STARTECH Semiconductor, inc.

DATA BOOK

STARTECH Component Data Catalog 1992

STARTECH Semiconductor Inc. 1219 BORDEAUX Dr. SUNNYVALE, CA 94089 TEL (408) 745-0801 FAX (408) 745-1269 No part of this document may be copied or reproduced in any form or by means without the prior written consent of STARTECH Semiconductor Inc. The information in this document is subject to change without notice. STARTECH Semiconductor Inc. assumes no responsibility for any errors that may appear in this document and makes no commitment to update or to keep current the information contained in this document. STARTECH Semiconductor Inc. makes no warranty (express, statutory, implied, or by description) regarding the information set forth herein or regarding the freedom of the described device from patent infringement. STARTECH Semiconductor Inc. makes no warranty of merchantability or fitness for any purpose.

STARTECH Semiconductor Inc.'s products are not authorized for use as critical components in the life support devices or systems without the express written approval of the president of STARTECH Semiconductor Inc..

A) Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

B) A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to effect its safety or effectiveness.

286/386/486 is a trademark of Intel Corporation.

IBM PC/XT/AT, PS/2 is a trademark of International Business Machines Corporation.

WD is a trademark of Western Digital Corporation.

NS, INS, DS is a trademark of National Semiconductor Corporation.

VL is a trademark of VLSI Technologies Corporation.

CENTRONICS is a trademark of Centronics Data Computer Corporation.

XR is a trademark of Exar Corporation.

TL is trademark of Texas Instrument, Inc.

MC is a trademark of Motorola Semiconductor.

ICS is a trademark of Integrated Circuit Systems, Inc.

AV is a trademark of Averse Corporation.

SSI is a trademark of Silicon Systems Inc.

To Our Valued Customer:

Startech Semiconductor was founded in 1990, with the charter to design, manufacture and market high performance data communication peripheral products in both the commercial and industrial semiconductor markets. Since then, Startech continues to follow that charter and enjoys a rapid growth.

Startech's products are marketed and distributed through a world-class network of representatives and distributors.

At Startech, we are dedicated to keeping your designs competitive with leading edge solutions. All our products are low power, high performance, CMOS ICs. Our commitment to you is to provide you with high quality and reliable ICs.

KKNED

Ram K. Reddy President

Dear Customer,

Startech Semiconductor is proud to present you with our updated 1992 Data Book. Startech's technical staff have worked together to provide you with the most accurate, up-to-date information.

We believe that when you design our products in your systems, you have started a partnership with a company that is committed to work with the customers and deliver quality products. Startech offers to customize any of these standard products to meet your special requirements.

If you have any questions or comments, please call us directly.

Art Khachaturian Vice President

FREQUENCY SYNTHESIZERS

LINE DRIVERS / RECEIVERS

UARTS

COMMUNICATIONS

APPLICATION NOTES

QUALITY/RELIABILITY

ORDERING INFORMATION

PACKAGING INFORMATION

REPRESENTATIVES

vi

Contents

FREQUENCY SYNTHESIZERS	
ST49C061	1-3
ST49C103/104/114	
ST49C214	
ST49C394	
31430334	
DIFFERENTIAL LINE DRIVERS	
ST26C31	
ST34C87	2-29
DIFFERENTIAL LINE RECEIVERS	
ST26C32	
ST34C86	2-23
DIFFERENTIAL LINE DRIVERS / RECEIVERS	
ST34C50	
ST34C51	2-15
UARTS	
ST16C1450	
ST16C1451	
ST16C2450	3-45
ST16C450	3-3
ST16C454	3-61
UARTS WITH FIFO	
ST16C1550	
ST16C1551	
ST16C2550	3-125
ST16C550	
ST16C554	3-143
ST68C554	
UARTS WITH PRINTER	
ST16C452AT	
ST16C452PS	
ST16C552	
ST16C553	
PARALLEL I/O WITH FIFO	
ST78C35	4-3
IDE INTERFACE	
ST84C72	4-15

viii

CROSS REFERENCE LIST

DIFFERENTIAL LINE DRIVERS

National Semiconductor DS26C31C DS34C86

DIFFERENTIAL LINE RECEIVERS

National Semiconductor DS26C32C DS34C37

DIFFERENTIAL LINE RECEIVERS / DRIVERS

Motorola Semiconductor MC34050 MC34051

UARTS

National Semiconductor INS8250A INS82C50A NS16450 NS16C450 NS16550AF

Silicon Systems SSI73M550 SSI73M1550 SSI73M2550

VLSI Technology, Inc. VL82C50A VL16C450 VL16C550

Western Digital Inc. WD16C450 WD16C550

Texas Instruments TL16C450 TL16C550A

Exar Corporation XR16C450 XR16C550 Startech Semiconductor ST26C31 ST34C86

Startech Semiconductor ST26C32 ST34C87

Startech Semiconductor ST34C50 ST34C51

Startech Semiconductor ST16C450 ST16C450 ST16C450 ST16C450 ST16C550

Startech Semiconductor ST16C550 ST16C1450 / ST16C1550 ST16C1451 / ST16C1551

Startech Semiconductor ST16C450 ST16C450 ST16C550

Startech Semiconductor ST16C450 ST16C550

Startech Semiconductor ST16C450 ST16C550

Startech Semiconductor ST16C450 ST16C550

CROSS REFERENCE LIST

UARTS WITH PRINTER

VLSI Technology, Inc. VL16C452 VL16C552

Western Digital Inc. WD16C452 WD16C552

Texas Instruments TL16C452 TL16C552

Exar Corporation XR16C452 XR16C552

VIDEO DOT CLOCK GENERATOR

Integrated Circuit Systems, Inc. ICS1394XXX ICS2494XXX ICS90C61AXXX

Avasem Corporation AV9103-XX AV9104-XX Startech Semiconductor ST16C452 ST16C552 / ST16C553

Startech Semiconductor ST16C452 ST16C552 / ST16C553

Startech Semiconductor ST16C452 ST16C552

Startech Semiconductor ST16C452 ST16C552

Startech Semiconductor ST49C394-XX ST49C214-XX ST49C061-XX

Startech Semiconductor ST49C103-XX ST49C104-XX / ST49C114-XX

FREQUENCY SYNTHESIZERS

1

Index

ST49C061	1-3
ST49C103/104/114	
ST49C214	
ST49C394	

APR 1992

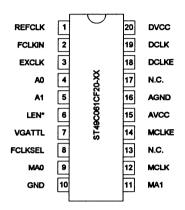
PREPROGRAMMED DUAL VIDEO/MEMORY FREQUENCY GENERATOR

GENERAL DESCRIPTION

The ST49C061 is a monolithic analog CMOS device designed to generate dual frequency outputs from seven possible combinations for video Dot clock frequencies and four memory clock frequencies for high performance video display systems. The ST49C061 is a mask option programmable device to provide different output frequencies for custom applications. It is designed with 1.2µ process to achieve 130 MHz speed for high end frequencies.

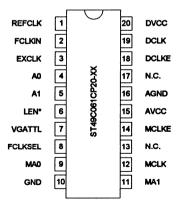
The ST49C061 is designed to replace existing video clocks generated from individual oscillators, to reduce board space and number of oscillators. To provide high speed and low jitter clock, The ST49C061 utilizes high speed analog CMOS phase locked loop using 14.318 MHz system clock as reference clock (reference clock can be changed to generate optional frequencies from standard programmed device).

The ST49C061 can provide optional clock frequencies, utilizing single layer metal mask option. The programmed clock outputs are selectable via four address lines and address latch enable pin for video Dot clock selection and two address lines for memory clock selection.

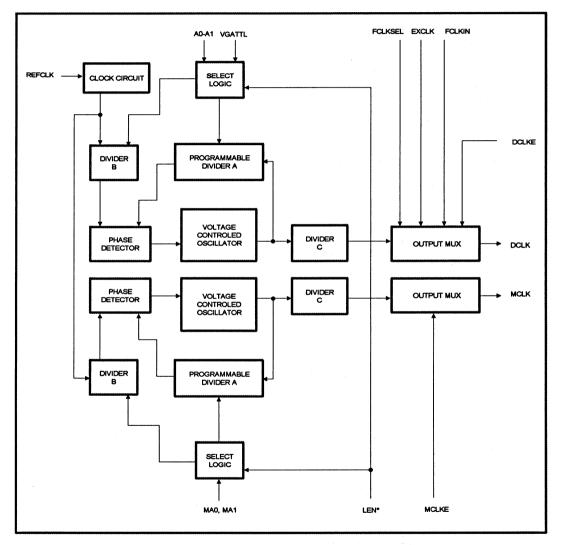

FEATURES

- * Can replace multiple oscillators/crystals
- * Pin -to-pin compatible to ICS90C61A
- * Programmable analog phase locked loop
- * High speed (up to 130 MHz output)
- * Low power single 5V CMOS technology
- * 20 pin dip or SOIC package
- * Compatible with Western Digital Imaging Video Graphics Array clock requirements.

ORDERING INFORMATION


Part number	Package	Opera	atin	g te	mperati	ure
ST49C061CP20-xx	Plastic-DIP	0°	С	to	+70°	С
ST49C061CF20-xx	SOIC	0°	С	to	+70°	С
ST49C061CJ20-xx	PLCC	0°	С	to	+70°	С

SOIC Package



Plastic-DIP Package

BLOCK DIAGRAM

1-4

1

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description	
REFCLK	1	I	Extemal 14.318 MHz system reference clock input.	
FCLKIN	2	I	Feature clock input.	
EXCLK	3	I	External clock input. For additional clock frequency.	
AO	4	I	Dot clock Frequency select address 1.	
A1	5	I	Dot clock Frequency select address 2.	
LEN*	6	I	Address latch enable input (active low). To latch selected programmed clock output.	
VGATTL	7	I	Control input for DCLK selection.	
FCLKSEL	8	I	Control input for FCLK selection.	
MAO	9	I	Memory clock Frequency select address 1.	
DGND	10	ο	Digital ground.	
MA1	11	I	Memory clock Frequency select address 2.	
MCLK	12	ο	Programmed memory clock output frequency.	
N.C.	13		No connect.	
MCLKE	14	1	MCLK output enable.	
AVCC	15	I	Analog supply voltage. Single +5 volts.	
AGND	16	ο	Analog ground.	
N.C.	17		No connect.	
DCLKE	18	I	DCLK output enable.	
DCLK	19	о	Programmed video clock output frequency.	
DVCC	20	I	Digital supply voltage. Single +5 volts.	

1-5

GENERAL INFORMATION

The Western Digital Imaging VGA controllers normally have a status bit that indicates to the VGA controller that it is working with a clock chip. The VGA controller has capability to change two of its clock inputs VCLK1 and VCLK2 to outputs when working with a clock chip. These outputs are used to select the required video frequency.

The ST49C061 is programmed to generate different video clock frequencies using the inputs of A0 and A1. The VGATTL selects one of the two preprogrammed registers to provide four of eight clock frequencies.

The EXCLK and FCLKIN are additional inputs that may be internally connected to the DCLK output. The additional inputs are useful for supporting modes that require frequencies not provided by the ST49C061.

FREQUENCY SELECT CALCULATION

The ST49C061 contains an analog phase locked loop circuit with a digital closed loop divider and a final series divider to achieve desired dividing ratios for clock output.

The accuracy of the frequencies produced by the ST49C061 depends on the input frequency and final output frequency. The formula for calculating the exact output frequency is as follows:

DCLK = (Reference clock) X (A/B.C) MCLK = (Reference clock) X (A/B.C)

where A=1,2,3,......127, B=1,2,3,.....127, and C=1,2,4

For proper output frequency, the ST49C061 can accept reference frequency from 5 - 40 MHz and divider ratio up to 15.

MASK OPTIONS

The following mask options are provided for custom applications.

* Any frequency can be in any decoding position.

* DCLK, can control selection of the internal frequencies.

1

					ST49C061-01	ST49C061-02
Video clock address (Hex)	FCLKSEL	VGATTL	A1	A0	Frequency (MHz)	Frequency (MHz)
0 1 2 3 0 1 2 3 X	1 1 1 1 1 1 1 0	0 0 1 1 1 X	0 1 0 1 0 1 X	0 0 1 0 0 1 X	REFCLK 16.256 32.000 44.900 25.175 28.322 65.000 36.000 FCLKIN**	REFCLK 16.108 32.216 44.744 25.057 28.089 EXTCLK 36.242 FCLKIN**
Memory clock address (Hex)			MA1	MA0	Frequency (MHz)	Frequency (MHz)
0 1 2 3			0 0 1 1	0 1 0 1	40.000 37.500 36.000 44.900	41.612 37.585 36.242 44.744

Compatible with Video Controller

ICS-PR1

ICS-PR2 WD90C30

** Note: FCLKIN and EXCLK may be programmed to output custom frequencies.

AC ELECTRICAL CHARACTERISTICS

 $\rm T_{A}=25^{\circ}\,C, \ V_{cc}=5.0 \ V\pm 5\%$ unless otherwise specified.

Symbol	Parameter	Min	Limits Typ	Max	Units	Conditions
┰╷┰°┰ ┱╋ ┰╻╻╻ ┰╷╋╷ ┲╷ ┲╷ ┲, ┲, ┲, ┲, ┲, ┲, ┲, ┲, ┲, ┲, ┲, ┲, ┲,	Enable pulse width Setup time data to enable Hold time to data enable Rise time Fall time Duty cycle Jitter Input frequency Input clock rise time Input clock fall time Output frequency change	20 20 10 40 14.318	48/52 ±85 0.005	4 4 500 ±100 32 20 20	ns ns ns ns % ps z ns %	

ABSOLUTE MAXIMUM RATINGS

Operating supply range Voltage at any pin Operating temperature Storage temperature Package dissipation 7 Volts ± 5% GND-0.3 V to VCC+0.3 V 0° C to +70° C -40° C to +150° C 500 mW

DC ELECTRICAL CHARACTERISTICS

 $\rm T_{a}{=}25^{\circ}\,\rm C, \ V_{cc}{=}5.0\,\rm V{\pm}5\%$ unless otherwise specified.

Symbol	Parameter	Min	Limits Typ	Max	Units	Conditions
∨ _⊾ _н ∨ ^д і⊾ _н	Input low level Input high level Output low level Output high level Input low current Input high current Operating current	2.0 2.4	10	0.8 0.4 -5 5	М М М М М М М М М М М М М М М М М М	No load.

TIMING DIAGRAM T1 LEN* T2 ┥ - T3 -_ 4 A0-A1 MA0-MA1 ► T8 EXCLK т9 🚽 MCLK DCLK -> -- T5 17 **T4** -T6 **T6** T11

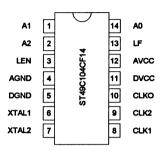
APR 1992

PREPROGRAMMED FREQUENCY GENERATOR

DESCRIPTION

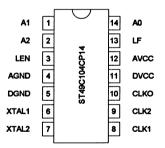
The ST49C103 and ST49C104 are mask programmable monolithic analog CMOS devices designed to generate up to 8 single frequency outputs from a single input clock. The ST49C104 will provide eight different output frequencies and the ST49C103 will provide four different output frequencies. They are designed in a 1.2μ process to achieve 130 MHz speed for high end frequencies.

The ST49C103 and ST49C104 are designed to replace existing video clocks generated from individual oscillators in order to reduce board space and number of oscillators. To provide high speed analog CMOS phase locked loop using 14.318 MHz system clock as the reference clock (note that reference clock can be changed to generate optional frequencies from a standard programmed device). The programmed clock outputs are selectable via three address lines and address latch enable pin. The ST49C104 also includes a power on reset circuit which will cause the select logic to select the frequency at address "000" upon power up. The latch enable pin is also mask programmable to be active high, active low or rising orfalling edge sensitive.

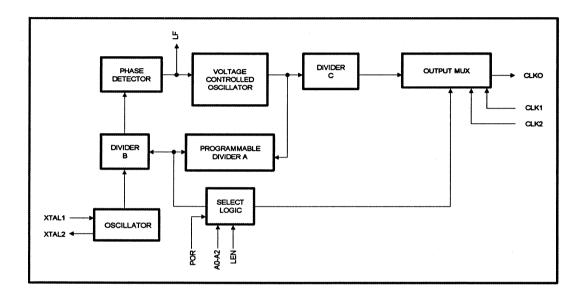

FEATURES

- * Can replace up to 8 oscillators/crystals and a multiplexer
- * Pin-to-pin compatible to Avasem AV9104/AV9103
- * Programmable analog phase locked loop
- * Low power single 5V CMOS technology
- * 8 or 14 pin DIP or SOIC package.

ORDERING INFORMATION


Part number	Package	Operating temperature
ST49C103CP8	Plastic-DIP	0° C to +70° C
ST49C103CF8	SOIC	0° C to +70° C
ST49C104CP8	Plastic-DIP	0° C to +70° C
ST49C104CF8	SOIC	0° C to +70° C
ST49C104CP14	Plastic-DIP	0 ° C to +70° C
ST49C104CF14	SOIC	0° C to +70° C
ST49C114CP14	Plastic-DIP	0° C to +70° C
ST49C114CF14	SOIC	0° C to +70° C

SOIC Package



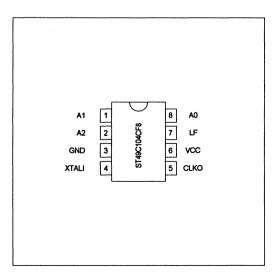
1

Plastic-DIP package

BLOCK DIAGRAM

1

ST49C103/104/114

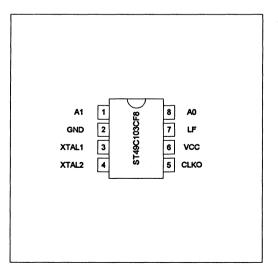

SYMBOL DESCRIPTION (ST49C104 14 pin package)

Symbol	Pin	Signal Type	Pin Description
A1	1	I	Frequency select address input 2.
A2	2	·	Frequency select address input 3.
LEN	3	I	Address latch enable input. To latch selected programmed clock output.
AGND	4	ο	Analog ground.
DGND	5	o	Digital ground.
XTAL1	6	Ι	Crystal or external clock input. A crystal can be connected to this pin and XTAL2 pin to generate internal phase locked loop reference clock. For external 14.318 MHz clock, XTAL2 is left open or used as buffered clock output.
XTAL2	7	о	Crystal output.
CLK1	8	I	External clock 1 input.
CLK2	9	I	External clock 2 input / output select.
сіко	10	о	Programmed output clock.
DVCC	11	l.	Digital supply voltage. Single +5 volts.
AVCC	12	I	Analog supply voltage. Single +5 volts.
LF	13	ο	Loop filter.
A0	14	I	Frequency select address input 1.

ST49C114/ST49C104 have same pin out, except ST49C114 has higher output drive level.

SYMBOL DESCRIPTION (ST49C1048 pin package)

Symbol	Pin	Signal Type	Pin Description
A1	1	I	Frequency select address input 2.
A2	2	I	Frequency select address input 3.
GND	3	0	Digital ground.
XTAL1	4	1	External clock input. Internal phase locked loop reference clock .
CLKO	5	0	Programmed output clock.
VCC	6	E i	Digital supply voltage. Single +5 volts.
LF	7	0	Loop filter.
A0	8	I	Frequency select address input 1.


1-14

1

ST49C103/104/114

SYMBOL DESCRIPTION (ST49C1038pin package)

Symbol	Pin	Signal Type	Pin Description
A1	1	I	Frequency select address input 2.
GND	2	ο	Digital ground.
XTAL1	3	I	Crystal or external clock input. A crystal can be connected to this pin and XTAL2 pin to generate internal phase locked loop reference clock. For external 14.318 MHz clock, XTAL2 is left open or used as buffered clock output.
XTAL2	4	0	Crystal output.
CLKO	5	0	Programmed output clock.
vcc	6	I	Digital supply voltage. Single +5 volts.
ŀF	7	ο	Loop filter.
A0	8	I	Frequency select address input 1.

1-15

FREQUENCY SELECT CALCULATION

The ST49C104 contains an analog phase locked loop circuit with digital closed loop dividers and a final output multiplexer to achieve the desired dividing ratios for the clock output.

The accuracy of the frequencies produced by the ST49C104 depends on the input frequency and divider ratios. The formula for calculating the exact output frequency is as follows:

CLKO = (Reference clock) X A/(B.C)

where

ST49C103/104/114

A=1,2,3,.....127 B=8, 16, 32, 64 C=1.2.4.8

For proper output frequency, the ST49C104 can accept a reference frequency from 5-40 MHz and divider ratio up to 15.

The following mask options are provided for custom applications.

- * Latch Enable can be edge triggered or level sensitive.
- * Latch Enable can be active high or active low.
- * Any frequency can be in any decoding position.
- * CLK 1 and CLK 2 can be included in decoding table.
- * CLK2 can control selection of either CLK 1 or the internal frequencies.

MASKOPTIONS

FEATURE	ST49C104 14-pin	ST49C104 8-pin	ST49C103 8-pin
8 output frequencies	x	х	× ×
4 output frequencies Programmable LEN pin	х	х	X
Clock input only Crystal or clock input	x	х	x
CLK1, CLK2 available for output mux	Х		

EXTERNAL CLOCK CONNECTION

To minimize the noise pickup, it is recommended to connect 0.047µF capacitor to XTAL1, and keep the lead length of the capacitor to XTAL1 to a minimum to reduce noise susceptibility.

AC ELECTRICAL CHARACTERISTICS

 $T_{a}=25^{\circ}$ C, $V_{cc}=5.0$ V ± 5% unless otherwise specified.

Symbol	Parameter	Min	Limits Typ	Max	Units	Conditions
$ \begin{array}{c} T_{1} \\ T_{2}^{3} \\ T_{4}^{3} \\ T_{5}^{6} \\ T_{7}^{7} \\ T_{8}^{9} \\ T_{10}^{10} \\ T_{11}^{11} \end{array} $	Enable pulse width Setup time data to enable Hold time to data enable Rise time Fall time Duty cycle Jitter Input frequency Input clock rise time Input clock fall time Output frequency change	20 20 10 40 14.318	48/52 ±85 0.005	4 60 ±100 32 20 20	ns ns ns ns % ps MHz ns ns %	

Input clock frequency = 14.318 MHz * Input clock frequency = 16.0 MHz

** Input clock frequency = 8.0 MHz

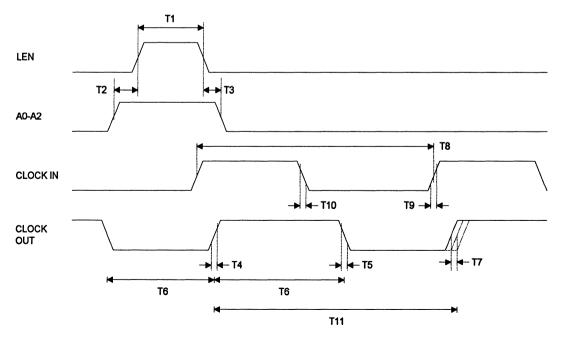
A2	A1	A0	ST490	:104-1	ST490	C104-2	ST490	C104-3	ST49C	114-5*	ST49	C103**
			NOMINAL	ACTUAL	NOMINAL	ACTUAL	NOMINAL	ACTUAL	NOMINAL	ACTUAL	NORMAL	ACTUAL
00	0	Xtal	Xtal	25.175	25.280	50.350	50.560	39.000	39.0000	32.00	32.00	32.00
0	0	1	16.257	16.331	28.322	28.412	56.664	56.824	25.000	25.000	40.00	40.00
0	1	0	Clk2	Clk2	32.514	32.663	65.028	65.326	30.750	30.750	50.00	50.00
0	1	1	32.514	32.663	36.000	35.795	72.000	71.590	26.250	26.250	1.00	1.00
1	0	0	25.175	25.056	40.000	39.822	80.000	79.640	32.000	32.000	N/A	
1	0	1	28.322	28.412	44.900	44.744	89.800	89.488	25.250	25.250	N/A	
1	1	0	24.000	23.938	50.000	50.113	75.000	75.169	31.250	31.250	N/A	
1	1	1	40.000	39.822	65.000	65.326	108.00	108.280	37.500	37.500	N/A	

Address latch (LEN)	State
ST49C104-1	Transparent for LEN high
ST49C104-2	Transparent for LEN low
ST49C104-3	Transparent for LEN low

1

ABSOLUTE MAXIMUM RATINGS

Operating supply range Voltage at any pin Operating temperature Storage temperature Package dissipation 7 Volts ± 5% GND-0.3 V to VCC+0.3 V 0° C to +70° C -40° C to +150° C 500 mW


DC ELECTRICAL CHARACTERISTICS

 $T_a=25^{\circ}$ C, $V_{cc}=5.0$ V ± 5% unless otherwise specified.

Symbol	Parameter	Min	Limits Typ	Max	Units	Conditions
°, [™] , [™]	Input low level Input high level Output low level Output high level Input low current Input high current Operating current	2.0 2.4	10	0.8 0.4 -5 5	355<<<	Except crystal input No load.

A2 A1 A0	ST49C114-6** NOMINAL ACTUAL		
0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1	25.500 25.500 16.500 16.500 20.750 20.750 22.500 22.500 24.500 24.500 19.500 19.500 15.000 15.000 14.000 14.000		

TIMING DIAGRAM

ST49C103/104/114

1

1-19

APR 1992

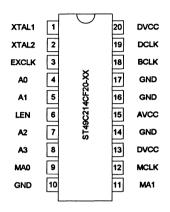
PREPROGRAMMED DUAL VIDEO/MEMORY FREQUENCY GENERATOR

GENERAL DESCRIPTION

The ST49C214 is a monolithic analog CMOS device designed to generate dual frequency outputs from sixteen possible combinations for video Dot clock frequencies and four memory clock frequencies for high performance video display systems. The ST49C214 is a mask option programmable device to provide different output frequencies for custom applications. It is designed with 1.2 μ process to achieve 130 MHz speed for high end frequencies.

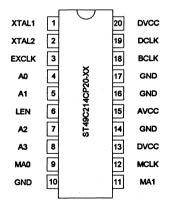
The ST49C214 is designed to replace existing video clocks generated from individual oscillators, to reduce board space and number of oscillators. To provide high speed and low jitter clock, The ST49C214 utilizes high speed analog CMOS phase locked loop using 14.318 MHz system clock as reference clock (reference clock can be changed to generate optional frequencies from standard programmed device) or external crystal connected between XTAL1 and XTAL2.

The ST49C214 can provide optional clock frequencies, utilizing single layer metal mask option. The programmed clock outputs are selectable via four address lines and address latch enable pin for video Dot clock selection and two address lines for memory clock selection.

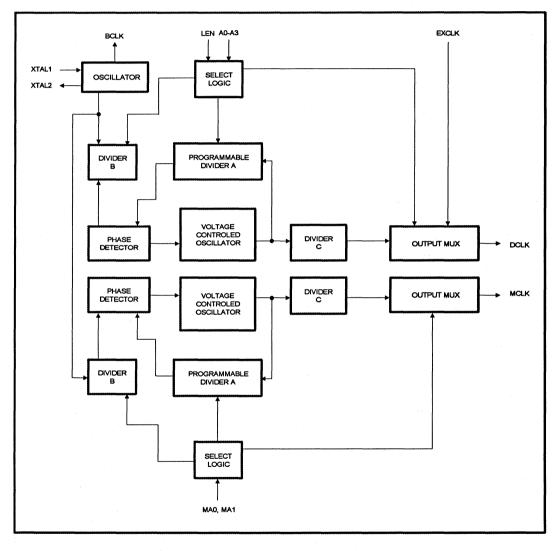

FEATURES

- * Can replace multiple oscillators/crystals
- * Pin -to-pin compatible to ICS2494
- * Programmable analog phase locked loop
- * High speed (up to 130 MHz output)
- * Low power single 5V CMOS technology
- * 20 pin dip or SOIC package

			IL											


Part number	Package	Operating temperature
ST49C214CP20-xx	Plastic-DIP	0°C to +70°C
ST49C214CF20-xx	SOIC	0°C to +70°C
ST49C214CJ20-xx	PLCC	0° C to +70° C

SOIC Package



1

Plastic-DIP Package

BLOCK DIAGRAM

1

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description					
XTAL1 1		I	Crystal or external clock input. A crystal can be connected to this pin and XTAL2 pin to generate internal phase locked loop reference clock. For external 14.318 MHz clock, XTAL2 is left open or used as buffered clock output.					
XTAL2	2	о	Crystal output.					
EXCLK	3	I	External clock input.					
A0	4	I	Dot clock Frequency select address 1.					
A1	5	I	Dot clock Frequency select address 2.					
LEN	6	I	Address latch enable input (active high). To latch selected programmed clock output.					
A2	7	I	Dot clock Frequency select address 3.					
A3	8	I	Dot clock Frequency select address 4.					
MA0	9	I	Memory clock Frequency select address 1.					
GND	10	ο	Digital and Analog ground.					
MA1	11	Ι	Memory clock Frequency select address 2.					
MCLK	12	ο	Programmed memory clock output frequency.					
DVCC	13	I	Digital supply voltage. Single +5 volts.					
GND	14	ο	Digital and Analog ground.					
AVCC	15	I	Analog supply voltage. Single +5 volts.					
GND	16	ο	Digital and Analog ground.					
GND	17	ο	Digital and Analog ground.					
BCLK	18	ο	Buffered crystal clock output frequency.					
DCLK	19	ο	Programmed video clock output frequency.					
DVCC	20	I	Digital supply voltage. Single +5 volts.					

1-23

FREQUENCY SELECT CALCULATION

The ST49C214 contains an analog phase locked loop circuit with a digital closed loop divider and a final series divider to achieve desired dividing ratios for clock output.

The accuracy of the frequencies produced by the ST49C214 depends on the input frequency and final output frequency. The formula for calculating the exact output frequency is as follows:

XCLK = (Reference clock) X (A/B.C)

where A=1,2,3,......127, B=1,2,3,.....127, AND C=1,2,4

For proper output frequency, the ST49C214 can accept reference frequency from 5 - 40 MHz and divider ratio up to 15.

MASK OPTIONS

The following mask option are provided for custom applications.

* Any frequency can be in any decoding position.

ķ

	ST49C214-1	ST49C214-2	ST49C214-3	ST49C214-4	ST49C214-5
Video clock address (Hex)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)
0	XTAL	30.000	25.175	20.000	50.350
1	65.028	77.250	28.325	24.000	56.644
2	EXCLK	EXCLK	85.000	32.000	65.000
3	36.000	80.000	44.900	40.000	72.000
4	25.175	31.500	40.000	50.000	80.000
5	28.322	36.000	48.000	66.667	89.800
6	24.000	75.000	50.000	80.000	63.000
7	40.000	50.000	81.150	100.000	75.000
8	44.900	40.000	25.175	54.000	25.175
9	50.350	50.000	28.325	70.000	28.322
A	16.257	32.000	37.500	90.000	31.500
B	32.514	44.900	44.900	110.000	36.000
C	56.644	25.175	40.000	25.000	40.000
D	20.000	28.322	32.500	33.333	44.900
E	41.539	65.000	50.000	40.000	50.000
F	80.000	36.000	65.000	50.000	65.000
Memory clock address (Hex)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)
0	32.900	36.000	36.000	16.000	40.000
1	35.600	44.347	40.000	24.000	41.612
2	43.900	37.500	45.000	50.000	44.744
3	49.100	44.773	50.000	66.667	50.000

Compatible with	ICS-236	ICS-242	ICS-231	ICS-244	ICS-237
Video Controller	GD6410	WD90C30	ET4000		ET4000

1

1-25

ST49C214

	ST49C214-6	ST49C214-8		
Video clock address (Hex)	Frequency (MHz)	Frequency (MHz)		
0 1 2 3 4 5 6 7 8 9 A B C D E F	25.175 28.322 40.000 65.000 44.900 50.000 130.000 75.000 25.175 28.322 EXCLK EXCLK 60.000 80.000 EXCLK	25.175 28.322 40.000 32.500 50.000 65.000 38.000 44.900 31.500 36.000 80.000 63.000 50.000 100.000 76.000		
F Memory clock address (Hex)	EXCLK Frequency (MHz)	110.000 Frequency (MHz)		
0 1 2 3	32.900 35.600 43.900 49.100	70.000 63.830 60.000 81.000		

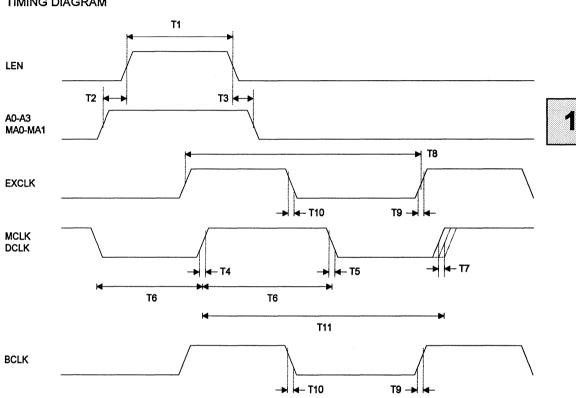
Compatible with ICS-253 Video Controller NCR22C22E HT216

AC ELECTRICAL CHARACTERISTICS

 $T_{\rm A}{=}25^{\circ}\,{\rm C},~V_{\rm cc}{=}5.0\,{\rm V}{\pm}5\%$ unless otherwise specified.

Symbol	Parameter	Min	Limits Typ	Max	Units	Conditions
Τ ¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ¹⁰ ¹¹	Enable pulse width Setup time data to enable Hold time to data enable Rise time Fall time Duty cycle Jitter Input frequency Input clock rise time Input clock fall time Output frequency change	20 20 10 40 14.318	48/52 ±85 0.005	4 4 60 ±100 32 20 20	ns ns ns ns % psHz MHS ns %	

ABSOLUTE MAXIMUM RATINGS


Operating supply range Voltage at any pin Operating temperature Storage temperature Package dissipation 7 Volts ± 5% GND-0.3 V to VCC+0.3 V 0° C to +70° C -40° C to +150° C 500 mW

DC ELECTRICAL CHARACTERISTICS

 T_{A} =25° C, V_{cc} =5.0 V ± 5% unless otherwise specified.

Symbol	Parameter	Min	Limits Typ	Max	Units	Conditions
^{ᇮᆂᆍ} ┎ _ᅂ	Input low level Input high level Output low level Output high level Input low current Input high current Operating current	2.0 2.4	10	0.8 0.4 -5 5	355<<<	Except crystal input No load.

ST49C214

TIMING DIAGRAM

1-29

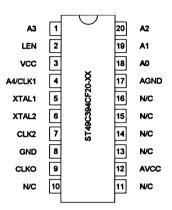
ST49C214- Frequency generator programming information

2. Please fill in the nominal frequencies required.

3. Crystal or input clock frequency _____

A3	A2	A1	A0	Nominal DCLKO	Actual DCLKO	
0 0 0 0 0 0 1 1 1 1 1 1	0 0 0 1 1 1 0 0 0 1 1 1	0 0 1 0 0 1 0 0 1 0 0 1 1 0	0 1 0 1 0 1 0 1 0 1 0 1 0			
		MA1	MAO	Nominal MCLKO	Actual MCLKO	
		0 0 1 1	0 1 0 1			

APR 1992


PREPROGRAMMED VIDEO DOT CLOCK FREQUENCY GENERATOR

GENERAL DESCRIPTION

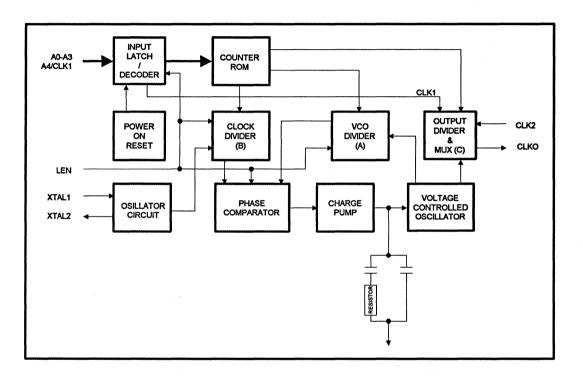
The ST49C394 is a monolithic analog CMOS device designed to generate dot clock frequency outputs from thirty two possible combinations in high performance video display systems. The ST49C394 is a mask programmable device that allows complete flexibility in frequency choice. It is designed in a 1.2μ process to achieve 135MHz speed for high end custom applications.

The ST49C394 is designed to replace existing video clocks generated from individual oscillators in order to reduce board space and number of oscillators. To provide high speed and low jitter, the ST49C394 utilizes a high speed analog CMOS phase locked loop that uses either the system clock or a crystal for its reference. The programmed clock outputs are selectable via four address lines and an address latch enable pin.

SOIC Package

FEATURES

- * Can replace multiple crystals or oscillators
- * Pin-to-pin compatible to ICS1394
- * Programmable analog phase locked loop
- * High speed (up to 135 MHz output)
- * Low power single 5V CMOS technology
- * 20 pin DIP or SOIC package


A3 20 A2 1 2 19 LEN A1 3 18 vcc AO ST49C394CP20-XX 4 17 A4/CLK1 AGND 16 5 XTAL1 N/C 15 XTAL2 6 N/C 14 7 N/C CLK2 GND 8 13 N/C 9 12 AVCC CLKO 10 11 N/C N/C

ORDERING INFORMATION

Part number	Package C	Opera	ting	ter	nperati	ıre
ST49C394CP20-xx	Plastic-DIP	0°	С	to	+70°	С
ST49C394CF20-xx	SOIC	0°	С	to	+70°	С
ST49C394CJ20-xx	PLCC	0°	С	to	+70°	С

Plastic-DIP Package

BLOCK DIAGRAM

1

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
XTAL1	5	I	Crystal or external clock input. A crystal can be connected to this pin and XTAL2 pin to generate internal phase locked loop reference clock. For external 14.318 MHz clock, XTAL2 is left open or used as buffered clock output.
XTAL2	6	ο	Crystal output.
CLK2	7	I	External clock input 2.
A0	18	I	Frequency select address 1.
A1	19	I	Frequency select address 2.
LEN	2	1	Address latch enable input (active high). May be disabled via internal option mask.
A2	20	I	Frequency select address 3.
A3	1	I	Frequency select address 4.
A4/CLK1	4	I	Frequency select address 5 or external clock input 1
GND	8	о	Digital ground.
сіко	9	ο	Programmed clock output.
vcc	3	I	Digital supply voltage. Single +5 volts.
AGND	17	о	Analog ground.
AVCC	12	I	Analog supply voltage. Single +5 volts.

FUNCTIONAL DESCRIPTION

The ST49C394 is designed to output one of the 16 or 32 possible mask preprogrammable frequencies.

For one of 16 output selections, address lines A0-A3 and LEN (latch enable) are used and the selected address (A0-A3) is latched on the falling edge of LEN. For one of 32 output selections, address lines A0-A4 and LEN are used. The unused A4 address line in the one of 16 mode can be used (mask programmed) as an external clock input. The ST49C394 is designed to work with the existing ICS1394 footprint without modifing the art-work and components. The ST49C394 does not utilize pins11, 13, 14, 15, and 16 as these functions are implemented internally to reduce the external component count and noise problems.

POWER ON RESET

An internal power on reset is provided to set the latched address to "0000".

FREQUENCY SELECT CALCULATION

The ST49C394 contains an analog phase locked loop circuit with a digital closed loop divider and a final series divider to achieve desired dividing ratios for clock output.

The accuracy of the frequencies produced by the ST49C394 depends on the input frequency and final output frequency. The formula for calculating the exact output frequency is as follows:

CLKO=(Reference clock) X (A/BxC)

where

A=1,2,3,.....127, B=1,2,3,.....127,and C=1, 2, 4, 8, 16, 32, 64.

For proper operation, the ST49C394 can accept reference frequencies from 5 - 40 MHz and divider ratios up to 15.

MASK OPTIONS

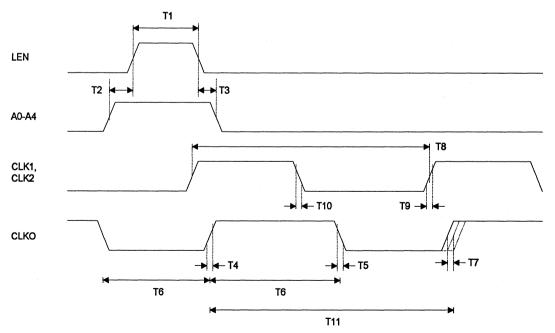
The following mask options are provided for custom applications.

- * Address is latched utilizing the LEN pin.
- * Transparent address input.
- * CLK1 can be preprogrammed as external clock input.
- * Selectable/Programmable clock frequencies.

	ST49C394-24	ST49C394-30	
Video clock address (Hex)	Frequency (MHz)	Frequency (MHz)	Γ
			ł
0	25.175	14.318	l
1	28.322	16.257	
2	32.514	FREQ0	
3	36.000	32.514	
4	40.000	25.175	
5	44.900	28.322	
6	65.000	24.000	
7	84.000	40.000	
8	25.175	14.318	
9	28.322	16.257	
Α	40.000	FREQ0	
В	44.900	36.000	
С	32.514	25.175	
D	28.322	28.322	
E	36.000	24.000	
F	65.000	40.000	
10	25.175	14.318	
11	28.322	65.028	
12	32.514	FREQ0	
13	36.000	36.000	
14	40.000	25.175	
15	44.900	28.322	
16	56.000	24.000	
17	65.000	40.000	
18	25.175	44,900	ĺ
19	28.322	50.344	
18 1A	32.514	16.257	
1B	40.000	32.514	
1C	44,900	56.644	
10 1D	60.000	20.000	
1E	80.000	50.000	
1E	84.000	80.000	
11	04.000	00.000	

* Input clock frequency=14.31818 * Strobed address: No ST49C394

1


1-35

AC ELECTRICAL CHARACTERISTICS

 $\rm T_{A}=25^{\circ}\,C, \ V_{cc}=5.0 \ V\pm 5\%$ unless otherwise specified.

Symbol	Parameter	Min	Limits Typ	Max	Units	Conditions
┍┓┍┓┙┙ ┍┓┙┙ ┍┓┙	Enable pulse width Setup time address to enable Hold time to address enable Rise time Fall time Duty cycle Jitter Input frequency Input clock rise time Input clock fall time Output frequency change	20 20 10 40 5	48/52 ±85 0.005	4 60 ±100 40 20 20	ns ns ns ns % ps MHz ns ns %	

TIMING DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Operating supply range Voltage at any pin Operating temperature Storage temperature Package dissipation 7 Volts ± 5% GND-0.3 V to VCC+0.3 V 0° C to +70° C -40° C to +150° C 500 mW

DC ELECTRICAL CHARACTERISTICS

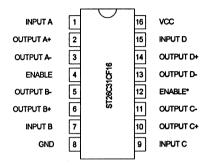
 T_{A} =25° C, V_{cc} =5.0 V ± 5% unless otherwise specified.

Symbol	Parameter	Min	Limits Typ	Max	Units	Conditions
کی ککی ا⊾ 8	Input low level Input high level Output low level Output high level Input low current Input high current Operating current	2.0 2.4	10	0.8 0.4 -5 5	V V V μ Α mA	Except crystal input No load.

LINE DRIVERS / RECEIVERS

Index

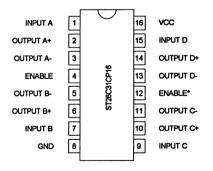
ST26C31	
ST26C32	
ST34C50	
ST34C51	
ST34C86	
ST34C87	


QUAD RS-422 CMOS DIFFERENTIAL LINE DRIVER

DESCRIPTION

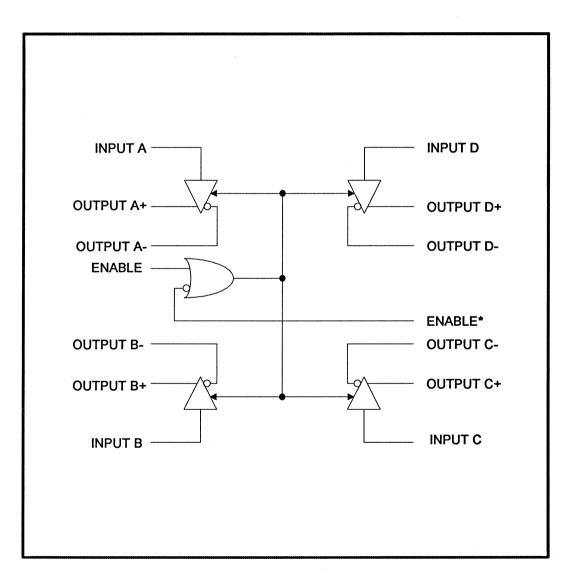
The ST26C31 is a CMOS quad differential line driver designed to meet the standard RS-422 requirements and digital data transmission over balanced lines. To improve noise margin and output stability for slow changing input signals special hysteresis is built in the ST26C31 circuit.

The ST26C31 is a high speed CMOS line driver designed to operate with MFM / RLL controllers and hard disk drives as well as RS-422 digital data transmission applications. ST26C31 is suitable for low power 5V operation with high input voltage protection devices.


SOIC package

FEATURES

- * Pin-to-pin compatible with National DS26C31C
- * Low power CMOS design
- * Three-state outputs with enable pin
- * Meets the EIA RS-422 requirements
- * Low propagation delays
- * High speed


Plastic-DIP package

ORDERING INFORMATION

Part number	Package	Operating temperatur	e
ST26C31CP16	Plastic-DIP	0°C to +70°	С
ST26C31CF16	SOIC	0°C to +70°	С

BLOCK DIAGRAM

2

SYMBOL DESCRIPTION

.

Symbol	Pin	Signal Type	Pin Description
INPUTA	1	I	Driver A input pin.
OUTPUTA+	2	ο	Driver A differential non-inverting output pin.
OUTPUT A-	3	о	Driver A differential inverting output pin.
ENABLE	4	I	Gate control (active high). This pin is one of the two control pins which enables or disables all four drivers. All four drivers are gated with two input or gate.
OUTPUT B-	5	о	Driver B differential inverting output pin.
OUTPUT B+	6	ο	Driver B differential non-inverting output pin.
INPUT B	7	ł	Driver B input pin.
GND	8	о	Signal and power ground.
INPUTC	9	I	Driver C input pin.
OUTPUT C+	10	о	Driver C differential non-inverting output pin.
OUTPUT C-	11	о	Driver C differential inverting output pin.
ENABLE*	12	I	Gate control (active low). See ENABLE pin description.
OUTPUT D-	13	о	Driver D differential inverting output pin.
OUTPUT D+	14	о	Driver D differential non-inverting output pin.
INPUT D	15	1	Driver D input pin.
vcc	16	1	Power supply pin.

Functional table

Enable	Enable*	Input	Differential Non-Inverting Output	Differential Inverting Output
L L H H	H L L L	X L H L H	Z L H L H	Z H L H L
H H	H H	L H	L H	H L

X=Don't care

Z=Three state (high impedance)

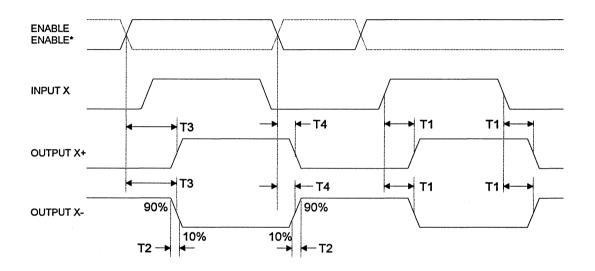
AC ELECTRICAL CHARACTERISTICS

 $T_{\rm A}{=}25^{\circ}\,\text{C}, \ V_{\rm cc}{=}5.0\,\text{V}{\pm}\,5\%$ unless otherwise specified.

Symbol	Parameter	Min	Limits Typ	Мах	Units	Conditions
T ₁ T ₂ T ₃ T ₄	Propagation delay, input to output Differential output rise and fall time Output enable time Output disable time		8 8 18 18	10 10 20 20	ns ns ns ns	

2

ABSOLUTE MAXIMUM RATINGS


Operating supply range Voltage at any pin Operating temperature Storage temperature Package dissipation 7 Volts ± 5% GND-0.3 V to VCC+0.3 V 0° C to +70° C -40° C to +150° C 500 mW

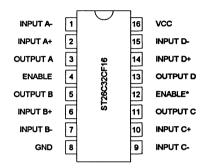
DC ELECTRICAL CHARACTERISTICS

 T_{A} =25° C, V_{cc} =5.0 V ± 5% unless otherwise specified.

Symbol	Parameter	Min	Limits Typ	Max	Units	Conditions
V _H Vot Vot Vot Vot Vot Vot Vot	Input high level Input low level Output high level Output low level Differential output level Common mode output voltage Difference in common mode output	2.0 2.5 2.0		0.8 0.5 3.0 0.4		R ₁ =100 ohms R ₁ =100 ohms R ₁ =100 ohms
l∝ I _{CC} I	Input current Operating current Three state output leakage		200 ±2.0	±1.0	μΑ μΑ μΑ	

DIFFERENTIAL LINE DRIVER TIMING

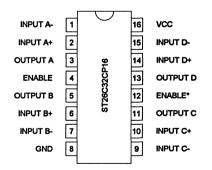
APR 1992


QUAD RS-422, RS-423 CMOS DIFFERENTIAL LINE RECEIVER

DESCRIPTION

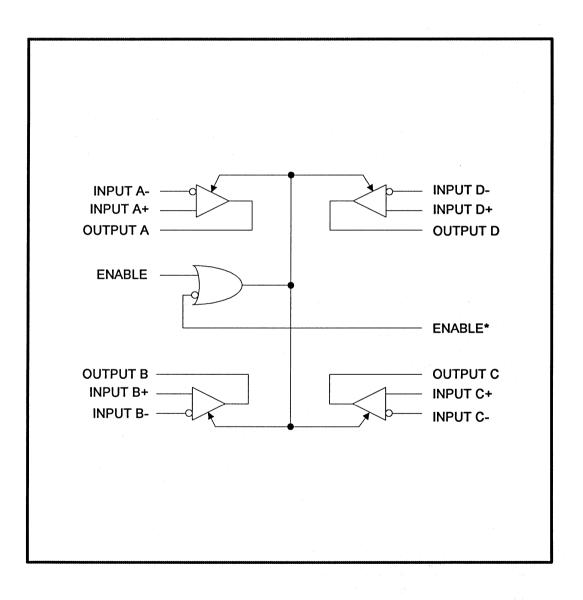
The ST26C32 is a CMOS quad differential line receiver designed to meet the standard RS-422, RS-423 requirements. The ST26C32 has an input sensitivity of 200mv overthe common mode input voltage range of +/ - 7V. To improve noise margin and output stability for slow changing input signal, special hysteresis is built in the ST26C32 circuit.

The ST26C32 is a high speed line receiver designed to operate with MFM/RLL controllers and hard disk drives as well as RS-422, and RS-423 differential applications. ST26C32 provides TTL compatible outputs to interface with standard 74LS and CMOS design environments. ST26C32 is suitable for low power 5V operation.


SOIC package

FEATURES

- * Pin-to-pin compatible with National DS26C32C
- * Low power CMOS design
- * Three-state outputs with enable pin
- * Meets the EIA RS-422 requirements
- Low propagation delays
- * High speed


Plastic-DIP package

ORDERING INFORMATION

Part number	Package	Operating temperature
ST26C32CP16	Plastic-DIP	0°C to +70°C
ST26C32CF16	SOIC	0° C to + 70° C

BLOCK DIAGRAM

2-10

2

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description	
INPUT A-	1	I	Receiver A differential inverting input pin.	
INPUTA+	2	1	Receiver A differential non-inverting input pin.	
OUTPUT A	3	ο	Receiver A output pin.	
ENABLE	4	I	Gate control (active high). This pin is one of the two control pins which enables or disables all four receivers.	
INPUT B+	5	I	Receiver B differential non-inverting input pin.	
INPUT B-	6	1	Receiver B differential inverting input pin.	
OUTPUT B	7	ο	Receiver B output pin.	
GND	8	ο	Signal and power ground.	
INPUT C	9	I	Receiver C differential non-inverting input pin.	
INPUT C-	10	1	Receiver C differential inverting input pin.	
OUTPUT C	11	ο	Receiver C output pin.	
ENABLE*	12	I	Gate control (active low). See ENABLE description	
OUTPUT D	13	0	Receiver D output pin.	
INPUT D+	14	I	Receiver D differential non-inverting input pin.	
INPUT D-	15	Ĺ	Receiver D differential inverting input pin.	
vcc	16	l	Power supply pin.	

Functional table

Enable*	Output	Differential Non-Inverting Input	Differential Inverting Input
н	z	x	x
L L	L H	L H	HL
	H L L	H Z L L	H Z X L L

X=Don't care

Z=Three state (high impedance)

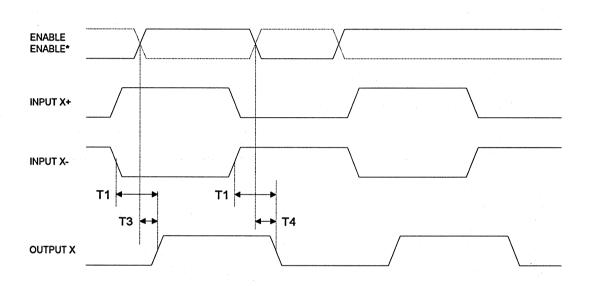
AC ELECTRICAL CHARACTERISTICS

 $\rm T_{A}=25^{\circ}\,\rm C, \ V_{cc}=5.0\,\rm V\pm5\%$ unless otherwise specified.

Symbol	Parameter	Min	Limits Typ	Мах	Units	Conditions
T, T ₃ T ₄	Propagation delay, input to output Output enable time Output disable time		8 18 18	10 20 20	ns ns ns	

ABSOLUTE MAXIMUM RATINGS

Operating supply range Voltage at any pin Operating temperature Storage temperature Package dissipation 7 Volts ± 5% GND-0.3 V to VCC+0.3 V 0° C to +70° C -40° C to +150° C 500 mW


DC ELECTRICAL CHARACTERISTICS

 T_{A} =25° C, V_{cc} =5.0 V ± 5% unless otherwise specified.

Symbol	Parameter	Min	Limits Typ	Max	Units	Conditions
⋧ [⋳] ⋒ [⋻] ⋷ _⋨ ⋲∊∊∊∊	Enable high level Enable low level Output high level Output low level Differential input level Input hysteresis Input current Operating current Three state output leakage Input resistance	2.0 3.8 -0.2	50 200 1 2.0 10	0.8 0.4 +0.2 ±1.0	^중 동동령광<<<<<	I _{сн} =-6mA I _{сн} =6mA -7V < V _{см} < +7V -7V < V _{см} < +7V

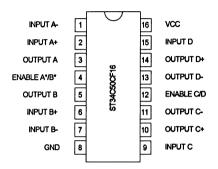
2

DIFFERENTIAL LINE RECEIVER TIMING

DUAL RS-422, RS-423 CMOS DIFFERENTIAL LINE RECEIVER AND DRIVER

GENERAL DESCRIPTION

The ST34C50/51 is a CMOS dual differential line receiver and driver, designed to meet the standard RS-422, RS-423 requirements and digital data transmission overbalanced lines. The ST34C50/51 has an input sensitivity of 200mv over the common mode input voltage range of +/- 7V. To improve noise margin and output stability for slow changing input signal, special hysteresis is built in the ST34C50/51 circuit.


The ST34C50/51 is a high speed line receiver and driver, designed to operate with MFM/RLL controllers and hard disk drives as well as RS-422 and RS-423 differential applications. ST34C50/51 provides TTL compatible outputs to interface with standard 74LS and CMOS design environments. ST34C50/51 is suitable for low power 5V operation with minimum board space requirements. ST34C50/51 provides dual differential line receiver with three state control pin and dual line driver with three state control capability.

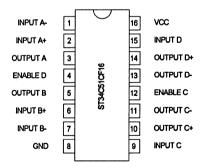
SOIC Package

ST34C50

ST34C51

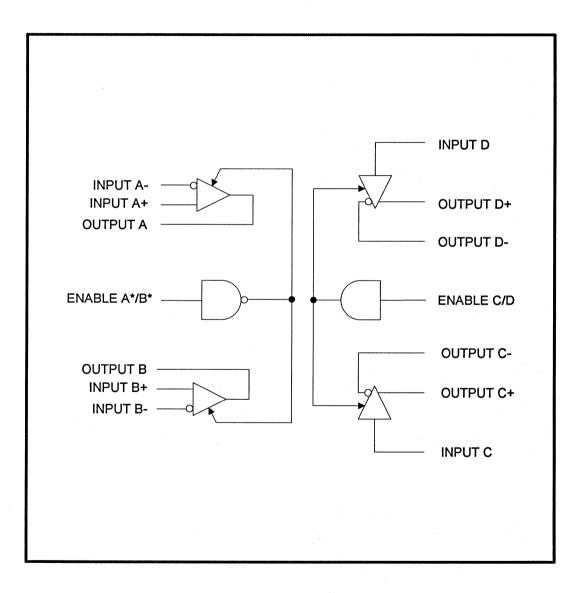
APR 1992

ST34C50CF/ST34C50CP


FEATURES

- * Pin -to-pin compatible to Motorola MC34050 and MC34051
- * Low power CMOS design
- * Three-state outputs with enable pin
- * Meets the EIA RS-422/423 requirements
- * Low propagation delays
- * High speed
- * Dual line receiver with three state control
- * Dual line driver with three state control

ORDERING INFORMATION


Part number	Package	Operating temperature
ST34C50CP16	Plastic-DIP	0° C to + 70° C
ST34C50CF16	SOIC	0° C to + 70° C
ST34C51CP16	Plastic-DIP	0° C to + 70° C
ST34C51CF16	SOIC	0° C to + 70° C

SOIC Package

ST34C51CF/ST34C51CP

ST34C50 BLOCK DIAGRAM

ST34C51 BLOCK DIAGRAM

2-17

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
INPUTA-	1	I	Receiver A differential inverting input pin.
INPUTA+	2	I	Receiver A differential non-inverting input pin.
OUTPUT A	3	ο	Receiver A output pin.
ENABLE A/B	4	I	Gate control (active low , ST34C50 only). This pin enables/ disables the two line receiver outputs (out A and out B of ST34C50).
ENABLE D	4*	I	Gate control (active high, ST34C51 only). This pin enables/ disables the ST34C51 differential line driver D section.
OUTPUT B	5	0	Receiver B output pin.
INPUT B +	6	I	Receiver B differential non-inverting input pin.
INPUT B-	7	1	Receiver B differential inverting input pin.
GND	8	ο	Signal and power ground.
INPUT C	9	I	Driver C input pin.
OUTPUT C+	10	ο	Driver C differential non-inverted output pin.
OUTPUT C -	11	O	Driver C differential inverted output pin.
ENABLE C/D	12	I	Gate control (active high, ST34C50 only). This pin enables/ disables the two line driver outputs (output C and output D of ST34C50).
ENABLEC	12*	I	Gate control (active high, ST34C51 only). This pin enables/ disables the ST34C51 differential line driver C section.
OUTPUT D -	13	ο	Driver D differential inverted output pin.
OUTPUT D+	14	ο	Driver D differential non-inverted output pin.
INPUT D	15	la de la contra de	Driver D input pin.
vcc	16	I	Power supply pin.

Receiver Functional table (ST34C50 only)

Enable	Output	Differential Non-Inverting Input	Differential Inverting Input
н	z	x	х
L	L	L	н
L	н	н	L

X=Don't care

Z=Three state (high impedance)

Receive sections of the ST34C51 are enabled all the time.

Driver Functional table (ST34C50 only)

Enable C/D	Input	Differential Non-Inverted Output	Differential Inverted Output
L	x	z	z
н	L	L	н
н	н	н	L

X=Don't care Z=Three state (high impedance)

*Driver Functional table (ST34C51only)

Enable C or D	Input	Differential Non-Inverted Output	Differential Inverted Output
L	х	z	z
Н	L	L	н
н	н	Н	L

X=Don't care

Z=Three state (high impedance) * for each section of ST34C51.

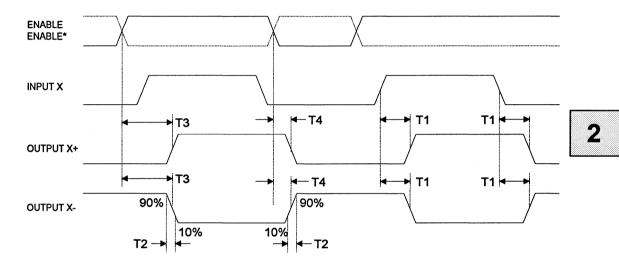
AC ELECTRICAL CHARACTERISTICS

 T_{a} =25° C, V_{cc} =5.0 V ± 5% unless otherwise specified.

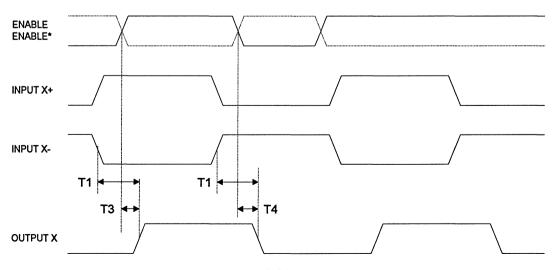
Symbol	Parameter	Min	Limits Typ	Max	Units	Conditions
T ₁ T ₂ T ₃ T ₄	Propagation delay, input to output Differential output rise and fall time Output enable time Output disable time		8 8 18 18	10 10 20 20	ns ns ns ns	

2

ABSOLUTE MAXIMUM RATINGS


Operating supply range Voltage at any pin Operating temperature Storage temperature Package dissipation 7 Volts ± 5% GND-0.3 V to VCC+0.3 V 0° C to +70° C -40° C to +150° C 500 mW

DC ELECTRICAL CHARACTERISTICS


 $T_{A}=25^{\circ}$ C, $V_{cc}=5.0$ V ± 5% unless otherwise specified.

Symbol	Parameter	Min	Limits Typ	Max	Units	Conditions
> _F , _R	Enable high level Enable low level Receiver output high level Receiver output low level Receiver differential input level Receiver input hysteresis Receiver input verent Receiver input resistance Operating current Three state output leakage Driver input high level Driver output low level Driver output low level Driver Common mode output voltage Driver difference in common mode output Driver input current	2.0 3.8 -0.2 2.5 2.0	50 10 200 ±2.0	0.8 0.4 +0.2 ±1.0 0.5 3.0 0.4 ±1.0	>>>>> \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	$R_L = 100 \text{ ohms}$ $R_L = 100 \text{ ohms}$ $R_L = 100 \text{ ohms}$ $R_L = 100 \text{ ohms}$

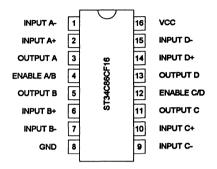
DIFFERENTIAL LINE DRIVER TIMING

DIFFERENTIAL LINE RECEIVER TIMING

2-21

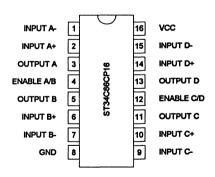
ST34C86

APR 1992


QUAD RS-422, RS-423 CMOS DIFFERENTIAL LINE RECEIVER

GENERAL DESCRIPTION

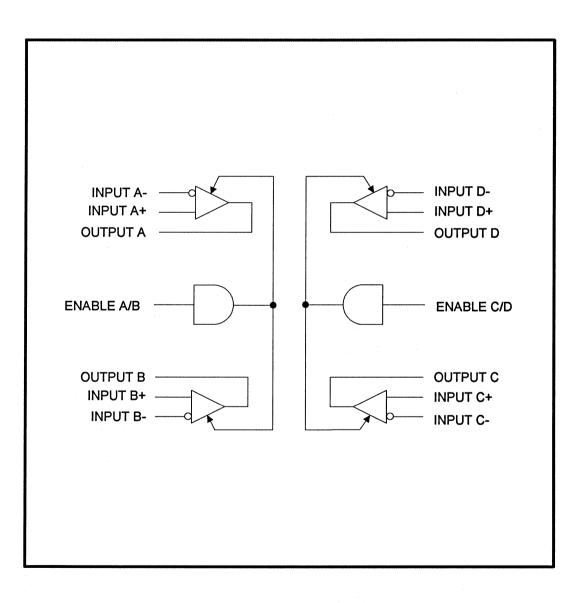
The ST34C86 is a CMOS quad differential line receiver designed to meet the standard RS-422, RS-423 requirements. The ST34C86 has an input sensitivity of 200mv over the common mode input voltage range of +/ - 7V. To improve noise margin and output stability for slow changing input signal, special hysteresis is built in the ST34C86 circuit.


The ST34C86 is a high speed line receiver designed to operate with MFM/RLL controllers and hard disk drives as well as RS-422 and RS-423 differential applications. ST34C86 provides TTL compatible outputs to interface with standard 74LS and CMOS design environments. ST34C86 is suitable for low power 5V operation.

SOIC package

FEATURES

- * Pin-to-pin compatible with National DS34C86
- * Low power CMOS design
- * Three-state outputs with enable pin
- * Meets the EIA RS-422 requirements
- * Low propagation delays
- * High speed



Plastic-DIP package

ORDERING INFORMATION

Part number	Package	Operating	temperature
ST34C86CP16	Plastic-DIP	0° C	to + 70° C
ST34C86CF16	SOIC	0° C	to + 70° C

BLOCK DIAGRAM

2

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
INPUTA-	1	I	Receiver A differential inverting input pin.
INPUTA+	2	I	Receiver A differential non-inverting input pin.
OUTPUT A	3	0	Receiver A output pin.
ENABLE A/B	4	I	Gate control (active high). This pin enables/disables the two line receiver outputs (out A and out B).
INPUT B+	5	I	Receiver B differential non-inverting input pin.
INPUT B-	6	I	Receiver B differential inverting input pin.
OUTPUT B	7	ο	Receiver B output pin.
GND	8	ο	Signal and power ground.
INPUT C	9	I	Receiver C differential non-inverting input pin.
INPUT C-	10	I	Receiver C differential inverting input pin.
OUTPUT C	11	о	Receiver C output pin.
ENABLE C/D	12	I	Gate control (active high). This pin enables/disables the two line receiver outputs (output C and output D).
OUTPUT D	13	о	Receiver D output pin.
INPUT D+	14	I	Receiver D differential non-inverting input pin.
INPUT D-	15	1	Receiver D differential inverting input pin.
vcc	16	I	Power supply pin.

Functional table

Enable	Output	Differential Non-Inverting Input	Differential Inverting Input
L	Z	X	X
H	L	L	H
H	H	H	L

X=Don't care Z=Three state (high impedance)

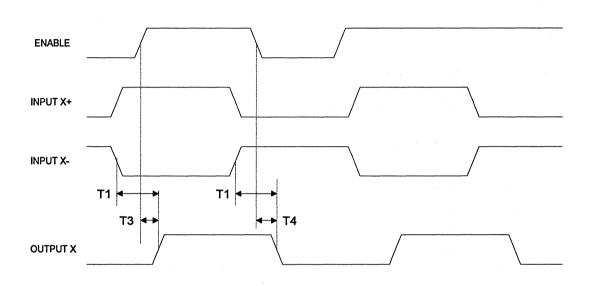
AC ELECTRICAL CHARACTERISTICS

 $T_{\rm A}{=}25^{\circ}\,{\rm C},~V_{\rm cc}{=}5.0\,{\rm V}{\pm}5\%$ unless otherwise specified.

Symbol	Parameter	Min	Limits Typ	Max	Units	Conditions
T, T ₃ T ₄	Propagation delay, input to output Output enable time Output disable time		8 18 18	10 20 20	ns ns ns	

2

ABSOLUTE MAXIMUM RATINGS

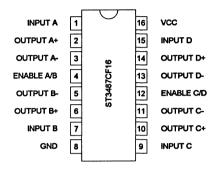

Operating supply range Voltage at any pin Operating temperature Storage temperature Package dissipation 7 Volts ± 5% GND-0.3 V to VCC+0.3 V 0° C to +70° C -40° C to +150° C 500 mW

DC ELECTRICAL CHARACTERISTICS

 T_{A} =25° C, V_{cc} =5.0 V ± 5% unless otherwise specified.

Symbol	Parameter	Min	Limits Typ	Max	Units	Conditions
୵୳ୄ୰ୄ ୰ୄ୰ୄଽ	Enable high level Enable low level	2.0		0.8	v v	
V _{он}	Output high level	3.8			V	l _{oн} =-6mA l _{oн} =6mA -7V < V _{cм} < +7V
Val	Output low level	0.2		0.4 +0.2	V V	
V _{ID} V	Differential input level Input hysteresis	-0.2	50	TU.2	mV	-/V < V _{CM} < +/V
I _N	Input current			±1.0	mA	
ľ _{cc}	Operating current		200		μA	
l _{az}	Three state output leakage		±2.0		μA	
l _{az} V _R	Inputresistance		10		Kohm	-7V < V _{cm} < +7V

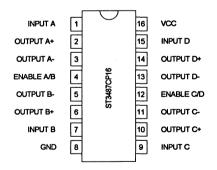
DIFFERENTIAL LINE RECEIVER TIMING


QUAD RS-422 CMOS DIFFERENTIAL LINE DRIVER

GENERAL DESCRIPTION

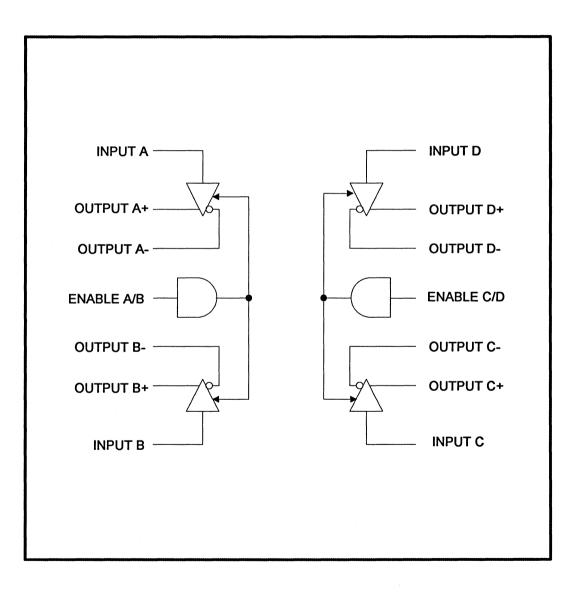
The ST34C87 is a CMOS quad differential line driver designed to meet the standard RS-422 requirements and digital data transmission over balanced lines. To improve noise margin and output stability for slow changing input signals special hysteresis is built in the ST34C87 circuit.

The ST34C87 is a high speed CMOS line driver designed to operate with MFM / RLL controllers and hard disk drives as well as RS-422 digital data transmission applications. ST34C87 is suitable for low power 5V operation with high input voltage protection devices.


SOIC package

FEATURES

- * Pin-to-pin compatible with National DS34C87
- * Low power CMOS design
- * Three-state outputs with enable pin
- * Meets the EIA RS-422 requirements
- * Low propagation delays
- * High speed


Plastic-DIP package

ORDERING INFORMATION

Part number	Package	Operating	temperature
ST34C87CP16	Plastic-DIP	0° C	to + 70° C
ST34C87CF16	SOIC	0° C	to + 70° C

BLOCK DIAGRAM

2

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
INPUTA	1	I	Driver A input pin.
OUTPUT A+	2	ο	Driver A differential non-inverting output pin.
OUTPUT A-	3	ο	Driver A differential inverting output pin.
ENABLE A/B	4	I	Gate control (active high). This pin is one of the two control pins which enables or disables two/four drivers.
OUTPUT B-	5	ο	Driver B differential inverting output pin.
OUTPUT B+	6	ο	Driver B differential non-inverting output pin.
INPUT B	7	I	Driver B input pin.
GND	8	ο	Signal and power ground.
INPUT C	9	1	Driver C input pin.
OUTPUT C+	10	0	Driver C differential non-inverting output pin.
OUTPUT C-	11	0	Driver C differential inverting output pin.
ENABLE C/D	12	I	Gate control (active high). See ENABLE A/B pin description.
OUTPUT D*	13	о	Driver D differential inverting output pin.
OUTPUT D	14	0	Driver D differential non-inverting output pin.
INPUT D	15	I	Driver D input pin.
vcc	16 _{//}	I	Power supply pin.

Functional table

Enable	Input	Differential Non-Inverting Output	Differential Inverting Output
L	X	Z	Z
H	L	L	H
H	H	H	L

X=Don't care

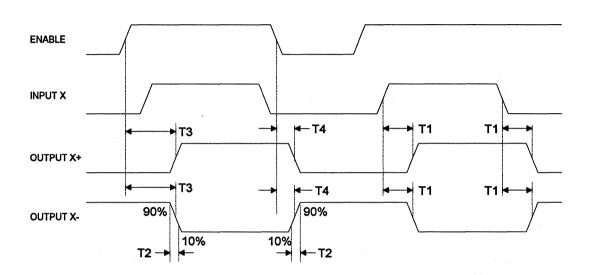
Z=Three state (high impedance)

AC ELECTRICAL CHARACTERISTICS

 $T_{A}=25^{\circ}$ C, $V_{cc}=5.0$ V ± 5% unless otherwise specified.

Symbol	Parameter	Min	Limits Typ	Max	Units	Conditions
T₁ T₂ T₃ T₄	Propagation delay, input to output Differential output rise and fall time Output enable time Output disable time		8 8 18 18	10 10 20 20	ns ns ns ns	

ABSOLUTE MAXIMUM RATINGS


Operating supply range Voltage at any pin Operating temperature Storage temperature Package dissipation 7 Volts ± 5% GND-0.3 V to VCC+0.3 V 0° C to +70° C -40° C to +150° C 500 mW

DC ELECTRICAL CHARACTERISTICS

 $T_{A}=25^{\circ}$ C, $V_{cc}=5.0$ V ± 5% unless otherwise specified.

Symbol	Parameter	Min	Limits Typ	Мах	Units	Conditions
	Input high level Input low level Output high level Output low level Differential output level Common mode output voltage	2.0 2.5 2.0		0.8 0.5 3.0	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	R _L =100 ohms R _L =100 ohms
V _{oo} I _N I _{CC} I _{CZ}	Difference in common mode output Input current Operating current Three state output leakage		200 ±2.0	0.4 ±1.0	V µА µА	R _l =100 ohms

DIFFERENTIAL LINE DRIVER TIMING

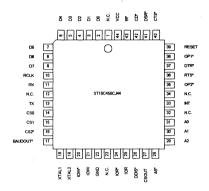
UARTS

Index

ST16C1450	3-23
ST16C1451	3-23
ST16C1550	3-103
ST16C1551	3-103
ST16C2450	3-45
ST16C2550	3-125
ST16C450	3-3
ST16C452AT	3-187
ST16C452PS	3-187
ST16C454	3-61
ST16C550	
ST16C552	
ST16C553	
ST16C554	3-143
ST68C554	

APR 1992

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER

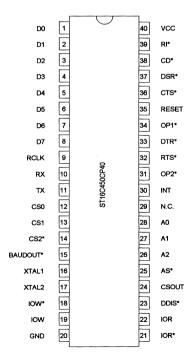

DESCRIPTION

The ST16C450 is a universal asynchronous receiver and transmitter. A programmable baud rate generator is provided to select transmit and receive clock rates from 50Hz to 448kHz.

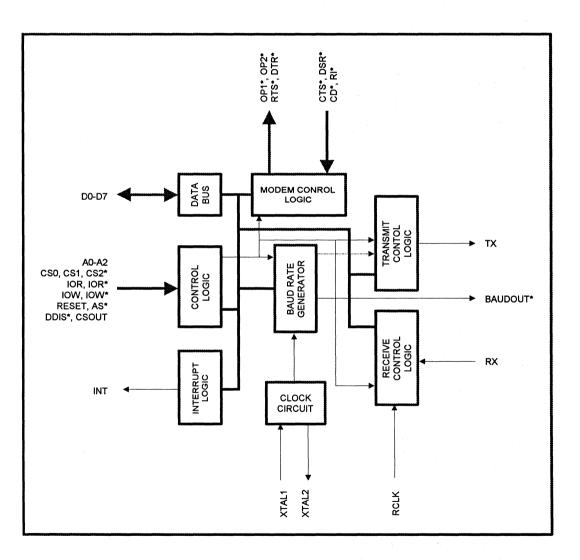
The ST16C450 is an improved version of the NS16C450 UART with higher operating speed and lower access time. The ST16C450 on board status registers provides the error conditions, type and status of the transfer operation being performed. Included is complete MO-DEM control capability, and a processor interrupt system that may be software tailored to the user's requirements. The ST16C450 provides internal loopback capability for on board diagnostic testing.

The ST16C450 is fabricated in an advanced 1.2 μ CMOS process to achieve low drain power and high speed requirements.

PLCC Package


Plastic-DIP Package

FEATURES


- * Pin to pin and functional compatible to NS16450,VL16C450,WD16C450
- * Modem control signals (CTS*, RTS*, DSR*, DTR*, RI*, CD*)
- * Programmable character lengths (5, 6, 7, 8)
- * Even, odd, or no parity bit generation and detection
- * Status report register
- * Independent transmit and receive control
- * TTL compatible inputs, outputs
- * 448 kHz transmit/receive operation with 7.372 MHz crystal or external clock source

ORDERING INFORMATION

Partnumber	Package	Operating	temperature
ST16C450CP40	Plastic-DIP	0° C	to + 70° C
ST16C450CJ44	PLCC	0° C	to + 70° C
* Industrial operating	range are a	vailable.	

BLOCK DIAGRAM

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
D0-D7	1-8	I/O	Bidirectional data bus. Eight bit, three state data bus to transfer information to or from the CPU. D0 is the least significant bit of the data bus and the first serial data bit to be received or transmitted.
RCLK	9	I	Receive clock input. The external clock input to the ST16C450 receiver section if receiver data rate is different from transmitter data rate.
RX	10	1	Serial data input. The serial information (data) received from serial port to ST16C450 receive input circuit. A mark (high) is logic one and a space (low) is logic zero. During the local loopback mode the RX input is disabled from external connection and connected to the TX output internally.
тх	11	0	Serial data output. The serial data is transmitted via this pin with additional start, stop and parity bits. The TX will be held in mark (high) state during reset, local loopback mode or when the transmitter is disabled.
CS0	12	I	Chip select 1 (active high). A high at this pin enables the ST16C450 / CPU data transfer operation.
CS1	13	1	Chip select 2 (active high). A high at this pin enables the ST16C450 / CPU data transfer operation.
CS2*	14	1	Chip select 3 (active low). A low at this pin (while CS0=1 and CS1=1) will enable the ST16C450 / CPU data transfer operation.
BAUDOUT*	15	0	Baud rate generator clock output. This output provides the 16x clock of the internal selected baud rate. RCLK pin is connected externally to BAUDOUT* pin to provide the receiver clock.
XTAL1	16	I	Crystal input 1 or external clock input. A crystal can be connected to this pin and XTAL2 pin to utilize the internal oscillator circuit. An external clock can be used to clock internal circuit and baud rate generator for custom transmis- sion rates.

3

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description		
XTAL2	17	I	Crystal input 2 or buffered clock output. See XTAL1.		
IOW*	18	I	Write strobe (active low). A low on this pin will transfer the contents of the CPU data bus to the addressed register.		
IOW	19	1	Write strobe (active high). Same as IOW*, but uses active high input. Note that only an active IOW* or IOW input is required to transfer data from CPU to ST16C450 during write operation. All the unused pin should be tied to VCC or GND.		
GND	20	0	Signal and power ground.		
IOR*	21	l	Read strobe (active low). A low level on this pin transfers the contents of the ST16C450 data bus to the CPU.		
IOR	22		Read strobe (active high). Same as IOR*, but uses active high input. Note that only an active IOR* or IOR input is required to transfer data from ST16C450 to CPU during read operation. All the unused pin should be tied to VCC or GND.		
DDIS*	23	0	Drive disable (active low). This pin goes low when the CPU is reading data from the ST16C450 to disable the external transceiver or logics.		
CSOUT	24	0	Chip select out. A high on this pin indicates that the ST16C450 has been enabled by the chip select pin.		
AS*	25		Address strobe (active low). A low on this pin will latch the state of the chip selects and addressed register (A2-A0). This input is used when signals are not stable for the duration of a read or write operation. If not required, tie the AS* input permanently low.		
A2	26	1	Address select line 2. To select internal registers.		
A1	27	н на	Address select line 1. To select internal registers.		
A0	28	1	Address select line 0. To select internal registers.		

3

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description				
N/C	29		No connection.				
INT	30	0	Interrupt output (active high). This pin goes high (when enabled by the interrupt enable register) whenever a re- ceiver error, receiver data available, transmitter empty, or modem status condition flag is detected.				
OP2*	31	0	General purpose output (active low). User defined output. See bit-3 modem control register (MCR bit-3).				
RTS*	32	0	Request to send (active low). To indicate that the transmit- ter has data ready to send. Writing a "1" in the modem control register (MCR bit-1) will set this pin to a low state. After the reset this pin will be set to high. Note that this pin does not have any effect on the transmit or receive opera- tion.				
DTR*	33	ο	Data terminal ready (active low). To indicate that ST16C450 is ready to receive data. This pin can be controlled via the modem control register (MCR bit-0). Writing a "1" at the MCR bit-0 will set the DTR* output to low. This pin will be set to high state after writing a "0" to that register or after the reset. Note that this pin does not have any effect on the transmit or receive operation.				
OP1*	34	ο	General purpose output (active low). User defined output. See bit-2 of modem control register (MCR bit-2).				
RESET	35	I	Master reset (active high). A high on this pin will reset all the outputs and internal registers. The transmitter output and the receiver input will be disabled during reset time.				
CTS*	36	1	Clear to send (active low). The CTS* signal is a MODEM control function input whose conditions can be tested by reading the MSR BIT-4. CTS* has no effect on the transmit or receive operation.				
DSR*	37	I.	Data set ready (active low). A low on this pin indicates the MODEM is ready to exchange data with UART. This pin does not have any effect on the transmit or receive opera-				

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
			tion.
CD*	38		Carrier detect (active low). A low on this pin indicates the carrier has been detected by the modem.
RI*	39	I	Ring detect indicator (active low). A low on this pin indicates the modem has received a ringing signal from telephone line.
vcc	40	l I	Power supply input.

PROGRAMMING TABLE

A2	A1	A0	READ MODE	WRITE MODE
0	0	0	Receive Holding Register	Transmit Holding Register
0	0	1		Interrupt Enable Register
0	1	0	Interrupt Status Register	
0	1	1		Line Control Register
1	0	0		Modem Control Register
1	0	1	Line Status Register	-
1	1	0	Modem Status Register	
1	1		Scratchpad Register	Scratchpad Register
0	0	0		LSB of Divisor Latch
0	0	1		MSB of Divisor Latch

ST16C450 ACCESSIBLE REGISTERS

A2 A1 A0	Register	BIT-7	BIT-6	BIT-5	BIT-4	BIT-3	BIT-2	BIT-1	BIT-0
000	RHR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
000	THR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
001	IER	0	0	0	0	modem status interrupt	receive line status interrupt	transmit holding register	receive holding register
010	ISR	0	0	0	0	0	int priority bit-1	int priority bit-0	int status
011	LCR	divisor latch enable	set break	set parity	even parity	parity enable	stop bits	word length bit-1	word length bit-0
100	MCR	0	0	0	loop back	OP2*	OP1*	RTS*	DTR*
101	LSR	0	trans. empty	trans. holding empty	break interrupt	framing error	parity error	overrun error	receive data ready
1 1 0	MSR	CD	RI	DSR	стѕ	delta CD*	delta RI*	delta DSR*	delta CTS*
1 1 1	SPR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
000	DLL	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
001	DLM	bit-15	bit-14	bit-13	bit-12	bit-11	bit-10	bit-9	bit-8

3

REGISTER FUNCTIONAL DESCRIPTIONS

TRANSMIT AND RECEIVE HOLDING REGISTER

The serial transmitter section consists of a Transmit Hold Register (THR) and Transmit Shift Register (TSR). The status of the transmit hold register is provided in the Line Status Register (LSR). Writing to this register (THR) will transfer the contents of data bus (D7-D0) to the Transmit holding register whenever the transmitter holding register or transmitter shift register is empty. The transmit holding register empty flag will be set to "1" when the transmitter is empty or data is transfered to the transmit shift register. Note that a write operation should be performed when the transmit holding register empty flag is set.

On the falling edge of the start bit, the receiver internal counter will start to count 7 1/2 clocks (16x clock) which is the center of the start bit. The start bit is valid if the RX is still low at the mid-bit sample of the start bit. Verifying the start bit prevents the receiver from assembling a false data character due to a low going noise spike on the RX input. Receiver status codes will be posted in the Line Status Register.

PROGRAMMABLE BAUD RATE GENERATOR

The ST16C450 contains a programmable Baud Rate Generator that is capable of taking any clock input from DC-8 MHz and dividing it by any divisor from 2 to 2¹⁶-1. The output frequency of the Baudout* is equal to 16X of transmission baud rate (Baudout*=16 x Baud Rate). Customize Baud Rates can be achieved by selecting proper divisor values for MSB and LSB of baud rate generator.

INTERRUPT ENABLE REGISTER (IER)

The Interrupt Enable Register (IER) masks the incoming interrupts from receiver ready, transmitter empty, line status and modem status registers to the INT output pin.

IER BIT-0:

0=disable the receiver ready interrupt. 1=enable the receiver ready interrupt.

IER BIT-1:

0=disable the transmitter empty interrupt. 1=enable the transmitter empty interrupt.

IER BIT-2:

0=disable the receiver line status interrupt. 1=enable the receiver line status interrupt.

IER BIT-3:

0=disable the modern status register interrupt. 1=enable the modern status register interrupt.

IER BIT 7-4:

All these bits are set to logic zero.

INTERRUPT STATUS REGISTER (ISR)

The ST16C450 provides four level prioritized interrupt conditions to minimize software overhead during data character transfers. The Interrupt Status Register (ISR) provides the source of the interrupt in prioritized matter. During the read cycle the ST16C450 provides the highest interrupt level to be serviced by CPU. No other interrupts are acknowledged until the particular interrupt is serviced. The following are the prioritized interrupt levels:

Priority level

Ρ	D2	D1	D0	Source of the interrupt
1	1	1	0	LSR (Receiver Line Status Register)
2	1	0	0	RXRDY (Received Data Ready)
3	0	1	0	TXRDY(Transmitter Holding Register Empty)
4	0	0	0	MSR (Modem Status Regis- ter)

ISR BIT-0:

0=an interrupt is pending and the ISR contents may be used as a pointer to the appropriate interrupt service routine.

1=no interrupt pending.

ISR BIT 1-2:

Logical combination of these bits, provides the highest priority interrupt pending.

ISR BIT 3-7:

These bits are not used and are set to "0".

3

LINE CONTROL REGISTER (LCR)

The Line Control Register is used to specify the asynchronous data communication format. The number of the word length, stop bits, and parity can be selected by writing appropriate bits in this register.

LCR BIT1-0:

These two bits specify the word length to be transmitted or received.

BIT-1	BIT-0	Word length
0	0	5
0	1	6
1	0	7
1	1	8

LCR BIT-2:

The number of stop bits can be specified by this bit.

BIT-2	Word length	Stop bit(s)
0	5,6,7,8	1
1	5	1-1/2
1	6,7,8	2

LCR BIT-3:

Parity or no parity can be selected via this bit. 0=no parity

1=a parity bit is generated during the transmission, receiver also checks for received parity.

LCR BIT-4:

If the parity bit is enabled, LCR BIT-4 selects the even or odd parity format.

0=ODD parity is generated by forcing an odd number of 1's in the transmitted data, receiver also checks for same format.

1= EVEN parity bit is generated by forcing an even the number of 1's in the transmitted data, receiver also checks for same format.

LCR BIT-5:

If the parity bit is enabled, LCR BIT-5 selects the

forced parity format.

LCR BIT-5=1 and LCR BIT-4=0, parity bit is forced to "1" in the transmitted and received data. LCR BIT-5=1 and LCR BIT-4=1, parity bit is forced to "0" in the transmitted and received data.

LCR BIT-6:

Break control bit. It causes a break condition to be transmitted (the TX is forced to low state). 0=normal operating condition. 1=forces the transmitter output (TX) to go low to alert the communication terminal.

LCR BIT-7:

The internal baud rate counter latch enable (DLEN). 0=normal operation. 1=select divisor latch register.

MODEM CONTROL REGISTER (MCR)

This register controls the interface with the MODEM or a peripheral device (RS232).

MCR BIT-0:

0=force DTR* output to high. 1=force DTR* output to low.

MCR BIT-1:

0=force RTS* output to high. 1=force RTS* output to low.

MCR BIT-2:

0=set OP1* output to high. 1=set OP1* output to low.

MCR BIT-3:

0=set OP2* output to high. 1=set OP2* output to low.

MCR BIT-4:

0=normal operating mode.

1=enable local loop-back mode (diagnostics). The transmitter output (TX) is set high (Mark condition), the receiver input (RX), CTS*, DSR*, CD*, and RI* are disabled. Internally the transmitter output is connected to the receiver input and DTR*, RTS*, OP1* and OP2* are connected to modem control inputs.

In this mode, the receiver and transmitter interrupts are fully operational. The Modem Control Interrupts are also operational, but the interrupts sources are now

the lower four bits of the Modem Control Register instead of the four Modem Control inputs. The interrupts are still controlled by the IER.

MCR BIT 5-7:

Not used. Are set to zero permanently.

LINE STATUS REGISTER (LSR)

This register provides the status of data transfer to CPU.

LSR BIT-0:

0=no data in receive holding register 1=data has been received and saved in the receive holding register.

LSR BIT-1:

0=no overrun error (normal). 1=overrun error, next character arrived before receive holding register was emptied.

LSR BIT-2:

0=no parity error (normal). 1=parity error, received data does not have correct parity information.

LSR BIT-3:

0=no framing error (normal). 1=framing error received, received data did not have a valid stop bit. In

LSR BIT-4:

0=no break condition (normal). 1=receiver received a break signal (RX was low for one character time frame).

LSR BIT-5:

0=transmit holding register is full. ST16C450 will not accept any data for transmission. 1=transmit holding register is empty. CPU can load the next character.

LSR BIT-6:

0=transmitter holding and shift registers are full. 1=transmitter holding and shift registers are empty.

LSR BIT-7:

Not used. Set to "0".

MODEM STATUS REGISTER (MSR)

This register provides the current state of the control lines from the modem or peripheral to the CPU. Four bits of this register are used to indicate the changed information. These bits are set to "1" whenever a control input from the MODEM changes state. They are set to "0" whenever the CPU reads this register.

MSR BIT-0:

Indicates that the CTS* input to the ST16C450 has changed state since the last time it was read.

MSR BIT-1:

Indicates that the DSR* input to the ST16C450 has changed state since the last time it was read.

MSR BIT-2:

Indicates that the RI* input to the ST16C450 has changed from a low to a high state.

MSR BIT-3:

Indicates that the CD* input to the ST16C450 has changed state since the last time it was read.

MSR BIT-4:

This bit is equivalent to RTS in the MCR during local loop-back mode. It is the compliment of the CTS* input.

MSR BIT-5:

This bit is equivalent to DTR in the MCR during local loop-back mode. It is the compliment of the DSR* input.

MSR BIT-6:

This bit is equivalent to OP1 in the MCR during local loop-back mode. It is the compliment of the RI* input.

MSR BIT-7:

This bit is equivalent to OP2 in the MCR during local loop-back mode. It is the compliment to the CD* input.

Note: Whenever MSR BIT3-0: is set to logic "1", a MODEM Status Interrupt is generated.

SCRATCHPAD REGISTER (SR)

ST16C450 provides a temporary data register to store 8 bits of information for variable use.

BAUD RATE GENERATOR PROGRAMMING TABLE (1.8432 MHz CLOCK):

BAUD RATE	16 x CLOCK DIVISOR	% ERROR
50	2304	
75	1536	
110	1047	0.026
134.5	857	0.058
150	768	
300	384	
600	192	
1200	96	
2400	48	
3600	32	
4800	24	
7200	16	
9600	12	
19.2K	6	
38.4K	3	
56K	2	2.86
112K	1	

ST16C450 EXTERNAL RESET CONDITION

REGISTERS	RESET STATE
IER	IER BITS 0-7=0
ISR	ISR BIT-0=1, ISR BITS 1-7=0
LCR	LCR BITS 0-7=0
MCR	MCR BITS 0-7=0
LSR	LSR BITS 0-4=0,
	LSR BITS 5-6=1 LSR, BIT 7=0
MSR	MSR BITS 0-3=0,
	MSR BITS 4-7=input signals

SIGNAL	RESET STATE
тх	High
OP1*	High
OP2*	High
RTS*	High
DTR*	High
INT	Low

3

AC ELECTRICAL CHARACTERISTICS

 $T_{\rm A}{=}25^{\circ}\,\text{C}, \ V_{\rm cc}{=}5.0\,\text{V}{\pm}5\%$ unless otherwise specified.

Symbol	Parameter		Limits		Units	Conditions
		Min	Тур	Max		
T ₁	Clock high pulse duration	60			ns	
T ₂	Clock low pulse duration	60			ns	External clock
T₃	Clock rise/fall time			100	ns	
Τ ₁ Τ² ³ Τ⁴ Τ⁵ Τ ⁶ Τ ⁷ ͳ ⁸ ͳ ⁹	Baud out rise/fall time			100	ns	100 pF load
T ₅	Address strobe width	30			ns	
T ₆	Address setup time	30			ns	
\underline{T}_7	Address hold time	5			ns	
<u>T</u> 8	Chip select setup time	25			ns	
<u> </u> 9	Chip select hold time	0			ns	
T ₁₀	CSOUT delay from chip select			10	ns	
T ₁₁	IOR* to drive disable delay	_		35	ns	100 pF load
Т ₁₂	Address hold time from IOW*	5			ns	Note: 1
Т ₁₃	IOW* delay from address	25			ns	Note: 1
T ₁₄	IOW* delay from chip select	10			ns	Note: 1
16	IOW* strobe width	50			ns	
T ¹⁶ T ₁₇ Tw	Chip select hold time from IOW*	5			ns	Note: 1
T ₁₇	Write cycle delay	55			ns	
	Write cycle= $T_{15}+T_{17}$	135			ns	
T ₁₉	Data hold time	25			ns	
T ₂₁	IOR* delay from chip select	10			ns	Note: 1
T ₂₃	IOR* strobe width	75			ns	
T ₁₉ T ₂₁ T ₂₃ T ₂₄ T ₂₅	Chip select hold time from IOR*	0			ns	Note: 1
T ₂₅	Read cycle delay	50			ns	
Tr	Read cycle=T ₂₃ +T ₂₅	135			ns	
T ₂₆	Delay from IOR* to data			75	ns	100 pF load
Т ₂₈	Delay from IOW* to output			50	ns	100 pF load
T ₂₆ T ₂₈ T ₂₉	Delay to set interrupt from MODEM			70	ns	100 pF load
Т.,	input Delay to reset interrupt from IOR*			70	ns	100 pF load
T ₃₀ T ₃₁ T ₃₂ T ₃₃	Delay from stop to set interrupt			1 _{Rclk}	ns	100 pF load
T.,	Delay from IOR* to reset interrupt			200	ns	100 pF load
T.,	Delay from initial INT reset to transmit	8		24	*	· · · · · · · · · · · · · · · · · · ·
33	start	-				

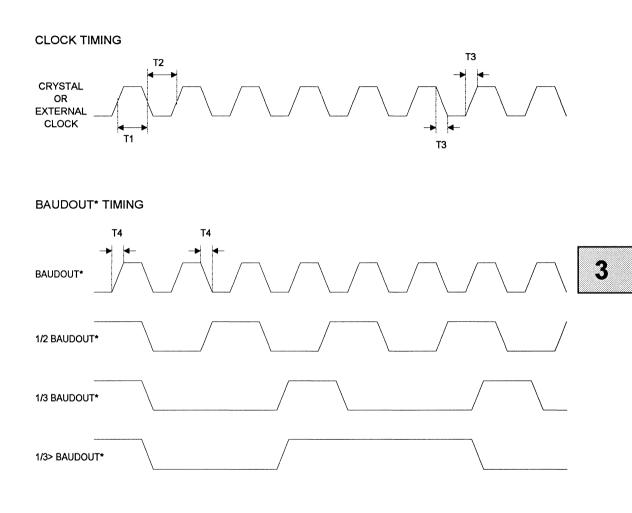
AC ELECTRICAL CHARACTERISTICS

 $\rm T_{a}{=}25^{\circ}$ C, $\rm V_{cc}{=}5.0$ V \pm 5% unless otherwise specified.

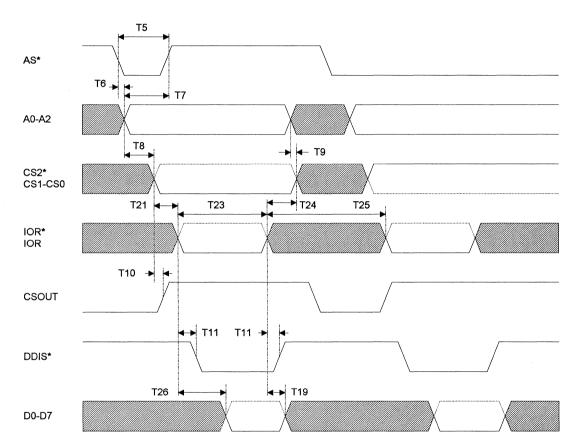
Symbol	Parameter	Min	Limits Typ	Мах	Units	Conditions
T ₃₄ T ₃₅ N	Delay from stop to interrupt Delay from IOW* to reset interrupt Baud rate devisor	1	.,,,	100 175 2 ¹⁶ -1	ns ns	

Note 1: Applicable only when AS* is tied low *Baudout* cycle

3


ABSOLUTE MAXIMUM RATINGS

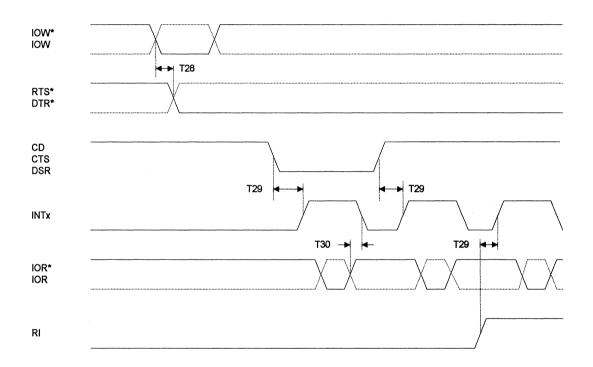
Operating supply range Voltage at any pin Operating temperature Storage temperature Package dissipation 7 Volts ± 5% GND-0.3 V to VCC+0.3 V 0° C to +70° C -40° C to +150° C 500 mW


DC ELECTRICAL CHARACTERISTICS

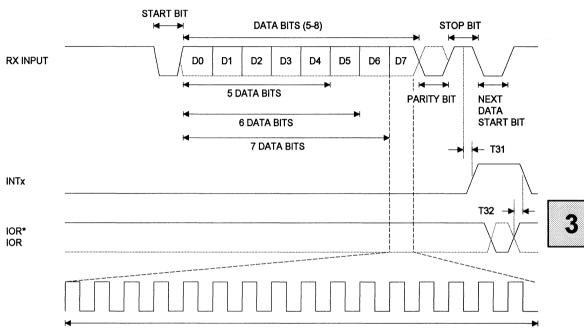
 $T_a=25^{\circ}$ C, $V_{cc}=5.0$ V ± 5% unless otherwise specified.

Symbol	Parameter		mits Fyp Max	Units	Conditions
Vick Vick Vick Vick Vic Vol Vol Vol Vic Vol I I I I I I I	Clock input low level Clock input high level Input low level Input high level Output low level on all outputs Output high level Avg power supply current Input leakage Clock leakage	-0.5 3.0 -0.5 2.2 2.4	0.6 VCC 0.8 VCC 0.4 6 ±10 ±10	¥ چ چ ح ح ح ح ح	I _{oL} = 6 mA I _{OH} = -6 mA

GENERAL READ TIMING

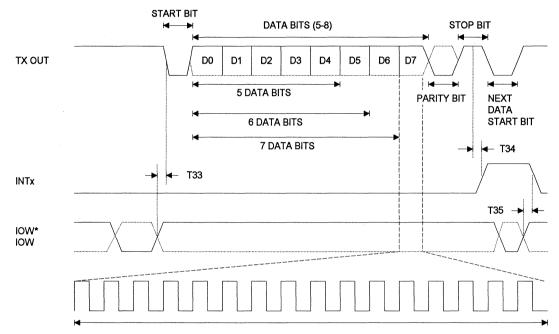

ST16C450

3


Т5 AS* T6 → 🛓 ▶ 17 A0-A2 T8 -> I → T9 • i. CS2* CS1-CS0 ► T16 M T17 T14 T15 -j, IOW* IOW T10 🔸 CSOUT 🔺 🕨 T13 T12 D0-D7

GENERAL WRITE TIMING

MODEM TIMING


ST16C450

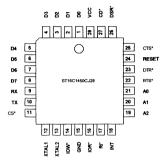
RECEIVE TIMING

16 BAUD RATE CLOCK

16 BAUD RATE CLOCK

ST16C1450 ST16C1451

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER


DESCRIPTION

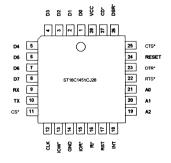
The ST16C1450/51 is a universal asynchronous receiver and transmitter. A programmable baud rate generator is provided to select transmit and receive clock rates from 50Hz to 448kHz.

The ST16C1450/51 is an improved version of the SSI 73M1550 and SSI 73M2550 UART with higher operating speed and lower access time. The ST16C1450/ 51 on board status registers provides the error conditions, type and status of the transfer operation being performed. Included is complete MODEM control capability, and a processor interrupt system that may be software tailored to the user's requirements. The ST16C1450/51 provides internal loop-back capability for on board diagnostic testing.

The ST16C1450/51 is fabricated in an advanced 1.2μ CMOS process to achieve low drain power and high speed requirements.

PLCC Package

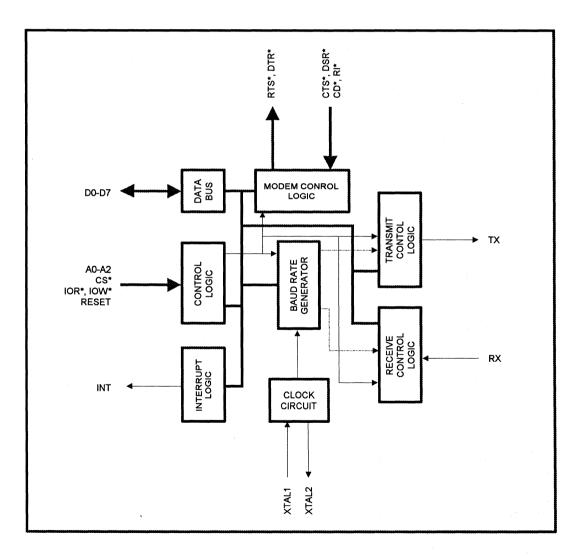
ST16C1450


FEATURES

- * Pinto pin and functional compatible to SSI 73M1550/ 2550
- * Modem control signals (CTS*, RTS*, DSR*, DTR*, RI*, CD*)
- * Programmable character lengths (5, 6, 7, 8)
- * Even, odd, or no parity bit generation and detection
- * Software compatible with INS8250, NS16C550
- * 448 kHz transmit/receive operation with 7.372 MHz crystal or external clock source
- * 28 Pin plastic-Dip and PLCC package
- * Pin-to-pin compatible to ST16C1550/1551

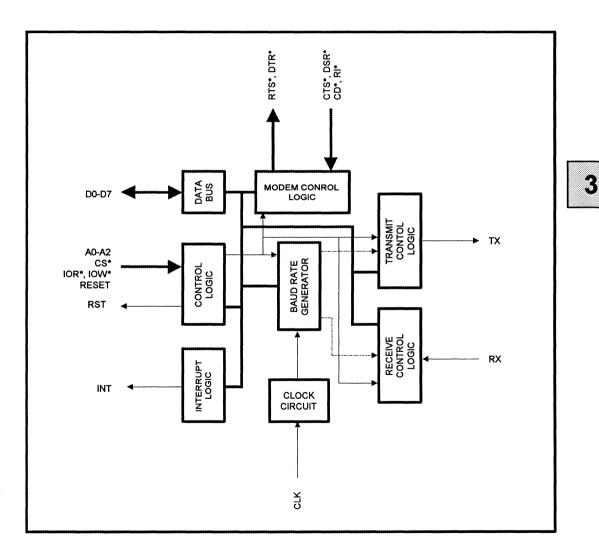
ORDERING INFORMATION

Part number	Package Op	erating	temperature			
ST16C1450CP28	Plastic-DIP	0° C	to + 70° C			
ST16C1450CJ28	PLCC	0° C	to + 70° C			
ST16C1451CP28	Plastic-DIP	0° C	to + 70° C			
ST16C1451CJ28	PLCC	0° C	to + 70° C			
*Industrial operating range are available.						


PLCC Package

ST16C1451

ST16C1450 ST16C1451


ST16C1450 BLOCK DIAGRAM

3-24

ST16C1450 ST16C1451

ST16C1451 BLOCK DIAGRAM

ST16C1450/51

ST16C1450 SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description	
D0-D7	1-8	I/O	Bidirectional data bus. Eight bit, three state data bus to transfer information to or from the CPU. D0 is the lease significant bit of the data bus and the first serial data bit to be received or transmitted.	
RX	9	I	Serial data input. The serial information (data) received from serial port to ST16C1450 receive input circuit. A mark (high) is logic one and a space (low) is logic zero. During the local loopback mode the RX input is disabled from external connection and connected to the TX output internally.	
тх	10	O	Serial data output. The serial data is transmitted via this pin with additional start, stop and parity bits. The TX will be held in mark (high) state during reset, local loopback mode or when the transmitter is disabled.	
CS*	11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Chip select (active low). A low at this pin enables the ST16C1450/CPU data transfer operation.	
XTAL1	12		Crystal input 1 or external clock input. A crystal can be connected to this pin and XTAL2 pin to utilize the internal oscillator circuit. An external clock can be used to clock internal circuit and baud rate generator for custom transmis- sion rates.	
XTAL2	13	I	Crystal input 2 or buffered clock output. See XTAL1.	
IOW*	14		Write strobe (active low). A low on this pin will transfer the contents of the CPU data bus to the addressed register.	
GND	15	0	Signal and power ground.	
IOR*	16	I	Read strobe (active low). A low level on this pin transfers the contents of the ST16C1450 data bus to the CPU	
RI*	17	I	Ring detect indicator (active low). A low on this pin indicates the modem has received a ringing signal from telephone line.	
INT	18	о на се се с о	Interrupt output. (three state / active high) This pin goes high (when enabled by the interrupt enable register) whenever a	

ST16C1450 SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description	
			receiver error, receiver data available, transmitter empty, or modem status condition flag is detected.	
A0-A2	21-19	I	Address select line. To select internal registers.	
RTS*	22	0	Request to send (active low). To indicate that the transmitter has data ready to send. Writing a "1" in the modem control register (MCR bit-1) will set this pin to a low state. After the reset this pin will be set to high. Note that this pin does not have any effect on the transmit or receive operation.	
DTR*	23	0	Data terminal read (active low). To indicate that ST16C1450 is ready to receive data. This pin can be controlled via the modem control register (MCR bit-0). Writing a "1" at the MCR bit-0 will set the DTR* output to low. This pin will be set to high state after writing a "0" to that register or after the reset . Note that this pin does not have any effect on the transmit or receive operation.	
RESET	24	I	Master reset (active high). A high on this pin will reset all the outputs and internal registers. The transmitter output and the receiver input will be disabled during reset time.	
СТЅ*	25	1	Clear to send (active low). The CTS* signal is a MODEM control function input whose conditions can be tested by reading the MSR bit-4. CTS* has no effect on the transmit or receive operation.	
DSR*	26	I	Data set ready (active low). A low on this pin indicates the MODEM is ready to exchange data with UART. This pin does not have any effect on the transmit or receive operation.	
CD*	27	1	Carrier detect (active low). A low on this pin indicates the carrier has been detected by the modem.	
vcc	28	- I	Power supply input.	

ST16C1450/51

ST16C1451 SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
D0-D7	1-8	VO	Bidirectional data bus. Eight bit, three state data bus to transfer information to or from the CPU. D0 is the least significant bit of the data bus and the first serial data bit to be received or transmitted.
RX	9	1	Serial data input. The serial information (data) received from serial port to ST16C1451 receive input circuit. A mark (high) is logic one and a space (low) is logic zero. During the local loopback mode the RX input is disabled from external connection and connected to the TX output internally.
тх	10	0	Serial data output. The serial data is transmitted via this pin with additional start, stop and parity bits. The TX will be held in mark (high) state during reset, local loopback mode or when the transmitter is disabled.
CS*	· .11 ···	I	Chip select (active low). A low at this pin enables the ST16C1451 / CPU data transfer operation.
CLK	12	. I .	External clock input. An external clock can be used to clock internal circuit and baud rate generator for custom transmission rates.
IOW*	13	l	Write strobe (active low). A low on this pin will transfer the contents of the CPU data bus to the addressed register.
GND	14	0	Signal and power ground.
IOR*	15	I	Read strobe (active low). A low level on this pin transfers the contents of the ST16C1451 data bus to the CPU
RI*	16	I	Ring detect indicator (active low). A low on this pin indicates the modem has received a ringing signal from telephone line.
RST	17	0	Reaset output (active high). The ST16C1451 provides a buffered reset output which is gated internally with MCR bit-2.
INT	18	ο	Interrupt output. (three state / active high) This pin goes high (when enabled by the interrupt enable register) whenever a

ST16C1451 SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description	
			receiver error, receiver data available, transmitter empty, or modem status condition flag is detected.	
A0-A2	21-19	1	Address select line. To select internal registers.	
RTS*	22	ο	Request to send (active low). To indicate that the transmitter has data ready to send. Writing a "1" in the modem control register (MCR bit-1) will set this pin to a low state. After the reset this pin will be set to high. Note that this pin does not have any effect on the transmit or receive operation.	
DTR*	23	ο	Data terminal read (active low). To indicate that ST16C1451 is ready to receive data. This pin can be controlled via the modern control register (MCR bit-0). Writing a "1" at the MCR bit-0 will set the DTR* output to low. This pin will be set to high state after writing a "0" to that register or after the reset . Note that this pin does not have any effect on the transmit or receive operation.	
RESET	24	I	Master reset (active high). A high on this pin will reset all the outputs and internal registers. The transmitter output and the receiver input will be disabled during reset time.	
стѕ∗	25	I	Clear to send (active low). The CTS* signal is a MODEM control function input whose conditions can be tested by reading the MSR BIT-4. CTS* has no effect on the transmit or receive operation.	
DSR*	26	1	Data set ready (active low). A low on this pin indicates the MODEM is ready to exchange data with UART. This pin does not have any effect on the transmit or receive operation.	
CD*	27	I.	Carrier detect (active low). A low on this pin indicates the carrier has been detected by the modem.	
vcc	28	1	Power supply input.	

3

ST16C1450/51

PROGRAMMING TABLE

A2	A1	A0	READ MODE	WRITE MODE
0	0	0	Receive Holding Register	Transmit Holding Register
0	0	1		Interrupt Enable Register
0	1	0	Interrupt Status Register	
0	1	1		Line Control Register
1	0	0		Modem Control Register
1	0	1	Line Status Register	-
1	1	0	Modem Status Register	
1	1	1	Scratchpad Register	Scratchpad Register
0.0	0	0		LSB of Divisor Latch
0	0	1		MSB of Divisor Latch

ST16C1450 ACCESSIBLE REGISTERS

A2 A1 A0	Register	BIT-7	BIT-6	BIT-5	BIT-4	BIT-3	BIT-2	BIT-1	BIT-0
0 0 0	RHR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0 0 0	THR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
001	IER	0	0	0/ special mode	0	modem status interrupt	receive line status interrupt	transmit holding register	receive holding register
0 1 0	ISR	0	0	0	0	0	int priority bit-1	int priority bit-0	int status
0 1 1	LCR	divisor latch enable	set break	set parity	even parity	parity enable	stop bits	word length bit-1	word length bit-0
100	MCR	0/power down	0	0	loop back	INT enable	SOFT reset	RTS*	DTR*
101	LSR	0	trans. empty	trans. holding empty	break interrupt	framing error	parity error	overrun error	receive data ready
1 1 0	MSR	CD	RI	DSR	стѕ	delta CD*	delta RI*	delta DSR*	delta CTS*
1 1 1	SPR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
000	DLL	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
001	DLM	bit-15	bit-14	bit-13	bit-12	bit-11	bit-10	bit-9	bit-8

ST16C1450/51

ST16C1451 ACCESSIBLE REGISTERS

A2 A1 A0	Register	BIT-7	BIT-6	BIT-5	BIT-4	BIT-3	BIT-2	BIT-1	BIT-0
000	RHR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
000	THR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
001	IER	^{v.} 0	0	0/ special mode	0	modem status interrupt	receive line status interrupt	transmit holding register	receive holding register
010	ISR	0	0	0	0	0	int priority bit-1	int priority bit-0	int status
0 1 1	LCR	divisor latch enable	set break	set parity	even parity	parity enable	stop bits	word length bit-1	word length bit-0
100	MCR	0/power down	0	0	loop back	INT enable	SOFT reset	RTS*	DTR*
101	LSR	0	trans. empty	trans. holding empty	break interrupt	framing error	parity error	overrun error	receive data ready
1 1 0	MSR	CD	RI	DSR	стѕ	delta CD*	delta RI*	delta DSR*	delta CTS*
1 1 1	SPR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0 0 0	DLL	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0 0 1	DLM	bit-15	bit-14	bit-13	bit-12	bit-11	bit-10	bit-9	bit-8

REGISTER FUNCTIONAL DESCRIPTIONS

TRANSMIT AND RECEIVE HOLDING REGISTER

The serial transmitter section consists of a Transmit Hold Register (THR) and Transmit Shift Register (TSR). The status of the transmit hold register is provided in the Line Status Register (LSR). Writing to this register (THR) will transfer the contents of data bus (D7-D0) to the Transmit holding register whenever the transmitter holding register or transmitter shift register is empty. The transmit holding register empty flag will be set to "1" when the transmitter is empty ordata is transferred to the transmit shift register. Note that a write operation should be performed when the transmit holding register empty flag is set.

On the falling edge of the start bit, the receiver internal counter will start to count 7 1/2 clocks (16x clock) which is the center of the start bit. The start bit is valid if the RX is still low at the mid-bit sample of the start bit. Verifying the start bit prevents the receiver from assembling a false data character due to a low going noise spike on the RX input. Receiver status codes will be posted in the Line Status Register.

PROGRAMMABLE BAUD RATE GENERATOR

The ST16C1450/51 contains a programmable Baud Rate Generator that is capable of taking any clock input from DC-8 MHz and dividing it by any divisor from 2 to 2¹⁶-1. The output frequency of the Baudout* is equal to 16X of transmission baud rate (Baudout*=16 x Baud Rate). Customize Baud Rates can be achieved by selecting proper divisor values for MSB and LSB of baud rate generator.

INTERRUPT ENABLE REGISTER (IER)

The Interrupt Enable Register (IER) masks the incoming interrupts from receiver ready, transmitter empty, line status and modem status registers to the INT output pin.

IER BIT-0:

0=disable the receiver ready interrupt. 1=enable the receiver ready interrupt.

IER BIT-1:

0=disable the transmitter empty interrupt. 1=enable the transmitter empty interrupt.

IER BIT-2:

0=disable the receiver line status interrupt. 1=enable the receiver line status interrupt.

IER BIT-3:

0=disable the modem status register interrupt. 1=enable the modem status register interrupt.

IER BIT-5:

0=normal ST16C450 mode. 1=special mode. Enable power down and SOFT rest.

IER BIT 4,6-7:

All these bits are set to logic zero.

INTERRUPT STATUS REGISTER (ISR)

The ST16C1450/51 provides four level prioritized interrupt conditions to minimize software overhead during data character transfers. The Interrupt Status Register (ISR) provides the source of the interrupt in prioritized matter. During the read cycle the ST16C1450/51 provides the highest interrupt level to be serviced by CPU. No other interrupts are acknowledged until the particular interrupt is serviced. The following are the prioritized interrupt levels:

Priority levels

Ρ	D2	D1	D0	Source of the interrupt
1	1	1	0	LSR (Receiver Line Status Register)
2	1	0	0	RXRDY (Received Data Ready)
3	0	1	0	TXRDY(Transmitter Holding Register Empty)
4	0	0	0	MSR (Modern Status Register)

ISR BIT-0:

0=an interrupt is pending and the ISR contents may be used as a pointer to the appropriate interrupt service routine.

1=no interrupt pending.

ISR BIT 1-2:

Logical combination of these bits, provides the highest priority interrupt pending.

ISR bit 3-7:

Not used

LINE CONTROL REGISTER (LCR)

The Line Control Register is used to specify the asynchronous data communication format. The number of the word length, stop bits, and parity can be selected by writing appropriate bits in this register.

LCR BIT1-0:

These two bits specify the word length to be transmitted or received.

BIT-1	BIT-0	Word length
0	0	5
0	1	6
1	0	7
1	1	8

LCR BIT-2:

The number of stop bits can be specified by this bit.

BIT-2	Word length	Stop bit(s)
0	5,6,7,8	1
	5	1-1/2
	6,7,8	2

LCR BIT-3:

Parity or no parity can be selected via this bit. 0=no parity

1=a parity bit is generated during the transmission, receiver also checks for received parity.

LCR BIT-4:

If the parity bit is enabled, LCR BIT-4 selects the even or odd parity format.

0=ODD parity is generated by forcing an odd number of 1's in the transmitted data, receiver also checks for same format.

1= EVEN parity bit is generated by forcing an even the number of 1's in the transmitted data, receiver also checks for same format.

LCR BIT-5:

If the parity bit is enabled, LCR BIT-5 selects the forced parity format.

LCR BIT-5=1 and LCR BIT-4=0, parity bit is forced to "1" in the transmitted and received data.

LCR BIT-5=1 and LCR BIT-4=1, parity bit is forced to "0" in the transmitted and received data.

LCR BIT-6:

Break control bit. It causes a break condition to be transmitted (the TX is forced to low state).

0=normal operating condition.

1=forces the transmitter output (TX) to go low to alert the communication terminal.

LCR BIT-7:

The internal baud rate counter latch enable (DLEN). 0=normal operation. 1=select divisor latch register.

MODEM CONTROL REGISTER (MCR)

This register controls the interface with the MODEM or a peripheral device (RS232).

MCR BIT-0:

0=force DTR* output to high. 1=force DTR* output to low.

MCR BIT-1:

0=force RTS* output to high. 1=force RTS* output to low.

MCR BIT-2: 0=normal operation. 1=software reset, set RST output to high.

MCR BIT-3:

0=set INT output pin to three state mode. 1=set INT output pin to normal operation mode.

MCR BIT-4:

0=normal operating mode.

1=enable local loop-back mode (diagnostics). The transmitter output (TX) is set high (Mark condition), the receiver input (RX), CTS*, DSR*, CD*, and RI* are disabled. Internally the transmitter output is connected to the receiver input and DTR*, RTS*, SOFT reset and INT enable are connected to modem control inputs.

In this mode, the receiver and transmitter interrupts are fully operational. The Modem Control Interrupts are also operational, but the interrupts sources are now the lower four bits of the Modem Control Register instead of the four Modem Control inputs. The interrupts are still controlled by the IER.

MCR BIT 5-6:

Not used. Are set to zero permanently.

MCR bit-7:

0=normal mode. 1=power down mode. XTAL1, XTAL2, and baud rate generators are disabled.

LINE STATUS REGISTER (LSR)

This register provides the status of data transfer to CPU.

LSR BIT-0:

0=no data in receive holding register 1=data has been received and saved in the receive holding register.

LSR BIT-1:

0=no overrun error (normal). 1=overrun error, next character arrived before receive holding register was emptied.

LSR BIT-2:

0=no parity error (normal). 1=parity error, received data does not have correct parity information.

LSR BIT-3:

0=no framing error (normal). 1=framing error received, received data did not have a valid stop bit.

LSR BIT-4:

0=no break condition (normal). 1=receiver received a break signal (RX was low for one character time frame).

LSR BIT-5:

0=transmit holding register is full. ST16C1450/51 will not accept any data for transmission.

1=transmit holding register is empty. CPU can load the next character.

LSR BIT-6:

0=transmitter holding and shift registers are full. 1=transmitter holding and shift registers are empty.

LSR BIT-7:

Not used.

MODEM STATUS REGISTER (MSR)

This register provides the current state of the control lines from the modem or peripheral to the CPU. Four bits of this register are used to indicate the changed information. These bits are set to "1" whenever a control input from the MODEM changes state. They are set to "0" whenever the CPU reads this register.

MSR BIT-0:

Indicates that the CTS* input to the ST16C1450/51 has changed state since the last time it was read.

MSR BIT-1:

Indicates that the DSR* input to the ST16C1450/51 has changed state since the last time it was read.

MSR BIT-2:

Indicates that the RI* input to the ST16C1450/51 has changed from a low to a high state.

MSR BIT-3:

Indicates that the CD* input to the ST16C1450/51 has changed state since the last time it was read.

MSR BIT-4:

This bit is equivalent to RTS in the MCR during local loop-back mode. It is the compliment of the CTS* input.

MSR BIT-5:

This bit is equivalent to DTR in the MCR during local loop-back mode. It is the compliment of the DSR* input.

MSR BIT-6:

This bit is equivalent to SOFT reset in the MCR during local loop-back mode. It is the compliment of the RI* input.

MSR BIT-7:

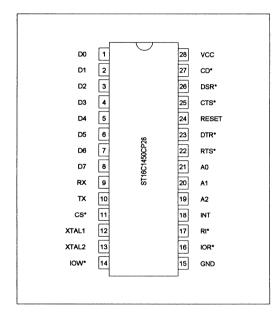
This bit is equivalent to INT enable in the MCR during local loop-back mode. It is the compliment to the CD* input.

Note: Whenever MSR BIT3-0: is set to logic "1", a MODEM Status Interrupt is generated.

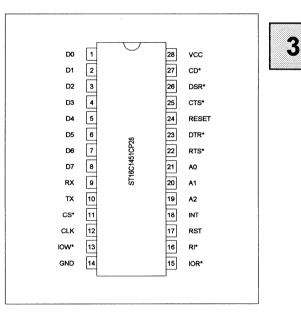
SCRATCHPAD REGISTER (SR)

ST16C1450/51 provides a temporary data register to store 8 bits of information for variable use.

BAUD RATE GENERATOR PROGRAMMING TABLE (1.8432 MHz CLOCK):


BAUD RATE	16 x CLOCK DIVISOR	% ERROR
50	2304	
75	1536	
110	1047	0.026
150	768	
300	384	
600	192	
1200	96	
2400	48	
3600	32	
4800	24	
7200	16	
9600	12	
19.2K	6	
38.4K	3	
56K	2	2.86
112K	1	

ST16C1450/51 EXTERNAL RESET CONDITION


REGISTERS	RESETSTATE
IER	IER BITS 0-7=0
ISR	ISR BIT-0=1, ISR BITS 1-7=0
LCR	LCR BITS 0-7=0
MCR	MCR BITS 0-7=0
LSR	LSR BITS 0-4=0,
	LSR BITS 5-6=1 LSR, BIT 7=0
MSR	MSR BITS 0-3=0,
	MSR BITS 4-7=input signals

SIGNALS	RESETSTATE
TX SOFT reset	High High
RTS*	High
DTR*	High
INT	Three state mode

ST16C1450 Plastic-DIP Package

ST16C1451 Plastic-DIP Package

AC ELECTRICAL CHARACTERISTICS

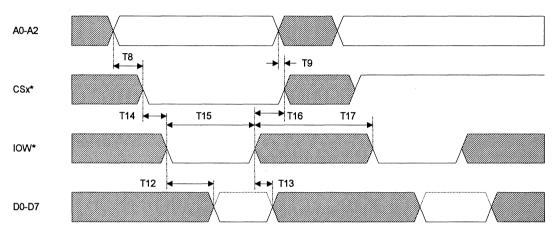
 $T_{\rm A}{=}25^{\circ}$ C, $V_{\rm cc}{=}5.0$ V \pm 5% unless otherwise specified.

Symbol	Parameter		Limits		Units	Conditions
-,		Min	Тур	Max		
т	Clock high pulse duration	60			ns	
- '1 T	Clock low pulse duration	60			ns	External clock
$\frac{1}{T}^{2}$	Clock rise/fall time			100	ns	LACITICIOUR
T, T, ² T, ³ T, ¹² T, ¹³ T, ¹⁴ T, ¹⁵	Chip select setup time	25		100	ns	
Ť	Chip select hold time	l õ			ns	
Ť.	Address hold time from IOW*	5			ns	
T.,	IOW* delay from address	25			ns	
T.,	IOW* delay from chip select	10			ns	
T.,	IOW* strobe width	50			ns	
T ¹⁵ ₁₆	Chip select hold time from IOW*	5			ns	
T ¹⁰ ₁₇	Write cycle delay	55			ns	
Tw	Write cycle= $T_{15}+T_{17}$	135			ns	
T ₁₉ T ₂₁ T ₂₃ T ₂₄ T ₂₅ Tr	Data hold time	25			ns	
T ₂₁	IOR* delay from chip select	10			ns	
T ₂₃	IOR* strobe width	75			ns	
Т ₂₄	Chip select hold time from IOR*	0			ns	
T_25	Read cycle delay	50			ns	
	Read cycle= $T_{23}+T_{25}$	135			ns	
T_26	Delay from IOR* to data			75	ns	100 pF load
T_26 T_28 T_29	Delay from IOW* to output			50	ns	100 pF load
29	Delay to set interrupt from MODEM			70	ns	100 pF load
Ŧ	input Delay to report interrupt from IODt			70		100 - 5 land
T_30	Delay to reset interrupt from IOR*			70	ns	100 pF load
T ³⁰ T ₃₁ T ₃₂ T ₃₃	Delay from stop to set interrupt			1 200	ns	100 pF load
+ ³²	Delay from IOR* to reset interrupt Delay from initial INT reset to transmit	8		200 24	ns *	100 pF load
33	start	°		24		
т	Delay from stop to interrupt			100	ns	
Т ₃₄ Т ₃₅	Delay from IOW* to reset interrupt			175	ns	
35	boldy non-rote to resolution upt			175	113	
N	Baud rate devisor	1		2 ¹⁶ -1		

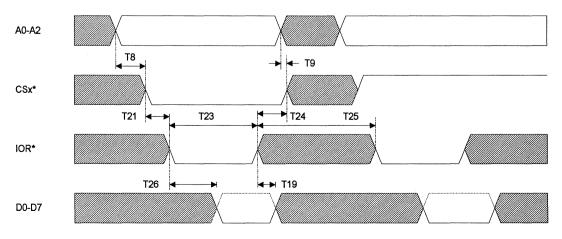
Note 1: *Baudout*cycle

ABSOLUTE MAXIMUM RATINGS

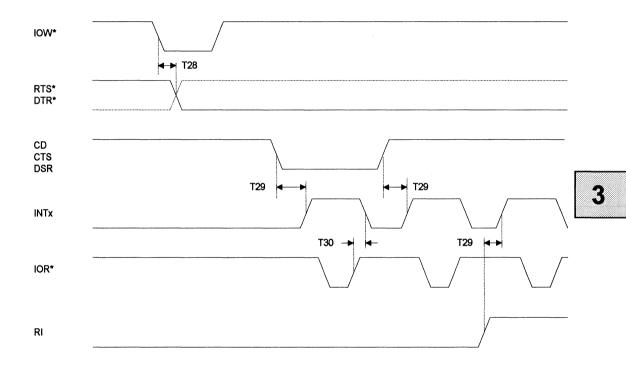
Operating supply range Voltage at any pin Operating temperature Storage temperature Package dissipation


DC ELECTRICAL CHARACTERISTICS

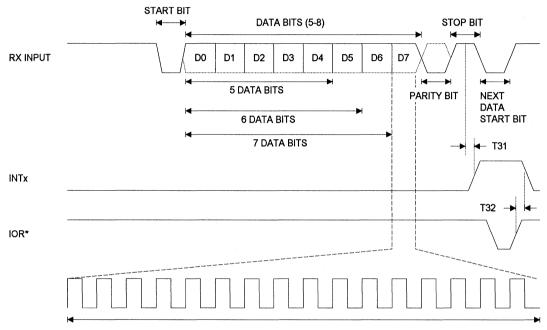
 T_{A} =25° C, V_{cc} =5.0 V ± 5% unless otherwise specified.


Symbol	Parameter		imits	Units	Conditions
Vilok Virok Vilok Vilok Vilok Vot Iol	Clock input low level Clock input high level Input low level Input high level Output low level on all outputs Output high level Avg power supply current Input leakage Clock leakage	Min -0.5 3.0 -0.5 2.2 2.4	Typ Max 0.6 VCC 0.8 VCC 0.4 6 ±10 ±10	×>>>>> \$	I _{ol} =6mA I _{он} =-6mA

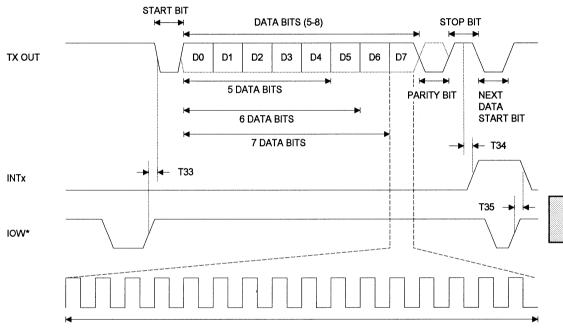
7 Volts ± 5% GND-0.3 V to VCC+0.3 V 0° C to +70° C -40° C to +150° C 500 mW ST16C1450/51


GENERAL WRITE TIMING

GENERAL READ TIMING



MODEM TIMING



RECEIVE TIMING

16 BAUD RATE CLOCK

3

TRANSMIT TIMING

16 BAUD RATE CLOCK

APR 1992

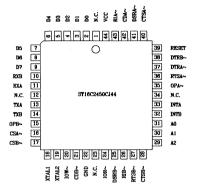
DUAL UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER

DESCRIPTION

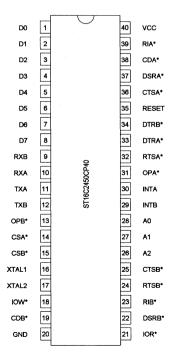
The ST16C2450 is a dual universal asynchronous receiver and transmitter. Independent programmable baud rate generators are provided to select transmit and receive clock rates from 50Hz to 448kHz for each uart section.

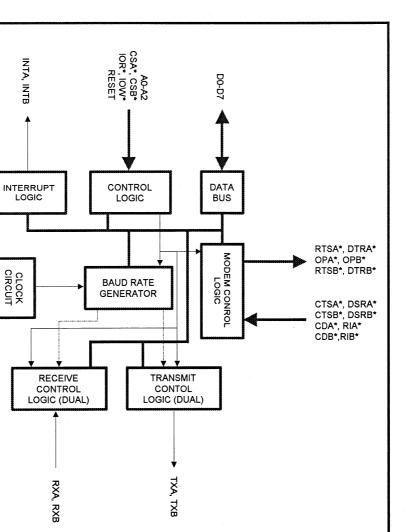
The ST16C2450 is an improved version of the NS16C450 UART with higher operating speed and lower access time. The ST16C2450 on board status registers provides the error conditions, type and status of the transfer operation being performed. Included is complete MODEM control capability, and a processor interrupt system that may be software tailored to the user's requirements. The ST16C2450 provides internal loop-back capability for on board diagnostic testing.

The ST16C2450 is fabricated in an advanced 1.2μ CMOS process to achieve low drain power and high speed requirements.


FEATURES

- * Functional compatible to NS16450, VL16C450, WD16C450
- * Modem control signals (CTS*, RTS*, DSR*, DTR*, RI*, CD*)
- * Programmable character lengths (5, 6, 7, 8)
- * Even, odd, or no parity bit generation and detection
- * Status report register
- * Independent transmit and receive control
- * TTL compatible inputs, outputs
- * 448 kHz transmit/receive operation with 7.372 MHz crystal or external clock source


ORDERING INFORMATION


Part number	Package	Operating	temperature
ST16C2450CP40	Plastic-DI	⊃ 0° C	to + 70° C
ST16C2450CJ44	PLCC	0° C	to + 70° C
*Industrial operating	range are a	available	

PLCC Package

Plastic-DIP Package

3-46

XTAL1

XTAL2 <

ST16C2450

BLOCK DIAGRAM

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
D0-D7	1-8	VO	Bidirectional data bus. Eight bit, three state data bus to transfer information to or from the CPU. D0 is the least significant bit of the data bus and the first serial data bit to be received or transmitted.
RX A/B	10,9	I	Serial data input A/B. The serial information (data) received from serial port to ST16C2450 receive input circuit. A mark (high) is logic one and a space (low) is logic zero. During the local loopback mode the RX input is disabled from external connection and connected to the TX output internally.
TX A/B	11,12	0	Serial data output A/B. The serial data is transmitted via this pin with additional start, stop and parity bits. The TX will be held in mark (high) state during reset, local loopback mode or when the transmitter is disabled.
CS A/B*	14,15	1	Chip select A/B. (active low) A low at this pin enables the ST16C2450 / CPU data transfer operation.
XTAL1	16		Crystal input 1 or external clock input. A crystal can be connected to this pin and XTAL2 pin to utilize the internal oscillator circuit. An external clock can be used to clock internal circuit and baud rate generator for custom transmis- sion rates.
XTAL2	17	I	Crystal input 2 or buffered clock output. See XTAL1.
IOW*	18	<u>I</u>	Write strobe. (active low) A low on this pin will transfer the contents of the CPU data bus to the addressed register.
IOR*	21	I	Read strobe. (active low) A low level on this pin transfers the contents of the ST16C2450 data bus to the CPU.
A0-A2	28-26	I	Address select lines. To select internal registers.
INT A/B	30,29	0	Interrupt output A/B. (active high) This pin goes high (when enabled by the interrupt enable register) whenever a receiver error, receiver data available, transmitter empty, or modem status condition flag is detected.

3

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description	
OP2A/B*	31	ο	Interrupt enable output (active low). This pin stays high wh INT out pin is set to three state mode and goes low when IN pin is enabled via OP2*. See bit-3 modem control regist (MCR bit-3).	
RTSA/B*	32,24	0	Request to send A/B (active low). To indicate that the trans- mitter has data ready to send. Writing a "1" in the modem control register (MCR bit-1) will set this pin to a low state. After the reset this pin will be set to high. Note that this pin does not have any effect on the transmit or receive operation.	
DTR A/B*	33,34	O	Data terminal ready A/B (active low). To indicate that ST16C2450 is ready to receive data. This pin can be controlled via the modern control register (MCR bit-0). Writing a "1" at the MCR bit-0 will set the DTR* output to low. This pin will be set to high state after writing a "0" to that register or after the reset. Note that this pin does not have any effect on the transmit or receive operation.	
RESET	35	I	Master reset. (active high) A high on this pin will reset all the outputs and internal registers. The transmitter output and the receiver input will be disabled during reset time.	
CTS A/B*	36,25	I	Clear to send A/B (active low). The CTS* signal is a MODEM control function input whose conditions can be tested by reading the MSR BIT-4. CTS* has no effect on the transmit or receive operation.	
DSR A/B*	37,22	l	Data set ready A/B (active low). A low on this pin indicates the MODEM is ready to exchange data with UART. This pin does not have any effect on the transmit or receive operation.	
CD A/B*	38,19	I	Carrier detect A/B (active low). A low on this pin indicates the carrier has been detected by the modem.	
RI A/B*	39,23		Ring detect indicator A/B (active low). A low on this pin indicates the modem has received a ringing signal from telephone line.	
vcc	40	I	Power supply input.	

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
GND	20	ο	Signal and power ground.

PROGRAMMING TABLE

A2	A1	A0	READ MODE	WRITE MODE
0	0	0	Receive Holding Register	Transmit Holding Register
0	0	1		Interrupt Enable Register
0	1	0	Interrupt Status Register	
0	1	1		Line Control Register
1	0	0		Modem Control Register
1	0	1	Line Status Register	·
1	1	0	Modem Status Register	
1	1	1	Scratchpad Register	Scratchpad Register
0	0	0		LSB of Divisor Latch
0	0	1		MSB of Divisor Latch

3

ST16C2450 ACCESSIBLE REGISTERS A/B

A2 A1 A0	Register	BIT-7	BIT-6	BIT-5	BIT-4	BIT-3	BIT-2	BIT-1	BIT-0
000	RHR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
000	THR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
001	IER	0	0	0	0	modem status interrupt	receive line status interrupt	transmit holding register	receive holding register
010	ISR	0	0	0	0	0	int priority bit-1	int priority bit-0	int status
011	LCR	divisor latch enable	set break	set parity	even parity	parity enable	stop bits	word length bit-1	word length bit-0
100	MCR	0	0	0	loop back	INT enable	Not used	RTS*	DTR*
101	LSR	0	trans. empty	trans. holding empty	break interrupt	framing error	parity error	overrun error	receive data ready
1 1 0	MSR	CD	RI	DSR	стѕ	delta CD*	delta RI*	delta DSR*	delta CTS*
1 1 1	SPR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0 0 0	DLL	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0 0 1	DLM	bit-15	bit-14	bit-13	bit-12	bit-11	bit-10	bit-9	bit-8

REGISTER FUNCTIONAL DESCRIPTIONS A/B

TRANSMIT AND RECEIVE HOLDING REGISTER

The serial transmitter section consists of a Transmit Hold Register (THR) and Transmit Shift Register (TSR). The status of the transmit hold register is provided in the Line Status Register (LSR). Writing to this register (THR) will transfer the contents of data bus (D7-D0) to the Transmit holding register whenever the transmitter holding register or transmitter shift register is empty. The transmit holding register empty flag will be set to "1" when the transmitter is empty or data is transfered to the transmit shift register. Note that a write operation should be performed when the transmit holding register empty flag is set. On the falling edge of the start bit, the receiver internal counter will start to count 7 1/2 clocks (16x clock) which is the center of the start bit. The start bit is valid if the RX is still low at the mid-bit sample of the start bit. Verifying the start bit prevents the receiver from assembling a false data character due to a low going noise spike on the RX input. Receiver status codes will be posted in the Line Status Register.

PROGRAMMABLE BAUD RATE GENERATOR

The ST16C2450 contains a programmable Baud Rate Generator that is capable of taking any clock input from DC-8 MHz and dividing it by any divisor from 2 to 2¹⁶-1. The output frequency of the Baudout* is equal to 16X of transmission baud rate (Baudout*=16 x Baud Rate). Customize Baud Rates can be achieved by selecting proper divisor values for MSB and LSB of baud rate generator.

INTERRUPT ENABLE REGISTER (IER)

The Interrupt Enable Register (IER) masks the incoming interrupts from receiver ready, transmitter empty, line status and modem status registers to the INT output pin.

IER BIT-0:

0=disable the receiver ready interrupt. 1=enable the receiver ready interrupt.

IER BIT-1:

0=disable the transmitter empty interrupt. 1=enable the transmitter empty interrupt.

IER BIT-2:

0=disable the receiver line status interrupt. 1=enable the receiver line status interrupt.

IER BIT-3:

0=disable the modem status register interrupt. 1=enable the modem status register interrupt.

IER BIT 4-7:

All these bits are set to logic zero.

INTERRUPT STATUS REGISTER (ISR)

The ST16C2450 provides four level prioritized interrupt conditions to minimize software overhead during data character transfers. The Interrupt Status Register (ISR) provides the source of the interrupt in prioritized matter. During the read cycle the ST16C2450 provides the highest interrupt level to be serviced by CPU. No other interrupts are acknowledged until the particular interrupt is serviced. The following are the prioritized interrupt levels:

Priority level

Ρ	D2	D1	D0	Source of the interrupt
1	1	1	0	LSR (Receiver Line Status Register)
2	1	0	0	RXRDY (Received Data Ready)
3	0	1	0	TXRDY(Transmitter Holding Register Empty)
4	0	0	0	MSR (Modem Status Regis- ter)

ISR BIT-0:

0=an interrupt is pending and the ISR contents may be used as a pointer to the appropriate interrupt service routine.

1=no interrupt pending.

ISR BIT 1-2:

Logical combination of these bits, provides the highest priority interrupt pending.

ISR BIT 3-7:

These bits are not used and are set to "0".

LINE CONTROL REGISTER (LCR)

The Line Control Register is used to specify the asynchronous data communication format. The number of the word length, stop bits, and parity can be selected by writing appropriate bits in this register.

LCR BIT1-0:

These two bits specify the word length to be transmitted or received.

BIT-1	BIT-0	Word length
0	0	5
0	1	6
1	0	7
1	1	8

LCR BIT-2:

The number of stop bits can be specified by this bit.

BIT-2	Word length	Stop bit(s)
0	5,6,7,8	1
1	5	1-1/2
1	6,7,8	2

LCR BIT-3:

Parity or no parity can be selected via this bit. 0=no parity

1=a parity bit is generated during the transmission, receiver also checks for received parity.

LCR BIT-4:

If the parity bit is enabled, LCR BIT-4 selects the even or odd parity format.

0=ODD parity is generated by forcing an odd number of 1's in the transmitted data, receiver also checks for same format.

1= EVEN parity bit is generated by forcing an even the number of 1's in the transmitted data, receiver also checks for same format.

LCR BIT-5:

If the parity bit is enabled, LCR BIT-5 selects the forced parity format.

LCR BIT-5=1 and LCR BIT-4=0, parity bit is forced to "1" in the transmitted and received data.

LCR BIT-5=1 and LCR BIT-4=1, parity bit is forced to "0" in the transmitted and received data.

LCR BIT-6:

Break control bit. It causes a break condition to be transmitted (the TX is forced to low state).

0=normal operating condition.

1=forces the transmitter output (TX) to go low to alert the communication terminal.

LCR BIT-7:

The internal baud rate counter latch enable (DLEN). 0=normal operation. 1=select divisor latch register.

MODEM CONTROL REGISTER (MCR)

This register controls the interface with the MODEM or a peripheral device (RS232).

MCR BIT-0:

0=force DTR* output to high. 1=force DTR* output to low.

MCR BIT-1: 0=force RTS* output to high. 1=force RTS* output to low.

MCR BIT-2:

not used except in local loop-back mode.

MCR BIT-3:

0=set INT output pin to three state mode and OP2* output to high.

1=set INT outout pin to normal operating mode and OP2* output to low.

MCR BIT-4:

0=normal operating mode.

1=enable local loop-back mode (diagnostics). The transmitter output (TX) is set high (Mark condition), the receiver input (RX), CTS*, DSR*, CD*, and RI* are disabled. Internally the transmitter output is connected to the receiver input and DTR*, RTS*, OP1* and OP2* are connected to modem control inputs.

In this mode, the receiver and transmitter interrupts are fully operational. The Modem Control Interrupts are also operational, but the interrupts sources are now the lower four bits of the Modem Control Register instead of the four Modem Control inputs. The interrupts are still controlled by the IER.

MCR BIT 5-7:

Not used. Are set to zero permanently.

LINE STATUS REGISTER (LSR)

This register provides the status of data transfer to CPU.

LSR BIT-0:

0=no data in receive holding register 1=data has been received and saved in the receive holding register.

LSR BIT-1:

0=no overrun error (normal).

1=overrun error, next character arrived before receive holding register was emptied.

LSR BIT-2:

0=no parity error (normal). 1=parity error, received data does not have correct parity information.

LSR BIT-3:

0=no framing error (normal). 1=framing error received, received data did not have a valid stop bit. In

LSR BIT-4:

0=no break condition (normal). 1=receiver received a break signal (RX was low for one character time frame).

LSR BIT-5:

0=transmit holding register is full. ST16C2450 will not accept any data for transmission.

1=transmit holding register is empty. CPU can load the next character.

LSR BIT-6:

0=transmitter holding and shift registers are full. 1=transmitter holding and shift registers are empty.

LSR BIT-7:

Not used. Set to "0".

MODEM STATUS REGISTER (MSR)

This register provides the current state of the control lines from the modem or peripheral to the CPU. Four bits of this register are used to indicate the changed information. These bits are set to "1" whenever a control input from the MODEM changes state. They are set to "0" whenever the CPU reads this register.

MSR BIT-0:

Indicates that the CTS* input to the ST16C2450 has changed state since the last time it was read.

MSR BIT-1:

Indicates that the DSR* input to the ST16C2450 has changed state since the last time it was read.

MSR BIT-2:

Indicates that the RI* input to the ST16C2450 has changed from a low to a high state.

MSR BIT-3:

Indicates that the CD* input to the ST16C2450 has changed state since the last time it was read.

MSR BIT-4:

This bit is equivalent to RTS in the MCR during local loop-back mode. It is the compliment of the CTS* input.

MSR BIT-5:

This bit is equivalent to DTR in the MCR during local loop-back mode. It is the compliment of the DSR* input.

MSR BIT-6:

This bit is equivalent to OP1 in the MCR during local loop-back mode. It is the compliment of the RI* input.

MSR BIT-7:

This bit is equivalent to OP2 in the MCR during local loop-back mode. It is the compliment to the CD* input.

Note: Whenever MSR BIT3-0: is set to logic "1", a MODEM Status Interrupt is generated.

SCRATCHPAD REGISTER (SR)

SIGNALS	RESETSTATE
TX	High
OP2*	High
RTS*	High
DTR*	High
INT	Three state mode

ST16C2450 provides a temporary data register to store 8 bits of information for variable use.

BAUD RATE GENERATOR PROGRAMMING TABLE (1.8432 MHz CLOCK):

BAUD RATE	16 x CLOCK DIVISOR	% ERROR		
50	2304			
75	1536			
110	1047	0.026		
134.5	857	0.058		
150	768			
300	384			
600	192			
1200	96			
2400	48	1. Sec. 1. Sec		
3600	32			
4800	24			
7200	16			
9600	12			
19.2K	6			
38.4K	3			
56K	2	2.86		
112K	1			

ST16C2450 EXTERNAL RESET CONDITION

REGISTERS	RESET STATE
IER	IER BITS 0-7=0
ISR	ISR BIT-0=1, ISR BITS 1-7=0
LCR	LCR BITS 0-7=0
MCR	MCRBITS 0-7=0
LSR	LSR BITS 0-4=0,
	LSR BITS 5-6=1 LSR, BIT 7=0
MSR	MSR BITS 0-3=0,
	MSR BITS 4-7=input signal

AC ELECTRICAL CHARACTERISTICS

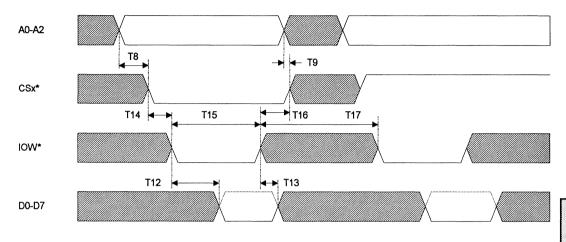
 $\rm T_{A}=25^{\circ}$ C, $\rm V_{cc}=5.0~V\pm5\%$ unless otherwise specified.

Symbol	Parameter		Limits		Units	Conditions
		Min	Тур	Max		
$ \begin{array}{c} T_{1} \\ T_{2}^{2} \\ T_{3} \\ T_{8} \\ T_{9} \\ T_{12}^{12} \end{array} $	Clock high pulse duration	60			ns	
T ₂	Clock low pulse duration	60			ns	External clock
T ₃	Clock rise/fall time			100	ns	
T ₈	Chip select setup time	25			ns	
T ₉	Chip select hold time	0			ns	
T ₁₂	Address hold time from IOW*	5			ns	
	IOW* delay from address	25			ns	
1 1 1	IOW* delay from chip select	10			ns	
15	IOW* strobe width	50			ns	
16	Chip select hold time from IOW*	5		-	ns	
17	Write cycle delay	55			ns	
Tw	Write cycle=T ₁₅ +T ₁₇	135			ns	
Т ₁₉	Data hold time	25			ns	
T ₂₁	IOR* delay from chip select	10			ns	
T ₂₃	IOR* strobe width	75			ns	
T ₂₄	Chip select hold time from IOR*	0			ns	
T ₂₅ Tr	Read cycle delay	50			ns	
Tr	Read cycle=T ₂₃ +T ₂₅	135			ns	
T ₂₆ T ₂₈	Delay from IOR* to data			75	ns	100 pF load
T ₂₈	Delay from IOW*to output	1		50	ns	100 pF load
T ₂₉	Delay to set interrupt from MODEM			70	ns	100 pF load
	input	1				
Т ₃₀	Delay to reset interrupt from IOR*			70	ns	100 pF load
T	Delay from stop to set interrupt				ns	100 pF load
T ₃₁ T ₃₂ T ₃₃	Delay from IOR* to reset interrupt			200	ns	100 pF load
T ₃	Delay from initial INT reset to transmit	8		24	*	
	start					
T _M	Delay from stop to interrupt			100	ns	
Τ ₃₄ Τ ₃₅	Delay from IOW* to reset interrupt			175	ns	
		·				
N	Baud rate devisor	1		2 ¹⁶ -1		

Note 1: *Baudout*cycle

3

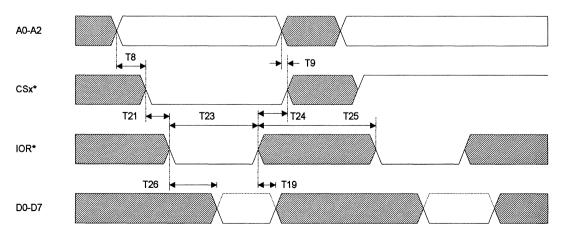
ABSOLUTE MAXIMUM RATINGS

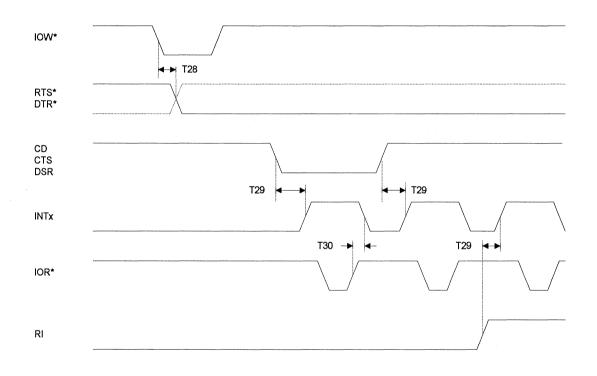

Operating supply range Voltage at any pin Operating temperature Storage temperature Package dissipation 7 Volts ± 5% GND-0.3 V to VCC+0.3 V 0° C to +70° C -40° C to +150° C 500 mW

DC ELECTRICAL CHARACTERISTICS

 $T_a=25^{\circ}$ C, $V_{cc}=5.0$ V ± 5% unless otherwise specified.

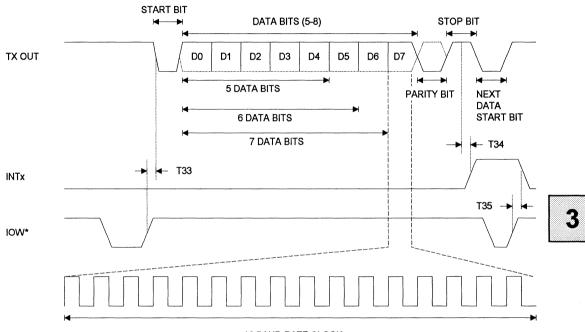
Symbol	Parameter	Lim — Min Ty		Units	Conditions
V _{ILCK} V _{IHCK} V _{IL} V _H V _{OL} V _{OH} I _{CC} I _L I _{CL}	Clock input low level Clock input high level Input low level Input high level Output low level on all outputs Output high level Avg power supply current Input leakage Clock leakage	-0.5 3.0 -0.5 2.2 2.4	0.6 VCC 0.8 VCC 0.4 6 ±10 ±10	V V V V M μ μ μ μ	I _{оl} = 6 mA I _{он} = -6 mA


ST16C2450

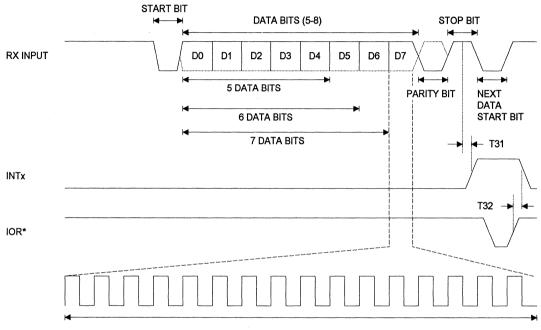

GENERAL WRITE TIMING

3

GENERAL READ TIMING



MODEM TIMING


ST16C2450

TRANSMIT TIMING

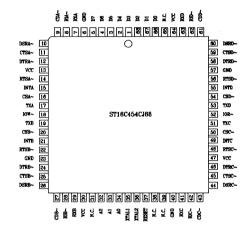
16 BAUD RATE CLOCK

RECEIVE TIMING

16 BAUD RATE CLOCK

APR 1992

QUAD ASYNCHRONOUS RECEIVER AND TRANSMITTER

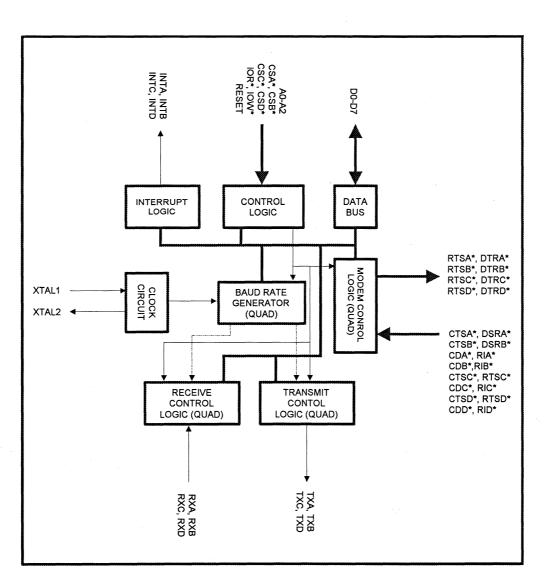

DESCRIPTION

The ST16C454 is a quad universal asynchronous receiver and transmitter. A programmable baud rate generator is provided to select transmit and receive clock rates from 50Hz to 448kHz.

The ST16C454 is an improved version of the NS16C450 UART with higher operating speed and lower access time. The ST16C454 on board status registers provides the error conditions, type and status of the transfer operation being performed. Included is complete MODEM control capability, and a processor interrupt system that may be software tailored to the user's requirements. The ST16C454 provides internal loop-back capability for on board diagnostic testing.

The ST16C454 is fabricated in an advanced 1.2 μ CMOS process to achieve low drain power and high speed requirements.

PLCC Package


3

FEATURES

- * Quad ST16C450
- * Pin-to-pin compatible to ST16C554
- * Modern control signals (CTS*, RTS*, DSR*, DTR*, RI*, CD*)
- * Programmable character lengths (5, 6, 7, 8)
- * Even, odd, or no parity bit generation and detection
- * Status report register
- * Independent transmit and receive control
- * TTL compatible inputs, outputs
- * 448 kHz transmit/receive operation with 7.372 MHz crystal or external clock source

ORDERING INFORMATION

Part number	Package	Operating	temperature
ST16C454CJ68	PLCC	0° C	to + 70° C
*Industrial operating	range ava	ilable	

ST16C454

BLOCK DIAGRAM

3-62

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description			
D0-D7	5-66	I/O	Bidirectional data bus. Eight bit, three state data bus t transfer information to or from the CPU. D0 is the leas significant bit of the data bus and the first serial data bit to b received or transmitted.			
RX A-B RX C-D	7,29 41,63	I	Serial data input. The serial information (data) received from serial port to ST16C454 receive input circuit. A mark (high) is logic one and a space (low) is logic zero. During the local loopback mode the RX input is disabled from external connection and connected to the TX output internally.			
TX A-B TX C-D	17,19 51,53	o	Serial data output. The serial data is transmitted via this pin with additional start , stop and parity bits. The TX will be held in mark (high) state during reset, local loopback mode or			
			when the transmitter is disabled.			
CS A-B* CS C-D*	16,20 50,54	I	Chip select. (active low) A low at this pin enables the ST16C454 / CPU data transfer operation. Each UART section of the ST16C454 can be accessed independently.			
XTAL1	35	I	Crystal input 1 or external clock input. A crystal can be connected to this pin and XTAL2 pin to utilize the internal oscillator circuit. An external clock can be used to clock internal circuit and baud rate generator for custom transmis- sion rates.			
XTAL2	36	о	Crystal input 2 or buffered clock output. See XTAL1.			
IOW*	18	I	Write strobe. (active low) A low on this pin will transfer the contents of the CPU data bus to the addressed register.			
GND GND	6,23 40,61	0	Signal and power ground.			
IOR*	52	I	Read strobe. (active low) A low level on this pin transfers the contents of the ST16C454 data bus to the CPU.			

3

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
A2	32	I	Address select line 2. To select internal registers.
A1	33	I	Address select line 1. To select internal registers.
A0	34	Ŷ I	Address select line 0. To select internal registers.
INT A-B INT C-D	15,21 49,55	ο	Interrupt output. (active high) This pin goes high (when enabled by the interrupt enable register) whenever a receiver error, receiver data available, transmitter empty, or modem status condition flag is detected.
RTS A-B* RTS C-D*	14,22 48,56	O	Request to send. (active low) To indicate that the transmitter has data ready to send. Writing a "1" in the modem control register (MCR bit-1) will set this pin to a low state. After the reset this pin will be set to high. Note that this pin does not have any effect on the transmit or receive operation.
DTR A-B* DTR C-D*	12,24 46,58	0	Data terminal ready. (active low) To indicate that ST16C454 is ready to receive data. This pin can be controlled via the modem control register (MCR bit-0). Writing a "1" at the MCR bit-0 will set the DTR* output to low. This pin will be set to high state after writing a "0" to that register or after the reset . Note that this pin does not have any effect on the transmit or receive operation.
RESET	37	на н	Master reset. (active high) A high on this pin will reset all the outputs and internal registers. The transmitter output and the receiver input will be disabled during reset time.
CTS A-B* CTS C-D*	11,25 45,59		Clear to send. (active low) The CTS* signal is a MODEM control function input whose conditions can be tested by reading the MSR BIT-4. CTS* has no effect on the transmit or receive operation.
DSR A-B* DSR C-D*	10,26 44,60	- 1	Data set ready. (active low) A low on this pin indicates the

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
			MODEM is ready to exchange data with UART. This pin does not have any effect on the transmit or receive operation.
CD A-B*	9,27		
CD C-D*	43,61	I	Carrier detect. (active low) A low on this pin indicates the carrier has been detected by the modern.
RIA-B*	8,28		
RIC-D*	42,62	1	Ring detect indicator. (active low) A low on this pin indicates the modem has received a ringing signal from telephone line.
vcc	13,60		
VCC	47,64		Power supply input.

PROGRAMMING TABLE

A2	A1	A0	READ MODE	WRITE MODE
0	0	0	Receive Holding Register	Transmit Holding Register
0	0	1		Interrupt Enable Register
0	1	0	Interrupt Status Register	
0	1	1		Line Control Register
1	0	0		Modem Control Register
1	0	1	Line Status Register	-
1	1	o	Modem Status Register	
1	1	1	Scratchpad Register	Scratchpad Register
Ó	Ó	Ó		LSB of Divisor Latch
Ō	Ō	1		MSB of Divisor Latch

ST16C454 ACCESSIBLE REGISTERS

A2 A1 A0	Register	BIT-7	BIT-6	BIT-5	BIT-4	BIT-3	BIT-2	BIT-1	BIT-0
000	RHR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
000	THR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
001	IER	0	0	0	0	modem status interrupt	receive line status interrupt	transmit holding register	receive holding register
010	ISR	0	0	0	0	0	int priority bit-1	int priority bit-0	int status
011	LCR	divisor latch enable	set break	set parity	even parity	parity enable	stop bits	word length bit-1	word length bit-0
100	MCR	0	0	0	loop back	INT enable	Not used	RTS*	DTR*
101	LSR	0	trans. empty	trans. holding empty	break interrupt	framing error	parity error	overrun error	receive data ready
1 1 0	MSR	CD	RI	DSR	стѕ	delta CD*	delta RI*	delta DSR*	delta CTS*
1 1 1	SPR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
000	DLL	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
001	DLM	bit-15	bit-14	bit-13	bit-12	bit-11	bit-10	bit-9	bit-8

REGISTER FUNCTIONAL DESCRIPTIONS

TRANSMIT AND RECEIVE HOLDING REGISTER

The serial transmitter section consists of a Transmit Hold Register (THR) and Transmit Shift Register (TSR). The status of the transmit hold register is provided in the Line Status Register (LSR). Writing to this register (THR) will transfer the contents of data bus (D7-D0) to the Transmit holding register whenever the transmitter holding register or transmitter shift register is empty. The transmit holding register empty flag will be set to "1" when the transmitter is empty or data is transfered to the transmit shift register. Note that a write operation should be performed when the transmit holding register empty flag is set. On the falling edge of the start bit, the receiver internal counter will start to count 7 1/2 clocks (16x clock) which is the center of the start bit. The start bit is valid if the RX is still low at the mid-bit sample of the start bit. Verifying the start bit prevents the receiver from assembling a false data character due to a low going noise spike on the RX input. Receiver status codes will be posted in the Line Status Register.

PROGRAMMABLE BAUD RATE GENERATOR

The ST16C454 contains a programmable Baud Rate Generator that is capable of taking any clock input from DC-8 MHz and dividing it by any divisor from 2 to 2¹⁶-1. The output frequency of the Baudout* is equal to 16X of transmission baud rate (Baudout*=16 x Baud Rate). Customize Baud Rates can be achieved by selecting proper divisor values for MSB and LSB of baud rate generator.

INTERRUPT ENABLE REGISTER (IER)

The Interrupt Enable Register (IER) masks the incoming interrupts from receiver ready, transmitter empty, line status and modem status registers to the INT output pin.

IER BIT-0:

0=disable the receiver ready interrupt. 1=enable the receiver ready interrupt.

IER BIT-1:

0=disable the transmitter empty interrupt. 1=enable the transmitter empty interrupt.

IER BIT-2:

0=disable the receiver line status interrupt. 1=enable the receiver line status interrupt.

IER BIT-3:

0=disable the modem status register interrupt. 1=enable the modem status register interrupt.

IER BIT 7-4:

All these bits are set to logic zero.

INTERRUPT STATUS REGISTER (ISR)

The ST16C454 provides four level prioritized interrupt conditions to minimize software overhead during data character transfers. The Interrupt Status Register (ISR) provides the source of the interrupt in prioritized matter. During the read cycle the ST16C454 provides the highest interrupt level to be serviced by CPU. No other interrupts are acknowledged until the particular interrupt is serviced. The following are the prioritized interrupt levels:

Priority level

Ρ	D2	D1	D0	Source of the interrupt
1	1	1	0	LSR (Receiver Line Status Register)
2	1	0	0	RXRDY (Received Data Ready)
3	0	1	0	TXRDY(Transmitter Holding Register Empty)
4	0	0	0	MSR (Modern Status Register)

ISR BIT-0:

0=an interrupt is pending and the ISR contents may be used as a pointer to the appropriate interrupt service routine.

1=no interrupt pending.

ISR BIT 1-2:

Logical combination of these bits, provides the highest priority interrupt pending.

ISR BIT 3-7:

These bits are not used and are set to "0".

LINE CONTROL REGISTER (LCR)

The Line Control Register is used to specify the asynchronous data communication format. The number of the word length, stop bits, and parity can be selected by writing appropriate bits in this register.

LCR BIT1-0:

These two bits specify the word length to be transmitted or received.

BIT-1	BIT-0	Word length
0	0	5
0	1	6
1	0	7
1	1	8

LCR BIT-2:

The number of stop bits can be specified by this bit.

BIT-2	Word length	Stop bit(s)
0	5,6,7,8	1
1	5	1-1/2
1	6,7,8	2

LCR BIT-3:

Parity or no parity can be selected via this bit. 0=no parity

1=a parity bit is generated during the transmission, receiver also checks for received parity.

LCR BIT-4:

If the parity bit is enabled, LCR BIT-4 selects the even or odd parity format.

0=ODD parity is generated by forcing an odd number of 1's in the transmitted data, receiver also checks for same format.

1= EVEN parity bit is generated by forcing an even the number of 1's in the transmitted data, receiver also checks for same format.

LCR BIT-5:

If the parity bit is enabled, LCR BIT-5 selects the forced parity format.

LCR BIT-5=1 and LCR BIT-4=0, parity bit is forced to "1" in the transmitted and received data.

LCR BIT-5=1 and LCR BIT-4=1, parity bit is forced to "0" in the transmitted and received data.

LCR BIT-6:

Break control bit. It causes a break condition to be transmitted (the TX is forced to low state).

0=normal operating condition.

1=forces the transmitter output (TX) to go low to alert the communication terminal.

LCR BIT-7:

The internal baud rate counter latch enable (DLEN). 0=normal operation. 1=select divisor latch register.

MODEM CONTROL REGISTER (MCR)

This register controls the interface with the MODEM or a peripheral device (RS232).

MCR BIT-0:

0=force DTR* output to high. 1=force DTR* output to low.

3

MCR BIT-1: 0=force RTS* output to high. 1=force RTS* output to low.

MCR BIT-2:

Not used except, in internal loop-back mode.

MCR BIT-3:

0=set INT output pin to three state mode. 1=set INT output pin to normal operating mode.

MCR BIT-4:

0=normal operating mode.

1=enable local loop-back mode (diagnostics). The transmitter output (TX) is set high (Mark condition), the receiver input (RX), CTS*, DSR*, CD*, and RI* are disabled. Internally the transmitter output is connected to the receiver input and DTR*, RTS*, OP1* and OP2* are connected to modem control inputs. In this mode, the receiver and transmitter interrupts are fully operational. The Modem Control Interrupts are also operational, but the interrupts sources are now the lower four bits of the Modem Control Register instead of the four Modem Control inputs. The interrupts are still controlled by the IER.

MCR BIT 5-7:

Not used. Are set to zero permanently.

LINE STATUS REGISTER (LSR)

This register provides the status of data transfer to CPU.

LSR BIT-0:

0=no data in receive holding register 1=data has been received and saved in the receive holding register.

LSR BIT-1:

0=no overrun error (normal). 1=overrun error, next character arrived before receive holding register was emptied.

LSR BIT-2:

0=no parity error (normal). 1=parity error, received data does not have correct parity information.

LSR BIT-3:

0=no framing error (normal). 1=framing error received, received data did not have a valid stop bit. In

LSR BIT-4:

0=no break condition (normal). 1=receiver received a break signal (RX was low for one character time frame).

LSR BIT-5:

0=transmit holding register is full. ST16C454 will not accept any data for transmission. 1=transmit holding register is empty. CPU can load the next character.

LSR BIT-6:

0=transmitter holding and shift registers are full. 1=transmitter holding and shift registers are empty.

LSR BIT-7:

Not used. Set to "0".

MODEM STATUS REGISTER (MSR)

This register provides the current state of the control lines from the modem or peripheral to the CPU. Four bits of this register are used to indicate the changed information. These bits are set to "1" whenever a control input from the MODEM changes state. They are set to "0" whenever the CPU reads this register.

MSR BIT-0:

Indicates that the CTS* input to the ST16C454 has changed state since the last time it was read.

MSR BIT-1:

Indicates that the DSR* input to the ST16C454 has changed state since the last time it was read.

MSR BIT-2:

Indicates that the RI* input to the ST16C454 has changed from a low to a high state.

MSR BIT-3:

Indicates that the CD* input to the ST16C454 has changed state since the last time it was read.

MSR BIT-4:

This bit is equivalent to RTS in the MCR during local loop-back mode. It is the compliment of the CTS* input.

MSR BIT-5:

This bit is equivalent to DTR in the MCR during local loop-back mode. It is the compliment of the DSR* input.

MSR BIT-6:

This bit is equivalent to OP1 in the MCR during local loop-back mode. It is the compliment of the RI* input.

MSR BIT-7:

This bit is equivalent to OP2 in the MCR during local loop-back mode. It is the compliment to the CD* input.

Note: Whenever MSR BIT3-0: is set to logic "1", a MODEM Status Interrupt is generated.

SCRATCHPAD REGISTER (SR)

ST16C454 provides a temporary data register to store 8 bits of information for variable use.

SIGNALS	RESETSTATE
ΤХ	High
OP1*	High
OP2*	High
RTS*	High
DTR*	High
INT	Three state

BAUD RATE GENERATOR PROGRAMMING TABLE (1.8432 MHz CLOCK):

BAUD RATE	16 x CLOCK DIVISOR	% ERROR
50	2304	
75	1536	
110	1047	0.026
134.5	857	0.058
150	768	
300	384	
600	192	
1200	96	
2400	48	
3600	32	
4800	24	
7200	16	
9600	12	
19.2K	6	
38.4K	3	
56K	2	2.86
112K	1	

ST16C454 EXTERNAL RESET CONDITION

REGISTERS	RESETSTATE
IER	IER BITS 0-7=0
ISR	ISR BIT-0=1, ISR BITS 1-7=0
LCR	LCR BITS 0-7=0
MCR	MCR BITS 0-7=0
LSR	LSR BITS 0-4=0,
	LSR BITS 5-6=1 LSR, BIT 7=0
MSR	MSR BITS 0-3=0,
	MSR BITS 4-7=input signals

3

AC ELECTRICAL CHARACTERISTICS

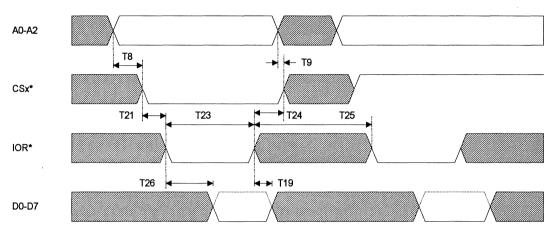
 $\rm T_{A}=25^{\circ}$ C, $\rm V_{cc}=5.0~V\pm5\%$ unless otherwise specified.

Symbol	Parameter		Limits		Units	Conditions	
		Min	Тур	Мах			
Т	Clock high pulse duration	60			ns		
<u>+</u> '	Clock low pulse duration	60			ns	External clock	
$\dot{\tau}^2$	Clock rise/fall time			100	ns	External of one	
T ³	Chip select setup time	25		100	ns		
$ \begin{array}{c} T_{1} \\ T_{2}^{2} \\ T_{3} \\ T_{8} \\ T_{9} \\ T_{12} \end{array} $	Chip select hold time	0			ns		
T [°]	Address hold time from IOW*	5			ns		
T_{13}^{12}	IOW* delay from address	25			ns		
T_{14}^{13}	IOW* delay from chip select	10			ns		
T ₁₅	IOW* strobe width	50			ns		
T ₁₆	Chip select hold time from IOW*	5			ns		
T ₁₇	Write cycle delay	55			ns		
Tw	Write cycle= $T_{15}+T_{17}$	135			ns		
Т ₁₈	Data setup time	10			ns		
1 1 10	Data hold time	25			ns		
	IOR* delay from chip select	10			ns		
T_{23}^{21}	IOR* strobe width	75			ns		
T ₂₄	Chip select hold time from IOR*	0			ns		
T ₂₄ T ₂₅ Tr	Read cycle delay	50			ns		
Tr	Read cycle= $T_{23} + T_{25}$	135			ns		
T.,	Delay from IOR* to data			75	ns	100 pF load	
T ₂₆ T ₂₇	IOR* to floating data delay	0		50	ns	100 pF load	
T ²¹ ₂₈	Delay from IOW* to output			50	ns	100 pF load	
T ₂₉	Delay to set interrupt from MODEM			70	ns	100 pF load	
29	input					•	
T ₃₀	Delay to reset interrupt from IOR*			70	ns	100 pF load	
T,	Delay from stop to set interrupt			1 _{Rclk}	ns	100 pF load	
T ₃₁ T ₃₂	Delay from IOR* to reset interrupt			200	ns	100 pF load	
T ₃₃ ³²	Delay from initial INT reset to transmit	8		24	*		
	start						
T_34	Delay from stop to interrupt			100	ns		
T ₃₅	Delay from IOW* to reset interrupt			175	ns		
N	Baud rate devisor	1		2 ¹⁶ -1			

Note 1: *Baudout*cycle

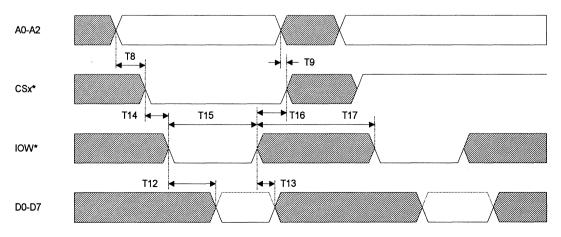
ABSOLUTE MAXIMUM RATINGS

Operating supply range Voltage at any pin Operating temperature Storage temperature Package dissipation 7 Volts ± 5% GND-0.3 V to VCC+0.3 V 0° C to +70° C -40° C to +150° C 500 mW

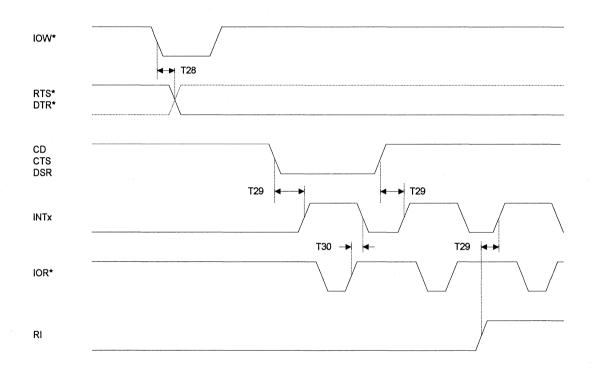

DC ELECTRICAL CHARACTERISTICS

 $\rm T_{A}=25^{\circ}$ C, $\rm V_{cc}=5.0~V\pm5\%$ unless otherwise specified.

Symbol	Parameter		nits yp Max	Units	Conditions
V	Clock input low level	-0.5	0.6	v	
V _{ILCK} V _{IHCK}	Clock input high level	3.0	VCC	V	
	Input low level	-0.5	0.8	V	
٧ <u>ٿ</u>	Input high level	2.2	VCC	V	
vä	Output low level on all outputs		0.4	V	I _{ci} =6 mA
V	Output high level	2.4		V	I _{оL} = 6 mA I _{он} = -6 mA
l _{cc}	Avg power supply current		6	mA	On
I,	Inputleakage		±10	μA	
ľ,	Clock leakage		±10	μA	

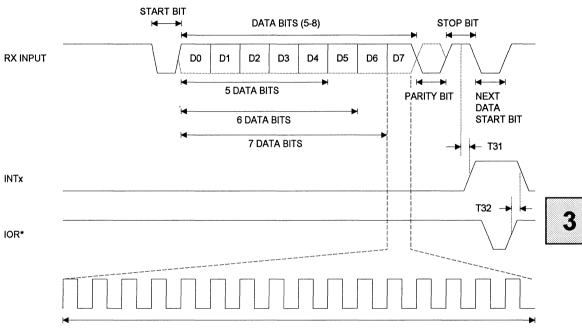

ST16C454

3



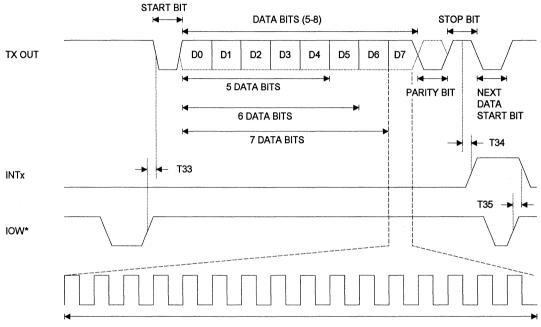
GENERAL READ TIMING

GENERAL WRITE TIMING


MODEM TIMING

3-74

ST16C454



RECEIVE TIMING

16 BAUD RATE CLOCK

3-75

16 BAUD RATE CLOCK

APR 1992

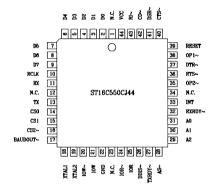
UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER WITH FIFOs

DESCRIPTION

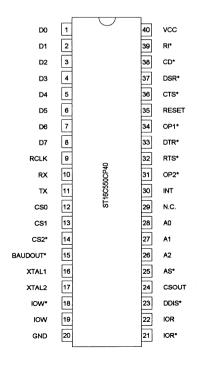
The ST16C550 is a universal asynchronous receiver and transmitter with 16 byte transmit and receive FIFO. A programmable baud rate generator is provided to select transmit and receive clock rates from 50Hz to 448kHz.

The ST16C550 is an improved version of the NS16C550 UART with higher operating speed and lower access time. The ST16C550 on board status registers provides the error conditions, type and status of the transfer operation being performed. Included is complete MO-DEM control capability, and a processor interrupt system that may be software tailored to the user's requirements. The ST16C550 provides internal loopback capability for on board diagnostic testing.

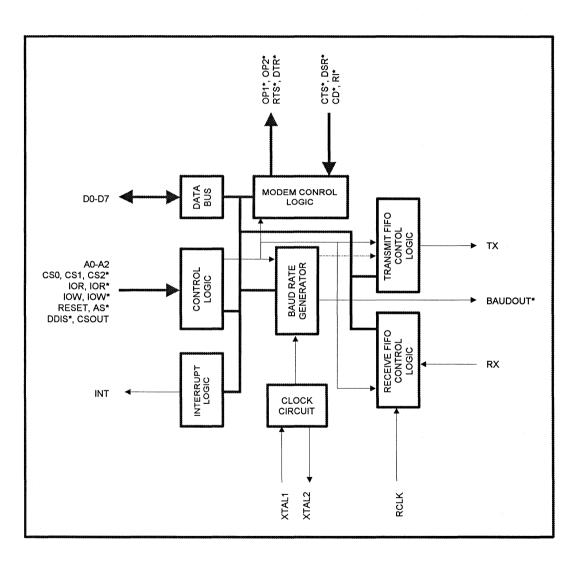
The ST16C550 is fabricated in an advanced 1.2 μ CMOS process to achieve low drain power and high speed requirements.


FEATURES

- * Pin to pin and functional compatible to NS16550,VL16C550,WD16C550
- * 16 byte transmit FIFO
- * 16 byte receive FIFO with error flags
- * Modem control signals (CTS*, RTS*, DSR*, DTR*, RI*, CD*)
- * Programmable character lengths (5, 6, 7, 8)
- * Even, odd, or no parity bit generation and detection
- * Status report register
- * Independent transmit and receive control
- * TTL compatible inputs, outputs
- * Software compatible with INS8250, NS16C450
- * 448 kHz transmit/receive operation with 7.372 MHz crystal or external clock source


ORDERING INFORMATION

Part number	Package	Operating	temperature
ST16C550CP40	Plastic-DI	> 0° C	to + 70° C
ST16C550CJ44	PLCC	0° C	to + 70° C
*Industrial operating	range are a	available	


PLCC Package

Plastic-DIP Package

BLOCK DIAGRAM

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description	
D0-D7	1-8	VO	Bidirectional data bus. Eight bit, three state data bus to transfer information to or from the CPU. D0 is the least significant bit of the data bus and the first serial data bit to be received or transmitted.	
RCLK	9	I	Receive clock input. The external clock input to the ST16C550 receiver section if receiver data rate is different from transmitter data rate.	
RX	10	I	Serial data input. The serial information (data) received from serial port to ST16C550 receive input circuit. A mark (high) is logic one and a space (low) is logic zero. During the local loopback mode the RX input is disabled from external connection and connected to the TX output internally.	
тх	11	0	Serial data output. The serial data is transmitted via this pin with additional start, stop and parity bits. The TX will be held in mark (high) state during reset, local loopback mode or when the transmitter is disabled.	
CS0	12	ł	Chip select 1. (active high) A high at this pin enables the ST16C550 / CPU data transfer operation.	
CS1	13	l ,	Chip select 2. (active high) A high at this pin enables the ST16C550 / CPU data transfer operation.	
CS2*	14	L'	Chip select 3. (active low) A low at this pin (while CS0=1 and CS1=1) will enable the ST16C550 / CPU data transfer operation.	
BAUDOUT*	15	O	Baud rate generator clock output. This output provides the 16x clock of the internal selected baud rate. RCLK pin is connected externally to BAUDOUT* pin to provide receive clock.	
XTAL1	16	l	Crystal input 1 or external clock input. A crystal can be connected to this pin and XTAL2 pin to utilize the internal oscillator circuit. An external clock can be used to clock internal circuit and baud rate generator for custom transmis- sion rates.	

3

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
XTAL2	17	I.	Crystal input 2 or buffered clock output. See XTAL1.
IOW*	18	Ι	Write strobe. (active low) A low on this pin will transfer the contents of the CPU data bus to the addressed register.
IOW	19	· I	Write strobe. (active high) Same as IOW*, but uses active high input. Note that only an active IOW* or IOW input is required to transfer data from CPU to ST16C550 during write operation. All the unused pin should be tied to VCC or GND.
GND	20	ο	Signal and power ground.
IOR*	21	I	Read strobe. (active low) A low level on this pin transfers the contents of the ST16C550 data bus to the CPU.
IOR	22	I	Read strobe. (active high) Same as IOR*, but uses active high input. Note that only an active IOR* or IOR input is required to transfer data from ST16C550 to CPU during read operation. All the unused pin should be tied to VCC or GND.
DDIS*	23	0	Drive disable. (active low) This pin goes low when the CPU is reading data from the ST16C550 to disable the external transceiver or logics.
TXRDY*	24	Ο	Transmit ready. (active low) This pin goes low when the transmit FIFO of the ST16C550 is full. It can be used as a single or multi-transfer.
AS*	25	I	Address strobe. (active low) A low on this pin will latch the state of the chip selects and addressed register (A2-A0). This input is used when signals are not stable for the duration of a read or write operation. If not required, tie the AS* input permanently low.
A2	26	1	Address select line 2. To select internal registers.
A1	27		Address select line 1. To select internal registers.
A0	28	1	Address select line 0. To select internal registers.

3

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
RXRDY*	29	ο	Receive ready. (active low) This pin goes low when the receive FIFO is full. It can be used as a single or multi-transfer.
INT	30	0	Interrupt output. (active high) This pin goes high (when enabled by the interrupt enable register) whenever a receiver error, receiver data available, transmitter empty, or modem status condition flag is detected.
OP2*	31	0	General purpose output. (active low) User defined output. See bit-3 modem control register (MCR bit-3).
RTS*	32	0	Request to send. (active low) To indicate that the transmitter has data ready to send. Writing a "1" in the modem control register (MCR bit-1) will set this pin to a low state. After the reset this pin will be set to high. Note that this pin does not have any effect on the transmit or receive operation.
DTR*	33	0	Data terminal ready. (active low) To indicate that ST16C550 is ready to receive data. This pin can be controlled via the modem control register (MCR bit-0). Writing a "1" at the MCR bit-0 will set the DTR* output to low. This pin will be set to high state after writing a "0" to that register or after the reset . Note that this pin does not have any effect on the transmit or receive operation.
OP1*	34	0	General purpose output. (active low) User defined output. See bit-2 of modem control register (MCR bit-2).
RESET	35	I	Master reset. (active high) A high on this pin will reset all the outputs and internal registers. The transmitter output and the receiver input will be disabled during reset time.
CTS*	36	1	Clear to send. (active low) The CTS* signal is a MODEM control function input whose conditions can be tested by reading the MSR BIT-4. CTS* has no effect on the transmit or receive operation.
DSR*	37	1	Data set ready. (active low) A low on this pin indicates the MODEM is ready to exchange data with UART. This pin does not have any effect on the transmit or receive operation.

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
CD*	38	I .	Carrier detect. (active low) A low on this pin indicates the carrier has been detected by the modem.
RI*	39	I	Ring detect indicator. (active low) A low on this pin indicates the modem has received a ringing signal from telephone line.
vcc	40	I	Power supply input.

PROGRAMMING TABLE

A2	A1	A0	READ MODE	WRITE MODE
0	0	0	Receive Holding Register	Transmit Holding Register
0	0	1		Interrupt Enable Register
0	1	0	Interrupt Status Register	FIFO Control Register
0	1	1		Line Control Register
1	0	0		Modem Control Register
1	0	1	Line Status Register	_
1	1	0	Modem Status Register	
1	1	1	Scratchpad Register	Scratchpad Register
0	0	0		LSB of Divisor Latch
0	0	1		MSB of Divisor Latch

ST16C550 ACCESSIBLE REGISTERS

A2	A1	A0	Register	BIT-7	BIT-6	BIT-5	BIT-4	BIT-3	BIT-2	BIT-1	BIT-0
0	0	0	RHR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	0	THR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	1	IER	0	0	0	0	modem status interrupt	receive line status interrupt	transmit holding register	receive holding register
0	1	0	FCR	RCVR trigger (MSB)	RCVR trigger (LSB)	0	0	DMA mode select	XMIT FIFO reset	RCVR FIFO reset	FIFO enable
0	1	0	ISR	0/ FIFOs enabled	0/ FIFOs enabled	0	0	int priority bit-2	int priority bit-1	int priority bit-0	int status
0	1	1	LCR	divisor latch enable	set break	set parity	even parity	parity enable	stop bits	word length bit-1	word length bit-0
1	0	0	MCR	0	0	0	loop back	OP2*	OP1*	RTS*	DTR*
1	0	1	LSR	0/ FIFO error	trans. empty	trans. holding empty	break interrupt	framing error	parity error	overrun error	receive data ready
1	1	0	MSR	CD	RI	DSR	стѕ	delta CD*	delta RI*	delta DSR*	delta CTS*
1	1	1	SPR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	0	DLL	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	1	DLM	bit-15	bit-14	bit-13	bit-12	bit-11	bit-10	bit-9	bit-8

3

REGISTER FUNCTIONAL DESCRIPTIONS

TRANSMIT AND RECEIVE HOLDING REGISTER

The serial transmitter section consists of a Transmit Hold Register (THR) and Transmit Shift Register (TSR). The status of the transmit hold register is provided in the Line Status Register (LSR). Writing to this register (THR) will transfer the contents of data bus (D7-D0) to the Transmit holding register whenever the transmitter holding register or transmitter shift register is empty. The transmit holding register empty flag will be set to "1" when the transmitter is empty or data is transfered to the transmit shift register. Note that a write operation should be performed when the transmit holding register empty flag is set.

On the falling edge of the start bit, the receiver internal counter will start to count 7 1/2 clocks (16x clock) which is the center of the start bit. The start bit is valid if the RX is still low at the mid-bit sample of the start bit. Verifying the start bit prevents the receiver from assembling a false data character due to a low going noise spike on the RX input. Receiver status codes will be posted in the Line Status Register.

FIFO INTERRUPT MODE OPERATION

When the receive FIFO (FCR BIT-0=1) and receive interrupts (IER BIT-0=1) are enabled, receiver interrupt will occur as follows:

A) The receive data available interrupts will be issued to the CPU when the FIFO has reached its programmed trigger level; it will be cleared as soon as the FIFO drops below its programmed trigger level.

B) The ISR receive data available indication also occurs when the FIFO trigger level is reached, and like the interrupt it is cleared when the FIFO drops below the trigger level.

C) The data ready bit (LSR BIT-0) is set as soon as a character is transferred from the shift register to the receiver FIFO. It is reset when the FIFO is empty.

FIFO POLLED MODE OPERATION

When FCR BIT-0=1; resetting IER BIT 3-0 to zero puts the ST16C550 in the FIFO polled mode of operation. Since the receiver and transmitter are controlled separately either one or both can be in the polled mode operation by utilizing the Line Status Register.

A) LSR BIT-0 will be set as long as there is one byte in the receive FIFO.

B) LSR BIT4-1 will specify which error(s) has occurred.

C) LSR BIT-5 will indicate when the transmit FIFO is empty.

D) LSR BIT-6 will indicate when both transmit FIFO and transmit shift register are empty.

E) LSR BIT-7 will indicate when there are any errors in the receive FIFO.

The ST16C550 requires to have two step FIFO enable operation in order to enable receive trigger levels.

PROGRAMMABLE BAUD RATE GENERATOR

The ST16C550 contains a programmable Baud Rate Generator that is capable of taking any clock input from DC-8 MHz and dividing it by any divisor from 2 to 2¹⁶-1. The output frequency of the Baudout* is equal to 16X of transmission baud rate (Baudout*=16 x Baud Rate). Customize Baud Rates can be achieved by selecting proper divisor values for MSB and LSB of baud rate generator.

INTERRUPT ENABLE REGISTER (IER)

The Interrupt Enable Register (IER) masks the incoming interrupts from receiver ready, transmitter empty, line status and modem status registers to the INT output pin.

IER BIT-0:

0=disable the receiver ready interrupt. 1=enable the receiver ready interrupt.

IER BIT-1:

0=disable the transmitter empty interrupt. 1=enable the transmitter empty interrupt.

IER BIT-2:

0=disable the receiver line status interrupt. 1=enable the receiver line status interrupt.

IER BIT-3:

0=disable the modem status register interrupt. 1=enable the modem status register interrupt.

IER BIT 7-4:

All these bits are set to logic zero.

INTERRUPT STATUS REGISTER (ISR)

The ST16C550 provides four level prioritized interrupt conditions to minimize software overhead during data character transfers. The Interrupt Status Register (ISR) provides the source of the interrupt in prioritized matter. During the read cycle the ST16C550 provides the highest interrupt level to be serviced by CPU. No other interrupts are acknowledged until the particular interrupt is serviced. The following are the prioritized interrupt levels:

Priority level

Ρ	D3	D2	D1	D0	Source of the interrupt
1	0	1	1	0	LSR (Receiver Line Sta- tus Register)
2	1	1	0	0	RXRDY (Received Data Ready) or receive time out.
3	0	0	1	0	TXRDY(Transmitter Holding Register Empty)
4	0	0	0	0	MSR (Modem Status Register)

ISR BIT-0:

0=an interrupt is pending and the ISR contents may be used as a pointer to the appropriate interrupt service routine.

1=no interrupt pending.

ISR BIT 1-3:

Logical combination of these bits, provides the highest priority interrupt pending.

ISR BIT 4-7:

These bits are not used and are set to zero in ST16C450 mode. BIT 6-7: are set to "1" in ST16C550 mode.

FIFO CONTROL REGISTER (FCR)

This register is used to enable the FIFOs, clear the FIFOs, set the receiver FIFO trigger level, and select the type of DMA signalling.

FCR BIT-0:

0=Disable the transmit and receive FIFO. 1=Enable the transmit and receive FIFO. This bit should be enabled before setting the FIFO trigger levels.

FCR BIT-1:

0=No change.

1=Clears the contents of the receive FIFO and resets its counter logic to 0 (the receive shift register is not cleared or altered). This bit will return to zero after clearing the FIFOs.

FCR BIT-2:

0=No change.

1=Clears the contents of the transmit FIFO and resets its counter logic to 0 (the transmit shift register is not cleared or altered). This bit will return to zero after clearing the FIFOs.

FCR BIT-3:

0=No change. 1=Changes RXRDY and TXRDY pins from mode "0" to mode "1".

FCR BIT 4-5:

Not used.

FCR BIT 6-7:

These bits are used to set the trigger level for the receiver FIFO interrupt.

BIT-6	FIFO trigger level
o	01
1	04
0	08
1	14
	BIT-6 0 1 0 1

LINE CONTROL REGISTER (LCR)

The Line Control Register is used to specify the asynchronous data communication format. The number of the word length, stop bits, and parity can be selected by writing appropriate bits in this register.

LCR BIT1-0:

These two bits specify the word length to be transmitted or received.

BIT-1	BIT-0	Word length
0	0	5
0	1	6
1	0	7
1	1	8

LCR BIT-2:

The number of stop bits can be specified by this bit.

BIT-2	Word length	Stop bit(s)
0	5,6,7,8	1
1	5	1-1/2
1	6,7,8	2

LCR BIT-3:

Parity or no parity can be selected via this bit. 0=no parity

1=a parity bit is generated during the transmission, receiver also checks for received parity.

LCR BIT-4:

If the parity bit is enabled, LCR BIT-4 selects the even or odd parity format.

0=ODD parity is generated by forcing an odd number of 1's in the transmitted data, receiver also checks for same format.

1= EVEN parity bit is generated by forcing an even the number of 1's in the transmitted data, receiver also checks for same format.

LCR BIT-5:

If the parity bit is enabled, LCR BIT-5 selects the forced parity format.

LCR BIT-5=1 and LCR BIT-4=0, parity bit is forced to "1" in the transmitted and received data.

LCR BIT-5=1 and LCR BIT-4=1, parity bit is forced to "0" in the transmitted and received data.

LCR BIT-6:

Break control bit. It causes a break condition to be transmitted (the TX is forced to low state).

0=normal operating condition.

1=forces the transmitter output (TX) to go low to alert the communication terminal.

LCR BIT-7:

The internal baud rate counter latch enable (DLAB). 0=normal operation. 1=select divisor latch register.

MODEM CONTROL REGISTER (MCR)

This register controls the interface with the MODEM or a peripheral device (RS232).

MCR BIT-0:

0=force DTR* output to high. 1=force DTR* output to low.

MCR BIT-1: 0=force RTS* output to high. 1=force RTS* output to low.

MCR BIT-2:

0=set OP1* output to high. 1=set OP1* output to low.

MCR BIT-3: 0=set OP2* output to high. 1=set OP2* output to low.

MCR BIT-4:

0=normal operating mode.

1=enable local loop-back mode (diagnostics). The transmitter output (TX) is set high (Mark condition), the receiver input (RX), CTS*, DSR*, CD*, and RI* are disabled. Internally the transmitter output is connected to the receiver input and DTR*, RTS*, OP1* and OP2* are connected to modem control inputs.

In this mode, the receiver and transmitter interrupts are fully operational. The Modem Control Interrupts are also operational, but the interrupts sources are now the lower four bits of the Modem Control Register instead of the four Modem Control inputs. The interrupts are still controlled by the IER

MCR BIT 5-7:

Not used. Are set to zero permanently.

LINE STATUS REGISTER (LSR)

This register provides the status of data transfer to CPU.

LSR BIT-0:

0=no data in receive holding register or FIFO. 1=data has been received and saved in the receive holding register or FIFO.

LSR BIT-1:

0=no overrun error (normal).

1=overrun error, next character arrived before receive holding register was emptied or if FIFOs are enabled, an overrun error will occur only after the FIFO is full and the next character has been completely received in the shift register. Note that character in the shift register is overwritten, but it is not transferred to the FIFO.

LSR BIT-2:

0=no parity error (normal).

1=parity error, received data does not have correct parity information. In the FIFO mode this error is associated with the character at the top of the FIFO.

LSR BIT-3:

0=no framing error (normal).

1=framing error received, received data did not have a valid stop bit. In the FIFO mode this error is associated with the character at the top of the FIFO.

LSR BIT-4:

0=no break condition (normal).

1=receiver received a break signal (RX was low for one character time frame). In FIFO mode, only one zero character is loaded into the FIFO.

LSR BIT-5:

0=transmit holding register is full. ST16C550 will not accept any data for transmission.

1=transmit holding register (or FIFO) is empty. CPU can load the next character.

LSR BIT-6:

0=transmitter holding and shift registers are full. 1=transmitter holding and shift registers are empty. In FIFO mode this bit is set to one whenever the transmitter FIFO and transmit shift register are empty.

LSR BIT-7:

0=Normal.

1=At least one parity error, framing error or break indication in the FIFO. This bit is cleared when LSR is read.

MODEM STATUS REGISTER (MSR)

This register provides the current state of the control lines from the modem or peripheral to the CPU. Four bits of this register are used to indicate the changed information. These bits are set to "1" whenever a control input from the MODEM changes state. They are set to "0" whenever the CPU reads this register.

MSR BIT-0:

Indicates that the CTS* input to the ST16C550 has changed state since the last time it was read.

MSR BIT-1:

Indicates that the DSR* input to the ST16C550 has changed state since the last time it was read.

MSR BIT-2:

Indicates that the RI* input to the ST16C550 has changed from a low to a high state.

MSR BIT-3:

Indicates that the CD* input to the ST16C550 has changed state since the last time it was read.

MSR BIT-4:

This bit is equivalent to RTS in the MCR during local loop-back mode. It is the compliment of the CTS* input.

MSR BIT-5:

This bit is equivalent to DTR in the MCR during local loop-back mode. It is the compliment of the DSR* input.

MSR BIT-6:

This bit is equivalent to OP1 in the MCR during local loop-back mode. It is the compliment of the RI* input.

MSR BIT-7:

This bit is equivalent to OP2 in the MCR during local loop-back mode. It is the compliment to the CD* input.

Note: Whenever MSR BIT3-0: is set to logic "1", a MODEM Status Interrupt is generated.

SIGNALS	RESETSTATE
тх	High
OP1*	High
OP2*	High
RTS*	High
DTR*	High
RXRDY*	High
TXRDY*	High
INT	Low

SCRATCHPAD REGISTER (SR)

ST16C550 provides a temporary data register to store 8 bits of information for variable use.

BAUD RATE GENERATOR PROGRAMMING TABLE (1.8432 MHz CLOCK):

BAUD RATE	BAUD RATE 16 x CLOCK DIVISOR	
50	2304	
75	1536	
110	1047	0.026
134.5	857	0.058
150	768	
300	384	
600	192	
1200	96	
2400	48	
3600	32	
4800	24	
7200	16	
9600	12	
19.2K	6	
38.4K	3	
56K	2	2.86
112K	1	

ST16C550 EXTERNAL RESET CONDITION

RESETSTATE			
IERBITS0-7=0			
ISR BIT-0=1, ISR BITS 1-7=0			
LCR BITS 0-7=0			
MCR BITS 0-7=0			
LSR BITS 0-4=0,			
LSR BITS 5-6=1 LSR, BIT 7=0			
MSR BITS 0-3=0,			
MSR BITS 4-7=input signals			
FCR BITS 0-7=0			

AC ELECTRICAL CHARACTERISTICS

 $\rm T_{A}=25^{\circ}$ C, $\rm V_{cc}=5.0~V\pm5\%$ unless otherwise specified.

Symbol	Parameter		Limits			Conditions
		Min	Тур	Max		
-	Ole she bish such a duration					
$ \begin{array}{c} T_{1} \\ T_{2} \\ T_{3} \\ T_{4} \\ T_{5} \\ T_{6} \\ T_{7} \\ T_{8} \\ T_{9} \\ T_{11} \\ T_{11} \\ \end{array} $	Clock high pulse duration	60			ns	E. to match all
$\frac{1}{T^2}$	Clock low pulse duration	60		400	ns	External clock
$\frac{1}{3}$	Clock rise/fall time			100	ns	
	Baud out rise/fall ftime			100	ns	100 pF load
1 <u>5</u>	Address strobe width	30			ns	
<u>_</u> 6	Address setup time	30			ns	
17	Address hold time	5			ns	
<u> </u> 8	Chip select setup time	25			ns	
19	Chip select hold time	0			ns	
T ₁₀	CSOUT delay from chip select	10			ns	
T ₁₁	IOR* to drive disable delay			35	ns	100 pF load
T_{12} T_{13}	Address hold time from IOW*	5			ns	Note: 1
Т ₁₃	IOW* delay from address	25			ns	Note: 1
1 1	IOW* delay from chip select	10			ns	Note: 1
T ₁₅	IOW* strobe width	50			ns	
T ₁₆	Chip select hold time from IOW*	5			ns	Note: 1
T ₁₆ T ₁₇	Write cycle delay	55	Ì		ns	
TW	Write cycle=T ₁₅ +T ₁₇	135			ns	
Т ₁₈	Data setup time	10			ns	
T ₁₉	Data hold time	25			ns	
T ₂₁	IOR* delay from chip select	10			ns	Note: 1
T_2	IOR* strobe width	75			ns	
T ₂₁ T ₂₃ T ₂₄ T ₂₅ Tr	Chip select hold time from IOR*	0			ns	Note: 1
T ₂₅	Read cycle delay	50			ns	
Tr	Read cycle= $T_{23} + T_{25}$	135		ан — — — — — — — — — — — — — — — — — — —	ns	
T_26	Delay from IOR* to data			75	ns	100 pF load
T ₂₇	IOR* to floating data delay	0		50	ns	100 pF load
		ŀ				-

3

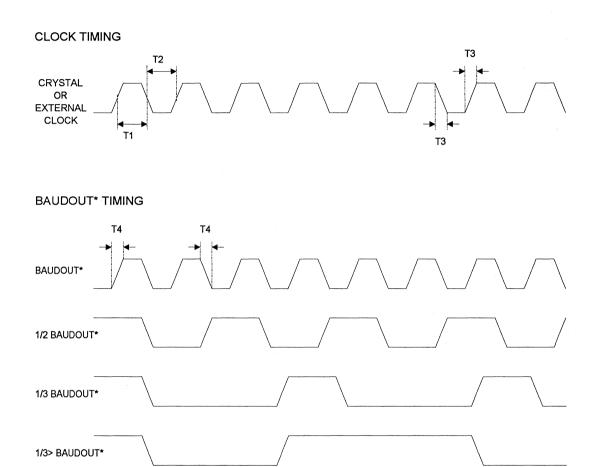
AC ELECTRICAL CHARACTERISTICS

 T_{A} =25° C, V_{cc} =5.0 V ± 5% unless otherwise specified.

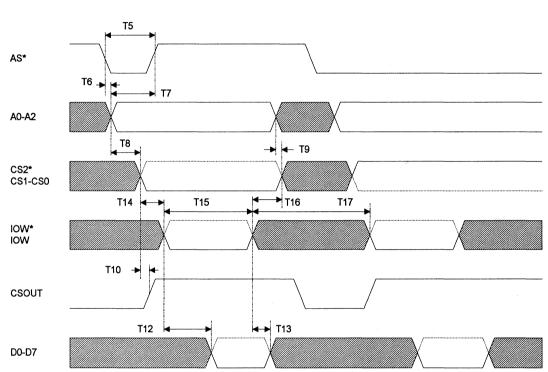
Symbol	Parameter	Min	Limits Typ	Max	Units	Conditions
$\begin{array}{c} {T}_{28} \\ {T}_{29} \\ {T}_{30} \\ {T}_{31} \\ {T}_{32} \\ {T}_{33} \\ {T}_{34} \\ {T}_{35} \\ {T}_{44} \\ {T}_{45} \\ {T}_{46} \\ {T}_{47} \end{array}$	Delay from IOW* to output Delay to set interrupt from MODEM Delay to reset interrupt from IOR* input Delay from stop to set interrupt Delay from IOR* to reset interrupt Delay from initial INT reset to transmit start Delay from stop to interrupt Delay from IOW* to reset interrupt Delay from Stop to set RxRdy Delay from IOR* to reset RxRdy Delay from IOW* to set TxRdy Delay from Start to reset TxRdy	8		50 70 70 1 _{RCIK} 200 24 100 175 1 _{RCLK} 1 195 8	ns ns ns * ns ns us ns *	100 pF load 100 pF load 100 pF load 100 pF load 100 pF load
Ν	Baud rate devisor	1		2 ¹⁶ -1		

Note 1: Applicable only when AS* is tied low *Baudout* cycle

ABSOLUTE MAXIMUM RATINGS

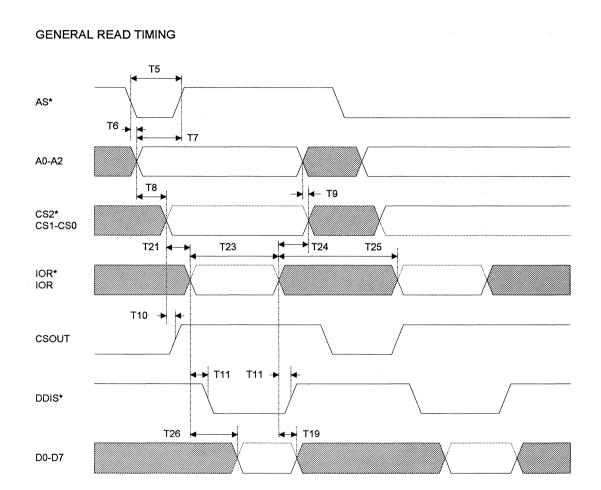

Operating supply range Voltage at any pin Operating temperature Storage temperature Package dissipation

7 Volts ± 5% GND-0.3 V to VCC+0.3 V 0° C to +70° C -40° C to +150° C 500 mW

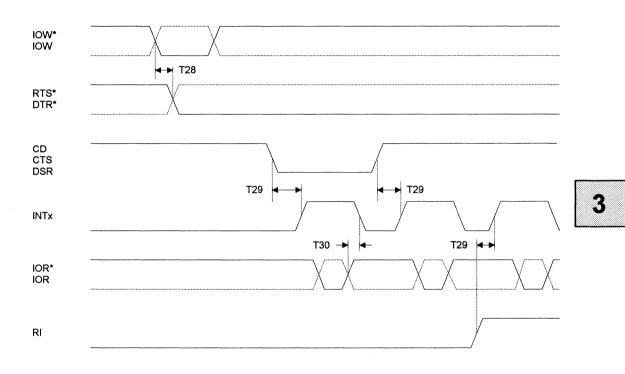

DC ELECTRICAL CHARACTERISTICS

 T_{A} =25° C, V_{cc} =5.0 V ± 5% unless otherwise specified.

Symbol	Parameter		nits yp Max	Units	Conditions
V _{ILCK} V ^H CK V ^H V ^H V ^K V ^K V ^K V ^K U	Clock input low level Clock input high level Input low level Input high level Output low level on all outputs Output high level Avg power supply current Input leakage Clock leakage	-0.5 3.0 -0.5 2.2 2.4	0.6 VCC 0.8 VCC 0.4 6 ±10 ±10	V V V V MA μA	I _{ol} =6 mA I _{oH} =-6 mA


ST16C550

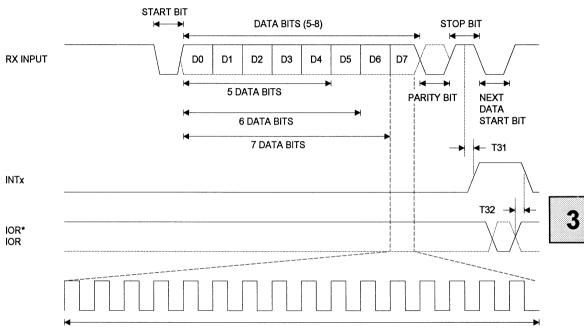
GENERAL WRITE TIMING


3

ST16C550

ST16C550

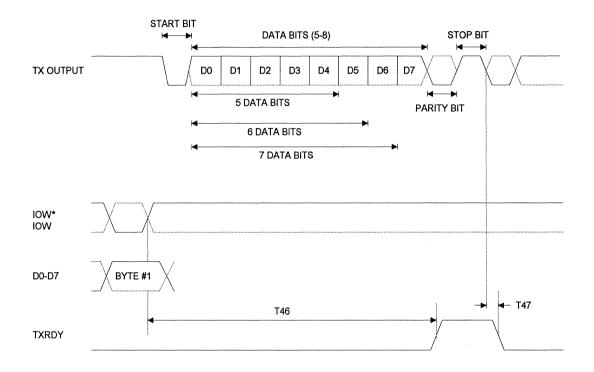
MODEM TIMING

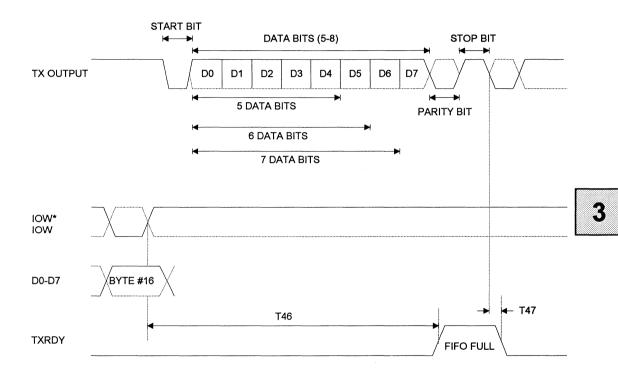


TRANSMIT TIMING

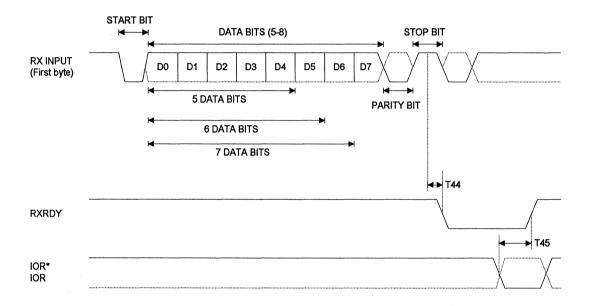
START BIT STOP BIT DATA BITS (5-8) --M • TX OUT D0 D1 D2 D3 D4 D5 D6 D7 i 🖊 -> M . 5 DATA BITS PARITY BIT NEXT DATA START BIT 6 DATA BITS 8 7 DATA BITS **∢**– T34 🗕 ТЗЗ ->-INTx T35 -⊣ IOW* IOW

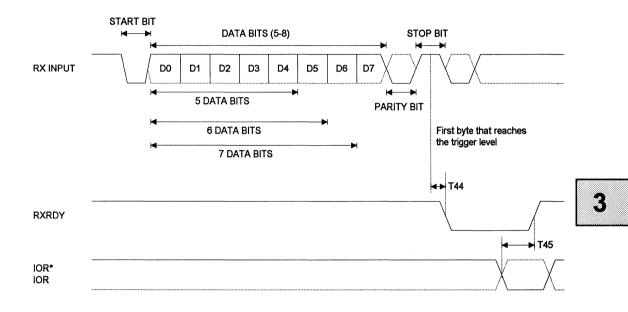
16 BAUD RATE CLOCK


3-96


RECEIVE TIMING

16 BAUD RATE CLOCK


TXRDY TIMING FOR MODE "0"


TXRDY TIMING FOR MODE "1"

RXRDY TIMING FOR MODE "0"

RXRDY TIMING FOR MODE "1"

APR 1992

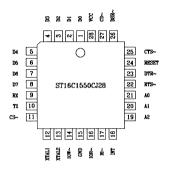
UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER WITH FIFOs

DESCRIPTION

The ST16C1550/51 is a universal asynchronous receiver and transmitter with 16 byte transmit and receive FIFO. A programmable baud rate generator is provided to select transmit and receive clock rates from 50Hz to 448kHz.

The ST16C1550/51 is an improved version of the SSI 73M1550 and SSI 73M2550 UART with higher operating speed and lower access time. The ST16C1550/ 51 on board status registers provides the error conditions, type and status of the transfer operation being performed. Included is complete MODEM control capability, and a processor interrupt system that may be software tailored to the user's requirements. The ST16C1550/51 provides internal loop-back capability for on board diagnostic testing.

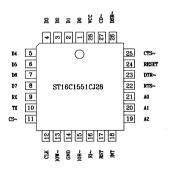
The ST16C1550/51 is fabricated in an advanced 1.2μ CMOS process to achieve low drain power and high speed requirements.


FEATURES

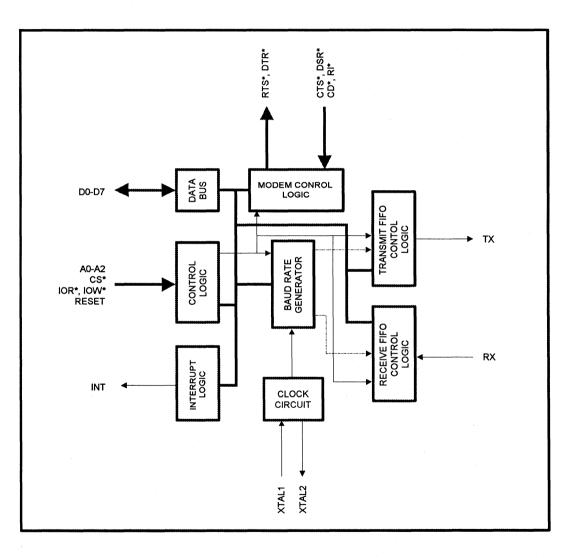
- * Pinto pin and functional compatible to SSI 73M1550/ 2550
- * 16 byte transmit FIFO
- * 16 byte receive FIFO with error flags
- * Modem control signals (CTS*, RTS*, DSR*, DTR*, RI*, CD*)
- * Programmable character lengths (5, 6, 7, 8)
- * Even, odd, or no parity bit generation and detection
- * Software compatible with INS8250, NS16C550
- * 448 kHz transmit/receive operation with 7.372 MHz crystal or external clock source
- * 28 Pin plastic-Dip and PLCC package
- * Pin-to-pin compatible to ST16C1450/1451

ORDERING INFORMATION

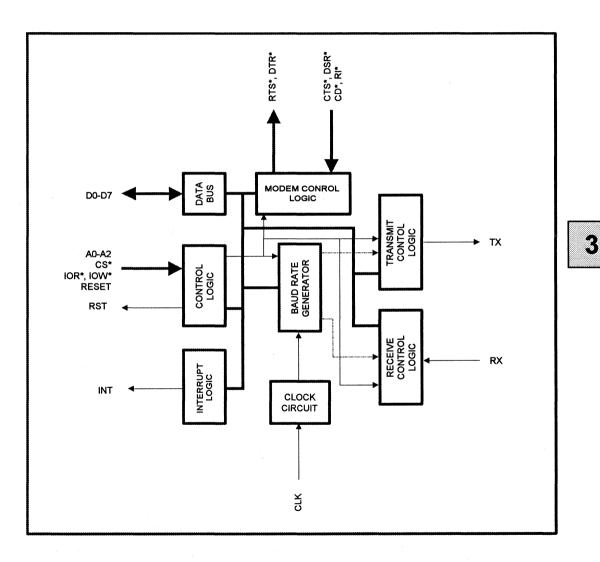
Part number	Package (Operating	temperature			
ST16C1550CP28	Plastic-DIP	0° C	to + 70° C			
ST16C1550CJ28	PLCC	0° C	to + 70° C			
ST16C1551CP28	Plastic-Dip	0° C	to + 70° C			
ST16C1551CJ28	PLCC	0° C	to + 70° C			
*Industrial operating range are available						


PLCC Package

ST16C1550


3

PLCC Package


ST16C1551

ST16C1550 BLOCK DIAGRAM

ST16C1550/51

ST16C1551 BLOCK DIAGRAM

ST16C1550/51

3-105

ST16C1550 SYMBOL DESCRIPTION

Cumb al	Pin		
Symbol	Pin	Signal Type	Pin Description
D0-D7	1-8	VO	Bidirectional data bus. Eight bit, three state data bus to transfer information to or from the CPU. D0 is the least significant bit of the data bus and the first serial data bit to be received or transmitted.
RX	9	1	Serial data input. The serial information (data) received from serial port to ST16C1550 receive input circuit. A mark (high) is logic one and a space (low) is logic zero. During the local loopback mode the RX input is disabled from external connection and connected to the TX output internally.
тх	10	0	Serial data output. The serial data is transmitted via this pin with additional start, stop and parity bits. The TX will be held in mark (high) state during reset, local loopback mode or when the transmitter is disabled.
CS*	11		Chip select (active low). A low at this pin enables the ST16C1550/CPU data transfer operation.
XTAL1	12	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Crystal input 1 or external clock input. A crystal can be connected to this pin and XTAL2 pin to utilize the internal oscillator circuit. An external clock can be used to clock internal circuit and baud rate generator for custom transmis- sion rates.
XTAL2	● 13	I	Crystal input 2 or buffered clock output. See XTAL1.
IOW*	14	I	Write strobe (active low). A low on this pin will transfer the contents of the CPU data bus to the addressed register.
GND	15	0	Signal and power ground.
IOR*	16	I I z m	Read strobe (active low). A low level on this pin transfers the contents of the ST16C1550 data bus to the CPU
RI*	17	1	Ring detect indicator (active low). A low on this pin indicates the modem has received a ringing signal from telephone line.
INT	18	0	Interrupt output. (three state / active high) This pin goes high (when enabled by the interrupt enable register) whenever a

ST16C1550 SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
			receiver error, receiver data available, transmitter empty, or modem status condition flag is detected.
A0-A2	21-19	. 1	Address select line. To select internal registers.
RTS*	22	0	Request to send (active low). To indicate that the transmitter has data ready to send. Writing a "1" in the modem control register (MCR bit-1) will set this pin to a low state. After the reset this pin will be set to high. Note that this pin does not have any effect on the transmit or receive operation.
DTR*	23	0	Data terminal read (active low). To indicate that ST16C1550 is ready to receive data. This pin can be controlled via the modem control register (MCR bit-0). Writing a "1" at the MCR bit-0 will set the DTR* output to low. This pin will be set to high state after writing a "0" to that register or after the reset . Note that this pin does not have any effect on the transmit or receive operation.
RESET	24	1	Master reset (active high). A high on this pin will reset all the outputs and internal registers. The transmitter output and the receiver input will be disabled during reset time.
СТЅ*	25	1	Clear to send (active low). The CTS* signal is a MODEM control function input whose conditions can be tested by reading the MSR bit-4. CTS* has no effect on the transmit or receive operation.
DSR*	26	1	Data set ready (active low). A low on this pin indicates the MODEM is ready to exchange data with UART. This pin does not have any effect on the transmit or receive operation.
CD*	27	1	Carrier detect (active low). A low on this pin indicates the carrier has been detected by the modem.
vcc	28	1	Power supply input.

3

3-107

ST16C1551 SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
D0-D7	1-8	VO	Bidirectional data bus. Eight bit, three state data bus to transfer information to or from the CPU. D0 is the least significant bit of the data bus and the first serial data bit to be received or transmitted.
RX	9	l	Serial data input. The serial information (data) received from serial port to ST16C1551 receive input circuit. A mark (high) is logic one and a space (low) is logic zero. During the local loopback mode the RX input is disabled from external connection and connected to the TX output internally.
тх	10	0	Serial data output. The serial data is transmitted via this pin with additional start, stop and parity bits. The TX will be held in mark (high) state during reset, local loopback mode or when the transmitter is disabled.
CS*	11	I	Chip select (active low). A low at this pin enables the ST16C1551 / CPU data transfer operation.
CLK	12	. 1	External clock input. An external clock can be used to clock internal circuit and baud rate generator for custom transmission rates.
IOW*	13	l .	Write strobe (active low). A low on this pin will transfer the contents of the CPU data bus to the addressed register.
GND	14	о	Signal and power ground.
IOR*	15	l I	Read strobe (active low). A low level on this pin transfers the contents of the ST16C1551 data bus to the CPU
RI*	16	n na se se se se I	Ring detect indicator (active low). A low on this pin indicates the modem has received a ringing signal from telephone line.
RST	17	0	Reset output (active high). The ST16C1551 provides a buff- ered reset output which is gated internally with MCR bit-2.
INT	18	0	Interrupt output. (three state / active high) This pin goes high (when enabled by the interrupt enable register) whenever a

ST16C1551 SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
			receiver error, receiver data available, transmitter empty, or modem status condition flag is detected.
A0-A2	21-19	I	Address select line. To select internal registers.
RTS*	22	0	Request to send (active low). To indicate that the transmitter has data ready to send. Writing a "1" in the modem control register (MCR bit-1) will set this pin to a low state. After the reset this pin will be set to high. Note that this pin does not have any effect on the transmit or receive operation.
DTR*	23	0	Data terminal read (active low). To indicate that ST16C1551 is ready to receive data. This pin can be controlled via the modem control register (MCR bit-0). Writing a "1" at the MCR bit-0 will set the DTR* output to low. This pin will be set to high state after writing a "0" to that register or after the reset . Note that this pin does not have any effect on the transmit or receive operation.
RESET	24	I	Master reset (active high). A high on this pin will reset all the outputs and internal registers. The transmitter output and the receiver input will be disabled during reset time.
СТЅ*	25	I	Clear to send (active low). The CTS* signal is a MODEM control function input whose conditions can be tested by reading the MSR BIT-4. CTS* has no effect on the transmit or receive operation.
DSR*	26	I	Data set ready (active low). A low on this pin indicates the MODEM is ready to exchange data with UART. This pin does not have any effect on the transmit or receive operation.
CD*	27		Carrier detect (active low). A low on this pin indicates the carrier has been detected by the modem.
vcc	28	1	Power supply input.

ST16C1550/51

3

PROGRAMMING TABLE

A2	A1	AO	READ MODE	WRITE MODE
0	0	0	Receive Holding Register	Transmit Holding Register
0	0	1		Interrupt Enable Register
0	1	0	Interrupt Status Register	FIFO Control Register
0	1	1		Line Control Register
1	0	0		Modem Control Register
1	0	1	Line Status Register	
1	1	0	Modem Status Register	
1	1	1	Scratchpad Register	Scratchpad Register
0	0	0		LSB of Divisor Latch
0	0	1		MSB of Divisor Latch

ST16C1550 ACCESSIBLE REGISTERS

A2	A1	A0	Register	BIT-7	BIT-6	BIT-5	BIT-4	BIT-3	BIT-2	BIT-1	BIT-0
0	0	0	RHR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	0	THR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	1	IER	0	0	0/ special mode	0	modem status interrupt	receive line status interrupt	transmit holding register	receive holding register
0	1	0	FCR	RCVR trigger (MSB)	RCVR trigger (LSB)	0 / TX trigger (MSB)	0 / TX trigger (LSB)	DMA mode select	XMIT FIFO reset	RCVR FIFO reset	FIFO enable
0	1	0	ISR	0/ FIFOs enabled	0/ FIFOs enabled	0/ RXRDY	0/ TXRDY	int priority bit-2	int priority bit-1	int priority bit-0	int status
0	1	1	LCR	divisor latch enable	set break	set parity	even parity	parity enable	stop bits	word length bit-1	word length bit-0
1	0	0	MCR	0/power down	0	0	loop back	INT enable	SOFT reset	RTS*	DTR*
1	0	1	LSR	0 / FIFO error	trans. empty	trans. holding empty	break interrupt	framing error	parity error	overrun error	receive data ready
1	1	0	MSR	CD	RI	DSR	стѕ	delta CD*	delta RI*	delta DSR*	delta CTS*
1	1	1	SPR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	0	DLL	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	1	DLM	bit-15	bit-14	bit-13	bit-12	bit-11	bit-10	bit-9	bit-8

ST16C1550/51

ST16C1551 ACCESSIBLE REGISTERS

A2 A1	A0	Register	BIT-7	BIT-6	BIT-5	BIT-4	BIT-3	BIT-2	BIT-1	BIT-0
0 0	0	RHR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0 0	0	THR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0 0	1	IER	0	0	0 / special mode	0	modem status interrupt	receive line status interrupt	transmit holding register	receive holding register
0 1	0	FCR	RCVR trigger (MSB)	RCVR trigger (LSB)	0/TX trigger (MSB)	0/TX trigger (LSB)	DMA mode select	XMIT FIFO reset	RCVR FIFO reset	FIFO enable
0 1	0	ISR	0 / FIFOs enabled	0 / FIFOs enabled	0/ RXRDY	0/ TXRDY	int priority bit-2	int priority bit-1	int priority bit-0	int status
0 1	1	LCR	divisor latch enable	set break	set parity	even parity	parity enable	stop bits	word length bit-1	word length bit-0
1 0	0	MCR	0/power down	0	0	loop back	INT enable	SOFT reset	RTS*	DTR*
1 0	1	LSR	0/ FIFO error	trans. empty	trans. holding empty	break interrupt	framing error	parity error	overrun error	receive data ready
1 1	0	MSR	CD	RI	DSR	стѕ	delta CD*	delta RI*	delta DSR*	delta CTS*
1 1	1	SPR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0 0	0	DLL	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0 0	1	DLM	bit-15	bit-14	bit-13	bit-12	bit-11	bit-10	bit-9	bit-8

3

ST16C1550 ST16C1551

REGISTER FUNCTIONAL DESCRIPTIONS

TRANSMIT AND RECEIVE HOLDING REGISTER

The serial transmitter section consists of a Transmit Hold Register (THR) and Transmit Shift Register (TSR). The status of the transmit hold register is provided in the Line Status Register (LSR). Writing to this register (THR) will transfer the contents of data bus (D7-D0) to the Transmit holding register whenever the transmitter holding register or transmitter shift register is empty. The transmit holding register empty flag will be set to "1" when the transmitter is empty or data is transfered to the transmit shift register. Note that a write operation should be performed when the transmit holding register empty flag is set. On the falling edge of the start bit, the receiver internal counter will start to count 7 1/2 clocks (16x clock) which is the center of the start bit. The start bit is valid if the RX is still low at the mid-bit sample of the start bit. Verifying the start bit prevents the receiver from assembling a false data character due to a low going noise spike on the RX input. Receiver status codes will be posted in the Line Status Register.

FIFO INTERRUPT MODE OPERATION

When the receive FIFO (FCR BIT-0=1) and receive interrupts (IER BIT-0=1) are enabled, receiver interrupt will occur as follows:

A) The receive data available interrupts will be issued to the CPU when the FIFO has reached its programmed trigger level; it will be cleared as soon as the FIFO drops below its programmed trigger level.

B) The ISR receive data available indication also occurs when the FIFO trigger level is reached, and like the interrupt it is cleared when the FIFO drops below the trigger level.

C) The data ready bit (LSR BIT-0) is set as soon as a character is transferred from the shift register to the receiver FIFO. It is reset when the FIFO is empty.

FIFO POLLED MODE OPERATION

When FCR BIT-0=1; resetting IER BIT 3-0 to zero puts the ST16C1550/51 in the FIFO polled mode of operation. Since the receiver and transmitter are controlled separately either one or both can be in the polled mode operation by utilizing the Line Status Register.

A) LSR BIT-0 will be set as long as there is one byte in the receive FIFO.

B) LSR BIT4-1 will specify which error(s) has occurred.

C) LSR BIT-5 will indicate when the transmit FIFO is empty.

D) LSR BIT-6 will indicate when both transmit FIFO and transmit shift register are empty.

E) LSR BIT-7 will indicate when there are any errors in the receive FIFO.

The ST16C1550/51 requires to have two step FIFO enable operation in order to enable receive trigger levels.

PROGRAMMABLE BAUD RATE GENERATOR

The ST16C1550/51 contains a programmable Baud Rate Generator that is capable of taking any clock input from DC-8 MHz and dividing it by any divisor from 2 to 2¹⁶-1. The output frequency of the Baudout* is equal to 16X of transmission baud rate (Baudout*=16 x Baud Rate). Customize Baud Rates can be achieved by selecting proper divisor values for MSB and LSB of baud rate generator.

INTERRUPT ENABLE REGISTER (IER)

The Interrupt Enable Register (IER) masks the incoming interrupts from receiver ready, transmitter empty, line status and modem status registers to the INT

output pin. IER BIT-0:

0=disable the receiver ready interrupt. 1=enable the receiver ready interrupt.

IER BIT-1:

0=disable the transmitter empty interrupt. 1=enable the transmitter empty interrupt.

IER BIT-2:

0=disable the receiver line status interrupt. 1=enable the receiver line status interrupt.

IER BIT-3:

0=disable the modem status register interrupt. 1=enable the modem status register interrupt.

IER BIT 4-7:

All these bits are set to logic zero.

INTERRUPT STATUS REGISTER (ISR)

The ST16C1550/51 provides four level prioritized interrupt conditions to minimize software overhead during data character transfers. The Interrupt Status Register (ISR) provides the source of the interrupt in prioritized matter. During the read cycle the ST16C1550/51 provides the highest interrupt level to be serviced by CPU. No other interrupts are acknowledged until the particular interrupt is serviced. The following are the prioritized interrupt levels:

Priority level

Р	D3	D2	D1	D0	Source of the interrupt
1	0	1	1	0	LSR (Receiver Line Sta- tus Register)
2	1	1	0	0	RXRDY (Received Data Ready) or receive time out.
3	0	0	1	0	TXRDY(Transmitter Holding Register Empty)
4	0	0	0	0	MSR (Modem Status Register)

ISR BIT-0:

0=an interrupt is pending and the ISR contents may be used as a pointer to the appropriate interrupt service routine.

1=no interrupt pending.

ISR BIT 1-2:

Logical combination of these bits, provides the highest priority interrupt pending.

ISR BIT 3:

This bit is used with conjunction of ISR bit 0-2: 0=normal interrupt mode 1=receive timeout indicator when priority level is set to "2" (D0=0, D1=0, and D2=1)

ISR bit-4:

This bit is the compliment of TXRDY* (ST16C550) pin. 0=transmitter is full 1=transmitter is empty or less than full

ISR bit-5:

This bit is the compliment of RXRDY* (ST16C550) pin. 0=receiver is empty. 1=receiver is not empty

ISR bit-6-7:

0=16C450 mode 1=16C550 mode

FIFO CONTROL REGISTER (FCR)

This register is used to enable the FIFOs, clear the FIFOs, set the receiver FIFO trigger level, and select the type of DMA signalling.

FCR BIT-0:

0=Disable the transmit and receive FIFO. 1=Enable the transmit and receive FIFO. This bit should be nabled before setting the FIFO trigger levels.

FCR BIT-1:

0=No change.

1=Clears the contents of the receive FIFO and resets its counter logic to 0 (the receive shift register is not cleared or altered). This bit will return to zero after clearing the FIFOs.

FCR BIT-2:

0=No change.

1=Clears the contents of the transmit FIFO and resets its counter logic to 0 (the transmit shift register is not cleared or altered). This bit will return to zero after clearing the FIFOs.

FCR BIT-3:

0=No change.

1=Changes RXRDY and TXRDY pins from mode "0" to mode "1".

FCR BIT 4-5:

These bits are used to set the transmit trigger levels.

FCR BIT 6-7:

These bits are used to set the trigger level for the receiver FIFO interrupt.

BIT-7	BIT-6	FIFO trigger level
0	0	01
0	1	04
1	0	08
1	1	14

LINE CONTROL REGISTER (LCR)

The Line Control Register is used to specify the asynchronous data communication format. The number of the word length, stop bits, and parity can be selected by writing appropriate bits in this register.

LCR BIT1-0:

These two bits specify the word length to be transmitted or received.

BIT-1	BIT-0	Word length		
0	0	5		
0	1	6		
1	0	7		
1	1	8		

LCR BIT-2:

The number of stop bits can be specified by this bit.

BIT-2	Word length	Stop bit(s)
0	5,6,7,8	1
1	5	1-1/2
1	6,7,8	2

LCR BIT-3:

Parity or no parity can be selected via this bit. 0=no parity

1=a parity bit is generated during the transmission, receiver also checks for received parity.

LCR BIT-4:

If the parity bit is enabled, LCR BIT-4 selects the even or odd parity format.

0=ODD parity is generated by forcing an odd number of 1's in the transmitted data, receiver also checks for same format.

1= EVEN parity bit is generated by forcing an even the number of 1's in the transmitted data, receiver also checks for same format.

LCR BIT-5:

If the parity bit is enabled, LCR BIT-5 selects the forced parity format.

LCR BIT-5=1 and LCR BIT-4=0, parity bit is forced to "1" in the transmitted and received data.

LCR BIT-5=1 and LCR BIT-4=1, parity bit is forced to "0" in the transmitted and received data.

ST16C1550 <u>ST16C1551</u>

LCR BIT-6:

Break control bit. It causes a break condition to be transmitted (the TX is forced to low state). 0=normal operating condition. 1=forces the transmitter output (TX) to go low to alert the communication terminal.

LCR BIT-7:

The internal baud rate counter latch enable (DLEN). 0=normal operation. 1=select divisor latch register.

MODEM CONTROL REGISTER (MCR)

This register controls the interface with the MODEM or a peripheral device (RS232).

MCR BIT-0:

0=force DTR* output to high. 1=force DTR* output to low.

MCR BIT-1:

0=force RTS* output to high. 1=force RTS* output to low.

MCR BIT-2:

0=normal operation. 1=software reset, set RST output to high.

MCR BIT-3:

0=set INT output pin to three state mode. 1=set INT output pin to normal operation mode.

MCR BIT-4:

0=normal operating mode.

1=enable local loop-back mode (diagnostics). The transmitter output (TX) is set high (Mark condition), the receiver input (RX), CTS*, DSR*, CD*, and RI* are disabled. Internally the transmitter output is connected to the receiver input and DTR*, RTS*, SOFT reset and INT enable are connected to modem control inputs.

In this mode, the receiver and transmitter interrupts are fully operational. The Modem Control Interrupts are also operational, but the interrupts sources are now the lower four bits of the Modem Control Register instead of the four Modern Control inputs. The interrupts are still controlled by the IER

MCR BIT 5-6:

Not used. Are set to zero permanently.

MCR bit-7: 0=normal mode. 1=power down mode. CLK, XTAL1, XTAL2, and baud rate generators are disabled.

LINE STATUS REGISTER (LSR)

This register provides the status of data transfer to CPU.

LSR BIT-0:

0=no data in receive holding register or FIFO. 1=data has been received and saved in the receive holding register or FIFO.

LSR BIT-1:

0=no overrun error (normal).

1=overrun error, next character arrived before receive holding register was emptied or if FIFOs are enabled, an overrun error will occur only after the FIFO is full and the next character has been completely received in the shift register. Note that character in the shift register is overwritten, but it is not transferred to the FIFO.

LSR BIT-2:

0=no parity error (normal).

1=parity error, received data does not have correct parity information. In the FIFO mode this error is associated with the character at the top of the FIFO.

LSR BIT-3:

0=no framing error (normal).

1=framing error received, received data did not have a valid stop bit. In the FIFO mode this error is associated with the character at the top of the FIFO.

LSR BIT-4:

0=no break condition (normal). 1=receiver received a break signal (RX was low for one character time frame). In FIFO mode, only one zero character is loaded into the FIFO.

LSR BIT-5:

0=transmit holding register is full. ST16C1550/51 will not accept any data for transmission.

1=transmit holding register (or FIFO) is empty. CPU can load the next character.

LSR BIT-6:

0=transmitter holding and shift registers are full. 1=transmitter holding and shift registers are empty. In FIFO mode this bit is set to one whenever the transmitter FIFO and transmit shift register are empty.

LSR BIT-7:

0=Normal.

1=At least one parity error, framing error or break indication in the FIFO. This bit is cleared when LSR is read.

MODEM STATUS REGISTER (MSR)

This register provides the current state of the control lines from the modem or peripheral to the CPU. Four bits of this register are used to indicate the changed information. These bits are set to "1" whenever a control input from the MODEM changes state. They are set to "0" whenever the CPU reads this register.

MSR BIT-0:

Indicates that the CTS* input to the ST16C1550/51 has changed state since the last time it was read.

MSR BIT-1:

Indicates that the DSR* input to the ST16C1550/51 has changed state since the last time it was read.

MSR BIT-2:

Indicates that the RI* input to the ST16C1550/51 has changed from a low to a high state.

MSR BIT-3:

Indicates that the CD* input to the ST16C1550/51 has changed state since the last time it was read.

MSR BIT-4:

This bit is equivalent to RTS in the MCR during local loop-back mode. It is the compliment of the CTS* input.

MSR BIT-5:

This bit is equivalent to DTR in the MCR during local loop-back mode. It is the compliment of the DSR* input.

MSR BIT-6:

This bit is equivalent to SOFT reset in the MCR during local loop-back mode. It is the compliment of the RI* input.

MSR BIT-7:

This bit is equivalent to INT enable in the MCR during local loop-back mode. It is the compliment to the CD* input.

Note: Whenever MSR BIT3-0: is set to logic "1", a MODEM Status Interrupt is generated.

SCRATCHPAD REGISTER (SR)

ST16C1550/51 provides a temporary data register to store 8 bits of information for variable use.

BAUD RATE GENERATOR PROGRAMMING TABLE (1.8432 MHz CLOCK):

BAUD RATE	16 x CLOCK DIVISOR	% ERROR
50	2304	
75	1536	
110	1047	0.026
134.5	857	0.058
150	768	
300	384	
600	192	
1200	96	
2400	48	
3600	32	
4800	24	
7200	16	
9600	12	
19.2K	6	
38.4K	3	
56K	2	2.86
112K	1	

SIGNALS	RESETSTATE
тх	High
SOFT reset	High
RTS*	High
DTR*	High
INT	Three state

ST16C1550/51 EXTERNAL RESET CONDITION

REGISTERS	RESETSTATE
IER	IERBITS0-7=0
ISR	ISR BIT-0=1, ISR BITS 1-7=0
LCR	LCR BITS 0-7=0
MCR	MCR BITS 0-7=0
LSR	LSR BITS 0-4=0,
	LSR BITS 5-6=1 LSR, BIT 7=0
MSR	MSR BITS 0-3=0,
	MSR BITS 4-7=input signals
FCR	FCR BITS 0-7=0

AC ELECTRICAL CHARACTERISTICS

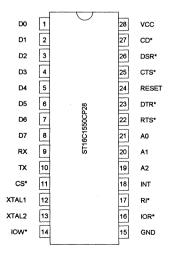
 T_{A} =25° C, V_{cc} =5.0 V ± 5% unless otherwise specified.

Symbol	Parameter		Limits			Conditions
		Min	Тур	Max		
$\begin{bmatrix} T_{1} \\ T_{2} \\ T_{3} \\ T_{9} \\ T_{12} \\ T_{13} \\ T_{14} \end{bmatrix}$	Clock high pulse duration	60			ns	
T_2	Clock low pulse duration	60			ns	External clock
T ₃	Clock rise/fall time			100	ns	
T ₈	Chip select setup time	25			ns	
Τ ₉	Chip select hold time	0			ns	
T ₁₂	Address hold time from IOW*	5			ns	
T ₁₃	IOW* delay from address	25			ns	
T ₁₄	IOW* delay from chip select	10			ns	
T ₁₅	IOW* strobe width	50			ns	
T ₁₆ T ₁₇ Tw	Chip select hold time from IOW*	5			ns	
T ₁₇	Write cycle delay	55			ns	
	Write cycle=T ₁₅ +T ₁₇	135			ns	
T ₁₉ T ₂₁ T ₂₃ T ₂₄ T ₂₅ Tr	Data hold time	25			ns	
T ₂₁	IOR* delay from chip select	10			ns	
T ₂₃	IOR* strobe width	75			ns	
T ₂₄	Chip select hold time from IOR*	0			ns	
T ₂₅	Read cycle delay	50			ns	
Tr	Read cycle= T_{23} + T_{25}	135			ns	
T ₂₆	Delay from IOR* to data			75	ns	100 pF load
T ₂₈	Delay from IOW* to output			50	ns	100 pF load
T ₂₆ T ₂₈ T ₂₉	Delay to set interrupt from MODEM			70	ns	100 pF load
20	input					
T ₂₀	Delay to reset interrupt from IOR*			- 70	ns	100 pF load
T ₃₁	Delay from stop to set interrupt			1 _{Rclk}	ns	100 pF load
T ₁₂	Delay from IOR* to reset interrupt			200	ns	100 pF load
T ₃₀ T ₃₁ T ₃₂ T ₃₃	Delay from initial INT reset to transmit	8		24	*	
33	start					
Τ.,	Delay from stop to interrupt			100	ns	
Τ ₃₄ Τ ₃₅	Delay from IOW* to reset interrupt			175	ns	
35	-					

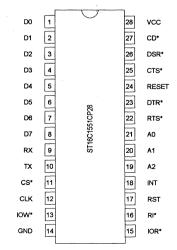
Note 1: *Baudout*cycle

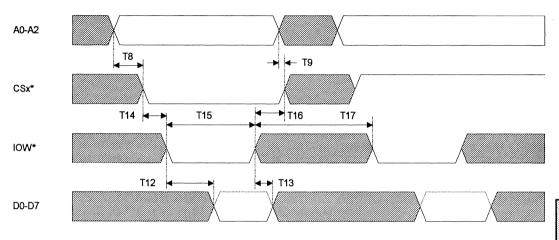
3

ABSOLUTE MAXIMUM RATINGS


Operating supply range Voltage at any pin Operating temperature Storage temperature Package dissipation 7 Volts ± 5% GND-0.3 V to VCC+0.3 V 0° C to +70° C -40° C to +150° C 500 mW

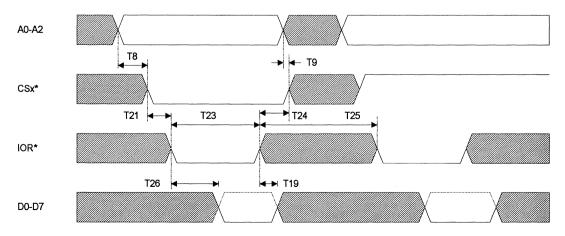
DC ELECTRICAL CHARACTERISTICS


 $T_{A}=25^{\circ}$ C, $V_{cc}=5.0$ V ± 5% unless otherwise specified.


Symbol	Parameter	Lim Min Ty		Units	Conditions
V _{IICK} V _{IHCK} V _I V _I V _{OH} I _{CC} I _L I _{CL}	Clock input low level Clock input high level Input low level Input high level Output low level on all outputs Output high level Avg power supply current Input leakage Clock leakage	-0.5 3.0 -0.5 2.2 2.4	0.6 VCC 0.8 VCC 0.4 6 ±10 ±10	V V V V M A μA	I _{ог} = 6 mA I _{он} = -6 mA

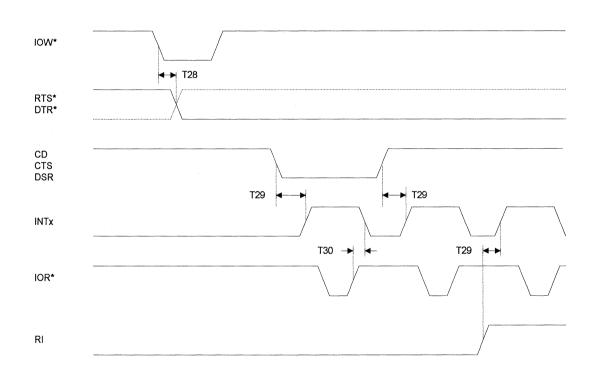
28 PIN PLASTIC-DIP ST16C1550

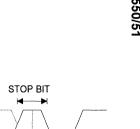
28 PIN PLASTIC-DIP ST16C1551

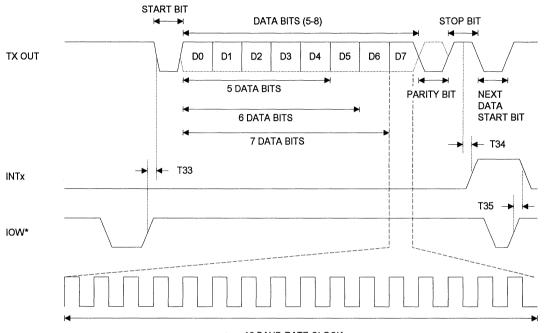


GENERAL WRITE TIMING

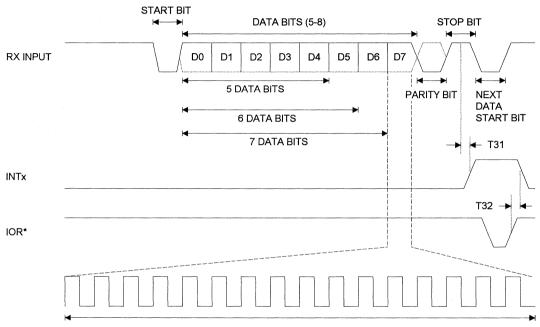
3


GENERAL READ TIMING


3-121


ST16C1550/51

MODEM TIMING



TRANSMIT TIMING

16 BAUD RATE CLOCK

ST16C1550/51

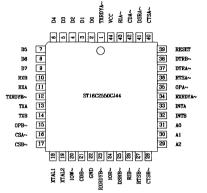
RECEIVE TIMING

16 BAUD RATE CLOCK

APR 1992

DUAL ASYNCHRONOUS RECEIVER/TRANSMITTER WITH FIFOs

DESCRIPTION


The ST16C2550 is a dual asynchronous receiver and transmitter with 16 byte transmit and receive FIFO. Independent programmable baud rate generators are provided to select transmit and receive clock rates from 50Hz to 448kHz for each uart.

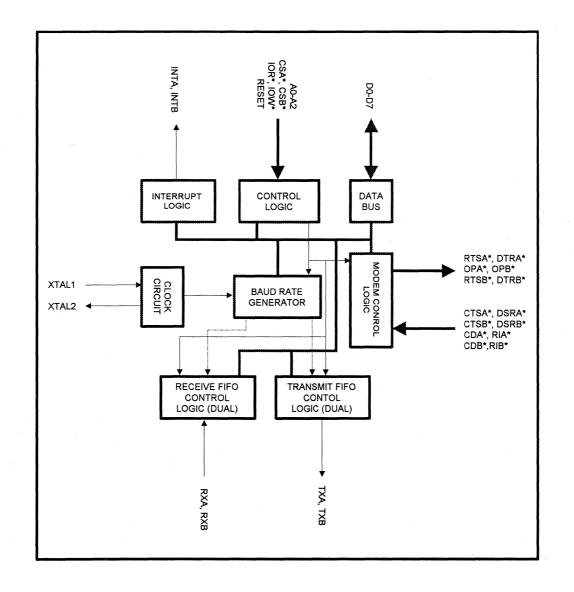
The ST16C2550 is an improved version of the NS16C550 UART with higher operating speed and lower access time. The ST16C2550 on board status registers provides the error conditions, type and status of the transfer operation being performed. Included is complete MODEM control capability, and a processor interrupt system that may be software tailored to the user's requirements. The ST16C2550 provides internal loop-back capability for on board diagnostic testing.

The ST16C2550 is fabricated in an advanced 1.2μ CMOS process to achieve low drain power and high speed requirements.

DO 1 40 vcc 2 39 D1 RIA* 38 3 D2 CDA* 4 37 DSRA* D3 5 36 **D**4 CTSA* 35 D5 6 RESET 7 34 D6 DTRB* 8 33 D7 DTRA 9 32 RXB RTSA* ST16C2550CP40 31 10 OPA* RXA 30 11 INTA TXA 29 12 INTB TXB 28 OPB* 13 AO CSA' 14 27 A1 15 26 CSB' A2 25 XTAL 1 16 CTSB* 24 XTAL2 17 RTSB* 23 18 RIB* IOW* 19 22 CDB DSRB* 20 21 IOR* GND

PLCC Package

Plastic-DIP Package


FEATURES

- * Pin to pin and functional compatible to ST16C2550
- * 16 byte transmit FIFO
- * 16 byte receive FIFO with error flags
- * Modem control signals (CTS*, RTS*, DSR*, DTR*, RI*, CD*)
- * Programmable character lengths (5, 6, 7, 8)
- * Even, odd, or no parity bit generation and detection
- * Status report register
- * Independent transmit and receive control
- * TTL compatible inputs, outputs
- * Software compatible with INS8250, NS16C550
- * 448 kHz transmit/receive operation with 7.372 MHz crystal or external clock source

ORDERING INFORMATION

Part number	Package	Operating	temperature
ST16C2550CP40	Plastic-DI	> 0°C	to + 70° C
ST16C2550CJ44	PLCC	0° C	to + 70° C
*Industrial operating	range are a	available	

BLOCK DIAGRAM

3-126

ST16C2550

3

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
D0-D7	1-8	VO	Bidirectional data bus. Eight bit, three state data bus to transfer information to or from the CPU. D0 is the least significant bit of the data bus and the first serial data bit to be received or transmitted.
RX A/B	10,9	I	Serial data input A/B. The serial information (data) received from serial port to ST16C2550 receive input circuit. A mark (high) is logic one and a space (low) is logic zero. During the local loopback mode the RX input is disabled from external connection and connected to the TX output internally.
TX A/B	11,12	0	Serial data output A/B. The serial data is transmitted via this pin with additional start, stop and parity bits. The TX will be held in mark (high) state during reset, local loopback mode or when the transmitter is disabled.
CS A/B*	14,15	i	Chip select A/B. (active low) A low at this pin enables the ST16C2550 / CPU data transfer operation.
XTAL1	16	I	Crystal input 1 or external clock input. A crystal can be connected to this pin and XTAL2 pin to utilize the internal oscillator circuit. An external clock can be used to clock internal circuit and baud rate generator for custom transmis- sion rates.
XTAL2	17	I	Crystal input 2 or buffered clock output. See XTAL1.
IOW*	18	l	Write strobe. (active low) A low on this pin will transfer the contents of the CPU data bus to the addressed register.
IOR*	21	1	Read strobe. (active low) A low level on this pin transfers the contents of the ST16C2550 data bus to the CPU.
A0-A2	28-26	1	Address select lines. To select internal registers.
INT A/B	30,29	0	Interrupt output A/B. (active high) This pin goes high (when enabled by the interrupt enable register) whenever a receiver error, receiver data available, transmitter empty, or modem status condition flag is detected.

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
OP2 A/B*	31	Ο	Interrupt enable output (active low). This pin stays high when INT out pin is set to three state mode and goes low when INT pin is enabled via OP2*. See bit-3 modem control register (MCR bit-3).
RTS A/B*	32,24	Ο	Request to send A/B (active low). To indicate that the trans- mitter has data ready to send. Writing a "1" in the modem control register (MCR bit-1) will set this pin to a low state. After the reset this pin will be set to high. Note that this pin does not have any effect on the transmit or receive operation.
DTR A/B*	33,34	Ο	Data terminal ready A/B (active low). To indicate that ST16C2550 is ready to receive data. This pin can be controlled via the modem control register (MCR bit-0). Writing a "1" at the MCR bit-0 will set the DTR* output to low. This pin will be set to high state after writing a "0" to that register or after the reset. Note that this pin does not have any effect on the transmit or receive operation.
RESET	35	l	Master reset. (active high) A high on this pin will reset all the outputs and internal registers. The transmitter output and the receiver input will be disabled during reset time.
CTS A/B*	36,25	1	Clear to send A/B (active low). The CTS* signal is a MODEM control function input whose conditions can be tested by reading the MSR BIT-4. CTS* has no effect on the transmit or receive operation.
DSR A/B*	37,22	I	Data set ready A/B (active low). A low on this pin indicates the MODEM is ready to exchange data with UART. This pin does not have any effect on the transmit or receive operation.
CD A/B*	38,19	1	Carrier detect A/B (active low). A low on this pin indicates the carrier has been detected by the modem.
RI A/B*	39,23	in a serie da Serie da Serie da Serie da	Ring detect indicator A/B (active low). A low on this pin indicates the modem has received a ringing signal from telephone line.

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
vcc	40	I	Power supply input.
GND	20	ο	Signal and power ground.

PROGRAMMING TABLE

A2	A1	A0	READ MODE	WRITE MODE
0	0	0	Receive Holding Register	Transmit Holding Register
0	0	1		Interrupt Enable Register
0	1	0	Interrupt Status Register	FIFO Control Register
0	1	1		Line Control Register
1	0	0		Modem Control Register
1	0	1	Line Status Register	-
1	1	0	Modem Status Register	
1	1	1	Scratchpad Register	Scratchpad Register
0	0	0		LSB of Divisor Latch
0	0	1		MSB of Divisor Latch

3

ST16C2550 ACCESSIBLE REGISTERS A/B

A2 A1 A0	Register	BIT-7	BIT-6	BIT-5	BIT-4	BIT-3	BIT-2	BIT-1	BIT-0
000	RHR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
000	THR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
001	IER	0	0	0	0	modem status interrupt	receive line status interrupt	transmit holding register	receive holding register
010	FCR	RCVR trigger (MSB)	RCVR trigger (LSB)	0	0	DMA mode select	XMIT FIFO reset	RCVR FIFO reset	FIFO enable
0 1 0	ISR	0/ FIFOs enabled	0/ FIFOs enabled	0	0	int priority bit-2	int priority bit-1	int priority bit-0	int status
011	LCR	divisor latch enable	set break	set parity	even parity	parity enable	stop bits	word length bit-1	word length bit-0
100	MCR	0	0	0	loop back	INT enable	Not uesed	RTS*	DTR*
101	LSR	0/ FIFO error	trans. empty	trans. holding empty	break interrupt	framing error	parity error	overrun error	receive data ready
1 1 0	MSR	CD	RI	DSR	стѕ	delta CD*	delta RI*	delta DSR*	delta CTS*
1 1 1	SPR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
000	DLL	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
001	DLM	bit-15	bit-14	bit-13	bit-12	bit-11	bit-10	bit-9	bit-8

REGISTER FUNCTIONAL DESCRIPTIONS

TRANSMIT AND RECEIVE HOLDING REGISTER

The serial transmitter section consists of a Transmit Hold Register (THR) and Transmit Shift Register (TSR). The status of the transmit hold register is provided in the Line Status Register (LSR). Writing to this register (THR) will transfer the contents of data bus (D7-D0) to the Transmit holding register whenever the transmitter holding register or transmitter shift register is empty. The transmit holding register empty flag will be set to "1" when the transmitter is empty or data is transfered to the transmit shift register. Note that a write operation should be performed when the transmit holding register empty flag is set. On the falling edge of the start bit, the receiver internal counter will start to count 7 1/2 clocks (16x clock) which is the center of the start bit. The start bit is valid if the RX is still low at the mid-bit sample of the start bit. Verifying the start bit prevents the receiver from assembling a false data character due to a low going noise spike on the RX input. Receiver status codes will be posted in the Line Status Register.

FIFO INTERRUPT MODE OPERATION

When the receive FIFO (FCR BIT-0=1) and receive interrupts (IER BIT-0=1) are enabled, receiver interrupt will occur as follows:

A) The receive data available interrupts will be issued to the CPU when the FIFO has reached its programmed trigger level; it will be cleared as soon as the FIFO drops below its programmed trigger level.

B) The ISR receive data available indication also occurs when the FIFO trigger level is reached, and like the interrupt it is cleared when the FIFO drops below the trigger level.

C) The data ready bit (LSR BIT-0) is set as soon as a character is transferred from the shift register to the receiver FIFO. It is reset when the FIFO is empty.

FIFO POLLED MODE OPERATION

When FCR BIT-0=1; resetting IER BIT 3-0 to zero puts the ST16C2550 in the FIFO polled mode of operation. Since the receiver and transmitter are controlled separately either one or both can be in the polled mode operation by utilizing the Line Status Register.

A) LSR BIT-0 will be set as long as there is one byte in the receive FIFO.

B) LSR BIT4-1 will specify which error(s) has occurred.

C) LSR BIT-5 will indicate when the transmit FIFO is empty.

D) LSR BIT-6 will indicate when both transmit FIFO and transmit shift register are empty.

E) LSR BIT-7 will indicate when there are any errors in the receive FIFO.

The ST16C2550 requires to have two step FIFO enable operation in order to enable receive trigger levels.

PROGRAMMABLE BAUD RATE GENERATOR

The ST16C2550 contains a programmable Baud Rate Generator that is capable of taking any clock input from DC-8 MHz and dividing it by any divisor from 2 to 2¹⁶-1. The output frequency of the Baudout* is equal to 16X of transmission baud rate (Baudout*=16 x Baud Rate). Customize Baud Rates can be achieved by selecting proper divisor values for MSB and LSB of baud rate generator.

INTERRUPT ENABLE REGISTER (IER)

The Interrupt Enable Register (IER) masks the incoming interrupts from receiver ready, transmitter empty, line status and modem status registers to the INT

output pin.

IER BIT-0:

0=disable the receiver ready interrupt. 1=enable the receiver ready interrupt.

IER BIT-1:

0=disable the transmitter empty interrupt. 1=enable the transmitter empty interrupt.

IER BIT-2:

0=disable the receiver line status interrupt. 1=enable the receiver line status interrupt.

IER BIT-3:

0=disable the modem status register interrupt. 1=enable the modem status register interrupt.

IER BIT 4-7: All these bits are set to logic zero.

INTERRUPT STATUS REGISTER (ISR)

The ST16C2550 provides four level prioritized interrupt conditions to minimize software overhead during data character transfers. The Interrupt Status Register (ISR) provides the source of the interrupt in prioritized matter. During the read cycle the ST16C2550 provides the highest interrupt level to be serviced by CPU. No other interrupts are acknowledged until the particular interrupt is serviced. The following are the prioritized interrupt levels:

Priority level

Ρ	D3	D2	D1	D0	Source of the interrupt
1	0	1	1	0	LSR (Receiver Line Sta- tus Register)
2	1	1	0	0	RXRDY (Received Data Ready) or receive time out.
3	0	0	1	0	TXRDY(Transmitter Holding Register Empty)
4	0	0	0	0	MSR (Modem Status Register)

ISR BIT-0:

0=an interrupt is pending and the ISR contents may be used as a pointer to the appropriate interrupt service routine.

1=no interrupt pending.

ISR BIT 1-3:

Logical combination of these bits, provides the highest priority interrupt pending.

ISR BIT 4-7:

These bits are not used and are set to zero in ST16C450 mode. BIT 6-7: are set to "1" in ST16C2550 mode.

FIFO CONTROL REGISTER (FCR)

This register is used to enable the FIFOs, clear the FIFOs, set the receiver FIFO trigger level, and select the type of DMA signalling.

FCR BIT-0:

0=Disable the transmit and receive FIFO. 1=Enable the transmit and receive FIFO. This bit should be nabled before setting the FIFO trigger levels.

FCR BIT-1:

0=No change.

1=Clears the contents of the receive FIFO and resets its counter logic to 0 (the receive shift register is not cleared or altered). This bit will return to zero after clearing the FIFOs.

FCR BIT-2:

0=No change.

1=Clears the contents of the transmit FIFO and resets its counter logic to 0 (the transmit shift register is not cleared or altered). This bit will return to zero after clearing the FIFOs.

FCR BIT-3:

0=No change.

1=Changes RXRDY and TXRDY pins from mode "0" to mode "1".

FCR BIT 4-5:

Not used.

FCR BIT 6-7:

These bits are used to set the trigger level for the receiver FIFO interrupt.

BIT-7	BIT-6	FIFO trigger level
0	o	01
0	1	04
1	0	08
1	1	14

LINE CONTROL REGISTER (LCR)

The Line Control Register is used to specify the asynchronous data communication format. The number of the word length, stop bits, and parity can be selected by writing appropriate bits in this register.

LCR BIT1-0:

These two bits specify the word length to be transmitted or received.

BIT-1	BIT-0	Word length
0	0	5
0	1	6
1	0	7
1	1	8

LCR BIT-2:

The number of stop bits can be specified by this bit.

BIT-2	Word length	Stop bit(s)
0	5,6,7,8	1
1	5	1-1/2
1	6,7,8	2

LCR BIT-3:

Parity or no parity can be selected via this bit. 0=no parity

1=a parity bit is generated during the transmission, receiver also checks for received parity.

LCR BIT-4:

If the parity bit is enabled, LCR BIT-4 selects the even or odd parity format.

0=ODD parity is generated by forcing an odd number of 1's in the transmitted data, receiver also checks for same format.

1= EVEN parity bit is generated by forcing an even the number of 1's in the transmitted data, receiver also checks for same format.

LCR BIT-5:

If the parity bit is enabled, LCR BIT-5 selects the forced parity format.

LCR BIT-5=1 and LCR BIT-4=0, parity bit is forced to "1" in the transmitted and received data.

LCR BIT-5=1 and LCR BIT-4=1, parity bit is forced to "0" in the transmitted and received data.

LCR BIT-6:

Break control bit. It causes a break condition to be transmitted (the TX is forced to low state).

0=normal operating condition.

1=forces the transmitter output (TX) to go low to alert the communication terminal.

LCR BIT-7:

The internal baud rate counter latch enable (DLAB). 0=normal operation. 1=select divisor latch register.

MODEM CONTROL REGISTER (MCR)

This register controls the interface with the MODEM or a peripheral device (RS232).

MCR BIT-0:

0=force DTR* output to high. 1=force DTR* output to low.

MCR BIT-1:

0=force RTS* output to high. 1=force RTS* output to low.

MCR BIT-2:

Not used exept in local loop-back mode.

MCR BIT-3:

0=set INT output pin to three state mode and OP2* output to high.

1=set INT output pin to normal operating mode and OP2* output to low.

MCR BIT-4:

0=normal operating mode.

1=enable local loop-back mode (diagnostics). The transmitter output (TX) is set high (Mark condition), the receiver input (RX), CTS*, DSR*, CD*, and RI* are disabled. Internally the transmitter output is connected to the receiver input and DTR*, RTS*, OP1* and OP2* are connected to modem control inputs. In this mode, the receiver and transmitter interrupts are fully operational. The Modem Control Interrupts are also operational, but the interrupts sources are now the lower four bits of the Modem Control Register instead of the four Modem Control inputs. The interrupts are still controlled by the IER.

MCR BIT 5-7:

Not used. Are set to zero permanently.

LINE STATUS REGISTER (LSR)

This register provides the status of data transfer to CPU.

LSR BIT-0:

0=no data in receive holding register or FIFO. 1=data has been received and saved in the receive holding register or FIFO.

LSR BIT-1:

0=no overrun error (normal).

1=overrun error, next character arrived before receive holding register was emptied or if FIFOs are enabled, an overrun error will occur only after the FIFO is full and the next character has been completely received in the shift register. Note that character in the shift register is overwritten, but it is not transferred to the FIFO.

LSR BIT-2:

0=no parity error (normal).

1=parity error, received data does not have correct parity information. In the FIFO mode this error is associated with the character at the top of the FIFO.

LSR BIT-3:

0=no framing error (normal).

1=framing error received, received data did not have a valid stop bit. In the FIFO mode this error is associated with the character at the top of the FIFO.

LSR BIT-4:

0=no break condition (normal).

1=receiver received a break signal (RX was low for one character time frame). In FIFO mode, only one zero character is loaded into the FIFO.

LSR BIT-5:

0=transmit holding register is full. ST16C2550 will not accept any data for transmission.

1=transmit holding register (or FIFO) is empty. CPU can load the next character.

LSR BIT-6:

0=transmitter holding and shift registers are full. 1=transmitter holding and shift registers are empty. In FIFO mode this bit is set to one whenever the transmitter FIFO and transmit shift register are empty.

LSR BIT-7:

0=Normal.

1=At least one parity error, framing error or break indication in the FIFO. This bit is cleared when LSR is read.

MODEM STATUS REGISTER (MSR)

This register provides the current state of the control lines from the modem or peripheral to the CPU. Four bits of this register are used to indicate the changed information. These bits are set to "1" whenever a

control input from the MODEM changes state. They are set to "0" whenever the CPU reads this register. MSR BIT-0:

Indicates that the CTS* input to the ST16C2550 has changed state since the last time it was read.

MSR BIT-1:

Indicates that the DSR* input to the ST16C2550 has changed state since the last time it was read. MSR BIT-2:

Indicates that the RI* input to the ST16C2550 has changed from a low to a high state.

MSR BIT-3:

Indicates that the CD* input to the ST16C2550 has changed state since the last time it was read.

MSR BIT-4:

This bit is equivalent to RTS in the MCR during local loop-back mode. It is the compliment of the CTS* input.

MSR BIT-5:

This bit is equivalent to DTR in the MCR during local loop-back mode. It is the compliment of the DSR* input.

MSR BIT-6:

This bit is equivalent to OP1 in the MCR during local loop-back mode. It is the compliment of the RI* input.

MSR BIT-7:

This bit is equivalent to OP2 in the MCR during local loop-back mode. It is the compliment to the CD* input.

SIGNALS	RESETSTATE
TX	High
OP2*	High
RTS*	High
DTR*	High
INT	Three state mode

Note: Whenever MSR BIT3-0: is set to logic "1", a MODEM Status Interrupt is generated.

SCRATCHPAD REGISTER (SR)

ST16C2550 provides a temporary data register to store 8 bits of information for variable use.

BAUD RATE GENERATOR PROGRAMMING TABLE (1.8432 MHz CLOCK):

BAUD RATE	16 x CLOCK DIVISOR	% ERROR
50	2304	
75	1536	
110	1047	0.026
134.5	857	0.058
150	768	
300	384	
600	192	
1200	96	
2400	48	
3600	32	
4800	24	
7200	16	
9600	12	
19.2K	6	
38.4K	3	
56K	2	2.86
112K	1	

ST16C2550 EXTERNAL RESET CONDITION

REGISTERS	RESET STATE
IER	IERBITS0-7=0
ISR	ISR BIT-0=1, ISR BITS 1-7=0
LCR	LCR BITS 0-7=0
MCR	MCR BITS 0-7=0
LSR	LSR BITS 0-4=0,
	LSR BITS 5-6=1 LSR, BIT 7=0
MSR	MSR BITS 0-3=0,
	MSR BITS 4-7=input signals
FCR	FCR BITS 0-7=0

AC ELECTRICAL CHARACTERISTICS

 $\rm T_{A}=25^{\circ}$ C, $\rm V_{cc}=5.0~V\pm5\%$ unless otherwise specified.

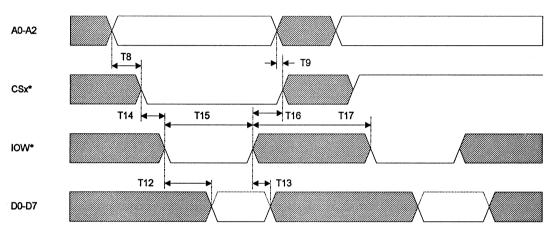
Symbol	Parameter		Limits		Units	Conditions
		Min	Тур	Max		
	Clock high pulse duration	60			ns	
T ₁ T ₂ T ₃ T ₉ T ₁₂ T ₁₃ T ₁₄ T ₁₅ T ₁₆ T ₁₇	Clock low pulse duration	60			ns	External clock
$\frac{1}{T}^{2}$	Clock rise/fall time	10			ns	External block
T ³	Chip select setup time	25			ns	
Ι τ ⁸	Chip select hold time	0			ns	
Ť.	Address hold time from IOW*	5			ns	
T.,	IOW* delay from address	25			ns	
T.	IOW* delay from chip select	10			ns	
Т.	IOW* strobe width	50			ns	
T.,	Chip select hold time from IOW*	5			ns	
Т.,	Write cycle delay	55			ns	
Т	Write cycle=T ₁₅ +T ₁₇	135			ns	
T ₁₉	Data hold time	25			ns	
T,22	IOR* delay from chip select	10			ns	
T ₂₂ T ₂₁ T ₂₄ T ₂₅	IOR* strobe width	75			ns	
T ₂₄	Chip select hold time from IOR*	0			ns	
T_25	Read cycle delay	50			ns	
Tr	Read cycle=T ₂₃ +T ₂₅	135			ns	
Т ₂₆	Delay from IOR* to data			75	ns	100 pF load
1 ₂₈	Delay from IOW* to output			50	ns	100 pF load
T_29	Delay to set interrupt from MODEM			70	ns	100 pF load
	input					
T ₃₀	Delay to reset interrupt from IOR*			70	ns	100 pF load
T ₃₁	Delay from stop to set interrupt			1 _{Rclk}	ns	100 pF load
T ₃₂	Delay from IOR* to reset interrupt			200	ns	100 pF load
T ₃₃	Delay from initial INT reset to transmit	8		24	. *	
	start					
T ₃₄	Delay from stop to interrupt			100	ns	
T ₃₅	Delay from IOW* to reset interrupt			175	ns	
T ₃₆	Delay from initial Write to interrupt	16		24	*	
N	Baud rate devisor	1		2 ¹⁶ -1		

Note 1: *Baudout* cycle

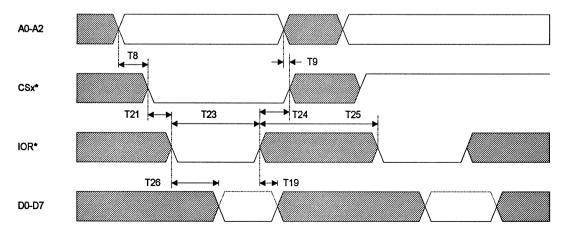
ABSOLUTE MAXIMUM RATINGS

Operating supply range Voltage at any pin Operating temperature Storage temperature Package dissipation 7 Volts ± 5% GND-0.3 V to VCC+0.3 V 0° C to +70° C -40° C to +150° C 500 mW

DC ELECTRICAL CHARACTERISTICS

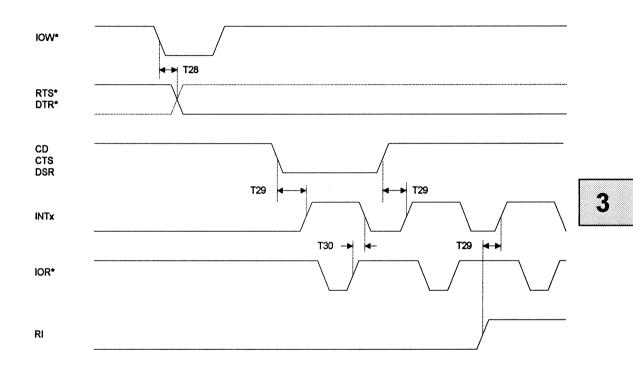

 $T_{a}=25^{\circ}$ C, $V_{cc}=5.0$ V ± 5% unless otherwise specified.

Symbol	Parameter		mits 'yp Max	Units	Conditions
V _{LCK} V _{HCK} V _L V _H V _{OL} V _{OH} I _{CC} I _L I _{CL}	Clock input low level Clock input high level Input low level Input high level Output low level on all outputs Output high level Avg power supply current Input leakage Clock leakage	-0.5 3.0 -0.5 2.2 2.4	0.6 VCC 0.8 VCC 0.4 6 ±10 ±10	∨ ∨ ∨ ∨ ∨ ∨ ₩А µА	I _a = 6 mA I _{oH} = -6 mA

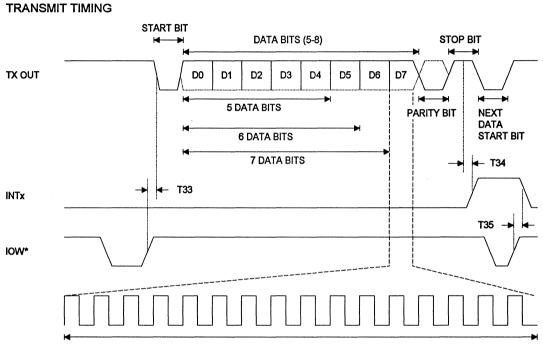

3

ST16C2550

GENERAL WRITE TIMING

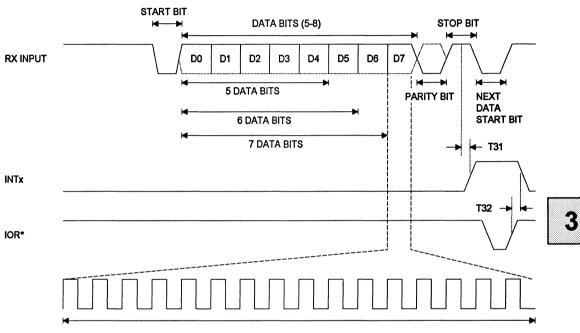

GENERAL READ TIMING




3-138

ST16C2550

MODEM TIMING



16 BAUD RATE CLOCK

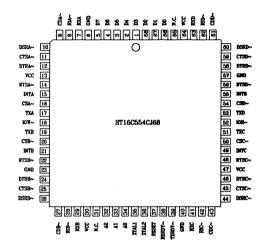
ST16C2550

RECEIVE TIMING

16 BAUD RATE CLOCK

APR 1992

QUAD ASYNCHRONOUS RECEIVER/TRANSMITTER WITH FIFOS


DESCRIPTION

The ST16C554 is a universal asynchronous receiver and transmitter with 16 byte transmit and receive FIFO. A programmable baud rate generator is provided to select transmit and receive clock rates from 50Hz to 448kHz.

The ST16C554 is an improved version of the NS16C550 UART with higher operating speed and lower access time. The ST16C554 on board status registers provides the error conditions, type and status of the transfer operation being performed. Included is complete MODEM control capability, and a processor interrupt system that may be software tailored to the user's requirements. The ST16C554 provides internal loop-back capability for on board diagnostic testing.

The ST16C554 is fabricated in an advanced 1.2μ CMOS process to achieve low drain power and high speed requirements.

PLCC Package

3

FEATURES

- * Pin to pin and functional compatible to ST16C454
- * 16 byte transmit FIFO
- * 16 byte receive FIFO with error flags
- * Modem control signals (CTS*, RTS*, DSR*, DTR*, RI*, CD*)
- * Programmable character lengths (5, 6, 7, 8)
- * Even, odd, or no parity bit generation and detection
- * Status report register
- * Independent transmit and receive control
- * TTL compatible inputs, outputs
- * Software compatible with INS8250, NS16C550
- * 448 kHz transmit/receive operation with 7.372 MHz crystal or external clock source

ORDERING INFORMATION

Part numberPackageOperating temperatureST16C554CJ68PLCC0° C to + 70° C*Industrial operating range are available

A0-A2 CSA*, CSB* CSC*, CSD* IOR*, IOW* RESET INTA, INTB INTC, INTD D0-D7 CONTROL LOGIC INTERRUPT DATA LOGIC BUS RTSA*, DTRA* RTSB*, DTRB* MODEM CONROL LOGIC (QUAD) RTSC*, DTRC* CLOCK BAUD RATE GENERATOR RTSD*, DTRD* (QUAD) CTSA*, DSRA* CTSB*, DSRB* CDA*, RIA* CDB*,RIB* CTSC*, RTSC* CDC*, RIC* **RECEIVE FIFO** TRANSMIT FIFO CTSD*, RTSD* CDD*, RID* CONTROL CONTOL LOGIC (QUAD) LOGIC (QUAD) TXA, TXB TXC, TXD RXA, RXB RXC, RXD

3-144

TXRDY

RXRDY <

XTAL1

XTAL2 <

ST16C554

BLOCK DIAGRAM

3

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
D0-D7	5-66	VO	Bidirectional data bus. Eight bit, three state data bus to transfer information to or from the CPU. D0 is the least significant bit of the data bus and the first serial data bit to be received or transmitted.
RX A-B RX C-D	7,29 41,63	I	Serial data input. The serial information (data) received from serial port to ST16C554 receive input circuit. A mark (high) is logic one and a space (low) is logic zero. During the local loopback mode the RX input is disabled from external connection and connected to the TX output internally.
ТХ А-В ТХ С-D	17,19 51,53	ο	Serial data output. The serial data is transmitted via this pin with additional start, stop and parity bits. The TX will be held in mark (high) state during reset, local loopback mode or when the transmitter is disabled.
CS A-B* CS C-D*	16,20 50,54	I	Chip select. (active low) A low at this pin enables the ST16C554 / CPU data transfer operation. Each UART sections of the ST16C554 can be accessed indepently.
XTAL1	35	I	Crystal input 1 or external clock input. A crystal can be connected to this pin and XTAL2 pin to utilize the internal oscillator circuit. An external clock can be used to clock internal circuit and baud rate generator for custom transmis- sion rates.
XTAL2	36	ο	Crystal input 2 or buffered clock output. See XTAL1.
IOW*	18	1	Write strobe. (active low) A low on this pin will transfer the contents of the CPU data bus to the addressed register.
GND GND	6,23 40,61	o	Signal and power ground.
IOR*	52	I	Read strobe. (active low) A low level on this pin transfers the contents of the ST16C554 data bus to the CPU.

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
TXRDY*	39	ο	Transmit ready. (active low) This pin goes low when the transmit FIFO of the ST16C554 is full. It can be used as a single or multi-transfer.
A2	32	I	Address select line 2. To select internal registers.
A1	33	I	Address select line 1. To select internal registers.
A0	34	1	Address select line 0. To select internal registers.
RXRDY*	38	ο	Receive ready. (active low) This pin goes low when the receive FIFO is full. It can be used as a single or multi-transfer.
INT A-B INT C-D	15,21 49,55	ο	Interrupt output. (active high) This pin goes high (when enabled by the interrupt enable register) whenever a re- ceiver error, receiver data available, transmitter empty, or modem status condition flag is detected.
RTS A-B* RTS C-D*	14,22 48,56	ο	Request to send. (active low) To indicate that the transmitter has data ready to send. Writing a "1" in the modem control register (MCR bit-1) will set this pin to a low state. After the reset this pin will be set to high. Note that this pin does not have any effect on the transmit or receive operation.
DTR A-B* DTR C-D*	12,24 46,58	o	Data terminal ready. (active low) To indicate that ST16C554 is ready to receive data. This pin can be controlled via the modem control register (MCR bit-0). Writing a "1" at the MCR bit-0 will set the DTR* output to low. This pin will be set to high state after writing a "0" to that register or after the reset. Note that this pin does not have any effect on the transmit or receive operation.
RESET	37	I	Master reset. (active high) A high on this pin will reset all the outputs and internal registers. The transmitter output and the receiver input will be disabled during reset time.

3

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
CTS A-B* CTS C-D*	11,25 45,59	I	Clear to send. (active low) The CTS* signal is a MODEM control function input whose conditions can be tested by reading the MSR BIT-4. CTS* has no effect on the transmit or receive operation.
DSR A-B* DSR C-D*	10,26 44,60	I	Data set ready. (active low) A low on this pin indicates the MODEM is ready to exchange data with UART. This pin does not have any effect on the transmit or receive operation.
CD A-B* CD C-D*	9,27 43,61	I	Carrier detect. (active low) A low on this pin indicates the carrier has been detected by the modem.
RI A-B* RI C-D*	8,28 42,62	I	Ring detect indicator. (active low) A low on this pin indicates the modem has received a ringing signal from telephone line.
VCC VCC	13,60 47,64	I	Power supply input.

PROGRAMMING TABLE

A2	A1	A0	READ MODE	WRITE MODE
0	0	0	Receive Holding Register	Transmit Holding Register
0	Ō			Interrupt Enable Register
0	1	0	Interrupt Status Register	FIFO Control Register
0	1			Line Control Register
1	Ó	Ó		Modem Control Register
1	0		Line Status Register	5
1	· 1	0	Modem Status Register	
1	1	1	Scratchpad Register	Scratchpad Register
0	0	0		LSB of Divisor Latch
0	0	1		MSB of Divisor Latch

ST16C554 ACCESSIBLE REGISTERS

A2	A1	A0	Register	BIT-7	BIT-6	BIT-5	BIT-4	BIT-3	BIT-2	BIT-1	BIT-0
0	0	0	RHR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	0	THR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	1	IER	0	0	0	0	modem status interrupt	receive line status interrupt	transmit holding register	receive holding register
0	1	0	FCR	RCVR trigger (MSB)	RCVR trigger (LSB)	0	0	DMA mode select	XMIT FIFO reset	RCVR FIFO reset	FIFO enable
0	1	0	ISR	0/ FIFOs enabled	0/ FIFOs enabled	0	0	int priority bit-2	int priority bit-1	int priority bit-0	int status
0	1	1	LCR	divisor latch enable	set break	set parity	even parity	parity enable	stop bits	word length bit-1	word length bit-0
1	0	0	MCR	0	0	0	loop back	INT enable	Not used	RTS*	DTR*
1	0	1	LSR	0/ FIFO error	trans. empty	trans. holding empty	break interrupt	framing error	parity error	overrun error	receive data ready
1	1	0	MSR	CD	RI	DSR	стѕ	delta CD*	delta RI*	delta DSR*	delta CTS*
1	1	1	SPR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	0	DLL	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	1	DLM	bit-15	bit-14	bit-13	bit-12	bit-11	bit-10	bit-9	bit-8

REGISTER FUNCTIONAL DESCRIPTIONS

TRANSMIT AND RECEIVE HOLDING REGISTER

The serial transmitter section consists of a Transmit Hold Register (THR) and Transmit Shift Register (TSR). The status of the transmit hold register is provided in the Line Status Register (LSR). Writing to this register (THR) will transfer the contents of data bus (D7-D0) to the Transmit holding register whenever the transmitter holding register or transmitter shift register is empty. The transmit holding register empty flag will be set to "1" when the transmitter is empty or data is transfered to the transmit shift register. Note that a write operation should be performed when the transmit holding register empty flag is set. On the falling edge of the start bit, the receiver internal counter will start to count 7 1/2 clocks (16x clock) which is the center of the start bit. The start bit is valid if the RX is still low at the mid-bit sample of the start bit. Verifying the start bit prevents the receiver from assembling a false data character due to a low going noise spike on the RX input. Receiver status codes will be posted in the Line Status Register.

FIFO INTERRUPT MODE OPERATION

When the receive FIFO (FCR BIT-0=1) and receive interrupts (IER BIT-0=1) are enabled, receiver interrupt will occur as follows:

A) The receive data available interrupts will be issued to the CPU when the FIFO has reached its programmed trigger level; it will be cleared as soon as the FIFO drops below its programmed trigger level.

B) The ISR receive data available indication also occurs when the FIFO trigger level is reached, and like the interrupt it is cleared when the FIFO drops below the trigger level.

C) The data ready bit (LSR BIT-0) is set as soon as a character is transferred from the shift register to the receiver FIFO. It is reset when the FIFO is empty.

FIFO POLLED MODE OPERATION

When FCR BIT-0=1; resetting IER BIT 3-0 to zero puts the ST16C554 in the FIFO polled mode of operation. Since the receiver and transmitter are controlled separately either one or both can be in the polled mode operation by utilizing the Line Status Register.

A) LSR BIT-0 will be set as long as there is one byte in the receive FIFO.

B) LSR BIT4-1 will specify which error(s) has occurred.

C) LSR BIT-5 will indicate when the transmit FIFO is empty.

D) LSR BIT-6 will indicate when both transmit FIFO and transmit shift register are empty.

E) LSR BIT-7 will indicate when there are any errors in the receive FIFO.

The ST16C554 requires to have two step FIFO enable operation in order to enable receive trigger levels.

PROGRAMMABLE BAUD RATE GENERATOR

The ST16C554 contains a programmable Baud Rate Generator that is capable of taking any clock input from DC-8 MHz and dividing it by any divisor from 2 to 2¹⁶-1. The output frequency of the Baudout* is equal to 16X of transmission baud rate (Baudout*=16 x Baud Rate). Customize Baud Rates can be achieved by selecting proper divisor values for MSB and LSB of baud rate generator.

INTERRUPT ENABLE REGISTER (IER)

The Interrupt Enable Register (IER) masks the incoming interrupts from receiver ready, transmitter empty, line status and modem status registers to the INT output pin.

IER BIT-0:

0=disable the receiver ready interrupt. **1**=enable the receiver ready interrupt.

IER BIT-1:

0=disable the transmitter empty interrupt. **1**=enable the transmitter empty interrupt.

IER BIT-2:

0=disable the receiver line status interrupt. **1**=enable the receiver line status interrupt.

IER BIT-3:

0=disable the modem status register interrupt. 1=enable the modem status register interrupt.

IER BIT 7-4:

All these bits are set to logic zero.

INTERRUPT STATUS REGISTER (ISR)

The ST16C554 provides four level prioritized interrupt conditions to minimize software overhead during data character transfers. The Interrupt Status Register (ISR) provides the source of the interrupt in prioritized matter. During the read cycle the ST16C554 provides the highest interrupt level to be serviced by CPU. No other interrupts are acknowledged until the particular interrupt is serviced. The following are the prioritized interrupt levels:

Priority level

Ρ	D3	D2	D1	D0	Source of the interrupt
1	0	1	1	0	LSR (Receiver Line Sta- tus Register)
2	1	1	0	0	RXRDY (Received Data Ready) or receive time out.
3	0	0	1	0	TXRDY(Transmitter Holding Register Empty)
4	0	0	0	0	MSR (Modem Status Register)

ISR BIT-0:

0=an interrupt is pending and the ISR contents may be used as a pointer to the appropriate interrupt service routine.

1=no interrupt pending.

ISR BIT 1-3:

Logical combination of these bits, provides the highest priority interrupt pending.

ISR BIT 4-7:

These bits are not used and are set to zero in ST16C450 mode. BIT 6-7: are set to "1" in ST16C554 mode.

FIFO CONTROL REGISTER (FCR)

This register is used to enable the FIFOs, clear the FIFOs, set the receiver FIFO trigger level, and select the type of DMA signalling.

FCR BIT-0:

0=Disable the transmit and receive FIFO. 1=Enable the transmit and receive FIFO. This bit should be nabled before setting the FIFO trigger levels.

FCR BIT-1:

0=No change.

1=Clears the contents of the receive FIFO and resets its counter logic to 0 (the receive shift register is not cleared or altered). This bit will return to zero after clearing the FIFOs.

FCR BIT-2:

0=No change.

1=Clears the contents of the transmit FIFO and resets its counter logic to 0 (the transmit shift register is not cleared or altered). This bit will return to zero after clearing the FIFOs.

FCR BIT-3:

0=No change.

1=Changes RXRDY and TXRDY pins from mode "0" to mode "1".

FCR BIT 4-5:

Not used.

FCR BIT 6-7:

These bits are used to set the trigger level for the receiver FIFO interrupt.

BIT-7	BIT-6	FIFO trigger level
0	0	01
0	1	04
1	0	08
1	1	14

LINE CONTROL REGISTER (LCR)

The Line Control Register is used to specify the asynchronous data communication format. The number of the word length, stop bits, and parity can be selected by writing appropriate bits in this register.

LCR BIT1-0:

These two bits specify the word length to be transmitted or received.

BIT-1	BIT-0	Word length
0	0	5
0	1	6
1	0	7
1	1	8

LCR BIT-2:

The number of stop bits can be specified by this bit.

BIT-2	Word length	Stop bit(s)
0	5,6,7, 5	1 1-1/2
1	6,7,8	2

LCR BIT-3:

Parity or no parity can be selected via this bit. 0=no parity

1=a parity bit is generated during the transmission, receiver also checks for received parity.

LCR BIT-4:

If the parity bit is enabled, LCR BIT-4 selects the even or odd parity format.

0=ODD parity is generated by forcing an odd number of 1's in the transmitted data, receiver also checks for same format.

1= EVEN parity bit is generated by forcing an even the number of 1's in the transmitted data, receiver also checks for same format.

LCR BIT-5:

If the parity bit is enabled, LCR BIT-5 selects the forced parity format.

LCR BIT-5=1 and LCR BIT-4=0, parity bit is forced to "1" in the transmitted and received data.

LCR BIT-5=1 and LCR BIT-4=1, parity bit is forced to "0" in the transmitted and received data.

LCR BIT-6:

Break control bit. It causes a break condition to be transmitted (the TX is forced to low state).

0=normal operating condition.

1=forces the transmitter output (TX) to go low to alert the communication terminal.

LCR BIT-7:

The internal baud rate counter latch enable (DLAB). 0=normal operation. 1=select divisor latch register.

MODEM CONTROL REGISTER (MCR)

This register controls the interface with the **MODEM** or a peripheral device (RS232).

MCR BIT-0:

0=force DTR* output to high. 1=force DTR* output to low.

MCR BIT-1:

0=force RTS* output to high. 1=force RTS* output to low.

MCR BIT-2:

Not used, except in internal loop-back mode.

MCR BIT-3:

0=set the INT A-D output pin to three state mode.. 1=Enable the INT A-D output pin.

MCR BIT-4:

0=normal operating mode.

1=enable local loop-back mode (diagnostics). The transmitter output (TX) is set high (Mark condition), the receiver input (RX), CTS*, DSR*, CD*, and RI* are disabled. Internally the transmitter output is connected to the receiver input and DTR*, RTS*, OP1* and OP2* are connected to modem control inputs. In this mode, the receiver and transmitter interrupts are fully operational. The Modem Control Interrupts are also operational, but the interrupts sources are now the lower four bits of the Modem Control Register instead of the four Modem Control inputs. The interrupts are still controlled by the IER.

MCR BIT 5-7:

Not used. Are set to zero permanently.

LINE STATUS REGISTER (LSR)

This register provides the status of data transfer to CPU.

LSR BIT-0:

0=no data in receive holding register or FIFO. 1=data has been received and saved in the receive holding register or FIFO.

LSR BIT-1:

0=no overrun error (normal).

1=overrun error, next character arrived before receive holding register was emptied or if FIFOs are enabled, an overrun error will occur only after the FIFO is full and the next character has been completely received in the shift register. Note that character in the shift register is overwritten, but it is not transferred to the FIFO.

LSR BIT-2:

0=no parity error (normal).

1=parity error, received data does not have correct parity information. In the FIFO mode this error is associated with the character at the top of the FIFO.

LSR BIT-3:

0=no framing error (normal).

1=framing error received, received data did not have a valid stop bit. In the FIFO mode this error is associated with the character at the top of the FIFO.

LSR BIT-4:

0=no break condition (normal).

1=receiver received a break signal (RX was low for one character time frame). In FIFO mode, only one zero character is loaded into the FIFO.

LSR BIT-5:

0=transmit holding register is full. ST16C554 will not accept any data for transmission.

1=transmit holding register (or FIFO) is empty. CPU can load the next character.

LSR BIT-6:

0=transmitter holding and shift registers are full. 1=transmitter holding and shift registers are empty. In FIFO mode this bit is set to one whenever the transmitter FIFO and transmit shift register are empty.

LSR BIT-7:

0=Normal.

1=At least one parity error, framing error or break indication in the FIFO. This bit is cleared when LSR is read.

MODEM STATUS REGISTER (MSR)

This register provides the current state of the control lines from the modem or peripheral to the CPU. Four bits of this register are used to indicate the changed information. These bits are set to "1" whenever a control input from the MODEM changes state. They

are set to "0" whenever the CPU reads this regist

MSR BIT-0:

Indicates that the CTS* input to the ST16C554 has changed state since the last time it was read.

MSR BIT-1:

Indicates that the DSR* input to the ST16C554 has changed state since the last time it was read.

MSR BIT-2:

Indicates that the RI* input to the ST16C554 has changed from a low to a high state.

MSR BIT-3:

Indicates that the CD* input to the ST16C554 has changed state since the last time it was read.

MSR BIT-4:

This bit is equivalent to RTS in the MCR during local loop-back mode. It is the compliment of the CTS* input.

MSR BIT-5:

This bit is equivalent to DTR in the MCR during local loop-back mode. It is the compliment of the DSR* input.

MSR BIT-6:

This bit is equivalent to OP1 in the MCR during local loop-back mode. It is the compliment of the RI* input.

MSR BIT-7:

This bit is equivalent to OP2 in the MCR during local

SIGNALS	RESETSTATE
тх	High
OP1*	High
OP2*	High
RTS*	High
DTR*	High
RXRDY*	High
TXRDY*	High
INT	Three state mode

loop-back mode. It is the compliment to the CD* input.

Note: Whenever MSR BIT3-0: is set to logic "1", a MODEM Status Interrupt is generated.

SCRATCHPAD REGISTER (SR)

ST16C554 provides a temporary data register to store 8 bits of information for variable use.

BAUD RATE GENERATOR PROGRAMMING TABLE (1.8432 MHz CLOCK):

BAUD RATE	16 x CLOCK DIVISOR	% ERROR
50	2304	
110	1047	0.026
150	768	
300	384	
600	192	
1200	96	1
2400	48	
4800	24	
7200	16	
9600	12	
19.2K	6	1. Sec. 1. Sec. 1.
38.4K	3	
56K	2	2.86
112K	1	1

ST16C554 EXTERNAL RESET CONDITION

REGISTERS	RESETSTATE
IER	IER BITS 0-7=0
ISR	ISR BIT-0=1, ISR BITS 1-7=0
LCR	LCR BITS 0-7=0
MCR	MCR BITS 0-7=0
LSR	LSR BITS 0-4=0,
	LSR BITS 5-6=1 LSR, BIT 7=0
MSR	MSR BITS 0-3=0,
	MSR BITS 4-7=input signals
FCR	FCR BITS 0-7=0

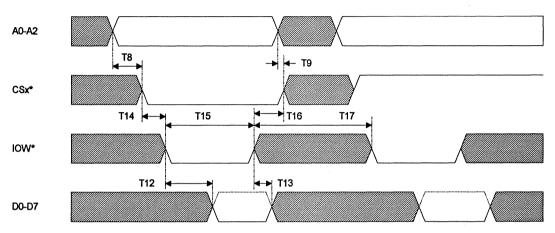
AC ELECTRICAL CHARACTERISTICS

 $\rm T_{A}=25^{\circ}$ C, $\rm V_{cc}=5.0~V\pm5\%$ unless otherwise specified.

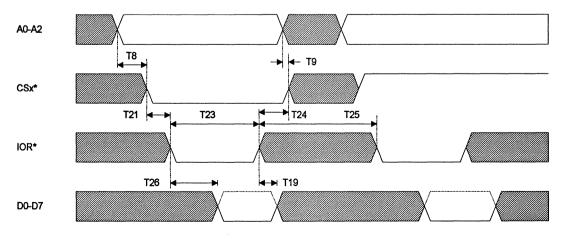
Symbol	Parameter		Limits		Units	Conditions
Symbol T_1 T_2 T_3 T_8 T_9 T_{12} T_{13} T_{14} T_{15} T_{16} T_{17} T_{17} T_{23} T_{24} T_{25} T_1 T_2 T_{28} T_{29} T_{30} T_{31} T_{32} T_{33}	Parameter Clock high pulse duration Clock low pulse duration Clock rise/fall time Chip select setup time Chip select setup time Address hold time from IOW* IOW* delay from chip select IOW* strobe width Chip select hold time from IOW* Write cycle delay Read cycle=T18+T17 Data hold time IOR* delay from chip select IOR* strobe width Chip select hold time from IOR* Read cycle delay Read cycle from IOR* to data IOR* to floating data delay Delay from IOW* to output Delay to reset interrupt from MODEM input Delay to reset interrupt from IOR*	Min 60 60 10 25 0 5 25 10 55 135 25 10 75 0 50 135 25 10 75 0 50 135 25 10 75 0 5 8	Limits Typ	Мах 75 50 50 70 1 _{ксік} 200 24	Units ns ns ns ns ns ns ns ns ns n	Conditions Extemal clock
T ₃₄ T ₃₅ T ₄₄ T ₄₅ T ₄₆ T ₄₇	start Delay from stop to interrupt Delay from IOW* to reset interrupt Delay from stop to set RxRdy Delay from IOR* to reset RxRdy Delay from IOW* to set TxRdy Delay from start to reset TxRdy			100 175 1 _{кськ} 1 195 8	ns ns µs ns *	
N	Baud rate devisor	1		2 ¹⁶ -1		

Note 1: *Baudout*cycle

ABSOLUTE MAXIMUM RATINGS

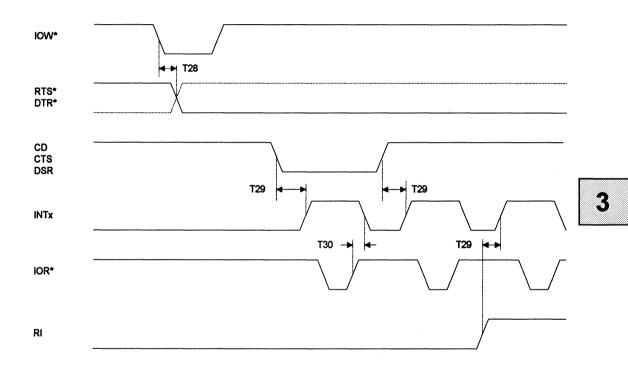

Operating supply range Voltage at any pin Operating temperature Storage temperature Package dissipation 7 Volts ± 5% GND-0.3 V to VCC+0.3 V 0° C to +70° C -40° C to +150° C 500 mW

DC ELECTRICAL CHARACTERISTICS

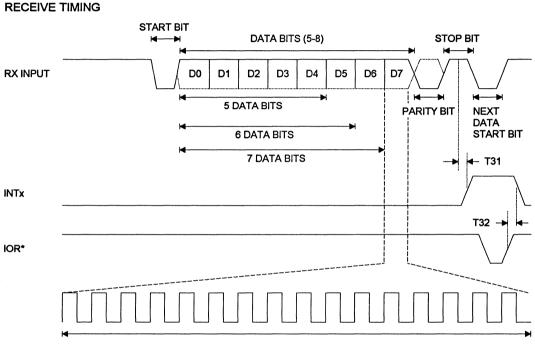

 $T_{\rm A}{=}25^{\circ}$ C, $V_{\rm cc}{=}5.0$ V \pm 5% unless otherwise specified.

Symbol	Parameter	Limits — Min Typ Max -		Units	Conditions
V _{IICK} V _{HCK} V _L V _H V _G V _G I _C I _C	Clock input low level Clock input high level Input low level Input high level Output low level on all outputs Output high level Avg power supply current Input leakage Clock leakage	-0.5 3.0 -0.5 2.2 2.4	0.6 VCC 0.8 VCC 0.4 6 ±10 ±10	х х х х х х х х х х х х х х х х х х х	l _{ot} =6mA I _{он} =-6mA

GENERAL WRITE TIMING

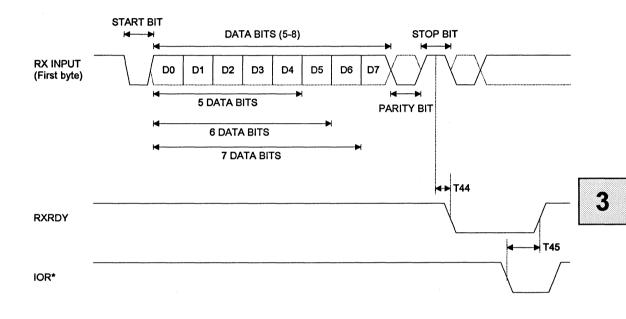


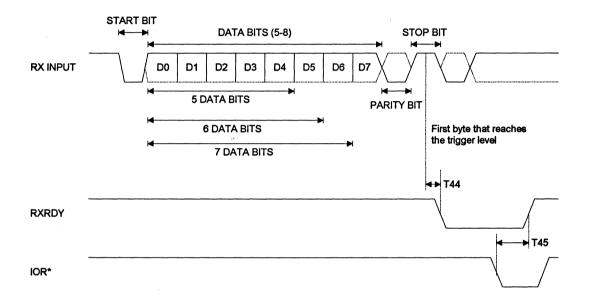
GENERAL READ TIMING



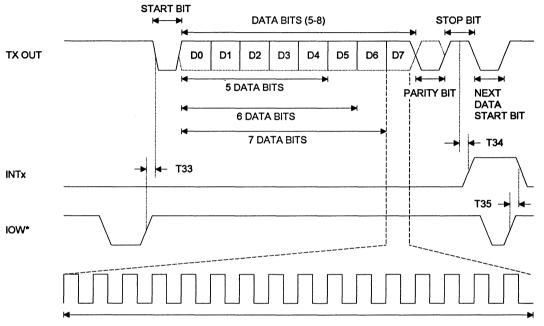
3-156

MODEM TIMING

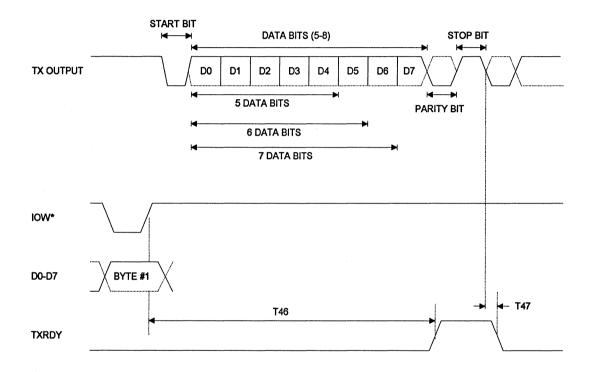


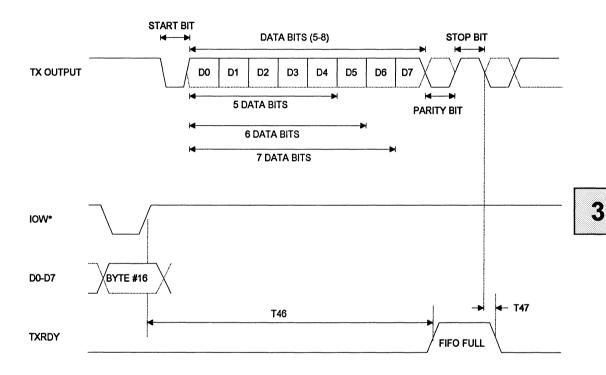


16 BAUD RATE CLOCK


RXRDY TIMING FOR MODE "0"

RXRDY TIMING FOR MODE "1"


3


TRANSMIT TIMING

16 BAUD RATE CLOCK

TXRDY TIMING FOR MODE "0"

TXRDY TIMING FOR MODE "1"

ST68C554

APR 1992

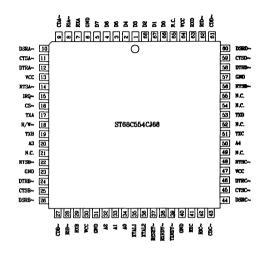
QUAD ASYNCHRONOUS RECEIVER AND TRANSMITTER WITH FIFO

DESCRIPTION

The ST68C554 is a quad universal asynchronous receiver and transmitter with FIFO and modem control signals. Designed to interface with MOTOROLA, ROCKWELL, HITACHI bus and other popular microprocessors. An internal programmable baud rate generator is provided to select transmit and receive clock rates from 50Hz to 448kHz.

The ST68C554 is an improved, quad version of the NS16550 UART with faster operating access time. The on board status registers will provide the error conditions, type and status of the transfer operations being performed. Complete MODEM control capability, and a processor interrupt system that may be software tailored to the user's requirements to minimize the computing required to handle the communications link.

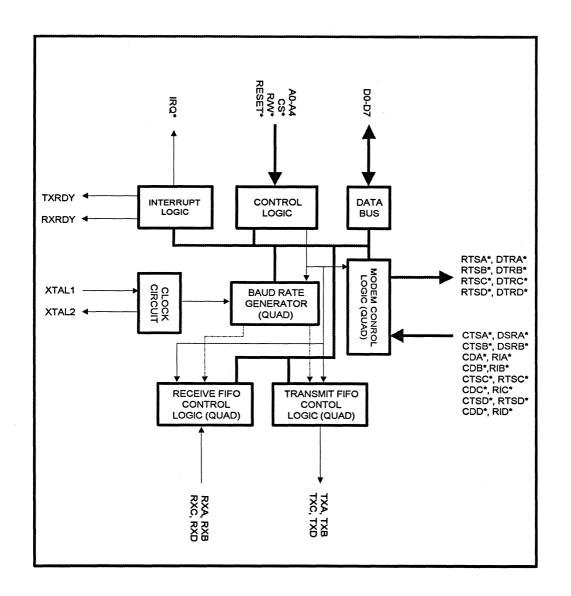
The ST68C554 is fabricated in an advanced 1.2μ CMOS process to achieve low drain power and high speed requirements.


FEATURES

- * Motorola, Rockwell, Hitachi bus compatible
- * Quad ST16C550
- * 16 byte transmit FIFO
- * 16 byte receive FIFO with error flags
- * Modem control signals (CTS*,RTS*, DSR*, DTR*, RI*, CD*)
- * Programmable character lengths (5, 6, 7, 8)
- * Even, odd, or no parity bit generation and detection
- * Status report register
- TTL compatible inputs, outputs
- * 448 kHz transmit/receive operation with 7.372 MHz external clock source

ORDERING INFORMATION

Part number	Package	Operating temperature
ST68C554CJ68	PLCC	0° C to +70°
*Industrial operating	range are	available


PLCC Package

3

ST68C554

BLOCK DIAGRAM

ST68C554

3

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
D7-D0	5-66	vo	Bidirectional data I/O. Eight bit, three state data bus to transfer information to or from the CPU. D0 is the least significant bit of the data bus and the first serial data bit to be received or transmitted.
RX A/B RX C/D	7,29 41,63	I	Serial data input. The serial information received from MODEM or RS232 to ST68C554 receive circuit. A mark (high) is logic one and a space (low) is logic zero. During the local loopback mode the RX input is disabled from external connection and connected to the TX output internally.
TX A/B TX C/D	17,19 51,53	ο	Serial data output A. The serial data of channel A is transmitted via this pin with additional start, stop and parity bits. The TX will be held in mark (high) state during reset, local loopback mode or when the transmitter is disabled.
CS*	16	I	Chip select (active low). A low at this pin will enable the UART A-D CPU data transfer operation.
XTAL1	35	I	Crystal input 1 or external clock input. A crystal can be connected to this pin and XTAL2 pin to utilize the internal oscillator circuit. An external clock can be used to clock internal circuit and baud rate generator for custom transmis- sion rates.
XTAL2	36	· · · 1	Crystal input 2. See XTAL1.
R⁄W*	18	I	Read/Write strobe. A low on this pin will transfer the contents of the CPU data bus to the addressed register. A high on this pin will transfer the contents of the ST68C554 data bus to the CPU.
CD A/B* CD C/D*	9,27 43,61	1	Carrier detect A-D (active low). A low on this pin indicates that carrier has been detected by the modem.
GND GND	6,23,31 40,57	ο	Signal and power ground.

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
DSR A/B* DSR C/D*	10,26 44,60	1	Data set ready A-D. (active low) A low on this pin indicates that MODEM is ready to exchange data with UART.
RI A/B* RI C/D*	8,28 42,62	I .	Ring detect A-D indicator . (active low) A low on this pin indicates that modem has received a ringing signal from telephone line.
RTS A/B* RTS C/D*	14,22 48,56	Ο	Request to send A-D. (active low) To indicate that transmitter has data ready to send. Writing a "1" in the modem control register (MCR bit-1) will set this pin to low state. After the reset this pin will be set to high.
CTS A/B* CTS C/D*	11,25 45,59	I	Clear to send A-D. (active low) The CTS* signals a MODEM control function input whose conditions can be tested by reading the MSR BIT-4. CTS* has no effect on the transmitter output.
A4	50	I	Address line 4. To select one of the four UARTS.
A3	20		Address line 3. To select one of the four UARTS.
A2	32	I	Address line 2. To select internal registers.
A1	33	I	Address line 1. To select internal registers.
A0	34	1	Address line 0. To select internal registers.
IRQ*	15	Ο	Interrupt output. (active low) This pin goes low (when enabled by the interrupt enable register) whenever a receiver error, receiver data available, transmitter empty or modem status condition flag is detected on UART A-D.
DTR A/B* DTR C/D*	12,24 46,58	0	Data terminal ready A-D. (active low) To indicate that ST68C554 is ready to receive data. This pin can be controlled

ST68C554

3

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
			via the modem control register (MCR bit-0). Writing a "1" at the MCR bit-0 will set the DTR* output to low. This pin will be set to high state after writing a "0" to that register or after the reset.
RESET*	37	I	Master reset. (active low) A low on this pin will reset all the outputs and internal registers. The transmitter output and the receiver input will be disabled during reset time.
vcc vcc	13,30 47,64	I	Power supply input.
TXRDY*	39	ο	Transmit ready (active low). This pin goes low when the transmit FIFO of the ST68C554 (any one) is full. It can be used as a single or multi-transfer DMA.
RXRDY*	38	ο	Receive ready (active low). This pin goes low when the receive FIFO of the ST68C554 is full. It can be used as a single or multi-transfer DMA.

SERIAL PORT SELECTION GUIDE

CS*	A4	A3	UART X
1	x	x	x
0	0	0	UART A
0	0	1	UART B
0	1	0	UART C
0	1	1	UART D

PROGRAMMING TABLE

A2	A1	A0	READ MODE	WRITE MODE
0	0	0	Receive Holding Register	Transmit Holding Register
0	0	1		Interrupt Enable Register
0	1	0	Interrupt Status Register	FIFO Control Register
0	1	1		Line Control Register
1	0	0		Modem Control Register
- 1	0	1	Line Status Register	_
1	1	0	Modem Status Register	
1	1	1	Scratchpad Register	Scratchpad Register
0	0	0		LSB of Divisor Latch
0	0	1		MSB of Divisor Latch

REGISTER FUNCTIONAL DESCRIPTIONS

TRANSMIT AND RECEIVE HOLDING REGISTER A-D

The serial transmitter section consists of a Transmit Hold Register A-D and Transmit Shift Register A-D. The status of the transmit hold register is provided in the Line Status Register A-D. Writing to this register will transfer the contents of the data bus (D7-D0) to the transmit holding register A-D whenever the transmitter holding register A-D or transmitter shift register A-D is empty. The transmit holding register empty A-D flag will be set to "1" when the transmitter is empty or data is transferred to the transmit shift register A-D. Note that a write operation should be performed when the transmit holding register empty flag is set.

On the falling edge of the start bit, the receiver internal counter will start to count 7 1/2 clocks (16x clock) which is the center of the start bit. The start bit is valid if the RX A-D is still low at the mid-bit sample of the start bit. Verifying the start bit prevents the receiver from assembling a false data character due to a low going noise spike on the RX A-D input. Receiver status codes will be posted in the Line Status Register A-D.

FIFO INTERRUPT MODE OPERATION

When the receive FIFO (FCR BIT-0=1) and receive interrupts (IER BIT-0=1) are enabled, receiver interrupt will occur as follows:

A) The receive data available interrupts will be issued to the CPU when the FIFO has reached its programmed trigger level; it will be cleared as soon as the FIFO drops below its programmed trigger level.

B) The ISR receive data available indication also occurs when the FIFO trigger level is reached, and like the interrupt it is cleared when the FIFO drops below the trigger level.

C) The data ready bit (LSR BIT-0) is set as soon as a character is transferred from the shift register to the receiver FIFO. It is reset when the FIFO is empty.

FIFO POLLED MODE OPERATION

When FCR BIT-0=1; resetting IER BIT 3-0 to zero puts the ST68C554 in the FIFO polled mode of operation. Since the receiver and transmitter are controlled separately either one or both can be in the polled mode

operation by utilizing the Line Status Register.

A) LSR BIT-0 will be set as long as there is one byte in the receive FIFO.

B) LSR BIT4-1 will specify which error(s) has occurred.

C) LSR BIT-5 will indicate when the transmit FIFO is empty.

D) LSR BIT-6 will indicate when both transmit FIFO and transmit shift register are empty.

E) LSR BIT-7 will indicate when there are any errors in the receive FIFO.

PROGRAMMABLE BAUD RATE GENERATOR

The ST68C554 contains a programmable Baud Rate Generator that is capable of taking any clock input from DC-8 MHz and dividing it by any divisor from 2 to 2¹⁶ -1. Customize Baud Rates can be achieved by selecting proper divisor values for MSB and LSB of baud rate generator.

INTERRUPT ENABLE REGISTER A-D

The Interrupt Enable Register A-D masks the incoming interrupts from receiver ready, transmitter empty, line status and modem status registers to the IRQ* output pin.

IER BIT-0:

0=disable the receiver ready interrupt 1=enable the receiver ready interrupt

IER BIT-1:

0=disable transmitter empty interrupt 1=enable transmitter empty interrupt

IER BIT-2:

0=disable receiver line status interrupt 1=enable receiver line status interrupt

IER BIT-3:

0=disable the modem status register interrupt 1=enable the modem status register interrupt

IER BIT 7-4:

All these bits are set to logic zero.

INTERRUPT STATUS REGISTER A-D

The ST68C554 provides four level prioritized interrupt conditions to minimize software overhead during data character transfers. The Interrupt Status Register A-D provides the source of the interrupt in prioritized manner. During the read cycle, the ST68C554 provides the highest interrupt level to be serviced by the CPU. No other interrupts are acknowledged until the particular interrupt has been serviced. The following are the prioritized interrupt levels:

Ρ	D3	D2	D1	D0	Source of the interrupt
1	0	1	1	0	LSR (Receiver Line Sta- tus Register)
2	1	1	0	0	RXRDY (Received Data Ready) or receivce time out.
3	0	0	1	0	TXRDY(Transmitter Holding Register Empty)
4	0	0	0	0	MSR (Modem Status Register)

ISR BIT-0:

0=an interrupt is pending and the ISR contents may be used as a pointer to the appropriate interrupt service routine

1=no interrupt pending

ISR BIT 1-2:

Logical combination of these bits, provides the highest priority interrupt pending.

ISR BIT 3-5:

These bits are not used and are set zero.

ISR BIT 6-7: 0=Normal mode. 1=FIFO's are enabled.

FIFO CONTROL REGISTER (FCR)

This register is used to enable the FIFOs, clear the FIFOs, set the receiver FIFO trigger level, and select the type of DMA signalling.

FCR BIT-0:

0=Disable the transmit and receive FIFO. 1=Enable the transmit and receive FIFO.

FCR BIT-1:

0=No change.

1=Clears the contents of the receive FIFO and resets its counter logic to 0 (the receive shift register is not cleared or altered). This bit will return to zero after clearing the FIFOs.

FCR BIT-2:

0=No change.

1=Clears the contents of the transmit FIFO and resets its counter logic to 0 (the transmit shift register is not cleared or altered). This bit will return to zero after clearing the FIFOs.

FCR BIT-3:

0=No change.

1=Changes RXRDY and TXRDY pins from mode "0" to mode "1".

FCR BIT 4-5:

Not used.

FCR BIT 6-7:

These bits are used to set the trigger level for the receiver FIFO interrupt.

BIT-7	BIT-6	FIFO trigger level
0	0	01
0	1	04
1	0	08
1	1	14
		-

LINE CONTROL REGISTER A-D

The Line Control Register is used to specify the asynchronous data communication format. The number of the word length, stop bits, and parity can be selected by writing appropriate bits in this register.

LCR BIT1-0:

These two bits specify the word length to be transmitted or received.

00=5 bits word length 01=6 bits word length 10=7 bits word length 11=8 bits word length

LCR BIT-2:

The number of stop bits can be specified by this bit.

0=1 stop bit , when word length=5, 6, 7, 8 bits 1=1 and 1/2 stop bit , when word length=5 bits 1=2 stop bits, word length=6, 7, 8 bits

LCR BIT-3:

Parity or no parity can be selected via this bit. 0=no parity

1=a parity bit is generated during the transmission; receiver also checks for received parity

LCR BIT-4:

If the parity bit is enabled, LCR BIT-4 selects the even or odd parity format.

0=odd parity is generated by calculating odd number of 1's in the transmitted data; receiver also checks for same format.

1=an even parity bit is generated by calculating the number of even 1's in the transmitted data; receiver also checks for same format.

LCR BIT-5:

If the parity bit is enabled, LCR BIT-5 selects the forced parity format.

LCR BIT-5=1 and LCR BIT-4=0, parity bit is forced to "1" in the transmitted and received data.

LCR BIT-5=1 and LCR BIT-4=1, parity bit is forced to "0" in the transmitted and received data.

LCR BIT-6:

Break control bit. 1=forces the transmitter output (TX A-D) to go low to alert the communication terminal 0=normal operating condition

LCR BIT-7:

The internal baud rate counter latch enable (DLEN). 0=normal operation 1=select divisor latch register

MODEM CONTROL REGISTER A-D This register controls the interface with the MODEM or a peripheral device (RS232).

MCR BIT-0: 0=force DTR* output to high

1=force DTR* output to low

MCR BIT-1: 0=force RTS* output to high 1=force RTS* output to low

MCR BIT-2:

x=not used

MCR BIT -3:

0= Disable the IRQ* output 1=Enable IRQ* output.

MCR BIT -4:

0=normal operating mode

1=enable local loop-back mode (diagnostics). The transmitter output (TX A-D) is set high (Mark condition), the Receiver inputs (RX A-D, CTS A-D*, DSR A-D*, CD A-D*, and RI A-D*) are disabled. Internally, the transmitter output is connected to the receiver input and DTR A-D*, RTS A-D* and OP A-D* are connected to modem control inputs. In this mode, the receiver and transmitter interrupts are fully operational. The Modem Control Interrupts are also operational, but the interrupt sources are now the lower four bits of the Modem Control Register instead of the four Modem Control Inputs. The interrupts are still controlled by the IER A-D.

MCR BIT 5-7:

Not used. Are set to zero permanently.

LINE STATUS REGISTER A-D

This register provides the status of data transfer to CPU.

LSR BIT-0:

0=no data in receive holding register 1=a data has been received and saved in the receive holding register

LSR BIT-1:

0=no overrun error (normal) 1=overrun error, next character arrived before receive holding register was empty

LSR BIT-2:

0=no parity error (normal) 1=parity error, received data does not have correct parity information LSR BIT-3: 0=no framing error (normal) 1=framing error received, received data did not have a valid stop bit

LSR BIT-4:

0=no break condition (normal) 1=receiver received a break signal (RX was low for one character time frame)

LSR BIT-5:

0=transmit holding register is full; ST68C554 will not accept any data for transmission 1=transmit holding register is empty; CPU can load the next character

LSR BIT-6:

0=transmitter holding and shift registers are full 1=transmitter holding and shift registers are empty

LSR BIT-7:

0=Normal

1=At least one parity error, framing error or break indication in the FIFO. This bit is cleared when LSR is read.

MODEM STATUS REGISTER A-D

This register provides the current state of the control lines from the modem or peripheral to the CPU. Four bits of this register are used to indicate the changed information. These bits are set to "1" whenever a control input from the MODEM changes state. They are set to "0" whenever the CPU reads this register.

MSR BIT-0:

Indicates that the CTS* input to the ST68C554 has changed state since the last time it was read.

MSR BIT-1:

Indicates that the DSR* input to the ST68C554 has changed state since the last time it was read.

MSR BIT-2:

Indicates that the RI* input to the ST68C554 has changed from a low to a high state.

MSR BIT-3:

Indicates that the CD* input to the ST68C554 has changed state since the last time it was read.

MSR BIT-4:

This bit is equivalent to RTS in the MCR. It is the compliment of the CTS* input.

MSR BIT-5:

This bit is equivalent to DTR in the MCR. It is the compliment of the DSR* input.

MSR BIT-6:

This bit is equivalent to ST16C550-OP1 in the MCR. It is the compliment of the RI* input.

MSR BIT-7:

This bit is equivalent to ST16C550-OP2 in the MCR. It is the compliment to the CD* input.

SCRATCHPAD REGISTER A-D

ST68C554 provides a temporary data register to store 8 bits of information for variable use.

BAUD RATE GENERATOR PROGRAMMING TABLE (1.8432 MHz CLOCK):

BAUD RATE	16xCLOCK %ERROR	DVISOR
50	2304	
75	1536	
150	768	
300	384	
600	192	
1200	96	
2400	48	
4800	24	
7200	16	
9600	12	
19.2	6	
38.4K	3	a
56K	2	2.86
112K	1	

ST68C554 EXTERNAL RESET CONDITION

REGISTERS	RESET STATE
IER A-D ISR A-D LCR A-D MCR A-D LSR A-D MSR A-D	BITS 0-7=0 BIT-0=1, BIT-7=0 BITS 0-7=0 BITS 0-7=0 BITS 0-4=0, BITS 5-6=1, BIT-7=0 BITS 0-3=0, BITS 4-7= input signals

SIGNALS	RESETSTATE
TX A-D	High
RTS A-D*	High
DTR A-D*	High
IRQ	Three state mode

ST68C554 ACCESSIBLE REGISTERS

A2	A1	A0	Register	BIT-7	BIT-6	BIT-5	BIT-4	BIT-3	BIT-2	BIT-1	BIT-0
0	0	0	RHR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	0	THR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	1	IER	0	0	0	0	modem status interrupt	receive line status interrupt	transmit holding register	receive holding register
0	1	0	FCR	RCVR trigger (MSB)	RCVR trigger (LSB)	0	0	DMA mode select	XMIT FIFO reset	RCVR FIFO reset	FIFO enable
0	1	0	ISR	0/ FIFOs enabled	0/ FIFOs enabled	0	0	int priority bit-2	int priority bit-1	int priority bit-0	int status
0	1	1	LCR	divisor latch enable	set break	set parity	even parity	parity enable	stop bits	word length bit-1	word length bit-0
1	0	0	MCR	0	0	0	loop back	IRQ enable	Not used	RTS*	DTR*
1	0	1	LSR	0/ FIFO error	trans. empty	trans. holding empty	break interrupt	framing error	parity error	overrun error	receive data ready
1	1	0	MSR	CD	RI	DSR	стѕ	delta CD*	delta RI*	delta DSR*	delta CTS*
1	1	1	SPR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	0	DLL	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	1	DLM	bit-15	bit-14	bit-13	bit-12	bit-11	bit-10	bit-9	bit-8

3

AC ELECTRICAL CHARACTERISTICS

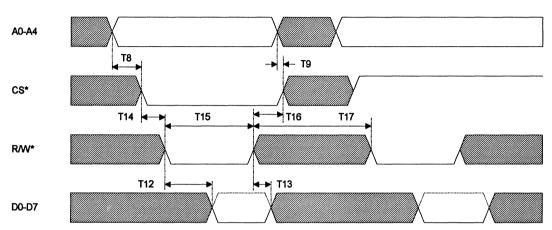
T_=25° C, V_{cc}=5.0 V ± 5% unless otherwise specified.

Symbol	Parameter	Min	Limits Typ	Max	Units	Conditions
$ \begin{array}{c} T_{1} \\ T_{2} \\ T_{3} \\ T_{9} \\ T_{12} \\ T_{13} \\ T_{14} \\ T_{16} \\ T_{16} \\ T_{17} \\ T_{18} \\ T_{24} \\ T_{25} \\ T_{1} \\ T_{28} \\ T_{31} \\ T_{32} \\ T_{33} \\ T_{34} \\ T_{35} \\ T_{44} \\ T_{47} \\ $	Clock high pulse duration Clock low pulse duration Clock rise/fall time Chip select setup time Chip select hold time Data setup time from write Data hold time from chip select Write delay from chip select Write strobe width Chip select hold time from write Write cycle delay Data setup time Write cycle= $T_{15}+T_{17}$ Chip select hold time from read Read cycle delay Read cycle= $T_{18}+T_{25}$ Delay from Write to output Delay to set interrupt from MODEM input Delay from stop to set interrupt Delay from stop to set interrupt Delay from stop to interrupt Delay from stop to interrupt Delay from stop to interrupt Delay from stop to set RxRdy Delay from read (CS*) to reset RxRdy Delay from start to reset TxRdy	60 60 10 25 0 5 25 10 50 55 10 135 0 50 135		50 70 1 _{Rdk} 200 24 100 75 1 _{RCLK} 1 195 8	ns n	External clock 100 pF load 100 pF load 100 pF load 100 pF load

* Baudout* cycle

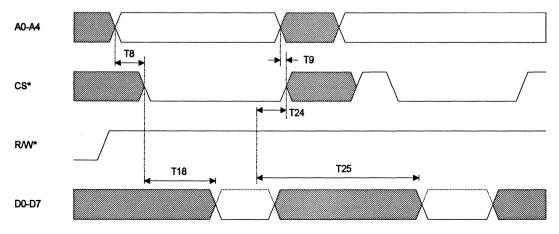
ST68C554

ABSOLUTE MAXIMUM RATINGS

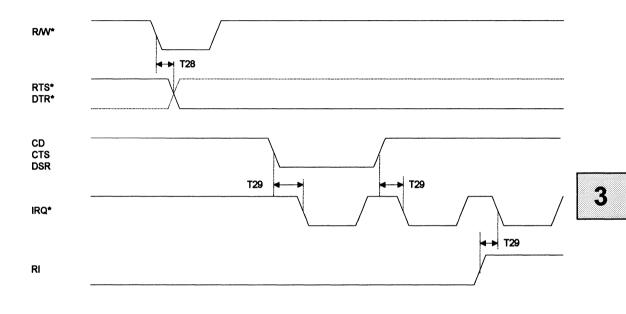

Operating supply range Voltage at any pin Operating temperature Storage temperature Package dissipation 7 Volts ± 5% GND-0.3 V to VCC+0.3 V 0° C to +70° C -40° C to +150° C 500 mW

DC ELECTRICAL CHARACTERISTICS

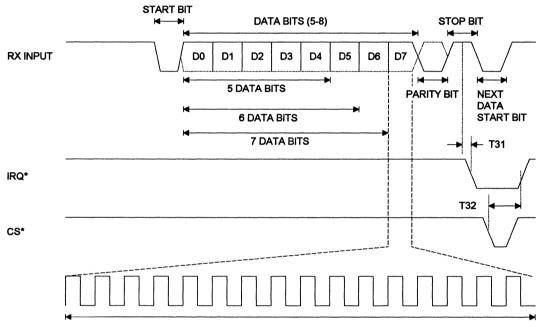
T_=25° C, V_{cc}=5.0 V ± 5% unless otherwise specified.


Symbol	Parameter	Lim Min Ty		Units	Conditions
	Clock input low level	-0.5	0.6	v	
V _{HCK}	Clock input high level	3.0		V	
V	Input low level	-0.5	0.8	V	
l v_	Input high level	2.2		V	
V _L V _H V _{OL}	Output low level		0.4	v	I _{oL} = 6 mA on all outputs
V _{он}	Output high level	2.4		V	l _{oH} ≕-6 mA
l _œ	Avg power supply current		6	mA	Un
կ	Inputleakage		±10	μA	
Ĩ _a	Clock leakage		±10	μA	

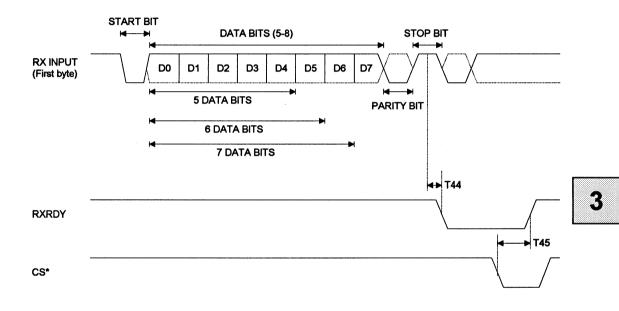
3


GENERAL WRITE TIMING

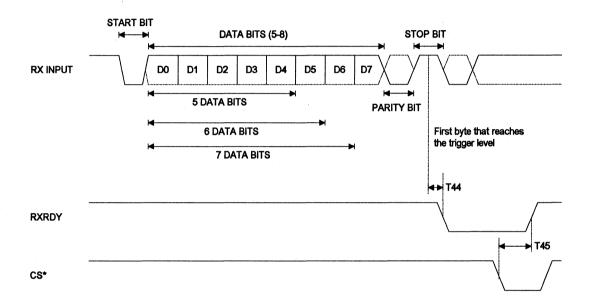
GENERAL READ TIMING


3-178

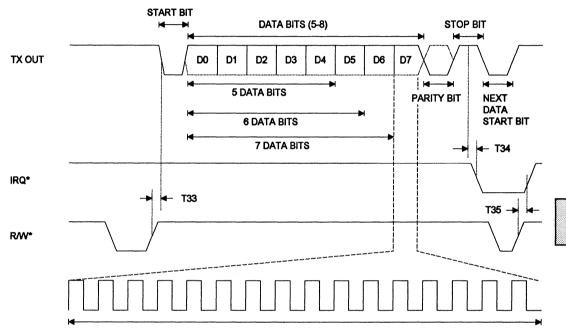
MODEM TIMING



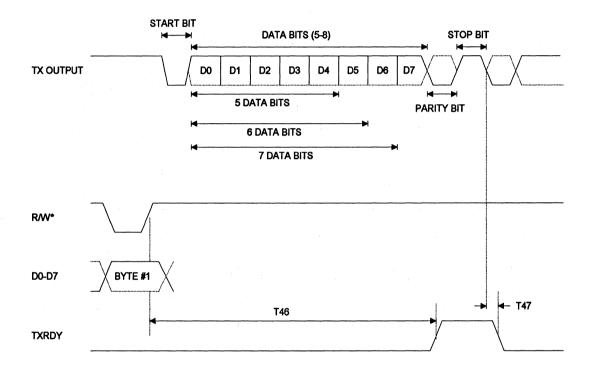
RECEIVE TIMING

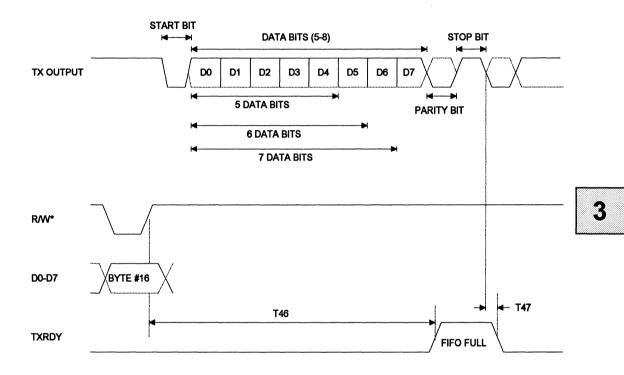


16 BAUD RATE CLOCK


RXRDY TIMING FOR MODE "0"

RXRDY TIMING FOR MODE "1"


3


TRANSMIT TIMING

16 BAUD RATE CLOCK

TXRDY TIMING FOR MODE "0"

TXRDY TIMING FOR MODE "1"

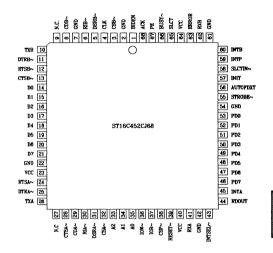
DUAL ASYNCHRONOUS RECEIVER/TRANSMITTER WITH PARALLEL PRINTER PORT

DESCRIPTION

The ST16C452 is a dual universal asynchronous receiver and transmitter with a bidirectional CENTRONICS type parallel printer port. A programmable baud rate generator is provided to select transmit and receive clock rates from 50Hz to 448kHz.

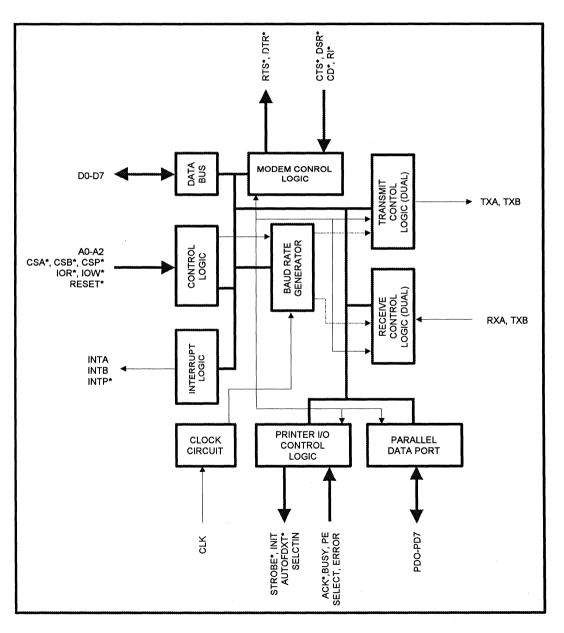
STARTECH ST16C452PS provides additional features to control the printer port direction without any additional external logic.

The ST16C452 is an inproved version of the VL16C452 UART with higher operating speed and lower access time. The ST16C452 on board status registers provides the error conditions, type and status of the transfer operation being performed. Included is complete MODEM control capability, and a processor interrupt system that may be software tailored to the user's requirements. The ST16C452 provides internal loop-back capability for on board diagnostic testing. The ST16C452 is fabricated in an advanced 1.2µ CMOS process to achieve low drain power and high speed requirements.


FEATURES

- * Pin to pin and functional compatible to VL16C452, WD16C452
- * Fully compatible with all new bidirectional PS/2 printer port registers.
- * Modem control signals (CTS*, RTS*, DSR*, DTR*, RI*, CD*)
- * Programmable character lengths (5, 6, 7, 8)
- * Even, odd, or no parity bit generation and detection
- * Independent transmit and receive control
- * Software compatible with INS8250, NS16C450
- * 448 kHz transmit/receive operation with 7.372 MHz crystal or external clock source.
- * Bidirectional hardware/software parallel port
- * Bideirectional I/O ports

ORDERING INFORMATION


Part number	Package	Operating	temperature
ST16C452CJ68	PLCC	0° C	to + 70° C
*Industrial operating	range are	available	

PLCC Package

BLOCK DIAGRAM

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
D0-D7	14-21	I/O	Bidirectional data bus. Eight bit, three state data bus to transfer information to or from the CPU. D0 is the least significant bit of the data bus and the first serial data bit to be received or transmitted.
A0-A2	35-33	1	Address select lines. To select internal registers.
CLK	4	1	Clock input. An external clock can be used to clock internal circuit and baud rate generator for custom transmission rates.
BIDEN	1	1	Printer direction select. A high puts the parallel port in the input mode for ST16C452AT and softerware controlled mode (input/output) to ST16C452PS. Alow sets the ST16C452 to output mode.
IOW*	36	I	Write strobe (active low). A low on this pin will transfer the contents of the CPU data bus to the addressed register.
IOR*	37	I	Read strobe (active low). A low level on this pin transfers the contents of the ST16C452 data bus to the CPU.
RDOUT	44	0	Read select out (active high). This pin goes high when the CPU is reading data from the ST16C452 to en/disable the external transceiver or logics.
RESET*	39	1	Master reset. (active low) A low on this pin will reset all the outputs and internal registers. The transmitter output and the receiver input will be disabled during reset time.
CS A/B*	32,3	I	Chip select A/B (active low). A low at this pin enables the serial port-A/B / CPU data transfer operation.
DSR A/B⁺	31,5	1	Data set ready A/B (active low). A low on this pin indicates the MODEM is ready to exchange data with UART. This pin does not have any effect on the transmit or receive opera- tion.
RI A/B*	30,6		Ring detect indicator A/B (active low). A low on this pin indicates the modem has received a ringing signal from

ST16C452AT/PS

3

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
			telephone line.
CD A/B*	29,8	I	Carrier detect A/B (active low). A low on this pin indicates the carrier has been detected by the modem.
TX A/B	26,10	ο	Serial data output A/B. The serial data is transmitted via this pin with additional start, stop and parity bits. The TX will be held in mark (high) state during reset, local loopback mode or when the transmitter is disabled.
DTR A/B*	25,11	Ο	Data terminal ready A/B (active low). To indicate that ST16C452 is ready to receive data. This pin can be controlled via the modem control register (MCR bit-0). Writing a "1" at the MCR bit-0 will set the DTR* output to low. This pin will be set to high state after writing a "0" to that register or after the reset. Note that this pin does not have any effect on the transmit or receive operation.
RTS A/B*	24,12	Ο	Request to send A/B (active low). To indicate that the transmitter has data ready to send. Writing a "1" in the modem control register (MCR bit-1) will set this pin to a low state. After the reset this pin will be set to high. Note that this pin does not have any effect on the transmit or receive operation.
RX A/B	41,62	1	Serial data input A/B. The serial information (data) received from serial port to ST16C452 receive input circuit. A mark (high) is logic one and a space (low) is logic zero. During the local loopback mode the RX input is disabled from external connection and connected to the TX output internally.
CTS A/B*	28,13	· · · · · ·	Clear to send A/B (active low). The CTS* signal is a MODEM control function input whose conditions can be tested by reading the MSR BIT-4. CTS* has no effect on the transmit or receive operation.
INT A/B	45,60	0	Interrupt output A/B (three state active high) This pin goes high (when enabled by the interrupt enable register) when- ever a receiver error, receiver data available, transmitter empty, or modem status condition flag is detected.

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
CSP*	38	I	Parallel printer port chip select (active low). A low at this pin enables the parallel port / CPU data transfer operation.
PD7-PD0	46-53	I/O	Bidirectional parallel ports (three state). To transfer data in or out of the ST16C452 parallel port. PD7-PD0 are latched during output mode.
STROBE*	55	I/O	General purpose I/O or strobe output (open drain active low). To transfer latched data to the external peripheral or printer.
AUTOFDXT*	56	I/O	General purpose I/O or line printer autofeed (open drain active low). To signal the printer for continuous form feed.
INIT*	57	I/O	General purpose I/O or line printer initialize (open drain active low). To signal the line printer to enter internal initialization routine.
SLCTIN*	58	I/O	General purpose I/O or line printer select (open drain active low). To select the line printer.
ERROR*	63	I 1997	General purpose input or line printer error (active low). This is an output from the printer to indicate an error by holding it low during error condition.
SLCT	65	T.	General purpose input or line printer selected (active high). This is an output from the printer to indicate that the line printer has been selected.
BUSY	66	Ι	General purpose input or line printer busy (active high). An output from the printer to indicate printer is not ready to accept data.
PE	67	I	General purpose input or line printer paper empty (active high). An output from the printer to indicate out of paper.
ACK*	68	I	General purpose input or line printer acknowledge (active low). An output from the printer to indicate that data has been accepted successfully.
INTP*	59	0	Printer interrupt output (active low). To signal the state of

3

3-191

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
			the printer port. This pin tracks the ACK* input pin, When ACK* is low INTP is low and when ACK* is high INTP is high
INTSEL*	43		Interrupt select mode. The external ACK* can be selected as an interrupt source by connecting this pin to the GND. Connecting this pin to VCC will set the interrupt to latched mode, reading the status register of the printer section resets the INTP output.
GND	2,7,22 42,54,61	ο	Signal and power ground.
vcc	23,40,64	I	Power supply input.

PROGRAMMING TABLE FOR SERIAL PORTS A/B

A2	A1	A0	READ MODE	WRITE MODE
0	0	0	Receive Holding Register	Transmit Holding Register
0	0	1		Interrupt Enable Register
0	1	0	Interrupt Status Register	
0	1	1		Line Control Register
1	· 0	0		Modem Control Register
1	0	1	Line Status Register	-
1	1	0	Modem Status Register	
1	1	1	Scratchpad Register	Scratchpad Register
0	0	0		LSB of Divisor Latch
0	0	1		MSB of Divisor Latch
				· · · · ·

ST16C452 ACCESSIBLE REGISTERS

A2 A1 A0	Register	BIT-7	BIT-6	BIT-5	BIT-4	BIT-3	BIT-2	BIT-1	BIT-0
000	RHR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
000	THR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
001	IER	0	0	0	0	modem status interrupt	receive line status interrupt	transmit holding register	receive holding register
010	ISR	0	0	0	0	0	int priority bit-1	int priority bit-0	int status
011	LCR	divisor latch enable	set break	set parity	even parity	parity enable	stop bits	word length bit-1	word length bit-0
100	MCR	0	0	0	loop back	INT enable	Not used	RTS*	DTR*
101	LSR	0	trans. empty	trans. holding empty	break interrupt	framing error	parity error	overrun error	receive data ready
1 1 0	MSR	CD	RI	DSR	CTS	delta CD*	delta RI*	delta DSR*	delta CTS*
1 1 1	SPR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
000	DLL	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
001	DLM	bit-15	bit-14	bit-13	bit-12	bit-11	bit-10	bit-9	bit-8

ST16C452AT/PS

REGISTER FUNCTIONAL DESCRIPTIONS

TRANSMIT AND RECEIVE HOLDING REGISTER

The serial transmitter section consists of a Transmit Hold Register (THR) and Transmit Shift Register (TSR). The status of the transmit hold register is provided in the Line Status Register (LSR). Writing to this register (THR) will transfer the contents of data bus (D7-D0) to the Transmit holding register whenever the transmitter holding register or transmitter shift register is empty. The transmit holding register empty flag will be set to "1" when the transmitter is empty or data is transfered to the transmit shift register. Note that a write operation should be performed when the transmit holding register empty flag is set. On the falling edge of the start bit, the receiver internal counter will start to count 7 1/2 clocks (16x clock) which is the center of the start bit. The start bit is valid if the RX is still low at the mid-bit sample of the start bit. Verifying the start bit prevents the receiver from assembling a false data character due to a low going noise spike on the RX input. Receiver status codes will be posted in the Line Status Register.

PROGRAMMABLE BAUD RATE GENERATOR

The ST16C452 contains a programmable Baud Rate Generator that is capable of taking any clock input from DC-8 MHz and dividing it by any divisor from 2 to 2¹⁶-1. The output frequency of the Baudout* is equal to 16X of transmission baud rate (Baudout*=16 x Baud Rate). Customize Baud Rates can be achieved by selecting proper divisor values for MSB and LSB of baud rate generator.

INTERRUPT ENABLE REGISTER (IER)

The Interrupt Enable Register (IER) masks the incoming interrupts from receiver ready, transmitter empty, line status and modem status registers to the INT output pin.

IER BIT-0:

0=disable the receiver ready interrupt. 1=enable the receiver ready interrupt.

IER BIT-1:

0=disable the transmitter empty interrupt. 1=enable the transmitter empty interrupt.

IER BIT-2:

0=disable the receiver line status interrupt. 1=enable the receiver line status interrupt.

IER BIT-3:

0=disable the modem status register interrupt. 1=enable the modem status register interrupt.

IER BIT 7-4:

All these bits are set to logic zero.

INTERRUPT STATUS REGISTER (ISR)

The ST16C452 provides four level prioritized interrupt conditions to minimize software overhead during data character transfers. The Interrupt Status Register (ISR) provides the source of the interrupt in prioritized matter. During the read cycle the ST16C452 provides the highest interrupt level to be serviced by CPU. No other interrupts are acknowledged until the particular interrupt is serviced. The following are the prioritized interrupt levels:

Priority level

Р	D2	D1	D0	Source of the interrupt
1	1	1	0	LSR (Receiver Line Status Register)
2	1	0	0	RXRDY (Received Data Ready)
3	0	1	0	TXRDY(Transmitter Holding Register Empty)
4	0	0	0	MSR (Modem Status Regis- ter)

ISR BIT-0:

0=an interrupt is pending and the ISR contents may be used as a pointer to the appropriate interrupt service routine.

1=no interrupt pending.

ISR BIT 1-2:

Logical combination of these bits, provides the highest priority interrupt pending.

ISR BIT 3-7:

These bits are not used and are set to "0".

LINE CONTROL REGISTER (LCR)

The Line Control Register is used to specify the asynchronous data communication format. The number of the word length, stop bits, and parity can be selected by writing appropriate bits in this register.

LCR BIT1-0:

These two bits specify the word length to be transmitted or received.

BIT-1	BIT-0	Word length
0	0	5
0	1	6
1	0	7
1	1	8

LCR BIT-2:

The number of stop bits can be specified by this bit.

BIT-2	Word length	Stop bit(s)
0	5,6,7,8	1
1	5	1-1/2
1	6,7,8	2

LCR BIT-3:

Parity or no parity can be selected via this bit. 0=no parity

1=a parity bit is generated during the transmission, receiver also checks for received parity.

LCR BIT-4:

If the parity bit is enabled, LCR BIT-4 selects the even or odd parity format.

0=ODD parity is generated by forcing an odd number of 1's in the transmitted data, receiver also checks for same format.

1= EVEN parity bit is generated by forcing an even the number of 1's in the transmitted data, receiver also checks for same format.

LCR BIT-5:

If the parity bit is enabled, LCR BIT-5 selects the forced parity format.

LCR BIT-5=1 and LCR BIT-4=0, parity bit is forced to "1" in the transmitted and received data.

LCR BIT-5=1 and LCR BIT-4=1, parity bit is forced to "0" in the transmitted and received data.

LCR BIT-6:

Break control bit. It causes a break condition to be transmitted (the TX is forced to low state). 0=normal operating condition. 1=forces the transmitter output (TX) to go low to alert the communication terminal.

LCR BIT-7:

The internal baud rate counter latch enable (DLEN). 0=normal operation. 1=select divisor latch register.

MODEM CONTROL REGISTER (MCR)

This register controls the interface with the **MODEM** or a peripheral device (RS232).

MCR BIT-0:

0=force DTR* output to high. 1=force DTR* output to low.

MCR BIT-1:

0=force RTS* output to high. 1=force RTS* output to low.

MCR BIT-2:

This bit is used for internal loop-back mode, and is not used for regular operation.

MCR BIT-3:

0= sets the INT output pin to three state mode. **1**= enables the INT output pin.

MCR BIT-4:

0=normal operating mode.

1=enable local loop-back mode (diagnostics). The transmitter output (TX) is set high (Mark condition), the receiver input (RX), CTS*, DSR*, CD*, and RI* are disabled. Internally the transmitter output is connected to the receiver input and DTR*, RTS*, OP1* and OP2* are connected to modem control inputs. In this mode, the receiver and transmitter interrupts are fully operational. The Modem Control Interrupts are also operational, but the interrupts sources are now the lower four bits of the Modem Control Register instead of the four Modem Control inputs. The interrupts are still controlled by the IER.

MCR BIT 5-7:

Not used. Are set to zero permanently.

LINE STATUS REGISTER (LSR)

This register provides the status of data transfer to CPU.

LSR BIT-0:

0=no data in receive holding register 1=data has been received and saved in the receive holding register.

LSR BIT-1:

0=no overrun error (normal). 1=overrun error, next character arrived before receive holding register was emptied.

LSR BIT-2:

0=no parity error (normal). 1=parity error, received data does not have correct parity information.

LSR BIT-3:

0=no framing error (normal). 1=framing error received, received data did not have a valid stop bit. In

LSR BIT-4:

0=no break condition (normal).

1=receiver received a break signal (RX was low for one character time frame).

LSR BIT-5:

0=transmit holding register is full. ST16C452 will not accept any data for transmission.

1=transmit holding register is empty. CPU can load the next character.

LSR BIT-6:

0=transmitter holding and shift registers are full. 1=transmitter holding and shift registers are empty.

LSR BIT-7:

Not used. Set to "0".

MODEM STATUS REGISTER (MSR)

This register provides the current state of the control lines from the modem or peripheral to the CPU. Four bits of this register are used to indicate the changed information. These bits are set to "1" whenever a control input from the MODEM changes state. They are set to "0" whenever the CPU reads this register.

MSR BIT-0:

Indicates that the CTS* input to the ST16C452 has changed state since the last time it was read.

MSR BIT-1:

Indicates that the DSR* input to the ST16C452 has changed state since the last time it was read.

MSR BIT-2:

Indicates that the RI* input to the ST16C452 has changed from a low to a high state.

MSR BIT-3:

Indicates that the CD* input to the ST16C452 has changed state since the last time it was read.

MSR BIT-4:

This bit is equivalent to RTS in the MCR during local loop-back mode. It is the compliment of the CTS* input.

MSR BIT-5:

This bit is equivalent to DTR in the MCR during local loop-back mode. It is the compliment of the DSR* input.

MSR BIT-6:

This bit is equivalent to OP1 in the MCR during local loop-back mode. It is the compliment of the RI* input.

MSR BIT-7:

This bit is equivalent to OP2 in the MCR during local loop-back mode. It is the compliment to the CD* input.

Note: Whenever MSR BIT3-0: is set to logic "1", a MODEM Status Interrupt is generated.

SCRATCHPAD REGISTER (SR)

ST16C452 provides a temporary data register to store 8 bits of information for variable use.

SIGNALS	RESETSTATE
TX	High
INTenable	High (three state)
RTS*	High
DTR*	High
INT	Three state mode

BAUD RATE GENERATOR PROGRAMMING TABLE (1.8432 MHz CLOCK):

BAUD RATE	16 x CLOCK DIVISOR	% ERROR
50	2304	T
75	1536	
110	1047	0.026
134.5	857	0.058
150	768	
300	384	
600	192	
1200	96	
2400	48	
3600	32	
4800	24	
7200	16	
9600	12	
19.2K	6	
38.4K	3	
56K	2	2.86
112K	1	

ST16C452 EXTERNAL RESET CONDITION

REGISTERS	RESET STATE
IER	IER BITS 0-7=0
ISR	ISR BIT-0=1, ISR BITS 1-7=0
LCR	LCR BITS 0-7=0
MCR	MCR BITS 0-7=0
LSR	LSR BITS 0-4=0,
	LSR BITS 5-6=1 LSR, BIT 7=0
MSR	MSR BITS 0-3=0,
	MSR BITS 4-7=input signals

PRINTER PORT PROGRAMMING TABLE:

A1	AO	IOW*	IOR*
0	0	PORT REGISTER	PORT REGISTER
0	1	I/O SELECT REGISTER	STATUS REGISTER *
1	0	CONTROL REGISTER	COMMAND REGISTER

* Reading the status register will reset the INTP output.

PARALLEL PORT DIRECTION SELECT REGISTER (WRITE ONLY)

ST16C452XX	CONTROL REGISTER (D5)	BIDEN	I/O SELECT REGISTER	PORT DIRECTION
ST16C452AT	х	0	x	Output mode
ST16C452PS	х	0	AA Hex	Input mode
ST16C452PS	X	0	55 Hex	Output mode
ST16C452AT	Х	1	x x	Input mode
ST16C452PS	0	1	x x	Output mode
ST16C452PS	1	1	x	Input mode

PRINTER PORTREGISTER DESCRIPTIONS

PORT REGISTER

Bidirectional printer port.

Writing to this register during output mode will transfer the contents of the data bus to the PD7-PD0 ports. Reading this register during input mode will transfer the states of the PD7-PD0 to the data bus. This register will be set to the output mode after reset.

PR BIT 7-0:

PD7-PD0 bidirectional I/O ports.

STATUS REGISTER

This register provides the state of the printer outputs and the interrupt condition.

SR BIT 1-0:

Not used. Are set to "1" permanently.

SR BIT-2:

Interrupt condition. 0= an interrupt is pending This bit will be set to "0" at the falling edge of the ACK* input. 1= no interrupt is pending

Reading the STATUS REGISTER will set this bit to "1".

SR BIT-3:

ERROR* input state. 0= ERROR* input is in low state 1= ERROR* input is in high state

SR BIT-4:

SLCT input state. 0= SLCT input is in low state 1= SLCT input is in high state

SR BIT-5: PE input state. 0= PE input is in low state 1= PE input is in high state

SR BIT-6:

ACK* input state. 0= ACK* input is in low state 1= ACK* input is in high state

SR BIT-7:

BUSY input state. 0= BUSY input is in high state 1= BUSY input is in low state

COMMAND REGISTER

The state of the STROBE*, AUTOFDXT*, INIT, SLCTIN* pins, and interrupt enable bit can be read by this register regardless of the I/O direction.

COM BIT-0:

STROBE* input pin. 0= STROBE* pin is in high state 1= STROBE* pin is in low state

COM BIT-1:

AUTOFDXT* input pin. 0= AUTOFDXT* pin is in high state 1= AUTOFDXT* pin is in low state

COM BIT-2:

INIT input pin. 0= INIT pin is in low state 1= INIT pin is in high state

COM BIT-3:

SLCTIN* input pin. 0= SLCTIN* pin is in high state 1= SLCTIN* pin is in low state

COM BIT-4:

Interrupt mask. 0= Interrupt (INTP output) is disabled 1= Interrupt (INTP output) is enabled COM BIT 7-5: Not used. Are set to "1" permanently.

CONTROL REGISTER.

Writing to this register will set the state of the STROBE*, AUTOFDXT*, INIT, SLCTIN pins, and interrupt mask register.

CON BIT-0:

STROBE* output control bit. 0= STROBE* output is set to high state 1= STROBE* output is set to low state

CON BIT-1:

AUTOFDXT* output control bit. 0= AUTOFDXT* output is set to high state 1= AUTOFDXT* output is set to low state

CON BIT-2:

INIT output control bit. 0= INIT output is set to low state 1= INIT output is set to high state

CON BIT-3:

SLCTIN* output control bit. 0= SLCTIN* output is set to high state 1= SLCTIN* output is set to low state

CON BIT-4:

Interrupt output control bit. 0= INTP output is disabled 1= INTP output is enabled

CON BIT-5:

I/O select. Direction of the PD7-PD0 can be selected by setting or clearing this bit.
0= PD7-PD0 are set for output mode
1= PD7-PD0 are set for input mode

CON BIT 7-6: Not used.

I/O SELECT REGISTER

Software controlled I/O select.

Bidirectional mode can be selected by keeping the BIDEN input in high state and setting CON BIT-5 to "zero or one"

Hardware/software I/O select.

Bidirectional mode can be selected by keeping the BIDEN input in low state and setting I/O SELECT register to "AA" Hex for input or "55" Hex for output. I/O select register and control register bit-5 are only available for ST16C452PS parts.

ST16C452 EXTERNAL RESET CONDITION

SIGNALS	RESET STATE
PD0-PD7	High, output mode
STROBE*	High, output mode
AUTOFDXT*	High, output mode
INIT	Low, output mode
SLCTIN*	High, output mode

ST16C452 PRINTER PORT REGISTER CONFIGURATIONS

PORT REGISTER

(READ/WRITE)

			55				D0
PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0

STATUS REGISTER

(READ ONLY)

D7	D6	D5	D4	D3	D2	D1	D0
BUSY*	АСК	PE	SLCT	ERROR STATE	IRQ	1	1
				1= No intern 0= Interrupt	upt (PS only)		

COMMAND REGISTER (READ ONLY)

D7	D6	D5	D4	D3	D2	D1	D0
1	1	1	IRQ ENABLE	SLCTIN*	INIT	AUTO- FDXT*	STROBE*
			0= IRQ disabled 1= IRQ enabled	;			

CONTROL REGISTER (WRITE ONLY)

D7	D6	D5	D4	D3	D2	D1	D0
_	_	I/O SELECT	IRQ MASK	SLCTIN*	INIT	AUTO- FDXT*	STROBE*
	0=Output (P 1=Input (PS X= AT only	• •	0=INTP o disabled 1=INTP o enabled	•			

AC ELECTRICAL CHARACTERISTICS

 $\rm T_{a}{=}25^{\circ}$ C, $\rm ~V_{cc}{=}5.0~V\pm5\%$ unless otherwise specified.

ST16C452AT/PS

3

AC ELECTRICAL CHARACTERISTICS

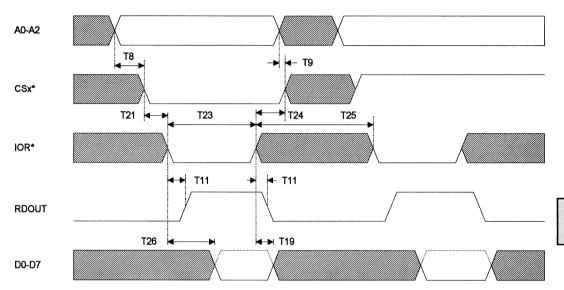
 T_{A} =25° C, V_{cc} =5.0 V ± 5% unless otherwise specified.

Symbol	Parameter	Min	Limits Typ	Max	Units	Conditions
T 34 T 35 T 39 T 42 T 43	Delay from stop to interrupt Delay from IOW* to reset interrupt ACK* pulse width Delay from ACK* low to interrupt low Delay from IOR* to reset interrupt	75 5 5		100 175	ns ns ns ns ns	
N	Baud rate devisor	1		2 ¹⁶ -1		

Note 1 *Baudout*cycle

3-203

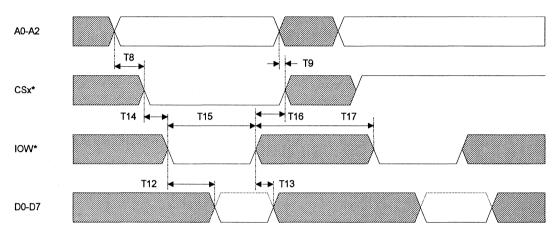
ABSOLUTE MAXIMUM RATINGS

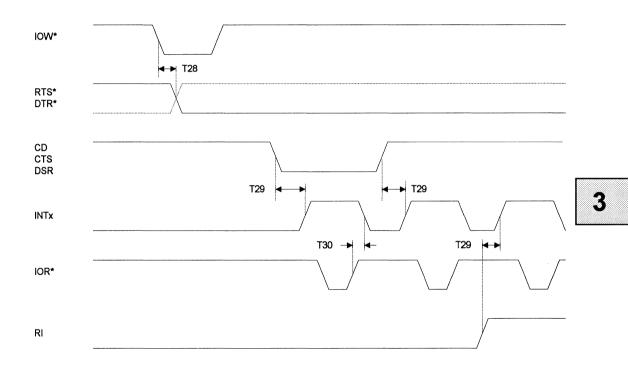

Operating supply range Voltage at any pin Operating temperature Storage temperature Package dissipation 7 Volts ± 5% GND-0.3 V to VCC+0.3 V 0° C to +70° C -40° C to +150° C 500 mW

DC ELECTRICAL CHARACTERISTICS

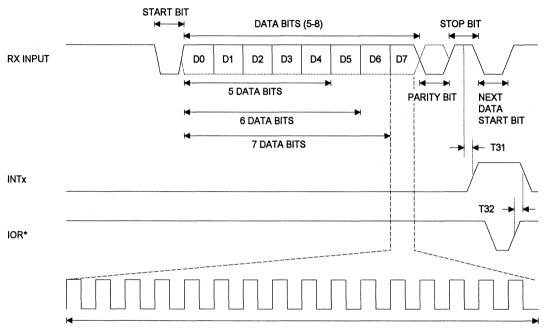
 T_{A} =25° C, V_{cc} =5.0 V ± 5% unless otherwise specified.

Symbol	Parameter	Min	Limits Typ	Max	Units	Conditions
V _{ILCK} VIHCK VIL VIH VOL	Clock input low level Clock input high level Input low level Input high level Output low level	-0.5 3.0 -0.5 2.2		0.6 VCC 0.8 VCC 0.4	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	l _{ol} = 6.0 mA D7-D0 l _{ol} = 20.0 mA PD7-
V _{oH}	Output high level	2.4			v	PD0 $I_{ol} = 10 \text{ mA}$ SLCTIN*, INIT*,STROBE*, AUTOFDXT* $I_{ol} = 6.0 \text{ mA on all}$ other outputs $I_{oH} = -6.0 \text{ mA D7-}$ D0 $I_{oH} = -12.0 \text{ mA}$ PD7-PD0 $I_{oH} = -0.2 \text{ mA}$ SLCTIN*, INIT*,STROBE*,
l _{cc} I _{IL} I _{CL}	Avg power supply current Input leakage Clock leakage			12 ±10 ±10	mA μA μA	AUTOFDXT* I _{OH} = -6.0 mA on all othe outputs

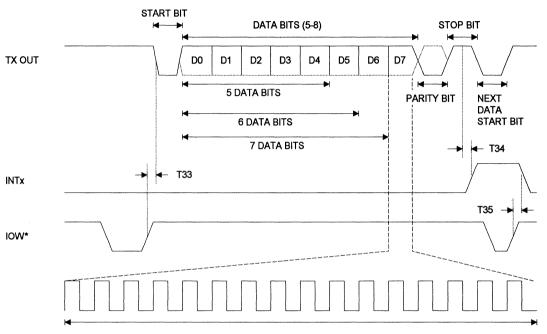

3


GENERAL READ TIMING

GENERAL WRITE TIMING



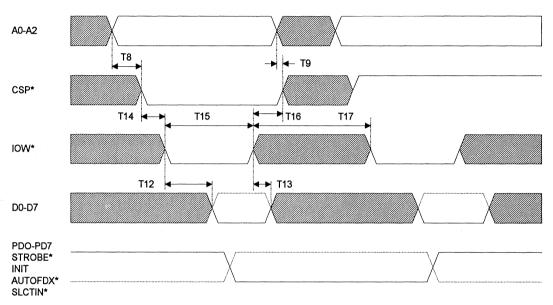
MODEM TIMING



ST16C452AT/PS

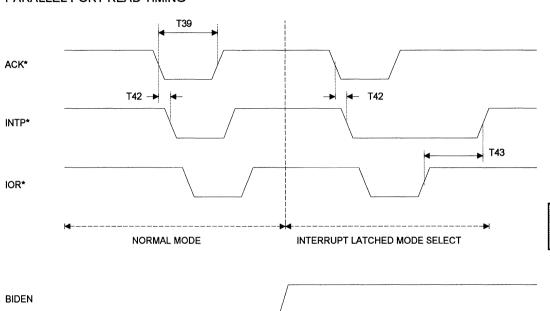
RECEIVE TIMING

16 BAUD RATE CLOCK


TRANSMIT TIMING

16 BAUD RATE CLOCK

ST16C452AT/PS


3

PARALLEL PORT GENERAL WRITE TIMING

ST16C452AT/PS

3

PARALLEL PORT READ TIMING

APR 1992

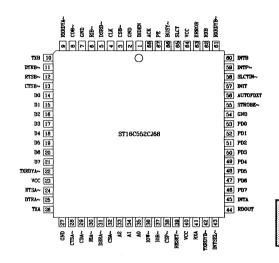
UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER WITH FIFO AND PARALLEL PRINTER PORT

DESCRIPTION

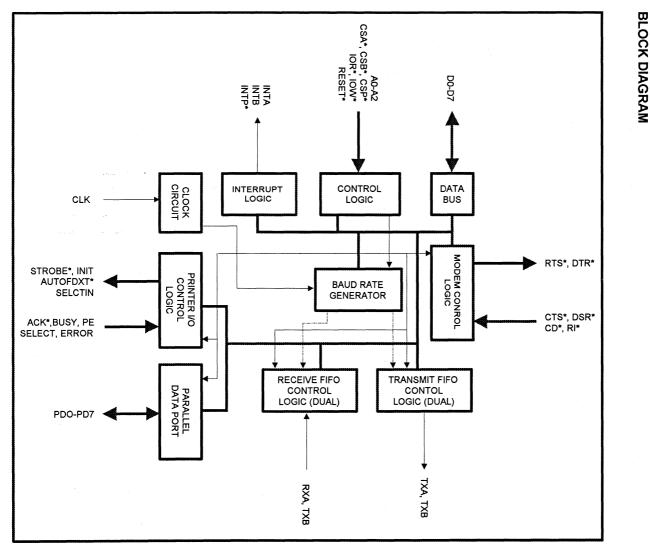
The ST16C552 is a dual universal asynchronous receiver and transmitter with 16 byte transmit and receive FIFO and a bidirectional CENTRONICS type parallel printer port. A programmable baud rate generator is provided to select transmit and receive clock rates from 50Hz to 448kHz.

The ST16C552 on board status registers provides the error conditions, type and status of the transfer operation being performed. Included is complete MO-DEM control capability, and a processor interrupt system that may be software tailored to the user's requirements. The ST16C552 provides internal loopback capability for on board diagnostic testing.

The ST16C552 is fabricated in an advanced 1.2 μ CMOS process to achieve low drain power and high speed requirements.


FEATURES

- * Pin to pin and functional compatible to VL16C552, WD16C552
- * 16 byte transmit FIFO
- * 16 byte receive FIFO with error flags
- * Modem control signals (CTS*, RTS*, DSR*, DTR*, RI*, CD*)
- * Programmable character lengths (5, 6, 7, 8)
- * Even, odd, or no parity bit generation and detection
- * Status report register
- * Independent transmit and receive control
- * TTL compatible inputs, outputs
- * Software compatible with INS8250, NS16C550
- * 448 kHz transmit/receive operation with 7.372 MHz crystal or external clock source.
- * Bidirectional hardware/software parallel port
- * Bidirectional I/O ports


ORDERING INFORMATION

Part number	Package	Operating	temperature
ST16C552CJ68	PLCC	0° C	to + 70° C
*Industrial operating	range are	available	

PLCC Package

3-214

00002

ST16C552

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
D0-D7	14-21	I/O	Bidirectional data bus. Eight bit, three state data bus to transfer information to or from the CPU. D0 is the least significant bit of the data bus and the first serial data bit to be received or transmitted.
A0-A2	35-33	I	Address select lines. To select internal registers.
CLK	4	1	Clock input. An external clock can be used to clock internal circuit and baud rate generator for custom transmission rates.
BIDEN	1	I	Printer direction select. A high puts the parallel port in the input / output mode and low sets the ST16C552 to output mode.
IOW*	36	1	Write strobe (active low). A low on this pin will transfer the contents of the CPU data bus to the addressed register.
IOR*	37	1	Read strobe (active low). A low level on this pin transfers the contents of the ST16C552 data bus to the CPU.
RDOUT	44	0	Read select out (active high). This pin goes high when the CPU is reading data from the ST16C552 to en/disable the external transceiver or logics.
RESET*	39	l	Master reset. (active low) A low on this pin will reset all the outputs and internal registers. The transmitter output and the receiver input will be disabled during reset time.
CS A/B*	32,3	I	Chip select A/B (active low). A low at this pin enables the serial port-A/B / CPU data transfer operation.
DSR A/B*	31,5	1	Data set ready A/B (active low). A low on this pin indicates the MODEM is ready to exchange data with UART. This pin does not have any effect on the transmit or receive operation.
RI A/B*	30,6	I	Ring detect indicator A/B (active low). A low on this pin indicates the modem has received a ringing signal from telephone line.

3

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
CD A/B*	29,8	I	Carrier detect A/B (active low). A low on this pin indicates the carrier has been detected by the modem.
TX A/B	26,10	ο	Serial data output A/B. The serial data is transmitted via this pin with additional start, stop and parity bits. The TX will be held in mark (high) state during reset, local loopback mode or when the transmitter is disabled.
DTR A/B*	25,11	O	Data terminal ready A/B (active low). To indicate that ST16C552 is ready to receive data. This pin can be controlled via the modem control register (MCR bit-0). Writing a "1" at the MCR bit-0 will set the DTR* output to low. This pin will be set to high state after writing a "0" to that register or after the reset. Note that this pin does not have any effect on the transmit or receive operation.
RTS A/B*	24,12	0	Request to send A/B (active low). To indicate that the transmitter has data ready to send. Writing a "1" in the modem control register (MCR bit-1) will set this pin to a low state. After the reset this pin will be set to high. Note that this pin does not have any effect on the transmit or receive operation.
RX A/B	41,62	I	Serial data input A/B. The serial information (data) re- ceived from serial port to ST16C552 receive input circuit. A mark (high) is logic one and a space (low) is logic zero. During the local loopback mode the RX input is disabled from external connection and connected to the TX output internally.
CTS A/B*	36		Clear to send A/B (active low). The CTS* signal is a MODEM control function input whose conditions can be tested by reading the MSR BIT-4. CTS* has no effect on the transmit or receive operation.
INT A/B	45,60	0	Interrupt output A/B (three state active high) This pin goes high (when enabled by the interrupt enable register) when- ever a receiver error, receiver data available, transmitter empty, or modem status condition flag is detected.
TXRDY A/B*	22,42	0	Transmit ready A/B (active low). This pin goes low when

SYMBOL DESCRIPTION

		the transmit FIFO of the ST16C552 is full. It can be used as a single or multi-transfer.
9,61	ο	Receive ready A/B (active low). This pin goes low when the receive FIFO is full. It can be used as a single or multi-transfer.
38	I	Parallel printer port chip select (active low). A low at this pin enables the parallel port / CPU data transfer operation.
46-53	I/O	Bidirectional parallel ports (three state). To transfer data in or out of the ST16C552 parallel port. PD7-PD0 are latched during output mode.
55	I/O	General purpose I/O or strobe output (open drain active low). To transfer latched data to the external peripheral or printer.
56	I/O	General purpose I/O or line printer autofeed (open drain active low). To signal the printer for continuous form feed.
57	1/0	General purpose I/O or line printer initialize (open drain active high). To signal the line printer to enter internal initialization routine.
58	I/O	General purpose I/O or line printer select (open drain active low). To select the line printer.
63	I	General purpose input or line printer error (active low). This is an output from the printer to indicate an error by holding it low during error condition.
65	I	General purpose input or line printer selected (active high). This is an output from the printer to indicate that the line printer has been selected.
66	I	General purpose input or line printer busy (active high). An output from the printer to indicate printer is not ready to accept data.
	38 46-53 55 56 57 58 63 65	38 I 46-53 I/O 55 I/O 56 I/O 57 I/O 58 I/O 63 I 65 I

3

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
PE	67	l P	General purpose input or line printer paper empty (active high). An output from the printer to indicate out of paper.
ACK*	68	I .	General purpose input or line printer acknowledge (active low). An output from the printer to indicate that data has been accepted successfully.
INTP*	59	Ο	Printer interrupt output (active low). To signal the state of the printer port. This pin tracks the ACK* input pin, When ACK* is low INTP is low and when ACK* is high INTP is high
INTSEL*	43		Interrupt select mode. The external ACK* can be selected as an interrupt source by connecting this pin to the GND. Connecting this pin to VCC will set the interrupt to latched mode, reading the status register of the printer section resets the INTP output.
GND	2,7,54	о	Signal and power ground.
vcc	23,40,64	I ···	Power supply input.

PROGRAMMING TABLE FOR SERIAL PORTS

A2	A1	A0	READ MODE	WRITE MODE
0	0	0	Receive Holding Register	Transmit Holding Register
0	0	1		Interrupt Enable Register
0	1	0	Interrupt Status Register	FIFO Control Register
0	1	1		Line Control Register
1	0	0		Modem Control Register
1	0	1	Line Status Register	C C
1	1	0	Modem Status Register	
1	1	1	Scratchpad Register	Scratchpad Register
0	lo	l o l	1 5	LSB of Divisor Latch
0	0	1		MSB of Divisor Latch

ST16C552 ACCESSIBLE REGISTERS

A2	A1	A0	Register	BIT-7	BIT-6	BIT-5	BIT-4	BIT-3	BIT-2	BIT-1	BIT-0
0	0	0	RHR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	0	THR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	1	IER	0	0	0	0	modem status interrupt	receive line status interrupt	transmit holding register	receive holding register
0	1	0	FCR	RCVR trigger (MSB)	RCVR trigger (LSB)	0	0	DMA mode select	XMIT FIFO reset	RCVR FIFO reset	FIFO enable
0	1	0	ISR	0/ FIFOs enabled	0/ FIFOs enabled	0	0	int priority bit-2	int priority bit-1	int priority bit-0	int status
0	1	1	LCR	divisor latch enable	set break	set parity	even parity	parity enable	stop bits	word length bit-1	word length bit-0
1	0	0	MCR	0	0	0	loop back	INT enable	Not used	RTS*	DTR*
1	0	1	LSR	0/ FIFO error	trans. empty	trans. holding empty	break interrupt	framing error	parity error	overrun error	receive data ready
1	1	0	MSR	CD	RI	DSR	стѕ	delta CD*	delta RI*	delta DSR*	delta CTS*
1	1	1	SPR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	0	DLL	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	1	DLM	bit-15	bit-14	bit-13	bit-12	bit-11	bit-10	bit-9	bit-8

REGISTER FUNCTIONAL DESCRIPTIONS

TRANSMIT AND RECEIVE HOLDING REGISTER

The serial transmitter section consists of a Transmit Hold Register (THR) and Transmit Shift Register (TSR). The status of the transmit hold register is provided in the Line Status Register (LSR). Writing to this register (THR) will transfer the contents of data bus (D7-D0) to the Transmit holding register whenever the transmitter holding register or transmitter shift register is empty. The transmit holding register empty flag will be set to "1" when the transmitter is empty or data is transfered to the transmit shift register. Note that a write operation should be performed when the transmit holding register empty flag is set. On the falling edge of the start bit, the receiver internal counter will start to count 7 1/2 clocks (16x clock) which is the center of the start bit. The start bit is valid if the RX is still low at the mid-bit sample of the start bit. Verifying the start bit prevents the receiver from assembling a false data character due to a low going noise spike on the RX input. Receiver status codes will be posted in the Line Status Register.

FIFO INTERRUPT MODE OPERATION

When the receive FIFO (FCR BIT-0=1) and receive interrupts (IER BIT-0=1) are enabled, receiver interrupt will occur as follows:

A) The receive data available interrupts will be issued to the CPU when the FIFO has reached its programmed trigger level; it will be cleared as soon as the FIFO drops below its programmed trigger level.

B) The ISR receive data available indication also occurs when the FIFO trigger level is reached, and like the interrupt it is cleared when the FIFO drops below the trigger level.

C) The data ready bit (LSR BIT-0) is set as soon as a character is transferred from the shift register to the receiver FIFO. It is reset when the FIFO is empty.

FIFO POLLED MODE OPERATION

When FCR BIT-0=1; resetting IER BIT 3-0 to zero puts the ST16C552 in the FIFO polled mode of operation. Since the receiver and transmitter are controlled separately either one or both can be in the polled mode operation by utilizing the Line Status Register.

A) LSR BIT-0 will be set as long as there is one byte in the receive FIFO.

B) LSR BIT4-1 will specify which error(s) has occurred.

C) LSR BIT-5 will indicate when the transmit FIFO is empty.

D) LSR BIT-6 will indicate when both transmit FIFO and transmit shift register are empty.

E) LSR BIT-7 will indicate when there are any errors in the receive FIFO.

The ST16C552 requires to have two step FIFO enable operation in order to enable receive trigger levels.

PROGRAMMABLE BAUD RATE GENERATOR

The ST16C552 contains a programmable Baud Rate Generator that is capable of taking any clock input from DC-8 MHz and dividing it by any divisor from 2 to 2¹⁶-1. The output frequency of the Baudout* is equal to 16X of transmission baud rate (Baudout*=16 x Baud Rate). Customize Baud Rates can be achieved by selecting proper divisor values for MSB and LSB of baud rate generator.

INTERRUPT ENABLE REGISTER (IER)

The Interrupt Enable Register (IER) masks the incoming interrupts from receiver ready, transmitter empty, line status and modem status registers to the INT output pin.

IER BIT-0:

0=disable the receiver ready interrupt. 1=enable the receiver ready interrupt.

IER BIT-1:

0=disable the transmitter empty interrupt. 1=enable the transmitter empty interrupt.

IER BIT-2:

0=disable the receiver line status interrupt. 1=enable the receiver line status interrupt.

IER BIT-3:

0=disable the modem status register interrupt. 1=enable the modem status register interrupt.

IER BIT 7-4: All these bits are set to logic zero.

INTERRUPT STATUS REGISTER (ISR)

The ST16C552 provides four level prioritized interrupt conditions to minimize software overhead during data character transfers. The Interrupt Status Register (ISR) provides the source of the interrupt in prioritized matter. During the read cycle the ST16C552 provides the highest interrupt level to be serviced by CPU. No other interrupts are acknowledged until the particular interrupt is serviced. The following are the prioritized interrupt levels:

Priority level

Ρ	D3	D2	D1	D0	Source of the interrupt
1	0	1	1	0	LSR (Receiver Line Sta- tus Register)
2	1	1	0	0	RXRDY (Received Data Ready) or receive time out.
3	0	0	1	0	TXRDY(Transmitter Holding Register Empty)
4	0	0	0	0	MSR (Modem Status Register)

ISR BIT-0:

0=an interrupt is pending and the ISR contents may be used as a pointer to the appropriate interrupt service routine.

1=no interrupt pending.

ISR BIT 1-3:

Logical combination of these bits, provides the highest priority interrupt pending.

ISR BIT 4-7:

These bits are not used and are set to zero in ST16C450 mode. **BIT 6-7:** are set to "1" in ST16C552 mode.

FIFO CONTROL REGISTER (FCR)

This register is used to enable the FIFOs, clear the FIFOs, set the receiver FIFO trigger level, and select the type of DMA signalling.

FCR BIT-0:

0=Disable the transmit and receive FIFO. 1=Enable the transmit and receive FIFO. This bit should be enabled before setting the FIFO trigger levels.

FCR BIT-1:

0=No change.

1=Clears the contents of the receive FIFO and resets its counter logic to 0 (the receive shift register is not cleared or altered). This bit will return to zero after clearing the FIFOs.

FCR BIT-2:

0=No change.

1=Clears the contents of the transmit FIFO and resets its counter logic to 0 (the transmit shift register is not cleared or altered). This bit will return to zero after clearing the FIFOs.

FCR BIT-3:

0=No change.

1=Changes RXRDY and TXRDY pins from mode "0" to mode "1".

FCR BIT 4-5: Not used.

FCR BIT 6-7:

These bits are used to set the trigger level for the receiver FIFO interrupt.

BIT-7	BIT-6	FIFO trigger level
0	0	01
0	1 1	04
1	0	08
1	1	14
1		

LINE CONTROL REGISTER (LCR)

The Line Control Register is used to specify the asynchronous data communication format. The number of the word length, stop bits, and parity can be selected by writing appropriate bits in this register.

LCR BIT1-0:

These two bits specify the word length to be transmitted or received.

BIT-1	BIT-0	Word length
0	0	5
0	1	6
1	0	7
1	1	8

LCR BIT-2:

The number of stop bits can be specified by this bit.

BIT-2	Word length	Stop bit(s)
0	5,6,7,8	1
1	5	1-1/2
1	6,7,8	2

LCR BIT-3:

Parity or no parity can be selected via this bit. 0=no parity

1=a parity bit is generated during the transmission, receiver also checks for received parity.

LCR BIT-4:

If the parity bit is enabled, LCR BIT-4 selects the even or odd parity format.

0=ODD parity is generated by forcing an odd number of 1's in the transmitted data, receiver also checks for same format.

1= EVEN parity bit is generated by forcing an even the number of 1's in the transmitted data, receiver also checks for same format.

LCR BIT-5:

If the parity bit is enabled, LCR BIT-5 selects the forced parity format.

LCR BIT-5=1 and LCR BIT-4=0, parity bit is forced to "1" in the transmitted and received data.

LCR BIT-5=1 and LCR BIT-4=1, parity bit is forced to "0" in the transmitted and received data.

LCR BIT-6:

Break control bit. It causes a break condition to be transmitted (the TX is forced to low state).

0=normal operating condition.

1=forces the transmitter output (TX) to go low to alert the communication terminal.

LCR BIT-7:

The internal baud rate counter latch enable (DLEN). 0=normal operation. 1=select divisor latch register.

MODEM CONTROL REGISTER (MCR)

This register controls the interface with the MODEM or a peripheral device (RS232).

MCR BIT-0:

0=force DTR* output to high. 1=force DTR* output to low.

MCR BIT-1:

0=force RTS* output to high. 1=force RTS* output to low.

MCR BIT-2:

Not used.

MCR BIT-3:

0=set INT output pin to three state mode. 1=set INT output pin to normal / active operating mode.

MCR BIT-4:

0=normal operating mode.

1=enable local loop-back mode (diagnostics). The transmitter output (TX) is set high (Mark condition), the receiver input (RX), CTS*, DSR*, CD*, and RI* are disabled. Internally the transmitter output is connected to the receiver input and DTR*, RTS*, MCR bit-2 and INT enable are connected to modem control inputs.

In this mode, the receiver and transmitter interrupts are fully operational. The Modem Control Interrupts are also operational, but the interrupts sources are now the lower four bits of the Modem Control Register instead of the four Modem Control inputs. The interrupts are still controlled by the IER.

MCR BIT 5-7:

Not used. Are set to zero permanently.

LINE STATUS REGISTER (LSR)

This register provides the status of data transfer to CPU.

LSR BIT-0:

0=no data in receive holding register or FIFO. 1=data has been received and saved in the receive holding register or FIFO.

LSR BIT-1:

0=no overrun error (normal).

1=overrun error, next character arrived before receive holding register was emptied or if FIFOs are enabled, an overrun error will occur only after the FIFO is full and the next character has been completely received in the shift register. Note that character in the shift register is overwritten, but it is not transferred to the FIFO.

LSR BIT-2:

0=no parity error (normal).

1=parity error, received data does not have correct parity information. In the FIFO mode this error is associated with the character at the top of the FIFO.

LSR BIT-3:

0=no framing error (normal).

1=framing error received, received data did not have a valid stop bit. In the FIFO mode this error is associated with the character at the top of the FIFO.

LSR BIT-4:

0=no break condition (normal).

1=receiver received a break signal (RX was low for one character time frame). In FIFO mode, only one zero character is loaded into the FIFO.

LSR BIT-5:

0=transmit holding register is full. ST16C552 will not accept any data for transmission.

1=transmit holding register (or FIFO) is empty. CPU can load the next character.

LSR BIT-6:

0=transmitter holding and shift registers are full. 1=transmitter holding and shift registers are empty. In FIFO mode this bit is set to one whenever the transmitter FIFO and transmit shift register are empty.

LSR BIT-7:

0=Normal.

1=At least one parity error, framing error or break indication in the FIFO. This bit is cleared when LSR is read.

MODEM STATUS REGISTER (MSR)

This register provides the current state of the control lines from the modem or peripheral to the CPU. Four bits of this register are used to indicate the changed information. These bits are set to "1" whenever a control input from the MODEM changes state. They are set to "0" whenever the CPU reads this register.

MSR BIT-0:

Indicates that the CTS* input to the ST16C552 has changed state since the last time it was read.

MSR BIT-1:

Indicates that the DSR* input to the ST16C552 has changed state since the last time it was read.

MSR BIT-2:

Indicates that the RI* input to the ST16C552 has changed from a low to a high state.

MSR BIT-3:

Indicates that the CD* input to the ST16C552 has changed state since the last time it was read.

MSR BIT-4:

This bit is equivalent to RTS in the MCR during local loop-back mode. It is the compliment of the CTS* input.

MSR BIT-5:

This bit is equivalent to DTR in the MCR during local loop-back mode. It is the compliment of the DSR* input.

MSR BIT-6:

This bit is equivalent to OP1 in the MCR during local loop-back mode. It is the compliment of the RI* input.

MSR BIT-7:

This bit is equivalent to OP2 in the MCR during local loop-back mode. It is the compliment to the CD* input.

Note: Whenever MSR BIT3-0: is set to logic "1", a MODEM Status Interrupt is generated.

SCRATCHPAD REGISTER (SR)

ST16C552 provides a temporary data register to store 8 bits of information for variable use.

BAUD RATE GENERATOR PROGRAMMING TABLE (1.8432 MHz CLOCK):

BAUD RATE	16 x CLOCK DIVISOR	% ERROR
50	2304	
110	1047	0.026
150	768	
300	384	
600	192	and the second sec
1200	96	
2400	48	1
4800	- 24	
7200	16	
9600	12	
19.2K	6	
38.4K	3	
56K	2	2.86
112K	1	

ST16C552 EXTERNAL RESET CONDITION

REGISTERS	RESETSTATE
IER	IERBITS0-7=0
ISR	ISR BIT-0=1, ISR BITS 1-7=0
LCR	LCR BITS 0-7=0
MCR	MCR BITS 0-7=0
LSR	LSR BITS 0-4=0,
	LSR BITS 5-6=1 LSR, BIT 7=0
MSR	MSR BITS 0-3=0,
	MSR BITS 4-7=input signals
FCR	FCR BITS 0-7=0

SIGNALS	RESETSTATE
TX	High
RTS*	High
DTR*	High
INT	Three state mode
RXRDY*	High
TXRDY*	High

PRINTER PORT PROGRAMMING TABLE:

A1	A0	IOM.	IOR*
0 0	0 1	PORT REGISTER I/O SELECT REGISTER	PORT REGISTER STATUS REGISTER *
1	0	CONTROL REGISTER	COMMAND REGISTER

* Reading the status register will reset the INTP output.

3

PRINTER PORT REGISTER DESCRIPTIONS

PR BIT 7-0: PD7-PD0 bidirectional I/O ports.

STATUS REGISTER This register provides the state of the printer outputs and the interrupt condition.

SR BIT 1-0: Not used. Are set to "1" permanently.

SR BIT-2:

Interrupt condition. 0= an interrupt is pending This bit will be set to "0" at the falling edge of the ACK* input. 1= no interrupt is pending Reading the STATUS REGISTER will set this bit to "1".

SR BIT-3:

ERROR* input state. 0= ERROR* input is in low state 1= ERROR* input is in high state

SR BIT-4: SLCT input state. 0= SLCT input is in low state 1= SLCT input is in high state

SR BIT-5: PE input state. 0= PE input is in low state 1= PE input is in high state

SR BIT-6:

ACK* input state. 0= ACK* input is in low state 1= ACK* input is in high state

SR BIT-7: BUSY input state. 0= BUSY input is in high state 1= BUSY input is in low state

COMMAND REGISTER

The state of the STROBE*, AUTOFDXT*, INIT, SLCTIN* pins, and interrupt enable bit can be read by this register regardless of the I/O direction.

COM BIT-0: STROBE* input pin. 0= STROBE* pin is in high state 1= STROBE* pin is in low state

COM BIT-1: AUTOFDXT* input pin. 0= AUTOFDXT* pin is in high state 1= AUTOFDXT* pin is in low state

COM BIT-2: INIT input pin. 0= INIT pin is in low state 1= INIT pin is in high state

COM BIT-3:

SLCTIN* input pin. 0= SLCTIN* pin is in high state 1= SLCTIN* pin is in low state

COM BIT-4:

Interrupt mask. 0= Interrupt (INTP output) is disabled 1= Interrupt (INTP output) is enabled

COM BIT 7-5: Not used. Are set to "1" permanently.

CONTROL REGISTER.

Writing to this register will set the state of the STROBE*, AUTOFDXT*, INIT, SLCTIN pins, and interrupt mask register.

CON BIT-0: STROBE* output control bit. 0= STROBE* output is set to high state 1= STROBE* output is set to low state

CON BIT-1:

AUTOFDXT* output control bit. 0= AUTOFDXT* output is set to high state 1= AUTOFDXT* output is set to low state

CON BIT-2:

INIT output control bit. 0= INIT output is set to low state 1= INIT output is set to high state

CON BIT-3:

SLCTIN* output control bit. 0= SLCTIN* output is set to high state 1= SLCTIN* output is set to low state

CON BIT-4:

Interrupt output control bit. 0= INTP output is disabled 1= INTP output is enabled

CON BIT-5:

I/O select. Direction of the PD7-PD0 can be selected by setting or clearing this bit.
0= PD7-PD0 are set for output mode
1= PD7-PD0 are set for input mode

CON BIT 7-6: Not used.

I/O SELECT REGISTER

Software controlled I/O select.

Bidirectional mode can be selected by keeping the BIDEN input in high state and setting CON BIT-5 to "zero or one"

Hardware/software I/O select.

Bidirectional mode can be selected by keeping the BIDEN input in low state and setting I/O SELECT register to "AA" Hex for input or "55" Hex for output.

ST16C552 EXTERNAL RESET CONDITION

SIGNALS	RESET STATE
PD0-PD7	High, output mode
STROBE*	High, output mode
AUTOFDXT*	High, output mode
INIT	Low, output mode
SLCTIN*	High, output mode

CONTROL REGISTER (D5)	BIDEN	I/O SELECT REGISTER	PORT DIRECTION
Х	0	AA Hex	Input mode
х	0	55 Hex	Output mode
0	1	x	Output mode
1	1	X	Input mode

ST16C552 PRINTER PORT REGISTER CONFIGURATIONS

PORT REGISTER (READ/WRITE)

D7	D6	D5	D4	D3	D2		
PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0

STATUS REGISTER (READ ONLY)

D7	D6	D5	D4	D3	D2	D1	D0
BUSY*	ACK	PE	SLCT	ERROR STATE	IRQ	1	1
1= No interrupt 0= Interrupt							

COMMAND REGISTER (READ ONLY)

D7	D6	D5	D4	D3	D2	D1	D0
1	1	1	IRQ ENABLE	SLCTIN*	INIT	AUTO- FDXT*	STROBE*
			0= IRQ disabled 1= IRQ enabled				

CONTROL REGISTER (WRITE ONLY)

D7	D6	D5	D4	D3	D2	D1	D0
	_	I/O SELECT	IRQ MASK	SLCTIN*	INIT	AUTO- FDXT*	STROBE*
	0=Output 1=Input		0=INTP output disabled 1=INTP output enabled				

AC ELECTRICAL CHARACTERISTICS

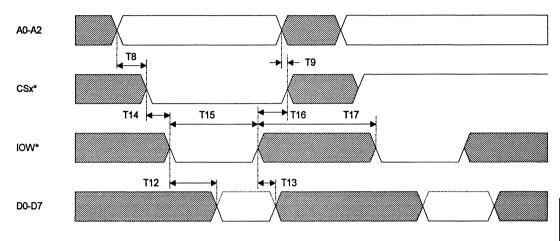
 $\rm T_{A}=25^{\circ}$ C, $\rm V_{cc}=5.0~V\pm5\%$ unless otherwise specified.

Symbol	Parameter	Min	Limits	Max	Units	Conditions
$\begin{array}{c} T_{1} \\ T_{2} \\ T_{3} \\ T_{8} \\ T_{9} \\ T_{11} \\ T_{12} \\ T_{13} \\ T_{14} \\ T_{15} \\ T_{16} \\ T_{16} \end{array}$	Clock high pulse duration Clock low pulse duration Clock rise/fall time Chip select setup time Chip select hold time IOR* to drive disable delay Address hold time from IOW* IOW* delay from address IOW* delay from chip select IOW* strobe width Chip select hold time from IOW*	Min 60 60 25 0 5 25 10 50 5 5	Тур	Max 35	ns ns ns ns ns ns ns ns ns ns ns ns ns n	External clock 100 pF load
$ \begin{array}{r} 1^{16} \\ T_{17}^{17} \\ TW \\ T_{19} \\ T_{21} \\ T_{23} \\ T_{24} \\ T_{25} \\ Tr \\ T_{26} \\ T_{28} \\ T_{29} \\ T_{29}$	Write cycle delay Write cycle= $T_{15}+T_{17}$ Data hold time IOR* delay from chip select IOR* strobe width Chip select hold time from IOR* Read cycle delay Read cycle= $T_{23}+T_{25}$ Delay from IOR* to data Delay from IOW* to output Delay to set interrupt from MODEM input	55 135 25 10 75 0 50 135		75 50 70	ំ ន ន ន ន ន ន ន ន ន ន ក ន ន ន ន ន ន ន ន ន	100 pF load 100 pF load 100 pF load
T ₃₀ T ₃₁ T ₃₂ T ₃₃	Delay to reset interrupt from IOR* Delay from stop to set interrupt Delay from IOR* to reset interrupt Delay from initial INT reset to transmit start	8		70 1 _{._{Rdk} 200 24}	ns ns ns *	100 pF load 100 pF load 100 pF load
T 34 T 35 T 38 T 39 T 40 T 41 T 42 T 43	Delay from stop to interrupt Delay from IOW* to reset interrupt Delay from rising IOW* to output data ACK* pulse width PD7 - PD0 setup time PD7 - PD0 hold time Delay from ACK* low to interrupt low Delay from IOR* to reset interrupt	5 75 10 25 5 5		100	ns ns ns ns ns ns	
N	Baud rate devisor	1		2 ¹⁶ -1		

Note 1 *Baudout*cycle

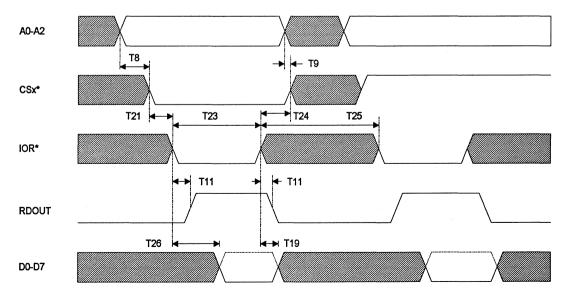
3

ABSOLUTE MAXIMUM RATINGS


Operating supply range Voltage at any pin Operating temperature Storage temperature Package dissipation 7 Volts ± 5% GND-0.3 V to VCC+0.3 V 0° C to +70° C -40° C to +150° C 500 mW

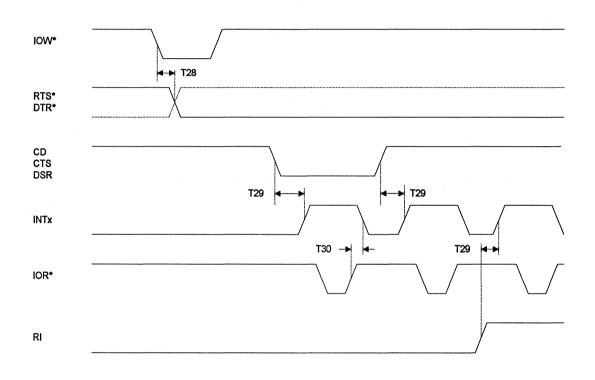
DC ELECTRICAL CHARACTERISTICS

 T_{A} =25° C, V_{cc} =5.0 V ± 5% unless otherwise specified.

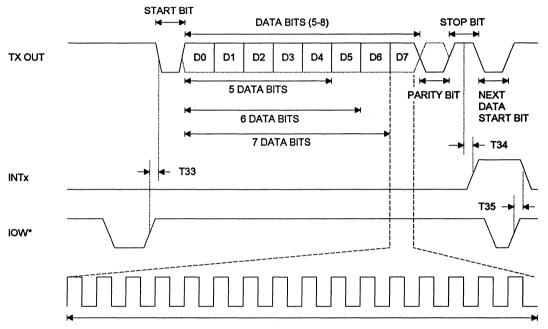

Symbol	Parameter	Min	Limits Typ	Max	Units	Conditions
Vilck Viick Vii Vii Vii Vol	Clock input low level Clock input high level Input low level Input high level Output low level	-0.5 3.0 -0.5 2.2		0.6 VCC 0.8 VCC 0.4	>>> >>	$I_{ol} = 6.0 \text{ mA D7-D0}$ $I_{ol} = 20.0 \text{ mA PD7-PD0}$ $I_{ol} = 10 \text{ mA}$ SLCTIN*, INIT*,STROBE*, AUTOFDXT* $I_{ol} = 6.0 \text{ mA on all}$ other outputs
V _{oH}	Output high level	2.4			V	$I_{OH} = -6.0 \text{ mA D7-} \\ D0 \\ I_{OH} = -12.0 \text{ mA} \\ PD7-PD0 \\ I_{OH} = -0.2 \text{ mA} \\ SLCTIN*, \\ INIT*, STROBE*, \\ AUTOFDXT* \\ I_{OH} = -6.0 \text{ mA on all} \\ othe outputs \\ I \\ Othe outputs \\ I \\ Othe outputs \\ I \\ Othe Other \\ I \\ Other \\ I $
I _{cc} I _⊫ I _{cL}	Avg power supply current Input leakage Clock leakage			12 ±10 ±10	mΑ μΑ μΑ	

3

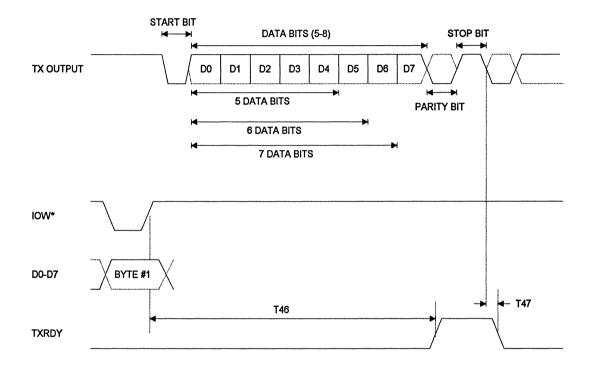
GENERAL WRITE TIMING

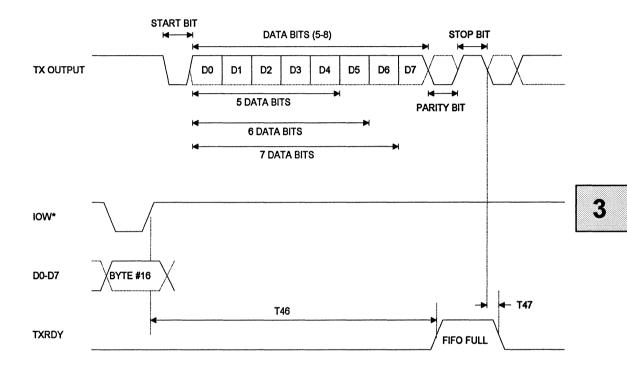

GENERAL READ TIMING

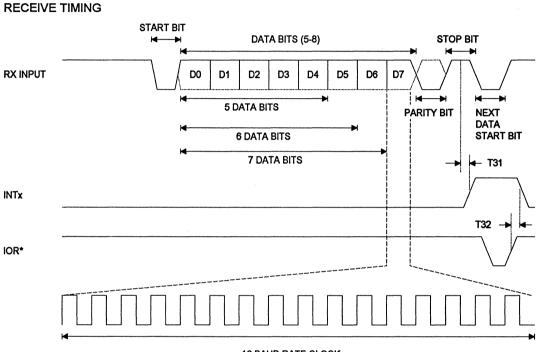
3-231


ST16C552

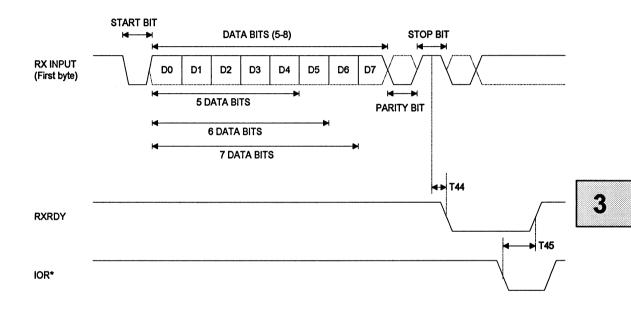
MODEM TIMING

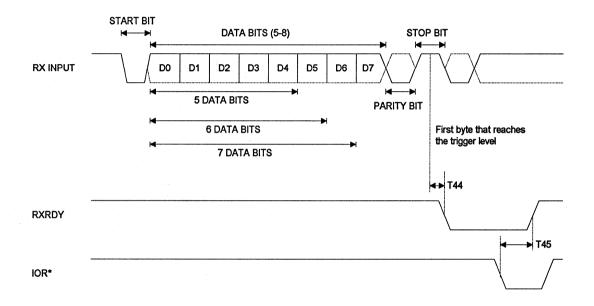

3

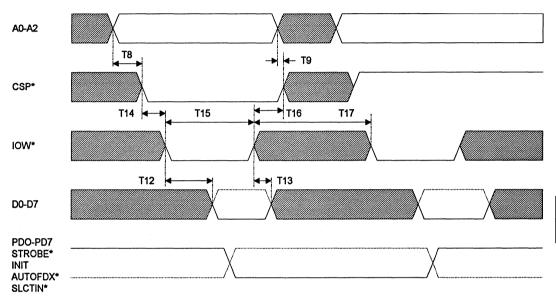

TRANSMIT TIMING


16 BAUD RATE CLOCK

TXRDY TIMING FOR MODE "0"

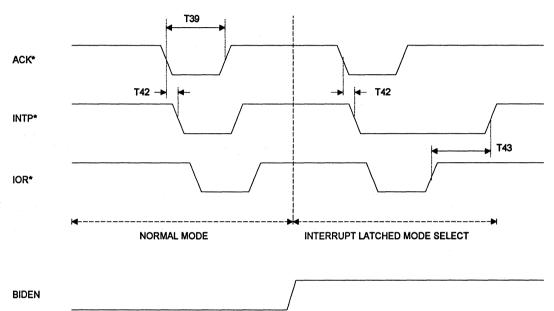

TXRDY TIMING FOR MODE "1"


16 BAUD RATE CLOCK


RXRDY TIMING FOR MODE "0"

ST16C552

RXRDY TIMING FOR MODE "1"



PARALLEL PORT GENERAL WRITE TIMING

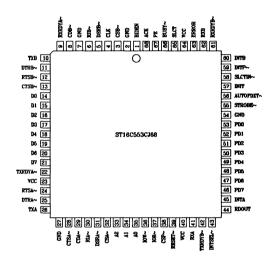
3

ST16C552

PARALLEL PORT READ TIMING

APR 1992

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER WITH FIFO AND PARALLEL PRINTER PORT WITH 83 BYTE FIFO


DESCRIPTION

The ST16C553 is a dual universal asynchronous receiver and transmitter with 16 byte transmit and receive FIFO and a bidirectional CENTRONICS type parallel printer port with 83 byts of FIFO. A programmable baud rate generator is provided to select transmit and receive clock rates from 50Hz to 448kHz.

The ST16C553 on board status registers provides the error conditions, type and status of the transfer operation being performed. Included is complete MO-DEM control capability, and a processor interrupt system that may be software tailored to the user's requirements. The ST16C553 provides internal loopback capability for on board diagnostic testing.

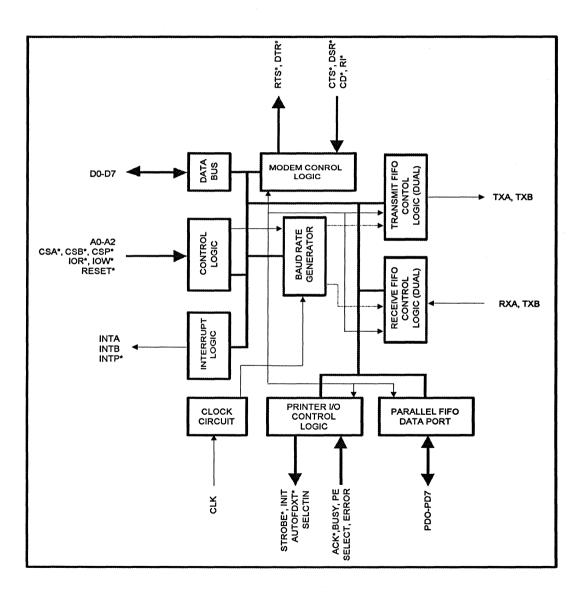
The ST16C553 is fabricated in an advanced 1.2 μ CMOS process to achieve low drain power and high speed requirements.

PLCC Package

FEATURES

- Pin to pin and functional compatible to VL16C552, WD16C552
- * 16 byte transmit FIFO
- * 16 byte receive FIFO with error flags
- * 83 bytes of printer output FIFO
- * Modem control signals (CTS*, RTS*, DSR*, DTR*, RI*, CD*)
- * Programmable character lengths (5, 6, 7, 8)
- * Even, odd, or no parity bit generation and detection
- Status report register
- * Independent transmit and receive control
- * TTL compatible inputs, outputs
- * Software compatible with INS8250, NS16C550
- * 448 kHz transmit/receive operation with 7.372 MHz crystal or external clock source.
- * Bidirectional hardware/software parallel port
- * Bidirectional I/O ports

ORDERING INFORMATION


 Part number
 Package
 Operating
 temperature

 ST16C553CJ68
 PLCC
 0° C
 to + 70° C

 *Industrial operating rage are available

ST16C553

BLOCK DIAGRAM

3-242

3

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
D0-D7	14-21	VO	Bidirectional data bus. Eight bit, three state data bus to transfer information to or from the CPU. D0 is the least significant bit of the data bus and the first serial data bit to be received or transmitted.
A0-A2	35-33	1	Address select lines. To select internal registers.
CLK	4	I	Clock input. An external clock can be used to clock internal circuit and baud rate generator for custom transmission rates.
BIDEN	1	I	Printer direction select. A high puts the parallel port in the input / output mode and low sets the ST16C553 to output mode.
IOW*	36	l	Write strobe (active low). A low on this pin will transfer the contents of the CPU data bus to the addressed register.
IOR*	37	I	Read strobe (active low). A low level on this pin transfers the contents of the ST16C553 data bus to the CPU.
RDOUT	44	ο	Read select out (active high). This pin goes high when the CPU is reading data from the ST16C553 to en/disable the external transceiver or logics.
RESET*	39	I .	Master reset (active low). A low on this pin will reset all the outputs and internal registers. The transmitter output and the receiver input will be disabled during reset time.
CS A/B*	32,3	I	Chip select A/B (active low). A low at this pin enables the serial port-A/B / CPU data transfer operation.
DSR A/B*	31,5	I	Data set ready A/B (active low). A low on this pin indicates the MODEM is ready to exchange data with UART. This pin does not have any effect on the transmit or receive operation.
RIA/B*	30,6	I	Ring detect indicator A/B (active low). A low on this pin indicates the modem has received a ringing signal from telephone line.

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
CD A/B*	29,8	I	Carrier detect A/B (active low). A low on this pin indicates the carrier has been detected by the modem.
TX A/B	26,10	Ο	Serial data output A/B. The serial data is transmitted via this pin with additional start, stop and parity bits. The TX will be held in mark (high) state during reset, local loopback mode or when the transmitter is disabled.
DTR A/B*	25,11	ο	Data terminal ready A/B (active low). To indicate that ST16C553 is ready to receive data. This pin can be controlled via the modem control register (MCR bit-0). Writing a "1" at the MCR bit-0 will set the DTR* output to low. This pin will be set to high state after writing a "0" to that register or after the reset. Note that this pin does not have any effect on the transmit or receive operation.
RTS A/B*	24,12	0	Request to send A/B (active low). To indicate that the trans- mitter has data ready to send. Writing a "1" in the modem control register (MCR bit-1) will set this pin to a low state. After the reset this pin will be set to high. Note that this pin does not have any effect on the transmit or receive operation.
RX A/B	41,62	I	Serial data input A/B. The serial information (data) received from serial port to ST16C553 receive input circuit. A mark (high) is logic one and a space (low) is logic zero. During the local loopback mode the RX input is disabled from external connection and connected to the TX output internally.
CTS A/B*	36	1	Clear to send A/B (active low). The CTS* signal is a MODEM control function input whose conditions can be tested by reading the MSR BIT-4. CTS* has no effect on the transmit or receive operation.
INT A/B	45,60	0	Interrupt output A/B (three state active high) This pin goes high (when enabled by the interrupt enable register) when- ever a receiver error, receiver data available, transmitter empty, or modem status condition flag is detected.
TXRDYA/B*	22,42	ο	Transmit ready A/B (active low). This pin goes low when the transmit FIFO of the ST16C553 is full. It can be used as a

3

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
			single or multi-transfer.
RXRDY A/B*	9,61	0	Receive ready A/B (active low). This pin goes low when the receive FIFO is full. It can be used as a single or multi-transfer.
CSP*	38	I	Parallel printer port chip select (active low). A low at this pin enables the parallel port / CPU data transfer operation.
PD7-PD0	46-53	VO	Bidirectional parallel ports (three state). To transfer data in or out of the ST16C553 parallel port. PD7-PD0 are latched during output mode.
STROBE*	55	VO	General purpose I/O or strobe output (open drain active low). To transfer latched data to the external peripheral or printer.
AUTOFDXT*	56	VO	General purpose I/O or line printer autofeed (open drain active low). To signal the printer for continuous form feed.
INIT	57	VO	General purpose I/O or line printer initialize (open drain active high). To signal the line printer to enter internal initialization routine.
SLCTIN*	58	VO	General purpose I/O or line printer select (open drain active low). To select the line printer.
ERROR*	63	I	General purpose input or line printer error (active low). This is an output from the printer to indicate an error by holding it low during error condition.
SLCT	65	I s	General purpose input or line printer selected (active high). This is an output from the printer to indicate that the line printer has been selected.
BUSY	66	l	General purpose input or line printer busy (active high). An output from the printer to indicate printer is not ready to accept data.
PE	67	1	General purpose input or line printer paper empty (active high). An output from the printer to indicate out of paper.

ST16C553

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
ACK*	68	I	General purpose input or line printer acknowledge (active low). An output from the printer to indicate that data has been accepted successfully.
INTP*	59	ο	Printer interrupt output (active low). To signal the state of the printer port. This pin tracks the ACK* input pin, When ACK* is low INTP is low and when ACK* is high INTP is high
INTSEL*	43	I	Interrupt select mode. The external ACK* can be selected as an interrupt source by connecting this pin to the GND. Connecting this pin to VCC will set the interrupt to latched mode, reading the status register of the printer section resets the INTP output.
GND	2,7,54	ο	Signal and power ground.
VCC	23,40,64	I	Power supply input.

PROGRAMMING TABLE FOR SERIAL PORTS

A2	A1	A0	READ MODE	WRITE MODE
0	0	0	Receive Holding Register	Transmit Holding Register
0	0	1		Interrupt Enable Register
0	1	0	Interrupt Status Register	FIFO Control Register
0	1	1		Line Control Register
1	0	0		Modem Control Register
1	0	1	Line Status Register	
1	1	0	Modem Status Register	
1	1	1	Scratchpad Register	Scratchpad Register
0	0	0		LSB of Divisor Latch
0	Ō	1		MSB of Divisor Latch
		2.		·

ST16C553 ACCESSIBLE REGISTERS

A2	A1	A0	Register	BIT-7	BIT-6	BIT-5	BIT-4	BIT-3	BIT-2	BIT-1	BIT-0
0	0	0	RHR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	0	THR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	1	IER	0	0	0	0	modem status interrupt	receive line status interrupt	transmit holding register	receive holding register
0	1	0	FCR	RCVR trigger (MSB)	RCVR trigger (LSB)	0	0	DMA mode select	XMIT FIFO reset	RCVR FIFO reset	FIFO enable
0	1	0	ISR	0/ FIFOs enabled	0/ FIFOs enabled	0	0	int priority bit-2	int priority bit-1	int priority bit-0	int status
0	1	1	LCR	divisor latch enable	set break	set parity	even parity	parity enable	stop bits	word length bit-1	word length bit-0
1	0	0	MCR	0	0	0	loop back	INT enable	Not used	RTS*	DTR*
1	0	1	LSR	0/ FIFO error	trans. empty	trans. holding empty	break interrupt	framing error	parity error	overrun error	receive data ready
1	1	0	MSR	CD	RI	DSR	стѕ	delta CD*	delta RI*	delta DSR*	delta CTS*
1	1	1	SPR	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	0	DLL	bit-7	bit-6	bit-5	bit-4	bit-3	bit-2	bit-1	bit-0
0	0	1	DLM	bit-15	bit-14	bit-13	bit-12	bit-11	bit-10	bit-9	bit-8

3

REGISTER FUNCTIONAL DESCRIPTIONS

TRANSMIT AND RECEIVE HOLDING REGISTER

The serial transmitter section consists of a Transmit Hold Register (THR) and Transmit Shift Register (TSR). The status of the transmit hold register is provided in the Line Status Register (LSR). Writing to this register (THR) will transfer the contents of data bus (D7-D0) to the Transmit holding register whenever the transmitter holding register or transmitter shift register is empty. The transmit holding register empty flag will be set to "1" when the transmitter is empty or data is transferred to the transmit shift register. Note that a write operation should be performed when the transmit holding register empty flag is set.

On the falling edge of the start bit, the receiver internal counter will start to count 7 1/2 clocks (16x clock) which is the center of the start bit. The start bit is valid if the RX is still low at the mid-bit sample of the start bit. Verifying the start bit prevents the receiver from assembling a false data character due to a low going noise spike on the RX input. Receiver status codes will be posted in the Line Status Register.

FIFO INTERRUPT MODE OPERATION

When the receive FIFO (FCR BIT-0=1) and receive interrupts (IER BIT-0=1) are enabled, receiver interrupt will occur as follows:

A) The receive data available interrupts will be issued to the CPU when the FIFO has reached its programmed trigger level; it will be cleared as soon as the FIFO drops below its programmed trigger level.

B) The ISR receive data available indication also occurs when the FIFO trigger level is reached, and like the interrupt it is cleared when the FIFO drops below the trigger level.

C) The data ready bit (LSR BIT-0) is set as soon as a character is transferred from the shift register to the receiver FIFO. It is reset when the FIFO is empty.

FIFO POLLED MODE OPERATION

When FCR BIT-0=1; resetting IER BIT 3-0 to zero puts the ST16C553 in the FIFO polled mode of operation. Since the receiver and transmitter are controlled separately either one or both can be in the polled mode operation by utilizing the Line Status Register.

A) LSR BIT-0 will be set as long as there is one byte in the receive FIFO.

B) LSR BIT4-1 will specify which error(s) has occurred.

C) LSR BIT-5 will indicate when the transmit FIFO is empty.

D) LSR BIT-6 will indicate when both transmit FIFO and transmit shift register are empty.

E) LSR BIT-7 will indicate when there are any errors in the receive FIFO.

The ST16C553 requires to have two step FIFO enable operation in order to enable receive trigger levels.

PROGRAMMABLE BAUD RATE GENERATOR

The ST16C553 contains a programmable Baud Rate Generator that is capable of taking any clock input from DC-8 MHz and dividing it by any divisor from 2 to 2¹⁶-1. The output frequency of the Baudout* is equal to 16X of transmission baud rate (Baudout*=16 x Baud Rate). Customize Baud Rates can be achieved by selecting proper divisor values for MSB and LSB of baud rate generator.

INTERRUPT ENABLE REGISTER (IER)

The Interrupt Enable Register (IER) masks the incoming interrupts from receiver ready, transmitter empty, line status and modem status registers to the INT output pin.

IER BIT-0:

0=disable the receiver ready interrupt. 1=enable the receiver ready interrupt.

IER BIT-1:

0=disable the transmitter empty interrupt. 1=enable the transmitter empty interrupt.

IER BIT-2:

0=disable the receiver line status interrupt. 1=enable the receiver line status interrupt.

IER BIT-3:

0=disable the modem status register interrupt. 1=enable the modem status register interrupt.

IER BIT 7-4:

All these bits are set to logic zero.

INTERRUPT STATUS REGISTER (ISR)

The ST16C553 provides four level prioritized interrupt conditions to minimize software overhead during data character transfers. The Interrupt Status Register (ISR) provides the source of the interrupt in prioritized matter. During the read cycle the ST16C553 provides the highest interrupt level to be serviced by CPU. No other interrupts are acknowledged until the particular interrupt is serviced. The following are the prioritized interrupt levels:

Priority level

Ρ	D3	D2	D1	DO	Source of the interrupt
1	0	1	1	0	LSR (Receiver Line Sta- tus Register)
2	1	1	0	0	RXRDY (Received Data Ready) or receice time out.
3	0	0	1	0	TXRDY(Transmitter Holding Register Empty)
4	0	0	0	0	MSR (Modem Status Register)

ISR BIT-0:

0=an interrupt is pending and the ISR contents may be used as a pointer to the appropriate interrupt service routine.

1=no interrupt pending.

ISR BIT 1-3:

Logical combination of these bits, provides the highest priority interrupt pending.

ISR BIT 4-7:

These bits are not used and are set to zero in ST16C450 mode. BIT 6-7: are set to "1" in ST16C553 mode.

FIFO CONTROL REGISTER (FCR)

This register is used to enable the FIFOs, clear the FIFOs, set the receiver FIFO trigger level, and select the type of DMA signalling.

FCR BIT-0:

0=Disable the transmit and receive FIFO. 1=Enable the transmit and receive FIFO. This bit should be enabled before setting the FIFO trigger levels.

FCR BIT-1:

0=No change.

1=Clears the contents of the receive FIFO and resets its counter logic to 0 (the receive shift register is not cleared or altered). This bit will return to zero after clearing the FIFOs.

FCR BIT-2:

0=No change.

1=Clears the contents of the transmit FIFO and resets its counter logic to 0 (the transmit shift register is not cleared or altered). This bit will return to zero after clearing the FIFOs.

FCR BIT-3:

0=No change.

1=Changes RXRDY and TXRDY pins from mode "0" to mode "1".

FCR BIT 4-5: Not used.

FCR BIT 6-7:

These bits are used to set the trigger level for the receiver FIFO interrupt.

BIT-7	BIT-6	FIFO trigger level
o	o	01
0	1	04
1	0	08
1	1	14
1	1	14

LINE CONTROL REGISTER (LCR)

The Line Control Register is used to specify the asynchronous data communication format. The number of the word length, stop bits, and parity can be selected by writing appropriate bits in this register.

LCR BIT1-0:

These two bits specify the word length to be transmitted or received.

BIT-1	BIT-0	Word length
0	0	5
0	1	6
1	0	7
1	1	8

LCR BIT-2:

The number of stop bits can be specified by this bit.

BIT-2	Word length	Stop bit(s)
0 1	5,6,7,8 5	1 1-1/2
1	6,7,8	2

LCR BIT-3:

Parity or no parity can be selected via this bit. 0=no parity

1=a parity bit is generated during the transmission, receiver also checks for received parity.

LCR BIT-4:

If the parity bit is enabled, LCR BIT-4 selects the even or odd parity format.

0=ODD parity is generated by forcing an odd number of 1's in the transmitted data, receiver also checks for same format.

1= EVEN parity bit is generated by forcing an even the number of 1's in the transmitted data, receiver also checks for same format.

LCR BIT-5:

If the parity bit is enabled, LCR BIT-5 selects the forced parity format.

LCR BIT-5=1 and LCR BIT-4=0, parity bit is forced to "1" in the transmitted and received data.

LCR BIT-5=1 and LCR BIT-4=1, parity bit is forced to "0" in the transmitted and received data.

LCR BIT-6:

Break control bit. It causes a break condition to be transmitted (the TX is forced to low state).

0=normal operating condition.

1=forces the transmitter output (TX) to go low to alert the communication terminal.

LCR BIT-7:

The internal baud rate counter latch enable (DLEN). 0=normal operation. 1=select divisor latch register.

MODEM CONTROL REGISTER (MCR)

This register controls the interface with the MODEM or a peripheral device (RS232).

MCR BIT-0:

0=force DTR* output to high. 1=force DTR* output to low.

MCR BIT-1: 0=force RTS* output to high. 1=force RTS* output to low.

MCR BIT-2:

Not used.

MCR BIT-3:

0=set INT output pin to three state mode. 1=set INT output pin to normal / active operating mode.

MCR BIT-4:

0=normal operating mode.

1=enable local loop-back mode (diagnostics). The transmitter output (TX) is set high (Mark condition), the receiver input (RX), CTS*, DSR*, CD*, and RI* are disabled. Internally the transmitter output is connected to the receiver input and DTR*, RTS*, MCR bit-2 and INT enable are connected to modem control inputs.

In this mode, the receiver and transmitter interrupts are fully operational. The Modem Control Interrupts are also operational, but the interrupts sources are now the lower four bits of the Modem Control Register instead of the four Modem Control inputs. The interrupts are still controlled by the IER.

MCR BIT 5-7:

Not used. Are set to zero permanently.

LINE STATUS REGISTER (LSR)

This register provides the status of data transfer to CPU.

LSR BIT-0:

0=no data in receive holding register or FIFO. 1=data has been received and saved in the receive holding register or FIFO.

LSR BIT-1:

0=no overrun error (normal).

1=overrun error, next character arrived before receive holding register was emptied or if FIFOs are enabled, an overrun error will occur only after the FIFO is full and the next character has been completely received in the shift register. Note that character in the shift register is overwritten, but it is not transferred to the FIFO.

LSR BIT-2:

0=no parity error (normal).

1=parity error, received data does not have correct parity information. In the FIFO mode this error is associated with the character at the top of the FIFO.

LSR BIT-3:

0=no framing error (normal).

1=framing error received, received data did not have a valid stop bit. In the FIFO mode this error is associated with the character at the top of the FIFO.

LSR BIT-4:

0=no break condition (normal).

1=receiver received a break signal (RX was low for one character time frame). In FIFO mode, only one zero character is loaded into the FIFO.

LSR BIT-5:

0=transmit holding register is full. ST16C553 will not accept any data for transmission.

1=transmit holding register (or FIFO) is empty. CPU can load the next character.

LSR BIT-6:

0=transmitter holding and shift registers are full. 1=transmitter holding and shift registers are empty. In FIFO mode this bit is set to one whenever the transmitter FIFO and transmit shift register are empty.

LSR BIT-7:

0=Normal.

1=At least one parity error, framing error or break indication in the FIFO. This bit is cleared when LSR is read.

MODEM STATUS REGISTER (MSR)

This register provides the current state of the control lines from the modem or peripheral to the CPU. Four bits of this register are used to indicate the changed information. These bits are set to "1" whenever a

control input from the MODEM changes state. They are set to "0" whenever the CPU reads this register.

MSR BIT-0:

Indicates that the CTS* input to the ST16C553 has changed state since the last time it was read.

MSR BIT-1:

Indicates that the DSR* input to the ST16C553 has changed state since the last time it was read.

MSR BIT-2:

Indicates that the RI* input to the ST16C553 has changed from a low to a high state.

MSR BIT-3:

Indicates that the CD* input to the ST16C553 has changed state since the last time it was read.

MSR BIT-4:

This bit is equivalent to RTS in the MCR during local loop-back mode. It is the compliment of the CTS* input.

MSR BIT-5:

This bit is equivalent to DTR in the MCR during local loop-back mode. It is the compliment of the DSR* input.

MSR BIT-6:

This bit is equivalent to OP1 in the MCR during local loop-back mode. It is the compliment of the RI* input.

MSR BIT-7:

This bit is equivalent to OP2 in the MCR during local loop-back mode. It is the compliment to the CD* input.

Note: Whenever MSR BIT3-0: is set to logic "1", a MODEM Status Interrupt is generated.

SCRATCHPAD REGISTER (SR)

ST16C553 provides a temporary data register to store 8 bits of information for variable use.

BAUD RATE GENERATOR PROGRAMMING TABLE (1.8432 MHz CLOCK):

BAUD RATE	16 x CLOCK DIVISOR	% ERROR
50	2304	
110	1047	0.026
150	768	
300	384]
600	192	
1200	96	
2400	48	
4800	24	
7200	16	
9600	12	
19.2K	6	
38.4K	3	
56K	2	2.86
112K	1	

ST16C553 EXTERNAL RESET CONDITION

REGISTERS	RESETSTATE
IER	IER BITS 0-7=0
ISR	ISR BIT-0=1, ISR BITS 1-7=0
LCR	LCR BITS 0-7=0
MCR	MCRBITS0-7=0
LSR	LSR BITS 0-4=0,
	LSR BITS 5-6=1 LSR, BIT 7=0
MSR	MSR BITS 0-3=0,
	MSR BITS 4-7=input signals
FCR	FCR BITS 0-7=0

SIGNALS	RESETSTATE
тх	High
RTS*	High
DTR*	High
INT	Three state mode
RXRDY*	High
TXRDY*	High

PRINTER PORT PROGRAMMING TABLE:

0 0 PORT REGISTER PORT REGISTER 0 1 I/O SELECT REGISTER STATUS REGISTER 1 0 CONTROL REGISTER COMMAND REGISTER	

* Reading the status register will reset the INTP output.

PRINTER PORT REGISTER DESCRIPTIONS PRINTER FUNCTIONAL DESCRIPTION

The ST16C553 printer section is designed to operate as normal printer interface without any additional settings for the printer FIFO. Contents of the FIFO will be cleared after reset or toggling the INT line to low state. The ST16C553 will monitor the ACK* input pin for FIFO operation, as soon as first ACK* received from printer, auto FIFO mode will trigger the FIFO operation and the user can load up to 83 bytes of data by monitoring the status register for ACK* and BUSY* signals. The FIFO data will transfer to printer at printer loading speed. The ST16C553 provides 83 bytes of FIFO for output direction to the printer only.

PORTREGISTER

Bidirectional printer port.

Writing to this register during output mode will transfer the contents of the data bus to the PD7-PD0 ports Reading this register during input mode will transfer the states of the PD7-PD0 to the data bus. This register will be set to the output mode after reset.

PR BIT 7-0: PD7-PD0 bidirectional I/O ports.

STATUS REGISTER

This register provides the state of the printer outputs and the interrupt condition.

SR BIT 1-0:

Not used. Are set to "1" permanently.

SR BIT-2:

Interrupt condition. 0= an interrupt is pending This bit will be set to "0" at the falling edge of the ACK* input. 1= no interrupt is pending Reading the STATUS REGISTER will set this bit to "1".

SR BIT-3:

ERROR* input state. 0= ERROR* input is in low state 1= ERROR* input is in high state

SR BIT-4:

SLCT input state. 0= SLCT input is in low state 1= SLCT input is in high state

SR BIT-5:

PE input state. 0= PE input is in low state 1= PE input is in high state

SR BIT-6: ACK* input state. 0= ACK* input is in low state 1= ACK* input is in high state

SR BIT-7: BUSY input state. 0= BUSY input is in high state 1= BUSY input is in low state

COMMAND REGISTER

The state of the STROBE*, AUTOFDXT*, INIT, SLCTIN* pins, and interrupt enable bit can be read by this register regardless of the I/O direction.

COM BIT-0:

STROBE* input pin. 0= STROBE* pin is in high state 1= STROBE* pin is in low state

COM BIT-1:

AUTOFDXT* input pin. 0= AUTOFDXT* pin is in high state 1= AUTOFDXT* pin is in low state

COM BIT-2:

INIT input pin. 0= INIT pin is in low state 1= INIT pin is in high state

COM BIT-3:

SLCTIN* input pin. 0= SLCTIN* pin is in high state 1= SLCTIN* pin is in low state

COM BIT-4:

Interrupt mask. 0= Interrupt (INTP output) is disabled 1= Interrupt (INTP output) is enabled

COM BIT 7-5:

Not used. Are set to "1" permanently.

CONTROL REGISTER.

Writing to this register will set the state of the STROBE*, AUTOFDXT*, INIT, SLCTIN pins, and interrupt mask register.

CON BIT-0: STROBE* output control bit. 0= STROBE* output is set to high state 1= STROBE* output is set to low state

CON BIT-1:

AUTOFDXT* output control bit. 0= AUTOFDXT* output is set to high state 1= AUTOFDXT* output is set to low state

CON BIT-2:

INIT output control bit. 0= INIT output is set to low state 1= INIT output is set to high state

CON BIT-3:

SLCTIN* output control bit. 0= SLCTIN* output is set to high state 1= SLCTIN* output is set to low state

CON BIT-4:

Interrupt output control bit. 0= INTP output is disabled 1= INTP output is enabled

CON BIT-5:

I/O select. Direction of the PD7-PD0 can be selected by setting or clearing this bit.
0= PD7-PD0 are set for output mode
1= PD7-PD0 are set for input mode

PARALLEL PORT DIRECTION SELECT REGISTER (WRITE ONLY)

CONTROL REGISTER (D5)	BIDEN	I/O SELECT REGISTER	PORT DIRECTION
x	0	AA Hex	Input mode
x	0	55 Hex	Output mode
0	1	X	Output mode
1	1	X	Input mode

CON BIT 7-6:

Not used.

I/O SELECT REGISTER

Software controlled I/O select.

Bidirectional mode can be selected by keeping the BIDEN input in high state and setting CON BIT-5 to "zero or one"

Hardware/software I/O select.

Bidirectional mode can be selected by keeping the BIDEN input in low state and setting I/O SELECT register to "AA" Hex for input or "55" Hex for output.

ST16C553 EXTERNAL RESET CONDITION

SIGNALS	RESETSTATE
PD0-PD7	High, output mode
STROBE*	High, output mode
AUTOFDXT*	High, output mode
INIT	Low, output mode
SLCTIN*	High, output mode

3

ST16C553 PRINTER PORT REGISTER CONFIGURATIONS

P	OR	TF	RE	GI	S	TI	EF	S

(READ/WRITE)

D7		D5	D4			80 🛡 🖉 (C. C. C	I DO
PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0

STATUS REGISTER (READ ONLY)

D7	D6	D5	D4	D3	D2	D1	DO
BUSY*	ACK	PE	SLCT	ERROR STATE	IRQ	1	1
					1= No intern 0= Interrupt	ıpt	

COMMAND REGISTER (READ ONLY)

D7	D6	D5	D4	D3	D2	D1	D0
1	1	1	IRQ ENABLE	SLCTIN*	INIT	AUTO- FDXT*	STROBE*
			0= IRQ disabled 1= IRQ enabled				

CONTROL REGISTER (WRITE ONLY)

D7	D6	D5	D4	D3	D2	D1	DO
-		I/O SELECT	IRQ MASK	SLCTIN*	INIT	AUTO- FDXT*	STROBE*
	0=Output		0=INTP output disabled				
	1=Input		1=INTP output enabled				

AC ELECTRICAL CHARACTERISTICS

 $\rm T_{A}{=}25^{\circ}$ C, $\rm V_{cc}{=}5.0~V\pm5\%$ unless otherwise specified.

Symbol	Parameter		Limits		Units	Conditions
		Min	Тур	Max		
T,	Clock high pulse duration	60			ns	
$ \begin{array}{c} T_{1} \\ T_{2} \\ T_{3} \\ T_{8} \\ T_{9} \\ T_{11} \\ T_{12} \end{array} $	Clock low pulse duration	60			ns	External clock
T ₃	Clock rise/fall time	10			ns	
T ₈	Chip select setup time	25			ns	
T,	Chip select hold time	0			ns	400 - 51 4
T ₁₁	IOR* to drive disable delay			35	ns	100 pF load
1 ¹²	Address hold time from IOW* IOW* delay from address	5 25			ns ns	
T_{13}^{12}	IOW* delay from chip select	10			ns	
T ¹⁰	IOW* strobe width	50			ns	
T ₁₅ T ₁₆	Chip select hold time from IOW*	5			ns	
T_{17}^{16}	Write cycle delay	55			ns	
Тŵ	Write cycle= $T_{15} + T_{17}$	135			ns	
Т ₁₉	Data hold time	25			ns	
T ₂₁	IOR* delay from chip select	10			ns	
T ₂₃	IOR* strobe width	75			ns	
T ₂₃ T ₂₄ T ₂₅ Tr	Chip select hold time from IOR*	0			ns	
T_25	Read cycle delay	50			ns	
		135		75	ns	100 pE lood
T ₂₆ T ₂₈ T ₂₉	Delay from IOR* to data			75 50	ns ns	100 pF load 100 pF load
1 -2 ²⁸	Delay from IOW* to output Delay to set interrupt from MODEM			50 70	ns	100 pF load
29	input			10	115	
T ₃₀	Delay to reset interrupt from IOR*			70	ns	100 pF load
T ₃₀ T ₃₁	Delay from stop to set interrupt			1 _{Rdk} 200	ns	100 pF load
T ₃₂	Delay from IOR* to reset interrupt				ns	100 pF load
T ₃₃	Delay from initial INT reset to transmit start	. 8		24	*	
Т ₃₄	Delay from stop to interrupt			100	ns	
Τ	Delay from IOW* to reset interrupt			175	ns	
T ₃₅ T ₃₈	Delay from rising IOW* to output data	5			ns	
T ₃₉	ACK* pulse width	75			ns	

3

AC ELECTRICAL CHARACTERISTICS

 T_{A} =25° C, V_{cc} =5.0 V ± 5% unless otherwise specified.

Symbol	Parameter	Min	Limits Typ	Max	Units	Conditions
T40 T41 T42 T43 T44 T45 T46 T47 N	PD7 - PD0 setup time PD7 - PD0 hold time Delay from ACK* low to interrupt low Delay from IOR* to reset interrupt Delay from stop to set RxRdy Delay from IOR* to reset RxRdy Delay from IOW* to set TxRdy Delay from start to reset TxRdy Baud rate devisor	10 25 5 5		1 _{RCLK} 1 195 8 2 ¹⁶ -1	ns ns ns ns μs ns *	

Note 1 *Baudout* cycle

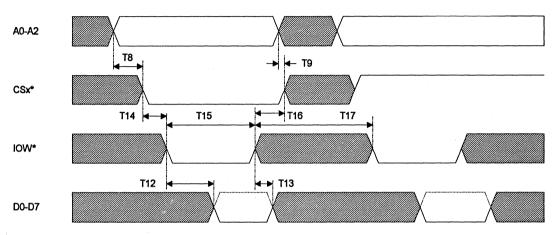
ABSOLUTE MAXIMUM RATINGS

Operating supply range Voltage at any pin Operating temperature Storage temperature Package dissipation

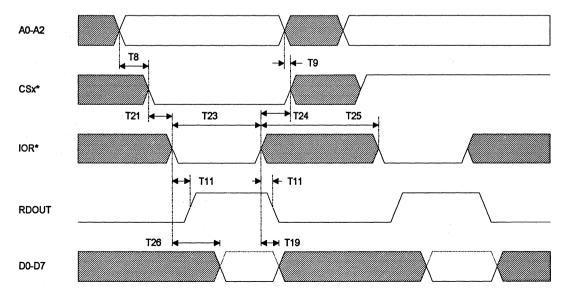
DC ELECTRICAL CHARACTERISTICS

T_s=25° C, V_cc=5.0 V ± 5% unless otherwise specified.

Symbol	Parameter	Min	Limits Typ	Max	Units	Conditions
V _{ILCK} V _{HCK} V _H V _H V _A	Clock input low level Clock input high level Input low level Input high level Output low level	-0.5 3.0 -0.5 2.2		0.6 VCC 0.8 VCC 0.4		$I_{\alpha} = 6.0 \text{ mA D7-D0}$ $I_{\alpha} = 20.0 \text{ mA PD7-PD0}$ $I_{\alpha} = 10 \text{ mA}$ SLCTIN*, INIT*,STROBE*, AUTOFDXT* $I_{\alpha} = 6.0 \text{ mA on all}$ other outputs
V _{OH}	Output high level	2.4			V	$I_{OH} = -6.0 \text{ mA D7-D0}$ $I_{OH} = -12.0 \text{ mA PD7-PD0}$ $I_{OH} = -0.2 \text{ mA}$ SLCTIN*, INIT*,STROBE*, AUTOFDXT* $I_{OH} = -6.0 \text{ mA on all}$ othe outputs
ا ₈₈ ار	Avg power supply current Input leakage Clock leakage			12 ±10 ±10	е А А	

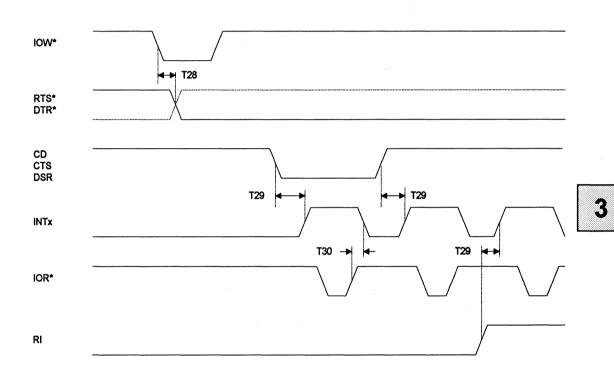

7 Volts ± 5% GND-0.3 V to VCC+0.3 V 0° C to +70° C -40° C to +150° C 500 mW

3-259

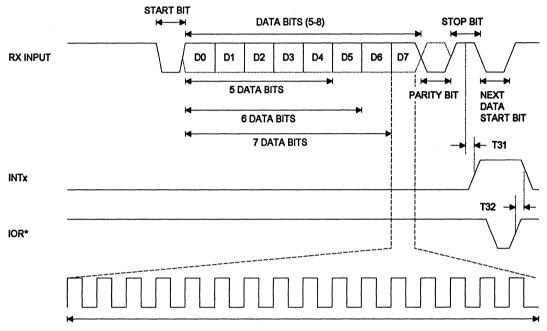

3

ST16C553

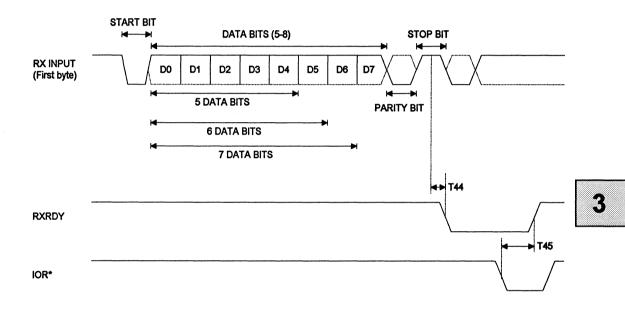
GENERAL WRITE TIMING


GENERAL READ TIMING

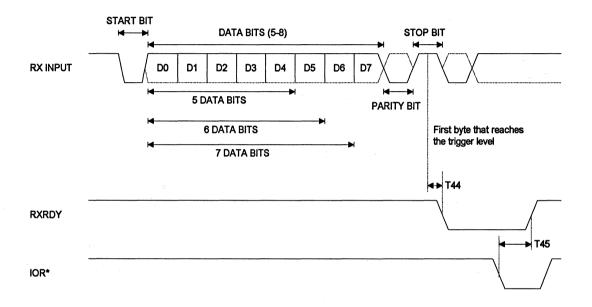
3-260

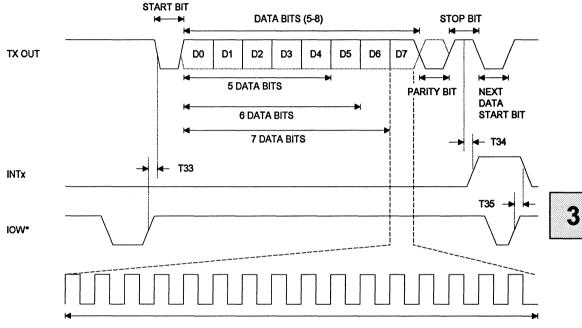

ST16C553

MODEM TIMING



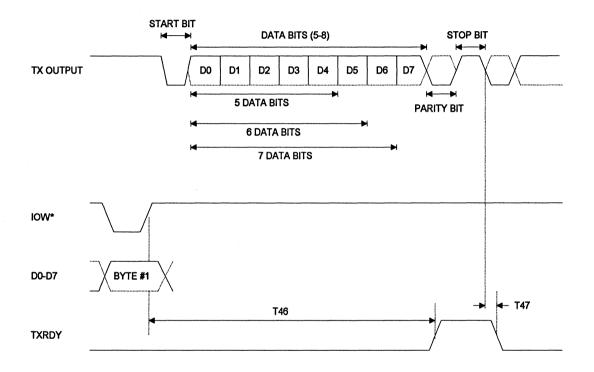
RECEIVE TIMING



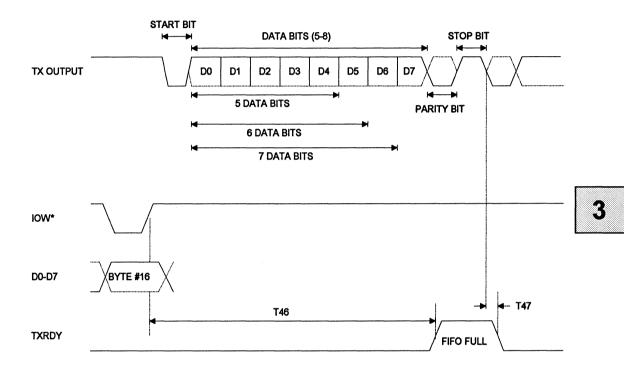

16 BAUD RATE CLOCK

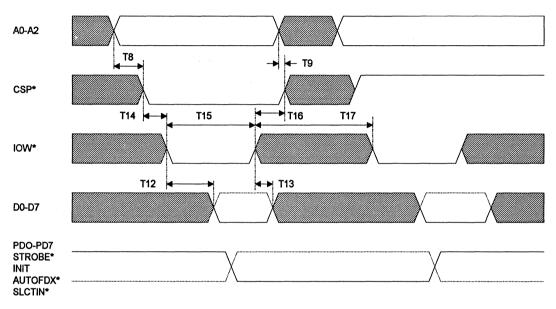
RXRDY TIMING FOR MODE "0"

RXRDY TIMING FOR MODE "1"



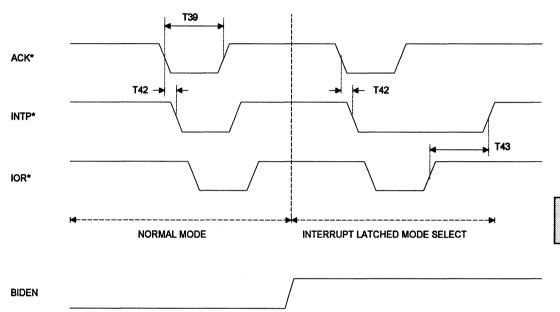
TRANSMIT TIMING


16 BAUD RATE CLOCK


ST16C553

TXRDY TIMING FOR MODE "0"

TXRDY TIMING FOR MODE "1"



PARALLEL PORT GENERAL WRITE TIMING

3

ST16C553

COMMUNICATIONS

Index

ST78C35	
ST84C72	

Priliminary

D2

Di

15

16 DO

17 DTACK

ST78C35

APR 1992

PD1

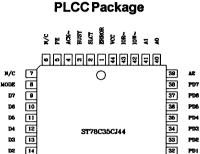
GND

.

31 PDO

30

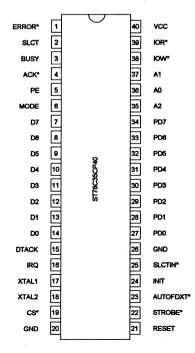
29 N/C


GENERAL PURPOSE INPUT/OUTPUT PORT WITH 128 BYTE FIFO

DESCRIPTION

The ST78C35 is a monolithic Bidirectional Parallel port designed to operate as a general purpose I/O port. It contains all the necessary input/output signals to be configured as a CENTRONICS printer port.

The ST78C35 is a general purpose input/output controller with 128 byte internal FIFO. FIFO operation can be enabled or disabled and configured for either direction. For CENTRONICS printer operation, all registers are mapped to IBM printer port registers.

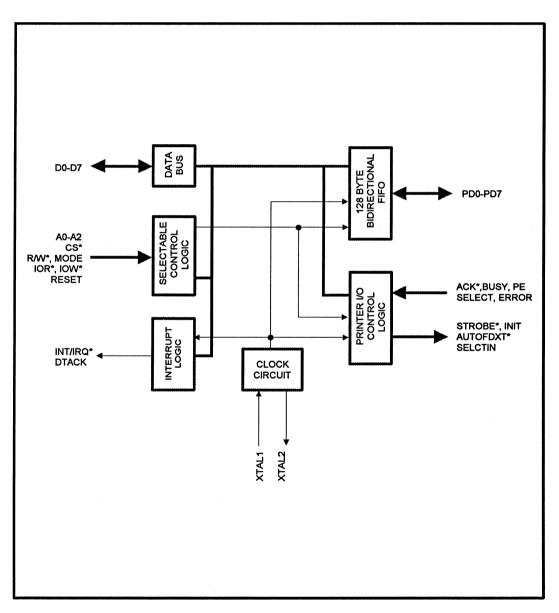

The ST78C35 is designed to operate as normal printer interface without any additional settings. Contents of the FIFO will be cleared after reset or setting the INIT pin to a low state. The auto FIFO operation starts after the first ACK* is received from the printer. Contents of the FIFO transfer to the printer at the printer loading speed. The ST78C35 FIFO can operate as input or output by setting the port direction.

Plastic-DIP Package

8 8 8 8 8 8 8 8 8 8

AL AL

FEATURES


- * 128 Byte input/output FIFO
- * 5 General purpose input ports
- * 8 Bidirectional ports
- * 4 Open drain input/output ports
- * Replaces all TTL logic for IBM printer port
- * IBM printer port register compatible
- * 4 User programmable strobe pulse widths
- * Selectable FIFO trigger level
- * Intel / Motorola bus compatible

ORDERING INFORMATION

Part number	Package	Operating temperature
ST78C35CJ44	PLCC	0° to + 70° C
ST78C35CP40	Plastic-DIP	0° to + 70° C

ST78C35

BLOCK DIAGRAM

4

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
ERROR	1	I	General purpose input or CENTRONICS ERROR input pin.
SLCT	2	I.	General purpose input or CENTRONICS SLCT input pin.
BUSY	3	I	General purpose input or CENTRONICS BUSY input pin.
ACK*	4	I	General purpose input or CENTRONICS ACK* input pin.
PE	5	1	General purpose input or CENTRONICS PE input pin.
MODE	8	I	Intel/Motorola Bus select. ST78C35 is set to Intel bus format when this pin is connected to VCC and Motorola bus format when this pin is connected to GND.
D7-0	9 -16	٧O	Data bus.
DTACK	17	0	Data acknowledge output. This pin goes low when data has been accepted by ST78C35.
IRQ	19	ο	Interrupt output. Three state output when not enabled. Polarity of this pin can be selected via setup register bit-7.
XTAL1	20	I	Crystal or External clock input. Crystal connection between XTAL1 and XTAL2 input/output pins.
XTAL2	21	0	Crystal output pin.
CS*	22	i	Chip select input. Read and write operation to ST78C35 is active when this pin is low.
GND	23	o	Supply ground pin.
RESET	24	I	Reset input pin. Polarity of this pin changes when ST78C35 is configured for Intel or Motorola bus format. This pin is active high when Intel format is selected and active low when Motorola bus format is selected.
STROBE*	25	ο	General purpose open drain output or CENTRONICS STROBE*output pin.

* 44-pin PLCC package

ST78C35

SYMBOL DESCRIPTION

Symbol	Pin	Signal Type	Pin Description
AUTOFDX*	26	0	General purpose open drain output or CENTRONICS AUTOFDX*output pin.
INIT	27	ο	General purpose open drain output or CENTRONICS INIT output pin.
SLCTIN*	28	ο	General purpose open drain output or CENTRONICS SLCTIN*output pin.
GND	30	o	Supply ground pin.
PD7-PD0	38-31	VO	General purpose input/output ports or CENTRONICS DATA port.
A2	39	I	ST78C35 A2 address line.
A0	40	4	ST78C35 A0 address line.
A1	41	I	ST78C35 A1 address line.
IOW*	42	1	Write strobe. A low on this pin will transfer the contents of the CPU data bus to the addressed register. This pin is used as R/W* in Motorola bus format.
IOR*	43	l .	Read strobe. A low on this pin will read contents of ad- dressed register.
vcc	44	1	Power supply input pin.

* 44-pin PLCC package

PORTREGISTER

Bidirectional I/O or printer port.

Writing to this register during output mode will transfer the contents of the data bus to the PD7-PD0 ports. Reading this register during input mode will transfer the states of the PD7-PD0 to the data bus. This register will be set to the output mode after reset.

PR BIT 7-0:

PD7-PD0 bidirectional I/O ports.

STATUS REGISTER

This register provides the state of the printer outputs and the interrupt condition.

SR BIT 1-0:

Not used. Are set to "1" permanently.

SR BIT-2: Interrupt condition. 0= an interrupt is pending This bit will be set to "0" at the falling edge of the ACK* input. 1= no interrupt is pending Reading the STATUS REGISTER will set this bit to "1"

SR BIT-3:

ERROR* input state. 0= ERROR* input is in low state 1= ERROR* input is in high state

SR BIT-4: SLCT input state. 0= SLCT input is in low state 1= SLCT input is in high state

SR BIT-5: PE input state. 0= PE input is in low state

1= PE input is in high state

SR BIT-6:

ACK* input state. 0= ACK* input is in low state 1= ACK* input is in high state

SR BIT-7:

BUSY input state. 0= BUSY input is in high state 1= BUSY input is in low state

COMMAND REGISTER

The state of the four open drain output pins (STROBE*, AUTOFDXT*, INIT, SLCTIN*), and interrupt enable bit can be read by this register regardless of the I/O direction.

COM BIT-0:

STROBE* input pin. 0= STROBE* pin is in high state 1= STROBE* pin is in low state COM BIT-1: AUTOFDX* input pin. 0= AUTOFDX* pin is in high state 1= AUTOFDX* pin is in low state

COM BIT-2: INIT input pin. 0= INIT pin is in low state 1= INIT pin is in high state

COM BIT-3: SLCTIN* input pin. 0= SLCTIN* pin is in high state 1= SLCTIN* pin is in low state

COM BIT-4: Interrupt mask. 0= Interrupt is disabled 1= Interrupt is enabled

COM BIT 7-5: Not used. Are set to "1" permanently.

CONTROL REGISTER.

Writing to this register will set the state of the four open drain output pins (STROBE*, AUTOFDXT*, INIT, SLCTIN), and interrupt mask register.

CON BIT-0:

STROBE* output control bit. 0= STROBE* output is set to high state 1= STROBE* output is set to low state

CON BIT-1:

AUTOFDX* output control bit. 0= AUTOFDX* output is set to high state 1= AUTOFDX* output is set to low state

CON BIT-2:

INIT output control bit. 0= INIT output is set to low state 1= INIT output is set to high state

CON BIT-3:

SLCTIN* output control bit. 0= SLCTIN* output is set to high state 1= SLCTIN* output is set to low state

CON BIT-4:

Interrupt output control bit. 0= IRQ output pin is disabled. Set to three state 1= IRQ output pin is enabled

CON BIT-5:

I/O select. Direction of the PD7-PD0 can be selected by setting or clearing this bit.
0= PD7-PD0 are set for output mode
1= PD7-PD0 are set for input mode

CON BIT 7-6:

Not used.

SETUP REGISTER

This register sets the ST78C35 operating conditions.

STR BIT-0:

FIFO select bit. 0=FIFO disable (default) 1=FIFO enabled (128 bytes)

STR BIT1-2:

Interrupt source select bits.

STR-2	STR-1	CONDITIONS
0	0	Single character interrupt (ACK*)
0	1	FIFO empty interrupt
1	0	Programmable trigger level interrupt
1	1	FIFO full interrupt

STR BIT3-4:

Strobe width select bits.

STR-3	CONDITIONS
0	Strobe width=1µs
1	Strobe width=2us
0	Strobe width=5µs
1	Strobe width=10µs
	0 1

STR BIT-6:

Interrupt vector select bit.

0=Normal interrupt output. Contents of the interrupt register is read when Address 01 Hex is read. 1=Interrupt vector source selected. Contents of the interrupt vector register is read when Address 01 Hex is read.

STR BIT-7:

Interrupt polarity select bit. 0=Interrupt output pin is active low. 1=Interrupt output pin is active high.

FIFO STATUS REGISTER

This register provides the FIFO enable/disable and FIFO counter location.

FSR bit-0:

0=FIFO disabled 1=FIFO enabled

FSR1-7:

In Use FIFO locations in Hex format.

FIFO INTERRUPT TRIGGER REGISTER

User selectable software control FIFO trigger level interrupt select register.

FIT BIT-0:

0=Normal. Interrupt selected from setup register 1=FIFO trigger level. ST78C35 interrupt output is set when FIFO count reached to FIFO trigger level.

FIT BIT1-7: FIFO trigger select level in Hex format.

USER DEFINED INTERRUPT VECTOR REGISTER ST78C35 provides user defined interrupt service jump routine.

IVR BIT0-7:

PRINTER PORT PROGRAMMING TABLE:

A2	A1	A0	IOW*	IOR*
0	0	0	PORTREGISTER	PORTREGISTER
0	0	1	CONTROL REGISTER	STATUS REGISTER COMMAND REGISTER
Ō	1	1	SETUPREGISTER	SETUPREGISTER
	0	0	FIFO INTERRUPT TRIGGER REGISTER	FIFO STATUS REGISTER INTERRUPT VECTOR REGISTER
	U	1	INTERRUPT VECTOR REGISTER	INTERRUPT VECTOR REGISTER

ST78C35 PRINTER PORT REGISTER CONFIGURATIONS

PORT	REGISTER
------	----------

(READ/WRITE)

	D6	D5	D4	D3	D2	D1	
PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0

STATUS REGISTER

(READ ONLY)

5. 5	0	D5	U4	D3	D2	D1	
BUSY* A	ICK	PE	SLCT	ERROR STATE	IRQ	1	1

COMMAND REGISTER (READ ONLY)

D7	D6	D5	D4	D3	D2	D1	D0
1	1	1	IRQ ENABLE	SLCTIN*	INIT	AUTO- FDX*	STROBE*
			0= IRQ disabled 1= IRQ enabled				

CONTROL REGISTER

(WRITE ONLY)

D7	D6	D5	D4	D3	D2	D1	D0
х	x	VO SELECT	IRQ MASK	SLCTIN*	INIT	AUTO- FDX*	STROBE*
	0=Output		0=IRQ output disabled (t three state)		<u> </u>	.
	1=Input	1=Input		t			

SETUP REGISTER

D7	D6	D5	D4	D3	D2	D1	DO
IRQ POLARITY	INTERRUPT VECTOR	STROBE	STROBE WIDTH SEL.	INTERRUPT WIDTH SEL.	INTERRUPT SOURCE	FIFO SOURCE	EN/DIS

FIFO INTERRUPT TRIGGER REGISTER

D7	D6	D5	D4	D3	D2	D1	D0
FIFO	INTERRUPT						
TRIGGER-6	TRIGGER-5	TRIGGER-4	TRIGGER-3	TRIGGER-2	TRIGGER-1	TRIGGER-0	TYPE

FIFO STATUS REGISTER

D7	D6	D5	D4	D3	D2	D1	D0
FIFO	FIFO						
COUNT-6	COUNT-5	COUNT-4	COUNT-3	COUNT-2	COUNT-1	COUNT-0	STATUS

INTERRUPT VECTOR REGISTER

D7	D6	D5	D4	D3	D2	D1	D0
INTERRUPT							
VECTOR-7	VECTOR-6	VECTOR-5	VECTOR-4	VECTOR-3	VECTOR-2	VECTOR-1	VECTOR-0

1

ST78C35

AC ELECTRICAL CHARACTERISTICS

 $\rm T_{A}=25^{\circ}\,C, \ V_{cc}=5.0\,V\pm5\%$ unless otherwise specified.

Symbol	Parameter	Min	Limits Typ	Max	Units	Conditions

ABSOLUTE MAXIMUM RATINGS

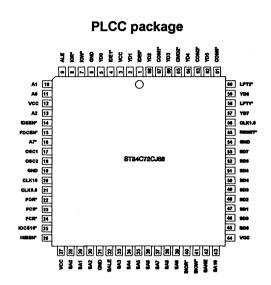
Operating supply range Voltage at any pin Operating temperature Storage temperature Package dissipation 7 Volts ± 5% GND-0.3 V to VCC+0.3 V 0° C to +70° C -40° C to +150° C 500 mW

DC ELECTRICAL CHARACTERISTICS

 $\rm T_{a}=25^{\circ}$ C, $\rm V_{cc}=5.0$ V \pm 5% unless otherwise specified.

Symbol	Parameter	Min	Limits Typ	Max	Units	Conditions
V _{llCK} V _{HCK} V _L V _H V _{OL}	Clock input low level Clock input high level Input low level Input high level Output low level	-0.3 3.0 -0.3 2.2		0.6 Vcc 0.8 Vcc 0.4	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	l _{ot} = 6.0 mA D7-D0 l _{ot} = 20.0 mA PD7- PD0 l _{ot} = 10 mA SLCTIN*, INIT*,
V _{ort}	Output high level	2.4			v	STROBE*, AUTOFDXT* I_{cl} = 6.0 mA on all other outputs I_{ch} = -6.0 mA D7-D0 I_{ch} = -12.0 mA PD7- PD0 I_{ch} = -0.2 mA SLCTIN*,
ا ₈ ار اط	Avg power supply current Input leakage Clock leakage			12 ±10 ±10	mA µA µA	INIT*,STROBE*, AUTOFDXT* I _{OH} = -6.0 mA on all other outputs

4


priliminary

ST84C72

IDE INTERFACE WITH I/O DECODE

DESCRIPTION

The ST84C72 is designed to replace all necessary TTL logics for 16 bit IDE interface and decode logic for floppy controller and serial / parallel I/O ports. A select pin is provided to select primary or secondary address for hard and floppy decodes. On board crystal oscillator circuit provides 16, 9, and 1.8432 MHz clock outputs for some floppy controllers and uart from 48 MHz external crystal connected to ST84C72.

FEATURES

- * Low power CMOS design
- * Direct bus connect
- * Replacement for more than 7 TTL parts
- * High speed for new design
- * Selectable I/O decode ports. (COM1-CMO4, LPT1-LPT2)
- * Floppy address decode
- * Pin selectable primary and secondary address decodes

ORDERING INFORMATION

Part number	Package	Operating temperature
ST84C72CJ68	PLCC	0°C to +70°C

GENERAL APPLICATION NOTE FOR STARTECH UART FAMILY

The AN-450 provides additional information to guide users to design or utilize the STARTECH product line. This document can also be used for all the STARTECH UART product lines.

GENERAL INFORMATION

STARTECH offers UART's with or without FIFO capabilities, and are marked as 45X for non FIFO families and 55X for FIFO families. All parts with sharing part numbers are foot print compatible in some extent, like ST16C450 and ST16C550, ST16C2450 and ST16C2550, etc.

This section will describe general terms for commonly used flags and registers.

OVERRUN ERROR:

The flag is set to "1" to warn the user that a serial data has been received and previous serial data has not been read from receive holding register. The new serial data will over write the previous data in the receive holding register. Note that previous serial data has been lost and user does not have an access to that data.

PARITY ERROR:

This flag is set "1" to indicate that received serial data contains mismatched parity or data bit error in the received data.

PARITY:

Four common types of parities are used in the START-ECH Uart families; Odd Parity, Even Parity, Forced Mark Parity and Forced Space Parity.

ODD PARITY:

Odd Parity is calculated by adding all the "1's" in a data stream and adding a parity bit to the total bits, to make the total count an odd number.

Example -1: A data byte with the following pattern 11010010 will require to add a parity bit of "1" to bring the total count for "1's" to an odd number. Based on this data pattern, serial data with odd parity will be transmitted as 110100101.

Example -2: A data byte with the following pattern 10011000 will require to add a parity bit of "0" to maintain the total count of "1's" to an odd number.

Based on this data pattern, serial data with odd parity will be transmitted as 100110000.

EVEN PARITY:

Even Parity is calculated by adding all the "1's" in a data stream and adding a parity bit to the total bits, to make the count an even number.

Example -3: A data byte with the following pattern 10000101 will require to add a parity bit of "1" to bring the total count for "1's" to an even number. Based on this data pattern, serial data with even parity will be transmitted as 100001011.

Example -4: A data byte with the following pattern 00001111 will require to add a parity bit of "0" to maintain the total count for "1's" to an even number. Based on this data pattern, serial data with even parity. will be transmitted as 000011110.

FORCED SPACE PARITY:

Parity bit on the serial byte is set to "0" regardless of total number of "1's" (even or odd counts).

FORCED MARK PARITY:

Parity bit on the serial byte is set to "1" regardless of total number of "1's" (even or odd counts).

FRAMING ERROR:

The flag is set to "1" to indicate that received data does not have correct start or stop bits. This can cause when the Uarts are set for 8-bits word and receiving a serial data of 7-bits word or any mismatched data patterns.

BREAK SIGNAL INDICATION: This flag is set to "1" to warm the user that transmitter is sending continuous "0" data without stop bit (RX input is low for more that one word).

TRANSMIT/RECEIVE FIFO:

STARTECH offers 16 byte transmit FIFO and 16 byte receive FIFO for all its products with 55X part numbers. These FIFO's are static 19 X 16 bit RAM with control logic to form a ring counter. Initializing the FIFO will set the write and read pointers to the same location.

TRANSMIT EMPTY:

This flag is set "1" to indicate that, there is no character in the transmit holding and transmit shift register

TRANSMIT HOLDING EMPTY:

This flag is set "1" to indicate that, there is one or more empty locations in the transmit holding register. User has to check this bit before loading characters in the transmit holding register. In non FIFO mode, user can load one character at a time when this flag is set and 16 characters when FIFO mode is utilized.

RECEIVER DATA READY: This bit is set "1" to indicate that, receiver has one or more character in the receive holding register. User has to check this bit prior to read receive holding register. In non FIFO mode, only one character at time can be read. In FIFO mode up to 16 characters can be read if time bit is set.

RECEIVE TIME-OUT:

This mode is enabled when STARTECH UART is operating in FIFO mode. Receive time out will not occur if the receive FIFO is empty. The time out counter will be reset at the center of each stop bit received or each time receive holding register is read. The actual time out value is T (Time out length in bits)=4XP (Programmed word length) + 12. To convert time out value to a character value, user has to divide this number to its complete word length + parity (if used) + number of stop bits and start bit.

Example -7: If user programs the word length = 7, and no parity and one stop bit, Time out will be: T = 4 X 7 (programmed word length) +12 = 40 bits Character time = 40 / 9 [(programmed word length = 7) + (stop bit = 1) + (start bit = 1)] = 4.4 characters.

Example -8: If user programs the word length = 7, with parity and one stop bit, the time out will be:

T = 4 X 7(programmed word length) + 12 = 40 bits Character time = 40 / 10 [(programmed word length = 7) + (parity = 1) + (stop bit = 1) + (start bit = 1) = 4 characters.

BAUD RATE GENERATOR:

STARTECH provides a 16 bit digital divider to obtain all necessary baud rates. The 16 bit divider is broken down in to two 8-bit dividers which will be addressed as MSB divider (upper 8-bits) and LSB divider (lower 8-bits). To calculate the transmit/receive data rate it is necessary to know the provided clock rate (frequency) to START-ECH parts. STARTECH utilizes 16 clocks for each transmit bit and 16 clocks to sample the received data. Note that inorder to access these dividers, user has to enable the divisor latch access bit through the Line Control Register.

Bit rate is calculated by:

Dividing decimal number = (Clock rate) / (16 X bit rate). To program the digital divider, dividing decimal number should be converted to hex (base 16) number and split into two 8-bits sections.

Example -5: To obtain 4800 Hz baud rate, assuming 1.8432 MHz input clock, the dividing decimal value is (input clock=1843200) / (16 X 4800) = 24

24 decimal = 0018 Hex, this value is translated to MSB = 00 Hex and LSB = 18 Hex.

BAUD RATE VERSUS BIT RATE:

The baud rate defines the width of each bit regardless of word, parity and stop bit length. Bit rate, is the rate of the transmission which each character is transmitted or received. The 2400 baud rate transmission is translated to 2400 Hz per bit for each character in a word. With 2400 baud you can transmit between 7 to 12 characters per slot.

PROGRAMMING STEPS:

The AN-450 provides the easy steps to program STARTECH Uart family. Note that all numbers are in Hex format not decimal.

Write 80 Hex to LCR (Line Control Register) to enable baud rate generator divider latch to set 2400 Hz baud rate:

write 00 Hex to MSB of baud rate generator (address location 1).

Write 30 Hex to LSB of baud rate generator (address location 0).

Select you word, parity and stop bit format from START-ECH Uart data sheet.

to set 8 bits, no parity and one top bit and disable the divisor access latch

write 03 Hex to LCR (Line Control Register):

if you need to use Uarts with FIFO, select your receive trigger level from data sheet.

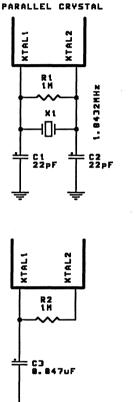
to enable FIFO with 14 character trigger level write CF Hex to FCR (FIFO Control Register)

enable interrupt sources write 01 Hex to IER (Interrupt Enable Register) to select receive interrupt.

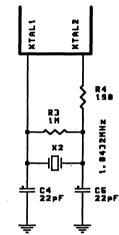
to set RTS and DTR outputs to low and enable the interrupt output write 0B Hex to MCR (Modern Control Register).

The STARTECH Uart is ready for transmit and receive operation.

Read MSR (Modern Status Register) to check the status of CD, RI, DSR, CTS input pins.


Read LSR (Line Status Register).

For polling applications (non interrupt mode) user has to monitor bit zero of this register to verify valid data in the receive holding register.


Check the Transmit Holding Empty bit before loading data in the transmit holding register,

continue the transmission.

EXTERNAL CLOCK

SERIAL CRYSTAL

; File: sample.c Package:UART init ; This is a sample code to show how to initialize the UART series of chips ; from Startech Semiconductors. ; This also includes some basic external loop back thru' two different ; ports using the FIFO capability. ; This also includes external loop back thru a different computer

#include <string.h> #include <fcntl.h> #define TRUE 1 0 #define FALSE /* These are the various offsets for the registers inside the chip */ #define RHR 0x00 /* Receive Holding Register */ #define THR 0x00 /* Receive Holding Register */ #define IER 0x01 /* Interrupt Enable Register */ #define FCR 0x02 /* FIFO control Register */ #define ISR 0x02 /* Interrupt Status Register */ #define LCR 0x03 /* Line control register */ #define MCR 0x04 /* Modem Control Register */ #define LSR 0x05 /* Line Status Register */ #define MSR 0x06 /* Modem Status Register */ #define SCR 0x07 /* Scratch pad Register */

/* This two offsets are used for defining the baud rate */ #define DIVLSB 0x00 /* Divisor LSB latch address */

#define	DIVMSB	0x01 /* Divisor MSB Latch address	*/

/*\

* Program table for baud rate

* This represents the LSB and MSB divisor latch data

*/

charbaud_table[8][2] = {

{ 0x80, 0x01 },	/* 300 */
{ 0x60, 0x00 },	/* 1200 */
{ 0x30, 0x00 },	/* 2400 */
{ 0x0c, 0x00 },	/* 9600 */
{ 0x06, 0x00 },	/* 19K <i>*</i> /
{ 0x03, 0x00 },	/* 38k */
{ 0x02, 0x00 },	/* 56k */
{ 0x01, 0x00 }	/* 115k */

};

#include

<stdio.h>

/" Baud Rate	es */	
#define	_COM_300_	0
#define	_COM_1200_	1
#define	_COM_2400_	2
#define	_COM_9600_	3
#define	_COM_19K_	4
#define	_COM_38K_	5
#define	_COM_56K_	6
#define	_COM_115K_	7
/* Parity */		
#define	_COM_NOPARITY_	0
#define	_COM_ODDPARITY_	1
#define	_COM_EVENPARITY_	2
/* Stopbits *	7	
#define	_COM_STOP1_	0
#define	_COM_STOP2_	1
#define	_COM_STOP1_5_	1
/* word lengt	th */	
#define	_COM_CHR5_	0
#define	_COM_CHR6_	1
#define	_COM_CHR7_	2
#define	_COM_CHR8_	3
/* word lengt	th */	
#define	_COM_FIFO1_	0
#define	_COM_FIFO4_	1
#define	_COM_FIF08_	2
#define	_COM_FIF014_	3

/* Raud Rates */

/*/

* This function checks the existence of a port.

* It is very simple. Take the port address then write to the scratch pad

* an the read it back. If the data read back the same as one that was

* written then return TRUE else return FALSE.

*/

int check_port(com_port) int com_port; {

ι

int i;

5

printf("Checking for port %4xH\n",com_port); /* Write 1010 1010 (0xaa) to scratch pad*/

printf("Writing AAH in %4xH\n",com_port); outportb(com_port + SCR, 0xaa);

/* read it back. If it the same then return TRUE */
i = inportb(com_port + SCR);

printf("Read back %2xH from %4xH\n",i,com_port);

if(i == 0xaa)

return TRUE; else

return FALSE:

}

•

/*\ * This is the work horse function which actually setups the UART. * It needs to know every thing. */ int init_uart(port,baud,parity,data,stop,fifo,trigger) int port,baud,parity,data,stop,fifo,trigger; {

char lcr_byte;

/* Set divisor latch */
outportb(port+LCR, 0x80);

printf("Divisor Latch is %2xH %2xH (High Low)\n", baud_table[baud][1],baud_table[baud][0]); outportb(port+DIVLSB, baud_table[baud][0]); outportb(port+DIVMSB, baud_table[baud][1]);

/* Reset to normal Programming */ /* Program the lcr_byte for the above parameters */ lcr_byte = 0x00; lcr_byte = data; /* Set the bit0 & bit1 for word length */ lcr_byte ;= stop << 3; /* Set the bit2 for stop bit */ if(parity !=_COM_NOPARITY_) { lcr_byte ;= 1 << 4; /* Set the bit3 for parity */ if(parity ==_COM_EVENPARITY_)

UARTS APPLICATION NOTE

UARTS APPLICATION NOTE

APPLICATION NOTES

```
lcr_byte ;= 1 << 5; /* Set the bit4 for EVEN parity */
}</pre>
```

printf("LCR byte is %2xH\n",Icr_byte);
/* Program LCR */
outportb(port+LCR, Icr_byte);

if(fifo) { char fifo_byte;

printf("Programming FIFOs without DMA mode\n");

/* Have to first set the fifo enable */ fifo_byte = 0x01; outportb(port+FCR,fifo_byte);

/* Now program the FIFO */ fifo_byte = 0x07; /* set bit0 - FIFO enable, Reset RCVR and XMIT FIFO */ fifo_byte ;= trigger << 7; /* set bit6 and bit7 with the trigger level */

```
/* Program FCR */
outportb(port+FCR,fifo_byte);
if(~(inportb(port + ISR) & 0xc0)) {
printf("This port %4xH does not have FIFOs\n");
printf("Hence did not program Enable FIFOs\n");
}
```

```
}
```

```
/* Program IER */
printf("Programming IER for interrupt on bit0 RCV holding Register\n");
outportb(port+IER, 0x01);
```

return TRUE;

```
}
```

٣

- * This is the test mode.
- * It gets the address of the ports checks to see if they are there.
- * Note: If a driver already exists I am not sure how to temporarily remove it.
- * Well we will worry about it later.
- * Warn the use to remove any drivers that are on the ports.
- * Especially the mouse driver.
- * pass the address to the test552 routine.

```
\*/
```

inttest_mode()

{

int i,j,k; /* generic variables */ char port1[10], port2[10]; int pt1,pt2; /* this are the integer port numbers */

void test552();

printf("WARNING: This program will not work if the ports to be tested\n"); printf(" have drivers installed in them. e.g Mouse driver\n"); printf(" Please remove the drivers before doing this test.\n");

while(TRUE) {

```
printf("First Port Address (In HEX) > ");
scanf("%s",port1);
pt1 = strtol(port1,NULL,16);
fflush(stdin);
/*\
* Check if this port exists. else loop
\*/
if(check_port(pt1))
break;
printf("Error: Port %4xH does not exist. Try again\n",pt1);
}
```

```
while(TRUE) {
    printf("Second Port Address (In HEX) > ");
    scanf("%s",port2);
    pt2 = strtol(port2,NULL,16);
    fflush(stdin);
    /*\
    * Check if this port exists. else loop
    \*/
    if(check_port(pt2))
        break;
    printf("Error: Port %4xH does not exist. Try again\n",pt2);
}
```

/* Test 554 with the two port addresses */ test552(pt1,pt2);

return TRUE;

}

UARTS APPLICATION NOTE

5

APPLICATION NOTES

 /*\ * It first generates a random number for the data size to be generated. * Then generates a random data whose length is equal to the data size. * It puts it out on both the ports and polls for the interrupt to occur. * It reads both the ports until all characters are received OR a timeout * has occured. It then prints out the error Messages if any. * This loop is done for ever.
<pre>void test552(p1,p2) unsigned int p1, p2; { int i,j,c,w,n; unsigned char outbuf[20], inbuf1[20], inbuf2[20]; unsigned char pbuf[200];</pre>
printf("ST16C552 External Loop Test Beginning\n"); printf("Testing ports %4x and %4x\n\n", p1, p2);
print("Programing ports %4% and %4% for , p1, p2) , printf("Programing ports for 56K,8 bit,no parity,1 stop bit,FIFO trigger level 01\n"); printf("This program uses POLLED mode for testing\n"); printf("Press Cntrl-C to stop the testing and quit\n"); printf("Note: The ports will remain at the above settings after the TEST\n");
/* Programming ports for 8 bits, no parity, 56K baud, FIFO enabled at level 01 */ /* Program first port */
printf("Programming port %x4\n",p1); init_uart(p1_COM_56K_,_COM_NOPARITY_, _COM_CHR8_,_COM_STOP1_,TRUE,_COM_FIFO1_);
/* Program Second Port */ printf("Programming port %x4\n",p2); init_uart(p2,_COM_56K_,_COM_NOPARITY_, _COM_CHR8_,_COM_STOP1_,TRUE,_COM_FIF01_);
<pre>printf("Starting test\n"); for (pass = 1 ; ; pass++) { /* generate random size for data */ n = rand(); n += n >> 8; n &= 0x0f;</pre>
/* Make sure we never get a 0 as the random size data */ if(n != 0x0f) n++ ;

```
/* generate random data */
for (w = 0; w < n; w++) {
     c = rand();
     c += c >> 8;
     c &= 0xff :
     c ;= 0x01 ; /* no NULLs allowed */
     outbuf[w] = c;
}
outbuf[w] = NULL;
printf("******** Pass %10ld Sending %d ******** \015", pass, n) ;
/* Transmitt the data */
for (i = 0; i < n; i++) {
     outportb(p1, outbuf[i]);
     outportb(p2, outbuf[i]);
}
/* loop waiting for intr pending */
for (i = 0; i++)
    if ((~inportb(p1+ISR) & 0x01) && (~inportb(p2+ISR) & 0x01))
          break:
}
/* receive data until all has been received OR timeout */
timeout = 0 \times 0008F:
for (i = j = 0; ((i < 20) \&\& (j < 20));) {
    if (inportb(p1+LSR) & 0x01) inbuf1[i++] = inportb(p1);
     c = rand();
     c += c >> 8 :
     c &= 0x001f;
     c++;
     for (; c != 0; c---);
    if (inportb(p2+LSR) & 0x01) inbuf2[i++] = inportb(p2) ;
     if (timeout— == 0) break ;
}
/* If timed out then print message else comparse data */
if(timeout == 0)
     printf("Timed out on Ports\n");
else {
 inbuf1[i] = inbuf2[j] = NULL;
 /* compare results */
 if (strcmp(outbuf, inbuf1) ;; ( i != n)) {
      printf("\nError:%04x Sent: ", p2);
       for (w = 0; w < n; w++)
           printf(" %02x", outbuf[w]);
```

} }

GENERAL APPLICATION NOTE FOR STARTECH CLOCK FAMILY

The ST49CXXX video / memory clock chips provide 1-130 MHz clock outputs which may cause unwanted EMI problems.

To minimize problems with meeting FCC EMI requirements, consideration should be given to the following sections of the board design.

Power supply conditioning Printed Circuit Board Layout Video / Memory clock outputs and drive capabilities External clock sources Reference clock sources Digital control / select inputs External loop filters

Power supply considerations

Some of the ST49CXXX clock chip contained internal loop filters for VCO circuits and some utilize external components. In both cases it is required to have spike free (or minimum) and stable supply source to the chips. To provide stable and clean supply voltage to STARTECH clock chips we recommend to use 0.1 μ F capacitors close to IC's power supply lines (VCC, AVCC and DVCC inputs). Analog and digital supply lines are separated from each other to reduce noise generated due to internal digital switching.

In most of the design cases +5V and +12V supplies are provided. A clean +5V supply can be obtained from the +12V supply by utilizing a 470 ohm drop resistor and 5.1V zener diode bypassed by 0.047 μ F and 2.2 μ F Tantalum capacitors (or higher) to ground.

Trace width should be maximized from the supply source and good ground planes on top and bottom layers of the printed circuit board are recommended.

Printed Circuit Board (PCB) layout

We recommend to place all external components as close as possible to the clock chips to reduce trace length between pin and component connections. It is important to keep components not related to clock ICs (DRAM and other memory devices) far and not share the grounds. In applications utilizing a multi-layer board, GND, AGND, and DGND should be directly connected to the ground plane.

Video / Memory clock outputs and drive capabilities

Video clock is usually the highest frequency present in video graphics system board/card and consideration should be given to FCC EMI requirements.

The trace connecting DCLK and MCLK clock output pins to other components should be kept as close as possible and ferrite beads should be used (with optional 33 ohm resistor in series with ferrite beads) to reduce the possible emitting signals and jitter.

External clock sources

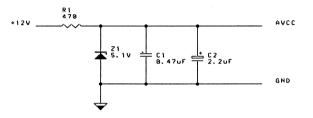
When an external clock source is used to bypass the internal VCO to DCLK and MCLK outputs, clock should have fast rise / fall times and minimum jitter. This signal will be connected internally to the clock output pin when it is selected / enabled. The internal VCO circuit will be locked to its internal selected frequency.

Reference clock sources

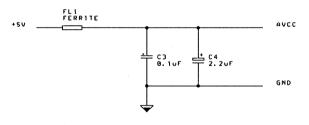
The internal oscillator circuit contains all of the passive components required for the external crystal. An appropriate parallel resonant crystal should be connected between XTAL1 and XTAL2.

The crystal leads and input pins should be maintained as close as possible, and the body of the crystal should be grounded to minimize the noise pickup. For IBM compatible applications, the 14.31818 MHz system or crystal clock is used as a reference clock to the chip.

Digital control / select inputs


The ST49CXXX provides TTL compatible address select and latch input pins to interface with CMOS or TTL/LSTTL devices. The A0-A4 and M0-M1 can also be connected to the Data bus if required.

External loop filters


The components values of the filters are critical, especial care must be taken for board layout and selection of the components. Selected components can have 10-20% tolerance for capacitors and 1-5%

tolerance for resistors. These components have to be close to the external loop filter pins and no signal traces should cross close or under these components.

> EXAMPLE-1: Supply connection from +12v supply

QUALITY/RELIABILITY

QUALITY/RELIABILITY

6

QUALITY AND RELIABILITY

The STARTECH semiconductor quality program starts with the design of new products. Each design circuit performance is verified using simulations over voltage and temperature values beyond those of specified product operation.

The design process includes consideration of quality issues such as signal levels, power dissipation, noise generated from internal clock circuits and testability of all device functions.

The STARTECH semiconductor document control department maintains control over all manufacturing specifications, lot travelers, procurement specifications and drawings and test programs.

All changes of design are subject to approval by the Engineering, Quality and Manufacturing managers.

STARTECH semiconductor performs a thorough internal product qualification prior to the delivery of any new product or enhanced existing products other than prototypes/samples.

150 samples from three different product lots are selected to perform extended temperature operation test, 85° C/ 85% R.H. / 5.5V temperature humidity bias. Same samples are used for accelerated burn-in and electro-static tests.

STARTECH semiconductor subcontracts it's fabrication process to ORBIT semiconductor located in Sunnyvale California. packaging and final testing are also subcontracted to other vendors located locally or overseas.

Determination of the Failure Rate In the simplest form, the failure rate prediction at a given temperature can be predicted as follows.

Failure rate = N/DH

Where:

N = number of failures

- D = number of devices
- H = number of hours tested

Assuming that semiconductors exhibit a log normal distribution.

Acceleration Factors

The effects of temperature, voltage, time and other related functions are key when predicting life times of semiconductor devices. Understanding these effects with the use of a more accurate mathematical model, provides a better means of evaluating the change in reaction rate to changes in temperature.

 $F(T1, T2) = \exp(-Ea/k(1/T1 - 1/T2))$

Where:

F = Acceleration factor T1 = Test temperature T2 = Desired temperature k = Boltzman's constant (8.63 E-5eV / K) Ea = Thermal activation energy (eV)

The equivalent device hours can be determined at temperature T2 can be expressed as:

EDH (T2) = F (T1, T2) x DH (T1) The failure rate at T2 can be expressed as:

Failure rate (T2)= N/EDH (T2)

Where:

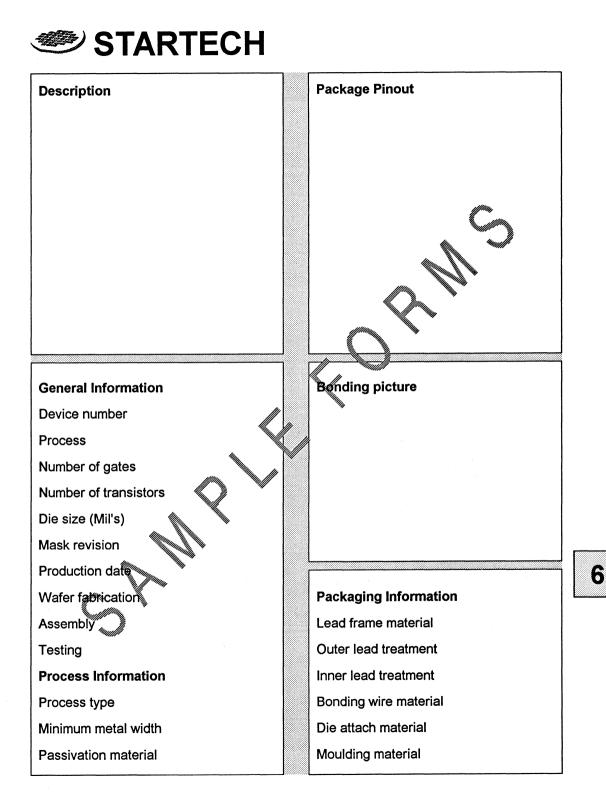
N= Number of failures EDH= Equivalent device hours

Definition and common test methods

Accelerated operating life stress

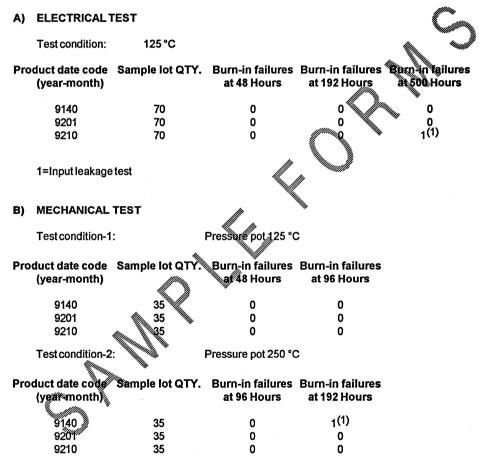
Accelerated operating life stressing is performed to accelerate failure mechanisms, which are thermally activated, through the application of extreme temperature and dynamic biasing conditions. The typical temperature and voltage conditions used in the stress are 125 °C with a bias level at the maximum data sheet specifications.

85 °C/ 85 % R.H.


85 °C/ 85 % R.H. is an environmental stress performed at a temperature of 85 °C and relative humidity of 85%. The test is designed to measure the moisture resistance of encapsulated devices.

Electrostatic discharge testing

Electrostatic discharge testing is performed to determine the handling sensitivity of a semiconductor device.


CMOS latchup test

CMOS latchup test is performed to determine the sensitivity of a device input to overshoot and undershoot signals connected to device inputs.

RELIABILITY INFORMATION

These specifications are the property of Startech Semiconductor Inc., and are provided in strict confidence and shall not be reproduced.

1= Gross functional test, unit recovered at room temperature.

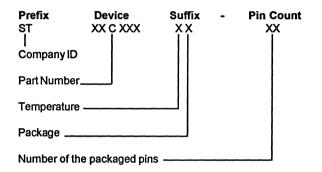
6

ESD AND LATCH-UP INFORMATION

The specific purpose of this section is to define a practical means of establishing ESD damage levels on integrated circuits using the charged device mode. The primary focus here is on the section of achievable test parameters that will yield repeatable and correctable results.

C) ESD Test

Test condition:

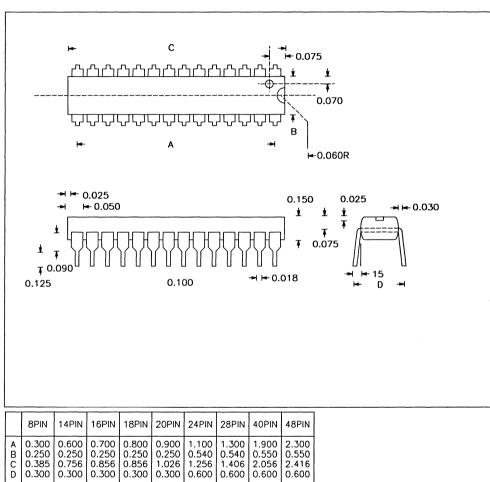

5 pulses at 1 second (typical) duration's, with series resistor of 1.5 kohm and parallel capacitor of 100 pF to ground. C= °C

Product date code	Applied voltage 500 V	Applied voltage 2000 V	Applied voltage 3000 V
9140			pin-18
9201		Moin-6	· ·
9210			pin-38
		THE REAL PROPERTY AND A DESCRIPTION OF A	
		// //	
D) LATCH-UP TEST	4		
Test conditions:	III III IIII IIIIIIIIIIIIIIIIIIIIIIIII		
Current limited to 110 mA and	voltage limited to 55 \	/olts. Positive voltag	e is applied from 0 to 55 volts and then
negative voltage is applied from	n 0 to 45 volts.		
Product date code	Applied voltage	Applied voltage Negative	
9201	[»] pin-39 65 mA		

Pins are selected base on their input, output, and I/O devices structures.

ORDERING INFORMATION

ORDERING INFORMATION AND PART NUMBERING GUIDE


Temperature Range

С	Commercial	0° C	То	+70° C
I	Industrial	-40° C	То	+85° C
М	Military	-55° C	То	+125° C

Package Type

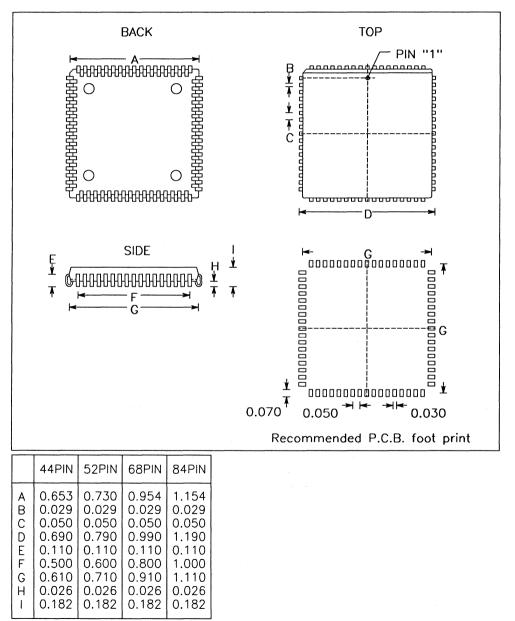
- P Plastic
- C Ceramic
- D Cerdip
- L Leadless Chip Carrier (LCC)
- J Plastic Leaded Chip Carrier (PLCC)
- F Flat Pack
- Q Quad Flat Pack
- G Pin Grid

PACKAGING INFORMATION

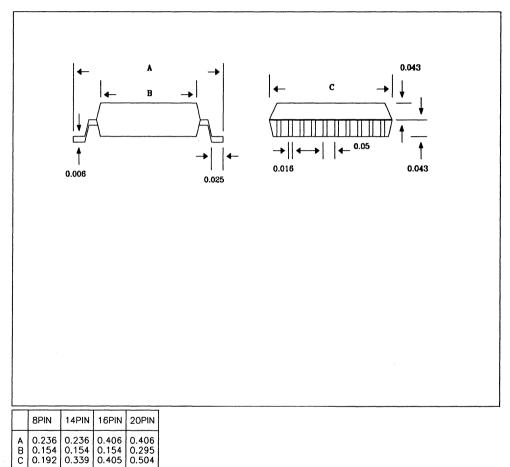
PLASTIC DIP PACKAGING INFORMATION

8

0.300


0.300

0.600

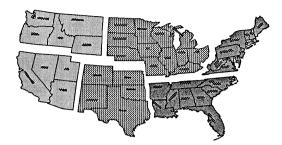

0.600

0.600

0.300

PLCC PACKAGING INFORMATION

PLASTIC SOIC PACKAGING INFORMATION


8

REPRESENTATIVES

REPRESENTATIVES

9

Alabama

NOVUS GROUP TEL (205) 534-0044 FAX (205) 534-0186

Arizona

SUNTECH SALES TEL (602) 860-8262 FAX (602) 860-9730

California

ADVANCED TECHNOLOGY SALES TEL (408) 946-4111 FAX (408) 946-3208

INFINITY SALES

TEL (714) 833-0300 FAX (714) 833-0303

INFINITY SALES TEL (213) 455-2566

Colorado

AKI ENTERPRISES TEL (303) 388-4488 FAX (303) 388-3031

Connecticut

DYNAMIC SALES TEL (203) 693-0451

Florida

SEC TEL (407) 830-8444 FAX (407) 830-8684

SEC

TEL (305) 426-4601 FAX (305) 427-7338

Georgia

NOVUS GROUP TEL (404) 263-0320 FAX (404) 263-8946

North American Representatives

ldaho

ELECTRONIC COMPONENT SALES TEL (208) 342-8072

Illinois

MICRO SALES INC. TEL (708) 285-1000 FAX (708) 285-1008

Massachusetts

DYNAMIC SALES TEL (617) 272-5676 FAX (617) 273-4856

Michigan

J.M.J & ASSOCIATES TEL (616) 774-9480 FAX (616) 454-2680

Minnesota

MURNCO TEL (612) 854-4161 FAX (612) 854-9634

North Carolina

NOVUS GROUP TEL (919) 460-7771 FAX (919) 460-5703

Ohio

ADM TEL (513) 579-8108 FAX (513) 579-8510

Oregon

ELECTRONIC COMPONENT SALES TEL (503) 245-2342

Pennsylvania CAMPBELL ASSOCIATES

TEL (215) 322-6630 FAX (215) 322-2627

NORTH AMERICAN DISTRIBUTORS

PARTS ONE TEL (800) 247-0867 FAX (612) 633-2310

GRS ELECTRONICS CO., INC. TEL (609) 964-8560 TEL (215) 922-7037

Texas

BRAVO SALES TEL (214) 250-2900 FAX (214) 250-2905

BRAVO SALES

TEL (512) 836-8323 FAX (512) 836-1695

BRAVO SALES

TEL (713) 320-0500 FAX (713) 320-0212

Vermont

DYNAMIC SALES TEL (802) 476-4223

Washington

ELECTRONIC COMPONENT SALES TEL (206) 232-9301 FAX (206) 232-1095

ELECTRONIC COMPONENT SALES TEL (509) 456-0100

Wisconsin

MICRO SALES INC. TEL (414) 786-1403 FAX (414) 786-1813

International

REPRESENTATIVES

Austria

BACHER ELECTRONICS TEL (43) 2-22-813-5646 FAX (43) 2-22-813-4276

Belgium

SONETECH BELGIUM TEL (32) 2-460-0560 FAX (32) 2-460-0271

Canada

INTELATECH, INC. TEL (416) 629-0082 FAX (416) 629-1795

INTELATECH, INC. TEL (403) 230-3190 FAX (403) 230-3183

England

BRITCOMP SALES LTD (BSL) TEL (44) 372-377779 FAX (44) 372-376848

2001 ELECTRONIC COMPONENTS TEL (44) 438-742001 FAX (44) 438-742002

France

ALMEX TEL (33) 1-40-96-54-00 FAX (33) 1-46-66-60-28

Hong Kong

TEKTRON ELECTRONICS TEL (852) 388-0629 FAX (852) 780-5871

Germany

EUROCOMP ELEKTRONIK GmbH TEL (49) 6031-61076 FAX (49) 6031-61788 DISCOMP ELEKTRONIK GmbH TEL (49) 7-11-704061 FAX (49) 7-11-702640

India

DIGIPRO MKTG. PVT. LTD. TEL (91) 812-566706 FAX (91) 812-565088

Italy

KEVIN TEL (39) 2-4870-6300 FAX (39) 2-4870-6500

Israel

STAR-TRONICS LTD. TEL (972) 3-260-148 FAX (972) 3-260-255

Korea

EASTERN ELECTRONICS TEL (82) 2-553-2997 FAX (82) 2-553-2998

Japan

ISI TEL (81) 3-3264-3301 FAX (81) 3-3264-3419

Netherlands

TEL (31) 40-83-80-09 FAX (31) 40-83-92-71

Singapore

SERIAL SYSTEMS MKTG. TEL (65) 293-8830 FAX (65) 291-2673

Sweden

BEXAB TECHNOLOGY TEL (46) 8-630-8800 FAX (46) 8-732-7058

9

Switzerland

DIMOS AG TEL (41) 1-730-4088 FAX (41) 1-730-5133

Taiwan

JATRON ELECTRONICS, INC. TEL (886) 2-3070152 FAX (886) 2-3055629

Index

ST16C1450
ST16C1451
ST16C1550
ST16C1551
ST16C2450
ST16C2550
ST16C450
ST16C452AT
ST16C452PS
ST16C454
ST16C550
ST16C552
ST16C553
ST16C554
ST26C31
ST26C32
ST34C50
ST34C51
ST34C86
ST34C87
ST49C061
ST49C103/104/114
ST49C214
ST49C394
ST68C554
ST78C35
ST84C72

