
I

I
Operator Manual for the RCA
COSMAC Development System II
CDP18S005

MPM-216 Suggested Price $10.00

RETURN IU
ARK L. LEW

•

•

' . .
:.~.

Operator Manual
for the RCA COSMAC
Development System II
CDP18S005

nell Solid I Buenos Aires' Hamburg· Liege' Madrid' Mexico City· Milan

Stat Montreal' Paris' Sao Paulo' Somerville NJ • Stockholm e Sunbury·on· Thames' Taipei' Tehran' Tokyo

"

Information furnished by RCA is believed to be
accurate and reliable. However, no responsibility
is assumed by RCA for its use; nor for any in
fringements of patents or other rights of third
parties which may result from its use. No
license is granted by implication or otherwise
under any patent or patent rights of RCA.

Trademark(s) Registered ®
Marca(s) Registrada(s)

Copyright 1977 by RCA Corporation
(All rights reserved under Pan-American Copyright Convention)

Printed in USA/I0-77

•

1

•

•

•

•

__ 3

Foreword

The COSMAC Development System CDP18S005 is a
prototyping aid for the design of hardware and software systems
based on the RCA CDP1802 microprocessor. The COSMAC
Development System is specially structured to provide a testbed
in which hardware/software prototypes of systems containing a
microprocessor may be designed, built, and tested. In small
volume applications it can be used as the major building block
for dedicated microcomputers.

This Manual is designed as a guide for the COS MAC
Development System user. It includes a detailed description of
each of the available hardware modules as well as a complete
explanation of the functions available from the software sup
plied with the system.

The COSMAC Development System (CDS) consists of a card
nest with self-contained power supply, an easy-to-use control
panel, and a basic set of plug-in modules. It is packaged to
promote easy interfacing with external devices. These interfaces
may be custom-designed by the user or, in the case of common
peripheral devices, are available from RCA as standard op
tional modules, and include a floppy disk interface.

The COSMAC Resident Software Package (which runs on
the CDS in a stand-alone manner) provides a means for rapid
coding and debugging of COSMAC programs. Many of its
features are compatible with those of the COSMAC Software
Development Package (CSDP) timesharing program
development aids. Additional software and firmware packages
are available from RCA including packages for floppy disk
hardware and multiple precision arithmetic .

4 _________________ Operator Manual for the RCA CDS 11 CDP18S005

, ,

•

I

•

•

•

•
•

__ 5

Table of Contents

Foreword

Operating and Programming the CDS
System Overview
Initial Operation

CDS Hookups
CDS Checkout Program
Loading and Outputting Programs

Paper Tape Systems
Magnetic Tape Systems

Introduction to the Monitor Software UT20
Utility Commands

?M Commands
!M Commands
$U Commands
$P Commands
$L Commands
?R Commands
Summary of UT20 Ope]ating Instructions

Terminal Interfacing.
ASCII Coding
UT20 Read and Type Routines. . . .
Examples of UT20 Read and Type Usage

Additional Utility Routines
ASCII to Hex Conversion Routine .
Initialization Routines
Routine to Restart UT20 .

Additional Notes on UT20 .
Programming Methods

Machine Language Programming
Programming Interface to CSDP

Hardware Structure of the CDS .
System Block Diagram
Module Description and Signal Mnemonics

Card Nest and Backplane
CPU Module CDP18S102
Control Module CDP18S103
Address Latch and Bank Select Module CDP18S206
I/O Decode Module CDP18S509. . .
ROM/RAM Module CDP18S401. . .
4-Kilobyte RAM Module CDP18S205 .
Terminal Interface Module CDP18S507
Display Board
Disk Interface Module Option CDP18S813
Microterminal Option CDP18S021
Power Supply Module

Page
3
9
9,

10
10
10
11
11
11
12
12
12
12
13
13
13
13
14
15
15
15
18
19
19
19
20
20
20
20
22

27
27
29
29
30
31
32
33
34
34
35
36
37
37
38

6 --'------- - ________ Operator Manual for the RCA CDS II CDP18S005

Development System Signals
Memory Addressing and Expansion

Memory Organization
RCA Modules
Custom Memory Modules

Input/Output Interfacing
. Module Enable Philosophy
Two-Level I/O

~ .. Interfacing Signals and Custom I/O Modules
DMA Input
DMA Output.
Byte I/O
Interrupt . .
Bit Serial Interface - The Terminal Interface Module

Interfacing Techniques and Precautions
Use of External Clock .
External Flags EF 1 to EF4
Adding I/O Devices
Adding Remote Control .
Development System Dynamic Characteristics

Troubleshooting
Hardware Specifications .

CDS Resident Software Development Aids
CDS I/O Terminals .
Memory Space Requirements .

Informal Introduction to the COSMAC Resident Assembler
Flow Chart to Operation Mnemonics
Addressing .
Assembly Language Equivalent

COSMAC Resident Assembler
Assembler Operation
The Location Counter
The Symbol Table
Expression Evaluation
COSMAC Level I Assembly Language

Lines and Comments
Symbol Definitions
Explicit Constants .
Address Constants .
Operation Mnemonics
Instructions and Operands
Data Lists
CRA Directives .
Additional Notes
Code Examples and Review
Error Messages

CRA Operating Instructions
Summary of CRA Operating Steps
RAM Considerations
Output Options .
Prompt Messages

Page

38
40
40
40
41
41
42
42
43
45
45
46
46
47
47
47
48
48
48
48
48
49

51
51
51
52
52
53
54
54
54
55
55
55
55
55
56
56
57
57
57
58
58
58
59
59
63
63
64
64
64

•

•

•

•

Table of Contents ____________________________ 7

Informal Introduction to the COSMAC Resident Editor
COSMAC Resident Editor

CRE Operating Considerations
Memory Space Requirements
Input and Output Files
Record Formats . . .
Buffer Pointer

CRE Command Operation
Command Strings
Command Formats.
Punch Procedure
Correcting Command Typing Errors
Interrupting CRE Execution
Filled Work Space Warning

CRE Commands .
Single Commands .

Pointer Control Commands
Reading the Input Tape .
Deletion Commands .
Text Insertion and Data Manipulation
Output Commands
Summary of CRE Commands and Control Characters

Composite Commands and Nesting
Horizontal Tabs
Additional Note

Using CRE .
Loading and Operating CRE .
File Development and Manipulation

Creating a File . .
Adding to a File
Deleting a Section in a File .
Moving a Section in a File .
Modifying a Section in a File

Some Command Examples

Appendices
A. CDS 18S005 Backplane Wiring Schedule
B. Instructions for Converting a Model 33 Teletype Terminal from

Half-to-Full-Duplex Operation and from 60-mA to 20-mA Operation
C. Adding Teletype Remote Reader Control .
D. Module Logic and Circuit Diagrams and Layout Diagrams. .
E. Instruction Summary for RCA CDP1802 COSMAC Microprocessor.
F ASCII - Hex Table
G. UT20 Listing
H. System Checkout Game - DEDUCE.
I. Conversion to Different Operating Voltages
J . Connection List for Terminal Interface Cables

Page

65
66
66
66
66
66
68
69
69
69
70
70
70
70
70
71
71
71
71
71
72
72
72
74
74
75
75
75
75
75
76
76
76
77
79
79

81
82
83
95
99

100
121
123
123

8 _________________ Operator Manual for the RCA CDS II CDP18S005

•

, .

+

•

•

•

--________________ 9

Operating and
Programming the CDS

System Overview
The CDP18S005 COSMAC Development System

(CDSl consists of a power supply, control panel, and
a set of connectors for printed circuit boards. Many of
the 25 available positions are occupied by specific
module types. A printed circuit backplane distributes
common signal lines to all connector positions. There
are a small number of additional wire-wrapped
connections. The unassigned connectors are available
for user expansion of memory and I/O function.

Supplied modules include the CDP1802 CPU
module, an address latch and memory bank select
module, a 4-kilobyte RAM module, a ROM/RAM
module containing the Utility program, an I/O
decode module, terminal interface module, and a
control module. The position assignments of these
modules are given in Table III in the next Section. All
logic functions are implemented in CMOS operating
at + 5 V.

The control panel provides a simple user interface.
Depressing the RESET switch initializes the system.
Depressing the RUNU switch starts the utility
program, identified as UT20. Depressing RUNP, on
the Dther hand, will start program execution from
memory location 0, the normal starting location of a
user program. A STEP/CONTINUOUS switch
allows stepping one machine cycle with each
depression of RUNU or RUNP. A 4-digit display on
the front panel shows the current address and a 2-
digit display shows the value of the data .bus or, by
switch selection, the last I/O data byte. Five ad
ditional LED indicators monitor the State Code,
WAIT, CLEAR, and Q lines of the CPU while a
sixth LED indicates when the machine is running.
This RUN indicator will be ON whenever the CPU is
running and not in the IDLE mode. The LOAD
switch is used to place the CPU in the 'load mode' in
which the DMA channel can be used to load RAM.

See The User Manual for the CDPl802 COSMAC
Microprocessor, MPM-201, for a detailed
discussion of this mode. The LOAD switch is sup
plied as a convenience for the user designing his own
system interfaces and is not used in normal CDS
operations. The supplied programs are loaded using
the Monitor program as discussed in the next section.

The CDS· is designed to work with anyone of the
following terminals:

Il An ASR 33 Teletype' terminal (or its
electrical equivalentl which should include a
remote reader control circuit to permit the CDS
to control the paper tape reader.
2l A TI "Silent 700" terminal"', Model 733
ASR with tape cassettes and "Remote Device
Control" option. This terminal uses dual
program-controlled magnetic tape cartridges as
storage medium and prints at 30 characters per
seconds.
3l Any terminal conforming to the EIA
RS232C standard interface and having a baud
rate of 110, 300, or 1200.

The CDS is designed to automatically adjust to a
variety of data terminal speeds and will accommodate
either full- or half-duplex operation.

Included with the CDS are an assembler and editor
program for software development. Loading in
structions for these programs are given in the next
subsection. Details on operation of the Assembler and
Editor are given later in this manual. If a Floppy
Disk system is used with the CDS, refer to the Floppy
Disk Manual for operation of the Assembler, Editor,
and other programs.

, Registered Trademark, Teletype Corporation.
... Registered Trademark, Texas Instruments Corporation.

L 111 ("

I \ (

10 _________________ Operator Manual for the RCA CDS II CDP18S005

Initial Operation
,

CDS Hookups

Two I/O data terminal cables are supplied with the
Development System - one for terminals using a 20-
mA loop interface, the other for an EIA RS232C data
terminal. Each cable with its terminal board con
nection is labeled. To connect the data terminal,
selei':'t the proper cable and plug its receptacle labeled
"fl" into the appropriate connector mounted directly
on the accessible end of the terminal board, as shown
in Fig. 1. For a list of terminal interface cables and
their functions, refer to Appendix J.
MOUNTED I/O
TYPEWRITER
CONNECTORS

CABLE

END
RECEPTACLE

CABLE

25-PIN DELTA
CONNECTOR

LABELED
" EIA"

LABELED
tl TTy ll

END
CONNECTOR

MATING EIA
CONNECTOR

-0
-9

TERMINAL PLUG -IN
MODULE (SLOT" 14)

WHITE PLASTIC
MOLEX CONNECTOR

WHITE PLASTIC
MOLEX JACK INSIDE

TELETYPE TERMINAL
IN POSITION "2"

(J2)

92 CS - 28210 RI

Fig. 1 - Cable connection for I/O data terminals.

The two connectors on the terminal board are
labeled appropriately. The connector on the other end
of the cable plugs into the terminal. For a Teletype
terminal, remove its cover and plug the cable into
connector position 2 (J2) in the array of white plastic
Molex connectors located in the back of the unit. For
an EIA terminal, plug the EIA connector on the cable
into the receptacle on the back of the data terminal.
Fig. 1 shows these connections.

When the Silent 700 terminal is used, the cable
supplied with that device should be connected to the
CDS via the EIA cable.

Put the terminal in the Line mode, select the ap
pr-;;pa~te baud rate and set for full-duplex operation
before attempting to use any terminal.

Appendix B gives instructions for converting a
TTY from half- to full-duplex operation. The in
terface is a 20-mA current loop. Make necessary
changes per Appendix B to convert a TTY to 20-mA
operation. If a TTY is to be used with the assembler
program, the remote reader control circuit should be
installed in accordance with the instructions in
Appendix C. Once installed, its switch should be set
in the MANUAL position before continuing.

Install the power cable and switch power on. Press
RESET followed by R UNU. This sequence will
cause the RUN light to go ON and the system is .now
operating with UT20 in control.

This program begins by reading the first keyboard
input character to define for itself the terminal
character rate and whether it should "echo" typed
information to the data terminal printer. If the
terminal is operating in the full-duplex mode, the user
should begin by pressing the RETURN key on the
keyboard. For the half-duplex mode, the user should
press the LINE FEED key instead. The system then
responds with the prompt character (*). It now
"knows" the essential characteristics of the I / O data
terminal. Reaching this stage verifies that most of the
hardware is operating properly.

CDS Checkout Program
Even with little or no knowledge of the COS MAC

command repertoire, the user can further verify
proper system operation by loading, from the ter
minal, an elementary test program. For example, a •
simple time-out loop can be run in which the RUN ~
light goes off after a specific elapsed time from the
initiation of execution.

Each line of user keyboard input is terminated by a
depression of the RETURN key on the keyboard
The test time-out program can be loaded into memory
by typing in

! MO L'lF8FFB1219191913A0300(CR)

The system will reply with the prompt character. One
can verify proper loading by entering

?MOL'l A(CR)

The system will print the characters just entered
(after the memory location addressed, "0000" in this
case) and will return the prompt character again. The
time-out program can then be run either by entering

$PO(CR)

or by depressing RESET followed by RUN. In either
case, the RUN indicator should go off after ap
proximately 2.6 seconds. This step establishes that
the read-write memory (RAM) is operational.

• In this Manual, (CR) at the end of an example of a user keybo ~rd
input denotes the terminating carriage RETURN. Spaces man
input line will be denoted by blanks in the example or, for add,
tional emphasis, by the symbol 6.

•

i

I

••

1

•

Operating and Programming the CDS _ _______ ________________ 11

Loading and
Outputting Programs

Programs may be entered manually by use of the
! M command, just described. This and other
Monitor commands are covered in detail in the next
~ection. Ordinarily, programs will be loaded from
paper ' tape via a TTY, from magnetic tape cassettes
via the TI terminal, or from a floppy diskette via the
Floppy Disk system. The latter is covered separately
ill. :the RCA COSMAC Floppy Disk System CD
{»18S805 Instruction Manual MPM-217. RCA
supplied CDS programs are designed to work in the
fllB-duplex mode.

Following are the methods used with paper tape
and magnetic cartridges:

Paper Tape Systems

To load a paper tape:

U Press RESET, followed by RUN U.

21 Press the RETURN key (C-R) on the TTY.
Make sure it is in the LINE Mode and the
installed switch is in the MANUAL position.

31 UT20 will return the symbol * indicating it
is ready to accept commands.

41 Position the tape in the header and tum on
the tape recorder.

51 When loading is complete, UT20 will issue
another *.

61 Start the program by typing$UO(CR).

If preferred , typing can be suppressed during
paper-tape loading by pressing the LINE FEED key
instead of CR at step 2. In this case, the user should
re-initialize the system after loading by pressing
HESET, RUN U, and CR before attempting to start
the loaded program.

UT20 monitors the program being loaded and will
issue a '! if a format error is detected. If an error is
detected, stop and reload the tape from the begin
ning.

To punch reloadable tape:

11 With the TTY in the LOCAL mode,
position tape in the punch, tum the punch
ON, and make a header of nulls (control-shift-
Pl. .

21 Type ! Maaaa 6 where aaaa is the hex
address of where the data is to be reloaded
(normally location 00001.

31 Turn the punch OFF and put the TTY in
the LINE mode.

41 Initialize the CDS with a RESET, RUNU,
followed by a RETURN (CRI.

51 Next, type ?Maaaa 6count, where the
address is the starting address of data to be
read from memory, and count is the number of
hex bytes to be punched.

61 Turn the punch ON and press CR. After the
tape is punched, some more nulls should be
added to its end.

The assembler and editor programs
automatically punch reloadable tape as described in
the Section titled CDS Resident Software
Development Aids.

Magnetic Tape Systems

To load a magnetic tape:

1) Press RESET, RUN U, then CR.

2) UT20 will return the symbol *.
3) Mount the cassette. Rewind it and press
LOAD/FF to advance to the first record.
Make sure the drive is in the LINE and
PLAYBACK mode.

41 When loading is completed, UT20 will issue
another * . Start the program by typing
$UO(CR).

Typing during load can be suppressed by turning
the printer OFF. If a ? is typed during loading, an
error has been detected and the tape should be
reloaded.

To record reload able tape:

11 With the terminal in the LOCAL and
RECORD mode, mount a blank cartridge.

2) Type !Maaaa 6 where aaaa is the hex
address of where data is to be reloaded
(normally location 00001 .

3) Switch to the LINE and PLAYBACK
mode and initialize the CDS with a RESET,
RUN U, and CR.

12 _________________ Operator Manual for the RCA CDS II CDP18S005

4) Type ?Maaaa 6count, where the address is
the starting address of the data to be read from
memory and count is the number of hex bytes
to be recorded.

5) Tum the Record Control switch ON and
press CR. After the data has been output,
UT20 will issue another *.

For' another system checkout program using the
supplied "Deduce" game, refer to Appendix H.

,

Introduction to the
Monitor Software

UT20
Utility Commands

The CDP18S005 COSMAC Development System
includes a Monitor program, known as UT20, which
performs commonly required functions of running the
terminal interface, providing a means of reading and
generating reload able tape, giving _ access to all
memory locations, and allows the user to start
program at a given location. The following explains in
detail the ?M and! M commands already mentioned,
plus others not yet discussed.

In general, after the system has been RESET, the
user has two choices: pressing RUN begins execution
of his program at location 0000, while pressing RUN
U begins execution of UT20 (at 8000). After pressing
RUN U, the user next presses either a LF (line feed)
or a CR (carriage return) key, depending upon his
installation. A CR initiates FULL DUPLEX
operation, an LF, HALF DUPLEX. Besides
establishing the need to echo, UT20 uses this input to
calculate the timing parameters necessary to run the
terminal. Thus, a single program can operate with
wide variations in clock speed or terminal speed.

When UT20 is ready to accept a command, it types
out an asterisk (*) as a prompt character.

?M Commands

To interrogate memory, type a command such
as

?M2F53(CR)

UT20 responds by printing out the contents of
memory beginning at location 02F5: three bytes are
printed out as two hex digits each. Each line of output
begins with the address, and data is grouped in 2-byte
(4-digit) blocks. When necessary, new lines are begun

every 16 bytes, with the previous lines ending in
semicolons. The user may enter any number of digits
to specify the beginning location (leading zeroes are
implied, if necessary). If more than four digits are
entered, only the last four are used. The number of
bytes to be typed out should be in hex. Again, if more
than four digits are entered, only the last four are
used. This feature allows the correction of a mistake
simply by continuing the type and ,terminating the ..,

~ypedffse~uelnce OWoi2th4)theIfcorhrect 4-d
b
igit vfalbues (2300

b
24 ~

IS, e ectlVe y, . t e num er 0 ytes to e
typed is not specified, one byte is assumed. For
example:

?M2F5(CR)

would result in the typeout of the one byte at location
02F5.

When the user wants to punch a reloadable
paper tape, he requests a memory type-out as
previously described.

!M Commands

In general, data is entered into memory, by
means of a command such as

!MI2F 434F534D4143(CR)

This command enters six bytes (two hex digits
each) into memory beginning at location 012F. Once
again, the starting location is determined by the last
four digits entered. Data is entered into memory after .,
each two hex digits are typed. If the user types an odd .,
number of digits, the last digit is ignored, and the
error message ('?') is typed out. It is therefore only
necessary to re-enter the last byte.

1

•

•

1
1

•

Operating and Programming the CDS ________________________ 13

The ! M command provides two options that
facilitate memory loading. First, a string of data can
be extended from line to line by typing in a comma
just before the normal CR. (In this case press the CR
LF (carriage return-line feed) keys before beginning a
new line.) For example,

!M23 56789ABC,(CR) (LF)
DEFOI23456,(CR) (LF)

3047(CR)

: enters 11 successive bytes beginning at location 0023.
Between successive hex pairs while data is being
entered, any non-hex character except the comma
land semicolon, as will be discussed) is ignored. This
arrangement permits arbitrary LF's, spaces (for
readability), nulls (generated by the utility program
or by a time-share system to give the carriage time to
return), etc.

As a second optional form of data entry, a
string of input data can be terminated by a semicolon
land a CR). The utility program then expects more
data to follow on the next line, but preceded by a new
beginning address. The line must have the format of
an ! M command, but with the ! M omitted. This
option provides the mechanism f~r reading in a paper
tape previously punched out as a result of the ?M
command. (Recall the format of multiline ?M out
puts discussed above.)

The utility program ignores all non-hex
characters following ! M, allowing CR, LF, and nulls
to be inserted in the tape without disturbing the ! M
command. The semicolon feature allows non
contiguous memory areas to be loaded.

$U Commands
The $U command is used to start program

execution. For example,

$U6C(CR)

starts program execution at location 006C with
P = X =0. This command will leave the terminal
interface and floppy disk interface (if installed) ac
tive. Consequently, the user program should not use
I/O commands associated with these interfaces. For a
further discussion of the terminal interface and the
floppy disk interface, see the material on Module
Description and Signal Mnemonics in the next
Section. For further details on the $U command, refer
to "Two-Level 110" under Input/Output Inter
facing in the next Section.

If only $U (CR) is typed with no address
specified, execution will start at location 0000. If
more than 4 address digits are typed, only the last 4
will be used.

$P Commands
The $P command is similar to the $U command.

~or example:

$P6C(CR)

would also start program execution at location 006C
with P=X=O except, in this case, the temiinal and
floppy disk interfaces may be disabled. This feature is
a convenience for the user so that his program can use
I/O commands normally associated with these
peri pherals.

If no address is specified, program execution
starts from location 0000. The function is equivalent
to pushing the RESET then RUN P buttons on the
control panel. This command also obeys the 'last-4-
digits' address rule.

For further details of this command, refer to
"Two-Level I/O" under Input/Output Interfacing
in the next Section.

$L Commands
The $L command is used in systems having a

floppy disk. Typing

$L

causes UT20 to type

READ?

asking for the unit and track number of the diskette
file to be loaded. For a discussion of the disk loader
program, refer to the RCA COSMAC Floppy Disk
System II CDP18S805 Instruction Manual MPM-
217. If a floppy disk system is not installed and this
command is accidentally activated, simply do a CR
after the READ? interrogation. UT20 will type

DRIVE NOT ON

and issue an *, waiting for another command.

?R Commands

When UT20 is activated (via RESET, RUN U),
one of the first things it Qoes is save 13-112 of the 16
'R' registers of the CPU in its RAM stack located at
address 8COO for 32 bytes. Registers RO, RI, and
R4.1 are altered, but the states of the remaining
registers are preserved at the time when UT20 was
activated. This feature provides a means of
examining most CPU registers for debugging pur
poses.

14 _________________ 0perator Manual for the RCA CDS II CDP18S005

The ?R command provides for automatic readback
of the stored register states with X's for registers RO,
RI, and R4.I to indicate that they have not been
preserved. For example, RESET, RUN U, CR then
?R gives this format:

XXXX XXXX 18D4 3821, XX33 B760 8A15 0017
t t

RO R7

5518
t c':

1\8

0717 34AA 8197, A401 6789 A825 01B9
t

RF

NOTE: the ?R must be the first command given to
UT20 after it is started, because UT20 uses the stack
itself when other commands are issued. Thus, it may
overwrite the preserved registers when executing any
command other than ?R.

Summary of UT20
Operating Instructions

In summary, after receiving the prompt
character '*' the user may type

?M(addressl f., (optional count) (CRI

!M(addressl f.,(datal (Optional, or;) (CR)

(where the data may have non-hex digits between
each hex pair)

$P (optional address I (CRI
$U (optional address) (CRI
$L
'?R(CR)

UT20 ignores initial characters until it detects?, !, or
$, Then inputs which are not compatible with the
above formats cause an error message (? I.

A further detailed summary of these basic
operating instructions is given below, repeating the
information just given in a more concise form.

1. After pressing "RUN U", the user should press
CR (for full-duplex operation I, This instruction
sets up the bit-serial timing and specifies echo or
not.

2. UT20 will return * as a prompt.

3. Following *, UT20 ignores all characters until
one of '!, $, or ! is typed in.

4. Following '~M or !M, UT20 waits for a hex
character. It then assembles an address. If more
than four hex digits are typed, only the last four are
used. Next, a space is required. Note: f., denotes a
space:

a. For '!M addr f., a hex count may follow (aga\n,
only the last four digits are kept), and the
command is terminated by CR. If no count is
entered, one byte will be typed.
b. For !M addr f., data must follow. An even
number of hex digits is required, Before each hex
pair arbitrary filler, except for a CR. comma, or
semicolon. is allowed. CR terminates the
command, unless it is immediately preceded by a
comma or, as is generally the case, by a
semicolon.

i. In case of comma CR the user must insert
an LF for UT20 to continue to accept data.
This procedure is a form of line continuation.
ii. In case of a semicolon all following
characters are ignored until the CR is typed.
Then, the user must again provide an LF, and
UT20 continues as if it had received optional
filler, then a starting address, then a space,
and then data.
iii. The !M command can be followed by as
many continuation lines as needed, mixed
between the two types if desired, and is finally
terminated with a CR not preceded by a
comma or semicolon.

5. Commands $P or $U may be followed by a
starting address. The last 4 digits are used if more
than 4 are typed in. If no address is given, 0 is
assumed. Program execution begins at the specified
location with RO as the program counter· . The $P
command disables the terminal and floppy disk
interfaces whereas $U does not.

6. Command $L starts the floppy disk loader
program which will issue the prompt

READ?

A proper response is a 4-digit number
requesting unit and track number, followed by a
CR. If an error is detected during the read
operation, a diagnostic message is printed.

7. Command ?R causes a readout of the 16 R
registers saved when UT20 is initialized. X's are
written for those registers not preserved.

• $P and $U always begin with RO as program counter. This
arrangement is consistent with the fact that P=O and X=O
after the CPU is RESET. Refer to the CDP1802 data sheet
for other actions of RESET.

•

•

•

Operating and Programming the CDS ________________________ 15

H. When a !M, ·!M or !'R command is accepted
and completed, UT20 types another * prompt.

9. When UT20 detects bad syntax, it types out a ?
and returns the carriage. If a mistake is made when
data is entered (by typing in an odd number of
digitsl, all data will have been entered except the
last hex digit. Note that the "only-Iast-four-digits"
tnl'e in the address field allows the user to correct an
address error without retyping the whole com
mand. For example, a mistaken 234 can be
:corrected by continuing. Thus, 2340235 is, ef
fectively, 0235. A bad command can be aborted by
typing in any illegal character except after !M or

·- '!M or between input hex data pairs. In these cases,
the user should type any digit and then, for
example, a period.

Terminal Interfacing
ASCII Coding

The CDS is designed to interface to a data
terminal via a serial ASCII code using either a 20-mA
current loop or an EIA RS232C standard electrical
interface. When a key is struck on a TTY terminal, '
the information denoting that character is converted
to its ASCII code and appears On the output ter
minals as a serial data-bit stream. The serial data
originating at the TTY for the letter 'M' is shown in
Fig. 2. The character is framed by a start bit Band

LOGIC I

BFI DI DI DI ~I DI D~ FI F
ACTUAL
-DATA BITS

INTELLIGENCE BITS
7 DATA BITS
PLUS I PARITY BIT

---I B 1

COMPLETE CHARACTER
"M" (4DI6)

.... = ONE BIT TIME P = PARITY BIT

B = START BIT D' DATA BIT
F = STOP BIT --- =ASYNCHRONOUS TIME

BETWEEN CHARACTERS

92CS -28100

Fig. 2 - Data terminal bit serial output for the
character "M".

two stop bits FF. By convention two stop bits are
used for data transmission at 10 characters per second
although 1, I liz, or 2 are also acceptable outputs from
various different terminals. A parity bit P is also
shown. For even parity, the parity bit would be a 'I'
only if the 7 data bits contain an odd number of '1 'so

Hence, the total number of 1 's in the eight intelligence
bits is always an even number. Some data terminals
may be set up to generate either even or odd parity.
UT?O ignores the parity bit, so either even or odd
rarity is acceptable.

Data from the CDS is generated with the same
format; i.e., a start bit, 7 data bits, a parity bit, and
two stop bits. Note that the CDS does not generate
parity - the parity bit is always a 'I' regardless of the
data bits. Therefore, terminals interfacing to the CDS
should ignore the parity bit.

UT20 Read and Type Routines

The UT20 read and type routines provide the
basic software mechanism for communication be
tween the CDS and data terminal. Several different
routines are available to facilitate different types of
110 data transfers.

These routines are designed to allow adoption to
various terminal speeds and to determine whether or
not characters read in should be "echoed" (ie., typed
back immediately I. For these purposes, a 'sub
subroutine' called DELA Y is included which
provides the necessary bit timing delays to the read
and type routines. DELAY uses RC as its program
counter, which must be set-up to point to location
80EF. UT20 does this automatically when it is
started. Any user program using a read or type
routine must not alter RC, or must restore it to 80EF
before calling a read or type routine. Also, the upper
half of register RE (RE.I) contains a control con
stant. The least significant bit specifies echo (0
denotes echo, 1 denotes no echol. For full-duplex
operation, then, this bit is a zero. Again, this is
automatically set when UT20 is started and the CR or
LF characters received.

The remainder of RE.l constitutes a timing
parameter (TPI. TP is calculated as follows:

~.nterval between two serial bit~ •
TP=2 x

320 x (CPU clock period)

where the fraction is rounded to the nearest integer.
For example, because a Teletype Model 33 operates
at 10 characters per second and II bits per character,
for the CDS running from the supplied 2.0-MHz
clock,

-The factor of 2 comes from the fact that the input serial wave
form is sampled over two successive bit times. The factor of 320
comes from the fact that the time between samples is 20 instruc
tion times, with each instruction taking 16 clock periods.

16 _________________ 0perator Manual for the RCA CDS II CDP18S005

1 s 1 char -- x---
10 char 11 bits

TP =2 x

320 x
1 s

2.0 x 106

= 2 x 56.8 (rounded to 57)

= 11410 = 7216

Because for proper operation TP must be less
tha.o: 255, there is a bound on the speed of terminals
s}:\pported at any given clock rate. Faster terminals or
slower clocks can be supported to the extent that
roundoff errors do not cause bad timing. For
example, at 2.0 MHz and 30 lO-bit characters per
second,

~ J 1 J 3o xlo
TP = 2 x = 2(20.8) = 4210 = 2A16

320/2.0 x 106

and the round-off error is small (2100 instead of 20.81.
On the other hand, at 2.0 MHz with baud rates above
1200, the round-off error would be too high.

The utility program UT20 uses a subroutine
"TIMALC" to generate the operating time constant,
using the first character typed in by a user. This
routine times the intervals between incoming bits to
calculate TP and reads one bit to determine whether
or not to echo. Specifically, if a CR is entered while
TIMALC is running, then echoes will be provided;
an LF suppresses echoes. In either case, RE.l is
loaded with the appropriate constant. TIMALC also
loads the subroutine pointer for the DELAY routine.
The user of TYPE and READ has the option of
calling TIMALC or setting up RE.l and the pointer
to the DELAY routine himself. As a convenience to
the user, UT20 leaves RE.l and RC properly ad
justed while performing a $P or $U operation and
may be used unless they have been altered by the
user.

All read and type routines and TIMALC use R3
as their program counter, and return to the caller
with SEP R5. They can be called directly from a
program that can use R5 as its program counter, or
they may be called through the Standard Call and
Return Technique (SCRTI described in the User
Manual for the CDP1802 COS MAC
Microprocessor, MPM-201 in the Section
Programming Techniques under "Subroutine
Techniques". This programming technique is the
most general and is recommended.

RE.l is reserved for the operating constant
(control constant 0 or 1 added to the timing parameter
'1'P I discussed above.

One byte of RAM is needed by read and type
routines. These routines assume that R2 points to free
RAM and M(R(211 is altered by them. In general~ the
user can set R2 to any free RAM location. UT20 uses
a byte in its dedicated RAM for this purpose.

R F.I is used in certain cases to pass the byte
being read or typed between the calling routine and
these subroutines. When READ is exited, it leaves
the input byte in RF .1. When TYPE is entered at
location 81A4, the byte to be typed is taken from
RF.l.

All rontines alter RE.O and RF.O. They also alter
D. DF, and X. The READ routine leaves the input
byte in 0 as well as in RF.l. but the byte in D will be
destroyed if the Standard Call and Return Technique
is used.

When TIMALC exits, R3.1 is left holding A.I
(READl = A.I (TYPEI = 81, but R3.0 is
meaningless. When READ exits, R3 is ready for
entry at READAH (see Table III. When TYPE exits,
R3 is ready for entry at TYPE5 (see same tablel. a
When DELAY exits, RC is ready for another call to ~
D E LAY. When the Standard Call and Return
Technique is used, R3 is automatically set up.

The READ routine has two entry points - READ
and READAH. The former acts as described above
and has no other side-effects. The latter operates just
as READ does, but with the following side-effect. If
the character read in is a hex character (0-9, A-FI
then the I6-bit contents of RD are shifted four bits to
the left. and the 4-bit hex equivalent of the input
character is entered at the right. DF is then set to 1 on
exiting. If the input character is not a hex character,
RD is not affected, but DF is set to 0 on exiting.

CAUTION: A READ may immediately be followed
by another READ, but not immediately by a TYPE.
The caller should wait 1.5 bit times first, which he
can do by entering TYPE at TYPE5D or by calling
DELAY, with a parameter of 7 or greater.

The DELAY subroutine assumes that the calling
program counter is R3. It uses the value, n, of the
immediate byte at M(R31 to generate a delay equal to

(20 + m (2n + 611 instruction times

where m is time constant in RE:I (see previous
discussion I. It then increments R3 past the calling
parameter and returns via a SEP R3.

1

•

•

•

Operating and Programming the CDS ________________________ 17

The TYPE routine has five different entry
points. Three of them simply specify different places
to fetch the character from: TYPE types from RF.l,
TYPE5 types from M(R51 and increments R5, and
TYPE6 types from M(R61 and increments R6.
TYPE5D is an entry which provides a lo5-bit delay
before going to TYPE5. The purpose of this delay is
to let" an immediately preceding echoed READ
process to completion before typing. TYPE2 is an
eritry which results in RF.l being typed out in hex
form as two hex digits. Each 4-bit half is converted to
a, ASCII hex digit (0-9, A-Fl and separately typed
. out.

Notice that the READ routines are designed to
facilitate repeated calls on READAH, while the
TYPE routines are designed for repeated calls to
TYPE5. In order to output a string of variable data
characters following a READ, given the timing
restriction mentioned earlier. it is most logical to call
TYPE5D first. using an immediate "punctuation"

byte (i.e., non-data such as space, null, etc. I to get the
required initial delay and to follow either with
repeated calls on TYPE (with the output variable
data characters picked up from RF.Il or repeated
calls on TYPE5 using immediate data characters.
This procedure permits a maximum output character
rate.

Another routine, OSTRNG, can be used to
output a string of characters. OSTRNG picks up the
character string pointed to by R6 and tests each
character for zero. The characters should be already
encoded in ASCII. If a zero is found (ASCII 'null'l,
the program terminates and returns control to the
user via a SEP R5. If the character is not a zero, it is
typed out to the terminal. The OSTRNG routine
includes a delay on the front end so that it may be
called at any time - even following a read.

Tables I and II summarize the functions and
calling sequences just described.

TABLE 1- UT20 REGISTER UTILIZATION
Register
Name

PTER
CL
ST
SUB

PC
DELAY
ASL
AUX

CHAR

Notes

Register
Number

RO

J R1
R2
R3

R5
RC
RD
RE

RF

Function and Comments

Alt.ered b-y UT20 while storing registers. R4.1 is similarly altered.

Pointer to RAM "work" byte. UT20 uses R2 = 8COO.
Program counter for all routines except DE LA Y.

Program counter for UT20 which calls the routines above.
Program counter for the DELAY routine. Points to DELAY1 in memory.
Assembled into by READAH (input hex digits).
RE.1 holds time constant and echo bit.
RE,O is used by all READ and TYPE routines and by TIMALC, OSTRNG, and CKHEX.
R F.1 holds input/output ASCII character.
RF.O is used by all READ and TYPE routines and by TIMALC, OSTRNG, and CKHEX.

TABLE II - UT20 READ AND TYPE CALLING SEQUENCE
Entry Absolute
Name Address
READ 813E
READAH 813B
TYPE5D 819C
TYPE5 81AO
TYPES 81A2
TYPE 81A4
TYPE2 a1AE
TIMALC 80FE

DELAY1
OSTRNG

80EF
83FO

Input ASCII ~ RF.1, 0 (if non-standard linkage)
Same as READ. If hex character, DIGIT ~ RD (see text)
1.5-bit delay. Then TYP E5 function.
Output ASCII character at M(R5). Then increment R5.
Output ASCII character at M(RS). Then increment RS.
Output ASCII character at RF .1.
Output hex digit pair in R F .1.
Read input character and set up control byte in RE.1.
Initialize RC to point to DELAY1.
Delay, as function of M(R3) (see text). Then R3 + 1.
Output ASCII string at M(RS). Data byte 00 ends typeout.

(1) All routines, except DE LA Y, use R3 as program
counter, exit with SEP5, and alter registers X,D,
OF, RE, RF and location M(R2).

exits with SEP3 after incrementing R3, and
alters registers X,D, OF, and RE.

(3) READ and READAH exit with R3 pointing
back at READAH.

(4) All five TYPE routines exit with R3 pointing (2) DELAY routine uses RC as program counter,
at TYPE5.

18 __________________ Operator Manual for the RCA CDS II CDP18S005

Examples of UT20
Read and Type Usage

The following examples should help clarify how
to use the UT20 read and type subroutines. Most
examples use the standard subroutine linkage which
require's that R2 point at a free RAM location.

: Read Routines

.This sample program will read four ASCII hex
characters into register RD translating them from
~SCII to hex in the process. Reading will terminate

-<when a carriage return is entered. Entry of a non-hex
digit other than a carriage return will cause a branch
to an error program which will type out a "?". This
sample program uses the standard subroutine call and
return linkage.

READAH=#813B

LOOP: SEP R4,A(READAH) .. Call the hex
.. read program

BDF LOOP .. As long as ASCII hex
.. digits are entered
.. Read and shift in
.. Fall through if not hex
.. character

GHI RF .. See what character was last
.. entered

XRI HOD .. Was it carriage return
BNZ ERROR .. If not, BR to error

.. Characters entered are now

.. in RD

The READ routine (at 813E) could be used
similarly to enter characters; however, READ only
enters them one at a time into RF.I (and D) writing
over the previous entry. Note that, even though
incoming data is entered into D, the subroutine
return program alters D. Therefore, valid data will
only be found in RF.I (and RD when READAH is
used) if the standard subroutine call and return
programs are used. An alternative technique is to use
R5 as the main program counter (since all read and
type routines terminate with a SEP RS) and call the
program with a SEP R3 (since all read and type
routines use R3 as their program counter). The
following example illustrates this technique.

Type Routines

EXAMPLE 1: This program outputs a single
character using the TYPES routine. It uses RS as the
program counter.

LDI #81
PHIR3
LDI #AO
PLOR3
LDI #FF
PLOR2
LDI #3F
PHIR2
SEPR3

.. Set R3 to TYPES routine

.. Set R2 to free RAM location #:~FFF

.. Call type
,T'R'
yy

. . An "R" will be typed

.. Next instruction

The TYPESD routine is used in the same way,

EXAMPLE 2: This program outputs a character
using the TYPE6 routine. Note that R6 should be the
program counter for the program calling TYPE6 if
the character to be typed is an immediate byte
because TYPE6 must always be from M(R6). But,
because TYPE6 exits with SEP S, TYPE6 must
always be called using standard subroutine linkage
for typing an immediate byte. An alternative is to use
RS as the main program counter but point R6 at the
memory location containing the byte to be typed.
This example uses standard subroutine linkage .

SEP R4 .. Branch to the call routine
,#8IA2 .. Address of TYPE6
,T'?' .. Byte to be typed out
yy .. N ext instruction

EXAMPLE 3: The TYPE and TYPE2 routines
pick up the byte in RF.I for typing. TYPE simply
outputs the character, whereas TYPE2 considers
RF.I a hex digit pair which it encodes in ASCII
before typing. This example types out the hex digits
'DS', and uses standard subroutine linkage.

LDI #DS
PHIRF
SEP4
,#8IAE
yy

.. Load hex digits DS

.. IntoRF.1

.. Call TYPE2

.. Next instruction

Note that all type routines, except TYPE2,
expect the character they pick up to be already en
coded in ASCII.

EXAMPLE 4: An entire message can be typed
by using the OSTRNG routine. The ASCII bytes
pointed to by R6 will be typed. When a '00 ' byte is
detected, OSTRNG returns to the caller. This
example will output the string

RCACOSMAC
MICROPROCESSOR

The standard call and return linkage is assumed.

I

I
r

•

•

•

Operating and Programming the CDS _______ ________________ 19

.
,:' "

OSTRNG = #83FO

SEP R4,A(OSTRNG I .. Call OSTRNG
DC T'RCA COSMAC' .. 1st Line

,#ODOA .. (CRI (LFI
,T'MICROPROCESSOR' .. 2nd Line
,#00 .. End of Text

Additional
Utility Routines

ASCII to Hex
Conversion Routine

The ASCII to hex conversion, CKHEX,
examines the ASCII character in RF.l. If this
chanl(;ter is not a hex digit, CKHEX returns to the
IIser Ivia SEP R:)I with OF = O. If the character is
IIPx. CKHEX returns with RE.O = hex digit, OF =
I and with the digit shifted into the least significant 4
bits of ~egister RD. CKHEX uses the registers
dt's('rihed above and. as with the other routines, is
most ft'adily handled via the standard call and return
lI'Chniques. CKHEX is located at 83FC.

Initialization Routines

Two routines are provided, INITI and INIT2,
\\ hil'h initialize CPU registers for the standard call
and fPturn technique. These routines set up registers
as follows:

R2 = R(X I - POIntIng to the last (highest)
available user RAM location

R3

R4

R')

(below 8000),
- will become the program counter

on return
- pointing to the call routine in

UT20
- pointing to the return routine in

UT20

The INIT programs examine user memory area
(below address 80001 and determine how much
nWlllory is present. They set R2 to the highest
available RAM address, which is 03FF for the CDS
as supplied (with one 4-kilobyte RAM cardl.

The only difference between INITI and INIT2
is the lo(;ation to which they return. INITI returns to
location 000:) with P = :1, while INIT2 simply
rptllTns by sf'tting P = :1 and assumes that the user
has already set R:1 pointing to the correct return
point. These programs are intended as a convenience
to !'n't' the IIser from generating the overhead code
n'<Jllin'd by the standard subroutine technique. They
llW) also be used as an integral part of custom
support programs running on the CDS. Their ab
,;olllte addresses are INITl = 83F3 and -INIT2 ~
B:W(I. Hefer to Appendix G, the UT20 listing, for the
absollltt' addresses of CALL and RET, which will be
loaded into R4 and R:) respectively.

Following are examples of the use of these
prol-(rams:

EXAMPLE 1: Using INITl
INITl = #83F3

Address Code Mnemonics Comment

0000
0001
0002
0003
0004
00U5

71
00
CO
83
F:~

DIS,#OO .. Disable interrupts

LBR INITI .. Initialize registers

USRPGM:-- .. User program starts here;
.. P = 3

EXAMPLE 2: Using INIT2
INIT2 = #83F6

Address Code 1\1fl('moni('s Comment

0000 71
0001 00
000:2 FH

oom 00
0004 B:3
000:) FS

OOO() .')0
0007 A3
OOOS CO
OOOfJ ~n

OOOA Fe)

OOSU

])IS.#OO .. Disable interrupts

LDI A.I .. Set R:3 to return
(STARTI

.. point
PHI R:3
LDI A.O
(STARTI

PLOR:1
LBR INIT2 .. Call INIT2

START:-- .. User program starts here
..P =3

20 _________________ Operator Manual for the RCA CDS II CDP18S005

Routine to Restart UT20
A means is provided to automatically transfpr

('ontrol back to UT20 from a user program. An entry
point routine. GOLT'20. is providpd for this purpmw.
WIH'n pntered via this routine. UT20 will relStart and
iSSIW a *' prompt to the terminal. A long branch to
(;()L'r~O at location #lBF9 will cause this transfer.
LT2() depends on the following conditions upon re
('n tr~ :

:\.

I) HE.I = tNminal timing constant
2) Two-Ipvel 110 is enabled .

In order to assure the second condition, the user
program must be initiated via the $U command. The
GOUT20 routine can be called only by a program
having R3 as its program counter.

Additional Notes on UT20
LT20 automatically enables group 1 1/0 devices.

which indudf's the terminal and floppy disk in
t('ffan·s. when it is started. tJ s('r-addpd TlO devices
win·d to tlw samp group-splpct signal are also
enabled. For more information on this subject, refer
to "Two-Level I/O" under Input/Output Intt'r
facing in the next Section, titled Hardware
Structure of the CDS.

Intt'fmpts arf' automatically disabled when UT20
is running. They are re-t nabled by either the $P or
SU command. Because R I and R2 must be initialized
bv a wwr program before iIllerrtll t. are allowed .
u"T20 prohibits start-up via lhe~e cCll1l1nands if an
Intt·rrupt i:-; pt~ nC!in g . In: t ' ad . it wi ll lype IN
TEHRUPT and issue an *. This f{'atllr(' i: a con
vpnience to the WH'r to prevent start-up problems if
intprrupts have not been externally disabled. If
custom hardware is installed that may cause in
t('rmpts at start-up. the user program should be
startt'd via the RUN P switch.

Programming Methods
Machine Language

Programming

With an understanding of the structure and
olH'ratio/l of tlw P and the material rrovid d thll ,'
rur. Lhe reHdf'1' i!i rre ra rt~d to b ,ill using ' tilt>
I)I'V lopment S stem in an el m nlar way. For
C'xamrle. hf' 'an now lind rstand and po. ihl y mod if_
the lim e-out le~1 program pr S Ilt d a'rli r in this
Manual. Howf' r. a lmo ' t an. hexad ·imallmachine
langltag) t t program 'wi II reCJllir u e (If the 110
IYI ewritt· r . Th most basi ' wa to commllnical by
til· t -IN pewril r. lherf'for . will be covered next.

To read a character from the I/O teletypewriter.
the llser program should transfer control to READ
nn UT20). That is. load R3 with HUE and execute a
D3 instruction, making sure that R2 is pointing to a
free RAM location. After the typed character is read,
the utility routine will return by setling P to 5, i. e. , by
executing the in truction D- (making it most con
venient if the program counter of the calling routine
were t begin with I. The ASCII code for the input
character (with a 0 parity bit) will b in both RF.)
and in D. The memory location pointed to by R2 and
registers RE, RF, X, and OF will have been changed
in value (not preserved over the call).

- A list of key UT20 sYlllblllic locutiolls and their cllrrespolldill~
ab sulute IllCIl111ry addresses is !(iven in Table II .

Because the READ routine uses R3 as its program ...
counter, it is most convenient to branch to READ by ~.
a 03 instruction. When READ returns to the caller,
R3.0 will contain a modified value, necessitating
another initialization if a repeated I/O is to be per
formed. Because the READ routine uses the values in
registers RC and RE which UT20 will normally
initialize, it is essential that the user refrain from
using these registers unless their values are saved and
later restored by his program ..

To cause a character to be typed out by the I/O
typewriter, the user program should transfer control
to TYPE5D at location 819C, by means of a D3
instruction, again making sure that R2 is pointing to
a free RAM location. As discussed above, the calling
P value should be 5 and, for this case, the ASCII code
for the output character should be an immediate byte
(i.e., the byte after the 03 instruction). After typing
the character, READ will have advance R5 past the
argument byte and again return by a 05 execution.
M(R(2)), as well as registers RE, RF, X, D, OF, and
R3.0 return altered. All other register values are
preserved. For the reasons previously cited, the user
should again refrain from using registers RC and RE.

Given the a'bility to execute simple I/ O terminal
functions the user can now code elementary te t ,
program to further exercise the COSMAC
Development System. As a simple example, consider
the routine shown in Fig. 3 that reads two bytes,
compares them, and outputs the "larger" of the two.

T

•

•

•

Operating and Programming the CDS _______________________ 21

MEMORY HEX CODE
LOCATION

00

STORED

90

COMMENTS

00 D. (Assumes RO.1 = 0).
01
04

828586
F8 FF A2

Clear upper half of pointers.
M(OOFF) is the free RAM location.

07
OA
OD

F881 83
F8 3E A7
F8 9C 87

Initialize upper half of I/O call program counter.
Lower half of READ address saved in R7.0.
Lower half of TYPE address saved in R7.1.

10 F8 27 A6 R6 now points to 0027 (the immediate TYPE byte).
13
16

F8 17 A5
D5

R5 initialized to 0017 is ready to be the program counter.
Change P from 0 to 5.

17 87 A3 R3 now points to READ routine (813E).
19 D3 Call READ. Input character to D and RF.1.
1A 56 Save first character in immediate byte location.
18 87 A3 D3 READ second character.
1E E6 X now points to first character.
1F F7 D - M(R(X)) D. Subtract first character from second.
20 3824 Print the first character if it is the largest.
22 9F 56 Second character moved to immediate byte location.
24 97 A3 R3 now points to TYPE5D (at 819C).
26 D3 Call TYPE. Output byte at the next location (0027).
27 00 Immediate byte storage for TYPE routine.
28 3017 Loop for another pass.

Fig. 3-- Example of elementary hexadecimal program .

The routine given exhibits register usage compatible
with the UT20 READ and TYPE calling sequences.
Further, the 110 instructions consist of calls to the
appropriate teletypewriter interface routines.

The initialization part of the program is above the
dashed line. The main program loop begins at
location 17. Each call to the utility program (two
READ's and one TYPE) is made by a D3 execution
after first initializing R3.0 with the proper half of R 7
in which the two lower half address constants (9C and
3E) are stored. R3.1 continues to hold its
initialization value of 81. Two characters are read and
a subtraction is executed. The resulting immediate
TYPE byte is conditional on the results of the sub
traction. The free RAM location used by READ and
TYPE is OOFF in this case since R2=00FF.

The initialization part of the program is executed
with P = O. R5 is the program counter once the main
program loop is entered at location 17. R6 is
initialized to point to the immediate TYPE argument
location (0027). Notice that X is set to the value 6 (see
instruction at location IE) after the READ routine
since READ changes the value of X.

An exampl of loading and running a program by
m a ns of th keyboard i a CDS "session" using the
el "mentary program just discussed. In what follows,
underlined text represents UT20 printout; text not
underlined represents user input; bracketed text is
commentary.

Begin by turning power ON and pressing RESET,
followed by RUNU. The .RUN light will go on. Then

(CR) [Carriage Return to establish timing
constant and echo)

* [UT20 prompt character)

!MO 90 B2 B5 B6 F8 FF A2 F8, (CR) (LF)

81 B3 F8 3E A7 F8 9C B7, (CR) (LFI

F8 27 A6 F817 A5 D5 87, (CR)(LF)

A3 D3 5687 A3 D3 E6 F7, (CR) (LF)

3B 24 9F 56 97 A3 D3 00, (CRI (LFI

3017 (CR)

[The program has now been loaded)
..!. [UT20 ready for the next command)

$U(CR)[Begin program execution)
AB!!BA!!12~21!MN~ [.. etc ..)

Each character triplet represents one pass through
the main I rogram loop con isting of two user input
character and 11 ntput haracter.

The reader may wish to code his own program at
this point to verify his knowledge of the CPU in
struction set and the read and type routines.

22 _________________ Operator Manual for the RCA CDS II CDP18S005

Programming Interface
to CSDP

Machine language coding, even of a trivial
program, should convince the novice programmer
that to do any serious programming, one should take
advam.age of the set of software support aids
available. Veterans in the programming community
are already aware of the fundamental necessity for
assembly and simulation facilities. Support services
~re" available either by timesharing, i.e., using a
system of RCA-developed programs hereafter
ief~rred to as CSDP, or by this Development System
itself. The user manual for the former set of programs
is the Timesharing Manual for the CDP1802
COSMAC Microprocessor, MPM-202. For the
latter set of programs it is this manual. To do any
non-trivial programming, it is essential that the
reader be familiar with the facilities provided by these
software support systems. If the reader is not using
CSDP, he should skip this section.

As discussed in the Timesharing Manual for the
RCA CDP1802 COSMAC Microprocessor, MPM-
202, much of program developmenl by CSDP is
accomplished without direct CDS involvement.
Typically, a source file is constructed, assembled,
edited (if the assembler objects to the source code),
reassembled,oo.,etc. The simulator is used to run the
program, during which time program bugs are
isolated and removed by further editing and
reassembly of the source file. Eventually, the object
code is ready for loading and running in the real
hardware (the COSMAC Development System) for
further testing. It is this part of the process that is of
concern here.

Already discussed has been the use of the '! M'
utility program to load the CDS RAM from the
keyboard or from tape. One ultimate purpose of the
CSDP system is to generate an object code file,
compatible with the required ! M format, and (on
command) to transmit this file over the telephone link
to the CDS system. Clearly, it is possible for the user
to write this file onto a tape and subsequently load the
CDS using this medium. Of concern here, however, is
the automatic mechanism by which the !M
compatible object file coming over the telephone line
is loaded into the CDS RAM directly.

There are three different data communication
paths. First is the I/O teletypewriter-CDS path,
already discussed. Second is the I/O teletypewriter
Timesharing System link, via an appropriate modem,
which is implied in the use of CSDP for assembly and
simulation. And third is the Timesharing System
CDS link (again via a modem) which is essential to
the automatic, direct-load process.

Some switching mechanism is implied by which the
Development System serial "Terminal" input signal
can come either from the keyboard/tape reader or
from the modem carrying data generated by CSDP.

A teletypewriter unit, for instance, requires an
external modem (e.g., an acoustic coupler or a' data
set), and an added external "switchbox" to
mechanize the various TTY-CDS. TTY-modem, and
modem-CDS paths. It should be an appropriately
wired three-position switch. In the "TTY CDS"
position the terminal acts as the I/O device for the
CDS. In the "TTY-TIMESHARING" position. it
acts as normal timesharing terminal. In the
"TIMESHARING-LOAD" position, the link is
established to allow data from the timesharing system
to be automatically loaded into the CDS memory.

If it is asslUned that the user has been using the
CSDP control program and that an object code file,
previously assembled by CSDP, is ready for tran
smission, the steps required to effect an automatic
load of the CDS RAM follow.

Because CSDP will transmit an ! M-compatible
object file on command from the terminal, it is
necessary to properly initialize the utility program so
that it is ready for this input. This initialization is
done by temporarily switching the terminal to ac
tivate the TTY -CDS path only, and pressing
RESET, followed by RUNU, followed by the
keyboard echo-timing control character LF.
Initialization will be followed by a return of the
prompt character indicating that UT20 is ready. It
will then ignore all subsequent inputs until a ! or '! or
$ is detected. It is essential that this local initialization
be done at a time before the final carriage
RETURN, which terminates the "transmit" com
mand to CSDP, yet after the occurrence of any
characters in this command string recognizable by
UT20. Thus, the final "transmit object file" com
mand to CSDP is begun in the TTY
TIMESHARING mode. At the proper point, UT20
initialization occurs, as discussed above. Then, the
terminal is switched back to TIMESHARING
LOAD and the command is completed. All sub
sequent characters are ignored by UT20 until it
receives the loading ! M indicating the beginning of
object file transmission;

CSDP indicates that it is ready for a user command
when it outputs to the terminal the prompt characters
DBG. Assuming that the assembled file is ready for
transmission, the following two alternative CSDP
commands will effect the transmission:

1. $X 6. FiLe Name 6. Start RAM Location 6.
End RAM Location where FiLe Name is the
name of the file or the device which will

•

•

I

t

•

Operating and Programming the CDS _______________________ 23

fPceive the specified contents of CSDP's
simulator memory. These contents are nor
mally object-code generated as the result of a
just-completed assembly. If File Name is
specified as TTY, the object code will be
transmitted over the telephone line to the
tprminal. For example,

$X TTY #0 #lFF (CRJ

will result in the transmission of the comma
continuation form of the ! M object file,
loading the lowest part (20016 bytes~ of the
CDS RAM. lRecall that the utility program
must be properly initialized just prior to the
final CR.~ The !M form is more compact and
"relocatable" .

$Y /':" File Name /':" Start RAM LOC /':" End
RAM Loc where the same comments above
apply to File Name. For example,

$YTTY #20#150 (CR~

will result in the transmission of the semicolon
continuation form of the -! M file (more
rpadable, since each line begins with an ad
dress value~. This form is particularly useful
for "scatter loading" of subroutines or other
memory patches.

1£ the CDS has been initialized properly, just
befon' the transmission begins, the object file will be
loaded into RAM automatically. The user can then
proeeed to run the program with the 110 data ter
minal in TTY -CDS mode, using standard CDS
faeilitips. i.e .. $P or $U by means of the utility
program or a RESET, RUN P sequence.

An example follows of a CSDP-Development
S~ stem session using a Level-l assembly language
v('rsion of the sample program given in Fig. 3. The
SOl/ree program is listed in Fig. 4. For this example,
the program is written to begin at memory location
OO() I to illustrate use of the ORG statement. The
('omments in the listing should be sufficient to permit
the rpader to establish correspondence with the
ddailed hex code in Fig. 3. Assume that this source
program is entered from the keyboard into the
tinwsharing system, as a file named SAMPLE. Once
this entry is made, the user calls for activation of the
CSDP program. When CSDP is ready for a com
mand. it prompts the terminal with the DBG
mpssage. By entering the CSDP command $A
SAMPLE, TTY (CR), the user calls for an assembly
of this file with listing and diagnostics printed to the

terminal. The output received is indicated in Fig.
;) •. The code listed there (the same as that in the hex
program generated earlier ~ has now been loaded into
the CSDP simulator's memory. After generating the
listing, CSDP again returns with the DBG prompt.

At this point, the user follows the instructions given
earlier. that is, input of the $X or $Y command with
appropriate UT20 initialization, to effect an
automatic load of the object file into the CDS RAM.
The sequence of steps is as follows:

1. Begin the transmit command to CSDP by
typing $ a TTY #0 #30 (where" a" is either
X or Y~, but without typing the final carriage
RETURN yet.

2. Switch the terminal to the TTY -CDS mode.

3. Press RE SE T, R UNU, CR or LF (for full or
half duplex~, and receive the * prompt as an
answer from the utility program.

4. Switch back to TTY-MODEM mode. Switch
the selector switch to the "CSDP LOAD"
position at this point.

5. Press the final carriage RETURN, ter
minating the CSDP transmit command. For
this case, 3016 bytes will be transmitted.

While the object file is being transmitted to the
Development System, it is also printed on the data
terminal. For the example given, the CSDP com
mand $X TTY #0 #30 will result in

!MOOOO

FFl)()B2B5B()FHFF A2FUSIB3FS3EA 7FS9CB7FU2SA6,

FH WA5I?5H7 A3D356S7 A3D3E6F73B2-~9F5697 A3D3,

FF301S FFFFFFFFFFFF

DBG

printed on the terminal during the loading of RAM.
On the other hand, for the same example, the CSDP
command $Y TTY #0 #30 will result in

• Refer to the Timesharing Manual for the RCA CDP1802
COSMAC Microprocessor, MPM-202, for detailed CSDP
user instructions and an explanation of the assembly
listing formaL Note that for forward references, the
code displayed in the listing does not correspond exactly
to the contents of the simulated memory.

.-

24 _________________ Operator Manual for the RCA CDS II CDP18S005

' .

!M

(JOOO FF<)O B2B:1 BM·'B FF A2 FBBl B:WB 3EA7 FB9C;

printed on the terminal during the loading process.
Notice that. after completion of transmi~si()n . CSOP
comes back in its command mode with the OBG
prompt.

oow B7FB2BM FBIB A:105 B7A:3 0:3:16 B7A3 03E();

0020 F7:m 2:19F :1697 A:m:3 0030 lBFF FFFF FFFF;
The user may now log off from the time~harin!-(

system after a "$Q" to CSOP and then ~witch the
data terminal to the TTY-CnS mode to vrrify
loading. via the ?M command. and to . run the
program.

00:30 FF

DBG

RDPTR = #3E

WRPTR = #9C

10 = R3

PC = R5

ARG = R6

10PTR = R7

ORG -#01

· . LOWER HALF READ ENTRY

· . LOWER HALF TYPE5D ENTRY

· . UT3 READ-TYPE PROGRAM COUNTER

· . CALLING PROGRAM COUNTER

· . POINTER TO IMMEDIATE TYPE BYTE

· . HOLDS WRPTR AND RDPTR VALUES

· _ PROGRAM STARTS AT LOC 1

........ .. INITIALIZATION PHASE BEGINS HERE , - .

GHI RO

PHI R2

PLO R2

PHI PC

PHI ARG

LDI #81

PHilO

LDI RDPTR

PLO 10PTR

LDI WRPTR

PHI 10PTR

LDI A. 0 (ARG1)

PLO ARG

LDI A. 0 (LOOP)

PLO PC

.. CLEAR 0 , SINCE RO.1 IS ZERO

· . R2 POINTS AT FREE LOC (ZERO)

.. CLEAR UPPER HALVES OF LOCAL PTRS

· . INITIALIZE UPPER HALF UT3 PC

· . LOWER H.A.LVES OF UT3 ENTRIES

· . POINTER TO TYPE SAVE BYTE

· . LOCAL PROGRAM COUNTER READY

SEP PC .. SWITCH PROGRAM COUNTERS

... MAIN PROGRAM LOOP BEGINS HERE

LOOP: GLO 10PTR

PLO 10

SEPIO

STR ARG

GLO 10PTR

PLO 10

SEPIO

SEX ARG

SM

BM TYPE

GHI RF

STR ARG

TYPE : GHI 10PTR

PLO 10

SEPIO

ARG1 : ORG*+-#01

BR LOOP

END

· . POINT TO READ

· . CALL READ . FI RST CHAR TO 0

. . SAVE IT

· . REPOINT TO READ

.. CALL READ. SECOND CHAR TO 0, RF . 1

· . RESTORE ARG POINTER

· . SECOND CHAR MINUS FIRST

.. EXIT IF FIRST CHAR IS LARGER

· . SECOND CHAR TO OUTPUT ARG LOC

· . POINT TO TYPE5D

· . CALL TYPE .
· . IMMEDIATE BYTE ARG AND SAVE LOC

· . LOOP FOR ANOTHER PASS

Fig. 4 - Source code of sample program for CSDP
timesharing assembler.

Operating and Programming the CDS 25

DBG $A SAMPLE, TTY

FL LOC COSMAC CODE LNNO SOURCE LINE

0000 RDPTR = #3E .' . LOWER HALF READ ENTRY

0000 2 WRPTR = #9C · . LOWER HALF TYPE5D ENTRY

OPOO 3 10 = R3 · . UT3 READ·TYPE PROGRAM COUNTER

0000 4 PC = R5 · . CALLING PROGRAM COUNTER

' 0000 5 ARG = R6 · . POINTER TO IMMEDIATE TYPE BYTE

0000 6 10PTR = R7 · . HOLDS WRPTR AND RDPTR VALUES

0001 7 ORG #01 · . PROGRAM STARTS AT LOC 1

-. 0001 8 INITIALIZATION PHASE BEGINS HERE '

0001 90 9 GHI RO · . CLEAR D. SINCE RO.l IS ZERO

0002 B2 10 PHI R2

0003 A2 11 PLO R2 · . R2 POINTS AT FREE LOC (ZERO)

0004 B5 12 PHI PC

0005 B6 13 PHI ARG · . CLEAR UPPER HALVES OF LOCAL PTRS

0006 F881 14 LDI #Bl

0008 B3 15 PHilO · . INITIALIZE UPPER HALF UT3 PC

0009 F83E 16 LDI RDPTR

OOOB A7 17 PLO 10PTR

OOOC F89C 18 LDI WRPTR

OOOE B7 19 PHI 10PTR · . LOWER HALVES OF UT3 ENTRI ES

F OOOF F800 20 LDI A.O (ARG1)

0011 A6 21 PLO ARG · . POINTER TO TYPE SAVE BYTE

F 0012 F800 22 LDI A.O (LOOP)

0014 A5 23 PLO PC · . LOCAL PROGRAM COUNTER READY

0015 05 24 SEP PC · . SWITCH PROGRAM COUNTERS

0016 25 MAIN PROGRAM LOOP BEGINS HERE

0016 87 26 LOOPGLOIOPTR

0017 A3 27 PLO 10 · . POINT TO READ

0018 03 28 SEPIO · . CALL READ . FI RST CHAR TO 0

0019 56 29 STR ARG . SAVE IT

001A 87 30 GLOIOPTR

001B A3 31 PLO 10 . REPOINT TO READ

001C D3 32 SEPIO · . CALL READ . SECOND CHAR TO D. RF .l

I 001 D E6 33 SEX ARG .. RESTORE ARG POINTER ..
I 001E F7 34 SM · . SECOND CHAR MINUS FIRST
I

F 001F 3BOO 35 8M TYPE .. EXIT IF FIRST CHAR IS LARGER
I
1 0021 9F 36 GHIRF

0022 56 37 STR ARG · . SECOND CHAR TO OUTPUT ARG LOC

0023 97 38 TYPE : GHI 10PTR

0024 A3 39 PLOIO · . POINT TO TYPE5D

0025 03 40 SEPIO .. CALL TYPE .

0027 41 ARG1: ORG*+#Ol · . IMMEDIATE BYTE ARG AND SAVE LOC

0027 3016 42 BR LOOP · . LOOP FOR ANOTHER PASS

0029 43 END

NO UNDEFINED LABELS

NO UNDEFINED SYMBOLICS

DBG
Fig. 5 - CSDP assembly listing for sample program.

26 _______________ Operator Manual for the RCA CDS II CDP18S005

f

,

I
i

I
,

I .. '

I
!

•

•

•

___ 27

Hardware Structure
of the CDS

This section of the manual is organized to a present
a "top down" explanation of the hardware structure
of the COSMAC Development System. First, an
over-all system block diagram is given containing
sufficient detail to explain the basic functions of each
of the modules and to indicate all of the essential data
and control paths in the system. -A few "second
order" signals are omitted at this stage for simplicity.
This overall diagram is followed by a block diagram
of each of the modules. These diagrams are designed
to provide sufficient detail (signal mnemonics, timing

information, etc. I so that further user analysis of the
individual module logic diagrams (given in Appendix
D) should be unnecessary. The assignment of con
nector pins to signals is omitted at this point. This
detail is found in the backplane wiring schedule in
AppendixA.

A fundamental prerequisite to understanding the
structure of the CDS is a detailed familiarity with the
COSMAC CPU interface and instruction set, as
described in the User Manual for the RCA CD
Pl802 COSMAC Microprocessor, MPM-201.

System
Block Diagram

The broad organization of the Development
System is indicated in Fig. 6. The CPU module in
terfaces with an I/O system to its right in the diagram
and with a memory system to its left. The switches
and indicators on the Control Panel (at the top of the
diagraml communicate with the system through the
CLOCK and CONTROL Module, which also
eontains the system clock.

Most of the signal paths in the diagram are labeled
with signal mnemonics in parentheses. The notation
I i:j I is used to denote a parallel set of signals, each
labeled with a unique index in the range ito j. Thus,
for example, A(l4: 121 represents the bundle of three
parallel signals A14, A13 and A12. Note further that

where additional emphasis is required to distinguish it
from the letter "0", a "~" is used for the numeral
zero.

The superscript after each module name in the
diagram denotes the plug-in connector position or slot
number in the CDS next to which the module is
assigned.

Physically, the Development System consists of a
card nest with 25 sockets for logic cards in
terconnected by means of a printed circuit backplane,
a power supply, a chassis which will mount via a 19"
rack or a cabinet, and a hinged panel on which are
mounted control switches and indicators.

•.

28 ____________ _ _ ___ Operator Manual for the RCA CDS II CDP18S005

10

ADDRESS LATCH
AND

BANK SELECT
CDPI8S206

r ---- l ~-:::-=~-;-;:-l '------,

I
I
I MEMORY
I EXPANSION

I
I
I
L _

4- KILOB'fT
RAM

CDPI8S205

ROMI RAM
CDPI8S401

"'----1
~N~=~0~T~H~R~0~U7G~H~N~=~7----~1 I
~~----~~~-'r l I

ST.l,TE CODE . FLAGS. D MA.TPA. TPB . IN

TERM INAL
I NTEP~ACE
C DP 185507

14
OPTIONAL 24

DISK
INTERFACE
CDPI85813

I
1
I

IIO I
EXPANSION I

I
I
I
I

__ J

Fig. 6 - Block diagram of COSMAC Development
System /I CDP18S005.

92CL- 2962 5

The control and Display Panel has a PC board on
which are mounted the switches, displays, and
associated electronics. Via a cable, it communicates
with the control module which is inserted into the
card nest. The Control module contains circuits to de
bounce the switches, interface then to the CPU, and
perfonn some logic control and timing. The Control
module communicates with the CPU module via
wires printed on the backplane.

The CPU module consists of the CDP1802 with a
crystal for the on-chip oscillator and electrical buffers
for the Data and Address Buses. The CPU module is
central to the system, communicating with the 110
and Memory systems to the right and left respectively
in the diagram.

On the memory side, the Address Latch and Bank
Select module. as its name implies. latches the high
order Memory Address Byte and decodes it into 16
unique Bank Select lines, for use by the entire
memory system. On the 110 side, the 110 Decode
module accepts the N lines from the CPU, and

decodes them into 7 unique lines. N = 1 through N
= 7 for use by all 110 controllers. In addition. it
latches the Data Bus on a (61116 instruction, and
provides eight Select lines for use hy all 1/ 0 con
trollers as two-level 110 addressing.

Two memory modules are provided. the
ROM/ RAM and the 4-kilohyte RAM. The
ROM/ RAM module holds the system 's Utility
program ROM (uT201 plus a small (32-bytel RAM
for use by that Utility . The 4-kilobyte RAM module
provides 4 kilobytes of static RAM storage.
Additional 4-kilobyte RAM modifications may be
added pre-wired expansion slots.

A Terminal Interface Module is provided, which
may be used to communicate with tenninals having
either the EIA or 20-mA current-loop interface.

All memory and 110 controller modules attach to •
the common DATA BUS, which is hi-directional. ~
Therefore, these modules must provide a means for
disconnecting from the bus. when not using the bus.
such as tri-state buffers or transmission gates.

•

~ •.

•

Hardware Structure of the CDS __________________ _ _______ 29

The various control, flags, etc. are distributed to
the 110 and memory expansion locations on the
hackplane. Module select lines, BANK SELECT for

memory and SELECT for 110, are not wired on the
backplane PC board, but are available for wire-wrap
connections as determined by user system con
figurations.

Module Description
and Signal Mnemonics

- Each standard module will be described using a
~implified logic or Block diagram. Detailed logic
diagrams may be found in Appendix D.

Signal naming conventions are as follows:

The signal name is followed by a hyphen and
either the letter N or P. The suffix N means the signal
is asserted (true I when that wire is at grOlmd. The
suffix P means the signal is asserted (true I when that
wire is at the highest logic level (+5 VI. Thus the
signal name gives the meaning assigned to that
conductor, and the suffix defines the electrical value
of the asserted (truel state.

A btmdle of parallel signals is indicated by a (i:jl
notation in the signal name denoting a nmning index
over the range i to j and by the number of parallel
signals (in parentheses I labeling the signal path.
Inputs which are pulled high or Iowan the module are
indicated with resistor symbols to VDD or to GND.
If such an input is not used (not connectedl, it
assume!"! the highllow level defined by its "pull
upl down" resistor. Output signals which are derived
from CMOS transmission gates are labeled with a
"(1'1" in the diagrams. Such outputs may be bussed
("wire-OR 'ed "I together - assuming only one tran
~mission gate is enabled at a time. An output derived
from a transmission gate may also be pulled high or
low with a resistor on the board.

Card Nest and Backplane

The backplane of the Card Nest is a double-sided
PC board mounted on the back of the CDS. It in
terconnects the pins of the first 25 of the 33 available
connector positions. Some of these positions are
occupied with supplied modules, as indicated in
Table III. The card positions, viewed from the back,
are numbered from left to right.

TABLE III - MODULE POSITION
ASSIGNMENTS IN NEST

Connector
Position
Number

1
2
3
4
5
6
7
8
9

10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26 - 32

Module

Memory Bus
Memory Bus
Memory Bus
Memory Bus
Memory Bus
Memory Bus
Memory Bus
4-Kilobyte RAM
ROM/RAM
Address Latch and

Memory Bank Select
Blank
CPU
I/O Decode
Terminal Interface
I/O Bus
I/O Bus
I/O Bus
I/O Bus
I/O Bus
I/O Bus
I/O Bus
I/O Bus
I/O Bus
(Floppy Disk Interface)
Control
Power Supply

Part Number

CDP18S205
CDP18S401

CDP18S206

CDP18S102
CDP18S509
CDP18S507

CDP18S813
CDP18S103

The backplane WIrIng schedule in Appendix A
indicates the following types of connection: lillused
pins, pins interconnected by printed wiring, pins
interconnected by a wire-wrap, and pins not con
nected on the backplane but which have meaning
defined by the plugged-in module. A dash indicates
an lillused pin, In all cases, identically named signals
are interconnected. The backplane is laid out so that

30 _________________ Operator Manual for the RCA CDS II CDP18S005

signal flow is horizontal, i.e., wherever possible the
printed wiring connects identical pins on different
connectors. Note that almost all of the printed signal
interconnections are made on the exposed side of the
backplane. If the user wishes to modify the backplane
wiring for some reason, he can scratch out undesired
con,nections and wrap his own.

One notational inconvenience between the CDS
• d~cumentation and the data sheet for the CDP1802
microprocessor should be explained. In the CDS, the
power supply voltage VDD (+5 volts) is the standard
high signal level. This voltage is connected on the
CPU plug-in board to the microprocessor pin (16)
labeled "V CC" on the CDP1802 data sheet. The
label "VCC" is not used in CDS documentation.
Another microprocessor pin (40) may be connected to
a higher power supply voltage level to achieve higher
speed, if desired. In the CDS, this pin is connected to
the power supply voltage labeled "CPUPWR"
(whose level may be 5 volts or higher). The CDP1802
data sheet labels this pin as "V 0 0", For a CDS for
which both positive CPU supply voltages are at 5
volts. the user should not be confused by these
alternative notations. A ground strap is provided
connecting logic ground to chassis. It may be
removed by the user if he has an alternate safety
ground in his system.

Each of the solid boxes in the CDS Block Diagram
of Fig. 6 corresponds to a supplied module. Both the
Block Diagram and the backplane wiring schedule
show the modules generally left to right as they ap
pear when viewed from the backplane side. From the
front. memory is on the right and the 110 side of the
system is on the left.

Some precaution should be exercised in removing
and inserting modules into the CDS nest. The module

(FROM CONTROL BOARD)

WAIT- N

CLEAR-N

Q-P

SC[I :O}P

DB~:O]-P

N~:O]-P

cards are keyed so that they cannot be inserted in "
improper positions or with improper orientation.
However, it is possible for a key to be pulled out by a
card removal. When removing a card, care should be
taken to exert a lateral force. without twisting the
card lmnecessarily. It is also possible for a connector
contact to be dislodged as a result of improper card
removal. A short across to an adjacent contact (1 to A
or A to B, for example) can then occur. If trouble
develops after a card removal and later reinsertion,
careful inspection of the connector involved is ad-
visable before attributing the problem to failed
electronics.

Special care should be taken when cards are in
serted into or removed from the extender card socket
because the socket has no key to limit harmful up
and-down motion or improper card slot insertion.

CPU Module CDP18S102
The CPU IS the heart of the COSMAC

Development System. It controls and addresses
memory, multiplexing the sixteen-bit memory ad
dress over a one-byte memory address bus. It
manages a bidirectional one-byte data bus. It senses
and reacts to external signals - interrupt, DMA input A
request, DMA output request, and four external.!
flags. It transmits two timing pulses, or syncs, and an
encoded CPU state. When executing an input/output
instruction (I = 6), it transmits the three-bit "N"
field of the instruction. Refer to the User Manual for
the CDP1802 COSMAC Microprocessor, MPM-
201, for details of the CPU operation.

Fig. 7 shows the basic logic contained on this
circuit module. All named signals are brought to the
backplane connector for use by the system.

2 MHz

e LK OUT

(~ l IINT-N
DMAIN-N
DMAOUT-N

MWR-N
(2)

(2) lTPA- P COP 1802 TPB - P

(8) (8)

+v

(~) (4)
EF [4 :0-N

CPUPWR ~
(PIN40) ~ o------o--PI-X

L : LK2

tV ¢
(PIN 16) ---.... -----PI-Y.21 92CM- 29611

Fig. 7 - CPU Module CDP18S102 block diagram.

•

•

•

Hardware Structure of the CDS __________________________ 31

The internal oscillator on the CDP1802 is utilized
with a 2-MHz crystal. This oscillator provides the
internal clocks used by the microprocessor. A buf
fered clock output is provided for use by any user
developed module requiring a controlled clock. The
llser may remove the crystal, then provide an external
clock oy driving pin 12 of this module with an ap
pr()p~iate clock signal.

Thp Data Bus is buffered by a set of tri-state driver
cit:cllits as shown. The drivers on each line are
lloilllected head-to-tail, and controlled as to direction.

:When MRD-N is true, the output of gate B is high,
·t'nabling the inbound tri-state driver to transmit.
Because outbound drivers require a low level to
transmit, they are in a high-impedance state
(disconnect) when MRD is true. When MRD is false,
Lhe opposite direction is enabled unless an 110
operation is in progress, in which case gate A turns on
LIlt' inbound devices. The reason for the inbound path
during an 110 operation is so that when an input
instruction is executed, the data byte may be stored in
the f) Hel.Oster of the CPU as well as in memory.

The memory address lines are buffered and sent to
Lhe backplane as A17:0)-P .

The incoming signals EFI-N,EF2-N,EF3-N,EF4-
N.INT-N,DMAIN-N, and DMAOUT-N, being
nl'~ative signals, have pull-up resistors so that when
IlO eonnection is made, the inputs are logically false.
U sl-'rs of these lines should provide tri-state drivers or
transmission gates to pull them to ground so that
more than one device may use each line in a wired-or
manner.

RNU-P

JI FROM
CONTROL LOA~
PANEL
SWITCHES

SINGLE STEP ~_---<..r.1--=~::---1

EXT WAIT-P -~--'"
EXT CLI!:.~-P -t-~-t.-r---,...J

SCG-P

SCO-N

Power to the CDP1802 is connected to two pins:
pin l() (V CC) powers the chip interface circuits and
pin 40 (VDD) powers the internal circuits. These pins
are-connected to backplane connector pins Y and 21
and pin X respectively and connected together via
link LK2. To operate with a higher voltage on VDD
in order to gain speed, cut LK2 and provide Ii higher
voltage on pin X. Consult the CDP1802 data sheet
for maximum voltage ratings.

It is necessary that, at all times, V CC,;:;;; VDD' For
this reason, it is recommended that a diode replace
LK2 as shown in Fig. 7, and that a current-limiting
resistor (approximately 1 kilohm) replace LK1. These
additions will prevent possible damage to the device
from raising + VDD without a voltage on CPUPWR.
The resistor is to limit the current that + V DD may
drive into Pin X lmder those circumstances.

Control Module CDP18S1 03
The Control Module provides the interface bet

ween the control/display panel and the system logic.
See Fig. 8 . .

The control panel switch contacts are brought to
the control module via connector J1. These lines are
interfaced with appropriate de-bounce or pull-up
circuits and logic to control the CPU mode.

The W AIT-N and CLEAR-N inputs to the
CDP 1802 are controlled to produce one of the four
control modes: RESET, RUN, LOAD, or PAUSE.

OMAO-N

RUN-N

DB [7:0]- P -{>
A &:O]-P-{>-

WAIT- N 1-{>-CLEAR-N
SCI-P
SCO-P
Q-P

92CM-29612

TO
DISPLAY
BOARD

JI

Fig. 8 - Control Module COP 18S103 block diagram.

32 _________________ Operator Manual for the RCA CDS II CDP18S005

Depression of the LOAD switch causes both
W AIT-N and CLEAR-N to be asserted, defining the
LOAD mode, in which data may be loaded into
memory using DMA-IN.

Depression of the RESET switch results in ·
CLEAR-N asserted and W AIT-N false which puts
the·CPU into the RESET mode.

Depression of RUN P or RUN U results in both
. WAIT-N and CLEAR- fa lse, putting the CPU into

'\' lh RUN mod. In the a of RUN ,lhe signal
' R -p j . a s rt a, and go via lh ba kplanetothe

-Addr , Latch and Bank el t Modul where
memory address 8XXX is forced and starts the
Utility program.

When the SINGLE STEP switch is set, depression
of RUN U or RUN P results in the RUN mode for
one machine cycle, stopping between TPA and TPB.
Successive depressions of a R UN switch will cause
execution of the program, one machine cycle at a
time.

Inputs for external manipulation of the control
modes are provided. EXT WAIT-P and EXT
CLEAR-P are available on the backplane connector.
Each is provided with a pull-down resistor and
through one OR gate directly controls WAIT and
CLEAR, e.g., a high on EXT WAIT-P causes a low
on WAIT-N.

An Idle detector circuit counts SI states to
determine when 3 or more sequential SI states occur.
When Idle is detected, the RUN-N line will go high
extinguishing the R UN light on the panel. The
operator can terminate the Idle state by depressing
RUNP. Then a single DMAOUT request will be
made, and following the S2 state, processing will re
Sllme with the instruction following the Idle. The
RUN light will be turned on when the program starts
running again.

The Data Bus and Address Bus as well as WAIT
N. CLEAR-N, SCO-N, SCI-N and Q-P are sent to
the display panel via Jl. Each of these lines is buf
fered.

An interface connector J2 is provided for at
tachment of the optional Microterminal. Control
switches from the Microterminal are electronically
paralleled with those from the Control Panel.

Address Latch and
Bank Select Module

CDP18S206
The Address Latch and Bank Select Module stores

and decodes the high-order byte of the memory
address for use by all memory modules. Fig. 9 is a
block diagram of this module. A(7:01 from the CPU
module is latched into an eight-bit register by TPA .
The outputs of this register. AIl5:81, are provided on
the backphllle connector and to a one-of-lo decoder.
The decoder outputs are 16 Bank Select lines,
BSfF:OI. which go to the backplane connector.

A[7:0 J-P

TPA

RNU - P - ---,

MBDS-N -----<_~

92CS-29613

Fig. 9 - Address Latch and Bank Select Module
CDP18S206 block diagram.

These signals break up the 65-kilobyte memory
field into sixteen blocks of 4-kilobytes each. The
supplied 4-kilobyte RAM module is wired to the
lowest-order bank-select signal. BSO-P, so that it is
located starting at address O()OO. The ROM/ RAM
module is wired to BS7-P locating its starting address
at ~WOO. RNU, a signal derived from the RUN U
control panel switch, causes the decoder to see A15 as
true. Thus. after a RESET. depression of RUN U
will cause the starting address to be 8000, which is the
location of Utility software.

Memory Bank De-Select fMBDS-NI is an input
provided so that all Bank Select lines can be
inhibited. A pull-up resistor is provided so that if no
conneetion is made to this pin. the line is false. and
the Bank Select decoder operates normally. This
input may be used to logically disconnect the memory
system when another is to be substituted.

•

•

--+

i
I
~

Hardware Structure of the CDS __________________________ 33

Memory address lines A(7:01-P are printed on the
backplane from the CPU module to the Address
Latch and Bank Select module and to all memory
locations. A(l2:81 address lines are printed on the
backplane, from the Address Latch and Bank Select
module to all memory locations. A(l5:131 are
availanle at the backplane connector and may be
wire~ by the user if needed. The Bank Select lines,
BS(F:Ol, are available on the backplane connector
and must be wired to appropriate memory modules to
suit the user's system organization. Refer to Section
:'Memory Addressing and Expansion" for in-

? formation on adding additional memory to the CDS.

1/0 Decode Module
CDP18S509

The purpose of the 110 Decode Module is to
provide decoded N-bit addresses for all I/O devices
and to provide a two-level I/O addressing capability.
Fig. 10 shows the functional block diagram of this
module. The three N lines are decoded into 7 lines, N
= 1 through N = 7. Because N = 0 is not a valid
I/O operation, the zero decode is not used.

An output port latches a byte from the Data Bus
when instruction 61 is executed. The eight latched
bits are provided to the backplane connector as select
lines SELO-P through SEL7-P. The contents of the
output port may be read, using input instruction 69,
through the input port.

DB ~:~-P

The select lines are used as follows. Each device (or
group of devices I is assigned a unique eight-bit code.
When the device sees its code on the select lines, it
responds to I/O instructions. Thus, each code in the
select lines allows a device (or group I to use six input
and six output instructions. The 61 and 69 codes are
excluded because they are dedicated to the 'group
select function.

In most systems, it will be sufficient to restrict the
select code, by software convention, to a one-out-of
eight code. Then, each device need look at only one of
the select lines. This technique allows for 48 unique
output and 48 unique input instructions.

Automatic means are provided for enabling and
disabling two-level I/O. The control flip-flop, when
set, enables the chip select input of the I/O ports. The
flip-flop is set by depressing the RUNU button and
reset by depressing the RESET button, or under
software control (by UT20). Note that the RESET
button will also clear the Selection Register.

The control flip-flop can be locked out by wiring
pin 9 of slot 13 to ground. With pin 9 grounded two
level 1/0 is always enabled and reset. RUN P will
start a two-level 110 program correctly.

The select lines SEL(7:01-P are available on the
backplane. SELO-P is prewired to the terminal (slot
141 and disk (slot 241 interfaces. Others can be wired
to additional user I/O controllers as desired. For a
further discussion of this subject, refer to "Two-Level
I/O" under Input/Output Interfacing in the next
Section.

o m,......N
Il: a...nal
::!: ZO

RESET
RNU

(ENABLE)
RESET
(DISABLE)

MRD-N

TPB- P

MRD- N

s~-----,

8

TWO- LEVEL
CONTROL

(PI- 9)
TLIO-N

Fig. 10 - I/O Decode Module CDP18S509 block
diagram.

ONE OF 8
DECODE

7

N= [7:~-P

92CM-29614

34 _________________ Operator Manual for the RCA CDS II CDP18S005

ROM/RAM Module
CDP18S401

The primary function of the ROM/RAM Module
is to hold the system utility software. See Fig. 11. For
this purpose, two socketted 24-pin positions are
provided. Each of these locations accepts either 512-
byte or 1024-byte ROM packages. Also, these ROM
packages may be light-erasable EPROM's or mask
programmed CDP1832 or CDP1834 ROM's.

4-Kilobyte RAM Module
CDP18S205

The 4-Kilobyte RAM Module, diagrammed in Fig.
12, provides the basic static RAM storage in the
CDS. One module is supplied with the system, and
memory may be expanded by adding modules in the
memory expansion area provided. These modules are
identical, but are assigned to the appropriate ad
dresses by a Bank Select line wired to pin X of the
added module/:s-l. TIre basic RAM devices are 256 x 4
NMOS chips.

MEMORY ADDRESS ______ ~--------~~--------~--------__,
A [9:q]

BSB-P

MRD-N

ROM CHIP I

BI- DIRECTIONAL
THREE-STATE BUFFER

MICROTERMINA
ROM

BSB-P

MRD-N

ROM CHIP2. 32.- BYTE RAM

U9

92CS- 29615

Fig. 11 - ROM/RAM Module COP 18S401 block
diagram.

Pin X of this module location is wired to signal
BS8-P from the Address Latch or Bank Select so that
the utility program starts at memory address 8000.

Also on this module is a 32-byte static RAM chip
(CDPI824) to provide a small work area for the
utility software. It starts at memory address 8COO.

When the Microterminal option is installed, its
ROM is inserted into location U8. A toggle switch
selects either the standard utility or the Microter
minal utility ROM. When the switch is in the up
position, the Microterminal ROM is enabled.

Various combinations of ROM packages require
specific link configurations. Refer to the detailed logic
circuit and the tables of Appendix D to define the
required link configuration for a given combination.

The PC board is provided with pre-printed links to
select 1024-byte ROM packages in U7 and U9
(standard utility) and either 512 or 1024 in the
Microterminal ROM (U8); the package types may be
a 2708, CDP1832, or CDP1834 with the pre-printed
links.

BANK
SEL-P

MWR-N

A~I:~-P

A [7:0J-P

MRD-N

32.- PACKAGE
RAM MATRIX

DATA BUS [7:0J -P

92CS- 29616

Fig. 12 - 4-Kilobyte RAM Module COP18S205
block diagram.

The address bus An:O)-p is buffered and wired to
each of the 32 RAM packages. High-order address
bits are decoded and sent to the appropriate groups of
RAM chip-enabled inputs.

l'

I
i

•

•

Hardware Structure of the CDS ________________________ .1-1 35

The data-in and data-out lines from the RAM
packages are buffered onto the system Data Bus,
DB(7:0), through tri-state gated buffers. The
direction is controlled by the Memory Read signal,
MRD-N, and all buffers are enabled when Bank
Select is true. Thus, when the module is not selected,
it presents a high impedance to the Data Bus,
min~mizing loading effects.

Terminal Interface Module
CDP18S507

The Terminal . Interface Module, in conjunction
~ith serial/parallel conversion routines in the Utility
Program, provide an ASCII interface to a bit-serial
terminal. The module, diagrammed in Fig. 13, has
two interfaces, logically identical but electrically
different, for two types of serial interface electrical
conventions. The n connector provides a 20-mA
current loop interface and a paper-tape reader control
for a Teletype or similar terminal. The J2 connector
provides an EIA interface for the n terminal, or
others designed to the EIA RS232C specifications.
Two cables supplied with the systems provide
mechanical-Compatibility to either a TTY or an EIA
interface .

2

The serial ASCII characters output to the terminal
are formed by strobing Data Bus bit 0 into aD-type
flip-flop under control of the UT20 TYPE routines. A
67 output instruction is used to generate the strobe.
Bit 7 of the Data Bus is used to set the paper-tape
reader control flip-flop and bit 6 to reset it via the
same strobe.

Data from the terminal is transmitted to the Utility
program via External Flag 4. Both the strobe and
EF4-N are conditioned by a select signal, SEL-P.
This signal may be wired to the I/O Decode module
select outputs, or, if left open, a pull-up resistor
makes the select true all the time.

Pressing RESET on the control panel sets the data
flip-flop and resets the paper tape control flip-flop.
The output quiescent levels are then as follows:

EIA - voltage low (approximately -5V)
PT RDR - voltage low (approximately OV)

Contact closure on the 20-mA loop incoming data
line produces a low (true) on EF4-N. A low on the
EIA incoming data line produces a low -'true) on EF4-
N.

DB [7: sJ- P - ----;f----.j 0 Of-----1
PAPER-TAPE READER CONTROL

>------. PT RDR-N

R CLOCK

RESET-P --------------~

R

DBO-P -~--------~D Or---1--------.

T P B - P ---------l
N =7 - P ---------i
MRD - P ----,------1

CLOCK

SEL-P--+---~-------.

C

EF4 - N - -------i

TRANSMISSION
GATE

VOLTAGE TO
CURRENT

CONVERSION

LOGIC LEVEL
TO ErA

CONVERSION

CURRENT TO
VOLTAGE

CONVERSION

ErA TO
LOGIC LEVEL

CONVERSION

Fig_ 13 - Terminal Interface Module CDP18S507
block diagram.

{

2G-mA
CURRENT LOOP
OUT

r EIA OUT

r
20-mA
CURRENT LOOP
IN

{ ErA IN

92CM- 296 17

36 _________________ Operator Manual for the RCA CDS II CDP18S005

Display Board

The display board mounts on the hinged control
panel assembly. It contains six hexadecimal digit
display units, six single LED displays, and six
switches whose threaded bushings provide the
method for mounting the board to the panel.

Communication with the Control Module, by way
of connector n and a flat cable, provides all logic

.. signals required. Power and ground are supplied to
\ this board by wires soldered into plated holes
. provided. This power is always +5 volts even if the

fest of the system is supplied from another voltage.

Fig. 14 depicts the logic on the board. Each display
digit is driven by a LATCH-DECODER chip which
take 4 bits from the address, or data bus, latches them
if required, and re-encodes them into seven segments
for the display. The front panel hexadecimal display
presents the characters 0 through F.

The leftmost two digits latch the high-order
memory address at TP A. The next two present the
address bus continuously to prov~de the low-order
address byte.

BLi S LATCH ENABLE-N - ---I

It must be remembered that the address is always
displayed whether or not memory is being accessed.
In the SO state, the address is the location of data
being fetched. In the S1 state, the memory address
mayor may not be significant, depending on the
instruction being executed.

The rightmost two display digits show the Data
Bus contents continuously when the control switch is
in the BUS position. When the switch is in the LAST
110 position, the control module is conditioned to
provide a latch pulse at TPB of any 110 operation.

The six single LED's display the state of the WAIT
and CLEAR lines to the CPU, the state codes SCO
and SCI from the CPU, the Q output from the CPU,
and the system RUN state. These six displays are
lighted when the specified condition is logically true.

Momentary action switches provide RESET, RUN
U, RUN P, and LOAD functions. Toggle switches
select SINGLE STEP or CONTINUOUS mode and
LAST 110 or BUS display. The contacts of these six
switches are sent directly to the Control Module.

DATA BUS ~ ; ~ --------------~~------------------------------_t----t_----t_--I

MEMORYADDRESS ---------.----~~--~----------~--------_,

u:oJ FROM
CONTROL BOARD

TPA

ADDRESS

LEO'S

W A IT - N ---------------1~---,

CLE AR - N ---------------1~--.....

SCO-N - ----I

SCI-N -

Q-N

RUN-N - - -

+5V

Fig. 14 - Display board block diagram.

4

BUS/LAST I/O

,----<:r 0---- LAST I/O SW- N

0--- LO-NO

...-- ---<Y 0--- RES - NO

RNP- NC

0--- RNP-NO

RNU-NC

0-- RNU-NO

t---~y o--SS-NO

92CL-29618

(

,
;

I
1

•

~ ,

•

•

Hardware Structure of the CDS __________________________ 37

Disk Interface
Module Option

CDP18S813

Slot 24 of the CDS is reserved for the optional Disk
Interface Module. This module communicates with
the disk drive unit through three byte 110 ports,
buffers, and a 50-conductor flat cable. Its block
di~gram is given in Fig. IS.

- The first output port, used for commands to the
drive unit, is written to by a 65 output instruction
with the 1/0 select register set to 01. Seven command
bils are sent to the drive unit through a grounded
emitter open-collector transistor driver. The least
significant bit is gated by the service request (SR)
generated by the output port to provide a clock
strobe.

Data is sent to the drive unit through a second
output port loaded by a 64 output instruction. All
eight bits are transmitted through ~ounded-emitter,
open-collector transistors .

Data or status information from the drive unit is
recei ved by an in put port, which is read by a 6E
instruction.

Microterminal Option
CDP18S021

Provision has been made to allow installation of the
Microterminal and its ROM into the CDS. The
Microterminal consists of a hand-held keyboard and
display unit, its cable and mating connector, and a
ROM contammg a utility program UTS. A
photograph is given in Fig. 16.

To install the Microterminal:

1. Turn power off.

2. Extract the ROM/ RAM module from slot 9.

3. Install the ROM in the empty 24-pin socket
US. (The center of three 24-pin sockets) .

4. Re-insert the ROM/RAM module into slot 9.

5. Insert the Microterminal cable connector into
J2, the 20-pin connector on the outboard side of the
Control module in slot 25. Carefully observe proper
polarity by matching the index arrows on the
connectors.

6. Set the switch on the ROM/RAM module to
its up position.

OUTPUT'65' OUTPUT f-S'--R ____ --1

CPUO
STROBE

OUPUT '64'

DATA BUS -I1----+-toI
[7;~ -P

PORT

COMMANDS DATA 7: 1

OUT PUT

PORT

DATA

DATA [7:0]

tV

DATAl

TO
DISK
DRIVE
CONTROLLER

INPUT '6E'
INPUT

PORT

1--...... ---Dr [7 :0J i~g~us

SELO -P

92CM- 29619

Fig. 15 - Disk Interface Module CDP18S813
block diagram.

CONTROLLER

i .

38 ________________ Operator Manual for the RCA CDS II CDP18S005

Fig. 16 - Photograph of RCA COSMAC Micro terminal
CDP18S021 .

I. Turn power on.

S. Press RESET, then RUN U on either the
Microterminal or the CDS front panel.

At this point, the display and keys on the
Microterminal will be operative. The user should
refer to the Instruction Manual for RCA COSMAC
Microterminal, MPM-212, for operational details.
Although that manual refers to the use of the
Microterminal with the Evaluation Kit, the same
operation considerations apply to the CDS.

A helpful note may be added to the use of the CPU
register readout. Follow the Microterminal Manual
instructions, but observe that when the contents of a
register are displayed on the CDS address displays,
the Bus displays provide the contents of the memory
location as addressed by the register. In other words,
M(R(N)) is displayed. For register read-out, use the
front panel switch RUN U for single stepping.

To return to standard utility operation, set the
switch on the ROM/RAM module to its down
position. This switching may be done while power is
on. but if the Microterminal is to be disconnected,
power should be turned off first.

Power Supply Module

The Power Supply Module consists of a trans
former, rectifers, voltage regulators, pass stages, and
heat sinks. The circuitry and heat sinks are mounted
on a printed circuit board, which is mounted on the
transformer bracket. This module is installed in the
CDS chassis in the space beside the plug-in logic
modules. occupying slot locations 26 through 32. See
Appendix D, Fig. D 19 for its circuit diagram.

AC input taps are provided for nominal voltages of
100. 115.220, 230, and 240 volts rms, 50/60 Hz. The
input is fused at 1.25 amperes when operated at 100
or 115 ·volts. It is recommended that the fuse be
changed to 0.75 amperes when the CDS is operated at
220.230, or 240 volts. Three output voltages provided
are: + 12 V at 0.5 A, +5 V at 6 A, and -5 V at 0.5 A.

The major current drain in the CDS is due to
memory boards. The memory board current
requirements are given below.

Total System with
4-kilobyte NMOS RAM
and 3-kilobyte PROM:

+12 V
+5 V
-5 V

100 mA typical
1.5 mA typical
60 mA typical

Total System with
4-kilobyte SOS RAM
and 3-kiIobyte PROM:

+l2V
+5 V
-5 V

100 rnA typical
800 mA typical
60 mA typical

The remaining system components are all CMOS
and take less than 50 rnA from the + 5 V supply.

Note that, typically, the CDS can support up to 12
kilobytes of NMOS RAM. Any additional memory
may have to he powered from an external supply.

Development System Signals
Table IV summarizes all of the CDS signals. For

each signal, the source and destination modules are
listed. The term 'USER' in a column designates a
signal that may he derived from or sent to user-added
devices.

f

I
1

Hardware Structure of the CDS 39

• TABLE IV - CDS SYSTEM SIGNALS
Signal Name Description Source Destination
A[7:0)-P Low-order memory address CPU Memory, Address Latch

bits Control
A[15:8) -P High-order memory address Address Latch Memory

bits
ANY I/O-P OR'ed output from N-lines CPU Control
BS[F:O) -P Memory bank select Address Latch Memory
CDO[7:0) -N Data bits from disk Disk interface Disk Drive

interface module module
CLEAR-N CPU clear signal Control CPU, Disk

" CLEAR SW From Microterminal Microterminal Control
CPU[7:0)-N Command bits from disk Disk interface Disk Drive

interface module module
CPU PWR +V DD supply to CPU Power Supply/ CPU

User
DB[7:0)-P Bidirectional data bus CPU Memory, I/O, Control,

Terminal
DI[7:0) -N Data bits from disk drive Disk Drive Disk interface module

to disk interface module
DMAI-N DMA IN request User CPU
DMAO-N DMA OUT request User, Control CPU
EF[4:1) -N Flag inputs to CPU I/O, Terminal, CPU

Control
EX CLK External clock input User CPU
EX WAIT External wait to CPU CPU User • INT-N Interrupt request User CPU
LOAD SW From panel switch Panel Control
MBDS-N Memory bank deselect User Address Latch
MRD-N Memory read signal CPU Memory, I/O, Control,

I/O Decode, Terminal
MWR-N Memory write signal CPU Memory
N[2:0) -P N-lines from CPU CPU I/O Decode, Control
N=[7:1) -P Decoded N-lines I/O Decode I/O, Terminal, Disk,

Control
Q-P Single bit output from CPU CPU Terminal, I/O
RESET-OP Reset signal from control Control Memory, I/O
RESET SW From panel switch Panel Control
RNU-P Signal to run utility Control Address Latch, I/O Decode

program
RUN-N Signal indicating con- Control Display

tinuous SO,S1 cycles
RUN P SW From panel or Micro- Panel/Micro- Control

1
terminal terminal

RUN U SW From panel switch Panel Control
SCO[1:0)-P State code lines CPU I/O, Terminal, Control
SEL[7:0) -P Two-level enabling signals I/O Decode I/O, Terminal, Disk
SINGLE-STEP Single-step control input Panel Control

SW
TPA-P Early pulse in CPU cycle CPU Memory, Address Latch,

I/O Decode, I/O, Control
Terminal

TPB-P Late pulse in CPU cycle CPU Memory, I/O Decode, I/O

• Control, Terminal, Disk
UA15-N OR'ed output of A15 Address Latch User

and RNU
WAIT-N CPU wait signal Control CPU

40 _________________ Operator Manual for the RCA CDS II CDP18S005

Memory Addressing
and Expansion

To aid the user in interfacing the COSMAC
Development System to added memory hardware,

Memory Organization
"

)The total directly addressable memory space (65,
536_bytesl may be considered as being divided into 16
hanks of 4096 bytes each. The 16-bit memory ad
dress, A(l5:01, can be divided into two fields:
A(l5:121 being a bank number and A(ll:OI selecting
the byte within a bank, (see Fig. 1 n A bank may be
further subdivided into four blocks of 1024 bytes
each (in which case A(ll:lOl is a block number within
a bank and A(9:01 is the address of a byte within the
selected blockl or into eight blocks of 512 bytes each
(A(l1:91 defining the block number and A(8:01
identifying the byte within the selected block).

MEMORY ADDRESS BITS

~~ ,9 8 7 6 5 4 3 2 I
v ° ,

BANK BLOCK
NUMBER NUMBER

A [15 : 12) A [II : 10]

'-----y--'
HALF
BLOCK

NUMBER

A [11:9J

4 PAGES WITHIN BLOCK

A [9 , 0]

~-----'vr------J'

256 BYTES = I PAGE

A [7:0)

~------~vr------~

2 PAGES WITHIN I HALF-BLOCK

A [8 : 0]

9 2CS- 28 2 11

Fig. 17 - Memory address bit assignments.

Each memory plug-in module comprises a bank or
a block of memory. When a module is inserted in a
given plug-in slot, external wiring of appropriate pins
on the connector in that position defines its bank and
block numbers (the range of addresses to which it
respondsl. Thus, users may define arbitrary address
ranges for the memory modules they use.

The COSMAC Development System CDPI8S005
is supplied with a 4-kilobyte RAM module wired to
occupy the lowest memory address range (starting at
address 00001. The CDS is also equipped with a
ROM containing the Utility Program UT20. UT20's
address range is 8000 to 83FF. Another ROM
containing the disk loader program occupies ad
dresses 8400 to 87FF. UT20 also uses a dedicated
RAM of 32 bytes starting at address 8COO. Refer to
Table III for a list of module position assignments.

this section discusses memory module addressing and
the use of custom memory modules.

RCA Modules

Each RCA memory module includes a sufficient
number of enable inputs which can be used to assure
that it will respond only over its assigned address
range. Every module has a bank select input at pin X.
When this signal is high, the module is ACTIV ATED
or ENABLED. When it is low, the module is
DISABLED or DESELECTED. Whenever a
module is added or moved in the address space. this
overriding SELECT input must be connected to the
proper enabling source.

In the Development System. the supplied ROM
memory is enabled bv BS8-P, so that the UT20
progra~ begins at add~ess ~WOO. The RAM space, on
the other hand, is designed to begin at location zero.
See Fig. W for a CDS memory map. The memory
bank !Select module decode!'; the upper four address
bits to provide sixteen RAM bank-select signals. The
supplied 4-kilobyte RAM (in slot 81 is enabled at pin
X by the lowest of these outputs. called BSO-P.

DECIMAL ADDRESS HEX A-DDRESS

0-4095 4- KILOBYTE RAM OOOO- OFFF

4096 -32767 UNUSED 1000-7FFF

32768-33792 UT20 8000-83FF

33793- 3 4817 DISK LOADER 8400 - 871'F

34818-35839 UNUSED 8800-8BFF

35840-35871 REGISTER STORAGE 8COO-8CIF

35872-65535 UNUSED 8C2G-FFFF

92CS- 2 962 0

Fig. 18 - CDS CDP18S005 memory map.

(

I

I

j

I
t

I
i

t

•
Hardware Structure of the CDS _________________________ 41

For this Manual a page is defined as 256 bytes, a
bank as 4096 bytes, and a block as either 512, 1024,
or 2048 bytes, as convenient. The memory bank select
module supplies signals which can be used to locate a
memory module in any available bank. The ap
propriate memory bank select signal (BS(F:O)-P)
should be connected to pin X of any inserted memory
module. If the inserted module is a 4-kilobyte
mel11ory, no additional selection wiring has to be
done.

NOTE: Added RAM below address 8000 must
-be contiguous for the Editor and Assembler to

) operate correctly. .

Reviewing the memory addressing scheme, buf
fered address bus lines from the CPU, A(7:0) are
latched in the Address Latch and Bank Select
module, and also wired to all memory slots. Once
latched at TPA, the latch outputs become the high
order address byte, A(l5:8). Of these, A(l2:8) are
pre-wired to all memory slots; A(l5:13) are available
for custom wiring, if required. A(l5:12) are decoded
into 16 Bank Select lines, BS(F:O), which are
available for wiring to any module.

When memory or 110 is expanded, care must be
taken to budget power consumption to stay within the
system's power availability. Otherwise, additional
power supplies may be required. Further information
may be found under "Power Supply Module" earlier
in this Section.

Custom Memory Modules
RCA will continue to offer new RAM and ROM

memory modules designed specifically for use with

the COSMAC Microprocessor. Users who try
mod ules of their own design and construction with the
COSMAC Development System should, of course,
observe its physical and electronic constraints. The
physical constraints are fairly obvious. If the memory
is to reside in the CDS, the cards containing it should
be no more than 6.5 inches deep and no more than 0.4
inch in thickness over-all if adjacent slots need to be
occupied. If the memory is to be external and serviced
by a cable, then the cable connector may plug into a
Memory Bus slot. This arrangement may require the
user to buffer the address bus (A15-P to AO-P) and
the data buses IDB7-P to DBO-P), depending on the
length of cabling and the drive required. The memory
must also have bidirectional 110 capability so that it
can be hung on the data bus. If it does not, ap
propriate three-state buffers must be incorporated on
the module.

The COSMAC CPU architecture does not require
memory cycles to be contiguous, i.e., to immediately
follow each other in time. (For further information on
memory timing refer to the material on "Memory
Interface and Timing" in the section "Interfacing
and System Operations" in the User Manual for the
CDP1802 COSMAC Microprocessor, MPM-201.)
Thus, the cycle times of added memory modules are
generally not critical. They must, of course, be less
than the CDS cycle time of approximately four
microseconds. What are important, however, are the
access and write times. The read access time in the
CDS environment, at a clock frequency of 2.0 MHz,
should be 0.6 microsecond maximum, and the
memory should take no longer than that time to write.
Slower memories may be incorporated by supplying a
slower clock, or using a "hand-shaking" technique
via the WAIT input of the CPU.

Input/Output
Interfacing

One of the fundamental advantages of the
COSMAC architecture is the richness of the CPU-
110 interface. A significant number of interfacing
"resources" (many IIO-oriented signals, with many
different functions) are available for use. These
resources include the DMA and INTERRUPT

request lines, the four EXTERNAL FLAG input
lines, the three N output lines, the related control
signals (CPU STATE and TP's), and, of course, the
110 data bus. A wide variety of interfacing
techniques are possible, limited only by the
imagination of the designer. Only a few are discussed
below, each supported by an illustrative example.

42 _________________ Operator Manual for the RCA CDS II CDP18S005

Module Enable Philosophy
A fundamental interfacing feature of each of the

RCA-supplied modules is the inclusion of at least one
over-all "enable" input signal. Generally, this signal
is "pulled" to the enabled state (high) by a resistor on
the board, so that if its connector pin is left alone, the
module will be permanently enabled. This input can
also be driven by a signal, possibly derived from a
manual switch, so that the module can be selectively
enabled. This feature was discussed in the previous

.. 'section "Memory Module Addressing".
:I .

The broad function of disabling an IIO-oriented
module is to temporarily or permanently decouple it
in some way from the I/O system. As will be
discussed by specific examples, each IIO-oriented
CPU input pin can be considered as the common
destination of a set of wire-OR 'ed (bussed) signal
sources - only one of which is asserted at a time. In
this case, the various 110 enable signals are used to
assure that only one source at a time is coupled to the
CPU input pin. For example, the terminal interface
module includes an enable signal so that when it is
disabled, EF4 is available for use by any other devices
in the system.

The use of such enables in the case of programmed-
110 data transfers is discussed in detail in the User
Manual for the RCA CDPl802 COSMAC
Microprocessor, MPM-201. During the execution
of an 110 instruction, the information present on the
three N lines of the CDS and on the eight data bus
lines can be interpreted in anyone of several ways. In
a one-level 110 system, the N code selects one of a set
of devices, while the data bus carries information
between that device and memory. In this case, up to
seven input devices and up to seven output devices are
possible when used in conjunction with the MRD
signal to specify the data direction. The 110 decoder
module is used to generate an individual 110 com
mand "strobe" to activate the selected device. The
command strobe from the 110 decoder causes it to
put data on the I/O bus or to latch data from it.

It should be noted that a "sub-one level" 110
system could be used, for a sufficiently simple system,
in which, for example, one bit oJ the N code (ap
propriately AND'ed with a TP) can act directly as a
command strobe. For that matter, if only one 110
device not requiring data transfer is used, the Q
output can be used to activate it.

For more complex systems, a two-level 110 ap
proach is used. This approach consists of two steps;
first enabling and then activating the selected 110
device. The CDS has two-level 110 capability built in
as a user convenience. It is described in the next
section.

Two-Level 1/0
The I/O Decode Module in slot 13 provides seven

liNes, N = 1 through N = 7 which may be wired to the
110 slots to define a unique N -value address.
Combined with the MRD signal, these signals define
all 110 instruction codes. For example, N=l·MRD
defines the 69 input instruction, while N = 1· MRD
defines the 61 output instruction.

In addition, the 110 Decode module:contains an
output port that latches the Data Bus on a 61 in
struction. The latched outputs, SEL(7:0), are
available for custom wiring to I/O slots. This feature
is used for two level 110 addressing where more than
seven Input/Output instructions are requir~d.

Suppose a module is wired to SEL2 and N =3.
Then a 61 instruction whose data transmitted =
(0000 0100) selects that module. A subsequent 63 or
6B instruction would be interpreted as an output or
input instruction intended for that module. All other
modules are de-selected and ignore the 110 in
structions. The Select lines remain set until changed
by another 61 or the RESET switch is activated.

Thus, not counting the 61 and 69 instructions, a
total of six 'N' lines times 8 Select lines provides 48
unique input and 48 unique output decodes for 110
devices. Should more codes be required, the 8-bit
Select register may be decoded to provide up to 255
Select numbers. In this case, a decoder must be
provided by the user.

Of course, software conventions must be consistent
with the system hardware architecture. Also, when
using the two-level 110 addressing scheme, all 110
modules must be designed and wired to work with the
selection convention chosen.

Care must be taken when expanding the system
110 capability to stay within available power limits.
Further information may be found under "Power
Supply Module" earlier in this Section.

The Terminal Interface module and optional
Floppy Disk Interface module are already wired to
SELO-P. This selection signal is automatically
controlled by UT20 and should not, in general, be
used by user-added 110 devices. Refer to Fig. 10 for
the following discussion.

The CDS is delivered with a jumper wire
grounding TLIO-N (pin 9, slot 13). This jumper
enables two-level I/O selection at all times. A 61
instruction is used to latch data into the selection
register. UT20 automatically writes a 01 to the
selection register whenever it is started, enabling the
terminal and floppy disk interfaces. A RESET will

I . ,

.... ,

•

I

i
,

T

Hardware Structure of the CDS __________________________ 43

force all zeroes into the register. Instruction 69 is used
to read back the contents of the register for use by
in terrupt-handling subroutines.

Users who are developing systems having one-level
110 should remove the jumper on TLIO. The system
will then work as follows. A 61 instruction is used to
enter new selection data so long as the two-level
control flip-flop is set. This flip-flop is set when the
RUN U key is pressed. UT20 immediately writes a 01
to the selection register, enabling the terminal in
t~rface. The flip-flop is reset by the RESET switch or

'-by execution of the $P command, which additionally
: writes a 00 to the selection register. With the control

flip-flop reset, the 61 and 69 instructions are free for
use like any other instruction and cannot be used to
con trol the selection register.

Several operational considerations exist for the two
options of TLIO grounded or not. These options are
summarized below.

With TLIO-N Grounded:

A. RESET, RUN P Sequence

1. Starts execution atlocation 0000.
2. Two-level 110 permanently enabled.
3. Instructions 61 and 69 reserved for two-level
selection.
4. Program starts with P=X=O, IE=I,
Selection Register=OO.

B. RESET, RUN U Sequence

UT20 starts and runs with selection group 01
enabled.

$UCommand

1. Program starts at location specified.
2. Two-level 110 permanently enabled.
3. Instructions 61 and 69 reserved for two-level
selection.
4. Program starts with P=X=O, IE=I,
Selection Register= 0 1.
5. If an interrupt is pending at start-up, UT20
will report it.

$PCommand

1. Program starts at specified location.
2. Two-level 110 permanently enabled.
3. Instructions 61 and 69 reserved for two-level
selection.
4. Program starts with P=XO, IE=I,
Selection Register=OO.
5. If an interrupt is pending at start up, UT20
will attempt to report it.

With TLIO-N Open (High)

A. RESET, RUN P Sequence

1. Starts execution at location 0000.
2. Two-level 110 is permanently disabled.
3. All 110 instructions are available to user.
4. Program starts with P=X=O, IE=I,
Selection Register=OO.

B. RESET, RUN U Sequence

UT20 starts and runs with selection group 01
enabled.

$UCommand

1. Program starts at location specified.
2. Two-level 110 enabled.
3. Instructions 61 and 69 are reserved for two
level selection.
4. Instruction 67 with data bit pattern
(xxxxxIxx) must be avoided if two-level
selection is to remain enabled.
5. Program starts with P=X=O, IE=I,
Selection Register=01.
6. If an interrupt is pending at start-up, UT20
will report it.

$PCommand

1. Program starts at location specified.
2. Two-level I/O permanently disabled.
3. All 110 instructions are available to user.
4. Program starts with P=X=O, IE=I,
Selection Register=OO.
5. If an interrupt is pending at start-up, UT20
will attempt to report it.
6. Starting a program in this case precludes the
use of the devices controlled by the Terminal
and Disk Interface modules.

NOTE: All RCA-supplied programs should be
started with the $U command in all cases.

Interfacing Signals and
Custom I/O Modules

User devices can be interfaced to the CDS with
signals available at the 110 bus and from the I/O
decoder. There are seven signals which are sensed by
the CPU, namely, EFI-N, EF2-N, EF3-N, EF4-N,
DMAIN-N, DMAOUT-N and INTERRUPT-N.
These signals are pulled high with 22-kilohm resistors
on the CPU board and are brought to the 110 bus.
Control electronics for these signals should use a
transmission gate which pulls the signal lines low

44 _________________ Operator Manual for the RCA CDS II CDP18S005

when activated and appears as an open circuit when
not activated. Thus, several devices may be wire-or'd
to these lines.

drive the Data Bus, EF, DMA, or Interrupt lines,
letting the 22-kilohm pull-up resistors on the CPU
module generate the logic" one" voltage level.

There are eight output data lines, DBO-P to DB7-
P, which may be connected to user devices. Data here
is valid at TPB of the 110 execution cycle. When an
OUT N instruction (machine code 6N, N=1-7) is
executed, the 110 decoder sends out decoded signals
of N=l-P through N=7-P. These signals (plus any
of the SELO-P through SEL7-P, if desired) may be
used to latch the data appearing on the data bus at the
o/ailing edge of TPB.

However, a direct interface is not recommended. A
better practice is to buffer all signals to and from a
user-designed module through CD4049 (inverting) or
CD4050 (non-inverting) or CDP1856/57 buffers.
This technique is preferable to loading the various
busses and possibly causing problems on another
module. Also, maintaining a CMOS interface to the
CDS encourages the good design practice of inserting
i-kilohm series resistors in all lines - at least initially.
This practice will prevent accidental and Gostly
destruction of components should the user-designed
module not perform as expected.

-
All signals in the CDS swing between GND and

+5 volts dc. Other MOS devices such as Co, N- or
PMOS may be added by the user (if voltage levels are
compatible) or bipolar devices such as TTL or low
power Schottky TTL devices. All data and address
bus signals as well as the CPU signals are capable of
driving one TTL load worst-case (sinking 0.2 rnA at
0.4 volt). Open-collector devices should be used to

For a list of all signal names and their meanings,
refer to Table IV. Note that many 110 signals are
preassigned and should not be used indiscriminately.
Table V lists the instructions and flags used in the
CDS and Table VI the reserved codes for future use.

TABLE V - PREASSIGNED I/O INSTRUCTIONS AND FLAGS

Group"1 [00000001] - Two-level I/O enabled.

Instruction

61
63
64
64
65
66
67
67
67
69
6E
6C
EF4
EF3
EF1

OUT1
OUT3
OUT4
OUT4
OUT5
OUT6
OUT7
OUT7
OUT7
INP1
INP6
INP4

Action
Latch MR(X) into Two-level Selection Register
Output Segment Data to Microterminal
Output Digit Data to Microterminal
Output to Disk Interface (Data Bits)
Output to Disk Interface (Control Bits)
Line Printer Data Out
Terminal Interface Serial Output Using DBO
Terminal Interface Paper Tape Reader Control Using DB[7:6]
Disable Two-level I/O when DB2 = 1
Read Two-level Selection Register
Input Data Bits from Disk Interface
Input from Microterminal
Serial Input from Terminal Interface
Keyboard Active Signal from Microterminal
Use for High-Speed Printer Interface Option

TABLE VI - RESERVED I/O INSTRUCTIONS AND FLAGS
Group 2 [00000010] - Two-level I/O enabled.

Instruction Action

61 OUT1 Latch MR(X) into Two-level Selection Register
62 OUT2 Load UART Transmitter Holding Register
63 OUT3 Load UART Control Register

69 INP1 Read Selection Register
6A INP2 Read UART Receiver Hold Register
6B INP3 Read UART Status Register

I .,.

i

r

I
1

I ..

Hardware Structure of the CDS __________________________ 45

There are typically 2 A at +5 V, 400 rnA at -5 V,
and 400 rnA at + 12 V reserve available from the CDS
power supplies. This reserve should be adequate to
handle most user-supplied additional boards. With
series resistors in all interface lines, as recommended
above, power sequencing should not be a concern.

Timing diagrams for DMA requests and IN
TERRupTs are also shown in theUser Manual for
the CDPl802 COSMAC Microprocessor, MPM-
201. As explained there, any DMA request or IN
TERR UPT will cause the CPU to make a transition

:I"o~t of the IDLE state (repetitive SI 's), and cause
.~. program execution to start. The COSMAC CPU is

sensitive to both DMA and INTERRUPT after
RESET because it is in an IDLE state. Thus,
CLEAR-N should be used to disable these external
requests until they are required. User devices should
not issue DMA or INTERRUPT requests until
explicitly permitted by program or by logic, because
initialization of CPU registers is necessary before
INTERRUPTS and DMA's can be handled.

To complete this Section, the implementation of
DMA, Interrupt, and basic serial and parallel 110
devices are discussed next. Reference should be made
to the cited portions of the User Manual for the
CDPl802 COSMAC Microprocessor, MPM-201.

JL

SCI- p }----1
CL

SCOop

CS2

MRO-N 1--------+----1~ CS I

~
INTERFACE R

OBO-P TO 087- P

BYTE
IN

COPl852

92CS - 29621

Fig. 19 - DMA input example.

DMA Input

Assuming only one 110 device needs the DMA
input port, the arrangement shown in Fig. 19 is
possible. Systems having more then one DMA
channel (either 2 or more DMA-IN's or a mixed
DMA-IN and DMA-OUT) must use the Interrupt
facility to establish vectoring. Notice that if interrupts
will not be used in the system of Fig. 19, the SC 1-P
can be used directly for the output port and signal
flip-flop: it does not have to be gated with SCO-P. The
MRD-N line is also not strictly necessary unless a
mixed DMA-INIDMA-OUT system is being con
structed.

DMA Output

Assuming only one device is using the DMA
output channel, the circuit of Fig. 20 can be used.
Again, note that multi-channel DMA systems must
use the Interrupt facility. The discussion concerning
SCI-P and MRD-N in the previous section also
applies here. The Control Module uses DMA-OUT to
terminate IDLE. Isolation of a user-supplies signal
by means of a three-state device, diode, or the like is
required on this line.

cos

...FL

SCI - P f----..----."

SCOop

MRO-Nr------+--~~

CL

TPB

SL
INTERFACE R

C04066 C REQUEST

OMAO-N Q 0 + VOO

(8)

OBO- P TO OB7- P

BYTE
OUT

92CS- 29622

Fig. 20 - DMA output example.

46 _________________ Operator Manual for the RCA CDS II CDP18S005

Byte 1/0

A general purpose Byte 110 Module designed for
use in the CDS is shown in Fig. 21. By appropriate
connection of the module's enabling signals to the 'N'
lines and SELECT bits from the 110 Decoder, the
modple can be assigned to respond to any
programmed 110 instruction. The module could be
permanently enabled (by leaving the Select input
open) or permanently disabled (by grounding the
Select input), if desired.

FROM SELO- P
THROUGH SE17-P

FROM NO-P
THROUGH N7-P

TPB -P

tvOO

The source of an asynchronous interrupt must be
deduced from externally generated information, such
as the contents of an interrupt status register (in
terrogated by an 110 READ instruction), anyexter
rial flag values, or the address of register RO as
dictated by DMA activity. The CPU contains a
programmable INTERR UPT EN ABLE (IE) bit. Its
operation is discussed in detail in the User Manual
for the CDP1802 COSMAC Microprocessor,
MPM-201. Before designing an interrupt-generating
110 circuit for installation in the CDS, the reader

CL CLEAR

CLEAR -N >----1-+-- ---------+

OBO-P
THROUGH OB7- P

FROM NO- P
THROUGH N7 - P

(8)

CC'EA'R
CS2

MRO-N >--~-t--------~CSI

TO EFI-N
THROUGH EF4-N OR
INTERRUPT-N

TRANSMISSION
GATE

BYTE CLOCK
IN IN

92CM-29623

Fig. 21 - General-purpose byte I/O module
for the CDS CDP18S005.

Interrupt

A straightforward interrupt implementation is
shown in the User Manual for the CDP1802
COSMAC Microprocessor, MPM-201.

Systems which require multiple interrupt
conditions can be handled in a variety of ways. If the
interrupts are synchronous with respect to each other
(i.e., there is a prior knowledge that there will be a
specific patterns such as ABAB or AAB
CAABCA), then all the handling can be ac
complished with software. The interrupt analysis
pointer is merely re-initialized after each service to the
address necessary to handle the next service.

should refer to the material on "Interrupt and
Subroutine Handling" in the Instruction
Repertoire Section and the material on "Interrupt
Service" in the Programming Techniques Section
of the User Manual, MPM-201.

Fig. 22 shows a general purpose interface to the
CDS for multiple interrupts. The interrupt routine
would issue a specific input instruction (say '62') and
the device requesting the interrupt would put its
address on the data bus where it can be examined by
the CPU and used to vector to the right routine.
Additional hardware would be required if the
possibility of simultaneous interrupts exist.

•

~ .

1
I

Hardware Structure of the CDS __________________________ 47

~
INTERFACE

I NTERRU PT- N

TRANSMISSION
GATE

NO-P THRDUGH N7-P I--- -----i

MRD-N I-----{

SElO-P TH~OUGH
SEl7-P

CS2

INTERRUPTING
DEVICE

ADDRESS

CDPI852

DBO-N THROUGH DB7-N 92CS- 29624

Fig. 22 - General-purpose circuit for vectored interrupts.

A good programming technique is to put the
bytes 71 and 00 as the first two instructions in your
program. That will disable interrupts until you are
ready for them. At that time, they can be re-enabled
by setting X = P, then performing the instruction
sequence 70, (X,PI where the byte after 70 contains
the initial values for X and P. Refer to the User
Manual MPM-20l for interrupt servicing program
techniques.

Bit Serial Interface - The Terminal
Interface Module

The Terminal Interface Module is the only
custom input! output interface supplied with the
COSMAC Development System. It is another
example of minimizing hardware complexity by the
use of software. Further, it illustrates the increased
flexibility that can more readily be achieved by
software. A functional diagram for this module (Fig.
131 has already been discussed. The CPU receives
serial data by sampling EF4. It transmits serial data
via bit 0 of the data bus in conjunction with an output
instruction, specifically 67. The detailed logic for the
Terminal Interface Module is shown in Appendix D.

The sample character waveform in Fig. 23 helps
to show what the interface software must do. Each
character is framed by a START bit and one or two
STOP bits. The character waveform signal is tied to
EF4-N, sensed by UT20 at the midpoints of each of
the bits, and assembled into the ASCII character. A
character is transmitted one bit at a time with bit 0 of
the data bus latched by a D flip-flop. The Q flip-flop
can also be programmed to provide serial output
data.

The flexibility obtainable with software is
demonstrated by the ability of the program UT20 to
sample a character string and adjust its timing so as to
cope with tenninals of different, even non-standard,

~~ ~~~~~~~~~~
JJ 0 -q,JW",U'I en" "'O-O:::c

BIT SERIAL

L {OPTIONAL ON
SOME DEVICES.

ASCII CHARACTER "C" {411

92CS-2BOB6

Fig. 23 - Sample character waveform.

character rates. However, it should be noted that
while a program is timing either input or output in
this manner (i.e., by counting instruction executions),
the processor is completely dedicated to that task.

Interfacing Techniques
and Precautions

Use of External Clock

Procedure: Remove the crystal on the CPU
board. Connect pin Pl-12, slot 12 (EX CLK) to the
clock generator. The external clock signal should
swing between +5 volts and GND with rise and fall
time equal to or less that 15 microseconds. Because
the COSMAC CPU is a static system, single-stepping
(single clock cycles) or steps in bursts of 8 or 16 clock
cycles, for example, are possible.

"

48 _________________ Operator Manual for the RCA CDS II CDP18S005

Clock frequencies higher than the standard 2.0
MHz may be employed in some cases. The
COS/MaS interfaces supplied with the CDS (at
VDD=5 volts) will not operate above about 3 MHz
because of the short timing pulses. At frequencies
lower than 2.0 MHz, the utility program will
eventually fail to time the terminal serial characters
properly because of quantizing effects. The frequency
at which these effects occur is a function of the ter
minal character rate.

External Flags EF1 to EF4

The external flags offer a simple, yet powerful,
input interface to the COSMAC CPU. Means by
which a program may test an external flag and branch
conditionally on its value have already been
discussed. The use of a flag as a bit-serial data input
port was also described. Note that, with the terminal
interface module in its slot, EF4 is unavailable for
other devices unless the 110 data terminal-to-EF4
patch is disabled, by forcing SEL-P low. Because
transmission gate outputs may.be connected as "wire
ors", several devices may share a specific External
Flag signal, when necessary. This arrangement is
illustrated in the logic of the terminal interface
module. It should be recalled that all four EF's are
pulled up to VDD through 22-kilohm resistors on the
CPU module.

In order for an external flag to playa functional
role in a COSMAC-ba ed y t m it must be te ·ted by
the program at til time when action is requir d.
Further in programs whi·h incorporate a peri dic
flag teo tt there must be ome mean for the interface
logic to sense that the flag stimulus has caused a
re ponse. In system where it is nece, sary to detect
failure or error conditions, one or more flags may be
u ed. If immediate a tion is required the flags may
be used a a mean to vector interrupts.

Adding 1/0 Devices

When additional 110 is added to the CDS, it is
most important to remember that certain I/O in
structions and group selection codes are already
assigned to specific CDS modules. These codes are
detailed in Tables V and VI. Care must be taken not
to overlap them. 110 can also be added in the
memory field of the CPU for memory-mapped 110
functions. In that case, be sure to refer to the memory
map, Fig. 18, to determine free memory locations.

Adding Remote Control

Along with the DMA, Interrupt, and Flag lines,
the CLEAR and WAIT lines of the CPU are brought
out to the backplane. These lines are labeled EXT
CLEAR-P (PI-Il) and EXT WAIT-P (PI-12),
respectively, from the Control Module. The EXT
CLEAR-P line will not reset the entire CDS system,
but only perform the appropriate CPU functions.

The RESET, RUN U, and RUN P signal lines
are also available on the J2 connector of the Control
Module. Refer to Appendix D for pin numbers.
These connections normally go to the Microterminal,
but can also be used for other remote control inputs.

Development System
. Dynamic Characteristics

COSMAC CPU timing and dynamic
specifications are to be found in the User Manual for
the CDP1802 COSMAC Microprocessor, MPM-
201, and in the data sheet for the CDP1802.
C MAC-based products should be designed to
those pe 'uication . Th CDS interface i designed to #.
faccilitate funeti nal experiment. The interface ~
tlpply v Itag , VDD, of +5 volts, tll modular

construction, and the consequent capacitive loading
make it a slower system than that which can be
supported by the COSMAC CPU itself.

The signals of shortest duration in the CDS are
TPA-P and TPB-P. The TPB timing signals occur
late in a machine cycle to indicate that the data
present on the bus (from a memory access) is valid.
The earlier timing pulse, TP A may also be used when
a general purpose strobe is required.

Memory timing requirements for user-added
memory have been given earlier in this Manual under
Memory Addressing and Expansion.

Troubleshooting

After the Development System is plugged in and
POWER switch turned on, the display lights should
come on.

Depressing RESET should cause the RUN in- t'
dicator to tum off. If it does not, noise or extraneous
signals may be present on any of the DMA-OUT,
DMA -IN, or INTERRUPT lines.

~ .

I
I

T

...

•

•

Hardware Structure of the CDS __________________________ 49

Depressing RUN U should cause the RUN in
dicator to light. If it does not, the problem may be a
failure in the control module, no CLOCK signal, a
burned-out indicator, or a failed CPU.

Another common problem is data bus contention
caused by enabling user-inserted I/O devices or
memory onto the data bus at the wrong time. In
parti<;ular, if extra memory modules have been ad
ded, check that they are wired to the correct Memory
Bank Select signal.

~ .

So long as CLOCK and dc power (VDD and
CPUPWR) are present at the CPU module, then
TPA and TPB should also be present unless CLEAR
Nor WAIT-N is asserted.

Pressing LF or CR after RUNU should cause
UT20 to calibrate itself and type out a prompting
asterisk. If the CDS does not respond to UT20
commands, then locating the source of trouble is
beyond the scope of this Manual. In particular, the
troubleshooting of user-designed interfaces is an art.

Hardware Specifications

NEST

19" rack mount, 5.25" high, 10" deep.
32 card positions (7 occupied by power supply).
Connectors with plastic guides. -

44 pins; 0.156" pin spacing; wire-wrap pins
O. 5"· connector spacing

PANEL

Hinged at left; knob provided to latch panel.

Seven switches

POWER ON
RESET
RUNP
RUNU
LOAD
SINGLE STEP or CONTINUOUS
BUS or LAST I/O BYTE DISPLAY

Six Hex Digit Displays for MEM ADD and
BUS/I/O

Six LED Indicators:

RUN
Q
SCO
SCI
WAIT
CLEAR

Line cord and socket at back of cage .

POWER SUPPLY

Mounted to slotted rear of nest, uses space of 7
connectors.

+5 volts at 6.0 amperes; 5% regulation
-5 volts at 0.5 ampere; 5% regulation
+ 12 volts at 0.5 ampere; 5% regulation
Short circuit and thermal protection.
One fuse for AC, on front panel.
(no overvoltage protection)

CABLING

AC power cord (8 feet)

Power supply to Panel:

+5 volts for lamp, ground

Power to control module connector:

Flat cable, 50-pin for interfacing display logic
and control switches

Terminal module to (customer furnished) TTY:

Six-wire cable (15 feet)
terminated with MOLEX connectors for TTY

Cable from terminal module to terminal using EIA
interface:

15 feet of six-wire cable to 25-pin Cinch plug.

- These connections have unusual sized pins- .015" x .041". For wiring, equipment such as OK Machine (Bronx, N.Y.)
electric-powered wire-wrapping tool Model EW 7D or Model G-lOO with bit WB2644M and sleeve P3032LN, or equiva
lent, should be used. Cards inserted in these connectors should have beveled edges to avoid deforming the contacts.

, ,

50 _________________ Operator Manual for the RCA CDS II CDP18S005

i
!.

51

..... .
. :\

CDS Resident Software
Development Aids

.

A resident software aid is a program which runs on
the RCA COSMAC Development System, is stored in
or loaded into one of the system's memories, and
performs some general function for the user. The
Utility Program UT20, for example, is a permanently
resident software aid. A program is permanently
resident when it is stored in ROM, occupying some
fixed portion of the addressable memory space. It is
temporarily resident when it is loaded into some
portion of the existing RAM space. One of the
fundamental purposes of UT20 is to facilitate this
loading process.

In this section of this Manual, two resident soft
ware aids are described. These aids are the COSMAC
Resident Assembler and the COSMAC Resident
Editor. The COS MAC Resident Assembler trans
lates a program in assembly language into
hexadecimal code ready for machine operation. The
COSMAC Resident Editor is a programming tool
that helps in program creation, correction, and
change. It operates interactively with the user at a
terminal. This section will provide some useful in
troductory material that applies specifically to the
Assembler and the Editor programs.

CDS 1/0 Terminals
Both the Assembler and the Editor programs

process an input or source file and produce an output
file. For purposes of this Manual, a file may be
considered to be a sequence of records or lines (each
consisting of a sequence of characters) stored in some
storage medium. The program reads the input file,
processes it in some way, and writes an output file.

Three versions of the Resident Assembler and
Editor are available for use with the CDS. One is a
paper-tape version of both programs for use with a
Teletype (TTY) terminal. The second is a magnetic
cartridge version supplied for the Texas Instrument
"Silent 700" terminal or equivalent. In this manual,

the TI Model 733 ASR with "Remote Device
Control" option is assumed. A third version of the
resident software is supplied on a diskette to pur
chasers of the CDS Floppy Disk option (CD
PI8S805). With this option, any standard data
terminal can be used that will interface to the CDS
i.e., having a serial ASCII 20-mA or RS232 interface
with a baud rate of no, 300 or 1200 baud. The
Floppy Disk Manaul MPM-217 describes the use of
the resident software on that system. The discussion
in this manual concerns only the paper tape and
magnetic cartridge versions. If a Teletype terminal is
used (with local files on paper tape), it must be ad
ditionally outfitted with a Remote Reader Control
feature (see Appendix C) to permit the running
program to start and stop the paper-tape reader.

While the resident program runs, the terminal
device (Teletype or TI terminal) should operate in the
line mode, with media (paper tapes or magnetic tape
cassettes) properly mounted and with the manual
media control switches properly set. As before, the
terminals are to be in the full duplex mode and set
for the appropriate baud rate.

Memory
Space Requirements

In addition to the memory area occupied by the
resident program, RAM "work" space is normally
required. This work space can be used for many
purposes. For example, typically it contains an input
buffer area into which one or more input lines are
read from the source file. An output buffer may also
be included into which data is accumulated prior to
writing to the output file. Space may also be required
to build data tables whose contents depend on in
formation in the input file.

The COSMAC Resident Assembler and Editor are
read-only programs, i.e., any memory writes which
take place during execution occur in the work space.

.;

·71 .

52 _________________ Operator Manual for the RCA CDS II CDP18S005

The program itself resides on some input file (paper
tape or magnetic tape cassette), and is loaded into
RAM by use of standard UT20 loading techniques
previously described (the "!M" command). Once the
program is loaded, control is transferred to it, again
by the standard UT20 command $U(CR). Once it is
in cortrol (running), it proceeds to communicate with
the user via the I/O terminal, outputting its own
prQmpt messages on the printer, reading user
commands from the keyboard, and appropriately
processing the input file to generate an output file .

In subsequent operating instructions for the
Assembler I' the Editor program pa e requirements
and the minimllm amount of ",'ork space required
(~AM) ar defin ed. II more RAM pace i available
til program i d igned to take advantage of it by
PI' iding some form of "better" ervice (as explained
fmlh I' lated. Both pro'ram load tarting at address
0000 and thus cannot be resident simultaneously in
the CDS.

Informal Introduction
to the COSMAC

Resident Assembler
Early in this Manual under the head "Machine

Language Programming," a simple time-out test
program was discussed. This program in UT20-
compatible hexadecimal load form is given by:

!MO F8FFBl219191913A030Q (CR)

This program was generated using the following flow
chart:

ENTRY
-¥

INITIALIZE A DOWN COUNTER
WITH A VALUE n

-¥
DECREMENT THE DOWN COUNTER

-¥
DUMMY NOP INSTRUCTIONS
(IF DESIRED) TO PROVIDE

SOME TIME DELAY

'" HAS COUNTER REACHED ZERO YET?

~ " '-----NO YES
it

EXIT

This flow chart, of course, is a much more un
derstandable version of the program. The time from
ENTRY to EXIT is approximately n16 times the
time for one pass through the loop.

An assembly language is designed to permit a
machine-readable form of a program whose content is
intermediate between that of an English language
flow chart, which is easily understood, and that of a
machine language hexadecimal string, which is
essentially impossible to "read". A proper assembly
language program, containing mostly English-like
text, can be directly "read" and understood. An
assembler is a program which converts the assembly
language version into its equivalent machine language
form.

Flow Chart to Operation
Mnemonics

The time-out text program given above can be used
to illustrate orne of the essential properties of the
COSMAC Re idenl A embler starting from the flow
chart and pr ceeding toward lhe hex form "by
hand. "

A next version of the program, expressed in terms
of specific COSMAC instructions, is shown below:

ENTRY

~
LOAD D WITH AN IMMEDIATE ARGUMENT n16

PUT D INTO THE UPPER HALF OF SOME
COUNTER GENERAL REGISTER.

~
.-----~ DECREMENT THE COUNTER

~
ANY DUMMY TIME DELAY INSTRUCTION

(IF DESIRED)

~
ANY DUMMY TIME DELAY INSTRUCTION

(IF DESIRED)

J
PUT UPPER HALF OF THE COUNTER INTO D

J
BRANCH BACK TOl IF D IS NOT YET ZERO

L---_ _____ HERE 1
THIS IS THE EXIT. (TH E NEXT INSTRUCTION

EXECUTED WHEN THE COUNTER HAS
REACHED ZERO)

"

i

•

i

CDS Resident Software Development Aids _____________________ 53

The use of short hand mnemonics for the m
structions and appending comments gives:

LDI n .. n IS APPROXIMATELY THE
· . NUMBER

,PHI COUNTER .. OF 256 LOOP PASSES BELOW

DEC COUNTER . . REDUCE NUMBER OF PASSES
· . REMAINING

DUMMY

DUMMY

· . JUST TO WASTE TIME

· . WASTE MORE TIME

GHI COUNTER .. SEE IF COUNT HAS YET
.. REACHED

BNZ-,
HERE

EXIT INSTR

, . ZERO. LOOP IF NOT

· . TIME EXPIRED. GO ON

where LDI, PHI, DEC, GHI, and BNZ are
operation mnemonics standing for LOAD IM
MEDIATE, PUT HIGH, DECREMENT, GET
HIGH, and BRANCH IF NOT ZERO, respectively,
Their equivalent hexadecimal codes (for example, 3A
for BNZ) can be found in.Appendix E and in the
User Manual for the RCA CDPI802 COSMAC
Microprocessor, MPM-201. Each line is now
beginning to resemble an assembly language
statement.

The last version illustrates two fundamental
properties of an assembly language - the use of
operation mnemonics and the use of comments. An
assembler is designed to recognize operation
mnemonics, which are much more descriptive to the
programmer, and to convert them into their hex
adecimal code equivalents. In addition, an assembler
is designed to ignore comment text fields in
statements when it recognizes their existence. In the
program version above, every comment begins with a

. double period (..) and extends to the end of the line.
Comments are invaluable to the programmer because
they permit him to add documentation to a program's
statements.

Addressing

The next problem considered is that of assigning
addresses - specifically, the branch address in the
last instruction in the loop. Clearly, addresses which
are assigned depend on where the program will reside
in memory while it is executing. li it is assumed that
this location i not presently known absolutely (for
example, becau e lh routine's exact location within a
larger program may change), a labelling procedure
may be defined to replace the arrowed path shown.

Two examples are given below:

Example I) LABEL: DEC COUNTER

BNZ LABEL

An assembler permits locations within a program to
be identified by English-like symbols (e.g.,
"LABEL:" above). Then any reference to a location
may be made by use of its label (e.g., "BNZ
LABEL"). The programmer is free to select almost
any sequence of up to 6 characters for each label.
Typically, he chooses a symbol which has some
logical meaning within the context of his program
(e.g., LOOP, DELAY, TESTI, SEARCH, etc.).
During the process of translating the program's
statements, the assembler keeps track of the ad
dresses of all bytes it generates (starting from some
known address reference, such as zero). It uses an
internal location counter for this purpose. Whenever
it encounters a LABELed statement, it enters the
address of the instruction in a symbol table. All
references to that label may then be replaced with
appropriate address bytes.

Example 2) BNZ*-m

An assembler also normally permits addressing
relative to the position at which the reference is
found. The special symbol "*,, is meant to refer to the
address of this statement and m is a count of the
number of bytes from this point.

Two forms of symbolic addressing have been
defined: using a statement label or using the symbol
"*". One form of the program now becomes:

BEGIN: LDI n · . n IS APPROXIMATELY THE
· . NUMBER

PHI COUNT · . OF 256 LOOP PASSES BELOW

LOOP: DEC COUNT . . REDUCE NUMBER OF
.. PASSES REMAINING

DUMMY · . JUST TO WASTE TIME

DUMMY · . WASTE MORE TIME

GHI COUNT · . SEE IF COUNT HAS REACHED

BNZ LOOP · . ZERO. LOOP IF NOT

EXIT: IDL · . STOP AFTER TIME DELAY
· . HAS EXPIRED

which is almost a correct assembly language program.
(Notice that three statement labels have been
specified. Only one is presently referenced).

54 _________________ Operator Manual for the RCA CDS II CDP18S005

Assembly Language
Equivalent

Next to be discussed are the selection of the value
for n, the selection of the COUNT register, and the
"DUMMY" instruction. To get the maximum delay,
the original version of this program used a hex FF for
'the immediate byte. The assembly language
statement LDI #FF will translate properly. This

, selection provides an example of the fact that there
" are still many places in a program where explicit

\ values are specified by the programmer. The "#"
_ indicates the presence of an explicit hex constant. One

can similarly explicitly identify the general register to
be used as the counter with statements such as PHIl,
DEC 1, etc., assuming R1 was chosen. Suppose,
however, that one wished to defer or later modify
register assignments. A convenient permissible
procedure is to continue to use the symbol as an
identifier (in this case not of a memory location but of
a general register) and to give the symbol a value with
a special statement called an EQUATE statement,
which has the form COUNT=l. In this case, all
occurrences of COUNT will be replaced with 1 by the
assembler. If, later, one wished lo reassign registers,
a change to COUNT=10, for example, would
automatically change all references to COUNT to hex
value #OA.

To generate a delay, one may use the NOP in
struction or any other time-wasting instruction. The
hex program originally given merely repeated the
GHI 1 instruction three times. There are several ways
by which this instruction can be expressed to the
assembler. One in particular uses another form of
EQU A TE statement to give a value to a symbol. As
will be explained later, a comma may be used to

precede many kinds of "constants", some whose
values are explicitly stated and some whose values are
derived by the assembler. In particular, the statement
"DUMMY", for example, will cause a substitution of
the value for the symbol. Thus, if another statement
DUMMY =#91 is supplied, a means is again
provided by which all occurrences of DUMMY will
be replaced by a hex 91 (which is a GHI 1 in
struction) .

Finally, the assembler begins assigning address
values starting with zero. A special. statement is
provided to cause the assembler to change the present
value in its internal location counter if required. It is
called an ORG statement. The final form of one
assembly language equivalent of the hex program
started with is then:

BEGIN: LDI #FF · .INITIALIZE COUNTER
, .REGISTER FOR

PHI COUNT · .ABOUT 65000 PASSES.

LOOP: DEC COUNT · .REDUCE # PASSES
· .REMAINING BY I.

,DUMMY · JUST TO WASTE TIM E.
,DUMMY · .WASTE MORE TIME.
GHICOUNT · .SEE IF COUNT HAS

· ,YET REACHED

BNZ LOOP · ,ZERO. LOOP IF NOT.

EXIT : IDL · .STOP AFTER TIME DELAY
• .HAS EXPIRED

COUNT = 1 · .REGISTER I ASSIGNED AS
, .THE COUNTER

DUMMY = #91 , ,NOP IS A REPEAT OF A
· , GHI 1 INSTRUCTION .

END · .REQUIRED LAST STATE,
· . MENT IN EVERY PROGRAM.

COSMAC Resident Assembler

Assembler Operation
The COSMAC Resident Assembler (CRA) is a

program which provides for assembly of COSMAC
programs without the use of another computer. CRA
runs directly on the COSMAC Development System
itself in a stand-alone manner. It converts source
programs written in COSMAC Level I Assembly
Language into executable (hexadecimal) machine
code.

The use of an assembler permits the programmer to
write programs using convenient symbols and ex
pressions. The input or source program consists of a
sequence of statements. A statement is normally

translated by the assembler into an equivalent
sequence of hexadecimal digits (a single machine
instruction or a data field of user-defined constants).
This code is then placed in its proper position (i.e.,
assembled) in an output or object file - which is the
executable machine program. Some statements are
special control commands to the assembler. They are
called assembler directives. They are distinguished
by the fact that they do not directly cause output code
to be produced.

An assembly language program (as compared to its 0
machine code counterpart) is easier to write and to
understand. Each statement may be annotated with
user comments which are ignored by the assembler

(

1
I

CDS Resident Software Development Aids _____________________ 55

but carried along for documentation purposes. The
assembly language program is easier to change and
contributes to fewer trivial errors than a
corresponding machine code program.

The Location Cou nter
Th~ basic function of CRA is to fill a simulated

COSMAC memory (the object code. area or file) with
the hexadecimal equivalent of the user's source
program. For this purpose, CRA maintains a two
byte location cotmter as a pointer into this area. The
'initial value of the location counter is zero. As CRA
mps and produces output code, it places this code in
the output area at the position specified by the
location counter, and then advances the location
counter past the bytes just inserted. The value of the
location counter is also controlled by the CRA
directive statements ORG and PAGE (explained
later). These statements may be used, for example, to
advance the location counter past an area without
filling it.

The source programmer may explicitly refer to the
current location counter value by use of the character
"*,, in an expression (see later diSCUSSIon).

The Symbol Table
The most fundamental logical facility provided by

an assembler to aid in the output code generating
process is its ability to construct and reference a
symbol table. A symbol is a sequence of one to six
alphanumeric characters beginning with a letter ..
Each programmer-defined symbol is given an entry in
this table where it is assigned a two-byte value which
is often an address value equal to the location counter
contents at the point where the symbol is "defined" in
the program. However, it may also be a user-specified
value (for example, a constant) if the symbol is
defined in an EQ U ATE directive (explained later).
Thus, while a symbol most often represents an ad
dress, it may also represent a specific CPU register,
an 110 device number, or any other user-specified
value (e.g., a constant, an immediate argument, etc.).

A symbol normally appears at many points in the
source program. At one of these points, it is assigned
a value in the symbol table; i.e., it is defined. At all
other points (whenever the symbol is referenced), this
value is used by the assembler to derive or produce
code. Thus, by changing the value assigned to a single
symbol, the programmer can make substantial
changes in his object code file.

A symbol is also called a label, a name, an iden
tifier, or a symbolic address or pointer.

Expression Evaluation
As CRA processes source statements, it produces

hexadecimal code values. Much of this code is the
direct equivalent of explicit, user-specified in
formation in the source program (constants, register
or device numbers, operation code mnemonics).
Other code values are derived indirectly, using either
the current value in the location counter or the value
assigned to a specific symbol in the symbol table. The
code values thus produced are either assembled into
the output stream, as previously descnbed, or
assigned to new symbol table entries (when new
symbols are defined).

At various places in the source program, CRA will
be expecting to encounter an expression. An ex
pression is defined as one of the following forms:

1) expression constant
2) *
3) *±expression constant
4) symbol
5) symbol ± expression constant

#2F or 47
*
*+47 or *- #Fl
SAM or J65MP
AREA9 - #2F

where an expression constant contains an explicit
hexadecimal or decimal value. (The acceptable forms
for expression constants are described later.) CRA
evaluates the expression by using the explicit constant
value (if present), the current location counter value
(for the "*", if it is present), the symbol's value in the
symbol table (if a symbol is present), and by per
forming the required arithmetic operation (if
necessary). The result is always a two-byte value
which may be disposed of in anyone of several ways,
as discussed further later. Spaces adjacent to the + or
- operators are optional.

Following is a more detailed definition of the
syntax which CRA is designed to recognize.

COSMAC Level I
Assembly Language

Lines and Comments A

Each line or record in the source file is
distinguished by an ending carriage return character.
A line may consist only of a comment or of one or
more statements optionally followed by a comment.

A NOTE : All discussion regarding special CRA punctuation char
acters (such as semicolon, colon, period, asterisk, parenthesis,
equals sign, number sign, apostrophe , etc.) refer to those which
do not appear within text constants (defined later). Any char
acter within a text constant has no special punctuation signifi
cance to CRA.

56 _________________ Operator Manual for the RCA CDS II CDP18S005

A comment is any series of characters begin
I:1ing with two periods. It extends to the end of the
line. Thus, the occurrence of two periods at any point
in a line causes CRA to ignore the remainder of the
line. Statements within a line are normally separated
by semicolons (with the last statement optionally
terminated by a semicolon). Within each statement,
spaces (blanks) maybe used freely (except within

. symbolics and mnemonics) in order to improve
readability. CRA will ignore them.

In all the examples which follow, a pair of square
brackets will be used to enclose an optional entity -
one which mayor may not be included. Examples of
valid lines are then:

1) .. COMMENT
2) STATEMENT! [;STATEMENT2 ;···;

STATEMENTn] [;] [.. COMMENT]

Sym bol Detin itions

(Statement Labels and Equate Statements)

Any statement may optionally begin with a
symbol (called a "statement label") immediately
followed by a colon. Under these conditions, the
symbol is entered into the symbol table and assigned
the present location counter value. A statement thus
has the form:

[SYMBOL:] STATEMENT BODY

(For example, LOOP: INC R4)

A symbol is also defined when it appears as the left
hand part of an EQUATE statement, which has the
form:

SYMBOL=EXPRESSION

(For example, READER=6)

In this case, the expression is evaluated and the
resulting two-byte value is assigned to the symbol in
the symbol table. (Acceptable forms for symbols and
expressions have already been explained.)

Thus, a symbol definition is indicated to CRA by
the occurrence of ":" or "=" immediately after a
leading sequence of alphanumeric characters in a
statement.

When equating a symbol to a register number, only
a decimal or a hexadecimal number should appear on
the right side of the equation. For example:

COUNTR= 7 is correct
COUNTR= #07 is correct
COUNTR= R7 is incorrect

DELAY = COUNTR is also correct

Explicit Constants

At numerous points in the source program, the
programmer desires to directly ~pecify explicit
constants to CRA. Most often (but not always) the
hexadecimal equivalent of an explicit constant is
inserted directly into the output code stream at the
point where it appears in the source program. (For
example, initial data values and immediate
arguments may be explicitly defined this way.) CRA
allows the programmer the ability to specify absolute
constants in binary, hexadecimal, decimal, and
alphanumeric forms. The possible explicit constants
are summarized below.

Hexadecimal constants: A hex constant is specified
with either of the following forms:

Example

1) #hh ... hh #3EOF

2) X'hh .. hh' X'3EOF'

where each h is a hex digit (0 to F). eRA requires
that an even number of hex digits be specified.
There are further restrictions on hex constant lengths
under certain conditions.

Decimal constants: A decimal constant is specified
with either of the following forms:

Example

1) dd ... dd 635

2) F'dd ... dd' D'635'

where each d is a decimal digit (0 to 9). Each such
constant is converted into hex, producing one or two
bytes, depending on the space required to represent
it. Decimal values greater than 65535 are converted to
hex. but then truncated to two bytes (upper bytes
removed).

Expression constants: An expression constant may
be either form of the hex constant or the first form of
the decimal constant. Because an expression tran- Ii
slates to two bytes, a hex expression constant should "
normally be restricted to two or four digits in length.

-

.,

CDS Resident Software Development Aids _____________________ 57

Binary constants: A binary constant is specified in
the fonn:

B'bb ... bb'

(For example, B'OllOl')

where· each b is 0 or 1. Up to eight bits may be
specified. Each such constant is converted to one
byte', with leading O's assumed.

'{ext constants: A text constant is specified using the
·fOrm:

T'cc ... cc'

(For example, T'THIS IS TEXT')

where each c is any printable character, including
space. Each character is converted to its ASCII code
equivalent (see Appendix F) and is represented in one
byte. Characters that have no graphic associated with
them (i.e., ETX, DC-3, CR, LF, etc) should not be
used within a text constant. Entering an apostrophe
within a text constant is treated specially, however.
See "Additional Notes" below. Refer to Example 4
under "Examples of UT20 Read and Type Usage" to
see how CR, LF is handled.

Address Constants

The programmer finds it useful to specify not
only explicit or absolute constants, but also derived
constants whose values are assigned or "computed"
by the assembler. Because the fundamental function
of the assembler is to assign address values, such
constants are nonnally called address constants. For
CRA, an address constant has one of the following
forms:

Example:

1) A(expression) A(GEORGE + 2)

2) A. 1 (expression) A.1(LOOP)

3) A.O(expression) A.O(*-X'10')

where the permissible forms for an expression have
already been defined. For all cases, the resulting
constant is derived by first evaluating the expression.
In the first case, the two-byte result is the constant. In
the second case, only the upper byte is used; for the
third case, only the lower byte. For all cases, the
resulting one- or two-byte value is assembled directly
into the code output.

Operation Mnemonics
CRA uses special two-, three-, and four

character mnemonics to represent the various in
structions in the COSMAC instruction set. These
mn'emonics are listed in Appendix E. When CRA
determines that an operation is being specified; it
looks it up in a table to detennine the code equivalent
of the mnemonic. (Note that this table is not the
symbol table, which contains only programmer
defined symbols.) Thus, use of an operation
mnemonic effectively defines an explicit hex coc;le
value to be inserted into the object stream. '

Instructions and Operands
There are two types of output code-producing

statements: instructions and data lists. An in
struction begins with an instruction operation
mnemonic. In some cases (such as IDL, RET, LDX,
etc.) this mnemonic is all that needs to be specified.
In most cases, however, the operation mnemonic
must be followed by an operand. The form of the
operand (i.e., the additional information which the
programmer needs to supply to fully define the in
struction) depends on the type of instruction. The
four operand forms follow.

Register operands: Many instructions (e.g., INC,
LDA, etc.) include a hex digit identifying one of the
scratchpad registers. The operand field in such a
statement may include either a single hex digit, or a
symbol. For the last case, CRA uses the least
significant hex digit of the symbol's value in the
symbol table as the register identifying field.

Examples:

DEC9

LDARF

PLOSAVE

("SAVE =#OF" could have previously defined
SAVE.)

I/O device operands: The instructions OUT and
INP require a device-identifying field. The operand
in such a statement may be a single digit in the range
1 to 7, or a symbol. Again, for the latter case, a
symbol table lookup occurs, using the least significant
hex digit of the symbol's value (checking also that it is
within the appropriate range).

Examples:

OUT 4

INPREADER

58 _________________ Operator Manual for the RCA CDS II CDP18S005

Branch address Every branch in truction
requires an operand speciJying th branch addre . II
th mnemonic i a short branch a one-byte operand i
g nerated. A two-byte operand i g Derated if the
mn moni ' i a long branch. Whenever CRA ee a
branch operation mnemonic, it expects to nextfind an
operand in the fOlm of an expression . The acceptable
(orins for expression have already been defined. In
en o-{ a short branch CRA valuates the expression

. by g tling a two-byte addre s che k that thi ad
dre s is within the current 256-byte page by
examin ing the upper byte, and uses the lower byte a

.:" the ' cond byt in the in truction. For a long branch,
the upper byte represents the page number and the
lower byte is the addre within that page.

Examples:

If A(LABEL) is #6789

BZLABEL

generates #3289

and LBZ LABEL

generates #C26789 -

Immediate pcrands: Several in tl'llctions include a
s ond byte a an immediate argument. The operand
field in uch a stat ment may be anyone-byte con
stant (i.e., an ab oint or explicit constant or an
addres con tantl or a ymbol. For the latter case
CRA uses the lea t significant byte of th • ymbol s
assigned value.

Examples:

XRI X'FF'

ADIINCREM

LDI A.O(*)

Note: When an immediate argument j pecified it is
the programmer' re ponsibility to make sure that it is
a one-byte con tanto If it is longer. CRA will not
generate an error message, but will merely insert the
entire constant into the output stream, possibly
causing an error during program execution.

Data Lists

The typical program normally includes memory
areas which ontain data values. Statement which
d ·fine inItial data values are also code-pr dueing
statements (although th code generated is normally
not "executable' J. The data list i a special statement
provided for the e purposes. It begin with either a

comma or the special mnemonic "DC" (which stands
for "Define Constant") and is followed by a sequence
of one or more constants separated by commas. Each
constant may be an absolute, explicit constant
(hexadecimal, binary, decimal, or text) or an address
constant or a symbol. For the last case, to be con
sistent with the treatment of symbols as immediate
data, CRA substitutes the lower byte of the symbol's
assigned value. Thus, a constant in a dat~ list is
similar to an immediate operand, but now a length
greater than one byte is entirely justifiab~e.

Examples:

DC X'ABCD' ,355

,#ABCDEF,T'TEXT' ,B'On'

(Note: Any statement may be directly followed by a
data list without the intervening semicolon. For
example LDA 9,#3001.)

eRA Directives
The EQUATE DIRECTIVE (of the form

SYMBOL=EXPRESSION) has already been
discussed. Three other directive statements are also
recognized by CRA:

ORG Statement: This statement is written "ORG"
followed by an expression. CRA executes this
directive by setting the location counter equal to the
value of the expression.

Example: ORG *+20 .. Reserve 2010 bytes of space

PAGE statement: The PAGE directive, simply
written "PAGE", increases the value of the location
counter to that of the beginning of the next 256-byte
page; i.e., the upper byte of the location counter is
incremented and the lower byte is set equal to zero.

END statement: The END directive, written
"END", informs CRA to terminate the assembly. It
should appear only once, as the last statement in the
source program. The END directive is normally
followed by a DC3 character. The DC3 is produced
by the EDITOR to signify an end of file.

Thu , in addition to recognizing all the instruction
operation mnemonic listed in Appendix G, CRA also
recognizes the special mnemonics "DC", "ORG",
"PAGE", and "END '.

Additional Notes
1) As noted earlier, a space is not permitted

within a syntactic entity (symbol, mnemonic, con
stant, etc.). A space is not permitted between a

CDS Resident Software Development Aids _______ ______________ 59

symbol being defined and the following colon or
equals sign. Note, however, that a space within a text
constant is permitted. It is translated into its ASCII
equivalent code. There is a case where a space is
required as a punctuation character. In order to
distinguish an operation mnemonic (including ORG)
from its following operand (if present), CRA expects
to find at least one space.

2) An apostrophe may be included within a text
constant by preceding it with a "dummy
apostrophe". Thus, the string IT's is written as a text

'constant as

,T'IT"S'

3) Special control characters (non-printing
characters, such as carriage return, line feed, etc.)
should not be placed within the quotes of a text
constant. Rather, they should be defined by splitting
the text constant into two successive text constants,
with the intervening control character represented
with a hex constant (using its ASCII code). For
example:

,T'LINEl',#ODOA,T'LINE_2'

4) Several COSMAC instructions execute by
automatically advancing the pointer to an operand
byte after processing it. If the pointer to the operand
byte is the same as the current program counter (for
example, if X=P or if N=P), then the operand byte
may be considered an immediate operand (provided
an auto-increment occurs). A statement for such an
instruction (under the conditions specified) is most
conveniently followed by a comma followed by the
one-byte immediate constant. This sequence is
permissible because any statement may be im
mediately followed by a data list - omitting the in
tervening semicolon.

For example, assuming P=O, the sequence SEX
0; OUT 5 ,X'52' outputs the immediate hex constant,
#52, to output port and continues.

5) In general, any symbol may be referenced
before it is defined in a program (termed a "forward
reference"). Only one restriction exists: A symbol on
the right-hand side of an EQUATE statement (i.e., in
the expression) must have been previously defined.

6) CRA uses the location counter value before a
statement is processed as the value for any "*,, oc
curring within the statement. Thus, for example, for
BR *+3, the value used for the * is the location
where the branch byte (hex 30) will be placed, not one
byte past that. Thus, BNl * will cause a program
loop until flag 1 goes true.

Code Examples and Review
Fig. 24 is a hypothetical program designed not to

do anything meaningful, but rather to present
examples of various acceptable CRA statements. It
contains a listing of the program and the
corresponding output code generated. Fig. 25 con
tains the symbol table for the program. Both were
generated by a typical CRA assembly run.

In Fig 24, the left-hand column gives the location
counter value before the line was processeq. The next
column give the output hex code generated at that
location by the line. (Terminating semicolons in this
column should be ignored. They are present to format
the output file properly for subsequent loading of the
object program. See later operating instructions.) The
next column gives a source program line number for
reference purposes, and Jinally the source code is
reproduced. The running comments in the source
program refer to the statement examples where they
appear.

By reading the source program in detail (paying
special attention to the running comments), one can
quickly review much of what has been said con
cerning COSMAC Level I Assembly Language.
Output code values may be verified by referring to
Appendices E and F. In particular the reader should
verify the values assigned to the symbols in Fig. 25.

Error Messages

Whenever CRA detects a violation of its syntax
rules, it generates an error message. There are,
however, some possible program errors which will not
be detected by CR A because they do not result in
syntax rule violations. For example, R3=8; INC R3.
R3 is now a symbol, the value of which is 8, so
register 8 gets incremented.

When there is a syntactical error, CRA indicates it
first, by printing the line in violation using its
standard listing format (location counter, output
code, line sequence number, source line); second, by
inserting a "?" at the detection point in the source
line; and third, by printing an error code on the next
line. If the error is detected at the end of the line, the
"?" may be omitted. In most cases, by looking up the
error code meaning in the listing which follows and by
noting the position of the inserted "?", the user can
easily determine the nature of the error.

It should be emphasized, however, that it is
possible that an error at one point in a source line may
be interpreted by CRA as an error at a different
point. For example, in T'TEXT ... COMMENT, a
single quote is missing after TEXT. It will not be
detected until the end of the line. (In fact, if the

60 ___ ___________ ___ Operator Manual for the RCA CDS II CDP18S005

LOCATION
COUNTER

0000
0000
0000
0000
0000
0000
0000
0003
0003
0003
0003
0004
0005
0007
0009
OOOE
0013
0016
0017
0018
0019
001A
001A
001C
001E
001E
0020
0022
0032
0100
0 102
0104
0104
0105
0105
0106
0108
010A
0100
010F
0110
0111
0000

OUTPUT
CODE

0078FO;

29;
89;
3A03;
3016;
ABCD400100;
0354455854;
00120A;
lA;
2B ;
67 ;
6F ;

F841 ;
FC05;

3600;
3C22 ;

6710;
4205;

12;

78;
7078;
F801 ;
F80105 ;
F805;
lA;
OA;

LINE
NUMBER

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
001 1
0012
0013
001 4
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026

- 0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042

SOURCE LINES

· . THIS PROGRAM IS NOT DESIGNED TO DO
· . ANYTHING MEANINGFUL. RATHER, IT IS
· . DESIGNED TO ACT AS A REVIEW AND
· . SUMM~RY OF THE COSMAC LEVEL 1
· . ASSEMBLY LANGUAGE .
· . A LINE MAY CONSIST ONLY OF A COMMENT
ID L;SAV;LDX . . MULTIPLE STATEMENTS ON LI NE
CRLF = #ODOA . . SY MBO L DE FIN ED VI A EQUATE
TALLY = 9 . . SAME, USING DECIMA L CONST ANT
PT R = TA LLY + 1 .. EXPRESSION CONTAINS SYM BOL
LOOP : DEC TALLY . . SYM BO L DE FIN ED VIA LA BEL

GLO TALLY .. TALLY IDENTIFIES A REGISTER
BNZ LOOP .. EXPR CONTAINS SYMBOL ONLY
BR SAMl .. A FORWARD REFERENCE

,X'ABCD',64,D'256' .. SOME CONSTANTS
DC B'Oll',rTEXr .. MORE CONSTANTS
,A(' - 1),A.O{CRLF) . . SOME ADDRESS CONSTANTS
SAM1 : INC A . . REG NAMED WITH HEX DIGIT

DEC RB .. REG NAMED WITH "R" FORM
OUT 7 . . EXPLICIT DEVICE NUMBER
INP READER .. DEVICE IDENTIFIER IS SYMBOL

READER = 7 . . ANOTHER FORWARD REFERENCE
LDI rA' ., l·BYTE IMMEDIATE CONSTANT
ADI NUMBER . , SYMBOLIC IMMEDIATE CONSTANT

NUMBER = X'05' .. EVEN NUMBER OF HEX DIG ITS
B3 LOOP-#03 .' BR ADDRESS IS EXPRESSION
BNl * + 2 .. EXPR REFERS TO LOC COUNTER
OR G * + # 10 .. ADVANCE LOC CTR 16 BYTES
PAGE .. ADV LOC CTR TO NEXT PAGE
OUT 7,16 . . IF X = P, #10 IS DATA OUT
LOA 2,NUMBER . . IF P = 2, SAME AS LDI #05

F = 2 . . BAD PRACTICE TO REDEFINE A HEX CHAR SINCE
INC F . . THIS WILL INCREMENT R2, NOT RF .
LABEL : ORG • ., AN EASILY-MOVEABLE LABEL
RET : SAV ; . . "RET" IS A LABEL HERE
RET; SAV; . . "RET" IS AN INSTRUCTION
LDI A.l (LABEl) . , A PROPER l-BYTE IMMEDIATE
LDI A(LABEL) . . ERROR. NO DIAGNOSTIC GIVEN
LDI LABEL .. LOWER BYTE USED ONLY
INC CRLF .. LOWEST HEX DIGIT USED ONLY
,CRLF . . LOWEST BYTE USED ONLY
END .. REQUIRED LAST STATEMENT

Fig. 24 - eRA listing of sample program.

Hex
Value

ODOA
0009
OOOA
0003
0016
0007
0005
0002
0105
0105
0000

Symbol

CRLF
TALLY
PTR
LOOP
SAM1
READER
NUMBER
F
LABEL
RET

Fig. 25 - Symbol table for sample program of Fig. 24.

r.

~
I

C[)S Resident SQftware Development Aids ________________ _____ 61

comment happens to end in a single quote, the error
will go undetected.) Further, and more important, it
is possible for the error code to indicate one type of
error when another actually occurred. For example,
the statement SAM INC 3 is missing a colon after the
label SAM. The' primary meaning of the error code
which will return in this case is: "unrecognized
mnemonic". This response is understandable because
if CRA does not detect a colon or an equals sign, it
assUmes that the statement does not begin with a
symbol. If therefore expects a mnemonic or a comma
an,d does not find either~

Whenever an error exists, the output code is
questionable. However, as best it can, CRA in
crements its location counter past this code and
continues to process the source program, possibly
detecting further errors which it flags similarly.
Detection of an error does not stop assembly of ~
program. CRA continues in its. attempt to find all
syntax errors.

.. ' An error on one line may cause several lines to be
}lagged. This response typically occurs when a line
containing a label is flagged because of a missing
colon and all subsequent references to that label are
also noted as "undefined. "

The possible error codes and their meanings . are
given in Table VII, and a summary of error messages
is given in Table VIII. If in the process of generating
a listingCRA creates a line that exceeds the standard
length (typically 78 characters), the line is broken by
a (CR) (LF) sequence. The rest of the line is con
tinued on the next line but is preceded by a' con
tinuation mark - a period.

TABLE VII - CRA ERROR CODES AND THEIR MEANINGS

Error
Code
01

02

04

Meaning
UNRECOGNIZED MNEMONIC OR MISSING COMMA
The body of a statement (other than EQUATE) must begin with either
a valid opera!ion mnemonic or DC, ORG, PAGE, END, or a comma.
PREVIOUSLY DEFINED SYMBOL
An attempt has been made to define a symbol which already has an
entry (and a value) into the symbol table.
INVALID CHARACTER WITHIN BINARY CONSTANT
CRA is in the process of evaluating a binary constant and has found a
character other than 0/1 or the trailing single quote (which may be missing).

05 BINARY CONSTANT TOO LONG
The limit is eight bits.

06 EXPECTED HEX OR DECIMAL CONSTANT HERE
CRA is in the process of evaluating an expression or a constant and
expects to see a hex or decimal constant at this point and does not
find one. (Note: Under certain conditions, this diagnostic may
occur as the result of an undefined symbol.)

07 UNDEFINED SYMBOL

08

CRA encounters a symbol reference and wants to use its value, but
does not find it listed in the symbol table.
EXPECTED EXPRESSION HERE
CRA determined that an expression was to follow next and did not
find leading characters which were proper.

09 INVALID CHARACTER WITHIN HEX CONSTANT
CRA is in the process of evaluating a hex constant and has found an
invalid character. (This error code may be caused by an uneven number
of hex digits.)

10 MISSING TRAILING QUOTE IN TEXT CONSTANT
Note that the error marker "?" will not appear because this error is
always detected at the end of a line.

11 PERIOD ERROR
Either illegal use of a single period or a missing period beginning
a comment.

12 LEADING CHARACTER ERROR
At the beginning of a statement, a leading alphabetic or comma was not
found. (Cont'd)

1 .

62 _________________ Operator Manual for the RCA CDS II CDP18S005

TABLE VII - Cont'd

14 BRANCH OUT OF PAGE
A branch address was evaluated and the upper byte did not agree with
that of the location counter (see Note 1).

15 INVALID REGISTER NUMBER
The LDN RO is an illegal operation. It would otherwise assemble into
a hex 00 operation code, the code for an idle instruction.

16 DEVICE NUMBER OUT OF RANGE
In an OUT or INP instruction, the explicit or symbolic device number
had a value greater than 7.

OVFL SYMBOL TABLE SPACE EXHAUSTED
The amount of RAM allocated to the symbol table has been used up.
The user must remove labels by, for example, using *'s more often or
branching relative to existing labels. The program can also be broken
up into parts, or more RAM can be added to the CDS. (Note: This
error condition halts CRA. A restart of the assembler is required, i.e., $U).

Notes
(1) While CRA makes every effort to increment the location counter properly

when it processes statements which contain errors, it is, of course, possible
for the location counter to have a value at any given point which is different
from that which it would have for an error-free program. As a result, it is
conceivable that the BRANCH OUT OF PAGE error diagnostic either will
occur erroneously or will not be generated when it should be.

(2) The semicolon separating mUltiple statements in a line is used mainly
as a checking device. When CRA has processed an error-free statement
and is reinitialized to look at the next one, the intervening semicolon
is merely ignored. Thus, it is not really mandatory that the semicolon
be used between two statements on a line, if the first is "known" not
to contain errors. Clearly, however, it is a necessary practice not only
for readability, but also for verification purposes.

TABLE VIII - SUMMARY OF CRA ERROR MESSAGES

Error
Code

01
02

04
05
06
07
08
09
10
11
12

14
15
16
OVFL

Meaning

UNRECOGNIZED MNEMONIC OR MISSING COMMA
PREVIOUSLY DEFINED SYMBOL

INVALID CHARACTER WITHIN BINARY CONSTANT
BINARY CONSTANT TOO LONG
EXPECTED HEX OR DECIMAL CONSTANT HERE
UNDEFINED SYMBOL
EXPECTED EXPRESSION HERE
INVALID CHARACTER WITHIN HEX CONSTANT
MISSING TRAILING QUOTE IN TEXT CONSTANT
PERIOD ERROR
LEADING CHARACTER ERROR

BRANCH OUT OF PAGE
INVALID REGISTER NUMBER
DEVICE NUMBER OUT OF RANGE
SYMBOL TABLE SPACE EXHAUSTED

"\

. r

CDS Resident Software Development Aids _ _ _ ________ __________ 63

eRA Operating Instructions

Summary of eRA Operating Steps

operating the terminal in the LOCAL mode. Second,
it may already exist (saved) in a remote system; e.g., a
time-sharing system. In this case it can be
automatically written on a local tape through a
communications link, for example. Third, and
preferably, it may be generated by use of the
COSMAC Resident Editor program, which will be
discussed next. In any event, it is assumed that such a
source tape exists as a prerequisite to the operating
steps listed in Table IX.

Before a summary of the detailed operating steps
for CRA is given, it should be pointed out that the
source file which CRA processes may be derived in
ally .one of several ways. First, it may be written on
magnetic or paper tape from the keyboard by

,:-,.

TABLE IX - SUMMARY OF CRA OPERATING STEPS
1. Load CRA into RAM using the following steps.

a. For TI terminal in LINE mode:
Press RESET, then RUNU, then CR to initialize UT20.
Mount CRA program cassette.
Rewind cassette.
Press LOAD/F F to advance to the first file.
Press CONT/START to start reading file.

b. For Teletype terminal in LINE mode:
Press RESET, then RUNU, then CR to initialize UT20.
Mount paper tape in reader.
Place READER CONTROL switch (previously installed) in MANUAL position.
Press START !In the tape reader.
After completion, set READER CONTROL switch back to REMOTE (program

control) position.
CRA is now loaded into memory.

2. Mount input source. If paper tape, turn reader on. READER CONTROL switch
should be in REMOTE position.

3. Mount output object tape. If paper tape, do not turn punch ON yet.
4. Type $U (CR) to transfer control to CRA.
5. CRA begins by typing ?, asking user to identify type terminal in use. In response,

type P for "punch" if a Teletype terminal, or any other character if TI terminal.
6. After CRA prompt message (? F, H, L, U =), type F. CRA will then execute its

first pass, generating a symbol table and possibly some error diagnostics. If TI
terminal is used, source tape will be automatically rewound after completion.
If Teletype terminal is used, source tape must be repositioned . After completion,
CRA will repeat prompt message.

7. Type L. Listing will ensue. If TI terminal is used, an object tape will be written
automatically.

8. Insert this step only to effect Teletype terminal third pass. This pass will punch
the object code paper tape. First, turn the paper punch ON. Then reposition the
source tape and respond to new CRA prompt message by typing H .

9. After CRA has completed the assembly, and if the object tape is to be run,
the user must initialize the object tape for reading. (For the TI terminal,
the object tape is already rewound and the user need only change the
controls on the terminal so that the just-RECORDED cassette now becomes
the PLAYBACK cassette.) Respond to the new CRA prompt by typing U
followed by a CR. UT20 will assume control and deliver the * prompt. By
following the steps given in 1 (a) or 1 (b), the object tape can be loaded into
memory. Control is transferred by the appropriate $U(CR) command.

64 _________________ Operator Manual for the RCA CDS" CDP18S005

RAM Considerations

The eRA program occupies approximately 2.5
kilobytes of memory. It is supplied on UT20-
compatible paper tape for TTY use and on cassette
for use with the TI terminal.

eRA requires an additional work space of at least 1
I).ilobyte of RAM for 110 buflers and, particularly,
for the symbol table which it constructs and
references. Most of the available RAM work space is

.. :used for the symbol table. Each entry has a variable
': length and contains the symbol (one byte per
: character) a special delimiter control byte, and a

-two-byte value. Becau e a symbol i 1 to 6 bytes in
length , each symbol entry is 4 to 9 bytes in length.
eRA makes use of additional RAM space if it has
been provided, by starting at location 8000,
decrementing down, and testing for RAM by suc
cessive write/read operations. It stops when the first
RAM byte is found and asswnes that RAM exists
from there down to location 0000. Therefore, any
added RAM must be contiguous to the original 4
kilobytes supplied.

In 1 kilobyte of work space, .there is room for
approximately 80 symbol table entries depending, of
course, on the average symbol length. The required
work space is not a function of the number of
statements in the source program being assembled.
Rather, it is a function of the number of symbols
defined within it.

eRA is a two-pass assembler. That is normaUy it
reads the complete source file twice to complete an
assembly. During the fir t pass, the symbol table is
constructed in RAM and printed on the terminal.
Syntactic errors are flagged. On the second pass,
object code is generated using the symbol table values
just derived and an assembly listing is printed.
Addition program errors may be flagged on the
second pa . For example the UNDEFINED

YMBOL error normally occurs here.

Output Options

When the TI terminal is used, the output or
object tape is generated automatically during the
second pas . This terminal includes means by which
information printed on the printer may be different
from that which is written on the output tape cassette.
In tbis case, after the second pass, while the printed
listing contains all the information discussed earlier
(i.e., output code values and associated addresses
and sequence number and associated source lines),
the output tape contains only output code and addre s
information in a format compatible for subsequent
loading via UT20. The output tape file begins with a
"1M' message followed by a sequence olline which

have the UT20 semicolon loading format (where each
line begins with an address followed by a sequence of
hex digits to be loaded there, terminating with a
semicolon) .

If the 110 terminal is a teletypewriter, on the other
hand, then when the paper tape punch is activated,
information punched on the tape is the same as that
printed on the printer. Thus, if the punch were turned
on at the beginning of a second pass, the entire listing
would be written on the output paper tape. The
resulting tape could be used for subsequent loading if
desired because UT20 ignores any information on an
input !M line after the semicolon has occurred.
However, this procedure has several disadvantages.
The output tape is much longer than it has to he, with
most of the information on it extraneous. As a result,
the time to read it (during subsequent loading),
particularly at 10 characters per second, is normally
prohibitive. To handle this problem ,:\,hen a Teletype
terminal is used, eRA includes the ability to make
two kinds of "second passes" one of which omits the
printing of the source program lines and their
associated sequence numbers. Thus the normal
procedure to generate a paper tape object file is to
make a third pass (of the type just described) overthe
source file to generate an output tape which contains
the same information as would be written on a
magnetic tape cassette during the second pass.

Thus, several paper-tape, second-pass options exist
for the user. First, the normal second pass (generating
a listing) may be elected (option L) with the 'punch
off, waiting for the third pass to generate the output
tape (option H). Second, particularly for short
programs, the punch may be activated for this listing
pass - in which case the output tape will be longer
than necessary, but a third pass will not be required.
Third, particularly if an adequate listing already
exists as the result of a previous run, the user may
elect the object-code-only option (H) on the second
pass, with the punch turned ON.

Prompt Messages

eRA begins any pass with a prompt message
which appears as

?F,H,L,U=

asking the user to type one of the letters shown to
define what eRA will do next. It is assumed that all
110 media involved - input and output magnetic or
paper tapes - are properly mounted. Typing F selects
the first pass (symbol table construction). Typing L
selects the Listing pass (the normal second pass).
Typing H selects the Hex-only listing pass (the
normal third pass when paper tape is used). Typing U
causes eRA to return control to UT20 (presumably

)

CDS Resident Software Development Aids _____________________ 65

after the completion of an assembly, in order to load
the program just assembled). UT20 receives control

and prints an "*" prompt as usual. The user may
then re-initialize the object tape for loading and
running.

Informal Introduction to the
COSMAC Resident Editor

,After the user has written his COSMAC assembly
language program and wants to assemble and run it,

;lhe immediately faces the problem of converting the
· ~hand-written source file into a machine-readable
form. This conversion involves a keyboard-to-tape
operation in which lines on the coding sheet are
transcribed to become lines on a source tape.
Although an "off-line" process can be executed, in
which the 110 terminal is operated in the LOCAL
mode, it is much more likely that the COSMAC
Resident Editor will be used at this point to create the
source tape. The reason is that use of the Editor
provides assurance that the created files are in proper
format for later reading by the Assembler and for
later modification, if necessary, by the Editor. Details
on formats are given in the description of the Editor
which follows in the next section of this Manual.

Once a source file has been created and a first
Assembly run made, it is very likely' that error
diagnostics will be returned by CRA asking for
corrections to the source file to conform to CRA's
rules. Typically, the changes required at this point
are "trivial" but necessary. For example, spaces may
have to be removed in one or more expressions. The
same symbol may have been erroneously used for two
purposes. An operation mnemonic may have been
misspelled or .a punctuation character such as a
comma, colon, or single quote omitted. The number
of possible trivial errors is clearly large.

To correct the errors and to alter the source file to
conform the program to the CRA rules, the Editor is
used. Typically, modifications at this point merely
involve insertion and deletion of single characters or
replacement of a small string of characters by a
substitute string. The erroneous source file is used as
an input to the Editor and the user generates a
corrected source file as an output. The new file is then
re-assembled. At this point other trivial errors may
appear which were not apparent to CRA on the first
run. For example, an erroneous instruction operand
may not have been flagged on the first assembly
because its associated statement label or operation
mnemonic may have also been in error. Thus, a new
Edit-Reassemble pass may be necessary. Finally, a
program is developed to which CRA does not object.
At this point, a first run can take place.

The probability of a logical error in the program
depends on its length and the previous experience of
the programmer. Assuming one or more logical errors
are found (via some "debugging" procedure), the
source file must again be modified. Often such
modifications are no longer trivial. For example, it
may be necessary to find all instructions which
branch to a given location and precede some of them
with one or more instructions currently not in the
program. Often, it may be necessary to delete some
code or insert some code or move some code to a
different point in the program. Several duplicated sets
of in-line instructions may have to be removed and
replaced with calls to one common subroutine which
is to be added. The user may decide to "clean up" the
program logically, in anyone of several ways, or to
improve its "readability" by modifying its comments
or statement formats (by inserting TAB's or
SPACE's, for example).

Such modifications to the source file also involve
use of the Editor. After they are completed, a
reassembly may again turn up new errors of the
"trivial" variety. And so on. Thus the generation of a
bug-free program typically involves the chart shown

. in Fig. 26. It is thus quite likely that the amount of
time spent "conversing" with the Editor will be much
larger than that spent with the Assembler.

I
~ "TRIVIAL" ERRORS

~ SOURCE FILE
USING EDITOR

l i !
(RE) ASSEMBLE F IX LOGICAL ERRORS

USING CYEs~ERROR IAGNOSTICS?
USING EDITOR

1
RUN

"T~,~
~

PROGRAM WORKS

92CS - 28198

Fig. 26 - Flow chart for "bug-free" program,

66 _________________ Operator Manual for the RCA CDS II CDP18S005

A source program may be viewed as a long
sequence of characters. When the COSMAC
Resident Editor reads the source file, it places this
character sequence in memory, with the code in each
memory byte representing one source program
character. The user is then free to type commands to
the Editor to manipulate the memory representation
of the program. For example, the user may identify a
specific location and specify a character sequence to
be inserted there. He may also identify certain
characters to be deleted or altered. He may ask the

".:Editor to search for the occurrence of specific

character sequences, after which further memory
modifications (corrections) may be made. (Details of
available commands are given later).

Mter he is satisfied that the new memory
representation of the file contains all the desired
changes (frequently the user begins an editing session
with a hand-written list of the changes to be made),
he asks the Editor to write (create) a new file con
taining the new version of the program. This new file
is then used as the in put file for a reassembly.

COSMAC Resident Editor
The COSMAC Resident Editor (CRE) is a

program which facilitates creation and modification
of local COSMAC file. These files are stored on paper
tape or on magnetic tape in cassettes. Typically, they
are COSMAC source programs. However, they may
also be any other kind of conventional document.
CRE runs directly on the COSMAC Development
System itself in a stand-alone m.anner. No external
computational facilities are required. '

CRE Operating
Considerations

Memory Space Requirements

The CRE program occupies approximately 2.5
kilobytes of memory space. Like CRA, it is supplied
on paper tape and in a cassette for loading into the
RAM of the COSMAC Development System. All the
infonnation previously given regarding loading and
transferring control to CRA applies equally to CRE.
See Table IX Summary of CRA Operating Steps in
eRA Operating Instructions.

CRE requires about 100 bytes of the RAM work
space for its own internal purposes. The remainder of
the available RAM space is used as an editing area
called a buffer. Virtually all CRE operations involve
the buffer. CRE is designed to take advantage of all
of the available RAM space for its buffer area.
Approximately 1400 bytes are available for this
purpose in the 4 kilobytes of RAM supplied with the
Development System. If more RAM is present in the
system, CRE will automatically add it to its buffer
area. It tests for additional RAM the same way CRA
does.

Input and Output Files

Nonnally, a user creates a file using CRE by filling
the buffer from the 110 terminal keyboard and then
causing CRE to write this information onto an output
tape (which will contain the created file).

An existing (input) file may be modified (edited) by
reading portions of it into the buffer, then using CRE
commands to alter the contents of the buffer, and
finally writing the results onto the output file.
Typically, the output file is a new version of the input
file. After an editing session, the new version is
retained and the old version is discarded (although it
may be temporarily saved for future reference or
backup),

Thus CRE has means to read an input file into the
buffer, means to examine and modify the contents of
the buffer in many ways, and means to write the
buffer contents onto an output file. Alternatively,
when an input file does not exist, the user creates an
output file by loading the buffer from the keyboard.

Record Formats

In order to understand the various commands
which CRE is designed to execute, it is fundamentally
important that the user understand how information
is nonnally recorded on the 110 media (tapes) and in
the buffer.

A file is a sequence of records or lines. Each line
consists of a sequence of characters. The length of a
line is restricted to 78 or fewer characters of data. t,"
Thus, a line in a file is normally printable as a line on .
the 110 terminal printer. Each character is
represented by an 8-bit code or byte, either on the
tape or in memory. Typically, every character in a

CDS Resident Software Development Aids _____________________ 67

line is a printable character (including space or
blank). Every non-printing character code represents
a control character. A control code may be generated
on the keyboard either by hitting an appropriately
marked key (e.g., RETURN, ESC, etc.) or by
depression of the CTRL button while hitting another
key. The printer reacts to the receipt of a control
character in one of several possible ways. Some
control characters (such as carriage return, line feed,
bell, ' etc.) cause the printer to execute a specific
control function. Other control codes either are
ignored by the printer or may cause the equivalent of
a space on the printed line.

A line in a file may contain control characters
(with certain restrictions to be discussed later). If it
does, it is quite possible that its printed record will not
completely reflect the true contents of the line. CRE
treats most control characters which it encounters
within a line in the same manner as it treats printing
characters. However, certain control characters have
special meaning to CRE.

The proper format for tape files is shown in Fig. 27.
Each line is terminated with a CARRIAGE
RETURN (CR), LINE FEED (LF) pair, followed

by a field of six nulls. The NULL character (hex code
00) is ignored by the system. A set of nulls appears
after each CR, LF, pair merely to provide a sufficient
time delay for the printer carriage to settle to the new
line 'When the tape contents are being printed. Note
that the last line on the tape should be followed by a
"dummy" line containing only the single data
character DC. DC3 is a special control character
(generated on the keyboard by hitting CTRL and S).
lt acts as an END OF FILE indicator. Note also that
if the file is stored on paper tape, it is normally
preceded by a leader of nulls and followed by a trailer
of nulls. The null leader permits arbitrary initial
positioning of the tape in the reader.

Tape records read by CRE are deposited into the
buffer as they appear on the tape, but with all LF's
and NULL's ignored. (Incidentally, the DEL or
RUBOUT character, hex code 7F, is also ignored on
tape input) While CRE operates on the data in its
buffer, it specifically uses the CR character as an
indicator of the end of a line. (Recall that a line has a
variable length.) A new line is assumed to start with
the next character in the buffer. The buffer format is
shown in Fig. 28.

L-__ --1 L..U_~_H_~O_RA_7g_T_~_~I_A_'__.L__L __ __'__ ____ ...J_J{ I I DC3 CR I LF I Ntl~LS I '--__ ---'
1----1. ,..-.I, II ·1
PAPER TAPE

ONLY
FIRST LINE

t----r-------l·1 1-1. --r-----+-I-· ---.----!-I 11-------1' ---i-I
SECOND LINE

(FOLLOWED BY
LF + 6 NULLS)

LAST LINE END OF FILE
(FOLLOWED BY "DUMMY" LINE
LF + 6 NULLS)

Fig. 27 - Tape file format.

PAPER TAPE
ONLY

9 2C M- 28 2 15

,---I DATA_CHARAC_TERS --,--CR ~I ji I lEG
1---1. ------,----I---r----l.1 ~1. ~J L-J

LINE I LINE 2 LINE m . L PRE~ ENT ONLY IF LINE m IS THE
~ LINE IN THE INPUT FILE

Fig. 28 - Memory buffer format.

68 _________________ Operator Manual for the RCA CDS II CDP18S005

When CRE is depositing keyboard data into its
buffer, the ASCII code equivalent of each struck key
(any printing character, and almost any control
character - with exceptions as noted below) goes into
memory and is also "echoed" back to the printer.
However, CRE specifically ignores the LF key.
Further, when the RETURN key is hit, the CR
character goes into memory and a CR,LF pair of
characters is echoed back to the printer to start a new

. line. Thus, the user terminates a line of keyboard
input with a single carriage RETURN. Normally,
then, the LF character should not appear at any point

" in the buffer.

Whenever CRE transmits a CR character to the
terminal, it automatically appends to it the LF, six
NULL field to maintain the tape format just
discussed.

It is conceivable that due to a user error, one or
more lines on the input file or in the buffer may ex
ceed the 78 data character length restriction. For
example, the input tape may have been erroneously
prepared off line with the terminal operated in the
LOCAL mode. Alternatively, data alterations in the
buffer may have resulted in deleted CR's. (Note that
each CR deleted in the buffer causes the con
catenation of its adjacent lines.) CRE has the
following provisions for handling lines which exceed
the length restriction:

(l) Whenever CRE is outputting a line to the printer
as the result of a user TYPE command, if the line
exceeds 78 characters, a "LINE TOO LONG"
message will also be printed.

(2) IF CRE encounters too long a line while writing
from the buffer to the output tape, the line will be
broken up, using as many 78-data-character records
as are necessary - each terminated by an appended
CR, LF, 6-NULL field.

(3) A line which is too long on the input file is
truncated to 78 characters, with a CR appended, in
the buffer.

Buffer Pointer

The total RAM space available for the buffer is
generally partially filled. When CRE is first
initialized, the buffer is empty. When data is added to
the buffer (from the keyboard or from the input tape)
the buffer expands. When data is deleted, the buffer
contracts. CRE continually keeps track of the present
extent of the buffer within the work space.

eRE maintains a virtual pointer which iden-

tifies some point between two characters in the
buffer. This pointer has the same funCtion as what is
commonly called a "cursor". Most CRE operations
are executed relative to this pointer. Further, several
'CRE operations exist specifically to alter the location
of the pointer. It is essential" therefore, that the user
be aware at all times of the current location of the
pointer. Because the pointer is not visible, it ' is the
user's responsiblity to keep track of where the pointer
is. Often, its location is verified by asking CRE to
type information in the buffer at the current pointer
position. Alternatively, the user may' first initialize
the pointer to a known reference point (e.g., the
beginning or end of a line, or the beginning or end of
the buffer) and then move it relative to this known
origin.

In illustrative examples, the location of the
pointer is indicated with an arrow below and between
the two buffer characters. For example, in

ABCDE
t

the character before the pointer is B and that after the
pointer is C.

Unless otherwise noted, whenever text is deleted
from the buffer , the character sequence to be deleted
exists either immediately to the right or immediately (i
to the left of the pointer. After 'the deletion, the buffer
has contracted by the number of characters deleted.
If the field deleted is to the right of the pointer, the
character immediately to the left of the pointer
remains the same. The character to the right of the
pointer then becomes the character that was im
mediately to the right of the deleted field. A
corresponding statement can be made for deletion to
the left of the pointer.

When text is inserted, the buffer expands. Unless
otherwise noted, text is inserted between the two
,characters at the position of the pointer. After the
insertion, the pointer is positioned immediately after
the inserted text. Thus, the character to the right of
the pointer remains the same.

The execution of many CRE operations starts at
the present pointer position and proceeds either
towards the end or towards the beginning of the
buffer. CRE insures that the pointer cannot be moved
past the present limits of the buffer. If the pointer
reaches the beginning or the end of the buffer, the
operation stops - leaving the pointer at that point. For
example, if the pointer is positioned n characters from
the end of the buffer and the user asks to move the
pointer m characters to the right, with m >n, then the
operation will stop after the buffer pointer has been
incremented by only n.

CDS Resident Software Development Aids ______ ________________ 69

CRE Command Operation
Command Strings

When control is first transferred to CRE, a "?"
prompt is given, asking the user to identify the kind of
110 terminal in use. In response, the user types either
P (for "punch") if a Teletype terminal is used, or any
other character if a TI terminal is used. As will be
explained further later, CRE must be aware of
whether or not the output tape is to be punched

·because it has no direct means of turning the paper
~' tape punch on and off. It must rely on the user to
~anually turn the punch on and off at appropriate
tillie.

After the 110 terminal has been identified, CRE
will print the initial message.

COSMAC TEXT EDITOR VERSION XX

and then follow this with its "+" user prompt
character. If the 110 device is a Teletype terminal
CRE will precede this + prompt by punching a
leader of 60 NULL's on the output tape. (See later
discussion on Punch Procedure.f The + prompt
always indicates that CRE is ready to receive a new
user command from the keyboard (having executed
the previous one).

After receiving the + , the user types a sequence of
one or more commands which CRE will execute in
order. Most commands may be optionally delimited
(ended) by a special termination control character.
Commands which include text arguments of variable
length must include this character to define the end of
a text field. A CRE command string is always ter
minated by the occurrence of two successive ESCape
or ALT MODE characters or its equivalent (the
control character whose ASCII code is a hex IB, if
neither ESC or ALT MODE is labeled on the
keyboard).

The 110 terminals discussed here, operate in the
full duplex mode, in which the data path from the
keyboard to the CDS is distinct from that between the
CDS and the printer. Normally, a program merely
"echoes" back to the printer what it has just received
from the keyboard. However, whenever CRE
-receives an ESC or ALT MODE character, it is
echoed back to the printer followed by a $ - giving
a visual indication of the ESC key depression. Thus,
a typical command string normally appears on the
printer as

COMMANDl$COMMAND2$... COMMANDn$$

where in most cases ~he separating ESC's are optional
but the final pair is mandatory. (If ESC is not hit, the
$ will not appear, of course.) A command string
must be terminated by two depressions of the
E5Ckey.

Command Formats

The heart of the command is a single letter
mnemonic (such as "T" for TYPE, "I" for INSERT,
etc.). In many cases, this letter may be optionally
preceded by a decimal number (later denoted by n)
indicating the number of characters or lines involved.
Further, in some cases this number may be preceded
by a minus sign (-) indicating a direction (from the
present pointer position) toward the beginning of the
buffer rather than toward the end (as is normally
assumed). If no number is present, CRE assumes the
value 1.

Given an arbitrary pointer location, the possible
CRE interpretations for n are normally as follows:

(l) Character Operations: Positive n identifies the
n characters to the right of the pointer (in
cluding control characters). Negative n
identifies the n characters to its left. Unless
otherwise noted, n=O results in no operation.

(2) Line Operations: Positive n identifies all
characters to the right of the pointer up to and
including the nth CR encountered. If the
pointer is in the middle of a line, the first line
will constitute only the remainder of that line.
Negative n identifies all characters to the left of
the pointer up to but not including the -n+ 1st
CR. If the pointer is in the middle of a line, the
last line (in this set of lines) will consist of only
those characters in the present line to the left of
the pointer. Thus, n=O specifically indicates
the portion of the present line to the left of the
pointer.

In certain cases a command mnemonic letter is
followed by one or two variable-length text
arguments (whenever the user needs to specify some
sequence of characters to insert or to search for). All
such arguments must be terminated by the ESC
character (echoed as $). In subsequent discussion, an
arbitrary text arguplent will be denoted by a symbolic
statement such as "text".

70 _________________ Operator Manual for the RCA CDS II CDP18S005

Punch Procedure

Assuming the output file is to be punched on
paper tape (i.e., the terminal device is a Teletype
unit), CRE needs a mechanism to activate and
deactivate the tape punch to properly bracket the
infopnation being output. Because CRE has no direct
control of the punch, it must rely on the user.
W.henever CRE wants to output to the punch, it types
'the message

START PUNCH, TYPE DEL

and then idles, awaiting the user's hitting of the DEL
_ or RUBOUT key (whose hex code is 7F). The user

should first manually turn the punch ON and then
strike DEL. CRE will proceed to punch data. On
completion, it will again idle awaiting another DEL
which will indicate that the punch has been deac
tivated. The user should first manually turn the
punch OFF and then strike DEL. CRE will then
continue.

Note, in particular, that this process occurs at
the initiation of an editing session when CRE
automatically punches the initial ~O-nullieader on the
output paper tape.

Correcting Command
Typing Errors

A typing error in a command string may be
corrected by use of the RUBOUT (DEL) character to
"erase" previous characters already typed. Each time
CRE receives a RUBOUT within a command string,
it erases the last character from its stored version of
the command string. Further, it echoes back to the
terminal the character just erased. For example,
suppose the user types the command string ABC$DE
(each of the letters is a valid command mnemonic)
followed by four rubouts. On the terminal, he would
see

ABC$DEED$C

II~II

where the last four characters were those erased. The
characters AB would then remain in CRE's stored
command string register.

Clearly, any such erasures must occur before the
double ESC character, which terminates the com
mand string, is struck.

If CRE finds an invalid command while in
execution of a command string (i.e., after the user has
typed the double ESC), it returns to the user the error
message

BAD COMMAND??"xxxx .. xx$"

where xxx .. xx reproduces that part of the command
string which has not been executed.

Interrupting CRE Execution

The user may at any time stop CRE execution by
depressing and holding the BREAK key on the
keyboard. This key is used, for example, to stop a
long typeout. On receipt of the BREAK, CRE stops
execution at whatever point was reached and returns
to the command input mode by issuing another
prompt. To assure the clean entry of succeeding
commands, the DEL key should be depressed to erase
any erroneous noise characters that may have been
entered as a result of the break.

After a BREAK, the user should normally verify
or reinitialize the buffer pointer position before
resuming further editing.

Filled Work Space Warning

If CRE determines that a command string
threatens to use up the remaining work space, it will
stop echoing keyboard input characters to the printer
and will echo instead the the BELL control character
-causing the 110 data terminal to ring its bell as a
warning. The user should respond by erasing part of
it with the RUB OUT key.

If CRE runs out of space during command
execution, it will return the error message

MEMORY FULL "xxx ... xx$"

where, again, xx ... xx is a reproduction of the un
processed part of the command string.

CRE Commands

This section contains a summary of the individual
commands which CRE is designed to recognize. Each
command is described with a specification of its
acceptable format and an explanation of its
execution. Examples are also given.

CDS Resident Software Development Aids ____________________ 71

Single Commands

Pointer Control Commands

BEGINNING
Execution: Pointer repositioned to the beginning of
the buffer.

END OF BUFFER

Format: Z
Eiecution: Pointer repositioned to the end of the

·,buffer.

CIIARACTERSTEP

Format: nC
Execution: Step pointer right (or left)- by n
characters.

LINE STEP

Format: nL
Execution: Step pointer down (or up) by n lines

Reading the Input Tape

APPEND

Format: A
Execution: Lines are read from the input file (con
tinuing from the last line) and appended to the end of
the buffer. The operation continues until one of the
following occurs:

(1) End of file character detected (i.e., last line has
been read).

(2) 3/4 of the remaining available space has been
filled.

(3) 50 lines have been transferred.

The pointer is repositioned to the beginning of the
first appended line. In large memory systems,
multiple appends may be used to bring additional
lines into the buffer.

Note: The keyboard BREAK key is ignored during
execution of this command only.

Deletion Commands

DELETE

II,,) Format: nD

• A positive (unsigned) n indicates the direction of right or down;
a negative n indicates left or up for all commands,

Execution: n characters right tor left) adjacent to the
printer are deleted.

KILL

Format: nK
Execution: n lines right (or left) adjacent to the
pointer are deleted.

Text Insertion and Data Manipulation

INSERT

Format: Itext$
Execution: Typed text is inserted to left of present
pointer position. The text may contain multiple lines.

SAVE

Format: nX
Execution: Copy n lines adjacent to the pointer into a
special SAVE area external to the buffer. The
pointer position is not changed. Previous contents of
the SAVE area are overwritten. CRE types CAN'T
SAVE if there is insufficient room in the SA VE area
and it does not save any lines. CRE clears the SAVE
area if n=O (zero).

GET

Format: G
Execution: Equivalent to an INSERT, but using the
present contents of the SA VE area as an implicit text
argument. Note: SAVE and GET are especially
useful in sequence as a copying mechanism - to
MOVE text.

CRE dynamically allocates the available RAM
work space to its SA VE area, stack area, and the
buffer or editing area. Once lines have been SAVE'd,
they remain in the SA VE area indefinitely until the
next SAVE command overwrites them. If many
characters have been SAVE' d, the area available for
the buffer will be proportionally reduced. The SA VE
area is not automatically cleared by a GET com
mand. Several GET commands may be issued against
the same SAVE area. It is good practice, therefore, to
clear the SAVE area when it is no longer needed in
order to make that area available to the buffer. This
step is accomplished by typing OX (zero-X).

If an attempt is made to save more lines than
there is room for, CRE will type

CAN'T SAVE

and will not transfer any lines to the SA VE area.

72 _________________ Operator Manual for the RCA CDS II CDP18S005

FIND

Fonnat: Ftext$
Execution: A search for the specified character
sequence 'text' occurs from the current pointer
position toward the end of the buffer. It stops either
when a match is first encountered or when the end of
the buffer is reached. In the first case, the pointer
:ends positioned immediately after the matching
string. In the latter case, a "CAN'T FIND" message
is printed, and the pointer position is unchanged.

71 SUBSTITUTE .
- Fonnat: S search text $ substitute text $

Execution: Operates as FIND does above (using
search text as the search argument). However, on a
match, the substitute text replaces the matching
sequence - with the pointer positioned after the in
serted text. The substitute text must not be omitted
from the oommand.

Output Commands

TYPE

F.onnat: nT
Execution: Type the n lines adjacent to the current
pointer. The pointer position remains unchanged.

PUNCH

Fonnat: nP
Execution: The n lines adjacent to the current pointer
are written to the output tape and printed on the
printer. The pointer position remains unchanged.
The lines are not deleted from the buffer.

WRITE and DELETE

Fonnat: nW
Execution: n is treated as positive. The n lines at the
beginning of the buffer are written to the output tape,
printed on the printer, and also deleted from the
buffer. The pointer ends up positioned at the
beginning of the remaining buffer.

END

Fonnat: E
Execution: The entire buffer is written to the output
tape and also printed on the printer. Any lines
remaining on the input tape are then copied to the
output tape and printed on the printer. Finally, if a
teletypewriter is used, the 60 null trailer is punched
out. CRE then reinitializes for a new editing session
with buffer cleared and with the pointer positioned at
the beginning of the work space.

NULLS

Fonnat: N
Execution: If a teletypewriter is used, 60 nulls are
punched. Otherwise, this command is ignored. The
pointer is not changed.

Summary of CRE Commands
and Control Characters

A summary listing of the foregoing commands
together with the meaning of each one is given in
Table X. A summary of the special CRE control
characters is given in Table XI. The CRE error
messages are summarized in Table XII.

Composite Commands and Nesting

CRE also pennits the user to specify composite
commands. A composite command is a command
string (one or more commands) enclosed within angle
brackets « ... >). A command string may be
preceded by a decimal number indicating the number
of times that the string within the brackets should be
executed.

One composite command may include another.
Thus, CRE permits the "nesting" of commands. For
example,

B5<3C4<DI $> L>$$

causes replacement of the 4th through the 7th
characters in the first 5 lines in the buffer by spaces.
The pointer ends positioned at the beginning of the
sixth line.

With nested commands, the user must be aware
of the order in which commands will be executed and
the number of times individual operations will occur.
The following example should indicate the general
algorithm. Other examples will be given later.
Consider the command string

where the lower case letters represent numbers and
where each CSi' represents an elementary command
string. Fig. 29 indicates CRE's flow chart for the
execution of this command string. It is derived by I.i. . ~
properly pairing the angle brackets in the string. V
Notice, for example, that CS2 is executed a number
of times equal to the product of a, c, d, and e.

Ct

CDS Resident Software Development Aids __________________ ___ 73

TABLE X - CRE COMMAND SUMMARY

Format

B

Meaning

Move pointer to BEGINNING of buffer.
Move pointer to END of buffer·. Z

nC Step pointer right (or left) by n CHARACTERS.
Step pointer down (or up) by n LINES. nL

A

nO
nK

Itext$
nX

APPEND lines to end of buffer from input tape.
Reposition pointer to beginning of APPENDed area.
DE LETE n characters after (or before) pointer.
KI L L n lines after (or before) pointer.
INSERT text at present pointer position. (Position pointer after it.)
Save n lines after (or before) pointer. (Pointer position unchanged.)
Clears the SAVE area if n = O.

G GET the last SAVEd lines and INSERT them.
Ftext$ FIND the first occurrence of text, searching from present pointer

position toward end of buffer. If found, position pointer after the
match. If not, type CAN'T FIND.

S search text $ substitute text $ FIND search text and SUBSTITUTE substitute text
for it.

nT TYPE n lines after (or before) pointer. (No change in pOinter location.)
nP Output n lines after (or before) pointer. (Buffer and pointer remain unchanged.)
nW WRITE (and delete from buffer) the first n buffer lines on the output type.

(Pointer ends up at beginning of remaining buffer.)
E END the editing session. Equivalent to an nW, with n equal to or

greater than the number of buffer lines, followed by a copy of remaining
input tape to output tape. If paper tape, terminate with NULL trailer.

N If paper tape, punch 60 NULLs on output tape.

TABLE XI - SUMMARY OF SPECIAL CRE CONTROL CHARACTERS

(1) ESCAPE or ALT. MODE Echoed as $.
Optional command separator.
Required after a TEXT field.
Two required at the end of a command string.

(2) LINE FEED Ignored on input.
Inserted after CR on output.

(3) CARRIAGE RETURN Line terminator character.
Stored in buffer.

(4) NULL Ignored on input.
Set of six inserted after LF on tape output.

(5) RUBOUT or DELETE Punch ON/OFF signal to CRE from user.
Erases previous character in a command string.
Ignored on tape input.

(6) DC3 End-of-file character. Inserted by user at end
of a created file or read in from an existing
input file .

(7) HORIZ TAB Echoed as 1 to 8 spaces when typed.
Converted to 1 to 8 spaces on tape output.
Can begin a command implying a previous INSERT.

(8) BREAK Pressing BREAK will terminate a long operation.
Next, press RUBOUT or DELETE to get a prompt ~.

Note:
Within a command string, but not within a text field, CRE ignores any
inserted spaces or CR's. Spacesor CR's may be used to improve the
readability of the command string, if desired.

,
,

74 _________________ Operator Manual for the RCA CDS II CDP18S005

TABLE XII - CRE ERROR MESSAGES

Message

LINE TOO LONG

BAD COMMAND?? "XXX ... X$"

<BELL>
MEMORY FULL "XXX . .. X$"

CAN'T SAVE
CAN'T FIND

ITERATION STACK FAULT

Meaning

A line that CRE is attempting to TYPE has more than
78 characters.
CRE has found an invalid command in a command string.
XXX ... X is that part of the string not executed.
Filled work space warning.
CRE ran out of work space during an execution.
XXX ... X is the unprocessed part of the command string.
There is not enough room in the SAVE area.
The specified character sequence was not found between
the pointer's previous position and the end of the buffer.
CRE ran out of stack space during execution of a command
string. May indicate improperly paired brackets in the string.

To execute a nested command, CRE maintains a
stack in part of the available work space. The
amount of stack space required depends on the depth
of nesting in the command, i.e., on the number of
loops within loops, as in Fig. 29, which in turn
depends on the depth of bracket-pairs-within
bracket-pairs in the command string. If CRE runs
out of stack space during execution, it will issue the
error message:

This error message is most likely to occur if the
brackets in the command string are not paired
properly. In particular, it occurs if a bracket is
missing.

Note that if the user fails to terminate a text
string with the required ESC character, all sub
sequent characters until an ESC does occur will be
treated as part of the presumed text string. Thus, it is
quite possible that a missing ESC in a nested com
mand string could also result in the "improperly
paired-brackets" error message, ITERATION
STACK FAULT.

ITERATION STACK FAULT.

ENTER

L--_____ N"'o'<. TIMES

?
YES

EXIT

92CS- 2B199

Fig. 29 - Execution of nested composite command.

Horizontal Tabs

CRE assumes an implicit horizontal tab stop
after every eight character positions in a line. If the
user types a HORIZ TAB character (CTRL and I) as
part of a TEXT field, CRE will insert this character
into its buffer, but it will echo back to the printer a
sufficient number of spaces to reach the next implied
tab stop. HORIZ TAB characters read from the
input file are loaded into the buffer as is. On output,
each HORIZ TAB buffer character is converted into
the required number of spaces, extending the line
length in the process. Thus, HORIZ TAB characters
cannot appear on the output tape. The TAB
character can be used to produce straight columns in
a source file.
Note: As a special case, CRE interprets a text
beginning with a HORIZ TAB character as if an
INSERT command had preceded it.

Additional Note

Normally, the INSERT of a non-existent text ".) I ..

field (i.e., the command 1$) results in no operation. U
Further, it is normally illegal to precede an INSERT
command with a numeric argument. However, the

CDS Resident Software Development Aids ______________________ 75

specific command nl$ (combining the two) is legal. It
causes the insertion of a single character whose
ASCII decimal value is n (modulo 128).

For example, 101$ will cause insertion of a LF
character (hex OA).

Using eRE

. In this section, information is given on the
d'evelopment and manipulation of a COSMAC file
through use of the COSMAC Resident Editor (CRE).
In-addition, some useful common sequences are given
to illustrate CRE's data manipulation facilities.

Loading and Operating CRE

The following steps are required to use CRE:

1. Load the program as follows:

a. For a TI terminal in the LINE mode.
1) Press RESET, then RUN U, then

CR - get a *.
2) Mount CRE program cassette and

rewind it.
3) Press LOAD IFF to advance to the

first file.
4) Press CONT 1ST ART to start reading

the file.
b. For a Teletype terminal in the LINE

mode.
l) Press RESET, then RUN U, then

CR - geta *.
2) Mount CRE tape in reader.
3) Place the READER Control switch

in the Manual position.
4) Press START on the tape reader.

2. Mount input file (if any) in reader.

3. Mount a blank cassette for the output file. If
paper tape, do not turn punch ON yet.

4. Type $U(CR) to start CRE.

5. CRE begins by typing "?" asking user to
identify the type terminal in use. In response, type P
for a Teletype terminal or any other character for a
TI terminal.

6. CRE will then give the + prompt indicating
that it is ready to accept commands.

File Development and Manipulation

Creatin~ a File

A file is created by a repeated sequence of the
following steps:

(1) File buffer from keyboard with sequence of
INSERT's.

(2) WRITE buffer to output file .

A single I command may take as an argument a text
string of abritrary length. Thus, many lines may be
inserted with a single I command. Each line is ter
minated by pressing the RETURN key. A typical
INSERT will thus appear on the printer as

+ I line 1

line 2

line n
$$

.. Insert command and 1st line of

.. text.
· .Additionallines
· .Additionallines
· .Additionallines
.. Additionallines
· .Last line of text
· .End of insert; double
..ESCAPE

because each CR is echoed as CR. LF. Such com
mands may be sequenced until the buffer is nearly
filled. These sequences are then normally followed by
an n W (WRITE) command or BnP. with n > the
number of lines in the buffer. By use of the W
command, the buffer is cleared after the WRITE to
the output file and is ready for a new set of IN
SERT's.

The last line inserted should be followed by the
insertion of a terminating dummy line consisting of
the single character DC3 (CRTL and S), followed by
the usual RETURN to assure proper tape format, as
discussed earlier.

If the output tape is a paper tape, a final N
command will add the trailer of NULL's.

Adding to a File

A section is added to an existing file by first
copying the portion before the insert, and finally
copying the portion after the insert. The first copy
involves one or more APPEND's followed by
WRITE's, up to the APPEND which reads in the
section of the input file which contains the insertion
point. Note that appending to the end of a file may
also be considered as an insertion just before the last
DC3 terminating line.

76 _________________ Operator Manual for the RCA CDS II CDP18S005

Assuming the insert point is arbitrarily located
within the buffer, several variations exist for adding
text material. For any of these variations, the pointer
must first be moved to the insert point. Then, a
sequence of INSERT's is made at that point, par
ticularly if the amount of the inserted material is
small. Alternatively, one could SA VE all lines
following th pointer (with an nX, n sufficiently

. large), delet th m with an nK command, and then
WRIT ' the dllta r maining in the buffer with an n W
(n uIficienLly la rgel. The bufrer then b come empty
" ilb all r cords preceding the addition written to the
output tap. Additiona l I ERT' and WRITE'
may now b made. Finally, a G T followed by a

~ WRITE will attach th material after the insert
point. Now if there is more unread material on the
input file , the GET may be followed directly by an
END command. This command will automatically
copy the remaining input tape.

In ummary, ne in erts mat rial into an existing
fiI by beginning wilh a copy equenc (a erie. of

PPE D's .followed b WRITE'). Th n witb the
poin ter po ilion d properly one may execute nXnK
n~ (n 'uUi ' ientiy largel. Now one operale in th

BE AT , mode with INSERT' · followed by
WRITE's. Finally a GET or GnW will complete the
sequence.

When appending to the end of a file, one has the
alternative of removing, after the last APPEND, the
dummy termination line via a Z-lK command tring.
Operation then is as in the CREATE mode. For thi s
case, the final DC3 line mn t laler b insert d to the
end of the file.

Deleting a Section in a File

To delete a section in a file, first copy up to the
deletion point, as previously discussed. Lines to be
omitted may then be explicitly d leled from the buffer
(by nK, with pointer properly po ilioned). IT further
lines to be deleted exist on the input fil e, further
APPEND's are required.

Note that the nP command causes a WRITE
from the present pointer position. Thus, text may be
implicitly deleted by moving the pointer past it and
issuing an nP command (n positive). After the
remainder of the buffer has been written, the com
mand string BnK (n sufficiently large) will erase the
buffer.

Moving a Section in a File

Assume that the file section to be moved is
sufficiently small. If the movement is toward the end
Of the file, the following sequence may be used:

(II Copy input file up the section to be moved.
(21 SAVE the section to be moved. Then

DELETE it in the buffer .
(3) Continue copying the input file up to the

insertion point.
(4) GET and WRITE the SAVE'd section.
(5) Copy the remaining part of the input file.

If the movement is toward the beginning of the file,
one must first find the section to be saved,c SAVE it,
DELETE it, and then reinitialize the input file.
Then, the sequence of steps 3, 4, and 5 above will
effect the insertion.

Note again that the P command may be used to
WRITE from an arbitrary point in the buffer. Note
also that the material thus written is not deleted from
the buffer.

Several complications of this simple procedure
can occur. First, the material to be moved may
overlap two APPEND's. In this case, one does not
SAVE until the second APPEND has been executed.
Second, the material to be moved may consist of a
substantial portion of the input file so large that it
must first be copied on to a third temporary tape
which might be called an "insertion file". If this
condition exists, the user should be sufficiently
familiar with CRE so that he will be able to create
and use this special temporary file.

Modifying a Section in a File

By now the reader should be reasonably familiar
with the commands APPEND, PUNCH, WRITE,
END, INSERT, SAVE, GET, and NULL's.

The most common use of CRE is to modify the
contents of a file at a given point (typically, to correct
an errorl. To make such a modification, the user must
first read that section of the file into the buffer.
Normally, a copy of the initial portion of the file is
necessary, up to the APPEND which brings into the
buffer the section to be modified. Now, the remaining
CRE commands are available to effect the
modification. After the change is made, the process is
terminated with an END command or a WRITE
command as appropriate.

f

CDS Resident Software Development Aids _____________________ 77

Some Command Examples

Below are several examples of useful command
sequences to further acquaint the reader with CRE's
data manipulation facilities. In each example a
command string is given and followed by a short
explanation of what it will do. For clarity all zeros are
slashe,d (~) to distinguish them from the letter 0 in
these examples.

(1),Assume the pointer is arbitrarily positioned within
a'Hne in the buffer:

~LT Types the entire line leaving the pointer at its
beginning.

0TT Also types the entire line, but leaves the
pointer unchanged.

.0K Erases the portion of the line to the left of the
pointer.

K Erases the portion of the line to the right of
the pointer.

~LK Erases the entire line.

F or each of the following command sequences, it is
assumed that n is sufficiently large.

BnK Erases the entire buffer.

.0K Erases the entire SAVE area.

BnT Prints the entire buffer.

(2) Assuming the pointer is positioned at the
beginning of a line in the buffer,

nXnKZ-mLG

will move the next n lines to m lines from the end of
the buffer and erase them from their original position.

(3) The command Bn<mCI $L >, for n sufficiently

large, inserts a field of spaces in all lines, at a point m
characters from the beginning of each line.

(4) One can also scan the entire buffer with a FIND
or SUBSTITUTE command by similarly using a
sufficiently large numeric argument (called n below).
The command will terminate when the end of the
buffer is found with a CAN'T FIND message. For
example:

Bn< Sfieldl$field2$>

will replace all occurrences of fieldl by field2.

Bn < Ftext$- mD>

will delete all occurrences of text, if m=the length
of the text field.

Bn < Ftext$~ T >
will print all lines containing text.

Bn<Ftext$,f1LK>

will delete all lines containing text.

Bn<F;ICR>

will break all lines containing semicolons into as
many lines as there are semicolons - each tenninating
in a semicolon. (Note: In this case, any line originally
ending in a semicolon will be followed by a "line"
containing zero characters) .

Bn<S TABL>

will replace the first space in every line in the buffer
by a horizontal tab control character.

Bn <A5"5,f1K>

will perfonn the following n times: append in the next
(first) section type it, and delete it from the buffer.
This command string can be used to type a long file
that can't be held all at once in the buffer. It is
particularly useful in typing the listing output file on
the assembler.

- - - -- -- ---------

78 __________________ 0perator Manual for the RCA CDS II CDP18S005

,

--------------------------------------____________________ 79

Appendix A -
CDS II CDP18S005 Backplane Wiring Schedule

Pin Memory Address CPU I/O I/O Control Pin
No. Latch and Decode No.

Bank [3)
Location (1-9) Select (10) (12) (13) (14-24) (25)

A BSE-P TPA-P TPA-P TPA-P TPA-P A
B SPARE TPB-P TPB-P TPB-P TPB-P B
C DBO-P BS9-P DBO-P DBO-P DBO-P DBO-P C
D DB1-P RNU-P DB1-P DB1-P DB1-P DB1-P D
E DB2-P BS8-P DB2-P DB2-P DB2-P DB2-P E

F DB3-P BS7-P DB3-P DB3-P DB3-P DB3-P F
H DB4-P BS6-P DB4-P DB4-P DB4-P DB4-P H
J DB5-P BS5-P DB5-P DB5-P DB5-P DB5-P J
K DB6-P BS4-P DB6-P DB6-P DB6-P DB6-P K
l DB7-P BS3-P DB7-P DB7-P DB7-P DB7-P l

M AO-P BSD-P AO-P SElO-P AO-P M
N A1-P BSF-P A1-P SEL1-P A1-P N
P A2-P A15-P A2-P SEl2-P N=4-P} A2-P P
R A3-P A14-P A3-P SEl3-P N=5-P [4] A3-P R
S A4-P _A12-P A4-P SEl4-P N=6-P A4-P S

T A5-P A5-P SEl5-P A5-P T
U A6-P A6':""P SEl6-P A6-P U
V A7-P A7-P SEl7-P A7-P V
W MWR-N BSO-P MWR-N N=7-P N=7-P [5] W
x BSN-P [1] MBDS-N CPU PWR N=6-P EF4-N RUN-N X

Y VDD VDD VDD VDD V DD VDD Y
Z GND GND GND GND GND GND Z

1 TPA-P TPA-P DMAI-N N=1-P DMAI-N 1
2 TPB-P UA15-N DMAO-N N=2-P DMAO-N DMAO-N 2
3 SPARE BSC-P ANY I/O-P N=3-P ANY I/O-P 3
4 BSB-P INT-N N=4-P INT-N RNU-P 4
5 MRD-N BSA-P MRD-N MRD-N MRD-N MRD-N 5

6 A12-P A12-P Q-P N=5-P Q-P Q-P 6
7 A11-P A11-P SCO-P SCO-P SCO-P 7
8 A10-P A10-P SC1-P SC1-P SC1-P 8
9 A9-P A9-P ClEAR-N TLlO-N ClEAR-N 9

10 A8-P A8-P WAIT-N WAIT-N 10

11 -5V AO-P -5 V EX ClR-P 11
12 EX WAIT A1-P EX ClK EX WAIT-P 12
13 ClK OUT A2-P ClK OUT RESET-OP RESET-OP RESET-OP 13
14 A3-P NO-P NO-P NO-P 14
15 A4-P N1-P N1-P N1-P 15

16 RESET-OP A5-P N2-P N2-P N2-P 16
17 A6-P EF1-N EF1-N 17
18 A7-P EF2-N EF2-N 18
19 VDD [2] BS2-P EF3-N EF3-N EF3-N 19
20 +12 V BS1-P EF4-N +12 V +12 V +12 V 20

21 VDD VDD VDD VDD VDD VDD 21
22 GND GND GND GND GND GND 22

.:\ \.
.1,

80 _________________ Operator Manual for the RCA CDS II CDP18S005

Notes

[1] BSN-P: No printed wires. Wire-wrap to user's choice, BSO through BSF.
[2] Location 8 only.
[3] Locations 19 and 20: all pins open except VDD and GND.
[4] Location 24 only (Disk interface).
[5] Location 14 only (Terminal interface).

Wire-Wrap Connections

i' RAM SELECT
ROM SELECT
TERM. SELECT

•.... DISK SELECT
2-LEVEL I/O
I/O DECODE

BSO-P
BS8-P
SELO-P
SELO-P
TLJO-N
PlNU-P

10-W to 8-X
10-E to 9-X
13-M to 14-M
13-M to 24-M
tJ~!I to 13-22 (Jllmper)
13-7 to 24-4

___ 81

Appendix B -
Instructions for Converting a Model 33 Teletype Terminal

from Half-to-Full-Duplex Operation and from
60-mA to 20-mA Operation

For a Teletype terminal connected for half-duplex
operation, the following modifications can be made to
convert it to full-duplex operation.
I. Locate the black terminal strip in the back. See
E·ig. Bl.
2. Move the brown/ yellow and white/blue wires from
pins 3 or 4 to pin 5.

-For Teletype terminals, connected for 60-mA
operation, the following modifications can be made
for 20-mA operation.
1. Move the violet wire from pin 8 to pin 9.

CURRENT
LIMITING
RESISTOR

MODE
SWITCH

KEYBOARD IE]
~=======:

PRINTER

c::::=::J TERMINAL STRIP

92CS - 2810 4

2. Move the blue wire connected to the current source
resistor (a flat green resistor with four tabs located to
the right of the keyboard) from the 750-ohm tab to the
1450-ohm tab.

Fig. B2 gives the detailed interface circuitry
between the CDS logic signals and the pin con
nections for the Teletype terminal in the full-duplex
mode. Note particularly the isolation of the two
Teletype (TTY) current loops. Also shown in Fig. B-2
is the detailed interface circuitry between the CDS
logic signals and the pin connections for an EIA
RS232C type data terminal.

SEND RECEIVE

WHTI BRNI
BLU YEL

VIOLET

TERMINAL
STRIP

92CS-28 10 5

Fig, 81 - Location of and connections to terminal strip for Model 33 Teletype
data terminal showing connections for 20-mA full-duplex operation.

EF4-N

SELO-P

N-7-P

MRD-N

DBO-P

CD4049

OUTPUT
DECODE

AND
LATCH

CA324

+12V

R4
+12 V~ >t-------,

470 a J'-Zf'8) b ~R.f.}'1
_ KEYBOARD

r-----~----~--~

R5
JI-4

470n

L-----+-0-5 V
10 kn

.--"'V'w'V--o + 5 V

4 .3kn J2~ }
FROM EIA
TERMINAL

.,,£0 J2:1,~

TO TTY
PRINTER

DATA
>-_______________ ~ >=-----< TO EI A

J2-3 TERMINAL

-5 V
R9 DATA SET READY

+12V~)±..-...< CLEAR TOSEND
560 n J2-6,7, 8 DATA CARRI ER DETECT

92CM-29393RI

Fig. 82 - Detail of CPU- Terminal Interface (See Appendix DJ_

82 __________________ Operator Manual for the RCA CDS II CDP18S005

Appendix C -
Adding Teletype Remote Reader Control

A simple wlrmg change inside the conventional
Model 33 Teletype terminal permits the paper-tape
read~r to be operated under control of an external
CQSMAC (program-derived) signal. The
modifications are indicated in Fig. Cl. Two ad
ditional components must be appropriately mounted:
,an electronic relay and a switch. Wiring to be added is

c' 'indicated by the bold line in the diagram. Note that
:I the wiring connects the added switch and relay to
. , _ points on the front mode switch and in the array of

white plastic Molex connectors located in the back of

TAPE
PUNCH

TAPE
READER

READER
CONTROL
SWITCH

TRIP
MAGNET

PRINTER

KEYBOARD

ARRAY OF WHITE
- PLASTIC MOLEX

CONNECTORS

TTY COMPONENT
LAYOUT

MODE SWITCH

TO
WHITE PLASTIC
MOLEX PLUG
I N POSITION 4

YELLOW WIRE
NOT MODI FIED

the unit under the cover. Note also that one brown
wire must be broken and reconnected as shown.

The Terminal Interface module contains the logic
necessary to permit a COSMAC program to control
the paper-tape reader. With the added reader- control
switch in the remote or open position, a program may
turn the reader on and off. In the manllal or closed
position, the reader can be controlled only manually,
by means of the original reader control switch on the
tape reader. Note particularly that this latter switch
must also be activated (in the start position) in order
for the remote program control to operate properly.

BROWN
WIRE

(J4) • EXIS TING BROWN WIRE

CDS
TERMINAL
INTERFACE

MODULE

-
8 '"'

4 ().

70
3 0

2 0

IOU

-

(ADDED WIRING SHOWN AS B OLD LINES)

~6} TO TTY
5 KEYBOARD ~

-ue} TO TTY
"DC" .07 PRINTER
SIDE

~

15
WHITE PLASTIC

MOLEX JACK
INSIDE TTY

r --
I ,...,
I - .,;

I ~
I

: ~
1 +

-----1

IliAC"
I SIDE
I
I
I
I

L _ ___ __ --.J

--,-
BREAK
THIS
PATH

CONNECT TO ADDEO
WIRING INSTEAD

ADDED i I I LABELED
READER

CONTROL: I OPEN: "REMOTE"
SWITCH L J CLOSED:"MANUAL"

MODE SWITCH
(FRONT VIEW)

ADDED
IN POSITION 2

OPTO RELAY 92CL-28203RI
(J2)

Fig. C1 - Teletypewriter modifications required to permit remote
reader control.

WIRES
NOT MODIFIED

___ 83

Appendix D -
Module Logic and Circuit Diagrams and Layout Diagrams

MODULE Fig. No. Page No.

CPU Module CDP18S102
Logic and circuit diagram Dl 84
Layout diagram D2 84

Control Module CDPl8Sl03
Logic and circuit diagram D3 85 ..
Layout diagram D4 85

Address Latch and Bank Select Module CDP18S206
Logic and circuit diagram D5 86
Layout diagram D6 86

I/O Decode Module CDP18S509
Logic and circuit diagram D7 87
Layout diagram D8 87

ROM/RAM Module CDPl8S401
Logic and circuit diagram D9 88
Layout diagram DIO 89

4-Kilobyte RAM Module CDPl8S205
Logic and circuit diagram Dll 90
Layout diagram D12 90

Terminal Interface Module CDPl8S507
Logic and circuit diagram DI3 91
Layout diagram Dl4 91

Display Board
Logic and circuit diagram DIS 92
Layout diagram D16 92

Disk Interface Module CDPl8S813
Logic and circuit diagram DI7 93
Layout diagram DI8 93

Power Supply
Circuit diagram D19 94

84 ______________________________ __
Operator Manual for the RCA COS II COP18S005

+v R8 6,5 U2 4 eLK OUT
OMAI-N RI

22 Mn
22 kD R2 MRD-N CD4011

DMAO-N YI

22 kD I~~UO" '''-" I NT-N R3
I 2 c~l l C3 ~ 2.00 MHz 22 kn

R7 22 PFI 1 22PF CPUPWR

.!J";~ EFI-N
U2 =

22 kn
EF2- N R6 LK2 I

22 kn 3 (PI-I2) EX CL K I 40 CPU PW/l (PI - X)
RO EF3-N

(PI-10) WAIT-N 2 FL +V
22kfl 13 12

R4 (PI - 9) CLE AR -N 3 38 DMAI -N (PH) C4 + + CI EF4 - N
(PI-6) Q- P 4 37 DMAO-N (PI -2) 15~FI I I5~"F 22 kn i (PI-8) SCI- P 5 36 INT-N (PI-4)

+~ 1\ (PI-7) SCO-P 6 35 MWR- N (PI-W) •
15 1O (PI-5) MRD- N 7 34 TPA-P (PI-A)

DB7- P II 6 9 8 33 TPB-P (PI - 81
DB6 -P 12 5 7 9 32 I 14 A7- P

DB5- P 13
U4

2'1 10 31 2 13 A6-P CDPI856 U6
DB'I- P 1'1 1,3 II

UI 30 7 CDPI856 12 A5-P

CDPI802 29 9 \I A4-P

+V~5 10 '-1:5 1O
OB3 -P II 6, 9 12 +V

1O
Oe2~

15 = 12 57 13 28 9 \I A3- P
OBI-P 13

U3
2, 4 1'1 27 7 12 A2-P CDPI856

DBO- P 14 1 3 15 26 2
U5

13 AI - P CDPIS56

16 +V 25 I 14 AO-P

17 N2-P 24 EFI-N (PI-I7)

18 NI-P 23 EF2-N (PI-IS)

19 NO-P 22 EF3- N (PI-I9)

- r 21 EF4-N (PI-20)
9ZCL-Z9391

Fig. 01 - CPU module COP18S1021ogic and circuit diagram.

Parts List for Fig. 01 (COP18S102)

C1, C4 = 15 /J.F, ± 20%,20 volts
C2, C3 = 22 pF, ± 20%, 20 volts
R1 through R7 = 22 kilohms, ± 5%,1/4 watt
R8 = 22 megohms, ± 5%, 1/4 watt
U1 = CDP1802CD
U2 = CD4011 BE
U3, U4, U5, U6 = CDP1856D
Y1 = crystal, 2.00 MHz

92 CS -2 9404

Fig. 02 - CPU module COP18S102
layout diagram.

(PI-I 3)

PI-X

PI - Y,21

PI-Z , 22

(PI-V)

(PI-U)

(PI - T)

(PI - S)

(PI - R)
(PI-P)

(PI - N)

(PI - M)

1

Appendix D - Module Logic and Layout Diagrams
______________________________ 85

.'

IJI-321 RUNUSW-NC
(J I -34) RUN u SW- NO

(J2-ll:~:p ~:::~
IJI - 281 _
IJI-201
IJ2-31 R1JNPSW - /IO

IJI - II) ~LRSW _~ON
\JJ~~~\ L SW-/I

+v---"'!

IP- 1I1 EXT CLEAR- P

(PI-9) CLEAR-/!

R

2Un
-/"V

Rl

?2kn

Fig, 03 - Control module COP 18S103 logic and
circuit diagram,

Parts List for Fig. D3 (CDP18S103)

C1 = 15 pF, ± 20%, 20 volts
CA1 = 1N914
J1 = connector, 34 pin
J2 = connector, 20 pin
A1 through A8 = 22 kilohm, ± 5%,1/4 watt
U1, U10 = CD4001BE
U2 = CD4093BE
U3, U11, U12 = CD4069BE
U4, U5, U6 = CD4050BE
U7 = CD4081 BE
U8, U18 = CD4013BE
U9 = CD4071BE
U13 = CD4076BE
U14 = CD4023BE
U15 = CD4025BE
U16 = CD4011 BE
U17 = CD4075BE

.--__ .:!N:;:'-;P (PI-lSI
,.-_-.!!.H2£-:.!:P (PHS)

RO

22 kll
+v

CD40S9
~

IPI-8)~SCI-N

~--"'!!L=c:.-!:.P (PI_~)(PI-AI~TPA-N
IPI-A1~(JI-I51

RS ~
22kn ~ (PI-7) SCOop 5 03 6 (JI - 21

LAST lIO (J1-I31

SW-NO (PI-e'~1JI- 7)

(PI -&I~(JI-91
HEN -II (JI-51

RUN- II IPI- XI
IJI -301

'IDLE-II

(PI-J) De5-p
(J2-ISI

(PI-I()oa&-p
(J2-ISI

I PI-L) 097-P
IJ2-201

I PI-M I ",AO",---,-P_-"'ll

IPI-NI .::.A!...'-!...P_---=l1

(PI _P I .:lII::'Z-':"P_ -"'!1

(PI_RI .::.A~",-",P_....!.j

(PI_SI .::A,,-4--,P_ -"'l

IPt-UI A6-P

(PI-V) .::A7!..-,:"P_ -"'!1

(PI - IOI WAIT- N

IJI-SI

(JI-IO)

IJI-121

IJI-IS)

IJI-I41

(JI-SI

(JI -261

(JI -241

(JI-221

IJI-17I

(J1-I91

IJI-211

(JI-291

(JI - 311

(JI- 231

IJI - 271

(JI-25)
DISP 5 V
IJI- II
1J2- 5 1

PI-I 9 EF3-N

PI-5 MRD-N
IJ2-91

IJ2-151

+v---.,-.p--- - . PI -2 I, Y
C11+

151'Fr 20V
.... ,------'>-----.. PI-22 , Z

TO MICROTERM INAL
TO CONTROL PANEL

DISPLAY BOARD

o

8B8B GB • • . . QR6 • .

BBBQ'B GB
R5Q QR7

Fig, 04 - Control module COP 18S103
layout diagram_ 92CS-29403

~

.:\ .

---- -- --

86 _________________ Operator Manual for the RCA CDS II CDP18S005

PI-X

PI-D

PH8

PH7
PI-16

PI-15
PI-14
PI-13

PI-12

PI-II

PI-I

PI - 2 1
PI - Y

PI-22
PI- Z

MBDS- N

RNU-P

A7-P

A6-P

A5-P

A4-P
A3-P
A2-P

AI-P

AO-P

TPA- P

+v

RI

+v

F' 2~
3 :::;; a: N 4

5
...J en

6 <> <>
7 8

9 10
16 15 AII -P PI - 7
18 U2 17 AIO -P PI - 8 CDPI852

20 19 A9-P. PI- 9
22 21 A8 - P PI - 1O

I I ClK

~ CSI PI-W BSO-P

PI-20 BSI - P

PI-19 BS2-P

l '
+v PI-l BS3-P

PI-K BS4-P

PI-J BS5- P

OJ..
PI-H BS6-P
PI-F BS7-P

-T

21 31
NO NI

4 j51T

UAI5-N

B_

~
AI5 - P

AI4-P
AI3-P

1 AI2 - P

14 13 ~ 21 3 1 14 13

N2 CE I NO NI N2 CE
~ ClKA ClKA

U4 UI
ClKB ~~ ClKB

12 II 10 9 4 5 6 7
12)'1'°19 BSF-P

BSE-P

BSO - P

BSC-P

BSB-P

8SA-P

BS9-P
BS8-P

92CM- 29387

PI-2

PI- P

PI-R
PI-S

PI-6

PI-N

PI-A

PI-M
PI-3

PI-4

PI-5

PI-C
PI-E

Fig. 05 - Address latch and bank select module COP 18S206 logic and
circuit diagram.

Parts List for Fig. D5 (CDP18S206)

C1 = 15 /1F, 20%, ± 20 volts
R1 = 22 kilohm, ± 5%,1/4 watt
U1, U4 = CDP1853D
U2 = CDP1852D
U3 = CD4001 BE

RI
~

.

8
1J

9ZCS-29402

Fig. 06 - Address latch and bank
select module COP18S206
layout diagram. ti)

Appendix D - Module Logic and Layout Diagrams ___________________ 87

i

),-\ (~

.:

(PI-9)

'PI-I4)

(PI-I!!1
(Pt-IS)

+V

(PI-A)

(PI-B)

(PI-5)

(PI-l)

(PI-K)

(PI-J)

(PI-H)

(PI-F)

(PI-.E]

(PI- OJ

(PI-C)

+V

(PI-13)

cB7-P

DB6-P

DB5-P

DB4-P

DB3-P

DB2-P

DBI-P

DBO-P

TlIO-N

NO-P

NI-P
N2-P

TPA-P

TPB-P

MAD-N

DB7-P

DB6-P

c B5-P

OB4-P

OD3- P

DBl-P

DBI-?

DBO-P

RESET·OP

+V ANU-P

I 2 (PI-n --.13 TPB-P

~DB2-P AI
U(; Q023 II q U6

22 kll 4001 4001
1/4W

3
AESET-OP

I 2 4 5

~
U2 UI

4011 Q023
liZ

:0'11 3 6

.
2 7. 9
3 6 10.

14 ~ II
III U5 12

CDPI853 4 7
3
2 B

I I ~
15

0

~ GND-8 400J., 12 II U 2
VDD-16 II U6 13 4011 12

1
13 11,,1

22 CS2CSI elK 21

20 19

18 17

16 15

9 U4 1O

7 CDPI852 B

5 6
3 4 I
2 M

7 15 13 22 20 18 16 9
CLEAR 13

114 VDD-24 '-~ CS2

CSI GND- 12 ----'- U7

+V~ ClK CDPI852
e 16 14 ClR

6 21 19 17 15 10 e [6 14
4

2
15
13

II

9

U3 =

Fig. D7 - I/O decode module CDP1BS509/ogic and
circuit diagram.

Parts List for Fig. D7 (CDP18S509)

C1 = 15 pF, ± 20%, 20 volts
R1 = 22 kilohms, ± 5%,1/4 watt
U1 = CD4023BE
U2 = CD4011 BE
U3 = resistor module, 15 kilohms
U4, U7 = CDP1852D
U5 = CDP1853D
U6 = CD4001 BE

Fig. DB -I/O decode module
CDP1BS5091ayout
diagram.

~ MAD-N e
6 U2

10 4011 9

pj - y
PI -21

~-l-P

N-S-P
N'5-P

N-4-P

N'3-P

N= 2-P

N'I - P

SEl7-P

SEL6-P

SEl5- P

SEL4-P

SEL3-P

SEL2-P

TlIO-N

(PI-W)

(PI-X)

(PI-S)

(PI-4)

(PI-3)

(PI-2)

(PL- I)

(PI-V)

(PI-U)

(PI-T)

(PI-S)

(PI-R)

(PI-P)

PI-N)

PI -M)

SELI-P,

SELO-P,

+V

+lCI
~ PI- Z I

PI-22 GND

r --,

DBO-P

DBI-P

DB2-P

DB3-P

DB4-P

cBS -P

DBS-P

DB7-P

92CL-29390

~-~. [J "0
o 0

'" N

·8 B
--c::::J-

RI

0.0.·8
92CS - 29401

-7\

88 ________________________________ __
Operator Manual for the RCA CDS II CDP18S005

•. ' .

CD401\."

(pI-I0)A8-P 9 UZ:x>'O,,----,

(P 1_ X) .:S:,:5",8-...:P __ ='1

(PI_9),,49=..-..:.P _ __ 1-____ -I-...... '"'I

(pl-7) ~AI""-~P~_ '_-----+=!

U5

BUS O-P >+-+ __ ...:0",8:.:0,-':..." (PI.C I

BUS I-P DSI-P (PI-D)

BUS 2-P -0--'+--1 OB2- P (PI-EI

SUS 3-P >-+ __ "'00"'3"'·P'- (PI-FI

8 S8-P

'--_.S--- MRO-N

D'-----RAM SEL-N

R3
Q--------V~----+V

2UIl

P''------RDMI - N

8

.P:-cc-::- ROM2-N
LK2

U6

>+-,-__ -",OB",4:..;-.:..P (PI - HI

BUS 5-P DBS-P (PI-JI

BUS 6-P'-p'-f---l >+..,.. _ _ --'0'-'0:.::6'-'-•• (PI_ KI

BUS 7-P ;>---t-..,.. _ _ ~D",0,-7 '-,-P (P 1- LI

9 2CL-29)88

,

IPI-9) ~A:::.9..:-p----------LK-3-~I-e__.---------L~-4-"""?(-'!:-:J...---------L-K5---'
A-, B A, 8 = A \ B = A8'P

A7-P
AS'P
45-P
M ' P.

(PI-IOI
IPI - V)
(p l-U)
(PI-T)
(PI - SI
IPHl
IP" P
IPI'N
IPI·t.!

I:;:~
I
I AI - P
)AO. P

22kO ~ ROMI-" 2 , 20

s-;, .f3
ROM2'N

"2
22Ul

SUSO ·p
+V

BUS I ' P
BUS2- P
8US3-P
BUS.·P
BUSS·P
BUS6-?
SUS 7-P

IPHII
(PI - 201

IP I-2I,YI

+P;~F
20V (PI -22, Z)

MWR- N

"RO'N

10 7 6 5 4 3 Z I ~22 18 1 6 5 4 3 2 I 12322 k 7 6 5 4 3 2 1 ~22 I~ 4 l 2 I
71" RAt.! SEL· N

171615
U1 ~-5 V ~-5 V

U9 f.k -5 V CDPI Bl2/CDPI834 ~+12V U8 ~+1 2 V CDPI8 32/COPI834 ~+1 2 V U4 2704 /2108

~r
", CROTERM,NAL ROM ~ 2104/2108 r--. COPl824 ROM CHIP I 20 ROM CHIP 2 3 2 - BYTE RAM

9 10 II 13 14" 16 17 .. '0 II 13 14 15 1617 .. 0' 11 13 I. IS 16 17 1413 ,211 10 B ? 6

I ~ ~2~ 92Cl- 293 B9

+! ~2~F C3
+5V

+I '5~F 20V 20 V

Fig. 09 - ROM/ RAM module COP 18S401 logic and circuit diagram.

(PI · WI

.)

Appendix 0 - Module Logic and Layout Diagrams - __________________ 89

Parts List for Fig. 09 (CDP18S401)

C1, C2, C3 = 15 IlF, ± 20%, 20 volts
R 1, R2, R3 = 22 kilohms, ± 5%, 1/4 watt
S1 = SPOT
U1 = CD4023BE
U2 = CD4069BE
U3 = CD4012BE
.U4 = CDP1824D
U5, U6 = CDP1856D
U7, U9 = 2708
U8 = Socket for Microterminal ROM

Note:
S1 UP enables Microterminal ROM in U8.
S1 DOWN enables UT20 ROM's in U7 and U9.

r.,
L...J

U5 ~ o

I us ~ ~o~ o

~r- I UIS"
~ ~; mr-
-=- ·:dl-"~T
D'~}0

».1 .

92CS- 29400

Fig. 010 - ROM/RAM module COP 18S40 1
layout diagram.

•
•
•

Link Connections:

ROM LINKS
U7 U8 U9 LK1 LK2

512 512 512 short A
1 k 512 1 k open B
1 k 1 k 1 k open B
1 k 512 512 open A
1 k 1 k 512 open A
512 512 1 k short B

U7 U8 U9
ROM

LK3 LK4 LK5

2704 B B B
2708 A A A
CDP1832 Aor B A or B Aor B
CDP1834 A A A

• The low-order U8 addresses are not
contiguous with the U9 addresses
and the second 512 addresses
overlay the first 512 (wrap).

• The low-order 512-byte addresses
are not contiguous with the U9
addresses and do not wrap.

,-

":\ .

90 __________________ Operator Manual for the RCA CDS II CDP18S005

1 f ~ ~ ~

::i~~:~="-----=,\~-' ~---'--"':' '1J ,: J, ~ t~~ t.~ t: t(t::
12 10 2,:11 15 G 4 2 6 12 10 ';"

16 4 ~ 2 I , 21

~ 'i'
Ii: 0::

'l-- '1--
.... \'i ..
I. II

6A 6A

15 12

L_-JL--1_~194a~-~--L~~~-~-~
20 m 5 L-_4-_______ -4~RW ~6~--~

----OJ..:!4'-----U4B,O--17

I 5 U~B,O--
2 6 U2B,O--

U5/!. 7 __
2 COPI8~~12 UIB,O -

\~:=~iA~t!E~:~~-4-+--~--'~;J%~ : II ~~::~==

7

+5V
V004 tt l5 1'F

Cl tr:l:20 '4 I 20 V

;;
.L
a.

IL-

~
9

IIA

10

CZJ:O.I/LF C3i+r: ±80 % C4 -20 %
C5 50V

,

I PI- 2I, Y

PI-22,Z

(PI-B) AlO-P 14 N2 6 to U5B,D-1-- 32'PACKAGE RAM MATRIX ~
~
~

VOO

L-+H4--,1~3 CS 7 9 U6B,O-1--

CLA CL6 U8C,E-t--

1
~15 ~U4C.E--

v+ ,...-- U2C,E--

= I., r- UIC,E -i--
CLA CLB ,... U6C,E -1--

W,.,O 4 U5C,E - 1--

~ NI 5 U7C,E-i-
~ 1'12 6 U~C,E -i-17

9 B.C

R5
22 kfi

R6 R7
22 kfi 22 kfi

90E
IIOE

130 E
Iil'D E

:I- L-"'10:-:a.:::Cr.:12:-::a.c:=:14;-::B::::,Cr.;16"'8::::,CL.10C;;1U:=12:-::1U:=14-::0"",EIr:::~~-::-!.o,E
USA ~ ~~-~+4~~-+~~+-4-~

COPIB53 !!l-
10

VOO'--~~VY---I--~

15

10

II

'l-.,
"' o_
f
~

6 5 Z

U2A
COPle56

12 13

.. .
'" '" "-" ~

R8
22 kJl

14

Fig. 011 - 4-kilobyte RAM module COP 18S205 logic and circuit diagram.
92CL - 29386

Parts List for Fig, D11 (CDP18S205)

C1 = 15 /1F, ± 20%, 20 volts
C2, C3, C4, C5 = 0.1 /1F, +80%, -20%, 50 volts
R1 through RS = 22 kilohms, ± 5%,1/4 watt
U1 A, U2A = CDP1856D
U1 B through U8B
U1 C through USC
U1 D through USD
U1 E through USE
U3A = CD4069BE

= CDP1S22

U5A, U6A = CDP1S53D
USA, U9A = CD4050BE

~[r]~~ mGu[-w~ ~m~: wu wu [rJu wu ~
R~ I 2 3 4 5 6 7 8 'i1
6y E E E E E E E E

::mmmrnrnrnrnrn~:
~QGl8G1888Gl8Q~
~Q~~~~~~liJLUQ~

°01 mu mu 0u 05 mu rnu 08 o$~~ B B B B B B B B 2~
• • • • • • • • a.

m
u OOu [iJu OOu illu OOu OOu ~8 12 3

A
56 89 C

AA AA AA I

J

~UDDD'bDDODOD22 92CS-29399

Fig. 012 - 4-kilobyte RAM module
COP 18S205 layout diagram.

,

II
~ ; .

,"

Appendix 0 - Module Logic and Layout Diagrams __________________ 91

+12 V

8

R UI ~rI2=---------_+;__=__j JI-7} R2 TO TTY
r----'V\II.r--- JI- 3

(PI- 13) RESET - OP II

(PI- C) DBO - P
RI

+V
(PI_ ~) SEL -P 22 kll
(PI-B) TPB-P

(PI-W) N' 7- P

(PI-L) DB7- ~

(~I - K) DB6 - P 9

13

(PI- X) ::.EF:..4:.-...::N~ _____ ------=i

II 4013
CLK

4 R UI
3 401 3

CL K

6 5 Q I
D
5

CR I

IN914

R3

22 kn

+12 V

-5 V

+12 V

-5 V

-5 V

+12 V

-5 V

I 910 n
- 5V

,>"14"--_______ J2- 3

+12 V ~
J2-6

R9 DATA SET READY

560 n
J2-7 .
CLEAR TO SEND
J2 -8
DATA CARRIER

DETECT

x>=-....... - ------------ JI-2 PTRDR" --------i,.....--- JI-9
(PI-21,Y)VDD ----- ! ---t--- -- JI-IO

(PI-20) ~ +12V
+..1. C4 + C2 CI

115 I'F I 15 I'F 115 I'F
20 V 20 V 20 V J2 I 10

(PI- 22,Z) -l:t-"'~.::....;.-.....,,;.:.....;-..... -=.--'---- J 1:5 '

R4

470 n JI-S} FROM
TTY

~-----.,....---;------ JI-4

+5 V

C3
033 I'F
50 V

R5
470 n

-5V
R8

~--~~--~4~.3~k~n------- J2-2 F~~M

IN914 CR4

92CL- 29397RI

Fig. D13 - Terminal interface module CDP18S501logic and circuit diagram.

Parts List for Fig. 013 (CDP18S507)

Cl, C2, C4 = 15 pF, ± 20%, 20 vofts
C3 = 33 pF, ± 20%, 50 volts
CR1, CR2, CR3, CR4 =a lN914
Jl, J2 = connector
Rl, R3 '" 22 kilohms; ± 5%,1/4 watt
R2 = 910 ohms, ± 5%, 1/4 watt
R4, R5 = 470 ohms, ± 5%, 1/4 watt
R6, R7 = 10 kilohms, ± 5%,1/4 watt
R8 = 4.3 kilohms, ± 5%, 1/4 watt
R9 = 560 ohms, ± 5%, 1/4 watt
Ul = CD4013BE
U2 = CD4066AE
U3 = CD4049BE
U4 = CD4073BE
U5 = CA324E

'" '"

U3 ·5

U4 5

UI ·s 0

UZ ·s
R3

-=-
-=R7
-=RS

r-,
I I
L.J

o

92CS- 29398

Fig. D14 - Terminal interface module
CDP18S501layout diagram.

TO
EIA

92 ___ ______________ Operator Manual for the RCA CDS II CDP18S005

DISP
MA-P

o
I

2

3

4

7

DISP TPA-N

JI-22
JI - 17

JI-I9

JI- 21

JI- Z9

J I - 31

JI- 33

JI -23

JI-15 3 Ull 2
40

I
I I I 16 12 I 7 6

__ 3
UI I 3

9368

DISP WAIT - N JI-27
CR3

DISP CLEAR-N JI-2.5
CR4

16 Iz 2 I 7 I 7 6 2 I 7
DISP SCO- N JI-2 6

CR2

U2 111 U3 1t1 7~sh
9368 9368 HEX OECOCER

9368

[rrT]514 1:r l:r~ r 14 rJI:T9J'4 IJ I: 1:
0
9 1'5 14

10985423 1098~'23 109 8 5423 10985 423

CRI
DISP SCI.N JI-7 4

..

DISP
8US-P

o JI- 8

I J I-IO

2 J I·12

3 JI·16

4 J I - 14

5 JI · 6
6 JI-Z6

7 JI · Z.

3 S3

LAST I/O ~ '-2
SW-N LAST~

r:rJ
S4

[TJ
55
~.

~.

m
56

U5

jj

U9

I
.".

[0
51

to
S2

CRI
o ~.

U5 T0 0
CR2 ~.

lO~~
~

CR3~ ~::::]'
TO~
CR4~
TO~~'
CR5~
TO~
CR6~
TO~

o

1
3 b II

S3

U6

-r:r

UI O

92CS·?94 05

U7

l!

U6
7- SEG

DI SPLAY
HP-5082 - 774 0

J,.I

DI SP Q -N JI-9 15
CR5

RUN- N JI- 30 1~2
CR6

"",,,=:....... ___ J::.;.I....::-3 LO- NO

~~:..!.... _ _ ---.:J:::.I:..cc- 11 RES-NO

S5 ~3-----..;.JI'--~2B RNP-NC
2.

I "A-'.!R.::cUN,,--,-P _ __ .::;JIc..-=-,,20 RNP _ NO

S2 5-____ ~JI.:.-""_32 RNU- NC
2

Il>A..c:R.::.UN"--"U ___ J,,,I_- ,,-,34 RNU _ NO

S4 3
2.

o SINGLE STEP JI - IB SS _ NO

+5V _ _____ -r_.....:;JI:....;.' DISP 5 V

~p
= 15 p. F

20 V 9 2C L - Z93 9 6

Fig. D15 - Display board logic and circuit diagram.

Parts List for Fig. 015

C1 = 15 pF, ± 20%, 20 volts
CR1, CR2, CR3, CR4, CR5, CR6 = light-emitting diodes
J1 = connector, 34 pin
S1, S2, S5, S6 = momentary action
S3, S4 = SPOT
U1, U2, U3, U4, U12, U13 = decoder driver
U5, U6, U7, UB, U9, U10 = 7-segment display
U11 = C04050 BE

Fig. D16 - Display board
layout diagram.

+ 5V .,

•

Appendix D - Module Logic and Layout Diagrams ___________________ 93

(PI-B)

VOO
(PI-21 .Y)

Vss
(PI-22.Z)

(PI-R)

(PI-CI

(PI-D)

(PI-E)

(PI-F)

(PI-H)

(PI-JI

(PI-KI

(PI-Li

(PI-PI

(PI - 51

ct (PI-9)

T PB -P

N-5-P

:0.

080-P

Dlli - I>

092-P

083 - 1'

084-P

085 - P

DB6-P

087 - P

N- 4 - P

MRD- N

SR-P

N- S-P
(PI-51

(PI - W I SEl-P

Voo
+I ci
I I51'F

20 V

:;oJ".
VOO

>~k k{l

12

~II ' 3 4081

~O 8 4081

(;

sl UI3 4
S 40Blj
'----'

~ -

JI

VOO

2~2q
II eLK

II! Voo CLR 14

22 DID SR 23

3 OIl 000 21

20
012 001

4

5 0I3 UII 002
19

COMMAND 6
IB or 4 COPI852 003

.--rZ OI5 004
17

r-r!§ DIG 005
8

~ 017
006 15

13 CS2 Cs1 007
10

I 12
Vss

V002ll 2 24
14

'-'.! M

22 23

3 21

20 4

UI2 5 19
DATA OUT

18
SAME 6 AS

7
ABOVE

17

16 8

9 15

13 10

II 12
Vss

Vss

2~12
23 SR

M
ClK II

21 000 ClR 14

4001 OIO
22

19
002 OII

3

6
003

20
UIO OI2

17 004 clfr';~~2 DI3 5

r---!I 005

j-!!I DOS

..........!S> 007

13 CS2

500

49

CSI

II

;0

r -, ()
I I l>
L.J

014 18

015
7

OI6
16

017
9

24
Voo

DUDD~
- - -
~

~~S

GGEJ . . .

~n • yRI

c

1
LK I

r---~
7 U7 16

Voo

J
~2 UI ~ ~I I

~ 4Ucl~1 ~ I UB IS I l~2 i 'Y-
O-.-

2 U8 15 rl===~~
~ ;, US 14 15 I

4 U813 I U5~ ~2!
!; U8 12 ~I 12 14 I 6 US II

~7] 7 1.18 10

8 U8 9
I 1- __ ---1

rf---ll I IS U2 ~~1
8 U7 16

VOO

lK2 ~~ r
c

LK3~ I I~-:l I U9 16

2 U9 I~ Gr\ 1 I I
3 U9 14 U2 , 8 7

l~9 1 4 U9 13

5 U9 12

I r~:t~l 6 U9 II

II ~, 7 U9 10

8 U99 :~21
16 ~14 1 Veo

:-~- -l-I--1-- I-+-Q U3

6 I
U7 . I :~7 1 I I

'3W 73 10 I
2 ""i - 5 '6 ~ 12 1I'io lK~~~

2 ~I
12 13 4069

~ 4069 4 v,;E;h
2 ~I 40~
406~ 10 ~II
4 43 40~
40~ 8 69

645 40~
4069

92CL-29395

C LEAR -N

CPUO - N

CP UI - N

CPU2 -N

CPU3-N

CPU4-N

CPU5-N

CPU6 - N

CPU7- N

ClEAR - N

COOO-N

COOI - N

C002-N

C003-N

C004-N

C005-N

C006- N

CD07 - N

CLOCK

ClEAR-N

OlO-N

Oll-N

012-1'1

013-N

or4-N

DI5-N

DI6-N

OI7-N

(JI-I I

(JI-301

(JI-311

(JI- 32 I

(JI-331

(JI- 341

(JI- 351

(JI- 3S1

(JI- 37)

(JI-211
(JI- 501

(JI-391

(JI-40)

(JI-411

(JI- 421

(JI-431

(JI- 441

(JI- 451

(JI- 46)

(JI-4)

(PI-IO)

(JI-9)

(JI-IOI

(JI-III

(JI-121

(J1-I3 I

(JI-14 I

(JI-15)

(JI-IS)

~ (
JI-17-20)
JI-23 -26

Fig. 017 - Disk interface module COP18S813 logic and
circuit diagram.

Parts List for Fig. D17

C1 = 15 J.1F, ± 20%, 20 volts
J1 = connector, 50 pin
R1 = 22 kilohms, ± 5%,1/4 watt
U1, U2, U3, U5 = CA3083
U4, U6 = CD406~BE
U7 = resistor module, 3.3 kilohms
U8, U9 = resistor module, 2.2 kilohms
U10, U11, U12 = CDP1852D
U13 = CD4081BE

Note:
Cable connector should be
aligned with arrow on J1.

22
Fig. 018 - Disk interface module COP18S813

layout diagram.
92CS-2940S

. '

94 ___ _ ___ _ _ ______ _ _ Operator Manual for the RCA COS II COP18S005

NEUT 5 -, I
I
I
I

100 V
I 10

--: I
I

liS V --+ I
I 6 ,

220 V --- ,
I
I 7

230 V ~ I
I
I 9
I
I
I

240V '-----J
8

TI

b(lN)

CI + UI -sv
2S00 f4F

C!j IA
LM320T-5.0

2S v 2(O U T)

1-.. 1
C~IA I ICGND)

1
r"IIII

~hA 2NSI02

+ + + cs 01 1 ;\A C3 C4 7S00 f4F 15 V
(3)

~ ~ 02

-'\ R4 2NM92

~3A 24 11 2W RS
03 R6

~3A
150.n
112W IOOIl

1/4 W ...
112 II 10

6 V
REF P---

U3 >- RIO 3
;. I Kn 5 Nt

CA723CE

~IA
~

1 4 ... GND COMP
7 13

RII C7
1.3 kn :: 100 0 pF

100 kn

<:81A ...
IINl "

uoun
+ C8 U2 +12V

3600 f4F 198658-1 3SV

13CGND)

Fig. 019 - Power supply circuit diagram.

Parts List for Fig. 019

C1 = 2500 /IF, 25 volts
C2, C6 = 500 /IF, 16 volts
C3, C4, C5 = 7500 pF, 15 volts
C7 = 1000 pF, 100 volts
C8 = 3600 /IF, 35 volts
C9 = 330 pF, 25 volts
CR1, CR2, CR7, CR8 = A14F, 1 A
CR3, CR4, CR5, CR6 = A15F, 3 A
01,02 = 2N6102
03 = 2N5492
R1 = 510 ohms, ± 5%,1/2 watt
R2, R3 = 0.1 ohm, ± 10%, 5 watts
R4 = 24 ohms, ± 5%, 2 watts
R5 = 150 ohms, ±5%, 1/2 watt
R6, R8 =100 ohms, ± 5%,1/4 watt
R7 = 220 ohms, ± 5%, 1/4 watt
R9 = 360 ohms, ± 5%, 1/2 watt
R10 = variable, 0-1000 ohms
R11 = 1300 ohms, ± 1%, 1/4 watt
R12 = 1000 ohms, ± 5%,1/4 watt
R13 = 100 ohms, ± 5%, 1/2 watt
R14 = 1200 ohms, ± 5%,1/2 watt
U1 = LM320T·5.0
U2 = 198658,-1
U3 = CA723CE

R2

0.1 n
5W (2)

R3

Rs

lo~n
1/4 W

R7
200n
114 W

R9

360n
1/4 W

RI2
I k.n
1/4W

T1 = Deltona #766-K29B, 50/60 Hz, input - 100 to 240 volts

RI + C2
SIO n 500 f4F
1/2 W 16V

E4

+s V
O.SA

.

+5V
S SA

EI

+ C6
500 f4F

RI3
16 V

100 n
1/2 W

~
E2

GND

+12V
O. SA

E3

RI4 C9 +
1.2 kn 330 f4F
1/2 W 25 V

9 2CL- 29394

t

___ 95

Appendix E -
Instruction Summary for RCA CDP1802 COSMAC Microprocessor

The COSMAC instruction summary is given in the
tabulations below. Hexadecimal notation is used to
refer to the 4-bit binary codes.

R(W).O: Lower-order byte of R(W)
R(W).l: Higher-order byte of R(W)

In all registers bits are numbered from the least
significant bit (LSB) to the most significant bit (MSB)
starting with o.

Operation Notation
M(R(N)) ~ D;R(N)+ 1

R(W): Register designated by W, where W=N or
X;-orP

This notation means: The memory byte pointed to by
R(N) is loaded into D, and R(N) is incremented by l.

INSTRUCTION SUMMARY
_ Register Operations by Class of Operation

OP
INSTRUCTION MNEMONIC CODE

INCREMENT REG N INC 1N
DECREMENT REG N DEC 2N
INCREMENT REG X IRX 60
GET LOW REG N GLO aN
PUT LOW REG N PLO AN
GET HIGH REG N GHI 9N
PUT HIGH REG N PHI BN

Memory Reference

OP
INSTRUCTION MNEMONIC CODE

LOAD VIA N LDN ON
LOAD ADVANCE LDA 4N
LOAD VIA X LDX FO
LOAD VIA X AND ADVANCE LDXA 72
LOAD IMMEDIATE LDI Fa
STORE VIA N STR 5N
STORE VIA X AND STXD 73

DECREMENT

Logic Operations++

OP
INSTRUCTION MNEMONIC CODE

OR OR F1
OR IMMEDIATE ORI F9
EXCLUSIVE OR XOR F3
EXCLUSIVE OR IMMEDIATE XRI FB
AND AND F2
AND IMMEDIATE ANI FA
SHIFT RIGHT SHR F6

76+ SHIFT RIGHT WITH SHRC 1
CARRY

RING SHIFT RIGHT RSHR
SHIFT LEFT SHL FE

7E+ SHIFT LEFT WITH SHLC 1
CARRY

RING SHIFT LEFT RSHL

.NOTE: THIS INSTRUCTION IS ASSOCIATED WITH MORE THAN ONE
MNEMONIC. EACH MNEMONIC IS INDIVIDUALLY LISTED .

OPERATION
R(N) +1
R(N) -1
R(X) +1
R(N) .~D
D-+R(N).O
R(N).l-+D
D-+R(N) .l

OPERATION
M(R(N»-+D; FOR N NOT 0
M(R(N»-+D ;R(N) +1
M(R(X»-+D
M(R(X»-+D; R(X) +1
M(R(P»-+D; R(P) + 1
D-+M(R(N»)
D-+M(R(X»; R(X) -1

OPERATION

M(R(X)) OR D~D
M(R(P» OR D~D; R(P) +1
M(R(X» XOR D~D
M(R(P» XOR D~D; R(P) +1
M(R(X)) AND D~D
M(R(P» AND D~D; R(P) +1
SHIFT D RIGHT, LSB(D)~DF,
~MSB(D)
SHIFT D RIGHT, LSB(D)~DF,
DF~MSB(D)

SHIFT D LEFT, MSB(D)-4-DF,
~LSB(D)
SHIFT D LEFT, MSB(D)-4-DF,
DF-+LSB(D)

.. NOTE: THE ARITHMETIC OPERATIONS AND THE SHIFT INSTRUCTIONS
ARE THE ONLY INSTRUCTIONS THAT CAN ALTER THE DF.

96 _________________ Operator Manual for the RCA CDS II CDP18S005

Arithmetic Operationst+

OP
INSTRUCTION MNEMONIC CODE OPERATION

ADD ADD F4 M(R(X)) +D~DF, 0
ADD IMMEDIATE ADI FC M(R(P) +O~OF, 0; R(P) +1
ADD WITH CARRY ADC 74 M(R(X)) +0 +OF~DF, 0
ADD WITH CARRY ADCI 7C M(R(P) +0 +OF~DF, 0

IMMEDIATE R(P) +1
SUBTRACT 0 SO F5 M(R(X))-O~DF, 0
SUBTRACT 0 IMMEDIATE SOl FD M(R(P))-D~DF, 0; R(P) +1

.- SUBTRACT 0 WITH SOB 75 M(R(X))-D-(NOT DF)~DF; 0
BORROW

SUBTRACT 0 WITH SDBI 70 M(R(P))-D-(NOT OF)-->OF, D;
.:\ .

BORROW, IMMEDIATE R(P) +1
SUBTRACT MEMORY SM F7 D-M(R(X))~DF, 0
SUBTRACT MEMORY SMI FF O-M(R(P))~OF, 0;

IMMEDIATE R(P) +1
SUBTRACT MEMORY WITH 5MB 77 O-M(R(X))-(NOT DF)-->DF, 0

BORROW
SUBTRACT MEMORY WITH 5MBI 7F O-M(R(P))-(NOT DF)~DF, 0

BORROW, IMMEDIATE R(P) +1

Branch Instructions - Short Branch

OP
INSTRUCTION MNEMONIC CODE OPERATION

SHORT BRANCH BR 30 M(R (P)) R (P).O
NO SHORT BRANCH NBR 38· R(P) +1

(SEE SKP)
SHORT BRANCH IF 0=0 BZ 32 IF 0=0, M(R(P))-·R(P).O

ELSE R(P) +1
SHORT BRANCH IF BNZ 3A IF 0 NOT 0, M(R(P)) ··R(P).O

o NOTa ELSE R(P) +1
SHORT BRANCH IF OF = 1 aDFl SHORT BRANCH IF POS BPZ 33· IF DF=l, M(R(P)) R(P) .O

OR ZERO ELSE R(P) +1
SHORT BRANCH IF EOUAL BGE

OR GREATER
SHORT BRANCH IF DF =O BNF 1 3B· IF OF =O, M(R(P)) R(P) .O
SHORT BRANCH IF MINUS BM ELSE R(P) +1
SHORT BRANCH IF LESS BL
SHORT BRANCH IF 0=1 BO 31 IF 0=1, M(R(P))-·R(P).O

ELSE R(P) +1

SHORT B RANCH IF 0=0 BNO 39 IF 0=0, M(R(P))-·R(P).O
ELSE R(P) +1

SHORT BRANCH IF EF1 1 B1 34 IF EF11, M(R(P)) -R(P),O
ELSE RIP) 11

SHORT BRANCH IF EF 1 0 BN1 3C IF EF1 0, M(R(P)) -H(P),O
ELSE R(P) 11

SHORT BRANCH IF EF2 -· 1 B2 35 IF EF2~' 1, M(R(P)) -R(P).O
ELSE R(P) +1

SHORT BRANCH IF EF2=O BN2 3D IF EF2=O, M(R(P)) ·R(P).O
ELSE R(P) +1

SHORT BRANCH IF EF3=1 B3 36 IF EF3=1, M(R(P)) ·R(P).O
ELSE R(P) +1

SHORT BRANCH IF EF3=O BN3 3E IF EF3=0. M(R(P))-.R(P).O
ELSE R(P) +1

SHORT BRANCH IF EF4=1 B4 37 IF EF4=1. M(R(P)) R(P).O
ELSE R(P) +1

SHORT BRANCH IF EF4=O BN4 3F IF EF4=O. M(R(P))-R(P) .O
ELSE R(P) +1

Appendix E - COSMAC Instruction Summary
__________________________________ 97

..
:I .

Branch Instructions - Long Branch

OP
INSTRUCTION MNEMONIC CODE

LONG BRANCH LBR CO

NO LONG BRANCH NLBR C8·
(SEE LSKP)

LONG BRANCH IF D=O LBZ C2

LONG BRANCH IF D NOT 0 LBNZ CA

LONG BRANCH' IF DF=1 LBDF C3

LONG BRANCH IF DF=O LBNF CB

LONG BRANCH IF 0=1 LBO C1

LONG BRANCH.lF 0=0 LBNO C9

Skip Instructions

OP
INSTRUCTION MNEMONIC CODE

SHORT SKIP SKP 38·
(SEE NBR)

C8· LONG SKIP LSKP
(SEE NLBR)

LONG SKIP IF D=O LSZ CE

LONG SKIP IF D NOT 0 LSNZ C6

LONG SKIP IF DF=1 LSDF CF

LONG SKIP IF DF=O LSNF C7

LONG SKIP IF 0=1 LSO CD

LONG SKIP IF 0=0 LSNO C5

LONG SKIP IF IE=1 LSIE CC

.NOTE: THIS INSTRUCTION IS ASSOCIATED WITH MORE THAN ONE
MNEMONIC. EACH MNEMONIC IS INDIVIDUALLY LISTED .

•• NOTE: THE ARITHMETIC OPERATIONS AND THE SHIFT INSTRUCTIONS
ARE THE ONLY INSTRUCTIONS THAT CAN ALTER THE DF.

OPERATION

M(R(P))~R(P).1
M(R(P) +1)~R(P).0
R(P) +2

IF D=O, M(R(P))~R(P).1
M(R(P) +1)~R(P).0

ELSE R(P) +2
IF D NOT 0, M(R(P))~

R(P).1
M(R(P) +1)~

R(P).O
ELSE R(P) +2

IF DF=1, M(R(P))~R(P).1
M(R(P) +1)~

R(P).O
ELSE R(P) +2

IF DF=O, M(R(P))~R(P).1
M(R(P) +1)~

R(P).O
ELSE R(P) +2

IF 0=1, M(R(P))~R(P).1
M(R(P) +1)~R(P).0

ELSE R(P) +2
IF 0=0, M(R(P))~R(P).1

M(R(P) +1)~
R(P).O

ELSE R(P) +2

OPERATION

R(P) +1

R(P) +2

IF D=O, R(P) +2
ELSE CONTINUE

IF D NOT 0, R(P) +2
ELSE CONTINUE

IF DF=1, R(P) +2
ELSE CONTINUE

IF DF=O, R(P) +2
ELSE CONTINUE

IF 0=1, R(P) +2
ELSE CONTINUE

IF 0=0, R(P) +2
ELSE CONTINUE

IF IE=1, R(P) +2
ELSE CONTINUE

..

98 _________________ Operator Manual for the RCA CDS II CDP18S005

Control Instructions

OP
INSTRUCTION MNEMONIC CODE

IDLE 10L 00

NO OPERATION NOP C4
SET P SEP ON
SET X SEX EN
SET 0 SE~ 7B
RESET 0 REO 7A
SAVE SAV 78
PUSH x.p TO STACK MARK 79

RETURN RET 70

DISABLE DIS 71

Input-Output Byte Transfer

OP
INSTRUCTION MNEMONIC CODE

OUTPUT 1 OUT 1 61 -
OUTPUT 2 OUT 2 62

OUTPUT 3 OUT 3 63

OUTPUT 4 OUT 4 64

OUTPUT 5 OUT 5 65

OUTPUT 6 OUT 6 66

OUTPUT 7 OUT 7 67

INPUT 1 INP 1 69

INPUT 2 INP 2 6A

INPUT 3 INP 3 6B

INPUT 4 INP 4 6C

INPUT 5 INP 5 60

INPUT 6 \ INP 6 6E

INPUT 7 INP 7 6F

.NOTE: THIS INSTRUCTION IS ASSOCIATED WITH MORE THAN ONE
MNEMONIC. EACH MNEMONIC IS INDIVIDUALLY LISTED.

"NOTE: THE ARITHMETIC OPERATIONS AND THE SHIFT INSTRUCTIONS
ARE THE ONLY INSTRUCTIONS THAT CAN ALTER THE DF.

OPERATION
WAIT FOR OMA OR
INTERRUPT; M(R(O))-+BUS
CONTINUE
N-+P
N-+X
l-+Q
()-+O
T~M(R(X))

:

(X.P)~T; (X.P)-+M(R(2))
THEN P-+X; R(2)-1
M(R(X))-+(X.P); R(X) +1
l-+IE
M(R(X)) (X.P); R(X) +1
()-+I E

OPERATION
M(R(X)) BUS; R(X) +1;

N LINES = 1
M(R(X))~BUS; R(X) +1;

N LINES = 2
M(R(X)) BUS; R(X) +1;

N LINES· 3
M(R(X)) -BUS; R(X) 11;

N LINES c 4
M(R(X)) BUS; R(X) +1;

NLlNES=5
M(R (X))-~BUS; R (X) + 1;

N LINES = 6
M(R(X)) BUS; R(X) +1;

NLlNES=7
BUS M(R(X)); BUS~O;

N LINES = 1
BUS M(R(X)); BUS O;

N LINES = 2
BUS-+M (R (X)) ; BUS O;

N LINES = 3
BUS M(R(X)); BUS O;

N LINES = 4
BUS-+M(R(X)); BUS O;

N LINES = 5
BUS-+M(R(X)); BUS O;

N LINES = 6
BUS M(R(X)); BUS-O;

N LINES = 7

___ 99

Appendix F -
ASCII - Hex Table

MOST SIGNIFICANT HEX DIGIT

0 1 2 3 4 5 6 7

0 NUL DLE 5P 0 @ P "'- P
"

:\
1 SOH DCI I A Q . a q

2 STX DC2 " 2 B R h r

3 ETX DC3 # 3 C S C 5

..... 4 EOT DCft $ ft D T d t

l!) 5 ENQ NAK % 5 E U e u
0

x 6 ACK SYN & 6 F V f v
LJJ
1:

7 BEL ETB ,- 7 G W g w (t
z
« 8 BS CAN (8 H X h u x -~

9 HT EM) 9 I Y 1 Y z
l!)

CJ')
A LF SUB ~ J Z j z

..... B VT ESC + ; K k { CJ')

«
LJJ

FF \ ~ C FS , < L 1

D CR GS = M m }

E SO RS > N t n '\,

F S I US / ? 0 +- 0 DEL

NOTES:

(1) Parity bit in most significant hex digit not included.
(2) Characters in columns 0 and 1 (as well as SP and DEL)

are non·printing.
(3) Model 33 Teletypewriter prints codes in columns 6 and

7 as if they were column 4 and 5 codes.

100 _________________ Operator Manual for the RCA CDS II CDP18S005

!fII
0000 ;
0000 ;
0000 ;
0000 ;
00.00 ;
6000 ;
0000 ;
0000 ;

.. ·-0000 ;
: 0000 ;
" 0000 ;

-0000 ;
0000 ;
0000 ;
0000 ;
0000 ;
0000 ;
0000 ;
0000 ;
0000 ;
0000 ;
0000 ;
0000 ;
0000 ;
0000 ;
0000 ;
0000 ;
0000 ;
0000 ;
0000 ;
0000 ;
0000 ;
0000 ;
0000 ;
0000 ;
0000 ;
0000 ;
0000 ;
0000 ;
0000 ;
0000 ;
0000 ,
OQOO ;
0000 ;
0000 ;
0000 ;
0000 ;
0000 ;
0000 ;
0000 ;
0000 ;
0000 ;
0000 ;
0000 ;
8000 ,
8000 7100;
8002 F880BO;
8005 ;
8005 ;
8005 ;

Appendix G - UT20 Listing

UT20 IS A UTILITY PROGRA .. USED TO ALTER
ME .. ORY, DUMP "EMORY, AND BEGIN PROGRA ..
EXECUTION AT A GIVEN LOCATION. THE CO ANDS
ACCEPTED ARE SPHHHH (BEGIN EXECUTION AT THE
SPECIFIED LOCATION WITH RO AS PROGRAfil
COUNTER), !"HHHH DATA (PUT DATA AT SPECIFIED
LOCATION), AND ?MHHHH HHHH (OUTPUT DATA
FROM SPECIFIED LOCATION FOR SPECIFIC COUNT).
AT THE BEGINNING OF A CO AND ALL CHARACTERS
ARE IGNORED UNTIL A ?, !, OR S IS
ENCOUNTERED. IN THE ? .. AND !M COMMANDS NON
HEX CHARACTERS ARE IGNORED AFTER M UNTIL A
HEX IS READ, THEN THE FIRST NON HEX
CHARACTER MUST BE A SPACE. NON HEX
CHARACTERS BETWEEN HEX PAIRS OF THE DATA IN
THE !" COMMAND ARE IGNORED EXCEPT FOR CR,
SEMICOLON, AND CO"MA.
SL LOADS DATA (WRITTEN IN UT20 FOR"AT) FROM

FLOPPY DSK INTO MEMORY. THERE ARE 77 TRACKS
AVAILABLE ON A DISKETTE (TRACK 0-76).
LOADING STOPS IF THE EOF (DC3) IS DETECTED.
THE BAUD RATE OF UT20 IS DEPENDENT UPON THE
TERMINAL BEING USED. A CR OR LF IS ENTERED
AT THE BEGINNING TO SPECIFY THE APPROPRIATE
DELAY BETWEEN BITS. UT20 WILL ECHO
C H A R A C TE R S IF ~ C R I S -C H 0 SEN A S THE
TIMING CHARACTER. ECHOING WILL NOT TAKE
PLACE IF A LF IS INPUT AS THE' TI~ING
CHARACTER.
UT20, AT INITIATION, STORES ALL REGISTERS
BETWEEN WRAM-32 AND WRAM IF IT FINDS RAM
THERE (BUT RO, R1, AND R4.1 ARE CLOBBERED).
?R CAN BE USED TO TYPE THE CONTENTS OF THE 16
REGISTERS (RO-RF). RO,R1,R4.1 WILL BE
TYPED AS XIS (DON'T CARE).

PTER=t/OO •• AUXILIARY FOR MAIN ROUTINE
CL=t/01 •• CLOBBERED
ST=#02 •• STACK POINTER ONLY REFERENCE TO RAM

SUB=t/03 •• SUBROUTINE PROGRAM COUNTER
PC=t/05 •• MAIN PROGRAM COUNTER

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
002~
0025
0026
0027
0028
0029 , ••
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060

SWITCH=CL •• DISTINGUISHES BeTWEEN ?M AND !fIII
COUNTER
ON INPUT;

DELAY=t/OC •• DELAY ROUTINE PROGRAM
ASL=t/OD •• HEX ASSEMBLY REGISTER

•• AUX FOR HEX OUTPUT
CNTER=ASL

AUX=t/OE
CHAR=t/OF
WRAM=t/8C1F

LOADER=t/8400

•• USED TO COUNT OUTPUT BYTES
•• AUX.1 HOLDS BIT-TIME CONSTANT
•• CHAR.1 HOLDS I/O BYTE
•• REGISTERS STORED IN RA ..
•• LOCATION LOADER PROGRAfil

ENTER IN RO

ORGt/8000

DIS,tlOO
LDI A.1(UT20) ;PHI RO

MAY TRY TO GO TO SOOO, NOT
UNTIL FINGER IS OFF BUTTON

•• UT20 STARTS AT
•• fIII(SOOO)
•• P=X=O
•• HOLDS HIGH BIT
•• AFTER FINGER OFF

0000

•

Appendix G - UT20 Listing _ _ _ __________________ ____ 101

;
908S83;
F830AS;
DS;
E5;
715S;
6101;
F88C82;

8005 ;
8005 ;
8005 ;
8005 ;
8005 ;
8005
8005
8008
8008
800B
8008
SOOE
8Q.aE
8:<>0 F
8P12
8012
SOB
8015
8016
S016
8019
8018
801D
80H
8021
8021
8022
8022
8023
8024
8027
8029
S029
802C
802F
S030
8031
8033
8035

,
F88C81;
,
F81EA1;
,
F8AOB4;
;
E1;
F8D051;
,
F3;
3A29;
21;
,
94FC70;
331D;
FC21;
FC7F;
8451;
;
D1; . ,
73;
21;
94F890;
3AOF;

8038 F800A2;
803B ;
803B ,
8038 F8FEA3;
803E ,
803E D3;
803F ;
803F ;
803F ,
803F F89CA3;
8042 F88183;
8045 D30D;
8047 D30A;
8049 D32A;
804s F800ADBD;
804 F ;
804F ,
804F F83BA3;
8052 D3;
8053 FB24;
8055 C28207;
8058 FB05;
805A ;

0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122

THE FOLLOWING WRITES REGISTER CONTENTS INTO
WRAM-32 THRU WRAM IF IT EXISTS. WRAM-34 IS
ASSUMED NOT TO BE RAM (ELSE ROUTINE OVERRUNS).

LDI A.1(WRAM) ;PHI CL •• CL IS CLOB
•• BERED

LDI A.0(WRAM-1) ;PLO CL •• SET UP WHERE RF.O
•• IS TO GO, MINUS 1

LDI IIAO iPHI R4 •• R4.1 STORES A
•• MODIFIED INSTRUC.

SEX CL
LOOP2: LDI liDO ;STR CL •• SET UP SEP INSTR.

•• FOR RETURN

UT20:

UT20A:

XOR
BNZ UT20
DEC CL

• .CHECK IT WROTE

GHI R4 ;ADI 1170
BDFHII04

•• PREPARE FOR MODI
•• FIED INSTRUCTION
•• IN THE 90'S?

ADI 1121
ADI 117F
PHI R4 ;STR CL

SEP CL

SrxD
DEC CL

•• NO, 8N -> 9N
•• YES, 9N -> S(N-1)
• .SET MODIFIED
•• INSTRUC INTO RAM
•• EXECUTE INSTRUCS
•• (80-9F)
•• STORE RESULT RAM
•• & BACK UP FOR

GHI R4 iXRIII90
8NZ LOOP2

•• CK IF STORAGE DONE
•• NEXT BYTE

GHI RO iPHI PC
LDI A.0(UT20A)
SEP PC
SEX PC
DIS,1I55
OUT 1,t/01
LDI A.1(WRAM)
LDIIIOO ;PLO

;PHI SU8 •• 1I80->PC.1 & SUB.1
;PLO PC

•• NOTE PC=S ASSUMED
•• SELECT RCA GROUP

iPHI ST •• SET STACK POINTER
ST

•• TO ~(8COO), ONLY
•• RAM USED

LDI A.O(TIMALC) iPLO SUB •• READ ONE CHAR
•• TO SET TIMER

SEP SUB

• • • INITIATION NOW DONE

START: LDI A.O(TYPE5D) ;PLO SUB
LDI A.1(TYPE5D) ;PHI SU8
SEP SUB; ,IIOD •• CR=CARRIAGE RET

ST2: SEP SUB; ,IIOA •• LF=LINE FEED
SEP SUB; ,1I2A •• * PROMPT CHARAC

IGNORE: LDIIIOO ;PLO ASL;PHI ASL •• PREPARE TO INPUT
• .HEX DIGITS,
•• CLEAR ASL

LDI A.O(READAH) ;PLO SUB
SEP SUB •• INPUT COMMAND
XRI 1124 •• IS IT "$" ?
LBZ DOLLAR
XRI liDS •• IS IT "'" ?

•• TEST S XRI !

102 Operator Manual for the RCA CDS II CDP18S005

805A A1; 0123 PLO SWITCH •• AND SAVE RESULT • 805B C E; 0124 LSZ
805C F81E; 0125 XRI #1E • • IS IT .,?., ?
805E ; 0126 • • TES $ XRI ! XRI ?
80SE 3A4B; 0127 BNZ IGNORE •• IGNORE ALL UNTIL
8060 ; 0128 •• COMMAND IS READ
8060 , ; 0129
8060 ; 0130 THE FOLLOWING IS COMMON F OR ,1M AND ! Ii!
8060 ; 0131 (SWnCH.O = 0 FOR THE LATTER)
8060 ; 0132
8060 03 ; 0133 RDARGS: SEP SUB •• NOTE SUB AT
~O61 ; 0134 •• READAH. READ

, '8061 ; 0135 •• HEX ARGUMENTS
,.8061 FB4D; 0136 XRI #40 •• SHOULD BE IIMII
. a063 3ADC; 0137 BNZ I SITR • • C K FOR ?R
806S 03; 0138 R 0 1 : SEP SUB
8066 3B65; 0139 BNF *-fl01 •• IGNORE NOt-' HEX
8068 ; 0140 •• CHARS. AFTER ulW\"
8068 03; 0141 SEP SUB
8069 3368; 014? BOF *-#01 •• READ FIRST ARG
806B ; 0143 •• (LOCA. IN MEMORY>
806B 9DBO; 0144 GHI ASL ;PHI PTER
8060 8DAO; 0145 GLO ASL ;PLO PTER •• PTER NOW POINTS
806F ; 0146 •• TO USER MEMORY
806F F800ADBD; 0147 LDIflOO ;PLO ASL ;PHI ASL •• CLEAR ASL
8073 10; 0148 INC ASL •• ?MXXXXCR PRINTS
8074 ; 0149 _ • • TWO HEX DIGITS
8074 9FF80D; 0150 GHI RF ;XRIflOD • • C K FOR CR
8077 3A7E; 0151 BHZ TEST • • B R IF NOT A CR • 8079 81; 0152 GLO SWITCH
807A 3A8D; 01S3 BNZ LINE-#03 • • B R IF ?
807C 30E1; 0154 BR SYNERR •• OTHERWISE ERROR
807E FB2D; 0155 TE ST: XRI#2D •• CK FOR SPACE
8080 3AE1; 0156 BNZ SYNERR
8082 20; 0157 DEC ASL •• ADJUST ASL
8083 81; 0158 GLO SWITCH •• LOOK AT SWITCH
8084 32C6; 0159 BZ EX1 •• IF 0 IT IS u!,.
8086 ; 0160 •• OTHERWISE IT'S ?
8086 ; 0161
8086 ; 0162 THE FOLLOWING DOES (?M LOC COUNT) AND
8086 ; 0163 (?MXXXXCR) COMMANDS
8086 D3; 0164 RD2: SEP SUB
8087 3386; 0165 BDF RD2 •• READ SECOND ARG
8089 ; 0166 •• (NUMBER OF BYTES)
8089 FBoD; 0167 XRI flOD •• NEXT CK FOR CR
8088 3AE1; 0168 BNZ SYNERR
8080 F89CA3; 0169 L DI A.O(TYPESD) ;PLO SUB •• TYPE
8090 D30A; 0170 LINE: SEP SUB; ,#OA • • L F
8092 90BF; 0171 GHI PTER ;PHI CHAR •• PREPARE LINE
8094 ; 0172 •• HEADING
8094 F8AEA3; 0173 LOI A.0(TYPE2) ;PLO SUB
8097 D3; 0174 SEP SUB •• TYPE 2 HEX DIGITS
8098 80BF; 0175 GLO PTER ;PHI CHAR
809A F8AEA3; 0176 LOI A.0(TYPE2) ;PLO SUB
8090 D3; 0177 SEP SUB • • TYPE OTHER TWO
809E 0320; 0178 TSPACE: SEP SUB; ,#20 •• SPACE
80AO ; 0179
80AO 40BF; 0180 TLOOP: LOA PTER ;PHI CHAR •• FETCH ONE BYTE
80A2 ; 0181 •• FOR TYPING
80A2 F8AEA3; 0182 LOI A.0(TYPE2) ;PLO SUB
80A5 03; 0183 SEP SUB • • TYPE 2 HEX
80A6 20; 0184 DEC CNTER

Appendix G - UT20 Listing _________________________ 103

80A7 80;
80A8 3AAo;
80AA 90;
80AB 323F;
80AD 80FAOF;
80BO 3AB8;
80B2 o33B;
80B4D300;
8096 3090;
80B8' F6;
80B9 33AO;
80B8 309E;
~OBD ;

:;,S OB 0
.::808D ;
8eB 0 ;
8080 ;
80B 0 ;
80BD ;
80BD ;
8080 ;
80BD ;
80BD ,
80BD 03;
80BE ,
80BE 3BBD;
80eo 03;
80C 1 ,
80e1 3BE1;
80C3 8050;
80C5 10;
80C6 03;
80C7 33eO;
80C9 FeOD;
80CE 323F;
80CD FB21;
80CF ,
80CF 32BD;
8001 F817;
8003 ;
8003 ,
8003 3AC6;
8005 03;
8006 ;
8006 ,
8006 FBOD;
8008 3AD5;
80DA 3065;
80DC ,
80DC FB1F;
BODE C282E8;
80E1 ;
80E1 F89CA3;
80E4 ,
80E4 0300;
80E6 C08200;
80E9 ;
80E9 ;
80E9 ;
80E9 ;
80E9 ;
80E9 ;

0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207

TL3 :

TL2 :

0208 EX3:
0209
0210
0211 EX2:
0212 -
0213
0214
0215
0216 EX1:
0217
0218
0219
0220 EX4:
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233

GLO eNTER
BNZ TL3
GHI eNTER
BZ START
GLO PTER
BNZ TL2
SEP SUB;
SEP sue;
BR LINE
SHR
BDF TLOOP
BR TSPACE

;ANI IIOF

,1I3B
,1100

•• BRANCH NOT DONE

•• BRANCH IF DONE
•• PTER DIV BY 16?

•• YES TYPE ";"
•• THEN CR

•• DIV BY 2?
•• NO, LOOP BACK
•• ELSE TYPE SPACE &
•• LOOP BACK

THE FOLLOWING DOES (lM LOC DATA) COMMAND
ENTER AT EX1

EFFECT OF THE FOLLOWING IS TO READ IN HEX
TER~INATING WITH A CR, IGNORING NON-HEX CHAR
PAIRS; EXCEPTIONS: A COMMA BEFORE A CR ALLOWS
THE INPUT TO CONTINUE ON THE NEXT LINE AND A
SEMICOLON ALLnwS THE !M COM~AND TO BE ASSUMED.

SEP SUB

BNF EX3
SEP SUB

BNF SYNERR
GLO ASL ;STR
INC PTER
SEP SUB
BDF EX2
XRI #00
BZ START
XRI 1121

BZ EX3
XRI #17

8NZ EX1
SEP SUB

XRI #00
BNZ *-03
BR RD1

PTER

•• INPUT UNTIL A
•• HEX IS READ

•• LOOK FOR SECOND
•• HEX DIGIT
• .BR IF NOT HEX
•• **SET BYTE**

•• NOTE SUB @ READAH
•• BRANCH IF HEX
• .CHECK IF CR

•• ELSE CK FOR COMMA
•• (TEST CR XRI ",")
•• IF ELSE BRANCH
• • ELSE CK FOR ";"
•• (TEST CR XRI
.... , .. XRI ";")
•• IGNORE ALL ELSE
•• 0'" ";" IGNORE ALL
•• UNTll CR, THEN
•• LOOP BACK

0234 ISITR: XRIII1F

•• THEN BRANCH BACK
•• FOR !!Ii COMMAND
•• IS IT R?

0235 LBZ TYPER • .BR IF R
0236
0237 SYNERR: LDI A.0(TYPE5D);PLO SUB •• GENERAL RESULT
0238 •• SYNTACTIC ERROR
0239
0240
0241
0242
0243
0244
0245
0246

SEP SUB; ,1100
LBR FSYNER

SUBROUTINES

• • C R

104 ________________ Operator Manual for the RCA CDS II CDP18S005

80E9 ;
80EA ;
80EA ;
80EA ;
80EA ;
80EA ;
80EA .'
80EA ;
80EA ;
80'E A ,
80EA DCDCDCDC;
80EE D3;
8'0 EF 9 E F 6 A E;

:180 F 2 ,
.. ~ 80F2 2E;

8ilF3 ,
80F3 43FF01;
80F6 3AF4;
80F8 ;
80F8 8E;
80F9 32EA;
80FB 23;
80FC ;
80FC 30F2;
80FE ;
80FE ;
80FE ;
80FE ;
80FE ;
80FE ;
80FE ;
80FE ;
80FE ;
80FE ,
80FE 93BC;
B100 F8EFAC;
8103 F800AEAF;
8107 ,
8107 3707;
8109 3F09;
810B ;
810B F803;
810D ;
8100 ,
8100 FF01;
810F 3AOD;
8111 8F;
8112 ;
8112 ,
8112 3A17;
8114 3719;
8116 ;
8116 ,
8116 1F;
8117 37H;
8119 ,
8119 H;
811A Fa07;
811C ;
811C 300D;
811 E ;
811E ;
811E ;

ORG*+fI01
DELAY ROUTINE
DELAY IS 2(1+AUX.1(3+@SUB»
USED BY TYPE, READ, AND TIMALC.
AUX.1 IS ASSUME~ TO HOLD A DELAY CONSTANT
=«BIT TIME OF TERMINAL)/
(20*INSTR TIME OF COSMAC»-1.
THIS CONSTANT CAN BE GENERATED
AUTOMATICALLY BY THE TIMALC ROUTINE.

DEXIT: SEP
SEP

DELAY1: GHI

0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274 ••
0275
0276
0277
0278
0279
0280
0281
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0300
0301
0302
0303
0304
0305
0306
0307
0308

RC;SEP RC;SEP RC;SEP RC •• 4 NOP'S
SUB •• RETURN
AUX ;SHR ;PLO AUX •• SHIFT OUT

•• ECHO FLAG
DELAY2: DEC AUX •• AUX.O HOLDS BASIC

• .BIT DELAY
LOA SUB ;SMI 1101
BNZ *-1102

GLO AUX
ez DEXIT
DEC SUB

BR DELAY2

•• PICK UP CONSTANT
•• LOOP AS SPECIFIED
•• BY CALL
•• DON E YET?

•• POINTS SUB AT
• .DELAY POINTER

ROUTINE TO CALCULATE BYTE TIME AND ECHO
FLAG. WAITS FOR LF(NO ECHO) OR CR(ECHO)
TO BE TYPED IN. ALSO SETS UP POINTER TO
DELAY ROUTINE.
AUX.1 ENDS UP HOLDING, IN THE
SIGNIFICANT 7 BITS, THE DELAY
LEAST SIGNIFICANT BIT IS ZERO
ONE FOR NO ECHO.

MOST
CONSTANT.
FOR ECHO,

TIMALC: GHI SUB ;PHI DELAY

TC 2:

ZRONE:

INCR:

LDI A.0(DELAY1) ;PLO DELAY
LDI 1100 ;PLO AUX ;PLO CHAR

B4*
BN4*

LDI tl03

S,.,I 1101
BNZ *-1102
GLO CHAR

BNZ ZRONE
B4 INCR

INC CHAR
B4 DAUX

INC AUX
LDI tl07

eR TC2

•• DELAY ROUT. READY
• .WAIT START BIT
•• WAIT FOR FIRST
•• NONZERO DATA BIT
•• SET UP FOR 10
•• EXECUTIONS SO
•• ROUND-OFF MINIMAL

• .LOOK TO SEE IF
•• DATA CHANGED

•• PREVIOUSLY
• .BR IF IT 6HAD
•• ELSE LOOK FOR
•• CHANGE TO ZERO
• .BRANCH IF NO
•• YES, SET SWITCH
•• LOOK FOR CHANGE
•• TO 1, BR IF YES

•• SET UP FOR 20
•• INSTRUCTION LOOPS

AUX.O NOW HOLDS tlLOOPS IN 2 BIT TIMES •

t

Appendix G • UT20 Listing - ----------- ---_________ 105

811E 2E2Ei
8120 ;
8120 ;
8120 ;
8120 8EF901BE;
8124 DCOC;
8126 3F2C;
8128 ;
81 28' 9 E F A FE i
8128 BE;
812C ,
8.t2C DC26;
,.e·12E D5;
~12F ;
'Bt2F ;
812F i
812F ;
812F ;
812F ;
B12F ;
812F ;
812F ;
812F ;
812F ;
812F ;
812F ;
812F ;
812F ;
812F ,
812F FC07;
8131 ,
8131 3337;
8133 FCOA;
8135 3377;
8137 FeOO;
8139 9F;
813A D5;
813B F800;
813D 38;
813E ;
813E 93;
813F i
813F AF;
8140 F880BF;
8143 ;
8143 ;
8143 ;
8143 E2;
8144 3F44;
8146 ;
8146 3746;
8148 ,
8148 DC02i
814" ;
814A ,
814A F80052;
814D 9EFA01;
8150 ;
8150
8150
8152
8152

,
F152;
,
6722;

0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329
0330
0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0370

DAUX:

WA IT:

DEC AUX iDEC AUX

GlO AUX ;ORI 1101 iPHI
SEP RC; ,IIOC
eN4 WA IT

GHI AUX iANI#FE
PHI AUX

SEP RC; ,1126
SEP R5

•• REDUCE COUNT TO
• .BALANCE FIXED
•• OVERlOAD IN
•• CAlLING DELAY

AUX •• lse AUX.1 = 1.5
• .BIT TIME DELAY
•• eR IF IF(NO ECHO)
•• lse AUX.1=1

•• CR(ECHO)
•• lSB AUX.1=0

READ ROUTINE--READS 1 BYTE INTO CHAR.1. WHEN
ENTERED VIA READAH, THEN IF INPUT IS A HEX
DIGIT ITS HEX VALUE IS SHIFTED INTO ASl FROM
THE RIGHT AND DF=1, ELSE DF=O; CLOBBERS CHAR,
AUX.O, (ASl ON READAH). lEAVES BYTE IN D
(BUT CLOBBERED IF SUBR lINKAGE IS USED).
lEAVES PC AT READAH ENTRY POINT; EXITS TO R5.

WARNING: READ PROCESS HAS NOT FINISHED. DO
NOT TYPE IMMEDIATELY, OR ELSE ENTER TYPE VIA
TYPE5D.

CKDEC: ADI 1107

BDF NFND
ADI 1t0A
BDF FND

NFND: ADI 1100
REXIT: GHI CHAR

SEP R5
READAH: lDI #00

SKP

READ: GHI SUB

READ1: PLO CHAR
READ2: LDI #80 iPHI CHAR

SEX ST
BN4 *

B4 *

SEP RC; ,#02

NOSIT: LDI 1100 iSTR ST
lOOPS: GHI AUX ;ANI 1101

OR ;STR ST

OUT 7 ;DEC ST

' •• CK FOR ASCII
•• DECIMAl INPUT

•• SUB NET 30
•• SETS DF=O
•• CHARACTER INTO D

•• SKIP OVER
•• TO READ1
• .CONSTANT WITH
•• A VALUE> 0
•• SET ENTRY FLAG
•• INITIALIZE INPUT
•• BYTE-WHEN SHIFTED
•• 80 IS 1, WILL BE
•• DONE

•• WAIT FOR END OF
• .lAST DATA BIT
•• WAIT FOR PRESENT
•• START BIT
•• DELAY HALF
• .BIT TIlliE

• .CHECK IF ECHO
•• INDICATOR IS
•• lSB OF AUX.1
•• OUTPUT IS ONE(NO
•• EFFECT) ON NOECHO

106 ______________________________ __ Operator Manual for the RCA CDS II CDP18S005

8154 ,
8154 DC07;
8156 ,
8156 F80152;
8159 9FF6BF;
815C 3365;
815E ,
815E F980;
8160 3F4A;
8162 ,
8162 BF;
8163 ,
.8,163 3040;

:\"8165 ;
f8165 ;

8165 ;
8165 6722;
8167 3240;
8169 ,
8169 8F;
816A 3A39;
816C ,
816C 9F;
8160 FF41;
816F 3B2F;
8171 FF06;
8173 3337;
8175 FC10;
8177 ;
8177 AE;
8178 ,
8178 90;
8179 FEFEFEFE;
8170 ,
8170 52;
817E 80;
817F F6F6F6F6;
8183 F1BD;
8185 80;
8186 FEFEFEFt;
818A ,
818A 52;
8188 8EFAOFF1AD;
8190 FFOO;
8192 3039;
8194 ;
8194 ;
8194 ;
8194 ;
8194 ;
8194 ;
8194 ;
8194 ;
8194 ;
8194 ;
8194 ;
8194 ;
8194 ;
8194 ;
8194 ;
8194 ;
8194 ;

0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0381
0382
0383
0384
0385
0386
0387
0388
0389
0390
0391
0392
0393
0394
0395
0396
0397
0398 -
0399
0400
0401
0402
0403
0404
0405
0406
0407
0408
0409
0410
0411
0412
0413
0414
0415
0416
0417
0418
0419
0420
0421
0422
0423
0424
0425
0426
0427
0428
0429
0430
0431
0432

LOOP5B: SEP RC; ,1107 •• DtLAY ONE
• .BIT TIME

LDI 1101 ;STR ST
GHI CHAR ;SHR ;PHI CHAR •• SHIFT INPUT CHAR.
BDF NEXT •• BR IF INPUT

ORI #80
BN4 NOBIT

PHI CHAR

BR LOOPS

•• FINISHED D=CHAR.1

• .BR IF INPUT
• .~IT A ZERO
•• ELSE PUT OK'D
•• VALUE AWAY

NOW HAVE BYTE READ INTO CHAR.1

NEXT: OUT 7; DEC ST
BZ READ2

•• OUTPUT STOP BIT
• .BR IF 0=0,

GLO CHAR
BNZ REXIT

•• CHAR.1 IS A NULL
•• CHECK ENTRY FLAG
•• BR IF ENTRY VIA
•• READ

CKHXE: GHI CHAR
SMI #41
BNF CKDEC
SMI 1106
BDF NFND
ADI 1110

•• CK FOR ASCII HEX
•• AT TOP OF ROUTINE
•• CK FOR A THRU F

•• SUB NET 37

FND: PLO AUX

GHI ASL
SHL ;SHL ;SHL ;SHL

STR ST
GLO ASL
SHR ;SHR ;SHR ;SHR
OR ;PHI ASL
GLO ASL
SHL ;SHL iSHL iSHL

STR ST

•• SAVE TO SHIFT
•• INTO ASL

•• SHIFT ASL.1
•• LEFT FOUR

•• SHIFT ASL.O RT 4
•• COMBINE

•• SHIFT ASL.O
•• LtFT FOUR

GLO AUX iANI IIOF iOR iPLO ASL •• COMBINE
S~I 1100 •• SET DF
BR REXIT

TYPE ROUTINE -- TYPES 1 BYTE FROM @R5!, @R6!,
OR CHAR.1, OR TYPES A eYTE AS 2 HEX DIGITS FROM
CHAR.1 FOLLOWS A LINE FEED BY SIX NULLS.
USES 2 AUXILIARY REGS - AUX AND CHAR - PLUS
RAM LOCATION @ST. EXITS READY TO TYPE 1 BYTE
FROM @R5!. EXITS TO R5 WHEN ENTERED AT TYPE5D,
PAUSES TO ALLOW AN EARLIER READ TO COMPLtTE.

AUX.O HOLDS OUTPUT CHAR (AT FIRST), THEN THE
DELAY CONSTANT BETWEE~ BITS. CHAR.O HOLDS THE
NUMBER OF BITS (11) IN ITS LOWER DIGIT, AND
IN ITS UPPER DIGIT HOLDS A CODE

a FOR BYTE OUTPUT
1 FOR FIRST HEX OUTPUT
2 FOR LAST NULL OUTPUT
8 FOR LF OUTPUT •

Appendix G - UT20 Listing 107 ,
8194 ; 0433
8194 ; 0434
8194 ; 0435 ORG 11819C
819C DC17; 0436 TYPE5D: SEP RC; ,1117 •• 3 BIT TIME DELAY
819E 38; 0437 SKP •• SKIP TO TYPES
819F D5; 0438 TEXIT: SEP R5
81AO 4538; 0439 TYPE5 : LDA R5 ;SKP •• ENTRY FOR UT20
81A2 .' 0440 •• SKIP TO TYPE ,
81A2 4638; 0441 TYPE6: LOA R6 iS KP •• ENTRY FOR G.P.
81A4 ' ; 0442 •• H'!MED,TH
81A4 9F; 0443 TYPE: GHI CHAR
81A5 AE; 0444 TY1 : PLO AUX •• SAVE BYTE
81.A6 FBOA; 0445 XR IfIOA • • IS IT LINE FEED?
~iA8 3ACO; 0446 BNZ TY2
&,1 AA F88B; 0447 LDItl8B · . (" BITS)+(# NULLS
B'ac ; 0448 • • TO FOLLOW LF + n
81AC 30C2; 0449 BR TY3
81AE 9F; 0450 TYPE2 : GHI CHAR •• UT20 ENTRY
81AF F6F6F6F6; 0451 TY4 : SHR ;SHR ;SHR ;SHR •• SHIFT FIRST HEX
81B3 ; 0452 •• TO THE RIGHT
81B3 FCF6; 0453 ADItlF6 •• CONVERT TO HEX
8185 3B89; 0454 BN F *+1104 • .IF "A" OR MORE
81B7 FC07; 0455 ADItl07 •• ADD NET 37
81B9 FFC6AE; 0456 SMItlC6 ;PLO AUX •• ELSE ADD NET 30
81BC F81B; 0457 LDI#18 •• 10+(# OF BITS)
818E 30C2; 0458 BR TY3
81C0 ; 0459
81CO F80B; 0460 H2: LOItlOB • .#BITS TO OUTPUT

(t 81.C2 A F; 0461 TY3: PLO CHAR •• SAVE MAIN TALLY
81C3 ; 0462 •• VALUE
81C3 E2; 0463 SEX ST
81C4 ; 0464
81C4 F80052; 0465 BEGIN: LDIflOO ;STR ST •• FOR START 8IT
81C7 67; 0466 OUT 7
81C8 22; 0467 DEC ST •• BACK TO WHERE
81C9 ; 0468 •• IT WAS
81C9 8E; 0469 GLO AUX •• PUT CHAR BACK
81CA 52; 0470 PREBIT: STR ST
81CB DC07; 0471 8ITS: SEP RC; ,1107 •• DELAY 1 BIT TIME
81CD 2 F; 0472 DEC 5HAR •• DECREMENT TALLY
81CE FOAEFA0152; 0473 LOX ;PLO AUX ; AN IfI01 ;STR ST
81D3 67; 0474 OUT 7 •• OUTPUT DATA BIT
81D4 22; 0475 DEC ST
81D5 8FFAOF; 0476 GLO CHAR ;ANIflOF
8108 32E28E; 0477 BZ NXCHAR ;GLO AUX • .AUX.O TO STRETCH
81DB ; 0478 •• DELAY
81DB 8EF6F980; 0479 GLO AUX ;SHR ;ORIfl80 •• SHIFT TO
81DF 52; 0480 STR ST • .NEXT BIT
8HO 30CA; 0481 BR PREBIT
81E2 ; 0482
81E2 8FFCFB; 0483 NXCHAR: GLO CHAR ;ADI#FB •• SET UP FOR
8H5 AF; 0484 PLO CHAR •• NEXT CHAR
81E6 3B9F; 0485 BNF TEXIT •• EX IT IF NO MORE
8H8 FF1B; 0486 SMItl1B • • TEST FOR
8HA ; 0487 •• ALTERNATIVES
81EA 329F; 0488 BZ TEXIT • • I F JUST TYPED
8HC ; 0489 •• LAST NULL
81EC 3BF2; 0490 BNF HEX2 • .IF JUST TYPED (t 8HE ; 0491 •• FIRST NULL, LF
81EE ; 0492 •• OR NULL
8HE F800; 0493 LDItlOO •• PREPARE TO TYPE
81FO ; 0494 •• NULL

108 _ _ ______ ________ Operator Manual for the RCA CDS II CDP18S005

81FO 30FD;
81F2 ,
81F2 9FFAOF;
81F5 ;
81F5 FCF6;
81F7 3BFB;
81F9 FC07;
81 FB ' FFC6;
81 F,D AE;
8HE 30C4;
8200 ;
8200 ;
.8'200 D30A;
~8202 D33F;
,.', 8 2 0 4 C 0 8 03 F ;

S207 ;
8207 ;
8207 ,
8207 F85FA1;
820A F88281;
820D D3;
820E F855;
8210 3231;
8212 FB19;
8214 3245;
8216 FB1C;
8218 CA80E1;
821B D3;
821C 3318;
821E ,
821E FEOD;
8220 ;
8220 CA80E1;
8223 F89CA3;
8226 D30A;
8228 E5;
8229 7055;
822B 6100;
8220 6704;
~22F ;
822F 3039;
8231 D3;
8232 3331;
8234 ;
8234 FeOo;
8236 ,
8236 CA80E1;
8239 9DBO;
823B 8DAO;
823D F89CA3;
8240 D30A;
8242 E5;
8243 7000;
8245 ;
8245 i
8245 ,
8245 F800AO;
8248 F884BO;
8248 EO;
824C DO;
8240 i
8240 ;
824 D i

0495
0496
0497
0498
0499
0500
0501
0502
0503
0504
0505
0506
0507
0508
0509
0510
0511
0512
0513
0514
0515
0516
0517
0518
0519
0520
0521
0522 -
0523
0524
0525
0526
0527
0528
0529
0530
0531
0532
0533
0534
0535
0536
0537
0538
0539
0540
0541
0542
0543
0544
0545
0546
0547
0548
0549
0550
0551
0552
0553
0554
0555
0556
0557

HEX2:

HX22:

BR HX22

GHI CHAR ;ANI#OF

ADIIIF6
eN F ull04
ADIII07
S,.,IIIC6
PLO AUX
BR BEGIN

FSYNER: SEP SUB; ,IIOA
SEP SUB; ,1I3F
LBR START

•• GET SECOND HEX
•• DIGIT
•• CONVERT TO HEX
•• IF "A" OR MORE
• .ADD NET 37
•• ELSE ALL NET 30
•• STORE CHAR AWAY

•• IF
• .?

THE FOLLOWING DOES SP HHHH ,SU HHHH

DOLLAR:lDI A.O(INTRPT)
LDI A.1<INTRPT>
SEP SUB

;PLO R1 •• R1 IS POINTI~G
;PHI R1 •• AT INTRPT

•• SUB.O=READAH

D1 :

D2:

XRI 1155
ez 01
XRI #19
BZ DOLL
XR IfI1C
LBNZ SHIERR
SEP SUB
8DF *-1101

XRI nOD

lBNZ SYNERR
LDI A.0(TYPE5D)
SEP SUB; ,IIOA
SEX PC
RET ,1155
OUT 1,#00
OUT 7,1104

BR D2
SEP SUB
eDF 01

XIII #00

L8NZ SYNERR
GHI ASL ;PHI RO
GLO ASl iPLO RO
lDI A.0(TYPE5D)
SEP SUB; ,IIOA
SEX PC
RET, liDO

;PLO SUB

•• CHECK FOR IOU"
•• CON·T WITH IOU"
•• CHECK FOR "L"
•• IF "Lit
•• CK FOR "P"
• .NOT P EITHER

•• ASSEMBLE HEX
•• STRING I~TO ASL
•• FIRST NON-HEX
•• MUST BE CR

• • L F

•• CLEAR 1/0 DECODER
•• BIT 2 DESELECT~
•• THE 2 LEVEL 1/0

•• ASSEreLE HEX
•• STRING I~TO ASl
•• FIRST NON-HEX
•• MUST BE CR

• .SET UP NEXT PC
;PLO SUB

•• LF

•• AND USER PROGRAM
• .BEGINS (IN RO)
• • EX IT TO UT20

THE FOLLOWING DOES SL
DOLL:LDI A.O(LOADER) ;PLO RO

LDI A.1(LOADER) ;PHI RO
SEX RO
SEP RO

MSGE ROUTINE
THIS ROUTINE INITIALIZES,RC TO
POINT AT THE DELAY ROUTINE.

•

Appendix G - UT20 Listing _________________________ 109

824D ; 0558
824D , 0559
824D F8EFAC; 0560
8250 F880BC; 0561
8253 DC12; 0562
8255 468F; 0563
8257 325E; 0564
8259 »481A4; 0565
825C 3055; 0566
825E D5; 0567
825F ; 0568
825F ; 0569
825F ; 0570
815F ; 0571

:)825F ; 0572
:825 F ; 0573
815F F864A4; 0574
8262 , 0575
8262 F874A5; 0576
8265 , 0577

IT TYPES CUT DATA POINTED TO 8Y R6. THIS
ROUTINE USES THE STANDARD CALL AND RET ROUTINES.

MSGE:LDI A.OCDELAY1) ;PLO RC
LDI A.1(DELAY1) ;PHI RC
SEP RC,1I12 ", •• DELAY

STRNG:LDA R6 ;PHI RF •• LOAD CHAR TO RF.1
BZ EXIT1
SEP R4; ,ACTYPE)
BR STRNG

EXIT1:SEP R5
INTERRUPT ROUTINE

• .TYPE OUT CHAR

IT INITIALIZES R4,R5 TO POINT AT
THE CALL AND RETURN ROUTINES. IT CALLS OSTRNG,
AND OUTPUT 'INTRPT ON' MESSAGE.
IT EXITS OSTRNG WITH R3 AS PROGRAM COUNTER,
THEN IT TRANSFERS CONTROL TO UT20.

INTRPT:LDI A.OCCALL) ;PLO R4 •• INITIALIZE CALL

LDI A.OCRET) ;PLO R5
•• POINTER
•• INITIALIZE RET
• .POINTER

8265 F88384; 0578 LDI A.1CCALL) ;PHI R4 •• CALL AND RET ON
8268 85; 0579 PHI R5 •• SAME PAGE
8269 F81FA2; 0580 LDIII1F ;PLO R2 •• INITIALIZE I/O

• .POINTER 826C F88CB2; 0581 LDI A.1CWRAM) ;PHI R2
8l6F F876A3; 0582 LDI A.OCMSG) ;PLO R3 •• INITIALIZE PC
8272 F882B3; 0583 LDI A.1CMSG) ;PHI R3
8275 D3; 0584 SEP R3
8276 D4824D; 0585 MSG:SEP R4; ,ACMSGE)
8279 494E5452505421;0586 - ,T'INTRPT! ',1100
8280 00; 0586
8281 ; 0587
8281 ; 0588
8281 ; 0589
8281 ; 0590
8281 ; 0591
8281 , 0592
8281 E3; 0593
8282 F8EFAC; 0594
8285 ; 0595
8285 ; 0596
8285 F880BC; 0597
8288 F83FA5; 0598
828B F880e5; 0599
828E F800A2; 0600
8291 F88CB2; 0601
8294 6101; 0602
8296 , 0603
8296 7155; 0604
8298 ; 0605
8298 ; 0606
8298 ; 0607
8298 ; 0608
8298 ; 0609
8298 ; 0610
8298 ; 0611
8298 ; 0612
8298 , 0613
8298 F805A3; 0614
8298 F800B3; 0615
829E , 0616
829E F864A4; 0617
82A1 ; 0618
82A1 ; 0619

ENTER ROUTINE
THIS ROUTINE INITIALIZES RC TO POINT AT
THE DELAY ROUTINE. IT ALSO INITIALIZES R2 TO
LOC 118COO CTHE I/O LOCATION USED BY UT20).
IT DISA8LES INTERRUPT, SELECTS RCA I/O
GROUP, AND TRANSFERS CONTROL TO UT20.

ENTER:SEX R3 •• X=P=3
LDI A.OCDELAY1) ;PLO RC •• INITIALIZE RC

LDI A.1(DELAY1)
LDI A.OCSTART>
LDI A.1CSTART>
LDIIIOO ;PLO R2

;PHI RC
;PLO R5
;PHI R5

LDI A.1CWRAM) ;PHI R2
OUT 1,1101

DIS,#55

DSKGO ROUTINE

•• TO POINT AT THE
•• DELAY ROUTINE

•• INITIALIZE PC

•• R2 POINTS TO
•• MC8COO)
•• SELECT RCA I/O
•• GROUP
•• DISABLE INTRPT
•• P=X=5

THIS ROUTINE INITIALIZES R4,R5,RC TO
POINT AT THE CALL, RET, AND DELAY
ROUTINES RESPECTIVELY.
THIS ROUTINE DYNAMICALLY DETERMINES THE
STACK LOCATION, AND INITIALIZE R2 TO
POINT AT THAT LOCATION.
IT ALSO HOMES 80TH DSK DRIVES IF POSSIBLE.

DSKG01 :LDI#05 ;PLO R3
LDIIIOO ;PHI R3

DS,Kl=i02: ORG *
LDI A.OCCALL> ;PLO R4 •• INITIALIZE R4 TO

•• POINT AT THE
•• CALL ROUTINE

110 _________________ 0perator Manual for the RCA CDS II CDP18S005

82A1 F874A5;
82A4 ;
82A4 ,
82A4 F883B4;
82A7 B5;
82A8 F880B2;
82AB F8FFA2;
82AE ' 92FF01e2;
82B2 ,
828-2 F85A5202;
82B6 FB5A3AAE;
82BA 650B;
82BC 6401;

:82BE 6521;
} 82CO E26E;
" 82C2 FA20;

82C4 EO;
82C5 3ACF;
82C7 650D;
82C9 E26E;
82C8 F6;
82CC 33C9;
82CE EO;
82CF 6508;
82D1 6441;
82D3 6521;
8205 E26E;
82D7 FA20;
8209 EO;
82DA 3AE4;
82DC 650D;
82DE E26E;
82EO F6;
82E1 33DE;
82E3 EO;
82E4 6101;
82E6 ,
82E6 E2;
82E7 D3;
82E8 ;
82E8 ;
82E8 ;
82E8
82E8
82E9
82EC
82EF
82EF
82 F 1
82F3
82F6
82F8
82FA
82FC
82FE
8300
8301
8302
8305
8308
830e
830E
8310

,
81;
C280E1;
F89CA3;
,
D30D;
D30A;
F80 2AO i
D358;
D358;
D358;
D358;
D320;
2D;
80;
CA82F6;
F804AO;
F88CBOi
F802ADi
40BF;
F8AEA3;

0620
0621
0622
0623
0624
0625
0626
0627
0628
0629
0630
0631
0632
0633
0634
0635
0636
0637
0638
0639
0640
0641
0642
0643
0644
0645
0646
0647 -
0648
0649
0650
0651
0652
0653
0654
0655
0656
0657
0658
0659
0660
0661
0662
0663
0664
0665
0666
0667
0668
0669
0670
0671
0672
0673
0674
0675
0676
0677
0678
0679
0680
0681
0682

LDI A.O(REn

LDI A.1(CALU
PH I R5
LDIII80
LDI#FF

iPLO R5

;PHI R4

•• INITIALIZE R5 TO
•• POI~T AT RET ROU
• • TINE
•• R4,R5 ON
•• SAME PAGE

STACK:GHI R2

;PHI R2
;PLO R2

; S~I#01 ;PHI R2 •• ASSUME 4K BANKS

LDIII5A ;STR R2 ;LDN
XRIII5A iBNZ STACK

HOMDSK:OUT 5,1I0B
OUT 4,1101
OUT 5,1121
SEX R2 ;H!P 6
ANI#20
SEX RO
BNZ UNIT2
OUT 5,#OD

UNIT1:SEX R2 iINP 6
SHR
BDF U~~IT1

SEX RO
UNIT2:0UT 5,#08

OUT 4,1141
OUT 5,1121
SEX R2 ;INP 6
A~II#20

SEX RO
BNZ EXIT2
OUT 5,IIOD

UNIT:SEX R2 iINP 6
SHR
eDF UNIT
SEX RO

fXIT2:0llT 1,1101

SEX R2
SEP R3

•• OF MEMORY
R2 •• CK IF RAM EXIST

• .BR IF NO RAM
•• CLEAR ERROR FLAGS
•• OUTPUT UNITIIOO
•• LOAD U/SII
•• READ STATUS
•• CK DRIVE

•• 8R IF DRIVE FAIL
•• SEEK TRACKIIOO
•• READ STATUS
•• CK FOR BUSY
• .BR IF BUSY

•• CLEAR ERROR FLAGS
•• OUTPUT UNITII1
•• LOAD UISII
•• READ STATUS
•• CK DRIVE

•• BR IF DRIVE FAIL
•• SEEK TRACKIIOO
•• READ STATUS
•• CK FOR BUSY
• .BR IF BUSY

•• SELECT RCA 1/0
•• GROUP

THE FOLLOWING ROUTINE DOES (?R) COMMAND

TYPER: GLO SWITCH
LBZ SYNERR
LDI A.0(TYPE5D) ;PLO SUB

SEP SUE,flOD
SEP SUB,1I0A
LDIII02 ;PLO CNTER

TYPEX: SEP SUB,T'X'
SfP SU8,T'X'
SEP SUB,T'X'
SEP SU8,T'X'
SEP SUB,1I20
DEC CNTER
GLO CNTER
LBNZ TYPEX
LDIII04 ;PLO PTER
LDIII8C ;PHI PTER
LDIII02 ;PLO CNTER

TYPER2: LDA PTER iPHI CHAR
LDI A.0(TYPE2) iPLO SUB

•• CK IF ?
• .BR IF NOT?
.. sue IS POINTING
•• TO TYPE5D ROUTINE
•• TYPE CR
•• TYPE LF
•• TYPE RO,R1
•• TYPE X
•• SINCE RO,R1 ARE
•• CLOBBERED BY UT20
•• X=DON'T CARE
•• TYPE SPACE

•• BR TO TYPE R1
•• TYPE R2,R3
•• LOAD ADDERSS
• .LOAD CNTER
•• PRINT 2 HEX DIGIT

•

Appendix G - UT20 Listing 111

• 8313 D3; 0683 SEP SUB
8314 40BF; 0684 LDA PTER ; PHI CHAR
8316 F8AEA3; 0685 LDI A.OCTYPE2) ;PLO SUB
8319 D3; 0686 SEP SUB
831A F89CA3; 0687 LDI A.O(TYPE~D) ;PLO SUB
831D 80FB08; 0688 GLO PTER ; XRIII08
8320 C6; 0689 LSNZ
8321 D~ 2C; 0690 SEP sue,T','
8323 D320; 0691 SEP SU8,1I20
8325 .2D; 0692 DEC CNTER
8326 8D3AOE: 0693 GLO CNTER ;BNZ TYPER2
8329 D358: 0694 SEP SUB,T'X'
8328 D358; 0695 SEP SUB,T'X'
8JZD F809AO: 0696 LDI#09 ; PLO PTER
B~30 F88CBO; 0697 LDIII8C ;PHI PTER
8333 F816AD; 0698 LDlfl16 ; PLO CNTER
8336 40BF; 0699 LDA PTER ;PHI CHAR
8338 F8AEA3; 0700 LDI A.0(TYPE2) ;PLO SUB
8338 D3; 0701 SEP SUB •• TYPE OTHER TWO
833C D320: 0702 TSPCE: SEP SUB; ,1120 •• SPACE
833E ; 0703
833E 40BF; 0704 TLOOPX: LDA PTER ;PHI CHAR •• FETCH ONE 8YTE
8340 ; 0705 • • FOR TYPING
8340 F8AEA3: 0706 LDI A.0(TYPE2) ;PLO SUB
8343 D3; 0707 SEP SUB •• TYPE 2 HEX
8344 2D; 0708 DEC CNTER
8345 8 D; 0709 GLO OJTER
8346 3A4C; 0710 BNZ TL3A •• 8RANCH NOT DONE
8348 9D; 0711 GHI CNTER

• 8349 C2803F; 0712 L8Z START • .8RHCH IF DONE
834C 80FB18; 0713 TL3A: GLO PTER ;XRIII18 • • C K IF RC?
834F 3A53; 0714 8NZ TLX
8351 D32C; 0715 SEP SU8,T','
8353 80FAOF; 0716 TLX: GLO PTEP. ;ANI flOF • • PT ER DIV BY 16?
8356 3A5E: 0717 BNZ TL2A
8358 D30D; 0718 SEP SU8; ,IIOD •• THEN CR
835A D30A; 0719 SEP SUB,IIOA • • TY PE LF
835C 303E; 0720 BR TLOOPX
835E F6; 0721 TL2A: SHR •• DIV BY 2?
835F 333E; 0722 BDF TLOOPX • .NO,. LOOP BACK
8361 303C; 0723 BR TSPCE •• ELSE TYPE SPACE &
8363 ; 0724 •• LOOP BACK
8363 : 0725 STANDARD CALL ROUTINE
8363 D3; 0726 EXITA:SEP R3 •• R3 IS POINTING
8364 ; 0727 •• Te FIRST INSTR.
8364 ; 0728 • • IN SUBROUTINE
8364 E2; 0729 CALL:SEX R2 •• POINT TO STACK
8365 96; 0730 GHI R6 •• PUSH R6 ONTO
8366 73; 0731 STXD • .STACK TO PREPARE
8367 ; 0732 • • IT FOR PONTI NG
8367 86; 0733 GLO R6 •• TO ARGUMENTS,
8368 ; 0734 • • AND DECREMENT
8368 73; 0735 SrxD • • TO FREE LOCATION.
8369 93: 0736 GHI R3 •• COPY R3 INTO R6
836A 86; 0737 PHI R6 • • TO SAVE RETURN
8368 ; 0738 •• ADDRESS
8368 83; 0739 GLO R3 •• SAVE THE RETURN
836C ; 0740 •• ADDRESS , 836C A6; 0741 PLO R6 •• SAVE THE RETURN
836D ; 0742 •• ADDRESS
836D 46; 0743 LDA R6 •• LOAD THE ADDRESS
836E ; 0744 • .0 F SU8 .ROUTUH
836E 83; 0745 PHI 1<3 •• INTO R3

112 _________________ Operator Manual for the RCA CDS II CDP18S005

836F 46; 0746 LDA R6 •• INTO R3
8370 A3; 0747 PlO R3 •• INTO R3
8371 3063; 0748 BR EXITA •• BRANCH TO ENTRY
8373 ; 0749 •• POINT
8373 ; 0750 STANDARD RETURN ROUTINE
8373 D3; 0751 EXITR:SEP R3 •• RETURN TO MAIN
8374 ; 0752 •• PROGRAM
8374 96; 0753 RET:GHI R6 •• COPY R6 INTO R3
8375 83; 0754 PHI R3 •• R3 CONTAINS THE
S3"76 ; 0755 •• RETURN
8376 86; 0756 GLO R6 •• ADDRESS
8377 A3; 0757 PlO R3 •• ADDRESS

.. 8378 E2; 0758 SEX R2 •• POINT TO STACK
.. 8379 12; 0759 INC R2 •• POINT TO SAVED

} 837A ; 0760 •• OLD R6
.837A 72; 0761 LDXA •• RESTORE THE

8378 ; 0762 •• CONTENTS
8378 A6; 0763 PlO R6 •• OF R6
837C FO; 0764 lDX •• OF R6
837D B6; 0765 PHI R6 •• OF R6
837E 9F; 0766 GHI RF
837F C08373; 0767 lBR EXITR •• BRANCH TO ENTRY
8382 ; 0768 •• POINT
8382 ; 0769 UT20 VECTOR TABLE
8382 ; 0770 ORGtl83FO
83FO C0824D; 0771 OSTRNG:lBR MSGE
83F3 C08298; 0772 I NIT1 : LBR DSKG01
83F6 C0829E; 0773- INIT2:LBR DSKG02
83F9 COB281; 0774 GOUT20:LBR ENTER
83FC C0816C; - 0775 CKHEX: LBR CKHXE
83FF ; 0776
83FF ; 0777 END
0000

!M
0000 ; 0001
0000 ; 0002
0000 ; 0003
0000 ; 0004
0000 ; 0005
0000 ; 0006 ORG #8400
8400 ; 0007 •. T HIS ROUTINE IS USED TO LOAD A PROGRAM
8400 ; 0008 •• WRITTEN IN UT2 FORMAT FROM ICOM FDSK
8400 ; 0009 .. INTO MEft"ORY. THIS PROGRAM STARTS ASKING
8400 ; 0010 •. FOR THE TRACK# AND UNIT#. THESE
8400 ; 0011 •• NUMBERS SHOULD BE ENTERED FROM
8400 ; 0012 •• TERMINAL AS HEX DIGITS,THEN THE PROGRAM
8400 ; 0013 •• SEEKS THE U/TR AND LOAD THE PGM
8400 ; 0014 IRX=#60
8400 ; 0015 TYPE2=#81 AE
8400 ; 0016 PTER=#OC •. DCB(DATA COHROL BLOCK) P
.0

•

•

Appendix G - UT20 Listing _________ ________________ 113

8400 ; 0017
8400 0018
8400 0019
8400 ; 0020
8400 0021
8400 ; 0022
8400 ; 0023
8400 ; 0024
8400 ; 0025
84DO ; 0026
8400 , 0027
8400 F809A3; 0028
8403 F88483; 0029

.. .. 8406 CO 8 3 F 6; 0030
) 8409 F81 FA2; 0031

840C F88C82; 0032
- 840F F800AD8D; 0033
8413 eA73; 0034
8415 D483FOODOA5245;0035
841C 41443FOO; 0035
8420 D4813B; 0036
8423 FeOD; 0037
8425 3A20; 0038
8427 D483FOOA4C4F41;0039
842E 44494E4700; 0039
8433 E3; 0040
8434 6400; 0041
8436 90; 0042
8437 3230; 0043 -
8439 F840; 0044
8438 6440; 0045
8430 52; 0046
843E 226521; 0047
8441 650B; 0048
8443 6500; 0049
8445 ; 0050
.N R9.
8445
8445
8447
8449
8446
844C
8440
844F
8450
8452
8453
8454
8455
8456
8457
8459
845C

,
E28D;
F F 10;
3852;
AD;
9 A;
FCOA;
BA;
3045;
80;
52;
9A;
F4 ;
73;
82AC;
928C1C;
1 C 1 C;

845E
8461
8464
8464
8467
8469
846e
8460

048506;
048573;
,
CB83F9;
F821 ;
327A;
FB05;
32C6;

0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067

0068
0069
0070
0071
0072
0073
0074
0075

ST=#02 •• STACK POINTER
PC=#03 •• MAIN PROGRAM COUNTER
ASL=#OD
AUX=#OE
•• 1/0 PARAMETERS

READAH=#813e
TYPE=#81 A4
OSTRNG=#83FO
DSKGO=#83F6
GOUT20=#83F9
CKf-IEX=#83FC
LDI A.OCSTART-#06) ;PLO R3
LDI A.1CSTART> ;PHI R3
LBR DSKGO
LDI#1F ;PLO R2
LDI#8C ;Pf-II R2

START: LDI#OO ;PLO ASL ;PHI ASL •• CLEAR ASL
PHI RA ;STXD •• CLEAR RA

ASK: SEP R4 ,ACOSTRNG),#OD,#OA,T'READ?',#OO

ASK1: SEP R4; ,ACREADAH) •• READ A CHAR
XRI#OD . ".CK FOR A CR
eNZ ASK1
SEP R4,ACOSTRNG),#OA,T'LOADING',#00

SEX R3
OUT 4,#00 •• OUTPUT U/S#OO
GHI ASL
ez CONTIN •• BRANCH IF U/S#OO
LDI#40 •• UNIT#1
OUT 4,#40 •• OUTPUT U/S#40

CONTIN: STR ST •• STORE U/S# IN DC8

CVY:

DEC ST ;OUT 5,#21 •• LOAD THE U/S#
OUT 5,#OB •• CLEAR ERROR FLAG
OUT 5,#00 •• SEEK TRACK#OO
•• THE FOLLOWING ROUTINE CONVERTS A DECIMAL# I

•• HEX AND STORE
SEX R2;GLO ASL
SMI#10
E!NF RESULT
PLO ASL
GHI RA
AD I#OA
PHI RA

IT @ DCB PTER

E'R CVY •• BRANCH IF NOT NEGATIVE
RESULT:GLO ASl

STR ST
GHI RA
ADD
STX 0
GlO ST
GHI ST
INC PTER

; PlO PTER
;PHI PTER

; H'C PTER
;INC PTER

•• PTER @THE eYTE COUN

SEP R4,ACEWAIT) •• WAIT UNTIL DISK NOT BUSY
REAOX: SEP R4; ,ACREAD) •• READ 1 ASCII DIGIT

lBNF GOUT20
XRI#21 •• CK
E'Z ISITM
XRI #05
ez ISITU

•• FROM READ BUFFER->RF.1
•• READ ERROR RESTART

FOR !

•• CHECK FOR $

114 _________________ Operator Manual for the RCA CDS II CDP18S005

0076
0077

XRI #37 •• CHECK FOR EOF(DC3)
8NZ READX

846F FB37;
8471 3A61;
8473 D483FOOO; 0078 DONE: SEP R4 ,A(OSTRNG) ,#00 •• TYPE NULL MESSAGE
• RESET DELAY PTR
8477 C083F9; 0079 LBR GOUT20 •• TRANSFER CONTROL TO UT2
.0

0080 ISITM: SEP R4; ,A(READ)
0081 L~NF GOUT20 •• READ ERROR RESTART
0082 XRI#4D •• CK FOR M
0083 eNZ ERRORX •• IF NOT M->ERROR

847A D48573;
847D CB83F9;
8480 FB4D;
848e '3AE1;
8484 D484F6; 0084 READX1 :SEP R4; ,A(READHX) •• READ 1 ASCII DIGIT
8487
8487
~489
$,48B
84.8 D
8490
8493
8495
8497
8499

, 0085 •• AND CK IF HEX
0086 8DF READX2 •• BR IF HEX
0087 XRI#2E •• CK IF "."
0088 BNZ READX1
0089 READXA:SEP R4; ,A(READ)
0090 LBNF GOUT20 •• READ ERROR RESTART
0091 XRI#OD
0092 BNZ READXA
0093 ~R READX1

3399;
FB2 E;
3A84 ;
D48573;
CB83F9;
FBOD;
3A8 D;
3084;
D484F6; 0094 READX2:SEP R4; ,A(READHX) •• READ 2ND ASCII DIGIT

849 C ;
849C 3399;
849E FB20;
84AO 3AE1;
84A2 8DA8;
84A4 9DB8;
84A6 D484F6;
84A9
84A9
B4AB
· I
84AE
84AE
8480

,
3BBC;
D484F6;

,
3EE1;
8 D58;

8482 ,
8482 E8F3;
8484 3289;
8486 D48779;
8489 18;
84EA 30A6;
84EC FBOD;
848E 3261;
84 CO FB36;
84C2 ;
· ,

0095
0096
0097
0098
0099
0100
0101
0102
0103
0104

0105
0106
0107

0108
0109
0110
0111
0112
0113
0114
0115
0116
0117

84C2
84C4
84C6
84C9
84CC
84CE
84DO
84D3
84D5
84D7
84 D9

328D; 0118

• LF
84DF
84EO
84E1

30A6; 0119
D48573; 0120
C883F9; 0121
FE55; 0122
3AE1; 0123
D484F6; 0124
33DO; 0125
8DAO; 0126
9DBO; 0127
D483FOODOAOO; 0128

EO; 0129
DO; 0130
D483FOODOA464F;0131

84E8 524D4154204552;0131
84EF 524F5200; 0131

•• AND CK IF HEX
eDF READX2 •. BR IF HEX
XRI#20 •• CK IF SPACE
BNZ ERRORX •• BR IF NOT SPACE
GLO ASL ;PLO R8 •• ADDRESS->R8
GHI ASL ;PHI R8

-READX3 :SEP R4; ,A (READHX)

ENF READX4 •• 8R
READXE:SEP R4; ,A(READHX)

•• READ AN ASCII
•• A~ID CK FOR

IF NOT HEX
•• READ THE n'D

DIG IT
HEX

ASCII D

•. AND CK IF HEX
ENF ERRORX •• BR IF NOT HEX->ERROR
GLO ASL ;STR R8 •• STORE AT THE SPECIFIED

•. ADDRESS
SEX R8; XOR •• DID IT ~RITE CORRECTLY?
8Z WRTOK •• YES
SEP R4,A(NOTRAM) •• NO

WRTOK: H'C R8
ER READX3

READX4:XRI#OD •. CK IF CR
EZ READX •• IF CR->DONE
XRI#36 •• CK FOR SEMICOLON

•• TEST WITH(CR.XOR.,.XOR.

ez READXA •. ER IFSEMICOLON
ER READX3

ISITU: SEP R4 ,A(READ)
LENF GOUT20 •• READ ERROR RESTART
X R IT' uo,
e~'z ERRORX

ADLP: SEP R4 ,A(READHX)
EDF ADLP
GLO ASL ;PLO RO
GHI ASL ;PHI RO
SEP R4; ,A(OSTRNG),#ODOA,#OO •• OUTPUT A

SEX RO
SEP RO

ERRORX: SEP R4; ,A(OSTRNG),#ODOA,T'FORMAT ERROR',#OO

•

•

•

Appendix G . UT20 Listing 115

• 84 F3 C083F9; 0132 LElR GOUT20
84F6 0133 •• SUBROUTH'ES
84 F6 ; 0134 •• T HIS ROUT! NE READS 1 ASCII DIGIT FROM DISK

84 F6 048573; 0135 READHX: SEP R4 ; "A (RE AD) •• READ 1 AS C II DIGIT
84 F9 CB83F9; 0136 LBNF GOUT20 •• READ ERROR RESTART
84 FC D483FC; 0137 SEP R4; ,A (CKHEX) •• C K IF HEX
84FF 05; 0138 EXIT: SEP R5
8500 ; 0139 ORG #8500
8500 ; 0140
'8500 ; 0141 •••••••••••• BRANCH POINTS
8500 ; 0142
8500 30C6 ; 0143 EWRITE: BR WRITE •• ENTRY TO DISK WRITE ROUTINE .. .

"

~ 8502 3073; 0144 EREAD: BR READ •• ENTRY TO DISK READ ROUT! NE
~. 8504 3017; 0145 ETRNFR: ER TRNFR1

8506 3011; 0146 EWA IT: BR WAIT1 •• ENTRY TO SIt'lPLE WAIT ROUTI NE
8508 C08629; 0147 DER: LBR DERROR
850E C0860E; 0148 EWAITD: LBR WAIT
850E C087AO; 0149 LH'EPR: L8R PRNTRF • • LI N E PRINTER UTILITY
8511 0150
8511 ; 0151 •••••••••••• SU8ROUTINE WAIT1
8511 ; 0152
8511 E2; 0153 lolA IT1 : SEX R2
8512 6 E; 0154 INP 6 •• G ET DISK STATUS
8513 F6 ; 0155 SHR •• BUSY=>DF
8514 3311 ; 0156 8DF WAIT1
8516 05 ; 0157 SEP R5 •• RETURN
8517 ; 0158 -8517 0159 •••• • ••••••• SUBROUTINE TRNFR1 • 8517 ; 0160
8517 F810AF; 0161 TRNFR1 : LDI #10; PLO RF •• 16 ERRORS ALLOWED
851A 4C52; 0162 LOA PTER; STR R2 • • GET TRK #,STORE ON
.STACK
851C ; 0163 •• POINT TO UNIT-SECT #
851C 6422; 0164 OUT 4 . , DEC R2 ..OUTPUT THE TRACK #
851E E36511E2; 0165 SEX R3 ; OUT 5 ,#11; SEX R2 •• LOAD TRK #
8522 4 C5 2; 0166 LOA PTER; STR RLI • • G ET UNIT-SECT #,STO
.RE ON STACI<'
8524 ; 0167 •• POINT TO eYTE COUNT
8524 6422; 0168 OUT 4; DEC R2 • .OUTPUT Uf','IT-SECT #
8526 E36521; 0169 SEX R3;OUT 5 ,# 21 •• LOAD UNIT-SECT #
8529 C4C4C4C4; 0170 NOP; NOP; NOP; NOP • .WAIT 48US FOR DISK
8520 6509; 0171 OUT 5 ,#09 •• SEEK TRACK
852F D4860E; 0172 SEP R4,A(WAIT) • • WAIT TO SEEK
8532 9FFE; 0173 GHI RF;SHL •• ERROR FLAG=>DF
8534 336 E; 0174 ElDF TRNEXT •• DRIVE FAIL ERROR, RETURN
8536 6EFA08; 0175 INP 6; ANI #08 •• CHECK FOR CRC ERROR
8539 3241; 0176 BZ RDWTCK •• NO CRC ERROR
853B 9FF940BF; 0177 GHI RF;ORI #40;PHI RF •• SET SEEK ERROR FLAG

853 F 306E; 0178 BR TRKNG •• PRINT SEEK ERROR
8541 E3650B; 0179 RDWTCK: SEX R3; OUT 5 ~# oe •• CLEAR ERROR FLAGS
8544 9 F; 0180 GHI RF • • C K READ/Io.'RIH FLAG
8545 F6 ; 0181 SHR •• FLAG ItJTO OF
8546 334 C; 0182 ED F WRTCK • • B R IF ~RITE
8548 6503; 0183 OUT 5 ,# 03 •• READ
854A 3054; 0184 BR STATUS •• WA IT FOR READ
854C 6505; 0185 ltJRTCK: OUT 5, #05 • .WRIT E
854E D4860E; 0186 SEP R4,A (WAIT) • • lolA IT TO DO THE WRIT

• • E
8551 E36507; 0187 SEX R<: • OUT 5 ,# 07 ..READ CRC -,
8554 D4860E; 0188 STATUS: SEP R4,A (WAIT) • • lolA IT FO R COMMAND TO EXECUTE

8557 6 E; 0189 INP 6
8558 FA08; 0190 ANI #08 •• BIT3=1=>CRC ERROR

116 _________ ___ ____ Operator Manual for the RCA CDS II CDP18S005

855A 326E;
855C 2F;

855D
855E
8560
8563
.G

8 F;
3A41;
D48629;
9FFA01 F920BFi

8 5 6 9 ' 3'06 E i
,856P D48629;
856E 9FFBFFFEi
.G=,>DF
85,:72 D5;
8 ~'7 3 ;
85'73 ;
8573
8573
8574
8577
8578

,
EC;
F800BF;
FO;
3ABO;

857A F800BFi
857D F88073;
• EX T SECTOR
8580 ;
8580 FOFC0173;
.T TRK #
8584 FA1 F;
8586 FD1 A;
8588 3395;
858A 1 C;
858B FOFACOFC0173;
.0 1, POINT TRK #
8591 FOFC015C;
8595 FO;
8596 FD4C;
8598 33A1;
859A 1 C1 C;
859C E36500;
859F 306£!;
85A1 E2;

0191
0192

0193
0194
0195
0196

BZ TR~IEXT

DEC RF
•• NO CRC ERROR RETURN
•• DEC THE ALLOWED ERROR COUNT

GLO RF •• A~Y MORE ALLOWED?
ENZ RDWTCK •• BR IF YES
SEP R4,A(DERROR)
GHI RF;ANI #01;ORI #20;PHI RF •• SET CRC FLA

0197 ER TRNEXT •• RETURN
0198 TRKNG: SEP R4,A(DERROR) •• PRINT ERROR
0199 TRNEXT: GHI RF;XRI #FF;SHL •• SET/RESET ERROR FLA

0200
0201
0202
0203
0204
0205
0206
0207

SEP R5 •• RETUR~I

•••••••••••• SU8ROUTI~E READ

READ: SEX PTER
LDI #OO;PHI RF •• SET READ MODE
LDX •• GET 8YTE COUNT
BNZ SHFTBR •• BUFFER NOT EMPTY, SHIFT BUFFER

0208 REREAD: LDI #OO;PHI RF •• SET READ MODE
0209 LD! #80; STXD •• INITIALIZE 8YTE COUNT FOR N

0210
0211

0212
0213
0214
0215
0216

0217
0218
0219
0220
0221
0222
0223
0224
0225

CNTOK:

•• POINT AT UNIT-SECT #
LDX; ADI #01; STXD •• INeR SECTOR #, POINT A

ANI #1F •• MASK OUT UNITS BITS
SDI #1A •• SECTOR > 26 ?
PDF CNTOK •• NO, CHECK TRACK #
INC PTER •• POINT AT UNIT SECT #
LDX; ANI #CO; ADI #01; STXD •• RESET SE(T # T

LDX;
LDX

ADI #01; STR PTER •• INCR TRK #
•• GET TRK #

SDI #4C
PD F TRKOK

•• TRK # > 76 ?
•• TRACK IN RANGE, OK

INC PTER;
SEX R3;OUT 5,#00

8R TRKNG

INC PTER •• POINT BYTE COUNT
•• SET UP TO READ STATUS
•• PRINT TRACK RANGE ERROR

TRKOK: SEX R2
SEP R4,A(TRNFR1) •• READ A SECTOR 85A2 D48517;

.FROM DISK TO
85A5 3BBC;
85A7 H;

BUFFER
0226 BNF RDXIT

SEX PTER
•• ERROR NOT CRC

85A8 9FFA203A7A;
.ECTOR ON CRC ERR
85AD F840;
85AF C8;
85BO F841;
85B2 52;
8583 E2;
E5E4 6522;
85E!6 6E;
8587 AF;
8588 OCFF015C;

85EC 9FFBFFFE;
.G=>DF
85CO 8F;
85C1 CF;
B5C2 F813;
85C4 BF;
85C5 D5;
85C6 ;

0227
0228

0229
0230
0231
0232
0233
0234
0235
0236
0237

0238

0239
0240
0241
0242
0243
0244

SHFTBR:

RDXIT:

EHI RF;ANI #20;BNZ REREAD •• READ NEXT S

LDI #40
LSKP

•• EXAMINE READ 8UFFER

LDI #41
STR R2
SEX R2

•• SHIFT READ BUFFER

OUT 5; DEC R2
INP 6 •• READ A BYTE
PLO RF •• SAVE IT
LDN PTER; SMI #01; STR PTER •• DEC BYTE COUNT

GHI RF;XRI #FF;SHL •• SET/RESET ERROR FLA

GLO RF
LSDF
LDI #13
PHI RF
SEP R5

•• GET READ BYTE
•• IF NO ERROR RETURN CHARACTER
•• IF ERROR RETURN DC3

•• RETURN •

•

•

Appendix G - UT20 Listing ________________________ 117

85 C6 ;
85C6 ,
85C6 9F52;
85C8 6422;
85CA F8011?F;
85CD E36531;
85DO EC;
85D1 FOFC01;
85D4 5C;
85D5,Ff80;
85D7 CB8609;
85DA F8016F;
85DD. F80073;
85 E'O ;
8S}0 FOFC0173;
.TR~II
85E4 FA1F;
85E6 FD1A;
85E8 33F5;
85EA 1C;
85EB FOFACOFC0173;
• 1, POINT TRK II

85F1 FOFC01;
85F4 5C;
85 F5 FO;
85F6 FD4C;
85F8 33FE;
85FA 1C1C;

85 FC
85FE
85FF
.K

306E' ;
E2;
D48517;

8602 EC;
e603 9FFA20CA85DA;
.WRITE N~XT SECTOR
8609 9FFBFFFE;
.G=>DF
860D D5;
860E ;
860 E ;
860E ;
860E
860E
860F
8610
8612
8614
8615
8617
8619

,
E2;
6 E;
FA20;
3A19;
6 E;
FA40;
3A 1 F;
F800AF;

861C D48629;

861F 6E;
8620 FA08;
8622 3A28;
8624 6EF6;
8626 330E;
8628 D5;
8629 ;
8629 ;
8629 ;
8629 E2;
862A 9C738C73;

0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259

0260
0261
0262
0263
0264

0265
0266
0267
0268
0269
0270

•••••••••••• SUBROUTI~E WRITE

~RITE: GHI RF; STR R2 •• SAVE DATA BYTE TO STACK
OUT 4; DEC R2 •• OUTPUT TH~ DATA
LDI 1I01;PHI RF ' •• SET WRITE MODE
SEX R3; OUT 5 ,1131 • • LOAD WRITE BUFFER
SEX PTER •• POINT TO BYTE COUNT
LDX; ADI 1101 •• I~C THE EYTE COUNT
STR PTER
~~I #80 •• BYTE COUNT< 128 ?
LBNF EXWT •• 8R IF YES

REWRIT: LDI 1I01;PHI RF •• SET WRITE MODE
LDI #OO;STXD •• ZERO THE BYTE COU~T

•• POINT AT THE SECII
LDX; ADI 1101; STXD •• INC SECII AND POINT

ANI #1F
SDI #1A
ED F WTCNT
INC PTER
LDX; ANI

•• MASK OUT UNIT NUMBER
•• SECTOR > 26 ?
•• NO, CHECK TRK #
•• POINT AT UNIT/SECII

#CO; ADI #01; STXD • • RESET SECT

LDX; ADI 1101 •• INC THE TRACK#
STR PTER

WTCNT: LDX •• GET THE TRK #
SDI 114C •• TRK /I > 76 ?
E'DF TRKOK1 •• TRACK IN RANGE, OK

TO

INC PTER;INC PTER •• POI~T TO EYTE COUNT

0271 BR TRKNG •• PRINT TRACK RANGE ERROR
0272 TRKOK1: SEX R2
0273 SEP R4,A(TRNFR1) •• WRITE EUFFER TO DIS

0274
0275

SEX PTER
GHI RF;ANI #20;LBNZ REWRIT •• CRC ERROR

0276 EXWT: GHI RF;XRI IIFF;SHL •• SET/RESET ~RROR FLA

0277
0278
0279
0280
0281
0282
0283
0284
OU5
0286
0287
0288
0289

0290

0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301

SEP R5 •• RETURN

•••••••••••• SUEROUTINE WAIT

IIIAIT: SEX R2
6 •• GET STATUS HIP

ANI
ENZ
INP
ANI
ENZ

#20 •• DRIVE FAIL?
FAILUR •• DRIV~ FAILED, PRINT ERROR
6 •• GET STIITUS
1140 •• DRIVE ACTIVE?
NCFAIL •• YES, NO FAILURE

FAILUR: LDI IIOO;PLO RF •• CL~AR TRY COUNT, DRIV~ FAIL

SEP R4,A(DERROR) •• PRINT DRIVE FAILURE

NOFAIL: INP 6 •• GET STATUS
ANI 1108 •• CRC ERROR?
ENZ RETWAT •• IF ERROR RETURN
INP 6;SHR •• CHECK IF OPERATION DONE
EDF WAIT •• NOT DONE

RETWAT: SEP R5 •• RETURN

• •••••••••• SUBROUTINE DISK ERROR

DERROR: SEX R2
GHI RC;STXD;GLO RC;STXD •• SAVE DCB POINTERS

118 _________ ________ Operator Manual for the RCA CDS II CDP18S005

862E 9 F738 F73;
.R COUNT
8632 9A738A73;
8636 2C;
8637 OCFA7FAA;
.N RA.O

0302

0303
0304
0305

8638 2C; 0306
863C OCBA; 0307
863E 9F73; 0308
8640 FA40; 0309
8642 325C; 0310
8644 D483FOODOA5452;0311

.,,: 0

¥ 8648
.,' 8652

41434820534545;0311
4E204552524F52;0311
00; 0311
306E; 0312

'8659
865A
865C
865F
8661
8668
866F
8674
8676
8679
867E
8682
8689
86BA
868E
8690
8693
8695
.0

6EFA20; 0313 ERR10:
3276; 0314
D483FOODOA4452;0315
49564520464149;0315
4C55524500; 0315
308E; 0316
6EFA08; 0317 ERR20:
3290; 0318
D483FOODOA4352;0319
43204552524F52;0319
00; 0319 _
8AF980AA; 0320
30BE; 0321
6EFA4o; 0322 ERR30:
3AAF; 0323
D483FooDOA4452;0324

869C 495645204E4F54;0324
86A3 20414354495645;0324
86AA DO; 0324
86A6 60; 0325
86AC C08738; 0326
86AF D483FoODoA5452;0327
86B6 41434E203E3736;0327
868D 00; 0327
86BE 60FO; o32P:
86Co F6; 0329
86C1 33D5; 0330
86C3 D483F020445552;0331
86CA 494E4720524541;0331
86D1 4400; 0331
86D3 30E6; 0~32

86D5 D483F020445552;0333
86DC 494E4720575249;0333
86E3 544500; 0333
86E6 D483F020554E49;0334
86ED 542000; 0334
86FO 8AFA40; 0335
.IT BIT
86 F3 CE; 0336
86F4 F801; 0337
86F6 FC30; 033~
86F8 BF; 0339
86F9 D481A4; 0340
86FC D483F02C205452;0341
8703 4143482000; 0341

ERR4o:

RDII'RPT:

RDOP:

WROP:

UTSPT:

GHI RF;STXD GLO RF;STXD •• SAVE FLAGS AND ERRO

G~I RA;STXD;GLO RA;STXD •• SAVE RA
DEC RC •• POI~T TO UNIT-SECT#
LDN RC;ANI ~7F;PLO RA •• SAVE V~IT-SECTOR# I

DEC RC •• POI~T TO TRK#
LDN RC;PHI RA •• SAVE TRACK# IN RA.1
GHI RF;STXD •• SAVE FLAGS
ANI #40 •• CHECK FOR SEEK ERROR
8Z ERR10 •• NOT SEEK ERROR
SEP R4,A(OSTRNG),#ODoA,T'TRACK SEEK ERROR',#O

ER RDWRPT
INP 6;ANI #20 •• CHECK FOR DRIVE FAILURE
EZ ERR20 •• NOT DRIVE RFAILURE
SEP R4,A(OSTRNG),#ODOA,T'DRIVE FAILURE',#OO

8R RDWRPT
INP 6;ANI #08 •• C~ECK FOR CRC ERROR
EZ ERR30 •• NOT CRC ERROR
SEP R4,A(OSTRNG),#ODOA,T'CRC ERROR',#Oo

fLO RA;ORI #80;PLO RA •• SET CRC FLAG
ER RDWRPT
INP 6;ANI #40 •• DRIVE ACTIVE?
8NZ ERR40 •• YES
SEP R4,A(OSTRNG),#ODOA,T'DRIVE NOT ACTIVE',#O

,IRX
LER DERXT •• EXIT
SEP R4,A(OSTRNG),#ODOA,T'TRACK >76',#00

,IRX;LDX •• GET FLAGS
SHR •• WRITE FLAG=>DF
EDF WROP •• PRINT "DURING WRITE"
SEP R4,A(OSTRNG),T' DURING READ',#OO

8R UTSPT •• PRH'T "UNIT TRACK SECTOR"
SEP R4,A(OSTRNG),T' DURING WRITE',#OO

SEP R4,A(OSTRNG),T' UNIT ',#00

GLO RA;ANI #40 •• GET UNIT-SECT # AND TEST UN

LSZ •• NOT UNIT 1
LDI #01
ADI #30
P~I RF
SEP R4,A(TYPE) •• TYPE UNIT #
SEP R4,A(OSTRNG),T', TRACK ',#00

•

•

•

•

•

Appendix G - UT20 Listing --------------------____ 119

8708
870A
870D
8714
871A
871E
8721
.LAG
8726
8720
8732
8738
a.739
873D

9ABF; 034?
D4874D; 0343
D483F02C205345;0344
43544F522000; 0344
8AFA1F8F; 0345
D4874D; 0346
8AFA803232; 0347

D483F020534E49;0348
5050454400; 0348
D483FOODOAOO; 0349
60; 0350
72AA72EA; 0351

tUNT
72AF7Z; 0352

-'8.740 FA01 F980EF;
8745 72ACFOEC;
8749 E36508;
87ltC D5;
874D ;
874D
874D ,
874D 9F;
874E FAFO;
8750 F6F6F6F6;
8754 AF;
8755 9FFAOFBF;
8759 FFOA;
875E 3861;
875 D 9 FFC068F;
8761 8F;
.HEX COUNT

0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367
0368

8762 3275; 0369
8764 2F; 0370
8765 9FFC168F; 0371
8769 FAOF; 0372
8768 FFOA; 0373
876D 3861; 0374
876F 9FFC06EF; 0375
8773 3061; 0376
8775 D481AE; 0377
8778 D5; 0378
8779 , 0379
8779 8C73; 0380
8778 9C73; 0381
877D D483FOODOA5241;0382
8784 4D2041542000; 0382
878A 988F; 0383
878C D481AE; 0384
878F 88BF; 0385
8791 D481AE; 0386
8794 D483F0203FOO; 0387
879A 12; 0388
879~ 428C; 0389
879D 02AC; 0390
879F D5; 0391
87AO ; 0392
87AO ; 0393

GHI RA; PHI RF •• GET TRACK #
SEP R4,ACTYPBCD) •• TYPE TRACK #
SEP R4,ACOSTRNG),T', SECTOR ',#00

GLO RA;ANI #~F;PHI RF •• GET SECTOR #
SEP R4,ACTYP8CD) •• TYPE SECTOR #
GLO RA;ANI #80;~Z NOSKIP •• CHECK CRC F

SEP R4,ACOSTRNG),T' SKIPPED',#OO

~bSKIP: SEP R4,ACCSTRNG),#ODOAOO •• TYPE CR-LF
DERXT: ,IRX •• RECOVER REGISTERS FROM STACK

LDXA;PLO RA;LDXA;PHI RA •• GET OLD RA
LOXA;PLO RF;LDXA •• GET FLAGS AND ERROR CO

A~I #01;ORI #80;PHI RF
LOXA;PLC RC;LDX;PHI RC
SEX R3;OUT 5,#OP
SEP R5 •• RETUR~

•• SET ERROR FLAG
•• GET DCB POINTER
•• CLEAR ERROR FLAG~

•••••••••••• SU8ROUTI~E TO PRINT HEX IN RF.1 AS 8CD #

TYP8CD: GHI RF •• GET INPUT

SIXLP:

EXIT8C:

ANI #FO •• STORE AS 2 HEX DIGITS
SHR;SHR;SHR;SHR
PLC RF
GHI RF;ANI #OF;PHI RF
SMI 10 •• DECIMAL ADJUST LOW DIGIT
8NF SIXLP
GHI RF;ADI 6;PHI RF
GLO RF •• ADD 16 TO ECD ~U~8ER FOR EACH HIGH

ez EX ITBC
DEC RF

•• IF HIGH COU~T=O, EXIT

GHI RF;ADI #16;PHI RF
ANI #OF
SMI 10 •• DECIMAL ADJUST 8CD RESULT
BNF SIXLP
GHI RF;ADI 6;PHI RF
ER SIXLP •• LOOP UNTIL DONE
SEP R4,ACTYPE2)
SEP R5 •• RETURN

NOTRAM: GLO RC;STXD
GHI RCiSTXO
SEP R4,ACOSTRNG),#ODOA,T'RAM AT ',#00

GHI
SEP
GLO
SEP
SEP
INC
LDA
LON
SEP

R8iPHI RF
R4,A CTYPE2)
R8iPHI RF
R4,A CTY PE2)
R4,ACOSTRNG),T'
R2
R2;PHI RC
R2;PLO RC
R5

?',#OO

.........
•• THIS ROUTINE PRINT~ TO THE LINE PRINTER, THE CONTEN

.TS OF RF.1.
87AO ; 0394 •• IT SUPRESSES PRINTING OF LINE FEEDS, AND REPLACES C
. ARRIAGE RETURNS
87AO ; 0395 •• WITH A CR-LF PAIR.

120 _________________ Operator Manual for the RCA CDS II CDP18S005

87AG ;
.BUT IF THE
87AO ;
• WILL
87AO ;
87AO
87AO ,

EE RESET

87AO 9FFBOA;
87A3 328C;
87As 9FFE13;
8rA8 32CO;
E7AA 9FFBFFs2;
87AE 34AE;

.. 8lEO 6622;
:I 8782 9FFBOO;
. 87es 3ABC;

87E7 F80ABF;
87BA 30AA;
87BC F801 F6;
87BF 05;
87CO F6;
87C1 05;
87C2 ;
0000

0396 •• NORMALLY, THIS ROUTINE RETURNS WITH THE OFLAG SET,

0397 •• CHARACTER IN RF.1 WAS A DC3(END OF FILE), THE DFLAG

0398
0399
0400
0401
0402
0403
0404
0405
0406
0407
0408
0409
0410
0411
0412
0413
0414
0415
0416

•• ON RETURN.

PRNTRF: GHI RF;XRI
el EXITDF
GHI RF;XRI
el EXITEF

PRINT1: GHI RFiXRI
P.1 *
OUT 6; DEC
<?HI RFiXRI
BNl EXITDF
LDI flOAiPHI
ER PRINT1

EXITDF: LDI fl01iSHR
SEP Rs

EXITEF: SHR
SEP Rs
END

flOA •• IF LINE FEED, EXIT

#13 •• IF OC3, EXIT

flFFiSTR R2 •• INVERT DATA
•• WAIT UNTIL READY

R2 •• OUTPUT CHARACTER
flOD •• CARRIAGE RETURN?

•• NO, EXIT
RF •• YES, PRINT A LINE FEED

•• SET DFLAG
•• AND RETURN
•• RESET DFLAG
•• AND RETURN

•

•

___ 121

Appendix H -
System Checkout Game- DEDUCE

For checking out the CDS and to help the user
familiarize himself with its operation, a game
program is provided on Utility Program UT20. The
object of the game, called "Deduce", is to guess a
four-digit number (all digits different selected by the
CDS at random and stored in its memory. The player
should try to guess the number in a minimum number
Qftries. He is allowed fifteen tries. After each guess,

7ICDS tells how many of the four digits are correctly
,!placed and how many are in the set but incorrectly
placed.

The paper tape version provides two options.
Version A exercises the deductive skills of the player.
Version B exercises both his deductive skills and
memory by always erasing the previously printed
guess.

How to Play Deduce Waper Tape Program)

1. Enter the program from the paper tape provided
into memory as described in the first Section of this
Manual.
2. Type $Ul to start the program. CDS gives the
prompt message:

VERSION A or B = >

3. Player types either A or B (as he chooses).
4. a. If player chooses A, CDS responds by prin-
ting:

TURN XX
GUESS = >,

b. If player decides upon Version B, CDS prints:
TIME = ,

to which the player should respond with any number
between 1 and 9 (time parameter). Afterwards, game
continues as in step 4a:

TURN XX
GUESS=>

5. At this point the player types in his guess
number:

XXXX
(Numbers are assumed to be different, however, it
may be good strategy to make some, or all, equal;
player should remember his is given up to 15 trials.)

Immediately after this, CDS tells him how many
digits are correctly placed, and also how many belong
to the set but are incorrectly placed:

RP = X (right place)
WP=X (wrong place)

If his guess is entirely correct, CDS types:
WIN = > XXXX (correct answer)

If his guess has reached the last of his possible
trials, the CDS answer is:

LOSE = > XXXX (correct answer)
In both cases return is made to a new game.

6. a. If none of the above (WIN-LOSE) occurs, and
player had chosen Version A, then CDS prints:

TURN XX
GUESS=>

and game continues as in step # 5, or
b. For player using Version B, CDS waits for a

period of ~ 2X (time parameter) seconds before
overwriting the guess just entered so as to make it
unreadable.

After that it writes:

TURN XX
GUESS=>

and game continues as in step #5.

Re-start Game

A new game can be started at any time by typing in
R instead of a digit at guessing time. CDS responds
by printing:

LOSE = > XXXX correct answer)
VERSION AorB=>(newgame)

How to Play Deduce ~Magnetic Tape Program)

1. Enter the program from the magnetic tape
provided into memory as described in the first Section
of this Manual.
2. Type $Ul to start the program. CDS will prompt:
CRT?
to which the player should respond by typing
"N".
This will tell the program that a CRT is not being
used for display.
3. Next CDS will display the following self
explanatory message:

"This RCA Microprocessor is programmed to
play a number guessing game. Your objective is to
guess the four different hidden digits. The COSMAC
will tell how many digits are in the proper place, and
how many are misplaced. To play enter your guess."

TURN GUESS PROPER PLACE MISPLACED WRONG DIGITS

15 -

4. Now the player can enter his four-digit guess which

122 ________________ Operator Manual for the RCA CDS II CDP18S005

will be automatically displayed under the heading:
GUESS.
Immediately CDS will respond by filling in the values
of the columns corresponding to:

PROPER PLACE, MISPLACED, and WRONG DIGITS

If the guess is entirely correct the words YOU
WIN! are displayed. If the player has reached the
last of his 15 possible trials, the message YOU LOSE!
is displayed along with lhe correct answer .

.;1
.~ .

. '

5. If neither of the above occurs (WIN ILOSE), the
turn number is decremented by one, and the player
can enter a new guess.
6. If the player is very anxious to know the right
guess, he can Resign the game by typing R, in lieu of
any of his guess digits. Again, in addition to the
correct answer he will see the words: YOU LOSE!
7. In either case of winning or losing, a new game can
be started by hitting CR.

•

•

•

__ 123

Appendix I -
Conversion to Different Operating Voltages

The CDS as supplied is wired for lIS-volt ac
oper~tion. Other voltages including 100,220,230, or
240 volts can be accomodated by a simple one-wire

o

change on the back of the CDS. Locate the terminal
block adjacent to the power supply. Move the top
wire to one of the other tapes as required. The bottom
three wires should not be moved.

o
o 240V

o 230V

o
WIRED FOR 115-V

OPERATION AS SUPPLIED
WIRED FOR 220-'1

OPERATION

92CS-29610

Fig. /1 - Conversion for different operating voltages.

Appendix J - Connection List for Terminal Interface Cables

TELETYPE TERMINAL

P1 P2 Signal
8 6 Data from TTY (Current Source)
7 8 Data to TTY (Current Source)
3 7 Data to TTY (Current Return)
4 5 Data from TTY (Current Return)
10 15 +VDD
2 13 Paper Tape Control

EIA RS232C TERMINAL

P1 P2
1 1 Ground
2 2 Data to CDS
3 3 Data to Terminal

10 7 Signal Ground

; 6 a;d 5 ~~~ } Held high by CDS

