
SIEMENS

8-Bit Single-Chip Microcontroller Handbook

8-Bit Single-Chip Microcontroller Handbook

1990/91

SIEMENS

SIEMENS

8-Bit Single-Chip Microcontroller Handbook

1990/91

Published by Siemens Components Inc., Integrated Circuit Division 2191 Laurelwood Rd., Santa Clara, CA 95054

For the circuits, descriptions, and tables indicated no responsibility is assumed as far as patents or other rights of third parties are concerned.

The information describes the type of component and shall not be considered as assured characteristics.

Terms of delivery and rights to change design reserved.

For questions on technology, delivery, and prices please contact the Offices of Siemens Components.

Table of Contents Summary of Types	1
General Information	2
SAB-51 Architectural Overview	3
8-Bit Single-Chip Microcontroller Components Data Sheets	4
Microcontroller Instruction Set	5
SAB 80512/80532 Single-Chip Microcontroller User's Manual	6
SAB 80515/80535 Single-Chip Microcontroller User's Manual	7
Microcontroller Application Notes Article Reprints/Application Briefs	8
Software Support/Development Tools for the SAB-51 Family of Microcontrollers	9
Summary of Package Outlines	10
Siemens Sales Offices	11

,

Table of ContentsSummary of Types

Table of Contents

	Page
	mmary of Types
2.0 Ge	neral Information
3.0 SA	B-51 Architectural Overview
4.0 8-8	Bit Single-Chip Microcontroller Components Data Sheets
4.1	SAB 8051A/8031A, SAB 8051A-16/8031A-16 8-Bit Single Chip Microcontroller Data Sheet4-1
4.2	SAB 8051A/8031A Extended Temperature 8-Bit Single-Chip Microcontroller Data Sheet4-14
4.3	SAB 8052B/8032B, SAB 8052B-16/8032B-16 8-Bit Single Chip Microcontroller Data Sheet4-19
4.4	
4.5	SAB 8032B-20 8-Bit Single-Chip Microcontroller Data Sheet4-30
4.6	
4.7	
4.8	· · · · · · · · · · · · · · · · · · ·
4.9	
	0 SAB 83515-4, 8-Bit Single Chip Microcontroller Data Sheet
4.1	1 SAB 80C52/80C32, SAB 80C52-16/80C32-16 Ext Temp 8-Bit CMOS Microcontroller
	Data Sheet
4.1	2 SAB 80C515/80C535, SAB 80C515-16/80C535-16, SAB 80C515-16/80C535-16 Ext Temp 8-Bit CMOS Microcontroller Data Sheet
4 1	3 SAB 80C517/80C537 High Performance 8-Bit Single-Chip CMOS Microcontroller Data Sheet 4-116
	crocontroller Instruction Set
	Addressing Modes
	Introduction to the Instruction Set
	Instruction Definitions
	Instruction Set Summary
	B 80512/80532 Single-Chip Microcontroller User's Manual
	B 80515/80535 Single-Chip Microcontroller User's Manual
	crocontroller Application Notes/Article Reprint/Application Briefs
8.1	SAB 80515/80535 Application Note: Applications Using Operation of Timer 2
	in the SAB 80515/80535—Generating Pulse Width Modulated Signals8-1
8.2	SAB 80515/80535 Application Note: Operation of the A/D Converter in the SAB 80515/805358-11
8.3	SAB-51 Family of Microcontrollers Application Note: On-Chip A/D Converters in Siemen's SAB 8051-Based Microcontrollers8-25
8.4	
	8-Bit On-Chip A/D Converter of the SAB 80515/805358-36
8.5	Message Display by Using the Timer 2 and 8-Bit A/D Converter of the SAB 80515/805358-42
8.6	SAB 80515/80535 Application Note: Heating and Air Conditioning Control in Cars with the Microcontroller SAB 80515/805358-53
8.7	SAB-51 Family Application Note: E ² PROM Interface with a Siemens 8031 Based Microcontroller
8.8	SAB 80515/80535 Article Reprint: Programmable Timer/Counter Register Array in Microcontrollers8-74
8.9	SAB 80515/80535 Application Note: Implementation of the ISDN Oriented Modular (IOM) Interface Using the SAB 80515/80535 Microcontroller
8.1	0 SAB 80C517/80C537 Application Brief: Memory Access Using the Eight Data Pointers of the SAB 80C517/80C537
8.1	1 SAB-51 Family Application Brief: Oscillator Design Considerations for SAB-51 Family of Microcontrollers Operating at Frequencies Higher than 16 MHz8-102
9.0 S	oftware Support/Development Tools for the SAB-51 Family of Microcontrollers
	ummary of Package Outlines
	emens Sales Offices

Summary of Types

Package	Description/Speed
ntrollers	•
PLCC 44	without ROM, 12 MHz
P-DIP 40	without ROM, 12 MHz
PLCC 44	without ROM, 16 MHz
P-DIP 40	without ROM, 16 MHz
PLCC 44	without ROM, 12 MHz
P-DIP 40	without ROM, 12 MHz
PLCC 44	without ROM, 16 MHz
P-DIP 40	without ROM, 16 MHz
PLCC 44	without ROM, 20 MHz
P-DIP 40	without ROM, 20 MHz
	without ROM, CMOS, 12 MHz
	without ROM, CMOS, 12 MHz
	without ROM, CMOS, 16 MHz
	without ROM, CMOS, 16 MHz
	4K x 8-bit, ROM, 12 MHz
	4K x 8-bit, ROM, 12 MHz
	4K x 8-bit, ROM, 16 MHz
	4K x 8-bit, ROM, 16 MHz
	4K x 8-bit, ROM, 12 MHz
	8K x 8-bit, ROM, 12 MHz
	8K x 8-bit, ROM, 16 MHz
	8K x 8-bit, ROM, 16 MHz
	8K x 8-bit, ROM, CMOS, 12 MHz
	8K x 8-bit, ROM, CMOS, 12 MHz
	8K x 8-bit, ROM, CMOS, 16 MHz
	8K x 8-bit, ROM, CMOS, 16 MHz
	4K x 8-bit, ROM, 12 MHz
	16K x 8-bit, ROM, 12 MHz
	16K x 8-bit, ROM, 12 MHz
	16K x 8-bit, ROM, 16 MHz
	16K x 8-bit, ROM, 16 MHz
	32K x 8-bit, ROM, 12 MHz
	32K x 8-bit, ROM, 12 MHz
	32K x 8-bit, ROM, 16 MHz
	32K x 8-bit, ROM, 16 MHz
	8K x 8-bit, ROM, 12 MHz
	16K x 8-bit, ROM, 12 MHz
	8K x 8-bit, ROM, CMOS, 12 MHz
	8K x 8-bit, ROM, 16 MHz
	8K x 8-bit, ROM, CMOS, 12 MHz
	without ROM, 12 MHz
	without ROM, 12 MHz
	without ROM, 12 MHz
	without ROM, 12 MHz
	without ROM, CMOS, 12 MHz
	without ROM, 16 MHz
	P-DIP 40 PLCC 44 P-DIP 40 PLCC 44 P-DIP 40 PLCC 44 P-DIP 40 PLCC 44

)

.

Summary of Types (Continued)

Туре	Package	Description/Speed
8-Bit Single-Chip Microcontrol	lers Extended Temper	rature Range
SAB 8031A-10-P-T40/110	P-DIP 40	-40°C to +110°C
SAB 8031A-12-P-T40/85	P-DIP 40	-40°C to +85°C
SAB 80C32-N-T40/85	PLCC 44	-40°C to +85°C, CMOS
SAB 80C32-P-T40/85	P-DIP 40	-40°C to +85°C, CMOS
SAB 80Ç32-N-T40/110	PLCC 44	-40°C to +110°C, CMOS
SAB 80C32-P-T40/110	P-DIP 40	-40°C to +110°C, CMOS
SAB 80C32-16-N-T40/85	PLCC 44	-40°C to +85°C, CMOS, 16 MHz
SAB 80C32-16-P-T40/85	P-DIP 40	-40°C to +85°C, CMOS, 16 MHz
SAB 8032B-N-T40/85	PLCC 44	-40°C to +85°C
SAB 8032B-P-T40/85	P-DIP 40	-40°C to +85°C
SAB 8032B-P-T40/100	P-DIP 40	-40°C to +100°C
SAB 8051A-10-P-T40/110	P-DIP 40	-40°C to +110°C
SAB 8051A-12-P-T40/85	P-DIP 40	-40°C to +85°C
SAB 80C52-N-T40/85	PLCC 44	-40°C to +85°C, CMOS
SAB 80C52-P-T40/85	P-DIP 40	-40°C to +85°C, CMOS
SAB 80C52-N-T40/110	PLCC 44	-40°C to +110°C, CMOS
SAB 80C52-P-T40/110	P-DIP 40	-40°C to +110°C, CMOS
SAB 80C52-16-N-T40/85	PLCC 44	-40°C to +85°C, CMOS, 16 MHz
SAB 80C52-16-P-T40/85	P-DIP 40	-40°C to +85°C, CMOS, 16 MHz
SAB 8052B-N-T40/85	PLCC 44	-40°C to +85°C
SAB 8052B-P-T40/85	P-DIP 40	-40°C to +85°C
SAB 8052B-P-T40/100	P-DIP 40	-40°C to +100°C
SAB 80513-P-T40/85	P-DIP 40	-40°C to +85°C
SAB 80513-N-T40/85	PLCC 44	-40°C to +85°C
SAB 80513-16-P-T40/85	P-DIP 40	-40°C to +85°C, 16 MHz
SAB 80513-16-N-T40/85	PLCC 44	-40°C to +85°C, 16 MHz
SAB 8352-5P-T40/85	P-DIP 40	-40°C to +85°C
SAB 8352-5N-T40/85	PLCC 44	-40°C to +85°C
SAB 8352-5P-16-T40/85	P-DIP 40	-40°C to +85°C, 16 MHz
SAB 8352-5N-16-T40/85	PLCC 44	-40°C to +85°C, 16 MHz
SAB 80512-N-T40/85	PLCC 68	-40°C to +85°C
SAB 80515-N-T40/85	PLCC 68	-40°C to +85°C
SAB 80515-N-T40/110	PLCC 68	-40°C to +110°C
SAB 80C515-N-T40/85	PLCC 68	-40° C to $+85^{\circ}$ C, CMOS
SAB 80C515-N-16-T40/85	PLCC 68	-40°C to +85°C, CMOS, 16 MHz
SAB 80C517-N-T40/85	PLCC 84	-40° C to $+85^{\circ}$ C, CMOS
SAB 80532-N-T40/85	PLCC 68	-40°C to +85°C
SAB 80535-N-T40/85	PLCC 68	-40°C to +85°C
SAB 80535-N-T40/110	PLCC 68	-40°C to +110°C
SAB 80C535-N-T40/85	PLCC 68	-40° C to $+85^{\circ}$ C, CMOS
SAB 80C535-N-16-T40/85	PLCC 68	-40°C to +85°C, CMOS, 16 MHz
SAB 80C537-N-T40/85	PLCC 84	-40°C to +85°C, CMOS

• •

General Information

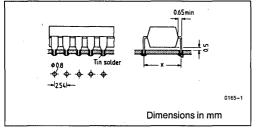
General Information

Type Designation Code of ICs

IC type designations are based on the European Pro Electron System. The code system is explained in the Pro Electron brochure D 15, edition 1985, available at:

Pro Electron, Avenue Louise, 430 (B.12) B-1060 Brussels, Belgium

Mounting Instructions


Plastic Package (Dual In-Line)

The 90° pins fit into holes with a diameter of 0.7mm to 0.9mm, spaced 2.54mm apart. See spacing x in Figure 1.

The bottom of the package will not touch the PC board after insertion because the pins have shoulders just below the package (see Figure 1).

After insertion of the package into the PC board it is advisable to bend the ends of two pins at an angle of approx. 30° to the board so that the package does not have to be pressed down during soldering. Plastic packages are soldered on that side of the PCB facing away from the package.

The maximum permissible soldering temperature is 350°C (max. 3s) for hand soldering and 260°C (max. 10s) for dip soldering and wave soldering.

Plastic Packages (SO and PLCC) for Surface Mounting (SMD)

Iron Soldering:

Soldering temperature 350°C for max. 3s; minimum distance between package and soldering point 1.5mm package temperature max. 150°C; no mechanical stress on the pins

temperature

Vapor phase soldering: Soldering

215°C, max. soldering time 40s Soldering temperature 260°C, max. soldering time

Wave soldering: (pins and package are dipped into the tin bath)

Storage, Pretreatment before

88

Processing The components are to be stored in a dry environment. When solder methods causing solder heat shock stresses are used (reflow soldering where the component is dipped into the solder bath, vaporphase soldering) it is recommendable to subject IC's

Other Points to Note

125°C.

Ensure that no current is able to flow between the solder bath or soldering iron and the PCB. It is advisable to ground the pins that are to be soldered as well as the solder bath or soldering iron.

in plastic packages to a 24-hour drying phase at

When the pins are being prepared and inserted in a PCB, circuits should be protected against static charge. Under no circumstances should the components be removed or inserted while the operating voltage is switched on.

The increase in chip temperature during the soldering process results in a temporary increase in electrostatic sensitivity of integrated circuits. Special precautions should therefore be taken against line transients, e.g. through the switching of inductances on magnetic chutes, etc.

Processing Guidelines for ICs

Integrated circuits (ICs) are electrostatic-sensitive (ESS) devices. The requirement for greater packing density has led to increasingly small structures on semiconductor chips with the result that today every IC, whether bipolar, MOS, or CMOS, has to be protected against electrostatics.

MOS and CMOS devices generally have integrated protective circuits and it is hardly possible any more for them to be destroyed by purely static electricity. On the other hand, there is acute danger from electrostatic discharge (ESD).

Of the multiple of possible sources of discharge, charged devices should be mentioned in additon to charged persons. With low-resistive discharges it is possible for peak power amounting to kilowatts to be produced.

For the protection of devices the following principles should be observed:

- a. Reduction of charging voltage, below 200V if possible. Means which are effective here are an increase in relative humidity to \geq 60% and the replacement of highly charging plastics by antistatic materials.
- b. With every kind of contact with the device pins a charge equalization is to be expected. This should always be highly resistive (ideally $R = 10^6 \Omega$ to $10^8 \Omega$).

All in all this means that ICs call for special handling, because uncontrolled charges, voltages from ungrounded equipment or persons, surge voltage spikes and similar influences can destroy a device. Even if devices have protective circuits (e.g. protective diodes) on their inputs, the following guidelines for their handling should nevertheless be observed.

Identification

The packing of ESS devices is provided with the following label by the manufacturer:

Scope

The guidelines apply to the storage, transport, testing, and processing of all kinds of ICs, as well as the soldered circuit boards equipped with such components.

Handling of Devices

- 1. ICs must be left in their containers until they are processed.
- 2. ICs may only be handled at specially equipped work stations. These stations must have work surfaces covered with a conductive material of the order of $10^6 \Omega/cm$. to $10^9 \Omega/cm$.
- 3. With humidity of >50% a coat of pure cotton is sufficient. In the case of chargeable synthetic fibers the clothing should be worn close-fitting. The wrist strap must be worn snugly on the skin and be grounded through a resistor of 50 k Ω to 100 k Ω .
- 4. If conductive floors, $R = 5 \times 10^4 \Omega$ to $10^7 \Omega$ are provided, further protection can be achieved by using so-called MOS chairs and shoes with a conductive sole ($R \approx 10^5 \Omega$ to $10^7 \Omega$).
- 5. All transport containers for ESS devices and assembled circuit boards must first be brought to the same potential by being placed on the work surface or touched by the operator before the individual devices may be handled. The potential equalization should be through a resistor of $10^6\Omega$ to $10^8\Omega$.
- 6. When loading machines and production devices it should be noted that the devices come out of the transport magazine charged and can be damaged if they touch metal, e.g. machine parts.

Example 1. Conductive (black) tubes.

The devices may be destroyed in the tube by charged persons or come out of the tube charged if this is emptied by a charged person. Conductive tubes may only be handled at ESS work stations (high-resistance work-station and person grounding).

Example 2. Anti-static (transparent) tubes.

The devices cannot be destroyed by charged persons in the tube (there may be a rare exception in the case of custom ICs with unprotected gate pins). The devices can be endangered as in 1) when the tube is emptied if the latter, especially at low humidity, is no longer sufficiently antistatic after a long period of storage (> 1 year).

In both cases damage can be avoided by discharging the devices through a grounded adapter of high-resistance material ($\approx 10^6 \ \Omega/\text{cm}$ to $10^8 \ \Omega/\text{cm}$) between the tube and the machine.

The use of metal tubes—especially of anodized aluminum—is not advisable because of the danger of low-resistance device discharge.

Storage

ESS devices should only be stored in identified locations provided for the purpose. During storage the devices should remain in the package in which they are supplied. The storage temperature should not exceed 60°C.

Transport

ESS devices in approved packing tubes should only be transported in suitable containers of conductive or longterm anti-static-treated plastic or possible unvarnished wood. Containers of high-charging plastic or very low-resistance materials are likewise unsuitable.

Transfer cars and their rollers should exhibit adequate electrical conductivity ($R < 10^6 \Omega$). Sliding contacts and grounding chains will not reliably eliminate charges.

Incoming Inspection

In incoming inspection the above guidelines should be observed. Otherwise any right for refund or replacement if devices fail inspection may be lost.

Material and Mounting

- The drive belts of machines used for the processing of the devices, in as much as they come into contact with them (e.g. bending and cutting machines, conveyor belts), should be treated with anti-static spray (e.g. anti-static spray 100 from Kontaktchemie). It is better, however, to avoid the contact completely.
- If ESS devices have to be soldered or desoldered manually, soldering irons with thyristor control cannot be used. Siemens EMI-suppression capacitors of the type B 81711-B31-B36 have proven very effective against line transients.
- 3. Circuit boards fitted and soldered with ESS devices are always to be considered as endangered.

Electrical Tests

- 1. The devices should be processed with observation of these guidelines. Before assembled and soldered circuit boards are tested, remove any shorting ring.
- 2. Test sockets must not be conducting any voltage when individual devices or assembled circuit boards are inserted or withdrawn, unless works' specifications state otherwise. Ensure that the test devices do not produce any voltage spikes, either when being turned on and off in normal operation or if the power fuse blows or other fuses respond.
- Signal voltages may only be applied to the inputs of ICs when or after the supply voltage is turned on. They must be disconnected before or when the supply voltage is turned off.
- Observe any notes and instructions in the respective data books/sheets.

Packing of Assembled PC Boards or Flatpack Units

The packing material should exhibit low volume conductivity:

 $10^5 \,\Omega/cm < \rho < 10^{10} \,\Omega/cm.$

In most cases—especially with humidity of > 40% this requirement is fulfilled using simple corrugated board. Better protection is obtained with bags of conductive polyethylene foam (e.g. RCAS 1200 from Richmond of Redlands, California).

It must always be ensured that boards do not touch.

In special cases it may be necessary to provide protection against strong electric fields, such as can be generated by conveyor belts for example. For this purpose a sheath of aluminum foil is recommended, although direct contact between the film and the PCB must be avoided. Cardboard boxes with an aluminum-foil lining, such as those used for shipping of our devices, are available from Laber of Munich.

Ultrasonic Cleaning of ICs

The following recommendation applies to plastic packages. For cavity packages (metal and also ceramic) separate regulations have to be observed.

Freon and isopropyl alcohol (trade name: propanol) can be used as solvents. These solvents can also be used for plastic packages because they do not eat into the plastic material. An ultrasonic bath in double halfwave operation is advisable because of the low component stress.

The ultrasonic limits are as follows:

sound frequency	f > 40 kHz
exposure	t < 2 min
alternating sound pressure	p < 0.29 bar
sound power	N < 0.5 W/cm ² /liter

Data Classification

Maximum Ratings

Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit.

Characteristics

The listed characteristics are ensured over the operating range of the integrated circuit. Typical characteristics specify mean values expected over the production spread. If not otherwise specified, typical characteristics will apply at $T_A = 25^{\circ}$ C and for the given supply voltage.

Operating Range

In the operating range the functions given in the circuit description wil be fulfilled.

Quality Assurance System

The high quality and reliability of integrated circuits from Siemens is the result of a carefully arranged production which is systematically checked and controlled at each production stage.

The procedures are subject to a quality assurance system; full details are given in the brochure "Siemens Quality Assurance—Integrated Circuits' (SQS-IC).

Figure 2 shows the most important stages of the "SQS-IC". A quality assurance (QA) department which is independent of production and development, is responsible for the selected control measures, acceptance procedures, and information feedback loops. This department has state-of-theart test and measuring equipment at its disposal, works according to approved methods of statistical quality control, and is provided with facilities for accelerated life and environmental tests used for both qualification and routine monitoring test.

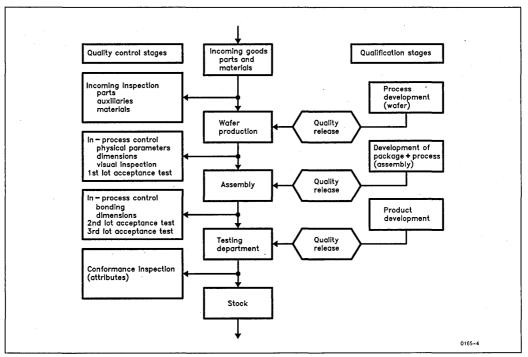


Figure 2. Quality Assurance System

The latest methods and equipment for preparation and analysis are employed to achieve continuity of quality and reliability.

Conformance

Each integrated circuit is subjected to a final test at the end of the production process. These tests are carried out by computer-controlled, automatic test systems because hundreds of thousands of operating conditions as well as a large number of static and dynamic parameters have to be considered. Moreover, the test systems are extremely reliable and reproducible. The quality assurance department carries out a final check in the form of a lot-by-lot sampling inspection to additionally ensure this minimum percent defectives as well as the acceptable quality level (AQL). Sampling inspection is performed in accordance with the inspection plans of DIN 40080, as well as of the identical MIL-STD-105 or IEC 410.

Reliability

Measures Taken during Development

The reliability of ICs is already considerably influenced at the development stage. Siemens has, therefore, fixed certain design standards for the development of circuit and layout, specifying e.g. minimum width and spacing of conductive layers on a chip, dimensions and electrical parameters of protective circuits for electrostatic charge, etc. An examination with the aid of carefully arranged programs operated on large-scale computers, guarantees the immediate identification and elimination of unintentional violations of these design standards.

In-Process Control during Production

The manufacturing of integrated circuits comprises several hundred production steps. As each step is to be executed with utmost accuracy, the in-process control is of outstanding importance. Some processes require more than a hundred different test measures. The tests have been arranged such that the individual process steps can be reproduced continuously.

The decreasing failure rates reflect the never ending effort in this direction; they have been reduced considerably despite an immense rise in the IC's complexity.

Reliability Monitoring

The general course of the IC's failure rate versus time is shown by a so-called "bathtub" curve (Figure 3). The failure rate has its peak during the first few operating hours (early failure period). After the early failure period has decayed, the "constant" failure rate period starts during which the failures may occur at an approximately uniform rate. This period ends with a repeated rise of the curve during the wear-out failure period. For ICs, however, the latter period usually lies far beyond the service life specified for the individual equipment.

Reliability tests for ICs are usually destructive examinations. They are, therefore, carried out with samples. Most failure mechanisms can be accelerated by means of higher temperatures. Due to the temperature dependence of the failure mechanisms, it is possible to simulate future operational behavior within a short time by applying high temperatures; this is called accelerated life testing.

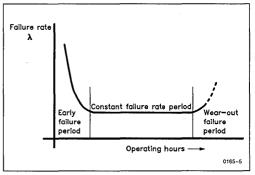


Figure 3. Reliability "Bath-Tub" Curve

General Information

The accerleration factor B for the life test can be obtained from the Arrhenius equation

$$B = \exp \qquad \frac{\mathsf{E}_{\mathsf{A}}}{k} \left[\frac{1}{T_1} - \frac{1}{T_2} \right]$$

where T_2 is the temperature at which the life test is performed, T_1 is the assumed operating temperature, and *k* is the Boltzmann constant.

Important for factor B is the activation energy E_A . It lies between 0.3V and 1.3 eV and differs considerably for individual failure mechanisms.

For all Siemens ICs, the reliability data from life tests is converted to an operating temperature of $T_A =$ 55°C, assuming an average activation energy of 0.5 eV. The acceleration factor for life tests at 125°C is thus 22.3, compared with operational behavior. This method considers also failure mechanisms with low activation energy, i.e. which are only slightly accelerated by the temperature effect.

Various reliability tests are periodically performed with IC types that are representative of a certain production line—this is described in the brochure "SQS-IC". Such tests are e.g. humidity test at 85°C and 85% relative humidity, pressure cooker test, as well as life tests up to 1000 hours and more. Test results are available in the form of summary reports. SAB-51 Architectural Overview

SAB-51 Architectural Overview

Siemens SAB-51 family of 8-bit microcontrollers consists of the devices listed in Table 1, all of which are based on the SAB-8051 architecture shown in Figure 1. The original 8051 was built in N-channel, silicon gate, Siemens MYMOS II technology and packaged in a 40-pin DIP. The 8051A which is in the advanced N-channel, silicon gate Siemens MYMOS III process, is the device currently in production.

All other microcontrollers listed in this book are backward compatible with the SAB-8051A.

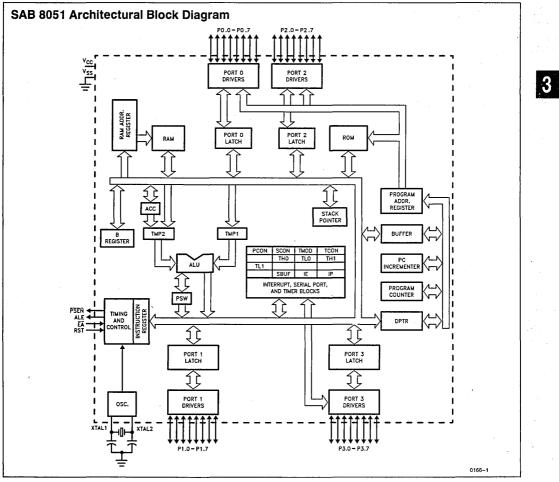


Figure 1. SAB 8051 Architectural Block Diagram

	-						<u> </u>						
Device * = ROMless Version	Clock Rate (MHz)	ROM (KB)	RAM (Byte)	I/O-Ports (8-Bit)	ADC Inputs (8-Bit Resol.)	Timer/ Counter (16-Bit)	Watch Dog Timer	Inter- rupt Sources/ Levels	Serial I/O	PWM	Div/ Mult Unit		Package
SAB 8051A SAB 8031A*	12, 16	4	128	4	_	2	-	5/2	USART	-	1	1	PDIP 40 PLCC 44
SAB 8052B SAB 8032B*	12, 16 20	8	256	4		3	_	6/2	USART	-	_	1	PDIP 40 PLCC 44
SAB 80512 SAB 80532*	12	4	128	6(I/O) + 1(I)	8	2	_	6/2	USART	_	—	1	PLCC 68
SAB 80513 SAB 8352-5	12, 16	16 32	256	4	_	3	_	6/2	USART	-	_	1	PDIP 40 PLCC 44
SAB 80515 SAB 80535* SAB 83515-4	12	8 — 16	256	6	8	3	1	12/4	USART	4-ch	_	1	PLCC 68
SAB 80C515 SAB 80C535*	12, 16	8	256	6(1/O) + 1(l)	8	3	1	12/4	USART	4-ch	_	1	PLCC 68
SAB 80C517 SAB 80C537*	12	8	256 -	7(I/O) + 1½ (I)	12	4	2	14/4	USART + UART	21-ch	Yes	8	PLCC 84

 Table 1. The SAB-51 Family of Microcontrollers

SAB 8051A/8031A, SAB 8051A-16/8031A-16

The SAB8051A is the original member of the SAB-51 family. Among the features of the SAB 8051A are:

- 8-Bit CPU Optimized for Control Applications
- Extensive Boolean Processing (Single-Bit Logic) Capabilities
- 32 Bidirectional and Individually Addressable I/O Lines
- 128 Bytes of On-Chip Data RAM
- RAM Power-Down Supply
- Two 16-Bit Timer/Counters
- Full Duplex UART
- 5-Source Interrupt Structure with 2 Priority Levels
- On-Chip Clock Oscillator
- 4 Kbytes of On-Chip Program Memory
- 64K Program Memory Address Space
- 64K Data Memory Address Space

The SAB 8051A/8031A is a standalone, high-performance single-chip microcontroller fabricated in +5V advanced Siemens MYMOS (III) technology and supplied in a 40-pin plastic P-DIP or 44-pin plastic leaded chip carrier (PL-CC-44) package.

The SAB8031A differs from the SAB8051A, in not having the on-chip program ROM. Instead, the SAB 8031A fetches all instructions from external memory.

The SAB8051A-16 differs from the SAB8051A only in the speed of operation. The SAB8051A can run with a clock oscillator frequency from 1.2 MHz to 12 MHz whereas the SAB 8051A-16 can run upto a clock oscillator frequency of 16 MHz.

The extended temperature versions of these parts are also available.

SAB 8052B/8032B, SAB 8052B-16/SAB 8032B-16, SAB 8032B-20

The SAB 8052B/8032B is identical to the SAB 8051A/8031A and is also fabricated in advanced N-channel, Silicon gate Siemens MYMOS III technology. It is pin for pin compatible with the SAB8051A. Its enhancements over the SAB8051A are as follows:

- 256 Bytes of On-Chip Data RAM
- Three Timer/Counters
- 6-Source Interrupt Structure
- 8 Kbytes of On-Chip Program ROM

The ROMless version of the 8052B is the 8032B. The 16 MHz version is the SAB 8052B-16/8032B-16. The ROMless version is also available in 20 MHz speed called the SAB 8032B-20. The extended temperature versions of these parts are also available. The earlier version of the SAB 8052B/8032B was fabricated in N-channel, silicon gate Siemens MYMOS II technology and was called the SAB 8052A/8032A. Whatever applies to the SAB 8052B/8032B except that the SAB 8052B/8032B is in the advanced N-channel, silicon gate Siemens MYMOS III technology.

SAB 80C52/80C32 SAB 80C52-16/SAB 80C32-16

The SAB 80C52/80C32 is a standalone, high-performance CMOS single-chip microcontroller, designed in Siemens ACMOS technology. It is functionally compatible with the SAB 8052A/8032A or the SAB 8052B/8032B devices in MYMOS technology. The ROMless version of the 80C52 is the 80C32. The 16 MHz version is the SAB 80C52-16/ 80C32-16.

Furthermore, it is backwardly compatible with the SAB 80C51/80C31. The low-power consumption properties of ACMOS technology allow applications where power consumption and dissipation are critical. In addition, the SAB 80C52/80C32 has two software-selectable modes of reduced activity for further power reduction—idle and power-down.

The SAB 80C52/80C32 is supplied in a 40-pin P-DIP package, or a 44-pin plastic leaded chip carrier (PLCC 44) package. The extended temperature versions of these parts are also available.

SAB 80513, SAB 8352-5 SAB 80513-16, SAB 8352-5-16

The SAB 80513 and SAB 8352-5 are new members of the Siemens SAB 8051 family of 8-bit microcontrollers. They are fabricated in N-channel silicongate Siemens MYMOS technology.

The SAB 80513 and SAB 8352-5 are stand-alone, high-performance, single-chip microcontrollers based on the SAB 8051 architecture. They maintain all features of the SAB 8051A and SAB 8052B (including Timer 2 of the SAB 8052B) and are thus fully compatible to both the SAB 8051A and SAB 8052B.

In addition, the SAB 80513 contains 16 Kbytes and SAB 8352-5 32 Kbytes of on-chip ROM, which make them powerful and cost-effective controllers for applications requiring more ROM space.

The SAB 80513 and SAB 8352-5 operate up to 12 MHz crystal oscillator frequency. The SAB 80513-16 and SAB 8352-5-16 operate up to 16 MHz crystal oscillator frequency.

Both microcontrollers are supplied in a 40-pin dualin-line package or a 44-pin plastic leaded chip carrier (PLCC 44) package.

SAB 80512/80532

The SAB 80512/80532 is a new member of the Siemens SAB 8051 family of 8-bit microcontrollers. Maintaining all features of the SAB 8051A/8031A, it is backwardly compatible with the SAB 8051A/ 8031A. Furthermore the SAB 80512/80532 incorporates several enhancements, that significantly increase design flexibility and cost effectiveness. In addition to the SAB 8051A/8031A the SAB 80512/ 80532 contains an 8-bit A/D converter with 8 multiplexed inputs (these inputs can also be used as digital inputs), an own baud rate generator for the serial interface and two more I/O ports. The SAB 80532 is identical with the SAB 80512, except that it lacks the on-chip ROM.

The SAB 80512/80532 is fabricated in +5V advanced N-channel, silicon gate MYMOS technology of Siemens and supplied in a PLCC 68 package. For the industrial temperature range -40° C to $+85^{\circ}$ C, the SAB 80512/80532-T40/85 is available.

SAB 80515/80535 SAB 83515-4

The SAB 80515/80535 is a powerful member of the Siemens SAB 8051 family of 8-bit microcontrollers. It is fabricated in +5V N-channel, silicon-gate Siemens MYMOS technology.

The SAB 80515/80535 is a stand-alone, high-performance single-chip microcontroller based on the SAB 8051 architecture. While maintaining all the SAB 8051 operating characteristics, the SAB 80515/80535 incorporates several enhancements which significantly increase design flexibility and overall system performance. These features are:

- 8K × 8 ROM (SAB 80515 Only)
- 16K x 8 ROM (SAB 83515-4 Only)
- 256 imes 8 RAM
- Six 8-Bit I/O Ports, One 8-Bit Input Port for Analog Signals
- Three 16-Bit Timer/Counters
- Programmable Timer/Counter Register-Array with Compare/Capture Auto Reload Pulse Width Modulator Capabilities
- Full-Duplex Serial Channel
- Twelve Interrupt Vectors, Four Priority Levels
- 8-Bit A/D Converter with Eight Multiplexed Inputs and Programmable Internal Reference Voltages
- 16-Bit Watchdog Timer
- V_{PD} Provides Standby Current for 40 Bytes of RAM
- Boolean Processor
- 256 Bit-Addressable Locations
- Most Instructions Executed in: 1 μs (SAB 80515/80535)
- 4 µs Multiply and Divide
- Backwardly Compatible with SAB 8051
- 68-Pin Plastic Leaded Chip Carrier Package (PLCC 68)

The SAB 80535 is identical with the SAB 80515 except that it lacks the on-chip program memory. On the other hand, the SAB 83515-4 is also identical with the SAB 80515 and it contains 16K of on-chip ROM as opposed to 8K in 80515. The SAB 80515/80535 is supplied in a 68-pin plastic leaded chip carrier package (PLCC 68). The SAB 80515/80535 operates up to 12 MHz crystal oscillator frequency. The SAB 80515/80535 is also available in industrial temperature range (-40° C to $+85^{\circ}$ C) and in the automotive temperature range (-40° C to $+110^{\circ}$ C).

SAB 80C515/80C535, SAB 80C515-16/80C535-16

The SAB 80C515/80C535 is a new, powerful member of the Siemens SAB 8051 family of 8-bit microcontrollers. It is designed in Siemens ACMOS technology and is functionally compatible with the SAB 80515/80535 devices designed in MYMOS technology.

In addition, the SAB 80C515 has two software-selectable power saving modes: idle mode and the power-down mode. These modes replace the power-down supply mode via pin V_{PD} of the SAB 80515 (NMOS).

In case of the SAB 80C515 the analog port can also be used as a digital input port.

The SAB 80C535 is identical with the SAB 80C515 except that it lacks the on-chip program memory. The SAB 80C515-16/80C535-16 operates up to 16 MHz crystal oscillator frequency. The SAB 80C515/80C535 is supplied in a 68-pin plastic leaded chip carrier package (PLCC 68). For the industrial temperature range -40° C to $+85^{\circ}$ C, the SAB 80C515/80C535-T40/85 and SAB 80C515/80C535-T40/85-16 are also available.

SAB 80C517/80C537

The SAB80C517/80C537 is a new and the most powerful member of the Siemens SAB 8051 family of 8-bit microcontrollers. It is designed in Siemens ACMOS technology and is functionally compatible with the SAB 80C515/80C535 devices. While maintaining all the SAB 80C51 operating characteristics, the SAB 80C517/80C537 incorporates several enhancements which significantly increase design flexibility and overall system performance. These features are:

- 8 Kbyte On-Chip Program Memory
- 256 Byte On-Chip RAM
- 256 Directly Addressable Bits
- 1 µs Instruction Cycle at 12 MHz
- 64 of 111 Instructions Executed in One Cycle
- External Program and Data Memory Expandable to 64 Kbyte Each

- 8-Bit A/D Converter
- 12 Multiplexed Inputs
- Programmable Reference Voltages
- External/Internal Start of Conversion
- Two General Purpose 16-Bit Timers/Counters (Timer 0, Timer 1)
- Compare Capture Unit (CCU)
- One 16-Bit Timer/Counter, 1 MHz Clock
- One 16-Bit Compare-Timer, 6 MHz Clock with Dedicated Reload Register
- One 16-Bit Reload/Capture/Compare Register
- Four 16-Bit Capture/Compare Registers
- Eight 16-Bit Compare Registers
- Concurrent Compare
- Pulse Width Modulation or High Speed Output Possible on up to 21 Channels
- Fine Capture Input Channels
- Two Full Duplex Serial Interfaces with Own Baud Rate Generator
- Four Priority Level Interrupt System, 14 Interrupt Sources
- Extended Arithmetic Capabilities for Division and Multiplication (Mul./Div. Unit Operations to Fast 16/32-Bit)
- Eight Datapointers for Indirect Addressing
- Extended Fail Safe Mechanisms
- 16-Bit Programmable Watchdog Timer
- Oscillator Watchdog
- Hardware Disable for Power Saving Modes
- Extended Power Saving Modes (Slow Down, Idle, Power-Down)
- Nine Ports
- Seven Bidirectional 8-Bit Ports
- One 8-Bit, One 4-Bit Input Port
- 84 Pin PLCC Package

SAB-51 Architectural Overview

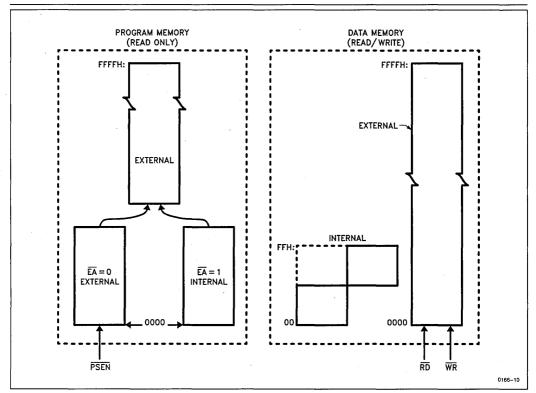


Figure 2. SAB-51 Memory Structure

Memory Organization in SAB-51 Devices

Logical Separation of Program and Data Memory

All SAB-51 devices have separate address spaces for Program and Data Memory, as shown in Figure 2. The logical separation of Program and Data Memory allows the Data Memory to be accessed by 8-bit addresses, which can be more quickly stored and manipulated by an 8-bit CPU. Nevertheless, 16-bit Data Memory addresses can also be generated through the DPTR register.

Program Memory can only be read, not written to. There can be up to 64 Kbytes of Program Memory. In the 8051A, 80C51 and 80512 the lowest 4 Kbytes of Program Memory are on-chip. The 8052B, 80515, 80C515 and 80C517 provide 8 Kbytes of on-chip Program Memory storage. The SAB 80513 has 16K of on-chip program memory. In the ROMless versions all Program Memory is external. The read strobe for external Program Memory is the signal PSEN (Program Store Enable).

Data Memory occupies a separate address space from Program Memory. Up to 64 Kbytes of external RAM can be addressed in the external Data Memory space. The CPU generates read and write signals, RD and WR, as needed during external Data Memory accesses.

External Program Memory and external Data Memory may be combined if desired by applying the $\overline{\text{RD}}$ and $\overline{\text{PSEN}}$ signals to the inputs of an AND gate and using the output of the gate as the read strobe to the external Program/Data memory.

Program Memory

Figure 3 shows a map of the lower part of the Program Memory. After reset, the CPU begins execution from location 0000H.

As shown in Figure 3, each interrupt is assigned a fixed location in Program Memory. The interrupt causes the CPU to jump to that location, where it commences execution of the service routine. External Interrupt 0, for example, is assigned to location 0003H. If External Interrupt 0 is going to be used, its service routine must begin at location 0003H. If the interrupt is not going to be used, its service location is available as general purpose Program Memory.

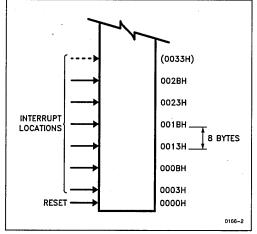
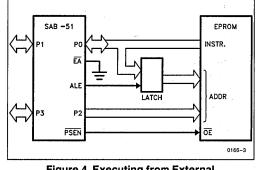


Figure 3. SAB-51 Program Memory

The interrupt service locations are spaced at 8-byte intervals: 0003H for External Interrupt 0, 000BH for Timer 0, 0013H for External Interrupt 1, 001BH for Timer 1, etc. If an interrupt service routine is short enough (as is often the case in control applications), it can reside entirely within that 8-byte interval. Longer service routines can use a jump instruction to skip over subsequent interrupt locations, if other interrupts are in use.

The lowest 4K (or 8K, in the 8052B, 80515 and 80C517) bytes of Program Memory can be either in the on-chip ROM or in an external ROM. This selection is made by strapping the $\overline{\text{EA}}$ (External Access) pin to either V_{CC} or V_{SS}.


In 8051A, 80C51 and 80512, if the \overrightarrow{EA} pin is strapped to V_{CC}, then program fetches to addresses 0000H through 0FFFH are directed to the internal ROM. Program fetches to addresses 1000H through FFFFH are directed to external ROM.

In the 8052B and the other 8K ROM parts, $\overline{EA} = V_{CC}$ selects addresses 0000H through 1FFFH to be internal, and addresses 2000H through FFFFH to be external.

In the 80513, $\overline{\text{EA}} = V_{CC}$ selects addresses 0000H through 3FFFH to be internal and addresses 4000H through FFFH to be external.

If the $\overline{\text{EA}}$ pin is strapped to V_{SS}, then all program fetches are directed to external ROM. The ROMless parts 8031A, 8032B, 80532 etc. must have this pin externally strapped to V_{SS} to enable them to execute from external Program Memory.

The read strobe to external ROM, PSEN, is used for all external program fetches. PSEN is not activated for internal program fetches.

Figure 4. Executing from External Program Memory

The hardware configuration for external program execution is shown in Figure 4. Note that 16 I/O lines (Ports 0 and 2) are dedicated to bus functions during external Program Memory fetches. Port 0 (P0 in Figure 4) serves as a multiplexed address/data bus. It emits the low byte of the Program Counter (PCL) as an address, and then goes into a float state awaiting the arrival of the code byte from the Program Memory. During the time that the low byte of the Program Counter is valid on P0, the signal ALE (Address Latch Enable) clocks this byte into an address latch. Meanwhile, Port 2 (P2 in Figure 4) emits the high byte of the Program Counter (PCH). The <u>PSEN</u> strobes the EPROM and the code byte is read into the microcontroller.

Program Memory addresses are always 16 bits wide, even though the actual amount of Program Memory used may be less than 64 Kbytes. External program execution sacrifices two of the 8-bit ports, P0 and P2, to the function of addressing the Program Memory.

Data Memory

The right half of Figure 2 shows the internal and external Data Memory spaces available to the SAB-51 user.

Figure 5 shows a hardware configuration for accessing up to 2 Kbytes of external RAM. The CPU in this case is executing from internal ROM. Port 0 serves as a multiplexed address/data bus to the RAM and 3 lines of Port 2 are being used to page the RAM. The CPU generates RD and WR signals as needed during external RAM accesses.

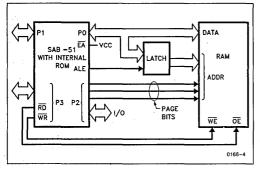


Figure 5. Accessing External Data Memory If the Program Memory is Internal, the Other Bits of P2 are Available as I/O.

There can be up to 64 Kbytes of external Data Memory. External Data Memory addresses can be either 1 or 2 bytes wide. One-byte addresses are often used in conjunction with one or more other I/O lines to page the RAM, as shown in Figure 5. Two-byte addresses can also be used, in which case the high address byte is emitted at Port 2.

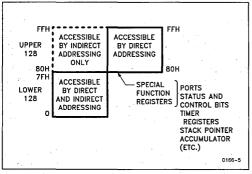


Figure 6. Internal Data Memory

Internal Data Memory is mapped in Figure 6. The memory space is shown divided into three blocks, which are generally referred to as the Lower 128, the Upper 128 and SFR space.

Internal Data Memory addresses are always one byte wide, which implies an address space of only 256 bytes. However, the addressing modes for internal RAM can in fact accommodate 384 bytes, using a simple trick. Direct addresses higher than 7FH access one memory space, and indirect addresses higher than 7FH access a different memory space. Thus Figure 6 shows the Upper 128 and SFR space occupying the same block of addresses, 80H through FFH, although they are physically separate entities.

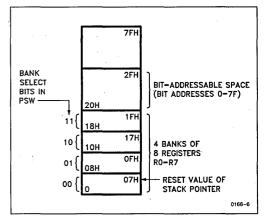


Figure 7. The Lower 128 Bytes of Internal RAM

The Lower 128 bytes of RAM are present in all SAB-51 devices as mapped in Figure 7. The lowest 32 bytes are grouped into 4 banks of 8 registers. Program instructions call out these registers as R0 through R7. Two bits in the Program Status Word (PSW) select which register bank is in use. This allows more efficient use of code space, since register instructions are shorter than instructions that use direct addressing.

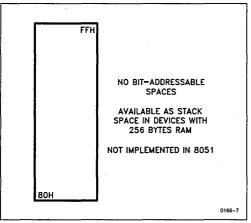


Figure 8. The Upper 128 Bytes of Internal RAM

The next 16 bytes above the register banks form a block of bit-addressable memory space. The SAB-51 instruction set includes a wide selection of singlebit instructions, and the 128 bits in this area can be directly addressed by these instructions. The bit addresses in this area are 00H through 7FH.

All of the bytes in the Lower 128 can be accessed by either direct or indirect addressing. The Upper 128 (Figure 8) can only be accessed by indirect addressing. The Upper 128 bytes of RAM are not implemented in the 8051A, but are in the 8052B, 80515 and 80C517. Figure 9 gives a brief look at the Special Function Register (SFR) space. SFR include the Port latches, timers, peripheral controls, etc. These registers can only be accessed by direct addressing. In general, all SAB-51 microcontrollers have the same SFRs as the 8051. However, enhancements to the 8051 have additional SFRs that are not present in the 8051, nor perhaps in other proliferations of the family.

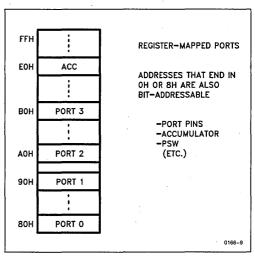


Figure 9. SFR Space

The bit addresses in this area are 80H through FFH.

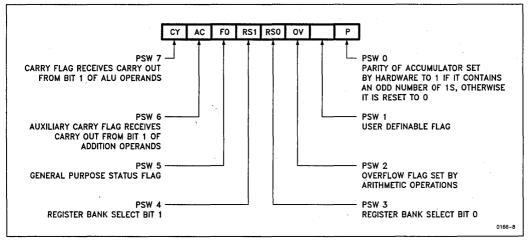


Figure 10. PSW (Program Status Word) Register SAB-51 Devices

The SAB-51 Instruction Set

All members of the SAB-51 family execute the same instruction set. SAB-51 instruction set is optimized for 8-bit control applications. It provides a variety of fast addressing modes for accessing the internal RAM to facilitate byte operations on small data structures. The instruction set provides extensive support for one-bit variables as a separate data type, allowing direct bit manipulation in control and logic systems that require Boolean processing.

An overview of the SAB-51 instruction set is presented below, with a brief description of how certain instructions might be used. Refer to the chapter on instruction set in this book for detailed information on the instructions.

Program Status Word

The Program Status Word (PSW) contains several status bits that reflect the current state of the CPU. The PSW, shown in Figure 10, resides in SFR space. It contains the Carry bit, the Auxiliary Carry (for BCD operations), the two register bank select bits, the Overflow flag, a Parity bit, and two user-definable status flags.

The Carry bit, other than serving the functions of a Carry bit in arithmetic operations, also serves as the "Accumulator" for a number of Boolean operations.

The bits RS0 and RS1 are used to select one of the four register banks shown in Figure 7. A number of instructions refer to these RAM locations as R0 through R7. The selection of which of the four banks is being referred to is made on the basis of the bits RS0 and RS1 at execution time.

The Parity bit reflects the number of 1s in the Accumulator: P = 1 if the Accumulator contains an odd number of 1s, and P = 0 if the Accumulator contains an even number of 1s. Thus the number of 1s in the Accumulator plus P is always even.

Two bits in the PSW are uncommitted and may be used as general purpose status flags.

Addressing Modes

The addressing modes in the SAB-51 instruction set are as follows:

Direct Addressing

In direct addressing the operand is specified by an 8-bit address field in the instruction. Only internal Data RAM and SFRs can be directly addressed.

Indirect Addressing

In indirect addressing the instruction specifies a register which contains the address of the operand. Both internal and external RAM can be indirectly addressed.

The address register for 8-bit addresses can be R0 or R1 of the selected register bank or the Stack Pointer. The address register for 16-bit addresses can only be the 16-bit "data pointer" register, DPTR.

Register Instructions

The register banks, containing registers R0 through R7, can be accessed by certain instructions which carry a 3-bit register specifcation within the opcode of the instruction. Instructions that access the registers this way are code efficient, since this mode eliminates an address byte. When the instruction is executed, one of the eight registers in the selected bank is accessed. One of four banks is selected at execution time by the two bank select bits in the PSW.

Register-Specific Instructions

Some instructions are specific to a certain register. For example, some instructions always operate on the Accumulator, or Data Pointer, etc., so no address byte is needed to point to it. The opcode itself does that. Instructions that refer to the Accumulator as A assemble as accumulator-specific opcodes.

Immediate Constants

The value of a constant can follow the opcode in Program Memory. For example,

MOV A, #100

loads the Accumulator with the decimal number 100. The same number could be specified in hex digits as 64H.

Indexed Addressing

Only Program Memory can be accessed with indexed addressing, and it can only be read. This addressing mode is intended for reading look-up tables in Program Memory. A 16-bit base register (either DPTR or the Program Counter) points to the base of the table, and the Accumulator is set up with the table entry number. The address of the table entry in Program Memory is formed by adding the Accumulator data to the base pointer. Another type of indexed addressing is used in the "case jump" instruction. In this case the destination address of a jump instruction is computed as the sum of the base pointer and the Accumulator data.

Arithmetic Instructions

With the on-chip arithmetic unit the SAB 80C517 has a special provision for fast multiplication and division. Refer to the SAB 80C517 User's Manual for detailed information on this logic. However, the following information applies to all the members of the SAB-51 family.

The menu of arithmetic instructions is listed in Table 2. The table indicates the addressing modes that can be used with each instruction to access the
byte> operand. For example, the ADD A, <byte> instruction can be written as:

ADD A,7FH (direct addressing)

ADD A,@R0 (indirect addressing)

- ADD A,R7 (register addressing)
- ADD A, #127 (immediate constant)

The execution times listed in Table 2 assume a 12 MHz clock frequency. All of the arithmetic instructions execute in 1 μ s except the INC DPTR instruction, which takes 2 μ s, and the Multiply and Divide instructions, which take 4 μ s.

Note that any byte in the internal Data Memory space can be incremented or decremented without going through the Accumulator.

One of the INC instructions operates on the 16-bit Data Pointer. The Data Pointer is used to generate 16-bit addresses for external memory, so being able to increment it in one 16-bit operation is a useful feature.

The MUL AB instruction multiplies the Accumulator by the data in the B register and puts the 16-bit product into the concatenated B and Accumulator registers.

Mnemonic Oper		Operation	Operation Add			ddressing Modes			
		operation	Dir	Ind	Reg	Imm	Time (μs)		
ADD	A, <byte></byte>	$A = A + \langle byte \rangle$	X	X	X	X	1 .		
ADDC	A, <byte></byte>	$A = A + \langle byte \rangle + C$	X	Х	X	х	1		
SUBB	A, <byte></byte>	$A = A - \langle byte \rangle - C$	X	X	X	х	1		
INC	NC A $A = A + 1$		Accumulator Only				1		
INC	<byte></byte>	<byte> = <byte> + 1</byte></byte>	X	X	X		1		
INC	DPTR	DPTR = DPTR + 1		Data Po	2				
DEC	A	A = A - 1	Accumulator Only				1		
DEC	 byte>	$\langle byte \rangle = \langle byte \rangle - 1$	X	X	X		1		
MUL	AB	$B:A=B\timesA$		ACC and B Only					
DIV	AB	A = Int [A/B] B = Mod [A/B]	ACC and B Only			4			
DA	A	Decimal Adjust	Accumulator Only			у	. 1		

Table 2. A List of the SAB-51 Arithmetic Instructions

The DIV AB instruction divides the Accumulator by the data in the B register and leaves the 8-bit quotient in the Accumulator, and the 8-bit remainder in the B register.

Oddly enough, DIV AB finds less use in arithmetic "divide" routines than in radix conversions and programmable shift operations. An example of the use of DIV AB in a radix conversion will be given later. In shift operations, dividing a number by 2ⁿ shifts its n bits to the right. Using DIV AB to perform the division completes the shift in 4 μ s and leaves the B register holding the bits that were shifted out.

The DA A instruction is for BCD arithmetic operations. In BCD arithmetic, ADD and ADDC instructions should always be followed by a DA A operation, to ensure that the result is also in BCD. Note that DA A will not convert a binary number to BCD. The DA A operation produces a meaningful result only as the second step in the addition of two BCD bytes.

Logical Instructions

Table 3 shows the list of SAB-51 logical instructions. The instructions that perform Boolean operations (AND, OR, Exclusive OR, NOT) on bytes perform the operation on a bit-by-bit basis. That is, if the Accumulator contains 00110101B and <byte> contains 01010011B, then

ANL A, <byte>

will leave the Accumulator holding 00010001B.

The addressing modes that can be used to access the < byte> operand are listed in Table 3. Thus, the ANL A, < byte> instruction may take any of the forms:

ANL	A,7FH	(direct addressing)
ANL	A,@R1	(indirect addressing)
ANL	A,R6	(register addressing)
ANL	A,#53H	(immediate constant)

Mnemonic Operation		Operation	A	ddress	Execution		
•			Dir	Ind	Reg	Imm	Time (μs)
ANL ·	A, <byte></byte>	A = A.AND. <byte></byte>	X	Х	Х	Х	1
ANL	<byte>, A</byte>	<byte> = <byte> .AND.A</byte></byte>	X				1
ANL	<byte>, #data</byte>	<byte> = <byte> .AND.#data</byte></byte>	X				2
ORL	A, <byte></byte>	A = A.OR. <byte></byte>	X	Х	X	X	1
ORL	<byte>,A</byte>	<byte> = <byte> .OR.A</byte></byte>	X				1
ORL	<byte>,#data</byte>	<byte> = <byte>.OR.#data</byte></byte>					2
XRL	A, <byte></byte>	A = A.XOR. <byte></byte>	X	X	X	Х	1
XRL	<byte>, A</byte>	<byte> = <byte> .XOR.A</byte></byte>	X				1
XRL	<byte>, #data</byte>	<byte> = <byte> .XOR.#data</byte></byte>	X				2
CRL	A	A = 00H		Accum	ulator O	nly	1
CPL	A	A = .NOT.A		Accum	ulator O	nly	1
RL	A	Rotate ACC Left 1 Bit		Accum	ulator O	nly	1
RLC	A	Rotate Left through Carry		Accumulator Only		1	
RR	A	Rotate ACC Right 1 Bit		Accumulator Only		1	
RRC	Α	Rotate Right through Carry	Accumulator Only		1		
SWAP	A	Swap Nibbles in A		Accum	ulator O	nly	1

Table 3. A List of the SAB-51 Logical Instructions

All of the logical instructions that are Accumulator-specific execute in 1 μ s (using a 12 MHz clock). The others take 2 μ s.

Note that Boolean operations can be performed on any byte in the internal Data Memory space without going through the Accumulator. The XRL
byte>,
#data instruction, for example, offers a quick and
easy way to invert port bits, as in:

XRL R1,#0FFH

If the operation is in response to an interrupt, not using the Accumulator saves the time and effort to stack it in the service routine.

The Rotate instructions (RL A, RLC A, etc.) shift the Accumulator 1 bit to the left or right. For a left rotation, the MSB rolls into the LSB position. For a right rotation, the LSB rolls into the MSB position.

The SWAP A instruction interchanges the high and low nibbles within the Accumulator. This is a useful operation in BCD manipulations. For example, if the Accumulator contains a binary number which is known to be less than 100, it can be quickly converted to BCD by the following code.

MOV	B, #10
DIV	AB
SWAP	А
ADD	А, В

Dividing the number by 10 leaves the tens digit in the low nibble of the Accumulator, and the ones digit in

the B register. The SWAP and ADD instructions move the tens digit to the high nibble of the Accumulator and the ones digit to the low nibble.

Data Transfers

Internal RAM

Table 4 shows the menu of instructions that are available for moving data around within the internal memory spaces, and the addressing modes that can be used with each one. With a 12 MHz clock, all of these instructions execute in either 1 μ s or 2 μ s.

The MOV <dest>, <src> instruction allows data to be transferred between any two internal RAM or SFR locations without going through the Accumulator. Remember the Upper 128 bytes of data RAM can be accessed only by indirect addressing and SFR space only by direct addressing.

Note that in all SAB-51 devices, the stack resides in on-chip RAM, and grows upwards. The PUSH instruction first increments the Stack Pointer (SP), then copies the byte into the stack. PUSH and POP use only direct addressing to identify the byte being saved or restored, but the stack itself is accessed by indirect addressing using the SP register. This means the stack can go into the Upper 128, if they are implemented, but not into SFR space.

Mnemonic		Operation		ddress	Execution		
		operation	Dir	Ind	Reg	Imm	Time (μs)
MOV	A, <src></src>	$A = \langle src \rangle$	X	х	Х	Х	1
MOV	<dest>, A</dest>	<dest> = A</dest>	X	Х	х		1
MOV	<dest>, <src></src></dest>	<dest> = <src></src></dest>	X	X	Х	Х	2
MOV	DPTR, #data16	DPTR = 16-Bit Immediate Constant				Х	2
PUSH	<src></src>	INC SP: MOV "@SP", <src></src>	X				2
POP	<dest></dest>	MOV <dest>, "@SP": DEC SP</dest>	X		-		2
ХСН	A, <byte></byte>	ACC and <byte> Exchange Data</byte>	X	Х	х		1
XCHD	A, @Ri	ACC and @Ri Exchange Low Nibbles		Х			1

Table 4. A List of the SAB-51 Data Transfer Instructions that Access Internal Data Memory Space

SAB-51 Architectural Overview

The Upper 128 Bytes are not implemented in the 8051A, 80C51 and 80512, nor in their ROMless counterparts. With these devices, if the SP points to the Upper 128, PUSHed bytes are lost, and POPped bytes are indeterminate.

The Data Transfer instructions include a 16-bit MOV that can be used to initialize the Data Pointer (DPTR) for look-up tables in Program Memory, or for 16-bit external Data Memory accesses. Refer to the SAB 80C517 Data Sheet for extended Data Pointer Capabilities.

The XCH A,
byte> instruction causes the Accumulator and addressed byte to exchange data. The XCHD A,@Ri instruction is similar, but only the low nibbles are involved in the exchange.

To see how XCH and XCHD can be used to facilitate data manipulations, consider first the problem of shifting an 8-digit BCD number two digits to the right. Figure 11 shows how this can be done using direct MOVs, and for comparison how it can be done using XCH instructions. To aid in understanding how the code works, the contents of the registers that are holding the BCD number and the content of the Accumulator are shown alongside each instruction to indicate their status after the instruction has been executed.

		2A	2B	2C	2D	2E	ACC
MOV	A, 2EH	00	12	34	56	78	78
MOV	2EH, 2DH	00	12	34	56	56	78
MOV	2DH, 2CH	00	12	34	34	56	78
MOV	2CH, 2BH,	00	12	12	34	56	78
MOV	2BH, #0	00	00	12	34	56	78

(a) Using Direct MOVs: 14 Bytes, 9 µs

		2A	2B	2C	2D	2E	ACC
CLR	А	00	12	34	56	78	00
XCH 1	A, 2BH	00	00	34	56	78	12
XCH	A, 2CH	00	00	12	56	78	34
XCH	A, 2DH	00	00	12	34	78	56
XCH	A, 2EH	00	00	12	34	56	78
1							

(b) Using XCH_{S1} 9 Bytes, 5 μs

Figure 11. Shifting a BCD Number Two Digits to the Right

After the routine has been executed, the Accumulator contains the two digits that were shifted out on the right. Doing the routine with direct MOVs uses 14 code bytes and 9 μ s of execution time (assuming a 12 MHz clock). The same operation with XCHs uses less code and executes almost twice as fast. To right-shift by an odd number of digits, a one-digit shift must be executed. Figure 12 shows a sample of code that will right-shift a BCD number one digit, using the XCHD instruction. Again, the contents of the registers holding the number and of the Accumulator are shown alongside each instruction.

							•		
			2A	2B	2C	2D	2E	ACC	
	MOV	R1, #2EH				56			
	MOV	R0, #2DH	00	12	34	56	78	xx	
	Loop for $R1 = 2EH$:								
LOOP:	MOV	A, @R1	00	12	34	56	78	76	
	XCHD	A, @R0	00	12	34	58	78	76	
	SWAP	Α	00	12	34	58	78	67	
ļ	MOV	@R1, A	00	12	34	58	67	67	
	DEC	R1	00	12	34	58	67	67	
	DEC	R0	00	12	34	58	67	67	
	CJNE R1, #2AH, LOOP								
1	1.000	or R1 = 2DH:	100	110	امم	45	67	45	
		or $R1 = 2DH$: or $R1 = 2CH$:							
	Loop	or RT = 2CH:		10	23	45	07	01	
		or R1 = 2BH:	108	101	123	140	10/		
	CLR	А	08	01	23	45	67	00	
		A, 2AH	00	01	23	45	67	00 08	

Figure 12. Shifting a BCD Number One Digit to the Right

First, pointers R1 and R0 are set up to point to the two bytes containing the last four BCD digits. Then a loop is executed which leaves the last byte, location 2EH, holding the last two digits of the shifted number. The pointers are decremented, and the loop is repeated for location 2DH. The CJNE instruction (Compare and Jump if Not Equal) is a loop control that will be described later.

The loop is executed from LOOP to CJNE for R1 2EH, 2DH, 2CH and 2BH. At that point the digit that was originally shifted out on the right has propagated to location 2AH. Since that location should be left with 0s, the lost digit is moved to the Accumulator.

External RAM

Table 5 shows a list of the Data Transfer instructions that access external Data Memory. Only indirect addressing can be used. The choice is whether to use a one-byte address, @Ri, where Ri can be either R0 or R1 of the selected register bank, or a two-byte address, @DPTR. The disadvantage to using 16-bit addresses if only a few Kbytes of external RAM are involved is that 16-bit addresses use all 8 bits of Port 2 as address bus. On the other hand, 8-bit addresses allow one to address a few Kbytes of RAM, as shown in Figure 5, without having to sacrifice all of Port 2.

All of thes instructions execute in 2 μ s, with a 12 MHz clock.

Table 5. A List of the SAB-51 Data Transfer Instructions that Access External Data Memory Space

Address Width	Mnemonic Operation		Execution Time (µs)
8 Bits	MOVX A, @Ri	Read External RAM @Ri	2
8 Bits	MOVX @Ri, A	Write External RAM @Ri	2
16 Bits	MOVX A, @DPTR	Read External RAM @DPTR	2
16 Bits	MOVX @DPTR, A	Write External RAM @DPTR	2

Note that in all external Data RAM accesses, the Accumulator is always either the destination or source of the data.

The read and write strobes to external RAM are activated only during the execution of a MOVX instruction. Normally these signals are inactive, and in fact if they're not going to be used at all, their pins are available as extra I/O lines. More about that later.

Lookup Tables

Table 6 shows the two instructions that are available for reading loopup tables in Program Memory. Since these instructions access only Program Memory, the lookup tables can only be read, not updated. The mnemonic is MOVC for "move constant".

If the table access is to external Program Memory, then the read strobe is PSEN.

Table 6. The SAB-51 Lookup Table Read Instructions

Mnemonic	Operation	Execution Time (µs)
MOVC A, @A + DPTR	Read PGM Memory at (A + DPTR)	2
MOVC A, @A + PC	Read PGM Memory at (A + PC)	2

The first MOVC instruction in Table 6 can accommodate a table of up to 256 entries, numbered 0 through 255. The number of the desired entry is loaded into the Accumulator, and the Data Pointer is set up to point to beginning of the table. Then

MOVC A, @A + DPTR

copies the desired table entry into the Accumulator.

The other MOVC instruction works the same way, except the Program Counter (PC) is used as the table base, and the table is accessed through a subroutine. First the number of the desired entry is loaded into the Accumulator, and the subroutine is called:

3

MOV A, ENTRY__NUMBER

CALL TABLE

The subroutine "TABLE" would look like this:

TABLE: MOVC A, @A + PC RET

The table itself immediately follows the RET (return) instruction in Program Memory. This type of table can have up to 255 entries, numbered 1 through 255. Number 0 can not be used, because at the time the MOVC instruction is executed, the PC contains the address of the RET instruction. An entry numbered 0 would be the RET opcode itself.

Boolean Instructions

SAB-51 devices contain a complete Boolean (singlebit) processor. The internal RAM contains 128 addressable bits, and the SFR space can support up to 128 other addressable bits. All of the port lines are bit-addressable, and each one can be treated as a separate single-bit port. The instructions that access these bits are not just conditional branches, but a complete menu of move, set, clear, complement, OR and AND instructions. These kinds of bit operations are not easily obtained in other architectures with any amount of byte-oriented software.

Doolean Instructions							
Mnemonic		Operation	Execution Time (µs)				
ANL	C,Bit	C = C.AND.Bit	2				
ANL	C,/Bit	C = C.ANDNOT.Bit	2				
ORL	C,Bit	C = C.OR.Bit	2				
ORL	C,/Bit	C = C.ORNOT.Bit	2				
MOV	C,Bit	C = Bit	1				
MOV	Bit, C	Bit = C	2				
CLR	С	C = 0	1				
CLR	Bit	Bit = 0	1				
SETB	С	C = 1	1				
SETB	Bit	Bit = 1	1				
CPL	C .	C = .NOT.C	1				
CPL	Bit	Bit = .NOT.Bit	1				
JC	Rel	Jump if C = 1	2				
JNC	Rel	Jump if $C = 0$	2				
JB	Bit,Rel	Jump if Bit = 1	2				
JNB	Bit,Rel	Jump if Bit = 0	2				
JBC	Bit,Rel	Jump if Bit = 1; CLR Bit	2				

Table 7. A List of the SAB-51 Boolean Instructions

The instruction set for the Boolean processor is shown in Table 7. All bit accesses are by direct addressing. Bit addresses 00H through 7FH are in the Lower 128 and bit addresses 80H through FFH are in SFR space.

Note how easily an internal flag can be moved to a port pin:

MOV C,FLAG MOV P1.0,C

In this example, FLAG is the name of any addressable bit in the Lower 128 or SFR space. An I/O line (the LSB of Port 1, in this case) is set or cleared depending on whether the flag bit is 1 or 0.

The Carry bit in the PSW is used as the single-bit Accumulator of the Boolean processor. Bit instructions that refer to the Carry bit as C assemble as Carry-specific instructions (CLR C, etc). The Carry bit also has a direct address, since it resides in the PSW register, which is bit-addressable. Note that the Boolean instruction set includes ANL and ORL operations, but not the XRL (Exclusive OR) operation. An XRL operation is simple to implement in software. Suppose, for example, it is required to form the Exclusive OR of two bits:

C = Bit1 .XRL. bit 2

The software to do that could be as follows:

MOV	C,bit1
JNB	bit2,OVER
CPL	С

OVER: (Continue)

First, bit1 is moved to the Carry. If bit2 = 0, then C now contains the correct result. That is, bit1 .XRL. bit 2 = bit1 if bit2 = 0. On the other hand, if bit2 = 1C now contains the complement of the correct result. It need only be inverted (CPL C) to complete the operation.

This code uses the JNB instruction, one of a series of bit-test instructions which execute a jump if the addressed bit is set (JC, JB, JBC) or if the addressed bit is not set (JNC, JNB). In the above case, bit2 is being tested, and if bit2 = 0 the CPL C instruction is jumped over.

JBC executes the jump if the addressed bit is set, and also clears the bit. Thus a flag can be tested and cleared in one operation.

All the PSW bits are directly addressable, so the Parity bit, or the general purpose flags, for example, are also available to the bit-test instructions.

Relative Offset

The destination address for these jumps is specified to the assembler by a label or by an actual address in Program Memory. However, the destination address assembles to a relative offset byte. This is a signed (two's complement) offset byte which is added to the PC in two's complement arithmetic if the jump is excuted.

The range of the jump is therefore -128 to +127Program Memory bytes relative to the first byte following the instruction.

Jump Instructions

Table 8 shows the list of unconditional jumps.

Table 8. Unconditional Jumps in SAB-51 Devices

Mnemonic		Operation	Execution Time (µs)
JMP	addr	Jump to addr	2
JMP	@A + DPTR	Jump to A + DPTR	· 2
CALL	Addr	Call Subroutine at addr	2
RET		Return from Subroutine	2
RETI		Return from Interrupt	2
NOP		No Operation	1.

The Table lists a single "JMP addr" instruction, but in fact there are three— SJMP, LJMP and AJMP which differ in the format of the destination address. JMP is a generic mnemonic which can be used if the programmer does not care which way the jump is encoded.

The SJMP instruction encodes the destination address as a relative offset, as described above. The instruction is 2 bytes long, consisting of the opcode and the relative offset byte. The jump distance is limited to a range of -128 to +127 bytes relative to the instruction following the SJMP.

The LJMP instruction encodes the destination address as a 16-bit constant. The instruction is 3 bytes long, consisting of the opcode and two address bytes. The destination address can be anywhere in the 64K Program Memory space.

The AJMP instruction encodes the destination address as an 11-bit constant. The instruction is 2 bytes long, consisting of the opcode, which itself contains 3 of the 11 address bits, followed by another byte containing the low 8 bits of the destination address. When the instruction is executed, these 11 bits are simply substitued for the low 11 bits in the PC. The high 5 bits stay the same. Hence the destination has to be within the same 2K block as the instruction following the AJMP.

In all cases the programmer specifies the destination address to the assembler in the same way: as a label or as a 16-bit constant. The assembler will put the destination address into the correct format for the given instruction. If the format required by the instruction will not support the distance to the specified destination address, a "Destination out of range" message is written into the List file. The JMP @A + DPTR instruction supports case jumps. The destination address is computed at execution time as the sum of the 16-bit DPTR register and the Accumulator. Typically, DPTR is set up with the address of a jump table, and the Accumulator is given an index to the table. In a 5-way branch, for example, an integer 0 through 4 is loaded into the Accumulator. The code to be executed might be as follows:

DPTR, #JUMPTABLE
A,INDEXNUMBER
Α
@A + DPTR

The RL A instruction converts the index number (0 through 4) to an even number on the range 0 through 8, because each entry in the jump table is 2 bytes long:

JUMP___TABLE:

AJMP	CASE0
AJMP	CASE_1
AJMP	CASE_2
AJMP	CASE_3
AJMP	CASE4

Table 8 shows a single "CALL addr" instruction, but there are two of them—LCALL and ACALL— which differ in the format in which the subroutine address is given to the CPU. CALL is a generic mnemonic which can be used if the programmer does not care which way the address is encoded.

The LCALL instruction uses the 16-bit address format, and the subroutine can be anywhere in the 64K Program Memory space. The ACALL instruction uses the 11-bit format, and the subroutine must be in the same 2K block as the instruction following the ACALL.

In any case the programmer specifies the subroutine address to the assembler in the same way: as a label or as a 16-bit constant. The assembler will put the address into the correct format for the given instructions.

Subroutines should end with a RET instruction, which returns execution to the instruction following the CALL.

RETI is used to return from an interrupt service routine. The only difference between RET and RETI is that RETI tells the interrupt control system that the interrupt in progress is done. If there is no interrupt in progress at the time RETI is executed, then the RETI is functionally identical to RET.

Mnemonic		Operation		ddress	Execution				
	Milenonic	Dir Ind		• •		Dir Ind Reg I		Imm	Time (μs)
JZ	Rel	Jump if $A = 0$		Accumulator Only			2		
JNZ	Rel	Jump if A \neq 0Accumulator Only			2				
DJNZ	<byte>,rel</byte>	Decrement and Jump if Not Zero	X		X		2		
CJNE	A, <byte>,rel</byte>	Jump if A \neq <byte></byte>	X			X	2		
CJNE	<byte>, #data,rel</byte>	Jump if $\langle byte \rangle \neq #data$		X	X		2		

Table 9. Conditional Jumps in SAB-51 Devices

Table 9 shows the list of conditional jumps available to the SAB-51 user. All of these jumps specify the destination address by the relative offset method; and so are limited to a jump distance of -128 to +127 bytes from the instruction following the conditional jump instruction. Important to note, however, the user specifies to the assembler the actual destination address the same way as the other jumps: as a label or a 16-bit constant.

There is no Zero bit in the PSW. The JZ and JNZ instructions test the Accumulator data for that condition.

The DJNZ instruction (Decrement and Jump if Not Zero) is for loop control. To execute a loop N times, load a counter byte with N and terminate the loop with a DJNZ to the beginning of the loop, as shown below for N = 10:

MOV COUNTER, #10

LOOP: (begin loop)

•

(end loop) DJNZ COUNTER, LOOP

(Continue)

The CJNE instruction (Compare and Jump if Not Equal) can also be used for loop control as in Figure 12. Two bytes are specified in the operand field of the instruction. The jump is executed only if the two bytes are not equal. In the example of Figure 12, the two bytes were the data in R1 and the constant 2AH. The initial data in R1 was 2EH. Every time the loop as executed, R1 was decremented, and the looping was to continue until the R1 data reached 2AH.

Another application of this instruction is in "greater than, less than" comparisons. The two bytes in the operand field are taken as unsigned integers. If the first is less than the second, then the Carry bit is set (1). If the first is greater than or equal to the second, then the Carry bit is cleared.

CPU Timing

All SAB-51 microcontrollers have an on-chip oscillator which can be used if desired as the clock source for the CPU. To use the on-chip oscillator, connect a crystal or ceramic resonator between the XTAL1 and XTAL2 pins of the microcontroller and capacitors to ground as shown in Figure 13.

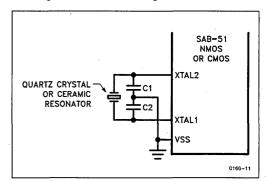


Figure 13. Using the On-Chip Oscillator

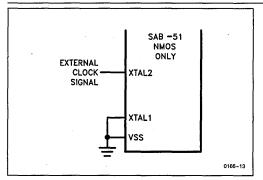


Figure 14. Using an External Clock

Example of how to drive the clock with an external oscillator is shown in Figure 14. Note that in the NMOS devices (8051, etc.) the signal at the XTAL2 pin actually drives the internal clock generator. In the CMOS devices 80C51, 80C52 the signal at the XTAL1 pin drives the internal clock generator, whereas in 80C515 and 80C517 the signal at the XTAL2 pin drives the internal clock generator. If only one pin is going to be driven with the external oscillator signal, make sure it is the right pin. For 80C517, refer to their data-sheets for the description of the clock oscillator pins.

The internal clock generator defines the sequence of states that make up the SAB-51 machine cycle.

Machine Cycles

A machine cycle consists of a sequence of 6 states, numbered S1 through S6. Each state time lasts for two oscillator periods. Thus a machine cycle takes 12 oscillator periods or 1 μ s if the oscillator frequency is 12 MHz.

Each state is divided into a Phase 1 half and a Phase 2 half. Figure 15 shows the fetch/execute sequences in states and phases for various kinds of instructions. Normally two program fetches are generated during each machine cycle, even if the instruction being executed doesn't require it. If the instruction being executed doesn't need more code bytes, the CPU simply ignores the extra fetch, and the Program Counter is not incremented.

Execution of a one-cycle instruction (Figure 15A and B) begins during State 1 of the machine cycle, when the opcode is latched into the Instruction Register. A second fetch occurs during S4 of the same machine cycle. Execution is complete at the end of State 6 of this machine cycle.

The MOVX instructions take two machine cycles to execute. No program fetch is generated during the

SAB-51 Architectural Overview



Figure 15. State Sequences in SAB-51 Devices

second cycle of a MOVX instruction. This is the only time program fetches are skipped. The fetch/execute sequence for MOVX instructions is shown in Figure 15(D).

The fetch/execute sequences are the same whether the Program Memory is internal or external to the chip. Execution times do not depend on whether the Program Memory is internal or external.

Figure 16 shows the signals and timing involved in program fetches when the Program Memory is external. If Program Memory is external, then the Program Memory read strobe PSEN is normally activated twice per machine cycle, as shown in Figure 16(A).

If an access to external Data Memory occurs, as shown in Figure 16(B), two PSENs are skipped, because the address and data bus are being used for the Data Memory access. Note that a Data Memory bus cycle takes twice as much time as a Program Memory bus cycle. Figure 16 shows the relative timing of the addresses being emitted at Ports 0 and 2, and of ALE and PSEN. ALE is used to latch the low address byte from P0 into the address latch.

When the <u>CPU</u> is executing from internal Program Memory, \overrightarrow{PSEN} is not activated, and program addresses are not emitted. However, ALE continues to be activated twice per machine cycle and so is available as a clock output signal. Note, however, that one ALE is skipped during the execution of the MOVX instruction.

Interrupt Structure

The 8051A and 80C51 and their ROMIess versions, provide 5 interrupt sources: 2

SAB-51 Architectural Overview

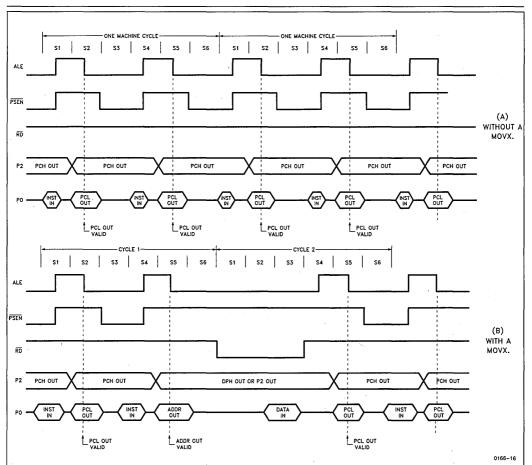


Figure 16. Bus Cycles in SAB-51 Devices Executing from External Program Memory

SAB-51 Architectural Overview

external interrupts, 2 timer interrupts, and the serial port interrupt. The 8052B and 80C52 provide these 5 plus a sixth interrupt that is associated with the third timer/counter which is present in the device. Additional interrupts are available on the 80512, 80515, 80C515 and 80C517. Refer to the appropriate chapters on these devices for further information on their interrupts.

What follows is an overview of the interrupt structure for these devices. More detailed information for specific members of the SAB-51 family is provided in the chapters of this handbook that describe the specific devices.

Interrupt Enables

Each of the interrupt sources can be individually enabled or disabled by setting or clearing a bit in the SFR named IE (Interrupt Enable). This register also contains a global disable bit, which can be cleared to disable all interrupts at once. Figure 17 shows the IE register for the 80528 and 80C52.

(M	ISB)							(LSB)		
E	A	-	ET2	ES	ET1	EX1	ET0	EX0		
Symi EA			esition IE.7	Function disables all interrupts. If EA = 0, no interrupt will be acknowledged. If EA = 1, each interrupt source is individually enabled or disabled by setting or clearing its enable bit.						
-			IE.6	res	served.					
ET	2		IE.5	enables or disables the Timer 2 overflow or capture interrupt. If ET2 = 0, the Timer 2 interrupt is disabled.						
ES	;		IE.4	enables or disables the Serial Port interrupt. If $ES = 0$, the Serial Port interrupt is disabled.						
ET	1		IE.3	enables or disables the Timer 1 Overflow interrupt. If ET1 = 0, the Timer 1 interrupt is disabled.						
EX	1		IE.2	enables or disables External Interrupt 1. If EX1 = 0, External Interrupt 1 is disabled				,		
ET	0		IE.1	enables or disables the Timer 0 Overflow interrupt. If ET0 = 0, the Timer 0 interrupt is disabled.						
EX	כ		IE.0	Int	ables c errupt (ternal l	D. If EX	0 = 0			

Figure 17. IE (Interrupt Enable) Register in the 8052B and 80C52

Interrupt Priorities

Each interrupt source can also be individually programmed to one of two priority levels (SAB 80515, 80C515 and 80C517 have four priority levels for the interrupts, please refer to their respective chapters for detailed information). By setting clearing a bit in the SFR named IP (Interrupt Priority) Figure 18 shows the IP register in the 8052B and 80C52.

A low-priority interrupt can be interrupted by a highpriority interrupt, but not by another low-priority interrupt. A high-priority can't be interrupted by any other interrupt source.

If two interrupt requests of different priority levels are received simultaneously, the request of higher priority level is serviced. If interrupt requests of the same priority level are received simultaneously, an internal polling sequence determines which request is serviced. Thus within each priority level there is a second priority structure determined by the polling sequence.

Figure 19 shows, for the 8052B, how the IE and IP registers and the polling sequence work to determine which if any interrupt will be serviced.

(MSB)						(LSB)
	— РТ2	PS	PT1	PX1	РТО	PX0
Symbol	Position	Function				
	IP.6	res	served			
PT2	IP.5	defines the Timer 2 interrupt priority level. PT2 = 1 programs it to the higher priority level.				
PS	IP.4	defines the Serial Port interrupt priority level. PS = 1 program it to the higher priority level.				
PT1	IP.3	defines the Timer 1 interrupt priority level. PT1 = 1 programs it to the higher priority level.				•
PX1	IP.2	defines the External Interrupt 1 priority level. PX1 = 1 programs it to the higher priority level.				
РТО	IP.1	defines the Timer 0 interrupt priority level, PT0 = 1 programs it to the higher priority level.				•
PX0	IP.0	pri pro	fines th ority le ograms ority le	it to th	0 = 1	iterrupt 0 ier

Figure 18. IP (Interrupt Priority) Register in the 8052B and 80C52

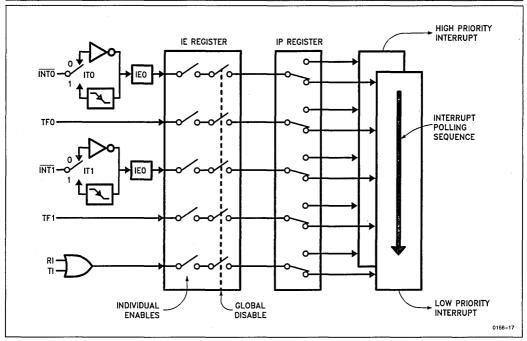


Figure 19. 8052 Interrupt Control System

In operation, all the interrupt flags are latched into the interrupt control system during State 5 of every machine cycle. The samples are polled during the following machine cycle. If the flag for an enabled interrupt is found to be set (1), the interrupt system generates an LCALL to the appropriate location in Program Memory, unless some other condition blocks the interrupt. Several conditions can block an interrupt, among them that an interrupt of equal or higher priority level is already in progress.

The hardware-generated LCALL causes the contents of the Program Counter to be pushed onto the stack, and reloads the PC with the beginning address of the service routine. As previously noted (Figure 3), the service routine for each interrupt begins at a fixed location.

Only the Program Counter is automatically pushed onto the stack, not the PSW or any other register. Having only the PC be automatically saved allows the programmer to decide how much time to spend saving which other registers. This enhances the interrupt response time, albeit at the expense of increasing the programmer's burden of responsibility. As a result, many interrupt functions that are typical in control applications—toggling a port pin, for example, or reloading a timer, or unloading a serial buffer—can often be completed in less time than it takes other architectures to commence them.

Simulating a Third Priority Level in Software

Some applications require more than the two priority levels that are provided by on-chip hardware in SAB-51 devices. In these cases, relatively simple software can be written to produce the same effect as a third priority level.

First, interrupts that are to have higher priority than 1 are assigned to priority 1 in the IP (Interrupt Priority) register. The service routines for priority 1 interrupts

that are supposed to be interruptible by "priority 2" interrupts are written to include the following code:

PUSH IE MOV IE,#MASK CALL LABEL

(execute service routine)

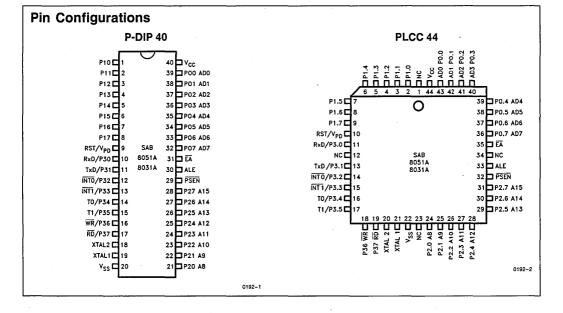
POP IE RET

LABEL: RETI

As soon as any priority 1 interrupt is acknowledged, the IE (Interrupt Enable) register is re-defined so as to disable all but "priority 2" interrupts. Then, a CALL to LABEL executes the RETI instruction, which clears the priority 1 interrupt-in-progress flipflop. At this point any priority 1 interrupt that is enabled can be serviced, but only "priority 2" interrupts are enabled. POPping IE restores the original enable byte. Then a normal RET (rather than another RETI) is used to terminate the service routine. The additional software adds 10 μ s (at 12 MHz) to priority 1 interrupts.

8-Bit Single-Chip Microcontroller Components Data Sheets

1

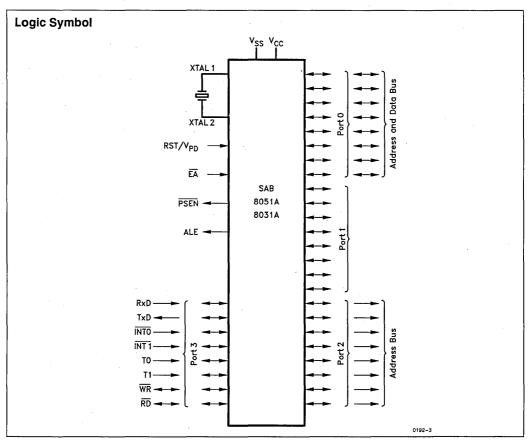

. . .

SAB 8051A/8031A SAB 8051A-16/8031A-16 8-Bit Single-Chip Microcontroller

SAB 8051A/8051A-16 Microcontroller with factory-mask programmable ROM SAB 8031A/8031A-16 Microcontroller for external ROM

- SAB 8051A/8031A, 12 MHz Operation SAB 8051A-16/8031A-16, 16 MHz Operation
- $4K \times 8 \text{ ROM}$
- \bullet 128 imes 8 RAM
- Four 8-Bit Ports, 32 I/O Lines
- Two 16-Bit Timer/Event Counters
- High-Performance Full-Duplex Serial Channel
- Boolean Processor

- Compatible with SAB 8080/8085
 Peripherals
- External Memory Expandable up to 128 Kbytes
- 218 User Bit-Addressable Locations
- Most Instructions Execute in: 1 µs (SAB 8051A/8031A) 750 ns (SAB 8051A-16/8031A-16)
- 4 μ s (3 μ s) Multiply and Divide
- P-DIP 40 and PLCC 44 Packages

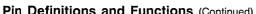

SAB 8051A/8031A SAB 8051A-16/8031A-16

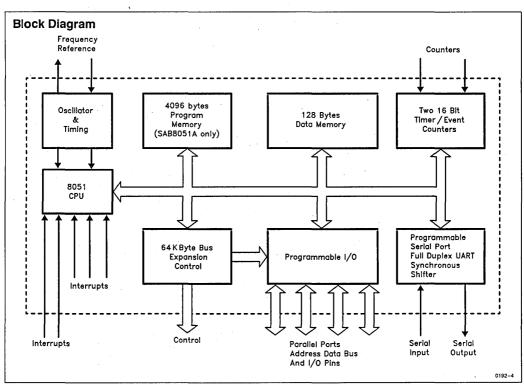
The SAB 8051A/8031A is a stand-alone, high-performance single-chip microcontroller fabricated in +5V advanced Siemens MYMOS (III) technology and supplied in a 40-pin plastic P-DIP or 44-pin plastic leaded chip carrier (PLCC 44) package. It provides the hardware features, architectural enhancements and instructions that are necessary to make it a powerful and cost-effective controller for applications requiring up to 64 Kbytes of program memory and/or up to 64 Kbytes of data storage.

The SAB 8051A contains a non-volatile 4K \times 8 read-only program memory; a volatile 128 \times 8 read/

write data memory; 32 I/O lines; two 16-bit timer/ counters; a five-source, two-priority-level, nested interrupt structure; a serial I/O port for either multiprocessor communications, I/O expansion, or full-duplex UART; and on-chip oscillator and clock circuits. The SAB 8031A is identical with the SAB 8051A, except that it lacks the program memory.

For systems that require extra capability, the SAB 8051A can be expanded using standard TTL-compatible memories and the byte-oriented SAB 8080 and SAB 8085 peripherals.


Pin Definitions and Functions


P	in	Oumbal	Input(I)	Function
P-DIP-40	PLCC 44	Symbol	Output(O)	Function
1–8	2–9	P1.0-P1.7	1/0	Port 1 is an 8-bit quasi-birirectional I/O port. It is used for the low-order address byte during program verification. Port 1 can sink/source four LS TTL loads.
9	10	RST/V _{PD}		A high level on this pin resets the SAB 8051A. A small internal pulldown resistor permits power-on reset using only a capacitor connected to V_{CC} . If V_{PD} is held within its spec while V_{CC} drops below spec, V_{PD} will provide standby power to the RAM. When V_{PD} is low, the RAM's current is drawn from V_{CC} .
10-17	11, 13–19	P3.0-P3.7	Ι/Ο	Port 3 is an 8-bit quasi-bidirectional I/O port. It also contains the interrupt, timer, serial port and RD and WR pins that are used by various options. The output latch corresponding to a secondary function must be programmed to a one (1) for that function to operate. Port 3 can sink/source four LS TTL loads. The secondary functions are assigned to the pins of port 3, as follows: —RxD/data (P3.0). Serial port's receiver data input (asynchronous) or data input/output (synchronous). —TxD/clock (P3.1). Serial port's transmitter data output (asynchronous) or clock output (synchronous). —INTO (P3.2). Interrupt 0 input or gate control input for counter 0. —INTT (P3.3). Interrupt 1 input or gate control input for counter 1. —T0 (P3.4). Input to counter 0. —T1 (P3.5). Input to counter 1. —WR (P3.6). The write control signal latches the data byte from port 0 into the external data memory. —RD (P3.7). The read control signal enables external data memory to port 0.
19 18	21 20	XTAL1 XTAL2		XTAL 1 input to the oscillator's high gain amplifier. Required when a crystal is used. Connect to V_{SS} when external source is used on XTAL 2. XTAL 2 output from the oscillator's amplifier. Input to the internal timing circuitry. A crystal or external source can be used.
21–28	24–31	P2.0-P2.7	1/0	Port 2 is an 8-bit quasi-bidirectional I/O port. It also emits the high-order address byte when accessing external memory. It is used for the high-order address and the control signals during program verification. Port 2 can sink/source four LS TTL loads.
29	32	PSEN	0	The program store enable output is a control signal that enables the external program memory to the bus during external fetch operations. It is activated every six oscillator periods, except during external data memory accesses. Remains high during internal program execution.

4

SAB 8051A/8031A SAB 8051A-16/8031A-16

Pin Definitions and Functions (Continued)						
P	in	Symbol Ir		Function		
P-DIP-40	PLCC 44		Output(O)			
30	33	ALE	0	Provides address latch enable output used for latching the address into external memory during normal operation. It is activated every six oscillator periods except during an external data memory access.		
31	35	ĒĀ	I	When held at a TTL high level, the SAB 8051A executes instructions from the internal ROM when the PC is less than 4096. When held at a TTL low level, the SAB 8051A fetches all instructions from external program memory. For the SAB 8031A this pin must be tied low.		
39–32	43–36	P0.0-P0.7	1/0	Port 0 is an 8-bit open drain bidirectional I/O port. It is also the multiplexed low-order address and data bus when using external memory. It is used for data output during program verification. Port 0 can sink/ source eight LS TTL loads.		
40	44	Vcc		+ 5V power supply during operation and program verification.		
20	22	V _{SS}		Ground (0V)		
	1, 12 23, 34	NC		No Connection		

© Siemens Components, Inc.

Absolute Maximum Ratings*

Ambient Temperature under Bias0°C to +70°C
Storage Temperature65°C to +150°C
Voltage on Any Pin with Respect to Ground (V _{SS})0.5V to 7V
Power Dissipation2W

*Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. Characteristics

 $T_A = 0^{\circ}C \text{ to } +70^{\circ}C; V_{CC} = 5V \pm 10\%; V_{SS} = 0V$

Parameter	Parameter Symbol Test Condition		Lim	nit Values	Unit	
i diameter	Symbol	rest condition	Min Max			
Input Low Voltage	VIL		-0.5	0.8	V	
Input High Voltage (Except RST/VPD and XTAL2)	VIH		2.0	V _{CC} + 0.5	v	
Input High Voltage to RST/VPD for Reset, XTAL2	V _{IH1}	XTAL1 to V _{SS}	2.5	V _{CC} + 0.5	· V	
Power Down Voltage to RST/VPD	V _{PD}	$V_{CC} = 0V$	4.5	5.5	v	
Output Low Voltage Ports 1, 2, 3	V _{OL}	l _{OL} = 1.6 mA		0.45	v	
Output Low Voltage Port 0, ALE, PSEN	V _{OL1}	l _{OL} = 3.2 mA		0.45	v	
Output High Voltage Ports 1, 2, 3	V _{OH}	l _{OH} = −80 μA	2.4		v	
Output High Voltage Port 0, ALE, PSEN	V _{OH1}	I _{OH} = -400 μA	2.4		v	
Logical 0 Input Current Ports 1, 2, 3	l _{IL}	$V_{IL} = 0.45V$		-500	μΑ	
Logical 0 Input Current XTAL 2	l _{IL2}	$XTAL1 = V_{SS}$ $V_{IL} = 0.45V$		-3.2	mA	
Input High Current to RST/V _{PD} for Reset	lih1	$V_{IN} = V_{CC} - 1.5V$		500	μΑ	
Input Leakage Current to Port 0, EA	ΙLI	$0V < V_{IN} < V_{CC}$		±10	μA	
Power Supply Current SAB 8031A/8051A SAB 8031A-16/8051A-16	lcc	All Outputs Disconnected		125 140	mA mA	
Power Down Current	I _{PD}	$V_{CC} = 0V$		10	mA	
Capacitance of I/O Buffer	CIO	f _c = 1 MHz		10	pF	

4

SAB 8051A/8031A SAB 8051A-16/8031A-16

A.C. Characteristics for SAB 8051A/8031A

 T_A = 0°C to 70°C; V_{CC} = 5V ±10%; V_{SS} = 0V (CL for Port 0, ALE and \overrightarrow{PSEN} Outputs = 100 pF; CL for All Other Outputs = 80 pF)

Program Memory Characteristics

				Limit Values		
Parameter	Symbol	12 MHz Clock		Variable Clock 1/t _{CLCL} = 1.2 MHz to 12 MHz		Unit
		Min	Max	Min	Max	
ALE Pulse Width	t _{LHLL}	127		2 t _{CLCL} – 40		ns
Address Setup to ALE	t _{AVLL}	53		t _{CLCL} – 30		ns
Address Hold after ALE	t _{LLAX1}	48		t _{CLCL} – 35		ns
ALE to Valid Instruction In	t _{LLIV}		233		4 t _{CLCL} - 100	ns
ALE to PSEN	t _{LLPL}	58		t _{CLCL} – 25		ns
PSEN Pulse Width	tPLPH	215		3 t _{CLCL} – 35		ns
PSEN to Valid Instruction In	t _{PLIV}		150		3 t _{CLCL} - 100	ns
Input Instruction Hold after PSEN	t _{PXIX}	0		0		ns
Input Instruction Float after PSEN	t _{PXIZ} *		63		t _{CLCL} – 20	ns
Address Valid after PSEN	t _{PXAV} *	75		t _{CLCL} – 8		ns
Address to Valid Instruction In	t _{AVIV}		302		5 t _{CLCL} – 115	ns
Address Float to PSEN	t _{AZPL}	0		0		ns

NOTE:

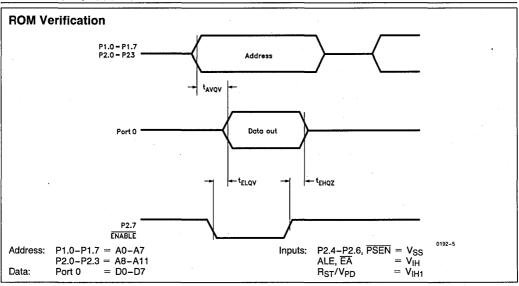
*Interfacing the SAB 8051A to devices with float times up to 75 ns is permissible. This limited bus contention will not cause any damage to port 0 drivers.

External Data Memory Characteristics

				Limit Values		
Parameter	Symbol 12 MHz Clock			Variable 1/t _{CLCL} = 1.2	Unit	
		Min	Max	Min	Max	
RD Pulse Width	t _{RLRH}	400		6 t _{CLCL} 100		ns
WR Pulse Width	twLWH	400		6 t _{CLCL} - 100		ns
Address Hold after ALE	t _{LLAX 2}	132		2 t _{CLCL} – 35		ns
RD to Valid Data In	t _{RLDV}		252		5 t _{CLCL} - 165	ns
Data Hold after RD	t _{RHDX}	0		0		ns
Data Float after RD	t _{RHDZ}		97		2 t _{CLCL} - 70	ns
ALE to Valid Data In	tLLDV		517		8 t _{CLCL} - 150	ns
Address to Valid Data In	tAVDV		585		9 t _{CLCL} — 165	ns
ALE to WR or RD	tLLWL	200	300	3 t _{CLCL} — 50	3 t _{CLCL} + 50	ns
Address to WR or RD	t _{AVWL}	203		4 T _{CLCL} — 130		ns

External Data Memory Characteristics (Continued)

Parameter				Limit Values	×	
	Symbol	nbol 12 MHz Clock		Variable Clock 1/t _{CLCL} = 1.2 MHz to 12 MHz		Unit
		Min	Max	Min	Max	<u>ן</u>
\overline{WR} or \overline{RD} High to ALE High	tWHLH	43	123	t _{CLCL} - 40	t _{CLCL} + 40	ns
Data Valid to WR Transition	tavwx	33		t _{CLCL} - 50		ns
Data Setup before WR	tqvwн	433		7 t _{CLCL} — 150		ns
Data Hold after WR	twhax	33		t _{CLCL} - 50		ns
Address Float after RD	t _{RLAZ}		0		0	ns


External Clock Drive XTAL2

Parameter		Lim	it Values	
	Symbol	Variable Clock Freq. = 1.2 MHz to 12 MHz		Unit
		Min	Max	
Oscillator Period	t _{CLCL}	83.3	833.3	ns
High Time	tснсх	20	t _{CLCL} - t _{CLCX}	ns
Low Time	tCLCX	20	t _{CLCL} - t _{CHCX}	ns
Rise Time	tCLCH		. 20	ns
Fall Time	t _{CHCL}		20	ns

Waveforms: Refer to SAB 8051A/8031A

4

SAB 8051A/8031A SAB 8051A-16/8031A-16

A.C. Characteristics for SAB 8051A-16/8031A-16

 $T_A = 0^{\circ}C$ to $+70^{\circ}C$; $V_{CC} = 5V \pm 10\%$; $V_{SS} = 0V$ (C_L for Port 0, ALE and \overline{PSEN} Outputs = 100 pF; C_L for All Other Outputs = 80 pF)

Program Memory Characteristics

				Limit Values		
Parameter	Symbol	16 MHz Clock		Variable Clock 1/t _{CLCL} = 1.2 MHz to 16 MHz		Unit
	,	Min	Max	Min	Max	
ALE Pulse Width	tLHLL	85		2 t _{CLCL} - 40		ns
Address Setup to ALE	tAVLL	33		t _{CLCL} – 30		ns
Address Hold after ALE	t _{LLAX1}	28		t _{CLCL} – 35		ns
ALE to Valid Instruction In	tLLIV		150		4 t _{CLCL} - 100	ns
ALE to PSEN	tLLPL	38		t _{CLCL} – 25		ns
PSEN Pulse Width	t _{PLPH}	153	-	3 t _{CLCL} – 35		ns
PSEN to Valid Instruction In	t _{PLIV}		88		3 t _{CLCL} - 100	ns
Input Instruction Hold after PSEN	t _{PXIX}	0		0		ns
Input Instruction Float after PSEN	t _{PXIZ} *		48		t _{CLCL} - 15	ns
Address Valid after PSEN	t _{PXAV} *	60		t _{CLCL} – 3		ns
Address to Valid Instruction In	tAVIV		223		5 t _{CLCL} - 90	ns
Address Float to PSEN	tAZPL	0		0		ns

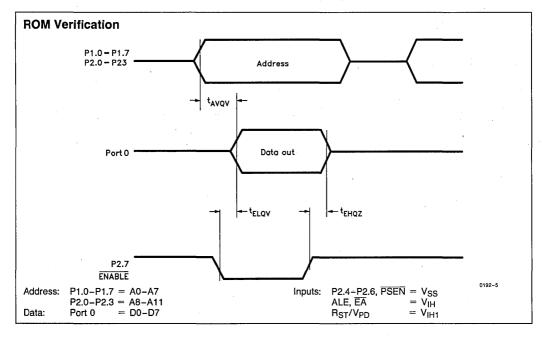
NOTE:

*Interfacing the SAB 8051A-16 to devices with float times up to 55 ns is permissible. This limited bus contention will not cause any damage to port 0 drivers.

External Data Memory Characteristics

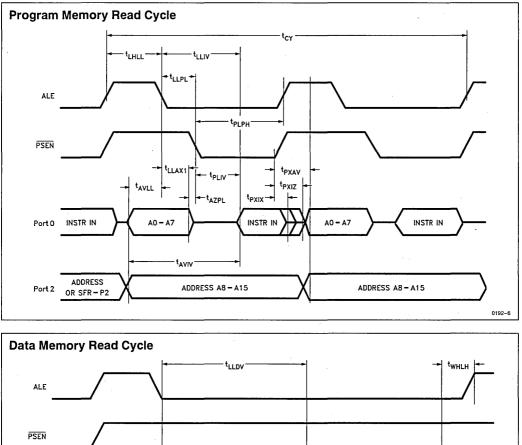
				Limit Values		
Parameter	Symbol	16 MHz Clock		Variable Clock 1/t _{CLCL} = 1.2 MHz to 16 MHz		Unit
	_	Min	Max	Min	Max	
RD Pulse Width	t _{RLRH}	275		6 t _{CLCL} - 100	<u>.</u>	ns
WR Pulse Width	twlwh	275		6 t _{CLCL} — 100		ns
Address Hold after ALE	t _{LLAX 2}	90		2 t _{CLCL} - 35		ns
RD to Valid Data In	t _{RLDV}		148		5 t _{CLCL} - 165	ns
Data Hold after RD	t _{RHDX}	0		0		ns
Data Float after RD	t _{RHDZ}		55		2 t _{CLCL} - 70	ns
ALE to Valid Data In	tLLDV		350		8 t _{CLCL} - 150	ns
Address to Valid Data In	t _{AVDV}		398		9 t _{CLCL} - 165	ns
ALE to WR or RD	tLLWL	138	238	3 t _{CLCL} - 50	3 t _{CLCL} + 50	ns
Address to WR or RD	tAVWL	120		4 T _{CLCL} — 130		ns
WR or RD High to ALE High	twhLH	23	103	t _{CLCL} – 40	t _{CLCL} + 40	ns
Data Valid to WR Transition	t _{QVWX}	13		t _{CLCL} – 50		ns
Data Setup before WR	t _{QVWH}	288		7 t _{CLCL} - 150		ns
Data Hold after WR	twhox	13		t _{CLCL} – 50		ns
Address Float after RD	^t RLAZ		0		0	ns

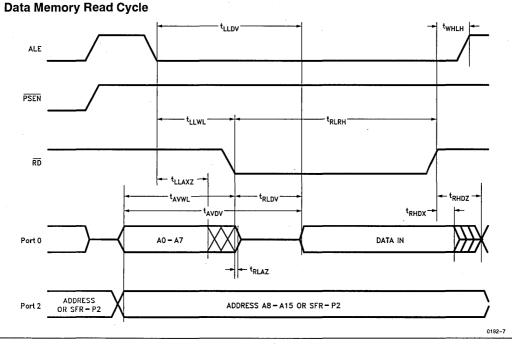
External Clock Drive XTAL2


Parameter Symbol		Lir	nit Values	
	Symbol		able Clock .2 MHz to 16 MHz	Unit
		Min	Max	1
Oscillator Period	tCLCL	62.5	833.3	ns
High Time	t _{CHCX}	15	t _{CLCL} - t _{CLCX}	ns
Low Time	t _{CLCX}	15	t _{CLCL} - t _{CHCX}	ns
Rise Time	t _{CLCH}		15	ns
Fall Time	t _{CHCL}		15	ns

4

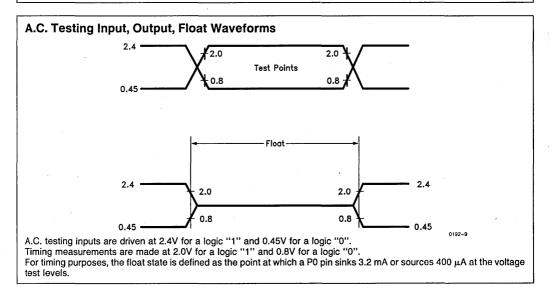
ROM Verification Characteristics for SAB 8051A-16

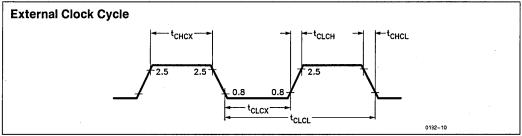

 $T_{A} = 25^{\circ}C \pm 5^{\circ}C; V_{CC} = 5V \pm 10\%; V_{SS} = 0V$

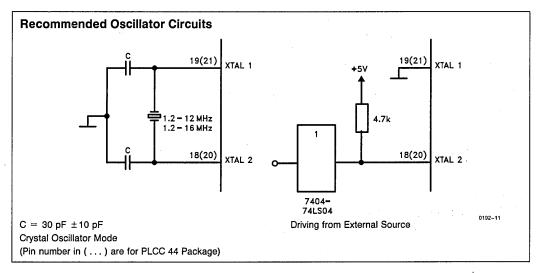

Parameter	Symbol	Lim	Limit Values		
	Symbol	Min	Max	Unit	
Address to Valid Data	tAVQV		48 t _{CLCL}	ns	
ENABLE to Valid Data	t _{ELQV}		48.t _{CLCL}	ns	
Data Float after ENABLE	t _{EHQZ}	0	48 t _{CLCL}	ns	
Oscillator Frequency	1/t _{CLCL}	4	6	MHz	

SAB 8051A/8031A SAB 8051A-16/8031A-16

Waveforms




4


SAB 8051A/8031A SAB 8051A-16/8031A-16

Waveforms (Continued) **Data Memory Write Cycle** twhlh ALE PSEN twlwh tLLWL WR t_{avwl.} tovwx ^twhox tLLAX2 tovwh A0 - A7 DATA OUT Port 0 ADDRESS ADDRESS A8 - A15 OR SFR - P2 Port 2 OR SFR-P2 0192-8

Waveforms (Continued)

Ordering Information

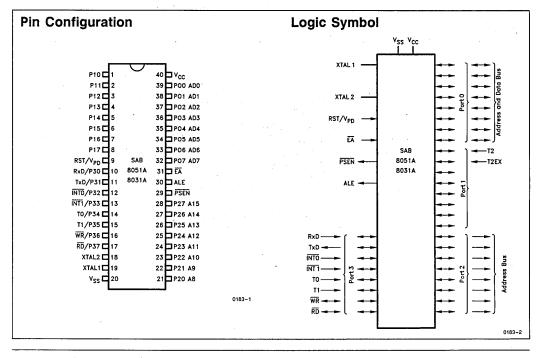
Туре	Description
SAB 8051A-P	8-Bit Single-Chip Microcontroller
	with Mask-Programmable ROM (P-DIP-40)
SAB 8031A-P	for External Memory (P-DIP-40)
SAB 8051A-16-P	with Mask-Programmable ROM (P-DIP-40)
SAB 8031A-16-P	for External Memory (P-DIP-40)
SAB 8051A-N	with Mask-Programmable ROM (PL-CC-44)
SAB 8031A-N	for External Memory (PL-CC-44)
SAB 8051A-16-N	with Mask-Programmable ROM (PL-CC-44)
SAB 8031A-16-N	for External Memory (PL-CC-44)

4

SIEMENS

Preliminary

SAB 8051A/8031A Ext. Temp 8-Bit Single-Chip Microcontroller


Extended Temperature Range: -40°C to +85°C -40°C to +110°C

Mask-Programmable ROM SAB 8051A-12-P-T40/85 SAB 8051A-10-P-T40/110

- Advanced Version of the SAB 8031/8051 for Extended Temperature Range
- SAB 8051A/8031A-12-T40/85: 12 MHz Operation
- SAB 8051A/8031A-10-T40/110: 10 MHz Operation
- $4K \times 8$ ROM
- 128 imes 8 RAM
- Four 8-Bit Ports, 32 I/O Lines
- Two 16-Bit Timer/Event Counters

External ROM SAB 8031A-12-P-T40/85 SAB 8031A-10-P-T40/110

- High-Performance Full-Duplex Serial Channel
- External Memory Expandable up to 128K
- Compatible with SAB 8080/8085
 Peripherals
- Boolean Processor
- 218 User Bit-Addressable Locations
- Most Instructions Execute in 1 μs
- 4 µs Multiply and Divide

© Siemens Components, Inc.

The SAB 8051A/8031A for the two extended temperature ranges (industrial temperature range: -40° C to $+85^{\circ}$ C, automotive temperature range: -40° C to $+110^{\circ}$ C) is fully compatible with the standard SAB 8051A/8031A with respect to architecture, instruction set, and software portability.

The SAB 8051A/8031A is a stand-alone, high-performance single-chip microcontroller fabricated in +5V advanced N-channel, silicon gate Siemens MYMOS technology and packaged in a 40-pin DIP.

The SAB 8051A contains a non-volatile 4K \times 8 read-only program memory; a volatile 128 \times 8 read/

Absolute Maximum Ratings*

Ambient Temperature under Bias

T40/8540°C to +85°C T40/11040°C to +110°C	
Storage Temperature65°C to +150°C	
Voltage on Any Pin with Respect to Ground (VSS) $\dots \dots -0.5V$ to $+7V$	
Power Dissipation2W	

write data memory; 32 I/O lines; two 16-bit timer/ counters; a five-source two-priority-level, nested interrupt structure; a serial I/O port for either multiprocessor communications, I/O expansion, or full duplex UART; and on-chip oscillator and clock circuits. The SAB 8031A is identical with the SAB 8051A, except that it lacks the program memory.

For systems that require extra capability, the SAB 8051A can be expanded using standard TTL compatible memories and the byte-oriented SAB 8080 and SAB 8085 peripherals.

*Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics

 $V_{CC} = 5V \pm 10\%; V_{SS} = 0V; T_A = -40^{\circ}C \text{ to } + 85^{\circ}C \text{ for } T40/85;$ $T_A = -40^{\circ}C \text{ to } + 110^{\circ}C \text{ for } T40/110$

Parameter	Symbol	Test Condition	Lim	Unit	
r arameter	Cymbol		Min	Min Max	
Input Low Voltage	VIL		0.5	0.8	V
Input High Voltage Except RST/VDP and XTAL2	V _{IH}		2.0	V _{CC} +0.5	v
Input High Voltage to RST/VPD for Reset, XTAL2	V _{IH1}	XTAL 1 to V _{SS}	2.5	V _{CC} +0.5	v
Power Down Voltage to RST/VPD	V _{PD}	$V_{CC} = 0V$	4.5	5.5	V
Output Low Voltage Ports 1, 2, 3	V _{OL}	I _{OL} = 1.6 mA		0.45	V
Output Low Voltage Port 0, ALE, PSEN	V _{OL1}	I _{OL} = 3.2 mA		0.45	V
Output High Voltage Ports 1, 2, 3	V _{OH}	I _{OH} = -80 μA	2.4		V
Output High Voltage Port 0, ALE, PSEN	V _{OH1}	I _{OH} = -400 μA	2.4		V
Logical 0 Input Current Ports 1, 2, 3	lιL	$V_{IL} = 0.45V$		-500	μA
Logical 0 Input Current XTAL2	l _{IL2}	$XTAL1 = V_{SS}$ $V_{IL} = 0.45V$		-3.2	mA
Input High Current to RST/VPD for Roset	liH1	$V_{\rm IN} = V_{\rm CC} - 1.5V$		500	μA
Input Leakago Current to Port 0, EA	ILI	$0 < V_{IN} < V_{CC}$		±10	μΑ
Power Supply Current	Icc			150	mA
Power Down Current	IPD			15	mA
Capacitance of I/O Buffer	CIO	f _c = 1 MHz		10	pF

© Siemens Components, Inc.

AC Characteristics for T40/85: Refer to SAB 8051A/8031A Data Sheet.

AC Characteristics for T40/110

 $\label{eq:VCC} V_{CC} = 5V \pm 10\%; \ V_{SS} = 0V; \ T_A = -40 \ to \ +110^\circ C \\ (C_L \ for \ Port \ 0, \ ALE \ and \ \overline{PSEN} \ Outputs = \ 100 \ pF; \ C_L \ for \ all \ other \ Outputs = \ 80 \ pF) \\$

Program Memory Characteristics

		Limit Values				
Parameter	Symbol	10 MHz Clock		Variable Clock 1/t _{CLCL} = 1.2 MHz to 10 MHz		Unit
		Min	Мах	Min	Max	
ALE Pulse Width	t _{LHLL}	160		2 t _{CLCL} - 40		ns
Address Setup to ALE	t _{AVLL}	70		t _{CLCL} – 30		ns
Address Hold after ALE	t _{LLAX1}	65		t _{CLCL} – 35		ns
ALE to Valid Instruction In	t _{LLIV}		300		4 t _{CLCL} - 100	ns
ALE to PSEN	t _{LLPL}	75		t _{CLCL} – 25		ns
PSEN Pulse Width	t _{PLPH}	265		3 t _{CLCL} – 35		ns
PSEN to Valid Instruction In	t _{PLIV}		200		3 t _{CLCL} - 100	ns
Input Instruction Hold After PSEN	t _{PXIX}	0		0		ns
Input Instructions Float After PSEN	t _{PXIZ} *		80		t _{CLCL} 20	ns
Address Valid After PSEN	t _{PXAV} *	92		t _{CLCL} – 8		ns
Address to Valid Instruction In	t _{AVIV}		385		5 t _{CLCL} 115	ns
Address Float to PSEN	t _{AZPL}	0		0		ns

NOTE:

*Interfacing the SAB 8051A to devices with float times up to 92 ns is permissible. This limited bus contention will not cause any damage to Port 0 drivers.

AC Characteristics for T40/110 (Continued)

 $V_{CC} = 5V \pm 10\%$; $V_{SS} = 0V$; $T_A = -40$ to $+ 110^{\circ}C$ (C_L for Port 0, ALE and \overline{PSEN} Outputs = 100 pF; C_L for all other Outputs = 80 pF)

External Data Memory Characteristics

	Limit Values					
Parameter	Symbol	10 MHz	Clock	1	le Clock MHz to 10 MHz	Unit
		Min	Max	Min	Max	
RD Pulse Width	t _{RLRH}	500		6 t _{CLCL} - 100		ns
WR Pulse Width	t _{WLWH}	500		6 t _{CLCL} - 100		ns
Address Hold After ALE	t _{LLAX2}	165		2 t _{CLCL} – 35		ns
RD to Valid Data In	t _{RLDV}		335		5 t _{CLCL} — 165	ns
Data Hold After RD	t _{RHDX}	0		0		ns
Data Float After RD	t _{RHDZ}		130		2 t _{CLCL} - 70	ns
ALE to Valid Data In	t _{LLDV}		650		8 t _{CLCL} — 150	ns
Address to Valid Data In	tAVDV		735		9 t _{CLCL} — 165	ns
ALE to WR or RD	t _{LLWL}	250	350	3 t _{CLCL} - 50	3 t _{CLCL} + 50	ns
Address to \overline{WR} or \overline{RD}	t _{AVWL}	270		4 t _{CLCL} - 130		ns
\overline{WR} or \overline{RD} High to ALE High	twhlh	60	140	t _{CLCL} – 40	$t_{CLCL} + 40$	ns
Data Valid to WR Transition	t _{QVWX}	50		$t_{CLCL} - 50$		ns
Data Setup Before WR	t _{QVWH}	550		7 t _{CLCL} – 50		ns
Data Hold After WR	t _{WHQX}	50		t _{CLCL} - 50		ns
Address Float After RD	t _{RLAZ}		0		0	ns

NOTE:

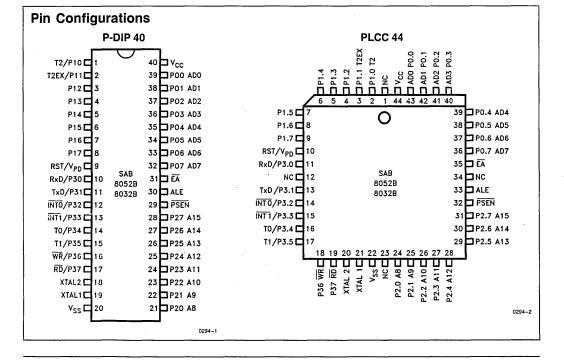
*Interfacing the SAB 8051A to devices with float times up to 92 ns is permissible. This limited bus contention will not cause any damage to Port 0 drivers.

External Clock Drive XTAL2

		Lim		
Parameter	Symbol	Varia Freq. = 1.2 MH Freq. = 1.2 MHz	Unit	
		Min	Max	
Oscillator Period T40/85 T40/110	^t CLCL	83.3 100	833.3	ns
High Time	^t CHCX	20	tCLCL-tCLCX	ns
Low Time	t _{CLCX}	20	tCLCL-tCHCX	ns
Rise Time	t _{CLCH}		20	ns
Fall Time	t _{CHCL}		20	ns

Waveforms: Refer to SAB 8051A/8031A Data Sheet

Ordering Information


Туре	Description
SAB 8051A-12-P-T40/85	8-Bit Single-Chip-Microcomputer with Mask-Programmable ROM (Plastic)
SAB 8051A-10-P-T40/110	With Mask-Programmable ROM (Plastic)
SAB 8031A-12-P-T40/85	For External Memory (Plastic)
SAB 8031A-10-P-T40/110	For External Memory (Plastic)

SAB 8052B/8032B SAB 8052B-16/8032B-16 8-Bit Single-Chip Microcontroller

SAB 8052B/8052B-16Microcontroller with factory-mask programmable ROMSAB 8032B/8032B-16Microcontroller for external ROM

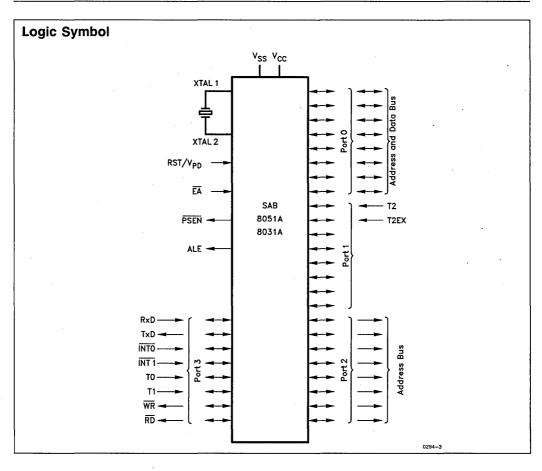
- SAB 8052B/8032B, 12 MHz Operation SAB 8052B-16/8032B-16, 16 MHz Operation
- 8K \times 8 ROM (SAB 8052B only)
- \bullet 256 imes 8 RAM
- Four 8-Bit Ports, 32 I/O Lines
- Three 16-Bit Timer/Event Counters
- High-Performance Full-Duplex Serial Channel
- External Memory Expandable up to 128 Kbytes

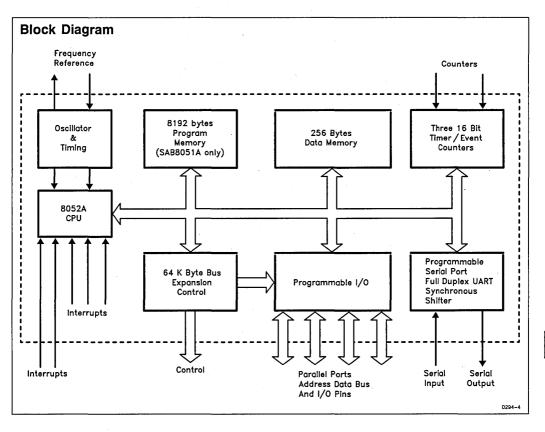
- Compatible with SAB 8080/8085 Peripherals
- Boolean Processor
- Most Instructions Execute in: 1 μs (SAB 8052B/8032B) 750 ns (SAB 8052B-16/8032B-16)
- 4 μs (3 μs) Multiply and Divide
- P-DIP 40 and PLCC 44 Packages
- Full Backward Compatibility with SAB 8051A/8031A

The SAB 8052B/8032B is a stand-alone, high-performance single-chip microcontroller fabricated in +5V advanced Siemens MYMOS (III) technology and supplied in a 40-pin plastic P-DIP or 44-pin plastic leaded chip carrier (PLCC 44) package. It is backwardly compatible with the SAB 8051A/8031A. It provides the hardware features, architectural enhancements and instructions that are necessary to make it a powerful and cost-effective controller for applications requiring up to 64 Kbytes of program memory and/or up to 64 Kbytes of data storage.

The SAB 8052B contains a non-volatile $8K \times 8$ read-only program memory; a volatile 256×8 read/

write data memory; 32 I/O lines; three 16-bit timer/ counters; a five source, two-priority-level, nested interrupt structure; a serial I/O port for either multiprocessor communications, I/O expansion, or full-duplex UART; and on-chip oscillator and clock circuits. The SAB 8032B is identical with the SAB 8052B, except that it lacks the program memory.


For systems that require extra capability, the SAB 8052B can be expanded using standard TTL-compatible memories and the byte-oriented SAB 8080 and SAB 8085 peripherals.


Symbol	Symbol Pin		Input (I)	Function			
Gymbol	P-DIP-40	PLCC-44	Output (O)				
P1.0-P1.7	1–8	2–9	1/0	Port 1 is an 8-bit quasi-bidirectional I/O port. It is used for the low-order address byte during program verification. Port 1 can sink/source four LS TTL loads.			
RST/V _{PD}	9	10		A high level on this pin resets the SAB 8051A/8052B. A small internal pulldown resistor permits power-on reset using only a capacitor connected to V_{CC} . If V_{PD} is held within its specification while V_{CC} drops below specification, V_{PD} will provide standby power to the RAM. When V_{PD} is low, the RAM's current is drawn from V_{CC} .			
P3.0-P3.7	10-17	11, 13–19	1/0	Port 3 is an 8-bit quasi-bidirectional I/O port. It also contains the interrupt, timer, serial port and RD and WR pins that are used by various options. The output latch corresponding to a secondary function must be programmed to a one (1) for that function to operate. Port 3 can sink/source four LS TTL loads. The secondary functions are assigned to the pins of port 3, as follows: —RxD/data (P3.0). Serial port's receiver data input (asynchronous) or data input/output (synchronous). —TxD/clock (P3.1). Serial port's transmitter data output (asynchronous) or clock output (synchronous). —INTO (P3.2). Interrupt 0 input or gate control input for counter 0. —INT1 (P3.3). Interrupt 1 input or gate control input for counter 1. —T0 (P3.4). Input to counter 0. —T1 (P3.5). Input to counter 1. —WR (P3.6). The write control signal latches the data byte from port 0 into the external data memory. —RD (P3.7). The read control signal enables external data memory to port 0.			

Pin Definitions and Functions

Symbol	Pin		Input (I)	Function			
	P-DIP-40 PLCC-		Output (O)				
XTAL1 XTAL2	19 18	21 20		XTAL 1 input to the oscillator's high gain amplifier. Required when a crystal is used. Connect to V_{SS} when external source is used on XTAL2. XTAL 2 output from the oscillator's amplifier. Input to the internal timing circuitry. A crystal or external source can be used.			
P2.0-P2.7	21–28	24–31	1/0	Port 2 is an 8-bit quasi-bidirectional I/O port. It also en the high-order address byte when accessing external memory. It is used for the high-order address and the control signals during program verification. Port 2 can sink/source four LS TTL loads.			
PSEN	29	32	O	The program store enable output is a control signal th enables the external program memory to the bus durin external fetch operations. It is activated every six oscillator periods, except during external data memory accesses. Remains high during internal program execution.			
ALE	30	33	0	Provides address latch enable output used for latching the address into external memory during normal operation. It is activated every six oscillator periods except during an external data memory access.			
EA	31	35	1	When held at a TTL high level, the SAB 8051A executes instructions from the internal ROM when the PC is less than 4096. When held at a TTL low level, the SAB 8051A fetches all instructions from external program memory. For the SAB 8031A this pin must be tied low.			
P0.0-P0.7	39–32	43–36	1/0	Port 0 is an 8-bit open drain bidirectional I/O port. It is also the multiplexed low-order address and data bus when using external memory. It is used for data output during program verification. Port 0 can sink/source eight LS TTL loads.			
V _{CC}	40	44		+ 5V power supply during operation and program verification.			
V _{SS}	20	22		Ground (0V)			
NC	—	1, 12 23, 24	-	No Connection			

Absolute Maximum Ratings*

Ambient Temperature under Bias0°C to 70°C
Storage Temperature65°C to +150°C
Voltage on Any Pin with Respect to Ground (V_SS) $\dots -0.5V$ to $+7V$
Power Dissipation2W

*Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. Characteristics $T_A = 0^{\circ}C$ to 70°C; $V_{CC} = 5V \pm 10\%$; $V_{SS} = 0V$

Parameter	Symbol Test Conditions		Lim	Units	
rarameter			Min	Max	
Input Low Voltage	VIL		-0.5	0.8	V
Input High Voltage (except RST/V _{PD} and XTAL2)	VIH		2.0	V _{CC} + 0.5	v
Input High Voltage to RST/V _{PD} for Reset, XTAL2	.VIH1	XTAL1 to V _{SS}	2.5	V _{CC} + 0.5	v
Power Down Voltage to RST/V _{PD}	V _{PD}	$V_{CC} = 0V$	4.5	5.5	v
Output Low Voltage Ports 1, 2, 3	V _{OL}	I _{OL} = 1.6 mA		0.45	v
Output Low Voltage Port 0, ALE, PSEN	V _{OL1}	$I_{OL} = 3.2 \text{ mA}$		0.45	V
Output High Voltage Ports 1, 2, 3	V _{OH}	$I_{OH} = -80 \mu A$	2.4		V
Output High <u>Voltage</u> Port 0, ALE, PSEN	VOH1	I _{OH} = -400 μA	2.4		v
Logical 0 Input Current Ports 1, 2, 3	Ι _{ΙL}	$V_{IL} = 0.45V$		- 500	μΑ
Logical 0 Input Current XTAL2	I _{IL2}	$\begin{array}{l} \text{XTAL1} = \text{V}_{\text{SS}} \\ \text{V}_{\text{IL}} = 0.45 \text{V} \end{array}$		-3.2	mA
Input High Current to RST/V _{PD} for Reset	liH1	$V_{\rm IN} = V_{\rm CC} - 1.5V$		500	μΑ
Input Leakage Current to Port 0, EA	۱ _L ı	$0 < V_{IN} < V_{CC}$		±10	μΑ
Power Supply Current SAB 8032B/8052B SAB 8032B-16/8052B-16	lcc	All Outputs Disconnected		175	mA
Power Down Current	I _{PD}	$V_{CC} = 0V$		15	mA
Capacitance of I/O Buffer	CIO	f _C = 1 MHz		10	pF

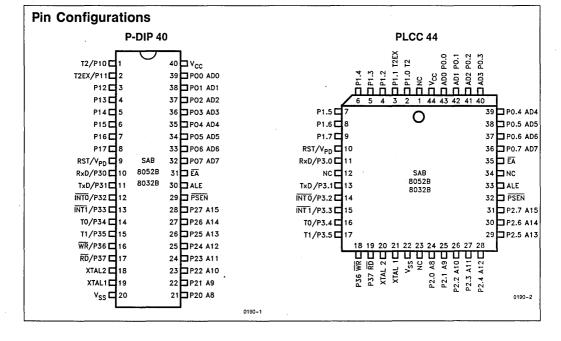
A.C. Characteristics for SAB 8052B/8032B

The A.C. Characteristics and Waveform Timings of the SAB 8052B/8032B and the SAB 8052B-16/8032B-16 are same as that of the SAB 8051A/8031A and SAB 8051A-16/8031A-16 respectively.

Ordering Information

Туре	Description
	8-Bit Single-Chip Microcomputer
SAB 8052B-P	with Mask-Programmable ROM (P-DIP-40)
SAB 8032B-P	for External Memory (P-DIP-40)
SAB 8052B-16-P	with Mask-Programmable ROM (P-DIP-40)
SAB 8032B-16-P	for External Memory (P-DIP-40)
SAB 8052B-N	with Mask-Programmable ROM (PLCC-44)
SAB 8032B-N	for External Memory (PLCC-44)
SAB 8052B-16-N	with Mask Programmable ROM (PLCC-44)
SAB 8032B-16-N	for External Memory (PLCC-44)

SAB 8052B/8032B Ext. Temp. 8-Bit Single-Chip Microcontroller


Extended Temperature Range:

-40°C to +85°C -40°C to +100°C

SAB 8052B-T40/85 SAB 8052B-T40/100 SAB 8032B-T40/85 SAB 8032B-T40/100 For external ROM

- 8K \times 8 ROM (SAB 8052B only)
- \bullet 256 imes 8 RAM
- Four 8-Bit Ports, 32 I/O Lines
- Three 16-Bit Timer/Event Counters
- High-Performance Full-Duplex Serial Channel with Flexible Transmit/Receive Baud Rate Capability
- External Memory Expandable up to 128 Kbytes

- Boolean Processor
- Most Instructions Execute in 1 μs
- Multiply and Divide in 4 μs
- Six Interrupt Vectors, Two Priority Levels
- RAM Power-Down Supply
- P-DIP 40 and PLCC 44 Packages
- Full Backward Compatibility with SAB 8051/8031

© Siemens Components, Inc.

The SAB 8052B/8032B for the two extended temperature ranges -40° C to $+85^{\circ}$ C and -40° C to $+100^{\circ}$ C is fully compatible with the standard SAB 8052B/8032B with respect to architecture, instruction set, and software portability.

The SAB 8052B/8032B is a stand-alone, high-performance single-chip microcontroller fabricated in +5V advanced N-channel, silicon gate Siemens MYMOS technology. Both extended temperature versions are available in a 40-pin plastic DIP (P-DIP 40) package: The SAB 8052B-T40/85 is also supplied in a 44-pin plastic leaded chip carrier (PLCC 44) package.

Absolute Maximum Ratings*

Ambient Temperature under Bias

for T40/85 40°C to +85°C	
for T40/10040°C to +100°C	
Storage Temperature (T _{stg}) $\dots -65^{\circ}$ C to $+150^{\circ}$ C	
Voltage on any Pin	
with Respect to Ground (V_{SS})0.5 to +7V	
Power Dissipation (PD)2W	

DC Characteristics

 $V_{CC} = 5V \pm 10\%$; $V_{SS} = 0V$; $T_A = -40^{\circ}C$ to $+85^{\circ}C$ for T40/85;

 $T_A = -40^{\circ}C$ to $+100^{\circ}C$ for T40/100

The SAB 8052B contains a non-volatile 8K \times 8 read-only program memory; a volatile 256 \times 8 read/ write data memory; 32 I/O lines; three 16-bit timer/ counters; a six-source, two-priority-level, nested interrupt structure; a serial I/O port for either multiprocessor communications, I/O expansion, or full-duplex UART; as well as on-chip oscillator and clock circuits. The SAB 8032B is identical with the SAB 8052B, except that it lacks the program memory.

For systems that require extra capability, the SAB 8052B can be expanded using standard TTL-compatible memories and the byte-oriented SAB 8080 and SAB 8085 peripherals.

*Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Parameter	Symbol	Test Condition	Lim	Limit Values		
Farameter			Min Max		Unit	
Input Low Voltage	VIL		-0.5	0.8	V	
Input High Voltage (Except RST/V _{PD} and XTAL2)	V _{IH}		2.0	V _{CC} + 0.5	v	
Input High Voltage to RST/V _{PD} for Reset, XTAL2	V _{IH1}	XTAL1 to V _{SS}	2.5	V _{CC} + 0.5	v	
Power-Down Voltage to RST/VPD	V _{PD}	$V_{CC} = 0V$	4.5	5.5	V	
Output Low Voltage Ports 1, 2, 3	V _{OL}	I _{OL} = 1.6 mA		0.45	V	
Output Low Voltage Port 0, ALE, PSEN	V _{OL1}	l _{OL} = 3.2 mA		0.45	V	
Output High Voltage Ports 1, 2, 3	V _{OH}	I _{OH} = -80 μA	2.4		V	
Output High Voltage Port 0, ALE, PSEN	V _{OH1}	I _{OH} = -400 μA	2.4		V	
Logical 0 Input Current Ports 1, 2, 3	۱Ľ	$V_{IL} = 0.45V$		-500	μΑ	
Logical 0 Input Current XTAL2	liL2	$XTAL1 = V_{SS}$ $V_{IL} = 0.45V$	-2.5	-3.2	mA	
Input High Current to RST/V _{PD} for Reset	l _{IH1}	$V_{\rm IN} = V_{\rm CC} - 1.5V$		500	μΑ	
Input Leakage Current to Port 0, EA	ILI	$0V < V_{IN} < V_{CC}$		±10	μA	
Power Supply Current	ICC	All Outputs Disconnected		175	mA	
Power-Down Current	IPD	$V_{CC} = 0V$		15	mA	
Capacitance of I/O Buffer	CIO	f _c = 1 MHz		10	pF	

© Siemens Components, Inc.

AC Characteristics for T40/85: Refer to SAB 8051A/8031A Datasheet

AC Characteristics for T40/100

 $V_{CC} = 5V \pm 10\%$; $V_{SS} = 0V$; $T_A = -40^{\circ}C$ to $+100^{\circ}C$;

(C_L for port 0, ALE and \overrightarrow{PSEN} outputs = 100 pF; C_L for all other outputs = 80 pF)

· · · · · · · · · · · · · · · · · · ·		Limit Values				
Parameter	Symbol	10 MHz	2 Clock		ble Clock .2 MHz to 10 MHz	Unit
		Min	Max	Min	Max	1
Program Memory Characteristic	S					
ALE Pulse Width	tLHLL	160		2 t _{CLCL} - 40		ns
Address Setup to ALE	t _{AVLL}	70		t _{CLCL} - 30		ns
Address Hold after ALE	t _{LLAX1}	65		t _{CLCL} – 35		ns
ALE to Valid Instruction In	t _{LLIV}		300		4 t _{CLCL} - 100	ns
ALE to PSEN	t _{LLPL}	75		t _{CLCL} – 25		ns
PSEN Pulse Width	tPLPH	265		3 t _{CLCL} – 35		ns
PSEN to Valid Instruction In	t _{PLIV}		200		3 t _{CLCL} — 100	ns
Input Instruction Hold after PSEN	t _{PXIX}	0		0		ns
Input Instruction Float after PSEN	t _{PXIZ} (1)		80		t _{CLCL} – 20	ns
Address Valid after PSEN	t _{PXAV} (1)	92		t _{CLCL} – 8		ns
Address to Valid Instruction In	t _{AVIV}		385		5 t _{CLCL} - 115	ns
Address Float to PSEN	tAZPL	0		0		ns
External Data Memory Characte	ristics			<u> </u>	· · · · · · · · · · · · · · · · · · ·	
RD Pulse Width	t _{RLRH}	500		6 t _{CLCL} - 100		ns
WR Pulse Width	twLWH	500		6 t _{CLCL} - 100		ns
Address Hold after ALE	t _{LLAX2}	165		2 t _{CLCL} - 35		ns
RD to Valid Data In	t _{RLDV}		335		5 t _{CLCL} - 165	ns
Data Hold after RD	t _{RHDX}	0		0		ns
Data Float after RD	t _{RHDZ}		130		2 t _{CLCL} - 70	ns
ALE to Valid Data In	tLLDV		650		8 t _{CLCL} - 150	ns
Address to Valid Data In	tAVDV		735		9 t _{CLCL} - 165	ns
ALE to WR or RD	tLLWL	250	350	3 t _{CLCL} – 50	3 t _{CLCL} + 50	ns
Address to WR or RD	t _{AVWL}	270		4 t _{CLCL} - 130		ns
WR or RD High to ALE High	twhlh	60	140	t _{CLCL} - 40	t _{CLCL} + 40	ns
Data Valid to WR Transition	t _{DVWX}	50		t _{CLCL} - 50		ns
Data Setup before WR	t _{QVWH}	550		4 t _{CLCL} - 150		ns
Data Hold after WR	t _{WHQX}	50		t _{CLCL} - 50		ns
Address Float after RD	t _{RLAZ}		0		0	ns

NOTE:

1. Interfacing the SAB 8052B to devices with float times up to 92 ns is permissible. This limited bus contention will not cause any damage to port 0 drivers.

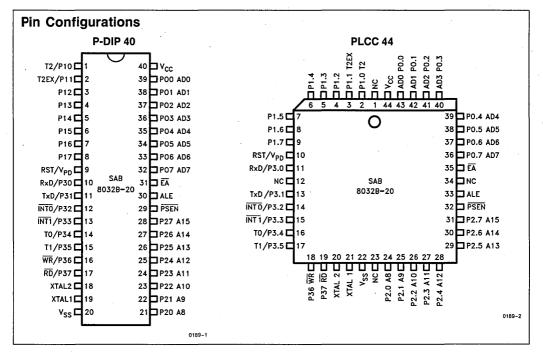
External Clock Drive XTAL2

		Limi	t Values	
Parameter	Symbol	Varia Freq. = 1.2 MHz Freq. = 1.2 MHz	Unit	
		Min	Max	7
Oscillator Period T40/85 T40/100	^t CLCL	83.3 100	833.3	ns
High Time	tснсх	20	tCLCL-tCLCX	ns
Low Time	tCLCX	20	tCLCL-tCHCX	ns
Rise Time	^t CLCH		20	ns
Fall Time	t _{TCHCL}		20	ns

Waveforms: Refer to SAB 8051A/8031A Datasheet

Ordering Information

Туре	Description
	8-Bit Single-Chip Microcontroller
SAB 8052B-P-T40/85	with Mask-Programmable ROM (P-DIP40)
SAB 8052B-P-T40/100	with Mask-Programmable ROM (P-DIP40)
SAB 8032B-P-T40/85	for External Memory (P-DIP40)
SAB 8032B-P-T40/100	for External Memory (P-DIP40)
SAB 8052B-N-T40/85	with Mask-Programmable ROM (PLCC44)
SAB 8032B-N-T40/85	for External Memory (PLCC44)



SAB 8032B-20 8-Bit Single-Chip Microcontroller

SAB 8032B-20 Microcontroller for external ROM

- SAB 8032B-20, 20 MHz Operation
- ROMless
- 256 imes 8 Bytes RAM
- Four 8-Bit Ports, 32 I/O Lines
- Three 16-Bit Timer/Event Counters
- High-Performance Full-Duplex Serial Channel
- External Memory Expandable up to 128 Kbytes

- Compatible with SAB 8080/8085
 Peripherals
- Boolean Processor
- Most Instructions Execute in: 600 ns (SAB 8032B-20)
- 2.4 μs Multiply and Divide
- P-DIP 40 and PLCC 44 Packages
- Full Backward Compatibility with SAB 8051A/8031A

The SAB 8032B-20 is a stand-alone, high-performance single-chip microcontroller fabricated in +5V advanced Siemens MYMOS (III) technology and supplied in a 40-pin plastic P-DIP or 44-pin plastic leaded chip carrier (PLCC 44) package. It is backwardly compatible with the SAB 8051A/8031A. It provides the hardware features, architectural enhancements and instructions that are necessary to make it a powerful and cost-effective controller for applications requiring up to 64 Kbytes of program memory and/or up to 64 Kbytes of data storage.

Absolute Maximum Ratings*

Ambient Temperature under Bias0°C to 70°C
Storage Temperature65°C to + 150°C
Voltage on Any Pin with Respect to Ground (V _{SS}) $\dots -0.5V$ to $+7V$
Power Dissipation

The SAB 8032-B contains no on-chip ROM; a volatile 256 \times 8 bytes read/write data memory; 32 I/O lines; three 16-bit timer/counters; a five source, twopriority-level, nested interrupt structure; a serial I/O port for either multiprocessor communications, I/O expansion, or full-duplex UART; and on-chip oscillator and clock circuits.

*Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Parameter	Symbol	Test Condition	Lin	Limit Values		
			Min	Max	Unit	
Input Low Voltage	VIL		-0.5	0.8	V	
Input High Voltage (except RST/V _{PD} and XTAL2)	VIH		2.0	V _{CC} + 0.5	v	
Input High Voltage to RST/V _{PD} for Reset, XTAL2	V _{IH1}	XTAL1 to V _{SS}	2.5	V _{CC} + 0.5	V	
Power Down Voltage to RST/V _{PD}	V _{PD}	$V_{CC} = 0V$	4.5	5.5	v	
Output Low Voltage Ports 1, 2, 3	V _{OL}	I _{OL} = 1.6 mA		0.45	, v	
Output Low Voltage Port 0, ALE, PSEN	V _{OL1}	$I_{OL} = 3.2 \text{ mA}$		0.45	v	
Output High Voltage Ports 1, 2, 3	V _{OH}	I _{OH} = -80 μA	2.4		V .	
Output High <u>Voltage</u> Port 0, ALE, PSEN	V _{OH1}	$I_{OH} = -400 \ \mu A$	2.4		v	
Logical 0 Input Current Ports 1, 2, 3	ILL	$V_{IL} = 0.45V$		-500	μA	
Logical 0 Input Current XTAL2	I _{IL2}	$\begin{array}{l} \text{XTAL1} = \text{V}_{\text{SS}} \\ \text{V}_{\text{IL}} = 0.45 \text{V} \end{array}$		-3.2	mA	
Input High Current to RST/V _{PD} for Reset	l _{IH1}	$V_{\rm IN} = V_{\rm CC} - 1.5V$		500	μA	
Input Leakage Current to Port 0, EA	lu -	$0 < V_{IN} < V_{CC}$		±10	μA	
Power Supply Current SAB 8032B/8052B SAB 8032B-16/8052B-16	lcc	All Outputs Disconnected		175	mA	
Power Down Current	I _{PD}	$V_{CC} = 0V$		15	mA	
Capacitance of I/O Buffer	CIO	f _C = 1 MHz		10	pF	

D.C. Characteristics $T_A = 0$ to 70°C; $V_{CC} = 5V \pm 10\%$; $V_{SS} = 0V$

4-31

A.C. Characteristics for SAB 8032B-20

 $T_A = 0^{\circ}C$ to 70°C; $V_{CC} = 5V \pm 10^{\circ}$; $V_{SS} = 0V$ (C_L for Port 0, ALE and PSEN Outputs = 100 pF; C_L for All Other Outputs = 80 pF)

Program Memory Characteristics

		Limit Values				
Parameter	Symbol	20 MHz Clock		Variabl 1/t _{CLCL} = 1.2	Unit	
		Min	Max	Min	Max	
ALE Pulse Width	t _{LHLL}	60		2 t _{CLCL} 40		ns
Address Setup to ALE	tAVLL	20		t _{CLCL} – 30		ns
Address Hold after ALE	t _{LLAX1}	20		t _{CLCL} – 30		ns
ALE to Valid Instruction In	t _{LLIV}		100		4 t _{CLCL} - 100	ns
ALE to PSEN	t _{LLPL}	25		t _{CLCL} – 25		ns
PSEN Pulse Width	t _{PLPH}	115		3 t _{CLCL} – 35		ns
PSEN to Valid Instruction In	t _{PLIV} `		75		3 t _{CLCL} - 75	ns
Input Instruction Hold after PSEN	t _{PXIX}	0		0	•	ns
Input Instruction Float after PSEN	t _{PXIZ}		40		t _{CLCL} - 10	ns
Address to Valid Instruction In	t _{AVIV}		190		5 t _{CLCL} — 60	ns
Address Float to PSEN	t _{AZPL}	0		0		ns

External Data Memory Characteristics

Parameter	Symbol	20 MHz Clock				Unit
		Min	Max	Min	Max	
RD Pulse Width	t _{RLRH}	200		6 t _{CLCL} — 100		ns
WR Pulse Width	twlwh	200		6 t _{CLCL} — 100		ns
Address Hold after ALE	t _{LLAX 2}	70		2 t _{CLCL} – 35		ns
RD to Valid Data In	t _{RLDV}		100		5 t _{CLCL} - 150	ns
Data Hold after RD	tRHDX	0		0		ns
Data Float after RD	t _{RHDZ}		40		2 t _{CLCL} - 60	ns
ALE to Valid Data In	t _{LLDV}		250		8 t _{CLCL} - 150	ns
Address to Valid Data In	t _{AVDV}		285		9 t _{CLCL} - 165	ns
ALE to WR or RD	tLLWL	100	200	3 t _{CLCL} - 50	3 t _{CLCL} + 50	ns
Address to WR or RD	t _{AVWL}	70		4 T _{CLCL} – 130		ns

External Data Memory Characteristics (Continued)

				Limit Values		
Parameter	Symbol	20 MHz Clock		Variable Clock $1/t_{CLCL} = 1.2 \text{ MHz to } 20 \text{ MHz}$		Unit
		Min	Max	Min	Max	
WR or RD High to ALE High	twhLH	20	80	t _{CLCL} – 30	t _{CLCL} + 30	ns
Data Valid to WR Transition	t _{QVWX}	5		t _{CLCL} – 45		ns
Data Hold after WR	t _{WHQX}	10	-	t _{CLCL} – 40		ns
Address Float after RD	t _{RLAZ}		0		0	ns

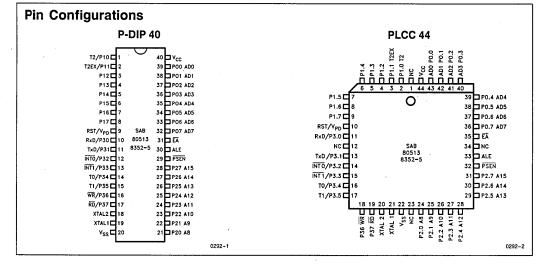
External Clock Drive XTAL2

		Lin	nit Values		
Parameter Syn	Symbol		able Clock 2 MHz to 20 MHz	Unit	
		Min	Max	ан Ал	
Oscillator Period	t _{CLCL}	50	833.3	ns	
High Time	t _{CHCX}	15	t _{CLCL} - t _{CLCX}	ns	
Low Time	t _{CLCX}	15	t _{CLCL} - t _{CHCX}	ns	
Rise Time	^t CLCH		15	ns	
Fall Time	tCHCL		15	ns	

Waveforms: Refer to SAB 8051A/8031A Data Sheet

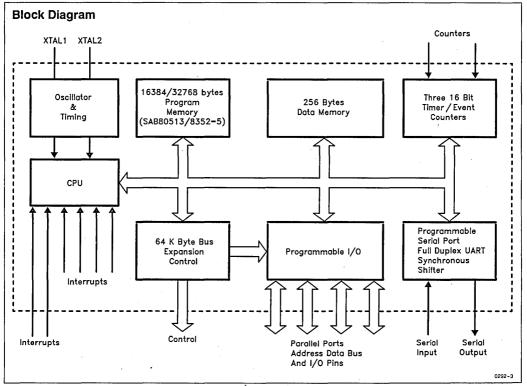
Ordering Information

Туре	Description
	8-Bit Single-Chip Microcontroller
SAB 8032B-20-N	for External Memory (PLCC-44)
SAB 8032B-20-P	for External Memory (P-DIP-40)



SAB 80513/80513-16 SAB 8352-5/8352-5-16 8-Bit Single-Chip Microcontroller

SAB 80513/80513-16 Microcontroller with 16K factory-mask programmable ROM, 12/16 MHz operation SAB 8352-5/8352-5-16 Microcontroller with 32K factory-mask programmable ROM, 12/16 MHz operation


- 16K × 8 ROM (SAB 80513)
- 32K × 8 ROM (SAB 8352-5)
- \bullet 256 imes 8 RAM
- Four 8-Bit I/O Ports
- Three 16-Bit Timer/Event Counters
- High-Performance Full-Duplex Serial Channel with Flexible Transmit/Receive Baud Rate Capability
- Six Interrupt Vectors, Two Priority Levels are Programmable
- Boolean Processor

- Most Instructions Execute in: 1 μs (SAB 80513/80533) 750 ns (SAB 80513-16/80533-16)
- 4 μs (3 μs) Multiply and Divide
- External Memory Expandable up to 128 Kbytes
- Fully Backward Compatible to SAB 8051A and SAB 8052B
- P-DIP 40 and PLCC 44 Packages
- Two temperature ranges available: 0°C to +70°C -40°C to +85°C

The SAB 80513 and SAB 8352-5 are new members of the Siemens SAB 8051 family of 8-bit microcontrollers. It is fabricated in N-channel, silicon-gate Siemens MYMOS technology.

The SAB 80513 and the SAB 8352-5 are standalone, high-performance single-chip microcontrollers based on the SAB 8051 architecture. They maintain all features of the SAB 8051A and SAB 8052B (including timer 2 of the SAB 8052B) and are thus fully compatible with both the SAB 8051A and SAB 8052B.

In addition, the SAB 80513 contains 16 Kbytes of on-chip ROM and the SAB 8352-5 contains 32 Kbytes of on-chip ROM, which makes them powerful and cost-effective controllers for applications requiring more ROM space.

Furthermore, they contain 256 byte RAM on-chip, four 8-bit ports, a powerful interrupt structure with six vectors and two programmable priority levels, a serial channel as well as on-chip oscillator and clock circuitry. Both parts are available in a 12 MHz and a 16 MHz crystal oscillator frequency version. The SAB 80513 and SAB 8352-5 are supplied in a 40-pin dual-in-line package or a 44-pin plastic leaded chip carrier (PLCC 44) package.

The parts in addition to the standard temperaturing (0°C to +70°C) are also available in the tended temperature range (-40°C to +85°C) up 16 MHz crystal oscillator frequency.

Because of the different internal ROM size, the \overline{EA} pin level for these two devices determines the appropriate program counter (PC) effective address: when \overline{EA} pin is held at a high level, the SAB 80513 executes instructions from internal ROM when PC is less than 4000H, whereas the SAB 8352-5 executes instructions from internal ROM when PC is less than 8000H. When \overline{EA} pin is held at a low level, the SAB 80513/8352-5 fetch all instructions from external program memory.

SAB 80513/80513-16 SAB 8352-5/8352-5-16

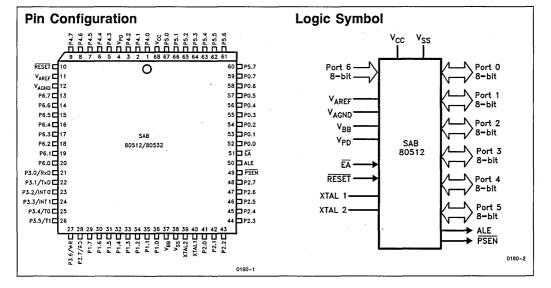
Absolute Maximum Ratings*

Ambient Temperature under Bias0°C to 70°C
Storage Temperature65°C to +150°C
Voltage on Any Pin with Respect to Ground (VSS) $\dots \dots \dots$
Power Dissipation2W

*Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

AC/DC Characteristics for SAB 80513/80513-16 and SAB 8352-5/8352-5-16 are same as that of the SAB 8052B/8052B-16.

Ordering Information


Туре	Description
	8-Bit Single-Chip-Microcontroller
SAB 80513-P	with 16K Mask-Programmable ROM (P-DIP-40)
SAB 80513-N	with 16K Mask-Programmable ROM (PLCC-44)
SAB 80513-16-P	with 16K Mask-Programmable ROM (P-DIP-40), 16 MHz
SAB 80513-16-N	with 16K Mask-Programmable ROM (PLCC-44), 16 MHz
SAB 80513-P-T40/85	with 16K Mask-Programmable ROM (P-DIP-40), Ext. Temp.
SAB 80513-N-T40/85	with 16K Mask-Programmable ROM (PLCC-44), Ext. Temp.
SAB 80513-16-P-T40/85	with 16K Mask-Programmable ROM, 16 MHz (P-DIP-40), Ext. Temp.
SAB 80513-16-N-T40/85	with 16K Mask-Programmable ROM, 16 MHz (PLCC-44), Ext. Temp.
SAB 8352-5P	with 32K Mask-Programmable ROM (P-DIP-40)
SAB 8352-5N	with 32K Mask-Programmable ROM (PLCC-44)
SAB 8352-5P-16	with 32K Mask-Programmable ROM (P-DIP-40), 16 MHz
SAB 8352-5N-16	with 32K Mask-Programmable ROM (PLCC-44), 16 MHz
SAB 8352-5P-T40/85	with 32K Mask-Programmable ROM (P-DIP-40), Ext. Temp.
SAB 8352-5N-T40/85	with 32K Mask-Programmable ROM (PLCC-44), Ext. Temp.
SAB 8352-5P-16-T40/85	with 32K Mask-Programmable ROM, 16 MHz (P-DIP-40), Ext. Temp.
SAB 8352-5N-16-T40/85	with 32K Mask-Programmable ROM, 16 MHz (PLCC-44), Ext. Temp.

SAB 80512/80532 8-Bit Single-Chip Microcontroller

SAB 80512Microcontroller with factory-mask programmable ROMSAB 80532Microcontroller for external ROMSAB 80512-T40/85Extended temperature range: -40°C to +85°CSAB 80532-T40/85Extended temperature range: -40°C to +85°C

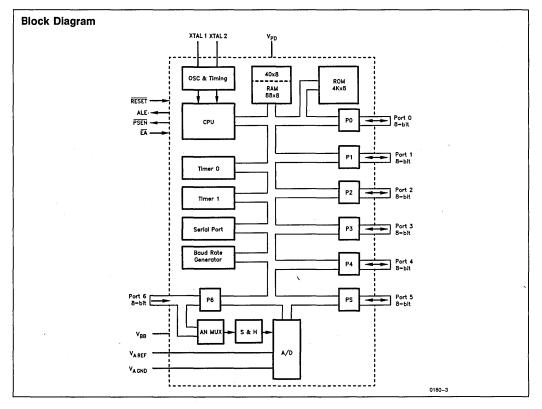
- 4K × 8 ROM (SAB 80512 only)
- \bullet 128 imes 8 RAM
- Backwardly Compatible with SAB 8051A/ 8031A
- Seven 8-Bit Ports
- Two 16-Bit Timers/Event Counters
- High-Performance Full Duplex Serial Channel with Own Baud Rate Generator
- 8-Bit A/D Converter with Eight Multiplexed Inputs, Reference Voltages Externally Adjustable

- Six Interrupt Sources (2 External, 4 Internal), Two Priority Levels Programmable
- Boolean Processor
- 1 μs Instruction Cycle Time (at 12 MHz Osc. Frequency)
- 4 μs Multiply and Divide (at 12 MHz Osc. Frequency)
- External Program and Data Memory Expandable up to 64 Kbyte Each
- PLCC 68 Package

SAB 80512/80532

The SAB 80512/80532 is a new member of the Siemens SAB 8051 family of 8-bit microcontrollers. Maintaining all features of the SAB 8051A/8031A, it is fully backwardly compatible with the SAB 8051A/ 8031A. Furthermore the SAB 80512/80532 incorporates several enhancements that significantly increase design flexibility and cost effectiveness. In addition to the SAB 8051A/8031A the SAB 80512/80532 contains an 8-bit A/D converter with 8 multiplexed inputs (these inputs can also be used as digital inputs), an own baud rate generator for the serial interface and two more I/O ports. The SAB 80532 is identical with the SAB 80512, except that it lacks the on-chip ROM.

The SAB 80512/80532 is fabricated in +5V advanced N-channel, silicon gate MYMOS technology of Siemens and supplied in a PLCC 68 package. For the industrial temperature range -40° C to $+85^{\circ}$ C, the SAB 80512/80532-T40/85 is available.


Pin	Symbol	Input (I) Output (O)	Function
1-3, 5-9	P4.0-P4.7	1/0	Port 4 is an 8-bit quasi-bidirectional I/O port with internal pullup resistors. Port 4 pins that have 1s written to them are pulled high by the internal pullup resistors, and in that state can be used as inputs. As inputs, port 4 pins being externally pulled low will source current (I_{IL} , on the DC characteristics) because of the internal pullup resistors.
4	V _{PD}		Power down supply voltage. If V_{PD} is held within its specifications while V_{CC} drops below the specification, V_{PD} will provide standby power to 40 byte of internal RAM (addr. 58H to 7FH). During normal operation of the SAB 80512, the RAM's current is supplied by V_{CC} , when V_{PD} is low.
10	RESET	I	A low level on this pin for the duration of two machine cycles while the oscillator is running resets the SAB 80512. A small internal pullup resistor permits power-on reset using only a capacitor connected to V_{SS} .
11	VAREF		Reference voltage for the A/D converter.
12	VAGND		Reference ground for the A/D converter.
13–20	P6.7-P6.0	1	Port 6, 8-bit unidirectional input port. Port pins can be used for digital input if voltage levels meet the specified input high/low voltages and for the eight multiplexed analog inputs of the A/D converter, simultaneously.
21–28	P3.0-P3.7	I/O	Port 3 is an 8-bit bidirectional I/O port with internal pullup resistors. Port 3 pins that have 1s written to them are pulled high by the internal pullup resistors, and in that state can be used as inputs. As inputs port 3 pins being externally pulled low will source current (I_{IL} , on the DC characteristics) because of the internal pullup resistors. It also contains the interrupt, timer, serial port and external memory strobe pins that are used by various options. The output latch corresponding

Pin Definitions and Functions

Pin Definitions and Functions (Continued) Input (I) Pin Symbol Function Output (O) 1/0 21 - 28P3.0-P3.7 to a secondary function must be programmed to a one (1) for that function to operate. The secondary functions are assigned to the pins of port 3, as follows: -RxD (P3.0): serial port's receiver data input (asynchronous) or data input/output (synchronous) -TxD (P3.1): serial port's transmitter data output (asynchronous) or clock output (synchronous) --- INT1 (P3.3): interrupt 1 input/timer 1 gate control -T0 (P3.4): counter 0 input -T1 (P3.5); counter 1 input -WR (P3.6): the write control signal latches the data byte from port 0 into the external data memory -RD (P3.7): the read control signal enables the external data memory to port 0 29 - 36P1.7-P1.0 1/0 Port 1 is an 8-bit bidirectional I/O port with internal pullup resistors. Port 1 pins that have 1s written to them are pulled high by the internal pullup resistors, and in that state can be used as inputs. As inputs port 1 pins being externally pulled low will source current (IIL, on the DC characteristics) because of the internal pullup resistors. The port is also used for the low order address byte during program verification. 37 V_{BB} Substrate pin. Must be connected to VSS with a capacitor (47 nF to 100 nF) for proper operation of the A/D converter. XTAL2 39 XTAL2 XTAL1 40 Output of the inverting oscillator amplifier. To drive the device from an external clock source, XTAL2 should be driven, while XTAL1 is pulled low. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is divided down by a divide-by-two flip-flop. Minimum and maximum high and low times specified in the AC characteristics must be observed: XTAL1 Input to the inverting oscillator amplifier. Required when a crystal or ceramic resonator is used. 41 - 48P2.0-P2.7 1/0 Port 2 is an 8-bit bidirectional I/O port with internal pullup resistors. Port 2 pins that have 1s written to them are pulled high by the internal pullup resistors, and in that state can be used as inputs. As inputs port 2 pins being externally pulled low will source current (IIL, on the DC characteristics) because of the internal pullup resistors. Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX@DPTR). In this application it uses strong internal pullup resistors when issuing 1s. During accesses to external data memory that use 8-bit addresses (MOVX@Ri), port 2 issues the contents of the P2 special function register. PSFN 49 0 The program store enable output is a control signal that enables the external program memory to the bus during external fetch operations. It is activated every six oscillator periods except during external data memory accesses. Remains high during internal program execution. 50 ALE 0 Provides address latch enable output used for latching the address into external memory during normal operation. It is activated every six oscillator periods except during an external data memory access.

Pin Definitions	and	Functions	(Continued)
-----------------	-----	-----------	-------------

Pin	Symbol	Input (I) Output (O)	Function
51	ĒĀ	I	When held at a TTL high level, the SAB 80512 executes instructions from the internal ROM when the PC is less than 4096. When held at a TTL low level, the SAB 80512 fetches all instructions from external program memory. For the SAB 80532 this pin must be tied low.
52–59	P0.0-P0.7	I/O	Port 0 is an 8-bit open drain bidirectional I/O port. Port 0 pins that have 1s written to them float, and in that state can be used as high- impedance inputs. Port 0 is also the multiplexed low order address and data bus during accesses to external program and data memory. In this application it uses strong internal pullup resistors when issuing 1s. Port 0 also outputs the code bytes during program verification. External pullup resistors are required during program verification.
60-67	P5.7–P5.0	1/0	Port 5 is an 8-bit bidirectional I/O Port with internal pullup resistors. Port 5 pins that have 1s written to them are pulled high by the internal pullup registers, and in that state can be used as inputs. As inputs Port 5 pins being externally pulled low will source current (I_{IL} , on the DC Characteristics) because of the internal pullup resistors.
68	V _{CC}		Supply voltage during normal operation and program verification.
38	V _{SS}		Ground (0V)

Functional Description

The SAB 80512/80532 is based on the architecture of the SAB 8051 microcontroller family. The SAB 80512 includes all features of the SAB 8051 and additionally offers peripheral extensions in three items:

- bit A/D converter with adjustable reference voltages
- two more ports
- dedicated baud rate generator

Different to the SAB 8051 is the inverted reset-input and the RAM power-down supply by a special pin (V_{PD}), which supplies 40 byte with a typical current of 2 mA. Beside the upward compatibility to the SAB 8051 (all SAB 8051 software runs on the SAB 80512 without any changes) the SAB 80512 is also downward compatible to the SAB 80515. The SAB 80512 is packed into the PLCC 68 package and has the same pinning as the SAB 80515.

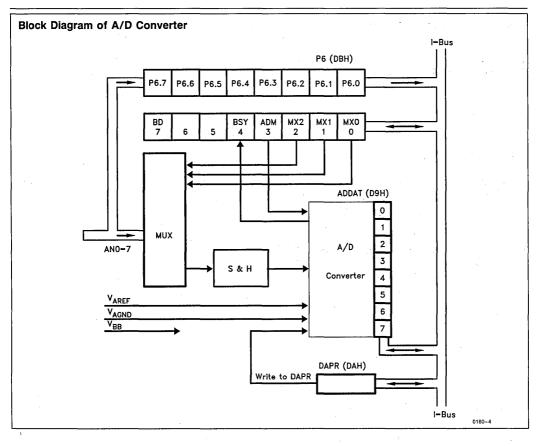
A/D Converter

The 8-bit A/D converter of the SAB 80512 has 8 multiplexed analog inputs and is using the successive approximation method. The sampling of an analog signal takes 5 machine cycles, the total conversion time is 15 machine cycles (15 μ s at 12 MHz oscillator frequency). Conversion can be programmed to be single or continuous, at the end of a conversion an interrupt can be generated. The SAB 80512 provides variable external reference voltages V_{AGND} and V_{AREF} adjustable in a wide range. A compressed reference voltage range allows to increase the resolution of the converted analog input.

The lower reference voltage (V_{AGND}) can be varied within V_{SS} – 0.2V and 4V, the higher (V_{AREF}) within 1V and V_{CC} +5%. For proper operation of the A/D converter a minimum of 1V difference is required between the external voltages:

 $\begin{array}{l} (V_{SS}-0.2V) \leq V_{AGND} \leq (V_{AREF}-1V) \\ (V_{AGND}+1V) \leq V_{AREF} \leq (V_{CC}+5\%) \end{array}$

Special Function Register


All registers, except the program counter and the four 8-register banks, reside in the special function register area. The 28 special function registers (SFRs) include arithmetic registers, pointers, and registers that provide an interface between the CPU and the on-chip peripheral functions. There are also 128 directly addressable bits within the SFR area.

I/O Ports

The SAB 80512 has six 8-bit I/O ports and one 8-bit input port. Port 0 is an open-drain bidirectional I/O port, while ports 1 to 5 are quasi-bidirectional I/O ports with internal pullups. That means, when configured as inputs, ports 1 to 5 will pull high and will source current when externally pulled low. Port 0 will float when configured as input. Port 6 is an input port only and can be used as digital input port, if the values meet the specified high/low voltages and as analog input for the A/D-converter.

Port 0 and port 2 can be used to expand the program and data memory externally. During an access to external memory, port 0 emits the low-order address byte. In this function, port 0 is not an opendrain port, but uses a strong internal pullup FET.

SAB 80512/80532

Special Function Registers

Address	Symbol	Name	Bit- Addressable	
80H	P0	Port 0 Register	Yes	
81H	SP	Stack Pointer		
82H	DPL	Data Pointer, Low-Byte		
83H	DPH	Data Pointer, High-Byte		
87H	PCON	Power Control Register		
88H	TCON	Timer Control Register	Yes	
89H	TMOD	Timer Mode Register		
8AH	TLO	Timer 0, Low-Byte		
8BH	TL1	Timer 1, Low-Byte		
8CH	TH0	Timer 0, High-Byte		
8DH	TH1	Timer 1, High-Byte		
90H	P1	Port 1 Register	Yes	
98H	SCON	Serial Port Control Register	Yes	
99H	SBUF	Serial Port Buffer Register		
0A0H	P2	Port 2 Register	Yes	
0A8H	IE	Interrupt Enable Register	Yes	
0B0H	P3	Port 3 Register	Yes	
0B8H	IP ,	Interrupt Priority Register	Yes	
0C0H	IRCON	Interrupt Request Control	Yes	
0D0H	PSW	Program Status Word Register	Yes	
0D8H	ADCON	A/D Converter Control Register	Yes	
0D9H	ADDAT	A/D Converter Data Register		
0DAH	DAPR	D/A Converter Start Register		
0DBH	P6	Port 6 Register		
0E0H	ACC	Accumulator Register	Yes	
0E8H	P4	Port 4 Register	Yes	
0F0H	В	B-Register	Yes	
0F8H	P5	Port 5 Register	Yes	

Absolute Maximum Ratings*

Temperature under Bias for the SAB 80512/805320°C to +70°C
for the SAB 80512/
80532-T40/8540°C to +85°C
Storage Temperature65°C to +150°C
Voltage on any Pin with
Respect to Ground (v_{ss})0.5V to +7V
Power Dissipation2W

*Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics

 V_{CC} = 5V $\pm10\%;\,V_{SS}$ = 0V; T_A = 0 to 70°C for SAB 80512/80532; T_A = $-40^\circ C$ to $+85^\circ C$ for SAB 80512/80532-T40/85

Parameter	Symbol	Test Conditions	Lim	it Values	Unit	
i alametei	Cymbol		Min	Max		
Input Low Voltage	VIL		-0.5	0.8	V	
Input High Voltage (Except RESET and XTAL2)	VIH		2.0	V _{CC} + 0,5	~	
Input High Voltage to XTAL2	V _{IH1}	XTAL1 to V _{SS}	2.5	V _{CC} + 0.5	V	
Input High Voltage to RESET	V _{IH2}		3.0		V	
Power-Down Voltage	V _{PD}	$V_{CC} = 0V$	3	5.5	V	
Output Low Voltage, Ports 1, 2, 3, 4, 5	V _{OL}	$I_{OL} = 1.6 \text{ mA}$		0.45	V	
Output Low Voltage, Port 0, ALE, PSEN	V _{OL1}	I _{OL} = 3.2 mA		0.45	V	
Output High Voltage, Ports 1, 2, 3, 4, 5	VOH	I _{OH} = -80 μA	2.4		V	
Output High Voltage, Port 0, ALE, PSEN	V _{OH1}	I _{OH} = -400 μA	2.4		V	
Logic 0 Input Current, Ports 1, 2, 3, 4, 5	1 _{IL}	V _{IL} = 0.45V		-500	μA	
Logic 0 Input Current, XTAL2	I _{IL2}	$XTAL = V_{SS}, V_{IL} = 0.45V$		-2.5	mA	
Input Low Current to RESET for Reset	l _{iL3}	V _{IL} = 0.45V		-500	μA	
Input Leakage Current to Port 0, EA	ILI	$0V < V_{IN} < V_{CC}$	_	±10	μA	
Power Supply Current SAB 80512/80532 SAB 80512/80532-T40/85	lcc	All Outputs Disconnected		175	mA	
Power-Down Current	IPD	$V_{CC} = 0V$		3	mA	
Capacitance of I/O Buffer	CIO	f _c = 1 MHz		10	pF	

A/D Converter Characteristics

 $V_{CC} = 5V \pm 10\%$; $V_{SS} = 0V$; $(V_{SS} - 0.2V) \le V_{AGND} \le (V_{AREF} - 1V)$; $(V_{AGND} + 1V) \le V_{AREF} \le (V_{CC} + 5\%)$; $T_A = 0^{\circ}C$ to 70°C for SAB 80512/80532; $T_A = -40^{\circ}C$ to +85°C for SAB 80512/80532-T40/85

Parameter	Symbol Test Conditions	Limit Values			Unit	
		rest conditions	Min	Тур	Max	Onit
Analog Input Voltage	VAINPUT		V _{AGND} -0.2		V _{AREF} +0.2	V
Analog Input Capacitance(1)	Cl			25	70	рF
Load Time	tL				2 t _{CY}	μs
Sample Time (Incl. Load Time)	ts				5 t _{CY}	μs
Conversion Time (Incl. Sample Time)	t _C				15 t _{CY}	μs
Differential Non-Linearity	DNLE	V _{AREF} = V _{CC}		± 1/4	± 1⁄2	
Integral Non-Linearity	INLE	$V_{AGND} = V_{SS}$		± 1/4	± 1/2	
Offset Error				± 1⁄4	± 1/2	LSB
Gain Error				± 1/4	± 1/2	Ì
Total Unadjusted Error	TUE			± 1/4	± 1/2.	
VAREF Supply Current ⁽²⁾	I _{REF}				5	mA

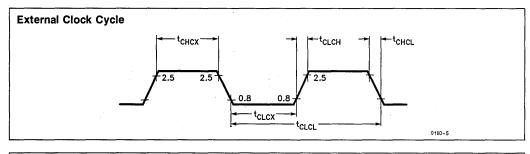
NOTES:

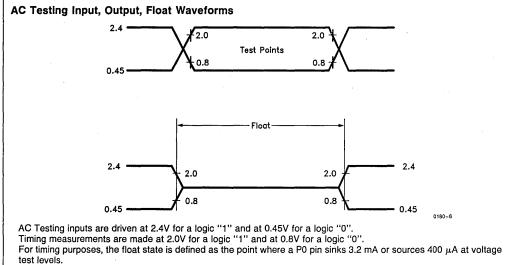
1. The internal resistance of the analog source must be low enough to assure full loading of the sample capacitance (C_1) during load time (t_L). After charging of the internal capacitance (C_1) in the load time (t_L) the analog input must be held constant for the rest of the sample time (t_S).

2. The differential impedance r_D of the analog reference voltage source must be less than 1 k Ω at reference supply voltage.

AC Characteristics

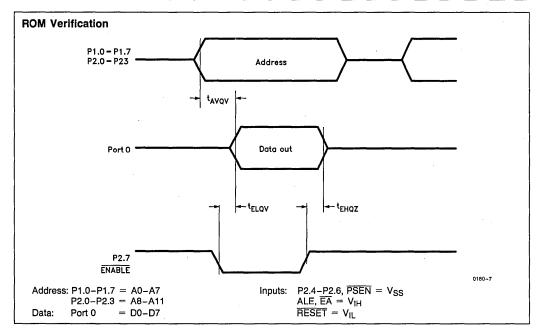
 $V_{CC} = 5V \pm 10\%$; $V_{SS} = 0V$; $T_A = 0^{\circ}C$ to $70^{\circ}C$ for SAB 80512/80532; $T_A = -40^{\circ}C$ to $+85^{\circ}C$ for SAB 80512/80532-T40/85; (C_L for Port 0, ALE and PSEN Outputs = 100 pF; C_L for All Outputs = 80 pF)

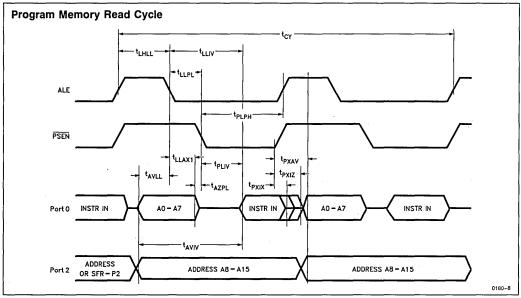

		-				
Parameter	Symbol	12 MHz Clock		Variable Clock 1/t _{CLCL} = 1.2 MHz to 12 MHz		Unit
·		Min	Max	Min	Max	
Program Memory Charactistics				•	·	
Cycle Time	t _{CY}	1000		12 t _{CLCL}		ns
ALE Pulse Width	t _{LHLL}	127		2 t _{CLCL} - 40		ns
Address Setup to ALE	t _{AVLL}	53		t _{CLCL} - 30		ns
Address Hold after ALE	t _{LLAX1}	48		t _{CLCL} – 35		ns
Address to Valid Instr In	t _{LLIV}		233		4 t _{CLCL} - 100	ns
ALE to PSEN	t _{LLPL}	58		t _{CLCL} – 25		ns
PSEN Pulse Width	t _{PLPH}	215		3 t _{CLCL} - 35		ns
PSEN to Valid Instr In	t _{PLIV}		150		3 t _{CLCL} - 100	ns
Input Instruction Hold after PSEN	t _{PXIX}	0		0		ns
Input Instruction Float after PSEN	t _{PXIZ*}		63		t _{CLCL} – 20	ns
Address Valid after PSEN	t _{PXAV*}	75		t _{CLCL} – 8		ns
Address to Valid Instr In	t _{AVIV}		302		5 t _{CLCL} - 115	ns
Address Float to PSEN	t _{AZPL}	0		0		ns
External Data Memory Character	istics				<u> </u>	L
RD Pulse Width	t _{RLRH}	400		6 t _{CLCL} - 100		ns
WR Pulse Width	t _{WLWH}	400		6 t _{CLCL} - 100		ns
Address Hold after ALE	t _{LLAX2}	132		2 t _{CLCL} - 35		ns
RD to Valid Data In	t _{RLDV}		250		5 t _{CLCL} - 165	ns
Data Hold after RD	t _{RHDX}	0		0		ns
Data Float after RD	t _{RHDZ}		97		2 t _{CLCL} - 70	ns
ALE to Valid Data In	t _{LLDV}		517		8 t _{CLCL} - 150	ns
Address to Valid Data In	t _{AVDV}		585		9 t _{CLCL} — 165	ns
ALE to WR or RD	t _{LLWL}	200	300	3 t _{CLCL} - 50	3 t _{CLCL} + 50	ns
Address to WR or RD	t _{AVWL}	203		4 t _{CLCL} - 130		ns
WR or RD High to ALE High	twhilh	43	123	t _{CLCL} - 40	t _{CLCL} + 40	ns
Data Valid to WR Transition	tavwx	33		t _{CLCL} - 50		ns
Data Setup before WR	t _{QVWH}	433		7 t _{CLCL} - 150		ns
Data Hold after WR	t _{WHQX}	33		t _{CLCL} – 50		ns
Address Float after RD	t _{RLAZ}		0		0	ns

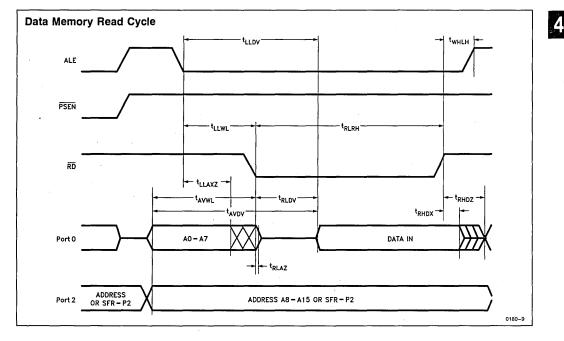

* Interfacing the SAB 80512 to devices with float times up to 75 ns is permissible. This limited bus contention will not cause any damage to port 0 drivers.

AC Characteristics (Continued)

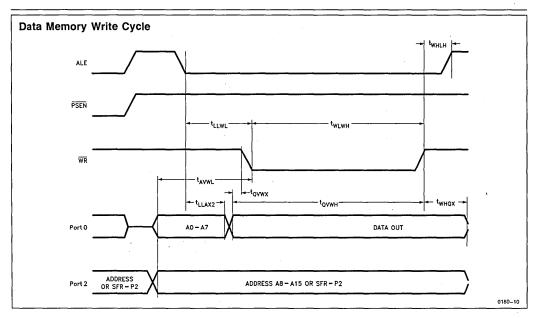
External Clock Drive XTAL2

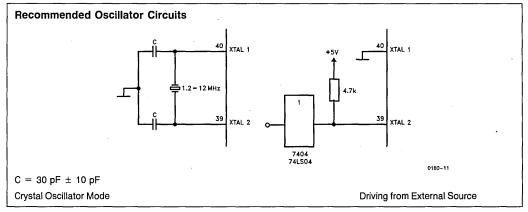

		Lii	mit Values	
Parameter	Symbol	Variable Clock Freq. = 1.2 MHz to 12 MHz		Unit
		Min	Max	
Oscillator Period	^t CLCL	83.3	833.3	ns
High Time	tCHCX	20	tolol-tolox	ns
Low Time	tCLCK	20	tCLCL-tCHCX	ns
Rise Time	t _{CLCH}		20	ns
Fall Time	t _{CHCL}		20	ns




ROM Verification Characteristics $T_{A}=25^{\circ}C; V_{CC}=5V\pm10\%; V_{SS}=0V$

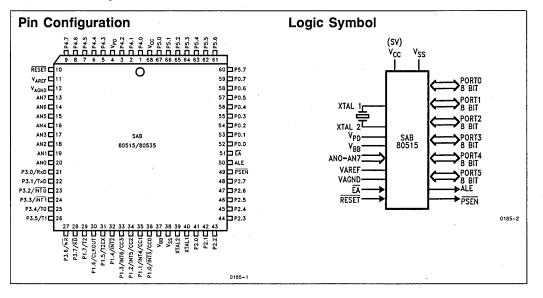
Parameter	Symbol	Limit Values		Unit
		Min	Max	Onic
Address to Valid Data	t _{AVQV}		48 t _{CLCL}	ns
ENABLE to Valid Data	t _{ELQV}		48 t _{CLCL}	ns
Data Float after ENABLE	t _{EHQZ}	· 0	48 t _{CLCL}	ns
Oscillator Frequency	1/t _{CLCL}	4	6 .	MHz




Waveforms

SAB 80512/80532

Ordering Information


Туре	Function
SAB 80512	8-Bit Single-Chip Microcontroller with ROM
SAB 80532	8-Bit Single-Chip Microcontroller for External ROM
SAB 80512-T40/85	Like SAB 80512 but for -40°C to +85°C
SAB 80532-T40/85	Like SAB 80532 but for -40° C to $+85^{\circ}$ C

SAB 80515/80535 8-Bit Single-Chip Microcontroller

SAB 80515Microcontroller with Factory-Mask Programmable ROM, 12 MHz OperationSAB 80535Microcontroller for External ROM, 12 MHz Operation

- 8K x 8 ROM (SAB 80515 Only)
- 256 x 8 RAM
- Six 8-bit ports, 48 I/O Lines
- Three 16-bit Timer/Event Counters
- PTRA with Highly Flexible Reload, Capture, Compare Capabilities
- High-Performance Full-Duplex Serial Channel
- Twelve Interrupt Vectors, Four Priority Levels
- 8-bit A/D Converter with 8 Multiplexed Analog Inputs and Programmable Internal Reference Voltages

- 16-bit Watchdog Timer
- V_{PD} Provides Standby Current for 40 Bytes of RAM
- Boolean Processor
- 256 Bit-Addressable Locations
- Most Instructions Execute in: 1 μs
- 4 µs Multiply and Divide
- External Memory Expandable to 128 Kbyte
- Backward-Compatible with SAB 8051A
- 68-Pin Plastic Leaded Chip Carrier Package (PLCC 68)

© Siemens Components, Inc.

SAB 80515/80535

The SAB 80515/80535 is a member of the Siemens SAB 8051 family of 8-bit microcontrollers. It is fabricated in + 5V advanced N-channel, silicon-gate Siemens MYMOS technology and supplied in a 68-pin PLCC package. The SAB 80515/80535 is a standalone, high-performance single-chip microcontroller based on the SAB 8051 architecture. While maintaining all the SAB 8051 operating characteristics, the SAB 80515/80535 incorporates several enhancements which significantly increase design flexibility and overall system performance. The SAB 80535 is identical with the SAB 80515 except that it lacks the program memory.

Symbol	Input (I) Output (O)	Function
P4.0-P4.7	1/0	Port 4 is an 8-bit quasi-bidirectional I/O port. Port 4 can sink/source 4 LS-TTL loads.
V _{PD}		Power down supply. If V_{PD} is held within its specs while V_{CC} drops below specs, V_{PD} will provide standby power to 40 byte of the internal RAM. When V_{PD} is low, the RAM's current is drawn from V_{CC} .
RESET	1	A low level on this pin for the duration of two machine cycles while the oscillator is running resets the SAB 80515. A small internal pullup resistor permits power-on reset using only a capacitor connected to V_{SS} .
VAREF		Reference voltage for the A/D converter
V _{AGND}		Reference ground for the A/D converter
AN7-AN0	· ·	Multiplexed analog inputs
P3.0-P3.7	1/0	Port 3 is an 8-bit quasi-bidirectional I/O port. It also contains the interrupt, timer, serial port and external memory strobe pins that are used by various options. The output latch corresponding to a secondary function must be programmed to a one (1) for that function to operate. Port 3 can sink/source 4 LS-TTL loads. The secondary functions are assigned to the pins of port 3, as follows: — RxD (P3.0): serial port's receiver data input (asynchronous) or data input/output (synchronous) — TxD (P3.1): serial port's transmitter data output (asynchronous) or clock output (synchronous) — INTO (P3.2): interrupt 0 input/timer 0 gate control input — INT1 (P3.3): interrupt 1 input/timer 1 gate control input — T0 (P3.4): counter 0 input — T1 (P3.5): counter 1 input — WR (P3.6): the write control signal latches the data byte from port 0 into the external data memory — RD (P3.7): the read control signal enables the external data
	P4.0-P4.7 V _{PD} RESET V _{AREF} V _{AGND} AN7-AN0	Symbol Output (O) P4.0-P4.7 I/O VPD I/O RESET I VAREF I VAGND I

Pin Definitions and Functions

SAB 80515/80535

Pin Definitions and Functions (Continued)

Pin	Symbol	Input (I) Output (O)	Function
29-36	P1.7-P1.0	I/O	Port 1 is an 8-bit quasi-bidirectional I/O port. It is used for the low-order address byte during program verification. It also contains the interrupt, timer, clock, capture and compare pins that are used by various options. The output latch must be programmed to a one (1) for that function to operate (except when used for the compare functions). Port 1 can sink/source 4 LS-TTL loads. The secondary functions are assigned to the port 1 pins, as follows: — INT3/CC0 (P1.0): interrupt 3 input/compare 0 output/ capture 0 input — INT4/CC1 (P1.1): interrupt 4 input/compare 1 output/ capture 1 input — INT5/CC2 (P1.2): interrupt 5 input/compare 2 output/ capture 2 input — INT6/CC3 (P1.3): interrupt 6 input/compare 3 output/ capture 3 input — INT6/CC3 (P1.4): interrupt 2 input — T2EX (P1.5): timer 2 external reload trigger input — CLKOUT (P1.6): system clock output — T2 (P1.7): counter 2 input
37	V _{BB}		Substrate pin. Must be connected to V_{SS} through a capacitor (47 nF to 100 nF) for proper operation of the A/D converter.
39	XTAL2		XTAL2 is the output from the oscillator's amplifier. Input to the internal timing circuitry. A crystal, ceramic resonator, or external source can be used.
40	XTAL1		XTAL1 is the input to the oscillator's high gain amplifier. Required when a crystal or ceramic resonator is used. Connect to V_{SS} when external source is used on XTAL2.
41–48	P2.0-P2.7	1/0	Port 2 is an 8-bit quasi-bidirectional I/O port. It also emits the high-order address byte when accessing external memory. It is used for the high-order address and the control signals during program verification. Port 2 can sink/source 4 LS-TTL loads.
49	PSEN	0	The program store enable output is a control signal that enables the external program memory to the bus during external fetch operations. It is activated every six oscillator periods except during external data memory accesses. Remains high during internal program execution.
50	ALE	0	Provides address latch enable output used for latching the address into external memory during normal operation. It is activated every six oscillator periods except during an external data memory access.
51	ĒĀ	I	When held at a TTL high level, the SAB 80515 executes instructions from the internal ROM when the PC is less than 8192. When held at a TTL low level, the SAB 80515 fetches all instructions from external program memory. For the SAB 80535 this pin must be tied low.

Pin Definitions	and	Functions	(Continued)
-----------------	-----	-----------	-------------

Pin	Symbol	Input (I) Output (O)	Function
52–59	P0.0-P0.7	1/0	Port 0 is an 8-bit open-drain bidirectional I/O port. It is also the multiplexed low-order address and data bus when using external memory. It is used for data output during program verification. Port 0 can sink/source 8 LS-TTL loads.
60–67 [°]	P5.7-P5.0	1/0	Port 5 is an 8-bit quasi-bidirectional I/O port. Port 5 can sink/source 4 LS-TTL loads.
68	V _{CC}		POWER SUPPLY (+5V power supply during normal operation and program verification)
38	V _{SS}		GROUND (0V)

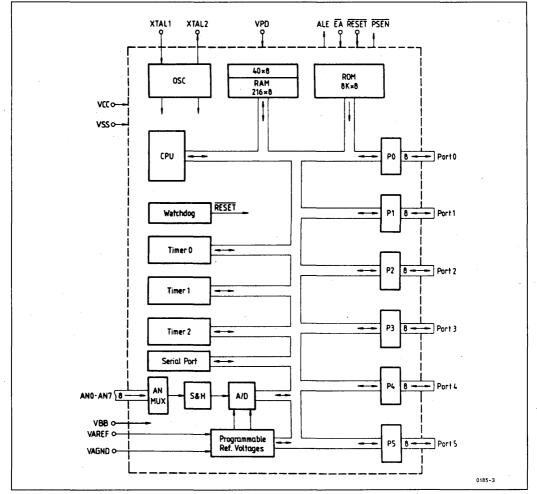


Figure 1. Block Diagram

Functional Description

The members of the SAB 80515 family of microcontrollers are:

- --- SAB 80515: Microcontroller, designed in Siemens MYMOS technology, with 8 Kbyte factory mask-programmable ROM
- SAB 80535: ROM-less version of the SAB 80515
- SAB 80C515: Microcontroller, designed in Siemens ACMOS technology, with 8 Kbyte factory mask-programmable ROM
- SAB 80C535: ROM-less version of the SAB 80C515
- SAB 80515K: Special ROM-less version of the SAB 80515 with an additional interface for program memory accesses. An external ROM that is accessed via this interface substitutes the SAB 80515's internal ROM.

The SAB 80535 is identical to the SAB 80515, except that it lacks the on-chip ROM. In this data sheet the term "SAB 80515" is used to refer to both the SAB 80515 and SAB 80535, unless otherwise noted.

Architecture

The architecture of the SAB 80515 is based on the SAB 8051 microcontroller family. The following features of the SAB 80515 are fully compatible with the SAB 8051 features:

- instruction set
- external memory expansion interface (port 0 and port 2)
- full-duplex serial port
- timer/counters 0 and 1
- alternate functions on port 3
- the lower 128 bytes of internal RAM and the lower 4 Kbytes of internal ROM

Different to the SAB 8051 are the RAM power-down supply, which supplies 40 byte with a typical current of 2 mA, and the powerful interrupt structure with 12 sources and 4 priority levels.

The SAB 80515 additionally contains 128 byte of internal RAM and 4 Kbyte of internal ROM, that means a total of 256 byte RAM and 8 Kbyte ROM on-chip. The SAB 80515 has a new 16-bit timer/ counter with a 2:1 prescaler, reload mode, compare

and capture capability. It also contains a 16-bit watchdog timer, an 8-bit A/D converter with 8 analog inputs and programmable reference voltages, two additional quasi-bidirectional 8-bit ports, and a programmable clock output (fosc/12).

CPU

The SAB 80515 is efficient both as a controller and as an arithmetic processor. It has extensive facilities for binary and BCD arithmetic and excels in bit-handling capabilities. Efficient use of program memory results from an instruction set consisting of 44% one-byte, 41% two-byte, and 15% three-byte instructions. With a 12 MHz crystal, 58% of the instructions execute in 1.0 μ s.

Memory Organization

The SAB 80515 manipulates operands in the four memory address spaces described below: (Refer to Figure 2.)

Program Memory

The SAB 80515 has 8 Kbytes of on-chip ROM, while the SAB 80535 has no internal ROM. The program memory can be externally expanded up to 64 Kbyte. If the EA pin is held high, the SAB 80515 executes out of internal ROM unless the address exceeds 1FFFH. Locations 2000H through 0FFFFH are then fetched from the external program memory. If the EA pin is held low, the SAB 80515 fetches all instructions from the external program memory. Since the SAB 80535 has no internal ROM, pin EA must be tied low when using this component.

Data Memory

The data memory address space consists of an internal and an external memory space. The internal data memory is divided into three physically separate and distinct blocks: the lower 128 byte of RAM; the upper 128 byte of RAM; and the 128-byte special function register (SFR) area. While the upper 128 byte of data memory and the SFR area share the same address locations, they are accessed through different addressing modes. The lower 128 byte of data memory can be accessed through direct or register-indirect addressing; the upper 128 byte of RAM can be accessed through register-indirect addressing; the special function registers are accessible through direct addressing.

SAB 80515/80535

Four 8-register banks, each bank consisting of eight 8-bit multi-purpose registers, occupy locations 0 through 1FH in the lower RAM area. The next 16 bytes, locations 20H through 2FH, contain 128 directly addressable bit locations. The stack can be located anywhere in the internal data memory address space, and the stack depths can be expanded up to 256 byte.

The external data memory can be expanded up to 64 Kbyte and can be accessed by instructions that use a 16-bit or an 8-bit address.

All registers, except the program counter and the four 8-register banks, reside in the special function register area. The 41 special function registers (SFR's) include arithmetic registers, pointers, and registers that provide an interface between the CPU and the on-chip peripheral functions. There are also 128 directly addressable bits within the SFR area. The special function registers are listed in the following table:

Symbol	Name	Address
*P0	Port 0	80H
SP	Stack Pointer	81H
DPL	Data Pointer, Low Byte	82H
DPH	Data Pointer, High Byte	83H
PCON	Power Control Register	87H
*TCON	Timer Control Register	88H
TMOD	Timer Mode Register	89H
TLO	Timer 0, Low Byte	8AH
TL1	Timer 1, Low Byte	8BH
TH0	Timer 0, High Byte	8CH
TH1	Timer 1, High Byte	8DH
*P1	Port 1	90H
*SCON	Serial Port Control Register	98H
SBUF	Serial Port Buffer Register	99H
*P2	Port 2	0A0H
*IEN0	Interrupt Enable Register 0	0A8H
IP0	Interrupt Priority Register 0	0A9H
*P3	Port 3	OBOH
*IEN1	Interrupt Enable Register 1	0B8H
IP1	Interrupt Priority Register 1	0B9H
*IRCON	Interrupt Request Control Register	0C0H
CCEN	Compare/Capture Enable Register	0C1H
CCL1	Compare/Capture Register 1, Low Byte	0C2H
CCH1	Compare/Capture Register 1, High Byte	0C3H
CCL2	Compare/Capture Register 2, Low Byte	0C4H
CCH2	Compare/Capture Register 2, High Byte	0C5H
CCL3	Compare/Capture Register 3, Low Byte	0C6H
CCH3	Compare/Capture Register 3, High Byte	0C7H
*T2CON	Timer 2 Control Register	0C8H
CRCL	Compare/Reload/Capture Register, Low Byte	0CAH
CRCH	Compare/Reload/Capture Register, High Byte	0CBH
TL2	Timer 2, Low Byte	0CCH
TH2	Timer 2, High Byte	0CDH
*PSW	Program Status Word Register	0D0H
*ADCON	A/D-Converter Control Register	0D8H
ADDAT	A/D-Converter Data Register	0D9H
DAPR	D/A-Converter Program Register	0DAH
*ACC	Accumulator	0E0H
*P4	Port 4	0E8H
*B	B Register	0F0H
*P5	Port 5	0F8H

The SFR's marked with an asterisk (*) are both bit and byte-addressable. Figure 2 illustrates the memory address spaces of the SAB 80515.

SAB 80515/80535

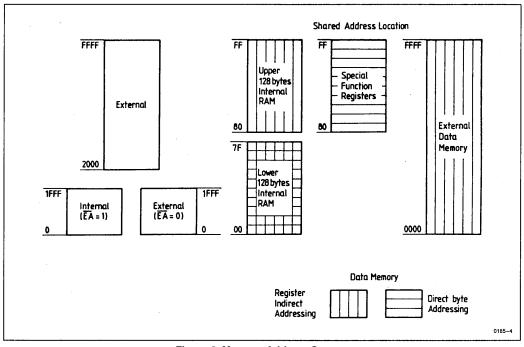


Figure 2. Memory Address Spaces

I/O Ports

The SAB 80515 has six 8-bit ports. Port 0 is an open-drain bidirectional I/O port, while ports 1 to 5 are quasi-bidirectional I/O ports with internal pullups. That means, when configured as inputs, ports 1 to 5 will pull high and will source current when externally pulled low. Port 0 will float when configured as input. Port 0 and port 2 can be used to expand the program and data memory externally. During an access to external memory, port 0 emits the low-order address byte and reads/writes the data byte, while port 2 emits the high-order address byte. In this function, port 0 is not an open-drain port, but uses a strong internal pullup FET.

Port	Symbol	Function
P1.0	INT3/CC0	External Interrupt 3 Input, Compare 0 Output, Capture 0 Input
P1.1	INT4/CC1	External Interrupt 4 Input, Compare 1 Output, Capture 1 Input
P1.2	INT5/CC2	External Interrupt 5 Input, Compare 2 Output, Capture 2 Input
P1.3	INT6/CC3	External Interrupt 6 Input, Compare 3 Output, Capture 3 Input
P1.4	INT2	External Interrupt 2 Input
P1.5	T2EX	Timer 2 External Reload Trigger Input
P1.6	CLKOUT	System Clock Output
P1.7	T2	Timer 2 External Counter Input
P3.0	RXD	Serial Input Port
P3.1	TXD	Serial Output Port
P3.2	INTO	External Interrupt 0 Input, Timer 0 Gate Control
P3.3	INT1	External Interrupt 1 Input, Timer 1 Gate Control
P3.4	T0	Timer 0 External Counter Input
P3.5	T1	Timer 1 External Counter Input
P3.6	WR	External Data Memory Write Strobe
P3.7	RD	External Data Memory Read Strobe

Timer/Counters

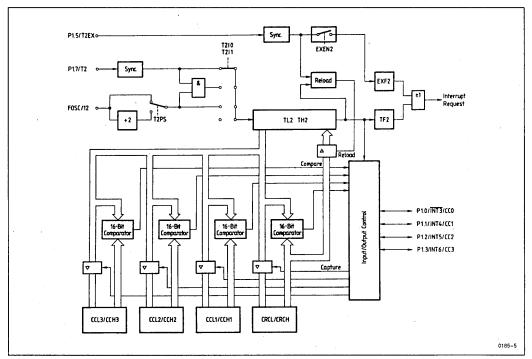
The SAB 80515 contains three 16-bit timer/counters which are useful in many applications for timing and counting. The input clock for each timer/counter is 1/12 of the oscillator frequency in the timer operation or can be taken from an external clock source for the counter operation (maximum count rate is 1/24 of the oscillator frequency).

Timer/Counters 0 and 1

These timer/counters can operate in four modes:

Mode 0: 8-bit timer/counter with 32:1 prescaler

Mode 1: 16-bit timer/counter


Mode 2: 8-bit timer/counter with 8-bit auto-reload

Mode 3: Timer/counter 0 is configured as one 8-bit timer/counter and one 8-bit timer; timer/ counter 1 in this mode holds its count. External inputs INT0 and INT1 can be programmed to function as a gate for timer/counters 0 and 1 to facilitate pulse width measurements.

PTRA

Programmable Timer/Counter Register Array (PTRA) of the SAB 80515 has timer/counter 2 as its time-base. Timer/counter 2 of the SAB 80515 is a 16-bit timer/counter with several additional features. It offers a 2:1 prescaler, a selectable gate function, and compare, capture and reload functions. Corresponding to the 16-bit timer register there are four 16-bit capture/compare registers, one of them can be used to perform a 16-bit reload on a timer overflow or external event. Each of these registers corresponds to a pin on port 1 for capture input/compare output.

Figure 3 shows a block diagram of the PTRA. The main features of the PTRA are:

Figure 3. Block Diagram of PTRA

Reload

With the 16-bit CRC register, which is a concatanation of the 8-bit registers CRCL and CRCH, a 16-bit reload can be performed. There are two modes from which to select:

- Mode 0: Reload is caused by a timer 2 overflow (auto-reload)
- Mode 1: Reload is caused in response to a negative transition at pin T2EX (P1.5), which can also request an interrupt.

Compare

In the compare mode, the 16-bit values stored in the dedicated compare registers are compared to the contents of the timer 2 registers. If the count value in the timer 2 registers matches one of the stored values, an appropriate output signal is generated and an interrupt is requested. Two compare modes are provided:

- Mode 0: Upon a match the output signal changes from low to high. It goes back to a low level when timer 2 overflows.
- Mode 1: The transition of the output signal can be determined by software. A timer 2 overflow causes no output change.

Capture

This feature permits saving the actual timer/counter contents into a selected register upon an external event or a software write operation. Two modes are provided to latch the current 16-bit value in timer 2 registers into a dedicated capture register:

- Mode 0: Capture is performed in response to a transition at the corresponding port 1 pins CC0 to CC3.
- Mode 1: Write operation into the low-order byte of the dedicated capture register causes the timer 2 contents to be latched into this register.

Serial Port

The serial port of the SAB 80515 permits the full duplex communication between microcontrollers or between microcontrollers and peripheral devices. The serial port can operate in 4 modes:

- Mode 0: Shift register mode. Serial data enters and exits through RxD. TxD outputs the shift clock. 8 bits are transmitted/received: 8 data bits (LSB first). The baud rate is fixed at 1/12 of the oscillator frequency.
- Mode 1: 10 bits are transmitted (through RxD) or received (through TxD): a start bit (0), 8 data bits (LSB first), and a stop bit (1). The baud rate is variable.
- Mode 2: 11 bits are transmitted (through RxD) or received (through TxD): a start bit (0), 8 data bits (LSB first), a programmable 9th data bit, and a stop bit (1). The baud rate is programmable to either 1/32 or 1/64 of the oscillator frequency.
- Mode 3: 11 bits are transmitted (through TxD) or received (through RxD): a start bit (0), 8 data bits (LSB first), a programmable 9th data bit, and a stop bit (1). Mode 3 is the same as mode 2 in all respects except the baud rate. The baud rate in mode 3 is variable.

The variable baud rates can be generated by timer 1 or an internal baud rate generator.

A/D Converter

The 8-bit A/D converter of the SAB 80515 has 8 multiplexed analog inputs and is using the successive approximation method. The sampling of an analog signal takes 5 machine cycles, the total conversion time is 15 machine cycles, (15 μ s at 12 MHz oscillator frequency). Conversion can be programmed to be single or continuous, at the end of a conversion an interrupt can be generated.

The internal reference voltages IVAREF and IVAGND for the A/D converter are programmable in 16 steps with respect to the external reference voltages. This feature permits a second conversion with changed internal reference voltages to gain a higher resolution. In addition, the internal reference voltages can easily be adapted by software to the desired analog voltage range.

Figure 4 shows a block diagram of the A/D converter of the SAB 80515.

SAB 80515/80535

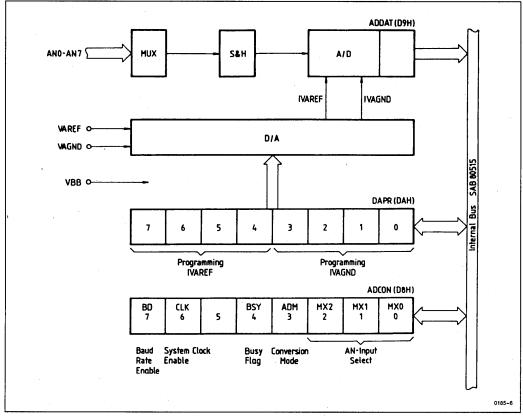
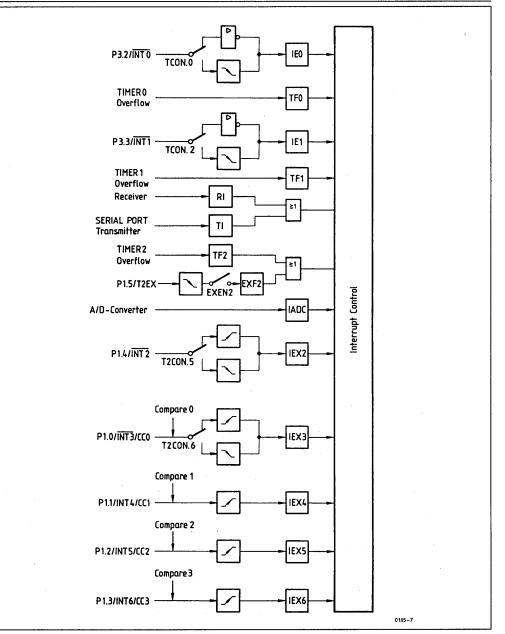
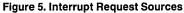


Figure 4. A/D Converter Block Diagram

Interrupt Structure

The 12 interrupt sources of the SAB 80515 are organized in 6 pairs:


External interrupt 0	A/D converter interrupt	
Timer 0 interrupt	External interrupt 2	
External interrupt 1	External interrupt 3	
Timer 1 interrupt	External interrupt 4	
Serial port interrupt	External interrupt 5	
Timer 2 interrupt	External interrupt 6	


Each interrupt source has its own vector address. It can be programmed to one of four priority levels and can individually be enabled/disabled. The minimum interrupt response time is 3 to 8 machine cycles.

External interrupts 0 and 1 can be activated by a low-level or a negative transition (selectable) at their corresponding input pin, external interrupts 2 and 3 can be programmed to be activated by a negative or a positive transition. The external interrupts 4 to 6 are activated by a positive transition. The interrupts 3 to 6 can be combined with the corresponding alternate functions compare (output) and capture (input) on port 1. For programming the priority levels, the interrupt vectors are combined in pairs. Each pair can be programmed individually to one of four priority levels by setting or clearing one bit in the special function register IPO and one in IP1.

Figure 5 shows the interrupt request sources, and Figure 6 illustrates the priority level structure of the SAB 80515.

SAB 80515/80535

SAB 80515/80535

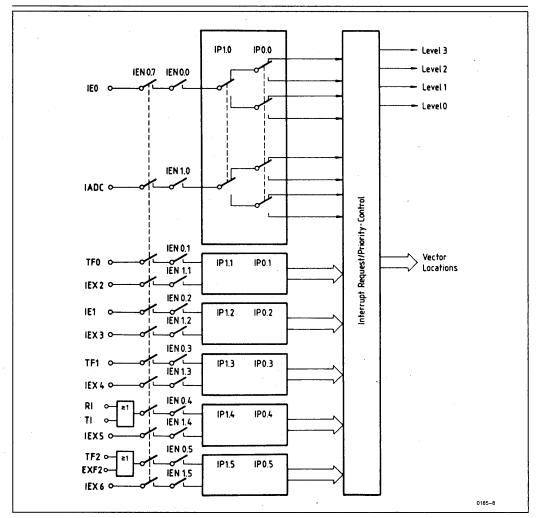


Figure 6. Priority Level Structure

Watchdog Timer

This feature is provided as a means of graceful recovery from software upset. After a reset, the watchdog timer is cleared and stopped. It can be started and cleared by software, but it cannot be stopped. If the software fails to clear the watchdog timer at least every 65532 machine cycles (about 65 ms if a 12 MHz oscillator frequency is used), a hardware reset will be initiated. The reset cause (external reset or reset caused by the watchdog) can be examined by software. To clear the watchdog, two bits in two different special function registers must be set by two consecutive instructions. This is done to prevent the watchdog from being cleared by unexpected op codes.

Absolute Maximum Ratings*

Ambient Temperature under Bias $\dots 0^{\circ}$ C to $+70^{\circ}$ C
Storage Temperature65°C to +150°C
Voltage on Any Pin with Respect to Ground (V _{SS})0.5V to +7V Power Dissipation2W

*Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics

 $\begin{array}{l} V_{CC} = \ 5V \ \pm 10\%; \ V_{SS} = \ 0V; \\ T_A = \ 0^\circ C \ to \ 70^\circ C; \ for \ SAB \ 80515/80535 \end{array}$

Parameter	Symbol	Test Conditions	Lim	Limit Values	
i arameter	Symbol	rest conditions	Min	Max	Unit
Input Low Voltage	VIL		-0.5	0.8	
Input High Voltage (except RESET and XTAL2)	VIH		2.0	V _{CC} + 0.5	
Input High Voltage to XTAL2	V _{IH1}	XTAL1 to V _{SS}	2.5		
Input High Voltage to RESET	V _{IH2}	· .	3.0		v
Power-Down Voltage	V _{PD}	$V_{CC} = 0V$	3	5.5	
Output Low Voltage, Ports 1, 2, 3, 4, 5	V _{OL}	I _{OL} = 1.6 mA		0.45	
Output Low Voltage, Port 0, ALE, PSEN	V _{OL1}	$I_{OL} = 3.2 \text{ mA}$		0.40	
Output High Voltage, Ports 1, 2, 3, 4, 5	V _{OH}	I _{OH} = −80 μA	2.4		
Output High Voltage, Port 0, ALE, PSEN	V _{OH1}	$I_{OH} = -400 \ \mu A$	2.4		
Logic 0 Input Current, Ports 1, 2, 3, 4, 5	Ι _Ι	V _{IL} = 0.45V		-800	μA
Logic 0 Input Current, XTAL2	lil2	$XTAL1 = V_{SS}$ $V_{IL} = 0.45V$		-2.5	mA
Input Low Current to RESET for Reset	I _{IL3}	$V_{IL} = 0.45$		-500	μΑ
Input Leakage Current to Port 0, EA	ILI	$0V < V_{IN} < V_{CC}$		±10	μη
Power Supply Current SAB 80515/80535 SAB 80515-16/80535-16	lcc	All Outputs Disconnected		210 TBD	mA
Power-Down Current	IPD	$V_{CC} = 0V$		3	
Capacitance of I/O Buffer	CIO	f _C = 1 MHz		10	pF

*Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

A/D Converter Characteristics

 V_{CC} = 5V $\pm 10\%; V_{SS}$ = 0V; V_{AREF} = V_{CC} $\pm 5\%; V_{AGND}$ = V_{SS} $\pm 0.2V; V_{IntAREF}$ - $V_{IntAGND}$ $\geq 1V; T_A$ = 0°C to +70°C for SAB 80515/80535

Parameter	Symbol Test Condition		Lin	Limit Values			
- T arameter	Cymbol	rest condition	Min	Тур	Max	Unit	
Analog Input Voltage	VAINPUT		V _{AGND} - 0.2		V _{AREF} + 0.2	V	
Analog Input Capacitance(1)	Cl			25		pF	
Load Time	tL				2 T _{CY}	μs	
Sample Time (incl. Load Time)	ts				5 T _{CY}	μs	
Conversion Time	tc				15 T _{CY}		
Differential Non-Linearity Integral Non-Linearity Offset Error Gain Error Total Unadjusted Error ⁽¹⁾	DNLE INLE TUE	$V_{IntAREF} = V_{AREF} = V_{CC}$ $V_{IntAGND} = V_{AGND} = V_{SS}$		$\pm \frac{1}{2}$ $\pm \frac{1}{2}$ $\pm \frac{1}{2}$ $\pm \frac{1}{2}$ $\pm \frac{1}{2}$ ± 1	±1 ±1 ±1 ±1 ±2	LSB LSB LSB LSB LSB	
V _{AREF} Supply Current ⁽²⁾	IREF				5	mA	
Internal Reference Error ⁽²⁾	VIntREFERR			±5	±15	mV	

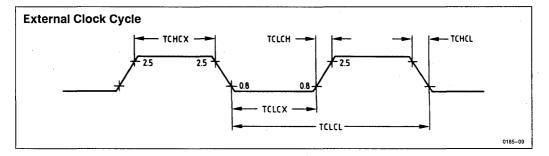
NOTES:

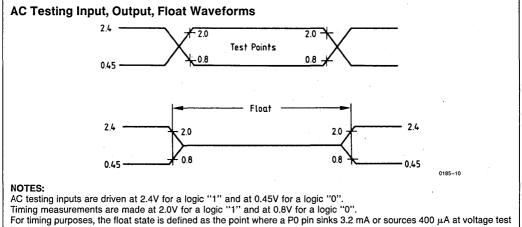
1. The internal resistance of the analog source must be low enough to assure full loading of the sample capacitance (C_i) during load time (t_L). After charging of the internal capacitance (C_i) in the load time (t_L) the analog input must be held constant for the rest of the sample time (t_S).

2. The differential impedance r_D of the analog reference voltage source must be less than 1 K Ω at reference supply voltage.

AC Characteristics for SAB 80515/80535

 $V_{CC} = 5V \pm 10\%; V_{SS} = 0V$

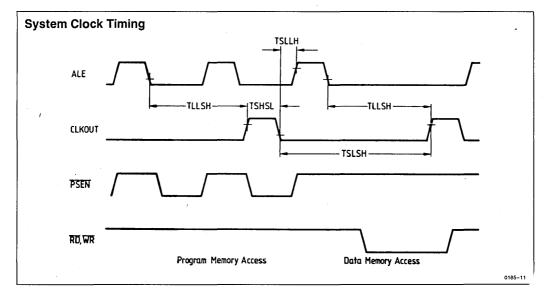

				Limit Values		Unit
Parameter	Symbol		/iHz ock		e Clock 2 MHz to 12 MHz	
		Min	Max	Min	Max	
Program Memory Characteristics	3			· · · · ·	· · · · · · · · · · · · · · · · · · ·	
Cycle Time	TCY	1000		12 TCLCL		
ALE Pulse Width	TLHLL	127		2 TCLCL - 40		
Address Setup to ALE	TAVLL	53		TCLCL - 30		
Address Hold after ALE	TLLAX1	48		TCLCL – 35]
ALE to Valid Instruction In	TLLIV		233		4 TCLCL - 100	-
ALE to PSEN	TLLPL	58		TCLCL – 25		ns
PSEN Pulse Width	TPLPH	215		3 TCLCL - 35		
PSEN to Valid Instruction In	TPLIV		150		3 TCLCL - 100	
Input Instruction Hold after PSEN	TPXIX	0		0]
Input Instruction Float after PSEN	TPXIZ*		63		TCLCL - 20	1
Address Valid after PSEN	TPXAV*	75		TCLCL - 8]
Address to Valid Instruction In	TAVIV		302		5 TCLCL - 115]
Address Float to PSEN	TAZPL	0		0		1
External Data Memory Character	istics				•	
RD Pulse Width	TRLRH	400		6 TCLCL - 100		
WR Pulse Width	TWLWH	400				
Address Hold after ALE	TLLAX2	132		2 TCLCL - 35		1
RD to Valid Data In	TRLDV		252		5 TCLCL - 165	
Data Hold after RD	TRHDX	0		0]
Data Float after RD	TRHDZ		97		2 TCLCL - 70	
ALE to Valid Data In	TLLDV		517	and the second sec	8 TCLCL - 150	
Address to Valid Data In	TAVDV		585		9 TCLCL - 165	ns
ALE to WR or RD	TLLWL	200	300	3 TCLCL - 50	3 TCLCL + 50	
Address to WR or RD	TAVWL	203		4 TCLCL - 130		1
WR or RD High to ALE High	TWHLH	43	123	TCLCL - 40	TCLCL + 40	1
Data Valid to WR Transition	TQVWX	33		TCLCL - 50		1
Data Setup before WR	TQVWH	433		7 TCLCL - 150	· ·	1
Data Hold after WR	TWHQX	33		TCLCL - 50		1
Address Float after RD	TRLAZ		0		0	1


*Interfacing the SAB 80515 to devices with float times up to 75 ns is permissible. This limited bus contention will not cause any damage to port 0 drivers.

4

External Clock Drive XTAL2

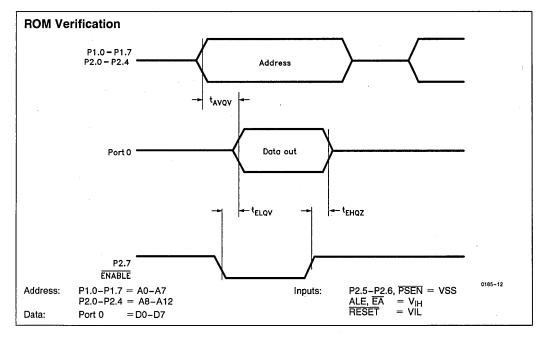
Parameter	Symbol	Limit Values Variable Clock Freq. = 1.2 MHz to 12 MHz		Unit
		Min	Мах	
External Clock Driv	e XTAL2		· · · · · · · · · · · · · · · · · · ·	
Oscillator Period	TCLCL	83.3	833.3	
High Time	TCHCX	20	TCLCL - TCLCX	
Low Time	TCLCX	20	TCLCL - TCHCX	ns
Rise Time	TCLCH		20	
Fall Time	TCHCL		20	



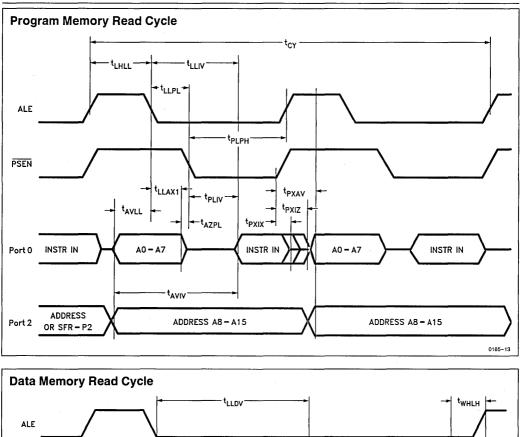
levels.

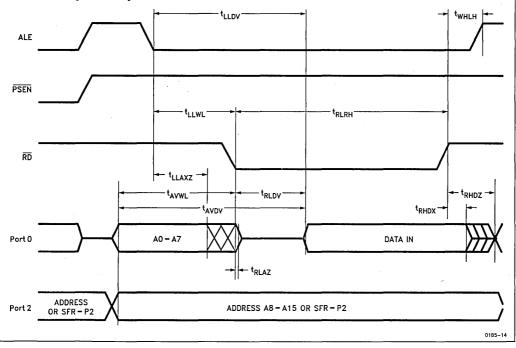
System Clock Timing

				Limit Values				
Parameter	Symbol	12 MHz Clock				Variable 1/TCLCL = 1.2		Unit
		Min	Max	Min	Max]		
ALE to CLKOUT	TLLSH	543		7 TCLCL 40				
CLKOUT High Time	TSHSL	127		2 TCLCL - 40		ns		
CLKOUT Low Time	TSLSH	793		10 TCLCL - 40] '''		
CLKOUT Low to ALE High	TSLLH	43	123	TCLCL - 40	TCLCL + 40			



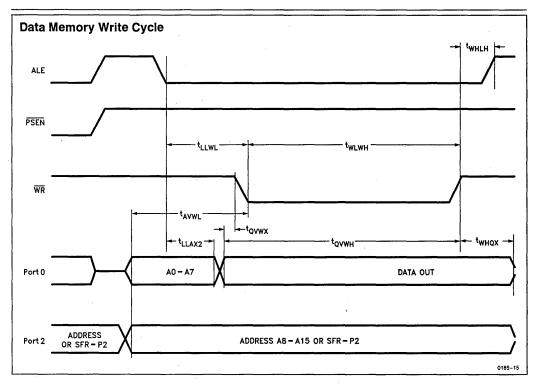
4

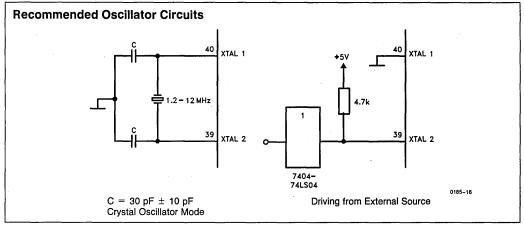

ROM Verification Characteristics


 $TA = 25^{\circ}C \pm {}^{\circ}C; VCC = 5V \pm 10\%; VSS = 0V$

Parameter	Symbol L		nit Values	Unit
i arameter	Gymbol	Min	Max	onic
Address to Valid Data	TAVQV			
ENABLE to Valid Data	TELQV		48 TCLCL	ns
Data Float after ENABLE	TEHQZ	0		
Oscillator Frequency	1/TCLCL	4	6	MHz

SAB 80515/80535





4-69

Δ

SAB 80515/80535

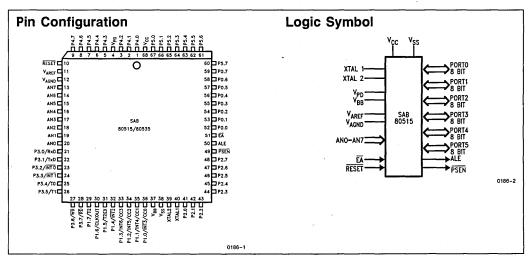
Ordering Information

Туре	Description
SAB 80515-N	8-Bit Single-Chip Microcontroller
	with Mask-Programmable ROM (PLCC 68)
SAB 80535-N	for External Memory (PLCC 68)

SAB 80515/80535 Ext. Temp. 8-Bit Single-Chip Microcontroller

Extended Temperature Ranges: T40/85 -40°C

-40°C to +85°C 12 MHz operation -40°C to +110°C 10 MHz operation


Microcontroller with factory-mask programmable ROM

T40/110 SAB 80515-N-T40/85 SAB 80515-N-T40/110 SAB 80535-N-T40/85 SAB 80535-N-T40/110

Microcontroller for external ROM

- Version of the SAB 80515/80535 for Two Extended Temperature Ranges
- $8k \times 8$ ROM (SAB 80515 only)
- \bullet 256 imes 8 RAM
- Six 8-Bit I/O Ports, One 8-Bit Input Port for Analog Signals
- Three 16-Bit Timer/Event Counters
- Highly Flexible Reload, Capture, Compare Capabilities
- Full-Duplex Serial Channel
- Twelve Interrupt Vectors, Four Priority Levels
- V_{PD} Provides Standby Current for 40 bytes of RAM

- 8-Bit A/D Converter with Eight Multiplexed Inputs and Programmable Internal Reference Voltages
- 16-Bit Watchdog Timer
- Boolean Processor
- 256 Bit-Addressable Locations
- Most Instructions Execute in 1 µs
- 4 µs Multiply and Divide
- External Memory Expandable up to 128 Kbytes
- Backwardly Compatible with SAB 8051A
- 68-Pin Plastic Leaded Chip Carrier Package (PLCC 68)

The SAB 80515/80535 Ext. Temp. is a powerful member of the Siemens SAB 8051 family of 8-bit microcontrollers. The SAB 80515/80535 Ext. Temp. is available for the industrial temperature range $(-40^{\circ}C \text{ to } + 85^{\circ}C)$ and the automotive temperature range (-40°C to +110°C). It is fully compatible with the standard SAB 80515/80535 with respect to architecture, instruction set and software portability. The SAB 80515/80535 Ext. Temp. is a stand-alone, high-performance single-chip microcontroller designed in +5V N-channel, silicon-gate Siemens

Absolute Maximum Ratings*

Ambient Temperature under Bias for SAB 80515/80535-
T40/8540°C to +85°C for SAB 80515/80535-
T40/11040°C to +110°C
Storage Temperature65°C to +150°C
Voltage on any Pin with Respect to Ground (V _{SS}) $\dots -0.5V$ to $+7V$
Power Dissipation2W

MYMOS technology. While maintaining all the SAB characteristics, 8051 operating the SAB 80515/80535 Ext. Temp. incorporates several enhancements which significantly increase design flexibility and overall system performance.

The SAB 80535 is identical with the SAB 80515 except that it lacks the on-chip program memory. The SAB 80515/80535 Ext. Temp. is supplied in a 68-pin plastic leaded chip carrier package (PLCC 68).

*Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics

 $\begin{array}{l} V_{CC}=5V\,\pm\,10\%;\, V_{SS}=0V;\, T_{A}=\,-40\ to\,+\,85^{\circ}C\ for\ SAB\ 80515/80535\text{-}T40/85;\\ T_{A}=\,-40^{\circ}C\ to\ +\,110^{\circ}C\ for\ SAB\ 80515/80535\text{-}T40/110 \end{array}$

Parameter	Symbol	Test Conditions	Lim	it Values	Unit
T arameter	Jymbor	Test conditions	Min	Max	
Input Low Voltage	VIL		-0.5	0.8	V
Input High Voltage (except RESET and XTAL2)	VIH		2.0	V _{CC} + 0.5	v
Input High Voltage to XTAL2	V _{IH1}	XTAL1 to V _{SS}	2.5	$V_{CC} + 0.5$	
Input High Voltage to RESET	V _{IH2}	an An an an an	3.0		V
Power-Down Voltage	V _{PD}	$V_{CC} = 0V$	3	5.5	V
Output Low Voltage, Ports 1, 2, 3, 4, 5	VOL	$I_{OL} = 1.6 \text{ mA}$		0.45	V
Output Low Voltage, Ports 0, ALE, PSEN	V _{OL1}	$I_{OL} = 3.2 \text{ mA}$		0.45	V
Output High Voltage, Ports 1, 2, 3, 4, 5	V _{OH}	$I_{OH} = -80 \ \mu A$	2.4		V
Output High Voltage, Port 0, ALE, PSEN	V _{OH1}	$I_{OH} = -400 \ \mu A$	2.4		V
Logic 0 Input Current, Ports 1, 2, 3, 4, 5	۱ _{۱۲}	$V_{IL} = 0.45V$		-800	μA
Logic 0 Input Current, XTAL2	I _{IL2}	$XTAL1 = V_{SS}$ $V_{IL} = 0.45V$		-2.5	mA
Input Low Current to RESET for Reset	I _{IL3}	$V_{IL} = 0.45V$	-	- 500	μΑ
Input Leakage Current to Port 0, EA	l _{LI}	$0V < V_{IN} < V_{CC}$		±10	μΑ
Power Supply Current SAB 80515/80535-T40/85 SAB 80515/80535-T40/110	lcc	All Outputs Disconnected		230 230	mA
Power-Down Current	I _{PD}	$V_{\rm CC} = 0V$		3	mA
Capacitance of I/O Buffer	C _{IO}	f _c = 1 MHz		10	pF

© Siemens Components, Inc.

A/D Converter Characteristics: Refer to the SAB 80515/80535 Datasheet

AC Characteristics for T40/85: Refer to the SAB 80515/80535 Datasheet

AC Characteristics for T40/100

 $V_{CC} = 5V \pm 10\%$; $V_{SS} = 0V$; $T_A = -40^{\circ}C$ to $+110^{\circ}C$ for SAB 80515/80535-T40/110; (C_L for port 0, ALE and PSEN outputs = 100 pF; C_L for all other outputs = 80 pF)

				Limit Values		Unit
Parameter	Symbol	10 MHz	Clock		e Clock MHz to 10 MHz	
		Min	Max	Min	Max	
Program Memory Characteristic	S					
ALE Pulse Width	tLHLL	160		2 t _{CLCL} - 40		ns
Address Setup to ALE	t _{AVLL}	70		t _{CLCL} - 30		ns
Address Hold after ALE	tLLAX1	65		t _{CLCL} – 35		ns
ALE to Valid Instruction In	t _{LLIV}		300		4 t _{CLCL} - 100	ns
ALE to PSEN	t _{LLPL}	75		t _{CLCL} – 25		ns
PSEN Pulse Width	t _{PLPH}	265		3 t _{CLCL} – 35		ns
PSEN to Valid Instruction In	t _{PLIV}		200		3 t _{CLCL} - 100	ns
Input Instruction Hold after PSEN	t _{PXIX}	0		0		ns
Input Instruction Float after PSEN	t _{PXIZ*}		80		t _{CLCL} – 20	ns
Address Valid after PSEN	t _{PXAV} *	92		t _{CLCL} – 8		ns
Address to Valid Instruction In	t _{AVIV}		385		5 t _{CLCL} - 115	ns
Address Float to PSEN	t _{AZPL}	0		0		ns
External Data Memory Character	ristics					
RD Pulse Width	t _{RLRH}	500		6 t _{CLCL} - 100		ns
RD Pulse Width	t _{WLWH}	500		6 t _{CLCL} - 100		ns
Address Hold after ALE	t _{LLAX2}	165		2 t _{CLCL} - 35		ns
RD to Valid Data In	t _{RLDV}		335		5 t _{CLCL} - 165	ns
Data Hold after RD	t _{RHDX}	0		. 0		ns
Data Float after RD	t _{RHDZ}		130		2 t _{CLCL} - 70	ns
ALE to Valid Data In	t _{LLDV}		650		8 t _{CLCL} - 150	ns
Address to Valid Data In	t _{AVDV}		735		9 t _{CLCL} 165	ns
ALE to WR or RD	t _{LLWL}	250	350	3 t _{CLCL} 50	3 t _{CLCL} + 50	ns
Address to WR or RD	t _{AVWL}	270		4 t _{CLCL} - 130		ns
WR or RD High to ALE High	twhlh	60	140	t _{CLCL} - 40	t _{CLCL} + 40	ns
Data Valid to WR Transition	t _{DVWX}	50		t _{CLCL} – 50		ns
Data Setup before WR	t _{QVWH}	550		7 t _{CLCL} - 150		ns
Data Hold after WR	twhox	50		t _{CLCL} - 50		ns
Address Float after RD	t _{RLAZ}		0		0	ns

 Interfacing the SAB 80515 to devices with float times up to 92 ns is permissible. This limited bus contention will not cause any damage to port 0 drivers.

External Clock Drive XTAL2

		Lim	it Values	
Parameter	Symbol	Varia Freq. = 1.2 MH Freq. = 1.2 MHz	Unit	
		Min	Max	
Oscillator Period T40/85 T40/110	t _{CLCL}	83.3 100	833.3 833.3	ns
High Time	t _{CHCX}	20	tCLCL-tCLCX	ns
Low Time	tCLCX	20	tCLCLC-tCHCX	ns
Rise Time	t _{CLCH}		20	ns
Fall Time	tCHCL		20	ns

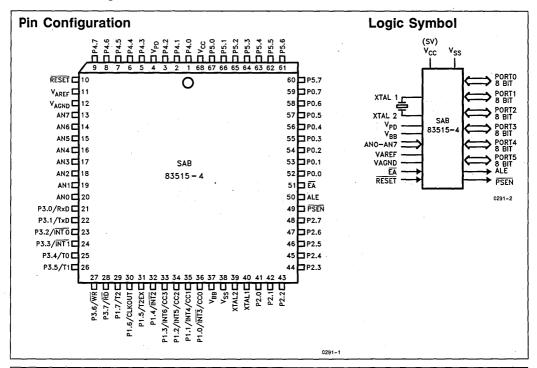
System Clock Timing T40/110

, · ·						
Parameter	Symbol		MHz ock	Variable 1/t _{CLCL} = 1.2 M		Unit
· .		Min	Max	Min	Мах	
ALE to CLKOUT	t _{LLSH}	660		7 t _{CLCL} - 40		ns
CLKOUT High Time	tSHSL	160		2 t _{CLCL} - 40		ns
CLKOUT Low Time	t _{SLSH}	960		10 t _{CLCL} - 40		ns
CLKOUT Low to ALE High	t _{SLLH}	60	140	t _{CLCL} 40	t _{CLCL} + 40	ns

Waveforms: Refer to SAB 80515/80535 Data Sheet for the Waveforms

Ordering Information

Туре	Description
	8-Bit Single Chip Microcomputer
SAB 80515-N-T40/85	with Mask-Programmable ROM (Plastic)
SAB 80535-N-T40/85	for External Memory (Plastic)
SAB 80515-N-T40/110	with Mask-Programmable ROM (Plastic)
SAB 80535-N-T40/110	for External Memory (Plastic)


SAB 83515-4 8-Bit Single-Chip Microcontroller

SAB 83515-4

5-4 Microcontroller with Factory-Mask Programmable ROM, 12 MHz Operation

- 16K x 8 ROM
- 256 x 8 RAM
- Six 8-bit ports, 48 I/O Lines
- Three 16-bit Timer/Event Counters
- PTRA with Highly Flexible Reload, Capture, Compare Capabilities
- High-Performance Full-Duplex Serial Channel
- Twelve Interrupt Vectors, Four Priority Levels
- 8-bit A/D Converter with 8 Multiplexed Analog Inputs and Programmable Internal Reference Voltages

- 16-bit Watchdog Timer
- V_{PD} Provides Standby Current for 40 Bytes of RAM
- Boolean Processor
- 256 Bit-Addressable Locations
- Most Instructions Execute in 1 μs
- 4 µs Multiply and Divide
- External Memory Expandable to 128 Kbyte
- Backward-Compatible with SAB 8051A
- 68-Pin Plastic Leaded Chip Carrier Package (PLCC 68)

© Siemens Components, Inc.

The SAB 83515-4 is a new member of the Siemens SAB 8051 family of 8-bit microcontrollers. It is fabricated in +5V advanced N-channel, silicon-gate Siemens MYMOS technology and supplied in a 68-pin PLCC package. The SAB 83515-4 is a stand-alone, high-performance single-chip microcontroller based on the SAB 8051 architecture. While maintaining all the SAB 80515 operating characteristics, the SAB 83515-4 has 16 KBytes of ROM on-chip. This feature makes 83515-4 a cost effective microcontroller for applications of the 80515 which require 16K ROM space.

Absolute Maximum Ratings*

Ambient Temperature under Bias $...0^{\circ}C$ to $+70^{\circ}C$ Storage Temperature $-65^{\circ}C$ to $+150^{\circ}C$ Voltage on Any Pin with
Respect to Ground (VSS)-0.5V to +7VPower Dissipation2W

*Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics

 $V_{CC} = 5V \pm 10\%$; $V_{SS} = 0V$; $T_A = 0^{\circ}C$ to 70°C; for SAB 83515-4

Parameter	Symbol	Test Conditions	Lim	Unit	
	Gymbol	Test conunions	Min	Max	Unit
Input Low Voltage	VIL		-0.5	0.8	
Input High Voltage (except RESET and XTAL2)	V _{IH}		2.0	V _{CC} + 0.5	
Input High Voltage to XTAL2	V _{IH1}	XTAL1 to V _{SS}	2.5		
Input High Voltage to RESET	V _{IH2}		3.0		v
Power-Down Voltage	V _{PD}	$V_{CC} = 0V$	3	5.5	
Output Low Voltage, Ports 1, 2, 3, 4, 5	V _{OL}	i _{OL} = 1.6 mA		0.45	
Output Low Voltage, Port 0, ALE, PSEN	V _{OL1}	$I_{OL} = 3.2 \text{ mA}$		0.40	
Output High Voltage, Ports 1, 2, 3, 4, 5	V _{OH}	I _{OH} = −80 μA	2.4		
Output High Voltage, Port 0, ALE, PSEN	V _{OH1}	$I_{OH} = -400 \ \mu A$	<u> </u>		
Logic 0 Input Current, Ports 1, 2, 3, 4, 5	lι	$V_{IL} = 0.45V$		-800	μΑ
Logic 0 Input Current, XTAL2	l _{iL2}	$\begin{array}{l} \text{XTAL1} = \text{V}_{\text{SS}} \\ \text{V}_{\text{IL}} = 0.45 \text{V} \end{array}$		-2.5	mA
Input Low Current to RESET for Reset	I _{IL3}	$V_{1L} = 0.45$		-500	μA
Input Leakage Current to Port 0, EA	1 _{LI}	$0V < V_{IN} < V_{CC}$		±10	μπ
Power Supply Current	Icc	All Outputs Disconnected		TBD	mA
Power-Down Current	I _{PD}	$V_{CC} = 0V$		3	
Capacitance of I/O Buffer	C _{IO}	f _C = 1 MHz		10	pF

*Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

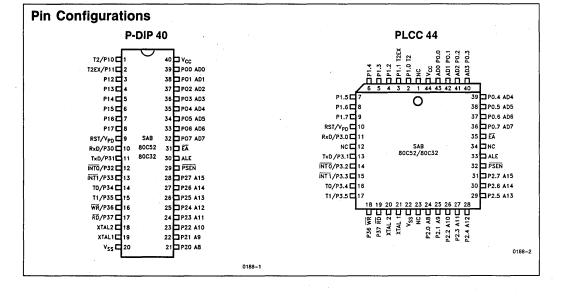
4

AC Characteristics

The AC characteristics and waveform timings of the SAB 83515-4 are the same as that of the SAB 80515.

Ordering Information

Туре	Description
SAB 83515-4N	8-Bit Single-Chip Microcontroller
	with Mask-Programmable ROM (PLCC 68)


Advance Information SAB 80C52/80C32, 80C52-16/80C32-16 SAB 80C52/80C32, 80C52-16/80C32-16 Ext. Temp. 8-Bit CMOS Microcontroller

SAB 80C52(16)-P(N) CMOS microcontroller with factory-mask programmable ROM SAB 80C32(16)-P(N) CMOS microcontroller for external ROM

SAB 80C52/80C32-T40/85(-16) Extended temperature range -40°C to +85°C SAB 80C52/80C32-T40/110 Extended temperature range -40°C to +110°C

- SAB 80C52/80C32 (-T40/85, -T40/110) for 12 MHz operation
- SAB 80C52-16/80C32-16 (-T40/85) for 16 MHz operation
- 8K × 8 ROM (SAB 80C52 only)
- 256 × 8 RAM
- Four 8-Bit Ports, 32 I/O Lines
- Three 16-Bit Timer/Event Counters
- High-Performance Full-Duplex Serial Channel with Flexible Transmit/Receive **Baud Rate Capability**

- External Memory Expandable up to 128 Kbytes
- Boolean Processor
- Most Instructions Execute in 1 μs (750 ns)
- Multiply and Divide in 4 μs (3 μs)
- Six Interrupt Sources, Two Priority Levels
- Idle and Power-Down Operation
- P-DIP 40 and PLCC 44 Packages
- Full Backward Compatibility with SAB 80C51/80C31

The SAB 80C52/80C32 is a stand-alone, high-performance CMOS single-chip microcontroller, designed in Siemens ACMOS technology. It is functionally compatible with the SAB 8052A/8032A devices in MYMOS technology. The SAB 80C52/ 80C32 with the suffix "-16" operates up to 16 MHz crystal oscillator frequency. The part without the suffix operates up to a maximum frequency of 12 MHz. For the industrial temperature range -40° C to $+85^{\circ}$ C, the SAB 80C52/80C32-T40/85 (-16) and for the automotive temperature range -40° C to $+110^{\circ}$ C, the SAB 80C52/80C32-T40/110 are also available.

Furthermore, it is backwardly compatible with the SAB 80C51/80C31. The low-power properties of

ACMOS technology allow applications where power consumption and dissipation are critical. In addition, the SAB 80C52/80C32 has two software-selectable modes of reduced activity for further power reduction—idle and power-down.

The SAB 80C52 contains a non-volatile $8K \times 8$ read-only program memory, a volatile 256×8 read/ write data memory, 32 I/O lines, three 16-bit timer/ counters, a six-source, two-priority-level interrupt structure, a serial I/O port, an on-chip oscillator, and clock circuits. The SAB 80C32 is identical, except that it lacks the program memory on the chip.

The SAB 80C52/80C32 is supplied in a 40-pin P-DIP package, or a 44-pin plastic lead chip carrier (PLCC 44) package.

Р	in	Symbol	Input(I)	Functions
P-DIP40	PLCC44	Gymbol	Output (O)	
1–8	2-9	P1.0-P1.7	1/0	Port 1 is an 8-bit bidirectional I/O port with internal pullup resistors. Port 1 pins that have 1s written to them are pulled high by the internal pullup resistors, and in that state can be used as inputs. As inputs, port 1 pins being externally pulled low will source current (I_{IL} , on the DC characteristics) because of the internal pullup resistors. Port 1 also receives the low-order address bytes during program verification. Port 1 also contains the timer 2 pins as a secondary function. The output latch corresponding to a secondary function must be programmed to a one (1) for that function to operate. The secondary functions are assigned to the pins of port 1, as follows: —T2 (P1.0). Input to counter 2. —T2 EX (P1.10. Capture/Reload trigger of timer 2.
9	10	RST	1	A high level on this pin for two machine cycles while the oscillator is running resets the device. An internal diffused resistor to V_{SS} permits power-on reset using only an external capacitor to V_{CC} .

Pin Definitions and Functions

P	in	Symbol Input(I)		Functions
P-DIP40	PLCC44	Symbol	Output (O)	Functions
10-17	11, 13–19	P3.0-P3.7	1/0	Port 3 is an 8-bit bidirectional I/O port with internal pullup resistors. Port 3 pins that have 1s written to them are pulled high by the internal pullup resistors, and in that state can be used as inputs. As inputs, port 3 pins being externally pulled low will source current (I _{IL} , on the DC characteristics) because of the internal pullup resistors. Port 3 also contains the interrupt, timer, serial port and RD and WR pins that are used by various options. The output latch corresponding to a secondary function must be programmed to a one (1) for that function to operate. The secondary functions are assigned to the pins of port 3, as follows: RxD/data (P3.0). Serial port's receiver data input (asynchronous) or data input/output (synchronous). TxD/clock (P3.1). Serial port's transmitter data output (asynchronous) or clock output (synchronous). INTO (P3.2). Interrupt 0 input or gate control input for counter 0. INT1 (P3.3). Interrupt 1 input or gate control input for counter 1. T0 (P3.4). Input to counter 0. T1 (P3.5). Input to counter 1. WR (P3.6). The write control signal latches the data byte from port 0 into the external data memory. RD (P3.7). The read control signal enables external data memory to port 0.
19 18	21 20	XTAL1 XTAL2		XTAL 1 Input to the inverting oscillator amplifier and input to the internal clock generator circuits. XTAL 2 Output of the inverting oscillator amplifier. To drive the device from an external clock source, XTAL 1 should be driven, while XTAL 2 is left unconnected. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop. Minimum and maximum high and low times specified in the AC characteristics must be observed.

Pin Definitions and Functions (Continued)

Pin Definitions and Functions (Continued)

Pi	in	Symbol	Input (I)		
P-DIP40	PLCC44	Symbol	Output (O)	Functions	
21–28	24-31	P.20-P2.7	I/O	Port 2 is an 8-bit bidirectional I/O port with internal pullup resistors. Port 2 pins that have 1s written to them are pulled high by the internal pullup resistors, and in that state can be used as inputs. As inputs, port 2 pins being externally pulled low will source current (I_{IL} , on the DC characteristics) because of the internal pullup resist. Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @ DPTR). In this application it uses strong internal pullup resistors when issuing 1s. During accesses to external data memory that use 8-bit addresses (MOVX @ Ri), port 2 issues the contents of the P2 special function register.	
29	32	PSEN	0	PROGRAM STORE ENABLE This output issues a control signal that enables the external program memory to access the bus during external fetch operations. It is activated every six oscillator periods, except during external data memory accesses. Remains high during internal program execution.	
30	33	ALE	O	ADDRESS LATCH ENABLE Provides signal used for latching the address into external memory during normal operation. It is activated every six oscillator periods except during an external data memory access.	
31	35	EA	1	EXTERNAL ACCESS When held at a high level, the SAB 80C52 executes instructions from the internal ROM when the PC is less than 8192. When held at a low level, the SAB 80C52 fetches all instructions from the external program memory. For the SAB 80C32 this pin must be tied low.	
39-32	43-36	P0.0-P0.7	I/O	Port 0 is an 8-bit open drain bidirectional I/O port. Port 0 pins that have 1s written to them float, and in that state can be used as high-impedance inputs. Port 0 is also the multiplexed low-order address and data bus during accesses to external program and data memory. In this application it uses strong internal pullup resistors when issuing 1s. Port 0 also outputs the code bytes during program verification in the SAB 80C52. External pullup resistors are required during program verification.	
40	44	V _{CC}		Supply voltage during normal, idle, and power-down operations.	
20	22	V _{SS}		Circuit ground potential.	
	1, 12 23, 24	NC		No connection	

Functional Description

The SAB 80C52/80C32 is functionally compatible with the SAB 8052B/8032B products that are designed in Siemens MYMOS technology. Furthermore, the SAB 80C52/80C32 is backwardly compatible with the SAB 80C51/80C31 devices.

In addition, instead of the RAM backup power supply of the SAB 8052B/8032B, the SAB 80C52/80C32 offers two additional power control modes, the idle mode and the power-down mode. The control bits for the reduced power modes are in the special function register PCON.

--- Idle Mode

In the idle mode, the CPU puts itself to sleep while all the on-chip peripherals stay active. The instruction that invokes the idle mode is the last instruction executed in the normal operating mode before the idle mode is activated. The contents of the CPU, the on-chip RAM, and all the special function registers remain intact during this mode. The idle mode can be terminated either by any enabled interrupt, at which time the process is picked up at the interrupt service routine and continued, or by a hardware reset which starts the processor in the same way as a power-on reset.

- Power-Down Mode

In the power-down mode the oscillator is stopped, and the instruction that invokes powerdown is the last instruction executed. Only the contents of the on-chip RAM is preserved. A hardware reset is the only way to terminate power-down.

During power-down and idle mode the external pins will have the following status (See Table 1):

Mode	Program Memory	ALE	PSEN	Port 0	Port 1	Port 2	Port 3
Idle	Internal	1	1	Data	Data/ Alternate Outputs	Data	Data/ Alternato Outputs
Idle	External	1	1	Float	Data/ Alternate Outputs	Address	Data/ Alternate Outputs
Power-Down	Internal	0	0	Data	Data/Last Output of Alternate Function	Data	Data/Last Output of Alternate Function
Power-Down	External	0	0	Float	Data/Last Output of Alternate Function	Data	Data/Last Output of Alternate Function

Table 1. Status of the External Pins during Idle and Power-Down Modes

4.

Absolute Maximum Ratings*

Ambient Temperature under Bias
SAB 80C520°C to +70°C
SAB 80C52-T40/8540°C to +85°C
SAB 80C52-T40/11040°C to +110°C
Storage Temperature65°C to +150°C
Voltage on Any Pin with
Respect to Ground (V _{SS}) – 0.5V to V _{CC} $+$ 0.5V
Voltage on V_{CC} to V_{SS} 0.5V to 6.5V
Power Dissipation1W

*Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. Characteristics

 $\begin{array}{l} V_{CC} = 5V \pm 10\%; \ V_{SS} = 0V; \\ T_A = 0^\circ C \ to \ +70^\circ C \ (SAB \ 80C52/80C32); \\ T_A = \ -40^\circ C \ to \ +85^\circ C \ (SAB \ 80C52/80C32\text{-}T40/85 \ (\text{-16})); \\ T_A = \ -40^\circ C \ to \ +110^\circ C \ (SAB \ 80C52/80C32\text{-}T40/110) \end{array}$

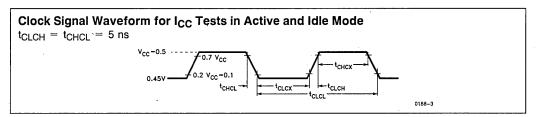
Devementer	Cumbal	Toot Condition	Limit	Values	11-14
Parameter	Symbol	Test Condition	Min	Max	Unit
Input Low Voltage (Except EA)	VIL		-0.5	0.2 V _{CC} — 0.1	V
input Low Voltage (EA)	V _{IL1}		-0.5	0.2 V _{CC} - 0.3	V
Input High Voltage (Except XTAL1, RST)	VIH		0.2 V _{CC} + 0.9	V _{CC} + 0.5	v
Input High Voltage (XTAL1, RST)	V _{IH1}		0.7 V _{CC}	V _{CC} + 0.5	v
Output Low Voltage (Ports 1, 2, 3)	V _{OL}	$I_{OL} = 1.6 \text{ mA} (1)$		0.45	v
Output Low Voltage (Port 0, ALE, PSEN)	V _{OL1}	$I_{OL} = 3.2 \text{ mA} (1)$		0.45	v
Output High Voltage	V _{OH}	$I_{OH} = -80 \ \mu A,$ $V_{CC} = 5V \pm 10\%$	2.4		v
(Ports 1, 2, 3)		l _{OH} = −25 μA	0.75 V _{CC}		V
		I _{OH} = -10 μA	0.9 V _{CC}		V
Output High Voltage	V _{OH1}	I _{OH} = −800 μA, V _{CC} = 5V ±10%	2.4		v
(Port 0 in External Bus Mode, ALE, PSEN)		I _{OH} = −150 μA	0.75 V _{CC}		V
Node, ALL, FOEN)		$I_{OH} = -80 \ \mu A$ (2)	0.9 V _{CC}		V
Logical 0 Input Current (Ports 1, 2, 3)	t _{IL}	V _{IN} = 0.45V		-50	μA
Logical 1-to-0 Transition Current (Ports 1, 2, 3)	ITL	$V_{IN} = 2V$		-650	μΑ
Input Leakage Current (Port 0, EA)	ILI	0.45V < V _{IN} < V _{CC}		±10	μΑ

Parameter	Cumhal	Test Condition	Limit	11		
Parameter	Symbol	Test Condition	Min	Max	Unit	
Reset Pulldown Resistor	R _{RST}		40	150	kΩ	
Pin Capacitance	C _{IO}	$f_{\rm C} = 1$ MHz, $T_{\rm A} = 25^{\circ}{\rm C}$		10	pF	
Power Supply Current: Active Mode, 12 MHz ⁽⁶⁾ Idle Mode, 12 MHz ⁽⁶⁾ Power Down Mode	I _{CC} I _{CC} I _{PD}	$V_{CC} = 5V (4)$ $V_{CC} = 5V (5)$ $V_{CC} = 2.0V - 5V (3)$	20 6.8 50		mA mA μA	

D.C. Characteristics (Continued)

NOTES:

1. Capacitive loading on ports 0 and 2 may cause spurious noise pulses to be superimposed on the VOL of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the port 0 and port 2 pins when these pins make 1-to-0 transitions during bus operation. In the worst case (capacitive load > 100 pF), the noise pulse on ALE line may exceed 0.8V. In such cases it may be desirable to qualify ALE with a Schmitt-trigger, or use an address latch with a Schmitt-trigger strobe input.


2. Capacitive loading on ports 0 and 2 may cause the VOH on ALE and PSEN to momentarily fall below the 0.9 VCC specification when the address bits are stabilizing.

3. Power-down I_{CC} is measured with: EA = Port 0 = V_{CC}; XTAL1 = V_{SS}; XTAL2 = N.C.; RESET = V_{SS}; all other pins are disconnected.

4. I_{CC} (active mode) is measured with: XTAL1 driven with clock signal according to the figure below; XTAL2 = N.C.; \overline{EA} = Port 0 = V_{CC}; RESET = V_{CC}; all other pins are disconnected. I_{CC} might be slightly higher if a crystal oscillator is used.

5. I_{CC} (idle mode) is measured with: XTAL1 driven with clock signal according to the figure below; XTAL2 = N.C.; EA = V_{SS}; Port $0 = V_{CC}$; RESET = V_{SS} ; all other pins are disconnected.

6. $I_{CC Max}$ at other frequencies is given by: Active Mode: $I_{CC Max} = 1.5 \text{ * fosc} + 2.0$ Idle Mode: $I_{CC Max} = 0.4 \text{ * fosc} + 2.0$ where fosc is the oscillator frequency in MHz. I_{CC} values are given in mA and measured at $V_{CC} = 5V$ (see also notes 4 and 5).

A.C. Characteristics

 $V_{CC} = 5V \pm 10\%; V_{SS} = 0V,$ $T_A = 0^{\circ}C$ to 70°C (SAB 80C52); $T_A = -40$ to +85°C (SAB 80C52-T40/85); $V_{CC} = 5V \pm 10\%$ $T_A = -40^{\circ}C$ to +110°C (SAB 80C52-T40/110) (C. for Part 0. ALE and <u>DSEN</u> Outputs = 100 pEr C. for All Other Outputs

(C_L for Port 0, ALE and $\overline{\text{PSEN}}$ Outputs = 100 pF; C_L for All Other Outputs = 80 pF)

Program Memory Characteristics

			r	Unit		
Parameter	Symbol	12 MHz Clock			Variabl 1/t _{CLCL} = 0.5	
		Min	Max	Min	Max	
ALE Pulse Width	t _{LHLL}	127		2 t _{CLCL} - 40		ns
Address Setup to ALE	tAVLL	53		t _{CLCL} – 30		ns
Address Hold after ALE	t _{LLAX}	48		t _{CLCL} – 35		ns
ALE to Valid Instruction in	tLLIV		233		4 t _{CLCL} - 100	ns
ALE to PSEN	t _{LLPL}	58		t _{CLCL} 25		ns
PSEN Pulse Width	t _{PLPH}	215		3 t _{CLCL} – 35		ns
PSEN to Valid Instruction in	t _{PLIV}		150		3 t _{CLCL} - 100	ns
Input Instruction Hold after PSEN	t _{PXIX}	0		0		ns
Input Instruction Float after PSEN	t _{PXIZ} (1)		63		t _{CLCL} - 20	ns
Address Valid after PSEN	t _{PXAV} (1)	75		t _{CLCL} – 8		ns
Address to Valid Instruction in	t _{AVIV} (1)		302		5 t _{CLCL} - 115	ns
Address Float to PSEN	t _{PLAZ}		0		10	ns

NOTE:

1. Interfacing the SAB 80C52 to devices with float times up to 75 ns is permissable. This limited bus contention will not cause any damage to Port 0 drivers.

External Data Memory Characteristics

		Limit Values				
Parameter	Symbol	12 MHz Clock		Variable Clock 1/t _{CLCL} = 0.5 MHz to 12 MHz		Unit
		Min	Max	Min	Max	
RD Pulse Width	t _{RLRH}	400		6 t _{CLCL} - 100		ns
WR Pulse Width	tw∟wн	400		6 t _{CLCL} - 100		ns
Address Hold after ALE	t _{LLAX2}	132		2t _{CLCL} - 35		ns
RD to Valid Data In	t _{RLDV}		252		5 t _{CLCL} — 165	ns
Data Hold after RD	t _{RHDX}	0		0		ns
Data Float after RD	t _{RHDZ}		97		2 t _{CLCL} — 70	ns
ALE to Valid Data In	t _{LLDV}		517		8 t _{CLCL} - 150	ns
Address to Valid Data In	tAVDV		585		9 t _{CLCL} - 165	ns
ALE to WR or RD	tLLWL	200	300	3 t _{CLCL} - 50	3 t _{CLCL} + 50	ns
Address to WR or RD	tAVWL	203		4 t _{CLCL} - 130		ns
WR or RD High to ALE High	twhlh	43	123	t _{CLCL} – 40	$t_{CLCL} + 40$	ns
Data Valid to WR Transition	t _{QVWX}	33		t _{CLCL} - 60		ns
Data Setup before WR	t _{QVWH}	433		7 t _{CLCL} - 150		ns
Data Hold after WR	t _{WHQX}	33		t _{CLCL} - 50		ns
Address Float after RD	t _{RLAZ}		. 0	•	0	ns

External Clock Drive

	·	Limit		
Parameter	Symbol	Variab Freq. = 0.5	Unit	
		Min	Max	
Oscillator Period	tCLCL	83.3	2000	ns
High Time	tснсх	20		ns
Low Time	t _{CLCX}	20		ns
Rise Time	^t CLCH		20	ns
Fall Time	t _{CHCL}		20	ns
Oscillator Frequency	1/t _{CLCL}	0.5	12	MHz

A.C. Characteristics for SAB 80C52-16/80C32-16

 $\begin{array}{l} V_{CC} = 5V \pm 10\%; \, V_{SS} = 0V, \\ T_A = 0^\circ C \mbox{ to } 70^\circ C \mbox{ (SAB 80C52)}; \\ T_A = -40 \mbox{ to } +85^\circ C \mbox{ (SAB 80C52-T40/85)} \end{array}$

(C_L for Port 0, ALE and $\overline{\text{PSEN}}$ Outputs = 100 pF; C_L for All Other Outputs = 80 pF)

Program Memory Characteristics

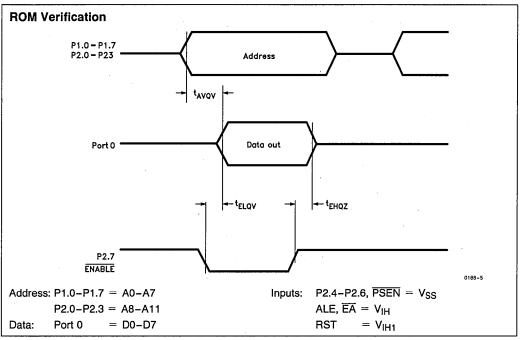
		Limit Values					
Parameter	Symbol	16 MHz Clock		Variable Clock 1/t _{CLCL} = 0.5 MHz to 16 MHz		Unit	
<u> </u>		Min	Max	Min	Max		
ALE Pulse Width	tLHLL	85		2 t _{CLCL} - 40		ns	
Address Setup to ALE	t _{AVLL}	33		t _{CLCL} - 30		ns	
Address Hold after ALE	t _{LLAX1}	28		t _{CLCL} – 35		ns	
ALE to Valid Instruction in	t _{LLIV}		150		4 t _{CLCL} - 100	ns	
ALE to PSEN	t _{LLPL}	38		t _{CLCL} – 25		ns	
PSEN Pulse Width	t _{PLPH}	153		3 t _{CLCL} — 35		ns	
PSEN to Valid Instruction in	t _{PLIV}		88		3 t _{CLCL} - 100	ns	
Input Instruction Hold after PSEN	t _{PXIX}	0		0 .		ns	
Input Instruction Float after PSEN	t _{PXIZ} (1)		48		t _{CLCL} – 15	ns	
Address Valid after PSEN	t _{PXAV} (1)	60		t _{CLCL} – 3		ns	
Address to Valid Instruction in	t _{AVIV}		223		5 t _{CLCL} — 90	ns	
Address Float to PSEN	t _{PLAZ}	0		. 0		ns	

NOTE:

1. Interfacing the SAB 80C52-16 to devices with float times up to 55 ns is permissable. This limited bus contention will not cause any damage to Port 0 drivers.

External Data Memory Characteristics

		Limit Values				
Parameter	Symbol	16 MHz Clock		Variable Clock 1/t _{CLCL} = 0.5 MHz to 16 MHz		Unit
		Min	Max	Min	Max	
RD Pulse Width	t _{RLRH}	275		6 t _{CLCL} - 100		ns
WR Pulse Width	twlwh	275		6 t _{CLCL} — 100		ns
Address Hold after ALE	t _{LLAX2}	90		2 t _{CLCL} - 35		ns
RD to Valid Data in	t _{RLDV}		148		5 t _{CLCL} — 165	ns
Data Hold after RD	t _{RHDX}	0		0		ns
Data Float after RD	t _{RHDZ}		55		2 t _{CLCL} - 70	ns
ALE to Valid Data in	t _{LLDV}		350		8 t _{CLCL} — 150	ns
Address to Valid Data in	tAVDV		398		9 t _{CLCL} — 165	ns
ALE to WR or RD	tLLWL	138	238	3 t _{CLCL} – 50	3 t _{CLCL} + 50	ns
Address to WR or RD	t _{AVWL}	120		4 t _{CLCL} - 130		ns
WR or RD High to ALE High	t _{WHLH}	23	103	$t_{CLCL} - 40$	t _{CLCL} + 40	ns
Data Valid to WR Transition	t _{QVWX}	13		t _{CLCL} - 50		ns
Data Setup before WR	t _{QVWH}	288		7 t _{CLCL} – 150		ns
Data Hold after WR	t _{WHQX}	13		t _{CLCL} – 50		ns
Address Float after RD	t _{RLAZ}		0		0	ns

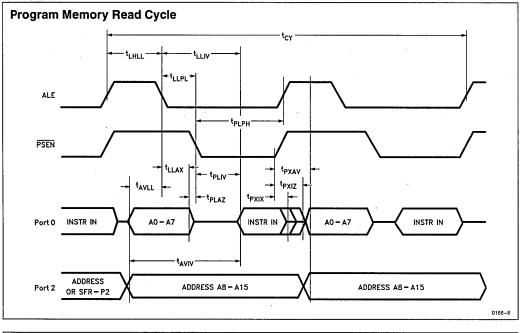

External Clock Drive XTAL1

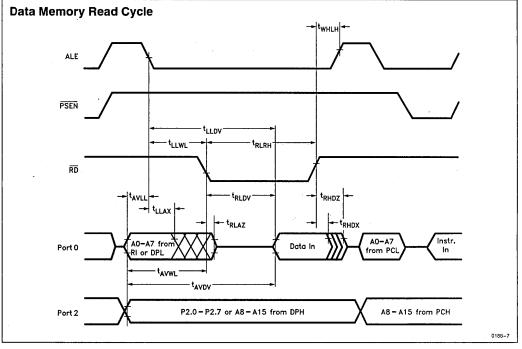
		L		
Parameter	Symbol		ariable Clock 0.5 MHz to 16 MHz	Unit
		Min	Max	
Oscillator Period	t _{CLCL}	62.5	833.3	ns
High Time	tснсх	15	t _{CLCL} - t _{CLCX}	ns
Low Time	tCLCX	15	t _{CLCL} - t _{CHCX}	ns
Rise Time	tCLCH	,	15	ns
Fall Time	tCHCL		15	ns

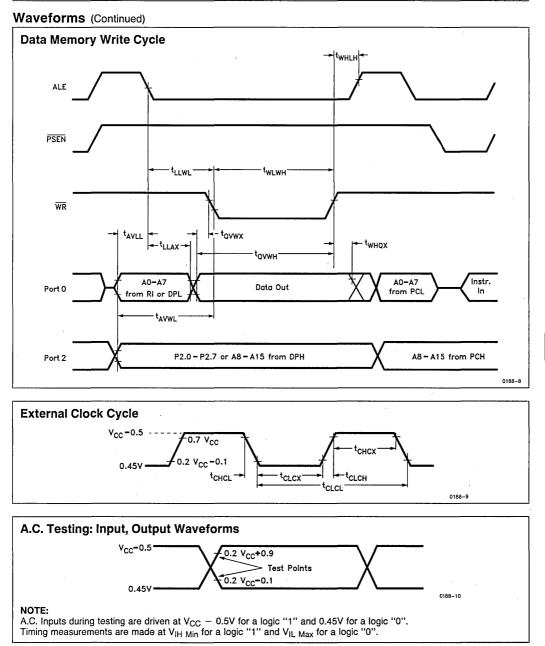
ROM Verification Characteristics

 $T_A = 25^{\circ}C \pm 5^{\circ}C; V_{CC} = 5V \pm 10\%; V_{SS} = 0V$

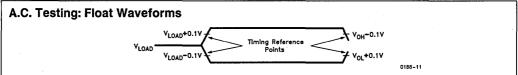
Parameter	Symbol	Lim	Unit		
i alameter	Gymbol	Min	Max		
Address to Valid Data	tAVQV		48 t _{CLCL}	ns	
ENABLE to Valid Data	t _{ELQV}		48 t _{CLCL}	ns	
Data Float after ENABLE	t _{EHQZ}	0	48 t _{CLCL}	ns	
Oscillator Frequency	1/t _{CLCL}	4	6	MHz	

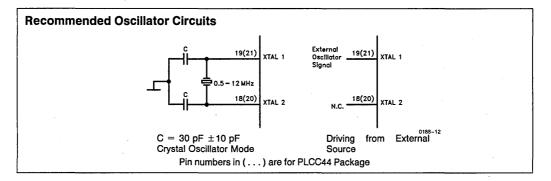



4


SAB 80C52/80C32, 80C52-16/80C32-16

SAB 80C52/80C32, 80C52-16/80C32-16 Ext. Temp.


Waveforms



Waveforms (Continued)

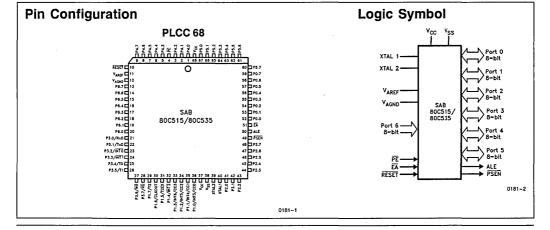
NOTE:

For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs and begins to float when a 100 mV change from the loaded V_{OH}/V_{OL} level occurs. $I_{OL}/I_{OH} \ge \pm 20$ mA.

Ordering Information

Туре	Function
	8-Bit CMOS Microcontroller
SAB 80C52-P	with Mask-Programmable ROM (P-DIP 40)
SAB 80C32-P	for External Memory (P-DIP 40)
SAB 80C52-N	with Mask-Programmable ROM (PLCC 44)
SAB 80C52-N	for External Memory (PLCC 44)
SAB 80C52-16-P	with Mask-Programmable ROM (P-DIP 40), 16 MHz
SAB 80C32-16-P	for External Memory (P-DIP 40), 16 MHz
SAB 80C52-16-N	with Mask-Programmable ROM (PLCC 44), 16 MHz
SAB 80C32-16-N	for External Memory (PLCC 44), 16 MHz
SAB 80C52-P-T40/85	Ext. Temp - 40°C to + 85°C (P-DIP 40), 12 MHz
SAB 80C32-P-T40/85	Ext. Temp40°C to +85°C (P-DIP 40), 12 MHz
SAB 80C52-N-T40/85	Ext. Temp 40°C to + 85°C (PLCC-44), 12 MHz
SAB 80C32-N-T40/85	Ext. Temp 40°C to + 85°C (PLCC-44), 12 MHz
SAB 80C52-P-T40/110	Ext. Temp40°C to +110°C (P-DIP 40), 12 MHz
SAB 80C32-P-T40/110	Ext. Temp 40°C to + 110°C (P-DIP 40), 12 MHz
SAB 80C52-N-T40/110	Ext. Temp40°C to +110°C (PLCC-44), 12 MHz
SAB 80C32-N-T40/110	Ext. Temp40°C to +110°C (PLCC-44), 12 MHz
SAB 80C52-16-P-T40/85	Ext. Temp40°C to +85°C (P-DIP 40), 16 MHz
SAB 80C32-16-P-T40/85	Ext. Temp40°C to +85°C (P-DIP 40), 16 MHz
SAB 80C52-16-N-T40/85	Ext. Temp 40°C to + 85°C (PLCC-44), 16 MHz
SAB 80C32-16-N-T40/85	Ext. Temp 40°C to + 85°C (PLCC-44), 16 MHz

SAB 80C515/80C535, SAB 80C515-16/80C535-16 SAB 80C515-16/80C535-16 Ext. Temp 8-Bit CMOS Microcontroller


SAB 80C515 (-16)CMOS microcontroller with factory-mask programmable ROMSAB 80C535 (-16)CMOS microcontroller for external ROM

SAB 80C515-T40/85 (-16) SAB 80C535-T40/85 (-16)

Extended temperature range: -40° C to $+85^{\circ}$ C

- SAB 80C515/80C535 (-T40/85) for 12 MHz Operation
- SAB 80C515/80C535 (-T40/85) -16 for 16 MHz Operation
- \bullet 8K imes 8 ROM (SAB 80C515 only)
- ${
 m 0}$ 256 ${
 m imes}$ 8 RAM
- Six 8-Bit I/O Ports, One Input Port for Digital or Analog Input
- Three 16-Bit Timer/Counters
- Highly Flexible Reload, Capture, Compare Capabilities
- Full-Duplex Serial Channel
- Boolean Processor
- 8-Bit A/D Converter with 8 Multiplexed Inputs and Programmable Internal Reference Voltages

- 16-Bit Watchdog Timer
- Twelve Interrupt Vectors, Four Priority Levels
- 256 Bit-Addressable Locations
- Most Instructions Execute in 1 μs (750 ns)
- 4 μs (3 μs) Multiply and Divide
- External Memory Expandable up to 128 Kbytes
- Backwardly Compatible with SAB 8051
- Functionally Compatible with SAB 80515 (NMOS)
- Idle and Power-Down Mode
- 68-Pin Plastic Leaded Chip Carrier Package (PLCC 68)

SAB 80C515/80C535, SAB 80C515-16/80C535-16 SAB 80C515-16/80C535-16 Ext. Temp

The SAB 80C515/80C535 is a new, powerful member of the Siemens SAB 8051 family of 8-bit microcontrollers. It is designed in Siemens ACMOS technology and is functionally compatible with the SAB 80515/80535 devices designed in MYMOS technology.

The SAB 80C515/80C535 with the suffix "-16" operates up to 16 MHz crystal oscillator frequency. The part without the suffix operates up to a maximum frequency of 12 MHz.

The SAB 80C515/80C535 is a stand-alone, highperformance single-chip microcontroller based on the SAB 8051/80C51 architecture. While maintaining all the SAB 80C51 operating characteristics, the SAB 80C515/80C535 incorporates several enhancements which significantly increase design flexibility and overall system performance. In addition, the low-power properties of Siemens ACMOS technology allow applications where power consumption and dissipation are critical. Furthermore, the SAB 80C515/80C535 has two software-selectable modes of reduced activity for further power reduction: idle and power-down mode.

The SAB 80C535 is identical with the SAB 80C515 except that it lacks the on-chip program memory. The SAB 80C515/80C535 is supplied in a 68-pin plastic leaded chip carrier package (PLCC 68). For the industrial temperature range -40° C to $+85^{\circ}$ C, the SAB 80C515/80C535-T40/85 and SAB 80C515/80C535-16-T40/85 are also available.

Symbol	Pin	Input (I) Output (O)	Function
P4.0–P4.7	1–3,5–9	1/0	Port 4 is an 8-bit bidirectional I/O port with internal pullup resistors. Port 4 pins that have 1s written to them are pulled high by the internal pullup resistors, and in that state can be used as inputs. As inputs, port 4 pins being externally pulled low will source current ($I_{\rm IL}$, in the DC characteristics) because of the internal pullup resistors.
PE	4		A low level on this pin enables the use of the power saving modes (idle mode and power-down mode). When PE is held on high level it is impossible to enter the power saving modes.
RESET	10	I	A low level of this pin for the duration of two machine cycles while the oscillator is running resets the SAB 80C515. A small internal pullup resistor permits power-in reset using only a capacitor connected to V_{SS} .
VAREF	11		Reference voltage for the A/D converter
V _{AGND}	12		Reference ground for the A/D converter
P6.7-P6.0	13–20		Port 6 is an 8-bit undirectional input port. Port pins can be used for digital input if voltage levels simultaneously meet the specifications for high/low input voltages and for the eight multiplexed analog inputs of the A/D converter.

Pin Definitions and Functions

SAB 80C515/80C535, SAB 80C515-16/80C535-16 SAB 80C515-16/80C535-16 Ext. Temp

Symbol	Pin	Input (I)	Function
Symbol	PIN	Output (O)	Function
P3.0-P3.7	21-38	1/0	Port 3 is an 8-bit bidirectional I/O port with internal pullup resistors. Port 3 pins that have 1s written to them are pulled high by the internal pullup resistors, and in that state can be used as inputs. As inputs, port 3 pins being externally pulled low will source current (I _{LL} in the DC characteristics) because of the internal pullup resistors. Port 3 also contains the interrupt, timer, serial port and external memory strobe pins that are used by various options. The output latch corresponding to a secondary function must be programmed to a one (1) for that function to operate. The secondary functions are assigned to the pins of port 3, as follows: RxD (P3.0): serial port's receiver data input (asynchronous) or data input/output (synchronous) TxD (P3.1): serial port's transmitter data output (asynchronous) or clock output (synchronous) INTO (P3.2): interrupt 0 input/timer 0 gate control input INT1 (P3.3): counter 0 input T1 (P3.5): counter 1 input T1 (P3.5): counter 1 input WR (P3.6): the write control signal latches the data byte from port 0 into the external data memory RD (P3.7): the read control signal enables the external data memory to port 0
P1.7-P1.0	29-36	Ι/Ο	Port 1 is an 8-bit bidirectional I/O port with internal pullup resistors. Port 1 pins that have 1s written to them are pulled high by the internal pullup resistors, and in that state can be used as inputs. As inputs, port 1 pins being externally pulled low will source current (I _{IL} , in the DC characteristics) because of the internal pullup resistors. The port is used for the low- order address byte during program verification. Port 1 also contains the interrupt, timer, clock, capture and compare pins that are used by various options. The output latch corresponding to a secondary function must be programmed to a one (1) for that function to operate (except when used for the compare functions). The secondary functions are assigned to the port 1 pins as follows: —INT3/CC0 (P1.0): interrupt 3 input/compare 0 output/ capture 0 input —INT4/CC1 (P1.1): interrupt 4 input/compare 1 output/ capture 1 input —INT6/CC3 (P1.2): interrupt 5 input/compare 2 output/ capture 2 input —INT6/CC3 (P1.3): interrupt 6 input/compare 3 output/ capture 3 input —INT6/CC3 (P1.5): interrupt 2 input —INT2 (P1.4): interrupt 2 input —T2EX (P1.5): timer 2 external reload trigger input —CLKOUT (P1.6): system clock output

SAB 80C515/80C535, SAB 80C515-16/80C535-16 SAB 80C515-16/80C535-16 Ext. Temp

Pin Definitions and Functions (Continued)

Symbol	Pin	input (I) Output (O)	Function
V _{CC}	37		Supply voltage during normal, idle, and power down operation. Internally connected to pin 68.
V _{SS}	38		GROUND (0V)
XTAL2 XTAL1	39 40		XTAL2 Input to the inverting oscillator amplifier and input to the internal clock generator circuits. XTAL1 Output of the inverting oscillator amplifier. To drive the device from an external clock source, XTAL2 should be driven, while XTAL1 is left unconnected. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is divided down by a divide-by-two flip-flop. Minimum and maximum high and low times and rise/fall times specified in the AC characteristics must be observed.
P2.0-P2.7	41-48	I/O	Port 2 is an 8-bit bidirectional I/O port with internal pullup resistors. Port 2 pins that have 1s written to them are pulled high by the internal pullup resistors, and in that state can be used as inputs. As inputs, port 2 pins being externally pulled low will source current (I_{IL} , in the DC characteristics) because of the internal pullup resistors. Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @DPTR). In this application it uses strong internal pullup resistors when issuing 1s. During accesses to external data memory that use 8-bit addresses (MOVX @Ri), port 2 issues the contents of the P2 special function register.
PSEN	49	0	The program store enable output is a control signal that enables the external program memory to the bus during external fetch operations. It is activated every six oscillator periods, except during external data memory accesses. The signal remains high during internal program execution.
ALE	50	0	Provides address latch enable output used for latching the address into external memory during normal operation. It is activated every six oscillator periods, except during an external data memory access.
EĀ	51	I	When held high, the SAB 80C515 executes instructions from the internal ROM as long as the PC is less than 8192. When held low, the SAB 80C515 fetches all instructions from external program memory. For the SAB 80C535 this pin must be tied low.
P0.0-P0.7	52–59	Ι/Ο	Port 0 is an 8-bit open-drain bidirectional I/O port. Port 0 pins that have 1s written to them float, and in that state can be used as high-impedance inputs. Port 0 is also the multiplexed low-order address and data bus during accesses to external program and data memory. In this application it uses strong internal pullup resistors when issuing 1s. Port 0 also outputs the code bytes during program verification in the SAB 80C515. External pullup resistors are required during program verification.

Symbol	Pin	Input (I) Output (O)	Function				
P5.7–P5.0	60–67	1/0	Port 5 is an 8-bit bidirectional I/O port with internal pullup resistors. Port 5 pins that have 1s written to them are pulled high by the internal pullup resistors, and in that state can be used as inputs. As inputs, port 5 pins being externally pulled low will source current (I_{IL} , in the DC characteristics) because of the internal pullup resistors.				
V _{CC}	68		Supply voltage during normal, idle and power-down operations. Internally connected to pin 37.				
	V _{CC} O V _{SS} O RESET ALE O PSEN O PSEN O VAREF O VAREF O	Timer 0 Timer 0 Timer 1 Timer 1 Timer 2 Serial Port Baud Rate Generator P6 MUX S&H	2 RAM 256 x 8 (SAB BOC515 only) PO 8 + Port 0 8 + bit PO 8 + Port 1 8 + bit P1 8 + Port 1 8 + bit P2 8 + Port 2 8 + bit P3 8 + bit P4 8 + bit P5 8 +				

Figure 1. Block Diagram

Functional Description

The members of the SAB 80515 family of microcontrollers are:

- SAB 80C515: Microcontroller, designed in Siemens ACMOS technology, with 8 Kbyte factory mask-programmable ROM
- SAB 80C535: ROM-less version of the SAB 80C515
- --- SAB 80515: Microcontroller, designed in Siemens MYMOS technology, with 8 Kbyte factory mask-programmable ROM
- --- SAB 80535: ROM-less version of the SAB 80515
- SAB 80515K: Special ROM-less version of the SAB 80515 with an additional interface for program memory accesses. An external ROM that is accessed via this interface substitutes the SAB 80515's internal ROM.

The SAB 80C535 is identical to the SAB 80C515, except that it lacks the on-chip ROM. In this data sheet the term "SAB 80C515" is used to refer to both the SAB 80C515 and SAB 80C535, unless otherwise noted.

Architecture

The architecture of the SAB 80C515 is based on the SAB 8051/SAB 80C51 microcontroller family. The following features of the SAB 80C515 are fully compatible with the SAB 80C51 features:

- Instruction set
- External memory expansion interface (port 0 and port 2)

- Full-duplex serial port
- Timer/counter 0 and 1
- Alternate functions on port 3
- The lower 128 bytes of internal RAM and the lower 4 Kbytes of internal ROM

The SAB 80C515 additionally contains 128 bytes of internal RAM and 4 Kbytes of internal ROM, which results in a total of 256 bytes of RAM and 8 Kbytes of ROM on chip. The SAB 80C515 has a new 16-bit timer/counter with a 2:1 prescaler, reload mode, compare and capture capability. It also contains a 16-bit watchdog timer, an 8-bit A/D converter with programmable reference voltages, two additional quasi-bidirectional 8-bit ports, one 8-bit input port for analog or digital signals, and a programmable clock output (f_{OSC}/12).

Furthermore, the SAB 80C515 has a powerful interrupt structure with 12 vectors and 4 programmable priority levels.

Figure 1 shows a block diagram of the SAB 80C515.

CPU

The SAB80C515 is efficient both as a controller and as an arithmetic processor. It has extensive facilities for binary and BCD arithmetic and excels in its bithandling capabilities. Efficient use of program memory results from an instruction set consisting of 44% one-byte, 41% two-byte, and 15% three-byte instructions. With a 12 MHz crystal, 58% of the instructions execute in 1.0 μ s.

All registers, except the program counter and the four 8-register banks, reside in the special function register area. The 42 special functions registers include arithmetic registers, pointers, and registers that provide an interface between the CPU and the on-chip peripheral functions. There are also 128 directly addressable bits within the SFR area. The special function registers are listed in Table 1.

Our hal	Table 1. Special Function Registers	
Symbol	Name	Address
*P0	Port 0	80H
SP	Stack Pointer	81H
DPL	Data Pointer, Low Byte	82H
DPH	Data Pointer, High Byte	83H
PCON	Power Control Register	87H
*TCON	Timer Control Register	88H
TMOD	Timer Mode Register	89H
TLO	Timer 0, Low Byte	8AH
TL1	Timer 1, Low Byte	8BH
ТНО	Timer 0, High Byte	8CH
TH1	Timer 1, High Byte	8DH
*P1	Port 1	90H
*SCON	Serial Channel Control Register	98H
SBUF	Serial Channel Buffer Register	99H
*P2	Port 2	0A0H
*IEN0	Interrupt Enable Register 0	0A8H
IP0	Interrupt Priority Register 0	0A9H
*P3	Port 3	[.] 0B0H
*IEN1	Interrupt Enable Register 1	0B8H
IP1	Interrupt Priority Register 1	0B9H
*IRCON	Interrupt Request Control Register	0C0H
CCEN	Compare/Capture Enable Register	0C1H
CCL1	Compare/Capture Register 1, Low Byte	0C2H
CCH1	Compare/Capture Register 1, High Byte	0C3H
CCL2	Compare/Capture Register 2, Low Byte	0C4H
CCH2	Compare/Capture Register 2, High Byte	0C5H
CCL3	Compare/Capture Register 3, Low Byte	OC6H
CCH3	Compare/Capture Register 3, High Byte	0C7H
*T2CON	Timer 2 Control Register	0C8H
CRCL	Compare/Reload/Capture Register, Low Byte	0CAH
CRCH	Compare/Reload/Capture Register, High Byte	0CBH
TL2	Timer 2, Low Byte	0CCH
TH2	Timer 2, High Byte	0CDH
*PSW	Program Status Word Register	0D0H
*ADCON	A/D Converter Control Register	0D8H
ADDAT	A/D Converter Data Register	0D9H
DAPR	D/A Converter Program Register	0DAH
P6	Port 6	0DBH
*ACC	Accumulator	0E0H
*P4	Port 4	0E8H
*В	B-Register	0F0H
*P5	Port 5	0F8H

Table 1. Special Function Registers

The SFR's marked with an asterisk (*) are bit and byte-addressable.

© Siemens Components, Inc.

I/O Ports

The SAB 80C515 has six 8-bit I/O ports and one 8bit input port. Port 0 is an open-drain bidirectional I/O port, while ports 1 to 5 are quasi-bidirectional I/O ports with internal pull-up resistors. That means, when configured as inputs, ports 1 to 5 will be pulled high and will source current when externally pulled low. Port 0 will float when configured as input. Port 0 and port 2 can be used to expand the program and data memory externally. During an access to external memory, port 0 emits the low-order address byte and reads/writes the data byte, while port 2 emits the high-order address byte. In this function, port 0 is not an open-drain port, but uses a strong internal pullup FET.

Ports 1 and 3 are provided for several alternate functions, as listed below:

Port	Symbol	Function
P1.0	INT3/CC0	External interrupt 3 input, compare 0 output, capture 0 input
P1.1	INT4/CC1	External interrupt 4 input, compare 1 output, capture 1 input
P1.2	INT5/CC2	External interrupt 5 input, compare 2 output, capture 2 input
P1.3	INT6/CC3	External interrupt 6 input, compare 3 output, capture 3 input
P1.4	INT2	External interrupt 2 input
P1.5	T2EX	Timer 2 external reload trigger input
P1.6	CLKOUT	System clock output
P1.7	T2	Timer 2 external counter input
P3.0	RXD	Serial port's receiver data input (asynchronous) or data input/output (synchronous)
P3.1	TXD	Serial port's transmitter data output (asynchronous) or clock output (synchronous)
P3.2	ÎNTO	External interrupt 0 input, timer 0 gate control
P3.3	INT1	External interrupt 1 input, timer 1 gate control
P3.4	ТО	Timer 0 external counter input
P3.5	T1	Timer 1 external counter input
P3.6	WR	External data memory write strobe
P3.7	RD	External data memory read strobe

The SAB 80C515 has a dual-purpose input port. As the ANx lines in the SAB 80515 (NMOS version), the eight port lines at port 6 can be used as analog inputs. But if the input voltages at port 6 meet the specified digital input levels (V_{IL} and V_{IH}), the port can also be used as digital input port. Reading the special function register P6 allows the user to input the digital values currently applied to the port pins. It is not necessary to select these modes by software;

the voltages applied at port 6 pins can be converted to digital values using the A/D converter and at the same time the pins can be read via SFR P6. It must be noted, however, that the results in port P6 bits will be indeterminate if the levels at the corresponding pins are not within their respective VIL/VIH specifications. Futhermore, it is not possible to use port P6 as output lines. Special function register P6 is located at address 0DBH.

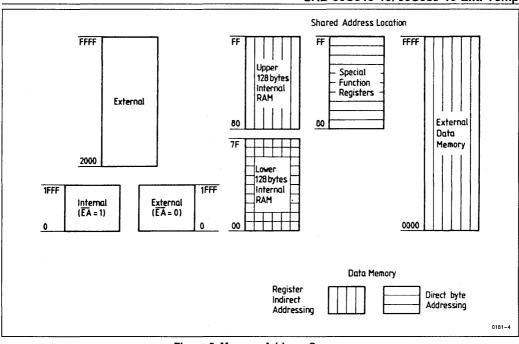


Figure 2. Memory Address Spaces

A/D Converter

The 8-bit A/D converter of the SAB 80C515 has eight multiplexed analog inputs (Port 6) and uses the successive approximation method.

It takes 5 machine cycles to sample an analog signal (during this sample time the input signal should be held constant); the total conversion time (including sample time) is 13 machine cycles (13 μ s at 12 MHz oscillator frequency). Conversion can be programmed to be single or continuous; at the end of a conversion an interrupt can be generated.

A unique feature is the capability of internal reference voltage programming. The internal reference voltages V_{IntAREF} and V_{IntAGND} for the A/D converter both are programmable to one of 16 steps with respect to the external reference voltages. This feature permits a conversion with a smaller internal reference voltage range to gain a higher resolution. In addition, the internal reference voltages can easily be adapted by software to the desired analog input voltage range.

Figure 3 shows a block diagram of the A/D converter.

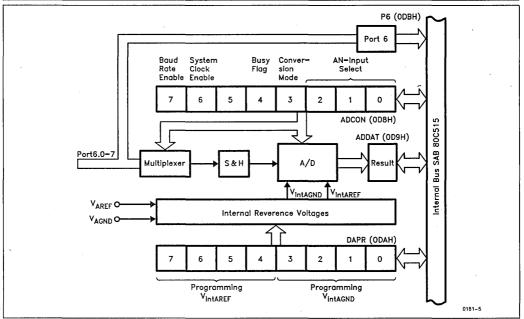


Figure 3. Block Diagram of the A/D Converter

Watchdog Timer

This feature is provided as a means of graceful recovery from a software upset. After a reset, the watchdog timer is cleared and stopped. It can be started and cleared by software, but it cannot be stopped during active mode of the device. If the software fails to clear the watchdog timer at least every 65532 machine cycles (about 65 ms if a 12 MHz oscillator frequency is used), a hardware reset be initiated. The reset cause (external reset or reset caused by the watchdog) can be examined by software. To clear the watchdog, two bits in two different special function registers must be set by two consecutive instructions (bits IEN0.6 and IEN1.6). This is done to prevent the watchdog from being cleared by unexpected opcodes.

It must be noted, however, that the watchdog timer is halted during the idle mode and power down mode of the processor (see section "power saving modes" below). Therefore it is possible to use the idle mode in combination with the watchdog timer function. But even the watchdog timer cannot reset the device when one of the power saving modes is entered accidentally.

For these reasons several precautions are taken against unintentional entering of the power-down or idle mode (see below).

Power Saving Modes

The ACMOS technology of the SAB 80C515 allows two new power saving modes of the device: The idle mode of the power-down mode. These modes replace the power-down supply mode via pin V_{PD} of the SAB 80515 (NMOS). The SAB 80C515 is supplied via pins V_{CC} also during idle and power down operation.

However, there are applications where unintentional entering of these power saving modes must be absolutely avoided. Such critical applications often use the watchdog timer to prevent the system from program upsets. Then accidental entering of the power saving modes would even stop the watchdog timer and would circumvent the watchdog timer's task of system protection.

Thus, the SAB 80C515 has an extra pin that allows it to disable both of the power saving modes. When pin \overline{PE} is held high, idle mode and power-down mode are completely disabled and the instruction sequences that are used for entering these modes (see below) will NOT affect the normal operation of the device. When \overline{PE} is held low, the use of the idle mode and of power-down mode is possible as described in the following sections.

Pin $\overline{\text{PE}}$ has a weak internal pullup resistor. Thus, when left open, the power saving modes are disabled.

The Special Function Register PCON

In the NMOS version SAB 80515 the SFR PCON (address 87H) contains only bit SMOD; in the CMOS version SAB 80C515 there are more bits used (see Table 2).

The bits PDE, PDS and IDLE, IDLS select the powerdown mode or the idle mode, respectively, when the use of the power saving modes is enabled by pin \overrightarrow{PE} (see below). If the power-down mode and the idle mode are set at the same time, power-down takes precedence.

Futhermore, register PCON contains two general purpose flags. For example, the flag bits GF0 and

GF1 can be used to give an indication if an interrupt occurred during normal operation or during an Idle. Then an instruction that activates Idle can also set one or both flag bits. When Idle is terminated by an interrupt, the interrupt service routine can examine the flag bits.

The reset value of PCON is 000X0000B.

Idle Mode

In the idle mode the oscillator of the SAB 80C515 continues to run, but the CPU is gated off from the clock signal. However, the interrupt system, the serial port, the A/D converter, and all timers with the exception of the watchdog timer are further provided with the clock. The CPU status is preserved in its entirety: the stack pointer, program counter, program status word, accumulator, and all other registers maintain their data during idle mode.

Table 2. SFR PCON (87H)

SMOD	PDS	IDLS	—	GF1	GF0	PDE	IDLE	87H
7	6	5	4	3	2	1	0	

Symbol	Position	Function
SMOD	PCON.7	When set, the baud rate of the serial channel in mode 1, 2, 3 is doubled.
PDS	PCON.6	Power-down start bit. The instruction that sets the PDS flag bit is the last instruction before entering the power-down mode.
IDLS	PCON.5	Idle start bit. The instruction that sets the IDLS flag bit is the last instruction before entering the idle mode.
_	PCON.4	Reserved
GF1	PCON.3	General Purpose Flag
GF0	PCON.2	General Purpose Flag
PDE	PCON.1	Power-down enable bit. When set, starting of the power-down mode is enabled.
IDLE	PCON.0	Idle mode enable bit. When set, starting of the idle mode is enabled.

The reduction of power consumption, which can be achieved by this feature depends on the number of peripherals running.

If all timers are stopped and the A/D converter and the serial interface are not running, the maximum power reduction can be achieved. This state is also the test condition of the idle mode I_{CC} (see DC characteristics, Note 5).

So the user has to take care which peripheral should continue to run and which has to be stopped during idle mode. Also the state of all port pins—either the pins controlled by their latches or controlled by their secondary functions—depends on the status of the controller when entering idle mode.

Normally the port pins hold the logical state they had at the time idle mode was activated. If some pins are programmed to serve their alternate functions they still continue to output during idle mode if the assigned function is on. This applies to the compare outputs as well as to the clock output signal or to the serial interface in case it cannot finish reception or transmission during normal operation. The control signals ALE and PSEN hold at logic high levels (see Table 3).

As in normal operation mode, the ports can be used as inputs during idle mode. Thus a capture or reload operation can be triggered, the timers can be used to count external events, and external interrupts will be detected.

The idle mode is a useful feature which makes it possible to "freeze" the processor's status—either

for a pre-defined time, or until an external event reverts the controller to normal operation, as discussed below. The watchdog timer is the only peripheral which is automatically stopped during idle mode. If it were not disabled on entering idle mode, the watchdog timer would reset the controller, thus abandoning the idle mode.

When idle mode is used, pin \overline{PE} must be held on low level. The idle mode is then entered by two consecutive instructions. The first instruction sets the flag bit IDLE (PCON.0) and must not set bit IDLS (PCON.5), the following instruction sets the start bit IDLS (PCON.5) and must not set bit IDLE (PCON.0). The hardware ensures that a concurrent setting of both bits, IDLE and IDLS, does not initiate the idle mode. Bits IDLE and IDLS will automatically be cleared after being set. If one of these register bits is read the value that appears is 0 (see Table 2). This double instruction is implemented to minimize the chance of an unintentional entering of the idle mode which would leave the watchdog timer's task of system protection without effect.

Note that PCON is not a bit-addressable register, so the above mentioned sequence for entering the idle mode is obtained by byte-handling instructions, as shown in the following example:

ORL PCON,00000001B	;Set bit IDLE, bit IDLS must not be set
ORL PCON,00100000B	;Set bit IDLS, bit IDLE must not be set

The instruction that sets bit IDLS is the last instruction executed before going into idle mode.

Outputs		n Executed from ode Memory	Last Instruction Executed from External Code Memory		
	Idle	Power-Down	Idle	Power-Down	
ALE	HIGH	LOW	HIGH	LOW	
PSEN	HIGH	LOW	HIGH	LOW	
PORT 0	Data	Data	Float	Float	
PORT 1	Data/Alter- nate Outputs	Data/Last Output	Data/Alter- nate Outputs	Data/Last Output	
PORT 2	Data	Data	Address	Data	
PORT 3	Data/Alter- nate Outputs	Data/Last Output	Data/Alter- nate Outputs	Data/Last Output	
PORT 4	Data	Data	Data	Data	
PORT 5	Data	Data	Data	Data	

 Table 3. Status of External Pin during Idle and Power-Down Modes

There are two ways to terminate the idle mode:

- The idle mode can be terminated by activating any enabled interrupt. This interrupt will be serviced and normally the instruction to be executed following the RETI instruction will be the one following the instruction that sets the bit IDLS.
- The other way to terminate the idle mode, is a hardware reset. Since the oscillator is still running, the hardware reset must be held active only for two machine cycles for a complete reset.

Power-Down Mode

In the power-down mode, the on-chip oscillator is stopped. Therefore all functions are stopped; only the contents of the on-chip RAM and the SFR's are maintained. The port pins controlled by their port latches output the values that are held by their SRF's. The port pins which serve the alternate output functions show the values they had at the end of the last cycle of the instruction which initiated the power-down mode; when the clockout signal (CLKOUT, P1.6) is enabled, it will stop at low level. ALE and PSEN hold at logic low level (see Table 3).

To enter the power-down mode the pin PE must be on low level. The power-down mode then is entered by two consecutive instructions. The first instruction has to set the flag bit PDE (PCON.1) and must not set bit PDS (PCON.6), the following instruction has to set the start bit PDS (PCON.6) and must not set bit PDE (PCON.1). The hardware ensures that a concurrent setting of both bits, PDE and PDS, does not initiate the power-down mode. Bits PDE and PDS will automatically be cleared after having been set and the value shown by reading one of these bits is always 0 (see Table 2). This double instruction is implemented to minimize the chance of unintentionally entering the power-down mode which could possibly "freeze" the chip's activity in an undesired status.

Note that PCON is not a bit-addressable register, so the above mentioned sequence for entering the power-down mode is obtained by byte-handling instructions, as shown in the following example:

ORL PCON,00000010B ;Set bit PDE, bit PDS must not be set

ORL PCON,01000000B ;Set bit PDS, bit PDE must not be set

The instruction that sets bit PDS is the last instruction executed before going into power-down mode.

The only exit from power-down mode is a hardware reset. Reset will redefine all SFR's, but will not change the contents of the internal RAM.

In the power-down mode of operation, V_{CC} can be reduced to minimize power consumption. It must be ensured, however, that V_{CC} is not reduced before the power-down mode is invoked, and that V_{CC} is restored to its normal operating level, before the power-down mode is terminated. The reset signal that terminates the power-down mode also restarts the oscillator. The reset should not be activated before V_{CC} is restored to its normal operating level and must be held active long enough to allow the oscillator to restart and stabilize (similar to power-on reset).

Differences in Pin Assignments of the SAB 80C515 and SAB 80515

Since the SAB 80C515 is designed in CMOS technology, this device requires no V_{BB} pin, because the die's substrate is internally connected to $V_{CC}.$

Furthermore, the RAM backup power supply via pin V_{PD} is replaced by the software-controlled power-down mode and power supply via V_{CC} .

Therefore, pins V_{BB} and V_{PD} of the NMOS version SAB 80515 are used for other functions in the SAB 80C515.

Pin 4 (the former pin V_{PD}) is the new \overline{PE} pin which enables the use of the power saving modes.

Pin 37 (the former pin V_{BB}) becomes an additional V_{CC} pin. Thus, it is possible to insert a decoupling capacitor between pin 37 (V_{CC}) and pin 38 (V_{SS}) very close to the device, thereby avoiding long wiring and reducing the voltage distortion resulting from high dynamic current peaks.

There is a difference between the NMOS and CMOS version concerning the clock circuitry. When the device is driven from an external source, pin XTAL2 must be driven by the clock signal; pin XTAL1, however, must be left be open in the SAB 80C515 (must be tied low in the NMOS version). When using the oscillator with a crystal there is no difference in the circuitry.

Thus, due to its pin compatibility the SAB 80C515 normally substitutes any SAB 80515 without redesign of the user's printed circuit board; but the user has to take care that the two V_{CC} pins are hardwired on-chip. In any case, it is recommended that power is supplied on both V_{CC} pins of the SAB 80C515 to improve the power supply to the chip. If the power saving modes are to be used, pin \overrightarrow{PE} must be tied low, otherwise these modes are disabled.

Absolute Maximum Ratings

Ambient Temperature under Bias SAB 80C5150°C to +70°C SAB 80C515-T40/8540°C to +85°C
Storage Temperature65°C to + 150°C
Voltage on Any Pin with Respect to Ground (VSS) $-0.5V$ to VCC $+$ 0.5V
Voltage on V _{CC} to V _{SS} 0.5 to ± 6.5 V
Power Dissipation2W

*Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. Characteristics

 $\begin{array}{l} V_{CC} = 5V \pm 10\%; \, V_{SS} = 0V; \\ T_A = 0^\circ C \; to \; +70^\circ C \; for \; SAB\; 80C515/80C535\; (\text{-16}) \\ T_A = \; -40^\circ C \; to \; +85^\circ C \; for \; SAB\; 80C515/80C535\text{-T40/85}\; (\text{-16}) \end{array}$

Parameter	Symbol	Conditions	Limit	Unit		
Falameter	Symbol	Conditions	Min	Max		
Input Low Voltage (except EA)	VIL		-0.5	$0.2 V_{CC} - 0.1$	V	
Input Low Voltage (EA)	V _{IL1}		-0.5	$0.2 V_{CC} - 0.3$	V	
Input High Voltage (except RESET and XTAL2)	VIH		0.2 V _{CC} + 0.9	V _{CC} + 0.5	v	
Input High Voltage to XTAL2	V _{IH1}		0.7 V _{CC}	$V_{CC} + 0.5$	V	
Input High Voltage to RESET	V _{IH2}		0.6 V _{CC}	V _{CC} + 0.5	V	
Output Low Voltage, Ports 1, 2, 3, 4, 5	V _{OL}	$I_{OL} = 1.6 \text{ mA} (1)$		0.45	v	
Output Low Voltage, Port 0, ALE, PSEN	V _{OL1}	$I_{OL} = 3.2 \text{mA}^{(1)}$		0.45	v	
Output High Voltage, Ports 1, 2, 3, 4, 5	V _{OH}	$I_{OH} = -80 \ \mu A$ $V_{CC} = 5V \pm 10\%$ $I_{OH} = -10 \ \mu A$	2.4 0.9 V _{CC}			
Output High Voltage (Port 0 in External Bus Mode, ALE, PSEN)	V _{OH1}	$I_{OH} = -400 \ \mu A,$ $V_{CC} = 5V \pm 10\%$ $I_{OH} = -40 \ \mu A$ (2)	2.4 0.9 V _{CC}	· ·	v v	
Logic 0 Input Current, Ports 1, 2, 3, 4, 5	IIL	$V_{IN} = 0.45V$		- 50	μΑ	
Input Low Current to RESET for Reset	I _{IL2}	V _{IN} = 0.45V		-100	μΑ	
Logical 1-to-0 Transition Current, Ports 1, 2, 3, 4, 5	I _{TL}	$V_{IN} = 2V$		-650	μΑ	
Input Leakage Current (Port 0, EA)	ILI .	$0.45 < V_{IN} < V_{CC}$		±10	μΑ	
Pin Capacitance	C _{IO}	f _c = 1 MHz, T _A = 25°C		10	pF	

D.C. Characteristics (Continued)

 $\begin{array}{l} V_{CC} = 5V \pm 10\%; \, V_{SS} = 0V; \\ T_A = 0^\circ C \ to \ +70^\circ C \ for \ SAB \ 80C515/80C535 \ (-16) \\ T_A = \ -40^\circ C \ to \ +85^\circ C \ for \ SAB \ 80C515/80C535 \ -T40/85 \ (-16) \end{array}$

Parameter	Symbol	mbol Conditions		Limit Values		
	Cymoor	Conditions	Min	Max	Unit	
Power Supply Current: Active Mode, 12 MHz ⁽⁶⁾ Idle Mode, 12 MHz ⁽⁶⁾ Active Mode, 16 MHz ⁽⁶⁾ Idle Mode, 16 MHz ⁽⁶⁾ Power-Down Mode		$V_{CC} = 5V(4) V_{CC} = 5V(5) V_{CC} = 5V(4) V_{CC} = 5V(5) V_{CC} = 2V to 5.5V(3)$		35 13 46 17 50	mA mA mA mA μA	

NOTES:

1. Capacitive loading on ports 0 and 2 may cause spurious noise pulses to be superimposed on the V_{OL} of ALE and ports 1, 3, 4, and 5. The noise is due to external bus capacitance discharging into the port 0 and port 2 pins when these pins make 1-to-0 transitions during bus operation. In the worst case (capacitive loading > 100 pF), the noise pulse on ALE line may exceed 0.8V. Then, it may be desirable to qualify ALE with a Schmitt-trigger, or use an address latch with a Schmitt-trigger strobe input.

2. Capacitive loading on ports 0 and 2 may cause the V_{OH} on ALE and PSEN to momentarily fall below the 0.9 V_{CC} specification when the address bits are stabilizing.

3. Power-down I_{CC} is measured with: $\overline{EA} = Port \tilde{0} = Port 6 = V_{CC}$; XTAL2 = N.C.; XTAL1 = V_{SS} ; $\overline{RESET} = V_{SS}$; all other pins are disconnected.

4. I_{CC} (active mode) is measured with: XTAL2 driven with the clock signal according to the figure below; XTAL1 = N.C.; \overline{EA} = Port 0 = Port 6 = V_{CC}, \overline{RESET} = V_{SS}; all other pins are disconnected. I_{CC} might be slightly higher if a crystal oscillator is used.

5. I_{CC} (idle mode) is measured with: XTAL2 driven with the clock signal according to the figure below; XTAL1 = N.C.; $\overline{EA} = V_{SS}$; Port 0 = V_{CC} ; \overline{RESET} ; all other pins are disconnected; all on-chip peripherals are disabled.

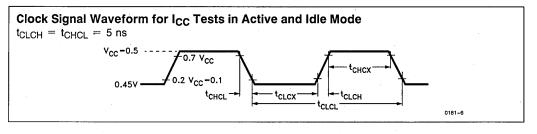
6. I_{CC} at other frequencies is given by:

Active Mode: I_{CC} max (mA) = 2.67 * f_{OSC} (MHz) + 3.00

Idle Mode: I_{CC} max (mA) = 0.88 * f_{OSC} (MHz) + 2.50

where $f_{\mbox{OSC}}$ is the oscillator frequency in MHz.

 I_{CC} max is given in mA and measured at $V_{CC} = 5V$ (see also notes 4 and 5)


7. The output impedance of the analog source must be low enough to assure full loading of the sample capacitance (C_i) during load time (t_L). After charging of the internal capacitance (C_i) in the load time (t_L), the analog input must be held constant for the rest of the sample time (t_S).

8. The differential impedance r_D of the analog reference voltage source must be less than 1 k Ω at reference supply voltage. 9. Exceeding these limit values at one or more input channels will cause additional current which is sinked/sourced at these channels. This may also affect the accuracy of other channels which are operated within these specifications.

A/D Converter Characteristics

 $V_{CC}-5V\pm10\%;\,V_{SS}=0V;\,V_{AREF}=V_{CC}\pm5\%;\,V_{AGND}=V_{SS}\pm0.2V;\,I_{VAREF}-I_{VAGND}\geq1V$ $T_A=0^\circC$ to $+70^\circC$ for SAB 80C515/80C535 (-16) $T_A=-40^\circC$ to $+85^\circC$ for SAB 80C515/80C535-T40/85 (-16)

Parameter	Symbol	Conditions	Li	ues	Unit		
i di difette i	Gymbol	Conditions	Min	Тур	Max		
Analog Input Voltage	VAINPUT	(Note 9)	V _{AGND} - 0.2		V _{VAREF} + 0.2	V	
Analog Input Capacitance ⁽⁶⁾	Cl	(Note 7)		25		pF	
Load Time	TL				2 T _{CY}	μs	
Sample Time (Inc. Load Time)	Ts	1			7 T _{CY}	μs	
Conversion Time (Inc. Sample Time)	Т _С				13 T _{CY}	μs	
Differential Non-Linearity Integral Non-Linearity Offset Error Gain Error Total Unadjusted Error	DNLE INLE TUE	$V_{AREF} =$ $V_{AREF} = V_{CC}$ $V_{AGND} =$ $V_{AGND} = V_{SS}$ (Note 7)		$\begin{array}{c} \pm \frac{1}{2} \\ \pm 1 \end{array}$	±1 ±1 ±1 ±1 ±2	LSB LSB LSB LSB LSB	
VAREF Supply Current ⁽⁷⁾	IREF	(Note 8)			5	mA	
Internal Reference Error ⁽⁷⁾	VintREFERR	(Note 8)			TBD	mV	

A.C. Characteristics for SAB 80C515/80C535

 $V_{CC} = 5V \pm 10\%; V_{SS} = 0V$

(C_L for Port 0, ALE and \overline{PSEN} Outputs = 100 pF; C_L for All Outputs = 80 pF)

$$T_A = 0^{\circ}C \text{ to } + 70^{\circ}C \text{ for SAB } 80C515/80C535$$

 $T_A = -40^{\circ}$ C to $+85^{\circ}$ C for SAB 80C515/80C535-T40/85

		Limit Values				
Parameter	Symbol	12 MHz Clock		Variab 1/T _{CLCL} 0.5	Unit	
		Min	Max	Min	Max	
Program Memory Charact	eristics					
ALE Pulse Width	TLHLL	127		2 T _{CLCL} 40		ns
Address Setup to ALE	T _{AVLL}	53		T _{CLCL} – 30		ns
Address Hold after ALE	T _{LLAX}	48		T _{CLCL} – 35		ns
ALE to Valid Instruction In	TLLIV		233		4 T _{CLCL} - 100	ns
ALE to PSEN	TLLPL	58		T _{CLCL} - 25		ns

A.C. Characteristics for SAB 80C515/80C535 (Continued)

				Limit Values		
Parameter	Symbol	12 MHz Clock		Variable Clock 1/T _{CLCL} 0.5 MHz to 12 MHz		Unit
		Min	Max	Min	Max	
Program Memory Characteristics	s (Continued)		·	· · · · · · · · · · · · · · · · · · ·	
PSEN Pulse Width TPLPI		215		3 T _{CLCL} - 35		ns
PSEN to Valid Instruction In	T _{PLIV}		150		3 T _{CLCL} - 100	ns
Input Instruction Hold after PSEN	T _{PXIX}	0		0		ns
Input Instruction Float after PSEN	T _{PXIZ} (1)		63		T _{CLCL} - 20	ns
Address Valid after PSEN	T _{PXAV} (1)	75		T _{CLCL} – 8		ns
Address to Valid Instruction In	TAVIV		302		5 T _{CLCL} - 115	ns
Address Float to PSEN	T _{AZPL}	0		0		ns
External Data Memory Character	istics					
RD Pulse Width	T _{RLRH}	400		6 T _{CLCL} - 100		ns
WR Pulse Width	T _{WLWH}	400		6 T _{CLCL} - 100		ns
Address Hold after ALE	T _{LLAX2}	132		2 T _{CLCL} - 35		ns
RD to Valid Data In	T _{RLDV}		252		5 T _{CLCL} - 165	ns
Data Hold after RD	T _{RHDX}	0		0		ns
Data Float after RD	T _{RHDZ}		97		2 T _{CLCL} - 70	ns
ALE to Valid Data In	TLLDV	а. С	517		8 T _{CLCL} — 150	ns
Address to Valid Data In	TAVDV		585		9 T _{CLCL} — 165	ns
ALE to WR or RD	TLLWL	200	300	3 T _{CLCL} — 50	3 T _{CLCL} + 50	ns
WR or RD High to ALE High	TWHLH	43	123	T _{CLCL} – 40	$T_{CLCL} + 40$	ns
Address Valid to WR	TAVWL	203		4 T _{CLCL} - 130		ns
Data Valid to WR Transition	T _{QVWX}	33		T _{CLCL} - 50		ns
Data Setup before WR	TQVWH	433		7 T _{CLCL} — 150		ns
Data Hold after WR	T _{WHQX}	33		T _{CLCL} - 50		ns
Address Float after RD	T _{RLAZ}		0		0	ns
External Clock Drive						
Oscillator Period	TCLCL	83.3	2000			ns
Oscillator Frequency	1 T _{CLCL}	0.5	12			MHz
High Time	тснсх	20				ns
Low Time	T _{CLCX}	20				ns
Rise Time	T _{CLCH}		20			ns
Fall Time	TCHCL		20			ns

NOTE:

1. Interfacing the SAB 80C515 to devices with float times up to 75 ns is permissible. This limited bus contention will not cause any damage to port 0 drivers.

4

System Clock Timing

Parameter	Symbol		MHz ock	Variabl 1/T _{CLCL} = 0.5		Unit
		Min	Max	Min	Max	
ALE to CLKOUT	T _{LLSH}	543		7 T _{CLCL} — 40		ns
CLKOUT High Time	T _{SHSL}	127		2 T _{CLCL} — 40		ns
CLKOUT Low Time	T _{SLSH}	793		10 T _{CLCL} — 40		ns
CLKOUT Low to ALE High	T _{SLLH}	43	123	T _{CLCL} – 40	$T_{CLCL} + 40$	ns

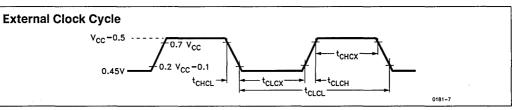
A.C. Characteristics for SAB 80C515-16/80C535-16

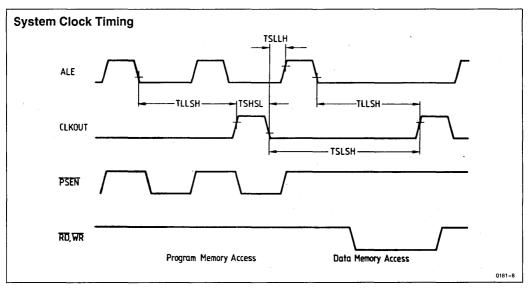
 $V_{CC} = 5V \pm 10\%; V_{SS} = 0V$ (C_L for Port 0, ALE and PSEN Outputs = 100 pF; C_L for All Outputs = 80 pF) T_A = 0°C to +70°C for SAB 80C515-16/80C535-16 T_A = -40°C to +85°C for SAB 80C515-16/80C535-16-T40/85

Program Memory Characteristics

				Limit Values		
Parameter	Symbol	16 MHz Clock		Variable Clock 1/T _{CLCL} = 0.5 MHz to 16 MHz		Unit
		Min	Max	Min	Max	
ALE Pulse Width	T _{LHLL}	85	·	2 T _{CLCL} - 40		ns
Address Setup to ALE	TAVLL	33		T _{CLCL} – 30		ns
Address Hold after ALE	T _{LLAX}	28		Т _{СLСL} — 35		ns
ALE to Valid Instruction In	T _{LLIV}		150		4 T _{CLCL} - 100	ns
ALE to PSEN	T _{LLPL}	38		T _{CLCL} – 25		ns
PSEN Pulse Width	T _{PLPH}	153		3 T _{CLCL} — 35		ns
PSEN to Valid Instruction In	T _{PLIV}		88		3 T _{CLCL} - 100	ns
Input Instruction Hold after PSEN	T _{PXIX}	0		0		ns
Input Instruction Float after PSEN	T _{PXIZ} *		48		T _{CLCL} – 20	ns
Address Valid after PSEN	T _{PXAV} *	60		T _{CLCL} – 8		ns
Address to Valid Instruction In	TAVIV		223		5 T _{CLCL} - 115	ns
Address Float to PSEN	T _{AZPL}	0		0		ns

*Interface the SAB 80C515-16 to devices with float times up to 55 ns is permissible. This limited bus contention will not cause any damage to port 0 drivers.

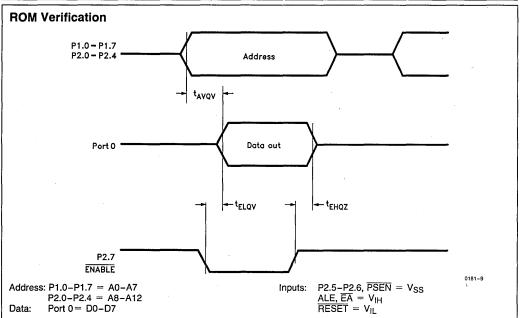

				Limit Values		
Parameter	Symbol	Symbol 16 MHz Clock		Variabl 1/T _{CLCL} = 0.5	Unit	
		Min	Max	Min	Max	
RD Pulse Width	T _{RLRH}	275		6 T _{CLCL} — 100		ns
WR Pulse Width	T _{WLWH}	275		6 T _{CLCL} – 100		ns
Address Hold after ALE	T _{LLAX2}	90		2 T _{CLCL} — 35		ns
RD to Valid Data In	T _{RLDV}		148		5 T _{CLCL} — 165	ns
Data Hold after RD	T _{RHDX}	0		0		ns
Data Float after RD	T _{RHDZ}		55		2 T _{CLCL} — 70	ns
ALE to Valid Data In	T _{LLDV}		350		8 T _{CLCL} — 150	ns
Address to Valid Data In	TAVDV		398		9 T _{CLCL} — 165	ns
ALE to WR or RD	TLLWL	138	238	3 Т _{СLCL} — 50	3 T _{CLCL} + 50	ns
\overline{WR} or \overline{RD} High to ALE High	T _{WHLH}	23	103	$T_{CLCL} - 40$	T _{CLCL} + 40	ns
Address Valid to WR	TAVWL	120		4 T _{CLCL} — 130		ns
Data Valid to WR Transition	T _{QVWX}	13		T _{CLCL} – 50		ns
Data Setup before WR	T _{QVWH}	288		7 T _{CLCL} — 150		ns
Data Hold after WR	T _{WHQX}	13		T _{CLCL} – 50		ns
Address Float after RD	T _{RLAZ}		0		0	ns

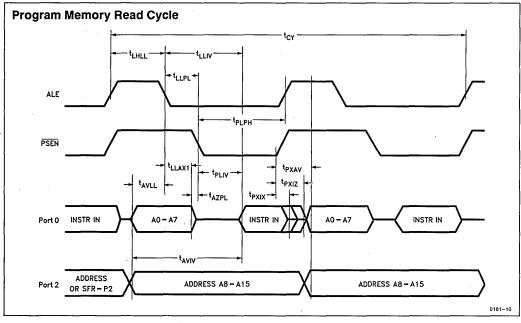

External Clock Drive for SAB 80C515-16/80C535-16

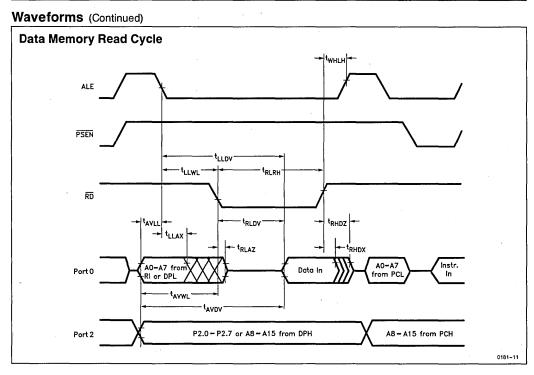
Parameter	Cumhal		Values le Clock	Unit
Parameter	Symbol	Freq = 0.5 M	1Hz to 16 MHz	Unit
		Min	Max	
Oscillator Period	T _{CLCL}	62.5	2000	ns
Oscillator Frequency	1/T _{CLCL}	0.5	16	MHz
High Time	T _{CHCX}	15		ns
Low Time	T _{CLCX}	15		ns
Rise Time	T _{CLCH}		15	· ns
Fall Time	T _{CHCL}		15	ns

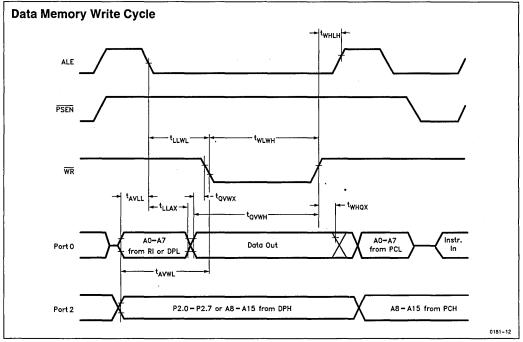
System Clock Timing for SAB 80C515-16/80C535-16

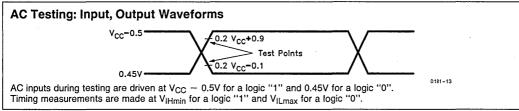
				Limit Values		
Parameter	Symbol	Symbol 16 MHz Clock Min Max		Variable Clock $1/T_{CLCL} = 0.5 \text{ MHz}$ to 16 MHz		Unit
				Min	Max	
ALE to CLKOUT	T _{LLSH}	398		7 T _{CLCL} – 40		ns
CLKOUT High Time	T _{SHSL}	85		2 T _{CLCL} — 40		ns
CLKOUT Low Time	T _{SLSH}	585		10 T _{CLCL} 40		ns
CLKOUT Low to ALE High	T _{SLLH}	23	103	$T_{CLCL} - 40$	T _{CLCL} + 40	ns

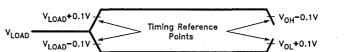


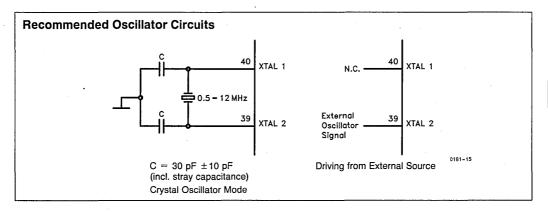

ROM Verification Characteristics


 T_{A} = 25°C $\pm 5^{\circ}\text{C};\,V_{CC}$ = 5V $\pm 10\%;\,V_{SS}$ = 0V \cdot


Parameter	Symbol	Lim	Limit Values		
rarameter	Gymbol	Min	Max	Unit	
Address to Valid Data	TAVQV		48 T _{CLCL}	ns	
ENABLE to Valid Data	T _{ELQV}		48 T _{CLCL}	ns	
Data Float after ENABLE	T _{EHQZ}	0	48 T _{CLCL}	ns	
Oscillator Frequency	1/T _{CLCL}	4	6	MHz	


Waveforms

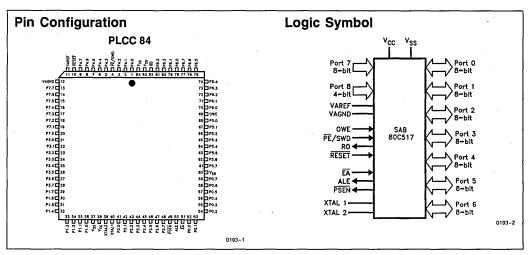



Waveforms (Continued)

AC Testing: Float Waveforms

For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs and begins to float when a 100 mV deviation from the load voltage V_{OL} occurs. $I_{OL}/I_{OH} \ge \pm 20$ mA.

Ordering Information


Туре	Description			
	8-bit CMOS Microcontroller			
SAB 80C515-N	with Mask-Programmable ROM (Plastic), 12 MHz			
SAB 80C535-N	for External Memory (Plastic), 12 MHz			
SAB 80C515-16-N	with Mask-Programmable ROM (Plastic), 16 MHz			
SAB 80C535-16-N	for External Memory (Plastic), 16 MHz			
SAB 80C515-N-T40/85	with Mask-Programmable ROM (Plastic), Ext. Temperature			
SAB 80C535-N-T40/85	for External Memory (Plastic), Ext. Temperature			
SAB 80C515-16-N-T40/85	with Mask-Programmable ROM, Ext. Temp., 16 MHz			
SAB 80C535-16-N-T40/85	for External Memory (Plastic), Ext. Temp., 16 MHz			

Advance Information SAB 80C517/80C537 High Performance 8-Bit Single-Chip CMOS Microcontroller

SAB 80C517 CMOS microcontroller with factory-mask programmable ROM SAB 80C537 CMOS microcontroller for external ROM SAB 80C517-T40/85 Extended temperature range: -40°C to +85°C SAB 80C537-T40/85 Extended temperature range: -40°C to +85°C

- 8K × 8 ROM (SAB 80C517 only)
- 256 × 8 On-Chip RAM
- Superset of SAB 80C51 architecture: - 1 µs Instruction Cycle Time at 12 MHz
 - 256 Direct Addressable Bits
 - Boolean Processor
 - External Data and Program Memory Expandable up to 64 Kbytes each
- Fully Backward Compatible with SAB 80C515
- Four 16-Bit Timer/Counters
- Powerful 16-Bit Compare/Capture-Unit (CCU) with up to 21 High-Speed or PWM Output Channels and 5 Capture Inputs
- Two Full Duplex Serial Interfaces

- Fast 32-Bit Division, 16-Bit Multiplication, 32-Bit Normalize and Shift operation using the on-chip MUL/DIV-Unit (MDU)
- Eight Datapointers for External Memory Addressing
- Fourteen Interrupt Vectors, Four Priority Levels Selectable
- 8-Bit A-to-D Converter with 12 Multiplexed Inputs and Programmable Reference Voltages
- Versatile "Fail Safe"-Provisions (Watchdog . . .)
- Extended Power Saving Modes
- Nine Ports: 56 I/O-Lines, 12 Input-Lines

panded in its arithmetic capabilities, "fail safe" char-

acteristics, analog signal processing and timer capa-

bilities. The SAB 80C537 is identical with the SAB

80C517 except that it lacks the on-chip program

memory. The SAB 80C517/80C537 is supplied in an

84-pin plastic leaded chip carrier package (PLCC

The SAB 80C517/80C537 is a high-end member of the Siemens SAB 8051 family of microcontrollers. It is designed in Siemens ACMOS IV technology and based on SAB 8051 architecture. ACMOS IV is a technology which combines high speed, density characteristics with low power consumption.

While maintaining all the SAB 80C515 features and operating characteristics the SAB 80C517 is ex-

Pin	Symbol	Input (I) Output (O)	Function
1-3, 5-9	P4.0-P4.7	I/O	Port 4 is a bidirectional I/O port with internal pullup resistors. Port 4 pins that have 1s written to them are pulled high by the internal pullup resistors, and in that state can be used as inputs. As inputs, port 4 pins being externally pulled low will source current (I_{IL} , in the DC characteristics) because of the internal pullup resistors.
4	PE/SWD	1	A low level on this pin allows the software to enter the power down, idle and slow down mode. In case the low level is also seen during reset, the watchdog timer function is off on default. Use of the power saving modes is blocked, when this pin is held on high level. A high level during reset performs an automatic start of the watchdog timer immediately after reset. When left unconnected this pin is pulled high by a small internal pullup.
10	RESET	i	A low level on this pin for the duration of two machine cycles while the oscillator is running resets the SAB $80C517$. A small internal pullup resistor permits power-on reset using only a capacitor connected to V_{SS} .
11	V _{AREF}		Reference voltage for the A/D converter
12	V _{AGND}		Reference ground for the A/D converter
13–20	P7.7–P7.0		Port 7 is an 8-bit undirectional input port. Port pins can be used for digital input, if voltage levels meet the specified input high/low voltages, and for the lower 8- bit of the multiplexed analog inputs of the A/D converter, simultaneously.

84).

4

Pin	Symbol	Input (I) Output (O)	Function
21-28	P3.0-P3.7	1/0	Port 3 is a bidirectional I/O port with internal pullup resistors. Port 3 pins that have 1s written to them are pulled high by the internal pullup resistors, and in that state can be used as inputs. As inputs, port 3 pins being externally pulled low will source current (I _{IL} , in the DC characteristics) because of the internal pullup resistors. Port 3 also contains the interrupt, timer, serial port 0 and external memory strobe pins that are used by various options. The output latch corresponding to a secondary function must be programmed to a one (1) for that function to operate. The secondary functions are assigned to pins of port 3 as follows: —RxD(P3.0): receiver data input (asynchronous) or data input/output (synchronous) of serial interface 0 —TxD(P3.1): transmitter data output (asynchronous) or clock output (synchronous) of serial interface 0 —INT0(P3.2): interrupt 0 input/Timer 0 gate control —INT1(P3.3): interrupt 1 input/Timer 1 gate control —T1(P3.5): counter 0 input —T1(P3.5): counter 1 input —WR(P3.6): the write control signal latches the data byte from port 0 into the external data memory. —RD(P3.7): the read control signal enables the external data memory to port 0
29-36	P1.7-P1.0	Ι/Ο	Port 1 is a bidirectional I/O port with internal pullup resistors. Port 1 pins that have 1s written to them are pulled high by the internal pullup resistors, and in that state can be used as inputs. As inputs, port 1 pins being externally pulled low will source current (I _{IL} , in the DC characteristics) because of the internal pullup resistors. It is used for the low order address byte during program verification. It also contains the interrupt, timer, clock, capture and compare pins that are used by various options. The output latch must be programmed to a one (1) for that function to operate (except when used for the compare functions). The secondary functions are assigned to the port 1 pins as follows: INT3/CC0(P1.0): interrupt 3 input/compare 0 output/compare 0 input INT4/CC1(P1.1): interrupt 4 input/compare 1 output/capture 1 input INT5/CC2(P1.2): interrupt 5 input/compare 2 output/capture 2 input INT5/CC4(P1.4): interrupt 6 input/compare 3 output/capture 4 input INT2/CC4(P1.4): interrupt 2 input/compare 4 output/capture 4 input INT2/CC4(P1.4): interrupt 2 input/compare 4 output/capture 4 input T2EX(P1.5): Timer 2 external reload trigger input CLKOUT(P1.6): system clock output

Pin Definitions and Functions (Continued)

Pin	Symbol	Input (I) Output (O)	Function	
37	V _{SS}		Circuit ground potential	
38	V _{CC}		Supply terminal for all operating modes	
39 40	XTAL2 XTAL1		XTAL2 Input to the inverting oscillator amplifier and input to the internal clock generator circuits. XTAL1 Output of the inverting oscillator amplifier. To drive the device from an external clock source, XTAL2 should be driven, while XTAL1 is left unconnected. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is divided down by a divide-by-two flip-flop. Minimum and maximum high and low times as well as rise/fall times specified in the AC-characteristics must be observed.	
41–48	P2.0-P2.7	I/O	Port 2 is a bidirectional I/O port with internal pullup resistors. Port 2 pins that have 1s written to them are pulled high by the internal pullup resistors, and in that state can be used as inputs. As inputs, port 2 pins being externally pulled low will source current (I _{IL} , in the DC characteristics) because of the internal pullup resistors. Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @DPTR). In this application it uses strong internal pullup resistors when issuing 1s. During accesses to external data memory that use 8-bit addresses (MOVX @RI), port 2 issues the contents of the P2 special function register.	
49	PSEN	Ο	The Program Store Enable output is a control signal that enables the external program memory to the bus during external fetch operations. It is activated every six oscillator periods except during external data memory accesses. Remains high during internal program execution.	
50	ALE	0	The Address Latch Enable output is used for latching the address into external memory during normal operation. It is activated every six oscillator periods except during an external data memory access.	
51	ĒĀ	1	External Access Enable. When held at high level, the SAB 80C517 executes instructions from the internal ROM when the PC has address less than 8192. When held at low level, the SAB 80C517 fetches all instructions from external program memory. For the SAB 80C537 this pin must be tied low.	

Pin Definitions and Functions (Continued)

Pin	Symbol	Input (I) Output (O)	Function
52–59	P0.0-P0.7	I/O	Port 0 is an 8-bit open-drain bidirectional I/O port. Port 0 pins that have 1s written to them float, and in that state can be used as high-impedance inputs. Port 0 is also the multiplexed low-order address and data bus during accesses to external program or data memory. In this application it uses strong internal pullup resistors when issuing 1s. Port 0 also outputs the code bytes during program verification in the SAB 80C517. External pullup resistors are required during program verification.
60	V _{SS}	. ·	Circuit ground potential
61–68	P5.7-P5.0	I/O	Port 5 is a bidirectional I/O port with internal pullup resistors. Port 5 pins that have 1s written to them are pulled high by the internal pullup resistors, and in that state can be used as inputs. As inputs, port 5 pins being externally pulled low will source current (I _{IL} , in the DC characteristics) because of the internal pullup resistors. This port also serves the alternate function "Concurrent Compare". The secondary functions are assigned to the port 5 pins as follows: —CCM0(P5.0): concurrent compare 0 —CCM1(P5.1): concurrent compare 1 —CCM2(P5.2): concurrent compare 2 —CCM3(P5.3): concurrent compare 3 —CCM4(P5.4): concurrent compare 4 —CCM5(P5.5): concurrent compare 5 —CCM6(P5.6): concurrent compare 6 —CCM7(P5.7): concurrent compare 7
69	OWE		A high level on this pin enables the oscillator watchdog. When left unconnected this pin is pulled high by a small internal pullup. When held at low level the oscillator watchdog function is off.
70–77	P6.0-P6.7	1/0	 Port 6 is a bidirectional I/O port with internal pullup resistors. Port 6 pins that have 1s written to them are pulled high by the internal pullup resistors, and in that state can be used as inputs. As inputs, port 6 pins being externally pulled low will source current (I_{IL}, in the DC characteristics) because of the internal pullup resistors. Port 6 also contains the external A/D converter control pin and the transmit and receive pins for serial channel 1. The output latch corresponding to a secondary function must be programmed to a one (1) for that function to operate. The secondary functions are assigned to the pins of port 6, as follows: —ADST(P6.0): external A/D-converter start pin —RxD1(P6.1): receiver data input of serial interface1 —TxD(P6.2): transmitter data output of serial interface1

Pin Definitions and Functions (Continued)

Pin Definitions and Functions (Continued
--

Pin	Symbol	Input (I) Output (O)	Function
78-81	P8.0-P8.3	I	Port 8 is a 4-bit unidirectional input port. Port pins can be used for digital input, if voltage levels meet the specified input high/low voltages, and for the higher 4-bit of the multiplexed analog inputs of the A/D converter, simultaneously.
82	RO	0	Reset Output pin. This pin outputs the internally synchronized reset request signal. This signal may be generated by an external hardware reset, a watchdog timer reset or an oscillator watchdog reset. The reset output is active low.
83	V _{SS}		Circuit ground potential
84	V _{CC}		Supply terminal for all operating modes

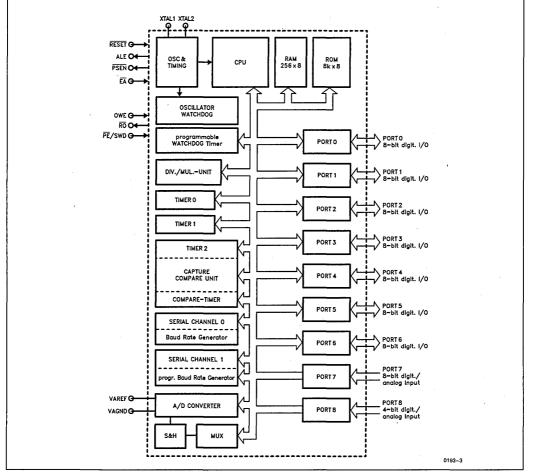


Figure 1. Block Diagram SAB 80C517

4

Functional Description

The following description gives a brief summary of the SAB 80C517's architecture and its peripheral functions. It is mainly based on a list of the SAB 80C517's special function registers given in Table 1. In the following text, any reference to the SAB 80C517 applies to all versions of this microcontroller unless otherwise noted.

The functional description contains the following sections:

- 1.0 Architecture
- 2.0 CPU
- 3.0 Memory Organization
- 4.0 Special Function Registers and Register Contents after Reset
- 5.0 On-Chip Peripherals
 - 5.1 A/D Converter
 - 5.2 Compare/Capture-Unit (CCU)
 - 5.3 Interrupt Structure
 - 5.4 Multiplication/Division Unit
 - 5.5 I/O Ports
 - 5.6 Power Saving Modes
 - 5.7 Serial Interfaces
 - 5.7.1 Serial Interface 0
 - 5.7.2 Serial Interface 1
 - 5.8 Timer/Counters 0 and 1
 - 5.9 Watchdog Units

1.0 Architecture

The SAB 80C517 is based on 8051 architecture. It is a fully compatible member of the SIEMENS SAB 8051/80C51 microcontroller family. It is significantly enhanced as compared to the SAB 80C515. The SAB 80C517 is therefore 100% compatible with code written for the SAB 80C51 and SAB 80C515.

2.0 CPU

Having an 8-bit CPU with extensive facilities for bithandling and binary BCD arithmetics, the SAB 80C517 is optimized for control applications. With a 12 MHz crystal, 58% of the instructions execute in 1 μ s.

Being designed to close the performance gap to the 16-bit microcontroller world, the SAB 80C517's CPU is supported by a powerful 32-bit/ 16-bit arithmetic unit and a more flexible addressing of external memory by eight 16-bit Datapointers.

3.0 Memory Organization

Identical to the SAB 8051 architecture, the SAB 80C517 has separate address spaces for program and data memory. Figure 2 illustrates the mapping of address spaces.

Program Memory

The SAB 80C517 has 8 Kbyte of on-chip ROM, while the SAB 80C537 has no internal ROM. The external program memory can be expanded up to 64 Kbytes. Pin EA controls whether program fetches below address 2000H are done from internal or external memory.

Data Memory

The data memory space consists of an **internal** and **external** memory space.

External Data Memory

Up to 64 Kbytes external data memory can be addressed by instructions that use 8-bit or 16-bit indirect addressing. A 16-bit external data memory address requires one of the eight 16-bit datapointers for addressing. For an 8-bit address, registers R0 and R1 can also be used for addressing the external data memory.

Multiple Datapointers

As a functional enhancement to standard 8051 controllers, the SAB 80C517 contains eight 16-bit datapointers. The instruction set uses only one of these datapointer registers at a time. The selection of the datapointer register is done using another special function register DPSEL (Data Pointer Select, Addr. 92H). Figure 3 illustrates the addressing mechanism.

Internal Data Memory

The internal data memory is divided into three physically distinct blocks:

- the lower 128 bytes of RAM including four banks of eight registers each
- the upper 128 bytes of RAM
- the 128-byte special function register area

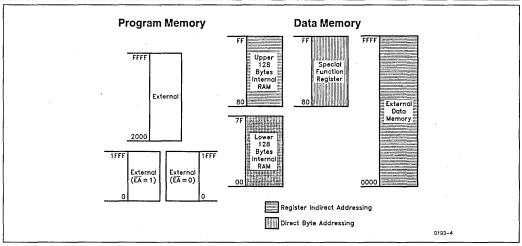


Figure 2. Memory Mapping of the SAB 80C517

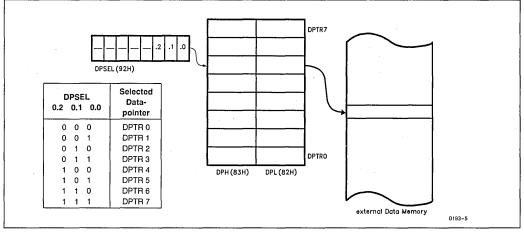


Figure 3. Addressing of External Data Memory

A mapping of the internal data memory is also shown in Figure 2. The overlapping address spaces are accessed by different addressing modes. The stack can be located anywhere in the internal data memory.

4.0 Special Function Registers

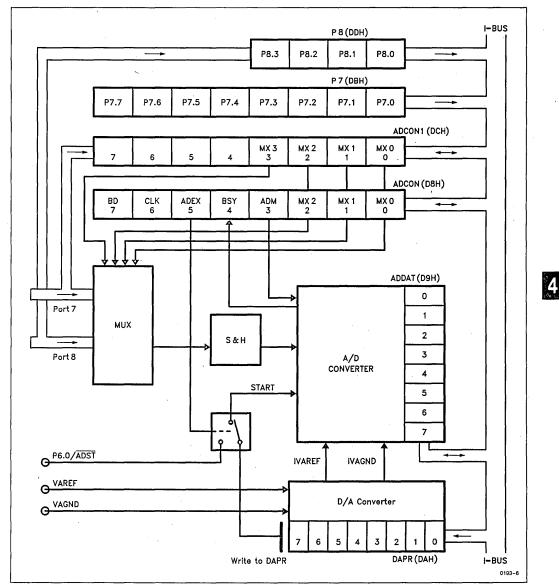
All registers, except the program counter and the four general purpose register banks, reside in the special function register area. The 81 special function registers include arithmetic registers, pointers, and registers that provide an interface between the CPU and the on-chip peripherals. There are also 128 directly addressable bits within the SFR area. The special function registers are listed in Table 1. In this table they are organized in groups which refer to the functional blocks of the SAB 80C517. Block names and symbols are listed in alphabetical order. Bit-addressable Special Function Registers are marked with a dot in the fifth column. Special Function Registers with bits belonging to more than one functional block of the SAB 80C517 are marked with an asterisk (*) in column two.

Table 1. Special Function Registers of the SAB 80C517						
Block	Symbol	Name	Address			
CPU	ACC B DPH DPL DPSEL PSW SP	Accumulator B-Register Data Pointer, High Byte Data Pointer, Low Byte Data Pointer Select Register Program Status Word Register Stack Pointer	0E0H 0F0H 83H 82H 92H 0D0H 81H	•		
A/D- Converter	ADCON0 ADCON1 ADDAT DAPR	A/D Converter Control Reg. 0 A/D Converter Control Reg. 1 A/D Converter Data Register D/A Converter Program Reg.	0D8H 0DCH 0D9H 0DAH	•		
Compare/ Capture Unit/ (CCU)	CCEN CC4EN CC4EN CCH1 CCH2 CCH3 CCH4 CCL1 CCL2 CCL3 CCL4 CMEN CMH0 CMH1 CMH2 CMH3 CMH4 CMH5 CMH4 CMH5 CMH6 CMH7 CML0 CML1 CML2 CML3 CML4 CML5 CML6 CML7 CMSEL CRCH CRCL CRCH CRCL CTCON CTRELH CTRELL	Comp./Capture Enable Reg. Comp./Capture 4 Enable Reg. Comp./Capt. Reg. 1, High Byte Comp./Capt. Reg. 2, High Byte Comp./Capt. Reg. 3, High Byte Comp./Capt. Reg. 4, High Byte Comp./Capt. Reg. 1, Low Byte Comp./Capt. Reg. 2, Low Byte Comp./Capt. Reg. 3, Low Byte Comp./Capt. Reg. 4, Low Byte Comp./Capt. Reg. 4, Low Byte Compare Enable Register Compare Reg. 0, High Byte Compare Reg. 0, High Byte Compare Reg. 2, High Byte Compare Reg. 2, High Byte Compare Reg. 3, High Byte Compare Reg. 4, High Byte Compare Reg. 5, High Byte Compare Reg. 5, High Byte Compare Reg. 7, High Byte Compare Register 0, Low Byte Compare Register 1, Low Byte Compare Register 3, Low Byte Compare Register 4, Low Byte Compare Register 5, Low Byte Compare Register 6, Low Byte Compare Register 6, Low Byte Compare Register 7, Low Byte Compare Register 7, Low Byte Compare Register 7, Low Byte Compare Register 7, Low Byte Compare Register 6, Low Byte Compare Register 7, Low Byte	0C1H 0C9H 0C3H 0C5H 0C7H 0C7H 0C7H 0C2H 0C4H 0C6H 0D3H 0D5H 0D7H 0E3H 0E5H 0E7H 0F3H 0F5H 0D2H 0D4H 0D6H 0E2H 0E6H 0E2H 0E6H 0F2H 0E6H 0F2H 0F3H 0E6H 0F2H 0CBH 0CAH 0CBH 0CAH 0E1H 0DFH 0DEH			
	TH2 TL2 T2CON	Timer 2, High Byte Timer 2, Low Byte Timer 2 Control Register	0CDH 0CCH 0C8H	•		

1	Table 1. Special Function Registers of the SAB 80C517 (Continued)						
Block	Symbol	Name	Address				
Interrupt System	IEN0 CTCON* IEN1 IEN2 IP0 IP1 IRCON TCON* T2CON*	Interrupt Enable Register 0 Comp. Timer Control Reg. Interrupt Enable Register 1 Interrupt Enable Register 2 Interrupt Priority Register 0 Interrupt Priority Register 1 Interr. Request Control Reg. Timer Control Register Timer 2 Control Register	0A8H 0E1H 0B8H 9AH 0A9H 0B9H 0C0H 88H 0C8H	•			
MUL/DIV Unit	ARCON MD0 MD1 MD2 MD3 MD4 MD5	Arithmetic Control Register Multiplication/Division Reg. 0 Multiplication/Division Reg. 1 Multiplication/Division Reg. 2 Multiplication/Division Reg. 3 Multiplication/Division Reg. 4 Multiplication/Division Reg. 5	OEFH OE9H OEAH OEBH OECH OEDH OEEH				
Ports	P0 P1 P2 P3 P4 P5 P6 P7 P8	Port 0 Port 1 Port 2 Port 3 Port 4 Port 5 Port 6 Port 7, Analog/Digital Input Port 8, Analog/Dig. Input, 4-Bit	80H 90H 0A0H 0B0H 0E8H 0F8H 0F8H 0FAH 0DBH 0DDH	•			
Pow.Sav.M.	PCON	Power Control Register	87H				
Serial Channels	ADCON0* PCON* S0BUF S0CON S1BUF S1CON S1REL	A/D Converter Control Reg. Power Control Register Serial Channel 0 Buffer Reg. Serial Channel 0 Control Reg. Serial Channel 1 Buffer Reg. Serial Channel 1 Control Reg. Serial Channel 1 Reload Reg.	0D8H 87H 99H 98H 9CH 9BH 9DH	•			
Timer 0 Timer 1	TCON TH0 TH1 TL0 TL1 TMOD	Timer Control Register Timer 0, High Byte Timer 1, High Byte Timer 0, Low Byte Timer 1, Low Byte Timer Mode Register	88H 8CH 8DH 8AH 8BH 89H	•			
Watchdog	IEN0* IEN1* IP0* IP1* WDTREL	Interrupt Enable Register 0 Interrupt Enable Register 1 Interrupt Priority Register 0 Interrupt Priority Register 1 Watchdog Timer Reload Reg.	0A8H 0B8H 0A9H 0B9H 86H	•			

4

	Table 2. Register C	ontents after Reset	
Register	Contents	Register	Contents
PC	00H	IEN0, INE1	00H
ACC	00Н)	IEN2	XXXX XX00B
ADCON0	00H	IP0, IP1	00H
ADCON1	XXXX 0000B	IRCON	00H
ADDAT	00H	MD 0-5	ХХН
ARCON	OXXXX XXXXB	P0-P6	0FFH
B	00H	PCON	00Н
CCL1-4	00H	PSW	оон
CCH1-4	00H	SOBUF, S1BUF	0XXH
CCEN	00H	SOCON	оон
CC4EN	00H	S1CON	0X00 0000B
CMEN	00H	S1REL	. 00H
CMH0-7	00H	SP	07H
CML0-7	00H	TCON	00H
CMSEL	00H	TLO, THO	00H
CRCL, CRCH	00H	TL2, TH2	00Н
CTCON	XXXX 0000B	TMOD	00H
CTRELL, CTRELH	00H	T2CON	00H
DAPR	00H	WDTREL	00H
DPSEL	XXXXX000B		
DPTR0-7	000H		


X means, that the value is undeterminate.

5.0 On-Chip Peripherals

Given below is a functional description of all Special Function Registers and Register Bits which are used to program the SAB 80C517's peripherals.

5.1 A/D Converter

The SAB 80C517 contains an 8-bit A/D-Converter with 12 multiplexed input channels. Reference voltages are internally programmable. A block diagram of the A/D converter is shown in Figure 4.

Special Function Registers of the A/D Converter

					DAPR
0DAH	Programming of V _i	ntAREF	Programming	g of V _{intAGND}	DAPR

D/A Converter Program Register. Each 4 bit nibble is used to program the internal reference voltages. Writeaccess to DAPR starts conversion.

$$V_{intAGND} = V_{intAGND} + \frac{DAPR (0.3 - 0.0)}{16} (V_{AREF} - V_{AGND})$$

with DAPR (0.3 - 0.0) < 13;

$$V_{\text{intAREF}} = V_{\text{intAGND}} + \frac{\text{DAPR (0.7 - 0.4)}}{16} (V_{\text{AREF}} - V_{\text{AGND}})$$

with DAPR (0.7 - 0.4) > 3

If DAPR (0.3 - 0.0) or DAPR (0.7 - 0.4) = 0 then the internal references voltages correspond to the external reference voltages V_{AGND} and V_{AREF}.

This register contains the 8-bit conversion result.

These bits are not used in controlling A/D Converter Functions

Bit	Function
MX0) MX1 MX2	Select lower 8 input channels of the A/D converter. See Table 3
ADM	A/D conversion mode. When set, a continuous conversion is selected. If $ADM = 0$, the converter stops after one conversion.
BSY	Busy flag. This flag indicates whether a conversion is in progress (BSY = 1). The flag is cleared by hardware when the conversion is completed.
ADEX	Internal/external start of conversion. When set, the external start of conversion by P6.0/ADST is enabled.

ADCON1

ADDAT

	ſ	· · · · · · · · · · · · · · · · · · ·		r •••					
0DCH	—	_	—	- 1	MX3	MX2	MX1	MXO	ADCON 1
	L		L	L	لسيد				

A/D-converter control register 1. Contains channel selection bits MX0 to MX3. For channel selection see Table 3. Bits MX0 to MX2 can be written or read either in ADCON0 or in ADCON1.

Iau	Table 5. Selection of the Analog input Channels						
MX3	MX2	MX1	MX0	Selected Channel	Pin		
0	0	0	0	Analog Input 0	P7.0		
0	0	0	1	Analog Input 1	P7.1		
0	0	1	0	Analog Input 2	P7.2		
0	0	1	1	Analog Input 3	P7.3		
0	1	0	0	Analog Input 4	P7.4		
0	1	0	1	Analog Input 5	P7.5		
0	1	1	0	Analog Input 6	P7.6		
0	1	1 ·	1	Analog Input 7	P7.7		
1	Х*	0	0	Analog Input 8	P8.0		
1	х	0	1	Analog Input 9	P8.1		
1	х	1	0	Analog Input 10	P8.2		
1	Х	1	1	Analog Input 11	P8.3		

Table 3. Selection of the Analog Input Channels

*X means that the value may be 0 or 1.

5.2 Compare/Capture-Unit (CCU)

The Compare Capture Unit is a complex timer/register array for applications that require High Speed I/O, Pulse Width Modulation and more timer/counter capabilities. The CCU consists of

- one 16-bit timer/counter (Timer 2) with 2-bit prescaler, reload capability and a max. clock frequency of f_{osc/12}.
- one 16-bit timer (Compare Timer) with 8-bit prescaler, reload capability and a max. clock frequency of f_{osc/2}.
- thirteen 16-bit Compare Registers
- five of which can be used as 16-bit Capture Registers
- up to 21 output lines controlled by the CCU
- seven interrupts which can be generated by CCUevents.

Figure 5 shows a block diagram of the CCU. Eight compare registers (CM0 to CM7) can individually be assigned either to Timer 2 or to the Compare Timer. Diagrams of the two timers are shown in Figures 6 and 7. The four Compare/Capture Registers and the Compare/Reload/Capture Register are always connected to Timer 2. Depending upon the selection of the register type and the timer, two compare modes can be selected. Table 4 illustrates possible combinations and the corresponding output lines.

Compare

Mode 0: Upon a match the output signal changes from low to high. It goes back to low level whon Timer 2 overflows. Mode 1: The transition of the output signal can be determined by software. A Timer 2 overflow does not necessarily cause an output change.

Compare Registers CM0 to CM7 use additional shadow latches when operated in mode 0. Figure 8 shows the function of these shadow latches. The shadow latches are implemented to prevent from loss of compare matches which may occur when loading of the compare values is not correlated with the timer count. The shadow latches are automatically loaded from the Compare Registers, every time the timer overflows.

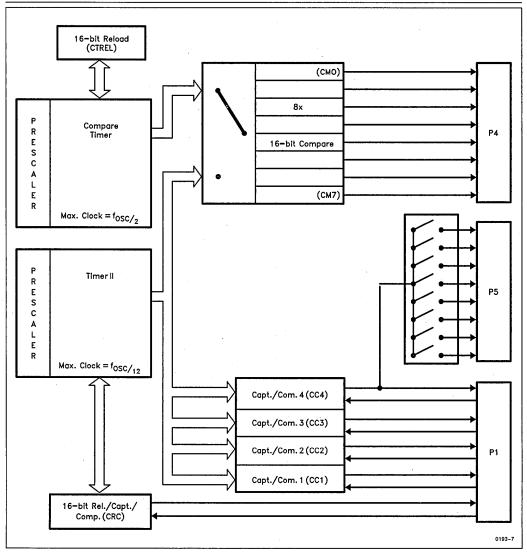
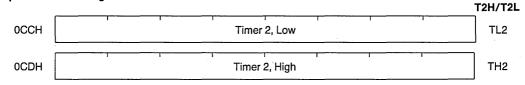
4

Capture

- Mode 0: Capture is performed in response to a transition at the corresponding port 1 pins CC0 to CC3.
- Mode 1: Write operation into the low-order byte of the dedicated capture register causes the Timer 2 contents to be latched into this register.

Reload of Timer 2

- Mode 0: Reload is caused by a timer overflow (autoreload).
- Mode 1: Reload is caused in response to a negative transition at pin T2EX (P1.5), which also can request an interrupt.

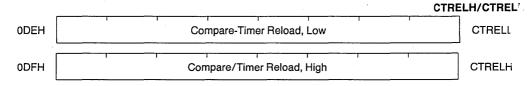
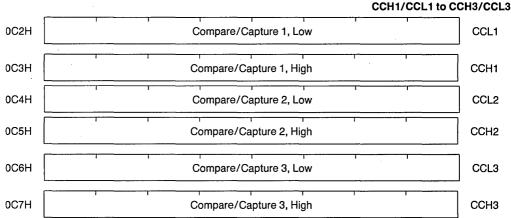
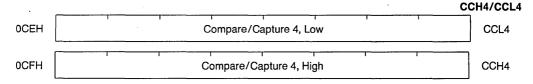

Figure 5. Block Diagram of the Compare/Capture-Unit

Table 4. CCU Compare Configuration						
Assigned Timer	Compare Reg.	Compare Output at	Possible Modes			
Timer 2	CRCH/CRCL	P1.0/INT3/CC0	Comp. Mode 0, 1 + Reload			
	CC1H/CC1L	P1.1/INT4/CC1	Comp. Mode 0, 1			
	CC2H/CC2L	P1.2/INT5/CC2	Comp. Mode 0, 1			
	CC3H/CC3L	P1.3/INT6/CC3	Comp. Mode 0, 1			
	CC4H/CC4L	P1.4/INT2/CC4	Comp. Mode 0, 1			
	CC4H/CC4L	P5.0/CCM0	Comp. Mode 1			
	CC4H/CC4L	P5.7/CCM7	Comp. Mode 1			
	CM0H/CM0L	P4.0/CM0	Comp. Mode 1			
	CM7H/CM7L	P4.7/CM7	Comp. Mode 1			
Compare Timer	CM0H/CM0L	P4.0/CM0	Comp. Mode 0 (with Shadow			
	. :	:	Latches)			
	: CM7H/CM7L	: P4.7/CM7	: Comp. Mode 0 (with Shadow			
			Latches)			

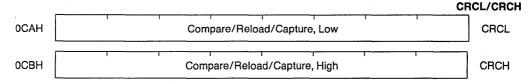
Special function registers of the CCU:

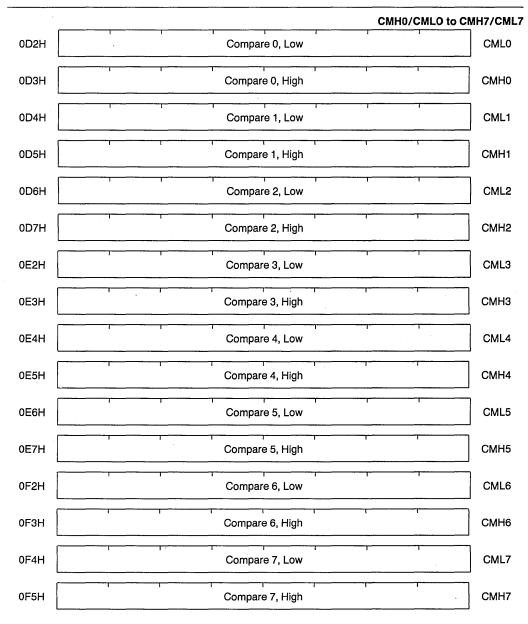


16-bit Timer-Register. Contains actual count of Timer 2.



16-bit Compare Timer Reload Register. After Overflow the Compare Timer is automatically reloaded with the contents of this register.


A write-to-CTRELL starts or restarts a running Compare Timer with the contents of CTREL. If loading a CTREL with a 16-bit value is intended, the high byte CTRELH must be written first. The prescaler of the Compare-Timer (register CTCON) should be set up before the timer is started.


16-bit dual function Compare/Capture-Registers. The compare function of each register controls one port output line (see Table 4) on port 1. These registers exclusively operate with Timer 2 as a time-base. On a compare match an interrupt is requested.

16-bit dual function Compare/Capture register. In addition to the standard Compare/Capture functions this register provides the "Concurrent Compare" feature which allows a simultaneous control of up to 9 output lines (at Port 1 and Port 5) with one compare register. It operates exclusively with Timer 2. On a compare match an interrupt can be generated.

16-bit three function Compare/Reload/Capture Register. Provides Compare and Capture function using Timer 2. Can also be used as a 16-bit reload-register for Timer 2.

16-bit Compare registers. The compare function of each register controls one output line at port 4 (see Table 4). These registers can individually be assigned either to Timer 2 or to the Compare Timer. When operated with the Compare timer, shadow latches are used to latch the contents at timer overflow.

									CCEN
0C1H	COCAH3	COCAL3	COCAH2	COCAL2	COCAH1	COCAL1	COCAH0	COCALO	CCEN

Compare/Capture Enable Register selects Compare or Capture function for registers CRC, CC1 to CC3.

B	lit	Function
C0CAH0 0 0	COCALO 0 1 0	Compare/Capture Mode for CRC Register Compare/Capture Disabled Capture on Falling/Rising Edge at Pin P1.0/INT3/CC0 Compare Enabled
C0CA1H 0 0 1 1	COCAL1 0 1 0 1	Capture on Write Operation into Register CRCL Compare/Capture Mode for CC Register 1 Compare/Capture Disabled Capture on Falling/Rising Edge at Pin P1.1/INT4/CC1 Compare Enabled Capture on Write Operation into Register CCL1
C0CAH2 0 0 1 1	C0CAL2 0 1 0 1	Compare/Capture Mode for CC Register 2 Compare/Capture Disabled Capture on Falling/Rising Edge at Pin P1.2/INT5/CC2 Compare Enabled Capture on Write Operation into Register CCL2
C0CAH3 0 0 1 1	COCAL3 0 1 0 1	Compare/Capture Mode for CC Register 3 Compare/Capture Disabled Capture on Falling/Rising Edge at Pin P1.3/INT6/CC3 Compare Enabled Capture on Write Operation into Register CCL3

CN

								CC4EN
0C9H	 COCON2	COCON1	COCON0	COCOEN	COCAH4	COCAL4	сомо	CC4EN

Selects Compare or Capture function, number of concurrent compares and compare mode of register CC4.

В	it	Function
COACH4	COCAL4	Compare/Capture Mode for CC4 Register
0	0	Compare/Capture Disabled
0	1	Capture on Falling/Rising Edge at Pin P1.4/INT2/CC4
1	0	Compare Enabled
1	1	Capture on Write Operation into Register CCL4
CO	MO	Compare Mode Bit. When set Compare Mode 1 is selected for CC4 COMO = 0 selects Compare Mode 0.
COC	OEN	Enables the Compare Mode 1 and the concurrent Compare Output for CC4. Setting of this bit automatically sets bit COMO.
COCC COCC COCC	DN1 }	Selects additional concurrent Compare Outputs at Port 5. See table below.

COCON 2	COCON 1	COCON 0	Function
0	0	0	One Additional Output of CC4 at P5.0
0	0	1	Additional Outputs of CC4 at P5.0 to P5.1
0	. 1	0	Additional Outputs of CC4 at P5.0 to P5.2
0	1	1	Additional Outputs of CC4 at P5.0 to P5.3
1	0	0	Additional Outputs of CC4 at P5.0 to P5.4
1	0	1	Additional Outputs of CC4 at P5.0 to P5.5
1	1	0	Additional Outputs of CC4 at P5.0 to P5.6
1	. 1	1	Additional Outputs of CC4 at P5.0 to P5.7

									CMEN
0F6H	CMEN.7	CMEN.6	CMEN.5	CMEN.4	CMEN.3	CMEN.2	CMEN.1	CMEN.0	CMEN

Contains enable bits for compare-registers CM0 to CM7. When set, compare function is enabled and the CCU is tied to the output lines.

Bit	Function			
CMEN.7	Compare Enable Bit for CM7			
CMEN.6	Compare Enable Bit for CM6			
CMEN.5	Compare Enable Bit for CM5			
CMEN.4	Compare Enable Bit for CM4			
CMEN.3	Compare Enable Bit for CM3			
CMEN.2	Compare Enable Bit for CM2			
CMEN.1	Compare Enable Bit for CM1			
CMEN.0	Compare Enable Bit for CM0			

CMSEL

	OMORI A	OMODI F		ONOT O	ONOTI A			OVICEI
0F7H CMSEL.7	UMSEL.6	CMSEL.5	I UMSEL.4	CMSEL.3	I UMSEL.2	UMSEL.1	UMSEL.0	UMSEL

Contains select bits for registers CM0 to CM7. When set, CMLx/CMHx are assigned to the Compare Timer and compare mode 0 is enabled. The compare registers are assigned to Timer 2 if CMSEL.X = 0. In this case compare mode 1 is selected.

Bit	Function
CMSEL.7	Select Bit for CM7
CMSEL.6	Select Bit for CM6
CMSEL.5	Select Bit for CM5
CMSEL.4	Select Bit for CM4
CMSEL.3	Select Bit for CM3
CMSEL.2	Select Bit for CM2
CMSEL.1	Select Bit for CM1
CMSEL.0	Select Bit for CM0

Table 4 illustrates possible assignments of the compare-registers for the two timers, the corresponding compare outputs and the compare modes.

									T2CON
	0CFH	0CEH	0CDH	0CCH	0CBH	0CAH	0C9H	0C8H	
0C8H	T2PS	13FR	12FR	T2R1	T2R0	T2CM	T2I1	T210	T2CON

These bits are not used in controlling the CCU.

Timer 2 control register. Bit-addressable register which controls Timer 2 function and compare mode of registers CRC, CC1 to CC3.

E	Bit	Function					
T211 0 0 1	T2I0 0 1 0 1	Timer 2 Input Selection No Input Selected, Timer 2 Stops Timer Function, Input Frequency = $f_{OSC/12}$ (T2PS = 0) or $f_{OSC/24}$ (T2PS = 1) Counter Function, External Input Signal at Pin T2/P1.7 Gated Timer Function, Input Controlled by Pin T2/P1.7					
T2R1 0 1 1	T2R0 X 0 1	Timer 2 Reload Mode Selection Reload Disabled Mode 0: Auto-Reload upon Timer 2 Overflow (TF2) Mode 1: Reload upon Falling Edge at Pin T2EX/P1.5					
T2	СМ	Compare Mode Bit for Registers CRC, CC1 through CC3. When set, Compare Mode 1 is selected. T2CM $=$ 0 selects Compare Mode 0.					
T2	PS	Prescaler Select Bit. When set, Timer 2 is clocked in the "Timer" or "Gated Timer" function with 1/24 of the oscillator frequency. T2PS = 0 Gates $f_{osc/12}$ to Timer 2. T2PS must be 0 for the counter operation of Timer 2.					

CTCON

0E1H	 	_	 CTF	CLK2	CLK1	CLKO	CTCON

Compare Timer Control Register. Contains clock selection bits for the Compare-Timer and the Compare Timer Overflow flag.

Bit	Function
CLK2 CLK1 CLK0	Compare Timer Input Clock Selection. See table below.
CTF	Compare Timer Overflow Flag. Must be cleared by software. If the Compare Timer Interrupt is Enabled, $CTF = 1$ will cause an Interrupt.

CLK2	CLK1	CLK0	Function	
0	0	0	Compare Timer Input Clock is f _{osc/2}	
0	0	1 Compare Timer Input Clock is fosc		
0 '	1	0	Compare Timer Input Clock is f _{osc/8}	
0	1	1	Compare Timer Input Clock is fosc/16	
1	0	0	Compare Timer Input Clock is f _{osc/32}	
1	0	1	Compare Timer Input Clock is f _{osc/64}	
1	1	0	Compare Timer Input Clock is fosc/128	
1	1	1	Compare Timer Input Clock is fosc/256	

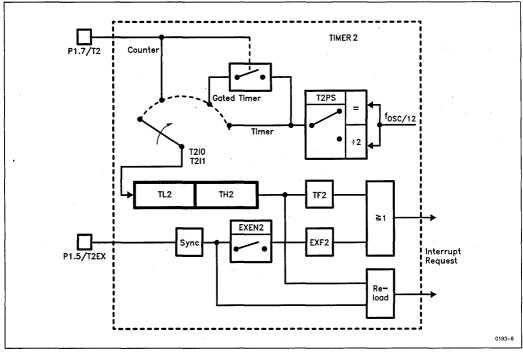


Figure 6. Block Diagram of Timer 2

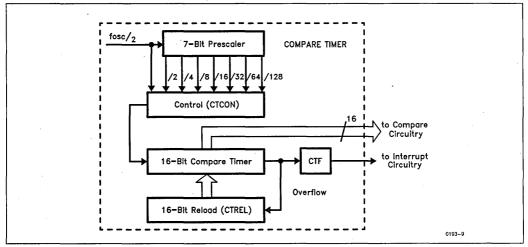


Figure 7. Block Diagram of the Compare Timer

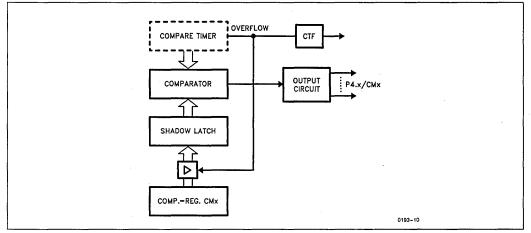


Figure 8. Compare-Mode 0 with Registers CM0 to CM7

5.3 Interrupt Structure

The SAB 80C517 has 14 interrupt vectors with the following vector addresses and request flags:

Interrupt Request Flags	Interrupt Vector Address	Interrupt Source
IEO	003H	External Interrupt 0
TFO	00BH	Timer 0 Overflow
IE1	0013H	External Interrupt 1
TF1	001BH	Timer 1 Overflow
RIO/TIO	0023H	Serial Channel 0
TF2/EXF2	002BH	Timer 2 Overflow/Ext. Reload
IADC	0043H	A/D Converter
IEX2	004BH	External Interrupt 2
IEX3	0053H	External Interrupt 3
IEX4	005BH	External Interrupt 4
IEX5	0063H	External Interrupt 5
IEX6	006BH	External Interrupt 6
RI1/TI1	0083H	Serial Channel 1
CTF	008BH	Compare Timer Overflow

Each interrupt vector can be individually enabled/disabled. The response time to an interrupt request is more than 3 machine cycles and less than 9 machine cycles.

External interrupts 0 and 1 can be activated by a low-level or a negative transition (selectable) at their corresponding input pin, external interrupts 2 and 3 can be programmed for triggering on a negative or a positive transition. The external interrupts 2 to 6 are combined with the corresponding alternate functions compare (output) and capture (input) on port 1.

For programming of the priority levels the interrupt vectors are combined in pairs or triples. Each pair or triple can be programmed individually to one of the four priority levels by setting or clearing one bit in special function register IP0 and one in IP1. Figure 9 shows the interrupt request sources, their enabling bits and the priority level structure.

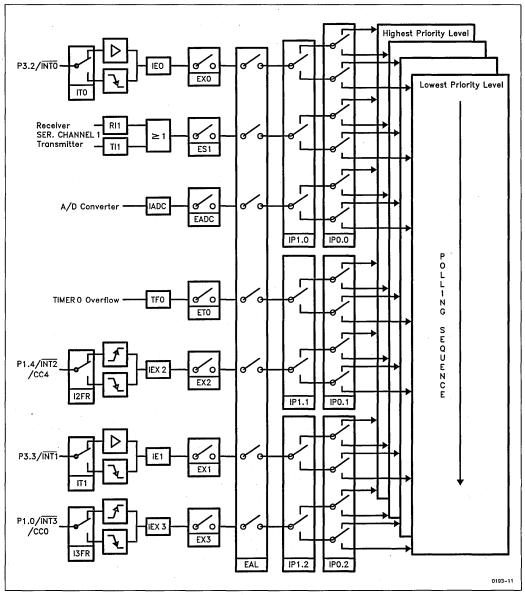


Figure 9. Interrupt Structure of the SAB 80C517

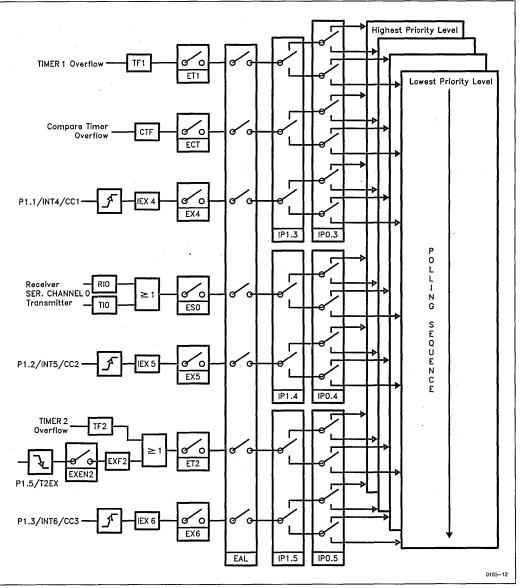


Figure 9. Interrupt Structure of the SAB 80C517 (Continued)

4

	0C7H	0C6H	0C5H	0C4H	0C3H	0C2H	0C1H	0C0H	IRCON
осон	EXF2	TF2	IEX6	IEX5	IEX4	IEX3	IEX2	IADC	IRCON

Bit	Function
IADC	A/D converter interrupt request flag. Set by hardware at the end of a conversion. Must be cleared by software.
IEX2	External interrupt 2 edge flag. Set by hardware when external interrupt edge is detected or when a compare event occurs at pin 1.4/INT2/CC4. Cleared by hardware when interrupt is processed.
IEX3	External interrupt 3 edge flag. Set by hardware when external interrupt edge is detected or when a compare event occurs at pin 1.0/INT3/CC0. Cleared by hardware when interrupt is processed.
IEX4	External interrupt 4 edge flag. Set by hardware when external interrupt edge is detected or when a compare event occurs at pin 1.1/INT4/CC1. Cleared by hardware when interrupt is processed.
IEX5	External interrupt 5 edge flag. Set by hardware when external interrupt edge is detected or when a compare event occurs at pin 1.2/INT5/CC2. Cleared by hardware when interrupt is processed.
IEX6	External interrupt 6 edge flag. Set by hardware when external interrupt edge is detected or when a compare event occurs at pin 1.3/INT6/CC3. Cleared by hardware when interrupt is processed.
TF2	Timer 2 overflow flag. Set by a Timer 2 overflow. Must be cleared by software. If the Timer 2 interrupt is enabled, TF2 = 1 will cause an interrupt.
EXF2	Timer 2 external reload flag. Set when a reload is caused by a negative transition on pin T2EX while EXEN2 = 1. When the Timer 2 interrupt is enabled, EXF2 = 1 will cause the CPU to vector to the Timer 2 interrupt routine. Can be used as an additional external interrupt when the reload function is not used. EXF2 must be cleared by software.

									TCON
	8FH	8EH	C5H	8CH	8BH	8AH	89H	88H	
88H	TF1	TR1	TF0	TR0	IE1	IT1	IE0	ITO	TCON

These bits are not used for interrupt control.

Bit	Function
ІТО	Interrupt 0 Type Control Bit. Set/cleared by software to specify falling edge/low-level triggered external interrupts
IEO	Interrupt 0 Edge Flag. Set by hardware when external interrupt edge is detected. Cleared by hardware when interrupt is processed.
IT1	Interrupt 1 Type Control Bit. Set/cleared by software to specify falling edge/low-level triggered external interrupts.
IE1	Interrupt 1 Edge Flag. Set by hardware when external interrupt edge is detected. Cleared by hardware when interrupt is processed.
TF0	Timer 0 Overflow Flag. Set by hardware on timer/ counter overflow. Cleared by hardware when processor vectors to interrupt routine.
TF1	Timer 1 Overflow Flag. Set by hardware on timer/ counter overflow. Cleared by hardware when processor vectors to interrupt routine.

	0CFH	0CEH	0CDH	0CCH	0CBH	0CAH	0C9H	0C8H	T2CON
0C8H	T2PS	13FR	I2FR	T2R1	T2R0	T2CM	T211	T210	T2CON

These bits are not used for interrupt control.

Bit	Function	
I2FR	External interrupt 2 falling/rising edge flag. When set, the interrupt 2 request flag IEX2 will be set on a positive transition at pin P1.4/INT2. I2FR = 0 specifies external interrupt 2 to be negative-transition activated.	·
I3FR	External interrupt 3 falling/rising edge flag. When set, the interrupt 3 request flag IEX3 will be set on a positive transition at pin P1.0/INT. I3FR = specifies external interrupt 3 to be negative-transition active.	

							CTCON
0C8H	 	 _	CTF	CLK 2	CLK 1	CLK 0	CTCON

These bits are not used for interrupt control.

Bit	Function
CTF	Compare Timer Overflow Flag. Set by hardware at a rollover of the compare timer. Must be cleared by software. If the compare timer interrupt is enabled, $CTF = 1$ will cause an interrupt.

									IEN0
0A8H	EAL	WOT	ET2	ES0	ET1	EX1	ET0	EX0	IENO

These bits are not used for interrupt control.

Bit	Function
EX0	Enables or Disables External Interrupt 0. If $EXO = 0$, external interrupt 0 is disabled.
ET0	Enables or Disables the Timer 0 Overflow Interrupt. If $ET0 = 0$, the Timer 0 interrupt is disabled.
EX1	Enables or Disables External Interrupt 1. If $EX1 = 0$, external interrupt 1 is disabled.
ET1	Enables or Disables the Timer 1 Overflow Interrupt. If $ET1 = 0$, the Timer 1 interrupt is disabled.
ES0	Enables or Disables the Serial Channel 0 Interrupt. If $ES0 = 0$, the serial channel 0 interrupt is disabled.
ET2	Enables or Disables the Timer 2 Overflow or External Reload Interrupt. If $ET2 = 0$, the Timer 2 interrupt is disabled.
EAL	Enables or Disables All Interrupts. If $EAL = 0$, no interrupt will be acknowledged. If $EAL = 1$, each interrupt source is individually enabled or disabled by setting or clearing its enable bit.

	0BFH	0BEH	0BDH	0BCH	0BBH	0BAH	0B9H	0B8H	IEN1
0B8H	EXEN2	SWDT	EX6	EX5	EX4	EX3	EX2	EADC	IEN1

These bits are not used for interrupt control.

Bit	Function
EADC	Enables or disables the A/D converter interrupt. If EADC = 0, the A/D converter interrupt is disabled.
EX2	Enables or disables external interrupt $2/capture/compare$ interrupt 4. If EX2 = 0, external interrupt 2 is disabled.
EX3	Enables or disables external interrupt $3/capture/compare$ interrupt 0. If EX3 = 0, external interrupt 3 is disabled.
EX4	Enables or disables external interrupt 4 /capture/compare interrupt 1. If EX4 = 0, external interrupt 4 is disabled.
EX5	Enables or disables external interrupt 5/capture/compare interrupt 2. If EX5 = 0, external interrupt 5 is disabled.
EX6	Enables or disables external interrupt 6 /capture/compare interrupt 3. If EX6 = 0, external interrupt 6 is disabled.
EXEN2	Enables or disables the Timer 2 external reload interrupt. EXEN2 $=$ 0 disables the Timer 2 external reload interrupt. The external reload function is not affected by EXEN2.

	- -	IEN2					
09AH — —	— — — — ECT ES1 II	EN2					
Bit	Function						
ES1	Enable Serial Interrupt of interface 1. Enables or disables the interrupt of serial interface 1. If $ES1 = 0$, the interrupt is disabled.						
ECT	Enable Compare Timer Interrupt. Enables or disables the interrupt at compare timer overflow. If $ECT = 0$, the interrupt is disabled						

IP0/IP1 IP0.3 0A9H OWDS WDTS IP0.5 IP0.4 IP0.2 IP0.1 IP0.0 IP0 0B9H IP1.5 IP1.4 IP1.3 IP1.2 IP1.1 IP1.0 IP1 _

These bits are not used for interrupt control.

Corresponding bit-locations in both registers are used to set the interrupt priority level of an interrupt pair or triple.

В	it	Function	
IP1.x	IP0.x		
0	0	Set Priority Level 0 (Lowest)	
0	1	Set Priority Level 1	
1	0	Set Priority Level 2	
1	1	Set Priority Level 3 (Highest)	

Bit	Corresponding Interrupt Pair or Triple
IP1.0/IP0.0	IE0/RI1 + TI1/IADC
IP1.1/IP0.1	TF0/CTF/IEX2
IP1.2/IP0.2	IE1/IEX3
IP1.3/IP0.3	TF1/IEX4
IP1.4/IP0.4	RI0 + TI0/IEX5
IP1.5/IP0.5	TF2 + EXF2/IEX6

5.4 Multiplication/Division Unit

This on-chip arithmetic unit provides fast 32-bit division, 16-bit multiplication as well as shift and normalize features. All operations are integer operations.

Operation	Result	Remainder	Execution Time
32-Bit/16-Bit	32-Bit	16-Bit	6 t _{cy} (1)
16-Bit/16-Bit	16-Bit	16-Bit	4 t _{cy}
16-Bit $ imes$ 16-Bit	32-Bit		4 t _{cy}
32-Bit Normalize			6 t _{cy} (2)
32-Bit Shift Left/Right		· · · · · · · · · · · · · · · · · · ·	6 t _{cy} (2)

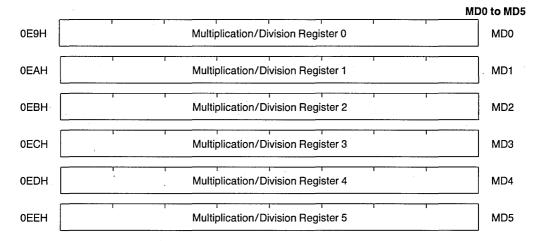
NOTE:

1. 1 $t_{cy} = 1 \ \mu s$ @12 MHz oscillator frequency

2. The maximal shift speed is 6 shifts/cycle.

The MDU consists of six registers used for operands and results and one control register. Operation of the MDU can be divided in three phases:

To start an operation, register MD0 to MD5 (or ARCON) must be written to in a certain sequence according to Table 6 or 7. The order the registers are accessed determines the type of the operation. A shift operation is started by a final write operation to register ARCON (see also the register description).


Table 6. Performing a MDU-Calculation

Operation	32-Bit/16-Bit		16-Bi	16-Bit/16-Bit		t * 16-Bit
FIRST WRITE	MD0 MD1	D'endL D'end	MD0	D'endL	MD0	M'andL
	MD2	D'end	MD1	D'endH	MD4	M'orL
	MD3 MD4	D'endH D'orL	MD4	D'orL	MD1	M'andH
LAST WRITE	MD5	D'orH	MD5	D'orH	MD5	M'orH
FIRST READ	MD0 MD1	QuoL Quo	MD0	QuoL	MD0	PrL
	MD2	Quo	MD1	QuoH	MD1	
	MD3 MD4	QuoH RemL	MD4	RemL	MD2	
LAST READ	MD5	RèmH	MD5	RemH	MD3	PrH

Table 7. Shift Operation with the CCU							
Operation	Normalize, Shift Left, Shift Right						
FIRST WRITE	MD0 MD1 MD2	Least Significant Byte					
LAST WRITE	MD3 ARCON	Most Significant Byte Start of Conversion					
FIRST READ	MD0 MD1 MD2	Least Significant Byte					
LAST READ	MD3	Most Significant Byte					

Abbreviations

D'end	Dividend, 1st operation of division
D'or	Divisor, 2nd operation of division
Quo	Quotient, result of division
M'and	Multiplicand, 1st operand of multiplication
M'or	Multiplicator, 2nd operand of multiplication
Pr	Product, result of multiplication
Rem	Remainder
L	means, that this byte is the least significant of the 16-bit or 32-bit operand
Н	means, that this byte is the most significant of the 16-bit or 32-bit operand

Operand registers of the MDU must be loaded in a certain sequence to start a MDU-operation (see Table 6 or 7). Registers also contain result and remainder after operation. MD0 is the first byte to be written in any operation. Writing to MD5 completes the trigger-procedure of multiplication and division.

APCON

					-				ANCON
0EFH	MDEF	MDOV	SLR	SC.4	SC.3	SC.2	SC.1	SC.0	ARCON

Arithmetic control register. Contains control flags and the shift counter of the MDU. Triggers a shift or a normalize operation in register MD0 to MD3 when being written to.

Bit	Function
MDEF	Error flag. Indicates an improperly performed operation. MDEF is set by hardware when an operation is retriggered by a write access to MDx before the first operation has been completed. MDEF is automatically cleared after being read.
MDOV	Overflow flag. Exclusively controlled by hardware. MDOV is set by the following events: —division by zero —multiplication with a result greater than 0FFFFH —Start of normalizing if MD3.7 = 1
SLR	Shift direction bit. When set, shift right is performed. SLR = 0 selects shift left operation.
SC.4 SC.3 SC.2 SC.1 SC.0	Shift counter. When preset with 00000B, normalizing is selected. After operation, SC.0 to SC.4 contain number of normalizing shifts performed. When set with a value \neq 0 shift operation is started. The number of shifts performed is determined by the count written to SC.0 to SC.4.

© Siemens Components, Inc.

4

5.5 I/O Ports

The SAB 80C517 has seven 8-bit I/O-ports and two input ports (8-bit and 4-bit wide).

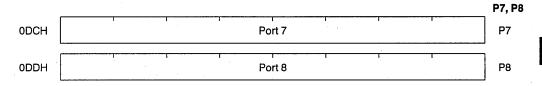
Port 0 is an open-drain bidirectional I/O port, while ports 1 to 6 are quasi-bidirectional I/O ports with internal pull-up resistors. That means, when configured as inputs, ports 1 to 6 will be pulled high and will source current when externally pulled low. Port 0 will float when configured as input.

Port 0 and port 2 can be used to expand the program and data memory externally. During an access to external memory, port 0 emits the low-order address byte and reads/writes the data byte, while port 2 emits the high-order address byte. In this function, port 0 is not an open-drain port, but uses a strong internal pullup FET. Port 1, 3, 4, 5 and port 6 provide several alternate functions. Please see the "Pin Description" for details.

The SAB 80C517 has two dual-purpose input ports. The twelve port lines at port 7 and port 8 can be used as analog inputs for the A/D converter. If input voltages at P7 and P8 meet the specified digital input levels (V_{IL} and V_{IH}) the port can also be used as digital input port.

	87H	86H	85H	84H	83H	82H	81H	80H	
80H	P.07	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0	P0

During any access to external memory the CPU writes 0FFH to the port 0 latch therefore obliterating any previous contents the port latch had.


									P2
	0A7H	0A6H	0A5H	0A4H	0A3H	0A2H	0A1H	0A0H	
оаон [P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0	P2

The contents written to the port 2 latch are not affected during external memory access. If an eight bit address is used to address external memory, the contents of the port 2 latch remain at the port 2 pins.

ΡΛ

	097H	096H	095H	094H	093H	092H	091H	P1, P3, P 090H	4, P5, P6
90H	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0	P1
	0B7H	0B6H	0B5H	0B4H	0B3H	0B2H	0B1H	овон	
0B0H	P3.7	P3.6	P3.5	P3.4	P3.3	P3.2	P3.1	P3.0] P3
	0EFH	0EEH	0EDH	0ECH	0EBH	0EAH	0E9H	0E8H	
0E8H	P4.7	P4.6	P4.5	P4.4	P4.3	P4.2	P4.1	P4.0] P4
	0FFH	OFEH	0FDH	0FCH	0FBH	OFAH	0F9H	0F8H	_
0F8H	P5.7	P5.6	P5.5	P5.4	P5.3	P5.2	P5.1	P5.0	P5
0FAH		I	I	Po	rt 6	r	1	1] P6

Port pins show the information written to these port latches, when used as general purpose port. When an alternate function is used, the port pin is controlled by the respective peripheral unit. Therefore the port latch must contain a "one" for that function to operate. The same applies when the port pins are used as inputs. Ports 1, 3, 4 and 5 are bit-addressable.

Reading these port latches allows the user to input the digital values currently applied to the port pins. This digital input function is independent from the analog input function for the A/D converter. Contents of P7 and P8 are indeterminate if the levels at the corresponding pins are not within their respective V_{IL}/V_{IH} specifications.

5.6 Power Saving Modes

The SAB 80C517 provides three modes in which power consumption can be significantly reduced.

— The Slow Down Mode

The controller keeps up the full operating functionality, but is driven with the eighth part of its normal operating frequency. Slowing down the frequency greatly reduces power consumption.

- The Idle Mode

The CPU is gated off from the oscillator, but all peripherals are still supplied by the clock and able to work.

— The Power Down Mode

Operation of the SAB 80C517 is stopped, the oscillator is turned off. This mode is used to save the contents of the internal RAM with a very low standby current.

All of these modes are entered by software. Special function register PCON (Power Control register, address is 87H) is used to select one of these modes.

Hardware Enable for Power Saving Modes

A dedicated Pin (PE/SWD) of the SAB 80C517 allows blocking of the power saving modes. Since this pin is mostly used in noise-critical application it is combined with an automatic start of the Watchdog Timer (see Watchdog Timer for further description).

 $\overline{PE}/SWD = V_{IH}$ (logic high level):

Using the power saving modes is not possible. The instruction sequences used for entering of these modes will not affect the normal operation of the device.

 $\overline{PE}/SWD = V_{IL}$ (logic low level):

All power saving modes can be activated by software.

When left unconnected, Pin PE/SWD is pulled to high level by a weak internal pullup. This is done to provide system protection on default.

The logic-level applied to pin \overline{PE}/SWD can be changed during program execution to allow or to block the use of the power saving modes without any effect on the on-chip watchdog circuitry.

Power Down Mode

The Power Down Mode is entered by two consecutive instructions immediately following each other. The first instruction has to set the flag PDE (Power Down Enable) and must not set PDS (Power Down Set). The following instruction has to set the start bit PDS. Bits PDE and PDS will automatically be cleared after having been set.

The instruction that sets bit PDS is the last instruction executed before going into Power Down Mode. The only exit from power down mode is a hardware reset.

The status of all output lines of the controller can be looked up in Table 8.

Idle Mode

During Idle Mode all peripherals of the SAB 80C517 are still supplied by the oscillator clock. Thus the user has to take care which peripheral should continue to run and which has to be stopped during Idle.

The procedure to enter the Idle mode is similar to entering the power down mode. The two bits IDLE and IDLS must be set by two consecutive instructions to minimize the chance of unintentional activation of the Idle Mode.

There are two ways to terminate the idle mode:

- The idle mode can be terminated by activating any enabled interrupt. This interrupt will be serviced and in normal cases the instruction to be executed following the RETI instruction will be the one following the instruction that sets the bit IDLS.
- The other way to terminate the idle mode, is a hardware reset. Since the oscillator is still running, the hardware reset must be held active only for two machine cycles for a complete reset.

Normally the port pins hold the logical state they had at the time idle mode was activated. If some pins are programmed to serve their alternate functions they still continue to output during idle mode if the assigned function is on. The control signals ALE and PSEN hold at logic high levels (see Table 8).

Slow Down Mode

During slow down operation all signal frequencies that are derived from the oscillator clock, are divided by eight, also the clockout signal and the watchdog timer count.

The Slow Down Mode is enabled by setting bit SD. The controller actually enters the Slow Down Mode after a short synchronization period (max. 2 machine cycles).

The slow down mode is disabled by clearing bit SD.

Outputs	Last Instruction E Internal Code		Last Instruction Executed from External Code Memory			
Outputs	ldle	Power Down	Idle	Power Down		
ALE	HIGH	LOW	HIGH	LOW		
PSEN	HIGH	LOW	HIGH	LOW		
PORT 0	DATA	DATA	FLOAT	FLOAT		
PORT 1	DATA/ALTER- NATE OUTPUTS	DATA/LAST OUTPUT	DATA/ALTER- NATE OUTPUTS	DATA/LAST OUTPUT		
PORT 2	DATA	DATA	ADDRESS	DATA		
PORT 3	DATA/ALTER- NATE OUTPUTS	DATA/LAST OUTPUT	DATA/ALTER- NATE OUTPUTS	DATA/LAST OUTPUT		
PORT 4	DATA/ALTER- NATE OUTPUTS	DATA/LAST OUTPUT	DATA/ALTER- NATE OUTPUTS	DATA/LAST OUTPUT		
PORT 5	DATA/ALTER- NATE OUTPUTS	DATA/LAST OUTPUT	DATA/ALTER- NATE OUTPUTS	DATA/LAST OUTPUT		
PORT 6	DATA/ALTER- NATE OUTPUTS	DATA/LAST OUTPUT	DATA/ALTER- NATE OUTPUTS	DATA/LAST OUTPUT		

Special Function Registers for Power Down Mode:

									PCON	
87H	SMOD	PDS	IDLS	SD	GF1	GF0	PDE	IDLE	PCON	

This bit is not used in controlling the power saving modes.

Bit	Function
PDS	Power down start bit. The instruction that sets the PDS flag bit is the last instruction before entering the power down mode.
IDLS	Idle start bit. The instruction that sets the IDLS flag bit is the last instruction before entering the idle mode.
SD	When set, the slow done mode is enabled.
GF1	General purpose flag
GF0	General purpose flag
PDE	Power down enable bit. When set, starting the power down mode is enabled.
IDLE	Idle mode enable bit. When set, starting the idle mode is enabled.

5.7 Serial Interfaces

The SAB 80C517 has two serial interfaces. Both interfaces are full duplex and receive buffered. They are functionally identical with the serial interface of the SAB 8051 when working as asynchronous channels. Serial interface 0 additionally has a synchronous mode.

5.7.1 Serial Interface 0

Serial Interface 0 can operate in 4 modes:

Mode 0: Shift register mode:

Serial data enters and exits through RxD0. TxD0 outputs the shift clock. 8 data bits are transmitted/received (LSB first). The baud rate is fixed at 1/12 of the oscillator frequency.

Mode 1: 8-bit UART, variable baud rate:

10 bits are transmitted (through TxD0) or received (through RxD0): a start bit (0), 8 data bits (LSB first), and a stop bit (1). On reception, the stop bit goes into RB80 in special function register S0CON. The baud rate is variable.

Mode 2: 9-bit UART, fixed baud rate.

11 bits are transmitted (through TxD0) or received (through RxD0): a start bit (0), 8 data bits (LSB first), a programmable 9th,

and a stop bit (1). On transmission, the 9th data bit (TB80 in S0CON) can be assigned to the value of 0 or 1. For example, the parity bit (P in the PSW) could be moved into TB80 or a second stop bit by setting TB80 to 1. On reception the 9th data bit goes into RB80 in special function register S0CON, while the stop bit is ignored. The baud rate is programmable to either 1/32 or 1/64 of the oscillator frequency.

Mode 3: 9-bit UART, variable baud rate:

11 bits are transmitted (through TxD0) or received (through RxD0): a start bit (0), 8 data bits (LSB first), a programmable 9th, and a stop bit (1). In fact, mode 3 is the same as mode 2 in all respects except the baud rate. The baud rate in mode 3 is variable.

Variable Baud Rates for Serial Interface 0:

Variable baud rates for modes 1 and 3 of Serial Interface 0 can be derived from either Timer 1 or from the oscillator via a special prescaler ("BD").

Timer 1 may be operated in mode 1 (to generate slow baud rates) or mode 2. The dedicated baud rate generator "BD" provides the two standard baud rates 4800 baud or 9600 baud. Tables 9 and 10 show possible configurations and the according baud rates.

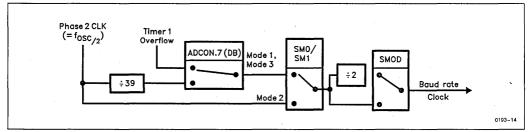


Figure 10. Generation of the Baud Rates for Serial Interface 0

									SOCON
	9FH	9EH	9DH	9CH	9BH	9AH	99H	98H	
98H	SM0	SM1	SM20	REN0	TB80	RB80	TIO	R10	SOCON
	Bit				F	unction		·	
SMO	SM	A1							
0	(Serial Mode	э 0:		Sh	ift Registe	r Mode	
0	1		Serial Mode	ə 1:			•	Variable B	aud Rate
1	C)	Serial Mode	e 2:		9-E	Bit UART,	Fixed Bau	d Rate
1	1	l l	serial Mode	93:		9-E	Bit UART,	Variable B	aud Rate
	SM20		Enables the multiprocessor communication feature in modes 2 and 3. In mode 2 or 3, if SM20 is set to 1 then RI0 will not be activated if the received 9th data bit (RB80) is 0. In mode 1, if SM20 = 1 then RI0 will not be activated if a valid stop bit was not received. In mode 0, SM20 should be 0.						will not
	REN0		Receiver E reception. (are to ena	ble
	TB80		Transmitter 3. Set or cle				e transmitt	ed in mod	es 2 and
	RB80		Receiver Bit 8. In modes 2 and 3, is the 9th data bit that was received. In mode 1, if $SM20 = 0$, $RB80$ is the stop bit that was received. In mode 0, $RB80$ is not used.						
	TIO		Transmitter end of the 8 other mode	3th bit time i	n mode 0, c	or at the beg	inning of t	the stop bi	t in the
	RI0		Receiver In of the 8th b in any seria	it time in mo	ode 0, or du	ring the stor	o bit time i		

Special Function Register for Serial Interface 0:

	l			1	· · · · ·	1	1		
99H	Serial Interface 0 Buffer Register								OBUE
			oonar mior		ioi riogistoi				0001

Receive and transmit buffer of Serial Interface 0. Writing to S0BUF loads the transmit register and initiates transmission. Reading out S0BUF accesses a physically separate receive register.

			•						ADCON0
•	0DFH	0DEH	0DDH	0DCH	0DBH	0DAH	0D9H	0D8H	
0D8H	BD	CLK	ADEX	BSY	ADM	MX2	MX1	МХО	ADCON0

These bits are not used in controlling serial interface 0.

Bit	Function
BD	Baud Rate Enable. When set, the baud rate in mode 1 and 3 of serial interface 0 is taken from a dedicated prescaler (see Figure 10). Standard baud rates 4800 baud and 9600 baud at 12 MHz oscillator frequency can be achieved.

PCON

									1001
87H	SMOD	PDS	IDLS	SD	ĠF1	GF0	PDE	IDLE	PCON

These bits are not used in controlling serial interface 0.

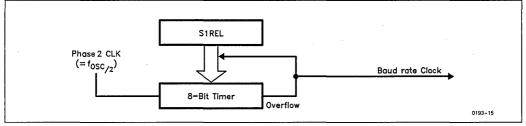
Bit	Function
SMOD	When set, the baud rate of Serial Interface 0 in modes 1, 2, 3 is doubled.

5.7.2. Serial Interface 1

Serial Interface 1 can operate in two asynchronous modes:

Mode A: 9-bit UART, variable baud rate.

11 bits are transmitted (through TxD1) or received (through RxD1): a start bit (0), 8 data bits (LSB first), a programmable 9th, and a stop bit (1). On transmission, the 9th data bit (TB81 in S1CON) can be assigned to the value of 0 or 1. For example, the parity bit (P in the PSW) could be moved into TB81 or a second stop bit by setting TB81 to 1. On reception the 9th data bit goes into RB81 in special function register S1CON, while the stop bit is ignored.


Mode B: 8-bit UART, variable baud rate.

10 bits are transmitted (through TxD1) or received (through RxD1): a start bit (0), 8 data bits (LSB first), and a stop bit (1). On reception, the stop bit goes into RB81 in special function register S1CON.

Variable Baud Rates for Serial Interface 1

Variable Baud Rates for modes A and B of Serial Interface 1 can be derived from a dedicated baud rate generator.

The baud rate clock $\left(\text{baud rate} = \frac{\text{baud rate clock}}{16} \right)$ is generated by an 8-bit free running timer with programmable reload register (see Figure 11).

•	Baud Rate (Derived from)	Interface Mode	Baud Rate
Serial Interface 0	Timer 1 in Mode 1	1, 3	$\frac{2^{\text{SMOD}}}{2} \times \frac{1}{16} \times \text{(Timer 1 Overflow Rate)}$
	Timer 1 in Mode 2	1, 3	$\frac{2^{\text{SMOD}}}{2} \times \frac{1}{16} \times \frac{f_{\text{OSC}}}{12 (256 - (\text{TH1}))}$
	Oscillator	2	$\frac{2^{\text{SMOD}}}{2} \times \frac{1}{16} \times \frac{f_{\text{OSC}}}{2}$
	BD	1, 3	$\frac{2^{\text{SMOD}}}{2} \times \frac{f_{\text{OSC}}}{1250}$
Serial Interface 1	8-Bit Baud Rate	A	$\frac{1}{16} \times \frac{f_{OSC}}{2(256 - (SIREL))}$
	Generator	В	$\frac{1}{16} \times \frac{f_{OSC}}{2(256 - (S1REL))}$

Table 9. Calculating the Baud Rates

Table 10. Baud Rate Generation

Fun	ction	Serial Inte	erface 0	Serial Interface 1	
8-Bit	Mode	Mode 0			
Synchronous Channel	Baud Rate	1 MHz @ f _{OS} (; = 12 MHz		
Granner	Baud Rate (Derived from)	fosc			
8-Bit	Mode	Mod	e 1	Mode B	
UART	Baud Rate*	1K-62.5K	4800, 9600	1.5K-375K	
· · · ·	Baud Rate (Derived from)	Timer 1	BD	8-Bit Baud Rate Generator	
9-Bit	Mode	Mode 2	Mode 3	Mode A	
UART	Baud Rate*	187.5K/375K	1K-62.5K	1.5K-375K	
	Baud Rate (Derived from)	fosc/2	Timer 1	8-Bit Baud Rate Generator	

*Baud Rate values are given for 12 MHz oscillator frequency.

S1CON

Special Function Register for Serial Interface 1:

									01001
9BH	SM	—	SM21	REN1	TB81	RB81	TI1	RI1	S1CON

Bit	Function
SM	SM = 0: Serial Mode A; 9-bit UART SM = 1: Serial Mode B; 8-bit UART
SM21	Enables the multiprocessor communication feature in mode A. If SM21 is set to 1 then RI1 will not be activated if the received 9th data bit (RB81) is 0. In mode B, if SM21 = 1 then RI1 will not be activated if a valid stop bit was not received.
REN1	Receiver Enable of interface 1. Enables serial reception. Set by software to enable reception. Cleared by software to disable reception.
TB81	Transmitter Bit 8 of interface 1. Is the 9th data bit that will be transmitted in mode A. Set or cleared by software as desired.
RB81	Receiver Bit 8 of interface 1. Is the 9th data bit that was received in mode A. In mode B, if $SM21 = 0$, RB81 is the stop bit that was received.
TI1	Transmitter Interrupt of interface 1. Is the transmit interrupt flag. Set by hardware at the beginning of the stop bit in any serial transmission. Must be cleared by software.
RI1	Receiver Interrupt of interface 1. Is the receive interrupt flag. Set by hardware at the halfway through the stop bit time in any serial reception. Must be cleared by software.

S1REL

9DH Serial Interface 1 Reload Register S1REL

8-bit reload register for baud rate generator of Serial Interface 1.

S1BUF S1BUF 9CH Serial Interface 1 Buffer Register

Receive and transmit buffer of Serial Interface 1. Writing to S1BUF loads the transmit register and initiates transmission. Reading out S1BUF accesses a physically separate receive register.

5.8 Timer/Counters 0 and 1

These timer/counters are fully compatible with Timer/Counter 0 or 1 of the SAB 8051 and can operate in four modes:

Mode 0: 8-bit timer/counter with 32:1 prescaler

Mode 1: 16-bit timer/counter

Mode 2: 8-bit timer/counter with 8-bit auto reload

Mode 3: Timer/Counter 0 is configured as one 8-bit timer; Timer/Counter 1 in this mode holds its count.

© Siemens Components, Inc.

External inputs $\overline{INT0}$ and $\overline{INT1}$ can be programmed to function as a gate for Timer/Counters 0 and 1 to facilitate pulse width measurements.

Special Function Registers:

									TCON
	8FH	8EH	8DH	8CH	8BH	8AH	89H	88H	
88H	TF1	TR1	TF0	TR0	IE1	171	IEO	ІТО	TCON

These bits are not used in controlling Timer/Counter 0 and 1.

Bit	Function
TR0	Timer 0 run control bit. Set/cleared by software to turn Timer/counter 0 on/off.
TFO	Timer 0 overflow flag. Set by hardware on timer/counter overflow. Cleared by hardware when processor vectors to interrupt routine.
TR1	Timer 1 run control bit. Set/cleared by software to turn Timer/counter 1 on/off.
TF1	Timer 1 overflow flag. Set by hardware on timer/counter overflow. Cleared by hardware when processor vectors to interrupt routine.

									TMOD
89H	GATE	C/T	M1	MO	GATE	C/T	M1	MO	TMOD
		Timer	• 1			Timer	0		

Timer/counter 0/1 mode control register

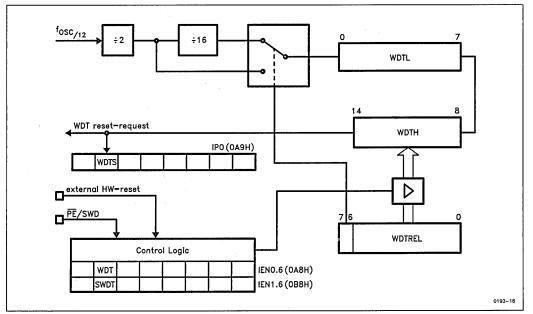
В	it ·	Function
GA	TE	Gating control. When set, timer/counter "x" is enabled only while "INTx" pin is high and "TRx" control bit is set. When cleared timer "x" is enabled whenever "TRx" control bit is set.
<u>C</u> /	Ŧ	Counter or timer select bit. Set for counter operation (input from "Tx" input pin). Cleared for timer operation (input from internal system clock).
M1	MO	
0	0	8-bit timer/counter. "THx" operates as 8-bit timer/ counter "TLx" serves as 5-bit prescaler.
0	1	16-bit timer/counter. "THx" and "TLx" are cascaded; there is no prescaler.
1	0	8-bit auto-reload timer/counter. "THx" holds a value which is to be reloaded into "TLx" each time it overflows.
1	1	Timer 0: TL0 is an 8-bit timer/counter controlled by the standard Timer 0 control bits. TH0 is an 8-bit timer only controlled by Timer 1 control bits.
1	1	Timer/counter 1 stops

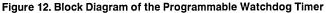
5.9 Watchdog Units

The SAB 80C517 offers two enhanced fail safe mechanisms, which allow an automatic recovery from hardware failure or software upset:

- programmable Watchdog Timer (WDT), variable from 512 μs up to about 1.1s time out period @12 MHz. Upward compatible with the SAB 80515 watchdog timer.
- oscillator watchdog (OWD), monitors the on-chip oscillator and forces the microcontroller to go into reset state, in case the on-chip oscillator fails.

Programmable Watchdog Timer


The WDT can be activated by hardware or software.


Hardware initialization is done when Pin \overline{PE}/SWD (Pin 4) is held high during RESET. The SAB 80C517 then starts program execution with the WDT running. Pin \overline{PE}/SWD doesn't allow dynamic switching of the WDT.

Software initialization is done by setting bit SWDT. A refresh of the Watchdog Timer is done by setting bits WDT and SWDT consecutively.

A block diagram of the Watchdog Timer is shown in Figure 12.

When a Watchdog Timer reset occurs, the Watchdog Timer keeps on running, but a status flag WDTS is set. This flag can also be manipulated by software (see Figure 14).

Oscillator Watchdog

The Oscillator Watchdog monitors the on-chip quartz oscillator. A detected oscillator failure ($f_{OSC} \le 300$ KHz) causes a hardware reset. The reset state is held until the on-chip oscillator is working again. The Oscillator Watchdog feature is enabled by a high level at pin OWE (Pin 69). An Oscillator Watchdog reset sets status flag OWDS which can be examined and modified by software (see Figure 14). Figure 13 shows a block diagram of the Oscillator Watchdog.

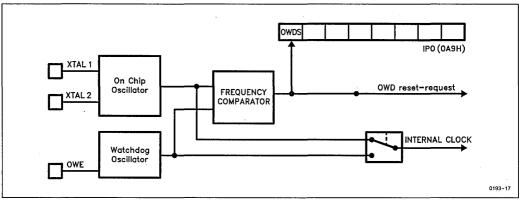


Figure 13. Functional Block Diagram of the Oscillator Watchdog

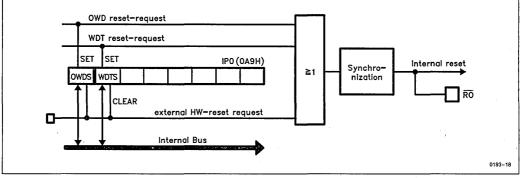


Figure 14. Watchdog Status Flags and Reset-Requests

	unction Reg	jisters:								
	0AFH	0AEH	0ADH	0ACH	0ABH	0AAH	0A9H	0A8H	IEN0	
0A8H	EAL	WDT	ET2	ES0	ET1	EX1	ETO	EX0	IENO	
The	se bits are no	t used in c	ontrolling th	ne fail safe	mechanisr	ns.			J	
	Bit		Function							
	WDT		the is se	Watchdog	er refresh f Timer. Mus nt unintentio er.	t be set dir	ectly before			
									IEN1	
	0BFH	OBEH	OBDH	0BCH	OBBH	OBAH	0B9H	0B8H	1	
0B8H	EXEN2	SWDT	EX6	EX5	EX4	EX3	EX2	EADC	IEN1	
The	se bits are no	t used in c	ontrolling th	ie fail safe	mechanisr	ns.				
	Bit				F	unction				
	SWDT Watchdog Timer start flag. Initially set to activate the Watchdog Timer. When directly set after setting of bit WDT, a Watchdog Timer refresh is performed.									
0A9H	OWDS	WDTS	IP0.5	IP0.4	IP0.3	IP0.2	[P0.1]	IP0.0	1 P0 1P0	
The	se bits are no	t used in c	ontrolling th	ne fail safe	mechanisr	ns.				
	Bit		Function							
	OWDS		Oscillator Watchdog Timer status flag. Set by hardware when an Oscillator Watchdog reset occurred. Can be cleared or set by software.							
			0.00	100 01 301	by soliwan	э.				
	WDTS		Wa Wa	tchdog Tin	ner status fl ner reset oc	ag. Set by I				
	WDTS		Wa Wa	tchdog Tin tchdog Tin	ner status fl	ag. Set by I			WDTREL	
086H	WDTS		Wa Wa by s	tchdog Tin tchdog Tin software.	ner status fl	ag. Set by I curred. Ca		d or set	WDTREL	
086H	WDTS		Wa Wa by s	tchdog Tin tchdog Tin software.	ner status fl ner reset oc	ag. Set by I curred. Ca		d or set		
086H			Wa by s Watchdo	tchdog Tin tchdog Tin software. g Timer Re escaler Se	eload Regis	ag. Set by I curred. Car ter Function	n be cleare	d or set		

Absolute Maximum Ratings

Ambient Temperature under Bias SAB 80C5170°C to +70°C SAB 80C517-T40/8540°C to +85°C
Storage Temperature65°C to +150°C
Voltage on V _{CC} Pins with Respect to Ground (V _{SS}) $\dots -0.5$ V to $+6.5$ V
$\begin{array}{llllllllllllllllllllllllllllllllllll$
Power Dissipation2W

*Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics

 $\begin{array}{l} V_{CC}=5V\,\pm 10\%;\, V_{SS}=0V;\, T_{A}=0^{\circ}C \text{ to }+70^{\circ}C \text{ for SAB }80C517/80C537;\\ T_{A}=-40^{\circ}C \text{ to }+85^{\circ}C \text{ for SAB }80C517/80C537\text{-}T40/85 \end{array}$

Parameter	Symbol	Test	Limit V	alues	Unit
Farameter	Conditions		Min	Max	
Input Low Voltage (except EA)	V _{IL}		-0.5	0.2 V _{CC} - 0.1	V
Input Low Voltage (ĒĀ)	V _{IL1}		-0.5	$0.2 V_{CC} - 0.3$	v
Input High Voltage (except RESET and XTAL2)	VIH		$-0.2 V_{\rm CC} + 0.9$	V _{CC} + 0.5	V
Input High Voltage to XTAL2	V _{IH1}		0.7 V _{CC}	V _{CC} + 0.5	V
Input High Voltage to RESET	V _{IH2}		0.6 V _{CC}	V _{CC} + 0.5	V
Output Low Voltage, Ports 1, 2, 3, 4, 5, 6	V _{OL}	$I_{OL} = 1.6 \text{ mA}^{(1)}$		0.45	<
Output Low Voltage, Port 0, ALE, PSEN, RO	V _{OL1}	$I_{OL} = 3.2 \text{ mA}^{(1)}$		0.45	V
Output High Voltage, Ports 1, 2, 3, 4, 5, 6	V _{OH}	I _{OH} = −80 μA, I _{OH} = −10 μA	2.4 0.9 V _{CC}		v
Output High Voltage (Port 0 in External Bus Mode, ALE, PSEN, RO)	V _{OH1}	$I_{OH} = -800 \ \mu A^{(2)},$ $I_{OH} = -80 \ \mu A^{(2)}$	2.4 0.9 V _{CC}		. V
Logic 0 Input Current, Ports 1, 2, 3, 4, 5, 6	۱Ľ	V _{IN} = 0.45V		-50	μΑ
Logical 1-to-0 Transition Current, Ports 1, 2, 3, 4, 5, 6	I _{TL}	$V_{IN} = 2V$		-650	μA
Input Leakage Current (Port 0, EA, OWE, PE/SWD	ILI	$0.45 < V_{IN} < V_{CC}$		±10	μΑ
Input Low Current to RESET for Reset	I _{IL2}	V _{IN} = 0.45V		-100	μA
Pin Capacitance	CIO	$f_{C} = 1 \text{ MHz}, T_{A} = 25^{\circ}\text{C}$		10	pF
Power Supply Current Active Mode Idle Mode	ICC	$V_{CC} = 5V,$ $f_{OSC} = 12 \text{ MHz}$ (4), (5)		50 14	mA
Power Down Current	I _{PD}	$V_{\rm CC} = 2V \text{ to } 5.5V^{(3)}$		50	μA

A/D Converter Characteristics

 $V_{CC} = 5V \pm 10\%$; $V_{SS} = 0V$, $T_A = 0^{\circ}C$ to 70°C for SAB 80C517/80C537; $T_A - 40^{\circ}C$ to +85°C for SAB 80C517/80C537-T40/85; $V_{ABEF} = V_{CC} \pm 5\%$; $V_{AGND} = V_{SS} \pm 0.2V$; $I_{VABEF} - I_{VAGND} \ge 1V$

Parameter	Symbol Test Conditions		Limit Values			
Falameter	Symbol	rest conditions	Min	Тур	Max	Unit
Analog Input Voltage	VAINPUT	(Note 8)	V _{AGND} 0.2		V _{AREF} + 0.2	V
Analog Input Capacitance	Cl	(Note 6)		25	60	pF
Load Time ⁽⁶⁾	TL	(Note 6)			2 TCY	μs
Sample Time (Inc. Load Time)	T _S	(Note 6)			7 TCY	μs
Conversion Time (Inc. Sample Time)	т _с	(Note 6)			13 TCY	μs
Differential Non-Linearity	DNLE	$I_{VAREF} = V_{AREF} = V_{CC},$		± 1⁄2	±1	
Integral Non-Linearity	INLE	$V_{AGND} = V_{AGND} = V_{SS}$		± 1⁄2	±1	
Offset Error		×		± 1⁄2	±1	LSB
Gain Error				± 1⁄2	±1	200
Total Unadjusted Error ⁽⁶⁾	TUE	(Note 6)		±1	±2	
Internal Reference Error	VintREFERR	(Note 7)			TBD	
VAREF Supply Current (7)	I _{REF}	(Note 7)			5	mA

NOTES:

1. Capacitive loading on ports 0 and 2 may cause spurious noise pulses to be superimposed on the V_{OL} of ALE and ports 1, 3, 4, 5 and 6. The noise is due to external bus capacitance discharging into the port 0 and port 2 pins when these pins make 1-to-0 transitions during bus operation. In the worst case (capacitive loading > 100 pF), the noise pulse on an ALE line may exceed 0.8V. In such cases it may be desirable to qualify ALE with a Schmitt-trigger, or use an address latch with a Schmitt-trigger strobe input.

2. Capacitive loading on ports 0 and 2 may cause the V_{OH} on ALE and \overline{PSEN} to momentarily fall below the 0.9 V_{CC} specification when the address lines are stabilizing.

3. Power down I_{CC} is measured with all output pins disconnected; $\overline{EA} = \overline{RESET} = V_{CC}$; Port 0 = Port 7 = Port 8 = V_{CC}; XTAL1 = N.C; XTAL2 = V_{SS}; $\overline{PE}/SWD = OWE = V_{SS}$.

4. I_{CC} (active mode) is measured with all output pins disconnected; XTAL2 driven with TCLCH, TCLCL = 5 ns, $V_{IL} = V_{SS} + 0.5V$, $V_{IH} = V_{CC} - 0.5V$; XTAL1 = N.C.; EA = OWE = PE/SWD = V_{CC} ; Port 0 = Port 7 = Port 8 = V_{CC} ; RESET = V_{SS} . I_{CC} would be slightly higher if a crystal oscillator is used.

5. Idle I_{CC} is measured with all output pins disconnected and with all peripherals disabled; XTAL2 driven with TCLCH, TCLCL = 5 ns, $V_{IL} = V_{SS} + 0.5V$, $V_{IH} = V_{CC} - 0.5V$; XTAL1 = N.C.; RESET = OWE = V_{CC} ; Port 0 = Port 7 = Port 8 = V_{CC} ; EA = $\overline{PE}/SWD = V_{SS}$.

6. The output impedance of the analog source must be low enough to assure full loading of the sample capacitance (C_I) during load time (T_L). After charging of the internal capacitance (C_I) in the load time (T_L) the analog input must be held constant for the rest of the sample time (T_S).

7. The differential impedance r_D of the analog reference voltage source must be less than 1 K Ω at reference supply voltage. 8. Exceeding the limit values at one or more input channels will cause additional current which is sinked/sourced at these channels. This may also affect the accuracy of other channels which are operated within the specification.

AC Characteristics

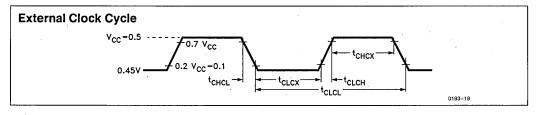
 $V_{CC} = 5V \pm 10\%$; $V_{SS} = 0V$; $T_A = 0^{\circ}C$ to 70°C for SAB 80C517/80C537; $T_A = -40^{\circ}C$ to $+85^{\circ}C$ for SAB 80C51780C537-T40/85; (C_L for port 0, ALE and PSEN outputs = 100 pF; C_L for all outputs = 80 pF)

Program Memory Characteristics

		Limit Values				
Parameter	Symbol	12 MHz Clock		Variable Clock 1/t _{CLCL} = 1 MHz to 12 MHz		Unit
		Min	Max	Min	Max	
ALE Pulse Width	t _{LHLL}	127		2 t _{CLCL} 40		ns
Address Setup to ALE	t _{AVLL}	53		t _{CLCL} – 30		ns
Address Hold after ALE	t _{LLAX}	48		t _{CLCL} - 35		ns
Address to Valid Instr In	t _{LLIV}		233		4 t _{CLCL} - 100	ns
ALE to PSEN	t _{LLPL}	58		t _{CLCL} - 25		ns
PSEN Pulse Width	t _{PLPH}	215		3 t _{CLCL} – 35		ns
PSEN to Valid Instr In	t _{PLIV}		150		3 t _{CLCL} - 100	ns
Input Instruction Hold after PSEN	t _{PXIX}	0		0		ns
Input Instruction Float after PSEN	t _{PXIZ} *		63		t _{CLCL} - 20	ns
Address Valid after PSEN	t _{PXAV} *	. 75		t _{CLCL} – 8		ns
Address to Valid Instr In	t _{AVIV}		302		5 t _{CLCL} 115	ns
Address Float to PSEN	t _{AZPL}		0		0	ns

*Interfacing the SAB 80C517 to devices with float times up to 75 ns is permissible. This limited bus contention will not cause any damage to port 0 drivers.

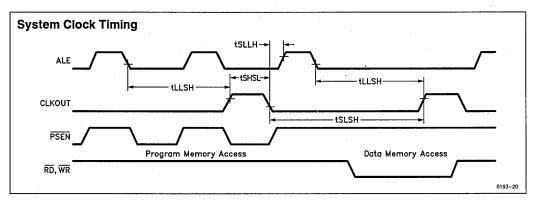
External Data Memory Characteristics


		Limit Values					
Parameter	Symbol				e Clock MHz to 12 MHz	Unit	
		Min	Max	Min	Max		
RD Pulse Width	t _{RLRH}	400		6 t _{CLCL} - 100		ns	
WR Pulse Width	twlwh	400		6 t _{CLCL} - 100		ns	
Address Hold after ALE	t _{LLAX2}	132		2 t _{CLCL} - 35		ns	
RD to Valid Data In	t _{RLDV}		252		5 t _{CLCL} - 165	ns	
Data Hold after RD	t _{RHDX}	0		0		ns	
Data Float after RD	tRHDZ		97		2 t _{CLCL} - 70	ns	
ALE to Valid Data In	tLLDV		517		8 t _{CLCL} - 150	ns	

External Data Memory Characteristics (Continued)

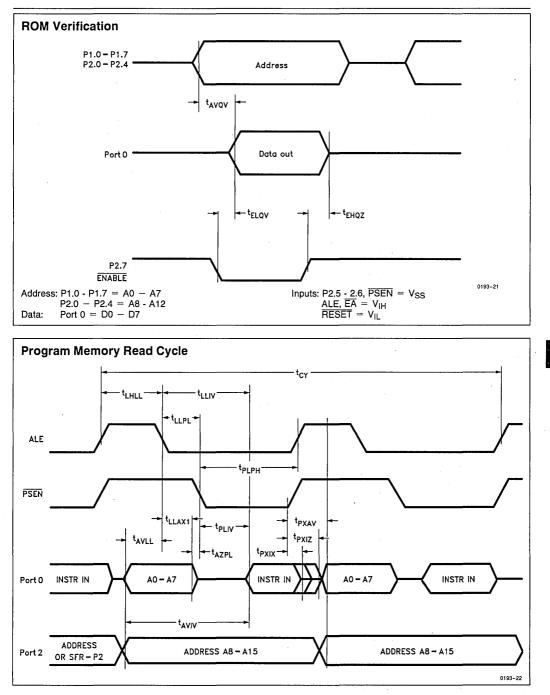
Parameter	Symbol	12 MHz Clock		Variabl 1/t _{CLCL} = 1	Unit	
		Min	Max	Min	Max	
Address to Valid Data In	t _{AVDV}		585		9 t _{CLCL} — 165	ns
ALE to WR or RD	t _{LLWL}	200	300	3 t _{CLCL} — 50	3 t _{CLCL} + 50	ns
WR or RD High to ALE High	t _{WHLH}	43	123	$t_{CLCL} - 40$	t _{CLCL} + 40	ns
Address Valid to WR	t _{AVWL}	203		4 t _{CLCL} - 130		ns
Data Valid to WR Transition	t _{QVWX}	33		t _{CLCL} – 50		ns
Data Setup before WR	t _{QVWH}	433		7 t _{CLCL} — 150		ns
Data Hold after WR	t _{WHQX}	33		t _{CLCL} – 50		ns
Address Float after RD	t _{RLAZ}		0		0	ns

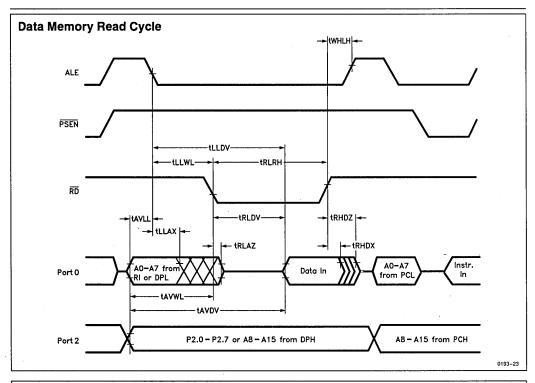
External Clock Drive

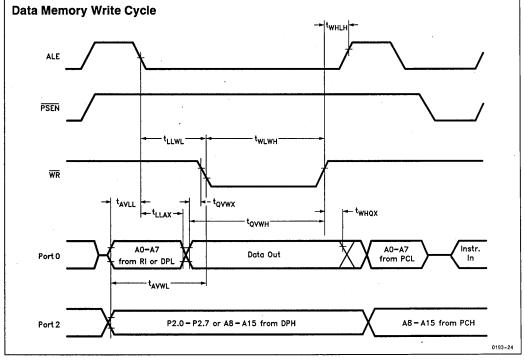

		Limit V	/alues	
Parameter	Symbol	Variable Freq. = 1 MH	Unit	
		Min	Max	
Oscillator Period	tCLCL	83, 3	1000	ns
High Time	t _{CHCX}	20		ns
Low Time	tCLCX	20		ns
Rise Time	t _{CLCH}		20	ns
Fall Time	tCHCL		20	ns
Oscillator Frequency	1/t _{CLCL}	1	12	MHz

4

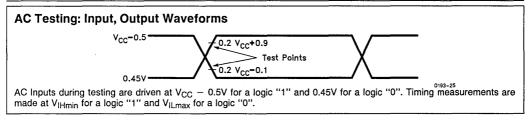
System Clock Timing

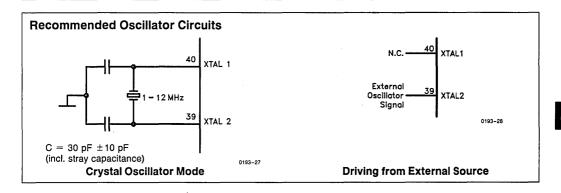

		Limit Values				
Parameter	Symbol	12 MHz Clock		Variable Clock 1/t _{CLCL} = 1 MHz to 12 MHz		Unit
		Min	Max	Min	Max	
ALE to CLKOUT	t _{LLSH}	543		7 t _{CLCL} - 40		ns
CLKOUT High Time	t _{SHSL}	127		2 t _{CLCL} - 40		ns
CLKOUT Low Time	t _{SLSH}	793		10 t _{CLCL} - 40		ns
CLKOUT Low to ALE High	tSLLH	43	123	t _{CLCL} - 40	t _{CLCL} + 40	ns


ROM Verification Characteristics


Parameter	Symbol	Lim	Unit	
i arameter	Symbol		Max	Onic
Address to Valid Data	t _{AVQV}			
ENABLE to Valid Data	t _{ELQV}		48 t _{CLCL}	ns
Data Float after ENABLE	t _{EHQZ}	0		
Oscillator Frequency	1t _{CLCL}	4	6	MHz

SAB 80C517/80C537


SAB 80C517/80C537



© Siemens Components, Inc.

SAB 80C517/80C537

AC Testing: Float Waveforms $V_{LOAD} + 0.1V$ $V_{LOAD} - 0.1V$ For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs and begins to float when a 100 mV change from the loaded V_{OH}/V_{OL} level occurs. $I_{OL}/I_{OH} \ge \pm 20$ mA.

Instruction Set

5.0 Instruction Set

The instruction set of the SAB 8051 family of microcontrollers includes 111 instructions, 49 of which are single-byte, 45 two-byte, and 17 three-byte instructions. The instruction opcode format consists of a function mnemonic followed by a "destination, source" operand field. This field specifies the data type and addressing method(s) to be used.

All members of the 8051 family can be programmed with the same instruction set common to the basic member, the SAB 8051.

All microcontrollers are 100% software compatible with the SAB 8051 and may be programmed with 8051 assembler or high-level language, ASM51 or PLM51 respectively.

5.1 Addressing Modes

The SAB 8051 family of microcontrollers uses five addressing modes:

- register
- direct
- register indirect
- immediate
- base register plus index register indirect

Table 5-1 summarizes which memory spaces may be accessed by each of the addressing modes.

Addressing Modes	Associated Memory Spaces		
Register Addressing	R0 through R7 of Selected Register Bank ACC, B, CY (Bit), DPTR		
Direct Addressing	Lower 128 Bytes of Internal RAM Special-Function Register		
Register Indirect Addressing	Internal RAM (@R1, @R0, SP) External Data Memory (@R1, @R0, @DPTR)		
Immediate Addressing	Program Memory		
Base Register plus Register Addressing	Program Memory (@DPTR + A, @PC + A)		

Table 5-1

Register Addressing

Register addressing accesses the eight working registers (R0-R7) of the selected register bank. The least significant bits of the instruction opcode indicate which register is to be used. ACC, B, DPTR and CY, the Boolean processor accumulator can also be addressed as registers.

Direct Addressing

Direct addressing is the only method of accessing the special-function registers. The 128 bytes of internal RAM are also directly addressable.

Register Indirect Addressing

Register indirect addressing uses the contents of either R0 or R1 (in the selected register bank) as a pointer to locations in a 256-byte block: the 128 bytes of internal RAM or the lower 256 bytes of external data memory. Note that the special-function registers are not accessible by this method. Access to the full 64 Kbyte of external data memory address space is accomplished by using the 16-bit data pointer. Execution of PUSH and POP instructions also uses register indirect addressing. The stack may reside anywhere in the internal RAM.

Immediate Addressing

Immediate addressing allows constants to be part of the instruction in program memory.

Base Register plus Index Register Addressing

Base register plus index register addressing allows a byte to be accessed from program memory via an indirect move from the location whose address is the sum of a base register (DPTR or PC) and index register ACC. This mode facilitates look-up-table accesses.

Boolean Processor

The Boolean processor is a bit processor integrated within the SAB 8051 family of microcontrollers. It has its own instruction set, accumulator (the carry flag), and bit-addressable RAM and I/O.

- set bit
- clear bit
- complement bit
- jump if bit is set
- jump if bit is not set
- jump if bit is set and clear bit
- move bit from/to carry

Addressable bits, or their complements, may be logically ANDed or ORed with the contents of the carry flag. The result is returned to the carry register.

5.2 Introduction to the Instruction Set

The instruction set is divided into four functional groups:

- data transfer
- arithmetic
- logic
- control transfer

5.2.1 Data Transfer

Data operations are divided into three classes:

- general-purpose
- accumulator-specific
- address-object

None of these operations affects the PSW flag settings except a POP or MOV directly to the PSW.

General-Purpose Transfers

- MOV performs a bit or byte transfer from the source operand to the destination operand.
- PUSH increments the SP register and then transfers a byte from the source operand to the stack location currently addressed by SP.
- POP transfers a byte operand from the stack location addressed by the SP to the destination operand and then decrements SP.

Accumulator-Specific Transfers

- XCH exchanges the byte source operand with register A (accumulator)
- XCHD exchanges the low-order nibble of the source operand byte with the low-order nibble of A.
- MOVX performs a byte move between the external data memory and the accumulator. The external address can be specified by the DPTR register (16 bits) or the R1 or R0 register (8 bits).
- MOVC moves a byte from program memory to the accumulator. The operand in A is used as an index into a 256-byte table pointed to by the base register (DPTR or PC). The byte operand accessed is transferred to the accumulator.

Address-Object Transfer

 MOV DPTR, # data loads 16 bits of immediate data into a pair of destination registers, DPH and DPL.

5.2.2 Arithmetic

The SAB 8051 family of microcontrollers has four basic mathematical operations. Only 8-bit operations using unsigned arithmetic are supported directly. Refer to the technical description of the SAB 80C517 for 16-bit and 32-bit arithmetic operations. The overflow flag, however, permits the addition and subtraction operation to serve for both unsigned and signed binary integers. Arithmetic can also be performed directly on packed BCD representations.

Addition

- INC (increment) adds one to the source operand and puts the result in the operand.
- ADD adds A to the source operand and returns the result to A.
- ADDC (add with carry) adds A and the source operand, then adds one (1) if CY is set, and puts the result in A.
- DA (decimal-add-adjust for BCD addition) corrects the sum which results from the binary addition of two-digit decimal operands. The packed decimal sum formed by DA is returned to A. CY is set if the BCD result is greater than 99; otherwise it is cleared.

Subtraction

- SUBB (subtract with borrow) subtracts the second source operand from the first operand (the accumulator), subtracts one (1) if CY is set and returns the result to A.
- DEC (decrement) subtracts one (1) from the source operand and returns the result to the operand.

Multiplication

 MUL performs an unsigned multiplication of the A register, returning a double-byte result. A receives the low-order byte, B receives the high-order byte. OV is cleared if the top half of the result is zero and is set if it is not zero. CY is cleared. AC is unaffected.

Division

 DIV performs an unsigned division of the A register by the B register, and returns the integer quotient to A and returns the fractional remainder to the B register. Division by zero leaves indeterminate data in registers A and B and sets OV; otherwise OV is cleared. CY is cleared. AC is unaffected.

Flags

Unless otherwise stated in the above descriptions, the flags of PSW are affected as follows:

- CY is set if the operation causes a carry to or a borrow from the resulting high-order bit. Otherwise CY is cleared.
- AC is set if the operation results in a carry from the low-order four bits of the result (during addition), or a borrow from the high-order bits to the low-order bits (during subtraction); otherwise AC is cleared.
- OV is set if the operation results in a carry to the high-order bit of the result but not a carry from the bit, or vice versa; otherwise OV is cleared. OV is used in two's-complement arithmetic, because it is set when the signal result cannot be represented in 8 bits.
- P is set if the modulo 2 sum of the eight bits in the accumulator is 1 (odd parity); otherwise P is cleared (even parity). When a value is written to the PSW register, the P bit remains unchanged, as it always reflects the parity of A.

5.2.3 Logic

The SAB 8051 family of microcontrollers perform basic logic operations on both bit and byte operands.

Single-Operand Operations

- CLR sets A or any directly addressable bit to zero (0).
- SETB sets any directly bit-addressable bit to one (1).
- CPL is used to complement the contents of the A register without affecting any flag, or any directly addressable bit location.

 RL, RLC, RR, RRC, SWAP are the five operations that can be performed on A. RL rotate left RR, rotate right, RLC rotate left through carry, RRC rotate right through carry, and SWAP rotate left four. For RLC and RRC the CY flag becomes equal to the last bit rotated out. SWAP rotates A left four places to exchange bits 3 through 0 with bits 7 through 4.

Two-Operand Operations

- ANL performs bitwise logical ANDing of two operands (for both bit and byte operands) and returns the result to the location of the first operand.
- ORL performs bitwise logical ORing of two source operands (for both bit and byte operands) and returns the result to the location of the first operand.
- XRL performs bitwise logical exclusive ORing of two source operands (byte operands) and returns the result to the location of the first operand.

5.2.4 Control Transfer

There are three classes of control transfer operations: unconditional calls, returns and jumps, conditional jumps, and interrupts. All control transfer operations cause, some upon a specific condition, the program execution to continue a non-sequential location in program memory.

Unconditional Calls, Returns and Jumps

Unconditional calls, returns and jumps transfer control from the current value of the program counter to the target address. Both direct and indirect transfers are supported.

• ACALL and LCALL push the address of the next instruction onto the stack and then transfer control to the target address. ACALL is a 2-byte instruction used when the target address is in the current 2K page. LCALL is a 3-byte instruction that addresses the full 64K program space. In ACALL, immediate data (i.e. an 11-bit address field) is concatenated to the five most significant bits of the PC (which is pointing to the next instruction). If ACALL is in the last 2 bytes of a 2K page then the call will be made to the next page since the PC will have been incremented to the next instruction prior to execution.

Instruction Set

- RET transfers control to the return address saved on the stack by a previous call operation and decrements the SP register by two (2) to adjust the SP for the popped address.
- AJMP, LJMP and SJMP transfer control to the target operand. The operation of AJMP and LJMP are analogous to ACALL and LCALL. The SJMP (short jump) instruction provides for transfers within a 256-byte range centered about the starting address of the next instruction (-128 to +127).
- JMP@A + DPTR performs a jump relative to the DPTR register. The operand in A is used as the offset (0-255) to the address in the DPTR register. Thus the effective destination for a jump can be anywhere in the program memory space.

Conditional Jumps

Conditional jumps perform a jump contingent upon a specific condition. The destination will be within a 256-byte range centered about the starting address of the next instruction (-128 to +127).

- JZ performs a jump if the accumulator is zero.
- JNZ performs a jump if the accumulator is not zero.
- JC performs a jump if the carry flag is set.
- JNC performs a jump if the carry flag is not set.
- JB performs a jump if the directly addressed bit is set.
- JNB performs a jump if the directly addressed bit is not set.
- JBC performs a jump if the directly addressed bit is set and then clears the directly addressed bit.
- CJNE compares the first operand to the second operand and performs a jump if they are not equal. CY is set if the first operand is less than the second operand; otherwise it is cleared. Comparisons can be made between A and directly addressable bytes in internal data memory or an immediate value and either A, a register in the selected register bank, or a register indirect addressed byte of the internal RAM.

 DJNZ decrements the source operand and returns the result to the operand. A jump is performed if the result is not zero. The source operand of the DJNZ instruction may be any directly addressable byte in the internal data memory. Either direct or register addressing may be used to address the source operand.

Interrupt Returns

 RETI transfers control as RET does, but additionally enables interrupts of the current priority level.

5.3 Instruction Definitions

All 111 instructions of the SAB 8051 family of microcontrollers can essentially be condensed to 54 basic operations, in the following ordered alphabetically according to the operation mnemonic section.

A brief example of how the instruction might be used is given as well as its effect on the PSW flags. The number of bytes and machine cycles required, the binary machine language encoding, and a symbolic description or restatement of the function is also provided.

Note: Only the carry, auxiliary carry, and overflow flags are discussed. The parity bit is computed after every instruction cycle that alters the accumulator. Similarly, instructions which alter directly addressed registers could affect the other status flags if the instruction is applied to the PSW. Status flags can also be modified by bit manipulation.

Instruction		Flag		Instruction	Flag		
	СҮ	٥v	AC		СҮ	ον	AC
ADD	x	х	х	SETB C	1		
ADDC	х	х	X	CLR C	0		
SUBB	х	х	Х	CPL C	х		
MUL	0	х		ANL C, bit	х		
DIV	0	х		ANL C,/bit	х		
DA	х			ORL C, bit	х		
RRC	х			ORL C,/bit	х		
RLC	х			MOV C, bit	x		
CJNE	х						

Instruction Set

Notes on Data Addressing Modes		Notes on Program Addressing Modes		
Rn	Working register R0-R7	addr 16	Destination address for LCALL and	
direct	128 internal RAM locations, any I/O port, control or status register		LJMP may be anywhere within the 64- Kbyte program memory address space.	
@Ri	Indirect internal or external RAM loca- tion addressed by register R0 or R1	addr 11	Destination address for ACALL and AJMP will be within the same 2-Kbyte page of program memory as the first	
#data	8-bit constant included in instruction		byte of the following instruction.	
#data 16	16-bit constant included as bytes 2 and 3 of instruction	rel	SJMP and all conditional jumps include an 8-bit offset byte. Range is +127/	
bit	128 software flags, any I/O pin, control or status bit		-128 bytes relative to the first byte of the following instruction.	
A	Accumulator		onics copyright© Intel Corporation 1980	

ACALL addr11

Function: Absolute Call

Description: ACALL unconditionally calls a subroutine located at the indicated address. The instruction increments the PC twice to obtain the address of the following instruction, then pushes the 16-bit result onto the stack (low-order byte first) and increments the stack pointer twice. The destination address is obtained by successively concatenating the five high-order bits of the incremented PC, op code bits 7–5, and the second byte of the instruction. The subroutine called must therefore start within the same 2k block of the program memory as the first byte of the instruction following ACALL. No flags are affected.

Example: Initially SP equals 07H. The label "SUBRTN" is at program memory location 0345H. After executing the instruction,

ACALL SUBRTN

at location 0123H, SP will contain 09H, internal RAM locations 08H and 09H will contain 25H and 01H, respectively, and the PC will contain 0345H.

Operation: ACALL (PC) ← (PC) + 2 (SP) ← (SP) + 1 ((SP)) ← (PC7-0) (SP) ← (SP) + 1 ((SP)) ← (PC15-8) (PC10-0) ← page address **Encodina:** a10 a9 a8 1 0001 a7 a6 a5 a4 a3 a2 a1 a0 Bytes: 2 Cycles: 2

ADD A, <src-byte>

Function: Add

Description: ADD adds the byte variable indicated to the accumulator, leaving the result in the accumulator. The carry and auxiliary-carry flags are set, respectively, if there is a carry-out from bit 7 or bit 3, and cleared otherwise. When adding unsigned integers, the carry flag indicates an overflow occured.

OV is set if there is a carry-out of bit 6 but not out of bit 7, or a carry-out of bit 7 but not out of bit 6; otherwise OV is cleared. When adding signed integers, OV indicates a negative number produced as the sum of two positive operands, or a positive sum from two negative operands.

Four source operand addressing modes are allowed: register, direct, register-indirect, or immediate.

Example: The accumulator holds 0C3H (11000011B) and register 0 holds 0AAH (10101010B). The instruction,

ADD A,R0

will leave 6DH (01101101B) in the Accumulator with the AC flag cleared and both the carry flag and OV set to 1.

ADD A,Rn Operation:	ADD (A) ← (A) + (Rn)	
Encoding:	0010 1 r r r	
Bytes:	1	
Cycles:	1.	
ADD A,direct		
Operation:	ADD (A) \leftarrow (A) + (direct)	
Encoding:	0010 0101	direct address
Bytes:	2	
Cycles:	1	
ADD A,@Ri Operation:	ADDC (A) ← (A) + (C) + ((Ri))	
Encoding:		
Bytes:	1	
Cycles:	1	
ADD A,#data		
Operation:	ADD (A) ← (A) + #data	
Encoding:	0010 0100	immediate data
Bytes:	2	
Cycles:	1	

ADDC A, <src-byte>

Function: Add with Carry

Description: ADDC simultaneously adds the byte variable indicated, the carry flag and the accumulator contents, leaving the result in the accumulator. The carry and auxiliary-carry flags are set, respectively, if there is a carry-out from bit 7 or bit 3, and cleared otherwise. When adding unsigned integers, the carry flag indicates an overflow occured.

OV is set if there is a carry-out of bit 6 but not out of bit 7, or a carry-out of bit 7 but not out of bit 6; otherwise OV is cleared. When adding signed integers, OV indicates a negative number produced as the sum of two positive operands or a positive sum from two negative operands.

Four source operand addressing modes are allowed: register, direct, register-indirect, or immediate.

Example: The accumulator holds 0C3H (11000011B) and register 0 holds 0AAH (10101010B) with the carry flag set. The instruction,

ADDC A,R0

will leave 6EH (01101110B) in the accumulator with AC cleared and both the Carry flag and OV set to 1.

ADDC A,Rn

Operation:	ADDC (A) ← (A) + (C) + (R	
Encoding:	0011 1 1 7 7	
Bytes:	1	
Cycles:	1	
ADDC A,direct		
Operation:	ADDC	

operation.	$(A) \leftarrow (A) + (C) + (direct)$					
Encoding:	0011	0101	direct address			
Bytes:	2					
Cycles	1					

ADDC A,@Ri	
Operation:	ADDC
	$(A) \leftarrow (A) + (C) + ((Ri))$
Encoding:	0011 0111
Bytes:	1
Cycles:	1
ADDC A, # data	
Operation:	ADDC
Operation:	(A) \leftarrow (A) + (C) + #data
Encoding:	0 0 1 1 0 1 0 0 immediate data
Bytes:	2
Cycles:	1
AJMP addr11	
Function:	Absolute Jump
Description:	AJMP transfers program execution to the indicated address, which is formed at run-time by concatenating the high-order five bits of the PC (<i>after</i> incrementing the PC twice), op code bits 7–5, and the second byte of the instruction. The destination must therefore be within the same 2k block of program memory as the first byte of the instruction following AJMP.
Example:	The label "JMPADR" is at program memory location 0123H. The instruction,
	AJMP JMPADR
	is at location 0345H and will load the PC with 0123H.
Operation:	AJMP (PC) \leftarrow (PC) + 2 (PC10-0) \leftarrow page address
Encoding:	a10 a9 a8 0 0 0 0 1 a7 a6 a5 a4 a3 a2 a1 a0
Bytes:	2
Cycles:	2

ANL <dest-byte>,<src-byte>

Function: Logical-AND for byte variables

Description: ANL performs the bitwise logical-AND operation between the variables indicated and stores the results in the destination variable. No flags are affected.

The two operands allow six addressing mode combinations. When the destination is the Accumulator, the source can use register, direct, register-indirect, or immediate addressing; when the destination is a direct address, the source can be the accumulator or immediate data.

Note:

When this instruction is used to modify an output port, the value used as the original port data will be read from the output data latch, *not* the input pins.

Example: If the accumulator holds 0C3H (11000011B) and register 0 holds 0AAH (10101010B) then the instruction,

ANL A,RO

will leave 81H (10000001B) in the accumulator.

When the destination is a directly addressed byte, this instruction will clear combinations of bits in any RAM location or hardware register. The mask byte determining the pattern of bits to be cleared would either be a constant contained in the instruction or a value computed in the accumulator at run-time. The instruction,

ANL P1,#01110011B

will clear bits 7, 3, and 2 of output port 1.

ANL A,Rn

Operation:	ANL (A) ← (A) ∧ (Rn)
Encoding:	0101 1rrr
Bytes:	1
Cycles:	1
ANL A,direct	· · · · · · · · · · · · · · · · · · ·
Operation:	ANL (A) ← (A) ∧ (direct)
Encoding:	0 1 0 1 0 1 0 1 0 1 direct address
Bytes:	2

Cycles:

ANL A,@Ri Operation:	ANL (A) ← (A) ∧ ((Ri))		
Encoding:	0101 011i		
Bytes:	1		
Cycles:	1		
ANL A,#data			
Operation:	ANL (A) ← (A) ∧ #data	• .	
Encoding:	0101 0100	immediate data	
Bytes:	2		
Cycles:	1		
ANL direct,A			
Operation:	ANL (direct) \leftarrow (direct) \land (A)		
Encoding:	0101 0010	direct address	
Bytes:	2		
Cycles:	1		
ANL direct,#d	ata		
Operation:	ANL (direct) ← (direct) ∧ #data		
Encoding:	0101 0011	direct address	immediate data

Bytes:

Cycles:

3

2

INSTRUCTION SET

ANL C, <src< th=""><th>e-bit></th></src<>	e-bit>
Function:	Logical-AND for bit variables
Description:	If the Boolean value of the source bit is a logical 0 then clear the carry flag; otherwise leave the carry flag in its current state. A slash ("/") preceding the operand in the assembly language indicates that the logical complement of the addressed bit is used as the source value, <i>but the source bit itself is not affected</i> . No other flags are affected.
	Only direct addressing is allowed for the source operand.
Example:	Set the carry flag if, and only if, $P1.0 = 1$, ACC. $7 = 1$, and $OV = 0$:
	MOVC,P1.0;Load carry with input pin stateANLC,ACC.7;AND carry with accumulator bit 7ANLC,/OV;AND with inverse of overflow flag
ANL C,bit	
Operation:	ANL (C) ← (C) ∧ (bit)
Encoding:	1 0 0 0 0 0 1 0 bit address
Bytes:	2
Cycles:	2
ANL C,/bit	
Operation:	ANL (C) ← (C) ∧ ⊣ (bit)
Encoding:	1 0 1 1 0 0 0 0 bit address
Bytes:	2
Cycles:	2

CJNE <dest-byte>, <src-byte>, rel

Function: Compare and Jump if Not Equal

Description: CJNE compares the magnitudes of the first two operands, and branches if their values are not equal. The branch destination is computed by adding the signed relative displacement in the last instruction byte to the PC, after incrementing the PC to the start of the next instruction. The carry flag is set if the unsigned integer value of <dest-byte> is less than the unsigned integer value of <src-byte>; otherwise, the carry is cleared. Neither operand is affected.

The first two operands allow four addressing mode combinations: the accumulator may be compared with any directly addressed byte or immediate data, and any indirect RAM location or working register can be compared with an immediate constant.

Example: The accumulator contains 34H. Register 7 contains 56H. The first instruction in the sequence,

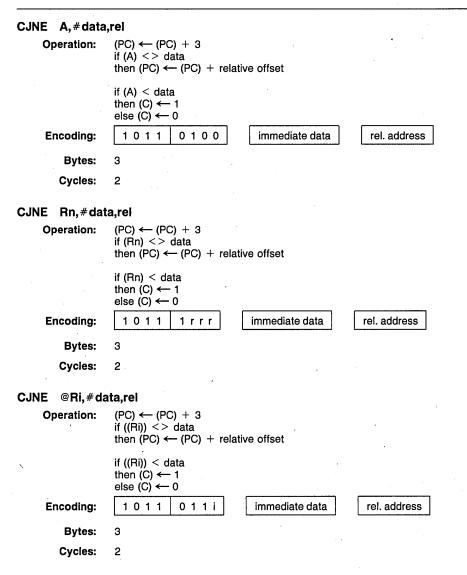
	CJNE	R7, #60H, NOTEQ		
;			;	R7 = 60H
NOT_EQ:	JC	REQLOW	;	IF R7 < 60H
;			;	R7 > 60H

sets the carry flag and branches to the instruction at label NOT__EQ. By testing the carry flag, this instruction determines whether R7 is greater or less than 60H.

If the data being presented to Port 1 is also 34H, then the instruction,

WAIT: CJNE A,P1,WAIT

clears the carry flag and continues with the next instruction in sequence, since the accumulator does equal the data read from P1. (If some other value was being input on P1, the program will loop at this point until the P1 data changes to 34H.)


CJNE A,direct,rel

Operation: (PC) \leftarrow (PC) + 3 if (A) <> (direct) then (PC) \leftarrow (PC) + relative offset

	if (A) < (dir then (C) ← else (C) ←	1		
Encoding:	1011	0101	direct address	rel. address
Bytes:	3			

Cycles: 2

INSTRUCTION SET

5-14

CLR A Function: Clear accumulator **Description:** The accumulator is cleared (all bits set to zero). No flags are affected. Example: The accumulator contains 5CH (01011100B). The instruction, CLR A will leave the accumulator set to 00H (0000000B). **Operation:** CLR (A) ← 0 **Encoding:** 1110 0100 Bytes: 1 Cycles: 1 CLR bit **Function:** Clear bit **Description:** The indicated bit is cleared (reset to zero). No other flags are affected. CLR can operate on the carry flag or any directly addressable bit. Example: Port 1 has previously been written with 5DH (01011101B). The instruction, CLR P1.2

will leave the port set to 59H (01011001B).

CLR C

Operation:	CLR (C) ← 0	
Encoding:	1100 0011	
Bytes:	1	
Cycles:	1	
CLR bit		
Operation:	CLR (bit) ← 0	
Encoding:	1100 0010	bit address
Bytes:	2	

Cycles: 1

CPL A

Function: Complement accumulator

Description: Each bit of the accumulator is logically complemented (one's complement). Bits which previously contained a one are changed to zero and vice versa. No flags are affected.

Example: The accumulator contains 5CH (01011100B). The instruction,

CPL A

will leave the accumulator set to 0A3H (10100011B).

Operation:	CPL (A) ← "] (A	.)
Encoding:	1111	0100
Bytes:	1	
Cycles:	1	

CPL bit

Function: Complement bit

Description: The bit variable specified is complemented. A bit which had been a one is changed to zero and vice versa. No other flags are affected. CLR can operate on the carry or any directly addressable bit.

Note:

When this instruction is used to modify an output pin, the value used as the original data will be read from the output data latch, not the input pin.

Example: Port 1 has previously been written with 5DH (01011101B). The instruction sequence,

> CPL P1.1 CPL P1.2

will leave the port set to 5BH (01011011B).

CPL С

Operation:	CPL (C) ← ⊣ (C)		,	
Encoding:	1011	001	1	
Bytes:	1			
Cycles:	1			

hit

Operation:	CPL (bit) ← ᄀ (l	bit)		
Encoding:	1011	0010	bit ad	dress
Bytes:	2			
Cvcles:	1			

CPL

DA A

Function: Decimal adjust accumulator for addition

Description:

DA A adjusts the eight-bit value in the accumulator resulting from the earlier addition of two variables (each in packed-BCD format), producing two four-bit digits. Any ADD or ADDC instruction may have been used to perform the addition.

If accumulator bits 3–0 are greater than nine (xxxx1010–xxxx1111), or if the AC flag is one, six is added to the accumulator producing the proper BCD digit in the low-order nibble. This internal addition would set the carry flag if a carry-out of the low-order four-bit field propagated through all high-order bits, but it would not clear the carry flag otherwise.

If the carry flag is now set, or if the four high-order bits now exceed nine (1010xxx-1111xxx), these high-order bits are incremented by six, producing the proper BCD digit in the high-order nibble. Again, this would set the carry flag if there was a carry-out of the high-order bits, but wouldn't clear the carry. The carry flag thus indicates if the sum of the original two BCD variables is greater than 100, allowing multiple precision decimal addition. OV is not affected.

All of this occurs during the one instruction cycle. Essentially, this instruction performs the decimal conversion by adding 00H, 06H, 60H, or 66H to the accumulator, depending on initial accumulator and PSW conditions.

Note:

DA A *cannot* simply convert a hexadecimal number in the accumulator to BCD notation, nor does DA A apply to decimal subtraction.

Example: The accumulator holds the value 56H (01010110B) representing the packed BCD digits of the decimal number 56. Register 3 contains the value 67H (01100111B) representing the packed BCD digits of the decimal number 67. The carry flag is set. The instruction sequence,

ADDC A,R3 DA A

will first perform a standard two's-complement binary addition, resulting in the value OBEH (10111110) in the accumulator. The carry and auxiliary carry flags will be cleared.

The decimal adjust instruction will then alter the accumulator to the value 24H (00100100B), indicating the packed BCD digits of the decimal number 24, the low-order two digits of the decimal sum of 56, 67, and the carry-in. The carry flag will be set by the decimal adjust instruction, indicating that a decimal overflow occurred. The true sum 56, 67, and 1 is 124.

BCD variables can be incremented or decremented by adding 01H or 99H. If the Accumulator initially holds 30H (representing the digits of 30 decimal), then the instruction sequence,

ADD A,#99H DA A

DA

will leave the carry set and 29H in the accumulator, since 30 + 99 = 129. The low-order byte of the sum can be interpreted to mean 30 - 1 = 29.

Operation:

if [[(A3–0)	accumulator are BCD > 9] \lor [(AC) = 1]] \leftarrow (A3-0) + 6
and if [[(A7-4) then (A7-4)	$> 9] \lor [(C) = 1]]$ $\rightarrow \leftarrow (A7-4) + 6$
1101	0100

Encoding:

Bytes:

Cycles:

DEC byte

Function: Decrement

1

1

Description: The variable indicated is decremented by 1. An original value of 00H will underflow to 0FFH. No flags are affected. Four operand addressing modes are allowed: accumulator, register, direct, or register-indirect.

Note:

When this instruction is used to modify an output port, the value used as the original port data will be read from the output data latch, *not* the input pins.

Example: Register 0 contains 7FH (01111111B). Internal RAM locations 7EH and 7FH contain 00H and 40H, respectively. The instruction sequence,

DEC @R0 DEC R0 DEC @R0

will leave register 0 set to 7EH and internal RAM locations 7EH and 7FH set to 0FFH and 3FH.

DEC A

Operation:	DEC (A) ← (A) ·	- 1
Encoding:	0001	0100
Bytes:	1	
Cycles:	1	

DEC Rn

Operation:	DEC (Rn) ← (Rn) − 1	
Encoding:	0001	1 r r
Bytes:	1	
Cycles:	1 .	

DEC direct

Operation:	DEC (direct) ← ((direct) – 1		
Encoding:	0001	0101	* .	direct address
Bytes:	2			ан на Стала стала ста Стала стала стал

rrr

Cycles: 1

DEC @Ri

Operation:	DEC ((Ri)) ← ((Ri)) - 1	
Encoding:	0001	0111
Bytes:	1	
Cycles:	1	

DIV AB	
Function:	Divide
Description:	DIV AB divides the unsigned eight-bit integer in the accumulator by the unsigned eight-bit integer in register B. The accumulator receives the integer part of the quotient; register B receives the integer remainder. The carry and OV flags will be cleared.
	<i>Exception:</i> If B had originally contained 00H, the values returned in the accumulator and B register will be undefined and the overflow flag will be set. The carry flag is cleared in any case.
Example:	The accumulator contains 251 (0FBH or 11111011B) and B contains 18 (12H or 00010010B). The instruction,
	DIV AB
	will leave 13 in the accumulator (0DH or 00001101B) and the value 17 (11H or 00010001B) in B, since $251 = (13 \times 18) + 17$. Carry and OV will both be cleared.
Operation:	DIV (A15−8) (B7-0) ← (A)/(B)
Encoding:	1000 0100
Bytes:	1
Cycles:	4

DJNZ <byte>,<rel-addr>

Function: Decrement and Jump if not zero

Description: DJNZ decrements the location indicated by 1, and branches to the address indicated by the second operand if the resulting value is not zero. An original value of 00H will underflow to 0FFH. No flags are affected. The branch destination would be computed by adding the signed relative-displacement value in the last instruction byte to the PC, after incrementing the PC to the first byte of the following instruction.

The location decremented may be a register or directly addressed byte.

Note:

When this instruction is used to modify an output port, the value used as the original port data will be read from the output data latch, *not* the input pins.

Example: Internal RAM locations 40H, 50H, and 60H contain the values, 01H, 70H, and 15H, respectively. The instruction sequence,

DJNZ 40H,LABEL_1 DJNZ 50H,LABEL_2 DJNZ 60H,LABEL_3

will cause a jump to the instruction at label LABEL__2 with the values 00H, 6FH, and 15H in the three RAM locations. The first jump was *not* taken because the result was zero.

This instruction provides a simple way of executing a program loop a given number of times, or for adding a moderate time delay (from 2 to 512 machine cycles) with a single instruction. The instruction sequence,

	MOV	R2, #8
TOGGLE:	CPL	P1.7
	DJNZ	R2.TOGGLE

will toggle P1.7 eight times, causing four output pulses to appear at bit 7 of output port 1. Each pulse will last three machine cycles; two for DJNZ and one to alter the pin.

INSTRUCTION SET

DJNZ Rn,rei	
Operation:	DJNZ (PC) \leftarrow (PC) + 2 (Rn) \leftarrow (Rn) - 1 if (Rn) > 0 or (Rn) < 0 then (PC) \leftarrow (PC) + rel
Encoding:	1 1 0 1 1 r r r rel. address
Bytes:	2
Cycles:	2
DJNZ direct,re	
Operation:	DJNZ (PC) \leftarrow (PC) + 2 (direct) \leftarrow (direct) - 1 if (direct) > 0 or (direct) < 0 then (PC) \leftarrow (PC) + rel
Encoding:	1 0 1 0 1 direct address rel. address
Bytes:	3
Cycles:	2

INC <byte>

- Function: Increment

Description: INC increments the indicated variable by 1. An original value of 0FFH will overflow to 00H. No flags are affected. Three addressing modes are allowed: register, direct, or register-indirect.

Note:

When this instruction is used to modify an output port, the value used as the original port data will be read from the output data latch, not the input pins.

Example: Register 0 contains 7EH (011111110B). Internal RAM locations 7EH and 7FH contain OFFH and 40H, respectively. The instruction sequence,

> INC @R0 INC R0 INC @R0

will leave register 0 set to 7FH and internal RAM locations 7EH and 7FH holding (respectively) 00H and 41H.


INC A

Operation:	INC (A) ← (A) + 1		
Encoding:	0000	0100	
Bytes:	1		
Cycles:	1		

INC Rn

Operation:	INC (Rn) ← (Rn) + 1		
Encoding:	0000	1 r r r	
Bytes:	1		
Cycles:	1		

INC direct

Cycles:

INC @Ri			
Operation:	INC ((Ri)) ← ((Ri)) + 1		
Encoding:	0000 0111		
Bytes:	1		
Cycles:	1		
INC DPTR			
Function:	Increment data pointer		
Description:	on: Increment the 16-bit data pointer by 1. A 16-bit increment (modulo 2 ¹⁶) is performed; an overflow of the low-order byte of the data pointer (DPL) from 0FFH to 00H will increment the high-order byte (DPH). No flags are affected.		
	This is the only 16-bit register which can be incremented.		
Example:	Registers DPH and DPL contain 12H and 0FEH, respectively. The instruction sequence,		
	INC DPTR INC DPTR INC DPTR		
	will change DPH and DPL to 13H and 01H.		
Operation:	INC (DPTR) ← (DPTR) + 1		
Encoding:	1010 0011		
Bytes:	1		
Cycles:	2		

JB	bit,rel	
	Function:	Jump if bit set
D	escription:	If the indicated bit is a one, jump to the address indicated; otherwise proceed with the next instruction. The branch destination is computed by adding the signed relative-displacement in the third instruction byte to the PC, after incrementing the PC to the first byte of the next instruction. <i>The bit tested is not modified.</i> No flags are affected.
	Example:	The data present at input port 1 is 11001010B. The accumulator holds 56 (01010110B). The instruction sequence,
		JB P1.2,LABEL1 JB ACC.2,LABEL2
	· · ·	will cause program execution to branch to the instruction at label LABEL2.
	Operation:	JB (PC) \leftarrow (PC) + 3 if (bit) = 1 then (PC) \leftarrow (PC) + rel
	Encoding:	0 0 1 0 0 0 0 0 bit address rel. address
	Bytes:	3
	Cycles:	2
JBC	bit,rel	
	Function:	Jump if bit is set and clear bit
D	escription:	If the indicated bit is one, branch to the address indicated; otherwise proceed with the next instruction. <i>In either case, clear the designated bit.</i> The branch destination is computed by adding the signed relative-displacement in the third instruction byte to the PC, after incrementing the PC to the first byte of the next instruction. No flags are affected. Note:
		When this instruction is used to test an output pin, the value used as the original data will be read from the output data latch, <i>not</i> the input pin.
	Example:	The accumulator holds 56H (01010110B). The instruction sequence,
		JBC ACC.3,LABEL1 JBC ACC.2,LABEL2
		will cause program execution to continue at the instruction identified by the label LABEL2, with the accumulator modified to 52H (01010010B).
	Operation:	JBC (PC) \leftarrow (PC) + 3 if (bit) = 1 then (bit) \leftarrow 0 (PC) \leftarrow (PC) + rel
	Encoding:	0 0 0 1 0 0 0 0 bit address rel. address
	Bytes:	3
	Cycles:	2

INSTRUCTION SET

JC rel			
Functio	n: Jump if carry is set		
Description	If the carry flag is set, branch to the address indicated; otherwise proceed with the next instruction. The branch destination is computed by adding the signed relative-displacement in the second instruction byte to the PC, after incrementing the PC twice. No flags are affected.		
Example	e: The carry flag is cleared. The instruction sequence,		
	JC LABEL1 CPL C JC LABEL 2 will set the carry and cause program execution to continue at the instruction identified by the label LABEL2.		
Operation	$(PC) \leftarrow (PC) + 2$ if $(C) = 1$ then $(PC) \leftarrow (PC) + rel$		
Encodin	g: 0 1 0 0 0 0 0 0 0 rel. address		
Byte	s: 2		
Cycle	s: 2		
JMP @A+	DPTR		

Function: Jump indirect

Description: Add the eight-bit unsigned contents of the accumulator with the sixteen-bit data pointer, and load the resulting sum to the program counter. This will be the address for subsequent instruction fetches. Sixteen-bit addition is performed (modulo 2¹⁶): a carry-out from the low-order eight bits propagates through the higher-order bits. Neither the accumulator nor the data pointer is altered. No flags are affected.

Example: An

An even number from 0 to 6 is in the Accumulator. The following sequence of instructions will branch to one of four AJMP instructions in a jump table starting at JMP....TBL:

	MOV	DPTR, #JMPTBL
	JMP	@A+DPTR
JMP_TBL:	AJMP	LABELO
	AJMP	LABEL1
	AJMP	LABEL2
	AJMP	LABEL3

If the accumulator equals 04H when starting this sequence, execution will jump to label LABEL2. Remember that AJMP is a two-byte instruction, so the jump instructions start at every other address.

JMP (PC) ← (A)	+ (DPTR)
0111	0011
1	
2	
	(PC) ← (A) 0 1 1 1 1

JNB bit,rel			
Function:	Jump if bit not set		
Description:	If the indicated bit is a zero, branch to the indicated address; otherwise proceed with the next instruction. The branch destination is computed by adding the signed relative-dis- placement in the third instruction byte to the PC, after incrementing the PC to the first byte of the next instruction. <i>The bit tested is not modified</i> . No flags are affected.		
Example:	The data present at input port 1 is 11001010B. The accumulator holds 56H (01010110B). The instruction sequence,		
	JNB P1.3,LABEL1 JNB ACC.3,LABEL2		
·	will cause program execution to continue at the instruction at label LABEL2.		
Operation:	JNB (PC) \leftarrow (PC) + 3 if (bit) = 0 then (PC) \leftarrow (PC) + rel		
Encoding:	0 0 1 1 0 0 0 0 bit address rel. address		
Bytes:	3		
Cycles:	2		
JNC rel			
Function:	Jump if carry is not set		
Description:			
Example:	The carry flag is set. The instruction sequence,		
	JNC LABEL1 CPL C JNC LABEL2		
	will clear the carry and cause program execution to continue at the instruction identified by the label LABEL2.		
Operation:	JNC (PC) \leftarrow (PC) + 2 if (C) = 0 then (PC) \leftarrow (PC) + rel		
Encoding:	0 1 0 1 0 0 0 0 rel. address		
Bytes:	2		
Cycles:	2		

INSTRUCTION SET

JNZ rel			
Function:	Jump if accumulator not zero		
Description:	If any bit of the accumulator is a one, branch to the indicated address; otherwise proceed with the next instruction. The branch destination is computed by adding the signed relative-displacement in the second instruction byte to the PC, after incrementing the PC twice. The accumulator is not modified. No flags are affected.		
Example:	The accumulator originally holds 00H. The instruction sequence,		
	JNZ LABEL1 INC A JNZ LABEL2		
	will set the accumulator to 01H and continue at label LABEL2.		
Operation:	JNZ (PC) \leftarrow (PC) + 2 if (A) \neq 0 then (PC) \leftarrow (PC) + rel		
Encoding:	0 1 1 1 0 0 0 0 rel. address		
Bytes:	2		
Cycles:	2		
JZ rel			
Function:	Jump if accumulator zero		
Description:	If all bits of the accumulator are zero, branch to the address indicated; otherwise proceed with the next instruction. The branch destination is computed by adding the signed relative-displacement in the second instruction byte to the PC, after incrementing the PC twice. The accumulator is not modified. No flags are affected.		
Example:	The accumulator originally contains 01H. The instruction sequence,		
	JZ LABEL1 DEC A JZ LABEL2		
	will change the Accumulator to 00H and cause program execution to continue at the instruction identified by the label LABEL2.		
Operation:	JZ (PC) \leftarrow (PC) + 2 if (A) = 0 then (PC) \leftarrow (PC) + rel		
Encoding:	0 1 1 0 0 0 0 0 rel. address		
Bytes:	2		
Cycles:	2		

LCALL addr	16		
Function:	Long call		
Description:	LCALL calls a subroutine located at the indicated address. The instruction adds three to the program counter to generate the address of the next instruction and then pushes the 16-bit result onto the stack (low byte first), incrementing the stack pointer by two. The high-order and low-order bytes of the PC are then loaded, respectively, with the second and third bytes of the LCALL instruction. Program execution continues with the instruction at this address. The subroutine may therefore begin anywhere in the full 64 kbyte program memory address space. No flags are affected.		
Example:	Initially the stack pointer equals 07H. The label "SUBRTN" is assigned to program memory location 1234H. After executing the instruction,		
	LCALL SUBRTN		
	at location 0123H, the stack pointer will contain 09H, internal RAM locations 08H and 09H will contain 26H and 01H, and the PC will contain 1234H.		
Operation:	LCALL (PC) \leftarrow (PC) + 3 (SP) \leftarrow (SP) + 1 ((SP)) \leftarrow (PC7-0) (SP) \leftarrow (SP) + 1 ((SP)) \leftarrow (PC15-8) (PC) \leftarrow addr15-0		
Encoding:	0 0 0 1 0 0 1 0 addr15addr8 addr7addr0		
Bytes:	3		
Cycles:	2		
LJMP addr16	6		
Function:	Long Jump		
Description:	LJMP causes an unconditional branch to the indicated address, by loading the high-order and low-order bytes of the PC (respectively) with the second and third instruction bytes. The destination may therefore be anywhere in the full 64K program memory address space. No flags are affected.		
Example: The label "JMPADR" is assigned to the instruction at program memory loc The instruction,			
	LJMP JMPADR		
	at location 0123H will load the program counter with 1234H.		
Operation:	LJMP (PC) ← addr15-0		
Encoding:	0 0 0 0 0 1 0 addr15addr8 addr7addr0		
Bytes:	3		
Cycles:	2		

INSTRUCTION SET

MOV <dest-byte>,<src-byte>

Function: Move byte variable

Description: The byte variable indicated by the second operand is copied into the location specified by the first operand. The source byte is not affected. No other register or flag is affected.

This is by far the most flexible operation. Fifteen combinations of source and destination addressing modes are allowed.

Example: Internal RAM location 30H holds 40H. The value of RAM location 40H is 10H. The data present at input port 1 is 11001010B (0CAH).

MOV	R0,#30H	;R0 <= 30H
MOV	A,@R0	;A <= 40H
MOV	R1,A	;R1 <= 40H
MOV	R,@R1	;B <= 10H
MOV	@R1,P1	;RAM (40H) <= 0CAH
MOV	P2,P1	;P2 <0CAH

leaves the value 30H in register 0, 40H in both the accumulator and register 1, 10H in register B, and 0CAH (11001010B) both in RAM location 40H and output on port 2.

MOV A,Rn

MOV (A)	
1110	1 r r r
1	
1	
	(A) ← (Rn)

MOV A, direct*

Operation:	$\begin{array}{l} MOV \\ (A) \longleftarrow (direct) \end{array}$		
Encoding:	1110	0101	direct address
Bytes:	2		
Cycles:	1		

*MOV A,ACC is not a valid instruction.

MOV A,@Ri		
Operation:	MOV	
	(A) ← ((Ri))	
Encoding:	1110 011i	
Bytes:	1	
Cycles:	1	
MOV A,#data		
Operation:	MOV (A) ← #data	
Encoding:	01110100	immediate data
Encounig.	0111 0100	ininieulate data
Bytes:	2	
Cycles:	1	
MOV Rn,A		
MOV Rn,A Operation:	MOV (Rn) ← (A)	
•		
Operation: Encoding:	(Rn) ← (A)	
Operation: Encoding: Bytes:	(Rn) ← (A) 1 1 1 1 1 1 r r r 1	
Operation: Encoding:	(Rn) ← (A)	
Operation: Encoding: Bytes:	(Rn) ← (A) 1 1 1 1 1 1 r r r 1	
Operation: Encoding: Bytes: Cycles:	(Rn) ← (A) 1 1 1 1 1 r r r 1 1 MOV	· ·
Operation: Encoding: Bytes: Cycles: MOV Rn,direct	(Rn) ← (A) 1 1 1 1 1 1 r r r 1 1	
Operation: Encoding: Bytes: Cycles: MOV Rn,direct	(Rn) ← (A) 1 1 1 1 1 r r r 1 1 MOV	direct address
Operation: Encoding: Bytes: Cycles: MOV Rn,direct Operation:	(Rn) ← (A) 1 1 1 1 1 1 r r r 1 1 MOV (Rn) ← (direct)	direct address

MOV Rn,#data	
Operation:	MOV (Rn) ← #data
Encoding:	0 1 1 1 1 r r r immediate data
Bytes:	2
Cycles:	1
MOV direct,A	
Operation:	MOV (direct) ← (A)
Encoding:	1 1 1 1 0 1 0 1 direct address
Bytes:	2
Cycles:	1
MOV direct,Rn	
Operation:	MOV (direct) ← (Rn)
Encoding:	1000 1rrr direct address
Bytes:	2
Cycles:	2
MOV direct,dire	ect
Operation:	MOV (direct) ← (direct)
Encoding:	1 0 0 0 0 1 0 1 dir. addr. (src) dir. addr. (dest)
Bytes:	3

5-32

Cycles:

MOV direct,@F	Ri		×
Operation:	MOV (direct) ← ((Ri))		
Encoding:	1000 011i	direct address	
Bytes:	2		
Cycles:	2		
MOV direct,#c	Jata		•
Operation:	MOV (direct) ← #data		
Encoding:	0111 0101	direct address	immediate data
Bytes:	3		
Cycles:	2	· · · · · · · · · · · · · · · · · · ·	
MOV @Ri,A		• •	
Operation:	MOV ((Ri)) ← (A)		
Encoding:	1111 011i		
Bytes:	1		
Cycles:	1		
MOV @Ri,dired	st		
Operation:	MOV ((Ri)) ← (direct)		
Encoding:	1010 0111	direct addr.	
Bytes:	2		
Cycles:	2		
MOV @Ri,#da	ta		
Operation:	MOV ((Ri)) ← #data		
Encoding:	0111 011i	immediate data	
Bytes:	2		
Cycles:	1		

MOV <dest-l< th=""><th>bit>,<src-bit></src-bit></th></dest-l<>	bit>, <src-bit></src-bit>
Function:	Move bit data
Description:	The Boolean variable indicated by the second operand is copied into the location speci- fied by the first operand. One of the operands must be the carry flag; the other may be any directly addressable bit. No other register or flag is affected.
Example:	The carry flag is originally set. The data present at input port 3 is 11000101B. The data previously written to output port 1 is 35H (00110101B).
	MOV P1.3,C MOV C,P3.3 MOV P1.2,C
	will leave the carry cleared and change port 1 to 39H (00111001B).
MOV C,bit	
Operation:	$\begin{array}{l} MOV \\ (C) \longleftarrow (bit) \end{array}$
Encoding:	1 0 1 0 0 0 1 0 bit address
Bytes:	2
Cycles:	1
MOV bit,C	
Operation:	MOV (bit) ← (C)
Encoding:	1 0 0 1 0 0 1 0 bit address
Bytes:	2
Cycles:	2

MOV DPTR,	R,#data16	
Function:	Load data pointer with a 16-bit constant	
Description:	The data pointer is loaded with the 16-bit constant indicated. The 16-bit constant is loaded into the second and third bytes of the instruction. The second byte (DPH) is the high-order byte, while the third byte (DPL) holds the low-order byte. No flags are affected.	
	This is the only instruction which moves 16 bits of data at once.	
Example:	The instruction,	
	MOV DPTR,#1234H	
	will load the value 1234H into the data pointer: DPH will hold 12H and DPL will hold 34H.	
Operation:	MOV (DPTR) ← #data15-0 DPH □ DPL ← #data15-8 □ #data7-0	
Encoding:	1 0 0 1 0 0 0 0 immed. data15-8 immed. data7-0	
Bytes:	3	
Cycles:	2	

MOVC A,@A+<base-reg>

Function: Move code byte

Description: The MOVC instructions load the accumulator with a code byte, or constant from program memory. The address of the byte fetched is the sum of the original unsigned eight-bit accumulator contents and the contents of a 16-bit base register, which may be either the data pointer or the PC. In the latter case, the PC is incremented to the address of the following instruction before being added to the accumulator; otherwise the base register is not altered. Sixteen-bit addition is performed so a carry-out from the low-order eight bits may propagate through higher-order bits. No flags are affected.

Example: A value between 0 and 3 is in the accumulator. The following instructions will translate the value in the accumulator to one of four values defined by the DB (define byte) directive.

REL_PC:	INC	Α
	MOVC	A,@A+PC
	RET	
	DB	66H
	DB	77H
	DB	88H
	DB	99H

If the subroutine is called with the accumulator equal to 01H, it will return with 77H in the accumulator. The INC A before the MOVC instruction is needed to "get around" the RET instruction above the table. If several bytes of code separated the MOVC from the table, the corresponding number would be added to the accumulator instead.

MOVC A,@A+DPTR

Operation:	MOVC (A) ← ((A)	+ (DPTR))
Encoding:	1001	0011
Bytes:	1	
Cycles:	2	

MOVC A,@A + PC

Operation:	$\begin{array}{l} \text{MOVC} \\ \text{(PC)} \longleftarrow \text{(PC)} + 1 \\ \text{(A)} \longleftarrow \text{((A)} + \text{(PC))} \end{array}$	
Encoding:	1000	0011
Bytes:	1	
Cycles:	2	

MOVX <dest-byte>,<src-byte>

Function: Move external

Description:

The MOVX instructions transfer data between the accumulator and a byte of external data memory, hence the "X" appended to MOV. There are two types of instructions, differing in whether they provide an eight-bit or 16-bit indirect address to the external data RAM.

In the first type, the contents of R0 or R1 in the current register bank provide an eight-bit address multiplexed with data on P0. Eight bits are sufficient for external I/O expansion decoding or for a relatively small RAM array. For somewhat larger arrays, any output port pins can be used to output higher-order address bits. These pins would be controlled by an output instruction preceding the MOVX.

In the second type of MOVX instruction, the data pointer generates a 16-bit address. P2 outputs the high-order eight address bits (the contents of DPH) while P0 multiplexes the low-order eight bits (DPL) with data. The P2 special function register retains its previous contents while the P2 output buffers are emitting the contents of DPH. This form is faster and more efficient when accessing very large data arrays (up to 64 kbytes), since no additional instructions are needed to set up the output ports.

It is possible in some situations to mix the two MOVX types. A large RAM array with its high-order address lines driven by P2 can be addressed via the data pointer, or with code to output high-order address bits to P2 followed by a MOVX instruction using R0 or R1.

Example: An external 256 byte RAM using multiplexed address/data lines (e.g., an SAB 8155 RAM/I/O/Timer) is connected to the SAB 80515 port 0. Port 3 provides control lines for the external RAM. Ports 1 and 2 are used for normal I/O. Registers 0 and 1 contain 12H and 34H. Location 34H of the external RAM holds the value 56H. The instruction sequence,

MOVX A,@R1 MOVX @R0,A

copies the value 56H into both the accumulator and external RAM location 12H.

MOVX A,@Ri Operation: MOVX (A) ← ((Ri)) Encoding: 1 1 1 0 0 0 1 i Bytes: 1 Cycles: 2

MOVX A.@DPTR

Operation:

(A) ← ((DPTR)) **Encodina:**

MOVX

2

1

2

MOVX ((Ri)) ← (A)

1111

1110

0000

001i

Bytes: 1

Cycles:

MOVX @Ri.A

Operation:

Encoding:

Bytes: Cycles:

MOVX @DPTR,A

Operation:	MOVX ((DPTR)) ← (A)	
Encoding:	1111	0000
Bytes:	1	
Cycles:	2	

MUL AB

Function: Multiply

Description: MUL AB multiplies the unsigned eight-bit integers in the accumulator and register B. The low-order byte of the 16-bit product is left in the accumulator, and the high-order byte in B. If the product is greater than 255 (0FFH) the overflow flag is set; otherwise it is cleared. The carry flag is always cleared.

Example: Originally the accumulator holds the value 80 (50H). Register B holds the value 160 (0A0H). The instruction,

MUL AB

will give the product 12,800 (3200H), so B is changed to 32H (00110010B) and the accumulator is cleared. The overflow flag is set, carry is cleared.

Operation:	MUL (A7−0) ← (A) X (B) (B15−8)	
Encoding:	1010	0100
Bytes:	_1	
Cvcles:	4	

NOP	
Function:	No operation
Description:	Execution continues at the following instruction. Other than the PC, no registers or flags are affected.
Example:	It is desired to produce a low-going output pulse on bit 7 of port 2 lasting exactly 5 cycles. A simple SETB/CLR sequence would generate a one-cycle pulse, so four additional cycles must be inserted. This may be done (assuming no interrupts are enabled) with the instruction sequence,
	CLR P2.7 NOP NOP NOP SETB P2.7
Operation:	NOP
Encoding:	0000 0000
Bytes:	1
Cycles:	1

ORL

Logical-OR for byte variables Function: **Description:** ORL performs the bitwise logical-OR operation between the indicated variables, storing the results in the destination byte. No flags are affected. The two operands allow six addressing mode combinations. When the destination is the accumulator, the source can use register, direct, register-indirect, or immediate addressing; when the destination is a direct address, the source can be the accumulator or immediate data. Note: When this instruction is used to modify an output port, the value used as the original port data will be read from the output data latch, not the input pins. Example: If the accumulator holds 0C3H (11000011B) and R0 holds 55H (01010101B) then the instruction. ORL A.RO will leave the accumulator holding the value 0D7H (11010111B).

<dest-byte> <src-byte>

When the destination is a directly addressed byte, the instruction can set combinations of bits in any RAM location or hardware register. The pattern of bits to be set is determined by a mask byte, which may be either a constant data value in the instruction or a variable computed in the accumulator at run-time. The instruction,

ORL P1,#00110010B

will set bits 5, 4, and 1 of output port 1.

ORL A,Rn

Operation:	ORL (A) ← (A) ∨ (Rn)
Encoding:	0100 1 r r r
Bytes:	1
Cycles:	1
ORL A,direct	
Operation:	ORL (A) ← (A) ∨ (direct)
Encoding:	0 1 0 0 0 1 0 1 direct address
Bytes:	2
Cycles:	1

ORL A,@Ri	
Operation:	ORL (A) ← (A) ∨ ((Ri))
Encoding:	0100 011i
Bytes:	1
Cycles:	1
ORL A,#data	
Operation:	ORL (A) ← (A) ∨ #data
Encoding:	0 1 0 0 0 1 0 0 immediate data
Bytes:	2
Cycles:	1
ORL direct,A Operation:	ORL
Operation.	$(direct) \leftarrow (direct) \lor (A)$
Encoding:	0 1 0 0 0 0 1 0 direct address
Bytes:	2
Cycles:	1
ORL direct,#d	lata
Operation:	ORL (direct) ← (direct) ∨ #data
Encoding:	0 1 0 0 0 0 1 1 direct address immediate data
Bytes:	3

Cycles:

ORL C, <src-< th=""><th>bit></th></src-<>	bit>
Function:	Logical-OR for bit variables
Description:	Set the carry flag if the Boolean value is a logical 1; leave the carry in its current state otherwise . A slash ("/") preceding the operand in the assembly language indicates that the logical complement of the addressed bit is used as the source value, but the source bit itself is not affected. No other flags are affected.
Example:	Set the carry flag if, and only if, $P1.0 = 1$, ACC. $7 = 1$, or $OV = 0$:
	MOVC,P1.0;Load carry with input pin p10ORLC,ACC.7;OR carry with the accumulator bit 7ORLC,/OV;OR carry with the inverse of OV.
ORL C,bit	
Operation:	ORL (C) ← (C) ∨ (bit)
Encoding:	0 1 1 1 0 0 1 0 bit address
Bytes:	2
Cycles:	2
ORL C,/bit	
Operation:	ORL (C) ← (C) ∨ ⊐ (bit)
Encoding:	1 0 1 0 0 0 0 0 bit address
Bytes:	2
Cycles:	2

ъ.,

POP direct	
Function:	Pop from stack
Description:	The contents of the internal RAM location addressed by the stack pointer is read, and the stack pointer is decremented by one. The value read is then transferred to the directly addressed byte indicated. No flags are affected.
Example:	The stack pointer originally contains the value 32H, and internal RAM locations 30H through 32H contain the values 20H, 23H, and 01H, respectively. The instruction sequence,
	POP DPH POP DPL
	will leave the stack pointer equal to the value 30H and the data pointer set to 0123H. At this point the instruction,
	POP SP
	will leave the stack pointer set to 20H. Note that in this special case the stack pointer was decremented to 2FH before being loaded with the value popped (20H).
Operation:	POP (direct) ← ((SP)) (SP) ← (SP) - 1
Encoding:	1 1 0 1 0 0 0 0 direct address
Bytes:	2
Cycles:	2
PUSH direct	
	Duck onto stack
Function:	Push onto stack
Function: Description:	The stack pointer is incremented by one. The contents of the indicated variable is then copied into the internal RAM location addressed by the stack pointer. Otherwise no flags are affected.
	The stack pointer is incremented by one. The contents of the indicated variable is then copied into the internal RAM location addressed by the stack pointer. Otherwise no flags
Description:	The stack pointer is incremented by one. The contents of the indicated variable is then copied into the internal RAM location addressed by the stack pointer. Otherwise no flags are affected. On entering an interrupt routine the stack pointer contains 09H. The data pointer holds
Description:	The stack pointer is incremented by one. The contents of the indicated variable is then copied into the internal RAM location addressed by the stack pointer. Otherwise no flags are affected. On entering an interrupt routine the stack pointer contains 09H. The data pointer holds the value 0123H. The instruction sequence, PUSH DPL
Description:	The stack pointer is incremented by one. The contents of the indicated variable is then copied into the internal RAM location addressed by the stack pointer. Otherwise no flags are affected. On entering an interrupt routine the stack pointer contains 09H. The data pointer holds the value 0123H. The instruction sequence, PUSH DPL PUSH DPH will leave the stack pointer set to 0BH and store 23H and 01H in internal RAM locations
Description: Example:	The stack pointer is incremented by one. The contents of the indicated variable is then copied into the internal RAM location addressed by the stack pointer. Otherwise no flags are affected. On entering an interrupt routine the stack pointer contains 09H. The data pointer holds the value 0123H. The instruction sequence, PUSH DPL PUSH DPH will leave the stack pointer set to 0BH and store 23H and 01H in internal RAM locations 0AH and 0BH, respectively. PUSH (SP) \leftarrow (SP) + 1
Description: Example: Operation:	The stack pointer is incremented by one. The contents of the indicated variable is then copied into the internal RAM location addressed by the stack pointer. Otherwise no flags are affected. On entering an interrupt routine the stack pointer contains 09H. The data pointer holds the value 0123H. The instruction sequence, PUSH DPL PUSH DPH will leave the stack pointer set to 0BH and store 23H and 01H in internal RAM locations 0AH and 0BH, respectively. PUSH $(SP) \leftarrow (SP) + 1$ ((SP)) $\leftarrow (direct)$
Description: Example: Operation: Encoding:	The stack pointer is incremented by one. The contents of the indicated variable is then copied into the internal RAM location addressed by the stack pointer. Otherwise no flags are affected. On entering an interrupt routine the stack pointer contains 09H. The data pointer holds the value 0123H. The instruction sequence, PUSH DPL PUSH DPH will leave the stack pointer set to 0BH and store 23H and 01H in internal RAM locations 0AH and 0BH, respectively. PUSH $(SP) \leftarrow (SP) + 1$ $((SP)) \leftarrow (direct)$ 1 1 0 0 0 0 0 0 direct address

$\begin{array}{llllllllllllllllllllllllllllllllllll$		
Description:RET pops the high- and low-order bytes of the PC successively from the stack, decrementing the stack pointer by two. Program execution continues at the resulting address, generally the instruction immediately following an ACALL or LCALL. No flags are affected.Example:The stack pointer originally contains the value 0BH. Internal RAM locations 0AH and 0BH contain the values 23H and 01H, respectively. The instruction,RETwill leave the stack pointer equal to the value 09H. Program execution will continue at location 0123H.Operation:RET(Cr(15=0) \leftarrow ((SP))(SP) \leftarrow (SP) -1 (PC(15=0) \leftarrow ((SP))(SP) \leftarrow (SP) -1 ProcessPattern <th< td=""><td>RET</td><td></td></th<>	RET	
$\begin{array}{ll} \mbox{mention} \mbox{the stack pointer by two. Program execution continues at the resulting address generally the instruction immediately following an ACALL or LCALL. No flags are affected. \\ \mbox{ed} \mbox{ded} \mbox{ded}$	Function:	Return from subroutine
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Description:	RET pops the high- and low-order bytes of the PC successively from the stack, decre- menting the stack pointer by two. Program execution continues at the resulting address, generally the instruction immediately following an ACALL or LCALL. No flags are affect- ed.
will leave the stack pointer equal to the value 09H. Program execution will continue at location 0123H.Operation:RET (PC15-0) \leftarrow ((SP)) (SP) \leftarrow (SP) - 1Encoding: $0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0$ Bytes:1 Cycles:ZRETIFunction:Return from interruptDescription:RETI pops the high- and low-order bytes of the PC successively from the stack, and restores the interrupt logic to accept additional interrupts at the same priority level as the one just processed. The stack pointer is left decremented by two. No other registers are affected; the PSW is <i>not</i> automatically restored to its pre-interrupt status. Program execu- tion continues at the resulting address, which is generally the instruction immediately after the point at which the interrupt request was detected. If a Deventer or same-level 	Example:	The stack pointer originally contains the value 0BH. Internal RAM locations 0AH and 0BH contain the values 23H and 01H, respectively. The instruction,
location 0123H.Operation:RET ($PC15-B$) \leftarrow ((SP)) (SP) \leftarrow (SP) - 1 ($PC7-0$) \leftarrow ((SP)) (SP) \leftarrow (SP) - 1Encoding: $0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0$ Bytes:1 Cycles:ZRETIFunction:Return from interruptDescription:RETI pops the high- and low-order bytes of the PC successively from the stack, and restores the interrupt logic to accept additional interrupt at the same priority level as the one just processed. The stack pointer is left decremented by two. No other registers are affected; the PSW is <i>not</i> automatically restored to its pre-interrupt status. Program execu- tion continues at the resulting address, which is generally the instruction immediately after the point at which the interrupt request was detected. If a lower- or same-level instruction ending at location 0122H. Internal RAM locations 0AH and 0BH contain the values 23H and 01H, respectively. The instruction, RETI will leave the stack pointer equal to 09H and return program execution to location 0123H.Operation:RETI ($PC15-B$) \leftarrow ((SP)) ($SP) \leftarrow (SP) - 1$ ($PC7-0$) \leftarrow ((SP)) ($SP) \leftarrow (SP) - 1$ Encoding: $0 \ 0 \ 1 \ 1 \ 0 \ 1 \ 0$ Bytes:1		RET
$\begin{array}{llllllllllllllllllllllllllllllllllll$		will leave the stack pointer equal to the value 09H. Program execution will continue at location 0123H.
Bytes:1Cycles:2RETIFunction:Return from interruptDescription:RETI pops the high- and low-order bytes of the PC successively from the stack, and cone just processed. The stack pointer is left decremented by two. No other registers are affected; the PSW is <i>not</i> automatically restored to its pre-interrupt status. Program execu- tion continues at the resulting address, which is generally the instruction immediately after the point at which the interrupt request was detected. If a lower- or same-leve interrupt had been pending when the RETI instruction is executed, that one instruction will be executed before the pending interrupt is processed.Example:The stack pointer originally contains the value 0BH. An interrupt was detected during the instruction ending at location 0122H. Internal RAM locations 0AH and 0BH contain the values 23H and 01H, respectively. The instruction, RETI will leave the stack pointer equal to 09H and return program execution to location 0123H.Operation:RETI (PC15-8) \leftarrow ((SP)) (SP) \leftarrow (SP) -1 (PC7-0) \leftarrow ((SP)) (SP) \leftarrow (SP) -1 Encoding: $0 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 0$ Bytes:1	Operation:	(PC15-8) ← ((SP)) (SP) ← (SP) - 1 (PC7-0) ← ((SP))
Cycles: 2 RETI Function: Return from interrupt Description: RETI pops the high- and low-order bytes of the PC successively from the stack, and restores the interrupt logic to accept additional interrupts at the same priority level as the one just processed. The stack pointer is left decremented by two. No other registers are affected; the PSW is <i>not</i> automatically restored to its pre-interrupt status. Program execution continues at the resulting address, which is generally the instruction immediately after the point at which the interrupt request was detected. If a lower- or same-leve interrupt had been pending when the RETI instruction is executed, that one instruction will be executed before the pending interrupt is processed. Example: The stack pointer originally contains the value 0BH. An interrupt was detected during the instruction ending at location 0122H. Internal RAM locations 0AH and 0BH contain the values 23H and 01H, respectively. The instruction, RETI will leave the stack pointer equal to 09H and return program execution to location 0123H. Operation: RETI (PC15-8) ← ((SP)) (SP) ← (SP) - 1 (PC7-0) ← ((SP)) (SP) ← (SP) - 1 (PC7-0) ← (SP) = 1 (PC7-0) ← ((SP)) (SP) ← (SP) - 1 (PC7-0) ← (SP) (SP) ← (SP) = 1 (PC7-0) ← (SP) 1 Bytes: 1	Encoding:	0010 0010
RETIFunction: Return from interrupt Description: RETI pops the high- and low-order bytes of the PC successively from the stack, and restores the interrupt logic to accept additional interrupts at the same priority level as the one just processed. The stack pointer is left decremented by two. No other registers are affected; the PSW is <i>not</i> automatically restored to its pre-interrupt status. Program execu- tion continues at the resulting address, which is generally the instruction immediately after the point at which the interrupt request was detected. If a lower- or same-level interrupt had been pending when the RETI instruction is executed, that one instruction 	Bytes:	1
Function:Return from interruptDescription:RETI pops the high- and low-order bytes of the PC successively from the stack, and restores the interrupt logic to accept additional interrupts at the same priority level as the one just processed. The stack pointer is left decremented by two. No other registers are affected; the PSW is <i>not</i> automatically restored to its pre-interrupt status. Program execu- tion continues at the resulting address, which is generally the instruction immediately after the point at which the interrupt request was detected. If a lower- or same-level interrupt had been pending when the RETI instruction is executed, that one instruction will be executed before the pending interrupt is processed.Example:The stack pointer originally contains the value 0BH. An interrupt was detected during the instruction ending at location 0122H. Internal RAM locations 0AH and 0BH contain the values 23H and 01H, respectively. The instruction, RETI will leave the stack pointer equal to 09H and return program execution to location 0123H.Operation:RETI (PC15-8) \leftarrow ((SP)) (SP) \leftarrow (SP) $-$ 1 (PC7-0) \leftarrow ((SP)) (SP) \leftarrow (SP) $-$ 1Encoding:0 0 1 10 0 1 0Bytes:1	Cycles:	2
Description:RETI pops the high- and low-order bytes of the PC successively from the stack, and restores the interrupt logic to accept additional interrupts at the same priority level as the one just processed. The stack pointer is left decremented by two. No other registers are affected; the PSW is <i>not</i> automatically restored to its pre-interrupt status. Program execu- tion continues at the resulting address, which is generally the instruction immediately after the point at which the interrupt request was detected. If a lower- or same-level interrupt had been pending when the RETI instruction is executed, that one instruction will be executed before the pending interrupt is processed.Example:The stack pointer originally contains the value 0BH. An interrupt was detected during the instruction ending at location 0122H. Internal RAM locations 0AH and 0BH contain the values 23H and 01H, respectively. The instruction, RETI will leave the stack pointer equal to 09H and return program execution to location 0123H.Operation:RETI (PC15-8) \leftarrow ((SP)) (SP) \leftarrow (SP) $- 1$ (PC7-0) \leftarrow ((SP)) (SP) \leftarrow (SP) $- 1$ Encoding: $0 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0$	RETI	
restores the interrupt logic to accept additional interrupts at the same priority level as the one just processed. The stack pointer is left decremented by two. No other registers are affected; the PSW is <i>not</i> automatically restored to its pre-interrupt status. Program execu- tion continues at the resulting address, which is generally the instruction immediately after the point at which the interrupt request was detected. If a lower- or same-leve interrupt had been pending when the RETI instruction is executed, that one instruction will be executed before the pending interrupt is processed. Example: The stack pointer originally contains the value 0BH. An interrupt was detected during the instruction ending at location 0122H. Internal RAM locations 0AH and 0BH contain the values 23H and 01H, respectively. The instruction, RETI will leave the stack pointer equal to 09H and return program execution to location 0123H. Operation: RETI (PC15-8) \leftarrow ((SP)) (SP) \leftarrow (SP) - 1 (PC7-0) \leftarrow ((SP)) (SP) \leftarrow (SP) - 1 (PC7-0) \leftarrow ((SP)) (SP) \leftarrow (SP) - 1 Encoding: 0 0 1 1 0 0 1 0 Bytes: 1	Function:	Return from interrupt
instruction ending at location 0122H. Internal RAM locations 0AH and 0BH contain the values 23H and 01H, respectively. The instruction, RETI will leave the stack pointer equal to 09H and return program execution to location 0123H. Operation: RETI (PC15-8) \leftarrow ((SP)) (SP) \leftarrow (SP) - 1 (PC7-0) \leftarrow ((SP)) (SP) \leftarrow (SP) - 1 Encoding: 0 0 1 1 0 0 1 0 Bytes: 1	Description:	RETI pops the high- and low-order bytes of the PC successively from the stack, and restores the interrupt logic to accept additional interrupts at the same priority level as the one just processed. The stack pointer is left decremented by two. No other registers are affected; the PSW is <i>not</i> automatically restored to its pre-interrupt status. Program execution continues at the resulting address, which is generally the instruction immediately after the point at which the interrupt request was detected. If a lower- or same-level interrupt had been pending when the RETI instruction is executed, that one instruction will be executed before the pending interrupt is processed.
will leave the stack pointer equal to 09H and return program execution to location 0123H. Operation: RETI (PC15-8) \leftarrow ((SP)) (SP) \leftarrow (SP) - 1 (PC7-0) \leftarrow ((SP)) (SP) \leftarrow (SP) - 1 Encoding: 0 0 1 1 0 0 1 0 Bytes: 1	Example:	The stack pointer originally contains the value 0BH. An interrupt was detected during the instruction ending at location 0122H. Internal RAM locations 0AH and 0BH contain the values 23H and 01H, respectively. The instruction,
Operation: RETI (PC15-8) \leftarrow ((SP)) (SP) \leftarrow (SP) - 1 (PC7-0) \leftarrow ((SP)) (SP) \leftarrow (SP) - 1 Encoding: 0 0 1 1 0 0 1 0 Bytes: 1		RETI
$(PC15-8) \leftarrow ((SP)) (SP) \leftarrow (SP) - 1 (PC7-0) \leftarrow ((SP)) (SP) \leftarrow (SP) - 1$ Encoding: $0 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 0$ Bytes: 1		will leave the stack pointer equal to 09H and return program execution to location 0123H.
Bytes: 1	Operation:	(PC15–8) ← ((SP)) (SP) ← (SP) − 1 (PC7–0) ← ((SP))
	Encoding:	0011 0010
	Bytes:	1
	-	2

RL A

Function: Rotate accumulator left

Description: The eight bits in the accumulator are rotated one bit to the left. Bit 7 is rotated into the bit 0 position. No flags are affected.

Example: The accumulator holds the value 0C5H (11000101B). The instruction,

RL A

RI

1

1

leaves the accumulator holding the value 8BH (10001011B) with the carry unaffected.

Operation:

operation	$(An + 1) \leftarrow (An) n$ $(A0) \leftarrow (A7)$		n =	= 0 — 6
Encoding:	0010	001	1	

Bytes:

Cycles:

RLC A

Function: Rotate accumulator Left through carry flag

Description: The eight bits in the accumulator and the carry flag are together rotated one bit to the left. Bit 7 moves into the carry flag; the original state of the carry flag moves into the bit 0 position. No other flags are affected.

Example: The accumulator holds the value 0C5H (11000101B), and the carry is zero. The instruction.

RLC A

leaves the accumulator holding the value 8AH (10001010B) with the carry set.

6

Operation:	RLC		
-	(An + 1) <	— (An)	n = 0 -
	(A0) ← (C)	. ,	
	(C) ← (A7)		
Encoding:	0011	001	1
Bytes:	1		

Bytes:

Cycles:

RR A	
Function:	Rotate accumulator right
Description:	The eight bits in the accumulator are rotated one bit to the right. Bit 0 is rotated into the bit 7 position. No flags are affected.
Example:	The accumulator holds the value 0C5H (11000101B). The instruction,
	RR A
	leaves the accumulator holding the value 0E2H (11100010B) with the carry unaffected.
Operation:	RR (An) \leftarrow (An + 1) $n = 0 - 6$ (AT)

	(A7) ← (A0		U
Encoding:	0000	0011	
Bytes:	1		
Cycles:	1		

RRC A

Function: Rotate accumulator right through carry flag

0011

Description: The eight bits in the accumulator and the carry flag are together rotated one bit to the right. Bit 0 moves into the carry flag; the original value of the carry flag moves into the bit 7 position. No other flags are affected.

Example: The accumulator holds the value 0C5H (11000101B), the carry is zero. The instruction,

RRC A

0001

leaves the accumulator holding the value 62 (01100010B) with the carry set.

1

1

Encoding:

Bytes:

Cycles:

SETB <bit>

Function: Set bit

Description: SETB sets the indicated bit to one. SETB can operate on the carry flag or any directly addressable bit. No other flags are affected.

Example: The carry flag is cleared. Output port 1 has been written with the value 34H (00110100B). The instructions,

SETB C SETB P1.0

will leave the carry flag set to 1 and change the data output on port 1 to 35H (00110101B).

SETB C

Operation:	SETB (C) ← 1		
Encoding:	1101	0011	
Bytes:	1		
Cycles:	1		
SETB bit			
Operation:	SETB (bit) ← 1		
Encoding:	1101	0010	bit address
Bytes:	2		
Cycles:	1		

SJMP rel	
Function:	Short jump
Description:	Program control branches unconditionally to the address indicated. The branch destina- tion is computed by adding the signed displacement in the second instruction byte to the PC, after incrementing the PC twice. Therefore, the range of destinations allowed is from 128 bytes preceding this instruction to 127 bytes following it.
Example:	The label "RELADR" is assigned to an instruction at program memory location 0123H. The instruction,
	SJMP RELADR
	will assemble into location 0100H. After the instruction is executed, the PC will contain the value 0123H.
	Note:
	Under the above conditions the instruction following SJMP will be at 102H. Therefore, the displace- ment byte of the instruction will be the relative offset (0123H-0102H) = 21H. Put another way, an SJMP with a displacement of 0FEH would be a one-instruction infinite loop.
Operation:	SJMP (PC) ← (PC) + 2 (PC) ← (PC) + rel
Encoding:	1 0 0 0 0 0 0 0 rel. address
Bytes:	2
Cycles:	2

SUBB A, < src-byte>

Function: Subtract with borrow

Description: SUBB subtracts the indicated variable and the carry flag together from the accumulator, leaving the result in the accumulator. SUBB sets the carry (borrow) flag if a borrow is needed for bit 7, and clears C otherwise. (If C was set *before* executing a SUBB instruction, this indicates that a borrow was needed for the previous step in a multiple precision subtraction, so the carry is subtracted from the accumulator along with the source oper and.) AC is set if a borrow is needed for bit 3, and cleared otherwise. OV is set if a borrow is needed into bit 6, but not into bit 7, or into bit 7, but not bit 6.

When subtracting signed integers OV indicates a negative number produced when a negative value is subtracted from a positive value, or a positive result when a positive number is subtracted from a negative number.

The source operand allows four addressing modes: register, direct, register-indirect, or immediate.

Example: The accumulator holds 0C9H (11001001B), register 2 holds 54H (01010100B), and the carry flag is set. The instruction,

SUBB A,R2

will leave the value 74H (01110100B) in the accumulator, with the carry flag and AC cleared but OV set.

Notice that 0C9H minus 54H is 75H. The difference between this and the above result is due to the (borrow) flag being set before the operation. If the state of the carry is not known before starting a single or multiple-precision subtraction, it should be explicitly cleared by a CLR C instruction.

SUBB A,Rn

Operation:	SUBB (A) \leftarrow (A) - (C) - (Rn)
Encoding:	1001 1rrr
Bytes:	1
Cycles:	1
SUBB A,direct	
Operation:	SUBB (A) \leftarrow (A) - (C) - (direct)
Encoding:	1 0 0 1 0 1 0 1 direct address
Bytes:	2

Cvcles:

1

SUBB A,@Ri

Operation:

Encoding:

Bytes:

Cycles:

SUBB (A) ← (A) -

1

1

2

1

SUBB

1001

1001

(C) - ((Ri))

0111

SUBB A,#data

Operation:

Encoding:

Bytes:

Cycles:

SWAP A

Function: Swap nibbles within the accumulator

 $(A) \leftarrow (A) - (C) - #data$

0100

Description: SWAP A interchanges the low- and high-order nibbles (four-bit fields) of the accumulator (bits 3–0 and bits 7–4). The operation can also be thought of as a four-bit rotate instruction. No flags are affected.

immediate data

Example: The accumulator holds the value 0C5H (11000101B). The instruction,

SWAP A

leaves the accumulator holding the value 5CH (01011100B).

Operation:	SWAP (A3−0) ↔ (A7−4)				
Encoding:	1100	0100			

1

1

Bytes:

Cycles:

Function:	Exchange accumulator with byte variable							
Description:	XCH loads the accumulator with the contents of the indicated variable, at the same time writing the original accumulator contents to the indicated variable. The source/destination operand can use register, direct, or register-indirect addressing.							
Example:	R0 contains the address 20H. The accumulator holds the value 3FH (00111111B). Intenal RAM location 20H holds the value 75H (01110101B). The instruction,	ər-						
	XCH A,@R0							
	will leave RAM location 20H holding the values 3FH (00111111B) and 75H (01110101) in the accumulator.	B)						
KCH A,Rn								
Operation:	XCH (A) ≓ (Rn)							
Encoding:	1100 1rrr							
Bytes:	1							
Cycles:	1							
(CH A,direct								
Operation:	XCH (A) ⇄ (direct)							
Encoding:	$\begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 0 & 1 \end{bmatrix}$ direct address							
Bytes:	2							
Cycles:	1							
CH A,@Ri Operation:	XCH (A)							
Encoding:								
Bytes:	1							
Cycles:	1							

5

XCHD A,@Ri	· · · ·
Function:	Exchange digit
Description:	XCHD exchanges the low-order nibble of the accumulator (bits 3–0, generally represent- ing a hexadecimal or BCD digit), with that of the internal RAM location indirectly ad- dressed by the specified register. The high-order nibbles (bits 7–4) of each register are not affected. No flags are affected.
Example:	R0 contains the address 20H. The accumulator holds the value 36H (00110110B). Inter- nal RAM location 20H holds the value 75H (01110101B). The instruction,
	XCHD A,@R0
	will leave RAM location 20H holding the value 76H (01110110B) and 35H (00110101B) in the accumulator.
Operation:	XCHD (A3−0) 컱 ((Ri)3−0)
Encoding:	1101 0111
Bytes:	1
Cycles:	1

XRL <dest-byte>,<src-byte>

Function: Logical Exclusive-OR for byte variables

Description: XRL performs the bitwise logical Exclusive-OR operation between the indicated variables, storing the results in the destination. No flags are affected.

> The two operands allow six addressing mode combinations. When the destination is the accumulator, the source can use register, direct, register-indirect, or immediate addressing; when the destination is a direct address, the source can be the accumulator or immediate data.

Note:

When this instruction is used to modify an output port, the value used as the original port data will be read from the output data latch, not the input pins.)

Example: If the accumulator holds 0C3H (11000011B) and register 0 holds 0AAH (10101010B) then the instruction,

XRL A.RO

will leave the accumulator holding the value 69H (01101001B).

When the destination is a directly addressed byte, this instruction can complement combinations of bits in any RAM location or hardware register. The pattern of bits to be complemented is then determined by a mask byte, either a constant contained in the instruction or a variable computed in the accumulator at run-time. The instruction,

XRL P1,#00110001B

will complement bits 5, 4, and 0 of output port 1.

XRL A.Rn

Operation:	XRL (A) ← (A) ∀ (Rn)
Encoding:	0110 1 r r r
Bytes:	1
Cycles:	1
XRL A,direct Operation:	XRL

(A) \leftarrow (A) \forall (direct)

0101

0110

Encoding:

direct address

Operation:XRL $(A) \leftarrow (A) \lor ((Fi))$ Encoding: $0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1$ Bytes:1Cycles:1XRL A, # dataOperation:XRL $(A) \leftarrow (A) \lor # data$ Encoding: $0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0$ immediate dataBytes:2Cycles:1XRL direct, A Operation:XRL $(direct) \leftarrow (direct) \lor (A)$ Encoding: $0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 0$ immediate dataBytes:2Cycles:1XRL direct, 4 (direct) $\leftarrow (direct) \lor (A)$ Encoding: $0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 0$ direct addressBytes:2Cycles:1XRL direct, # data (direct) $\leftarrow (direct) \lor \# data$ Encoding: $0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1$ direct addressimmediate dataBytes:2Cycles:1XRL direct, # data (direct) $\leftarrow (direct) \lor \# data$ Encoding: $0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1$ direct addressimmediate dataBytes:3Cycles:2	XRL A,@Ri	
Bytes:1Cycles:1XRL A, # dataOperation:XRL $(A) \leftarrow (A) \lor # data$ Encoding: $0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0$ immediate dataBytes:2Cycles:1XRL direct, A Operation:XRL $(direct) \leftarrow (direct) \lor (A)$ Encoding: $0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 0$ idirect addressBytes:2Cycles:1XRL direct, A Operation:XRL $(direct) \leftarrow (direct) \lor (A)$ Encoding: $0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 0$ idirect addressBytes:2Cycles:1XRL direct, # data Operation: XRL $(direct) \leftarrow (direct) \lor # data$ Encoding: $0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1$ direct addressImmediate dataImmediate dataBytes:3	Operation:	
Cycles:1XRL A,#data Operation:XRL $(A) \leftarrow (A) \lor # data$ $(A) \leftarrow (A) \lor # data$ Encoding:Bytes:2Cycles:1XRL direct,A Operation:XRL $(direct) \leftarrow (direct) \lor (A)$ Encoding:Bytes:2Cycles:1XRL direct,# (direct) \leftarrow (direct) \lor (A) Encoding: $0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 0$ Bytes:2Cycles:1XRL direct,# data (direct,#dataDegration:XRL $(direct) \leftarrow (direct) \lor # data$ Bytes:2Cycles:1XRL direct,#data (direct) \leftarrow (direct) \lor # dataEncoding: $0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1$ direct addressimmediate dataBytes:3	Encoding:	0110 011i
XRL A, # dataOperation:XRL (A) \leftarrow (A) \lor # dataEncoding:0 1 1 0 0 1 0 0immediate dataBytes:2Cycles:1XRL direct,AOperation:XRL (direct) \leftarrow (direct) \lor (A)Encoding:0 1 1 0 0 0 1 0direct addressBytes:2Cycles:1XRL direct, # dataOperation:XRL (direct) \leftarrow (direct) \lor # dataEncoding:0 1 1 0 0 0 1 1direct addressBytes:2Cycles:1XRL direct, # dataOperation:XRL (direct) \leftarrow (direct) \lor # dataEncoding:0 1 1 0 0 0 1 1direct addressimmediate dataBytes:3	Bytes:	a t er and the second
Operation:XRL (A) \leftarrow (A) \forall # dataEncoding:0 1 1 0 0 1 0 0immediate dataBytes:2Cycles:1XRL direct,AOperation:XRL (direct) \leftarrow (direct) \forall (A)Encoding:0 1 1 0 0 0 1 0direct addressBytes:2Cycles:1XRL direct, # dataOperation:XRL (direct) \leftarrow (direct) \forall # dataDeration:XRL (direct) \leftarrow (direct) \forall # dataEncoding:0 1 1 0 0 0 1 1direct addressimmediate dataBytes:3	Cycles:	1
(A) \leftarrow (A) \neq # data Encoding: $0 1 1 0 0 1 0 0$ immediate data Bytes: 2 Cycles: 1 XRL direct,A Operation: XRL (direct) \leftarrow (direct) \forall (A) Encoding: $0 1 1 0 0 0 1 0$ direct address Bytes: 2 Cycles: 1 XRL direct,# data Operation: XRL (direct) \leftarrow (direct) \forall # data Encoding: $0 1 1 0 0 0 1 1$ direct address immediate data Bytes: 3	XRL A,#data	
Bytes:2Cycles:1XRL direct,A Operation:XRL (direct) \leftarrow (direct) \forall (A)Encoding: $0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 0$ direct addressBytes:2Cycles:1XRL direct, # data Operation:XRL (direct) \leftarrow (direct) \forall # dataEncoding: $0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1$ direct addressBytes:2Cycles:1XRL direct, # data (direct) \leftarrow (direct) \forall # dataEncoding: $0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1$ direct addressimmediate dataBytes:3	Operation:	
Cycles:1XRL direct,A Operation:XRL (direct) \leftarrow (direct) \forall (A)Encoding: $0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 0$ Bytes:2 Cycles:Bytes:2 Cycles:XRL direct, # data (direct) \leftarrow (direct) \forall # dataEncoding: $0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1$ direct addressimmediate dataBytes:3	Encoding:	0 1 1 0 0 1 0 0 immediate data
XRL direct,A Operation: XRL (direct) \leftarrow (direct) \forall (A) Encoding: 0 1 1 0 0 0 1 0 Bytes: 2 Cycles: 1 XRL direct, # data Operation: XRL (direct) \leftarrow (direct) \forall # data Encoding: 0 1 1 0 0 0 1 1 direct address immediate data Bytes: 3	Bytes:	2
Operation:XRL (direct) \leftarrow (direct) \forall (A)Encoding: $0 \ 1 \ 1 \ 0$ $0 \ 0 \ 1 \ 0$ direct addressBytes:2Cycles:1XRL direct, # dataOperation:XRL (direct) \leftarrow (direct) \forall # dataEncoding: $0 \ 1 \ 1 \ 0$ $0 \ 1 \ 1$ direct addressBytes:3	Cycles:	1
$(direct) \leftarrow (direct) \neq (A)$ Encoding: $0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 0$ direct address Bytes: 2 Cycles: 1 XRL direct, # data Operation: XRL (direct) \leftarrow (direct) \neq # data Encoding: $0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1$ direct address immediate data Bytes: 3	XRL direct,A	
Bytes: 2 Cycles: 1 XRL direct, # data Operation: XRL (direct) ← (direct) ↓ # data Encoding: 0 1 1 0 0 0 1 1 direct address immediate data Bytes: 3	Operation:	
Cycles: 1 XRL direct, # data Operation: XRL (direct) ← (direct) ¥ # data Encoding: 0 1 1 0 0 0 1 1 direct address Bytes: 3	Encoding:	0 1 1 0 0 0 1 0 direct address
XRL direct, # data Operation: XRL (direct) ← (direct) ¥ # data Encoding: 0 1 1 0 0 0 1 1 Bytes: 3	Bytes:	2
Operation: XRL (direct) ← (direct) ↓ #data Encoding: 0 1 1 0 0 0 1 1 Bytes: 3	Cycles:	1
(direct) ← (direct) ← # data Encoding: 0 1 1 0 0 0 1 1 direct address immediate data Bytes: 3	XRL direct, #d	lata
Bytes: 3	Operation:	
	Encoding:	0 1 1 0 0 0 1 1 direct address immediate data
Cycles: 2	Bytes:	3
	Cycles:	2

5.4 Instruction Set Summary

Mnemonic		Description	Byte	Cycle	
Arithmeti	ic Operations	· · · · · · · · · · · · · · · · · · ·			
ADD	A, Rn	Add Register to Accumulator	1	1	
ADD	A, Direct	Add Direct Byte to Accumulator	2	1	
ADD	A, @Ri	Add Indirect RAM to Accumulator	1	1	
ADD	A, #Data	Add Immediate Data to Accumulator	2	1	
ADDC	A, Rn	Add Register to Accumulator with Carry Flag	1	1	
ADDC	A, Direct	Add Direct Byte to A with Carry Flag	2	1	
ADDC	A, @Ri	Add Indirect RAM to A with Carry Flag	1	1	
ADDC	A, #Data	Add Immediate Data to A with Carry Flag	2	1	
SUBB	A, Rn	Subtract Register from A with Borrow	1	1	
SUBB	A, Direct	Subtract Direct Byte from A with Borrow	2	1	
SUBB	A, @Ri	Subtract Indirect RAM from A with Borrow	1	1	
SUBB	A, #Data	Subtract Immediate Data from A with Borrow	2	1	
INC	A	Increment Accumulator	1	1	
INC	Rn	Increment Register	1	1	
INC	Direct	Increment Direct Byte	2	1	
INC	@Ri	Increment Indirect RAM	1	1	
DEC	А	Decrement Accumulator	1	1	
DEC	Rn	Decrement Register	1	1	
DEC	Direct	Decrement Direct Byte	2	1	
DEC	@Ri	Decrement Indirect RAM	1	1	
INC	DPTR	Increment Data Pointer	1	2	
MUL	AB	Multiply A and B	1	4	
DIV	AB	Divide A by B	1	4	
DA	А	Decimal Adjust Accumulator	1	1	
Logical O	perations				
ANL	A, Rn	AND Register to Accumulator	1	1	
ANL	A, Direct	AND Direct Byte to Accumulator	2	1	
ANL	A, @Ri	AND Indirect RAM to Accumulator	1	1	
ANL	A, #Data	AND Immediate Data to Accumulator	2	1	
ANL	Direct, A	AND Accumulator to Direct Byte	2	1	

5

5.4 Instruction Set Summary (Continued)

Mnemonic		Description	Byte	Cycle	
Logical C	Operations (Continue	ed)			
ANL	Direct, #Data	AND Immediate Data to Direct Byte	3	2	
ORL	A, Rn	OR Register to Accumulator	1	1	
ORL	A, Direct	OR Direct Byte to Accumulator	2	1	
ORL	A, @Ri	OR Indirect RAM to Accumulator	1	1	
ORL	A, #Data	OR Immediate Data to Accumulator	2	1	
ORL	Direct, A	OR Accumulator to Direct Byte	2	1	
ORL	Direct, #Data	OR Immediate Data to Direct Byte	3	2	
XRL	A, Rn	Exclusive OR Register to Accumulator	1	1	
XRL	A, Direct	Exclusive OR Direct Byte to Accumulator	2	1	
XRL	A, @Ri	Exclusive OR Indirect RAM to Accumulator	1	1	
XRL	A, #Data	Exclusive OR Immediate Data to Accumulator	2	1	
XRL	Direct, A	Exclusive OR Accumulator to Direct Byte	2	1	
XRL	Direct, #Data	Exclusive OR Immediate Data to Direct Byte	3	2	
CLR	A	Clear Accumulator	1	1	
CPL	A	Complement Accumulator	1	1	
RL	A	Rotate Accumulator Left	1	1	
RLC	A	Rotate A Left through Carry Flag	1	1	
RR	A	Rotate Accumulator Right	1	1	
RRC	A	Rotate A Right through Carry Flag	1	1	
SWAP	A	Swap Nibbles within the Accumulator	1	·1	
Data Tra	nsfer				
MOV	A, Rn	Move Register to Accumulator	1	1	
MOV	A, Direct*	Move Direct Byte to Accumulator	2	1	
MOV	A, @Ri	Move Indirect RAM to Accumulator	1	1	
MOV	A, #Data	Move Immediate Data to Accumulator	2	1	
MOV	Rn, A	Move Accumulator to Register 1		1	
MOV	Rn, Direct	Move Direct Byte to Register	2 2		
MOV	Rn, #Data	Move Immediate Data to Register	to Register 2		
MOV	Direct, A	Move Accumulator to Direct Byte	2	1	
MOV	Direct, Rn	Move Register to Direct Byte	2 2		
MOV	Direct, Direct	Move Direct Byte to Direct Byte	3	2	

*MOV A, ACC is not a valid instruction.

5.4 Instruction Set Summary (Continued)

Mnemonic		Description	Byte	Cycle
Data Tra				
MOV	Direct, @Ri	Move Indirect RAM to Direct Byte	2	2
MOV	Direct, #Data	Move Immediate Data to Direct Byte	3	2
MOV	@Ri, A	Move Accumulator to Indirect RAM	1	1
MOV	@Ri, Direct	Move Direct Byte to Indirect RAM	2	2
MOV	@Ri, #Data	Move Immediate Data to Indirect RAM	· 2	1
MOV	DPTR, #Data16	Load Data Pointer with a 16-Bit Constant	3	2
MOVC	A, @A+DPTR	Move Code Byte Relative to DPTR to Accumulator	1	2
MOVC	A, @A + PC	Move Code Byte Relative to PC to Accumulator	1	2
MOVX	A, @ Ri	Move External RAM (8-Bit Addr.) to Accumulator	1	2
MOVX	A, @DPTR	Move External RAM (16-bit Addr.) to Accumulator	· 1	2
MOVX	@Ri, A	Move A to External RAM (8-bit Addr.)	1	2
MOVX	@DPTR, A	Move A to External RAM (16-Bit Addr.)	1	2
PUSH	Direct	Push Direct Byte onto Stack	2	2
POP	Direct	Pop Direct Byte from Stack	2	2
ХСН	A, Rn	Exchange Register with Accumulator	1	1
ХСН	A, Direct	Exchange Direct Byte with Accumulator	2	1
ХСН	A, @Ri	Exchange Indirect RAM with Accumulator	1	1
XCHD	A, @Ri	Exchange Low-Order Digit Indirect RAM with A	1	1
Boolean	Variable Manipulation	on		
CLR	C .	Clear Carry Flag	1	1
CLR	Bit	Clear Direct Bit	2	1
SETB	С	Set Carry Flag	[′] 1	1
SETB	Bit	Set Direct Bit	2	1
CPL	С	Complement Carry Flag	1	· . 1
CPL	Bit	Complement Direct Bit	2	1
ANL	C, Bit	AND Direct Bit to Carry Flag	2	2
ANL	C, /Bit	AND Complement of Direct Bit to Carry	2	2
ORL	C, Bit	OR Direct Bit to Carry Flag	2	2
ORL	C, /Bit	OR Complement of Direct Bit to Carry	2	2
MOV	C, Bit	Move Direct Bit to Carry Flag	2	1
MOV	Bit, C	Move Carry Flag to Direct Bit	2	2

5.4 Instruction Set Summary (Continued)

I	Mnemonic	Description	Byte	Cycle			
Program and Machine Control							
ACALL	Addr 11	Absolute Subroutine Call	2	2			
LCALL	Addr 16	Long Subroutine Call	3	2			
RET		Return from Subroutine	1	2			
RETI		Return from Interrupt	1	2			
AJMP	Addr 11	Absolute Jump	2	2			
LJMP	Addr 16	Long Jump	3	2			
SJMP	Rel	Short Jump (Relative Addr.)	2	2			
JMP	@A + DPTR	Jump Indirect Relative to the DPTR	1	2			
JZ	Rel	Jump if Accumulator is Zero	2	2			
JNZ	Rel	Jump if Accumulator is No Zero	2	2			
JC	Rel	Jump if Carry Flag is Set	2	2			
JNC	Rel	Jump if Carry Flag is Not Set	2	2			
JB	Bit, Rel	Jump if Direct Bit is Set	3	2			
JNB	Bit, Rel	Jump if Direct Bit is Not Set	3	2			
JBC	Bit, Rel	Jump if Direct Bit is Set and Clear Bit	3	2			
CJNE	A, Direct, Rel	Compare Direct Byte to A and Jump if Not Equal	3	2			
CJNE	A, #Data, Rel	Comp. Immed. to A and Jump if Not Equal	3	2			
CJNE	Rn, #Data, Rel	Comp. Immed. to Reg. and Jump if Not Equal	3	2			
CJNE	@Ri, #Data, Rel	Comp. Immed. to Ind. and Jump if Not Equal	3	2			
DJNZ	Rn, Rel	Decrement Register and Jump if Not Zero	2	2			
DJNZ	Direct, Rel	Decrement Direct and Jump if Not Zero	. 3	2			
NOP		No Operation	1	1			

Notes on Data Addressing Modes:

- Rn
 — Working register R0-R7

 Direct
 — 128 internal RAM locations, any I/O
- port, control or status register
 @Ri Indirect internal or external RAM loca-
- tion addressed by register R0 or R1
- #Data16 16-bit constant included as bytes 2 and 3 of instruction
- Bit 128 software flags, any I/O pin, control or status bit
- A Accumulator

All mnemonics copyrighted © Intel Corporation 1980

Notes on Program Addressing Modes:

- Addr 16 Destination address for LCALL and LJMP may be anywhere within the 64 kbyte program memory address space.
- Addr 11 Destination address for ACALL and AJMP will be within the same 2 kbyte page of program memory as the first byte of the following instruction.
- Rel SJMP and all conditional jumps include an 8-bit offset byte. Range is +127/ -128 bytes relative to first byte of the following instruction.

Instruction Op Codes in Hexadecimal Order

Hex Code	Number of Bytes	Mnemonic	Operands		Hex Code	Number of Bytes	Mnemonic	Operands
00 01 02 03 04 05 06 07 08 09 0ABCDEF 01 112 34 15 16 7 89 ABCDEF 00 00 00 00 00 00 00 00 00 00 00 00 00	1231121111111323112111111113211221111111	NOP AJMP LJMP RR INC INC INC INC INC INC INC INC INC INC	Code Addr Code Addr A A Data Addr @ R0 @ R1 R0 R1 R2 R3 R4 R5 R6 R7 Bit Addr, Code Addr Code Addr Code Addr Code Addr Code Addr @ R0 @ R1 R0 @ R1 R0 @ R1 R1 R2 R3 R4 R5 R6 R7 Bit Addr, Code Addr Code Addr R1 R2 R3 R4 R5 R6 R7 Bit Addr, Code Addr Code Addr A A, # Data A, Data Addr A, @ R0 Q R1 R3 R4 R5 R6 R7 Bit Addr, Code Addr Code Addr A, # Data A, R1 A, R2 A, R3 A, R4 A, R5 A, R6 A, R7 Bit Addr, Code Addr Code Addr A R1 R1 R1 R2 R3 R4 R5 R6 R7 Bit Addr, Code Addr A A, # Data A, R1 A, R2 A, R3 A, R4 A, R5 A, R6 A, R7 Bit Addr, Code Addr A A R1 A, R2 A, R3 A, R4 A, R5 A, R6 A, R7 Bit Addr, Code Addr A A R1 A, R2 A, R1 A, R2 A, R3 A, R4 A, R5 A, R6 A, R7 Bit Addr, Code Addr A A A A A A A A A A A A A A A A A A	。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。	335367389ABCDEF0112344567789ABCDEF0123456789ABCDEF01234567	2211111111112223221111111111222322111111	ADDC ADDC ADDC ADDC ADDC ADDC ADDC ADDC	A, # Data A, @ R0 A, @ R0 A, @ R1 A, R0 A, R1 A, R2 A, R3 A, R4 A, R3 A, R4 A, R5 A, R6 A, R7 Code Addr Code Addr Data Addr, # Data A, # Data A, # Data A, Data Addr A, @ R0 A, @ R1 A, R0 A, R1 A, R2 A, R3 A, R4 A, R5 A, R6 A, R7 Code Addr Code Addr Data Addr, # Data A, R6 A, R7 Code Addr Data Addr, # Data A, R6 A, R7 Code Addr Data Addr, # Data A, R6 A, R7 Code Addr Data Addr, # Data A, R0 A, @ R1 A, R0 A, R1 A, R2 A, R1 A, R0 A, R1 A, R0 A, R1 A, R2 A, R1 A, R0 A, R1 A, R0 A, R1 A, R2 A, R1 A, R0 A, R1 A, R2 A, R1 A, R0 A, R1 A, R2 A, R1 A, R0 A, R1 A, R2 A, R1 A, R1 A, R1 A, R2 A, R1 A, R1 A, R2 A, R1 A, R1 A

Instruction Op Codes in Hexadecimal Order (Continued)

· · · · · · · · · · · · · · · · · · ·			III HEXAUECIIIIAI					
Hex Code	Number of Bytes	Mnemonic	Operands	Co	ode	Number of Bytes	Mnemonic	Operands
68	1	XRL	A, R0	90		1	SUBB	A, R4
69	1	XRL	A, R1	90	D		SUBB	A, R5
6A	1	XRL	A, R2	9E	Ξ		SUBB	A, R6
6B	· 1	XRL	A, R3	9F			SUBB	A, R7
6C	1	XRL	A, R4	AC	0	2	ORL	C, /Bit Addr
6D	1	XRL	A, R5	A1	1	2 2 2	AJMP	Code Addr
6E	1	XRL	A, R6	A	2	2 .	MOV	C, Bit Adrr
6F	1	XRL	A, R7	AS	3	1	INC	DPTR
70	2 2 2 1	JNZ	Code Addr	A4	4	1	MUL	AB
71	2	ACALL	Code Addr	A	5		Reserved	
72	2	ORL	C, Bit Addr	A	6	2	MOV	@R0, Data Addr
73		JMP	@A + DPTR	A	7	2	MOV	@R1, Data Addr
74	2	MOV	A, #Data	A		2	MOV	R0, Data Addr
75	3	MOV	Data Addr, #Data	AS		2	MOV	R1, Data Addr
76	2	MOV	@ R0, #Data	AA		2	MOV	R2, Data Addr
77	2	MOV	@ R1, #Data	AE		2	MOV	R3, Data Addr
78	2	MOV	R0, #Data	AC		2	MOV	R4, Data Addr
79	2	MOV	R1, #Data	AI	ן ט	2	MOV	R5, Data Addr
7A	2	MOV	R2, #Data	A	=		MOV	R6, Data Addr
7B	2	MOV	R3, #Data	AF		2	MOV	R7, Data Addr
7C	2	MOV	R4, #Data	BC		2	ANL	C, /Bit Addr
7 <u>D</u>	2	MOV	R5, #Data	B	ו ז	2	ACALL	Code Addr
7E	<u> </u>	MOV	R6, #Data	B2 B3		2	CPL	Bit Adrr
7F 80	2	MOV SJMP	R7, #Data	B4	3	1	CPL	C A #Data Cada Addr
81	2	AJMP	Code Addr Code Addr	B	- 1	3	CJNE CJNE	A, #Data, Code Addr
82	2	ANL	C. Bit Adrr	B		3 3	CJNE	A, Data Addr, Code Addr @R0, #Data, Code Addr
83	1	MOVC	A. $@A + PC$	B	7	3	CJNE	@R1, #Data, Code Addr
84	i	DIV	AB	B	6	3 3 3	CJNE	R0, #Data, Code Addr
85		MOV	Data Addr. Data Addr	BS		30	CJNE	R1, #Data, Code Addr
86	2	MOV	data addr. @R0	BA	Δ	2	CJNE	R2, #Data, Code Addr
87	2	MOV	data addr. @R1	B		3 3 3	CJNE	R3, #Data, Code Addr
88	2	MOV	data addr, R0	BC	č I	3	CJNE	R4, #Data, Code Addr
89	2	MOV	data addr. R1	BI	ň I	3	CJNE	R5, #Data, Code Addr
8A	2	MOV	data addr. R2	B	Ē	3	CJNE	R6, #Data, Code Addr
8B	2	MOV	data addr, R3	B	F	3	CJNE	R7, #Data, Code Addr
8Č	2	MOV	data addr, R4	i co		2	PUSH	Data Addr
8D	2	MOV	data addr, R5	Č	ĭ	2 2 2	AJMP	Code Addr
8E	2	MOV	data addr, R6	Č	ż l	2	CLR	Bit Adrr
8F	2	MOV	data addr, R7	Č	3	1	ČLR	C
90	<u> </u>	MOV	DPTR, #Data	C4	4	1	SWAP	Ă
91	2	ACALL	Code Addr	Č	5	ż	ХСН	A, Data Addr
92	2 2 1	MOV	Bit Addr, C	IC6	6	ī	XCH	A, @R0
93	1	MOVC	A, @A + DPTR	Č	7	1	XCH	A, @R1
94	2 2	SUBB.	A, #Data	Č	8	1	XCH	A, RO
95	2	SUBB	A, Data Addr	CS	9		XCH	A, R1
96	1	SUBB	A, @R0	C			XCH	A, R2
97	1	SUBB	A, @R1	CE		1	XCH	A, R3
98	1	SUBB	A, R0	CC	CI	1	ХСН	A, R4
99	1	SUBB	A, R1	CI	D		XCH	A, R5
9A	1 -	SUBB	A, R2	CE	E	1	XCH	A. R6
9B	1	SUBB	A, R3	CF	F.	1	XCH	A, R7
.								L

5-60

	Number of Bytes	Mnemonic	Operands	
D0 D1 D2 D3 D5 D6 D7 D0 D0 D0 D0 D0 D0 D0 D0 D0 D0 D0 D0 D0	222113112222222212111211	POP ACALL SETB DA DJNZ XCHD DJNZ DJNZ DJNZ DJNZ DJNZ DJNZ DJNZ DJN	Data Addr Code Addr Bit Adrr C A Data Addr, Code Addr A, @R0 A, @R1 R0, Code Addr R1, Code Addr R2, Code Addr R3, Code Addr R4, Code Addr R5, Code Addr R5, Code Addr R6, Code Addr R7, Code Addr R7, Code Addr A, @DPTR Code Addr A, @R0 A, @R1 A B0 A, @R1	

Instruction Op Codes in Hexadecimal Order (Continued)

er (Continued)						
Hex Code	Number of Bytes	Mnemonic	Operands			
89ABCDUF0123456789ABCDUFF	1 1 1 1 1 1 1 2 1 1 2 2 1 1 1 1 1 1 1 1	MOV MOV MOV MOV MOV MOV MOV ACALL MOVX ACALL MOVX CPL MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV	A, R0 A, R1 A, R2 A, R3 A, R4 A, R5 A, R6 A, R7 @DPTR, A Code Addr @R0, A @R1, A A Data Addr, A @R1, A R1, A R1, A R2, A R3, A R4, A R5, A R6, A R7, A			

*MOV A,ACC is not a valid instruction

SAB 80512/80532 Single-Chip Microcontroller User's Manual

SIEMENS

Microcomputer Components

SAB 80512/80532 Single-Chip Microcontroller

User's Manual

· ·

Contents

.

Table of Contents

		Page
1.0	Introduction	6-7
2.0	Architecture	6-11
2.1	Central Processing Unit	6-14
2.1.1	CPU Timing	6-14
2.2	Memory Organization	6-16
2.2.1	Program Memory	6-16
2.2.2	Data Memory	6-16
2.2.3	General-Purpose Registers	6-17
2.2.4	Special-Function Registers	6-18
2.3	External Bus Interface	6-23
2.3.1	Accessing External Memory	6-23
2.3.2	PSEN, Program Store Enable	6-25
2.3.3	ALE, Address Latch Enable	6-25
2.3.4	Overlapping of External Data and Program Memory Spaces	6-26
2.4	System Reset	6-27
3.0	On-Chip Peripheral Components	6-29
3.1	Parallel I/O	6-31
3.1.1	Port Structures	6-31
3.1.2	Alternate Functions	6-33
3.1.3	Port Handling	6-33
3.2	Serial Interface	6-34
3.2.1	Setup and Control	6-34
3.2.2	Multiprocessor Communication	6-35
3.2.3	Generating Baud Rates	6-36
3.2.4	Modes of Operation	6-37
3.3	Timer 0 and Timer 1	6-40
3.4	A/D Converter	6-43
3.4.1	Function and Control	6-43
3.4.2	External Reference Voltages	6-44
3.4.3	A/D Converter Timing and Conversion Time	6-45
3.5	RAM Backup Power Supply	6-45
3.6	Oscillator and Clock Circuit	6-46
4.0	Interrupt System	6-49
4.1	Interrupt Structure	6-51
4.2	Priority Level Structure	6-53
4.3	How Interrupts Are Handled	6-54
4.4	External Interrupts	6-55
4.5	Response Time	6-55

6-5

Introduction

· · · .

1.0 Introduction

The SAB 80512 is another member of the SIEMENS SAB 8051 family. Based on the well-known industry standard 8-bit 8051 architecture, the performance and functionality of the SAB 80512 lies between that of the SAB 8051 and the SAB 80515. In addition to having all the operating characteristics of the SAB 8051, it meets market requirements of today's microcontrollers: high cost-effectiveness and ability to implement applications which need more digital I/O or an easy-to-handle on-chip A/D converter.

Listed below is a summary of the features available in the SAB 80512:

- Fully backward compatible with SAB 8051
- Pin-compatible with SAB 80515
- 4 Kbyte on-chip ROM
- 128 byte on-chip RAM
- 256 directly addressable bits
- Power-down supply for 40 bytes of RAM
- Full-duplex serial port, 4 modes of operation
- Additional baud-rate generator with two selectable baud rates
- Two 16-bit timer/counters
- Six parallel I/O ports, i.e. 48 I/O lines

- One general-purpose 8-bit input port
- A/D converter, 8 multiplexed channels, user-adjustable reference voltages
- Boolean processor
- 6 interrupt sources (2 external, 4 internal), two priority levels
- 1 µs instruction cycle at 12 MHz
- 4 µs multiply and divide
- External program and data memory, expandable up to 64 Kbytes each
- Compatible with standard SAB 8085 peripherals and memories
- Space-saving PLCC-68 package

The SAB 80532 is especially designed for applications with external program memory but without the on-chip ROM.

In this manual, any reference to the SAB 80512 applies to all versions of the SAB 80512 microcontroller unless otherwise noted. The different versions include:

SAB 80512 — ROM version SAB 80532 — ROM-less version

•

Architecture

2.0 Architecture

The core of the SAB 80512 includes the complete SAB 8051, thereby providing 100% upward compatibility between the SAB 8051 and the SAB 80512. This means that all existing 8051 programs or user's program libraries can be used without restriction and may be easily extended for the new SAB 80512. Furthermore, the SAB 80512 contains two additional I/O ports and one general input port. The serial channel can optionally be operated with two selectable baud rates (4800 baud or 9600 baud) provided by an independent baud-rate generator. An 8-bit resolution A/D converter with externally adjustable reference voltages has been integrated to allow analog signal processing. Figure 2-1 shows a block diagram of the SAB 80512. New blocks added to the 8051 are marked grey.

Readers who are familiar with the SAB 8051 may concentrate on sections 2.4 and 3.0 where the reset conditions and the new peripheral components are described.

For readers who are new to the 8051 microcontroller family the following section gives a general view of the basic characteristics of the SAB 80512. The operational details are given in later chapters.

In addition to the internal RAM there is a further 128byte address space for the special-function registers, which are described in following sections.

Because of its Harvard architecture, the SAB 80512 distinguishes between an external program memory portion (as mentioned above) and up to 64 Kbytes of external data memory accessed by a set of special instructions.

Peripheral Control

All on-chip peripheral components—I/O ports, serial interface, timer, interrupt controller and A/D converter—are handled and controlled by the so-called special-function registers. These registers constitute the easy-to-handle interface with the peripherals. This peripheral control concept, as implemented in the SAB 8051, provides the high flexibility for further expansion as in the SAB 80512.

Moreover, some of the special-function registers, like accumulator, B-register, program status word (PSW), stack pointer (SP) and data pointer (DPTR) are used by the CPU and maintain the machine status.

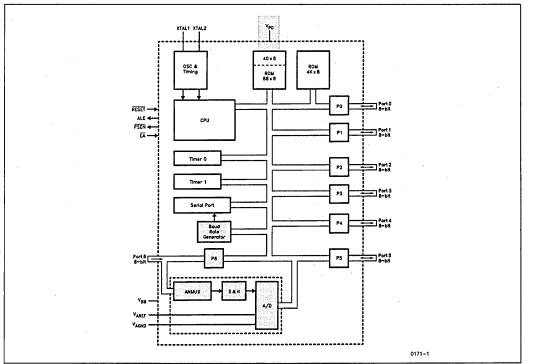


Figure 2-1. Functional Block Diagram

2.1 Central Processing Unit

The CPU is designed to operate on bits and bytes. The instructions, which may be up to 3 bytes, are performed in one, two or four machine cycles. One machine cycle requires twelve oscillator cycles. The instruction set has extensive facilities for data transfer, logic and arithmetic instructions. The Boolean processor has its own full featured and bit-based instructions within the instruction set. The SAB 80512 uses five addressing modes: direct access, immediate, register, register-indirect access, and for accessing the external data or program memory portions a base register plus index-register indirect addressing.

General Description

The CPU of the SAB 80512 consists of the instruction decoder, the arithmetic section and the program control section. Each program instruction is decoded by the instruction decoder. This unit generates the internal signals controlling the functions of the individual sections in the CPU. The signals have effect on the source and destination of data transfers, and control the ALU processing.

The arithmetic section of the processor performs extensive data manipulation and comprises the arithmetic/logic unit (ALU), A-register, B-register and PSW register. The ALU accepts 8-bit data words from one or two sources and generates an 8-bit result under the control of the instruction decoder. The ALU performs the arithmetic operations add, subtract, multiply, divide, increment, decrement, BCDdecimal-add-adjust, and compare, and the logic operations AND, OR, exclusive-OR, complement, and rotate (right, left or swap nibble (left four)). Also included is a Boolean processor performing the bit operations of set, clear, complement, jump-if-not-set, jump-if-set-and-clear and move-to/from-carry. Between any addressable bit (or its complement) and the carry flag, it can perform the bit operations of logical AND or logical OR with the result returned to the carry flag. The A, B and PSW registers are described in a later section.

The program control section controls the sequence in which the instructions stored in program memory are executed. The 16-bit program counter (PC) holds the address of the next instruction to be executed. The PC is manipulated by the control transfer instructions listed in the chapter "Instruction Set". The conditional branch logic enables internal and external events to cause a change in the program execution sequence.

2.1.1 CPU Timing

A machine cycle consists of 6 states (12 oscillator periods). Each state is divided into a phase 1 half during which the phase 1 clock is active, and a phase 2 half during which the phase 2 clock is active. Thus, a machine cycle consists of 12 oscillator periods, numbered S1P1 (state 1, phase 1) through S6P2 (state 6, phase 2). Each state lasts two oscillator periods. In general, arithmetic and logical operations take place during phase 1 and internal registerto-register transfers take place during phase 2.

The diagrams in Figure 2-2 show the fetch/execute timing related to the internal states and phases. Since these internal clock signals are not accessible by the user, the XTAL2 oscillator signals and the ALE (address latch enable) signal are shown for external reference. ALE is normally activated twice during each machine cycle: once during S1P2 and S2P1, and a second time during S4P2 and S5P1.

Execution of a one-cycle instruction begins at S1P2 when the op-code is latched into the instruction register. In the case of a two-byte instruction, the second byte is read during S4 of the same machine cycle. In the case of a one-byte instruction, there is still a fetch at S4, but the byte read (which would be the next op-code) is ignored, and the program counter is not incremented. In any case, execution is completed at the end of S6P2.

Figures 2-2A, B show the timing of a 1-byte, 1-cycle instruction and for a 2-byte, 1-cycle instruction.

Most SAB 80512 instructions execute in one cycle. MUL (multiply) and DIV (divide) are the only instructions that take more than two cycles to complete; they take four cycles. Normally, two code bytes are fetched from the program memory during every machine cycle. A MOVX instruction is the only exception. MOVX is a one-byte, 2-cycle instruction that accesses external data memory. During a MOVX, the two fetches in the second cycle are skipped while the external data memory is being addressed and strobed. Figures 2-2C, D show the timing for a normal 1-byte, 2-cycle instruction and for a MOVX instruction.

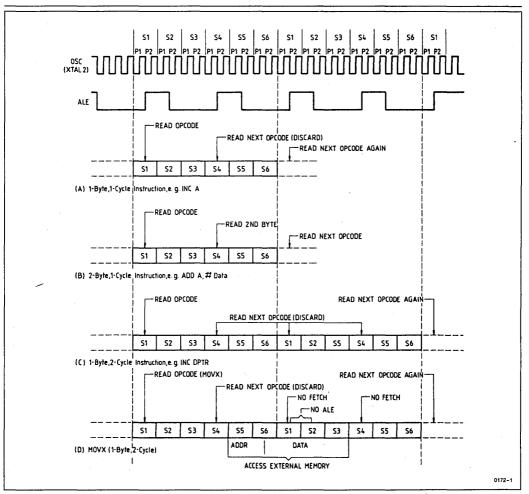


Figure 2-2. Fetch/Execute Sequence

2.2 Memory Organization

The SAB 80512 has an internal 4-Kbyte ROM. The program memory can be expanded externally up to 64 Kbytes (see Bus Expansion Control). The internal RAM has 128 bytes. Within this address space there are 128 bit-addressable locations and four register banks, each with 8 general-purpose registers.

The SAB 80512 CPU manipulates operands in the following four memory address spaces:

- Up to 64 Kbytes of program memory
- Up to 64 Kbytes of external data memory
- 128 bytes of internal data memory
- A 128-byte special-function register area

2.2.1 Program Memory

The program memory of the SAB 80512 consists of an internal and an external memory portion (see Figure 2-3). 4 Kbytes of program memory may reside on-chip (SAB 80512 only), while the SAB 80532 has no internal ROM. The program memory can be externally expanded up to 64 Kbytes. If the \overline{EA} pin is held high, the SAB 80512 executes out of the internal program memory unless the address exceeds FFFH. Locations 1000H through 0FFFFH are then fetched from the external program memory. If the EA pin is held low, the SAB 80512 fetches all instructions from the external program memory. Since the SAB 80532 has no internal program memory, pin EA must be tied low when using this device. In either case, the 16-bit program counter is used for addressing.

Locations 03H through 2BH in the program memory are used by interrupt service routines.

2.2.2 Data Memory

The data memory address space consists of an internal and an external memory portion.

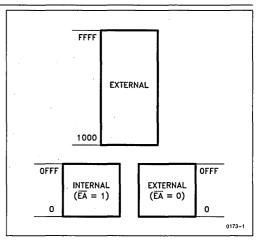


Figure 2-3. Program Memory Address Space

Internal Data Memory

The internal data memory address space is divided into two physically separate and distinct blocks: the lower 128 bytes of RAM and the 128-byte specialfunction register (SFR) area (see Figure 2-5). While the SFR area can only be accessed by direct addressing, the internal RAM is accessed by two addressing modes: direct and indirect. For details see Instruction Set.

The internal RAM is grouped in three address spaces. A general-purpose register area occupies locations 0 through 1FH (see Figure 2-4).

The next 16 bytes, locations 20H through 2FH, contain 128 directly addressable bits. These bits can be referred to in two ways, both of which are acceptable by the ASM51. One way is to refer to their address, i.e., 0 to 7FH. The other way is to refer to bytes 20H to 2FH. Thus, bits 0 to 7 can also be referred to as bits 20.0–20.7, and bits 8–0FH are the same as 21.0–21.7, and so on. Each of the 16 bytes in this segment may also be addressed as a complete byte.

Locations 30H to 7FH can be used as a scratch pad area.

	SCRATCH PAD AREA								
47	7F	7E	7D	7C	7B	7A	79	78	2FH
46	77	76	75	74	73	72	71	70	2EH
45	6F	6E	6D	6C	6B	6A	69	68	2DH
44	67	66	65	64	63	62	61	60	2CH
43	5F	5E	5D	5C	5B	5A	59	58	2BH
42	57	56	55	54	53	52	51	50	2AH
41	4F	4E	4D	4C	4B	4A	49	48	29H
40	47	46	45	44	43	42	41	40	28H
39	3F	3E	ЗD	ЗC	ЗB	ЗA	39	38	27H
38	37	36	35	34	33	32	31	30	26H
37	2F	2E	2D	2C	2B	2A	29	28	25H
36	27	26	25	24	23	22	21	20	24H
35	1F	1E	1D	1C	1B	1A	19	18	23H
34	17	16	15	14	13	12	11	10	22H
33	OF.	0E	0D	0C	0B	0A	09	08	21H
32	07	06	05	04	03	02	01	00	20H
31							RB	4	1FH
24									18H
23						•	RB	3	17H
16							110	0	10H
11									FH
8							RB	2	8H
7				R	7				7H
	-			R	6				6Н
	-			R	5				5H
	R4 RB1						4H .		
	R3							3Н	
	R2							2H	
	-			R	 1				– <u>–</u> 1H
0	-			 R	<u> </u>				
Sigure 2.4. Monping of the Internel Date Momery									

Using the stack pointer (SP)—a special function register described in Section 2.2.3—the stack can be located anywhere in the internal data memory address space. The stack depth is limited only by the internal RAM available (128 bytes maximum). However, pay attention to the fact that the stack should not be overwritten by other data, and vice versa.

External Data Memory

Figures 2-4 and 2-5 contain memory maps which diagram the internal/external data memory. To address data memory external to the chip, the "MOVX" instructions are used. Refer to Instruction Set or External Bus Interface for detailed descriptions of these operations. A maximum of 64 Kbytes of external data memory can be accessed by instructions using a 16-bit address.

2.2.3 General Purpose Registers

The lower 32 locations of the internal RAM are assigned to four banks with eight general-purpose registers (GPRs) each. Only one of these banks may be enabled at a time. Two bits in the program status word, PSW.3 and PSW.4, select the active register bank (see description of the PSW). This allows fast context switching, which is useful when entering subroutines or interrupt service routines. ASM51 and the device SAB 80512 default to register bank 0 after reset.

The 8 general-purpose registers of the selected register bank may be accessed by register addressing. With register addressing the instruction opcode indicates which register is to be used. For indirect addressing R0 and R1 are used as a pointer or index register to address internal or external memory (e.g. MOV @ R0).

Reset initializes the stack pointer to location 07H and is incremented once to start from location 08H which is also the first register (R0) of register bank 1. Thus, if more than one register bank is required, the SP should be initialized to a different location of the RAM, which is not used for data storage.

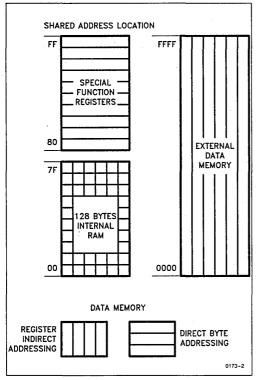


Figure 2-5. Data Memory Address Spaces

2.2.4 Special-Function Registers

The special function register (SFR) area has two important functions. Firstly, all CPU registers except the program counter and the four register banks reside here. The CPU registers are the arithmetic registers like A, B, PSW and pointers like SP, DPH and DPL.

Secondly, a number of registers constitute the interface between the CPU and all on-chip peripherals. This means that all control and data transfers to and from the peripherals use this register interface exclusively. The special-function register area is located in the address space above the internal RAM between addresses 80H and FFH. All 28 special-function registers of the SAB 80512 reside here. The fifteen SFRs located on addresses dividable by eight are bit-addressable.

Because the SFR area is memory mapped, accesses to the special function registers are as easy as to the internal RAM, and they may be processed with most instructions. In addition, if the special functions are not used, some of them may be utilized as general scratch pad registers. Note, however, that all SFRs can be accessed by direct addressing only. The special function registers are listed in Table 2-1, and register maps are drawn in Figures 2-6a and 2-6b.

Accumulator, SFR Address 0E0H

ACC is the symbol for the accumulator register. The mnemonics for accumulator-specific instructions refer to the accumulator simply as A.

Program Status Word Register (PSW), SFR Address 0D0H

The PSW register contains program status information as shown in Figure 2-7.

B-Register, SFR Address 0F0H

The B-register is used during multiply and divide and serves as source as well as destination. For other instructions it can be treated as another scratch pad register.

Stack Pointer, SFR Address 081H

The stack pointer (SP) register is 8 bits wide. It is incremented before data are stored during PUSH and CALL executions and decremented after data are popped during POP and RET (RETI) executions, i.e. it points always to the last stack byte valid. While the stack may reside anywhere in on-chip RAM, the stack pointer is initialized to 07H after a reset. This causes the stack to begin at location 08H above register bank zero. The SP can be read or written under software control.

	Tab	le 2-1. Spec	al-Function
Symbol	Name	Address	Symb
P0	Port 0	80H	P3
SP	Stack Pointer	81H	IP
DPL	Data Pointer, Low Byte	82H	IRCO
DPH	Data Pointer, High Byte	83H	
PCON	Power Control Register	87H	PSW
TCON	Timer Control Register	88H	
TMOD	Timer Mode Register	89H	ADCC
TLO	Timer 0, Low Byte	8AH	
TL1	Timer 1, Low Byte	8BH	ADDA
ТНО	Timer 0, High Byte	8CH	· ·
TH1	Timer 1, High Byte	8DH	DAPR
P1	Port 1	90H	
SCON	Serial Channel	98H	P6
	Control Register		
SBUF	Serial Channel	99H .	P4
1	Buffer Register		В
P2	Port 2	0A0H	P5
IE	Interrupt Enable Register	0A8H	

~

nction Register							
Name	Address						
Port 3	овон						
Interrupt Priority Register	0B8H						
Interrupt Request	0C0H						
Control Register							
Program Status	0D0H						
Word Register							
A/D Converter	0D8H						
Control Register							
A/D Converter	0D9H						
Data Register							
A/D Converter	0DAH						
Program Register							
Port 6	ODBH						
Accumulator	0E0H						
Port 4	0E8H						
B-Register	0F0H						
Port 5	0F8H						
	NamePort 3Interrupt Priority RegisterInterrupt RequestControl RegisterProgram StatusWord RegisterA/D ConverterControl RegisterA/D ConverterData RegisterA/D ConverterProgram RegisterPort 6AccumulatorPort 4B-Register						

Special-Function Register

	B7H	B6H	B5H	B4H	взн	B2H	B1H	B0H	
0B0H	P3.7	P3.6	P3.5	P3.4	P3.3	P3.2	P3.1	P3.0	P3
	AFH	AEH	ADH	ACH	ABH	AAH	A9H	A8H	
0A8H	EAL		-	ES	ET1	EX1	ET0	EX0	ΙE
	A7H	A6H	A5H	A4H	АЗН	A2H	A1H	A0H	
0A0H	P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0	P2
99H									SBUF
	9FH	9EH	9DH	9CH	98H	9AH	99H	98H	
98H	SM0	SM1	SM2	REN	TB8	RB8	ΤI	RI	SCON
	97H	96H	95H	94H	93H	92H	91H	90H	
90H	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0	P1
8DH							1		TH1
8CH								-	тно
				•					
8BH									TL1
8AH								· · · · · · · · · · · · · · · · · · ·	TLO
							-		
89H	1 GATE	1 C/F	1M1	1M0	0 GATE	0 C/F	0M1	омо	TMOD
	8FH	8EH	8DH	8CH	8BH	8AH	89H	88H	
88H	TF1	TR1	TF0	TR0	IE1	IT1	IE0	ІТО	TCON
87H	SMOD								PCON
83H									DPH
									,
82H									DPL
81H									SP
	87H	86H	85H	84H	83H	82H	81H	80H	
80H	P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0	P0
									,

Figure 2-6A. Special-Function Register Map, Address 80H to 0B0H

	FFH	FEH	FDH	FCH	FBH	FAH	F9H	F8H	
F8H	P5.7	P5.6	P5.5	P5.4	P5.3	P5.2	P5.1	P5.0	P5
	H7H	F6H	F5H	F4H	F3H	F2H	F1H	FOH	
F0H	B.7	B.6	B.5	B.4	B.3	B.2	B.1	B.0	в
	EFH	EEH	EDH	ECH	EBH	EAH	E9H	E8H	
E8H	P4.7	P4.6	P4.5	P4.4	P4.3	P4.2	P4.1	P4.0	P4
	E7H	E6H	E5H	E4H	E3H	E2H	E1H	E0H	
E0H	ACC.7	ACC.6	ACC.5	ACC.4	ACC.3	ACC.2	ACC.1	ACC.0	ACC
0DBH									P6
0DAH									DAPR
0D9H									ADDAT
	DFH	DEH	DDH	DCH	DBH	DAH	D9H	D8H	
0D8H	BD	-	_	BSY	ADM	MX2	MX1	MX0	ADCON
	D7H	D6H	D5H ,	D4H	DЗH	D2H	D1H	D0H	
0D0H	CY	AC	F0	RS1	RS0	٥٧	F1	Р	PSW
	C7H	C6H	C5H	C4H	СЗН	C2H	C1H	Сон	
0C0H	<u> </u>	—	_	—	—		—	IADC	IRCON
	BFH	BEH	BDH	BCH	BBH	BAH	B9H	B8H	
0B8H		_	-	PS	PT1	PX1	PT0	PX0	IP

Figure 2-6B. Special-Function Register Map, Address 0B8H to F8H

Data Pointer, SFR Address 082H and 083H

The 16-bit data pointer (DPTR) register is a concatenation of registers DPH (data pointer's high-order byte) and DPL (data pointer's low order byte). These pointers are used in register-indirect addressing to move program memory constants and external data memory variables, as well as to branch within the 64-Kbyte program memory address space.

Ports 0 to 6

P0 to P5 are the SFR latches to the corresponding port 0 to 5. The port SFRs 0 to 5 are bit-addressable. Port 6 is a general-purpose input port and has no internal latch. That means, port 6 lines are used for the 8 multiplexed input lines of the A/D converter but can also be used as digital inputs. P6 is the associated SFR when the digital value is to be ready by the CPU. P6 can be read only. Because of this, Port 6 is used as the 8 multiplexed input lines of the A/D converter as well as for digital inputs.

[CY	AC	F0	RS1	RS0	ov	F1	Р	Bit
	0D7H	0D6H	0D5H	0D4H	0D3H	0D2H	0D1H	0D0H	Address
Symb	loo	Posi	ition			Name	and Si	gnifica	nce
CY		PSW	1.7	Ca	rry Flag		_		
AC		PSW	/.6	Au	xiliary C	Carry Fl	ag (for	BCD O	perations)
F0	ľ	PSW	/.5	Ge	neral-P	urpose	User F	lag 0	
RS1 PSW.4 Register Bank Select Control Bits 1 and 0. RS0 PSW.3 Set/cleared by software to determine working register bank:									
				RS	1	RS0			ed Working ster Bank
				0		0	Ba	ank O	00H-07H
	•			0		1		ank 1	08H-0FH
				1		0		ank 2	
				1		1	Ba	ank 3	18H–1FH
ΟV		PSW	1.2	Ov	Overflow Flag				
F1		PSW	/.1	Ge	General-Purpose User Flag 1				
Ρ		PSW	/.0	ins nui	Parity Flag. Set/cleared by hardware in each instruction cycle to indicate an odd/even number of "one" bits in the accumulator, i.e. even parity.				

F '. A B	D	A 1 1			
Figure 2-7.	Program	Status	word	Register	(UDUH)

Peripheral Control, Data and Status Register

The following table lists the control, status, and data registers which handle the on-chip peripherals.

In the table the register names are organized in groups and each of these groups refers to one peripheral unit. More details on register programming are given in the description of the corresponding peripheral units.

Timer 0/1	Serial Channel	Interrupt System	A/D Converter
TCON	SCON	IE	ADCON
TMOD	SBUF	IP	ADDAT
TL0	PCON	IRCON	DAPR
TH0	(ADCON)		
TL1			
TH1			

2.3 External Bus Interface

The external bus interface of the SAB 80512 consists of an 8-bit data bus (port 0), a 16-bit address bus (port 0 and port 2) and five control lines. The address latch enable signal (ALE) is used to demultiplex address and data of port 0. The program memory is accessed by the program store enable signal (PSEN) twice a machine cycle. A separate external access line (EA) is used to inform the controller, while executing out of the lower 4 kbytes of the program memory, whether to operate out of the internal or external program memory. The read or write strobe (RD, WR) is used for accessing the external data memory.

The SAB 80512 allows external memory expansion. To accomplish this, the external bus interface common to most 8051-based controllers is utilized.

2.3.1 Accessing External Memory

It is possible to distinguish between accesses to external program memory and external data memory or other peripheral components, respectively. This distinction is made by hardware: Accesses to external program memory use the signal PSEN (program store enable) as a read strobe. Accesses to external data memory use RD and WR (alternate functions of P3.7 and P3.6, see Section 3.1.2) to strobe the memory. Port 0 and port 2 (with exceptions) provide data and address signals. In this section only the port 0 and port 2 functions relevant to external memory accesses are described (for more detailed information see Chapter 3.1).

Fetches from external program memory always use a 16-bit address. Accesses to external data memory can use either a 16-bit address (MOVX @ DPTR) or an 8-bit address (MOVX @ Ri).

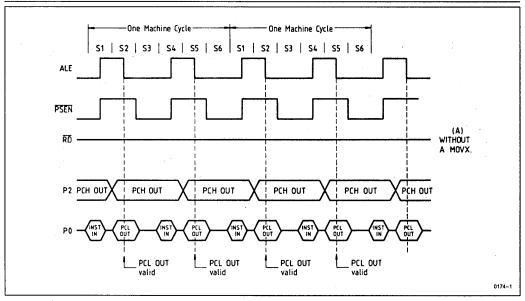
Role of P0 and P2 as Data/Address Bus

When used for accessing external memory, port 0 provides the data byte time-multiplexed with the low byte of the address. In this state, port 0 is disconnected from its own port latch, and the address/data signals drive both FETs in the port 0 output buffers. In this application, the port 0 pins are not open-drain outputs and do not require external pullup resistors.

During any access to external memory, the CPU writes 0FFH to the port 0 latch (the special-function register), thus obliterating whatever information the port 0 SFR may have been holding.

Whenever a 16-bit address is used, the high byte of the address comes out on port 2, where it is held during the read or write cycle. During this time, the port 2 lines are disconnected from the port 2 latch (the special-function register).

Thus, the port 2 latch does not have to contain 1s, and the contents of the port 2 SFR are not modified.


If an 8-bit address is being used (MOVX @Ri), the contents of the port 2 SFR remain at the port 2 pins throughout the external memory cycle. This will facilitate paging. It should be noted that if a port 2 pin outputs an address bit that is a 1, strong pullups will be used for the entire read/write cycle and not only for two oscillator periods.

Timing

The timing of the external bus interface, in particular the relation of the control signals ALE, PSEN and RD/WR to port 0 and port 2 information, is illustrated in Figures 2-8A to 2-8C.

Data memory: in a write cycle, the data byte to be written appears on port 0 just before \overline{WR} is activated, and remains there until after \overline{WR} is deactivated. In a read cycle, the incoming byte is accepted at port 0 before the read strobe is deactivated.

Program memory: signal $\overrightarrow{\text{PSEN}}$ works as a read strobe. For more detailed information see Section 2.3.2.

Figure 2-8A. External Program Memory Fetch

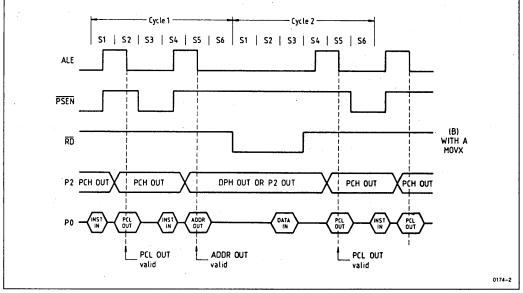


Figure 2-8B. External Data Memory Read

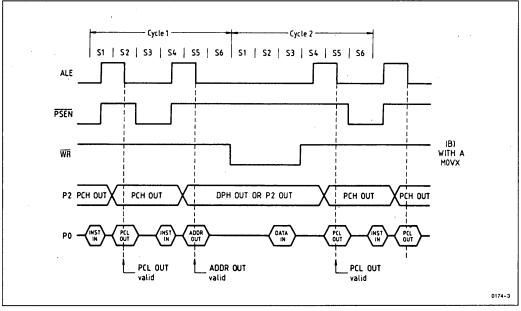


Figure 2-8C. External Data Memory Write

External Program Memory is Accessed under Two Conditions:

- 1. Whenever signal \overline{EA} is active; or
- 2. Whenever the program counter (PC) contains a number that is larger than 0FFFH

This requires the ROM-less version SAB 80532 to have \overrightarrow{EA} wired low to allow the lower 4k program bytes to be fetched from external memory.

When the CPU is executing out of external program memory, all 8 bits of port 2 are dedicated to an output function and may not be used for general-purpose I/O. The contents of the port 2 SFR are not affected. During external program memory fetches port 2 lines output the high byte of the PC, and during accesses to external data memory they output either DPH or the port 2 SFR (depending on whether the external data memory access is a MOVX @ DPTR or a MOVX @ Ri).

Since the SAB 80532 has no internal program memory, accesses to program memory are always external, and port 2 is at all times dedicated to output the high-order address byte. This means that port 0 and port 2 of the SAB 80532 can never be used as general-purpose I/O. This also applies to the SAB 80512 when it is operated only with an external program memory.

2.3.2 PSEN, Program Store Enable

The read strobe for external fetches is **PSEN**. **PSEN** is not activated for internal fetches. When the CPU is accessing external program memory, **PSEN** is activated twice every cycle (except during a MOVX instruction) no matter whether or not the byte fetched is actually needed for the current instruction. When **PSEN** is activated its timing is not the same as for **RD**. A complete **RD** cycle, including activation and deactivation of ALE and **RD**, takes 12 oscillator periods. A complete **PSEN** cycle, including activation and deactivation of ALE and **PSEN** takes 6 oscillator periods. The execution sequence for these two types of read cycles is shown in Figures 2-8A/B.

2.3.3 ALE, Address Latch Enable

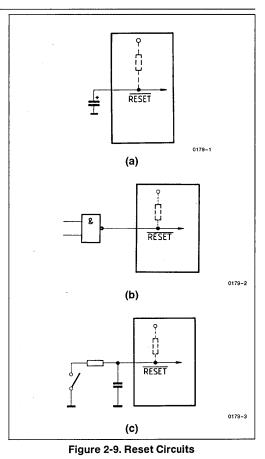
The main function of ALE is to provide a properly timed signal to latch the low byte of an address from P0 into an external latch during fetches from external memory. The address byte is valid at the negative transition of ALE. For this reason, ALE is activated twice per machine cycle. This activation takes place even when the cycle involves no external fetch. The only time an ALE pulse does not come out is during an access to external data memory when RD/WR signals are active. The first ALE of the second cycle of a MOVX instruction is missing (see Figures 2-8B/C). Consequently, in any system that does not use data memory, ALE is activated at a constant rate of $1/_6$ of the oscillator frequency, and can be used for external clocking or timing purposes.

2.3.4 Overlapping of External Data and Program Memory Spaces

In some applications it is required to execute a program from the same physical memory that is used to store data. In the SAB 80512, the external program and data memory spaces can be combined by ANDing PSEN and RD. A positive logic AND of these two signals produces an active low read strobe that can be used for the combined physical memory. Since the PSEN cycle is faster than the RD cycle, the external memory must be fast enough to accommodate the PSEN cycle.

2.4 System Reset

The reset function incorporated in the SAB 80512 allows an easy and automatic start-up with low hardware expense and forces the controller to a predefined default state.


The reset input is an active low input on pin 10. An internal Schmitt trigger is used at the input for noise rejection. Since the reset is synchronized internally, the RESET pin must be held low for at least two machine cycles (24 oscillator periods) while the oscillator is running. The internal reset is executed during the second cycle in which RESET is low and is repeated every cycle until RESET goes high again. During reset, ALE and PSEN are configured as inputs and may not be stimulated externally. An external stimulation at these lines during reset activates several test modes, which are reserved for the fab test.

A pullup resistor is internally connected to V_{CC} to allow a power-up reset with an external capacitor only. An automatic reset can be obtained when V_{CC} is applied by connecting the reset pin to GND through a capacitor as shown in Figure 2-9. After V_{CC} is turned on, the capacitor must hold the voltage at the reset pin for a specified time at a level which remains under the higher threshold of the Schmitt trigger to effect a complete reset. Under normal conditions this must last at least 10 ms for a crystal oscillator and 50 μ s for a ceramic oscillator. The time required is the oscillator start-up time, plus 2 machine cycles.

To ensure proper entry into the initialization software, a hardware branch to location zero is made immediately following reset.

The system state of the SAB 80512 is determined by the contents of its special-function registers. The default values to which they are forced during reset are listed in Table 2-2. After reset is internally accomplished the port latches of port 0 to 5 default in 0FFH. This leaves port 0 floating, because it is an open-drain port when not used as data/address bus. All other I/O ports lines (port 1 through 5) output a one (1).

Port 6, which is an input port only, has no internal latch and therefore the contents of the special function register P6 depend on the levels applied to the port 6 lines.

Table 2-2. Register Contents after Reset

Register	Contents	Register	Contents
P0-P5	0FFH	IE	00H
SP	07H	IP	00H
DPTR	0000H	IRCON	00H
PCON	(0XXXXXXX)	PSW	00H
TCON	00H	ADCON	00H
TMOD	00H	ADDAT	00H
TLO, THO	00H	DAPR	Indeterminate
TL1, TH1	00H	А	00H
SCON	00H	В	00H
SBUF	Indeterminate		

X means that the value is indeterminate

On-Chip Peripheral Components

3.0 On-Chip Peripheral Components

This chapter gives detailed information about all onchip peripherals of the SAB 80512 except for the integrated interrupt controller, which is described separately in Chapter 4.0. Sections 3.1 and 3.2 are associated with the various I/O facilities, while the remaining sections describe the miscellaneous functions such as the timers, A/D converter, oscillator and the standby power supply.

3.1 Parallel I/O

3.1.1 Port Structures

Digital I/O

The SAB 80512 allows digital I/O on 48 lines grouped into 6 bidirectional 8-bit ports. Each port bit consists of a latch (special-function register P0 to P5), an output driver and an input buffer.

The output drivers of port 0 and 2 and the input buffers of port 0 have the alternate function of accessing external memory. In this application, port 0 outputs the low byte of the external memory address, time-multiplexed with the byte being written or read. Port 2 outputs the high byte of the external memory address when the address is 16 bits wide. Otherwise, the port 2 pins continue to emit the P2 SFR contents (see Chapter 3, External Bus Interface).

Digital/Analog Input Port

Port 6 is available as an input port only and provides for two functions. When used for digital input, the SFR P6 contains the digital value, applied to port 6 lines. When used for analog inputs the required analog channel is selected by a 3-bit field in SFR AD-CON, as described in section 3.4.

If a digital value is to be read, the voltage levels have to be held within specs (V_{IL}/V_{IH}). Since P6 is not a bit-addressable register, all 8 input lines are read at the same time. Nevertheless, there is the possibility of using port 6 simultaneously for analog and digital input. However, the user has to ensure that all bits of P6 are masked by software which have an undetermined value caused by their analog function.

To guarantee high-quality A/D conversion, digital inputs at some lines of port 6 should not toggle while a neighboring port 6 pin is used as analog input. This could produce crosstalk to the analog signal.

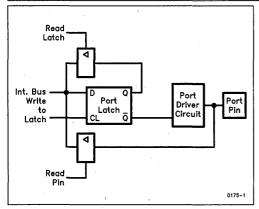

Digital Port Circuits

Figure 3-1 shows a functional diagram of a typical bit latch and I/O buffer which is the core of each of the 6 I/O ports. The bit latch (one bit in the port's SFR) is represented as a typ-D flipflop, which will clock in a value from the internal bus in response to a "write to latch" signal from the CPU. The Q output of the flipflop is placed on the internal bus in response to a "read latch" signal from the CPU. The level of the port pin itself is placed on the internal bus in response to a "read pin" signal from the CPU. Some instructions that read a port activate the "read latch" signal, while others activate the "read pin" signal.

Port 1 through 5 output drivers have internal pullups (see Figure 3-2). Each I/O line can be used independently as an input or output. To be used as an input, the port bit must contain a one (1) (that means for Figure 3-2: $\overline{Q} = 0$, which turns off the output driver FET. Then, for ports 1 through 5, the pin is pulled high by the internal pullup, but can be pulled low by an external source. When externally pulled low the port pins source current. For this reason they are sometimes called "quasi bidirectional". In fact, the pullups mentioned above and drawn in Figure 3-2 are pullup arrangements as shown in Figure 3-3. Two pullup FETs are used because the deep depletion type is able to restrict the low level input current (III) when externally pulled low, but it is not strong enough to drive a fast 0 to 1 transition at the port pin. For the latter purpose an additional pullup is turned on for the two phases (S1P1 and S1P2) in which the transition occurs. The extra pullup can drive about 100 times the current that the normal pullup can. It should be noted that all internal pullups are FETs, not linear resistors.

Port 0, contrary to ports 1 through 5, is considered "true" bidirectional, because the pin floats when configured as input. Thus this port differs in not having internal pullups. The pullup FET in the P0 output driver (see Figure 3-4a) is used only when the port is emitting 1s during the external memory accesses. Otherwise the pullup is off. Consequently, P0 lines that are being used as general-purpose output port lines are open drain lines.

Writing a 1 to the bit latch leaves both output FETs off, so that the pin floats. In that condition it can be used as high-impedance input. If port 0 is configured as general I/O port and has to emit ones (1s), external pullups are required.

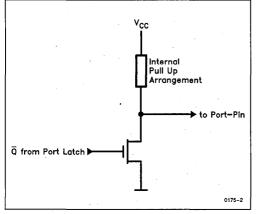


Figure 3-2. Basic Output Driver Circuit of Ports 1 through 5

Port 0 and Port 2 Used as Address/Data Bus

As shown in Figures 3-4a and 3-4b, the output drivers of ports 0 and 2 are switchable to an internal address and address/data bus for use in external

memory accesses. In this application they may not be used as general purpose I/O. The switch is done by an internal control signal dependent on the input level as the EA pin and/or the contents of the program counter. If the ports are configured as an address/data bus, the port latches are disconnected from the driver circuit. During this time, the P2 SFR remains unchanged while the P0 SFR gets 1s written to it. Being an address/data bus, port 0 uses a pullup FET as shown in Figure 3-4a. When a 16-bit address is used, port 2 uses the additional strong pullups to emit 1s for the entire external memory cycle instead of the weak ones used during normal port activity.

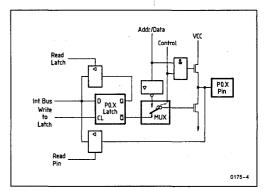


Figure 3-4a. Port 0 Circuitry

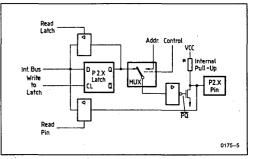


Figure 3-4b. Port 2 Circuitry

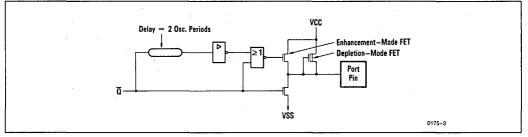


Figure 3-3. Output Driver Circuit of Ports 1 through 5, Detailed Circuit Diagram

3.1.2 Alternate Functions

All pins of port 3 are multifunctional. They are not only port pins, but also serve for various special features as listed in Table 3-1.

Figure 3-5 shows a functional diagram of port 3 latch. The input buffer and output driver circuit are like those in port 1, port 4 or 5. To pass the alternate function to the output pin and vice versa, however, the gate between the latch and driver circuit has to be open. Thus, to use the alternate input or output functions, the corresponding bit latch in the port SFR has to contain a one (1); otherwise to pulldown FET is on and the port pin is stuck at 0. After Reset all port latches contain ones (1).

Port	Pin	Alternate Function
P3.0	RXD	Serial Input Channel
P3.1	TXD	Serial Output Channel
P3.2	INTO	External Interrupt 0
P3.3	INT1	External Interrupt 1
P3.4	T0	Timer 0 External Counting Input
P3.5	T1	Timer 1 External Counting Input
P3.6	WR	External Data Memory Write Strobe
P3.7	RD	External Data Memory Read Strobe

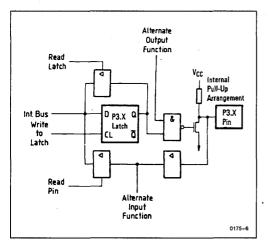


Figure 3-5. Port 3 Circuit

3.1.3 Port Handling

In the execution of an instruction that changes the value of a port latch, the new value arrives at the latch during S6P2 of the final cycle of the instruction. However, port latches are in fact sampled by their output buffers only during phase 1 of any clock period (during phase 2 the output buffer holds the value it saw during the previous phase 1). Consequently, the new value in the port latch will not actually appear at the output pin until the next phase 1, which will be at S1P1 of the next machine cycle.

Port Loading and Interfacing

The output buffers of ports 1 through 5 can each drive 4 LS-TTL inputs.

Port 0 output buffers can each drive 8 LS-TTL inputs. They do, however, require external pullups to drive floating inputs, except when being used as the address/data bus.

Read Modify Write Feature

Some instructions that read a port read the latch and others read the pin. The instructions that read the latch rather than the pin are the ones that read a value, possibly change it, and then rewrite it to the latch. These are called "read-modify-write" instructions. The instructions listed in Table 3-2 are the read-modify-write instructions. When the destination operand is a port, or a port bit, these instructions read the latch rather than the pin. Note that all other instructions that can be used to read a port, exclusively read the port pin.

It is not obvious that the last three instructions in this list are read-modify-write instructions, but they are. They read the port byte, all 8 bits, modify the addressed bit, then write the new byte back to the latch.

The reason that read-modify-write instructions are directed to the latch rather than the pin is to avoid a possible misinterpretation of the voltage level at the pin. For example, a port bit might be used to drive the base of a transistor. When a "1" is written to the bit, the transistor is turned on. If the CPU then reads the same port bit at the pin rather than the latch, it will read the base voltage of the transistor and possibly interpret it as 0. Reading the latch rather than the pin will return the correct value of "1".

Logic AND; e.g. ANL P1, A					
Logic OR; e.g. ORL P2, A					
Logic Exclusive OR; e.g. XRL P3, A					
Jump if Bit is Set and Clear Bit:					
e.g. JBC P1.1., LABEL					
Complement Bit; e.g., CPL P3.0					
Increment; e.g. INC P2					
Decrement; e.g. DEC P2					
Decrement and Jump if Not Zero;					
e.g. DJNZ P3, LABEL					
Move Carry Bit to Bit Y of Port X					
Clear Bit Y of Port X					
Set Bit Y of Port X					

Table 3-2. Read-Modify-Write Instructions

3.2 Serial Interface

The SAB 80512 includes a serial interface (USART) which provides one synchronous and three asynchronous operating modes. This serial channel is full duplex, meaning it can transmit and receive simultaneously. In addition it is receive buffered, meaning it can commence reception of a second byte before a previously received byte has been read from the receive register (however, if the first byte still has not been read by the time reception of the second byte is complete, the last received byte will be lost).

The serial interface uses a number of special-function registers for control and communication to the CPU which are listed below:

- SBUF The receive **and** transmit register are both accessed by this SFR. Writing to this serial channel buffer loads the transmit register, and reading SBUF accesses a physically separate receive register.
- SCON This register controls the serial channel and provides information about its status. It also contains the interrupt request flags for the serial channel.
- PCON Only one bit in register PCON is of interest for serial communication. Bit 7 (PCON.7 or SMOD) doubles the selected baud rate.
- ADCON Only bit 7 of ADCON is used for the serial interface. It enables an additional timer of the 80512 used for generating two selectable baud rates (more details in section 3.2.3).

Two port pins of port 3 are used for input/output of the serialized data:

- P3.0/RxD RxD is the alternate function of Port 3.0. Through this pin data is received in mode 1, 2 and 3. In mode 0, RxD is used for input and output.
- P3.1/TxD TxD is the alternate function of Port 3.1. Through this pin data is transmitted in mode 1, 2 and 3. In mode 0, TxD outputs the shift clock.

Note that in this application both port bit latches must contain a one (1)! Otherwise the output or input line is stuck at 0 and no transfer is possible.

The baud rate for the serial interface can be derived from several possible sources. It is either directly generated from a fractional part of the oscillator frequency or from timer 1, or from a dedicated baudrate timer. The serial interface is able to operate in one of the following four modes:

Mode 0: Shift Register Mode:

Serial data enter and exit through RxD. TxD outputs the shift clock. 8 data bits are transmitted/received (LSB first). The baud rate is fixed at 1/12 of the oscillator frequency.

Mode 1: 8-bit UART, Variable Baud Rate:

10 bits are transmitted (through TxD) or received (through RxD): a start bit (0), 8 data bits (LSB first), and a stop bit (1). On reception, the stop bit goes into RB8 in special-function register SCON. The baud rate is variable.

Mode 2: 9-Bit UART, Fixed Baud Rate:

11 bits are transmitted (through TxD) or received (through RxD): a start bit (0), 8 data bits (LSB first), a programmable 9th, and a stop bit (1). On transmission, the 9th data bit (TB8 in SCON) can be assigned to the value of 0 or 1. For example, the parity bit (P in the PSW) could be moved into TB8 or a second stop bit by setting TB8 to 1. On reception the 9th data bit goes into RB8 in special-function register SCON, while the stop bit is ignored. The baud rate is programmable to either 1/32 or 1/64 of the oscillator frequency.

Mode 3: 9-Bit UART, Variable Baud Rate:

11 bits are transmitted (through TxD) or received (through RxD): a start bit (0), 8 data bits (LSB first), a programmable 9th, and a stop bit (1). In fact, mode 3 is the same as mode 2 in all respects except for the baud rate. The baud rate in mode 3 is variable.

3.2.1 Setup and Control

For correct setup of the serial channel SFR SCON (address 98H) has to be initialized, just as the source of the baud rate clock (and the speed) has to be determined.

Figure 3-6 shows the function of the control bits in SCON.

SM0	SM1	SM2	REN	TB8	RB8	TI	RI	Bit
9FH	9EH	9DH	9CH	9BH	9AH	99H	98H	Address

Symbol	Position	Function
SM0	SCON.7	Serial Mode 0, 1. Serial port mode selection, see Table 3-3.
SM1	SCON.6	
SM2	SCON.5	Serial Mode 2. Enables the multiprocessor communication feature in modes 2 and 3. In mode 2 or 3, if SM2 is set to 1, the RI will not be activated if the received 9th data bit (RB8) is 0. In mode 1, if $SM2 = 1$, RI will not be activated if a valid stop bit was not received. In mode 0, SM2 should be 0.
REN	SCON.4	Receiver Enable. Enables serial reception. Set by software to enable reception. Cleared by software to disable reception.
TB8	SCON.3	Transmitter Bit 8. It is the 9th data bit that will be transmitted in modes 2 and 3. Set or cleared by software as desired.
RB8	SCON.2	Receiver Bit 8. In modes 2 and 3, it is the 9th data bit that was received. In mode 1, if $SM1 = 0$, RB8 is the stop bit that was received. In mode 0, RB8 is not used.
ΤI	SCON.1	Transmitter Interrupt. This is the transmit interrupt flag. Set by hardware at the end of the 8th bit time in mode 0, or at the beginning of the stop bit in the other modes, in any serial transmission. Must be cleared by software.
RI	SCON.0	Receiver Interrupt. Is the receive interrupt flag. Set by hardware at the end of the 8th bit time in mode 0, or during the stop bit time in the other modes, in any serial reception. Must be cleared by software.

Figure 3-6. Serial Port Control Register SCON (98H)

SMO	SM1	Mode	Description	Baud Rate
0	0	0	Shift Register	fosc/12
0	0	1	8-Bit UART	Variable
1	0	2	9-Bit UART	fosc/64 or fosc/32
1	1	3	9-Bit UART	Variable

One of four serial modes is selected with bits SM0 and SM1 (see Table 3-3). It should be noted that reception is possible only if bit REN is set. The function of bit SM2, which enables the multiprocessor communication feature, is explained in the following section.

In modes 2 and 3, which are the 9-bit UART modes, bits TB8 and RB8 hold the contents of the 9th bit transmitted or received, respectively. The 9-bit can be programmed and checked by the user's software, e.g. it can be used as a parity bit.

RI and TI are the interrupt request flags and indicate that a transfer has been completed. Furthermore, they indicate whether it was reception or transmission which generated the serial port interrupt. Of course, both flags can also be polled by the "Jump on Bit" instruction (JB bit, rel. address). The RI and TI flags are set during the stop bit clock period (or at the end of the 8th bit clock period in mode 0) and have to be cleared before completion of a new reception or transmission. This must be done in order to properly indicate completed transfers.

After initialization, and provided the proper baud-rate clock is generated, transmission is activated by any instruction that uses SBUF as a destination register. Reception is initiated by the incoming start bit (1-to-0 transition at RxD) for mode 1 through 3 assumed REN = 1. For mode 0, reception is initiated by the condition REN = 1 and RI = 0.

3.2.2 Multiprocessor Communication

Modes 2 and 3 of the serial interface, respectively, have a special provision for multiprocessor communication. In these modes 9 data bits are received. The 9th bit goes into RB8 and is followed by a stop bit. The port can be programmed such that when the stop bit is received, the serial port interrupt will be activated only if RB8 = 1. This feature is enabled by setting bit SM2 in SCON. A way to use this feature in multiprocessor communication is as follows:

When the master processor wants to transmit a block of data to one of the several slaves, it first sends out an address byte which identifies the target slave. An address byte differs from a data byte in that the 9th bit is 1 in an address byte and 0 in a data byte. With SM2 = 1, no slave will be interrupted by a data byte. An address byte, however, will interrupt all slaves, so that each slave can examine the received byte and see if it is being addressed. The addressed slave will clear its SM2 bit and prepare to receive the data bytes that will be incoming. After having received a complete message, the slave is setting SM2. The slaves that were not addressed leave their SM2 set and go on about their business, ignoring the incoming data bytes.

SM2 has no effect in mode 0. In mode 1 SM2 can be used to check the validity of the stop bit. If SM2 = 1, the receive interrupt will not be activated unless a valid stop bit is received.

3.2.3 Generating Baud Rates

As already mentioned there are several possibilities to generate the baud rate clock for the serial interface depending on the mode in which it is operated. To clarify the terminology, something should be said about the difference between "baud rate clock" and "baud rate". For internal synchronization, the serial interface requires a clock rate which is 16 times the baud rate as is mentioned in the description of the various operating modes later on. Therefore, the baud-rate generators have to provide a "baud-rate clock" to the serial interface which—there divided by 16—results in the actual "baud rate". However, all formulas given in the following section already include the factor and calculate the final baud rate.

Mode 0

The baud rate in mode 0 is fixed:

Mode 0 baud rate = $\frac{\text{oscillator frequency}}{12}$

Thus, this rate is equivalent to the machine cycle rate and is named $fosc_{/12}$.

Mode 2

This mode provides a 9-bit UART with two fixed baud rates. Since the baud-rate clock is directly derived from the oscillator frequency in this mode the fastest baud rates for the UART of the SAB 80512 can be achieved.

The baud rate in mode 2 depends on the value of bit SMOD in special-function register PCON (see Figure 3-7). If SMOD = (which is the value after reset), the baud rate is $1/_{64}$ of the oscillator frequency. If SMOD = 1, the baud rate is $1/_{32}$ of the oscillator frequency.

Mode 2 baud rate = $\frac{2\text{SMOD}}{64} \times \text{oscillator frequency}$

Mode 1 and Mode 3

In these modes the baud rate is variable and can be generated alternatively by a dedicated baud rate generator or by timer 1.

Using the Baud Rate Generator:

If either 4800 or 9600 baud are required, then a special feature of the SAB 80512 can be used. A prescaler supplied by the phase 2 clock ($fosc_{/12}$) provides a baude rate clock to the serial interface. The commonly used rate of 4800 baud at 12 MHz oscillator frequency may be doubled to 9600 baud when bit SMOD in SFR PCON (87H) is set.

By setting bit BD, special-function register bit ADCON.7, the "internal baud rate generator" can easily be activated. It thereby frees timer 1 for general-purpose use.

Baud Rate (BD = 1) =
$$\frac{2\text{SMOD}}{2500} \times \text{oscillator frequency}$$

SMOD	—		—	—	—	—	-	87H
PCON.7	PCON.6	PCON.5	PCON.4	PCON.3	PCON.2	PCON.1	PCON.0	-

Note! This register is not bit-addressable.

Symbol	Position	Function
SMOD	PCON.7	When set, the baud rate of the serial channel in mode 1, 2, 3, is doubled.
	PCON.6	Reserved
	PCON.5	Reserved
<u> </u>	PCON.4	Reserved
	PCON.3	Reserved
	PCON.2	Reserved
_	PCON.1	Reserved
	PCON.0	Reserved

Using Timer 1 to Generate Baud Rates:

In this case the baud rates in mode 1 and 3 are determined by the timer 1 overflow rate and the value of SMOD as follows:

Mode 1, 3, baud rate = $\frac{2\text{SMOD}}{32} \times \text{(timer 1)}$ (timer 1) (Verflow Rate)

The timer 1 interrupt should be disabled in this application. The timer itself can be configured for either "timer" or "counter" operation, and in any of its 3 running modes. In the most typical applications it is configured for "timer" operation in the auto-reload mode (high nibble of TMOD = 0010B). In that case the baud rate is given by the formula:

Mode 1, 3, baud rate = $\frac{2\text{SMOD}}{32} \times \frac{\text{oscillator frequency}}{12 \times (256 - (\text{TH1}))}$

One can achieve very low baud rates with timer 1 by leaving the timer 1 interrupt enabled, configuring the timer to run as 16-bit timer (high nibble of TMOD = 0001B), and using the timer 1 interrupt to do a 16-bit software reload.

Table 3-4 lists various commonly used baud rates and how they can be obtained from timer 1.

3.2.4 Modes of Operation

This section gives a more detailed description of the various operating modes.

Mode 0 Synchronous Mode

Serial data enter and exit through RxD. TxD outputs the shift clock. 8 bits are transmitted/received: 8 data bits (LSB first). The baud rate is fixed at 1/12 of the oscillator frequency. In this mode the serial interface can be viewed as a shift register.

Any instruction that uses SBUF as a destination register activates the "Write-to-SBUF" signal at S6P2. One full machine cycle later the output of the "shift register" is enabled to the alternate output function line P3.0. In state 3 phase 1 of this cycle, the first transition of the shift clock also occurs at the alternate output function line P3.1 (see Figure 3-8). The shift clock is low during S3, S4 and S5 of every machine cycle and high during S6, S1, S2 while the interface is transmitting. The shift clock remains high before and after transmission. At S6 P2 of every machine cycle in which a transmission takes place, the contents of the shift register are shifted one position to the right. In the 10th machine cycle after "writeto-SBUF", RxD outputs a one (1) and sets TI.

Reception is initiated by the condition REN = 1 and RI = 0. At S3P1 of the cycle following the one in which RI was cleared, the first 1-to-0 transition of the shift clock occurs at the alternate output function line of P3.1. At S6P1 in every machine cycle in which a reception is activated, the contents of the receive shift register are shifted one position to the left. The value that comes in from RxD is the value that was sampled at the P3.0 pin at S5P2 in the same machine cycle. At S1P1 in the 10th machine cycle after the write-to-SCON that cleared RI, reception is disabled and RI is set.

		fosc			Timer 1	
Baud Rate		MHz SMOD		С/Т	Mode	Reload Value
Mode 0 Max:	1 MHz	12.0	X	X	Х	X
Mode 2 Max:	375.0 Kbaud	12.0	1	X X	×	X
Mode 1, 3:	62.5 Kbaud	12.0	1	0	2	FFH
	19.5 Kbaud	11.059	1	0	2	FDH
	9.6 Kbaud	11.059	0	0	2	FDH
	4.8 Kbaud	11.059	0	0	2	FAH
	2.4 Kbaud	11.059	0	0	2	F4H
	1.2 Kbaud	11.059	0	0	2	E8H
	110 Baud	6.0	0	0	2	72H
	110 Baud	12.0	0	0	1	FEEBH

Table 3-4. Timer 1 Generated Commonly Used Baud Rates

Mode 1, 8-Bit UART

Ten bits are transmitted (through TxD), or received (through RxD): a start bit (0), 8 data bits (LSB first), and a stop bit (1). On reception through RxD, the stop bit goes into RB8 (SCON). A transmission is activated by any instruction that uses SBUF as a destination register. The associated timing is shown in Figure 3-9. The baud rate for the serial interface is determined by the timer 1 overflow rate or by the internal baud-rate generator.

However, transmission is internally synchronized to a divide-by-16 counter and not to the "write-to-SBUF" signal. This divide by 16 counter is clocked by the "baud rate clock".

All eight data bits are shifted out through TxD after the start bit is transmitted. This occurs at TxD in S1P1 of the machine cycle following the next rollover in the divide-by-16 counter. The bit time is determined by the baud rate selected.

When the MSB of the data byte is at the output position of the internal shift register, the next shift disables the register output, the stop bit is placed on TxD, and TI is set. This occurs at the 10th divide-by-16 rollover after "write-to-SBUF". Reception is initiated by a detected 1-to-0 transition at RxD. For this purpose, RxD is sampled at a rate of 16 times whatever baud rate has been estabilshed. When a transition is detected, the divide-by-16 counter is immediate reset. The rollovers of this counter are thereby aligned with the boundaries of the incoming bits.

The 16 states of the counter divide each bit time by 16. At the 7th, 8th and 9th counter state of each bit time, the bit detector samples the value of RxD. The value accepted is the value that was seen in at least 2 of the 3 samples. This is done for noise rejection. If the value accepted during the first bit time is not 0, the receive circuits are reset and the unit goes back to look for another 1-to-0 transition. This is to provide rejection of false start bits. If the start bit proves valid, it is shifted into the internal input shift register, and reception of the rest of the frame will proceed

When the start bit arrives at the last position in the 9bit input shift register, one last shift will be made. After this last shift SBUF and RB8 will take over the contents of the shift register and RI will be generated if, and only if, the following conditions are met at the time the final shift pulse is generated:

1. RI = 0

2. either SM2 = 0 or the receive stop bit = 1

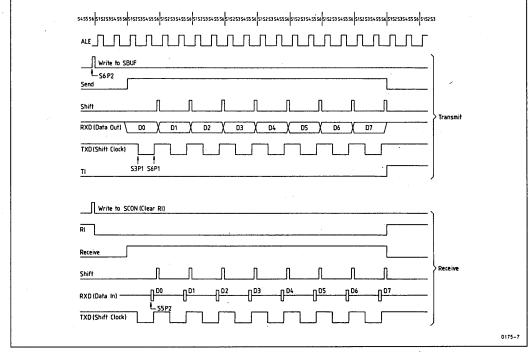


Figure 3-8. Serial Port Mode 0, Timing

Mode 2, 9-Bit UART

Mode is functionally identical to mode 3 and therefore described in the next section. The only exception is that in mode 2 the baud rate can be programmed to two fixed values: either 1/32 or 1/64 of the oscillator frequency. Note that the serial interface cannot achieve these high baud rates in mode 3. The baud-rate clock in mode 3 is generated either by the additional baud rate generator or by timer 1, which is incremented by a rate of fosc/12 (1 MHz at 12 MHz oscillator frequency).

Mode 3, 9-Bit UART

Eleven bits are transmitted (through TxD), or received (through RxD): a start bit (0), 8 data bits (LSB first), a programmable 9th data bit, and a stop bit (1). On transmission, the 9th data bit (TB8) can be assigned the value of 0 or 1. On reception, the 9th data bit goes into RB8 in SCON. Figure 3-10 shows the associated timings for mode 3. The receive portion is exactly the same as in mode 1. The transmit portion differs from mode 1 only in the 9th bit of the transmit shift register. Transmission is initiated by any instruction that uses SBUF as a destination register. The "write to SBUF" signal also loads TB8 into the 9th bit position of the internal transmit shift register. Transmission then commences at S1P1 of the machine cycle following the next rollover of the divide-by-16 counter (thus the bit times are synchronized to the divide-by-16 counter, and not to the "write-to-SBUF" signal).

After the first rollover of this counter, the start bit is passed to TxD. After the start bit is transmitted all 9 bits (including TB8) of the transmit register are shifted out. The last shift occurs at the 11th divide-by-16 rollover after "write-to-SBUF" and puts the stop bit to the pin, as well as it sets TI.

Reception is initiated by a detected 1-to-0 transition at RxD. For this purpose RxD is sampled at a rate of 16 times whatever baud rate has been established. When a transition is detected, the divide-by-16 counter is immediately reset. The rollovers of this counter are thereby aligned with the boundaries of the incomina bits.

The 16 states of the counter divide each bit time by 16. At the 7th, 8th and 9th counter states of each bit time, the bit detector samples the value of RxD. The

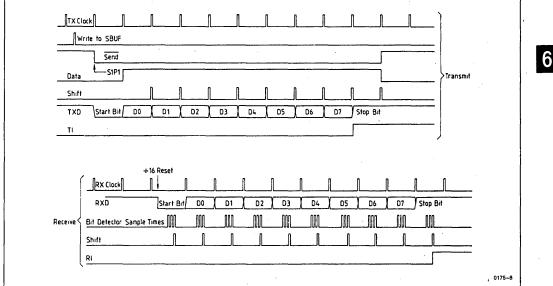


Figure 3-9. Serial Port Mode 1, Timing

Тха	ock]]	n n	[]		· · · · · ·]		n n	, J	
	rite to SBUF												
	Send		· .								[
Data	L-S1P1					. ,	· · · · · · · · · · · · · · · · · · ·				L		
Shift						[[]	L	[> Transmit
TXD	Start Bit	D0	D1	D2	D3	D4	D5)	D6	D7)	TB8	Stop Bit		
TI											<u></u>		
Stop	Bit Gen.										[J	
			l6 Reset										
ĺ	RX Clock				I]	<u> </u>	<u> </u>		<u> </u>			I
	RXD		Start Bit	DO	D1	D2	(D3	04	DS	D6	07	RB8	Stop Bit
Receive	Bit Detector	Sample T	imes								ML_		
	Shift]			l][_	[
i l	<u></u>							- '					· · · · · ·
													0175-9

Figure 3-10. Serial Port Mode 2 and Mode 3, Timing

value accepted is the value that was seen in at least 2 of the 3 samples. This is done for noise rejection. If the value accepted during the first bit time is not 0, the receive circuits are reset and the unit goes back to look for another 1-to-0 transition. This is to provide rejection of false start bits. If the start bit proves valid, it is shifted into the internal input shift register, and reception of the reset of the frame will proceed.

When the start bit arrives at the last position in the 9bit input shift register, one last shift will be made. After this last shift SBUF and RB8 will take over the contents of the shift register and RI will be generated. This will be done if, and only if, the following conditions are met at the time the final shift pulse is generated.

1. RI = 0

2. either SM2 = 0 or the received 9th data bit = 1

If none of these two conditions is met, the received frame is irretrievably lost, and RI is not set. If both conditions are met, the received 9th data bit goes into RB8, the first 8 data bits go into SBUF. One bit time later, regardless of whether the above conditions are met or not, the unit goes back to look for a 1 to-0 transition at the RxD input.

Note that in mode 3 the value of the received stop bit is irrelevant to SBUF, RB8, or RI.

3.3 Timer 0 and Timer 1

The SAB 80512 has two general purpose timers, Timer 0 and Timer 1. These may also be configured to operate as event counters.

In "timer" function, the register is incremented every machine cycle. Thus one can think of it as counting machine cycles. Since a machine cycle consists of 12 oscillator periods, the count rate is 1/12 of the oscillator frequency.

In "counter" function, the register is incremented in response to a 1-to-0 transition at its corresponding external input pin, T0 or T1. In this function the external input is sampled during S5P2 of every machine cycle. When the samples show a high level in one cycle and a low level in the next cycle, the count is incremented. The new count value appears in the register during S3P1 of the cycle following the one in which the transition was detected.

Since it takes two machine cycles (24 oscillator periods) to recognize a 1-to-0 transition, the maximum count rate is $\frac{1}{244}$ of the oscillator frequency. There are no restrictions on the duty cycle of the external input signal, but to ensure that a given level is sampled at least once before it changes, it should be held for at least one full machine cycle.

In addition to the "timer" and "counter" selection, timer 0 and timer 1 have four operating modes from which to select.

Each timer consists of two 8-bit registers (TH0 and TL0 for timer 0, TH1 and TL1 for timer 1) which may be combined to one timer configuration depending on the mode that is established. The functions of the timers are controlled by two special function registers TCON and TMOD shown in Figures 3-11 and 3-12.

In the following descriptions the symbols TH0 and TL0 are used to specify the high byte and low byte of timer 0 (TH1 and TL1 for timer 1, respectively). The operating modes are described and shown for timer 0. If not explicitly noted, this applies also to timer 1.

GATE	C/T	M1	MO	GATE	C/Ţ	M1	MO
	Timer	1			Timer	0	

- GATE Gating Control: When set, timer/counter "x" is enabled only while "INTx" pin is high and "TRx" control bit is set. When cleared timer "x" is enabled whenever "TRx" control bit is set.
- C/T Counter or Timer Select Bit: Cleared for timer operation (input from internal system clock). Set for counter operation (input from "Tx" input pin).

M1	MO	Operating Mode:
0	0	8-Bit Timer/Counter: "THx" operates as 8-bit timer/counter "TLx" serves as 5-bit prescaler.
. 0	1	16-Bit Timer/Counter: "THx" and "TLx" are cascaded; there is no prescaler.
1	0	8-Bit Auto-Reload Timer/ Counter: "THx" holds a value which is to be reloaded into "TLx" each time it overflows.
1.	2	Timer 0: TL0 is an 8-bit timer/ counter controlled by the standard timer 0 control bits. TH0 is an 8-bit timer only controlled by timer 1 control bits.
1.	1	Timer 1: Timer/count 1 stops.

Figure 3-12. Timer/Counter Mode Control Register TMOD (89H)

TR1	TF0	TR0	IE1	IT1	IE0	ITO	Bit
8EH	8DH	8CH	8BH	8AH	89H	88H	Address
Positio	n			Funct	ion		
TCON.0						are to speci	fy falling
TCON.1	Inte	edge/low-level triggered external interrupts. Interrupt 0 Edge Flag: Set by hardware when external interrupt edge					edge is
TCON.2	Inte	Interrupt 1 Type Control Bit: Set/cleared by software to specify falling					fy falling
TCON.3						nal interrupt	edge is
TCON.4	Time	er 0 Run Co				o turn timer.	counter 0
TCON.5			w Flag: Set	by hardwar	e on timer/c	counter over	flow. Cleared
TCON.6	by ha	by hardware when processor vectors to interrupt routine. Timer 1 Run Control Bit: Set/cleared by software to turn timer/counter					
TCON.7	Tim	Timer 1 Overflow Flag: Set by hardware on timer/counter overflow by hardware when processor vectors to interrupt routine.					flow. Cleared
	8EH Position TCON.0 TCON.1 TCON.2 TCON.3 TCON.4 TCON.6	8EH 8DH Position Intellector TCON.0 Intellector TCON.1 Intellector TCON.2 Intellector TCON.3 Intellector TCON.4 Timelector TCON.5 Timelector TCON.6 Timelector TCON.7 Timelector	8EH 8DH 8CH Position Interrupt 0 Type edge/low-level tr Interrupt 0 Edge detected. Cleare TCON.2 TCON.3 Interrupt 0 Edge detected. Cleare Interrupt 1 Edge detected. Cleare TCON.4 TCON.5 Timer 0 Run Co on/off. TCON.6 Timer 1 Run Co on/off. TCON.7 Timer 1 Overflo	8EH 8DH 8CH 8BH Position Interrupt 0 Type Control B edge/low-level triggered ext Interrupt 0 Edge Flag: Set t detected. Cleared when inte TCON.2 TCON.3 Interrupt 1 Type Control B edge/low-level triggered ext Interrupt 1 Type Control B edge/low-level triggered ext Interrupt 1 Edge Flag: Set t detected. Cleared when inte detected. Cleared when inte TCON.4 TCON.4 Interrupt 1 Edge Flag: Set t detected. Cleared when inte TCON.5 TCON.5 Timer 0 Run Control Bit: Set on/off. TCON.6 Timer 1 Run Control Bit: Set on/off. TCON.7 Timer 1 Overflow Flag: Set	8EH 8DH 8CH 8BH 8AH Position Funct TCON.0 Interrupt 0 Type Control Bit: Set/clear edge/low-level triggered external interrunt Interrupt 0 Edge Flag: Set by hardware detected. Cleared when interrupt process Interrupt 1 Type Control Bit: Set/clear TCON.2 Interrupt 1 Type Control Bit: Set/clear detected. Cleared when interrupt process Interrupt 1 Edge Flag: Set by hardware detected. Cleared when interrupt process Interrupt 1 Edge Flag: Set by hardware detected. Cleared when interrupt process Timer 0 Run Control Bit: Set/cleared b on/off. Timer 0 Overflow Flag: Set by hardware dy hardware when processor vectors to b on/off. TCON.6 Timer 1 Run Control Bit: Set/cleared b on/off. Timer 1 Overflow Flag: Set by hardware	8EH 8DH 8CH 8BH 8AH 89H Position Function TCON.0 Interrupt 0 Type Control Bit: Set/cleared by softw edge/low-level triggered external interrupts. TCON.1 Interrupt 0 Edge Flag: Set by hardware when exter detected. Cleared when interrupt processed. TCON.2 Interrupt 1 Type Control Bit: Set/cleared by softw edge/low-level triggered external interrupts. TCON.3 Interrupt 1 Edge Flag: Set by hardware when exter detected. Cleared when interrupt processed. TCON.3 Interrupt 1 Edge Flag: Set by hardware when exter detected. Cleared when interrupt processed. TCON.4 Timer 0 Run Control Bit: Set/cleared by software t on/off. TCON.5 Timer 0 Overflow Flag: Set by hardware on timer/or by hardware when processor vectors to interrupt rou Timer 1 Run Control Bit: Set/cleared by software t on/off. TCON.6 Timer 1 Overflow Flag: Set by hardware on timer/or by hardware when processor vectors to interrupt rou Timer 1 Run Control Bit: Set/cleared by software t on/off. TCON.7 Timer 1 Overflow Flag: Set by hardware on timer/or by hardware on timer/or	8EH 8DH 8CH 8BH 8AH 89H 88H Position Function TCON.0 Interrupt 0 Type Control Bit: Set/cleared by software to specied edge/low-level triggered external interrupts. TCON.1 Interrupt 0 Edge Flag: Set by hardware when external interrupt detected. Cleared when interrupt processed. TCON.2 Interrupt 1 Type Control Bit: Set/cleared by software to specied edge/low-level triggered external interrupts. TCON.3 Interrupt 1 Edge Flag: Set by hardware when external interrupt detected. Cleared when interrupt processed. TCON.3 Interrupt 1 Edge Flag: Set by hardware when external interrupt detected. Cleared when interrupt processed. TCON.4 Timer 0 Run Control Bit: Set/cleared by software to turn timer. on/off. TCON.5 Timer 0 Overflow Flag: Set by hardware on timer/counter over by hardware when processor vectors to interrupt routine. TCON.6 Timer 1 Run Control Bit: Set/cleared by software to turn timer. on/off. TCON.7 Timer 1 Overflow Flag: Set by hardware on timer/counter over

Figure 3-11. Timer Control Register TCON (88H)

Mode 0

Putting either timer into mode 0 configures it as an 8bit counter with a divide-by-32 prescaler. Figure 3-13 shows the mode 0 operation.

In this mode the timer register is configured as a 13bit register. As the count rolls over from all 1s to all 0s, it sets the timer overflow flag TF0. The counted input is enabled to the timer when TR0 = 1 and either GATE = 0 or INT0 = 1 (setting GATE = 1 allows the timer to be controlled by external input (INT0, to facilitate pulse width measurements). TR0 is a control bit in the special function register TCON; GATE is located in TMOD.

The 13-bit register consists of all 8 bits of TH0 and the lower 5 bits of TL0. The upper 3 bits of TL0 are indeterminate and should be ignored. Setting the run flag (TR0) does not clear the registers.

Mode 0 operation is the same for timer 0 as for timer 1. Substitute the designations TR1, TF1, TH1, TL1 and INT1 for the corresponding timer 1 signals in Figure 3-13. There are two different gate bits, one for timer 1 (TMOD.7) and one for timer 0 (TMOD.3).

Mode 1

Mode 1 is the same as mode 0, except that the timer register is run with all 16 bits. Mode 1 is shown in Figure 3-14.

Mode 2

Mode 2 configures the timer register as an 8-bit counter (TL0) with automatic reload, as shown in Figure 3-15. Overflow from TL0 not only sets TF0, but also reloads TL0 with the contents of TH0, which is preset by software. The reload leaves TH0 unchanged.

Mode 3

Timer 1 in mode 3 simply holds its count. The effect is the same as with setting TR1 = 0. Timer 0 in mode 3 establishes TL0 and TH0 as two separate counters. The logic for mode 3 on timer 0 is shown in Figure 3-16. TL0 uses the timer 0 control bits: $\overline{C/T}$, GATE, TR0, INT0, and TF0. TH0 is locked into

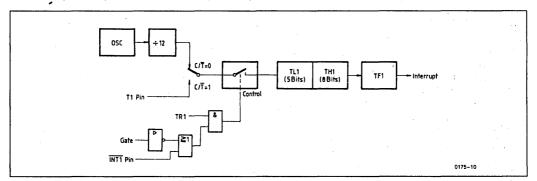


Figure 3-13. Timer/Counter 0/1, Mode 0: 13-Bit Counter

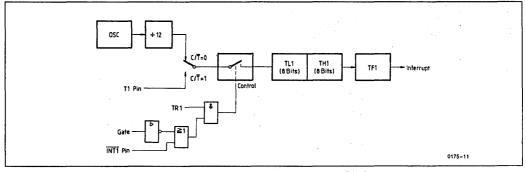
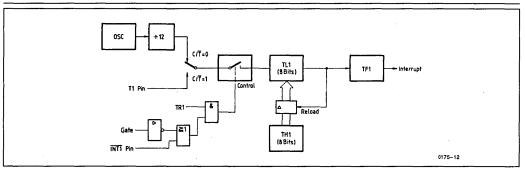
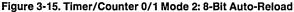




Figure 3-14. Timer/Counter 0/1, Mode 1: 16-Bit Counter

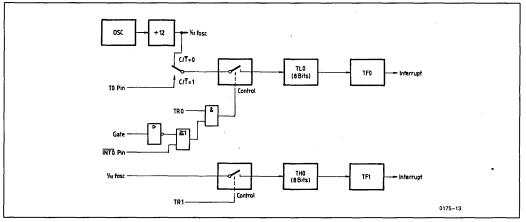


Figure 3-16. Timer/Counter 0 Mode 3: Two 8-Bit Counters

a timer function (counting machine cycles) and takes over the use of TR1 and TF1 from timer 1. TH0 now controls the "timer 1" interrupt.

Mode 3 is provided for applications requiring an extra 8-bit timer or counter. With timer 0 in mode 3, an SAB 80512 may seem to have three timer/counters. When timer 0 is in mode 3, timer 1 can be turned on and off by switching it out of and into its own mode 3, or can still be used by the serial channel as a baud-rate generator or, in fact, in any application not requiring an interrupt.

3.4 A/D Converter

The SAB 80512 provides an A/D converter with the following features:

- 8 multiplexed input channels, which can also be used as digital inputs (Port 6)
- External reference voltages adjustable in a wide range

- 8-bit resolution within the selected reference voltage range
- 15 μs conversion time (including sample time)
- Interrupt request generation after each conversion

For the conversion, the method of successive approximation via a capacitor network is used. The externally applied reference voltages can be varied to reduce the reference voltage range of the A/D converter and therefore to achieve higher resolution.

Figure 3-17 shows a block diagram of the A/D converter. There are three user-accessible special-function registers: ADCON (A/D converter control register), ADDAT (A/D converter data register) and DAPR (A/D converter start register).

3.4.1 Function and Control

Initialization

Special-function register ADCON, which is illustrated in Figure 3-18, is used to set the operating modes, to

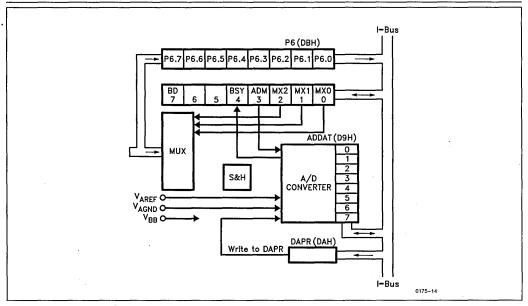


Figure 3-17. A/D Converter Control Register

check the status, and to select one of the eight analog input channels at port 6.

Two operating modes are supported by means of bit ADM (ADCON.3) which is used to select single or continuous conversion mode. As long as ADM is set the converter starts a new conversion directly after the previous one has been completed. The three-bit field consisting of bits MX0 to MX2 (ADCON.0 to ADCON.2) contains the binary coded information to select one of the 8 analog input channels (see Table 3-5). Bit BSY (ADCON.3) indicates the A/D converter status. If it is a one (1), a conversion is in progress. For details see Section 3.4.2.

Start of Conversion

Start of conversion is triggered by a write-to-DAPR instruction. The start procedure is triggered by the write operation itself and does not depend on the value written. Reading the DAPR register has no effect on the conversion and determines no result.

3.4.2 External Reference Voltages

The A/D converter in the SAB 80512 allows for external adjustment of the reference voltages. Thus the voltage at the pins VAREF/VAGND, which are the input pins for the upper/lower reference voltage, can be varied in a wide range. This feature may be used to adjust the reference voltage range to the range of the expected analog input. A compressed reference voltage range affords increased resolution of the converted analog input.

The lower reference voltage (VAGND) can be varied with V_{SS} - 0.2V and VAREF - 1V, and the upper one (VAREF) within VAGND + 1V and V_{CC} + 5%. Thus for proper operation of the A/D converter, a minimum of 1V difference is required between the external voltages:

 $\begin{array}{l} (V_{SS} - 0.2V) \leq VAGND \leq (VAREF - 1V) \\ (VAGND + 1V) \leq VAREF \leq (V_{CC} + 5\%) \end{array}$

Table 3-5. Selection of the	Analog	Input Channels	i
-----------------------------	--------	----------------	---

MX2	MX1	MX0	Selected Channel	Pin				
0	0	0	Analog Input 0	P6.0				
0	0	1	Analog Input 1	P6.1				
0	1	0	Analog Input 2	P6.2				
0	1	1	Analog Input 3	P6.3				
1	0 .	0	Analog Input 4	P6.4				
1	0	1	Analog Input 5	P6.5				
1	1	0	Analog Input 6	P6.6				
1	1	1	Analog Input 7	P6.7				

For example, if the external voltage range extends from VAGND = 0V to VAREF = 5V, the resulting resolution is approximately 20 mV per digital step. A minimum voltage range of 1V (e.g. VAREF = 3V, VAGND = 2V) results in approximately 4 mV resolution.

Note that the errors of the A/D converter (specified in the Appendix) refer to a reference voltage range of 5V (VAGND = V_{SS} , VAREF = V_{CC}).

Reducing the reference voltage range does increase the resolution but not the accuracy of the 8-bit ADC, hence, the specified errors apply to any reference voltage range chosen.

3.4.3 A/D Converter Timing and Conversion Time

A conversion is started by writing into special-function register DAPR. A write-to-DAPR will start a new conversion even if a conversion is currently in progress. The conversion begins with the next machine cycle in which the "MOVE-TO-DAPR" has been completed. The busy flag will be set in the same cycle as the write-to-DAPR operation occurs.

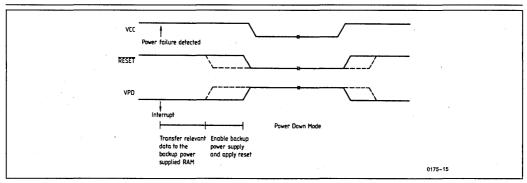
The conversion needs 15 machine cycles to be completed. This equates to a conversion time of 15 μ s at 12 MHz oscillator frequency.

If a continuous conversion is established, the next conversion is automatically started in the following machine cycle. After a conversion has been started

SAB 80512/80532 User's Manual

by writing into SFR DAPR, the analog voltage at the selected input channel is sampled for the duration of 5 machine cycles (5 μ s at 12 MHz oscillator frequency), which will then be internally held at the sampled level for the rest of the conversion time. The external analog source has to be strong enough to charge the internal sample hold capacitance, which is 70 pF at a maximum, throughout the first three cycles of the sample time. The requirements on the internal resistance of the analog source can be derived from this time, which is specified as Load Time (TL) in the Appendix.

Conversion of the sampled analog voltage takes place during the 6th to 15th machine cycle after being started. In the 15th machine cycle the converted result is moved to ADDAT and the busy flag (BSY) is cleared. The A/D converter interrupt is generated by bit IADC in register IRCON and is set at the end of the 11th machine cycle after a conversion has been started. This means that if an interrupt is initiated, the converted result is ready for access at the same time the first instruction of the interrupt service routine is executed, provided the interrupt can be serviced after the minimally possible response time.


3.5 RAM Backup Power Supply

The power down mode in the SAB 80512 enables the reduction of V_{CC} to zero while saving 40 bytes of the on-chip RAM through a backup supply connected to the VPD pin. In the following description, the terms V_{CC} and V_{PD} are used to specify the voltages at pin V_{CC} and pin V_{PD}.

BD			BSY	ADM	MX2	MX1	MX0	Bit
0DFH	0DEH	0DDH	0DCH	0DBH	0DAH	0D9H	0D8H	Address

Symbol	Position	Function
MX0	ADCON.0	Analog Input Channel Select, See Table 3-5
MX1	ADCON.1	Analog Input Channel Select, See Table 3-5
MX2	ADCON.2	Analog Input Channel Select, See Table 3-5
ADM	ADCON.3	A/D Conversion Mode. When set, a continuous conversion is selected. If $ADM = 0$, the converter stops after one conversion.
BSY	ADCON.4	Busy Flag. This flag indicates whether a conversion is in progress (BSY = 1) or not (BSY = 0).
_	ADCON.5	Reserved
_	ADCON.6	Reserved
BD	ADCON.7	Baud Rate Enable. When set, the baud rate in mode 1 and 3 of the serial channel is taken from the internal baud rate generator (see Section 3.2).

Figure 3-18. A/D Converter Control Register ADCON (0D8H)

If V_{CC} > V_{PD} the 40 bytes are supplied from $V_{CC}.$ In this case V_{PD} may be low or at any voltage less than $V_{CC}.$

If $V_{CC} < V_{PD}$, the current for the 40 bytes is drawn from V_{PD} . It is also permissible to hold V_{PD} equal to or higher than V_{CC} during normal operation.

The addresses of these backup powered RAM locations range from 88 to 127 (58H to 7FH). The current drawn from the backup power supply is specified in the Appendix.

Note that the user must take provisions to preserve necessary machine state conditions. He also has to ensure that an external reset is applied to the chip in time, as shown in Figure 3-19. This is to be done to ensure that the controller does not continue operating when V_{CC} drops below specs.

Thus, to use this feature, the user's system—upon detection that a power failure is imminent—would interrupt the processor in some manner to transfer relevant data to the 40 bytes in on-chip RAM and enable the backup power supply to the V_{PD} pin. Then a reset should be executed before V_{CC} falls below its operation limit. When power returns, a power-on reset should be made, and the backup supply needs to stay on long enough so that normal operation can be resumed. Figure 3-19 illustrates the timing of a power failure.

3.6 Oscillator and Clock Circuit

XTAL1 and XTAL2 are the input and output of a single-stage on-chip inverter which can be configured with off-chip components as a Pierce oscillator. The oscillator, in any case, drives the internal clock generator. The clock generator provides the internal clocking signals to the chip. These signals are at half the oscillator frequency and define the internal phases, states and machine cycles, as described in Section 2.1.1. Figure 3-20 shows the recommended oscillator circuit.

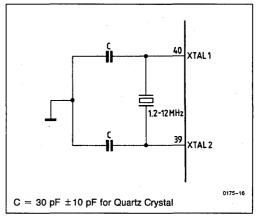


Figure 3-20. Recommended Oscillator Circuit

In this application the on-chip oscillator is used as a crystal-controlled, positive reactance oscillator (a more detailed schematic is given in Figure 3-21). It is operated in its fundamental response mode as an inductive reactance in parallel resonance with a capacitance external to the chip. The crystal specifications and capacitance values are not critical. 30 pF can be used in these positions at any frequency with a good quality crystal. A ceramic resonator can be used in place of the crystal in cost-critical applications. When a ceramic resonator is used, C is normally selected to be of somewhat higher values, typically 47 pF. The manufacturer of the ceramic resonator on the values of these capacitors.

To drive the SAB 80512 with an external clock source, apply the external clock signal to XTAL2 and ground to XTAL1, as shown in Figure 3-22. A pullup resistor is suggested (to increase noise margin), but is optional if V_{OH} of the driving gate fits the V_{IH2} specification of XTAL2.

Sometimes an external clock with the frequency of the oscillator is needed. For this application the circuit shown in Figure 3-23 is recommended. The CMOS driver (or inverter) should be placed as closely as possible to the oscillator circuit. Be sure to take into account the impedances of the circuit and the CMOS driver input.

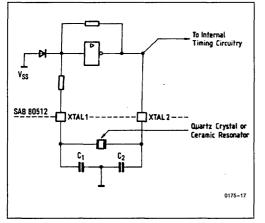


Figure 3-21. On-Chip Oscillator Circuitry

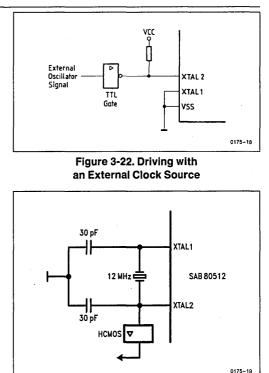


Figure 3-23. Generating a System Clock from the Oscillator Circuit

Interrupt System

--

4.0 Interrupt System

The SAB 80512 provides six interrupt sources. Four interrupts can be generated by the on-chip peripherals (i.e., Timer 0, Timer 1, Serial Channel and A/D Converter), and two interrupts may be triggered externally.

The interrupt structure of the SAB 80512 has been mainly adapted from the 8051. Thus, each interrupt source can be enabled individually and can be set on one of two priority levels.

Figure 4-1 gives a general view of all interrupt sources and illustrates the request and control flags described in the next sections.

4.1 Interrupt Structure

A common mechanism is used to generate the various interrupts whereby each source has its own request flag located in a special-function register (e.g., TCON, IRCON, SCON). Provided the peripheral or external source meets the condition for an interrupt, the dedicated request flag is set, whether an interrupt is enabled or not. For example, each timer 0 overflow sets the corresponding request flag TF0. If it is already set, it retains a one (1). But the interrupt is not necessarily serviced. Now each interrupt requested by the corresponding flag can be enabled or disabled individually by the enable bits in SFR IE (see Figure 4-2). This determines whether the interrupt will actually be performed. In the following section the interrupt sources are discussed separately.

The external interrupts 0 and 1 (INT0 and INT1) can each be either level-activated or negative transitionactivated, depending on bits IT0 and IT1 in register TCON (see Figure 3-11). The flags that actually generate these interrupts are bits IE0 and IE1 in TCON. When an external interrupt is generated, the flag that generated this interrupt is cleared by the hardware when the service routine is vectored to, only if the interrupt was transition-activated. If the interrupt was level-activated, then the external requesting source directly controls the request flag, rather than the onchip hardware.

The timer 0 and timer 1 interrupts are generated by TF0 and TF1, which are set by a rollover in their respective timer/counter registers (exception see Section 3.3 for timer 0 in mode 3). When a timer interrupt is generated, the flag that generated it is cleared by the on-chip hardware when the service routine is vectored to.

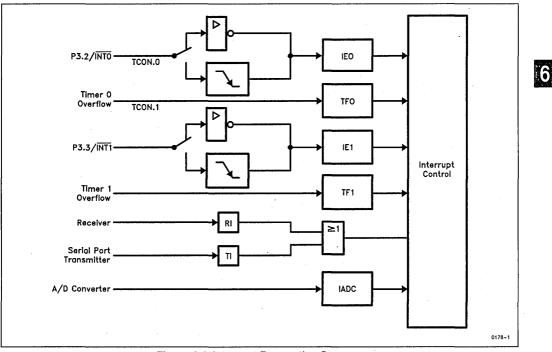


Figure 4-1. Interrupt Requesting Sources

The serial channel interrupt is generated by the request flags RI and TI. That is, the two request flags are logically ORed together. Neither of these flags is cleared by hardware when the service routine is vectored to. In fact, the service routine of the interface will normally have to determine whether it was the receive interrupt flag (RI) or the transmission interrupt flag (TI) that generated the interrupt, and the flag will have to be cleared by software.

The A/D Converter interrupt is generated by IADC in register IRCON (Bit IRCON.0 see Figure 4-3) and is

set on the 11th machine cycle after a conversion has been started. That is, if an interrupt is generated, in any case the converted result in ADDAT is valid on the first instruction of the interrupt service routine (11 cycles plus 4 cycles minimal interrupt response time results in 15 cycles; the time the A/D Converter requires for one conversion). If the continuous conversion mode is established, IADC is set in the 11th machine cycle of the last conversion to be completed. If an A/D Converter interrupt is generated, flag IADC will have to be cleared by software.

					····-			, ·
EA	EADC		ES	ET1	EX1	ET0	EX0	Bit
0AFH	0AEH	0ADH	0ACH	0ABH	0AAH	0A9H	0A8H	Address
Symbol	Position							
EX0	IE.0		Enables or disables external interrupt 0. If $EX0 = 0$, external interrupt 0 is enabled.					
ETO	IE.1		Enables or disables the timer 0 overflow interrupt. If $ET0 = 0$, the timer 0 interrupt is disabled.					timer 0
EX1	IE.2	1	Enables or disables external interrupt 1. If $EX1 = 0$, external interrupt 1 is disabled.					rupt1is .
ET1	IE.3		Enables or disables the timer 1 overflow interrupt. If $ET1 = 0$, the timer 1 interrupt is disabled.					timer 1
ES	IE.4		les or disabl upt is disabl		port interru	ot. If $ES = C$, the serial p	port
· ·	IE.5	Rese	rved					
EADC	IE.6		Enables or disables A/D Converter Interrupt. If EADC $=$ 0, the A/D Converter Interrupt is disabled.					D'D
EA	IE.7	ackno	Enables or disables all interrupts. If $EA = 0$, no interrupt is will be acknowledged. If $EA = 1$, each interrupt source is individually enabled disabled by setting or clearing its enable bit.					

Figure 4-2. Interrupt Enable Register IE (0A8H)

	_	_				_	IADC	Bit
0C7H	0C6H	0C5H	0C4H	0C3H	0C2H	0C1H	0C0H	Address

Symbol	Position	Function
IADC	IRCON.0	A/D Converter interrupt request flag. Set by hardware in the 11th cycle of a conversion. Must be cleared by software.
	IRCON.1	Reserved
	IRCON.2	Reserved
	IRCON.3	Reserved
	IRCON.4	Reserved
	IRCON.5	Reserved
	IRCON.6	Reserved
	IRCON.7	Reserved

Figure 4-3. Interrupt Request Control Register IRCON (0C0H)

All of the bits that generate interrupts can be set or cleared by software, with the same result as if they had been set or cleared by hardware. That is, interrupts can be generated or pending interrupts can be cancelled by software. The only exceptions are request flags IEO and IE1. If the external interrupts 0 and 1 are programmed to be level-activated, IEO and IE1 are controlled by the external source via pin INTO and INT1, respectively. In this case, writing a one (1) to the request flag IEO and/or IE1 will have no effect. In this mode, interrupts 0 and 1 can only be generated in software by writing a 0 to the corresponding pins INTO (P3.2) and INT1 (P3.3), provided this will not affect any peripheral circuit connected to the pins.

Each of these interrupt sources can be individually enabled or disabled by setting or clearing a bit in the special function registers IE (Figure 4-2). Note that IE contains also a global disable bit, EA, which disables all interrupts at once.

4.2 Priority Level Structure

Each interrupt source can be programmed individually to one of two priority levels by setting or clearing a bit in the special-function register IP (Figure 4-4). An interrupt can itself be interrupted by an interrupt with higher priority, but not by another interrupt of the same or a lower priority. Thus a high-priority interrupt cannot be interrupted by any other interrupt source.

If two or more requests of different priority levels are received simultaneously, the request of the highest priority is serviced first. If requests of the same priority level are received simultaneously, an internal polling sequence determines which request is serviced first. Thus within each priority level there is a second priority structure determined by the polling sequence, as follows:

Source	Priority within Level
1. IE0	(Highest)
2. TF0	
3. IE1	
4. TF1	
5. RI + TI	
6. IADC	(Lowest)

Note that this "priority within level" structure is only used to resolve simultaneous requests of the same priority level.

_	—	PADC	PS	PT1	PX1	PT0	PX0	Bit
0BFH	0BEH	0BDH	0BCH	0BBH	0BAH	0B9H	0B8H	Address

Symbol Position		Function		
	IP.7	Reserved		
PADC	IP.6	Reserved		
PS	IP.5	Defines the ADC interrupt priority level. PADC = 1 programs it to the higher level.		
PT1	IP.4	Defines the serial interrupt priority level. PS = 1 programs it to the higher level.		
PX1	IP.3	Defines the timer 1 interrupt priority level. PT1 = 1 programs it to the higher level.		
PT0	IP.2	Defines the external interrupt 1 priority level. PX1 = 1 programs it to the higher level.		
PX0	IP.1	Defines the timer 0 interrupt priority level. PT0 = 1 programs it to the higher level.		
	IP.0	Defines the external interrupt 0 priority level. PX0 = 1 programs it to the higher level.		

Figure 4-4. Interrupt Priority Register IP (0B8H)

4.3 How Interrupts Are Handled

The interrupt flags are sampled at S5P2 in every machine cycle. The samples are polled during the following machine cycle. If one of the flags was in a set condition at S5P2 of the preceding cycle, the polling cycle will find it and the interrupt system will generate an LCALL to the appropriate service routine, provided this hardware-generated LCALL is not blocked by any of the following conditions.

- 1) An interrupt of equal or higher priority is already in progress.
- The current (polling) cycle is not in the final cycle in the execution of the instruction in progress.
- The instruction in progress is RETI or any write access to registers IE or IP.

Any of these three conditions will block the generation of the LCALL to the interrupt service routine. Condition 2 ensures that the instruction in progress will be completed before vectoring to any service routine. Condition 3 ensures that if the instruction in progress is RETI or any write access to registers IE or IP, then at least one more instruction will be executed before any interrupt is vectored to.

The polling cycle is repeated with each machine cycle, and the values polled are the values that were present at S5P2 of the previous machine cycle. Note then that if any interrupt flag is active but not being responded to for one of the above conditions, and if the flag is not still active when the blocking condition is removed, the denied interrupt will not be serviced. In other words, the fact that the interrupt flag was once active but not serviced is not remembered. Each polling cycle interrogates only the pending interrupt requests.

The polling cycle/LCALL sequence is illustrated in Figure 4-5.

Note that if an interrupt of higher priority level goes active prior to S5P2 in the machine cycle labeled C3 in Figure 4-5, then in accordance with the above rules it will be vectored to during C5 and C6, without any instruction of the lower priority routine being executed.

Thus the processor acknowledges an interrupt request by executing a hardware-generated LCALL to the appropriate servicing routine. In some cases it also clears the flag that generated the interrupt, and in other cases it does not. It never clears the serial port (RI, TI) or A/D Converter flag (IADC). This has to be done in the user's software. It clears an external interrupt flag (IE0 or IE1) only if it was transitionactivated. The hardware-generated LCALL pushes the contents of the program counter onto the stack (but it does not save the PSW) and reloads the PC with an address that depends on the source of the interrupt being vectored to, as shown below.

Source	Vector Address
IE0	0003H
TF0	000BH
IE1	0013H
TF1	001BH
RI + TI	0023H
IADC	002BH

Execution proceeds from that location until the RETI instruction is encountered. The RETI instruction informs the processor that this interrupt routine is no longer in progress, then pops the top two bytes from the stack and reloads the program counter. Execution of the interrupted program continues from where it left off.

Note that a simple RET instruction would also have returned execution to the interrupted program, but it would have left the interrupt control system thinking an interrupt was still in progress.

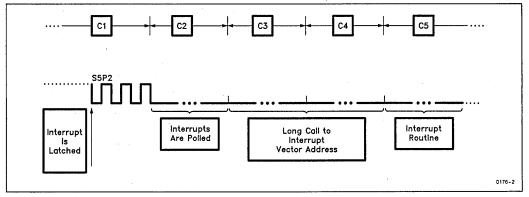


Figure 4-5. Interrupt Response Timing Diagram

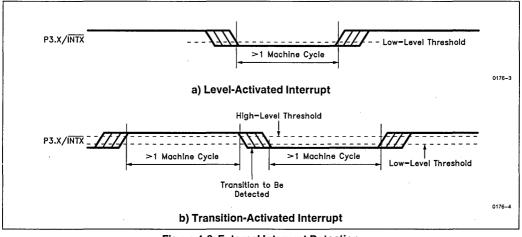


Figure 4-6. External Interrupt Detection

4.4 External Interrupts

The external interrupts 0 and 1 can be programmed to be level-activated or negative transition-activated by setting or clearing bit IT0 or IT1, respectively, in register TCON. If ITx = 0, external interrupt x is triggered by a detected low at the INTx pin. If ITx = 1, external interrupt x is negative edge-triggered. In this mode, if successive samples of the INTx pin show a high level in one cycle and a low level in the next cycle, interrupt request flag IEx in TCON is set. Flag bit IEx then requests the interrupt.

Since the external interrupt pins are sampled once in each machine cycle, an input high or low should be held for at least 12 oscillator periods to ensure sampling. If the external interrupt is transition-activated, the external source has to hold the request pin high for at least one cycle, and then hold it low for at least one cycle to ensure that the transition is recognized so that the corresponding interrupt request flag will be set. The external interrupt request flag will automatically be cleared by the CPU when the service routine is called.

If the external interrupt 0 or 1 is level-activated, the external source has to hold the request active until the requested interrupt is actually generated. Then it has to deactivate the request before the interrupt service routine is completed, otherwise another interrupt will be generated.

Note that once a level-activated interrupt 0 or 1 is removed, it is not remembered by the controller if it was not directly serviced.

However, if the interrupt is transition-activated, a detected transition sets the request flag and this flag remains set until it is cleared by software or by hardware after servicing the interrupt. Thus an interrupt request triggered by a negative edge is remembered for any period of time.

4.5 Response Time

If an external interrupt is recognized, its corresponding request flag is set at S5P2 in every machine cycle. The value is not actually polled by the circuitry until the next machine cycle. If the request is active and conditions are right for it to be acknowledged, a hardware subroutine call to the requested service routine will be the next instruction to be executed. The call itself takes two cycles. Thus a minimum of three complete machine cycles will elapse between activation and external interrupt request and the beginning of execution of the first instruction of the service routine. Figure 4-5 shows the interrupt response timings.

A longer response time would result if the request is blocked by one of the three previously listed conditions. If an interrupt of equal or higher priority is already in progress, the additional wait time obviously depends on the nature of the other interrupt's service routine. If the instruction in progress is not in its final cycle, the additional wait time cannot be more than 3 cycles since the longest instructions (MUL and DIV) are only 4 cycles long; and, if the instruction in progress is RETI or an access to registers IE or IP, the additional wait time cannot be more than 5 cycles (a maximum of one more cycle to complete the instruction, if the instruction is MUL or DIV).

Thus, in a single interrupt system, the response time is always more than 3 cycles and less than 9 cycles.

SAB 80515/80535 Single-Chip Microcontroller User's Manual

SIEMENS

Microcomputer Components

SAB 80515/80535 Single-Chip Microcontroller

User's Manual

Contents

7-3

ł • • • •

Table of Contents

	na shekara na shekara ka shekara na shekara na shekara na shekara na shekara na shekara ka shekara na shekara n Tarihi na shekara na sh	Page
10	Introduction	
1.0		7-7
2.0	Architecture	7-11
2.1	CPU	7-13
2.2	Memory organization	7-13
2.2.1	Program memory	7-13
2.2.2	Data memory	7-13
2.2.3	Special function registers	7-15
2.3	Oscillator and clock circuit	7-18
2.4	CPU timing	7-18
2.5	Accessing external memory	7-18
2.6	PSEN	7-20
2.7	ALE	7-20
2.8	Overlapping external program and data memory spaces	7-22
2.9	RESET	7-22
3.0	On-Chip Peripheral Components	7-25
3.1	Port structures and operation	7-27
3.1.1	I/O configuration	7-27
3.1.2	Writing to a port	7-29
3.1.3	Port loading and interfacing	7-29
3.1.4	Read-modify-write feature	7-30
3.2	Timer 0 and timer 1	7-30
3.2.1	Mode 0	7-31
3.2.2	Mode 1	7-31
3.2.3	Mode 2	7-31
3.2.4	Mode 3	7-31
3.3	PTRA Unit	7-33
3.3.1	Reload	7-36
3.3.2	Compare	7-37
3.3.3	Capture	7-39
3.4	Serial interface	7-41
3.4.1	Multiprocessor communication	7-42
3.4.2	Baud rates	7-42
3.4.2.	1 Using timer 1 to generate baud rates	7-43
3.4.2.	2 Internal baud rate generator	7-43
3.4.3	More about mode 0	7-43
3.4.4	More about mode 1	7-44
3.4.5	More about modes 2 and 3	7-52
3.5	A/D converter	7-53
3.5.1	Programming the internal reference voltages	7-54
3.5.2	A/D converter timing and conversion time	7-55

		Page
3.6	Interrupt structure	7-56
3.6.1	Priority level structure	7-59
3.6.2	How interrupts are handled	7-63
3.6.3	External interrupts	7-64
3.6.4	Response time	7-64
3.7	Watchdog timer	7-65
3.8	RAM backup power supply	7-65
3.9	System clock output	7-65
3.10	More about the on-chip oscillator	7-66
3.11	Register PCON	7-68
4.0	Memory Organization, Addressing Modes and Boolean Processor	7-71
4.1	Introduction	7-71
4.2	Memory organization	7-71
4.2.1	Program memory address space	7-71
4.2.2	2 Data memory address space	7-71
4.3	Addressing modes	7-73
4.3.1	Register addressing	7-73
4.3.2	2 Direct addressing	7-74
4.3.3		7-74
4.3.4	Immediate addressing	7-74
4.3.5		7-74
4.4	Boolean processor	7-74

n an an an an Arrange ann an

.

and a second second

7-6

.

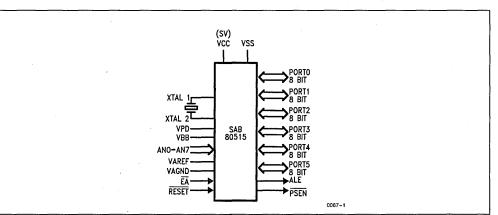
Introduction

7-7

1.0 Introduction

The SAB 80515 is the newest member of the Siemens SAB 8051 8-bit microcontroller family, based on the SAB 8051 architecture. While maintaining all the SAB 8051's operating characteristics, the SAB 80515 incorporates several enhancements which significantly increase design flexibility and overall system performance.

SAB 80515 features are:


- 8 Kybte on-chip program memory
- --- 256 byte on-chip RAM
- Six 8-bit parallel ports
- Full-duplex serial port, 4 modes of operation, fixed or variable baud rates
- Three 16-bit timer/counters
- 16-bit reload, compare, capture capability
- A/D converter, 8 multiplexed analog inputs, programmable reference voltages
- 16-bit watchdog timer
- --- Power-down supply for 40 byte of RAM

- Boolean processor
- 256 directly addressable bits
- 12 interrupt sources (7 external, 5 internal), 4 priority levels
- Stack depth up to 256 byte
- 1 µs instruction cycle at 12 MHz operation
- -4 µs multiply and divide
- External program and data memory expandable up to 64 Kbyte each
- Compatible with standard SAB 8080/8085 peripherals and memories
- Space-saving PLCC-68 package

The SAB 80535 is the ROMless version of the SAB 80515.

In this manual, the term 'SAB 80515' is used to refer to both the SAB 80515 and the SAB 80535, unless otherwise noted.

Figure 1 shows the logic symbol, Figure 2 a block diagram of the SAB 80515.

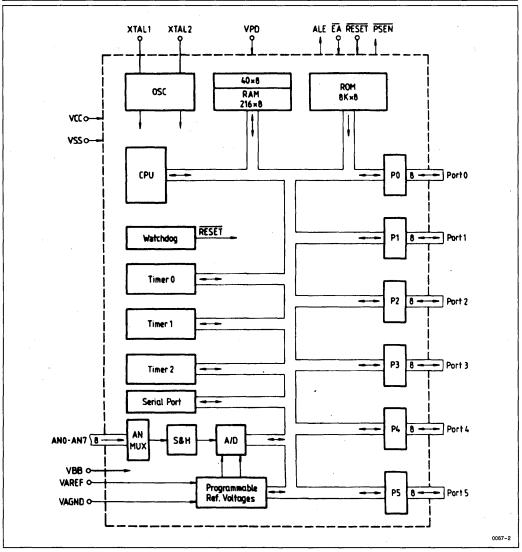


Figure 2. Block Diagram

Architecture

7-11

2.0 Architecture

The SAB 80515 is classified as being an 8-bit machine since the internal ROM, RAM, special function registers, arithmetic/logic unit and external data bus are each 8 bits wide. The SAB 80515 supports bit, nibble, byte and double-byte operations. The SAB 80515 has extensive facilities for byte transfer, logic and integer arithmetic operations. It excels at bit-handling capability since data transfer, logic and conditional branch operations can be performed directly on Boolean variables.

2.1 CPU

The CPU (Central Processing Unit) of the SAB 80515 consists of the instruction decoder, the arithmetic section, and the program control section. Each program instruction is decoded by the instruction decoder. This unit generates the internal signals controlling the functions of the individual units within the CPU. They have an effect on the source and destination of data transfers, and control the ALU processing.

The arithmetic section of the processor performs extensive data manipulation and is comprised of the arithmetic/logic unit (ALU), an A register, B register and PSW register. The ALU accepts 8-bit data words from one or two sources and generates an 8-bit result under the control of the instruction decoder. The ALU performs the arithmetic operations add, subtract, multiply, divide, increment, decrement, BCDdecimal-add-adjust and compare, and the logic operations AND, OR, Exclusive OR, complement and rotate [right, left, or swap nibble (left four)]. Also included is a Boolean processor performing the bit operations of set, clear, complement, jump-if-set, jumpif-not-set, jump-if-set-and-clear and move to/from carry. Between any addressable bit (or its complement) and the carry flag it can perform the bit operations of logical AND or logical OR with the result returned to the carry flag. The A, B and PSW registers are described in a later section.

The program control section controls the sequence in which the instructions stored in program memory are executed. The 16-bit program counter (PC) holds the address of the next instruction to be executed. The PC is manipulated by the control transfer instructions listed in section 5.1.4. The conditional branch logic enables events internal and external to the processor to cause a change in the program execution sequence.

2.2 Memory Organization

The SAB 80515 CPU manipulates operands in the following four memory address spaces:

- up to 64 kbytes of program memory
- up to 64 kbytes of external data memory
- 256 bytes of internal data memory
- a 128-byte special function register area

2.2.1 Program Memory

The program memory address space of the SAB 80515 consists of an internal and an external memory portion. The SAB 80515 has 8 kbytes of program memory on-chip, while the SAB 80535 has no internal ROM. The program memory can be externally expanded up to 64 kbytes. If the EA pin is held high, the SAB 80515 executes out of the internal program memory unless the address exceeds 1FFFH. Locations 2000H through 0FFFFH are then fetched from the external program memory. If the EA pin is held low, the SAB 80515 fetches all instructions from the external program memory. Since the SAB 80535 has no internal program memory, pin EA must be tied low when using this device. In either case, the 16-bit program counter is the addressing mechanism.

Locations 00 through 6BH in the program memory are used by interrupt service routines.

Figure 4 illustrates the program memory address space.

2.2.2 Data Memory

The data memory address space consists of an internal and an external memory space. The internal data memory is divided into three physically separate and distinct blocks: the lower 128 bytes of RAM, the upper 128 bytes of RAM, and the 128-byte special function register (SFR) area. While the upper RAM area and the SFR area share the same address locations, they are accessed through different addressing modes. These modes are discussed in section 4.3.

Figure 4 shows a mapping of the internal data memory. Four 8-register banks occupy locations 0 through 31 in the lower RAM area. Only one of these banks may be enabled at a time (through a two-bit field in the PSW, see description of PSW). The next 16 bytes, locations 32 through 47, contain 128 directly addressable bit locations. The stack can be located anywhere in the internal data memory address space. The stack depth is only limited by the internal RAM available (256 byte maximum). The 64 kbyte external data memory area can be accessed by instructions using a 16-bit or an 8-bit address.

The special function register area is described in the next section.

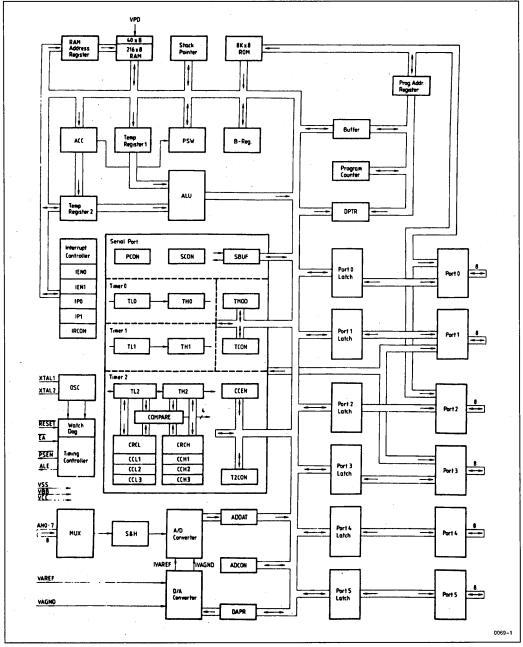


Figure 3. Detailed Block Diagram

7-14

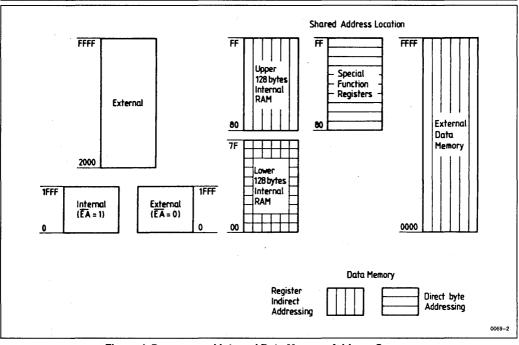


Figure 4. Program and Internal Data Memory Address Spaces

2.2.3 Special Function Registers

The address space of the special function registers is comprised of locations 128 through 255. All registers except the program counter and the four 8-register banks reside here. The 41 special function registers (SFRs) include arithmetic registers (A, B, PSW), pointers (SP, DPH, DPL) and registers providing an interface between the CPU and the on-chip peripheral functions. There are also 128 directly addressable bits within the special function registers. Memory-mapping the SFRs allows accessing them as easily as the internal RAM. For this reason, they can be processed with most instructions. The special function registers are listed in Table 1.

Symbol	Name	Address
* P0	Port 0	80H
SP	Stack Pointer	81H
DPL	Data Pointer, Low Byte	82H
DPH	Data Pointer, High Byte	83H
PCON	Power Control Register	87H
* TCON	Timer Control Register	88H
TMOD	Timer Mode Register	89H
TLO	Timer 0, Low Byte	8AH
TL1	Timer 1, Low Byte	8BH
THO	Timer 0, High Byte	8CH
TH1	Timer 1, High Byte	8DH
* P1	Port 1	90H
* SCON	Serial Port Control Register	98H
SBUF	Serial Port Buffer Register	99H
* P2	Port 2	OAOH
* IEN0	Interrupt Enable Register 0	0A8H
IPO	Interrupt Priority Register 0	0A9H
* P3	Port 3	овон
* IEN 1	Interrupt Enable Register 1	088H
IP1	Interrupt Priority Register 1	0B9H
* IRCON	Interrupt Request Control Register	OCOH
CCEN	Compare/Capture Enable Register	0C1H
CCL1	Compare/Capture Register 1, Low Byte	0C2H
CCH1	Compare/Capture Register 1, High Byte	0C3H
CCL2	Compare/Capture Register 2, Low Byte	0C4H
CCH2	Compare/Capture Register 2, High Byte	0C5H
CCL3	Compare/Capture Register 3, Low Byte	0C6H
ССНЗ	Compare/Capture Register 3, High Byte	0C7H
* T2CON	Timer 2 Control Register	0C8H
CRCL	Compare/Reload/Capture Register, Low Byte	0CAH
CRCH	Compare/Reload/Capture Register, High Byte	OCBH .
TL2	Timer 2, Low Byte	0CCH
TH2	Timer 2, High Byte	OCDH
* PSW	Program Status Word Register	ODOH
* ADCON	A/D Converter Control Register	0D8H
ADDAT	A/D Converter Data Register	0D9H
DAPR	D/A Converter Program Register	0DAH
* ACC	Accumulator	0E0H
* P4	Port 4	0E8H
*B	B Register	OFOH
* P5	Port 5	0F8H

The SFRs marked with an asterisk (*) are both bit and byte-addressable.

Accumulator

ACC is the accumulator register. The mnemonics for accumulator-specific instructions, however, refer to the accumulator simply as A.

Program Status Word (PSW)

The PSW register contains program status information as shown in Figure 5. A more detailed description of the bits contained in the PSW is given in section 5.1.2.

B Register

The B register is used during multiply and divide and serves as both source and destination. For other instructions it can be treated as another scratch pad register.

Stack Pointer

The stack pointer (SP) register is 8 bits wide. It is incremented before data is stored during PUSH and CALL executions and decremented after data is popped during a POP and RET (RETI) execution. While the stack may reside anywhere in on-chip RAM, the stack pointer is initialized to 07H after a reset. This causes the stack to begin at location 08H above register bank 0. The SP can be read or written to under software control.

CY	AC	F0	RS1	RS0	ov	F1	Р	Bit
0D7H	0D6H	0D5H	0D4H	0D3H	0D2H	0D1H	0D0H	Address

Symbol	Position		Name and Significance					
CY AC F0 RS1 RS0	PSW.7 PSW.6 PSW.5 PSW.4 PSW.3	Auxilia Genera Registe	Carry Flag Auxiliary Carry Flag (for BCD Operations) General Purpose User Flag 0 Register Bank Select Control Bits 1 and 0. Set/cleared by software to determine working register bank: RS1 RS0 Enabled Working Register Bank					
		0 0 1 1	0 1 0 1	Bank 0 Bank 1 Bank 2 Bank 3	00H–07H 08H–0FH 10H–17H 18H–1FH			
0V F1 P	PSW.2 PSW.1 * PSW.0	Overflow Flag General Purpose User Flag 1 Parity Flag. Set/Cleared by Hardware each instruction cycle to indicate an odd/even number of "one" bits in the accumulator, i.e. even parity.						

Data Pointer

The 16-bit data pointer (DPTR) register is a concatenation of registers DPH (data pointer's high-order byte) and DPL (data pointer's low-order byte). The DPTR is used in register-indirect addressing to move program memory constants and external data memory variables, as well as to branch within the 64 kbyte program memory address space.

Ports 0 to 5

P0, P1, P2, P3, P4 and P5 are the SFR latches of ports 0, 1, 2, 3, 4 and 5. A more detailed description of the ports is given in later sections.

Peripheral Control, Data and Status Registers

The following registers contain the control, data and status information of the peripheral devices:

PCON	TCON	TMOD	TLO	TL1	TH0	TH1
SCON	SBUF	IEN0	IP0	IEN1	IP1	IRCON
CCEN	CCL1	CCH1	CCL2	CCH2	CCL3	CCH3
T2CON	CRCL	CRCH	TL2	TH2	ADCON	ADDAT
DAPR						

Most of these registers are bit-addressable to facilitate control of peripheral functions. A more detailed description of each register is given in the respective sections in chapter 3, "On-Chip Peripheral Components".

2.3 Oscillator and Clock Circuit

XTAL1 and XTAL2 are the input and output of a single-stage on-chip inverter which can be configured with off-chip components as a Pierce-oscillator. The on-chip circuitry and selection of off-chip components to configure the oscillator are discussed in section 3.10.

The oscillator, in any case, drives the internal clock generator. The clock generator provides the internal clocking signals to the chip. The internal clocking signals are at half the oscillator frequency, and define the internal phases, states, and machine cycles, which are described in the next section. Figure 6 shows the recommended oscillator circuit.

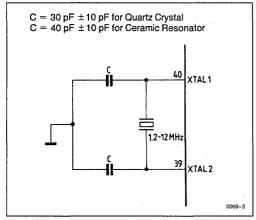


Figure 6. Recommended Oscillator Circuit

2.4 CPU Timing

A machine cycle consists of 6 states (12 oscillator periods). Each state is divided into a phase 1 half, during which the phase 1 clock is active, and a phase 2 half, during which the phase 2 clock is active. Thus, a machine cycle consists of 12 oscillator periods, numbered S1P1 (state 1, phase 1) through S6P2 (state 6, phase 2). Each phase lasts for one oscillator period. Each state lasts for two oscillator periods. Typically, arithmetic and logical operations take place during phase 1 and internal register-toregister transfers take place during phase 2.

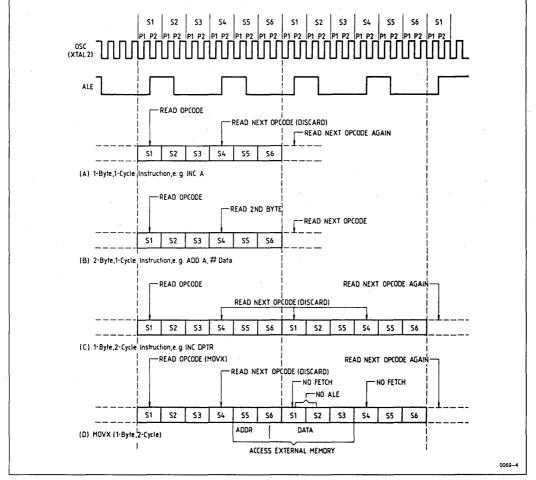
The diagrams in Figure 7 show the fetch/execute timing referenced to the internal states and phases. Since these internal clock signals are not user-accessible, the XTAL2 oscillator signal and the ALE (address latch enable) signal are shown for external reference. ALE is normally activated twice during each machine cycle: once during S1P2 and S2P1, and again during S4P2 and S5P1.

Execution of a one-cycle instruction begins at S1P2, when the op code is latched into the instruction register. If it is a two-byte instruction, the second byte is read during S4 of the same machine cycle. If it is a one-byte instruction, there is still a fetch at S4, but the byte read (which would be the next op code) is ignored, and the program counter is not incremented. In any case, execution is complete at the end of S6P3. Figures 8A and 8B show the timing for a 1-byte, 1-cycle instruction.

Most SAB 80515 instructions execute in one cycle. MUL (multiply) and DIV (divide) are the only instructions that take more than two cycles to complete; they take four cycles. Normally, two code bytes are fetched from the program memory during every machine cycle. The only exception to this is when a MOVX instruction is executed. MOVX is a 1-byte, 2cycle instruction that accesses external data memory. During a MOVX, two fetches are skipped while the external data memory is being addressed and strobed.

Figures 7C and 7D show the timing for a normal 1-byte, 2-cycle instruction and for a MOVX instruction.

2.5 Accessing External Memory


Accesses to external memory are of two types: accesses to external program memory and accesses

to external data memory. Accesses to external program memory use the signal, \overrightarrow{PSEN} (program store enable) as the read strobe. Accesses to external data memory use \overrightarrow{RD} and \overrightarrow{WR} (alternate functions of P3.7 and P3.6, see section 3.1) to strobe the memory. Port 0 and port 2 (with exceptions) are used to provide data and address signals. In this section only the port 0 and port 2 functions relevant to external memory accesses are described (for more detailed information see section 3.1).

Fetches from external program memory always use a 16-bit address. Accesses to external data memory can use either a 16-bit address (MOVX @DPTR) or an 8-bit address (MOVX @Ri).

Whenever a 16-bit address is used, the high byte of the address comes out on port 2, where it is held for the duration of the read or write cycle. During this time the port 2 latch (the special function register) does not have to contain 1s, and the contents of port 2 SFR are not modified. If the external memory cycle is not immediately followed by another external memory cycle, the undisturbed contents of the port 2 SFR will reappear in the next cycle.

If an 8-bit address is being used (MOVX @Ri), the contents of the port 2 SFR remain at the port 2 pins throughout the external memory cycle. This will facilitate paging. In any case, the low byte of the address is time-multiplexed with the data byte on port 0. The address/data signal drives both FETs in the port 0 output buffers. Thus, in this application, the port 0 pins are not open-drain outputs, and do not require external pullup resistors. Signal ALE (address latch enable) should be used to capture the address byte

into an external latch. The address byte is valid at the negative transition of ALE. Then, in a write cycle, the data byte to be written appears on port 0 just before WR is activated, and remains there until after WR is deactivated. In a read cycle, the incoming byte is accepted at port 0 before the read strobe is deactivated.

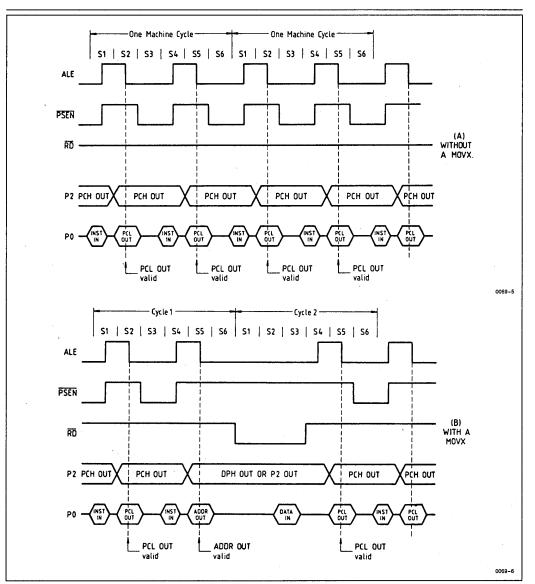
During any access to external memory, the CPU writes 0FFH to the port 0 latch (the special function register), thus obliterating whatever information the port 0 SFR may have been holding.

External program memory is accessed under two conditions:

- 1. whenever signal EA is active; or
- 2. whenever the program counter (PC) contains a number that is larger than 1FFFH.

This requires that the ROMless version SAB 80535 has EA wired low to enable the lower 8k program bytes to be fetched from external memory.

When the CPU is executing out of external program memory, all 8 bits of port 2 are dedicated to an output function and may not be used for general purpose I/O. During external program memory fetches they output the high byte of the PC, and during accesses to external data memory they output either DPH or the port 2 SFR (depending on whether the external data memory access is a MOVX @DPTR or a MOVX @Ri).


Since the SAB 80535 has no internal program memory, accesses to program memory are always external, and port 2 is always dedicated to output the high-order address byte. So for the SAB 80535, port 0 and port 2 can never be used as general purpose I/O. This applies also to the SAB 80515 when it is operated with only an external program memory. It should be noted that, if a port 2 bit outputs an address bit that is a 1, then the enhancement-mode transistor at the output buffer will be turned on for the entire read/write cycle and not only for two oscillator periods (see section 3.1.2).

2.6 **PSEN**

The read strobe for external fetches is PSEN. PSEN is not activated for internal fetches. When the CPU is accessing external program memory, PSEN is activated twice every cycle (except during a MOVX instruction) no matter whether or not the byte fetched is actually needed for the current instruction. When PSEN is activated its timing is not the same as for RD. A complete RD cycle, including activation and deactivation of ALE and RD, takes 12 oscillator periods. A complete PSEN cycle, including activation and deactivation of ALE and PSEN, takes 6 oscillator periods. The execution sequences for these two types of read cycles are shown in Figure 8.

2.7 ALE

The main function of ALE is to provide a properly timed signal to latch the low byte of an address from P0 to an external latch during fetches from external memory. For that purpose ALE is activated twice every machine cycle. This activation takes place even when the cycle involves no external fetch. The only time an ALE pulse doesn't come out is during an access to external data memory. The first ALE of the second cycle of a MOVX instruction is missing (see Figure 9). Consequently, in any system that does not use external data memory, ALE is activated at a constant rate of 1/6 the oscillator frequency, and can be used for external clocking or timing purposes.

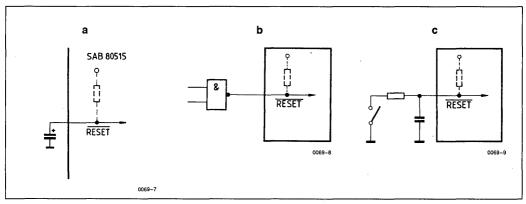
7

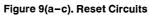
2.8 Overlapping External Program and Data Memory Spaces

In some applications it is desirable to execute a program from the same physical memory that is being used to store data. In the SAB 80515, the external program and data memory spaces can be combined by ANDing PSEN and RD. A positive-logic AND of these two signals produces an active-low read strobe that can be used for the combined physical memory. Since the PSEN cycle is faster than the RD cycle, the external memory needs to be fast enough to accommodate the PSEN cycle.

2.9 RESET

The reset input is an active low input with a pullup resistor connected to VCC. A Schmitt trigger is used at the input for noise rejection. A reset is accomplished by holding the reset pin, **RESET**, low for at least 2 machine cycles (24 oscillator periods) while the oscillator is running. It leaves the internal registers as follows:


Register	Contents	Register	Contents
P0-P5	0FFH	SP	07H
DPTR	0000H	PCON	(0XXXXXX)
TCON	00H	TMOD	00H
TLO, THO	00H	TL1, TH1	00H
TL2, TH2	00H	SCON	00H
IEN0, IEN1	00H	SBUF	undefined
IRCON	00H	IP0, IP1	00H
CCL1, CCH1	00H	CCEN	00H
CCL3, CCH3	00H	CCL2, CCH2	00H
T2CON	00H	CRCL, CRCH	00H
ADCON	00H	PSW	00H
DAPR	00H	ADDAT	00H
В	00H	ACC	00H


Table 2. Register Contents after Reset

The internal RAM is not affected by a reset. Unlike the SAB 8051, the reset pin of the SAB 80515 is a high-impedance input. The reason for this is that the SAB 80515 uses an extra pin to backup the internal RAM (see section 3.8).

An automatic reset can be obtained when VCC is turned on by connecting the reset pin to GND through a capacitor as shown in Figure 9a. After VCC is turned on, the capacitor must hold the voltage at the reset pin at a level remaining under the higher threshold of the Schmitt trigger to effect a complete reset. This must last at least 10 ms for a crystal oscillator and 50 μ s for a ceramic oscillator. The time required is the oscillator start-up time, plus 2 machine cycles.

Figures 9b and 9c show two additional examples of a reset circuit for the SAB 80515.

On-Chip Peripheral Components

3.0 On-Chip Peripheral Components

This chapter describes the on-chip peripheral components of the SAB 80515.

3.1 Port Structures and Operation

All six 8-bit ports of the SAB 80515 are bidirectional. Each consists of a latch (special function registers P0 through P5), an output driver, and an input buffer.

The output drivers of ports 0 and 2, and the input buffers of port 0, are used when accessing external memory (see Section 2.5). In this application, port 0 outputs the low byte of the external memory address, time-multiplexed with the byte being written or read. Port 2 outputs the high byte of the external memory address when the address is 16 bits wide. Otherwise the port 2 pins continue to emit the P2 SFR contents.

All the port 1 and port 3 pins are multifunctional. They are not only port pins, but also serve the functions of various special features as listed in Table 3. The alternate functions of port 3 are the same as for the SAB 8051/8052.

To use the alternate functions on port pins P3.0 to P3.7 and P1.4 to P1.7 the corresponding bit latch in the port SFR has to contain a one (1). Otherwise the port pin is stuck at 0. If the alternate input functions (interrupt input, capture input) on pins P1.0 to P1.3

are used, the corresponding bit latches must contain a one (1), too. If these pins are used as compare outputs, the value stored in the bit latches depends on the established compare modes as described in Section 3.3.2.

3.1.1 I/O Configuration

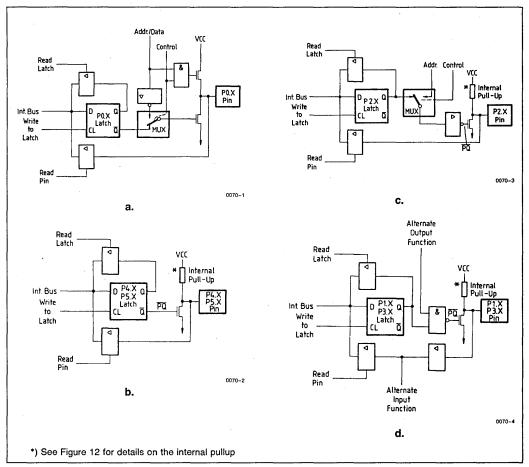
Figure 11 shows a functional diagram of a typical bit latch and I/O buffer in each of the six ports. The bit latch (one bit in the port's SFR) is represented as a D-type flip-flop, which will clock in a value from the internal bus in response to a "write to latch" signal from the CPU. The Q output of the flip-flop is placed on the internal bus in response to a "read latch" signal from the CPU. The level of the port pin itself is placed on the internal bus in response to a "read pin" signal from the CPU. Some instructions that read a port, activate the "read latch" signal, and others activate the "read pin" signal. More about that in the section "Read-Modify-Write Feature" (3.1.4).

As shown in Figures 11a and 11c, the output drivers of ports 0 and 2 are switchable to an internal address and address/data bus by an internal control signal for use in external memory accesses. During external memory accesses, the P2 SFR remains unchanged, but the P0 SFR gets 1s written to it. Also shown in Figure 11, is that if a P1 or P3 bit latch contains a one (1), then the output level is controlled by the signal labeled "alternate output function". The actual P1.X or P3.X pin level is always available

	Port Pin	Alternate Function
P1.0	INT3/CC0	External Interrupt 3/Capture 0/
		Compare 0
P1.1	INT4/CC1	External Interrupt 4/Capture 1/
		Compare 1
P1.2	INT5/CC2	External Interrupt 5/Capture 2/
		Compare 2
P1.3	INT6/CC3	External Interrupt 6/Capture 3/
		Compare 3
P1.4	INT2	External Interrupt 2
P1.5	T2EX	Timer 2 External Reload Trigger
		Input
P1.6	CLKOUT	System Clock Output
P1.7	T2	Timer 2 Input
P3.0	RxD	Serial Input Port
P3.1	TxD	Serial Output Port
P3.2	INTO	External Interrupt 0
P3.3	INT1	External Interrupt 1
P3.4	TO	Timer 0 Input
P3.5	T1	Timer 1 Input
P3.6	WR	External Data Memory Write Strobe
P3.7	RD	External Data Memory Read Strobe

Table 3. Alternate Functions on Port 1 and Port 3

to the pin's alternate function, if any. For exceptions applying to pins P1.0 to P1.3 see Section 3.3.2.


Ports 1 through 5 have internal pullup FETs. Port 0 has open-drain outputs. Each I/O line can be used independently as an input or output. Port 0 and port 2 may not be used as general-purpose I/O when being used as the address/data bus To be used as an input, the port bit latch must contain a 1, which turns off the output driver FET. Then, for ports 1 through 5, the pin is pulled high by the internal pullup, but can be pulled low by an external source.

Port 0 differs in not having internal pullups. The pullup FET in the P0 output driver (see Figure 11a) is used only when the port is emitting 1s during external memory accesses: Otherwise the pullup is off.

Consequently P0 lines that are being used as output port lines are open drain. Writing a 1 to the bit latch leaves both output FETs off, so the pin floats. In that condition it can be used as a high-impedance input.

Because ports 1 through 5 have fixed internal pullups they are sometimes called "quasi-bidirectional" ports. When configured as inputs they pull high and will source current when externally pulled low. Port 0, on the other hand, is considered "true" bidirectional, because when configured as an input it floats.

All the port latches in the SAB 80515 have 1s written to them by the reset function. If a 0 is subsequently written to a port latch, it can be reconfigured as an input by writing a 1 to it.

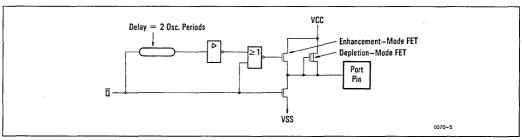


Figure 12. Ports 1 to 5 Internal Pullup Configurations

3.1.2 Writing to a Port

When executing an instruction that changes the value in a port latch, the new value arrives at the latch during S6P2 of the final cycle of the instruction. However, port latches are in fact sampled by their output buffers only during phase 1 of any clock period (during phase 2 the output buffer holds the value it saw during the previous phase 1). Consequently, the new value in the port latch won't actually appear at the output put in until the next phase 1, which will be at S1P1 of the next machine cycle.

If the change requires a 0-to-1 transition in port 1 through 5, an additional pullup is turned on during S1P1 and S1P2 of the cycle in which the transition occurs. This is done to increase the transition speed. The extra pullup can source about 100 times the current that the normal pullup can. It should be noted that the internal pullups are field-effect transistors, not linear resistors. The pullup arrangements are shown in Figure 12.

In the SAB 80515, the fixed part of the pullup is a depletion-mode transistor with the gate wired to the source. This transistor will allow the pin to source typically 0.25 mA (a typical value) when shorted to ground. In parallel with the fixed pullup is an enhancement-mode transistor, which is activated during S1 whenever the port bit does a 0-to-1 transition. During this interval, i.e. a 0-to-1 transitor will allow the pin to source an additional typical 30 mA (a transitional value which should not be treated as spec).

As already discussed in section 2.5 for port 2, this extra transistor is turned on for the entire external memory cycle every time port 2 outputs an address bit that is a one (1). That means, port 2 cannot be used as general-purpose I/O when the SAB 80515 executes out of external program memory.

3.1.3 Port Loading and Interfacing

The output buffers of port 1 through 5 can each drive 4 LS-TTL inputs. Port 0 output buffers can each drive 8 LS-TTL inputs. They do, however, re-

quire external pullups to drive NMOS inputs, except when being used as the address/data bus.

3.1.4 Read-Modify-Write Feature

Some instructions that read a port read the latch and others read the pin. The instructions that read the latch rather than the pin are the ones that read a value, possibly change it, and then rewrite it to the latch. These are called, "read-modify-write" instructions. The instructions listed in Table 4 are the readmodify-write instructions. When the destination operand is a port, or a port bit, these instructions read the latch rather than the pin.

It is not obvious that the last three instructions in this list are read-modify-write instructions, by they are. They read the port byte, all 8 bits, modify the addressed bit, then write the new byte back to the latch.

The reason that read-modify-write instructions are directed to the latch rather than the pin is to avoid a possible misinterpretation of the voltage level at the pin. For example, a port bit might be used to drive the base of a transistor. When a 1 is written to the bit, the transistor is turned on. If the CPU then reads the same port bit at the pin rather than the latch, it will read the base voltage of the transistor and interpret it as 0. Reading the latch rather than the pin will return the correct value of 1.

ANL	Logical AND; e.g. ANL P1, A
ORL	Logical OR; e.g. ORL P2, A
XRL	Logical Exclusive OR; e.g. XRL P3,A
JBC	Jump if Bit is Set and Clear Bit; e.g.
	JBC P1.1, LABEL
CPL	Complement Bit; e.g. CPL P3.0
INC	Increment; e.g. INCP2
DEC	Decrement; e.g. DEC P2
DJNZ	Decrement and Jump if Not Zero;
	e.g. DJNZ P3, LABEL
MOV PX.Y,C	Move Carry Bit to Bit Y of Port X
CLR PX.Y	Clear Bit Y or Port X
SET PX.Y	Set Blt Y of Port X

3.2 Timer 0 and Timer 1

The SAB 80515 has three 16-bit timer/counters: timer 0, timer 1, and timer 2 (timer 2 is discussed separately in Section 3.3). Timer 0 and timer 1 can be configured to operate either as timers or event counters.

In "timer" function, the register is incremented every machine cycle. Thus, one can think of it as counting machine cycles. Since a machine cycle consists of 12 oscillator periods, the count rate is 1/12 of the oscillator frequency.

In "counter" function, the register is incremented in response to a 1-to-0 transition at its corresponding external input pin, T0 or T1. In this function, the external input is sampled during S5P2 of every machine cycle. When the samples show a high in one cycle and a low in the next cycle, the count is incremented. The new count value appears in the register during S3P1 of the cycle following the one in which the transition was detected.

Since it takes two machine cycles (24 oscillator periods) to recognize a 1-to-0 transition, the maximum count rate is 1/24 of the oscillator frequency. There are no restrictions on the duty cycle of the external input signal, but to ensure that a given level is sampled at least once before it changes, it should be held for at least one full machine cycle.

In addition to the "timer" and "counter" selection, timer 0 and timer 1 have four operating modes from which to select.

Each timer consists of two 8-bit registers (TH0 and TL0 for timer 0, TH1 and TL1 for timer 1) which may be combined to one timer configuration depending on the mode that is established. The functions of the timers are controlled by two special function registers TCON and TMOD, shown in Figures 13 and 14.

The "timer" or "counter" function is selected by control bits C/T in the special function register TMOD. The two timer counters have four operating modes which are selected by bit pairs (M1, M0) in TMOD. Modes 0, 1, and 2 are the same for both timer/counters, mode 3 is different. The four operating modes are described in the following.

In the following descriptions the symbols TH0 and TL0 are used to specify the high-byte and low-byte of timer 0 (TH1 and TL1 for timer 1, respectively). The operating modes are described and shown for timer 1. If not explicitly noted, this applies also to timer 0.

TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	Bit
8FH	8EH	8DH	8CH	8BH	8AH	89H	88H	Address

Symbol	Position	Function
ITO	TCON.0	Interrupt 0 Type Control Bit. Set/cleared by software to specify falling edge/low-level triggered external interrupts.
IE0	TCON.1	Interrupt 0 Edge Flag. Set by hardware when external interrupt edge detected. Cleared when interrupt processed.
IT1	TCON.2	Interrupt 1 Type Control Bit. Set/cleared by software to specify falling edge/low-level triggered external interrupts.
IE1	TCON.3	Interrupt 1 Edge Flag. Set by hardware when external interrupt edge detected. Cleared when interrupt processed.
TR0	TCON.4	Timer 0 Run Control Bit. Set/cleared by software to turn timer/counter 0 on/off.
TF0	TCON.5	Timer 0 Overflow Flag. Set by hardware on timer/counter overflow. Cleared by hardware when processor vectors to interrupt routine.
TR1	TCON.6	Timer 1 Run Control Bit. Set/cleared by software to turn timer/counter 1 on/off.
TF1	TCON.7	Timer 1 Overflow Flag. Set by hardware on timer/counter overflow. Cleared by hardware when processor vectors to interrupt routine.

Figure 13. Timer Control Register TCON (88H)

GATE	C/T	M 1	M0	GATE	C/T	M1	MO	
	Timer				Timer	0		

GATE Gating Control. When set, timer/counter "x" is enabled only while "INTx" pin is high and "TRx" control bit is set. When cleared timer "x" is enabled whenever "TRx" control bit is set.

C/T Timer or Counter Select Bit. Cleared for timer operation (input from internal system clock). Set for counter operation (input from "Tx" input pin).

M1	мо	Operating Mode
0	0	8-Bit Timer/Counter. "TLx" serves as 5-bit prescaler.
0	1	16-Bit Timer/Counter. "THx" and "TLx" are cascaded; there is no prescaler.
1	0	8-Bit Auto-Reload Timer/Counter. "THx" holds a value which is to be reloaded into "TLx" each time it overflows.
1	1	Timer 0: TL0 is an 8-bit timer/counter controlled by the standard timer 0 control bits. TH0 is an 8-bit timer only controlled by timer 1 control bits.
1	1	Timer 1: Timer/counter 1 stops.

Figure 14. Timer/Counter Mode Control Register TMOD (89H)

3.2.1 Mode 0

Putting either timer into mode 0 configures it as an 8-bit counter with a divide-by-32 prescaler. Figure 15 shows the mode 0 operation as it applies to timer 1.

In this mode, the timer register is configured as a 13-bit register. As the count rolls over from all 1s to all 0s, it sets the timer interrupt flag TF1. The counted input is enabled to the timer when TR1 = 1 and either GATE = 0 or $\overline{INT1}$ = 1 (setting GATE = 1 allows the timer to be controlled by external input INT1, to facilitate pulse width measurements). TR1 is a control bit in the special function register TCON; GATE is in TMOD.

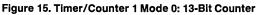
The 13-bit register consists of all 8 bits of TH1 and the lower 5 bits of TL1. The upper 3 bits of TL1 are indeterminate and should be ignored. Setting the run flag (TR1) does not clear the registers.

Mode 0 operation is the same for timer 0 as for timer 1. Substitute TR0, TF0, TH0, TL0, and INT0 for the corresponding timer 1 symbols in Figure 15. There are two different GATE bits, one of timer 1 (TMOD.7) and one for timer 0 (TMOD.3).

3.2.2 Mode 1

Mode 1 is the same as mode 0, except that the timer register is being run with all 16 bits. Mode 1 is shown in Figure 16.


3.2.3 Mode 2


Mode 2 configures the timer register as an 8-bit counter (TL1) with automatic reload, as shown in Figure 17. Overflow from TL1 not only sets TF1, but also reloads TL1 with the contents of TH1, which is preset by software. The reload leaves TH1 unchanged.

3.2.4 Mode 3

Timer 1 in mode 3 simply holds its count. The effect is the same as setting TR1 = 0. Timer 0 in mode 3 establishes TL0 and TH0 as two separate counters. The logic for mode 3 on timer 0 is shown in Figure 18. TL0 uses the timer 0 control bits: C/\overline{T} , GATE, TR0, INT0, and TF0. TH0 is locked into a timer function (counting machine cycles) and takes over the use of TR1 and TF1 from timer 1. Thus, TH0 now controls the "timer 1" interrupt.

Mode 3 is provided for applications requiring an extra 8-bit timer or counter. With timer 0 in mode 3, an SAB 80515 can look like it has four timer/counters. When timer 0 is in mode 3, timer 1 can be turned on and off by switching it out of and into its own mode 3, or can still be used by the serial port as a baud rate generator, or in fact, in any application not requiring an interrupt.

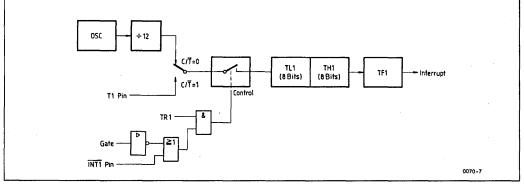


Figure 16. Timer/Counter 1 Mode 1: 16-Bit Counter

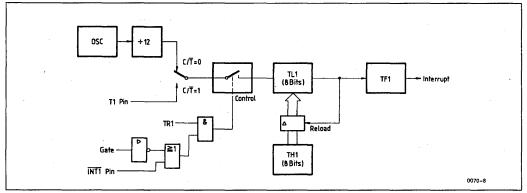
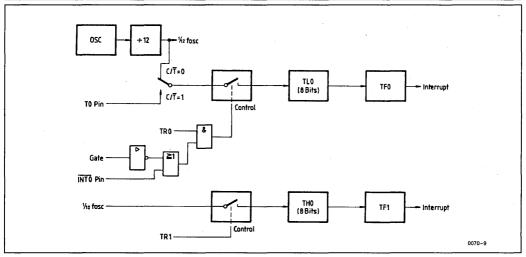



Figure 17. Timer/Counter 1 Mode 2: 8-Bit Auto-Reload

3.3 PTRA Unit

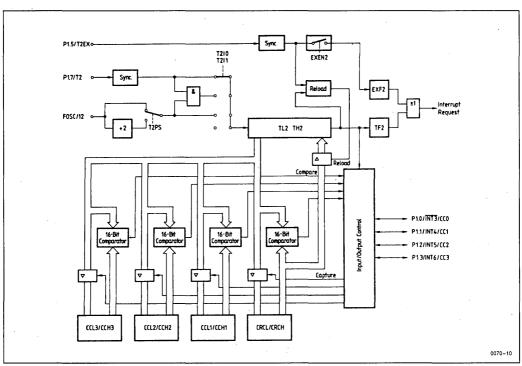
The term PTRA Unit (Programmable Timer/Counter Register Array) refers to a complex circuit consisting of the following registers:

- T2CON Timer 2 control register
- TL2 Timer 2 register, low-byte
- TH2 Timer 2 register, high-byte
- CRCL Compare/reload/capture register, low-byte
- CRCH Compare/reload/capture register, high-byte
- CCL1 Compare/capture register 1, low-byte
- CCH1 Compare/capture register 1, high-byte
- CCL2 Compare/capture register 2, low-byte
- CCH2 Compare/capture register 2, high-byte
- CCL3 Compare/capture register 3, low-byte
- CCH3 Compare/capture register 3, high-byte
- CCEN Compare/capture enable register

For brevity, the double-byte compare/reload/capture register is called CRC register, the three double-byte compare/capture registers are called CC registers 1 to 3.

Six bits of port 1 are used by the timer 2 circuit for special functions:P1.0/INT3/CC0Compare output/capture input for the CRC registerP1.1/INT4/CC1Compare output/capture input for CC register 1P1.2/INT5/CC2Compare output/capture input for CC register 2P1.3/INT6/CC3Compare output/capture input for CC register 3P1.5/T2EXExternal reload trigger inputP1.7/T2External count or gate input to timer 2

To use the special functions on pins P1.5/T2EX and P1.7/T2 a one (1) must first be written into the appropriate bit latches. For pins P1.0 to P1.3 it depends on the special function, whether the bit latches must contain a one (1) or not. Should those pins be used as interrupt or capture inputs, the corresponding bit latches must contain a one (1). If those pins are used as compare outputs, the value written to the bit latches depends on the compare modes established.


In addition to the operational modes "timer" or "counter", timer 2 provides the features of:

- 16-bit reload
- 16-bit compare
- 16-bit capture

Figure 19 shows a block diagram of the timer 2 circuit.

The timer 2 can operate either as timer, event counter, or gated timer. In timer function, the count rate is derived from the oscillator frequency. A 2:1 prescaler offers the possibility to select a count rate of 1/12 or 1/24 of the oscillator frequency. Thus, the 16-bit timer 2 register (consisting of TL2 and TH2) is incremented every machine cycle or every second machine cycle. The prescaler is selected by bit T2PS in special function register T2CON (see Figure 20). If T2PS is cleared, the input frequency is 1/12 of the oscillator frequency; if T2PS is set, the 2:1 prescaler gates 1/24 of the oscillator frequency to the timer.

In gated timer function, the external input pin T2 (P1.7) functions as a gate to the input of timer 2. If T2 is high, the counted input is gated to the timer. T2 = 0 stops the counting procedure. This will facilitate pulse width measurements.

			<u> </u>		r		r	1			
T2PS	I3FR	I2FR	T2R1	T2R0	T2CM	T2I1	T210	Bit			
0CFH	0CEH	0CDH	0CCH	0CBH	0CAH	0C9H	0C8H	Address			
Symbol	Position		Function								
T2I0 T2I1	T2CON.0 T2CON.1	Timer 2 Inp	Timer 2 Input Selection. See Table 5.								
T2CM	T2CON.2	1	Compare Mode Bit. When set, compare mode 1 is selected. $T2CM = 0$ selects compare mode 0.								
T2R0 T2R1	T2CON.3 T2CON.4	Timer 2 Re	Timer 2 Reload Mode Selectin. See Table 6.								
I2FR	T2CON.5	IEX2 will be	External Interrupt 2 Falling/Rising Edge Flag. When set, the interrupt 2 request flag IEX2 will be set on a positive transition at pin P1.4/ $\overline{INT2}$. I2FR = 0 specifies external interrupt 2 to be negative-transition active.								
I3FR	T2CON.6	IEX3 will be	External Interrupt 3 Falling/Rising Edge Flag. When set, the interrupt 3 request flag IEX3 will be set on a positive transition at pin P1.0/ $\overline{INT3}$ /CC0. I3FR = 0 specifies external interrupt 3 to be negative-transition active.								
T2PS	T2CON.7	Prescaler S function wit	Select Bit. W th 1/24 of th gates fosc/1	hen set, time e oscillator f	er 2 is clocke requency.	d in the "tim					

Figure 20. Timer 2 Control Register T2CON (0C8H)

In counter function, the timer 2 register is incremented in response to a 1-to-0 transition at its corresponding external input pin T2 (P1.7). In this function, the external input is sampled during S5P2 of every machine cycle. When the samples show a high in one cycle and a low in the next cycle, the count is incremented. The new count value appears in the register during S1P1 of the cycle following the one in which the transition was detected. Since it takes 2 machine cycles (24 oscillator periods) to recognize a 1-to-0 transition, the maximum count rate is 1/24 of the oscillator frequency. There are no restrictions on the duty cycle of the external input signal, but to ensure that a given level is sampled at least once before it changes, it should be held for at least one full machine cycle.

Note:

The prescaler must be off for proper counter operation of timer 2, that means, T2PS must be 0.

In either case, no matter whether timer 2 is configured as timer, event counter, or gated timer, a rolling over of the count from all 1s to all 0s sets the timer 2 overflow flag TF2 (bit 6 in SFR IRCON, Interrupt Request Control) which can generate an interrupt.

The input clock to timer 2 is selected by bits T2l0, T2l1 and T2PS as listed in Table 5.

T2I1	T210	Function
0	0	No Input Selected, Timer 2 Stops
0	1	Timer Function, Input Frequency = fosc/12 (T2PS = 0) or fosc/24 (T2PS = 1)
1	0	Counter Function, External Input Signal at Pin T2/P1.7
1	1	Gated Timer Function. Input Controlled by Pin T2/P1.7

3.3.1 Reload

The reload mode for timer 2 is selected by bits T2R0 and T2R1 in SFR T2CON as illustrated in Table 6. In mode 0, when timer 2 rolls over from all 1s to all 0s, it not only sets TF2 but also causes the timer 2 registers to be loaded with the 16-bit value in the CRC register which is preset by software. The reload will happen in the same machine cycle in which TF2 is set, thus overwriting the count value 0000H. In mode 1, a 16-bit reload from the CRC register is caused by a negative transition at the corresponding input pin T2EX/P1.5. In addition, this transition will set flag EXF2 if bit EXEN2 in SFR IEN1 is set. If the timer 2 interrupt is enabled, setting EXF2 will generate an interrupt. The external input pin T2EX is sampled during S5P2 of every machine cycle. When the sampling shows a high in one cycle and a low in the next cycle, a transition will be recognized. The reload of the timer 2 registers will then take place during S2P1 of the cycle following the one in which the transition was detected.

Figure 21 shows a functional diagram of the timer 2 reload modes.

T2R1 = 0 disables the reload modes 0 and 1. If the reload modes are disabled, and if EXEN2 is set, a negative transition at pin T2EX/P1.5 can be used as additional external interrupt input. More detailed information on the interrupts of the SAB 80515 can be found in Section 3.6.

T2R1	T2R0	Mode
0	х	Reload Disabled
1	0	Mode 0: Auto-Reload upon Timer 2 Overflow (TF2)
1	1	Mode 1: Reload upon Falling Edge at Pin T2EX/P1.5

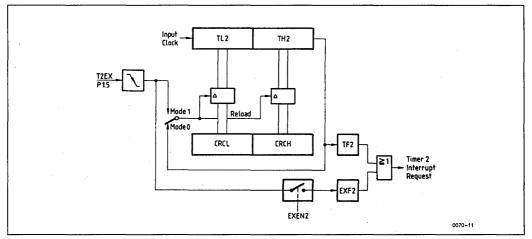


Figure 21. Timer 2 in Reload Mode

3.3.2 Compare

In compare mode, the 16-bit values stored in the dedicated compare registers are compared with the contents of the timer 2 registers (TL2 and TH2). If the count value in the timer 2 registers matches the stored one an appropriate output signal is generated at the corresponding sort 1 pin, and interrupt is requested.

The compare modes are enabled by setting the appropriate bits in SFR CCEN (compare/capture enable register, see Figure 27). There are two different compare modes which are selected by bit T2CM in T2CON.

In mode 0, upon a match, the output signal changes from low to high. It goes back to a low level on timer 2 overflow. As long as compare mode 0 is enabed, the appropriate output pin is controlled by the timer 2 circuit, and not by the user. Writing to the port will operate as "dummy" instruction. Figure 22 shows a functional diagram of the port 1 latches P1.0 to P1.3 in compare mode 0. The port latch is directly controlled by the two signals Timer2 overflow and compare. The input line from the internal bus and the "write-to-latch" line are disconnected when compare mode 0 is enabled.

SAB 80515/80535 User's Manual

In mode 1, the software determines the transition of the output signal. If mode 1 is enabled, and the software writes to the appropriate output pin at port 1, the new value won't appear at the output pin until the next compare event occurs. Thus, one can select whether the output signal makes a 1-to-0 or a 0to-1 transition, at the time the timer 2 count matches the stored compare value. Figure 23 shows a functional diagram of the port 1 latches P1.0 to P1.3 in compare mode 1. In this function, the "port latch" consists of two separate latches. The "left" latch can be written to under software control, but this value will only be transferred to the "right" latch (and to the port pin) in response to a compare event. Note that the "right" latch is transparent as long as the internal compare signal is active. While the compare signal is active a write operation to the port will change both latches. A "read-modify-write" instruction (see section 3.1.4) will read the user-controlled "left" latch, and write the modified value back to this "left" latch.

In both compare modes, the new value arrives at the port 1 pin within the same machine cycle in which the internal compare signal is activated.

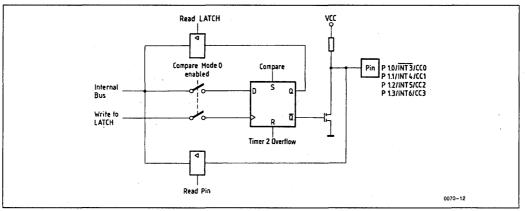


Figure 22. Functional Diagram of Port Latches P1.0 to P1.3 in Compare Mode 0

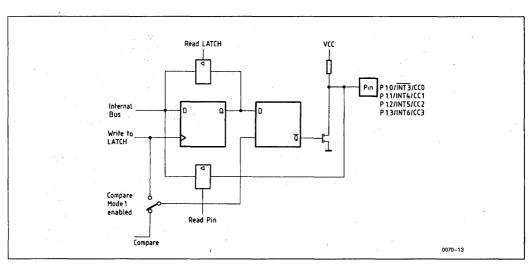


Figure 23. Functional Diagram of Port Latches P1.0 to P1.3 in Compare Mode 1

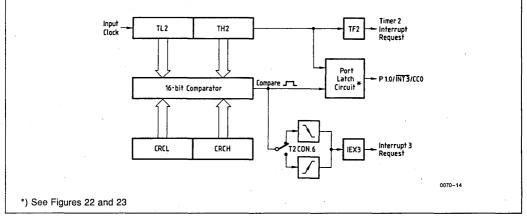


Figure 24 shows a functional diagram of timer 2 in the compare mode using the CRC register. Figure 25 shows the compare modes with reference ot the CC register 1. Except for the symbolic names, this diagram applies also to the CC registers 2 and 3.

Note that the compare signal is active as long as the timer 2 contents is equal to the one of the appropriate compare register, and that it has a rising and a falling edge. Thus, when using the CRC register, it can be selected whether an interrupt should be caused when the compare signal goes active or inactive, depending on the status of bit I3FR in T2CON. For the CC registers 1 to 3 an interrupt is always requested when the compare signal goes active.

If compare function is enabled, the corresponding port 1 pin is dedicated to act as output. The level at the port pin can be read under software control, but the input line from the port pin to the interrupt system is disconnected. Thus, a change of the pin's level will not cause a setting of the corresponding interrupt flag. In the compare modes, the external interrupt request flags can only be set by the internally generated compare signal.

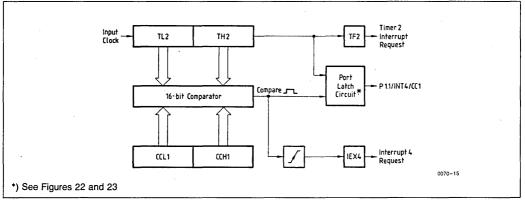


Figure 25. Functional Diagram of Timer 2 in Compare Mode Using CC Register 1

3.3.3 Capture

Each of the three compare/capture registers and the CRC register can be used to latch the current 16-bit value in the timer 2 registers TL2 and TH2. Two different modes are provided for this function. In mode 0, an external event causes a latching of the timer 2 contents to a dedicated capture register. In mode 1, a capture will occur upon writing to the low-order byte of the dedicated 16-bit capture register. This mode is provided to allow the software reading the timer 2 contents "on the fly".

In mode 0, the external event causing a capture is

- for CC registers 1 to 3: a positive transition at pins CC1 to CC3 of CC registers 1 to 3,
- for the CRC register: a positive or negative transition, depending on the status of bit I3FR in SFR T2CON, at pin CC0. If bit I3FR is cleared, a capture occurs in response to a negative transition, if bit I3FR is set a capture occurs in response to a positive transition at pin P1.0/INT3/CC0.

In this mode, the appropriate port 1 pin is used as input and the port latch must be programmed to contain a one (1). The external input is sampled during S5P2 in every machine cycle. When the sampling shows a low (high for input CC0, if it is programmed to be negative-transition-active) in one cycle and a high (low) in the next cycle, a transition is recognized. The timer 2 contents is latched to the appropriate capture register during S3P1 in the cycle following the one in which the transition was identified.

In mode 0, a transition on the external capture inputs CC0 to CC3 will also cause setting of the corresponding external interrupt request flags IEX3 to IEX6. If the interrupts are enabled, an external capture signal will cause the CPU to vector to the appropriate interrupt service routine.

In mode 1, a capture occurs in response to a MOV instruction to the low-order byte of a capture register. The "write-to-register" signal (e.g. "write to CRCL") is used to initiate a capture. The value written to the dedicated capture register is irrelevant for this function. The timer 2 contents will be latched into the appropriate capture register in the cycle following the MOV instruction. In this mode no interrupt request will be generated.

In both capture modes, the value latched in the machine cycle in which the capture occurs will be the actual contents of timer 2 in that machine cycle.

Figures 26a and 26b show functional diagrams of the capture function of timer 2. Figure 26a illustrates the operation for the CRC register, while Figure 26b shows the operation applying to the compare/capture register 1. This operation is the same for CC register 1 as well as for the CC registers 2 and 3. Substitute the symbols for the corresponding signals and names of CC registers 2 and 3 in Figure 26b.

The two capture modes can be established individually for each capture register by bits in SFR CCEN (compare/capture enable register), with two bits for each capture register. That means, other than for the compare modes, it is possible to select mode 0 for one capture register and mode 1 for another register simultaneously. The bit positions and functions of CCEN are listed in Figure 27.

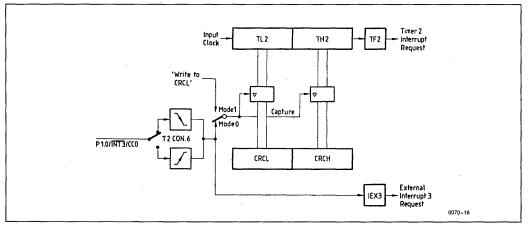


Figure 26a. Functional Diagram of Timer 2 in Capture Mode Using the CRC Register

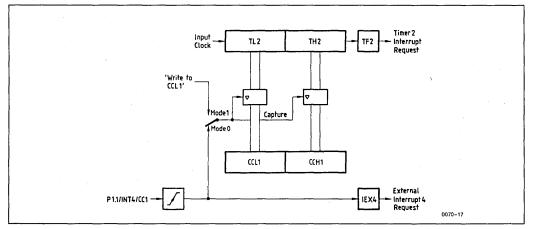


Figure 26b. Functional Diagram of Timer 2 in Capture Mode Using CC Register 1

7	6	5	4	3	2	1	0	Bit
	Bit				Fu	nction		
1		0		CRC Regist	er			
0		0			apture Disabl			
0		1			alling/Rising	I Edge at Pir	n P1.0/INT3/	CC0
1		0		Compare En	abled			
1		1	(Capture on V	Vrite Operati	on into Regi	ster CRCL	
3		2		CC Register	r 1			
0		0		Compare/Ca	apture Disabl	ed		
0		1		Capture on F	Rising Edge a	t Pin P1.1/I	NT4/CC1	
1		0		Compare En	abled			
1		1	(Capture on V	Vrite Operati	on into Regi	ster CCL1	
5		4		CC Register	· 2			
0		0		Compare/Ca	apture Disabl	ed		
0		1			Rising Edge a		NT5/CC2	
. 1		0		Compare En	abled			
1		1	(Capture on V	Vrite Operati	on into Regi	ster CCL2	1
7		6		CC Register	• 3			
0		0		•	apture Disabl	ed		
0		1	1	•	Rising Edge a		NT6/CC3	
. 1		0		Compare En				
1		1	1	•	Vrite Operatio	on into Regi	ster CCL3	

Figure 27. Compare/Capture Enable Register CCEN (0C1H)

3.4 Serial Interface

The serial port is full duplex, meaning it can transmit and receive simultaneously. It is also receive-buffered, meaning it can commence reception of a second byte before a previously received byte has been read from the receive register (however, if the first byte still hasn't been read by the time reception of the second byte is complete, one of the bytes will be lost). The serial port receive and transmit registers are both accessed at special function register SBUF. Writing to SBUF loads the transmit register, and reading SBUF accesses a physically separate receive register.

The serial port can operate in 4 modes:

- Mode 0: Serial data enters and exits through RxD. TxD outputs the shift clock. 8 bits are transmitted/received: 8 data bits (LSB first). The baud rate is fixed at 1/12 of the oscillator frequency.
- Mode 1: 10 bits are transmitted (through TxD) or received (through RxD): a start bit (0), 8 data bits (LSB first), and a stop bit (1). On reception, the stop bit goes into RB8 in special function register SCON. The baud rate is variable.

- Mode 2: 11 bits are transmitted (through TxD) or received (through RxD): a start bit (0), 8 data bits (LSB first), a programmable 9th data bit, and a stop bit (1). On transmission, the 9th data bit (TB8 in SCON) can be assigned the value of 0 or 1. Or, for example, the parity bit (P, in the PSW) could be moved into TB8. On reception, the 9th data bit goes into RB8 in special function register SCON, while the stop bit is ignored. The baud rate is programmable to either 1/32 or 1/64 the oscillator frequency.
- Mode 3: 11 bits are transmitted (through TxD) or received (through RxD): a start bit (0), 8 data bits (LSB first), a programmable 9th data bit and a stop bit (1). In fact, mode 3 is the same as mode 2 in all respects except the baud rate. The baud rate in mode 3 is variable.

In all four modes, transmission is initiated by any instruction that uses SBUF as a destination register. Reception is initiated in mode 0 by the condition RI = 0 and REN = 1. Reception is initiated in the other modes by the incoming start bit if REN = 1. The control, mode, and status bits of the serial port in special function register SCON are illustrated in Figure 28.

3.4.1 Multiprocessor Communication

Modes 2 and 3 of the serial interface of the SAB 80515 have a special provision for multiprocessor communication. In these modes, 9 data bits are received. The 9th one goes into RB8. Then comes a stop bit. The port can be programmed such that when the stop bit is received, the serial port interrupt will be activated only if RB8 = 1. This feature is enabled by setting bit SM2 in SCON. A way to use this feature in multiprocessor communications is as follows.

When the master processor wants to transmit a block of data to one of several slaves, it first sends out an address byte which identifies the target slave. An address byte differs from a data byte in that the 9th bit is 1 in an address byte and 0 in a data byte. With SM2 = 1, no slave will be interrupted by a data byte. An address byte, however, will interrupt all

slaves, so that each slave can examine the received byte and see if it is being addressed. The addressed slave will clear its SM2 bit and prepare to receive the data bytes that will be coming. The slaves that weren't addressed leave their SM2s set and go on about their business, ignoring the coming data bytes.

SM2 has no effect in mode 0, and in mode 1 can be used to check the validity of the stop bit. In a mode 1 reception, if SM2 = 1, the receive interrupt will not be activated unless a valid stop bit is received.

3.4.2 Baud Rates

The baud rate in mode 0 is fixed:

Mode 0 baud rate = $\frac{\text{oscillator frequency}}{12}$

SM0	SM1	SM2	REN	TB8	RB8	TI	RI	Bit
9FH	9EH	9DH	9CH	9BH	9AH	99H	98H	Address

Symbol	Position	Function
SM0 SM1	SCON.7 SCON.6	Serial Port Mode Selection, see Table 7.
SM2	SCON.5	Enables the multiprocessor communication feature in modes 2 and 3. In mode 2 or 3, if SM2 is set to 1 then RI will not be activated if the received 9th data bit (RB8) is 0. In mode 1, if $SM2 = 1$ then RI will not be activated if a valid stop bit was not received. In mode 0, SM2 should be 0.
REN	SCON.4	Enables serial reception. Set by software to enable reception. Cleared by software to disable reception.
TB8	SCON.3	Is the 9th data bit that will be transmitted in modes 2 and 3. Set or cleared by software as desired.
RB8	SCON.2	In modes 2 and 3, is the 9th data bit that was received. In mode 1, if $SM2 = 0$, RB8 is the stop bit that was received. In mode 0, RB8 is not used.
ТІ	SCON.1	Is the transmit interrupt flag. Set by hardware at the end of the 8th bit time in mode 0, or at the beginning of the stop bit in the other modes, in any serial transmission. Must be cleared by software.
RI	SCON.0	Is the receive interrupt flag. Set by hardware at the end of the 8th bit time in mode 0, or halfway through the stop bit time in the other modes, in any serial reception. Must be cleared by software.

SMO	SM1	Mode	Description	Baud Rate
0	0	0	Shift Register	fosc/12
0	1	1	8-Bit UART	Variable
1	0	2	9-Bit UART	fosc/64 or fosc/32
1	1	3	9-Bit UART	Variable

Table 7. Serial Port Mode Selection

The baud rate in mode 2 depends on the value of bit SMOD in special function register PCON (see Section 3.11). If SMOD = 0 (which is the value on reset), the baud rate is $\frac{1}{64}$ of the oscillator frequency. If SMOD = 1, the baud rate is $\frac{1}{32}$ of the oscillator frequency.

Mode 2 baud rate = $\frac{2SMOD}{64}x$ (oscillator frequency)

The baud rates in modes 1 and 3 are determined by the timer 1 overflow rate or can be generated by the internal baud rate generator.

3.4.2.1 Using Timer 1 to Generate Baud Rates

When timer 1 is used as the baud rate generator, the baud rates in modes 1 and 3 are determined by the timer 1 overflow rate and the value of SMOD as follows:

Modes 1, 3 baud rate = $\frac{2\text{SMOD}}{32}$ x (timer 1 overflow rate)

The timer 1 interrupt should be disabled in this application. The timer itself can be configured for either "timer" or "counter" operation, and in any of its 3 running modes. In the most typical applications, it is configured for "timer" operation, in the auto-reload mode (high nibble of TMOD = 0010B). In that case, the baud rate is given by the formula:

Modes 1, 3 baud rate =
$$\frac{2\text{SMOD}}{32} \times \frac{\text{oscillator frequency}}{12 \times [256 - (\text{TH1})]}$$

One can achieve very low baud rates with timer 1 by leaving the timer 1 interrupt enabled, configuring the timer to run as 16-bit timer (high nibble of TMOD = 0001B), and using the timer 1 interrupt to do a 16-bit software reload.

Table 8 lists various commonly used baud rates and how they can be obtained from timer 1.

3.4.2.2 Internal Baud Rate Generator

In modes 1 and 3, the SAB 80515 provides the possibility to use the internal baud rate generator. To enable this feature, bit BD (bit 7 of special function register ADCON) must be set. This baud rate generator divides the oscillator frequency by 2500. Bit SMOD (PCON.7) can be used to divide the resulting frequency by 2. At 12 MHz oscillator frequency, the commonly used baud rates 4800 baud (SMOD = 0) and 9600 baud (SMOD = 1) are available. The baud rate is determined by SMOD and the oscillator frequency as follows:

Modes 1, 3 baud rate = $\frac{2\text{SMOD}}{2500}$ x (oscillator frequency)

The following sections give a more detailed description of the operational modes of the serial port.

3.4.3 More About Mode 0

Serial data enters and exits through RxD. TxD outputs the shift clock. 8 bits are transmitted/received: 8 data bits (LSB first). The baud rate is fixed at 1/12 the oscillator frequency.

Figures 29a and 29b show a simplified functional diagram of the serial port in mode 0, and associated timing.

Transmission is initiated by any instruction that uses SBUF as a destination register. The "write-to-SBUF" signal at S6P2 also loads a 1 into the 9th bit position of the transmit shift register and tells the TX control block to commence a transmission. The internal timing is such that one full machine cycle will elapse between "write-to-SBUF" and activation of SEND.

Baud	Bate	fosc	SMOD		Tim	er 1	
Duuu	hate	MHz	0.1102	C/T Mode Rela		Reload Value] .
Mode 0 max.:	1 MHz	12.0	X	X	X	X]
Mode 2 max.:	375 kbaud	12.0	1	X	X	X	
Mode 1, 3:	62.5 kbaud	12.0	1	0	2	FFH	
	19.2 kbaud	11.059	1	0	2	FDH	1
	9.6 kbaud	11.059	0	0	2	FDH	
	4.8 kbaud	11.059	0	0	2	FAH	
	2.4 kbaud	11.059	0	0	2	F4H	
	1.2 kbaud	11.059	0	0	2	E8H	
	137.5 kbaud	11.986	0	0	2	1DH	
	110 Baud	6.0	0	0	2	72H	
	110 Baud	12.0	0	0	1	FEEBH	

Table 8. Timer 1 Generated Commonly Used Baud Rates

SEND enables the output of the shift register to the alternate output function line of P3.0, and also enables SHIFT CLOCK to the alternate output function line of P3.1. SHIFT CLOCK is low during S3, S4, and S5 of every machine cycle, and high during S6, S1, and S2. At S6P2 of every machine cycle in which SEND is active, the contents of the transmit shift register is shifted one position to the right.

As data bits shift out to the right, zeros come in from the left. When the MSB of the data byte is at the output position of the shift register, then the 1 that was initially loaded into the 9th position, is just left of the MSB, and all positions to the left of that contain zeros. This condition flags the TX control block to do one last shift and then deactivate SEND and set TI. Both of these actions occur at S1P1 in the 10th machine cycle after "write-to-SBUF".

Reception is initiated by the condition REN = 1 and RI = 0. At S6P2 in the next machine cycle, the RX control unit writes the bits 1111 1110 to the receive shift register, and in the next clock phase activates RECEIVE.

RECEIVE enables SHIFT CLOCK to the alternate output function line of P3.1 SHIFT CLOCK makes transitions at S3P1 and S6P1 in every machine cycle. At S6P2 of every machine cycle in which RE-CEIVE is active, the contents of the receive shift register are shifted one position to the left. The value that comes in from the right is the value that was sampled at the P3.0 pin at S5P2 in the same machine cycle.

As data bits come in from the right, 1s shift out to the left. When the 0 that was initially loaded into the rightmost position arrives at the leftmost position in the shift register, it flags the RX control block to do one last shift and load SBUF. At S1P1 in the 10th machine cycle after the write to SCON that cleared RI, RECEIVE is cleared and RI is set.

3.4.4 More About Mode 1

Ten bits are transmitted (through TxD), or received (through RxD): a start bit (0), 8 data bits (LSB first), and a stop bit (1). On reception, the stop bit goes into RB8 in SCON.

The baud rate is determined by the timer 1 overflow rate or by the internal baud rate generator.

Figures 30a and 30b show a simplified functional diagram of the serial port in mode 1, and associated timings for transmit and receive. Transmission is initiated by any instruction that uses SBUF as a destination register. The "write-to-SBUF" signal also loads a 1 into the 9th bit position of the transmit shift register and flags the TX control block that a transmission is requested. Transmission actually commences at S1P1 of the machine cycle following the next rollover in the divide-by-16 counter (thus, the bit times are synchronized to the divide-by-16 counter, not to the "write-to-SBUF" signal).

The transmission begins with activation of \overline{SEND} , which puts the start bit to TxD. One bit time later, DATA is activated, which enables the output bit of the transmit shift register to TxD. The first shift pulse occurs one bit time after that.

As data bits shift out to the right, zeros are clocked in from the left. When the MSB of the data byte is at the output position of the shift register, then the 1 that was initially loaded into the 9th position is just left of the MSB, and all positions to the left of that contain zeros. This condition flags the TX control unit to do one last shift and then deactivate SEND and set TI. This occurs at the 10th divide-by-16 rollover after "write-to-SBUF".

Reception is initiated by a detected 1-to-0 transition at RxD. For this purpose RxD is sampled at a rate of 16 times whatever baud rate has been established. When a transition is detected, the divide-by-16 counter is immediately reset, and 1FFH is written into the input shift register. Resetting the divide-by-16 counter aligns its rollovers with the boundaries of the incoming bit times.

The 16 states of the counter divide each bit time into 16ths. At the 7th, 8th, and 9th counter states of each bit time, the bit detector samples the value of RxD. The value accepted is the value that was seen in at least 2 of the 3 samples. This is done for noise rejection. If the value accepted during the first bit time is not 0, the receive circuits are reset and the unit goes back to looking for another 1-to-0 transition. This is to provide rejection of false start bits. If the start bit proves valid, it is shifted into the input shift register, and reception of the rest of the frame will proceed.

As data bits come in from the right, 1s shift out to the left. When the start bit arrives at the leftmost position in the shift register (which in mode 1 is a 9-bit register), it flags the Rx control block to do one last shift, load SBUF and RB8, and set RI. The signal to load SBUF and RB8, and to set RI, will be generated if, and only if, the following conditions are met at the time the final shift pulse is generated:

```
1) RI = 0, and
```

2) either SM2 = 0 or the received stop bit = 1

If either of these two conditions is not met, the received frame is irretrievably lost. If both conditions are met, the stop bit goes into RB8, the 8 data bits go into SBUF, and RI is activated. At this time, no matter whether the above conditions are met or not, the unit goes back to looking for a 1-to-0 transition in RxD.

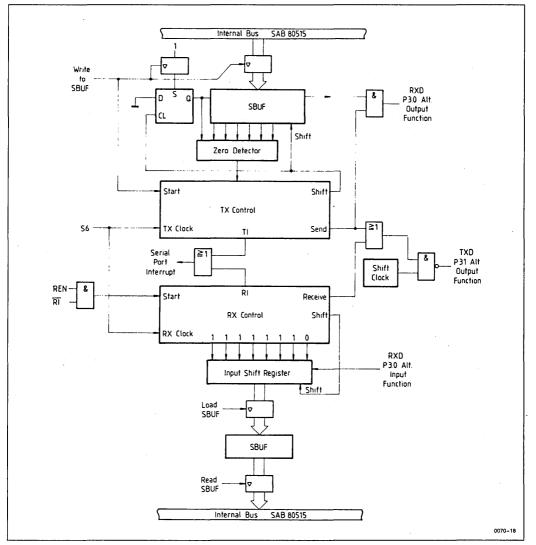


Figure 29a. Serial Port Mode 0, Function Diagram

545556 515253545558 515253545558 515253545558 515253545558 515253545558 515253545558 515253545558 515253545558	
Write to SBUF	
Send	
<u>shift</u>	Transmit
RXD (Data Out) 00 01 02 03 04 05 06 07	
TI S3P1 S6P1	
Write to SCON (Clear RI)	
R1	
Receive	
Shift	Receive
RXD (Data in) 00 01 02 03 04 05 06 07	

Figure 29b. Serial Port Mode 0, Timing

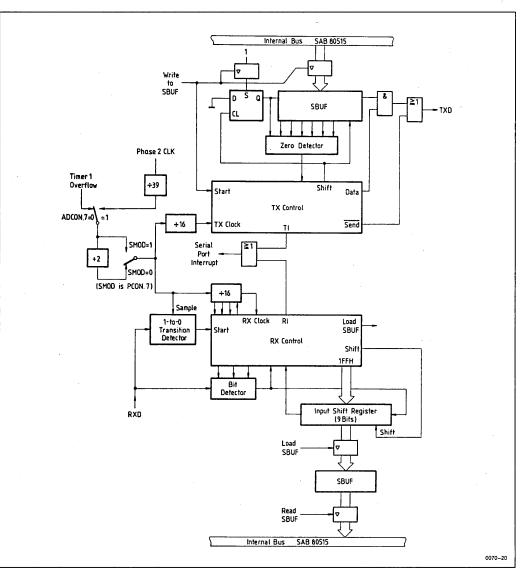


Figure 30a. Serial Port Mode 1, Functional Diagram

7-47

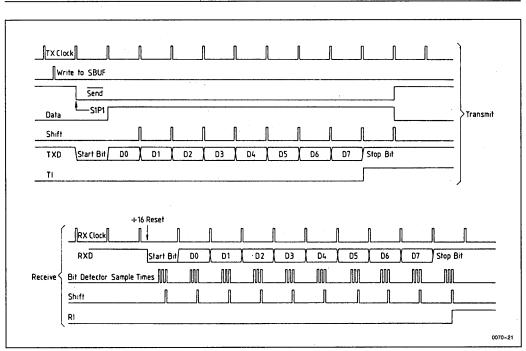


Figure 30b. Serial Port Mode 1, Timing

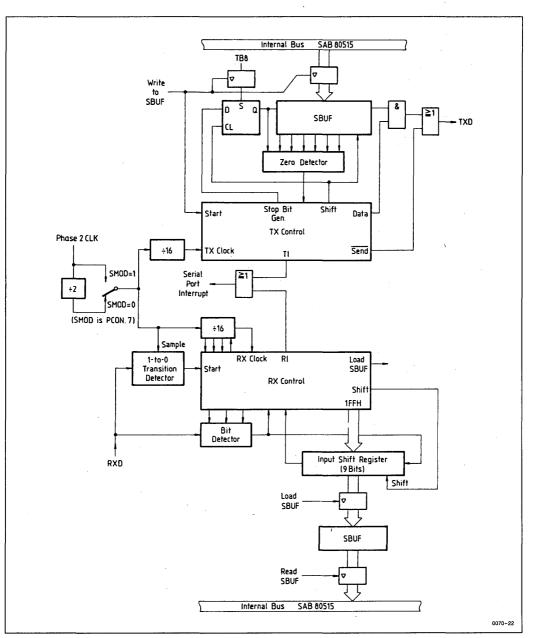


Figure 31a. Serial Port Mode 2, Functional Diagram

7

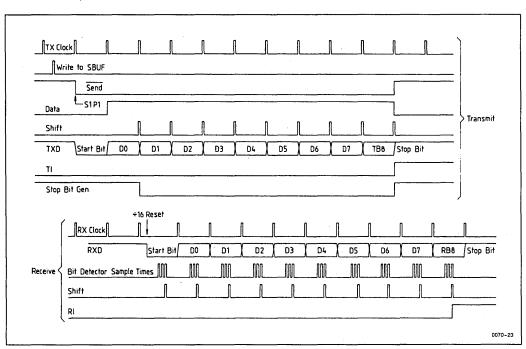


Figure 31b. Serial Port Mode 2, Timing

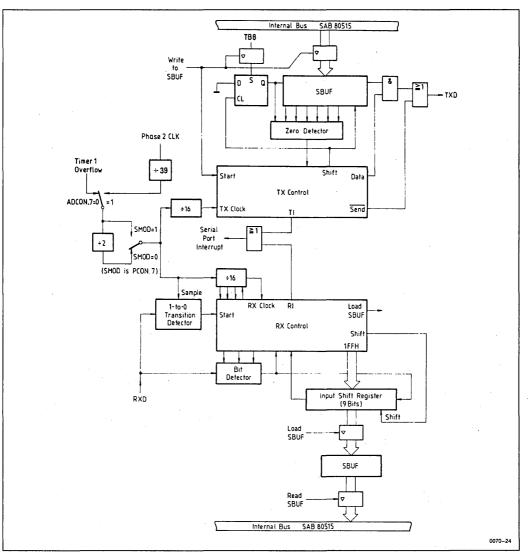


Figure 31c. Serial Port Mode 3, Functional Diagram

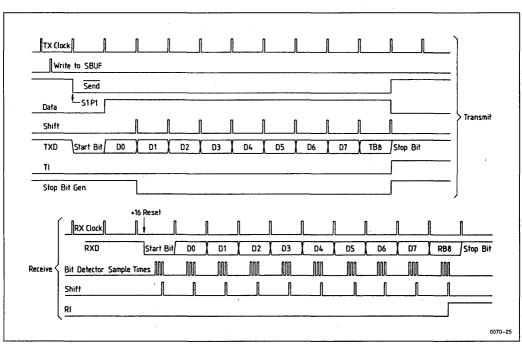


Figure 31d. Serial Port Mode 3, Timing

3.4.5 More About Modes 2 and 3

Eleven bits are transmitted (through TxD), or received (through RxD): a start bit (0), 8 data bits (LSB first), a programmable 9th data bit, and stop bit (1). On transmission, the 9th data bit (TB8) can be assigned the value of 0 or 1. On reception, the 9th data bit goes into RB8 in SCON. The baud rate is programmable to either 1/32 or 1/64 of the oscillator frequency in mode 2. Mode 3 may have a variable baud rate generated from timer 1 or by the internal baud rate generator.

Figures 31 a, b, c, and d show a functional diagram of the serial port in modes 2 and 3 and associated timings. The receive portion is exactly the same as in mode 1. The transmit portion differs from mode 1 only in the 9th bit of the transmit shift register.

Transmission is initiated by any instruction that uses SBUF as a destination register. The "write-to-SBUF" signal also loads TB8 into the 9th bit position of the transmit shift register and flags the TX control unit that a transmission is requested. Transmission commences at S1P1 of the machine cycle following the next rollover in the divide-by-16 counter (thus, the bit times are synchronized to the divide-by-16 counter, not to the "write-to-SBUF" signal).

The transmission begins with activation of \overline{SEND} , which puts the start bit to TxD. One bit time later, DATA is activated which enables the output bit of the transmit shift register to TxD. The first shift pulse occurs one bit time after that. The first shift clocks a 1 (the stop bit) into the 9th bit position of the shift register. Thereafter, only zeros are clocked in. Thus, as data bits shift out to the right, zeros are clocked in from the left. When TB8 is at the output position of the Shift register, then the stop bit is just left of the TB8, and all positions to the left of that contain zeros.

This condition flags the TX control unit to do one last shift and then deactivate SEND and set TI. This occurs at the 11th divide-by-16 rollover after "write-to-SBUF".

Reception is initiated by a detected 1-to-0 transition at RxD. For this purpose RxD is sampled at a rate of 16 times whatever baud rate has been established. When a transition is detected, the divide-by-16 counter is immediately reset, and 1FFH is written to the input shift register.

At the 7th, 8th, and 9th counter states of each bit time, the bit detector samples the value of RxD. The value accepted is the value that was seen in at least

2 of the 3 samples. If the value accepted during the first bit time is not 0, the receive circuits are reset and the unit goes back to looking for another 1-to-0 transition. If the start bit proves valid, it is shifted into the input shift register, and reception of the rest of the frame will proceed.

As data bits come in from the right, 1s shift out to the left. When the start bit arrives at the leftmost position in the shift register (which in modes 2 and 3 is a 9-bit register), it flags the RX control block to do one last shift, load SBUF and RB8, and set RI. The signal to load SBUF and RB8, and set RI. The signal to load SBUF and RB8, and to set R1, will be generated if, and only if, the following conditions are met at the time the final shift pulse is generated:

1) RI = 0, and

2) either SM2 = 0 or the received 9th data bit = 1

If either of these two conditions is not met, the received frame is irretrievably lost, and RI is not set. If both conditions are met, the received 9th bit goes into RB8, the first 8 data bits go into SBUF. One bit time later, no matter whether the above conditions are met or not, the unit goes back to looking for a 1-to-0 transition at the RxD input.

Note that the value of the received stop bit is irrelevant to SBUF, RB8, or RI.

3.5 A/D Converter

The SAB 80515 provides an 8-bit A/D converter with eight multiplexed analog input channels onchip. In addition, the A/D converter has a sample and hold circuit and offers the feature of softwareprogrammable reference voltages. For the conversion, the method of successive approximation with a capacitor network is used.

Figure 32 shows a block diagram of the A/D converter. There are three user-accessible special function registers: ADCON (A/D converter control register), ADDAT (A/D converter data register), and DAPR (D/A converter program register) for the programmable reference voltages.

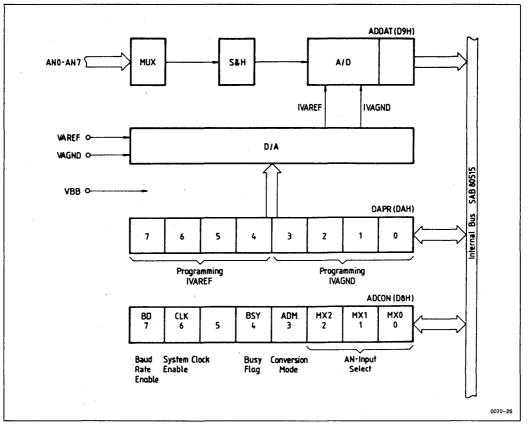


Figure 32. A/D Converter Block Diagram

Special function register ADCON, which is illustrated in Figure 33, is used to select one of the eight analog input channels to be converted, to specify a single or continuous conversion, and to check the status bit BSY which signals whether a conversion is in progress or not.

BD	CLK	-	BSY	ADM	MX2	MX1	MXO	Bit
0DFH	ODEH	0DDH	ODCH	0DBH	0DAH	0D9H	0D8H	Address
Symbol	Position				Function			· 1
МХО	ADCON.0)						
MX1	ADCON.1	Anal	og Input Cha	annel Select	ion, see Tab	le 9.		
MX2	ADCON.2	ļJ						
ADM	ADCON.3			When set, a er one conve		conversion	is selected. I	fADM = 0,
BSY	ADCON.4	Busy Flag. ⁻ (BSY = 0).	•	icates wheth	er a convers	sion is in pro	gress (BSY	= 1) or not
	ADCON.5	Reserved (r	nust be 0).					
CLK	ADCON.6						e oscillator f bles the cloo	
BD '	ADCON.7				aud rate in m enerator (see		3 of the seria I.2.2).	l port is

Figure 33. A/D Converter Control Register ADCON (0D8H)

MX2	MX1	MXO	Selected Channel	Pin						
0	0	0	Analog Input 0	ANO						
0	0	1	Analog Input 1	AN1						
0	1	0	Analog Input 2	AN2						
0	1	1	Analog Input 3	AN3						
1	0	0	Analog Input 4	AN4						
1	0	1	Analog Input 5	AN5						
1	1	0	Analog Input 6	AN6						
1	1	1 1	Analog Input 7	AN7						

Table 9. Selection of the Analog Input Channels

The special function register ADDAT holds the converted digital 8-bit data result. The data remains in ADDAT until it is overwritten by the next converted data. The new converted value will appear in ADDAT in the 15th machine cycle after a conversion has been started. ADDAT can be read and written to under software control. If the A/D converter of the SAB 80515 is not used, register ADDAT can be used as an addition general-purpose register.

3.5.1 Programming the Internal Reference Voltages

The SFR DAPR is provided for programming the internal reference voltages IVAREF and IVAGND. For this purpose the internal reference voltages can be programmed in steps of 1/16 with respect to the external reference voltages (VAREF – VAGND) by four bits each in register DAPR. Bits 0 to 3 specify IVAGND, while bits 4 to 7 specify IVAREF. A minimum of 1V difference is required between the internal reference voltages for proper operation of the A/D converter. That means, the internal reference voltage IVAREF must always be programmed four steps higher than IVAGND (in respect of the external reference voltage VAREF which is specified as $V_{CC} \pm 5\%$). The values of IVAGND and IVAREF are given by the formula:

$$\begin{split} \text{IVAGND} &= \text{VAGND} + \frac{\text{DAPR}(0-3)}{16} (\text{VAREF} - \text{VAGND}) \\ \text{with DAPR}(0-3) \neq 0 \text{ and DAPR}(0-3) < 13; \\ \text{IVAREF} &= \text{VAGND} + \frac{\text{DAPR}(4-7)}{16} (\text{VAREF} - \text{VAGND}) \\ \text{with DAPR}(4-7) > 3; \end{split}$$

where DAPR(0-3) is the contents of the low-order nibble, and DAPR(4-7) the contents of the high-order nibble of DAPR, taken as an unsigned decimal integer. If DAPR(0-3) or DAPR(4-7) = 0, the internal reference voltages correspond to the external reference voltages VAGND and VAREF, respectively.

If VAINPUT > IVAREF, the conversion result is 0FFH, if VAINPUT < IVAGND, the conversion result is 00H (VAINPUT is the analog input voltage).

Figure 34 shows special function register DAPR.

7	6	5	4	3	2	1	0	Bit
	-	alue for		D	igital Value IVAGND	for		

Figure 34. D/A Converter Program Register DAPR (0DAH)

If the external reference voltages VAGND = 0V and VAREF = +5V (in respect of GND and VCC) are applied, then the following internal reference voltages IVAGND and IVAREF shown in Table 10 can be adjusted via the special function register DAPR.

Table 10. Adjustable Internal Reference Voltages

Step	DAPR(0-3) DAPR(4-7)	IVAGND (V)	IVAREF (V)
0	0000	0.0	5.0
1	0001	0.3125	
2	0010	0.625	_
3	0011	0.9375	
4	0100	1.25	1.25
5	0101	1.5625	1.5625
6	0110	1.875	1.875
7	0111	2.1875	2.1875
8	1000	2.5	2.5
9	1001	2.8125	2.8125
10	1010	3.125	3.125
11	1011	3.4375	3.4375
12	1100	3.75	3.75
13	1101	—	4.0625
14	1110	· · · ·	4.375
15	1111	_	4.6875

Items marked with "---" are not allowed according to the rules listed before (IVAREF at least four steps higher than IVAGND).

3.5.2 A/D Converter Timing and Conversion Time

A conversion is started by writing into special function register DAPR. A "write-to-DAPR" will start a new conversion even if a conversion is currently in progress. The conversion begins with the next machine cycle. The busy flag will be set in the same machine cycle as the "write-to-DAPR" operation occurs. If a value is written to DAPR the A/D conversion starts and the conversion time is 15 μ s at 12 MHz oscillator frequency.

After a conversion has been started by writing into SFR DAPR, the analog voltage at the selected input channel is sampled for 5 machine cycles (5 μ s at 12 MHz oscillator frequency), which will then be held at the sampled level for the rest of the conversion time.

The most critical time of the sample period is the load time. The load time t_L is part of the sample time, t_s , and it last for 2 machine cycles. It is the time during which the entire internal capacitance of the A/D converter is charged by the analog source. The remaining 3 machine cycles of the sample time are used for adjusting the comparator of the A/D converter. The output impedance of the analog source must be low enough to assure full loading of the sample and hold capacitance during load time, t_L . After charging the internal capacitance of the A/D converter during load time t_L , the analog input must be held constant for the rest of the sample time t_s .

Conversion of the sampled analog voltage takes place between the 6th and 15th machine cycle after sampling has been completed. In the 15th machine cycle the converted result is moved to ADDAT, the busy flag (BSY) is cleared, and the A/D converter interrupt request flag IADC (bit 0 in SFR interrupt control register IRCON, see Section 3.6) is set. If a continuous conversion is established, the next conversion is automatically started in the following machine cycle.

The special feature of programmable internal reference voltages allows adjusting the internal voltage range to the range of the external analog input voltage. Or it may be used to increase the resolution of the converted analog input voltage by starting a second conversion with a compressed internal reference voltage range closely to the previously measured analog value. Figures 35a and 35b illustrate these applications.

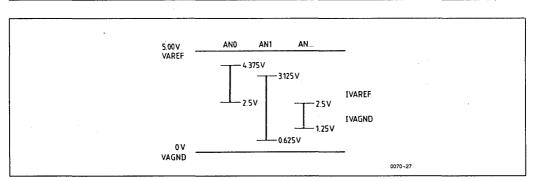


Figure 35a. Adjusting the Internal Reference Voltages to the Range of the External Analog Voltages

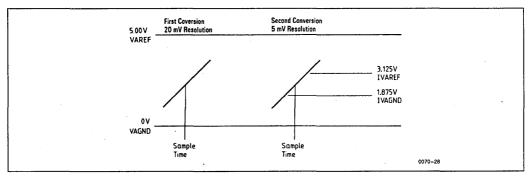


Figure 35b. Increasing the Resolution of the A/D Result by Doing a Second Conversion

3.6 Interrupt Structure

The interrupt structure of the SAB 80515 provides 12 interrupt sources and 4 priority levels. The 12 interrupt sources are organized as 6 pairs. Table 11 lists the interrupt sources and pairs of the SAB 80515.

External Interrupt 0	A/D Converter Interrupt
Timer 0 Interrupt	External Interrupt 2
External Interrupt 1	External Interrupt 3
Timer 1 Interrupt	External Interrupt 4
Serial Port Interrupt	External Interrupt 5
Timer 2 Interrupt	External Interrupt 6

Table 11. Interrupt Sou	urces
-------------------------	-------

Some of these interrupt sources are activated by one, others are activated by two internal or external events. Each interrupt source has its own vector location in the program memory address space 00H to 6BH. In the following section the interrupt sources are discussed separately. The external interrupts 0 and 1 (INT0 and INT1) can each be either level-activated or negative transitionactivated, depending on bits IT0 and IT1 in register TCON. The flags that actually generate these interrupts are bits IE0 and IE1 in TCON. When an external interrupt is generated, the flag that generated this interrupt is cleared by the hardware when the service routine is vectored to only if the interrupt was transition-activated. If the interrupt was level-activated, then the external requesting source directly controls the request flag, rather than the on-chip hardware.

The timer 0 and timer 1 interrupts are generated by TF0 and TF1, which are set by a rollover in their respective timer/counter registers (except see Section 3.2.4 for timer 0 in mode 3). When a timer interrupt is generated, the flag that generated it is cleared by the on-chip hardware when the service routine is vectored to.

The serial port interrupt is generated by the logical OR of RI and TI. Neither of these flags is cleared by hardware when the service routine is vectored to. In fact, the service routine will normally have to determine whether it was RI or TI that generated the interrupt, and the bit will have to be cleared in software. The timer 2 interrupt is generated by the logical OR of bits TF2 and EXF2 in register IRCON. Neither of these flags is cleared by hardware when the service routine is vectored to. In fact, the service routine may have to determine whether it was TF2 or EXF2 that generated the interrupt, and the bit will have to be cleared in software.

The A/D converter interrupt is generated by bit IADC in register IRCON. It is set in the 15th machine cycle, after a conversion has been started by a "write-to-DAPR", or, if continuous conversions are established, after the last conversion has been completed, depending on whether the internal reference voltages IVAGND and IVAREF have to be adjusted or not. When an A/D converter interrupt is generated, flag IADC will have to be cleared in software.

The external interrupt 2 (INT2) can be either positive or negative transition-activated, depending on bit I2FR in register T2CON. The flag that actually generates this interrupt is bit IEX2 in register IRCON. If an external interrupt 2 is generated, flag IEX2 is cleared by hardware when the service routine is vectored to.

Like the external interrupt 2, the external interrupt 3 can be either positive or negative transition-activated, depending on bit I3FR in register T2CON. The flag that actually generates this interrupt is bit IEX3 in register IRCON. In addition, this flag will be set if a compare event occurs at pin P1.0/INT3/CCO (timer 2 registers contents matches the contents of the CRC register), regardless of the compare mode established, the transition occurring at the pin, and of the external interrupt 3 being positive or negative transition-activated. Flag IEX3 is cleared by the onchip hardware when the service routine is vectored to. The external interrupts 4 (INT4), 5 (INT5), and 6 (INT6) are positive transition-activated. The flags that actually generate these interrupts are bits IEX4, IEX5, and IEX6 in register IRCON. In addition, these flags will be set if a compare event occurs at the corresponding output pin P1.1/INT4/CC1, P1.2/INT5/CC2, and P1.3/INT6/CC3, regardless of the compare mode established and the transition at the respective pin. When an interrupt is generated, the flag that generated it is cleared by the on-chip hardware when the service routine is vectored to.

All of these bits that generate interrupts can be set or cleared by software, with the same result as though they had been set or cleared by hardware. That is, interrupts can be generated or pending interrupts can be canceled in software. The only exception are request flags IEO and IE1. If the external interrupts 0 and 1 are programmed to be level-activated, IEO and IE1 are controlled by the external source via pin INTO and INT1, respectively. Thus, writing a one to these bits will not set the request flags IEO and/or IE1. In this mode, external interrupts 0 and 1 can only be generated in software by writing a 0 to the corresponding pins INT0 (P3.2) and INT1 (P3.3), provided this will not affect any peripheral circuit connected to the pins.

Figure 36 shows the special function register IR-CON.

Each of these interrupt sources can be individually enabled or disabled by setting or clearing a bit in the special function registers IEN0 and IEN1 (Figure 37a and 37b). Note that IEN0 contains also a global disable bit, EAL, which disables all interrupts at once. Also note that in the SAB 8051 the interrupt priority register IP is located at address 0B8H; in the SAB 80515 this location is occupied by register IEN1.

	_									
EXF2	TF2	IEX6	IEX5	IEX4	IEX3	IEX2	IADC	Bit		
0C7H	0C6H	0C5H	0C4H	0C3H	0C2H	0C1H	0C0H	Address		
Symbol	Position				Function					
IADC	IRCON.0		A/D Converter Interrupt Request Flag. Set by hardware at the end of a conversion. Must be cleared by software.							
IEX2	IRCON.1	External Int	errupt 2 Edg		•	when exter	nal interrupt	edge was		
IEX3	IRCON.2	External Int	errupt 3 Edg when a cor	je Flag. Set	by hardware		nal interrupt T3/CC0. Cle	0		
IEX4	IRCON.3	External Int	errupt 4 Edg when a cor				nal interrupt T4/CC1. Cle			
IEX5	IRCON.4	External Int	errupt 5 Edg when a cor				nal interrupt T5/CC2. Cle			
IEX6	IRCON.5	External Int	errupt 6 Edg when a cor		•		nal interrupt T6/CC3. Cle	•		
TF2	IRCON.6	Timer 2 Ov	erflow Flag.		er 2 overflow $2 = 1$ will car		be cleared by rupt.	software. If		
EXF2	IRCON.7	Timer 2 Ext on pin T2EX cause the C	ernal Reloa K and EXEN CPU to vecto	d Flag. Set v 2 = 1. Whe or to the time	when a reloa n the timer 2 er 2 interrupt	d is caused interrupt is routine. Car	by a negative enabled, EX	F2 = 1 will an additional		

Figure 36. Interrupt Request Control Register IRCON (0C0H)

EAL	WDT	ET2	ES	ET1	EX1	ET0	EX0	Bit
0AFH	0AEH	0ADH	0ACH	0ABH	0AAH	0A9H	0A8H	Address

Symbol	Position	Function
EX0	IEN0.0	Enables or Disables External Interrupt 0. If $EX0 = 0$, external interrupt 0 is disabled.
ET0	IEN0.1	Enables or Disables the Timer 0 Overflow Interrupt. If $ET0 = 0$, the timer 0 interrupt is disabled.
EX1	IEN0.2	Enables or Disables External Interrupt 1. If $EX1 = 0$, external interrupt 1 is disabled.
ET1	IEN0.3	Enables or Disables the Timer 1 Overflow Interrupt. If $ET1 = 0$, the timer 1 interrupt is disabled.
ES	IEN0.4	Enables or Disables the Serial Port Interrupt. If $ES = 0$, the serial port interrupt is disabled.
ET2	IEN0.5	Enables or Disables the Timer 2 Overflow or External Reload Interrupt. If $ET2 = 0$, the timer 2 interrupt is disabled.
WDT	IEN0.6	Watchdog Timer Reset Flag. Set to initiate a reset of the watchdog timer (details in Section 3.7).
EAL	IEN0.7	Enables or Disables All Interrupts. If $EAL = 0$, no interrupt will be acknowledged. If $EAL = 1$, each interrupt source is individually enabled or disabled by setting or clearing its enable bit.

Figure 37a. Interrupt Enable Register IEN0 (0A8H)

EXEN2	SWDT	EX6	EX5	EX4	EX3	EX2	EADC	Bit		
0BFH	OBEH	0BDH	0BCH	0BBH	0BAH	0B9H	0B8H	Address		
Symbol	Position		Function							
EADC	IEN1.0	Enables or D interrupt is di		A/D Conver	ter Interrupt	If EADC =	0, the A/D	converter		
EX2	IEN1.1	Enables or D		rnal Interru	ot 2. If EX2 =	= 0, externa	al interrupt 2	is disabled.		
EX3	IEN1.2	Enables or D external inter	isables Exte	rnal Interru		•				
EX4	IEN1.3	Enables or D external inter			ot 4/Capture	e/Compare	interrupt 1. I	f EX3 = 0,		
EX5	IEN1.4	Enables or D	isables Exte	rnal Interru	ot 5/Capture	e/Compare	Interrupt 2. I	f EX5 = 0,		
EX6	IEN1.5	external interrupt 5 is disabled. Enables or Disables External Interrupt 6 /Capture/Compare Interrupt 3. If EX6 = 0, external interrupt 6 is disabled.								
SWDT	IEN1.6		Vatchdog Timer Start/Reset Bit. Set to start/reset the watchdog timer (details in							
EXEN2	IEN1.7	Enables or D timer 2 extern EXEN2.								

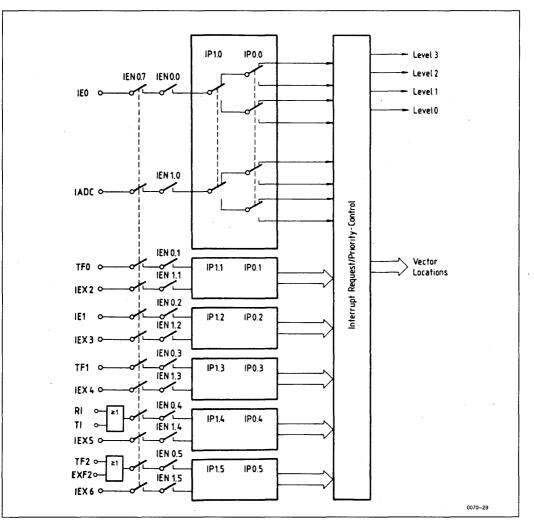
3.6.1 Priority Level Structure

Each pair of interrupt sources can be programmed individually to one of four priority levels by setting or clearing one bit in the special function register IPO and one in IP1 (Figure 38). A low-priority interrupt can itself be interrupted by a high-priority interrupt, but not by another interrupt of the same or a lower priority. An interrupt of the highest priority level can't be interrupted by another interrupt source.

If two or more requests of different priority levels are received simultaneously, the requests of the highest priority is serviced first. If request of the same priority level are received simultaneously, an internal polling sequence determines which request is serviced first. If requests from two interrupt sources of one interrupt pair are received simultaneously, the "left" interrupt source of each pair is serviced first. Thus within each priority level there is a second priority structure determined by the polling sequence, as follows:

High \rightarrow	Low	Priority
Interrupt Sour	ce Pair	
IE0 TF0 IE1 TF1 RI + TI TF2 + EXF2	IADC IEX2 IEX3 IEX4 IEX5 IEX6	High ↓ Low

Note that the "priority within level" structure is only used to resolve simultaneous requests of the same priority level.


Figure 39 shows a block diagram of the priority level structure and Figure 40 illustrates the requesting sources of the SAB 80515's interrupt structure.

_	WDTS	IP0.5	IP0.4	IP0.3	IP0.2	IP0.1	IP0.0
		IP1.5	IP1.4	IP1.3	IP1.2	IP1.1	IP1.0

The priority level of each pair of interrupt sources is determined by corresponding bits in IPO and IP1 as follows:

B	its	Corresponding Interrupt Pair
IP1.0	IP0.0	IE0/IADC
0	0	Priority Level 0 (Lowest)
0	1	Priority Level 1
1	0	Priority Level 2
1	1	Priority Level 3 (Highest)
IP1.1	IP0.1	TF0/IEX2
IP1.2	IP0.2	IE1/IEX3
IP1.3	IP0.3	TF1/IEX4
IP1.4	IP0.4	RI+TI/IEX5
IP1.5	IP0.5	TF2+EXF2/IEX6

IP0.6 is the watchdog timer status bit WDTS. IP0.7, IP1.6, and IP1.7 are reserved. Figure 38. Interrupt Priority Registers IP0 (0A9H) and IP1 (0B9H)

7

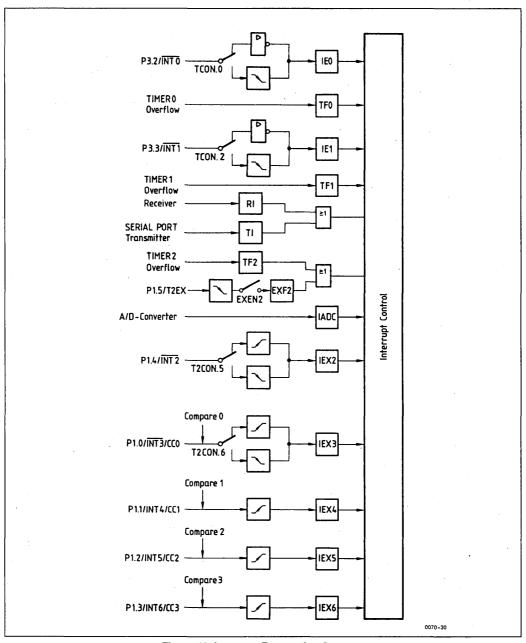


Figure 40. Interrupt Requesting Sources

3.6.2 How Interrupts Are Handled

The interrupt flags are sampled at S5P2 in every machine cycle. The samples are polled during the following machine cycle. If one of the flags was in a set condition at S5P2 of the preceding cycle, the polling cycle will find it and the interrupt system will generate an LCALL to the appropriate service routine, provided this hardware-generated LCALL is not blocked by any of the following conditions:

- 1) An interrupt of equal or higher priority is already in progress.
- 2) The current (polling) cycle is not the final cycle in the execution of the instruction in progress.
- 3) The instruction in progress is RETI or a write access to any of the registers IEN0, IEN1, IP0, or IP1.

Any of these three conditions will block the generation of the LCALL to the interrupt service routine. Condition 2 ensures that the instruction in progress will be completed before vectoring to any service routine. Condition 3 ensures that if the instruction in progress is RETI or any access to registers IEN0, IEN1, IPO, or IP1, then at least one more instruction will be executed before any interrupt is vectored to.

The polling cycle is repeated with every machine cycle, and the values polled are the values that were present at S5P2 of the previous machine cycle. Note then that if any interrupt flag is active but not being responded to for one of the above conditions, if the flag is not still active when the blocking condition is removed, the denied interrupt will not be serviced. In other words, the fact that the interrupt flag was once active but not serviced is not remembered. Every polling cycle is new.

The polling cycle/LCALL sequence is illustrated in Figure 41.

Note that if an interrupt of higher priority level goes active prior to S5P2 in the machine cycle labeled C3 in Figure 41, then in accordance with the above rules it will be vectored to during C5 and C6, without any instruction of the lower priority routine being executed.

Thus the processor acknowledges an interrupt request by executing a hardware-generated LCALL to the appropriate servicing routine. In some cases it also clears the flag that generated the interrupt, and in other cases it doesn't. It never clears the serial port (RI, TI), timer 2 (TFO, EXF2), or A/D converter flags. This has to be done in the user's software. It clears an external interrupt flag (IE0 or IE1) only if it was transition-activated. External interrupt flags IEX2 to IEX6 are always cleared. The hardware-generated LCALL pushes the contents of the program counter onto the stack (but it does not save the PSW) and reloads the PC with an address that depends on the source of the interrupt being vectored to, as shown below.

Source	Vector Address
IE0	0003H
TF0	000BH
IE1	0013H
TF1	001BH
RI+TI	0023H
TF2+EXF2	002BH
IADC	0043H
IEX2	004BH
IEX3	0053H
IEX4	005BH
IEX5	0063H
IEX6	006BH

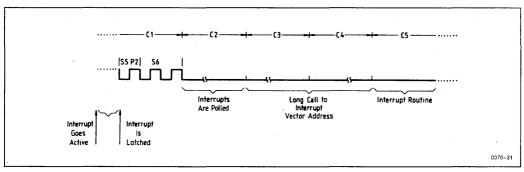


Figure 41. Interrupt Response Timing Diagram

Execution proceeds from that location until the RETI instruction is encountered. The RETI instruction informs the processor that this interrupt routine is no longer in progress, then pops the top two bytes from the stack and reloads the program counter. Execution of the interrupted program continues from where it was left off.

Note that a simple RET instruction would also have returned execution to the interrupted program, but it would have left the interrupt control system thinking an interrupt was still in progress.

3.6.3 External Interrupts

The external interrupts 0 and 1 can be programmed to be level-activated or negative transition-activated by setting or clearing bit IT0 or IT1, respectively, in register TCON. If ITx = 0 (x = 0 or 1), external interrupt x is triggered by a detected low at the INTx pin. If ITx = 1, external interrupt x is negative edgetriggered In this mode, if successive samples of the INTx pin show a high in one cycle and a low in the next cycle, interrupt request flag IEx in TCON is set. Flag bit IEx then requests the interrupt.

If the external interrupt 0 or 1 is level-activated, the external source has to hold the request active until the requested interrupt is actually generated. Then it has to deactivate the request before the interrupt service routine is completed, or else another interrupt will be generated.

The external interrupts 2 and 3 can be programmed to be negative or positive transition-activated by setting or clearing bit I2FR or I3FR in register T2CON. If IxFR = 0 (x = 2 or 3), external interrupt x is negative transition-activated. If IxFR = 1, external interrupt x is triggered by a positive transition.

The external interrupts 4, 5, and 6 are activated by a positive transition. The external timer 2 reload trigger interrupt request flag EXF2 will be activated by a negative transition at pin P1.5/T2EX but only if bit EXEN2 is set.

Since the external interrupt pins (INT2 to INT6) are sampled once each machine cycle, an input high or low should hold for at least 12 oscillator periods to ensure sampling. If the external interrupt is transition-activated, the external source has to hold the request pin low (high for INT2 and INT3, if they are programmed to be negative transition-active) for at least one cycle, and then hold it high (low) for at least one cycle to ensure that the transition is recognized so that the corresponding interrupt request flag will be set. The external interrupt request flags will automatically be cleared by the CPU when the service routine is called.

3.6.4 Response Time

If an external interrupt is recognized, its corresponding request flag is set at S5P2 in every machine cycle. The value is not actually polled by the circuitry until the next machine cycle. If the request is active and conditions are right for it to be acknowledged, a hardware subroutine call to the request service routine will be the next instruction to be executed. The call itself takes two cycles. Thus, a minimum of three complete machine cycles will elapse between activation of an external interrupt request and the beginning of executing the first instruction of the service routine. Figure 41 shows interrupt response timings.

A longer response time would result if the request is blocked by one of the three previously listed conditions. If an interrupt of equal or higher priority level is already in progress, the additional wait time obviously depends on the nature of the other interrupt's service routine. If the instruction in progress is not in its final cycle, the additional wait time cannot be more than 3 cycles, since the longest instructions (MUL and DIV) are only 4 cycles long; and, if the instruction in progress is RETI or an access to registers IEN0, IEN1, IP0, or IP1, the additional wait time cannot be more than 5 cycles (a maximum of one more cycle to complete the instruction in progress, plus 4 cycles to complete the next instruction if the instruction is MUL or DIV). Thus, in a single interrupt system, the response time is always more than 3 cycles and less than 9 cycles.

3.7 Watchdog Timer

As a means of graceful recovery from software or hardware upset a watchdog timer is provided in the SAB 80515. If the software fails to clear the watchdog timer at least every 65532 μ s, an internal hardware reset will be initiated. The software can be designed such that the watchdog times out if the program does not progress properly. The watchdog will also time out if the software error was due to hardware-related problems. This prevents the controller from malfunctioning for longer than 65 ms if a 12 MHz oscillator is used.

The watchdog timer is a 16-bit counter which is incremented once every machine cycle. After an external reset the watchdog timer is disabled and cleared to 0000H. The counter is started by setting bit SWDT (bit 6 in SFR IEN1). After having been started, the watchdog timer cannot be stopped by software and bit WDTS (watchdog timer status, bit 6 in SFR IP0) is set. It can only be cleared to 0000H by first setting bit WDT (IEN0.6) and with the next instruction setting SWDT. Bit WDT will automatically be cleared during the third machine cycle after having been set. This double instruction clearing of the watchdog timer was implemented to minimize the chance of unintentionally clearing the watchdog. To prevent the watchdog from overflowing, it must be cleared periodically.

If the software fails to clear the watchdog in time, an internally generated watchdog reset is entered at the counter state FFFCH, which lasts four machine cycles. This internal reset differs from an external reset only to the extent that the watchdog timer is not disabled and bit WDTS (watchdog timer status, bit 6 in SFR IPO) is set. Bit WDTS allows the software to examine from which source the reset was initiated. If it is set, the reset was caused by a watchdog timer overflow.

3.8 RAM Backup Power Supply

The power-down mode in the SAB 80515 allows to reduce VCC to zero while saving 40 bytes of the onchip RAM through a backup supply connected to the VPD pin. In the following, the terms VCC VPD are used to specify the voltages on pin VCC and pin VPD, respectively.

If VCC > VPD, the 40 bytes are supplied from VCC. VPD may then be low. If VCC < VPD, the current for the 40 bytes is drawn from VPD. The addresses of these backup-powered RAM locations range from 88 to 127 (58H to 7FH). The current drawn from the backup power supply is typically 1 mA, max. 3 mA.

To utilize this feature, the user's system—upon detecting that a power failure is imminent—would interrupt the processor in some manner to transfer relevant data to the 40 byte in on-chip RAM and enable the backup power supply to the VPD pin. Then a reset should be accomplished before VCC falls below its operating limit. When power returns, a poweron reset should be accomplished, and the backup supply needs to stay on long enough to resume normal operation. Figure 42 illustrates the timing on a power failure.

3.9 System Clock Output

For peripheral devices requiring a system clock, the SAB 80515 provides a clock output signal derived from the oscillator frequency as an alternate output function on pin P1.6/CLKOUT. If bit CLK is set (bit 6 of special function register ADCON), a clock signal with 1/12 the oscillator frequency is gated to pin P1.6/CLKOUT. To use this function the port 1 pin must first be programmed to a one (1).

Figure 43 shows the timing of this system clock signal with respect to signal ALE and the internal states. The system clock is high during S3P1 and S3P2 of every machine cycle and low during all other states. Thus, the duty cycle of the clock signal is 1:6. Also shown is the timing with respect to an external data memory access. The system clock coincides with the last state (S3) in which a RD or WR signal is active.

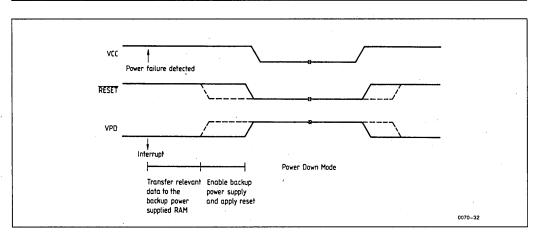


Figure 42. Reset and RAM Backup Power Timing

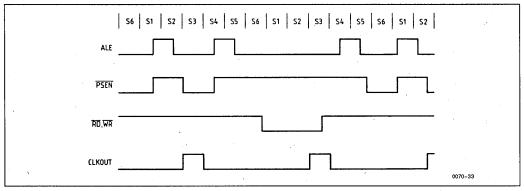


Figure 43. System Clock Timing

3.10 More about the On-Chip Oscillator

The on-chip oscillator of the SAB 80515, like in the SAB 8051, is a single-stage inverter (Figure 44), intended for use as crystal-controlled, positive reactance oscillator (Figure 45). In this application the crystal is operated in its fundamental response mode as an inductive reactance in parallel resonance with a capacitance external to the crystal. The crystal specifications and capacitance values (C1 and C2 in Figure 45) are not critical. 30 pF can be used in these positions at any frequency with good quality crystals. A ceramic resonator can be used in place of the crystal in cost-critical applications. When a ceramic resonator is used, C1 and C2 are normally selected to be of somewhat higher values, typically 47 pF. The manufacturer of the ceramic resonator should be consulted for recommendations on the values of these capacitors.

To drive the SAB 80515 with an external clock source, apply the external clock signal to XTAL2, and ground XTAL1, as shown in Figure 46. A pullup resistor is suggested because the logic levels at XTAL2 are not TTL.

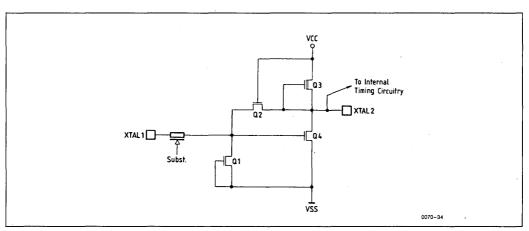


Figure 44. On-Chip Oscillator Circuitry

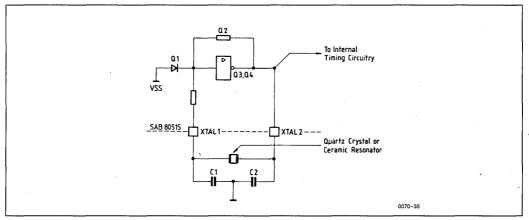


Figure 45. Using the On-Chip Oscillator

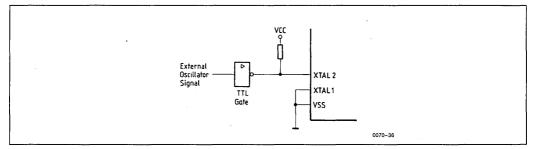


Figure 46. Driving with an External Clock Source

3.11 Register PCON

The special function register PCON is located at address 87H. In this register only bit 7, which is SMOD, is implemented. The other bit positions (PCON.0 to PCON.6) are reserved and should not be used. SMOD is used to double the baud rate for the serial port. If SMOD is set to one, the baud rate is doubled when the serial port is operating in either mode 1, 2, or 3 (see Section 3.4.2). The reset value of SMOD is 0. Note that PCON is not bit-addressable, therefore byte instructions must be used to alter SMOD.

Memory Organization, Addressing Modes and Boolean Processor

4.0 Memory Organization, Addressing Modes and Boolean Processor

4.1 Introduction

The SAB 80515 architecture provides on-chip memory as well as off-chip memory expansion capabilities. Several addressing mechanisms are incorporated to allow for an optimal instruction set.

4.2 Memory Organization

The SAB 80515 has four basic memory address spaces:

- 64 kbyte program memory
- 64 kbyte external data memory
- 256 byte internal data memory
- 41 special function registers

4.2.1 Program Memory Address Space

The 64 kbyte program memory space consists of an internal and an external memory portion, illustrated in Figure 48. If the \overline{EA} pin is held high, the SAB 80515 executes out of internal program memory unless the address exceeds 1FFFH. Locations 2000H through 0FFFFH are then fetched from external program memory. If the \overline{EA} pin is held low, the SAB 80515 fetches all instructions from external program memory. In either case, the 16-bit program counter is the addressing mechanism.

Locations 03 through 6BH in program memory are used by interrupt service routines as discussed in section 3.6.

4.2.2 Data Memory Address Space

The data memory address space consists of an internal and an external memory space. External data memory is accessed when a MOVX instruction is executed.

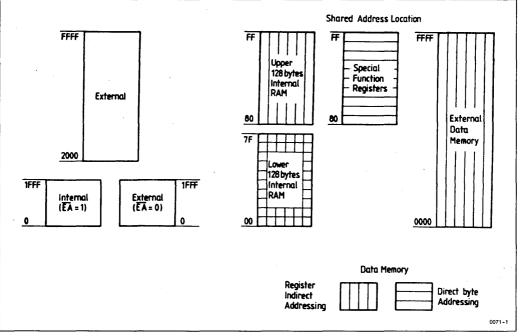


Figure 48. Program Memory and Data Memory Address Spaces

The internal data memory is divided into three physically separate and distinct blocks: the lower 128 bytes of RAM; the upper 128 bytes of RAM; and the 128 byte special function register (SFR) area. While the upper RAM area and the SFR area share the same address locations, they are accessed through different addressing modes. These modes are discussed in a later section.

Figure 49 shows a mapping of internal data memory. Four 8-register banks occupy locations 0 through 31

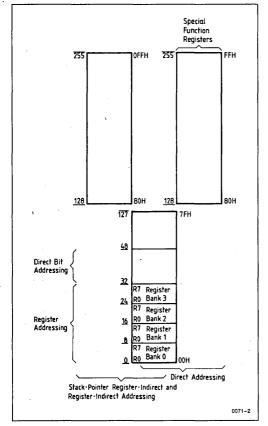


Figure 49. Internal Data Memory Address Space

in the lower RAM area. Only one of these banks may be enabled at a time (through a two-bit field in the PSW). The next sixteen bytes, locations 32 through 47 contain 128 bit-addressable locations. 16 of the 41 special function registers are also bit-addressable.

Figure 48 shows the data memory address spaces, Figure 50 shows the RAM bit addresses, and Figure 51 the special function register bit locations.

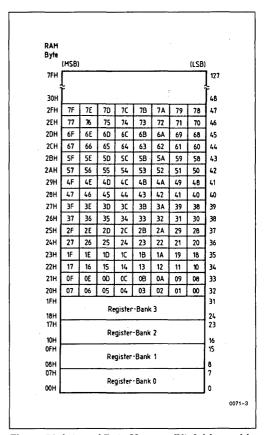


Figure 50. Internal Data Memory Bit-Addressable Locations

			T	1	1	T			1
F8	H FFI	H FEH	FDH	FCH	FBH	FAH	F9H	F8H	P5
FO	H F7	H F6H	F5H	F4H	F3H	F2H	F1H	FOH	в
	·		1 1 511	1411				1 1011	
E8	H EFI	H EEH	EDH	ECH	EBH	EAH	E9H	E8H	P4
		I	-1			1		1	
EC	H E7	H E6H	E5H	E4H	E3H	E2H	E1H	EOH	ACC
	BC) CLK	_	BSY	ADM	MX2	MX1	MX0	
D8			DDH	DCH	DBH	DAH	D9H	D8H	ADCON
		· • • • •						L	
DC	H D7H	·····	F0 D5H	RS1 D4H	RS0 D3H	OV D2H	F1 D1H	P D0H	PSW
, Di			1 0511	0411	L D3H	020	UIII	Dun	FSW
	T2P		I2FR	T2R1	T2R0	T2CM	T2I1	T210	
Ca	H CFI	H CEH	CDH	ССН	СВН	CAH	C9H	С8Н	T2CON
	EXF	2 TF2	IEX6	IEX5	IEX4	IEX3	IEX2	IADC	
CC	H C7ł	H C6H	C5H	C4H	СЗН	C2H	C1H	СОН	IRCON
	EXE	N2 SWDT	EX6	EX5	EX4	EX3	EX2	EADC	
B8			BDH	всн	BBH	BAH	B9H	B8H	IEN1
		·		. I				1	
BO	H B7H	H B6H	B5H	B4H	B3H	B2H	B1H	BOH	P3
	EAL		ET2	ES	ET1	EX1	ET0	EX0	
A8			ADH	ACH	ABH	AAH	A9H	A8H	IEN0
		I		L		J		1	
AO	H A7F	A6H	A5H	A4H	A3H	A2H	A1H	A0H	P2
	SM	0 SM1	SM2	REN	TB8	RB8	ті	Ri	
98			9DH	эсн	9BH	9AH	99H	98H	SCON
		I	.1	1	L	i		I	
90	H 97H	1 96H	95H	94H	93H	92H	91H	90H	P1
	TF1	TR1	TFO	TR0	IE1	· IT1	IE0	ITO	
88			8DH	8CH	8BH	8AH	89H	88H	TCON
								I	
80	H 87H	1 86H	85H	84H	83H	82H	81H	80H	P0
									0071-4

Figure 51. Special Function Register Bit-Addressable Locations

4.3 Addressing Modes

The SAB 80515 uses five addressing modes:

-register

-direct

-register indirect

-immediate

---base-register plus index-register indirect

Table 12 summarizes which memory spaces may be accessed by each of the addressing modes.

4.3.1 Register Addressing

Register addressing accesses the eight working registers (R0–R7) of the selected register bank. The least significant bits of the instruction op code indicates which register is to be used. ACC, B, DPTR and CY, the Boolean processor accumulator, can also be addressed as registers.

Table 12			
Addressing Modes	Associated Memory Spaces		
Register Addressing	—R0 through R7 of Selected Register Bank —ACC, B, CY (Bit), DPTR		
Direct Addressing	—Lower 128 Byte of Internal RAM —Special Function Registers		
Register Indirect Addressing	—Internal RAM (@R1, @R0, SP) —External Data Memory (@R1, @R0, @DPTR)		
Immediate Addressing	—Program Memory		
Base-Register plus Index-Register Addressing	—Program Memory (@DPTR + A, @PC + A)		

4.3.2 Direct Addressing

Direct addressing is the only method of accessing the special function registers. The lower 128 byte of internal RAM are also directly addressable.

4.3.3 Register-Indirect Addressing

Register-indirect addressing uses the contents of either R0 or R1 (in the selected register bank) as a pointer to locations in a 256-byte block: the 256 bytes of internal RAM or the lower 256 bytes of external data memory. Note that the special function registers are not accessible by this method. Access to the full 64 kbytes of external data memory address space is accomplished by using the 16-bit data pointer.

Execution of PUSH and POP instructions also uses register-indirect addressing. The stack may reside anywhere in internal RAM.

4.3.4 Immediate Addressing

Immediate addressing allows constants to be part of the instruction in program memory.

4.3.5 Base-Register plus Index-Register Addressing

Base-register plus index-register addressing allows a byte to be accessed from program memory via an indirect move from the location whose address is the sum of a base register (DPTR or PC) and index register, ACC. This mode facilitates look-up table accesses.

4.4 Boolean Processor

The Boolean processor is a bit processor integrated within the SAB 80515. It has its own instruction set, accumulator (the carry flag), and bit-addressable RAM and I/O.

The bit manipulation instructions allow:

-set bit

- -clear bit
- -complement bit
- -jump if bit is set
- -jump if bit is not set
- -jump if bit is set and clear bit

-move bit from/to carry

Addressable bits, or their complements, may be logically ANDed or ORed with the contents of the carry flag. The result is returned to the carry register.

Microcontroller Application Notes Article Reprints/Application Briefs

Prepared by Ashutosh Ahluwalia

SIEMENS

November 1988

8

Applications Using Operation of Timer 2 in the SAB 80515/80535—Generating Pulse Width Modulated Signals

SAB 80515/80535

Application Note

© Siemens Components, Inc.

Introduction

This application introduces the user to the features of the Timer 2 on the SAB 80515/80535. It gives basic application hints for programming and using the functions of the Timer 2 structure. An example on generating pulse-width-modulated signals with minimum software is also given.

Timer 2 Structure

The Timer 2 of the SAB 80515 with its 16-bit compare/reload/capture register and three 16-bit compare/capture registers is capable of generating pulse width modulated output signals with very little software effort. This unit is also referred as Programmable Timer/Counter Register Array (PTRA).

The SAB 80515 offers two different compare modes, explained in more detail below, which are useful for the generation of these output signals.

In either compare mode, the values stored in the selected compare registers are compared continuously to the count value of Timer 2. For this purpose, each compare register has its own comparator circuit. Within one machine cycle, all comparisons are done simultaneously.

Each of the four registers has a fixed relation to a port 1 pin, illustrated in the following table: Symbols

Register	Port Latch	Alternate Function Symbols			
CRC Register	P1.0	INT3/CC0			
CC1 Register	P1.1	INT4/CC1			
CC2 Register	P1.2	INT5/CC2			
CC3 Register	P1.3	INT6/CC3			

The alternate functions for which port pins P1.0 to P1.3 can be used are shown in the following table:

Port Pin		Alternate Function
P1.0	ĪNT3	External Interrupt 3 input; can be selected to be active on a negative or positive transition.
	CC0	Compare output from or capture input to CRC register.
P1.1	INT4	External Interrupt 4 input; active on a positive transition.
	CC1	Compare output from or capture input to CC1 register.

Port Pin		Alternate Function
P1.2	INT5	External Interrupt 5 input; active on a positive transition.
a de la	CC2	Compare output from or capture input to CC2 register.
P1.3	INT6	External Interrupt 6 input; active on a positive transition.
	ССЗ	Compare output from or capture input to CC3 register.

The selected modes of the compare/capture registers determine which of the possible alternate functions is actually used. For brevity, the description of the use of alternate functions is given for the CRC register and port pin P1.0 only.

If no compare or capture modes are enabled for the CRC register, pin P1.0 can be used for general purpose I/O or as an external interrupt input. In the latter case, the port latch must contain a one (1) to allow the external source to control the pin. It is, however, possible to cause an interrupt by toggling the port latch by software. Bit I3FR in SFR T2CON is used to select the active edge for INT3 (refer to the SAB 80515 User's Manual for details). If the external capture mode is enabled for the CRC register (SFR CCEN = XXXXXX01B), a transition at P1.0 will not only cause the request flag IEX3 (SFR IRCON) to be set, but will also latch the current Timer 2 contents into the CRC register. If the pin is not controlled by an external source, software may toggle the port latch to do a capture of the Timer 2 content. This facilitates reading the timer "on-the-fly", since reading the timer directly requires a certain read procedure to be observed in order to obtain the correct value (to read the 16-bit register, only 8-bit MOV instructions are available). This feature is in addition to the special capture mode provided in the SAB 80515 for a software capture.

If either of the two possible compare modes is enabled for the CRC register, the port pin P1.0 is used as an output. The functions of the two compare modes are described separately in the following sections.

In compare mode (T2CM = 0), the port latch is controlled only by the Timer 2 overflow and the match signal of the comparator related to the CRC register. The user has no access to the port latch as long as compare mode 0 is enabled (SFR CCEN = XXXXX10B). The input line from pin P1.0 to the interrupt request flag IEX3 is disconnected and IEX3 is controlled by the output of the comparator. If Timer 2 overflows, the port latch is set to zero. If a match is detected between the value stored in the CRC register and the content of Timer 2, then the port latch is set to one. The setting of the request flag IEX3 depends on the selected active edge. If I3FR = 0, IEX3 is set with the positive transition of the comparator output signal. If I3FR = 0, IEX3 will be set when the comparator output goes inactive, i.e. shows a negative transition.

In compare mode 1 (T2CM = 1), the port latch P1.0 is separated into two latches: one is connected to the internal bus and can be read or written to under software control. This is referred to as latch A. The other latch, called latch B, is a transparent latch with the input connected to latch A. Its output connected to the port pin and its clock input controlled by the comparator output. Figure 1 illustrates these two port latches. The function of compare mode 1 is illustrated by the following example:

Assume that port P1.0 contains a one, register CRC contains a value <xxxx>, IEX3 is programmed to be positive transition active, and Timer 2 is running. When compare mode 1 is enabled (SFR CCEN = XXXXX10B), the port latch is separated, and both latch A and latch B contain a one. The user

may now write a zero into latch A. Latch B is unchanged, since the clock input is low. When a match is detected between the value <xxxx> stored in the CRC register and the contents of Timer 2, the comparator output signal goes active. This causes the value of latch A to be transferred to latch B and pin P1.0 is set to zero. Simultaneously, the interrupt request flag IEX3 is set, informing the user of the successful match.

User response depends on the application. Writing a one to latch A causes a positive transition at the next compare event within the following Timer 2 period. Changing both the port latch and the compare value in register CRC causes a new match either within the current Timer 2 period if the new value is higher than the actual Timer 2 content, or within the next Timer 2 period otherwise. If the user changes neither the port latch nor the CRC register, the port pin will remain in its state regardless of further compare events. However, each further compare event (one during each Timer 2 period, if compare mode 1 is enabled) will set the interrupt request flag IEX3. This enables the user to count the compare events until a certain number is reached. Servicing the port latch at that point will cause a new transition of the pin at the next match.

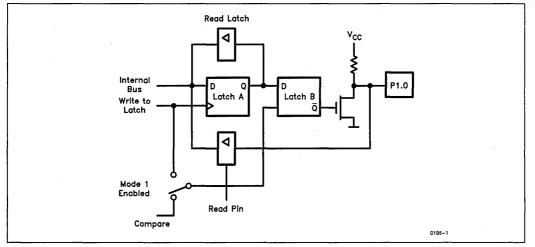


Figure 1. Functional Diagram of Port Latches P1.0 to P1.3 in Compare Mode 1

NOTE:

Since the transition detection circuit is installed directly in front of the interrupt request flag, IEX3 may be set when a compare mode is enabled or disabled. For an explanation of this, consider the following conditions:

- IEX3 is programmed to be set on a negative transition (I3FR = 0)
- Port latch P1.0 contains a one, so a logic high level is applied to the input of the detection circuit at IEX3
- The CRC register contains 0000H and Timer 2 contains a value > 0000H.

If a compare mode is now enabled for the CRC register, the input line to the transition detector is switched from the port pin to the output of the comparator, which is zero (no match). The transition detector recognizes a negative transition at its input and causes IEX3 to be set. The same procedure applies to the other condition: I3FR = 1/P1.0 = 0/ comparator output = 1.

For registers CC1 to CC3 and their appropriate port pins, the compare and capture features function in a similar way, except that the setting of the interrupt flags and the capture are caused only by a positive transition at the respective port pins.

Using Compare Mode 0

The following section shows a concrete example for generating pulse width modulated output signals using the compare mode 0. The CRC register is used to do a 16-bit reload of Timer 2 in order to vary the period of the signals, while registers CC1 to CC3 are selected to operate in compare mode 0. The appendix contains a listing of the example program.

First an initialization routine is executed. It selects the input frequency for Timer 2, the compare and reload mode, loads the reload value into the CRC register, and starts the timer. Then the first loading of the compare registers CC1 to CC3 is done in the Timer 2 overflow interrupt service routine. The main program, which is not detailed in this example, computes the compare values and stores them in registers R2 to R7, from which the values are loaded into registers CC1 to CC3 during the interrupt procedure. If the compare values were left unchanged over several Timer 2 periods, the following output signals would result.

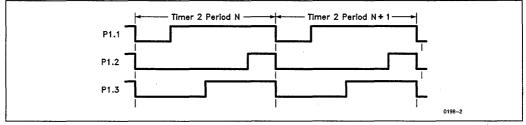


Figure 2. Pulse Width Modulation in Compare Mode 0

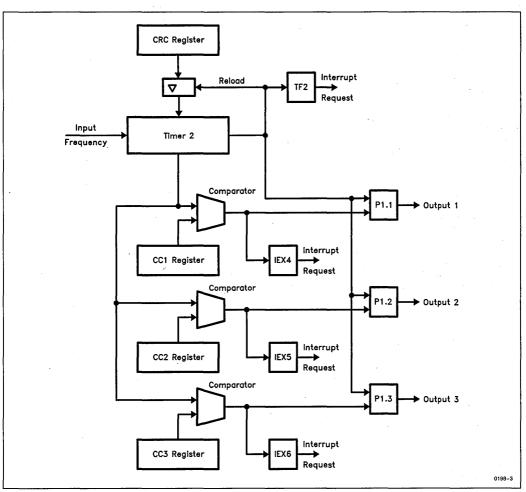


Figure 3 illustrates the configuration of the PTRA structure after the initialization. The CRC register serves as a 16-bit reload register, while registers CC1 to CC3 are selected as 16-bit compare registers. The comparator output signal of each compare register is connected to the appropriate interrupt request flag (IEX4 to IEX6). Since the port pin P1.0 is not used in this application, it can be used as general purpose I/O or as an external interrupt input. It cannot, however, be used as a capture input to the CRC register disables the capture and compare modes for this register.

In this example, all three output signals have the same period as determined by the reload value

stored in the CRC register. On an overlow of Timer 2, the port latches P1.1 to P1.3 are reset and the value of the CRC register is loaded into Timer 2. The timer continues incrementing from this start value up to the next overflow. The time period results from the formula

TP = (12/fosc) * (65536 - < reload value >)

where <reload value> is the content, of the CRC register. The frequency of the output signals is 1/TP. The assembler ASM51 provides an easy way to compute the reload value for a given time period. If the time period is given in μ s (at 12 MHz in this example), the reload value can be programmed in the following way:

TIME_PERIOD EQU 1234 ;1234 µs time period at 12 MHz

MOV CRCL#LOW(-TIME_PERIOD) MOV CRCH#HIGH(-TIME_PERIOD)

Note the minus sign, which states that the value stored is $65536 - TIME_PERIOD$.

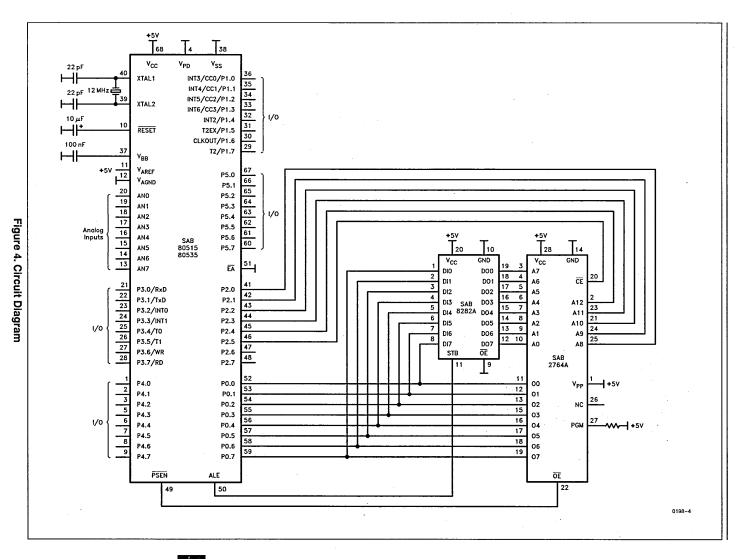
The time during which an output signal is high is determined by the value stored in the associated compare register. The same mathematical relation applies here as for the reload value:

HT = (12/fosc) * (65536 - < compare value >)

where <compare value> is the contents of the respective compare register CC1 to CC3. Note that if a compare value is smaller than the reload value, the associated output pin will remain low, since there will never be a match.

If the compare values are not changed by the main program from one Timer 2 period to the next, the compare registers need not be reloaded in the Timer 2 interrupt service routine. A software flag called READY is used to indicate whether or not the compare registers have to be reloaded. If the main program has computed new compare values, it sets flag READY after storing these values in registers R2 to R7. The first instruction in the Timer 2 interrupt service routine checks the READY flag and returns to the main program if READY = 0. Otherwise the compare registers are loaded with the contents of R2 to R7. This procedure shortens the time needed for servicing the Timer 2 interrupt if the compare values are not changed.

The READY flag also has a second function. The instruction sequence which loads registers R2 to R7 can be interrupted by the Timer 2 interrupt. To avoid


loading indeterminate values into the compare registers, the reload procedure in the Timer 2 interrupt service routine must not be executed until all new compare values are stored in R2 to R7. Since the READY flag will be reset in this case, the routine which loads the compare registers will be skipped in the interrupt service routine.

Before loading the compare registers with new values in the Timer 2 interrupt service routine, all compare modes are disabled (CCEN = 0000000B). This is done for a reason similar to that described above. When the 16-bit compare registers are reloaded with 8-bit MOV instructions, indeterminate compare values may occur in the registers. These values may cause unexpected match conditions. To avoid this, first compare is disabled. The registers are then loaded with new values, and finally the compare is again enabled. At the end the READY flag is reset.

Because vectoring to the Timer 2 interrupt service routine, disabling compare mode, and reloading the compare registers all take time, there is a limit to the smallest low pulse at the output pins. Vectoring to the interrupt routine in a single interrupt routine takes no more than 8 and no fewer than 3 cycles. Checking the READY flag, disabling compare, reloading the 3 16-bit registers, and enabling compare again will take 18 cycles. Therefore, the smallest low pulse should not be less than 0026D (26 cycles), otherwise a match is not recognized.

Figure 4 shows a detailed circuit diagram of an SAB 80535 with an external program memory represented by a 8 Kbyte SAB 2764A EPROM. This diagram also shows the basic power supply connections when using the SAB 80535.

ISIS-II MCS-51 MACRO ASSMEBLER V2.1 OBJECT MODULE PLACED IN :F1:T2COMP.OBJ ASSEMBLER INVOKED BY: ASM51 :F1:T2COMP.SRC NOSYMBOLS DATE(04.03.86) LOC · OBJ LINE SOURCE 1 \$NOMOD51 2 \$INCLUDE (REG515.PDF) = 1 3 +1\$NOLIST 160 1234 161 TIME PERIOD EQU 1234H ; TIME PERIOD COMPARE SIGNALS 0000 162 READY BIT 0 ; READY FLAG DEFINITION 21H 0021 163 COMPARE_1_LOW DATA ; TEMPORARY STORAGE LOCATIONS 0022 164 COMPARE_1_HIGH DATA 22H ; FOR COMPARE VALUES 0026 165 COMPARE_3_HIGH DATA 26H 166 167 :* * * * 168 ;* ;* INITIALIZATION ROUTINE 169 170 ;* ;*** 171 ***** 172 173 INIT: CRCL, #LOW (-TIME_PERIOD) ; LOAD RELOAD VALUE 0000 75CACC 174 MOV 0003 75CBED 175 MOV CRCH, #HIGH (-TIME_PERIOD); T2CON,#00010000B ; RELOAD ON TIMER OVERFLOW 0006 75CB10 176 MOV 177 ; NO PRESCALER; COMPARE MODE O 0009 C200 178 CLR READY ; CLEAR FLAG READY 000B D2C8 SETB T2I0 179 ; START TIMER 2, FOSC/12 180 000D 020045 181 JMP MAIN_PROG ; JUMP TO MAIN PROGRAM 182 183

1

MCS-51 MACRO ASSEMBLER

T2COMP

MCS-S	51 MACRO A	SSEMBLER	T2COMP	(Continued)		
FOC	OBJ	LINE	SOUR	CE		
		184	•******	****	*****	* * *
		185	;*			*
		186	;* TIMER	2 OVERFLOW INTERR	UPT SERVICE ROUTINE.	*
		187	;* LOADS	NEW COMPARE VALUE	S INTO THE COMPARE REGISTER	S.*
		188	;*			*
		189	********	****	*******	***
		190				
		191	CSE6	AT TIMER2		
		192				
		193	TF2_INT:			
002B	300014	194	JNB	READY, INT_END	; CHECK FLAG READY	
002E	750100	195	MOV	CCEN, \$0	; DISABLE COMPARE	
0031	8AC2	196	MOV	CCL1,R2	; LOAD NEW COMPARE VALUES	
0033	8BC3	197	MOV	CCH1,R3	;	
0035	8003	198	MOV	CCL2,R4	;	
0037	8DC3	199	MOV	CCH2,R5	;	
0039	8EC6	200	MOV	CCL3,R6	;	
	8FC7	201	MOV	CCH3,R7	;	
003D	75C1A8	202	MOV	CCEN,#10101000B	; ENABLE COMPARE 1 TO 3	
0040	C200	203	CLR	READY	; CLEAR FLAG READY	
		204	INT_END:			
0042	C2C6	205	CLR	TF2	; CLEAR TIMER 2 OVERFLOW F	LAG
0044	32	206	RETI			
		207				
		208	•******* 9	*****	******	***
		209	;*			*
		210	;* MAIN H	PROGRAM.		*
		211	;* COMPUI	TES THE NEW COMPAR	E VALUES AND STORES THEM IN	T O *
		212	;* REGIST	TERS R2 TO T7 IN C	URRENT REGISTER BANK.	*、
		213	;*			*
		214			APPLICATION, THE MAIN PROG	RAM*
		215	;* IS NO7	DETAILED HERE.		*
		216	• * •			*
		217	******	*****	*****	****

8

1

MCS-51 MACRO ASSEM	MBLER T2COMP (Con	inued)
LOC OBJ I	LINE SOURCE	
	218	
	219 MAIN_PROG:	
	220 ;	
	221 ;	
	222 ;	
0045 C200 2	223	CLR READY ; CLEAR FLAG READY
0047 AA21 2	224	MOV R2,COMPARE_1_LOW ; STORE NEW COMPARE VALUES
0049 AB22 2	225	MOV R3,COMPARE_1_HIGH ;
2	226 ;	
2	227 ;	•
2	228 ;	•
004B AF26 2	229	MOV R7,COMPARE_3_HIGH ;
004D D200 2	230	SETB READY ; SET FLAG READY
2	231 ;	•
2	232 :	•
2	233 :	•
2	234 :	
2	235	END
REGISTER BANK(S) U	USED: 0	
ASSEMBLY COMPLETE,	, NO ERRORS FOUND	

1

SIEMENS

November 1988

8

Operation of the A/D Converter in the SAB 80515/80535

SAB 80515/80535

Application Note

© Siemens Components, Inc.

This application note discusses the Analog to Digital converter in the SAB 80515/80535 single chip microcontroller. It provides the SAB 80515/80535 user with detailed information on the features and characteristics of the converter. Included in this application note are design tips for using the converter, as well as an application example with program listing which illustrates how an 8-bit digital result obtained as a result of conversion of an analog input can be displayed on a terminal over the serial channel of the SAB 80515/80535.

The A/D Converter of the SAB 80515/80535

The SAB 80515/80535 is an 8-bit single chip microcontroller, which contains an on-chip A/D converter. It provides a simple interface between analog and digital circuitry. It permits the replacement of discrete A/D components with this on-board circuitry.

This application note illustrates the use of the SAB 80515/80535's A/D converter. The electrical characteristics and operating conditions are discussed in more detail than in the User's Manual.

The following topics are covered:

- Fundamentals and principles of A/D conversion with the SAB 80515/80535
- Transfer characteristics and error definition
- Electrical characteristics of the SAB 80515/80535's A/D converter
- Design considerations of the device
- Sample application of the device

Principles of A/D Conversion with the SAB 80515/80535

An Analog to Digital converter converts analog input signals (voltages) applied at the "analog inputs" into the corresponding digital value. The range of the analog inputs which result in digital values between 00H and FFH in the device's 8-bit converter is defined by the reference voltages (reference ground VAGND and reference voltage VAREF). These voltages are applied externally to the device.

Different principles may be used in A/D conversion. They differ mainly in accuracy, resolution, conversion time, costs, etc. The A/D converter of the SAB 80515/80535 uses the principle of successive-approximation. This technique is much faster than the more common dual slope conversion and allows tracking of signals at higher frequencies. Successive-approximation method uses binary fractions (1/2, 1/4, 1/6, etc.). The unknown input value is compared first to the 1/2 of the reference value, determining the most significant bit of the result. Depending on this MSB, the unknown value is compared with 1/4 or (1/4 + 1/2) ref. value thus determining the next bit of the result. Following this procedure eight times produces an eight-bit result. The conversion time is independent of the input value.

To ensure meaningful data, the input value to the comparator cannot change during conversion. To ensure this, the SAB 80515/80535 samples the input and latches this value at the comparator input during the conversion. This avoids fluctuations in the analog input to the comparator. Suppression of noise in the analog input value as is normal with dual slope converters is not required, since there is no input signal integration.

For the above reasons, the reference voltage must be held at a constant level during the whole conversion time. Unlike the analog inputs, there is no sample-and-hold circuit at the reference input. To avoid unpredictable results, the user must provide a constant noise-free reference voltage to the device.

The successive approximation converter does not use an R-2R network because the variations in resistance values affect the accuracy of the A/D converter. Instead of the R-2R approach, a network of 256 capacitors is used. These capacitors are organized in binary weighted groups. Switching these groups generates the binary weighted reference values. Using this principle improves the converter accuracy and also the immunity against temperature and frequency changes.

Note that this technique affects the electrical characteristics at the analog input pins (see next section for further information).

A special feature of the SAB 80515/80535's A/D converter is the ability to program internal reference voltages. This feature allows reference ground (IVAGND) and reference voltage (IVAREF) to be defined as fractions of externally applied references. Device software makes it possible to select for each among 16 values in equal steps, one for IVAGND and one for IVAREF. It is also possible to program IVAGND = VAGND and IVAREF = VAREF.

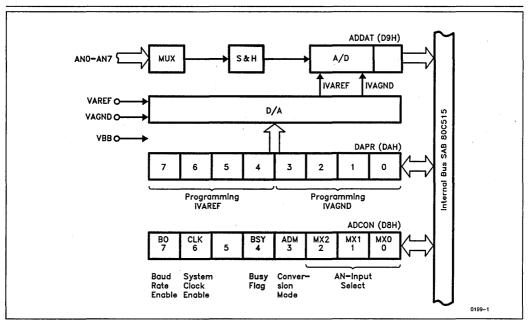


Figure 1. A/D Converter Block Diagram

Figure 1 shows the block diagram of the SAB 80515/80535's A/D converter. It shows the following main features:

- Eight analog inputs, selectable via a multiplexer
- Sample & hold function for analog inputs
- External references available to the converter after internal division
- Special Function Registers ADCON, ADDAT, DAPR, used for converter control, status and results

The Special Function Registers (SFR) are described in detail in the SAB 80515 User's Manual. Some points to consider when programming the SFRs include: The A/D conversion is initiated by writing the reference selection value into the SFR DAPR (addr.: DAH). Writing a "00H" starts the conversion using the externally applied references (VAGND and VA-REF) directly.

Writing into DAPR during a conversion causes an interrupt to the conversion followed by a restart.

- Altering the value of SFR ADCON (addr.: D8H) during a conversion causes unpredictable results.
- Once a conversion is complete, the SFR ADDAT (addr.: D9H) contains the result of the conversion. If the A/D converter isn't used, the SFR ADDAT is available for general purpose read/write storage.
- The conversion time is 15 machine cycles. Using a 12 MHz oscillator, gives a conversion time of 15 µs. This includes the sample time.

8

Transfer Characteristics and Error Definition

Figure 2 shows the ideal transfer characteristic for a 3-bit A/D converter.

Since possible analog input values are a continuum, they must be quantizised by partitioning the continuum into 2ⁿ discrete digital values. The number n equals the number of bits in the converter. All analog values within a given range are represented by the same digital value, which corresponds to the nominal mid-range value. Each converter has inherent quantization uncertainty of $\pm 1/2$ LSB (Least Significant Bit). The ideal transfer characteristic shown in Figure 2 gives the first digital transition (from "00H" to "01H") at the analog value of 1/2 LSB.

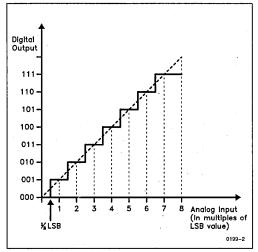


Figure 2. Ideal Transfer Characteristic

Based on the ideal transfer characteristic, four different error types are defined:

- Offset error
- Integral non-linearity
- Differential non-linearity
- Gain error

Each of these is described in detail below.

The offset error (Figure 3) is the mean adjustment in input voltage required to bring the digital output to the first digital transition (from "00H" to "01H") of the converter. The deviation from the ideal value of this transition (at $\frac{1}{2}$ LSB) is the offset of the converter.

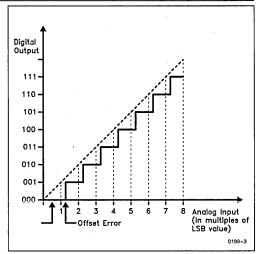


Figure 3. Offset Error

This error may vary over the full temperature range. An adjustment is therefore exact only for a fixed temperature.

The integral nonlinearity is also known as the linearity error. This is defined as the maximum deviation of the actual transfer function from the ideal straight line at any point along the function. It can be expressed as a percentage of full scale or, as shown in Figure 4, in multiples of the LSB value. The value of integral nonlinearity assumes that other errors, such as offset and gain, have been adjusted to zero. Linearity error cannot be adjusted and is an inherent characteristic of the converter.

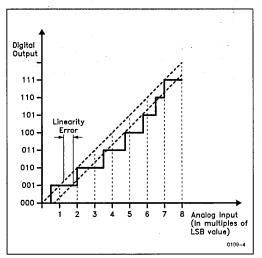


Figure 4. Integral Nonlinearity

The differential nonlinearity (Figure 5) is the maximum deviation of any quantum from its ideal analog input value between any adjacent pairs of digital numbers, over the full range of the digital output. If each transition is exactly 1 LSB, the differential nonlinearity is zero. If the transitions are 1 LSB \pm 1 LSB, then there is the possibility of missing code, i.e. digital value misses, e.g. the output might jump from 011 to 101, missing out 100.

Conversely, differential nonlinearity of less than 1 LSB, automatically excludes missing codes.

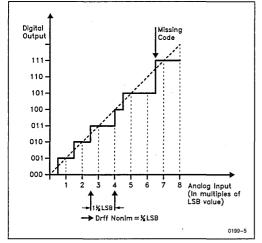
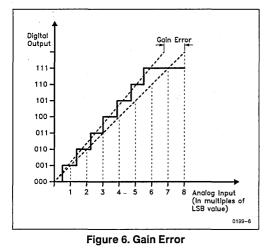



Figure 5. Differential Nonlinearity

The gain error (Figure 6) is also known as the scale factor error. It is the difference in slope between the real and the ideal transfer characteristic. It may be expressed in LSB's or as a percentage of analog magnitude.

This error can be adjusted by changing the reference voltage or adjusting the input voltage division. The temperature drift of the gain error is generally smaller than that of the offset error.

All these errors are specified for the SAB 80515/80535 in the A/D characteristics section of the data sheet. The LSB unit refers to an 8-bit resolution. Therefore, 1 LSB is (VAREF – VAGND)/256, giving 20 mV for a reference voltage of 5.12V.

The specified errors are valid over the total operating temperature range specified for the device (0°C to +70°C for standard parts, -40°C to +85°C for extended temperature range parts).

Using the internal programming ability for the reference voltages IVAGND and IVAREF does not affect the errors and the accuracy of the A/D converter itself. The absolute values of these errors will be the same over the full reference range, as well as in a smaller internally programmed reference range. The resolution is increased by using narrower references. As an example, if the internally programmed references are IVAGND = 2.5V and IVAREF = 3.75V, the resolution is \approx 5 mV. This allows a more exact measurement of differences between several successive analog voltages; the differences can be determined in steps of 5 mV, rather than steps of 20 mV (full reference range). This feature is useful for the measurement of analog differences in closed control loops. Once an initial value is established using the full range, a second conversion with changed internal reference voltages gains higher resolution.

Electrical Characteristics of the SAB 80515/80535's A/D Converter

The electrical operating conditions and maximum ratings on the pins of the SAB 80515/80535's A/D converter are given in the datasheet.

The Analog Input Pins AN0-AN7

MAXIMUM RATINGS

For the analog inputs the same maximum ratings are valid as for all other pins. These maximum ratings are specified in the SAB 80515/80535's datasheet. Thus, the maximum voltage at the pins is restricted to -0.5V up to +7V with respect to ground (V_{SS}). The device may never be exposed to voltages above these values, otherwise the chip might be damaged.

Normal Operating Characteristics

As mentioned above, the A/D converter of the SAB 80515/80535 uses a capacitor network instead of a R-2R network. This affects the input impedance of the analog inputs.

The input impedance of the analog inputs is mainly capacitive with a negligible resistive component. This capacitance is relevant at pins AN0-AN7 only during the load time, which is part of the conversion time. At other times, the inputs have very high impedance typical leakage currents of nA's, as shown in Figure 7.

The load time is the period which is available to charge the inputs before they are sampled during the remainder of the samle time when the comparator is adjusted. The rest of the conversion time is taken up by the actual conversion process.

The input impedance requires that the analog source from which the analog value is generated must be capable of fully charging all the analog input pins AN0-7 to the value to be measured within the load time. In the worst case the capacitance must be charged to the full input voltage from the completely discharged state.

The input capacitance CI of the converter and the internal resistance of the analog source form a RC lowpass filter, which has a charging function shown in Figure 8.

Where:

- t: Time
- V(t): Voltage after time t
- Ri: Internal resistance of the analog source
- CI: Input capacitance of the A/D converter. This formula determines the change over a given time period.

t	V/Vmax [%]
1 RC	63%
2 RC	87%
5 RC	99.3%
8 RC	99.97%
10 RC	99.995%

The maximum value of Ri can be calculated for a charging time of at least 10 Ri \times Cl (error less than 0.005%) as:

 $T_L \ge 10 \times (Ri \times CI)$

$$\mathsf{RI} \leq \frac{\mathsf{T}_{\mathsf{L}}}{\mathsf{10} \times \mathsf{CI}}$$

Assuming the worst-case conditions of: Load time (FOSC = 12 MHz): 2 μ s Max. Input Capacity: 50 pF (typ. 25 pF)

We Get:

$$\mathsf{Ri} \leq \frac{2\,\mu\mathsf{s}}{10\times50\,\mathsf{pF}} = 4\,\mathsf{k}\Omega$$

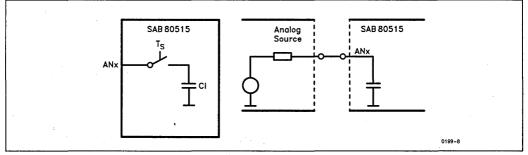


Figure 7. Analog Interface, an RC Network

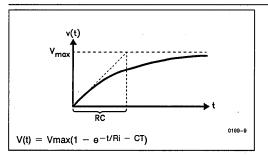


Figure 8. Ri, CI Change Time

Ri should therefore be less than 4 k Ω (see also datasheet SAB 80515/80535).

These conditions are reached only under worst-case conditions.

The Reference Voltage Pins (VAGND and VAREF)

Absolute Maximum Ratings

As with other pins, the maximum voltage range at these pins is -0.5V to +7V, as given in the data-sheet.

Normal Operating Characteristics

The normal operating conditions for VAGND and VAREF are also specified in the SAB 80515/80535 datasheet, under A/D characteristics. The operating conditions under which conversion is valid are:

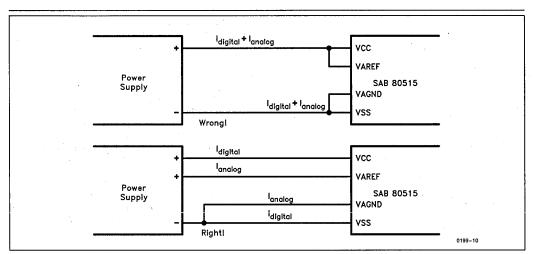
 $VAGND = V_{SS} \pm 0.2V$ $VAREF = V_{CC} \pm 5\%$

In other words, externally applied reference voltages must not deviate from the digital power supply voltage for more than these values. Although adjustment of the external reference is not possible internal programming of the references can be done under software control.

Exceeding the values specified will not damage the part if the maximum ratings are not exceeded. However, the specified accuracy is no longer guaranteed. The allowed operating voltages of the analog inputs AN0-AN7 are different from the maximum ratings. They are defined by the voltages at VAGND and VAREF:

 $VAGND - 0.2V \le VAINPUT \le VAREF + 0.2V$

An exact conversion requires that the reference voltages be held constant during the whole conversion time. The normal digital power supply for V_{CC} is therefore appropriate for VAREF because of noise and glitches on this voltage. It is recommended that the digital power supply and the analog reference supply be separate. The VAREF current is 5 mA max. and the differential internal resistance of the reference supply must be less than 1 k Ω . This is a result of similar charging processes to those at the analog inputs and the reference power supply must take this into account.


The V_{BB} Pin

This pin is connected to the substrate of the chip. A back-bias generator generates a negative voltage (with respect to ground) in the substrate. This generator has noise too. Noise from this could affect the A/D converter operation. It must therefore be eliminated by a capacitor between V_{BB} and V_{SS} (ground). The capacitor should be between 47 nF and 100 nF (not 500 pF-1000 pF, as described in an older release of the datasheet).

Design Considerations

Reference Voltage Supply

A design with the SAB 80515/80535's A/D converter must follow rules similar to other A/D converter designs. Generation of the reference voltage supply is critical. It is recommended that analog and digital grounds are connected together. Care must be taken to avoid the digital current at V_{SS} injecting noise into the analog ground potential. The ground lines to V_{SS} and VAGND should be isolated from each other as much as possible. Figure 9 illustrates the recommended supply connections.

Figure 9. Power Supply Connections

For best reference voltage stability on VAREF, a separate power supply should be provided. If, for cost reasons, only one supply voltage is used for both digital and analogy supply, the voltage at VAREF should be stabilized with a lowpass filter. Note that the differential internal resistance of the reference supply must not exceed 1 k Ω , as described above.

The supply should be grounded across a storage capacitor (tantalum) and a smaller HF-capacitor (ceramic) as near the device as possible.

Analog Input Supply

The use of analog power sources with higher internal resistances than 4 k Ω is possible under certain conditions. The internal resistances requirement is a result of the charging current necessary to overcome the analog input capacitance. This current is only needed during the sample time. If the analog value changes only slowly with time, a large external capacitor at the analog input is able to supply the charging current during the sample time. This is shown in Figure 10.

The external capacitor should be at least 1000 times the value of the internal capacitance (50 nF = 1000×50 pF). The error induced by the external capacitor is therefore kept less than 0.1%.

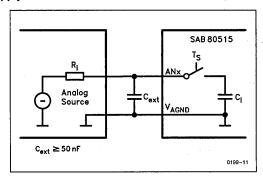


Figure 10. Analog Input Supply

Using an external capacitor, the analog source must replace only that charge lost by the external capacitor. The time available for this is the time between two consecutive conversions on this channel. This depends on user software, but is at least three times the sample time if continuous conversion on the same channel is selected.

The equation for Ri can be applied here:

$$\mathsf{Ri} \leq \frac{\mathsf{T}}{\mathsf{10} \times \mathsf{CI}}$$

The difference is the time "T" between two consecutive conversions on the channel. This time is longer than the sample time, which permits higher internal resistance in the analog power source.

An analog input overload protection can be provided by two diodes, as shown in Figure 11. A Schottky diode satisfies the rating for the connection to VAGND because of its lower forward voltage characteristic.

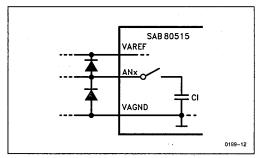
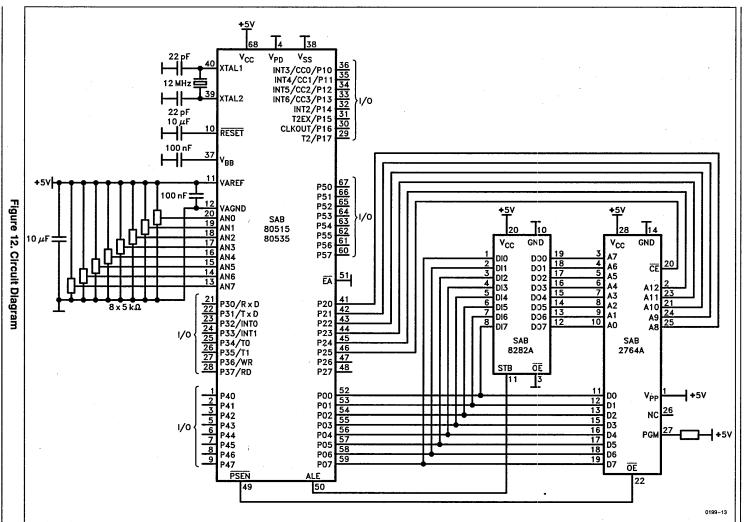


Figure 11. Protection Diodes for Analog Inputs


Application Example

The following application shows how to use the A/D converter for 8 different analog signals applied at the pins AN0–AN7. The analog values are generated by eight potentiometers. A terminal can be used as an output device through the SAB 80515/80535's serial channel.

The "single conversion" operating mode is used. Operation begins by writing a "00H" to DAPR, which deselects the internal reference voltage programming. The program polls the BSY flag for the termination of the conversion. The result is converted into BCD format and sent to the terminal. This procedure is followed for each of the eight analog channels.

Programming details are given in the program listings.

8-20

OBJECT MC	DULE F	LACED	IN ADNO	O ASSEMBLER, V2 DTE.OBJ ITEL\ASM51.EXE A			
LOC OBJ			LINE	SOURCE			
		=1	1 2 3 4 5 6 7 +1	STITLE(SDATE(19.02.86 SNOSYMBOLS SDEBUG SNOMOD51 SINCLUDE(REG51 SNOLIST	\$) }	OTE ON SAB 80515 A/D CONVERTER)	
		-1	165		· · · ·		
			166 167	*********	****************	***************************************	
			168	; •	APPLICATION NOTE F		
			169 170	1. T	A/D CON	VERTER *	
			171		*******	************	
			172 173	CSEG	AT OOH		
			174	CSEG			
0000 0200	03		175	LJMP	INITIALISATION		
			176 177	INITIALISATION	:		
0007 7004			178	NOV	CD #900		(
0003 7581 0006 5387			179 180	MOV	SP,#80H PCON,#7FH	;INITIALIZE STACKPOINTER	
0009 7508			181 182	MOV	ADCON, #80H	;4800 BAUD FOR SERIAL INTERFACE ;WITH F OSC = 12 MHZ	
000C 7598	CA		183 184 185	MOV	SCON,#11001010B	;9-BIT UART(MODE 3), NO RECEPTION	
			186				
			187 188	FIRST_MESSAGE:			
000F 9000			189	MOV	DPTR,#MESSAGE_1		
0012 1200	38		190 191	CALL	MESSAGE_OUT	SEND FIRST MESSAGE TO TERMINAL	
			192				·
			193 194	;=======			
			195	CONVERSION:			
0015 7A08			196 197	MOV	02 #90		
0017 7B00			198	MOV	R2,#80 R3,#00H	LOOP COUNTER ANALOG INPUT COUNTER	
			199	CONV. 1.000-			
			200 201	CONV_LOOP:			
0019 EB	~~		202 203	MOV	A,R3		
001A 53D8 001D 42D8			203	ANL	ADCON,#11000000B ADCON,A	;MODE FOR A/D CONVERSION: SINGLE ;SELECT ANALOG CHANNEL	
001F 75DA			205	MOV	DAPR,#OOH	START CONVERSION, NO INTERNAL	
			206 207			REFERENCE VOLTAGES USED	
0022 1200	46		208	CALL	SPACE	;SPACES (20H) TO TERMINAL	
0025 20DC	FD		209 210	JB	BSY,\$	WAITING FOR TERMINATION OF CONVERSION	
			211			,	
0028 A8D9 002A 1200			212 213	MOV	RO,ADDAT BCD_OUT	RESULT TO TERMINAL	
			214		_		
002D OB 002E DAE9			215 216	INC DJNZ	R3 R2,CONV_LOOP	;NEXT CHANNEL ;END OF LOOP	
			217			1-10 01 2001	
0030 740D 0032 1200			218 219	MOV	A,#ODH DISPLAY	CARRIAGE RETURN' TO TERMINAL	
			220				
0035 1200 0038 0200			221 222	CALL LJMP	DELAY	;WAIT A MOMENT! ;AGAIN !	
			223 224				Ţ
			225				
			226 227				
			228				
					· • · · · · · · · · · · · · · · · · · ·		0

		,				
LOC OBJ	LINE	SOURCE				
	229 230					
	231	-				
	232 233	MESSAGE_OU				
	233	HE33AGE_00	•			
003B E4	235	CL		A CALIDOTE	FETCH CHADACTED	
003C 93	236	MO	WL.	A, @A+DPTR	;FETCH CHARACTER	
003D 6006	238	JZ		END_MESSAGE	;END OF MESSAGE ?	· · · · ·
003F 120086	239 240	CA	LL	DISPLAY	CHARACTER TO TERMINAL	1
	. 241			DPTR	4.4.1.1	
0042 A3 0043 80F6	242 243		IC IMP	DPTR MESSAGE_OUT	;NEXT CHARACTER	
0043 8078	244			hessing_oor	, new i on and rea	
	245	END_MESSAG	E:			
0045 22	246 247		T		• • • • •	
	248	•				
	249			••••••		1 T
	250 251	SPACE :				
0046 7420	252	мс		A,#''		
0048 7906	253	MC	V	R1,#6		
	254 255	SPACE_LOOF	·:			
004A 120086	256	C/	ALL .	DISPLAY		
004D D9FB	257	· D.	INZ	R1, SPACE_LOOP	;6 BLANKS TO TERMINAL	
004F 22	258 259	RE	T			
	260	;				
	261 262					
	263	BCD_OUT:				
	264	-				
0050 E8	265 266	м	SV.	A,RO	;HEX NUMBER COMES IN RO!	
	267	HUNDREDS:				
0051 75F064	268		vo	B,#100D		
0054 84 0055 6009	269 270	J	IV 7	AB HUND 1	REPLACE 'O' WITH ' '	
0057 C2D5	271		LR	FO .	;FLAG FOR '0'	
0059 2430	272		DD	A,#30H	CONVERSION TO ASCII	
005B 120086 005E 8007	273 274		ALL JMP	DISPLAY TENS	;TO TERMINAL	
0060 7420	275	HUND1: M		A,#''		
0062 120086	276		ALL	DISPLAY	BLANK TO TERMINAL	
0065 D2D5	277 278	TENS:	ETB	FO		
0067 E5F0	279		ov .	A,B	REMAINDER TO ACCU	
0069 75F00A	280		OV	B,#10D		
006C 84 006D 7003	281 282		IV NZ	AB TEN3	REPLACE 'O' WITH ' '	
006F 20D507	283	TEN1: J	В	FO,TEN2		
0072 2430	284		DD ALL	A,#30H DISPLAY	CONVERSION TO ASCII	
0074 120086 0077 8005	285 286		ALL JMP	ONES	, TO TENTIME	
0079 7420	287	TEN2: M	ov	A,#''		,
007B 120086	288	c	ALL	DISPLAY	BLANK TO TERMINAL	
	289 290	ONES:				
007E E5F0	291	м	ov	A, B	REMAINDER TO ACCU	
0080 2430	292 293		DD ALL	A,#30H DISPLAY	CONVERSION TO ASCII	
0082 120086	293	L		DISCLAI	,10 1261462	
0085 22	295		ET			
	296	;	•••••			
	297 298	;			· · · · · ·	
	299	DISPLAY:				
000/ 200000	300		10	T1 e	WATTING FOR END OF LACT	TRANSMIT
0086 3099FD 0089 C299	301 302		NB LR	ТI,\$ ТI	WAITING FOR END OF LAST	ITHERATI
0088 F599	303	. М	ov	SBUF,A	;SEND CHARACTER	
008D 22	304		ET			

MCS-51 MACRO ASS	EMBLER		APPLICATION NOTE	ON SAB 80515 A/D CONVERTER	19.02.86
LOC OBJ	LINE	SOURCE			
	305	••••••••••			
	306	,			
	307		•••••		
	308	DELAY:			
008E 7F06	309 310	MOV	R7,#6		
0082 7700	311	DELAY_LOOP:	K7,#0		
0090 DDFE	312	DJNZ	Z R5,\$		
0092 DEFC	313	DJNZ	2 R6, DELAY_LOOP		
0094 DFFA	314	DJNZ	2 R7,DELAY_LOOP		
0096 22	315 316	RET			
	317	,			,
	318				
	319	MESSAGE_1:			
0097 1B	320	DB	1BH,'E'	CLEAR SCREEN	
0098 45 0099 0D	321	DB	ODH, OAH	;CR, LF	
009A 0A				••	
009B 0D	322	DB	ODH, OAH		
009C 0A	202	50			
009D 0D 009E 0A	323	DB	ODH, OAH		
009F 0D	324	DB	ODH, CAH		
00A0 0A					
00A1 20202020	325	DB	ı	*** A/D CONVERTER	DEMO ****
00A5 20202020 00A9 20202020					
00AD 20202A2A					
00B1 2A202020					
00B5 2041202F					
00B9 20442020 00BD 43204F20					
00C1 4E205620					
00c5 45205220					
0009 54204520					
00CD 52202020 00D1 44204520					
00D5 4D204F20					
00D9 2020202A					
OODD 2A2A	70/				
OODF OD OOEO OA	326	DB	ODH,OAH		
00E1 0D	327	DB	ODH, OAH		
00E2 0A					
00E3 20202020	328	DB	I,	*** SAB 80515	***1
00E7 20202020 00EB 20202020					
00EF 20202020					
00F3 2A202020					
00F7 20202020					-
00FB 20202053					
00FF 20412042 0103 20202038					
0107 20302035					
010B 20312035					
010F 20202020					
0113 20202020 0117 20202020					
011B 2020202A					
011F 2A2A					
0121 OD	329	DB	ODH, OAH		
0122 OA 0123 OD	330	DB	ODH, OAH		
0124 OA	550	08	JUN, UAN		
0125 OD	331	DB	ODH,OAH		
0126 OA	770				
0127 OD	332	DB	ODH, OAH		

LOC DBJ LINE SOURCE 0128 0A 333 DB DDH, 0AH 0128 00 334 DB DDH, 0AH 0128 00 334 DB DDH, 0AH 0128 00 335 DB ODH, 0AH 0128 0A 336 DB ODH, 0AH 0130 0A 337 DB ODH, 0AH 0131 00 337 DB ODH, 0AH 0132 0A 338 DB ODH, 0AH 0135 0202020 339 DB ' *AN0" *AN1" *AN2" *AN3" *AN4" *AN5" *AN6" *AN7" 0135 0202020 339 DB ODH, 0AH '' *AN3" *AN4" *AN4" *AN5" *AN6" *AN7" 0140 2442202 '' *AN2" *AN3" *AN4" *AN5" *AN6" *AN6" *AN7" '' *AN6" *AN7" <t< th=""><th>MCS-51 MACRO ASS</th><th>EMBLER</th><th></th><th>4</th><th>APPLICATI</th><th>ON NOTE</th><th>ON SAB</th><th>80515</th><th>A/D.</th><th>CONVERTER</th><th></th><th>19.</th><th>.02.86</th><th></th></t<>	MCS-51 MACRO ASS	EMBLER		4	APPLICATI	ON NOTE	ON SAB	80515	A/D.	CONVERTER		19.	.02.86	
0120 00 333 DB 00H, 0AH 0128 00 334 DB 00H, 0AH 0120 00 335 DB 00H, 0AH 0120 00 335 DB 00H, 0AH 0120 00 336 DB 00H, 0AH 0127 00 336 DB 00H, 0AH 0130 00 337 DB 00H, 0AH 0133 00 338 DB 00H, 0AH 0135 02020202 339 DB '*ANO* *AN1* *AN2* *AN3* *AN4* *AN5* *AN6* *AN7* 0135 02020202 339 DB '*ANO* *AN1* *AN2* *AN3* *AN4* *AN5* *AN6* *AN7* 0131 02 0220202 1339 DB '*ANO* *AN1* *AN2* *AN3* *AN4* *AN5* *AN6* *AN7* 0132 0220202 1339 DB '*ANO* *AN1* *AN2* *AN3* *AN4* *AN5* *AN6* *AN7* 0135 20202020 1339 DB '*ANO* *AN1* *AN2* *AN3* *AN4* *AN5* *AN6* *AN7* 0136 20202020 1315 22020202 0145 4513200 0151 2020202 1315 122020202 1315 22020202 0152 2020204 14E 0153 2020204 14E 0153 2020204 14E 0153 2020204 14E 0154 44E322A 0151 2020202 111 A 44E352A 0155 2020204 14E37 0152 2020202 111 A 44E352A 0151 2020202 144E 0152 2020202 144E 0152 2020202 144E 0153 2020204 14E37 0154 44E352A 0155 2020204 14E37 0156 4E352A 0156 4E352A 0157 2020202 144E 0177 0A 341 DB 00 ;END OF TEXT 342 343 344 345 END REGISTER BAHK(S) USED: 0	LOC OBJ	LINE	SOURCE											
0128 00 334 DB 00H, 0AH 0126 00 335 DB 00H, 0AH 0127 00 335 DB 00H, 0AH 0127 00 336 DB 00H, 0AH 0131 00 337 DB 00H, 0AH 0133 00 338 DB 00H, 0AH 0133 00 338 DB 00H, 0AH 0135 20202020 339 DB ' *ANO* *AN1* *AN2* *AN3* *AN4* *AN5* *AN6* *AN7* 0130 302A2020 0141 20202A114E 01515 2AA14E32A 0151 20202020 0145 4E312A20 0152 22A202020 0152 22A2414E33 0159 2A202020 0152 22A2414E33 0159 2A202020 0159 22A202020 0159 22A202020 0159 22A202020 0159 22A202020 0159 2202020A 0159 2202020A 0159 24202020A 0159 242020A 0159 24202020A 0159 242020A 0159 242020A 0159 24202020A 0159 242020A 0150 202020A 0150 202020A 0150 202020A 0150 20204 0150 202020A 0150 2020 2020A 0150 2020 2020A 0150 200 2020A 0150														
0122 00 334 DB 0DH, OAH 0122 00 335 DB 0DH, OAH 0122 00 336 DB 0DH, OAH 0125 00 336 DB 0DH, OAH 0130 00 337 DB 0DH, OAH 0131 00 337 DB 0DH, OAH 0132 0A 0333 DB ODH, OAH 0133 0D 338 DB ODH, OAH 0133 0D 339 DB ' *AND* *AN1* *AN2* *AN3* *AN4* *AN5* *AN6* *AN7* 0133 020202020 339 DB ' *AN0* *AN1* *AN2* *AN3* *AN4* *AN5* *AN6* *AN7* 0131 020202020 1312 20202020 1312 20202020 1312 202020 0144 212222020 1315 220202020 1315 220202020 1315 2202020 0151 2202020 1315 2202020 1315 2202020 1315 2202020 0152 20202A114E 1314 1414524A 1414 0153 2202020 1315 2202020 1314 1414524A 0153 220202A1 1314 1414524A 1414 1314 2414537 141414532A 1414 141414532A 0175 20202020		333	D	B	0DH,0	AH								
10122 DA 10122 DA 10122 DA 10122 DA 10122 DA 10122 DA 10122 DA 10122 DA 1013 DD 1013 DD 1014 D202020CA 1014 D202020CA 1014 D202020CA 1014 D202020CA 1014 D202020CA 1015 D202A14E 1015 D202AE 1015 D202AE		77/			004.0									
D120 00 335 DB 0DH, 0AH 0122 00 336 DB 0DH, 0AH 0130 00 337 DB 0DH, 0AH 0131 00 337 DB 0DH, 0AH 0132 0A 338 DB 0DH, 0AH 0133 00 338 DB 0H, 0AH 0135 02020202 339 DB '*AN0* *AN1* *AN2* *AN3* *AN4* *AN5* *AN6* *AN7* 0130 2020414E 339 DB '*AN0* *AN1* *AN2* *AN3* *AN4* *AN5* *AN6* *AN7* 0130 302A2020 0141 20202A1 0142 202020A 0142 202020A 0144 2520202A 0155 2A414E33 0159 2A2020 0155 2A414E33 0159 2A20200 0155 22A414E 0161 342A2020 0150 202A414E 0161 342A2020 0175 2A202020A 0175 2A202020A 0175 2A202020A 0175 2A414E33 0159 2A4020 0175 2A414E37 0177 0A 341 DB 00H, 0AH 0177 0A 341 DB 00H, 0AH 0178 0A 00H,		554	U	в	004,0	en .								
D12E 0A 012F 0D 336 DB 0DH, 0AH 0131 0D 337 DB 0DH, 0AH 0133 0D 338 DB 0OH, 0AH 0135 0A 0135 20202020 339 DB ' *ANO* *AN1* *AN2* *AN3* *AN4* *AN5* *AN6* *AN7* 0139 202A14E 0130 302A020 0141 20202A1 1045 4 E812A20 0149 2020202A 0151 2020202 0155 20202A1 0152 20202A1 0153 2020204 0154 20202020 0155 20202A1 0155 20202A1 0155 20202A1 0155 20202A1 0156 20202A1 0157 2020202 0159 22A14E33 0158 202020A 0159 22A20200 0159 22A20200 0159 22A20200 0159 22A314E33 0159 22A20200 0159 22A314E33 0159 22A314E33 0159 22A314E33 0159 22A314E33 0159 22A314E33 0159 22A314E33 0159 22A314E33 0159 22A314E33 0159 22A314E33 0177 20202020 0177 22A414E33 0178 00 340 DB 00H, 0AH 0177 0A 0177 0A 0178 00 341 DB 00 ;END OF TEXT 3423 343 344 345 END REGISTER BANK(S) USED: 0		335	D	в	ODH, O	AH								
0131 00 337 DB 0DH, 0AH 0132 0A 0133 0D 338 DB 0DH, 0AH 0135 20202020 339 DB ' *ANO* *AN1* *AN2* *AN3* *AN4* *AN5* *AN6* *AN7* 0139 202414 0139 202414 0145 4€132A2 0146 44€32A 0151 202020A 0152 202414E 0155 202020A 0155 202020A 0155 202020A 0155 202020A 0155 202020A 0156 202020A 0156 202020A 0157 202020A 0156 202020A 0157 202020A 0157 202020A 0157 202020A 0158 202020A 0159 2A2414E 0159 2A20200 0150 202020A 0159 2A240200 0150 202020A 0159 2A240200 0150 202020A 0159 2A240200 0150 202020A 0159 2A240200 0150 202020A 0159 2A240200 0150 202020A 0159 2A20200 0150 202020A 0159 2A240200 0150 202020A 0159 2A240200 0150 202020A 0177 2020200 0177 204 0177 204 0178 00 340 DB 0DH, 0AH 0177 0A 0177 0A 0178 00 341 DB 00 ;END OF TEXT 342 343 344 345 END REGISTER BANK(S) USED: 0					-									
0131 00 337 DB 0CH,0AH 0132 0A 338 DB 0CH,0AH 0133 00 338 DB ' *ANO* *AN1* *AN2* *AN3* *AN4* *AN5* *AN6* *AN7* 0139 20240142 0130 30242020 0141 2020241 0141 2020241 0145 4£312A20 0144 262020A 0149 202020A 0151 202020A 0151 202020A 0151 202020A 0151 202020A 0152 2020414E 0161 342A200 0152 2020441E 0161 342A200 0152 2020241 0152 2020241 0152 2020241 0152 2020241 0152 2020241 0152 2020241 0152 2020241 0152 2020241 0152 202020A 0154 2414E37 0176 00 340 DB 0DH,0AH 0177 0A 341 DB 00 ;END OF TEXT 342 343 344 345 END REGISTER BANK(S) USED: 0		336	D	B	00H,0	AH								
0132 0A 0133 0D 338 DB OOH, OAH 0135 20202020 339 DB ' *AN0* *AN1* *AN2* *AN3* *AN4* *AN5* *AN6* *AN7* 0135 20202020 104 20202020 0145 4E312A20 0149 20202020 1049 20202020 0149 20202020 1019 20202020 0155 20202020 1015 2020414E 0155 20414E333 0159 20202020 1015 2020414E 0155 20202020 1015 2020414E 0155 20202020 1015 2020241 0156 20202020 1015 2020241 0157 20214123 0158 20202020 1015 2020241 0159 20202020 1015 20200 1015 202000 1015 202000 1015 202000 1015 202000 1015 202000 1015 202000 1015 2000 1000 1		337	•		008.0									
0135 20202020 339 DB ' *ANO* *AN1* *AN2* *AN3* *AN4* *AN5* *AN6* *AN7* 0135 202A14E 0130 302A2020 0141 20202A1 0145 4E312A20 0149 2020202A 0149 2020202A 0155 2A2102020 0155 2A2102020 0155 2A2102020 0155 2A214E33 0159 20202A114E 0158 20202A1 0158 20202A1 0158 20202A1 0158 20202A1 0159 202020A 0159 2020A 0159 2000A 0159 2000A 0159 2000A 0159 2000A		551	5		0011,0									
0135 20202020 339 DB ' *ANO* *AN1* *AN2* *AN3* *AN4* *AN5* *AN6* *AN7* 0139 302A2020 0141 20202A1 0142 20202A1 0149 2020202A 0149 2020202A 0149 20202020 0155 20202020 0155 20202020 0155 20202020 0155 20202020 0150 20202020 0150 2020202A 0152 2020414 0169 4E352A20 0150 2020204 0150 2020204 0174 14E362A 0175 20202020 0160 2020202A 0174 14E362A 0175 20202020 0160 2020202A 0175 20202020 0160 2020202A 0176 14E362A 0177 0A 0180 00 341 DB 00 ;END OF TEXT 3422 3433 344 345 END REGISTER BANK(S) USED: 0		338	D	В	ODH,0/	AH								
0130 302A214E			-											
0130 30242020 0141 20202A41 0145 42312A20 0149 2020202A 0150 202414E 0155 24202020 0150 202414E 0155 24202020 0156 20202A414E 0166 4252A20 0160 202020A 0170 2A414E37 0175 2020202 0179 2A414E37 0176 0D 340 DB 0DH, 0AH 017F 0A 017F 0A 017F 0A 017F 0A 0180 00 341 DB 00 ;END OF TEXT 3422 343 344 345 END REGISTER BANK(S) USED: 0		339	D	B	'	*ANO*	*AN1*	*	ANZ*	*AN3*	*AN4*	*AN5*	*AN6*	*AN7*
0141 2020241 0145 4E312A20 0140 414E322A 0151 2020202 0155 2A414E33 0159 2A202020 0150 202A414E 0161 342A2020 0165 2020204 0165 2020204 0174 414E362A 0175 2020202A 0175 20202020 0179 2A414E37 0177 4414E37 0177 00 340 DB 0DH,0AH 0180 00 341 DB 00 ;END OF TEXT 342 343 344 345 END REGISTER BANK(S) USED: 0														
0140 414E322A 0151 20202020 0155 2A14E33 0159 2A20200 0150 202414E 0161 342A2020 0150 20202A1 0150 20202A1 0150 20202A2 0160 2020202A 0171 414E32A 0175 20202020 0170 2A14E37 0177 0A 0170 2A 0176 0 340 DB 0DH, 0AH 0180 00 341 DB 00 ;END OF TEXT 342 343 344 345 END REGISTER BANK(\$) USED: 0														
0140 414E322A 0151 2020200 0155 24202020 0155 24202020 0155 20202414E 0161 34282020 0165 2020241 0176 2020202A 0177 414E37 0177 00 340 DB 0DH, 0AH 0177 00 340 DB 0DH, 0AH 0176 00 341 DB 00 ;END OF TEXT 342 343 344 345 END REGISTER BANK(S) USED: 0														
0151 20202020 0155 22414E33 0159 222020 0150 2020414E 0161 3422020 0150 2020241 0169 2020202 0171 414E352A20 0175 20202020 0177 204 0176 20 0176 20 0177 0A 0176 00 340 DB 0DH, OAH 0180 00 341 DB 00 ;END OF TEXT 342 343 344 345 END REGISTER BANK(S) USED: 0														
0155 2A14E33 0159 2A202020 0150 202A14E 0163 2A2020 0165 2020202A 0169 4E352A20 0169 4E352A20 0170 1414E362A 0177 02A14E37 0177 00 340 DB 0DH,0AH 0170 0A 340 DB 0DH,0AH 0170 0A 341 DB 00 ;END OF TEXT 342 343 344 345 END REGISTER BANK(S) USED: 0														
D159 2A202020 D150 2024414E D161 342A2020 D165 20202441 D169 4E352A20 D169 4E352A20 D170 2020202A D171 414E362A D177 2A414E37 D177 2A414E37 D177 2A414E37 D177 2A4 D176 D0 340 DB 0DH, 0AH D177 0A ;END OF TEXT 342 342 343 344 345 END REGISTER BANK(S) USED: 0														
0150 2024414E 0161 342A2020 0165 202024A1 0169 4E352A20 0160 202020A 0171 414E362A 0175 20202020 0177 2A4 0176 00 340 DB 0DH, 0AH 0176 0A 0176 00 341 DB 00 ;END OF TEXT 342 343 344 345 END REGISTER BANK(S) USED: 0														
0161 34242020 0165 20202441 0169 4E352420 0176 2020202A 0177 24414E37 0177 24414E37 0177 24414E37 0176 DD 340 DB 0DH, 0AH 0170 2A 0176 DD 340 DB 0DH, 0AH 0180 00 341 DB 00 ;END OF TEXT 342 343 344 345 END REGISTER BANK(S) USED: 0														
0165 20202A41 0169 4E352A20 0174 4L4E362A 0175 20202020 0179 2A414E37 0170 2A 0176 0D 340 DB 0DH, 0AH 017F 0A 0180 00 341 DB 00 ;END OF TEXT 342 343 344 345 END REGISTER BANK(S) USED: 0														
0169 4E352A20 0160 202020A 0177 414E362A 0177 5 20202020 0170 2A 0170 2A 0170 0 340 DB ODH,OAH 0170 0 341 DB 00 ;END OF TEXT 342 343 344 344 345 END REGISTER BANK(S) USED: 0														
0171 414E362A 0175 2020200 0179 2A414E37 0170 2A 017F 0D 340 DB 0DH, 0AH 017F 0A 0180 00 341 DB 00 ;END OF TEXT 342 343 344 345 END REGISTER BANK(S) USED: 0														·
0175 20202020 0179 2A414E37 0170 2A 017E 0D 340 DB 0DH, 0AH 017E 0D 341 DB 00 ;END OF TEXT 342 343 344 345 END REGISTER BANK(S) USED: 0												•		
0179 2A414E37 0170 2A 017E 0D 340 DB 0DH, 0AH 017F 0A 01 342 343 344 344 345 END REGISTER BANK(S) USED: 0														
0170 2A 017E 0D 340 DB 0DH, 0AH 017E 0A 0180 00 341 DB 00 ;END OF TEXT 342 343 344 344 345 END REGISTER BANK(S) USED: 0														
017E 0D 340 DB 0DH,0AH 017F 0A 341 DB 00 ;END OF TEXT 342 343 344 345 END REGISTER BANK(S) USED: 0														
017F 0A 0180 00 341 DB 00 ;END OF TEXT 342 343 344 345 END REGISTER BANK(S) USED: 0		7/0			00.0									
0180 00 341 DB 00 ;END OF TEXT 342 343 344 345 END REGISTER BANK(S) USED: 0		340		3	UDH, 0/	AH .								
342 343 344 345 REGISTER BANK(S) USED: 0		341	D	2	00									
343 344 345 END REGISTER BANK(S) USED: 0				•	00					, END OF				
345 END REGISTER BANK(S) USED: 0														
REGISTER BANK(S) USED: 0														
		345	E	D										
ASSEMBLY COMPLETE, NO ERRORS FOUND	REGISTER BANK(S)	USED: 0												
	ASSEMBLY COMPLETE	, NO ERROR	S FOUND											

SIEMENS

March 1990

8

On-Chip A/D Converters in Siemen's SAB 8051-Based Microcontrollers

SAB-51 Family of Microcontrollers

Application Note

© Siemens Components, Inc.

This application note discusses technical details of the on-chip A/D converter integrated into several members of the SIEMENS SAB 8051 Microcontroller Family. The information is a continuation of an earlier application note on the A/D converter in the SAB 80515/80535.

Operation of the A/D Converter in the SAB 80515

The technical details given are background information on this on-chip peripheral, intended to help in designing these microcontrollers into diffcult and electrically noisy environments.

This application note includes discussion of the A/D Converter specification, as well as recent updates to this specification.

SAB 80515's A/D Converter Architecture

The following description of the on-chip A/D converter unit (ADCU) concentrates on hardware and specification details of this particular microcontroller peripheral.

Conversion Principle

The ADCU conversion uses the successive approximation principle. Instead of an R-2R resistor ladder with which the analog input is compared, the ADCU uses an array of 256 small capacitors which are charged through the analog input. These capacitors not only perform the sample-and-hold function, but are also grouped into the binary weights used in the conversion process itself.

The "top ends" of all capacitors are connected to the comparator and, through the switch S1, to the positive reference voltage VAREF. The comparator itself is described in the next section. The connection to the "bottom" of each group of binary weighted capacitors can be connected to either the selected analog input or to one of the two internal reference voltages.

For the sake of explanation, it is assumed that the internal reference voltages are connected directly to the reference voltages applied to pins VAGND and VAREF.

Figure 1 shows a block diagram of the ADCU. The conversion process itself is described in the following three steps. The timings used in the explanation are based on the use of a crystal oscillator of 12 MHz.

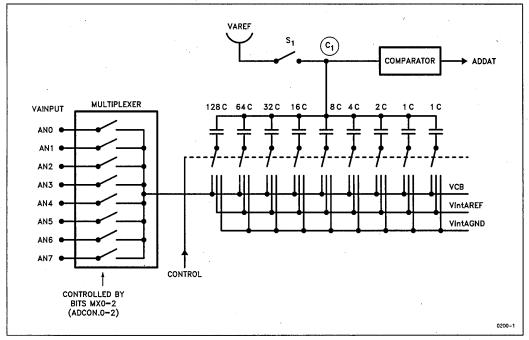


Figure 1. Detailed Block Diagram

Step 1 (1.0 µs-2.0 µs)

At the start of the conversion process, switch S1 is closed. This switch connects the top of all capacitors to the reference voltage VAREF. The bottom of each group of capacitors is connected to one analog input by selecting one of eight multiplexer channels with bits ADCON0–ADCON2.

Interpretation of Step 1

This step is the first part of the sample phase and is known as the load time (TL) in the specification. During these 2 μ s, the complete capacitor-array has to be precharged in the analog input through the VAREF-pin. At the end of this period, the voltage VCB at the bottom of the capacitor network must be the same as the analog input being measured (= VAINPUT).

Step 2 (3.0 µs-5.0 µs)

Switch S1 is opened. The top of the capacitor array remains connected to the high impedance comparator input and the bottom to the analog input. During the next 3 μ s, the comparator is adjusted to the voltage of node C1 (for details of the comparator see next section). This potential still equals to the voltage at VAREF since node C1 was precharged to that voltage during step 1.

Interpretation of Step 2

This second part of the sample phase follows the load phase. The analog input is still connected to the bottom of the capacitor array. Any change in the voltage at the analog input pin such as a spike or transition will be capacitively coupled to node C1. This will disturb the adjustment of the comparator. During this time the analog input must therefore be held strictly constant.

Step 3 (Remaining Conversion Time)

During this time the actual conversion process (successive approximation) takes place:

The bottom of each group of capacitors is disconnected from the analog input and pulled to VINTAGND. Node C1 is currently at a potential VC1 = (VAREF - VAINPUT).

The first group of capacitor-cells (128C, corresponding to the Most Significant Bit (MSB)), is then switched to VINTAREF. This causes a charge transfer in the capacitor array and thereby a superimposition of VC1 with VAREF/2, i.e. the potential of node C1 alters to become VC1 = (VAREF - VAINPUT + VAREF/2). The new VC1 is now compared to VAREF (adjustment-voltage of the comparator). Depending on the result of the comparison, this 128C-group remains at VINTAREF (for VC1 < VINTAREF) or is switched back to VINTAGND (for VC1 > VINTAREF).

The same process is repeated with the next group of capacitor-cells (in this case the 64C capacitor). The conversion is complete when the last capacitor-group (1C) of one capacitor cell has been compared.

Upon completion of the comparison, the voltage VC1 applied to the comparator can be calaculated by the formula:

by the formula. $VAREF - VAINPUT + \sum_{i = 0}^{7} bi \times \frac{VINTAREF}{2^{8} - i}$

All bits bi (i = 0 to 7) are latched in the position of the switches at the bottom of each capacitor group, thereby providing the result of the conversion process.

Interpretation of Step 3

The actual conversion is done in step 3 when the analog input voltage is measured against the weighted capacitor network. Since the analog input is disconnected from the capacitor network, changes at the analog input no longer affect the conversion result. Note that during this time, charge transfer in the capacitor-array still causes dynamic current spikes drawn from the analog reference. However, from the user's point of view, step 3 is the least critical phase of the whole conversion process.

The Comparator

The accuracy of an A/D-converter is very dependent on the comparator used. The previous section, especially step 2, stated that the ADCU comparator is susceptible to noise or spikes through the analog input pin during certain time windows. A standard comparator (such as is used in a common OP-AMP application) compares the input value with a reference, which is always present. The ADCU comparator can be viewed as an inverting three-stage amplifier with some coupling capacitors. It is precharged initially with a reference voltage which is then used as a threshold point.

The principle of this three-stage comparator can be explained through the function of one stage. It consists of a coupling capacitor in series with an inverting amplifier as shown in Figure 2a. A feedback switch allows the inverter's output to be short-circuited with its input. The feedback-switch is closed during the load phase of the comparator-stage, as discussed in step 1. This causes the coupling capacitor to buffer the differential voltage VD between the input stage and the operating point of the inverting amplifier. Opening the feedback switch activates the comparator at the previously adjusted potential (Figure 2b). The amplifier responds to small variations from this potential with an amplified output. A concatenation of three of these stages results in an amplification which digitizes even the smallest variation at the comparator input.

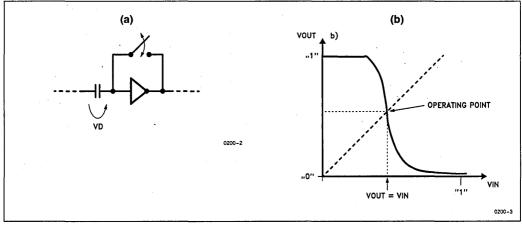
Additionally, the three stages of the adjustment process can be serialized by opening the three feedback switches one after another. This compensates for unintentional noise in the coupling capacitors which might be generated by opening the switches during the 3 μ s duration of step 2 mentioned above. This explains why the comparator is susceptible to noise during this period. Any spikes or noise capacitively coupled to its input during the last phase of the sample time might shift the comparator threshold.

A smooth analog input signal should be supplied during the whole sample phase (TS). A transition on the analog input signal during the critical time of the sample phase may give unexpected results. On the other hand, this comparator concept, combined with the conversion principle described above, provides high immunity against temperature changes and results in a narrow variation of device parameters during production.

Expansion and Update of the ADCU Specification

The ADCU specifications in the datasheet give generally condensed information on A/D converter characteristics. This section provides the reader with a more detailed interpretation of the main points in the specification. It also updates the specification with more recent information.

VAREF/VAGND Voltages


The limits of the device reference voltage inputs are a function of the microcontroller type and operational supply voltage. Some devices have a standard ratiometric ADCU on board, which allows an adjustment of the reference over a wide range of external voltages. Other devices have internally adjustable reference voltages, the voltage range being controlled by software.

The latter type cannot function correctly with any variation in the reference voltages. The voltages applied to VAREF and VAGND are specified within a very narrow range of the supply voltage for such devices.

Whichever type of microcontroller is used, the reference voltage, once adjusted to the desired value within specifications, must be held steady during the entire conversion process. This, in turn, requires a low impedance to the reference source. Reference voltage impedance and analog source impedance requirements are discussed in the following sections.

For reference voltage specifications refer to either the A/D Converter Characteristics given in the respective datasheets or to the list given below in Table 1.

For all parts VAREF – VAGND must be greater than 1V or four steps of the internally programmable reference voltages, whichever is less.

				74161		
Device	VSS	VCC	VAGNDmin	VAGNDmax	VAREFmin	VAREFmax
SAB 80512	0٧	5V ±10%	VSS - 0.2V	VAREF – 1V	VAGND + 1V	VCC + 5%
SAB 80515	0V	5V ±10%	VSS - 0.2V	VSS + 0.2V	VCC - 5%	VCC + 5%
SAB 80C515	0V	5V ±10%	VSS - 0.2V	VSS + 0.2V	VCC - 5%	VCC + 5%

Table 1. Voltage Limits on VAREF and VAGND

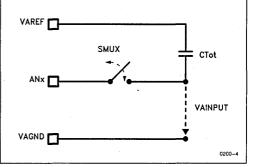
Timing

Timing requirements have already been discussed in the description of the conversion principle.

The load time TL is an important ADCU characteristic and has therefore been added to the specification.

The load time TL is specified as the period during which the ADCU internal capacitance must be charged by the analog source. TL is the first part of the sample time TS. The ADCU uses the remaining part to adjust its comparator. The entire conversion time TC consists of TS (which includes TL) and a part during which the conversion is performed. TC is specified in the datasheet and differs slightly among device types.

Analog and Reference Voltage Source Impedance Requirements


A/D Converter Characteristics in the datasheets contains absolute values required for impedances of the reference and analog source only. This section gives pointers on determining the ADCU's requirements on the analog part of an application as well.

Impedance of the Analog Source

Two parameters from the ADCU's specification are necessary to determine the maximum impedance of a signal source such as a sensor:

- --- the load time TL
- the maximum capacitance of the on-chip capacitor array (CTot).

Figure 3 shows a simple equivalent circuit for the ADCU during load time TL. At the moment a conversion is started, a multiplexer switch to the selected channel is closed and the analog input is connected to the internal capacitors of the ADCU. This is shown as SMUX in Figure 3.

Figure 3. Equivalent Circuit for the ADCU during Load Time

The ADCU's entire internal capacitance consists of the capacitor array, which is typically 25 pF, and stray capacitance from the substrate equivalent to another 20 pF-40 pF to substrate. The actual amount depends on the microcontroller itself. In any case, the internal capacitance total must be charged by the analog source. This implies that a constant input impedance cannot be specified for the ADCU.

The switch SMUX and the internal traces to the capacitors array have very low resistance. During TL, the ADCU can be regarded as a capacitor with a capacitance of CTot. The internal resistance of the whole analog circuitry connected to the analog inputs of the ADCU can be defined as RI. RI and CTot form an RC-element, with time constant t determined by "t = RI * CTot".

Given that an accuracy better than 0.05% is required, the formula

 $VC = (1 - e^{-TL}/\tau) * VAINPUT$

gives $\tau = 0.13 * TL$

As an example, assume that the load time of the ADCU is TL = 2 μ s and its maximum internal capacitance CTot = 65 pF. The above formulae result in a maximum impedance for the analog source of

 $RI = 0.13 TL/CTot = 4 k\Omega$

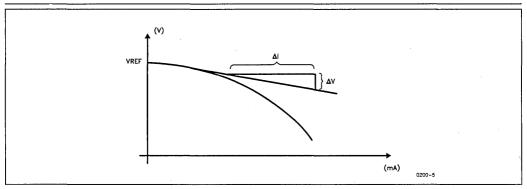


Figure 4. Definition of the Reference Supply Impedance

Observing the above rules for the analog circuit impedance ensures that at least 99.95% of VAINPUT is sampled during load time TL. Sampling actually continues during the whole time TS to improve the match between VAINPUT and the voltage at CTot.

The value for RI given above is meant as an example. For a given application, the calculation should be done using the values for CTot and the accuracy desired.

Impedance of the Reference Source

During the conversion process, each group of capacitor cells is individually switched to either VAREF or VAGND. Due to this switching and associated charge transfers in the capacitor array, the reference source must supply additional current over and above the current some parts use to generate internal reference voltages.

The reference output impedance must be low enough to supply this additional current and is therefore specified as a differential impedance. The diagram in Figure 4 illustrates the differential impedance, rD, which is given by the formula:

 $rD = \frac{dV}{dI}$ where V = VREF

The actual value for rD can be referenced under A/ D converter characteristics in the the datasheet.

3.4 Specification of Errors

Several error sources which modify the ideal transfer characteristic of an A/D converter were defined and discussed in the application note titled "Operation of the A/D converter in the SAB 80515/80535". The error sources included:

- Offset Error
- Integral Non-Linearity
- Differential Non-Linearity
- Gain Error

Figure 5a shows a diagram of the ideal transfer characteristic of any A/D converter. A 3-bit converter is shown here for clarity. All analog values within a given quantum are represented by the same digital value, which corresponds to the mid value of this quantum. Connecting all of these mid values leads to a straight line, which, for an ideal A/D converter, is the diagonal in the 1st quadrant. This also implies that the first step to the digital value 01 occurs when an analog input voltage is applied which corresponds to a 1/2 LSB. All error definitions stated in the datasheet refers to this ideal transfer characteristic.

All the above errors affect the A/D converter ideal transfer characteristic. Their effect is defined as the Total Unadjusted Error (TUE), which is now an A/D converter characteristic.

The TUE of the ADCU is not simply the sum of several individually measured errors. Since some ADC errors can cancel each other, e.g. the offset and the gain error, the Total Unadjusted Error can be less than the sum of individual errors.

Some ADCU errors can be compensated for. A negative offset error can be adjusted in software by subtracting known offset from the actually measured value. The TUE, however is an "unadjusted" error, which means that no correction method has been taken into account. It therefore gives a true image of the converter accuracy.

Figure 5b shows the TUE as a maximum deviation of the actual transfer characteristic (bold line) from the ideal transfer characteristic corresponding to the full scale range. The TUE defines the range of the transfer characteristic where the real value must lie.

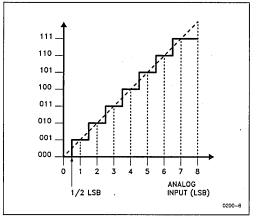
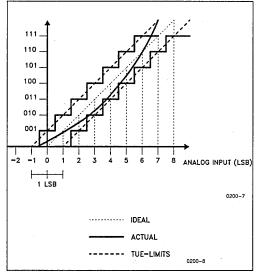



Figure 5a. Ideal Transfer Characteristic

Accuracy/Resolution in a Reduced Reference Voltage Range

General Considerations

All A/D converter units of the SAB 8051 family are ratiometric A/D converters. Some (e.g the SAB

80512) allow a reduction of the reference voltage range external to the chip, others (e.g., the SAB 80515) provide software-adjustable internal reference voltages. This section deals with the effect of reducing the reference voltage range on ADCU accuracy.

Generally, the absolute **accuracy** of an 8-bit A/D converter cannot be improved by using a smaller reference voltage range. The errors in an ADCU originate in physical phenomena like temperature substrate noise, etc., and these cannot be reduced by reducing the reference voltage.

However, this is not the point in ratiometric A/D converters. The main advantage of these converters is that they are able to provide higher resolution. Since the distinction between accuracy and resolution can become a source of confusion, it is worth discussing further.

Accuracy versus Resolution

The advantage of ratiometric A/D converters is that they increase the resolution of the analog input. Increasing the resolution just means that the quantum of analog values which corresponds to one digital value is reduced.

In case of the Siemens Microcontrollers, this is performed by selecting a smaller reference voltage range, i.e. by varying the lower or higher reference voltage. All ADCUs in the Siemens SAB 8051 family provide the equivalent of a 10-bit resolution by a reduction of the reference voltage range to as little as 1V. An ADCU such as that in the SAB 80515 allows for a dynamic (software controlled) variation of the reference voltage. Therefore this converter, which is actually an 8-bit converter, can look like a 10-bit converter over the full conversion-range from 0V to 5V using appropriate software. The absolute accuracy of this "10-bit converter", is the absolute deviation between the analog input and the digital result. This is not necessarily any better than that of the "8-bit

8

converter" (VAGND = 0V and VAREF = 5V), although it can be improved by implementing correction methods in the control program. The resolution, on the other hand, is improved by using a smaller reference voltage range. An analog interval which gave one digital step with a 5V reference voltage gives four digital steps in the same interval, and therefore an additional two bits of resolution.

The adjustable reference voltage feature, in combination with software error correction algorithms make precise A-to-D conversions with low-cost onchip converters possible.

Errors in a Reduced Reference Voltage Range

All error definitions in the datasheet A/D converter characteristics refer to the standard conversion range of 0V to 5V, (the "8-bit range"). For the purpose of the following discussion, the term "LSB8" is used to describe one LSB (least significant bit) over this range. Similarly, "LSB10" describes one LSB of a conversion made within a range of a quarter of the full reference voltage range.

As discussed above, the four different errors which affect the accuracy of an A/D converter are:

Offset Error Gain Error DNLE (Differential Nonlinearity Error) INLE (Integral Nonlinearity Error)

This section discusses the effect of a variation in reference voltage range on these errors.

Offset- and Gain Error, Integral Nonlinearity

These errors are systematic errors. This means that they occur independent of application, disregarding temperature drift. Reducing of the reference voltage range will not reduce these errors.

Take as an example an ADCU with a reference voltage range of VAGND = 0V and VAREF = 5.0V. Assume a negative offset error of $\frac{1}{2}$ LSB8 and no other errors. This means that the first transition of the transfer characteristic (the change from 00H to 01H) occurs at an input voltage of VAINPUT = 0.00V. According to the ideal transfer characteristic, the absolute offset error is approximately - 10 mV. If we now reduce the upper internal reference voltage to 1.25V, then 1 LSB (now an "LSB10") of the digital result now refers to a quantum of approximately 5 mV. For VAINPUT = 0.00V, with the same Offset error the conversion result is 2 LSB10 (ADDAT = 02H). Thus, an absolute offset error is independent of the reference voltage selected. In other words, the error is the same regardless which "window" within the full scale range is selected.

A similar analysis shows that the same applies to both the Integral Nonlinearity Error and to the Gain Error if these are considered separately.

Both the Offset Error, the Integral Nonlinearity Error can be disregarded for our ADCUs, since they can be compensated for in software. The Gain Error is more significant. Since it is given as the difference in slope measured at its biggest extent, it is by definition a scaled error comparison of an actual A-to-D converter transfer characteristic and comparing with an ideal characteristic shows a combination of errors. Some of these compensate each other and can be determined only at certain points on the transfer characteristic.

To determine the actual "absolute error" at a given input voltage, both Gain and Offset Errors must be summed. Differential Nonlinearity is not considered yet. It will be discussed in detail later. The following example demonstrates Gain and Offset errors for different reference voltage ranges.

To simplify matters, again consider the 3-bit converter. This has an Offset error of -2 LSB and a Gain error of +1 LSB over full range. Figure 6 shows the effect of both errors on the transfer characteristic of the converter. Reducing the reference voltage range has no influence on the absolute accuracy of the conversion. The dotted window in Figure 6 shows the reduced reference voltage range. In this case, it is half the size of the full scale range. Using a terminology similar to that above, LSBs are therefore LSB3 in the full range and LSB4 in the reduced.

The dotted window in Figure 6 illustrates that changing the reference voltages just extracts a window out of the full scale range and increases resolution. The actual Offset and Gain Error line crosses the y-axis of the small diagram at the binary value 011 three LSB4 units. This three LSB4 error is a combined error of four LSB4 Offset Error and -1 LSB4 Gain Error. The Gain Error in the reduced range is scaled down to one LSB4 ($\frac{1}{2}$ LSB3) because this error is measured in the middle of the transfer characteristic. The lower reference voltage of the reduced range is at 2 LSB3 and the offset error also 2 LSB3, which together gives 4 LSB3 on the x-axis. This is the middle of the full range.

Summarising, it can be said that Offset-, Gain-Error and Integral Nonlinearity of the ratiometric A-to-D converters in the SIEMENS 8051-family can be regarded as absolute errors. Absolute errors are the deviation of the actual from the ideal value at a given input voltage. Changing the reference voltages has no effect on these errors. The number of LSBs in which the errors are expressed depends on the reference range and therefore on the "LSB-Unit" (LSB8 or LSB10).

Differential Nonlinearity Error (DNLE)

The Offset and Gain Error, described above are, in most cases, bigger than Nonlinear Errors. On the other hand, they are stable and can be compensated for by software.

The Differential Nonlinearity Error is a statistical error with more than one source. A major part is due to the noise inherent in any mixed analog/digital system. This noise devices from the controller's environment on the PC-board and from the device itself. Even good A/D Converter test-boards carry some noise on the analog lines. Distinguishing which part of the DNLE is induced by the test equipment and which by the chip itself is difficult. There is also a small DNLE in the A/D-converter which can't be avoided. This "self-induced" DNLE comes from onchip noise and noise on the chip's substrate. More complex origins are inherent in conversion method principles. Empirical measurements show that DNLE component is not a constant error and therefore varies with reference voltage range. The DNLE due to the converter itself in fact shows a dependence to

the reference voltage selected. *This* DNL component scales with the size of the window selected.

10-Bit Resolution?

The datasheet error definition disagrees with the 10bit resolution claimed above. 10-bit resolution is possible, even with a differential nonlinearity error of 1 eight-bit-LSB (LSB8) maximum. This corresponds to approximately 20 mV.

A DNLE of 1 LSB8 would result in missing codes in the transfer characteristics of the 10-bit range, which means that 10-bit resolution appears to be "inappropriate".

However, the DNLE discussed in the above paragraph is an exception to the principle of "absolute errors". The "self-induced" DNLE of the chip presents no problem for 10-bit resolution. The problem is the chip's susceptibility to external noise. Keeping this noise as small as possible is a major task for the design engineer. Further application notes will give some design hints for device connections necessary for high resolution with minimal errors.

In summary, the typical DNLE is generally under 1 LSB8 and depends heavily on the PC-board environment in which the microcontroller is operated. Observing the design rules for dealing with weak analog signals leads to a typical DNLE of less than 1 LSB10 (10-bit LSB) with no missing code.

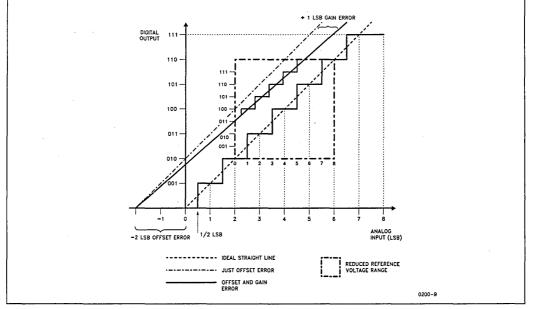


Figure 6. Offset and Gain Error in a Reduced Reference Voltage Range

All errors other than DNLE are systematic errors. They affect the absolute accuracy of A/D conversion, but cannot lead to missing codes and therefore don't affect resolution.

Errors in the Internal Reference Voltages

For microcontrollers which provide on-board ADCUs with programmable reference voltages, another relevant parameter is the accuracy of the internal reference voltages. The absolute accuracy of a conversion result measured in a reduced reference voltage range also depends on the accuracy with which the internal reference voltages can be adjusted.

The internal reference voltages are generated by a simple digital-to-analog converter. It is essentially a tapped resistor ladder consisting of 16 equal resistors.

A write-to-DAPR instruction connects the internal reference voltage nodes to the appropriate taps. The lower and upper nibble of the SFR DAPR determines the tap position for the lower and higher reference voltage respectively. The accuracy of the internal reference voltages therefore depends on the accuracy of the internal resistor network. In the ideal case where all resistors of the network have exactly the same value, the differential voltage between two taps of the resistor ladder is exactly 1/16 of the reference voltage applied externally.

Slight variations in the ratio of the resistance values are inherent in the device and are unavoidable. These variations result in a so-called internal reference error which is now a part of the A/D Converter Characteristics specification.

This VINTREFERR defines the maximum deviation of the actual internal reference voltage from the ideal value. The ideal value depends on the reference voltage applied to the chip. The formulae given in the user's manual of the SAB 80515/80535 can be used to calculate the internal reference voltages.

Example 1: ADDAT = VAGND = 0.00V VAREF = 5.12V $\begin{cases}
VINTAGND = VAGND + \frac{DAPR (0-3)}{16} \bullet (VAREF - VAGND) = 1.280V \\
VINTAREF = VAGND + \frac{DAPR(4-7)}{16} \bullet VAREF - VAGND) = 3.840V
\end{cases}$

The above values for VINTAGND and VINTAFER are the ideal values. With VINTREFERR = \pm 15 mV, we get the following:

1.265V < VINTAGND < 1.295V

3.825V < VINTAREF < 3.855V

The resolution of the conversion in this example is 10 mV (9-bit). That means that in a 9-bit conversion with a reference voltage range of DAPR = C4H, the above deviation of the internal reference voltage must be taken into account.

Consequences of VINTREFERR

The importance of this error depends on the application.

The following two examples show the effect of the VINTREFERR in typical applications:

A. Measuring Absolute Voltages

This is a standard application for any A/D-Converter.

For the calculation of the Total Unadjusted Error in a **reduced reference voltage range**, VINTREFERR must be taken into account. If both internal reference voltages are set to taps of the resistor ladder, then the VINTREFERR or VINTAGND can be considered as an additional offset error. VINTREFERR of VINTAREF is additional gain error in the conversion. The following example shows the effect of the VINTREFERR on the accuracy of the conversion:

VAGND = 0.00V	DAPR = 84H
VAREF = 5.12V	VAINPUT = 1.500V
(VINTAGND = 1.280V (ideal)	
VINTAGND = 1.280V (ideal) VINTAREF = 2.56V (ideal)	
Step Width = $\frac{\text{VINTAREF} - \frac{1}{256}}{256}$	
256 Step Width =	= 5 mv

The correct result of the conversion would be

$$ADDAT = \frac{VAINPUT - VINTAGND}{Step Width} = 2CH$$

Lets assume that a hypothetic VINTREFERR leads to the following internal reference voltages.

VINTAGND = 1.28V - 5 mVVINTAREF = 2.56V - 10 mV

This gives a new step width of 4.98 mV and an absolute offset error caused by the new VINTAGND of one LSB10. The actual result is now

$$ADDAT = \frac{1.500V - 1.275V}{4.98 \text{ mV}} = 45D = 2DH$$

Therefore, the error caused by the internal references in this example is one LSB10.

B. Measuring Differential Voltages

The feature of software-adjustable reference voltages is ideal for a tracking converter application.

The requirements for a tracking converter are high resolution and monotonic behaviour. Both the requirements are accomplished by the ADCU of the SAB 80(C)515. In this case, the internal reference error is not significant. The maximum VINTREFERR merely changes the analog quantum for one digital value by

± VINTREFERR 256

As an example, taking the same parameters as in example 1:

VAREF = 5.12V VAGND = 0.00V

The smallest possible reference voltage range is therefore:

$$\frac{\text{VINTAREF} - \text{VINTAGND}}{4} = 1.28\text{V}$$

The resolution of the conversion is in this case 5.00 mV. That is, the analog quantum corresponding to each LSB is 5.00 mV. If we assume the worst case for both internal reference (-15 mV for VIN-TAGND and +15 mV for VINTAREF or vice versa), the analog equivalent to one LSB would expand or compress by 0.117 mV.

In other words this results in a step width error in the worst case of \sim 2.3%. The absolute amount of the error therefore increases with the differential voltage of the signal between two sample points.

Summarising, it may be said that the VINTREFERR, the error of the internal reference, cannot be disregarded in applications which use the internal reference voltages since this error affects the absolute accuracy of a conversion.

For clarity, the above examples deal with rather large errors. Typical values for the VINTREFERR are less than 5 mV.

Further, it should be mentioned that specifications are constantly being updated. Values are given in this application note to illustrate errors specified in the datasheet. The current datasheet should always be consulted for the latest error definitions and values.

References:

- 1. Application Note—Operation of the A/D Converter in the SAB 80515
- 2. H. Kessler, R. Rossgotterer

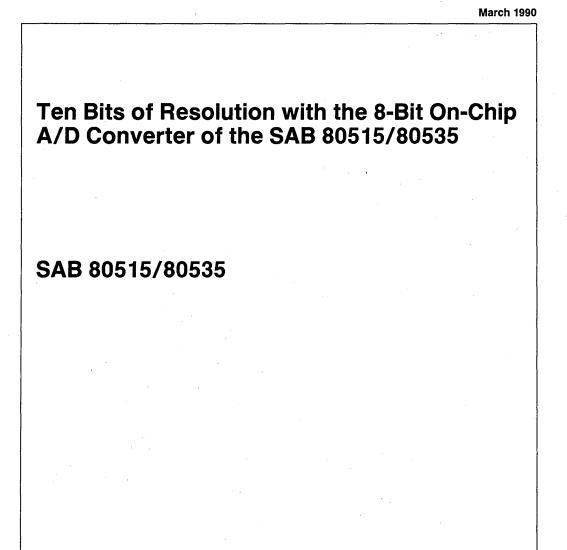
Ein 8-Bit-Analog-Digital-Wandler in MOS-Silizium-Gate-Technologie nach dem Ladungsverteilungsverfahren

Siemens Forshc.-u. Entwickl.-Ber. Bd. 8 (1979) Nr. 5

3. SAB 80515/80535, 8-Bit Single-Chip Microcontroller, Datasheet

SAB 80512/80532, 8-Bit Single-Chip Microcontroller, Datasheet

SAB 80C515/80C535 8-Bit Single-Chip Microcontroller, Datasheet


SAB 80512K, 8-Bit Single-Chip Microcontroller, ROM-less Version, Datasheet

SAB 80515K, 8-Bit Single-Chip Microcontroller, ROM-less Version, Datasheet

- Microcomputer Components SAB 80515/80535 8-Bit Single-Chip Microcontroller User's Manual 7.85
- 5. Microcomputer Components

SAB 80512/80532 8-Bit-Single-Chip Microcontroller User's Manual 2.88

SIEMENS

Application Note

© Siemens Components, Inc.

This application note describes a software routine to achieve 10 bits of resolution with the A/D converter of the SAB 80515/535.

Analog-to-digital (A/D) and digital-to-analog (D/A) converters are devices which interface physical parameters, which are analog, to digital computation and control. Some applications in which A/D converters are used include processing systems, sampled-data control systems, data telemetry systems and automatic test systems. Besides A/D converters, these systems usually employ transducers to interface with physical/analog quantities such as temperature, pressure, flow, acceleration and position, as well as microcontrollers or microprocessors to process the acquired data.

Siemens SAB 80515/535 microcontroller facilitates the design of a data conversion system by providing an on-chip A/D converter. The inherent 8031 based architecture of the SAB 80515/535 allows direct handling of 8-bit quantities only. However, by combining the on-chip special features of the A/D converter and the processing capability of the SAB 80515/535, a 10-bit result can be achieved and stored in two 8-bit registers.

Quantization and Resolution of an A/D Converter

Quantizing is the process of transforming a continuous analog signal into a set of discrete output states. Resolution of an A/D converter is the number of bits required to describe the output states. The number of output states for a binary coded A/D converter is 2^n where n is the number of bits. Thus an 8-bit A/D converter has an eight bit resolution and 256 output states. A 10-bit A/D converter has a 10-bit resolution and 1024 output states.

In any part of the input range of the A/D converter, there is a small range of analog values within which the same digital output is produced. This small range is known as the analog quantization size or quantum Q. The quantum is found by dividing the full scale analog range by the number of output states.

Therefore, $Q = FSR/2^n$ where FSR is the Full Scale Range and n is the number of bits.

The quantum Q, introduces an error and for a given analog input value to an A/D converter, the output error will vary anywhere from 0 to plus or minus Q/2. This error is called quantization noise. It can be reduced only by increasing the resolution of the converter, thereby making the quantization finer.

With 1024 possible quantized output states from a 10-bit A/D converter, a quantum for a full scale range of 5.12V will be equal to $5.12V/2^{10} = 5 \text{ mV}$. The same level of quantum can be achieved with the 8-bit A/D converter on the SAB 80515/535. By programming the internal reference voltage sources, the entire analog input range of 5.12V may be divided into four ranges of 1.28V each. For a full scale range of 1.28V, the quantum is then equal to $1.28/2^8 = 5 \text{ mV}$. Therefore, the four ranges, each with 256 quantized output states will give a total of 1024 digital output states with the same quantum level as achieved by using a 10-bit A/D converter.

A/D Converter with Programmable Reference Voltages

The 8-bit A/D converter of the SAB 80515/535 has 8 multiplexed analog inputs and its operation is based on the method of successive approximation by using a capacitive load distribution. The use of capacitors in place of a resistive network ensures a better immunity against temperature and frequency changes, thereby providing a better accuracy of the A/D converter. The analog signal at the selected input channel is sampled for 5 machine cycles (5 μ s at an oscillator frequency of 12 MHz), which will then be held constant at the sampled level for the rest of the conversion time of 10 μ s at an oscillator frequency of 12 MHz. One-time or continuous conversions may be performed. The end of a conversion may cause an interrupt.

Moreover, the two internal reference voltages IVA-REF and IVAGND can be programmed for a 4-bit resolution (16 steps), referred to the externally applied reference voltage VAREF. Each 4-bit value, one for IVAGND and another for IVAREF, is put in a D/A converter program register called DAPR, DAPR is an 8-bit register in which the low-order nibble holds the digital value of IVAGND, while the high-order nibble holds the digital value of IVAREF. As soon as a digital value is written to DAPR, the corresponding analog levels for the IVAREF and IVAGND are computed and the A/D conversion is then performed in this range. By reducing the range of conversion, the resolution of the A/D converter can be increased up to 10 bits (Figure 1). Different internal analog voltage ranges may be set for each input by means of software.

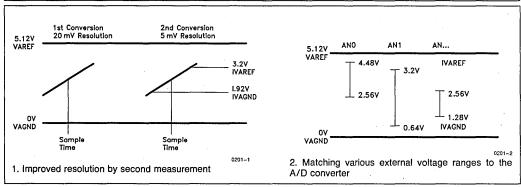


Figure 1. Increase in A/D Converter Resolution

Software

A simple way to achieve 10 bits of resolution with A/D converter of the SAB 80515/535 is to divide the entire 5.12V range (VAREF = 5.12V and VAGND = 0V) into four equal parts of 1.28V each. This would give four ranges starting from 0V to 1.28V, 1.28V to 2.56V, 2.56V to 3.84 and 3.84V to 5.12V. First an 8bit conversion is performed by programming the IVAREF and IVAGND to 5.12V and 0V respectively. The 8-bit result obtained from this conversion has unique value for the two Most Significant Bits (MSBs) for each of the four ranges, i.e. 00XX XXXXB for range from 0V to 1.28V, 01XX XXXXB for range from 1.28V to 2.56, etc. These two MSBs constitute the two MSBs of the final 10-bit result. Based on this first conversion a decision is made as to which of the four ranges the analog signal belongs. The IVAREF and IVAGND are then programmed to have the respective values in the narrow range and another conversion is performed. The 8-bit result obtained, gives the next 8 bits of the final 10-bit result.

This straight-forward method of achieving 10-bit resolution introduces an error when the analog signal lies at the boundary of two adjacent ranges. The irreducible error which results from the quantizing process may produce the digital result in one range, while the actual analog signal may belong to the adjacent range. This indeterminateness of the correct range introduces an additional error of 1/2 LSB.

To circumvent this problem, another approach is adopted, in which the entire range of 5.12V is divided into several sub-ranges of 1.28V such that each sub-range overlaps the other at its mid-point, as shown in Figure 2. The sub-ranges are numbered from 1 through 7. The even-numbered sub-range is offset by 0.64V from its preceding odd-numbered sub-range, thereby overlapping the upper half of the preceding sub-range. The algorithm to select a subrange for a given analog signal is discussed later but the basic principle to achieve 10-bit resolution is the same as before.

First, an 8-bit result of the A/D conversion is performed in the 5.12V range and then a decision is made as to which of the seven sub-ranges the signal belongs. The second A/D conversion in the selected sub-range then gives the lower 8 bits of the final 10-bit result in one of the two following ways. If an odd-numbered sub-range is selected, then the 8-bit result directly gives the lower 8 bits of the 10-bit result. However, if an even-numbered sub-range is selected, which is offset by 0.64V from the odd-numbered sub-range, an 80H (digital equivalent of FSR/2 = 1.28V/2 = 0.64V) is added to the digital result to compensate for this offset. Any carry from this addition will also modify the value of the two MSBs of the final 10-bit result.

Algorithm

Figure 2 graphically represents the assignment of the DAPR register in the narrow range. The left nibble of the 8-bit result obtained from the A/D converter in the full range is used as a pointer in the DAPR look-up table to get a value for DAPR register for the second conversion in the narrow range. The second bit of the selected DAPR value for the narrow range decides whether an even or odd-numbered subrange is selected. When this bit is '0' (for an oddnumbered sub-range), the third and fourth bits of the DAPR value become the two MSBs of the final 10bit result. When an even-numbered sub-range is selected, an 80H is added to the A/D conversion result obtained in the narrow range. Again, the third and fourth bits of the selected DAPR value corresponds to the two MSBs of the final 10-bit result. The carry generated by the addition of 80H to the digital result is added to these bits to determine the two MSBs of the final 10-bit result. These two bits concatenated with the 8-bit result obtained by programming the DAPR register in the narrow range gives the final 10bit result.

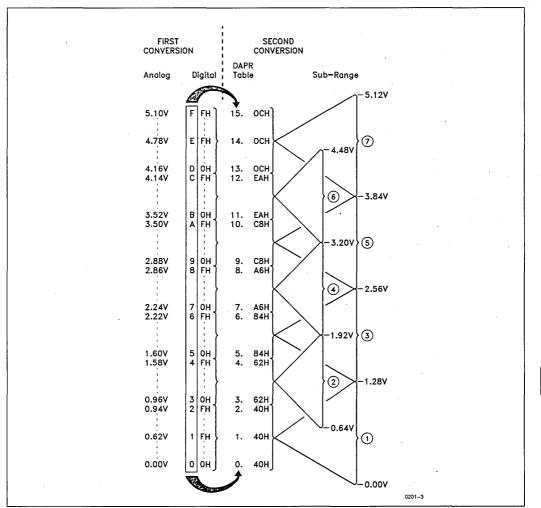


Figure 2. A/D Converter Sub-Ranges

8

System Design Hints

The recommended design for use of the SAB 80515/535 is shown in Figure 3. Standard design rules such as low impedance wire and minimized connector lengths will ensure low system resistance and inductance. In addition, there are several key points to consider for the most accurate and stable performance of the A/D converter.

First, a dedicated reference voltage for the A/D converter is highly desirable. Since V_{CC} is typically noisy and unstable, the V_{CC} line is unsuitable as an analog reference. In addition, many standard voltage regulators are not stable enough to meet the requirements of the SAB 80515, if maximum accuracy is desired. Strict adherence to the VAREF specification is recommended.

Additionally, separate digital and analog ground lines (tied near the source) are recommended to provide a smooth analog GND. However, if there is a large voltage differential between the ground lines, it is desirable to tie the ground lines close to the chip. By doing so, the noise in the digital ground will be reflected in the analog ground, resulting in a loss of accuracy.

Lastly, Figure 3 is a schematic for the NMOS implementation of the SAB 80515/535. In the CMOS implementation of this device, the V_{BB} pin becomes another V_{CC} pin. Therefore, when designing for both NMOS and CMOS devices, it will be necessary to bring a V_{CC} line close to the V_{BB} pin, to be connected via a jumper pin, as required by the CMOS devices, the long capacitor connected between V_{SS} and V_{CC} (pin 68) may be removed so that only one short 100 nF capacitor remains between V_{SS} and V_{CC} (pins 37 and 38).

Software Hints

A typical software routine to achieve 10 bit resolution is given in Appendix A. To reduce noise, the address lines should remain as quiescent as possible to minimize the power draw from the V_{CC} . Therefore, it is recommended that other tasks which change the address lines are not initiated while waiting for the end of conversion.

In addition, the Jump if Busy (JB BSY,addr) instruction should be placed at the beginning of a page in the program memory where the upper 14 address lines don't change. An example is shown:

Good Example:

Bad Example:

Addr.	Addr.
XX X0H JB	0F FFH JB
XX X1H BSY	10 00H BSY
XX X2H rel. address	10 01H rel. address

To ensure highest accuracy, self-calibration routines should be performed each time before the A/D converter is used, to monitor the offset error at baseline, and gain error of the device. A simple test for offset may be performed by inputting an analog zero, and checking the digital result. Likewise, gain error may be determined by feeding known voltages into the A/D converter and comparing the digital outputs.

References

1. Siemens SAB 80515/535 User's Manual.

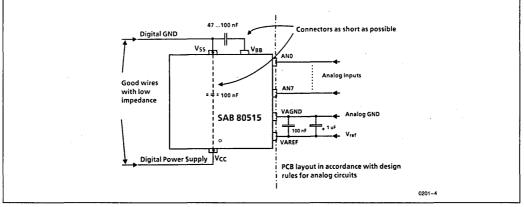
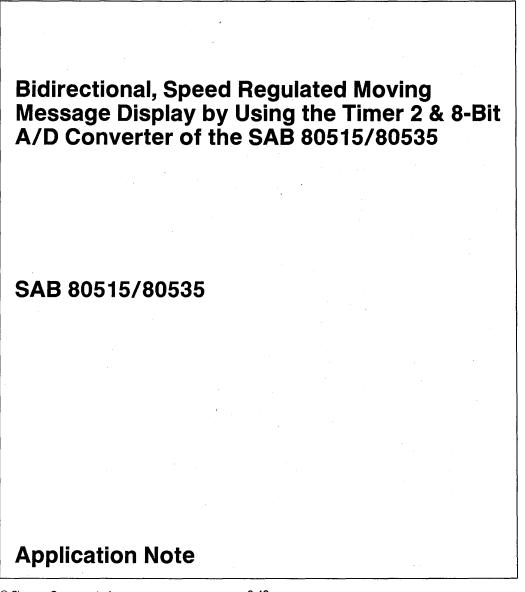


Figure 3. Capacitors for the SAB 80515/535


Appendix A

	3	;**********	*******	*******	*************	
	5	;* ;* Subroutine	Name: Al	CONV	*	
	7	;* Function:	This sub	routine p	erforms an A/D conversion on the ch-*	
	8	; *	annel se	lected by	the variable CHAN_SEL and at the *	
	9 10				sion saves a 10-bit result in locat-* lower eight bits) and AD_VALUE_N *	
	11	• *		two MSBs		
	12	.			•	
0020	13 14	,*************************************	AT	20H	**************	
0020	15	AD_VALUE_L:	DS	1	CONTAINS LOWER 8 BITS	
0021 '	16	AD_VALUE_H:	DS	1	CONTAINS TWO MSBS OF 10-BIT RESULT	
0000	17 18	CSEG	AT	CH		
0000	19	AD_CONV:	A1	04		
0000 COEO	20	PUSH	ACC			
0002 COD0	21	PUSH	PSW		• • • • • • • • • • • • • • • • • • •	
0004 53D8F8 0007 E500	22 23	ANL	ADCON,	#11111000 SEI	8	
0009 4208	23	ORL	ADCON ,			
000B 75DA00	25	MOV	DAPR,#			
DODE 20DCFD	26	JB	BSY,S		;FIRST CONVERSION	
0011 E5D9 0013 54F0	27	MOV	A, ADDA A, #OFO	1 H		
0015 C4	29	SWAP	A		;A = FIRST MEAS./16	
0016 241E	30	ADD		ER_OFFSET		
0018 83 0019	31	MOVC	A, âA+P	C	;LOOK-UP TABLE FOR SECOND DAPR	
0019 F5DA	32 33	REFERENCE_HELF	DAPR,A			
0018 20DCFD	. 34	JB	BSY,S		SECOND CONVERSION	
001E AED9	35	MOV	R6, ADD	AT	RESULT=SECOND CONVERSION	
0020 03	36	RR	A #070		;A=(DAPR0)000 0(DAPR3)(DAPR2)(DAPR1)	
0021 5407 0023 FF	37 38	ANL	A,#07H R7,A		;A=0000 0(DAPR3)(DAPR2)(DAPR1)	
0024 5401	39	ANL	A,#01H		:A=0000 000(DAPR1)	
0026 03	40	RR	A		A=(DAPR1)000 0000	
0027 2E	41	ADD	A,R6			
0028 F520 002A EF	42 43	MOV	AD_VALI A,R7	JE_L,A		
002B 03	44	RR	A			
002C 5403	45	ANL	A,#03H		;A=0000 00(DAPR3)(DAPR2)	
002E 3400 0030 F521	46 47	ADDC MOV	A,#OOH AD_VALI			
0032 0000	48	POP		JE_H,A		
0034 DOED	49	POP	ACC			
0036 22	50	RET				
0037	51	REFERENCE_TABL	e.			
0037 40	52 53	REFERENCE_TABL	40H			
0038 40	54	DB	408			
0039 40	55	DB	408			
003A 62 003B 62	56	D8 D8	628			·
0036 84	57 58	DB	62H 84H			
0030 84	59	DB	84 H			
003E A6	60	DB	0A6H			
003F A6	61	DB	OA6H			
0040 C8 0041 C8	62 63	DB	0C8H 0C8H			
0042 EA	64	DB	DEAH			
0043 EA	65	DB	OEAH			
0044 OC	66	08	COCH			
0045 OC	67	DB	0000			
	68 69	DB	00CH			
001E	70	REFER_OFFSET	EQU	REFEREN	CE_TABLE-REFERENCE_HELP_LABEL	
0000	71	CHAN_SEL	EQU	00H		
	72	-				
	73	END				

8

0201-5

SIEMENS

November 1988

© Siemens Components, Inc.

8-42

This application note introduces the user to one of the features of Timer 2 and A/D converter of the SAB 80515/535. Included in this application note is a description of both the software and hardware implementations of the SAB 80515/535 to use its Timer 2 and 8-bit A/D converter for the bidirectional, speed regulated moving message display. The program listing demonstrates how the Timer 2 and the 8-bit A/D converter of the SAB 80515/535 can be combined to generate time delays controlled by analog levels. The hardware circuitry shows an interface of the SAB 80515/535 with a simulated analog input, a 2 kbyte EPROM, and intelligent display chips of Siemens used in memory mapped I/O scheme.

The SAB 80515/535 microcontroller with on-chip A/D converter and a 16-bit Timer (Timer 2) with reload capability offers a solution which can be applied to a wide range of industrial applications. These applications vary from analog controlled digital delays to controlled frequency converters for pulse width modulation.

In the present application example, the above features of the SAB 80515/535 are used in conjunction to generate the software delays. The software delay results in by varying the voltage level of the analog signal applied to the A/D converter of the SAB 80515/535.

A/D Converter

The SAB 80515/535 provides an 8-bit A/D converter with eight multiplexed analog input channels onchip. In addition, the A/D converter has a sample and hold circuit and offers the feature of softwareprogrammable reference voltages. For the conversion, the method of successive approximation with a capacitor network is used.

Figure 1 shows a block diagram of the A/D converter. There are three user-accessible special function registers:

- ADCON (A/D converter control register)
- ADDAT (A/D converter data register)
- DAPR (D/A converter program register) for the programmable reference voltages.

Special function register ADCON is used to select one of the eight analog input channels to be converted, to specify a single or continuous conversion, and to check the status bit BSY which signals whether a conversion is in progress or not.

The special function register ADDAT holds the converted digital 8-bit data result. The data remains in ADDAT until it is overwritten by the next converted data. The new converted value will appear in ADDAT in the 15th machine cycle after a conversion has been started. ADDAT can be read and written to under software control. If the A/D converter of the SAB 80515/535 is not used, register ADDAT can be used as an additional general-purpose register.

The special function register DAPR is provided for programming the internal reference voltages IVAREF and IVAGND. In the present application DAPR holds a value of 00H. For this value of DAPR, IVAREF and IVAGND are same as VAREF and VAGND respectively.

A/D Conversion

A conversion is started by writing to the special function register DAPR. A "Write-to-DAPR" will start a new conversion even if a conversion is currently in progress. The conversion begins with the next machine cycle. The busy flag BSY will be set in the same machine cycle as the "write-to-DAPR" operation occurs. If the value written to DAPR is 00H, meaning that no adjustment of the internal reference voltages is desired, the conversion needs 15 machine cycles to be completed. Thus, the conversion time is 15 μ s for 12 MHz oscillator frequency.

After a conversion has been started by writing into the special function register DAPR, the analog voltage at the selected input channel is sampled for 5 machine cycles (5 μ s at 12 MHz oscillator frequency), which will then be held at the sampled level for the rest of the conversion time. The external analog source must be strong enough to source the current in order to load the sample & hold capacitance, being 25 pF, within those 5 machine cycles.

Conversion of the sampled analog voltage takes place between the 6th and 15th machine cycle after sampling has been completed. In the 15th machine cycle the converted result is moved to ADDAT.

Timer 2

The SAB 80515 has three 16-bit Timer/Counters: Timer 0, Timer 1 and Timer 2. These Timers can be configured to operate either as timers or event counters. Timer 2 is the time base of the programmable Timer/Counter Register Array (PTRA) unit. In addition to the operational modes "Timer" or "counter", Timer 2, being the time base for the PTRA unit, provides the features of:

- 16-bit reload
- 16-bit compare
- 16-bit capture

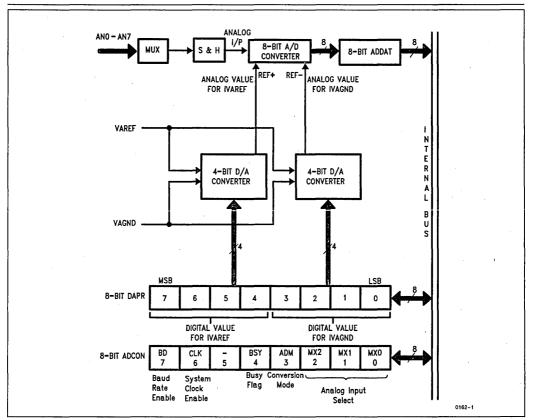


Figure 1. Block Diagram of A/D Converter

The reload mode of Timer 2 is used in this application to generate software delays. For explanation of the other modes please refer to the users' manual.

Reload

The reload mode for Timer 2 is selected by bits T2R0 and T2R1 in special function register T2CON as illustrated in Table 1. In mode 0, when Timer 2 rolls over from all 1s to all 0s, it not only sets TF2 but also causes the Timer 2 registers to be loaded with the 16-bit value in the CRC (compare/reload/cap

ture) register which is preset by software. The reload will happen in the same machine cycle in which TF2 is set, thus overwriting the count value 0000H.

Table 1. Timer 2 Reload Mode Selection

T2R1	T2R0	Mode
0	Х	Reload Disabled
1	0	Mode 0: Auto-Reload upon
		Timer 2 Overflow (TF2)
1	1	Mode 1: Reload upon Falling
		Edge at Pin T2EX/P1.5

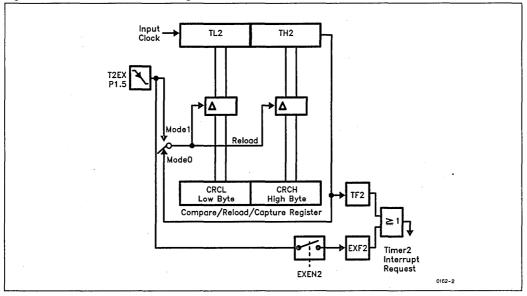


Figure 2. Timer 2 in Reload Mode

PD2435

PD2435 is a CMOS 4-character 5 x 7 dot matrix alphanumeric

programmable display with ROM to decode 96 ASCII alphanumeric characters and enough RAM to store the display's complete four digit ASCII message with software programmable attributes. The CMOS IC incorporates special interface control circuitry to allow the user to control the module as a fully supported microprocessor peripheral.

Microprocessor Interface

The interface to the microprocessor is through the address lines (A0-A2), the data bus (D0-D7), two

chip select lines ($\overline{CE0}$, CE1), and (\overline{RD}) and (\overline{WR}) lines. The $\overline{CE0}$ should be held low when executing a read or write operation. The read and write lines are both active low. A valid write will enable the data as input lines.

Programming the PD2435

There are five registers within the PD2435. Four of the registers are used to hold the ASCII code of the four display characters. The fifth register is the Control Word, which is used to blink, blank, clear or dim the entire display to change the presentation (attributes) of individual characters.

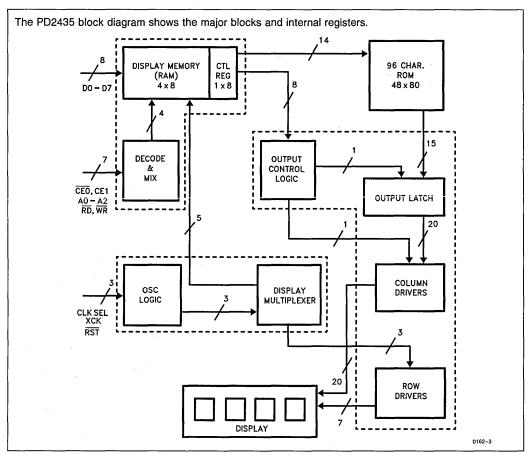


Figure 3. PD2435 Block Diagram

Application

The speed regulated moving message display is an example where a digitized value of the controlling analog signal is used to compute a reload value for the Timer 2. The Timer 2 is operated in mode 0 where this reload value becomes a starting point for the Timer to count up. On overflow the Timer automatically takes the restart value for counting from reload register CRC. While the Timer is counting up, a new reload value is computed using the present A/D value.

Hardware

The circuit used in this application offers the advantage in requiring a minimum of components. The single chip microcomputer SAB 80535 operates in conjunction with four alphanumeric programmable display chips PD 2435 to form a 16-digit long display.

The ASCII-coded data is transferred from the SAB 80535 to the display ICs via the data port P0 and using the control signal WR (P3.6) of the SAB 80535. The address pins from the ports P0 and P2

of the SAB 80535 are used to address the EPROM as well as the display chips in a memory-mapped I/O scheme. The display chips are addressed as memory locations with the following addresses.

Display Chip	Control Register Address	Digits Address
1	1000H	1004H-1007H
2	2000H	2004H-2007H
3	4000H	4004H-4007H
4	8000H	8004H-8007H

A push button is interfaced to port P3.2 of the SAB 80535 to provide an external interrupt to the microcontroller.

Firmware Description

Besides controlling speed of the moving message, there is a provision to interrupt the moving message to roll it backwards until the beginning of the message. The microcontroller reads the code and the message to display from an EPROM 2716A interfaced to the ports P0 and P2 of the SAB 80535. A virtual image of the message is created in the internal RAM of the SAB 80535. Four display chips PD2435 are interfaced to the SAB 80535 in a memory-mapped scheme and can be addressed as external memory to the SAB 80535. The virtual image of the message in internal RAM of the SAB 80535 is used to manipulate data to be displayed on the display chips. The internal RAM used for the display can be viewed as an area divided into two portions:

- 1. For active display
- 2. As a data buffer

The active display area is the replica of the data being displayed on the display chips. In this case the 16-digit display would need 16 RAM locations which correspond to 16 digits currently being displayed. The data buffer contains the rest of the message which is not being displayed. The message is shifted character by character in the RAM area When the message cn the display moves from right to left, the RAM buffer acts in "First In First Out" mode and when the message on the display moves from left to right, the data to the display from the microcontroller RAM buffer is supplied in the "Last In First Out" scheme.

Between display of every character there is a software delay which depends upon the level of the analog signal supplied to the AN0 pin of the SAB 80535. The external interrupt 0 (at port P3.2) is used to interrupt the microcontroller to inform that the message needs to be scrolled backwards. On getting this interrupt the software sets the flag bit 0 which remains set until the message is scrolled back to the beginning of the message.

List of Components

Name	Number
SAB 80535	1
2716A	1
PD2435	4
12 MHz Crystal	1
74LS373	1
22 pF Capcitors	2
100 nF Capacitor	1
4.7 μf Capacitor	1
1k Resistor	1
10k Pot	1

Reference Material for ICs

- 1. SAB 80515/80535 User's Manual.
- 2. PD2435 Data-Sheet or Optoelectronic Data Book (1987/88).

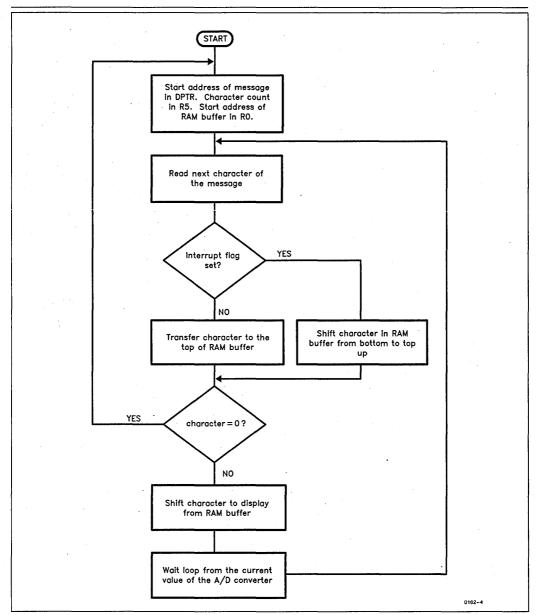
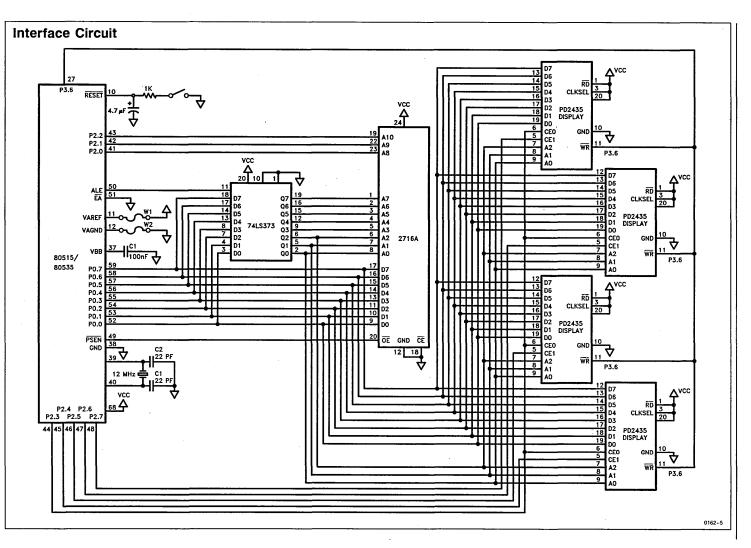



Figure 4. Program Flow-Chart

8-49

Program Listing

	1 2	\$M00515		35 DISPLAY PROGRA	•')		
	3	SNOSYMB	OLS		· · · · ·		
	ŝ	CSEG					
	. 6	\$0EBUG				1	
	7 8						
000	9		ORG	00H	•		
	10		LJMP	BEGIN ;Jump o	n reset		
000 02000C	11		Lane				
	13		;*****	***************	************************************		
	14 15		• T	s used to set a f	upt subroutine for INTO. This * * * lag which then indicates that * *		
	16			the message	needs to be rolled back.		
	17		;••••	***************	***************************************		
003	18 19		ORG	03H			
003	· 20		•				
003 COEO	21		PUSH	ACC FD :Set fl	ag for external interrupt		
005 D2D5 007 D0E0	22 23		SETB POP	ACC	ag for external inter-upt		
007 D0E0 009 C289	24		CLR	1E0			
008 32	25		RETI				
	26 27			**************	**********		
	27 28		֥		MAIN PROGRAM		
	29		;*****	**************	******************************		
DOC 0282	30 31	BEGIN:	SETB	P3.2	;Set bit for INTO		
DOE 758110	32		HOV	SP,#10H			
011 750800	33		MOV	ADCON, #OOH	;Select analog channel 0		
	34 35	OPTS:	CLR	FO	;Clear flag O		
014 C2D5 016 7800	35 36	UF 131	MOV	R3,#00H	Character pointer in the message		
018 79FF	37		MOV	R1,#OFFH	;R1 used as a flag		
01A 90F000 01D 7403	38 39		MOV -	DPTR,#OF000H A,#03H	;Control register of all displays ;Control word for display		
01F F0	40		MOVX	ODPTR, A			
020 900002	41		MOV	DPTR,#(TEXT-1)	;Beginning of the text ;Internal RAM location		
023 7820	42 43		MOV MOV	R0,#20H R5,#101	A count for 101 characters		
025 7065 027 7420	43		HOV	A,#20H	ASCII for space		
029 F6	45	BLANK:		ako, A	Fill all location with blank		
02A 08	46 47		INC DJNZ	RO R5, BLANK			
028 DDFC	48		DJMZ				
02D 12006C	49	SHIF:	CALL	NEXTC	Read the next character		
1030 200501 1033 08	50 51		J8 INC	FO,TEMP R3	Check if the interrupt was raised if no interrupt		
034 7065	52	TEMP:	HOV	R5,#101	;Character count in message		
036 7820	53		HOV	R0,#20H F0,REV0	;RAM location 20H		
038 200506 038 C6	54 55	SHFT:	JB XCH	A, ORO	;If no interrupt	•	
030 08	56		INC	RÛ	;Add the character		
03D DDFC	57		DJNZ	R5, SHFT	;To the top of the RAM buffer		
03F 0158 041 7421	58 59	REVO:	AJMP MOV	CONTO A,#21H	;[f there is an interrupt		
043 28	59 60	NL .	ADD	A, R3	Offset for the RAM-buffer		
044 F8	61		MOV	RO,A	Pointer in the RAM Duffer		
045 7600	62		MOV	ar0,#00H r0,#20H	Displayed so far Beginning of the RAM buffer		
047 7820 049 E6	63 64		HOV	A, aRO	Read the character		
04A COEO	65		PUSH	ACC	Save it		
04C 08	66 67	AGAIN:	INC MOV	RO A, ƏRO	Read the next character		
04D E6 04E 18	67 68		DEC	RÓ	;Back to first character		
04F F6	69		MOV	aRO, A	Replace with second character		
050 08	70		INC DJNZ	RO R5,AGAIN	;Process repeats ;Moving character backwards		
1051 DDF9 1053 08	71 72		INC	RO			
054 7600	73		MOV	aR0,#00H	;End of character buffer		
056 DOED	74 75	CONTO:	POP	ACC RO,#20H	Restore character; Beginning of character buffer;		
0058 7820 005a E9	75 76	LONIU:	MOV	A,R1	Check if end of character buffer		
0058 6087	77		JZ	OPTS			
005D 120071	78		CALL	OUTC IENO.7	;Disable interrupt		
060 CZAF	79 80		CALL	WAITA	•Refore delay		
065 754881	81		MOV	IENO,#81H ITO	Enable interrupt INTO control bit		
068 D288	82						

Program Listing (Continued)

UUGA	0120	83 84		AJMP	SHIF	
		84			************	************************************
		86		* The	routine moves .	a character of the message to ACC. *
		87 88		;		***************************************
006C	A3	89	NEXTC:	INC	DPTR	
006D 006F	7400	90		MOV	A,#0	
006F 0070		91 92		NOVC	A, BA+OPTR	;Move the character to Acc
0070	22	93		KEI		
		94		;*****		**********
		95		• 1	his routine dis	plays and moves a character over *
		96 97		1.	for the m	of the PD2435 and then repeats * ext display chip and so on. *
		98		*****	************	******************************
		99 · 100	OUTC:	PUSH	ACC	
0071 0073	CUEU C082	100	0010:	PUSH	DPL	
0075	C083	102		PUSH	DPH	
0077	7404	103		HOV	R2,#4	;For four digits(0 to 3) in a chip
0079	901004 120098	104		MOV	DPTR,#1004H OUTCO	;Digit 0 in first display chip
0075	902004	105 106		CALL	DPTR,#2004H	;Digit 0 in second display chip
0082	120098	107		CALL	OUTCO	Jurgit o in second display chip
0085	904004	108		MOV	DPTR,#4004H	;Digit 0 in third display chip
0088	120098	109		CALL	OUTCO	
0088	908004 120098	110 111		HOV CALL	DPTR,#8004H OUTCO	;Digit 0 in fourth display chip
0085	0083	112		POP	DPH	
0093	D082	113		POP	DPL	
0095	DUEU	114		POP	ACC	
0097	22	115 116		RET		• •
		117			************	*************************************
		118		🕴 Thi	s is a nested s	ubroutine. It moves a nonzero hex *
		119		t va	lue (ASCII) fro	m left in right of the four digit *
		120 121			**********	display.
		122		,		
0098	EÓ	123	OUTCO:		A, aro	
0099	6007	124		JZ	FIN	· · · · ·
0098 009C		125 126		HOVX INC	ADPTR,A RO	
0090	A3	127		INC	DPTR	
009E	DAF8	128		DJNZ	R2, OUTCO	
0040	7404	129 130	FIN:	NOV	R2,#4	
00A2 00A3	22	131	F18:	RET	R1,A	
		132	•			
		133 134	1		ie estroutine a	enerates the software delay. The
		135		:* de	lay is generate	d by the timer 2. The start count *
		136		• * of	the timer 2 is	computed from the present value *
		137			of	
		138 139		;		
0044	7E03	140	WAITA:	HOV	R6,#03H	
00A6	7010	141	WAIT8:	HOV	R6,#03H R5,#10H	
8400	750A00	142	WAITC:	HOV	DAPR,#OOH	
00AB	E509 75FOFF	143 144		MOV	A, ADDAT B, #255	;For computing reload value
0080	A4	145		MUL	AB	;Reload value is computed
0081	FSCA 85F0CB	146		HOV	CRCL,A	Load the reload value low
00B3	854008	147		HOV	CRCH_B	;Load the reload value high
0001		148 149		MOV JBC	T2CON,#11H TF2,WAITE	
0086	100602	150	WAITD:	AJMP	WAITD	
0086	10C602 0189		WAITE:	DJNZ	R5,WAITC	
0086 0089 008C 008E	0189 DDE8	151	WALLET.	DJNZ	R6,WAITB	
0086 0089 008C 008E 006E	0189 DDE8 DEE4	151 152	WALLE.			
0086 0089 008C 008E 006E	0189 DDE8 DEE4	151 152 153	WATTE.	RET		
0086 0089 008C 008E	0189 DDE8 DEE4	151 152 153 154	WATTE:	RET	**********	***************************************
0086 0089 008C 008E 006E	0189 DDE8 DEE4	151 152 153 154 155 156	WATTE:	RET		MESSAGE
0086 0089 008C 008E 006E	0189 DDE8 DEE4	151 152 153 154 155 156 157	WATTE.	RET :*****		MESSAGE
0086 0089 008C 008E 00C0 00C2	0189 DDE8 DEE4 22	151 152 153 154 155 156 157 158		RET ;*****		MESSAGE *
0086 0089 008C 008E 00C0 00C2	0189 DDE8 DEE4 22	151 152 153 154 155 156 157	TEXT:	RET		MESSAGE
0086 0089 008C 008E 00C0 00C2 00C2	0189 DDE8 DEE4 22 20202020 20202020 20202020 20202020	151 152 153 154 155 156 157 158		RET ;*****		MESSAGE *
0086 0089 008C 008E 00C0 00C2 00C2	0189 DDE8 DEE4 22 20202020 2020200 2020200 2020200 2020200	151 152 153 154 155 156 157 158 159		RET ;***** ;* DB		MESSAGE *
0086 0089 008C 008E 00C0 00C2 00C2	0189 DDE8 DEE4 22 20202020 2020200 2020200 2020200 2020200	151 152 153 154 155 156 157 158		RET ;*****		MESSAGE *
0086 0089 008C 008E 00C0 00C2 00C2 00C3 00C7 00C8 00CF 0003 00D7	0189 DDE8 DEE4 22 20202020 20202020 20202020 20202020	151 152 153 154 155 156 157 158 159		RET ;***** ;* DB		MESSAGE *

8

© Siemens Components, Inc.

0162-7

Program Listing (Continued)

161	DB	•	SAB 80515/535	0, י		
-				•		
162	END					
. O ERRORS FC	UND					
	162		162 ЕМО	162 END	162 END	162 END

SIEMENS

November 1988

8

Heating and Air Conditioning Control in Cars with the Microcontroller SAB 80515/80535

SAB 80515/80535

Application Note

© Siemens Components, Inc.

The heating and air conditioning unit in the car should provide the driver with conditions of comfortable temperature, fresh air flow, defogged and defrosted windows, low energy consumption and easy operation.

The currently mass-produced systems meet these requirements to a limited degree. In response, Siemens began to develop μ C-controlled installations and equipped several test vehicles with various systems which proved to be highly satisfactory.

Its performance-oriented processor and flexible onchip periphery (e.g. analog-to-digital converter, timer function, large number of inputs/outputs) make the SAB 80515 especially suitable for this type of application. The majority of the peripheral components are fully utilized in this application.

The temperature in the car reaches its nominal value and is kept constant by means of a two-stage mixing value control. A rise in outside temperature automatically activates the compressor of the air conditioning unit. The air entering the car is distributed upwards and downwards by an electrically controlled value, depending on the temperature of the air. The optimal speed is also determined by the microcontroller as a function of the various input values. The electronics also control actuators such as air circulation and water valve.

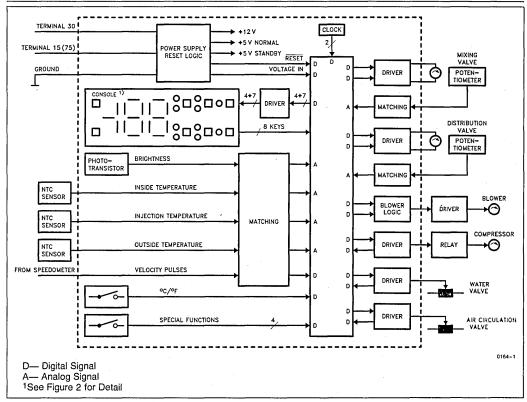
The device is operated by means of several keys. An LED display indicates the nominal or outside temperature. Individual LEDs indicate special conditions which can be selected by the user independent of the automatic functions.

Control Elements and Sensors (Figure 1)

The temperature inside the car is controlled in accordance with a selectable nominal value. The most important actuators for this purpose are the mixing valve and the compressor of the air conditioning unit. The mixing valve determines which part of the air entering the passenger area must pass through the heat exchanger of the heating unit. The valve can be fine-tuned by the microcomputer. If there is no heating requirement, the water flow to the heat exchanger is stopped by a digitally controlled valve. As a result, the temperature is further reduced in the summer time.

Depending on the output of the system, the air conditioning unit ensures that the nominal value of the temperature inside the car is obtained despite higher outside temperatures. The compressor of the air conditioning unit is enabled/disabled by the microcontroller.

In addition, the electronics influences the distribution of the temperature layers inside the car by a nearly stepless adjustable distribution valve. The valve determines whether the air is to be moved towards the roof or the floor of the car. Through this type of control, the air close to the roof of the car should be at a temperature lower than that close to the floor.


The fresh air flow is also electronically controlled. Depending on the different temperatures and the road speed of the car, the microcontroller computes the optimal speed for the blower, which can be changed almost continuously.

On the basis of the temperature conditions, the processor determines the requirement for fresh air flow or circulation of the air inside the car. The corresponding valve is digitally controlled.

In order to achieve the described functions, the system uses three sensors to measure the temperature inside the car, the temperature of the air entering the car as well as the outside temperature. A speed sensor informs the processor about the car's current road speed.

Operating and Displaying Unit (Figure 2)

A display optionally indicates the nominal or outside temperature. Functions which deviate from standard operations are indicated by LEDs located next to the keys. The brightness level of the display and the LEDs is controlled by the processor in accordance with the ambient light measured by a phototransistor.

With the aid of eight keys the following functions can be performed (Figure 2):

S1, S2: Changes in nominal temperature

("+" and "-" key)

Through instantaneous pressure or sustained pressure on the key, the nominal value can be changed in $1^{\circ}C/1^{\circ}F$ steps, that is from $16^{\circ}C-30^{\circ}C/60^{\circ}F-86^{\circ}F$. In addition, the extreme values "LO" and "HI" can be set, and the mixing valve will continue to remain in the minimal (cold) or maximal (hot) position.

By depressing the keys, the following functions allow the user to switch over from normal (automatic) setting to one, two or three fixed values. After a fixed value has been selected, the corresponding LED or a combination of two LEDs lights up.

- S3: Distribution key for switching the air distribution to automatic, only upwards, in the center (upwards and downwards, both LEDs light up) or only downwards.
- S4: Blower key for switching the blower to automatic, full speed, half speed (both LEDs light up) and "OFF".
- S5: Air supply key for switching the air supply to automatic, air circulation, or fresh air.
- S6: Compressor key for switching the compressor to automatic, "ON" and "OFF".
- S7: Outside temperature key for switching the display to nominal temperature (standard function) or outside temperature. The outside temperature is displayed in 1°C/1°F steps at a range between -40°C/-40°F and +60°C/ + 140°F.
- S8: Defrost key for switching the device from its previous function (standard) to the defrost function.

8

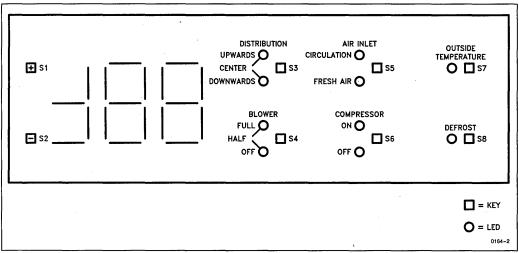


Figure 2. Console

The windows of the car can thus rapidly be defrosted and defogged.

The setting elements take the following positions during the defrost function which has priority over all other settings:

Mixing valve:	Max. Heating
Distributor valve:	Only Upwards
Blower:	Max. Number of Speed
Air supply:	Fresh Air
Compressor:	ON
Water Valve:	ON

As long as the defrost function is in operation, the remaining functions (with the exception of display switch-over for the temperature) cannot be operated. The corresponding LEDs are not driven. After the defrost status is finished, the previous functions apply again.

The nominal temperature as well as set fixed values are saved after the car ignition has been turned off. During initial start-up or after reconnecting the battery, a mean nominal temperature (22°C/71°F) is set and the automatic functions apply.

Major Hardware and Software Functions

Voltage Supply, Reset Logic (Figure 3)

Since various conditions-e.g. nominal temperature-are to be stored after the ignition has been turned off, a continuous 5V supply is required which is supplied directly by the battery (terminal 30). A diode/capacitor combination protects against reversed polarity and extreme voltage peaks. The voltage regulator, which is used, is characterized by a lower power dissipation and continues to operate during low input voltages. The SAB 80515 stores the data; 40 bytes of its internal RAM are saved during standby operation with a typ. supply current of 1 mA.

When the car ignition is turned on, the normal 5V operating voltage as well as a filtered 12V voltage are available for supplying the drivers. The criterion for the connection of these voltages is the status of terminal 15. Preferable terminal 75 should be used if included in the device, since it will remain disabled while the car is started.

When the ignition is turned off, the processor receives a signal via P07 prior to the drop in voltage of the standard 5V supply. Subsequently, the processor will wait for the reset signal which immediately precedes the voltage switch off. After the ignition has been turned on again, RES continues to be in "L" to reset the SAB 80515. This time period required for reset is ensured by an RC network in combination with diodes and Schmitt triggers.

Clock Supply

The SAB 80515 oscillator resonates at a frequency of 6 MHz by means of a ceramic resonator. The result is an instruction cycle time of 2 μ s.

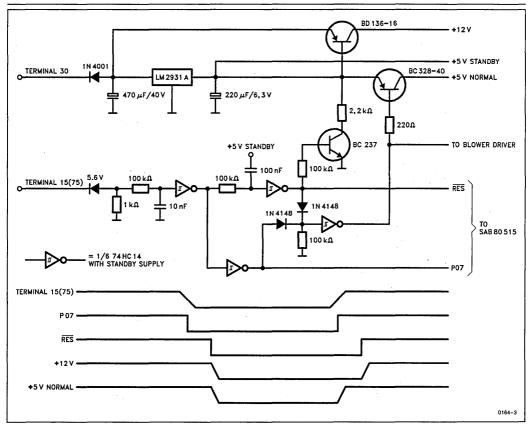


Figure 3. Voltage Supply, Reset Logic

Acquisition and Preprocessing of Input Value Parameters

- Temperature and brightness (Figure 4)

The inside air, fresh air, and outside air temperatures are measured with an NTC sensor S 861 or S 867 (encapsulated). The most suitable locations for installations of the sensors in particular car types must be determined experimentally. The values of the pull-up resistors between the signal line and the analog reference voltage have been selected to ensure optimal accuracy within the required temperature range. Short-term interference pulses are filtered out by an RC network. The phototransistor BP 103B on the face of the device generates a voltage across a resistor in accordance with the ambient light.

The SAB 80515 reads these analog units at regular intervals via the multiplexer and the analog-to-digital converter located on the chip. Since the sensors are connected to the analog references, the result is not affected by the absolute value of these voltages. After the conversion low-frequency fluctuations are suppressed via software averaging. On the basis of tables and linear interpolation, the SAB 80515 computes the values required, i.e. the temperature and the value for control of the display's brightness.

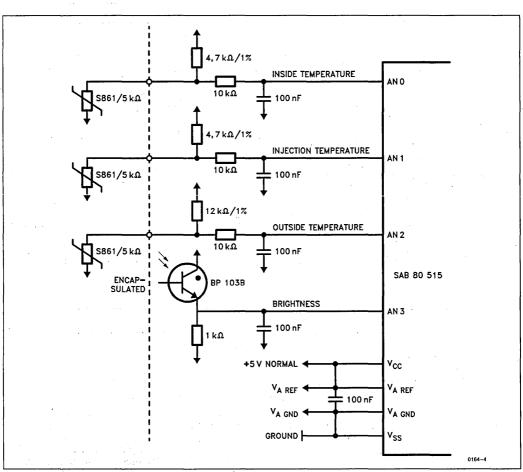


Figure 4. Temperature and Brightness

-Speed (Figure 5)

The speed is derived from the generator for electronic speedometers included in most cars An RC wiring (perhaps with voltage division) and a Schmitt trigger filter out interference in the sensor pulses and adjust the voltage amplitude. With timer 1, the processor counts the pulses received within a defined timer period.

-Keys/Switch (Figure 5)

Since these components are located inside the device, they can be protected against bouncing using software. Because of its many I/O ports, the SAB 80515 can read in information directly. A matrix with decoupling diodes is not required. Also, pull-up resistors are not required at the inputs of the SAB 80515—with the exception of PO. With the hidden °F switch, the unit for displaying the nominal and outside temperatures can be selected. The special inputs are used for activating special test functions (see section on "testing and optimization support").

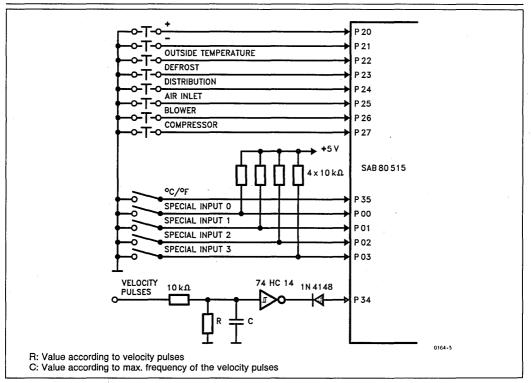
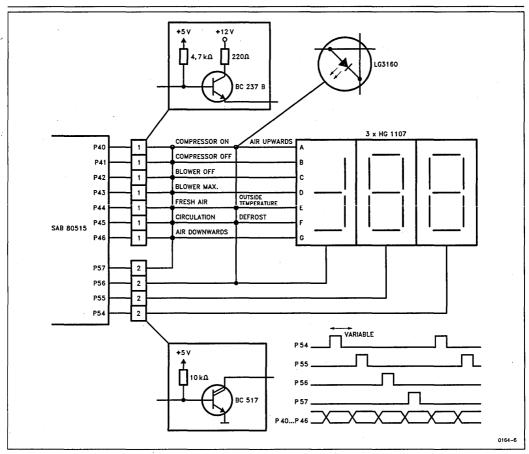


Figure 5. Inputs for Keys, Switches and Speed

-Display (Figure 6)


The display comprises a three-digit 7-segment LED display (configured from HG 1107 elements). The foremost digit utilizes only four segments. There are also 10 single LEDs LG 3160 for indicating special conditions. The processor drives the display in a four-step multiplex method. For selecting the digit, the outputs P54–P57 go to HIGH in successive or der. During this time the information for the segments is present at outputs P40–P46. Four Darlington transistors BC 517 are used as actuator drivers, and seven transistors BC 237 as segment drivers. The voltage source is the 12V supply.

The multiplexed display and the brightness are controlled by timer 2 of the SAB 80515. The component is used as timer in the auto-reload with the oscillator frequency divided by 12. During each overflow the timer is automatically loaded with the content of the CRC register—in this case FF00. This leads to a time interval of $256 \times 2 = 512 \ \mu s$ between two overflows. The interval determines the length of a multiplex clock. The interrupt triggered by each overflow results in the output of the new segment information at port 4. The allocated multiplex location is released through port 5.

The display brightness level is determined by the processor on the basis of the ambient light measured by the phototransistor, and a table stored in the ROM. The compare function of timer 2 sets the brightness level: as soon as the timer reaches the value of the compare register, an additional interrupt is triggered. In the associated routine, the processor sets the actuator outputs P54–P57 to "L". This creates an off-period until the timer overflows, the duration of which depends on the content of the compare register. This register can be loaded at any time with the value determined from the ambient light.

-Regulating the inside temperature with the mixing valve (Figure 7)

The temperature inside the car depends largely on the position of the mixing valve, which the SAB 80515 computes by means of the so-called cascade control.

The deviation of the temperature inside the car T_{lact} from the set nominal value $T_{l nom}$ determines in an outer control circuit the nominal value for the injection temperature TIn nom. Through the inner, faster control circuit the mixing valve is adjusted so that the injection temperature actually reaches the value $T_{\text{ln nom.}}$ When compared with a less complex control of the mixing valve by means of the difference between the nominal and actual value of the temperature inside the car, this two-stage system results in improved stability. In addition, interference which influences the injection temperature can be guickly rectified (e.g. changes in motor or outside temperature, activation/deactivation of compressor, switchover from/to fresh air/air circulation). Also, the min. and max. ratings for the injection temperature can easily be established providing the necessary comfort for the passengers. With properly set parameters the time characteristics as compared to a simple control are equally satisfactory.

The nominal values for the injection temperature and the mixing value position are computed according to a digital PID (proportional, integral, and differential) algorithm. Although the variety of parameters which can be set for both controls permit a wide range of adjustments, the expenditure is considerable. Therefore, to facilitate the test and optimization phase, all parameters can be displayed and changed during travel by depressing the respective key (see section 3.10 "testing and optimization support"). For example, by setting the differential portion to zero, a PI characteristic can be obtained.

When "HI" or "LO" is displayed in place of the nominal temperature, the control algorithm is switched off and the mixing valve is positioned at maximum or minimum heating output.

The control algorithm is also inactive in the defrost status which calls for max. heat output. When switching over to normal operation, the valve returns to its former position.

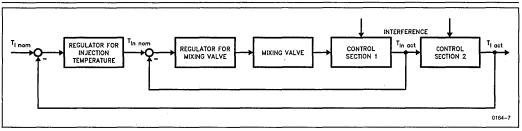
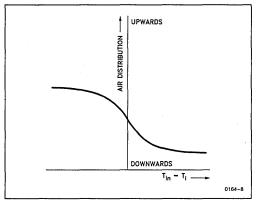



Figure 7. Block Diagram of Temperature Regulation

Establishing the Nominal Value for the Distribution Valve

As can be seen in Figure 8, the position of the distribution valve normally depends on the difference between the injection temperature and the temperature inside the car. Cooler air is usually injected upwards while heating air is injected downwards towards to floor of the car. The effective nominal value is set by the SAB 80515 with reference to the actual end positions of the valve (see section 3.5).

During the special functions "upward air distribution" and "defrost", the air is blown only upwards or during "downward air distribution" only downwards at floor level. When "center air distribution" has been selected, half of the air volume is blown upwards and half downwards.

Setting the Mixing and Distribution Valve (Figure 9)

Both valves are set in the same manner, that is by motors and gears which run or stop in both directions. The components TLE 4201 drive the motor, while the μ C controls them via ports P50 and P51 (mixing valve) as well as P52 and P53 (distribution

valve). The analog-to-digital converter of the processor is informed of the value position by means of the voltage on a potentiometer which is connected to the valve and supplied by the analog reference voltages. An RC network filters out interference. When the difference between the nominal and actual value of a valve exceeds a certain tolerance margin, the motor is driven in the respective direction.

The valves should reach their end positions (mechanical stops) but the motor, for mechanical reasons, should not be driven continuously in these positions. Since it is difficult to solve this problem by an accurate adjustment of the potentiometer, the system recognizes a mechanical stop when the difference between the actual and the nominal value romains the same although the motor is running. In response, the motor is switched off and the actual value is stored. After that the system will stop when this value has been reached. Only after a certain period of time (approx. 10 minutes) or each time the ignition has been turned on, the user can change the stop by depressing the respective key for selection of a max, position. As a prerequisite for this type of stop recognition, the electrical region of the potentiometer should not be fully utilized by the valve angle.

The slight, relatively rapid fluctuations in the valve nominal value in the regulation or control mode are suppressed to prevent mechanical wear and tear. This suppression is of no consequence to the passengers.

Switching Over the Air Supply

During the automatic function, fresh air will be supplied when the following conditions for air circulation are not met:

- outside temperature > nominal temperature + 10K (°C)
- outside temperature > inside temperature

To prevent the valve from switching continuously, a hysteresis of 2K in each direction is used.

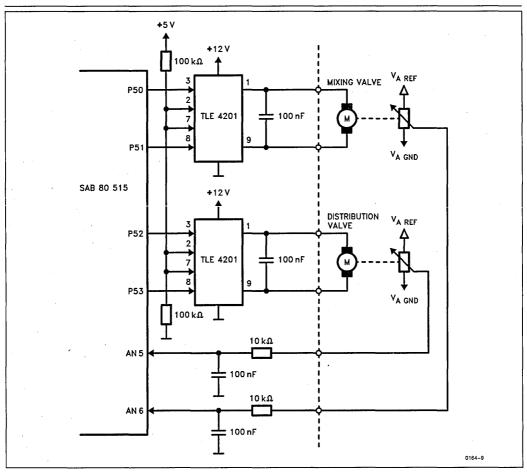
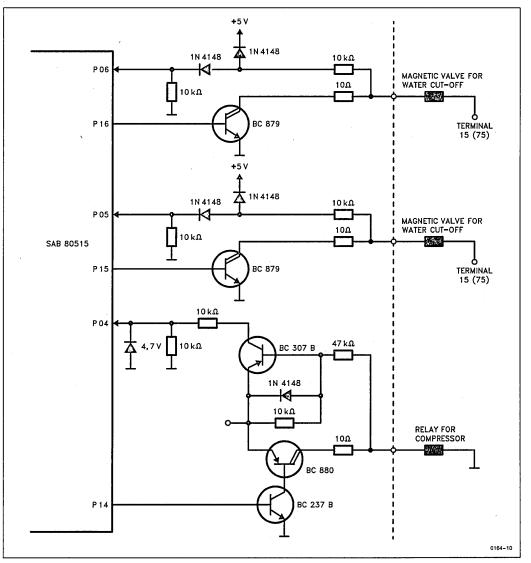


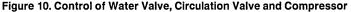
Figure 9. Control of Mixing and Distribution Valve

During "defrost" or "fresh air supply" the system takes in fresh air; during "ambient air supply", the air in the car is circulated.

The magnetic valve for the air circulation valve is switched on via P15 by the SAB 80515 with a Darlington transistor BC 879. A resistor on the output of the transistor protects against short-term interference (see Figure 10). A short-circuit in the electrical supply can be detected via P05. In this case, the processor immediately stops the control of the valve, but periodically attempts to reactivate it every few seconds. The magnetic valve controls a vacuum motor for activating the air circulation valve.

Water Valve Activation


When there is no heating requirement, the electronics inhibit the water flow to the heat exchanger by means of a valve. As a result, the temperature inside the car can be reduced by several degrees in the summer when compared to operation with closed mixing valve. The criterion for inhibiting the water flow is the mixing valve's position at the lower stop. Only after the mixing valve has changed its position by a defined distance from the stop, will the processor enable the valve again.


The magnetic valve for inhibiting the water flow is controlled in a manner similar to that used for the air circulation valve (see Figure 10). P16 and P06 are used as outputs or feedback pins. As can be seen in Figure 10, the magnetic valve pneumatically activates the inhibit valve.

Enabling/Disabling the Compressor

During the automatic function, the compressor is disabled only if the outside temperature drops by more than 10K below the nominal temperature. Again a hysteresis of 2K (K = °C) is applied for the switching procedure.

During "defrost" or "compressor ON", the air conditioning unit operates continuously, but stops completely during "compressor OFF".

The compressor relay is driven (see Figure 10) by P14 of the SAB 80515 as well as two transistors BC 237 and BC 880 for increasing the current and converting the levels. A drive signal short-circuited to ground—after level conversion by transistor BC 307—can be detected via P04 and the system is then switched off for several seconds. The external compressor relay activates the magnetic coupling for driving the compressor, however, only if the (electronically independent) defroster for the carburetor does not respond.

To Drive the Blower

Initially, the speed of the blower is a function of two variables as can be seen in Figure 11. An increase in speed as a function of the nominal-actual temperature difference leads to rapid temperature adjustment. During extreme outside temperatures, the heating or air conditioning effect has to be supported continuously by the blower. The curve minimum is therefore displaced since the average thermal effect of sun rays has been taken into account. The two functions are additively combined. When both the inside temperature and the injection temperature lie below or above the nominal value for the inside temperature, the blower speed is reduced. Otherwise the already uncomfortably cold car would get colder or, if already too hot, hotter.

Two points were included when considering the dependence on the road speed; during higher speeds the dynamic air pressure increasingly replaces the blower output. In response the blower speed is reduced in proportion to the speed or set to zero, if required. However, during lower speeds or when the car is parked, the noise generated by the blower is irritating, and polluted air is brought in e.g. during heavy traffic. The speed of the blower is therefore reduced.

These automatic functions can be overriden with the blower or defrost key. The blower reaches its max. speed during "full speed blower capacity" or "defrost", operates at a medium speed at "half blower capacity" or not at all in "blower off".

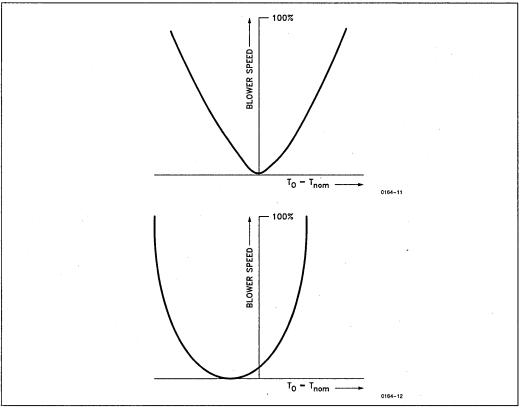


Figure 11. Examples for Blower Speed Characteristics

The blower is driven (Figure 12) by the pulse-width modulated signal generated by the microcontroller at P12 with the aid of timer 2. The timer—as described in section 2—has been programmed for an overflow every 512 μ s. The compare/capture register 2 operates in the compare mode (mode 0), port 12 is in "L" during timer overflow, or in "H" when the content of the timer and compare register is the same. Therefore, by changing the content of the compare register, the pulse duty factor at P12 can be varied. An HCMOS inverter and an RC combination convert the microcontroller output signal into an analog voltage ranging between 0V and 5V. This voltage drives the blower driver located outside the electronics.

During the standby status, a signal from the voltage supply prevents a voltage from being applied to the blower.

When the blower is operating at full capacity, there should be no voltage drop across the power transistor of the blower driver. Therefore the transistor is by-passed with a relay. For this part of the driver, the SAB 80515 connects a 12V signal to the blower output using two transistors (BC 237 and BC 307). The relay is switched off—to prevent wear and tear—when the speed of the blower is reduced.

Testing and Optimization Support

By encoding at ports P00-P02, the following quantities can be displayed in place of the nominal or outside temperature:

1. Inside temperature T_1 in °C

- 2. Injection temperature TIn in °C
- 3. Mixing valve setting in %
- 4. Distribution valve setting in %
- 5. Blower drive in %
- 6. Status of compressor, air circulation as well as water valve
- 7a. Memory address of internal RAM, which can be set
- 7b. Memory content associated with this address, which can be varied

The controlling and regulating procedures of the system can be monitored with displays 1 through 6.

During operation, the system can be accessed and all memory contents can be indicated with display 7. The settings are performed in the same manner as the changes in nominal temperature, namely with keys "+", and "-". The outside temperature key is used to switch between the memory address and content. There are functions suitable for manual control, and there are those which should be left in the automatic mode.

The possibility of user access has been provided for adjusting the parameters of the two-stage PID control to the respective vehicle. The parameters are not established by the program. Instead they are stored in the RAM in the memory area saved during standby operation. Only after the voltage has been switched off, the parameters can be loaded with

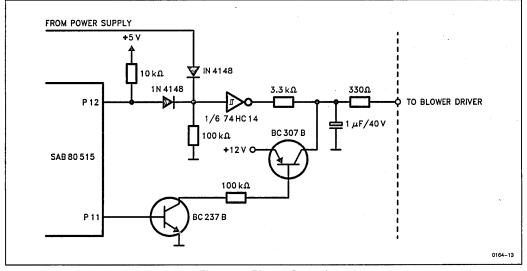


Figure 12. Blower Control

fixed values during initialization. The test engineer can therefore change the parameters according to the test results, although the device has already been installed.

In order to provide defined start conditions for a test, all controlling and regulating functions can be switched off during the setting procedures with P03.

After the test has been completed, the established optimal parameters values can be permanently programmed in the EPROM or in the masked ROM.

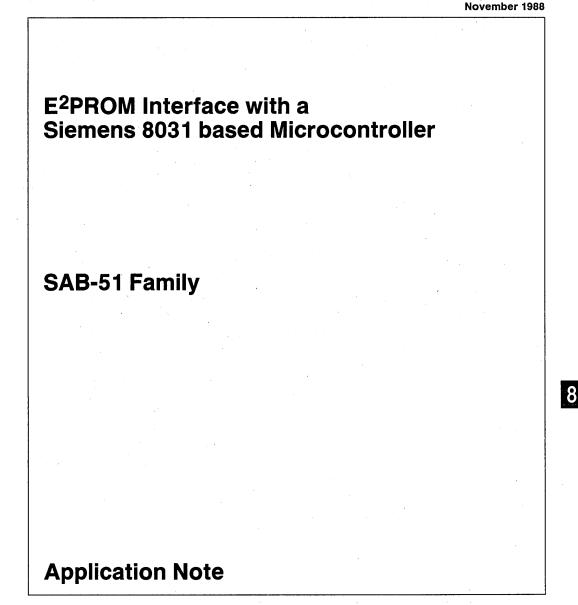
Use of the On-Chip Periphery of the SAB 80515

Table 1 includes the functions of the integrated periphery of the SAB 80515. As can be seen, almost all elements are utilized.

Periphery	Application
Analog-to-Digital Converter	for measuring —temperatures —brightness level and for setting mixing and distribution value
Timer 0	for generating a standard time clock
Timer 1	for measuring road speed
Timer 2	for controlling the time for LED multiplex display (with brightness control) for controlling the pulse/pause ratio for the blower
Watchdog Timer	for system monitoring
Serial Inteface	for diagnostic purposes
Ports	for interrogating and driving digital and time analog inputs/ outputs

Table 1. Use of the SAB 80515 On-Chip Periphery

Alternatives and Upgrades


Changes in the functions of the described sample provided the sensors and actuators remain the same—can easily be realized by merely modifying the program or the stored tables. However, when different or additional sensors or actuators are used, the hardware must be changed as well.

For example the mixing valve can be replaced by a clocked valve which alternately releases and interrupts the water flow between the cooler and heat exchanger. According to the pulse/pause ratio of the drive signal the heat exchanger temperature changes and thus the air injected into the car. The previously described hot water valve is in this case omitted.

Also, in addition to the distribution valve, other elements for changing the air distribution can be controlled, e.g. the vent flaps at the dashboard.

If the serial interface of the SAB 80515 is not used, the system could be diagnosed during practical application and inspections.

SIEMENS

© Siemens Components, Inc.

This application note provides users with a solution to interface an E²PROM to an 8031 based microcontroller over the I²C bus. In this application example, a Siemens microcontroller the SAB 80535 and a Siemens E²PROM the SDA 2526 or the SDA 2516 are used.

An on-chip Electrically Erasable Programmable Read-Only Memory (E²PROM) in a microcontroller becomes a very useful peripheral because it allows the system parameters to be stored and reprogrammed without having to remove the microcontroller from the board. An E²PROM can also store internally the system specific information and can quite often replace a battery backed-up CMOS RAM. The write-cycle time of an E²PROM is considerably longer than that of most RAM chips and therefore the device is referred to as a "read-only" memory. Most E²PROMs have a limited number of write/erase endurance cycles and for this reason alone an on-chip E²PROM in a microcontroller is sometimes not desirable. However, Siemens microcontrollers do not have an on-chip E²PROM. Therefore, the user either has to rely on an external E²PROM chip or perform the same function by battery back-up of the microcontroller's internal RAM.

The following application example offers the users a solution of interfacing an E²PROM to a Siemens microcontroller over a two line I²C interface.

Inter-Integrated Circuit Bus

The Inter-Integrated Circuit (I²C) bus is a mechanism for serially communicating with peripheral devices. The bi-directional bus consists of two wires, and it can support multiple masters and operate at various data rates.

The physical part of an I²C interface is a set of two wires, the serial clock (SCL) line and the serial data (SDA) line. The clock line is used to clock data out of a transmitting device into a receiving device. The data line is used to carry the data bits from a transmitting device to a receiving device. It is also used to transfer the acknowledge signal from a receiving device to a transmitting device.

When transferring address, data or acknowledge bits the SDA line can change its state only while the clock is low. If the data line changes from high to low while the SCL line is high, a start condition is initiated. A change from low to high while the SCL line is high initiates a stop condition. The basic relationship between the SCL and SDA lines is shown in Figure 1.

Hardware

Figure 2 illustrates the hardware interface between a Siemens microcontroller such as the SAB 80535 and a Siemens E^2 PROM such as the SDA 2526 or the SDA 2516. The bit manipulation capability of the SAB 80515/535 allows any two port pins of the microcontroller to be used for the E^2 PROM with an I²C bus interface. In this example, port pin P1.0 is used for the SDA line and port pin P1.1 is used for the SCL line of the I²C bus. One could select any two port pins for the interface by making an appropriate change in the software.

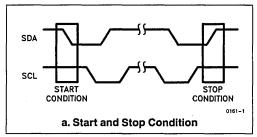
Via the I²C bus the memory is controlled by the microcontroller (master) during two operating modes:

a. Read-out cycle.

b. Reprogramming cycle or the write cycle.

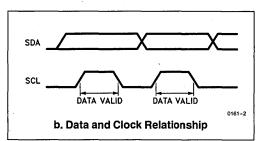
In both operating modes the microcontroller has to provide 3 bytes and an additional acknowledge clock on the bus after the start condition. These three bytes contain information like chip select for data input, memory word address and chip select for data output. For more information on the operation of the SDA 2526 or the SDA 2516, please refer to their data-sheets.

Software


The software listing of the subroutines used to read and program (write) the SDA 2526 or the SDA 2516 is attached.

The subroutine Re___EEPROM allows the user to read the E²PROM. The following parameters need to be transferred to this subroutine to complete the read operation successfully.

- a. Register R1 holds the starting address of the E2PROM.
- b. Register R2 holds the number of bytes to be read.
- c. Register R0 holds the destination address in the internal RAM of the SAB 80535.


The subroutine Pr_EEPROM allows the user to program the E²PROM. After programming a byte, the software executes a time delay of about 30 ms (worst case programming duration for the SDA 2526 or the SDA 2516) before writing the next byte. Registers R0, R1 and R2 need to be programmed with the following values before calling this subroutine.

- a. Register R1 holds the starting address of the E2PROM
- b. Register R2 holds the number of bytes to be programmed.
- c. Register R0 holds the source address of the data in the internal RAM of the SAB 80535.

References

- i. Siemens SAB 80515/535 User's Manual.
- ii. Siemens SDA 2526/2516 Data Sheets.
- iii. Siemens I²C Bus Driver Subroutines by R. Mirthes and P. Walter.

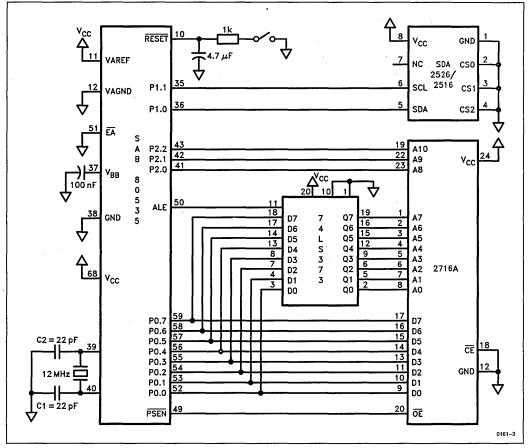


Figure 2. Schematic Diagram

	\$H00E1E					
1 2 3 4	SHOD515 SPAGELENGTH(80 STITLE(1535 IIC-BUS Software for SDA	2526/2516)		
5 6 0020 7	FLAGS	Data 20H				
0021 8	Scratch1	Data 21H				
0022 9	Scratch2	Data 22H				
0023 10	Scratch3	Data 23H				
0090 12	SDA	Bit P1.0				
0091 13	SCI	Bit P1.1	1			
0000 14	AckFlag Bit	FLAGS.0				
15						
00A1 16 00A0 17	Adr_EEPROM_L Adr_EEPROM_S	EQU 1010000 EQU 1010000				
18						
19 20		*************	******************************	********		
21	* Program Na	ne : LICSDA		•		
22			the subroutines to read and	write *		
23	;*	the Siemens EEPR	OMs - the SDA 2526 or the SDA	2516. *		
24 25	;*	******	******	*		
26	•					
0000 27	Org	0				
28						
0000 29 30	Main_Program:					
0000 80FE 31	Sjmp	5				
32						
33	***********	************	**********************	******		
34 35	;" :* Subcoutine	Name : Re_EEPROM		:		
36			is called to read the EEPROM.	The *		
37	*	number of bytes	to be read are loaded in regi	ister R2*		
38	;*	Register R1 hol	ds the starting address of EEPROM. Register RO holds the	the *		
39		location in the	EEPROM. Register RO holds the	t. †		
40 41		destination addr	ess of RAM in the microcontro	iller. *		
42	**********	************	**********	******		
43						
0002 44	Re_EEPROM:	SaveParam				
0003 130005 / 5		Saveraram	; Save input parameters			
0002 120005 45	Call					
0002 1200D5 45 46 0005 47						
46 0005 47 0005 1200DC 48	Read_EEPROM: Call	RestoreParam	; Restore input parameter			
46 0005 47 0005 1200DC 48 0008 74A0 49	Read_EEPROM: Call Mov	A,#Adr_EEPROM_s				
46 0005 47 0005 1200DC 48 0008 74A0 49 000A 12002A 50	Read_EEPROM: Call Mov Call	A,#Adr_EEPROM_s Cs_EEPROM	; EEPROM chip select		· ·	
46 0005 47 0005 1200DC 48 0008 74A0 49 000A 12002A 50 000D 4011 51	Read_EEPROM: Call Mov	A,#Adr_EEPROM_s Cs_EEPROM			- <u>-</u>	
46 0005 47 0005 1200DC 48 0008 74A0 49 000A 12002A 50 000D 4011 51 52	ReadEEPROM: Cali Mov Cali Jc	A,#Adr_EEPROM_s Cs_EEPROM Re_EEPROM_exit	; EEPROM chip select ; Device not available	100 FV	· · ·	
46 0005 47 0005 1200DC 48 0008 74A0 49 000A 12002A 50 0000 4011 51 52 000F 74A1 53 0011 120052 54	Read_EEPROM: Call Mov Call	A,#Adr_EEPROM_s Cs_EEPROM Re_EEPROM_exit A,#Adr_EEPROM_L	; EEPROM chip select ; Device not available ; C/S for data O/P out of me		 -	
46 0005 47 0005 1200DC 48 0008 74A0 49 0000 12002A 50 0000 4011 51 000F 74A1 53 0014 40EF 55	Read_EEPROM: Cali Mov Cali Jc Mov	A,#Adr_EEPROM_s Cs_EEPROM Re_EEPROM_exit A,#Adr_EEPROM_L	; EEPROM chip select ; Device not available		· ·	
46 0005 47 0005 1200DC 48 0008 74A0 49 0004 12002A 50 0000 4011 51 0007 74A1 53 0011 120052 54 0014 40EF 55	Read_EEPROM: Call Hov Call Jc Mov Call Jc	A,#Adr_EEPROM_S Cs_EEPROM Re_EEPROM_exit A,#Adr_EEPROM_L Start_IIC	; EEPROM chip select ; Device not available ; C/S for data O/P out of me ; Initialize with the addres		· ·	
46 0005 47 0005 1200DC 48 0008 74A0 49 0000 12002A 50 0000 4011 51 000F 74A1 53 0011 120052 54 0014 40EF 55 0016 57	Read_EEPROM: Call Mov Call Jc Call Jc Call Jc	A,#Adr_EEPROM_S Cs_EEPROM Re_EEPROM_exit A,#Adr_EEPROM_L Start_IIC Read_EEPROM	; EEPROM chip select ; Device not available ; C/S for data O/P out of me ; Initialize with the addres ; If error then repeat			
46 0005 47 0005 1200DC 48 0008 74A0 49 000A 12002A 50 000D 4011 51 000F 74A1 53 0011 120052 54 0014 40EF 55 0016 57 0016 0016 2200 58	Read_EEPROM: Call Hov Call Jc Mov Call Jc	A,#Adr_EEPROM_S Cs_EEPROM Re_EEPROM_exit A,#Adr_EEPROM_L Start_IIC	; EEPROM chip select ; Device not available ; C/S for data O/P out of me ; Initialize with the addres			
46 0005 47 0005 1200DC 48 0008 7400 49 0000 12002A 50 0000 4011 51 000F 74A1 53 0014 4015 55 0014 4017 55 0016 57 56 0016 57 50 0016 57 58 0018 60 57	Read_EEPROM: Call Mov Call Jc Call Jc Call Jc	A,#Adr_EEPROM_S Cs_EEPROM Re_EEPROM_exit A,#Adr_EEPROM_L Start_IC Read_EEPROM AckFlag	; EEPROM chip select ; Device not available ; C/S for data O/P out of me ; Initialize with the addres ; If error then repeat ; Acknowledge flag			
66 47 0005 1200DC 48 0008 74A0 49 0004 12002A 50 0000 4011 51 0007 74A1 53 0011 120052 54 0014 120052 56 0016 57 56 0016 57 0016 0018 600 59 0018 600 61	Read_EEPROM: Call Mov Call Jc Mov Call Jc Read_loop: Setb	A,#Adr_EEPROM_S Cs_EEPROM Re_EEPROM_exit A,#Adr_EEPROM_L Start_IIC Read_EEPROM	; EEPROM chip select ; Device not available ; C/S for data O/P out of me ; Initialize with the addres ; If error then repeat ; Acknowledge flag			
46 0005 47 0005 1200DC 48 0008 74.0 49 0004 12002A 50 0000 4011 51 0007 74.1 53 0011 120052 54 0014 40EF 55 0016 57 50 0016 57 0016 0200 58 50 0018 60 0018 0018 607 61	Read_EEPROM: Call Mov Call Jc Mov Call Jc Read_loop: Setb Lastbyte: Djnz	A,#Adr_EEPROM_s Cs_EEPROM Re_EEPROM_exit A,#Adr_EEPROM_L Start_IC Read_EEPROM AckFlag R2,Re_EEPROM_LO	; EEPROM chip select ; Device not available ; C/S for data O/P out of me ; Initialize with the addres ; If error then repeat ; Acknowledge flag			
46 0005 47 0005 1200DC 48 0008 74A0 49 000A 12002A 50 000D 4011 51 000F 74A1 53 0011 120052 54 0014 40EF 55 0016 57 0018 60 0018 600 0018 60 001A 620 001A 620	Read_EEPROM: Call Mov Call Jc Mov Call Jc Read_loop: Setb Lastbyte: Djnz Clr	A, #Adr_EEPROM_S Cs_EEPROM_exit A, #Adr_EEPROM_exit A, #Adr_EEPROM_L Start_IIC Read_EEPROM AckFlag R2,Re_EEPROM_LO AckFlag	; EEPROM chip select ; Device not available ; C/S for data O/P out of me ; Initialize with the addres ; If error then repeat ; Acknowledge flag op ; It is the last byte			
46 0005 47 0008 74A0 49 0008 74A0 49 0004 12002A 50 0000 4011 51 0007 74A1 53 0011 120052 54 0014 40EF 55 0016 57 56 0018 60 59 0018 600 62 0014 C200 63 0014 C200 63 0014 C200 64	Read_EEPROM: Call Mov Call Jc Mov Call Jc Read_loop: Setb Lastbyte: Djnz	A,#Adr_EEPROM_s Cs_EEPROM Re_EEPROM_exit A,#Adr_EEPROM_L Start_IIC Read_EEPROM AckFlag R2,Re_EEPROM_Lo AckFlag Datain	; EEPROM chip select ; Device not available ; C/S for data O/P out of me ; Initialize with the addres ; If error then repeat ; Acknowledge flag op ; It is the last byte ; Read databyte in	s		
46 0005 47 0005 1200DC 48 0008 74A0 49 000A 12002A 50 000D 4011 51 000F 74A1 53 0011 120052 54 0014 40EF 55 0016 57 0018 600 0018 600 0018 601 0014 12000 0018 60 0016 59 0018 60 0017 620 0018 60 0017 76 0018 63 0017 76 0018 64 0017 76 0020 64	Read_EEPROM: Call Mov Call Jc Read_loop: Setb Lastbyte: Djnz Clr Call	A,#Adr_EEPROM_S CS_EEPROM_exit A,#Adr_EEPROM_exit Start_IIC Read_EEPROM AckFlag R2,Re_EEPROM_LO AckFlag Datain Datain BR0,A	; EEPROM chip select ; Device not available ; C/S for data O/P out of me ; Initialize with the addres ; If error then repeat ; Acknowledge flag op ; It is the last byte	s		
46 0005 47 0005 1200DC 48 0008 74.0 49 0000 412002A 50 0000 4011 51 000F 74.1 53 0016 757 54 0016 57 50 0016 57 50 0016 57 50 0018 60 59 0018 60 60 0018 60 61 0014 620 63 0015 64 60 0016 57 62 0017 620 63 0016 520 64 0017 76 65 0020 66 50 0020 66 50 0020 67 57	Read_EEPROM: Cali Mov Cali Jc Read_loop: Setb Lastbyte: Djnz Clr Cali Mov	A,#Adr_EEPROM_S CS_EEPROM_exit A,#Adr_EEPROM_exit Start_IIC Read_EEPROM AckFlag R2,Re_EEPROM_LO AckFlag Datain Datain BR0,A	; EEPROM chip select ; Device not available ; C/S for data O/P out of me ; Initialize with the addres ; If error then repeat ; Acknowledge flag op ; It is the last byte ; Read databyte in	s		
46 0005 47 0005 1200DC 48 0008 74A0 49 000A 12002A 50 000D 4011 51 000F 74A1 53 0011 120052 54 0014 40EF 55 0016 57 5016 0018 600 59 0018 600 63 0017 F6 65 0020 631 6020 0018 605 620 0018 600 63 0017 F6 65 0020 62070 64	Read_EEPROM: Call Mov Call Jc Read_loop: Setb Lastbyte: Djnz Clr Call Mov Re_EEPROM_Exit: Jmp	A, #Adr_EEPROM_S Cs_EEPROM_exit A, #Adr_EEPROM_exit Start_IIC Read_EEPROM AckFlag R2,Re_EEPROM_LO AckFlag Datain aR0,A Stop_IIC	; EEPROM chip select ; Device not available ; C/S for data O/P out of me ; Initialize with the addres ; If error then repeat ; Acknowledge flag op ; It is the last byte ; Read databyte in ; Read databyte in internal	s		
46 0005 47 0005 1200DC 48 0008 74.0 49 0000 40102A 50 0000 4011 51 0007 74.1 53 0011 120052 54 0014 40EF 55 0016 57 60 0018 60 58 0018 60 018 0018 60 62 0017 12080 64 0018 60 62 0017 12080 64 0017 12080 64 0017 12080 64 0017 12080 64 0017 62 65 0020 20070 67 0020 620 63 0020 020070 67 0020 020070 67 0023 69	Read_EEPROM: Call Mov Call Jc Read_loop: Setb Lastbyte: Djnz Clr Call Mov Re_EEPROM_Exit: Jmp Re_EEPROM_Loop:	A,#Adr_EEPROM_s Cs_EEPROM_exit A,#Adr_EEPROM_exit Start_IC Read_EEPROM AckFlag R2,Re_EEPROM_Lo AckFlag Datain aR0,A Stop_IIC	; EEPROM chip select ; Device not available ; C/S for data O/P out of me ; Initialize with the addres ; If error then repeat ; Acknowledge flag op ; It is the last byte ; Read databyte in ; Read databyte in internal ; Stop_IIC condition	s		
46 0005 47 0005 1200DC 48 0008 74A0 49 0000 12002A 50 0000 4011 51 0007 74A1 53 0016 70014 55 0016 0015 56 0016 57 50 0018 60 50 0018 60 63 0014 120080 64 0018 65 60 0017 76 65 0020 63 6020 0018 60 63 0020 64 65 0020 66 65 0020 66 65 0020 66 60 0020 67 68 0023 69 60 0023 600 70	Read_EEPROM: Call Mov Call Jc Read_loop: Setb Lastbyte: Djnz Cir Call Mov Re_EEPROM_Exit: Jmp Re_EEPROM_Loop: Call	A, #Adr_EEPROM_s Cs_EEPROM_exit A, #Adr_EEPROM_exit A, #Adr_EEPROM_L Start_IIC Read_EEPROM AckFlag R2,Re_EEPROM_LO AckFlag Datain BR0,A Stop_IIC Datain	<pre>; EEPROM chip select ; Device not available ; C/S for data O/P out of me ; Initialize with the addres ; If error then repeat ; Acknowledge flag op ; It is the last byte ; Read databyte in ; Read databyte in internal ; Stop_1IC condition ; Read databyte in</pre>	RAM		
46 0005 47 0005 1200DC 48 0008 74A0 49 000A 12002A 50 000D 4011 51 000F 74A1 53 0011 120052 54 0016 57 56 0016 57 59 0018 600 59 0018 000 61 0017 120000 64 0017 620 63 0018 000 64 0017 76 65 0018 000 64 0017 76 65 0020 020070 67 0023 69 0023 69 0023 120080 70 0026 76 71	Read_EEPROM: Call Mov Call Jc Read_loop: Setb Lastbyte: Djnz Clr Call Mov Re_EEPROM_Exit: Jmp Re_EEPROM_Loop: Call Mov	A, #Adr_EEPROM_S Cs_EEPROM_exit A, #Adr_EEPROM_exit A, #Adr_EEPROM_L Start_IIC Read_EEPROM AckFlag R2, Re_EEPROM_Lo AckFlag Datain ƏRO, A Stop_IIC Datain ƏRO, A	; EEPROM chip select ; Device not available ; C/S for data O/P out of me ; Initialize with the addres ; If error then repeat ; Acknowledge flag op ; It is the last byte ; Read databyte in ; Read databyte in internal	RAM		
46 0005 12000C 48 0008 74A0 49 000A 12002A 50 000D 4011 51 000F 74A1 53 0011 120052 54 0014 40EF 55 0016 57 0018 60 0018 60 0018 60 0017 76 0020 63 0020 641 0020 63 0018 65 0020 640 0020 92070 67 62 0018 65 0020 62000 0021 620000 0023 69 0023 69 0023 69 0023 69 0023 70 0026 70 0027 73 0028 80EE <td>Read_EEPROM: Call Mov Call Jc Read_loop: Setb Lastbyte: Djnz Cir Call Mov Re_EEPROM_Exit: Jmp Re_EEPROM_Loop: Call</td> <td>A, #Adr_EEPROM_s Cs_EEPROM_exit A, #Adr_EEPROM_exit A, #Adr_EEPROM_L Start_IIC Read_EEPROM AckFlag R2,Re_EEPROM_LO AckFlag Datain BR0,A Stop_IIC Datain</td> <td><pre>; EEPROM chip select ; Device not available ; C/S for data O/P out of me ; Initialize with the addres ; If error then repeat ; Acknowledge flag op ; It is the last byte ; Read databyte in ; Read databyte in internal ; Stop_1IC condition ; Read databyte in</pre></td> <td>RAM</td> <td></td> <td></td>	Read_EEPROM: Call Mov Call Jc Read_loop: Setb Lastbyte: Djnz Cir Call Mov Re_EEPROM_Exit: Jmp Re_EEPROM_Loop: Call	A, #Adr_EEPROM_s Cs_EEPROM_exit A, #Adr_EEPROM_exit A, #Adr_EEPROM_L Start_IIC Read_EEPROM AckFlag R2,Re_EEPROM_LO AckFlag Datain BR0,A Stop_IIC Datain	<pre>; EEPROM chip select ; Device not available ; C/S for data O/P out of me ; Initialize with the addres ; If error then repeat ; Acknowledge flag op ; It is the last byte ; Read databyte in ; Read databyte in internal ; Stop_1IC condition ; Read databyte in</pre>	RAM		
46 0005 1200DC 48 0008 74.0 49 0000 12002A 50 0000 4011 51 000F 74.1 53 0016 52 54 0014 401F 55 0016 57 50 0016 57 50 0018 600 59 0018 600 61 0017 62 63 0016 520 64 0017 64 65 0020 64 60 0016 520 64 0017 76 65 0020 66 57 0020 64 57 0020 66 57 0020 62 68 0020 60 68 0020 60 70 0021 120080 67 0023	Read_EEPROM: Call Mov Call Jc Read_loop: Setb Lastbyte: Djnz Clr Call Mov Re_EEPROM_Exit: Call Mov Call Mov Inc	A, #Adr_EEPROM_S Cs_EEPROM_exit A, #Adr_EEPROM_exit Start_IC Read_EEPROM AckFlag R2, Re_EEPROM_LO AckFlag Datain ƏRO, A Stop_IIC Datain ƏRO, A RO	; EEPROM chip select ; Device not available ; C/S for data O/P out of me ; Initialize with the addres ; If error then repeat ; Acknowledge flag op ; It is the last byte ; Read databyte in ; Read databyte in internal ; Stop_IIC condition ; Read databyte in internal ; Inc data pointer	RAM		

Program Listi	ngs (C	ontinued)
	76	***************************************
	77 78	* Subroutine_Name : Cs_EEPROM
	78 79	* Subroutine_Name : Cs_EEPROM * * Function : This subroutine creates a start condition & sends *
	80	:* out the device address and the memory word address *
	81	* to the SDA 2526/2516. Register R1 contains the add-*
	82	• receilf the device is not available the carry flag *
	83	is set as an error condition.
	84 85	
	86	1
002A	87	Cs_EEPROM:
002A 120052	88	Call Start_IIC ; Start condition & device address
002D 4006 002F E9	89 90	Jc Cs_EEPROM_Exit ; Device not available
0020 120085	91	Mov A,R1 ; Memory word address Call Dataout
0033 40F5	92	JC CSEEPROM ; If error, repeat
0035	93	Cs_EEPROM_Exit:
0035 22	94	Ret
	95 96	;**************************************
	97	*
	98	
	99	** Function: This subroutine is called to program the EEPROM. *
	100	 The # of bytes to be programmed is loaded in R2. R1 * holds the address of the first byte in _EEPROM. R0 * holds the address of the first byte in internal RAM *
	101 102	;" nolds the address of the first byte in LEPRUM. KU "
	103	* of the microcontroller.
	104	
	105	
0036	106 107	Pr_EEPRON:
0036 7440	108	Mov A, #adr_EEPROM_s
0038 1124	109	Call Cs_EEPROM ; EEPROM chip select
003A 4015	110	Jc Pr EEPROM exit ; Device not available
003C E6	111	Mov A, aRO ; Load data byte
003D 120085 0040 40F4	112 113	Call Dataout Jc Pr_EEPROM ; If error, repeat
0042 120070	114	Call Stop IIC : Stop IIC condition
0045 7864	115	
0047	116	Wait_Loop:
0047 7C96 0049 DCFE	117 118	- Mov R4,#150 Djnz R4,\$
004B DBFA	119	Djnz R3,Wait_Loop
0040 08	120	Inc RO
004E 09	121	Inc R1
004F DAE5 0051	122 123	Djnz R2,Pr_EEPROM ; Next byte
0051 22	124	Pr_EEPROM_Exit: Ret
	125	
	126	;**************************************
	127	t the Scherology News A Chart 110
	128 129	;* Subroutine_Name : Start_IIC * ;* Function : Creates a start condition on the I2C bus & then puts*
	130	;* the device address from the accumulator on to the *
	131	:* bus. After three trials if no acknowledge results *
	132	;* from the device then the carry flag is set as an *
	133 134	* error condition. *
	135	***************************************
	136	
0052	137	Start_11C:
0052 7003	138	Mov R4,#3 ; Maximum 3 adressing attempts
0054 0054 0290	139 140	Init_IIC: Setb SDA
0056 1200AA	141	Call Wait_6
0059 0291	142	Setb SCL
005B 1200AA	143	Call Wait_6 ; wait
005E C290	144	Clr SDA ; Start condition
0060 1200AA 0063 C291	145 146	Call Wait_6 ; wait Clr SCL
0063 C291 0065 1200AA	140	Call Wait_6
0068 120085	148	Call Dataout ; Send device address
006B 5002	149	<pre>Jnc Init_IIC_Exit ; Acknowledge received</pre>
0060 DCE5	150	Djnz R4,Init_IIC ;Next addressing attempt
006F	151	Init_IIC_Exit:
006F 22	152 153	Ret \$EJ
L		

8

0161-5

	15/		
	154	*	
	156	* Subroutine_Name : Stop_IIC	
	157	* Function : This sobroutine creates a stop condition on the IIC *	
	158	* bus. Then the status of the SDA line is checked - if*	
· · · · · · · · · · · · · · · · · · ·	159	* low then clock pulses are sent out until SDA line *	
	160	;* goes high. *	
	161	*	
	162	***************************************	
~~~~~	163		
0070 0070 c291	164 165	Stop_11C: Clr SCL	
0072 1200AA	166	Call Wait_6	1
0075 C290	167	Clr SDA	
0075 C290 0077 1200AA	168	Call Wait_6	
007A D291	169	Setb SCL	
007C 1200AA	170	Call Wait_6	
007F D290	171	Setb SDA	
	172		
0081	173	ISSDALOW:	
0081 3090EC	174	Jnb SDA,Stop_IIC ; SDA is not high	
0084 22	175 176	Ret	
	177		
	178	, ************************************	
	179	· · · · · · · · · · · · · · · · · · ·	
	180	* Subroutine_Name : Dataout *	
	181	;* Function : This subroutine transmits a databyte on the IIC bus *	
	182	;* from the accumulator. The carry flag is set if an *	
	183	;* error results.	
	184	***************************************	
	185	· · · · · · · · · · · · · · · · · · ·	
0085	186 . 187	Dataout:	
0085 7F08	188	Mov R7,#8 ; 8 bits in a byte	
0005 1100	189		
0087	190	Dataout_Loop:	
0087 33	191	Ric A	
0088 9290	192	Mov SDA,C ; Send data bit out	
008A 00	193	Nop	
008B D291	194	Setb SCL ; Set the clock bit	
0080 1200AA	195	Call Wait_6	
0090 C291	196 197	Clr SCL Call Wait 6	
0092 1200AA 0095 DFF0	198	Djnz R7,Dataout_Loop	
0097 33	199	Ric A	
0098 D290	200	Setb SDA	
009A 00	201	Nop	
0098 D291	202	Setb SCL ; Clock pulse for acknowledge	
0090 1200AA	203	Call Wait_6	
00A0 A290	204	Mov C,SDA ; Get acknowledge bit	
00A2 C291	205	Clr SCL	
00A4 1200AB	206	Call Wait_36	
00A7 40C7	207	Jc Stop_IIC	
00A9 22	208	Ret	
	209		
	210		
	211	<b>i</b>	
	212	;* Subroutine_Name : Wait_6, Wait_36 ;* Function : These subroutines cause delays. *	
	214	*	
	215	********	
	216	•	
00AA	217	Wait_6:	
00AA 22	218	Ret	
	219		
OOAB	220	Wait_36:	
00AB 7806	221	Mov R3,#6	
OOAD DBFE	222	Djnz R3,\$	
00AF 22	223	Ret	
	224		
	225	\$EJ	

	226	
	227	* Subroutine_Name : Datain
	228 229	;* Subroutine_Name : Datain * ;* Function : This subroutine reads a databyte from the IIC bus *
	230	* into the accumulator. If the AckFlag was set as *
	231	* this subroutine was called then an acknowledge is *
	232	* given out during the 9TH clock pulse.
	233	*
	234	*********
	235	•
0080	236	Datain:
00B0 D290	237	Setb SDA
0082 00	238	Nop
0083 7F08	239	Mov R7,#8 ;8 bits
0005	240	Datain Lange
0085	241	Datain_Loop:
0085 D291	242 243	Setb SCL ; Clock pulse Call Wait 6
0087 11AA 0089 A290	243	Mov C, SDA
0089 A290	244	RIC A
0086 6291	246	Cir SCL
DOBE 11AA	247	Call Wait 6
OOCO DFF3	248	Djnz R7,Datain_Loop ; Next bit
	249	· · · · ·
00C2 0290	250	Setb SDA
00C4 11AA	251	Call Wait_6
0006 300002	252	Jnb AckFlag,No_Ack
DOC9 C290	253	Clr SDA
	254	
00CB	255	No_Ack:
00CB 11AA	256	Call Wait_6
DOCD D291	257	Setb SCL
DOCF 11AA	258	Call Wait_6
0001 C291	259 260	Clr SCL
003 8006	260	Jmp Wait_36
	262	
	263	•
	264	:* Subroutine Name : SaveParam *
	265	* Function : This subroutine saves registers RO, R1 & R2. *
	266	*
	267	***************************************
	268	
0005	269	SaveParam:
005 8821	270	Mov Scratch1,R0
0007 8922	271	Mov Scratch2,R1
0009 8A23	272	Mov Scratch3,R2
00DB 22	273	Ret
	274	
	275	
	276	Subroutine Name · RestoreParam
	277 278	;* Subroutine_Name : RestoreParam ;* Function : This subroutine restores the registers. *
	278	Function : into subroutime restores the registers, *
	280	,
	280	•
0000	282	RestoreParam:
DODC A821	283	Mov R0,Scratch1
ODE A922	284	Mov R1,Scratch2
OEO AA23	285	Mov R2,Scratch3
DOE2 22	286	Ret
	287	
	288	End

0161-7

# SIEMENS

November 1988

### Programmable Timer/Counter Register Array in Microcontrollers

### SAB 80515/80535

### **Article Reprint**

© Siemens Components, Inc.

#### Abstract

In the past the addition of on-chip memory to microprocessors was the distinctive feature which separated microcontrollers from microprocessors. Since then many bells and whistles have been added to microcontrollers to clearly distinguish them from microprocessors. To appreciate the depth of the microcontroller function cornucopia, consider the following (seemingly endless, but nevertheless partial) list of available features: ROM, RAM, EPROM, E²PROM, A/D converter, PWM, full-duplex serial ports, on-chip counter/timer, latched I/O, Boolean manipulation etc. Far from dead, the 8-bit microcontroller market continues to grow, as more functions with ever increasing performance are integrated on a single-chip by taking advantage of the advanced NMOS and CMOS processes, tighter design rules, and architectural improvements. One such enhanced functional unit of the microcontroller is a timer/counter unit, which in the past had only been used to generate delays and count pulses. The microcontroller architectures have continued to evolve and expand the scope of the timer/counter functions. This article makes an attempt to re-classify a timer unit of the Siemens 80535/515 (a member of Siemens 8051-based microcontrollers) to give a new wrinkle to control applications. If you have ever felt a need to measure frequencies and pulse widths, or had an application to combine digital and analog functions, or wanted to distinguish noise from real signals, or needed to generate PWM signals, then your solution is the PTRA (Programmable Timer/ Counter Register Array) of the Siemens 80535/515 microcontroller. Intel's 8051FA microcontroller has a similar timer unit called the PCA (Programmable Counter Array). But before we draw any conclusions it would be worthwhile to review the features of the PTRA unit available in the Siemens 80535/515 and compare it to the PCA unit of Intel's 8051FA. We will then discuss an application example to evaluate the capabilities and limitations of such timer units.

#### What is in a name?

A Timer circuit is not new in microcomputers, but of all the on-chip peripheral functions of the 8-bit SAB 80535/515 microcomputer—RAM, ROM, analog-todigital converter, serial port—none is more useful or important. Two of the SAB 80535/515's forerunners, the SAB 8031/51 and SAB 8032/52, incorporated timers, and it is from these circuits that a new enhanced timer function is derived. The time-base for the PTRA of the SAB 80535/515 is a programmable 16-bit timer/counter also known as the Timer 2. Timer 2 is the only one that can serve the PTRA. The PTRA consists of the following registers.

T2CON	Timer 2 Control Register
TL2	Timer 2 Register, Low-Byte
TH2	Timer 2 Register, High-Byte
CRCL	Compare/Reload/Capture Register, Low-Byte
CRCH	Compare/Reload/Capture Register, High-Byte
CCL1	Compare/Capture Register 1, Low-Byte
CCH1	Compare/Capture Register 1, High-Byte
CCL2	Compare/Capture Register 2, Low-Byte
CCH2	Compare/Capture Register 2, High-Byte
CCL3	Compare/Capture Register 3, Low-Byte
ССНЗ	Compare/Capture Register 3, High-Byte
CCEN	Compare/Capture Enable Register

For brevity, the double-byte Compare/Reload/Capture register is called CRC register, and the three double-byte Compare/Capture registers are called CC registers 1 to 3. The PTRA shares Port 1 pins for hardware interfacing as shown in Table 1.

In addition to supporting the operational modes of a timer or a counter, the PTRA provides the following features for the Timer 2.

- -16 bit reload
- -16 bit compare
- —16 bit capture

Figure 1 shows a block diagram of the PTRA unit.

The Timer 2 of PTRA can operate either as timer, event counter, or gated timer. In timer mode, the count rate is derived from the oscillator frequency. A 2:1 prescaler makes it possible to select a count rate of 1/12 or 1/24 of the oscillator frequency. In either case, no matter whether Timer 2 is configured as timer, event counter, or gated timer; when the count rolls over from all 1's to all 0's it sets the Timer 2 overflow flag which can generate an interrupt. The timer overflow function can serve as a periodic interrupt for performing a keyboard scan or for refreshing the screen display. It can also be used to indicate end of delay for the execution of time delayed events. In counter mode, the Timer 2 register is incremented in response to a 1-to-0 transition at its corresponding external input pin T2 (P1.7).

The reload mode of the PTRA unit allows contents of Timer 2 to be reloaded from the CRC register at the time when Timer 2 rolls over from all 1's to all 0's—a feature which is quite useful in varying periods of pulse width modulated signals. The 16-bit reload from the CRC register to Timer 2 registers can also be caused by a negative transition at port pin P1.5.

	Table 1. Hardware Interfacing for the PTRA Unit				
Port Pin	Name	Function			
P1.0	INT3/CC0	Compare Output/Capture Input for the CRC Register			
P1.1	INT4/CC1	Compare Output/Capture Input for CC Register 1			
P1.2	INT5/CC2	Compare Output/Capture Input for CC Register 2			
P1.3	INT6/CC3	Compare Output/Capture Input for CC Register 3			
P1.5	T2EX	External Reload Trigger Input			
P1.7	T2	External Count or Gate Input to Timer 2			

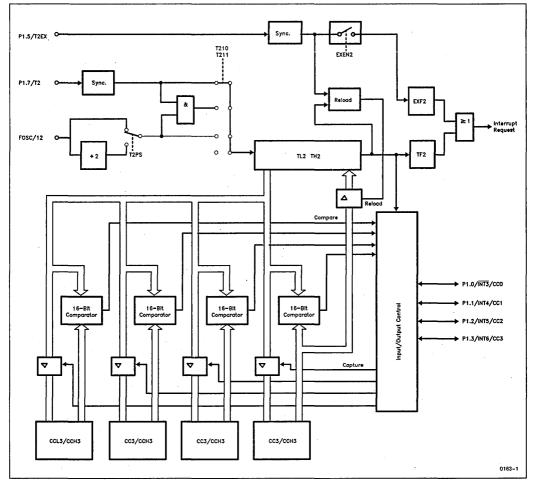



Figure 1. Block Diagram of the PRTA Unit

In the compare mode, the 16-bit values stored in the dedicated compare registers of the PTRA are compared with the contents of the Timer 2 registers TL2 and TH2. If the count value in the Timer 2 register matches the stored value an appropriate output signal is generated at the corresponding port 1 pin, and an interrupt can also be generated. In one of the two compare modes, the Timer 2 of PTRA can be used to generate PWM signals as shown by the functional diagram in Figure 2.

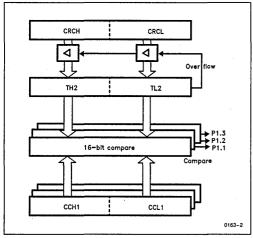



Figure 2. PWM Using the PTRA Unit

In the PTRA set-up (compare mode-0) for PWM signal generation, the output signals at port pins P1.1 through P1.3 change from low to high upon a match of the corresponding CC1 through CC3 register contents with contents of the Timer 2 registers. The outputs then go back to a low level on Timer 2 overflow, and Timer 2 restarts by reloading the CRC register contents. The CRC value controls the period and the registers CC1 through CC3 control the pulse widths of the PWM signals generated at port pins P1.1 through P1.3 respectively. In the second mode of operation the output port pins P1.0 through P1.3 can be caused to toggle at compare events, thereby resulting in the generation of square waves at these outputs. In this mode the Timer 2 overflow has no affect on the output port pins. In this mode of operation one can also generate pulses of varying widths from a few to several thousand microseconds without any major software interruption.

Each of the three compare/capture and the CRC registers of the PTRA unit can be used to latch the current 16-bit value of the Timer 2 in one of them. This latching could either be caused by an external event or upon writing to the low-order byte of the dedicated 16-bit capture register. Either a rising or a falling edge can be selected to cause the capture

from Timer 2 into the CRC register, whereas for the CC registers 1 to 3 a positive transition causes the capture. In the former case, this capability is useful in applications to determine the state of an input pin, or in discriminating noise (a narrow signal) from real signal, or in measuring pulse widths. The other application of input capture is to determine the frequency of a signal applied to the input pin. By capturing the counter value on successive rising or falling edges, the timer determines the number of elapsed counts. Then, knowing the count rate, the frequency of the input signal can be computed.

The PCA unit of Intel's 8051FA can perform similar functions including 16-bit capture/compare with capture activated by negative or positive or both edge transition. In addition, one of the compare registers could be preset and programmed to cause an internal reset on a match, thereby acting as a watchdog timer-a function which is supported by another timer in the SAB 80535/515. The PCA unit of 8051FA supports 8-bit PWM as opposed to 16-bit by the PTRA, and has no reload capability for the timer. On the other hand the timer of the PCA can be programmed to count at a rate of FOSC/4 and supports High Speed Output (HSO) operation. In HSO mode of operation the PCA is configured such that a dodicated software bit can be pre-set and when a match occurs, the module reverses the logic level of its I/O pin.

The 16-bit Timer 2 of the PTRA can also be compared with the timers available on 16-bit microcomputers such as NEC 78312 and Intel's 8096, which have similar performance but only have two and one PWM outputs respectively. Even Motorola's 68HC11 offers capabilities similar to that of the PTRA of the SAB 80515/535 but it lacks a PWM output.

#### **PWM Outputs**

A microcontroller with PWM outputs becomes a useful component in a converter design (Figure 3) to control three phase motors. If the three phase voltage supplied by the converter is variable in frequency and amplitude (a function which can easily be performed by the PWM outputs of the PTRA unit) an efficient control of a three phase motor can be realized. This three phase switching control through a microcontroller will allow motors to have

- -Long Operating Times
- —High Speed
- -Variable RPM
- —Frequency Reversing Cycles
- -Low Noise, Maintenance-Free Operation

The key role of a microcontroller in such an application is to provide PWM control signals which in effect could be used directly to control the converter.

© Siemens Components, Inc.

The PWM outputs characterized by their variable duty cycle and fixed frequency waveforms can also be integrated to provide an approximation to analog outputs. Converting the PWM signal to an analog signal varies in difficulty, depending upon the requirements of the system. Simply, analog signals can be generated from PWM waveforms by using a simple RC or an active filter. Applications such as motor control and switching power supplies actually require a PWM signal, not a true analog one.

#### **PWM and 3 Phase Motor Control**

In the control of a 3-phase motor, the motor is driven by a power amplifier stage which is controlled by PWM signals as shown in the block diagram of Figure 3. The microcontroller in this converter diagram acts as a driver and generates the necessary signals to drive the power amplifier stage. The amplifier performs an important function in the converter by providing the correct amount of current and voltage needed to drive the motor. However, a continuous sinusoidal voltage applied to this amplifier results in operational inefficiency caused by the dissipation of large amounts of power in the output transistors. Therefore a pulsed voltage is applied to the motor, which at short intervals switches each motor winding on at full voltage, then switches it off. On and off times of the pulse sequence using PWM method are controlled by the microcontroller in such a way that the average value of all on-cycles represents a sinewave shape. The running of a 3-phase motor requires a sinusoidal current flow in its windings and does not depend on the shape of the applied voltage. The following section discusses the synthesis of a sinusoidal voltage waveform from a PWM output.

### Synthesis of a Sine-Waveform Using PWM

As shown in Figure 4, a sine-wave can be formed by a number of synthesis points—each represented by a PWM signal corresponding to the amplitude of the sampled point. If  $T_p$  is the time period of the PWM signal then the maximum amplitude (positive peak) of the sine-wave will be represented by a PWM signal which has a high-time =  $T_p$ . The high-time of the PWM signal can be varied by selecting different compare values (in compare mode of the PTRA) which corresponds to different amplitude levels in a sine-wave. If  $T_S$  is the time period of the synthesised sine-wave and S is the number of systhesis points for one full period of the sine-wave, then

$$T_S = S.T_p$$

It is essential that a timer unit must have the following features to generate PWM signals,

- 1. Compare registers.
- 2. PWM outputs (at least three needed for a 3-phase motor control).
- Capability to auto-reload the timer (a feature which allows to vary the T_p).

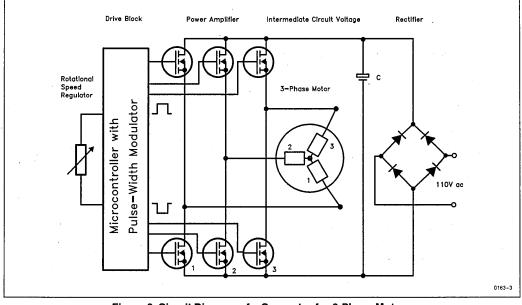



Figure 3. Circuit Diagram of a Converter for 3-Phase Motors

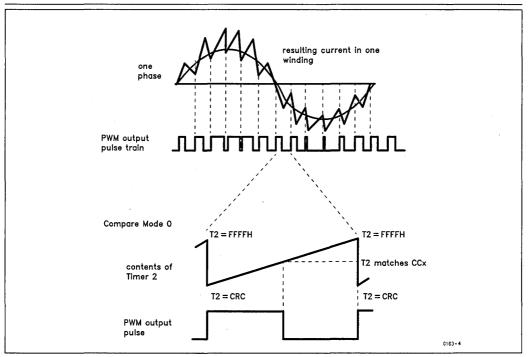



Figure 4. Pulse Width Modulation Using Timer 2 Cycle

The pulse width modulation of samples representing a sine-wave is shown in Figure 5. A high-time of 50% duty cycle represents an amplitude of zero magnitude, whereas an almost 100% high-time represents the positive peak and an almost 0% hightime represents the negative peak. In the SAB 80535/515 the maximum count rate of Timer 2 is 750 ns at 16 MHz oscillator frequency. The full count value (0FFFFH) minus the reload value of Timer 2 represents the Tp. For example, a reload value of 0FC00H will result in a Tp of 1024 counts (0FFFFH-0FC00H) or 1024  $\times$  0.75 = 770.25  $\mu$ s. The count of 1024 can also be interpreted as 1024 different compare values to represent 1024 different samples point in a given period of a sine-wave whereas T_p when expressed as a unit of time represents the PWM frequency. This would imply a positive peak could be represented by a pulse which will remain high for 770.25 µs. The full count value minus the reload value of Timer 2 is also referred to as the resolution of the PWM signal. As the reload value approaches the full count, the Tp count decreases, implying an increase in the PWM frequency but decrease in the resolution of the PWM signal. For example, using a reload value of 0FC00H in the PTRA unit of the SAB 80535/515 one can achieve a PWM frequency of 1.302 kHz with a resolution of 10 bits. Similarly, using the PTRA unit at 16 MHz oscillator frequency, one can achieve 8-bit resolution with a PWM frequency of 5.208 kHz, a 6-bit resolution with a PWM frequency of 20.83 kHz and a 5-bit resolution with a PWM frequency of 41.67 kHz. Clearly, there is a compromise between the PWM frequency and resolution of the PWM signal. One can also have more than one PWM pulse per sample point. If N is the number of equal pulses per synthesis point then

$$T_s = S.N.T_p$$
  
 $f_s = f_s/S N$ 

where,

or

f_s = frequency of the synthesised sine-wave

$$f_{p} =$$
 frequency of the PWM signal

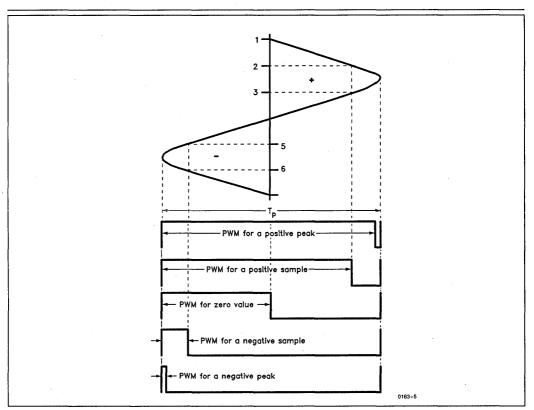


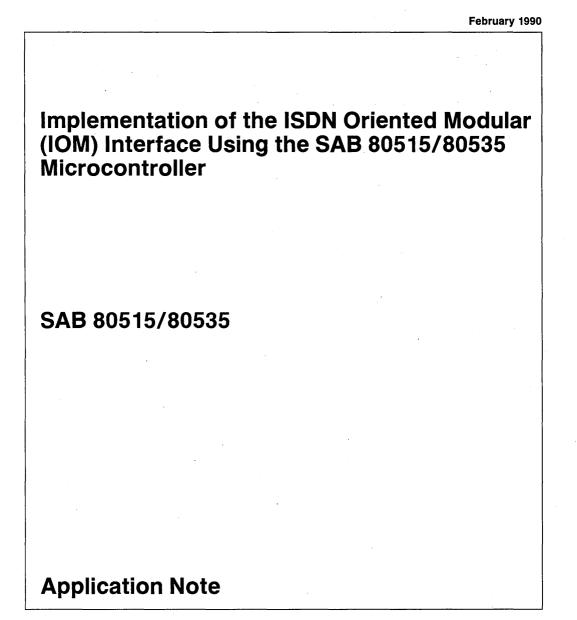

Figure 5. Synthesis of a Sine-Wave Using PWM

The PWM frequency depends upon the crystal oscillator frequency of the microcontroller. The number of synthesis points for each full sine-wave cycle must be a multiple of six as otherwise a 120 degree phase displacement cannot be achieved for a three phase operation. Based on these requirements, the Table 2 illustrates some values for  $f_{\rm S}$ .

From Table 2 it is clear that a series of sine-waves with a wide range of frequencies can be synthesized using the PWM technique. However, an improper selection of the fp could cause oscillations and audible "chirps" when a mechanical resonance is met at a particular frequency while controlling a 3-phase motor. As fp increases the resolution of the PWM decreases and only fewer samples are available to synthesize a sine-wave. The maximum synthesized sine-wave frequency fs is obtained at a high PWM frequency with fewer synthesis points per period and as the fp decreases or the number of synthesis points increase the frequency of the synthesized sine-wave decreases. Clearly, continuous sinusoidal frequency variations require alterations of the PWM frequency-a job which the SAB 80535/515 can perform quite easily.

#### Conclusion

Besides performing the PWM support to control 3phase motors, the SAB 80535/515 has additional on-chip features which makes it the ideal solution for many control applications. On-chip peripherals such as three timer/counters, 6 x 8-bit ports, A/D converter with programmable reference voltages, watchdog timer, baud-rate generator and a serial interface allow versatile applications in the field of automotive, industrial and consumer electronics.


#### References

- 1. Siemens SAB 80535/515 user's manual.
- Frequency converter for driving asynchronous three-phase motors designed with new micro and power electronic components Siemens application note.

Table 2. Different Values for fs							
Timer 2 Reload Value	f _p in Hz	Clock in MHz	Timer 2 Count Rate	S	N	f _s in Hz	
0FFC0H	20833	16·	750 ns	18	1	1157.4	
0FFC0H	20833	16	750 ns	18	2	578.69	
0FFC0H	20833	16	750 ns	18	4	289.35	
0FFC0H	20833	16	750 ns	54	1	385.80	
•	•	¢	•	•	•	•	
•	•	•	•	•	•	•	
0F000H	326	16	750 ns	12	1	27.12	
0F000H	326	16	750 ns	12	2	13.56	
٠	•	•	•	•	•	•	
•	•	•	•	•	•	•	
0FFC0H	15625	12	1000 ns	24	1	651.04	
0FFC0H	15625	12	1000 ns	24	2	325.52	
0FFC0H	15625	12	1000.ns	54	. 1	289.35	
•	•	0	•	•	•	•	
0F000H	244	12	1000 ns	24	1	10.16	

8

# SIEMENS



© Siemens Components, Inc.

#### Introduction

This application note describes how any two port pins of the SAB 80515/535 microcontroller can be programmed to perform the data transmit and receive line functions of the ISDN Oriented Modular (IOM) interface.

Digitization of telephone networks not only increases transmission rates but allows more than one signal to be sent over a telephone line simultaneously. This capability to offer voice and a multiplicity of data services over one network with standard interfaces and call set-up procedures is the real driving force behind today's telecom/datacom revolution.

This one network is called ISDN—the Integrated Services Digital Network.

- Integrated Telecommunication and data communication services together on one system.
- Services Voice, data, text, picture, video, telex, facsimile, telemetry, alarms, and more.
- Digital Digital transmission from end to end, with voice digitization handled at the terminal.
- Network One worldwide network, based on existing public telephone lines, providing standard interfaces and call procedures familiar to everyone.

#### ISDN—Standards for Interconnectability

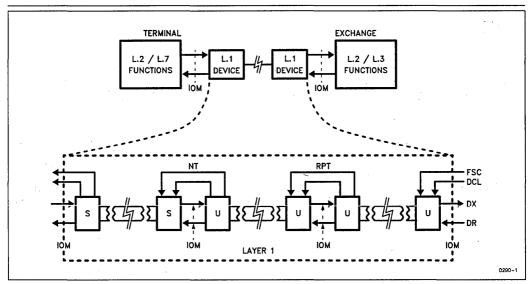
The international Telegraph and Telephone Consultative Committee (CCITT) has published a series of recommendations that have become the industry standard. These recommendations include ISDN definitions for two different groups of transmission speeds:

Basic Access Rate: 144 Kbits/s user information.

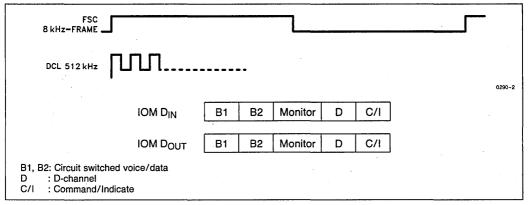
Basic access is configured as two 64 Kbits/s Bchannels for voice or data transmission and one 16 Kbits/s D-channel for signaling or packet switched data. This is abbreviated as 2xB + D. It is used to connect voice/data terminals to either a private branch exchange (PBX) or directly to the public central office exchange (CO). *Primary Access Rate:* 1.544 Mbits/s user information in USA and Japan.

Primary rates are used to transmit large amounts of data. The increased transmission rate helps to reduce the time of transmission and hence the cost of transmission. 64 Kbits/s channels are configured as 23xB + D in USA/Japan.

Siemens provides a number of dedicated solutions in the form of devices: system integration and software for ISDN. To make the interconnectivity of such ISDN devices possible, Siemens developed the ISDN Oriented Modular (IOM) architecture. The Siemens IOM (rev 2) architecture is fast becoming the de-facto standard for telecom designs. Many IC companies (Siemens, AMD, National and AT&T) now support this standard. Although a rich array of devices currently exists to support the bus, the Telecom market is expanding at such a rate that not all applications are covered. It is now Siemens' intent to have IOM interface available on all ISDN devices. Complete ISDN systems from terminals, terminal adapters, network terminators and transmission repeaters to line cards for digital exchange systems can be optimally designed using the IOM family of ICs.


#### ISDN Oriented Modular (IOM) Architecture

The IOM interface is a standard 4-wire local interface for the interconnection of ISDN-devices within the ISDN basic access. It consists of a receive and a transmit data line, an 8 KHz frame signal (FSC) and a 512 KHz data clock signal (DCL). The interface is tailor-made to fit the needs of the ISDN basic access. Typical applications shown in Figure 1 are:


In a repeater; two identical transmission devices are set back-to-back to achieve an increase in range.

In an NT (Network Termination); two different transmission devices are combined to convert between the S and U interface.

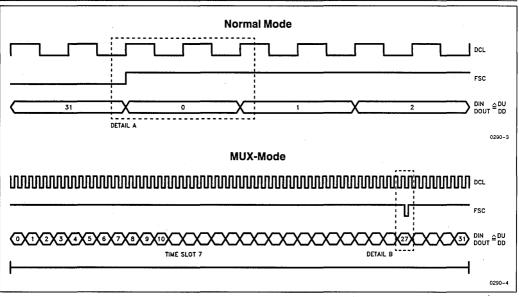
In the terminal (TE) and the exchange; the IOM interface interlinks the layer 1 and layer 2 device. In addition to the point to point configuration, the IOM-interface can support a point-multipoint configuration.










In all applications the ISDN data rate of 144 Kbits (2xB + 1xD) has to be transferred across the IOM interface transparently. In addition, there is a need for the exchange of control information for activating/deactivating layer 1 and for switching test loops. A few applications require further capacity to transfer maintenance information via this interface. All this information is transferred in a time-division multiplexed mode based on an 8 KHz frame structure (Figure 2) and assigned to the following four octets per frame and direction:

The 64 Kbits/sec channels B1 and B2 occupy the first two octets.

The third octet (monitor channel) is used for transferring the maintenance information. The two D-channel-bits, the four Command/Indicate-bits (which control the activation/deactivation procedure), the T-bit and the E-bit are transferred in the fourth octet. The E-bit supports the handling of the monitor channel and the T-bit is reserved for a transparent 1 Kbit channel.

These four octets per frame constitute a bit rate of 256 Kbps. The transmission rate depends on one of the following modes:

Normal Mode:	Data Rate: 256 Kbps	
	Bit Rate: 256 Kbps	
	Clock Frequency: 512 KHz	
MUX Mode:	Data Rate: 256 Kbps	
	Bit Rate: 2.048 Mbps	
	Clock Frequency: 4.096 MH	





In the multiplex mode the outputs of up to eight layer 1 devices may be connected together to form an eight-time-slot IOM interface bus with a 2 MHz data rate. The physical timing of the IOM-interface in different modes is shown in Figure 3.

#### SAB 80515/535 Role

The primary role of the SAB 80515/535 microcontroller in generating the IOM interface in normal mode is to accept the frame synchronization (FSC) signal as an input and based on this signal identify the four octets on the receive and transmit data lines. Any two port pins of the SAB 80515/535 can be used as the transmit and receive data lines. The PTRA unit of the SAB 80515/535 plays a major role not only in defining the octets but also in generating and receive lines in synchronization with the frame and data clock signals. In this respect the SAB 80515/535 falls into a unique family of microcontrollers which can perform this function.

#### PTRA Unit of the SAB 80515/535

The Programmable Timer/Counter Register Array (PTRA) of the SAB 80535/515 has a time-base

which is a programmable 16-bit timer/counter also known as the Timer 2. Timer 2 is the only one that can serve the PTRA.

The PTRA consists of the following registers:

**T2CON** Timer 2 control register

- TL2 Timer 2 register, low-byte
- TH2 Timer 2 register, high-byte
- CRCL Compare/reload/capture register, low-byte
- CRCH Compare/reload/capture register, high-byte
- CCL1 Compare/capture register 1, low-byte
- CCH1 Compare/capture register 1, high-byte
- CCL2 Compare/capture register 2, low-byte
- **CCH2** Compare/capture register 2, high-byte
- CCL3 Compare/capture register 3, low-byte
- **CCH3** Compare/capture register 3, high-byte
- **CCEN** Compare/capture register enable register

For brevity, the double-byte Compare/Reload/Capture register is called CRC register, and the three double-byte Compare/Capture registers are called CC registers 1 to 3. The PTRA shares Port 1 pins for hardware interfacing as shown in Table 1.

#### Table 1. Hardware Interfacing for the PTRA Unit

Port Pin	Name	Function
P1.0	INT3/CC0	Compare Output/Capture Input for the CRC Register
P1.1	INT4/CC1	Compare Output/Capture Input for CC Register 1
P1.2	INT5/CC2	Compare Output/Capture Input for CC Register 2
P1.3	INT6/CC3	Compare Output/Capture Input for CC Register 3
P1.5	T2EX	External Reload Trigger Input
P1.7	T2	External Count or Gate Input to Timer 2

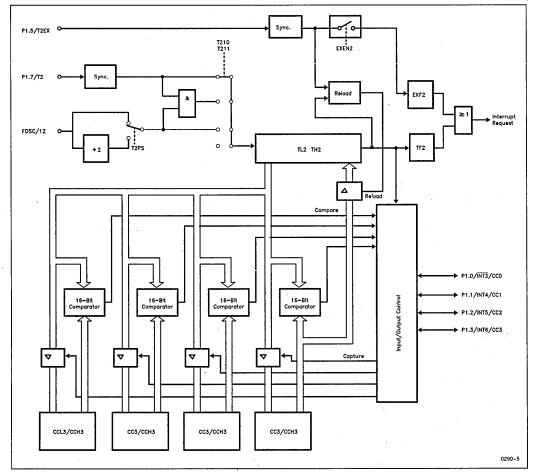



Figure 4. Block Diagram of the PTRA Unit

In addition to supporting the operational modes of a timer or a counter, the PTRA provides the following features for the Timer 2.

—16-bit reload

- -16-bit compare
- -16-bit capture

Figure 4 shows a block diagram of the PTRA unit.

The Timer 2 of PTRA can operate either as timer, event counter, or gated timer. In timer mode, the count rate is derived from the oscillator frequency. A 2:1 pre-scaler makes it possible to select a count rate of 1/12 or 1/24 of the oscillator frequency. In either case, no matter whether Timer 2 is configured as timer, event counter, or gated timer; when the count rolls over from all 1's to all 0's it sets the Timer 2 overflow flag which can generate an interrupt. In counter mode, the Timer 2 register is incremented in response to a 1-to-0 transition at its corresponding external input pin T2 (P1.7).

The reload mode of the PTRA unit allows contents of Timer 2 to be reloaded from the CRC register at the time when Timer 2 rolls over from all 1's to all 0's. The 16-bit reload from the CRC register to Timer 2 registers can also be caused by a negative transition at port pin P1.5.

In the compare mode, the 16-bit values stored in the dedicated compare registers of the PTRA are compared with the contents of the Timer 2 registers TL2 and TH2. If the count value in the Timer 2 register matches the stored value an appropriate output signal is generated at the corresponding port 1 pin, and an interrupt can also be enabled.

In the PTRA compare mode-0, the output signals at port pins P1.1 through P1.3 change from low to high upon a match of the corresponding CC1 through CC3 register contents with contents of the Timer 2 registers. The outputs then go back to a low level on Timer 2 overflow, and Timer 2 restarts by reloading the CRC register contents. In the second mode of operation the output port pins P1.0 through P1.3 can be caused to toggle at compare events, thereby resulting in the generation of square waves at these outputs. In this mode the Timer 2 overflow has no affect on the output port pins. Each of the three compare/capture and the CRC registers of the PTRA unit can be used to latch the current 16-bit value of the timer 2 in one of them. This latching could either be caused by an external event or upon writing to the low-order byte of the dedicated 16-bit capture register. Either a rising or a falling edge can be selected to cause the capture from Timer 2 into the CRC register, whereas for the CC registers 1 to 3 a positive transition causes the capture.

#### IOM Interface Using the SAB 80515/535

The high speed of the SAB 80515/535 microcontroller allows its machine cycle (1/12 of oscillator frequency) to be twice as fast as the DCL which means the microcontroller can easily handle two DCLs per data bit. To achieve this, the crystal oscillator frequency is selected at 24 times the data clock i.e., 24x512 KH = 12.288 MHz. As a result, the Timer 2, which is programmed to operate in mode 1, also counts as twice the rate of the data clock. Timer 2 is programmed to increment at the rate of 1024 KHz as opposed to counting at the data clock rate of 512 KHz. Though the latter could be accomplished by connecting the data clock to port pin P1.7 of the microcontroller and letting the Timer 2 count in the external count mode. But this is not desirable as the count rate of 1024 KHz gives a higher resolution for the compare feature. However, the synchronization is achieved by programming the Timer 2 to count at a value of 0FF80H every time the falling edge of the FSC (Frame Synchronization) signal is detected at port pin P1.5. The falling edge of the FSC signal coincides with the occurrence of the first data bit in octet 3 (monitor channel).

With 0FF80H being the start value of Timer 2 which also marks the beginning of third octet, the other octets occur 32 counts apart. This derives from the fact that there are two DCLs per data bit (4 machine cycles or 4 counts per data bit) and there are 8 data bits per octet. Based on this analogy, the octets 3, 4, 1 and 2 occur at the Timer 2 count values of 0FF80H, 0FFA0H, 0FFC0H and 0FFE0H respectively as shown in Figure 5. In other words, if the compare interrupt was invoked at these count values. the user will be in the desired octet to transmit or receive a data bit stream. However, the delay involved in processing the interrupt will also delay the occurrence of a dat bit at the desired DCL. To understand the compare interrupt handling in the SAB 80515/535, one will first have to understand the basic machine cycle timings of the SAB 80515/535.

A machine cycle consists of 6 states (12 oscillator periods). Each state is divided into two phases phase 1 and phase 2. Thus a machine cycle consists of 12 phases or 12 oscillator periods, numbered S1P1 (state 1, phase 1) through S6P2 (state 6, phase 2). Each phase lasts or one oscillator period and each state lasts for two oscillator periods. Timer 2 is incremented in S1P1 of every machine cycle. An internal compare signal is generated in S2P2, if Timer 2 increments to the compare count in one of the compare registers CC1 through CC3. The compare signal is active as long as the Timer 2 contents are equal to one of the compare registers. For the compare registers CC1 to CC3 an interrupt is always requested and a flag is set when the compare signal goes active. The interrupt flags are sampled in S5P2 of every machine cycle. The samples are polled during the following machine cycle. If one of the flags was in a set condition in S5P2 of the preceding cycle, the polling cycle will find it and the interrupt system will generate an LCALL to the appropriate service routine. As shown in Figure 6 a standard interrupt handling procedure can take about 4 machine cycles. For exceptions please refer to the SAB 80515/535 user's manual. Based on above facts, in the present application, two DCLs (4 machine cycles) have already elapsed before the program enters into the compare subroutine. To avoid this delay, the compare interrupt subroutine is invoked 30 machine cycles or 15 DCLs before the desired octet. Therefore the compare event for different octets occur at the following count values:

Octet 1, count value = 0FFA2H Octet 2, count value = 0FFC2H Octet 3, count value = 0FFE2H Octet 4, count value = 0FF82H

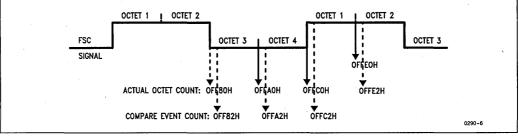



Figure 5. Octet Placement in FSC Signal

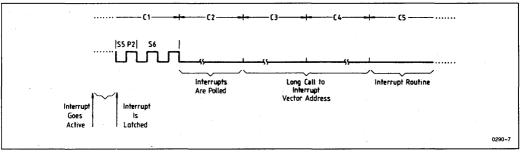



Figure 6. Interrupt Response Timing Diagram

In either transmit or receive mode, when compare interrupt occurs at one of the above count values, the microcontroller performs no-operation until 30 machine cycles elapse. At that instant, the microcontroller sends out or receives the data bit stream as that is the beginning of the desired octet.

#### System Implementation

The program listing (refer to Appendix A) has two subroutines-one for transmit and the other for receive mode. In either case the data variable "count" holds the lower byte of the desired octet to perform the compare match. In transmit mode the data is taken from external memory and in the receive mode the data is stored in the external memory starting at address 000H. The total time spent in the compare interrupt subroutine to transmit or receive a byte varies from 75 to 82 machine cycles. This variation is caused due to the time spent in deciding whether or not the byte transmitted or received is the last byte. The next byte is not transmitted or received until the next octet in subsequent frame i.e., 128 machine cycles later. Therefore the CPU is free for 128 machine cycles minus the time spent in machine cycles in the compare interrupt subroutine. However more time could be made available for the CPU by cutting down the number of NOPs in the compare interrupt subroutine and by increasing the

compare count to compensate for the number of NOPs removed. In that case the compare event could occur as close as 4 machine cycles before the desired octet count.

Any two port pins of the SAB 80515/535 can be used as the data transmit and data receive lines. In this application port pin P3.0 is used as the receive data line and the port pin P3.1 is used as the transmit data line. Figure 7 shows the basic SAB 80535 circuit required to run the subroutines. The pins used for the IOM interface are also shown. The other onchip peripherals namely the serial port, Timer 0 and Timer 1, the watchdog timer, the A/D converter and 30 I/O lines are still available to perform any other system functions.

Figure 8 shows an IDSN application where the SAB 80515/535 is being used as a terminal interfaced to an ISDN network simulator over the S-interface.

#### References

- 1. Siemens, 8-Bit Single-Chip Microcontroller Handbook, 1989/90.
- 2. Siemens, Telecommunications Data Book, 1987.
- 3. Total ISDN Commitment, a Siemens Brochure.

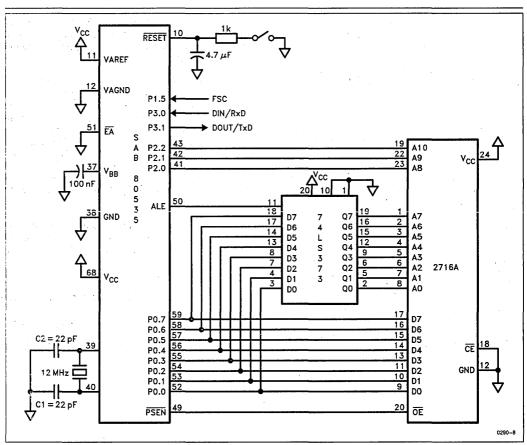



Figure 7. SAB 80535 Schematic Diagram

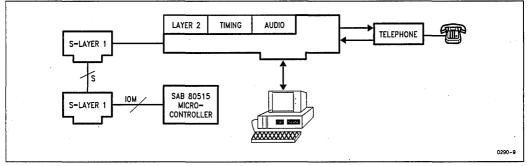



Figure 8. NT—Simulator Application Using the SAB 80515/5353 as a Terminal

IOMW		10	M Interface			Appendix A		
		l	\$Mod515					
		2	\$Pagelength(7	70)				
		3	\$Debug					
		4	\$Title (IOM ]	Interfac	e Ap	pendix A)		
		5 6						
		7						
		8	****	*****	*****	****	****	****
		9	;* IOM Inte	erface P	rogram:			*
		10			-	m the variab	le "Count"	*
		11					be transmitted.	*
		12					et 1, count =	*
		13					3, count = $0E2H$	
		14					are stored in th	e * *
		15 16			-	he bytes app		*
		17	•			subsequent f itted. The e		*
		18	,	-			(24 x 512 KHz).	*
		19					****	****
		20	· .					
		21						
00A	12	22	Count H	EQU	0A2H	;Octet	1=A2,2=C2,3=E2,	4=82.
		23	-					
0000		24	Cseg a	at	он	,		
0000	000100	25	Ŧ	THE	Voin Don	4 m		
0000	020100	26 27	T	JMP	Main_Beg	in		
		28	•***	*****	*****	****	*****	****
		29	, :* Write_I(					*
		30	•			e happens 30	machine cycles	*
		31	;* (15 DCLs	-		currence of	-	*
		32		The data	byte is	output on p	ort bit P3.1	*
		33	•	-		urrence of t		*
		34	•		•	taken from		*
		35 36			-	nter to exte		*
		30				The subrout	is transmitted	*
		38				al of the fa		*
		39	•		ort pin			*
		40					*****	****
005B		41	Ċ	)rg	5BH	;Compa	re 1 interrupt r	outine.
		42						
005B		43	Write_IOM_Sub	proutine	:		for servicing t	he
0055	CORR	44				routi		
005B	CSBB	45 46	. (	CLR	IEN1.3	;7th m	/c into the fram	
005D	00	47	٦	IOP		•8+h m	/c into the fram	10
005E		48		NOP			/c into the fram	
005F		49		NOP			m/c into the fra	
0060		50		NOP			m/c into the fra	
0061	00	51	1	NOP			m/c into the fra	
	00	52		NOP		•	m/c into the fra	
0062			N	IOP		;14th	m/c into the fra	me.
0063	00	53					· · · · · ·	
0063 0064	00 00	54	ľ	10P			m/c into the fra	
0063 0064 0065	00 00 00	54 55	1 1	10P 10P		;16th	m/c into the fra	me.
0063 0064	00 00 00 00	54	ם ק ק	10P		;16th ;17th		me. me.

			· · · · · · · · · · · · · · · · · · ·
IOMW	IOM Interfa	Ce	Appendix A
0068 00	58 NOP		;19th m/c into the frame.
0069 00	59 NOP		;20th m/c into the frame.
006A 00	60 NOP		21th m/c into the frame.
006B 00	61 NOP		:22th m/c into the frame.
0060 00	62 NOP		:23th m/c into the frame.
006D 00	63 NOP		:24th m/c into the frame.
006E 00	64 NOP		:25th m/c into the frame.
006F 00	65 NOP		:26th m/c into the frame.
0070 00	66 NOP		:27th m/c into the frame.
0071 00	67 NOP 68		;28th m/c into the frame.
0072 13	69 RRC	A	;29th m/c into the frame.
0073 00	70 NOP		;30th m/c into the frame.
0074 92B1	71 MOV	P3.1.C	Two more cycles.
0014 3251	71 mov 72	10.1,0	,1WO MOLE CYCLES.
0076 13	73 RRC	A	New octet, first bit arrives.
0077 00	74 NOP		;34th cycle.
0078 92B1	75 MOV	P3.1,C	;Second bit sent.
	76	10.1,0	,booma bio Sono.
007A 13	77 RRC	A	Third bit to carry flag.
007B 00	78 NOP		:38th cycle.
007C 92B1	79 MOV	P3.1.C	Third bit sent
00.0 0002	80	1011,0	
007E 13	81 RRC	A	;Fourth bit to carry flag.
007F 00	82 NOP		;42nd cycle.
0080 92B1	83 MOV	P3.1,C	;Fourth bit sent.
0000 0222	84	1012,0	
0082 13	85 RRC	A	;Fifth bit to carry flag.
0083 00	86 NOP	,	;46th cycle.
0084 92B1	87 MOV	P3.1,C	Fifth bit sent.
0001 0222	88	1011,0	,1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0086 13	89 RRC	A	;Sixth bit to carry flag.
0087 00	90 NOP		:50th cycle.
0088 92B1	91 MOV	P3.1,C	Sixth bit sent.
	92	,.	,
008A 13	93 RRC	A	;Seventh bit to carry flag.
008B 00	94 NOP		54th cycle.
008C 92B1	95 MOV	P3.1,C	Seventh bit sent.
	96		,
008E 13	97 RRC	A	Eighth bit to carry flag.
008F 00	98 NOP		;58th cycle.
0090 92B1	99 MOV	P3.1,C	Eighth bit sent.
	100	•	
0092 00	101 NOP		;122th DCL (61st cycle).
0093 00	102 NOP		;62nd cycle.
0094 00	103 NOP		;63rd cycle.
0095 D2B1	104 SETB	P3.1	;32nd DCL (64th cycle).
UUJU DEDI	105	10.1	, Jand Dell (Often Cycle).
0097 A3	106 INC	DPTR	;Increment the data pointer.
0098 E0	107 MOVX		;Load the acc. with next byte.
0099 A883	108 MOV	RO, DPH	;To compare if end of array
009B B8FF08	109 CJNE		Compare the high byte first.
009E A882	110 MOV		Load the lower byte for comparison.
		RO, DPL	
00A0 B8FF03	111 CJNE 112	RO,#OFFH,CONTI	;Compare the lower byte.
00A3 900000	112 MOV	DPTR,#00H	;Initialize the data pointer.
	114	~* *** 9 # UUI	,

IOMW		IOM	Interface			Appendix A
00A6		115	CONTI:			
00A6	C2C3	116		CLR	IRCON.3	
8A00	D2BB	117		SETB	IEN1.3	
00AA	32	118		RETI		
		119				
		120				
		121				
		122	*****	* * * *	*****	******
		123	* Writ	e_10	M_Set-Up:	*
		124	;* In t	his j	program the re	egisters are set up to *
		125	;* allo	w co	npare to happo	en at the "count" value. The *
		126	;* PTRA	uni	t of the SAB a	30535 is programmed in the *
		127				count" value is assigned *
		128	;* to t	he c	ompare registe	er 1 and the corresponding *
		129		rrup	t is enabled.	The Timer 2 of the PTRA *
		130	;* unit	is	programmed to	restart at a value of FF80H *
		131	;* on t	he a	rrival of the	falling edge of the *
		132	;* FSC	signa	al.	*
		133	•*******	****	*****	*****
		134				
0100		135	. 1	ORG	100H	
		136	Main_Begi	n:		
	900000	137	1	MOV	DPTR,#00H	;DPTR = (Start of data array).
	75C100	138		MOV	CCEN,#OOH	;Disable compare mode.
0106	75BOFF	139	1	MOV	P3,#OFFH	;SDO, SDI lines are high.
		140				
	75C3FF	141		MOV	CCH1,#OFFH	;Compare register has a value
	75C2A2	142		MOV	CCL1,#Count	;corresponding to the octet desired.
	75CBFF	143		MOV	CRCH, #OFFH	
	75CA80	144		MOV	CRCL,#080H	;Reload = OFFFH - 128 (32x4)
	75CDFF	145		MOV	TH2,#OFFH	
	750081	146		MOV	TL2,#81H	;To avoid compare at FF80H
011B		147			T2CM	;T2 in compare mode 1
	750108	148		MOV	CCEN,#08H	;Compare mode enabled
0120	D2F	149		SETB	EAL	;Master interrupt Bit enabled.
	~~~~	150				
	758910	151		MOV	TMOD,#10H	;Timerl to cause more than
	758DFF	152		MOV	TH1,#OFFH	quarter of a frame delay
0158	758BD0	153		MOV	TL1,#256-48	;to avoid match before reload.
01 OD		154	0 + + -			
012B	00000	155	Start:	70		
-	2096FD	156		JB	P1.6,\$	Prepare for start pulse arrival.
	3096FD	157		JNB	P1.6,\$;Wait for the start pulse, 1 m/c.
0131		158		SETB		;So far 2 m/c into the frame.
0122	308FFD	159		JNB	TF1,\$;Wait for another 49 m/c
0170	75/010	160		1017		TO out a polood from D1 5
	75C81D	161 162		MOV	T2CON, #1DH	T2 auto reload from P1.5.
0139	DZDD		i	SELD	IEN1.3	;Compare interrupt 1 enable.
01 7 P	0170			A TMT	¢	Woit for a match
013B	2TOB	164		AJMP	\$;Wait for a match.
		165 166		and		
		T00		end		

ASSEMBLY COMPLETE, O ERRORS FOUND

IOMRA	L	I	OM Interface		Appendix A	•
		1	\$Mod515			
		2	\$Pagelength(73)		
		3	\$Debug			
		4	\$Title (IOM In	terface	Appendix A)	
		5				
		6				
		7				
		8	,		~	***
		9 10		face Progra		*
		11			gram the variable "Count" t from which the data byte is to be	*
		12			octet counts are: for octet 1.	*
		13	,		2, count = $0C2H$; octet 3,	*
		14	•		4, count = 82H. These bytes are	*
		15			al data memory. The bytes are read	*
		16			et in subsequent frames until the	*
		17	;* last byte	is transmi	tted. The external crystal	*
		18	;* oscillato:	r frequency	is 12.288 MHz (24 x 512 KHz).	*
		19	•*************************************	*****	*****	* *
		20				
		21	C	0.1.017		
00A	12	22	Count EQU	0A2H	;Octet 1=A2,2=C2,3=E2,4=82.	
0000		23 24	Cseg at	ОН		
0000		25	useg at	Un		
0000	020100		LJM	P Main_B	egin	
		27			*****	
		28 29	•			*
		29 30	•	Subroutine:	tine happens 30 machine cycles	*
		31	•		occurrence of the desired	*
		32			is read from port bit	*
		33			the occurrence of the desired	*
		34	, .		is stored in external memory	*
		35			to external memory	*
		36		ented after	the byte is received	*
		37		IOM interfa	ce. The subroutine is	*
	•	38			xt compare event.	*
		39	,		*****	* *
005B		40 41	Org	5BH	;Compare 1 interrupt routine.	
005 [.] B		42	Write_IOM_Subr	outine:	;4 m/c for servicing the routine	
		43			, <u>,</u> <u>,</u>	
0Ó5B	C2BB	44	CLR	IEN1.3	;7th m/c into the frame.	
		45				
005D		46	NOP		;8th m/c into the frame.	
005E		47	NOP		;9th m/c into the frame.	
005F		48	NOP		;10th m/c into the frame.	
0060 0061		49 50	NOP		;11th m/c into the frame.	
0061		50 51	NOP NOP		;12th m/c into the frame.	
0062		51 52	NOP		;13th m/c into the frame. ;14th m/c into the frame.	
0064		53	NOP		:15th m/c into the frame.	
0065		54	NOP		:16th m/c into the frame.	
0066		55	NOP		;17th m/c into the frame.	
0000			NOP			
0067	00	56	. NOF		;18th m/c into the frame.	

IOMRA	IOM	Interfac	e	Appendix A
0069 00	58	NOP		;20th m/c into the frame.
006A 00	59	NOP		;21th m/c into the frame.
006B 00	60	NOP		;22th m/c into the frame.
0060 00	61	NOP		;23th m/c into the frame.
006D 00	62	NOP		;24th m/c into the frame.
006E 00	63	NOP		;25th m/c into the frame.
006F 00	64	NOP		;26th m/c into the frame.
0070 00	65	NOP		;27th m/c into the frame.
0071 00	66	NOP		;28th m/c into the frame.
0072 00	67	NOP		;29th m/c into the frame.
0073 00	68	NOP		;30th m/c into the frame.
0074 00	69	NOP		;31th m/c into the frame.
0075 00	70	NOP		;32th m/c into the frame.
	71			,
0076 00	72	NOP		;New octet.
0077 A2B0	73	MOV	C,P3.0	;First bit read.
0079 13	74	RRC	A	First bit into the acc.
007A 00	75	NOP	••	;36th m/c inth the frame
00/11 00	76			
007B 00	77	NOP		;37th m/c into the frame.
007C A2B0	78	MOV	C,P3.0	:Second bit read.
007E 13	79	RRC -	A	;Second bit into the acc.
007F 00	80	NOP	А	;40th m/c into the frame.
00/1 00	81			, toon mys into the fidmot
0080 00	82	NOP		;41st m/c into the frame.
0081 A2B0	83	MOV	C,P3.0	Third bit read.
0083 13	84	RRC	A	Third bit into the acc.
0084 00	85	NOP	А	;44th cycle.
0004 00	86	NOI		, HUM CYCLC.
0085 00	87	NOP		;45th m/c into the frame.
0086 A2B0	88	MOV	C,P3.0	;Fourth bit read.
0088 13	89	RRC	A	;Fourth bit into the acc.
0089 00	90	NOP	••	;48th machine cycle.
	91			
008A 00	92	NOP		;49th m/c into the frame.
008B A2B0	93	MOV	C,P3.0	;Fifth bit read.
008D 13	94	RRC	A	;Fifth bit into the acc.
008E 00	95	NOP		;52nd cycle.
0002 00	96			,00Md 0,0101
008F 00	97	NOP		;53rd machine cycle.
0090 A2B0	98	MOV	C,P3.0	Sixth bit read.
0092 13	99	RRC	A	Sixth bit into the acc.
0093 00	100	NOP		;56th machine cycle.
	101			, oo on maanano oj ozot
0094 00	102	NOP		;57th machine cycle.
0095 A2B0	103	MOV	C,P3.0	;Seventh bit read.
0097 13	104	RRC	A	Seventh bit into the acc.
0098 00	105	NOP	А	;60th machine cycle.
0050 00	106	noi		,ooth machine cycle.
0099 00	107	NOP		elst mochine avale
0099 00 009A A2B0	107	MOF	C,P3.0	;6lst machine cycle. ;Eighth bit read.
009C 13			-	
0090 13	109	RRC	A	;Eighth bit into the acc.
000D 13	110	TNO	DPTR	Thenemont the data reinter
009D A3	111	INC		;Increment the data pointer.
009E F0	112	MOVX	@DPTR,A	;Save the acc. at the next byte.
009F A883	113	MOV	RO, DPH	;To compare if end of array
00Al B8FF08	114 115	CJNE MOV	RO,#OFFH,CONTI RO,DPL	;Compare the high byte first. :Load the lower byte for comparison.
00A4 A882				

© Siemens Components, Inc.

IOMRA	ION	Interface		Appendix A	
00A6 B8FF03	116 117	CJNE	RO,#OFFH,CONTI	;Compare the lower byte.	
00A9 900000		MOV	DPTR,#00H	;Initialize the data pointer.	
OOAC	120	CONTI:			
OOAC C2C3	121	CLR	IRCON.3		
OOAE D2BB	122	SETB	IEN1.3		
00B0 32	123	RETI			
	124				
	125				
	126	ate als	ala	ate	
	127 128	•		* ************************************	
	128	·	M_Set-Up:		
	130			isters are set up to * at the "count" value. The *	
	131			535 is programmed in the *	
	132			unt" value is assigned *	
	133			1 and the corresponding *	
	134			he Timer 2 of the PTRA *	
	135	;* unit is	programmed to r	estart at a value of FF80H *	
	136		arrival of the f	alling edge of the *	
	137	;* FSC sig		*	
	138	•***********	*****	*********	
0100	139	070	1000		
0100	140	ORG	100H		
0100 0100 900000	141	Main_Begin: MOV	DPTR,#00H	;DPTR = (Start of data array).	
0103 750100		MOV	CCEN,#OOH	Disable compare mode.	•
0106 75B0FF		MOV	P3,#0FFH	;SDO, SDI lines are high.	
	145			,,	
0109 75C3FF	146	MOV	CCH1,#OFFH	;Compare register has a value	
010C 75C2A2	147	MOV	CCL1,#Count	;corresponding to the octet	'
desired.					
OlOF 75CBFF		MOV	CRCH, #OFFH		
0112 75CA80		MOV	CRCL,#080H	;Reload = $OFFFFH - 128 (32x4)$	
0115 75CDFF		MOV	TH2,#OFFH	The sound as TERON	
0118 75CC81 011B D2CA	151	MOV SETB	TL2,#81H T2CM	;To avoid compare at FF80H ;T2 in compare mode l	
011D 75C108		MOV	CCEN,#08H	Compoare mode enabled	
0120 D2AF	154	SETB	EAL	;Master interrupt Bit enabled.	
0100 2011	155	ULID	2112		
0122 758910		MOV	TMOD,#10H	;Timerl to cause more than	
0125 758DFF	157	MOV	TH1,#OFFH	quarter of a frame delay	
0128 758BD0	158	MOV	TL1,#256-48	;to avoid match before reload.	•
	159				
012B	160	Start:			-
012B 2096FD		JB	P1.6,\$;Prepare for start pulse arriv	
012E 3096FD		JNB	P1.6,\$;Wait for the start pulse, I m ;So far 2 m/c into the frame.	n/c.
0131 D28E 0133 308FFD	163	SETB JNB	TR1 TF1,\$;Wait for another 49 m/c	
0100 000110	165	JND	μ. τ. τ. , ψ	,wait for another 45 m/c	
0136 75C81D		MOV	T2CON,#1DH	:T2 auto reload from Pl.5.	
0139 D2BB	167	SETB	IEN1.3	:Compare interrupt 1 enable.	
	168			,	
013B 213B	169	AJMP	\$;Wait for a match.	
	170				
	171	end			
ASSEMBLY CON	MPLETI	E, O ERRORS F	OUND		

SIEMENS

February 1990

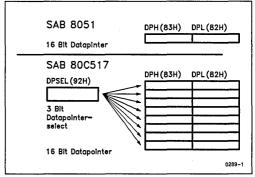
Memory Access Using the Eight Data Pointers of the SAB 80C517/80C537

SAB 80C517/80C537

Application Brief

© Siemens Components, Inc.

Memory Access Using the Eight Data Pointers of the SAB 80C517/80C537


The SAB 80C517/80C537 has eight 16-bit data pointers (DPTR) as opposed to one in other derivatives of the SAB 8051 family of microcontrollers. This allows a fast and an efficient transfer of data bytes to, from and between program and external data memory spaces. An application of this feature and the resulting increase in processing power is illustrated in the following example. A comparison is made between a block transfer of data using the 8051 and the 80C517.

The microcontrollers based on the 8051 architecture have the capability to expand their memory addressing by going to external program and data memory spaces. This feature is quite useful in applications that require more memory space than furnished by the on-board ROM and RAM. However, data in the program memory and data in the external memory can only be accessed through indirect addressing using a 16-bit register called the Data Pointer (DPTR). The following instructions are used to access data or memory mapped peripheral addresses using the Data Pointer:

MOVC	A,@A+DPTR	;Read from Program memory
MOVX	A,@DPTR	;Read external Data
MOVX	@DPTR,A	memory ;Write external Data
		memory

Almost all microcontrollers based on the 8051 architecture have only one such data pointer. This puts a heavy toll on data transfers requiring access to blocks of data stored at different addresses within the memory space. For example, in order to transfer a block of data from one address to another, one will first have to save the source address before using the Data Pointer for the destination address and vice versa. This operation not only slows down the data access as a certain amount of time is spent in saving and retrieving the data pointer but also uses the valuable internal RAM memory space to save the Data Pointer. The limitation of the 8051 architecture with one on-board Data Pointer is soon realized when the application requires multiple data transfers in the shortest possible time or when applications require access to a number of external peripherals and/or data memory locations. To some extent this limitation is eliminated in the SAB 80C517/80C537 by providing eight on-chip Data Pointers.

In order to keep the compatibility of the SAB 80C517/80C537 with the 8051, whose instruction set allows the handling of one single 16-bit Data Pointer only, it is not possible to add eight Data Pointers with eight different addresses. Instead all eight Data Pointers of the SAB 80C517/80C537 have the address 83H for the High-Byte (DPH) and 82H for the Low-Byte (DPL). Although the user's program may store up to eight different 16-bit addresses in these eight Data Pointer registers, only one register at any given time is active as a Data Pointer. The Data Pointer in use is selected by another special function register called DPSEL (Data Pointer SELect register). The bit 0 to 2 of this register DPSEL selects one of the eight Data Pointers. The selected Data Pointer can then be loaded, read and manipulated in the usual manner. It can also be used with MOVC/MOVX types of instructions. Only the selected Data Pointer gets affected while the other seven Data Pointers remain unchanged. However, to activate any other Data Pointer, it is only sufficient to reprogram the lower three bits of the DPSEL register. This implementation guarantees the complete compatibility with the 8051 architecture for the Data Pointer in use.

Figure 1. Data Pointer Register in the 8051-Type Microcontroller vs. the Data Pointer Array in the SAB 80C517/80C537

The following programming example demonstrates the increase in processing power that results from using the additional Data Pointers of the SAB 80C517/80C537. This program copies a block of data (e.g., a set of parameters) from the program memory (ROM) to the external data memory (RAM).

Transfer Program for the 8051

:DECLARATION OF THE ARRAYS :-CSEG AT 800H ;ROM ! PAR_ARRAY: DB 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 DB 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 ;....etc. DB 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 END_OF_ARRAY EQU \$:EXTERNAL RAM! XSEG AT 0000H BUFFER: DS 512 DECLARATION OF THE SHADOW DATAPOINTERS DSEG AT 40H SHADOW_DPL_0; DS 1 SHADOW_DPH_0; DS 1 SHADOW_DPL_1; DS 1 SHADOW_DPH_1; DS 1 CSEG AT OOH :LOAD THE SHADOW DATAPOINTERS MOV SHADOW_DPL_O, #LOW (PAR_ARRAY) MOV SHADOW_DPH_O, #HIGH(PAR_ARRAY) MOV SHADOW_DPL_1, #LOW(BUFFER) MOV SHADOW_DPH_1, #HIGH(BUFFER) LOOP:MOV DPL, SHADOW_DPL_O ;LOAD THE ACTUAL DPTR WITH MOV DPH, SHADOW_DPH_O ;POINTER TO PAR_ARRAY MOV A, DPL ;CHECK FOR END_ADDRESS CJNE A, #LOW (END_OF_ARRAY), GO_ON MOV A, DPH CJNE A, #HIGH(END_OF_ARRAY), GO_ON LJMP END_LOOP GO_ON: CLR A MOVC A,@A+DPTR ;READ ELEMENT FROM PAR_ARRAY INC DPTR :AND INCREMENT POINTER MOV SHADOW_DPL_O,DPL :SAVE THE ACTUAL DPTR MOV SHADOW_DPH_O,DPH ;TO SHADOW_POINTER DPL, SHADOW_DPL_1 ;LOAD THE ACTUAL DPTR WITH MOV MOV DPH, SHADOW_DPH_1 :POINTER TO BUFFER ;WRITE ELEMENT TO EXT. RAM MOVX @DPTR.A INC DPTR :AND INCREMENT POINTER MOV SHADOW_DPL_1, DPL ;SAVE THE ACTUAL DPTR MOV SHADOW_DPH_1, DPH ;TO SHADOW_POINTER SJMP LOOP END

Figure 2. Program Listing using the 8051-Type Microcontroller vs the Program Listing using the SAB 80C517/80C537

Transfer Program for the 80C517

```
;DECLARATION OF THE ARRAYS
     CSEG AT 800H
                       :ROM !
PAR_ARRAY: DB 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16
           DB 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16
           DB 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16
END_OF_ARRAY
               EQU $
     XSEG AT 0000H
                     :EXTERNAL RAM!
BUFFER:
               DS 512
:---
     CSEG AT OOH
;LOAD THE ACTUAL DATAPOINTERS
     MOV DPSEL, #OOH ;SELECT AND LOAD POINTER
     MOV DPTR, #PAR_ARRAY; TO PAR_ARRAY
     INC
          DPSEL
                    ;SELECT AND LOAD POINTER
     MOV DPTR, #BUFFER
                          :TO BUFFER
LOOP:MOV DPSEL, #OOH :SELECT FIRST DPTR (POINTER
                      ;TO PAR_ARRAY)
                     ;CHECK FOR END ADDRESS
     MOV A,DPL
     CJNE A, #LOW(END_OF_ARRAY), GO_ON
     MOV A, DPH
     CJNE A, #HIGH (END_OF_ARRAY), GO_ON
     LJMP END_LOOP
GO_ON:
     CLR A
     MOVC A,@A+DPTR
                     ;READ ELEMENT FROM PAR_ARRAY
     INC DPTR
                     ;AND INCREMENT POINTER
     INC DPSEL
                     ;SELECT THE SECOND DPTR (POINTER
                     :TO BUFFER)
     MOVX @DPTR,A
                            WRITE ELEMENT TO EXT. RAM
     INC DPTR
                     ;AND INCREMENT POINTER
     SJMP LOOP
END
```

Figure 2. Program Listing Using the 8051-Type Microcontroller vs the Program Listing Using the SAB 80C517/80C537 (Continued)

Program Description

First the memory spaces utilized are declared in the program-an operation which is the same for both the 8051 and the 80C517 program. This is done using the assembler directives CSEG for source data field in the ROM and XSEG for destination data field in the external RAM. However, in the 8051 program, internal RAM space needs to be reserved to allow saving of either the source or the destination pointer when one of them is not in use. This is implemented using the assembler directive DSEG. As the data pointer is a 16-bit register, two 8-bit locations are needed for both the source and destination pointers. These memory locations have the symbols SHAD-OW_DPL_0 and SHADOW_DPH_0 and SHAD-OW_DPL_1 and SHADOW_DPH_1 for the source and the destination pointers respectively. This procedure of memory declaration is however not needed in the 80C517 program.

Following the declaration is the program itself which in case of the 8051 requires the loading of the shadow data pointers into the internal RAM whereas in the 80C517 program the source and the destination addresses are directly written into the Data Pointer array. In data transfer subroutine of both the programs the initial part is quite similar in which it is checked whether or not the byte transferred is the last byte in the source array. Following this check is the actual transfer in which the byte read from source array in ROM is written into the appropriate location in the destination array in the external RAM. However, the way this transfer is handled by the 8051 routine is different from that of the 80C517 routine. In the 8051 program, the Data Pointer must be loaded with the appropriate address from the shadow data pointers in the internal RAM, prior to each read and write operation. And after every read and write operation this address must again be saved in these shadow data pointers. This operation of loading and saving is completely eliminated in the 80C517 because of the abundance of the Data Pointer registers. However, in the 80C517 prior to every read and write operation the desired Data Pointer is selected by programming the DPSEL register.

The differences are obvious: In the 8051 program two bytes of memory space per address which need to be saved are needed in the internal RAM (4 bytes in the present example). However, using the 80C517 up to eight addresses can be directly stored in the new data pointer array, thus not occupying any space in the internal RAM. In addition the transfer of data is less time consuming with the 80C517. Most of the time spent in this routine is the time in performing the actual transfer of bytes. The transfer time increases as the number of bytes to be transferred increases. The 8051 program requires lots of time for loading and storing the Data Pointer. In 80C517, however, only the selection of the desired data pointer is necessary. One loop execution time in the 8051 program is 30 machine cycles while 80C517 for the same loop requires only 17 machine cycles; almost twice as fast.

SIEMENS

November 1988

Oscillator Design Considerations for SAB-51 Family of Microcontrollers Operating at Frequencies Higher than 16 MHz

SAB-51 Family

Application Brief

© Siemens Components, Inc.

For the SAB-51 (Mymos Technology only) family of microcontrollers specified to run at frequencies 18 and 20 MHz, the following care must be taken when they are used at these frequencies.

Problem

To use the on-chip oscillator, a crystal or ceramic resonator is connected between the XTAL1 and XTAL2 pins of the SAB-51 family of microcontrollers. In all the Mymos-based microcontrollers, XTAL1 is the input of the on-chip oscillator amplifier. XTAL2 is the output of this amplifier, driving the internal clock generator of all the microcontrollers. The gain of the on-chip oscillator amplifier decreases with increase in the crystal frequency, thus reducing the amplitude of the oscillation. This effect is more predominant at frequencies higher than 16 MHz. At crystal frequencies of 18 MHz and 20 MHz, the following work-arounds are recommended to have sufficiently high amplitude of oscillations.

Work Around #1

Using an external clock at XTAL2 pin (refer to Figure 1) for driving the microcontrollers bypasses the onchip oscillator amplifier, and the amplitude of the oscillations is then controlled by the external circuit. This is the best way to supply clock to microcontrollers at 18 MHz or 20 MHz clock oscillator frequency.

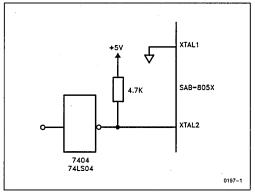


Figure 1. Driving from External Source

Work Around #2

If for some reason, work around #1 is not possible to implement, a crystal oscillator with a careful design can be used.

At such high frequencies, capacitive and inductive couplings between the oscillator circuitry and other signals are a major source of miscounts in the internal clocking circuitry. Surrounding the oscillator components with "quiet" traces (V_{CC} and ground, for example) will alleviate capacitive coupling to signals that have fast transition times. To minimize inductive coupling, the PCB layout should minimize the areas of the loops formed by the oscillator components. These are the loops that should be checked:

XTAL1 through the resonator to XTAL2; XTAL1 through the capacitor to the V_{SS} pin; XTAL2 through the capacitor to the V_{SS} pin;

The traces between the grounded ends of the capacitors and the $V_{\rm SS}$ pin should be kept as short as possible.

In addition, a higher amplitude at XTAL2 can be achieved by changing the ratio of the capacitors at XTAL1 and XTAL2. For frequencies higher than 16 MHz (18 MHz and 20 MHz), the configuration in Figure 2 increases the signal amplitude at XTAL2; the influence on the start-up time, however, is negligible. This is only a recommendation, the final design should however be verified against worst case conditions of temperature, V_{CC} levels, device tolerances, etc.

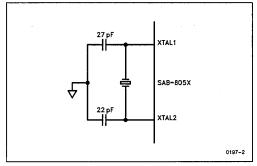


Figure 2. Crystal Oscillator Mode

Software Support/Development Tools for the SAB-51 Family of Microcontrollers

SIEMENS

February 1990

9

Software Support/Development Tools for the SAB-51 Family of Microcontrollers

SAB-51 Family

The hardware and software development support tools for the SAB-51 family of microcontrollers are available on IBM PC, XT, AT or a compatible. There are various solutions available from third party vendors, designed to be operated in an IBM PC compatible environment.

On account of the software compatibility of all the SAB-51 family of microcontrollers with the SAB 8051, the language and utility programs ASM51, PLM51, "C" and RL51 can be used without any restriction for any of the SAB-51 family of microcontrollers. However, the definitions of the new symbolic names as well as the register and bit addresses for the microcontrollers other than the SAB 8051 must be linked to the source program.

For example, in the case of the SAB 80515, a file called REG515.DCL is added to the PLM51 source program by an "Include" directive. Similarly, an "Include" directive is used to link a file called REG515.PDF to the ASM51 source program. In addition, the control instruction NOMOD51 (NOMO) must either be specified at the beginning of the source program, or in the assembler invocation, to avoid a multiple definition of the symbolic names. This control instruction causes default SAB 8051 declarations of register and bit symbols to be ignored during assembly. The file REG515.PDF includes all SAB 80515 register and bit definitions, including those that are declared with MOD51 for SAB 8051. The contents of the files REG515.PDF and REG515.DCL are listed in Appendix A.

Some third party vendors have already provided control directives such as MOD515, MOD512, etc. for their assemblers/compilers which eliminates the need to include files as mentioned above. In that case a mere mention of the control instructions MOD515, MOD512, etc. performs the job and the procedure of including a symbol declaration file is therefore transparent to the user.

Given below is a list of third party support products available for Siemens proprietary microcontrollers. These companies can also be contacted for development tools for the SAB 8031/8051/8032/8052 etc.

Third Party Hardware and Software Support Products

NOTE:

For third party support contact the appropriate vendor for pricing, availability, and other information.

Metalink Corporation:

325 East Elliot Rd., Suite 23 Chandler, AZ 85225 Phone: (602) 926-0797

Hardware Support Product

MetalCE-515, MetalCE-537:	Full In-Circuit-Emulator support for 80515 and 80C537 with IBM PC compatible host system. Link to host system via RS232C serial interface.
MetalCE-512:	Full In-Circuit-Emulator support for 80512 with IBM PC compati- ble host system. Link to host system via RS232C serial inter- face.

Software Support Product

MetaWARE-51:	Cross assembly package for IBM PC compatible systems.
	Fully supports the SAB
	80515/80535, SAB
	80512/80532 and SAB
	80C517/80C537.

Nohau Corporation:

51 East Campbell Ave., Suite 144 Campbell, CA 95008 Phone: (408) 866-1820

Hardware Support Product

EMUL515-PC,
EMUL517-PC:Full In-Circuit-Emulator support
for 80515/80C515 and 80C537
with IBM PC/XT/AT compatible
host system. Link to host sys-
tem via RS232C serial interface
or directly to the mother-board.EMUL532-PC:Full In-Circuit-Emulator support

for 80532 with IBM PC/XT/AT compatible host system. Link to host system via RS232C serial interface or directly to the mother-board.

Software Support Product

EMUL51-PC/C51: "C" Cross compiler package for SAB-51 family of microcontrollers for IBM PC compatible systems.

EMUL51-PC/AVO: Cross assembler package for SAB-51 family of microcontrollers for IBM PC compatible systems.

Signum Systems:

1820 14th St., Suite 203 Santa Monica, CA 90404 Phone: (213) 450-6096

Hardware Support Product

- EM-515: Full In-Circuit-Emulator support for 80515/80535 with IBM PC/XT/AT compatible host system. Link to host system via RS232C serial interface.
- EM-512: Full In-Circuit-Emulator support for 80512/80532 with IBM PC/XT/AT compatible host system. Link to host system via RS232C serial interface.

Software Support Product

- ASM51: Cross assembler package for SAB-51 family of microcontrollers for IBM PC compatible systems.
- PL/M51: Cross compiler package for SAB-51 family of microcontrollers for IBM PC compatible systems.

Allen Systems:

2151 Fairfax Road Columbus, OH 43221 Phone: (614) 488-7122

Hardware Support Product

- DP-535: Prototype development board for the SAB 80535 with a monitor program EPROM for program debugging.
- DP-532: Prototype development board for the SAB 80532 with a monitor program EPROM for program debugging.

Software Support Product

CA-51: Cross assembler package for SAB-51 family of microcontrollers for IBM PC compatible systems.

Archemides Software:

2159 Union St., San Francisco, CA 94123 Phone: (415) 567-4010

Software Support Product

C-51: "C" language cross-compiler package which includes a macroassembler, linker and librarian for SAB-51 family of microcontrollers. Available for IBM PC compatible (MSDOS based), Microvax/VAX (running VMS/Ultrix) and SUN systems.

SimCASE: Software simulator package for SAB-51 family of microcontrollers for IBM PC compatible systems.

Franklin Software, Inc.: 888 Saratoga Ave., #2 San Jose, CA 95129 Phone: (408) 296-8051

Software Support Product

- C-51: "C" language C2055-compiler package which includes a macroassembler, linker and librarian for SAB-51 family of microcontrollers. Available for IBM PC compatible (MSDOS based) systems.
- SIM-51: Software simulator package for SAB-51 family of microcontrollers for IBM PC compatible systems.

Micro Computer Control:

P.O. Box 275, Hopewell, NJ 08525 Phone: (609) 466-1751

Software Support Product

ASM51:	Cross-assembler package for SAB-51 family of microcontrollers. Available for IBM PC compatible systems (MSDOS based).
SIM-51:	SAB 8051 simulator.
C-51:	"C" language cross-compiler package for SAB-51 family of mi- crocontrollers. Available for IBM PC compatible systems (MSDOS based).

2500AD Software Inc.: 109 Brookdale Ave., Box 480 Buena Vista, CO 81211 Phone: (719) 395-8683

Software Support Product

A80515: Cross-assembler package for SAB-51 family of microcontrollers. Available for IBM PC compatible (MSDOS based), Microvax/VAX (running VMS/Ultrix) and SUN systems.

S80515:

SAB 80515 simulator. Available for IBM PC compatible (MSDOS based), Microvax/VAX (running VMS/Ultrix) and SUN systems.

C80515:

"C" cross-compiler package for SAB-51 family of microcontrollers. Available for IBM PC compatible (MSDOS based), Microvax/VAX (running VMS/Ultrix) and SUN systems.

Appendix A

Register Definitions for SAB 80515/80535

; REG515.PDF for ASM51

; REGISTER DECLARATIONS FOR SAB 80515

;******* BYTE REGISTER *******

P0	DATA	080H	;PORT 0
SP	DATA	081H	STACK POINTER
DPL	DATA	082H	;DATA POINTER - LOW BYTE
DPH	DATA	083H	;DATA POINTER - HIGH BYTE
PCON	DATA	087H	;POWER CONTROL
TCON	DATA	088H	TIMER CONTROL
TMOD	DATA	089H	;TIMER MODE
TLO	DATA	08AH	;TIMER 0 - LOW BYTE
TL1	DATA	08 BH	;TIMER 1 - LOW BYTE
TH0	DATA	08CH	;TIMER 0 - HIGH BYTE
TH1	DATA	08DH	;TIMER 1 - HIGH BYTE
P1	DATA	090H	;PORT 1
SCON	DATA	098H	SERIAL PORT CONTROL
SBUF	DATA	099H	SERIAL PORT BUFFER
P2	DATA	0A0H	;PORT 2
IEN0	DATA	0A8H	INTERRUPT ENABLE REGISTER 0
IP0	DATA	0A9H	INTERRUPT PRIORITY REGISTER 0
P3	DATA	0B0H	PORT 3
IEN1	DATA	0B8H	;INTERRUPT ENABLE REGISTER 1
IP1	DATA	0B9H	INTERRUPT PRIORITY REGISTER 1
IRCON	DATA	0C0H	INTERRUPT REQUEST CONTROL
CCEN	DATA	0C1H	COMPARE/CAPTURE ENABLE
CCL1	DATA	0C2H	COMPARE/CAPTURE REGISTER 1 - LOW BYTE
CCH1	DATA	0C3H	COMPARE/CAPTURE REGISTER 1 HIGH BYTE
CCL2	DATA	0C4H	COMPARE/CAPTURE REGISTER 2 - LOW BYTE
CCH2	DATA	0C5H	COMPARE/CAPTURE REGISTER 2 - HIGH BYTE
CCL3	DATA	0C6H	COMPARE/CAPTURE REGISTER 3 LOW BYTE
CCH3	DATA	0C7H	COMPARE/CAPTURE REGISTER 3 - HIGH BYTE
T2CON	DATA	0C8H	TIMER 2 CONTROL
CRCL	DATA	0CAH	COMPARE/RELOAD/CAPTURE - LOW BYTE
CRCH	DATA	0CBH	COMPARE/RELOAD/CAPTURE - HIGH BYTE
TL2	DATA	0CCH	TIMER 2 - LOW BYTE
TH2	DATA	0CDH	TIMER 2 - HIGH BYTE
PSW	DATA	0D0H	PROGRAM STATUS WORD
ADCON	DATA	0D8H	A/D CONVERTER CONTROL
ADDAT	DATA	0D9H	A/D CONVERTER DATA
DAPR	DATA	0DAH	D/A CONVERTER PROGRAM REGISTER
ACC	DATA	0E0H	ACCUMULATOR
P4	DATA	0E8H	PORT 4
В	DATA	0F0H	MULTIPLICATION REGISTER
P5	DATA	0F8H	PORT 5

0194-1

Register Definitions for SAB 80515/80535 (Continued)

••••• в	IT REGIS	TERS ******	
1T0	BIT	088H	TCON.0 - EXT. INTERRUPT 0 TYPE
IEO	BIT	089H	TCON.1 - EXT. INTERRUPT 0 EDGE FLAG
ITI	BIT	08AH	TCON.2 - EXT. INTERRUPT 1 TYPE
IE1	BIT	08BH	TCON3 - EXT. INTERRUPT 1 EDGE FLAG
TR0 ·	BIT	08CH	;TCON.4 - TIMER 0 ON/OFF CONTROL
TF0	BIT	08DH	;TCON.5 - TIMER 0 OVERFLOW FLAG
TR1	BIT	08EH	TCON.6 - TIMER 1 ON/OFF CONTROL
TF1	BIT	08FH	;TCON.7 - TIMER 1 OVERFLOW FLAG
INT3	BIT	090H	P1.0 - EXTERNAL INTERRUPT 3/CAPTURE 0/COMPARE 0
INT4	BIT	091H	P1.1 - EXTERNAL INTERRUPT 4/CAPTURE 1/COMPARE 1
INT5	BIT	092H	P1.2 EXTERNAL INTERRUPT 5/CAPTURE 2/COMPARE 2
INT6	BIT	093H	P1.3 - EXTERNAL INTERRUPT 6/CAPTURE 3/COMPARE 3
INT2	BIT BIT	094H 095H	P1.4 - EXTERNAL INTERRUPT 2 P1.5 - TIMER 2 EXTERNAL RELOAD TRIGGER INPUT
T2EX CLKOUT	BIT	095H 096H	P1.6 - SYSTEM CLOCK OUTPUT
T2	BIT	09711	P1.7 - TIMER 2 INPUT
RI	BIT	098H	SCON.0 - RECEIVE INTERRUPT FLAG
TI	BIT	099H	SCON1 - TRANSMIT INTERRUPT FLAG
RB8	BIT	09AH	SCON.2 - RECEIVE BIT 8
TB8	BIT	09BH	SCON.3 - TRANSMIT BIT 8
REN	BIT	09CH	SCON.4 - RECEIVE ENABLE
SM2	BIT	09DH	SCON.5 - SERIAL MODE CONTROL BIT 2
SM1	BIT	09EH	SCON.6 - SERIAL MODE CONTROL BIT 1
SM0	BIT	09FH	SCON.7 - SERIAL MODE CONTROL BIT 0
EX0	BIT	0A8H	IEN0.0 - EXTERNAL INTERRUPT 0 ENABLE
ET0	BIT	0A9H	IEN0.1 - TIMER 0 INTERRUPT ENABLE
EX1	BIT	0AAH	IEN0.2 - EXTERNAL INTERRUPT 1 ENABLE
ET1	BIT	0ABH	;IEN0.3 - TIMER 1 INTERRUPT ENABLE
ES	BIT	0ACH	;IEN0.4 - SERIAL PORT INTERRUPT ENABLE
ET2	BIT	0ADH	IEN0.5 - TIMER 2 INTERRUPT ENABLE
WDT	BIT	0AEH	;IEN0.6 - WATCHDOG TIMER RESET
EAL	BIT	0AFH	;IEN0.7 - GLOBAL INTERRUPT ENABLE
RXD	BIT	0B0H	;P3.0 - SERIAL PORT RECEIVE INPUT
TXD	BIT	0B1H	P3.1 - SERIAL PORT TRANSMIT OUTPUT
INTO	BIT	0B2H	P3.2 - EXTERNAL INTERRUPT 0 INPUT
INT1	BIT	0B3H	P3.3 - EXTERNAL INTERRUPT 1 INPUT
T0	BIT	0B4H	P3.4 - TIMER 0 COUNT INPUT
T1	BIT	0B5H	P3.5 - TIMER 1 COUNT INPUT
WR	BIT	0B6H 0B7H	;P3.6 - WRITE CONTROL FOR EXT. MEMORY ;P3.7 - READ CONTROL FOR EXT. MEMORY
RD	BIT	0B8H	;IEN1.0 - A/D CONVERTER INTERRUPT ENABLE
EADC	BIT	0B8H 0B9H	IEN1.1 - EXTERNAL INTERRUPT 2 ENABLE
EX2 EX3	BIT BIT	OBAH	IEN1.2 - EXTERNAL INTERRUPT 3 ENABLE
EX4	BIT	OBBH	;IEN1.3 - EXTERNAL INTERRUPT 4 ENABLE
EX5	BIT	OBCH	IEN1.4 - EXTERNAL INTERRUPT 5 ENABLE
EX6	BIT	OBDH	IEN1.5 - EXTERNAL INTERRUPT 6 ENABLE
SWDT	BIT	OBEH	IEN1.6 - WATCHDOG TIMER START
EXEN2	BIT	OBFH	IEN1.7 - TIMER 2 EXTERNAL RELOAD INTERRUPT ENABLE
IADC	BIT	0C0H	;IRCON.0 - A/D CONVERTER INTERRUPT REQUEST
IEX2	BIT	0C1H	IRCON.1 - EXTERNAL INTERRUPT 2 EDGE FLAG
IEX3	BIT	0C2H	IRCON.2 - EXTERNAL INTERRUPT 3 EDGE FLAG
IEX4	BIT	0C3H	;IRCON.3 - EXTERNAL INTERRUPT 4 EDGE FLAG
IEX5	BIT	0C4H	;IRCON.4 - EXTERNAL INTERRUPT 5 EDGE FLAG
IEX6	BIT	0C5H	;IRCON.5 - EXTERNAL INTERRUPT 6 EDGE FLAG
TF2	BIT	0C6H	;IRCON.6 - TIMER 2 OVERFLOW FLAG
EXF2	BIT	0C7H	IRCON.7 - TIMER 2 EXTERNAL RELOAD FLAG
T210	BIT	0C8H	T2CON.0 - TIMER 2 INPUT SELECT BIT 0
T211	BIT	0C9H	T2CON.1 - TIMER 2 INPUT SELECT BIT 1
T2CM	BIT	0CAH	T2CON.2 - COMPARE MODE
T2R0	BIT	0CBH	T2CON.3 - TIMER 2 RELOAD MODE SELECT BIT 0
T2R1	BIT	0CCH	T2CON.4 - TIMER 2 RELOAD MODE SELECT BIT 1
12FR	BIT	0CDH	T2CON.5 · EXTERNAL INTERRUPT 2 FALLING/RISING EDGE FLA
13FR	BIT	0CEH	T2CON.6 - EXTERNAL INTERRUPT 3 FALLING/RISING EDGE FLA
T2PS	BIT	0CFH	
P F1	BIT BIT	0D0H 0D1H	;PSW.0 - ACCUMULATOR PARITY FLAG ;PSW.1 - FLAG 1
OV	BIT	0D2H	;PSW.2 - OVERFLOW FLAG
RS0	BIT	0D2H 0D3H	PWS.3 - REGISTER BANK SELECT 0
RSU RS1	BIT	0D3H 0D4H	PSW.4 - REGISTER BANK SELECT I
FO	BIT	0D4H	PSW.5 - FLAG 0
AC	BIT	0D6H	PSW.6 - AUXILIARY CARRY FLAG
CY	BIT	0D7H	PSW.0 - ADAILIART CARRY FLAG
мхо	BIT	0D8H	ADCON.0 - ANALOG INPUT CHANNEL SELECT BIT 0
MX1	BIT	0D9H	ADCON.1 - ANALOG INPUT CHANNEL SELECT BIT 1
MX2	BIT	0DAH	ADCON2 - ANALOG INPUT CHANNEL SELECT BIT 2
ADM	BIT	ODBH	ADCON3 - A/D CONVERSION MODE
	BIT	0DCH	ADCON.4 - BUSY FLAG
BSY			
BSY CLK	BIT	0DEH	ADCON.6 - SYSTEM CLOCK ENABLE

0194-2

Register Definitions for SAB 80515/80535 (Continued)

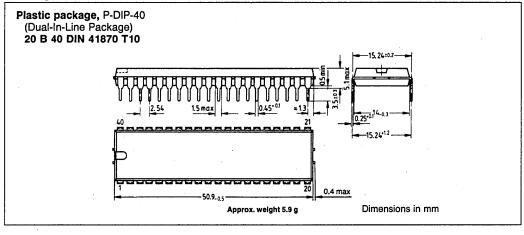
/* REG515.DCL for PLM51

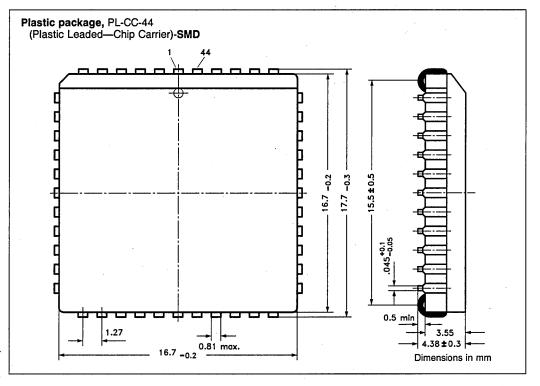
/* Register declaration for SAB 80515 */

DECLARE REG LITERALLY 'REGISTER';

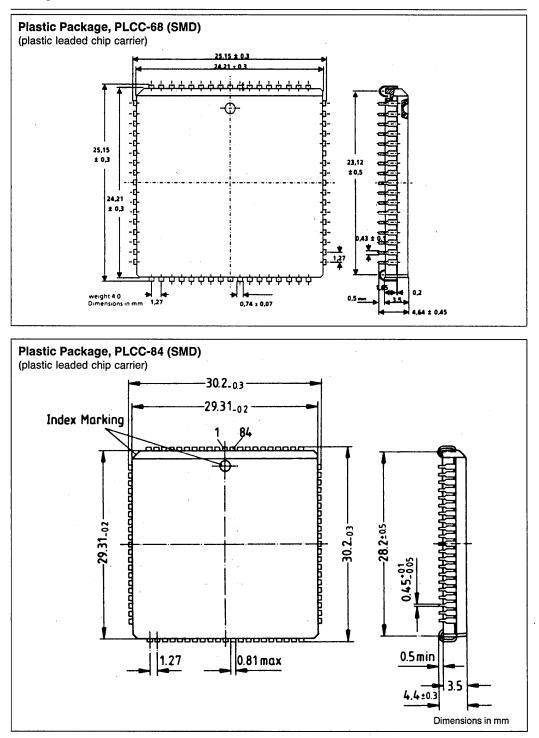
;******* BYTE REGISTER *******

DECLARE


DECLARE						
P0	BYTE	AT	(080H)	REG,	/* PORT 0	
PO	BYTE		(081H)	REG,	/* STACK POINTER	
DPL	BYTE	AT	(082H)	REG,	/* DATA POINTER - LOW BYTE	
DPH	BYTE .	AT	(083H)	REG,	/* DATA POINTER - HIGH BYTE	
PCON	BYTE	AT	(087H)	REG,	/* POWER CONTROL	
TCON	BYTE	AT	(088H)	REG,	/* TIMER CONTROL	
TMOD	BYTE .	AT	(089H)	REG,	/* TIMER MODE	
TLO	BYTE	AT	(08AH)	REG.	/* TIMER 0 - LOW BYTE	
TL1	BYTE .	AT	(08BH)	REG.	/* TIMER 1 - LOW BYTE	•
TH0	BYTE .	AT	(08CH)	REG.	/* TIMER 0 - HIGH BYTE	
TH1	BYTE .	AT	(08DH)	REG,	/* TIMER 1 - HIGH BYTE	
P1	BYTE .	AT	(090H)	REG.	/* PORT 1	
SCON	BYTE		(098H)	REG.	/* SERIAL PORT CONTROL	
SBUF	BYTE .	AT	(099H)	REG.	/* SERIAL PORT BUFFER	
P2	BYTE	AT	(OAOH)	REG.	/* PORT 2	
IEN0			(0A8H)	REG,	/* INTERRUPT ENABLE REGISTER 0	
IPO			(0A9H)	REG.	/* INTERRUPT PRIORITY REGISTER 0	
P3	BYTE .	AT	(OBOH)	REG.	/* PORT 3	
IEN1	BYTE .		(OB8H)	REG.	/* INTERRUPT ENABLE REGISTER 1	
IP1	BYTE	AT	(0B9H)	REG.	/* INTERRUPT PRIORITY REGISTER 1	
IRCON	BYTE .	AT	(OCOH)	REG.	/* INTERRUPT REQUEST CONTROL	
CCEN	BYTE			REG.	/* COMPARE/CAPTURE ENABLE	
CCL1	BYTE .			REG.	/* COMPARE/CAPTURE REGISTER 1 - LOW BYTE	
CCH1	BYTE .	AT	(OC3H)	REG.	/* COMPARE/CAPTURE REGISTER 1 - HIGH BYTE	
CCL2	BYTE .			REG.	/* COMPARE/CAPTURE REGISTER 2 - LOW BYTE	
CCH2	BYTE .			REG.	/* COMPARE/CAPTURE REGISTER 2 - HIGH BYTE	
CCL3	BYTE .	AT	(OC6H)	REG.	/* COMPARE/CAPTURE REGISTER 3 - LOW BYTE	
CCH3	BYTE		(0C7H)	REG.	/* COMPARE/CAPTURE REGISTER 3 - HIGH BYTE	
T2CON	BYTE		(0C8H)	REG.	/* TIMER 2 CONTROL	
CRCL			(OCAH)	REG.	/* COMPARE/RELOAD/CAPTURE - LOW BYTE	
CRCH			(OCBH)	REG.	/* COMPARE/RELOAD/CAPTURE - HIGH BYTE	
TL2	BYTE .		(OCCH)	REG.	/* TIMER 2 - LOW BYTE	
TH2			(OCDH)	REG.	/* TIMER 2 - HIGH BYTE	
PSW	BYTE .		(ODOH)	REG.	/* PROGRAM STATUS WORD	
ADCON	BYTE .	ΑТ	(0D8H)	REG.	/* A/D CONVERTER CONTROL	
	BYTE .		(0D9H)	REG.	/* A/D CONVERTER DATA	
DAPR	BYTE .		(0DAH)	REG.	/* D/A CONVERTER PROGRAM REGISTER	
	BYTE		(OEOH)	REG.	/* ACCUMULATOR	
	BYTE		(0E8H)	REG.	/* PORT 4	
	BYTE		(OFOH)	REG.	/* MULTIPLICATION REGISTER	
-	BYTE		(0F8H)	REG.	/* PORT 5	
-			·····	,	· · · · ·	0194-3
						0184-3


Register Definitions for SAB 80515/80535 (Continued)

······ BIT REGISTERS ······						
170	DIT		(00011)	BEQ.		
ITO · IEO	BIT BIT	AT AT	(088H) (089H)	REG, REG,	/* TCON.0 - EXT. INTERRUPT 0 TYPE /* TCON.1 - EXT. INTERRUPT 0 EDGE FLAG	
ITI	BIT	AT	(08AH)	REG,	/* TCON.2 - EXT. INTERRUPT 1 TYPE	
IE1	BIT	AT	(08BH)	REG,	/* TCON.3 - EXT. INTERRUPT 1 EDGE FLAG	
TR0	BIT	AT	(08CH)	REG,	/* TCON.4 - TIMER 0 ON/OFF CONTROL	
TF0	BIT	AT	(08DH)	REG,	/* TCON.5 - TIMER 0 OVERFLOW FLAG	
TR1 TF1	BIT BIT	AT AT	(08EH) (08FH)	REG, REG,	/* TCON.6 - TIMER 1 ON/OFF CONTROL /* TCON.7 - TIMER 1 OVERFLOW FLAG	
INT3	BIT	AT	(090H)	REG,	/* P1.0 - EXTERNAL INTERRUPT 3/CAPTURE 0/COMPARE 0	
INT4	BIT	AT	(091H)	REG,	/* P1.1 - EXTERNAL INTERRUPT 4/CAPTURE 1/COMPARE 1	
INT5	BIT	AT	(092H)	REG,	/* P1.2 - EXTERNAL INTERRUPT 5/CAPTURE 2/COMPARE 2	
INT6 INT2	BIT BIT	AT AT	(093H) (094H)	REG, REG,	/* P1.3 - EXTERNAL INTERRUPT 6/CAPTURE 3/COMPARE 3 /* P1.4 - EXTERNAL INTERRUPT 2	
T2EX	BIT	AT	(094H) (095H)	REG,	/* P1.5 - TIMER 2 EXTERNAL RELOAD TRIGGER INPUT	
CLKOUT	BIT	AT	(096H)	REG,	/* P1.6 - SYSTEM CLOCK OUTPUT	
T2	BIT	AT	(097H)	REG,	/* P1.7 - TIMER 2 INPUT	
RI TI	BIT BIT	AT AT	(098H) (099H)	REG, REG,	/* SCON.0 - RECEIVE INTERRUPT FLAG /* SCON.1 - TRANSMIT INTERRUPT FLAG	
RBS	BIT	AT	(099H) (09AH)	REG,	/* SCON.1 - TRANSMIT INTERROPT FLAG /* SCON.2 - RECEIVE BIT 8	
TB8	BIT	AT	(09BH)	REG.	/* SCON.3 - TRANSMIT BIT 8	
REN	BIT	AT	(09CH)	REG,	/* SCON.4 - RECEIVE ENABLE	
SM2	BIT	AT	(09DH)	REG,	/* SCON.5 - SERIAL MODE CONTROL BIT 2	
SM1 SM0	BIT BIT	AT AT	(09EH) (09FH)	REG, REG,	/* SCON.6 - SERIAL MODE CONTROL BIT 1	
EX0	BIT	AT	(0A8H)	REG,	/* SCON.7 - SERIAL MODE CONTROL BIT 0 /* IEN0.0 - EXTERNAL INTERRUPT 0 ENABLE	
ET0	BIT	AT	(0A9H)	REG,	/* IEN0.1 - TIMER 0 INTERRUPT ENABLE	
EX1	BIT	AT	(0AAH)	REG,	/* IEN0.2 - EXTERNAL INTERRUPT 1 ENABLE	
ET1	BIT	AT	(0ABH)	REG,	/* IEN0.3 - TIMER 1 INTERRUPT ENABLE	
ES ET2	BIT BIT	AT AT	(0ACH) (0ADH)	REG,	/* IEN0.4 - SERIAL PORT INTERRUPT ENABLE	
WDT	BIT	AT	(0AEH)	REG, REG,	/* IEN0.5 - TIMER 2 INTERRUPT ENABLE /* IEN0.6 - WATCHDOG TIMER RESET	
EAL	BIT	AT	(0AFH)	REG,	/* IEN0.7 - GLOBAL INTERRUPT ENABLE	
RXD	BIT	AT	(0B0H)	REG,	/* P3.0 - SERIAL PORT RECEIVE INPUT	
TXD INT0	BIT BIT	AT AT	(0B1H) (0B2H)	REG,	/* P3.1 - SERIAL PORT TRANSMIT OUTPUT	
INTI INTI	BIT	AT	(0B2H) (0B3H)	REG, REG,	/* P3.2 - EXTERNAL INTERRUPT 0 INPUT /* P3.3 - EXTERNAL INTERRUPT 1 INPUT	
TO	BIT	AT	(0B4H)	REG,	/* P3.4 - TIMER 0 COUNT INPUT	
TI	BIT	AT	(0B5H)	REG,	/* P3.5 - TIMER 1 COUNT INPUT	
WR	BIT	AT	(0B6H)	REG,	/* P3.6 - WRITE CONTROL FOR EXT. MEMORY	
RD EADC	BIT BIT	AT AT	(0B7H) (0B8H)	REG, REG.	/* P3.7 - READ CONTROL FOR EXT. MEMORY	
EX2	BIT	AT	(0B9H)	REG,	/* IEN1.0 - A/D CONVERTER INTERRUPT ENABLE /* IEN1.1 - EXTERNAL INTERRUPT 2 ENABLE	
EX3	BIT	AT	(0BAH)	REG,	/* IEN1.2 - EXTERNAL INTERRUPT 3 ENABLE	
EX4	BIT	AT	(0BBH)	REG,	/* IEN1.3 - EXTERNAL INTERRUPT 4 ENABLE	
EX5 EX6	BIT BIT	AT AT	(0BCH) (0BDH)	REG, REG,	/* IEN1.4 · EXTERNAL INTERRUPT 5 ENABLE	
SWDT	BIT	AT	(OBEH)	REG.	/* IEN1.5 - EXTERNAL INTERRUPT 6 ENABLE /* IEN1.6 - WATCHDOG TIMER START	
EXEN2	BIT	AT	(OBFH)	REG,	/* IEN1.7 - TIMER 2 EXTERNAL RELOAD INTERRUPT ENABLE	
IADC	BIT	AT	(0C0H)	REG,	/* IRCON.0 - A/D CONVERTER INTERRUPT REQUEST	
IEX2	BIT BIT	AT AT	(0C1H)	REG,	/* IRCON.1 - EXTERNAL INTERRUPT 2 EDGE FLAG	
IEX3 IEX4	BIT	AT	(0C2H) (0C3H)	REG, REG,	/* IRCON.2 - EXTERNAL INTERRUPT 3 EDGE FLAG /* IRCON.3 - EXTERNAL INTERRUPT 4 EDGE FLAG	
IEX5	BIT	AT	(0C4H)	REG,	/* IRCON.4 - EXTERNAL INTERRUPT 5 EDGE FLAG	
IEX6	BIT	AT	(0C5H)	REG,	/* IRCON.5 - EXTERNAL INTERRUPT 6 EDGE FLAG	
TF2	BIT	AT	(0C6H)	REG,	/* IRCON.6 - TIMER 2 OVERFLOW FLAG	
EXF2 T210	BIT BIT	AT AT	(0C7H) (0C8H)	REG, REG,	/* IRCON.7 - TIMER 2 EXTERNAL RELOAD FLAG /* T2CON.0 - TIMER 2 INPUT SELECT BIT 0	
T211	BIT	AT	(0C9H)	REG.	/* T2CON.1 - TIMER 2 INPUT SELECT BIT 1	
T2CM	BIT	AT	(OCAH)	REG,	/* T2CON.2 - COMPARE MODE	
T2R0	BIT	AT	(0CBH)	REG,	/* T2CON3 - TIMER 2 RELOAD MODE SELECT BIT 0	
T2R1 I2FR	BIT BIT	AT AT	(0CCH) (0CDH)	REG, REG,	/* T2CON.4 - TIMER 2 RELOAD MODE SELECT BIT 1 /* T2CON.5 - EXTERNAL INTERRUPT 2 FALLING/RISIN(; ED(;E FLA	
13FR	BIT	AT	(0CEH)	REG,	/* T2CON.6 - EXTERNAL INTERRUPT 3 FALLING/RISING EDGE FLA	
T2PS	BIT	AT	(0CFH)	REG,	/* T2CON.7 - PRESCALER SELECT BIT	
Р	BIT	AT	(0D0H)	REG,	/* PSW.0 - ACCUMULATOR PARITY FLAG	
F1 OV	BIT	AT AT	(0D1H) (0D2H)	REG, REG,	/* PSW.1 - FLAG 1 /* PSW.2 - OVERFLOW FLAG	
RSO	BIT	AT	(0D2H)	REG,	/* PWS.3 - REGISTER BANK SELECT 0	
RS1	BIT	AT	(0D4H)	REG,	/* PSW.4 - REGISTER BANK SELECT 1	
FO	BIT	AT	(0D5H)	REG,	/* PSW.5 - FLAG 0	
AC CY	BIT BIT	AT AT	(0D6H)	REG,	/* PSW.6 - AUXILIARY CARRY FLAG	
MX0	BIT	AT	(0D7H) (0D8H)	REG, REG,	/* PSW.7 - CARRY FLAG /* ADCON.0 - ANALOG INPUT CHANNEL SELECT BIT 0	
MX1	BIT	AT	(0D9H)	REG,	/* ADCON.1 - ANALOG INPUT CHANNEL SELECT BIT 0 /* ADCON.1 - ANALOG INPUT CHANNEL SELECT BIT 1	
MX2	BIT	AT	(ODAH)	REG,	/* ADCON.2 - ANALOG INPUT CHANNEL SELECT BIT 2	
ADM	BIT	AT	(0DBH)	REG,	/* ADCON.3 - A/D CONVERSION MODE	
BSY CLK	BIT BIT	AT AT	(0DCH) (0DEH)	REG, REG,	/* ADCON.4 - BUSY FLAG /* ADCON.6 - SYSTEM CLOCK ENABLE	
BD	BIT	AT	(0DFH)	REG,	/* ADCON.7 - BAUD RATE ENABLE	


Summary of Package Outlines

Package Outlines

10-2

Siemens Sales Offices

,

. 1

Siemens Components, Inc.

Semiconductor Group North American Sales Offices _____

UNITED STATES

- Siemens Components, Inc. 2 Lowell Research Ctr. Dr. Suite 105 Lowell, MA 01852 508/454-0113
- Siemens Components, Inc. 307 Fellowship Road Suite 202 Mt. Laurel, NJ 08054 609/273-6677
- Siemens Components, Inc. 120 Wood Avenue South Suite 606 Iselin, NJ 08830 201/603-0600
- Siemens Components, Inc. 6525 The Corners Parkway Suite 206 Norcross, GA 30092 404/449-3981
- Siemens Components, Inc. 39209 W. Six Mile Rd. Suite 209 Livonia, MI 48152 313/462-1195
- Siemens Components, Inc. 2340 River Road Suite 218 Des Plaines, IL 60018 708/296-5050

- Siemens Components, Inc. 625 The City Dr. South Suite 320 Orange, CA 92668 714/385-1274
- Siemens Components, Inc. 2191 Laurelwood Road Santa Clara, CA 95054 408/980-7968
- Siemens Components, Inc. 3003 LBJ Freeway, #115 Dallas, TX 75234 214/620-2294

CANADA

- Siemens Electric Ltd. 1180 Courtney Park Drive Mississauga, Ont. L5T 1P2 416/564-1995
- Siemens Electric Ltd. 3600 Billings Court, Suite 100 Burlington, Ont. L7N 3N6 416/333-3773
- Siemens Electric Ltd. 101A-5855 9th Street S.E. Calgary, Alberta T2H 1Z9 403/252-2278
- Siemens Electric Ltd. 1024 Winnipeg Street Regina, Saskatchewan S4R 8P8 306/352-9910
- Siemens Electric Ltee. 7300 Trans Canada Highway Pointe Claire, Que. H9R 4R6 514/695-7300

- Siemens Electric Ltee.
 1500 rue Janelle
 Drummondville, Que. J2C 3E5
 819/472-1155
- Siemens Electric Ltd. 9404 41st Avenue Edmonton, Alberta T6E 6G8 403/450-6762
- Siemens Electric Ltd. 109 Ilsley Avenue, Unit #1 Dartmouth, N.S. B3B 1S8 902/469-9791
- Siemens Electric Ltd.
 333 Consortium Court
 London, Ontario N6E 2S8
 519/685-7282
- Siemens Electric Ltd. 108 Prospect Street, Suite 1 Fredericton, New Brunswick E3B 2T9 506/458-9788
- Siemens Electric Ltee. 366 rue St-Patrick Lasalle, Que. H8N 2W7 514/365-3315
- Siemens Electric Ltd. 303 Moodie Drive, Suite 3400 Nepean, Ontario K2H 9R4 613/721-8180

- Siemens Electric Ltd. 106B - 701 Cynthia Street Saskatoon, Saskatchewan S7L 6B7 306/652-3101
- Siemens Electric Ltee.
 128 1990 boul. Charest ouest
 Ste-Foy, Que. G1N 4K8
 418/687-4524
- Siemens Electric Ltd.
 109 Clyde Ave.
 Donovans Industrial Park
 P.O. Box 668
 Mount Pearl, Nfld. A1N 2X1
 709/364-5131
- Siemens Electric Ltd. 1034 rue King Est Sherbrooke, Que. J1G 1E4 819/563-9656
- Siemens Electric Ltd. P.O. Box 1204 Timmins, Ont. P4N 7J5 705/267-7755
- Siemens Electric Ltd. 8687 Yukon Street Vancouver, B.C. V5X 4T5 604/321-8687
- Siemens Electric Ltd. 1260 Border Street Winnipeg, Manitoba R3H 0M6 204/633-8655
- Siemens Electric Ltd. 654 Burnside Road West Victoria, B.C. V8Z 1M8 604/727-6465

Issued by Integrated Circuit Division 2191 Laurelwood Road, Santa Clara, CA 95054 (408) 980-4500

© 1990 Siemens Components, Inc.

Siemens Components, Inc.

CONNECTICUT

U.S. Regional Distributors _

 ALABAMA Hall-Mark Huntsville 205/837-8700 Marshall Huntsville 205/881-9235

 ARIZONA Hall-Mark Phoenix 602/437-1200 Insight Electronics Tempe 602/829-1800 Marshall Phoenix 602/496-0290 CALIFORNIA—Northern Hall-Mark San Jose 408/432-4000 **Citrus Heights** 916/722-8600 Marshall Milpitas 408/942-4600 Rancho Cordova 916/635-9700 Western Microtechnology Saratoga 408/725-1660 CALIFORNIA—Southern Hall-Mark Chatsworth 818/773-4500 San Diego 619/268-1201 Irvine 714/727-6000 Insight Electronics San Diego 619/587-0471 Irvine 714/727-2111 Agoura 818/707-2100 Marshall San Diego

San Diego 619/578-9600 Irvine 714/458-5301 Chatsworth 818/407-4100 Western Micro Agoura Hills 818/707-0377

Orange 714/637-0200 San Diego 619/453-8430 • COLORADO

Hall-Mark Englewood 303/790-1662 Marshall, Thornton 303/451-8383

Hall-Mark Chesire 203/271-2844 Marshall Wallingford 203/265-3822 FLORIDA Hall-Mark Orlando 305/855-4020 Pompano Beach 305/971-9280 Largo 813/530-4543 Marshall Alta Monte Springs 407/767-8585 St. Petersburg 813/573-1399 Ft. Lauderdale 305/977-4880 GEORGIA Hall-Mark Norcross 404/447-8000 Marshall Norcross 404/923-5750 · ILLINOIS Advent Electronics Rosemont 312/297-6200 Hall-Mark Wood Dale 312/860-3800 Marshall Schaumburg 312/490-0155 INDIANA Advent Electronics Indianapolis 317/872-4910 Hall-Mark Indianapolis 317/872-8875 Marshall Indianapolis 317/297-0483 • 10WA Advent Electronics Cedar Rapids 319/363-0221 · KANSAS Hall-Mark enexa 913/888-4747 Marshall Lenexa 913/492-3121

Hall-Mark Columbia 301/988-9800 Marshall Silver Springs 301/622-1118 MASSACHUSETTS Hall-Mark Billerica 617/935-9777, 508/667-0902 Marshall Wilmington 508/658-0810 Western Microtechnology Burlington 617/273-2800 Mass Comp, Inc. West Peabody 617/535-7270 • MICHIGAN Advent Farmington Hills 313/477-1650 Hall-Mark Livonia 313/462-1205 Marshall Livonia 313/525-5850 MINNESOTA Hall-Mark Eden Prairie 612/941-2600 Marshall Plymouth 612/559-2211 MISSOURI Hall-Mark Earth City 314/291-5350 Marshall Bridgeton 314/291-4650 NEW JERSEY Hall-Mark Fairfield 201/575-4415 Mt. Laurel 609/235-1900 Marshall Fairfield 201/882-0320 Mt. Laurel 609/234-9100

MARYLAND

 NEW YORK Hall-Mark Ronkonkoma 516/737-0600 Fairport . 716/425-3300 Marshall Hauppauge 516/273-2424 Johnson City 607/798-1611 Rochester 716/235-7620 Summit Distributors Buffalo 716/887-2800 Rochester 716/334-8110 NORTH CAROLINA Hall-Mark Raleigh 919/872-0712 Marshall Raleigh 919/878-9882 • OHIO Hall-Mark Solon 216/349-4632 Worthington 614/888-3313 Marshall Solon 216/248-1788

Dayton 513/898-4480 • OKLAHOMA Hall-Mark Tulsa

918/254-6110 • OREGON Marshall Beaverion 503/644-5050 Western Microtechnology Beaverion 503/628-2082

• PENNSYLVANIA Marshall Pittsburgh 412/963-0441 • TEXAS

Allied/Hall-Mark 817/265-9341 Hall-Mark Dallas 214/553-4300 Austin 512/258-8848 Houston 713/781-6100 Marshall Carrollton 214/233-5200 Austin 512/837-1991 Houston 713/895-9200 El Paso 915/593-0706 Harlington 512/542-4589 • UTAH Marshail Salt Lake City 801/485-1551 WASHINGTON Marshall Bothell 206/486-5747

Western Microtechnology Redmond 206/881-6737 WISCONSIN

Hall-Mark New Berlin 414/797-7844 Marshall

Waukesha 414/797-8400

Issued by Integrated Circuit Division 2191 Laurelwood Road, Santa Clara, CA 95054 (408) 980-4500

Siemens Components, Inc.

© 1990 Siemens Components, Inc.

Issued by Integrated Circuit Division 2191 Laurelwood Road, Santa Clara, CA 95054 (408) 980-4500

Siemens Components, Inc.

÷

Issued by Integrated Circuit Division 2191 Laurelwood Road, Santa Clara, CA 95054 (408) 980-4500

Siemens Components, Inc.

M14T023 Printed in U.S.A. 10K/0490/RRD/DD