
'" -m
~
m
Z

'"

SIE~ENS

TriCore J.lC-DSP
Architecture Manual

SIEMENS

TriCore
Architecture Manual

Erin Farquhar
Elaine Hadad

Version 1.1

09/17/97

• PRELIMINARY EDITION.

Copyright © 1997 Siemens AG.

All Rights Reserved.

Attention please I

As far as patents or other rights of third parties are con
cerned, liability is only assumed for components, not for
applications, processes, and circuits implemented within
components or assemblies.

This information describes the type of component and shall
not be considered as assured characteristics.

Terms of delivery and rights to change design reserved.

For questions on technology, delivery, and prices, please con
tact the Semiconductor Group offices in Germany or the
Siemens Companies and Representatives worldwide.

Due to technical requirements, components may contain
dangerous substances. For information on the types in ques
tion, please contact your nearest Siemens Semiconductor
Group.

Siemens, AG is an approved CECC manufacturer.

Packing

Please use the recycling operators known to you. We can
also help you get in touch with your nearest sales office. By
agreement, we will take packing material back, if it is sorted.
You must bear the cost of transport.

For packing material that is returned to us unsorted or which
we are not obligated to accept, we shall have the right to
invoice you for any costs incurred.

Components used in the life-support devices or systems
must be expressly authorized for such purpose!

Critical components 1 of the Semiconductor Group of
Siemens AG may only be used in life-support devices or
systems2 with the express written approval of the
Semiconductor Group of Siemens AG.

1. A critical component is a component used in a life-support device whose
failure can reasonably be expected to cause the failure of that life
support device or system, and/or to affect the safety or effectiveness of
that device or system.

2. Life-support devices or systems are intended: (al to be implemented in
the human body, or (bl to support and/or maintain human life. If they fail.
it is reasonable to assume that the health of the user may be endan
gered.

Front Matter

Preface

Architecture Overview

Programming Model

Core Registers

Managing Tasks and Functions

Interrupt System

Traps

Protection System

Instruction Set Overview

TriCore Instruction Set

Front Matter

SIEMENS

Front Matter

1.1 Revision History

Release Version Release Date Contents of Revision

1.0 06/01/97 Beta Release.

1.1 09/17/97 Preliminary Release.

TriCore Architecture Manual iii

• PRELIMINARY EDITION.

Front Matter SIEMENS

iv TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS

1 ARCHITECTURE OVERViEW............ 3
1.1 TriCore Architecture Feature Overview .. 4
1.2 Program State Registers 4
1.3 Data Types ... 5
1.4 Addressing Modes 6
1.5 Instruction Formats 6
1.6 Tasks and Contexts .. 6

1.6.1 Upper and Lower Contexts 7
1.6.2 Context Save Areas 8
1.6.3 Fast Context Switching 8

1.7 Interrupt System .. 8
1.8 Trap System ... 8
1.9 Protection System 9

1.9.1 Permission Levels 9
1.9.2 Protection Model.................. 9

1 .1 0 Reset System ... 1 0
1.11 Debug System 10

2 PROGRAMMING MODEL .. 13
2.1 Data Types ... 13
2.2 Data Formats .. 14
2.3 Memory Model..................... 16
2.4 Addressing Model 19

2.4.1 T riCore Addressing Modes 19
2.4.1.1 Absolute Addressing 20
2.4.1.2 Base+Offset Addressing 20
2.4.1.3 Pre-Increment Addressing .. 21
2.4.1.4 Post-Increment Addressing 21
2.4.1.5 Circular Addressing ... 21
2.4.1.6 Bit-Reverse Addressing 22

2.4.2 Synthesized Addressing Modes 23
2.4.2.1 Indexed Addressing 23
2.4.2.2 PC-Relative Addressing 23

TriCore Architecture Manual v

• PRELIMINARY EDITION.

SIEMENS
2.4.2.3 Extended Absolute Addressing 24

3 CORE REGISTERS ;... 27
3.1 Access to the Core Registers 28
3.2 General-Purpose Registers (GPRs) 29
3.3 Program State Information (PC, PSW, and PCXI) ... 30

3.3.1 Program Counter 30
3.3.2 Program Status Word (PSW) 30
3.3.3 Previous Context Information Register (PCXI) 32

3.4 Context Management Registers 33
3.4.1 Free CSA List Head Pointer (FCX) 34
3.4.2 Previous Context Pointer (PCX) ... 34
3.4.3 Free CSA List Limit Pointer (LCX) 35

3.5 Stack Management 35
3.6 Interrupt and Trap Control .. 36

3.6.1 Interrupt Control Register (lCR) 36
3.6.2 Interrupt Vector Table Pointer (BIV) ... 37
3.6.3 Trap Vector Table Pointer (BTV) ... 37

3.7 System Control Registers ... 38
3.7.1 SYSCON Register .. 38
3.7.2 PMUCON Register .. 38
3.7.3 DMUCON Register .. 38

3.8 Memory Protection Registers 39
3.8.1 Data and Code Segment Protection Registers :............................ 40
3.8.2 Data Protection Mode Registers 41
3.8.3 Code Protection Mode Registers 42

3.9 Debug Registers 44

4 MANAGING TASKS AND FUNCTIONS ... 47
4.1 Upper and Lower Contexts 47
4.2 Task Switching Operation ... 48
4.3 CSAs and Context Lists .. 49
4.4 Context Switching with Interrupts 50
4.5 Context Switching with Function Calis ... 51
4.6 Context Save/Restore Examples 52

4.6.1 Context Save ... 52
4.6.2 Context Restore 54

5 INTERRUPT SYSTEM .. 59
5.1 System Overview 59
5.2 The Service Request Priority Number (SRPN) .. 60
5.3 The Interrupt Control Unit (lCU) 61
5.4 Interrupt Arbitration 61
5.5 Entry into an Interrupt Service Routine (ISR) 62

5.5.1 Default State of the PSW upon an Interrupt .. 63
5.5.2 The Interrupt Vector Table ... 63

vi TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS
5.6 Interrupt Priority Levels 64
5.7 Enabling/Disabling the Interrupt System .. 64
5.8 Special Handling of Interrupt Requests 65

5.8.1 Software-Posted Interrupts 65
5.8.2 Interrupt One 65

6 TRAPS ... 69
6.1 Trap Types .. 69

6.1.1 Synchronous Traps .. 71
6.1.2 Asynchronous Traps 71
6.1.3 Hardware Traps ... 71
6.1.4 Software Traps 72

6.2 Trap Handling ... 72
6.2.1 Trap Vector Format 72
6.2.2 Accessing the Trap Vector Table ... 72
6.2.3 Default State upon a Trap .. 72

7 PROTECTION SYSTEM 77
7.1 Protection System Registers 77

7.1.1 PSW Protection Fields................................. .. 77
7.1.1.1 PRS... 78
7.1.1.2 10 .. 78
7.1.1.3 IS... 78
7.1.1.4 GW .. 78
7.1.1.5 CDE ... 79
7.1.1.6 CDC ... 79

7.1.2 Memory Protection Registers ... 79
7.1.2.1 Modes of Use for Range Table Entries ... 80
7.1.2.2 Using Protection Register Sets 81

7.2 Sample Protection Register Set ... 81
7.3 Memory Access Checking 82

7.3.1 Permitted vs. Valid Accesses .. 83
7.3.2 Crossing Protection Boundaries .. 83

8 INSTRUCTION SET OVERVIEW ... 87
8.1 Arithmetic Instructions 87

8.1.1 Integer Arithmetic 88
8.1 . 1 . 1 Move... 88
8.1.1.2 Addition and Subtraction 89
8.1.1.3 Multiply and Multiply-Add .. ,.... 89
8.1.1.4 Division... 90
8.1.1.5 Absolute Value, Absolute Difference 90
8.1.1.6 Min, Max, Saturate 90
8.1.1.7 Conditional Arithmetic Instructions ... 90
8.1.1.8 Logical ... 91
8.1.1.9 Count Leading Zeroes, Ones, and Signs 91

TriCore Architecture Manual vii

• PRELIMINARY EDITION.

SIEMENS
8.1.1.10 Shift 92
8.1.1.11 Bit-Field Extract and Insert 92

8.1.2 DSP Arithmetic 94
8.1.2.1 Scaling.... 94
8.1.2.2 Special case = -1 * -1 => + 1 94
8.1.2.3 Guard bits 95
8.1 .2.4 Rounding 95
8.1.2.5 Overflow and Saturation 95
8.1.2.B Sticky Advanced Overflow and Block Scaling in FFT 95

8.1.3 Packed Arithmetic 95
8.2 Compare Instructions 97
8.3 Bit Operations 100
8.4 Address Arithmetic.. 102
8.5 Address Comparison 102
8.B Branch Instructions 103

8.B.l Unconditional Branch 103
8.B.2 Conditional Branch 104

8.B.2.1 Conditional Jumps on Data Registers ... 104
8.B.2.2 Conditional Jumps on Address Registers 105
8.B.2.3 Conditional Jumps on Bits ... 105
8.B.2.4 Loop Instructions 105

8.7 Load and Store Instructions .. 10B
8.7.1 Load/Store Basic Data Types ... 10B
8.7.2 Load Bit ... 107
8.7.3 Store Bit and Bit Field .. 108

8.8 Context Related Instructions 109
8.8.1 Context Saving and Restoring 109
8.8.2 Context Loading and Storing 109

8.9 System Instructions 110
8.9.1 System Call 110
8.9.2 Synchronization Primitives 110

8.9.2.1 DSYNC 110
8.9.2.2 ISYNC 110

8.9.3 Access to the Core Special Function Registers 111
8.9.4 Enabling/Disabling the Interrupt System ... 111
8.9.5 RET and RFE 111
8.9.B Trap Instructions .. 111
8.9.7 No-operation .. 112

8.10 1B-bit Instructions 112

9 TRICORE INSTRUCTION SET 115
9.1 Instruction Syntax 115
9.2 Instruction Operation 118
9.3 Status 120
9.4 Instruction Formats .. 120
9.5 Instruction Descriptions 122

viii TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS
10 INDEX.. 403

11 GLOBAL PARTNERCHIP FOR SYSTEMS ON SILICON 407

1 TOTAL QUALITY MANAGEMENT .. 410

TriCore Architecture Manual ix

• PRELIMINARY EDITION.

SIEMENS

x TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS

List of Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

Figure 15

Figure 16

Figure 17

Figure 18

Figure 19

Figure 20

Figure 21

Figure 22

Figure 23

Figure 24

Figure 25

Figure 26

TriCore: A Modular Instruction Set Architecture .. .

Program State Registers .. .

Upper and Lower Contexts

TriCore Data Formats .. .

Byte Ordering .. .

Address Map and Memory Model

Translation of Absolute Address to Full Effective Address

Circular Addressing Mode

Bit-Reverse Addressing

Register Pair for Bit-Reverse Addressing .. .

General-Purpose Registers (GPRs) .. .

Program Counter (PC) .. .

Program Status Word (PSW)

Previous Context Information Register (PCXI)

Generation of the Effective Address for the Context Save Areas (CSAs)

A10/SP

Interrupt Stack Pointer (lSP) .. .

Interrupt Control Register (lCR)

Interrupt Vector Table Pointer (BIV)

Trap Vector Table Pointer (BTY)

SYSCON Register .. .

PMUCON Register .. .

DMUCON Register .. .

Memory Protection Register Sets

Range Table Entries in a Protection Register Set .. .

Data Segment Protection Registers (DPRx_n) .. .

TriCore Architecture Manual

• PRELIMINARY EDITION.

3

5

7
15

16

18

20

21

22

23

29

30

31

32

34

35

35

36

37

37

38

38

39

39

40

41

xi

List of Figures SIEMENS
Figure 27

Figure 28

Figure 29

Figure 30

Figure 31

Figure 32

Figure 33

Figure 34

Figure 35

Figure 36

Figure 37

Figure 38

Figure 39

Figure 40

Figure 41

Figure 42

Figure 43

Figure 44

Figure 45

Figure 46

Figure 47

Figure 48

Figure 49

Figure 50

Figure 51

Figure 52

Figure 53

Figure 54

Figure 55

Figure 56

Figure 57

Figure 58

Figure 59

Figure 60

Figure 61

Figure 62

Figure 63

Figure 64

Figure 65

xii

Code Segment Protection Registers (CPRx_n) ... 41

Data Protection Mode Register (DPMx_n) 41

Code Protection Mode Register (CPMx_n) ... 43

Generation of the Effective Address of a Context Save Area (CSA) 48

CSAs in Context Lists 49

CSAs and Processor State Prior to Context Save 52

CSA and Processor SFR Updates on a Context Save Process 53

CSAs and Processor State After Context Save 54

CSAs and Processor State Prior to Context Restore 54

CSA and Processor SFR Updates on a Context Restore Process 55

CSAs and Processor State After Context Restore .. 56

Block Diagram of Interrupt System 59

Service Request Control Register (xxSRC) 60

ICR Register 61

Data Segment Protection Register ... 79

Code Segment Protection Register Pair 80

Data Protection Mode Register .. 80

Code Protection Mode Register 80

Example Configuration of a Data Protection Register Set 82

Protection Boundaries... 83

Operation of CLl Instruction ... 92

Operation of EXTR.U Instruction ... 92

Operation of EXTR Instruction 93

Operation of DEXTR Instructipn 93

Operation of INSERT Instruction ... 94

Packed Halfword Data Format .. 96

Packed Byte Data Format 96

L T Comparison .. 97

Combining L T Comparison with Boolean Operation 98

SH.LT Instruction .. 99

EQ.B Instruction Operation ... 100

Boolean Operations 100

3-lnput Boolean Operation 101

Shift Plus Boolean Operation 101

L T.A Comparison Operation.. 103

Jump Target Address with Displacement ... 104

Load/Store Basic Data Types .. 107

32-Bit Instruction Formats .. 121

16-Bit Instruction Formats 122

TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS

List of Tables

Table 1

Table 2

Table 3
Table 4
Table 5
Table 6
Table 7

Table 8
Table 9

Table 10

Table 11

Table 12

Table 13

Table 14

Addressing Modes of the TriCore Architecture

Core Register Map .. .

Context Management Registers

Memory Protection Registers

Debug Registers .. .

Context-Related Events and Instructions

Supported Traps .. .

PSW Status Flags .. .

Addressing Modes .. .

Instruction Syntax Definitions

Operation Modifiers .. .

Data Type Modifiers .. .

RTL Syntax Description

PSW Status Flags .. .

TriCore Architecture Manual

• PRELIMINARY EDITION.

20

28
33
40
44
49

70

87
106

116

117

118

119

120

xiii

List of Tables SIEMENS

xiv TriCore Architecture Manual

• PRELIMINARY EDITION.

Preface

SIEMENS

Preface

This document contains the following parts:

• Chapter 1, '~rchitecture Overview," provides a general description of the TriCore architecture and
its features.

• Chapter 2, "Programming Model," describes the data formats, data types, addressing modes,
and memory model of the TriCore architecture.

• Chapter 3, "Core Registers," describes the core registers, which are categorized according to
function.

• Chapter 4, "Managing Tasks and Functions," describes the TriCore's task management opera
tion.

• Chapter 5, "Interrupt System," describes the elements of the TriCore interrupt system including
arbitration, the priority level scheme, and interrupt handling.

• Chapter 6, "Traps," lists the eight classes of traps and describes how the TriCore architecture
handles traps.

• Chapter 7. "Protection System," describes the components of the TriCore protection system in
cluding access permissions and the connection to the debug system.

• Chapter 8, "Instruction Set Overview," describes the instructions by type.

• Chapter 9, "TriCore Instruction Set," describes the individual TriCore instructions.

TriCore Architecture Manual xvii

• PRELIMINARY EDITION.

Preface SIEMENS
Where to Look for More Information

Additional information about the TriCore product line can be found in the following publications.
Please call your regional sales office to request these publications.

• TriCore Instruction Set Simulator User's Guide

• TriCore Architectural Overview Handbook

• Introducing TriCore (Brochure)

• TriCore Development Tools (Brochure)

Acknowledgments

We would like to acknowledge the extraordinary effort of all of the individuals who participated in the
development and production of this manual, particularly the TriCore Architecture group for providing
expertise, input, and technical reviews; and, the Marcom group for the coordination of collateral ma
terials and graphic production of this manual.

xviii TriCore Architecture Manual

• PRELIMINARY EDITION.

Architecture Overview

SIEMENS

Architecture Overview

TriCore is the first single-core 32-bit microcontroller-DSP architecture optimized for real-time embed
ded systems. TriCore unifies the best of three worlds-real-time capabilities of microcontrollers, the
computational prowess of DSPs, and the highest performance/price implementations of RISC load
store architectures.

Figure 1 shows a high-level view of the TriCore architecture.

,........................ .. ····················B~:fiiii(fBlt:iiliiliiiii;····

Min/Ma .. Comparison,
Branch

MAC, Saturated Math, DSP
Addressing Modes, SIMD
Packed Arithmetic

Arithmetic, lIlgic, Address
Arithmetic &. Comparison,
load/Store, Context Switch

load/Store, Arithmetic,
Branch

Roating-Point

Figure 1: TriCore: A Modular Instruction Set Architecture

The architecture supports a uniform, 32-bit address space, with memory-mapped I/O. It allows for a
wide range of implementations, ranging from simple scalar to superscalar. Furthermore, the ISA is
capable of interacting with different system architectures, including those with multiprocessing. This
flexibility at the implementation and system levels allows for different trade-offs between perfor
mance and cost at any point in time.

To support TriCore implementations with 32-bit instructions and simplified instruction fetching, the
entire TriCore architecture is represented in 32-bit instruction formats. In addition, the architecture in
cludes 16-bit instruction formats for the most frequently occurring instructions. These instructions

TriCore Architecture Manual 3

• PRELIMINARY EDITION.

Architecture Overview SIEMENS
significantly reduce code. space, lowering memory requirements, system cost, and power consump
tion.

Real-time responsiveness is largely determined by interrupt latency and context-switch time. The
high-performance architecture minimizes interrupt latency by avoiding long multicycle instructions
and by providing a fl(;'lxible hardware-supported interrupt scheme. Furthermore, the architecture sup
ports fast context switching.

1.1 TriCore Architecture Feature Overview

The following list summarizes the basic features of the TriCore architecture.

• 32-bit architecture

• 4-GByte unified data, program, and input/output address space

• 16-/32-bit instructions for reduced code size

• Low interrupt latency

• Fast automatic context switching

• Multiply-accumulate unit

• Saturating integer arithmetic

• Bit handling

• Packed data operations

• Zero-overhead loop

• Flexible power management

• Byte and bit addressing

• Little-endian byte ordering

• Support for big- and little-endian byte ordering at bus interface

• Precise exceptions

• Flexible interrupt prioritization scheme

1.2 Program State Registers

The TriCore program state registers consist of 32 general-purpose registers (GPRs). two 32-bit regis
ters with program status information (PCXI and PSW), and a program counter (PC). PCXI, PSW, and
PC are core special function registers (CSFRs).

4 TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS Architecture Overview

31 31 31
A 15 (Implicit Base Addr) 015 (Implicit Data) PCXI

A14 014 PSW

A13 013 PC

A12 012
All (Return Address) 011
Al0 (Stack Pointer) 010

A9 09

AS 08
A7 07

AS 06

AS 05
A4 04

A3 03

A2 02
Al 01

AD DO

Addrell Dat. System

Figure 2: Program State Registers

The 32 general-purpose registers are divided into 16, 32-bit data registers (DO through D15) and 16,
32-bit address registers (AO through A15). Four GPRs have special functions: D15 is used as an im
plicit data register, Al0 is the stack pointer (SP), All is the return address register, and A15 is the im
plicit base address register.

Registers AO and A 1 in the lower address registers and A8 and A9 in the upper address registers are
defined as SYSTEM GLOBAL REGISTERS. These registers are not included in either context partition, and
are not saved and restored across calls or interrupts. The operating system normally uses them to re
duce system overhead.

The PCXI and PSW registers contain status flags, previous execution information, and protection in
formation.

Refer to Chapter 3, "Core Registers," for complete information on each register.

1.3 Data Types

The TriCore instruction set supports operations on booleans, bit strings, characters, signed fractions,
addresses, signed and unsigned integers, and single-precision floating-point numbers. Most instruc
tions work on a specific data type, while others are useful for manipulating several data types.

Refer to Section 2.1, "Data Types," and Section 2.2, "Data Formats," for more specifics on the data
types and formats, respectively.

TriCore Architecture Manual 5

• PRELIMINARY EDITION.

Architecture Overview SIEMENS

1.4 Addressing Modes

Addressing modes allow load and store instructions to efficiently access simple data elements with
in data structures like records, randomly and sequentially accessed arrays, stacks, and circular buff
ers. Simple data elements are 1, 8, 16, 32, or 64 bits wide.

The addressing modes provide efficient compilation of C, easy access to peripheral registers, and ef
ficient implementation of typical DSP data structures (circular buffers for filters and bit-reversed in
dexing for FFTs). The following seven addressing modes are supported in the Trillium architecture.

• Absolute

• Base + Short Offset

• Base + Long Offset

• Pre-increment or decrement

• Post-increment or decrement

• Circular

• Bit Reverse

Refer to Section 2.4, "Addressing Model," for more details on each addressing mode.

1.5 Instruction Formats

The TriCore architecture supports both 16- and 32-bit instruction formats. All instructions have a 32-
bit format; the 16-bit instructions are a subset of the 32-bit instructions, chosen because of their fre
quency of use and are included to reduce code space.

Refer to Chapter 8, "Instruction Set Overview," and Chapter 9, "TriCore Instruction Set," for more
detailed information on the 16-bit and 32-bit instruction formats.

1.6 Tasks and Contexts

Throughout this book, the term TASK refers to an independent thread of control. There are two types
of tasks: SOFTWARE-MANAGED TASKS (SMTs) and INTERRUPT SERVICE ROUTINES (lSRs). Software-man
aged tasks are created through the services of a real-time kernel or OS, and dispatched under the
control of scheduling software. ISRs are dispatched by hardware in response to an interrupt. In this
architecture, ISR refers only to the code that is invoked by the hardware directly. Software-managed
tasks are sometimes referred to as USER TASKS, assuming that they will execute in user mode.

Each task is allocated its own permission level. The individual permissions are enabled/disabled pri
marily by 10 mode bits in the Program Status Word (PSW).

Associated with any task is a set of state elements known collectively as the task's CONTEXT. The
context is everything the processor needs in order to define the state of the associated task and en
able its continued execution. It includes the CPU general-purpose registers that the task uses, the

6 TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS Architecture Overview

task's program counter (PC). and its Program Status Information (PCXI and PSW). The TriCore archi
tecture efficiently manages and maintains the tasks' contexts through hardware.

Chapter 4, "Managing Tasks and Functions," provides more details on task management. The
registers associated with task management are described in Section 3.4, "Context Management
Registers."

1.6.1 Upper and Lower Contexts

The context is subdivided into the UPPER CONTEXT and the LOWER CONTEXT, as illustrated in Figure 3.
The upper context consists of the upper address registers, Al0 - A15, and the upper data registers,
08 - 015. These registers are designated as non-volatile, for purposes of function calling. The upper
context also includes the PCXI and PSW registers.

The lower context consists of the lower address registers, A2 through A7, the lower data registers,
DO through 07, and the PC.

Both upper and lower contexts include a LINK WORD. Contexts are saved in fixed- size areas (see next
section); they are linked together via the link word.

The upper context is saved automatically on interrupts and is restored on returns. The lower context
is saved and restored explicitly by the interrupt service routine (ISR) if the ISR needs to use more reg
isters than provided by the upper context.

Refer to Chapter 4, .. Managing Tasks and Functions," for more information.

Lower eanlext Upper Context

07 015

06 014

05 013

04 012

03 011

02 010

D1 09

DO 08

A7 A15

A6 A14

AS A13

A4 A12

A3 AnlRAl

A2 Al0ISP)

Saved PC PSW

PCXllUnk Word) PCXllUnk Word)

Figure 3: Upper and Lower Contexts

TriCore Architecture Manual 7

• PRELIMINARY EDITION.

Architecture Overview SIEMENS
1.6.2 Context Save Areas

The Trillium architecture uses linked lists of fixed-size CONTEXT SAVE AREAS (CSAs), which accommo
date systems with multiple interacting threads of control. A CSA is 16 words of on-chip memory stor
age, aligned on a 16-word boundary. A single CSA can hold exactly one upper or one lower context.
Unused CSAs are linked together on a free list. They are allocated from the free list as needed, and
returned to it when no longer needed. The processor hardware handles the allocation and freeing.
They are transparent to the applications code. Only the system start-up code and certain OS excep
tion handling routines need to access the CSA lists and memory storage explicitly.

1.6.3 Fast Context Switching

To increase performance, the TriCore architecture implements a uniform context-switch mechanism
for function calls, interrupts, and traps. In all cases, the task's upper context is automatically saved
and restored by hardware; saving (and restoring) the lower context is left as an option for the new
task.

Fast context switching is further enhanced by the TriCore's unique memory subsystem design,
which allows transfers of up to 16 data words between processor registers and memory, thus per
mitting the entire context to be saved in one operation.

1.7 Interrupt System

In this manual, a SERVICE REQUEST is defined as an interrupt request from a peripheral, a DMA re
quest, or an external interrupt. For simplicity, a service request may also be referred to as an in
terrupt.

The entry code for the ISR is a block within a vector of code blocks. Each code block provides an en
try for one interrupt source. Each source is assigned a priority number. All priority numbers are pro
grammable. The service routine uses the priority number to determine the location of the entry code
block.

The prioritization of service routines enables nested interrupts. A service request can interrupt the
servicing of a lower priority interrupt. Interrupt sources with the same priority cannot interrupt each
other.

Refer to Chapter 5, "Interrupt System," for more information on service requests and the interrupt
system.

1.8 Trap System

A trap occurs as a result of an exception within one of the following eight classes:

• Reset

• Internal Protection

• Instruction Errors

8 TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS Architecture Overview

• Context Management

• Internal Bus and Peripheral Errors

• Assertion

• System Call

• Non-Maskable Interrupt

The entry code for the trap handler is comprised of a vector of code blocks. Each code block provides
an entry for one trap. When a trap is taken, the trap's Trap Identification Number (TIN) is placed in
data register D15. The trap handler uses the TIN to identify precisely the cause of the trap. The trap
with the lowest TIN wins during arbitration.

Refer to Chapter 6, "Traps," for more information.

1.9 Protection System

The protection system allows the programmer to assign access permissions to memory regions for
both data and code. This capability is useful for protecting core system functionality from bugs that
may have slipped through testing and from transient hardware errors.

The TriCore's protection system also provides the essential features needed to isolate errors, and
thus facilitates debugging.

The registers associated with the protection system are defined in Section 3.8, "Memory Protection
Registers." Chapter 7, "Protection System," describes the Memory Protection System in more de
tail. A list of Debug registers is located in Section 3.9, "Debug Registers."

1.9.1 Permission Levels

The TriCore's embedded architecture allows each task to be allocated the specific permission level it
needs to perform its function. Individual permissions are enabled through the 10 mode bits in the
Program Status Word (PSW). The three permission levels are User-D, User-1, and Supervisor:

• USER-O MODE is used for tasks that do not access peripheral devices. Tasks at this level do not
have permission to enable or disable interrupts.

• USER-1 MODE is used for tasks that access common, unprotected peripherals. Accesses typically
include read/write accesses to SIO ports and read accesses to timers and most I/O status regis
ters. Tasks at this level may disable interrupts.

• SUPERVISOR MODE permits read/write access to system registers and protected peripheral devic
es.

1.9.2 Protection Model

The memory protection model for the TriCore architecture is based on address ranges, where each
address range has an associated permission setting. Address ranges and their associated permis-

TriCore Architecture Manual 9

• PRELIMINARY EDITION.

Architecture Overview SIEMENS
sions are specified in two to four identical sets of tables residing in core SFR (CSFR) space. Each set
is referred to as a PROTECTION REGISTER SET (PRS).

When the protection system is enabled, the TriCore checks every load/store or instruction fetch ad
dress for legality before performing the access. To be legal, the address must fall within one of the
ranges specified in the currently selected PRS, and permission for that type of access must be
present in the matching range.

1.10 Reset System

Most of the reset functions and options are located external to the core and are not described in this
architecture manual. Several events can force a reset of the TriCore device:

• Power-On Reset: activated through an external pin when the power to the device is turned on
(cold reset).

• Hard Reset: activated through an external pin during run time (warm reset).

• Soft Reset: activated through a software write to a reset request register. This register has a spe
cial protection mechanism to prevent accidental accesses. Implementation-specific controls in
this register facilitate either a partial or a full reset of the device.

• Watchdog Timer Reset: activated through an error condition detected by a watchdog timer.

• Wake-up Reset: activated through an external pin to wake the device from a power saving mode.

A reset status register allows the core to check which one of the different triggers caused the reset.

1.11 Debug System

The TriCore contains mechanisms and resources to support on-chip debugging. These are used by
the Debug Control Unit, which is an off-core module. Most functions and details of the Debug Con
trol Unit are implementation specific. Thus, this document does not provide further descriptions of
the debug control unit and its associated registers. Please contact your local Siemens sales office for
literature information.

10 TriCore Architecture Manual

• PRELIMINARY EDITION.

Programming Model

SIEMENS

2
Programming Model

This chapter discusses the following aspects of the TriCore architecture that are visible to software:
the supported data types, the formats of the data types in registers and memory, the various ad
dressing modes that the architecture provides, and the memory model.

2.1 Data Types

The TriCore instruction set supports operations on booleans, bit strings, characters, signed fractions,
addresses, signed and unsigned integers, and single-precision floating-point numbers. Most instruc
tions operate on a specific data type, while others are useful for manipulating several data types.

Boolean A boolean is either TRUE or FALSE. TRUE is the value one (1) when generated and
non-zero when tested; FALSE is the value zero (0). Booleans are produced as the
result in comparison and logic instructions, and are used as source operands in
logical and conditional jump instructions.

Bit String A bit string is a packed field of bits. Bit strings are produced and used by logical,
shift, and bit field instructions.

Character A character is an eight-bit value that is a very short unsigned integer. No specific
coding is assumed.

Signed Fraction The TriCore architecture supports 16-bit signed fractional data for DSP arithmetic.
Data values in this format have a single, high-order sign bit, with a value of 0 or -1,
followed by an implied binary point and fraction. Thus their values are in the range
[-1,1). When stored in registers, fractional data occupies the register's most-signif
icant 16 bits, with the least-significant 16 bits set to zeros.

Address An address is a 32-bit unsigned value.

Signed/Unsigned Integers

Signed and unsigned integers are normally 32 bits. Shorter signed or unsigned in
tegers are sign-extended or zero-extended to 32 bits when loaded from memory

TriCore Architecture Manual 13

• PRELIMINARY EDITION.

Programming Model SIEMENS
into a register. Multi-precision integers are supported with addition and subtract
using carry. Integers are considered to be bit strings for shifting and masking oper
ations. Multi-precision shifts can be done using a combination of single-precision
shifts and bit field extracts.

IEEE-754 single-precision floating-point number

Depending on the particular implementation of the core architecture, IEEE-754
floating-point numbers are supported by direct hardware instructions or by soft
ware emulation.

2.2 Data Formats

All the general-purpose registers are 32 bits wide, and most instructions operate on word (32-bit) val
ues. Thus when data with fewer bits than a word is loaded from memory, it must be sign or zero-ex
tended before operations can be applied to the full word.

Alignment requirements differ for addresses and data. Addresses (32 bits) must be aligned on a
word boundary to permit transfers between address registers and memory. For transfers between
data registers and memory, data may be aligned on any halfword boundary, regardless of size; bytes
may be accessed on any valid byte address.

Figure 4 on page 15 illustrates the supported data formats.

14 TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS

Integer:
&3

TriCore Architecture Manual

Programming Model

Bit

o
Boolean: 0

Byte:

o
Character/Very Short Integer:

Halfword:

15 0

Short Integer:

15 0

Short Fraction: lsi
~ Binary Point

Ward:

31 0

Integer:

31

Fraction: lsi
~ Binary Point

31

Bit String:

31 30 23 22 0

Floating-Point: lsi Exponent I Fraction

~ Roating Point

32 31 o

TAMD02.1

Figure 4: TriCore Data Formats

15

• PRELIMINARY EDITION.

~-a E.§
~~
li!

Programming Model SIEMENS
The data memory and CPU registers store data in little-end ian byte order (the least-significant bytes
are at lower addresses). Figure 5 illustrates the byte ordering. Little-endian memory referencing is
used consistently for data and instructions.

WordS

Word 4

Word 3

Word 2

Word 1

Word 0

31

Doubleword

'-~~--+---~~--r---- Ha~rd

Word

TAMOO3.1

Figure 5: Byte Ordering

When the TriCore system is connected to an external big-endian device, translation between big- and
little-endian format is performed by the bus interface.

As stated previously, bytes must be stored on byte boundaries; halfwords, words, and doublewords
must be stored on halfword boundaries.

2.3 Memory Model

The TriCore architecture can access up to 4 Gbytes of memory. The address width is 32 bits. The ad
dress space is divided into 16 regions or segments (0 through 15). Each segment is 256 Mbytes. The
upper four bits of an address select the specific segment. The first 16-Kbytes of each segment can
be accessed using either absolute addressing or absolute bit addressing.

Segment 0 is the local static data memory space for the core. Segment 1 is the local dynamic data
memory space for the core. Segment 2 is the local code memory space for the core. The upper 16-
Kbytes of the local code space in Segment 2 are reserved for the core special function registers (CS
FRs).

Segments 14 and 15 are excluded from speculative read accesses. Accesses to this space are initi
ated only when the core knows that the access will be completed successfully. Segment 14 can be
used for external peripherals. FIFOs, peripherals with status registers, and other devices should be
located in this address segment so that they will receive no speculative reads that could destroy in
formation. Segment 15 is reserved for the peripheral SFRs (PSFRs) of the internal. on-chip peripher
als.

Addresses in Segments 3 through 15 are routed to the System bus. Addresses within Segments 3
through 14 may be either on-chip or off-chip. Devices in the Segment 14 are usually off-chip.

16 TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS Programming Model

Many data accesses use addresses computed by adding a displacement to the value of a base ad
dress register. Using a displacement to cross one of the segment boundaries is not allowed, and, if
done, will cause a trap. This restriction allows direct determination of the accessed segment.

Figure 6 shows the TriCore architecture's address space mapping. The figure also shows how the
Load/Store Unit, the Instruction Fetch Unit, and other devices on the System bus view the address
space.

TriCore Architecture Manual 17

• PRELIMINARY EDITION.

Programming Model

Segments

1111

1110

II OJ

1100

1011

1010

1001

1000

0111

0110

0101

0100

OOH

0010

0001

0000

18

Address Range
Partitioning

OxFFFF.FFFF

OxFOOO.OOOO
OxEFFF.FFFF

OxEOOO.OOOO
OxDFFF.FFFF

OxDOOO.OOOO
OxCFFF.FFFF

OXCOOO.OOOO
OxBFFF.FFFF

OxBOOO.OOOO
OxAFFF.FFFF

OxAOOO.OOOO
Ox9FFF.FFFF

Ox9000.0000
Ox8FFF.FFFF

Ox8000.0000
Ox7FFF.FFFF

Ox7000.0000
Ox6FFF.FFFF

Ox6000.0000
OxSFFF.FFFF

OxSOOO.OOOO
Ox4FFF.FFFF

Ox4000.0000
Ox3FFF.FFFF

Ox3000.0000
Ox2FFF.FFFF

Ox2000.0000
OxlFFF.FFFF

OxlOOO.OOOO
OxOFFF.FFFF

OxOOOO.OOOO

System
Bus

Exclu

I

ed

\

Memory Map
Seen from Load!

Store Unit

Internal
Peripherals

External
Peripherals

Local Code

Local Data

Local Data

System
Bus

Excl

System
Bus

!

{

\
uded

[

Memory Map
Seen from Fetch

Unit

Excluded
(Leads to Trap)

Excluded
(Leads to Trap)

Local Code

Local Data

Local Data

Figure 6. Address Map and Memory Model

SIEMENS

System
Bus

CSF

I

'Is

\

Memory Map
Seen from System

Bus

Internal
Peripherals

External
Peripherals

Local Code

Local Data

Local Data

rAMOO4.l

TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS Programming Model

The Load/Store Unit regards Segments 0 and 1 as the local data memory and the local code Seg
ment 2 as a "data memory" on the System Bus. This means a data access to the local code memory
(for example, access to data constants in code memory) by the Load/Store Unit is routed to the code
memory via the System Bus. The Load/Store Unit views Segments 2 through 15 to be on the Sys
tem Bus. No System Bus access is initiated when the unit accesses its local data space in Segments
o or 1. Accesses to the core SFR space (CSFR) are not allowed and will cause a trap.

The Instruction Fetch Unit regards Segment 2 as the local code memory and the data Segments 0
and 1 as a "code memory" on the System Bus. This means a code access to the local data memory
(for example, execute code out of data memory) by the Instruction Fetch Unit is routed to the data
memory via the System Bus. Instruction fetches from Segments 14 and 15 are not allowed and will
cause a trap. Instruction fetches from the core SFR space (CSFR) are not allowed and will cause a
trap.

The System bus views the entire address space. Devices on the System bus can access all resourc
es, including the local code and data memories and the core SFRs.

2.4 Addressing Model

The first subsection in this section describes the addressing modes that the TriCore architecture sup
ports. The second subsection describes how extended addressing modes can be synthesized
through short instruction sequences.

2.4.1 TriCore Addressing Modes

Addressing modes allow load and store instructions to efficiently access simple data elements with
in data structures such as records, randomly and sequentially accessed arrays, stacks, and circular
buffers. Simple data elements are 1,8, 16,32, or 64 bits wide.

The TriCore architecture supports seven addressing modes, as listed in Table 1. These addressing
modes support efficient compilation of C, easy access to peripheral registers, and efficient imple
mentation of typical DSP data structures (circular buffers for filters and bit-reversed indexing for
FFTs). Each addressing mode is described in detail in the following subsections.

TriCore Architecture Manual

• PRELIMINARY EDITION.

19

Programming Model SIEMENS

Table 1: Addressing Modes of the TriCore Architecture

Addressing Mode Address Register Use
Offset Size

(bits)

Absolute None 18

Base + Short Offset Address Register 10

Base + Long Offset Address Register 16

Pre-increment Address Register 10

Post-increment Address Register 10

Circular Address Register Pair 10

Bit-reverse Address Register Pair -

2.4.1.1 Absolute Addressing

Absolute addressing is useful for referencing I/O peripheral registers and global data. The instruction
specifies an 18-bit constant as the memory address. As shown in Figure 7, the full 32-bit address re
sults from moving the four most-significant bits of the 18-bit constant to the four most-significant
bits of the 32-bit address. The other bits are zero filled.

14

la-bit offset

14

32-bit address

TAMOO~l

Figure 7: Translation of Absolute Address to Full Effective Address

The special treatment of the four high-order address bits allows absolute addressing to be used in
the first 16 KBytes of each address segment.

2.4.1.2 Base+Offset Addressing

Base+offset addressing is used for referencing record elements, local variables (using the stack
pointer SP as the base), and static data (using an address register pOinting to the static data area).

The effective address is the sum of an address register and the sign-extended offset. The size of the
offset depends on the specific instruction. A few of the most common load/store instructions that
would be generated by a compiler are allocated 16-bit offsets. Less common instructions are allocat
ed 10 bit offsets.

20 TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS Programming Model

2.4.1.3 Pre-Increment Addressing

Pre-incrementing and pre-decrementing are used to push data onto an upward or downward grow
ing stack, respectively. The pre-increment addressing mode uses the sum of the address register
and the sign-extended 10-bit offset both as the effective address and as the value written back into
the address register.

2.4.1.4 Post-Increment Addressing

Post-incrementing and post-decrementing allow forward and backward sequential access of arrays,
respectively. Post-decrementing uses a negative offset. This mode also can be used to pop down
(post-increment) or up (post-decrement) a growing stack.

The post-increment addressing mode uses the value of the address register as the effective ad
dress, and then updates this register by adding the sign-extended 1O-bit offset to its previous value.

2.4.1.5 Circular Addressing

Circular addressing is used primarily for accessing data values in circular buffers while performing fil
ter calculations.

Aodd

Aeven L-___________ -..I TAM0Il6.1

Figure 8: Circular Addressing Mode

The circular addressing mode uses an address register pair to hold the state it requires. The even
register is always a base address (B). The most-significant half of the odd register is the buffer size
(L). The least significant half holds the index into the buffer (I). The effective address is (B+I). The
buffer occupies memory from addresses B to B + L - 1.

The index is post-incremented using the following algorithm:

tmp = I + sign_ext (offsetlO) ;

if (tmp < 0)

I = tmp + L;

else if (tmp >= L)

I = tmp - L;

else

I = tmp;

The 1O-bit offset is specified in the instruction word and is a byte-offset that can be either positive or
negative. Note that correct "wraparound" behavior is guaranteed as long as the magnitude of the
offset is smaller than size of the buffer.

For example, consider a circular buffer consisting of 25, 16-bit values (50 bytes). If the current index
is 48, then the next item is obtained using an offset of 2 (two bytes per value). The new value of the
index wraps around to o. If instead the index is 48 and the offset is 4 (two entries per step), the new
value of the index would be 2 ((48 + 4) - 50). If the current index is 4 and the offset is -8, then the
new index would be 46 ((4 - 8) + 50).

TriCore Architecture Manual 21

• PRELIMINARY EDITION.

Programming Model SIEMENS
Note that in the end case where a memory access runs off the end of the circular buffer, the data ac
cess also wraps around to the start of the buffer. For example, consider a circular buffer containing n
elements, where each element is a 16-bit value. If a load word is performed using the circular ad
dressing mode and the effective address of the operation points to element n-1, the 32-bit result will
contain element n-1 in the bottom 16 bits and element 0 in the top 16 bits.

The size and length of a circular buffer have the following restrictions placed on them:

1. The start of the buffer start must be aligned to a multiple of the data size, where the data size is
determined from the instruction being used to access the buffer. For example, a buffer accessed
using a load word instruction must be aligned to a word boundary and a buffer being accessed
using a load doubleword must be aligned to a doubleword boundary.

2. The length of the buffer must be a multiple of the data size, where the data size is determined
from the instruction being used to access the buffer. For example, a buffer accessed using a load
word instruction must be a multiple of four in length and a buffer accessed using a load double
word instruction must be a multiple of eight in length.

If the two restrictions are not met, then an alignment trap is taken.

2.4.1.6 Bit-Reverse Addressing

Figure 9 shows bit-reverse addressing, which is used to access arrays used in FFT algorithms. The
most common implementation of the FFT ends with results stored in bit-reversed order.

A(O) A(O)

A(l) A(4)

A(2) A(2)

A(3) A(6)

A(4) A(l)

A(5) A(5)

A(6) A(3)

A(7) A(7)

TAMOO7.1

Figure 9: Bit-Reverse Addressing

Bit-reverse addressing uses an address register pair to hold the required state (see Figure 10).

22 TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS Programming Model

Aodd M

Aeven

TAMOIl8.1

Figure 10: Register Pair for Bit-Reverse Addressing

The even register is the base address of the array (8). The least-significant half of the odd register is
the index into the array (I); the most-significant half is the modifier (M), which is added to I after every
access.

The effective address is 8+1. The index I is post-incremented; its new value is reverse (reverse (I) +
reverse (M)), where M is the most-significant half of the odd register. The reverseO function exchang
es bit n with bit (15 - n) for n = 0, ... , 7.

2.4.2 Synthesized Addressing Modes

This section describes how addressing not supported directly in the hardware addressing modes
can be synthesized through short instruction sequences.

2.4.2.1 Indexed Addressing

Indexed addressing can be synthesized using the ADDSC.A instruction, which adds a scaled data
register to an address register. The scale factor can be one, two, four, or eight for addressing indexed
arrays of bytes, halfwords, words, or doublewords.

For support of addressing of indexed bit arrays, the ADDSC.AT instruction scales the index value by
one eighth (shifts right three bits) and adds it to the address register. The two low-order bits of the
resulting byte address are cleared to give the address of the word containing the indexed bit. To ex
tract the bit, the word containing it is loaded, and the bit index is used in an EXTRACT instruction. A
bit field, beginning at the indexed bit position, can be extracted also. To store a bit or bit field at an
indexed bit pOSition, ADDSC.AT is used in conjunction with the LDMST (Load/Modify/Store) instruc
tion.

2.4.2.2 PC-Relative Addressing

PC-relative addressing is the normal mode for branches and calls. However, the TriCore architecture
does not support direct PC-relative addressing of data. The main reason is that the separate on-chip
instruction and data memories make data access to the program memory expensive. It typically
adds two cycles of added access time.

When PC-relative addressing of data is required, the address of a nearby code label is placed into an
address register and used as a base register in base + 16-bit offset mode to access the data. Once
the base register is loaded, it can be used to address other PC-relative data items nearby.

A code address can be loaded into an address register in various ways. If the code is statically
linked-as it almost always is for embedded systems-then the absolute address of the code label
is known, and can be loaded using the LEA instruction (load effective address), or with a sequence
to load an extended absolute address (see next subsection below). The absolute address of the PC
relative data is also known, and there is no need to synthesize PC-relative addressing.

TriCore Architecture Manual 23

• PRELIMINARY EDITION.

Programming Model SIEMENS
For code that is dynamically loaded, or assembled into a binary image from position-independent
pieces without the benefit of a relocating linker, the appropriate way to load a code address for use
in PC-relative data addressing is to use the JL (jump and link) instruction. A jump and link to the next
instruction is executed, placing the address of that instruction into the return address register (A 11).
Before doing so, it is necessary to copy the actual return address of the current function to another
register.

2.4.2.3 Extended Absolute Addressing

Extended absolute addressing is synthesized using two instructions: the MOVH.A (Move Highword)
instruction and the LEA (load effective address). The LEA instruction loads a 32-bit address into an
address register. After execution of the MOVH.A instruction, a base + 16-bit offset is used to ad
dress data in order to establish a base register.

24 TriCore Architecture Manual

• PRELIMINARY EDITION.

Core Registers ill

SIEMENS

3
Core Registers

The TriCore architecture defines a set of Core Special Function Registers (CSFRs). These CSFRs con
trol the operation of the core and provide status information about the core's operation. The CSFRs
are split into the following groups:

• Program State Information

• Stack Management

• Context Management

• Interrupt and Trap Control

• System Control

• Memory Protection

• Debug Control

The following sections describe these registers in detail. The CSFRs are complemented by a set of
general purpose registers (GPRs). Table 2 shows all CSFRs and GPRs.

Note that most of the memory protection system and debug control unit is implementation specific,
therefore, this architecture manual only summarizes these topics. Note also that the reset functions
and options are located in a block outside of the core; their functionality is briefly described in this
manual. Please contact your local Siemens Sales office for more information on literature availability.

TriCore Architecture Manual 27

• PRELIMINARY EDITION.

Core Registers SIEMENS

Table 2: Core Register Map

Register Description Paget Name

00-015 Oata Regis1Ers 29

AO-AI5 Address Regis1Ers 29

PSW Program Status Word 30

PCXI Previous Col11ext Infonna~on 32

PC Program Coul11er (read only! 30

FCX Free Con1Ext List Head Poin1Er 34

LCX Free Con1Ext List limit Poin1Er 35

ISP In1Errupt Stack Poil11er 35

ICR In1Errupt Control Regis1Er 36

BIV Base Address of Il11errupt Vector Table 37

BTV Base Address of Trap Vector Table 37

SYSCON Sys1Em Configuration Register 38

PMUCON Program Memory Control Regis1Er 38

OMUCON Oata Memory Control Regis1Er 38

OPRx_O - OPR,,-3 Oata Segment Pro1Ection Regis1Er Sets (x = 0 - 31 39

CPRx_O - CPRx_3 Code Segment Pro1Ection Register Sets (x = 0 - 31 39

OPMx_O - OPM,,-3 Oata Pro1Ection Mode Regis1Er Sets (x = 0 - 31 39

CPMx_O - CPMx_3 Code Pro1Ection Mode Register Sets (x = 0 - 31 39

OBGSR Debug Status Regis1Er 44

GPRWB GPR Write Back Trigger 44

EXM Ex1Emal Break Input Event Specifier 44

SWM Software Break Event Specifier 44

CRM Core SFR Access Event Specifier 44

TRnEVT TriggerEventn Specifier(n =0. 11 44

3.1 Access to the Core Registers

The core accesses the CSFRs through two instructions: MFCR and MTCR. The MFCR instruction
(Move From Core Register) moves the contents of the addressed CSFR into a data register. MFCR
can be executed on any privilege level. The MTCR instruction (Move To Core Register) moves the
contents of a data register to the addressed CSFR. To prevent unauthorized writes to the CSFRs, the
MTCR instruction can only be executed on the supervisor privilege level.

The CSFRs are also mapped into the top of the local code segment in the memory address space.
This mapping makes the complete architectural state of the core visible in the address map. This fea
ture allows efficient debug and emulator support. Note it is not permitted for the core to access the
CSFRs through this mechanism- it must use MFCR and MTCR.

28 TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS Core Registers

There are no instructions allowing bit, bit field or load-modify store accesses to the CSFRs. The RSTV
instruction (Reset Overflow Flags) resets only the overflow flags in the PSW, without modifying any
of the other PSW bits. This instruction can be executed at any privilege level.

3.2 General-Purpose Registers (GPRs)

Figure 11 shows the general-purpose registers. The 32-bit wide general-purpose registers are split
evenly into 16 data registers, or DGPRs, (DO to D15) and 16 address registers, or AGPRs, (AO to A 15).
Separation of data and address registers facilitates efficient implementations in which arithmetic and
memory operations are performed in parallel. Several instructions allow the interchange of informa
tion between data and address registers in order to create or derive table indexes, etc. Two consec
utive even-odd data registers can be concatenated to form eight extended-size registers (EO, E2, E4,
E6, E8, E10, E12, and E14). in order to support 64-bit values.

Address GPRs (AGPRs) Data GPRs (DGPRs)
31 31

A 15 (implicit address register) D15 (implicit data register)

A14 014

A13 013

A12 012

All (Return Address IRA) Dll

A10 (Stack Pointer I SP) 010

A9 (global address register) 09

A8 (global address register) 08

A7 D7

A6 D6

A5 D5

A4 D4

A3 D3

A2 D2

A1 (global address register) Dl

AO (global address register) DO

Figure 11: General-Purpose Registers (GPRs)

TriCore Architecture Manual 29

• PRELIMINARY EDITION.

"II f

Core Registers SIEMENS
Registers AO, A 1, A8, and A9 are defined as SYSTEM GLOBAL REGISTERS. Their contents are not saved
and restored across calls, traps, or interrupts. Register A 10 is used as the stack pointer (SP); register
A11 is used to store the return address (RA) for calls and linked jumps and to store the return pro-
gram counter (PC) value for interrupts and traps. Refer to .Chapter 4, "Managing Tasks and Func
tions," for more information.

While the 32-bit instructions have unlimited used of the GPRs, many 16-bit instructions implicitly use
A15 as their address register and 015 as their data register. This implicit use eases the encoding of
these instructions into 16 bits.

In order to support 64-bit data values, an even/odd register pair holds these values. In the assembler
syntax, these register pairs are either referred to as a pair of 32-bit registers (for example, 09/08) or
as an extended 64-bit register (for example, E8 is the concatenation of 09 and 08, where 08 is the
least significant word of E8).

Note that there are no separate floating-point registers-the data registers are used to perform float
ing-point operations. The floating-point data is saved/restored automatically using the fast context
switch support.

The GPRs are an essential part of a task's context. When saving or restoring a task's context to and
from memory, the context is split into the upper and lower contexts. Registers A2 through A7 and
DO through 07 are part of the lower context. Registers A10 through A15 and 08 through 015 are part
of the upper context. Refer to Section 1.6.1, "Upper and Lower Contexts," on page 7 and Chapter 4,
"Managing Tasks and Functions," for more information.

3.3 Program State Information (PC, PSW, and PCXI)

The PC, PSW, and PCXI registers hold and reflect program state information. When storing and re
storing a task's context, the contents of these registers are an important part of this procedure and
are stored/restored or modified during this process.

3.3.1 Program Counter

Figure 12 shows the 32-bit program counter (PC). The PC contains the address of the instruction that
is currently executing. The PC is part of a task's state information.

31

Program Counter

Figure 12: Program Counter (PC)

3.3.2 Program Status Word (PSW)

Figure 13 shows the Program Status Word (PSW). The five most-significant bits of PSW contain ALU
status flags that are set and cleared by arithmetic instructions. The remaining bits of PSW control the
permission levels, protection register sets, and the call depth counter. The PSW is part of a task's
state information.

30 TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS Core Registers

A single instruction, RST\I. resets all overflow status bits (V, SV, AV, SAV). RS1V can be executed at
any privilege level.

31 30 29 28 27 26 14 13 12 11 10 9 8

Res ! PRS ! 10 !IS !GW! CDE! CDC

Figure 13: Program Status Word (PSW)

C - Carry (Bit 31) This flag is set when a carry occurs.

Y - Overflow (Bit 30) This flag is set when an overflow occurs.

SV - Sticky Overflow (Bit 29)
This flag is set when an overflow occurs. This flag remains set until it is explic
itly reset by an RSTV (Reset Overflow bits) instruction.

AY - Advanced Overflow (Bit 281
This flag is set when an arithmetic instruction "almost" caused an overflow.
This flag is updated after every arithmetic instruction.

SAY - Sticky Advanced Overflow (Bit 271
This flag is set when an arithmetic instruction "almost" caused an overflow.
This flag remains set until it is explicitly reset by an RSTV (Reset Overflow
bits) instruction.

PRS - Protection Register Set (Bits 13:121
This two-bit field selects one of up to four sets of memory protection regis
ters.

00 Protection Register Set 0

01 Protection Register Set 1

10 Protection Register Set 2

11 Protection Register Set 3

10 -I/O Privilege (Bits 11:1o)This field selects the I/O privilege mode.

00 User-O

01 User-1

10 Supervisor

11 Reserved

TriCore Architecture Manual 31

• PRELIMINARY EDITION.

lEi ~

Core Registers SIEMENS
IS -Interrupt Stack (Bit 9)

This bit reflects the status of the current task.

o Current task uses a user stack

1 Current task uses the global interrupt stack

GW - Global Register Write Permission (Bit 8)
This bit enables write permission to the global registers.

D Write permission to global registers AD, A 1, AS, A9 is disabled

Write permission to global registers AD, A 1. AS, A9 is enabled

CDE - Call Depth Count Enable (Bit 7)
This bit is the enable for call depth counting.

D Call depth counting is temporarily disabled. It is automatically re-en-
abled following execution of the next Call instruction.

1 Call depth counting is enabled. If CDC= 111.11112' call depth counting is
disabled regardless of the setting on this bit.

CDC - Call Depth Counter (Bits 6:0)
The CDC field consists of two variable-width subfields. The first subfield is a
mask field, consisting of a string of zero or more initial "'" bits, terminated by
the first "0" bit. The remaining bits comprise the subfield, which constitutes
the Call Depth Counter. Refer to Section 7.1.1.6, "CDC," on page 79 for more
information on the call depth counter.

Refer to Section 8.', "Arithmetic Instructions," for more information on the ALU status flags C, V, Sv,
AV, and SAV. Refer to Chapter 7. "Protection System," for more information on the PRS, 10, GW,
CDE, and CDC fields. Refer to Section 4.4, "Context Switching with Interrupts," for more informa
tion on the IS bit.

3.3.3 Previous Context Information Register (PCXI)

PCXI contains linkage information to the previous execution context, supporting fast interrupts and
automatic context switching. The PCXI is part of a task's state information.

31 24 23 22 21 20 19 16 15

PCPN PIE UL I Res I PCXS PCXO

Figure 14: Previous Context Information Register (PCXI)

PCPN - Previous CPU Priority Number (Bits 31:24)
This field contains the priority level number of the interrupted task.

32 TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS Core Registers

PIE - Previous Interrupt Enable {Bit 23)
This bit indicates the state of the interrupt enable bit (ICR.IE) for the interrupt
ed task.

UL - Upper/Lower Context Tag {Bit 22)
The U/L context tag bit identifies the type of context saved. A one indicates
upper context; a zero indicates lower context. If the type does not match the
type expected when a context restore operation is performed, a trap is gener
ated.

PCXS - PCX Segment Address {Bits 19:16)
This field contains the segment address portion of the PCX.

PCXO - Previous Context Pointer Offset Field {Bits 15:0)
The PCXO and PCXS fields form the pointer PCX, which points to the CSA of
the previous context. Note that the PCX pointer contained in register PCXI is
used for context management.

Note that the PCX pointer contained in PCXI is used for context management. Section 3.4, "Context
Management Registers," and Chapter 4, "Managing Tasks and Functions," provide more informa
tion on the PCX pointer.

3.4 Context Management Registers

This section describes the context management registers, which are comprised of three pointers.
These pointers handle context management and are used during context savelrestore operations.
Refer to Chapter 4, "Managing Tasks and Functions," for more information on the usage of these
registers. Table 3 summarizes these registers.

Table 3: Context Management Registers

Register Category

FCX Free CSA list Head Pointer

PCX Previous Context Pointer (contained in register PCXI)

LCX Free CSA list limit Pointer

Each pointer consists of two fields: a 16-bit offset and a 4-bit segment specifier. Figure 15 shows
how the effective address of a CSA is generated using the two fields. A context save area (CSA) is
an address range containing 16 word locations (64 bytes), which is the space required to save one
upper or one lower context. Incrementing the pointer offset value by one always increments the ef
fective address to the address that is 16 word locations above the previous one. The total usable

TriCore Architecture Manual 33

• PRELIMINARY EDITION.

Core Registers SIEMENS
range in each address segment for CSAs is 4 MBytes, resulting in storage space for 64 K context
save areas.

Pointer Offset I

left shift by six /-
22 21 6 5 0

Segment 10000001 Offset 10 0 0 0 0 0 I

Figure 15: Generation of the Effective Address for the Context Save Areas (CSAs)

Note that the effective address should result in a physical memory address. Address ranges not cov
ered by physical memories could lead to unexpected results. Segments 14 and 15, which are re
served for external and internal peripherals, should also not be used for context save areas.

3.4.1 Free CSA List Head Pointer (FCX)

The FCX pointer register holds the free CSA list head pointer, which always points to an available
CSA.

31 20 19 16 15

Res FCXS FCXO

FCXS - FCX Segment Address Field (Bits 19:16)
This field is used in conjunction with the FCXO field.

FCXO - FCX Offset Address Field (Bits 15:0)
The FCXO and FCXS fields together form the FCX pointer, which points to the
next available CSA.

3.4.2 Previous Context Pointer (PCX)

The previous context pointer (PCX) holds the address of the CSA of the previous task. PCX is part of
the previous context information register PCXI. Refer to Section 3.3.3, .. Previous Context Informa
tion Register (PCXI)," for a description of the PCXI register. It is shown below for easy reference. The
bits not relevant to the pointer function are shaded.

31 24 23 22 21 20 19 16 15

PCXS PCXO

34 TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS Core Registers

PCXS - PCX Segment Address Field (Bits 19:16)
This field is used in conjunction with the PCXO field.

PCXO - Previous Context Pointer Offset Field (Bits 15:0)
The PCXO and PCXS fields form the pointer PCX, which points to the CSA of
the previous context.

3.4.3 Free CSA List Limit Pointer (LCX)

The LCX pointer register is used to recognize impending CSA list underflows. If the value of FCX
used on an interrupt or CALL matches the limit value, the context save operation completes, but the
target address is forced to the trap vector address for CSA list depletion.

31 20 19 16 15

Res LCXS LCXO

LCXS - PCX Segment Address (Bits 19:16)
This field is used in conjunction with the LCXO field.

LCXO - Previous Context Pointer Offset Field (Bits 15:0)
The LCXO and LCXS fields form the pointer LCX, which points to the last
available CSA.

3.5 Stack Management

The stack management in the TriCore architecture supports a user stack and an interrupt stack. Ad
dress register A10, the Interrupt Stack Pointer (lSP), and a PSW bit are involved in the management
of the stack.

31

AlO/SP

Figure 16: A10/SP

31

ISP

Figure 17: Interrupt Stack Pointer (lSP)

General-purpose address register A 10 is used as the stack pointer. The initial contents of this register
are usually set by an RTOS when a task is created, which allows a private stack area to be assigned
to individual tasks.

The Interrupt Stack pointer (lSP) helps to prevent interrupt service routines (lSRs) from accessing the
private stack areas and possibly interfering with the software managed task's context. An automatic
switch to the use of the interrupt stack pointer instead of the private stack pOinter is implemented in

TriCore Architecture Manual 35

• PRELIMINARY EDITION.

lEi ~

,ore Registers SIEMENS
the TriCore architecture. The PSW.IS bit indicates which stack pointer is in effect. When an interrupt
is taken and the interrupted task was using its private stack (IS = 0). then after saving its contents
with the upper context of the interrupted task (see Chapter 4, "Managing Tasks and Functions," for
information on context management). SP/A10 is loaded with the current contents of the interrupt
stack pointer ISP.

When an interrupt is taken and the interrupted task was already using the interrupt stack (IS = 1),
then no preloading of SP/A10 is performed. The interrupt service routine continues to use the inter
rupt stack at the point where the interrupted routine had left it.

Usually it is only necessary to initialize ISP once during the initialization routine. However, depending
on application needs, ISP can be modified during execution.

Nothing prevents an ISR or system service routine from executing on a private stack. Usage of the
SP/A10 in an ISR is at the discretion of the application programmer.

3.6 Interrupt and Trap Control

Three CSFRs support interrupt and trap handling: the Interrupt Control Register (lCR), the interrupt
vector table pointer (81Y), and the trap vector table pointer (8TV). Refer to Chapter 5, "Interrupt Sys
tem," and Chapter 6, "Traps," for more information on interrupts and traps, respectively.

3.6.1 Interrupt Control Register (lCR)

The Interrupt Control Register (lCR) holds the current CPU priority number (CCPN), the enable/dis
able bit for the interrupt system (IE). the pending interrupt priority number (PIPN) and an implemen
tation specific control for the interrupt arbitration scheme. The other two registers hold the base
addresses for the interrupt and trap vector tables. The Interrupt Control Register (lCR) register is
shown in Figure 18.

31 26 25 24 23 16 15 9 B 7

Res PIPN Res

Figure 18: Interrupt Control Register (lCR)

ARBCYC - Arbitration Cycle Control (Bits 25:24)
The function of this field is implementation-specific.

PIPN - Pending Interrupt Priority Number (Bits 23:16)

CCPN

This read-only field contains the priority number of the pending interrupt.

IE -Interrupt System Enable (Bit 8)
This bit determines whether the interrupt system is enabled (IE = 1) or not (IE
= 0).

CCPN - Current CPU Priority Number (Bits 7:0)
This field contains the current CPU priority number.

36 TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS Core Registers

Special instructions control the enabling and disabling of the interrupt system. Refer to Section 5.7,
"Enabling/Disabling the Interrupt System," on page 64 for more details.

3.6.2 Interrupt Vector Table Pointer (BIV)

The BIV contains the base address of the interrupt vector table. When an interrupt is accepted, the
entry address into the interrupt vector table is generated from the priority number (taken from the
PIPN) of that interrupt, left shifted by five bits, and then ORed with the contents of the BIV register.
The left-shift of the interrupt priority number results in a spacing of eight words (32 bytes) between
the individual entries in the vector table.

31

SIV

Figure 19: Interrupt Vector Table Pointer (BIV)

Care must be taken regarding the alignment of the address contained in the BIV register. First, the
address in the BIV register must be aligned to an even byte address (halfword address). Second, due
to the simple DRing of the left-shifted priority number and the contents of the BIV register, the align
ment of the base address of the vector table must be to a power of two boundary. It depends on the
number of interrupt entries used. For the full range of 256 interrupt entries, an alignment to an 8-
KByte boundary is required. If fewer sources are used, the alignment requirements are correspond
ingly relaxed.

3.6.3 Trap Vector Table Pointer (BTY)

The BTV contains the base address of the trap vector table. When a trap occurs, the entry address
into the trap vector table is generated from the trap identification number (TIN) of that trap, left-shift
ed by five bits and then ORed with the contents of the BTV register. The left-shift of the trap identifi
cation number results in a spacing of eight words (32 bytes) between the individual entries in the
vector table.

31

BN

Figure 20: Trap Vector Table Pointer (BTY)

Care must be taken regarding the alignment of the address contained in the BTV register. First, the
address in the BTV register must be aligned to an even byte address (halfword address). Second,
due to the simple DRing of the left-shifted trap identification number and the contents of the BTV
register, the alignment of the base address of the vector table must be to a power of two boundary.
There are eight different trap classes, resulting in TINs from 0 to 7. Thus, the contents of BTV should
be set at least to a 256-byte boundary (8 TINs * 8 word spacing).

Refer to Section 6.2, "Trap Handling," for more information on the trap vector table.

TriCore Architecture Manual 37

• PRELIMINARY EDITION.

Core Registers SIEMENS

3.7 System Control Registers

Three registers provide system control: the System Configuration Control Register (SYSCON), the lo
cal Program Memory Unit Control Register (PMUCON), and the local Data Memory Unit Control Reg
ister (DMUCON).

3.7.1 SYSCON Register
The SYSCON Register is shown in Figure 21.

31

Res

Figure 21: SYSCON Register

PRO
TEN

END
INIT

PHOTEN - Memory Protection Enable (Bit 1)This bit enables the memory protection system. Memory
protection is controlled through the memory protection register sets. Note
that it is required to initialize the protection register sets prior to setting
PROTEN to one.

o Memory Protection is disabled

1 Memory Protection is enabled.

ENDINIT - End of Initialization (Bit O)This bit controls access to critical configuration and control regis
ters. Software can set ENDINIT only to one. A one indicates that the basic ini
tialization and configuration of the device is finished. Once set, ENDINIT can
be cleared only through a reset. Any registers or control bits protected with
ENDINIT are locked against modifications as long as ENDINIT is set. Note that
the exact definition of which registers/control bits are protected with ENDINIT
is implementation-specific.

3.7.2 PMUCON Register

Figure 22 shows the PMUCON Register. Control for the local program memory is implementation
specific. Please contact your local Siemens Sales Office for additional information.

31

PMUCON (implementation-specific)

Figure 22: PMUCON Register

3.7.3 DMUCON Register

Figure 23 shows the DMUCON Register. Control for the local data memory is implementation-spe
cific. Please contact your local Siemens Sales Office for additional information.

38 TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS Core Registers

31

DMUCON (implementation-specificl

Figure 23: DMUCON Register

3.8 Memory Protection Registers

The TriCore architecture incorporates hardware mechanisms that protect user-specified memory
ranges from unauthorized read, write, or instruction fetch accesses. In addition, the protection hard
ware can be used to generate signals to the debug unit. The TriCore contains register sets that spec
ify the address range and the access permissions for a number of memory ranges. There are
separate register sets for code and data memory. Figure 24 shows the Data and Code Memory Pro
tection Register Sets.

Code Memory Protection
Register Set 0

Data Memory Protection
Register Set 0

PSW PRS = 002

PSWPRS = 01 2
Code Memory Protection

Register Set 1
Data Memory Protection

Register Set 1

Code Memory Protection
Register Set 2

Data Memory Protection
Register Set 2

PSWPRS = 102

Code Memory Protection
Register Set 3

Data Memory Protection
Register Set 3

PSWPRS = 112

Figure 24: Memory Protection Register Sets

The two-bit PRS field in the PSW selects which register set is active at a given time. As shown in Fig
ure 24, two register sets are selected at one time: one data memory protection and one code mem
ory protection.

The PSW.PRS field allows selection of up to four such register sets (four for data and four for code).
The number of register sets provided for memory protection is specific to each implementation of
the TriCore architecture. Thus this document only describes the generic format of these register
sets. For detailed information on the number of register sets and their organization. please refer to
the appropriate product specifications. Contact your local Siemens Sales Office for additional infor
mation.

Each register set contains a minimum of four range table entries (see Figure 25). The number of
range table entries is specific to each implementation of the TriCore architecture. Each range table
entry consists of a Segment Protection register pair and a Mode register. The register pair specifies
the lower and the upper boundary addresses of the memory range, while the Mode register con-

TriCore Architecture Manual 39

• PRELIMINARY EDITION.

Core Registers SIEMENS
tains the access permission and debug control bits. The control options are different for the data and
the code memory protection.

31 Mode Registers
7 0

Segment Protection Register I DPMx_O/CPMx_O I Range Table
DPRx_O/CPRx_O Entry °

31
7 0

Segment Protection Register I DPMx_1/CPMU I Range Table
DPRU/CPRx_1 Entry 1

31
7 0

Segment Protection Register I DPMx_2/CPMx_21 Range Table
DPRx_2/CPRx_2 Entry 2

31

Segment Protection Register
7 0

I DPMx_3/CPMx_31
Range Table

DPRx_3/CPRx_3 Entry 3

Figure 25: Range Table Entries in a Protection Register Set

Table 4 lists the Memory Protection Registers. Index x indicates the protection register set number,
while index n indicates the range table entry number.

Table 4: Memory Protection Registers

Register Description

DPRx_n Data Segment Protection Registers (x. n = O. 1. 2. 3)

DPMx_n Data Protection Mode Registers (x. n = O. 1. 2. 3)

CPRx_n Code Segment Protection Registers (x. n = O. 1.2. 3)

CPMx_n Code Protection Mode Registers (X. n = O. 1. 2. 3)

3.8.1 Data and Code Segment Protection Registers

Figure 26 and Figure 27 show the segment protection registers of a range table entry. The register
pair DPRx_n/CPRx_n contains the two word registers specifying the lower and the upper boundary
address of the associated memory range. The range defined by a range table entry is:

lower bound::; address < upper bound

Range checking is not performed if the lower bound is greater than the upper bound. If the lower
bound is equal to the upper bound, the range is regarded as empty.

For the generation of debug signals, instead of defining a range, the values in DPRx_n/CPRx_n are
regarded as individual addresses. Signals to the debug unit are generated if the address of a memory
access equals one or more of the DPRx_n/CPRx_n contents (note that for this purpose, an equality
compare with the contents of the upper bound register is performed).

40 TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS Core Registers

31

Upper Bound

31

Lower Bound

Figure 26: Data Segment Protection Registers (DPRx_n)

31

Upper Bound

31

Lower Bound

Figure 21: Code Segment Protection Registers (CPRx_n)

3.8.2 Data Protection Mode Registers

The eight-bit Data Protection Mode Registers determine the access permissions and debug signal
conditions for the ranges specified in their corresponding Data Segment Protection Registers. Figure
28 shows the assignment and definition of bits within a mode table entry for the data range. The WE
and RE bits relate directly to memory protection. The remaining bits generate signals to the Debug
Control Unit.

WE RE WS RS WBL RBL WBU RBU

Figure 28: Data Protection Mode Register (DPMx_n)

WE - Address Range Data Write Enable (Bit 7)
This bit controls writes to the addresses in the associated range.

o Data write accesses to the associated address range are not permitted

1 Data write accesses to the associated address range are permitted

RE - Address Range Data Read Enable (Bit 6)
This bit permits reads to the addresses in the associated range.

o Data read accesses to the associated address range are not permitted

Data read accesses to the associated address range are permitted

TriCore Architecture Manual

• PRELIMINARY EDITION.

41

"II I

Core Registers SIEMENS
WS - Address Range Data Write Signal (Bit 5)

0 Data write signal is disabled

1 A signal is asserted to the debug unit on data read accesses to the associated
address range.

RS - Address Range Data Read Signal (Bit 4)

0 Data read signal is disabled

1 A signal is asserted to the debug unit on data read accesses to the associated
address range

WBl - Data Write Signal on lower Bound Access (Bit 3)

0 Data write signal is disabled

1 A signal is asserted to the debug unit on a data write access to an address that matches the
lower bound address of the associated address range

HBl - Data Read Signal on Lower Bound Access (Bit 2)

0 Data read signal is disabled

1 A signal is asserted to the debug unit on a data read access to an address that matches the low-
er bound address of the associated address range

WBU - Write Signal on Upper Bound Access (Bit 1)

0 Write signal is disabled

1 A signal is asserted to the debug unit on a write access to an address that matches the upper
bound address of the associated address range

RBU - Data Read Signal on Upper Bound Access (Bit 0)

0 Data read signal is disabled

1 A signal is asserted to the debug unit on a data read access to an address that matches the up-
per bound address of the associated address range

3.1.3 Code Protection Mode Registers

The eight-bit Code Protection Mode Registers determine the access permissions and debug signal
conditions for their corresponding range as specified in the associated Code Segment Protection
Registers. Figure 29 shows the assignment and definition of bits within a mode table entry for the

42 TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS Core Registers

code range. The XE bit is related directly to memory protection. All remaining bits generate signals
to the Debug Control Unit.

XE Res XS Res BL Res Res BU

Figure 29: Code Protection Mode Register (CPMx_n)

XE - Address Range Execute Enable (Bit 1)

o Instruction fetch accesses to the associated address range are not permitted

Instruction fetch accesses to the associated address range are permitted

XS - Address Range Execute Signal (Bit 5)

0 Execute signal is disabled

1 A signal is asserted to the debug unit on instruction fetch accesses to the associated address
range

BL - Execute Signal on Lower Bound Access (Bit 3)

0 Lower bound execute signal is disabled

1 A signal is asserted to the debug unit on an instruction fetch access to an address that matches
the lower bound address of the associated address range

BU - Execute Signal on Upper Bound Access (Bit 0)

0 Upper bound execute signal is disabled

1 A signal is asserted to the debug unit on an instruction fetch access to an address that matches
the upper bound address of the associated address range

Refer to Chapter 7, "Protection System," for a description of the Memory Protection Registers within
the Protection System.

TriCore Architecture Manual 43

• PRELIMINARY EDITION.

lEi

Core Registers SIEMENS

3.9 Debug Registers

Seven registers are implemented in the core to support debugging. These registers define the con
ditions under which a debug event is generated, the actions taken on the assertion of a debug event,
and provide status information on the debug control unit. Table 5 summarizes the debug registers.

Table 5: Debug Registers

Register Description

DSR Debug Status Register

GPRWB GPR Write Back Trigger Register

EXEVT External Break Input Event Specifier

SWEVT Debug Instruction Break Event Specifier

CREVT Core SFR Access Break Event Specifier

TRnEVT Trigger Event n Specifier

The functions and details of the Debug Control Unit are implementation specific. Thus this docu
ment does not provide further descriptions of the Debug Control Unit and its associated registers.
Contact your local Siemens Sales Office for the appropriate literature.

44 TriCore Architecture Manual

• PRELIMINARY EDITION.

Managing Tasks and Functions

SIEMENS

4
Managing Tasks and Functions

Most embedded and real-time control systems are designed according to a model in which interrupt
handlers and software-managed tasks are each considered to be executing on their own "virtual"
microcontroller. That model is generally supported by the services of a real time executive or operat
ing system (RTOS)' layered on top of the features and capabilities of the underlying machine architec-
ture.

In the Trillium architecture, however, the RTOS layer can be very "thin." The hardware can efficiently
handle much of the switching between one task and another. At the same time, the architecture al
lows for considerable flexibility in the tasking model used. System designers can choose the real
time executive and software design approach that best suits the needs of their application, with rel
atively few constraints imposed by the architecture.

The mechanisms for low overhead task switching and for function calling within the TriCore architec
ture are closely related. They are discussed together in this chapter.

4.1 Upper and Lower Contexts

As stated in Section 1.6, "Tasks and Contexts," on page 6, a task is an independent thread of control.
The task's context defines the state of the task. Should the task be interrupted, the processor uses
the context to re-enable the continued execution of the task.

The context is subdivided into the UPPER CONTEXT and the LOWER CONTEXT, as illustrated in Figure 3 on
page 7. The upper context consists of the upper address registers, A10 - A15, and the upper data
registers, 08 - 015. These registers are designated as non-volatile, for purposes of function calling.
The upper context also includes PCXI and PSw.

The lower context consists of the lower address registers, A2 through A7, and the lower data regis
ters, DO through 07, plus the Program Counter (PC).

Both upper and lower contexts, when saved to memory, occupy 16-word blocks of storage referred
to as Context Save Areas (CSAs). CSAs were introduced in Section 1.6.2, "Context Save Areas," on
page 8. The first word in a CSA is the LINK WORD; the link word includes two fields that link the given

TriCore Architecture Manual 47

• PRELIMINARY EDITION.

~
~
go
.~

~ II

Managing Tasks and Functions SIEMENS
CSA to the next one in a chain. The fields are a four-bit LINK SEGMENT and a 16-bit LINK INDEX. The link
segment and link index are used to generate the effective address of the linked CSA, as shown in
Figure 30.

31

unk Word Offset I

left shift by six /.
22 21 6 5 0

Segment 10000001 Offset 10 0 0 0 0 0 1

Figure 30: Generation of the Effective Address of a Context Save Area (CSA)

If the CSA is in use (for example, it holds an upper or lower context image for a suspended task),
then the link word also contains other information about the linked context. The entire link word, in
fact, is simply a copy of the PCXI register for the associated task. Refer to Section 4.3, .. CSAs and
Context Lists," for further information on how linked CSAs support context switching.

4.2 Task Switching Operation

The TriCore architecture switches tasks when one of the events or instructions listed in Table 6 oc
curs. Upon occurrence of one of these events or instructions, the upper or lower context of the task
is saved or restored. Note that the upper context is saved automatically as a result of an external in
terrupt, trap, or function call. The lower context is saved explicitly through instructions. In the table,
Save is a store through the FCX after the next value for the FCX is read from the link word. Store is a

48 TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS Managing Tasks and Functions

store through the effective address of the instruction with no change to the CSA list or the FCX reg
ister. Restore is the converse of Save. Load is the converse of Store.

Table 6: Context-Related Events and Instructions

Event/
Description

Context Complement
Description

Context
Instruction Operation Instruction Operation

Interrupt Interrupt Save Upper RFE Return From Exception Restore Upper

Trap Trap Save Upper RFE Return From Exception Restore Upper

CALL Function Call Save Upper RET Return from Call Restore Upper

BISR Begin ISR Save Lower RSLCX Restore Lower Context Restore Lower

SVLCX Save Lower Context Save Lower RSLCX Restore Lower Context Restore Lower

STLCX Store Lower Context Store Lower LDLCX Load Lower Context Load Lower

STUCX Store Upper Context Store Upper LDUCX Load Upper Context Load Upper

4.3 CSAs and Context Lists

As previously mentioned, the upper and lower contexts are saved in CSAs. Unused CSAs are linked
together in the FREE CONTEXT LIST. CSAs that contain saved upper or lower contexts are linked togeth
er in the PREVIOUS CONTEXT LIST. Figure 31 shows a simple configuration of CSAs within both context
lists.

CSAs in Local Data Memory

Free Context List

Processor
SFRs CSA CSA CSA CSA

3 4 5 6

I FCX I-... Link to 4 ~ Link to 5 1-- Link to 6 -. Link ~ LCX I
Previous Context List

CSA 6d 2

~I u:. I PCX ~ -. Link to 1

TAMQ10.1

Figure 31: CSAs in Context Usts

The contents of the FCX register always points to an available CSA in the free context list. That CS.t>:s
link word points to the next available CSA in the free context list. Before an upper or lower context is
saved in the first available CSA. its link word is read, supplying a new value for the FCX. To the mem
ory subsystem, context saving is therefore a read/modify/write operation. The new value of FCX,

TriCore Architecture Manual 49

• PRELIMINARY EDITION.

Managing Tasks and Functions SIEMENS
which points to the next available CSA, is available immediately for subsequent upper or lower con
text saves.

The LCX register points to the last CSA in the free list and is used to recognize impending CSA list
underflow. If the value of FCX used on a context save matches the limit value, the context save op
eration completes but the target address is forced to the CSA list depletion trap entry (FCD trap). The
action taken by the trap handler depends on the implementation; it might issue a system reset, if it
is determined that the CSA list depletion resulted from an unrecoverable software error. Normally,
however, it will extend the free list, either by allocating additional memory, or by terminating one or
more tasks and reclaiming their CSA call chains. In those cases, the trap handler will exit with a re
turn from exception instruction (RFE).

The PCXI.PCX field points to CSA where the previous context was saved. The PCXI.UL bit identifies
whether the saved context is upper or lower (1 = upper; 0 = lower). If the type does not match the
type expected when a context restore operation is performed, an exception occurs and a context
management trap is taken.

After being saved with the upper context, the return address register (RA) is loaded with the inter
rupting PC (if an exception or interrupt occurred) or the function return address (if a CALL instruction
was executed). RA also supplies the saved PC value when the lower context is saved; it is loaded
from the saved PC value when the lower context is restored.

The Call Depth Control field (PSW.CDC) consists of two subfields: a call depth counter, and a mask
that determines the width of the counter and when it overflows. The call depth counter is increment
ed on calls, and is restored to its previous value on returns. An exception occurs when the counter
overflows. Its purpose is to prevent software errors from causing "runaway recursion" and depleting
the CSA free list. Refer to Section 7.1.1, "PSW Protection Fields," on page 77 for a more detailed de
scription of the use of the call depth counter.

4.4 Context Switching with Interrupts

When an interrupt occurs, the processor saves the context of the current task in memory and sus
pends execution of the current task. The processor then starts execution of the interrupt handler. An
interrupt is asynchronous. All registers must be saved in order to ensure that the register(s) that the
interrupted task is using are saved.

When an interrupt is taken and the processor was not previously using the interrupt stack (PSW.IS
bit = 0), then after being saved with the upper context of the interrupted task, the stack pointer (SP)
is loaded with the current contents of the interrupt stack pointer (ISP). The PSW.IS bit is then set to
one to indicate execution from the interrupt stack.

The Interrupt Control Register (lCR) holds the current CPU priority number (lCR.CCPN) and the inter
rupt enable bit (lCR.IE). These fields, along with the previous CPU priority number (PCXI.PCPN). and
pending interrupt priority number (lCR.PIPN) are all part of the interrupt management system. PIPN
is output from the Interrupt Control Unit, and is the priority number of the highest priority pending in
terrupt. A non-zero value in this register indicates the presence of a pending interrupt. For the inter
rupt to be serviced, PIPN must be greater than ICR.CCPN, and the interrupt enable bit (ICR.IE) must
be set.

50 TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS Managing Tasks and Functions

PCXI.PCPN is used just before loading the previous context on a call or interrupt return. The states of
PCXI.PCPN and the previous interrupt enable bit (PCXI.PIE) allow predetermination of whether a
pending interrupt that was previously blocked should be serviced now. If PIPN is greater than PCPN
and PCXI.PIE is set, then instead of restoring the previous context, the control logic takes the inter
rupt by forcing a branch to the interrupt handler for the pending interrupt. This "interrupt folding"
avoids an unnecessary context load that restores the previous context, followed by an immediate
context save that services the pending interrupt. It is particularly helpful in the case where software
posted interrupts are used frequently, as a means for ISRs to safely lower their execution priority, or
as a means to access the RTOS task dispatcher after an interrupt has been serviced, and there are
no other pending interrupts. See Chapter 5, "Interrupt System," for details on the interrupt system
and software-posted interrupts.

PCXI.PCPN and ICR.CCPN are logically part of the current processor state. However, they are not
part of the state that an RTOS needs to deal with for software-managed tasks, because they are zero
for all software-managed tasks (SMTs). ICR.CCPN is non-zero only within ISRs, where it is used to
order interrupt servicing. Accordingly, it is held in a register that is separate from the PSW, and is not
part ofthe context that the RTOS handles for switching among SMTs. On an interrupt, the CCPN val
ue becomes the PCPN value, after saving the old PCPN value along with the old PCXI value in the
CSA for the upper context.

Once the interrupt is handled, the saved context is reloaded and execution of the interrupted task is·
resumed.

On an interrupt, half of the current task context is saved by hardware as an implicit part of the inter
rupt sequence. For small interrupt handlers that can execute entirely within the set of registers saved
on the interrupt, no further context saving is needed. The interrupt handler can execute immediately
and return, leaving the unsaved portions of the interrupted task's context untouched. For interrupt
handlers that make calls, only one additional instruction is needed to save the registers that were not
saved as part of the interrupt sequence. That instruction must be issued before any of the associated
registers are modified, but it need not be the first instruction in the handler. Interrupt handlers with
critical response time requirements can perform their initial, time-critical processing immediately, us
ing registers that were already saved when the interrupt was taken. After that, they can save the re
maining registers of the interrupted task's context, and continue with less time-critical processing.

Refer to Chapter 5, "Interrupt System," for more information.

4.5 Context Switching with Function Calls

When a function call is made (the CALL instruction is executed). the context of the calling routine
must be saved and then restored, in order to resume the caller's execution after return from the
function.

On a function call, the entire set of non-volatile registers (those registers whose contents are pre
served across context switches) is saved by hardware. Furthermore, the saving of the non-volatile
registers is integrated with the CALL instruction, so it happens in parallel with the call jump. Like
wise, the restoring of the registers is integrated with the RET instruction, and happens in parallel
with the return jump. The called function need not concern itself with saving and restoring the call
er's context, and it is freed of any need to minimize the number of non-volatile registers that it uses.

TriCore Architecture Manual 51

• PRELIMINARY EDITION.

Managing Tasks and Functions SIEMENS
The calling function and called functions can cooperate to minimize the amount of context that must
be saved and restored. The general-purpose registers (GPRs) are partitioned into two subsets: those
whose contents are preserved across the call (non-volatile registers), and those whose contents are
not preserved (scratch registers). The caller is responsible for preserving any of its context that re
sides in scratch registers before the call, while the called function is responsible for preserving the
caller's values in any non-volatile registers that the called function uses. To preserve its scratch regis
ter context, when necessary, the calling function either saves the registers in memory or copies
them to non-volatile registers. The compiler's register allocator tries to minimize the need for either
action, by tracking what data items are live across a call-defined before the call and used after it
and allocating those items to non-volatile registers. Likewise, the compiler tries to minimize the
amount of context saving and restoring in the called function by minimizing the number of non-vola
tile registers that it uses.

4.6 Context Save/Restore Examples

This section provides an example of a context save operation and another example of a context re
store operation.

4.6.1 Context Save

Figure 32 on page 52 shows the free and previous context lists for this example. The free context list
contains three free CSAs (3, 4, and 5). and the previous context list contains two CSAs (2 and 1). The
FCX points to CSA3, the first available CSA. The link word of CSA3 points to CSA4; the link word of
CSA4 points to CSA5. The PCX points to the top CSA in the previous context list. The link word of
CSA2 points to CSA 1. CSA 1 contains the saved context prior to CSA2.

CSAs in Local Data Memory
Processor

SFRs Free Context List

I FCX }--... CSA CSA CSA

~
3 4 5

Link to 4 ... Link to 5 • Link to 6

Previous Context List

I PCX J----- CSA CSA

~
2 1

Link to 1 ... Link - TAM011.1

Figure 32: CSAs and Processor State Prior to Context Save

52 TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS Managing Tasks and Functions

When the context save operation is performed, the first CSA in the free context list (CSA3) is pulled
off and is placed on the front of the previous context list. Figure 33 shows the steps taken during the
context save operation. The numbers in the figure correspond to the steps below:

1. The contents of the link word in CSA3 are loaded into the new FCX. The new FCX will now point
to CSA4. Note that the new FCX is an internal buffer and is not accessible by the user.

2. The contents of the PCX are written into the link word of CSA3. The link word of CSA3 now
points to CSA2.

3. The contents of the old FCX are written into the PCX. The PCX now points to CSA3, which is at
the front of the Previous Context List.

4. The new FCX is loaded into the FCX.

CSA
3

Figure 33: CSA and Processor SFR Updates on a Context Save Process

TAM012.1

The processor SFRs and CSAs now look as shown in Figure 34. The processor context to be saved
is now written into the rest of CSA3.

TriCore Architecture Manual 53

• PRELIMINARY EDITION.

Managing Tasks and Functions

I

I

Processor
SFRs

FCX J-

PCX J-

~

~

CSAs in Local Data Memory

Free Context List

CSA CSA
4 5

Link to 5 .. Link -
Previous Context List

CSA CSA
3 2

.. Link to 2 - Link to 1

CSA
1

... - Link

Figure 34: CSAs and Processor State After Context Save

4.6.2 Context Restore

SIEMENS

Figure 35 shows an example where the previous context list contains three CSAs (3, 2, and 1) and
the free context list contains two CSAs (4 and 5). The FCX points to CSA4, the first available CSA in
the free context list. PCX points to CSA3, the most recently saved CSA in the previous context list.
The link word of CSA3 points to CSA2; the link word of CSA2 points to CSA 1; the link word of CSA4
points to CSA5.

Processor
SFRs

54

CSAs in Local Data Memory

Free Context List

Previous Context List

Figure 35: CSAs and Processor State Prior to Context Restore

TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS Managing Tasks and Functions

When the context restore operation is performed, the first CSA in the previous context list (CSA3) is
pulled off and is placed on the front of the free context list. Figure 36 shows the steps taken during
the context restore operation. The numbers in the figure correspond to the steps below:

1. The contents of the link word in CSA3 are loaded into the new PCx. The new PCX will now point
to CSA2. Note that the new PCX is an internal buffer and is not accessible by the user.

2. The contents of the FCX are written into the link word of CSA3. The link word of CSA3 now
points to CSA4.

3. The contents of the old PCX are written into the FCX. The FCX now points to CSA3, which is at
the front of the free context list.

4. The new PCX is loaded into the PCX.

0

CSA
3

CD CD
TAM015.1

Figure 36: CSA and Processor SFR Updates on a Context Restore Process

The processor SFRs and CSAs now look as shown in Figure 37. The restored context now is written
into the upper or lower context registers.

TriCore Architecture Manual 55

• PRELIMINARY EDITION.

I
.l:!
.!!
.~
Ii!'

~

Managing Tasks and Functions SIEMENS

I

I

Processor
SFRs

FCX "-

PCX I--

56

CSAs in Local Data Memory

Free Context List

CSA CSA CSA

~
3 4 5

Link to 4 ~ Link to 5 ~ Link to 6

Previous Context List

CSA CSA

~
2 1

Link to 1 Link

Figure 37: CSAs and Processor State After Context Restore

TriCore Architecture Manual

• PRELIMINARY EDITION.

Interrupt System

SIEMENS

5
Interrupt System

This chapter describes the interrupt system, including arbitration, the priority level scheme, and the
access of the vector table.

5.1 System Overview

Multiple sources can interrupt the TriCore device including internal peripherals, external inputs, and
software (see Figure 38).

Interrupt
Request

Control Unit
(lCU)

CPU
Core

Int. Ack. 1------'

Int. Req.

Figure 38: Block Diagram of Interrupt System

Every service request line from a peripheral or an external input is connected to a service request
node (SRN). Each SRN contains a Service Request Control Register (xxSRC)' where xx refers to the
requesting source. The xxSRC register contains control bits and a priority number (SRPN) that the In
terrupt Request Control Unit (lCU) uses when handling the interrupt. Up to 255 priority numbers can

TriCore Architecture Manual 59

• PRELIMINARY EDITION.

E 5 !
Q.

j

Interrupt System SIEMENS
be assigned. The CPU core also is assigned a priority number (lCR.CCPN). When an interrupt occurs,
the ICU determines which source will win arbitration, including the CPU.

The TriCore architecture requires that the xxSRC Register looks as shown in Figure 39.

15 11 10

Figure 39: Service Request Control Register (xxSRC)

xxSR - Service Request (Bit 10)
This bit indicates whether a service request has occurred.

10 A service request is not pending I
A service request is pending I

xxSRE - Service Request Enable (Bit 9)
This bit enables service requests.

o Service requests are disabled

1 Service requests are enabled

xxTS - Type of Service (Bit 8)
This bit specifies the type of interrupt service.

0 Interrupt service is requested

1 The type of service is implementation-specific (for exam-
ple. it can be used to request DMA service).

SRPN - Service Request Priority Number (Bits 7:0)
This eight-bit field determines the priority of the request and the entry point into the interrupt
vector table. This number must be unique among all SRNs requesting the same type of service.

5.2 The Service Request Priority Number (SRPN)

The SRPN of a service request indicates its priority with respect to other sources requesting CPU
service and to the priority of the CPU itself. Each SRPN used in a system must be unique; no sources
are allowed to use the same SRPN (except for the default SRPN of OxOO, which excludes an SRN
from taking part in the arbitration). The range for the SRPN depends on the number of interrupt
sources used in a system. The interrupt arbitration scheme allows up to 255 sources to be active at
one time. This value does not limit the number of sources that can be implemented in a Trillium de
rivative. More than 255 service request nodes can be implemented in future derivatives, however,
only a subset of 255 can be used at a time to request an interrupt service; all others must be dis
abled.

60 TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS Interrupt System

The SRPN also identifies the entry into the interrupt vector table. Unlike other interrupt systems, the
Trillium vector table provides an entry for each priority number, not for a specific interrupt source. In
this way, the vector table is decoupled from the specific peripherals implemented in the various fu
ture derivatives, and a single peripheral can have multiple entry points for different purposes.

5.3 The Interrupt Control Unit (lCU)

The ICU manages the interrupt system and performs all the actions necessary to arbitrate incoming
interrupt requests, to find the one with the highest priority, and to determine whether to interrupt
the CPU or not.

The ICU contains an Interrupt Control Register (lCR). which holds the current CPU priority number
(CCPN), the global interrupt enable/disable bit (IE), the pending interrupt priority number PIPN, as
well as two bits to control the required number of interrupt arbitration cycles. Figure 40 shows the
ICR. Refer to Section 3.6.1, "Interrupt Control Register (lCR)." on page 36 for detailed descriptions
of the ICR bits.

31 26 25 24 23 16 15 9 8 7

Res PIPN Res CCPN

Figure 40: ICR Register

5.4 Interrupt Arbitration

When an interrupt service is requested by one or more sources, these requests are serviced de
pending on their priority ranking. Thus the TriCore architecture must determine which request has
the highest priority each time. The TriCore architecture implements a scheme that performs the arbi
tration in parallel with normal CPU operation. The Interrupt Control Unit controls this scheme, which
takes place in several arbitration cycles over the arbitration bus. The arbitration bus connects the ICU
with all service request nodes. The number of arbitration cycles is implementation-specific.

The ICU automatically starts an arbitration round when a new interrupt request is detected. At the
end of the arbitration, the ICU has detected the service request with the highest priority number. It
stores this number in the Pending Interrupt Priority Number field (PIPN) of register ICR.

The ICU checks the CPU's current priority number CCPN in register ICR against the PIPN. The CPU
can be interrupted only if PIPN is greater than CCPN. If this is the case, the ICU generates an inter
rupt request to the CPU. If the CPU can enter the service routine, it acknowledges the ICU, which in
turn activates an acknowledge cycle over the arbitration bus to inform the 'winner' node that it will
be serviced. This node then resets its service request flag.

Several conditions could block the CPU from immediately responding to the interrupt request, even
if the priority of the request is higher than the CCPN:

• The interrupt system is globally disabled (lCR.IE = 0)

• The CPU operates on the highest possible priority level (CCPN = OxFF)

TriCore Architecture Manual 61

• PRELIMINAR,.Y EDITION.

E 5 !
15.

I

Interrupt System SIEMENS
• The CPU is in the process of entering an interrupt service or trap routine

• The CPU is in the process of returning from an interrupt service or trap routine

• The CPU is operating on non-interruptible trap services

• The CPU is in the process of changing state in the power management

• The CPU executes a multi-cycle instruction

• the CPU is executing an instruction which modifies the conditions of the interrupt system, such
as modifying the ICR

The CPU will respond to the interrupt request when these conditions are not true anymore.

If the priority of the CPU is greater than or equal to the detected PIPN, no immediate further actions
are performed. The ICU goes into an idle state until one of the following conditions is true:

• A new arbitration round will be started only when a new service request is detected. In this case,
the PIPN is first set to 0 to indicate it is invalid. (The new request might have a higher priority,
then this will be the new PIPN. If the new request has a lower priority then the previous PIPN, the
previous priority number will be detected again).

• If the current CPU priority number is changed due to explicit software modification or through the
return from an interrupt, the pending interrupt will be serviced if the new CCPN is lower than the
PIPN. Otherwise, no actions are performed and the service request is left pending.

Note that an arbitration is performed when a new service request is detected, regardless of whether
the interrupt system is globally enabled or not, or whether there are other conditions preventing the
CPU from servicing interrupts. In this way, the PIPN field always reflects the pending service request
with the highest priority. This scheme also has the advantage of reducing the power consumption
because arbitrations are not performed continuously but only when required.

Having the PIPN as an indication on a pending interrupt request also allows an immediate reaction on
the return from an interrupt or trap routine if the priority of the pending request is greater than the
one of the task which is returned to. The Trillium architecture immediately checks whether PIPN is
greater than the CCPN of the interrupted task and directly performs a branch to the new interrupt
service routine if this is the case. This "interrupt folding" saves time and reduces power consump
tion through avoiding the unnecessary context restore and save operations.

5.5 Entry into an Interrupt Service Routine (lSR)

When all conditions are clear for the CPU to service an interrupt request, the following actions are
performed:

1. The upper context of the current task is saved.

2. The interrupt system is disabled (ICR.IE = 0).

3. The current CPU priority number (CCPN) is set to PIPN.

4. The PSW is set to a default value.

62 TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS Interrupt System

5. The interrupt vector table is accessed to fetch the first instruction of the interrupt service routine
(lSR).

5.5.1 Default State of the PSW upon an Interrupt

The default state of the PSW upon occurrence of an interrupt is defined as follows:

1. All permissions are enabled.

2. Memory protection using the interrupt memory protection map (PSW.PRS) is enabled.

3. The stack pointer bit is set for using the interrupt stack.

4. The call depth counter is cleared, and the call depth limit selector is set for 64.

5.5.2 The Interrupt Vector Table

The interrupt vector table is organized according to the priority number of the interrupts. The priority
of the arbitration winner, determined automatically at the end of an arbitration round, identifies the
entry into the vector code. Interrupt latency is reduced because the extra cycle for the transfer of an
identifier can be omitted.

The interrupt handler vectors are stored in code memory. The BIV register specifies the base. ad
dress of the interrupt vector code. The vectors are made up of a number of short code segments,
evenly spaced by eight words.

If an interrupt handler is very short, it may fit entirely within the eight words available in the vector
code segment. Otherwise, it should contain some initial instructions, followed by a jump to the rest
of the handler.

The size of the vector code depends only on the number of interrupts actually used in a system. Up
to 256 vector entries, for 256 distinct interrupt handlers, are supported, but systems requiring fewer
interrupt sources need not dedicate the full 256 entry's worth of memory required by the largest
configurations.

When the CPU takes an interrupt, the interrupt priority number associated with the interrupt is used
to index into the interrupt vector code. This number, detected by the ICU as PIPN and then taken as
the new CCPN, is left-shifted by five bits and OR-ed with the address in the BIV register to generate
the entry address of the interrupt handler.

The BIVaddress must be aligned on a power of two boundary, sufficient to generate correct interrupt
vector addresses without using addition. Alignment to an 8-KByte boundary is sufficient for the full
range of 256 interrupt sources. If fewer sources are used, the alignment requirements can be re
laxed.

The BIV register accommodates partitioning of internal memory between RAM and one or more
types of ROM. Its default on power-up is a fixed value, which is normally the base address for inter
nal code ROM. However, the BIV register can be written to using the MTCR instruction during the
power-on/reset phase of execution, before interrupts are enabled.

TriCore Architecture Manual 63

• PRELIMINARY EDITION.

Interrupt System SIEMENS

5.6 Interrupt Priority Levels

The interrupt system of the TriCore architecture is a flexible, programmable priority-leveling scheme.
All service requests are assigned priority numbers (SRPNs), including the CPU.

Different service requests must be assigned different priority numbers. The maximum number of in
terrupting sources is 255. Programmable options range from one priority level with 255 sources up
to 255 priority levels with one source each.

Interrupt numbers are assumed to be assigned in linear order of interrupt priority. This is feasible, be
cause interrupt numbers are not hardwired to individual sources. They are assigned by software ex
ecuted during the power-on boot sequence.

Disabling the interrupt system and setting the new CCPN to PIPN (the priority of the interrupt re
quest which is now serviced) on entry into an ISR will block interrupts of equal or lower priority than
the currently serviced interrupt when the interrupt system is enabled again. However, the interrupt
service routine can set the CCPN to any value (usually a higher value) before enabling interrupts,
thereby blocking an entire group of interrupts (including a reoccurrence of the current interrupt). This
capability results in a set of effective priority levels on top of the individual priority numbers in the
SRNs.

To group multiple interrupt sources into the same priority level, set the CCPN in each ISR to the pri
ority number of the service request with the highest SRPN in that priority group. Each time the CPU
services an interrupt that is part of a priority group, its CCPN is set to the highest priority number of
that group. This service cannot be interrupted by another source within that same group because
none has a higher priority.

Interrupt service routines are easily divided into parts with different priorities. For example, an inter
rupt is placed on a very high priority because response time and reaction to an event is very critical.
The necessary actions are carried out immediately on that high-priority level. Then the priority level
of this interrupt is lowered, and the interrupt request bit is set again (indicating a pending interrupt)
while still in the service routine. Returning to the interrupted program terminates the service routine.
The pending interrupt is serviced when the CPU priority is lower than its own. After entering the ser
vice routine, which now can be at a different address in the program memory, the outstanding but
low-priority actions of the interrupt can be performed.

The priority of a service request might be low because the response time to an event is not critical.
But, once it has been granted service, this service should not be interrupted. To prevent any interrup
tion, the TriCore architecture allows the priority level of this service request to be raised within the
ISR, and also allows interrupts to be disabled.

5.7 Enabling/Disabling the Interrupt System

There are several ways to enable or disable the interrupt system:

1. The ENABLE and DISABLE instructions set or clear ICR.IE.

2. The BISR instruction automatically enables the interrupt system (iCR.IE = 1).

64 TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS Interrupt System

3. The MTCR instruction can be used to set or clear the ICR.IE bit.

The first two options are recommended because their actions are synchronized with the pipeline op
eration. Using the MTCR instruction to directly modify register ICR is only recommended together
with an ISYNC instruction (synchronize instruction stream) in order to avoid unexpected pipeline side
effects.

5.8 Special Handling of Interrupt Requests

Interrupts are normally generated in response to interrupt requests coming from an external hard
ware source. However, it is also possible for software posted interrupts to be generated in response
to software actions.

S.B.1 Software-Posted Interrupts

A software-posted interrupt is a true hardware interrupt, carrying an interrupt priority that is pro
cessed through the regular interrupt subsystem to determine when the interrupt is taken. The only
difference is that the interrupt request is generated by setting the service request bit in a service re
quest node explicitly, through a software update of the node's control register.

Once the interrupt request bit in a service request node has been set, there is no way to distinguish
between a software-posted interrupt request and a true hardware interrupt request. For that reason,
it is generally advisable to use service request nodes and interrupt priority numbers for software
posted interrupts that are not used for hardware interrupts.

S.B.2 Interrupt One

Interrupt 1 is the first and lowest priority entry in the interrupt vector. It is best used for ISRs perform
ing task management. ISRs whose actions affect the launching of software-managed tasks will post
a software interrupt request at priority level one to signal the change. (Normally, the posting is not
done from the ISR directly, but from RTOS code in a service function called from the ISR.) The ISR
then can execute a normal return from interrupt, rather than jumping to an ISR exit function in the
kernel. There is no need for an exit function to check whether the ISR is returning to the background
task level or to a lower priority ISR that it interrupted, in order to determine when to invoke the task
dispatch function.

When there is a pending interrupt at a priority higher than the return context for the current interrupt,
the return from interrupt effectively becomes a jump to the new ISR.

TriCore Architecture Manual 65

• PRELIMINARY EDITION.

Interrupt System SIEMENS

66 TriCore Architecture Manual

• PRELIMINARY EDITION.

Traps

SIEMENS

6
Traps

A trap occurs as a result of an event such as a non-maskable interrupt, an instruction exception, or il
legal access. Traps are always active; they cannot be disabled by software action.

This chapter describes the different traps that can occur and the TriCore architecture's trap handling
mechanism.

6.1 Trap Types

The Trillium architecture contains eight trap classes. These traps are further classified as synchro
nous or asynchronous, and hardware or software. Each trap is assigned a Trap Identification Number
(TIN), that identifies the cause of the trap within its class. The TIN is loaded into register D15 before
the first instruction of the trap handler is executed.

TriCore Architecture Manual 69

• PRELIMINARY EDITION.

Traps SIEMENS
Table 7 summarizes and classifies all TriCore-supported traps.

Table 7: Supported Traps

TraplD#
Trap Name Sync/Async

Hardwarel Description (TIN) Software

Class 0 - Reset

0 RESET Synchronous Hardware System reset raised at end of hardware reset sequence, with
hardware in known state

Class 1 -Internal Protection Traps

1 PRIV Synchronous Hardware Privileged Instruction

2 MPR Synchronous Hardware Memory Protection: Read Access

3 MPW Synchronous Hardware Memory Protection: Write Access

4 MPX Synchronous Hardware Memory Protection: Execution Access

5 MPP Synchronous Hardware Memory Protection: Peripheral Access

6 MPN Synchronous Hardware Memory Protection: Null Address

7 GRWP Synchronous Hardware Global Register Write Protection

Class 2 -Instruction Errors

1 IOPC Synchronous Hardware Illegal Opcode

2 UOPC Synchronous Hardware Unimplemented Opcode

3 OPO Synchronous Hardware Invalid operand specification

4 ALN Synchronous Hardware Data address alignment error

5 MEM Synchronous Hardware Invalid local memory address

Class 3 - Context Management

1 FCD Synchronous Hardware Free context list depleted (FCX = LCX)

2 COO Synchronous Hardware Call depth overflow

3 CDU Synchronous Hardware Call depth underflow

4 FCU Synchronous Hardware Free context list underflow (FCX = 0)

5 CSU Synchronous Hardware Context list underflow (PCX = 0)

6 CTYP Synchronous Hardware Context type error (PCXI.UL wrong)

7 NEST Synchronous Hardware Nesting error: RFE with non-zero call depth

70 TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS Traps

Table 7: Supported Traps! Continued)

Trap 10#
Trap Name Sync/Async

Hardware/
Description (TIN) Software

Class 4 - .System Bus and Peripheral Errors

1 PRVP Asynchronous Hardware Privilege violation on peripheral access

2 BUS Asynchronous Hardware Bus error

3 PARI Asynchronous Hardware Parity / CRC error

4 BlTO Asynchronous Hardware Bus lock Time-out

5 PKEY Asynchronous Hardware Key violation for protected peripheral (bad source value)

Class 5- Assertion Traps

1 OVF Synchronous Software Arithmetic overflow

2 SOVF Synchronous Software Sticky arithmetic overflow

Class 6 - System Call

See footnote 1 SYS Synchronous Software System call

Class 7 - Non-Maskable Interrupt

a NMI Asynchronous Hardware Non-maskable interrupt

1. For the system call trap, the TIN is taken from the immediate constant specified in theSYSCALL
instruction. The range of values that may be specified is 0 to 255, inclusive.

6.1.1 Synchronous Traps

Synchronous traps are associated with the execution or attempted execution of specific instructions.
The instruction causing the trap is known precisely. The trap is taken immediately and serviced be
fore execution can proceed beyond that instruction.

6.1.2 Asynchronous Traps

Asynchronous traps are similar to interrupts, in that they are associated with hardware conditions de
tected externally and signaled back to the core. Some result indirectly from instructions that have
been previously executed, but the direct association with those instructions has been lost. Others,
such as the non-maskable interrupt, are external events. The difference between an asynchronous
trap and an interrupt is that asynchronous traps are routed via the trap vector instead of the interrupt
vector code and cannot be masked.

6.1.3 Hardware Traps

Hardware traps are generated as a result of certain TriCore instructions. Examples are the illegal in
struction trap, memory protection traps, and data memory address misalignment traps. When a
hardware trap condition is detected, the control logic supplies a two-part number that identifies the
cause of the trap to the hardware's trap entry logic. The first part is a three-bit trap class number; the
second part is an eight-bit Trap Identification Number (TIN). The trap class number is left-shifted by

TriCore Architecture Manual 71

• PRELIMINARY EDITION.

Traps SIEMENS
five and ORed with the BTV register value to generate the address of the handler for that trap class.
The TIN is loaded into the trap handier's 015 register, to further identify the cause of the trap.

6.1.4 Software Traps

Software traps include system calls and the assertion traps. Through the SYSCALL instruction, an ap
plication code can call a system function whose execution requires a permission that has not been
allocated to the calling code. There is a single trap vector entry for all system calls. The specific sys
tem function desired is identified by an immediate constant specified in the SYSCALL instruction,
which becomes the TIN for the SYSCALL trap.

6.2 Trap Handling

This section describes the trap handling mechanisms supported by the TriCore architecture. The ac
tions taken on traps are slightly different than those taken on external or software interrupts. Trap
handlers reside in a different vector from interrupt handlers. The return PC saved in the return ad
dress register is the PC of the instruction that caused the trap. For an interrupt, the return PC is that
of the instruction that would have been executed next, if the interrupt had not been taken. A trap
does not change the CPU's interrupt priority, so the ICR.CCPN field is not updated.

6.2.1 Trap Vector Format

The trap handler vectors are stored in code memory in the trap vector table. The BTV register speci
fies the base address of the trap vector table. The vectors are made up of a number of short code
segments, evenly spaced by eight words.

If a trap handler is very short. it may fit entirely within the eight words available in the vector code
segment. Otherwise, it should contain some initial instructions, followed by a jump to the rest of the
handler.

6.2.2 Accessing the Trap Vector Table

When a trap occurs, a trap identifier is generated by hardware. The trap identifier has two compo
nents: the trap class number, used to index into the trap vector table, and the trap identification num
ber (TIN), which is loaded into 015. The trap class number is left shifted by five bits and ORed with
the address in the BTV register to generate the entry address of the trap handler.

6.2.3 Default State upon a Trap

The default state when a trap occurs is defined as follows:

1. All permissions are enabled.

2. Memory protection using the interrupt memory protection map (PSW.PRS = 002) is enabled.

3. The stack pointer bit is set for using the interrupt stack.

4. The call depth counter is cleared, and the call depth limit selector is set for 64.

72 TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS Traps

5. Interrupts are disabled; they remain disabled until explicitly enabled.

6. The ICR.CCPN remains unchanged.

Although traps leave the ICR.CCPN unchanged, their handlers still begin execution with interrupts
disabled. They can therefore perform critical initial operations without interruptions, until they specif
ically re-enable interrupts.

TriCore Architecture Manual 73

• PRELIMINARY EDITION.

Traps SIEMENS

74 TriCore Architecture Manual

• PRELIMINARY EDITION.

Protection System fa

SIEMENS

7
Protection System

Protection is increasingly important as embedded applications increase in size and complexity. The
focus for embedded systems is different than it is for workstations and PCs, because embedded
systems normally are not faced with the problem of maintaining their integrity against unknown and
perhaps hostile user code. However, protection capabilities are useful for protecting core system
functionality from bugs that may have slipped through testing. They are also important aids to test
ing and debugging.

The TriCore's protection system provides the essential features needed to isolate errors and facilitate
debugging. It protects critical system functions against both software and transient hardware errors.
The TriCore protection system is unobtrusive, imposing little overhead and avoiding non-determinis
tic run-time behavior.

This chapter describes the hardware operation of the protection system. In addition, later sections in
troduce the use of the protection features by software in real-time systems.

7.1 Protection System Registers

There are two major components to the protection system:

1. The control bit fields in the PSw.

2. The memory protection registers which control program execution and memory access.

Chapter 3, "Core Registers," describes these registers in detail.

7.1.1 PSW Protection Fields

The control fields in the PSW that deal with the protection system are shaded in the figure below.
Their functions are described after the figure. (The other PSW fields are described in Section 3.3,
"Program State Information (PC, PSW, and PCXI)," on page 30.)

TriCore Architecture Manual 77

• PRELIMINARY EDITION.

fa

Protection System SIEMENS
31302928"26 M a a " m 9 8

Res CDC

7.1.1.1 PRS

The PRS field selects one of up to four sets of memory protection register values controlling load and
store operations and instruction fetches within the current process. This field indicates the current
protection register set. See Section 7.1.2, "Memory Protection Registers," on page 79, for a descrip
tion of memory protection registers.

7.1.1.2 10

The 10 field determines the access level to special function registers (SFRs) and peripheral devices.
There are three 1/0 privilege levels:

• 00 - User-O; no peripheral access. Used for tasks that have no requirement to directly access pe
ripheral devices. Tasks at this level do not have permission to enable or disable interrupts.

• 01 - User-1; regular peripheral access. Enables access to common peripheral devices that are
not specially protected. Typically includes readlwrite access to SIO ports and read access to tim
ers and most 110 status registers. Tasks at this level may disable interrupts.

• 10 - Supervisor. Enables readlwrite access to core registers and protected peripheral devices.

• 11 - Reserved. This encoding is reserved and not defined.

7.1.1.3 IS

The IS bit determines whether the current execution thread is using the shared global (interrupt)
stack or a user stack. A "1" in this bit indicates use of the interrupt stack; a "0" indicates use of the
user stack. If an interrupt is taken when the IS bit is 0, then the stack pointer register is loaded from
the ISP register before execution starts at the first instruction of the interrupt service routine.

7.1.1.4 GW

The GW bit controls whether the current execution thread has permission to modify the global ad
dress registers. Most tasks and ISRs will use the global address registers as "read only" registers,
pointing to the global literal pool and key data structures. However, a task or ISR can be designated
as the "owner" of a particular global address register, and is allowed to modify it.

The system designer must determine which global address variables are used with sufficient fre
quency and/or in sufficiently time-critical code to justify allocation to a global address register. By
compiler convention, global address register AO is reserved as the base register for short form loads
and stores. Register A 1 is also reserved for compiler use. Registers A8 and A9 are not used by the
compiler, and are available for holding critical system address variables.

78 TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS Protection System

7.1.1.5 CDE

The CDE bit enables call depth counting, provided that the CDC mask field is not all 1 's. It is one by
default, but is cleared by the call trace trap handler to enable a trapped call to execute without re
trapping after return from the trap handler. It is then set again on execution of the CALL instruction.

7.1.1.6 CDC

The CDC field consists of two variable-width fields. The first is a mask field, consisting of a string of
zero or more initial '1' bits, terminated by the first '0' bit. The remaining bits of the field are the call
depth counter. The following table illustrates the division:

PSW.CDC Bits Definition

Occcccc 6-bit counter; trap on overflow

10ccccc 5-bit counter; trap on overflow

110cccc 4-bit counter; trap on overflow

1110ccc 3-bit counter; trap on overflow

11110cc 2-bit counter; trap on overflow

111110c 1-bit counter; trap on overflow

1111110 trap every cali (cali trace mode)

1111111 disable call depth counting

When the call depth counter overflows, a trap is generated. Depending on the width of the mask
field, the call depth counter can be set to overflow at any power of two boundary from 1 (2°) to 64
(26). Setting the mask field to 11111102 allows no bits for the counter, and causes every call to be
trapped. This is used for call tracing. Setting the field to mask field to 11111112 disables call depth
counting altogether.

7.1.2 Memory Protection Registers

The memory protection model for the TriCore architecture is based on address ranges, with specific
access permissions associated with each range. Ranges and their associated permissions are spec
ified in two to four identical sets of tables residing in core SFR (CSFR) space. Each set is referred to
as a PROTECTION REGISTER SET. A protection register set consists of Data Segment Protection Regis
ters, Data Protection Mode Registers, Code Segment Protection Registers, and Code Protection
Mode Registers (see Figures 41 through 44). Refer to Section 3.8, .. Memory Protection Registers,"
for more details on these registers.

63 32 31

Upper Bound Lower Bound

Figure 41: Data Segment Protection Register

TriCore Architecture Manual 79

• PRELIMINARY EDITION.

Protection System SIEMENS

63 32 31

Upper Bound Lower Bound

Figure 42: Code Segment Protection Register Pair

WE RE WS RS WBL RBL WBU RBU

Figure 43: Data Protection Mode Register

XE Res XS Res BL Res Res BU

Figure 44: Code Protection Mode Register

At any given time, one of the sets is the CURRENT PROTECTION REGISTER SET, which determines the le
gality of memory accesses by the current task or ISR. The PRS field in the PSW indicates the current
protection register set number.

Each protection register set contains separate address range tables for checking data accesses and
code accesses. This reflects the fact that there are separate buses for data and program memory.
The RANGE TABLE ENTRY is a pair of words specifying a lower and an upper bound for the associated
range. The range defined by one range table entry is the address interval:

lower bound ~ address < upper bound

Each range table entry has an associated mode table entry where access permissions and debug
signal conditions for that range are specified. On load and store operations, data address values are
checked against the entries in the data range table. On new instruction fetches, the PC value for the
fetch is checked against the entries in the code range table. When an address is found to fall within
a range defined in the appropriate range table, the associated mode table entry is checked for access
permissions and debug signal generation.

The number of protection register sets in a TriCore derivative is implementation dependent. The min
imum number in a conforming implementation is two, and the maximum number is four.

In a two-set implementation, one of the sets corresponds to the current background task, and the
other is common to any interrupt service routine. (In this case "background" task means the control
thread executes at hardware priority level 0 when the interrupt stack is empty.) This configuration al
lows taking an interrupt and then returning from the interrupt to the interrupted task without chang
ing any protection register or address range table values. Only the selection of the active set of
protection registers changes.

1.1.2.1 Modes of Use for Range Table Entries

Individual range table entries can be used just for memory protection or for debugging. One entry
rarely is used for both purposes. If the upper and lower bound values have been set for debug break
points, they probably are not meaningful for defining protection ranges, and vice versa. However, it

80 TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS Protection System

is both possible and reasonable to have some entries used for memory protection and other used for
debugging.

To disable an entry for use in memory protection, clear both the RE and WE bits in a data range table
entry or clear the XE bit in a code range table entry. The entry can be disabled for use in debugging
by clearing any debug signal bits.

When a range entry is being used for debugging, the debug signal bits that are set determine wheth
er it is used as a single range comparator (giving an in-range/not in-range signal) or as a pair of equal
comparators. The two uses are not mutually exclusive.

1.1.2.2 Using Protection Register Sets

If there were only one protection register set, then either the mappings used would have to be gen
eral enough to apply to all tasks and ISRs-and hence not terribly useful for isolating software errors
in individual tasks-or there would have to be a substantial overhead paid on interrupts and task con
text switches for updating the tables to match the currently executing task or ISR. By providing for
multiple sets of tables, with two bits in the PSW to select the currently active set, those drawbacks
are avoided.

Note that supervisor mode does not automatically disable memory protection. The protection regis
ter set that is selected for supervisor tasks will normally be set up to allow write access to regions
of memory that are protected from user mode access. In addition, of course, supervisor tasks can
execute instructions to change the protection maps, or to disable the protection system entirely. But
supervisor mode does not implicitly override memory protection, and it is possible for a supervisor
task to take a memory protection trap.

7.2 Sample Protection Register Set

Figure 45 illustrates Data Protection Register Set n, where n is one of the four sets as selected by
the PSW.PRS field. Each register set in this example consists of four range table entries. The ranges
defined can potentially overlap, or be nested. Nesting of ranges can be used, for example, to allow
write access to a subrange of a larger range in which the current task is allowed read access.

The four Data Segment Protection Registers and four Data Protection Mode Registers are set up as
follows:

• Data Segment Protection Register 3 (DPRn_3) defines the upper and lower bound for Data
Range 4. Data Protection Mode Register 3 (DPMn_3) defines the permissions and debug condi
tions for Data Range 4.

• Data Segment Protection Register 2 (DPRn_2) defines the upper and lower bound for Data
Range 3. Data Protection Mode Register 2 (DPMn_2) defines the permissions and debug condi
tions for Data Range 3. Note that Data Range 3 is nested within Data Range 4.

• Data Segment Protection Register 1 (DPRn_1) defines the upper and lower bound for Data
Range 2. Data Protection Mode Register 1 (DPMn_1) defines the permissions and debug condi
tions for Data Range 2.

TriCore Architecture Manual 81

• PRELIMINARY EDITION.

Protection System SIEMENS
• Data Segment Protection Register ° (DPRn_O) defines the upper and lower bound for Data

Range 1. Data Protection Mode Register ° (DPMn_O) defines the permissions and debug condi
tions for Data Range 1.

This same configuration can be used to illustrate Code Protection Register Set n.

Data Range
4

TAM018.1

Figure 45: Example Configuration of a Data Protection Register Set

7.3 Memory Access Checking

When the protection system is enabled, every memory access (read, write, or execute) is checked
for legality before the access is performed. The legality is determined by all of the following:

• the protection enable bits in the Syscon Register,

• the current I/O privilege level (0 = User-O; 1 = User-1; 2 = Supervisor), and

• the ranges defined in the currently selected protection register set.

Data addresses (read and write accesses) are checked against the currently selected data address
range table, while instruction fetch addresses are checked against the code address range tables.
The mode entries for the data range table entries enable only read and write accesses, while the
mode entries for the code range table entries enable only execute access. In order for data to be
read from program space, there must be an entry in the data address range table that covers the ad
dress being read. Conversely there must be an entry in the code address range table that covers the
instruction being read.

Access to the internal and external peripherals is through the two upper segments of the TriCore ad
dress space (high-order address bits equal to 11102 and 1111 2), Access checking for addresses in the

82 TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS Protection System

peripheral segments is independent of access checking in the remainder of the address space. Ac
cess to the peripheral segments is not allowed for tasks at I/O privilege level 0 (User-O tasks). Tasks
at I/O privilege 1 and higher have access rights to the peripheral segment space, however, the valid
ity of any given access attempt depends on the presence of a peripheral at the accessed address,
and any restrictions it may impose on its own access. Protected peripherals, for example, require
that the I/O privilege be 2, as reflected by the supervisor line value on the system bus. Refer to Sec
tion 2.3, "Memory Model," on page 16 for the memory map showing the peripheral segments.

If the memory protection system is disabled, then any access to any memory address outside of the
peripheral segments is permitted, regardless of the I/O privilege level. There are no memory regions
reserved for supervisor access only, when the memory protection system is disabled.

When the memory protection system is enabled, for an access to be permitted, the address for the
access must fall within one or more of the ranges specified in the currently selected protection reg
ister set. Furthermore, the mode entry for at least one of the matching ranges must enable the re
quested type of access.

7.3.1 Permitted vs. Valid Accesses

A memory access can be permitted within the ranges specified in the data and code range tables
without necessarily being valid. A range specified in a range table entry could cover one or more ad
dress regions where no physical memory was implemented. Although that would normally reflect an
error in the system code that set up the address range, the memory protection system only uses the
range table entries when determining whether an access is permitted. In addition, if the memory
protection system is disabled, all accesses must be taken as permitted, though individual accesses
mayor may not be valid.

An access that is not permitted under the memory protection system results in a memory protection
trap. When permitted, an access to an unimplemented memory address results in a bus error trap,
provided that the memory address is in one of the segments reserved for local memory. If the ad
dress is an external memory address, the result depends on the memory implementation, and is not
architecturally defined.

An access can also be permitted but invalid due to a misaligned address. Misaligned accesses result
in an alignment trap, rather than a protection trap.

7.3.2 Crossing Protection Boundaries

An access can straddle two regions. For example, Figure 46 illustrates the condition where Instruc
tion A lies in an execute region of memory, Instruction C lies in a no-execute region of memory, and
Instruction B straddles the execute/no execute boundary.

Execute No Execute

A c
TAMD19.1

Figure 46: Protection Boundaries

TriCore Architecture Manual 83

• PRELIMINARY EDITION.

Protection System SIEMENS
Because the PC is used in the comparison with the comparator registers, the program error excep
tion is not signaled until Instruction C is fetched. The same is true for all comparisons-the address
of the first accessed byte is compared against the memory protection comparator registers. Hence,
an access assumes the memory protection properties of the first byte in the access regardless of
the number of bytes involved in the access.

For normal accesses, this assumption is not a problem, because the regions are set up according to
the natural access boundaries for the code or data that the region contains. For wild accesses due to
software or hardware errors, stores are the main concern. In the worst case, a doubleword store that
is aligned on a halfword boundary can extend three halfwords beyond the end of the region in which
its address lies.

One way to prevent boundary crossings is to leave at least three halfwords of buffer space between
regions. This configuration prevents wild stores from destroying data in adjacent read-only regions,
for example.

84 TriCore Architecture Manual

• PRELIMINARY EDITION.

Instruction Set Overview

SIEMENS

8
Instruction Set Overview

This chapter provides an overview of the TriCore instruction set architecture. The basic properties
and usage of each instruction type are described, as well as the selection and usage of the 16-bit
(short) instructions. The instructions are described individually in Chapter 9.

8.1 Arithmetic Instructions

Arithmetic instructions operate on data and addresses in registers. Status information about the re
sult of the arithmetic operations is recorded in the five status flags in the Program Status Word
(PSW). The status flags are described in Table 8.

Table 8: PSW Status Flags

Status Flag Description

C
Carry. This flag is set as the result of a carry out from an addition or subtraction instruction. Carry out
can result from either signed or unsigned operations. It is also set by automatic shift.

Overflow. This flag is updated by most arithmetic instructions. It is set when the result cannot be
V represented in the data size of the result; for example, when the result of a signed 32-bit operation

is greaterthan 231_1.

SV
Sticky Overflow. This flag is set when the overflow flag is set. It remains set until it is explicitly
cleared by an RSlV (Reset Overflow bits) instruction.

AV
Advanced Overflow. This flag is updated by all instructions that update the overflow flag and no oth-
ers. This flag is determined as the boolean exclusive of the two most-significant bits of the result.

SAY
Sticky Advanced Overflow. This flag is set whenever the advanced overflow flag is set. It remains
set until it is explicitly cleared by an RSlV (Reset Overflow bitsl instruction.

The two overflow conditions (overflow and advanced overflow) are calculated for all arithmetic in
structions. In the case of packed instructions, the conditions are calculated for each byte or halfword
(parallel) operation. In the case of the multiply-accumulate instructions, the conditions are calculated
after the accumulate operation.

TriCore Architecture Manual 87

• PRELIMINARY EDITION.

Instruction Set Overview SIEMENS
(parallel) operation. In the case of the multiply-accumulate instructions, the conditions are calculated
after the accumulate operation.

Numerically, for signed 32-bit values, overflow occurs when a positive result is greater than
Ox7FFF.FFFF or a negative result is smaller than Ox8000.0000. For unsigned 32-bit values, overflow
occurs when the result of a 32-bit addition is greater than OxFFFF.FFFF.

The status flags can be read by software using the Move From Core Register (MFCR) instruction and
can be written using the Move to Core Register (MTCR) instruction. The Trap on Overflow (TRAPV)
and Trap on Sticky Overflow (TRAPSV) instructions can be used to cause a trap if the V and SV bits,
respectively, are set. The overflow bits can be cleared using the 'Reset Overflow Bits instruction
(RSTV).

Individual arithmetic operations can be checked for overflow by reading and testing v. If one is only
interested in knowing if an overflow occurred somewhere in an entire block of computation, then the
SV bit is reset before the block (using the RSTV instruction) and tested after completion of the block
(using MFCR). Jumping based on the overflow result can be done using a MFCR followed by a
JEOZ.T (conditional jump on the value of a bit).

The AV and SAV bits are set as a result of the exclusive OR of the two most-significant bits of the
particular data type (byte, halfword, word, or doubleword) of the result. which indicates that an over
flow almost occurred.

Because most signal processing applications can handle overflow by simply saturating the result,
most of the arithmetic instructions have a saturating version for signed and unsigned overflow. Note
that saturating versions of all instructions can be synthesized using short code sequences.

When saturation is used for 32-bit signed arithmetic overflow, if the true result of the computation is
greater than (231 _1) or less than _23~ the result is set to (231 _1) or _231, respectively. The bounds for
16-bit signed arithmetic are (215_1) and _215, and the bounds for 8-bit signed arithmetic are (27-1)
and -2~ When saturation is used for unsigned arithmetic, the lower bound is always zero and the up
per bounds are (232_1). (216_1), and (28-1). Saturation i"s indicated in the instruction mnemonic by an
"S" preceding the period (.), and unsigned is indicated by a "u" following the period (.). For example,
the instruction mnemonic for a signed saturating addition is ADDS, and the mnemonic for an un
signed saturating addition is ADDS.U.

Saturation is also used for signed fractions in DSP operations, as described in Section 8.1.2, "DSP
Arithmetic," on page 94 .

8.1.1 Integer Arithmetic

8.1.1.1 Move
The move instructions move a value in a data register or a constant value in the instruction to a des
tination data register, and can be used to quickly load a large constant into a data register. The least
significant 16-bits of a register are moved using MOV (which sign-extends the value to 32 bits) or
MOV.U (which zero-extends to 32 bits). The MOVH (Move Highword) instruction loads a 16-bit con
stant into the most-significant 16 bits of the register and zero fills the least-significant 16 bits, which
is useful for loading a left-justified constant fraction. Loading a 32-bit constant can be done using a

88 TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS Instruction Set Overview

8.1.1.2 Addition and Subtraction
The addition instructions have three versions: no saturation (ADD), signed saturation (ADDS), and un
signed saturation (ADDS.U). For extended precision addition, the ADDX (Add Extended) instruction
sets the PSW carry bit to the value of the ALU carry out. The ADDC (Add with Carry) instruction uses
the PSW carry bit as the carry in, and updates the PSW carry bit with the ALU carry out. For extend
ed precision addition, the least-significant word of the operands is added using the ADDX instruc
tion, and the remaining words are added using the ADDC instruction. The ADDC and ADDX
instructions do not support saturation.

Often it is necessary to add 16- or 32-bit constants to integers. The ADDI (Add Immediate) and AD
DIH (Add Immediate High) instructions add a 16-bit, sign-extended constant or a 16-bit constant, left
shifted by 16. Addition of any 32-bit constant can be done using ADDI followed by an ADDIH.

All add instructions except those with 16-bit immediates have similar corresponding subtract instruc
tions. Because the large immediate of ADDI is sign-extended, it may be used for both addition and
subtraction.

The RSUB (Reverse Subtract) instruction subtracts a register from a constant. Using zero as the con
stant yields negation as a special case.

8.1.1.3 Multiply and Multiply-Add
Multiplication of two, 32-bit integers that produce a 32-bit result can be handled using MUL (Multiply
Signed). MULS (Multiply Signed with Saturation). and MULS.U (Multiply Unsigned with Saturation).
The MULM (Multiply with Multiword Result) and MULM.U (Multiply with Multiword Result Un
signed) instructions produce the full 64-bit result, which is stored to a register pair; MULM is for
signed integers, and MULM.U is for unsigned integers. There are also special multiply instructions
that are used for DSP operations, which are described in Section 8.1.2, "DSP Arithmetic."

The multiply-add instruction (MADD) multiplies two signed operands, adds the result to a third oper
and, and stores the result in a fourth operand. Because the operands do not use the same registers,
the intermediate sums of a multi-term multiply-add instruction can be saved without requiring any
additional register moves. The MADD, MAD OS (Multiply-Add with Saturation), and MADDS.U (Mul
tiply-Add with Saturation Unsigned) instructions operate on and produce 32-bit integers; MADDS
and MADDS.U will saturate on signed and unsigned overflow, respectively. To add the 64-bit product
to a 64-bit source and produce a 64-bit result, the instructions MADDM (Multiply-Add with Multi
word Result), MADDM.U (Multiply-Add with Multiword Result Unsigned). MADDMS (Multiply-Add
Multiword with Saturation), and MADDMS.U (Multiply-Add Multiword with Saturation Unsigned) can
be used.

The set of Multiply-Subtract (MSUB) instructions, which supports the accumulation of products us
ing subtraction instead of addition, provides the same set of variations as the MADD instructions.

TriCore Architecture Manual 89

• PRELIMINARY EDITION.

Instruction Set Overview SIEMENS
8.1.1.4 Division

Division of 32-bit by 32-bit integers is supported for both signed and unsigned integers. Because an
atomic divide instruction would require an excessive number of cycles to execute, a divide-step se
quence is used, which keeps down interrupt latency. The divide step sequence allows the divide
time to be proportional to the number of significant quotient bits expected.

The sequence begins with a Divide-Initialize instruction (DVINIT(.U), DVINITH(U), or DVINITB(U), de
pending on the size of the quotient and on whether the operands are to be treated as signed or un
signed). The divide initialization instruction extends the 32-bit dividend to 64 bits, then shifts it left by
0, 16, or 24 bits. Simultaneously it shifts in that many copies of the quotient sign bit to the low-order
bit positions. Then follows four, two, or one Divide-Step instructions (DVSTEP or DVSTEP.U). Each di
vide step instruction develops eight bits of quotient.

At the end of the divide step sequence, the 32-bit quotient occupies the low-order word of the 64-bit
dividend register pair, and the remainder is held in the high-order word. If the divide operation was
signed, the Divide-Adjust instruction (DVADJ) is required to perform a final adjustment of negative
values. If the dividend and the divisor are both known to be positive, the DVADJ instruction can be
omitted.

8.1.1.5 Absolute Value, Absolute Difference

A common operation on data is the computation of the absolute value of a Signed number or the ab
solute value of the difference between two signed numbers. These operations are provided directly
by the ABS and ABSDIF instructions, and there is a version of each instruction which saturates when
the result is too large to be represented as a signed number.

8.1.1.6 Min, Max, Saturate

Instructions are provided that directly calculate the minimum or maximum of two operands. The MIN
and MAX instructions are used for signed integers, and MIN.U and MAX.U are used for unsigned in
tegers.

The SAT instructions can be used to saturate the result of a 32-bit calculation before storing it in a
byte or halfword in memory or a register.

8.1.1.7 Conditional Arithmetic Instructions

The conditional instructions-Conditional Add (CADD), Conditional Subtract (CSUB), and Select
(SEL)- provide efficient alternatives to conditional jumps around very short sequences of code. All of
the conditional instructions use a condition operand that controls the execution of the instruction.
The condition operand is a data register, with any non-zero value interpreted as TRUE, and a zero val
ue interpreted as FALSE. For the CADD and CSUB instructions, the addition/subtraction is performed
if the condition value matches the value specified in the instruction mnemonic: CADD and CSUB if
the condition is TRUE, and CADDN and CSUBN if the condition is FALSE. The instructions CADD.A,
CSUB.A, CADDN.A, and CSUBN.A are the corresponding instructions that apply to address registers
(refer to Section 8.5, "Address Comparison," on page 102).

90 TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS Instruction Set Overview

The SEL instruction copies one of its two source operands to its destination operand, with the selec
tion of source operands determined by the value of the condition operand. (This operation is the
same as the C language "?" operation.) A typical use might be to record the index value yielding the
larger of two array elements:

index_max = (a[i] > a[j]) ? i : j;

If one of the two source operands in a Select instruction is the same as the destination operand,
then the Select instruction implements a simple conditional move. This occurs fairly often, in source
statements of the general form:

if «condition» then <variable> = <expression>;

Provided that <expression> is simple, it is more efficient to evaluate it unconditionally into a source
register, using a SEL instruction to perform the conditional assignment, rather than conditionally
jumping around the assignment statement.

8.1.1.8 Logical

The TriCore architecture provides a complete set of two-operand, bit-wise logic operations. In addi
tion to the AND, OR, and XOR functions, there are the negations of the output - NAND, NOR, and
XNOR - and negations of one of the inputs - ANON and ORN (the negation of an input for XOR is
the same as XNOR).

8.1.1.9 Count Leading Zeroes, Ones, and Signs

To provide efficient support for normalization of numerical results, prioritization, and certain graphics
operations, three Count Leading instructions are provided: CLl (Count Leading Zeros), CLO (Count
Leading Ones), and CLS (Count Leading Signs). These instructions are used to determine the
amount of left shifting necessary to remove redundant zeros, ones, or signs. Note that the CLS in
struction returns the number of redundant signs, which is the number of leading signs minus one.
Further, the following special cases are defined: CLl(O) = 32, CLO(-1) = 32, and CLS(O) =
CLS(-1) = 31.

For example, CLZ returns the number of consecutive zeros starting from the most-significant bit of
the value in the source data register. In the example shown in Figure 47, there are 7 zeros in the
most-significant portion of the input register. If the most-significant bit of the input is a one, CLl re
turns O.

TriCore Architecture Manual 91

• PRELIMINARY EDITION.

Instruction Set Overview SIEMENS

Data Register

Count Leading Zero Logic

TAMII21.1

Figure 47: Operation of ell Instruction

The Count Leading instructions are useful for parsing certain Huffman codes and bit strings consist
ing of boolean flags, since the code or bit string can be quickly classified by determining the position
of the first one (scanning from left to right).

B.1.1.10 Shift
The shift instructions support multi-bit shifts. The shift amount is specified by a signed integer (n),
which may be the contents of a register or a sign-extended constant in the instruction. If n >= 0, the
data is shifted left by n[4:0]; otherwise, the data is shifted right by (-n)[4:0]. The (logical) shift instruc
tion, SH, shifts in zeroes for both right and left shifts; the arithmetic shift instruction, SHA, shifts in
sign bits for right shifts and zeroes for left shifts. The arithmetic shift with saturation instruction,
SHAS, will saturate (on a left shift) if the sign bits that are shifted out are not identical to the sign bit
of the result.

B.1.1.11 Bit-Field Extract and Insert

The TriCore architecture supports three bit-field extract instructions. The EXTR.U and EXTR instruc
tions extract w (width) consecutive bits from the source, beginning with the bit number specified by
the pos (position) operand. The width and position can be specified by two immediate values, by a
data register and an immediate value, or by a data register pair. The EXTR.U instruction, shown in
Figure 48, zero-fills the most-significant (32-w) bits of the result.

pos

31

I I I

31

zero fill
width

TAMII22.1

Figure 48: Operation of EXTR.U Instruction

92 TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS Instruction Set Overview

The EXTR instruction (refer to Figure 49). fills the most-significant bits of the result by sign-extending
the bit field extracted (i.e. duplicating the most-significant bit of the bit field).

31

31

s lsi
sign/ill

width
TAMII23.1

Figure 49: Operation of EXTR Instruction

The DEXTR instruction (refer to Figure 50), concatenates two data register sources to form a 64-bit
value from which 32 consecutive bits are extracted. The operation can be thought of as a left shift by
pos bits, followed by the truncation of the least-significant 32 bits of the result. The value of pos is
contained in a data register or is an immediate value in the instruction.

The DEXTR instruction can be used to normalize the result of a DSP filter accumulation in which a
64-bit accumulator is used with several guard bits. The value of pos can be determined by using the
CLS (Count Leading Signs) instruction. The DEXTR instruction can also be used to perform a multi-bit
rotation by using the same source register for both of the sources (that are concatenated).

pos
... .
63 32 31

31

TAM024.1

Figure 50: Operation of DEXTR Instruction

The INSERT instruction (shown in Figure 51) takes the w least-significant bits of a source data regis
ter and substitutes them into the value of another source register, shifted left by pos bits. All other
(32-w) bits of the destination register are unchanged. The values of width and pos are specified in
the same way as for EXTR(.U). There is also an alternative form of INSERT that allows a zero-extend
ed 4-bit constant to be the value which is inserted.

TriCore Architecture Manual 93

• PRELIMINARY EDITION.

Instruction Set Overview SIEMENS

~ width •

31

31

pos
TAM025.1

Figure 51: Operation of INSERT Instruction

8.1.2 DSP Arithmetic

DSP arithmetic instructions operate on 16-bit. signed fractional data in the 1.15 format (also known as
015) and 32-bit signed fractional data in 1.31 format (also known as 031). Data values in this format
have a single. high-order sign bit. with a value of 0 or -1. followed by an implied binary point and frac
tion. Their values are in the range [-1. 1).

16-bit DSP data is loaded into the most-significant half of a data register. with the 16 least-significant
bits set to zero. The left alignment of 16-bit data allows it to be directly added to 32-bit data in 1.31
format. All other fractional formats can be synthesized by explicitly shifting data as required.

Operations created for this format are multiplication. multiply-add. and multiply-subtract. The signed
fractional formats 1.15 and 1.31 are supported with the MUL.O and MULR.O instructions. These in
structions operate on two. left-justified. signed fractions and return a 32-bit signed fraction.

8.1.2.1 Scaling

The multiplier result can be shifted in two ways:

• left shifted by 1: one sign bit is suppressed and the result is left-aligned. thus conserving the in
put format.

• not shifted: the result retains its 2 sign bits (2.30 format). This format can be used with IIR filters.
in which some of the coefficients are between 1 and 2. and to have 1 guard bit for accumulation.

8.1.2.2 Special case = -1 * -1 => +1

When multiplying the two. maximum negative values (-1). the result should be the maximum posi
tive number (+ 1). For example.

Ox8000 * Ox8000 = Ox4000 0000

is correctly interpreted in 0 format as:

-1(1.15 format) * -1(1.15 format) +1 (2.30 format)

94 TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS Instruction Set Overview

However, when the result is shifted left by 1, the result is Ox8000 0000, which is incorrectly interpret
ed as:

-1(1.15 format) * -1(1.15 format) = -1 (1.31 format)

To avoid this problem, the result of a Q format operation (-1 * -1) that has been left-shifted by 1 (Ieft
justified), is saturated to the maximum positive value. Thus,

Ox8000 * Ox8000 = Ox7FFF FFFF

is correctly interpreted in Q format as:

-1(1.15 format) * -1(1.15 format) = (nearest representation of)+l (1.31

format)

This operation is completely transparent to the user and does not set the overflow flags.

8.1.2.3 Guard bits

When accumulating sums (for example, in filter calculations) guard bits are often required to prevent
overflow. The instruction set directly supports the use of 1 guard bit when using a 32-bit accumula
tor; when more guard bits are required, a register pair (64 bits) can be used.

8.1.2.4 Rounding

Rounding is used to retain the 16-bit most-significant bits of a 32-bit result. Rounding is combined
with the MUL, MADD, MSUB instructions, and is implemented by adding 1 to bit 15 of a 32-bit reg
ister.

8.1.2.5 Overflow and Saturation

Saturation on signed and unsigned overflow is implemented as part of the MUL, MADD, MSUB in
structions.

8.1.2.6 Sticky Advanced Overflow and Block Scaling in FFT

The Sticky Advanced Overflow (SAV) bit, which is set whenever an overflow "almost" occurred, can
be used in block scaling of intermediate results during an FFT calculation. Before each pass of apply
ing a butterfly operation, the SAV bit is cleared, and after the pass the SAV bit is tested. If it is set,
then all of the data is scaled (using an arithmetic right shift) before starting the next pass. This proce
dure gives the greatest dynamic range for intermediate results without the risk of overflow.

8.1.3 Packed Arithmetic
The packed arithmetic instructions partition a 32-bit word into several identical objects, which can
then be fetched, stored, and operated on in parallel. These instructions, in particular, allow the full ex
ploitation of the 32-bit word of the TriCore architecture in signal and data processing applications.

The TriCore architecture supports two packed formats. The first format divides the 32-bit word into
two, 16-bit (halfword) values. Instructions which operate on data in this way are denoted in the in
struction mnemonic by the :1-1" and :1-IU" data type modifiers. Refer to Figure 52.

TriCore Architecture Manual 95

• PRELIMINARY EDITION.

Instruction Set Overview SIEMENS

Operand m

Operand n

Operation

Resuk

Figure 52: Packed HaHword Data Format

The second packed format divides the 32-bit word into four, 8-bit values. Instructions which operate
on the data in this way are denoted by the :'8" and :'8U" data type modifiers. Refer to Figure 53.

Operand m

Operand n

Operation

Resuk

Figure 53: Packed Byte Data Format

The loading and storing of packed values into data registers is supported by the normal Load Word
and Store Word instructions (LD.W and S1W). The packed objects can then be manipulated in paral
lel by a set of special packed arithmetic instructions that perform such arithmetic operations as addi
tion, subtraction, multiplication, etc.

Addition is performed on individual packed bytes or halfwords using the ADD.B and ADD.H instruc
tions and their saturating variations ADDS.B and ADDS.BU. ADD.B ignores overflow/underflow with
in individual bytes, while the ADDS. B will saturate individual bytes to the most positive, 8-bit signed
integer (127) on individual overflow, or to the most negative, 8-bit signed integer (-128) on individual
underflow. Similarly, the ADD.H instruction ignores overflow/underflow within individual halfwords,
while the ADDS.H will saturate individual halfwords to the most positive 16-bit signed integer (215_1)
on individual overflow, or to the most negative 16-bit signed integer (_215) on individual underflow.
Saturation for unsigned integers is also supported by the ADDS.BU and ADDS.HU instructions.

Besides addition, arithmetic on packed data includes subtraction, multiplication, absolute value, sub
tract absolute, and shift operations.

96 TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS Instruction Set Overview

8.2 Compare Instructions

The compare (and conditional jump) instructions use a compare operation on the contents of two
registers. The boolean result (1 = true and 0 = false) is stored in the least-significant bit of a data reg
ister, and the remaining bits in the register are cleared to zero. Figure 54 illustrates the operation of
the LT (Less Than) compare instruction.

31 0 31 0

Dal ~ _________ A ______ ~~ 1 I 1
os

l l
A<B?

.)
I Dc 1..-1 ________________ --L.l

31

TAMD29.1

Figure 54: LT Comparison

The comparison instructions are: equal (EO)' not equal (NE), less than (LT), and greater than or equal
to (GE), with versions for both signed and unsigned integers.

Comparison conditions not explicitly provided in the instruction set can be obtained by either swap
ping the operands when comparing two registers, or by incrementing the constant by one when
comparing a register and a constant. Refer to the table below.

-Missing- Comparison Operation

LE Dc. Da. Db

LE Dc. Da. const

GT Dc. Da. Db

GT Dc. Da. const

TriCore Equivalent Comparison Operation

GE Dc. Db. Da

LT Dc. Da. (const+ 1)

LT Dc. Db. Da

GE Dc. Da. (const+ 1)

To accelerate the computation of complex conditional expressions, accumulating versions of the
comparison instructions are supported. These instructions, indicated in the instruction mnemonic by
"op" preceding the" . " (for example, op.LT), combine the result of the comparison with a previous
comparison result. The combination is a logic AND, OR, or XOR; for example, AND.Ll; OR.LT, and
XOR.LT Figure 55 illustrates combining the LT instruction with a boolean operation.

TriCore Architecture Manual 97

• PRELIMINARY EDITION.

Instruction Set Overview SIEMENS

31 31

Da A B os

A<B?

Dc op : AND. OR. or XOR

Dc
TAM03Q.l

Figure 55: Combining LT Comparison with Boolean Operation

The evaluation of the following C expression can be optimized using the combined compare-boolean
operation:

d5 = (dl < d2) II (d3 == d4);

Assuming all variables are in registers, the following two instructions will compute the value in d5:

it d5,dl,d2 ; compute (dl < d2)

or.eq d5,d3,d4 ; or with (d3 == d4)

Certain control applications require that several booleans be packed into a single register. These
packed bits can be used as an index into a table of constants or a jump table, which permits complex
boolean functions and/or state machines to be evaluated efficiently. To facilitate the packing of bool
ean results into a register, compound Compare with Shift instructions (for example, SH.EQ) are sup
ported. The result of the comparison is placed in the least-significant bit of the result after the
contents of the destination register have been shifted left by one position. Figure 56 illustrates the
operation of the SH.LT (Shift Less Than) instruction.

98 TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS Instruction Set Overview

31 31

Da Db

A<B?

Dc

discarded left shift 1

Dc
TAM031.1

Figure 56: SH.LT Instruction

For packed bytes, there are special compare instructions that perform four individual byte compari
sons and produce a 32-bit mask consisting of four "extended" booleans. For example, EO.S yields a
result where individual bytes are OxFF for a match or OxOO for no match. Similarly, for packed half
words there are special compare instructions that perform two individual halfword comparisons and
produce two extended booleans. The EO.H instruction results in two extended boo leans: OxFFFF for
a match and OxOOOO for no match. There are even abnormal packed-word compare instructions that
compare two words in the normal way but produce a single extended boolean. The EO.W instruction
results in the extended boolean OxFFFF.FFFF for match and OxOOOO.OOOO for no match.

Extended booleans are useful as masks, which can be used by subsequent bit-wise logic operations.
Also, ClZ (count leading zeros) or ClO (count leading ones) can be used on the result to quickly find
the position of the left-most match. Figure 57 shows an example of the EG.S instruction:

TriCore Architecture Manual 99

• PRELIMINARY EDITION.

Instruction Set Overview SIEMENS

Da Db

TAM032.1

Figure 57: EQ.B Instruction Operation

8.3 Bit Operations

Instructions are provided that operate on single bits. denoted in the instruction mnemonic by the "T"
data type modifier (for example, AND.T).

There are eight instructions for combinatorial logic functions with two inputs, and 12 instructions
with three inputs.

The one-bit result of a two-input function (for example, AND.T) is stored in the least-significant bit of
the destination data register, and the most-significant 31 bits are set to zero. The source bits can be
any bit of any data register. This is illustrated in Figure 58. The available Boolean operations are: AND,
NAND, OR, NOR, XOR, XNOR, ANDN, and ORN.

Da Db

Dc

TAM033.1

Figure 58: Boolean Operations

Evaluation of complex boolean equations can use the 3-input Boolean operations, in which the out
put of a two-input instruction, together with the least-significant bit of a third data register, forms the

100 TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS Instruction Set Overview

input to a further operation. The result is written to bit 0 of the third data register. with the remaining
bits unchanged. Refer to Figure 59.

Da ~ __ ~ ________________ ~IDb

Dc

: I (bt
=1 ==============~=II.J

Dp =AND Dr OR

Dc
TAM034.1

Figure 59: 3-lnput Boolean Operation

Of the many possible 3-input operations eight have been singled out for the efficient evaluation of
logical expressions.

The instructions provided are: AND.AND.T, AND.ANDN.T, AND.NOR.T, AND.OR.T, OR.AND.T,
OR.ANDN.T, OR.NOR.T, and OR.OR.T.

Just as for the comparison instructions. the results of bit operations often need to be packed into a
single register for controller applications. For this reason. the basic two-input instructions can be
combined with a shift prefix (for example. SH.AND.Tl. These operations first perform a single-bit left
shift on the destination register and then store the result of the two-input logic function into its least
significant bit, as illustrated in Figure 60.

31 pI

Da II I 1'--7--y-1 ____ -----'1 Db

boolean op

Dc)!r1-1 -----,-------r-'I ! leftshilt 1 !
discarded 31 0

.------------------------n
Dc

TAM035J

Figure 60: Shift Plus Boolean Operation

TriCore Architecture Manual 101

• PRELIMINARY EDITION.

Instruction Set Overview SIEMENS

8.4 Address Arithmetic

The TriCore architecture provides selected arithmetic operations on the address registers. These op
erations supplement the address calculations inherent in the addressing modes used by the load
and store instructions.

Initialization of base pointers requires loading a constant into an address register. When the base
pointer is in the first 16 Kbytes of each segment, this can be done using the Load Effective Address
(LEA) instruction, using the absolute addressing mode. Loading a 32-bit constant into an address
register can be accomplished using MOVH.A followed by an LEA that uses the base plus 16-bit off
set addressing mode. For example,

rnovh.a
lea

as, ((ADDRESS+OxBOOO»>16) & Oxffff

as, [as] (ADDRESS & Oxffff)

The MOVH.A instruction loads a 16-bit immediate into the most-significant 16-bits of an address reg
ister and zero-fills the least-significant 16-bits.

Adding a 16-bit constant to an address register can be done using the LEA instruction with the base
plus offset addressing mode. Adding a 32-bit constant to an address register can be done in two in
structions: an Add Immediate High Word (ADDIH.A), which adds a 16-bit immediate to the most-sig
nificant 16 bits of an address register, followed by an LEA using the base plus offset addressing
mode. For example,

addih.a
lea

aB, ((OFFSET+OxBOOO) »16) & Oxffff

aB, [aB] (OFFSET & Oxffff)

The Add Scaled (ADDSC.A) instruction directly supports the use of a data variable as an index into an
array of bytes, halfwords, words, or doublewords.

A common C language operation is to subtract one address pointer from another. The result is the
number of data elements between the two pOinters (the two pointers must reference the same data
type). The Difference Scaled Address (DIFSC.A) instruction supports this operation directly for byte,
halfword, word, and doubleword data types.

The basic operations on address registers are completed by instructions that provide addition and
subtraction of two address registers (ADD.A and SU8.A) and data movement to and from a data reg
ister (MO\l.D and MO\l.A) and between address registers (MOV.AA).

The instructions SEL.A, SELN.A, CADD.A, CSUB.A, CADDN.A, and CSUBN.A are the conditional in
structions that apply to the address registers. Refer to "Conditional Arithmetic Instructions" on page
90.

8.5 Address Comparison

As with the comparison instructions that use the data registers (refer to Section 8.2, "Compare In
structions," on page 97), the comparison instructions using the address registers put the result of
the comparison in the least-significant bit of the destination data register and clear the remaining
register bits to zeros. An example using the Less Than (LT.A) instruction is shown in Figure 61.

102 TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS Instruction Set Overview

A

~
B

1
A<B? I

~ ____________________ ~IAb Aa

rl true --+,
false --+0

Dc

TAM036.1

Figure 61: LT.A Comparison Operation

There are comparison instructions for equal (EO.A!. not equal (NE.A), less than (LTA), and greater
than or equal to (GE.A). As with the comparison instructions using the data registers, comparison
conditions not explicitly provided in the instruction set can be obtained by swapping the two operand
registers:

-Missing- Comparison Operation

LE.A Dc. Aa. Ab

GT.A Dc. Aa. Ab

TriCore Equivalent Comparison Operation

GE.A Dc. Ab. Aa

IT.A Dc. Ab. Aa

In addition to these instructions, instructions that test whether an address register is equal to zero
(EOZ.A), or not equal to zero (NEZ.A) are supported. These instructions are useful to test for null
pointers, which is a frequent operation when dealing with linked lists and complex data structures.

8.6 Branch Instructions

Branch instructions change the flow of program control by modifying the value in the PC register.
There are two types of branch instructions: conditional and unconditional. Whether or not a condi
tional branch is taken depends on the result of a Boolean compare operation, as described in Section
8.2, "Compare Instructions," on page 97, rather than on the state of condition codes.

B.6.1 Unconditional Branch

There are three groups of unconditional branch instructions: Jump instructions, Jump and Link in
structions, and Call and Return instructions.

A Jump instruction simply loads the Program Counter with the address specified in the instruction.
A Jump and Link instruction does the same, and also stores the address of the next instruction in the
"return address register" A11/RA.A Jump and Link instruction can be used to implement a subrou
tine call when the called routine does not modify any of the caller's non-volatile registers. The Call in
structions differ from a Jump and Link in that they save the caller's non-volatile registers in a
dynamically-allocated save area (refer to Section 4.3, "CSAs and Context Lists, " on page 49). The Re
turn instruction, in addition to performing the return jump, restores the non-volatile registers.

TriCore Architecture Manual 103

• PRELIMINARY EDITION.

Instruction Set Overview SIEMENS
Each group of unconditional jump instructions contains separate instructions that differ in how the
target address is specified. There are instructions using a relative 24-bit signed offset (J, JL, and
CALL), instructions using 24 bits of displacement as an absolute address (JA, JLA, and CALLA). and
instructions using the address contained in an address register (JI, JLI, CALLI, RET, and RFE).

There are additional 16-bit instructions for a relative jump using an 8-bit offset (J), an instruction for an
indirect jump (JI), and an instruction for a return (RET).

Both the 24-bit and 8-bit relative offsets and displacements are scaled by two before they are used,
because all instructions must be aligned on an even address. The use of a 24-bit displacement is
shown in Figure 62.

displacement

0000000 address

TAM037.1

Figure 62: Jump Target Address with Displacement

8.6.2 Conditional Branch

The conditional branch instructions use the absolute addressing mode, with an offset value encoded
in 4, 8, or 15 bits. The offset is scaled by 2 before it is used, because all instructions must be aligned
on an even (halfword) address. The scaled offset is Sign-extended to 32 bits before it is added to the
program counter, unless otherwise noted.

The Boolean test uses the contents of data registers, address registers, or individual bits in data
registers.

8.6.2.1 Conditional Jumps on Data Registers

Six of the conditional jump instructions use a 15-bit signed offset field: comparison for equality
(JEO), non-equality (JNE). less than (JLT), less than unsigned (JLT.U), greater than or equal (JGE), and
greater than or equal unsigned (JGE.U). Testing for less than zero and greater than or equal to zero
can be done with a conditional jump on the sign bit of the value in a data register, as described in
Section 8.6.2.3, "Conditional Jumps on Bits," on page 105.

There are two 16-bit instructions that test whether the implicit D15 register is equal to zero (JZ) or
not equal to zero (JNZ). The offset is 8-bit in this case. These instructions are typically used in com
bination with the 16-bit compare instructions that use D15 as the implicit destination register.

Another two 16-bit instructions compare the implicit D15 register with a 4-bit, sign-extended con
stant (JEO, JNE). The jump displacement field is limited to 4 bits in this case.

104 TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS Instruction Set Overview

There is a full set of 16-bit instructions that compare a data register to zero: JZ. JNZ. JLTZ. JLEZ.
JGTZ. and JGEZ. Because any data register may be specified. the jump displacement is limited to
4 bits.

8.6.2.2 Conditional Jumps on Address Registers

The conditional jump instructions that use address registers are a subset of the data register condi
tional jump instructions. Four conditional jump instructions use a 15-bit signed offset field: compari
son for equality (JEQ.A). non equality (JNE.Al. equal to zero (JZ.A). and non-equal to zero (JNZ.A).

Because testing pointers for equality to zero is so frequent. two 16-bit instructions. JZ.A and JNZ.A.
are provided. with a displacement field limited to 4 bits.

8.6.2.3 Conditional Jumps on Bits

Conditional jumps can be performed based on the value of any bit in any data register. The JZ.T in
struction jumps when the bit is clear. and the JNZ.T instruction jumps when the bit is set. For these
instructions. the jump displacement field is 15 bits.

8.6.2.4 Loop Instructions

Four special versions of conditional jump instructions are intended for efficient implementation of
loops. The JNEI and JNED instructions are like a normal JNE instruction. but with an additional incre
ment or decrement operation of the first register operand. The increment or decrement operation is
performed after the comparison. The jump offset field is 15 bits. For example. a loop that should be
executed for D3 = 3 •...• 10 can be implemented as follows:

mov d3.3
loopl:

jnei d3.10.loopl

The LOOP instruction is a special kind of jump which utilizes the special TriCore hardware that imple
ments "zero overhead" loops. The LOOP instruction only requires execution time in the pipeline the
first and last time it is executed (for a given loop); for all other iterations of the loop. the LOOP instruc
tion has zero execution time. For example. a loop that should be executed 100 times may be imple
mented as:

maya a2.99
loop2:

loop a2.loop2

The LOOP instruction above requires execution cycles the first and 100th time it is executed. but the
other 98 executions require no cycles.

Note that the LOOP instruction differs from the other conditional jump instructions in that it uses an
address register. rather than a data register. for the iteration count. This allows it to be used in filter
calculations in which a large number of data register reads and writes occur each cycle. Using an ad
dress register for the LOOP instruction reduces the need for an extra data register read port.

TriCore Architecture Manual 105

• PRELIMINARY EDITION.

'I ~ .

Instruction Set Overview SIEMENS
The LOOP instruction has a 32-bit version using a 15-bit displacement field (left-shifted by one bit and
sign-extended), and a 16-bit version that uses a 4-bit displacement field. Unlike all other relative
jumps, the 4-bit value is one-extended rather than sign-extended, because this instruction is specifi
cally intended for loops.

8.7 Load and Store Instructions

The load and store instructions move data between registers and memory, using the seven address
ing modes shown in Table 9. (Addressing modes are described in detail in Section 2.4, "Addressing
Model," on page 19 .) The addressing mode determines the effective byte address for the load or
store instruction and any update of the base pointer address register.

Table 9: Addressing Modes

Addressing Mode Syntax Effective Address
Instruction

Format

Absolute constant zero_ext(offset181 ABS

Base + Short Offset [Anloffset A[al+sign_ext(offset101 BOL

Base + Long Offset [Anloffset A[al+sign_ext(offset161 BOL

Pre-increment [+Anloffset A[a)+sign_ext(offset101 BO

Post-increment [An+)offset A[al BO

Circular [An+cloffset Refer to page 21 BO

Bit-reverse [AnHl Refer to page 22 BO

B.7.1 Load/Store Basic Data Types
The TriCore architecture defines loads and stores for the basic data types - bytes, halfwords, words
and doublewords - as well as for signed fractions and packed data. The movement of data between
registers and memory for the basic data types is illustrated in Figure 63. Note that when the data
loaded from memory is smaller than the destination register (Le. 8- and 16-bit quantities), the data is
loaded into the least-significant bits of the register, and the remaining register bits are sign- or zero
extended to 32 bits, depending on the particular instruction.

106 TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS Instruction Set Overview

Memory Data Registers

0 31 0 31 0

ml
I ~.D/LD.DA ·1 m1(63:32)

II
m1(31:0)

I

63

ST.D I ST.DA Dn+ll An+l Dn/An

31 0 • LD.W I LD.A 31 0

ml I ... ·1 ml Ion

ST.W/ST.A

15 0 31 16 15 0

I
ml

I
LD.HU .1 I

m1 Ion

zero fill

15 0 31 16 15 0

Is I I

LD.H .1 lsi m1 I On m1

sign fill

15 0 31 16 15 0

I'"
51.H

m1 I On m1

7 0 31 8 7 0

0 LD.BU ·1 I m1 I
On

zerolill
7 0 31 8 7 0

EEJ LD.B .1 I m1 I On

sign fill
7 0 31 8 7

0 ... ST.B
I

m1 I On TAM038.1

15 0 31 16 15 0

I
m1

I
LD.Q .1 m1

I Ion

zero fill

15 0 31 16 15 0

I
m1

I • 51.Q
I

ml
I I On x

Figure 63: LoadlStore Basic Data Types

B.7.2 Load Bit
The approaches for loading individual bits depend on whether the bit within the word (or byte) is giv
en statically or dynamically.

Loading a single bit with a fixed bit offset from a byte pointer is accomplished with an ordinary load
instruction. One then can extract, logically operate on, or jump on any bit in a register.

TriCore Architecture Manual 107

• PRELIMINARY EDITION.

·m !it •
<:>

Instruction Set Overview SIEMENS
Loading a single bit with a variable bit offset from a word-aligned byte pointer is done with a special
scaled offset instruction. This offset instruction shifts the bit offset to the right by three positions
(producing a byte offset). adds this result to the byte pointer above, and finally zeroes out the two
lower bits, thus aligning the access on a word boundary. A word load can then access the word that
contains the bit, which can be extracted with an extract instruction that only uses the lower five bits
of the bit pointer, that is, the bits that were either shifted out or masked out above. An example is:

ADDSC.AT A8,A9,D8 A9 = byte pointer. D8 = bit offset.

LD.W D9, [A8]
EXTRACT.U D10,D9,D8,1 D10[0] = loaded bit.

8.7.3 Store Bit and Bit Field
The S1T instruction can clear or set single memory or peripheral bits, resulting in reduced code size.
S1T statically specifies a byte address and a bit number within that byte, and indicates whether the
bit should be set or cleared. The addressable range for this instruction is the first 16 KBytes of each
of the 16 memory segments.

The Insert Mask (IMASK) instruction can be used in conjunction with the Load-Modify-Store
(LDMDST instruction) to store a single bit or a bit field to a location in memory, using any of the ad
dressing modes. This operation is especially useful for reading and writing memory-mapped periph
erals. The IMASK instruction is very similar to the INSERT instruction, but IMASK generates a data
register pair that contains a mask and a value. The LDMDST instruction uses the mask to indicate
which portion of the word to modify. An example of a typical instruction sequence is:

imask

ldmdst

E8,3,4,2
_IOREG,E8

; insert value = 3, position = 4, width = 2
; at absolute address "_IOREGn

To clarify the operation of the IMASK instruction, consider the following example. The binary value
1011 2 is to be inserted starting at bit position 7 (the width is four). The IMASK instruction would re
sult in the following two values:

0000 0000 0000 0000 0000 0111 1000 0000
0000 0000 0000 0000 0000 0101 1000 0000

MASK
VALUE

To store a single bit with a variable bit offset from a word-aligned byte pointer, first the word address
is determined in the same way as for the load above. Again the special scaled offset instruction shifts
the bit offset to the right by three positions, which produces a byte offset, then adds this offset to
the byte pointer above, and finally zeroes out the two lower bits, thus aligning the access on a word
boundary. An IMASK and LDMDST instruction can store the bit into the proper position in the word.
An example is:

108

ADDSC.AT A8,A9,D8
IMASK E10,D9,D8,1

A9 = byte pointer. D8 = bit offset.

D9[0] = data bit.

LDMDST [A8],E10

TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS Instruction Set Overview

8.8 Context Related Instructions

Besides the instructions that implicitly save and restore contexts (such as Calls and Returnsl. the Tri
Core instruction set includes instructions that allow a task's contexts to be explicitly saved, restored,
loaded, and stored. These instructions are detailed in the following sections.

Refer also to Section 4.2, "Task Switching Operation," on page 48 .

B.B.1 Context Saving and Restoring

The upper context of a task is always automatically saved on a call, interrupt, or trap, and is automat
ically restored on a return. However, the lower context of a task must be saved/restored explicitly.

The SVLCX instruction (Save Lower Context) saves registers A2 through A7 and 00 through 015 to
gether with the return address in register A11/RA and the PCXI. This operation is performed when
using the FCX and PCX pointers to manage the CSA lists.

The RSLCX instruction (Restore Lower Context) restores the lower context. It loads registers A2
through A7 and 00 through 07 from the CSA. It also loads A11/RA from the saved PC field. This op
eration is performed when using the FCX and PCX pointers to manage the CSA lists.

The BISR instruction (Begin Interrupt Service Routine) enables the interrupt system OCR.IE is set to
onel. allows the modification of the CPU priority number (CCPN), and saves the lower context in the
same manner as the SVLCX instruction.

B.B.2 Context Loading and Storing

The effective address of the memory area where the context is stored to or loaded from is part of the
Load or Store instruction. The effective address must resolve to a memory location aligned on a 16-
word boundary, otherwise a data address alignment trap (ALN) is generated.

The STUCX instruction (Store Upper Context) stores the same context information that is saved with
an implicit upper context save operation: Registers A10 - A15 and 08 - 015, and the current PSW and
PCXI.

The LOUCX instruction (Load Upper Context) loads registers A 10 - A 15 and 08 - 015. The PSW and
link word fields in the saved context in memory are ignored. The PSW, FCX, and PCXI are unaffected.

The STLCX instruction (Store Lower Context) stores the same context information that is saved with
an explicit lower context save operation: Registers A 10 - A 15 and 08 - 015, and the current PSW and
PCXI.

The LOLCX instruction (Load Lower Context) loads registers A2 through A7 and 00 through 07. The
saved return address and the link word fields in the context stored in memory are ignored. Registers
Al1/RA, FCX, and PCXI are not affected.

TriCore Architecture Manual 109

• PREliMINARY EOITION •

Instruction Set Overview SIEMENS

B.9 System Instructions

The system instructions allow user-mode and supervisor-mode programs to access and control vari
ous system services, including interrupts, and the TriCore's debugging facilities. There are also in
structions that read and write the core registers, for both user and supervisor-only mode programs.

8.9.1 System Call

The SYSCALL instruction generates a system call trap, providing a secure mechanism for user-mode
application code to request supervisor services. The system call trap, like other traps, vectors to the
trap handler table, using the three-bit hardware-furnished trap class ID as an index. The trap class ID
for system call traps is six. The trap identification number (TIN) is specified by an immediate constant
in the SYSCALL instruction, and serves to identify the specific supervisor service that is being re
quested. Refer to Chapter 6, "Traps," for more information.

8.9.2 Synchronization Primitives

The TriCore architecture provides two synchronization primitives. These primitives provide a mecha
nism to software through which it can guarantee the ordering of various events within the machine.

8.9.2.1 DSVNC

The first primitive, DSYNC, provides a mechanism through which a data memory barrier can be im
plemented. The DSYNC instruction guarantees that all data accesses associated with instructions
semantically prior to the DSYNC instruction are completed before any data memory accesses asso
ciated with an instruction semantically after DSYNC are initiated. This includes all accesses to the
system bus and local data memory.

8.9.2.2 ISYNC

The second primitive, ISYNC, provides a mechanism through which the following can be guaranteed:

• If an instruction semantically prior to ISYNC changes a piece of architectural state, then the ef
fects of this change are seen by all instructions serT"!antically after ISYNC. For example, if an in
struction changes a code range in the protection table, the use of an ISYNC will guarantee that all
instructions after the ISYNC are fetched and matched against the new protection table entry.

• All cached states in the pipeline, such as branch target buffers, are invalidated.

The operation of the ISYNC instruction, therefore, is described as follows:

1. Wait until all instructions semantically prior to the ISYNC have completed.

2. Flush the CPU pipeline and cancel all instructions semantically after the ISYNC.

3. Invalidate all cached states in the pipeline.

4. Refetch the next instruction after the ISYNC.

110 TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS Instruction Set Overview

8.9.3 Access to the Core Special Function Registers

The TriCore accesses the CSFRs through two instructions: MFCR and MTCR. The MFCR instruction
(Move From Core Register) moves the contents of the addressed CSFR into a data register. MFCR
can be executed at any privilege level. The MTCR instruction (Move To Core Register) moves the
contents of a data register to the addressed CSFR. To prevent unauthorized writes to the CSFRs, the
MTCR instruction can only be executed at the supervisor privilege level.

The CSFRs are also mapped into the top of the local code segment in the memory address space.
This mapping makes the complete architectural state of the core visible in the address map, which
allows efficient debug and emulator support. Note it is not permitted for the core to access the CS
FRs through this mechanism; it must use MFCR and MTCR.

There are no instructions allowing bit, bit field or load-modify store accesses to the CSFRs. The RSTV
instruction (Reset Overflow Flags) resets the overflow flags in the PSW, without modifying any of
the other bits in the PSW. This instruction can be executed at any privilege level.

8.9.4 Enabling/Disabling the Interrupt System

For non-interruptible operations, the ENABLE and DISABLE instructions allow the explicit enabling
and disabling of interrupts in user and supervisor modes. While disabled, an interrupt will not be tak
en by the CPU regardless of the relative priorities of the CPU and the highest interrupt pending. The
only interrupt that will be serviced while interrupts are disabled is the NMI (non-maskable interrupt).

If a user process accidentally disables interrupts for longer than a specified time, watchdog timers
can be used to recover.

Programs executing in supervisor mode can use the 16-bit Begin ISR (BISR) instruction to save the
lower context of the current task, set the current CPU priority number, and re-enable interrupts
(which are disabled by the processor when an interrupt is taken).

8.9.5 RET and RFE

The function return instruction, RET, is used to return from a function that was invoked via a CALL in
struction. The return from exception instruction, RFE, is used to return from an interrupt or trap han
dier. The two instructions perform very similar operations; they restore the upper context of the
calling function or interrupted task, and branch to the return address contained in register A11 (prior
to the context restore operation). The instructions differ in the error checking they perform for call
depth management. Issuing an RFE instruction when the current call depth (as tracked in the PSW)
is nonzero generates a context nesting error trap. Conversely, a context call depth underflow trap is
generated when an RET instruction is issued when the current call depth is zero.

8.9.6 Trap Instructions

The Trap on Overflow (TRAPV) and Trap on Sticky Overflow (TRAPSV) instructions can be used to
cause a trap if the PSW's V and SV bits, respectively, are set. Refer to Section 8.1, "Arithmetic In
structions;' on page 123.

TriCore Architecture Manual 111

• PRELIMINARY EDITION.

.~ 8
!i1
co

Instruction Set Overview SIEMENS
8.9.7 No-operation

Although there are many ways to represent a no-operation (for example, adding zero to a register), an
explicit NOP instruction is included so that it can be easily recognized, and the CPU can then mini
mize power consumption during its execution. For example, a sequence of NOP instructions in a
loop could be used as a low-power state that has a very fast interrupt response time.

8.10 16-bit Instructions

The 16-bit instructions are a subset of the 32-bit instruction set, chosen because of their frequency
of use. They significantly reduce static code size and thus provide a reduction in the cost of code
memory and a higher effective instruction bandwidth. Because the 16-bit and 32-bit instructions all
differ in the primary opcode, the two instruction sizes can be freely intermixed.

The 16-bit instructions are formed by imposing one or more of the following format constraints:
smaller constants, smaller displacements, smaller offsets, impliCit source, destination, or base ad
dress registers, and combined source and destination registers (the two-operand format). In addi
tion, the 16-bit load and store instructions support only a limited set of addressing modes.

The registers D15 and A15 are used as implicit registers in many 16-bit instructions. For example,
there is a 16-bit compare instruction (EO) that puts a Boolean result in D15, and a 16-bit conditional
move instruction (CMOV) which is controlled by the Boolean in D15.

The 16-bit load and store instructions are limited to the register indirect and stack-pointer relative
(SP+offset) addressing modes.

112 TriCore Architecture Manual

• PRELIMINARY EDITION.

TriCore Instruction Set

SIEMENS

9
TriCore Instruction Set

This chapter contains descriptions of all the TriCore instructions arranged alphabetically by instruction
mnemonic. Each instruction page is organized into the following sections:

Syntax

Description

Operation

Assembler syntax (Table 10 on page 116) followed by the instruction format in
parentheses.

A brief verbal description of the instruction's operation

A description of the instruction's operation in Register Transfer Language (RTL)
(Table 13 on page 119)

Status Any status flags that are affected by the instruction's execution (Table 14 on page
120)

Examplels)

See Also

One or more instruction examples

Related instructions

·• · ••• ·•·•·•· ••• ~l1r4~ghOQtthi~ .fh~~~~{~i!1fbr"ni~i6~·r~l.tin~to16"bhi~~*4c:tiQnE>t$hi9hfight~~.ln·· •...
$~r~el1eqlllr~~s.

9.1 Instruction Syntax

The syntax definition for an instruction specifies the operation to be performed and the operands
used in the operation. Instruction operands are separated by commas.

TriCore Architecture Manual 115

• PRELIMINARY EDITION.

TriCore Instruction Set SIEMENS
Table 10 describes the terms used in the syntax definitions.

Table 10: Instruction Syntax Definitions

Symbol Description

On Data register n

An Address register n

En Extended data register n containing a 64-bit value made from an even/odd pair of registers (On, On+ 1)

dispn Displacement value of n bits used to form the effective address in branch instructions.

constn Constant value of n bits used as instruction operand

offsetn Offset value of n bits used to form the effective address in load and store instructions

p1, pZ Specifies the position of a single bit in bit and bit field instructions

w Specifies the width of the bit field in bit and bit field instructions

<mode> An addressing mode. Refer to Section 2.4.1, "TriCore Addressing Modes: on page 19.

CR Core Registers (see Chapter 3, "Core Registers," for more information)

An instruction mnemonic is composed of up to three basic parts: a base operation, an operation
modifier, and an operand (data type) modifier. For example, in the instruction:

ADDS.U

:ADD' is the base operation, 'S' is an operation modifier specifying that the result is saturated, and
'U' is a data type modifier specifying that the operands are unsigned.

The base operation specifies the basic operation that the instruction performs, for example, ADD for
addition, J for jump, and LD for memory load. The operation modifier specifies more exactly the op
eration performed, for example, ADDI for addition using an immediate value, JL for a jump that in
cludes a link, and LEA for a memory load of an effective address. More than one operation modifier
may be used for some instructions (for example, ADDIH). The data type modifier indicates the data
type of the source operands, for example, ADD. B for byte addition, JZ.A for a jump using an address
register, and LD.H for a halfword load. The data type modifier is separated by a period ru'). Some in
structions, for example, OR.EO, have more than one base operation, and these base operations are
also separated by a period.

Note that some 16-bit instructions use a general-purpose register as an implicit source or destina
tion:

116

015 Implicit Data Register for many 16-bit instructions

A 10 Stack Pointer (SP)

A11 Return Address Register (RA) for CALL JL JLA, and JLI instructions, and Return PC value
on interrupts

A15 Implicit base address register for many 16-bit load/store instructions

TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS TriCore Instruction Set

In the syntax section of the instruction descriptions, the implicit registers are included as explicit op
erand fields. However, they are not explicitly present in the encoded 16-bit instructions.

The operation modifiers are shown in Table 11. The order of the modifiers in the table is the same as
the order in which they appear as modifiers in an instruction mnemonic.

Table 11: Operation Modifiers

Operation
Name Description Example

Modifier

L Link Record link ijump subroutine) JL

I Indirect Register indirect ijump) JLI

A Absolute Absolute ijump) JLA

EO Equal Comparison equal JEQ

NE Not equal Comparison not equal JNE

LT Less than Comparison less than JLT

GE Greater than Comparison greater than or equal JGE

N Not Logical NOT SELN

I Immediate Large immediate AOOI

H High word Immediate value put in most-significant bits ADDIH

Z Zero Use zero immediate JNZ

R Round Round result (0 format data) MULR

M Multi-word Multi-word result MULM

S Saturation Saturate result ADDS

X Carry out Update PSW carry bit ADDX

C Carry Use and update PSW carry bit ADDC

I Increment Increment counter JNEI

D Decrement Decrement counter JNED

TriCore Architecture Manual 117

• PRELIMINARY EDITION.

TriCore Instruction Set SIEMENS
The data type modifiers used in the instruction mnemonics are listed in Table 12. When multiple suf
fixes occur in an instruction, their order of occurrence in the mnemonic is the same as their order in
the table.

Table 12: Data Type Modifiers

Data Type
Name Description Example

Modifier

0 Doubleword 54-bit data/address MOV.D

W Word 32-bit (word) data EQ.w
A Address 32-bit address ADD.A

Q QFormat 16-bit signed fraction (Q format) MADD.Q

H Halfword 16-bit (halfword) data ADD.H

B Byte packed byte data ADD.B

T Bit 1-bit data AND.T

U Unsigned Unsigned data type ADDS.U

9.2 Instruction Operation

The operation of each instruction is described using a C-like Register Transfer Level (RTL) notation,
summarized in Table 13.

Note that the numbering of bits begins with bit zero, which is the least-significant bit of the word.
Concatenation of bits and bit fields is specified using the notation "{x, y}" where "x" and "y" are ex
pressions representing a bit or bit field. Any number of expressions can be concatenated, for exam
ple, "{x, y, zr'

118 TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS TriCore Instruction Set

Table 13: RTL Syntax Description

Symbol Description

D[n] Data register n

A[n] Address register n

E[n] Data register containing a 64-bit value, with the least-significant bit in D[n] and the most-
significant bit in D[n+ 1]. where n is even. The two parts are also referred to as E[n] (upper) and E[n]
(lower)

p Single bit p

(expression)[p] Single bit p in mUlti-bit value

n'h pppp Constant bit string, where n is the number of bits in the constant and "pppp" is the constant in
hexadecimal; for example, "16'h FFFF"

n'b pppp Constant bit string, where n is the number of bits in the constant and "pppp" is the constant in
binary; for example, "2'b 11"

{X, y} A bit string. x and V are expressions representing a bit or bit field. Anv number of expressions can
be concatenated, for example, "{x,V,zr

dispn Displacement value of n bits used to form the effective address in branch instructions

constn Constant value of n bits used as instruction operand

offsetn Offset value of n bits used to form the effective address in load and store instructions

sign_ext Sign extension; high-order bit is left extended

one_ext One extension; high-order bits are set to 1

zero_ext High order bits are set to 0'

round16 The operation of adding 8000,6 to a 32-bit value and then zeroing the least-significant 16 bits of
the result

M Memory address

EA Effective address

target address Address from which next instruction will be fetched. Used in call instructions.

M(EA, data_size) Memory locations beginning at the specified byte location, EA, and extending to EA+data_size-1

and Bit-wise logical AND

or Bit-wise logical OR
-
xor Bit-wise logical exclusive OR

! Logical NOT

1. Zero_ext (const9) is actually zero_ext (const8), because const9 is a 9-bit constant for Signed
values but an 8-bit constant for unsigned values. For unsigned values, bit 8 is cleared.

TriCore Architecture Manual

• PRELIMINARY EDITION.

119

TriCore Instruction Set SIEMENS

9.3 Status

The Status section of the instruction page lists any of the five status flags in the Program Status
Word (PSW) that may be affected by the operation. The status flags are described in Table 14 below.

Table 14: PSW Status Flags

Status Flag Description

C
Carry. This flag is set as the result of a carry out from an addition or subtraction instruction. Carry out
can result from either signed or unsigned operations. It is also set by automatic shift.

Overflow. This flag is updated by most arithmetic instructions. It is set when the result cannot be rep-
V resented in the data size of the result; for example. when the result of a signed 32-bit operation is

greater than 231_1.

SV
Sticky Overflow. This flag is set when the overflow flag is set. It remains set until it is explicitly cleared
by an RSlV (Reset Overflow bits) instruction.

AV
Advanced Overflow. This flag is updated by all instructions that update the overflow flag and no oth-
ers. This flag is determined as the boolean exclusive of the two most-significant bits of the result.

SAY
Sticky Advanced Overflow. This flag is set whenever the advanced overflow flag is set. It remains set
until it is explicitly cleared by an RSlV (Reset Overflow bits) instruction.

Refer also to the description of overflow conditions in Section 8.1.1. "Integer Arithmetic," on page 88
and to the description of the divide-step algorithm in Section 8.1.1.4, "Division," on page 90.

9.4 Instruction Formats

This section of the instruction page includes the format(s) used by the instruction. The 32-bit instruc
tion formats are shown in Figure 64, and the 16-bit instruction formats are shown in Figure 65. The
two opcode fields in the instruction format, op1 and op2, are specified for each instruction in Appen
dix A, Opcodes.

120 TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS

ABS

ABSB

B

BIT

BO

BOl

BRC

BRN

BRR

RC

RCPW

RCR

RCRR

RCRW

RLC

RR

RRPW

RRR

RRRR

RRRW

SYS

31 30129128

off1819 .. 61

off1819 .. 61

d

offl019 .. 6]

off1619 .. 6J

op2

op2

op2

d

d

d

d

d

d

d

d

d

d

d

TriCore Instruction Set

27126 2512423122 21 2D 119118117116 15114113112 11 110 1 9 1 8 716151413121110

op2 off18113 . .10] off1815 .. 0] off18117..141 s1/d opl

op2 off18113 .. 10] off1815 .. 01 off18117..141 b 1 bpos3 opl

disp24115 .. 0] disp24123 . .16] opl

p2 1 op2 pl s2 sl opl

op2 offl015 .. 0J s2 s1/d opl

off16115 . .10J off1615 .. 0J s2 slid opl

disp15 const4 sl opl

di8p15 nI3 .. 0J sl n41 opl

disp15 s2 sl opl

op2 const9 sl opl

P 1 op2 w const4 sl opl

s3 op2 const9 sl opl

s3 op2 const4 sl opl

s3 op2 w const4 81 opl

const16 sl opl

op2 I I n s2 81 opl

P 1 op2 w s2 sl opl

s3 op2 1 1 n s2 sl opl

s3 op2 s2 sl opl

s3 op2 w s2 sl opl

1 op2 opl

Figure 64: 32-Bit Instruction Formats

TriCore Architecture Manual 121

• PRELIMINARY EDITION.

TriCore Instruction Set SIEMENS

15114113112 11 110 19 I 8 716151413121110

SB

SBC

SBR

SBRN

SC

SLR

SLRO

SR

SRC

SRO

SRR

SRRS

SSR

SSRO

disp8 opl

const4 disp4 opl

s2 disp4 opl

n(3 .. 0J disp4 n41 opl

constU opl

s2 d opl

off4 d opl

op2 slId opl

const4 slId opl

52 off4 opl

s2 slid opl

52 slId n 1 opl

52 51 opl

off4 .1 opl

Figure 65: 16-Bit Instruction Formats

9.5 Instruction Descriptions

The following pages describe the TriCore instruction set in detail.

122

• PRELIMINARY EDITION.

TriCore Architecture Manual

SIEMENS ABS

ASS Absolute Value ASS

Syntax:

abs De, Da (RR)

Description:

Put the absolute value of data register Da in data register DC; that is, if the contents of Da are greater
than or equal to zero, copy it to DC; otherwise, change the sign of Da and copy it to Dc. The operands
are treated as signed, 32-bit integers. If Da = Ox8000.0000 (the maximum negative value), then Dc
= Ox8000.0000, and an overflow is generated.

Operation:

if (D[a] >= 0) then D[e] = D[a]
else D[e] = -D[a]; signed

Status:

V,SV,AV,SAV

Example:

abs d3, dl

See Also:
ABSDIF (pg 125), ABSDIFS (pg 127), ABSS (pg 129)

TriCore Architecture Manual

• PRELIMINARY EDITION.

123

ABS.B

ABS.B
ABS.H

Syntax:

abs.b Oc, Oa (RR)
abs.h Oc, Oa (RR)

Description:

Absolute Value Packed Byte

Absolute Value Packed Halfword

SIEMENS

ABS.B
ABS.H

Put the absolute value of each byte/halfword in data register Da into the corresponding byte/halfword
of data register Dc. The operands are treated as signed, 8-bitl16-bit integers. The overflow condition
is calculated for each byte/halfword of the packed quantity. Overflow occurs only if O[a] [(n +7):n] I
O[a] [(n+ 15):n] has the maximum negative value of OxBOIOxBOOO. On overflow, O[a] [(n+ i):n] is un
changed, and the V flag is set.

Refer also to Section B.1.3, "Packed Arithmetic," on page 95.

Operation:

if (O[a][(n+7):n] >= 0)
then O[c][(n+7):n] = O[a][(n+7):n]
else O[c]((n+7):n] = -O[a][(n+7):n]; n = 0, 8, 16,24; signed

if (O[a][(n+15):n] >= 0)
then O[c][(n+15):n] = O[a][(n+15):n]
else O[c]((n+15):n] = -O[a][(n+15):n]; n = 0, 16; signed

Status:

V,SV,AV,SAV

Examples:

abs.b
abs.h

See Also:

d3, dl
d3, dl

ABSS.B (pg 130), ABSS.H (pg 130), ABSDIF.B (pg 126), ABSDIF.H (pg 126),
ABSDIFS.B (pg 128), ABSDIFS.H (pg 128)

124 TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS

ABSDIF

Syntax:

absdif
absdif

Description:

Absolute Value of Difference

Oe, Oa, Ob (RR)
Oe, Oa, eonst9 (RC)

ABSDIF

ABSDIF

Put the absolute value of the difference between Da and Dblconst9 in Dc; namely, if the contents of
data register Da are greater than Dblconst9, then subtract Dblconst9 from Da and put the result in
data register Dc; otherwise, subtract Da from Dblconst9 and put the result in Dc. The operands are
treated as signed, 32-bit integers, and the const9 value is sign-extended to 32 bits.

Operation:

if (O[a] > Orb]) then O[e] = Oral - O[b]
else O[e] = O[b] - Oral; signed

if (O[a] > sign_ext(eonst9)) then O[e] = O[a]- sign_ext(eonst9)
else O[e] = sign_ext(eonst9) - Oral; signed

Status:

V,SV,AV,SAV

Examples:

absdif
absdif

See Also:

d3, d1, d2
d3, d1, 126

ABSS (pg 129), ABSDIFS (pg 127)

TriCore Architecture Manual

• PRELIMINARY EOITION •

125

ABSDIF.B SIEMENS

ABSDIF.B
ABSDlF.H

Syntax:

Absolute Value of Difference Packed Byte

Absolute Value of Difference Packed Halfword

absdif.b Oc, Oa, Ob (RR)
absdif.h Oc, Oa, Ob (RR)

Description:

ABSDIF.B
ABSDIF.H

Compute the absolute value of the difference between the corresponding bytes/halfwords of Da and
Db and put each result in the corresponding byte/halfword of Dc. The operands are treated as
signed, 8-bitl16-bit integers. The overflow condition is calculated for each byte/halfword of the
packed quantity.

Refer also to Section 8.1.3, "Packed Arithmetic," on page 95.

Operation:

if (0[a][(n+7):n]>0[b][(n+7):n])
then 0[c][(n+7):n] = 0[a][(n+7):n] - 0[b][(n+7):n]
else 0[c][(n+7):n] = 0[b][(n+7):n] - 0[a][(n+7):n]; n = 0, 8, 16,24; signed

if (0[a][(n+15):n] > 0[b][(n+15):n])
then 0[c][(n+15):n] = 0[a][(n+15):n] - 0[b][(n+15):n]
else 0[c][(n+15):n] = 0[b][(n+15):n] - 0[a][(n+15):n]; n = 0,16; signed

Status:

V,SV,AV,SAV

Examples:

absdif.b d3, dl, d2
absdif.h d3, dl, d2

See Also:
ABS.B (pg 124), ABS.H (pg 124), ABSS.B (pg 130), ABSS.H (pg 130),
ABSDIFS.B (pg 128), ABSDIFS.H (pg 128)

126 TriCore Architecture Manual

• PRELIMINARY EOITION •

SIEMENS ABSDIFS

ABSDIFS Absolute Value of Difference with Saturation ABSDIFS

Syntax:

absdifs De, Da, Db (RR)
absdifs De, Da, eonst9 (RC)

Description:

Put the absolute value of the difference between Da and Dblconst9 in Dc: namely, if the contents of
data register Da are greater than Dblconst9, then subtract Dblconst9 from Da and put the result in
data register Dc. otherwise, subtract Da from Dblconst9 and put the result in Dc. The operands are
treated as signed, 32-bit integers, with saturation on signed overflow. The const9 value is sign-ex
tended to 32 bits.

Operation:

if (D[a] > D[b]) then D[e] = D[a]- D[b]
else D[e] = D[b] - D[a]; signed; ssov

if (D[a] > sign_ext(eonst9)) then D[e] = D[a]- sign_ext(eonst9)
else D[e] = sign_ext(eonst9) - D[a]; signed; ssov

Status:

V,SV,AV,SAV

Examples:

absdifs d3, d1, d2
absdifs d3, d1, 126

See Also:
ABS (pg 123), ABSDIF (pg 125), ABSS (pg 129)

TriCore Architecture Manual

• PRELIMINARY EDITION.

127

ABSDIFS.B

ABSDIFS.B
ABSDIFS.H

Syntax:

Absolute Value of Difference Packed Byte

Absolute Value of Difference Packed Halfword

absdif.b Dc, Da, Db (RR)
absdif.h Dc, Da, Db (RRI

Description:

SIEMENS

ABSDIFS.B
ABSDIFS.H

Compute the absolute value of the difference of the corresponding bytes/halfwords of Da and Db
and put each result in the corresponding byte/halfword of Dc. The operands are treated as signed,
8-bitl16-bit integers, with saturation on signed overflow. The overflow condition is calculated for each
byte/halfword of the packed quantity.

Refer also to Section 8.1.3, "Packed Arithmetic," on page 95.

Operation:

if (D[a][(n+7):n] > D[b][(n+71:nll
then D[c][(n+71:n] = D[a][(n+71:n] - D[b][(n+7):n]
else D[c][(n+7):n] = D[b][(n+71:n]- D[a][(n+71:n]; n = 0, 8, 16,24; signed; ssov

if (D[a][(n+15):n] > D[b][(n+15):nll
then D[c][(n+151:n] = D[a][(n+151:n]- D[b][(n+151:n]
else D[c][(n+151:n] = D[b][(n+151:n]- D[a][(n+151:n]; n = 0,16; signed; ssov

Status:

V,SV,AV,SAV

Examples:

absdif.b
absdif.h

See Also:

d3, dl, d2
d3, dl, d2

ABS.B (pg 124), ABS.H (pg 124), ABSS.B (pg 130), ABSS.H (pg 130),
ABSDIF.B (pg 126), ABSDIF.H (pg 126)

128 TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS ABSS

ABSS Absolute Value with Saturation ABSS
Syntax:

abss De, Oa (RR)

Description:

Put the absolute value of data register Da in data register DC; that is, if the contents of Da are greater
than or equal to zero, copy it to Dc; otherwise, change the sign of Da and copy it to Dc. The operands
are treated as signed, 32-bit integers, with saturation on signed overflow. If Da = Ox8000.0000 (the
maximum negative value), then Dc = Ox8000.0000, and an overflow is generated.

Operation:

if (O[a] >= 0) then O[e] = Oral
else O[e] = -Oral; signed; ssov

Status:

V,SV,AV,SAV

Example:

abss d3, dl

See Also:
ABS (pg 123), ABSDIF (pg 125), ABSDIFS (pg 127)

TriCore Architecture Manual

• PRELIMINARY EDITION.

129

ABSS.B SIEMENS

ABSS.B
ABSS.H

Syntax:

abss.b
abss.h

Description:

Absolute Value Packed Byte with Saturation

Absolute Value Packed Halfword with Saturation

Oc, Oa (RR)
Oc, Oa (RR)

ABSS.B
ABSS.H

Put the absolute value of each byte/halfword in data register Da in the corresponding byte/halfword
of data register Dc. The operands are treated as signed, 8-bitl16-bit integers, with saturation on
signed overflow. The overflow condition is calculated for each byte/halfword of the packed quantity.
Overflow occurs only if D[a) [In +7):n) I D[a] [(n+ 15):n] has the maximum negative value of Ox801
Ox8000. On overflow, D[a] [(n+ i):n) is unchanged, and the V flag is set.

Refer also to Section 8.1.3, "Packed Arithmetic," on page 95.

Operation:

if (0[a][(n+7):n] >= 0)
then 0[c][(n+7):n] = 0[a][(n+7):n]
else 0[c][(n+7):n] = -0[a][(n+7):n]; n = 0, 8,16,24; signed; ssov

if (0[a][(n+15):n] >= 0)
then 0[c][(n+15):n] = 0[a][(n+15):n]
else 0[c][(n+15):n] = -0[a][(n+15):n];n = 0,16; signed; ssov

Status:

V, SV, AV, SAY

Examples:

abss.b d3, dl
abss.h d3, dl

See Also:
ABS.B (pg 124), ABS.H (pg 124), ABSDIF.B (pg 126), ABSDIF.H (pg 126),
ABSDIFS.B (pg 128), ABSDIFS.H (pg 128)

130 TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS

ADD

Syntax:

add De, Da, Db, (RR)
add De, Da, eonst9 (RC)

add 'Oa,Ob(SRR)
add/ ·...........:~ai conSt4(SRCl

.. add ""."' .•••.... 015, Da.Db ISRRl iT .
• ·.at:ir;i·· •• ·•·.•· •.. ' .·....Q1·5,Da;const4JSRC)··

Description:

ADD

Add ADD

Add the contents of data register Da to the contents of data register Db/ const9 and put the result in
data register Dc. The operands are treated as 32-bit integers, and the const9 value is sign-extended
to 32 bits before the addition is performed.

··tegi$te(J)atb •. th~c:()nten~S·~~9at~,tegj~t~rpb(SPI1~t4andput.·~~.tl·.reSlJlt·.··ih
?; Iln~.o ' .. ' .. t3ted.~s •.• l,ln)1ig9~~,32~IJ!tjnt~ger.siaI)Qthe •• cofl~i4V1ilIUei~

i1~i~n;j~;perf()rrn~d; .••.

Operation:

Ole] = Dla] + Dlb]
Ole] = Dla] + sign_ext(eonst9)

l~Ii.R~~l\;··.·fi .. L·.·, .••.•.. ,.·· ••••..• : .
• ·[a] .' ." ·n:..ext(poflst,4).:r··.··.

····.~.g~~i}~·~,r~1~~(~.~~st~j!ii;··.·······.··.······
Status:

v, SV, AV, SAY

Examples:

add d3, dl, d2
add d3, dl, 126
add dl, d2
add dl, 6
add d15, dl, d2
add d15, dl, 6

TriCore Architecture Manual 131

• PRELIMINARY EDITION.

·1

ADD

See Also:
ADDC (pg 135), ADDI (pg 136). ADDIH (pg 137). ADDS (pg 139),
ADDS.U (pg 142), ADDX (pg 144)

SIEMENS

132 TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS ADD.A

ADD.A Add Address ADD.A

Syntax:

add.a Ac, Aa, Ab (RR)

Description:

Add the contents of address register Aa to the contents of address register Ab and put the result in
address register Ac.

Operation:
A[c] = A[a] + A[b]

Example:

add.a a3, a4, a2

See Also:
ADDIH.A (pg 138), ADDSC.A (pg 143), ADDSC.AT (pg 143), DIFSC.A (pg 176),
SUB.A (pg 380), SUBSC.A (pg 386)

TriCore Architecture Manual

• PRELIMINARY EDITION.

133

ADD.B

ADD.B
ADD.H

Syntax:

add.b Dc, Da, Db (RR)
add.h Dc, Da, Db (RR)

Description:

Add Packed Byte

Add Packed Halfword

SIEMENS

ADD.B
ADD.H

Add the contents of each byte/halfword of Da and Db and put the result in each corresponding byte/
halfword of Dc. The overflow condition is calculated for each byte/halfword of the packed quantity,
and the status flags are set if any of the byteslhalfwords generate or almost generate an overflow.

Refer also to Section 8.1.3, "Packed Arithmetic," on page 95.

Operation:

D[cl[(n+7):nj = D[a][(n+7):nj + D[b][(n+7):nj, n = 01 8, 16,24
D[c][(n+15):nj = D[aJ[(n+15):nj + D[b][(n+15):nj; n = 0, 16

Status:

V,SV,AV,SAV

Examples:

add.b d3, dl, d2
add.h d3, dl, d2

See Also:
ADD.H (pg 134), ADDS.B (pg 140), ADDS.BU (pg 140), ADDS.H (pg 141),
ADDS.HU (pg 141)

134 TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS ADDC

ADDC Add with Carry ADDC
Syntax:

addc Dc, Oa, Db (RR)
addc Dc, Oa, const9 (RC)

Description:

Add the contents of data register Da to the contents of data register Db/ const9 and put the result in
data register Dc. The operands are treated as 32-bit integers. and the value const9 is sign-extended
to 32 bits before the addition is performed. The PSW carry bit is used as the carry in and updates the
PSW carry bit with the ALU carry out.

Operation:

O[c] = Oral + O[b] + PSW.C; PSW.C = carry_out
O[c] = Oral + sign_ext(const9) + PSW.C; PSW.C = carry_out

Status:

C,V,SV,AV,SAV

Examples:

addc d3, d1, d2
addc d3, d1, 126
addc d3, d1, 253

See Also:
ADD (pg 131), ADDI (pg 136), ADDIH (pg 137), ADDS (pg 139), ADDS.U (pg 142),
ADDX (pg 144)

TriCore Architecture Manual 135

• PRELIMINARY EDITION.

ADDI SIEMENS

ADDI Add Immediate ADDI

Syntax:

addi Dc, Oa, eonst16 (RLC)

Description:

Add the contents of data register Da to the value const16, and put the result in data register Dc. The
operands are treated as 32-bit integers. The value const16 is sign-extended to 32 bits before the ad
dition is performed.

Operation:

O[e] = Ora] + sign_ext(eonst16)

Status:

V,SV,AV,SAV

Example:

addi d3, d1, -14526

See Also:
ADD (pg 131), AD DC (pg 135), ADDIH (pg 137), ADDS (pg 139), ADDS.U (pg 142),
ADDX (pg 144)

136 TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS ADDIH

ADDIH Add Immediate High ADDIH

Syntax:

addih De, Da, eonst16 (RLC)

Description:

Const16 is left-shifted 16 bits, zero-filled, and added to Oral. The results are put in O[c).

Operation:

O[e] = Oral + {eonst16, 16'h DODO}

Status:

V,SV,AV,SAV

Example:

addih d3, dl, -14526

See Also:
ADD (pg 131). AD DC (pg 135), ADD I (pg 136), ADDS (pg 139), ADDS.U (pg 142).
ADDX (pg 144)

TriCore Architecture Manual 137

• PRELIMINARY EDITION.

ADDIH.A SIEMENS

ADDIH.A Add Immediate High to Address ADDIH.A

Syntax:

addih.a Ac, Aa, const16 (RLC)

Description:

Left-shift const16 by 16 bits, add the contents of address register Aa, and put the result in
address register Ac.

Operation:

A[c) = A[a] + {const16, 16'h OOOO}

Example:

addih.a a3, a4, -14526

See Also:
ADD.A (pg 133), ADDSC.A (pg 143), ADDSC.AT (pg 143), DIFSC.A (pg 176).
SUBSC.A (pg 386)

138 TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS ADDS

ADDS Add Signed with Saturation ADDS

Syntax:

adds Dc, Da, Db (RR)
adds Dc, Da, const9 (RC)

Description:

Add the contents of data register Da to the value in data register Dblconst9 and put the
result in data register Dc. The operands are treated as signed, 32-bit integers, with satura
tion on signed overflow. The value const9 is sign-extended to 32 bits before the addition is
performed.

Operation:

D[c) = D[a) + D[b); signed; ssov
D[c) = D[a) + sign_ext(const9); signed; ssov

Status:

V,SV,AV,SAV

Examples:

adds d3, d1, d2
adds d3, d1, 126
adds d3, d1, 253

See Also:
ADD (pg 131), ADDC (pg 135). ADDI (pg 136), ADDIH (pg 137), ADDS.U (pg 142),
ADDX (pg 144)

TriCore Architecture Manual 139

• PRELIMINARY EDITION.

ADDS.B SIEMENS

ADDS.B
ADDS.BU

Syntax:

Add Signed Packed Byte with Saturation

Add Unsigned Packed Byte with Saturation

adds.b Dc, Da, Db (RR)
adds.bu Dc, Da, Db (RR)

Description:

ADDS.B
ADDS.BU

Add the contents of each byte of Da and Db and put each result in the corresponding byte
of Dc, with saturation on signed/unsigned overflow. The overflow and advanced overflow
conditions are calculated for each byte of the packed quantity.

Refer also to Section 8.1.3, "Packed Arithmetic," on page 95.

Operation:

D[c][(n+7):n] = D[a][(n+7):n] + D[b][(n+7):n]; n = 0, 8,16,24; signed; ssov
D[c][(n+7):n] = D[a][(n+7):n] + D[b][(n+7):n]; n = 0, 8,16,24; unsigned; suov

Status:

v, SV, AV, SAV

Examples:

adds.b d3, dl, d2
adds.bu d3, dl, d2

See Also:
ADD.B (pg 134), ADD.H (pg 134), ADDS.H (pg 141). ADDS.HU (pg 141)

140 TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS

ADDS.H
ADDS.HU

Syntax:

Add Signed Packed Halfword with Saturation

Add Unsigned Packed Halfword with Saturation

adds.h Dc, Da, Db (RR)
adds.hu Dc, Da, Db (RR)

Description:

ADDS.H

ADDS.H
ADDS.HU

Add the contents of each halfword of Da and Db and put the result in each corresponding
halfword of Dc, with saturation on signed/unsigned overflow. The overflow and advanced
overflow conditions are calculated for each halfword of the packed quantity.

Operation:

D[c)[(n+15):n] = D[a][(n+15):n] + D[b)[(n+15):n]; n = 0,16; signed; ssov
D[c)[(n+15):n] = D[a][(n+15):n] + D[b)[(n+15):n]; n = 0,16; unsigned; suov

Status:

V,SV,AV,SAV

Examples:

adds.h d3, d1, d2
adds.h d3, d1, 126
adds.h d3, d1, 253
adds.hu d3, d1, d2
adds.hu d3, d1, 126
adds.hu d3, d1, 253

See Also:

ADD.B (pg 134). ADD.H (pg 1341. ADDS.B (pg 140). ADDS.BU (pg 140)

TriCore Architecture Manual

• PRELIMINARY EDITION.

141

ADDS.U SIEMENS

ADDS.U Add Unsigned with Saturation ADDS.U

Syntax:

adds.u Dc, Oa, Db (RR)
adds.u Dc, Oa, const9 (Re)

Description:

Add the contents of data register Da to the contents of data register Dblconst9 and put the
result in data register Dc. The operands are treated as unsigned, 32-bit integers, with sat
uration on unsigned overflow. The const9value is zero-extended to 32 bits.

Operation:

O[e] = Oral + O[b]; unsigned; suov
O[c] = Oral + zero_ext(const9); unsigned; suov

Status:

V, SV,AV,SAV

Examples:

adds.u d3, d1, d2
adds.u d3, d1, 126
adds.u d3, d1, 253

See Also:
ADD (pg 131), ADDC (pg 135), ADDl(pg 136), ADDIH (pg 137), ADDS (pg 139),
ADDX (pg 144)

142 TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS

ADDSC.A
ADDSC.AT

Syntax:

Add Scaled Index to Address

Add Bit-Scaled Index to Address

addsc.a Ac, Aa, ~b, n (RRS)
. ia(jd$c~a ·\i\8,rDb,ri($RRS),

"',". "': ."

addsc.at Ac, Aa, Db (RRS)

Description:

ADDSC.A

ADDSC.A
ADDSC.AT

Left-shift the contents of data register Db by the amount specified by n, where n can be 0,
1, 2, or 3. Add that value to the contents of address register Aa and put the result in
address register Ac .

. .. '.··.·· .. ·L~"~~#ttb~ri~nt~o~~6fqata·.·.~·9istenD6byiheamount~p
<·},2 ;'Dot$.A.d d~hat".all,Je.ito~",eicontertts.of
}:.,a~~~~~·f~g'~~~r~i

byn, whereri~~o6~o~
.a ~~.9Pl:Jtt~~result··in

Right-shift the contents of Db by 3 (with sign fill). Add that value to the contents of
address register Aa and clear the bottom two bits to zero. Put the result in Ac.

The instruction AOOSC.AT generates the address of the word containing the bit indexed
by Db, starting from the base address in Aa.

Operation:

A[c] = A[a] + (O[b] « n), n = 0, 1, 2, or 3
.. ·.·:t\lalF,ArEilt·{p[~]i,<,<,·,;tn$iO{l:~j'Qfj~· •......

A[c] = A[a] + (O[b] »3) and! 2'b 11

Example:

addsc.at a3, a4, d2

See Also:
ADD.A (pg 133), ADDIH.A (pg 138), DIFSC.A (pg 176), SUB.A (pg 380),
SUBSC.A (pg 386)

TriCore Architecture Manual

• PRELIMINARY EDITION.

143

ADDX SIEMENS

ADDX Add Extended ADDX
Syntax:

addx Dc, Da, Db (RR)
addx Dc, Da, const9 (RC)

Description:

Add the cOl1tents of data register Da to the contents of data register Obi const9 and put the
result in data register Dc. The operands are treated as 32-bit integers, and the const9value
is sign-extended to 32 bits before the addition is performed. The PSW carry bit is set to
the value of the ALU carry out.

Operation:

D[c] = D[a] + D[b]; PSW.C = carry_out
D[c] = D[a] + sign_ext(const9); PSW.C = carry_out

Status:

C,V,SV,AV,SAV

Examples:

addx d3, d1, d2,
addx d3, d1, 126
addx d3, d1, 253

See Also:

ADD (pg 131), AD DC (pg 135), ADD I (pg 136). ADDIH (pg 137). ADDS (pg 139),
ADDS.U (pg 142)

144 TriCore Architecture Manual

• PRELIMINARY EDITION.

SIEMENS

AND
Syntax

and
and

·,~r1d
·.··.and···

Dc, Da, Db (RR)
Dc, Da, const9 (RC)
t>S"fJIJ(SRR) ' ••••..•....••..

••.•.•... ··p15;.colist$lSCl

Description:

AND

Logical AND AND

Compute the bitwise logical AND of the contents of data register Da and the contents of
data register Db/ const9 and put the result in data register Dc. The operands are treated as
unsigned, 32-bit integers, and the const9 value is zero-extended to 32 bits.

········•·· ••. ···'QdtrtPut~tti~:bi~isel()gtp~li·'··· ·Dbfth~&~oter1t~ofd~i~rkgJ~~rPalD1p~~d"tfi~c~..;te~ts
at ~efPb/c6fl$t?~·. tthe.l"es~ltindatat~gi$te~1)alt?15,The.~pel'an~s~re

~~~~·Eid.,~2~tJiti~~~~l3f~,'ar1d ·~~e·.·tm:n~t8 ~alueis~r9~extende9·~9,~?~j~~l.,···.· .... • 

Operation: 

D[c] = D[a] and D[b] 
D[c] = D[a] and zero_ext(const9) 

Jj[~l~g[a]an.~q[bl·.· .• •.•••..•.•........ :.ii. . ....................•.............. 
·····.Pt1p~~.~[1~]~JI(j.ze~O .;.;e?<t(c;9n~~~l·· .• ···••· ....... . 

Examples: 

and d3, d1, d2 
and d3, d1, 126 
and d1, d2 
and d15, 126 

See Also: 

ANON (pg 152), NAND (pg 3191. NOR (pg 325), NOT (pg 327), OR (pg 328), 
ORN (pg 335), XNOR (pg 3941. XOR (pg 396) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

145 



AND.AND.T 

AND.AND.T 
AND.ANDN.T 
AND.NOR.T 
AND.OR.T 

Syntax: 

Accumulating Logical AND-AND 

Accumulating Logical AND-AND-Not 

Accumulating Logical AND-NOR 

Accumulating Logical AND-OR 

and.and.t Dc, Da, p1, Db, p2 (BIT) 
and.andn.tDc, Da, p1, Db, p2 (BIT) 
and.nor.t Dc, Da, p1, Db, p2 (BIT) 
and.or.t Dc, Da, p1, Db, p2 (BIT) 

Description: 

SIEMENS 

AND.AND.T 
AND.ANDN.T 

AND.NOR.T 
AND.OR.T 

Compute the logical AND/ANDN/NORIOR of the value of bit p1 of data register Da and bit 
p2 of Db. Then compute the logical AND of that result and bit 0 of Dc, and put the result 
back in bit 0 of Dc. All other bits in Dc are unchanged. 

Refer also to Section 8.3, "Bit Operations," on page 100. 

Operation: 

and.and.t: D[c] = {D[c][31:1], D[c][O] and (D[a][p1] and D[b][p2])} 
and.andn.t: D[c] = {D[c][31:1], D[c][O] and (D[a][p1] and !D[b][p2])} 
and.or.t: D[c] = {D[c][31 :1], D[c][O] and !(D[a][p1] or D[b][p2]) 
and.or.t: D[c] = {D[c][31:1], D[c][O] and (D[a][p1] or D[b][p2]) 

Examples: 

and.and.t d3, dl, 4, d2, 9 
and.andn.t d3, dl, 6, d2, 15 
and.nor.t d3, dl, 5, d2, 9 
and.or.t d3, dl, 4, d2, 6 

See Also: 

146 

OR.AND.T (pg 329), OR.ANDN.T (pg 329), OR.NOR.T (pg 329), OR.OR.T (pg 329), 
SH.AND.T (pg 358), SH.ANDN.T (pg 358), SH.NAND.T (pg 358), 
SH.NOR.T (pg 358), SH.OR.T (pg 358), SH.ORN.T (pg 358), SH.XNOR.T (pg 358), 
SH.XOR.T (pg 358) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS 

AND.EQ 

Syntax: 

and.eq 
and.eq 

Description: 

Dc, Da, Db (RR) 
Dc, Da, const9 (Re) 

AND.EQ 

Equal Accumulating AND.EQ 

Compute the logical AND of Dc[O] and the Boolean result of the EQ operation on the con
tents of data register Da and data register Dblconst9. Put the result in Dc[O]. All other bits 
in Dc are unchanged. The const9 value is sign-extended to 32 bits. 

Refer also to Section 8.2, "Compare Instructions," on page 97. 

Operation: 

D[c][O] = D[c][O] AND (D[a] == D[b]) 
D[c][O] = D[c][O] AND (D[a] == sign_ext(const9)) 

Examples: 

and.eq d3, d1, d2 
and.eq d3, d1, 126 

See Also: 
OR.EO (pg 330), XOR.EO (pg 397) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

147 



AND.GE SIEMENS 

AND.GE 
AND.GE.U 

Greater Than or Equal Accumulating 

Greater Than or Equal Accumulating 
Unsigned 

AND.GE 
AND.GE.U 

Syntax: 

and.ge 
and.ge 
and.ge.u 
and.ge.u 

Oc, Oa, Ob (RR) 
Oc, Oa,const9 (RC) 
Oc, Oa, Ob (RR) 
Oc, Oa,const9 (RC) 

Description: 

Calculate the logical ANO of Dc[O] and the Boolean result of the GE operation on the con
tents of data register Da and data register Dblconst9. Put the result in Dc[O]. All other bits 
in Dc are unchanged. Da and Db are treated as 32-bit signed integers. The const9 value is 
sign-extended to 32 bits. 

Calculate the logical ANO of Dc[O] and the Boolean result of the GE.U operation on the 
contents of data register Da and data register Dblconst9. Put the result in Dc[O]. All other 
bits in Dc are unchanged. Da and Db are treated as 32-bit unsigned integers. The const9 
value is zero-extended to 32 bits. 

Refer also to Section 8.2, "Compare Instructions," on page 97. 

Operation: 

O[c] = O[c][O] op (O[a] >= Orb]); signed 
O[c] = O[c][O] op (O[a] >= sign_ext(const9)); signed 

O[c] = O[c][O] op (O[a] >= Orb]); unsigned 
O[c] = O[c][O] op (O[a] >= zero_ext(const9)); unsigned 

Examples: 

and.ge d3, d1, d2 
and.ge d3, d1, 126 
and.ge.u d3, d1, d2 
and.ge.u d3, d1, 126 

See Also: 

OR.GE (pg 331), OR.GE.U (pg 331), XOR.GE (pg 398), XOR.GE.U (pg 398) 

148 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS 

AND.LT 
AND.LT.U 

Syntax: 

Less Than Accumulating 

Less Than Accumulating Unsigned 

and.lt Dc, Da, Db (RR) 
and.lt Dc, Da,const9 (RC) 
and.lt.u Dc, Da, Db (RR) 
and.lt.u Dc, Da,const9 (RC) 

Description: 

AND.LT 

AND.LT 
AND.LT.U 

Calculate the logical AND of Oc[O] and the Boolean result of the LT operation on the con
tents of data register Oa and data register Oblconst9. Put the result in Oc[O]. All other bits 
in Dc are unchanged. Oa and Db are treated as 32-bit signed integers. The const9 value is 
sign-extended to 32 bits. 

Calculate the logical AND of Oc[O] and the Boolean result of the LT.U operation on the con
tents of data register Oa and data register Oblconst9. Put the result in Oc[O]. All other bits 
in Dc are unchanged. Oa and Db are treated as 32-bit unsigned integers. The const9 value 
is zero-extended to 32 bits. 

Refer also to Section 8.2, "Compare Instructions," on page 97. 

Operation: 

D[c] = D[c][O] AND (D[a] < D[b]); signed 
D[c] = D[c][O] AND (D[a] < sign_ext(const9)); signed 

D[c] = D[c][O] AND (D[a] < D[b]); unsigned 
D[c] = D[cJ[O] AND (D[a] < zero_ext(const9)); unsigned 

Examples: 

and.It d3, d1, d2 
and.It d3, d1, 126 
and.It.u d3, d1, d2 
and.It.u d3, d1, 126 

See Also: 
OR.LT (pg 332), OR.LT.U (pg 332), XOR.LT (pg 399), XOR.LT.U (pg 399) 

TriCore Architecture Manual 149 

• PRELIMINARY EDITION. 



AND.NE SIEMENS 

AND.NE Not Equal Accumulating AND.NE 

Syntax: 

and.ne Dc, Da,Db (RR) 
and.ne Dc, Da,const9 (RC) 

Description: 

Calculate the logical AND of De[O] and the Boolean result of the NE operation on the con
tents of data register Da and data register Dbleonst9. Put the result in De[O]. All other bits 
in De are unchanged. The eonst9 value is sign-extended to 32 bits. 

Refer also to Section 8.2, "Compare Instructions," on page 97. 

Operation: 

D[c] = D[c][O] AND (D[a] != D[b]) 
D[c] = D[c][O] AND (D[a] != sign_ext(const9)) 

Examples: 

and.ne 
and.ne 

See Also: 

d3, d1, d2 
d3, d2, 126 

OR.NE (pg 333), XOR.NE (pg 400) 

150 

• PRELIMINARY EDITION. 

TriCore Architecture Manual 



SIEMENS AND.T 

AND.T Bit Logical AND AND.T 

Syntax: 

and.t Dc, Da, p1, Db, p~ (BIT) 

Description: 

Compute the logical AND of bit p7 of data register Da and bit p2 of data register Db. Put 
the result in the least-significant bit of data register Dc and clear the remaining bits of Dc 
to zero. 

Refer also to Section 8.3, "Bit Operations," on page 100. 

Operation: 

D[c] = D[a][p1] and D[b][p2] 

Example: 

and.t d3, dl, 7, d2, 2 

See Also: 
ANDN.T (pg 153), NAND.T (pg 320), NOR.T (pg 326), OR.T (pg 334), 
ORN.T (pg 336), XNOR.T (pg 395), XOR.T (pg 401) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

151 



ANON SIEMENS 

ANON AND-Not ANON 
Syntax: 

andn OC,Oa, Db (RR) 
andn Dc, Oa,const9 (RC) 

Description: 

Compute the bitwise logical AND of the contents of data register Da and the ones-comple
ment of the contents of data register Db/ const9 and put the result in data register Dc. The 
operands are treated as unsigned, 32-bit integers. The const9value is zero-extended to 32 
bits. 

Operation: 

O[c] = Oral and !O[b] 
O[c] = D[a] and !zero_ext(const9) 

Examples: 

andn d3, d1, d2 
andn d3, d1, 126 

See Also: 

AND (pg 145). NAND (pg 319). NOR (pg 325). NOT (pg 327), OR (pg 328), 
ORN (pg 335). XNOR (pg 394), XOR (pg 396) 

152 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS ANDN.T 

ANDN.T Bit Logical AND-Not ANDN.T 

Syntax: 

andn.t Dc, Da, p1, Db, p2 (BIT) 

Description: 

Compute the logical AND of bit p1 of data register Da and the inverse of bit p2 of data reg
ister Db. Put the result in the least-significant bit of data register Dc and clear the remain
ing bits of Dc to zero. 

Refer also to Section 8.3, "Bit Operations," on page 100. 

Operation: 

D[c] = D[a][p1] and !D[b][p2] 

Example: 

andn.t d3, dl, 2, d2, 5 

See Also: 
AND.T (pg 151), NAND.T (pg 320), NOR.T (pg 326), OR.T (pg 334), 
ORN.T (pg 336), XNOR.T (pg 395), XOR.T (pg 401) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

153 



BISR SIEMENS 

BISR Begin ISR BISR 

Syntax: 

bisr const9 (RC) 

Description: 

Save the lower context by storing the contents of A2 - A7, DO - 07, and the current PC to 
the current memory location pointed to by the FCX. Set the current CPU priority number 
(lCR.CCPN) to the value of const9[7:0]JconstB, and enable interrupts (set ICR.IE to one). 
Note that BISR can be executed only in supervisor privilege mode. 

This instruction is intended to be one of the first executed instructions in an interrupt rou
tine. If the interrupt routine has not altered the lower context, the saved lower context is 
from the interrupted task. 

If a BISR instruction is issued at the beginning of an interrupt, then an RSLCX instruction 
should be performed before returning with the RFE instruction. 

Refer also to Section 8.9.4, "Enabling/Disabling the Interrupt System," on page 111. 

Example: 

bisr 126 

See Also: 

154 

DISABLE (pg 177), ENABLE (pg 185). LDLCX (pg 233), LDUCX (pg 235), 
RET (pg 337), RFE (pg 338). RSLCX (pg 339), STLCX (pg 377), STUCX (pg 378). 
SVLCX (pg 388) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS 

CADD Conditional Add 

Syntax: 

cadd Oc, Od, Oa, Ob (RRR) 
cadd Oc, Od, Oa, const9 (RCR) 

......... <cadd . ..ba,[)1$,bij($RR) ..•. 
·>.pl:l~d···." · ... · ••. ·.·p:~iJ)15,.¢(lr)~4·fsqR). 

Description: 

CADD 

CADD 

If the contents of data register Dd are non-zero, add the contents of data register Da and 
the contents of register Dblconst9 and put the result in data register Dc; otherwise, put the 
contents of Da in Dc. The const9 value is sign-extended to 32 bits. 

.., .. !t~:!~=;~~;i~:i:i~~~~~::s~1;~~~~:t~-~~~~ti~:i~~~;~~i~::~:::~;;~~~~~~~t~ 
,/tl:JJ;ft~9f<~~"!'i!l1p~afl~~~iII1~cp~t4\va!~ei~~!gl1~e¥J:~l1d(:l(iW~2tii!s. ....... . . .. 

Operation: 

O[c] = ((O[d] != 0) ? Oral + O[b] : Oral) 
O[c] = ((O[d] != 0) ? Oral + sign_ext(const9) : Ora]) 

....•....... :~I~l~\~(q[l~~ .. !~*l}?~~~]'+[)IQl· 
···.£>{~l:::l(R,tlpJ!:;·p)iDI~,) ••• ±sig~ • 

Status: 

V,SV,AV,SAV 

Examples: 

cadd d3, d4, d1, d2 
cadd d3, d4, d1, 126 
cadd d1, d1S, d2 
cadd d1, d1S, 6 

See Also: 
CADDN (pg 157), CMOV (pg 168), CMOVN (pg 169), CSUB (pg 170), 
CSUBN (pg 172), SEL (pg 347), SELN (pg 349) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

155 



CADD.A SIEMENS 

CADD.A Conditional Add to Address CADD.A 

Syntax: 

cadd.a Ac, Od, Aa, Ab (RRR) 
cadd.a Ac, Od, Aa, const9 (RCR) 

Description: 

If the contents of data register Dd are non-zero, add the contents of address register Aa 
and the contents of register Ablconst9 and put the result in address register AC; otherwise, 
put the contents of Aa in Ac. The const9 value is sign-extended to 32 bits. 

Operation: 

A[c] = ((O[d] 1= 0) ? A[a] + A[b] : A[a]) 
A[c] = ((O[d] != 0) ? A[a] + sign_ext(const9) : A[a]) 

Examples: 

cadd.a 
cadd.a 

See Also: 

a3, d4, a4, a2 
a3, d4, a4, 126 

CADDN.A (pg 158), CSUB.A (pg 171), CSUBN.A (pg 173), SEL.A (pg 348), 
SELN.A (pg 350) 

156 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS 

CADDN 
Syntax: 

caddn 
caddn 

Conditional Add-Not 

Dc, Od, Oa, Db (RRR) 
Dc, Od, Oa, const9 (RCR) 

caddn· .Da,[)t~,Db(SRRr 
···caddo····· ·.•·•·•· .•• ·.·.·.D~iD15.const4fSRq)·. 

Description: 

CADDN 

CADDN 

If the contents of data register Dd are zero, add the contents of data register Da and the 
contents of register Dblconst9 and put the result in data register Dc; otherwise, put the 
contents of Da in DC.The const9value is sign-extended to 32 bits . 

••• ····.If.theco~tehtsof .data· re~istef.D'5<aret~tg •. addfh~c~irteOt~bfdat~i~ebisiefrM·~~dthe 
............. ~on~~l1ts.of· regi!ilter DblconstLlandPiJt~h~~esliltifldf,Jta.reg j~ter.tJa;ot~e~j se •. tbe·con-

·te!"ts()tpa·i~H9G~aI1Qe<:lTh~col'lst4va,IIJt3 .. issigrl:eXXell~~'9.~,!~~t>its •• ··.i.i ...• ·.··.···.··.···i .... . .. . 

Operation: 

O[c] = ((O[d] == 0) ? Oral + O[b] : Ora]) 
O[c] = ((O[d] == 0) ? Oral + sign_ext(const9) : Ora]) 

····...,d~~: •• ~.~:~~~.~~r;:dlt~dI:~ .. :·.~~~j~r~H~~~i';:9r~J).· •.••• ·•· .• ··.···•· .•. i··.··.· 
Status: 

V, SV,AV,SAV 

Examples: 

caddn d3, d4, d1, d2 
caddn d3, d4, d1, 126 
caddn d1, diS, d2 
caddn di, diS, 6 

See Also: 

CADD (pg 155), CMOV (pg 168), CMOVN (pg 169), CSUB (pg 170), 
CSUBN (pg 172), SEL (pg 347), SELN (pg 349) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

157 



CADDN.A 

CADDN.A Conditional Add-Not to Address 

Syntax: 

caddn.a Ac, Od, Aa, Ab (RRR) 
caddn.a Ac, Od, Aa, const9 (RCR) 

Description: 

SIEMENS 

CADDN.A 

If the contents of data register Dd are zero, add the contents of address register Aa and the 
contents of register Ablconst9 and put the result in address register Ac; otherwise, put the 
contents of Aa in Ac. The const9value is sign-extended to 32 bits. 

Operation: 

A[c) = ((O[d) == 0) ? A[a) + A[b) : A[a]) 
A[c) = ((O[d] == 0) ? A[a) + sign_ext(const9) : A[a]) 

Examples: 

caddn.a a3, d4, a4, a2 
caddn.a a3, d4, a4, 126 

See Also: 

CADD.A (pg 156), CSUB.A (pg 171), CSUBN.A (pg 173), SEL.A (pg 348), 
SELN.A (pg 350) 

158 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS CALL 

CALL Call CALL 

Syntax: 

call disp24 (B) 

Description: 

Add the value specified by disp24, multiplied by two and sign-extended to 32 bits, to the 
address of the CALL instruction, and jump to the resulting address. The target address 
range is ± 16 MBytes relative to the current PC. In parallel with the jump, save the caller's 
upper context to an available context save area (CSA). Then set register A11 to the 
address of the next instruction beyond the call. 

Refer to Section 8.6.1, "Unconditional Branch," on page 103 for an overview of all uncon
ditional control transfer instructions. Refer also to Section 4.2, "Task Switching Opera
tion," on page 48 for details of CSA management. 

Operation: 

ret_addr = PC + 4; 
PC = PC + sign_ext(2 * disp24); 
Save upper context; 
A 11 = recaddr; 

Example: 

call foobar 

See Also: 
CALLA (pg 160), CALLI (pg 161), RET (pg 337) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

159 



CALLA SIEMENS 

CALLA Call Absolute CALLA 

Syntax: 

calla disp24 (B) 

Description: 

Jump to the address specified by disp24, as shown below. In parallel with the jump, save 
the caller's upper context to an available context save area (CSA). Then set register A 11 to 
the address of the next instruction beyond the call. 

23 20 19 0 

~I I disp24 

10 3 827 2120/ 

I I 0000000 I 101 
target address 

TAMIl43.1 

Refer to Section 8.6.1, "Unconditional Branch," on page 103 for an overview of all uncon
ditional control transfer instructions. Refer also to Section 4.2, "Task Switching Opera
tion," on page 48 for details of CSA management. 

Operation: 

reCaddr = PC + 4; 
PC = PC + sign_ext(2 * disp24); 
Save upper context; 
A 11 = reCaddr; 

Example: 

calla foobar 

See Also: 

CALL (pg 159). CALLI (pg 161), JL (pg 206), JLA (pg 207), RET (pg 337) 

160 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS CALLI 

CALLI Call Indirect CALLI 

Syntax: 

calli Ab (RR) 

Description: 

Jump to the address specified by the contents of address register Ab. In parallel with the 
jump, save the caller's upper context to an available context save area (CSA). Then set 
register A 11 to the address of the next instruction beyond the call. 

Refer to Section 8.6.1, "Unconditional Branch," on page 103 for an overview of all uncon
ditional control transfer instructions. Refer also to Section 4.2, "Task Switching Opera
tion," on page 48 for details of CSA management. 

Operation: 

reCaddr = PC + 4; 
PC = PC + sign_ext(2 * Ab); 
Save upper context; 
A 11 = recaddr; 

Example: 

calli a2 

See Also: 
CALL (pg 159), CALLA (pg 160), RET (pg 337) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

161 



CLO SIEMENS 

CLO Count Leading Ones CLO 

Syntax: 

clo Dc, Oa (RR) 

Description: 

Count the number of consecutive ones in Da, starting with bit 31, and put the result in Dc. 

Refer also to Section B.1.1.9, "Count Leading Zeroes, Ones, and Signs," on page 91. 

Operation: 

O[c] = #Ieading_ones (O[a)) 

Example: 

clo d3, dl 

See Also: 
CLO.B (pg 163), CLO.H (pg 163), CLS (pg 164), CLS.B (pg 165), CLS.H (pg 165), 
CLZ (pg 166), CLZ.B (pg 167), CLZ.H (pg 167) 

162 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS 

CLO.B 
CLO.H 

Syntax: 

Count Leading Ones in Packed Bytes 

Count Leading Ones in Packed Halfwords 

clo.b Dc, Da (RR) 
clo.h Dc, Da (RR) 

Description: 

ClO.B 

CLO.B 
CLO.H 

Count the number of consecutive ones in each byte/halfword of Da, starting with the 
most-significant bit, and put each result in the corresponding byte/halfword of Dc. 

Refer also to Section 8.1.1.9, "Count Leading Zeroes, Ones, and Signs," on page 91. 

Operation: 

clo.b: D[c][(n+7):n) = #leading_ones(D[a)[(n+7):n)); n = 0, 8, 16, 24 
clo.h: D[c)[(n+15):n) = #leading_ones(D[a)[(n+15):n)); n = 0, 16 

Examples: 

clo.b 
clo.h 

See Also: 

d3, dl 
d3, dl 

CLO (pg 162), CLS (pg 164), CLS.B (pg 165), ClS.H (pg 165), ell (pg 166), 
Cll.B (pg 167), Cll.H (pg 167) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

163 



CLS SIEMENS 

CLS Count Leading Signs CLS 

Syntax: 

cis Dc, Da (RR) 

Description: 

Count the number of consecutive bits which have the same value as bit 31 in Da, starting 
with bit 30, and put the result in Dc. The result is the number of leading sign bits minus 
one, giving the number of redundant sign bits in Da. 

Refer also to Section 8.1.1.9, "Count Leading Zeroes, Ones, and Signs," on page 91. 

Operation: 

D[c] = #leading_signs(D[a]) - 1 

Example: 

cIs d3, dl 

See Also: 
CLO (pg 162), CLO.B (pg 163), CLO.H (pg 163), CLS.B (pg 165), CLS.H (pg 165), 
CLZ (pg 166). CLZ.B (pg 167). CLZ.H (pg 167) 

164 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS 

CLS.B 
CLS.H 

Syntax: 

Count Leading Signs in Packed Bytes 

Count Leading Signs in Packed Halfwords 

cls.b Dc, Da (RR) 
cls.h Dc, Da (RR) 

Description: 

CLS.B 

CLS.B 
CLS.H 

Count the number of consecutive bits in each byte/halfword in data register Da, which 
have the same state as the most-significant bit (msb) in that byte/halfword, starting with 
the next bit right of the msb. Put each result in the corresponding byte/halfword of Dc. The 
results are the number of leading sign bits minus one in each byte/halfword, giving the 
number of redundant sign bits in the bytes/halfwords of Da. 

Refer also to Section 8.1.1.9, "Count Leading Zeroes, Ones, and Signs," on page 91. 

Operation: 

cls.b: D[c][(n+7):n] = #leading_signs(D[a][(n+7):n]) -1; n = 0, 8,16,24 
cls.h: D[c][(n+15):n] = #leading_signs(D[a][(n+15):n]) - 1; n = 0,16 

Examples: 

cls.b 
cls.h 

See Also: 

d3, dl 
d3, dl 

CLO (pg 162), CLO.B (pg 163), CLO.H (pg 163), CLS (pg 164), CLZ (pg 166), 
CLZ.B (pg 167), CLZ.H (pg 167) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

165 



ClZ SIEMENS 

CLl Count Leading Zeroes CLl 
Syntax: 

clz Dc, Da (RR) 

Description: 

Count the number of consecutive zeroes in Da, starting with bit 31, and put the result in 
Dc. 

Refer also to Section 8.1.1.9, "Count Leading Zeroes, Ones, and Signs," on page 91. 

Operation: 

D[c] = #leading_zeroes(D[a]) 

Example: 

clz d3, dl 

See Also: 
ClO (pg 162), CLO.B (pg 163), ClO.H (pg 163), CLS (pg 164), ClS.B (pg 165). 
CLS.H (pg 165), CLZ.B (pg 167), ClZ.H (pg 167) 

166 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS 

CLZ.B 
CLZ.H 

Syntax: 

Count Leading Zeroes in Packed Bytes 

Count Leading Zeroes in Packed Halfwords 

clz.b Dc, Da (RR) 
clz.h Dc, Da (RR) 

Description: 

CLZ.B 

CLZ.B 
CLZ.H 

Count the number of consecutive zeroes in each byte/halfword of Da, starting with the 
most-significant bit of each byte/halfword, and put each result in the corresponding bytel 
halfword of Dc. 

Refer also to Section 8.1.1.9, "Count Leading Zeroes, Ones, and Signs," on page 91. 

Operation: 

clz.b: D[c][(n+7):n] = #leading_zeroes(D[a][(n+7):n]); n = 0, 8, 16,24 
clz.h: D[c][(n+15):n] = #leading_zeroes(D[a][(n+15):n]); n = 0,16 

Examples: 

clz.b 
clz.h 

See Also: 

d3, dl 
d3, dl 

CLO (pg 162). ClO.B (pg 163), ClO.H (pg 163). CLS (pg 164). CLS.B (pg 165), 
CLS.H (pg 165). ClZ (pg 166) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

167 



CMOV 

CMOV 

Syntax: 

Description: 

Operation: 

Examples: 

cmov dl, d15, d2 
cmov dl, d15, 6 

See Also: 

SIEMENS 

Conditional Move CMOV 

CADD (pg 155), CADDN (pg 157), CMOVN (pg 169), CSUB (pg 170), 
CSUBN (pg 172), SEL (pg 347), SELN (pg 349) 

168 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS 

CMOVN Conditional Move-Not 

Syntax: 

: errtOVh.,Da;tuSil:>b(SflR) ..•••.•........•...• 
·<cl1lovn·i Oaf;015/.corist4.(SF\Cl '. 

Description: 

CMOVN 

CMOVN 

•.•.••••...•.... }lf~e.(l~ht$ti¥0f.datQ.fegi~ter!1)1~·areZtlr9".c6PYthe~onteQ~s.9f·d~t~"'register·.Pbl:on~i4··10 
(· .• · ... ~atal'egi$terD8;C)t.. Jse,· • .the·ccJI)tents·of Da is. uhcha rlged;crhe.corys(l4va.l~eiis.~igl1; 
. ·······eX'tendedto·$2bits. . :/ ...•• >; . ... .. .. . .. . . .. . 

/~:::::.::: .. :;::: 

Operation: 

.·'[jt~1'F((t)116]Q)?b(bl:J5r~])· .'. .' . 
':::R{al.~l( 1:)[~5l.A::::;9)? .• sit:J'1...:e;xt{c9I1st4)t:p[aJ)"··' 

Examples: 

cmovn dl, dIS, d2 
cmovn dl, dIS, 6 

See Also: 
CADD (pg 155), CADDN (pg 157), CMOV (pg 168). CSUB (pg 170), 
CSUBN (pg 172), SEL (pg 347), SELN (pg 349) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

169 



CSUB SIEMENS 

CSUB Conditional Subtract CSUB 

Syntax: 

csub Dc, Dd, Da, Db (RRR) 

Description: 

If the contents of data register Dd are non-zero, subtract the contents of data register Db 
from the contents of data register Da and put the result in data register Dc; otherwise, put 
the contents of Da in Dc. 

Operation: 

D[c] = ((D[d] != 0) ? D[a]- D[b] : D[a]) .. 

Status: 

V,SV,AV,SAV 

Example: 

csub d3, d4, dl, d2 

See Also: 
CADD (pg 155), CADDN (pg 157), CMOV (pg 168), CMOVN (pg 169), 
CSUBN (pg 172), SEL (pg 347), SELN (pg 349) 

170 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS CSUB.A 

CSUB.A Conditional Subtract from Address CSUB.A 

Syntax: 

csub.a Ac, Od, Aa, Ab (RRR) 

Description: 

If the contents of data register Dd are non-zero, subtract the contents of address register 
Ab from the contents of address register Aa and put the result in address register Ac; oth
erwise, put the contents of Aa in Ac. 

Operation: 

A[c] = ((O[d] != 0) ? A[a] - A[b] : A[a]) 

Example: 

csub.a a3, d4, a4, a2 

See Also: 
CADD.A (pg 156), CADDN.A (pg 158), CSUBN.A (pg 173), SEL.A (pg 348), 
SELN.A (pg 350) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

171 



CSUBN SIEMENS 

CSUBN Conditional Subtract-Not CSUBN 

Syntax: 

csubn Dc, Dd, Da, Db (RRR) 

Description: 

If the contents of data register Dd are zero, subtract the contents of data register Dblconst9 
from the contents of data register Da and put the result in data register Dc; otherwise, put 
the contents of Da in Dc. 

Operation: 

D[c] = ((D[d] == 0) ? D[a] - D[b] : D[a]) 

Status: 

V,SV,AV,SAV 

Example: 

csubn d3, d4, dl, d2 

See Also: 
CADD (pg 155), CADDN (pg 157), CMOV (pg 168), CMOVN (pg 169), 
CSUB (pg 170), SEL (pg 347), SELN (pg 349) 

172 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS CSUBN.A 

CSUBN.A Conditional Subtract-Not from Address CSUBN.A 

Syntax: 

csubn.a Ac, Dd, Aa, Ab (RRR) 

Description: 

If the contents of data register Dd are zero, subtract the contents of address register Ab 
from the contents of address register Aa and put the result in address register Ac; other
wise, put the contents of Aa in Ac. 

Operation: 

A[c] = ((D[d] == 0) ? A[a] - A[b] : A[a]) 

Example: 

csubn.a a3, d4, a4, a2 

See Also: 
CADD.A (pg 156), CADDN.A (pg 158). CSUB.A (pg 171). SEL.A (pg 348), 
SELN.A (pg 350) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

173 



DEBUG SIEMENS 

DEBUG Debug DEBUG 
Syntax: 

Description: 

If the debug mode is enabled, cause a debug event; otherwise, execute a NOP. 

Example: 

debug 

174 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS OEXTR 

DEXTR Extract from Double Register DEXTR 

Syntax: 

dextr Dc, Da, Db, Dd (RRRR) 
dextr Dc, Da, Db, p (RRPW) 

Description: 

Extract 32 bits from the register pair DaiDb (where Da contains the most-significant 32 bits 
of the value) starting at the bit number specified by 63 - Dd[4:0]lp. Put the result in Dc. 

Refer also to Section B.1.1.11, "Bit-Field Extract and Insert," on page 92. 

Operation: 

D[c] = ({D[a], D[b])« pos)[63:32]; 
pos = D[d][4:0] I p; 

Examples: 

dextr 
dextr 

See Also: 

dl, d3, d5, d7 
dl, d3, d5, 11 

EXTR (pg 191), EXTR.U (pg 191), INSERT (pg 196), INS.T (pg 195), 
INSN.T (pg 195) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

175 



DIFSC.A SIEMENS 

DIFSC.A Difference Scaled Address DIFSC.A 

Syntax: 

difsc.a Dc, Aa, Ab, n (RR) 

Description: 

Subtract the contents of address register Ab from the contents of address register Aa and 
arithmetically right-shift the result by n, where n is 0, 1, 2, or 3. Put the shifted value in data 
register Dc. 

Operation: 

D[e] = (A[a] - A[b]) » n, n = 0, 1, 2, or 3 

See Also: 

176 

ADD.A (pg 133), ADDIH (pg 137), ADDSC.A (pg 143), ADDSC.AT (pg 143), 
SUB.A (pg 380), SUBSC.A (pg 386) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS DISABLE 

DISABLE Disable Interrupts DISABLE 

Syntax: 

disable (SYS) 

Description: 

Disable interrupts by clearing the Interrupt Enable bit (ICR.IE) in the Interrupt Control Reg
ister. 

Operation: 

Refer to Section 8.9.4, "EnablinglDisabling the Interrupt System," on page 111 and Chap
ter 5, "Interrupt System," on page 59. 

Example: 

disable 

See Also: 
ENABLE (pg 185) 

TriCore Architecture Manual 177 

• PRELIMINARY EDITION. 



DSYNC SIEMENS 

DSYNC Synchronize Data DSYNC 

Syntax: 

dsync (SYS) 

Description: 

Forces all data accesses to complete before any data accesses associated with an instruc
tion semantically after the DSYNC are initiated. Refer to Section 8.9.2.1, "DSYNC," on 
page 110 for more information on this synchronization primitive. 

Example: 

dsync 

See Also: 
ISYNC (pg 197) 

178 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS DVADJ 

DVADJ Divide-Adjust DVADJ 

Syntax: 

dvadj Ec, Ed, Db (RRR) 
dvadj ··<·Eai[).b(~RRr ... · .... 

Description: 

Divide-adjust the contents of extended register Ed, using the value in data register Db, 
and put the result in extended register Ec. Ed contains the unadjusted quotient and 
remainder resulting from a sequence of divide-step (DVSTEP) operations, with the quo
tient in the least-significant word of Ed (data register Dd) and the remainder in the most
significant word of Ed (data register Dd+1). Db contains the divisor that was used to gen
erate the values in Ed. All three values are inspected, and an adjusted quotient and 
remainder are written to Ec . 

• ·stth~:cQfit~l1t~6f~,tcteitd~d··,.egj~t~t· .U~ll\~·they;;\lu~j,prdat~(tegiste([)b, 

~~:~li1i~i.G£i~!~~ 
.,rB:t~.thtil ..••.. lues. fn '., ... ~;J\II~~r~evaluesareinspe¢!eC:f ,aodanaqjustedql.ioti.~ntaod 
rElfnaindefal'f;lw~itteH'lo.Ea" •....•. '" .' ... . . '. . . .' . . .. 

Two types of adjustment are performed, as needed. Following a divide-step sequence, 
the sign of the remainder is always the same as the sign of the original dividend. If the 
original dividend was negative, and was exactly divisible by the divisor, then the unad
justed remainder will be equal in magnitude to the divisor, and the magnitude of the quo
tient will be one too small. In that case, the remainder will be set to zero, and the 
magnitude of the quotient will be increased by one. 

Negative quotient and remainder values produced by the divide-step algorithm are devel
oped in 1's complement form. The DVADJ operation converts negative quotient and 
remainder values to 2's complement representation. 

If the quotient and remainder are statically known to be non-negative (the original divi
dend was non-negative, and the divisor was positive), then the DVADJ operation is not 
required. This operation is never required following an unsigned divide sequence. 

Operation: 

E[c] = divide_adjust(E[d], D[b]) 

TriCore Architecture Manual 179 

• PRELIMINARY EDITION. 



DVADJ 

Status: 
v,sv 

See Also: 

SIEMENS 

DVINIT (pg 181), DVINIT.B (pg 181), DVINIT.BU (pg 181), DVINIT.H (pg 181), 
DVINIT.HU (pg 181), DVINIT.U (pg 181), DVSTEP (pg 183), DVSTEP.U (pg 183) 

180 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS 

DVINIT 
DVINIT.U 
DVINIT.B 
DVINIT.BU 
DVINIT.H 
DVINIT.HU 

Syntax: 

Divide-Initialization Word 

Divide-Initialization Word Unsigned 

Divide-Initialization Byte 

Divide-Initialization Byte Unsigned 

Divide-Initialization Halfword 

Divide-Initialization Halfword Unsigned 

dvinit Ec, Da, Db (RR) 
dvinit.u Ec, Da, Db (RR) 
dvinit.b Ec, Da, Db (RR) 
dvinit.bu Ec, Da, Db (RR) 
dvinit.h Ec, Da, Db (RR) 
dvinit.hu Ec, Da, Db (RR) 

Description: 

DVINIT 

DVINIT 
DVINIT.U 
DVINIT.B 

DVINIT.BU 
DVINIT.H 

DVINIT.HU 

Sign-extend (DVINT, DVINIT.B, DVINIT.H) or zero-extend (DVINIT.U, DVINIT.BU, DVINIT.HU) 
to 64 bits and left-shift the contents of data register Da, and put the result in extended reg
ister Ec. The shift amount depends on the expected size of the quotient: for DVINIT and 
DVINIT.U, the shift amount is zero, for DVINIT.H and DVINIT.HU it is 16, and for DVINIT.B 
and DVINIT.BU it is 24. The vacated bits are filled with the sign bit of the quotient. Over
flow occurs if the magnitude of the partial remainder in the most-significant word of Ec is 
greater than or equal to the magnitude of the divisor, in register Db. 

When the shift amount is nonzero, this instruction performs the same operation as a 
divide initialization with no shift amount (DVINIT or DVINIT.U) followed by two or three 
divide-step instructions (OVSTEP). The shifting is effectively substituting for an initial 
group of divide-step instructions, which would be expected to develop quotient bits that 
were exclusively copies of the quotient sign bit. 

Operation: 

E[c] = divide_init(O[a], Orb]) 
E[c] = divide_iniCu(O[a], Orb]) 

E[c] = dividejnit_b(O[aJ. Orb]) 
E[c] = dividejniCb_u(O[a], D[b]) 

E[c] = divide_iniCh(O[a], Orb]) 
E[c] = divide_iniCh_u(O[a], Orb]) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

181 



DVINIT.HU 

Status: 

v,sv 

See Also: 

SIEMENS 

DVINIT(pg 181), DVINIT.B(pg 181), DVINIT.BU(pg 181), DVINIT.H(pg 181), 
DVINIT.HU (pg 181), DVINIT.U (pg 181), DVSTEP (pg 183), DVSTEP.U (pg 183) 

182 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS 

DVSTEP 
DVSTEP.U 
Syntax: 

dvstep Ec, Ed, Db (RRR) 
dvstep.u Ec, Ed, Db (RRR) 

·',d~$t~p ·'.·.·'.~~,t:)b(SRRI···' 
.... ··.~v~t~p~ti. ·E~,l?b(SRR) 

Description: 

Divide-Step 

Divide-Step Unsigned 

DVSTEP 

DVSTEP 
DVSTEP.U 

Divide the contents of extended register Ed, 8 bits at a time, by data register Db, and put 
the result in extended register Ec. Ed contains the result of a previous divide-initialization 
(DVINIT) or divide-step (DVSTEP) instruction. Db contains the divisor for the current 
divide operation. 

·~$'~~!~~~e~;;rsi~e 
~iE1!J~ti()n.(DV . 

. ..• e#ltrreltt'diVide:; 

The most-significant word of Ed or Ea (data register D[d+ 1] or D[a+ 1]) contains the 32-bit 
partial remainder for the divide operation, up to the current point in the divide-step 
sequence. The least-significant word of Ed or Ea (data register Dd or Da) contains a mix of 
unprocessed bits from the dividend and quotient bits developed up to this point. The 
unprocessed dividend bits occupy the most-significant bit positions of Dd or Da, while the 
quotient bits occupy the least-significant bits. The total of the two bit sets is always 32 
bits, but the boundary between them depends on the current instruction's position within 
the divide sequence. 

Each divide-step instruction processes eight additional dividend bits, and develops eight 
additional bits of quotient. A divide operation yielding a 32-bit quotient value requires 
four divide-step instructions, optionally terminated by a divide-adjust (refer to the 
description of the DVADJ instruction). A divide operation yielding a halfword quotient 
requires two divide-step instructions, while a divide operation yielding an 8-bit quotient 
requires only one divide-step instruction. All cases also require the appropriate divide-ini
tialization instruction, and may require a terminating divide adjust. 

The unsigned divide-step instructions treat the dividend and partial remainders as 9 
unsigned, 32-bit values and develops positive quotients. An unsigned divide operation Jj 

does not require a terminating DVADJ instruction. The signed divide-step instructions 
treat the dividend and partial remainders as signed values, and normally require termi
nating DVADJ instructions. The terminating DVADJ may be omitted, however, if the origi-
nal dividend and the divisor are known to be non-negative. 

TriCore Architecture Manual 183 

• PRELIMINARY EDITION. 



DVSTEP.U SIEMENS 
Operation: 

E[e] = divide_step(E[d], D[b]) 
E[e] = d (E[d], D[b]) 

See Also: 

DVADJ (pg 179). DVINIT (pg 181), DVINIT.B (pg 181), DVINIT.BU (pg 181), 
DVINIT.H (pg 181). DVINIT.HU (pg 181), DVINIT.U (pg 181) 

184 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



\\ , 

SIEMENS ENABLE 

ENABLE Enable Interrupts ENABLE 

Syntax: 

enable (SYS) 

Description: 

Enable interrupts by setting the Interrupt Enable bit (lCR.IE) in the Interrupt Control Regis
ter to 1. 

Operation: 

Refer to Section 8.9.4, "Enabling/Disabling the Interrupt System," on page 111 and Chap
ter 5, "Interrupt System," on page 59. 

Example: 

enable 

See Also: 
DISABLE (pg 177) 

TriCore Architecture Manual 185 

• PRELIMINARY EDITION. 



EQ SIEMENS 

EO Equal EO 

Syntax: 

Description: 

If the contents of data register Da are equal to the contents of data register Dblconst9, set 
the least-significant bit of Dc to 1 and clear the remaining bits to zero; otherwise, clear all 
bits in Dc. The const9value is sign-extended to 32 bits. 

Refer also to Section B.2, "Compare Instructions," on page 97. 

Operation: 

O[c] = (O[a] == Orb]) 
O[c] = (O[a] == sign_ext(const9)) 

Examples: 

eq d3, d1, d2 
eq d3, d1, 126 
eq d3, d1 253 
eq d15, d1, d2 
eq d15, d1, 6 
eq d15, d1 253 

See Also: 
GE (pg 192), GE.U (pg 192), LT (pg 238), LT.U (pg 238), NE (pg 321) 

186 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS EQ.A 

EQ.A Equal to Address EQ.A 

Syntax: 

eq.a Dc, Aa, Ab (RR) 

Description: 

If the contents of address registers Aa and Ab are equal, set the least-significant bit of Dc 
to 1 and clear the remaining bits to zero; otherwise, clear all bits in Dc. 

Operation: 

D[c] = (A[a] == A[b]) 

Example: 

eq.a d3, a4, a2 

See Also: 
EQZ.A (pg 190), GE.A (pg 193), LT.A (pg 240), NE.A (pg 322), NEZ.A (pg 323) 

TriCore Architecture Manual 187 

• PRELIMINARY EDITION. 



EQ.B 

EQ.B 
EQ.H 
EQ.W 

Syntax: 

eq.b Dc, Oa, Db (RR) 
eq.h Dc, Oa, Db (RR) 
eq.w Dc, Oa, Db (RR) 

Description: 

Equal Packed Byte 

Equal Packed Halfword 

Equal Packed Word 

SIEMENS 

EQ.B 
EQ.H 

EQ.W 

Compare each byte/halfword/word of Da with the corresponding byte/halfword/word of 
Db. In each case, if the two are equal, set the corresponding byte/halfword/word of Dc to 
all 1's; otherwise, set the corresponding byte/halfword/word of Dc to all O's. Refer also to 
Section 8.1.3, "Packed Arithmetic," on page 95. 

Operation: 

if (0[a][(n+7):n] == 0[b][(n+7):n]) 
then 0[c][(n+7):n] = 8'h FF 
else 0[c][(n+7):n] = 8'h 00; n = 0, 8,16,24 

if (0[a][(n+15):n] == 0[b][(n+15):n]) 
then 0[c][(n+15):n] = 16'h FFFF 
else 0[c][(n+15):n] = 16'h 0000; n = 0, 16 

if (O[a] == Orb]) 
then O[c] = 32'h FFFFFFFF 
else O[c] = 32'h 00000000 

Examples: 

eq.b d3, dl, d2 
eq.h d3, dl, d2 
eq.w d3, dl, d2 

See Also: 
LT.B (pg 241), LT.BU (pg 241), LT.H (pg 242), LT.HU (pg 242), LT.W (pg 243), 
LT.WU (pg 243) 

188 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS 

EDANY.B 
EDANY.H 

Syntax: 

eqany.b 
eqany.b 
eqany.h 
eqany.h 

Description: 

Dc, Da, Db (RR) 
Dc, Da, const9 (RC) 
Dc, Da, Db (RR) 
Dc, Da, const9 (RC) 

Equal Any Byte 

Equal Any Halfword 

EQANY.B 

EDANY.B 
EDANY.H 

Compare each byte/halfword of Da with the corresponding byte/halfword of Dblconst9. If 
the logical OR of the boolean results from each comparison is TRUE, set the least-signifi
cant bit of Dc to 1 and clear the remaining bits to zero; otherwise, clear all bits in Dc. 

Refer also to Section 8.2, "Compare Instructions," on page 97. 

Operation: 

D[c] :::: (D[a][31 :24] :::::::: D[b][31 :24]) 
or (D[a][23:16] :::::::: D[b][23:16]) 
or (D[a][15:8] :::::::: D[b][15:8]) 
or (D[a][7:0] :::::::: D[bj[7:0]) 

D[c]:::: (D[a][31:24] = sign_ext(const9)[31:24]) 
or (D[a][23:16] :::::::: sign_ext(const9)[23:16]) 
or (D[a][15:8] :::::::: sign_ext(const9)[15:8]) 
or (D[a][7:0] :::::::: sign_ext(const9)[7:0]) 

Examples: 

eqany.b d3, d1, d2 
eqany.b d3, d1, 126 
eqany.h d3, d1, d2 
eqany.h d3, d1, 126 

See Also: 

EQ (pg 186), GE (pg 192), GE.U (pg 192), LT (pg 238), LT.U (pg 238), NE (pg 321) 

TriCore Architecture Manual 189 

• PRELIMINARY EDITION. 



EOZ.A SIEMENS 

EQZ.A Equal Zero Address EQZ.A 

Syntax: 

eqz.a Dc, Aa (RR) 

Description: 

If the contents of address register Aa are equal to zero, set the least significant bit of Octo 
1 and clear the remaining bits to zero; otherwise, clear all bits in Dc. 

Operation: 

D[e] = (A[a] == 0) 

Example: 

eqz.a d3, a4 

See Also: 

EQ.A (pg 187), GE.A (pg 193), LT.A (pg 240), NE.A (pg 322), NEZ.A (pg 323) 

190 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS 

EXTR 
EXTR.U 

Syntax: 

Extract Bit Field 

Extract Bit Field Unsigned 

extr Dc, Da, Ed (RRRR) 
extr Dc, Da, Dd, w (RRRW) 
extr Dc, Da, p, w (RRPW) 
extr.u Dc, Da, Ed (RRRR) 
extr.u Dc, Da, Dd, w (RRRW) 
extr.u Dc, Da, p, w (RRPW) 

Description: 

EXTR 

EXTR 
EXTR.U 

Extractfrom Oathe number of consecutive bits specified by Ed(upperjlw, starting atthe bit 
number specified by Ed(lowerjlDdlp, and put the result, sign-extended (extr) or zero
extended (extr.u) to 32 bits, in Dc. 

Refer also to Section 8.1.1.11, "Bit-Field Extract and Insert," on page 92. 

Operation: 
extr: D[c] = sign_ext((D[a] » pos) and (2width_1 )); 

pos = E[d](lower)[4:0] I D[dj[4:0]/p; 
width = E[dj(upper)[4:0] I w 

extr.u: D[c] = zero_ext((D[a] » pos) and (2width_1)) 

pos = E[d](lower)[4:0] I D[d][4:0]/p; 
width = E[dj(upper)[4:0] I w 

Examples: 

extr d3, d1, e4 
extr.u d3, d1, d4, 12 

See Also: 
DEXTR (pg 175), INSERT (pg 196), INS.T (pg 195), INSN.T (pg 195) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

191 



GE SIEMENS 

GE 
GE.U 

Greater Than or Equal 

Greater Than or Equal Unsigned 

GE 
GE.U 

Syntax: 

ge Dc, Oa, Db (RR) 
ge Dc, Oa, const9 (RC) 
ge.u Dc, Oa, Db (RR) 
ge.u Dc, Oa, const9 (RC) 

Description: 

If the contents of data register Da are greater than or equal to the contents of data register 
Dblconst9, set the least-significant bit of Dc to 1 and clear the remaining bits to zero; oth
erwise, clear all bits in Dc. Da and Db are treated as 32-bit signed integers, and the const9 
value is sign-extended to 32 bits. 

If the contents of data register Da are greater than or equal to the contents of data register 
Dblconst9, set the least-significant bit of Dc to 1 and clear the remaining bits to zero; oth
erwise, clear all bits in Dc. Da and Db are treated as 32-bit unsigned integers, and the 
const9 value is zero-extended to 32 bits. 

Refer also to Section 8.2, "Compare Instructions," on page 97. 

Operation: 

O[c] = (O[a] >= Orb]); signed 
O[c] = (O[a] >= sign_ext(const9)); signed 

O[c] = (O[a] >= Orb]); unsigned 
O[c] = (O[a] >= zero_ext(const9)); unsigned 

Examples: 

ge d3, d1, d2 
ge d3, d1, 126 
ge . u d3, d1, d2 
ge.u d3, d1, 126 

See Also: 
EQ (pg 186), LT (pg 238), LT.U (pg 238), NE (pg 321) 

192 

• PRELIMINARY EDITION. 

TriCore Architecture Manual 



SIEMENS GE.A 

GE.A Greater Than or Equal Address GE.A 

Syntax: 

ge.a Dc, Aa, Ab (RR) 

Description: 

If the contents of address register Aa are greater than or equal to the contents of address 
register Ab, set the least-significant bit of Dc to 1 and clear the remaining bits to zero; oth
erwise, clear all bits in Dc. The operands are treated as unsigned 32-bit integers. 

Operation: 

D[c] = (A[a] >= A[b]); unsigned 

Example: 

ge.a d3, a4, a2 

See Also: 
EQ.A (pg 187), EOZ.A (pg 190), LT.A (pg 240), NE.A (pg 322), NEZ.A (pg 323) 

TriCore Architecture Manual 193 

• PRELIMINARY EDITION. 



IMASK 

IMASK 

Syntax: 

imask 
imask 
imask 
imask 

Description: 

Ec, ~b, Od, w (RRRW) 
Ec, ~b, p, w (RRPW) 

Insert Mask 

Ec, const4, Od, w (RCRW) 
Ec, const4, p, w (RCPW) 

SIEMENS 

IMASK 

Create a mask containing the number of bits specified by IN, starting at the bit number 
specified by Dd[4:0]lp, and put the mask in data register Ec(upper). Left-shift the value in 
Dblconst4 by the amount specified by Dd[4:0]lp and put the result value in Ec(lower). The 
value const4 is zero-extended to 32 bits. This mask and value can be used by the Load
Modify-Store (LDMST) instruction to write a specified bit field to a location in memory. 

Refer also to Section 8.7.3, "Store Bit and Bit Field," on page 108. 

Operation: 

Ec(upper) = ((2W-1)« pos); 
Ec(lower) = (O[b] « pos); 
pos = O[d][4:0] I p; 
zero_ext(const4) may replace O[b] 

Examples: 

imask e2, di, d2, 11 
imask e2, di, 5, 11 
imask e2, 6, d2, 11 
imask e2, 6, 5, 11 

See Also: 
LDMDST (pg 234), ST.T (pg 374) 

194 

• PRELIMINARY EDITION. 

TriCore Architecture Manual 



SIEMENS 

INS.T 
INSN.T 

Syntax: 

ins.t Dc, Da, p1, Db, p2 (BIT) 
insn.t Dc, Da, p1, Db, p2 (BIT) 

Description: 

Insert Bit 

Insert Bit-Not 

INS.T 

INS.T 
INSN.T 

Move the value of Da, with bit pl of this value replaced with bit p2 of register Db, to Dc. 

Move the value of Da, with bit p1 of this value replaced with the inverse of bit p2 of regis
ter Db, to Dc. 

Operation: 
D[c] = {D[a][31 :(p1+1 )], D[b][p2], D[a][(p1-1 ):O]} 
D[c] = {D[a][31 :(p1+1)], !D[b][p2], D[a][(p1-1 ):O]} 

Examples: 

ins.t 
insn.t 

See Also: 

d3, dl, 5, d2, 7 
d3, dl, 5, d2, 7 

DEXTR (pg 175), EXTR (pg 191), EXTR.U (pg 191), INSERT (pg 196) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

195 



INSERT SIEMENS 

INSERT Insert Bit Field INSERT 

Syntax: 

insert Dc, Da, Db, Ed (RRRR) 
insert Dc, Da, Db, Dd, w (RRRW) 
insert Dc, Da, Db, p, w (RRPW) 
insert Dc, Da, const4, Ed (RCRR) 
insert Dc, Da, const4, Dd, w (RCRW) 
insert Dc, Da, const4, p, w (RCPW) 

Description: 

Extract from Dblconst4 the number of consecutive bits specified by Ed(upper)lw, starting at 
the bit number specified by Ed(lower)IDdlp; extract from Da all bits not included in the bits 
specified by Ed(upper)lwand Ed(lower)IDdip. Put the logical OR of the two extracted words 
in Dc. 

Refer also to Section 8.1.1.11, "Bit-Field Extract and Insert," on page 92. 

Operation: 

D[c] = (D[a] and !m) or (D[b] and m); 
m = (2width_1) « pos; 
pos = E[dj(lower)[4:0] I D[d][4:0]/p; 
width = E[d](upper)[4:0] I w 
zero_ext(const4) may replace D[b] 

Example: 

insert d3, dl, d2, e4 

See Also: 
DEXTR (pg 175), EXTR (pg 191). EXTR.U (pg 191), INS.T (pg 195). 
INSN.T (pg 195) 

196 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS ISYNC 

ISYNC Synchronize Instructions ISYNC 

Syntax: 

isync (SYS) 

Description: 

Forces completion of all previous instructions, then flushes the CPU pipelines, and invali
dates any cached state before proceeding to the next instruction. Refer to Section 8.9.2.2, 
"ISYNC," on page 110 for more information on this synchronization primitive. 

Example: 

isync 

See Also: 
DSYNC (pg 178) 

TriCore Architecture Manual 197 

• PRELIMINARY EDITION. 



J SIEMENS 

J Jump Unconditional J 

Syntax: 

disp24 (B) 

Description: 

Add the value specified by disp24, multiplied by two and sign-extended to 32 bits, to the 
contents of the PC, and jump to that address. 

Refer also to the description in Section 8.6.1, "Unconditional Branch," on page 103. 

Operation: 

PC = PC + sign_ext(2 * disp24) 

Example: 

j foobar 

See Also: 
JA (pg 199), JI (pg 205), JL (pg 206), JLA (pg 207), JLI (pg 209), LOOP (pg 237) 

198 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS JA 

JA Jump Unconditional Absolute JA 

Syntax: 

ja disp24 (B) 

Description: 

Load the value specified by disp24 into the PC and jump to that address. The value disp24 
is used to form the effective address as shown below: 

23 20 19 0 

..,II I disp24 

/0 31 27 2120/ 

I I 0000000 I 101 
target address 

TAM044.1 

Refer also to the description in Section B.6.1, "Unconditional Branch," on page 103. 

Operation: 

PC = {disp24[23:201, 0000000, disp24[19:01. 1'h O} 

Example: 

ja foobar 

See Also: 
JI (pg 205), JL (pg 206). JLA (pg 207). JLI (pg 209) 

TriCore Architecture Manual 199 

• PRELIMINARY EDITION. 



JEQ SIEMENS 

JEO Jump if Equal JEO 

Syntax: 

jeq Da, Db, disp15 (BRR) 
jeq Da, const4, disp15 (BRC) 

Description: 

If the contents of Da are equal to the contents Dblconst4, then add the value specified by 
disp15, multiplied by two and sign-extended to 32 bits, to the contents of the PC, and jump 
to that address. The const4 value is sign-extended to 32 bits. 

Operation: 

if (D[a]==D[b]) then (PC = PC+sign_ext(2 * disp15)) 
if (D[a]==sign_ext(const4)) then (PC = PC+sign_ext(2 * disp15)) 

Examples: 

jeq di, d2, foobar 
jeq di, 6, foobar 
jeq diS, d2, foobar 

See Also: 
JEQ.A (pg 201), JGTZ (pg 204), JLT (pg 210), JLT.U (pg 210), JNE (pg 2121. 
JNE.A (pg 213) 

200 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS JEQ.A 

JEO.A Jump if Equal Address JEO.A 

Syntax: 

jeq.a Aa, Ab, disp15 (BRR) 

Description: 

If the contents of Aa are equal to the contents Ab, then add the value specified by disp15, 
multiplied by two and sign-extended to 32 bits, to the contents of the PC, and jump to that 
address. 

Operation: 

if (A[al==A[bJ) then (PC = PC+sign_ext(2 * disp15)) 

Example: 

jeq.a a4, a2, foobar 

See Also: 
JEQ (pg 200), JGTZ (pg 204), JLT (pg 210)' JLT.U (pg 210), JNE (pg 212), 
JNE.A (pg 213) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

201 



JGE 

JGE 
JGE.U 

Syntax: 

Jump if Greater Than or Equal 

Jump if Greater Than or Equal Unsigned 

jge Da, Db, disp15 (BRR) 
jge Da, const4, disp15 (BRC) 
jge.u Da, Db, disp15 (BRR) 
jge.u Da, const4, disp15 (BRC) 

Description: 

SIEMENS 

JGE 
JGE.U 

If the contents of Da are greater than or equal to the contents Dblconst4, then add the 
value specified by disp15, multiplied by two and sign-extended to 32 bits, to the contents 
of the PC, and jump to that address. The const4 value is sign-extended/zero-extended to 
32 bits. 

Operation: 

if (D[a]>=D[b]) then (PC = PC+sign_ext(2 * disp15)); signed 
if (D[a]>=sign_ext(const4)) then (PC = PC+sign_ext(2 * disp15)); signed 

if (D[a]>=D[b]) then (PC = PC+sign_ext(2 * disp15)); unsigned 
if (D[a]>=zero_ext(const4)) then (PC = PC+sign_ext(2 * disp15)); unsigned 

Examples: 

jge dl, d2, foobar 
jge dl, 6, foobar 
jge.u dl, d2, foobar 
jge.u dl, 6, foobar 

See Also: 
JEQ (pg 200), JEQ.A (pg 201), JGTZ (pg 204), JLT (pg 210), JLT.U (pg 210) 

202 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS 

JGEZ 

Syntax: 

··jgez 

Description: 

JGEZ 

Jump If Greater Than or Equal to Zero JGEZ 

.):ifth~¢· .te~ts .·~f t)t)are9reatet'tha~9r.~qu.ai·.td~r();therladd.·t~e\l<;llue ·specifieci·.by 
...• ...(jisP4; .'. . .. ·li.edbY't.W()~?d.zer()"EJXJenttedt()32bits;tothe. cOQteTlt~oftbePC;i1l1djurnP (tothataddres$; ................. ... . . .... '. . ....... .. . . 

Operation: 

>jf{P[b]~~~l;tij~o (At:.·~.··p¢+·terose~(~~!:ljsp'fH·····.··:··.···.········ ......... '. 

Example: 

jgez d2, foobar 

See Also: 

JEQ (pg 200), JGTZ (pg 204), JLEZ (pg>208l, JLTZ (pg 211), JNZ (pg 216), 
JZ (pg 219) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

203 



JGTZ SIEMENS 

JGTZ Jump if Greater Than Zero JGTZ 
Syntax: 

Description: 

Operation: 

Example: 

jgtz d2, foobar 

See Also: 
JEQ (pg 200), JGEZ (pg 203), JLEZ (pg 208), JLTZ (pg 211), JNZ (pg 216), 
JZ (pg 219) 

204 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS JI 

JI Jump Indirect JI 

Syntax: 

ji Ab (RR) 
..........:jj . ··::<Ab(~.BA) .... 

Description: 

Load the contents of address register Ab into the PC and jump to that address. The least
significant bit is always set to O . 

•••• · •..•••• ··•· •. ~~ii~'~;;~i~~~!~~~lrat~~:~t~r~~i~:~fAb.i~~t6~~C •. ~.ndjtirnptjj.th~t •. address~·:ijJ~.I~~~7. 
Refer also to the description in Section 8.6.1, "Unconditional Branch," on page 103. 

Operation: 

PC = {A[b][31:1], 1'h O} 
:L;i;~~~~;bJ[blI31j11,1~~Q}'{·· ..•.............. 

Example: 

ji a2 

See Also: 
J (pg 198), JA (pg 199). JL (pg 206), JLA (pg 207). JLI (pg 209) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

205 



JL SIEMENS 

JL Jump and Link JL 
Syntax: 

jl disp24 (B) 

Description: 

Store the address of the next instruction in A15. Then add the value specified by disp24, 
scaled by two and sign-extended to 32 bits, to the contents of the PC, and jump to that 
address. 

Operation: 

A[15] = PC + 4; PC = PC + sign_ext(2 * disp24); 

Example: 

jl foobar 

See Also: 
J (pg 198). JI (pg 205). JA (pg 199), JLA (pg 207), JLI (pg 209) 

206 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS JLA 

JLA Jump and Unk Absolute JLA 
Syntax: 

jla disp24 (B) 

Description: 

Store the address of the next instruction in A15. Then load the value specified by disp24 
into the PC and jump to that address. The value disp24 is used to form the effective 
address as shown below. 

Refer also to the description in Section 8.6.1, "Unconditional Branch," on page 103. 

23 20 19 0 

~7-...LI ___ -f-_----,1 disp24 

31/'2120 J 0 

..... 1 _IL-0_OO_O_OO_O ..!-1 _______ '-'101 target address 
TAM045.1 

Operation: 

A[15] = PC + 4; PC = {disp24[23:20]' 0000000, disp24[19:0], 1'h O}; 

Example: 

jla foobar 

See Also: 
JI (pg 205), JA (pg 199), JL (pg 206), JLI (pg 209) 

TriCore Architecture Manual 207 

• PRELIMINARY EDITION. 



JLEZ SIEMENS 

JLEZ Jump If Less Than or Equal to Zero JLEZ 

Syntax: 

Description: 

Operation: 

Example: 

jlez d2, foobar 

See Also: 
JGE (pg 202), JGEZ (pg 203), JGTZ (pg 204), JLTZ (pg 211 I. JNZ (pg 2161. 
JZ (pg 219) 

208 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS JLI 

JLI Jump and Link Indirect JLI 

Syntax: 

jli Ab (RR) 

Description: 

Store the address of the next instruction in A 15. Then load the contents of address regis
ter Ab into the PC and jump to that address. The least-significant bit is set to o. 
Refer also to the description in Section 8.6.1, "Unconditional Branch," on page 103. 

Operation: 

A[15] = PC + 4; PC = {A[b][31:1], 1'h O} 

Example: 

jli a2 

See Also: 
J (pg 198), JI (pg 205), JA (pg 199), JL (pg 206), JLA (pg 207) 

TriCore Architecture Manual 209 

• PRELIMINARY EDITION. 



JLT SIEMENS 

JLT 
JLT.U 

Syntax: 

Jump if Less Than 

Jump if Less Than Unsigned 

jlt Da, Db, disp15 (BRR) 
jlt Da, const4, disp15 (BRC) 
jlt.u Da, Db, disp15 (BRR) 
jlt.u Da, const4, disp15 (BRC) 

Description: 

JLT 
JLT.U 

If the contents of Da are less than the contents Dblconst4, then add the value specified by 
disp15, multiplied by two and sign-extended to 32 bits, to the contents of the PC, and jump 
to that address. The const4 value is sign-extended/zero-extended to 32 bits. 

Operation: 

if (D[a]<D[b]) then (PC = PC+sign_ext(2 * disp15)); signed 
if (D[a]<sign_ext(const4)) then (PC = PC+sign_ext(2 * disp15)); signed 

if (D[a]<D[b]) then (PC = PC+sign_ext(2 * disp15)); unsigned 
if (D[a]<zero_ext(const4)) then (PC = PC+sign_ext(2 * disp15)); unsigned 

Examples: 

jlt dl, d2, foobar 
jlt dl, 6, foobar 
jlt.u dl, d2, foobar 
jlt .u dl, 6, foobar 

See Also: 

210 

JGE (pg 202), JGEZ (pg 203), JGTZ (pg 204), JLEZ (pg 208), JLTZ (pg 211), 
JNZ (pg 216), JZ (pg 219) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS JLTZ 

JLTZ Jump If Less Than Zero JLTZ 

Syntax: 

.·jl~:(: ··ilbidh~p4(SBB)( 

Description:. 

iJ]fthe·cc?rite~9ftip.are.·lesstha~·.z~io;.·.tne6·add··th~Y~iue.speeified~Yt1isp4 •.. rh~l~iplied 
··{ •• ·.by·tw()·.~.~d~~~·~xt~nd~~.~932:I;l.its> •. ~~.the~o~~n~~9f.~~~P~.·~pd.j~'11R.to :ttJ'~~~~F~~~'. 

Operation: 

...•••.• ·· .• !f!~D [b]·*:q)~he,,·~.Pcb~9~Zer()~e,d(2··.*: •. ·~i~p~H.·.·)i .•.. 

Example: 

jltz d2, foobar 

See Also: 
JGEZ (pg 203), JGTZ (pg 204), JLEZ (pg 208), JLT (pg 210), JLT.U (pg 210), 
JNZ (pg 216), JZ (pg 219) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

211 



JNE SIEMENS 

JNE Jump If Not Equal JNE 

Syntax: 

jne Da, Db, disp15 (BRR) 
Da, const4, d 5 (BRC) 

Description: 

If the contents of Da are not equal to the contents Dblconst4, then add the value specified 
by disp15, multiplied by two and sign-extended to 32 bits, to the contents of the PC, and 
jump to that address. The const4 value is sign-extended to 32 bits. 

Operation: 

if (D[al !=D[b]) then (PC = PC+sign_ext(2 * disp15)) 
if (D[al !=sign_ext(const4)) then (PC = PC+sign_ext(2 * disp15)) 

Examples: 

jne dl, d2, foobar 
jne dl, 6, foobar 
jne d15, d2, foobar 
jne d15, 6, foobar 

See Also: 
JEQ (pg 200), JEQ.A (pg 201), JNED (pg 214), JNEI (pg 215) 

212 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS JNE.A 

JNE.A Jump if Not Equal Address JNE.A 

Syntax: 

jne.a Aa, Ab, disp15 (BRR) 

Description: 

If the contents of Aa are not equal to the contents Ab, then add the value specified by 
disp15, multiplied by two and sign-extended to 32 bits, to the contents of the PC, and jump 
to that address. 

Operation: 

if (A[a] != A[b]) then (PC = PC+sign_ext(2 * disp15)) 

Example: 

jne.a a4, a2, foobar 

See Also: 

JEO (pg 200). JEO.A (pg 201). JNE (pg 212), JNED (pg 214), JNEI (pg 215) 

TriCore Architecture Manual 213 

• PRELIMINARY EDITION. 



JNED SIEMENS 

JNED Jump If Not Equal And Decrement JNED 
Syntax: 

jned Oa, ~b, disp15 (BRR) 
jned Oa, const4, disp15 (BRC) 

Description: 

If the contents of Da are not equal to the contents Dblconst4, then add the value specified 
by disp15, multiplied by two and sign-extended to 32 bits, to the contents of the PC, and 
jump to that address. Decrement the value in Da by 1. The const4 value is sign-extended 
to 32 bits. 

Operation: 

if (O[a] != Orb]) then PC = PC+sign_ext(2 * disp15); Oral = 0[a]-1 
if (O[a] != sign_ext(const4)) then PC = PC+sign_ext(2 * disp15); Oral = 0[a]-1 

Examples: 

jned dl, d2, foobar 
jned dl, 6, foobar 

See Also: 

JEQ (pg 200), JEQ.A (pg 201). JNEI (pg 215), JNE.A (pg 213). LOOP (pg 237) 

214 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS JNEI 

JNEI Jump If Not Equal And Increment JNEI 

Syntax: 

jnei Oa, ~b, disp15 (BRR) 
jnei Oa, const4, disp15 (BRC) 

Description: 

If the contents of Da are not equal to the contents Dblconst4, then add the value specified 
by disp15, multiplied by two and sign-extended to 32 bits, to the contents of the PC, and 
jump to that address. Increment the value in Da by 1. The const4 value is sign-extended to 
32 bits. 

Operation: 

if (O[a] != Orb]) then PC = PC+ sign_ext(2 * disp15); Oral = 0[a]+1 
if (O[a] != sign_ext(const4)) then PC = PC + sign_ext(2 * disp15); Oral = 0[a]+1 

Examples: 

jnei dl, d2, foobar 
jnei dl, 6, foobar 

See Also: 
JEQ (pg 200), JEQ.A (pg 201), JNE (pg 212), JNE.A (pg 213), JNED (pg 214), 
LOOP (pg 237) 

TriCore Architecture Manual 

• PRELIMINARY EOITION • 

215 



JNZ 

JNZ 

Syntax: 

Description: 

Operation: 

Examples: 

jnz d2, foobar 
jnz diS, foobar 

See Also: 

SIEMENS 

Jump if Not Equal to Zero JNZ 

JNZ.A (pg 217), JNZ.T (pg 218), JZ (pg 219), JZ.T (pg 221), JZ.A (pg 220) 

216 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS JNZ.A 

JNZ.A Jump if Not Equal to Zero Address JNZ.A 

Syntax: 

jnz.a Aa, disp15 (BRR) 
Inzia L •..... ·~;,djsp41~Bf{l··.··· 

Description: 

If the contents of Aa are not equal to zero, then add the value specified by disp 15, multi
plied by two and sign-extended to 32 bits, to the contents of the PC, and jump to that 
address. PC . 

.• Ifth~¢ont~ni·· ·f~a~~~.·n~fequ~I····k).·.zeroitn~n~~d··.~be.)jalue~p~biflecfby .r1.is(J4,multi-
· •• pJjedtbtiz~r()~e~~f:!qedtP .• ~~·.··bi~,.~oth(ilir;o~tents ·Pft~e.e9,an ~ .. ' jurnp.~() ·that 
addre$~. 

Operation: 

if (A[b] != 0) then (PC = PC + sign_ext(2 * disp15)) 
if (A[b] != 0) then (PC = PC + zero_ext(2 * disp4)) 

Example: 

jnz.a a4, foobar 

See Also: 
JNZ (pg 216), JNZ.T (pg 218), JZ (pg 219), JZ.T (pg 221), JZ.A (pg 220) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

217 



JNZ.T SIEMENS 

JNZ.T Jump if Not Equal to Zero Bit JNZ.T 

Syntax: 

Description: 

If bit n of register Oa is not equal to zero, then add the value specified by disp15, multiplied 
by two and sign-extended/zero-extended to 32 bits, to the contents of the PC and jump to 
that address. 

Refer also to Section B.3, "Bit Operations," on page 100. 

Operation: 

Example: 

jnz.t dl, n, foobar 

See Also: 

JNZ.A (pg 217), JZ.T (pg 221), JZ.A (pg 220) 

218 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS 

JZ 

Syntax: 

i\)15/~i$P8(SB)' . 
'~;di~p4ASBRl 

Description: 

JZ 

Jump if Zero JZ 

teq~S1lf015(bb~t~.·.~c;t~al.·toz$l"~t,~h~oadd~he .. valuespedified.~Ydi,s~8(~;SP4; .' 
·by.~~an·d.·.$ig?"rXt~I1~ed/ier(H:tlCtended.~().·.;i~ •• :~itsl··.tQ.·th~ •.• coriterltsofth~··.i?C •••• itothataddress.. . .. . . ." . . .......... . ..' ....... . .. 

Operation: 

.•.... if(O{f5I.:0.0)tr~~···(Pc:<=.PC+~igr)~~xt(2··~·.·.~i~p8l) 
' ..•• if(f>~9J .... ·..0}·th~~rpC:::o··p;q .±zer()±eXt(?.~di~J)4)) 

Examples: 

jz d15, foobar 
jz d2, foobar 

See Also: 
JNZ.A Ipg 217), JNZ.T Ipg 218), JZ.A Ipg 220) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

219 



JZ.A SIEMENS 

JZ.A Jump if Zero Address JZ.A 

Syntax: 

Description: 

If the contents of Aa are equal to zero, then add the value specified by disp15, multiplied 
by two and sign-extended to 32 bits, to the contents of the PC and jump to that address. 

Operation: 

if (A [a] == 0) then (PC = PC + sign_ext(2 * disp15)) 

Examples: 

jz.a a4, foobar 
jz.a a2, foobar 

See Also: 
JNZ (pg 216), JNZ.A (pg 217), JNZ.T (pg 218), JZ.T (pg 221) 

220 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS JZ.T 

JZ.T Jump if Zero Bit JZ.T 

Syntax: 

jz.t Da, n, disp15 (BRN) 

jz;td15, n;disp4(SBRN)·· 

Description: 

If bit n of register Da is equal to zero, then add the value specified by disp15, multiplied by 
two and sign-extended/zero-extended to 32 bits, to the contents of the PC, and jump to 
that address. 

Refer also to Section 8.3, "Bit Operations," on page 100. 

Operation: 

if (! o [a][n)) then (PC = PC + sign_ext(2 * disp15); n = 0 - 31) 
itll D{15]if·tl])ttlei1·.·.PC··J~C+2er().1e~(it.~f~p~);#~9~31 .•.•...•..•.••... 

Example: 

jz.t dl, n, foobar 

See Also: 
JNZ.A (pg 217), JNZ.T (pg 218)' JZ.A (pg 220) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

221 



LD.A SIEMENS 

LD.A Load Word to Address Register LD.A 

Syntax: 
Id.a Aa, <mode> 

Description: 
Load the word contents of the memory location specified by the addressing mode into 
address register Aa. 

Operation: 
A[aj = M(EA, word) 

<mode> Syntax Effective Address 
Instruction 

Format 

Absolute constant Refer to Section 2.4.1.1, "Absolute Addressing: on page 20 ABS 

Base + Short Offset [Anjoffset A[bl+sign_extloffset101 BO 

Base + long Offset [Anjoffset A[bj+sign_extloffset161 BOl 

Pre-increment [+Anjoffset A[bl+sign_extloffset101 BO 

Post-increment [An+joffset A[bj BO 

Circular [An+cjoffset Refer to Section 2.4.1.5, ·Circular Addressing," on page 21 BO 

Bit-reverse [An+rj Refer to Section 2.4.1.6, "Bit-Reverse Addressing," on page 22 BO 

See Also: 
LD.B Ipg 224), LD.BU (pg 224), LD.D (pg 226), LD.DA (pg 227), LD.H (pg 228), 
LD.HU (pg 228), LD.Q (pg 230), LD.W (pg 2311, ST.A (pg 365) 

222 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS LD.A 

LD.A Load Word to Address Register (16-bit) LD.A 

Syntax: 

Description: 

··.··l;.oad·ttlE~wordcont~piso(themem.biYjQdation·.$peCifiedbYthe~~dres$'ng·m~c.t.~.lnto 
·flddr~$!l~e9ist~r@'H\ . ... ... .. .. . . 

Operation: 

·A[aJ.FM(~,wo~~l··· 

<mode> 

Register indirect 

(Implicit! 8ase + Offset 

Implicit destination register 

Post-increment 

See Also: 

Syntax Effective Address 

[An] A[b] 

[A 15]offset A[15]tzero_ext(offset4! 

[An]offset4 A[b]+zero_ext(offset41. byte! 

[An+]offset A[b], byte; A[b] = A[b] + 4 

LD.B (pg 224). LD.BU (pg 224), LD.H (pg 228), LD.W (pg 231) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

Instruction 
Format 

SLR 

SLRO 

SRO 

SLR 

223 



LD.B 

LD.B 
LD.BU 

Syntax: 

Id.b Da, <mode> 
Id.bu Da, <mode> 

Description: 

Load Byte 

Load Byte Unsigned 

SIEMENS 

LD.B 
LD.BU 

Load the byte contents of the memory locatfon specified by the addressing mode, sign
extended/zero-extended to 32 bits, into data register Da. 

Operation: 

D[a] = sign_ext(M(EA, byte)) 
D[a] = zero_ext(M(EA, byte)) 

<mode> Syntax 

Absolute constant 

Base + Short Offset [Anjoffset 

Pre-increment [+Anjoffset 

Post-increment [An+joffset 

Circular [An+cjoffset 

Bit-reverse [An+rj 

See Also: 

Effective Address 
Instruction 

Format 

Refer to Section 2.4.1.1, "Absolute Addressing: on page 20 ABS 

A[bj+sign_ext(offset10) BO 

A[bj+sign_ext(offset10) BO 

A[bj BO 

Refer to Section 2.4.1.5, "Circular Addressing," on page 21 BO 

Refer to Section 2.4.1.6, "Bit-Reverse Addressing: on page 22 BO 

LD.A (pg 222), LD.D (pg 226), LD.DA (pg 227). LD.H (pg 228), LD.HU (pg 228), 
LD.Q (pg 230), LD.W (pg 231), ST.B (pg 367) 

224 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS 

LD.B 
LD.BU 

Syntax: I 

Description: 

Load Byte (16-bit) 

Load Byte Unsigned (16-bit) 

LD.B 

LD.B 
LD.BU 

LQadt~e ·.l?ytecont~~t~.df~heMemqrYl()catlol'lspediji~d!~Y1:b~~~dr$~sing.~bde~$!gn- . 
. ~?<ten~ed/zer()~~xtend~dl()32P'!t$lil'lto·dataregister'Da. ...... ... . . .. ... . .... .. 

Operation: 

:; ••••••••••.•. · ••• I:Jbil.·.~isi.9r~.$xi{ijIE~}qYte)J •• i( ..••••..•..••....• /.... ••..... .. 
··m~li.,;~rl,j""tlxt~IVI(E~I?Yt~»f· ..... .... . 

<mode> Syntax 

Register indirect [An] 

!Implicit) Base + Offset [A 15]offset 

Implicit destination register [An]offset4 

Post-increment [An+]offset 

See Also: 

Effective Address 

A[b] 

A[15]+Zero_ext!offset4) 

A[b]+zero_ext!offset4). byte) 

A[b]. byte; A[b] = A[b] + 1 

LD.A (pg 222), LD.H (pg 228), LD.W (pg 231) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

Instruction 
Formet 

SlR 

SlRO 

SRO 

SlR 

225 



LD.D SIEMENS 

LD.D Load Doubleword to Data Register LD.D 

Syntax: 

Id.d Ea, <mode> 

Description: 

Load the doubleword contents of the memory location specified by the addressing mode 
into extended data register Ea. The least-significant word of the doubleword value is 
loaded into the even register (On) and the most-significant word is loaded into the odd 
register (Dn+ 1). 

Operation: 

E[a] = M(EA, doubleword) 

<mode> Syntex Effective Address 
Instruction 

Format 

Absolute constant Refer to Section 2.4.1.1. "Absolute Addressing: on page 20 ABS 

Base + Short Offset [Anjoffset A[bj+sign_extloffset10) BO 

Pre-increment [+Anjoffset A[bl+sign_extloffset10) BO 

Post-increment [An+joffset A[bj BO 

Circular [An+cjoffset Refer to Section 2.4.1.5. "Circular Addressing: on page 21 BO 

Bit-reverse [An+rj Refer to Section 2.4.1.6. "Bit-Reverse Addressing: on page 22 80 

See Also: 

LD.A (pg 222), LD.DA (pg 227), LD.H (pg 228), LD.HU (pg 228), LD.Q (pg 230), 
LD.W (pg 231) 

226 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS LD.DA 

LD.DA Load Doubleword to Address Register LD.DA 

Syntax: 

Id.da Aa, <mode> 

Description: 

Load the doubleword contents of the memory location specified by the addressing mode 
into data register pair Aa. The least-significant word of the doubleword value is loaded 
into the even register (An) and the most-significant word is loaded into the odd register 
(An+1). 

Operation: 

A[a](pair) = M(EA, doubleword) 

<mode> Syntax Effective Address 
Instruction 

Format 

Absolute constant Refer to Section 2.4.1.1, ':Absolute Addressing," on page 20 ABS 

Base + Short Offset [Anjoffset A[bj+sign_extloffset10) BO 

Pre-increment [+Anjoffset A[bj+s ign_extloffset1 0) BO 

Post-increment [An+joffset A[bj BO 

Circular [An+cjoffset Refer to Section 2.4.1.5, "Circular Addressing," on page 21 BO 

Bit-reverse [An+rj Refer to Section 2.4.1.6, "Bit-Reverse Addressing," on page 22 BO 

See Also: 
LD.A (pg 222), LD.DA (pg 227), LD.H (pg 228), LD.HU (pg 228), LD.Q (pg 230), 
LD.W (pg 231) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

227 



LD.H 

LD.H 
LD.HU 

Syntax: 

Id.h Da, <mode> 
Id.hu Oa, <mode> 

Description: 

Load Halfword 

Load Halfword Unsigned 

SIEMENS 

LD.H 
LD.HU 

Load the halfword contents of the memory location specified by the addressing mode, 
sign-extended/zero-extended to 32 bits, into Da. 

Operation: 
D[a] = sign_ext(M(EA, halfword)) 
D[a] = zero_ext(M(EA, halfword)) 

<mode> Syntax Effective Address 

Absolute constant Refer to Section 2.4.1.1, "Absolute Addressing: on page 20 

Base + Short Offset [Anjoffset A[bj+sign_ext(offset10) 

Pre-increment [+Anjoffset A[bj+sign_ext(offset10) 

Post-increment [An+joffset A[b] 

Circular [An+c]offset Refer to Section 2.4.1.5, "Circular Addressing," on page 21 

Bit-reverse [An+rj Refer to Section 2.4.1.6, "Bit-Reverse Addressing: on page 22 

See Also: 

Instruction 
Format 

ABS 

BO 

BO 

BO 

BO 

BO 

LD.A (pg 222), LD.D (pg 226), LD.DA (pg 227), LD.Q (pg 230), LD.W (pg 231) 

228 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS LD.H 

LD.H Load Halfword (16-bit) LD.H 

Syntax: 

. Id!t') > . Da,<modE!:> 

Description: 

••.••. Cdctd;th~hai!W0rd .• ~~nteotsof.themEl~orYlocafj()~ ..• specified·~Y·theaddressingrt.Pdef 
~ig?1e~e?dEld/zero~e}(ten~ed!o:32 bits, int()add~Elssregi~te~pa~ .. 

Operation: 

.... ··:.~t~j¥~ig~~~~M(E~h~lfyV(,r~)l· 

<mode> Syntax Effective Address 
Instruction 

Format 

Register indirect [An] A[b] SLR 

!Implicit) Base + Offset [A 15]offset A[15]+zero_ext(offset4) SLRO 

Implicit destination register [An]offset4 A[b]+zero_ext(offset41. byte) SRO 

Post-increment [An+]offset A[b], byte; A[a] = A[a] + 2 SLR 

See Also: 

LD.A (pg 222), LD.B (pg 224), LD.BU (pg 224), LD.W (pg 231) 

TriCore Architecture Manual 229 

• PRELIMINARY EDITION. 



LD.Q SIEMENS 

LD.Q Load Halfword Signed Fraction LD.Q 

Syntax: 

Id.q Da, <mode> 

Description: 
Load the halfword contents of the memory location specified by the addressing mode 
into the most-significant halfword of data register Da, setting the 16 least-significant bits 
of Da to zero. 

Operation: 

D[a] = {M(EA, halfword), 16'h OOOO} 

<mode> Syntax Effective Address 
Instruction 

Format 

Absolute constant Refer to Section 2.4.1.1, "Absolute Addressing," on page 20 ABS 

Base + Short Offset [Anjoffset A[bl+sign_ext(offset101 BO 

Pre-increment [+Anjoffset A[bl+sign_ext(offset101 BO 

Post-increment [An+joffset A[bj BO 

Circular [An+ejoffset Refer to Section 2.4.1.5, "Circular Addressing," on page 21 BO 

Bit-reverse [An+rj Refer to Section 2.4.1.6, "Bit-Reverse Addressing," on page 22 BO 

See Also: 
LD.A (pg 222), LD.DA (pg 227), LD.B (pg 224), LD.BU (pg 224), LD.H (pg 228), 
LD.HU (pg 228), LD.W (pg 231) 

230 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS LD.W 

LD.W Load Word LD.W 

Syntax: 

Id.w Oa, <mode> 

Description: 

Load the word contents of the memory location specified by the addressing mode into 
data register Db. 

Operation: 

Oral = M(EA, word) 

<mode> Syntax Effective Address 
Instruction 

Format 

Absolute constant Refer to Section 2.4.1.1, ';.\bsolute Addressing," on page 20 ABS 

Base + Short Offset [Anjoffset A[bj+sign_ext(offset10) BO 

Base + Long Offset [Anjoffset A[bj+sign_ext(offset16) BOL 

Pre-increment [+Anjoffset A[bj+sign_ext(offset10) BO 

Post-increment [An+]offset A[b] BO 

Circular [An+c] offset Refer to Section 2.4.1.5, "Circular Addressing," on page 21 BO 

Bit-reverse [An+r] Refer to Section 2.4.1.6, "Bit-Reverse Addressing," on page 22 BO 

See Also: 
LD.A (pg 222). LD.DA (pg 227), LD.B (pg 224). LD.BU (pg 224). LD.H (pg 228), 
LD.HU (pg 228). LD.Q (pg 230), LD.W (pg 231) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

231 



LD.W SIEMENS 

LD.W Load Word (16-bit) LD.W 

Syntax: 

Description: 

Operation: 

<modI> Syntax Effective Address 
Instruction 

Format 

Register indirect [An] A[b] SLR 

(Implicit) Base + Offset [A 15]offset A[15]+Z8ro_ext(offset4) SLRO 

Implicit destination register [An]offset4 A[b]+Zero_ext(offset4), byte) SRO 

Post-increment [An+]offset A[b]. byte; A[b] = A[b] + 4 SLR 

See Also: 
LD.B (pg 224). LD.BU (pg 224), LD.H (pg 228) 

232 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS LDLCX 

LDLCX Load Lower Context LDLCX 
Syntax: 

Idlcx <mode> 

Description: 

Load the contents of the memory block specified by the addressing mode into registers A2 -
A7 and DO - D7. This operation is used normally to restore GPR values that were saved 
previously by an STLCX instruction. 

Note that the effective address specified by the addressing mode must resolve to an on
chip memory location aligned on a 16-word boundary. For this instruction, the addressing 
mode is restricted to absolute (ABS) or base plus short offset (BO). 

Operation: 

Refer to Section 8.8.2, "Context Loading and Storing," on page 109. 

<mode> Syntax Effective Address 

Absolute constant Refer to Section 2.4.1.1. "Absolute Addressing," on page 20 

Base + Short Offset [An]offset A[a]+sign_ext!offset10) 

See Also: 
LDUCX (pg 235), RSLCX (pg 339), STLCX (pg 377), STLCX (pg 377), 
SVLCX (pg 388) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

Instruction 
Format 

ABS 

BO 

233 



LDMDST SIEMENS 

LDMDST Load-Modify-Store LDMDST 

Syntax: 

Idmdst <mode>, Da 

Description: 

Compute the logical AND of the word contents of the memory location specified by the 
addressing mode and the inverse of the contents of register 0[ar1]. OR the result with the 
AND of the contents of Oa and Dar 1 and store the result in the memory location specified 
by the addressing mode. The mask and value pair, Oa and Oar1, can be generated using 
the IMASK instruction. 

Refer also to Section 8.7.3, "Store Bit and Bit Field," on page 108. 

Operation: 

M(EA, word) = (M(EA, word) AND IO[b+1]) OR (O[b] AND O[b+1]) 

<mode> Syntax Effective Address 
Instruction 

Format 

Absolute constant Refer to Section 2.4.1.1, "Absolute Addressing," on page 20 ABS 

Base + Short Offset [An]offset A[b]+sign_ext(offset101 BO 

Pre-increment [+An]offset A[b]+sign_ext(offset101 BO 

Post-increment [An+]offset A[b] BO 

Circular [An+c]offset Refer to Section 2.4.1.5, "Circular Addressing," on page 21 BO 

Bit-reverse [An+r] Refer to Section 2.4.1.6, "Bit-Reverse Addressing," on page 22 BO 

See Also: 

IMASK (pg 194), ST.T (pg 374) 

234 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS LDUCX 

LDUCX Load Upper Context LDUCX 

Syntax: 

Iducx <mode> 

Description: 

Load the contents of the memory block specified by the addressing mode into registers 
A 10 - A 15 and DS - D15. This operation is used normally to restore GPR values that were 
saved previously by an STUCX instruction. 

Note that the effective address specified by the addressing mode must resolve to an on
chip memory location aligned on a 16-word boundary. For this instruction, the addressing 
mode is restricted to absolute (ABS) or base plus short offset (BO). 

Operation: 

Refer to Section S.S.2, "Context Loading and Storing," on page 109. 

<mode> Syntax Effective Address 

Absolute constant Refer to Section 2.4.1.1, "Absolute Addressing," on page 20 

Base + Short Offset [Anjoffset A[aj+sign3xt(offset101 

See Also: 
LDLCX (pg 233), RSLCX (pg 339). STLCX (pg 377), STUCX (pg 378), 
SVLCX (pg 388) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

Insb'uction 
Format 

ABS 

BO 

235 



LEA SIEMENS 

LEA Load Effective Address LEA 

Syntax: 

lea Aa, <mode> 

Description: 

Compute the absolute (effective) address defined by the addressing mode and put the 
result in address register Ab. Refer to Section 2.4.1, "TriCore Addressing Modes," on page 
19. 

Operation: 

A[aj = EA 

<mode> Syntax Effective Address 
Instruction 

Format 

Absolute constant Refer to Section 2.4.1.1, "Absolute Addressing: on page 20 ABS 

Base + Short Offset [Abjoffset A[bj+sign_ext(offset10) BO 

Base + Long Offset [Abjoffset A[bl+sign_ext(offset16) BOL 

Pre-increment [+Abjoffset A[bj+sign_ext(offset10) BO 

Post-increment [Ab+joffset A[bj BO 

Circular [Ab+cjoffset Refer to Section 2.4.1.5, "Circular Addressing: on page 21 BO 

Bit-reverse [An+rj Refer to Section 2.4.1.6, "Bit-Reverse Addressing," on page 22 BO 

See Also: 
MOV.A (pg 277), MOV.D (pg 279), MOVH.A (pg 282), MOVZ.A (pg 283) 

236 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS LOOP 

LOOP Loop LOOP 

Syntax: 

loop Aa, disp15 (BRR) 
'I~QpJ •. ·.rAb;dl~p41Sami .. 

Description: 

If address register Aa is not equal to zero, then add the value specified by disp15, multi
plied by two and sign-extended to 32 bits, to the contents of the PC, and jump to that 
address. The address register is decremented after the comparison is performed. 

· ··?~It~~. · .•.•. ·· .. ~~:d~~::-;Z·· ••..... · •.. ··.···~:~.t~.te~Q/····h:Na~i~~~:~~~1~~:~~:~~~~r~~~s!i~~~uJ~~ 
.afldJu",ptg!~hat ·addres$ .•• Th~·ad(i\res!l.r .'. .i~tel"is,,· de"remente(i\.fterthe:cprnpar!son··is 

'P~rfP~rrt~q· ....... . . .. . .. . '.. .' ." . '.. '. 

Refer also to Section 8.6.2.4, "Loop Instructions," on page 105. 

Operation: 

if (A[a] != 0) then (PC = PC + sign_ext(2 * disp15); A[a] = A[a]-1); ("zero overhead" loop) 

.•••. •· •.••. i'(Ar~l· .. f.~.P)·J~~ij •.•• ~.fJ(; ·=ftq.~~n~le~'~.~:~j~p4)kA.[E!) .• ryA~~h:~);(izer~.·~~rhe~dHI()()p) 

Example: 

loop a4, iloop 

See Also: 
J (pg 198), JA (pg 199), JI (pg 205), JL (pg 206), JLA (pg 207), JLI (pg 209) 

TriCore Architecture Manual 237 

• PRELIMINARY EDITION. 



LT SIEMENS 

LT 
LT.U 

Less Than 

Less Than Unsigned 

LT 
LT.U 

Syntax: 

It Dc, Da, Db (RR) 
It Dc, Da, const9 (RC) 

Description: 

If the contents of data register Da are less than the contents of data register Dblconst9, set 
the least-significant bit of Dc to 1 and clear the remaining bits to zero; otherwise, clear all 
bits in Dc. Da and Db are treated as signed integers, and the const9 value is sign-extended 
to 32 bits. 

If the contents of data register Da are less than the contents of data register Dblconst9, set 
the least-significant bit of Dc to 1 and clear the remaining bits to zero; otherwise, clear all 
bits in Dc. Da and Db are treated as unsigned integers, and the const9 value is zero
extended to 32 bits. 

Refer also to Section 8.2, "Compare Instructions," on page 97. 

Operation: 

Dlc] = (Dla] < Dlb]); signed 
Dlc] = (Dla] < si n_ext(const9)); 

238 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS 
O[c] = (O[a] < Orb]); unsigned 
O[c] = (O[a] < zero_ext(const9)); unsigned 

··oIi51=lD[~1<D[bJ); uns~gn~d .... . ...••...•..••.••...• 

•....... ... D[151·:::!lO[~1<.zer()c!ext(c.(>ns~41);ul1sign~c1 

Examples: 

It d3, d1, d2 
It d3, d1, 126 
It d1S, d1, d2 
It d1S, dl, 6 
It.u d3, d1, 2S3 
It.u d3, d1, d2 
It.u d1S, d1, d2 
It.u d1S, d1, 6 

See Also: 
EO.B (pg 188). EQ.H (pg 188). EQ.W (pg 188). LT.B (pg 241), LT.BU (pg 241). 
LT.H (pg 242). LT.HU (pg 242). LT.W (pg 243). LT.WU (pg 243) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

LT.U 

239 



LT.A SIEMENS 

LT.A Less Than Address LT.A 

Syntax: 

It.a Dc, Aa, Ab (RR) 

Description: 

If the contents of address register Aa are less than the contents of address register Ab, set 
the least-significant bit of Dc to 1 and clear the remaining bits to zero; otherwise, clear all 
bits in Dc. The operands are treated as unsigned 32-bit integers. 

Operation: 

O[c] = (A[a] < A[b]); unsigned 

Example: 

It.a d3, a4, a2 

See Also: 
EQ.A (pg 187), EOZ.A (pg 190), GE.A (pg 193), NE.A (pg 322), NEZ.A (pg 323) 

240 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS 

Less Than Packed Byte LT.B 
LT.BU Less Than Packed Byte Unsigned 

Syntax: 

It.b Dc, Da, Db (RR) 
It.bu Dc, Da, Db (RR) 

Description: 

LT.B 

LT.B 
LT.BU 

Compare each byte of data register Da with the corresponding byte of Db. In each case, if 
the value of the byte in Da is less than the value of the byte in Db, set all bits in the corre
sponding byte of Dc to 1; otherwise, clear all the bits. The operands are treated as signed 
S-bit integers. 

Compare each byte of data register Da with the corresponding byte of Db. In each case, if 
the value of the byte in Da is less than the value of the byte in Db, set all bits in the corre
sponding byte of Dc to 1; otherwise, clear all the bits. The operands are treated as 
unsigned S-bit integers. 

Refer also to Section S.1.3, "Packed Arithmetic," on page 95. 

Operation: 

if (D[a][(n+7):n] < D[b][(n+7):nj) 
then D[c][(n+7):n] = S'h FF 
else D[c][(n+7):n] = S'h 00; n = 0, S, 16, 24, signed 

if (D[a][(n+7):n] < D[b][(n+7):n]) 
then D[c][(n+7):n] = S'h FF 
else D[c][(n+7):n] = S'h 00; n = 0, S, 16, 24,unsigned 

Examples: 

It . b d3, dl, d2 
It . bu d3, dl, d2 

See Also: 
EO.B (pg 188), EQ.H (pg 188), EO.W (pg 188), LT.H (pg 242), LT.HU (pg 242), 
LT.W (pg 243), LT.WU (pg 243) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

241 



LT.H SIEMENS 

LT.H 
LT.HU 

Less Than Packed Halfword 

Less Than Packed Halfword Unsigned 

LT.H 
LT.HU 

Syntax: 

It.h Dc, Da, Db (RR) 
It.hu Dc, Da, Db (RR) 

Description: 

Compare each halfword of data register Da with the corresponding halfword of Db. In 
each case, if the value of the halfword in Da is less than the value of the corresponding 
halfword in Db, set all bits of the corresponding halfword of Dc to 1; otherwise, clear all 
the bits. The operands are treated as signed 16-bit integers. 

Compare each halfword of data register Da with the corresponding halfword of Db. In each 
case, if the value of the halfword in Da is less than the value of the corresponding halfword 
in Db, set all bits ofthe corresponding halfword of Octo 1; otherwise, clear all the bits. The 
operands are treated as unsigned 16-bit integers. 

Refer also to Section 8.1.3, "Packed Arithmetic," on page 95. 

Operation: 

if (D[a][(n+ 15):n] < D[b][(n+ 15):n]) 
then D[c][(n+15):n] = 16'h FFFF 
else D[c][(n+15):n] = 16'h 0000; n = 0,16, signed 

if (D[a][(n+ 15):n] < D[b][(n+ 15):n]) 
then D[c][(n+15):n] = 16'h FFFF 
else D[c][(n+15):n] = 16'h 0000; n = 0,16, unsigned 

Refer also to Section 8.2, "Compare Instructions." 

Examples: 

It . h d3, dl , d2 
It .hu d3, dl, d2 

See Also: 
EO.B (pg 188), EO.H (pg 188), EQ.W (pg 188), LT.B (pg 241), LT.BU (pg 241), 
LT.W (pg 243), LT.WU (pg 243) 

242 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS 

LT.W 
LT.WU 

Syntax: 

Less Than Packed Word 

Less Than Packed Word Unsigned 

It.w Oc, Oa, Ob (RR) 
It.wu Oc, Oa, Ob (RR) 

Description: 

LT.W 

LT.W 
LT.WU 

If the contents of data register Da are less than the contents of data register Db, set all bits 
in Dcto 1 and clear the remaining bits to zero; otherwise, clear all bits in Dc. Da and Db are 
treated as signed 32-bit integers. 

If the contents of data register Da are less than the contents of data register Db, set all bits 
in Dcto 1 and clear the remaining bits to zero; otherwise, clear all bits in Dc. Da and Db are 
treated as unsigned 32-bit integers. 

Refer also to Section 8.1.3, "Packed Arithmetic," on page 95. 

Operation: 
if (O[a] < Orb]) 
then O[c) = 32'h FFFFFFFF 
else O[c) = 32'h 00000000, signed 

if (O[a] < O[b)) 
then O[c) = 32'h FFFFFFFF 
else O[c) = 32'h 00000000, unsigned 

Examples: 

It . w d3, dl , d2 
It.wu d3, dl, d2 

See Also: 
EQ.B (pg 188), EQ.H (pg 188). EQ.W (pg 188), LT.B (pg 241), LT.BU (pg 241), 
LT.H (pg 242), LT.HU (pg 242) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

243 



MADD 

MADD 

Syntax: 

madd Dc, Od, Oa, Db (RRR) 

Multiply-Add 
(32 x 32) + 32 => 32 

madd Dc, Od, Oa, const9 (RCR) 

Description: 

SIEMENS 

MADD 

Multiply the contents of data register Da by the contents of data register Dblconst9, add 
the result to the contents of data register Dd, and put the result in data register Dc. The 
operands are treated as signed, 32-bit integers. The value const9 is sign-extended to 32 
bits before the multiplication is performed. Overflow and advanced overflow are calcu
lated on the final result. 

Operation: 

0[c][31 :0] = 0[d][31 :0] + (0[a][31 :0] * 0[b][31 :0]) 
0[c][31 :0] = 0[d][31 :0] + (0[a][31 :0] * sign_ext(const9)) 

Status: 

V, SV,AV,SAV 

Examples: 

madd d3, d4, d1, d2 
madd d3, d4, d1, 126 

See Also: 
MADDM (pg 249), MADDM.H (pg 250). MADDM.U (pg 249), MADDMS (pg 254), 
MADDMS.U (pg 254), MADDS (pg 263), MADDS.H (pg 264), MADDS.U (pg 263) 

244 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS MADD.H 

MADD.H Packed Multiply-Add Q Format MADD.H 
(16 x 16) + 32 => 3211 (16 x 16) + 32 => 32 

Syntax: 

madd.h Dc, Dd, Da, Db, n (RRR) 

Description: 

Multiply the most-significant halfword of data register Da by the most-significant half
word of data register Db and add the product, left-justified if n = 1. to the upper 32 bits of 
extended data register Ed. Put the result in the upper 32 bits of extended data register Ec. 

Multiply the least-significant halfword of data register Da by the least-significant halfword 
of data register Db and add the product. left-justified if n = 1, to the lower 32 bits of 
extended data register Ed. Put the result in the lower 32 bits of extended data register Ec. 
The operands are treated as signed values. 

Overflow and advanced overflow are calculated on each independent final result. 

If n=1. OxSOOO x OxBOOO = Ox7FFF.FFFF. 

Operation: 

E[c][63:32] = E[d][63:32] + (((D[a][31 :16] * D[b][31 :16]) « n)[31 :0]) 
E[c][31 :0] = E[d][31 :0] + (((D[a][15:0] * D[b][15:0]) « n)[31 :0]); 
signed, n = 0, 1 

Da 

Ed~[~ 

~ c%DD 

32 

Ec 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

245 



MADD.H 

Status: 
V,SV,AV,SAV 

Example: 

madd.h eO, e8, d2, d3, 1 

See Also: 

MADDM.Q (pg 252), MADDR.Q (pg 257), MADDRS.H (pg 259), 
MADDRS.Q (pg 261) 

SIEMENS 

246 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS 

MADD.Q 

Syntax: 

Multiply-Add Q Format 
(16 x 16) + 32 => 32 

madd.q Dc, Dd, Da, Db, n (RRR) 

Description: 

MADD.Q 

MADD.Q 

Multiply the most-significant halfword of data register Da by the most-significant half
word of data register Db and add the product, left-justified if n = 1, to the contents of data 
register Dd. Put the result in Dc. The operands are treated as signed values. Overflow and 
advanced overflow are calculated on the final result. 

If n = 1, Ox8000 x Ox8000 = Ox7FFF.FFFF. 

Operation: 

D[c][31:0] = D[d][31:0] + (((D[a][31:16] * D[b][31:16])« n)[31:0]); signed, n = 0,1 

Dct 

TAM046,' 

Status: 

V,SV,AV,SAV 

Example: 

madd.q d13, d4, dl, d12, 0 

TriCore Architecture Manual 247 

• PRELIMINARY EDITION. 



MADD.Q 

See Also: 
MADDM.Q (pg 252), MADDR.Q (pg 257), MADDRS.H (pg 259), 
MADDRS.Q (pg 261), MADDS.H (pg 264), MADDS.Q (pg 265) 

SIEMENS 

248 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS 

MADDM 

MADDM.U 

Syntax: 

Multiply-Add with Multiword Result 
(32 x 32) + 64 => 64 

Multiply-Add with Multiword Result Unsigned 
(32 x 32) + 32 => 64 

maddm Ec, Ed, Da, Db (RRR) 
maddm Ec, Ed, Da, constS (RCR) 
maddm.u Ec, Ed, Da, Db (RRR) 
maddm.u Ec, Ed, Da, constS (RCR) 

Description: 

MADDM 

MADDM 

MADDM.U 

Multiply the contents of data register Da by the contents of data register Dblconst9, add 
the 64-bit result to the contents of extended data register Ed, and put the result in 
extended data register Ec. The operands are treated as signed integers. The value const9 
is sign-extended/zero-extended to 32 bits before the multiplication is performed. 

Overflow and advanced overflow are calculated on the final result. 

Operation: 

E[c][63:0] = E[d][63:0] + (D[a][31 :0] * D[b][31 :0]); signed 
E[c][63:0] = E[d][63:0] + (D[a][31:0] * sign_ext(const9)); signed 

E[c][63:0] = D[d][63:0] + (D[a][31 :0] * D[b][31 :0]); unsigned 
E[c][63:0] = E[d][63:0] + (D[a][31 :0] * zero_ext(const9)); unsigned 

Status: 

V,SV,AV,SAV 

Examples: 

maddm e2, e4, diD, d12 
maddm eO, e14, d4, 126 
maddm.u eO, eO, d8, d2 
maddm.u e12, eO, d9, Ox28 

See Also: 
MADD (pg 244), MADDMS (pg 254). MADDMS.U (pg 254), MADDS (pg 263), 
MADDS.H (pg 264), MADDS.U (pg 263) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

249 



MADDM.H SIEMENS 

MADDM.H Packed Multiply-Add with Multiword Result 
(16 x 16) + (16 x 16) + 64 => 64 

MADDM.H 

Syntax: 

maddm.h Ec, Ed, Da, Db (RRR) 

Description: 

Multiply the most-significant halfword of data register Da by the most-significant half
word of data register Db. Multiply the least-significant halfword of data register Da by the 
least-significant halfword of data register Db. Add the products of the two multiplications, 
sign-extend the result to 64 bits, and left-shift by 16. Add that value to the extended data 
register Ed and put the 64-bit result in extended data register Ec. The operands are treated 
as signed values. 

Overflow and advanced overflow are calculated on the final result. 

Operation: 

E[c][63:0] = E[d][63:0] + ((D[a][31:16] * D[b][31:16]) + (D[a] [15:0] * D[b] [15:0])«16); 
signed 

Da 
'--..,--..J......_....J 

Status: 

V,SV,AV,SAV 

250 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS MADDM.H 

Example: 

maddm.h eO, e4, d2, d7 

See Also: 
MADD.Q (pg 247). MADDR.H (pg 255), MADDR.Q (pg 257), MADDRS.H (pg 259), 
MADDRS.Q (pg 261), MADDS.H (pg 264), MADDS.Q (pg 265) 

TriCore Architecture Manual 251 

• PRELIMINARY EDITION. 



MADDM.Q 

MADDM.Q 

Syntax: 

Multiply-Add Multiword Result Q Format 
(16 x 16) + 64 => 64 

maddm.q Ec, Ed, Da, Db (RRR) 

Description: 

SIEMENS 

MADDM.Q 

Multiply the most-significant halfword of data register Da by the most-significant half
word of data register Db, sign-extend the result to 64 bits, and left-shift by 16. Add that 
value to extended data register Ed and put the 64-bit result in extended data register Ec. 
The operands are treated as signed values. Overflow and advanced overflow are calcu
lated on the final result. 

Operation: 

E[c] [63:0] = E[d][63:0] + (sign_ext((D[a][31:16] * D[b][31:16]) [31:0]))«16; signed 

Da 

Ed 

Ec 1'--___ --' TAM048.1 

Status: 

V,SV,AV,SAV 

Example: 

rnaddm.q e2, e4, dl, d2 

252 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS MADDM.Q 

See Also: 
MADD.Q (pg 247). MADDR.Q (pg 257), MADDRS.Q (pg 261), MADDS.Q (pg 265) 

TriCore Architecture Manual 253 

• PRELIMINARY EDITION. 



MAD OMS SIEMENS 

MADDMS Multiply-Add Multiword with Saturation MADDMS 
(32 x 32) + 64 => 64 

MADDMS.U Multiply-Add Multiword with Saturation Unsigned 
(32 x 32) + 64 => 64 

MADDMS.U 

Syntax: 

maddms Ec, Ed, Da, Db (RRR) 
maddms Ec, Ed, Da, const9 (RCR) 
maddms.u Ec, Ed, Da, Db (RRR) 
maddms.u Ec, Ed, Da, const9 (RCR) 

Description: 

Multiply the contents of data register Da by the contents of data register Dblconst9, add 
the 64-bit result to the contents of extended data register Ed, and put the result in 
extended data register Ec. The operands are treated as signed/unsigned integers. The 
value const9 is sign-extended/zero-extended to 32 bits before the multiplication is per
formed. 

Overflow and advanced overflow are calculated on the final result. On overflow, the result 
is saturated. 

Operation: 

E[c][63:0] = E[d][63:0] + ((D[a][31 :0] * D[b][31 :0])[63:0]); signed; ssov 
E[c][63:0] = E[d][63:0] + ((0[a][31 :0] * sign_ext(const9))[63:0]); signed; ssov 

E[c][63:0] = E[d][63:0] + ((0[a][31 :0] * 0[b][31 :0])[63:0]); unsigned; suov 
E[c][63:0] = E[d][63:0] + ((0[a][31 :0] * zero_ext(const9))[63:0]); unsigned; suov 

Status: 

V, SV,AV,SAV 

Examples: 

maddms e12, e4, dl, d2 
maddms e12, e4, dl, Ox12 
maddms.u eO, eO, d4, d2 
maddms.u eO, eO, d4,Ox25 

See Also: 

MADD (pg 244), MADDM (pg 249), MADDM.U (pg 249), MADDS (pg 263), 
MADDS.U (pg 263) 

254 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



· SIEMENS 

MADDR.H 

Syntax: 

Packed Multiply-Add with Rounding 
(16 x 16) + 32 => 16 
(16 x 16) + 32 => 16 

maddr.h Dc, Ed, Da, Db, n (RRR) 

Description: 

MADDR.H 

MADDR.H 

Multiply the most-significant halfword of data register Da by the most-significant half
word of data register Db and add the product, left-justified if n = 1, to the upper 32 bits of 
extended data register Ed. Round the contents and put the most-significant halfword of 
the rounded value into the most-significant halfword of Dc. 

Multiply the least-significant halfword of data register Da by the least-significant halfword 
of data register Db and add the product, left-justified if n = 1, to the lower 32 bits of 
extended data register Ed. Round the contents and put the least-significant halfword of 
the rounded value into the least-significant halfword of Dc. 

The operands are treated as signed values. Overflow and advanced overflow are calcu
lated on each independent final result. 

If n = 1, Ox8000 x Ox8000 = Ox7FFF.FFFF. 

Operation: 

D[c][31 :16] = round16(E[d][63:32] + ((D[a] [31 :16] * D[b] [31 :16]) « n)[31 :16]) 
D[c][15:0] = round16(E[d][31:0] + ((D[a] [15:0] * D[b] [15:0])« n)[15:0]); signed; n = 0,1 

TriCore Architecture Manual 255 

• PRELIMINARY EDITION. 



MADDR.H 

Ed 

Da 1 'f'-16,-I_X_;::L-_D~c....,b ~16 1 x 

MUL J 

Ed 

Dc 1-1 _-1._---1 

Status: 
V,SV,AV,SAV 

Example: 

rnaddr.h d3, eO, d4, d2, a 

See Also: 

SIEMENS 

MADD.Q (pg 247), MADDM.Q (pg 252), MADDRS.Q (pg 261), MADDS.Q (pg 265) 

256 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS 

MADDR.Q 

Syntax: 

Multiply-Add With Rounding 
(16 x 16) + 32 => 16 

maddr.q Dc, Dd, Da, Db, n (RRR) 

Description: 

MADDR.Q 

MADDR.Q 

Multiply the most-significant halfword of data register Da by the most-significant half
word of data register Db and add the product, left-justified if n = 1, to data register Dd. 
Round the result, putthe most-significant halfword ofthe rounded value in Dc, and setthe 
least-significant halfword of Octo o. 
The operands are treated as signed values. Overflow and advanced overflow are calcu
lated on the final result. 

If n = 1, Ox8000 * Ox8000 = Ox7FFF.FFFF. 

Operation: 

D[c][31 :0] = round16(D[d] + ((D[a] [31 :16] * D[b] [31 :g16]) « n)[31 :0])[31 :16], 16'h 0000; 
n = 0,1; signed 

Da 1 Jf'-16,-I_X_;::,--_D~c.,b ~16 1 x 

MUL J 

Dc ,-I _-.JI,--o--, 
TAMIliO.l 

TriCore Architecture Manual 257 

• PRELIMINARY EDITION. 



MADDR.Q SIEMENS 
Status: 

v, SV, AV, SAY 

Example: 

maddr.q d3, d4, dl, d2, 0 

See Also: 
MADD.Q(pg 247), MADDM.Q(pg 252), MADDRS.Q(pg 261), MADDS.Q(pg 265) 

258 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS MADDRS.H 

MADDRS.H Packed Multiply-Add with Rounding and 
Saturation 

MADDRS.H 

Syntax: 

(16 x 16) + 32 => 16 MSB 
(16 x 16) + 32 => 16 LSB 

maddrs.h Dc, Ed, Oa, ~b, n (RRR) 

Description: 

Multiply the most-significant halfword of data register Da by the most-significant half
word of data register Db and add the product, left-justified if n = 1, to the upper 32 bits of 
extended data register Ed. Round the contents and put the most-significant halfword of 
the rounded value into the most-significant halfword of Dc. 

Multiply the least-significant halfword of data register Da by the least-significant halfword 
of data register Db and add the product, left-justified if n = 1, to the lower 32 bits of 
extended data register Ed. Round the contents and put the least-significant halfword of 
the rounded value into the least-significant halfword of Dc. 

The operands are treated as signed/unsigned values. Overflow and advanced overflow 
are calculated on each independent final result. On overflow, each result is independently 
saturated. 

If n = 1, Ox8000 * Ox8000 = Ox7FFF.FFFF. 

Operation: 

0[c][31 :16] = round16(E[d][63:32] + ((O[a] [31 :16] * Orb] [31 :16]) « n)[31 :16]); 
0[c][15:0] = round16(E[d][31 :0] + ((O[a] [15:0] * Orb] [15:0]) « n)[15:0]); 
signed; n = 0, 1; ssov 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

259 



MADDRS.H 

Ed 

Da 1 'fL16=---1 _X_;:,,--_DJ..--,~ S} 
MUL J 

Ed 

16 

Dc 1...1 _--'-_--I 

Status: 

V,SV,AV,SAV 

Example: 

maddr.h d3, e4, dl, d2, 0 

See Also: 

MADD.Q (pg 247), MADDM.H (pg 250), MADDM.Q (pg 252), 
MADDRS.H (pg 259), MADDRS.Q (pg 261), MADDS.H (pg 264), 
MADDS.Q (pg 265) 

SIEMENS 

260 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS 

MADDRS.Q 

Syntax: 

Multiply-Add with Rounding and Saturation 
(16 x 16) + 32 => 16 

maddrs.q Dc, Dd, Da, Db, n (RRR) 

Description: 

MADDRS.Q 

MADDRS.Q 

Multiply the most-significant halfword of data register Da by the most-significant half
word of data register Db and add the product, left-justified if n = 1, to data register Dd. 
Round the contents of Dd; put the most-significant halfword of the rounded value in Dc, 
and set the least-significant halfword of Dc to O. Overflow and advanced overflow are cal
culated on the final result. On overflow, the result is saturated. 

If n = 1, Ox8000 * Ox8000 = Ox7FFF.FFFF. 

Operation: 

D[c][31:0] = round16(D[d][31:0] + ((D[a] [31:16] * D[b] [31:16])« n)[31:0])[31:16]. 
16'h 0000); n = 0, 1; signed; ssov 

Dd 

16 

Dc 
L...-_..l......_..J TAM051.1 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

261 



MADDRS.Q SIEMENS 
Status: 

V,SV,AV,SAV 

Example: 

rnaddrs.q dO, dO, dl, d2, 0 

See Also: 
MADD.Q (pg 247), MADDM.Q (pg 252), MADDR.Q (pg 257), MADDS.Q (pg 265) 

262 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS 

MADDS 

MADDS.U 

Syntax: 

Multiply-Add with Saturation 
(32 x 32) + 32 => 32 

Multiply-Add with Saturation Unsigned 
(32 x 32) + 32 => 32 

madds Dc, Dd, Da, Db (RRR) 
madds Dc, Dd, Da, const9 (RCR) 
madds.u Dc, Dd, Da, Db (RRR) 
madds.u Dc, Dd, Da, const9 (RCR) 

Description 

MADDS 

MADDS 

MADDS.U 

Multiply the contents of data register Da by the contents of data register Dblconst9, add 
the result to the contents of data register Dd, and put the result in data register Dc. The 
operands are treated as signed/unsigned, 32-bit integers. The value const9 is sign
extended/zero-extended to 32 bits before the multiplication is performed. 

Overflow and advanced overflow are calculated on the final result. On overflow, the result 
is saturated. 

Operation: 

D[c][31 :0] = D[d][31 :0] + (D[a][31 :0] * D[b][31 :0]); signed; ssov 
D[c][31 :0] = D[d][31 :0] + (D[a][31 :0] * sign_ext(const9)); signed; ssov 

D[c][31 :0] = D[d][31 :0] + (D[a][31 :0] * D[b][31 :0]); unsigned; suov 
D[c][31 :0] = D[d][31 :0] + (D[a][31 :0] * zero_ext(const9)); unsigned; suov 

Status: 

V,SV,AV,SAV 

Examples: 

madds d3, d4, d1, d2 
madds d3, d1, d1,253 
madds.u d3, d4, d1, d2 
madds.u d3, d4, d1, 126 

See Also: 

MADD (pg 244), MADDM (pg 249), MADDM.U (pg 249). MADDMS (pg 254), 
MADDMS.U (pg 254) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

263 



MADDS.H SIEMENS 

MADDS.H Packed Multiply-Add with Saturation 
(16 x 16) + 32 => 3211 (16 x 16) + 32 => 32 

MADDS.H 

Syntax: 

madds.h Ec, Ed, Da, Db, n (RRR) 

Description: 

Multiply the most-significant halfword of data register Da by the most-significant half
word of data register Db and add the product, left-justified if n = 1, to the upper 32 bits of 
extended data register Ed. Put the result in the upper 32 bits of extended data register Ec. 

Multiply the least-significant halfword of data register Da by the least-significant halfword 
of data register Db and add the product, left-justified if n = 1, to the lower 32 bits of 
extended data register Ed. Put the result in the lower 32 bits of extended data register Ec. 

The operands are treated as signed values. Overflow and advanced overflow are calcu
lated on each independent final result. On overflow, each result is independently satu
rated. 

Operation: 

E[c][63:32] = E[d][63:32] + (((D[a][31:16] * D[b][31:16])« n)[31:0]); 
E[c][31 :0] = E[d][31 :0] + (((D[a][15:0] * D[b][15:0]) « n)[31 :0]); 
signed, n = 0,1; ssov 

Status: 

V,SV,AV,SAV 

Example: 

madds.h eO, e4, d9, d2, a 

See Also: 
MADDM.H (pg 250), MADDM.O (pg 252), MADDR.O (pg 257), 
MADDRS.H (pg 259), MADDRS.Q (pg 261), MADDS.Q (pg 265) 

264 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS 

MADDS.Q 

Syntax: 

Multiply-Add with Saturation 
(16 x 16) + 32 => 32 

madds.q Dc, Dd, Da, Db, n (RRR) 

Description: 

MADDS.Q 

MADDS.Q 

Multiply the most-significant halfword of data register Da by the most-significant half
word of data register Db and add the product, left-justified if n = 1, to the contents of data 
register Dd. Put the result in Dc. The operands are treated as signed values. 

Overflow and advanced overflow are calculated on the final result. On overflow, the result 
is saturated. 

If n = 1, Ox8000 * Ox8000 = Ox7FFF.FFFF. 

Operation: 

D[c][31:0) = D[d][31:0) + ((D[a][31:16) * D[b][31:16))« n)[31:0)); signed, n = 0,1; 

Da 

Dct 

I saturate I 

DC~ 
TAM052.' 

Status: 

V,SV,AV,SAV 

TriCore Architecture Manual 265 

• PRELIMINARY EDITION. 



MADDS.Q SIEMENS 
Example: 

madds.q dO,d7,d2,d3,O 

See Also: 

MADD.Q (pg 247), MADDM.Q (pg 252), MADDR.Q (pg 257), MADDRS.Q (pg 261) 

266 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS MAX 

MAX Maximum Value MAX 

Syntax: 

max Dc, Da, Db (RR) 
max Dc, Oa, eonst9 (RC) 

Description: 

If the contents of data register Oa are greater than the contents of data register Ob/eonst9, 
put the contents of Oa in data register Oe; otherwise, put the contents of Ob/const9 in Oc. 
The operands are treated as signed, 32-bit integers. 

Operation: 

if (O[a] > Orb]) then O[e] = D[a] 
else O[c] = Orb]; signed 

if (O[a] > sign_ext(const9)) then O[c] = Ora] 
else O[c] = sign_ext(const9); signed 

Examples: 

max d3, d1 , d2 
max d3, d1, 126 
max d3, d1, 253 

See Also: 
MAX.U (pg 270), MIN (pg 272), MIN.U (pg 275) 

TriCore Architecture Manual 

• PRELIMINARY EOITION • 

267 



MAX.B 

MAX.B 
MAX.BU 

Syntax: 

Maximum Value Packed Byte Signed 

Maximum Value Packed Byte Unsigned 

max.b Dc, Da, Db (RR) 
max.bu Dc, Da, Db (RR) 

Description: 

SIEMENS 

MAX.B 
MAX.BU 

Compute the maximum value of the corresponding bytes in Da and Db and put each result 
in the corresponding byte of Dc. The operands are treated as signed/unsigned, 8-bit inte
gers. 

Refer also to Section 8.1.3, "Packed Arithmetic," on page 95 

Operation: 

if (D[a][(n+7):n] > D[b][(n+7):nJ) 
then D[c][(n+7):n] = D[a][(n+7):n] 
else D[c][(n+7):n] = D[b][(n+7):n]; n = 0, 8, 16,24; signed 

if (D[a][(n+7):n] > D[b][(n+7):nJ) 
then D[c][(n+7):n] = D[a][(n+7):n] 
else D[c][(n+7):n] = D[b][(n+7):n]; n = 0, 8, 16,24; unsigned 

Examples: 

max.b d3, dl, d2 
max.bu d3, dl, d2 

See Also: 
MAX.H (pg 269), MAX.HU (pg 269), MIN.B (pg 273), MIN.BU (pg 273), 
MIN.H (pg 274), MIN.HU (pg 274) 

268 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS 

MAX.H 
MAX.HU 

Syntax: 

Maximum Value Packed Halfword Signed 

Maximum Value Packed Halfword Unsigned 

max.h Dc, Da, Db (RR) 
max.hu Dc, Da, Db (RR) 

Description: 

MAX.H 

MAX.H 
MAX.HU 

Compute the maximum value of the corresponding halfwords in Da and Db and put each 
result in the corresponding byte of Dc. The operands are treated as signed/unsigned, 16-
bit integers. 

Refer also to Section 8.1.3, "Packed Arithmetic," on page 95. 

Operation: 
if (D[a][(n+15):n] > D[b][(n+15):n]) 
then D[c] [(n+ 15):n] = D[a] [(n+ 15):n] 
else D[c][(n+15):n] = D[b][(n+15):n]; n = 0, 16; signed 

if (D[a][(n+15):n] > D[b][(n+15):n]) 
then D[c][(n+15):n] = D[a][(n+15):n] 
else D[c][(n+15):n] = D[b][(n+15):n]; n = 0,16; unsigned 

Examples: 

max.h 
max.hu 

See Also: 

d3, dl, d2 
d3, dl, d2 

MAX.B (pg 268), MAX.BU (pg 268), MIN.B (pg 273), MIN.BU (pg 273), 
MIN.H (pg 274), MIN.HU (pg 274) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

269 



MAX.U 

MAX.U 

Syntax: 

max.u 
max.u 

Description: 

SIEMENS 

Maximum Value Unsigned MAX.U 

Dc, Da, Db (RR) 
Dc, Da, const9 (Re) 

If the contents of data register Da are greater than the contents of data register Db/const9, 
put the contents of Da in data register Dc; otherwise, put the contents of Db/const9 in Dc. 
The operands are treated as unsigned, 32-bit integers. 

Operation: 

if (D[a] > D[b]) then D[c] = D[a] 
else D[c] = D[b]; unsigned 

if (D[a] > zero_ext(const9)) then D[c] = D[a] 
else D[c] = zero_ext(const9); unsigned 

Examples: 

max.u d3, d1, d2 
max.u d3, d1, 126 
max.u d3, d1, 253 

See Also: 
MAX (pg 267), MIN (pg 272), MIN.U (pg 275) 

270 

• PRELIMINARY EDITION. 

TriCore Architecture Manual 



SIEMENS MFCR 

MFCR Move From Core Register MFCR 

Syntax: 

mfcr Dc, const16 (RLC) 

Description: 

Move the contents of the core SFR register, selected by the value const16, to data register 
Dc. The core SFR address is a const16 byte offset from the core SFR base address. It must 
be word-aligned (the least-significant two bits equal zero). Non-aligned addresses have 
an undefined effect. This instruction can be executed on any privilege level. 

Refer also to Chapter 3, "Core Registers," on page 27. 

Operation: 

O[c] = CR[const16] 

Example: 

mfcr d3, 12 

See Also: 

MTCR (pg 307) 

TriCore Architecture Manual 271 

• PRELIMINARY EDITION. 



MIN SIEMENS 

MIN Minimum Value MIN 

Syntax: 

min Dc, Oa, Db (RR) 
min Dc, Oa, const9 (RC) 

Description: 

If the contents of data register Oa are less than the contents of data register Ob/const9, 
put the contents of Oa in data register Dc; otherwise, put the contents of Ob/const9 in Dc. 
The operands are treated as signed, 32-bit integers. 

Operation: 

if (O[a] < O[b]) then O[c] = Oral 
else O[c] = O[b]; signed 

if (O[a] < sign_ext(const9)) then O[c] = D[a] 
else O[c] = sign_ext(const9); signed 

Examples: 

min d3, d1, d2 
min d3, d1, 126 
min d3, d1, 253 

See Also: 
MAX (pg 267), MAX.U (pg 270), MIN (pg 272) 

272 

• PRELIMINARY EDITION. 

TriCore Architecture Manual 



SIEMENS 

MIN.B 
MIN.BU 

Syntax: 

Minimum Value Packed Byte Signed 

Minimum Value Packed Byte Unsigned 

min.b Dc, Da, Db (RR) 
min.bu Dc, Da, Db (RR) 

Description: 

MIN.B 

MIN.B 
MIN.BU 

Compute the minimum value ofthe corresponding bytes in Da and Db and put each result 
in the corresponding byte of Dc. The operands are treated as signed/unsigned, 8-bit inte
gers. 

Refer also to Section 8.1.3, "Packed Arithmetic," on page 95. 

Operation: 

if (D[a][(n+7):n] < D[b][(n+7):n]) 
then D[c][(n+7):n] = D[a][(n+7):n] 
else D[c][(n+7):n] = D[b][(n+7):n];n = 0, 8,16,24; signed 

if (D[a][(n+7):n] < D[b][(n+7):n]) 
then D[c][(n+7):n] = D[a][(n+7):n] 
else D[c][(n+7):n] = D[b][(n+7):n]; n = 0, 8, 16,24; unsigned 

Examples: 

min.b d3, dl, d2 
min.bu d3, dl, d2 

See Also: 
MAX.B (pg 268), MAX.BU (pg 268), MIN.H (pg 274), MIN.HU (pg 274) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

273 



MIN.H 

MIN.H 
MIN.HU 

Syntax: 

Minimum Value Packed Halfword Signed 

Minimum Value Packed Halfword Unsigned 

min.h Dc, Da, Db (RR) 
min.hu Dc, Da, Db (RR) 

Description: 

SIEMENS 

MIN.H 
MIN.HU 

If the contents of each byte of data register Da are less than the contents of data register 
Db, copy the contents to data register Dc.; otherwise, copy Db to Dc. The operands are 
treated as signed/unsigned, 16-bit integers. 

Refer also to Section 8.1.3, "Packed Arithmetic," on page 95. 

Operation: 

if (D[a] [(n+ 15):n] < D[b] [(n+ 15):n]) 
then D[c][(n+ 15):n] = D[a][(n+ 15):n] 
else D[c][(n+15):n] = D[b][(n+15):n]; n = 0, 16; signed 

if (D[a][(n+15):n] < D[b][(n+15):n]) 
then D[c][(n+15):n] = D[a][(n+15):n] 
else D[c][(n+15):n] = D[b][(n+15):n]; n = 0, 16; unsigned 

Examples: 

min.h d3, dl, d2 
min.hu d3, dl, d2 

See Also: 
MAX.H (pg 269), MAX.HU (pg 269), MIN.B (pg 273), MIN.BU (pg 273) 

274 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS MIN.U 

MIN.U Minimum Value Unsigned MIN.U 

Syntax: 

min.u Dc, Da, Db (RR) 
min.u Dc, Da, const9 (RC) 

Description: 

If the contents of data register Da are less than the contents of data register Db/const9, 
put the contents of Da in data register Dc; otherwise, put the contents of Db/const9 in Dc. 
The operands are treated as unsigned, 32-bit integers. 

Operation: 

if (D[a] < D[b]) then D[c] = D[a] 
else D[c] = D[b]; unsigned 

if (D[a] < zero_ext(const9)) then D[c] = D[a] 
else D[c] = zero_ext(const9); unsigned 

Examples: 

ffiln.u d3, d1, d2 
ffiln.u d3, d1, 126 
ffiln.u d3, d1, 253 

See Also: 
MAX (pg 267). MAX.U (pg 270), MIN (pg 272) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

275 



MOV SIEMENS 

MOV Move MOV 

Syntax: 

mov Dc, Db (RR) 
mov Dc, const16 (RLC) 

Description: 

Move the contents of data register Dblconst16 to data register Dc. The operands are 
treated as 32-bit integers. The value const16 is sign-extended to 32 bits before it is moved. 

Operation: 

Examples: 

mav d3, dl 
mav d3, -14, 526 
mav dl, d2 
mav dl, 6 
mav diS, 126 

See Also: 
MOV.U (pg 280), MOVH (pg 281) 

276 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS MOV.A 

MOV.A Move Address from Data Register MOV.A 

Syntax: 

mov.a Ac, Db (RR) 

mQ"'~··· ·•·•·· .•. ··AiJ{Db(SRRl········ 

Description: 

Move the contents of data register Db to address register Ac. The operands are treated as 
32-bit integers. 

··:····:\··.Mb"'e·.t~~··.<;bhtebts .. ()f~.t.t1~gl$~~r£y6t():~~~teS~)~~gi~tftdAa;:the.~peraods.re:tre~teq .ij~ .•.. 
·3~~'?i~iI'l1e!JEl~s. . . . .. .. .... ... .. .... . ........ .. 

Operation: 
A[c] = D[b] 

... ····i.Ai~l:~.Qit)li •• 

Examples: 

mov.a 
mov.a 

See Also: 

a3, dl 
a4, d2 

LEA (pg 236), MOV.AA (pg 278), MOV.D (pg 279), MOVH.A (pg 282), 
MOVZ.A (pg 283) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

277 



MOV.AA SIEMENS 

MOV.AA Move Address from Address Register MOV.AA 

Syntax: 

mov.aa Ac, Ab (RR) 

Description: 

Move the contents of address register Abto address register Ac. The operands are treated 
as 32-bit integers. 

Operation: 

Examples: 

rnov.aa a3, a4 
rnov.aa a4, a2 

See Also: 
LEA (pg 236), MOV.A (pg 277), MOV.D (pg 279), MOVH.A (pg 282), 
MOVZ.A (pg 283) 

278 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS 

MOV.D 

Syntax: 

mov.d 

······· •• mov.d 

Description: 

Move Address to Data Register 

DC,Ab (RR) 
Da;Ab(SRR)i ..... 

MOV.D 

MOV.D 

Move the contents of address register Abto data register Dc. The operands are treated as 
32-bit integers . 

. · ...••••• ~~~~!::~~l~!:~t~of·~~d.ress.·r~~i~ter~todata .. regi~~rD~:·T~e~p~r~nu$a~·t~~atedas 

Operation: 

D[c] =A[b] 

[)ral=~[~).· .. i 

Examples: 

mov.d d3, a4 
mov.d dl, a2 

See Also: 
LEA (pg 236). MOV.A (pg 277). MOV.AA (pg 278). MOVH.A (pg 282), 
MOVZ.A (pg 283) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

279 



MOV.U SIEMENS 

MOV.U Move Unsigned MOV.U 

Syntax: 

mov.u Dc, const16 (RLC) 

Description: 

Move the zero-extended value const16to data register Dc. 

Operation: 

D[c] = zero_ext(const16) 

Example: 

mov.u d3, 526 

See Also: 
MOV (pg 276), MOVH (pg 281) 

280 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS MOVH 

MOVH Move Halfword MOVH 

Syntax: 

movh Dc, const16 (RLC) 

Description: 
Move the value const16 to the most-significant halfword of data register Dc and set the 
least-significant 16 bits to zero. 

Operation: 
D[c) = {const16, 16'h OOOO} 

Example: 

movh d3, 526 

See Also: 
MOV (pg 276). MOV.U (pg 280) 

TriCore Architecture Manual 281 

• PRELIMINARY EDITION. 



MOVH.A SIEMENS 

MOVH.A Move High to Address MOVH.A 

Syntax: 

movh.a Ac, const16 (RLC) 

Description: 

Move the value const16to the most-significant halfword of address register Ac and set the 
least-significant 16 bits to zero. 

Operation: 

A[c] = {const16, 16'h OOOO} 

Example: 

movh.a a3, 526 

See Also: 
LEA (pg 236), MOV.A (pg 277), MOV.AA (pg 278), MOV.D (pg 279), 
MOVZ.A (pg 283) 

282 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS 

MOVZ.A Move Zero To Address 

Syntax: 

mbvt~a ·~(SRI 

Description: 

.. iMov~t~e yalueOt9 ad~ressregist~I'Aa 

Operation: 

Example: 

movz.a a4 

See Also: 

LEA (pg 236), MOV.A (pg 277), MOV.AA (pg 278), MOV.D (pg 279), 
MOVH.A (pg 282) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

MOVZ.A 

MOVZ.A 

283 



MSUB 

MSUB 

Syntax: 

msub Dc, Dd, Da, Db (RRR) 

Multiply-Subtract 
32 - (32 x 32) => 32 

msub Dc, Dd, Da, const9 (RCR) 

Description: 

SIEMENS 

MSUB 

Multiply the contents of data register Da by the contents of data register Dblconst9, sub
tract the result from the contents of data register Dd, and put the result in data register Dc. 
The operands are treated as signed, 32-bit integers. The value const9 is sign-extended to 
32 bits before the multiplication is performed. 

Overflow and advanced overflow are calculated on the final result. 

Operation: 

0[c][31 :0] = D[d][31 :0]- (D[a][31 :0] * D[b][31 :0]); 
0[c][31:0] = D[d][31:0]- (0[a][31:0] * sign_ext(const9)); 

Status: 

V,SV,AV,SAV 

Examples: 

msub d3, d4, d1, d2 
msub d3, d4, d1, 126 

See Also: 

MSUBM (pg 289). MSUBM.U (pg 289), MSUBMS (pg 294). MSUBMS.U (pg 294), 
MSUBS (pg 303), MSUBS.U (pg 303) 

284 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS MSUB.H 

MSUB.H Packed Multiply-Subtract MSUB.H 
32 - (16 x 16) => 321132 - (16 x 16) => 32 

Syntax: 

msub.h Ec, Ed, Da, Db, n (RRR) 

Description: 

Multiply the most-significant halfword of data register Da by the most-significant half
word of data register Db and subtract the product, left-justified if n = 1, from the upper 32 
bits of extended data register Ed. Put the result in the upper 32 bits of extended data reg
ister Ee. 

Multiply the least-significant halfword of data register Da by the least-significant halfword 
of data register Db and subtract the product, left-justified if n = 1, from the lower 32 bits of 
extended data register Ed. Put the result in the lower 32 bits of extended data register Ee. 

The operands are treated as signed values. Overflow and advanced overflow are calcu
lated on each independent final result. 

Operation: 

E[c][63:32) = E[d][63:32) - (((D[a][31 :16) * D[b][31 :16)) « n)[31 :0)) 

E[c][31 :0) = E[d][31 :0)- (((D[a][15:0) * D[b][15:0)) « n)[31 :0)) 
signed, n = 0, 1 

D[d+ 1] Dd 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

285 



MSUB.H 

Status: 

V,SV,AV,SAV 

Example: 

msub.h e4, eO, dll, d2, a 

See Also: 
MADDM.Q (pg 252), MADDR.Q (pg 257), MADDRS.Q (pg 261), 
MADDS.Q (pg 265) 

SIEMENS 

286 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS 

MSUB.Q 

Syntax: 

Multiply-Subtract in Q Format 
32 - (16 x 16) => 32 

msub.q Dc, Od, Oa, ~b, n (RRR) 

Description: 

MSUB.Q 

MSUB.Q 

Multiply the most-significant halfword of data register Da by the most-significant half
word of data register Db and subtract the product, left-justified if n = 1, from the contents 
of data register Dd. Put the result in Dc. The operands are treated as signed values. Over
flow and advanced overflow are calculated on the final result. 

If n = 1, Ox8000 * Ox8000 = Ox7FFF.FFFF. 

Operation: 

0[c][31:0] = 0[d][31:0]- ((0[a][31:16] * 0[b][31:16])« n)[31:0]; signed; n = 0,1 

Dd 

TAMIli4,' 

Status: 

V,SV,AV,SAV 

Example: 

msUb.q dO, dO, d2, d2, 1 

TriCore Architecture Manual 287 

• PRELIMINARY EDITION. 



MSUB.O 

See Also: 
MSUBR.O (pg 297), MSUBM.O (pg 292), MSUBRS.O (pg 301). 
MSUBS.O (pg 305) 

SIEMENS 

288 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS 

MSUBM 

MSUBM.U 

Syntax: 

Multiply-Subtract Multiword 
64 - (32 x 32) => 64 

Multiply-Subtract Multiword Unsigned 
64 - (32 x 32) => 64 

msubm Ec, Ed, Da, Db (RRR) 
msubm Ec, Ed, Da, const9 (RCR) 
msubm.u Ec, Ed, Da, Db (RRR) 
msubm.u Ec, Ed, Da, const9 (RCR) 

Description: 

MSUBM 

MSUBM 

MSUBM.U 

Multiply the contents of data register Da by the contents of data register Dblconst9, sub
tract the 64-bit result from the contents of extended data register Ed, and put the result in 
extended data register Ec. The operands are treated as signed/unsigned integers. The 
value const9 is sign-extended/zero-extended to 32 bits before the multiplication is per
formed. Overflow and advanced overflow are calculated on the final result. 

Operation: 

E[c][63:0] = E[d][63:0] - ((D[a][31 :0] * D[b][31 :0])[63:0]); signed 
E[c][63:0] = E[d][63:0] - ((D[a][31 :0] * sign_ext(const9))[63:0]); signed 

E[c][63:0] = E[d][63:0] - ((D[a][31 :0] * D[b][31 :0])[63:0]); unsigned 
E[c][63:0] = E[d][63:0] - ((D[a][31:0] * zero_ext(const9))[63:0]); unsigned 

Status: 

V,SV, AV,SAV 

Examples: 

msubm eO, e4, d3, d2 
msubm eO, e4, d14, 126 
msubm.u e10, e4, d1, d2 
msubm.u eO, e4, d10, Ox16 

See Also: 

MSUB (pg 284), MSUBMS (pg 294), MSUBMS.U (pg 294), MSUBS (pg 303), 
MSUBS.U (pg 303) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

289 



MSUBM.H SIEMENS 

MSUBM.H Packed Multiply-Subtract with Multiword 
Result 

MSUBM.H 

64 - ((16 x 16) + (16 x 16)) => 64 

Syntax: 

msubm.h Ec, Ed, Oa, Ob (RRR) 

Description: 

Multiply the most-significant halfword of data register Da by the most-significant half
word of data register Db. Multiply the least-significant halfword of data register Da by the 
least-significant halfword of data register Db. Add the products of the two multiplications, 
sign-extend the result to 64 bits, and left-shift by 16. Subtract that value from extended 
data register pair Ed and put the 64-bit result into extended data register Ee. The operands 
are treated as signed values. Overflow and advanced overflow are calculated on the final 
result. 

Operation: 

290 

E[c] [63:0] = E[d][63:0]- ((0[a][31:16] * 0[b][31:16]) + (O[a] [15:0] * O[b] [15:0])«16); 
signed 

Da 

Dd 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS MSUBM.H 

Status: 

V,SV,AV,SAV 

Example: 

msubm.h e12, e4, dl, d2 

See Also: 

MADD.O (pg 247). MADDR.Q (pg 257), MADDRS.O (pg 261). MADDS.O (pg 265) 

TriCore Architecture Manual 291 

• PRELIMINARY EDITION. 



MSUBM.Q 

MSUBM.Q 

Syntax: 

Multiply-Subtract Multiword 
64 - (16 x 16) => 64 

msubm.q Ec, Ed, Da, Db (RRR) 

Description: 

SIEMENS 

MSUBM.Q 

Multiply the most-significant halfword of data register Da by the most-significant half
word of data register Db, sign-extend the result to 64 bits, and left-shift by 16. Subtract 
that value from extended data register Ed and put the 64-bit result into extended data reg
ister Ee. The operands are treated as signed values. Overflow and advanced overflow are 
calculated on the final result. 

Operation: 

E[c] [63:0] = E[d] [63:0]- sign_ext(D[a][31:16] * D[b][31:16])« 16; signed 

Dd 

TAM056.1 

Status: 

v, SV, AV, SAY 

Example: 

msubm.q e12, e4, dl, d2 

292 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS MSUBM.Q 

See Also: 
MSUB.Q (pg 287). MSUBR.Q (pg 297). MSUBRS.Q (pg 301). MSUBS.Q (pg 305) 

TriCore Architecture Manual 293 

• PRELIMINARY EDITION. 



MSUBMS SIEMENS 

MSUBMS Multiply-Subtract with Saturation I MSUBMS 
64 - (32 x 32) => 64 

MSUBMS.U Multiply-Subtract Unsigned with Saturation 
64 - (32 x 32) => 64 

MSUBMS.U 

Syntax: 

msubms Ec, Ed, Da, Db (RRR) 
msubms Ec, Ed, Da, const9 (RCR) 
msubms.uEc, Ed, Da, Db (RRR) 
msubms.u Ec, Ed, Da, const9 (RCR) 

Description: 

Multiply the contents of data register Da by the contents of data register Dbleonst9, sub
tract the 64-bit result from the contents of extended data register Ed, and put the result in 
extended data register Ee. The operands are treated as signed/unsigned integers. The 
value eonst9 is sign-extended/zero-extended to 32 bits before the multiplication is per
formed. Overflow and advanced overflow are calculated on the final result. On overflow, 
the result is saturated. 

Operation: 

E[c)[63:0] = E[d)[63:0] - ((D[a][31 :0] * D[b)[31 :0])[63:0]); signed; ssov 
E[c)[63:0] = E[d][63:0] - ((D[a][31:0] * sign_ext(const9))[63:0]); signed; ssov 

E[c)[63:0] = E[d][63:01- ((D[a][31 :0] * o [b)[31 :0])[63:0]); unsigned; suov 
E[c)[63:0] = E[d][63:0] - ((D[a][31:0] * zero_ext(const9))[63:0]); unsigned; suov 

Status: 

V,SV,AV,SAV 

Examples: 

rnsubrns eiO, e4, di, d2 
rnsubrns eO, e4, diO, OxiOO 
rnsubrns.u eiO, e4, di, d2 
rnsubrns.u eO, e4, diO, OxFF 

See Also: 
MSUB (pg 284). MSUBM.U (pg 289). MSUBS (pg 303), MSUBS,U (pg 303) 

294 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS 

MSUBR.H 

Syntax: 

Packed Multiply-Subtract with Rounding 
32 - (16 x 16) => 16 MSB 
32 - (16 x 16) => 16 LSB 

msub~h O~Ed,O~O~n(RRR) 

Description: 

MSUBR.H 

MSUBR.H 

Multiply the most-significant halfword of data register Da by the most-significant half
word of data register Db and subtract the product, left-justified if n = 1, from the upper 32 
bits of extended data register Ed. Round the contents and put the most-significant half
word of the rounded value in the most-significant halfword of Dc. 

Multiply the least-significant halfword of data register Da by the least-significant halfword 
of data register Db and subtract the product, left-justified if n = 1, from the lower 32 bits of 
extended data register Ed. Round the contents and put the least-significant halfword of 
the rounded value in the least-significant halfword of Dc. 

The operands are treated as signed values. Overflow and advanced overflow are calcu
lated on each independent final result. 

If n = 1, Ox8000 * Ox8000 = Ox7FFF.FFFF. 

Operation: 

0[c][31:16] = round16(E[d] [63:32]- ((O[a] [31:16] * O[b] [31:16])« n)[31:16]) 
0[c][15:0] = round16(E[d] [31 :0]- ((O[a] [15:0] * O[b] [15:0]) « n)[15:0]); signed; n = 0, 1 

TriCore Architecture Manual 295 

• PRELIMINARY EDITION. 



MSUBR.H SIEMENS 

Da I 'f'-16_I_x_;'.l....--_O~L,b ~16 I 
MUL J 

;; 116 

Da 1...-1 --'--~r--' Db x I 

MUL 'I -I -----' 

D[d+1J Dd 

.--_____ ro_un_d ,..,SJ +-OxBOOO 

~16 
Dc 1'------'_--'1 

Status: 

V, SV,AV,SAV 

Example: 

msubr.h dlO, e4, dl, d2, 1 

See Also: 

296 

MADD.Q (pg 247), MADDM.H (pg 250), MADDM.Q (pg 252), 
MADDRS.H (pg 259), MADDRS.Q (pg 261), MADDS.H (pg 264), 
MADDS.Q (pg 265) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS 

MSUBR.Q 

Syntax: 

Multiply-Subtract with Rounding 
32 - (16 x 16) => 16 

msub~q D~Dd,D~Db,n(RRR) 

Description: 

MSUBR.Q 

MSUBR.Q 

Multiply the most-significant halfword of data register Da by the most-significant half
word of data register Db and subtract the product, left-justified if n = 1, from data register 
Dd. Round the result, putthe most-significant halfword of the rounded value in Dc, and set 
the least-significant halfword of Dcto O. The operands are treated as signed values. Over
flow and advanced overflow are calculated on the final result. 

If n = 1, Ox8000 * Ox8000 = Ox7FFF.FFFF. 

Operation: 

D[c][31 :0] = round16(D[d]- «D[a] [31 :16] * D[b] [31 :g16]) « n)[31 :0])[31 :16], 16'h 0000; 
n = 0,1; signed 

TAMIl58.1 

Status: 

v, SV, AV, SAY 

TriCore Architecture Manual 297 

• PRELIMINARY EDITION. 



MSUBR.a SIEMENS 
Example: 

msubr.q d3, d4, dl, d2, 1 

See Also: 

MSUB.Q (pg 287), MSUBM.Q (pg 292), MSUBRS.a (pg 301), MSUBS.a (pg 305) 

298 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS MSUBRS.H 

MSUBRS.H Packed Multiply-Subtract with Rounding and 
Saturation 

MSUBRS.H 

Syntax: 

32 - (16 x 16) => 16 MSB 
32 - (16 x 16) => 16 LSB 

msubrs.h Dc, Ed, Oa, ~b, n (RRR) 

Description: 

Multiply the most-significant halfword of data register Da by the most-significant half
word of data register Db and subtract the product, left-justified if n = 1, from the upper 32 
bits of extended data register Ed. Round the contents and put the most-significant half
word of the rounded value into the most-significant halfword of Dc. 

Multiply the least-significant halfword of data register Da by the least-significant halfword 
of data register Db and subtract the product, left-justified if n = 1, from the lower 32 bits of 
extended data register Ed. Round the contents and put the least-significant halfword of 
the rounded value into the least-significant halfword of Dc. 

The operands are treated as signed values. Overflow and advanced overflow are calcu
lated on each independent final result. On overflow, each result is independently satu
rated. 

If n = 1, Ox8000 * Ox8000 = Ox7FFF.FFFF. 

Operation: 

D[c][31 :16] = round16(E[d] [63:32]- ((O[a] [31 :16] * O[b] [31 :16]) « n)[31 :16]} 
D[c][15:0] = round16(E[d] [3:0]- ((O[a] [15:0] * O[b] [15:0]) « n)[15:0]); 
signed; n = 0, 1; ssov 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

299 



MSUBRS.H SIEMENS 

Da I,--_x --,-I -~r--' Db 1 xii 
16 r--__ ----"f,6 

MUL 

D[d+1] Dd 
'----..----' 

16 

Dc ..... 1 _----'-_--' 

Status: 

V,SV,AV,SAV 

Example: 

msubr.h dlO, e4, dl, d2, 1 

See Also: 

300 

MADD.Q (pg 247), MADDM.H (pg 250), MADDM.Q (pg 252), 
MADDRS.Q (pg 261), MADDS.Q (pg 265) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS 

MSUBRS.Q 

Syntax: 

Multiply-Subtract with Rounding and Saturation 
32 - (16 x 16) => 16 

msubrs.q Dc, Dd, Da, Db, n (RRR) 

Description: 

MSUBRS.a 

MSUBRS.Q 

Multiply the most-significant halfword of data register Da by the most-significant half
word of data register Db and subtract the product, left-justified if n = 1, from data register 
Dd. Round the result, putthe most-significant halfword ofthe rounded value in Dc, and set 
the least-significant halfword of Dc to O. Overflow and advanced overflow are calculated 
on the final result. On overflow, the result is saturated. 

If n = 1, OxBOOO * OxBOOO = Ox7FFF.FFFF. 

Operation: 

D[c][31:0] = round16(D[d][31:0] - ((D[a] [31:16] * D[b] [31:16])« n)[31:0] [31:16], 
16'h 0000; n = 0, 1; signed, ssov 

Dd 

TAMD59., 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

301 



MSUBRS.O SIEMENS 
Status: 

V,SV,AV,SAV 

Example: 

msubrs.q d3, d4, dl, d2, 1 

See Also: 
MSUB.O (pg 287), MSUBM.O (pg 292), MSUBR.O (pg 297), MSUBS.a (pg 305) 

302 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS 

MSUBS 

MSUBS.U 

Syntax: 

Multiply·Subtract with Saturation 
32 - (32 x 32) => 32 

Multiply·Subtract with Saturation Unsigned 
32 - (32 x 32) => 32 

msubs Dc, Dd, Da, Db (RRR) 
msubs Dc, Dd, Da, const9 (RCR) 
msubs.u Dc, Dd, Da, Db (RRR) 
msubs.u Dc, Dd, Da, const9 (RCR) 

Description: 

MSUBS 

MSUBS 

MSUBS.U 

Multiply the contents of data register Da by the contents of data register Dblconst9, sub
tract the result from the contents of data register Dd, and put the result in data register Dc. 
The operands are treated as signed/unsigned, 32-bit integers. The value const9 is sign
extended/zero-extended to 32 bits before the multiplication is performed. Overflow and 
advanced overflow are calculated on the final result. On overflow, the result is saturated. 

Operation: 

D[c][31 :0] = D[d][31 :0] - (D[a][31 :0] * D[b][31 :0]); signed, ssov 
D[c][31 :0] = D[d][31 :0] - (D[aJ[31 :0] * sign_ext(const9)); signed, ssov 

D[cJ[31 :0] = D[dJ[31 :0]- (D[aJ[31 :0] * D[bJ[31 :0]); unsigned, ssov 
D[c][31 :0] = D[dJ[31 :0] - (D[aJ[31 :0] * zero_ext(const9)); unsigned, ssov 

Status: 

V,SV,AV,SAV 

Examples: 

msubs d3, d4, d1, d2 
msubs d3, d4, d1, 126 
msubs.u d3, d4, d1, d2 
msubs.u d3, d4, d1, 126 

See Also: 
MSUB (pg 284), MSUBM.U (pg 289), MSUBMS (pg 294), MSUBMS.U (pg 294) 

TriCore Architecture Manual 303 

• PRELIMINARY EDITION. 



MSUBS.H SIEMENS 

MSUBS.H Packed Multiply-Subtract with Saturation 
32 - (16 x 16) => 321132 - (16 x 16) => 32 

MSUBS.H 

Syntax: 

msubs.h Ec, Ed, Da, Db, n (RRR) 

Description: 

Multiply the most-significant halfword of data register Da by the most-significant half
word of data register Db and subtract the product, left-justified if n = 1, from the upper 32 
bits of extended data register Ed. Put the result in the upper 32 bits of extended data reg
ister Ec. 

Multiply the least-significant halfword of data register Da by the least-significant halfword 
of data register Db and subtract the product, left-justified if n = 1, from the lower 32 bits of 
extended data register Ed. Put the result in the lower 32 bits of extended data register Ec. 

The operands are treated as signed values. Overflow and advanced overflow are calcu
lated on each independent final result. On overflow, each result is independently satu
rated. 

Operation: 

E[c][63:32] = E[d][63:32] - (((D[a][31 :16] * D[b][31 :16]) « n)[31 :0]) 

E[c][31:0] = E[d][31:0]- (((D[a][15:0] * D[b][15:0])« n)[31:0]) 
signed, n = 0, 1 

Status: 

v, SV, AV, SAY 

Example: 

msubs.h e4, eO, dll, d2, a 

See Also: 

MSUB (pg 284) 

304 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS 

MSUBS.Q 

Syntax: 

Multiply·Subtract with Saturation 
32 - (16 x 16) => 32 

msubs.u Dc, Dd, Da, Db, n (RRR) 

Description: 

MSUBS.a 

MSUBS.Q 

Multiply the most-significant halfword of data register Da by the most-significant half
word of data register Db and subtract the product, left-justified if n = 1, from the contents 
of data register Dd. Put the result in Dc. The operands are treated as signed values. Over
flow and advanced overflow are calculated on the final result. On overflow, the result is 
saturated. 

If n = 1, Ox8000 * Ox8000 = Ox7FFF.FFFF. 

Operation: 

D[c][31 :0] = D[d][31 :0]- ((D[a][31 :16] * D[b][31 :16]) « n)[31 :0]; signed; n = 0, 1; ssov 

TAMIliO.l 

Status: 

V,SV,AV,SAV 

TriCore Architecture Manual 305 

• PRELIMINARY EDITION. 



MSUBS.Q SIEMENS 
Example: 

msubs.q d3, d4, dl, d2, 1 

See Also: 
MSUB.Q (pg 287), MSUBM.Q (pg 292), MSUBR.Q (pg 297), MSUBRS.Q (pg 301) 

306 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS MTCR 

MTCH Move To Core Register MTCH 

Syntax: 

mtcr const16, Da (RLC) 

Description: 
Move the value in data register Da to the core SFR register selected by the value const16. 
The core SFR address is a const16 byte offset from the core SFR base address. It must be 
word-aligned (the least-significant two bits are zero). Non-aligned address have an unde
fined effect. 

This instruction can be executed in supervisor mode only. 

Refer also to Chapter 3, "Core Registers," on page 27. 

Operation: 
CR[const16] = D[a] 

Example: 

mtcr 12, d1 

See Also: 
BISR (pg 154), DISABLE (pg 177), ENABLE (pg 185), MFCR (pg 271), 
RSTV (pg 340) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

307 



MUL 

MUL 

Syntax: 

mul Dc, Da, Db (RR) 
mul Dc, Da, const9 (RC) 

Description: 

Multiply 
32x32=>32 

SIEMENS 

MUL 

Multiply the contents of data register Da by the contents of data register Dblconst9 and put 
the result in data register Dc. The operands are treated as 32-bit integers. The value const9 
is sign-extended to 32 bits before the multiplication is performed. 

Operation: 

D[c)[31 :0] = D[a)[31 :0] * D[b)[31 :0] 
D[c)[31 :0] = D[a][31 :0] * const9 

Status: 

V,SV,AV,SAV 

Examples: 

mul d3, d1, d2 
mul d3, d1, 126 

See Also: 
MULS (pg 318), MULS.U (pg 318), MULM (pg 312), MULM.U (pg 312) 

308 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS 

MUL.H 

Syntax: 

Packed Multiply Q Format 
16 x 16 => 32 

mul.h Ec, Ed, Da, Db, n (RR) 

Description: 

MUL.H 

MUL.H 

Multiply the most-significant halfword of data register Da by the most-significant half
word of data register Db. Put the result, left-justified if n = 1, in the most-significant 32 bits 
of extended data register Ec. Multiply the least-significant halfword of data register Da by 
the least-significant halfword of data register Db. Put the result, left-justified, if n = 1, in the 
least-significant 32 bits of extended data register Ec. The operands are treated as signed 
values. 

If n = 1, Ox8000 x Ox8000 = Ox7FFFFFFF. 

Operation: 

E[c][63:32] = ((D[a][31 :16] * D[b][31 :16]) « n)[31 :0]) 
E[c][31:0] = ((D[a][15:0] * D[b][15:0])« n)[31:0]); 
signed, n = 0, 1 

Da Da 

Status: 

V,SV,AV,SAV 

Examples: 

rnul.h d3, dl, d2 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

309 



MUL.H 

See Also: 
MUL (pg 308). MULS (pg 318). MULS.U (pg 318). MULM (pg 312). 
MULM.U (pg 312) 

SIEMENS 

310 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS 

MUL.Q 

Syntax: 

mul.q Dc, Da, Db, n (RR) 

Description: 

Multiply 
(16 x 16) => 32 

MUL.Q 

MUL.Q 

Multiply the most-significant halfword of data register Da by the most-significant half
word of data register Db and put the result, left-justified if n =1, in data register Dc. The 
operands are treated as signed values. 

If n = 1, Ox8000 * Ox8000 = Ox7FFFFFF 

Operation: 

D[c)[31:0] = (D[a)[31:16] * D[b)[31:16])« n; signed; n = 0,1; 

D2 

%MUX 1 n 

32 

Dc 

Status: 

V,SV,AV,SAV 

Example: 

mul.q dO, d2, d3, 0 dO Ox2AOOOOO 

See Also: 
MUL (pg 308), MULS (pg 318), MULS.U (pg 318)' MULM (pg 312), 
MULM.U (pg 312), MULR.Q (pg 316) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

TAM062.1 

311 



MULM 

MULM 

MULM.U 

Syntax: 

Multiply with Multiword Result 
32x32=>64 

Multiply with Multiword Result Unsigned 
32x32=>64 

mulm Dc, Da, Db (RR) 
mulm Dc, Da, const9 (RC) 
mulm.u Dc, Da, Db (RR) 
mulm.u Dc, Da, const9 (RC) 

Description: 

SIEMENS 

MULM 

MULM.U 

Multiply the contents of data register Da by the contents of data register Dblconst9 and put 
the result in data register pair Dc. The multiplicands are treated as signed/unsigned, 32-
bit integers; the result is a signed/unsigned, 64-bit integer. The value const9 is sign
extended/zero-extended to 32 bits before the multiplication is performed. 

Operation: 

E[c][63:0] = D[a][31 :0] * D[b][31 :0]; signed 
E[c][63:0] = D[a][31 :0] * sign_ext(const9); signed 

E[c][63:0] = D[a][31 :0] * D[b][31 :0]; unsigned 
E[c][63:0] = D[a][31 :0] * sign_ext(const9); unsigned 

Da I Db b2 ~--~~ 

Ec 

Status: 

V,SV,AV,SAV 

312 

• PRELIMINARY EDITION. 

TAMIlII4,' 

TriCore Architecture Manual 



SIEMENS 
Examples: 

mulm d3, d1, d2 
mulm d3, d1, 126 
mulm.u d3, d1, d2 
mulm.u d3, d1, 126 

See Also: 
MUL (pg 308), MULS (pg 318), MULS.U (pg 318), MULM.U (pg 312), 
MUL.Q (pg 311), MULR.Q (pg 316) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

MULM.U 

313 



MULR.H SIEMENS 

MULR.H Packed Multiply with Rounding 
16 x 16 => 16 

MULR.H 

Syntax: 
mulr.h Dc, Da, Db, n (RR) 

Description: 

Multiply the most-significant halfword of data register Da by the most-significant half
word of data register Db. Put the rounded result, left-justified if n = 1, in the most-signifi
cant halfword of data register Dc. Multiply the least-significant halfword of data register 
Da by the least-significant halfword of data register Db. Put the rounded result, left-justi
fied if n = 1, in the least-significant halfword of data register Dc. The operands are treated 
as signed values. 

If n=1, Ox8000 x Ox8000 = Ox7FFFFFFF. 

Operation: 

O[cj[31:16] = round16((D[a] [31:16] * D[b] [31:16])« n)[31:0])[31:16], 16'h 0000; signed; 
D[cj[15:0] = round16((D[a] [15:0] * O[b] [15:0])« n)[31:0])[31:16], 16'h 0000; signed; 

Da 

Dc LI _--l-_---' TAMII67.1 

Status: 

V,SV,AV,SAV 

Example: 

mulr.h dO, dl, d2, 1 

314 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS MULR.H 

See Also: 
MUL.a (pg 311). 

TriCore Architecture Manual 315 

• PRELIMINARY EDITION. 



MULR.Q 

MULR.Q 

Syntax: 

mulr.q 

Description: 

Multiply in Q Format with Rounding 
16x 16=> 16 

Dc, Da, Db, n (RR) 

SIEMENS 

MULR.Q 

Multiply the most-significant halfword of data register Da by the most-significant half
word of data register Db. Put the rounded result, left-justified if n = 1, in the most-signifi
cant halfword of data register Dc and set the least-significant halfword of Dc to O. The 
operands are treated as signed values. If n = 1. Ox8000 * OxBOOO = Ox7FFFFFFF. 

Operation: 

D[c][31:0] = round16((D[a] [31:16] * D[b] [31:16])« n)[31:0])[31:16]. 16'h 0000; n = 0,1; 
signed; 

Dc 1-1 _--1._---' TAM067.1 

Status: 

V,SV,AV,SAV 

Example: 

mulr.q d3, dl, d2, 1 

316 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS MULR.O 

See Also: 
MUL.O (pg 311) 

TriCore Architecture Manual 317 

• PRELIMINARY EDITION. 



MULS 

MULS 

MULS.U 

Syntax: 

Multiply with Saturation 
32x32=>32 

Multiply Unsigned with Saturation 
32x32=>32 

muls Dc, Da, Db (RR) 
muls Dc, Da, const9 (RC) 
muls.u Dc, Da, Db (RR) 
muls.u Dc, Da, const9 (RC) 

Description: 

SIEMENS 

MULS 

MULS.U 

Multiply the contents of data register Da by the contents of data register Dblconst9 and put 
the result in data register Dc. The operands are treated as signed/unsigned, 32-bit inte
gers, with saturation on signed/unsigned overflow. The value const9 is sign-extended/ 
zero-extended to 32 bits before the multiplication is performed. 

Operation: 

D[c][31 :0] = D[a][31 :0] * D[b][31 :0]; signed; ssov 
D[c][31 :0] = D[a][31 :0] * sign_ext(const9); signed; ssov 

D[c][31 :0] = D[a][31 :0] * D[b][31 :0]; unsigned; suov 
D[c][31 :0] = D[a][31 :0] * zero_ext(const9); unsigned; suov 

Status: 

V,SV,AV,SAV 

Examples: 

muls d3, d1, d2 
muls d3, d1, 126 
muls.u d3, d1, 253 
muls.u d3, d1, d2 

See Also: 
MUL (pg 308), MULM (pg 312), MULM.U (pg 312) 

318 

• PRELIMINARY EDITION. 

TriCore Architecture Manual 



SIEMENS NAND 

NAND logical NAND NAND 
Syntax: 

nand Dc, Da, Db (RR) 
nand Dc, Da, const9 (RC) 

Description: 

Compute the bitwise logical NAND of the contents of data register Da and data register 
Dblconst9 and put the result in data register Dc. The operands are treated as unsigned, 32-
bit integers and the const9 value is zero-extended to 32 bits. 

Operation: 
D[c] = !(D[a] and D[b]) 
D[c] = !(D[a] and zero_ext(const9) 

Examples: 

nand d3, d1, d2 
nand d3, d1, 126 

See Also: 
AND (pg 145), ANON (pg 152), NOR (pg 325), NOT (pg 327), OR (pg 328), 
ORN (pg 335), XNOR (pg 394), XOR (pg 396) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

319 



NAND.T SIEMENS 

NAND.T Bit Logical NAND NAND.T 

Syntax: 

nand.t Dc, Da, p1, Db, p2 (BIT) 

Description: 

Compute the logical NAND of bit p1 of data register Da and bit p2 of data register Db. Put 
the result in the least-significant bit of data register Dc and clear the remaining bits of I;>c 
to zero. 

Refer also to Section 8.3, "Bit Operations," on page 100. 

Operation: 

D[cj = !(D[aJ[p1j and D[b][p2]) 

Example: 

nand.t d3, dl, 2, d2, 4 

See Also: 
AND.T (pg 151), ANDN.T (pg 153), NOR.T (pg 326), OR.T (pg 334), 
ORN.T (pg 336), XNOR.T (pg 395), XOR.T (pg 401) 

320 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS NE 

NE Not Equal NE 
Syntax: 

ne Dc, Oa, Db (RR) 
ne Dc, Oa, const9 (RC) 

Description: 

If the contents of data register Da are not equal to the contents of data register Dblconst9, 
set the least-significant bit of Octo 1 and clear the remaining bits to zero; otherwise, clear 
all bits in Dc. The const9value is sign-extended to 32 bits. 

Refer also to Section 8.2, "Compare Instructions," on page 97. 

Operation: 

O[c] = (O[a] != Orb]) 
O[c] = (O[a] != sign_ext(const9)) 

Examples: 

ne d3, d1, d2 
ne d3, d1, 126 

See Also: 
EQ (pg 186). GE (pg 192), GE.U (pg 192), LT (pg 238), LT.U (pg 238) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

321 



NE.A SIEMENS 

NE.A Not Equal Address NE.A 

Syntax: 

ne.a Dc, Aa, Ab (RR) 

Description: 

If the contents of address registers Aa and Ab are not equal, set the least-significant bit of 
Dc to 1 and clear the remaining bits to zero; otherwise, clear all bits in Dc. 

Operation: 

D[c] = (A[a] != A[bll 

Example: 

ne.a d3, a4, a2 

See Also: 

EQ.A (pg 187), EQZ.A (pg 190), GE.A (pg 193), LT.A (pg 240), NEZ.A (pg 323) 

322 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS NEZ.A 

NEZ.A Not Equal Zero Address NEZ.A 

Syntax: 

nez.a Dc, Aa (RR) 

Description: 

If the contents of address register Aa are not equal to zero, set the least significant bit of 
Dc to 1 and clear the remaining bits to zero; otherwise, clear all bits in Dc. 

Operation: 
O[c] = (A [a] != 0) 

Example: 

nez.a d3, a4 

See Also: 

EQ.A (pg 187), EQZ.A (pg 190), GE.A (pg 193)' LT.A (pg 240), NE.A (pg 322) 

TriCore Architecture Manual 323 

• PRELIMINARY EDITION. 



NOP 

NOP 
Syntax: 

nop (SYS) 

Description: 

SIEMENS 

No Operation NOP 

NOP is used to implement efficient low-power non-operational instructions. 

Operation: 

no operation 

Example: 

nap 

324 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS NOR 

NOR Logical NOR NOR 
Syntax: 

nor Dc, Da, Db (RR) 
nor Dc, Da,const9 (RC) 

Description: 

Compute the bitwise logical NOR of the contents of data register Da and the contents of 
data register Dblconst9 and put the result in data register Dc. The operands are treated as 
unsigned, 32-bit integers and the const9 value is zero-extended to 32 bits. 

Operation: 

D[c] = !(D[a] or D[b]) 
D[c] = !(D[a] or zero_ext(const9)) 

Examples: 

nor d3, d1, d2 
nor d3, d1, 126 

See Also: 
AND (pg 145), ANON (pg 152), NAND (pg 319), NOT (pg 327). OR (pg 328), 
ORN (pg 335), XNOR (pg 394), XOR (pg 396) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

325 



NOR.T SIEMENS 

NOR.T Bit Logical NOR NOR.T 

Syntax: 

nor.t Dc, Da, p1, Db, p2 (BIT) 

Description: 

Compute the logical NOR of bit p1 of data register Da and bit p2 of data register Db. Put 
the result in the least-significant bit of data register Dc and clear the remaining bits of Dc 
to zero. 

Refer also to Section 8.3, "Bit Operations," on page 100. 

Operation: 

D[c] = !(D[a][p1] or D[b][p2]) 

Example: 

nor.t d3, dl, 5, d2, 3 

See Also: 
AND.T (pg 151), ANDN.T (pg 153), NAND.T (pg 320), OR.T (pg 334), 
ORN.T (pg 336), XNOR.T (pg 395), XOR.T (pg 401) 

326 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS 

NOT 

Syntax: 

nQt Dal$R) 

Description: 

Bitwise Complement 

. ··············C~lt1pute·the.bitwi~f}~()mple~Elhtofthe(:\?nt¢!lts .• 9fda,~a~e9iSter.pa. 

NOTE 1: The 32-bit equivalent of the NOT instruction is a NOR with a constant of zero. 

Operation: 

.·...pl~r~·l[)I~J···· 

Example: 

not d15 

See Also: 
XNOR (pg 394) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

NOT 

NOT 

327 



OR SIEMENS 

OR Logical OR OR 

Syntax: 

or Dc, Da, Db (RR) 
or Dc, Da, const9 (RC) 

Description: 

Compute the bitwise logical OR of the contents of data register Da and the contents of 
data register Db/const9 and put the result in data register Dc. The operands are treated as 
unsigned, 32-bit integers and the const9 value is zero-extended to 32 bits. 

Operation: 

D[c] = D[a] or D[b] 
D[c] = D[a] or zero_ext(const9) 

Examples: 

or d3, d1, d2 
or d3, d1, 126 
or d1, d2 
or d15, 126 

See Also: 

AND (pg 145), ANON (pg 152), NAND (pg 319), NOR (pg 325), NOT (pg 327), 
ORN (pg 335), XNOR (pg 394), XOR (pg 396) 

328 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS 

OR.AND.T 
OR.ANDN.T 
OR.NOR.T 
OR.OR.T 

Syntax: 

Accumulating Logical OR-AND 

Accumulating Logical OR-AND-Not 

Accumulating Logical OR-NOR 

Accumulating Logical OR-OR 

or.and.t Dc, Da, p1, Db, p2 (BIT) 
or.andn.t Dc, Da, p1, Db, p2 (BIT) 
or.nor.t Dc, Da, p1, Db, p2 (BIT) 
or.or.t Dc, Da, p1, Db, p2 (BIT) 

Description: 

OR.AND.T 

OR.AND.T 
OR.ANDN.T 

OR.NOR.T 
OR.OR.T 

Compute the logical AND/ANDN/NOR/OR of the value of bit p 1 of data register Da and bit 
p2 of Db. Then compute the logical OR of that result and bit 0 of Dc, and put the result back 
in bit 0 of Dc. All other bits in Dc are unchanged. 

Refer also to Section B.3, "Bit Operations," on page 100. 

Operation: 

or.and.t: D[c] = {D[c][31 :1], D[c][O] or (D[a][p1] and D[b][p2])} 
or.andn.t: D[c] = {D[c][31 :1], D[c][O] or (D[a][p1] and !D[b][p2])} 
or.nor.t: D[c] = {D[c][31 :1], D[c][O] or !(D[a][p1] or D[b][p2])} 
or.or.t: D[c] = {D[c][31:1], D[c][O] or (D[a][p1] or D[b][p2])} 

Examples: 

or.and.t d3, dl, 3, d2, 5 
or.andn.t d3, dl, 3, d2, 5 
or.nor.t d3, dl, 3, d2, 5 
or.or.t d3, dl, 3, d2, 5 

See Also: 
AND.AND.T (pg 146), AND.ANDN.T (pg 146), AND.NOR.T (pg 146), 

SH.NAND.T (pg 358), SH.NOR.T (pg 358), SH.OR.T (pg 358), SH.ORN.T (pg 358), 8j' 
AND.OR.T (pg 146), SH.AND.T (pg 358), SH.ANDN.T (pg 358), m 
SH.XNOR.T (pg 358), SH.XOR.T (pg 358) 

TriCore Architecture Manual 329 

• PRELIMINARY EDITION. 



OR.EQ SIEMENS 

OR.EQ Equal Accumulating OR.EQ 

Syntax: 

or.eq Dc, Da, Db (RR) 
or.eq Dc, Da,const9 (RC) 

Description: 

Compute the logical OR of De[O] and the Boolean result of the EQ operation on the con
tents of data register Da and data register Dtieonst9. Put the result in De[O]. All other bits 
in De are unchanged. The eonst9 value is sign-extended to 32 bits. 

Refer also to Section 8.2, "Compare Instructions," on page 97. 

Operation: 

D[cJ[O] = D[c][O] OR (D[a] == D[b]) 
D[cJ[O] = D[c][O] OR (D[a] == sign_ext(const9)) 

Examples: 

or.eq d3, d1, d2 
or.eq d3, d1, 126 

See Also: 
AND.EQ (pg 147), XOR.EQ (pg 397) 

330 

• PRELIMINARY EDITION. 

TriCore Architecture Manual 



SIEMENS 

DR.GE 
DR.GE.U 

Syntax 

Greater Than or Equal Accumulating 

Greater Than or Equal Accumulating 
Unsigned 

or.ge Dc, Da, Db (RR) 
or.ge Dc, Da,const9 (RC) 
or.ge.u Dc, Da, Db (RR) 
or.ge.u Dc, Da,const9 (RC) 

Description: 

OR.GE 

DR.GE 
DR.GE.U 

Calculate the logical OR of Oc[O] and the Boolean result of the GE operation on the con
tents of data register Oa and data register Oblconst9. Put the result in OctO]. All other bits 
in Dc are unchanged. Oa and Db are treated as 32-bit signed integers. The const9 value is 
sign-extended to 32 bits. 

Calculate the logical OR of Oc[O] and the Boolean result of the GE.U operation on the con
tents of data register Oa and data register Oblconst9. Put the result in OctO]. All other bits 
in Dc are unchanged. Oa and Db are treated as 32-bit unsigned integers. The const9 value 
is zero-extended to 32 bits. 

Refer also to Section 8.2, "Compare Instructions," on page 97. 

Operation: 

D[c] = D[c][O] OR (D[a] >= D[b]); signed 
D[c] = D[c][O] OR (D[a] >= sign_ext(const9)); signed 

D[c] = D[c][O] OR (D[a] >= D[b]); unsigned 
D[c] = D[c][O] OR (D[a] >= zero_ext(const9)); unsigned 

Examples: 

or.ge d3, d1, d2 
or.ge d3, d1, 126 
or.ge.u d3, d1, d2 
or.ge.u d3, d1, 126 

See Also: 

AND.GE (pg 148), AND.GE.U (pg 148), XOR.GE (pg 398), XOR.GE.U (pg 398) 

TriCore Architecture Manual 331 

• PRELIMINARY EDITION. 



OR.LT SIEMENS 

DR.Ll 
DR.Ll.U 

Less Than Accumulating 

Less Than Accumulating Unsigned 

DR.Ll 
DR.Ll.U 

Syntax 

or.lt Dc, Oa, Db (RR) 
or.lt Dc, Oa,const9 (RC) 
or.lt.u Dc, Oa, Db (RR) 
or.lt.u Dc, Da,const9 (RC) 

Description: 

Calculate the logical OR of Dc[O] and the Boolean result of the LT operation on the con
tents of data register Da and data register Dblconst9. Put the result in Dc[O]. All other bits 
in Dc are unchanged. Da and Db are treated as 32-bit signed integers. The const9 value is 
sign-extended to 32 bits. 

Calculate the logical OR of Dc[O] and the Boolean result of the LT.U operation on the con
tents of data register Da and data register Dblconst9. Put the result in Dc[O]. All other bits 
in Dc are unchanged. Da and Db are treated as 32-bit unsigned integers. The const9 value 
is zero-extended to 32 bits. 

Refer also to Section 8.2, "Compare Instructions," on page 97. 

Operation: 

O[c] = O[c][O] OR (D[a] < Orb]); signed 
D[c] = O[c][O] OR (D[a] < sign_ext(const)9); signed 

D[c] = O[c][O] OR (O[a] < Orb]); unsigned 
O[c] = O[c][O] OR (O[a] < zero_ext(const9)); unsigned 

Examples: 

or.lt d3, d1, d2 
or. It d3, d1, 126 
or.lt.ll d3, d1, d2 
or.lt.ll d3, d1, 126 

See Also: 
AND.LT (pg 149), AND.LT.U (pg 149), XOR.LT (pg 399), XOR.LT.U (pg 399) 

332 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS OR.NE 

OR.NE Not Equal Accumulating OR.NE 

Syntax: 

or.ne Dc, Da, Db (RR) 
or.ne Dc, Da, const9 (RC) 

Description: 

Calculate the logical OR of Dc[O] and the Boolean result of the NE operation on the con
tents of data register Da and data register Dblconst9. Put the result in Dc[O]. All other bits 
in Dc are unchanged. 

Refer also to Section 8.2, "Compare Instructions," on page 97. 

Operation: 

D[c] = D[c][O] OR (D[a] != D[b]) 
D[c] = D[c][O] OR (D[a] != const9) 

Examples: 

or.ne d3, d1, d2 
or.ne d3, d1, 126 

See Also: 
AND.NE (pg 150), XOR.NE (pg 400) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

333 



OR,T SIEMENS 

OR.T Bit Logical OR OR.T 

Syntax: 

or.t Dc, Da, p1, Db, p2 (BIT) 

Description: 

Compute the logical OR of bit pl of data register Da and bit p2 of data register Db. Put the 
result in the least-significant bit of data register Dc and clear the remaining bits of Dc to 
zero. 

Refer also to Section B.3, "Bit Operations," on page 100. 

Operation: 

D[c] = D[a][p1] or D[b][p2] 

Example: 

or.t d3, dl, 7, d2, 9 

See Also: 
AND.T (pg 151), ANDN.T (pg 153), NAND.T (pg 320), NOR.T (pg 326), 
ORN.T (pg 336), XNOR.T (pg 395), XOR.T (pg 401) 

334 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS ORN 

ORN Logical OR-Not ORN 
Syntax: 

orn Dc, Oa, Db (RR) 
orn Dc, Oa, const9 (RC) 

Description: 

Compute the bitwise logical OR of the contents of data register Da and the one's comple
ment of the contents of data register Db/const9 and put the result in data register Dc. The 
operands are treated as unsigned, 32-bit integers and the const9value is zero-extended to 
32 bits. 

Operation: 

O[c] = Ora] or !O[b] 
O[c] = Ora] or !zero_ext(const9) 

Examples: 

orn d3, d1, d2 
orn d3, d1, 126 

See Also: 
AND (pg 145), ANDN (pg 152). NAND (pg 319). NOR (pg 325). NOT (pg 327). 
OR (pg 328). XNOR (pg 394). XOR (pg 396) 

TriCore Architecture Manual 335 

• PRELIMINARY EDITION. 



ORN.T SIEMENS 

ORN.T Bit Logical OR-Not ORN.T 

Syntax: 

orn.t Dc, Da, p1, Db, p2 (BIT) 

Description: 

Compute the logical OR of bit p1 of data register Da and the inverse of bit p2 of data regis
ter Db. Put the result in the least-significant bit of data register Dc and clear the remaining 
bits of Dc to zero. 

Refer also to Section 8.3, "Bit Operations," on page 100. 

Operation: 

D[c) = D[aJ[p1) or !D[bJ[p2) 

Example: 

arn.t d3, dl, 2, d2, 5 

See Also: 

AND.T (pg 151), ANDN.T (pg 153), NAND.T (pg 320), NOR.T (pg 326), 
OR.T (pg 334), XNOR.T (pg 395), XOR.T (pg 401) 

336 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS RET 

RET Return from Call RET 

Syntax: 

ret (SYS) 
/ ....•. >.($1\) 

Description: 

Return from a function that was invoked with a CALL instruction. The return address is in 
register A11. The caller's upper context register values are restored as part of the return 
operation. 

Refer also to Section 8.S.1, "Unconditional Branch," on page 103 and to Section 8.9.5, 
"RET and RFE," on page 111. 

Operation: 
Refer to Section 4.2, "Task Switching Operation," on page 48. 

See Also: 
CALL (pg 159), CALLA (pg 160), CALLI (pg 161), RFE (pg 338), 
SYSCALL (pg 391) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

337 



RFE SIEMENS 

RFE Return From Exception RFE 

Syntax: 

rfe (SYS) 

Description: 

Return from an interrupt service routine or trap handler to the task whose saved upper 
context is specified by the contents of the Previous Context Information register (PCXI). 
The contents are normally the context of the task that was interrupted or that took a trap. 
However, in some cases, task management software may have altered the contents of the 
PXCI register to cause another task to be dispatched. 

The return PC value is taken from register A11 in the current context. In parallel with the 
jump to the return PC address, the upper context registers and PSW in the saved context 
are restored. 

Refer to Section 8.9.5, "RET and RFE," on page 111 for further details on this instruction 
and its use. See also Section 8.6.1, "Unconditional Branch," on page 103. 

Operation: 

PC = A11; 
Restore upper context; 

See Also: 

338 

CALL (pg 159), CALLA (pg 160), CALLI (pg 161), RET (pg 337), 
SYSCALL (pg 391) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS RSLCX 

RSLCX Restore Lower Context RSLCX 
Syntax: 

rslcx (SYS) 

Description: 

Load the contents of the memory block pointed to by the PCX field in PCXI into registers 
A2-A7, 00-07, and A 11. This operation restores the register contents of a previously saved 
lower context. 

Refer to Section 4.1, "Upper and Lower Contexts," on page 47. 

Operation: 

Refer to Section B.B.1, "Context Saving and Restoring," on page 109. 

See Also: 

LDLCX (pg 233), LDUCX (pg 235). RSLCX (pg 339), STLCX (pg 371), 
STUCX (pg 378). SVLCX (pg 388) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

339 



RSTV SIEMENS 

RSTV Reset Overflow Bits RSTV 

Syntax: 

rstv (SYS) 

Description: 

Reset overflow status flags in PSW. Refer to Section 8.9.3, "Access to the Core Special 
Function Registers," on page 111. 

Operation: 

PSW.N, SV, AV, SAV} = {D, D, D, D} 

Example: 

rstv 

See Also: 
BISR (pg 154), MTCR (pg 307), ENABLE (pg 185), DISABLE (pg 171) 

340 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS RSUB 

RSUB Reverse-Subtract RSUB 

Syntax: 

rsub Dc, Da, const9 (ReI 
rslJo·········) ·····Da($fi).·.···i ....... . 

Description: 

Subtract the contents of data register Da from the value const9 and put the result in data 
register Dc. The operands are treated as 32-bit integers. The value const9 is sign-extended 
to 32 bits before the subtraction is performed . 

. ···.r ... ?~~tiracttb~ .•• ~9.,ten~ 0f •• ~atal"egisterJ)atrqfJl.z~ro~nt;l;J>utt@·.·reslJltil'1 datar~gisterDa~ 
'ThepperfJnqJ~ tr:ea~eda~.a.32~bitjtiteger, . . . .. . . .. . . 

Operation: 

D[c] = sign_ext(const91 - D[a] 
····.·.QiaJ=i9.;;.D{~1:········i 

Status: 

V,SV,AV,SAV 

Examples: 

rsub d3, dl, 126 
rsub d1 

See Also: 
RSUBS (pg 342), RSUBS.U (pg 342) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

341 



RSUBS 

RSUBS 
RSUBS.U 

Syntax: 

Reverse-Subtract with Saturation 

Reverse-Subtract Unsigned with Saturation 

rsubs Dc, Oa, const9 (RC) 
rsubs.u Dc, Oa, const9 (RC) 

Description: 

SIEMENS 

RSUBS 
RSUBS.U 

Subtract the contents of data register Da from the value const9 and put the result in data 
register Dc. The operands are treated as signed/unsigned, 32-bit integers, with saturation 
on signed/unsigned overflow. The value const9 is sign-extended/zero-extended to 32 bits 
before the operation is performed. 

Operation: 

O[c] = sign_ext(const9) - Oral; signed; ssov 
O[c] = zero_ext(const9) - Oral; unsigned; suov 

Status: 

V,SV,AV,SAV 

Examples: 

rsubs d3, d1, 126 
rsub d3, d1, 253 
rsubs d3, d1, 253 
rsubs.u d3, d1, 253 
rsubs.u d3, d1, 126 

See Also: 
RSUB (pg 341) 

342 

• PRELIMINARY EDITION. 

TriCore Architecture Manual 



SIEMENS SAT.B 

SAT.B Saturate Byte SAT.B 

Syntax: 

sat.b Dc, Da (RR) 
. ):$~1:;b .····•••. •. fi)alSFll· ... 

Description: 

Ifthe signed 32-bit value in Da is less than -128, then store the value -128 in Dc. If Da is 
greater than 127, then store the value 127 in Dc. Otherwise, copy the least-significant byte 
of Data Dc. 

i:·.t;:t;:~~:~~~~~;~:~~:t~i~:hi:~t~~~a ~~;'~P~h~~S:~lf:t~ei~l~:~~t:~t~!~~~: 
.. i.unChf;iIlQElPi.···· .. 

Operation: 

O[c] = (O[a] < -128) ? -128: ((O[a] > 127) ? 127 : Ora]); signed 
··!.P{~t~]O{~}"';.f1~al?~1?8· :·{~OMl~'~7)?1:~?;~;:O[~11{~ign~d··.·i ..• ;" 

Examples: 

sat.b d3, dl 
sat.b dl 

See Also: 

SAT.BU (pg 344), SAT.H (pg 345), SAT.HU (pg 346) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

343 



SAT.BU SIEMENS 

SAT.BU Saturate Byte Unsigned SAT.BU 

Syntax: 

sat.bu Dc, Da (RR) 

Description: 

If the unsigned 32-bit value in Da is greater than 255, then store the value 255 in Dc. Oth
erwise, copy the least-significant byte of Da to Dc. 

Operation: 

Ole] = (Dla] > 255) ? 255 : D[a]; unsigned 

Examples: 

sat.bu d3, dl 
sat.bu dl 

See Also: 
SAT.B (pg 343), SAT.H (pg 345), SAT.HU (pg 346) 

344 

• PRELIMINARY EDITION. 

TriCore Architecture Manual 



SIEMENS SAT.H 

SAT.H Saturate Halfward SAT.H 

Syntax: 

sat.h Dc, Oa (RR) 

Da·lSFlr.·.·.······ 

Description: 

If the signed 32-bit value in Da is less than -32,768, then store the value -32,768 in Dc. If Da 
is greater than 32,767, then store the value 32,767 in Dc. Otherwise, copy the least-signifi
cant halfword of Da to Dc . 

. :.~)~~~:::e~:~~:~~~;;.~;:~~,~~::6~!:~~~~:f~::~:;~t~~:~.~~A3~;76~loP~;'f 
Operation: 

Ora] = (O[a] < _215) ? _215 : ((O[a] > 215_1) ? 215_1 : D[a]); signed 

... ···.i.!pt~l~;~pt~] .·.~·.·~~·~·~)?~?~~·;'t~I~~ ..• ~·.·.~1~~il'?2'~+':I)I~1);$iQne~.i.···· 
Examples: 

sat.h d3, dl 
sat.h dl 

See Also: 
SAT.B (pg 343), SAT.BU (pg 344), SAT.HU (pg 346) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

345 



SAT.HU 51 EM EN5 

SAT.HU Saturate Halfword Unsigned SAT.HU 

Syntax: 

sat.hu Dc, Da (RR) 

Description: 

If the signed 32-bit value in Da is greater than 65,535, then store the value 65,535 in Dc; 
otherwise, copy the least-significant halfword of Da to Dc. 

Operation: 

Examples: 

sat.hu d3, dl 
sat.hu dl 

See Also: 
SAT.BU (pg 344), SAT.H (pg 345) 

346 

• PRELIMINARY EDITION. 

TriCore Architecture Manual 



SIEMENS SEL 

SEL Select SEL 

Syntax: 

sel Dc, Dd, Da, Db (RRR) 
sel Dc, Dd, Da, const9 (RCR) 

Description: 

If the contents of data register Dd are non-zero, copy the contents of data register Da to 
data register Dc; otherwise, copy the contents of Dblconst9 to Dc. The value const9 is sign
extended to 32 bits. 

Operation: 

D[c] ::: ((D[d] I::: 0) ? D[a] : D[b]) 
D[c] ::: ((D[d] I::: 0) ? D[a] : sign_ext(const9)) 

Examples: 

sel d3, d4, d1, d2 
sel d3, d4, d1, 126 

See Also: 
CADD (pg 155), CADDN (pg 157), CMOV (pg 168), CMOVN (pg 169), 
CSUB (pg 170), CSUBN (pg 172), SELN (pg 349) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

347 



SEL.A SIEMENS 

SEL.A Select Address SEL.A 

Syntax: 

seLa Ac, Dd, Aa, Ab (RRR) 
seLa Ac, Dd, Aa, const9 (RCR) 

Description: 

If the contents of data register Dd are non-zero, copy the contents of address register Aa 
to address register Ac; otherwise, copy the contents of Ablconst9 to Ac. The value const9 
is sign-extended to 32 bits. 

Operation: 

A[c] = ((D[d] != 0) ? A[a] : A[b]) 
A[c] = ((D[d] != 0) ? A[a] : sign_ext(const9)) 

Examples: 

sel.a a3, d4, a4, a2 
sel.a a3, d4, a4, 126 

See Also: 

CADD.A (pg 156), CADDN.A (pg 158), CSUB.A (pg 171). CSUBN.A (pg 173), 
SELN.A (pg 350) 

348 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS SELN 

SELN Select-Not SELN 

Syntax: 

seln Dc, Dd, Da, Db (RRR) 
seln Dc, Dd, Da, const9 (RCR) 

Description: 

If the contents of data register Dd are zero, copy the contents of data register Da to data 
register Dc; otherwise, copy the contents of Dblconst9 to Dc. The value const9 is sign
extended to 32 bits. 

Operation: 

D[e] = ((D[d] == 0) ? D[a] : D[b]) 
D[c] = ((D[d] == 0) ? D[a] : sign_ext(const9)) 

Examples: 

seln d3, d4, d1, d2 
seln d3, d4, d1, 126 

See Also: 
CADD (pg 155). CADDN (pg 157), CMOV (pg 168), CMOVN (pg 169), 
CSUB (pg 170), CSUBN (pg 172). SEL (pg 347) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

349 



SELN.A SIEMENS 

SELN.A Select-Not Address SELN.A 

Syntax: 

seln.a Ac, Dd, Aa, Ab (RRR) 
seln.a Ac, Dd, Aa, const9 (RCR) 

Description: 

If the contents of data register Dd are zero, copy the contents of address register Aa to 
address register AC; otherwise, copy the contents of Ablconst9 to Ac. The value const9 is 
sign-extended to 32 bits. 

Operation: 

A[c] = ((D[d] == 0) ? A[a] : A[b]) 
A[c] = ((D[d] == 0) ? A[a] : sign_ext(const9)) 

Examples: 

seln.a a3, d4, a4, a2 
seln.a a3, d4, a4, 126 

See Also: 
CADD.A (pg 156), CADDN.A (pg 158), CSUB.A (pg 171), CSUBN.A (pg 173), 
SEL.A (pg 348) 

350 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS SH 

SH Shift SH 

Syntax: 

sh Dc, Da, Db (RR) 
sh Dc, Da, const9 (Re) 

.sh .Da .• cOrtst4(S~G) 

Description: 

If the shift count specified through the contents of Dblconst9 is greater than or equal to 
zero, then left-shift the value in Da by the amount specified by shift count. Otherwise, 
right-shift the value in Da by the absolute value of the shift count. Put the result in Dc. In 
both cases, the vacated bits are filled with zeroes and bits shifted out are discarded. The 
shift count is a 6-bit signed number, derived from Db[5:0] or const9[5:0]. The range for the 
shift count therefore is -32 to +31, allowing to shift left up to 31 bit positions and to shift 
right up to 32 bit positions (a shift right by 32 bits leaves Os in the result) . 

••••••..•••.. ···.ijft~~f~hift6e4nt$p· ....•.... lEJHthtoy~hth~¥altie¢J(Jst4isijreateffu#~Pt$q:~#I.·.t~.~r~;.tti~n ...• 

;,.~~~~~:r.~ ... J6ui.Wf~~ 
.·{.!sa.6~bit~i9f)~cI··nurnller,q~riveclfr~rn::th~ ... ~igri,e~ension •• of~p?st4.[3!0J..rheresLlJting 
i·rangef()rlhe.stlift ,·c()Un~.~hf:!.refO~ .:,1;1.-8. to +1. ·<i!.HOWjn9;tosniftl~ft UP~07llit· •• p(JSi~i()r;ts 
!!".d~slti1'trighi",p to~J:iitpp~!ti()ns., .... . ..... .'. ....... .. 

Operation: 

if (shift_count >= 0) then D[c] = D[a] « shift_count; zero-fill 
else D[c] = D[a] » (-shift_count); zero-fill 
shift_count = Db[5:0] or const9[5:0] 

······.·'~f.·.·(~hifbc~tirit.··>:·~}t~~ri .• ··9t~1 •• ;.:.!D(;d.~<shi~icoJ~t;··~f61fill:···· ......... · 
'~I~~O[al¥Q;[al»(~$hi~4~~·~tltl;ze~")fin .. L . ... 
:.~piftlcQ!.Jot§.siijn'""e~(~PIJ.st.:1,~~:Qlli ...... " 

Examples: 

sh 
sh 
sh 

d3, dl, d2 
d3, dl, 26 
dl, 6 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

351 



SH SIEMENS 
See Also: 

352 

SH.B (pg 353), SH.H (pg 353), SHA (pg 360), SHA.B (pg 362), SHA.H (pg 362), 
SHAS (pg 364) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS 

SH.B 
SH.H 

Syntax: 

sh.b Dc, Da, Db (RR) 

Shift Packed Bytes 

Shift Packed Halfwords 

sh.b Dc, Da. const9 (RC) 
sh.h Dc, Da, Db (RR) 
sh.h Dc, Da. const9 (RC) 

Description: 

SH.B 

SH.B 
SH.H 

If the shift count specified through the contents of Dblconst9 is greater than or equal to 
zero, then left-shift each byte/halfword in Da by the amount specified by shift count. Oth
erwise, right-shift each byte/halfword in Da by the absolute value of the shift count. Put 
the result in Dc. In both cases, the vacated bits are filled with zeroes and bits shifted out 
are discarded. Note that for these shifts, each byte/halfword is treated individually, and 
bits shifted out of a byte/halfword are not shifted in to the next byte/halfword. 

The shift count is a signed number, derived from the sign-extension of Db[3:0] or 
const9[3:0] for sh.b and from the sign-extension of Db[4:0] or const9[4:0] for sh.h. The 
range for the shift count therefore is -8 to +7 for sh.b and -16 to +15 for sh.h. The result for 
a shift count of -8 for bytes and -16 for halfwords is zero. 

Refer also to Section 8.1.3, "Packed Arithmetic," on page 95. 

Operation: 

sh.b: if (shift_count >= 0) then D[c] = D[a][(n+7):n] « shift_count; zero-fill 
else D[c] = D[a][(n+7):n] » (-shift30unt); zero-fill 
shift_count = sign_ext(Db[3:0]) or sign_ext(const9[3:0]); n = 0, 8, 16,24 

sh.h: if (shift_count >= 0) then D[c] = D[a][(n+15):n] « shift_count; zero-fill 
else D[c] = D[a][(n+15):n] » (-shift_count); zero-fill 
shift_count = sign_ext(Db[4:0]) or sign_ext(const9[4:0]); n = 0, 16 

Examples: 

sh.b d3, dl, d2 
sh.b d3, dl, 5 
sh.h d3, dl, d2 
sh.h d3, d1, 12 

See Also: 
SH (pg 351), SHA (pg 360), SHAS (pg 364), SHA.B (pg 362), SHA.H (pg 362) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

353 

.~ 



SH.EQ SIEMENS 

SH.EQ Shift Equal SH.ED 

Syntax: 

sh.eq Dc, Da, Db (RR) 
sh.eq Dc, Da,const9 (RC) 

Description: 

If the contents of data register Da are equal to the contents of data register Dblconst9, set 
the least-significant bit of Dc to 1; otherwise, set the least-significant bit of Dc to O. The 
remaining bits in Dc are shifted left by 1. The value const9 is sign-extended to 32 bits. 

Refer also to Section 8.2, "Compare Instructions," on page 97. 

Operation: 

D[c] = {D[c][30:0], (D[a] == D[b])} 
D[c] = {D[c][30:0], (D[a] == sign_ext(const9)} 

Examples: 

sh.eq d3, d1, d2 
sh.eq d3, d1, 126 

See Also: 
SH.GE (pg 355). SH.GE.U (pg 355). SH.LT (pg 356), SH.LT.U (pg 356). 
S.H.NE (pg 357) 

354 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS 

SH.GE 
SH.GE.U 

Syntax: 

sh.ge 
sh.ge 
sh.ge.u 
sh.ge.u 

Description: 

Shift Greater Than or Equal 

Shift Greater Than or Equal 

Dc, Da, Db (RR) 
Oc, Da,const9 (RC) 
Dc, Da, Db (RR) 
Dc, Da,const9 (RC) 

SH.GE 

SH.GE 
SH.GE.U 

If the contents of data register Da are greater than or equal to the contents of data register 
Dblconst9, set the least-significant bit of Dc to 1; otherwise, set the least-significant bit of 
Dc to o. The remaining bits in Dc are shifted left by 1. Da and Db are treated as signed inte
gers. The value const9 is sign-extended to 32 bits. 

If the contents of data register Da are greater than or equal to the contents of data register 
Dblconst9, set the least-significant bit of Dc to 1; otherwise, set the least-significant bit of 
Dc to o. The remaining bits in Dc are shifted left by 1. Da and Db are treated as unsigned 
integers. The value const9 is zero-extended to 32 bits. 

Refer also to Section 8.2, "Compare Instructions," on page 97. 

Operation: 

O[c] = {D[cJ[30:0], (D[a] >= D[b])}; signed 
O[c] = {D[cJ[30:0]. (D[a] >= sign_ext(const9))}; signed 

D[c] = (D[c][30:0], (O[a] >= Orb])}; unsigned 
D[c] = (D[c][30:0], (O[a] >= zero_ext(const9))}; unsigned 

Examples: 

sh.ge d3, d1, d2 
sh.ge d3, d1, 126 
sh.ge d3, d1, 253 
sh.ge.u d3, d1, d2 
sh.ge.u d3, d1, 126 
sh.ge.u d3, d1, 253 

See Also: 
SH.EQ (pg 354), SH.LT (pg 356), SH.LT.U (pg 356). SH.NE (pg 357) 

TriCore Architecture Manual 355 

• PRELIMINARY EDITION. 



SH.LT 

SH.LT 
SH.LT.U 

Syntax: 

sh.lt 
sh.lt 
sh.lt.u 
sh.lt.u 

Description: 

Shift Less Than 

Shift Less Than Unsigned 

Dc, Da, Db (RR) 
Dc, Da,const9 (RC) 
Dc, Da, Db (RR) 
Dc, Da,const9 (RC) 

SIEMENS 

SH.LT 
SH.LT.U 

If the contents of data register Da are less the contents of data register Dblconst9, set the 
least-significant bit of Dc to 1; otherwise, set the least-significant bit of Dc to O. The 
remaining bits in Dc are shifted left by 1. Da and Dblconst9 are treated as signed integers. 
The value const9 is sign-extended to 32 bits. 

If the contents of data register Da are less the contents of data register Dblconst9, set the 
least-significant bit of Dc to 1; otherwise, set the least-significant bit of Dc to O. The 
remaining bits in Dc are shifted left by 1. Da and Dblconst9 are treated as unsigned inte
gers. The value const9 is zero-extended to 32 bits. 

Refer also to Section 8.2, "Compare Instructions," on page 97. 

Operation: 

D[e] = {D[c][30:0], (Dla] < Dlb])}; signed 
Ole] = {Dlc][30:0], (Dla] < sign_ext(const9))}; signed 

Ole] = {Dlc][30:0], (Dla] < Dlb])}; unsigned 
D[e] = {(Dle][30:0], (Dla] < zero_ext(eonst9))}; unsigned 

Examples: 

sh.lt d3, d1, d2 
sh.lt d3, d1, 126 
sh.lt .u d3, d1, d2 
sh.lt.u d3, d1, 126 

See Also: 
SH.EQ (pg 354), SH.GE (pg 355). SH.GE.U (pg 355), SH.NE (pg 357) 

356 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS SH.NE 

SH.NE Shift Not Equal SH.NE 

Syntax: 

sh.ne Dc, Da, Db (RR) 
sh.ne Dc, Da,const9 (RC) 

Description: 
If the contents of data register Da are not equal to the contents of data register Dblconst9, 
setthe least-significant bit of Dc to 1; otherwise, set the least-significant bit of Dc to O. The 
remaining bits in Dc are shifted left by 1. The value const9 is sign-extended to 32 bits. 

Refer also to Section 8.2, "Compare Instructions," on page 97. 

Operation: 

D[c] = {D[c][30:01, (D[a] != D[b])} 
D[c] = {D[c][30:0], (D[a] != sign_ext(const9))} 

Examples: 

sh.ne d3, d1, d2 
sh.ne d3, d1, 126 
sh.ne d3, d1, 253 

See Also: 
SH.EQ (pg 354), SH.GE (pg 355), SH.GE.U (pg 355), SH.LT (pg 356), 
SH.LT.U (pg 356) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

357 



SH.AND.T 

SH.AND.T Accumulating Shift-AND 

SH.ANDN.T Accumulating Shift-AND-Not 

SH.NAND.T Accumulating Shift-NAND 

SH.NOR.T Accumulating Shift-NOR 

SH.OR.T Accumulating Shift-OR 

SH.ORN.T Accumulating Shift-DR-Not 

SH.XNOR.T Accumulating Shift-XNOR 

SH.XOR.T Accumulating Shift-XOR 

Syntax: 

sh.and.t Dc, Da, p1, Db, p2 (BIT) 
sh.andn.t Dc, Da, p1, Db, p2 (BIT) 
sh.nand.t Dc, Da, p1, Db, p2 (BIT) 
sh.nor.t Dc, Da, p1, Db, p2 (BIT) 
sh.or.t Dc, Da, p1, Db, p2 (BIT) 
sh.orn.t Dc, Da, p1, Db, p2 (BIT) 
sh.xnor.t Dc, Da, p1, Db, p2 (BIT) 
sh.xor.t Dc, Da, p1, Db, p2 (BIT) 

Description: 

SIEMENS 

SH.AND.T 
SH.ANDN.T 
SH.NAND.T 

SH.NOR.T 
SH.OR.T 

SH.ORN.T 
SH.XNOR.T 

SH.XOR.T 

Left shift Dc by 1. The bit shifted out is discarded. Compute the logical AND/ANDN/NANDI 
NOR/OR/ORN/XNORIXOR of the value of bit p1 of data register Da and bit p2 of Db. Put the 
result in Dc[O]. 

Refer also to Section 8.3, "Bit Operations," on page 100. 

Operation: 

358 

sh.and.t: D[c] = {D[c][30:0], (D[a][p1] and D[b][p2])} 
sh.andn.t: D[c] = {D[c][30:01. (D[a][p1] and !(D[b][p2]))) 
sh.nand.t: D[c] = {D[c][30:0], !(D[a][p1] and D[b][p2])} 
sh.nor.t: D[c] = {D[c][30:0], !(D[a][p1] or D[b][p2])} 
sh.or.t: D[c] = {D[c][30:01. (D[a][p1] or D[b][p2])} 
sh.orn.t: D[c] = {D[c][30:0], (D[a][p1] or !(D[b][p2]))) 
sh.xnor.t: D[c] = {D[c][30:0], !(D[a][p1] xor D[b][p2])} 
sh.xor.t: D[c] = {D[c][30:0], (D[a][p1] xor D[b][p2])} 

• PRELIMINARY EDITION. 

TriCore Architecture Manual 



SIEMENS 
Examples: 

sh.and.t d3, dl, 4, d2, 7 
sh.andn.t d3, dl, 4, d2, 7 
sh.nand.t d3, dl, 4, d2, 7 
sh.nor.t d3, dl, 4, d2, 7 
sh.or.t d3, dl, 4, d2, 7 
sh.orn.t d3, dl, 4, d2, 7 
sh.xnor.t d3, dl, 4, d2, 7 
sh.xor.t d3, dl, 4, d2, 7 

See Also: 
AND.AND.T (pg 146), AND.ANDN.T (pg 146), AND.NOR.T (pg 146), 
AND.OR.T (pg 146). OR.AND.T (pg 329), OR.ANDN.T (pg 329), 
OR.NOR.T (pg 329). OR.OR.T (pg 329) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

SH.XOR.T 

359 



SHA SIEMENS 

SHA Arithmetic Shift SHA 

Syntax: 

sha Dc, Da, Db (RR) 
sha Dc, Da, const9 (RC) 

Description: 

If the shift count specified through the contents of Dblconst9 is greater than or equal to 
zero, then left-shift the value in Da by the amount specified by shift count. The vacated bits 
are filled with zeroes and bits shifted out are discarded. If the shift count is less than zero, 
right-shift the value in Da by the absolute value of the shift count. The vacated bits are 
filled with the sign-bit (MSB) and bits shifted out are discarded. Put the result in Dc. On all 
1-bit or greater shifts (left or right), PSW.C is set to the bitwise logical-OR of the shifted out 
bits and zero. On zero-bit shifts, C is cleared. 

The shift count is a 6-bit signed number, derived from Db[5:0] or const9[5:0]. The range 
for the shift count therefore is -32 to +31, allowing to shift left up to 31 bit positions and to 
shift right up to 32 bit positions (a shift right by 32 bits leaves all Os or all 1s in the result, 
depending on the sign-bit). 

Operation: 

360 

if (shift_count >= 0) then D[c] = D[a] « shift_count; zero-fill 
else D[c] = D[a] » (-shift_count); sign-fill 
shift_count = Db[5:0] or const9[5:0] 

• PRELIMINARY EDITION. 

TriCore Architecture Manual 



SIEMENS SHA 

Status: 
V,SV,AV,SAV,C 

Examples: 

sha d3, dl, d2 
sha d3, dl, 26 
sha dl, 6 

See Also: 
SH (pg 351), SH.B (pg 353)' SH.H (pg 353), SHA.B (pg 362), SHA.H (pg 362), 
SHAS (pg 364) 

TriCore Architecture Manual 361 

• PRELIMINARY EDITION. 



SHA.B SIEMENS 

SHA.B 
SHA.H 

Arithmetic Shift Packed Bytes 

Arithmetic Shift Packed Halfwords 

SHA.B 
SHA.H 

Syntax: 

sha.b Dc, Oa, Db (RR) 
sha.b Dc, Oa, const9 (RC) 
sha.h Dc, Oa, Db (RR) 
sha.h Dc, Oa, const9 (RC) 

Description: 

If the shift count specified through the contents of Dblconst9 is greater than or equal to 
zero, then left-shift each byte/halfword in Da by the amount specified by shift count. The 
vacated bits are filled with zeros and bits shifted out are discarded. Ifthe shift count is less 
than zero, right-shift each byte/halfword in Da by the absolute value of the shift count. The 
vacated bits are filled with the sign-bit (MSB) of the respective byte/halfword, and bits 
shifted out are discarded. Put the result in Dc. Note that for these shifts, each byte/half
word is treated individually, and bits shifted out of a byte/halfword are not shifted in to the 
next byte/halfword. 

The shift count is a signed number, derived from the sign-extension of Ob[3:0] or 
const9[3:0] for sha.b and from the sign-extension of Ob[4:0] or const9[4:0] for sha.h. The 
range for the shift count therefore is -8 to +7 for sha.b and -16 to +15 for sha.h. The result 
for each byte/halfword for a shift count of -8 for sha.b and -16 for sha.h is either all zeros 
or all ones, depending on the sign-bit of the respective byte/halfword. 

Refer also to Section 8.1.3, "Packed Arithmetic," on page 95. 

Operation: 

sha.b: if (shift_count >= 0) then O[c] = 0[a][(n+7):n] « shift_count; zero-fill 
else O[c] = 0[a][(n+7):n] » (-shift_count); sign-fill 
shift_count = sign_ext(Ob[3:0]) or sign_ext(const9[3:0]); n = 0, 8, 16,24 

sha.h: if (shift_count >= 0) then O[c] = 0[a][(n+15):n] « shift_count; zero-fill 
else O[c] = 0[a][(n+15):n] » (-shift_count); sign-fill 
shift_count = sign_ext(Ob[4:0]) or sign_ext(const9[4:0]); n = 0, 16 

Status: 

v, SV, AV, SAY 

362 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS SHA.H 

Examples: 

sha.b d3, d1, d2 
sha.b d3, d1, 6 
sha.h d3, d1, d2 
sha.h d3, d1, 12 

See Also: 
SH (pg 351), SHA (pg 360), SHAS (pg 364), SH.B (pg 353), SH.H (pg 353) 

TriCore Architecture Manual 363 

• PRELIMINARY EDITION. 



SHAS SIEMENS 

SHAS Arithmetic Shift with Saturation SHAS 
Syntax: 

shas Dc, Da, Db (RR) 
shas Dc, Da, const9 (RC) 

Description: 

If the shift count specified through the contents of Dblconst9 is greater than or equal to 
zero, then left-shift the value in Da by the amount specified by shift count. The vacated bits 
are filled with zeroes and the result is saturated if its sign bit differs from the sign bits that 
are shifted out. If the shift count is less than zero, right-shift the value in Da by the absolute 
value of the shift count. The vacated bits are filled with the sign-bit (MSB) and bits shifted 
out are discarded. Put the result in Dc. 

The shift count is a 6-bit signed number, derived from Db[5:0] or const9[5:0]. The range 
for the shift count therefore is -32 to +31, allowing to shift left up to 31 bit positions and to 
shift right up to 32 bit positions (a shift right by 32 bits leaves all Os or all 1s in the result, 
depending on the sign-bit). 

Operation: 

if (shift_count >= 0) then D[c] = D[a] « shift_count; zero-fill; ssov 
else D[c] = D[a] » (-shift_count); sign-fill 
shift_count = D[b][5:0] or const9[5:0] 

Status: 

V,SV,AV,SAV 

Examples: 

shas d3, dl, d2 
shas d3, dl, 26 

See Also: 
SH (pg 351), SH.B (pg 353), SH.H (pg 353), SHA (pg 360), SHA.B (pg 362), 
SHA.H (pg 362) 

364 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS ST.A 

ST.A Store Word From Address Register ST.A 

Syntax: 

st.a <mode>, Aa 

Description: 

Store the value in address register Aa to the memory location specified by the addressing 
mode. 

Operation: 

M(EA, word) = A[a] 

<mode> Syntax Effective Address 
Instruction 

Format 

Absolute constant Refer to Section 2.4.1.1, 'i\bsolute Addressing," on page 20 ABS 

Base + Short Offset [Anjoffset A[bj+sign_extloffset10) BO 

Pre-increment [+Anjoffset A[bj+sign_extloffset10l BO 

Post-increment [An+joffset A[bj BO 

Circular [An+cjoffset Refer to Section 2.4.1.5, "Circular Addressing," on page 21 BO 

Bit-reverse [An+rj Refer to Section 2.4.1.6, "Bit-Reverse Addressing," on BO 
page 22 

See Also: 
ST.B (pg 367). ST.D (pg 369), ST.DA (pg 370), ST.H (pg 371), ST.Q (pg 373), 
ST.W (pg 376) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

365 



ST.A SIEMENS 

ST.A Store Word From Address Register (16-bit) ST.A 

Syntax: 

Description: 

Operation: 

<mode> Syntax Effective Address 
Instruction 

Format 

Register indirect [An] A[b] SSR 

(Implicit) Base + Offset [A 15]offset A[15]+zero_ext(offset4) SSRO 

Implicit destination reg- [An]offset4 A[b]+zero_ext(offset4). byte) SRO 
ister 

Post-increment [An+]offset A[b]. byte; A[b] = A[b] + 4 SSR 

See Also: 

ST.B (pg 367), ST.H (pg 371), ST.W (pg 376) 

366 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS ST.B 

Sl.B Store Byte Sl.B 

Syntax: 

st.b <mode>, Da 

Description: 

Store the byte value in the 8 least-significant bits of data register Da to the byte memory 
location specified by the addressing mode. 

Operation: 

M(EA, byte) = O[a][7:0] 

<DIode> Syntax Effective Address 
Instruction 

Format 

Absolute constant Refer to Section 2.4.1.1, "Absolute Addressing," on page 20 ABS 

Base + Short Offset [Anjoffset A[bl+sign_ext{offset10) BO 

Pre-increment [+Anjoffset A[bj+sign_ext{offset10) BO 

Post-increment [An+joffset A[bj BO 

Circular [An+cjoffset Refer to Section 2.4.1.5, "Circular Addressing," on page 21 BO 

Bit-reverse [An+rj Refer to Section 2.4.1.6, "Bit-Reverse Addressing," on page 22 BO 

See Also: 
ST.A (pg 365). ST.D (pg 369). ST.DA (pg 370). ST.H (pg 371). ST.Q (pg 373), 
ST.W (pg 376) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

367 



ST.B SIEMENS 

Sl.B Store Byte (16-bit) Sl.B 

Syntax: 

Description: 

Operation: 
.. ,~~ ... 

<mode> Syntax Effective Address 
Instruction 

Format 

Register indirect [An] A[b] SSR 

!Implicit) Base + Offset [A 15]offset A[15]+Zero_ext(offset4) SSRO 

Implicit destination reg- [An]offset4 A[bl+zero_ext(offset41. byte) SRO 
ister 

Post-increment [An+]offset A[b], byte; A[b] = A[b] + 1 SSR 

See Also: 
ST.A (pg 365). ST.H (pg 371). ST.W (pg 376) 

368 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS ST.D 

ST.D Store Doubleword From Data Registers ST.D 

Syntax: 

st.d <mode>, Ea 

Description: 

Store the value in the extended data register pair Ea to the memory location specified by 
the addressing mode. The value in the even register (On) is stored in the least-significant 
memory word, and the value in the odd register (On+ 1) is stored in the most-significant 
memory word. This instruction must be halfword-aligned. 

Operation: 

M(EA, doubleword) = O[a](pair) 

<mode> Syntax Effective Address 
Instruction 

Format 

Absolute constant Refer to Section 2.4.1.1, "Absolute Addressing." on page ABS 
20 

Base + Short Offset [Anjoffset A[bj+sign_ext(offset10) BO 

Pre-increment [+Anjoffset A[b]+sign_ext(offset10) 80 

Post-increment [An+]offset A[b] BO 

Circular [An+c]offset Refer to Section 2.4.1.5, "Circular Addressing," on page 80 
21 

Bit-reverse [An+rj Refer to Section 2.4.1.6, "Bit-Reverse Addressing," on 80 
page 22 

See Also: 

ST.A (pg 365). ST.B (pg 367). ST.DA (pg 370). ST.H (pg 371). ST.Q (pg 373), 
ST.W (pg 376) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

369 



ST.DA SIEMENS 

ST.DA Store Doubleword From Address Registers ST.DA 

Syntax: 
st.da <mode>, Aa 

Description: 
Store the value in the address register pair Aa to the memory location specified by the 
addressing mode. The value in the even register (An) is stored in the least-significant 
memory word, and the value in the odd register (An+ 1) is stored in the most-significant 
memory word. 

Operation: 
M(EA, doubleword) = A[a](pair) 

<mode> Syntax Effective Address 
Instruction 

Format 

Absolute constant Refer to Section 2.4.1.1. "Absolute Addressing," on page ABS 
20 

Base + Short Offset [Anjoffset A[bj+sign_ext(offset10) BO 

Pre-increment [+Anjoffset A[bj+sign_ext(offset10) BO 

Post-increment [An+joffset A[bj BO 

Circular [An+ejoffset Refer to Section 2.4.1.5, "Circular Addressing," on page BO 
21 

Bit-reverse [Antrj Refer to Section 2.4.1.6, "Bit-Reverse Addressing," on BO 
page 22 

See Also: 
ST.A (pg 365), ST.B (pg 367), ST.H (pg 371), ST.Q (pg 373), ST.W (pg 376) 

370 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS ST.H 

ST.H Store Halfword ST.H 

Syntax: 

st.h <mode>, Da 

Description: 

Store the halfword value in the 16 least-significant bits of data register Da to the halfword 
memory location specified by the addressing mode. 

Operation: 

M(EA, halfword) = D[a][15:0] 

<mode> Syntax Effective Address 
Instruction 

Format 

Absolute constant Refer to Section 2.4.1.1, 'i\bsolute Addressing: on page ABS 
20 

Base + Short Offset [Anjoffset A[bl+sign_ext!offset10) BO 

Pre-increment [+Anjoffset A[b]+sign_ext!offset10) BO 

Post-increment [An+]offset A[b] BO 

Circular [An+e]offset Refer to Section 2.4.1.5, "Circular Addressing," on page BO 
21 

Bit-reverse [An+r] Refer to Section 2.4.1.6, "Bit-Reverse Addressing," on BO 
page 22 

See Also: 

ST.A (pg 365), ST.B (pg 367), ST.Q (pg 373), ST.W (pg 376) 

TriCore Architecture Manual 371 

• PRELIMINARY EDITION. 



ST,H SIEMENS 

ST.H Store Halfword (16-bit) ST.H 

Syntax: 

Description: 

Operation: 

<mode> Syntax Effective Address 
Instruction 

Format 

Register indirect [An] A[b] SSR 

(implicit) Base + Offset [A 15]offset A[15]+Zero_ext!offset4) SSRO 

Implicit destination reg- [An]offset4 A[b]+Zero_ext!offset4). byte) SRO 
ister 

Post-increment [An+]offset A[b]. byte; A[b] = A[b] + 1 SSR 

See Also: 
ST,A (pg 365). ST.B (pg 367), ST,Q (pg 373), ST,W (pg 376) 

372 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS ST.Q 

Sl.O Store Halfword Signed Fraction ST.O 

Syntax: 

st.q <mode>, Da 

Description: 

Store the value in the most-significant halfword of data register Da to the memory loca
tion specified by the addressing mode. 

Operation: 
M(EA, halfwordl = O[a][31 :16] 

<mode> Syntax Effective Address 
Instruction 

Format 

Absolute constant Refer to Section 2.4.1.1, '1\bsolute Addressing," on page A8S 
20 

8ase + Short Offset [Anjoffset A[bj+sign_ext(offset101 80 

Pre-increment [+Anjoffset A[bj+sign_ext(offset101 BO 

Post-increment [An+joffset A[bj BO 

Circular [An+cjoffset Refer to Section 2.4.1.5, "Circular Addressing," on page BO 
21 

Bit-reverse [An+rj Refer to Section 2.4.1.6, "Bit-Reverse Addressing," on BO 
page 22 

See Also: 
ST.A (pg 365), ST.B (pg 367), ST.W (pg 376) 

TriCore Architecture Manual 373 

• PRELIMINARY EDITION. 



ST.T SIEMENS 

Sl.T Store Bit ST.T 

Syntax: 

st.t offset18, bpos3, b 

Description: 

Store the bit value b to the byte at the memory address specified by offset18 in the bit 
position specified by bpos3. The other bits of the byte are unchanged. 

Refer also to Section 8.7.3, "Store Bit and Bit Field," on page 108. 

Operation: 

M(EA, byte)[bpos3J = b 

<mode> Syntax Effective Address 
Instruction 

Format 

Absolute constant Refer to Section 2.4.1.1. "Absolute Address- ABSB 
ing." on page 20 

See Also: 
LDMDST (pg 234), IMASK Ipg 194) 

374 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS ST.W 

ST.W Store Word ST.W 

Syntax: 

st.w <mode>, Da 

Description: 

Store the word value in data register Da to the memory location specified by the address
ing mode. 

Operation: 

M(EA, word) = O[a] 

<mode> Syntax Effective Address 
Instruction 

Format 

Absolute constant Refer to Section 2.4.1.1. 'i\bsolute Addressing," on page 20 ABS 

Base + Short Offset [Anjoffset A[bj+sign_extloffset10) BO 

Base + Long Offset [Anjoffset A[bj+sign_extloffset16) BOL 

Pre-increment [+Anjoffset A[bj+sign_extloffset10) BO 

Post-increment [An+joffset A[bj BO 

Circular [An+ejoffset Refer to Section 2.4.1.5, "Circular Addressing," on page 21 BO 

Bit-reverse [An+rj Refer to Section 2.4.1.6, "Bit-Reverse Addressing," on page BO 
22 

See Also: 
ST.B (pg 367), ST.D (pg 369), ST.DA {pg 370}, ST.Q (pg 373) 

TriCore Architecture Manual 375 

• PRELIMINARY EDITION. 



ST.W SIEMENS 

ST.W Store Word (16-bit) ST.W 

Syntax: 

Description: 

Operation: 

<mode> Syntax Effective Address 
Instruction 

Format 

Register indirect [An] A[b] SSR 

(Implicit) Base + Offset [A 15]offset A[15]+zero_ext(offset4) SSRO 

Implicit destination reg- [An]offset4 A[b]+zero_ext(offset4j, byte) SRO 
ister 

Post-increment [An+]offset A[b]. byte; A[b] = A[b] + 4 SSR 

See Also: 

ST.A (pg 365), ST.B (pg 367), ST.H (pg 371) 

376 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS STLCX 

STlCX Store Lower Context STlCX 
Syntax: 

stlcx <mode> 

Description: 

Store the contents of registers A2 - A7, DO - D7, and A 11 to the memory block specified by 
the addressing mode. Note that the effective address specified by the addressing mode 
must resolve to an on-chip memory location aligned on a 16-word boundary. For this 
instruction, the addressing mode is limited to absolute (ABS) or base plus short offset 
(BO). 

Operation: 

Refer to Section 8.8.2, "Context Loading and Storing," on page 109. 

<mode> Syntax Effective Address 
Instruction 

Format 

Absolute constant Refer to Section 2.4.1.1. ':Absolute Address- ABS 
ing," on page 20 

Base + Short Offset [Anjoffset A[a]+sign_ext(offsetl01 BO 

See Also: 
LDLCX (pg 233), LDUCX (pg 235), RSLCX (pg 339), STUCX (pg 378), 
SVLCX (pg 388) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

377 



STUCX SIEMENS 

STU ex Store Upper Context STU ex 
Syntax: 

stucx <mode> 

Description: 

Store the contents of registers A10 - A15, D8 - D15, and the current PSW (the registers 
which comprise a task's upper context) to the memory block specified by the addressing 
mode. Note that the effective address specified by the addressing mode must resolve to 
an on-chip memory 'location aligned on a 16-word boundary. For this instruction, the 
addressing mode is limited to absolute (ABS) or base plus short offset (BO). 

Operation: 

Refer to Section 8.8.2, "Context Loading and Storing," on page 109. 

<mode> Syntax Effective Address 
Instruction 

Format 

Absolute constant Refer to Section 2.4.1.1, ':A.bsolute Ad- ABS 
dressing," on page 20 

Base + Short Offset [AnJoffset A[al+sign_extloffsetl0) BO 

See Also: 

378 

LDLCX (pg 233), LDUCX (pg 235), RSLCX (pg 339), STUCX (pg 378). 
SVLCX (pg 388) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS 

SUB 

Syntax: 

sub Dc, Oa, Db (RR) 
.... i·sub ·· .••..•. ;;·DaiDb(SRR)· 

sub.·.·· .. ··D'~,[ja.Db(SRR) 

Description: 

SUB 

Subtract SUB 

Subtract the contents of data register Db from the contents of data register Da and put the 
result in data register Dc. 

.~~~:t~1ttrnQdC~;~::;~::r~a:Dj~!ijte~£?~ff(ir11t~~·.vontertts .• 6f~~t~r,e9ist~rpa·~rdpJt . 

Operation: 

O[c] = Oral - O[b] 
}D[ar~g~~~ttlt6].ii .. 'i< ..........•.•.•... 
Df15]:;:O.[~}",I.:)lbl . 

Status: 

V,SV,AV,SAV 

Examples: 

sub d3, di, d2 
sub di, d2 
sub d15, di, d2 

See Also: 
SUBS (pg 383), SUBS.U (pg 383), SUBX (pg 387). SUBC (pg 382) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

379 



SUB.A SIEMENS 

SUB.A Subtract Address SUB.A 

Syntax: 

sub.a Ac, Aa, Ab (RR) 

Description: 

Subtract the contents of address register Ab from the contents of address register Aa and 
put the result in address register Ac. The operands are treated as unsigned, 32-bit inte
gers. 

Operation: 

A[c] = A[a] - A[b] 

Examples: 

sub.a a3, a4, a2 
sub.a sp, 126 

See Also: 
ADD.A (pg 133), ADDIH.A (pg 138), ADDSC.A (pg 143), ADDSC.AT (pg 143), 
DIFSC.A (pg 176), SUBSC.A (pg 386) 

380 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS 

SUB.B 
SUB.H 

Syntax: 

sub.b Dc, Da, Db (RR) 
sub.h Dc, Da, Db (RR) 

Description: 

Subtract Packed Byte 

Subtract Packed Halfword 

SUB.B 

SUB.B 
SUB.H 

Subtract the contents of each byte/halfword of data register Db from the contents of data 
register Da and put the result in each corresponding byte/halfword of data register Dc. 

Refer also to Section 8.1.3, "Packed Arithmetic." 

Operation: 

D[c][(n+7):n] = D[a][(n+7):n] + D[b][(n+7):n], n = 0, 8,16,24; 
D[c][(n+15):n] = D[a][(n+15):n] + D[b][(n+15):n]; n = 0,16 

Status: 

V,SV,AV,SAV 

Examples: 

sub.b d3, dl, d2 
sub.h d3, dl, d2 

See Also: 
SUBS.B (pg 384), SUBS.BU (pg 384), SUBS.H (pg 385), SUBS.HU (pg 385) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

381 



SUBC SIEMENS 

SUBC Subtract with Carry SUBC 

Syntax: 

subc Dc, Da, Db (RR) 

Description: 

Subtract the contents of data register Db plus the carry bit minus 1 from the contents of 
data register Da and put the result in data register Dc. The operands are treated as 
unsigned, 32-bit integers. The PSW carry bit is updated by the ALU carry out. 

Operation: 

D[c] = D[a] - D[b] + psw.C-1; psw.C = carry_out 

Status: 

C,V,SV,AV,SAV 

Example: 

subc d3, dl, d2 

See Also: 
SUB (pg 379), SUBS (pg 383). SUBS.U (pg 383), SUBX (pg 387) 

382 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS 

SUBS 
SUBS.U 

Syntax: 

subs 
subs.u 

sllbs 

Subtract Signed with Saturation 

Subtract Unsigned with Saturation 

Dc, Da, Db (RR) 
Dc, Da, Db (RR) 

.. .. . 

iDa' Db (SRR) .. 

Description: 

SUBS 

SUBS 
SUBS.U 

Subtract the contents of data register Db from the contents of data register Da and put the 
result in data register Dc. The operands are treated as signed/unsigned 32-bit integers, 
with saturation on signed/unsigned overflow. 

'.··.Subtr~pt 'thecol1tentsQf.~a~~.r~~isie(Dbfron1th~9().nter1ts()f'~ata.reghrte~ .. ·~an~put·· 
.• · .. · .... the.resulti.r1dataregi~erDa,1beoperands .• ~retre~tElcl.a$sjgrtf:jd32-t)jt.il1~e{;l~~~Vlfi1:h.·.· •.. ( 
'sCltur~tiohonsignedoyerf!oVlf~ . .. . ...... . ......, .. ... ..... ... . 

Operation: 

D[c] = D[a] - D[b]; signed; ssov 
D[c] = D[a]- D[b]; unsigned; suov 

·)U[a].,# DtaJ!-c.O{t)l ;slgn~~;~sov:., 

Status: 

V,SV,AV,SAV 

Examples: 

subs d3, dl, d2 
subs.u d3, dl, d2 
subs d3, dl 

See Also: 
SUB (pg 379), SUBX (pg 387), SUBC (pg 382) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

383 



SUBS.B SIEMENS 

SUBS.B 
SUBS.BU 

Syntax: 

Subtract Packed Byte with Saturation 

Subtract Packed Byte Unsigned with Saturation 

subs.b Dc, Da, Db (RR) 
subs.bu Dc, Da, Db (RR) 

Description: 

SUBS.B 
SUBS.BU 

Subtract the contents of each byte of data register Db from the contents of data register 
Da and put the result in each corresponding byte of data register Dc, with saturation on 
signed/unsigned overflow. 

Refer also to Section 8.1.3, "Packed Arithmetic," on page 95. 

Operation: 

D[c][(n+7):nj = D[a][(n+7):nj- D[b][(n+7):nj; n = 0, 8,16,24; signed; ssov 
D[c][(n+7):nj = D[a][(n+7):nj- D[b][(n+7):nj; n = 0, 8, 16,24; unsigned; suov 

Status: 

v, SV, AV, SAY 

Examples: 

subs.b d3, dl, d2 
subs.bu d3, dl, d2 

See Also: 

SUB.B (pg 381), SUBS.H (pg 385). SUBS.HU (pg 385) 

384 

• PRELIMINARY EDITION. 

TriCore Architecture Manual 



SIEMENS 

SUBS.H 
SUBS.HU 

Syntax: 

Subtract Packed Halfword with Saturation 

Subtract Packed Halfword Unsigned with Saturation 

subs.b Dc, Da, Db (RR) 
subs.bu Dc, Da, Db (RR) 

Description: 

SUBS.H 

SUBS.H 
SUBS.HU 

Subtract the contents of each halfword of data register Db from the contents of data reg
ister Da and put the result in each corresponding halfword of data register Dc, with satu
ration on signed/unsigned overflow. 

Refer also to Section 8.1.3, "Packed Arithmetic," on page 95. 

Operation: 

D[cJ[(n+15):nj = D[aJ[(n+15):nj- D[bj[(n+15):nj; n = 0,16; signed; ssov 
D[cJ[(n+15):nj = D[aJ[(n+15):nj- D[b][(n+15):nj; n = 0,16; unsigned; suov 

Status: 

v, SV, AV, SAY 

Examples: 

subs.h d3, dl, d2 
subs.hu d3, dl, d2 

See Also: 
SUB.B (pg 381), SUBS.B (pg 384), SUBS.BU (pg 384) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

385 



SUBSC.A SIEMENS 

SUBSC.A Subtract Scaled Address SUBSC.A 

Syntax: 

subsc.a Ac, Aa, Db, n (RR) 

Description: 

Left-shift the contents of data register Db by the amount specified by n, where n can be 0, 
1, 2, or 3. Subtract that value from address register Aa and put the result in address regis
ter Ac. 

Operation: 

A[c] = A[a]- (D[b] « n), n = 0, 1, 2, or 3 

Example: 

subsc.a a3, a4, d2, 1 

See Also: 

ADD.A (pg 133), ADDIH.A (pg 138), ADDSC.A (pg 143), ADDSC.AT (pg 143), 
DIFSC.A (pg 176), SUB.A (pg 380) 

386 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS SUBX 

SUBX Subtract Extended SUBX 

Syntax: 

subx Dc, Da, Db (RR) 

Description: 

Subtract the contents of data register Db from the contents of data register Da and put the 
result in data register Dc. The operands are treated as unsigned, 32-bit integers. The PSW 
carry bit is set to the value of the ALU carry out. 

Operation: 

D[c] = D[a]- D[b]; psw.C = carry_out 

Status: 

C,V,SV,AV,SAV 

Example: 

subx d3, dl, d2 

See Also: 
SUB (pg 379), SUBC (pg 382), SUBS (pg 383), SUBS.U (pg 383) 

TriCore Architecture Manual 387 

• PRELIMINARY EDITION. 



SVLCX SIEMENS 

SVLCX Save Lower Context SVLCX 
Syntax: 

svlcx (SYS) 

Description: 

Store the contents of registers A2 - A7, DO - D7, and the current return address (A 11) to the 
memory location pointed to by the FCX register. This operation saves the lower context of 
the currently executing task. 

Refer to Section 4.1, "Upper and Lower Contexts," on page 47. 

Operation: 

Refer to Section B.B.1, "Context Saving and Restoring," on page 109. 

Example: 

svlcx 

See Also: 
LDLCX (pg 233). LDUCX (pg 235). RSLCX (pg 339), STLCX (pg 377), 
STUCX (pg 378) 

388 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS SWAP.A 

SWAP.A Swap with Address Register SWAP.A 

Syntax: 

swap.a Aa, <mode> 

Description: 

Swap the contents of address register Aa and the memory word specified by the address
ing mode. 

Operation: 

tmp = M(EA, word); 
M(EA, word) = Ala]; 
A[a] =tmp 

<mode> Syntax 

Absolute constant 

Base + Short Offset [Anjoffset 

Pre-increment [+Anjoffset 

Post-increment [An+joffset 

Circular [An+cjoffset 

Bit-reverse [An+rj 

See Also: 
SWAP.W (pg 390) 

TriCore Architecture Manual 

Effective Address 
Instruction 

Format 

Refer to Section 2.4.1.1, "Absolute Addressing: on page 20 ABS 

A[b]+sign_extloffset10) BO 

A[bj+sign_extloffset10) BO 

Albj BO 

Refer to Section 2.4.1.5, "Circular Addressing: on page 21 BO 

Refer to Section 2.4.1.6, "Bit-Reverse Addressing: on page BO 
22 

389 

• PRELIMINARY EDITION. 



SWAP.W SIEMENS 

SWAP.W Swap with Data Register SWAP.W 

Syntax: 

swap.w Da, <mode> 

Description: 

Swap the contents of data register Db and the memory word specified by the addressing 
mode. 

Operation: 

tmp = M(EA, word); 
M(EA, word) = D[a]; 
Oral =tmp 

<mode> Syntax 

Absolute constant 

Base + Short Offset [An]offset 

Pre-increment [+An]offset 

Post-increment [An+]offset 

Circular [An+c]offset 

Bit-reverse [AnH] 

See Also: 

SWAP.A (pg 3891 

390 

Effective Address 
Instruction 

Format 

Refer to Section 2.4.1.1. "Absolute Addressing," on page 20 ABS 

A[b]+sign_ext(offset101 BO 

A[b]+sign_ext(offset101 BO 

A[b] BO 

Refer to Section 2.4.1.5, "Circular Addressing: on page 21 BO 

Refer to Section 2.4.1.6, "Bit-Reverse Addressing," on page BO 
22 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS SYSCALL 

SYSCALL System Call SYSCALL 

Syntax: 

syscall const9 (RC) 

Description: 

Cause a system call trap, using the Trap Identification Number (TIN) specified by const9. 
Note that the trap return PC will be that of the instruction following the SYSCALL instruc
tion. 

Refer to Section 6.1.4, "Software Traps," on page 72. 

Operation: 

Refer to Section 6.2, "Trap Handling," on page 72. 

Example: 

syscall 4 

See Also: 
RET (pg 337), RFE (pg 338). TRAPV (pg 392). TRAPSV (pg 393) 

TriCore Architecture Manual 391 

• PRELIMINARY EDITION. 



TRAPV SIEMENS 

TRAPV Trap on Overflow TRAPV 
Syntax: 

trapv (SYS) 

Description: 

If the PSW's overflow status flag (PSW.V) is set, generate a trap to the vector entry for the 
overflow trap handler (OVF trap). 

Refer to Section 6.1.4, "Software Traps," on page 72. 

Operation: 

if PSW.V then trap (OVF) 

Example: 

trapv 

See Also: 
RSTV (pg 340), SYSCALL (pg 391), TRAPSV (pg 393) 

392 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS TRAPSV 

TRAPSV Trap on Sticky Overflow TRAPSV 
Syntax: 

trapsv (SYS) 

Description: 

If the PSWs sticky overflow status flag (PSW.SV) is set, generate a trap to the vector entry 
for the sticky overflow trap handler (SOVF trap). 

Refer to Section 6.1.4, "Software Traps," on page 72. 

Operation: 

if PSW.SV then trap (SOVF) 

Example: 

trapsv 

See Also: 
RSTV (pg 340). SVSCALL (pg 391), TRAPV (pg 392) 

TriCore Architecture Manual 393 

• PRELIMINARY EDITION. 



XNOR SIEMENS 

XNOR Logical Exclusive NOR XNOR 
Syntax 

xnor Dc, Oa, Db (RR) 
xnor Dc, Oa, const9 (RC) 

Description: 

Compute the bitwise logical exclusive NOR of the contents of data register Da and the 
contents of data register Db/const9 and put the result in data register Dc. The operands 
are treated as unsigned, 32-bit integers. The value const9 is zero-extended to 32 bits. 

Operation: 

O[c] = !(O[a] xor Orb]) 
O[c] = !(O[a] xor zero_ext(constS)) 

Examples: 

xnor d3, d1, d2 
xnor d3, d1, 126 

See Also: 

AND (pg 145), ANON (pg 152), NAND (pg 319). NOR (pg 325), NOT (pg 327), 
OR (pg 328). ORN (pg 335), XOR (pg 396) 

394 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS XNOR.T 

XNOR.T Bit Logical XNOR XNOR.T 

Syntax: 

xnor.t Dc, Da, pl, Db, p2 (BIT) 

Description: 

Compute the logical exclusive NOR of bit p1 of data register Da and bit p2 of data register 
Db. Put the result in the least-significant bit of data register Dc and clear the remaining 
bits of Dc to zero. 

Refer also to Section B.3, "Bit Operations," on page 100. 

Operation: 

D[c] = !(D[a][pl] xor D[b][p2]) 

Example: 

xnor.t d3, dl, 3, d2, 5 

See Also: 
AND.T (pg 151), ANDN.T (pg 153), NAND.T (pg 320), NOR.T (pg 326), 
OR.T (pg 334), ORN.T (pg 336), XOR.T (pg 401) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

395 



XOR SIEMENS 

XOR Logical Exclusive OR XOR 

Syntax: 

xor Dc, Da, Db (RR) 
xor Dc, Da, const9 (RC) 

Description: 

Compute the bitwise logical exclusive OR of the contents of data register Da and the con
tents of data register Db/const9 and put the result in data register Dc. The operands are 
treated as unsigned, 32-bit integers. The value const9 is zero-extended to 32 bits. 

Operation: 

D[e] = D[a] xor D[b] 
D[e] = D[a] xor zero_ext(const9) 

Examples: 

xor d3, d1, d2 
xor d3, d1, 126 

See Also: 

AND (pg 145), ANON (pg 152), NAND (pg 319). NOR (pg 325), NOT (pg 327), 
OR (pg 328). ORN (pg 335), XNOR (pg 394) 

396 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS 

XOR.EO 

Syntax: 

xor.eq 
xor.eq 

Description: 

Dc, Da, Db (RR) 
Dc, Da,const9 (RC) 

XOR.EO 

Equal Accumulating XOR.EO 

Compute the logical XOR of Oc[O] and the Boolean result of the EQ operation on the con
tents of data register Oa and data register Oblconst9. Put the result in OctO]. All other bits 
in Dc are unchanged. The value const9 is sign-extended to 32 bits. 

Refer also to Section 8.2, "Compare Instructions," on page 97. 

Operation: 

D[c][O] = D[c][O] XOR (D[a] == D[b]) 
D[c][O] = D[c][O] XOR (D[a] == sign_ext(const9)) 

Examples: 

xor.eq d3, dl, d2 
xor.eq d3, dl, 126 

See Also: 
AND. EO (pg 147), OR.EO (pg 330) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

397 



XOR.GE SIEMENS 

XOR.GE 
XOR.GE.U 

Greater Than or Equal Accumulating 

Greater Than or Equal Accumulating 
Unsigned 

XOR.GE 
XOR.GE.U 

Syntax: 

xor.ge Dc, Da, Db (RR) 
xor.ge Dc, Da,const9 (RC) 
xor.ge.u Dc, Da, Db (RR) 
xor.ge.u Dc, Da,const9 (RC) 

Description: 

Calculate the logical XOR of Dc[O] and the Boolean result of the GE operation on the con
tents of data register Da and data register Dblconst9. Put the result in Dc[O]. All other bits 
in Dc are unchanged. Da and Db are treated as 32-bit signed integers. The value const9 is 
sign-extended to 32 bits. 

Calculate the logical XOR of Dc[O] and the Boolean result of the GE.U operation on the 
contents of data register Da and data register Dblconst9. Put the result in Dc[O]. All other 
bits in Dc are unchanged. Da and Db are treated as 32-bit unsigned integers. The value 
const9 is zero-extended to 32 bits. 

Refer also to Section 8.2, "Compare Instructions," on page 97. 

Operation: 

D[c] = O[cJ[O] XOR (O[a] >= Orb]); signed 
O[c] = O[cJ[O] XOR (O[a] >= sign_ext(const9)); signed 

O[c] = O[cJ[O] XOR (O[a] >= Orb]); unsigned 
O[c] = O[cJ[O] XOR (O[a] >= zero_ext(const9)); unsigned 

Examples: 

xor.ge d3, d1, d2 
xor.ge d3, d1, 126 
xor.ge.u d3, d1, d2 
xor.ge.u d3, d1, 126 

See Also: 

AND.GE (pg 148), AND.GE.U (pg 148), OR.GE (pg 331), OR.GE.U (pg 331) 

398 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS 

XOR.LT 
XOR.LT.U 

Syntax 

Less Than Accumulating 

Less Than Accumulating Unsigned 

xor.lt Oc, Da, Ob (RR) 
xor.lt Oc, Oa,const9 (RC) 
xor.lt.u Oc, Oa, Ob (RR) 
xor.lt.u Dc, Da,const9 (RC) 

Description: 

XOR.LT 

XOR.LT 
XOR.LT.U 

Calculate the logical XOR of Dc[O] and the Boolean result of the LT operation on the con
tents of data register Da and data register Dticonst9. Put the result in Dc[O]. All other bits 
in Dc are unchanged. Da and Db are treated as 32-bit signed integers. The value const9 is 
sign-extended to 32 bits. 

Calculate the logical XOR of Dc[O] and the Boolean result of the LT.U operation on the con
tents of data register Da and data register Dticonst9. Put the result in Dc[O]. All other bits 
in Dc are unchanged. Da and Db are treated as 32-bit unsigned integers. The value const9 
is zero-extended to 32 bits. 

Refer also to Section 8.2, "Compare Instructions," on page 97. 

Operation: 

O[c] = D[c][O] XOR (O[a] < D[b]); signed 
O[c] = D[c][O] XOR (O[a] < sign_ext(const9)); signed 

O[c] = D[c][O] XOR (O[a] < D[b]); unsigned 
O[c] = D[c][O] XOR (O[a] < zero_ext(const9)); unsigned 

Examples: 

xor.lt d3, d1, d2 
xor.lt d3, dl, 126 
xor.lt.u d3, d1, d2 
xor.lt .u d3, d1, 126 

See Also: 
AND.LT (pg 149), AND.LT.U (pg 149), OR.LT (pg 332), OR.LT.U (pg 332) 

TriCore Architecture Manual 399 

• PRELIMINARY EDITION. 



XOR.NE 

XOR.NE 

Syntax: 

xor.ne 
xor.ne 

Description: 

Dc, Da, Db (RR) 
Dc, Da,const9 (RC) 

Not Equal Accumulating 

SIEMENS 

XOR.NE 

Calculate the logical XOR of Oc[O] and the Boolean result of the NE operation on the con
tents of data register Oa and data register Oblconst9. Put the result in OctO]. All other bits 
in Dc are unchanged. The value const9 is sign-extended to 32 bits. 

Refer also to Section 8.2, "Compare Instructions," on page 97. 

Operation: 

D[c] = D[c][O] XOR (D[a] != D[b]) 
D[e] = D[e][O] XOR (Dla] != sign_ext(const9)) 

Examples: 

xor.ne d3, d1, d2 
xor.ne d3, d1, 126 

See Also: 

AND.NE (pg 150), OR.NE (pg 333) 

400 

• PRELIMINARY EDITION. 

TriCore Architecture Manual 



SIEMENS XOR.T 

XOR.T Bit Logical XOR XOR.T 

Syntax: 

xor.t Dc, Da, p1, Db, p2 (BIT) 

Description: 

Compute the logical XOR of bit p 1 of data register Da and bit p2 of data register Db. Put the 
result in the least-significant bit of data register Dc and clear the remaining bits of Dc to 
zero. 

Refer also to Section 8.3, "Bit Operations," on page 100. 

Operation: 

D[c] = D[a][p1] xor D[b][p2] 

Example: 

xor.t d3, dl, 3, d2, 7 

See Also: 
AND.T (pg 151), ANDN.T (pg 153), NAND.T (pg 320), NOR.T (pg 326), 
OR.T (pg 334), ORN.T (pg 336), XNOR.T (pg 395) 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 

401 



XOR.T SIEMENS 

402 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



Index 

A 
absolute addressing 20 
access permissions 80 
address registers 29 
asynchronous trap 71 

B 
Base+offset addressing 20 
big-endian 16 
bit string 13 
bit-reverse addressing 22 
BIV register 63 
boolean 13 
BlV register 37, 72 
byte ordering 16 

c 
call depth counter 32, 50, 79 
call depth counting 79 
CALL instruction 35,49,50,51 
carry 31 
CCPN 36, 64 
character 13 
circular addressing 21 
code range 43 

TriCore Architecture Manual 

SIEMENS 

context 6 
current 51 
lower 7, 30, 33, 47, 48 
upper7,30,33,47,48 

context save area (CSA) 8 
CSA list underflow 35, 50 
current protection register set 78, 80 
currenttask context 51 

D 
data range 41 
data registers 29 

E 
extended-size registers 29 

F 
FCX register 34, 48, 49, 52 
floating-point registers 30 
free context list 49, 50, 52, 54 
function call 51 

G 
general-purpose registers 29, 52 

• PRELIMINARY EDITION. 

403 



H 
hardware trap 71 

integers 13 
interrupt 

pending 50 
interrupt enable 36, 50 
interrupt priority number 63 
interrupt service routine 6, 51, 64 
interrupt vector table 37, 63 

L 
LCX register 35 
link word 7,49 
little-endian 16 
lower context 7, 30, 33, 47, 48 

M 
memory access 

boundary crossing 83 
legality 10 
permitted 83 
valid 83 

mode table entry 41, 42 
multiple interrupt sources 64 

N 
nesting 8, 70,81 
non-maskable interrupt 71 

o 
overflow 31,71 

p 
PC 

interrupting 50 
return 72 
saved 50 

pending interrupt 50 

404 

SIEMENS 
pending interrupt priority number 50 
permission levels 9, 78 
post-increment addressing 21 
pre-increment addressing 21 
previous context 51 
previous context list 49, 50, 52, 54 
previous context pointer 34 
priority level 

interrupt 64 
priority number 32 

CPU 36, 50, 60 
interrupt 63 
pending interrupt 50 
previous CPU 50 
service request 59 

privilege levels 78 
program counter (PC) 30 
protection register set 10,31,79, SO, 81, 82 

R 
range table entry 80 
registers 

address 29 
architecture 4 
BIV63 
BTV37,72 
data 29 
extended-size 29 
FCX 34, 48, 49, 52 
general-purpose 29, 52 
LCX35 
PC4 
PSW4 
return address 50 
system global 30, 78 

RET instruction 51 
return address register 50 
RFE instruction 50 
RSTV instruction 31 

s 
service request 8, 59 
service request node 59 
service request priority number 59 

TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS 
signed fraction 13 
software trap 72 
software-managed tasks 6,47,51 
software-posted interrupts 65 
SRPN64 
sticky overflow 31, 71 
supervisor mode 9, 81 
synchronous trap 71 
SYSCALL instruction 72 
system call 71 
system global registers 30, 78 

T 
tasks 

software-managed 6,47,51 
user6 

TriCore Architecture Manual 

trap handler vector 72 
trap identification number 37, 69, 72 
trap vector table 37, 72 
traps 8 

u 

asynchronous 71 
hardware 71 
software 72 
synchronous 71 

upper context 7, 30, 33, 47, 48 
user tasks 6 
User-O mode 9 
User-l mode 9 

• PRELIMINARY EDITION. 

405 



SIEMENS 

406 TriCore Architecture Manual 

• PRELIMINARY EDITION. 



SIEMENS Global PartnerChip for Systems on Silicon 

Global PartnerChip for Systems on Silicon 

CD ® CD 
Siemens AG Osterreich SiemensAG Siemens SA. 
Erdberger Lande 26 Salzufer 6-8 Dpto. Componentes 
1030Wien 10587 Berlin Ronda de Europa. 3 

lit (++43)·1-1707·35611 lit (030) 3863-2626 28760 Tres Cantos-Madrid 
Fax (++43)-1-1707-55973 Fax (030) 3863-2490 lit (01) 8030085 

Fax (01) 8033926 
@ SiemensAG 

Siemens Ltd .• Head Office Lahnweg 10 CD 
544 Church Street 40219 Diisseldorf Siemens S.A. 
Richmond (Melbourne), Vic. 3121 lit (0211) 399-2930 39/47. Bd. Omano 

lit (03) 4207111 Fax (0211) 399-1481 93527 Saint-Denis CEDEX 2 
~30425 

SiemensAG 
lit (1) 49223100 

Fax (03) 4207275 ~234077 
Lindenplatz 2 Fax (1) 49223970 

CD 20099 Hamburg 

Siemens Electronic Components lit (040) 2889-3819 @) 
Benelux 

Fax (040) 2889-3092 Siemens pIc 
Charleroisesteenweg 116/ SiemensAG 

Siemens House 
Chaussee de Charleroi 116 Dldbury 

B-10&0 Brussel/Bruxelles 
Werner-von-Siemens-Platz 1 Bracknell 

lit (+32) 2-5362348 
3lIII8O Laatzen (Hannover) Berkshire RG12 8FZ 

Fax (+32) 2-5362857 lit (0511) 877-2222 lit (0344) 396000 
Fax (0511) 877-2078 Fax (0344) 396632 

@ SiemensAG @ 
ICOTRON S.A. Halbleiter Distribution 
Industria de Componentes Richard-Strauss-StraBe 76 SiemensAE 

Eletronicos 81679 Miinchen Paradissou & Artemidos 
Avenida Mutinga. 3650-60 andar lit (089) 9221-3133 

P.O.B. 61011 

05150 S_o Paulo-SP Fax (089) 9221-2071 
15110 Amaroussio/Athan 

lit (011) 833-2211 lit (01) 6864111 

~11-81001 SiemensAG ~216292 

Fax (011) 831-4006 Von-der-Tann-StraBe 30 
Fax (01) 6864299 

<@) 90439 Niirnberg @ 
lit (0911) 654-7602 

Siemens Electric Ltd. Fax (0911) 654-7624 Siemens Components Ltd 
Electronic Components Division 23/F.. Tai Yau Building 
1180 Courtney Park Drive SiemensAG 181 Johnston Road. Wanchai 

Mississauga, Ontario L5T 1 P2 Weissacher StraBe 11 Hong Kong 

lit (416) 905-819-8000 70499 Stuttgart lit (852) 28320500 

Fax (416) 905-819-5744 m (0711) 1372864 
Fax (852) 28278421 

@) 
Fax (0711) 1372448 CD 

Siemens Schweiz AG @ Siemens S.p.A. 

Bauelemente SiemensA/S Semiconductor Sales 
FreilagerstraBe 28 Borupvang 3 

Via dei Valtorta. 48 

8047 Ziirich 2750 Ballerup 20127 Milano 

m (01) 495-3111 m44774477 
m (02) 6676-1 

Fax (01) 495-5065 ~125B222 
Fax (02) 6676-4395 

Fax 44774017 

TriCore Architecture Manual 407 

• PRELIMINARY EDITION. 



Global PartnerChip for Systems on Silicon 

® 
Siemens Ltd. 
Head Office 
134-A, Or. Annie Besant Road, 
Worli 
P'0.B.6597 
Bombay 400018 

m (022) 4938786 
1Iiil1175142 
Fax (022) 4940240 

@ 
Siemens Ltd, 
Electronic Components Division 
8 Raglan Road 
Dublin 4 

m (01) 6684727 
ITliI93744 
Fax (01) 684633 

CD 
Siemens Components K.K. 
Shinjuku Koyama Bldg. 2F 
30-3,4-Chome 
Yoyogi, Shibuya-ku 
Tokyo 151 

m (81) 3-53888525 
Fax (81) 3-33769792 

® 
SiemensA/S 
_stre Aker vei 90 
Postboks 10, Veitvet 
0518 Oslo 5 

m (02) 633000 
1Iiil78477 
Fax (02) 633805 

@ 
Siemens Electronic Components 
Benelux 
Postbus 16068 
Nt.2500 BB Den Haag 

m (+31) 70-3332429 
Fax (+31) 70-3332815 

408 

CD 
Siemens S.A, 
Estrada Nacionall17, Km 2,6 
Alfragide 
2700 Amadora 

m (01) 4170011 
ITiIl62955 
Fax (01) 4172870 

® 
Siemens Sp. z.o.o. 
ul. Stawki 2 
POB276 
00-950 Warslawa 

m6351619 
ITiIl825554 
Fax 6355238 

® 
rai Engineering Co., Ltd, 
6th FI., Central Building 
108, Chung Shan North Road, Sec. 2 
P.O. Box 68-1882 
Taipei 10449 
m (02) 5234700 
ITiIl27860 taiengco 
Fax (02) 5367070 

@ 
Siemens Ltd. 
Asia Tower Bldg, 10th floor 
726 Yeoksam-dong, Kangnam-ku 
CPO Box 3001, Seoul 135-080 
Korea 
m (822) 5277740 
Fax (822) 5277779 

SiemensAG 
1. Donskoj pr., 2 
Moskva 111419 
m (095) 237-6476, -6911 
ITiIl414385 
Fax (095) 237-6614 

• PRELIMINARY EDITION. 

SIEMENS 

CD 
Siemens Components 
Osteriigatan 1 
Box 46 
5-164 93 Kista 
m (08) 7033500 
ITiIl11672 
Fax (08) 7033501 

@ 
SiemensOy 
P'0.B.60 
02&01 Espoo 

m (0) 51051, y 124465 
Fax (0) 51052398 

® 
Siemens Components Pte, Ltd. 
166 Kallang Way 
Singapore 1334 
m (65) 8400600 
Fax (65) 7421080 

® 
SIMKO Ticaret ve Sanayi A.S, 
Meclisi Mebusan Cad. No. 125 
P.K. 1001. 80007 Karakiiy 
80040 Findikli 

m (01) 2510900 
1Iiil24233 sies tr 
Fax (01) 2524134 

@ 
Siemens Microelectronics, Inc, 
Integrated Circuit Division 
10950 North Tantau Avenue 
Cupertino, CA 95014 
m (408) 777-4500 
Fax (408) 777-4977 

® 
Siemens Ltd, 
Siemens House, 
P'0.B.4583 
Johannesburg 2000 

m (011) 3151950 
ITiIl450091 
Fax (011) 3151968 

http://WWW.siemens.de/Semiconductorfindex.htm 

USA: http://www.tri-core.com 

TriCore Architecture Manual 



SIEMENS 

Total Quality Management 

Quality takes on an all-encompassing significance at the Siemens Semiconductor Group. For us it 
means living up to each and every one of your demands in the best possible way. So we are not only 
concerned with product quality. We direct our efforts equally at quality of supply and logistics, ser
vice and support, as well as all the other ways in which we advise and attend to you. 

Part of Siemens' quality is the very special attitude of our staff. Total Quality in thought and deed, to
wards co-workers, suppliers and you, our customer. Our guideline is "do everything with zero de
fects;' in an open manner that is demonstrated beyond your immediate workplace, and to constantly 
improve. Throughout the corporation, we also think in terms of Time Optimized Processes (TOP), 
greater speed on our part to give you that decisive competitive edge. 

Give us the chance to prove the best of performance through the best of quality-you will be con
vinced. 

Global PartnerChip 
for Systems on Silicon 

Published by Semiconductor Group 

Siemens Microelectronics, Inc. 

Ordering No: M32T011 
Marcom No: 97/10-064D-500 

Euro No: B158-H7128-X-X-7600 

Printed in U.S.A. 



Total Quality Management SIEMENS 

410 TriCore Architecture Manual 

• PRELIMINARY EDITION. 




