selecting proper divisor values for MSB and LSB of baud rate generator.

INTERRUPT ENABLE REGISTER (IER)

The Interrupt Enable Register (IER) masks the incoming interrupts from receiver ready, transmitter empty, line status and modem status registers to the INT output pin.

IER BIT-0:

0=disable the receiver ready interrupt. 1=enable the receiver ready interrupt.

IER BIT-1:

0=disable the transmitter empty interrupt. 1=enable the transmitter empty interrupt.

IER BIT-2:

0=disable the receiver line status interrupt. 1=enable the receiver line status interrupt.

IER BIT-3:

0=disable the modem status register interrupt. 1=enable the modem status register interrupt.

IER BIT 4-7:

All these bits are set to logic zero.

INTERRUPT STATUS REGISTER (ISR)

The ST16C1550/51/52 provides four level prioritized interrupt conditions to minimize software overhead during data character transfers. The Interrupt Status Register (ISR) provides the source of the interrupt in prioritized matter. During the read cycle the ST16C1550/51/52 provides the highest interrupt level to be serviced by CPU. No other interrupts are acknowledged until the particular interrupt is serviced. The following are the prioritized interrupt levels:

Priority level

Ρ	D3	D2	D1	D0	Source of the interrupt
1	0	1	1	0 -	LSR (Receiver Line Sta- tus Register)
2	0	1	0	0	RXRDY (Received Data
2	1	1	0	0	Ready) RXRDY (Received Data time out)
3	0	0	1	0	TXRDY(Transmitter
4	0	0	0	0	Holding Register Empty) MSR (Modem Status Register)

ISR BIT-0:

0=an interrupt is pending and the ISR contents may be used as a pointer to the appropriate interrupt service routine.

1=no interrupt pending.

ISR BIT 1-2:

Logical combination of these bits, provides the highest priority interrupt pending.

ISR BIT 3:

This bit is used with conjunction of ISR bit 0-2: 0=normal interrupt mode 1=receive time-out indicator when priority level is set to "2" (D0=0, D1=0, and D2=1)

ISR bit-4:

This bit is the compliment of TXRDY* (ST16C550) pin. 0=transmitter is full 1=transmitter is empty or less than full

ISR bit-5:

This bit is the compliment of RXRDY* (ST16C550) pin. 0=receiver is empty. 1=receiver is not empty

ISR bit-6-7:

0=16C450 mode 1=16C550 mode

FIFO CONTROL REGISTER (FCR)

This register is used to enable the FIFOs, clear the FIFOs, set the receiver FIFO trigger level, and select the type of DMA signaling.

FCR BIT-0:

0=Disable the transmit and receive FIFO. 1=Enable the transmit and receive FIFO. This bit should be enabled before setting the FIFO trigger levels.

FCR BIT-1:

0=No change.

1=Clears the contents of the receive FIFO and resets its counter logic to 0 (the receive shift register is not cleared or altered). This bit will return to zero after clearing the FIFOs.

FCR BIT-2:

0=No change.

1=Clears the contents of the transmit FIFO and resets its counter logic to 0 (the transmit shift register is not cleared or altered). This bit will return to zero after clearing the FIFOs.

FCR BIT-3:

0=Not used

FCR BIT 4-5:

These bits are used to set the transmit trigger levels.

FCR BIT 6-7:

These bits are used to set the trigger level for the receiver FIFO interrupt.

BIT-6	FIFO trigger level
0	01
1	04
0	08
1	14
	0 1 0 1

LINE CONTROL REGISTER (LCR)

The Line Control Register is used to specify the asynchronous data communication format. The number of the word length, stop bits, and parity can be selected by writing appropriate bits in this register.

LCR BIT1-0:

These two bits specify the word length to be transmitted or received.

BIT-1	BIT-0	Word length
0	0	5
0	1	6
1	0	7
1	1	8

LCR BIT-2:

The number of stop bits can be specified by this bit.

BIT-2	Word length	Stop bit(s)
0	5,6,7,8	1
1	5	1-1/2
1	6,7,8	2

Parity or no parity can be selected via this bit. 0=no parity

1=a parity bit is generated during the transmission, receiver also checks for received parity.

LCR BIT-4:

If the parity bit is enabled, LCR BIT-4 selects the even or odd parity format.

0=ODD parity is generated by forcing an odd number of 1's in the transmitted data, receiver also checks for same format.

1= EVEN parity bit is generated by forcing an even the number of 1's in the transmitted data, receiver also checks for same format.

LCR BIT-5:

If the parity bit is enabled, LCR BIT-5 selects the forced parity format.

LCR BIT-5=1 and LCR BIT-4=0, parity bit is forced to "1" in the transmitted and received data.

LCR BIT-5=1 and LCR BIT-4=1, parity bit is forced to "0" in the transmitted and received data.

LCR BIT-6:

Break control bit. It causes a break condition to be transmitted (the TX is forced to low state). 0=normal operating condition.

1=forces the transmitter output (TX) to go low to alert the communication terminal.

LCR BIT-7:

The internal baud rate counter latch enable (DLEN). 0=normal operation. 1=select divisor latch register.

MODEM CONTROL REGISTER (MCR)

This register controls the interface with the MODEM or a peripheral device (RS232).

MCR BIT-0:

0=force DTR* output to high. 1=force DTR* output to low.

MCR BIT-1:

0=force RTS* output to high. 1=force RTS* output to low.

MCR BIT-2:

0=normal operation. 1=software reset, set RST output to high.

MCR BIT-3:

0=set INT output pin to three state mode. 1=set INT output pin to normal operation mode.

MCR BIT-4:

0=normal operating mode.

1=enable local loop-back mode (diagnostics). The transmitter output (TX) is set high (Mark condition), the receiver input (RX), CTS*, DSR*, CD*, and RI* are disabled. Internally the transmitter output is connected to the receiver input and DTR*, RTS*, SOFT reset and INT enable are connected to modem control inputs.

In this mode , the receiver and transmitter interrupts are fully operational. The Modem Control Interrupts are also operational, but the interrupts sources are now the lower four bits of the Modem Control Register instead of the four Modem Control inputs. The interrupts are still controlled by the IER .

MCR BIT 5-6:

Not used. Are set to zero permanently.

MCR bit-7: 0=normal mode. 1=power down mode. CLK, XTAL1, XTAL2, and baud rate generators are disabled.

LINE STATUS REGISTER (LSR)

This register provides the status of data transfer to CPU.

LSR BIT-0:

0=no data in receive holding register or FIFO. 1=data has been received and saved in the receive holding register or FIFO.

LSR BIT-1:

0=no overrun error (normal).

1=overrun error, next character arrived before receive holding register was emptied or if FIFOs are enabled, an overrun error will occur only after the FIFO is full and the next character has been completely received in the shift register. Note that character in the shift register is overwritten, but it is not transferred to the FIFO.

LSR BIT-2:

0=no parity error (normal).

1=parity error, received data does not have correct parity information. In the FIFO mode this error is associated with the character at the top of the FIFO.

LSR BIT-3:

0=no framing error (normal). 1=framing error received, received data did not have

a valid stop bit. In the FIFO mode this error is associated with the character at the top of the FIFO.

LSR BIT-4:

0=no break condition (normal).

1=receiver received a break signal (RX was low for one character time frame). In FIFO mode, only one zero character is loaded into the FIFO.

LSR BIT-5:

0=transmit holding register is full. ST16C1550/51/52 will not accept any data for transmission.

1=transmit holding register (or FIFO) is empty. CPU can load the next character.

LSR BIT-6:

0=transmitter holding and shift registers are full. 1=transmitter holding and shift registers are empty. In FIFO mode this bit is set to one whenever the transmitter FIFO and transmit shift register are empty.

LSR BIT-7:

0=Normal.

1=At least one parity error, framing error or break indication in the FIFO. This bit is cleared when LSR is read.

MODEM STATUS REGISTER (MSR)

This register provides the current state of the control lines from the modem or peripheral to the CPU. Four bits of this register are used to indicate the changed information. These bits are set to "1" whenever a control input from the MODEM changes state. They are set to "0" whenever the CPU reads this register.

MSR BIT-0:

Indicates that the CTS* input to the ST16C1550/51/52 has changed state since the last time it was read.

MSR BIT-1:

Indicates that the DSR* input to the ST16C1550/51/ 52 has changed state since the last time it was read.

MSR BIT-2:

Indicates that the RI* input to the ST16C1550/51/52 has changed from a low to a high state.

MSR BIT-3:

Indicates that the CD* input to the ST16C1550/51/52 has changed state since the last time it was read.

MSR BIT-4:

This bit is equivalent to RTS in the MCR during local loop-back mode. It is the compliment of the CTS* input.

MSR BIT-5:

This bit is equivalent to DTR in the MCR during local loop-back mode. It is the compliment of the DSR* input.

MSR BIT-6:

This bit is equivalent to SOFT reset in the MCR during local loop-back mode. It is the compliment of the RI* input.

MSR BIT-7:

This bit is equivalent to INT enable in the MCR during local loop-back mode. It is the compliment to the CD* input.

Note: Whenever MSR BIT3-0: is set to logic "1", a MODEM Status Interrupt is generated.

SCRATCHPAD REGISTER (SR)

ST16C1550/51/52 provides a temporary data register to store 8 bits of information for variable use.

BAUD RATE GENERATOR PROGRAMMING TABLE (1.8432 MHz CLOCK):

BAUD RATE	16 x CLOCK DIVISOR	% ERROR
50	2304	
75	1536	
110	1047	0.026
134.5	857	0.058
150	768	
300	384	
600	192	
1200	96	
2400	48	
3600	32	
4800	24	
7200	16	
9600	12	
19.2K	6	
38.4K	3	
56K	2	2.86
115.2K	1	

ST16C1550/51/52 EXTERNAL RESET CONDI-TION

REGISTERS	RESET STATE
IER	IER BITS 0-7=0
ISR	ISR BIT-0=1, ISR BITS 1-7=0
LCR	LCR BITS 0-7=0
MCR	MCR BITS 0-7=0
LSR	LSR BITS 0-4=0,
	LSR BITS 5-6=1 LSR, BIT 7=0
MSR	MSR BITS 0-3=0,
	MSR BITS 4-7=input signals
FCR	FCR BITS 0-7=0

SIGNALS	RESET STATE
TX	High
SOFT reset	High
RTS*	High
DTR*	High
INT	Three state

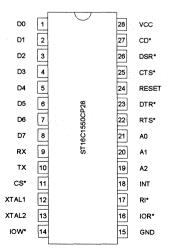
AC ELECTRICAL CHARACTERISTICS

 $\rm T_{A}=25^{\circ}$ C, $\rm ~V_{cc}=5.0~V\pm5\%$ unless otherwise specified.

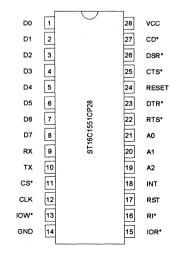
Symbol	Parameter	Min	Limits Typ	Max	Units	Conditions
T,	Clock high pulse duration	50			ns	
T,	Clock low pulse duration	50			ns	External clock
T,	Clock rise/fall time			10	ns	
T ₁ T ₂ T ₃ T ₉ T ₁₂	Chip select setup time	5			ns	
Т	Chip select hold time	0			ns	
T,	Data set up time	15			ns	
T ^{'2}	Data hold time	15			ns	
T ¹³	IOW* delay from chip select	10			ns	
T ^{'₁₅}	IOW* strobe width	50			ns	
T ¹⁵ ₁₆	Chip select hold time from IOW*	0			ns	
T ¹⁰	Write cycle delay	55			ns	
Tw	Write cycle=T ₁₅ +T ₁₇	105			ns	
Т ₁₉	Data hold time	15			ns	
T_21	IOR* delay from chip select	10			ns	
	IOR* strobe width	65			ns	
T ₂₃ T ₂₄ T ₂₅ Tr	Chip select hold time from IOR*	0			ns	
T_	Read cycle delay	55			ns	
Τr	Read cycle=T ₂₃ +T ₂₅	115			ns	
T_26	Delay from IOR* to data			35	ns	100 pF load
T_28	Delay from IOW* to output			50	ns	100 pF load
T ₂₉	Delay to set interrupt from MODEM input			70	ns	100 pF load
T ₃₀	Delay to reset interrupt from IOR*			70	ns	100 pF load
T ₃₁	Delay from stop to set interrupt			1	ns	100 pF load
T ₃₂	Delay from IOR* to reset interrupt			200	ns	100 pF load
T ₃₃	Delay from initial INT reset to transmit start	8		24	*	
Т ₃₄	Delay from stop to interrupt			100	ns	
T ₃₅	Delay from IOW* to reset interrupt			175	ns	

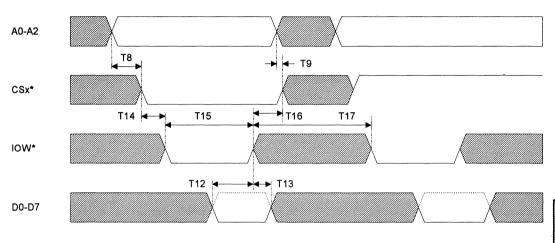
Note 1: * = Baudout* cycle

ABSOLUTE MAXIMUM RATINGS

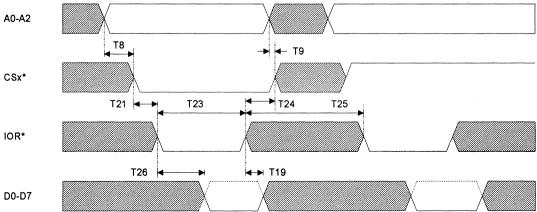

Supply range Voltage at any pin Operating temperature Storage temperature Package dissipation 7 Volts GND-0.3 V to VCC+0.3 V 0° C to +70° C -40° C to +150° C 500 mW

DC ELECTRICAL CHARACTERISTICS

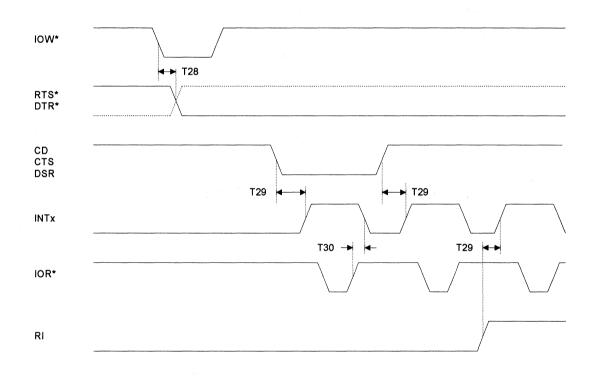

 $T_a=25^{\circ}$ C, $V_{cc}=5.0$ V ± 5% unless otherwise specified.

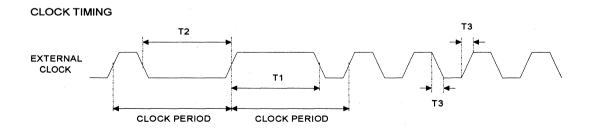

Symbol	Parameter	Min	Limits Typ M	ax Ur	nits	Conditions
V _{ILCK} V _{IHCK} V _{IL} V _{IH} V _{OL} V _{OH}	Clock input low level Clock input high level Input low level Input high level Output low level on all outputs	-0.5 3.0 -0.5 2.2		CC 0.8 CC		l =6 m∆
V _{он} I _{cc} I _L I _{CL}	Output high level Avg. power supply current Input leakage Clock leakage	2.4	±	6 n 10 µ	V 1A IA IA	I _{ог} = 6 mA I _{он} = -6 mA

28 PIN PLASTIC-DIP ST16C1550

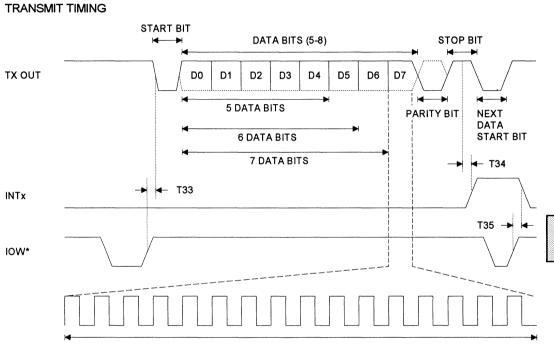

28 PIN PLASTIC-DIP ST16C1551

GENERAL WRITE TIMING

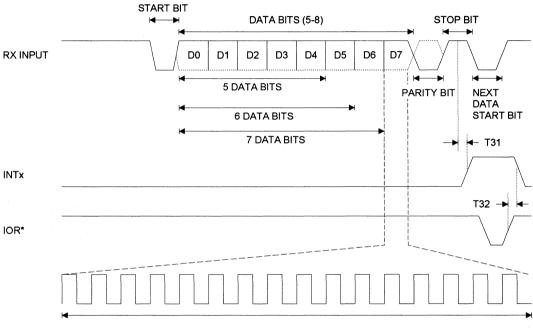

GENERAL READ TIMING



3


MODEM TIMING

ST16C1550/51/52


3

16 BAUD RATE CLOCK

ST16C1550/51/52

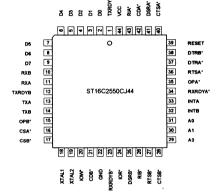
RECEIVE TIMING

16 BAUD RATE CLOCK

Printed May 17, 1993

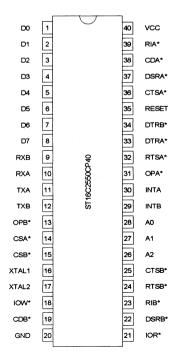
DUAL ASYNCHRONOUS RECEIVER/TRANSMITTER WITH FIFOs

DESCRIPTION


The ST16C2550 is a dual asynchronous receiver and transmitter with 16 byte transmit and receive FIFO. Independent programmable baud rate generators are provided to select transmit and receive clock rates from 50Hz to 448kHz for each UART.

The ST16C2550 is an improved version of the NS16C550 UART with higher operating speed and lower access time. The ST16C2550 on board status registers provides the error conditions, type and status of the transfer operation being performed. Included is complete MODEM control capability, and a processor interrupt system that may be software tailored to the user's requirements. The ST16C2550 provides internal loop-back capability for on board diagnostic testing.

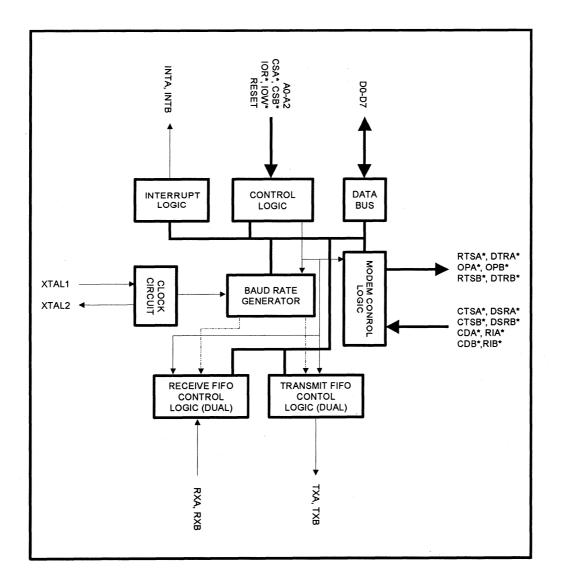
The ST16C2550 is fabricated in an advanced 1.2μ CMOS process to achieve low drain power and high speed requirements.


.

PLCC Package

Plastic-DIP Package

ç


FEATURES

- Pin to pin and functional compatible to ST16C2450
- 16 byte transmit FIFO
- 16 byte receive FIFO with error flags
- Modem control signals (CTS*, RTS*, DSR*, DTR*, RI*, CD*)
- Programmable character lengths (5, 6, 7, 8)
- Even, odd, or no parity bit generation and detection
- Status report register
- Independent transmit and receive control
- TTL compatible inputs, outputs
- Software compatible with INS8250, NS16C550
- 448 kHz transmit/receive operation with 7.372 MHz crystal or external clock source

ORDERING INFORMATION

Part number	Package	Operating	temperature				
ST16C2550CP40	Plastic-DIP	0° C	to + 70° C				
ST16C2550CJ44	PLCC	0° C	to + 70° C				
*Industrial operating range are available							

BLOCK DIAGRAM

3-126

ST16C2550

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
D0-D7	1-8	I/O	Bi-directional data bus. Eight bit, three state data bus to transfer information to or from the CPU. D0 is the least significant bit of the data bus and the first serial data bit to be received or transmitted.
RX A/B	10,9	l	Serial data input A/B. The serial information (data) received from serial port to ST16C2550 receive input circuit. A mark (high) is logic one and a space (low) is logic zero. During the local loopback mode the RX input is disabled from external connection and connected to the TX output internally.
TX A/B	11,12	Ο	Serial data output A/B. The serial data is transmitted via this pin with additional start, stop and parity bits. The TX will be held in mark (high) state during reset, local loopback mode or when the transmitter is disabled.
CS A/B*	14,15	I	Chip select A/B. (active low) A low at this pin enables the ST16C2550 / CPU data transfer operation.
XTAL1	16	I	Crystal input 1 or external clock input. A crystal can be connected to this pin and XTAL2 pin to utilize the internal oscillator circuit. An external clock can be used to clock internal circuit and baud rate generator for custom transmis- sion rates.
XTAL2	17	· 1	Crystal input 2 or buffered clock output. See XTAL1.
IOW*	18		Write strobe. (active low) A low on this pin will transfer the contents of the CPU data bus to the addressed register.
IOR*	21	1	Read strobe. (active low) A low level on this pin transfers the contents of the ST16C2550 data bus to the CPU.
A0-A2	28-26	l . I	Address select lines. To select internal registers.
INT A/B	30,29	ο	Interrupt output A/B. (active high) This pin goes high (when enabled by the interrupt enable register) whenever a re- ceiver error, receiver data available, transmitter empty, or modem status condition flag is detected.

3

3-127

ST16C2550

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
OP2 A/B*	31	ο	Interrupt enable output (active low). This pin stays high when INT out pin is set to three state mode and goes low when INT pin is enabled via OP2*. See bit-3 modem control register (MCR bit-3).
RTS A/B*	32,24	0	Request to send A/B (active low). To indicate that the transmitter has data ready to send. Writing a "1" in the modem control register (MCR bit-1) will set this pin to a low state. After the reset this pin will be set to high. Note that this pin does not have any effect on the transmit or receive operation.
DTR A/B*	33,34	0	Data terminal ready A/B (active low). To indicate that ST16C2550 is ready to receive data. This pin can be controlled via the modem control register (MCR bit-0). Writing a "1" at the MCR bit-0 will set the DTR* output to low. This pin will be set to high state after writing a "0" to that register or after the reset. Note that this pin does not have any effect on the transmit or receive operation.
RESET	35	I	Master reset. (active high) A high on this pin will reset all the outputs and internal registers. The transmitter output and the receiver input will be disabled during reset time.
CTS A/B*	36,25		Clear to send A/B (active low). The CTS* signal is a MODEM control function input whose conditions can be tested by reading the MSR BIT-4. CTS* has no effect on the transmit or receive operation.
DSR A/B*	37,22	I I I	Data set ready A/B (active low). A low on this pin indicates the MODEM is ready to exchange data with UART. This pin does not have any effect on the transmit or receive opera- tion.
CD A/B*	38,19	1 1 1	Carrier detect A/B (active low). A low on this pin indicates the carrier has been detected by the modem.
RI A/B*	39,23		Ring detect indicator A/B (active low). A low on this pin indicates the modem has received a ringing signal from telephone line.

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
vcc	40	I	Power supply input.
GND	20	0	Signal and power ground.
TXRDY A/B	1,12**	0	Transmit ready. (active high) This pin goes high when the transmit FIFO of the ST16C550 is full. It can be used as a single or multi-transfer.
RXRDY A/B*	34,23**	0	Receive ready. (active low) This pin goes low when the receive FIFO is full. It can be used as a single or multi-transfer.

** Available on the PLCC package only.

PROGRAMMING TABLE

A2	A1	A0	READ MODE	WRITE MODE
0	0	0	Receive Holding Register	Transmit Holding Register
0	0	1		Interrupt Enable Register
0	1	0	Interrupt Status Register	FIFO Control Register
0	1	1		Line Control Register
1	0	0		Modem Control Register
1	0		Line Status Register	Ū
1	1	0	Modem Status Register	
1	1	1	Scratchpad Register	Scratchpad Register
0	0	0		LSB of Divisor Latch
0	0	1		MSB of Divisor Latch

ST16C2550 ACCESSIBLE REGISTERS A/B

A2	A1	A0	Register	BIT-7	BIT-6	BIT-5	BIT-4	BIT-3	BIT-2	BIT-1	BIT-0
0	0	0	RHR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	0	THR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	1	IER	0	0	0	0	modem status interrupt	receive line status interrupt	transmit holding register	receive holding register
0	1	0	FCR	RCVR trigger (MSB)	RCVR trigger (LSB)	0	0	DMA mode select	XMIT FIFO reset	RCVR FIFO reset	FIFO enable
0	1	0	ISR	0/ FIFOs enabled	0/ FIFOs enabled	0	0	int priority bit-2	int priority bit-1	int priority bit-0	int status
0	1	1	LCR	divisor latch enable	set break	set parity	even parity	parity enable	stop bits	word length bit-1	word length bit-0
1	0	0	MCR	0	0	0	loop back	INT enable	Not used	RTS*	DTR*
1	0	1	LSR	0/ FIFO error	trans. empty	trans. holding empty	break interrupt	framing error	parity error	overrun error	receive data ready
1	1	0	MSR	CD	RI	DSR	стѕ	delta CD*	delta RI*	delta DSR*	delta CTS*
1	1	1	SPR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	0	DLL	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	1	DLM	bit-15	bit-14	bit-13	bit-12	bit-11	bit-10	bit-9	bit-8

DLL and DLM are accessible only when LCR bit-7 is set to "1".

REGISTER FUNCTIONAL DESCRIPTIONS

TRANSMIT AND RECEIVE HOLDING REGISTER

The serial transmitter section consists of a Transmit Hold Register (THR) and Transmit Shift Register (TSR). The status of the transmit hold register is provided in the Line Status Register (LSR). Writing to this register (THR) will transfer the contents of data bus (D7-D0) to the Transmit holding register whenever the transmitter holding register or transmitter shift register is empty. The transmit holding register empty flag will be set to "1" when the transmitter is empty or data is transferred to the transmit shift register. Note that a write operation should be performed when the transmit holding register empty flag is set.

On the falling edge of the start bit, the receiver internal counter will start to count 7 1/2 clocks (16x clock) which is the center of the start bit. The start bit is valid if the RX is still low at the mid-bit sample of the start bit. Verifying the start bit prevents the receiver from assembling a false data character due to a low going noise spike on the RX input. Receiver status codes will be posted in the Line Status Register.

FIFO INTERRUPT MODE OPERATION

When the receive FIFO (FCR BIT-0=1) and receive interrupts (IER BIT-0=1) are enabled, receiver interrupt will occur as follows:

A) The receive data available interrupts will be issued to the CPU when the FIFO has reached its programmed trigger level; it will be cleared as soon as the FIFO drops below its programmed trigger level.

B) The ISR receive data available indication also occurs when the FIFO trigger level is reached, and like the interrupt it is cleared when the FIFO drops below the trigger level.

C) The data ready bit (LSR BIT-0) is set as soon as a character is transferred from the shift register to the receiver FIFO. It is reset when the FIFO is empty.

FIFO POLLED MODE OPERATION

When FCR BIT-0=1; resetting IER BIT 3-0 to zero puts the ST16C2550 in the FIFO polled mode of operation. Since the receiver and transmitter are controlled separately either one or both can be in the polled mode operation by utilizing the Line Status Register.

A) LSR BIT-0 will be set as long as there is one byte in the receive FIFO.

B) LSR BIT4-1 will specify which error(s) has occurred.

C) LSR BIT-5 will indicate when the transmit FIFO is empty.

D) LSR BIT-6 will indicate when both transmit FIFO and transmit shift register are empty.

E) LSR BIT-7 will indicate when there are any errors in the receive FIFO.

The ST16C2550 requires to have two step FIFO enable operation in order to enable receive trigger levels.

PROGRAMMABLE BAUD RATE GENERATOR

The ST16C2550 contains a programmable Baud Rate Generator that is capable of taking any clock input from DC-8 MHz and dividing it by any divisor from 1 to 2^{16} -1. The output frequency of the Baudout* is equal to 16X of transmission baud rate (Baudout*=16 x Baud Rate). Customize Baud Rates can be achieved by selecting proper divisor values for MSB and LSB of baud rate generator.

INTERRUPT ENABLE REGISTER (IER)

The Interrupt Enable Register (IER) masks the incoming interrupts from receiver ready, transmitter empty, line status and modem status registers to the INT output pin.

IER BIT-0:

0=disable the receiver ready interrupt. 1=enable the receiver ready interrupt.

IER BIT-1:

0=disable the transmitter empty interrupt. **1**=enable the transmitter empty interrupt.

IER BIT-2:

0=disable the receiver line status interrupt. 1=enable the receiver line status interrupt.

IER BIT-3:

0=disable the modem status register interrupt. **1**=enable the modem status register interrupt.

IER BIT 4-7:

All these bits are set to logic zero.

INTERRUPT STATUS REGISTER (ISR)

The ST16C2550 provides four level prioritized interrupt conditions to minimize software overhead during data character transfers. The Interrupt Status Register (ISR) provides the source of the interrupt in prioritized matter. During the read cycle the ST16C2550 provides the highest interrupt level to be serviced by CPU. No other interrupts are acknowledged until the particular interrupt is serviced. The following are the prioritized interrupt levels:

Priority level

D3	D2	D1	DO	Source of the interrupt
0	1	1	0	LSR (Receiver Line Sta- tus Register)
0	1	0	0	RXRDY (Received Data
1	1	0	0	Ready) RXRDY (Received Data
0	0	1	0	time out) TXRDY(Transmitter Holding Register Empty)
0	0	0	0	MSR (Modern Status Register)
	0 0 1 0	0 1 0 1 1 1 0 0	0 1 1 0 1 0 1 0 0 0 1	0 1 1 0 0 1 0 0 1 1 0 0 0 0 1 0

ISR BIT-0:

0=an interrupt is pending and the ISR contents may be used as a pointer to the appropriate interrupt service routine.

1=no interrupt pending.

ISR BIT 1-3:

Logical combination of these bits, provides the highest priority interrupt pending.

ISR BIT 4-7:

These bits are not used and are set to zero in ST16C450 mode. **BIT 6-7:** are set to "1" in ST16C2550 mode.

FIFO CONTROL REGISTER (FCR)

This register is used to enable the FIFOs, clear the FIFOs, set the receiver FIFO trigger level, and select the type of DMA signaling.

FCR BIT-0:

0=Disable the transmit and receive FIFO. 1=Enable the transmit and receive FIFO. This bit should be enabled before setting the FIFO trigger levels.

FCR BIT-1:

0=No change.

1=Clears the contents of the receive FIFO and resets its counter logic to 0 (the receive shift register is not cleared or altered). This bit will return to zero after clearing the FIFOs.

FCR BIT-2:

0=No change.

1=Clears the contents of the transmit FIFO and resets its counter logic to 0 (the transmit shift register is not cleared or altered). This bit will return to zero after clearing the FIFOs.

FCR BIT-3:

0=No change.

1=Changes RXRDY and TXRDY pins from mode "0" to mode "1".

Transmit operation in mode "0":

When ST16C2550 is in ST16C450 mode (FCR bit-0=0) or in the FIFO mode (FCR bit-0=1, FCR bit-3=0) when there are no characters in the transmit FIFO or transmit holding register, the TXRDY* pin will go low. Once active the TXRDY* pin will go high (inactive) after the first character is loaded into the transmit holding register.

Receive operation in mode "0":

When ST16C2550 is in ST16C450 mode (FCR bit-0=0) or in the FIFO mode (FCR bit-0=1, FCR bit-3=0) and there is at least 1 character in the receive FIFO, the RXRDY* pin will go low. Once active the RXRDY* pin will go high (inactive) when there are no more characters in the receiver.

Transmit operation in mode "1":

When ST16C2550 is in ST16C550 mode (FCR bit-0=1, FCR bit-3=1) the TXRDY* pin will become high (inactive) when the transmit FIFO is completely full. It will be low if one or more FIFO locations are empty.

Receive operation in mode "1":

When ST16C2550 is in ST16C550 mode (FCR bit-0=1, FCR bit-3=1) and the trigger level or the timeout has been reached, the RXRDY* pin will go low. Once it is activated it will go high (inactive) when there are no more characters in the FIFO.

FCR BIT 4-5:

Not used.

FCR BIT 6-7:

These bits are used to set the trigger level for the receiver FIFO interrupt.

BIT-7	BIT-6	FIFO trigger level
0	0	01
0	1	04
1	0	08
1	1	14

LINE CONTROL REGISTER (LCR)

The Line Control Register is used to specify the asynchronous data communication format. The number of the word length, stop bits, and parity can be selected by writing appropriate bits in this register.

LCR BIT1-0:

These two bits specify the word length to be transmitted or received.

BIT-1	BIT-0	Word length
0	0	5
0	1	6
1	0	7
1	1	8

5

LCR BIT-2:

The number of stop bits can be specified by this bit.

BIT-2	Word length	Stop bit(s)
0	5,6,7,8	1
1	5	1-1/2
1	6,7,8	2

LCR BIT-3:

Parity or no parity can be selected via this bit. 0=no parity

1=a parity bit is generated during the transmission, receiver also checks for received parity.

LCR BIT-4:

If the parity bit is enabled, LCR BIT-4 selects the even or odd parity format.

0=ODD parity is generated by forcing an odd number of 1's in the transmitted data, receiver also checks for same format.

1= EVEN parity bit is generated by forcing an even the number of 1's in the transmitted data, receiver also checks for same format.

LCR BIT-5:

If the parity bit is enabled, LCR BIT-5 selects the forced parity format.

LCR BIT-5=1 and LCR BIT-4=0, parity bit is forced to "1" in the transmitted and received data.

LCR BIT-5=1 and LCR BIT-4=1, parity bit is forced to "0" in the transmitted and received data.

LCR BIT-6:

Break control bit. It causes a break condition to be transmitted (the TX is forced to low state).

0=normal operating condition.

1=forces the transmitter output (TX) to go low to alert the communication terminal.

LCR BIT-7:

The internal baud rate counter latch enable (DLAB). 0=normal operation.

1=select divisor latch register.

MODEM CONTROL REGISTER (MCR)

This register controls the interface with the MODEM or a peripheral device (RS232).

MCR BIT-0:

0=force DTR* output to high. 1=force DTR* output to low.

MCR BIT-1:

0=force RTS* output to high. 1=force RTS* output to low.

MCR BIT-2:

Not used except in local loop-back mode.

MCR BIT-3:

0=set INT output pin to three state mode and OP2* output to high.

1=set INT output pin to normal operating mode and OP2* output to low.

MCR BIT-4:

0=normal operating mode.

1=enable local loop-back mode (diagnostics). The transmitter output (TX) is set high (Mark condition), the receiver input (RX), CTS*, DSR*, CD*, and RI* are

disabled. Internally the transmitter output is connected to the receiver input and DTR*, RTS*, OP1* and OP2* are connected to modem control inputs. In this mode, the receiver and transmitter interrupts are fully operational. The Modem Control Interrupts are also operational, but the interrupts sources are now the lower four bits of the Modem Control Register instead of the four Modem Control inputs. The interrupts are still controlled by the IER.

MCR BIT 5-7:

Not used. Are set to zero permanently.

LINE STATUS REGISTER (LSR)

This register provides the status of data transfer to CPU.

LSR BIT-0:

0=no data in receive holding register or FIFO. 1=data has been received and saved in the receive holding register or FIFO.

LSR BIT-1:

0=no overrun error (normal).

1=overrun error, next character arrived before receive holding register was emptied or if FIFOs are enabled, an overrun error will occur only after the FIFO is full and the next character has been completely received in the shift register. Note that character in the shift register is overwritten, but it is not transferred to the FIFO.

LSR BIT-2:

0=no parity error (normal).

1=parity error, received data does not have correct parity information. In the FIFO mode this error is associated with the character at the top of the FIFO.

LSR BIT-3:

0=no framing error (normal).

1=framing error received, received data did not have a valid stop bit. In the FIFO mode this error is associated with the character at the top of the FIFO.

LSR BIT-4:

0=no break condition (normal).

1=receiver received a break signal (RX was low for one character time frame). In FIFO mode, only one zero character is loaded into the FIFO.

LSR BIT-5:

0=transmit holding register is full. ST16C2550 will not accept any data for transmission.

1=transmit holding register (or FIFO) is empty. CPU can load the next character.

LSR BIT-6:

0=transmitter holding and shift registers are full. 1=transmitter holding and shift registers are empty. In FIFO mode this bit is set to one whenever the transmitter FIFO and transmit shift register are empty.

LSR BIT-7:

0=Normal.

1=At least one parity error, framing error or break indication in the FIFO. This bit is cleared when LSR is read.

MODEM STATUS REGISTER (MSR)

This register provides the current state of the control lines from the modem or peripheral to the CPU. Four bits of this register are used to indicate the changed information. These bits are set to "1" whenever a control input from the MODEM changes state. They are set to "0" whenever the CPU reads this register.

MSR BIT-0:

Indicates that the CTS* input to the ST16C2550 has changed state since the last time it was read.

MSR BIT-1:

Indicates that the DSR* input to the ST16C2550 has changed state since the last time it was read.

MSR BIT-2:

Indicates that the RI* input to the ST16C2550 has changed from a low to a high state.

MSR BIT-3:

Indicates that the CD* input to the ST16C2550 has changed state since the last time it was read.

MSR BIT-4:

This bit is equivalent to RTS in the MCR during local loop-back mode. It is the compliment of the CTS* input.

MSR BIT-5:

This bit is equivalent to DTR in the MCR during local loop-back mode. It is the compliment of the DSR* input.

MSR BIT-6:

This bit is equivalent to OP1 in the MCR during local loop-back mode. It is the compliment of the RI* input.

MSR BIT-7:

This bit is equivalent to OP2 in the MCR during local loop-back mode. It is the compliment to the CD* input.

Note: Whenever MSR BIT3-0: is set to logic "1", a MODEM Status Interrupt is generated.

SCRATCHPAD REGISTER (SR)

ST16C2550 provides a temporary data register to store 8 bits of information for variable use.

ST16C2550

BAUD RATE GENERATOR	PROGRAMMING
TABLE (1.8432 MHz CLOCK):	

BAUD RATE	16 x CLOCK DIVISOR	% ERROR
50	2304	
75	1536	
110	1047	0.026
134.5	857	0.058
150	768	
300	384	
600	192	
1200	96	
2400	48	
3600	32	
4800	24	
7200	16	
9600	12	
19.2K	6	
38.4K	3	
56K	2	2.86
115.2K	1	

ST16C2550 EXTERNAL RESET CONDITION

REGISTERS	RESET STATE
IER	IER BITS 0-7=0
ISR	ISR BIT-0=1, ISR BITS 1-7=0
LCR	LCR BITS 0-7=0
MCR	MCR BITS 0-7=0
LSR	LSR BITS 0-4=0,
	LSR BITS 5-6=1 LSR, BIT 7=0
MSR	MSR BITS 0-3=0,
	MSR BITS 4-7=input signals
FCR	FCR BITS 0-7=0

RESET STATE
High
High
High
High
Three state mode

AC ELECTRICAL CHARACTERISTICS

 $\rm T_{A}=25^{\circ}$ C, $\rm V_{cc}=5.0~V\pm5\%$ unless otherwise specified.

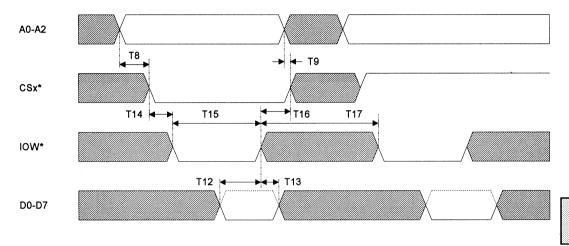
Symbol	Parameter	Limits			Units	Conditions	
		Min	Тур	Max			
T_{1} T_{2} T_{3} T_{8} T_{9} T_{12}	Clock high pulse duration	50			ns		
T ₂	Clock low pulse duration	50			ns	External clock	
T3	Clock rise/fall time			10	ns		
T,	Chip select setup time	5			ns		
T,	Chip select hold time	0			ns		
T ₁₂	Data set up time	15			ns		
T ₁₃	Data hold time	15			ns		
I 14	IOW* delay from chip select	10			ns		
I 15	IOW* strobe width	50			ns		
T ₁₆	Chip select hold time from IOW*	0			ns		
T ₁₇	Write cycle delay	55			ns		
Tw	Write cycle=T ₁₅ +T ₁₇	105			ns		
T ₁₉	Data hold time	15			ns		
T ₂₂	IOR* delay from chip select	10			ns		
	IOR* strobe width	65			ns		
T ₂₁ T ₂₄ T ₂₅ Tr	Chip select hold time from IOR*	0			ns		
T ₂₅	Read cycle delay	55			ns		
Tr	Read cycle=T ₂₃ +T ₂₅	115			ns		
Т ₂₆	Delay from IOR* to data			35	ns	100 pF load	
T_28	Delay from IOW* to output			50	ns	100 pF load	
T_29	Delay to set interrupt from MODEM			70	ns	100 pF load	
20	input						
T ₃₀	Delay to reset interrupt from IOR*			70	ns	100 pF load	
Τ.,	Delay from stop to set interrupt			1 _{Rck}	ns	100 pF load	
T ₃₂	Delay from IOR* to reset interrupt			200	ns	100 pF load	
T ₃₃	Delay from initial INT reset to transmit	8		24	*		
	start						
Т ₃₄	Delay from stop to interrupt			100	ns		
T ₃₅	Delay from IOW* to reset interrupt			175	ns		
T ₃₆	Delay from initial Write to interrupt	16		24	*		
N	Baud rate devisor	1		2 ¹⁶ -1			

Note 1: * = Baudout* cycle

3

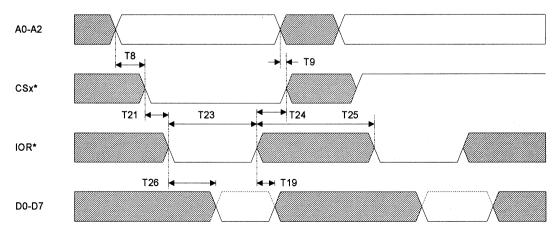
ABSOLUTE MAXIMUM RATINGS

Supply range Voltage at any pin Operating temperature Storage temperature Package dissipation 7 Volts GND-0.3 V to VCC+0.3 V 0° C to +70° C -40° C to +150° C 500 mW

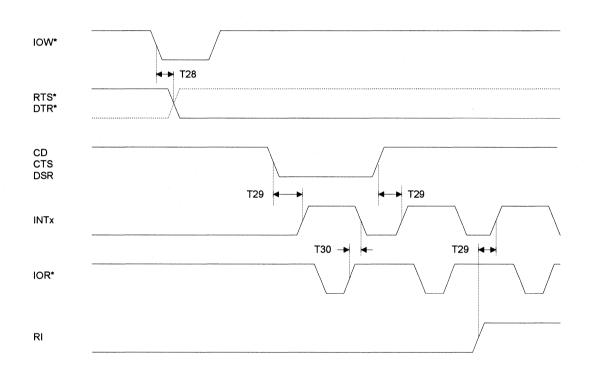

DC ELECTRICAL CHARACTERISTICS

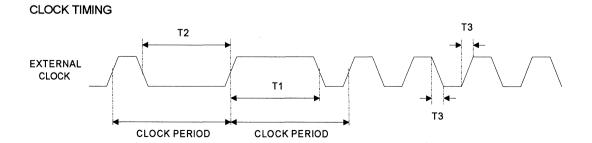
 $T_a=25^{\circ}$ C, $V_{cc}=5.0$ V ± 5% unless otherwise specified.

Symbol	Parameter		.imits Typ Max	Units	Conditions	
V _{IICK} V _{IHCK} V _{II} V _H V _{OL} V _{OH} I _{CC} I _{IL} I _{CL}	Clock input low level Clock input high level Input low level Input high level Output low level on all outputs Output high level Avg. power supply current Input leakage Clock leakage	-0.5 3.0 -0.5 2.2 2.4	0.6 VCC 0.8 VCC 0.4 6 ±10 ±10	553<<<<<<	I _{оl} = 6 mA I _{он} = -6 mA	

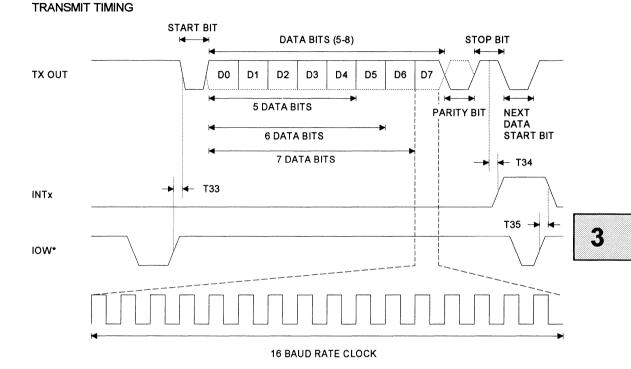

ST16C2550

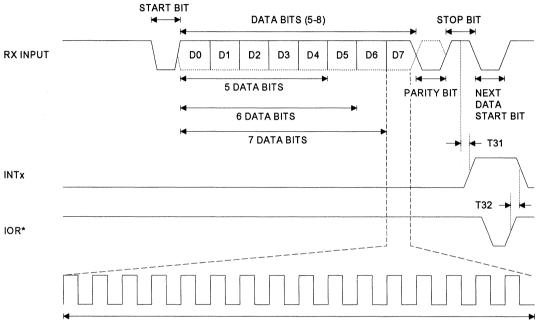
3



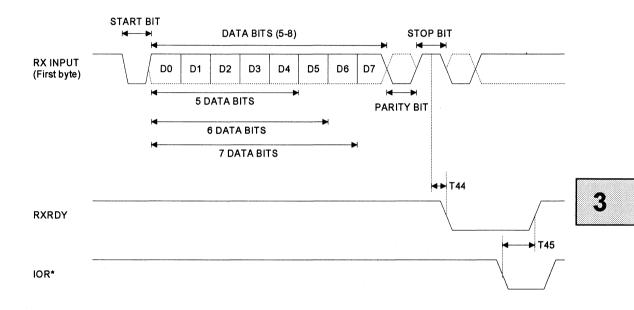

GENERAL WRITE TIMING

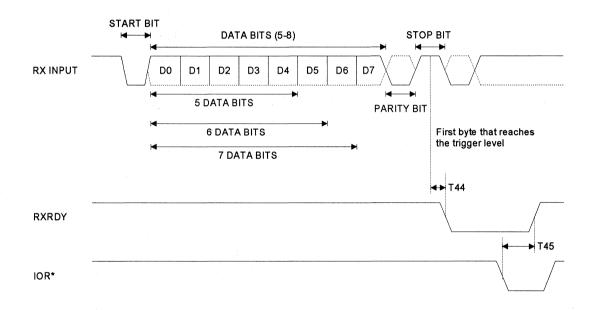
GENERAL READ TIMING


MODEM TIMING


3-140

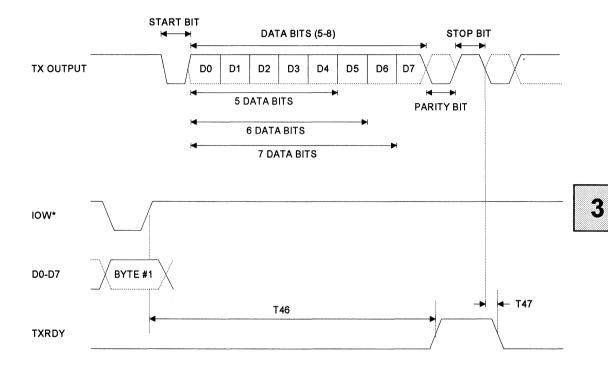
ST16C2550


3-141

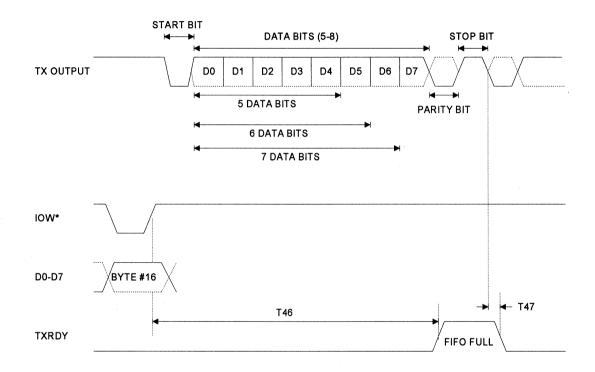


16 BAUD RATE CLOCK

RXRDY TIMING FOR MODE "0"



RXRDY TIMING FOR MODE "1"



ST16C2550

TXRDY TIMING FOR MODE "0"

TXRDY TIMING FOR MODE "1"

Printed May 17, 1993

DUAL ASYNCHRONOUS RECEIVER/TRANSMITTER WITH FIFOs

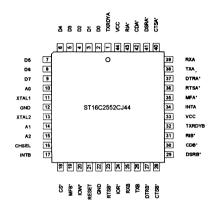
DESCRIPTION

The ST16C2552 is a dual asynchronous receiver and transmitter with 16 byte transmit and receive FIFOs. Independent programmable baud rate generators are provided to select transmit and receive clock rates from 50Hz to 448kHz for each UART.

The on board status registers of the ST16C2552 provide the error conditions, type and status of the transfer operation being performed. Complete MO-DEM control capability and a processor interrupt system that may be software tailored to the user's requirements are included. The ST16C2552 provides internal loop-back capability for on board diagnostic testing.

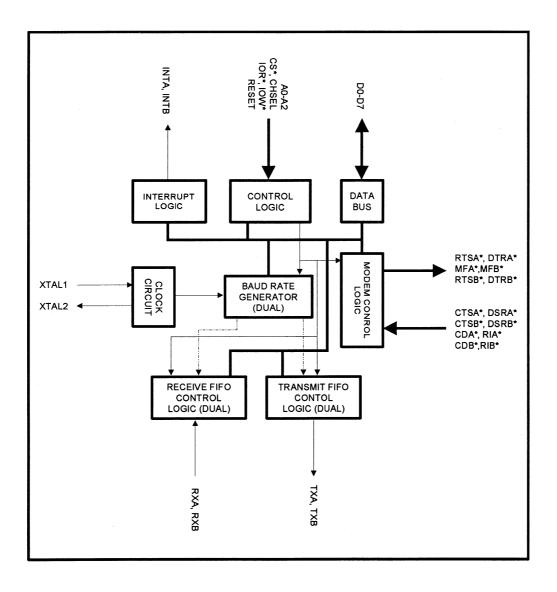
Signalling for DMA transfers is done through two pins per channel (TXRDY*, RXRDY*). The RXRDY* function is multiplexed on one pin with the OP2* and BAUDOUT functions. CPU can select these functions through the Alternate Function Register.

The ST16C2552 is fabricated in an advanced 1.2μ CMOS process to achieve low power and high speed requirements.


FEATURES

- Pin to pin and functional compatible to National NS16C552
- 16 byte transmit FIFO
- 16 byte receive FIFO with error flags
- Modem control signals (CTS*, RTS*, DSR*, DTR*, RI*, CD*)
- Programmable character lengths (5, 6, 7, 8) bits
- Even, odd, or no parity bit generation and detection
 Status report register
- TTL compatible inputs, outputs
- Independent transmit and receive control
- Software compatible with INS8250, NS16C550
- 448 kHz transmit/receive operation with 7.372
- MHz crystal or external clock source

ORDERING INFORMATION


Part number	Package	Operating temperature
ST16C2552CJ44	PLCC	0° C to + 70° C
ST16C2552IJ44	PLCC	-40° C to + 85° C

PLCC Package

BLOCK DIAGRAM

ST16C2552

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
D0-D7	2-9	I/O	Bi-directional data bus. Eight bit, three state data bus to transfer information to or from the CPU. D0 is the least significant bit of the data bus and the first serial data bit to be received or transmitted.
RX A/B	39,25	I	Serial data input A/B. The serial information (data) received from serial port to ST16C2552 receive input circuit. A mark (high) is logic one and a space (low) is logic zero. During the local loopback mode the RX input is disabled from external connection and connected to the TX output internally.
TX A/B	38,26	ο	Serial data output A/B. The serial data is transmitted via this pin with additional start, stop and parity bits. The TX will be held in mark (high) state during reset, local loopback mode or when the transmitter is disabled.
CS*	18	I	Chip select. (active low) A low at this pin enables the ST16C2552 / CPU data transfer operation.
CHSEL	16		UART A/B select. UART A or B can be selected by changing the state of this pin when CS* is active. Low on this pin, selects the UART B and high on this pin selects UART A section.
XTAL1	11	I	Crystal input 1 or external clock input. A crystal can be connected to this pin and XTAL2 pin to utilize the internal oscillator circuit. An external clock can be used to clock internal circuit and baud rate generator for custom transmis- sion rates.
XTAL2	13	I	Crystal input 2 or buffered clock output. See XTAL1. Should be left open if a clcok is connected to XTAL1.
IOW*	20	I	Write strobe. (active low) A low on this pin will transfer the contents of the CPU data bus to the addressed register.
IOR*	24	I	Read strobe. (active low) A low level on this pin transfers the contents of the ST16C2552 data bus to the CPU.
A0-A2	10,14,15	l I	Address select lines. To select internal registers.

3

ST16C2552

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
INT A/B	34,17	ο	Interrupt output A/B. (active high) This pin goes high (when enabled by the interrupt enable register) whenever a re- ceiver error, receiver data available, transmitter empty, or modem status condition flag is detected.
MF A/B*	35,19	Ο	OP2* (interrupt enable), BAUDOUT* and RXRDY* outputs. These outputs are multiplexed via Alternate Function Reg- ister. When output enable function is selected the MF* pin stays high when INT out pin is set to three state mode and goes low when INT pin is enabled. See bit-3 modem control register (MCR bit-3). When BAUDOUT function is selected, the 16 X TX/RX Baud rate clock output is generated. RXRDY function can be selected to use to request a DMA transfer of data from the Receive data FIFO. OP2* is the default signal and it is selected immediately after master reset or power-up.
TXRDY A/B	1,32	0	Transmit ready. (active high) This pin goes high when the transmit FIFO of the ST16C2552 is full. It can be used as a single or multi-transfer.
RTS A/B*	36,23	0	Request to send A/B (active low). To indicate that the transmitter has data ready to send. Writing a "1" in the modem control register (MCR bit-1) will set this pin to a low state. After the reset this pin will be set to high. Note that this pin does not have any effect on the transmit or receive operation.
DTR A/B*	37,27	0	Data terminal ready A/B (active low). To indicate that ST16C2552 is ready to receive data. This pin can be controlled via the modem control register (MCR bit-0). Writing a "1" at the MCR bit-0 will set the DTR* output to low. This pin will be set to high state after writing a "0" to that register or after the reset. Note that this pin does not have any effect on the transmit or receive operation.
RESET	21		Master reset. (active high) A high on this pin will reset all the outputs and internal registers. The transmitter output and the receiver input will be disabled during reset time.

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
CTS A/B*	40,28	I	Clear to send A/B (active low). The CTS* signal is a MODEM control function input whose conditions can be tested by reading the MSR BIT-4. CTS* has no effect on the transmit or receive operation.
DSR A/B*	41,29	Ι	Data set ready A/B (active low). A low on this pin indicates the MODEM is ready to exchange data with UART. This pin does not have any effect on the transmit or receive opera- tion.
CD A/B*	42,30	I	Carrier detect A/B (active low). A low on this pin indicates the carrier has been detected by the modem.
RI A/B*	43,31	1	Ring detect indicator A/B (active low). A low on this pin indicates the modem has received a ringing signal from telephone line.
vcc	33,44	I	Power supply input.
GND	12,22	ο	Signal and power ground.

PROGRAMMING TABLE

A2	A1	A0	READ MODE	WRITE MODE
0	0	0	Receive Holding Register	Transmit Holding Register
0	0	1		Interrupt Enable Register
0	1	0	Interrupt Status Register	FIFO Control Register
0	1	1		Line Control Register
1	0	0		Modem Control Register
1	0	1	Line Status Register	·
1	1	0	Modem Status Register	
1	1	1	Scratchpad Register	Scratchpad Register
0	0	0		LSB of Divisor Latch
0	0	1		MSB of Divisor Latch
Ō	1	0	Alternate Function Register	Alternate Function Register
			

3

ST16C2552

ST16C2552 ACCESSIBLE REGISTERS A/B

A2	A1	A0	Register	BIT-7	BIT-6	BIT-5	BIT-4	BIT-3	BIT-2	BIT-1	BIT-0
0	0	0	RHR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	0	THR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	1	IER	0	0	0	0	modem status interrupt	receive line status interrupt	transmit holding register	receive holding register
0	1	0	FCR	RCVR trigger MSB)	RCVR trigger (LSB)	0	0	DMA mode select	XMIT FIFO reset	RCVR FIFO reset	FIFO enable
0	1	0	ISR	0/ FIFOs enabled	0/ FIFOs enabled	0	0	int priority bit-2	int priority bit-1	int priority bit-0	int status
0	1	1	LCR	divisor latch enable	set break	set parity	even parity	parity enable	stop bits	word length bit-1	word length bit-0
1	0	0	MCR	0	0	0	loop back	OP2*	OP1*	RTS*	DTR*
1	0	1	LSR	0/ FIFO error	trans. empty	trans. holding empty	break interrupt	framing error	parity error	overrun error	receive data ready
1	1	0	MSR	CD	RI	DSR	стѕ	delta CD*	delta RI*	delta DSR*	delta CTS*
1	1	1	SPR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	0	DLL	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	1	DLM	bit-15	bit-14	bit-13	bit-12	bit-11	bit-10	bit-9	bit-8
0	1	0	AFR	0	0	0	0	0	MF* sel-1	MF* sel-0	SP write

These registers are accessible only when LCR bit-7 is set to "1".

REGISTER FUNCTIONAL DESCRIPTIONS

TRANSMIT AND RECEIVE HOLDING REGISTER

The serial transmitter section consists of a Transmit Hold Register (THR) and Transmit Shift Register (TSR). The status of the transmit hold register is provided in the Line Status Register (LSR). Writing to this register (THR) will transfer the contents of data bus (D7-D0) to the Transmit holding register whenever the transmitter holding register or transmitter shift register is empty. The transmit holding register empty flag will be set to "1" when the transmitter is empty or data is transferred to the transmit shift register. Note that a write operation should be performed when the transmit holding register empty flag is set.

On the falling edge of the start bit, the receiver internal counter will start to count 7 1/2 clocks (16x clock) which is the center of the start bit. The start bit is valid if the RX is still low at the mid-bit sample of the start bit. Verifying the start bit prevents the receiver from assembling a false data character due to a low going noise spike on the RX input. Receiver status codes will be posted in the Line Status Register.

FIFO INTERRUPT MODE OPERATION

When the receive FIFO (FCR BIT-0=1) and receive interrupts (IER BIT-0=1) are enabled, receiver interrupt will occur as follows:

A) The receive data available interrupts will be issued to the CPU when the FIFO has reached its programmed trigger level; it will be cleared as soon as the FIFO drops below its programmed trigger level.

B) The ISR receive data available indication also occurs when the FIFO trigger level is reached, and like the interrupt it is cleared when the FIFO drops below the trigger level.

C) The data ready bit (LSR BIT-0) is set as soon as a character is transferred from the shift register to the receiver FIFO. It is reset when the FIFO is empty.

FIFO POLLED MODE OPERATION

When FCR BIT-0=1; resetting IER BIT 3-0 to zero puts the ST16C2552 in the FIFO polled mode of operation. Since the receiver and transmitter are controlled separately either one or both can be in the polled mode operation by utilizing the Line Status Register.

A) LSR BIT-0 will be set as long as there is one byte in the receive FIFO.

B) LSR BIT4-1 will specify which error(s) has occurred.

C) LSR BIT-5 will indicate when the transmit FIFO is empty.

D) LSR BIT-6 will indicate when both transmit FIFO and transmit shift register are empty.

3

E) LSR BIT-7 will indicate when there are any errors in the receive FIFO.

PROGRAMMABLE BAUD RATE GENERATOR

Each UART section of the ST16C2552 contains a programmable Baud Rate Generator that is capable of taking any clock input from DC-8 MHz and dividing it by any divisor from 1 to 2^{16} -1. The output frequency of the Baudout* is equal to 16X of transmission baud rate (Baudout*=16 x Baud Rate). Customize Baud Rates can be achieved by selecting proper divisor values for MSB and LSB of baud rate generator.

INTERRUPT ENABLE REGISTER (IER)

The Interrupt Enable Register (IER) masks the incoming interrupts from receiver ready, transmitter empty, line status and modem status registers to the INT output pin.

IER BIT-0:

0=disable the receiver ready interrupt. 1=enable the receiver ready interrupt.

IER BIT-1:

0=disable the transmitter empty interrupt. 1=enable the transmitter empty interrupt.

IER BIT-2:

0=disable the receiver line status interrupt. 1=enable the receiver line status interrupt.

IER BIT-3:

0=disable the modem status register interrupt. 1=enable the modem status register interrupt.

IER BIT 4-7:

All these bits are set to logic zero.

INTERRUPT STATUS REGISTER (ISR)

The ST16C2552 provides four level prioritized interrupt conditions to minimize software overhead during data character transfers. The Interrupt Status Register (ISR) provides the source of the interrupt in prioritized matter. During the read cycle the ST16C2552 provides the highest interrupt level to be serviced by CPU. No other interrupts are acknowledged until the particular interrupt is serviced. The following are the prioritized interrupt levels:

Priority level

Ρ	D3	D2	D1	DO	Source of the interrupt
1	0	1	1	0	LSR (Receiver Line Sta- tus Register)
2	0	1	0	0	RXRDY (Received Data Ready)
2	1	1	0	0	RXRDY (Receive Data time out)
3	0	0	1	0	TXRDY(Transmitter Holding Register Empty)
4	0	0	0	0	MSR (Modern Status Register)

ISR BIT-0:

0=an interrupt is pending and the ISR contents may be used as a pointer to the appropriate interrupt service routine.

1=no interrupt pending.

ISR BIT 1-3:

Logical combination of these bits, provides the highest priority interrupt pending.

ISR BIT 4-7:

These bits are not used and are set to zero if the FIFOs are not enabled. **BIT 6-7:** are set to "1" when the FIFOs are enabled.

FIFO CONTROL REGISTER (FCR)

This register is used to enable the FIFOs, clear the FIFOs, set the receiver FIFO trigger level, and select the type of DMA signaling.

FCR BIT-0:

0=Disable the transmit and receive FIFO. 1=Enable the transmit and receive FIFO.

FCR BIT-1:

0=No change.

1=Clears the contents of the receive FIFO and resets its counter logic to 0 (the receive shift register is not cleared or altered). This bit will return to zero after clearing the FIFOs.

FCR BIT-2:

0=No change.

1=Clears the contents of the transmit FIFO and resets its counter logic to 0 (the transmit shift register is not cleared or altered). This bit will return to zero after clearing the FIFOs.

FCR BIT-3:

0=No change.

1=Changes RXRDY and TXRDY pins from mode "0" to mode "1".

Transmit operation in mode "0":

When ST16C2552 is in ST16C450 mode (FCR bit-0=0) or in the FIFO mode (FCR bit-0=1, FCR bit-3=0) when there are no characters in the transmit FIFO or transmit holding register, the TXRDY* pin will go low. Once active the TXRDY* pin will go high (inactive) after the first character is loaded into the transmit holding register.

Receive operation in mode "0":

When ST16C2552 is in ST16C450 mode (FCR bit-0=0) or in the FIFO mode (FCR bit-0=1, FCR bit-3=0) and there is at least 1 character in the receive FIFO, the RXRDY* pin will go low. Once active the RXRDY* pin will go high (inactive) when there are no more characters in the receiver.

Transmit operation in mode "1":

When ST16C2552 is in ST16C550 mode (FCR bit-0=1, FCR bit-3=1) the TXRDY* pin will become high (inactive) when the transmit FIFO is completely full. It will be low if one or more FIFO locations are empty.

Receive operation in mode "1":

When ST16C2552 is in ST16C550 mode (FCR bit-0=1, FCR bit-3=1) and the trigger level or the timeout has been reached, the RXRDY* pin will go low. Once it is activated it will go high (inactive) when there are no more characters in the FIFO.

FCR BIT 4-5:

Not used.

FCR BIT 6-7:

These bits are used to set the trigger level for the receiver FIFO interrupt.

BIT-7	BIT-6	FIFO trigger level
0	0	01
0	1	04
1	0	08
1	1	14
	'	

ALTERNATE FUNCTION REGISTER (AFR)

This is a read/write register used to select specific modes of MF* operation and to allow both UART registers sets to be written concurrently.

AFR BIT-0:

When this bit is set, CPU can write concurrently to the same register in both UARTs. This function is intended to reduce the dual UART initialization time. It can be used by CPU when both channels are initialized to the same state. CPU can set or clear this bit by accessing either register set. When this bit is set the channel select pin still selects the channel to be accessed during read operation. Setting or clearing this bit has no effect on read operations.

The user should ensure that LCR Bit-7 of both channels are in the same state before executing a concurrent write to the registers at address 0,1, or 2.

AFR BIT 1-2:

Combinations of these bits selects one of the MF* functions.

BIT-2	BIT-1	MF* Function
0	0	OP2*
0	1	BAUDOUT*
1	0	RXRDY*
1	1	Reserved

AFR BIT 3-7:

Not used. All these bits are set to logic zero.

LINE CONTROL REGISTER (LCR)

The Line Control Register is used to specify the asynchronous data communication format. The number of the word length, stop bits, and parity can be selected by writing appropriate bits in this register.

LCR BIT1-0:

These two bits specify the word length to be transmitted or received.

BIT-1	BIT-0	Word length						
0	0	5						
0	1	6						
1	0	7						
1	1	8						

LCR BIT-2:

The number of stop bits can be specified by this bit.

BIT-2	Word length	Stop bit(s)					
0	5,6,7,8	1					
1	5	1-1/2					
1	6,7,8	2					

LCR BIT-3:

Parity or no parity can be selected via this bit. 0=no parity

1=a parity bit is generated during the transmission, receiver also checks for received parity.

LCR BIT-4:

If the parity bit is enabled, LCR BIT-4 selects the even or odd parity format.

0=ODD parity is generated by forcing an odd number of 1's in the transmitted data, receiver also checks for same format.

1= EVEN parity bit is generated by forcing an even number of 1's in the transmitted data, receiver also checks for same format.

LCR BIT-5:

If the parity bit is enabled, LCR BIT-5 selects the forced parity format.

LCR BIT-5=1 and LCR BIT-4=0, parity bit is forced to "1" in the transmitted and received data.

LCR BIT-5=1 and LCR BIT-4=1, parity bit is forced to "0" in the transmitted and received data.

LCR BIT-6:

Break control bit. It causes a break condition to be transmitted (the TX is forced to low state).

0=normal operating condition. 1=forces the transmitter output (TX) to go low to alert the communication terminal.

LCR BIT-7:

The internal baud rate counter latch enable (DLAB). 0=normal operation.

1=select Divisor Latch Register and Alternate Function Register.

MODEM CONTROL REGISTER (MCR)

This register controls the interface with the MODEM or a peripheral device (RS232).

MCR BIT-0:

0=force DTR* output to high. 1=force DTR* output to low.

MCR BIT-1:

0=force RTS* output to high. 1=force RTS* output to low.

MCR BIT-2:

Not used except in local loop-back mode.

MCR BIT-3:

0=force OP2* output to high. 1=force OP2* output to low.

MCR BIT-4:

0=normal operating mode.

1=enable local loop-back mode (diagnostics). The transmitter output (TX) is set high (Mark condition), the receiver input (RX), CTS*, DSR*, CD*, and RI* are disabled. Internally the transmitter output is connected to the receiver input and DTR*, RTS*, OP1* and OP2* are connected to modem control inputs. In this mode, the receiver and transmitter interrupts are fully operational. The Modem Control Interrupts are also operational, but the interrupts sources are now the lower four bits of the Modem Control Register instead of the four Modem Control inputs. The interrupts are still controlled by the IER.

MCR BIT 5-7:

Not used. Are set to zero permanently.

LINE STATUS REGISTER (LSR)

This register provides the status of data transfer to $\ensuremath{\mathsf{CPU}}$.

LSR BIT-0:

0=no data in receive holding register or FIFO. 1=data has been received and saved in the receive holding register or FIFO.

LSR BIT-1:

0=no overrun error (normal).

1=overrun error, next character arrived before receive holding register was emptied or if FIFOs are enabled, an overrun error will occur only after the FIFO is full and the next character has been completely received in the shift register. Note that character in the shift register is overwritten, but it is not transferred to the FIFO.

LSR BIT-2:

0=no parity error (normal).

1=parity error, received data does not have correct parity information. In the FIFO mode this error is associated with the character at the top of the FIFO.

LSR BIT-3:

0=no framing error (normal).

1=framing error received, received data did not have a valid stop bit. In the FIFO mode this error is associated with the character at the top of the FIFO.

LSR BIT-4:

0=no break condition (normal).

1=receiver received a break signal (RX was low for one character time frame). In FIFO mode, only one zero character is loaded into the FIFO.

LSR BIT-5:

0=transmit holding register is full. ST16C2552 will not accept any data for transmission.

1=transmit holding register (or FIFO) is empty. CPU can load the next character.

LSR BIT-6:

0=transmitter holding and shift registers are full. 1=transmitter holding and shift registers are empty. In FIFO mode this bit is set to one whenever the transmitter FIFO and transmit shift register are empty.

LSR BIT-7:

0=Normal.

1=At least one parity error, framing error or break indication in the FIFO. This bit is cleared when LSR is read.

MODEM STATUS REGISTER (MSR)

This register provides the current state of the control lines from the modem or peripheral to the CPU. Four bits of this register are used to indicate the changed information. These bits are set to "1" whenever a control input from the MODEM changes state. They are set to "0" whenever the CPU reads this register.

MSR BIT-0:

Indicates that the CTS* input to the ST16C2552 has changed state since the last time it was read.

MSR BIT-1:

Indicates that the DSR* input to the ST16C2552 has changed state since the last time it was read.

MSR BIT-2:

Indicates that the RI* input to the ST16C2552 has changed from a low to a high state.

MSR BIT-3:

Indicates that the CD* input to the ST16C2552 has changed state since the last time it was read.

MSR BIT-4:

This bit is equivalent to RTS in the MCR during local loop-back mode. It is the compliment of the CTS* input.

MSR BIT-5:

This bit is equivalent to DTR in the MCR during local loop-back mode. It is the compliment of the DSR* input.

MSR BIT-6:

This bit is equivalent to OP1 in the MCR during local loop-back mode. It is the compliment of the RI* input.

MSR BIT-7:

This bit is equivalent to OP2 in the MCR during local loop-back mode. It is the compliment to the CD* input.

Note: Whenever MSR BIT3-0: is set to logic "1", a MODEM Status Interrupt is generated.

SCRATCHPAD REGISTER (SR)

ST16C2552 provides a temporary data register to store 8 bits of information for variable use.

BAUD RATE GENERATOR PROGRAMMING TABLE (1.8432 MHz CLOCK):

BAUD RATE	16 x CLOCK DIVISOR	% ERROR					
50	2304						
75	1536						
110	1047	0.026					
134.5	857	0.058					
150	768						
300	384						
600	192						
1200	96						
2400	48						
3600	32						
4800	24						
7200	16						
9600	12						
19.2K	6						
38.4K	3						
56K	2	2.86					
115.2K	1						

ST16C2552 EXTERNAL RESET CONDITION

REGISTERS	RESET STATE								
IER	IER BITS 0-7=0								
ISR	ISR BIT-0=1, ISR BITS 1-7=0								
LCR	LCR BITS 0-7=0								
MCR	MCR BITS 0-7=0								
LSR	LSR BITS 0-4=0,								
	LSR BITS 5-6=1 LSR, BIT 7=0								
MSR	MSR BITS 0-3=0,								
	MSR BITS 4-7=input signals								
FCR	FCR BITS 0-7=0								
MFR	AFR BITS 0-7=0								

SIGNALS	RESET STATE
TX	High
OP2*	High
RTS*	High
DTR*	High
INT	Low

ABSOLUTE MAXIMUM RATINGS

Supply Voltage Voltage at any pin Operating temperature Storage temperature Package dissipation 7 Volts GND-0.3 V to VCC+0.3 V 0° C to +70° C -40° C to +150° C 500 mW

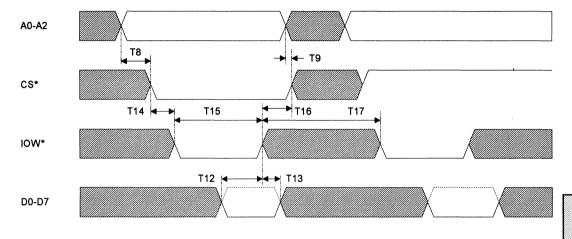
DC ELECTRICAL CHARACTERISTICS

 T_{A} =25° C, V_{cc} =5.0 V ± 5% unless otherwise specified.

Symbol	Parameter		mits 'yp Max	Units	Conditions						
V _{⊫CK} V _{⊨CK} V _⊨ V _o t V _o t I _C I _c	Clock input low level Clock input high level Input low level Input high level Output low level on all outputs Output high level Avg. power supply current Input leakage Clock leakage	-0.5 3.0 -0.5 2.2 2.4	0.6 VCC 0.8 VCC 0.4 6 ±10 ±10	553<<<<<<	I _{ol} = 6 mA I _{он} = -6 mA						

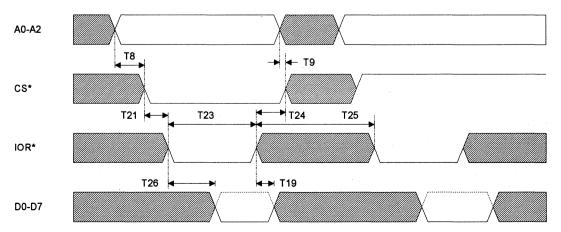
3

AC ELECTRICAL CHARACTERISTICS

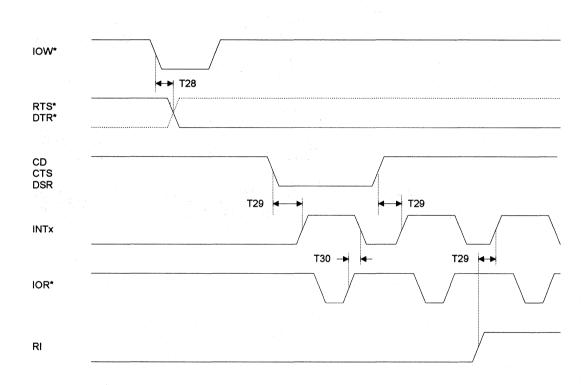

 T_{A} =25° C, V_{cc} =5.0 V ± 5% unless otherwise specified.

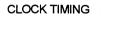
Symbol	Parameter		Limits		Units	Conditions					
		Min	Тур	Max							
-			1								
T ₁ T ₂ T ₃ T ₈ T ₉ T ₁₂	Clock high pulse duration	50			ns						
$\frac{1}{2}$	Clock low pulse duration	50			ns	External clock					
<u><u><u></u></u>³</u>	Clock rise/fall time			10	ns						
+ <u>*</u>	Chip select setup time	5			ns						
<u>_</u> 9	Chip select hold time	0			ns						
1 ₁₂	Data set up time	15	-		ns						
T ₁₃	Data hold time	15			ns						
I 14	IOW* delay from chip select	10			ns						
I 15	IOW* strobe width	50			ns						
16	Chip select hold time from IOW*	0			ns						
1 ₁₇	Write cycle delay	55			ns						
Tw	Write cycle=T ₁₅ +T ₁₇	105			ns						
T 19	Data hold time	15			ns						
T_22	IOR* delay from chip select	10			ns						
T ₂₁	IOR* strobe width	65			ns						
T_{21}^{11} T_{24}^{24}	Chip select hold time from IOR*	0			ns						
T ₂₅	Read cycle delay	55			ns						
Tr	Read cycle=T ₂₃ +T ₂₅	115			ns						
T ₂₆ T ₂₈	Delay from IOR* to data			35	ns	100 pF load					
T ₂₈	Delay from IOW* to output			50	ns	100 pF load					
Т ₂₉	Delay to set interrupt from MODEM input			70	ns	100 pF load					
T ₃₀	Delay to reset interrupt from IOR*			70	ns	100 pF load					
T ₃₁	Delay from stop to set interrupt			1 _{Rclk}	ns	100 pF load					
T ₃₁ T ₃₂	Delay from IOR* to reset interrupt			200	ns	100 pF load					
T ₃₃	Delay from initial INT reset to transmit	8		24	*						
	start										
T ₃₄	Delay from stop to interrupt			100	ns						
T ₃₅	Delay from IOW* to reset interrupt			175	ns						
T ₃₆	Delay from initial Write to interrupt	16		24	*						
N	Baud rate devisor	1		2 ¹⁶ -1							

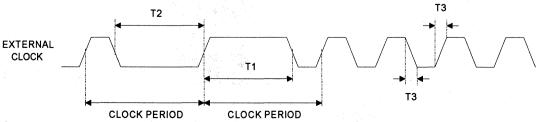
Note 1: * = Baudout* cycle


ST16C2552

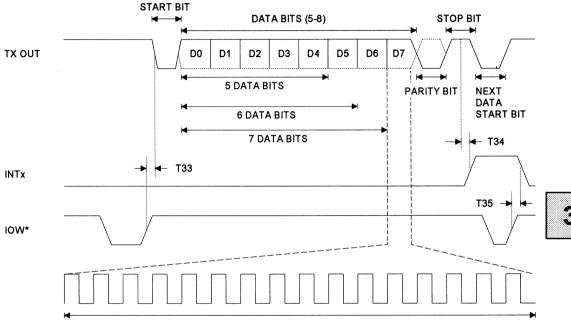
3


GENERAL WRITE TIMING


GENERAL READ TIMING



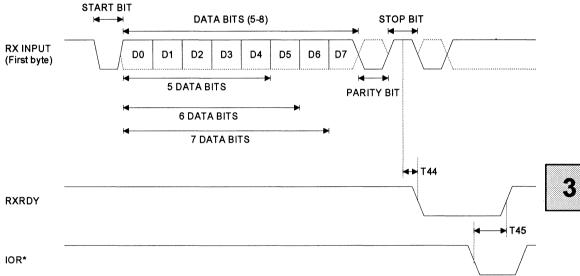
ST16C2552

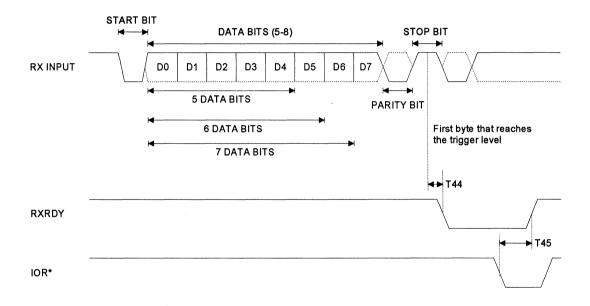

MODEM TIMING

ST16C2552

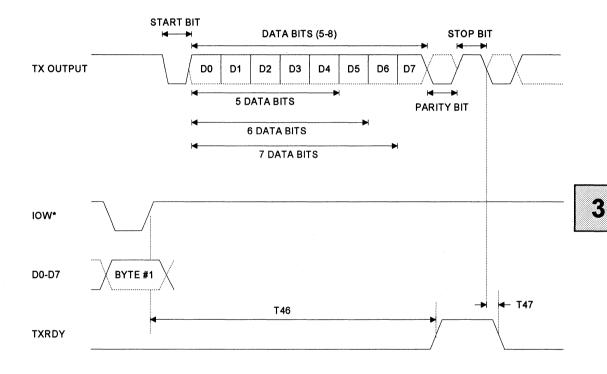
TRANSMIT TIMING

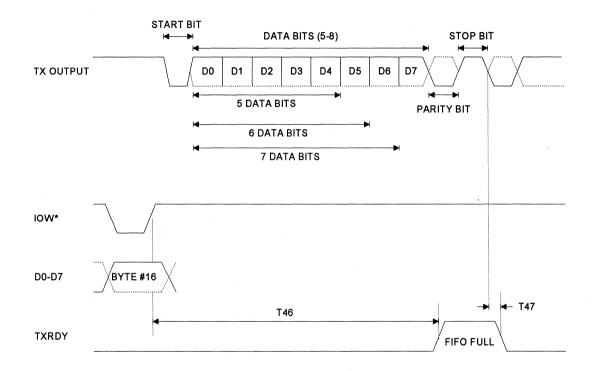
16 BAUD RATE CLOCK


3



16 BAUD RATE CLOCK


RXRDY TIMING FOR MODE "0"


RXRDY TIMING FOR MODE "1"

TXRDY TIMING FOR MODE "0"

TXRDY TIMING FOR MODE "1"

ST16C554 ST16C554D

Printed May 21, 1993

2

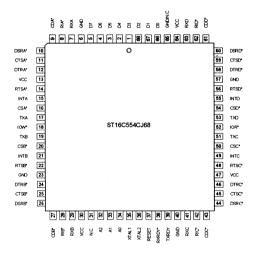
QUAD ASYNCHRONOUS RECEIVER/TRANSMITTER WITH FIFOs

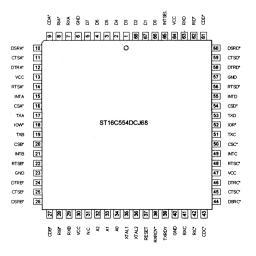
DESCRIPTION

The ST16C554 is a universal asynchronous receiver and transmitter with 16 byte transmit and receive FIFO. A programmable baud rate generator is provided to select transmit and receive clock rates from 50Hz to 448kHz.

The ST16C554 is an improved version of the NS16C550 UART with higher operating speed and lower access time. The ST16C554 on board status registers provides the error conditions, type and status of the transfer operation being performed. Included is complete MODEM control capability, and a processor interrupt system that may be software tailored to the user's requirements. The ST16C554 provides internal loop-back capability for on board diagnostic testing.

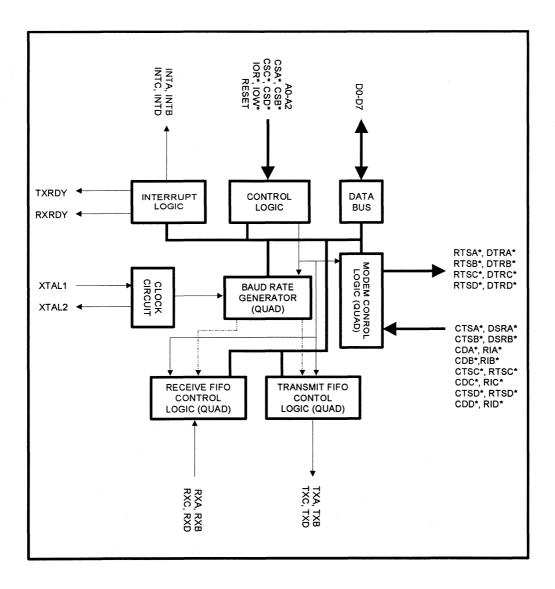
The ST16C554 is fabricated in an advanced 1.2μ CMOS process to achieve low drain power and high speed requirements.


FEATURES


- Pin to pin and functional compatible to ST16C454
- 16 byte transmit FIFO
- 16 byte receive FIFO with error flags
- Modem control signals (CTS*, RTS*, DSR*, DTR*, RI*, CD*)
- Programmable character lengths (5, 6, 7, 8)
- Even, odd, or no parity bit generation and detection
- Status report register
- Independent transmit and receive control
- TTL compatible inputs, outputs
- Software compatible with INS8250, NS16C550
- 448 kHz transmit/receive operation with 7.372 MHz crystal or external clock source

ŝ	è	1	ř	Ē	5	r	٦	ï	÷	r	÷	ĩ	ï	Ċ,	Ê	1	÷,	į,	ĩ	ñ	ŝ	ï	ř	-	2	-	i,	č.	5	R	1	ř	1	ï	¥	Ê	ĩ	í.	è	2		ì		
J	¢	8	,	r	٢	Ľ	,	I		ľ	٦	l	I	١	L	L	2	E	ŝ		ľ	ł.	ľ		ł	8	J	2	(I	1	1	۲	١	8	ŝ	I	L	8	,	ſ	N		

Part number	Package	Operating temperature
ST16C554CJ68	PLCC	0° C to + 70° C
ST16C554IJ68	PLCC	-40° C to + 85° C
ST16C554DCJ68	PLCC	0° C to + 70° C
ST16C554DIJ68	PLCC	-40° C to + 85° C


PLCC Package

ST16C554 ST16C554D

BLOCK DIAGRAM

3-170

ST16C554/554D

ST16C554 ST16C554D

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
D0-D7	5-66	1/0	Bi-directional data bus. Eight bit, three state data bus to transfer information to or from the CPU. D0 is the least significant bit of the data bus and the first serial data bit to be received or transmitted.
RX A-B RX C-D	7,29 41,63	I	Serial data input. The serial information (data) received from serial port to ST16C554 receive input circuit. A mark (high) is logic one and a space (low) is logic zero. During the local loopback mode the RX input is disabled from external connection and connected to the TX output internally.
TX A-B TX C-D	17,19 51,53	0	Serial data output. The serial data is transmitted via this pin with additional start, stop and parity bits. The TX will be held in mark (high) state during reset, local loopback mode or when the transmitter is disabled.
CS A-B* CS C-D*	16,20 50,54	1	Chip select. (active low) A low at this pin enables the ST16C554 / CPU data transfer operation. Each UART sections of the ST16C554 can be accessed independently.
XTAL1	35	1	Crystal input 1 or external clock input. A crystal can be connected to this pin and XTAL2 pin to utilize the internal oscillator circuit. An external clock can be used to clock internal circuit and baud rate generator for custom transmis- sion rates.
XTAL2	36	0	Crystal input 2 or buffered clock output. See XTAL1.
IOW*	18	I	Write strobe. (active low) A low on this pin will transfer the contents of the CPU data bus to the addressed register.
GND GND	6,23 40,57	o	Signal and power ground.
IOR*	52	I	Read strobe. (active low) A low level on this pin transfers the contents of the ST16C554 data bus to the CPU.

3

ST16C554/554D

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
TXRDY	39	o	Transmit ready. (active high) This pin goes high when the transmit FIFO of the ST16C554 is full. It can be used as a single or multi-transfer.
A2	32	I	Address select line 2. To select internal registers.
A1	33	I	Address select line 1. To select internal registers.
A0	34	1	Address select line 0. To select internal registers.
RXRDY*	38	0	Receive ready. (active high) This pin goes high when the receive FIFO is full. It can be used as a single or multi-transfer.
INTSEL	65**	I	Interrupt type select. Enable /disable the interrupt three state function. Normal interrupt output can be selected by connecting this pin to VCC (MCR bit-3 does not have any effect on the interrupt output). The three state interrupt output is selected when this pin is left open or connected to GND and MCR bit-3 is set to "1".
INT A-B INT C-D	15,21 49,55	O	Interrupt output. (active high) This pin goes high (when enabled by the interrupt enable register) whenever a re- ceiver error, receiver data available, transmitter empty, or modem status condition flag is detected.
RTS A-B* RTS C-D*	14,22 48,56	O	Request to send. (active low) To indicate that the transmit- ter has data ready to send. Writing a "1" in the modem control register (MCR bit-1) will set this pin to a low state. After the reset this pin will be set to high. Note that this pin does not have any effect on the transmit or receive opera- tion.
DTR A-B* DTR C-D*	12,24 46,58	o	Data terminal ready. (active low) To indicate that ST16C554 is ready to receive data. This pin can be controlled via the modem control register (MCR bit-0). Writing a "1" at the MCR bit-0 will set the DTR* output to low.

** ST16C554D PARTS ONLY

ST16C554/554D

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
			This pin will be set to high state after writing a "0" to that register or after the reset . Note that this pin does not have any effect on the transmit or receive operation.
RESET	37	I	Master reset. (active high) A high on this pin will reset all the outputs and internal registers. The transmitter output and the receiver input will be disabled during reset time.
CTS A-B*	11.25		
CTS C-D*	45,59	I	Clear to send. (active low) The CTS* signal is a MODEM control function input whose conditions can be tested by reading the MSR BIT-4. CTS* has no effect on the transmit or receive operation.
DSR A-B* DSR C-D*	10,26 44,60	1	Data set ready. (active low) A low on this pin indicates the MODEM is ready to exchange data with UART. This pin does not have any effect on the transmit or receive operation.
CD A-B* CD C-D*	9,27 43,61		Carrier detect. (active low) A low on this pin indicates the
			carrier has been detected by the modem.
RI A-B* RI C-D*	8,28 42,62	I.	Ring detect indicator. (active low) A low on this pin indicates the modem has received a ringing signal from telephone line.
VCC VCC	13,30 47,64	1	Power supply input.

ST16C554 ACCESSIBLE REGISTERS

A2	A1	A0	Register	BIT-7	BIT-6	BIT-5	BIT-4	BIT-3	BIT-2	BIT-1	BIT-0
0	0	0	RHR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	0	THR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	1	IER	0	0	0	0	modem status interrupt	receive line status interrupt	transmit holding register	receive holding register
0	1	0	FCR	RCVR trigger (MSB)	RCVR trigger (LSB)	0	0	DMA mode select	XMIT FIFO reset	RCVR FIFO reset	FIFO enable
0	1	0	ISR	0/ FIFOs enabled	0/ FIFOs enabled	0	0	int priority bit-2	int priority bit-1	int priority bit-0	int status
0	1	1	LCR	divisor latch enable	set break	set parity	even parity	parity enable	stop bits	word length bit-1	word length bit-0
1	0	0	MCR	0	0	0	loop back	INT enable	Not used	RTS*	DTR*
1	0	1	LSR	0/ FIFO error	trans. empty	trans. holding empty	break interrupt	framing error	parity error	overrun error	receive data ready
1	1	0	MSR	CD	RI	DSR	стѕ	delta CD*	delta RI*	delta DSR*	delta CTS*
1	1	1	SPR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	0	DLL	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	1	DLM	bit-15	bit-14	bit-13	bit-12	bit-11	bit-10	bit-9	bit-8

DLL and DLM are accessible only when LCR bit-7 is set to "1".

ST16C554 ST16C554D

PROGRAMMING TABLE

		READ MODE	WRITE MODE
0	0	Receive Holding Register	Transmit Holding Register
0	1		Interrupt Enable Register
1	0	Interrupt Status Register	FIFO Control Register
1	1		Line Control Register
0	0		Modem Control Register
0	1	Line Status Register	-
1	0	Modern Status Register	
1	1	Scratchpad Register	Scratchpad Register
0	0		LSB of Divisor Latch
0	1		MSB of Divisor Latch
	0 1 1 0 1 1 0	0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0	0110110001Line Status Register10Modem Status Register11Scratchpad Register00

REGISTER FUNCTIONAL DESCRIPTIONS

TRANSMIT AND RECEIVE HOLDING REGISTER

The serial transmitter section consists of a Transmit Hold Register (THR) and Transmit Shift Register (TSR). The status of the transmit hold register is provided in the Line Status Register (LSR). Writing to this register (THR) will transfer the contents of data bus (D7-D0) to the Transmit holding register whenever the transmitter holding register or transmitter shift register is empty. The transmit holding register empty flag will be set to "1" when the transmitter is empty or data is transferred to the transmit shift register. Note that a write operation should be performed when the transmit holding register empty flag is set.

On the falling edge of the start bit, the receiver internal counter will start to count 7 1/2 clocks (16x clock) which is the center of the start bit. The start bit is valid if the RX is still low at the mid-bit sample of the start bit. Verifying the start bit prevents the receiver from assembling a false data character due to a low going noise spike on the RX input. Receiver status codes will be posted in the Line Status Register.

FIFO INTERRUPT MODE OPERATION

When the receive FIFO (FCR BIT-0=1) and receive interrupts (IER BIT-0=1) are enabled, receiver interrupt will occur as follows:

A) The receive data available interrupts will be issued to the CPU when the FIFO has reached its programmed trigger level; it will be cleared as soon as the FIFO drops below its programmed trigger level.

B) The ISR receive data available indication also occurs when the FIFO trigger level is reached, and like the interrupt it is cleared when the FIFO drops below the trigger level.

C) The data ready bit (LSR BIT-0) is set as soon as a character is transferred from the shift register to the receiver FIFO. It is reset when the FIFO is empty.

FIFO POLLED MODE OPERATION

When FCR BIT-0=1; resetting IER BIT 3-0 to zero puts the ST16C554 in the FIFO polled mode of operation. Since the receiver and transmitter are controlled separately either one or both can be in the polled mode operation by utilizing the Line Status Register.

ST16C554 <u>ST16C554D</u>

A) LSR BIT-0 will be set as long as there is one byte in the receive FIFO.

B) LSR BIT4-1 will specify which error(s) has occurred.

C) LSR BIT-5 will indicate when the transmit FIFO is empty.

D) LSR BIT-6 will indicate when both transmit FIFO and transmit shift register are empty.

E) LSR BIT-7 will indicate when there are any errors in the receive FIFO.

The ST16C554 requires to have two step FIFO enable operation in order to enable receive trigger levels.

PROGRAMMABLE BAUD RATE GENERATOR

The ST16C554 contains a programmable Baud Rate Generator that is capable of taking any clock input from DC-8 MHz and dividing it by any divisor from 1 to 2^{16} -1. The output frequency of the Baudout* is equal to 16X of transmission baud rate (Baudout*=16 x Baud Rate). Customize Baud Rates can be achieved by selecting proper divisor values for MSB and LSB of baud rate generator.

INTERRUPT ENABLE REGISTER (IER)

The Interrupt Enable Register (IER) masks the incoming interrupts from receiver ready, transmitter empty, line status and modem status registers to the INT output pin.

IER BIT-0:

0=disable the receiver ready interrupt. 1=enable the receiver ready interrupt.

IER BIT-1:

0=disable the transmitter empty interrupt. 1=enable the transmitter empty interrupt.

IER BIT-2:

0=disable the receiver line status interrupt. 1=enable the receiver line status interrupt.

IER BIT-3:

0=disable the modem status register interrupt. 1=enable the modem status register interrupt.

IER BIT 7-4:

All these bits are set to logic zero.

INTERRUPT STATUS REGISTER (ISR)

The ST16C554 provides four level prioritized interrupt conditions to minimize software overhead during data character transfers. The Interrupt Status Register (ISR) provides the source of the interrupt in prioritized matter. During the read cycle the ST16C554 provides the highest interrupt level to be serviced by CPU. No other interrupts are acknowledged until the particular interrupt is serviced. The following are the prioritized interrupt levels:

Priority level

P	D3	D2	D1	D0	Source of the interrupt
1	0	1	1	0	LSR (Receiver Line Sta- tus Register)
2	0	1	0	0	RXRDY (Received Data Ready)
2	1	1	0	0	RXRDY (Receive Data time out)
3	0	0	1	0	TXRDY(Transmitter Holding Register Empty)
4	0	0	0	0	MSR (Modem Status Register)

ISR BIT-0:

0=an interrupt is pending and the ISR contents may be used as a pointer to the appropriate interrupt service routine.

1=no interrupt pending.

ISR BIT 1-3:

Logical combination of these bits, provides the highest priority interrupt pending.

ISR BIT 4-7:

These bits are not used and are set to zero in

2

ST16C554 ST16C554D

ST16C450 mode. BIT 6-7: are set to "1" in ST16C554 mode.

FIFO CONTROL REGISTER (FCR)

This register is used to enable the FIFOs, clear the FIFOs, set the receiver FIFO trigger level, and select the type of DMA signaling.

FCR BIT-0:

0=Disable the transmit and receive FIFO. 1=Enable the transmit and receive FIFO. This bit should be enabled before setting the FIFO trigger levels.

FCR BIT-1:

0=No change.

1=Clears the contents of the receive FIFO and resets its counter logic to 0 (the receive shift register is not cleared or altered). This bit will return to zero after clearing the FIFOs.

FCR BIT-2:

0=No change.

1=Clears the contents of the transmit FIFO and resets its counter logic to 0 (the transmit shift register is not cleared or altered). This bit will return to zero after clearing the FIFOs.

FCR BIT-3:

0=No change.

1=Changes RXRDY and TXRDY pins from mode "0" to mode "1".

Transmit operation in mode "0":

When ST16C554 is in ST16C450 mode (FCR bit-0=0) or in the FIFO mode (FCR bit-0=1, FCR bit-3=0) when there are no characters in the transmit FIFO or transmit holding register, the TXRDY* pin will go low. Once active the TXRDY* pin will go high (inactive) after the first character is loaded into the transmit holding register.

Receive operation in mode "0":

When ST16C554 is in ST16C450 mode (FCR bit-0=0) or in the FIFO mode (FCR bit-0=1, FCR bit-3=0) and there is at least 1 character in the receive FIFO, the RXRDY* pin will go low. Once active the RXRDY* pin will go high (inactive) when there are no more charac-

ters in the receiver.

Transmit operation in mode "1":

When ST16C554 is in ST16C550 mode (FCR bit-0=1, FCR bit-3=1) the TXRDY* pin will become high (inactive) when the transmit FIFO is completely full. It will be low if one or more FIFO locations are empty.

Receive operation in mode "1":

When ST16C554 is in ST16C550 mode (FCR bit-0=1, FCR bit-3=1) and the trigger level or the timeout has been reached, the RXRDY* pin will go low. Once it is activated it will go high (inactive) when there are no more characters in the FIFO.

FCR BIT 4-5:

Not used.

FCR BIT 6-7:

These bits are used to set the trigger level for the receiver FIFO interrupt.

BIT-7	BIT-6	FIFO trigger level				
0	0	01				
0	1	04				
1	0	08				
1	1	14				

LINE CONTROL REGISTER (LCR)

The Line Control Register is used to specify the asynchronous data communication format. The number of the word length, stop bits, and parity can be selected by writing appropriate bits in this register.

LCR BIT1-0:

These two bits specify the word length to be transmitted or received.

BIT-1	BIT-0	Word length
0	0	5
0	1	6
1	0	7
1	1 1	8

LCR BIT-2:

The number of stop bits can be specified by this bit.

BIT-2	Word length	Stop bit(s)
0	5,6,7, 5	1
1	6,7,8	2

LCR BIT-3:

Parity or no parity can be selected via this bit. 0=no parity

1=a parity bit is generated during the transmission, receiver also checks for received parity.

LCR BIT-4:

If the parity bit is enabled, LCR BIT-4 selects the even or odd parity format.

0=ODD parity is generated by forcing an odd number of 1's in the transmitted data, receiver also checks for same format.

1= EVEN parity bit is generated by forcing an even the number of 1's in the transmitted data, receiver also checks for same format.

LCR BIT-5:

If the parity bit is enabled, LCR BIT-5 selects the forced parity format.

LCR BIT-5=1 and LCR BIT-4=0, parity bit is forced to "1" in the transmitted and received data.

LCR BIT-5=1 and LCR BIT-4=1, parity bit is forced to "0" in the transmitted and received data.

LCR BIT-6:

Break control bit. It causes a break condition to be transmitted (the TX is forced to low state). 0=normal operating condition. 1=forces the transmitter output (TX) to go low to alert the communication terminal.

LCR BIT-7:

The internal baud rate counter latch enable (DLAB). 0=normal operation. 1=select divisor latch register.

MODEM CONTROL REGISTER (MCR)

This register controls the interface with the MODEM or a peripheral device (RS232).

MCR BIT-0:

0=force DTR* output to high. 1=force DTR* output to low.

MCR BIT-1:

0=force RTS* output to high. 1=force RTS* output to low.

MCR BIT-2:

Not used, except in internal loop-back mode.

MCR BIT-3:

0=set the INT A-D output pin to three state mode.. 1=Enable the INT A-D output pin (ST16C554 only).

MCR BIT-4:

0=normal operating mode.

1=enable local loop-back mode (diagnostics). The transmitter output (TX) is set high (Mark condition), the receiver input (RX), CTS*, DSR*, CD*, and RI* are disabled. Internally the transmitter output is connected to the receiver input and DTR*, RTS*, OP1* and OP2* are connected to modem control inputs. In this mode, the receiver and transmitter interrupts are fully operational. The Modem Control Interrupts are also operational, but the interrupts sources are now the lower four bits of the Modem Control Register instead of the four Modem Control inputs. The interrupts are still controlled by the IER.

MCR BIT 5-7: Not used. Are set to zero permanently.

LINE STATUS REGISTER (LSR)

This register provides the status of data transfer to CPU.

LSR BIT-0:

0=no data in receive holding register or FIFO. 1=data has been received and saved in the receive holding register or FIFO.

LSR BIT-1:

0=no overrun error (normal).

1=overrun error, next character arrived before receive holding register was emptied or if FIFOs are enabled, an overrun error will occur only after the FIFO is full and the next character has been completely received in the shift register. Note that character in the shift register is overwritten, but it is not transferred to the FIFO.

LSR BIT-2:

0=no parity error (normal).

1=parity error, received data does not have correct parity information. In the FIFO mode this error is associated with the character at the top of the FIFO.

LSR BIT-3:

0=no framing error (normal).

1=framing error received, received data did not have a valid stop bit. In the FIFO mode this error is associated with the character at the top of the FIFO.

LSR BIT-4:

0=no break condition (normal).

1=receiver received a break signal (RX was low for one character time frame). In FIFO mode, only one zero character is loaded into the FIFO.

LSR BIT-5:

0=transmit holding register is full. ST16C554 will not accept any data for transmission.

1=transmit holding register (or FIFO) is empty. CPU can load the next character.

LSR BIT-6:

0=transmitter holding and shift registers are full. 1=transmitter holding and shift registers are empty. In FIFO mode this bit is set to one whenever the transmitter FIFO and transmit shift register are empty.

LSR BIT-7:

0=Normal.

1=At least one parity error, framing error or break indication in the FIFO. This bit is cleared when LSR is read.

MODEM STATUS REGISTER (MSR)

This register provides the current state of the control lines from the modem or peripheral to the CPU. Four bits of this register are used to indicate the changed information. These bits are set to "1" whenever a control input from the MODEM changes state. They are set to "0" whenever the CPU reads this register

MSR BIT-0:

Indicates that the CTS* input to the ST16C554 has changed state since the last time it was read.

MSR BIT-1:

Indicates that the DSR* input to the ST16C554 has changed state since the last time it was read.

MSR BIT-2:

Indicates that the RI* input to the ST16C554 has changed from a low to a high state.

MSR BIT-3:

Indicates that the CD* input to the ST16C554 has changed state since the last time it was read.

MSR BIT-4:

This bit is equivalent to RTS in the MCR during local loop-back mode. It is the compliment of the CTS* input.

MSR BIT-5:

This bit is equivalent to DTR in the MCR during local loop-back mode. It is the compliment of the DSR* input.

MSR BIT-6:

This bit is equivalent to OP1 in the MCR during local loop-back mode. It is the compliment of the RI* input.

MSR BIT-7:

This bit is equivalent to OP2 in the MCR during local loop-back mode. It is the compliment to the CD* input.

Note: Whenever MSR BIT3-0: is set to logic "1", a MODEM Status Interrupt is generated.

SCRATCHPAD REGISTER (SR)

ST16C554 provides a temporary data register to store 8 bits of information for variable use.

BAUD RATE GENERATOR PROGRAMMING TABLE (1.8432 MHz CLOCK):

BAUD RATE	16 x CLOCK DIVISOR	% ERROR
50	2304	
110	1047	0.026
150	768	
300	384	
600	192	
1200	96	
2400	48	
4800	24	
7200	16	
9600	12	
19.2K	6	
38.4K	3	
56K	2	2.86
115.2K	1	

ST16C554 EXTERNAL RESET CONDITION

REGISTERS	RESET STATE
IER	IER BITS 0-7=0
ISR	ISR BIT-0=1, ISR BITS 1-7=0
LCR	LCR BITS 0-7=0
MCR	MCR BITS 0-7=0
LSR	LSR BITS 0-4=0,
	LSR BITS 5-6=1 LSR, BIT 7=0
MSR	MSR BITS 0-3=0,
	MSR BITS 4-7=input signals
FCR	FCR BITS 0-7=0

SIGNALS	RESET STATE
ТХ	High
RTS*	High
DTR*	High
RXRDY*	High
TXRDY*	High
INT	Three state mode

ST16C554/554D

AC ELECTRICAL CHARACTERISTICS

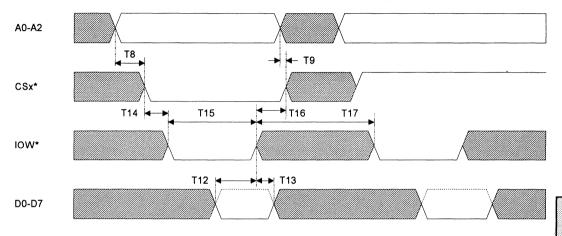
 $\rm T_{A}=25^{\circ}$ C, $\rm ~V_{cc}=5.0~V\pm5\%$ unless otherwise specified.

Symbol	Parameter		Limits		Units	Conditions
		Min	Тур	Max		
т	Clock high pulse duration	50			ns	
T_{1} T_{2} T_{3} T_{8} T_{9} T_{12}	Clock low pulse duration	50			ns	External clock
\dot{T}^2	Clock rise/fall time			10	ns	
Ť	Chip select setup time	5		10	ns	
Ť	Chip select hold time	Ö			ns	
Ť	Data setup time	15			ns	
T ¹² T ¹³	Data hold time	15			ns	
T ₁₄	IOW* delay from chip select	10			ns	
T ₁₅	IOW* strobe width	50			ns	
T ₁₆	Chip select hold time from IOW*	0			ns	
T ₁₇	Write cycle delay	55			ns	
Tw	Write cycle= $T_{15}+T_{17}$	105			ns	
Т ₁₉	Data hold time	15		25	ns	
Τ.	IOR* delay from chip select	10			ns	
T ₂₁ T ₂₃ T ₂₄ T ₂₅ Tr	IOR* strobe width	65			ns	
T_,	Chip select hold time from IOR*	0			ns	
T	Read cycle delay	55			ns	
Tr	Read cycle=T ₂₃ +T ₂₅	115			ns	
T_	Delay from IOR* to data			35	ns	100 pF load
T ₂₆ T ₂₈	Delay from IOW* to output			50	ns	100 pF load
T ₂₉	Delay to set interrupt from MODEM input			70	ns	100 pF load
Τ.,	Delay to reset interrupt from IOR*			70	ns	100 pF load
T ₃₀ T ₃₁ T ₃₂	Delay from stop to set interrupt			1 _{Rclk}	ns	100 pF load
T.,	Delay from IOR* to reset interrupt			200	ns	100 pF load
T_{33}^{32}	Delay from initial INT reset to transmit	8		24	*	
33	start	-				
T ₃₄	Delay from stop to interrupt			100	ns	
T ₃₅	Delay from IOW* to reset interrupt			175	ns	
T ₃₅ T ₄₄	Delay from stop to set RxRdy			1 _{RCLK}		
T ₄₅	Delay from IOR* to reset RxRdy			1	μS	
T₄6	Delay from IOW* to set TxRdy			195	ns	
T ₄₇	Delay from start to reset TxRdy			8	*	
N	Baud rate devisor	1		2 ¹⁶ -1		
N	Baud rate devisor	1		216-1		

Note 1: * = Baudout* cycle

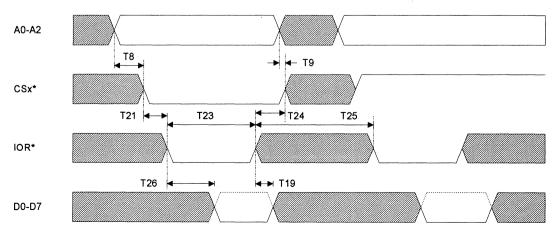
3

ABSOLUTE MAXIMUM RATINGS

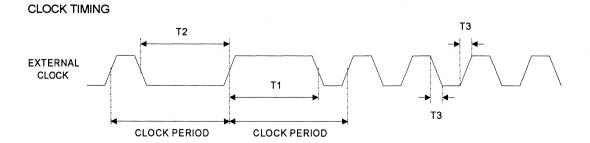

Supply range Voltage at any pin Operating temperature Storage temperature Package dissipation 7 Volts GND-0.3 V to VCC+0.3 V 0° C to +70° C -40° C to +150° C 500 mW

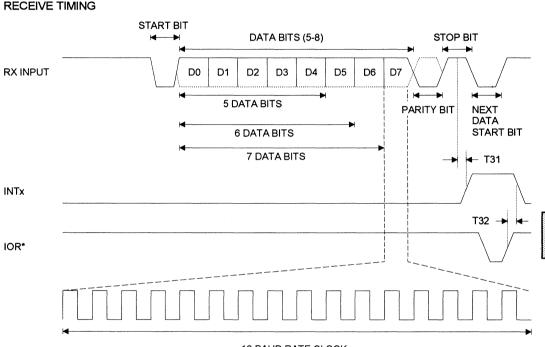
DC ELECTRICAL CHARACTERISTICS

 $\rm T_{A}=25^{\circ}$ C, $\rm ~V_{cc}=5.0~V\pm5\%$ unless otherwise specified.


Symbol	Parameter		imits	Units	Conditions	
		Min	Тур Мах			
V	Clock input low level	-0.5	0.6	v		
	Clock input high level	3.0	VCC	V		
V,	Input low level	-0.5	0.8	Γ V		
V ⊔	Input high level	2.2	VCC	V		
V_	Output low level on all outputs		0.4	V	I _{oL} = 6 mA	
V _{IL} V _{IH} V _{OL} V _{OH}	Output high level	2.4		V	I _{он} = -6 mA	
I _{CC}	Avg power supply current		6	mA	Un	
	Input leakage		±10	μA		
I _{IL} I _{CL}	Clock leakage		±10	μA		

3

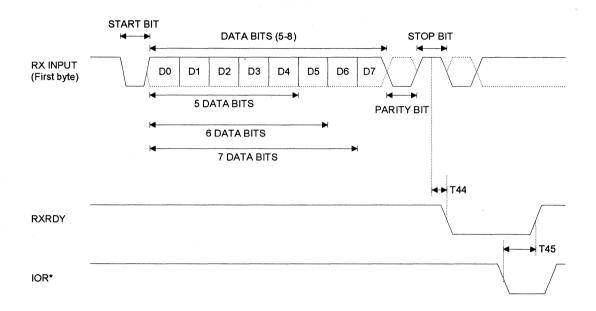

GENERAL WRITE TIMING


GENERAL READ TIMING

MODEM TIMING

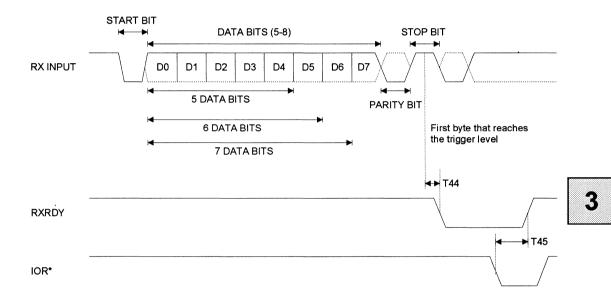
RECEIVE TIMING

16 BAUD RATE CLOCK

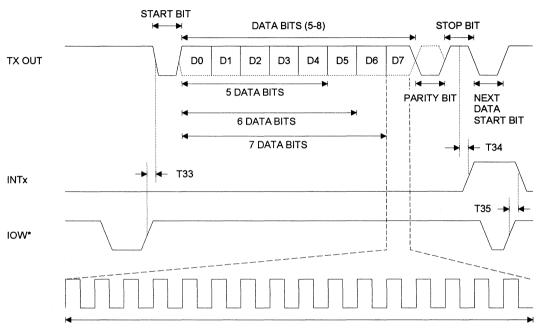

ST16C554/554D

3

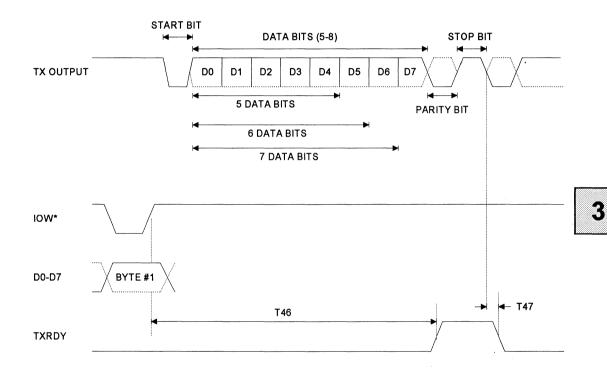
3-185


ST16C554/554D

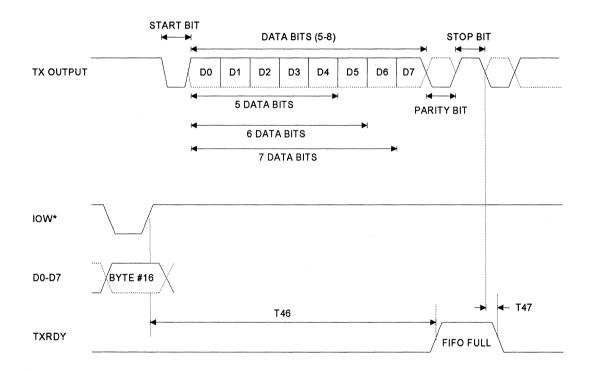
RXRDY TIMING FOR MODE "0"


ST16C554/554D

RXRDY TIMING FOR MODE "1"


ST16C554/554D

TRANSMIT TIMING



16 BAUD RATE CLOCK

TXRDY TIMING FOR MODE "0"

TXRDY TIMING FOR MODE "1"

3

Printed May 17, 1993

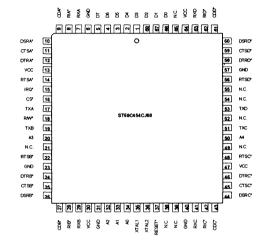
QUAD ASYNCHRONOUS RECEIVER AND TRANSMITTER

DESCRIPTION

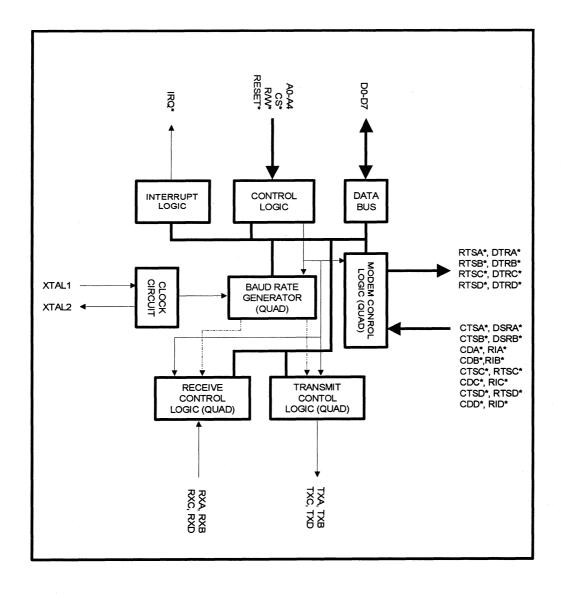
The ST68C454 is a quad universal asynchronous receiver and transmitter with modem control signals. Designed to interface with MOTOROLA, ROCKWELL, HITACHI bus and other popular micro-processors. An internal programmable baud rate generator is provided to select transmit and receive clock rates from 50Hz to 448kHz.

The ST68C454 is an improved, quad version of the NS16450 UART with faster operating access time. The on board status registers will provide the error conditions, type and status of the transfer operations being performed. Complete MODEM control capability, and a processor interrupt system that may be software tailored to the user's requirements to minimize the computing required to handle the communications link.

The ST68C454 is fabricated in an advanced 1.2μ CMOS process to achieve low drain power and high speed requirements.


FEATURES

- Motorola, Rockwell, Hitachi bus compatible
- Quad ST16C450
- Modem control signals (CTS*,RTS*, DSR*, DTR*, RI*, CD*)
- Programmable character lengths (5, 6, 7, 8)
- Even, odd, or no parity bit generation and detection
- Status report register
- TTL compatible inputs, outputs
- 448 kHz transmit/receive operation with 7.372 MHz external clock source


ORDERING INFORMATION

Part number	Package	Operating temperature
ST68C454CJ68	PLCC	0° C to +70° C
ST68C454IJ68	PLCC	-40° C to +85° C

PLCC Package

BLOCK DIAGRAM

3-192

ST68C454

3

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
D7-D0	5-66	I/O	Bi-directional data I/O. Eight bit, three state data bus to transfer information to or from the CPU. D0 is the least significant bit of the data bus and the first serial data bit to be received or transmitted.
RX A/B RX C/D	7,29 41,63	I	Serial data input. The serial information received from MODEM or RS232 to ST68C454 receive circuit. A mark (high) is logic one and a space (low) is logic zero. During the local loopback mode the RX input is disabled from external connection and connected to the TX output internally.
TX A/B TX C/D	17,19 51,53	0	Serial data output A. The serial data of channel A is transmitted via this pin with additional start, stop and parity bits. The TX will be held in mark (high) state during reset, local loopback mode or when the transmitter is disabled.
CS*	16	I	Chip select (active low). A low at this pin will enable the UART A-D CPU data transfer operation.
XTAL1	35	I	Crystal input 1 or external clock input. A crystal can be connected to this pin and XTAL2 pin to utilize the internal oscillator circuit. An external clock can be used to clock internal circuit and baud rate generator for custom transmis- sion rates.
XTAL2	36	1	Crystal input 2. See XTAL1.
R/W*	18	1	Read/Write strobe. A low on this pin will transfer the contents of the CPU data bus to the addressed register. A high on this pin will transfer the contents of the ST68C454 data bus to the CPU.
CD A/B* CD C/D*	9,27 43,61	I	Carrier detect A-D (active low). A low on this pin indicates that carrier has been detected by the modem.
GND GND	6,23,31 40,57	0	Signal and power ground.

ST68C454

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
DSR A/B* DSR C/D*	10,26 44,60	I	Data set ready A-D. (active low) A low on this pin indicates that MODEM is ready to exchange data with UART.
RI A/B* RI C/D*	8,28 42,62	l	Ring detect A-D indicator . (active low) A low on this pin indicates that modem has received a ringing signal from telephone line.
RTS A/B* RTS C/D*	14,22 48,56	O	Request to send A-D. (active low) To indicate that transmit- ter has data ready to send. Writing a "1" in the modem control register (MCR bit-1) will set this pin to low state. After the reset this pin will be set to high.
CTS A/B* CTS C/D*	11,25 45,59	I I	Clear to send A-D. (active low) The CTS* signal s a MODEM control function input whose conditions can be tested by reading the MSR BIT-4. CTS* has no effect on the transmitter output.
A4	50	I	Address line 4. To select one of the four UARTS.
A3	20	L	Address line 3. To select one of the four UARTS.
A2	32	ł	Address line 2. To select internal registers.
A1	33	l	Address line 1. To select internal registers.
A0	34	$\frac{1}{2} = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] + \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] + \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] + \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] + \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] + \frac{1}{2} \left[\frac{1}{2} \left$	Address line 0. To select internal registers.
IRQ*	15	ο	Interrupt output. (active low open collector) This pin goes low (when enabled by the interrupt enable register) when-
		n n Na n	ever a receiver error, receiver data available, transmitter empty or modem status condition flag is detected on UART A-D.
DTR A/B* DTR C/D*	12,24 46,58	o	Data terminal ready A-D. (active low) To indicate that

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
			ST68C454 is ready to receive data. This pin can be controlled via the modem control register (MCR bit-0). Writing a "1" at the MCR bit-0 will set the DTR* output to low. This pin will be set to high state after writing a "0" to that register or after the reset.
RESET*	37	I	Master reset. (active low) A low on this pin will reset all the outputs and internal registers. The transmitter output and the receiver input will be disabled during reset time.
vcc vcc	13,30 47,64	I	Power supply input.

SERIAL PORT SELECTION GUIDE

CS*	A4	A3	UART X
1	x	х	х
0	0	0	UART A
0	0	1	UART B
0	1	0	UART C
0	1	1	UART D

PROGRAMMING TABLE

A2	A1	A0	READ MODE	WRITE MODE
0	0	0	Receive Holding Register	Transmit Holding Register
0	0	1	0.0	Interrupt Enable Register
0	1	0	Interrupt Status Register	
0	1	1		Line Control Register
1	0	0		Modem Control Register
1	0	1	Line Status Register	Ũ
1	1	0	Modem Status Register	
1	1	1	Scratchpad Register	Scratchpad Register
0	0	0		LSB of Divisor Latch
0	0	1		MSB of Divisor Latch

REGISTER FUNCTIONAL DESCRIPTIONS

TRANSMIT AND RECEIVE HOLDING REGISTER

The serial transmitter section consists of a Transmit Hold Register A-D and Transmit Shift Register A-D. The status of the transmit hold register is provided in the Line Status Register A-D. Writing to this register will transfer the contents of the data bus (D7-D0) to the transmit holding register A-D whenever the transmitter holding register A-D or transmitter shift register A-D is empty. The transmit holding register empty A-D flag will be set to "1" when the transmitter is empty or data is transferred to the transmit shift register A-D. Note that a write operation should be performed when the transmit holding register empty flag is set.

On the falling edge of the start bit, the receiver internal counter will start to count 7 1/2 clocks (16x clock) which is the center of the start bit. The start bit is valid if the RX A-D is still low at the mid-bit sample of the start bit. Verifying the start bit prevents the receiver from assembling a false data character due to a low going noise spike on the RX A-D input. Receiver status codes will be posted in the Line Status Register A-D.

PROGRAMMABLE BAUD RATE GENERATOR

The ST68C454 contains a programmable Baud Rate Generator that is capable of taking any clock input from DC-8 MHz and dividing it by any divisor from 1 to 2¹⁶-1. Customize Baud Rates can be achieved by selecting proper divisor values for MSB and LSB of baud rate generator.

INTERRUPT ENABLE REGISTER A-D

The Interrupt Enable Register A-D masks the incoming interrupts from receiver ready, transmitter empty, line status and modem status registers to the IRQ* output pin.

IER BIT-0:

0=disable the receiver ready interrupt 1=enable the receiver ready interrupt

IER BIT-1:

0=disable transmitter empty interrupt 1=enable transmitter empty interrupt

IER BIT-2:

0=disable receiver line status interrupt 1=enable receiver line status interrupt

IER BIT-3:

0=disable the modem status register interrupt 1=enable the modem status register interrupt

IER BIT 7-4:

All these bits are set to logic zero.

INTERRUPT STATUS REGISTER A-D

The ST68C454 provides four level prioritized interrupt conditions to minimize software overhead during data character transfers. The Interrupt Status Register A-D provides the source of the interrupt in prioritized manner. During the read cycle, the ST68C454 provides the highest interrupt level to be serviced by the CPU. No other interrupts are acknowledged until the particular interrupt has been serviced. The following are the prioritized interrupt levels:

Ρ	D3	D2	D1	D0	Source of the interrupt
1	0	1	1	0	LSR (Receiver Line Sta- tus Register)
2	1	1	0	0	RXRDY (Received Data Ready)
3	0	0	1	0	TXRDY(Transmitter Holding Register Empty)
4	0	0	0	0	MSR (Modem Status Register)

ISR BIT-0:

0=an interrupt is pending and the ISR contents may be used as a pointer to the appropriate interrupt service routine

1=no interrupt pending

ISR BIT 1-2:

Logical combination of these bits, provides the highest priority interrupt pending.

ISR BIT 3-7:

These bits are not used and are set zero.

LINE CONTROL REGISTER A-D

The Line Control Register is used to specify the asynchronous data communication format. The num-

ber of the word length, stop bits, and parity can be selected by writing appropriate bits in this register.

LCR BIT1-0:

These two bits specify the word length to be transmitted or received.

00=5 bits word length 01=6 bits word length 10=7 bits word length 11=8 bits word length

LCR BIT-2:

The number of stop bits can be specified by this bit.

0=1 stop bit , when word length=5, 6, 7, 8 bits 1=1 and 1/2 stop bit , when word length=5 bits 1=2 stop bits, word length=6, 7, 8 bits

LCR BIT-3:

Parity or no parity can be selected via this bit. 0=no parity

1=a parity bit is generated during the transmission; receiver also checks for received parity

LCR BIT-4:

If the parity bit is enabled, LCR BIT-4 selects the even or odd parity format.

0=odd parity is generated by calculating odd number of 1's in the transmitted data; receiver also checks for same format.

1=an even parity bit is generated by calculating the number of even 1's in the transmitted data; receiver also checks for same format.

LCR BIT-5:

If the parity bit is enabled, LCR BIT-5 selects the forced parity format.

LCR BIT-5=1 and LCR BIT-4=0, parity bit is forced to "1" in the transmitted and received data.

LCR BIT-5=1 and LCR BIT-4=1, parity bit is forced to "0" in the transmitted and received data.

LCR BIT-6:

Break control bit. 1=forces the transmitter output (TX A-D) to go low to alert the communication terminal 0=normal operating condition

LCR BIT-7:

The internal baud rate counter latch enable (DLEN). 0=normal operation 1=select divisor latch register

MODEM CONTROL REGISTER A-D

This register controls the interface with the MODEM or a peripheral device (RS232).

MCR BIT-0:

0=force DTR* output to high 1=force DTR* output to low

MCR BIT-1:

0=force RTS* output to high 1=force RTS* output to low

MCR BIT2-3:

x=not used

MCR BIT -4:

0=normal operating mode

1=enable local loop-back mode (diagnostics). The transmitter output (TX A-D) is set high (Mark condition), the Receiver inputs (RX A-D, CTS A-D*, DSR A-D*, CD A-D*, and RI A-D*) are disabled. Internally, the transmitter output is connected to the receiver input and DTR A-D*, RTS A-D* and OP A-D* are connected to modem control inputs. In this mode, the receiver and transmitter interrupts are fully operational. The Modem Control Interrupts are also operational, but the interrupt sources are now the lower four bits of the Modem Control Register instead of the four Modem Control Inputs. The interrupts are still controlled by the IER A-D.

MCR BIT 5-7:

Not used. Are set to zero permanently.

LINE STATUS REGISTER A-D

This register provides the status of data transfer to CPU.

LSR BIT-0:

0=no data in receive holding register 1=a data has been received and saved in the receive holding register

LSR BIT-1:

0=no overrun error (normal) 1=overrun error, next character arrived before receive holding register was empty

LSR BIT-2:

0=no parity error (normal) 1=parity error, received data does not have correct parity information LSR BIT-3: 0=no framing error (normal) 1=framing error received, received data did not have a valid stop bit

LSR BIT-4:

0=no break condition (normal) 1=receiver received a break signal (RX was low for one character time frame)

LSR BIT-5:

0=transmit holding register is full; ST68C454 will not accept any data for transmission 1=transmit holding register is empty; CPU can load the next character

LSR BIT-6:

0=transmitter holding and shift registers are full 1=transmitter holding and shift registers are empty

LSR BIT-7:

Not used, set to "0".

MODEM STATUS REGISTER A-D

This register provides the current state of the control lines from the modem or peripheral to the CPU. Four bits of this register are used to indicate the changed information. These bits are set to "1" whenever a control input from the MODEM changes state. They are set to "0" whenever the CPU reads this register.

MSR BIT-0:

Indicates that the CTS* input to the ST68C454 has changed state since the last time it was read.

MSR BIT-1:

Indicates that the DSR* input to the ST68C454 has changed state since the last time it was read.

MSR BIT-2:

Indicates that the RI* input to the ST68C454 has changed from a low to a high state.

MSR BIT-3:

Indicates that the CD* input to the ST68C454 has changed state since the last time it was read.

MSR BIT-4:

This bit is equivalent to RTS in the MCR. It is the compliment of the CTS* input.

MSR BIT-5:

This bit is equivalent to DTR in the MCR. It is the compliment of the DSR* input.

MSR BIT-6:

This bit is equivalent to ST16C450-OP1 in the MCR. It is the compliment of the RI* input.

MSR BIT-7:

This bit is equivalent to ST16C450-OP2 in the MCR. It is the compliment to the CD* input.

SCRATCHPAD REGISTER A-D

ST68C454 provides a temporary data register to store 8 bits of information for variable use.

BAUD RATE GENERATOR PROGRAMMING TABLE (1.8432 MHz CLOCK):

BAUD RATE	16xCLOCK %ERROR	DVISOR
50	2304	
75	1536	
150	768	
300	384	
600	192	
1200	96	
2400	48	
4800	24	
7200	16	
9600	12	
19.2	6	
38.4K	3	
56K	2	2.86
115.2K	1	

ST68C454 EXTERNAL RESET CONDITION

REGISTERS	RESET STATE
IER A-D	BITS 0-7=0
ISR A-D	BIT-0=1, BIT-7=0
LCR A-D	BITS 0-7=0
MCR A-D	BITS 0-7=0
LSR A-D	BITS 0-4=0, BITS 5-6=1, BIT- 7=0
MSR A-D	BITS 0-3=0, BITS 4-7= input signals

SIGNALS	RESET STATE
TX A-D	High
RTS A-D*	High
DTR A-D*	High
IRQ	Three state mode

ST68C454

ST68C454 ACCESSIBLE REGISTERS

A2 A1 A0	Register	BIT-7	BIT-6	BIT-5	BIT-4	BIT-3	BIT-2	BIT-1	BIT-0
000	RHR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
000	THR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
001	IER	0	0	0	0	modem status interrupt	receive line status interrupt	transmit holding register	receive holding register
010	ISR	0	0	0	0	int priority bit-2	int priority bit-1	int priority bit-0	int status
011	LCR	divisor latch enable	set break	set parity	even parity	parity enable	stop bits	word length bit-1	word length bit-0
100	MCR	0	0	0	loop back	Not used	Not used	RTS*	DTR*
101	LSR	0	trans. empty	trans. holding empty	break interrupt	framing error	parity error	overrun error	receive data ready
1 1 0	MSR	CD	RI	DSR	стѕ	delta CD*	delta RI*	delta DSR*	delta CTS*
1 1 1	SPR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
000	DLL	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
001	DLM	bit-15	bit-14	bit-13	bit-12	bit-11	bit-10	bit-9	bit-8

DLL and DLM are accessible only when LCR bit-7 is set to "1".

AC ELECTRICAL CHARACTERISTICS

 $T_{\rm A}{=}25^{\circ}$ C, $V_{\rm cc}{=}5.0$ V \pm 5% unless otherwise specified.

Symbol	Parameter	Min	Limits Typ	Max	Units	Conditions
Т.	Clock high pulse duration	50			ns	
T,	Clock low pulse duration	50			ns	External clock
T_{1} T_{2} T_{3} T_{8} T_{9} T_{12}	Clock rise/fall time			10	ns	
T.	Chip select setup time	5			ns	
Т	Chip select hold time	0			ns	
Т,	Data setup time	15			ns	
T ¹²	Data hold time from write or CS*	15			ns	
T ₁₄	Write set up time	10			ns	
T ₁₄ T ₁₅	Write strobe width	50			ns	
T _{1e}	Chip select hold time from write	15			ns	
Τ.,	Write cycle delay	45			ns	
Т ₁₈	Data setup time	15			ns	
IW	Write cycle=T ₁₅ +T ₁₇	105			ns	
T_24	Data hold time	0			ns	
T ₂₅	Read cycle delay	25			ns	
Tr	Read cycle=T ₁₈ +T ₂₅	105			ns	
T ₂₇	Chip select pulse width	75			ns	
Т.,	Delay from Write to output			50	ns	100 pF load
T ₂₉	Delay to set interrupt from MODEM input			35	ns	100 pF load
Т ₃₁	Delay from stop to set interrupt			1 _{Rclk}	ns	100 pF load
132	Delay from Read to reset interrupt			200	ns	100 pF load
1 ₃₃	Delay from initial IRQ* reset to transmit start	8		24	*	
T ₃₄	Delay from stop to interrupt			100	ns	
T_35	Delay from Write to reset interrupt			75	ns	

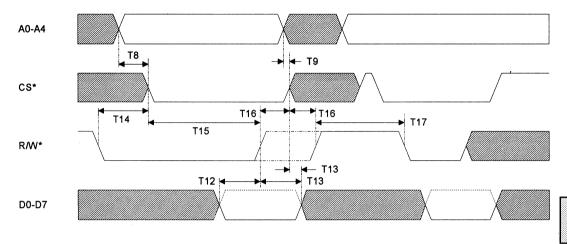
* = Baudout* cycle

3-201

ABSOLUTE MAXIMUM RATINGS

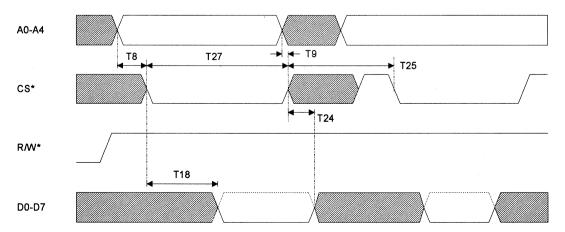
Supply range Voltage at any pin Operating temperature Storage temperature Package dissipation 7 Volts GND-0.3 V to VCC+0.3 V 0° C to +70° C -40° C to +150° C 500 mW

DC ELECTRICAL CHARACTERISTICS

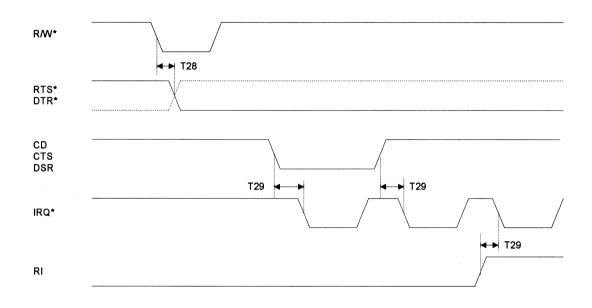

 T_{A} =25° C, V_{cc} =5.0 V ± 5% unless otherwise specified.

Symbol	Parameter	Lim Min Ty		Units	Conditions
V _{II CK}	Clock input low level	-0.5	0.6	V	
V _{ILCK} V _{IHCK}	Clock input high level	3.0		V	
V	Input low level	-0.5	0.8	V	
V.	Input high level	2.2		v	
V _{IH} V _{OL}	Output low level		0.4	v	I _{oL} = 6 mA on all outputs
V _{oH}	Output high level	2.4		V	I _{он} = -6 mA
	Avg. power supply current		6	mA	Un
l _{il}	Input leakage		±10	μA	
ľ _{c⊾}	Clock leakage		±10	μA	

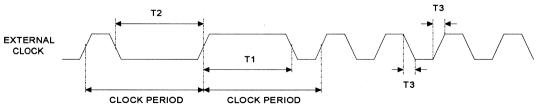
ð

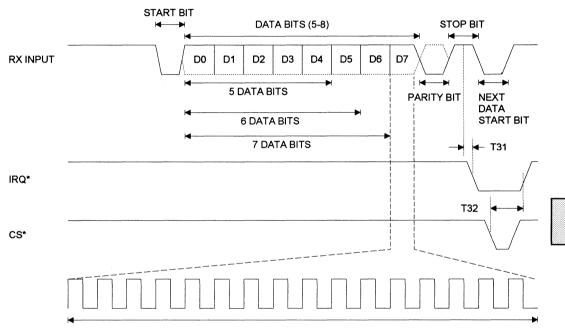

ST68C454

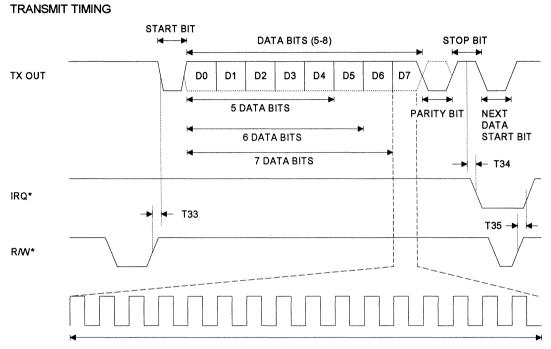
3



GENERAL WRITE TIMING


GENERAL READ TIMING


MODEM TIMING


3

RECEIVE TIMING

16 BAUD RATE CLOCK

3-205

16 BAUD RATE CLOCK

Printed May 17, 1993

QUAD ASYNCHRONOUS RECEIVER AND TRANSMITTER WITH FIFO

DESCRIPTION

The ST68C554 is a quad universal asynchronous receiver and transmitter with FIFO and modem control signals. Designed to interface with MOTOROLA, ROCKWELL, HITACHI bus and other popular microprocessors. An internal programmable baud rate generator is provided to select transmit and receive clock rates from 50Hz to 448kHz.

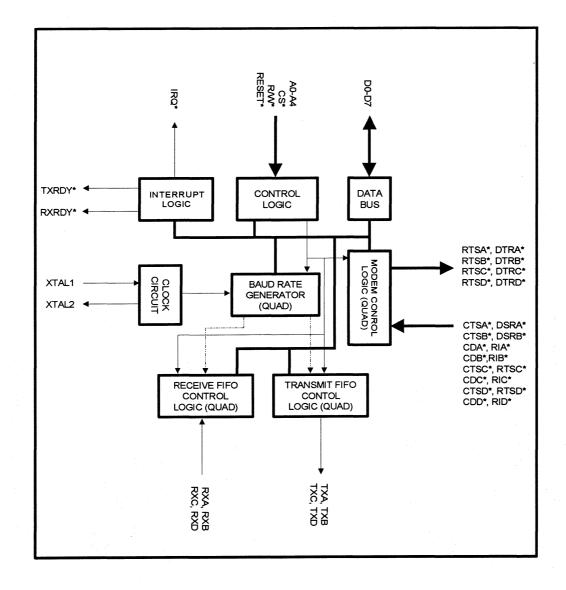
The ST68C554 is an improved, quad version of the NS16550 UART with faster operating access time. The on board status registers will provide the error conditions, type and status of the transfer operations being performed. Complete MODEM control capability, and a processor interrupt system that may be software tailored to the user's requirements to minimize the computing required to handle the communications link.

The ST68C554 is fabricated in an advanced 1.2μ CMOS process to achieve low drain power and high speed requirements.

FEATURES

- Motorola, Rockwell, Hitachi bus compatible
- Quad ST16C550
- 16 byte transmit FIFO
- 16 byte receive FIFO with error flags
- Modem control signals (CTS*,RTS*, DSR*, DTR*, RI*, CD*)
- Programmable character lengths (5, 6, 7, 8)
- Even, odd, or no parity bit generation and detection
- Status report register
- TTL compatible inputs, outputs
- 448 kHz transmit/receive operation with 7.372 MHz external clock source

ORDERING INFORMATION


Part number	Package	Operating temperature
ST68C554CJ68	PLCC	0° C to +70° C
ST68C554IJ68	PLCC	-40° C to +85° C

PLCC Package

10 DSRA 0 60 DSRD 11 59 CT SA* CTSD DTRA* 12 58 DIRO 13 vcc 57 GND 14 56 RTSD RT SA' 15 IRQ 55 N.C 16 CS. 54 NC 17 53 TXA TXO RM 18 ST68C554C.168 52 N.C тхв 19 51 TXC 20 A3 50 . 49 N.C. 21 N.C. RTSB 22 48 RTSC GND 23 47 voc DTRB 24 46 DTRC* 26 45 CTSC CT SB* 44 DSRB* 26 DSRC Page 20 A 222

BLOCK DIAGRAM

ST68C554

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
D7-D0	5-66	I/O	Bi-directional data I/O. Eight bit, three state data bus to transfer information to or from the CPU. D0 is the least significant bit of the data bus and the first serial data bit to be received or transmitted.
RX A/B RX C/D	7,29 41,63	I	Serial data input . The serial information received from MODEM or RS232 to ST68C554 receive circuit. A mark (high) is logic one and a space (low) is logic zero. During the local loopback mode the RX input is disabled from external connection and connected to the TX output internally.
TX A/B TX C/D	17,19 51,53	0	Serial data output A. The serial data of channel A is transmitted via this pin with additional start, stop and parity bits. The TX will be held in mark (high) state during reset, local loopback mode or when the transmitter is disabled.
CS*	16	I	Chip select (active low). A low at this pin will enable the UART A-D CPU data transfer operation.
XTAL1	35	I	Crystal input 1 or external clock input. A crystal can be connected to this pin and XTAL2 pin to utilize the internal oscillator circuit. An external clock can be used to clock internal circuit and baud rate generator for custom transmis- sion rates.
XTAL2	36	I	Crystal input 2. See XTAL1.
R/W*	18	1	Read/Write strobe. A low on this pin will transfer the contents of the CPU data bus to the addressed register. A high on this pin will transfer the contents of the ST68C554 data bus to the CPU.
CD A/B* CD C/D*	9,27 43,61	I	Carrier detect A-D (active low). A low on this pin indicates that carrier has been detected by the modem.
GND GND	6,23,31 40,57	0	Signal and power ground.

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
DSR A/B* DSR C/D*	10,26 44,60	I	Data set ready A-D. (active low) A low on this pin indicates that MODEM is ready to exchange data with UART.
RI A/B* RI C/D*	8,28 42,62		Ring detect A-D indicator . (active low) A low on this pin indicates that modem has received a ringing signal from telephone line.
RTS A/B* RTS C/D*	14,22 48,56	Ο	Request to send A-D. (active low) To indicate that transmit- ter has data ready to send. Writing a "1" in the modem control register (MCR bit-1) will set this pin to low state. After the reset this pin will be set to high.
CTS A/B⁺ CTS C/D*	11,25 45,59		Clear to send A-D. (active low) The CTS* signal s a MODEM control function input whose conditions can be tested by reading the MSR BIT-4. CTS* has no effect on the transmitter output.
A4	50	: 	Address line 4. To select one of the four UARTS.
A3	20	. П	Address line 3. To select one of the four UARTS.
A2	32	I	Address line 2. To select internal registers.
A1	33	· 1	Address line 1. To select internal registers.
A0	34 1	1	Address line 0. To select internal registers.
IRQ*	15	ο	Interrupt output. (active low open collector) This pin goes low (when enabled by the interrupt enable register) when- ever a receiver error, receiver data available, transmitter empty or modem status condition flag is detected on UART A-D.
DTR A/B* DTR C/D*	12,24 46,58	0 0	Data terminal ready A-D. (active low) To indicate that

SYMBOL DESCRIPTION

Symbol	Pin Signal Type		Pin Description
			ST68C554 is ready to receive data. This pin can be controlled via the modem control register (MCR bit-0). Writing a "1" at the MCR bit-0 will set the DTR* output to low. This pin will be set to high state after writing a "0" to that register or after the reset.
RESET*	37	I	Master reset. (active low) A low on this pin will reset all the outputs and internal registers. The transmitter output and the receiver input will be disabled during reset time.
vcc vcc	13,30 47,64	I	Power supply input.
TXRDY	39	0	Transmit ready (active high). This pin goes high when the transmit FIFO of the ST68C554 (any one) is full. It can be used as a single or multi-transfer DMA.
RXRDY*	38	0	Receive ready (active low). This pin goes low when the receive FIFO of the ST68C554 is full. It can be used as a single or multi-transfer DMA.

SERIAL PORT SELECTION GUIDE

CS*	CS* A4		UART X		
1	x	x	x		
0	0	0	UART A		
0	0	1	UART B		
0	1	0	UART C		
0	1	1	UART D		

PROGRAMMING TABLE

A2	A1	A0	READ MODE	WRITE MODE
0	0	0	Receive Holding Register	Transmit Holding Register
0	0	1		Interrupt Enable Register
0	1	0	Interrupt Status Register	FIFO Control Register
0	1	1		Line Control Register
1	0	0		Modem Control Register
1	0	1	Line Status Register	, S
1	1	0	Modem Status Register	
1	1	1	Scratchpad Register	Scratchpad Register
0	0	0		LSB of Divisor Latch
0	0	1		MSB of Divisor Latch

REGISTER FUNCTIONAL DESCRIPTIONS

TRANSMIT AND RECEIVE HOLDING REGISTER A-D

The serial transmitter section consists of a Transmit Hold Register A-D and Transmit Shift Register A-D. The status of the transmit hold register is provided in the Line Status Register A-D. Writing to this register will transfer the contents of the data bus (D7-D0) to the transmit holding register A-D whenever the transmitter holding register A-D or transmitter shift register A-D is empty. The transmit holding register empty A-D flag will be set to "1" when the transmitter is empty or data is transferred to the transmit shift register A-D. Note that a write operation should be performed when the transmit holding register empty flag is set.

On the falling edge of the start bit, the receiver internal counter will start to count 7 1/2 clocks (16x clock) which is the center of the start bit. The start bit is valid if the RX A-D is still low at the mid-bit sample of the start bit. Verifying the start bit prevents the receiver from assembling a false data character due to a low going noise spike on the RXA-D input. Receiver status codes will be posted in the Line Status Register A-D.

FIFO INTERRUPT MODE OPERATION

When the receive FIFO (FCR BIT-0=1) and receive interrupts (IER BIT-0=1) are enabled, receiver interrupt will occur as follows:

A) The receive data available interrupts will be issued to the CPU when the FIFO has reached its programmed trigger level; it will be cleared as soon as the FIFO drops below its programmed trigger level.

B) The ISR receive data available indication also occurs when the FIFO trigger level is reached, and like the interrupt it is cleared when the FIFO drops below the trigger level.

C) The data ready bit (LSR BIT-0) is set as soon as a character is transferred from the shift register to the receiver FIFO. It is reset when the FIFO is empty.

FIFO POLLED MODE OPERATION

When FCR BIT-0=1; resetting IER BIT 3-0 to zero puts the ST68C554 in the FIFO polled mode of operation. Since the receiver and transmitter are controlled separately either one or both can be in the polled mode operation by utilizing the Line Status Register.

A) LSR BIT-0 will be set as long as there is one byte in the receive FIFO.

B) LSR BIT4-1 will specify which error(s) has occurred.

C) LSR BIT-5 will indicate when the transmit FIFO is empty.

D) LSR BIT-6 will indicate when both transmit FIFO and transmit shift register are empty.

E) LSR BIT-7 will indicate when there are any errors in the receive FIFO.

PROGRAMMABLE BAUD RATE GENERATOR

The ST68C554 contains a programmable Baud Rate Generator that is capable of taking any clock input from DC-8 MHz and dividing it by any divisor from 1 to 2¹⁶ -1. Customize Baud Rates can be achieved by selecting proper divisor values for MSB and LSB of baud rate generator.

INTERRUPT ENABLE REGISTER A-D

The Interrupt Enable Register A-D masks the incoming interrupts from receiver ready, transmitter empty, line status and modem status registers to the IRQ* output pin.

IER BIT-0:

0=disable the receiver ready interrupt 1=enable the receiver ready interrupt

IER BIT-1:

0=disable transmitter empty interrupt 1=enable transmitter empty interrupt

IER BIT-2:

0=disable receiver line status interrupt 1=enable receiver line status interrupt

IER BIT-3:

0=disable the modem status register interrupt 1=enable the modem status register interrupt

IER BIT 7-4:

All these bits are set to logic zero.

INTERRUPT STATUS REGISTER A-D

The ST68C554 provides four level prioritized interrupt conditions to minimize software overhead during data character transfers. The Interrupt Status Register A-D provides the source of the interrupt in prioritized manner. During the read cycle, the ST68C554 provides the highest interrupt level to be serviced by the CPU. No other interrupts are acknowledged until the particular interrupt has been serviced. The following are the prioritized interrupt levels:

ST68C554

Ρ	D3	D2	D1	D0	Source of the interrupt
1	0	1	1	0	LSR (Receiver Line Sta- tus Register)
2	0	1	0	0	RXRDY (Received Data Ready)
2	1	1	0	0	RXRDY (Receive Data time out)
3	0	0	1	0	TXRDY(Transmitter Holding Register Empty)
4	0	0	0	0	MSR (Modern Status Register)

ISR BIT-0:

0=an interrupt is pending and the ISR contents may be used as a pointer to the appropriate interrupt service routine

1=no interrupt pending

ISR BIT 1-2:

Logical combination of these bits, provides the highest priority interrupt pending.

ISR BIT 3-5:

These bits are not used and are set zero.

ISR BIT 6-7:

0=Normal mode. 1=FIFO's are enabled.

FIFO CONTROL REGISTER (FCR)

This register is used to enable the FIFOs, clear the FIFOs, set the receiver FIFO trigger level, and select the type of DMA signaling.

FCR BIT-0:

0=Disable the transmit and receive FIFO. 1=Enable the transmit and receive FIFO.

FCR BIT-1:

0=No change.

1=Clears the contents of the receive FIFO and resets its counter logic to 0 (the receive shift register is not cleared or altered). This bit will return to zero after clearing the FIFOs.

FCR BIT-2:

0=No change.

1=Clears the contents of the transmit FIFO and resets its counter logic to 0 (the transmit shift register is not cleared or altered). This bit will return to zero after clearing the FIFOs.

FCR BIT-3:

0=No change.

1=Changes RXRDY and TXRDY pins from mode "0" to mode "1".

Transmit operation in mode "0":

When ST68C554 is in ST16C450 mode (FCR bit-0=0) or in the FIFO mode (FCR bit-0=1, FCR bit-3=0) when there are no characters in the transmit FIFO or transmit holding register, the TXRDY* pin will go low. Once active the TXRDY* pin will go high (inactive) after the first character is loaded into the transmit holding register.

Receive operation in mode "0":

When ST68C554 is in ST16C450 mode (FCR bit-0=0) or in the FIFO mode (FCR bit-0=1, FCR bit-3=0) and there is at least 1 character in the receive FIFO, the RXRDY* pin will go low. Once active the RXRDY* pin will go high (inactive) when there are no more characters in the receiver.

Transmit operation in mode "1":

When ST68C554 is in ST16C550 mode (FCR bit-0=1, FCR bit-3=1) the TXRDY* pin will become high (inactive) when the transmit FIFO is completely full. It will be low if one or more FIFO locations are empty.

Receive operation in mode "1":

When ST68C554 is in ST16C550 mode (FCR bit-0=1, FCR bit-3=1) and the trigger level or the timeout has been reached, the RXRDY* pin will go low. Once it is activated it will go high (inactive) when there are no more characters in the FIFO.

FCR BIT 4-5:

Not used.

FCR BIT 6-7:

These bits are used to set the trigger level for the receiver FIFO interrupt.

BIT-7	BIT-6	FIFO trigger level
0	0	01
0	1	04
1	0	08
1	1	14

LINE CONTROL REGISTER A-D

The Line Control Register is used to specify the asynchronous data communication format. The number of the word length, stop bits, and parity can be selected by writing appropriate bits in this register.

LCR BIT1-0:

These two bits specify the word length to be transmitted or received.

00=5 bits word length 01=6 bits word length 10=7 bits word length 11=8 bits word length

3

LCR BIT-2:

The number of stop bits can be specified by this bit.

0=1 stop bit , when word length=5, 6, 7, 8 bits 1=1 and 1/2 stop bit , when word length=5 bits 1=2 stop bits, word length=6, 7, 8 bits

LCR BIT-3:

Parity or no parity can be selected via this bit. 0=no parity

1=a parity bit is generated during the transmission; receiver also checks for received parity

LCR BIT-4:

If the parity bit is enabled, LCR BIT-4 selects the even or odd parity format.

0=odd parity is generated by calculating odd number of 1's in the transmitted data; receiver also checks for same format.

1=an even parity bit is generated by calculating the number of even 1's in the transmitted data; receiver also checks for same format.

LCR BIT-5:

If the parity bit is enabled, LCR BIT-5 selects the forced parity format.

LCR BIT-5=1 and LCR BIT-4=0, parity bit is forced to "1" in the transmitted and received data.

LCR BIT-5=1 and LCR BIT-4=1, parity bit is forced to "0" in the transmitted and received data.

LCR BIT-6:

Break control bit. 1=forces the transmitter output (TX A-D) to go low to alert the communication terminal 0=normal operating condition

LCR BIT-7:

The internal baud rate counter latch enable (DLEN). 0=normal operation 1=select divisor latch register

MODEM CONTROL REGISTER A-D

This register controls the interface with the MODEM or a peripheral device (RS232).

MCR BIT-0:

0=force DTR* output to high 1=force DTR* output to low

MCR BIT-1:

0=force RTS* output to high 1=force RTS* output to low

MCR BIT2-3:

x=not used

MCR BIT -4:

0=normal operating mode

1=enable local loop-back mode (diagnostics). The transmitter output (TX A-D) is set high (Mark condition), the Receiver inputs (RX A-D, CTS A-D*, DSR A-D*, CD A-D*, and RI A-D*) are disabled. Internally, the transmitter output is connected to the receiver input and DTR A-D*, RTS A-D* and OP A-D* are connected to modem control inputs. In this mode, the receiver and transmitter interrupts are fully operational. The Modem Control Interrupts are also operational, but the interrupt sources are now the lower four bits of the Modem Control Register instead of the four Modem Control Inputs. The interrupts are still controlled by the IER A-D.

MCR BIT 5-7:

Not used. Are set to zero permanently.

LINE STATUS REGISTER A-D

This register provides the status of data transfer to CPU.

LSR BIT-0:

0=no data in receive holding register 1=a data has been received and saved in the receive holding register

LSR BIT-1:

0=no overrun error (normal) 1=overrun error, next character arrived before receive holding register was empty

LSR BIT-2:

0=no parity error (normal) 1=parity error, received data does not have correct parity information

LSR BIT-3:

0=no framing error (normal) 1=framing error received, received data did not have a valid stop bit

LSR BIT-4:

0=no break condition (normal) 1=receiver received a break signal (RX was low for one character time frame)

LSR BIT-5:

0=transmit holding register is full; ST68C554 will not accept any data for transmission

1=transmit holding register is empty; CPU can load the next character

LSR BIT-6:

0=transmitter holding and shift registers are full 1=transmitter holding and shift registers are empty

LSR BIT-7:

0=Normal

1=At least one parity error, framing error or break indication in the FIFO. This bit is cleared when LSR is read.

MODEM STATUS REGISTER A-D

This register provides the current state of the control lines from the modem or peripheral to the CPU. Four bits of this register are used to indicate the changed information. These bits are set to "1" whenever a control input from the MODEM changes state. They are set to "0" whenever the CPU reads this register.

MSR BIT-0:

Indicates that the CTS* input to the ST68C554 has changed state since the last time it was read.

MSR BIT-1:

Indicates that the DSR* input to the ST68C554 has changed state since the last time it was read.

MSR BIT-2:

Indicates that the RI* input to the ST68C554 has changed from a low to a high state.

-8

MSR BIT-3:

Indicates that the CD* input to the ST68C554 has changed state since the last time it was read.

MSR BIT-4:

This bit is equivalent to RTS in the MCR. It is the compliment of the CTS* input.

MSR BIT-5:

This bit is equivalent to DTR in the MCR. It is the compliment of the DSR* input.

MSR BIT-6:

This bit is equivalent to ST16C550-OP1 in the MCR. It is the compliment of the RI* input.

MSR BIT-7:

This bit is equivalent to ST16C550-OP2 in the MCR. It is the compliment to the CD* input.

SCRATCHPAD REGISTER A-D

ST68C554 provides a temporary data register to store 8 bits of information for variable use.

2

BAUD RATE GENERATOR PROGRAMMING TABLE (1.8432 MHz CLOCK):

BAUD RATE	16xCLOCK %ERROR	DVISOR
50	2304	
75	1536	
150	768	
300	384	
600	192	
1200	96	
2400	48	
4800	24	
7200	16	
9600	12	
19.2	6	
38.4K	3	
56K	2	2.86
115.2K	1	

ST68C554 EXTERNAL RESET CONDITION

REGISTERS	RESET STATE
IER A-D	BITS 0-7=0
ISR A-D	BIT-0=1, BIT-7=0
LCR A-D	BITS 0-7=0
MCR A-D	BITS 0-7=0
LSR A-D	BITS 0-4=0, BITS 5-6=1, BIT- 7=0
MSR A-D	BITS 0-3=0, BITS 4-7= input signals

SIGNALS	RESET STATE
TX A-D	High
RTS A-D*	High
DTR A-D*	High
IRQ	Three state mode

ST68C554 ACCESSIBLE REGISTERS

A2 A1 A0	Register	BIT-7	BIT-6	BIT-5	BIT-4	BIT-3	BIT-2	BIT-1	BIT-0
000	RHR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
000	THR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
001	IER	0	0	0	0	modem status interrupt	receive line status interrupt	transmit holding register	receive holding register
010	FCR	RCVR trigger (MSB)	RCVR trigger (LSB)	0	0	DMA mode select	XMIT FIFO reset	RCVR FIFO reset	FIFO enable
010	ISR FIFOs	0/ FIFOs enabled	0/ enabled	0	0 priority	int priority bit-2	int priority bit-1	int status bit-0	int
0 1 1	LCR	divisor latch enable	set break	set parity	even parity	parity enable	stop bits	word length bit-1	word length bit-0
100	MCR	0	0	0	loop back	Not used	Not used	RTS*	DTR*
101	LSR	0/ FIFO error	trans. empty	trans. holding empty	break interrupt	framing error	parity error	overrun error	receive data ready
1 1 0	MSR	CD	RI	DSR	стѕ	delta CD*	delta RI*	delta DSR*	delta CTS*
1 1 1	SPR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
000	DLL	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
001	DLM	bit-15	bit-14	bit-13	bit-12	bit-11	bit-10	bit-9	bit-8

DLL and DLM are accessible only when LCR bit-7 is set to "1".

AC ELECTRICAL CHARACTERISTICS

 $\rm T_{A}=25^{\circ}$ C, $\rm ~V_{cc}=5.0~V\pm5\%$ unless otherwise specified.

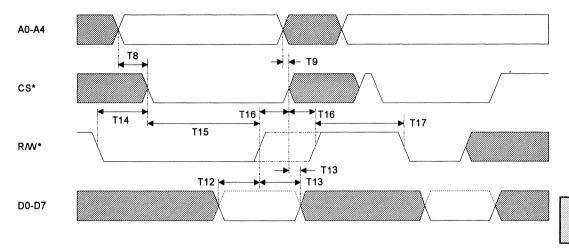
Symbol	Parameter	Min	Limits Typ	Max	Units	Conditions
	Clock high pulse duration Clock low pulse duration	50 50			ns ns	External clock
T ₁ T ₂ T ₃ T ₈ T ₉ T ₁₂	Clock rise/fall time Chip select setup time Chip select hold time	5 0		10	ns ns ns	
Τ ₁₃ Τ ₁₄	Data setup time Data hold time from write or CS* Write set up time Write strobe width	15 15 10 50			ns ns ns ns	
T ₁₅ T ₁₆ T ₁₇ T ₁₈	Chip select hold time from write Write cycle delay Data setup time	15 45 15			ns ns ns	
Tw T ₂₄ T ₂₅	Write cycle=T ₁₅ +T ₁₇ Data hold time Read cycle delay	105 0 25			ns ns ns	
Tr T ₂₇ T ₂₈	Read cycle=T ₁₈ +T ₂₅ Chip select pulse width Delay from Write to output	105 75		50	ns ns ns	100 pF load
T ₂₉ T ₃₁	Delay to set interrupt from MODEM input Delay from stop to set interrupt			35 1 _{Rck}	ns ns	100 pF load
T ₃₂ T ₃₃	Delay from Read to reset interrupt Delay from initial IRQ* reset to transmit start	8		200 24	ns *	100 pF load
T ₃₄ T ₃₅ T ₄₄	Delay from stop to interrupt Delay from Write to reset interrupt Delay from stop to set RxRdy			100 75 1 _{RCLK}	ns ns	
T ₄₅ T ₄₆ T ₄₇	Delay from read (CS*) to reset RxRdy Delay from write to set TxRdy Delay from start to reset TxRdy			1 195 8	µs ns *	

* = Baudout* cycle

3

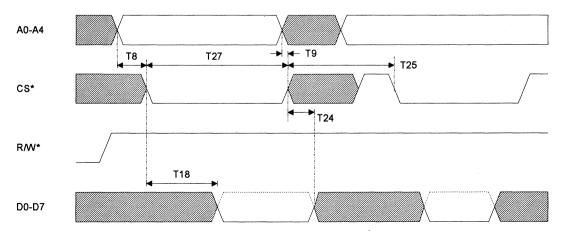
ABSOLUTE MAXIMUM RATINGS

Supply range Voltage at any pin Operating temperature Storage temperature Package dissipation 7 Volts GND-0.3 V to VCC+0.3 V 0° C to +70° C -40° C to +150° C 500 mW i d


DC ELECTRICAL CHARACTERISTICS

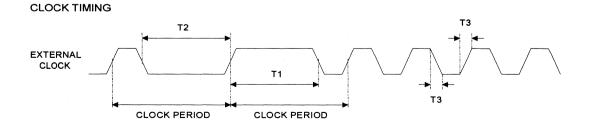
 $T_a=25^{\circ}$ C, $V_{cc}=5.0$ V ± 5% unless otherwise specified.

Symbol	Parameter	Lim Min Ty		Units	Conditions
V	Clock input low level	-0.5	0.6	\mathbf{v}	
	Clock input high level	3.0		v	
	Input low level	-0.5	0.8	v	
v <u>"</u>	Input high level	2.2	vcc	v	
V _{IL} V _{IH} V _{OL}	Output low level		0.4	V	I _{oL} = 6 mA on all outputs
V _{oH}	Output high level	2.4		v	I _{он} = -6 mA
I _{cc}	Avg. power supply current		6	mA	
I _{IL}	Input leakage		±10	μA	
l _{cl}	Clock leakage		±10	μA	

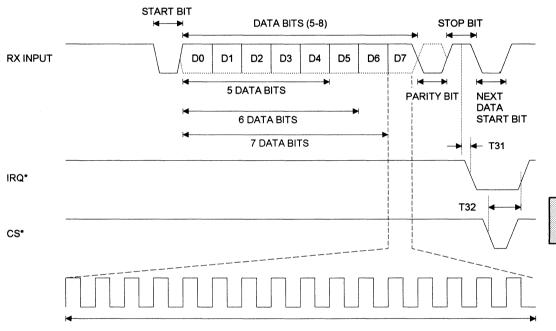

ST68C554

3



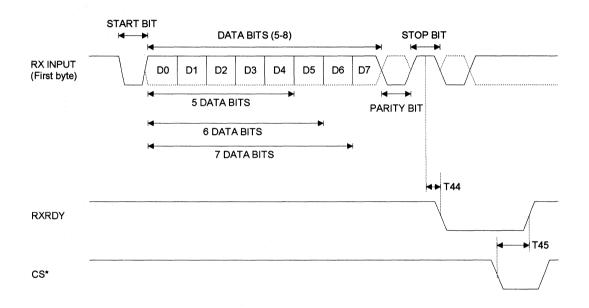

GENERAL WRITE TIMING

GENERAL READ TIMING

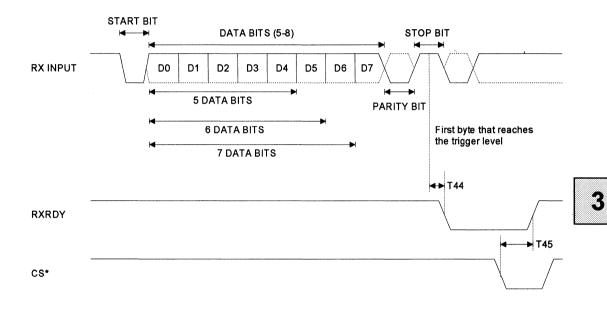


MODEM TIMING

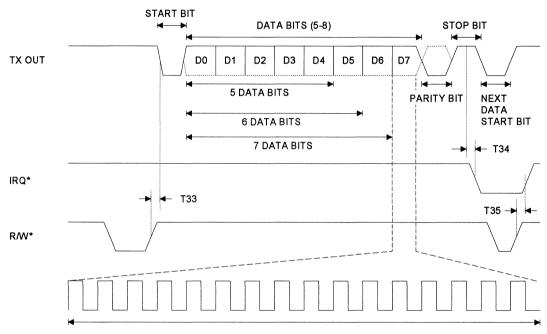
3



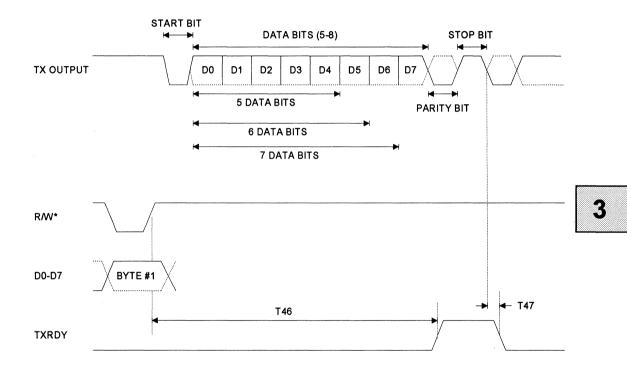
RECEIVE TIMING

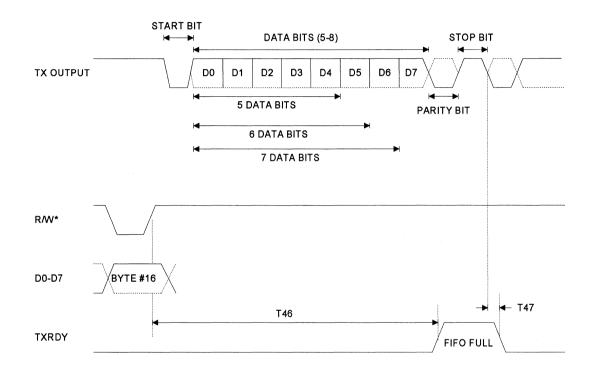

16 BAUD RATE CLOCK

ST68C554


RXRDY TIMING FOR MODE "0"

RXRDY TIMING FOR MODE "1"





16 BAUD RATE CLOCK

TXRDY TIMING FOR MODE "0"

TXRDY TIMING FOR MODE "1"

Printed May 18, 1993

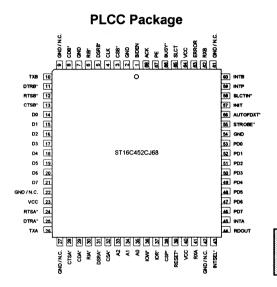
DUAL ASYNCHRONOUS RECEIVER/TRANSMITTER WITH PARALLEL PRINTER PORT

DESCRIPTION

The ST16C452 is a dual universal asynchronous receiver and transmitter with a bi-directional CENTRONICS type parallel printer port. A programmable baud rate generator is provided to select transmit and receive clock rates from 50Hz to 448kHz.

STARTECH ST16C452PS provides additional features to control the printer port direction without any additional external logic.

The ST16C452 is an improved version of the VL16C452 UART with higher operating speed and lower access time. The ST16C452 on board status registers provides the error conditions, type and status of the transfer operation being performed. Included is complete MODEM control capability, and a processor interrupt system that may be software tailored to the user's requirements. The ST16C452 provides internal loop-back capability for on board diagnostic testing.

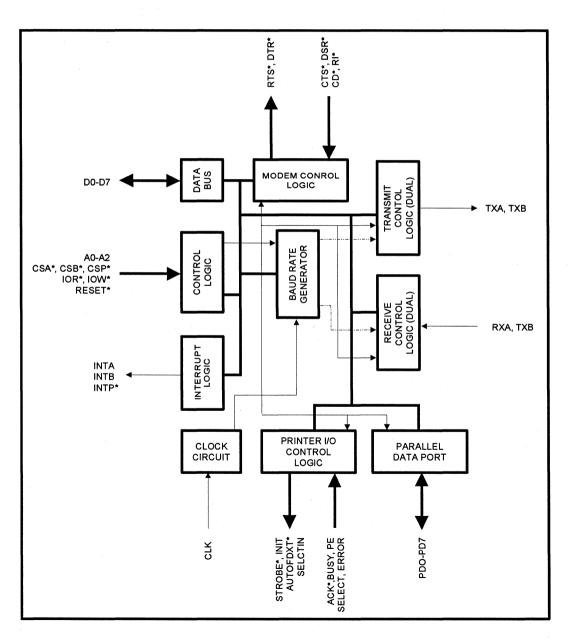

The ST16C452 is fabricated in an advanced 1.2μ CMOS process to achieve low drain power and high speed requirements.

FEATURES

- Pin to pin and functional compatible to VL16C452, WD16C452
- Fully compatible with all new bi-directional PS/2 printer port registers.
- Modem control signals (CTS*, RTS*, DSR*, DTR*, RI*, CD*)
- Programmable character lengths (5, 6, 7, 8)
- Even, odd, or no parity bit generation and detection
- Independent transmit and receive control
- Software compatible with INS8250, NS16C450
- 448 kHz transmit/receive operation with 7.372 MHz crystal or external clock source.
- Bi-directional hardware/software parallel port
- Bi-directional I/O ports

ORDERING INFORMATION

Part number	Package	Operating temperature
ST16C452CJ68	PLCC	0° C to + 70° C
ST16C452IJ68	PLCC	-40° C to + 85° C



3

ST16C452AT/PS

ST16C452AT ST16C452PS

BLOCK DIAGRAM

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
D0-D7	14-21	I/O	Bi-directional data bus. Eight bit, three state data bus to transfer information to or from the CPU. D0 is the least significant bit of the data bus and the first serial data bit to be received or transmitted.
A0-A2	35-33	1	Address select lines. To select internal registers.
CLK	4	I	Clock input. An external clock can be used to clock internal circuit and baud rate generator for custom transmission rates.
BIDEN	1	I	Printer direction select. A high puts the parallel port in the input mode for ST16C452AT and software controlled mode (input/output) to ST16C452PS. Allow sets the ST16C452 to output mode.
IOW*	36	1	Write strobe (active low). A low on this pin will transfer the contents of the CPU data bus to the addressed register.
IOR*	37	1	Read strobe (active low). A low level on this pin transfers the contents of the ST16C452 data bus to the CPU.
RDOUT	44	0	Read select out (active high). This pin goes high when the CPU is reading data from the ST16C452 to en/disable the external transceiver or logic's.
RESET*	39	I	Master reset. (active low) A low on this pin will reset all the outputs and internal registers. The transmitter output and the receiver input will be disabled during reset time.
CS A/B*	32,3	I	Chip select A/B (active low). A low at this pin enables the serial port-A/B / CPU data transfer operation.
DSR A/B*	31,5	I	Data set ready A/B (active low). A low on this pin indicates the MODEM is ready to exchange data with UART. This pin does not have any effect on the transmit or receive opera- tion.
RI A/B*	30,6	1	Ring detect indicator A/B (active low). A low on this pin indicates the modem has received a ringing signal from

3

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
			telephone line.
CD A/B*	29,8	1	Carrier detect A/B (active low). A low on this pin indicates the carrier has been detected by the modem.
TX A/B	26,10	0	Serial data output A/B. The serial data is transmitted via this pin with additional start, stop and parity bits. The TX will be held in mark (high) state during reset, local loopback mode or when the transmitter is disabled.
DTR A/B*	25,11	Ο	Data terminal ready A/B (active low). To indicate that ST16C452 is ready to receive data. This pin can be controlled via the modem control register (MCR bit-0). Writing a "1" at the MCR bit-0 will set the DTR* output to low. This pin will be set to high state after writing a "0" to that register or after the reset. Note that this pin does not have any effect on the transmit or receive operation.
RTS A/B*	24,12	ο	Request to send A/B (active low). To indicate that the transmitter has data ready to send. Writing a "1" in the modem control register (MCR bit-1) will set this pin to a low state. After the reset this pin will be set to high. Note that this pin does not have any effect on the transmit or receive operation.
RX A/B	41,62	1 1	Serial data input A/B. The serial information (data) received from serial port to ST16C452 receive input circuit. A mark (high) is logic one and a space (low) is logic zero. During the local loopback mode the RX input is disabled from external connection and connected to the TX output internally.
CTS A/B*	28,13	. е. ₁ Г .	Clear to send A/B (active low). The CTS* signal is a MODEM control function input whose conditions can be tested by reading the MSR BIT-4. CTS* has no effect on the transmit or receive operation.
INT A/B	45,60	0	Interrupt output A/B (three state active high) This pin goes high (when enabled by the interrupt enable register) when- ever a receiver error, receiver data available, transmitter empty, or modem status condition flag is detected.

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
CSP*	38	I	Parallel printer port chip select (active low). A low at this pin enables the parallel port / CPU data transfer operation.
PD7-PD0	46-53	I/O	Bi-directional parallel ports (three state). To transfer data in or out of the ST16C452 parallel port. PD7-PD0 are latched during output mode.
STROBE*	55	I/O	General purpose I/O or strobe output (open drain active low). To transfer latched data to the external peripheral or printer.
AUTOFDXT*	56	1/0	General purpose I/O or line printer auto feed (open drain active low). To signal the printer for continuous form feed.
INIT*	57	I/O	General purpose I/O or line printer initialize (open drain active low). To signal the line printer to enter internal initialization routine.
SLCTIN*	58	I/O	General purpose I/O or line printer select (open drain active low). To select the line printer.
ERROR*	63	I	General purpose input or line printer error (active low). This is an output from the printer to indicate an error by holding it low during error condition.
SLCT	65	I	General purpose input or line printer selected (active high). This is an output from the printer to indicate that the line printer has been selected.
BUSY	66	1	General purpose input or line printer busy (active high). An output from the printer to indicate printer is not ready to accept data.
PE	67	.I	General purpose input or line printer paper empty (active high). An output from the printer to indicate out of paper.
ACK*	68	I	General purpose input or line printer acknowledge (active low). An output from the printer to indicate that data has been accepted successfully.
INTP*	59	о	Printer interrupt output (active low). To signal the state of

3

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
			the printer port. This pin tracks the ACK* input pin, When ACK* is low INTP is low and when ACK* is high INTP is high
INTSEL*	43		Interrupt select mode. The external ACK* can be selected as an interrupt source by connecting this pin to the GND. Connecting this pin to VCC will set the interrupt to latched mode, reading the status register of the printer section resets the INTP output.
GND	2,7,22	0	Signal and power ground. All ground pins are connected
tana ara-	42,54,61		internally.
vcc	23,40,64	L I L P	Power supply input. All power pins are connected internally.

PROGRAMMING TABLE FOR SERIAL PORTS A/B

A2	A1	A0	READ MODE	WRITE MODE
0	0	0	Receive Holding Register	Transmit Holding Register
0	0	1		Interrupt Enable Register
0	1	0	Interrupt Status Register	
0	1	1		Line Control Register
1	0	0		Modem Control Register
1 1	0	1	Line Status Register	-
1 1	· 1·	0	Modem Status Register	
1	1	1	Scratchpad Register	Scratchpad Register
Ó	Ó	Ó		LSB of Divisor Latch
0	Ō	1	and the second	MSB of Divisor Latch
		•		

ST16C452 ACCESSIBLE REGISTERS

A2	A1	A0	Register	BIT-7	BIT-6	BIT-5	BIT-4	BIT-3	BIT-2	BIT-1	BIT-0
0	0	0	RHR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	0	THR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	1	IER	0	0	0	0	modem status interrupt	receive line status interrupt	transmit holding register	receive holding register
0	1	0	ISR	0	0	0	0	0	INT priority bit-1	INT priority bit-0	INT status
0	1	1	LCR	divisor latch enable	set break	set parity	even parity	parity enable	stop bits	word length bit-1	word length bit-0
1	0	0	MCR	0	0	0	loop back	INT enable	Not used	RTS*	DTR*
1	0	1	LSR	0	trans. empty	trans. holding empty	break interrupt	framing error	parity error	overrun error	receive data ready
1	1	0	MSR	CD	RI	DSR	стѕ	delta CD*	delta RI*	delta DSR*	delta CTS*
1	1	1	SPR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	0	DLL	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	1	DLM	bit-15	bit-14	bit-13	bit-12	bit-11	bit-10	bit-9	bit-8

DLL and DLM are accessible only when LCR bit-7 is set to "1".

3

REGISTER FUNCTIONAL DESCRIPTIONS

TRANSMIT AND RECEIVE HOLDING REGISTER

The serial transmitter section consists of a Transmit Hold Register (THR) and Transmit Shift Register (TSR). The status of the transmit hold register is provided in the Line Status Register (LSR). Writing to this register (THR) will transfer the contents of data bus (D7-D0) to the Transmit holding register whenever the transmitter holding register or transmitter shift register is empty. The transmit holding register empty flag will be set to "1" when the transmitter is empty or data is transferred to the transmit shift register. Note that a write operation should be performed when the transmit holding register empty flag is set.

On the falling edge of the start bit, the receiver internal counter will start to count 7 1/2 clocks (16x clock) which is the center of the start bit. The start bit is valid if the RX is still low at the mid-bit sample of the start bit. Verifying the start bit prevents the receiver from assembling a false data character due to a low going noise spike on the RX input. Receiver status codes will be posted in the Line Status Register.

PROGRAMMABLE BAUD RATE GENERATOR

The ST16C452 contains a programmable Baud Rate Generator that is capable of taking any clock input from DC-8 MHz and dividing it by any divisor from 1 to 2^{16} -1. The output frequency of the Baudout* is equal to 16X of transmission baud rate (Baudout*=16 x Baud Rate). Customize Baud Rates can be achieved by selecting proper divisor values for MSB and LSB of baud rate generator.

INTERRUPT ENABLE REGISTER (IER)

The Interrupt Enable Register (IER) masks the incoming interrupts from receiver ready, transmitter empty, line status and modem status registers to the INT output pin.

IER BIT-0:

0=disable the receiver ready interrupt. 1=enable the receiver ready interrupt.

IER BIT-1:

0=disable the transmitter empty interrupt. 1=enable the transmitter empty interrupt.

IER BIT-2:

0=disable the receiver line status interrupt. 1=enable the receiver line status interrupt.

IER BIT-3:

0=disable the modem status register interrupt. 1=enable the modem status register interrupt.

IER BIT 7-4:

All these bits are set to logic zero.

INTERRUPT STATUS REGISTER (ISR)

The ST16C452 provides four level prioritized interrupt conditions to minimize software overhead during data character transfers. The Interrupt Status Register (ISR) provides the source of the interrupt in prioritized matter. During the read cycle the ST16C452 provides the highest interrupt level to be serviced by CPU. No other interrupts are acknowledged until the particular interrupt is serviced. The following are the prioritized interrupt levels:

Priority level

Ρ	D2	D1	D0	Source of the interrupt
1	1	1	0	LSR (Receiver Line Status Register)
2	1	0	0	RXRDY (Received Data
3	0	1	0	Ready) TXRDY(Transmitter Holding Register Empty)
4	0	0	0	MSR (Modem Status Regis- ter)

ISR BIT-0:

0=an interrupt is pending and the ISR contents may be used as a pointer to the appropriate interrupt service routine.

1=no interrupt pending.

ISR BIT 1-2:

Logical combination of these bits, provides the highest priority interrupt pending.

ISR BIT 3-7:

These bits are not used and are set to "0".

LINE CONTROL REGISTER (LCR)

The Line Control Register is used to specify the asynchronous data communication format. The number of the word length, stop bits, and parity can be selected by writing appropriate bits in this register.

LCR BIT1-0:

These two bits specify the word length to be transmitted or received.

BIT-1	BIT-0	Word length
0	0	5
0	1	6
1	0	7
1	1	8

LCR BIT-2:

The number of stop bits can be specified by this bit.

BIT-2	Word length	Stop bit(s)
0	5,6,7,8	1
1	5	1-1/2
1	6,7,8	2

LCR BIT-3:

Parity or no parity can be selected via this bit. 0=no parity 1=a parity bit is generated during the transmission,

receiver also checks for received parity.

LCR BIT-4:

If the parity bit is enabled, LCR BIT-4 selects the even or odd parity format.

0=ODD parity is generated by forcing an odd number of 1's in the transmitted data, receiver also checks for same format.

1= EVEN parity bit is generated by forcing an even the number of 1's in the transmitted data, receiver also checks for same format.

LCR BIT-5:

If the parity bit is enabled, LCR BIT-5 selects the forced parity format.

LCR BIT-5=1 and LCR BIT-4=0, parity bit is forced to "1" in the transmitted and received data.

LCR BIT-5=1 and LCR BIT-4=1, parity bit is forced to "0" in the transmitted and received data.

LCR BIT-6:

Break control bit. It causes a break condition to be transmitted (the TX is forced to low state).

0=normal operating condition.

 $1 = \mbox{forces}$ the transmitter output (TX) to go low to alert the communication terminal.

LCR BIT-7:

The internal baud rate counter latch enable (DLEN). 0=normal operation.

1=select divisor latch register.

MODEM CONTROL REGISTER (MCR)

This register controls the interface with the MODEM or a peripheral device (RS232).

MCR BIT-0:

0=force DTR* output to high. 1=force DTR* output to low.

MCR BIT-1:

0=force RTS* output to high. 1=force RTS* output to low.

MCR BIT-2:

This bit is used for internal loop-back mode, and is not used for regular operation.

MCR BIT-3:

0= sets the INT output pin to three state mode. 1= enables the INT output pin.

MCR BIT-4:

0=normal operating mode.

1=enable local loop-back mode (diagnostics). The transmitter output (TX) is set high (Mark condition), the receiver input (RX), CTS*, DSR*, CD*, and RI* are disabled. Internally the transmitter output is connected to the receiver input and DTR*, RTS*, OP1* and OP2* are connected to modem control inputs. In this mode, the receiver and transmitter interrupts are fully operational. The Modem Control Interrupts are also operational, but the interrupts sources are now the lower four bits of the Modem Control Register instead of the four Modem Control inputs. The interrupts are still controlled by the IER.

MCR BIT 5-7:

Not used. Are set to zero permanently.

LINE STATUS REGISTER (LSR)

This register provides the status of data transfer to CPU.

LSR BIT-0:

0=no data in receive holding register 1=data has been received and saved in the receive holding register.

LSR BIT-1:

0=no overrun error (normal).

1=overrun error, next character arrived before receive holding register was emptied.

LSR BIT-2:

0=no parity error (normal).

1=parity error, received data does not have correct parity information.

LSR BIT-3:

0=no framing error (normal).

1=framing error received, received data did not have a valid stop bit. In

LSR BIT-4:

0=no break condition (normal). 1=receiver received a break signal (RX was low for one character time frame).

LSR BIT-5:

0=transmit holding register is full. ST16C452 will not accept any data for transmission.

1=transmit holding register is empty. CPU can load the next character.

LSR BIT-6:

0=transmitter holding and shift registers are full. 1=transmitter holding and shift registers are empty.

LSR BIT-7:

Not used. Set to "0".

MODEM STATUS REGISTER (MSR)

This register provides the current state of the control lines from the modem or peripheral to the CPU. Four bits of this register are used to indicate the changed information. These bits are set to "1" whenever a control input from the MODEM changes state. They are set to "0" whenever the CPU reads this register.

MSR BIT-0:

Indicates that the CTS* input to the ST16C452 has changed state since the last time it was read.

MSR BIT-1:

Indicates that the DSR* input to the ST16C452 has changed state since the last time it was read.

MSR BIT-2:

Indicates that the RI* input to the ST16C452 has changed from a low to a high state.

MSR BIT-3:

Indicates that the CD* input to the ST16C452 has changed state since the last time it was read.

MSR BIT-4:

This bit is equivalent to RTS in the MCR during local loop-back mode. It is the compliment of the CTS* input.

MSR BIT-5:

This bit is equivalent to DTR in the MCR during local loop-back mode. It is the compliment of the DSR* input.

MSR BIT-6:

This bit is equivalent to OP1 in the MCR during local loop-back mode. It is the compliment of the RI* input.

MSR BIT-7:

This bit is equivalent to OP2 in the MCR during local loop-back mode. It is the compliment to the CD* input.

Note: Whenever MSR BIT3-0: is set to logic "1", a MODEM Status Interrupt is generated.

SCRATCHPAD REGISTER (SR)

ST16C452 provides a temporary data register to store 8 bits of information for variable use.

RESET STATE
High High High Three state mode

BAUD RATE GENERATOR PROGRAMMING TABLE (1.8432 MHz CLOCK):

BAUD RATE	16 x CLOCK DIVISOR	% ERROR		
50	2304			
75	1536			
110	1047	0.026		
134.5	857	0.058		
150	768			
300	384			
600	192			
1200	96			
2400	48			
3600	32			
4800	24			
7200	16			
9600	12			
19.2K	6			
38.4K	3			
56K	2	2.86		
115.2K	1			

ST16C452 EXTERNAL RESET CONDITION

REGISTERS	RESET STATE
IER	BITS 0-7=0
ISR	BIT-0=1, ISR BITS 1-7=0
LCR	BITS 0-7=0
MCR	BITS 0-7=0
LSR	BITS 0-4=0,
	LSR BITS 5-6=1 LSR, BIT 7=0
MSR	BITS 0-3=0,
	MSR BITS 4-7=input signals

PRINTER PORT PROGRAMMING TABLE:

A1	A0	IOW*	IOR*
0	0	PORT REGISTER	PORT REGISTER
0	1	I/O SELECT REGISTER	STATUS REGISTER *
1	0	CONTROL REGISTER	COMMAND REGISTER

* Reading the status register will reset the INTP output.

PARALLEL PORT DIRECTION SELECT REGISTER (WRITE ONLY)

ST16C452XX	CONTROL REGISTER (D5)	BIDEN	I/O SELECT REGISTER	PORT DIRECTION
ST16C452AT	х	0	x	Output mode
ST16C452PS	X	0	AA Hex	Input mode
ST16C452PS	х	0	55 Hex	Output mode
ST16C452AT	х	1	l x	Input mode
ST16C452PS	0	1	l x	Output mode
ST16C452PS	1	1	X	Input mode

PRINTER PORTREGISTER DESCRIPTIONS

PORT REGISTER

Bi-directional printer port.

Writing to this register during output mode will transfer the contents of the data bus to the PD7-PD0 ports. Reading this register during input mode will transfer the states of the PD7-PD0 to the data bus. This register will be set to the output mode after reset.

PR BIT 7-0:

PD7-PD0 bi-directional I/O ports.

STATUS REGISTER

This register provides the state of the printer outputs and the interrupt condition.

SR BIT 1-0: Not used. Are set to "1" permanently.

SR BIT-2:

Interrupt condition. 0= an interrupt is pending This bit will be set to "0" at the falling edge of the ACK* input. 1= no interrupt is pending Reading the STATUS REGISTER will set this bit to "1".

SR BIT-3:

ERROR* input state. 0= ERROR* input is in low state 1= ERROR* input is in high state

SR BIT-4: SLCT input state. 0= SLCT input is in low state 1= SLCT input is in high state

SR BIT-5:

PE input state. 0= PE input is in low state 1= PE input is in high state

SR BIT-6:

ACK* input state. 0= ACK* input is in low state 1= ACK* input is in high state

SR BIT-7:

BUSY input state. 0= BUSY input is in high state 1= BUSY input is in low state

COMMAND REGISTER

The state of the STROBE*, AUTOFDXT*, INIT, SLCTIN* pins, and interrupt enable bit can be read by this register regardless of the I/O direction.

COM BIT-0:

STROBE* input pin. 0= STROBE* pin is in high state 1= STROBE* pin is in low state

COM BIT-1:

AUTOFDXT* input pin. 0= AUTOFDXT* pin is in high state 1= AUTOFDXT* pin is in low state

COM BIT-2:

INIT input pin. 0= INIT pin is in low state 1= INIT pin is in high state

COM BIT-3:

SLCTIN* input pin. 0= SLCTIN* pin is in high state 1= SLCTIN* pin is in low state

COM BIT-4:

Interrupt mask. 0= Interrupt (INTP output) is disabled 1= Interrupt (INTP output) is enabled

COM BIT 7-5: Not used. Are set to "1" permanently.

CONTROL REGISTER.

Writing to this register will set the state of the STROBE*, AUTOFDXT*, INIT, SLCTIN pins, and interrupt mask register.

CON BIT-0:

STROBE* output control bit. 0= STROBE* output is set to high state 1= STROBE* output is set to low state

CON BIT-1:

AUTOFDXT* output control bit. 0= AUTOFDXT* output is set to high state 1= AUTOFDXT* output is set to low state

CON BIT-2:

INIT output control bit. 0= INIT output is set to low state 1= INIT output is set to high state

CON BIT-3:

SLCTIN* output control bit. 0= SLCTIN* output is set to high state 1= SLCTIN* output is set to low state

CON BIT-4:

Interrupt output control bit. 0= INTP output is disabled 1= INTP output is enabled

CON BIT-5:

I/O select. Direction of the PD7-PD0 can be selected by setting or clearing this bit.
0= PD7-PD0 are set for output mode
1= PD7-PD0 are set for input mode

CON BIT 7-6:

Not used.

I/O SELECT REGISTER

Software controlled I/O select.

Bi-directional mode can be selected by keeping the BIDEN input in high state and setting CON BIT-5 to "zero or one"

Hardware/software I/O select.

Bi-directional mode can be selected by keeping the BIDEN input in low state and setting I/O SELECT register to "AA" Hex for input or "55" Hex for output. I/ O select register and control register bit-5 are only available for ST16C452PS parts.

ST16C452 EXTERNAL RESET CONDITION

SIGNALS	RESET STATE
PD0-PD7	High, output mode
STROBE*	High, output mode
AUTOFDXT*	High, output mode
INIT	Low, output mode
SLCTIN*	High, output mode

ST16C452 PRINTER PORT REGISTER CONFIGURATIONS

PORT REGISTER

(READ/WRITE)

D7	D6	D5		US	D2		
PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0 <u></u>

STATUS REGISTER

(READ ONLY)

D7	D6	D5	D4	D3	D2	D1	D0
BUSY*	ACK	PE	SLCT	ERROR STATE	IRQ	1	1
				<u> </u>	1= No interru 0= Interrupt	upt (PS only)	

COMMAND REGISTER (READ ONLY)

D7	D6	D5	D4	D3	D2	D1	D0
1	1	1	IRQ ENABLE	SLCTIN*	INIT	AUTO- FDXT*	STROBE*
			0= IRQ disabled 1= IRQ enabled				

CONTROL REGISTER (WRITE ONLY)

D7	D6	D5	D4	D3	D2	D1	D0
_	_	I/O SELECT	IRQ MASK	SLCTIN*	INIT	AUTO- FDXT*	STROBE*
L.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0=Output (PS only) 1=Input (PS only) X= AT only		0=INTP o disabled 1=INTP o enabled	•			

3

AC ELECTRICAL CHARACTERISTICS

T _A =25° C,	$V_{\rm cc}\text{=}5.0$ V ± 5% unless otherwise specified.
------------------------	--

Symbol	Parameter Limits Min Typ Max				Units	Conditions
T,	Clock high pulse duration	50			ns	
T,	Clock low pulse duration	50			ns	External clock
T ₁ T ₂ T ₃ T ₉ T ₁₁	Clock rise/fall time			10	ns	
T _s	Chip select setup time	5			ns	
T,	Chip select hold time	0			ns	
T ₁₁	IOR* to DDIS* delay			25	ns	100 pF load
T ₁₂	Data set up time	15			ns	
T ₁₃	IOW* delay from chip select	10			ns	
T ₁₄	IOW* delay from chip select	10			ns	
T ₁₅	IOW* strobe width	50			ns	
T ₁₆	Chip select hold time from IOW*	0			ns	
T ₁₇	Write cycle delay	55			ns	
Tw	Write cycle=T ₁₅ +T ₁₇	105			ns	
Т ₁₉	Data hold time	15			ns	
T ₂₁ T ₂₃	IOR* delay from chip select	10			ns	
T ₂₃	IOR* strobe width	65			ns	
Т ₂₄ Т ₂₅ Тг	Chip select hold time from IOR*	0	1 1		ns	
T_25	Read cycle delay	55			ns	
Tr	Read cycle=T ₂₃ +T ₂₅	115			ns	
Т ₂₆ Т ₂₈	Delay from IOR* to data			35	ns	100 pF load
T_28	Delay from IOW* to output			50	ns	100 pF load
T ₂₉	Delay to set interrupt from MODEM input			70	ns	100 pF load
Т ₃₀	Delay to reset interrupt from IOR*			70	ns	100 pF load
T ₃₁	Delay from stop to set interrupt			1 _{ськ}	ns	100 pF load
T.,	Delay from IOR* to reset interrupt			200	ns	100 pF load
T ₃₃	Delay from initial INT reset to transmit start	8		24	*	

ST16C452AT/PS

AC ELECTRICAL CHARACTERISTICS

 $\rm T_{A}=25^{\circ}$ C, $\rm ~V_{cc}=5.0~V\pm5\%$ unless otherwise specified.

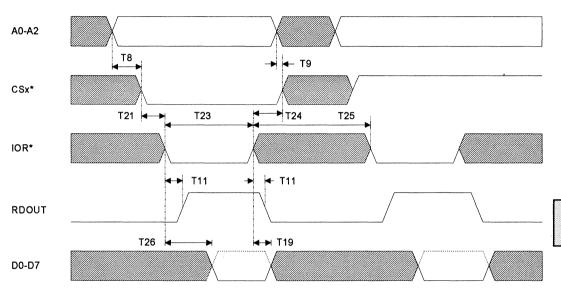
Symbol	Parameter	Parameter Limits Min Typ Max		Units	Conditions	
$\begin{array}{c} T_{34} \\ T_{35} \\ T_{39} \\ T_{40} \\ T_{41} \\ T_{42} \\ T_{43} \end{array}$	Delay from stop to interrupt Delay from IOW* to reset interrupt ACK* pulse width PD7-PD0 setup time PD7-PD0 hold time Delay from ACK* low to interrupt low Delay from IOR* to reset interrupt	75 10 25 5 5		100 175	ns ns ns ns ns ns ns	
Ν	Baud rate devisor	1		2 ¹⁶ -1		

Note 1 * = Baudout* cycle

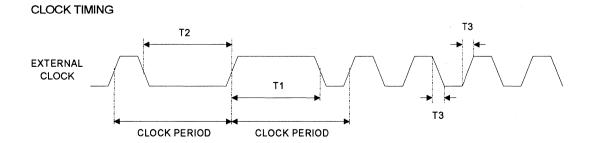
3

ABSOLUTE MAXIMUM RATINGS

Supply range Voltage at any pin Operating temperature Storage temperature Package dissipation

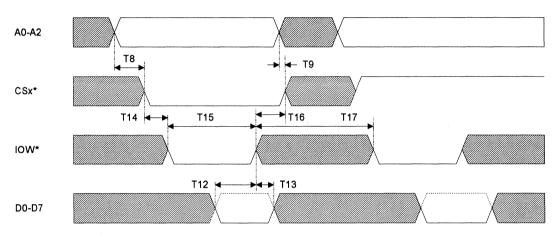

7 Volts GND-0.3 V to VCC+0.3 V 0° C to +70° C -40° C to +150° C 500 mW

DC ELECTRICAL CHARACTERISTICS

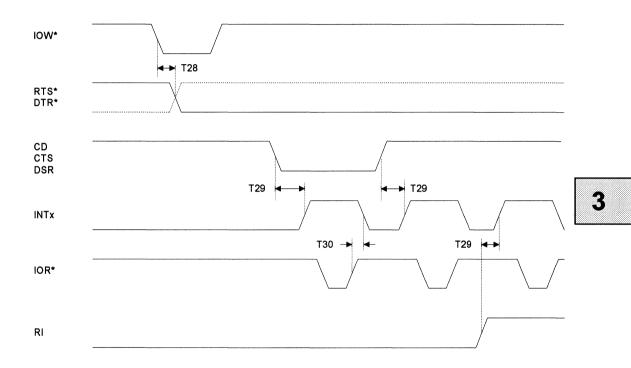

 $T_{\rm A}\text{=}25^{\circ}$ C, $~V_{\rm cc}\text{=}5.0~V$ \pm 5% unless otherwise specified.

Symbol	Parameter	Parameter Limits Min Typ Max		Max	Units	Conditions
V _{ILCK} VIHCK VIL VIH V _{OL}	Clock input low level Clock input high level Input low level Input high level Output low level	-0.5 3.0 -0.5 2.2		0.6 VCC 0.8 VCC 0.4	V V V V	l _o = 6.0 mA D7-D0 l _o = 20.0 mA PD7- PD0
V _{oH}	Output high level	2.4			v	I_{ol} = 10 mA SLCTIN*, INIT*,STROBE*, AUTOFDXT* I_{ol} = 6.0 mA on all other outputs I_{oH} = -6.0 mA D7- D0 I_{oH} = -12.0 mA PD7-PD0 I_{oH} = -0.2 mA SLCTIN*,
lcc I _{IL} I _{CL}	Avg. power supply current Input leakage Clock leakage			12 ±10 ±10	mA μA μA	INIT*,STROBE*, AUTOFDXT* I _{oH} = -6.0 mA on all the outputs

3

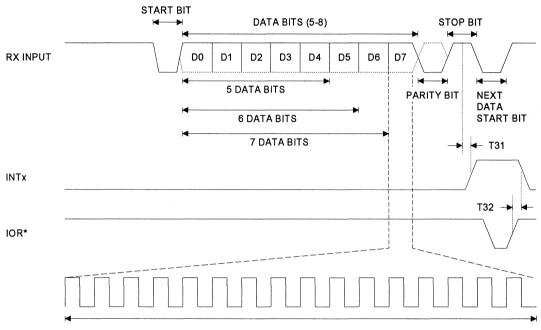


GENERAL READ TIMING

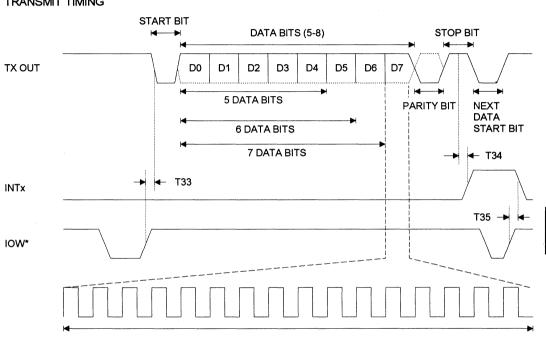


GENERAL WRITE TIMING

ST16C452AT/PS



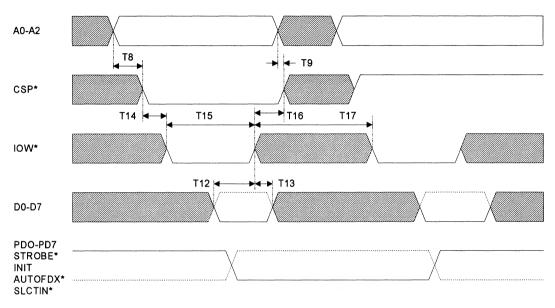
MODEM TIMING

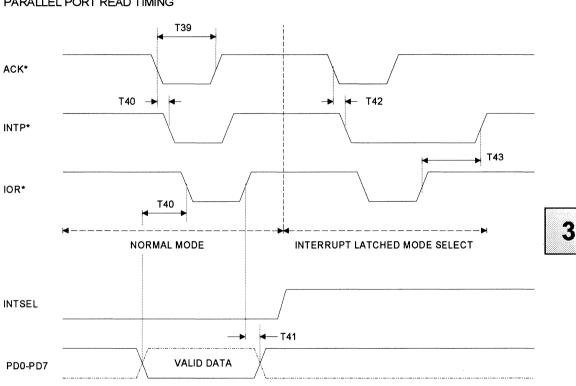

ST16C452AT/PS

RECEIVE TIMING

16 BAUD RATE CLOCK

3


TRANSMIT TIMING


16 BAUD RATE CLOCK

3-251

ST16C452AT/PS

PARALLEL PORT GENERAL WRITE TIMING

PARALLEL PORT READ TIMING

ST16C452AT/PS

Printed May 18, 1993

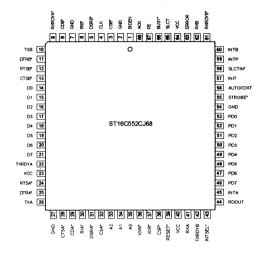
UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER WITH FIFO AND PARALLEL PRINTER PORT

DESCRIPTION

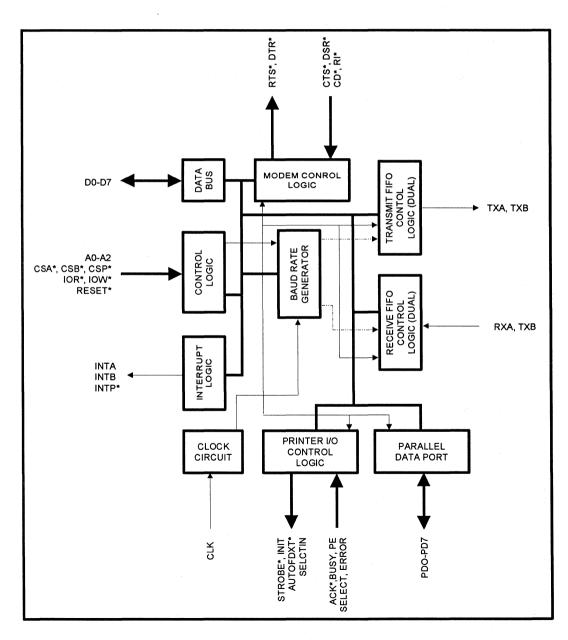
The ST16C552 is a dual universal asynchronous receiver and transmitter with 16 byte transmit and receive FIFO and a bi-directional CENTRONICS type parallel printer port. A programmable baud rate generator is provided to select transmit and receive clock rates from 50Hz to 448kHz.

The ST16C552 on board status registers provides the error conditions, type and status of the transfer operation being performed. Included is complete MODEM control capability, and a processor interrupt system that may be software tailored to the user's requirements. The ST16C552 provides internal loopback capability for on board diagnostic testing.

The ST16C552 is fabricated in an advanced 1.2μ CMOS process to achieve low drain power and high speed requirements.


FEATURES

- Pin to pin and functional compatible to VL16C552, WD16C552
- 16 byte transmit FIFO
- 16 byte receive FIFO with error flags
- Modem control signals (CTS*, RTS*, DSR*, DTR*, RI*, CD*)
- Programmable character lengths (5, 6, 7, 8)
- Even, odd, or no parity bit generation and detection
- Status report register
- Independent transmit and receive control
- TTL compatible inputs, outputs
- Software compatible with INS8250, NS16C550
- 448 kHz transmit/receive operation with 7.372 MHz crystal or external clock source.
- Bi-directional hardware/software parallel port
- Bi-directional I/O ports


ORDERING INFORMATION

Part number	Package	Operating temperature	
ST16C552CJ68	PLCC	0° C to + 70° C	
ST16C552IJ68	PLCC	-40° C to + 85° C	

PLCC Package

BLOCK DIAGRAM

4

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
D0-D7	14-21	1/0	Bi-directional data bus. Eight bit, three state data bus to transfer information to or from the CPU. D0 is the least significant bit of the data bus and the first serial data bit to be received or transmitted.
A0-A2	35-33	I I	Address select lines. To select internal registers.
CLK	4	I	Clock input. An external clock can be used to clock internal circuit and baud rate generator for custom transmission rates.
BIDEN	1	I	Printer direction select. A high puts the parallel port in the input / output mode and low sets the ST16C552 to output mode.
IOW*	36	I	Write strobe (active low). A low on this pin will transfer the contents of the CPU data bus to the addressed register.
IOR*	37	I	Read strobe (active low). A low level on this pin transfers the contents of the ST16C552 data bus to the CPU.
RDOUT	44	0	Read select out (active high). This pin goes high when the CPU is reading data from the ST16C552 to en/disable the external transceiver or logic's.
RESET*	39	I	Master reset. (active low) A low on this pin will reset all the outputs and internal registers. The transmitter output and the receiver input will be disabled during reset time.
CS A/B*	32,3	I	Chip select A/B (active low). A low at this pin enables the serial port-A/B / CPU data transfer operation.
DSR A/B*	31,5	1	Data set ready A/B (active low). A low on this pin indicates the MODEM is ready to exchange data with UART. This pin does not have any effect on the transmit or receive opera- tion.
RI A/B*	30,6		Ring detect indicator A/B (active low). A low on this pin indicates the modem has received a ringing signal from telephone line.

ST16C552

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
CD A/B*	29,8	1	Carrier detect A/B (active low). A low on this pin indicates the carrier has been detected by the modem.
TX A/B	26,10	0	Serial data output A/B. The serial data is transmitted via this pin with additional start, stop and parity bits. The TX will be held in mark (high) state during reset, local loopback mode or when the transmitter is disabled.
DTR A/B*	25,11	0	Data terminal ready A/B (active low). To indicate that ST16C552 is ready to receive data. This pin can be controlled via the modem control register (MCR bit-0). Writing a "1" at the MCR bit-0 will set the DTR* output to low. This pin will be set to high state after writing a "0" to that register or after the reset. Note that this pin does not have any effect on the transmit or receive operation.
RTS A/B*	24,12	0	Request to send A/B (active low). To indicate that the transmitter has data ready to send. Writing a "1" in the modem control register (MCR bit-1) will set this pin to a low state. After the reset this pin will be set to high. Note that this pin does not have any effect on the transmit or receive operation.
RX A/B	41,62	I	Serial data input A/B. The serial information (data) received from serial port to ST16C552 receive input circuit. A mark (high) is logic one and a space (low) is logic zero. During the local loopback mode the RX input is disabled from external connection and connected to the TX output internally.
CTS A/B*	28,13		Clear to send A/B (active low). The CTS* signal is a MODEM control function input whose conditions can be tested by reading the MSR BIT-4. CTS* has no effect on the transmit or receive operation.
INT A/B	45,60	0	Interrupt output A/B (three state active high) This pin goes high (when enabled by the interrupt enable register) when- ever a receiver error, receiver data available, transmitter empty, or modem status condition flag is detected.
TXRDY A/B	22,42	O	Transmit ready A/B (active high). This pin goes high when

3

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
			the transmit FIFO of the ST16C552 is full. It can be used as a single or multi-transfer.
RXRDY A/B*	9,61	ο	Receive ready A/B (active low). This pin goes low when the receive FIFO is full. It can be used as a single or multi-transfer.
CSP*	38	Ι	Parallel printer port chip select (active low). A low at this pin enables the parallel port / CPU data transfer operation.
PD7-PD0	46-53	I/O	Bi-directional parallel ports (three state). To transfer data in or out of the ST16C552 parallel port. PD7-PD0 are latched during output mode.
STROBE*	55	I/O	General purpose I/O or strobe output (open drain active low). To transfer latched data to the external peripheral or printer.
AUTOFDXT*	56	I/O	General purpose I/O or line printer auto feed (open drain active low). To signal the printer for continuous form feed.
INIT	57	I/O	General purpose I/O or line printer initialize (open drain active high). To signal the line printer to enter internal initialization routine.
SLCTIN*	58	I/O	General purpose I/O or line printer select (open drain active low). To select the line printer.
ERROR*	63	I	General purpose input or line printer error (active low). This is an output from the printer to indicate an error by holding it low during error condition.
SLCT	65	I	General purpose input or line printer selected (active high). This is an output from the printer to indicate that the line printer has been selected.
BUSY	66		General purpose input or line printer busy (active high). An output from the printer to indicate printer is not ready to accept data.

Symbol	Pin	Signal Type	Pin Description
PE	67	I	General purpose input or line printer paper empty (active high). An output from the printer to indicate out of paper.
ACK*	68	I	General purpose input or line printer acknowledge (active low). An output from the printer to indicate that data has been accepted successfully.
INTP*	59	ο	Printer interrupt output (active low). To signal the state of the printer port. This pin tracks the ACK* input pin, When ACK* is low INTP is low and when ACK* is high INTP is high
INTSEL*	43	I	Interrupt select mode. The external ACK* can be selected as an interrupt source by connecting this pin to the GND. Connecting this pin to VCC will set the interrupt to latched mode, reading the status register of the printer section resets the INTP output.
GND	2,7,54 27	ο	Signal and power ground.
vcc	23,40,64	I	Power supply input.

PROGRAMMING TABLE FOR SERIAL PORTS

A2	A1	A0	READ MODE	WRITE MODE
0	0	0	Receive Holding Register	Transmit Holding Register
0	0	1		Interrupt Enable Register
0	1	0	Interrupt Status Register	FIFO Control Register
0	1	1		Line Control Register
1	0	0		Modem Control Register
1	0		Line Status Register	5
1	1	0	Modem Status Register	
1	1		Scratchpad Register	Scratchpad Register
0	0	Ó		LSB of Divisor Latch
0	Ō			MSB of Divisor Latch
U	U			NISE OF DIVISOF Latch

ST16C552 ACCESSIBLE REGISTERS

A2	A1	A0	Register	BIT-7	BIT-6	BIT-5	BIT-4	BIT-3	BIT-2	BIT-1	BIT-0
0	0	0	RHR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	0	THR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	1	IER	0	0	0	0	modem status interrupt	receive line status interrupt	transmit holding register	receive holding register
0	1	0	FCR	RCVR trigger (MSB)	RCVR trigger (LSB)	0	0	DMA mode select	XMIT FIFO reset	RCVR FIFO reset	FIFO enable
0	1	0	ISR	0/ FIFOs enabled	0/ FIFOs enabled	0	0	int priority bit-2	int priority bit-1	int priority bit-0	int status
0	1	1	LCR	divisor latch enable	set break	set parity	even parity	parity enable	stop bits	word length bit-1	word length bit-0
1	0	0	MCR	0	0	0	loop back	INT enable	Not used	RTS*	DTR*
1	0	1	LSR	0/ FIFO error	trans. empty	trans. holding empty	break interrupt	framing error	parity error	overrun error	receive data ready
1	1	0	MSR	CD	RI	DSR	CTS	delta CD*	delta RI*	delta DSR*	delta CTS*
1	1	1	SPR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	0	DLL	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	1	DLM	bit-15	bit-14	bit-13	bit-12	bit-11	bit-10	bit-9	bit-8

DLL and DLM are accessible only when LCR bit-7 is set to "1".

REGISTER FUNCTIONAL DESCRIPTIONS

TRANSMIT AND RECEIVE HOLDING REGISTER

The serial transmitter section consists of a Transmit Hold Register (THR) and Transmit Shift Register (TSR). The status of the transmit hold register is provided in the Line Status Register (LSR). Writing to this register (THR) will transfer the contents of data bus (D7-D0) to the Transmit holding register whenever the transmitter holding register or transmitter shift register is empty. The transmit holding register empty flag will be set to "1" when the transmitter is empty or data is transferred to the transmit shift register. Note that a write operation should be performed when the transmit holding register empty flag is set.

On the falling edge of the start bit, the receiver internal counter will start to count 7 1/2 clocks (16x clock) which is the center of the start bit. The start bit is valid if the RX is still low at the mid-bit sample of the start bit. Verifying the start bit prevents the receiver from assembling a false data character due to a low going noise spike on the RX input. Receiver status codes will be posted in the Line Status Register.

FIFO INTERRUPT MODE OPERATION

When the receive FIFO (FCR BIT-0=1) and receive interrupts (IER BIT-0=1) are enabled, receiver interrupt will occur as follows:

A) The receive data available interrupts will be issued to the CPU when the FIFO has reached its programmed trigger level; it will be cleared as soon as the FIFO drops below its programmed trigger level.

B) The ISR receive data available indication also occurs when the FIFO trigger level is reached, and like the interrupt it is cleared when the FIFO drops below the trigger level.

C) The data ready bit (LSR BIT-0) is set as soon as a character is transferred from the shift register to the receiver FIFO. It is reset when the FIFO is empty.

FIFO POLLED MODE OPERATION

When FCR BIT-0=1; resetting IER BIT 3-0 to zero puts the ST16C552 in the FIFO polled mode of operation. Since the receiver and transmitter are controlled separately either one or both can be in the polled mode operation by utilizing the Line Status Register.

A) LSR BIT-0 will be set as long as there is one byte in the receive FIFO.

B) LSR BIT4-1 will specify which error(s) has occurred.

C) LSR BIT-5 will indicate when the transmit FIFO is empty.

D) LSR BIT-6 will indicate when both transmit FIFO and transmit shift register are empty.

E) LSR BIT-7 will indicate when there are any errors in the receive FIFO.

The ST16C552 requires to have two step FIFO enable operation in order to enable receive trigger levels.

PROGRAMMABLE BAUD RATE GENERATOR

The ST16C552 contains a programmable Baud Rate Generator that is capable of taking any clock input from DC-8 MHz and dividing it by any divisor from 1 to 2^{16} -1. The output frequency of the Baudout* is equal to 16X of transmission baud rate (Baudout*=16 x Baud Rate). Customize Baud Rates can be achieved by selecting proper divisor values for MSB and LSB of baud rate generator.

INTERRUPT ENABLE REGISTER (IER)

The Interrupt Enable Register (IER) masks the incoming interrupts from receiver ready, transmitter empty, line status and modem status registers to the INT output pin.

IER BIT-0:

0=disable the receiver ready interrupt. 1=enable the receiver ready interrupt.

IER BIT-1:

0=disable the transmitter empty interrupt. 1=enable the transmitter empty interrupt.

IER BIT-2:

0=disable the receiver line status interrupt. 1=enable the receiver line status interrupt.

IER BIT-3:

0=disable the modern status register interrupt. 1=enable the modern status register interrupt.

IER BIT 7-4:

All these bits are set to logic zero.

INTERRUPT STATUS REGISTER (ISR)

The ST16C552 provides four level prioritized interrupt conditions to minimize software overhead during data character transfers. The Interrupt Status Register (ISR) provides the source of the interrupt in prioritized matter. During the read cycle the ST16C552 provides the highest interrupt level to be serviced by CPU. No other interrupts are acknowledged until the particular interrupt is serviced. The following are the prioritized interrupt levels:

Priority level

Ρ	D3	D2	D1	D0	Source of the interrupt
1	0	1	1	0	LSR (Receiver Line Sta- tus Register)
2	0	1	0	0	RXRDY (Received Data Ready)
2	1	1	0	0	RXRDY (Receive Data time out)
3	0	0	1	0	TXRDY(Transmitter Holding Register Empty)
4	0	0	0	0	MSR (Modern Status Register)

ISR BIT-0:

0=an interrupt is pending and the ISR contents may be used as a pointer to the appropriate interrupt service routine.

1=no interrupt pending.

ISR BIT 1-3:

Logical combination of these bits, provides the highest priority interrupt pending.

ISR BIT 4-7:

These bits are not used and are set to zero in ST16C450 mode. **BIT 6-7:** are set to "1" in ST16C552 mode.

FIFO CONTROL REGISTER (FCR)

This register is used to enable the FIFOs, clear the FIFOs, set the receiver FIFO trigger level, and select the type of DMA signaling.

FCR BIT-0:

0=Disable the transmit and receive FIFO. 1=Enable the transmit and receive FIFO. This bit should be enabled before setting the FIFO trigger levels.

FCR BIT-1:

0=No change.

1=Clears the contents of the receive FIFO and resets its counter logic to 0 (the receive shift register is not cleared or altered). This bit will return to zero after clearing the FIFOs.

FCR BIT-2:

0=No change.

1=Clears the contents of the transmit FIFO and resets its counter logic to 0 (the transmit shift register is not cleared or altered). This bit will return to zero after clearing the FIFOs.

FCR BIT-3:

0=No change.

1=Changes RXRDY and TXRDY pins from mode "0" to mode "1".

Transmit operation in mode "0":

When ST16C552 is in ST16C450 mode (FCR bit-0=0) or in the FIFO mode (FCR bit-0=1, FCR bit-3=0) when there are no characters in the transmit FIFO or transmit holding register, the TXRDY* pin will go low. Once active the TXRDY* pin will go high (inactive) after the first character is loaded into the transmit holding register.

Receive operation in mode "0":

When ST16C552 is in ST16C450 mode (FCR bit-0=0) or in the FIFO mode (FCR bit-0=1, FCR bit-3=0) and there is at least 1 character in the receive FIFO, the RXRDY* pin will go low. Once active the RXRDY* pin will go high (inactive) when there are no more characters in the receiver.

Transmit operation in mode "1":

When ST16C552 is in ST16C550 mode (FCR bit-0=1, FCR bit-3=1) the TXRDY* pin will become high (inactive) when the transmit FIFO is completely full. It will be low if one or more FIFO locations are empty.

Receive operation in mode "1":

When ST16C552 is in ST16C550 mode (FCR bit-0=1, FCR bit-3=1) and the trigger level or the timeout has been reached, the RXRDY* pin will go low. Once it is activated it will go high (inactive) when there are no more characters in the FIFO.

FCR BIT 4-5:

Not used.

FCR BIT 6-7:

These bits are used to set the trigger level for the receiver FIFO interrupt.

BIT-6	FIFO trigger level			
0	01			
1	04			
0	08			
1	14			
	BIT-6 0 1 0 1			

LINE CONTROL REGISTER (LCR)

The Line Control Register is used to specify the asynchronous data communication format. The number of the word length, stop bits, and parity can be selected by writing appropriate bits in this register.

LCR BIT1-0:

These two bits specify the word length to be transmitted or received.

BIT-1	BIT-0	Word length
0	0	5
0	1	6
1	0	7
1	1	8

LCR BIT-2:

The number of stop bits can be specified by this bit.

BIT-2	Word length	Stop bit(s)		
0	5,6,7,8	1		
1	5	1-1/2		
1	6,7,8	2		

LCR BIT-3:

Parity or no parity can be selected via this bit. 0=no parity

1=a parity bit is generated during the transmission, receiver also checks for received parity.

LCR BIT-4:

If the parity bit is enabled, LCR BIT-4 selects the even or odd parity format.

0=ODD parity is generated by forcing an odd number of 1's in the transmitted data, receiver also checks for same format.

1= EVEN parity bit is generated by forcing an even the number of 1's in the transmitted data, receiver also checks for same format.

LCR BIT-5:

If the parity bit is enabled, LCR BIT-5 selects the forced parity format.

LCR BIT-5=1 and LCR BIT-4=0, parity bit is forced to "1" in the transmitted and received data.

LCR BIT-5=1 and LCR BIT-4=1, parity bit is forced to "0" in the transmitted and received data.

LCR BIT-6:

Break control bit. It causes a break condition to be transmitted (the TX is forced to low state).

0=normal operating condition.

1=forces the transmitter output (TX) to go low to alert the communication terminal.

LCR BIT-7:

The internal baud rate counter latch enable (DLEN). 0=normal operation.

1=select divisor latch register.

MODEM CONTROL REGISTER (MCR)

This register controls the interface with the MODEM or a peripheral device (RS232).

MCR BIT-0:

0=force DTR* output to high. 1=force DTR* output to low.

MCR BIT-1:

0=force RTS* output to high. 1=force RTS* output to low.

MCR BIT-2:

Not used.

MCR BIT-3:

0=set INT output pin to three state mode. 1=set INT output pin to normal / active operating mode.

MCR BIT-4:

0=normal operating mode.

1=enable local loop-back mode (diagnostics). The transmitter output (TX) is set high (Mark condition), the receiver input (RX), CTS*, DSR*, CD*, and RI* are disabled. Internally the transmitter output is con-

nected to the receiver input and DTR*, RTS*, MCR bit-2 and INT enable are connected to modem control inputs.

In this mode, the receiver and transmitter interrupts are fully operational. The Modem Control Interrupts are also operational, but the interrupts sources are now the lower four bits of the Modem Control Register instead of the four Modem Control inputs. The interrupts are still controlled by the IER.

MCR BIT 5-7:

Not used. Are set to zero permanently.

LINE STATUS REGISTER (LSR)

This register provides the status of data transfer to CPU.

LSR BIT-0:

0=no data in receive holding register or FIFO. 1=data has been received and saved in the receive holding register or FIFO.

LSR BIT-1:

0=no overrun error (normal).

1=overrun error, next character arrived before receive holding register was emptied or if FIFOs are enabled, an overrun error will occur only after the FIFO is full and the next character has been completely received in the shift register. Note that character in the shift register is overwritten, but it is not transferred to the FIFO.

LSR BIT-2:

0=no parity error (normal).

1=parity error, received data does not have correct parity information. In the FIFO mode this error is associated with the character at the top of the FIFO.

LSR BIT-3:

0=no framing error (normal).

1=framing error received, received data did not have a valid stop bit. In the FIFO mode this error is associated with the character at the top of the FIFO.

LSR BIT-4:

0=no break condition (normal).

1=receiver received a break signal (RX was low for one character time frame). In FIFO mode, only one zero character is loaded into the FIFO.

LSR BIT-5:

0=transmit holding register is full. ST16C552 will not accept any data for transmission.

1=transmit holding register (or FIFO) is empty. CPU can load the next character.

LSR BIT-6:

0=transmitter holding and shift registers are full. 1=transmitter holding and shift registers are empty. In FIFO mode this bit is set to one whenever the transmitter FIFO and transmit shift register are empty.

LSR BIT-7:

0=Normal.

1=At least one parity error, framing error or break indication in the FIFO. This bit is cleared when LSR is read.

MODEM STATUS REGISTER (MSR)

This register provides the current state of the control lines from the modem or peripheral to the CPU. Four bits of this register are used to indicate the changed information. These bits are set to "1" whenever a control input from the MODEM changes state. They are set to "0" whenever the CPU reads this register.

MSR BIT-0:

Indicates that the CTS* input to the ST16C552 has changed state since the last time it was read.

MSR BIT-1:

Indicates that the DSR* input to the ST16C552 has changed state since the last time it was read.

MSR BIT-2:

Indicates that the RI* input to the ST16C552 has changed from a low to a high state.

MSR BIT-3:

Indicates that the CD* input to the ST16C552 has changed state since the last time it was read.

4

MSR BIT-4:

This bit is equivalent to RTS in the MCR during local loop-back mode. It is the compliment of the CTS* input.

MSR BIT-5:

This bit is equivalent to DTR in the MCR during local loop-back mode. It is the compliment of the DSR* input.

MSR BIT-6:

This bit is equivalent to OP1 in the MCR during local loop-back mode. It is the compliment of the RI* input.

MSR BIT-7:

This bit is equivalent to OP2 in the MCR during local loop-back mode. It is the compliment to the CD* input.

Note: Whenever MSR BIT3-0: is set to logic "1", a MODEM Status Interrupt is generated.

SCRATCHPAD REGISTER (SR)

ST16C552 provides a temporary data register to store 8 bits of information for variable use.

BAUD RATE	16 x CLOCK DIVISOR	% ERROR
50	2304	
110	1047	0.026
150	768	
300	384	
600	192	
1200	96	
2400	48	
4800	24	
7200	16	
9600	12	
19.2K	6	
38.4K	3	
56K	2	2.86
115.2K	1	

BAUD RATE GENERATOR PROGRAMMING TABLE (1.8432 MHz CLOCK):

ST16C552 EXTERNAL RESET CONDITION

REGISTERS	RESET STATE
IER	BITS 0-7=0
ISR	ISR BIT-0=1, ISR BITS 1-7=0
LCR	LCR BITS 0-7=0
MCR	MCR BITS 0-7=0
LSR	LSR BITS 0-4=0,
	LSR BITS 5-6=1 LSR, BIT 7=0
MSR	MSR BITS 0-3=0,
	MSR BITS 4-7=input signals
FCR	FCR BITS 0-7=0

SIGNALS	RESET STATE
тх	High
RTS*	High
DTR*	High
INT	Three state mode
RXRDY*	High
TXRDY*	High

PRINTER PORT PROGRAMMING TABLE:

A1	A0	IOW*	IOR*
0	0	PORT REGISTER	PORT REGISTER
0	1	I/O SELECT REGISTER	STATUS REGISTER *
1	0	CONTROL REGISTER	COMMAND REGISTER

* Reading the status register will reset the INTP output.

ST16C552

PRINTER PORT REGISTER DESCRIPTIONS

PR BIT 7-0: PD7-PD0 bi-directional I/O ports.

STATUS REGISTER

This register provides the state of the printer outputs and the interrupt condition.

SR BIT 1-0: Not used. Are set to "1" permanently.

SR BIT-2:

Interrupt condition. 0= an interrupt is pending This bit will be set to "0" at the falling edge of the ACK* input. 1= no interrupt is pending Reading the STATUS REGISTER will set this bit to "1".

SR BIT-3:

ERROR* input state. 0= ERROR* input is in low state 1= ERROR* input is in high state

SR BIT-4:

SLCT input state. 0= SLCT input is in low state 1= SLCT input is in high state

SR BIT-5:

PE input state. 0= PE input is in low state 1= PE input is in high state

SR BIT-6:

ACK* input state. 0= ACK* input is in low state 1= ACK* input is in high state

SR BIT-7:

BUSY input state. 0= BUSY input is in high state 1= BUSY input is in low state

COMMAND REGISTER

The state of the STROBE*, AUTOFDXT*, INIT, SLCTIN* pins, and interrupt enable bit can be read by this register regardless of the I/O direction.

COM BIT-0: STROBE* input pin. 0= STROBE* pin is in high state 1= STROBE* pin is in low state

COM BIT-1:

AUTOFDXT* input pin. 0= AUTOFDXT* pin is in high state 1= AUTOFDXT* pin is in low state

COM BIT-2: INIT input pin. 0= INIT pin is in low state 1= INIT pin is in high state

COM BIT-3: SLCTIN* input pin. 0= SLCTIN* pin is in high state 1= SLCTIN* pin is in low state

COM BIT-4:

Interrupt mask. 0= Interrupt (INTP output) is disabled 1= Interrupt (INTP output) is enabled

COM BIT 7-5: Not used. Are set to "1" permanently.

CONTROL REGISTER.

Writing to this register will set the state of the STROBE*, AUTOFDXT*, INIT, SLCTIN pins, and interrupt mask register.

CON BIT-0: STROBE* output control bit. 0= STROBE* output is set to high state 1= STROBE* output is set to low state

CON BIT-1:

AUTOFDXT* output control bit. 0= AUTOFDXT* output is set to high state 1= AUTOFDXT* output is set to low state

CON BIT-2:

INIT output control bit. 0= INIT output is set to low state 1= INIT output is set to high state

CON BIT-3:

SLCTIN* output control bit. 0= SLCTIN* output is set to high state 1= SLCTIN* output is set to low state

CON BIT-4:

Interrupt output control bit. 0= INTP output is disabled 1= INTP output is enabled

CON BIT-5:

I/O select. Direction of the PD7-PD0 can be selected by setting or clearing this bit.0= PD7-PD0 are set for output mode1= PD7-PD0 are set for input mode CON BIT 7-6: Not used.

I/O SELECT REGISTER

Software controlled I/O select.

Bi-directional mode can be selected by keeping the BIDEN input in high state and setting CON BIT-5 to "zero or one"

Hardware/software I/O select.

Bi-directional mode can be selected by keeping the BIDEN input in low state and setting I/O SELECT register to "AA" Hex for input or "55" Hex for output.

ST16C552 EXTERNAL RESET CONDITION

SIGNALS	RESET STATE
PD0-PD7	High, output mode
STROBE*	High, output mode
AUTOFDXT*	High, output mode
INIT	Low, output mode
SLCTIN*	High, output mode

CONTROL REGISTER (D5)	BIDEN	I/O SELECT REGISTER	PORT DIRECTION
х	0	AA Hex	Input mode
×	0	55 Hex	Output mode
0	1	x	Output mode
. 1	1	Х	Input mode

ST16C552

ST16C552 PRINTER PORT REGISTER CONFIGURATIONS

PORT REGISTER

(READ/WRITE)

D7	D6	D5	D4	D3	D2	D1	D0
PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0

STATUS REGISTER (READ ONLY)

D7	D6	D5	D4	D3	D2	D1	D0
BUSY*	АСК	PE	SLCT	ERROR STATE	IRQ	1	1
					1= No interr 0= Interrupt	upt	

COMMAND REGISTER (READ ONLY)

D7	D6	D5	D4	D3	D2	D1	D0
1	1	1	IRQ ENABLE	SLCTIN*	INIT	AUTO- FDXT*	STROBE*
			0= IRQ disabled 1= IRQ enabled				

CONTROL REGISTER (WRITE ONLY)

D7	D6	D5	D4	D3	D2	D1	D0
	-	I/O SELECT	IRQ MASK	SLCTIN*	INIT	AUTO- FDXT*	STROBE*
	0=Output 1=Input		0=INTP output disabled 1=INTP output enabled				

AC ELECTRICAL CHARACTERISTICS

 $T_{\rm A}{=}25^{\circ}$ C, $V_{\rm cc}{=}5.0$ V \pm 5% unless otherwise specified.

Symbol	Parameter		Limits			Conditions	
		Min	Тур	Мах			
Т.	Clock high pulse duration	50			ns		
T,	Clock low pulse duration	50			ns	External clock	
T_{a}^{2}	Clock rise/fall time			10	ns		
T ₁ T ₂ T ₃ T ₈ T ₉ T ₁₁ T ₁₂	Chip select setup time	5			ns		
Т	Chip select hold time	0			ns		
Т.	IOR* to DDIS* delay			25	ns	100 pF load	
Т.,	Data setup time	15			ns		
Τ.,	Data hold time	15			ns		
1	IOW* delay from chip select	10			ns		
T ^{'1}	IOW* strobe width	50			ns		
T,5	Chip select hold time from IOW*	0			ns		
T ₁₆ T ₁₇	Write cycle delay	55			ns		
Τŵ	Write cycle=T ₁₅ +T ₁₇	105			ns		
T ₁₉	Data hold time	15			ns		
T ₂₁	IOR* delay from chip select	10			ns		
T ₂₁ T ₂₃	IOR* strobe width	65			ns		
T ₂₄	Chip select hold time from IOR*	0			ns		
Т ₂₅ Тг	Read cycle delay	55			ns		
Tr	Read cycle=T ₂₃ +T ₂₅	115			ns		
T ₂₆	Delay from IOR* to data			35	ns	100 pF load	
T_28	Delay from IOW* to output			50	ns	100 pF load	
T ₂₈ T ₂₉	Delay to set interrupt from MODEM input			70	ns	100 pF load	
T ₃₀	Delay to reset interrupt from IOR*			70	ns	100 pF load	
Т"	Delay from stop to set interrupt			1 _{Rck}	ns	100 pF load	
T ₃₁ T ₃₂ T ₃₃	Delay from IOR* to reset interrupt			200	ns	100 pF load	
T,	Delay from initial INT reset to transmit	8		24	*		
55	start						
T ₃₄	Delay from stop to interrupt			100	ns		
T_35	Delay from IOW* to reset interrupt			175	ns		
Т ₃₅ Т ₃₈	Delay from rising IOW* to output data	5			ns		
T ₃₉	ACK* pulse width	75			ns		
Τ.,	PD7 - PD0 setup time	10			ns		
Τ.,	PD7 - PD0 hold time	25			ns		
	Delay from ACK* low to interrupt low	5			ns		
T ₄₃	Delay from IOR* to reset interrupt	5			ns		
N	Baud rate devisor	1		2 ¹⁶ -1			

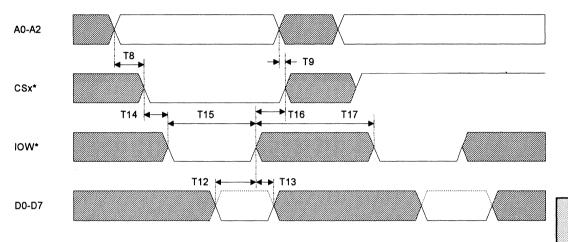
Note 1 * = Baudout* cycle

3

ST16C552

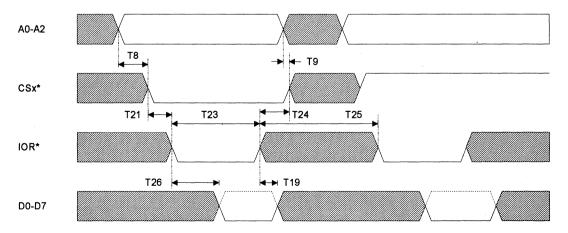
ABSOLUTE MAXIMUM RATINGS

Supply range Voltage at any pin Operating temperature Storage temperature Package dissipation 7 Volts GND-0.3 V to VCC+0.3 V 0° C to +70° C -40° C to +150° C 500 mW

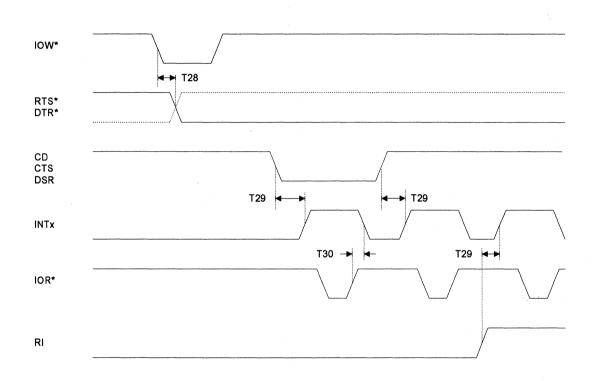

DC ELECTRICAL CHARACTERISTICS

 T_{A} =25° C, V_{cc} =5.0 V ± 5% unless otherwise specified.

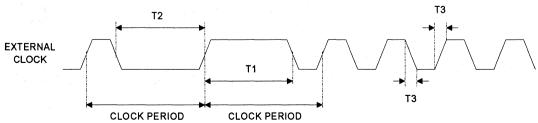
Symbol	Parameter	Min	Limits Typ	Max	Units	Conditions
V _{ILCK} V _{IHCK} V _{IL} V _{IL} V _{OL}	Clock input low level Clock input high level Input low level Input high level Output low level	-0.5 3.0 -0.5 2.2		0.6 VCC 0.8 VCC 0.4	V V V V	I _{ol} = 6.0 mA D7-D0 I _{ol} = 20.0 mA PD7- PD0 I _{ol} = 10 mA SLCTIN*, INIT*,STROBE*, AUTOFDXT*
V _{oH}	Output high level	2.4			V	$\begin{split} & _{O_L} = 6.0 \text{ mA on all} \\ & \text{other outputs} \end{split}$ $\begin{split} & _{O_H} = -6.0 \text{ mA D7-} \\ & D0 \\ & _{O_H} = -12.0 \text{ mA} \\ & \text{PD7-PD0} \\ & _{O_H} = -0.2 \text{ mA} \\ & \text{SLCTIN*,} \\ & \text{INIT*,STROBE*,} \\ & \text{AUTOFDXT*} \\ & _{O_H} = -6.0 \text{ mA on all} \end{split}$
I _{cc} I _L I _{CL}	Avg power supply current Input leakage Clock leakage			12 ±10 ±10	mA μA μA	other outputs



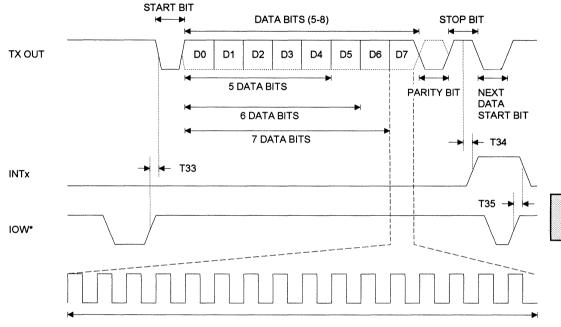
3


GENERAL WRITE TIMING

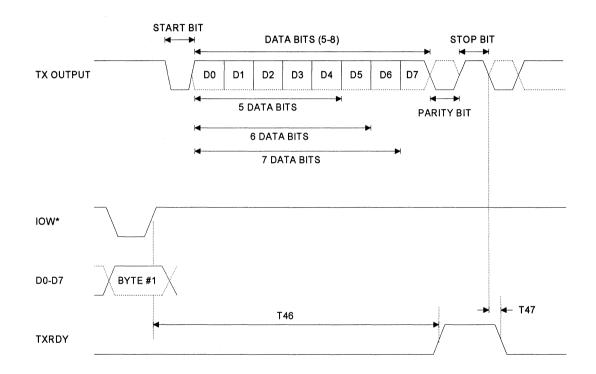
GENERAL READ TIMING

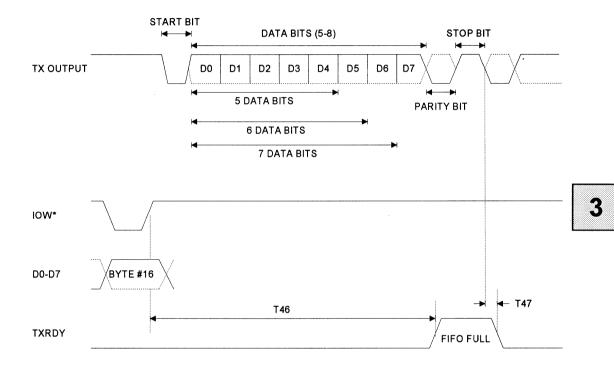


ST16C552

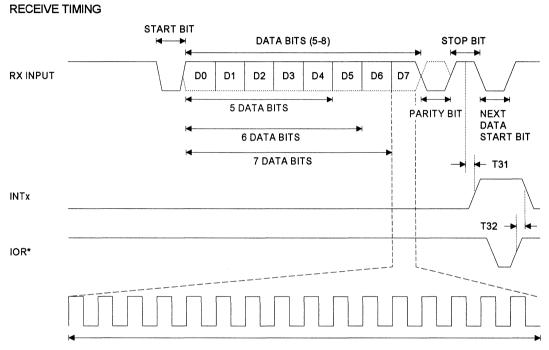

CLOCK TIMING

3

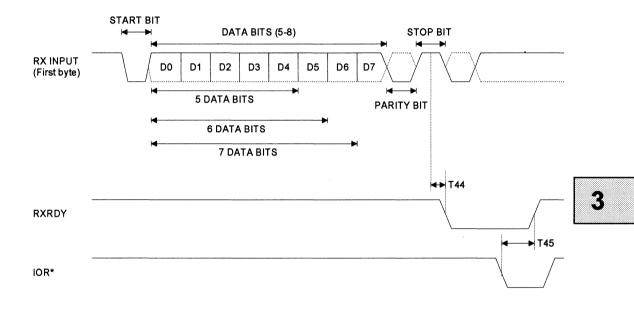



16 BAUD RATE CLOCK

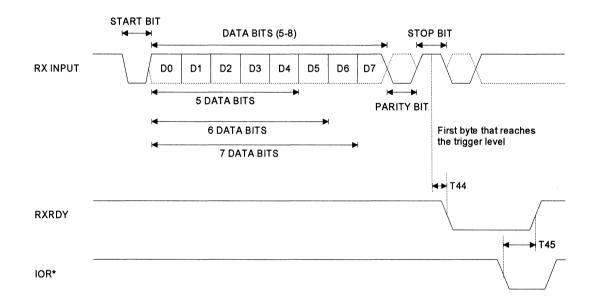
ST16C552


TXRDY TIMING FOR MODE "0"

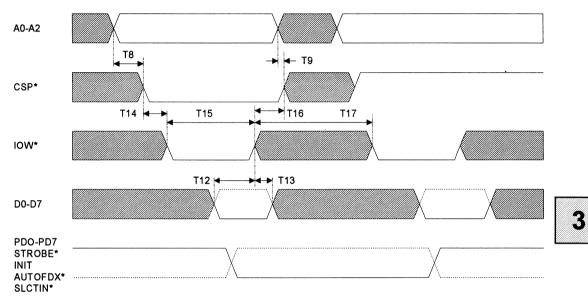
TXRDY TIMING FOR MODE "1"


ST16C552

14

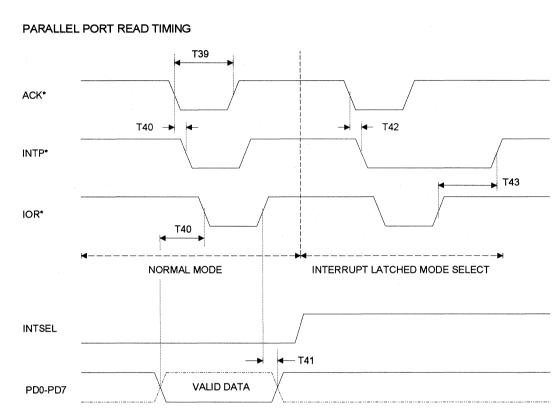

16 BAUD RATE CLOCK

RXRDY TIMING FOR MODE "0"



ST16C552

RXRDY TIMING FOR MODE "1"



ST16C552

PARALLEL PORT GENERAL WRITE TIMING

ST16C552

Printed May 18, 1993

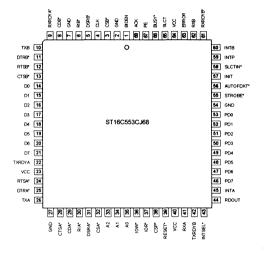
UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER WITH FIFO AND PARALLEL PRINTER PORT WITH 83 BYTE FIFO

DESCRIPTION

The ST16C553 is a dual universal asynchronous receiver and transmitter with 16 byte transmit and receive FIFO and a bi-directional CENTRONICS type parallel printer port with 83 bytes of FIFO. A programmable baud rate generator is provided to select transmit and receive clock rates from 50Hz to 448kHz.

The ST16C553 on board status registers provides the error conditions, type and status of the transfer operation being performed. Included is complete MODEM control capability, and a processor interrupt system that may be software tailored to the user's requirements. The ST16C553 provides internal loopback capability for on board diagnostic testing.

The ST16C553 is fabricated in an advanced 1.2μ CMOS process to achieve low drain power and high speed requirements.

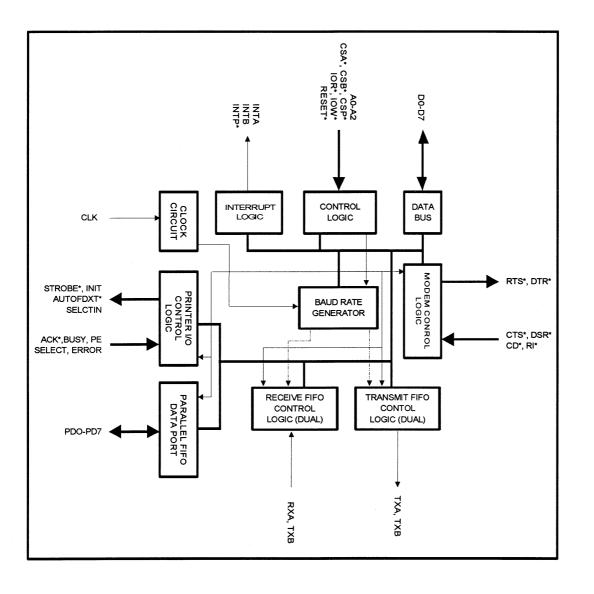

FEATURES

- Pin to pin and functional compatible to VL16C552, WD16C552
- 16 byte transmit FIFO
- 16 byte receive FIFO with error flags
- 83 bytes of printer output FIFO
- Modem control signals (CTS*, RTS*, DSR*, DTR*, RI*, CD*)
- Programmable character lengths (5, 6, 7, 8)
- Even, odd, or no parity bit generation and detection
- Status report register
- Independent transmit and receive control
- TTL compatible inputs, outputs
- Software compatible with INS8250, NS16C550
- 448 kHz transmit/receive operation with 7.372 MHz crystal or external clock source.
- Bi-directional hardware/software parallel port
- Bi-directional I/O ports

ORDERING INFORMATION

Part number	Package	Operating temperature
ST16C553CJ68	PLCC	0° C to + 70° C
ST16C553IJ68	PLCC	-40° C to + 85° C

PLCC Package



3

BLOCK DIAGRAM

- 24

ST16C553

3

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description	
D0-D7	14-21	I/O	Bi-directional data bus. Eight bit, three state data bus to transfer information to or from the CPU. D0 is the least significant bit of the data bus and the first serial data bit to be received or transmitted.	
A0-A2	35-33	I	Address select lines. To select internal registers.	
CLK	4	I	Clock input. An external clock can be used to clock internal circuit and baud rate generator for custom transmission rates.	
BIDEN	1	I	Printer direction select. A high puts the parallel port in the input / output mode and low sets the ST16C553 to output mode.	
IOW*	36	I	Write strobe (active low). A low on this pin will transfer the contents of the CPU data bus to the addressed register.	
IOR*	37	I	Read strobe (active low). A low level on this pin transfers the contents of the ST16C553 data bus to the CPU.	
RDOUT	44	0	Read select out (active high). This pin goes high when the CPU is reading data from the ST16C553 to en/disable the external transceiver or logic's.	
RESET*	39	I	Master reset (active low). A low on this pin will reset all the outputs and internal registers. The transmitter output and the receiver input will be disabled during reset time.	
CS A/B*	32,3	I	Chip select A/B (active low). A low at this pin enables the serial port-A/B / CPU data transfer operation.	
DSR A/B*	31,5	I	Data set ready A/B (active low). A low on this pin indicates the MODEM is ready to exchange data with UART. This pin does not have any effect on the transmit or receive opera- tion.	
RI A/B*	30,6	I	Ring detect indicator A/B (active low). A low on this pin indicates the modem has received a ringing signal from telephone line.	

ST16C553

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description	
CD A/B*	29,8	I	Carrier detect A/B (active low). A low on this pin indicates the carrier has been detected by the modem.	
TX A/B	26,10	0	Serial data output A/B. The serial data is transmitted via this pin with additional start, stop and parity bits. The TX will be held in mark (high) state during reset, local loopback mode or when the transmitter is disabled.	
DTR A/B*	25,11	0	Data terminal ready A/B (active low). To indicate tha ST16C553 is ready to receive data. This pin can b controlled via the modem control register (MCR bit-0) Writing a "1" at the MCR bit-0 will set the DTR* output to low This pin will be set to high state after writing a "0" to tha register or after the reset. Note that this pin does not hav any effect on the transmit or receive operation.	
RTS A/B*	24,12	0	Request to send A/B (active low). To indicate that the transmitter has data ready to send. Writing a "1" in the modem control register (MCR bit-1) will set this pin to a low state. After the reset this pin will be set to high. Note that this pin does not have any effect on the transmit or receive operation.	
RX A/B	41,62	I	Serial data input A/B. The serial information (data) received from serial port to ST16C553 receive input circuit. A mark (high) is logic one and a space (low) is logic zero. During the local loopback mode the RX input is disabled from external connection and connected to the TX output internally.	
CTS A/B*	28,13	1	Clear to send A/B (active low). The CTS* signal is a MODEM control function input whose conditions can be tested by reading the MSR BIT-4. CTS* has no effect on the transmit or receive operation.	
INT A/B	45,60	0	Interrupt output A/B (three state active high) This pin goes high (when enabled by the interrupt enable register) when- ever a receiver error, receiver data available, transmitter empty, or modem status condition flag is detected.	
TXRDY A/B	22,42	0	Transmit ready A/B (active high). This pin goes high when	

3

SYMBOL DESCRIPTION

Symbol Pin		Signal Type	Pin Description	
			the transmit FIFO of the ST16C553 is full. It can be used as a single or multi-transfer.	
RXRDY A/B*	9,61	0	Receive ready A/B (active low). This pingoes low when the receive FIFO is full. It can be used as a single or multi-transfer.	
CSP*	38	I	Parallel printer port chip select (active low). A low at this pin enables the parallel port / CPU data transfer operation.	
PD7-PD0	46-53	I/O	Bi-directional parallel ports (three state). To transfer data in or out of the ST16C553 parallel port. PD7-PD0 are latched during output mode.	
STROBE*	55	I/O	General purpose I/O or strobe output (open drain active low). To transfer latched data to the external peripheral or printer.	
AUTOFDXT*	56	I/O	General purpose I/O or line printer auto feed (open drain active low). To signal the printer for continuous form feed.	
INIT	57	I/O	General purpose I/O or line printer initialize (open drain active high). To signal the line printer to enter internal initialization routine.	
SLCTIN*	58	I/O	General purpose I/O or line printer select (open drain active low). To select the line printer.	
ERROR*	63	I	General purpose input or line printer error (active low). This is an output from the printer to indicate an error by holding it low during error condition.	
SLCT	65	1	General purpose input or line printer selected (active high). This is an output from the printer to indicate that the line printer has been selected.	
BUSY	66		General purpose input or line printer busy (active high). An output from the printer to indicate printer is not ready to accept data.	

ST16C553

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
PE	67	I	General purpose input or line printer paper empty (active high). An output from the printer to indicate out of paper.
ACK*	68	I	General purpose input or line printer acknowledge (active low). An output from the printer to indicate that data has been accepted successfully.
INTP*	59	ο	Printer interrupt output (active low). To signal the state of the printer port. This pin tracks the ACK* input pin, When ACK* is low INTP is low and when ACK* is high INTP is high
INTSEL*	43	1	Interrupt select mode. The external ACK* can be selected as an interrupt source by connecting this pin to the GND. Connecting this pin to VCC will set the interrupt to latched mode, reading the status register of the printer section resets the INTP output.
GND	2,7,54	0	Signal and power ground.
vcc	23,40,64	1	Power supply input.

ģ

PROGRAMMING TABLE FOR SERIAL PORTS

A2	A1	A0	READ MODE	WRITE MODE
0	0	0	Receive Holding Register	Transmit Holding Register
0	0	1		Interrupt Enable Register
0	1	0	Interrupt Status Register	FIFO Control Register
0	1	1		Line Control Register
1	0	0		Modem Control Register
1	0	1	Line Status Register	5
1	1	0	Modem Status Register	
1	1	1	Scratchpad Register	Scratchpad Register
0	0	0		LSB of Divisor Latch
0	0	1		MSB of Divisor Latch

ST16C553 ACCESSIBLE REGISTERS A/B

A2	A1	A0	Register	BIT-7	BIT-6	BIT-5	BIT-4	BIT-3	BIT-2	BIT-1	BIT-0
0	0	0	RHR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	0	THR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	1	IER	0	0	0	0	modem status interrupt	receive line status	transmit holding register interrupt	receive holding register
0	1	0	FCR	RCVR trigger (MSB)	RCVR trigger (LSB)	0	0	DMA mode select	XMIT FIFO reset	RCVR FIFO reset	FIFO enable
0	1	0	ISR	0/ FIFOs enabled	0/ FIFOs enabled	0	0	int priority bit-2	int priority bit-1	int priority bit-0	int status
0	1	1	LCR	divisor latch enable	set break	set parity	even parity	parity enable	stop bits	word length bit-1	word length bit-0
1	0	0	MCR	0	0	0	loop back	OP2*	OP1*	RTS*	DTR*
1	0	1	LSR	0/ FIFO error	trans. empty	trans. holding empty	break interrupt	framing error	parity error	overrun error	receive data ready
1	1	0	MSR	CD	RI	DSR	CTS	delta CD*	delta RI*	delta DSR*	delta CTS*
1	1	1	SPR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	0	DLL	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	1	DLM	bit-15	bit-14	bit-13	bit-12	bit-11	bit-10	bit-9	bit-8

DLL and DLM are accessible only when LCR bit-7 is set to "1".

3-289

ST16C553

REGISTER FUNCTIONAL DESCRIPTIONS

TRANSMIT AND RECEIVE HOLDING REGISTER

The serial transmitter section consists of a Transmit Hold Register (THR) and Transmit Shift Register (TSR). The status of the transmit hold register is provided in the Line Status Register (LSR). Writing to this register (THR) will transfer the contents of data bus (D7-D0) to the Transmit holding register whenever the transmitter holding register or transmitter shift register is empty. The transmit holding register empty flag will be set to "1" when the transmitter is empty or data is transferred to the transmit shift register. Note that a write operation should be performed when the transmit holding register empty flag is set.

On the falling edge of the start bit, the receiver internal counter will start to count 7 1/2 clocks (16x clock) which is the center of the start bit. The start bit is valid if the RX is still low at the mid-bit sample of the start bit. Verifying the start bit prevents the receiver from assembling a false data character due to a low going noise spike on the RX input. Receiver status codes will be posted in the Line Status Register.

FIFO INTERRUPT MODE OPERATION

When the receive FIFO (FCR BIT-0=1) and receive interrupts (IER BIT-0=1) are enabled, receiver interrupt will occur as follows:

A) The receive data available interrupts will be issued to the CPU when the FIFO has reached its programmed trigger level; it will be cleared as soon as the FIFO drops below its programmed trigger level.

B) The ISR receive data available indication also occurs when the FIFO trigger level is reached, and like the interrupt it is cleared when the FIFO drops below the trigger level.

C) The data ready bit (LSR BIT-0) is set as soon as a character is transferred from the shift register to the receiver FIFO. It is reset when the FIFO is empty.

FIFO POLLED MODE OPERATION

When FCR BIT-0=1; resetting IER BIT 3-0 to zero puts the ST16C553 in the FIFO polled mode of operation. Since the receiver and transmitter are controlled separately either one or both can be in the polled mode operation by utilizing the Line Status Register.

A) LSR BIT-0 will be set as long as there is one byte in the receive FIFO.

B) LSR BIT4-1 will specify which error(s) has occurred.

C) LSR BIT-5 will indicate when the transmit FIFO is empty.

D) LSR BIT-6 will indicate when both transmit FIFO and transmit shift register are empty.

E) LSR BIT-7 will indicate when there are any errors in the receive FIFO.

The ST16C553 requires to have two step FIFO enable operation in order to enable receive trigger levels.

PROGRAMMABLE BAUD RATE GENERATOR

The ST16C553 contains a programmable Baud Rate Generator that is capable of taking any clock input from DC-8 MHz and dividing it by any divisor from 1 to 2^{16} -1. The output frequency of the Baudout* is equal to 16X of transmission baud rate (Baudout*=16 x Baud Rate). Customize Baud Rates can be achieved by selecting proper divisor values for MSB and LSB of baud rate generator.

INTERRUPT ENABLE REGISTER (IER)

The Interrupt Enable Register (IER) masks the incoming interrupts from receiver ready, transmitter empty, line status and modem status registers to the INT output pin.

IER BIT-0:

0=disable the receiver ready interrupt. 1=enable the receiver ready interrupt.

IER BIT-1:

0=disable the transmitter empty interrupt. 1=enable the transmitter empty interrupt.

IER BIT-2:

0=disable the receiver line status interrupt. **1**=enable the receiver line status interrupt.

IER BIT-3:

0=disable the modem status register interrupt. 1=enable the modem status register interrupt.

IER BIT 7-4:

All these bits are set to logic zero.

INTERRUPT STATUS REGISTER (ISR)

The ST16C553 provides four level prioritized interrupt conditions to minimize software overhead during data character transfers. The Interrupt Status Register (ISR) provides the source of the interrupt in prioritized matter. During the read cycle the ST16C553 provides the highest interrupt level to be serviced by CPU. No other interrupts are acknowledged until the particular interrupt is serviced. The following are the prioritized interrupt levels:

Priority level

Ρ	D3	D2	D1	D0	Source of the interrupt
1	0	1	1	0	LSR (Receiver Line Sta- tus Register)
2	0	1	0	0	RXRDY (Received Data Ready)
2	1	1	0	0	RXRDY (Receive Data time out)
3	0	0	1	0	TXRDY(Transmitter Holding Register Empty)
4	0	0	0	0	MSR (Modern Status Register)

ISR BIT-0:

0=an interrupt is pending and the ISR contents may be used as a pointer to the appropriate interrupt service routine.

1=no interrupt pending.

ISR BIT 1-3:

Logical combination of these bits, provides the highest priority interrupt pending.

ISR BIT 4-7:

These bits are not used and are set to zero in ST16C450 mode. BIT 6-7: are set to "1" in ST16C553 mode.

FIFO CONTROL REGISTER (FCR)

This register is used to enable the FIFOs, clear the FIFOs, set the receiver FIFO trigger level, and select the type of DMA signaling.

FCR BIT-0:

0=Disable the transmit and receive FIFO. 1=Enable the transmit and receive FIFO. This bit should be enabled before setting the FIFO trigger levels.

FCR BIT-1:

0=No change.

1=Clears the contents of the receive FIFO and resets its counter logic to 0 (the receive shift register is not cleared or altered). This bit will return to zero after clearing the FIFOs.

FCR BIT-2:

0=No change.

1=Clears the contents of the transmit FIFO and resets its counter logic to 0 (the transmit shift register is not cleared or altered). This bit will return to zero after clearing the FIFOs.

FCR BIT-3:

0=No change.

1=Changes RXRDY and TXRDY pins from mode "0" to mode "1".

Transmit operation in mode "0":

When ST16C553 is in ST16C450 mode (FCR bit-0=0) or in the FIFO mode (FCR bit-0=1, FCR bit-3=0) when there are no characters in the transmit FIFO or transmit holding register, the TXRDY* pin will go low. Once active the TXRDY* pin will go high (inactive) after the first character is loaded into the transmit holding register.

Receive operation in mode "0":

When ST16C553 is in ST16C450 mode (FCR bit-0=0) or in the FIFO mode (FCR bit-0=1, FCR bit-3=0) and there is at least 1 character in the receive FIFO, the RXRDY* pin will go low. Once active the RXRDY* pin will go high (inactive) when there are no more characters in the receiver.

Transmit operation in mode "1":

When ST16C553 is in ST16C550 mode (FCR bit-0=1, FCR bit-3=1) the TXRDY* pin will become high (inactive) when the transmit FIFO is completely full. It will be low if one or more FIFO locations are empty.

Receive operation in mode "1":

When ST16C553 is in ST16C550 mode (FCR bit-0=1, FCR bit-3=1) and the trigger level or the timeout has been reached, the RXRDY* pin will go low. Once it is activated it will go high (inactive) when there are no more characters in the FIFO.

FCR BIT 4-5:

Not used.

FCR BIT 6-7:

These bits are used to set the trigger level for the receiver FIFO interrupt.

BIT-7	BIT-6	FIFO trigger level
0	0	01
0	1	04
1	0	08
1	1	14

LINE CONTROL REGISTER (LCR)

The Line Control Register is used to specify the asynchronous data communication format. The number of the word length, stop bits, and parity can be selected by writing appropriate bits in this register.

ý,

LCR BIT1-0:

These two bits specify the word length to be transmitted or received.

BIT-1	BIT-0	Word length
0	0	5
0	1	6
1	0	7
1	1	8

LCR BIT-2:

The number of stop bits can be specified by this bit.

BIT-2	Word length	Stop bit(s)
0	5,6,7,8	1
1	5	1-1/2
1	6,7,8	2

LCR BIT-3:

Parity or no parity can be selected via this bit. 0=no parity

1=a parity bit is generated during the transmission, receiver also checks for received parity.

LCR BIT-4:

If the parity bit is enabled, LCR BIT-4 selects the even or odd parity format.

0=ODD parity is generated by forcing an odd number of 1's in the transmitted data, receiver also checks for same format.

1= EVEN parity bit is generated by forcing an even the number of 1's in the transmitted data, receiver also checks for same format.

LCR BIT-5:

If the parity bit is enabled, LCR BIT-5 selects the forced parity format.

LCR BIT-5=1 and LCR BIT-4=0, parity bit is forced to "1" in the transmitted and received data.

LCR BIT-5=1 and LCR BIT-4=1, parity bit is forced to "0" in the transmitted and received data.

LCR BIT-6:

Break control bit. It causes a break condition to be transmitted (the TX is forced to low state).

0=normal operating condition.

1=forces the transmitter output (TX) to go low to alert the communication terminal.

LCR BIT-7:

The internal baud rate counter latch enable (DLEN). 0=normal operation.

1=select divisor latch register.

MODEM CONTROL REGISTER (MCR)

This register controls the interface with the MODEM or a peripheral device (RS232).

MCR BIT-0:

0=force DTR* output to high. 1=force DTR* output to low.

MCR BIT-1:

0=force RTS* output to high. 1=force RTS* output to low.

MCR BIT-2:

Not used.

MCR BIT-3:

0=set INT output pin to three state mode. 1=set INT output pin to normal / active operating mode.

MCR BIT-4:

0=normal operating mode.

1=enable local loop-back mode (diagnostics). The transmitter output (TX) is set high (Mark condition), the receiver input (RX), CTS*, DSR*, CD*, and RI* are disabled. Internally the transmitter output is con-

nected to the receiver input and DTR*, RTS*, MCR bit-2 and INT enable are connected to modem control inputs.

In this mode, the receiver and transmitter interrupts are fully operational. The Modem Control Interrupts are also operational, but the interrupts sources are now the lower four bits of the Modem Control Register instead of the four Modem Control inputs. The interrupts are still controlled by the IER.

MCR BIT 5-7:

Not used. Are set to zero permanently.

LINE STATUS REGISTER (LSR)

This register provides the status of data transfer to CPU.

LSR BIT-0:

0=no data in receive holding register or FIFO. 1=data has been received and saved in the receive holding register or FIFO.

LSR BIT-1:

0=no overrun error (normal).

1=overrun error, next character arrived before receive holding register was emptied or if FIFOs are enabled, an overrun error will occur only after the FIFO is full and the next character has been completely received in the shift register. Note that character in the shift register is overwritten, but it is not transferred to the FIFO.

LSR BIT-2:

0=no parity error (normal).

1=parity error, received data does not have correct parity information. In the FIFO mode this error is associated with the character at the top of the FIFO.

LSR BIT-3:

0=no framing error (normal).

1=framing error received, received data did not have a valid stop bit. In the FIFO mode this error is associated with the character at the top of the FIFO.

LSR BIT-4:

0=no break condition (normal).

1=receiver received a break signal (RX was low for one character time frame). In FIFO mode, only one zero character is loaded into the FIFO.

LSR BIT-5:

0=transmit holding register is full. ST16C553 will not accept any data for transmission.

1=transmit holding register (or FIFO) is empty. CPU can load the next character.

LSR BIT-6:

0=transmitter holding and shift registers are full. 1=transmitter holding and shift registers are empty. In FIFO mode this bit is set to one whenever the transmitter FIFO and transmit shift register are empty.

LSR BIT-7:

0=Normal.

1=At least one parity error, framing error or break indication in the FIFO. This bit is cleared when LSR is read.

MODEM STATUS REGISTER (MSR)

This register provides the current state of the control lines from the modem or peripheral to the CPU. Four bits of this register are used to indicate the changed information. These bits are set to "1" whenever a control input from the MODEM changes state. They are set to "0" whenever the CPU reads this register.

MSR BIT-0:

Indicates that the CTS* input to the ST16C553 has changed state since the last time it was read.

MSR BIT-1:

Indicates that the DSR* input to the ST16C553 has changed state since the last time it was read.

MSR BIT-2:

Indicates that the RI* input to the ST16C553 has changed from a low to a high state.

MSR BIT-3:

Indicates that the CD* input to the ST16C553 has changed state since the last time it was read.

MSR BIT-4:

This bit is equivalent to RTS in the MCR during local loop-back mode. It is the compliment of the CTS* input.

MSR BIT-5:

This bit is equivalent to DTR in the MCR during local loop-back mode. It is the compliment of the DSR* input.

MSR BIT-6:

This bit is equivalent to OP1 in the MCR during local loop-back mode. It is the compliment of the RI* input.

MSR BIT-7:

This bit is equivalent to OP2 in the MCR during local loop-back mode. It is the compliment to the CD* input.

Note: Whenever MSR BIT3-0: is set to logic "1", a MODEM Status Interrupt is generated.

SCRATCHPAD REGISTER (SR)

ST16C553 provides a temporary data register to store 8 bits of information for variable use.

BAUD RATE GENERATOR PROGRAMMING TABLE (1.8432 MHz CLOCK):

BAUD RATE	16 x CLOCK DIVISOR	% ERROR
50	2304	
110	1047	0.026
150	768	
300	384	
600	192	
1200	96	
2400	48	
4800	24	
7200	16	
9600	12	
19.2K	6	
38.4K	3	
56K	2	2.86
115.2K	1	

ST16C553 EXTERNAL RESET CONDITION

REGISTERS	RESET STATE
IER	IER BITS 0-7=0
ISR	ISR BIT-0=1, ISR BITS 1-7=0
LCR	LCR BITS 0-7=0
MCR	MCR BITS 0-7=0
LSR	LSR BITS 0-4=0,
	LSR BITS 5-6=1 LSR, BIT 7=0
MSR	MSR BITS 0-3=0,
	MSR BITS 4-7=input signals
FCR	FCR BITS 0-7=0
AFR	AFR BIT 0-7=0

SIGNALS	RESET STATE
тх	High
RTS*	High
DTR*	High
INT	Three state mode
RXRDY*	High
TXRDY*	High

PRINTER PORT PROGRAMMING TABLE:

A1	A0	IOW*	IOR*
0	0	PORT REGISTER	PORT REGISTER
0	1	I/O SELECT REGISTER	STATUS REGISTER *
1	0	CONTROL REGISTER	COMMAND REGISTER
1	1	ALTERNATE FUNCTION REGISTER	FIFO BYTE COUNT REGISTER

* Reading the status register will reset the INTP output.

PRINTER FUNCTIONAL DESCRIPTION

The ST16C553 parallel port is designed to operate as a normal CENTRONICS printer interface. The port contains 83 byte FIFO that may be enabled via bit-7 of the Alternate Function Register (AFR). After reset, the FIFO is disabled and the part will function identical to the ST16C552. Once the FIFO is enabled via AFR bit-7, the port will enter FIFO mode after the first byte of data is strobed to the printer and the printer responds with either an ACK* or BUSY signal.

The ST16C553 will remain in FIFO mode until the part is reset or INIT is brought low. While in FIFO mode, data transfer to the printer will be controlled by the printer without any user intervention. The printer port also contains a FIFO byte counter that maintains a count of the number of bytes remaining in the FIFO. The FIFO and the FIFO byte counter are cleared by a reset or by a change of state of the INIT pin. All FIFO related timing is derived from the clock input to pin 4 of the part.

A special parallel port write / read mode is activated when INIT is held low, either by writing a "0" to Control Register bit-2 or by forcing the INIT pin low. In this mode the FIFO read pointer is advanced by reading the parallel port instead of the ACK* or BUSY signals. The STROBE* output is forced high. This allows the user to perform write to parallel port and read from parallel port operations without strobing data to the printer.

Following an INIT, the parallel port will not be in the FIFO mode. Control Register bit-0 is used as the STROBE*, Status Register bit-7 is the inverse of the BUSY signal, and INTP* is derived from ACK*. The transition into FIFO mode will occur after the first STROBE* is generated and the printer responds with either an ACK* or BUSY. In FIFO mode, STROBE* is generated automatically and writing to Control Register bit-0 has no effect on STROBE*. Alternate Function Register bit 0-2 are used to control the delay and width of STROBE*. Handshaking between the printer and the ST16C553 may be controlled by bit-3 of the Alternate Function Register. Setting this bit to a "1" will result in the use of BUSY instead of ACK* for FIFO

reading and interrupt control. INTP* will transition low when a "1" is written to Control Register bit-0 and will transition high when a write to parallel port is performed. In FIFO mode, data transfer to the printer will be controlled by the printer and will occur at the printer's maximum data rate. 4

The FIFO byte counter is incremented one count for each parallel port write and decremented one count for each FIFO read (data taken by printer). A FIFO read will be generated at the falling edge of either ACK* or BUSY. The byte counter will require two to three clock cycles to update. Hence, a read to Fifo Byte Count Register (FBCR) should only be performed minimum of three clock after the falling edge of either ACK* or BUSY. The counter is reset whenever the FIFO is reset. If write to parallel port operation is attempted when the FIFO is full, the data will not be written into the FIFO and the counter will not increment.

Two interrupt modes are available and are selected with the INTSEL* pin. If this pin is tied high, a latched interrupt will result. In this mode, INTP* will transition low when a "1" is written to Control Register bit-0. A reset or reading the Status Register will clear the interrupt. If INTSEL* pin is tied low, INTP* will transition low when a "1" is written to Control Register bit-0 and will transition high when a write to the parallel port is issued. This (non-latched) interrupt signal is always available in Status Register bit-6 regardless of the state of the INTSEL* pin. Status Register bit-2 will always contain the latched interrupt state. The polarity of the INTP* pin may be inverted by setting Alternate Function Register bit-6 high.

The ST16C553 provides additional programmable interrupt output options by programming the Alternate Function Register bit 4-5. INTP* output can be selected as FIFO full or FIFO empty interrupt.

PRINTER PORT REGISTER DESCRIPTIONS

PORT REGISTER

Bi-directional printer port.

Writing to this register during output mode will transfer the contents of the data bus to the PD7-PD0 ports Reading this register during input mode will transfer the states of the PD7-PD0 to the data bus. This register will be set to the output mode after reset.

PR BIT 7-0:

PD7-PD0 bi-directional I/O ports.

STATUS REGISTER

This register provides the state of the printer outputs and the interrupt condition.

SR BIT 1-0:

This bit is set to "1" normally except when interrupt is selected as FIFO empty via AFR.

SR BIT-2:

Interrupt condition. 0= an interrupt is pending This bit will be set to "0" at the falling edge of the ACK* input. 1= no interrupt is pending

Reading the STATUS REGISTER will set this bit to "1".

SR BIT-3:

ERROR input state. 0= ERROR input is in low state 1= ERROR input is in high state

SR BIT-4:

SLCT input state. 0= SLCT input is in low state 1= SLCT input is in high state

SR BIT-5:

PE input state. 0= PE input is in low state 1= PE input is in high state

SR BIT-6:

ACK* input state. 0= ACK* input is in low state 1= ACK* input is in high state

SR BIT-7:

BUSY or FIFO full/ FIFO empty signal.

ST16C552 mode (FIFO is not enabled). 0= BUSY input is in high state 1= BUSY input is in low state

FIFO is enabled. 0= FIFO is full 1= One or more empty locations in FIFO

COMMAND REGISTER

The state of the STROBE*, AUTOFDXT*, INIT, SLCTIN* pins, and interrupt enable bit can be read by this register regardless of the I/O direction.

COM BIT-0:

STROBE* input pin. 0= STROBE* pin is in high state 1= STROBE* pin is in low state

COM BIT-1:

AUTOFDXT* input pin. 0= AUTOFDXT* pin is in high state 1= AUTOFDXT* pin is in low state

COM BIT-2:

INIT input pin. 0= INIT pin is in low state 1= INIT pin is in high state

COM BIT-3:

SLCTIN* input pin. 0= SLCTIN* pin is in high state 1= SLCTIN* pin is in low state

COM BIT-4:

Interrupt mask. 0= Interrupt (INTP output) is disabled 1= Interrupt (INTP output) is enabled

COM BIT 7-5:

Not used. Are set to "1" permanently.

CONTROL REGISTER.

Writing to this register will set the state of the STROBE*, AUTOFDXT*, INIT, SLCTIN pins, and interrupt mask register.

CON BIT-0:

STROBE* output control bit. 0= STROBE* output is set to high state 1= STROBE* output is set to low state

CON BIT-1:

AUTOFDXT* output control bit. 0= AUTOFDXT* output is set to high state 1= AUTOFDXT* output is set to low state

CON BIT-2:

INIT output control bit. 0= INIT output is set to low state 1= INIT output is set to high state

CON BIT-3:

SLCTIN* output control bit. 0= SLCTIN* output is set to high state 1= SLCTIN* output is set to low state

CON BIT-4:

Interrupt output control bit. 0= INTP output is disabled (three state mode) 1= INTP output is enabled

CON BIT-5:

I/O select. Direction of the PD7-PD0 can be selected by setting or clearing this bit.
0= PD7-PD0 are set for output mode
1= PD7-PD0 are set for input mode

CON BIT 7-6:

Not used.

ALTERNATE FUNCTION REGISTER (AFR)

This register En/Disables FIFO operation and provides additional capabilities to control STROBE*. INTP* and change interrupt functions.

AFR BIT 0-2:

Timing select.

The STROBE* delay and width can be controlled by these bits.

AFR Bit-2	AFR Bit-1	AFR Bit-0	TSD (clocks)	TSW (clocks)
1	0	0	3	2
1	0	1	5	4
1	1	0	5	4
1	1	1	9	8
0	0	0	6	4
0	0	1	10	8
0	1	0	10	8
0	1	1	18	16

AFR BIT-3:

Interrupt source.

0= ACK* input pin is selected as printer handshaking source

1= BUSY input pin is selected as printer handshaking source

AFR BIT 4-5:

Interrupt type. State of the INTP* output pin can be selected for one of the following options.

Bit-5	Bit-4	INTP* output	SR bit-0	SR bit-6
0	0	Normal mode	1	BUSY*
0	1	FIFO empty	1	FIFO empty
1	0	FIFO full	1	FIFO full
1	1	FIFO empty	0	FIFO empty

AFR BIT-6:

INTP* output polarity. 0= Normal. INTP* output follows the ACK* input 1= Inverted INTP* output

AFR BIT-7:

FIFO enable / disable function. 0= FIFO is disabled(default mode). The ST16C552 compatible mode.

1= FIFO is enabled. Internal 83 byte of FIFO is enabled.

FIFO BYTE COUNT REGISTER (FBCR)

State and content of the printer FIFO can be monitored by reading this register.

FCBR BIT 0-6:

FIFO byte count. Number of characters left in FIFO.

FBCR BIT-7:

FIFO state. 0= FIFO is enabled 1= FIFO is disabled

I/O SELECT REGISTER

Software controlled I/O select.

Bi-directional mode can be selected by keeping the BIDEN input in high state and setting CON BIT-5 to "zero or one"

Hardware/software I/O select.

Bi-directional mode can be selected by keeping the BIDEN input in low state and setting I/O SELECT register to "AA" Hex for input or "55" Hex for output.

ST16C553 EXTERNAL RESET CONDITION

SIGNALS	RESET STATE
PD0-PD7	High, output mode
STROBE*	High, output mode
AUTOFDXT*	High, output mode
INIT	Low, output mode
SLCTIN*	High, output mode

PARALLEL PORT DIRECTION SELECT REGISTER (WRITE ONLY)

CONTROL REGISTER (D5)	BIDEN	I/O SELECT REGISTER	PORT DIRECTION
x	0	AA Hex	Input mode
х	0	55 Hex	Output mode
0	1	x	Output mode
1	1	x	Input mode

ST16C553

ST16C553 PRINTER PORT REGISTER CONFIGURATIONS

A2	A1	A0	REGISTER	D7	D6	D5	D4	D3	D2	D1	D0
X	0	0	PR	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
×	0	1	STR	BUSY*/ Alternate function	ACK	PE	SLCT	ERROR	IRQ	1	1
x	0	1	1/0	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
X	1	0	СОМ	1	1	1	IRQ state	SLCTIN*	INIT	AUTO- FDXT*	STROBE*
X	1	0	CON	1	1	I/O select	IRQ mask	SLCTIN*	INIT	AUTO- FDXT	STROBE*
×	1	1	AFR	FIFO enable	INTP* polarity	IRQ type bit-1	IRQ type bit-0	INTP* source	TIMING select bit-2	TIMING select bit-1	TIMING select bit-0
x	1	1	FBCR	FIFO* status	FBC-6	FBC-5	FBC-4	FBC-3	FBC-2	FBC-1	FBC-0

AC ELECTRICAL CHARACTERISTICS

 $T_{\rm A}{=}25^{\circ}$ C, $V_{\rm cc}{=}5.0$ V \pm 5% unless otherwise specified.

Symbol	Parameter	Min	Limits Typ	Мах	Units	Conditions
			• 7 ₽	max		
$ \begin{array}{c} T_{1} \\ T_{2} \\ T_{3} \\ T_{8} \\ T_{9} \\ T_{11} \\ T_{12} \\ T_{13} \\ T_{13} \end{array} $	Clock high pulse duration	50			ns	
T ₂	Clock low pulse duration	50			ns	External clock
T ₃	Clock rise/fall time			10	ns	
T ₈	Chip select setup time	5			ns	
T,	Chip select hold time	0			ns	
Τ ₁₁	IOR* to DDIS* delay			25	ns	100 pF load
T ₁₂	Data setup time	15			ns	
T ₁₃	Data hold time	15			ns	
Τ.,	IOW* delay from chip select	10			ns	
Τ.,	IOW* strobe width	50			ns	
Т ^{'5} т	Chip select hold time from IOW*	0			ns	
T ₁₇	Write cycle delay	55			ns	
Tw	Write cycle=T ₁₅ +T ₁₇	105			ns	
T ₁₉	Data hold time	15			ns	
T_21	IOR* delay from chip select	10			ns	
T ₂₃	IOR* strobe width	65			ns	
T ₂₃ T ₂₄	Chip select hold time from IOR*	0			ns	
T ₂₅ Tr	Read cycle delay	55			ns	
Tr	Read cycle=T ₂₃ +T ₂₅	115			ns	
T ₂₆ T ₂₈	Delay from IOR* to data			35	ns	100 pF load
T_28	Delay from IOW* to output			50	ns	100 pF load
T ₂₉	Delay to set interrupt from MODEM	:		70	ns	100 pF load
т	input Delay to reset interrupt from IOR*			70	ns	100 pF load
Т ₃₀ т	Delay from stop to set interrupt				ns	100 pF load
Т ₃₁	Delay from IOR* to reset interrupt			1 _{Rck} 200		100 pF load
Т ₃₂		8		200 24	ns *	
T ₃₃	Delay from initial INT reset to transmit start	ō		24		
T ₃₄	Delay from stop to interrupt			100	ns	
Τ.,	Delay from IOW* to reset interrupt			175	ns	
Т ₃₈	Delay from rising IOW* to output data	5			ns	
T ₃₉	ACK* pulse width	75			ns	

3

ST16C553

AC ELECTRICAL CHARACTERISTICS

 $\rm T_{A}=25^{\circ}$ C, $\rm ~V_{cc}=5.0~V\pm5\%$ unless otherwise specified.

Symbol	Parameter	Min	Limits Typ	Max	Units	Conditions
$\begin{array}{c} {{{T}_{40}}}\\ {{{T}_{41}}}\\ {{{T}_{42}}}\\ {{{T}_{43}}}\\ {{{T}_{44}}}\\ {{{T}_{45}}}\\ {{{T}_{46}}}\\ {{{T}_{46}}}\\ {{{T}_{47}}} \end{array}$	PD7 - PD0 setup time PD7 - PD0 hold time Delay from ACK* low to interrupt low Delay from IOR* to reset interrupt Delay from stop to set RxRdy Delay from IOR* to reset RxRdy Delay from IOW* to set TxRdy Delay from start to reset TxRdy	10 25 5 5		1 _{RCLK} 1 195 8 2 ¹⁶ -1	ns ns ns ns µS ns *	

Note 1 *= Baudout* cycle

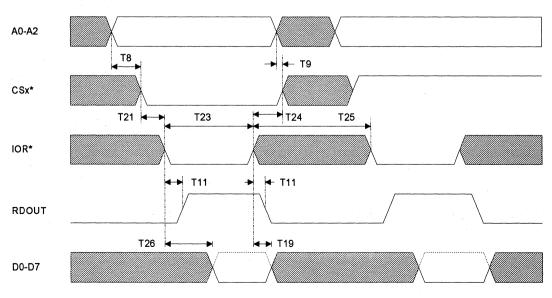
ABSOLUTE MAXIMUM RATINGS

DC ELECTRICAL CHARACTERISTICS

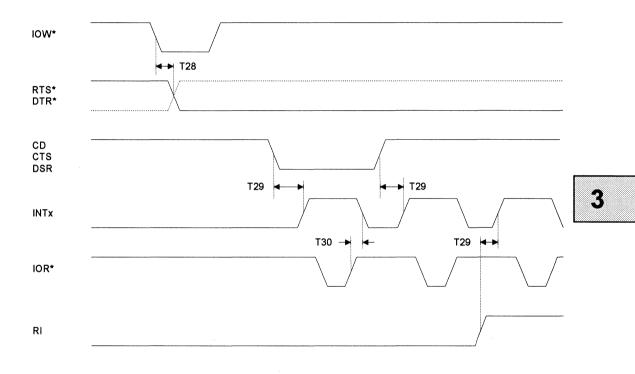
 $\rm T_{A}=25^{\circ}$ C, $\rm V_{cc}=5.0~V\pm5\%$ unless otherwise specified.

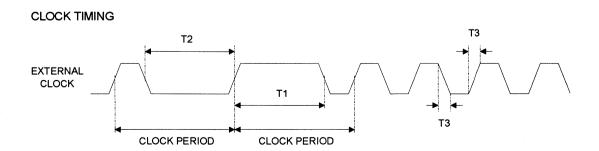
Supply range Voltage at any pin Operating temperature Storage temperature Package dissipation 7 Volts GND-0.3 V to VCC+0.3 V 0° C to +70° C -40° C to +150° C 500 mW

Symbol	Parameter	Min	Limits Typ	Max	Units	Conditions
V _{ILCK} VIHCK VIL VIH VOL	Clock input low level Clock input high level Input low level Input high level Output low level	-0.5 3.0 -0.5 2.2		0.6 VCC 0.8 VCC 0.4		I_{ol} = 6.0 mA D7-D0 I_{ol} = 20.0 mA PD7- PD0 I_{ol} = 10 mA SLCTIN*, INIT*,STROBE*, AUTOFDXT* I_{ol} = 6.0 mA on all other outputs
V _{oH}	Output high level	2.4			V	I_{OH} = -6.0 mA D7- D0 I_{OH} = -12.0 mA PD7-PD0 I_{OH} = -0.2 mA SLCTIN*, INIT*,STROBE*, AUTOFDXT* I_{OH} = -6.0 mA on all other outputs
I _{cc} I _{IL} I _{CL}	Avg. power supply current Input leakage Clock leakage			12 ±10 ±10	mA mA mA	

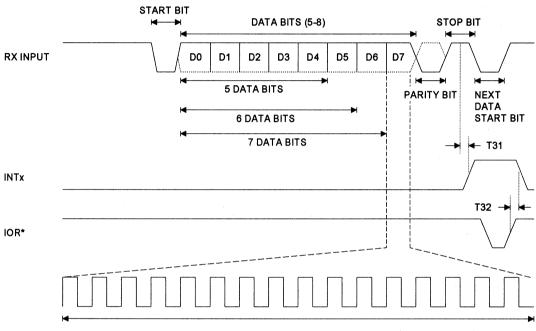

3

ST16C553

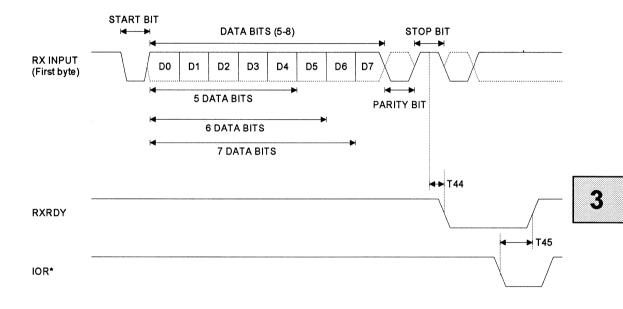

14


GENERAL READ TIMING

ST16C553


MODEM TIMING

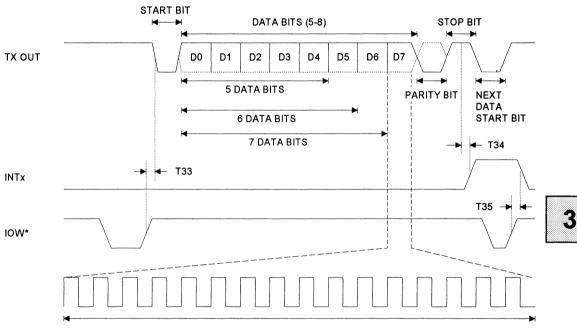
ST16C553



1.8

16 BAUD RATE CLOCK

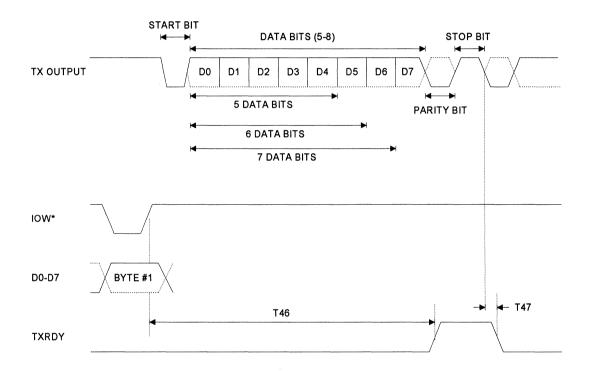
RXRDY TIMING FOR MODE "0"



ST16C553

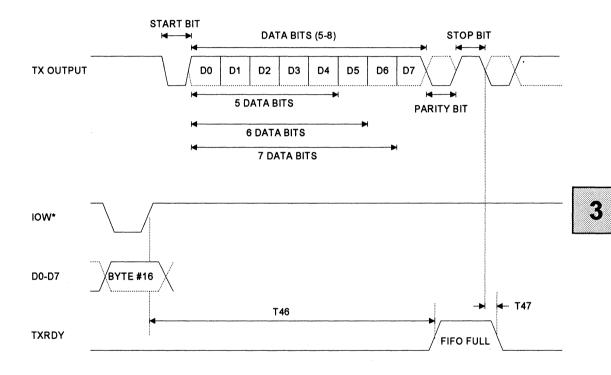
RXRDY TIMING FOR MODE "1"

ST16C553

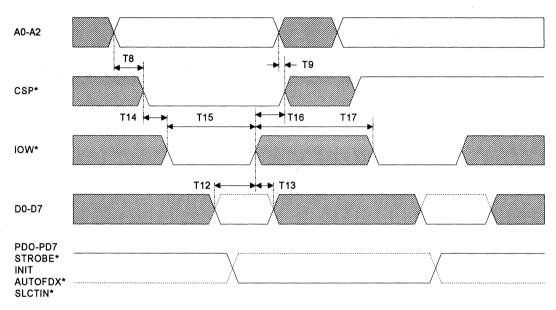


TRANSMIT TIMING

16 BAUD RATE CLOCK


ST16C553

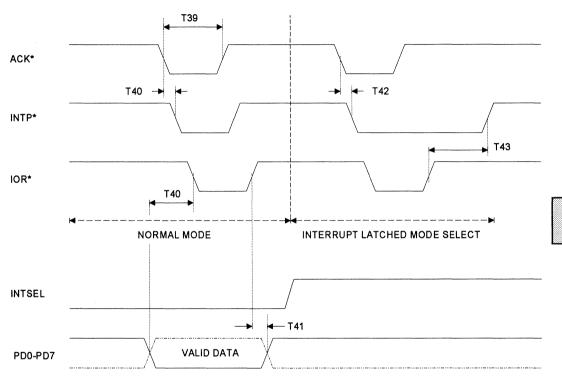
TXRDY TIMING FOR MODE "0"



ų.

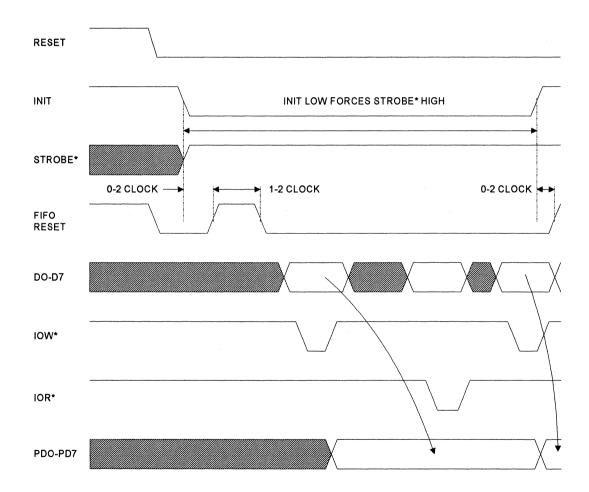
TXRDY TIMING FOR MODE "1"

ST16C553

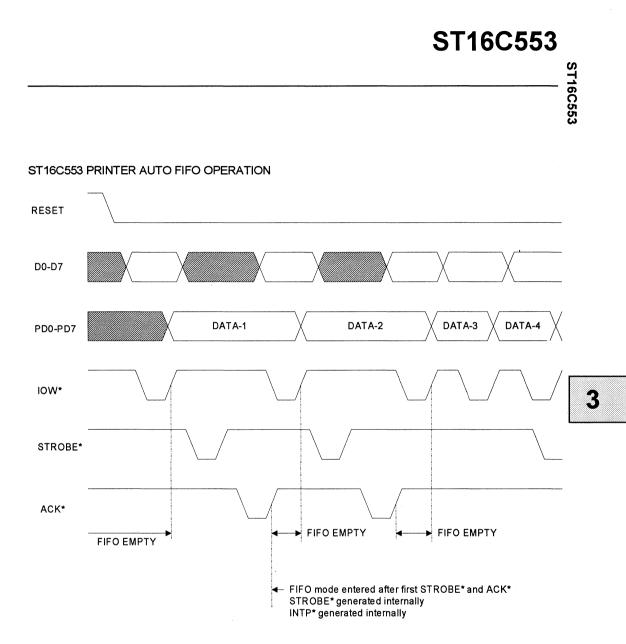


a,

PARALLEL PORT GENERAL WRITE TIMING

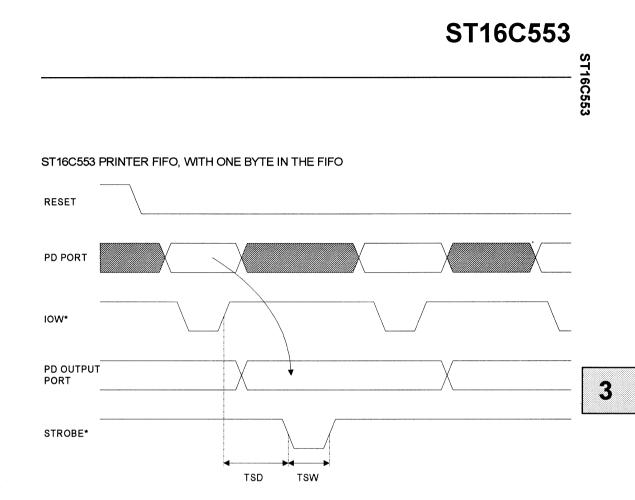

ST16C553

3



PARALLEL PORT READ TIMING

ST16C553 PRINTER SPECIAL MODE


*

ST16C553

ST16C553 PRINTER FIFO TIMING WITH MORE THAN ONE BYTE IN THE FIFO ACK SELECTEDFOR FIFO OPERATION ACK* 0-2 CLOCK ┥ 0-2 CLOCK FIFO READ (INTERNAL) 3-6 CLOCKS PD OUTPUT DATA DATA+1 PORTS TSD STROBE* **BUSY SELECTEDFOR FIFO OPERATION** TSW BUSY 2-4 CLOCK 😽 ► FIFO READ (INTERNAL) 5-10 CLOCKS 😽 PD OUTPUT DATA DATA+1 PORTS TSD STROBE* TSW

傳

3-317

ST16C553

ST16C553

ŵ.

COMMUNICATIONS

Index

ST78C35	
CT04C70	

Printed May 18, 1993

GENERAL PURPOSE INPUT/OUTPUT PORT WITH 128 BYTE FIFO

DESCRIPTION

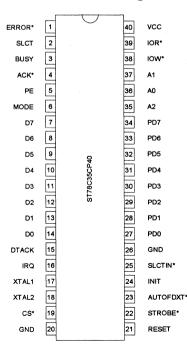
The ST78C35 is a monolithic Bidirectional Parallel port designed to operate as a general purpose I/O port. It contains all the necessary input/output signals to be configured as a CENTRONICS printer port.

The ST78C35 is a general purpose input/output controller with 128 byte internal FIFO. FIFO operation can be enabled or disabled and configured for either direction. For CENTRONICS printer operation, all registers are mapped to IBM printer port registers.

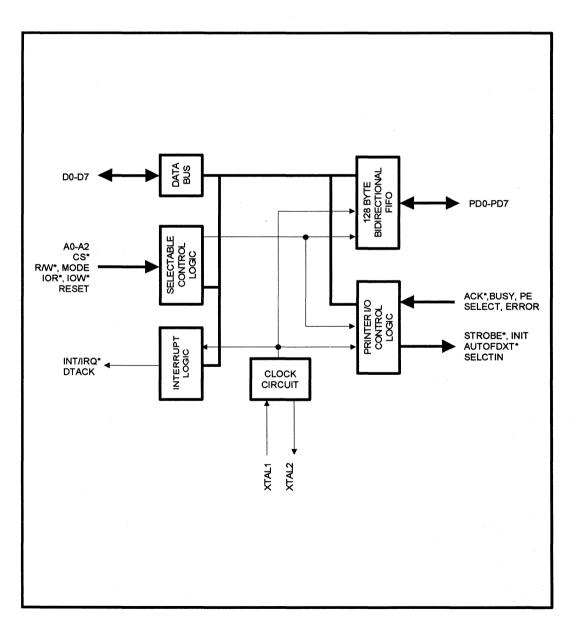
The ST78C35 is designed to operate as normal printer interface without any additional settings. Contents of the FIFO will be cleared after reset or setting the INIT pin to a low state. The auto FIFO operation starts after the first ACK* is received from the printer. Contents of the FIFO transfer to the printer at the printer loading speed. The ST78C35 FIFO can operate as input or output by setting the port direction.


FEATURES

- 128 Byte input/output FIFO
- 5 General purpose input ports
- 8 Bidirectional ports
- 4 Open drain input/output ports
- Replaces all TTL logic for IBM printer port
- IBM printer port register compatible
- 4 User programmable strobe pulse widths
- Selectable FIFO trigger level
- Intel / Motorola bus compatible


ORDERING INFORMATION

Part number	Package	Operating temperature
ST78C35CJ44	PLCC	0° to + 70° C
ST78C35CP40	Plastic-DIP	0° to +70° C
ST78C35IJ44	PLCC	-40° to +85° C
ST78C35IP40	Plastic-DIP	-40° to +85° C


PLCC Package

Plastic-DIP Package

BLOCK DIAGRAM

4

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
ERROR	1	1	General purpose input or CENTRONICS ERROR input pin.
SLCT	2		General purpose input or CENTRONICS SLCT input pin.
BUSY	3	1	General purpose input or CENTRONICS BUSY input pin.
ACK*	4	1	General purpose input or CENTRONICS ACK* input pin.
PE	5	I	General purpose input or CENTRONICS PE input pin.
MODE	8	1	Intel / Motorola Bus select. ST78C35 is set to Intel bus format when this pin is connected to VCC and Motorola bus format when this pin is connected to GND.
D7-0	9-16	1/0	Data bus.
DTACK	17	0	Data acknowledge output. This pin goes low when data has been accepted by ST78C35.
IRQ	19	0	Interrupt output. Three state output when not enabled. Polarity of this pin can be selected via setup register bit-7.
XTAL1	20	I	Crystal or External clock input. Crystal connection between XTAL1 and XTAL2 input/output pins.
XTAL2	21	0	Crystal output pin.
CS*	22	1	Chip select input. Read and write operation to ST78C35 is active when this pin is low.
GND	23	0	Supply ground pin.
RESET	24	1	Reset input pin. Polarity of this pin changes when ST78C35 is configured for Intel or Motorola bus format. This pin is active high when Intel format is selected and active low when Motorola bus format is selected.
STROBE*	25	0	General purpose open drain output or CENTRONICS STROBE* output pin.

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description			
AUTOFDX*	26	0	General purpose open drain output or CENTRONICS AUTOFDX* output pin.			
INIŤ	27	0	General purpose open drain output or CENTRONICS INIT output pin.			
SLCTIN*	28	0	General purpose open drain output or CENTRON SLCTIN* output pin.			
GND	30	0	Supply ground pin.			
PD7-PD0	38-31	I/O	General purpose input/output ports or CENTRONICS DATA port.			
A2	39	1	ST78C35 A2 address line.			
A0	40	I	ST78C35 A0 address line.			
A1	41	1	ST78C35 A1 address line.			
IOW*	42	I	Write strobe. A low on this pin will transfer the contents of the CPU data bus to the addressed register. This pin is used as R/W* in Motorola bus format.			
IOR*	43	I	Read strobe. A low on this pin will read contents of ad- dressed register.			
vcc	44	1	Power supply input pin.			

PORT REGISTER

Bidirectional I/O or printer port.

Writing to this register during output mode will transfer the contents of the data bus to the PD7-PD0 ports. Reading this register during input mode will transfer the states of the PD7-PD0 to the data bus. This register will be set to the output mode after reset.

PR BIT 7-0:

PD7-PD0 bidirectional I/O ports.

STATUS REGISTER

This register provides the state of the printer outputs and the interrupt condition.

SR BIT 1-0: Not used. Are set to "1" permanently.

SR BIT-2:

Interrupt condition. 0= an interrupt is pending This bit will be set to "0" at the falling edge of the ACK* input. 1= no interrupt is pending Reading the STATUS REGISTER will set this bit to "1".

SR BIT-3: ERROR* input state. 0= ERROR* input is in low state 1= ERROR* input is in high state

SR BIT-4:

SLCT input state. 0= SLCT input is in low state 1= SLCT input is in high state

SR BIT-5:

PE input state. 0= PE input is in low state 1= PE input is in high state

SR BIT-6:

ACK* input state. 0= ACK* input is in low state 1= ACK* input is in high state

SR BIT-7:

BUSY input state. 0= BUSY input is in high state 1= BUSY input is in low state

COMMAND REGISTER

The state of the four open drain output pins (STROBE*, AUTOFDXT*, INIT, SLCTIN*), and interrupt enable bit can be read by this register regardless of the I/O direction.

COM BIT-0:

STROBE* input pin. 0= STROBE* pin is in high state 1= STROBE* pin is in low state

COM BIT-1:

AUTOFDX* input pin. 0= AUTOFDX* pin is in high state 1= AUTOFDX* pin is in low state

COM BIT-2:

INIT input pin. 0= INIT pin is in low state 1= INIT pin is in high state

COM BIT-3:

SLCTIN* input pin. 0= SLCTIN* pin is in high state 1= SLCTIN* pin is in low state

COM BIT-4:

Interrupt mask. 0= Interrupt is disabled 1= Interrupt is enabled

COM BIT 7-5: Not used. Are set to "1" permanently.

CONTROL REGISTER.

Writing to this register will set the state of the four open drain output pins (STROBE*, AUTOFDXT*, INIT, SLCTIN), and interrupt mask register.

CON BIT-0:

STROBE* output control bit. 0= STROBE* output is set to high state 1= STROBE* output is set to low state

CON BIT-1:

AUTOFDX* output control bit. 0= AUTOFDX* output is set to high state 1= AUTOFDX* output is set to low state

CON BIT-2:

INIT output control bit. 0= INIT output is set to low state 1= INIT output is set to high state

CON BIT-3:

SLCTIN* output control bit. 0= SLCTIN* output is set to high state 1= SLCTIN* output is set to low state

CON BIT-4:

Interrupt output control bit. 0= IRQ output pin is disabled. Set to three state 1= IRQ output pin is enabled

CON BIT-5:

I/O select. Direction of the PD7-PD0 can be selected by setting or clearing this bit.
0= PD7-PD0 are set for output mode
1= PD7-PD0 are set for input mode

CON BIT 7-6:

Not used.

SETUP REGISTER

This register sets the ST78C35 operating conditions.

STR BIT-0:

FIFO select bit. 0=FIFO disable (default) 1=FIFO enabled (128 bytes)

STR BIT1-2:

Interrupt source select bits.

R-1	CONDITIONS
0 1 0	Single character interrupt (ACK*) FIFO empty interrupt Programmable trigger level interrupt FIFO full interrupt
	0

STR BIT3-4: Strobe width select bits.

STR-3	CONDITIONS
0	Strobe width=1µs
1	Strobe width=2µs
0	Strobe width=5µs
1	Strobe width=10µs
	0 1

STR BIT-6:

Interrupt vector select bit.

0=Normal interrupt output. Contents of the interrupt register is read when Address 01 Hex is read. 1=Interrupt vector source selected. Contents of the interrupt vector register is read when Address 01 Hex is read.

STR BIT-7:

Interrupt polarity select bit. 0=Interrupt output pin is active low. 1=Interrupt output pin is active high.

FIFO STATUS REGISTER

This register provides the FIFO enable/disable and FIFO counter location.

FSR bit-0:

0=FIFO disabled 1=FIFO enabled

FSR1-7:

In Use FIFO locations in Hex format.

FIFO INTERRUPT TRIGGER REGISTER

User selectable software control FIFO trigger level interrupt select register.

FIT BIT-0:

0=Normal. Interrupt selected from setup register 1=FIFO trigger level. ST78C35 interrupt output is set when FIFO count reached to FIFO trigger level.

FIT BIT1-7:

4

FIFO trigger select level in Hex format.

USER DEFINED INTERRUPT VECTOR REGISTER ST78C35 provides user defined interrupt service jump routine.

IVR BIT0-7:

PRINTER PORT PROGRAMMING TABLE:

A2	A1	A 0	IOW*	IOR*
0	0	0	PORT REGISTER	PORT REGISTER STATUS REGISTER
0 0 1 1	1 1 0 0	0 1 0 1	CONTROL REGISTER SETUP REGISTER FIFO INTERRUPT TRIGGER REGISTER INTERRUPT VECTOR REGISTER	COMMAND REGISTER SETUP REGISTER FIFO STATUS REGISTER INTERRUPT VECTOR REGISTER

ST78C35

ST78C35 PRINTER PORT REGISTER CONFIGURATIONS

PORT REGISTER

(READ/WRITE)

D7		D5	D4	D3	D2	D1	D0
PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0

12

STATUS REGISTER (READ ONLY)

D7	D6	D5	D4	D3	D2	D1	D0
BUSY*	ACK	PE	SLCT	ERROR STATE	IRQ	1	1

COMMAND REGISTER (READ ONLY)

D7	D6	D5	D4	D3	D2	D1	D0
1	1	1	IRQ ENABLE	SLCTIN*	INIT	AUTO- FDX*	STROBE*
			0= IRQ disabled 1= IRQ enabled				

CONTROL REGISTER (WRITE ONLY)

D7	D6	D5	D4	D3	D2	D1	D0
x	x	I/O SELECT	IRQ MASK	SLCTIN*	INIT	AUTO- FDX*	STROBE*
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0=Outpu	0=Output 1=Input		0=IRQ output disabled (three state) 1=IRQ output enabled			
	1=Input						

SETUP REGISTER

D7	D6	D5	D4	D3	D2	D1	D0
IRQ POLARITY	INTERRUPT VECTOR	STROBE			INTERRUPT SOURCE	FIFO SOURCE	EN/DIS

FIFO INTERRUPT TRIGGER REGISTER

D7	D6	D5	D4	D3	D2	D1	D0
FIFO	INTERRUPT						
TRIGGER-6	TRIGGER-5	TRIGGER-4	TRIGGER-3	TRIGGER-2	TRIGGER-1	TRIGGER-0	TYPE

FIFO STATUS REGISTER

D7	D6	D5	D4	D3	D2	D1	D0
FIFO	FIFO						
COUNT-6	COUNT-5	COUNT-4	COUNT-3	COUNT-2	COUNT-1	COUNT-0	STATUS

INTERRUPT VECTOR REGISTER

D7	D6	D5	D4	D3	D2	D1	D0
INTERRUPT VECTOR-7	INTERRUPT VECTOR-6	INTERRUPT VECTOR-5		INTERRUPT VECTOR-3	INTERRUPT VECTOR-2		INTERRUPT VECTOR-0

ST78C35

AC ELECTRICAL CHARACTERISTICS

 $\rm T_{A}=25^{\circ}$ C, $\rm ~V_{cc}=5.0~V\pm5\%$ unless otherwise specified.

Symbol	Parameter	Limits Min Typ Max	Units	Conditions

ABSOLUTE MAXIMUM RATINGS

Operating supply range Voltage at any pin Operating temperature Storage temperature Package dissipation 7 Volts ± 5% GND-0.3 V to VCC+0.3 V 0° C to +70° C -40° C to +150° C 500 mW

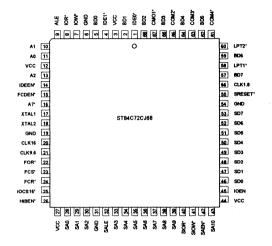
DC ELECTRICAL CHARACTERISTICS

 T_{a} =25° C, V_{cc} =5.0 V ± 5% unless otherwise specified.

Symbol	Parameter	Min	Limits Typ	Max	Units	Conditions
V _{ILCK}	Clock input low level	-0.3		0.6	v	
	Clock input high level	3.0		Vcc	v	
	Input low level	-0.3		0.8	v	
V _H	Input high level	2.2		Vcc	v	
V _{oL}	Output low level			0.4	V	$I_{oL} = 6.0 \text{ mA D7-D0}$ $I_{oL} = 20.0 \text{ mA PD7-PD0}$ $I_{oL} = 10 \text{ mA}$ SLCTIN*, INIT*, STROBE*, AUTOFDXT* $I_{oL} = 6.0 \text{ mA on all}$ other outputs
V _{oH}	Output high level	2.4			V.	I_{OH} = -6.0 mA D7- D0 I_{OH} = -12.0 mA PD7-PD0 I_{OH} = -0.2 mA SLCTIN*, INIT*,STROBE*, AUTOFDXT* I_{OH} = -6.0 mA on all other outputs
I _{cc}	Avg power supply current			12	mA	
	Input leakage			±10	μA	
I _{IL} I _{CL}	Clock leakage			±10	μΑ	

ST78C35

IDE INTERFACE WITH I/O DECODE


ST84C72

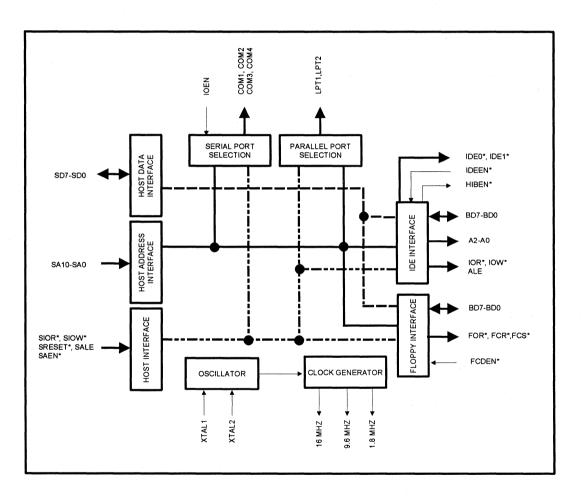
Printed May 18, 1993

DESCRIPTION

The ST84C72 is designed to replace all necessary TTL logics for 16 bit IDE interface and decode logic for floppy controller and serial / parallel I/O ports. A select pin is provided to select primary or secondary address for hard and floppy decodes. On board crystal oscillator circuit provides 16, 9, and 1.8461 MHz clock outputs for some floppy controllers and uart from 48 MHz external crystal connected to ST84C72.

PLCC package

FEATURES


- Low power CMOS design
- Direct bus connect
- Replacement for more than 7 TTL parts
- High speed for new design
- Selectable I/O decode ports. (COM1-COM4, LPT1-LPT2)
- Floppy address decode
- Pin selectable primary and secondary address decodes

ORDERING INFORMATION

Part numberPackageST84C72CJ68PLCC

Operating temperature 0°C to +70°C

BLOCK DIAGRAM

SYMBOL DESCRIPTION

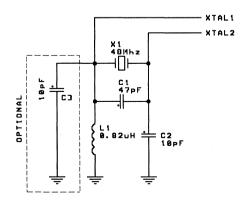
Symbol	Pin	Signal Type	Pin Description
SA0-SA2	28-30	1	Host address lines A0-A2.
SA3-SA9	33-40	1	Host address lines A3-A9.
SA10	43	I	Host address line A10.
SALE	32	1	Host address latch enable (active high).
SAEN*	42	I	Host address enable (active low). All decoded addresses are valid when SAEN* is low.
SIOW*	41	1	Host I/O write signal input (active low). Buffered data bus (BD7-BD0) are gated with SIOW*, SIOR* and I/O decoded addresses to insure proper valid data time slots.
SIOR*	40	. 1	Host I/O read signal input (active low).Buffered data bus (B07-BD7) are gated with SIOR*, SIOW* and I/O decoded addresses to insure proper valid data time slots.
SD0-SD7	46-53	1/0	Host data bus.
SRESET*	55	1	Host system reset (internally pulled up, active low). This pin is used to set internal clock dividers to known state. For normal operation this pin should be left open or connected to VCC.
XTAL1	17		Crystal or external clock input. A crystal can be connected between XTAL1 and XTAL2 with some additional filters to generate 48 Mhz clock frequency for floppy controller and UART clock. This pin can be connected to VCC or GND if CLK16, CLK9.6 and CLK1.8 are not used.
XTAL2	18	0	Crystal output. This pin should be left open if external clock is used to connect to XTAL1 or clock is not used.
LPT1*	58	ο	Line printer enable (active low). Primary printer enable signal. Decoded for address 378 Hex (LPT1).
LPT2*	60	0	Line printer enable (active low). Secondary printer enable signal. Decoded for address 278 Hex (LPT2).

ST84C72

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
COM1*	67	0	Serial communication select pin (active low). Decoded for 3F8 Hex (COM-1).
COM2*	65	ο	Serial communication select pin (active low). Decoded for 2F8 Hex (COM-2).
COM3*	63	0	Serial communication select pin (active low). Decoded for 3E8 Hex (COM-3).
COM4*	61	0	Serial communication select pin (active low). Decoded for 2E8 Hex (COM-4).
CLK1.8	56	0	1.8461 Mhz clock output generated from 48 Mhz crystal (crystal frequency or external clock divide by 26). This clock can substitute the standard 1.8432 Mhz serial communication clock.
IOEN	45	I	Serial and parallel port access. Connecting this pin to pin 44 (RDOUT) of the ST16C452, ST16C552, or ST16C553 enables the BD0-BD7 to access the serial and parallel ports. This pin should be tied to GND if external serial/ parallel ports are not used.
FDCEN*	15	. 1	Floppy controller enable/disable (internally pulled up). Floppy controller select is disabled when this pin is left open or connected to VCC. Floppy controller can be selected when this pin is connected to host SA7 pin (primary selection address 3F7, 3F5, 3F4 and 3F2 Hex) or A7* output pin of the ST84C72 (secondary selection address 377, 375, 374 and 372 Hex).
FOR*	22	0	Floppy controller address decode (372/3F2 Hex).
FCS*	23	0	Floppy controller address decode (377/3F7 Hex).
FCR*	24	ο	Floppy controller address decode (374-5/3F4-5 Hex).
CLK16	20	ο	16 Mhz clock output generated from 48 Mhz crystal (crystal frequency or external clock divided by 3).

SYMBOL DESCRIPTION


Symbol	Pin	Signal Type	Pin Description
CLK9.6	21	0	9.6 Mhz clock output generated from 48 Mhz crystal (crystal frequency or external clock divide by 5).
IOCS16*	25	I	IDE 16 bit data transfer enable (internally pulled up, active low). This pin enables the external 74LS245 bus driver (HIBEN*) when IDE port is selected and 16 bit data transfer is required.
IDEEN*	14	I	IDE Enable/Disable (internally pulled up). IDE select is disabled when this pin is left open or connected to VCC. IDE controller can be selected when this pin is connected to host SA7 pin (primary selection address 3F0-3F7 and 1F0-1F7 Hex) or A7* output pin of the ST84C72 (secondary selection address 370-377 and 170-177Hex).
IDE1*	4	0	IDE drive/register select-1 (active low). When IDEEN* is enabled via SA7, this pin is enabled when I/O port address 3F6 or 3F7 Hex is accessed. When IDEEN* is enabled via A7* pin, IDE1* is enabled when I/O port address 376 or 377 Hex is accessed.
IDE0*	1	ο	IDE drive/register select-0 (active low). When IDEEN* is enabled via SA7, this pin is enabled when I/O port address 1F0-1F7 Hex is accessed. When IDEEN* is enabled via A7* pin, IDE0* is enabled when I/O port address 170-177 Hex is accessed.
HIBEN*	26	0	High order data bus enable. This pin enables the external 74LS245 data buffer (host SD8-SD15) when IOCS16* is active and IDE port is selected.
A0-A1	11-10	ο	Buffered host addresses A0 and A1.
A2	13	о	Buffered host address A2.
A7*	16	0	Inverted host address line SA7. This pin is used to select secondary IDE and floppy controller.
BD3-BD0	5,2,68,66	I/O	Buffered LSB of low order host data bus (SD0-SD3). These bits are set to input mode when SIOW* is low.

ST84C72

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
BD4-BD6	64,62,59	I/O	Buffered MSB of low order host data bus (SD4-SD6). These bits are set to input mode when SIOW* is low.
BD7	57	I/O	Buffered host data bit -7 (SD7). This bit goes to high impedance when address 3F7 or 1F7 Hex is accessed during I/O read operation. BD7 is set to input mode when SIOW* is low.
ALE	9	0	Buffered host address latch (SALE).
IOR*	8	0	Buffered host I/O read signal (HIOR*).
IOW*	7	o	Buffered host I/O write signal (HIOW*).
GND	6,19,31,54	o	Signal and power ground.
vcc	3,12,27,44	I	Power supply input.

Optional external filter.

4

ABSOLUTE MAXIMUM RATINGS

Operating supply range Voltage at any pin Operating temperature Storage temperature Package dissipation 7 Volts ± 5% GND-0.3 V to VCC+0.3 V 0° C to +70° C -40° C to +150° C 500 mW

DC ELECTRICAL CHARACTERISTICS

 T_{A} =25° C, V_{cc} =5.0 V ± 5% unless otherwise specified.

Symbol	Parameter		mits Гур Мах	Units	Conditions
Vilck Vinck Vil Vol Voh Icc Il Icl	Clock input low level Clock input high level Input low level Input high level Output low level on all outputs Output high level Avg power supply current Input leakage Clock leakage	-0.5 3.0 -0.5 2.2 2.4	0.6 VCC 0.8 VCC 0.4 15 ±10 ±10	>>>>> # Д Д	I _{ol} = 6 mA I _{oH} = -6 mA

ST84C72

ŧ

GENERAL APPLICATION NOTE FOR STARTECH UART FAMILY

The AN-450 provides additional information to guide users to design or utilize the STARTECH product line. This document can also be used for all the STARTECH UART product lines.

GENERAL INFORMATION

STARTECH offers UART's with or without FIFO capabilities, and are marked as 45X for non FIFO families and 55X for FIFO families. All parts with sharing part numbers are foot print compatible in some extent, like ST16C450 and ST16C550, ST16C2450 and ST16C2550. etc.

This section will describe general terms for commonly used flags and registers.

OVERRUN ERROR:

The flag is set to "1" to warn the user that a serial data has been received and previous serial data has not been read from receive holding register. The new serial data will over write the previous data in the receive holding register. Note that previous serial data has been lost and user does not have an access to that data

PARITY ERROR:

This flag is set "1" to indicate that received serial data contains mismatched parity or data bit error in the received data.

PARITY:

Four common types of parities are used in the STARTECH Uart families; Odd Parity, Even Parity, Forced Mark Parity and Forced Space Parity.

ODD PARITY:

Odd Parity is calculated by adding all the "1's" in a data stream and adding a parity bit to the total bits, to make the total count an odd number.

Example -1: A data byte with the following pattern 11010010 will require to add a parity bit of "1" to bring the total count for "1's" to an odd number. Based on this data pattern, serial data with odd parity will be transmitted as 110100101.

Example -2: A data byte with the following pattern 10011000 will require to add a parity bit of "0" to maintain the total count of "1's" to an odd number. Based on this data pattern, serial data with odd parity will be transmitted as 100110000.

EVEN PARITY:

Even Parity is calculated by adding all the "1's" in a data stream and adding a parity bit to the total bits, to make the count an even number.

Example -3: A data byte with the following pattern 10000101 will require to add a parity bit of "1" to bring the total count for "1's" to an even number. Based on this data pattern, serial data with even parity will be transmitted as 100001011.

Example -4: A data byte with the following pattern 00001111 will require to add a parity bit of "0" to maintain the total count for "1's" to an even number. Based on this data pattern, serial data with even parity, will be transmitted as 000011110.

FORCED SPACE PARITY:

Parity bit on the serial byte is set to "0" regardless of total number of "1's" (even or odd counts).

FORCED MARK PARITY:

Parity bit on the serial byte is set to "1" regardless of total number of "1's" (even or odd counts).

FRAMING ERROR:

The flag is set to "1" to indicate that received data does not have correct start or stop bits. This can cause when the Uarts are set for 8-bits word and receiving a serial data of 7-bits word or any mismatched data patterns.

BREAK SIGNAL INDICATION: This flag is set to "1" to warn the user that transmitter is sending continuous "0" data without stop bit (RX input is low for more that one word).

TRANSMIT/RECEIVE FIFO:

STARTECH offers 16 byte transmit FIFO and 16 byte receive FIFO for all its products with 55X part numbers. These FIFO's are static 19 X 16 bit RAM with control logic to form a ring counter. Initializing th FIFO will set the write and read pointers to the same location.

TRANSMIT EMPTY:

This flag is set "1" to indicate that, there is no character in the transmit holding and transmit shift register

TRANSMIT HOLDING EMPTY:

This flag is set "1" to indicate that, there is one or more empty locations in the transmit holding register. User has to check this bit before loading characters in the transmit holding register. In non FIFO mode, user can load one character at a time when this flag is set and 16 characters when FIFO mode is utilized.

RECEIVER DATA READY:

This bit is set "1" to indicate that, receiver has one or more character in the receive holding register. User has to check this bit prior to read receive holding register. In non FIFO mode, only one character at time can be read. In FIFO mode up to 16 characters can be read if time bit is set.

RECEIVE TIME-OUT:

This mode is enabled when STARTECH UART is operating in FIFO mode. Receive time out will not occur if the receive FIFO is empty. The time out counter will be reset at the center of each stop bit received or each time receive holding register is read. The actual time out value is T (Time out length in bits)= $4 \times P$ (Programmed word length) + 12. To convert time out value to a character value, user has to divide this number to its complete word length + parity (if used) + number of stop bits and start bit.

Example -7: If user programs the word length = 7, and no parity and one stop bit, Time out will be: $T = 4 \times 7($ programmed word length) +12 = 40 bits Character time = 40 / 9 [(programmed word length = 7) + (stop bit = 1) + (start bit = 1)] = 4.4 characters.

Example -8: If user programs the word length = 7, with parity and one stop bit, the time out will be:

T = 4 X 7(programmed word length) + 12 = 40 bits Character time = 40 / 10 [(programmed word length = 7) + (parity = 1) + (stop bit = 1) + (start bit = 1) = 4 characters.

BAUD RATE GENERATOR:

STARTECH provides a 16 bit digital divider to obtain all necessary baud rates. The 16 bit divider is broken down in to two 8-bit dividers which will be addressed as MSB divider (upper 8-bits) and LSB divider (lower 8-bits). To calculate the transmit/receive data rate it is necessary to know the provided clock rate (frequency) to STARTECH parts. STARTECH utilizes 16 clocks for each transmit bit and 16 clocks to sample the received data. Note that inorder to access these dividers, user has to enable the divisor latch access bit through the Line Control Register. 1 &

Bit rate is calculated by:

Dividing decimal number = (Clock rate) / (16 X bit rate).

To program the digital divider, dividing decimal number should be converted to hex (base 16) number and split into two 8-bits sections.

Example -5: To obtain 4800 Hz baud rate, assuming 1.8432 MHz input clock, the dividing decimal value is (input clock=1843200) / (16 X 4800) = 24

24 decimal = 0018 Hex, this value is translated to MSB = 00 Hex and LSB = 18 Hex.

BAUD RATE VERSUS BIT RATE:

The baud rate defines the width of each bit regardless of word, parity and stop bit length. Bit rate, is the rate of the transmission which each character is transmitted or received. The 2400 baud rate transmission is translated to 2400 Hz per bit for each character in a word. With 2400 baud you can transmit between 7 to 12 characters per slot.

PROGRAMMING STEPS:

The AN-450 provides the easy steps to program STARTECH Uart family. Note that all numbers are in Hex format not decimal.

Write 80 Hex to LCR (Line Control Register) to enable baud rate generator divider latch

to set 2400 Hz baud rate:

write 00 Hex to MSB of baud rate generator (address location 1).

Write 30 Hex to LSB of baud rate generator (address location 0).

Select you word, parity and stop bit format from

STARTECH Uart data sheet. to set 8 bits, no parity and one top bit and disable the divisor access latch write 03 Hex to LCR (Line Control Register):

if you need to use Uarts with FIFO, select your receive trigger level from data sheet. to enable FIFO with 14 character trigger level

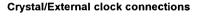
write CF Hex to FCR (FIFO Control Register)

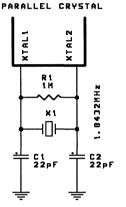
enable interrupt sources write 01 Hex to IER (Interrupt Enable Register) to select receive interrupt.

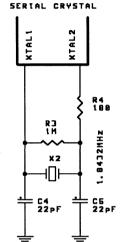
to set RTS and DTR outputs to low and enable the interrupt output write 0B Hex to MCR (Modem Control Register).

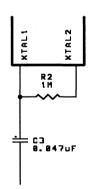
The STARTECH Uart is ready for transmit and receive operation.

Read MSR (Modem Status Register) to check the status of CD, RI, DSR, CTS input pins.


Read LSR (Line Status Register).


For polling applications (non interrupt mode) user has to monitor bit zero of this register to verify valid data in the receive holding register.


Check the Transmit Holding Empty bit before loading data in the transmit holding register,


continue the transmission.

C PROGRAM SAMPLE

EXTERNAL CLOCK

; File: sample.c Package:UART init
; This is a sample code to show how to initialize the UART series of chips
; from Startech Semiconductors.
; This also includes some basic external loop back thru' two different
; ports using the FIFO capability.

13

; This also includes external loop back thru a different computer

#include	<stdio.h></stdio.h>	
#include	<string.h></string.h>	
#include	<fcntl.h></fcntl.h>	

#define	TRUE	1
#define	FALSE	0

/* These are the various offsets for the registers inside the chip */

#define	RHR	0x00 /* Receive Holding Register */
#define	THR	0x00 /* Receive Holding Register */
#define	IER	0x01 /* Interrupt Enable Register */
#define	FCR	0x02 /* FIFO control Register */
#define	ISR	0x02 /* Interrupt Status Register */
#define	LCR	0x03 /* Line control register */
#define	MCR	0x04 /* Modem Control Register */
#define	LSR	0x05 /* Line Status Register */
#define	MSR	0x06 /* Modem Status Register */
#define	SCR	0x07 /* Scratch pad Register */

/* This two offsets are used for defining the baud rate */ #define DIVLSB 0x00 /* Divisor LSB latch address */ #define DIVMSB 0x01 /* Divisor MSB Latch address */

/*\

* Program table for baud rate

* This represents the LSB and MSB divisor latch data

*/

char baud_table[8][2] = {

{ 0x80, 0x01 },	/* 300 */
{ 0x60, 0x00 },	/* 1200 */
{ 0x30, 0x00 },	/* 2400 */
{ 0x0c, 0x00 },	/* 9600 */
{ 0x06, 0x00 },	/* 19K */
{ 0x03, 0x00 },	/* 38k */
{ 0x02, 0x00 },	/* 56k */
{ 0x01, 0x00 }	/* 115k */

};

/* Baud Rates */

5

APPLICATION NOTES

#define #define #define #define #define #define #define	_COM_300_ _COM_1200_ _COM_2400_ _COM_9600_ _COM_19K_ _COM_38K_ _COM_56K_ _COM_115K_	0 1 2 3 4 5 6 7
/* Parity */ #define #define #define	_COM_NOPARITY_ _COM_ODDPARITY_ COM_EVENPARITY	0 1 2
/* Stopbits * #define #define #define		0 1 1
/* word lengt #define #define #define #define	th */ _COM_CHR5_ _COM_CHR6_ _COM_CHR7_ _COM_CHR8_	0 1 2 3
/* word leng #define #define #define #define	th */ _COM_FIFO1_ _COM_FIFO4_ _COM_FIFO8_ _COM_FIFO14_	0 1 2 3

/*\

* This function checks the existence of a port.

* It is very simple. Take the port address then write to the scratch pad

* an the read it back. If the data read back the same as one that was

* written then return TRUE else return FALSE.

```
\*/
```

```
int
```

```
check_port(com_port)
int com_port;
```

{

int i;

printf("Checking for port %4xH\n",com_port); /* Write 1010 1010 (0xaa) to scratch pad*/

printf("Writing AAH in %4xH\n",com_port);

UARTS APPLICATION NOTE

APPLICATION NOTES

outportb(com_port + SCR, 0xaa);

/* read it back. If it the same then return TRUE */
i = inportb(com_port + SCR);

printf("Read back %2xH from %4xH\n",i,com_port);

if(i == 0xaa) return TRUE;

else

return FALSE;

}

/*\
 * This is the work horse function which actually setups the UART.
 * It needs to know every thing.
 */
 int
 init_uart(port,baud,parity,data,stop,fifo,trigger)
 int port,baud,parity,data,stop,fifo,trigger;

{

char lcr_byte;

```
/* Set divisor latch */
outportb(port+LCR, 0x80);
```

```
printf("Divisor Latch is %2xH %2xH (High Low)\n",
baud_table[baud][1],baud_table[baud][0]);
outportb(port+DIVLSB, baud_table[baud][0]) ;
outportb(port+DIVMSB, baud_table[baud][1]) ;
```

```
/* Reset to normal Programming */
/* Program the lcr_byte for the above parameters */
lcr_byte = 0x00;
lcr_byte = data; /* Set the bit0 & bit1 for word length */
lcr_byte ;= stop << 3; /* Set the bit2 for stop bit */
if(parity != _COM_NOPARITY_) {
    lcr_byte ;= 1 << 4; /* Set the bit3 for parity */
    if(parity == _COM_EVENPARITY_)
    lcr_byte ;= 1 << 5; /* Set the bit4 for EVEN parity */
}</pre>
```

```
printf("LCR byte is %2xH\n",lcr_byte);
```

```
/* Program LCR */
  outportb(port+LCR, lcr_byte);
  if(fifo) {
   char fifo_byte;
   printf("Programming FIFOs without DMA mode\n");
   /* Have to first set the fifo enable */
   fifo byte = 0x01;
   outportb(port+FCR,fifo byte);
   /* Now program the FIFO */
   fifo byte = 0x07; /* set bit0 - FIFO enable, Reset RCVR and XMIT FIFO */
   fifo byte := trigger << 7; /* set bit6 and bit7 with the trigger level */
   /* Program FCR */
   outportb(port+FCR,fifo_byte);
   if(~(inportb(port + ISR) & 0xc0)) {
      printf("This port %4xH does not have FIFOs\n");
      printf("Hence did not program Enable FIFOs\n");
  }
  }
  /* Program IER */
  printf("Programming IER for interrupt on bit0 RCV holding Register\n");
  outportb(port+IER, 0x01);
  return TRUE:
/*\
* This is the test mode.
* It gets the address of the ports checks to see if they are there.
* Note: If a driver already exists I am not sure how to temporarily remove it.
* Well we will worry about it later.
* Warn the use to remove any drivers that are on the ports.
* Especially the mouse driver.
* pass the address to the test552 routine.
\*/
int test_mode()
      int i,j,k; /* generic variables */
      char port1[10], port2[10];
      int pt1,pt2; /* this are the integer port numbers */
      void test552();
```

5-9

}

{

printf("WARNING: This program will not work if the ports to be tested\n"); printf(" have drivers installed in them. e.g Mouse driver\n"); printf(" Please remove the drivers before doing this test.\n"); 11

```
while(TRUE) {
```

```
printf("First Port Address (In HEX) > ");
scanf("%s",port1);
pt1 = strtol(port1,NULL,16);
fflush(stdin);
/*\
* Check if this port exists. else loop
\*/
if(check_port(pt1))
break;
printf("Error: Port %4xH does not exist. Try again\n",pt1);
```

```
}
```

```
while(TRUE) {
    printf("Second Port Address (In HEX) > ");
    scanf("%s",port2);
    pt2 = strtol(port2,NULL,16);
    fflush(stdin);
    /*\
    * Check if this port exists. else loop
    \*/
    if(check_port(pt2))
        break;
    printf("Error: Port %4xH does not exist. Try again\n",pt2);
}
```

/* Test 554 with the two port addresses */ test552(pt1,pt2);

return TRUE;

```
}
```

/*\

* It first generates a random number for the data size to be generated.

* Then generates a random data whose length is equal to the data size.

* It puts it out on both the ports and polls for the interrupt to occur.

* It reads both the ports until all characters are received OR a timeout

```
* has occured. It then prints out the error Messages if any.
* This loop is done for ever.
\*/
void test552(p1,p2)
unsigned int p1, p2;
{
 int i,j,c,w,n;
 unsigned char outbuf[20], inbuf1[20], inbuf2[20];
  unsigned char pbuf[200];
  unsigned long timeout, pass;
  printf("ST16C552 External Loop Test Beginning\n");
  printf("Testing ports %4x and %4x\n\n", p1, p2);
  printf("Programing ports for 56K,8 bit,no parity,1 stop bit,FIFO trigger level 01\n");
  printf("This program uses POLLED mode for testing\n");
  printf("Press Cntrl-C to stop the testing and guit\n");
  printf("Note: The ports will remain at the above settings after the TEST\n");
 /* Programming ports for 8 bits, no parity, 56K baud,
                              FIFO enabled at level 01 */
  /* Program first port */
  printf("Programming port %x4\n".p1);
  init_uart(p1,_COM_56K_,_COM_NOPARITY_,
          _COM_CHR8_,_COM_STOP1_,TRUE,_COM_FIF01_);
  /* Program Second Port */
  printf("Programming port %x4\n",p2);
  init_uart(p2,_COM_56K_,_COM_NOPARITY_,
          COM_CHR8_, COM_STOP1_, TRUE, COM_FIF01_);
  printf("Starting test\n");
  for (pass = 1 ; ; pass++) {
       /* generate random size for data */
       n = rand();
       n += n >> 8 ;
       n &= 0x0f ;
       /* Make sure we never get a 0 as the random size data */
       if(n != 0x0f)
        n++;
       /* generate random data */
       for (w = 0; w < n; w++) {
            c = rand();
            c += c >> 8 ;
```

```
c &= 0xff ;
c ;= 0x01 ; /* no NULLs allowed */
outbuf[w] = c ;
}
outbuf[w] = NULL;
```

```
printf("******** Pass %10ld Sending %d ********\015", pass, n) ;
```

14

/* Transmitt the data */ for (i = 0 ; i < n ; i++) { outportb(p1, outbuf[i]) ; outportb(p2, outbuf[i]) ;

}

```
}
```

```
/* receive data until all has been received OR timeout */
timeout = 0x0008F ;
for (i = j = 0; ((i < 20) && (j < 20));) {
        if (inportb(p1+LSR) & 0x01) inbuf1[i++] = inportb(p1) ;
        c = rand() ;
        c += c >> 8 ;
        c &= 0x001f ;
        c++ ;
        for (; c != 0; c---) ;
        if (inportb(p2+LSR) & 0x01) inbuf2[j++] = inportb(p2) ;
        if (timeout---==0) break ;
    }
}
```

```
}
```

```
/* If timed out then print message else comparse data */
if(timeout == 0)
    printf("Timed out on Ports\n");
else {
    inbuf1[i] = inbuf2[j] = NULL;
    /* compare results */
    if (strcmp(outbuf, inbuf1) ;; ( i != n)) {
        printf("\nError:%04x Sent: ", p2) ;
        for ( w = 0; w < n; w++ )
            printf(" %02x", outbuf[w]) ;
        printf("\n%04x Received:", p1) ;
        for ( w = 0; w < i; w++ )</pre>
```

printf(" %02x", inbuf1[w]);

5-12

```
printf("\n");
}
if (strcmp(outbuf, inbuf2) ;; ( j != n )) {
    printf("\nError:%04x Sent: ", p1);
    for ( w = 0; w < n; w++ )
        printf(" %02x", outbuf[w]) ;
    printf("\n%04x Received:", p2) ;
    for ( w = 0; w < j; w++ )
        printf(" %02x", inbuf2[w]) ;
    printf("\n") ;
    }
}</pre>
```

}

1.4

GENERAL APPLICATION NOTE FOR STARTECH CLOCK FAMILY

The ST49CXXX video / memory clock chips provide 1-130 MHz clock outputs which may cause unwanted EMI problems.

To minimize problems with meeting FCC EMI requirements, consideration should be given to the following sections of the board design.

- Power supply conditioning
- Printed Circuit Board Layout Video / Memory clock outputs and drive capabilities External clock sources Reference clock sources Digital control / select inputs External loop filters

Power supply considerations

Some of the ST49CXXX clock chip contained internal loop filters for VCO circuits and some utilize external components. In both cases it is required to have spike free (or minimum) and stable supply source to the chips. To provide stable and clean supply voltage to STARTECH clock chips we recommend to use 0.1 µF capacitors close to IC's power supply lines (VCC, AVCC and DVCC inputs). Analog and digital supply lines are separated from each other to reduce noise generated due to internal digital switching.

In most of the design cases +5V and +12V supplies are provided. A clean +5V supply can be obtained from the +12V supply by utilizing a 470 ohm drop resistor and 5.1V zener diode bypassed by 0.047 μ F and 2.2 μ F Tantalum capacitors (or higher) to ground.

Trace width should be maximized from the supply source and good ground planes on top and bottom layers of the printed circuit board are recommended.

Printed Circuit Board (PCB) layout

We recommend to place all external components as close as possible to the clock chips to reduce trace length between pin and component connections. It is important to keep components not related to clock ICs (DRAM and other memory devices) far and not share the grounds. In applications utilizing a multi-layer board, GND, AGND, and DGND should be directly connected to the ground plane.

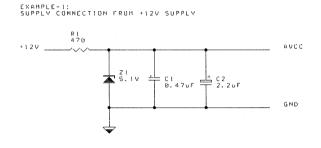
Video / Memory clock outputs and drive capabilities

Video clock is usually the highest frequency present in video graphics system board/card and consideration should be given to FCC EMI requirements. The trace connecting DCLK and MCLK clock output pins to other components should be kept as close as possible and ferrite beads should be used (with optional 33 ohm resistor in series with ferrite beads) to reduce the possible emitting signals and jitter.

External clock sources

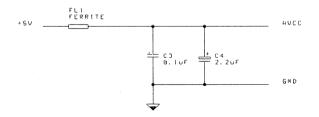
When an external clock source is used to bypass the internal VCO to DCLK and MCLK outputs, clock should have fast rise / fall times and minimum jitter. This signal will be connected internally to the clock output pin when it is selected / enabled. The internal VCO circuit will be locked to its internal selected frequency.

Reference clock sources


The internal oscillator circuit contains all of the passive components required for the external crystal. An appropriate parallel resonant crystal should be connected between XTAL1 and XTAL2. The crystal leads and input pins should be maintained as close as possible, and the body of the crystal should be grounded to minimize the noise pickup. For IBM compatible applications, the 14.31818 MHz system or crystal clock is used as a reference clock to the chip.

Digital control / select inputs

The ST49CXXX provides TTL compatible address select and latch input pins to interface with CMOS or TTL / LSTTL devices. The A0-A4 and M0-M1 can also be connected to the Data bus if required.


External loop filters

The components values of the filters are critical, especial care must be taken for board layout and selection of the components. Selected components can have 10-20% tolerance for capacitors and 1-5% tolerance for resistors. These components have to be close to the external loop filter pins and no signal traces should cross close or under these components.

19

EXAMPLE-2: SUPPLY CONNECTION FROM +5V SUPPLY

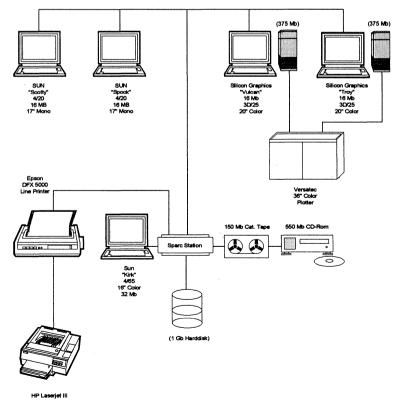
1.0 Quality and Reliability information

The STARTECH semiconductor quality program starts with the design of new products. Each design circuit performance is verified using simulations over voltage and temperature values beyond those of specified product operation.

The design process includes consideration of quality issues such as signal levels, power dissipation, noise generated from internal clock circuits and testability of all device functions.

The STARTECH semiconductor document control department maintains control over all manufacturing specifications, lot travelers, procurement specifications and drawings and test programs.

All changes of design are subject to approval by the Engineering, Quality and Manufacturing managers.


STARTECH semiconductor performs a thorough internal product qualification prior to the delivery of any new product or enhanced existing products other than prototypes/samples.

1.1 Design Tools

Schematics entry: Logic & Fault simulators:

Layout Synthesis:

Layout Editor: Layout Verification: View Logic Startech Advanced Logic simulator Goliath (Startech Layout synthesis) Opal Dracula

150 samples from three different product lots are selected to perform extended temperature operation test, 85° C/ 85% R.H. / 5.5V temperature humidity bias. Same samples are used for accelerated burn-in and electro-static tests.

STARTECH semiconductor subcontracts its fabrication process to ORBIT semiconductor located in Sunnyvale, California. Packaging and final testing are also subcontracted to other vendors located locally or overseas.

1.2 Determination of the Failure Rate

In the simplest form, the failure rate prediction at a given temperature can be predicted as follows.

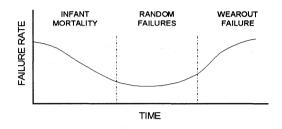
Failure rate= N/DH

Where:

N= number of failures D= number of devices

D= number of devices

H= number of hours tested

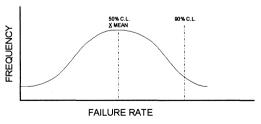

assuming that semiconductors exhibit a log normal distribution.

Acceleration Factors

The effects of temperature, voltage, time and other related functions are key when predicting life times of semiconductor devices. Understanding these effects with the use of a more accurate mathematical model, provides a better means of evaluating the change in reaction rate to changes in temperature.

Where:

F= Acceleration factor T1= Test temperature (° C+273) T2= Desired temperature (° C+273) k= Boltzman's constant (8.63 E-5eV / K) Ea= Thermal activation energy (eV)


The equivalent device hours can be determined at temperature T2 can be expressed as:

EDH (T2) = F (T1, T2) x DH (T1) The failure rate at T2 can be expressed as:

Failure rate (T2)= N/EDH (T2)

Where:

N= Number of failures EDH= Equivalent device hours

C.L.=Confidence Level

1.3 Activation Energies for Primary Failure Mechanisms

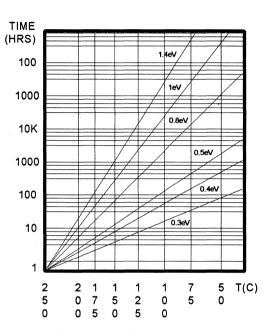
Failure Mechanism	Ea		
Contamination	1-1.4 eV		
Silicon Defects	0.5 eV		
Polarization	1 eV		
Oxide Breakdown	0.3 eV		
Aluminum Migration	0.5 eV		
Trapping	1 eV		

1.4 Definition and common test methods

Accelerated operating life stress

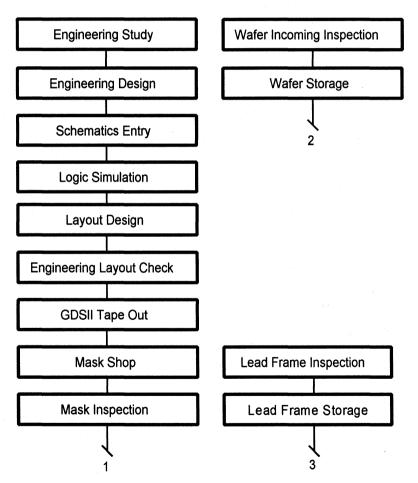
Accelerated operating life stressing is performed to accelerate failure mechanisms, which are thermally activated, through the application of extreme temperature and dynamic biasing conditions. The typical temperature and voltage conditions used in the stress are 125 °C with a bias level at the maximum data sheet specifications.

85 °C/ 85 % R.H.

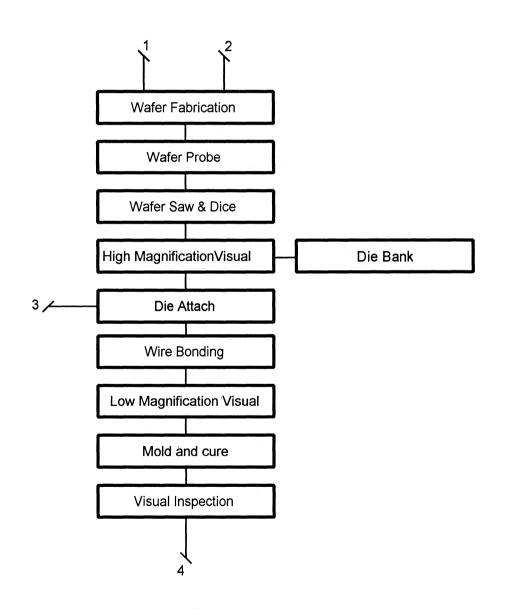

85 °C/ 85 % R.H. is an environmental stress performed at a temperature of 85 °C and relative humidity of 85%. The test is designed to measure the moisture resistance of encapsulated devices.

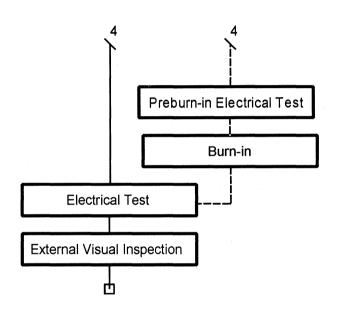
Electrostatic discharge testing

Electrostatic discharge testing is performed to determine the handling sensitivity of a semiconductor device.

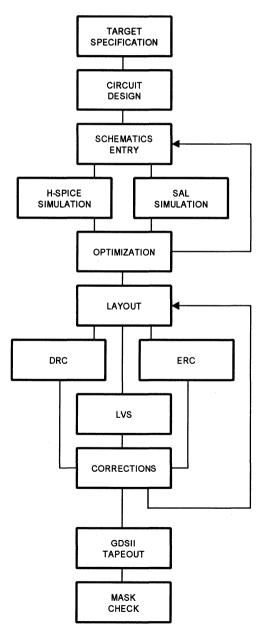

CMOS latch-up test

CMOS latch-up test is performed to determine the sensitivity of a device input to overshoot and undershoot signals connected to device inputs.

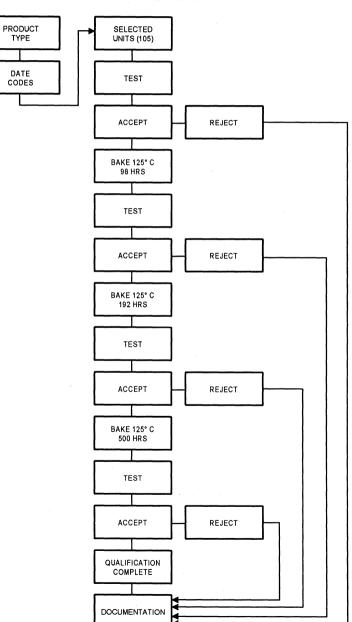



Commercial and Industrial Product Flows

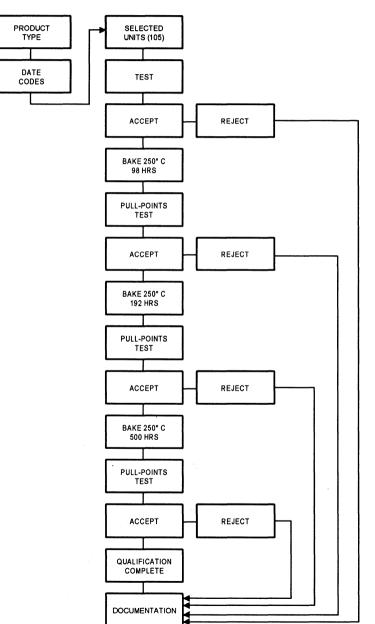
黉



6



Design and Layout Flow


QUALITY / RELIABILITY

6

TEMPERATURE CYCLE FLOW

Ą

85 / 85 BIAS CYCLE FLOW

QUALITY / RELIABILITY

HIGH TEMPERATURE OPERATING LIFE

2.0 EARLY FAILURE RATE SUMMARY

2.1 Early Failure rate Determination

High temperature operating life testing for as log as 96 hours, is used to estimate device early failure rate. Using our standard failure rate assumption, the early failure rate period extends through the first 2000 hours of device operation. Afterwards, the device reliability is characterized by the long term failure rate.

Test:	High Temperature Operating Life Test (HTOL)
Conditions:	Dynamic Operating Conditions, Vcc = 5.25 Volts, 150 ° C or 125 ° C, Frequency = 2 MHz.
Duration:	Early Failure Rate samples are tested between 48 and 96 hours HTOL at 150 $^\circ$ C or 96 hours at 125 $^\circ$ C.
Failure:	A failure is any device that fails to meet data sheet electrical require- ments following the HTOL test. Failure analysis is performed on every failure to identify the specific mechanism and determine a corrective action. Corrective actions are implemented and audited under the total quality management system.

2.2 Early Failure Rate Summary

Technology	No. of Devices Tested	No. of Fails	Failure mode	Defects (PPM)
ST16C450	1000	0	None	0
ST16C550	1500	2	Leakage	1333
ST16C452	1500	0	Functional	666
ST16C552	2000	0	None	0
ST16C554	2000	1	Leakage	500

6

QUALITY / RELIABILITY

3.0 LONG TERM FAILURE RATE SUMMARY

3.1 Long Term Failure Rate Determination

A High temperature Operating Life test is used to estimate long term reliability. By operating the devices at accelerated temperature and voltage, hundreds of thousands of use hours can be compressed into thousands of test hours. The method used to estimate failure rates from stress data is summarized.

Test:	High Temperature Operating Life Test (HTOL)
Conditions:	Dynamic Operating Conditions, Vcc = 5.25 Volts, 150 ° C, Frequency = 2 MHz.
Duration:	Long term Failure Rate is minimum 168 hours HTOL at 150 $^\circ$ C periodically tested to 2000 hours.
Reliability:	Failure mechanisms common to semiconductor components are accel- erated by temperature and voltage. In calculating failure rates, though, only temperature acceleration is included.

3.2 Long term Failure Rate Summary

Technology	No. of Devices Tested	No. of Fails	Failure mode	Defects (PPM)
ST16C450	5000	1	None	200
ST16C550	8000	1	Leakage	125
ST16C452	7500	0	None	0
ST16C552	5000	0	None	0
ST16C554	7000	1	Functional	143

4.0 HIGH TEMPERATURE STEADY STATE LIFE TEST

The High Temperature Steady State Life test is used to accelerated ionic contamination problems. Static bias is used because a constant voltage gradient accelerated diffusion of ionic species. The method used to estimate failure rates from stress data is summarized.

19

Technology	No. of Devices Tested	No. of Fails	Failure mode	Defects (PPM)
ST16C450	3000	1	Functional	333
ST16C550	3000	0	None	0
ST16C452	4500	1	Functional	222
ST16C552	1000	0	None	0
ST16C554	1000	0	None	0

5.0 PACKAGE STRESS TESTS

Startech Semiconductor Reliability qualifies and continuously monitors the packaging reliability to ensure exceptional resistance to environmental stress. Package reliability stress testing and failure rates are summarized.

5.1 Pressure Cooker Test

l'est:	Pressure Cooker Test (PCT)
Conditions:	15 PSIG, 120 ° C, No bias, 295 hours minimum time
Purpose:	The Pressure Cooker Test is a highly accelerated packaging stress test used to ensure environmental durability of epoxy packaged parts. Passivation cracks, ionic contamination and corrosion susceptibility are all accelerated by this stress.
Failure:	Any device which fails to meet all data sheet requirements is classified as a failure.

5.2 Pressure Cooker Summary

Technology	No. of Devices Tested	No. of Fails	Failure mode	Defects (PPM)
ST16C450CP40	5000	1	Functional	200
ST16C450CJ44	5000	0	None	0
ST16C550CP40	5000	0	None	0
ST16C550CJ44	5000	1	Leakage	200
ST16C452CP68	5000	1	Functional	200
ST16C552CP68	5000	1	Functional	200
ST16C554CP68	5000	0	None	0

5.2 Highly Accelerated Stress Test

Test:	High Accelerated Stress Test (HAST)
Conditions:	18.6 PSIG, 125 ° C, 85% RH, 5.5 Volts bias, minimum test time, 96 hours.
Purpose:	HAST is an accelerated biased humidity test that literature, and tests run at Startech, has shown provides an acceleration 10-15X over 85 ° C/85%. This test provides the factory with rapid feedback regarding the quality of the epoxy package process.
Failure:	A failure is defined as a device which fails to pass the standard data sheet test program.

6

5.4 Accelerated Stress Summary

Technology	No. of Devices Tested	No. of Fails	Failure mode	Defects (PPM)
ST16C450CP40	5000	0	None	0
ST16C450CJ44	5000	0	None	0
ST16C550CP40	5000	0	None	0
ST16C550CJ44	5000	0	None	0
ST16C452CP68	5000	0	None	0
ST16C552CP68	5000	0	None	0
ST16C554CP68	5000	0	None	0

5.5 Temperature Cycle Test

Differences in thermal expansion coefficients are accentuated by cycling devices through temperature extremes. If the materials do not expand and contact equally, large stresses can develop.

Test:Temperature CycleConditions:MIL-STD-883C, Method test stress mechanical integrity by exposing a
device to alternating temperature extremes. Weakness and thermal
expansion mismatches in die interconnections, die attach, and wire
bonds are often detected with this acceleration test.Purpose:100 cycles minimum, periodically tested to 1000 cyclesFailure:Any device which fails to meet all data sheet requirements is classified
as a failure.

5.6 Temperature Cycle Summary

Technology	No. of Devices Tested	No. of Fails	Failure mode	Defects (PPM)
ST16C450CP40	5000	0	None	0
ST16C450CJ44	5000	0	None	0
ST16C550CP40	5000	0	None	0
ST16C550CJ44	5000	2	Leakage Functional	400
ST16C452CP68	5000	0	None	0
ST16C552CP68	5000	0	None	0
ST16C554CP68	5000	0	None	0

ESD AND LATCH-UP TEST

6.0 Latch-up Sensitive

Test:	Latch-up Sensitivity
Conditions:	Current Injection = 200mA Trigger, Hot Socket = Vcc 0-7 Volts, Vcc Oscillation at Vcc = 3.5-7.0 Volts at 1 MHz, Temperature = 150 ° C.
Purpose:	The latch-up test is designed to test resistance of the devices to extreme voltage and current excursions. Latch-up has historically been a problem associated with CMOS devices.
Failure:	Any device which fails the Latch-up test if Latch-up occurs at less than 200mA of current.

6.1 Results:

All products are tested for latch-up during qualification.

Outputs:All outputs are tested using a hot socket technique where the full voltage
is applied instantly, on a voltage ramp, where voltage is increased
slowly. During the hot socket technique, a maximum of 400 mA was
allowed in order to protect the outputs from overstress.Inputs:All inputs are tested using both the hot socket technique and the voltage
ramp technique.

6.2 Conclusion:

Startech Semiconductor products are very resistant to latch-up.

6

QUALITY / RELIABILITY

7.0 Electrostatic Discharge (ESD)

Test:	Electrostatic Discharge
Conditions:	MIL-STD-883C, Method 3015
Purpose:	The ESD test established the sensitive of device to electrostatic discharge of the type than can occur during ordinary handling.
Failure:	A device fails the ESD stress test is any pin combination defined in method 3015 of MIL-STD-883C is damaged after testing with a 2000 Volts discharge. Data sheet electrical testing is performed to determine if a device has been damaged.

7.1 Results:

All Startech Semiconductor products are tested for resistance to ESD during qualification. All pins pass ESD testing at 2000 Volts.

7.2 Conclusion:

Startech Semiconductor products are not ESD sensitive per the definition of MIL-STD-883C.

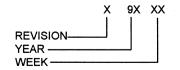
ORDERING INFORMATION

ORDERING GUIDE

4

ORDERING INFORMATION AND PART NUMBERING GUIDE

Prefix	Device	Suffix	-	Pin Count
ST	xx ç xxx	ХX		хx
l Company ID				
Part Number_]			
Temperature				
Package				
Number of the	e packaged pir	ıs		


Temperature Range

С	Commercial	0°	С	То	+70°	С
I.	Industrial	-40°	С	То	+85°	С
М	Military	-55°	С	То	+125°	С

Package Type

- P Plastic Dip
- C Ceramic
- D Cerdip
- L Leadless Chip Carrier (LCC)
- J Plastic Leaded Chip Carrier (PLCC)
- F Flat Pack(SOIC)
- Q Quad Flat Pack
- G Pin Grid

DATE CODE MARKING

7

ORDERING INFORMATION AND PART NUMBERING GUIDE (CLOCK SYNTHESIZERS)

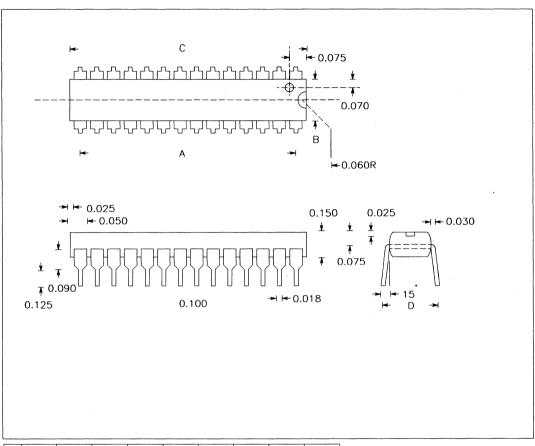
Prefix ST Company ID	Device - XX C XXX	Option XX	Suffix X X
Part Number.			
Option numb	er		
Temperature	<u></u>		
Package			

Temperature Range

С	Commercial	0° C	То	+70°C
I.	Industrial	-40° C	То	+85°C
М	Military	-55° C	То	+125°C

Package Type

- P Plastic Dip
- C Ceramic
- D Cerdip
- L Leadless Chip Carrier (LCC)
- J Plastic Leaded Chip Carrier (PLCC)
- F Flat Pack(SOIC)
- Q Quad Flat Pack
- G Pin Grid


DATE CODE MARKING

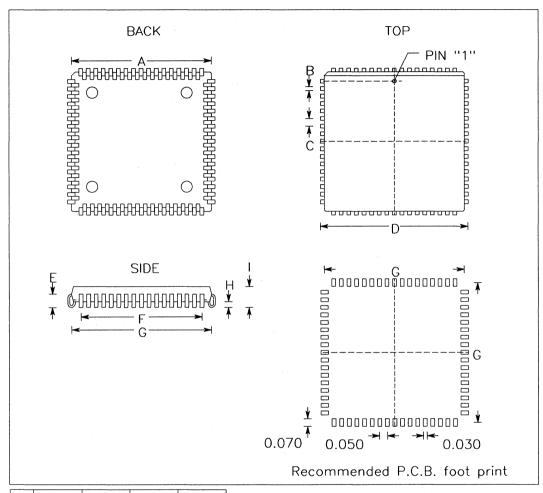
	Х	9X	XX
	1		
REVISION			
YEAR			
WEEK			

PACKAGING INFORMATION

PACKAGING GUIDE

-ite

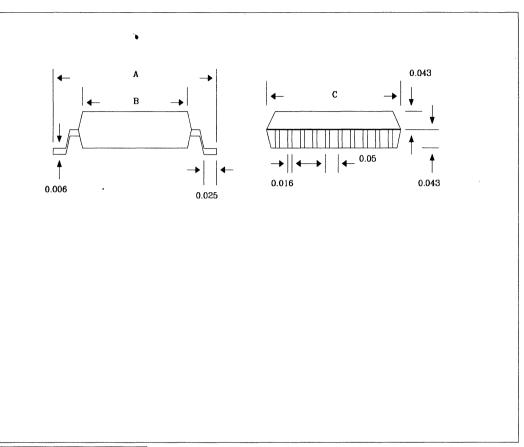
PLASTIC DIP PACKAGING INFORMATION


	8PIN	14PIN	16PIN	18PIN	20PIN	24PIN	28PIN	40PIN	48PIN	
B C	0.250 0.385	0.250 0.756	0.700 0.250 0.856 0.300	0.250 0.856	0.250 1.026	0.540 1.256	0.540 1.406	0.550 2.056	0.550 2.416	

All dimensions are in inches

8

PACKAGING GUIDE


PLCC PACKAGING INFORMATION

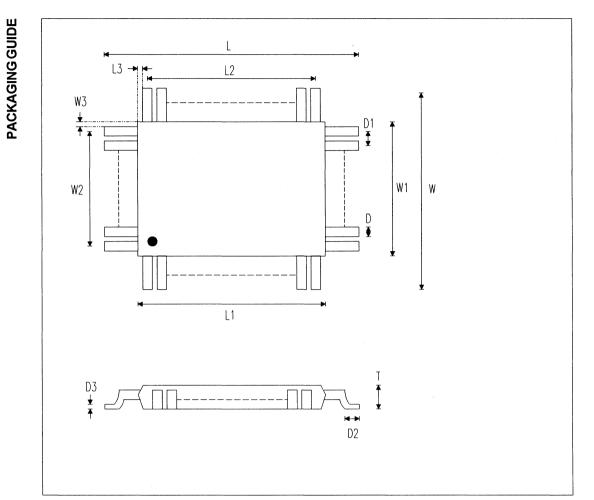
	44PIN	52PIN	68PIN	84PIN
A B C D E F G H I	0.653	0.730	0.954	1.154
	0.029	0.029	0.029	0.029
	0.050	0.050	0.050	0.050
	0.690	0.790	0.990	1.190
	0.110	0.110	0.110	0.110
	0.500	0.600	0.800	1.000
	0.610	0.710	0.910	1.110
	0.026	0.026	0.026	0.026
	0.182	0.182	0.182	0.182

All dimensions are in inches

PACKAGING GUIDE

PLASTIC SOIC PACKAGING INFORMATION

	8PIN	14PIN	16PIN	20PIN
A B C	0.154	0.154	0.406 0.154 0.405	0.295


All dimensions are in inches

8

PACKAGING GUIDE

QUAD FLAT PACK PACKAGING INFORMATION

1

	52PIN	80PIN	100PIN
L L1 L2 L3 W W1 W2	14.10 10.00 7.80 0.95 14.10 10.00 7.80	23.90 20.00 18.40 0.80 17.90 14.00 12.00	23.90 20.00 18.85 0.575 17.90 14.00 12.35
W3 D D1 D2 D3 T	0.95 0.30 0.65 0.80 0.175 2.25	1.00 0.35 0.80 0.28 3.05	0.825 0.30 0.65 0.80 0.28 3.05

All dimensions are in millimeters

REPRESENTATIVES

REPRESENTATIVES

North American Representatives

Alabama

NOVUS GROUP TEL (205) 534-0044 FAX (205) 534-0186

Arizona

SUNTECH SALES TEL (602) 860-8262 FAX (602) 860-9730

California

PRO ASSOCIATES TEL (408) 248-5300 FAX (408) 244-7939

INFINITY SALES

TEL (714) 833-0300 FAX (714) 833-0303

INFINITY SALES TEL (310) 455-2566

Colorado

AKI ENTERPRISES TEL (303) 756-0700 FAX (303) 756-3135

Connecticut

DYNAMIC SALES TEL (203) 693-0451

Florida

SEC TEL (407) 830-8444 FAX (407) 830-8684

SEC

TEL (305) 426-4601 FAX (305) 427-7338

North American Representatives

Georgia

NOVUS GROUP TEL (404) 263-0320 FAX (404) 263-8946

Idaho

ELECTRONIC COMPONENT SALES TEL (208) 342-8072

Illinois

MICRO SALES INC. TEL (708) 285-1000 FAX (708) 285-1008

Indiana

ADM TEL (513) 579-8108 FAX (513) 579-8510

Maryland

AVTEK TEL (410) 740-5100 FAX (410) 740-5103

Massachusetts

DYNAMIC SALES TEL (617) 272-5676 FAX (617) 273-4856

Michigan

J.M.J & ASSOCIATES TEL (616) 285-8887 FAX (616) 285-7633

Minnesota

MURNCO TEL (612) 854-4161 FAX (612) 854-9634

New Jersey

ERA Inc. TEL (516) 543-0510 FAX (516) 543-0758 CAMPBELL ASSOCIATES TEL (215) 322-6630 FAX (215) 322-2627

New York

ERA Inc. TEL (516) 543-0510 FAX (516) 543-0758

North Carolina

NOVUS GROUP TEL (704) 846-4055 FAX (704) 846-4044

Ohio

ADM TEL (513) 579-8108 FAX (513) 579-8510 TEL (216) 946-6812

Oregon

ELECTRONIC COMPONENT SALES TEL (503) 245-2342 FAX (503) 520-0767

Pennsylvania

CAMPBELL ASSOCIATES TEL (215) 322-6630 FAX (215) 322-2627

Texas

BRAVO SALES TEL (214) 250-2900 FAX (214) 250-2905

BRAVO SALES

TEL (512) 328-7550 FAX (512) 328-7426

BRAVO SALES

TEL (713) 320-0500 FAX (713) 320-0212

Vermont

DYNAMIC SALES TEL (802) 476-4223

Virginia

AVTEK TEL (410) 740-5100 FAX (410) 740-5103

Washington

ELECTRONIC COMPONENT SALES TEL (206) 232-9301 FAX (206) 232-1095 1.8

ELECTRONIC COMPONENT SALES TEL (509) 456-0100

West Virginia

AVTEK TEL (410) 740-5100 FAX (410) 740-5103

Wisconsin

MICRO SALES INC. TEL (414) 786-1403 FAX (414) 786-1813

NORTH AMERICAN DISTRIBUTORS

PARTS ONE TEL (800) 247-0867 FAX (612) 633-2310

International

Austria

BACHER ELECTRONICS TEL (43) 1-81-602-000 FAX (43) 1-81-602-400

Belgium

 TME ELECTRONICS

 TEL
 (32) 3-325-1910

 FAX
 (32) 3-326-0510

Canada

INTELATECH, INC. TEL (416) 629-0082 FAX (416) 629-1795

INTELATECH, INC.

TEL (403) 230-3190 FAX (403) 230-3183

INTELATECH, INC.

TEL (613) 769-5618 FAX (613) 596-2442

Denmark

PRESCOM A/S TEL (45) 4218-9800 FAX (45) 4218-9811

England

BRITCOMP SALES LTD (BSL) TEL (44) 372-377779 FAX (44) 372-376848

2001 ELECTRONIC COMPONENTS TEL (44) 438-742001 FAX (44) 438-742002

France

ALMEX TEL (33) 1-40-96-54-00 FAX (33) 1-46-66-60-28

Hong Kong

TEKTRON ELECTRONICS TEL (852) 388-0629 FAX (852) 780-5871

Germany

EUROCOMP ELEKTRONIK Gmbh TEL (49) 6031-61076 FAX (49) 6031-61788

DISCOMP ELEKTRONIK Gmbh TEL (49) 2722-7157 FAX (49) 2722-7150

HEITEK Gmbh

TEL (49) 89-614-9010 FAX (49) 89-614-0960

KAMAKA ELEKTRONIK Gmbh TEL (49) 7275-8600 FAX (49) 7275-8675

India

DIGIPRO MKTG. PVT. LTD. TEL (91) 812-566706 FAX (91) 80-565088

Italy

KEVIN TEL (39) 2-4870-6300 FAX (39) 2-4870-6500

Israel

STAR-TRONICS LTD. TEL (972) 3-696-0148 FAX (972) 3-696-0255

Japan

ısi	
TEL	(81) 3-3264-3301
FAX	(81) 3-3264-3419

Korea

I & C MICROSYSTEMS Co. TEL (82) 2-577-9131 FAX (82) 2-577-9130

Malaysia

MICOTRONICS TEL (65) 748-1835 FAX (65) 743-3065

Netherlands

AVE ELECTRONICS TEL (31) 78-138288 FAX (31) 78-140390

Singapore

SERIAL SYSTEMS MKTG. TEL (65) 280-0200 FAX (65) 286-6723

Sweden

BEXAB TECHNOLOGY TEL (46) 8-630-8810 FAX (46) 8-732-7058

Taiwan

JATRON ELECTRONICS, INC. TEL (886) 2-3070152 FAX (886) 2-3055629

Index

ST16C1450	3
ST16C1451	3
ST16C1550	3
ST16C1551	3
ST16C1552	3
ST16C2450	
ST16C2550	5
ST16C2552	7
ST16C450	
ST16C452AT	-
ST16C452PS	9
ST16C454	
ST16C550	_
ST16C552	
ST16C553	_
ST16C554 3-16	9
	_
ST26C31	
ST26C32	.9
ST34C50	E
2-1 ST34C51	
2-1 ST34C86	-
2-2 ST34C87	
5154007	9
ST49C0611-	3
ST49C063 1-1	
ST49C064	
ST49C103	
ST49C104	-
ST49C106	-
ST49C155	-
ST49C214	-
ST49C394	
ST49C694	
ST68C454	1
ST68C554	7
ST78C35	2
	.3
ST84C724-1	

