SIEMENS

Data Book 1973/74

Optoelectronics Semiconductors

Contents

Inventory of Types Preface

Photo Diodes

Germanium Photo Diodes Silicon Photo Diodes Silicon Differential Photo Diodes

Photo-Voltaic Cells

Silicon Photo-Voltaic Cells Silicon Solar Elements

Photo Transistors

Silicon Photo Transistors Silicon Photo Transistor Arrays

Light-Emitting Diodes (LEDs)

GaAs Light-Emitting Diodes – Infrared Emitters GaAs Light-Emitting Diode Arrays – Infrared Emitters

GaAsP Light-Emitting Diodes – Visible Light Emitters GaAsP Light-Emitting Diode Arrays – Visible Light Emitters

Optoelectronic Couplers

Photo Resistors

Optoelectronics Semiconductors

Data Book 1973/74

SIEMENS AKTIENGESELLSCHAFT

No guarantee is given for the circuits, descriptions, and tables given as far as patent licences of third parties are concerned.

In questions of optoelectronics please turn to your nearest Siemens branch office.

Published by the Bereich Bauelemente, Vertrieb, 8 München 80, Balanstr. 73

Contents

1.	List of types	Page
1.1.	Inventory of types	10
2.	Preface	
2.1.	General remarks	16
2.2.	Silicon photo diodes	16
2.3.	Silicon photo-voltaic cells	18
2.4.	Silicon solar elements	20
2.5.	Mounting instructions	20
2.6.	Silicon photo transistors	21
2.7.	Photo resistors	24
2.8.	Light emitting diodes (LEDs) and solid-state displays	. 24
2.8.1.	Design and mode of operation	25
2.8.2.	Electrical-optical characteristics	26
2.9.	Optoelectronic couplers	28
2.10.	Measuring techniques for optoelectronic semiconductor devices	29
2.10.1.	Concepts of temperature for optical radiations	34
2.10.2.	Radiation and light measurement	35
2.11.	Tables and diagrams, Radiometric Parameters	36
2.11.1.	Luminance units and their Interrelationships	37
2.11.2.	Illuminance units and their Interrelationships	38
2.11.3.	Ranges of frequency and wavelength	40
2.11.4.	Tables of electromagnetic radiation	41
3.	Photo diodes	
3.1.	Germanium photo diodes	44
3.2.	Silicon photo diodes	44
3.3.	Silicon differential photo diodes	
0.0.		68
4.	Photo-voltaic cells	
4.1.	Silicon photo-voltaic cells	72
4.2.	Silicon solar elements	97
5.	Photo transistors	07
5.1.	Silicon photo transistors	4.0.4
5.2.	Silicon photo transistors	101
5.2.	Silicon photo transistor arrays	125
6.	Light-emitting diodes (LEDs)	
6.1.	GaAs infrared LEDs	136
	GaAs infrared LEDs arrays	147
6.2 .	GaAsP visible LEDs	150
	GaAsP visible LED arrays	158
7.	Optoelectronic couplers	
	-	161
8.	Photo resistors	167

Contents

1. List of Types Optoelectronic Semiconductor Devices

		New Types
Photo diodes		
Germanium photo diodes	■ APY 12, ■ APY 13	
Silicon photo diodes	BPY 12	BPX 60, BPX 63, BPX 65 BPX 90, BPX 91, BPX 92 BPX 93
Silicon differential diodes	BPX 48	
Photo-voltaic ce	lls	
Silicon photo- voltaic cells	BP 100, BPY 11, ■ BPY 43, ■ BPY 44, BPY 45, BPY 47, BPY 48, BPY 63, BPY 64, TP 60, TP 61	BPX 79
Silicon solar elements	🔳 BPY 73, 🔳 BPY 74	
Photo transistors	S	
Silicon photo transistors	BP 101, BPX 38, BPX 43, BPY 61, BPY 62	BP 102, BPX 62, BPX 78 BPX 81
Silicon photo transistor arrays Multiple phototrans	sistors	BPX 80 to BPX 89 BPX 77
Light-emitting di	odes (LEDs)	
GaAs light-emitting	diodes (green emitters) g diodes (infrared emitters) g diode arrays (infrared emitters)	LD 37, LD 57, LD 471 CQY17, CQY18, LD 261 LD 260 to LD 269
GaAsP light-emittir	ng diodes (visible light emitters)	LD 30 A, LD 30 B, LD 30 C, LD 40, LD 41, LD 50, LD 461
GaAsP light-emittin (visible light emitte		LD 460 to LD 469
GaAsP-light-emitti (visible light emitte		CQY 21, CQY 22
Optoelectronic c	ouplers	CNY17, CNY18
Photo resistors	RPY 60, RPY 61, RPY 62, RPY 63, RPY 64	

1.1. Inventory of Types

Type Reverse Sensitivity Dark Maximum Page current voltage power at $T_{amb} = 25 \,^{\circ}C$ dissipation at $T_{amb} = 25 \degree C$ $P_{tot}(mW)$ $V_{\rm R}(V)$ S(nA/Lux) $I_{d}(\mu A)$ 100 (>40) APY 12/I 100 ≦8.0 50 44 APY 12/II 100 180 (>120) ≦8.0 50 44 **APY 12/III** 220 (>200) 44 100 ≦8.0 50 APY 13/I 30 100 (>40) ≤8.0 50 44 : APY 13/II 30 180 (>120) ≦8.0 50 44 **APY 13/III** 30 220 (>200) ≦8.0 44 50

Germanium-photodiodes

Silicon photo diodes

	Туре	Reverse voltage	Sensitivity	Rise time of photo current	Dark current at $T_{amb} = 25 ^{\circ}\text{C}$	Page
		V _R (V)	S (nA/Lux)	t _r (ns)	Ι _d (μΑ)	
	BPY 12	20	>100	<500	0.5 (<1)	46
7	BPX 60	32	50 (>35)	1000	7 (<300)	48
7	BPX 63	7	10	1000	0.15	50
7	BPX 65	50	6 (>4)	<1	1 (<5)	52
7	BPX 90	32	40 (>25)	-	5 (<200)	56
7	BPX 91	32	50 (>35)	1000	7 (<300)	59
•	BPX 92	32	7 (>4)	800	1 (<100)	62
7	BPX 93	32	8 (>5)	_	0.5 (<50)	65

Silicon differential photo diode

Туре	Reverse voltage V _R (V)	Sensitivity S (nA/Lux)	Rise time of photo current t_r (ns)	Dark current at T _{amb} =25°C I _d (μΑ)	Page
BPX 48	10	>15	<150	0.1 (<0.2)	68

New type

Not for new development

Inventory of Types

Silicon photo-voltaic cells

	Turne	0		Consistivity	Deverse	Dark	Dediction	Dama
	Туре	Open-circuit voltage at $E_v =$		Sensitivity	Reverse	Dark	Radiation	Fage
			(10000)		voltage	current at τ	tempera-	1
			Lux			7 _{amb} ≕ 25 °C	ture	ļ
		V,		S	V _R	-	T	
		(mV)	(mV)	(μA/Lux)	(V)	Ι _d (μΑ)	(K)	1
		· /	· · · ·					
	BP100	≧120	≧200	0.025 (≧0.018)	1.0	3 (≧10)	2856	72
▼	BPX 79	≧220	≧310	0.135 (≧0.1)	1.0	0.3 (<50)	2856	75
	BPY 11	≧180	≧260 ¹)	0.04 (≧0.028)	1.0	1 (≧10)	2856	77
	BPY 43	≧150	≧270¹)	0.02 (≧0.015)	2.0	<5	2856	81
	BPY 44	≧200	≧330¹)	0.027 (≧0.02)	2.0 (<5)	<1	2856	81
	BPY 45	≧150	≧450	1.45 (≧1.0)	1.0	-	2856	84
	BPY 47	≧150	≧450	1.3 (≧0.9)	1.0	_	2856	84
	BPY 48	≧150	≧450	0.43 (≧0.3)	1.0	-	2856	84
	BPY 63	≧150	≧450	0.65 (≧0.45)	1.0	-	2856	89
	BPY 64	≧150	≧450	0.23 (≧0.16)	1.0	-	2856	89
	TP 60	≧160	≧440	1.0 (≧4.1) 0.7	1.0	-	2856	94
	TP 61	≧160	≧440	1.0 (≧4.1) 0.7	1.0	_	2856	94

¹) $E_v = 1000 \text{ Lux}$

Silicon solar cells

Туре	Ambient temperature 7 _{amb} (°C)	Open-circuit voltage V _L (mV)	Short-circuit current I _κ (mA)	Page
BPY 73	-40 to + 80	535	≧137	97
BPY 74	-80 to +215	585	≧130	99

Silicon photo transistor arrays

	Type [] number of photo transistors per photo array	Collector-emitter reverse voltage V _{CE} (V)	Photo current at $V_{CE} = 5 V;$ $E_v = 1000 Lux$ $I_p (mA)$	Collector-emitter cutoff current $V_{CE} = 25 V$ $E_v = 0 Lux$ I_{CEO} (nA)	Page
▼	BPX 82 [2]))))
▼	BPX 83 [3]				
▼	BPX 84 [4]				
▼	BPX 85 [5]				
▼	BPX 86 [6]	32	0.63 to 5.0	25 (<200)	125
▼	BPX 87 [7]				
$\pmb{\nabla}^{\mathbf{r}}$	BPX 88 [8]				
▼	BPX 89 [9]				
▼	BPX 80 [10]	J	J	J	J

Inventory of Types

Silicon photo transistors

Туре	Collector-emitter	Collector-emitter	Photo current	Page
	reverse voltage	cutoff current	at $V_{CE} = 5 V$,	[
		at $V_{\rm CE} = 25 \rm V$,	$E_{\rm v} = 1000 {\rm Lux}$	
	$V_{\rm CE} = (V)$	$E_{\rm v} = 0 \rm lx I_{\rm CEO} (nA)$	$I_{p}(mA)$	
BP101/l ²)	32	5 (<100) ³)	0.063 to 0.125	102
BP101/II ²)	32	5 (<100) ³)	0.1 to 0.2	102
BP101/III ²)	32	5 (<100) ³)	0.16 to 0.32	102
BP101/IV ²)	32	5 (<100) ³)	0.25 to 0.5	102
BP102/I ²)	32	5 (<100) ³)	0.16 to 0.32	106
BP102/II ²)	32	5 (<100) ³)	0.25 to 0.5	106
BP102/III ²)	32	5 (<100) ³)	0.4 to 0.8	106
BP102/IV ²)	32	5 (<100) ³)	0.63 to 1.25	106
BPX 38/I ²)	25	100 (<500)	0.4 to 0.8	110
BPX 38/II ²)	25	100 (<500)	0.63 to 1.25	110
BPX 38/III ²)	25	100 (<500)	1.0 to 2.0	110
BPX 38/IV ²)	25	100 (<500)	1.6 to 3.2	110
BPX 43/I ²)	50	5 (<200)	1.6 to 3.2	114
BPX 43/II ²)	50	5 (<200)	2.5 to 5.0	114
BPX 43/III ²)	50	5 (<200)	4.8 to 8.0	114
BPX 43/IV ²)	50	5 (<200)	6.3 to 12.5	114
BPX 62/I ¹)	50	10 (<100)	0.4 to 0.8	118
BPX 62/II ¹)	50	10 (<100)	0.63 to 1.25	118
BPX 62/III ¹)	50	10 (<100)	1.0 to 2.0	118
BPX 62/IV ¹)	50	10 (<100)	1.6 to 3.2	118
BPX 78 ⁴)	40	100	0.3	120
BPX 81/I ¹)	32	25 (<200)	0.63 to 1.25	122
BPX 81/II ¹)	32	25 (<200)	1.0 to 2.0	122
BPX 81/III ¹)	32	25 (<200)	1.6 to 3.2	122
BPX 81/IV ¹)	32	25 (<200)	2.5 to 5.0	122
BPY 61/I ¹)	50	5 (<100)	0.8 to 1.6	128
BPY 61/II ¹)	50	5 (<100)	1.25 to 2.5	128
BPY 61/III ¹)	50	5 (<100)	2.0 to 4.0	128
BPY 61/IV ¹)	50	5 (<100)	3.2 to 3.6	128
BPY 62/I ²)	32	5 (<100)	1.25 to 2.5	131
BPY 62/II ²)	32	5 (<100)	2.0 to 4.0	131
BPY 62/III²)	32 32	5 (<100) 5 (<100)	3.2 to 6.3	131
BPY 62/IV ²)	32	5 (<100)	5.0 to 10.0	131

Without base connection in glass case
 With base connection in TO-18 case
 ▼ New type

³) at $V_{CE} = 30 \text{ V}$ ⁴) Without base connection in metal case

GaAs light emitting diodes (infrared emitters)

	Туре	Forward current I _F (mA)	Radiant power at $I_{\rm F}$ = 100 mA $\Phi_{\rm e}$ (mW)	Rise time; fall time t _r , t _f (μs)	Page
¥	CQY17/IV CQY17/V	100	1.1 to 2.8 ¹) 1.8 to 4.5 ¹)	1.0	136
V V	CQY17/VI CQY18/III	100	$2.8 \text{ to } 7.1^{1}$ 0.8 to 2.0 ²	1.0	136
▼	CQY18/IV	100	1.25 to 3.2 ²)	1.0	140
▼	CQY18/V	100	2 to 5.0 ²)		140
▼	LD 261/I	50	0.28 to 0.71 ²)	1.0	144
▼	LD 261/II	50	0.45 to 1.112 ³) ²)	1.0	144
♥	LD 261/III	50	0.71 to 1.8 ³) ²)	1.0	144
♥	LD 261/IV	50	1.12 to 2.8 ³) ²)	1.0	

GaAs light-emitting diode arrays (infrared emitters)

Type (Number of LED's per diodes array)		Radiant power at $I_F = 50 \text{ mA}$ $\Phi_e \text{ (mW)}^2$	Rise time; fall time; t _r , t _f (μs)	Page
<pre>LD 262 (2) LD 263 (3) LD 264 (4) LD 265 (5) LD 266 (6) LD 267 (7) LD 268 (8) LD 269 (9) LD 260 (10)</pre>	50	0.32 to 2.50	1.7	

GaAsP light-emitting diodes (visible light emitters)

	Туре	Reverse voltage V _R (V)	Reverse current at $V_{\rm R} = 3 \text{ V}$ $I_{\rm R}$ (μ A)	Forward current $T_{amb} = 25 \degree C$ I_F (mA)	Luminous intensity at $I_F = 20 \text{ mA}$ $I_V \text{ (mcd)}$	Page
▼	LD 30 B	3	0.1	50	0.8 (>0.3)	150
▼	LD 30 C	3	0.1	50	0.8 (>0.3)	150
♥	LD 40/I	3	10	50	0.7 (>0.3)	153
▼	LD 40/II	3	10	50	1.2 (>0.8)	153
▼	LD 50/I	5	100 ²)	100	2 (>1) ¹)	155
▼	LD 50/II	5	100 ²)	100	3 (>2) ¹)	155
▼	LD 461	3	0.01 (<10)	50	1.0 (>0.3)	156

GaAsP light-emitting diode arrays (visible light emitters)

	Type () No. of LED's per diodes array	Reverse voltage V _R (V)	Reverse current at $V_{\rm R} = 3 V$ $I_{\rm R} (\mu A)$	Forward current $T_{amb} = 25 \text{ °C}$ I_F (mA)	Luminous intensity at $I_F = 20 \text{ mA}$ $I_V \text{ (mcd)}$	Page
▼	LD 462 (2))	1]		1
V	LD 463 (3)					
▼	LD 464 (4)					
▼	LD 465 (5)					
▼	LD 466 (6)	3	0,01 (<10)	50	1,0 (>0.3)	158
▼	LD 467 (7)					
▼	LD 468 (8)					
▼	LD 469 (9)					
▼	LD 460 (10)	J]]	J	J	J

Optoelectronic couplers

	Туре	Ei	nitter	Detector		Efficiency	Page
		Forward current I _F (mA)	Reverse voltage V _R (V)	Collector current I _c (mA)	Coll. rev. voltage V _{CEO} (V)	(V _{CE} =5V) %	
▼	CNY 17/I	60	3	150	32	40 to 80	162
▼	CNY 17/11	60	3	150	32	63 to 125	162
▼	CNY 17/III	60	3	150	32	100 to 200	162
▼	CNY 17/IV	60	3	150	32	160 to 320	162
▼	CNY 18/I	60	3	150	32	10 to 20	164
▼	CNY 18/11	60	3	150	32	16 to 32	164
▼	CNY 18/111	60	3	150	32	25 to 50	164
▼	CNY 18/IV	60	3	150	32	40 to 80	164

Photo resistors

Туре	Operating voltage $V_{\rm a}$ (V)	Dark resistance R_{0} (Ω)	Light resistance R_{1000} (Ω)	Page
RPY 60	100	≧1·10 ⁸	300 to 800	168
RPY 61	50	<u>≥</u> 1·10 ⁶	300 to 800	170
RPY 62	100	≧1·10 ⁸	3500	172
RPY 63	50	≧1·10 ⁶	300 to 800	174
RPY 64	100	≧1·10 ⁸	3500	176

2. Preface

2.1. General Remarks

Optoelectronic components are used in modern electronics to an ever increasing degree. The main fields of application are light barriers for production control and protective devices, light control and regulating devices, e. g. twilight switches, fire detectors and devices for optical heat supervision, scanning of punched cards and perforated tapes, positioning of machine tools (for measuring length, angle and position), checking of optical equipment and ignition processes, signal transmission in case of an electrical separation of input and output, and conversion of light into electrical energy.

Depending upon the application, photo-voltaic cells, solar elements, photo transistors or photodiodes are used. Photodiodes are to be preferred in cases where amplifiers with high input impedances are used.

Photo transistors are primarily employed in conjunction with transistor circuits or to drive integrated circuits, whereas photo-voltaic cells are used to scan large surfaces when a strictly linear relationship between light and useful signal and optimum reliability are required.

Apart from photo-electric receivers, light emitters on a semiconductor basis are used, namely light emitting diodes. Difference is here made between light emitters on the basis of GaAs (gallium arsenide) operating in conjunction with the photo receivers mentioned above and being tuned to them with regard to spectrum and emitters on the basis of GaAsP (gallium arsenide phosphide) or GaP (gallium phosphide) radiating visible light and serving mainly as signal indicators.

Components comprising both emitter and detector are termed optically coupled isolators or optoelectronic couplers. They serve to transmit electrical signals in case of an electrical separation. Furthermore, the elimination of signal feedback to the input may be an inherent advantage.

The following will give further information as to technology, special characteristics and possibilities of application in the various fields. A final chapter is devoted to measuring techniques for optoelectronic components and to the most important tables and performance charts.

2.2. Silicon Photo Diodes

These photo diodes have a PN junction poled by a reversed bias. The capacitance which declines with a growing reverse voltage reduces the switching times. The PN junction is of easy access to the light. Without any illumination, a very small reverse current, the socalled dark current, flows. Light falling onto the area of the PN junction will generate charge carrier pairs there leading to an increase in the reverse current. This photo current is proportional to the illuminance. These photo diodes are therefore particularly suitable for quantitative light measurements. The application of the planar method has two essential advantages: The dark currents are considerably smaller

than with comparable photo electric devices of non-planar design. This results in a reduction of current noise and thus to a decisive improvement of the signal/noise ratio.

Moreover, these diodes do not have to be encapsulated in tight cases. The design of high-performance scanning systems with a high packing density thus becomes feasible.

Fig. 1 shows the basic design of a photo diode. The limit of the space-charge region is indicated by a dashed line.

Without any light, a small dark current $I_{\rm D}$ flows through the PN junction as a result of thermally generated carriers. In case of illumination the radiation quantums (internal photo effect) will generate additional charge carrier pairs (hole electron pairs) in the P and N region. Carriers caused in the space charge field are immediately sucked off because of the prevalent electrical field, i.e. the holes in the direction of the P side and the electron in the direction of the N side. Carriers from the remaining field must first diffuse into the space-charge region in order to be separated there. In case the holes and electrons will recombine before, they will not contribute to the photo current.

The photo current I_P is thus composed of the drift current of the space-charge region and the diffusion current of the P and N area.

 $I_{\rm P}$ is proportional to the incident radiant intensity. As $I_{\rm P}$ is very small for diodes it may be neglected in the equation $I_{\rm P} = I_{\rm P} + I_{\rm D}$. We thus have a linear correlation between $I_{\rm P}$ and the incident radiant intensity over a very broad range.

Diodes with a small space-charge width are termed PN diodes, diodes with a large space-charge width PIN diodes.

In case of PN diodes, the diffusion current is the dominating part of the photo current and in case of PIN diodes the drift current. As the capacitance is inversely proportional to the space-charge width W the PIN diode is characterized by a smaller capacitance than a PN diode of identical surface. The capacitance of (the majority of) the diodes reads:

$$C_{\rm D} \sim \sqrt{\frac{N}{V}}.$$

The smaller the doping N of the basic material and the higher the applied voltage V, the smaller the capacitance.

Fig. 2 shows the capacitance as a function of voltage for a PIN diode, e.g. BPY 12.

2.3. Silicon Photo-Voltaic Cells

Silicon photo-voltaic cells are available as large-surface and as small-surface cells. The junction produced by diffusion is close to the surface. The open-circuit voltage increases logarithmically as a function of the illuminance and reaches high values already at low illuminances. It is independent of the size of the photo-voltaic cell.

The short-circuit current increases linearly with the illuminance, when the surface is illuminated entirely, and is proportional to the size of the photo-sensitive surface. To establish the illumination conditions interesting in practice irrespective of the spectral composition of the light, we shall use the magnitude of the short-circuit current of the photo-voltaic cells being employed.

The optimum application of photo-voltaic cells – depending on the respective application – is closely connected with the illumination conditions and the resistance matching conditions. The data sheets state the matching curves applicable to the respective type. The short-circuit current $I_{\rm K}$ is plotted at the illumination intensity proportional to it as the abscissa and the pertinent photo current $I_{\rm P}$ and the respective photo voltage $V_{\rm P}$ on the ordinate. The load resistance $R_{\rm L}$ is used as a parameter. This mode of plotting will show the user at a first glance whether he is still in the range of operation envisaged (short-circuit operation with an absolute linearity or short-circuit operation with a logarithmic behaviour). Should the illumination sources deviate from the given data the respective curves should first be determined in order to obtain a clear starting point.

The rise-time of the signal voltage delivered to a load resistor by the photo-voltaic cell depends primarily upon the operating conditions. Two broad categories exist. 1) Load resistor smaller than the matching resistor (tendency to short-circuit).

2) Load resistor greater than the matching resistor (tendency to open-circuit).

In case 1, the photo-voltage rise is similar to the charging of a capacitor through a resistor from a constant voltage source. In photo-voltaic cells the junction capacitance C_i must be charged, the charging occurring with time constant $\tau = R_{\perp} C_j, R_{\perp}$ being the load resistor. The small photo-voltaic cell resistance is neglected.

In case 2, the photo-voltage rise is similar to the charging of a capacitor from a constant current source. The rise time is then t_r .

where
$$t_r = \frac{V_P \cdot C_j}{I_K}$$
.

 $I_{\rm K}$ being the short-circuit current under the given lighting conditions. This relation is valid only for values of $V_{\rm P}$ less than 80% of the final value of open-

This relation is valid only for values of $V_{\rm P}$ less than 80% of the final value of opencircuit voltage.

The diagram below shows the basic rise time relationships of photo-voltaic cells.

Case 1 Rise time according to the equation

$$V_{\rm P} = I_{\rm K} R_{\rm L} \cdot \left(1 - e^{-} \frac{t}{R_{\rm L} C_{\rm j}} \right)$$

time constant $\tau = R_{\rm L} C_{\rm i}$.

Case 2 Rise time $t_r = \frac{V_P C_i}{I_K}$

fall time in both cases $\tau = R_{\rm L} C_{\rm i}$.

The superposition of other effects can, under certain conditions, lead to a modification of the above conclusions.

E.g.:

With very small time constants (particularly in short-circuit operation) the actual impulse shape of the short-circuit current, which differs from the ideal square wave must be considered.

2.4. Silicon Solar Elements

Solar elements convert sunlight into electrical energy and thus, for instance, ensure the energy requirements of a satellite in space.

The silicon solar elements BPY 73 and BPY 74 have been developed particularly for these extraterrestrial applications. The N to P method ensures a low degradation factor and thus a considerably longer service life even at a highly energetic particle radiation.

The weldable silver-titanium contacts facilitate the connection of single solar elements to form socalled modules and, in case of a greater number of elements, to form panels or even solar batteries.

BPY 74 is particularly provided for use at high temperatures as encountered in satellites operating close to the sun.

2.5. Mounting Instructions for Silicon Photo Diodes and Photo-Voltaic Cells

(open design, without package).

With silicon being inherently brittle material, the photo-electric device must not be subjected to pressure or tension. The contacting positions are especially endangered. When applying tension to the solid wire leads, which for technological reasons are

alloyed to a very thin P-type layer, it may only be parallel to the surface, and must not exceed 200 p (pond). Leads may only be bent at least 3 mm from the outer edge of the photo-electric device. Photo-electric devices can be cemented to metallic or plastic supports, but the expansion coefficient of the material must be taken into consideration to avoid mechanical stress between the support and photo-electric device with variations in temperature. An epoxy resin must be employed to cement or encapsulate photo-electric devices, which is colorless and does not darken with time. After curing, the epoxy must not contain any occlusions of gas (filter effect). Particularly suitable for encapsulating photo-electric devices is the epoxy EPI-COTE 162¹) with LAROMIN-C 260²) hardener. 100 parts by weight of EPICOTE 162 and 38 parts by weight of LAROMIN-C 260 are to be mixed well. This mixture remains workable for about 30 minutes, after which it becomes viscous. All materials to be encapsulated must be dry and free of dust and grease. If bubbles form after encapsulation, it is advisable to briefly raise the temperature during curing to about 100 °C, so that the bubbles come to the surface and burst. The normal curing temperature is 60 to 80 °C. The curing time is usually one hour, but reduces at higher temperatures. When working with epoxy, care must be taken to prevent it or the hardener from coming into contact with skin: Soap and water should be used to wash off. The quickly binding glue SICOMET 85³) is used to cement Si diodes or photo-voltaic cells of open design. The light-sensitive surface of the photocell is coated with a protective lacquer which must not be contaminated during cementing.

2.6. Silicon Photo Transistors

The introduction of planar techniques allows the manufacture of photo transistors of small dimensions and a high photo sensitivity. They are used as photo-electric receivers in control and regulating devices. As the maximum photo sensitivity of these photo transistors lies near the infrared limit of the light wave spectrum they are particularly suitable as receivers for incandescent lamp light.

The mode of operation of a photo transistor corresponds to that of a photo diode with a built-in amplifier. It has 100 to 500 times the photo sensitivity of a comparable photo diode.

The photo transistor is preferably used in a common emitter circuit and there shows a behaviour similar to that of an AF transistor.

Unilluminated, only a small collector-emitter cutoff current is flowing. It amounts to approximately $I_d = h_{FE} \times I_{CBO}$ where h_{FE} is the static forward current transfer ratio and I_{CBO} the reverse current of the base.

With illumination, the reverse current of the base increases by the photo current $I_{\rm p}$. The photo current $I_{\rm P}$ thus reads $\sim h_{\rm FE} (I_{\rm CBO} + I_{\rm P})$.

The photo current of a transistor is therefore a function of the photo current $I_{p'}$ of the base and of the static forward current transfer ratio h_{FE} . As h_{FE} may not be raised at will, the photo sensitivity of the base should be as high as possible.

Registered trade-mark (Shell Chemical),
 Registered trade-mark (BASF),
 Registered trade-mark (Sichel-Werke, Hannover)

Fig. 3

Fig. 3 shows the design of a photo transistor. The emitter and the base leads are laterally affixed so that the base diode is as readily accessible to radiation as possible. The large collector region ensures that as many radiation quantums are absorbed as possible and will thus contribute to the photo current.

As the static forward current transfer ratio h_{FE} depends on the current there is a linear correlation between the incident radiant intensity and the photo current I_P only over a small range in contrast to a photo diode.

Fig. 4 shows a typical family of characteristics of a photo transistor.

As the reverse current I_{CBO} of the base diode is amplified in the same manner as the photo current $I_{P'}$ of the base diode the transistor does not exhibit a more favourable signal/noise ratio than the photo diode.

22

Special photo transistor types are provided for the various applications. The types BPY 62 and BPX 43 are mainly used for universal applications requiring no lens on the receiver side.

BPY 62 is characterized by a higher cutoff frequency and, in contrast to that, type BPX 43 by a higher photo sensitivity.

In case the field of application requires the use of a lens on the receiver side, this requirement may be met by the type BPX 38. The plane window of this photo transistor enables the focal spot to be reproduced precisely on the photo-sensitive surface of the transistor system. Due to the larger system surface the adjustment and alignment of the transistor case to the light emitter should raise no difficulties.

With the types mentioned, a user may preset the operating point of the photo transistor by wiring the base lead. The rapidity of response may thus be increased and the photo sensitivity be reduced. A fixed bias can reverse the photo transistor. When this bias is scanned, coincidence circuits may be realized.

The requirement for a high packing density is met by the photo transistor BPY 61. It is incorporated in a miniature glass package with the dimensions $13 \text{ mm} \times 2.1 \text{ mm} \emptyset$ and displays a photo sensitivity 500 to 1000 times greater than small-surface silicon photo-voltaic cells. The tolerance range of the light sensitivity is subdivided into three groups of sensitivity. There is no base contact. Light is the control element effecting a correspondingly high collector current via the emitter-base distance of the transistor system multiplied by the factor of static forward current transfer ratio. Rise and fall times depend on the illuminance; they decrease with rising intensity.

Primary applications are scanning of binary coded discs, films and punched cards.

Under difficult mounting conditions, the following amplifier is often connected by relatively long leads. The danger of stray signal disturbances is, however, small as the high photo currents guarantee a sufficiently large signal/noise ratio.

2.7. Photo Resistors

Photo resistors are passive photo-electric elements. They consist of mixed crystals and exhibit a high photo sensitivity for light wavelengths from the ultraviolet to the near infrared region. Electrically, they behave like ohmic resistors and their resistance value is determined by the illumination intensity.

Photo resistors do not have a junction; they are bipolar and may thus be used in AC and DC circuits.

A change in the resistance value as a function of the illuminance is not inertialess. The rise times are of the order of a few milliseconds. The temperature coefficient of photo resistors is low and decreases with a rising illuminance.

2.8. Light Emitting Diodes (LEDs)¹) and **Semiconducting Indicators**

Definition. Light-emitting diodes are semiconductor diodes emitting electromagnetic radiation when operated in forward direction. The wavelength of the emitted radiation depends on the semiconductor material used and of its doping. Ga (As, P) LEDs (gallium arsenide phosphide LEDs) emit red light while GaAs diodes (gallium arsenide diodes) radiate in the infrared region of the spectrum. This fact also determines their principal applications: Ga (As, P) diodes are used as signal lamps or indicators while GaAs diodes are applied as source of radiation in light barrier arrangements.

Solid state displays serve to indicate numerical or alpha-numerical symbols. The symbols are produced in one plane which results in a large optic angle.

LEDs and displays are characterized by the following advantages:

- Long life (approx. 10⁵ h half-life)
- They are resistant to shock and vibration
- They are circuit-compatible
- The emitted radiation may easily be modulated
- Simple design permitting a high packing density.

2.8.1. Design and Mode of Operation

Light emitting diodes are operated in forward direction. When current flows freely movable electrons penetrate into the P region through the PN junction where they recombine with the holes present there. During this operation, energy is released in the form of radiation.

Fig. 5

Fig. 5 shows the schematic views of two types of light-emitting diode systems. In case of epitaxial Ga (As, P) diodes the PN junction is only 2 to 4μ below the semiconductor surface. The light is produced in the thin P region and leaves the crystal through the near surface. All light propagating into the interior of the crystal is absorbed. GaAs LEDs are epitaxial diodes with an approximately 50 μ m P layer where the radiation is being produced. As N-type GaAs absorbs only little infrared radiation the diode may be mounted with its P side on the metal support for better heat dissipation.

The Ga (As, P) diodes emitting red light are supplied in plastic packages. LD 30 and LD 50 are provided for use in front panels. The LD 46 series is suitable for a great many applications. The arrays of 1 to 10 single diodes produced from this type may be arranged in indefinite number. They are also used to build up complex indication systems, such as scales and large displays.

GaAs LEDs are incorporated in plastic packages (array type LD 26) or in hermetically sealed glass-metal cases (CQY 17, CQY 18). The radiation characteristic is important to the user. When the light-emitting diodes are used in arrangements without an optical lens, as for instance in a read-head for punched tape, the cone of apex angle of the radiation should be small. This is the case with LD 26 and CQY 17. In connection with optical lens systems preference is given to those types emitting radiation through a plane window (CQY 18).

In case of 7-segment displays with a digit height of 3.2 mm (CQY 21) 7 LEDs are mounted on a metal support and cast in red resin. The red colouring serves to improve the contrast. Larger displays (up to 60 mm height) may be realized in the form of numerical or alphanumerical displays with the aid of the LD 46 array series. The displays may be triggered both in static operation and in time division multiplex operation (f>100 Hz because of freedom of flicker) by means of BCD seven-segment decoder/driver circuits. In case of displays working with several digits, the timeshared multiplex system usually proves to be less expensive. Only one decoder is used for all digits, which – like the digits – is triggered by a clock circuitry. A latch holds the input signal until new information is received (Fig. 6).

Schematic view of the multiplex triggering of n-figure LED displays

Fig. 6

2.8.2. Electrical-Optical Characteristics

The emitted radiation (or luminous intensity) will change linearly with the forward current in the normal operating region in case of GaAs and Ga (As, P) diodes and displays (Fig. 7). With a very high forward current the curve asymptotically approaches a maximum rating. This is caused by a strong heating of the semiconductor system. The region of linearity may be expanded by switching over from static to pulse operation. Non-linearity also exists in case of small forward currents, where excess currents do not contribute to radiation. These effects cannot be influenced by the customer.

With rising temperature the radiant intensity and the luminous intensity, respectively, will decline with a constant current. The temperature coefficient for GaAs is -0.7% per degree. This fact may be neglected for many applications. If the temperature dependence proves troublesome it may largely be eliminated by means of compensation circuits. A simple example is shown in Fig. 8.

The radiant power emitted by LEDs declines with a rising time of operation. The term "life" was introduced in order to describe the magnitude of this degradation. It is defined as the time after which the radiant power has fallen to half the value. In case of CW operation, this life amounts to approximately 10⁵ hours. This applies to the following conditions: Ambient temperature $T_{amb} = 25$ °C, forward current $I_F = 100$ mA (CQY 17, CQY 18) and $I_F = 50$ mA (LD 26, LD 46), respectively.

2.9. Optoelectronic Couplers

Definition

Couplers are optoelectronic devices for the transmission of signals in case of an electrical input-output separation. They are also termed optoelectronic isolators.

Design and Mode of Operation

The information is transmitted optically. The electrical signal is converted into an optical one by an emitter in the component. It is then passed on optically and reconverted into an electrical signal by a detector. A gallium arsenide light emitting diode emitting infrared light serves as the emitter and a silicon photo transistor as a detector. With forward current flow the light emitting diode generates radiation of about 950 nm wavelength on the input side of the component. This radiation is fed to the photo transistor by means of a light-conducting medium. The transistor current depends upon the striking radiant power. Potential differences up to a few kV may exist between the input and output, depending upon the type of component.

functional diagram

Basic Circuit

As the above diagram shows, current transmission is effected by simply connecting the output to the emitter and collector of the transistor. Frequently, the base is also connected. More variations in the wiring technique are thus obtained: On the one hand, charge carriers may flow from the base via a resistor to ground whereby the cutoff frequency of the transistor is increased, however, at the expense of the transmission factor. On the other hand, the transistor may be included in the secondary circuit with its normal transistor functions.

The essential characteristics

of optoelectronic couplers are their current transmission ratio and the insulation voltage.

The insulation voltage depends on the design type. For the CNY 18 which is similar to TO-18, it amounts to 500 V because of the short outer insulation paths, in case of the DIL 6-coupler CNY 17 it runs to 2.5 kV.

The transmission ratio is the relation between output current and input current. It is stated in per cent. Practical values lie between 20 and 300%. Its magnitude depends on the radiant power of the light emitting diode, the quality of light transmission and the static forward current transfer ratio of the transistor. The forward current transfer ratio usually runs to a few hundred.

As both the light emitting diode (LED) and the photo transistor are dependent upon temperature the transmission ratio of the couplers is also temperature-dependent, accordingly. At low temperatures, it is determined by the positive temperature coefficient of the transistor and at higher temperatures by the negative coefficient of the LEDs. The transmission ratio of a coupler first increases with temperature, passes through a maximum between 0 and 50 °C and then declines.

Couplers are preferably used to transmit digital and analogue signals. In analogue applications, allowance has to be made for a certain non-linearity between input and output current, which, however, may be neglected in case of small signals.

2.10. Measuring Techniques for Optoelectronic Semiconductor Devices

Optoelectronic semiconductor devices, photo-voltaic cells, photo diodes, photo transistors, etc. are special types of standard semiconductor components, which have been developed for their particular field of application. Their measuring techniques include and are based on the conventional and known measuring techniques for diodes and transistors. These are supplemented by a special optoelectronic measuring technique. Irrespective of the fact whether the objects to be measured are radiation-sensitive (detectors) or radiation-emitting (emitters) components or a combination of the two (e.g. optoelectronic couplers) the measuring system radiator-receiver remains the same, only the object to be measured changes its place. The important difference from the standard measuring method lies in the broadband of the measuring system and the pronounced spectral characteristics of emitters and detectors as well as in the problem of an exact description of these characteristics and their reproducibility in order to obtain consistent results in any place and at any time. Attention has therefore to be paid to the following instructions.

Radiation-Sensitive Components (Detectors)

Radiation-sensitive semiconductor devices serve to convert radiation energy into electric energy. Radiation energy may be supplied to the device in many ways depending on which source of radiation is being used. The measuring purposes are only fulfilled by radiation sources which may easily be covered with respect to their spectral energy distribution and which are reproducible. That are thermal radiation sources, such as the tungsten-filament lamp which comes very close to the black body at least in the wavelength range of interest here, and monochromatic light sources. In other words, light sources should be used emitting radiation of one wavelength only or at least of a very narrow wavelength range, i.e. mainly light-emitting-diodes and a combination of any emitter with narrow-band filters. The tungsten-filament lamp is used because of its high energy, above all for measuring the radiation sensitivity when set to a "colour temperature" of 2856 K corresponding to Standard light A according to IEC 306-1 part 1 and DIN 5033 while the light-

emitting-diodes are employed primarily for cutoff frequency and switching time measurements because they offer the opportunity of being modulated or pulsed up to high frequencies.

The tungsten-filament lamps used for measuring purposes have to be set to a relative spectral energy distribution which corresponds to that of the black body at a temperature of 2856 K generally. They have to be operated under very constant conditions. The lamp must therefore be operated using constant current and the deviation from the rated value must be kept smaller than $\pm 0.1\%$. This requirement seems to be very high, however, allowance has to be made for the fact that any variation in the lamp current by 0.1% will result in a change of the radiant intensity by 0.7% and a change in the colour temperature of 15 to 20 K. Of course, the lamp may also be operated with constant voltage, however, because of the unavoidable and varying contact resistances in the lamp socket this is hard to realize in practice so that an operation using constant current is to be preferred. If the lamp voltage is checked simultaneously the lamp may be supervised for changes in its characteristics, for instance, by evaporating coiled filament material, and will thus give a clue to when the lamp is no longer suitable for measuring purposes and must be exchanged or newly calibrated. This check is recommended mainly for the "standard lamps" used as a standard for colour temperature and radiant and luminous intensity, respectively.

The standard lamps gauged by the PTB or the manufacturers as a rule are not used for general measuring purposes, above all series measurements, because of their costs of calibration. Therefore, the service lamps are set to the given values by comparing them with these standard lamps. The procedure is as follows:

Adjustment of Colour Temperature

The standard lamp is adjusted to the current and/or voltage according to the material test certificate. To obtain accurate and reproducible results, the coil filament of the lamp has to be adjusted to vertical to a tolerance of $\pm 1^{\circ}$. After a warm-up period of approx. 30 min the photo current of a linear receiver, usually the short-circuit current of a photo-electric device, is measured in each case behind a narrow-band filter with a transmission wavelength of aprox. 500 nm and 900 nm, respectively. Attention has to be paid to the fact that the filters have no other pass band. The relation between these two measuring values characterizes the spectral energy distribution of the black body at the given temperature. The lamp current of the lamp to be calibrated is then varied until the ratio of the photo currents measured behind the two filters corresponds to that measured earlier at the standard lamp. The service lamp has thus the same colour temperature (or to be more precisely, ratio temperature) as the standard lamp. Moreover, it must be mentioned, that the lamp has to be calibrated in the house in which it is to be operated later on because changed heat conditions and reflections in the house could lead to considerable variations in the radiation characteristics of the lamp.

Adjustment of the distance from the incandescent coiled-filament for a given irradiance E_e or illuminance E_v

The material test certificate of the standard lamp usually states the radiation intensity (I_e) or luminous intensity (I_v) for the direction perpendicular to the coiled-filament plane. At a sufficiently large spacing from the coiled filament, at least 10 times

the maximum filament dimension, we have $E = \frac{I}{R^2}$ which may be used to calculate the

spacing for the desired value of E according to $R = \sqrt{I/E}$. The photo current of the photo-voltaic cell is now measured at this spacing from the coiled filament of the standard lamp. The photo-voltaic cell is then used to adjust the distance to the service lamp, at which the same photo current is flowing. If a sufficiently precise luxmeter (e.g. Osram-Centra $V(\lambda)$ Si photo-voltaic cell) is available or a power meter of a sufficient bandwidth the adjustment may, of course, also be effected by means of these instruments. With irradiance measuring instruments attention has to be paid to the fact that in general it is impossible to cover the entire range of the spectral energy distribution of the (black) emitter, e.g. because the thermocouple is mounted behind a quartz window. Consequently, the measured irradiance E_{e} is too low compared to the black body. As a result, the object is measured at too high an irradiance when E_{a} has been adjusted by means of this instrument (shortened spacing from body) although the object itself is insensitive to the spectral range filtered off in the measuring instrument for radiant intensity. Differences in photo current of up to 20% may thus occur. When the irradiance is stated the measuring instrument used should also be given in order to compare the measuring results (spectral sensitivity curve, window material, etc.). Alternatively, the correction factor referred to the black body should be given for the colour temperature of the body.

At the moment, the PTB and/or lamp manufacturers only gauge standard lamps with respect to colour temperature and ratio temperature in the visible range, respectively. Because of the structure of standard lamps, especially the irregular temperature distribution over the coiled filament (heat is dissipated through the suspension) these gaugeings do not warrant the same shape of the spectral energy distribution in the infrared where the components to be measured usually have their maximum, even for lamps of the same type. This is clearly revealed by differences in photo currents which were measured under the same conditions $-E_v=100$ lx and $T_F=2856$ K - from a few per cent to over 10% depending on lamp type. The new version of the Wi 41 G by Osram with its detached coiled filament is the only exception, showing scatters from one lamp to another of a few per thousand so that they may be recommended as a standard lamp in connection with semiconductor photo-electric devices.

For photo sensitivity measurements (photo current and photo voltage, respectively) the components to be measured are brought to the position determined for each irradiance and held in such a way that the chip surface is perpendicular to the direction of light. Components in TO-18 or TO-5 cases are held in a way that the case axis will coincide with the direction of radiation. This is important especially for components with a highly focusing lens. A holder with a mobile socket for the terminal wires has proved useful in this respect (Fig. 9).

Fig. 9

When measuring the short-circuit current I_{κ} of photo-voltaic cells attention has to be paid to the fact that the internal resistance of the measuring instrument used is small enough compared to the internal resistance of the photo-voltaic cell. The same applies to open-circuit measurements. Here the internal resistance of the measuring instrument has to be large compared to the internal resistance of the photo-voltaic cell. Fig. 10 shows this correlation, for instance, for the photo-voltaic cell BPY 11 for $E_v = 100 \text{ lx}$.

32

Radiation-Emitting Components (Emitter)

Radiation in the visible range: In this case the luminous intensity is measured in the direction of the case axes by means of a detector having a $V(\lambda)$ characteristic and being calibrated in Candela (footlambert). It has to be noted, however, that the adjustment to the $V(\lambda)$ curve (Fig. 11) is also sufficiently accurate in the wavelength range of LEDs, for admittedly the majority of the measuring instruments of this type show an integral agreement with $V(\lambda)$ to a few per cent, however, they deviate strongly from the $V(\lambda)$ shape at the slopes, especially around 700 nm.

Radiation in the infrared range: The radiant intensity in the direction of the case axis should be measured by means of a detector (thermocouple) which is independent of wavelength. However, a low sensitivity, inertia and temperature sensitivity will in this case raise difficulties. For this reason, the measurements are generally carried out with a photo-voltaic cell which is calibrated accordingly. In this case, however, the spectral sensitivity curve of the photo-voltaic cell has to be taken into consideration and the measuring result to be corrected with respect to deviations in the emitted wavelength of the radiator to be measured. (E.g. LEDs with a varying technology of manufacture). To measure the total radiation of the component the LED has to be built into a parabolic-type reflector in such a way ensuring that all radiation emitted by the component will reach the photo-voltaic cell which forms the termination of the parabola. Fig. 12 shows the outline of such a measuring parabola. As for the rest, the same requirements apply as for radiant-intensity measurements.

2.10.1. Concepts of Temperature for Optical Radiations

34

Denotation	Symbol	Relation to Planckian Radiation	Definition	Application	Notes
erature that	may be a	llied to any optic	cal radiation		
Radiance temperature	T _s	Equality of the spectral radiance of a selected wavelength	The spectral radiance of any wavelength of a radiation to be denoted may be correlated with that Planckian temperature at which it has the same radiance at the same wavelength. Pyrometry formula	Pyrometry	Visual pyrometry usually operates with an effective wavelength of about 650 nm. In general, the radiance temperature depends on the wavelength. It is always lower than the real temperature.
			(Acc. to Wien): $\frac{1}{T_s} = \frac{1}{T} - \frac{\pi}{c^2} \ln (\varepsilon \cdot \tau)$.		
eratures that	may be a	allied only to op	tical radiations having certain characteri	stics	
Colour temperature	T _f	Equality of colour	When a radiation has a colour equalling that of a Planckian radiation the temperature of the latter is the colour temperature of the radiation to be denoted.	Colour measurements	In general, T_r may not be used to draw any conclusion as to spectral distribution. In case of mere temperature radiations T_r usually equals approx. T_v in the visible region.
Correlated colour temperature	T _n	As large a colour similarity as possible	When radiation has a colour not equalling that of a Planckian radiation but— assessed acc. to sensation—comes close to it, the temperature of the closest Planckian radiation is the correlated colour temperature of the radiation to be denoted.	Colour measurements	In general, T_n may not be used to draw any conclusion as to spectral distribution. The statement of the correlated colour temperature only makes sense if the colour of the radiation to be denoted is less than about 1015 thresholds of sensation away from the Planckian curve shape. If the colour difference approaches zero T_n switches to T_t .
Distribution temperature	T,	Equality of the relative spectral radiation distribution between λ_1 and λ_2	If radiation in a wavelength region to be stated has a spectral distribution between λ_1 and λ_2 which is proportional to a Planckian radiation distribution the temperature of the latter is the distribution temperature of the radiation to be denoted.	Spectral measurements	If the range of spectral proportionality covers the visible T_t equals T_t . As there are no radiation sources which strictly meet the spectral proportionality condition over a long wavelength range, in practice deviations of up to a few per cent are allowed so that, for instance, $T_t \approx T_t$ applies to a tungsten radiation in the wavelength range of about 400 to 750 nm
Ratio temperature	<i>T</i> ,	Equality of the radiation quotient of two selected wavelengths	When the quotient Q of the radiation of two (close) wavelengths (ranges) λ_1 and λ_2 of a radiation to be denoted equals the corresponding quotient of a Planckian radiation, the temperature of the latter is the ratio temperature of the radiation to be denoted. Q between 0 ($dT=0$) and λ_2^4 : λ_1^4 ($dT=\infty$) with $\lambda_1 < \lambda_2$.	"Blue/Red" measurements	In general T_r may not be used to draw any conclusion as to the spectral distribution. In case of mere temperature radiations T_r between λ_1 and λ_2 is usually approximately T_v if the spacing between the two wavelengths is within reasonable bounds.
	erature that Radiance temperature eratures that Colour temperature Correlated colour temperature Distribution temperature	Prature that may be a Radiance temperature T_s remain and the second	to Planckian Radiationerature that may be allied to any optiRadiance temperature T_s Equality of the spectral radiance of a selected wavelengtheratures that may be allied only to opColour temperatureTrEquality of colourCorrelated colour temperature T_r Equality of colour similarity as possibleDistribution temperature T_r Equality of the relative spectral radiation distribution between λ_1 and λ_2 Ratio temperature T_r Equality of the radiation quotient of two selected	to Planckian Radiationerature that may be allied to any optical radiationRadiance temperature T_a Equality of the spectral radiance of a selected wavelengthThe spectral radiance of any wavelength of a radiation to be denoted may be correlated with that Planckian temperature at which it has the same radiance at the same wavelength. Pyrometry formula (Acc. to Wien): $\frac{1}{T_a} = \frac{1}{T} - \frac{\lambda^2}{c^2} \ln (\varepsilon \cdot \tau)$.eratures that may be allied only to optical radiation has a colour equalling that of a Planckian radiation has a colour equalling that of a Planckian radiation has a colour etemperature of the latter is the colour temperature of the latter is the colour temperature of the radiation on to equalling that of a Planckian radiation but- assessed acc. to sensation - comes close to it, the temperature of the radiation to be denoted.Distribution temperature T_v Equality of the relative spectral radiation distribution between λ_1 and λ_2 If radiation in a wavelength region to be tated has a spectral distribution the temperature of the radiation to the denoted.Distribution temperature T_v Equality of the radiation Δ_2 of a radiation to be denoted equals the corresponding quotient of a Planckian radiation to be denoted equals the corresponding quotient of a Planckian radiation of two close) wavelengths (ranges) λ_1 and λ_2 of a radiation to be denoted equals the corresponding quotient of a Planckian radiation to be denoted equals the corresponding quotient of the radiation to be denoted Q between 0 ($\Delta T = 0$) and	Indext is the second
2.10.2. Radiation and Light Measurements

	Radiometric Terms				Spectr. Radiometric Terms		Photometric Terms					
No		Term	Sym- bol	Unit	Relation	Simplified definition	Term	Sym- bol	Unit	Term	Sym- bol	Unit
1	*	Radiant power	Ф _е , Р	w		Radiant power is the total power given in the form of radiation	Spectral radiant power distribution	Φ _e λ	W nm	Luminous flux	Φ,	lm Lumen

Emitter

2	Ω	Radiant intensity	Ie	W sr	$I_{e} = \frac{d\Phi_{e}}{d\Omega_{1}}$	Radiant intensity is radiant power per solid angle	Spectral radiant intensity distribution	Ι _{eλ}	W sr nm	Luminous intensity	Iv	lm sr = cd Candela
3	dA ₁ edΩ ₁	Radiance	L _e	W m ² sr	$L_{\rm e} = \frac{d^2 \Phi_{\rm e}}{dA_1 \cdot d\Omega_1}$	Radiance is radiant power per area and solid angle	Spectral radiance distribution	L _{el}	W cm² sr nm	Luminance	L,	$\frac{cd}{cm^2} = sb$ stilb

Sensor

4	dA2	Irradiance	E _e	$\frac{W}{m^2}$	$E_{\rm e} = \frac{d\Phi_{\rm e}}{dA_2}$	Irradiance is incident radiant power per (sensor) surface	Spectral irradiance distribution	Ε _{eλ}	W m²nm	Illuminance	E,	$\frac{lm}{m^2} = lx$ lux
---	-----	------------	----------------	-----------------	--	--	--	-----------------	-----------	-------------	----	-----------------------------

Indices "e" (=energetic) and "v" (=visual) may be omitted unless danger of confusion DIN 1301, DIN 1304, DIN 5031, DIN 5496

International Dictionary of Light Engineering, 3rd Ed. publ. by CIE and IEC

$$d^2 \Phi = L \frac{dA \times \cos \varepsilon \times dA_2 \times \cos \varepsilon_2}{r^2} \Omega_0$$

Inverse Square Law

$$E = \frac{1}{r^2} \cos \varepsilon_2 \,\Omega_0 \quad (r \text{ should be 10 times the} \\ \text{max. spacing of emitter-} \\ \text{sensor to keep error} \\ \text{below 1\%}).$$

 dA_1 = element of area of emitter dA_2 = element of area of sensor ε_1 = angle of radiation ε_2 = angle of irradiation r = spacing emittersensor

$\Omega_0 = 1 \, \text{sr}$

$\stackrel{\omega}{\otimes}$ 2.11. Tables and Diagrams

Radiometric Parameters

Denotation	Symbol	Meas. quant.	Abbr.	Definition
Quantity of radiation	٥	Joule Wattsecond	J Ws	
Radiant power	Φ	Watt	W	quantity of radiation Q per second through a surface
Point source of radiation (Fig. 2)	-	-	-	is a source viewed from such a great distance R that all rays seem to emanate from one point. When b max. linear expansion of source: $R \gg b$ (example: sun for observer on earth)
Solid angle (Fig. 2)	Ω	sterad	sr	$ \begin{aligned} \Omega = & \frac{A_1}{R_1^2} = \frac{A_2}{R_2^2} = \frac{A_3}{R_3^2} &= \frac{A}{R^2}; \text{ the radiant power } \Phi[W] \text{ of a point source is constant in solid angle.} \\ \Omega = & 1 \text{ is } A = R^2 \text{ so that } \Omega \text{ hemisphere} = \Omega_0 = 2\pi \text{ sr; } \Omega \text{ full sphere} = \Omega_0 = 4\pi \text{ sr} \end{aligned} $
Radiant intensity	I	Watt sterad	W sr	is the solid angle density of the radiant power $\left(\frac{d\Phi}{d\Omega}\right)$. I of one source generally varies depending upon viewing direction. I only defined when $R \ge b$; comp. $E \to I = ER^2$
Total radiant power of a source	$\Phi_{ m tot}$	Watt	w	$\Phi_{\rm tot} = \int_{D}^{4\pi} I d\Omega$
Irradiance	E	Watt meter ²	$\frac{W}{m^2}$	is the surface density of the radiant power (spherical surface) of a point source. $E = \frac{d\Phi}{dA}; dA = R^2 d\Omega E = \frac{d\Phi}{d\Omega R^2} = \frac{I}{R^2}; I = ER^2$
Radiance (Fig. 4)	L	Watt m ² sterad	W m ² sr	is the radiant intensity referred to the radiant surface viewed by the observer. (Surface projection $A_p = A \cos \varepsilon$ when ε is the angle by which the radiant surface is rotated
				(Surface projection $A_p = A \cos \varepsilon$ when ε is the angle by which the radiant surface is rotated against the connecting line to viewer. $L = \frac{I}{A_p} = \frac{I}{A \cos \varepsilon}$.) Important optical quantity. 1) In an undamped beam path L is maintained and cannot be increased by any optical measure. 2) The human eye sees differences in radiance as differences in lightness.
Sensitivity of detector	$S = \frac{i}{E}$	ampere irradiance	$\frac{A}{E}$	electrical quantity (current, voltage or resistance) in relation to irradiance

Ūnit		sb	cd/m ²	cd/ft ²	cd/in ²	asb	L	mL	ftL
1	$Stilb = cd/cm^2 = sb$	1	10 ⁴	929	6.45	31400	3.14	3140	2920
1	$cd/m^2 = Nit = nt$	10-4	1	9.29×10 ⁻²	6.45×10^{-4}	3.14	3.14×10 ⁻⁴	0.314	0.292
1	cd/ft ²	1.076×10 ⁻³	10.76	1	6.94 × 10 ⁻³	33.8	3.38 × 10 ⁻³	3.38	3.14
1	cd/in ²	0.155	1550	144	1	4870	0.487	487	452
1	Apostilb = asb	3.18×10 ⁻⁵	0.318	2.96×10 ⁻²	2.05×10^{-4}	1	10-4	0.1	9.29×10 ⁻²
1	Lambert = L or la	0.318	3183	296	2.05	10 ^₄	1	10 ³	929
1	mL or mla	3.18×10 ⁻⁴	3.18	0.296	2.05×10 ⁻³	10	10-3	1	0.929
1 1 1	footlambert = equivalent footcandle = apparent footcandle = ftL or ftla	3.43×10 ⁻⁴	3.43	0.318	2.21 × 10 ⁻³	10.76	1.076 × 10 ⁻³	1.076	1

2.11.1. Luminance Units and Their Interrelationships

Unit	lx	mlx	ph	fc
Lux = lx	1	10 ³	10-4	9.29×10-2
Millilux = mlx	10-3	1	10-7	9.29×10-5
Phot = ph	104	107	1	929
Footcandle = fc*	10.76	10760	1.076×10 ⁻³	1

2.11.2. Illuminance Units and Their Interrelationships

* Note: equivalent footcandle or apparent footcandle equal footlambert (luminance) not footcandle (illuminance)

Luminous flux Φ per second per Sterad (sr) 1 Lumen (lm) space angle $\Omega = \frac{A}{B^2} = 1$ Sterad = 1 sr

1 foot ≏0.305 m

Conversion of $E_v(lx)$ into $E_e(W/m^2)$ or mW/cm²) referred to the radiation of a black radiator.

2.11.3. Ranges of Frequency and Wavelength

Ranges of frequency and wavelength of the various types of electromagnetic radiation energy and position of the area of visible radiation plus spectrum of light radiation.

Relative sensitivity of various photo-sensitive receivers in comparison with the spectral emission of an incandescent lamp of 2850 K $\,$

Luminous efficiency η of a blackbody as a function of its absolute temperature $T_{\rm s}$

Relative spectral response of the average human eye

Photo Diodes

Germanium photodiode for high reverse voltages

Photodiodes APY 12 and APY 13 are suitable for use in photo-electric control and regulating devices. Maximum spectral sensitivity lies in the infrared region. The diodes are suitable for use at higher reverse voltages

They are housed in a metal case 18 B 2 DIN 41876 (similar TO-18); the anode lead is marked by the stud on the rim of the case bottom. This lead is to be connected to the - pole of the voltage supply when using the diode as a photodiode. This lead becomes the + pole when using the diode as a photo-voltaic cell. The case is potential free and insulated from the leads.

Туре	Order number
APY 12 I	Q60115-Y12-X1
APY 12 II	Q60115-Y12-X2
APY 12 III	Q60115-Y12-X3
APY 13 I	Q60115-Y13-S1
APY 13 II	Q60115-Y13-S2
APY 13 III	Q60115-Y13-S3

Weight approx. 1 g Dimensions in mm

APY13

APY12

Maximum ratings

25 50 25 50 °C for an ambient temperature Tamb 30 30 V 100 100 Reverse voltage $V_{\rm R}$ 10 10 10 10 mΑ Forward current $I_{\rm F}$ Í 0.5 mΑ Diode photo current ($V_{\rm R} = 100 \,\rm V$) Ι 1.5 1.5 mΑ Diode photo current ($V_{\rm B} = 30$ V) _ ____ P_{tot} T_{amb} 50 25 mW 50 25 Power dissipation °C + 50 +50Ambient temperature

Characteristics ($T_{amb} = 25 \,^{\circ}C$)

Light sensitive area Wavelength of max. photo sensitivity Sensitivity limit-infrared Rise time of the photo current (10 to 90% the final value) measured in series with 10 k Ω (λ =900 nm) in series with 50 k Ω (λ =900 nm) Capacitance ($V_{\rm R}$ =10 V) Dark current ($V_{\rm R}$ =100 V; $E_{\rm v}$ =0 lx) Dark current ($V_{\rm R}$ =30 V; $E_{\rm v}$ =0 lx)

	APY 12	APY13	
$\frac{A}{\lambda_{s max}}$	1	1	mm²
	1.5	1.5	μm
	1.9	1.9	μm
$t_{\rm r} t_{\rm r} t_{\rm r} I_{\rm R} I_{\rm R}$	20	20	μs
	30	30	μs
	5	5	pf
	≦8	-	μA
	-	≦8	μA

Grouping of photo sensitivity (Radiator colour temperature 2400 °K)

			}		
	Group	1		111	
Photo sensitivity	S	100 (>40)	180 (>120)	220 (>200)	nA/lx

Not for new development

Mean photo current as a function of the alternating frequency of light $R_{\rm L}$ = 25 kΩ % APY 12, APY 13

Silicon photo diode

The BPY 12 is a large-surface silicon planar photo diode for universal application, which is also suitable for quantitative light measurements. It is particularly useful in applications requiring a high cutoff frequency at a high-valued operating resistor. The planar technique ensures a low dark current level, low noise and thus very favourable signal conditions.

Mounting instructions: see preface.

Туре	Order number
BPY 12	Q62702-P9

1) contact surface 3 min

(Ag=silver wire) Weight approx. 0.2 g Dimensions in mm

Maximum ratings		BPY 12	
Reverse voltage ¹)	Ve	20	V
Storage temperature	V _R T _S	-55 to +100	°C
Characteristics ($T_{amb} = 25 \circ C$)			
Photo sensitivity	S	>100	nA/lx
Wavelength of max. photo sensitivity	λ. max	>100 0.85	μm
Rise and fall time of photo current from	SIIIdx		'
10% to 90% and 90% to 10% of final value			1
$(R_{\rm L}=1 {\rm k}\Omega; V_{\rm R}=20 {\rm V})$	$t_r; t_f$ $t_r; t_f$	<150	ns
$(R_{\rm L}=1 \mathrm{k}\Omega; V_{\rm R}=0 \mathrm{V})$	t _r ; t _f	2	μs
Cutoff frequency			1
$(R_{\rm L} = 1 {\rm k}\Omega; V_{\rm R} = 20 {\rm V})$	f _g	1	MHz
Capacitance at	~	140	
$V_{\rm R} = 0$ V	C ₀ C ₂₀	140	pf
V _R = 20 V Dark current	C ₂₀	25	pf
$(V_{\rm B} = 20 \text{ V}; E_{\rm v} = 0 \text{ lx})$	T	500 (<1000)	nA
$(v_R - 20v, L_v - 000)$ Photo sensitive surface	I _R A	20	mm ²
	~		1

The illuminance stated refers to the unfiltered radiation of a tungsten filament lamp at a colour temperature of 2856 K.

The plus pole of the voltage supply is to be connected to the silver coated light-insensitive side of the photo diode.

Silicon photo diode

BPX 60 is a silicon planar photo diode. The large-surface photo sensitive system permits its operation both as a photo-voltaic element and as a diode with a minimum reverse current level. The hermetically sealed case — a TO-5 modification with a plane glass window — permits use under extreme operating conditions. Even at low illumination intensities, the noise-signal ratio is particularly favourable. The open-circuit voltage is higher at low illumination intensities than with comparable mesa photo components.

2......

Туре	Order number		3×3n	1m
BPX 60	Q 62702-P 54	φ8.35max	¢0.45 catho	de anode 6-0,3
			Weight	approx. 2 g
Preliminar	y data			
Maximum	ratings		BPX 60	
	tage nd storage temperature emperature 2 mm	V _R 7 _s	32 - 30 to +125	V °C
	case bottom (t≦3s) pation	T _L P _{tot} R _{thJamb} R _{thJcase}	230 325 300 80	°C mW K/W K/W
Characteri	stics	thJCase		
Photo sensi Wavelength Rise and fal	t current at 100 lx ¹) tivity of max. photo sensitivity I time of photo current from 10%	VL VL S λ _{smax}	360 (>270) 460 5 (>3.5) 50 (>35) 850	mV mV μA nA/Ix nm
$(R_{L}=1 k\Omega;)$ $(R_{L}=1 k\Omega;)$ Temperature Temperature	$V_{L} = 0 V$) e coefficient f. V_{L} e coefficient f. I_{K}	t _r ; t _f t _r ; t _f TC TC	1.0 2.5 -2.6 0.2	μs μs mV/K %/K
Capacitance at $V_{\rm R} = 0$ V, at $V_{\rm R} = 10$ V, Photo sensi Dark curren	f=1 MHz; $E_v=0$ lx f=1 MHz; $E_v=0$ lx tive surface	C ₀ C ₁₀ A	750 220 7.6	pf pf mm²
	$T_{amb} = 25 ^{\circ}\text{C}; E_v = 0 \text{lx}$	I _R	7 (<300)	nA

¹) The illuminance indicated refers to the unfiltered radiation of a tungsten filament lamp with a colour temperature of 2856 K.

Silicon photo diode with very small dark current

BPX 63 is a silicon planar photo diode mounted on a TO-18 bottom plate and covered by a transparent plastic material. BPX 38 was developed as a receiver for low illuminances and is intended for use as a sensor for exposure timers and automatic exposure timers. The component is characterized by small dark currents and, used as a voltaic cell, by a high open-circuit voltage at low illuminances. The cathode of the BPX 63 is electrically connected to the case.

Туре	Order number		directio illumin	
BPX 63	Q 62702-P 55	¢ 0.45		anode
			Weight	approx. 0.5 g
Preliminary	data			
Maximum ra	tings		BPX 63	
Reverse voltag	je	V _R	7	V
Storage tempe		I_{s}^{h} I_{F} P_{tot}	-55 to $+90$	°C
Forward curre		IF	100	mA
Power dissipa	tion $(T_{amb} = 25 ^{\circ}\text{C})$	$P_{\rm tot}$	200	mW
Characterist	i cs (7 _{amb} =25°C)			
Photo sensitiv	ity ¹)	S	10	nA/lx
Forward voltage				
	pA, $T_{amb} = 50 ^{\circ}\text{C}$)	V _F	0.5	mV
•	f max. photo sensitivity	$\lambda_{s max}$	800	nm
	ime of photo current from			
10% to 90% at 90% to 10% o				
$(R_1 = 1 \text{ k}\Omega; V_B)$		t _r , t _f	1.0	μs
$(R_1 = 1 k\Omega; V_B)$		t., t.	1.3	μs
Capacitance ($V_{\rm B} = 0$ V)	t_r, t_f	120	pf
Capacitance ($V_{\rm R} = 3 \rm V$	C_3	50	pf
Dark current ($V_{\rm R} = 1 \text{ V}; E_{\rm v} = 0 \text{ Ix}$	I _R TC	15	pА
Temperature c	oefficient of I _K	TC	0.1	%/K

1

Α

mm²

²) $V_{\rm F}$ is a measure of the photo sensitivity minimum, using the photo diode in exposure timers.

Photo sensitive surface

The illuminance stated refers to the unfiltered radiation of a tungsten filament lamp with a colour temperature of 2856 K

High-speed silicon photo diode

BPX 65 is a planar silicon photo diode in a case 18 A 2 DIN 41876 (sim. to TO-18) with a plane light window. The cathode is electrically connected to the case. The plane window has no bearing upon the beam path of optical lens systems. Because of its high cutoff frequency this diode is particularly suitable for use as an optical sensor of a high modulation bandwidth.

Туре	Order number
BPX 65	Q 62702-P 27

Weight approx. 0.5 g Dimensions in mm

Maximum ratings		BPX 65	
Reverse voltage	V _R	50	V
Junction temperature	T _j	125	°C
Storage temperature	T _s	-55 to +125	°C
Power dissipation	$T_{\rm j}$ $T_{\rm s}$ $P_{\rm tot}$	250	mW
Characteristics (7 _{amb} =25 °C)			
Photo-sensitive surface	Α	1	mm²
Wavelength of max. spectral sensitivity	λ _{s max}	0.850	μm
Rise time of photo current (working resistor	0 max		
$R_{\rm L} = 50 \ \Omega; \ V_{\rm B} = 20 \ {\rm V}; \ \lambda = 900 \ {\rm nm})$	tr	0.5 (<1)	ns
Capacitance	·		
$(at V_{\rm B} = 20 \rm V)$	C_{20}	3.5	pf
$(at V_{\rm B} = 0 V)$	C ₂₀ C ₀	15	pf
Cutoff frequency (working resistor	Ū.	}	1
$R_1 = 50 \Omega; V_B = 20 V; \lambda = 900 \text{ nm}$	f	500	MHz
Dark current ($V_{\rm B} = 20$ V; $E_{\rm v} = 0$ lx)	f _g I _R	1 (<5)	nA
Photo sensitivity ¹)	S	6 (>4)	nA/lx

The illuminance stated refers to the unfiltered radiation of a tungsten filament lamp with a colour temperature of 2856 K.

Directional characteristic $I_p = f(\varphi)$

Spectral sensitivity $s=f(\lambda)$ quantum yield $\eta=f(\lambda)$ in electrons per photon of photo diode 1 09 0,8 $S_{\rm rel}, \eta_{\rm q}$ 0.7 $\eta(\lambda)$ 0.6 0.5 $S(\lambda)$ 0,4 0,3 0,2 0,15 01 300 400 500 600 700 800 900 1000 nm -λ

Silicon photo diode in a plastic package

BPX 90 is a silicon planar photo diode which is incorporated in a transparent plastic package. Its terminals consist of soldering tabs in a basic grid system of 2/10". This design permits very easy assembly of the diodes also on grid boards. The plane back of the epoxy resin case allows a sturdy fixation of the component. Arrays may be realized by multiple arrangements. This universal photo receiver is suitable both for operation as a diode and as a voltaic cell. The noise/signal ratio is particularly favourable, even at low illuminances. The open-circuit voltage is higher with small illuminances than with comparable mesa photo-voltaic cells.

Туре	Order number
BPX 90	Q62702-P47

Weight approx. 0.05 g Dimensions in mm

Maximum ratings		BPX 90	
Reverse voltage	V _R	32	V
Operating and storage temperature	$T_{\rm s}$	-30 to +80	°C
Soldering temperature 2 mm			
away from case bottom $(t \leq 3 s)$	<i>T</i> _	230	°C
Power dissipation	$P_{\rm tot}$	100	mW

Characteristics (7 _{amb} =25°C)		BPX 90	1
Open-circuit voltage	··· · · ·		
at $E_v = 100 \text{ km}^3$	VL	360 (>270)	mV
at $E_v = 1000 \text{ k}^{1}$	ν	460	mV
Short-circuit current	-		
at $E_v = 100 \text{lx}^1$)	I۲	4 (>2.5)	μA
Photo sensitivity ¹)	Ι _κ S	40 (>25)	nA/lx
Wavelength of max. photo sensitivity	λ _{smax}	850	nm
Rise and fall time of photo current from	3 11 4 ×		
10% to 90% and 90% to 10% of final value			
$(R_1 = 1 \text{ k}\Omega; V_1 = 10 \text{ V})$	t,; t,	0.8	μs
$(R_{\rm L}=1 \text{ k}\Omega; V_{\rm L}=0 \text{ V})$	t _r ; t _f t _r ; t _f TC	1.1	μs
Temperature coefficient for V _L	ŤĊ	-2.6	mV/K
Temperature coefficient for I_{κ}	ТC	0.2	%/K
Capacitance at			
$V_{\rm B} = 0 \text{ V}; f = 1 \text{ MHz}; E_{\rm v} = 0 \text{ Ix}$	Co	500	pf
$V_{\rm B} = 10 \text{ V}; f = 1 \text{ MHz}; E_{\rm v} = 0 \text{ Ix}$	C_0 C_{10}	170	pf
Photo-sensitive surface	A	5.0	mm²
Dark current ($V_{R} = 10 V$;			
$T_{amb} = 25 ^{\circ}\text{C}; E_v = 0 \text{lx}$	I R	5 (<200)	nA

¹) The illuminance indicated refers to the unfiltered radiation of a tungsten-filament lamp with a colour temperature of 2856 K.

Silicon photo diode in a plastic package

BPX 91 is a silicon planar photo diode which is incorporated in a transparent plastic package. Its terminals are soldering tabs in a basic grid system of 2/10". This design permits very easy assembly of this component also on grid boards. The plane back of the epoxy resin case allows sturdy fixation of the component. Arrays may be realized by multiple arrangements. This universal photo receiver is suitable both for operation as a diode and as a voltaic cell. The noise/signal ratio is particularly favourable, even at low illuminances. The open-circuit voltage is higher with small illuminances than with comparable mesa photo-voltaic cells.

Туре	Order number
BPX 91	Q 62702-P 48

Weight approx. 0.1 g Dimensions in mm

Maximum ratings		BPX 91	
Reverse voltage	V _R	32	V
Operating and storage temperature	T _s	-30 to $+80$	°C
Soldering temperature 2 mm away	-		
from case bottom ($t \leq 3$ s)	<i>T</i> L	230	°C
Power dissipation ($\overline{T}_{amb} = 25 ^{\circ}\text{C}$)	P_{tot}	150	mW

Characteristics ($T_{amb} = 25 \,^{\circ}C$) Open-circuit voltage at $E_v = 100 \text{ km}^3$ at $E_v = 1000 \text{ k}^{1}$ Short-circuit current at $E_v = 100 \text{ lx}^1$) Photo sensitivity¹) Wavelength of max. photo sensitivity Rise and fall time of photo current from 10% to 90% and 90% to 10% of final value $(R_{\rm L} = 1 \, {\rm k}\Omega; \, V_{\rm L} = 10 \, {\rm V})$ $(R_{L}^{-}=1 \text{ k}\Omega; V_{L}^{-}=0 \text{ V})$ Temperature coefficient for $V_{\rm L}$ Temperature coefficient for I_{κ} Capacitance at $V_{\rm R} = 0$ V; f = 1 MHz, $E_{\rm v} = 0$ lx $V_{\rm R} = 10$ V; f = 1 MHz, $E_{\rm v} = 0$ lx Photo-sensitive surface Dark current ($V_{\rm R}$ = 10 V; $T_{\rm amb}$ = 25 °C; $E_{\rm v}$ = 0 lx)

	BPX 91	
V _L	360 (>270)	mV
V _L	460	mV
I _K	5 (>3.5)	μA
S	50 (>35)	nA/Ix
λ _{smax}	850	nm
t _r ; t _f	1.0	μs
t _r ; t _f	2.5	μs
TC	-2.6	mV/K
TC	0.2	%/K
C ₀	750	pf
C ₁₀	220	pf
A	7.6	mm²
I _R	7 (<300)	nA

 The illuminances indicated refers to the unfiltered radiation of a tungsten-filament lamp with a colour temperature of 2856 K.

Silicon photo diode in a plastic package

BPX 92 is a silicon planar photo diode which is incorporated in a transparent plastic package. Its terminals are soldering tabs in a basic grid system of 2/10". This design permits very easy assembly of the component also on grid boards. The plane back of the epoxy resin case allows sturdy fixation of the component. Arrays may be realized by multiple arrangements. This universal photo sensor is suitable both for operation as a diode and as a voltaic cell. The noise/signal ratio is particularly favourable, even at low illuminances. The open-circuit voltage is higher with small illuminances than with comparable mesa photo-voltaic cells.

Туре	Order number
BPX 92	Q62702-P49

Weight approx. 0.03 g Dimensions in mm

Maximum ratings		BPX 92	
Reverse voltage	V _R	32	V
Operating and storage temperature	$T_{\rm s}$	-30 to +80	°C
Soldering temperature 2 mm	-		
away from case bottom, $(t \leq 3 s)$	$T_{\rm L}$	230	°C
Power dissipation $(T_{amb} = 25 ^{\circ}\text{C})$	P_{tot}	50	mW

			1
Characteristics ($T_{amb} = 25 ^{\circ}\text{C}$)		BPX 92	
Open-circuit voltage			
at $E_{\rm v} = 100 \rm lx^1$)	VL	325 (>240)	mV
at $E_v = 1000 \text{ km}^3$	V	410	mV
Short-circuit current	-		
at $E_{y} = 100 \text{lx}^{1}$	Ιĸ	0.7 (>0.4)	μA
Photo sensitivity ¹)	Ι _κ S	7 (>4)	nA/lx
Wavelength of max. photo sensitivity	λ_{smax}	850	nm
Rise and fall time of photo current from	Sindx		
10% to 90% and 90% to 10% of final value			
$(R_1 = 1 \text{ k}\Omega; V_{\rm B} = 10 \text{ V})$	$t_r; t_f$	0.8	μs
$(R_{\rm L} = 1 {\rm k}\Omega; V_{\rm B} = 0 {\rm V})$	t _r ; t _f t _r ; t _f TC	1.1	μs
Temperature coefficient for V	ŤĊ	-2.6	mV/K
Temperature coefficient for I_{κ}^{-}	ТC	0.2	%/K
Capacitance at			
$V_{\rm R} = 0$ V; $f = 1$ MHz; $E_{\rm v} = 0$ lx	Co	90	pf
$V_{\rm B} = 10 \text{ V}; f = 1 \text{ MHz}; E_{\rm v} = 0 \text{ Ix}$	C ₀ C ₁₀	23	pf
Photo-sensitive surface	A	1.0	mm ²
Dark current ($V_{\rm B} = 10$ V; $T_{\rm amb} = 25$ °C;			
$E_v = 0 \text{ Ix}$	Ι _R	1 (<100)	nA

¹) The illuminances indicated refers to the unfiltered radiation of a tungsten-filament lamp with a colour temperature of 2856 K.

Silicon photo diode in a plastic package

BPX 93 is a silicon planar photo diode which is encapsulated in a transparent plastic package. Its terminals are soldering tabs in a basic grid system of 2/10". This design permits very easy mounting of the component also on grid boards. The plane back of the epoxy resin case allows sturdy fixation of the component. Arrays may be realized by multiple arrangements. This universal photo sensor is suitable both for operation as a diode and as a voltaic cell. The noise/signal ratio is particularly favourable, even at low illuminances. The open-circuit voltage is higher with small illuminances than with comparable mesa photo voltaic cells.

Туре	Order number
BPX 93	Q62702-P50

Weight approx. 0.05 g Dimensions in mm

BPX 93 Maximum ratings $\overline{V_{R}}$ T_{s} 32 v Reverse voltage °C -30 to +80Operating and storage temperature Soldering temperature 2 mm away from $T_{\rm L}$ $P_{\rm tot}$ °C 230 case bottom ($t \le 3$ s) Power dissipation $(T_{amb} = 25 \,^{\circ}\text{C})$ 150 mW

Characteristics (<i>T</i> _{amb} =25 °C)		BPX 93	
Open-circuit voltage			
at $E_{\rm v} = 100 \rm kx^{1}$)	VL	360 (>270)	mV
at $E_{\rm v} = 1000 \rm kx^{1}$)	V	460	mV
Short-circuit current at $E_v = 100 \text{ lx}^1$)		0.8 (>0.5)	μA
Photo sensitivity ¹)	Ι _κ S	8 (>5)	nA/lx
Wavelength of max. photo sensitivity	λ_{smax}	850	nm
Rise and fall time of photo current from			
10% to 90% and 90% to 10% of final value			
$(R_{\rm L}=1 {\rm k}\Omega; V_{\rm L}=10 {\rm V})$	t _r ; t _f	0.8	μs
$(R_{\rm L}=1 \ {\rm k}\Omega; \ V_{\rm L}=0 \ {\rm V})$	t _r ; t _f t _r ; t _f TC	1.1	μs
Temperature coefficient for V _L		-2	mV/K
Temperature coefficient for I_{κ}	ТС	0.1	%/K
Capacitance at			
$V_{\rm R} = 0$ V; $f = 1$ MHz; $E_{\rm v} = 0$ lx	Co	120	pf
$V_{\rm R} = 10 \text{ V}; f = 1 \text{ MHz}; E_{\rm v} = 0 \text{ Ix}$	$C_0 \\ C_{10}$	40	pf
Photo-sensitive surface	A	1	mm ²
Dark current			
$(V_{\rm R} = 10 \text{ V}; T_{\rm amb} = 25 ^{\circ}\text{C}; E_{\rm v} = 0 \text{ Ix})$	I _R	0.5 (<50)	nA
		1	1

¹) The illuminance indicated refers to the unfiltered radiation of a tungsten-filament lamp with a colour temperature of 2856 K.

Directional characteristic $I_{\rm K} = f(\varphi)$

Strip-line differential photo diode in epoxy resin

The differential photo diode BPX 48 is designed for special industrial electronic applications, such as follow-up control, edge control, path and angle scanning, respectively. The individual diodes are spaced 50 µm apart. A very accurate determination of position thus becomes feasible. The rise and fall times of the photo current are short so that control systems with small down times may be built up. The silicon planar method ensures a low dark current level, low noise and thus very favourable signal relationships.

Mountings instructions: see preface

Туре	Order number
BPX 48	Q62702-P17-S1
A1 0 A2 0	
System of BPX 48	

BPY 48

Weight approx. 0.5 g

Maximum ratings (for single diode system)

Reverse voltage	$\overline{V_{\scriptscriptstyle B}}$	10	V
Junction temperature	T_{i}	125	°C
Storage temperature	Τ _s	- 30 to + 80	°C
Power dissipation	$P_{\rm tot}$	50	mW

Characteristics $(T_{amb} = 25 \,^{\circ}\text{C})$

(Data refer to one photo diode system)

Photo sensitivity, colour temperature of radiator 2856 K Wavelength of max. spectral sensitivity Rise and fall time of photo current from 10% to 90% and 90% to 10% of final value $(R_{L} = 1 \text{ k}\Omega; V_{R} = 10 \text{ V})$ $(R_{L} = 1 \text{ k}\Omega; V_{R} = 0 \text{ V})$ Cutoff frequency, measured at a working resistor of $R_{\rm L} = 1 \text{ k}\Omega$; $V_{\rm B} = 10 \text{ V}$ Capacitance at $V_{\rm R} = 0$ V at $\dot{V}_{\rm R} = 10 \text{ V}$ Photo-sensitive surface Dark current ($V_{\rm B} = 10$ V; $E_{\rm v} = 0$ lx)

S	32 (>15)	nA/Ix
λ _{smax}	0.85	μm
$t_r; t_f$	<150	ns
$t_r; t_f$	<500	ns
f _g	3	MHz
Č ₀	40	pf
C ₁₀	10	pf
A	1.9	mm ²
I _R	100 (<200)	nA

Spectral photo sensitivity $s = f(\lambda)$ in A/W and quantum yield $\eta = f(\lambda)$ in electrons per photon of photo diode 10⁰ 5 η,s 8 η 1 10-1 5 10⁻² 400 500 600 700 800 900 1000 nm - λ

Directional characteristic $I_p = f(\varphi)$ $I_p \approx I_{po} \cdot \cos \varphi$

Junction capacitance vs. reverse voltage $C = f(V_R)$

Scanning a differential photo diode with a 25 μm light beam.

Experimental setup S - gap $(25 \mu m wide)$ T - separation of diodes Δx - displacement of S

Measuring circuit

Differential photo signal ΔI (referred to saturation value 1) as a function of the displacement Δx of the air gap S
Silicon Photo-Voltaic Cells

Silicon photo-voltaic cell

The silicon photo-voltaic cell BP 100 is suitable for use in control and regulating devices. Its high response sensitivity, its small dimensions, and the high permissible operating temperature favour universal application.

Since a case can be dispensed with, the cell lends itself to the assembly of highefficiency scanning systems. For this purpose the cells may be glued closely together on suitable supports. The photo-insensitive side of the element is marked by a yellow dot.

Тур	Order number
BP100	Q60215-X100

See mounting instructions

Weight approx. 0.2 g Dimensions in mm

Maximum ratings		BP 100	
Reverse voltage ¹)	V _R	1	V
Ambient temperature	Tamb	-25 to +100	°C
Characteristics (<i>T</i> _{amb} =25 °C)			
Open-circuit voltage $(E_v = 100 \text{ k})^2$	V,	≧120	mV
Open-circuit voltage $(E_v = 1000 \text{ k})^2$	V.	<u> </u> ≥200	mV
Short-circuit current $(E_v = 1000 \text{ lx})^2$	Ι _κ S	25	μA
Photo sensitivity (short circuit current $I_{\rm K}$) ²)	S	25 (≧15)	nA/lx
Spectral sensitivity maximum	λ_{smax}	0.85	μm
Rise time (for 60% I_{κ})	t _r	4	μs
Temp. coeffic. of the open-circuit voltage	ŤC	-2.6	mV/K
Temp. coeffic. of the short-circuit current	ТС	0.121	%/K
Capacitance ($V_{\rm R} = 0$ V)	Co	1	nf
Light sensitive area	Ă	7	mm ²
Dark current ($V_{\rm R} = 1$ V; $T_{\rm amb} = 25 ^{\circ}\text{C}$; $E_{\rm v} = 0$ lx)	I _B	3 (≦10)	μA
Dark current ($V_{\rm R} = 1 \text{ V}$; $T_{\rm amb} = 50 \text{ °C}$; $E_{\rm v} = 0 \text{ Ix}$)	I _R	7	μA

¹) Plus pole of voltage source connected to lead on the colour dot side.

²) The illuminances indicated refers to a radiation source with standard light A acc. to DIN 5033, tungsten filament lamp, colour temperature $T_{\rm F}$ =2856 K (unfiltered incandescent lamp light).

BP100

BP100

Silicon photo-voltaic cell with increased sensitivity to blue

BPX 79 is a silicon planar photo-voltaic cell. The increased sensitivity with shorter wavelengths makes it particularly suitable for applications with light sources having a high share of blue. The planar method ensures a low reverse current level and low noise. The photo-voltaic cell is nitride-passivated and has an anti-reflection coating for a wavelength of = 450 nm.

Туре	Order number
BPX 79	Q 62702-P 51

Dimensions in mm

Maximum ratings		BPX 79	1
Reverse voltage	V _R	1	V
Junction temperature Storage temperature	T_{j}	125 - 55 to + 100	°C ℃
Power dissipation	$T_{\rm s}$ $T_{\rm s}$ $P_{\rm tot}$	200	mW
Characteristics			
Photo sensitivity ¹)	S	135 (>100)	nA/lx
Open-circuit voltage $(E_v = 100 \text{ km})^1$	V _L V _L	320 (>220)	mV
Open-circuit voltage $(E_v = 1000 \text{ k})^1$ Wavelength of max. photo sensitivity	V_{L} λ_{smax}	410 (>310) 800	mV nm
Rise and fall time of photo current from	''smax		
10% to 90% and 90% to 10% of final value			
$(R_{L} = 1 \text{ k}\Omega; V_{R} = 1 \text{ V})$ $(R_{L} = 1 \text{ k}\Omega; V_{R} = 0 \text{ V})$	$t_r; t_f$ $t_r; t_f$	6 10	μs
Capacitance	ι_r, ι_f		μs
$(V_{R} = 0 \text{ V})$	C _o C ₁ A	420	pf
(V _R =1 V) Photo-sensitive surface	C_1	350 20	pf mm²
Dark current ($V_{\rm B}$ = 1 V)	A L	0.3 (50)	μA
Temperature coefficient f. $V_{\rm L}$	I _R TC	-2.6	mV/K
Temperature coefficient f. I_{κ}	TC	0.2	%/K

¹) The illuminances indicated refers to the unfiltered radiation of a tungsten-filament lamp with a colour temperature of 2856 K.

BPX 79

Directional characteristic $I_{\kappa} = f(\phi)$

76

Silicon photo-voltaic cell

The silicon photo-voltaic cell BPY 11 is suitable for use in control and regulating devices, for scanning light pulses, and for quantitative light measurements. Its high response sensitivity, its small dimensions, and the high permissible operating temperature favour universal application.

Since a case can be dispensed with, the cell lends itself to the assembly of highefficiency scanning systems. For this purpose the cells may be glued closely together on suitable supports. The photo-insensitive side of the element is marked by a photo-sensitive surface coloured dot.

Mounting instructions: see preface

Туре	Order number	Code colour	
BPY11	Q60215-Y11	red	
BPY11/I	Q60215-Y11-X1	0 brown	Хш 170
BPY11/II	Q60215-Y11-X1		÷.
BPY11/III	Q 60215-Y 11-X 1	2 green	1 1

BPY 11

1

VB

T_{amb}

1) contact surface 27 min Weight approx. 0.2 g Dimensions in mm

v

°C

Maximum ratings

Reverse voltage¹) Ambient temperature

Characteristics $(T_{amb} = 25 ^{\circ}\text{C})$
Open-circuit voltage $(E_v = 100 \text{ lx})^2$
Open-circuit voltage $(E_v = 1000 \text{ k})^2$
Short-circuit current $(E_v = 1000 \text{ k})^2$
Photo sensitivity ²)
Spectral sensitivity maximum
Rise time (for 60% of I_{κ})
Temp. coeffic. of the open-circuit voltage
Temp. coeffic. of the short-circuit current
Capacitance ($V_{\rm B} = 0$ V)
Light sensitive area
Dark current ($V_{\rm B} = 1 \text{ V}$; $T_{\rm amb} = 25 ^{\circ}\text{C}$)
Dark current ($V_{\rm B} = 1 \text{ V}$; $T_{\rm amb} = 50 \text{ °C}$)
Maximum frequency $(R_{\perp}=1 \text{ k}\Omega)$
Groups of photo-sensitivity

V.	≥180	mV
V _L V _L I _K S	≧180 ≧260 40	mV
I.	40	μA
s S	40 (≧28)	nA/lx
9		
λ_{smax}	0.85	μm
t,	4	μs
t, TC	-2.6	mV/K
TC	0.121	%/K
C _o A	1	nf
A	7	mm ²
IR	1 (≦10)	μΑ μΑ
I _R	2.5	μA
I _R f ₀	55	kHz

-50 to +100

ereabe er briett					
Туре	BPY 11	BPY 11/I	BPY 11/II	BPY 11/III	
Code colour	red	brown	orange	green	
Short-circuit current I_{κ} $E_{v} = 100 \text{ lx}$	5.5 to 11.0	5.5 to 7.5	6.5 to 9.0	8.0 to 11.0	μA

Plus pole of voltage source to be connected to lead on coloured dot side.

²) The illuminances indicated refers to the unfiltered radiation (standard light A acc. to DIN 5033) of a tungsten filament lamp with a colour temperature of 2856 K.

BPY 11

Dark current $I_R = f(V_R)$ $T_{amb} = parameter$ 10^1 I_R 5 10^0 $T_{amb} = 50^{\circ}C$ 10^0 5 $25^{\circ}C$ 10^1 0.5 V_R Mean photo current as a function of the light alternating frequency $R_{\rm L} = 1 \ {\rm k}\Omega$; $E_{\rm V} = 1000 \ {\rm Lux}$

78

Temperature dependence of $I_{\rm K}$ $\frac{I_{\rm K}}{I_{\rm K25}} = f(T_{\rm amb})$ 1,5 1_K I_{K 25} 1,0 0.5 0

4

0

20

40

60

80

- /amb

100°C

BPY 11

Directional characteristic $I_{\rm K} = f(\varphi)$

Silicon photo-voltaic cells with reverse characteristics

Silicon photo-voltaic cells BPY 43 and BPY 44 in miniature glass case are suitable for use in control or regulating devices, for scanning light pulses and for quantitative light measurements. Their high response sensitivity, small dimensions and high permissible operating temperature permit universal application.

When mounted in supports with bores having a diameter of 2.2 mm, the cells can be assembled to form special scanning devices. They are designed for radial illumination.

Туре ВРҮ 43 ВРҮ 44	Order number Q 60215-Y 43 Q 60215-Y 44		ەر). Weight appr	3 max anode +4.75. 18 min. + 13 - 2	of illumination 1.8-01 2.1-02 ons in mm
Maximum ra Reverse voltag Temperature r	ge ¹)	V _R T _{amb}	BPY 43 2 -55 to +125	BPY 44 5 - 55 to + 125	V °C
Open-circuit v Open-circuit v Short-circuit o Photo sensitiv Maximum of s Limit of infrare Size of the ph Dark current a Dark current a Temperature o (see diagram) Temperature of	spectral sensitivity ed sensitivity oto-sensitive area at $V_R = 2 V$ at $V_R = 1 V$ coefficient of V_L coefficient of short- I_K (see diagram)	V_{L} V_{L} I_{K} S λ_{smax} A I_{R} I_{R} TC TC C_{O}	$\begin{array}{c} \geq 270 \\ \geq 150 \\ \geq 15 \\ 20 \ (\geq 15) \\ 0.85 \\ 1.1 \\ 0.05 \\ - \\ < 5.0 \\ - 2.6 \\ 0.121 \\ 0.5 \end{array}$		mV mV μA nA/lx μm cm ² μA μA mV/K %/K nf

¹) The negative pole of the voltage supply is to be connected to the lead marked by a red dot.

²) The illuminances indicated refers to an unfiltered radiation of a tungsten-filament lamp with a colour temperature of 2856 K.

81

BPY 43, BPY 44

BPY 43, BPY 44

Relative spectral sensitivity $S_{\rm rel} = f(\lambda)$ % Sret 1000 nm -λ

Silicon photo-voltaic cells

Silicon photocells BPY 45, BPY 47 and BPY 48 are suitable for universal application in control and regulating circuits. They may be used as receivers for incandescent lamps or daylight. Mounting instructions: see preface.

Туре	Order number
BPY 45	Q 60215-Y 45 Q 60215-Y 47 Q 60215-Y 48
BPY 47	Q 60215-Y 47
BPY 48	Q 60215-Y 48

Weight approx. 1.5 g

Weight approx. 0.5 g Dimensions in mm

Maximum ratings		BPY 45	BPY 47	BPY 48	
Reverse voltage ¹)	V _R	1.0	1.0	1.0	V
Ambient temperature	T_{amb}		–50 to +12	25	°C

¹) In case of BPY 45 the positive pole of the voltage source is to be connected to that terminal leading to the fully metallized side of the photo-voltaic cells. In case of BPY 47 and BPY 48 the positive pole of the voltage source is to be connected to the white lead.

Characteristics ($T_{amb} = 25 ^{\circ}\text{C}$)		BPY 45	BPY 47	BPY 48	
Open-circuit voltage $(E_v = 10000 \text{ lx})^1)$ Open-circuit voltage	VL	≧450	≧450	≧450	mV
(E _v =1000 lx) ¹) Open-circuit voltage	VL	≧280	≧280	≧280	mV
$(E_v = 100 \text{ k})^1)$ Short circuit current	VL	≧150	≧150	≧150	mV
$E_v = 10000 \text{ lx}^1$) Photo-sensitivity	I _κ	≧14.5	13	4.3	mA
(short-circuit current I_{κ}) Spectral sensitivity maximum Light-sensitive surface Temperature coefficient of V_1	S λ _{smax} Α	≧1.0 0.85 1.8	≧0.9 0.85 1.8	≧0.3 0.85 0.67	μΑ/Ιx μm cm²
(see diagram) Temperature coefficient of I_{κ}	TC	-2.6	-2.6	-2.6	mV/K
(see diagram) Capacitance Conversion of sunlight into	TC Co	0.121 20	0.121 20	0.121 8	%/K nf
electrical energy	η	≧8	-	-	%

¹) The illuminances indicated refers to an unfiltered radiation of a tungsten-filament lamp with a colour temperature of 2856 K.

Mean photo current vs. light alternating frequency $R_{\rm L}$ = 50 Ω ; $E_{\rm v}$ = 1000 lx BPY 45, BPY 47 $R_{\rm L}$ = 150 Ω ; $E_{\rm v}$ = 1000 lx BPY 48

Temperature dependence of $I_{\rm K}$ $\frac{I_{\rm K}}{I_{\rm K25}} = f(T_{\rm amb})$

BPY 45, BPY 47, BPY 48

87

Silicon photo-voltaic cells

Silicon photo-voltaic cells BPY 63 and BPY 64 are suitable for universal application in control and regulating circuits. As with all silicon photo elements, they are primarily for use with incandescent lamps, but may be used with daylight as well. Mounting instructions: see preface.

•	•				
Туре	Order number				
BPY 63	Q 60215-Y 63				
BPY 64	Q 60215-Y 64				
BPY 63 1n	nax		BPY 64	1max	
15max 0.4:01 	photo - sensitive sur face 55 min 2.5 max red (anode)		+5max +5max 0.4-01 → 16.2-02	- photo-sensitiv - surface - 62±02 - 75 min -	anode)
TI		Ф 0.3	T T	white	`lead ¢0.3
1) contact sur	tace 7.3 min		1) ct	ontact surface 3.5 min	
Weight approx. 0	.5 g	Dimensi	ions in mm	Weight a	pprox. 0.2 g
Maximum ra	atings		BPY 63	BPY 64	
Temperature r		7 _{amb} V _R	-55 to +125	-55 to +125	°C
Reverse voltag	ge')	V _R	1.0	1.0	V
Characterist	$(T_{amb} = 25 \circ C)$				
Open-circuit v				l	
$(E_v = 10000 \text{ lx})$		V	≥450	≥450	mV
Open-circuit v		- L			
$(E_v = 1000 \text{ lx})^2$		V _L	≧280	≧280	mν
Open-circuit V		V	≥150	≥150	mV
$(E_v = 100 \text{ lx})^2$ Photo sensitiv		VL	≤ 150	≦150	
(short-circuit		S	0.65 (≧0.45)	0.23 (≧0.16)	μA/lx
Max. photo se	ensitivity	λ_{smax}	0.85	0.85	μm
Light sensitive		A	approx. 0.9	approx. 0.32	cm ²
	coefficient of V_{L}	тс	-2.6	-2.6	mV/K
(see diagram) Temperature o	coefficient of I_{κ}	16	-2.0	-2.0	
(see diagram)		TC	approx. 0.121	approx. 0.121	%/K
Capacitance (Co	10	4	nf

¹) The plus pole of the voltage source is to be connected to the white lead. ²) The illuminances indicated refers to an unfiltered radiation of a tungsten-filament lamp with a colour temperature of 2856 K.

BPY 63, BPY 64

BPY 63, BPY 64

Mean photo current vs. light alternating frequency $R_{\rm L} = 100 \ \Omega$; $E_{\rm v} = 1000 \ \text{Ix}$ BPY 63, $R_{\rm L} = 250 \ \Omega$; $E_{\rm v} = 1000 \ \text{Ix}$ BPY 64

91

BPY 63, BPY 64

Silicon photo-voltaic cells

Silicon photo-voltaic cells TP 60 and TP 61 are suitable for use in regulating and control circuits. Displaying uniform electrical characteristics, they differ only in design. The anode (positive pole of the cell) is marked by a red lead. Mounting instructions: see preface silicon photo voltaic cells.

Туре	Order number
TP 60	Q 62607-S 60 Q 62607-S 61
TP 61	Q 62607-S 61

TP 61

Weight approx. 1 g

Dimensions in mm

Weight approx. 20 g

Maximum ratings	TP 60	TP 61	
Operating and storage temperature $\overline{T_{amb}}$	-25 to +75	-25 to +100 1.0	°C
Reverse voltage ²) $V_{\rm R}$	1.0	1.0	V
Characteristics (7 _{amb} =25°C)			
Open-circuit voltage at $E_v = 10000 \text{ lx}^1$)	V,	≥440	mV
Open-circuit voltage at $E_v = 1000 \text{ km}^1$	V	≧440 ≧270	mV
Open-circuit voltage at $E_v = 100 \text{ lx}^1$)	V _L	_ <u>≧</u> 140	mV
Short-circuit current at $E_v = 10000 \text{ km}^1$	Iκ	≧7	mA
Short-circuit current at $E_v = 1000 \text{ lx}^1$)) I _K S	≧0.7	mA
Spectral sensitivity (Short-circuit current		1 (≧0.7)	μA/lx
Wavelength of max. spectral sensitivity E	3 Julax	0.85	μm
Limit of infrared sensitivity	λ_{g} – 1		μm
Tolerance of photo-sensitive area	A-Tol.	±0.1	
Size of photo-sensitive area	A	1.5	cm ²
Temperature coefficient of V_{L}	TC	-2.6	mV/K
Temperature coefficient of I_{κ}	TC	0.12	%/K
Capacitance (V _R =0V)	Co	20	nf

The illuminances indicated refers to the unfiltered radiation of a tungsten filament lamp with a colour temperature of 2856 K (standard light A acc. to DIN 5033).

²) The positive voltage is to be connected with the white lead.

Photo versus short-circuit current $I_p = f(I_K)$; mAR_L = parameter 10^2

TP 60, TP 61

Directional characteristic $I_{\rm K} = f(\varphi)$

Silicon solar element

BPY 73 is a silicon solar element and is particularly suited for the assembly of solar batteries permitting the conversion of sunlight into electrical energy. The resistivity is $10 \,\Omega$ cm. The contacts are made of palladium-titanium silver. Due to the n to p method a high resistivity against highly energetic particles, such as electrons and protons, is achieved. The spectral sensitivity of the solar cell is increased by an anti-reflex coating of the surface.

Туре	Order number		0.2	
BPY 73	Q 62702-P13		0.06 6×2.86=17.16 20 Weight approx. 280 (Dimensions in mm	+20-10) mg
Maximum	ratings		BPY 73	1
Temperature range		7 _{amb}	-40 to +80	°C
Character	istics $(T_{amb} = 28 ^{\circ}\text{C})^1)$			
Open-circu	it voltage	VL	≥535	mV
Short-circu	it current	Ιĸ	≧137	mA
Wavelength	n of max. quantum yield	$\lambda_{\eta max}$	approx. 0.7	μm
Light sensit	ive area	A	3.72±0.04	cm ²
	out for optimum matching	Ρ	≧57.5	mW
	n of power output by			
	10 ¹⁵ electrons per cm ²		25	%
	istance of the substrate material	е ТС	10±3	Ωcm
	e coefficient of $V_{\rm L}$		-2.2	mV/K
remperatur	e coefficient of I_{κ}	TC	+0.07	mA/K

¹) The electrical characteristics of the solar cells are measured by a lighting equivalent to extraterrestrial sun radiation (AMO). The short-circuit current, which the characteristic measurements are based on, is determined (valid also for different degradation levels) by the quantum yield and the extraterrestrial solar spectrum (Johnson method).

BPY 73

.....

Silicon solar element

BPY 74 is a silicon solar element and is particularly suited for the assembly of solar batteries permitting a conversion of sunlight into electrical energy. The resistivity amounts to 1 Ω cm. The contacts consist of palladium-titanium silver. Due to the n to p technique a high resistivity against highly energetic particles, such as electrons and protons, is achieved. The spectral sensitivity of the solar cell is increased by an anti-reflex coating of the surface. BPY 74 was specially developed for missions near to the sun. It may be used up to temperatures of 200 °C.

Туре	Order number	
BPY 74	Q62702-P14	

Weight approx. 280 (+20-10) mg Dimensions in mm

Maximum ratings		BPY 74	
Temperature range	T_{amb}	-80 to +215	°C
Characteristics $(T_{amb} = 28 \circ C)^{1})$			
Open-circuit voltage	V_{L}	≧585	mV
Short-circuit current	Iκ	≧130	mA
Wavelength of max. quantum yield	$\lambda_{\eta \max}$	approx. 0.7	μm
Light sensitive area	A	3.72±0.04	cm ²
Power output for optimum matching	Р	≧61.0	mW
Degradation of power output by radiation			
of 10 ¹⁵ electrons per cm ²		26	8
Specific resistance of the substrate material	$\frac{\varrho}{TC}$	1±0.3	Ωcm
Temperature coefficient of V_{L}	ТС	- 2.15	mV/K
Temperature coefficient of I_{κ}	ТС	+0.046	mA/K

¹) The electrical characteristics of the solar cells are measured by a lighting equivalent to the extraterrestrial sun radiation. The short-circuit current, which the characteristic measurements are based on, is determined (valid also for different degradation levels) by the quantum yield and the extraterrestrial solar spectrum (Johnson method).

Silicon Photo Transistors

NPN silicon planar photo transistor

BP101 is an epitaxial NPN silicon planar photo-transistor. The epoxy sealed lightwindow shows a panorama effect. To reduce this effect a diaphragm can be mounted. The emitter lead is marked by a small projection at the case bottom. The collector lead is electrically connected to the metallic parts of the case. The photo-transistor is particularly suitable for automatic electronic flashes and electronic toys. It can be used at incandescent - and daylight.

Туре	Order number
BP 101 I	Q62702-B28
BP 101 II	Q 62702-B 35
BP 101 III	Q 62702-B 35 Q 62702-B 29
BP 101 IV	Q62702-P12-S1

Weight approx. 0.5 g Dimensions in mm

Maximum ratings		BP101	
Collector-emitter-voltage	VCEO	32	V
Emitter-base-voltage	V _{EBO}	5	V
Collector current	Ic	25	mA
Junction temperature	T _i	125	°C
Storage temperature	Τ _s	-55 to +80	°C
Max. permissible soldering temperature $(t < 5 s)$	T_1	245	°C
Total power Dissipation ($T_{amb} = 25 ^{\circ}C$)	P_{tot}	200	mW

Characteristics ($T_{amb} = 25 \,^{\circ}C$)

Collector-emitter cutoff current at $V_{CE} = 30 \text{ V}$;			
$E_v = 0$ lx	ICEO	5 (<100)	nA
Collector-emitter saturation voltage			Í
$(I_c = 500 \mu\text{A}; I_B = 25 \mu\text{A}; E_v = 0 \text{lx})$	VCEsat	0.15 (<0.4)	V
Spectral sensitivity of photo-current ($S \ge 0.1 S_{max}$)	λ	0.45 to 1.0	μm
Wavelength of max. photosensitivity	λ_{smax}	0.78	μm
Rise time from 10% to 90% of the final value			
Fall time from 90% to 10% of the initial value			
$(R_{\rm L} = 1 \ {\rm k}\Omega)^2)$	t _r , t _f	5 (<10)	μs
Wavelength of max. photosensitivity Rise time from 10% to 90% of the final value Fall time from 90% to 10% of the initial value	λ _{Smax}	0.78	μm

Photo transistors are grouped in accordance with their photo sensitivity and characterized by Roman numerals.

Туре		BP101				ł
Group		1		III	IV	
Photo current ($V_{CE} = 5 V$; $E_V = 1000 \text{ k}$; base open) ¹)	IP	63 to 125	100 to 200	160 to 320	250 to 500	μA

¹) The illuminances refer to the unfiltered radiation of a tungsten lamp at a colour temperature of 2856 K. ²) Measured with LED's $\lambda = 930$ nm.

Relative spectral sensitivity $S_{rei} = f(\lambda)$

Output characteristics $I_{\rm C} = f(V_{\rm CE})$ $I_{\rm B} = {\rm parameter}$ mΑ 10 · 30 / u A I_C ▲ 8 25 JA 20 µ A 6 15 µ A 4 10 JU A 2 IB=5μA 0 1 2 V ٥

-► V_{CE}

BP 101

Collector-emitter cutoff current $I_{CEO} = f(V_{CE})$ nA $T_{amb} =$ parameter; $E_v = 0$ lx 105 104 /CEO 10³ 75°C 10² 50°C 10¹ 7_{amb} -25 10⁰ 10-1 10 0 20 30 V - *V*_{CE}

BP 101

nana na mananana ana na manana ana amin'ny fisiana

NPN silicon planar photo transistor

BP 102 is an epitaxial NPN silicon planar photo transistor. The epoxy sealed lightwindow shows a panorama effect which may be reduced at will by mounting a diaphragm. The emitter lead is marked by a stud at the case bottom. The collector is electrically connected to the metallic parts of the case. The photo transistor is particularly suitable for use in computer flashes and high-quality electronic demonstration equipment using incandescent and daylight as well as in combination with GaAs light-emitting diodes in small light barriers.

Туре	Order number
BP102/I	Q62702-P23-S1
BP 102/II	Q62702-P23-S2
BP102/III	Q62702-P23-S3
BP102/IV	Q62702-P23-S1 Q62702-P23-S2 Q62702-P23-S3 Q62702-P23-S4

Weight approx. 0.5 g Dimensions in mm

Maximum ratings		BP 102	
Collector-emitter voltage	VCEO	32	V
Emitter-base voltage	V _{EBO}	5	V
Collector current	$I_{c}^{}$	25	mA
Junction temperature	T _i	80	°C
Storage temperature	Τ΄ _s	-55 to +80	°C
Max. permissible soldering temperature $(t < 5 s)$	$T_{\rm L}$	245	°C
Total power Dissipation ($T_{amb} = 25 ^{\circ}C$)	$\bar{P_{tot}}$	200	mW
BP 102

Characteristics (<i>T</i> _{amb} =25 °C)		BP 102	
Collector-emitter cutoff current (V_{CE} =30 V; E_V =0 lx) Collector-emitter saturation voltage	I _{CEO}	5 (<100)	nA
$(I_c=500 \ \mu\text{A}; I_B=25 \ \mu\text{A}; E_v=0 \ \text{Ix})$ Spectral range of photo sensitivity (S>0.1 S _{max}) Wavelength of max. photo sensitivity Rise time from 10% to 90% of final value; Fall time from 90% to 10% of initial value	$V_{CEsat} \lambda \lambda_{Smax}$	0.15 (<0.4) 0.45 to 1.0 0.78	V μm μm
$(R_{\rm L}=1 \text{ k}\Omega;)^2)$	t _r ; t _f	5 (<10)	μs

The photo transistors are grouped according to their photo sensitivity and denoted by Roman numerals.

Group	1	П	111	IV	
Photo current					
$I_{\rm P}(V_{\rm CE} = 5 \rm V;)$					
$E_{\rm v} = 1000 \rm lx;$					
base open) ¹)	160 to 320	250 to 500	400 to 800	630 to 1250	μA

 $^{^{\}rm 1})$ The illuminances indicated refers to the unfiltered radiation of a tungsten-filament lamp with a colour temperature of 2856 K

²) Measured with LED's $\lambda = 930$ nm.

5 V

- V_{CE}

Silicon photo transistor

BPX 38 is an epitaxial NPN silicon planar photo transistor in a case 18 A 3 DIN 41876 (TO-18) with a plane light window and high photo sensitivity for frontal illumination. The plane light window has no bearing upon the beam path. It is therefore particularly suitable for industrial applications using lens systems. The collector lead is electrically connected to the case.

Туре	Order number
BPX 38 I	Q62702-P15-S1 Q62702-P15-S2 Q62702-P15-S3
BPX 38 II	Q62702-P15-S2
BPX 38 III	Q62702-P15-S3
BPX 38 IV	Q62702-P15-S4

Collector-emitter saturation voltage

 $(I_{c}=1 \text{ mA}; I_{B}=50 \mu\text{A}; E_{v}=0 \text{ lx})$

Weight approx. 1.5 g Dimensions in mm

Maximum ratings		BPX 38	ļ
Collector-emitter voltage	V _{CE}	25	V
Junction temperature	/ _j	175 55 to 125	°C °C
Storage temperature Power dissipation ($T_{amb} = 25 ^{\circ}\text{C}$)	$T_{\rm s}$ $T_{\rm s}$ $P_{\rm tot}$	-55 to +125 300	mW
Thermal resistance			
Junction to air Junction to case	R _{thJamb} R _{thJcase}	<450 <150	K/W K/W
Max. permissible soldering temperature $(t < 5 s)$	TL	245	°C
Characteristics (<i>T</i> _{amb} =25°C)			
Collector-emitter cutoff current			
$(V_{\rm CE} = 25 {\rm V}; E_{\rm V} = 0 {\rm Ix})$	ICEO	100 (<500)	nA
Spectral range of photo sensitivity $(S > 0.1S_{max})$	λ	0.45 to 1.0	μm
Wavelength of max. photo sensitivity	λ _{Smax}	0.8	μm

The photo transistors are classified in groups of photo sensitivity and identified by Roman numerals.

VCEsat

0.3

Туре	BPX 38				
Group	1	11	111	IV	1
Photo current ($V_{CE} = 5 \text{ V}; E_v = 1000 \text{ lx})^1$) I_p	0.4 to 0.8	0.63 to 1.25	1.0 to 2.0	1.6 to 3.2	mA

The illuminances stated refers to the unfiltered radiation of a tungsten-filament lamp with a colour temperature of 2856 K

Photo current $I_p = f(T)$

Relative photo sensitivity as a function of the angle of light incidence φ referred to a vertical light incidence $I_{\rm P} = f(\varphi)$

Relative spectral sensitivity $S_{rel} = f(\lambda)$

12

113

Silicon photo transistor

BPX 43 is an epitaxial NPN silicon planar photo transistor in a case 18 A 3 DIN 41876 (TO-18) having a lens-type light window for frontal illumination. The special transistor system together with the lens-type light window ensure a particularly high photo sensitivity. The photo transistor is therefore suitable for industrial applications using low illumination intensities. The collector lead is electrically connected to the case.

Туре	Order numbe	er			2.8_	direction of	F 0 D
BPX 43 I BPX 43 II BPX 43 III BPX 43 IV	BPX 43 II Q62702-P16-S2 BPX 43 III Q62702-P16-S3						
			v	veigin app	107. 1	.5 g Dimension	is in nun
Maximum ratings BPX 43							
Collector-emitter voltage V_{CEO} 50Emitter-base voltage V_{EBO} 5Junction temperature T_j 175Storage temperature T_s -55 to +125Power dissipation (T_{amb} =25 °C) P_{tot} 300					V V °C ℃ mW		
Thermal resistance							
Junction to air Junction to case Max. permissible soldering temperature ($t < 5$ s			F	thJamb thJcase L	<4 <1 245	50	K/W K/W °C
Characterist	ics $(T_{amb} = 25^{\circ})$	C)					
Collector-emitter cutoff current $(V_{CE}=50 V; E_v=0 Ix)$ I_{CEO} $5 (< 200)$ Spectral range of photo sensitivity ($S > 0.1 S_{max}$) λ $0.45 \text{ to } 1.0$ Wavelength of max. photo sensitivity λ_{smax} 0.87 Collector-emitter saturation voltage 0.87				nA μm μm V			
Туре		,, 	BPX	CEsat			•
Group		I	11		<u> </u>	IV	-
$ \frac{I_{p}(E_{v}=1000)}{V_{CE}=5V} \\ \frac{h_{FE}(2 \text{ mA/5V})}{V_{CESat}(1 \text{ mA/5V})} $	/)	1.6 to 3.2 65 175	2.5 to 5.0 100 175	4.0 to 160 160	8.0	6.3 to 12.5 250 140	mA mV
t_{r}/t_{f} ($V_{CE} = 5 V;$ $I_{c} = 1 mA); R$	$L=1 k\Omega)^2$	5	6	8		12	μs

¹) The illuminances indicated refers to the unfiltered radiation of a tungsten-filament lamp with a colour temperature of 2856 K

²) Measured with LED's $\lambda = 930$ nm.

NPN Silicon photo transistor

BPX 62 is an epitaxial NPN silicon photo transistor of high sensitivity in a micro ceramic package. Because of the small case dimensions and the special lead arrangement this photo transistor is provided for incorporation in printed circuits, in particular, of space-saving one and two-dimensional optical scanning units. It is suitable for universal application with incandescent light and light-emitting diodes also in those cases where miniaturization, small mounting depth and high packing density are at a premium, e.g. for punched tape and card readers, path and angle scanners as well as reading systems for digital applications.

Туре	Order number
BPX 62 I	Q62702-P19-S1
BPX 62 II	Q62702-P19-S2
BPX 62 III	Q62702-P19-S3
BPX 62 IV	Q62702-P19-S1 Q62702-P19-S2 Q62702-P19-S3 Q62702-P19-S4

Weight approx. 1 g Dimensions in mm

Maximum ratings (7 _{amb} =25°C)		BPX 62	
Collector-emitter voltage	VCEO	50	V
Emitter-base voltage	VEBO	7	V
Junction temperature	T_i^{-1}	125	°C
Storage temperature	Τ _s	-55 to +125	°C
Max. permissible soldering temperature ($t \leq 3$ s)	Τ _L	230	°Č
Power dissipation	P_{tot}	50	mW

Characteristics ($T_{amb} = 25 \,^{\circ}C$)

Collector-emitter cutoff current			
$(V_{ce} = 25 \text{ V}; E_v = 0 \text{ Ix})$	ICEO	10 (≦100) 450 to 1000	nA
Spectral sensitivity ($S > 0.1 S_{max}$)	λ	450 to 1000	nm
Wavelength of max. photo sensitivity	λ_{smax}	850	nm
Collector-emitter saturation voltage			
$(I_c = 0.25 \text{ mA}; E_v = 1000 \text{ lx})^1)$	V _{CEsat}	0.3	V

Photo current A: $V_{CE} = 5 \text{ V}$; $E_v = 1000 \text{ Ix}^1$; B: $V_{CE} = 5 \text{ V}$; $E_e = 20 \text{ mW/cm}2^2$)

Тур	····	BPX 62				
Group		1	11	111	IV	
A: B:	I_{p} I_{p} approx.		0.63 to 1.25 3 to 6	1.0 to 2.0 4.5 to 9.0	1.6 to 3.2 7.5 to 15	mA mA

¹) The illuminances indicated refers to the unfiltered radiation of a tungsten-filament lamp with a colour temperature of 2856 K

²) Measured by means of a hp Radiant Flux Meter 8334 A with option 013; cf. curve $I_p = f(E)$

Directional characteristic $I_p = f(\varphi)$

AC Voltage photo transistor

BPX 78 is a multiple epitaxial NPN silicon planar photo transistor in a case 18 A 3 DIN 41876 (similar to TO-18) with a plane window. The collector leads of the two photo transistors and the cathodes of the parallel diodes are electrically connected to the metal case. Systems 1 and 2 are wired as photo transistors without base connection. The photo transistor BPX 78 is particularly suitable for use in devices and instruments where the only operating voltage available is an AC voltage, e.g. in control circuits for triacs and thyristors. Moreover, the photo receiver may be used as an AC and DC position sensor as well as a detector of motion directions.

Туре	Order number		
BPX 78	Q62702-P62		
	T_1 T_2 T_1 T_2 T_1 T_2 T_1 T_2 photo-transistors T_1 T_2 photo-transistors T_1 T_2 diodes	¢0.45 +28.0 +135*1 + 5.2.0.3 + 5.5.0.15 +	$1 \xrightarrow{D_1} D_2$ $1 \xrightarrow{H_1} A \xrightarrow{H_1} T_2$
		Weight approx. 0.5 g	Dimensions in mm

Preliminary data

Maximum ratings		BPX 78	
Collector-emitter voltage Emitter-base voltage Collector current Junction temperature Storage temperature Max. permissible soldering temperature ($t < 5$ s) Power dissipation	$V_{CEO} \\ V_{EBO} \\ I_C \\ T_j \\ T_s \\ T_L \\ P_{tot}$	40 7 100 125 -55 to +125 245 250	V W °C °C °C °C mW
Thermal resistance Junction to air Junction to case	R _{thJamb} R _{thJcase}	<450 <150	K/W K/W

Characteristics ($T_{amb} = 25 \,^{\circ}C$)

Collector-emitter cutoff current ($V_{CE} = 25 V; E_v = 0 lx$)	I _{ceo}	100	nA
Photo current ($E_v = 1000 lx; V_{CE} = 5 V$)	I _p	0.3	mA
Static forward current transfer ratio $(V_{cE}=5 \text{ V}; I_c=2 \text{ mA})$ Wavelength of max. spectral sensitivity	$h_{\rm FE}$ $\lambda_{\rm Smax}$ $t_{\rm r}; t_{\rm f}$	400 (>300) 0.8 8	 μm μs

¹) Radiation of an unfiltered tungsten-filament lamp with a colour temperature of 2856 K

²) Measured with LED ($\lambda = 930$ nm) as emitter

NPN Silicon photo transistor in a plastic package (basic grid system 1/10")

BPX 81 is an epitaxial NPN silicon transistor in a plastic package with soldering tab leads. The collector lead is marked by a stub on the soldering tab. The photo transistor is suitable for universal application in conjunction with incandescent lamps and infrared light. BPX 81 may be mounted on grid boards and is also provided for as a detector for the light-emitting diode LD 261 (same build-up as BPX 81) in miniature light barriers.

Туре	Order number
BPX 81 I	Q62702-P43-S1
BPX 81 II	Q62702-P43-S2
BPX 81 III	Q62702-P43-S3
BPX 81 IV	Q 62702-P 43-S 1 Q 62702-P 43-S 2 Q 62702-P 43-S 3 Q 62702-P 43-S 3 Q 62702-P 43-S 4

Weight approx. 0.02 g Dimensions in mm

Maximum ratings		BPX 81	
Collector-emitter voltage Junction temperature Storage temperature Soldering temperature 2 mm	V _{CE} T _j T _S	32 90 -30 to +90	V °C °C
away from case bottom ($t \le 3$ s)	T _L P _{tot} R _{thJamb}	230 85 750	°C mW K/W

Characteristics

Collector-emitter cutoff current			
$(V_{ce} = 25 \text{ V}; E_v = 0 \text{ Ix})$	ICEO	25 (<200)	nA
Collector-emitter saturation voltage			
$(I_c = 0.25 \text{ mA}; E_v = 1000 \text{ lx})$	V_{CEsat}	0.3	V I
Wavelength of max. photo sensitivity	λ_{smax}	780	nm
Spectral range of photo sensitivity $(S > 0.1S_{max})$	λ	450 to 1000	nm

The photo transistors are classified in groups of photo sensitivity and denoted by Roman numerals.

Туре	BPX 81				
Group	1	11	111	IV	
Photo current I_p ($V_{CE} = 5 V$; $E_v = 1000 \text{ k}^1$))	0.63 to 1.25	1.0 to 2.0	1.6 to 3.2	2.5 to 5.0	mA
Code colour	brown	red	orange	yellow	

¹) The illuminances indicated refers to the unfiltered radiation of a tungsten-filament lamp with a colour temperature of 2856 K

123

Directional characteristic $I_p = f(\varphi)$

NPN Silicon photo transistor arrays (basic grid system 1/10")

Types BPX 80 to BPX 89 are photo transistor arrays in a plastic package consisting of an arrangement of a maximum of 10 epitaxial NPN silicon photo transistors. The spacing of the individual photo-electric detectors corresponds to the standardized basic grid system of 1/10". A small cone of apex angle of the lens-type light window prevents any optical "cross-modulation" from the neighbouring system. The collector leads are marked by lateral stubs on the soldering tabs.

The second digit of the type designation is identical with the number of photoelectric detectors of one array (e.g. BPX 84 constitutes an array with 4 photo transistors). At the moment, primarily arrays with two, three, six and nine photo transistors are being produced, corresponding to the type designations BPX 82, BPX 83, BPX 86 and BPX 89. The remaining photo transistor arrays are not in stock, but are available upon request.

Туре	Order number
BPX 82	Q62702-P21
BPX 83	Q 62702-P 25
BPX 84	Q 62702-P 30
BPX 85	Q62702-P31
BPX 86	Q 62702-P 22
BPX 87	Q62702-P32
BPX 88	Q62702-P33
BPX 89	Q62702-P26
BPX 80	Q62702-P28

E.g. sample with 4 photo transistors BPX 84, dimensions in mm

Maximum ratings		BPX 80 to BPX 89	
Collector-emitter voltage	V _{CE}	32	V
Junction temperature	T_i°	90	°C
Storage temperature	Τ _s	-30 to +90	°C
Soldering temperature 2 mm away from	Ū		
case bottom ($t \leq 3$ s)	$T_{\rm L}$	230	°C
Power dissipation ($T_{amb} = 25 ^{\circ}C$)	P _{tot} R	85	mW
Thermal resistance	$R_{\rm thJamb}$	750	K/W

BPX 80 to BPX 89

Characteristics ($T_{amb} = 25 ^{\circ}\text{C}$)		BPX 80 to BPX 89	
Collector-emitter cutoff current $(V_{CE}=25 \text{ V}; E_v=0 \text{ Ix})$ Wavelength of max. photo sensitivity Spectral range of photo sensitivity (S>0.1 S _{max})	I _{CEO} λ _{Smax} λ	25 (<200) 780 450 to 1000	nA nm nm
Photo sensitivity			
Photo current $(V_{CE} = 5 \text{ V}; E_v = 1000 \text{ lx})^1)^2$	Ip	0.41 to 6.3	mA

¹) The illuminances indicated refers to the unfiltered radiation of a tungsten-filament lamp with a colour temperature of 2856 K.

²) The scatter of I_p within one array is $\leq 1:2$; arrays with a lower scatter upon request.

127

Silicon photo transistor

BPY 61 is an epitaxial NPN silicon planar photo transistor in a miniature glass-case. The base has no connection; control is via light intensity. The collector is marked by a red colour dot on the housing. On account of its high current gain, the transistor is suitable for applications requiring a particularly sensitive detector. The small dimensions favour a high packing density when assembling scanning units.

Туре	Order number	red dot	0.2	collector
BPY 61 I	Q60215-Y61-S1	¢0.3 (collec	tor)	
BPY 61 II	60215-Y61-S2			(1)
BPY 61 III	Q60215-Y61-S3	- 38 min	13	راغ
BPY 61 IV	Q 60215-Y 61-S 4			
		positive volta applied to red	ge to be dot	emitter
		Weight approx	x. 1 g Dimensions in	mm
Maximum ra	atings		BPY 61	
Collector-emi	tter voltage	VCEO	32	V
Emitter-base v	0	V _{EBO}	7	V
Junction temp		<i>T</i> .	125	l ∘c
Storage temp		Ť.	-55 to $+125$	°Č
	tion $(T_{amb} = 25 ^{\circ}\text{C})$	$T_{\rm s}^{\rm Loc}$ $T_{\rm s}$ $P_{\rm tot}$	50	mW
Characterist	tics (7 _{amb} =25°C)			
Collector-emi	tter cutoff current			
$(V_{\rm CE} = 25 \rm V; E_{\rm c})$	=0 lx)	ICEO	5≦100	nA
	tter saturation voltage	CEO	_	
$(I_{c} = 0.25 \text{ mA})$; $E_{y} = 1000 \text{ lx}$)	VCEsat	0.2	V
	e of photosensitivity $(S > 0.1 S_{max})$	λ	0.45 to 1.0	μm
	f max. photosensitivity	λ_{smax}	0.78	μm
	10% to 90% of the final value	Smax		
	90% to 10% of the initial value			
$(R_1 = 1 \text{ k}\Omega)^2)$		t,, t,	5	μs
、L //		1. 1	1	
	ensistors are grouped according to by Roman numerals.	o their phot	o sensitivity, the	groups
Denig denoted				

Туре		BPY 61				
Group		1	11	111	IV	
Photo-current ($V_{CE} = 5 V$; $E_v = 1000 lx$) ¹)	Ip	0.8 to 1.6	1.25 to 2.5	2 to 4	3.2 to 6.3	mA

¹) The illuminances indicated refers to the unfiltered radiation of a tungsten-filament lamp with a colour temperature of 2856 K

²) Measured with LED ($\lambda = 930$ nm) as emitter.

BPY 61

129

Directional characteristic $I_p = f(\varphi)$

direction of

a 0

Silicon photo transistor

BPY 62 is an epitaxial NPN silicon planar photo transistor in a case 18 A 3 DIN 41876 (TO-18) with a light window for frontal illumination. The base lead has been connected, and the emitter is marked by a stud on the housing bottom. The collector is electrically connected to the case. The transistor is universally suitable for use in conjunction with an incandescent lamp, especially where a particularly sensitive detector is required.

Type BPY 62 I BPY 62 II BPY 62 III BPY 62 IV	Order number Q 60215-Y 62-A Q 60215-Y 62-B Q 60215-Y 62-C Q 60215-Y 62-D	Φ045 		ECB
Maximum ra	tings		BPY 62	
Collector-emit Emitter-base v Collector curre Junction temp Storage tempe Total power d	roltage ent berature	V _{CEO} V _{EBO} I _C T _j T _s P _{tot}	32 5 25 125 -55 to +125 250	V V °C °C mW
Characterist	i cs (7 _{amb} =25°C)			
$(V_{CE} = 25 \text{ V}; E_v$ Collector-emit	ter cutoff current = 0 lx) ter saturation voltage = 1000 lx, base open)	I _{CEO} V _{CEsat}	5 (<100) 0.3	nA V
Spectral range $(S > 0.1 S_{max})$ Wavelength of Rise time from	of photosensitivity max. photosensitivity 10% to 90% of final value	·CEsat λ λ _{Smax}	0.45 to 1.0 0.78	μm μm
Fall time from $(R_{L} = 1 \text{ k}\Omega)^{2})$	90% to 10% of initial value	t _r , t _f	5 (<10)	μs

The photo-transistors are grouped according to their photo sensitivity, the groups being denoted by Roman numerals.

Туре		BPY 62				1
Group		1	11	111	IV	7
Photo-current ($V_{CE} = 5 V$; $E_v = 1000 lx^1$); base open)	I _p	1.25 to 2.5	2 to 4	3.2 to 6.3	5 to 10	mA

 The illuminances indicated refers to an unfiltered radiation of a tungsten-filament lamp with a colour temperature of 2856 K

²) Measured with LED ($\lambda = 930$ nm) as emitter.

BPY 62

133

Photo current $I_p = f(R_{BE})$ referred to photo current $I_p \infty$ during operation with open base $(R_{BE} = \infty)$ Parameter = illuminance converted into photo currents.

Directional characteristic $I_p = f(\varphi)$

Light-Emitting-Diodes (LED's)

Radiant intensity (I_e) and luminous intensity (I_v) and the electric current *I* according to NORM, are denoted by the same symbol. To avoid mix-ups, we write I_e and I_v (upright "I") for radiant and luminous intensity, respectively, and *I* (oblique "*I*") for the electric current.

GaAs light emitting diode (infrared emitter)

The GaAs light-emitting diode CQY 17 emits radiation with a wavelength lying in the near infrared. The radiation emitted is excited by current flow in forward direction and may be modulated. The case 18 A 2 DIN 41876 (similar to TO-18) is closed by a glass lens. The cathode lead is marked by the neighbouring stub on the case bottom rim. The anode is electrically connected to the case. As of $I_{\rm F}$ =100 mA heat sinks are to be used.

Type Order number		
CQY 17 IV	Q62703-Q89-S1 Q62703-Q89-S2 Q62703-Q89-S3	
CQY 17 V	Q62703-Q89-S2	
CQY 17 VI	Q 62703-Q 89-S 3	

Preliminary data

Weight approx 0,35 g

Dimensions in mm

Maximum ratings $(T_{amb} = 25 \,^{\circ}C)$

Forward current Maximum forward current Surge current ($t \le 1 \mu s$) Junction temperature Storage temperature Power dissipation

Thermal resistance

System to ambient air System to case

	CQY 17	
I_{F} i_{FM} i_{FS} T_{j} T_{S} P_{tot}	100 300 2000 100 -60 to +100 180	mA mA °C °C mW
R _{thJamb} R _{thJcase}	500 180	K/W K/W

Characteristics (<i>T</i> _{amb} =25 °C)		CQY 17	
Wavelength of radiation at I _{max}	λ _{Imax}	950	nm
Spectral bandwidth at 50% of I_{max}	Δλ	±20	nm
Switching times (Φ_{e} from 10% to 90%; I_{F} = 100 mA) Capacitance at V_{B} = 0 V	C_0	120	μs pf
Forward voltage $(I_{\rm F} = 100 \text{ mA})$	V _F	1.35 (<1.8)	V
Breakdown voltage ($I_{\rm R} = 100 \mu\text{A}$)	V _(BR)	30 (>4)	V
Reverse current ($V_{\rm R}$ =3 V) Half-life of radiation intensity (typ.) for $I_{\rm F}$ =100 mA	I _R A	0.01 (<10) 10 ⁵	μΑ h

Radiant power $\Phi_{\rm e}$

The diodes are grouped according to the radiant power $\Phi_{\rm e}$ emitted in mW in a cone having a half-angle φ of 15°, at $I_{\rm F}$ =100 mA.

Туре	CQY17			
Group	IV	V	VI	
$\overline{ arPsi_{ m e}} (15^{ m o}) \ arPsi_{ m e} ({ m total}) { m typ.}$	1.1 to 2.8 4	1.8 to 4.5 6.3	2.8 to 7.1 10	mW mW

Cone of emission as a function of the half angle φ

Radiation characteristic $I_{rel} = f(\varphi)$

- 19

139

10⁰ s

GaAs light emitting diode (infrared emitter)

The GaAs light-emitting diode CQY 18 emits radiation with a wavelength lying in the near infrared. The radiation emitted is excited by current flow in forward direction and may be modulated. The case (similar to TO-18) is provided with a plane light window. The cathode is marked by the neighbouring stub at the case bottom rim. The anode is electrically connected to the case.

Туре	Order number
CQY 18 III	Q62703-Q90-S1
CQY 18 IV	Q62703-Q90-S2
CQY 18 V	Q 62703-Q 90-S 1 Q 62703-Q 90-S 2 Q 62703-Q 90-S 3

Weight approx. 0.4 g Dimensions in mm

Preliminary data

Maximum ratings (7 _{amb} =25 °C)		CQY 18	
Forward current ($t \le 1 \mu s$) Maximum forward current Surge current Junction temperature Storage temperature Power dissipation	I _F i _{FM} i _{FS} T _j T _S P _{tot}	100 300 2000 100 -60 to +100 180	mA mA °C °C mW
Thermal resistance System to ambient air System to case	$R_{ t th Jamb} \ R_{ t th Jcase}$	500 180	K/W K/W

Characteristics $(T_{amb} = 25 ^{\circ}\text{C})$		CQY 18	1
Wavelength of radiation at I _{max}	λ_{Imax}	950	nm
Spectral bandwidth at 50% of I _{max}	$\Delta \lambda$	±20	nm
Switching times (Φ from 10% to 90%;			
$I_{\rm F} = 100 {\rm mA}$	t _r ; t _f	1	μs
Capacitance at $V_{\rm B} = 0$ V	$t_r; t_f C_o$	120	pf
Forward voltage $(I_F = 100 \text{ mA})$	V _F	1.35 (<1.8)	V
Breakdown voltage ($I_{\rm B} = 100 \mu \text{A}$)	V _(BR)	30 (>4)	V
Reverse current ($V_{\rm R} = 3$ V)	I _R í	0.01 (<10)	μΑ
Half-life of radiation intensity (typ.) for $I_{\rm F} = 100$) mA	10⁵	h

Radiant power $\Phi_{\rm e}$

The diodes are grouped according to the radiant power $\Phi_{\rm e}$ emitted in mW in a cone having a half-angle φ of 30°, at $I_{\rm F}$ =100 mA.

Туре	CQY18			
Group	111	IV	V	
$\overline{\Phi_{e}} at = 30^{\circ}$ Φ_{e} (total) typ.	0.8 to 2.0 2.5	1.25 to 3.2 4	2.0 to 5.0 6.3	mW mW

Cone of radiation as a function of the half-angle φ

Radiation characteristic $I_{rel} = f(\varphi)$

143

10⁰ s

GaAs LED (infrared emitters) in 1/10" grid system

The GaAs light-emitting diode LD 261 emits radiation having a wavelength lying in the near infrared when current flows in forward direction.

The case consists of orange-coloured transparent plastics with a lens-type light window. The leads are soldering tabs in a basic grid system of 1/10''. The light-emitting diodes are grouped according to radiant intensity. The cathode lead is marked by a colour dot in order to identify the individual groups.

LD 261 may be used in conjunction with the photo transistor of the same design BPX 81 to build up light barriers where emitter and detector are spaced approximately 10 mm apart. The diode may easily be mounted both in printed circuits and in thick film circuits. Complex scanning units are thus realized. Like the photo transistor series BPX 80 to BPX 89, the LD 261 light-emitting diodes are available in arrays up to 10 units as LD 260 to LD 269.

Туре	Order number
LD 261 I	Q62703-Q63 Q62703-Q64 Q62703-Q65
LD 261 II	Q62703-Q64
LD 261 III	Q62703-Q65
LD 261 IV	Q62703-Q66

Dimensions in mm Weight approx. 0.02 g

Preliminary data

Maximum ratings $(T_{amb} = 25 \,^{\circ}\text{C})$

Forward current Maximum forward current Surge current ($t \le 1 \mu s$) Junction temperature Storage temperature Soldering temperature 2 mm away

from case bottom ($t \leq 3$ s)

Power dissipation Thermal resistance

	LD 261	
I _F i _{FM} i _{FS} T _j T _S	50 150 1500	mA mA mA
$T_{\rm s}$	80 -30 to +80	°C ℃
T _L P _{tot} R _{thJamb}	230 85 750	°C mW K/W

Characteristics ($T_{amb} = 25 ^{\circ}C$)		LD 261	
Wavelength of radiation at I_{max}	λ_{Imax}	950	nm
Spectral bandwidth at 50% of \hat{I}_{max}	$\Delta \lambda$	± 20	nm
Half-life of radiation intensity (typ.) for $I_{\rm F} = 50 {\rm mA}$		10 ⁵	h
Switching times ($\Phi_{\rm e}$ from 10% to 90%; $I_{\rm p} = 50$ mA)	$t_r; t_f$	1	μs
Capacitance at $V_{\rm R} = 0$ V	Ċ	120	pf
Forward voltage $(I_F = 50 \text{ mA})$	V _F	1.3 (<2)	V
Breakdown voltage $(I_{\rm B} = 100 \mu\text{A})$	$V_{(BR)}$	30 (>4)	V
Reverse current ($V_{R} = 3V$)	IR	0.01 (<10)	μA

The diodes are grouped according to the radiant power $\Phi_{\rm e}$ emitted in mW in a cone having a half-angle φ of 30°, at $I_{\rm F}$ =50 mA.

Туре	LD 261				
Group	1	11	111	IV	1
$\overline{\Phi_{e}}$ (30°) Φ_{e} (total) typ. Color code	0.28 to 0.71 1.0	0.45 to 1.112 1.6	0.71 to 1.8 2.5	1.12 to 2.8 4.0	mW mW
(cathode)	brown	red	orange	yellow	

Cone of radiation as a function of the half angle φ

LD 261

Directional characteristic $I_{rel} = f(\varphi)$

GaAs light-emitting diode arrays (infrared emitter) grid system 1/10"

LD 260 to LD 269 are GaAs light-emitting diode arrays in an orange-coloured plastic package consisting of an arrangement of a maximum of 10 light-emitting diode LD 261 in one row. These diode arrays emit radiation having a wavelength lying in the near infrared when current flows in forward direction. In connection with the photo transistor arrays of the same design BPX 80 to BPX 89 light barriers may be built up where emitter and detector are spaced 10 mm apart. As they are easily mounted in printed circuits complex scanning units may be realized. The spacing of the individual diodes corresponds to the standardized basic grid system of 1/10". The third digit of the type designation stands for the number of light-emitting diodes contained in the array (e.g. LD 266=one array with 6 diodes, or LD 260 with 10 diodes).

Туре	Order number
LD 262	Q62703-Q70 Q62703-Q71 Q62703-Q74
LD 263	Q62703-Q71
LD 266	Q62703-Q74
LD 269	Q62703-Q77
LD 260	Q62703-Q78

Further number of systems per array upon request

Sample with 6 diodes (e.g. LD 266) Dimensions in mm

Preliminary data (single diode)

Maximum ratings		LD 260 to LD 269	
Forward current		50	mA
Maximum forward current Surge current (t≤1 μs)	/ _{FM} / _{FS}	150 1500	mA mA
Junction temperature	T_j	80	°C
Storage temperature	T _s	-30 to +80	°C
Soldering temperature 2 mm away from case bottom ($t \leq 3$ s)	T ₁	230	°C
Power dissipation	$\bar{P_{tot}}$	85	mW
Thermal resistance	$R_{\scriptscriptstyle {thJamb}}$	750	K/W

LD 260 to LD 269

Characteristics		LD 260 to LD 269	
Wavelength of radiation at I_{max} Spectral bandwidth at 50% of I_{max} Radiation power output Φ_{a}	$\lambda_{Imax} \Delta \lambda$	950 ±20	nm nm
at $I_{\rm F} = 50$ mA at $\varphi = 30^{\circ}$	$arPsi_{ m e}$	0.32 to 2.50	mW
typ. total value Half-life of radiant intensity (typ.) for $I_{\rm F} = 50$ mA Switching times	Φ_{e}	2.0 10⁵	mW h
$(\Phi_{\rm e} \text{ from 10\% to 90\%; } I_{\rm F}=50 \text{ mA})$ Capacitance at $V_{\rm R}=0 \text{ V}$ Forward voltage ($I_{\rm F}=50 \text{ mA}$) Breakdown voltage ($I_{\rm R}=100 \mu \text{A}$) Reverse current ($V_{\rm R}=3 \text{ V}$)	$t_r; t_f$ C_0 V_F $V_{(BR)}$ I_R	1.7 120 1.3 (<2) 30 (>4) 0.001 (<10)	μs pf V V μΑ

 $^{\rm 1})$ Upon request, LED arrays are available with a closer $\varPhi_{\rm e}$ (30°) scatter per array

Relative spectral sensitivity $I_{rel} = f(\lambda)$

Radiation characteristic $I_{rel} = f(\phi)$

149

GaAsP visible Light-emitting diodes (red light)

LD 30 B and LD 30 C are GaAsP LEDs emitting red light when operated in forward direction. These diodes are primarily suitable for use as optical indicators for the operating control or the indication of operation of instruments using discrete and integrated semiconductor components, respectively. Due to the very low consumption of current, a very low self-heating and a high vibration resistance, these LEDs may be used in fields where signal lamps of conventional design have proved useful only in adequately, if at all. LD 30 B may also be driven by TTL integrated circuits. LD 30 B has a red, diffuse case and LD 30 C a clear case.

Туре LD 30 В LD 30 С	Order number Q62705-P21-F39 Q62705-P22-F39	1,3 min 		5.6	32 05 105 105 105 105 105 105 105 105 105
Maximum ra	atings		LD 30 B	LD 30 C	
away from ca	nt (<i>t</i> ≦1μs)	$ \frac{V_{R}}{I_{F}} $ $ \frac{I_{FS}}{T_{S}} $ $ \frac{T_{L}}{P_{tot}} $	3 50 1 -55 to + 230 100	3 50 1 100 230 100	V mA °C °C mW

LD 30 B, LD 30 C

Characteristics (<i>T</i> _{amb} =25 °C)		LD 30 B	LD 30 C	
Light intensity $(I_{\rm F}=20 \text{ mA})$	Iv	0.8 (>0.3)	0.8 (>0.3)	mcd
Wavelength of emitted light	λ_{Imax}	655±15	655±15	nm
Spectral bandwidth for 50% of I _{max}	$\Delta \lambda$	30	30	nm
Limits for 50% of the light intensity I_v				
cone of apex angle	φ	60	40	degree
Forward voltage ($I_F = 20 \text{ mA}$)	V _F	1.6 (<2)	1.6 (<2)	v
Reverse current at $V_{\rm R} = 3 \rm V$	I _B	0.1 (<10)	0.1 (<10)	μA
Capacitance (V _R =0 V)	Ċ _o	200	200	pf
Switch-on time	ton	10	10	ns
Switch-off time	t _{off}	10	10	ns

151

LD 30 B, LD 30 C

GaAsP visible Light emitting diodes (red light)

LD 40 I and LD 40 II are GaAsP LEDs emitting red light when operated in forward direction. These diodes are primarily designed for use as optical indicators for the operation control or the indication of operation of instruments using discrete or integrated semiconductor components, respectively. Due to their low current consumption, a low self-heating and a high vibration resistance, these diodes may be used in fields where signal lamps of conventional design have proved useful only inadequately, if at all. The LEDs may also be driven by TTL integrated circuits.

Weight approx. 0.2 g Dimensions in mm

Mounting sleeve for LD 40

6,85

9.9

Mounting ring for LD 40

Туре	Order number	sleeve for LD 40	ring for LD 40
LD 40/I	Q62703-P2-F39		
LD 40/II	Q62703-P3-F39		
Mounting sleeve	Q62902-B84-F39 clear		
Mounting sleeve	Q62902-B85-F39 black		
Mounting ring	Q62902-B110-F39 blac	:k	

Maximum ratings		LD 40/I	LD 40/II	
Reverse voltage	V _B	3	3	V
Forward current	I	50	50	mA
Surge current (<i>t</i> ≦1μs)	i _{FS}	1	1	A
Insulation voltage between terminals				
and sleeve	V	300	300	V
Operation and storage temperature	T _s	- 55	to +100	°C
Soldering temperature for $(t \leq 7 \text{ s})$	Τĭ	230	230	°C
Power dissipation $(T_{amb} = 25^{\circ}C)$	$P_{\rm tot}$	100	100	mW

LD 40 I, LD 40 II

Characteristics ($T_{amb} = 25 \,^{\circ}C$)

	LD 40/I	LD 40/II	
Iv	0.7 (0.3)	1.2 (0.8)	mcd
I _v λ _{Imax}	655	655	nm
$\Delta \lambda$	±15	±15	nm
ton	10	10	ns
toff	10	10	ns
t _{on} t _{off} V _F	1.6 (<2)	1.6 (<2)	V
I _R	10	10	μΑ
	orange	white	

GaAsP visible Light emitting diodes (red light)

LD 50 is a GaAsP LED emitting red light when operated in forward direction. This diode is primarily designed for use as an optical indicator for the operation control or the indication of operation of instruments using discrete and integrated semiconductor components, respectively. Due to its low current consumption, a low self-heating and a high vibration resistance, this LED may be used in fields where signal lamps of conventional design have proved useful only inadequately, if at all. The diode may also be driven by TTL integrated circuits.

Dimensions in mm

Mounting ring for LD 50

	-6.7 -► 0.65	
ŧ		Ŧ
-6'/		- 1:1 -
+		Ì

Mounting sleeve for LD 50

Туре	Order number
LD 50/I	Q62703-Q53-F97
LD 50/11	Q62703-Q54-F97
Mounting sleeve	Q62902-B104-F97 clear
Mounting ring	Q62703-Q53-F97 Q62703-Q54-F97 Q62902-B104-F97 clear Q62902-B105-F97 clear

Maximum ratings

Reverse voltage Forward current Surge current ($t \le 1 \mu s$) Operation and storage temperature Soldering temperature 2 mm away from case bottom (t=5 s) Power dissipation

Characteristics

Light intensity ($I_{\rm F}$ = 10 mA)
Wavelength of emitted light
Spectral bandwidth for 50% of Imax
Cone of apex angle (limits for 50% of
light intensity I_v)
Forward voltage ($I_{\rm F}$ = 10 mA)
Reverse current at $V_{\rm R} = 5 \rm V$
Switch-on time
Switch-off time
Code colour

	LD 50/I	LD 50/II	
V _R	5	5	V
I _F	100	100	mA
i _{FS}	1	1	A
T _S	-55	to +100	°C
$T_{\rm L}$	260	260	°C
$P_{\rm tot}$	180	180	mW
$I_{v} \lambda_{Imax} \Delta \lambda$	2 (>1)	3 (>2)	mcd
	650±15	650±15	nm
	30	30	nm
$arphi_{F} V_{F} I_{R} t_{on} t_{off}$	12 1.8(<2.2) <100 50 50 none	12 1.8(<2.2) <100 50 50 white	degree V μA ns ns

GaAsP visible Light emitting diode (red light) in 1/10" grid system

LD 461 emits visible red light when current flows in forward direction. The diode with its white diffuse plastic package has a lens on the side of light emergence and soldering tab leads in a basic grid system of 1/10''.

The cathode lead is marked by a stub on the soldering tab.

On account of its low current consumption this diode is TTL compatible and is used as an optical indicator for operation control of electronic circuits. In the form of arrays (LD 460 to LD 469) the diodes may be used to build up complete indicator arrangements, as for letters and scales.

Туре	Order number			
LD 461	Q62703-Q79		0.4 0.6 cathode = 2.54	-22.02 -22.02
		Dimensions in mn	n - (=	
	ν	Veight approx. 0.02 ç	anode	
Maximum r	atings		LD 461	
Storage temp Junction tem	ent rward current perature perature 2 mm away from at ($t \leq 3$ s) ation	$ \frac{V_{R}}{I_{F}} $ $ \frac{I_{FM}}{T_{S}} $ $ \frac{T_{L}}{P_{tot}} $ $ \frac{P_{L}}{R_{thJamb}} $	3 ** 50 0.2 - 30 to +90 90 230 85 750	V mA °C °C °C mW K/W
Characteris	tics			
Wavelength of Spectral band	y ($I_{\rm F}$ =20 mA) of emitted light dwidth for 50% of $I_{\rm max}$ angle-limits for 50% of ligh	$I_{V} \\ \lambda_{Imax} \\ \Delta \lambda$	1 (>0.3) 665±15 30	mcd nm nm
intensity I _v Forward volta Reverse curre Switch-on tin Switch-off tin	age $(I_{\rm F} = 20 \text{ mA})$ ent $(V_{\rm R} = 3 \text{ V})$ me me	φ $V_{\rm F}$ $I_{\rm R}$ $t_{\rm on}$ $t_{\rm off}$	35 1.6 (<2.0) 0.01 (<10) 5 5	degree V μA ns ns
Capacitance $(V_{\rm R} = 0 \text{ V})$ $(V_{\rm R} = 3 \text{ V})$	αι	Co C3	60 35	pf pf

LD 461

**

GaAsP visible Light emitting diode arrays (red light) in 1/10" grid system

LD 460 to LD 469 are GaAsP LEDs in a white, diffuse plastic package consisting of an arrangement of a maximum of 10 LEDs LD 461 in one row. The diodes emit red light when current flows in forward direction. The spacing of the individual diodes corresponds to the standard basic grid system of 1/10". The third digit of the type designation equals the number of LEDs contained per array (e.g. LD 464 is an array of 4 diodes).

Туре	Order number
LD 462	Q62703-Q80
LD 463	Q62703-Q81
LD 464	Q62703-Q82
LD 465	Q62703-Q83
LD 466	Q62703-Q84
LD 467	Q62703-Q85
LD 468	Q62703-Q86
LD 469	Q62703-Q87
LD 460	Q62703-Q88

Sample with 4 LED's (e.g. LD 464)

Maximum ratings (single diode)		LD 460 to LD 469	
Reverse voltage	V _R	3	V
Forward current	IF	50	mA
Maximum forward current	Í _{ЕМ}	0.2	A
Storage temperature	$T_{\rm s}$	-30 to $+80$	°C
Junction temperature	Ť,	90	°C
Soldering temperature 2 mm away from	1		
case bottom $(t \leq 3 s)$	Τ,	230	l∘C
Power dissipation	$P_{\rm tot}$	85	mW
Thermal resistance	\vec{R}_{thJamb}	750	K/W

LD 460 to LD 469

Characteristics ($T_{amb} = 25 ^{\circ}C$)		LD 460 to LD 469	
Light intensity ($I_F = 20 \text{ mA}$)	I,	1 (>0.3)	mcd
Wavelength of emitted light	λ_{Imax}	665 ± 15	nm
Spectral bandwidth for 50% of I_{max}	$\Delta\lambda$	30	nm
Cone of apex angle (limits for 50% of the			
light intensity I _v)	ϕ	35	degree
Forward voltage ($I_F = 20 \text{ mA}$)	V _F	1.6 (<2.0)	V
Reverse current ($V_{\rm B} = 3 \rm V$)	IR	0.01 (<10)	μΑ
Capacitance $(V_{\rm R} = 0 \text{ V})$	Ĉ _o	60	pf
$(V_{\rm B}=3\rm V)$	C_{o} C_{3}	35	pf
Switch-on time	ton	5	ns
Switch-off time	t _{off}	5	ns

Optoelectronic Couplers

Optoelectronic coupler with a particularly large current transmission ratio

The coupled isolator CNY 17 has a GaAs light-emitting diode as a emitter, which is optically coupled with a silicon planar photo transistor as a detector. The component is incorporated in a plastic plug-type case 20 A 6 DIN 41866.

The optical coupler permits a transmission of signals within two electrically separated circuits. The potential difference between the circuits to be coupled may not exceed the maximum permissible insulating voltage.

Туре	Order number	
CNY 17 I	Q62703-N1-S1 Q62703-N1-S2 Q62703-N1-S3 Q62703-N1-S4	
CNY 17 II	Q62703-N1-S2	
CNY 17 III	Q62703-N1-S3	
CNY 17 IV	Q62703-N1-S4	

Light-emitting diode	1 anode
emitter	2 cathode
	3 not wired
Photo transistor	4 emitter
detector	5 collector
	6 base

Weight approx. 0.7 g Dimensions in mm

CNY17

V

mΑ

mΑ

mW

°C

А

3

60

200

1.5

100

230

2500

VR

 $I_{\rm F}$

 I_{FM}

i_{FS}

 $P_{\rm tot}$

T_L

 V_{is}

Maximum ratings

Emitter (GaAs light-emitting diode)

Reverse voltage Forward current Maximum forward current Surge current ($t \le 1 \mu s$) Power dissipation

Detector (Si photo transistor)

V _{ceo}	32	V
V _{ebo}	5	V
I _c	150	mA
P _{tot}	150	mW
T _s	−55 to +12	5 °C
T	−55 to +10	0 °C
	V _{EBO}	V _{ЕВО} 5 150

Soldering temperature 2 mm away from case bottom $(t \leq 3 s)$

Insulation voltage between Emitter and Detector referred to dry, ambient climate 23/50 DIN 50014

162

Characteristics ($T_{amb} = 25 ^{\circ}C$)			
Emitter (GaAs light-emitting diode)		CNY 17	
Forward voltage ($I_F = 60 \text{ mA}$) V_F Reverse current ($V_R = 3 \text{ V}$) I_R Capacitance ($V_R = 0 \text{ V}$; $f = 1 \text{ MHz}$) C_0		1.25 (<1.65) 0.35 (<10) 45	V μA pf
Detector (Si photo transistor)			
Forward current transfer ratio $(V_{CE}=5 \text{ V}; I_C=100 \mu\text{A})$ Collector-emitter cutoff current $(V_{CE}=10 \text{V})$ Capacitance $(V_{CE}=0 \text{V}; f=1 \text{MHz})$	h _{fe} I _{ceo} C _{ce}	>100 2 (<50) 15	– nA pf

Coupler

The couplers are grouped according to their current transmission ratio $\frac{I_c}{I_F}$ (at $I_F = 10 \text{ mA}$; $V_{CE} = 5 \text{ V}$) and denoted by Roman numerals.

Туре			CNY1	7		
Group	0 ¹)	l		111	IV	
I _C I _F	<10	40 to 80	63 to 125	100 to 200	160 to 320	%

¹) With reduced static value.

Collector-emitter saturation voltage ($I_{\rm F}$ =10 mA; $I_{\rm C}$ =2.5 mA) Coupling capacitance Creeping path, minimum

$V_{cEsat} \\ C_{c}$	0.3 0.34 8.2	V pf nm
Forwa	rd voltage $\frac{V_{\rm F}}{T_{\rm F}} = f(T_{\rm F})$.)

Optoelectronic coupler

The coupled isolator CNY 18 has a GaAs light-emitting diode as a emitter, which is optically coupled with a silicon planar photo transistor as a detector. The component is incorporated in a case 18 A 4 DIN 41876 (TO-72). The collector of the photo transistor is electrically connected to the metal case. The coupler permits the transmission of signals within two electrically separate circuits. The potential difference between the circuits to be coupled may not exceed the maximum permissible insulation voltage.

Туре	Order number
CNY 181	Q62703-N2-S1
CNY 18 II	Q62703-N2-S2
CNY 18 III	Q62703-N2-S3
CNY 18 IV	Q 62703-N 2-S 1 Q 62703-N 2-S 2 Q 62703-N 2-S 3 Q 62703-N 2-S 4

Weight approx. 0.4 g Dimensions in mm

Maximum ratings

Emitter (GaAs light-emitting diode)		CNY 18	
Reverse voltage	V _R	3	V
Forward current		60	mA
Maximum forward current	IFM	200	mA
Surge current (t≦1 μs)	i _{FS}	1.5 100	A mW
Power dissipation	$P_{\rm tot}$		
Detector (Si photo transistor)			
Collector-emitter reverse voltage	V _{CEO}	32	V
Emitter-base reverse voltage	V _{EBO}	5	V
Collector current	I _c	150	mA
Power dissipation	P_{tot}	150	mW
Coupler			
Storage temperature	T _e	-55 to +125	°C
Operation temperature	T _s T	-55 to +125 -55 to +125	°C
Soldering temperature 2 mm away			
from case bottom ((t ≤ 3 s)	T _L	230	°C
Insulation voltage between Emitter and Detector			
referred to dry ambient climate 23/50 DIN 50014	V _{is}	500	V

Characteristics ($T_{amb} = 25 \,^{\circ}C$)

Emitter (GaAs light-emitting)		CNY 18	
Forward voltage ($I_{\rm F}$ = 60 mA)	V _F	1.25 (<1.7)	V
Reverse current ($V_{\rm R} = 3 \rm V$)	I _R C _o	0.35 (<10)	μΑ
Capacitance ($V_{\rm R} = 0$ V; $f = 1$ MHz)	Co	50	pf
Detector (Si photo transistor)			
Forward current transfer ratio			
$(V_{ce} = 5 \text{ V}; I_c = 100 \mu\text{A})$	$h_{\rm FE}$	>100 2 (<100)	
Collector-emitter cutoff current ($V_{CE} = 10 \text{ V}$)	h _{fe} I _{ceo}	2 (<100)	nA
Capacitances			
$(V_{CE} = 0 \text{ V}; f = 1 \text{ MHz})$	C _{CE}	7	pf
$(V_{CE} = 10 \text{ V}; f = 1 \text{ MHz})$	C _{CE}	3.5	pf
$(V_{ce}=30 \text{ V}; f=1 \text{ MHz})$	C _{CE}	2.5	pf
•	C _{ce} C _{ce} C _{ce}		pf

Couplers

The couplers are grouped according to their current transmission ratio $\frac{I_c}{I_F}$ at (I_F = 10 mA; V_{CE} =5 V) and denoted by Roman numerals.

Туре		С	NY18			
Group	1	11	111	IV		1
I _c I _F	10 to 20	16 to 32	25 to 50	40 to	80	%
Collector-emitter ($I_{\rm F}$ =10 mA; $I_{\rm C}$ =		tage	V _{CEsat}	0.1 (<0.	.2)	v
Coupling Capa	citances (f=1	MHz)				
Light-emitting	diode	Photo tr	ansistor			
Anode-cathode short-circuited		Emitter-c short-circ		С	1.4	pf
Anode-cathode short-circuited		→ Collector (emitter c	conn. to frame)	С	1.1	pf
Anode-cathode short-circuited		 Emitter (collector 	conn. to frame)	С	0.1	pf

CNY 18

12010-021-021

agadeise is

Photo resistors

Photo resistor

RPY 60 is a cadmium selenide photo resistor in a hermetically closed glass-case similar to TO-5 with a glass window for frontal illumination. The leads are insulated from the case. The photo resistor is characterized by short decay times.

Туре	Order number
RPY 60	Q62717-P3

Maximum ratings

Power dissipation Operating voltage Ambient temperature

Characteristics ($T_{amb} = 25 \,^{\circ}C$)

Dark resistance after 1 min darkness Light resistance ($E_v = 1000 \text{ lx}$) Wavelength of spectral sensitivity Temperature coefficient of I_K ($E_v = 1000 \text{ lx}$; $T_{amb} = -25 \text{ to } +75 \text{ °C}$) Rise time for the change of resistance from R_0 to 65% of R_{1000}

Weight approx. 2 g Dimensions in mm

R ₀ R ₁₀₀₀ λ _{Smax}	≧1 · 10 ⁸ 300 to 800 0.72	Ω Ω μm
ТС	1	%/K
t _r	1 to 3	ms

Current-voltage characteristics $I_p = f(V)$

RPY 60

Rise and fall time of the photo-current to 65% of end value as function of ms illumination $t=f(E_v)$

Light resistance as a function of illumination $R_{\rm H} = f(E_{\rm V})$ Ω (scatter) 10⁶ 5 R_H 105 5 104 5 10³ 5 -----10² 5 10² 10⁰ 5 10¹ 5 10³LX + E,

Photo resistor

RPY 61 is a cadmiumsulphoselenide photo resistor in a hermetically closed glass case similar to TO-5 with a glass window for frontal illumination. The leads are insulated from the case. The photo resistor is characterized by short decay times.

Туре	Order number
RPY 61	Q62717-P4

Maximum ratings

Power dissipation Operating voltage Ambient temperature

Characteristics ($T_{amb} = 25 \,^{\circ}C$)

Dark resistance after 1 min darkness Light resistance ($E_v = 1000 \text{ lx}$) Wavelength of spectral sensitivity Temperature coefficient $(E_v = 1000 \text{ lx}; T_{amb} = -25 \text{ to } +75 \text{ °C})$ Rise time for the change of resistance from R_0 to 65% of R_{1000}

Rise and fall time of the photo current to 65% of end value as function of , illumination $t=f(E_v)$

171

Photo resistor

RPY 62 is a cadmiumsulphoselenide photo resistor in a hermetically closed glass case similar to TO-5 with a glass window for frontal illumination. The leads are insulated from the case. The photo resistor is characterized by short decay times.

Туре	Order number
RPY 62	Q62717-P5

Dimensions in mm Weight approx. 2 g

mW

v

°C

RPY 62

50

100

P_{tot} V_a

Maximum ratings

Power dissipation Operating voltage Ambient temperature

Characteristics $(T_{amb} = 25 \,^{\circ}\text{C})$

Dark resistance after 1 min darkness Light resistance ($E_v = 1000 \text{ lx}$) Wavelength of spectral sensitivity Temperature coefficient $(E_v = 1000 \text{ lx}; T_{amb} = -25 \text{ to } +75^{\circ}\text{C})$ Rise time for the change of resistance from R_0 to 65% of R_{1000}

*T*amb -40 to +75 ≥1·10⁸ Ω Ro R_{1000} 3500 Ω 0.55 λsmax um TC 0.4 %/K 10 to 20 t, ms

Current-voltage characteristics $I_{\rm p} = f(V)$ MA illumination E, = parameter

RPY 62

Rise and fall time of the photo current to 65% of end value as function of maxillumination $t=f(E_v)$

Photo resistor

RPY 63 is a cadmiumsulphoselenide photo resistor in a hermetically closed glass case similar to TO-5 with a glass window for frontal illumination. The leads are insulated from the case. The photo resistor is characterized by short decay times.

Туре	Order number
RPY 63	Q62717-P6

Maximum ratings

Power dissipation Operating voltage Ambient temperature

Characteristics $(T_{amb} = 25 \,^{\circ}\text{C})$

Dark resistance after 1 min darkness Light resistance ($E_v = 1000 \text{ lx}$) Wavelength of max. photo sensitivity Temperature coefficient ($E_v = 1000 \text{ lx}$; $T_{amb} = -25 \text{ to } +75 \text{ °C}$) Rise time for the change of resistance from R_0 to 65% of R_{1000}

RPY 63

Rise and fall time of the photo current to 65% of end value as function of illumination $t=f(E_v)$

175

Photo resistor

RPY 64 is a cadmiumsulphide photo resistor in a hermetically closed glass case similar to TO-5 with a glass window for frontal illumination. The leads are insulated from the case. The photo resistor is characterized by short decay times.

Туре	Order number
RPY 64	Q62717-P7

Maximum ratings

Power dissipation Operating voltage Ambient temperature

Characteristics ($T_{amb} = 25 \,^{\circ}C$)

Dark resistance after 1 min darkness Light resistance ($E_v = 1000 \text{ lx}$) Wavelength of max. photo sensitivity Temperature coefficient $(E_v = 1000 \text{ k}; T_{amb} = -25 \text{ to } +75 \text{ °C})$ Rise time for the change of resistance from R_0 to 65% of R_{1000}

Current-voltage characteristics =f(V)

RPY 64

Rise and fall time of the photo current to 65% of end value as function of m_c illumination $t=f(E_v)$

177

New Optoelectronic Components in Preparation

The following new optoelectronic components will shortly additionally be included in our delivery program: (Data sheets upon request)

Ga-As-P-Light emitting diodes (red light emitters)

Red light is emitted. When operated in forward direction. Applications: optical indicator and pilot lamp.

Туре	Reverse voltage	Forward current	Luminous intensity at $I_F = 20 \text{ mA}$	Radiation conc. half angel (degree)	Power dissipation	of emitted light	Case plastic	Out line
	<i>V</i> _R (V)	$I_{\rm F}$ (mA)	I _v (mcd)	φ	P _{tot} (mW)	λ (nm)		<u> </u>
LD 30 A	3	50	>0.5	60	100	655	red- diffuse	1
LD 41	3	100	1.2 (>0.3)	35	180	655	red- diffuse	3

GA-As-P-LED-display (red light emitters)

	Туре	Reverse voltage V _R (V)	current	Luminance at I _F =5 mA L _v (cd/m ²)	Luminous intensity at $I_F = 20 \text{ mA}$ $I_v (\mu cd)$	Power dissipation P _{tot} (mW)	Wavelength of emitted light λ (nm)	Case plastic	Out- line
	CQY 21	3 ¹)	10 ¹) 80 ²)	700>350 ¹)	-	160	660	red clear	5
•	CQY 22	6	251) 2002)	_ _	0.25 (>0.1) ¹)	400	655	red diffuse	2

Ga-P-Light emitting diodes (green light emitters)

Туре	Reverse voltage	Forward current	Luminous intensity at I _F =20 mA	Radiation conc. half angel (degree)	Power dissipation	Wavelength of emitted light	Case plastic	Out line
	<i>U</i> _R (V)	I _F (mA)	I _v (mcd)	φ	P _{tot} (mW)	λ (nm)		
LD 37	3	40	1 (>0.3)	60	100	560	green diffuse	1
LD 57	3	50	1.5(>0.3)	40	185	560	green diffuse	3
LD 471 ³)	3	30	1 (>0.3)	40	85	560	green diffuse	4

Multiple photo transistor (Positions sensor)

Туре	Collector Emitter-Reverse voltage V _{CE} (V)	Photo current $V_{CE} = 5 V$ $E_v = 1000 \text{ ix}$ $I_C \text{ (mA)}$	Collector-Emitter cuttoff current $V_{CE} = 25 \text{ V}; E_v = 0 \text{ Ix}$ $I_{CEO} (nA)$	Out- line	
BPX 77	40	0.3	100	6	

¹) for each segment ²) total value ³) LD 470 to LD 479-Ga-P-LED-Array on request ▼ New Type

New Components (Dimensional Drawings)

Offices in the Federal Republik of Germany and West-Berlin

City	Street	Telefon	Telex
1000 Berlin 61	Schöneberger Straße 2–4 Postadress 1000 Berlin 11, P.O.B.	(030) 255-1	183766
2800 Bremen 1	Contrescarpe 72, P.O.B. 127	(0421) 364-1	2 45 451
4600 Dortmund 1	Märkische Straße 8–14, P.O.B. 658	(0231) 548-1	8 22 31 2
4000 Düsseldorf 1	Lahnweg 10, P.O.B. 1115	(0211) 3030-1	8 581 301
4300 Essen 1	Kruppstraße 16, P.O.B. 22	(02141) 2013-1	857437
6000 Frankfurt 1	Gutleutstraße 31, P.O.B. 2513	(0611) 262-1	414131
2000 Hamburg 1	Lindenplatz 2	(040) 282-1	2162721
3000 Hannover 1	Am Maschpark 1, P.O.B. 5329	(0511) 199-1	9 22 333
5000 Köin 30	Franz-Geuer-Straße 10, P.O.B. 101688	(0221) 576-1	8 881 006
6800 Mannheim 1	N 7. 18, P.O.B. 2024	(0621) 296-1	4 62 261
8000 München 80	Richard-Strauss-Straße 76 Postadress 8000 München 2, P.O.B. 202109	(089) 9221-1	5 29 42 1
8500 Nürnberg 1	Richard-Wagner-Platz 1	(0911) 2016-1	622251
6600 Saarbrücken 3	Martin-Luther-Straße 25, P.O.B. 359	(0681) 3008-1	4 421 431
7000 Stuttgart 1	Geschwister-Scholl-Straße 24, P.O.B. 120	(0711) 2076-1	723941

Siemens Companies and Representatives

Europe

Austria Siemens Aktiengesellschaft Österreich A-1030 Wien Apostelgasse 12 [A-1031 Wien, P.O.B. 326] Tel. (02 22) 7 29 30 Telex 11 598, 11 866

 Belgium

 Siemens Société Anonyme

 B-1060 Bruxeiles

 Chaussee de Charleroi 116

 Tel. (02) 373100, 380020,

 386080, 386180

 Telex 21 437, 23587

Bulgaria RUEN Technisches Beratungsbüro der Siemens Aktiengesellschaft Sofia uliza Zar Boris 1, No. 130 Tel. 8734 55, 87 59 01, Telex 22 736

Czechoslovakia EFEKTIM Technisches Beratungsbüro Siemens AG Praha 1 Vaclavské náměsti 1 Tel. 244632, 247234, Telex 1-2289

Denemark Siemens Aktieselskab DK-2100 Kopenhagen ø Blegdamsvej 124 Tel. (01) 261122, Telex 22313

Finland Suomen Siemens Osakeyhtiö SF-00101 Helsinki 10 Mikonkatu 8, [Postilokero 8] Tel. 10714, 16261 Telex 12465

France Siemens Société Anonyme F-93 Saint-Denis 39, Boulevard Ornano Tel. (16-1) 2 43 30 20, Telex 62 835

Great Britain Siemens Ltd. London Office Brentford TW8 9DG, Middlesex Great West House, Great West Road Tel. (01) 5 68 82 81, 5 68 91 33 Telex 23 176 Greece Siemens Hellas E.A.E. Athen 125 Voulis 7, [P.O.B. 601] Tel. (021) 3243211/19 Telex 216291, 216292

Hungari

Intercooperation AG, Siemens Kooperationsbüro Budapest XII Böszörményi ut 9–11 [P.O.B. 11, Budapest 114] Tel. 154970, Telex 22-4133

Iceland Smith & Norland H/F Reykjavik Sudurlandsbraut 4, [P.O.B. 519] Tel. 38320, 38321, Telex 2055

Ireland Siemens Ltd. Dublin 4 8, Raglan Road Tel, 684727, Telex 5341

Italy Siemens Elettra S.p.A. I-20124 Milano Via Fabio Filzi, 29 [Casella Postale 4183] Tel. (02) 6992, Telex 31571, 31585

Luxemburg Siemens Société Anonyme Luxembourg 17, Rue Glesener, [B.P. 1701] Tel. *49711-1, Telex 430

Netherlands Siemens Nederland N.V. 's-Gravenhage Prinses Beatrixlaan 26, [Postbus 1068] Tel. (070) 782782 Telex 31370, 31373

Norway Siemens Aksjeselskap N-Oslo 5 Østre Aker Vei 90, Linderud [Postboks 10, Veitvet] Tel. (02) 153090, Telex 18477

Poland PHZ Transactor S.A. Warszawa 12 Oiszewska 8, [P.O.B. 176, Warszawa 1] Tel. 45 2211, 45 52 01, Telex 81 328

Portugal Siemens S. A. R. L. Lisboa 1 Avenida Almirante Reis, 65 [Apartado 1380] Tel. 538805, Telex 1563 Rumania Siemens birou de consultatii tehnice Bucuresti Str. Jules Michelet Nr. 15–17, ap. 5. Tel. 151825, Telex 473

Spain Siemens S.A. **Madrid 20** Orense 2, [Apartado 155] Tel. (01) 4582500, 4586500 Telex 27769

Sweden Siemens Aktiebolag Stockholm Norra Stationsgatan 63–65 [Fack, S-10435 Stockholm 23] Tel. (08) 229680, Telex 1880, 1881

Switzerland Siemens-Albis AG CH-8021 Zürich Löwenstraße 35 Tel. (01) 23 03 52, 25 36 00 Telex 52 131

Turkey Simko Ticaret ve Sanayi A.S. Istanbul Meclisi Mebusan Cad. 55, Findikli, [P.K. 64 Tophane] Tel. 452090, Telex 290

U.S.S.R. Siemens Büro Moskau Hotel "Leningradskaja", Zimmer 301 Tel. 2235257, 2255301 Telex 7-413

Jugoslavia Generalexport YU-11000 Beograd Djure Djakovića 31, [Poštanski fah 223] Tel. (011) 664622, Telex 11287

Afrika

Algeria Siemens Algérie S.A.R.L. Alger 3, Viaduc du Duc des Cars, [B.P. 51] Tel. 639547/51, Telex 91817

Siemens Companies and Representatives

Egypt Siemens Resident Engineers Cairo, Egypt Immobilia Building, Flat 644, Chérif Street No. 26b [P.O. B. 775] Tel. 54932

Ethiopia Siemens Ethiopia Ltd. Addis Ababa Ras Bitwoded Makonen Building [P.O.B. 5505] Tel. 4 34 47, Telex 21 052

Libya Zeidan & Sons Organisation Tripoli 8, Sh. Gumhureya, [P.O.B. 2505] Tel. 30101, 30102, 31787

Morocco Siemens Maroc S.A.R.L. Casablanca Rue Lafuenta, Immeuble Siemens Tel. 613-82, 613-83, 613-84, 689-31, Telex 21914

South African Rupublic Siemens (Proprietary) Limited Johannesburg Siemens House, Corner Wolmarans and Biccard Streets, Braamfontein [P.O.B. 4583] Tel. 7252500, Telex 543-7721

Sudan Electric & General Contracting Co. Khartoum Contomichalos Building, Barlament St. [P.O.B. 1202] Tel. 805 76, 80818

Tunisia Sitelec S.A., Société d'Importation et de Travaux d'Electricité Tunis 26, Avenue Farhat Hached Tel. 24 28 60, 24 30 03, Telex 326

Zaire Siemens Zaire S.P.R.L. Kinshasa 1 1222, Avenue Tombalbaye, Angle Avenue Kasavubu [B.P. 9897] Tel. 22608, 23739, Telex 377

America

Argentina Siemens S.A. Buenos Aires Avenida Pte. Julio A. Roca 530 [Casilla Correro Central 1232] Tel. 300411 Telex 0121812, 0121850

Bolivia Sociedad Comercial é Industrial Hansa Ltda. La Paz Calle Mercado esq. Yanacocha [Cajón Postal 1402] Tel. 54425, Telex BX5261

Brasil Siemens S.A. São Paulo 10, SP Rua Felix Guilhem, 1360 [Caixa Postal 1375, São Paulo 1, SP] Tel. 625111, Telex 021332, 021636

Canada Siemens Canada Limited Pointe Claire 730, P.O. 7300 Trans-Canada Highway [P.O.B. 7300] Tel. (514) 695-7300 Telex 05-267300

Chile Gildemeister S.A.C. Santiago de Chile Amunátegui 178, [Casilla 99-D] Tel. 82523 Telex SGO 392 (Transradio Chilena), 40588 (Correos y

Columbien Siemens S.A. **Bogota 6** Carrera 65, No. 11 – 83 [Apartado Aéreo 6829] Tel. 60 33 00, Telex 044 750

Telégrafos)

Mexiko Siemens S.A. México 15, D.F. Calle Poniente 116 No. 590; Col. Industrial Vallejo [Apartado Postal 15064] Tel. 5670722, Telex 1772700, 1773903

Uruguay Conatel S.A. Montevideo Ejido 1690, [Casilla de Correro 1371] Tel. 917332, 917332 Telex 398134 UY U.S.A.

Siemens Corporation Iselin, New Jersey 08 830 186 Wood Avenue South Tel. (201) 494-1000 Telex WU 84-4491, 84-4492

Venezuela Siemens Venezolana S.A. Caracas Avenida Principal, Urbanización Los Ruices [Apartado 3616] Tel. 348531, Telex 22831

Asien

Afghanistan Siemens Afghanistan Ltd. Kabul Alaudin, Karte 3, [P.O.B. 7] Tel. 41460, 40446, 40447

Bangla Desh Siemens Dacca Dacca 74, Dilkusha Commercial Area [P.O.B. 33] Tel. 244381, 245965, 251864, 251865, Telex 824

Burma Siemens Resident Engineer Rangoon 185-187, Maha Bandoola Street [P.O.B. 1427] Tel. 105 22, 106 24, Telex 2009

Hong Kong Jebsen & Co. Hong Kong Prince's Building, 23rd floor, [P.O.B. 97] Tel. 2251 11 Telex HX 3221, HX 3769

India Siemens India Ltd. Head Office Bombay 18 WB 134 A, Dr. Annie Besant Road, Worli, [P.O.B. 6597] Tel. 379981, Telex 011 2373

Indonesia Siemens Indonesia Djakarta Kebon Sirih 4, [P.O.B. 2469] Tel. 51051, Telex 011-4111

Iran Siemens Sherkate Sahami (Khass) Teheran Kh. Takhte Djamshid No. 32, Siemenshaus Tel. 61 41, Telex 2351, 2647

Siemens Companies and Representatives

Israel

Inverko Ltd. **Tel-Aviv** 72/76, Harakevet Street, [P.O.B. 2385] Tel. 31844, 39640, Telex 033-513

Japan

Nippon Siemens K.K. **Tokyo 100** Furukawa Sogo Building, 6-1, Marunouchi 2-chome, Chiyoda-ku [Central P.O.B. 1144, Tokyo 100-91] Tel. (03) 214-0211, 215-3768, 211-1754, Telex J 22808

Korea (Republik)

Siemen's Electrical Engineering Co. Ltd. Seoul Daehan Building, Room 806, 75, Susomun-dong, Sudaemun-ku [I.P.O.B. 3001] Tel. 24-1558, Telex 2329 S

Kuwait

Abdul Aziz M.T. Alghanim Kuwait, Arabia Abdulla Fahad Al-Mishan Building, Al-Sour Street [P.O.B. 3204] Tel. 420452, Telex AAA 2131 KT

Lebanon

Ets. F. A. Kettaneh S.A. (Kettaneh Frères) **Beyrouth** Rue de Port, [P.O.B. 242] Tel, 221180, Telex 614

Malaysia

Guthrie Waugh (Malaysia) Sdn. Bhd. Petaling Jaya 19, Jalan Semangat, [P.O.B. 30] Tel. Kuala Lumpur 56 45 23 Telex Kuala Lumpur 346

Pakistan

Siemens Pakistan Engineering C. Ltd. Karachi Ilaco House, Abdullah Haroon Road, [P.O.B. 7158] Tel. 516061, Telex 820

Philippines

Engineering Equipment, Inc. Manila 391 J. Rizal Street, Bo. Namayan, Mandaluyong, Rizal [P.O.B. 1386] Tel. 701851, 707546, 707551 Telex PN 3658 Saudi Arabia E. A. Juffali & Bros. Head Office Jeddah King Abdul-Aziz-Street [P.O.B. 1049] Tel. 21 66, 2167, 2168

Singapore

Guthrie Waugh (Singapore) Pte. Ltd. Singapore 10 41, Sixth Avenue, Bukit Timah Road (P.O.B. 495, Singapore 1] Tel. 662555 Telex Dirgaw RS 21 681

Syria

Sýrian Import Export & Distribution Co., S.A.S. SIEDCO **Damas** Port Said Street, [P.O.B. 363] Tel. 13431, 13432, 13433

Taiwan

Delta Engineering Ltd. **Taipei** 42, Hsu Chang Street, 8th floor [P.O. B. 58497] Tel. 362126, Telex 826

Thailand

B. Grimm & Co. R.O.P. Bangkok 1643/4, Petchburi Road (Extension) [P.O.B. 66] Tel. 54081, Telex 214

Yemen

Tihama Tractors & Engineering Co. Ltd. [P.O.B.] Sana'a

Australien und Ozeanien

Australia

Siemens Industries Limited Melbourne, Vic. 3121 544 Church Street, Richmond Tel. 420291, Telex AA 30425

New Zealand

Frederick Barker Ltd., Liaison Representative Wellington 2 Cable Car Lane, [P.O.B. 74] Tel. 40415

Contents

Inventory of Types Preface

Photo Diodes

Germanium Photo Diodes Silicon Photo Diodes Silicon Differential Photo Diodes

Photo-Voltaic Cells

Silicon Photo-Voltaic Cells Silicon Solar Elements

Photo Transistors

Silicon Photo Transistors Silicon Photo Transistor Arrays

Light-Emitting Diodes (LEDs)

GaAs Light-Emitting Diodes – Infrared Emitters GaAs Light-Emitting Diode Arrays – Infrared Emitters

GaAsP Light-Emitting Diodes – Visible Light Emitters GaAsP Light-Emitting Diode Arrays – Visible Light Emitters

Optoelectronic Couplers

Photo Resistors

SIEMENS

