
Frequency Synthesis IC Handbook

Plessey Semiconductors

PLESSEY Semiconductors

FREQUENCY SYNTHESIS IC HANDBOOK

SEPTEMBER 1980

1641 Kaiser Avenue, Irvine, CA. 92714

This publication is issued to provide outline information only and (unless specifically agreed to the contrary by the Company in writing) is not to form part of any order or contract or be regarded as a representation relating to the products or services concerned. We reserve the right to alter without notice the specification, design, price or conditions of supply of any product or service.

Contents

(

1 · PRODUCT INFORMATION	9-26
2 · THE DESIGN OF PROGRAMMABLE DEVICES FOR UHF AND VHF SYNTHESISERS	27-48
3 - THE DESIGN OF UHF AND VHF PHASE LOCKED LOOPS USING FOUR MODULUS DIVIDERS	49-64
4 - PRACTICAL SOLUTIONS TO VHF SYNTHESIS	65-72
5 • CITIZEN AND AMATEUR BAND 2 CHIP SYNTHESISER	73-86
6 - CHARACTERISTICS AND INTERFACING FOR THE SP8000 SERIES	87-106
7 • TECHNICAL DATA	107-250
8 · PACKAGES	251-260
9 • PLESSEY SEMICONDUCTORS WORLD WIDE	261-268

ې. ۲

jan terretari i

а а а а а а а а а а а а а а

4

product index DEVICE TYPE

NJ8000 SERI	ES SYNTHESISER CONTROLLERS	
NJ8811 Controller for frequency synthesiser		10
NJ8812	NJ8812 Controller for frequency synthesiser	
SP4000 SERI	ES HIGH SPEED DIVIDERS	
Prescalers		
SP4531	950MHz VHF/UHF ÷ 64	117
SP4541	950MHz ÷ 256	119
SP4550	P4550 950MHz VHF/UHF ÷ 256	
NOVOL		
NON-Volatile	Logic	
MN9102	Non Volatile Quad Latch	237
MN9105	Quad Up/Down Counter	240
MN9106	Six Decade Up Counter	242
MN9107	Six Decade Up Counter	242
MN9108	Six Decade Up Counter	242
MN9210	256 Bit Earom	246

1.4

•

	S HIGH SPEED DIVIDERS	
Prescalers		
SP8600A, B	250MHz ÷ 4	123
SP8601A, B	150MHz ÷ 4	127
SP8602A, B	500MHz ÷ 2	130
SP8605B & M	1.0GHz ÷ 2	133
SP8606B & M	1.3GHz ÷ 2	133
SP8607A, B	600MHz ÷ 2	136
SP8610B & M	1.0GHz ÷ 4	138
SP8611B & M	1.5GHz ÷ 4	138
SP8617B & M	1.3GHz ÷ 4	141
SP8619B & M	1.5GHz ÷ 4	141
SP8620A, B	400MHz ÷ 5	144
SP8627	150MHz ÷ 80	146
SP8628	150MHz ÷ 100	146
SP8629	150MHz ÷ 100	146
SP8630A, B	600MHz ÷ 10	149
SP8634B	700MHz ÷ 10 (BCD O/P)	152
SP8650A, B	600MHz ÷ 16	160
SP8656	200MHz ÷ 24	165
SP8658	200MHz ÷ 20	165
SP8655A, B	200MHz ÷ 32 Low power (50mW)	163
SP8657A, B	200MHz ÷ 20 Low Power (50mW)	163
SP8659A, B	200MHz ÷ 16 Low power (50mW)	163
SP8660A, B	200MHz ÷ 10 Low power (50mW)	167
SP8665B	1GHz ÷ 10	169
SP8667B	1.2GHz ÷ 10	169
SP8670A, B	600MHz ÷ 8	171
SP8675B & M	1GHz ÷ 8	174
SP8677B & M	1.2GHz ÷ 8	174
SP8735B	600MHz ÷ 8 with binary O/Ps	194
SP8755A, B	1200MHz ÷ 64	206
SP8775B	1.2GHz ÷ 256	211

Two modulus P	rogrammable Dividers	
SP8643A, B	350MHz ÷ 10/11 (ECL O/P)	156
SP8647A, B	250MHz ÷ 10/11 (TTL O/P)	156
SP8680A, B	$600MHz \div 10/11$ (ECL TTL O/P)	176
SP8685A	$500MHz \div 10/11 (ECL)$	180
SP8690A, B	$200 \text{MHz} \div 10/11 \text{ Low power TTL O/P (70 mW)}$	182
0. 00001., 2	AC coupled I/P	
SP8691A, B	200MHz ÷ 8/9 Low power TTL O/P 70mW	185
,	AC coupled I/P	
SP8695A, B	200MHz ÷ 10/11 Low power TTL O/P (70mW)	188
	DC coupled I/P	
SP8720A, B	300MHz ÷ 3/4	191
SP8740A, B	300MHz ÷ 5/6 AC coupled I/P	197
SP8741A, B	300MHz ÷ 6/7 AC coupled I/P	200
SP8743B & M	500MHz ÷ 8/ ⁹ AC coupled I/P	203
SP8785B & M	1.0GHz ÷ 20/22	213
SP8786B & M	1.3GHz ÷ 20/22	213
SP8792	200MHz ÷ 80/81 Low power	220
SP8793	200MHz ÷ 40/41 Low power	220
Four-modulus F	Programmable Dividers	
SP8901	1GHz ÷ 512/510/480/478	225
SP8906	500MHz ÷ 256/255/240/239	227
Modulus Exten	ders	
SP8790A, B	LP ÷ 4 control for all programmable devices (40mW)	217
SP8794A, B	LP ÷ 8 control for all programmable devices (40mW)	222
SP8760B & M	General purpose synthesiser circuit	208
CB Circuits		
SP8922	40 Channel CB Synthesiser IC Set	229
SP8921	40 Channel CB Synthesiser IC Set	229
SP8923	40 Channel CB Synthesiser IC Set	229

•

7

1. Product Information.

• • •

10

•

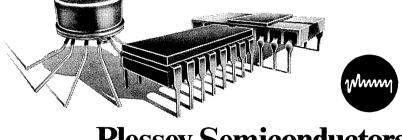
Building Block IC's

Plessey integrated circuits are on the leading edge of technology without pushing the ragged edge of capability.

We developed the first 2 GHz counter. And a family of prescalers and controllers for your TV, radio and instrumentation frequency synthesizers.

We have a monolithic 1 GHz amplifier. And a complete array of complex integrated function blocks for radar signal processing and radio communications.

We can supply data conversion devices with propagation delays of just $2\frac{1}{2}$ nanoseconds.

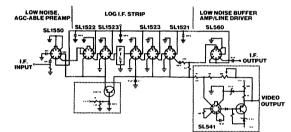

And a range of MNOS logic that stores data for a year when you remove the power, yet uses only standard supplies and is fully TTL/CMOS-compatible.

To develop this edge, we developed our own processes, both bipolar and MOS. The processes were designed for quality and repeatability, then applied to our high volume lines. Most of our IC's are available screened to MIL-STD-883B, and our quality levels exceed the most stringent military, TV and automotive requirements.

Millions of Plessey complex function building block IC's are being used in TV sets and car radios; CATV, navigation and radar systems; frequency synthesizers and telecommunications equipment.

Our global scope of operations, our high volume manufacturing facilities, our proprietary processes ensure that we will continue to deliver state-of-the-art technology and reliability in IC devices at the appropriate prices and in the required volumes. Day after day. Week after

week. Year after year.


Plessey Semiconductors

1641 Kaiser Avenue, Irvine, CA 92714. (714) 540-9979

Radar Signal Processing

Since the performance of a radar receiver is critically dependent on the performance of its I.F. strip, we offer a range of "building block" IC's that can be used in systems with different performance requirements and configurations.

The logarithmic I.F. strip shown is an example of a low cost, high performance strip fabricated with Plessey IC's. It uses only five devices and a single interstage filter to achieve a logging range of 90 dB, ± 1 dB accuracy, -90 dBm tangential sensitivity and a video rise time of

20 ns or less.

Three other Plessey IC's complete the system simply and economically. The AGCable SL1550 on the front end improves noise figure, dynamic range and sensitivity. The SL541 lets you vary video output levels, with on-chip compensation making it easy to use. And the SL560 is a "gain block" that replaces your hybrid and discrete amplifiers, usually with no external components.

Another advanced system function block is the Plessey SL531 True Log Amplifier. A 6-stage log strip requires a minimum of external components (one capacitor, one resistor per stage), yet has a band-width of 500 MHz, a dynamic range of 70 dB and has a phase shift of only $\pm 3^{\circ}$ over its entire range. As with most of our other devices, it operates over the full MIL-temp range and is available screened to MIL-STD-883.

The chart summarizes our Radar Signal Processing IC's. Whether you're working with radar and ECM, weapons control or navigation and guidance systems, our IC's are a simpler, less expensive, more flex-

> ible alternative to whatever you're using now for any I.F. strip up to 160 MHz.

For more details, please use the postage-paid reply card at the back of this book to order our RADAR AND RADIO COMMUNICA-TIONS IC HANDBOOK, or contact your nearest Plessey Semiconductors representative.

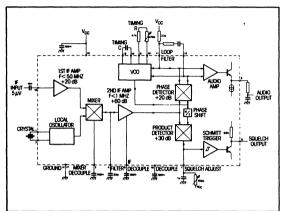
PLESSEY IC'S FOR RADAR I.F.'S

Wideband Amplifiers for Successive Detection Log Strips

- SL521 30 to 60 MHz center frequency, 12 dB gain.
- SL523 Dual SL521 (series).
- SL1521 60 to 120 MHz center frequency, 12 dB gain.
- SL1522 Dual SL1521 (parallel).
- SL1523 Dual SL1521 (series).
- Low Phase Shift Amplifiers
- SL531 True log I.F. amplifier, 10-200 MHz, $\pm 0.5^{\circ}/10 \text{ dB}$ max phase shift.
- SL532 400 MHz bandwidth limiting amplifier, 1° phase shift max. when overdriven 12 dB.

Linear Amplifiers

- SL550 125 MHz bandwidth, 40 dB gain, 25 dB swept gain control range, 1.8 dB noise figure, interfaces to microwave mixers.
- SL1550 320 MHz bandwidth version of SL550.
- SL560 300 MHz bandwidth, 10 to 40 dB gain, 1.8 dB noise figure drives 50 ohm loads, low power consumption.


Video Amplifiers and Detectors

- SL510 Detector (DC to 100 MHz) and video amplifier (DC to 24 MHz) may be used separately, 11 dB incremental gain 28 dB dynamic range.
- SL511 Similar to SL510 with DC to 14 MHz video amplifier, 16 dB incremental gain.
- SL541 High speed op amp configuration, 175 V/µs slew rate 50 ns settling time, stable 70 dB gain, 50 ns recovery from overload.

~

Radio Communications

Our comprehensive line of radio system function blocks is cutting costs, increasing reliability and reducing the size of systems

peak deviation. The SL6600 can be used at I.F. frequencies up to 50 MHz, with deviations up to 10 kHz.

> If any of the Plessey devices appear interesting, use the postagepaid reply card at the back of this book to order our RADAR AND RADIO COMMUNICATIONS IC HANDBOOK. The Handbook includes full details on our integrated circuits, along with a number of applications circuits and design tips that will help you get the maximum system benefits from Plessey products.

> Or if your need is more urgent, contact your nearest Plessey Semiconductors representative.

in applications that range from commercial communications to military manpack radios.

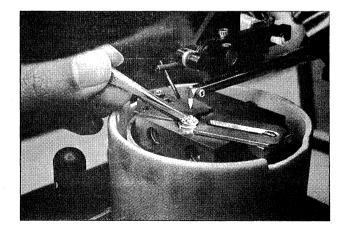
Using our bipolar Process I, the Plessey SL600 Series (hermetic) and SL1600 Series (plastic DIP) feature a high degree of integration, low power consumption and exceptional system design flexibility for I.F.'s up to 10.7 MHz.

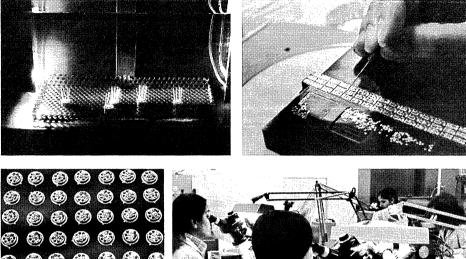
Our SL6000 Series uses our bipolar Process III to extend our building block concept even further. Devices all feature advanced circuit design techniques that permit higher levels of integration, lower power consumption and exceptional performance.

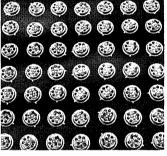
Typical is our SL6600, a monolithic IC that contains a complete IF amplifier, detector, phase locked loop and squelch control. Power consumption is a meager 1.5 mA at 6 V, S/N ratio is 50 dB, dynamic range is 120 dB and THD is just 1.3% for 5 kHz

		PLESSEY RADIO IC'S
Amplifie	ers	
SL610	SL1610	140 MHz bandwidth, 20 dB gain, 50 dB AGC range, low 4 dB N.F., low distortion.
SL611	SL1611	100 MHz bandwidth, 26 dB gain, sim. to SL610.
SL612	SL1612	15 MHz bandwidth, 34 dB gain, 70 dB AGC range, 20 mW power consumption.
SL613		145 MHz bandwidth, 12 dB gain, limiting amp/detector.
Mixers		
SL640	SL1640	Double balanced modulator eliminates diode rings up to 75 MHz, standby power 75 mW typica
Detecto	rs and A	GC Generators
SL620	SL1620	AGC with VOGAD (Voice Operated Gain Adjusting Device).
SL621	SL1621	AGC from detected audio.
SL623		AM SSB detector and AGC from carrier.
	SL1625	AM detector and AGC from carrier.
SL624		AM/FM/SSB/CW detector with audio amplifier.
Audio A	mplifiers	
SL622		Microphone amp. with VOGAD and sidetone amp
SL630	SL1630	250 mW microphone/headphone amplifier.
I.F. Amp	lifiers/D	etectors
SL6600		FM double conversions with PLL detector.
SL6640		FM single conversion, audio stage (10.7 MHz).
SL6650		FM single conversion (10.7 MHz).
SL6690		FM single conversion, low power for pagers
		(455 kHz).
SL6700		AM double conversion.
Audio A	mplifiers	i
SL6270		Microphone amplifier with AGC.
	SL6270	with speech clipper, buffer and relay driver.
SL6310		Switchable audio amplifier (400 mW/9V/8 ohms)
SL6440		High-level mixer.

R.F.Hybrids

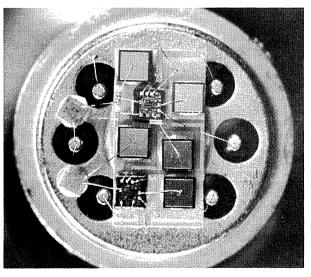

To enhance your systems even further, we have established an R.F. hybrid manufacturing facility in our Irvine, California, U.S.A. headquarters.


For small production quantities or extremely complex functions, our hybrid capabilities can save you time and money while improving your system performance, reducing system size and increasing system reliability. We can help with your I.F. strips, instrumentation front ends, synthesizer subsystems, high speed A-to-D and D-to-A converters and other complex high-frequency functions.


They can be fabricated to MIL-STD-883 using thick and thin film techniques, using our own integrated circuits in combination with discrete transistors, diodes and other components.

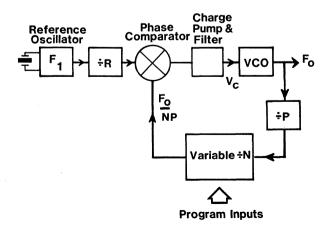
Our IC functions represent the state-of-the-art in high frequency integration, with f_t 's as high as 5 GHz. The chips are backed by an in-depth in-house systems knowledge that encompasses radar, radio communications, tele-communications analog and digital conversion, frequency synthesis and a broad range of applications experience.

We can work to your prints, or we can design a full system based on your "black box" specifications. For more information, please contact: Plessey Semiconductors, 1641 Kaiser Avenue, Irvine CA 92714, (714) 540-9979.

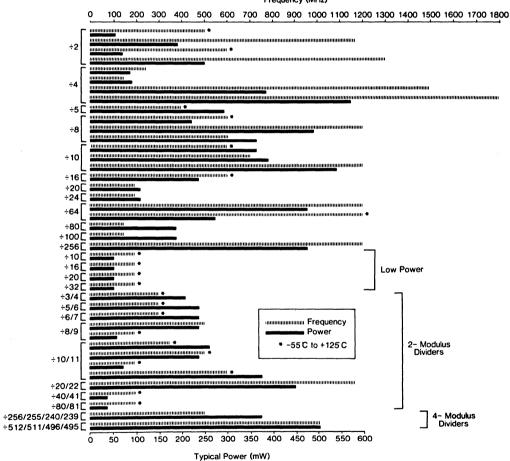


Frequency Synthesis

Plessey's IC's offer a quick and easy way to lower synthesizer costs while increasing loop response and channel spacing all the way from dc through the HF, VHF, UHF, TACAN and satellite communications bands.


Our single-modulus prescalers operate at frequencies all the way up to 1.8 GHz. They feature self-biasing clock inputs, TTL/CMOS-compatibility and all guaranteed to operate to at least the frequencies shown, most of them over the temperature range from -55° C to $+125^{\circ}$ C.

Our 2-modulus and 4-modulus dividers expand your system flexibility and allow even tighter channel spacing. All of them provide low power consumption, low propagation delay and ECL-compatibility.


To simplify your systems even further, we also offer highly integrated control chips. Our NJ8811, for example, includes a crystal oscillator maintaining circuit, a programmable reference divider, a programmable divider to control the four-modulus prescaler and a high performance phase/frequency comparator so that you can phase lock your synthesizer to a crystal with none of the usual headaches and hassles.

We've put together a FREQUENCY SYNTHESIZER IC HANDBOOK that details all of the Plessey IC's and includes a number of applications circuits, practical examples of how Plessey integrated circuits can simplify your designs and improve system performance.

For your copy of the Handbook, please use the postagepaid reply card at the back of this book, or contact your nearest Plessey Semiconductors representative.

16

Frequency (MHz)

Telecommunications

Plessey functional building block IC's are exceptionally versatile. Designed from a systems standpoint, they reduce complexity and lower costs while increasing the performance of telecommunications systems.

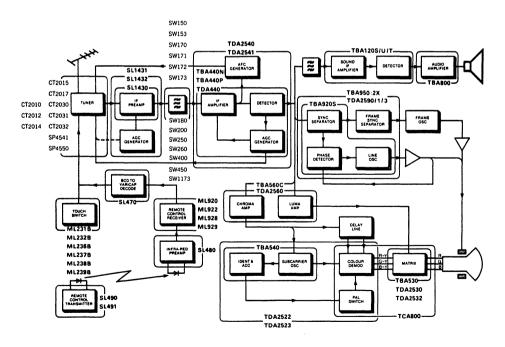
Our SL600 Modulator/Phase Locked Loops are used in waveform generators and in AM, PAM, FM, FSK, PSK, PWM, tone burst and Delta modulators.

Our SL1000 Series amplifiers meet the most stringent demands of telephone transmission equipment.

Our transistor arrays with up to five electrically and thermally matched transistors on a chip are ideal for discrete and hybrid amplifiers and mixers. In addition to standard second-source devices that plug directly into your designs, we have a number of devices designed for your low noise and ultrahigh frequency applications.

The Plessey TELECOMMUNICA-TIONS IC HANDBOOK contains complete information on all of these devices, as well as application notes, to help you get the most out of them. To get your copy, please use the postage-paid reply card at the back of this book or call your nearest Plessey Semiconductors representative.

Telecommunications Devices				
MJ1440 MJ1444 MJ1445 MJ1471 Data Com				
MP3812		it FIFO memory, si z data rates, easil		l, up to
MJ2841		it FIFO memory, 5		e.
Modulato		ocked Loops		
SL650	PSK, ton	or/PLL for AM, PA e-burst and Delta able 100:1.		FSK,
SL651		o SL650 without a	uxiliary amplif	ier.
SL652		o SL650, low cost		
Telephon	e Circuits			
SL1001		or/demodulator, 5		nd signal
SL 1021		sion, —112 dBm n hannel amplifier, s		
JLIUZI	gain con		lable remote	
SL1025		anced modulator,	50 dB carrier	and signal
SL 1030	suppress 200 MH: low nois	suppression, 5 dB conversion gain. 200 MHz wideband amplifier, programmable gain,		
Transisto		с.		
	ESSEY	2ND-SOURCE PART NO.	PLESSEY PART NO.	2ND-SOURCE PART NO.
SL	.3081	CA3081	SL3051	CA3951
	.3082	CA3082	SL355	NONE
	.3083	CA3083	TBA673	TBA673
	.3183	CA3183	SL1495	CA1495L
	.3146	CA3146 CA3093	SL1496 SL1496	MC1496G MC1496L
SL3093 SL3018		CA3018	SL1496 SL1595	MC1496L MC1595L
SL3018 SL3018A		CA3018A	SL1595	MC1596G
	.3118A	CA3118A	SL1596	MC1596L
	.3118	CA3118	SL3054	CA3054
SL3050		CA3050	SL3086	CA3086
SL360	High f	requency matched	l pair, ft=2.5 G	Hz.
SL363				
	L2363/4 5GHz dual long-tailed pair.			
SL 3145	SL3145 Five transistor array, ft=2.5 GHz.			


Television IC's

Plessey integrated circuits are in millions of homes, in television sets around the world.

Economical and reliable, our devices cover the range from remote controls to touch tuners to frequency synthesizers, as well as a range of second-source devices for the IF color processing and line oscillators.

For the 1980's, we have introduced the Plessey KEY System, designed for maximum flexibility, simplicity and ease of manufacture. The KEY System frequency synthesizer offers accurate, high stability frequency selection, channel and program identification, and the very finest digital fine tuning. It can be configured to receive up to four completely different standards (PAL, SECAM, SECAMF, and NTSC) in a single TV set. It has 100 channel capability per standard, and includes a 32-program non-volatile memory that contains channel, fine tuning and standards information. And it can be interfaced to a Plessey or other microprocessor for games, Teletext or similar applications.

Complete data on all our television devices has been assembled in our TELE-VISION IC HANDBOOK, along with application notes to make them even easier to use. Please use the postage-paid reply card at the back of this book to order your copy, or simply contact your nearest Plessey Semiconductors representative.

ALL TBA, TCA, TDA DEVICES ARE SECOND-SOURCED.

ECL III Logic and Data Conversion

As radar and communications systems become faster and more complex, the need arises for digital processing. We have developed a family of functions with speeds unequalled anywhere.

Part of our family is a range of ECL III logic that is a direct plug-in replacement for MECL logic, including low impedance as well as high impedance devices. We extended the range by adding functions with lower delays and much higher operating speeds. Our SP16F60, for example, is the world's fastest dual 4-input OR/NOR gate, with a switching speed of just 500 picoseconds. Devices can also be selected for certain specifications (such as threshold voltage or slew rate on

our SP1650/1, toggle rates or delays on our SP1670) to handle your most demanding applications. We've also developed a family of high speed comparators and circuits for ultra-high speed A-to-D converters. Our latching SP9750 high speed comparator features a maximum settling time of 2 ns, a propagation delay of 3.5 ns and is capable of operating at rates up to 100 million samples per second.

Currently, our devices are being used in radar and video processing, nucleonics systems, transient recorders and secure speech transmission systems. We have compiled a number of application notes and details on the devices in our ECL III L'OGIC AND DATA CONVERSION IC HANDBOOK. To get your copy, please use the postage-paid reply card at the back of this book, or contact your nearest Plessey Semiconductors representative.

HIGH SPEED ECL III LOGIC

SP1648	Voltage controlled oscillator
SP1650	Dual A/D comparator, Hi-Z
SP1651	Dual A/D comparator, Lo-Z
SP1658	Voltage controlled multivibrator
SP1660	Dual 4-I/P OR/NOR gate, Hi-Z
SP1661	Dual 4-I/P OR/NOR gate, Lo-Z
SP1662	Quad 2-I/P NOR gate, Hi-Z
SP1663	Quad 2-I/P NOR gate, Lo-Z
SP1664	Quad 2-I/P OR gate, Hi-Z
SP1665	Quad 2-I/P OR gate, Lo-Z
SP1666	Dual clocked R-S Flip-Flop, Hi-Z
SP1667	Dual clocked R-S Flip-Flop, Lo-Z
SP1668	Dual clock latch, Hi-Z
SP1669	Dual clock latch, Lo-Z
SP1670	Master-slave D Flip-Flop, Hi-Z
SP1671	Master-slave D Flip-Flop, Hi-Z
SP1672	Triple 2-I/P exclusive-OR gate, Hi-Z
SP1673	Triple 2-I/P exclusive-OR gate, Lo-Z
SP1674	Triple 2-1/P exclusive-NOR gate, Hi-Z
SP1675	Triple 2-I/P exclusive-NOR gate, Lo-Z
SP1692	Quad line receiver
SP16F60	Dual 4-I/P OR/NOR gate

HIGH SPEED DATA CONVERSION PRODUCTS

SP9680	High speed latched comparator.
SP9685 1	Ultra-fast comparator; 0.5 ns typical set-up time; typical
2	2.2 ns propagation delay; excellent CMR.
SP9687	Dual SP 9685.
SP9750 H	High speed latched comparator with precision current
	source, wired-OR decoding; 2 ns min. set-up time; 2.5 ns propagation delay.
SP9752	2-bit ADC expandable to 6-bit ADC; very fast 125 MHz clock.
SP9754 4	4-bit ADC expandable to 8-bit ADC; very fast 100 MHz clock.
SP9768 8	8-bit DAC; extremely fast; available 3rd quarter 1980.
SP9778 8	8-bit SAR; works with SP9768 to make a two-chip succes- sive approximation ADC (20 MHz clock); available 4th
9	

MNOS Non-Volatile Logic

As semiconductors become more pervasive in military and commercial applications, the need for non-volatile data retention becomes more and more critical.

ź

Plessey NOVOL MNOS devices answer that need, and will retain their data for at least a year $(-40^{\circ}C \text{ to } +70^{\circ}C)$ in the event of "power down" or a system crash.

Our devices all operate from standard MOS supplies and are fully compatible with your TTL/CMOS designs. The high voltages normally associated with electricallyalterable memories are generated on-chip to make system interface simpler and less expensive.

Plessey NOVOL devices provide a reliable, sensible alternative to CMOS with battery back-up or mechanical, electro-mechanical and magnetic devices. Applications include metering, security code storage, microprocessor back-up, elapsed time indicators, counters, latching relays and a variety of commercial, industrial and military systems.

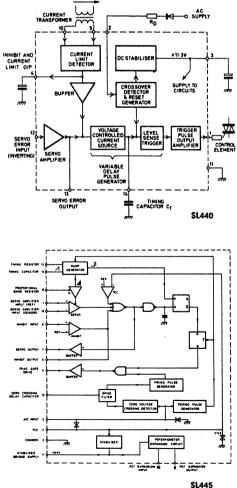
For more information, contact your nearest Plessey Semiconductors representative, or use the postage-paid reply card at the back of this brochure to order your copy of the Plessey NOVOL literature package.

PLESSEY NOVOL MNOS			
MN9102	4-bit Data Latch (+5V, -12V)		
MN9105	4-Decade Up/Down Counter (+5V, -12V)		
MN9106	6-Decade Up Counter (12V only)		
MN9107	100-Hour Timer (12V only)		
MN9108	10,000-Hour Timer (12V only)		
MN9110	6-Decade Up Counter with Carry (12V only)		
MN9210	64 x 4-Bit Memory		
*	8 x 4-Bit Memory		
*	6-Decade Up/Down Counter, BCD Output		
*	6-Decade Up/Down Counter with Preset BCD Output		

COMING SOON

Power Control

Plessey power control devices are highly integrated not just to solve the problems, but to solve them at a lower cost than any other available method.

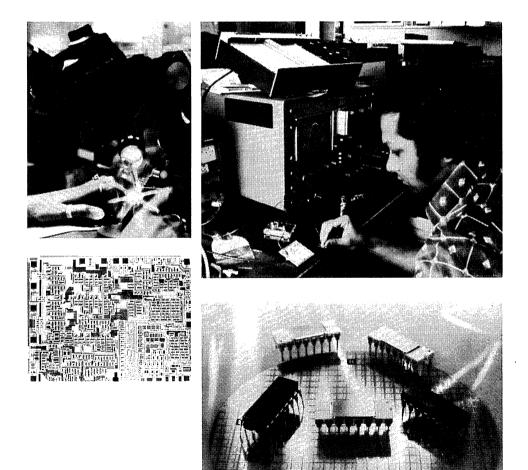

For timing, our devices use a pulse integration technique that eliminates the need for expensive electrolytic capacitors, thus increasing accuracy and repeatability while reducing costs. An integral supply voltage sensing circuit inhibits triac gate drive circuitry if the supply is dangerously low to prevent half-wave firing and firing without achieving complete bulk spike filter prevents misfiring on noise inputs. Symmetrical control prevents the introduction of dc components onto the power lines.

Devices have been tailored for specific applications as indicated in the chart. For more information, please use the postage-paid reply card at the back of this book to order our POWER CONTROL IC HANDBOOK, or contact your nearest Plessey Semiconductors representative.

LOAD CURRENT

	_
SL440	Proportional phase control for motors, lamps and lower power, fast response heating.
SL441	Similar to SL440, with proportional temperature control and thermister malfunction sensing, for hairdryers, soldering irons and food warmers.
SL442	Switch mode power sup- ply control, up to 40 kHz, integral oscillator, vari- able ratio space/mark pulses, soft-start, dynamic current limiting, OVP.
SL443	Similar to SL441 with manual power control, long timing periods for hot plates, electric blankets and traffic lights.
SL444	Similar to SL441 for 240V permanent magnet motor with thermal trip, current limit detector.
SL445	Proportional or On/Off control, temperature trip/ inhibit circuitry, LED and alarm drive facilities, for ovens, heaters, industrial temperature controllers.
SL446	On/Off servo loop temper- ature controller, low exter- nal component count, for water and panel heaters, refrigerators, irons.
TBA1085	Motor speed control

conduction. A zero-voltage

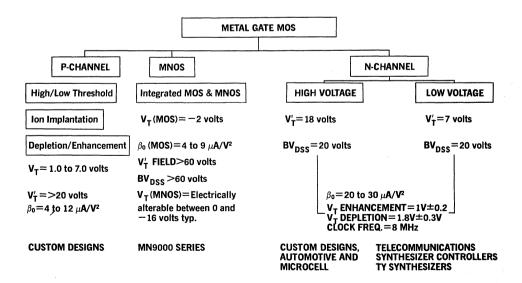


Processes, Testing and Quality Control

Just as we applied our systems knowledge to the partitioning of functions to make our IC's extremely flexible and cost effective, we also developed an internal system concept to ensure that we could deliver our state-of-the-art solutions year after year.

Our concept of standard processes and rigid design rules ensures that our devices are reproducible this year, next year and five years from now. Our continuing investment in research and development ensures that any new products we introduce will be on the leading edge of technology, yet with the same high performance and reliability that our customers have come to expect as the Plessey standard.

The result is that millions of Plessey devices have been built into TV sets and car radios; CATV, navigation and radar systems; frequency synthesizers and telecommunications equipment.


Plessey MOS Processes

P-channel metal gate MOS has been in production for years and is used for both standard Plessey products and custom LSI. Using ion implantation to modify transistor and field threshold voltages, we can reproduce virtually any p-channel metal gate process, with or without depletion loads.

MNOS (non-volatile) is essentially a p-MOS process with variable threshold memory transistors fabricated alongside conventional MOS transistors. A modified oxide-nitride gate dielectric permits the injection and retention of charge to change the threshold voltage. Current Plessey products will retain an injected charge for at least a year, and include an on-chip high voltage generator so that

they may be used with standard supply voltages.

N-channel metal gate MOS uses an auto-registration co-planar process with layout similar to our p-MOS. Ion implantation is used to define the threshold voltage of the depletion and enhancement transistors. The constant-current-like characteristics of depletion load devices give the most effective driving capability. and enhancement-depletion technology simplifies design and increases packing density. The field threshold voltage is also controlled by an ion implant, allowing the use of a lightly doped substrate. This reduces both the body constant and the junction capacitance and results in faster switching speeds.

Plessey Bipolar Processes

Bipolar Process I is a conventional buried +N layer diffusion process with f_t =600 MHz and other characteristics similar to industry-standard processes. Applications range from high reliability military devices to high volume consumer products.

Process Variant	Α	B Non	G	D
Application	General Purpose	Saturating Logic	Saturating Logic	Linear Consumer
ВVсво @ 10µА	20V min.	10V min.	10V min.	45 V min.
ВVЕВО @ 10µА	5.3V to 5.85V	5.15V min.	5.15V min.	6.8V to 7.4V
LVCEO	12V min.	8V min.	8V min.	20V min.
VCE (SAT) @				
IB=1mA,	0.43V	0.32V	0.43V	0.6V
IC=10mÅ	max.	max.	max.	max.
hFE @ IC=5mA, VCE=5V	40 to 200	50 min.	50 min.	50 to 200
ft @ IC=5mA, VCE=5V	500 MHz	500 MHz min.	500 MHz min.	350 MHz min.

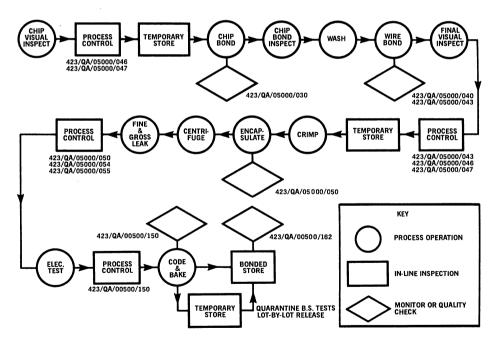
Bipolar High Voltage (HV) Process is a variant of Process I that yields an LV_{ceo} greater than 45 volts. Doping levels can be controlled and an extra diffusion used to fabricate a buried avalanche diode with a 40 V breakdown for absorbing powerful noise transients without being destroyed.

Process Variant	CA
BVCB0 @ 10μA	80V min.
BVEB0 @ 10µA	7.2V to 8.0V
LVCEO	45V min.
VCE (SAT) @ IB=1mA,	
IC=10mÅ	0.4V max.
hFE @ IC=5mA	
VCE=5V,	80 to 300
ft @ IC=5mA, VCE=5V	250 MHz min.

Bipolar Process III uses very shallow diffusion and extremely narrow spacing for high frequency integrated circuits with unusually low power consumption and high packing densities. An f_t of 2.5 GHz allows us to routinely produce analog amplifiers with bandwidths as high as 300 MHz and low power dividers and prescalers that operate at frequencies up to 1.2 GHz. Process variants allow us to produce devices with an extended β , higher breakdown voltages and very small geometries.

Process Variant	WE
Application	Digital
ВVсво @ 10µА	10V min.
ВVево @ 10µА	5.1V to 5.8V
LVCEO	7V min.
VCE (SAT) @ IB=1mA,	
IC=10mÅ	0.5V max.
hFE @ IC=5mA, VCE=2V	40 to 200
ft @ IC=5mA, VCE=2V	1.8 GHz

Bipolar Process 3V is an extension of our Process III. Ion implantation and washed emitters have given the process an $f_t=6.5$ GHz, allowing us to produce dividers working at 2 GHz, logic gates with delays of less than 500 picoseconds and linear amplifiers at 1 GHz.


Process Variant	wv
Application	Digital
ВVсво @ 10µA	8V min.
BVEBO @ 10µA	3.0V to 5.0V
LVCEO@ 5mÅ	6V min.
VCE (SAT) @ IB=1mA,	
IC=10mA	0.5V max.
hFE @ IC=10mA, VCE=5V	40 to 120
ft @ IC=5mA, VCE=2V	6.5 GHz

Testing and Quality Control

A major thrust of our development work is to ensure that our processes will routinely produce reliable devices. Our Process III has a projected MTBF of 400,000 hours while our Process I is even better.

Our facilities include the latest test equipment (such as the Macrodata MD501, Teradyne J324 and Fairchild Sentry VII and Sentinel) to allow us to perform all the necessary functional and parametric testing in-house. We have an internal capability to provide specific applications-oriented screening, and most Plessey IC's are available screened to MIL-STD-883 and other international specifications. Our quality levels exceed the most stringent military, TV and automotive requirements as a matter of course.

But the best proof of all these claims is our products themselves. After you've reviewed the products that could help you with your systems, use the postage-paid reply card or contact your nearest Plessey representative for complete details.

ASSEMBLY OF INTEGRATED CIRCUITS QUALITY ASSURANCE

2. The Design of Programmable Devices for UHF and VHF Synthesisers.

. •

.

. .

.

Si a

INTRODUCTION

As communications traffic in the VHF and UHF radio bands increases, users of communications equipment are demanding more stringent specifications. These include a much greater number of channels available in an equipment, closer channel spacing, improved frequency stability, for both receiver local oscillators and transmitter drivers, and high speed channel selection of tuning. These pressures have led to the adoption of frequency synthesis to replace local oscillators in an increasing number of equipments. This move to synthesis gives an equipment virtually unlimited channel selection capability and a long term frequency stability derived from one reference source (typically an ovened crystal oscillator). Other require – ments such as high tuning speed and good short term frequency stability are achieved by careful synthesiser loop design once a maximum comparison frequency (see Fig. 1) has been established.

If we look at a single loop synthesiser as shown in Fig. 1 we can see from the amount of programmable division required (typically 4000-16000 for a VHF-UHF avionics equipment) that a high proportion of any synthesiser's hardware will be devoted to this function. Clearly any economies that can be achieved in this area, in both total package count and in total power consumption will add appreciably to the final equipment's technical and economic viability. This area, in the feedback path between the Voltage Controlled Oscillator (VCP (VCO) and the phase/frequency comparator, is the particular concern of this application note.

General Requirements of the Programmable Divider

The Phase lock loop of a frequency synthesiser acts to keep (see Fig. 1.):

$$f_{ch} = f_{comp}$$

since fcomp = fout $(N \times M)$

the output frequency fout is related to fch by:

$$\frac{fout}{N \times M} = f_{ch}$$

The factors M and N in equation 2 are the division ratios of the fixed and programmable parts of the feedback divider. N, the division ratio of the programmable divider is normally set in integer steps and consequently fout can only be altered in steps of M. f_{ch}. This figure, M. f_{ch}, is the minimum channel spacing attainable in a single loop synthesiser. A study of the dynamics of the loop (see refs) shows clearly that the reference frequency, fref, imposes an upper limit to the loop. This limitation in turn re-stricts the tuning time of the loop and also limits the short term stability which is attainable in the VCO. Consequently to achieve a given channel spacing on fout, without compromising the reference frequency fch, the value of fixed prescale M should be as small as possible.

At this point we should investigate the reasons for inserting M in the first place. Economical programmable division can only be achieved by using standard decades fabricated in one of the established technologies such as cosmos or TTL, or in extreme cases ECL 10K and the operational speed of these standard decades is restricted to a figure well below the VHF and UHF frequencies required (100MHz-500MHz) as output from the VCO.

Clearly, some means of reducing the VCO output frequency to an area where programmable division is possible is required. Until the advent of high speed ECL dividers such as the Plessey SP8000 series, linear techniques were adopted for this function. One of these techniques was to operate the VCO at a frequency sufficiently low to allow direct programmable division. The required output frequency was produced by frequency multiplication of the VCO output (see Fig. 2). With this technique it was difficult to produce a spectrally pure output. Additionally the minimum channel spacing was M. fref, limiting the loop performance for given channel spacing.

1

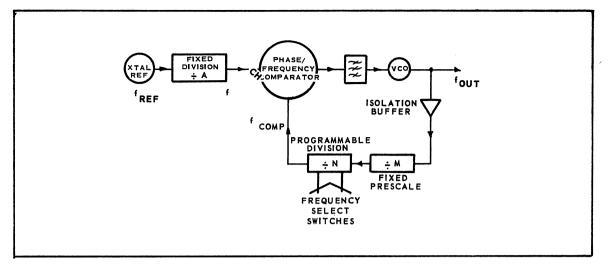


Fig. 1 Single loop digital frequency synthesiser with prescaled division.

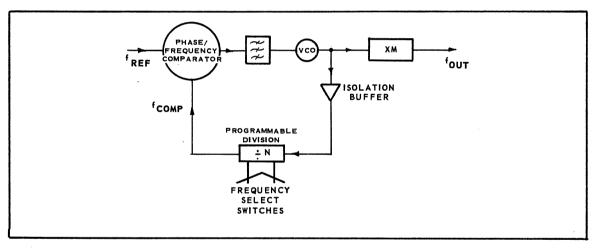
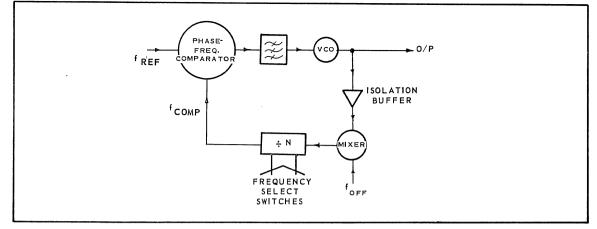


Fig. 2 Single loop digital frequency synthesiser with frequency multiplier output.


4

Another technique often adopted was to offset the VCO output in a mixer, shown in Fig. 3. The effect of the offset frequency, f off, on f comp is shown in equation 4.

$$fcomp = \underbrace{\frac{f_{out} - f_{off}}{N}}_{N}$$

i.e. fout = $N \cdot f_{comp} + f_{off}$

It is clear from equation 4 that this technique gives a reference frequency which is equal to the required channel spacing, so that loop performance is not compromised. However the addition of the offset frequency automatically reduces the achievable frequency stability of the VCO output. In addition the VCO 30

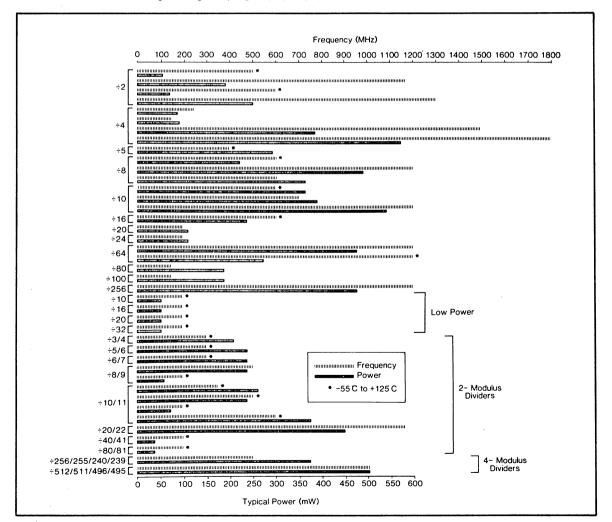


Fig. 4 The SP8000 range of fixed-modulus dividers.

output will be contaminated by sidebands introduced from f_{off} via the offset mixer.

As I previously mentioned, these techniques became obsolete with the introduction of the Plessey SP8000 range of high speed dividers.

This range, illustrated in Fig. 4, has a comprehensive selection of division ratios, frequency perform ance and power consumption which can suit almost all requirements where fixed prescaling is appropriate.

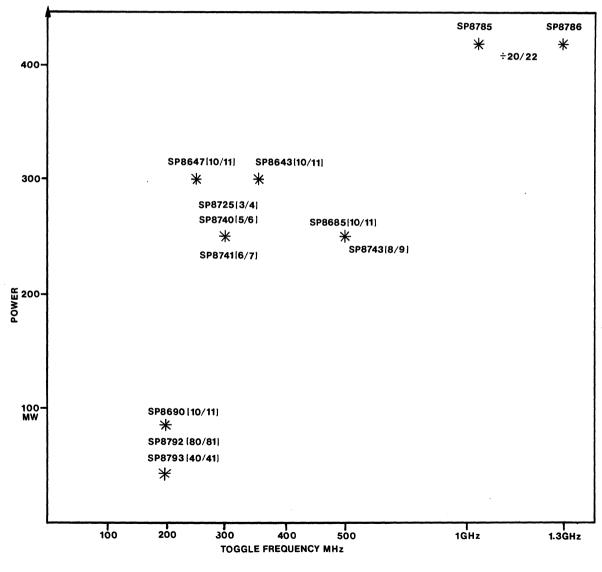
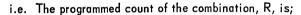



Fig. 5 The SP8000 series (Two modulus prescalers).

Fixed or Variable Prescaling?

If we return to the effect of fixed prescaling on loop response times it is clear that as the VCO frequency extends upwards in the UHF band the amount of prescaling required to reduce it to a suitable value for programmable division becomes excessive. Fortunately help is at hand. If a prescaler is available whose division radix can be switched between two or more values then it is possible to have effective programmable division at the prescaler input frequency, with the actual programmable dividers operating at the output frequency of the prescaler. Fortunately such devices are available as \div 10/11 in several forms in the Plessey SP8000 series. The available versions of \div 10/11 circuits are shown in Fig. 5 which illustrates the wide range of speed/power option in the SP8000 series. Also available are alternative division ratios of \div 3/4, 5/6, 6/7, 8/9, 20/22, 40/41 and 80/81.

In order to illustrate how a two modulus divider operates we should look at Fig. 6 which shows, in block diagram form, how a two modulus divider system is organised. In Fig. 6 the output of the prescaler, (which can divide by 'P' and(P + Q), drives two programmable dividers in parallel. These two dividers are programmed to 'A' and 'N'. The 'A' counter and the prescaler are interconnected in such a way that in a complete count cycle the prescaler divides by (P + Q) until the A counter reaches zero and then reverts to a division ratio of 'P'. The 'A' counter is connected to the 'N' counter such that when the 'N' counter reaches its programmed state both the 'N' and 'A' counters reset. Consequently the prescaler divides by '(P + Q)' for '(N + A)'.

$$R = (N - A) P + A (P + Q)$$

i.e.
$$R = NP + AQ$$

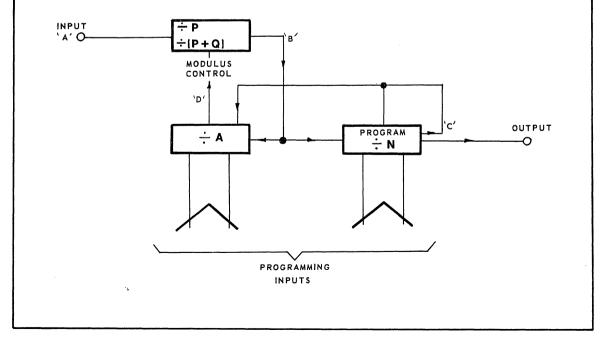


Fig. 6 A two modulus division system.

5 6

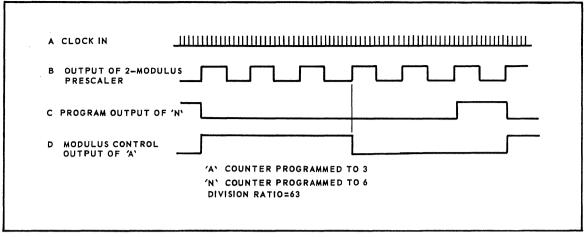
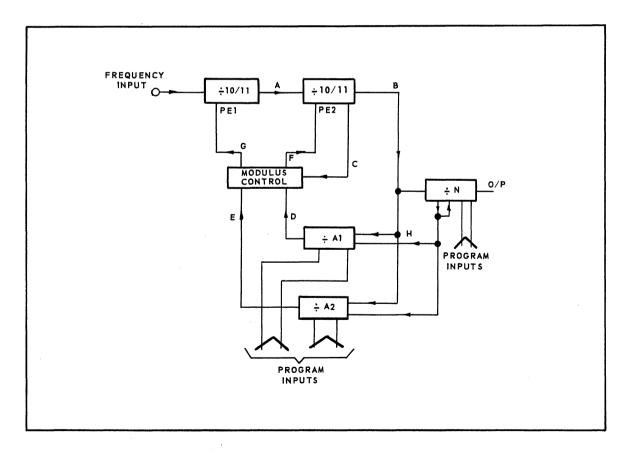
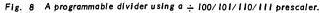




Fig. 7 Typical two-modulus waveforms.

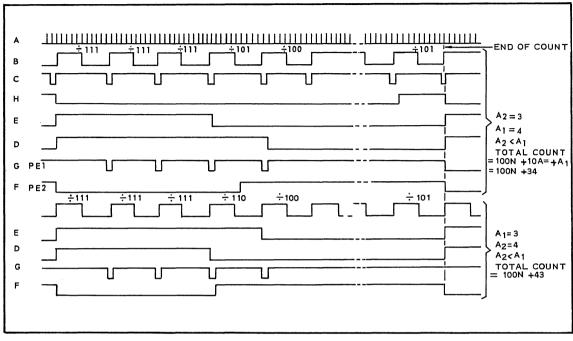


Fig. 9 Waveforms for four-modulus prescaler.

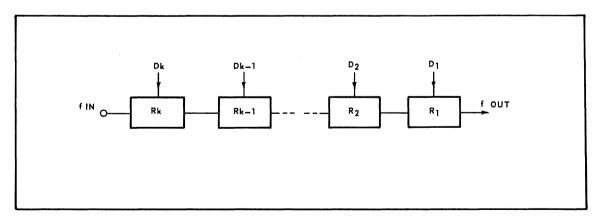


Fig 10 Generalised divider.

clearly if P=10, Q=1 then for a complete divider 'A' will give the least significant digit and 'N' will cover the rest of the required digits. Clearly, the minimum range of 'A' which can be tolerated for continuous programming is 'P' (10 in this case). The only restriction on the programmed division ratio attainable with this scheme is that

7

consequently, in the particular example given above of $a \div 10/11$,

N > A $A_{max} = P$ gives a minimum division ratio; R = 100

This minimum count of 100 would not normally cause any problems in a system. However in a practical system, i.e. a VHF synthesiser covering the band 85MHz to 130MHz in 10kHz steps, a two modulus prescaler with moduli of 100 and 101 would be required to reduce the VCO output to a level at which cmos decades can be used. This gives a minimum count 10000 and consequently the minimum frequency that could be programmed would be 100MHz. Clearly a large part of the required frequency spectrum is not covered. To overcome this restriction it is possible using a basic 10/11 prescaler, to construct a prescaler with three or four moduli and this will be described in more detail below. In this particular VHF synthesiser we would use a four modulus prescaler with moduli of 100/010/110/111, and these would be controlled by two `A´ counters in parallel as shown in Fig. 8, with operational waveforms illustrated in Fig. 9. Counter `A2' controls the addition of 10 to the basic modulus of 100 and consequently 'A2' should be programmable from 0–9. Counter `A1´ controls the addition of 1 to the basic modulus (100) and should also be programmable from 0-9. For programming, `A1'and`A2' may be visualised as setting the least significant digits respectively. By putting `A1' and `A2' in parallel we have reduced the minimum count of `N' to the greater of 'A1' and 'A2', 10 in this case, consequently the overall minimum count is 1000 (= N_{MIN} x P) and the minimum programmable freugency is now 10MHz. Various changes can be rung with this technique. For example, if a three modulus prescaler, 100/101/110, is used for this VHF synthesiser, two `A´ counters are still required but they now operate in series, `A]´which controls the addition of 1 to the modulus, is now required to be programmable from 10-19, while A2, which controls the addition of 10 to the modulus is still only required to be programmed from 0–9. However the minimum count of `N´ is now 20 and consequently the overall minimum count of the counter is 2000, giving a minimum output frequency of 20MHz. In this case, then, we have traded minimum count for prescaler complexity. An example of this type is given below.

When deciding whether to use fixed or variable prescaling in a synthesiser divider, the designer will have to consider the cost of improving performance. In most situations the minimal extra cost of incorporating a variable modulus prescaler with its more complex programmable divider will be more than offset by the performance improvements achieved by increasing the reference frequency.

Division Radix Requirements

Regardless of whether fixed or variable prescaling is adopted in any synthesiser divider, a consider able amount of programmable division is required. There exsist in the semiconductor market today standard building blocks from which programmable dividers can be fabricated. These blocks are are available, usually, in decades although the basic division radix can be reduced if necessary. Nowadays the output frequency of a synthesiser is most often set from thumbwheel or rotary switches located on the equipment front panel. 36 It would obviously be a considerable advantage to be able to control each block of programmable division from its own switch. Where channel frequency spacings are decadic switch programming corresponds to division programming in a direct manner, but to see what general requirements are put on the division radices of a programmable divider we should consider a generalised divider as shown in Fig. 10.

Fig. 10 represents a variable divider of `K´ stages where each stage has a division radix of R_k and is programmed to D_k where 1 k (. The total division ratio `N´ is:

$$N = D_{\kappa} (R_{1} \times R_{2} ... R_{\kappa-1}) + D_{\kappa-1} (R_{1} \times R_{2} ... R_{\kappa-2}) + D_{3} (R_{1} \times R_{2}) + D_{2} \times R_{1} + D_{1}$$

and from equation 2

$$fout = fch.N$$

$$fout = fch \ D_{\kappa} (R_1 \times R_2 ... R_{\kappa-1}) + D_{\kappa-1} (R_1 \times R_2 ... R_{\kappa-2})$$

$$+ D_3 (R_1 \times R_2) D_2 \times R_1 D_1$$

$$fout = fch R_1 \ D_{\kappa} (R_2 \times R_2 ... R_{\kappa-1}) + D_{\kappa-1} (R_2 \times R_3 ... R_{\kappa-2})$$

or

$$+ D_{2} \times R_{2} + D_{2} / R_{1}$$
 10

i.e. for R₂...R $_{\kappa-1}$ to be decades and for a direct relationship between the programmed digits, D κ , and fout:

fch x R₁ 10^{P} where P is an integer

A typical non decadic channel spacing would be 25kHz and this would require R_{1 MIN} = 4.

This argument also applies to variable modulus prescalers. The basic modulus (or radix) of the prescaler must obey equation 11 for R₁ if the 'N` counter is to be directly programmed. The prescaler is usually given a basic modulus larger than the minimum required by equation 11 for two reasons:

- (1) Variable modulus prescalers are normally specified where a large amount of fixed prescaling would be the alternative. The VCO frequency still has to be reduced to a value suitable for standard logic families.
- (2) The most common base unit for variable modulus prescalers is ÷10/11 and other moduli are produced by cascading this with fixed dividers, for example, a ÷4 or ÷8 to give prescalers od ÷40/41 or ÷80/81.

In the example used above with 25kHz spacing, a two modulus prescaler, with moduli of 40 and 41 would be required to give a directly programmable 'N' counter. The 'A' counter would also have to obey equation 11 on these lines i.e. it would consist of a ÷4 followed by a decade.

The Programmable Divider

There are several integrated circuit technologies which are suitable for use in the programmable divider These can be divided into two groups; those with standard building blocks and those which are useful for custom designed dividers.

- (a) Standard Building Blocks
 - (1) Plessey SP8200 series of RTL programmable dividers with switchable offset.
 - (2) Plessey NJ8000 series of N channel programmable dividers.
 - (3) Standard TTL programmable decades.
 - (4) Standard CMOS programmable decades.

11

(b) Custom Technologies

- (1) NMOS arrays (available from Plessey Semiconductors).
- (2) I² L arrays (available from Plessey Semiconductors).
- (3) CMOS arrays (available from Plessey Semiconductors).

This list is not exhaustive but covers the commonly used technologies. Plessey Semiconductors has competence in all groups.

This note will note attempt to explore the area of custom solutions to the programmable divider but will concentrate on designs using standard building blocks of the types listed in group (a) and more particularly those of sub groups '2' and '3'.

To illustrate how the techniques of variable modulus prescaling and programmable division which have been described above can be applied to practical systems; two divider chain requirements will be disscussed. The first will be for a VHF-UHF avionics synthesiser covering the bands 117.5MHz-136MHz and 225MHz-399.9MHz with 25kHz channel spacing, the divider for this will be designed using TTL parts. The second illustration will be for a low power VHF synthesiser with 10kHz channel spacing, using standard CMOS parts for the programmable f divider.

<u>A PROGRAMMABLE DIVIDER SUITABLE FOR A VHF-UHF AVIONICS TRANSCEIVER SYNTHESISER</u> USING PLESSEY SP8600 AND STANDARD TTL DEVICES

The frequency specification for the synthesiser is as follows:

Frequency Coverage:	117.5MHz-136MHz 225MHz-399MHz
Channel spacing	25kHz
IF offset	+21MHz

Other performance requirements such as lock range, loop response times and so on, although important will not considered in the design of the programmable divider. The emphasis in this design will be on a high performance divider providing a high frequency. The final Design is shown in Fig. 11. In order to achieve a high reference frequency it is necessary to restrict the amount of fixed prescaling to a minimum. Consequently a two-modulus prescaler system has been adopted. Referring back to the section on radixes we note that equation 11 gives:

fch . $R_{\oplus} = 10^{p}$

fch=25kHz and consequently R $_{\oplus}$ min =4. This value of 'R' $_{\oplus}$, as a base modulus for the prescaler would give a frequency for programmable division at the high end of the required band of 100MHz. This would be extremely difficult to achieve. Increasing 'R $_{\oplus}$ ' by a factor of 10 gives the prescaler a base modulus of 40 and reduces the frequency at which true programmable division is required to 10 MHz, well within the capabilities of TTL, and a suitable combination of devices for this $\div 40/41$ is the SP8685 500MHz $\div 10/11$ followed by the SP8790 low power $\div 4$ control circuit, as shown in Fig. 12. A more stringent performance requirement for the programmable divider is its clock to carry delay, as this determines the overall speed of the two modulus prescaler programmable divider combination. To understand this we should look at Fig. 13. Assuming that the modulus control signal for the prescaler is required immediately prior to its output clocking edge then the 'clock to carry' delay for the controlling counters must be less than one complete 'clock out' period. In this case the 'clock to carry' propagation delay should be less than 100nsecs at 400 MHz input frequency. In practice not all of the 'clock out' period available to the programmable divider as there is a clock in to clock out delay for the prescaler combination, an interface delay from the 'programmable divider carry out' to'modulus control' and a set up time for the modulus control. These can easily total 30nsecs and start to put pressure on the slow programmable divider chain. This will be covered in more detail below.

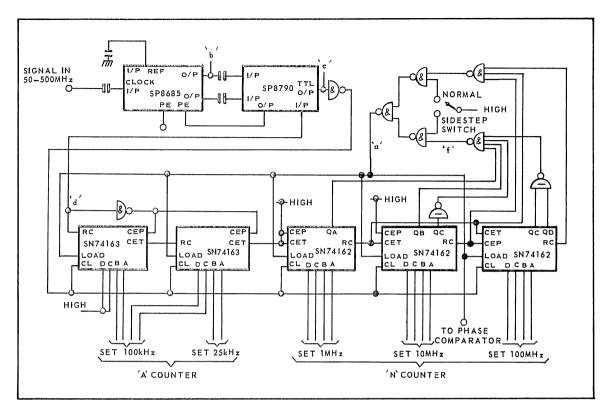


Fig. 11 Complete UHF|VHF synthesiser divider.

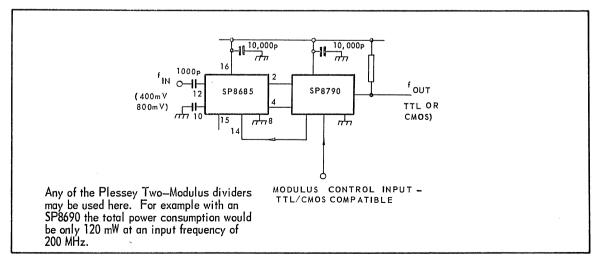


Fig. 12 A 500 MHz two-modulus (40/41) prescaler.

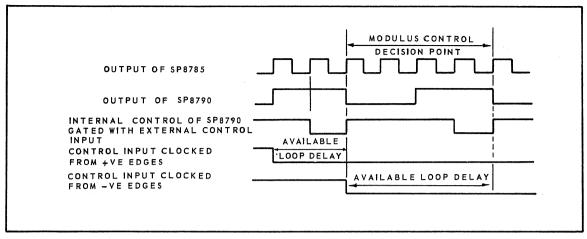


Fig. 13 Critical timing of -40/41.

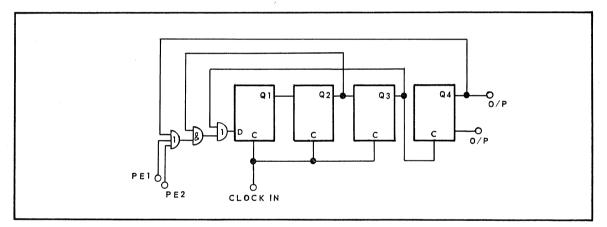


Fig. 14 Logic diagram of SP8685 two-modulus (÷10/11) divider.

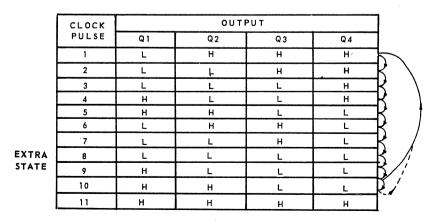


TABLE 1 COUNT SEQUENCE OF PLESSEY +10/11 TWO MODULUS - DIVIDERS

The ÷40/41 Prescaler

Two modulus prescalers can be constructed in a variety of ways. One approach is to use standard ECL 10k dual J-K flip-flops to perform the counting function with additional peripheral gating to accomplish the the modulus changing and interface requirements. However this would be limited to a maximum count frequency of about 100MHz. In order to produce the $\div 40/41$ function economically with performance adequate for the stated specification we must turn to a combination of two Plessey Semiconductor parts. These are the SP8685, a UHF two modulus ($\div 10/11$) divider specified to operate at frequencies up to 500MHz, and the SP8790, a $\div 4$ control circuit designed to follow any of the Plessey two modulus dividers, which includes the necessary interfaces between the ECL levels in the prescaler and the TTL (or CMOS) levels of the following fully programmable divider. This combination, which given the $\div 40/41$ function, is illustrated in Fig. 11. Fig. 15 gives the expected waveforms and some timing information.

The Plessey SP8685 two modulus prescaler consists of a synchronously clocked decade as shown in Fig. 14 with additional gating to add an extra state, converting the decade to ÷11, when required. The counting sequence is shown in Table 1. This extra state is added immediately prior to Q4 going high and consequently the following stages must all be synchronous with this positive going edge to achieve the maximum available loop delay as shown in Fig. 13. The SP8790 clocks on positive going edges and following stages should clock on -ve going edges of its output. Since following TTL dividers usually clock on +ve going edges this would appear to be an embarassment. However the following stages are usually arranged to be synchronously clocked to reduce sources of VCO output phase jitter. Since the open collector output of the SP8790 has a limited fan out some form of buffer will be required, and an inverting TTL buffer, having shorter propagation delays than non-inverting buffers, represent the optimum choice here.

It can be seen from Fig. 9 that the input of the prescaler is buffered. If we examine the input circuitry of the prescaler we can see that it presents a non-linear impedance. Since this is driven by a Voltage Controlled Oscillator which is also intended to provide a spectrally pure signal for use elsewhere, (i.e. in a communications receiver) it is important to isolate the VCO from the divider input impedance so that the VCO output is not degraded. The buffer is intended to provide this function. A target for the amount of isolation between the divider input port and the VCO output port is typically 60dB although many systems will tolerate lower values. There are many commerically available microwave integrated circuits (MICs) available (i.e. Avantek GPD401) which give upwards of 20dB isolation and similar amounts of `tame' gain, if one of these is coupled with an attenuator, adequate amounts of isolation can be provided economically.

The TTL Programmable Divider

Essential functional features of the TTL programmable dividers are:

- (1) Clock speed, including programming, exceeding 10MHz.
- (2) Low propagation delay from clock to carry for a complete divider (< 70nsecs).
- (3) Synchronous clocking for minimum phase jitter.
- (4) Ability to add fixed offsets to the programmed count easily.

There are several different ways of assembling programmable dividers but one of the faster and more flexible dividers to use are those in the SN74160 series. These are decade and binary programmable up counters with synchronous load and synchronous or asynchronous clear, together with internal logic to give a modified carry look ahead system. (A detailed description of the operation and interconnection of these devices can be found in TI's Semiconductors Circuit Design Vol 11.)

The programmable divider as previouly described and illustrated in Fig. 6 is split into two parts: the A counter and the 'N' counter. The total division ratio achieved by this combination is given by equation 6 and the required range of division ratios can be calculated from

$$N_{T} = \frac{f \text{ out}}{f \text{ ch}}$$

$$N_{Tmax} = \frac{f \text{ out max}}{f \text{ ch}} = \frac{400 \times 10.6}{25 \times 10.6} + 21 \times 10^{6}$$
13

$$N_{Tmax} = 16840$$
 and $N_{Tmin} = \frac{117.5 \times 10.6}{25 \times 10.6} = 4700$

41

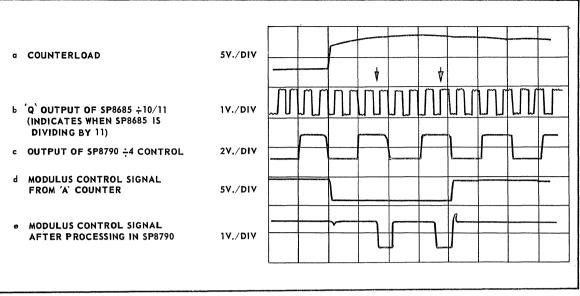
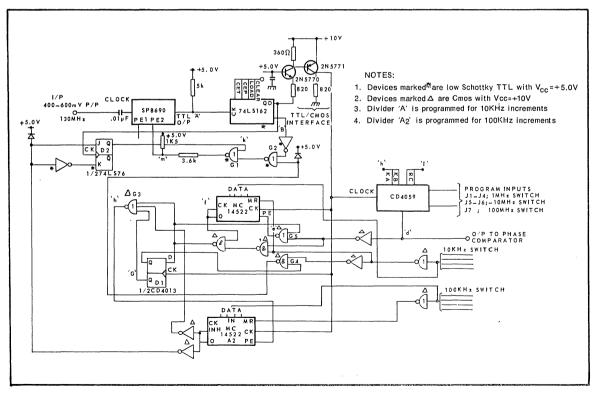
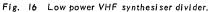




Fig. 15 Waveforms of ÷40/41 programmable divider with 'A' counter programmed to 50 Khz.

The A Counter

For correct operation it is clear from equation 6 that the 'A' counter must interpolate within the steps caused by the prescaler's base modulus, 40 in this case; consequently the 'A' counter must be programmable between '0' and '39'. Furthermore the 'A' counter must be split into a radix 4 first stage for programming 25kHz steps, followed by however many decades are required to make the desired maximum count.

In this example where 'A' max = 39, the next stage is the most significant stage of the 'A' counter and as such does not have a fixed radix but counts down from its programmed number, in the range '0-9', to zero. Consequently a 6 bit binary divider can be used for the 'A' counter. This is formed from two cascaded 4 bit binary counters connected the programmed as shown in Fig. 11.

The 'N' Counter

The ´N` counter should be programmable from 117 to 421, and is formed in a straightforward way from 3 standard cascaded decades, shown in Fig. 11.

Sidestep

Extra gating has been added to the basic divider so that the fixed sidestep of+21MHz can be added. The counters are such that it is, in general, difficult to arrange for a positive sidestep, to get around this we split the sidestep into a positive sidestep of one on the most significant stage, which is relatively easy, and a negative sidestep on the preceding decades so that the sum of the two equals the required sidestep.

Since the most significant stage has a limited programming range (1-3) it is a simple matter to arrange to recognise one count further on in the counter cycle than its normal recognition state of all '1s' without interfacing with programming. This is shown in Table 2. This gives an overall sidestep of +100. To achieve the required+21 we must subtract 79 from the two preceding stage and this is done by recognising the requisite counter states, rather than the normal all '1s'. This combined recognition (Fig. 11, 'f) is selected as the counter load signal ('a') whenever the sidestep is required. Clearly this scheme is applicable to positive sidesteps of up to several hundred megahertz. Negative sidesteps which do not exceed the programmed count can be equally easily inserted on the two least significant stages of the count.

Operation

To understand the operation of the two combined counters we will follow the operation of the counter from the instant when it is programmed. Looking at Fig.11 the complete circuit diagram and Fig. 15, the photo of some of the internal waveforms, the two counters 'A' and 'N' are programmed on the first -ve going edge of 'c' following the load 'a' going low, 'A' and 'N' start to count up from their programmed values at this instant. 'd'(Fig. 11) is set low and its inverse is used to drive the 'CEP' inputs of the 'A' counter. 'd' is used directly to control the $\div 40/41$ via the SP8790. Consequently, for the whole of the period that 'A' is counting down the prescaler is dividing by 41. This is illustrated in Fig. 15, if traces 'b', d' and 'e' are compared we can see that'e' goes low for a quarter of the period of 'c' while d' is low. If 'e' and 'b' are correlated we can see that the high period of 'b is slightly longer when'e' is low (marked with arrow). This corresponds to the two modulus divider dividing by 11 rather than 10. As soon as the 'A' counter reaches its recognition state d'goes high and the prescaler reverts to $\div 40$. CEP goes low, preventing further incrementing of the 'A' counter, hence'd'remain high. When the 'N' counter reaches it recognition state, either direct or sidestepped, a goes low for 1 complete period of 'c' and both dividers are synchronously loaded with the frequency setting data, 'd'goes low and the count cycle repeats.

Operating Speed

The maximum operating speed is determined by the loop delay from clock in to modulus control. For the loop to operate correctly this delay must be less than the output period of the prescaler, in this case equal to 1

400	x	106
	40	

or 100nsec. This delay is made up of two parts, the clock propagation delay through the prescaler and the return propagation delay of the modulus control through the SP8790, which is <20nsec in total, and the delay through the programmable divider.

The delay through the programmable divider consists of 1 gate delay in the clock buffer plus the clock to carry delay for 1 counter stage. This is less than 40nsec for both edges. There is however an additional factor to be considered. This is the delay from clock to load for the divider. This has different values depending on whether sidestep is in use or not.

	Delay (nsec)		
	without sidestep	with sidestep	
Clock buffer	4.5	4.5	
Clock to RC	35		
Clock to Q		20	
Recognition gate	4.5	9.0	
Recognition select	9.0	9.0	
Load set up time	25	25	
Total	78nsec	67. 5nsec	

Clearly this scheme is capable of operating well beyond the required limit of 400+21MHz, in fact a prototype of this system operated satisfactorily to beyond 500MHz at room temperature. This solution, although representing the ultimate in a divider for a single loop synthesiser, is clearly economical in packages and in power consumption, thanks mainly to the functional specifications of the Plessey SP8685 and SP8790 combination.

A PROGRAMMABLE DIVIDER SUITABLE FOR A PORTABLE VHF SIGNAL SOURCE USING PLESSEY SP8600 DEVICES AND STANDARD COSMOS INTEGRATED CIRCUITS

The specification for the synthesiser is as follows:

Frequency coverage	85MHz - 130MHz
Channel spacing	10kHz
IF offset	0

The other performance specification of concern is the requirement for portability. This predicates a low power approach to the design of the prescaler and variable divider. For this reason the prescaler is made of low power devices from the SP8600 series driving CMOS programmable divider chains.

The Prescaler

The use of CMOS programmable dividers for the 'A' and 'N' dividers means that there must be a large amount of prescaling used to reduce the input frequency of 130MHz maximum to the 1-2MHz suite-able for CMOS.

In order to keep the phase comparison frequency (fcomp in Fig. 1) as high as possible it is desirable to use a two (or more) modulus prescaler. To maintain direct decadic frequency programming with the required 10kHz frequency incf increment (or channel spacing) the base modulus of the prescaler must be a power of 10. Clearly a straight ÷10/11 prescaler would not interface with CMOS as its output frequency would be 13MHz. The next available step would be to use a ÷100/101 prescaler which satisfies the CMOS requirement. The large base modulus of the prescaler brings us up against a problem mentioned previously, that of minimum count. The minimum count which could be achieved with a ÷100/101 prescaler is 10,000, see equations 6 and 7. The minimum count required by the synthesiser, Q min 65:-

$$Q_{\min} = \frac{85 \times 106}{103} = 8,500$$

Clearly we cannot cover the whole required frequency band with a two modulus prescaler of the required size. We must resort to a 3-modulus prescaler (÷100, 101, 110) to allow us to cover the whole band as stated in the section, "Fixed or Variable Prescalers." This gives us a minimum division ratio of 2,000, well below our required minimum division ratio.

To make $a \div 100/101$ we require a decade divider with the tenth state decoded to feed back to the +10/11 modulus control. This, when gated with a +100/101 modulus control input will cause the +10/11 to $\div 11$ for 1 period out of 10, giving an overall division ratio of 101, To achieve the $\div 110$ function the $\div 10/11$ must be forced to $\div 11$ permanently. This total function is achieved by an SP8690 a.c. coupled low power, 200MHz two modulus divider followed by a TTL decade divider (74162) with some associated gating. The 'RC' output of this device is the gated tenth state output and is used for modulus control of the SP8690. Clocking of the following CMOS variable divider is done from the -ve going edge of Q D . The whole three modulus prescaler with its associated modulus control gating consists of an SP8690 followed by a TTL 74LS162 with two low power Schottky LS.TTL gates, G1 and G2, and is shown in part of Fig. 16. Typical wave forms are shown in Fig. 17.

Interfacing from the TTL output of 74162 to CMOS operating at +10 volts is accomplished with a two transistor saturating inverter.

The Programmable 'A' and 'N' Counters

The 'A' and 'N' counters are made up of standard CMOS decades with some associated gating. The programming is split between the two divider chains, the 'N' counter taking the programming from 1MHz, upwards, the 'A' counter taking the 10kHz and 100kHz programme inputs.

The 'N' counter can be dismissed very simply. A quad decade (the CD4059) is used, its output driving the following phase detector and also starting the divide sequence of the 'A' counter.

It is in the 'A' counter that some complications arises. As we have previously mentioned, for a 3 mod-ulus system (÷100/101/110) the 'A' counter must be divided into two decades, A1 and A2, which operate consecutively. In the scheme shown in Fig. 16 the decades used are MC14522 s. Divider A2 is programmed from the 100kHz switch and A1 from the 10kHz switch.

Operation is as follows. (All lower case letters refer to Fig. 16). If we assume that both A1 and A2 have reached their '0' state, then counting has been inhibited as 'f' and 'j' are both high and fed back to the clock inhibit. As soon as the 'N' counter reaches its '0' state 'd' goes high for 1 clock period. This gated with 'f' gives a load to counter A2 which then starts to count down on the next clock pulse, D1 is also load-ed with a 1 on the same clock pulse. 'f' is also used as the \div 110 modulus control input. Consequently, the prescaler divides by 110 as long as 'f' is low (see Fig. 17 traces f, k). As soon as A2 reaches the zero state again its own clock is inhibited by 'f' and a load pulse from gate G5 is driven into A1. A2 is not reloaded as 'a' is still low, 'N' not having reached its recognition state.

j, A1's zero recognition output, is now low allowing A1 to count down and causing the prescaler to divide by 101. D1 is also loaded with a '0' as 'f' has gone to a '1'. This prevents further loads from reaching A1. As soon as A1 reaches its recognition state, 'i' goes high which causes the prescaler to divide by 100 and prevents A1 counting further.

Both the 'A' counters are now at zero and not counting. This situation continues until the 'N' counter produces a further load on 'd' which starts the complete count cycle again.

An unfortunate characteristic of the MC14522 is its inability to operate correctly with a zero programme. Consequently a zero programme on 'A1' or 'A2' is detected and used to drive the Master reset input on the appropriate decade. Additional gating is required to ensure that a load is applied to 'A1', if 'A2' has a zero programme.

Finally, the composite modulus control input 'k' is resynchronised to the SP8690 clock by a Low Power Schottky J-K flip-flop (D2). This resynchronisation is necessary because of the need to make the ÷10/11' divide by 11 for the whole of a period of the prescaler output, 'b'. If the 110 modulus control is not resynchronised the loop delay must be less than one output period of the +10/11 (in this case <77nsec). By resynchronising one whole period of 'b' is available to generate the modulus control and the resynchronising loop, consisting of the delay through the prescaler plus that in D2, the resynchronising flip-flop. D2 can be made very fast without too much power penalty by using low power Schottky TTL. 45

We need to know the worst case loop delay for the whole system so that we can determine the maximum operating speed:

The two critical delays are:

- (1) `clock in' to ÷110 control)'
- (2) `clock in' to`÷101 control)'

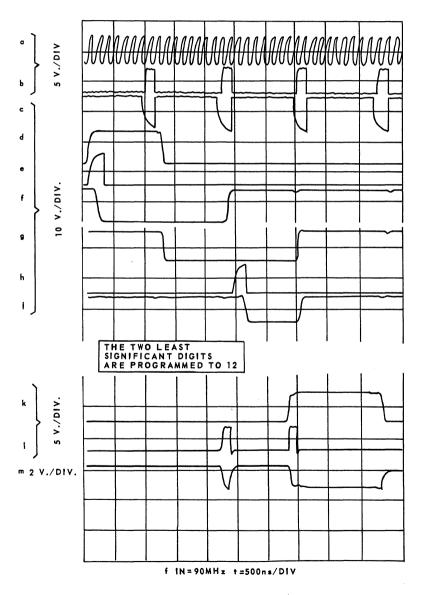
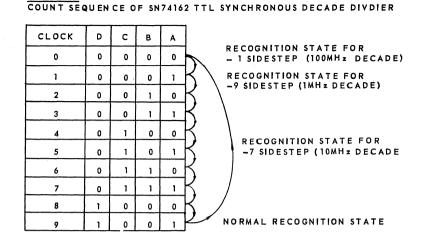


Fig. 17 Waveforms of a ÷100/101/110.

The loop delays for removal of the two modulus control signals, although equally important, can be seen to be less than delays '1' and '2' as they pass through fewer levels of gating.

ltem	Delay 1	Delay 2
Clock to Q SP8790	10nsec	10nsec
Clock to Q4 74162	23nsec	23nsec
TTL-CMOS Interface	20nsec	20nsec
Clock to recognition CD4059	200nsec	
Clock to recognition A2	300nsec	300nsec
Load to recognition A1		150n sec
3 gate delays G1 ,G3,G4	180nsec	
4 gate delays G1,G2,G4,G5		240nsec
Total	733nsec	743nsec

Delay 2 is the worst case and will give a maximum operating speed of 135MHz. This is close to the specified operating limit and if more leeway is desired 'A' series CMOS, with its tighter speed specifications should be used.


As in the UHF synthesiser divider, the use of just one Plessey SP800 series divider, in this case the low power $\div 10/11$ SP8690, has allowed the fabrication of an economical and extremely low power programmable divider. It is worthwhile pointing out that for solutions which do not require direct frequency programming or where a 25kHz channel spacing is required, then an SP8790÷4 two modulus control circuit should be used with the SP8690 to give a $\div 40/41$ function for only 120mwatts. It is interesting to note that this divider could also be used in a 1.2GHz synthesiser merely by adding an SP8667 decade fixed prescaler to the front end.

Conclusions

We have demonstrated in these two examples, how extremely high performance frequency dividers can be made with minimum of difficulty, by selecting the correct Plessey prescaler for the crucial front end position. The complete SP8000 range, as shown in Fig. 4 and 5, will allow an economical solution to almost any variable divider problem that a synthesiser divider designer could concoct. For those that are not covered by the SP8000 series, the Plessey Applications Group is readily available to help provide more unusual solutions.

As a footnote, Fig. 18 shows where Plessey Semiconductors can provide parts to complete a frequency synthesiser.

Not only are parts available for sophisticated solutions to the programmable divider, but integrated circuit technology, with its consequent benefits, have been applied by Plessey Semiconductors to every part of the synthesizer loop.

.

TABLE 2

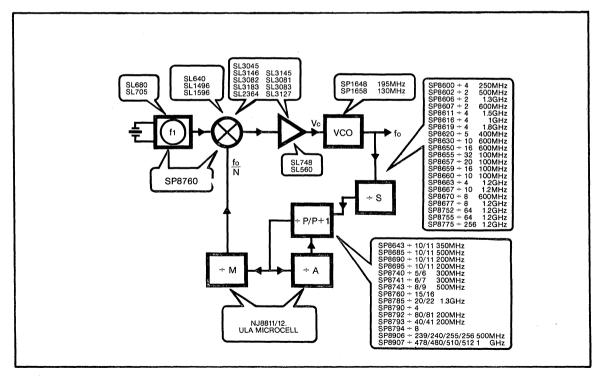
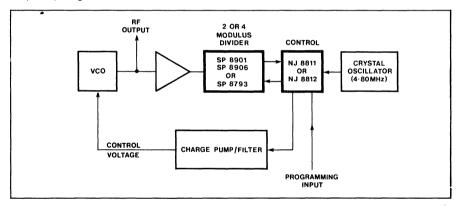


Fig. 18 Plessey Semiconductors products in a typical synthesiser loop.


3. The Design of UHF and VHF Phase Locked Loops Using Four Modulus Dividers.

INTRODUCTION

Frequency synthesis is now an accepted technique for providing large numbers of channels for radio-communications equipment. Until recently it was difficult to obtain integrated synthesiser circuits for other than limited frequency ranges. Plessey Semiconductors have fulfilled this need with two new ranges of circuits. These circuits are as follows:

GENERAL	PURPOSE SYNTHESISER
SP8901	1GHz four modulus divider (÷ 478/480/510/512), 5V/100mA supply
SP8906	500MHz four modulus divider (÷239/240/255/256), 5V/75mA supply
NJ8811	N channel MOS control circuit, programmable dividers and phase/frequency comparator for use with either SP89O1 or SP89O6 to make a `general purpose synthesiser (5V/8mA supply)
LOW POW	'ER SYNTHESISER
SP8793	225 MHz low power divider (÷40/41), 5V/4mA supply
NJ8812	N channel MOS control circuit, programmable dividers and phase/frequency comparator for use with the SP8793 to make a 'low power' synthesiser (5V/8mA supply)

Many novel features are included in these circuits. Both 'general purpose' and 'low power' synthesisers using these circuits will provide channel spacings of 20, 25 and 30kHz, with submultiples. The circuits interface directly to ROM channel memories or to microprocessors and are easy to use. The following diagram shows the configuration and a few of the possible frequency ranges.

Examples of continuous frequency range for channel spacing

Divider	Control	Power supply	Frequency range (MHz)	Channel spacing
SP8901 NJ8811	5.0V* @ 108mA	38.4 to 1000	20 kHz	
		(147 mA max.)	48.0 to 1000	25 kHz
		. ,	57.6 to 1000	30 kHz
SP8906	NJ8811	5.OV @ 83mA	38.4 to 500	10 kHz
		(112mA max.)	48.0 to 500	12.5 kHz
		, ,	57.6 to 500	15 kHz
SP8793	NJ8812	5.0V @ 12mA	16.0 to 169.6	10 kHz
		(19mA max.)	20.0 to 212.0	12.5 kHz
		, ,	40.0 to 22.5	25 kHz

^{*} When the SP89OI is operated with an input frequency above 900 MHz one of the power supply pins should be connected to $6.8 \, \text{V}$ instead of 5.0 V.

GENERAL PURPOSE SYNTHESISER

The NJ8811 is designed for use in phase locked loop frequency synthesisers. In these synthesisers, the voltage controlled oscillator (VCO) operates at the output frequency and the output frequency is divided down to a reference frequency. Another signal at this reference frequency is derived from the crystal controlled reference oscillator, and the divided VCO signal is compared at this frequency with the reference signal in a phase and frequency comparator. The output signal derived from this comparison consists of short pulses whose mark-space ratio is such that when the pulses are integrated, a DC level is obtained, which, when applied to the VCO, locks the loop by maintaining the VCO on frequency.

Simple division to the reference frequency in a fully programmable divider is limited to frequencies of about 50MHz and below, because of the difficulty of producing fully programmable dividers.

One answer to this is to use a prescaler as in Fig.1

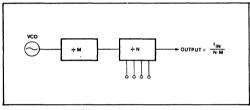


Fig. I Use of prescaler

However, for any step in frequency Δf at the VCO, the change at the phase detector is $\Delta f/N.M$; if this step is caused by a change of M to M+1 then Δf must become $\Delta f/N.(M+1)$ at the phase detector. Since the reference frequency is constant, the step at the VCO is therefore N times the reference frequency; this places limitations on the reference frequency value. For ease of filtering it is necessary to use as high a reference frequency as possible, preferably equal to the channel spacing.

To avoid the difficulties in simple prescaling twomodulus division may be used. In this system, the prescaler division ratio is altered from N to N+1: and while this is a very powerful method of achieving the necessary division, it is limited where very wide frequency ranges are required. This technique however may be applied by using four-modulus division as in Fig.2.

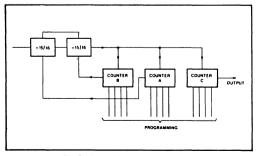


Fig.2 Use of four-modulus divider

In this system, the four-modulus counter can have a division ratio of 256, 255, 240 or 239. If the 'A' counter is programmed to a lower number than the 'B' counter, the system works as follows.

The 4 modulus prescaler divides by 239 'A' times, then by 240 until the 'B' counter is full and then by 256 until the 'C' counter is full. Thus the ratio is:

239A + 240(B - A) + 256(C - B)

If the 'A' counter is programmed to a higher number than the 'B' counter, then the system operation is:

Divide by 239 until the 'B' counter is full (i.e. 'B' times) then by 255 until the 'A' counter is full, then by 256 until the 'C' counter is full. The ratio is then:

239B + 255(A - B) + 256(C - A)

Both of these expressions simplify to: 256C - 16B - A

The limits are C = 16, B = 15, A = 16

and C = 271, B = 0, A = 1

Thus the minimum and maximum counts are 3840 and 69375. When the Range input is used on the NJ8811, this is modified such that the count is from 32568 to 101943.

A four-modulus divider for use to 500MHz is the SP8906, which interfaces directly with the NJ8811. The SP8901 has a $\div 2$ prescaler preceding the four-modulus divider, which thus enables direct synthesis at frequencies up to 1GHz to be attained.

Phase Detector

In the NJ8811, this circuit function is implemented by the use of two D type flip-flops. These drive 'open drain' output FETs, and if these are taken to V_{CC} via resistors, waveforms as shown in Fig.3 may be expected.

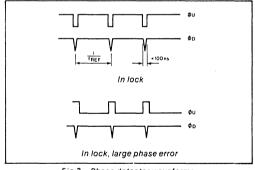


Fig.3 Phase detector waveforms

When out of lock, $Ø_D$ and $Ø_U$ have no definite phase relationship. These outputs, may be combined in a suitable circuit, as shown in Fig.4.

Fig. 4 Circuit for combining \mathcal{O}_{D} and \mathcal{O}_{U}

Loop Filter Design

A simple approach will provide a workable, but not necessarily optimum system. For more detailed methods, reference to one of the many textbooks is recommended. The following method provides a simple design.

- 1. Choose the loop natural frequency ω_n . This frequency affects the settling time of the loop, and this settling time is, to a first order approximation, 10/ ω_n , where ω_n is in radians per second.
- Choose a value of damping factor to give adequate loop stability without excessive overshoot. A satisfactory value is 1.0, giving an overshoot of approximately 10%.

3. Determine:

KV = VCO Gain in rad/s/V

 $= 2\pi \times Hz/V$

where Hz/V is the deviation in Hz for 1 volt change on the control line.

- N = VCO frequency/Reference Frequency.
- 4. Choose R_2 . For convenience, $4.7k\Omega > R_2 > 470\Omega$

 $C_1 = \frac{KV}{2\pi N\omega_0^2 R_2}$

5. $R_1 = D/\omega_n C_1$ where D is the damping factor.

6. $C_2 = \frac{1}{15\omega_n R_1}$

Reference Oscillator Requirements

Because the frequency synthesiser effectively multiplies the reference oscillator to the working frequency, any variations or inaccuracies in the reference oscillator appear at the output. For this reason, the accuracy of the reference oscillator must be no worse than that of the signal which it is required to synthesise, while the signal-to-noise ratio must be as high as possible. Incidental FM must be minimised.

VCO Requirements

The VCO should cover the frequency range desired with a suitable control line voltage swing. In addition, its power level and Q should be such as to maintain phase noise sidebands as low as is required. It is frequently found that the high impedance control line is very susceptible to picking up stray signals; screening and careful decoupling of the VCO and its supplies is often necessary. Buffering between the VCO and the prescaler is required to prevent VCO modulation from this source, and dual gate MOSFETS are very useful in this position.

A Typical Synthesiser

Fig.5. shows a frequency synthesiser using the SP8906 and NJ8811.

The Frequency synthesiser heart is the VCO. This is frequently a proprietary item and thus is subject to many design variations. In general, the VCO should be designed for low noise and the output should be well buffered. The VCO's used in the frequency synthesiser were designed specifically for the marine VHF band. In general, the main requirement is that the VCO should cover the frequency range required with a control line voltage variation from approximately 1 to 7 volts, positive with respect to earth. For transceiver use, where a frequency change is required between receive and transmit, the VCO is switched lower frequency by about 10 MHz by means of a diode, which in transmit, is used as a modulation diode.

The VCO output is amplified in an SL560, which is a wideband, low noise amplifier. This stage is operated such that ii is operating in a limiting mode, which removes any variations of output with frequency from the VCO. The output is at about + 2dBm in 50 ohms, and is also applied to the input of the dual gate MOSFET, Q1, which provides high reverse isolation between the

52

SP8906 and the synthesiser output. The drain of Q1 is capacitively coupled to the SP8906 input, and up to this point short leads and the usual standards of construction for VHF are required.

The supply line to the SP8906 is fed through a small RF Choke (approx 6 turns 3mm diameter) to assist isolation and stability. The output of the SP8906 feeds the NJ8811 FREQ input pin.

The reference oscillator used is 4.800 MHz. This allows a multiplicity of channel spacings, and these are listed in Table 1, together with the linking required for their definition. The oscillator uses a single transistor, Q5 and may be set exactly on frequency by means of the trimmer capacitor.

The outputs from the NJ8811 are open drain MOSFET outputs, and these drive the charge pump circuitry consisting of Q2, Q3 and Q4, which vary the voltage appearing across the loop filter as required. The loop filter is R1, C2 and C2, with R2 and C3 giving an extra pole in the response. The filter may be changed as necessary to meet various requirements: with the values given the reference frequency sidebands are more than 90 dB down and the lock up time is of the order of 100 mSecs.

Modulation is provided by the SL6043, which is a programmable quad. op. amp. Three sections are used respectively as microphone amplifier, clipper, and active low pass filter, while the fourth section provides switching of the VCO modulation diode and also depowers the first three sections on receive, thus preventing modulation of the local oscillator from the microphone.

The synthesiser is designed to work from a nominal 12v supply, which is regulated at 8v and 5v by monolithic regulators.

An LED lights when the synthesiser is out of lock, and this can be used to inhibit the transmitter as required.

Preset controls are provided for MIC GAIN and DEVIATION. These are set up as follows:

- 1. Feed a signal at 1 KHz and 30 mV RMS P.D. into the MIC INPUT terminals
- 2. Adjust the DEVIATION control for 5KHz deviation.
- 3. Decrease the input by 20 dB.
- 4. Adjust the GAIN control for 3 KHz deviation.
- 5. Increase the input by 20 dB and check that the deviation does not exceed 5 KHz.

TABLE 1 CHANNEL SPACING PROGRAMMING

PinH/PinD	Pin F	O/C	Pin C	Pin E
Pin K	20	10	5	2.5
O/C	25	12.5	6.25	3.125
Pin G	30	15	7.5	3.75
Pin J	37.5	18.75	9.375	4.6875

Table 1 Channel Spacing Programming

By linking the pins referred to on the circuit diagram as per the table 1, the above channel spacings may be obtained when a 4.800 MHz crystal is used.

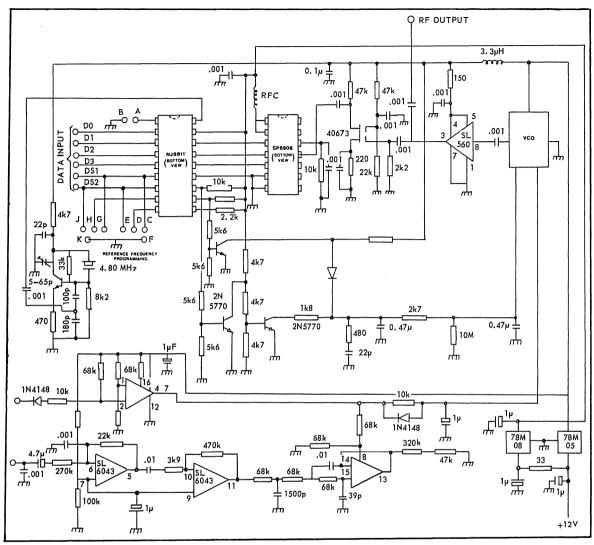
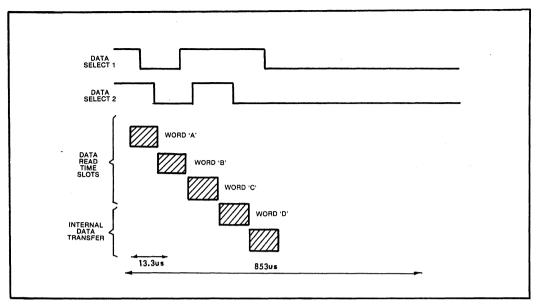
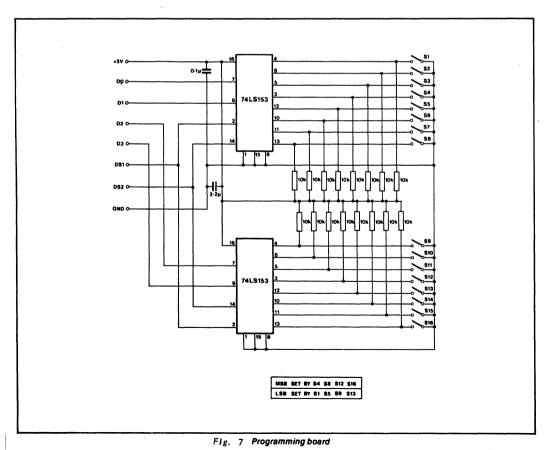


Fig.5 Frequency synthesiser using NJ8811 and SP8906


PROGRAMMING

1) HARDWARE


The NJ8811 requires programming with 4 four bit binary words. These words are read into the device, under the control of the DS1 and DS2 pins, on which appears the reference frequency divided by 4096. The order in which the information is read in is shown in Fig. 6. If for any reason it is desired to prevent the signals appearing at these pins, or to latch the information in the NJ8811 then these pins may be taken to logic 0. This logic 0 must be applied at the right point in the sequence, as shown in Fig. 6.

There are a number of ways in which the 4 words can be produced. One of the simplest is the Binary Universal Programming Board, of which the circuit diagram is shown in Fig. 7. This uses 74LS153 multiplexers to act in effect as a 4p 4w switch selecting the setting of the 16 individual switches in 4 bits at a time. A PROM may be substituted, and a PROM such as a DM8574 will provide 32 transmit and 32 receive channels. It must be remembered that in a superheterodyne transceiver, the synthesised local oscillator must be offset by the IF from the channel frequency: this requires a different programme number.

Because of the simple method of programming the NJ8811, it is very simple to interface to a microprocessor, although such applications are outside the scope of this note.

Fin	a
гиу.	D

2) SOFTWARE

See section on calculating division number in data sheet.

THE MODULATOR

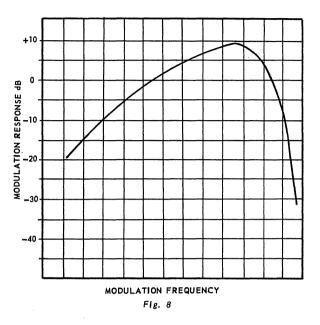
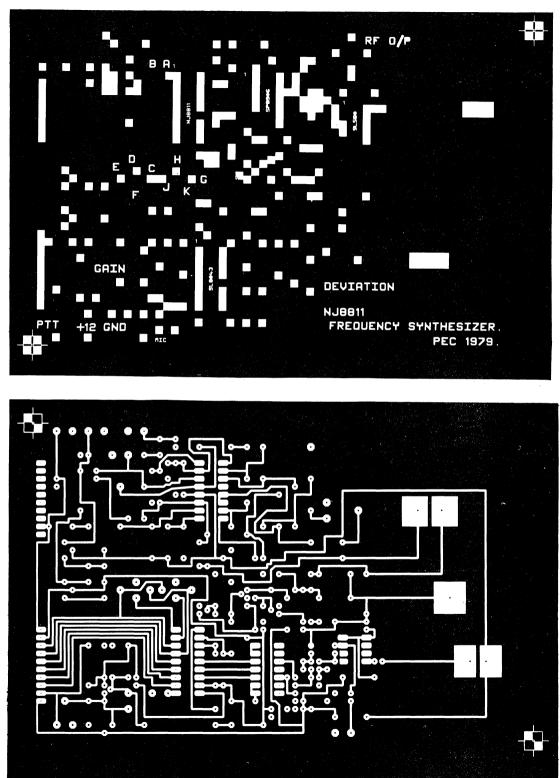

The modulator uses the SL6043 Quad Operational Amplifier. This circuit block is very simple, comprising an amplifier, a limiter and a multi-section low pass filter. The fourth section of the Operational Amplifier is used as an inverter, producing a "1" at pin 3 when the PTT line is earthed. This high level biases the other three sections of the SK6043, and also reverse biases a switching diode in the VCO. This switching diode is forward biased in receive, thus lowering the VCO frequency range by about 10 MHz, while in transmit, it acts as a variable capacity diode and provides modulation. The method of setting up the Deviation and Clipping Level has already been covered.

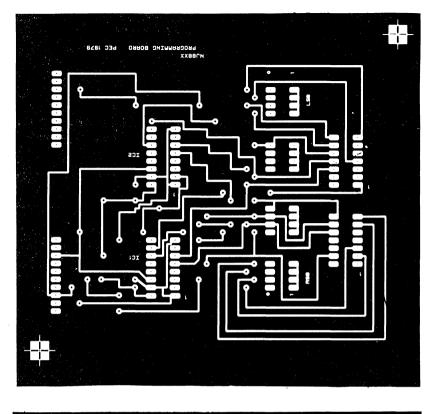
Fig. 8 shows the modulation-frequency response for the circuit. Although designed specifically for use in this synthesiser, other applications of this circuit are possible.

Because of the arrangements of the SL6043 in a "3 + 1" architectural style, the AF amplifier section is usefully depowered on receive. This reduces noise modulated onto the receiver local oscillator, which would lead to a degradation of the received signal to noise ratio. The signal to noise ratio of transmit exceeds the CEPT requirements of 40dB. However, the rigidity of the VCO is an important parameter: a poor VCO can well have noise components under vibration conditions such that it is difficult for the phase locked loop to clean up the signal to a satisfactory level. To this end, the prototype used a printed inductor, and was potted in a suitable polyurethane resin. This construction produced a synthesizer with adequate performance for use under mobile conditions in an SSB equipment operating at around 150 MHz.

LOCK UP TIME

The lock up time of the synthesizer is dependent upon the loop bandwidth and the reference frequency. In general, it may be assumed that the loop will require some 40 or 50 cycles of reference frequency in order to acheive lock. And at a 25 KHz channel spacing this represents some 1.6 to 2 mSecs. In order that the reference frequency sidebands occasioned by reference frequency components appearing on the confilter requires a suitable cut off frequency. With the values given, the lock up time is around 100 mSec, and the reference frequency sidebands are greater than 100 dB down relative to the carrier. The loop cut off frequency can be varied as required, but where modulation is required, the phase shifts round the loop filter can lead to distortion appearing if the damping factor or loop cut off frequency are incorrect. These parameters are set by the 470 ohm, 2K7, 0.47 and 22 mF capacitors, and 1K8 resistors associated with the charge pump circuitry.




PRINTED CIRCUIT BOARD LAYOUTS

Figs. 9 and 10 show the masters for the P.C. Boards used for the synthesizer and the universal programming board. The programming board is 6.05° across the diagonal joining the registration marks and is $4.5^{\circ} \times 4^{\circ}$. The synthesizer board is $6.3^{\circ} \times 4^{\circ}$ and is 9.45° across diagonals.

Fig. 11 shows the component layout diagram for the synthesizer board. The VCO used is mounted in a $3^{\prime\prime} \times 1.4^{\prime\prime}$ box, and the connections are then brought out on a 0.1" matrix for connection to the synthesizer board.

This note describes a VHF synthesizer capable of meeting the needs of many land and marine mobile applications. Its FM modulation capabilities meet the revelant international requirements, while its spurious outputs exceed these specifications. The design is highly flexible in its programming capability and its ease of interfacing with memories and other programming systems.

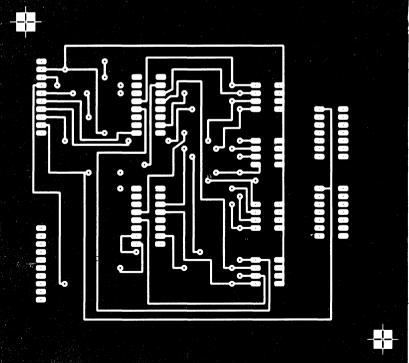


FIG. 10.

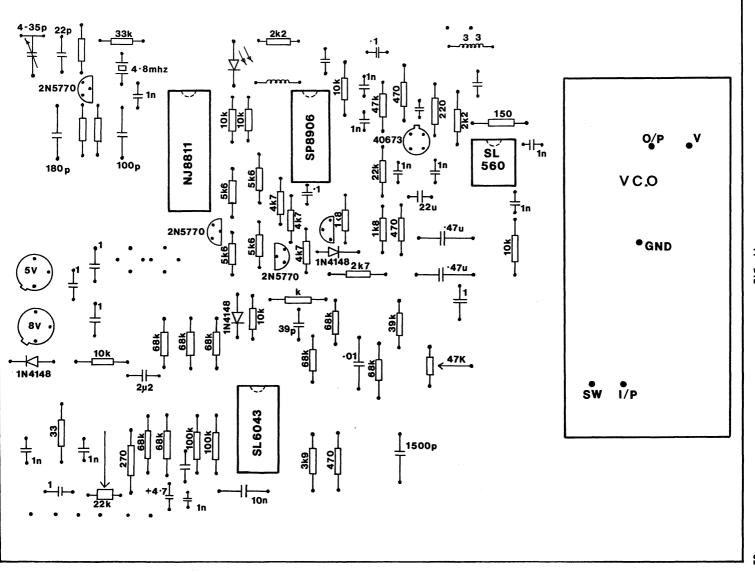


FIG. 11.

LOW POWER SYNTHESISER

The NJ8812 is designed for use in phase locked loop frequency synthesisers. In these synthesisers, the voltage controlled oscillator (VCO) operates at the output frequency and the output frequency is divided down to a reference frequency. Another signal at this reference frequency is derived from the crystal controlled reference oscillator, and the divided VCO signal is compared at this frequency with the reference signal in a phase and frequency comparator. The output signal derived from this comparison consists of short pulses whose mark-space ratio is such that when the pulses are integrated, a DC level is obtained, which, when applied to the VCO, locks the loop by maintaining the VCO on-frequency.

Simple division to the reference frequency in a fully programmable divider is limited to frequencies of about 50MHz and below, because of the difficulty of producing fully programmable dividers. However, a two-modulus divider which divides by N and N+1 may be easily made. A system as shown in Fig.1 then provides for the programmable division to be done at lower frequencies.

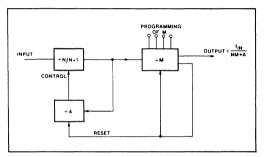


Fig. 1 2-modulus counter

The system works as follows:

The two-modulus counter divides by N+1 until counter A is full. The two-modulus stage then divides by N until the M counter is full. The resultant division ratio is NM+A.

In the NJ8812, the value of M is set to between 40 and 295, while A is programmed between 0 and 39. The full scope of the NJ8812 in a synthesiser is achieved using a \div 40/41, such as the SP8793, and under these conditions, the division ratio is from 1600 to 11839. By using the Range input, the M counter programme is changed such that the division ratio becomes 6720 to 16959.

The reference frequency is derived from a 4.8MHz crystal by a programmed divider. This divider is programmed by the FA and FB inputs: these may be tied to V_{CC} (logic '1'), Ground (logic '0') or to DS1 and DS2, depending upon the reference frequency required. In general the reference frequency is made equal to the channel spacing, as the higher the reference frequency, the easier it is to filter the control line to the VCO to prevent spurious sidebands at reference frequency appearing on the output.

Phase Detector

In the NJ8812, this circuit function is implemented by the use of two D type flip-flops. These drive 'open drain' output FETs, and if these are taken to V_{CC} via resistors, waveforms as shown in Fig.2 may be expected.

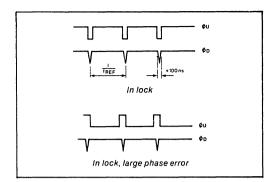


Fig.2 Phase detector waveforms

When out of lock, $Ø_D$ and $Ø_U$ have no definite phase relationship. These outputs may be combined in a suitable circuit, as shown in Fig. 3.

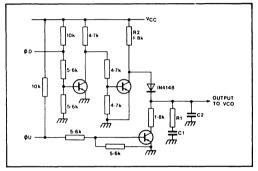


Fig. 3 Circuit for combining \mathcal{O}_D and \mathcal{O}_U

Loop Filter Design

A simple approach will provide a workable, but not necessarily optimum system. For more detailed methods, reference to one of the many textbooks is recommended. The following method provides a simple design.

- 1. Choose the loop natural frequency ω_n . This frequency affects the settling time of the loop, and this settling time is, to a first order approximation, 10/ ω_n , where ω_n is in radians per second.
- Choose a value of damping factor to give adequate loop stability without excessive overshoot. A satisfactory value is 1.0, giving an overshoot of approximately 10%.
- 3. Determine:

N

4. Choose R_2 . For convenience, $4.7k\Omega > R_2 > 470\Omega$

$$C_1 = \frac{KV}{2\pi N \omega_n^2 R_2}$$

- 5. $R_1 = D/\omega_n C_1$ where D is the damping factor.
- 6. $C_2 = \frac{1}{15 \omega_0 R_1}$

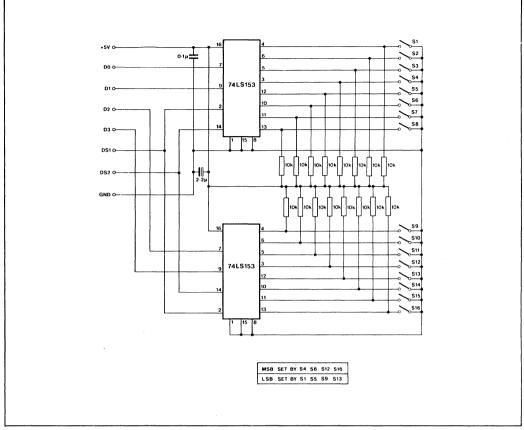


Fig. 4 Programming board

Reference Oscillator Requirements

Because the frequency synthesiser effectively multiplies the reference oscillator to the working frequency, any variations or inaccuracies in the reference oscillator appear at the output. For this reason, the accuracy of the reference oscillator must be no worse than that of the signal which it is required to synthesise, while the signal-to-noise ratio must be as high as possible. Incidental FM must be minimised.

VCO Requirements

The VCO should cover the frequency range desired with a suitable control line voltage swing. In addition, its power level and Q should be such as to maintain phase noise sidebands as low as is required. It is frequently found that the high impedance control line is very susceptible to picking up stray signals; screening and careful decoupling of the VCO and its supplies is often necessary. Buffering between the VCO and the prescaler is required to prevent VCO modulation from this source, and dual gate MOSFETS are very useful in this position.

A Typical Synthesiser

Fig.5 shows a typical frequency synthesiser using the NJ8812 and SP8793. Programming is from the binary

programming board of Fig. 4 or from a suitably programmed PROM or ROM. It should be noted that the binary programming board produces four 4-bit words, and therefore, two of the bits are redundant (see Programming the NJ8812).

The synthesiser of Fig.5 uses a 40673 or similar dual gate MOSFET as a buffer prior to the SP8793 divider. The three 2N5770 transistors provide a charge pump circuit, and the fourth a crystal oscillator. This synthesiser draws some 25 mA maximum, excluding the VCO and the programming system, and further development could well reduce the current appreciably. If modulation is required, this may be applied to the control line, provided that the peak deviation is not such as to drive the loop out of lock.

The connection of an LED from pin 10 of the NJ8812 to 5V via a 2.2k Ω resistor will provide an indication of lock, the lamp being alight when the loop is unlocked.

FA, FB and the range pin are connected according to the requirements of frequency spacing and operating frequency.

Performance, in terms of spurious sidebands and noise, depends upon construction and design of the VCO and PC board, and good RF practice should be followed with regard to these components. In particular, attention should be paid to the VCO screening.

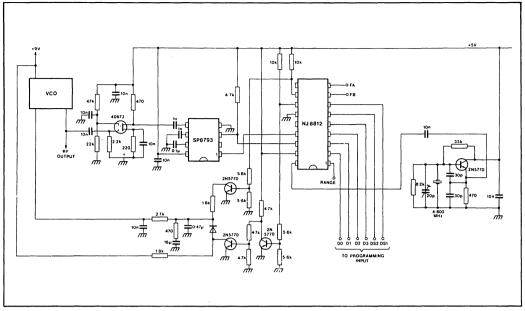


Fig.5 Frequency synthesiser using NJ8812 and SP8793

Using a calculator to find the division numbers of the NJ8811 and NJ8812 Programming the NJ8811

The NJ8811 requires a sixteen bit-binary address to program the division number and hence give the required frequency output in a phase locked loop configuration. The address is organised as four words of four bits each and may therefore be conveniently expressed in hexadecimal notation as shown in Table 1.

4	Bit Bind	ary Cod	e	Hexadecimal	Decimal	
D	С	B	A	Hexadecimai	Equivalent	
0	0	0	0	0	0	
0	0	0	1	1	1	
0	0	1	0	2	2	
0	0	1	1	3	3	
0	1	0	0	4	4	
0	1	0	1	5	5	
0	1	1	0	6	6	
0	1	1	1	7	7	
1	0	0	0	8	8	
1	0	0	1	9	9	
1	0	1	0	Α	10	
1	0	1	1	В	11	
1	1	0	0	С	12	
1	· 1	0	1	D	13	
1	1	1	0	E	14	
1	1	1	1	F	15	

The program number may be calculated using the following equation:

Program Number N = (1000 x f) - Rwhere f = Frequency of the VCO in MHz C = Channel spacing in kHz R = Range number (R = 3840, Range I/P = `1') (R = 36608, Range I/P = `0') The program number may be converted into decimal equivalent by using the following

The program number may be converted into decimal equivalent by using the following procedure. The above Table 1 will then give the hexadecimal or binary code.

Using a standard calculator:

Enter in the number N Divide by 4096 Write down the number before the decimal point Subtract the number before the decimal point Multiply by 16 Write down the number before the decimal point Subtract the number before the decimal point Multiply by 16 Write down the number before the decimal point Subtract the number before the decimal point Multiply by 16 Write down the nearest whole number to the one displayed You will then have an answer in the form 8, 11, 14, 5 This can be converted to hexadecimal using Table 1 8 B E 5 1000, 1011, 1110, 0101 or to binarv

If a Hewlett Packard 25 or equivalent calculator is available the following program (Table 2) may be used to obtain the decimal equivalent directly from the frequency and channel spacing.

Program Step	Instruction			Display	
00					
01		-	÷		71
O2 O3			1		01
O3		(C		00
04		(C		00
O5 O6		(C		00
O6		2	X		61
07	RANGulli	0	3	RAZÛH IO	00/03
08	N	3	6	N	03/06
09	F	8	6 6 0	F	08/06
10	=	8 4 0	0	=	04/00
11	1	0	8	0	00/08
12			-		41
13			4		04
14			0		00
15			9		09
16			6		06
17			÷		71
18	STO O			23 00	
19		fFIX O			14 11 00
20	3			03	
21	STO 1			23 01	
22	1			01	
23			6		06
24		S	02		23 02

Program Step	Instruction	Display
25	RCL O	24 00
26	fINT	14 01
27	R/S	74
28	RCL O	24'00
29	gFRAC	15 O1
30	RCL 2	24 O2
31	х	61
32	STO O	23 00
33	RCL1	24 01
34	1	01
35		41
36	STO 1	23 01
37	gx=0	15 71
38	GTO 25	13 25
39	RCLO	24 00
40		73
41	5	O5
42	+	51
43	fINT	14 01
44	f PAUSE	1474
45	fPAUSE	1474
46	f PAUSE	14 74
47	fPAUSE	14 74
48	GTO OO	13 OO

Table 2 HP-25 program for NJ8811 decimal equivalents

To run the program, enter:

```
fPRGM (1st time only)
Frequency (in MHz)
Channel spacing (in KHz)
R/S
(1st answer displayed)
R/S
(2nd answer displayed)
R/S
(3rd answer displayed)
R/S
```

(4th answer displayed and flashes)

Programming the NJ8812

The NJ8812 requires a fourteen bit binary address to program the division number and hence give the required frequency output in a phase locked loop configuration with the SP8793. The address is organised as three words of four bits each and one word of two bits.

The program number may be calculated using the following equation.

Program Number N = (1000 x f) - R

where f = Frequency in MHz (of the VCO) C = Channel spacing in KHz R = Range number (R = 1600 range = 1) (R = 6720 range = 0)

The program number may be converted into Decimal equivalent by using the following procedure.

Using a standard Calculator:

Enter in the number N Divide by 640 Write down the number before the decimal point. Subtract the number before the decimal point. Multiply by 16 Write down the number before the decimal point. Subtract the number before the decimal point. Multiply by 40 Write down the nearest whole number to the one displayed. You will then have an answer in the form: 8, 11, 30

This can now be converted to Binary noting that the third Decimal number gives the final six bits of Binary.

i.e. 1000, 1011, 011110

If a Hewlett Packard 25 or equivalent calculator is available the following program may be used to obtain the Decimal equivalent directly from the frequency and channel spacing.

Instruction	Display	Program Step	Instruction	Display
			÷	41
÷	71	12	6	06
1	01	13	4	04
0	00	14	0	00
0	00	15	÷	71
0	00	16	STO 1	23 O1
Х	61	17	fFIX O	141100
R 1 6 R	01/06	18	fINT	14 01
Ä Ä		19	R/S	74
 	06/07	20	RCL1	24 01
0. 2	00/02	21	gFRAC	15 O1
⁻¹ 0 0 0 ⁻	00/00	22	1	01
	÷ 1 0 0 X R 1 6 R A N - - - - - - - - - - - - -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Program Step	Instruction	Display	
23	6	06	
24	X	61	
25	STO 2	23 02	
26	fINT	14 01	
27	R/S	74	
28	RCL 2	24 02	
29	gFRAC	15 01	
30	4	04	
31	0	00	
32	Х	61	
33	•	73	
34	5	O5	
35	+	51	
36	fINT	14 01	
37	f PAUSE	14 74	
38	f PAUSE	14 74	
39	fPAUSE	1474	
40	fPAUSE	14 74	
41	f PAUSE	1474	
42	f PAUSE	14 74	
43	GTO OO	13 00	

Table 3 HP-25 program for NJ8812 decimal equivalents

To run the program, enter:

fPRGM (1st time only) Frequency (in MHz) Channel spacing (in KHz) R/S (1st answer displayed) R/S (2nd answer displayed) R/S (3rd answer displayed and flashes)

.

4. Practical Solutions to VHF Synthesis.

VHF SYNTHESISER 108-174 MHZ

This application note will describe a phase Lock Loop Synthesiser which covers the frequency range between the top of the FM Broadcast band at 108 MHZ and the start of the, VHF High, television band at 174 MHZ - The synthesiser has a channel spacing of 25 KHZ. Applications include the Marine UHF Radio Telephone, Weather Broadcasts, Air Traffic Control and the Amateur 2 Meter Band.

Circuit Description-See Fig. 1.

Section 1.

The voltage controlled oscillator is a Plessey SP1648. The SP1648 is an emitted-coupled oscillator with outputs compatible with the ECL 111 Logic Family. Using varactor diodes in tank circuit and varying the voltage applied to them we can vary the oscillator frequency output over our required range.

Section 2.

A Plessey SL1521 wideband amplified is used to provide isolation between the VCO and the digital dividers.

The main use of the SL1521 is to help prevent the divider switching noise from getting back to the VCO output.

Section 3.

The prescaler is a Plessey Low Power SP8690 divide by 10/11 UHF counter. This counter and a Plessey SP8790 are connected to form a divide by 40/41 counter with an operating frequency in excess of 200 MHZ. The divide by 40/41 control is TTL compatible so it can be tied directly to the count inhibit line of the "A" dividers.

Section 4.

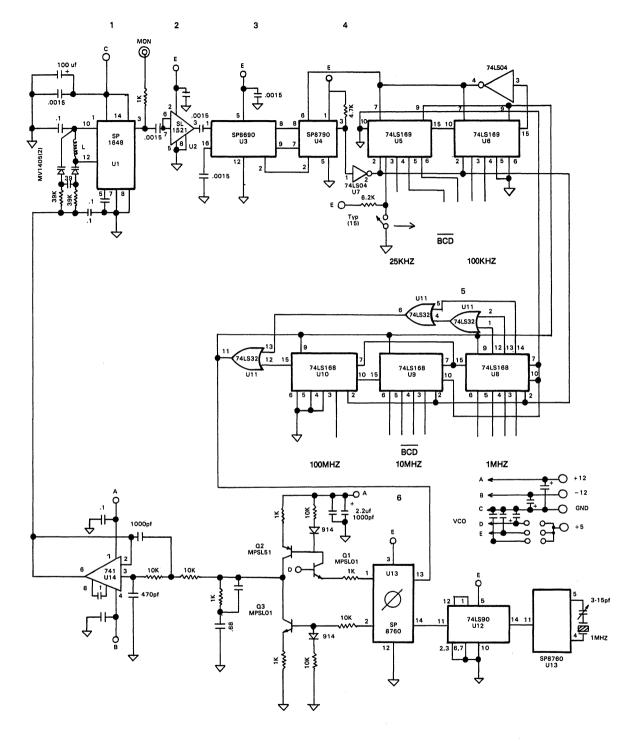
The open collector output of the SP8790 is connected to a 74LS04 inverter. The inverter is used to invert and buffer the clock signal.

Section 5.

By the use of thumbwheel switches with BCD complement outputs the switches can be wired directly to the parallel load inputs of the programmable dividers. The up-down counters are standard 75LS168 and 74LS169 as used in the down count mode. When the count in U10, U9 and U8 has reached 001, the load input is enabled. At the next clock the BCD switched information is parallel loaded into the dividers.

Section 6.

The Plessey SP8760 contains the reference oscillator, a fixed divide by 4 counter, a variable modulus divide by 15/16 counter and a phase comparator.


For this particular application, the modulus counter was not used. If a reference crystal of 1.5 or 1.6 MHZ were used, then the divide by 15/16 counter could be used in place of the 74LS90 divide by 10 counter.

Using a 1 MHZ crystal, the oscillator output at pin 11 is 250 KHZ. The 250 KHZ is divided by 10 in the 74LS90 decade counter. The output of 25 KHZ is used as the reference frequency for the phase comparator. The parallel load signal at pin 11 is compared to the reference frequency and an error signal is fed to the charge pump via the outputs on pins 1 and 2. Q1 through Q3 make up the charge pump that supplies current to the storage capacitor C1.

The 741 (U14) is used as an active low pass filter. The roll off starts at about 2.5 KHZ. Thus helping to get rid of the 24 KHZ spurs in the VCO.

Another way to filter out the 25 KHZ noise is to have two or three notch filters tuned for 25 KHZ, 50 KHZ, and 75 KHZ.

The output of the filter is used to set the VCO frequency and keep the output phase locked to the internally generated reference.

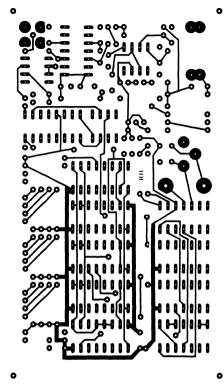
VHF SYNTHESISER 108-174 MHZ

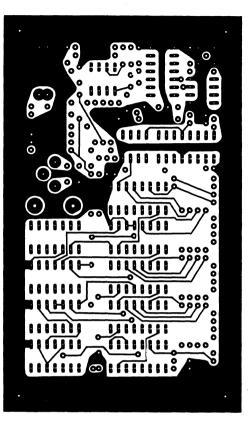
67

Solder Side

Parts List

Component Side


U1 Plessey SP 1648
U2 Plessey SL 1521
U3 Plessey SP 8690
U4 Plessey SP 8790
U5,6 National DM 74LS169 N
U7 National DM 74LS04 N
U8,9,10 National DM 74LS168N
U11 National DM 74LS32 N
U12 National DM 74LS90 N
U13 Plessey SP 8760
U14 National 741


Q1,3 Motorola MPSL01 Q2 Motorola MPSL51

Dr 1, 2 Motorola MU1405

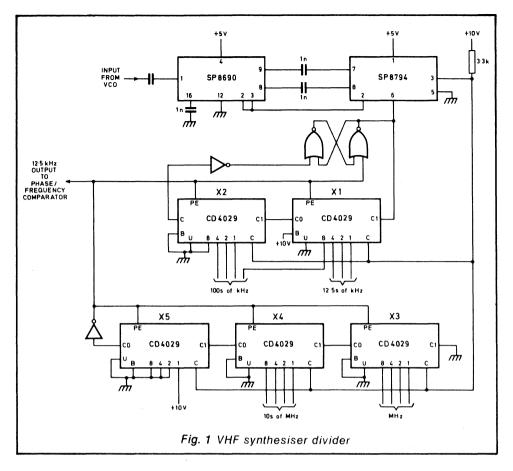
L1 Micrometalist 30-12 3 turns 22 ga

C1 Plessey .68uf

VHF/UHF synthesisers using 2-modulus prescalers

Fig. 1 shows the divider for a synthesiser operating between 100MHz and 199.9875MHz with 12.5kHz channel spacing. Fig. 2 shows the divider for a similar synthesiser operating between 300MHz and 512MHz with 25kHz channel spacing. The limit of operation of the SP8647 decade is defined in the datasheet as 250MHz giving a top frequency of 500MHz but since nearly all SP8647 devices will, in fact, operate at 256MHz, the figure given is quite conservative in practice.

Both synthesisers are designed to use a reference frequency of 12.5kHz. The VHF divider uses an SP8690 -10/11 counter combined with an SP8794 modulus extender to give a -80/81 two-modulus counter. The output from this counter at the highest input frequency is about 2.5MHz so the remaining counters may use CMOS logic operating on a 10V rail (operation below 10V might be possible but 5V operation would not).

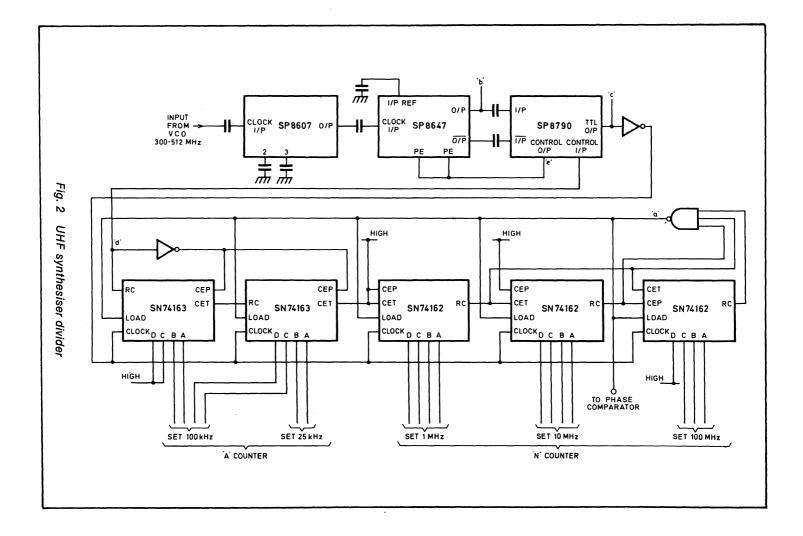

The programmable counter consists of five CD4029 4-bit binary/decade counters, one used in binary mode and the rest either as decades or in modes where the matter is irrelevant. The counters are operated in the synchronous mode, where the output of the SP8974 (which requires a 33k ohm resistive pullup to the CMOS positive supply) drives the clock inputs of all the counters and the 'clock enable' inputs are cascaded.

Counters X1 and X2 form the counter controlling the two-modulus prescaler and count down from the number pre-set into them by the '12.5s of kHz' and '100s of kHz' inputs until they reach zero; the SP8690/8794 combination then stops dividing by 81 and divides by 80. X1 and X2 stop counting until the next cycle starts. It is important that the propagation delay from the output of the SP8974, via this counter, back into the control input of the SP8974 is shorter than a count cycle of the SP8690/8794 combination, otherwise the counter will not control the two-modulus counter soon enough to prevent the next cycle of the two-modulus counter being 81 instead of 80. At 200MHz this means that the propagation delay around the loop must be less than 700ns.

Counters X3, X4 and X5 form the MHz, 'tens of MHz', and 'hundreds of MHz' counters respectively. X5 is hard-wired to count one only so that the system will only work between 100MHz and 199.9875MHz; if lower frequency operation is required this counter could be made programmable but the X3/ X4/ X5 counter must not be allowed to operate with a division ratio less than 80, otherwise the two-modulus part of the system can not be operated over its full range (as described in section 2) and the synthesiser will malfunction. This places an absolute limit on the low frequency operation of the divider of 80MHz. The upper limit of 200MHz is set by the speed of the SP8690 and the CMOS.

All the CMOS counters operate in the 'countdown mode'. When the X3/X4/ X5 counter reaches zero all five counters are again preset to the values programmed on their input. The inverter on the output of X5 drives all the 'preset' inputs and if the preset time of all the counters is similar should perform the function perfectly well.

If, however, some counters preset more quickly than others it is possible that the signal on the 'preset' line may disappear before the operation is



complete in all counters. In that case the inverters could be replaced with a monostable or some other form of pulse extender but it is essential that the preset pulse ends before the next clock pulse arrives. In other words, the delay from the edge of the clock pulse which reduces the counter to zero to the end of the preset pulse must not exceed 350ns.

The program inputs, with the exception of the 12.5s of kHz are programmed in binary coded decimal. The 12.5s of kHz are programmed in 3 bits of binary code. Each input must be connected to either 10V or to ground so either 2 way programming switches or pulldown resistors must be used.

The operation of the UHF synthesiser is very similar except that TTL is used instead of CMOS and a \therefore 2 fixed-modulus prescaler precedes the twomodulus counter. The prescaler is necessary because although \therefore 10/11 counters are available which will count at over 600MHz the SP8790 modulus extender will not operate with an input frequency of over 40MHz which limits the \therefore 10/11 counter input to 400MHz. The use of this fixed prescaler means that the reference frequency is 12.5kHz although the channel spacing is 25kHz.

The : 2 prescaler is unnecessary and a reference frequency of 25kHz may be used if the modulus extender is built with ECL10K logic, which allows it to operate at up to 51.2MHz input frequency. If this is done the SP8647

 \div 10/11 counter must be replaced with a faster counter such as the SP8685. Apart from the necessary ECL10K/TTL interface circuits the remainder of the system is unchanged.

The use of TTL allows all logic to use the same +5V supply but introduces complications in programming and choice of counter. There is no TTL device similar to the CD4029, so separate 4-bit binary and BCD counters must be chosen, the SN74163 and the SN74162 respectively. These counters may be used synchronously but the carry enable system is more complex than that of the CD4029. In addition since they are not reversible counters they must be programmed in 9s complement binary or 9s BCD instead of the simpler codes of the CMOS.

The remainder of each synthesiser would consist of a phase/frequency comparator, a reference frequency generator and VCO. The reference oscillator, part of the reference divider and the phase comparator could well be realised using the SP8760.

The method used to program the dividers will vary with the use to be made of the synthesiser. If a general coverage synthesiser is required all the inputs may be programmed with thumbwheel switches. Logic may be placed between the switches and the programmable counters to introduce offsets if direct programming of receiver local oscillators is required.

If a few pre-programmed channels are required, a read only memory should be placed between the channel switch and the synthesiser. The simplest ROM for this application is a diode matrix. This has the advantage that it is easily programmed and re-programmed in the field but it is somewhat bulky. If a number of equipments are required with the same chanelling a commercially programmed integrated circuit ROM may be used and in intermediate cases an ultra-violet erasable PROM is suitable. Since most mobile radio transceivers operate much of the time in duplex mode (transmit on one frequency and receive on another) it is generally more convenient to program transmit and receive frequencies separately in the ROM than to arrange logic to provide offset during reception.

Traditionally, each channel in a mobile transceiver used two quartz crystals – one for transmission and one for reception. As standards of frequency stability improve so the cost per channel continues to rise. By using a high performance synthesiser with counters of the type described in this section only one quartz crystal is required per transceiver, no matter how many channels are synthesised. Such a synthesiser is economic with as few as three channels taking into account the saving on quartz crystals alone. Savings on inventory (since the reference crystals are standard) and commonality of design can make its use justified even in single channel transceivers. 5. Citizen and Amateur Band 2 Chip Synthesiser.

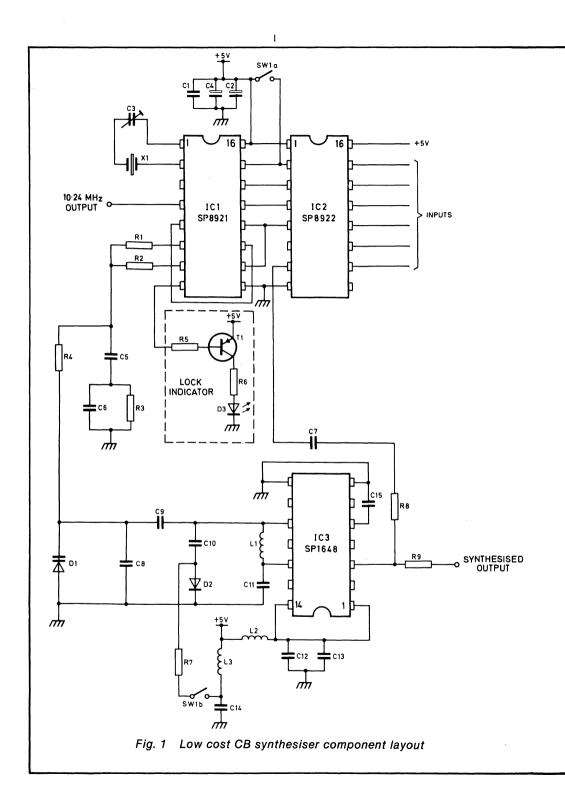
,

• Ĵ •

Citizens' Band synthesiser using the SP8921/8922

The SP8921/22 combination is intended to synthesise the frequencies required in a 40-Channel Citizens' Band transceiver. The 40 channels are spaced at 10kHz intervals (with some gaps) between 26.965 and 27.405MHz. Local oscillator frequencies for the reception of these channels with intermediate frequencies of 455kHz, 10.240MHz, 10.695MHz and 10.700MHz are also synthesised. Table 1 shows the relationship between the program input and the channel selected. By using a program other than one of the 40 given other frequencies may be selected – in fact there are 64 channels at 10kHz separation available from 26.895 to 27.525MHz and programming starts at all zeros on inputs A through F for 26.895 and each increase of one bit to the binary number on these inputs increases the channel frequency by 10kHz until all '1's give 27.525MHz. The A input is the least significant bit, F the most significant. The programming input on pin 16 of the SP8922 is normally kept high but making it low increases the programmed frequency by 5kHz. Table 2 shows the programming required to obtain various offsets.

The circuit diagram of a CB synthesiser is shown in Fig. 1. It is intended for use in double conversion receivers with IFs of 10.695 and 455kHz and generates either the frequency programmed or the frequency programmed less 10.695MHz.


If other offsets are programmed the connections to pin 15 of the SP8921 and pin 2 of the SP8922 must be altered according to Table 2.

The synthesiser consists of the SP8921 and the SP8922 plus an SP1648 voltage controlled oscillator.

The programming inputs to the SP8922 are as shown in Table 1. Logic '1' is + 3V or more, logic '0' is either ground or an open circuit. The circuit diagram of a programming input port is shown in Fig. 2. If a switch, constructed so as to select the correct combination for each channel, can be obtained this is the obvious way to program the synthesiser; otherwise a ROM may be suitably programmed and placed between the switch and the SP8922.

The crystal oscillator in the SP8921 is trimmed by a small variable capacitor, C3, which must be set up during alignment of the synthesiser so that the output frequency on pin 4 is 10.240000MHz. The only other adjustment is to set the core of L1 so that the varicap control voltage is 2.85V when the synthesiser is set to channel 30 transmit. Since the difference between transmit and receive frequencies is over 10MHz it is not possible to tune both with the same tuned circuit and an extra capacitor is switched by means of a diode during reception.

The phase/frequency comparator of the SP8921 can have an output swing from 0.5V to 3.8V but it is better to work in the range 1.5V to 3.0V as the phaseerror output voltage is more linear in this region. The ZC822 tuning diode specified for this synthesiser may be replaced by any other tuning diode provided it will tune the VC0 over the required range, or a little more, as the control voltage goes from 1.5 to 3.0V. With slight coil changes the MV2105 has been used successfully in this synthesiser.

All resistors are in ohms and $\frac{1}{8}W\pm10\%$ unless otherwise stated. Capacitor values are in microfarads unless otherwise stated.

IC1 IC2 IC3	SP8921 SP8922/SP8923 – 40 channel SP1648
T1	2N 3906
D1	ZC822, Ferranti varactor diode
D2	1N4148 Silicon diode
D3	LED lock indicator
X1	10.240MHz crystal, series mode
L1	11 turns 30 gauge cotton covered wire on Neosid A7 assembly
L2	100 microhenries RF choke
L3	100 microhenries RF choke
R1	1.0k \pm 5%
R2	1.0k \pm 5%
R3	$8.2k \pm 5\%$
R4	33k
R5	10k
R6	150 (adjust for LED brightness)
R7	1k
R8 R9	1k 470 (adjust for required output lovel)
C1	470 (adjust for required output level) 0.1
C2	100, 10V solid tantalum
C3	2 - 22pF variable
C4	100, 10V solid tantalum
C5	1,10V solid tantalum
C6	0.1
C7	1000pF
C8	22pF + 10%
C9	0.01
C10	$100 pF \pm 10\%$
C11	0.01
C12	0.1
C13	10,10V solid tantalum
C14	0.1
C15	1000pF
SW1	2 pole, 1 way switch,
	(receive/transmit)

Channel No.	Input Code F E D C B A	Output frequency with $R/T = 0$ (MHz)
1 2 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 23 24 25 26 27 8 9 30 31 23 34 5 6 7 8 9 10 11 23 24 25 26 27 8 9 30 31 23 34 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 20 12 23 24 25 26 27 8 9 30 31 32 33 4 5 6 7 8 9 20 1 22 23 24 25 26 27 8 9 30 31 23 34 35 6 7 8 9 30 31 32 33 4 5 6 7 8 9 30 31 32 33 4 35 6 37 8 9 30 31 32 33 4 35 36 37 8 9 30 31 32 33 4 35 36 37 8 9 30 31 32 33 4 35 36 37 38 9 30 31 32 33 4 35 39 30 31 32 33 4 35 36 37 38 39 40 31 32 33 4 35 36 37 38 39 40 31 32 33 40 31 32 33 4 35 36 37 38 39 40 31 32 33 4 35 36 37 38 39 40 31 32 33 4 35 36 37 38 39 40 31 32 33 40 31 32 33 40 35 34 35 36 37 38 39 40 31 32 33 34 35 30 31 32 33 34 35 36 37 38 39 40 31 32 33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	$\begin{array}{c} 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0 \$	26.965 26.975 26.985 27.005 27.015 27.025 27.035 27.055 27.065 27.075 27.085 27.105 27.105 27.125 27.135 27.155 27.165 27.165 27.175 27.205 27.215 27.205 27.215 27.255 27.255 27.255 27.255 27.265 27.275 27.285 27.295 27.305 27.315 27.325 27.315 27.355 27.345 27.355 27.385 27.395 27.395 27.395 27.395

Table 1SP8922/1 O/P frequencies with 10.240 crystal(0 = contact open, 1 = contact closed to Vcc)

Offset	SP8921	SP8922
0	0	0
–455kHz	0	1
–10.240MHz	1	0
–10.695MHz	1	1

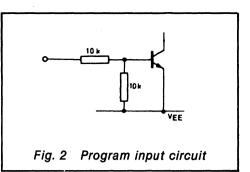
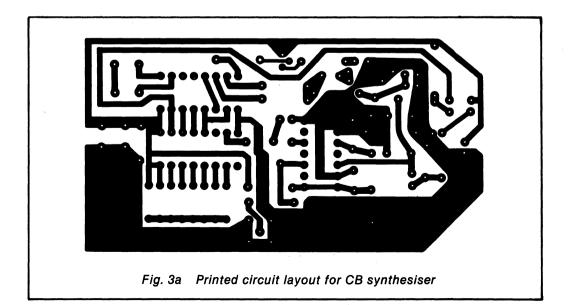
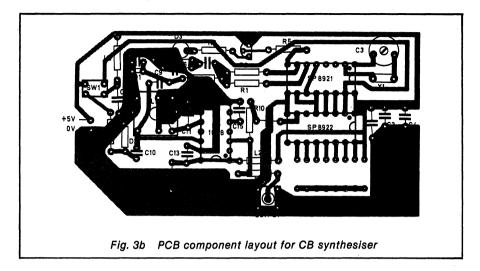




Table 2

The low pass filter of the PLL consists of C5, C6 and R3. If faster lock (at the expense of larger noise and reference sidebands) is required the filter may be redesigned. If the synthesiser is used in a scanning receiver, a switched filter should be used to give fast lock during scanning but a slower lock and cleaner Signal during normal operation. The lock output on pin 8 of the SP8921 is used to light an indicator when the loop is *not* locked and should also be used, in a transmitter or transceiver, to prevent transmission when the loop is unlocked.

Fig. 3 shows the circuit board layout and component placing of this synthesiser. It requires a single +5V supply and draws about 60mA. The component list is given in Fig. 1. The performance is improved if double-sided board is used with a ground plane on one side. A small further improvement would come from the use of a grounded screening can over the whole system.

The synthesiser has reference frequency sidebands 50dB down at 1.25kHz from the carrier. All output over 5kHz from the carrier is over 70dB down. Lock time for a change from channel 0 to channel 40 (a frequency change of 440kHz) is around 35ms. Photographs of the output spectrum and the change of control voltage with time during a step from channel 0 to channel 40 are shown in Fig. 4. Stepping from transmit to receive or vice versa takes somewhat longer because of the much larger change of frequency but is generally complete within 75ms.

This synthesiser is quite basic but has adequate performance for the majority of CB applications. If improved performance is required there are two possibilities; an improved FET oscillator having lower floor noise instead of the SP1648 or an improved low pass filter to reduce reference frequency sidebands. Fig. 5 shows the circuit diagram of an improved oscillator using an E304 FET and the same coil and varactor as in the simple synthesiser. Fig. 6 shows a high performance synthesiser using an FET oscillator, a twin-T filter in the VCO control line to reduce reference sidebands at 1.25kHz to below —90dB, an SL1610C buffer giving over 60dB isolation from the output line back into the VCO, and separate voltage stabilisers for the oscillator and the logic of the system.

Fig. 7 shows a block diagram of the use of the synthesiser in a typical double conversion 27MHz Citizens' Band transceiver with direct generation of the transmit frequency. In such a system it is essential that the power amplifiers in the transmitter are well isolated from the VCO, otherwise phase modulation and quite unacceptable splatter will occur.

To reduce the need for isolation the system shown in Fig. 8 may be used the synthesiser runs with an offset of 10.240MHz duringt ransmission and this signal is mixed with the 10.240 signal from the synthesiser to produce the final 27MHz for transmission. Such a transmitter is less liable to phase modulation resulting from inadequate screening but the output of the mixer must be well filtered to prevent transmission of the difference of 16.3MHz and 10.240MHz as well as their sum.

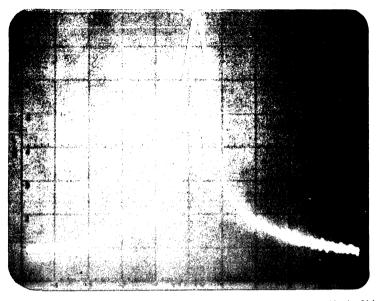
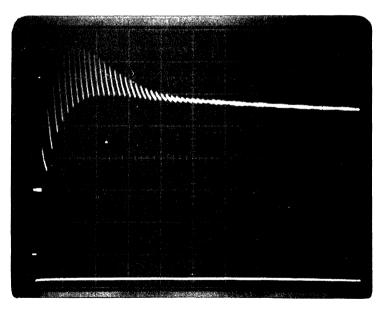
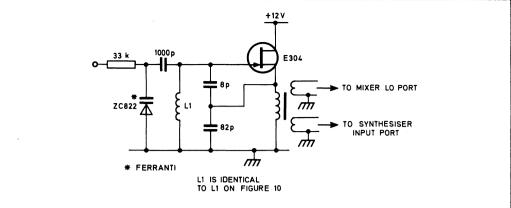
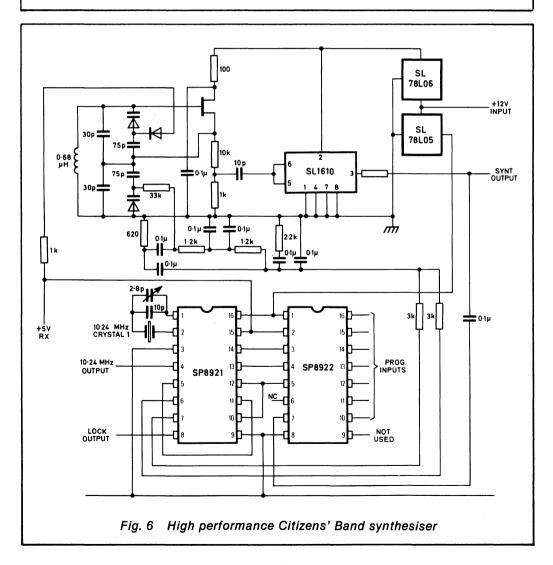
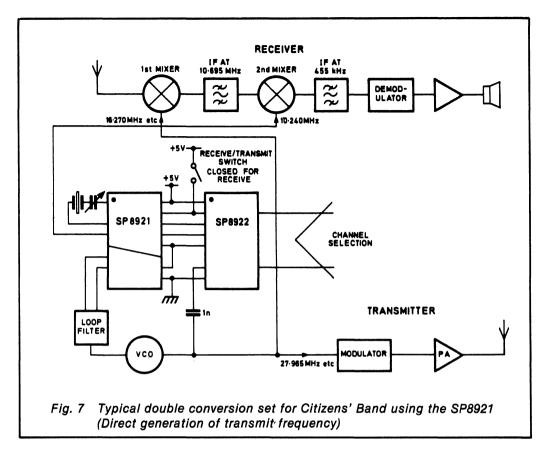
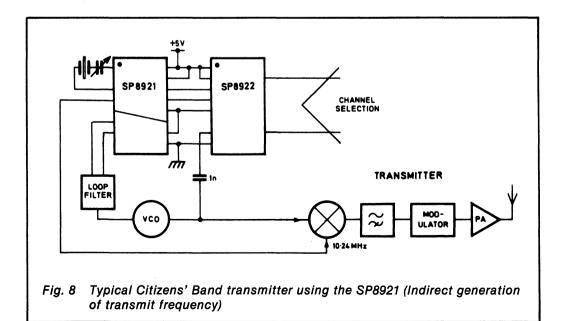


Fig. 4a Typical output spectrum of basic synthesiser (Vert.:16dB/div., Horiz.:2kHz/div.,) BW:300Hz, fo:27.065MHz

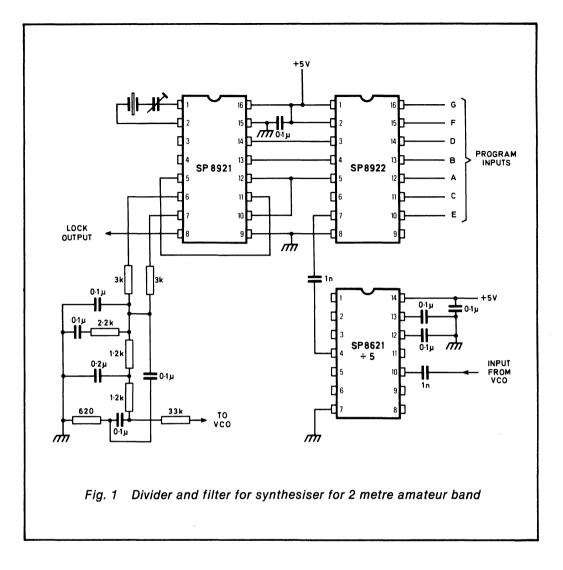




Fig. 4b Typical transient response of basic synthesiser. Response of varactor line to step program change 1-40. Vert.:200mV/div., Horiz.:5ms/div. N.B. Droop of response is due to the measuring instrument being AC-coupled.

European 2m amateur band synthesiser

In Europe, the '2-metre' Amateur Band covers frequencies from 144MHz to 146MHz. Different countries have their own conventions about which parts of the band are used for different modes of operation. Some are internationally agreed but all use 25kHz channel spacing for channelised FM, unlike the USA where the standard is 15 or 30kHz. If low side injection and an IF of 10.7MHz are chosen the SP8921 and SP8922 CB synthesiser chips may be used to generate local oscillator frequencies over the whole 2 metre band at 25kHz intervals. The basic system is shown in Fig. 1.

This note does not describe the VCO because various types are available and there is no general agreement as to which is the best for the purpose. At Plessey Semiconductors we built the system using a very low noise, high stability VCO using a Surface Acoustic Wave (SAW) delay line but this technology is only just available and is not yet competitive in amateur applications. Probably the best system would use an FET 'Kalitron' oscillator with a buffered output both to the transceiver mixer and to the divider input, but in any case the VCO should have as little noise and phase jitter as possible and should tune from about 133 to 135.6MHz for a tuning voltage range of 1.5V to 3V.


The divider uses an SP8622 \div 5 prescaler followed by the SP8921 and the SP8922. The SP8921, as in the CB synthesiser, also contains the crystal oscillator and its associated divider and the phase/frequency comparator.

The SP8622 is an easily-used circuit. It requires an input AC level of between 400 and 800 mV p-p and has two bias points which should be decoupled to ground with 0.1 microfarads as should its supply. Its input and output connections are made via 1000pF capacitors. No precautions against self-oscillation are necessary in this application as an input should always be present.

The SP8922 receives a signal from the SP8622 and is used to program the channel required. Table 8 shows the inputs required on pins 10 to 16 (A to G) for various channels. Pin 2 (the Receive/Transmit pin in 27MHz CB operation) is connected to the supply. Since the SP8922 was not designed for amateur 2-metre use there is no simple relationship between the program inputs and the channel selected so either complex switch wiring or a read only memory is required. A commercial ROM or a diode matrix could be used.

If the synthesiser is used in a transmitter it is necessary to mix a frequencymodulated 10.7MHz signal with its output and filter the image. If the transmitter is to be used with repeaters the ROM (or switch) must contain logic to provide a 600kHz shift between transmission and reception. The connections between the SP8922 and the SP8921 are made as in the CB application.

The SP8921 is used exactly as in the 27MHz CB application except that pin 15, the Receive/Transmit pin is grounded. The crystal frequency is 10.240MHz and the low-pass filter in the phase comparator is the more complex of the two described previously in order to reduce 1.25kHz reference frequency sidebands in the synthesiser. The filter should be shielded both from the dividers and the VCO to obtain best performance. The lock output on pin 8

should be connected to prevent transmission when the synthesiser is unlocked. In transmitters, the VCO should be very well shielded from the PA stages to prevent interference and unlocking due to feedback.

If the synthesiser is required to interpolate between the 25kHz channels, the crystal oscillator in the SP8921 should be replaced by two crystal oscillators – one to synthesise the channels accurately and the other, a variable crystal oscillator with a tuning control (possibly using a varactor) used to interpolate or provide Receiver Incremental Tuning (RIT). It is better to use external oscillators than try to make the SP8921 switch between these two functions.

The performance of the synthesiser is good – reference sidebands can be reduced to —90dB on the signal and there are no spurious outputs visible on a 100dB spectrum analyser but care is needed to shield and decouple the various parts and their power supplies. The ultimate spectral purity of the output not only depends on the synthesiser but also on the baseband noise of the VCO used.

Transceiver	Channel	Actual	Pin Number						
Frequency (MHz)		Synthesiser Frequency (MHz)	16 G	12 A	13 B	11 C	14 D	10 E	15 F
145.000 145.025 145.050 145.075 145.100 134.125 145.150 145.175 145.200 145.225 145.250 145.525 145.550 145.575 145.600 145.625 145.650 145.675 145.700 145.725 145.750 145.775	SO[RO(T)] R1(T) R2(T) R3(T) R4(T) R5(T) R6(T) R7(T) R8(T) R9(T) R10(T) S20 S21 S22 S23 S24 [RO(R)] R1(R) R2(R) R3(R) R4(R) R5(R) R6(R) R7(R)	134.300 134.325 134.350 134.375 134.400 134.425 134.450 134.425 134.450 134.550 134.550 134.550 134.800 134.825 134.850 134.875 134.900 134.925 134.950 134.975 135.000 135.025 135.050 135.075	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	001100110011001110011100111	1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0	00001111111111111110000	1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1	000000000011111111111111111111111111111	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$
145.800 145.825 145.850	R8(R) R9(R) R10(R)	135.100 135.125 135.150	0 1 0	0 0 1	1 1 1	0 0 0	1 1	י 1 1	1 1

 Table 1
 Programming for 2-metre synthesiser

_

6. Characteristics and Interfacing for the SP8000 Series.

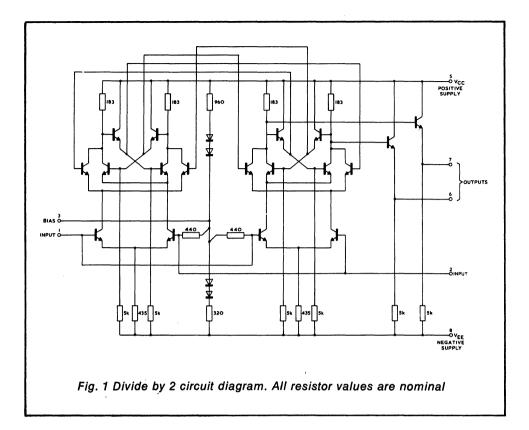
Characteristics and interfacing for the SP8000 series high speed dividers

INTRODUCTION

The SP8000 series of high frequency dividers achieve their characteristics of high operating frequency (extending beyond 1GHz for some of the range) and low power from the use of emitter coupled switching circuits. The dividers themselves are all built from the basic 'divide by 2' circuit shown in Figure 1. The divide by 2 circuit is a master-slave arrangement, and has a very flexible set of design constraints.

Perhaps the most significant of these is the size of the tail current supplying each differential pair. The different characteristics of devices in the SP8000 series are achieved by variation of this parameter. For example, the SP8667, a 1.2GHz decade, operates with a tail current in the first stage of 6mA giving a typical current consumption of 80mA for the four divide by 2 stages comprising the decade whereas the SP8655, a 100MHz divide by 32, operates with a tail current of 350 microamps giving a typical current consumption of only 10mA for the five divide by 2's.

Another technique employed to improve speed is that of driving the clock transistor (Ta, Tb in figure 1) directly instead of through a level shifting emitter follower. A further refinement is to use a common base stage as a collector load to reduce collector mode capacitance and this is employed on the faster types such as the SP8614, 5, 6 divide by 4 and SP8665, 6, 7 divide by 10. This does of course have the disadvantage that the power supply voltage has to be increased from the normal 5.2V to 6.8V.


This tailoring of the divider circuits means that it is not possible to treat the SP8000 series of dividers as a consistent family for interfacing purposes. The variations of the dividers are covered later in this note.

GENERAL PHYSICAL LAYOUT CONSIDERATIONS

The high performance of the SP8000 series of counters can only be exploited if the appropriate construction techniques are employed. All signal lines, both input and output, should be characterised as transmission lines and terminated correctly to avoid reflections. This is particularly important at the device input as the high input sensitivity and speed of most of the dividers makes them prone to counting reflected edges. Care must also be taken on output lines as the counters generate extremely fast edges (typically 2 ns).

The dividers are usually employed in systems which predominantly operate at much lower frequencies than the dividers themselves and so many of the precautions necessary with large scale ECL logic systems are not necessary. The most usual interconnection technique employed at high frequencies is microstrip line.

Clearly, to facilitate line terminations it is desirable that the input impedance of the dividers should be much higher than the characteristic impedance of the line. It is recommended that lines with a characteristic impedance of

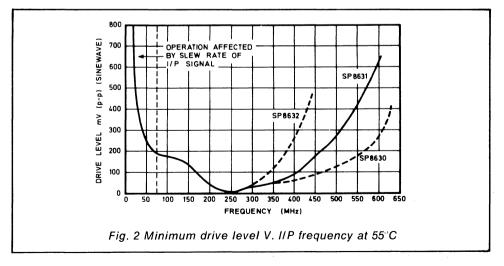
50 ohms be used if possible. Higher characteristic impedances should be avoided as correct termination becomes more difficult to achieve and cross-talk and noise performance deteriorates.

In addition to these signal line restrictions the normal precautions appropriate to the frequencies and edge speeds being handled should be observed. These include the use of a ground plane (already required for the microstrip signal lines) which may be the positive supply.

The selection of the positive supply for the ground plane ensures that the poor immunity of ECL gates with respect to their positive (Vcc) supply is not a performance hazard. All components, particularly decoupling capacitors, should be of a suitable type for the frequencies involved.

If it is not desirable to have a positive ground (for example, where a predominantly TTL system employs one or two high speed dividers), then it is permissible to operate SP8000 dividers with a negative ground. However, it should be noted that output levels are referenced to the positive supply and any drift in this will be reflected in the output levels. Great care should be taken with supply decoupling, preferably decoupling every ECL package Vcc supply pin to ground so that supply noise does not cause mis-counting of a divider.

Provided that these simple precautions are observed the SP8000 dividers can be applied to a system without any problems.


INPUT INTERFACING

The high speed and sensitivity of the SP8000 series of dividers is achieved in part by omitting the level shifters normally employed in ECL counter circuits. These are replaced by input resistors which bias the clock inputs at the centre of their active region. For this reason AC coupling to the clock inputs is recommended for the majority of the dividers.

Although DC coupling to clock inputs is permissible, in practice it is not easy to provide a source which will track the input bias level sufficiently accurately to maintain the specified sensitivity. The only exceptions to this rule are the SP8600 and SP8601 divide by 4 circuits, where the inputs are not prebiased and a bias chain has to be provided externally, and the SP8640, 8641, 8642 and 8643 divide by 10/11 circuits which have an ECL III type clock input and so should be driven from an ECL III or ECL 10K gate. As no internal bias is provided for the clock inputs on SP8640 type dividers, if capacitive coupling is desired then a bias chain is required.

The technique of input prebiasing, used on most of the SP8000 dividers, which is responsible for their high sensitivity, does have one disadvantage. If Fig. 2 the graph of input sensitivity against frequency for a typical SP8630, is studied, it can be seen that the curve has a pronounced dip at around 250MHz. This is interpreted as a tendency to oscillate in the absence of any input signal. It should be emphasised that provided a signal greater than the minimum specified is present at the clock input then there is no tendency to miscount.

If the divider is being used in a continuous system such as a frequency synthesiser then clearly this is not a problem. However, in other applications, such as frequency counters, where the input would not be continuous this characteristic is clearly an embarrassment. Fortunately it is a simple matter to remove this problem. The input prebias is counteracted by adding a small bleed resistor to Vee on the clock input. The required value of this resistor varies from type to type. It is not important which clock input is offset, but a slight decrease in sensitivity is usually experienced. In almost all cases the counters will still meet the guaranteed performance specification.

The only devices in which this characteristic is not present are:

(a) SP8601

This divide by 4 circuit has no prebias on the inputs and was originally designed to allow transformer coupling to the inputs. A resistor is added in the emitter of one clock input to introduce a small offset to prevent self clocking. The SP8601 may be driven from any ECL II type gate or divider with ECL II type outputs.

(b) SP8643

This divide by 10/11 circuit has ECL III type clock inputs with internal pulldown resistors. It should be noted that the SP8685 500MHz divide by 10/11 is designed for AC input coupling and does *not* have internal pulldown resistors.

REFERENCE BIAS AND INPUT DECOUPLING

Most of the SP8000 series of dividers are provided either with complementary clock inputs or reference bias points. To exploit their full sensitivity and frequency specification the reference bias points should be decoupled to the systems RF ground. A suitable value for this decoupling capacitor is 15–1000pF. Values greater than 1000pF should be avoided as damage may be caused to the reference bias chain when power is applied to the circuit.

Similar comments apply to the unused clock inputs of those devices which have complementary clock inputs.

EXTENDING THE FREQUENCY AND SENSITIVITY

Frequency

Obviously little can be done to improve the upper frequency limit of the dividers except to observe the construction advice given above.

The low frequency end is not a fundamental limitation though. The specified low frequency cut off is measured with a sine wave input. However, the devices are edge sensitive and so they will operate perfectly down to DC provided the edge speed that they are driven with exceeds, for most of the dividers, 100V/microsecond (i.e. 6.4ns rise time for an 800mV input signal).

Sensitivity

If the sensitivity of SP8000 dividers is not adequate then there are available several microwave integrated circuits which will provide 10–26dB of gain up to 1GHz and beyond. The use of these amplifiers and also that of input circuits for extending the low frequency limit is described at the end of this Appendix.

OUTPUT CIRCUITS

The SP8000 dividers have output circuits which may be classified into two types: open collector or emitter follower. Most of the dividers have emitter follower outputs giving ECL III type outputs, which are easily interfaced. One of the dividers has an emitter follower output, but with a limited output swing. This can be increased by an additional external emitter load. This is the SP8602, 8607 divide by 2 circuit.

Only three of the dividers have open collector outputs. These are the SP8600, 8601 divide by 4, the SP8634 divide by 10 and SP8655, 8657, 8659 low power dividers. The divide by 4 and divide by 10 circuits both have complementary current sources. These are designed to operate in a non-saturating mode. The low power dividers have a saturating free collector output.

Both output circuits can interface with TTL and CMOS (providing that the open collector does not go more than 12V more positive than Vee). Type 1 can also directly interface with ECL II type inputs whereas type 2 can directly drive a much higher load and is particularly useful where the ECL divider and the following TTL or CMOS operate off of the same supplies. The recommended operation of these open collector outputs is described below.

Type 1 Open Collector Output

SP8600, 8601

The output current of these devices is guaranteed to be at least 2mA. It has a small temperature coefficient and can be expected to be less than 3.5mA under all conditions. Care should be taken to prevent the output transistors saturating as this will reduce the maximum operating frequency.

SP8634

This BCD divide by 10 circuit has type 1 open collector current source outputs on the BCD outputs and on one carry output (the other carry is an ECL II type.) They have a higher operating point than those on the SP8600 and so it is not possible to use them to drive ECL gates. The BCD outputs have a limited drive capability. The carry output can drive 3 TTL loads with a lower collector load. For maximum performance it is recommended that the ECL carry output (pin 9)be used to drive a level shift circuit such as the ECL 10K type MC10125.

Type 2 Open Collector Output

SP8655, 8657, 8659

These low power dividers have a type 2 open collector output. This type of output has two advantages in low power applications. The saturating output allows the device to operate off the same supply as its following TTL or CMOS dividers and the power consumption of the output can be tailored to the particular system's power and speed requirement. The maximum DC TTL load that can be accommodated is 2 standard TTL inputs with a 2.7 kilohms pullup resistor.

Emitter Follower Outputs

All the remaining dividers in the SP8000 series have emitter follower outputs and all except the SP8602 and 8607 can be directly interfaced with ECL II by the addition of a 1.5 kilohm resister to Vee. ECL III or 10K levels are generated by the addition of a series resistor. It should be noted that the devices are not capable of driving 50 ohm transmission lines directly. Some may however, be used to drive series terminated 50 ohm lines, provided sufficient current is maintained in the output emitter follower.

SP8602, 8607

These devices, although having an emitter follower output which can drive ECL II, III or 10K via interfaces do not have sufficient drive capability for a low impedance transmission line. If operation in a transmission line environment is desired then an ECL line receiver such as the MC10116 should be used.

SUMMARY

The SP8000 series of high speed dividers represents a family of devices whose input and output characteristics present the engineer with a sufficient diversity to allow the correct solution for any system. The devices are easy to use in a system provided the constraints covered above are observed.

Input characterisation for the SP8000 series

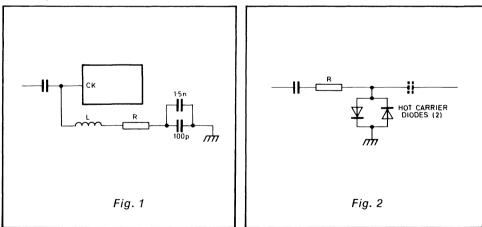
Because of the wide frequency range of the SP8600 series emitter-coupled logic dividers, the input drive and impedance should be optimized.

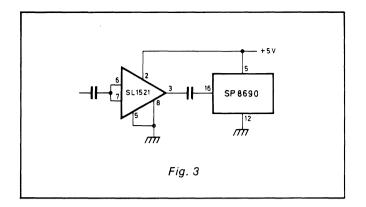
The input impedance from 50MHz to 600MHz is mostly capacitive. Beyond 600MHz it becomes inductive.

To optimize the circuit to handle large overloads, small signals, and changes of input impedance versus operating frequency some suggestions are offered in Figs. 1, 2 and 3.

Where the frequency range to be used covers an impedance change of greater than three to one, as in Fig. 6, between 50MHz to 300MHz, a circuit shown in Fig. 1 could be added to the input. By using the appropriate input impedance curve and calculating the value of R & L, the total input impedance would be more constant over the required frequency range.

In the case of large overloads the circuit shown in Fig. 2 could be used.


When using this circuit there is typically a 3dB loss in sensitivity but the dynamic range would be increased from two to one to over four to one. The value of R depends on the maximum overdrive voltage and the hot carrier diodes used.


For low level inputs an SL1521 wideband amplifier could be used as a preamplifier for a divider as shown in Fig. 3.

By using the SL1521 and the SP8690 low power 200MHz divide by 10/11 divider, as shown in Fig. 3, the minimum sensitivity is reduced from 143mV RMS to 36mV RMS. Both units are self biased and require only coupling capacitors for interconnections. Also both parts operate from the same +5V supply at 145mW total power.

When using the SP8600 series it is recommended that good low inductance RF capacitors be used on all bias and power supply decoupling points.

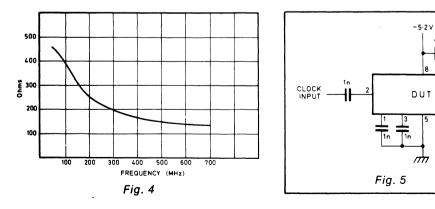
The printed circuit board should be laid out with all input leads as short as possible, ample ground plane around the device and using other normal RF techniques.

SP8602, 7 INPUT IMPEDANCE

The input impedance is shown in Fig. 4 for the frequency range of 50MHz to 700MHz.

> 10 ╢

8


 \overline{m}

INPUT CAPACITANCE

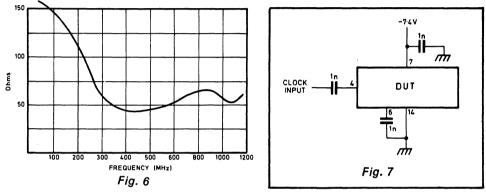
The capacitance at 50MHz is 3.1pF.

TEST CIRCUIT

The test circuit is shown in Fig. 5. All tests were made at 25°C.

SP8615, 6

INPUT IMPEDANCE


The input impedance is shown in Fig. 6 for the frequency range of 50MHz to 1.2GHz.

INPUT CAPACITANCE

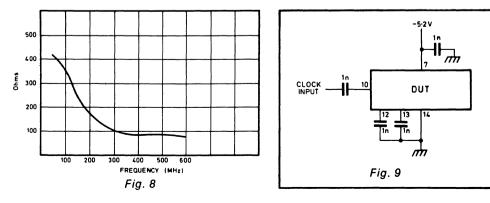
The capacitance at 50MHz is 4.6pF.

TEST CIRCUIT

The test circuit is shown in Fig. 7. All tests were made at 25°C.

SP8630

INPUT IMPEDANCE


The input impedance is shown in Fig. 8 for the frequency range of 50MHz to 600MHz.

INPUT CAPACITANCE

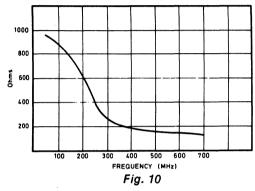
The capacitance at 50MHz is 3.9F.

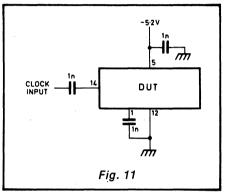
TEST CIRCUIT

The test circuit is shown in Fig. 9. All tests were made at 25°C.

SP8634

INPUT IMPEDANCE


The input impedance is shown in Fig. 10 for the frequency range of 50MHz to 700MHz.


INPUT CAPACITANCE

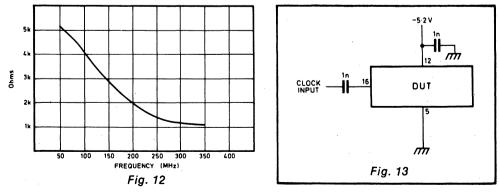
The capacitance at 50MHz is 4.1pF.

TEST CIRCUIT

The test circuit is shown in Fig. 11. All tests were made at 25°C.

SP8643, 7

INPUT IMPEDANCE


The input impedance is shown in Fig. 12 for the frequency range of 50MHz to 350MHz.

INPUT CAPACITANCE

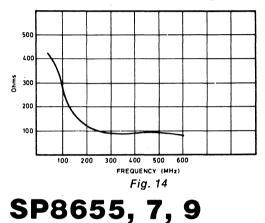
The capacitance at 50MHz is 2.4pF.

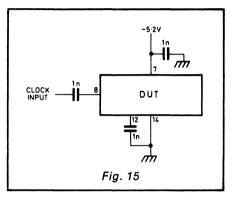
TEST CIRCUIT

The test circuit is shown in Fig. 13. All tests were made at 25°C.

SP8650

INPUT IMPEDANCE


The input impedance is shown in Fig. 14 for the frequency range of 50MHz to 600MHz.


INPUT CAPACITANCE

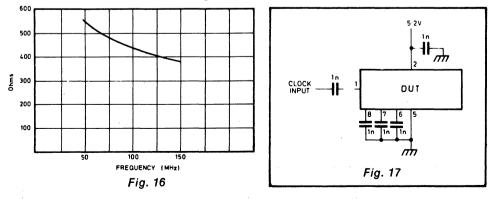
The capacitance at 50MHz is 6.0pF.

TEST CIRCUIT

The test circuit is shown in Fig. 15. All tests were made at 25°C.

INPUT IMPEDANCE

The input impedance is shown in Fig. 16 for the frequency range of 50MHz to 100MHz.


INPUT CAPACITANCE

The capacitance at 50MHz is 3.6pF.

TEST CIRCUIT

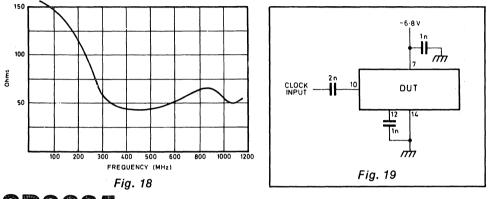
1

The test circuit is shown in Fig. 17. All tests were made at 25°C.

SP8665, 7

INPUT IMPEDANCE

The input impedance is shown in Fig. 18 for the frequency range of 50MHz to 1.2GHz.


100

INPUT CAPACITANCE

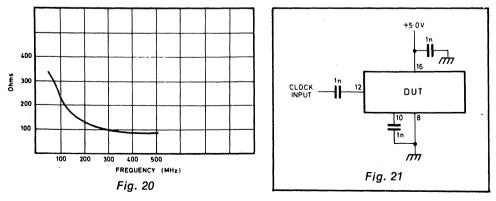
The capacitance at 50MHz is 4.5pF.

TEST CIRCUIT

The test circuit is shown in Fig. 19. All tests were made at 25°C.

SP8685

INPUT IMPEDANCE


The input impedance is shown in Fig. 20 for the frequency range of 50MHz to 500MHz.

INPUT CAPACITANCE

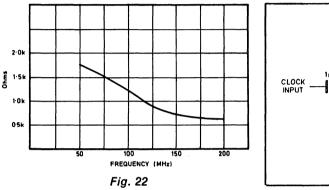
The capacitance at 50MHz is 8.7pF.

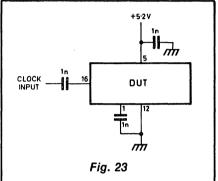
TEST CIRCUIT

The test circuit is shown in Fig. 21. All tests were made at 25°C.

SP8690

INPUT IMPEDANCE


The input impedance is shown in Fig. 22 for the frequency range of 50MHz to 200MHz.


INPUT CAPACITANCE

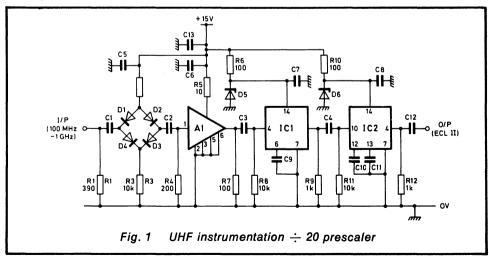
The capacitance at 50MHz is 6.4pF.

TEST CIRCUIT

The test circuit is shown in Fig. 23. All tests were made at 25°C.

Input characterisation for the SP8000 series The use of hybrid IC front end amplifiers to improve the sensitivity of SP8000 series high speed dividers

The availability of low-cost hybrid amplifiers with a performance extending to 1GHz, coupled with SP8000 High Speed Dividers, allows an unparalled increase in instrument performance.


For example, using an Amperex ATF 417 as a preamplifier for an SP8616 (with a Schottky barrier diode limiter), the divider's sensitivity can be improved by at least 15dB. The circuit diagram is shown in Fig. 1. Typical room temperature performance is shown in Fig. 2, and a suitable PCB layout is given in Fig. 3.

Low end performance is limited by signal rise time requirements for the SP8616, whilst high end sensitivity is limited by the amplifier limiter performance. This can be improved by operating the ATF 417 off a higher supply. By increasing the supply to, say, +20V, a gain in sensitivity of, typically, 5dB would be expected at 1GHz.

Similar results can be obtained using the ATF 417 with other dividers such as the SP8667, 1.2GHz decade divider.

CIRCUIT DETAILS

The signal input (100MHz–1GHz) is AC-coupled to a Schottky barrier diode bridge which limits at 100mV p/p. The signal is then amplified by the hybrid A1. This combination gives about 15dB of gain with a supply of 15V. The amplifier is AC coupled, via C3, to an SP8616 \div 4 circuit (IC1). R7 provides an input offset to prevent 'no signal' oscillation. The drive capability of IC1, is increased by R8 and its output capacitively coupled to IC2 via C4 R9 provides the input offset for IC2. The output of IC2 is suitable for driving ECL II.

COMPONENTS

D1 - D4 A1 IC1 IC2 D5 D6 R6, R10 C1 - C12 C13	: 1nF ceramic, e.g. ITW EMCAPS : 0.33 microfarad		
o SIGNÁL (dBm ref 50.a.) 01- 05-			
95 - 20 10 21 - 30 - 40			

Fig. 2 Typical performance of UHF prescaler

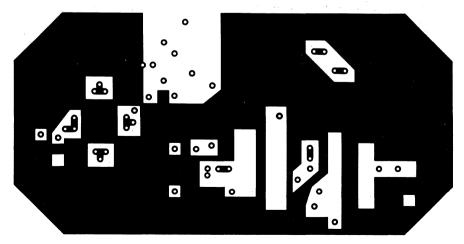


Fig. 3a Component side of board

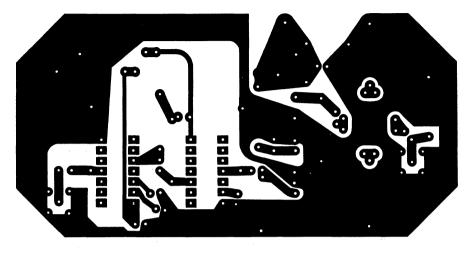


Fig. 3b Solder side of board

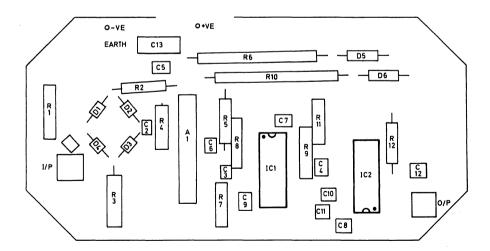


Fig. 3c Component location

7. Technical Data.

NJ8811

CONTROL CIRCUIT FOR FREQUENCY SYNTHESIS

The NJ8811 is an N-channel MOS integrated circuit that provides all the decoding and controlling circuitry for frequency synthesisers. It is intended to be used in conjunction with a 4-modulus prescaler such as the SP8901 or SP8906 to produce a universal binary coded synthesiser for mobile radio applications.

FEATURES

- High Frequency Range
- Low Pin Count
- Direct Interface to ROM or PROMS
- Preset Channel Spacings 40, 50, 60 kHz and Sub-multiples.
- High Comparison Frequency.
- Low Level Sinewave Crystal Oscillator Input up to 10 MHz.
- Systems Clock Available Constant Data Select Frequency of 1.2kHz.
- Microprocessor Compatible.

GENERAL DESCRIPTION

The NJ8811 can be described by 3 system blocks: the reference divider, the programmable divider and the phase/frequency comparator, as shown in Fig.2. All control inputs and outputs are TTL compatible.

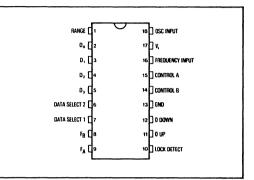


Fig.1 Pin connections

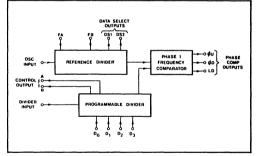


Fig.2 NJ8811 block diagram

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

 $V_{s}: 5.0V \pm 0.25V$

Temperature range: - 30°C to +70°C

Characteristic	Value			Units	Conditions	
	Min Ty		Мал	Units	Conditions	
Oscillator input	50			mV RMS	4.8MHz reference oscillator AC coupled sinewave FA, FB O/C.	
Max. oscillator input frequency	10			MHz	200 mV RMS sinewave.	
Supply current		8.0	12	mA	All data inputs O/C.	
Max. counter input frequency	2.5			MHz	Input TTL compatible.	
DS1/DS2 Output High Level Low Level	2.4		0.4	v v	Outputs TTL compatible.	
Phase comparator output current sink	1			mA	Ø _U Ø _D 0.5V max.	

The Reference Divider

The reference divider is driven externally from a 4.8MHz crystal oscillator and can be externally preset to one of sixteen division ratios. These division ratios enable all commonly used reference frequencies to be applied to the phase/frequency comparator. Selection is accomplished using the two pins FA and FB. These pins may be connected to ground (logic '0') or left open circuit (logic '1'), connected to Data Select 1 output or to Data Select 2 output. On-chip decoding enables the latter two states to be recognised as independent states. All sixteen selections may be latched on-chip by grounding the Data Select 2 output. Table 2 gives a table of reference frequencies that can be preset using a 4.8MHz crystal oscillator.

The data select outputs originate from the reference divider. The data select outputs are independent of the preset reference

Programmable Divider

The programmable division section of the NJ8811 consists of two 4-bit programmable dividers and an 8-bit programmable divider. The two 4-bit dividers control the module of the external prescaler and the 8-bit counter determines the total count period. The SP8906/NJ8811 combination is capable of dividing by all integer values between 3840 and 69,375. When the Range pin on the NJ8811 is grounded the programme range is shifted to between 36,608 and 102,143.

The programming data is multiplexed as 4 words of 4 bits, completing a 16 bit binary number. This input data may be stored on-chip by grounding the Data Select 2 output.

Phase/Frequency Comparator

The outputs of the fixed and variable dividers on the NJ8811 are internally connected to a phase/frequency comparator. The comparator provides three open drain outputs. The logic diagram is shown in Fig.3.

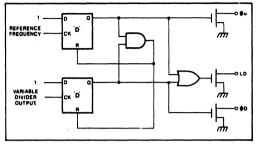


Fig.3 Logic diagram of phase frequency comparator

Data Selection

To programme the synthesiser the following information is required:

- The reference comparison frequency—equal to the channel spacing when using the SP8906, or half when using the SP8901.
- The frequency of the VCO.

The frequency programme information is presented to the device in multiplexed form of 4 word of 4 bits. The reading of this data by the device is controlled by the two data select outputs from the device. This sequence is shown in Fig.4.

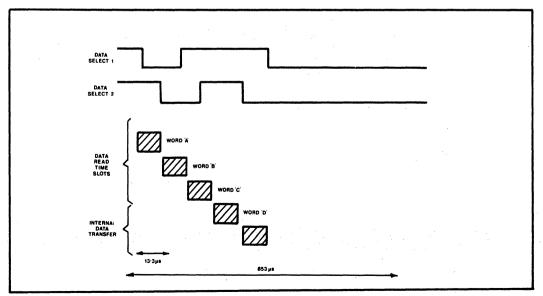


Fig.4 Data Read timing diagram

FB/FA	GND	O/C	DS1	DS2
Gnd	20	10	5	2.5
oic	25	12.5	6.25	3.125
DS1	30	15	7.5	3.75
DS2	37.5	18.75	9.375	4.6875

Table 1 Reference frequency selection (all frequencies in kHz)

Table 2 shows the VCO frequency programme range that can be obtained using NJ8811 and SP8901.

Channel Spacing	40 kHz	50 kHz	60 kHz
Low Range (MHz)	76.&	96.0 - (1000)	115.2 - (1000)
High Range (MHz)	732.2 — (1000)	915.2 — (1000)	
Channel Spacing	20 kHz	25 kHz	30 kHz
Low Range (MHz)	38.4 - 693.8	48.0-867.2	57.6 - (1000)
High Range (MHz)	366.1 (1000)	457.6 — (1000)	549.2 — (1000)
Channel Spacing	10 kHz	12.5kHz	15kHz
Low Range (MHz)	19.2 — 346.9	24.0-433.6	28.8 - 520.4
High Range (MHz)	183.1 — 510.8	228.8-638.4	274.6 - 766.1
Channel Spacing	5kHz	6.25 kHz	7.5kHz
Low Range (MHz)	9.6 — 173.5	12.0-216.8	14.4 - 260.2
High Range (MHz)	91.5-255.4	114.4 - 319.2	137.3 - 383.0

 Table 2
 Frequency programme range for SP8901 (with 4.800MHz crystal)

Table 3 shows the VCO frequency programme range that can be obtained using NJ8811 and SP8906.

Channel Spacing	20 kHz	25 kHz	30 kHz
Low Range (MHz)	76.8 (500)	96.0 - (500)	115.2 (500)
High Range (MHz)	_	_	
Channel Spacing	10 kHz	12.5kHz	15kHz
Low Range (MHz)	38.4 (500)	48.0 - (500)	57.6 (500)
High Range (MHz)	366.1 (500)	457.6 — (500)	
Channel Spacing	5kHz	6.25 kHz	7.5kHz
Low Range (MHz)	19.2 — 346.9	24.0-433.6	28.8-(500)
High Range (MHz)	183.1 — (500)	228.8 — (500)	274.6 (500)
Channel Spacing	2.5kHz	3.125 kHz	3.75 kHz
Low Range (MHz)	9.6 - 173.5	12.0-216.8	14.4 - 260.2
High Range (MHz)	91.5-255.4	114.4-319.2	137.3 383.0

Table 3 Frequency programme range for SP8906 (with 4.800 MHz crystal)

To calculate the Programme number for a given VCO frequency and channel spacing the following equation is used:

Programme Number N = $\frac{1000 \times f}{C}$ = R where f = VCO frequency in MHz C = channel spacing in kHz R = range number (R = 3840 range = 1) (R = 36608 range = 0)

The programme number is converted to a 16 bit binary number and is segregated as 4 words of 4 bits.

The least significant word is first entered during the Data Read 1 time slot via the inputs D_3 , D_2 , D_1 and D_0 and the most significant last (Data Read 4 time slot).

For example, with a VCO frequency of 937MHz and. channel spacing of 12.5kHz

- f = 937 C = 12.5 R = 36608
- N = 38352

Conversion to a 16 bit binary number is performed as follows:

	Result
1. Divide by 4096	9.363
2. Write down the number before decimal place (WORD 'D')	9
3. Subtract this number	0.363
4. Multiply by 16	5.812
5. Write down the number before decimal place (WORD 'C')	5
6. Subtract this number	0.812
7. Multiply by 16	13.000
 Write down the number before decimal place (WORD 'B') Subtract this number 	13 0
10. Multiply by 16	0
11. Write down nearest whole number (WORD 'A')	0

The four decimal numbers obtained may now be directly converted to binary, and these are presented to the data inputs as shown in Table 4.

D\$1	D82	D,	D ₂	D,	D。	
0	1	0	0	0	0	WORD 'A'
0	0	1	1	0	1	WORD 'B'
1	0	0	1	0	1	WORD 'C'
1	1	1	0	0	1	WORD 'D'

Table 4

The data may be latched internally by grounding the DS2 output. This is useful when interfacing to a microprocessor. The NJ8811 is also compatible with most types of PROM and ROM for data coding applications.

NJ8812

CONTROL CIRCUIT FOR FREQUENCY SYNTHESIS

r

The NJ8812 is an N-channel MOS integrated circuit that provides all the decoding and controlling circuitry for frequency synthesisers. It is intended to be used in conjunction with a 2-modulus prescaler such as the SP8793 to produce a universal binary coded synthesiser for mobile radio applications.

FEATURES

- High Frequency Range
- Low Pin Count
- Direct Interface to ROM or PROMS
- Preset Channel Spacings 20, 25, 30 kHz and Sub Multiples.
- High Comparison Frequency.
- Low Level Sinewave Crystal Oscillator Input up to 10 MHz.
- Systems Clock Available Constant Data Select Frequency of 1.2kHz.
- Microprocessor Compatible.

GENERAL DESCRIPTION

The NJ8812 can be described by 3 system blocks: the reference divider, the programmable divider and the phase/frequency comparator, as shown in Fig.2. All control inputs and outputs are TTL compatible.

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

 $V_{s}: 5.0V \pm 0.25V$

Temperature range: - 30°C to + 70°C

RANGE []	
D., [2	17 D V
D, []3	16 FREQUENCY INPUT
D, C 4	15 CONTROL OUTPUT
0, [5	14 D NC
DATA SELECT 2	13 GNO
DATA SELECT 1	12 0 00WN
и в С в	11 0 UP
FA C9	10 LOCK DETECT
L	

Fig.1 Pin connections

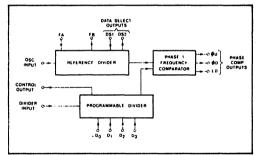


Fig.2 NJ8812 Block diagram

Characteristic	Value		Units	Conditions		
	Min	Typ.	Max	Units	Conditions	
Oscillator input	50			mV RMS	4.8MHz reference oscillator AC coupled sinewave FA, FB O/C.	
Max. oscillator input frequency	10			MHz	200 mV RMS sinewave.	
Supply current		8.0	12	mA	All data inputs O/C.	
Max. counter input frequency	5.0			MHz	Input TTL compatible.	
DS1/DS2 Output High Level Low Level	2.4		0.4	v	Outputs TTL compatible.	
Phase comparator output current sink	1			mA	Ø _U Ø _D 0.5V max.	

The Reference Divider

The reference divider is driven externally from a 4.8MHz crystal oscillator and can be externally preset to one of sixteen division ratios. These division ratios enable all commonly used reference frequencies to be applied to the phase/frequency comparator. Selection is accomplished using the two pins FA and FB. These pins may be connected to ground (logic '0') or left open circuit (logic '1'), connected to Data Select 1 output or to Data Select 2 output. On-chip decoding enables the latter two states to be recognised as independent states. All sixteen selections may be latched on-chip by grounding the Data Select 2 output. Table 2 gives a table of reference frequencies that can be preset using a 4.8MHz crystal oscillator.

The data select outputs originate from the reference divider. The data select outputs divide a crystal oscillator frequency by 4096 and are independent of the preset reference frequencies.

Programmable Divider

The programmable division section of the NJ8812 consists of a 6-bit programmable divider and an 8-bit programmable divider. The 6-bit divider controls the modulus of the external prescaler and the 8-bit counter determines the total count period. The SP8793/NJ8812 combination is capable of dividing by all integer values between 1600 and 11840. When the Range pin on the NJ8812 is grounded the programme range is shifted to between 6720 and 16960.

The programming data is multiplexed as 3 words of 4 bits and 1 of 2 bits completing a 14-bit binary number. This input data may be stored on chip by grounding the Data select 2 output.

Phase/Frequency Comparator

The outputs of the fixed and variable dividers on the NJ8812 are internally connected to a phase/frequency comparator. The comparator provides three open drain outputs. The logic diagram is shown in Fig.3.

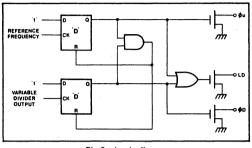


Fig.3 Logic diagram

Data Selection

To programme the synthesiser the following information is required:

- 1. The reference comparison frequency typically equal to the channel spacing.
- 2. The frequency of the VCO.

The frequency programme information is presented to the device in multiplexed form. The reading of this data by the device is controlled by the two data select outputs from the device. This sequence is shown in Fig.4.

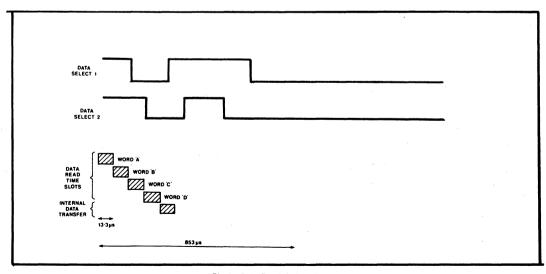


Fig.4 Data Read timing diagram

FB/FA	GND	O/C	DS1	D\$2
Gnd	20	10	5	2.5
0/C	25	12.5	6.25	3.125
DS1	30	15	7.5	3.75
DS2	37.5	18.75	9.375	4.6875

Table 1 Reference frequency selection (all frequencies in kHz)

Channel Spacing	20 kHz	25 kHz	30 kHz
Low Range (MHz)	32.0-(225)	40.0-(225)	48.0-(225)
High Range (MHz)	134.4—(225)	168.0—(225)	
Channel Spacing	10 kHz	12.5 kHz	15 kHz
Low Range (MHz)	16.0 - 118.4	20.0—148.0	24.0-177.6
High Range (MHz)	67.2 — 169.6	84.0—(212)	100.8—(225)
Channel Spacing	5 kHz	6.25 kHz	7.5 kHz
Low Range (MHz)	8.0-59.2	10.0 - 74.0	12.0 - 88.8
High Range (MHz)	33.6-84.8	42.0-106.0	50.4 - 127.2

Channel Spacing	2.5kHz	3.125 kHz	3.75 kHz
Low Range (MHz)	4.0 - 29.6	5.0-37.0	6.0 44.4
High Range (MHz)	16.8 - 42.4	21.0-53.0	25.2 - 63.6

Table 2 Frequency programme range

To calculate the Programme number for a given VCO frequency and channel spacing the following equation is used:

Programme Number N = $\frac{1000 \text{ x f}}{C}$ - R

where f = VCO frequency in MHz C = channel spacing in kHz R = range number (R = 1600 range = 1) (R = 6720 range = 0)

The programme number is converted to a 14 bit binary number and is segregated as 3 words of 4 bits and 1 word of 2 bits.

The least significant word is first entered during the Data Read 1 time slot via the inputs D_3 , D_2 , D_1 and D_0 and the most significant last (Data Read 4 time slot).

The second least significant word contains only two bits entered via the inputs D, and D₀. Data presented to the inputs D₂ and D₃ during the second time slot is ignored by the NJ8812.

For example, with a VCO frequency of 121.2MHz and channel spacing of 50.0kHz

f	-	121.2
С	=	50.0
R	=	1600
N	=	824

Conversion to a 14-bit binary number is performed as follows:

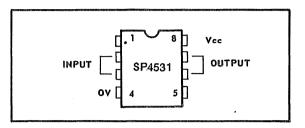
		Kesult
1.	Divide by 640	1.2875
2.	Write down number before decimal place (WORD 'D')	1
	Subtract this number	0.2875
	Multiply by 16 Write down number before decimal place	4.60
	(WORD 'C')	4
6.	Subtract this number	0.60
7.	Multiply by 40	24.0
8.	Write down nearest whole number (WORD 'A + B')	24

The three decimal numbers obtained may now be directly converted to binary, and these are presented to the data inputs as shown in Table 3.

DS1	DS2	D ₃	D ₂	D ,	Do		
0	1	1	0	0	0	WORD 'A'	
0	0	х	x	0	1	WORD 'B'	
1	0	0	1	0	0	WORD 'C'	
1	1	0	0	0	1	WORD 'D'	
Table 3							

The data may be latched internally by grounding the DS2 output. This is useful when interfacing to a microprocessor. The NJ8812 is also compatible with most types of PROM and ROM for data coding applications.

Desul



CONSUMER CIRCUITS

SP4531 VHF/UHF ÷ 64 PRESCALER

The SP4531 is one of the new range of Plessey Consumer high speed dividers which offer improved input sensitivity and input impedance characteristics.

The device is intended for use in television frequency synthesis systems. It has a division ratio of 64 with dual ECL outputs and incorporates an on-chip preamplifier with a differential input. The input pins may be used as UHF and VHF inputs with a slight loss of sensitivity if suitable drive circuitry is employed.

ουτ

ABSOLUTE MAXIMUM RATINGS

Supply voltage, V _{CC}	+7V
Input voltage	2.5V pp
Ambient operating temperature	-10 ⁰ C to 65 ⁰ C
Storage temperature	-55°C to 125°C

- On-chip wideband amplifier
- High input sensitivity
- High input impedance
- Low output radiation
- Complementary ECL output

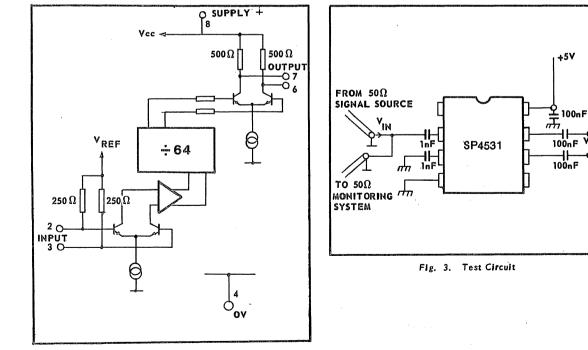


Fig. 2. Block Diagram

ELECTRICAL CHARACTERISTICS

Test Conditions (unless otherwise stated) -

Tamb. =
$$+25$$
 C, $Vcc = +5V$

Characteristic		Pin		Value			Conditions
Characteristic	Characteristic		Min Typ Max		Units	Conditions	
Operating voltage ran	ge	8	4.5	5	5.5	v	
Supply current		8		75	95	mA	
Input voltage	80MHz	2	35		200	mV	
	300MHz	2	20		200	mV	rms, sine wave
	500MHz	2	20		200	m∨	with 1nF decoupling
	700MHz	2	20		200	m∨	On pin 3
	950MHz	2	20		150	mV	
Output voltage		6	0.8			v	peak-peak, no load
		7	0.8			v	
Output Imbalance		6,7			0.1	v	
Output impedance		6		500		Ω	
		7		500		Ω	

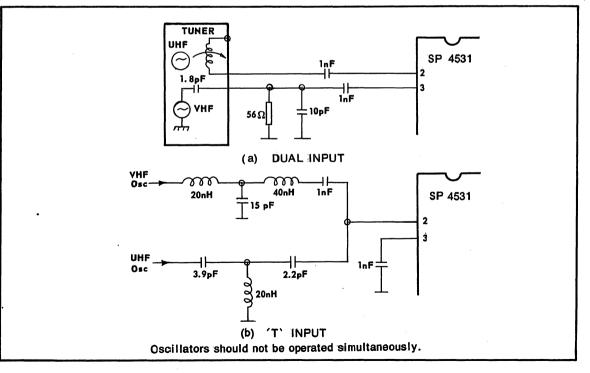


Fig. 4. Combined Input Operation.

CONSUMER CIRCUITS

SP4550/51

1GHz ÷ 256

The SP4550/1 are part of the new range of Plessey Consumer high speed dividers which offer improved input sensitivity and higher input impedance.

The devices are intended for use in television frequency synthesis systems. They have a division ratio of 256 with a single, (SP4550) or complimentary, (SP4551) ECL output and incorporate an on-chip preamplifier with a differential input. The input pins may be used as UHF and VHF inputs with a slight loss of sensitivity if suitable drive circuitry is employed.

ABSOLUTE MAXIMUM RATINGS

Supply voltage V _{CC}	+7V
Input voltage	2.5V p-p
Ambient operating temperature	–10 ⁰ C to 65 ⁰ C
Storage temperature	–55 ^o C to 125 ^o C

FEATURES

- On-chip wideband amplifier
- High input sensitivity
- High input impedance
- Low output radiation
- Single (SP4550) or complimentary (SP4551) ECL output

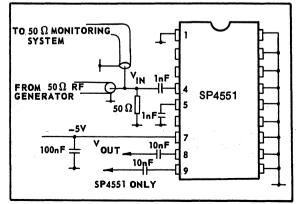


Fig. 3. Test Configuration.

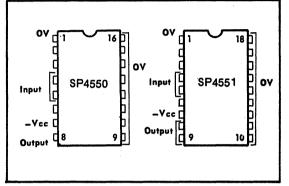
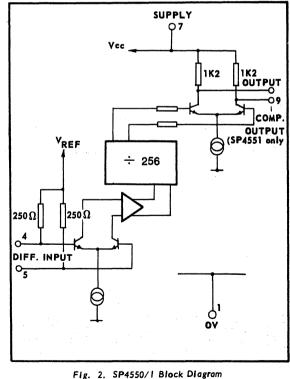



Fig. 1. Pin Connections

ELECTRICAL CHARACTERISTICS

Test Conditions (unless otherwise stated);-

Tamb =
$$+25$$
 C, V cc = $+5V$

Characteristic		Pin	Value			Units	Conditions
Ollaracteristic		F 311	Min	Тур	Max	0	Conditions
Operating voltage rang	e	7	4.5	5	5.5	v	
Supply current		7		60	90	mA	
Input voltage	80MHz	4,5	35		200	m∨	rms, sine wave
	300MHz 500MHz 700MHz 950MHz		20 20 20 20		200 200 200 200		
Output voltage	-	8 9	0.8 0.8			v v	peak-peak, no load SP4551 only
Output impedance	Imbalance	8,9 8 9		1.2 1.2	0.1	ν κ <u>Ω</u> κΩ	SP4551 only SP4551 only

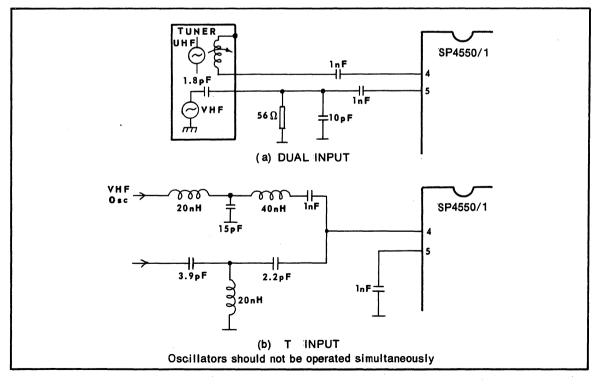


Fig. 4. Combined Input Operation.

CONSUMER CIRCUITS

SP4541 VHF/UHF ÷ 256 PRESCALER

The SP 4541 are ECL divide by 256 which will operate at frequencies in excess of 950 MHz, and are intended for use as a prescaler in television receiver synthesiser tuners.

PLESSEY

SEMICONDUCTORS

The device has a typical power dissipation of 300 mW at the nominal supply voltage of 5.0.

OPERATING NOTES

The input is terminated by a nominal 800Ω and should be AC coupled to the signal source. Input power to the device is terminated to ground by the decoupling capacitors on the reference pins. Input coupling and reference decoupling capacitors should be of a type suitable for use at a frequency of 1 GHz.

The SP4541 output is designed to interface with TTL which has a common V_{EE} (ground). The specified fan-out of 3 standard TTL inputs may be increased to 6 standard or 5 high power/Schottky inputs at a logic zero level of 0.5V. At low frequency the output will change when one of the clock inputs changes from a low to a high level.

The SP4541 output is designed to provide complementary emitter follower O/Ps so that the rise time of the output can be adjusted to suit system requirements.

FEATURES

- 5.0 Volt Operation
- Self-Biasing Clock Inputs
- Input Dynamic Range of 10mV to 600mV p-p Over Entire Frequency Range
- Variable Input Hysteresis Capability for Wide Band Operation
- Push Pull TTL O/P

ABSOLUTE MAXIMUM RATINGS

Power supply voltage $V_{CC} - V_{EE}$	0V to +10V
Input voltage, clock inputs	2.5V p-p
Output current	+30 mA to -30 mA
Operating junction temperature	+150 ⁰ C
Storage Temperature	-55 ⁰ C to +150 ⁰ C

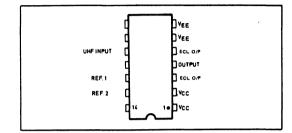
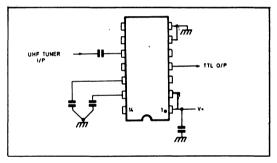



Fig. 1 - Pin connections

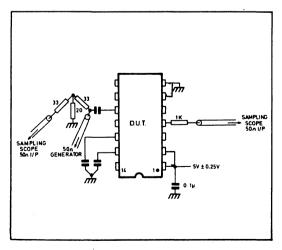


Fig. 3 - AC test circuit

SP4541 ELECTRICAL CHARACTERISTICS

Supply voltage:	5.0 ± 0.25∨
Supply current: 60 mA typ.	
90 mA max	
Temperature range:	0 ⁰ C to 70 ⁰ C
Clock inputs: AC coupled, self-biasing via	800 Ω

Test conditions (unless otherwise stated):

Supply voltage: V_{EE} = 0V, V_{CC} = 5.0V ±0.25

Clock input voltage: 10mV to 600mV p+p

 $T_{amb} 5^{\circ}0 \text{ to } + 70^{\circ}C$

Characteristics	[Value		Units	Conditions
	Min.	Тур.	Max.	Unita	Conditions
Clock Inputs					
Max. I/P frequency	950	1100		MHz	
Min. I/P frequency			80	MHz	
Output SP 4140					
Low Level	0		0.45	v	3 mA sink $V_{CC} = 5.0V$
High Level	3.8		4.6	v	-1mA source T _{amb} 25 ^o C
Output SP4150					
Voltage Swing	600	800		mV	No load each output
Supply Current		6.0	90	mA	V _{CC} = 5V

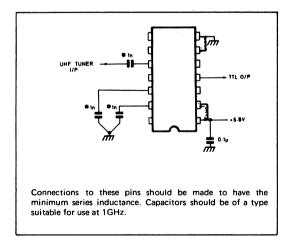


Fig. 4 - Application circuit

Capacitors are 1 nf unless otherwise stated. Values should be increased if operation below 10 MHz is desired.

Fig. 5 - Wideband operation

PACKAGE DETAILS

The SP 4541 is packaged in 14-lead DIP.

SP8000 SERIES HIGH SPEED DIVIDERS

SP8600A&B 250MHz ÷ 4 COUNTER

The SP8600 is a fixed ratio emitter coupled logic $\div 4$ counter with a specified input frequency range of 15–250 MHz. The operating temperature range is specified by the device code suffix letter: 'A' denotes -55° C to $+125^{\circ}$ C, 'B' denotes 0° C to $+70^{\circ}$ C operation,

Intended for use with an external bias arrangement and capacitive coupling to the signal source, the SP8600 can be either single driven, or double driven with two complementary input signals.

The outputs are complementary free collectors that can have their load resistors taken to any bias voltage up to 12V more positive than V_{EE} .

Vec (+VE) INPUT NPUT (-VE) (convected to N.C. CASE) CM8

Fig. 1 Pin connections (bottom view)

FEATURES

- Low Power
- Free Collector Outputs to Interface to TTL
- 250 MHz ÷ 4 Over Full Military Temp. Range

APPLICATIONS

- Synthesizers Mobile and Fixed
- Counters
- Timers

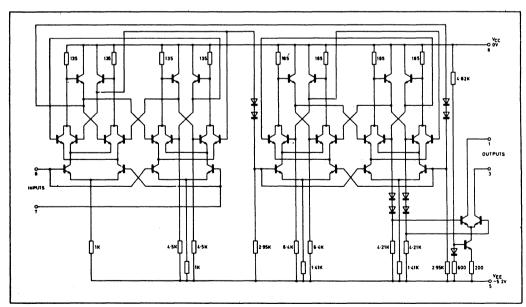


Fig. 2 Circuit diagram

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

Tamb :	'A' grade	55°C to +125°C
	'B' grade	0°C to +70°C

Supply voltage 0V -5.2V

Input voltage (single driven — other input decoupled to ground plane) Input voltage (double complementary input drive) Input bias voltage

V_{CC} 400 to 800 mV p-p V_{EE} 250 to 800 mV p-p Bias chain as in test circuit (see Fig. 3 and operating notes).

		Value				
Characteristic	Min.	Min. Typ.		Units	Conditions	
Max. input frequency	250	390*		MHz	Typical figure quoted at +25°C.	
Min. input frequency with sinusoidal input Min. slew rate of			25	MHz		
square wave input for correct operation Output current	1.6		20	V/µs mA	Single input drive Input f=250 MHz.	
Power supply drain current		16*	25	mA	$V_{EE} = -5.2 \text{ V}$, V_{BIAS} as Fig. 3.	

*At +25°C

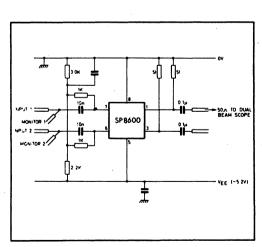


Fig. 3 Test circuit

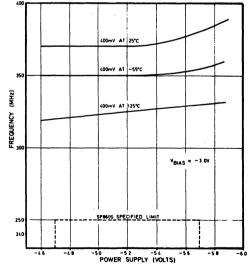


Fig. 4 Maximum input frequency v. power supply voltage (typical)

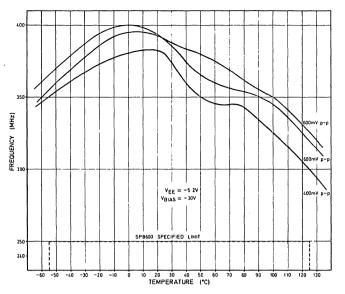


Fig. 5 Maximum input frequency v. temperature

OPERATING NOTES

The circuit performance obtained from the SP8600 is optimized if normal high frequency rules for circuit layout are obeyed — leads should be kept short, capacitors and resistors should be of non-inductive types, etc.

The signal source is normally AC coupled to one of the inputs or, if complementary signals are available, to both inputs. The inputs require an external bias chain to set the DC potential on the inputs (see Fig. 3). No appreciable change in performance is observed over a range of DC bias from -2.5V to -3.5V.

Any tendency for the circuit to self-oscillate in the absence of input signal (or when the input signal is very small) can be overcome by offsetting the two inputs by approximately 40mV, using, for example, the bias arrangement shown in Fig. 6. The input wave form may be sinusoidal, but below 25 MHz incorrect operation may occur because of the limited slew rate of the input signal. A square wave input with a slew rate greater than $20V/\mu s$ ensures correct operation down to DC.

The output is in the form of complementary free collectors with at least 2mA available from them. For satisfactory high frequency interfacing to ECL or Schottky TTL the circuit techniques illustrated in Fig. 7 are recommended.

For maximum frequency operation, it is essential that the output load risistor values be such that the output transistors do not saturate. If the load resistors are connected to the OV rail, then saturation can occur with resistance values greater than 600Ω . Of course, if the load resistors are taken to a more positive potential, then higher values can be used. N.B. If only one output is used, the other output should be connected to OV.

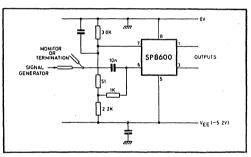


Fig. 6 Bias arrangement to prevent self-oscillation under no-signal conditions

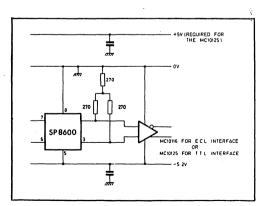


Fig. 7 ECL and Schottky TTL interfacing

ABSOLUTE MAXIMUM RATINGS

Power supply voltage VccVEE Input voltage VIN	10V Not greater than supply voltage in use
Bias voltage on o/p's Vour-	

 Bias voitage on o/p s vout—
 14V

 Ver
 14V

 Operating junction temperature
 --175 °C max.

 Storage temperature
 --55 °C to +175 °C

SP8000 SERIES HIGH SPEED DIVIDERS

SP8601A & B

150MHz÷4

The SP8601 is a fixed ratio emitter coupled logic $\div 4$ counter with a maximum specified input frequency of 150 MHz but with a typical maximum operating frequency well in excess of this (see Typical Operating Characteristics). The operating temperature range is specified by the final coding letter: 'A' denotes -55 °C to ± 125 °C, 'B' denotes 0 °C to ± 70 °C.

The SP8601 can be operated with single input drive or with double, complementary, I/P drive. It can be driven with direct coupling from ECL II levels (or from an SP8602 device), or it can be capacitively coupled to the signal source if an external bias is provided.

There are complementary free collector outputs that can have their external load resistor connected to any bias up to 12 volts more positive than VEE.

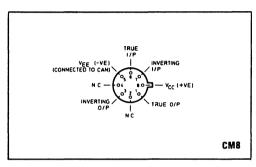


Fig. 1 Pin connections (bottom view)

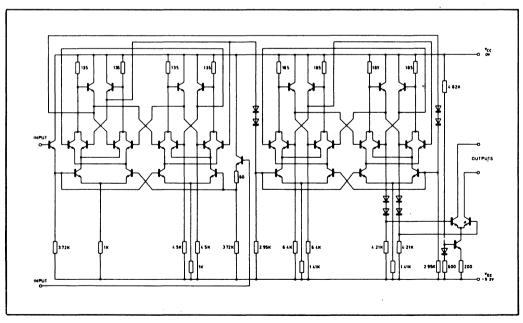


Fig. 2 Circuit diagram

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

T _{amb} : 'A' grade 'B' grade
Operating supply voltage Vcc VEE
Input voltage (single drive — other input decoupled to ground plane)
Input voltage (double drive) Bias voltage

-55°C to +125°C 0°C to +70°C 0V. -5.2V ±0.25V

400 to 800 mV (p-p) 250 to 800 mV (p-p) Bias chain as in test circuit (see Fig. 2).

	Value				
Characteristic	Min	Тур.	Max.	Units	Conditions
Max. input frequency Min. input freq. with sinusoidal input.	150		15	MHz. MHz.	
Min. slew rate of square wave input for correct operation			20	V∕µs	Single input drive
Output current	1.6			mA	Input freq. == 150 MHz. Rload == 50Ω
Power supply drain current		18	25	mA	$V_{EE} = -5.2V$

OPERATING NOTES

Circuit performance obtained from the SP8601 is optimised if normal high frequency rules for circuit layout are obeyed — leads should be kept short, capacitors and resistors should be of non-inductive types, etc.

The signal source is normally directly coupled into the device, which will tolerate a wide range of input bias voltages, but was designed for inputs from ECL II levels and can therefore be satisfactorily driven from SP8602 range of counters. The bias voltage on the input marginally affects the overall power consumption of the device (For typical operating characteristics with varying bias voltages see Fig. 4).

If it is not practicable to directly couple the input signal, then a bias chain similar to the one shown in Fig. 3 can be used.

The input waveform may be sinusoidal, but below about 10 MHz incorrect operation may occur because of the limited slew rate of the input signal. A square wave input with a slew rate of greater than 20 V/ μ s ensures correct operation down to DC.

The output is in the form of complementary free collectors with 2 mA min. available from them. The output voltage swing obviously depends on the value of load resistor used and also the frequency of operation. The following table gives some typical examples of output voltage for different load resistors. With careful board layout to minimise capacitance these figures can easily be exceeded.

Min. Output Voltage	Load Resistor	Input Frequency
1.1V	1kΩ	120 MHz
320mV	200Ω	150 MHz
80mV	50Ω	180 MHz

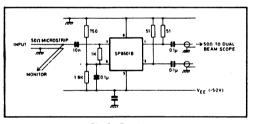
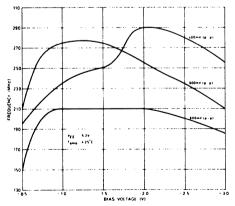



Fig. 3 Test circuit

TYPICAL OPERATING CHARACTERISTICS

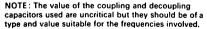


Fig. 4 Maximum input frequency v. bias voltage at single input drive levels of 400, 600 and 800 mV (typical device)

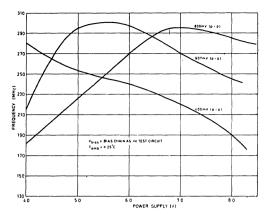


Fig. 5 Maximum frequency v. power supply voltage at single input drive levels of 400, 600 and 800 mV (typical device)

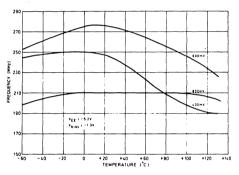


Fig. 6 Maximum input frequency v. temperature at single input drive levels of 400, 600 and 800 mV (typical device)

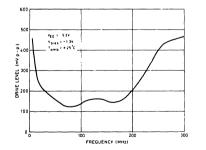


Fig. 7 Minimum single input drive level for correct operation v. input frequency (typical device)

APPLICATION NOTES

The SP8601 used with two SP8602 series $\div 2$ counters to give a 500 MHz divide-by-sixteen prescaler is shown in Fig. 8. Capacitors marked thus * may need to be increased in value for low frequency operation.

For correct operation when interfacing with TTL and ECL II the circuits shown in Figs. 9, 10 and 11 are recommended.

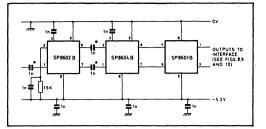


Fig. 8 Divide-by-sixteen prescaler

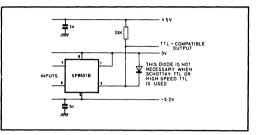


Fig. 9 TTL interface (fanout = 1 TTL gate)

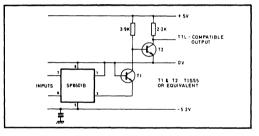


Fig. 10 High fanout TTL interface

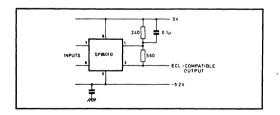


Fig. 11 ECL II interface

ABSOLUTE MAXIMUM RATINGS

Power supply voltage Vcc—VEE Input voltage V _{in}	10 V Not greater than the supply voltage in use
Bias voltage on outputs	
Vout-VEE	14 V
(see Operating Notes)	
Operating junction temperature	
Storage temperature	–55°C to +175°C

vided.

SP8000 SERIES HIGH SPEED DIVIDERS

SP8602 A&B 500MHz+2

The SP8602 is a tixed ratio ECL-2 counters with maximum specified I/P frequencies of 500, MHz. The operating temperature range is specified by the final coding letter: 'A' denotes $-55^{\circ}C$ to $+125^{\circ}C$, 'B' denotes $0^{\circ}C$ to $+70^{\circ}C$. The device can be operated with single input drive; in both cases the input is normally capacitively coupled to the signal source. Two complementary emitter follower outputs are pro-

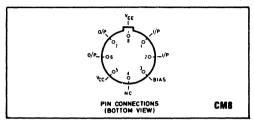


Fig. 1 Pin connections

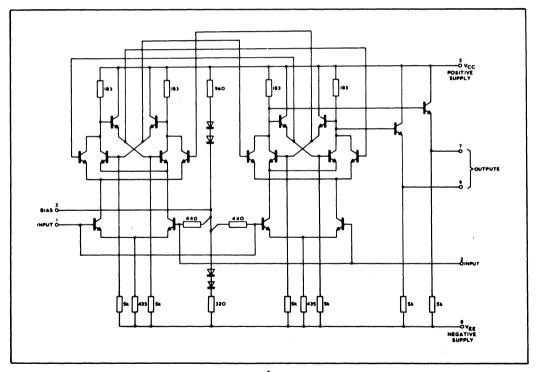


Fig. 2 Circuit diagram (all resistor values are nominal)

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated)

Tamb 'A' Grade	55°C to +125°C
'B' Grade Operating supply voltage: V _{CC}	0°C to +70°C OV
V _{ee}	-5.2V± 0.25V
Input voltage (single drive- other input and bias decoupled to ground plane)	400 to 800 mV p-p
Input voltage (double drive- bias decoupled to ground plane)	250 to 800 mV p-p
Output load	500 Ω and 3pF

01			Value			
Characteristic	Туре	Min.	Тур.	Max.	Units	Conditions
Max. input freq. Min. input freq. with sinusoidal input	SP8602A,B.	500	20	40	MHz MHz	V _{ee} = -5.2V
Min. slew rate of square wave input for correct operation			30	100	V/µS	single input drive
Output voltage swing		400			mV	V _{ee} = -5.2V T _{amb} = -55°C to +70°C
Output voltage swing		350			mV	V _{ee} = -5.2V T _{amb} = +125°C I/P freq. = 500 MHz
Power supply drain current			12	20	mA	V _{ee} = -5.2V See note 1

NOTES

1. In practice, the 3.5kΩresistors specified in the test circuit (Fig.3) are not essential; omission of these resistors will reduce the maximum supply current to 18mA.

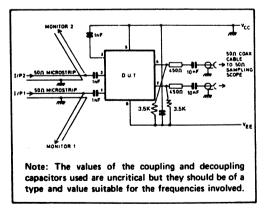


Fig. 3 Test circuit

ABSOLUTE MAXIMUM RATINGS

Power supply voltage V _{cc} -V _{ee}	8V
Input voltage V _{in}	Not greater than the
	supply voltage in use
Output current lout	10 mA
Operating junction	+150°C
temperature	
Storage temperature	–55°C to +150°C
range	

OPERATING NOTES

It is recommended that a positive earth plane be used for the circuit layout, thus preventing damage if the output emitter followers are inadvertently shorted to ground. All components used in the circuit layout should be suitable for the frequencies involved, and outside a controlled impedance environment, leads and connections should be kept short to minimise stray inductance.

The signal source is normally capacitively coupled to the input. A 1000pF capacitor is usually sufficient. If the input signal is likely to be interrupted a 15K Ω resistor should be connected between the input and the negative rail. In the single drive case it is preferable to connect the resistor to the input not in use – in the double drive case either input can be used. The addition of the input pulldown resistor causes a slight loss of input sensitivity, but it prevents circuit oscillation under no-signal conditions.

The input waveform may be sinusoidal, but below about 40 MHz the operation of the circuit becomes dependent on the slew rate of the input rather than the amplitude. A square wave input with a slew rate of more than 100 V/ μ S will permit correct operation down to DC.

The output voltage swing can be increased by the addition of a DC load to the output emitter followers. Pulldown resistors of 1.5 K to the negative rail provide an increase of typically 25% in the output voltage swing.

APPLICATION NOTES

SP8602B interfacing to ECL 10 000 and ECL III

By increasing the output voltage swing using external pulldown resistors (see operating notes), the SP8602B canbe coupled directly into an E C L III or E C L 10 000 gate, but there is a reduction of the noise immunity. Where noise immunity is important the device can be connected to an E C L 10 000 or E C L III line receiver.

Divide-by-16 frequency scaler.

The SP8602B interfacing with the SP8601B and high-speed TTL to give a divide-by-16-frequency scaler is shown in Fig. 4.

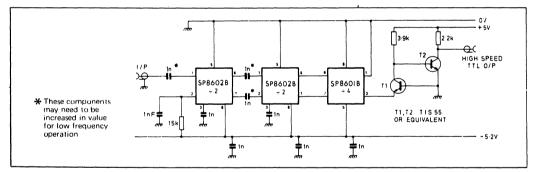


Fig. 4 Divide-by-16 frequency scaler

SP8000 SERIES HIGH SPEED DIVIDERS

SP8605 B & M 1.0GHz ÷ 2 SP8606 B & M 1.3GHz ÷ 2

The SP8605/6 UHF counters are fixed ratio : 2 asynchronous emitter coupled logic counters with, in the case of the SP8606 a maximum operating frequency in excess of 1.3GHz, over a temperature range of 0° C to 70° C (B Grade) and -40° C to +85° C (M Grade). The input is normally capacitively coupled to the signal source but can be DC coupled if it is required. The two complementary emitter follower outputs are capable of driving 100-ohm lines and interfacing to ECL with the same positive supply. The SP8605/6 requires supplies of OV and -5.2V (\pm 0.25V).

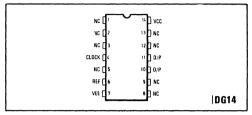


Fig. 1 Pin connections

FEATURES

- DC to 1.3GHz Operation
- 0°C to 70°C (B Grade) and -40°C to +85°C (M Grade) Operation Guaranteed at Maximum Specified Frequency and Over a Wide Dynamic Input Range.
- Complementary Emitter Follower O/Ps.
- ECL III Compatible.

APPLICATIONS

- UHF Instrumentation, including Counters and Timers.
- Prescaling for UHF Synthesisers.

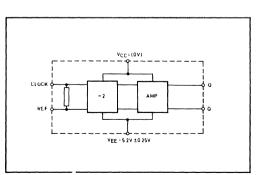


Fig. 2 Functional diagram

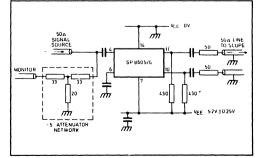


Fig. 3 Toggle frequency test circuit

ABSOLUTE MAXIMUM RATINGS

Power supply voltage	IVcc – Veel 10V
Input voltage	VINac 2.5V p — p
Output current	15mÅ
Storage temperature range	—55° C to
Maximum operating junction	temperature +150° C

SP8605/6

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

 $\begin{array}{ccc} T_{amb}\colon B \mbox{ Grade } & 0^\circ \mbox{ C to } +70^\circ \mbox{ C} \\ M \mbox{ Grade } -40^\circ \mbox{ C to } +85^\circ \mbox{ C} \\ \mbox{ Supply voltage } V_{CC} = OV \\ V_{EE} = -5.2V \pm 0.25 \ V \\ \mbox{ Input voltage } 400 - 1000 \mbox{ V } p - p \end{array}$

Characteristic	Туре		Value		Units	Conditions
		Min.	Тур.	Max.		
Max. toggle frequency	SP8606B SP8605B	1.3 1.0			GHz GHz	
Min. toggle frequency for correct operation with sine wave input	All			150	MHz	Vın≕600mv to 1.0v p-p
Min. slew rate for sq. wave input to guarantee operation to 0Hz.	All			200	V//us	
Output voltage swing	All	500	600		mV	430 Ω to VEE
Power supply drain current	All		70	100	mA	V _{EE} ≕-− 5.45V, No load

TOGGLE FREQUENCY TEST BOARD LAYOUT

1. All connections to the device are kept short.

2. The capacitors are leadless ceramic types.

In practice, the device is tested in an Augat 14 lead DIL socket which degrades the performance slightly. If the device is mounted in a low profile socket or soldered into a printed circuit board, the specified performance will be exceeded.

OPERATING AND APPLICATION NOTE

The SP8605/6 dividers are very simple to use but normal high frequency rules should be followed for optimum performance, for example, all connections should be kept short, the capacitors and resistors should be types suitable for the frequencies involved.

The input is normally capacitively coupled to the signal source. There is an internal 400 ohm resistor connecting the input to a reference voltage; this biases the input in the middle of the transfer characteristic. The reference voltage is brought out onto pin 6, which should be decoupled to the earth plane. This

decoupling completes the input signal path to the device and therefore must be very low inductance for optimum performance. The sensitivity of the device can be increased by DC coupling the input signal about earth (see Fig. 4).

 $V_{CC}-V_{EE}$ should be kept inside the specified 5.2 volts \pm 0.25 volts but the actual value of Vcc relative to earth is not very critical and can be varied between 2.7V and 3.3V with only a small effect on performance. A Vcc of about 3.0V is the optimum for full temperature range operation.

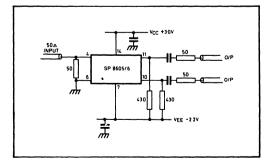


Fig. 4 Circuit for using the input signal about earth potential

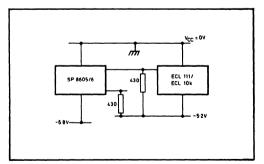


Fig. 5 Interfacing SP8605/6 series to ECL 10K and ECL III

In the absence of an input signal both the DC coupled and the capacitively coupled circuits will self oscillate with an output frequency of approximately 400 MHz. This can be prevented by connecting a 10Kohm resistor between the input and the negative rail. This offsets the input sufficiently to stop the oscillation but it also reduces the input sensitivity by approximately 100 MV.

The SP8605/6 will miscount with low frequency sinewave inputs of slow ramps. A slew rate of 200V//us or greater is necessary for safe operation at low frequencies.

The output can be interfaced to ECL 10K or ECL III

.

(See Fig. 5.). The unused output should be connected to a load resistor as shown to reduce output distortion.

The input impedance of the SP8605/6 is a function of frequency and minimises at about the same frequency as the maximum input sensitivity, so, although it can load the signal source significantly there is generally enough signal to operate the device satisfactorily when the input impedance is at a minimum. The worst case occurs at the maximum frequency because this is where the input sensitivity is worst.

The SP8605/6 can be used in instrumentation for direct counting applications up to 1.3GHz and in frequency synthesisers.

SP8000 SERIES

HIGH-SPEED DIVIDERS

SP8607 A&B

600 MHz ÷ 2

The SP8607 is a divide-by-2 counter with a minimum guaranteed toggle frequency of 600 MHz over a 0° C to +70°C temperature range. The device is designed for capacitive coupling to the signal source to either of the two inputs and it has two complementary emitter follower outputs. Power dissipation is typically only 70mW with a 5.2V supply.

FEATURES

600 MHz Operation

- -55°C to 125°C Guaranteed for 'A' grade
- Only 70mW Dissipation at 5.2V

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

Connections as test circuit, Fig. 3 T_{amb} : (A grade) -55°C to +125°C (B grade) 0°C to +70°C Supply voltage V_{CC} = 0V V_{EE} = -5.2V ± 0.25V Specified input voltage range: 400 to 800mV p-p

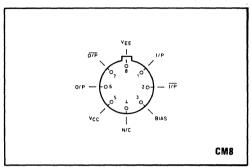


Fig.. 1 Pin connections

ABSOLUTE MAXIMUM RATINGS

Power Supply Voltage VCC - VEE	8V
Input Voltage DC	≮ Supply
Input Voltage AC	2.5V p–p
Output Current	15mA
Operating Junction Temp.	+150°C
Storage Temp Range	55.°C to
	+ 150°C

Characteristic	Value			Units	Conditions
Characteristic	Min	Тур.	Typ. Max		Conditions
Max. toggle frequency	600	800		MHz	
Min. input frequency (sine wave)		50		MHz	
Min. slew rate of square wave input for correct operations to OHz		40	100	V/µs	
Output voltage swing	400			mVp∙p	V _{EE} = -5.2V, f _{in} = 600 MHz
Output voltage levels					
V _{OH} V _{OL}		0.75 1.5		V V	f _{in} = OHz
Input impedance		400		Ω	f _{in} = OHz
O/P pulldown resistors		4.0		kΩ	
Bias voltage level		-2.6		v I	2.7 k Ω resistor
Power supply drain current		14	18	v	from pin 3 to V _{CC} V _{EE} = −5·2V

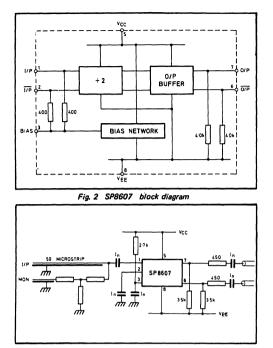


Fig. 3 Test circuit for SP8607

OPERATING NOTES

All components used with the SP8607 should be suitable for the frequencies involved, resistors and capacitors should be of low inductance types and unterminated loads should be kept short to minimise uncounted reflections. The test circuit uses positive earth because this minimises noise problems and the danger of accidently shorting the O/P transistors to a negative voltage. However, the device will operate satisfactorily and to the specification, with a negative earth provided that the positive supply is well decoupled to the UHF earth.

There are two complementary inputs connected to an internally-generated temperature-compensated bias point via two 400 ohm resistors. The signal source would normally be capacitively coupled to one of the inputs and the other should be decoupled to earth. If two complementary input signals are available (when cascading SP8607s for example) both inputs should be used

The input signal can be directly connected to the device either by using a voltage dropping network or by using split power supplies (see Fig. 4). In this mode the device is very tolerant of the actual values of V_{CC} and V_{EE} although $|V_{CC} - V_{EE}|$ should stay within 5.2V \pm 0.25V. A 2.7k Ω resistor is connected from V_{CC} to the bias pin in the test circuit because this greatly improves the device's ability to operate with large input signals

It is important that pins 2 and 3 are decoupled by a capacitor in the range 100 - 1000 pF because device sensitivity can be reduced by decoupling to a poor earth

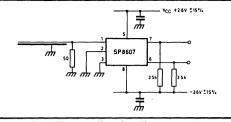


Fig. 4 Direct coupling using split power supplies

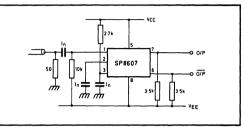


Fig. 5 SP8607: with input pulldown resistor

In the absence of an input signal, or if the input signal is of very low amplitude, the device may give an output signal of about 250 MHz. This is due to the balanced nature of the internal $\div 2$ circuit and can be stopped if required by connecting a 10 kohm resistor between the input and the negative rail. (See Fig. 5). This causes a drop in sensitivity of about 100 mV but typical devices still easily meet the 400 - 800 mV input amplitude specification. With sine wave inputs below 50MHz the SP8607 miscounts because the slew rate of the input signal is too slow. Below this frequency a square wave input is needed with a slew rate of 100V/ μ or more.

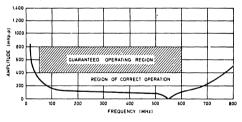
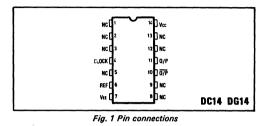


Fig. 6 Typical operating characteristic



SP8000 SERIES

HIGH SPEED DIVIDERS

SP8610B & M 1.0GHz ÷ 4 SP8611 B & M 1.5GHz ÷ 4

The SP8610/11 UHF counters are fixed ratio $\div 4$ asynchronous emitter coupled logic counters with, in the case of the SP8611B, a maximum operating frequency in excess of 1.5GHz over a temperature range of 0°C to +70°C. The input is normally capacitively coupled to the signal source but can be DC coupled if it is required. The two complementary emitter follower outputs are capable of driving 100 Ω lines and interfacing to ECL with the same positive supply. The SP8610/j11j require supplies of OV and $-5.2V (\pm 0.25V)$.

FEATURES

- DC to 1.5GHz operation
- 0°C to +70°C (B grade) and -40°C to +85°C (M grade) Operation Guaranteed at Maximum Specified Frequency and Over a Wide Dynamic Input Range
- Complementary Emitter Follower O/Ps, ECL III Compatible.

ABSOLUTE MAXIMUM RATINGS

Power supply voltage Input voltage	Vcc — Vee 10V ViNac 2.5V p–p
Output current	15mA
Storage temperature range Maximum operating junction	55°C to +150°C
temperature	+150°C

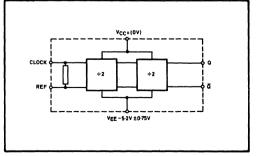


Fig. 2 Functional diagram

APPLICATIONS

- UHF Instrumentation, including Counters and Timers
- Prescaling for UHF Synthesisers

QUICK REFERENCE DATA

- Vcc = $OVV_{EE} = |-5.2V| \pm 0.25V$
- Input Voltage Range 400mV to 1.0V
- Output Voltage Swing 600mV Typ.

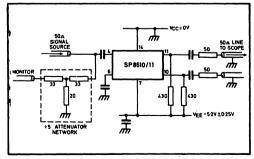


Fig. 3 Toggle frequency test circuit

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):Temb 0°C to +70°C ('B' Grade)--40°C to +85°C ('M' Grade)Supply voltage Vcc=0VVEE=5.2V \pm 0.25VInput voltage400 to 1000mV

Characteristic	Туре	Value			Units	Conditions
		Min.	Тур.	Max.	Units	Gonations
Max. toggle frequency	SP8611B SP8611B SP8610B	1.3 1.5 1.0			GHz GHz GHz	
Min. toggle frequency for correct operation with sine wave input	All	i		150	MHz	Vin=600mV to IV p-p
Min. slew rate for square wave input to guarantee operation to OHz	All			200	V/µs	
Output voltage swing	All	500	600		mV	
Power supply drain current	All		70	100	mA	VEE =

TOGGLE FREQUENCY TEST BOARD LAYOUT

1. All connections to the device are kept short.

2. The capacitors are leadless ceramic types.

3. In practice, the device is tested in an Augat 14 lead DIL socket which degrades the performance slightly. If the device is mounted in a low profile socket or soldered into a printed circuit board, the specified performance will be exceeded.

OPERATING AND APPLICATION NOTE

The SP8610 /11 dividers are very simple to use but normal high frequency rules should be followed for optimum performance. For example, all connections should be kept short and the capacitors and resistors should be types suitable for the frequencies involved.

The input is normally capacitively coupled to the signal source. There is an internal 400Ω resistor connecting the input to a reference voltage; this biases the input in the centre of the transfer characteristic. The reference voltage is brought out onto pin 6, which should be decoupled to the ground plane. This decoupling completes the input signal path to the device and therefore must be very low inductance for optimum performance. The sensitivity of the device can be increased by DC coupling the input signal about [ground](see Fig. 4).]

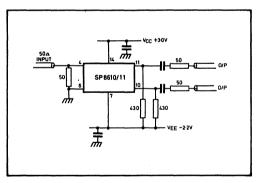


Fig. 4 Circuit for using the input signal about ground

SP8610/11

|Vcc-Vee| should be kept inside the specified 5.2V \pm 0.25V but the actual value of Vcc relative to ground is not very critical and can be varied between 2.7V and 3.3V with only a small effect on performance. A Vcc of about 3.0V is the optimum for full temperature range operation.

In the absence of an input signal both DC coupled and capacitively coupled circuits will self-oscillate with an output frequency of approximately 200MHz. This can be prevented by connecting a 10k Ω resistor between the input and the negative rail. This offsets the input sufficiently to stop the oscillation but it also reduces the input sensitivity by approximately 100mV.

The SP8610/11 will miscount with low frequency sinewave inputs or slow ramps. A slew rate of 200V/µs or greater is necessary for safe operation at low frequencies.

The output can be interfaced to ECL10K or ECL III (see Fig. 5).

The input impedance of the SP8610/11 is a function of frequency and minimises at about the same frequency as the maximum input sensitivity. So, although it can load the signal source significantly, there is usually enough signal to operate the device satisfactorily when the input impedance is at a minimum. The worst case occurs at the maximum frequency because this is when the input sensitivity is worst.

The SP8610/11 can be used in instrumentation for direct counting applications up to 1.5GHz and in frequency synthesisers.

In a frequency synthesiser the SP8610/11 and the SP8643 can be used together (see Fig. 6).

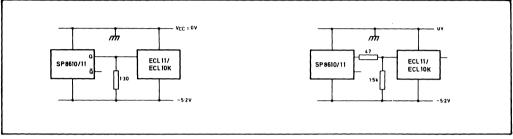


Fig. 5 Interfacing SP8610/11 to ECL10K and ECL III

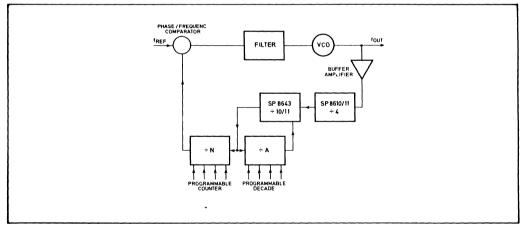


Fig.6 A 1.5GHz synthesiser loon

SP8000 SERIES HIGH SPEED DIVIDERS

SP8619B & M 1.5GHz ÷ 4 SP8617B & M 1.3GHz ÷ 4

The SP8619 series of UHF counters are fixed ratio \div 4 asynchronous emitter coupled logic counters with, in the case of the SP8619B a maximum operating frequency in excess of 1.5GHz. The linput is normally capacitively coupled to the signal source but can be DC coupled if it is required. The two complementary emitter follower outputs are capable of driving 100 ohm lines and inter facing to ECL with the same positive supply. The SP8619 series require supplies of 0V and -6.8V ($\pm 0.35V$).

FEATURES

- DC to 1.5GHz Operation
- O"C to 70"C (B Grade) and —40"C to +85"C (M Grade) Operation Guaranteed at Maximum Specified Frequency and Over a Wide Dynamic Input Frange.
- Complementary Emitter Follower U/Ps, ECL10K and ECL11I Compatible

QUICK REFERENCE DATA

- Vcc = $OVV_{EE} = -6.8V \pm 0.35V$
- Input Voltage Range 400mV to 1.2V p-p
- Temperature Range 0°C to +70°C
- Output Voltage Swing 800mV Typ.

ABSOLUTE MAXIMUM RATINGS

Power supply voltage $|V_{CC} - V_{EE}|$ 10V Input voltage V_{INec} 2.5V p-p Output current 15mA Storage temperature range -55°C to +150°C Maximum operating function temperature +150°C

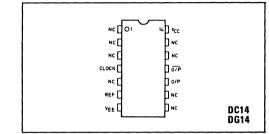


Fig. 1 Pin connections

APPLICATIONS

- UHF Instrumentation, Including Counters and Timers
- Prescaling for UHF Synthesisers

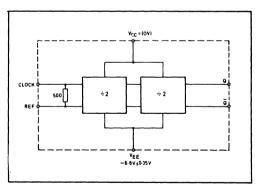


Fig. 2 Functional diagram

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated)

B Grade 0° C to +70° C M Grade -40° C to +85° C Tamb: B Grade Supply voltage Vcc = 0V $V_{EE} = -6.8V \pm 0.35V$ Input voltage 400 to 1200mV p-p

Characteristic	Туре	Value				
		Min.	Тур.	Max.	Units	Conditions
Max. toggle frequency	SP8619 SP8617	1.5 1.3			GHz GHz	
Min. toggle frequency for correct operation with sine wave input Min. toggle frequency for	Ali			150	MHz	$V_{IN} = 600 mV$ to 1.2Vp-p
correct operation with sine wave input Min slew rate for square wave input to guarantee	Ali			100	MHz	$V_{IN} = 800 \text{mV} \text{ to } 1.2 \text{Vp-p}$
operation to OHz Output voltage swing	All All	600	800	200	V∕µs mV	
Power supply drain current	All		80	110	mA	$V_{EE} = -7.15V$

Toggle Frequency Test Board Layout

1. All connections to the device are kept short

 The capacitors are leadless ceramic types
 In practice, the device is tested in an Augat 14 lead DIL socket which degrades the performance slightly. If the device is mounted in a low profile socket or soldered into a printed circuit board, the specified performance will be exceeded.

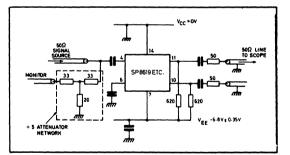


Fig. 3 Toggle frequency test circuit



Fig. 4 Circuit for using the input signal about earth potential

OPERATING AND APPLICATION NOTE

The SP8619 series of dividers are very simple to use but normal high frequency rules should be followed for optimum performance - for example, all connections should be kept short and the capacitors and resistors should be types suitable for the frequencies involved.

The input is normally capacitively coupled to the signal source. There is an internal 400 ohm resistor connecting the input to a reference voltage; this biases the input in the middle of the transfer characteristic. The reference voltage is brought out onto pin 6, which should be decoupled to the earth plane.

The sensitivity of the device can be increased by DC coupling the input signal about earth (see Fig. 4).

 $|V_{cc} - V_{EE}|$ should be kept inside the specified 6.8V $\pm 0.35V$ but the actual value of V_{cc} relative to earth is not very critical and can be varied between 4.2V and 5.0V with only a small effect on performance. A V_{cc} of about 4.6V is the optimum for full temperature range operation.

In the absence of an input signal both the DC coupled and the capacitively coupled circuits will self-oscillate with an output frequency of approximately 300MHz. This can be prevented by connecting a 10k ohm resistor between the input and the negative rail. This offsets the input sufficiently to stop the oscillation but it also reduces the input sensitivity by approximately 100mV.

The SP8619 will miscount with low frequency sinewave inputs or slow ramps. A slew rate of $200V/\mu s$ or greater is necessary for safe operation at low frequencies.

The output can be interfaced to ECL 10K or ECL III (see Fig. 5).

The input impedance of the SP8619 is a function of frequency and minimises at about the same frequency as the maximum input sensitivity, so, although it can load the signal source significantly there is usually enough signal to operate the device satisfactorily when the input impedance is at a minimum input signal requirement. The worst case occurs at the maximum frequency because this is where the input sensitivity is worst.

The SP8619 series can be used in instrumentation for direct counting applications up to 1.5GHz and in frequency synthesisers.

In a frequency synthesiser, the SP8619 and the SP8643 can be used together (see Fig. 6).

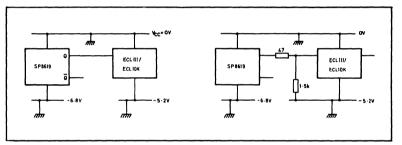


Fig. 5 Interfacing SP8619 series to ECL 10K and ECL III

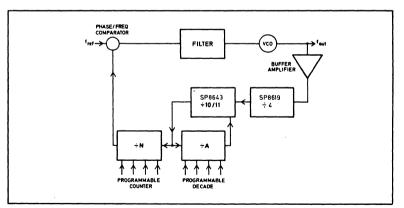


Fig. 6 A 1.5GHz synthesiser loop

SP8000 SERIES

HIGH SPEED DIVIDERS

+5 COUNTERS

(400MHz)

The SP8620 is a fixed ratio emitter-coupled logic \div 5 counter with specified input frequency range of DC to 400MHz. The operating temperature is specified by the final coding letter: -55°C to +125°C ('A' grade), 0°C to +70°C ('B' grade).

The counter is normally capacitively coupled to the signal source and is specified with an input signal range of 400-800mv p-p (-4dBm to +22dBm). There are two bias points on the circuit that should be capacitively decoupled to the ground plane.

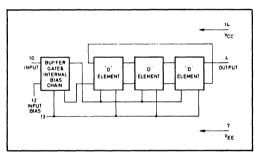


Fig.2 Circuit diagram (all resistor values are nominal)

ELECTRICAL CHARACTERISTICS

Test Conditions (unless otherwise stated)

Tamb:	'A' grade: –	-55°C to +125°C	
	'B' grade:	0°C to +70°C	

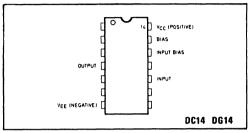


Fig.1 Pin connections (bottom view)

FEATURES

- D.C. to 400MHz Operation.
- Temperature Ranges of --55°C to +125°C ('A' Grade), 0°C to +70°C ('B' Grade) Over Full Specified Input Range and Frequency

APPLICATIONS

- Frequency Counters and Timers
- Frequency Synthesisers

ABSOLUTE MAXIMUM RATINGS

Power supply voltage $ V_{CC} - V_{EE} $	8V
Input voltage VIN	Not greater than
	supply
Output current IOUT	15mA
Operating junction temperature	+150°C
Storage temperature	–55° to +150°C

0	-		Value			
Characteristic	Туре	Min.	Тур.	Max.	Units	Conditions
Max. input frequency	SP8620	400			MHz	
Min. input frequency with sinusoidal input			20	40	MHz	
Min. slew rate of square wave input for correct operation			30	100	V/µS	
Output voltage swing Power supply drain current		400	800 55	70	mV mA	V _{EE} = -5.2V V _{EE} = -5.2V

OPERATING NOTES

It is recommended that a positive earth plane is used for the circuit layout, thus preventing damage if the output is short-circuited to earth.

The signal source is normally capacitively coupled to the input (see Fig. 3). A 1000pF capacitor is suitable at high frequencies, but if lower frequency operation is also required, say below 10MHz, then an additional capacitor should be connected in parallel: The device can be DC coupled if it is required – see Fig. 4.

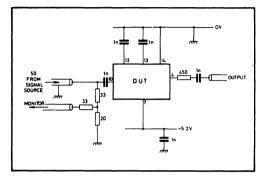


Fig.3 Test circuit

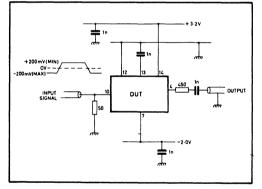


Fig.4 Divide by 16 frequency scaler

The circuit may self oscillate when there is no input signal or when the input signal is well below the specified input signal. This can be prevented by connecting a $15k\Omega$ resistor between the input and the negative rail. This causes a loss in sensitivity of up to 100mV p.p.

The input waveform may be sinusoidal, but below about 20MHz the circuit tends to malfunction on minimum amplitude input signals and the condition becomes worse as the frequency is decreased. This is because correct operation of the circuit depends on the slew rate of the input signal. A square wave input with a slew rate greater than $100V/\mu$ S ensures correct operation down to DC.

The output swing of the devices can be significantly increased by the addition of a DC load on the emitter follower output. For instance, the maximum DC load of 1.5k Ω will give an increase of typically 50% in output swing with no effect on input drive level or maximum operating frequency. This allows the SP8020 devices to interface directly to ECL II devices with no loss in noise immunity. If the devices are required to interface to ECL 110 or ECL 10,000 then an interface similar to Fig.5 should be used.

The values of the decoupling capacitors are not critical, but they should be of a type suitable for the frequencies involved.

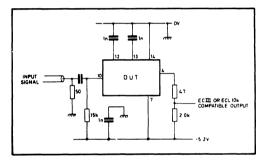
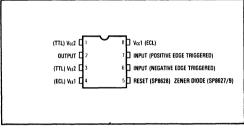


Fig. 5 Interfacing to ECL III or ECL 10,000



SP8000 SERIES HIGH SPEED DIVIDERS

SP8627 ÷ 80 SP8628 ÷ 100 (WITH RESET) SP8629 ÷ 100

150 MHz PRESCALERS

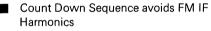

The SP8629 is a fixed ratio ECL \div 100 counter with a minimum guaranteed toggle frequency of 150MHz over a -30° Clto $+70^\circ$ C temperature range. The device can operate in the single-ended or differential input mode, and is typically capacitively coupled to the signal source. An input amplifier is included to allow use of extremely small amplitude high frequency signals. The output of the device is similar to Low Power Schottky TTL and produces a square wave of frequency f_{out} = f_{in}/100.

Fig. 1 Pin connections

FEATURES

- Low Power 170mW typica
- High Frequency, DC to 150MHz, Small Input Amplitude
- Single Supply Operation 5.2v ± 10%

- ECL Dividers reduce Switching Transients
- ➡ ÷4 Reset on SP8628 Reduces Jitter on Frequency Display Systems

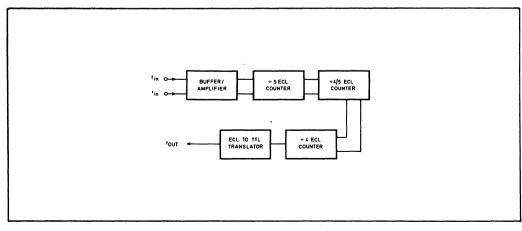


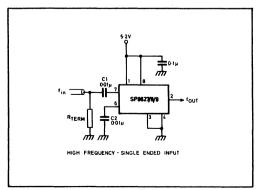
Fig. 2 SP8627/8/9 logic diagram

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The table of Electrical Characteristics provides conditions for actual device operation.

Power Supply Voltage	8V	
Input Voltage	Vin (DC)	not greater than supply voltage
Output voltage Output current Zener current Operating Junction te Storage temperature r		5.5V 40mA 20mA 150°C –30°C to +85°C

ELECTRICAL CHARACTERISTICS


Test conditions (unless otherwise stated): Supply voltage Vcc: + 5.2V \pm 0.52V, V_{EE}: OV, T_{amb}: 25°C

		Value				
Characteristic	Symbol	Min.	Тур.	Max.	Units	Conditions
Maximum input frequency	f _{max}	150	200		MHz	$V_{CC} = 5.2V, V_{IN} = 600mVp-p,$ single ended
Input voltage	VIN1	200		1000	mVp —p	$V_{cc} = 5.2V$, single ended
Input voltage	VIN2	100				$V_{cc} = 5.2V$, differential
Minimum input frequency with sine wave	fsine	10				$V_{CC} = 5.2V, V_{IN} = 600 mVp - p$
Minimum slew rate of						
square wave input;	dv/dt			50	V/µs	$V_{cc} = 5.2V, V_{IN} = 600 \text{mVp} - \text{p}$
Logic 1 output voltage	Voн	2.4			v	$V_{cc} = Min, I_{OH} = -400/\mu A$
		2.0			v	$V_{cc} = Min, I_{OH} = -1.6 mA$
Output short circuit current	los	-10		-40	mA	Vcc = Max
Logical 0 output voltage	Vol			0.5	V	$V_{cc} = Min, I_{oL} = 8mA$
Supply current	Icc		33	45	mA	Vcc = Max
Zener voltage, pin 5						
(SP8627/9)	Vz		6.3		v	Iz = 5mA (see note 2)
Reset input voltage						
(SP8628)	VIN(LO)			0.5	l v	
	Vin(HI)	2.4			v	
Reset input current	• (((()))	2.4				
(SP8628)	lın			- 1.6	mA	$V_{IN} = 0.5V$
L					L	

NOTE

All currents into device pins shown as positive, out of device pins negative, all voltage referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

TYPICAL APPLICATIONS

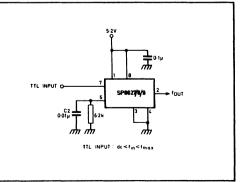


Fig. 3 High frequency, single-ended input

SP8627/28/29

OPERATING NOTES.

Two ground and two V_{CC} connections are provided, separating the ECL stages from the TTL section, isolating the noise transients inherent in the TTL structure. In most cases, shorting the two grounds to a good ground plane and the V_{CC}s to a wide V_{CC} bus will provide sufficient isolation. All components used in the circuit layout should be suitable for the frequencies involved and leads should be kept short to minimise strav inductance.

The signal source is usually capacitively coupled to the input as shown in Fig. 3. In the single-ended mode a capacitor of $0.01 \,\mu\text{F}$ (C2) should be connected between the unused input and the ground plane to provide a good high frequency bypass. The capacitor should be increased at lower frequencies. If the input is likely to be interrupted, it may be desirable to connect a 100k Ω resistor between an input and ground. In the single ended mode it is preferable to connect the resistor to the unused input. The addition of the 100k Ω resistor causes a loss of input sensitivity, but prevents circuit oscillations under no signal (open circuit) conditions.

The input waveform will normally be sinusoidal but below 10MHz correct operation depends on the slew rate of the input signal. A slew rate of 50V/µs will enable the device to operate down to DC. The device will operate with a TTL input signal as shown in Fig. 4 and is DC coupled to the input.

The device can be used in phase locked loop applications such as FM radio or other communications bands to prescale the input frequency down to a more useable level. A digital frequency display system can also be derived separately or in conjunction with a phase locked loop, and it can extend the useful range of many inexpensive frequency counters to, typically, 200MHz

The on-chip Zener diode allows a simple stabilised power supply to be constructed with the addition of a few extra external components, as shown in Fig. 5, to the SP8627/9. The SP8628 has a 'reset' facility on pin 5. This input acts as a data inhibit to the final divide-byfour when a high level is applied (or the input is left open circuit).

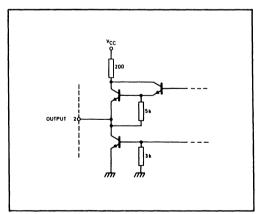


Fig. 7 Output circuit diagram

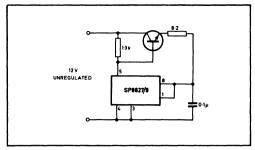


Fig. 5 Voltage regulator

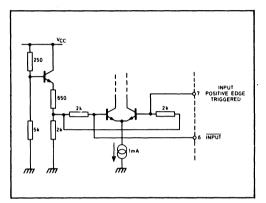


Fig. 6 Input circuit diagram

SP8000 SERIES HIGH SPEED DIVIDERS

SP8630 A&B

600MHz DECADE COUNTER

GENERAL DESCRIPTION

The SP8630 counter is a fixed ratio \div 10 circuit using emitter coupled logic, with maximum specified counting frequencies of 600 MHz over temperature ranges of -55° C to $+125^{\circ}$ C, 0° C to 70°C. A 6:4 mark/space square wave is provided at the emitter follower output. The input is normally single driven and capacitively coupled to the signal source. There are two bias points on the circuit which should be capacitively coupled to the ground plane.

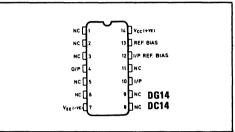
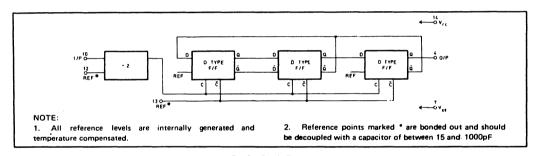



Fig. 1 Pin connections

ELECTRICAL CHARACTERISTICS

Test conditions (unless stated otherwise):

Tamb: 'A' grade -55°C to +125°C 'B' grade 0°C to +70°C Fig. 2 Block diagram

Operating supply voltage

0V
-5.2V ± 0.25V
400 to 800 mV (p-p)
500Ω & 3pF.

NOTE: The maximum input frequency is guaranteed at $V_{EE} = -5.2V$. For typical operating characteristics with power supply variations see Fig.5, which shows that the maximum operating frequency of a typical device increases with increasing power supply voltage

		Value				
Characteristic	Туре	Min	Тур	Max	Units	Conditions
Max input freq. Min input freq. with sinusoidal input	SP8630	600	20	40	MHz MHz	
Min. slew rate of square wave I/P for correct operation			30	100	V/µs	
Output voltage swing Power supply drain current		400	600 70	95	mV mA	V _{EE} = -5.2V V _{EE} = -5.2V

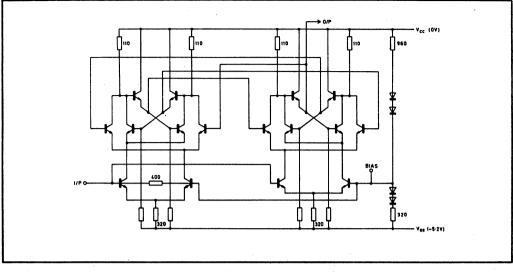


Fig. 3 Circuit diagram of 1st element (-2) showing input biasing arrangement

OPERATING NOTES

It is recommended that a positive earth plane be used for the circuit layout, thus preventing damage if the emitter follower outputs are inadvertantly shorted to ground.

The signal source is normally capacitively coupled to the input: 1000 pF is usually sufficient. If the input signal is likely to be interrupted a 15 k ohm resistor should be connected between the input pin and the negative rail to prevent circuit oscillation under no-signal conditions. The addition of the pulldown resistor causes a slight loss of sensitivity of the device, but this does not normally cause problems in practice.

The input waveform may be sinusoidal, but below 40 MHz the operation of the circuit becomes dependent on the slew rate of the waveform rather than the amplitude A square wave input with a slew rate of 100 V/ μ s will allow correct operation down to DC. At high frequencies, increasing drive level above minimum typically increases the max. operating frequency by up to 25%

The output swing of the device can be significantly increased by the addition of a DC load on the emitter follower output. For instance, the maximum DC load of 1.5k ohms will give an increase of typically 5C% in output swing with no effect on input drive level or maximum operating frequency. This allows the SP8630 device to drive directly into ECL II devices withino loss in noise immunity.

The value of capacitance needed for the decoupling capacitors is not critical. Values down to 15 pF have been found satisfactory in practice.

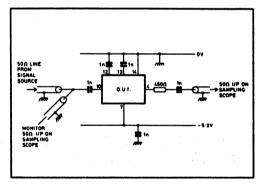


Fig. 4 Test circuit

Test Circuit Notes

The values of the coupling and decoupling capacitors are uncritical but they should be of a type and value suitable for the frequencies involved.

All connections should be physically short when not in a 50 Ω environment to minimise reflections due to mismatching.

The +ve pin should be connected to a low impedance earth plane to minimise feed-through of the input signal to the output.

Typical Operating Characteristics

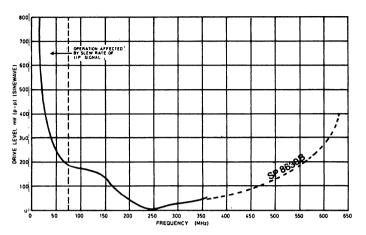


Fig. 5 Minimum drive level v. input frequency at 125 C

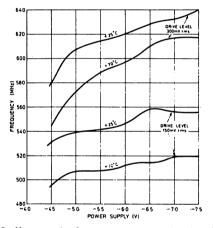


Fig. 6 Max. operating frequency v. power supply voltage for a typical SP8630B

APPLICATION NOTES

Direct coupling to the SP8630

It can be seen from the circuit diagram that the input arrangement of the SP8630 series is not compatible with the normal ECL logic levels. The input reference level is approximately -3.2 volts but it is not well defined and has a temperature coefficient of approximately $-1.6 \text{ mV/}^\circ\text{C}$. If DC coupling is required, the input would have to be larger than would be the case with capacitive coupling.

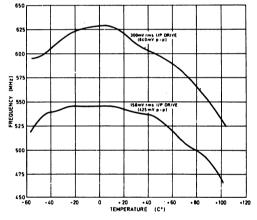


Fig. 7 Max. operating frequency v. ambient temperature for a typical SP8630B (Vcc = -5.2V)

ABSOLUTE MAXIMUM RATINGS

Power supply voltage	
V _{CC} – V _{EE}	8V.
Input voltage VIN	Not greater than the supply voltage in use
Output current IOUT	15 mA
temperature	+150°C –55°C to +150°C
Storage temperature	-55 C to +150 C

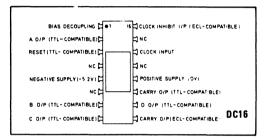
SP8000 SERIES HIGH SPEED DIVIDERS

SP8634B

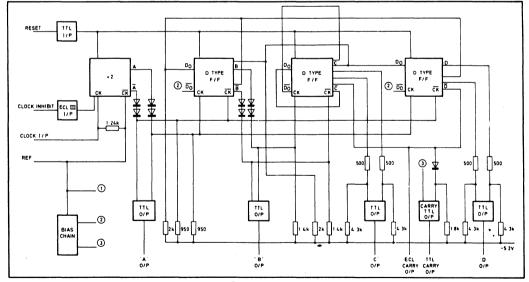
÷ 10 700 MHz

The SP8634B, is a divide-by-ten circuit with binary coded decimal outputs for operation from DC up to specified input frequencies of 700 MHz, over a guaranteed temperature range of 0° C to +70°C.

These devices, optimised for counter applications in systems using both ECL and TTL, are intended to be operated between 0V and -5.2V power rails and to


FEATURES

- Direct gating capability at up to 700 MHz
- TTL- compatible BCD outputs
- TTL- and ECL-compatible carry outputs
- Power consumption less than 500 mW
- Wide dynamic input range


APPLICATIONS

- Counters
- Timers.
- Synthesisers

interface with TTL operating between 0V and +5V. The BCD outputs and one of two carry outputs are TTL-compatible, while the second carry output is ECL-compatible. The clock input, which is normally capacitively coupled to the signal source, is gated by an ECL III/ECL 10k-compatible input. The TTL-compatible reset 'orces the 0000 state regardless of the state of the other inputs.

1

Fig. 2 Logic diagram

ELECTRICAL CHARACTERISTICS (All types except where otherwise stated)

Test Conditions (unless otherwise stated)

T _{amb}		0°C to +70°C
Power Supplies	Vcc	0V
	VEE	-5.2V ± 0.25V

		Value				
Characteristic	Min.	Min. Typ. Max.		Units	Conditions	
Clock Input (pin 14)						
Max. input frequency SP8634B	700			MHz	Input voltage	
Min. input frequency					400-800mV p-r	
with sinusoidal I/P			40	MHz		
Min. slew rate of square wave for		,	100	V/µs		
correct operation down to DC						
Clock inhibit input						
(pin 16)						
Logic levels						
High (inhibit)	-0.960			V	$T_{amb} = +25^{\circ}C$	
Low			-1.650	v	(see Note 1)	
Edge speed for correct operation at maximum clock I/P frequency			2.5	ns	10%-90%	
Reset input (pin 3)						
Logic levels						
High (reset)	See Note 2					
Low			+0.4	v		
Reset ON time	100			ns		
TTL outputs ABCD (pins 2,7,8,10)					See Note 3 and Fi	
Output Voltage	1					
High	+2.4			v	10k Ω resistor and	
					TTL gate from O/	
Low			+0.4	v	to +5V rail	
TTL carry output (pin 11)						
Output Voltage						
High state	+2.4			v	5k Ω resistor and	
				·	TTL gates from o	
Low			+0.4	v	to 5V rail	
ECL carry output (pin 9)						
Output Voltage						
High	-0.975			v	$T_{amb} = +25^{\circ}C$	
L eur			1.075		External current = 0mA (See Note	
Low			-1.375	v		
Power supply drain current		75	90	mA	V _{EE} = 5.2V	

NOTES

1. The clock inhibit input levels are compatible with ECL III and ECL 10000 levels throughout the temperature range 0°C to +70°C.

2. For a high state, the reset input requires a more positive input level than the specified worst case TTL VOH of +2.4V. Resetting should be done by connecting a $1.8k\Omega$ resistor from the output of the driving TTL gate and only fanning out to the reset input of the SP8000 series device.

3. These outputs are current sources which can be readily made TTL-compatible voltages by connecting them to +5V via 10kΩ resistors.

 The FCL carry output is compatible with ECL II throughout the temperature range but can be made compatible with ECL III using the simple interface shown in Fig. 3.

.

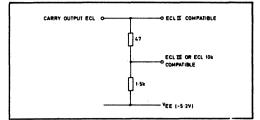


Fig. 3 ECL III/ECL 10000 interfacing

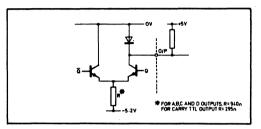


Fig. 4 TTL carry and ABCD output structure OPERATING NOTES

The devices are intended to be used with TTL and ECL in a counting system – the ECL and the decade counter being connected between voltage rails of OV and -5.2V and the TTL between voltage rails of OV and +5.0V. Provided that this is done ECL and TTL compatability is achieved (see Figs. 4 and 5).

The clock is normally capacitively coupled to the signal source: a 1000pF UHF capacitor is normally adequate. If low frequency operation is required the 1000pF capacitor should be connected in parallel with a higher value capacitor. The bias decoupling (pin 1) should be connected to earth via a capacitor – preferably a chip type – but in any case a low inductance type suitable for UHF applications. The devices normally have an input amplitude operating range far greater than the specified 400 to to 800 mV pk/pk. However, if the decoupling capacitor is not of a UHF type, or it is connected to an earth point that has a significant impedance between the capacitor and the V_{CC}

connection, then the input dynamic range will suffer and the maximum signal for correct operation will be reduced.

Under certain conditions, the absence of an input signal may cause the device to self-oscillate. This can be prevented (while still maintaining the specified input sensitivity) by connecting a $68k\Omega$ resistor between the clock input and the negative supply. If the transition of either the clock input or the clock inhibit input is slow the device may start to self-oscillate during the transition. For this reason, the input selew rates should be greater than 100 V/µs. It should also be noted that a positive-going transition on either the clock input or the clock input or the clock inhibit input is in the low state.

The BCD outputs give TTL-compatible outputs (fanout = 1) when a 10k Ω resistor is connected from the output to the +5V rail. In this configuration the outputs will be very slow compared with the clocking rate of the decade and so the state on the BCD outputs can only be determined when the clock has stopped or is inhibited.

The fan out capability of the TTL carry output can be increased by buffering it with a PNP emitter follower. The interface is shown in Fig. 5.

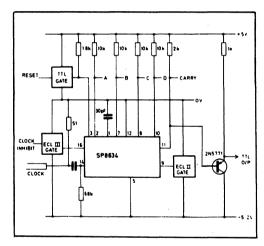


Fig. 5 Typical application configuration

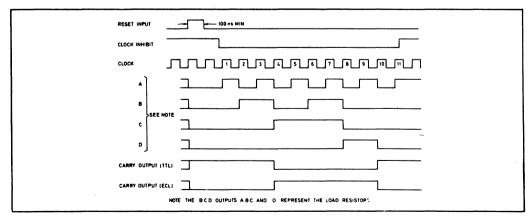


Fig. 6 Decade counter timing diagram

ABSOLUTE MAXIMUM RATINGS

Power supply voltage IVCC - VEE 8V Clock inhibit voltage Not greater than the supply voltage in use 2V pk/pk Clock input voltage Bias voltage (VOUT) on BCD outputs, $V_{OUT} - V_{EE}$ (10k Ω resistor in series with output) 11V Bias voltage (VOUT) on TTL carry output, $V_{OUT} - V_{EE}$ (1.2k Ω resistor in series with output) 11V Output current from ECL carry output (IOUT) (Note: the device will be destroyed if the ECL output is shorted to the negative rail) 10mA +150°C Operating junction temperature -55°C to +150°C Storage temperature range QUICK REFERENCE DATA

Power Supplies V _{CC}	0V
VEE	5.2V ± 0.25V
Range of clock input amplitude	400-800mV p-p
Operational temperature range	0°C to +70°C
Frequency range with sinusoidal I/P	40-700 MHz
Frequency range with square wave I/P	DC to 700 MHz

SP 8000 SERIES HIGH SPEED DIVIDERS

SP 8643A & B350 MHz

SP 8647 A & B250 MHz TTL OUTPUTS

UHF PROGRAMMABLE DIVIDERS +10/11

In frequency synthesis it is desirable to start programmable division at as high a frequency as possible, because this raises the comparison frequency and so improves the overall synthesiser performance.

The SP8640 series are UHF integrated circuits that can be logically programmed to divide by either 10 or 11, with input frequencies up to 350 MHz. The design of very fast fully programmable dividers is therefore greatly simplified by the use of these devices and makes them particularly useful in frequency synthesisers operating in the UHF band.

Inputs and outputs are ECL compatible throughout the

FEATURES

- Military and Industrial Variants.
- 350 MHz Toggle Frequency
- Low Power Consumption
- ECL Compatibility on All I/Ps & O/Ps
- Low Propagation Delay
- True and Inverse Outputs
- Optional TTL Output

QUICK REFERENCE DATA

- Full Temperature Range Operation:
 'A' Grade —55°C to +125°C
 'B' Grade 0°C to +70°C
- Supply Voltage
 V_{CC} V_{EE} 5.2V
 - Power Consumption 250mW Typ.
- Fower consumption 250mm ryp.
- Propagation Delay 3ns Typ.

temperature range: the clock inputs and programming inputs are ECL III compatible while the two complementary outputs are ECL II compatible to reduce power consumption in the output stage. ECL 10K output compatability can be achieved very simply however (see Operating Notes). The SP8643/7 feature an additional TTL compatible output.

The division ratio is controlled by two $\overline{\mathsf{PE}}$ inputs. The counter will divide by 10 when either $\overline{\mathsf{PE}}$ input is in the high state and by 11 when both inputs are in the low state. Both the $\overline{\mathsf{PE}}$ inputs and the clock inputs have nominal 4.3k Ω pulldown resistors to V_{FE} (negative rail).

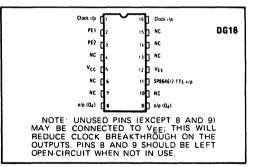


Fig. 1 Pin connections (top)

ABSOLUTE MAXIMUM RATINGS

Supply voltage V _{CC} - V _{EE}	8V
Input voltage V _{in (d.c.)}	Not greater than the supply voltage in use.
Output current I out Max. junction temperature Storage temperature range	20mA +150°C –55°C to +175°C

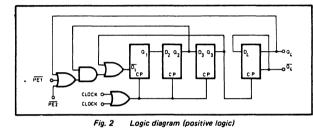

Clock Pulse	Qı	Q2	Q3	Q4	TTL O/P
1	L	н	н	н	н
2	L	L	н	н	н
2 3	L	L	L	н	н
4	н	L	L	н	н
5	н	н	L	н	н
6	L	н	н	L	L
7	L	L	н	L	L
8	L	L	L	L	L
9	н	L	L	L	L
10	н	н	L	L	L
11	[H]	<u> </u>	<u>_H</u> _	_H	E

Table 1 Count sequence

PE1	PE ₂	Div Ratio
L	L	11
н	L	10
L	н	10
н	н	10

Table 2 Truth table for control inputs

The maximum possible loop delay for control is obtained if the L→H transition from Q_4 or the H→L transition from $\overline{\Omega}_4$ is used to clock the stage controlling the ÷10/11. The loop delay is 10 clock periods minus the internal delays of the ÷10/11 circuit.

Extra state

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

0 C to -70 C (B grade) Supply voltage (see note 1): VCC 0V V_{EE} -5.2V

Static Characteristics (all SP8640 series devices)

Characteristic	Value			Units	Conditions
Citalacteristic	Min. Typ, Max		Max.	Units	Conditions
Clock and PE input voltage levels VINH VINL Input pulldown resistance, between pins 1, 2, 3, and 16 and VEE (pin 12)	-1.10 -1.85	4.3	-0.81 -1.50	ν ν κΩ	T _{amb} = +25°C, see Note 2
Output voltage levels Vон VoL	-0.85		-1.50	V	T _{amb} = +25°C, see Note 3. I _{out} (external) = 0mA (There is an internal circuit equivalent to a 2kΩ pulldown resistor on each output)
Power supply drain current		50	65	mA	

NOTES

The devices are specified for operation with the power supplies of V_{CC} = 0V and V_{EE} = $-5.2V \pm 0.25V$, which are the normal ECL supply rails. They will also operate satisfactorily with TTL rails of V_{CC} = +5V ± 0.25V and V_{EE} = 0V. The input reference voltage has the same temperature coefficient as ECL III and ECL 10K. 1

²

The output voltage levels have the same temperature coefficients as ECL II output levels. 3.

SP8643/7

Dynamic Characteristics

			Value			
Characteristic	Туре	Min.	Typ.	Max.	Units	Conditions
Clock input voltage levels						
VINH	All	-1.10		0.90	v	T _{amb} = +25°C,
VINL	All	-1.70		-1.50	v	see Note 4
Max. toggle frequency	SP8643 SP8647	350 250			MHz MHz	
Min. frequency with						
sinewave clock input	All			50	MHz	
Min. slew rate of square wave input for correct operation						
down to DC	AŅ			100	V/µs	-
Output (ECL) Propagation delay	AÌÌ	500			mVpp	
(clock input to device output)	All		3		ns	ECL Output
Set-up time	All		1.5		ns	See note 5
Release time	All		1.5		ns	See note 6

NOTES

4. The devices are dynamically tested using the circuit shown in Fig. 5. The bias chain has the same temperature coefficient as ECL III and ECL 10K, and therefore tracks the input reference throughout the temperature range. The devices are tested with input amplitudes of 400 and 800 mV p-p about that reference, over the full temperature range.

 Set up time is defined as the minimum time that can elapse between a L→H transition of a control input and the next L→H clock pulse transition to ensure that the ÷10 mode is forced by that clock pulse (see Fig. 3).

 Release time is defined as the minimum time that can elapse between a H→L transition of a control input and the next L→H clock pulse transition to ensure that the ÷11 mode is forced by that clock pulse (see Fig. 4).

7. SP8647 TTL output current = 8mA at VoL = +0.5V, measured at +25°C, temperature coefficient = +0.5mV/°C

- 8. SP8647 Q4 to TTL output delay = 3ns, typical
- 9. The TTL O/P is a free collector and requires a 2k Ω (typ) pull-up resistor. The current taken by this resistor must be included in the 8mA current in Note 7 above.

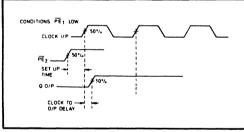


Fig. 3 Set-up timing diagram

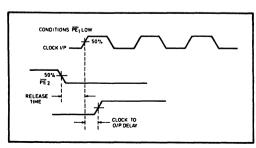


Fig. 4 Release timing diagram

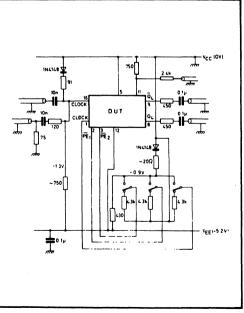


Fig. 5 Test circuit for dynamic measurements

OPERATING NOTES

The SP8640 range of devices are designed to operate in the UHF band and therefore PCB layouts should comply with normal UHF rules, e.g. non-inductive resistors and capacitors should be used, power supply rails decoupled, etc.

All clock and control inputs are compatible with ECL III and ECL 10K throughout the temperature range. However, it is often desirable to capacitively-couple the signal source to the clock, in which case an external bias network is required as shown in Fig. 6.

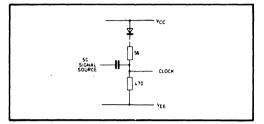


Fig. 6 Recommended input bias configuration for capacitive coupling to a continuous 50Ω signal source.

The ÷10/11 can be controlled by a TTL fully programmable counter, provided that delays within the loop are kept to a minimum. The outputs and control inputs must therefore interface to TTL. The input TTL to ECL interface is accomplished with two resistors as shown in Fig. 7. The output ECL to TTL interface has been provided on chip in the SP8646/7. A discrete interface may be constructed as shown in Fig. 7. Both output interfaces will operate satisfactorily over the full military temperature range $(-55^{\circ}C \text{ to } +125^{\circ}C)$. The propagation delay through the divider plus the interface and one Schottky TTL gate is approximately 10 ns. At an input frequency of 350 MHz this would only leave about 16 ns for the fullyprogrammable counter to control the ÷10/11. The loop delay can be increased by extending the ÷10/11 function to, say, ÷20/21 or ÷40/41 (see Application Notes).

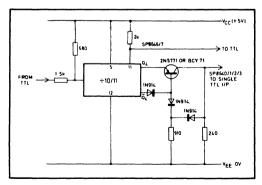


Fig. 7 TTL to ECL and ECL/TTL interfaces (for SP8640 devices and TTL operating from the same supply rails)

The SP8643 device ECL o/ps are compatible with ECL II levels when there is no external loa... They can be made compatible with ECL III and ECL 10K with a simple potential dividing network as shown in Fig. 8.

The control and clock inputs are already compatible with ECL III and ECL 10K. The interface circuit of Fig. 8 can be used to increase noise immunity when interfacing from ECL III and ECL 10K outputs at low current levels to ECL III and ECL 10K inputs.

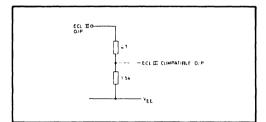


Fig. 8 ECL II to ECL III interface

SP8000 SERIES

HIGH SPEED DIVIDERS

SP8650A&B

600MHz÷16

The SP8650 series of UHF16 counters are fixed ratio synchronous emitter coupled logic counters with, in the case of the SP8650, a maximum operating frequency in excess of 600MHz. All three devices operate up to their maximum specified operating frequencies over temperature ranges of -55° C to $+125^{\circ}$ C ('A' grade), 0°C to $+20^{\circ}$ C ('B' grade). The input is normally capacitively coupled to the signal source but the circuits can be DC driven if required. The inputs can be either single driven relative to the on-chip reference voltage or differentially driven.

There are two complementary emitter follower outputs.

FEATURES

- Low Power Typically 250mW
- ECL II & ECL III Output Compatability
 - Easy Operation From UHF Signal Source

APPLICATIONS

- Prescaling for UHF Synthesisers
- Instrumentation

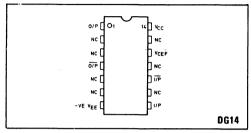


Fig. 1 Pin connections

QUICK REFERENCE DATA

Power Supplies Vcc = OV

 $V_{EE} = -5.2V \pm 0.25V$

Temperature Range 'A' grade —55°C to +125°C 'B' grade 0°C to +70°C

- Input Amplitude Range 400mV to 800mVp-p
- Output Voltage Swing 800mV typ. p-p

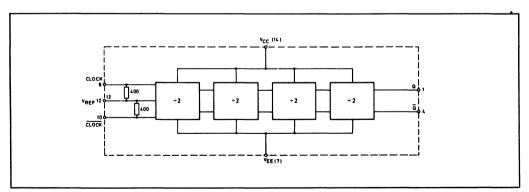


Fig. 2 Functional diagram

ELECTRICAL CHARACTERISTICS

Test Conditions (unless otherwise stated)

 $\begin{array}{l} T_{amb}=-55\ C\ to\ +125\ C\ ('A'\ grade)\\ 0\ C\ to\ +70\ C\ ('B'\ grade)\\ \\ Supply \ Voltage\\ Vcc\ =\ 0V\\ Vec\ =\ -5.2V\ \pm\ 0.25V\\ \\ Output\ load\ =\ 500\Omega\ in\ parallel\ with\ approx.\ 3pF \end{array}$

Chanadaniatia	-		Valu	Ð		
Characteristic	Туре	Min.	Тур.	Max.	Units	Conditions
Max. Toggle frequency Min. toggle frequency for correct	SP8650	600			HMz	Test circuit as in fig. 2 VIN = 400 to 800mV p-p
operation with a sinewave input Min. slew rate for square wave				40	MHz	VIN == 400 to 800mV p-p
input to guarantee correct operation to OHz				100	V/µs	
Input reference voltage	1 1		2.6		v	
Output voltage swing (dynamic) Output voltage (static)		500	800		mV	р-р
high state				.615	v	
Low state		-1.83		-1.435	v	
Power supply drain current			45	60	mA	

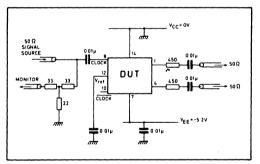


Fig. 3 Toggle frequency test circuit

Toggle Frequency Test Circuit

- 1. All leads are kept short to minimise stray capacitance and induction.
- Resistors and capacitors are non-inductive UHF types.
- 3. Device is tested in a 14 lead Augat socket type No. 314-AGGA-R

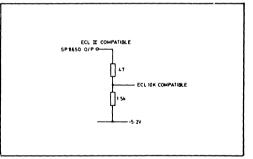


Fig. 4 SP8650 to ECL 10K interface

ABSOLUTE MAXIMUM RATINGS

Power supply voltage /	Vcc — Vee	/ 8 volts
Input voltage	VINac	2.5V p-p
Output source curr	lout	10mÁ
Storage temperature rai	—55°C to +125°C	
Operating junction temp	150°C max.	

OPERATING NOTE

Normal UHF layout techniques should be used if the SP8650 divider is to operate satisfactorily. If the positive supply is used as the earth connection, noise immunity is improved and the risk of damage due to inadvertently shorting the output emitter followers to the negative rail is reduced.

The circuit is normally capacitively coupled to the signal source. In the absence of an input signal the circuit will self-oscillate. This can be prevented by connecting a $10K\Omega$ resistor between one of the inputs and the negative rail.

The device will also miscount if the input transitions are slow — a slew rate of $100V/\mu s$ or greater is necessary for low frequency operation.

The outputs interface directly to ECL II or to ECL 10K with a potential divider (see Fig. 4). A typical application of the SP8650 device

A typical application of the SP8650 device would be in the divider chain of a synthesiser operating in the military frequency range 225 MHz to 512 MHz. A binary division rate is optimum where power is at a premium and so the SP8650 would normally be used in low power applications.

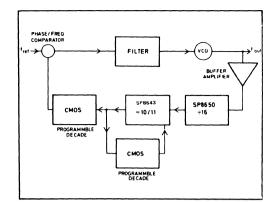


Fig. 5 A low power synthesiser loop

SP8000 SERIES HIGH SPEED DIVIDERS

SP8655A & B (32) SP8657A & B (20) SP8659A & B (16)

The SP8655A, B & M, SP8657A, B & M and SP8659A, B & M are fixed ratio (divide by 32, 20 and 16) low power counters for operation at frequencies in excess of 200 MHz over the temperature ranges -55 C to \pm 125 C ('A' grade), 0 C to \pm 70 C ('B' grade).

In all cases the input can be either single or double driven and must be capacitively coupled to the signal source. If single drive is used the unused input must be capacitively decoupled to the ground plane. There are two bias points, which should be capacitively decoupled to the ground plane.

The free collector saturating output stage is capable of interfacing with TTL and CMOS.

FEATURES

- VHF Operation
- Low Power Dissipation
- Output TTL and CMOS Compatible

APPLICATIONS

- Low Power VHF Communications
- Portable Counters

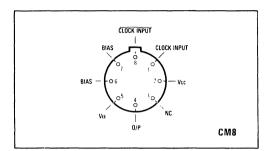


Fig. 1 Pin connections (viewed from beneath)

ABSOLUTE MAXIMUM RATINGS

Power supply voltage, Vcc—VEE Input voltage Vin

Output sink current, lo Operating junction temperature Storage temperature 8V Not greater than supply voltage in use 10mA

+150°C –55°C to +150°C

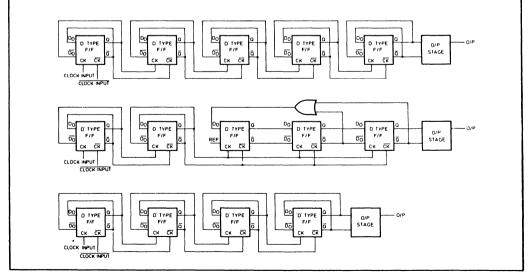


Fig. 2 Logic diagram

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

Operating ambient temperature Tamb:

Operating supply voltages VCC : Input voltage single drive : double drive :

Output load 3.3k Ω to --10V, in parallel with 7pF.

	Value				
Characteristic	Min.	Тур.	Max.	Units	Conditions
Maximum input frequency	200			MHz	
Minimum sinusoidal input frequency		20	40	MHz	
Minimum slew rate of square wave input		30	100	V/µs	
Power supply drain current		10	13	mÁ	Vcc=+5.2V
Output level (high)	9.0			l v	
Output level (low)			400	mV	

OPERATING NOTES

Fig. 3 gives capacitor values for AC and DC coupling of the input and bias points on the test circuit; these values are not critical and will depend on the operating frequency.

The devices will normally self-oscillate in the absence of an input signal. This can be easily tprevented by connecting a 39k Ω pulldown resistor from either input (double drive) to VEE; if the device is single driven then it is recommended that the pulldown resistor be connected to the decoupled unused input. The slight loss of input sensitivity resulting from this

technique does not seriously affect the operation of the device.

The input waveform will normally be sinusoidal but below 40MHz correct operation depends on the slew rate of the input signal. A slew rate of 100V/ μ s will enable the device to operate down to DC.

The output stage will drive three TTL gates without the addition of a pull-up resistor. Using a pull-up resistor of 3.3k Ω (or less) to a + 10V will allow the output to drive a CMOS binary counter at a frequency of up to 5MHz.

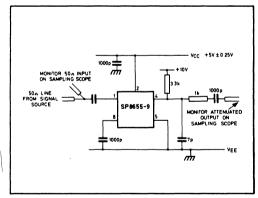


Fig. 3 Test circuit

SP8656 ÷ (24) SP8658 ÷ (20)

The SP8656 and SP8658 are fixed ratio (divide by 24 and 20) low power counters for operation at frequencies in excess of 200MHz over the temperature ranges -30° C to -70° C.

In all cases the input can be either single or double driven and must be capacitively coupled to the signal source. If single drive is used the unused input must be decoupled to the ground plane.

The free collector saturating output stage is capable of interfacing with TTL and CMOS.

FEATURES

- VHF Operation
- Low Power Dissipation
- Output TTL and CMOS Compatible

APPLICATIONS

- Low Power VHF Communications
- Portable Counters

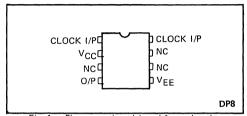


Fig. 1 - Pin connections (viewed from above)

ABSOLUTE MAXIMUM RATINGS

Power supply voltage: [V _{CC} — V _{EE}]	8V
Input voltage V _{IN}	Not greater than supply voltage in use.
Output sink current I0	10mA
Operating junction temperature Storage temperature	+150 ⁰ C -55 ⁰ C to +125 ⁰ C

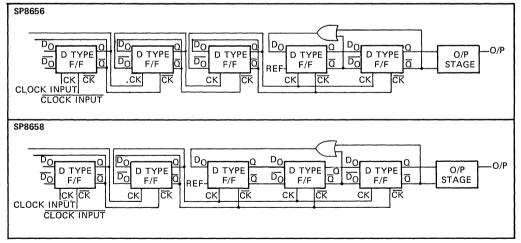


Fig. 2 Logic diagram

SP8656/8 ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

Operating ambient temperature T_{amb} -30°C to + 70°C

Operating supply voltage V_{cc} : 4.75v to 5.25v Input voltage single drive: 400mV to 800mV pk-pk double drive: 250mV to 800mV pk-pk Output load 3.3kΩ to -10V

	Value				
Characteristic	Min.	Тур.	Max.	Units	Conditions
Maximum input frequency Minimum sinusoidal input frequency	200	20	40	MHz MHz	
Minimum slew rate of square wave input		30	100	V/µsec	
Power supply drain current		20	30	mA	VCC+ 5.5V
Output level (high)*	9.0			l v	
Output level (low)			400	mV	

OPERATING NOTES

Fig. 3 gives capacitive values for AC and DC coupling of the input capacitor and bias points on the test circuit – these values are not critical and will depend on the operating frequency.

The devices will normally self-oscillate in the absence of an input signal. This can be easily prevented by connecting a $39k\Omega$ resistor from either input (double drive) to V_{EE} ; if the device is single driven then it is recommended that the pulldown resistor be connected to the decoupled unused input. The slight loss of input sensitivity resulting from this technique does not seriously affect the operation of the device.

The input waveform will normally be sinusoidal but below 40MHz. correct operation depends on the slew rate of the input signal. A slew rate of $100V/\mu s$ will enable the device to operate down to DC.

The output stage will drive three TTL gates without the addition of a pull-up resistor. Using a pull-up resistor of $3.3k\Omega$ to a +10V will allow the output to drive a CMOS counter at a frequency of up to 5MHz.

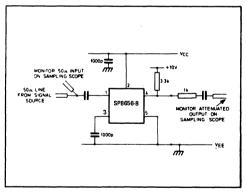


Fig. 3 Test circuit

SP8000 SERIES

HIGH SPEED DIVIDERS

SP8660 A&B

200 MHz ÷ 10 (LOW POWER)

The SP8660 is a fixed ratio (divide by 10) low power counter for operation at frequencies in excess of 100MHz over the temperature ranges -55° C to $+125^{\circ}$ C ('A' grade) 0°C to $+70^{\circ}$ C ('B' grade).

The input can be either single or double driven and must be capacitively coupled to the signal source. If single drive is used, the unused input must be capacitively decoupled to the ground plane. There are two bias points, which should also be capacitively decoupled to the ground plane.

The free collector saturating output stage is capable of interfacing with TTL and CMOS.

FEATURES

- VHF Operation
- Low Power Dissipation
- Output TTL and CMOS Compatible
- Military and Commercial Temperature Ranges

APPLICATIONS

Low Power VHF Communications

Portable Counters

ABSOLUTE MAXIMUM RATINGS

Power supply voltage, $V_{CC} - V_{EE}$ 8V Input voltage V_{in} No

Not greater than

Output sink current, Io Operating junction temperature Storage temperature supply voltage in use 10mA +150°C -55°C to +150°C

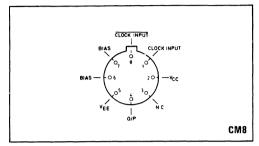


Fig. 1 Pin connections (viewed from beneath)

OPERATING NOTES

Fig. 3 gives capacitor values for AC and DC coupling of the input and bias points on the test circuit; these values are not critical and will depend on the operating frequency.

The device will normally self-oscillate in the absence of an input signal. This can be easily prevented by connecting a 39k Ω pulldown resistor from either input (double drive) to V_{EE}; if the device is single driven then it is recommended that the pulldown resistor be connected to the decoupled unused input. The slight loss of input sensitivity resulting from this technique does not seriously affect the operation of the device.

The input waveform will normally be sinusoidal but below 40MHz correct operation depends on the slew rate of the input signal. A slew rate of $100V/\mu s$ will enable the device to operate down to DC.

The output stage will drive three TTL gates without the addition of a pull-up resistor. Using a pull-up resistor of $3.3k\Omega$ (or less) to +10V will allow the output to drive a CMOS binary counter at a frequency of up to 5MHz.

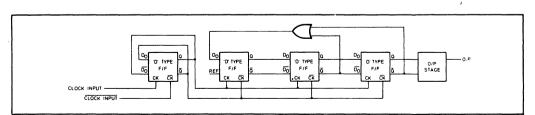


Fig. 2 Logic diagram

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated)

Operating ambient temperature T_A 'A' grade: -55°C to +125°C; 'B' grade: 0°C to 70°C; Operating supply voltages V_{CC} : +5.0V± 0.25V; V_{EE} : 0V Input voltage Single drive: 400mV to 800mV p-p; double drive: 250mV to 800mV p-p Output load 3.3k Ω to +10V, in parallel with 7pF

		Value	11	0	
Characteristic	Min.	Тур.	Max.	Units	Condition
Maximum input frequency	200	250		MHz	
Minimum sinusoidal input frequency		20	40	MHz	
Minimum slew rate of square wave input		30	100	V/μs	
Power supply drain current		10	13	mA	V _{CC} = +5.0V
Output level (high)	9.0			l v	
Output level (low)			400	mV	

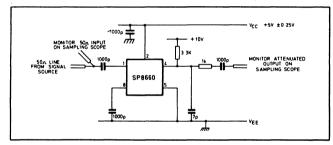


Fig. 3 Test circuit

SP8000 SERIES HIGH SPEED DIVIDERS

UHF DECADE COUNTERS

SP8665B 1.0GHz ÷ 10

SP8667B 1.2GHz ÷ 10

The SP8665/7 . high speed decade counters operating at an input frequency of up to 1GHz over the temperature range 0° C to +70°C.

The device has a typical power dissipation of 550mW at the nominal supply voltage of 6.8V.

The clock input is biased internally and is coupled to the signal source by a capacitor. The input signal path is completed by an input reference decoupling capacitor which is connected to earth. If no signal is present at the clock input the device will self-oscillate. If this is undesirable it may be prevented by connecting a 15k Ω resistor from the input to $V_{\rm EE}$ (pin 10 to pin 7). This will reduce the input sensitivity of the device by approximately 100mV.

The clock inhibit input is compatible with standard ECL III circuits using a common V_{CC} to the SP8665/7. A 6k Ω pulldown resistor is included on the chip. The input should be left open circuit when not in use. The SP8665/7 outputs are compatible with standard ECL II circuits. They may be used to drive ECL 10K by the inclusion of two resistors as shown in Fig. 4.

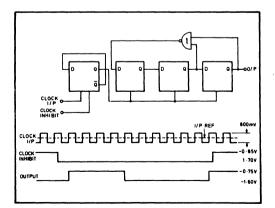


Fig. 2 Logic diagram

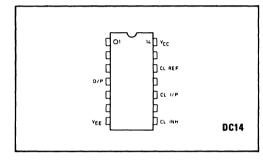


Fig. 1 Pin connections

FEATURES

- Guaranteed operation over large temperature range 0°C to 70°C
- Wide input dynamic range
- Self biasing clock input
- Clock inhibit input for direct gating capability

ABSOLUTE MAXIMUM RATINGS

Power supply voltage $V_{CC} - V_{EE}$	0V to +10V
Input voltage inhibit input	VEE to VCC
Input voltage CP input	2.5V p-p
Output current	20mA
Operating junction temperature	+150°C
Storage temperature	–55°C to 150°C

ELECTRICAL CHARACTERISTICS

Test Conditions (unless otherwise stated):

Supply voltage	6.8V ± 0.3V
Clock input	AC coupled, self-biasing
Clock inhibit input	ECL III compatible
Output	ECL II compatible
T _{amb}	0°C to +70°C
Supply voltage	$V_{CC} = 0V V_{EE} = -6.8V$
Clock input voltage	400mV to 1.2V (peak to peak)

Characteristics .		Value			Units	Conditions
		Min.	Typ.	Max.	01110	Conditions
Max. i/p frequency	SP8665	1.0			GHz	400mV to 1.2V p-p
	SP8667	1.2			ĞHz	600mV to 1.2V p-p
Min, i/p frequency				200	MHz	Sine wave input 400mV p-p
Min. i/p frequency				100	MHz	Sine wave input 600mV p-p
Min. slew rate for square wave input				200	V/µsec	
Clock i/p impedance			400		Ω	At low frequency
Inhibit input reference level			-1.3		v	At 25°C compatible with
						ECL III throughout the
						temperature range.
Inhibit input pulldown resistor (internal)			6		kΩ	
Output pulldown resistor (internal)			3		kΩ	
Power supply drain current			80	105	mA	At 25°C

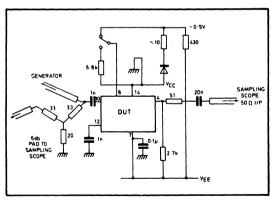
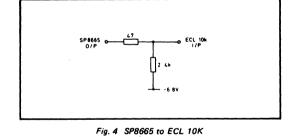



Fig. 3 Test circuit

SP8000 SERIES HIGH SPEED DIVIDERS

SP8670A&B

600MHz.*8

The SP8670, SP8671 and SP8672 are fixed ratio -8 asynchronous ECL counters with a maximum operating frequency of 600, 500 and 400 MHz respectively. The operating temperature is specified by the final coding letter: -55° C to $+125^{\circ}$ C ('A' grade), 0°C to $+70^{\circ}$ C ('B' grade). The input is normally capacitively coupled to the signal source but the circuit can be DC driven if required. The inputs can be either single driven, relative to the on-chip reference voltage...or driven differentially. There are two complementary emitter-follower outputs.

Low Power - Typically 250mW

ECL II & ECL III Output Compatibility

Easy Operation From UHF Signal Source

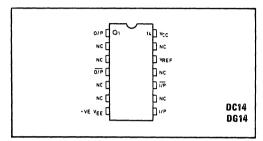


Fig. 1 Pin connections

APPLICATIONS

- Prescaling for UHF Synthesisers
 - Instrumentation

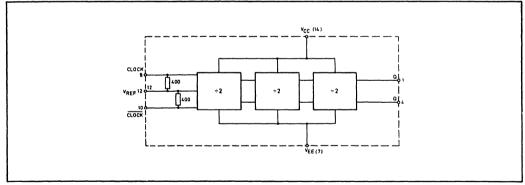


Fig. 2 Functional diagram

QUICK REFERENCE DATA

FEATURES

Power Supplies	$V_{CC} = 0V$
	$V_{EE} = -5.2V \pm 0.25V$
Input Amplitude range	400mV to 800mV p-p
Output Voltage Swing	800mV typ. p-p
Temp. Ranges:	-55°C to +125°C ('A' Grade) 0°C to +70°C ('B' Grade)

SP8670

ELECTRICAL CHARACTERISTICS

Test Conditions (unless otherwise stated)

 $T_{amb} = A' \text{ grade: } -55^{\circ}\text{C to } +125^{\circ}\text{C};$ Supply Voltage B' grade: 0°C to 70°C; $V_{CC} = 0V$

V_{EE} = -5.2V ± 0.25V

Output load = 500Ω line in parallel with approx. 3pF

Characteristic		Value				A
		Min.	Typ.	Max.	Units	Condition
Max. Toggle frequency	SP8670	600			MHz	
Min. Toggle frequency for correct						
operation with a sinewave input				40	MHz	V _{IN} = 400 to 800mV p-p
Min. slew rate for square wave input						
to guarantee correct operation to OHz				100	V/µs	
Input reference voltage			2.6		v	
Output voltage swing (dynamic)		500	800		mV	р-р
Output voltage (static)						
High state		-8.95		.615	v	
Low state		-1.83		-1.435	v	
Power supply drain current			45	60	mA	

Toggle Frequency Test Circuit

- 1. All leads are kept short to minimise stray capacitance and inductance
- 2. Resistors and capacitors are non-inductive UHF types.
- 3. Device is tested in a 14 lead Augat socket type No. 314-AGGA-R

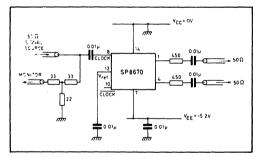


Fig. 3 Toggle frequency test circuit

OPERATING NOTE

Normal UHF layout techniques should be used to ensure satisfactory operation. If the positive supply is used as the earth connection; noise immunity is improved and the risk of damage due to inadvertently shorting the output emitter followers to the negative rail is reduced. The circuit is normally capacitively coupled to the signal source. In the absence of an input signal the circuit will self-oscillate. This can be prevented by connecting a $10K\Omega$ resistor between one of the inputs and the negative rail.

 V_{ref} must be decoupled to RF earth by a capacitor in the range 30pF to 1000pF. It is important that this decoupling is adequate, otherwise input sensitivity will be reduced.

The device will also miscount if the input transitions are slow – a slew rate of $100V/\mu s$ or greater is necessary for low frequency operation.

The outputs interface directly to ECL II or to ECL 10K with a potential divider (see Fig. 4).

A typical application of the SP8670 would be in the divider chain of a synthesiser operating in the military frequency range 225 MHz to 512 MHz. A binary division ratio is optimum where power is at a premium and so the SP8670 would normally be used in low power applications.

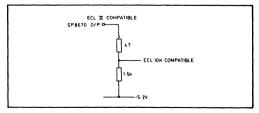


Fig. 4 SP8670 to ECL 10K interface

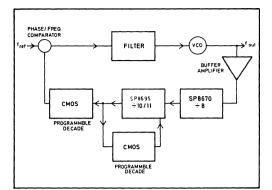


Fig. 5 A low power synthesiser loop

ABSOLUTE MAXIMUM RATINGS

 Power supply voltage |V_{CC} - V_{EE}|
 8 volts

 Input voltage
 V_{INac}
 2.5V p

 Output source current I_{out}
 10mA

 Storage temperature range
 -55°C r

 Operating junction temperature
 150°C r

8 volts 2.5V p-p 10mA --55°C to +125°C 150°C max.

SP 8000 SERIES

HIGH SPEED DIVIDERS

SP8675B&M 1.0GHz ÷8 SP8677B&M 1.2GHz ÷8

The SP8675/7 are high speed counters for operation at input frequencies up to 1.2GHz.

The devices have a typical power dissipation of 470mW at the nominal supply voltage of 6.8V.

The clock input is biased internally and is coupled to the signal source by a capacitor. The input signal path is completed by an input reference decoupling capacitor which is connected to earth. If no signal is present at the clock input the device will self-oscillate. If this is undesirable it may be prevented by connecting a 15k Ω resistor from the input V_{EE} (pin 10 to pin 7). This will reduce the input sensitivity of the device by approximately 100mV.

The clock inhibit input is compatible with standard ECL III circuits using a common V_{cc} to the SP8675/7. A 6k Ω pulldown resistor is included on the chip. The input should be left open circuit when not in use. The SP8675/7 outputs are compatible with standard ECL II circuits. They may be used to drive ECL 10K by the inclusion of two resistors as shown in Fig. 4.

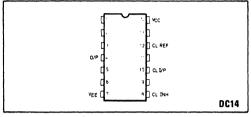


Fig. 1 Pin connections

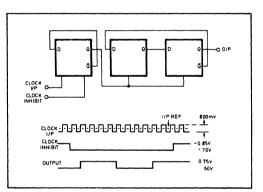


Fig. 2 Logic diagram and timing

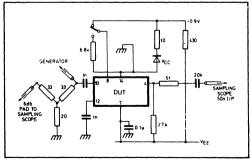


Fig. 3 Test circuit

FEATURES

- Guaranteed Operation over Large Temperature Range : 'B' Grade 0°C to +70°C 'M' Grade -40°C to +85°C
- Wide Input Dynamic Range
- Self Biasing Clock Input
- Clock Inhibit Input for Direct Gating
- Capability

ABSOLUTE MAXIMUM RATINGS

Power supply voltage V_{CC} — V_{EE} 0 to 10V Input voltage inhibit input V_{EE} to V_{CC} Input voltage CP input 2.5V p-p Output current 20mA Operating junction temperature +150°C Storage temperature -55°C to +150°C

ELECTRICAL CHARACTERISTICS

Test Conditions (unless otherwise stated)

Supply voltage	6.8V ± 0.3V
Clock input	AC coupled, self-biasing
Clock inhibit input	ECL III compatible
Output	ECL II compatible
T _{amb} 'B' grade	$0^{\circ}C$ to $+70^{\circ}C$ (see note 1)
'M' grade	-40°C to +85°C (see note 1)
Supply voltage	$V_{CC} = OV V_{EE} =6.8V$
Clock input voltage	400mV to 1.2V (peak to peak)

Characteristic	Acteristic Value Units		Unite	Conditions		
Characteristic	Min.	Тур.	Max.		Conditions	
Max. i/p frequericy SP8675 SP8677 Min i/p frequency Mir slew rate for square wave input Clock i/p impedance Inhibit input reference level		400	200 150 200	GHz GHz MHz MHz V/μsec Ω V	400mV to 1.2V p-p 600mV to 1.0V p-p Sine wave input 400mV p-p Sine wave input 600mV p-p At low frequency At 25°C compatible with	
Inhibit input pulldown resistor (internal) Output pulldown resistor (internal)		6		kΩ kΩ	ECL III throughout the temperature range	
Power supply drain current		70	95	mA	at 25°C	

NOTES

1. The SP8677M is tested at $T_{case} = -40^{\circ}$ C to +85°C. The SP8677M requires a suitable heatsink to be connected during operation.

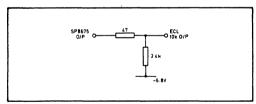


Fig. 4 SP8675 to ECL10K interface

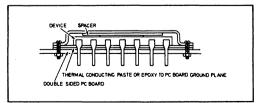


Fig. 5 Heat sink for 'M' grade devices

SP8000 SERIES UHF PROGRAMMABLE DIVIDERS

SP8680 A& B 600 MHz ÷ 10/11

The SP8680 A & B are high speed programmable -10/11 counters which operate at input frequencies up to 600 MHz over the temperature ranges -55°C to +125°C (A grade), -30°C to +70°C (B grade). The devices operate on a single +5V or T5.2V power supply and may be easily interfaced to E.C.L., or (by connecting the internal VREE) capacitively coupled to the signal source. A clock enable, which is E.C.L. compatible, is provided. The division ratio is controlled by two mode inputs which are also ECL compatible. The counter will divide by 10 when either input is in the high state and by 11 when both inputs are low. The counter may be set to the eleventh state by applying a high level to the MS input. The set command is asynchronous and overrides the clock input. All inputs have internal -50K Ω pull down resistors, so that unused inputs may be left open circuit.

Two complementary ECL outputs are provided. They are both capable of driving 50Ω lines. A T.T.L.

FEATURES

- D.C. to 600 MHz operation
- ECL and TTL compatible
- D.C. or A.C. clock input

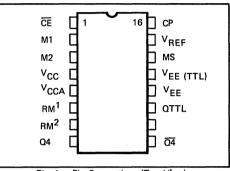
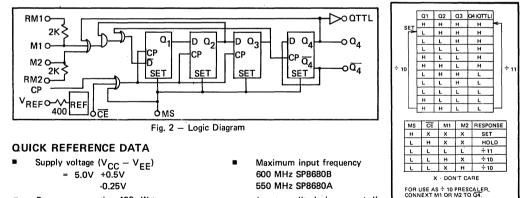



Fig. 1 - Pin Connections (Top View)

push pull output is also provided which may be powered up separately from the counter using the $V_{\rm FF}$ on pin 13.

- Clock enable
- Asynchronous master set

 Power consumption 400mW typ. (no load)
 T.T.L. output 20mW typ. Input amplitude (a.c. coupled)

350mV to 700mV.

Fig. 3 – Count Sequence & Control Input Truth Table

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The table of Electrical Characteristics provides conditions for actual device operation.

Power Supply Voltage	$[V_{CC} (V_{CCA}) - V_{EE}]$ -0.5 to +7V
Input Voltage	V _{EE} TO V _{CC}

ECL Output Source Curr	ent 50mA
TTL Output Sink Curren	t 30mA
Voltage Applied to TTL Output High	VEE to VCC
Operating Ambient Temperature	-55 ⁰ C to +125 ⁰ C
Storage Temperature	-55°C to +150°C

STATIC CHARACTERISTICS

Characteristics		Value		Units	Conditions
	Min	Тур.	Max		
Guaranteed					
Input High Voltage V _{INH}	4.1		4.4	v	$V_{CC} = +5.2V$ Tamb = 25°C
Guaranteed	1				
Input Low Voltage V _{INL}	3.35		3.7	v	(See Note 2)
Input High Current I _{INH}					V _{CC} = +5.2V
CP and MS inputs	1	} .	400	μA	T _{amb}
M1 and M2 inputs			250	μΑ μΑ	V _{INH} = 4.4∨
Input Low Current INL	0.5			μA	V _{INL} ≈ 3.35V
E.C.L. Output Low					$V_{00} = +5.2V$
Voltage V _{OL}	3.38	3.49	3.58	v	$V_{CC} = +5.2V$ Tamb = 25°C
E.C.L. Output High					Load 100Ω to +3.2∨
Voltage V _{OH}	4.22	4.30	4.38	v	(See Note 2)
T.T.L. Output High					$V_{CC} = V_{CCA} = 4.75V$
Voltage V _{OH}	2.7	3.3		v	$I_{OH} = -1mA$ Tamb = 25°C
					Tamb - 25 C
T.T.L. Output Low					V _{CC} = V _{CCA} = 4.75V
Voltage V _{OL}		0.3	0.5	V	I _{OL} = 20mA
					Tamb = 25 ⁰ C
T.T.L. Output Short					V _{CC} = V _{CCA} = 5.5V V _{OUT} = 0V
Circuit Current	-80	-40	-20	mA	$V_{OUT} = 0V$
					Pin 14 = V _{INH}
M1, M2 Input Low					$V_{CC} = V_{CCA} = 5.5V$
Current (using int.					$V_{CC} = V_{CCA} = 5.5V$ $V_{IN} = 0.4V$
2KΩ pull up)	-4.0	-2.5		v	Pins 6, 7 = V_{CC}
Power Supply Current		75	105	mA	No Load
					Pins 6, 7, 13 open circuit
T.T.L. Output Stage		4		mA	Mèan, Output High
Supply Current	1				and Low

SP8680

DYNAMIC CHARACTERISTICS

Characteristics		Value		Units	Conditions
	Min	Тур.	Max		
Max. Count Frequency SP8680B SP8680A	600 550			MHz MHz	$V_{CC} = +5.2V$ a.c. coupled input 350mV peak to peak -30°C to +70°C -55°C to +125°C
Min. Frequency with sinewave clock input			10	MHz	V _{CC} = +5.2V a.c. coupled input 600mV peak to peak Tamb = 25 ^o C
Min, slew rate of square wave clock input			20	V/ usec	V _{CC} = +5.2V
Propagation Delay CP to Q4		2.2	3.0	nsec	Tamb = 25 ⁰ C
Propagation Delay MS to Q4		4.5	6.0	nsec	Ouptut Load
Min Set Up Time M to CP		2.0	4.0	nsec	100Ω to +3.2V
ECL Output Rise & Fall Times		1.3		nsec	_
Propagation Delay CP to QTTL		8	14	nsec	V _{CC} = +5.0V
TTL Output Rise Time		3		nsec	Tamb = 25 ⁰ C
TTL Output Fall Time		3		nsec	

Notes:

- 1. The SP8680 may be used in a positive earth system with $V_{CC} = 0V$ and $V_{EE} = -4.75V$ to -5.5V.
- The input threshold has a temperature coefficient of 2. 0.8mV/^oC. This may be used to calculate V_{INH} and

The output high level has a temperature coefficient of 1.2mV/^oC, whilst the output low level has a coefficient of 0.2mV/°C.

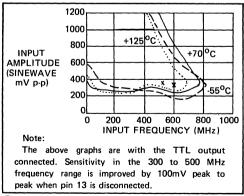


Fig. 4 Clock Input Frequency versus Amplitude (a.c. coupled)

 $V_{\mbox{\rm INL}}$ values at the temperature extremes. The E.C.L. outputs are capable of driving a 50Ω 3. load to +3.2V over a limited temperature range of 0°C to 70°C. The output high level will be reduced by typically 50mV.

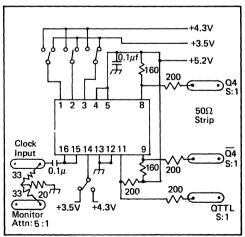
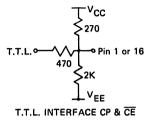
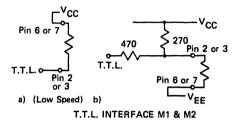



Fig. 5 - Dynamic Test Circuit

OPERATING NOTES

The SP8680 is designed to operate in the UHF band and therefore PCB layouts should comply with normal UHF rules, e.g., short tracks, low inductance capacitors, etc.

All clock and control inputs are compatible with ECL 10K throughout the temperature range. The clock input may be capacitively coupled by connecting pin 16 to pin 15. All inputs may be interfaced with T.T.L. logic as shown in Figure 6.



Two E.C.L. compatible outputs are available (true and inverse) both capable of driving a 100 Ω load (to +3.2V) over the full temperature range. These outputs have no internal pull down, so an external resistor to V_{EE} is required when interfacing to other E.C.L. logic. A T.T.L. output is also provided which is powered up by connecting pin 13 to V_{FE}.

The SP8680 may be controlled by a following variable divider to produce effective variable division at up to 600 MHz. Some points to be noted when this technique is employed are as follows:

 The 0 - 1 edge of the Q₄ or TTL outputs must be used to clock the following divider. This gives a maximum control loop delay time (equal to ten clock periods minus internal delays).

- At 600 MHz the required control loop delay time is only 13 nsec. (using ECL outputs) and, hence, only an E.C.L. variable divider can be used in the control loop. A suitable device is the 10136.
- 3) To overcome the above problem, the modulus may be extended from 10/11 to 20/21, 40/41 to 100/101. This will considerably increase the control loop delay time so that a TTL variable divider may be used in the control loop.

- 4) The minimum division number of a 'two modulus' n/n + 1 when employed as a fully variable divider is n(n-1). Therefore, for a 10/11, this will give 90. If the modulus has been extended to 100/101, the minimum divide number will be 9,900 which may well be too large.
- 5) If the above two-modulus approach does not give a satisfactory systems' solution, then a four-modulus system may be required. An example of this would be a 100/101/110/111 followed by two control dividers. The two control dividers decide on the number of +1 and +10 counts required. The minimum division number of such a system is 900.

SP8000 SERIES

HIGH SPEED DIVIDERS

SP8685A&B

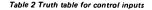
UHF PROGRAMMABLE DIVIDER 500MHz ÷ 10/11

The SP8685 A&B are high speed programmable-10/11 counters operating at an input frequency of up to $_{1}500$ MHz over the temperature ranges -55°C to +125°C|('A' grade), 0°C to +70°C ('B' grade).

The clock input is biased internally and is coupled to the signal source by a capacitor. The input signal path is completed by an input reference decoupling capacitor which is connected to earth.

The division ratio is controlled by two \overline{PE} inputs. The counter will divide by 10 when either input is in the high state, and by 11 when both inputs are in the low state. These inputs are compatible with standard ECL 10K inputs and have the same temperature characteristics. Both inputs have nominal $4.3k\Omega$ internal pulldown resistors.

The true and inverse outputs are compatible with standard ECL II outputs. They may be used to drive ECL 10K circuits by the inclusion of two resistors as shown in Fig. 4.


When using the device as a divide-by-ten prescaler the inverse output (o/p) should be connected to a PE input.

Clock Pulse	Qı	Q ₂	Q3	Q4
1	L	н	н	н
2	L	L	н	н
2 3	L	L	L	н
4	н	L	L	н
5	н	н	L	н
6	L	н	H'	L
7	L	L	н	L
8	L	L	L	L
9	н	L	L	L
10	_ H_	н_		_ <u>L</u>
11	<u>'</u> . <u>H</u> _		_ H _	<u>_ H</u>

Extra state

PE 1	PE ₂	Div Ratio
L	L	11
Н	L	10
L	н	10
н	н	10

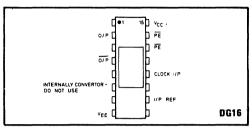


Fig. 1 Pin connections

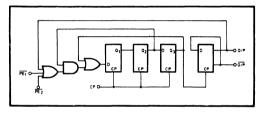


Fig. 2 Logic diagram SP8685

FEATURES

- Full temperature range operation:
 - 'A' grade -55°C to +125°C 'B' grade 0°C to +70°C
- Self Biasing CP Input
- Wide Input Dynamic Range
- Control Inputs ECL 10K Compatible
- Low Propagation Delay
- True and Inverse Outputs Available

ABSOLUTE MAXIMUM RATINGS

Power supply voltage V _{CC} - V _{EE}	0V to +8V
Input voltage, PE inputs	0V to V _{CC}
Input voltage, CP input	2V peak-to-peak
Output current	20mA
Operating junction temperature	+150°C
Storage temperature	–55°C to +150°C

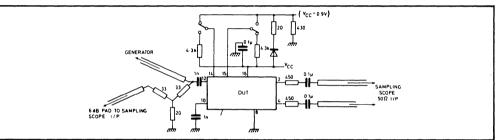
ELECTRICAL CHARACTERISTICS

 PE inputs - ECL 10K compatible

 Outputs - ECL II compatible

 Test conditions (unless otherwise stated)

 Tamb
 'A' grade .55°C to +125°C


 'B' grade 0°C to +70°C

 Supply voltages: V_{CC} = +5.2V ±0.25V

 $V_{EE} = 0V$

Clock input voltage: 400mV to 800mV (p-p)

01		Value		Units	Conditions	
Characteristic	Min. Typ		Max.	Onits	Conditions	
Max j/p frequency	500			MHz	V _{cc} = +5.2V	
Min i/p frequency			40		Sinewave Input	
Min. slow rate for square wave input			100	V/µs		
Propogation delay	1					
(clock i/p to device o/p)		4		ns		
PE input reference level		+3.9		v	V _{cc} = +5.2V, 25°C	
Power supply drain current		45	60	mA	$V_{cc} = +5.2V, 25^{\circ}C$	
PE input pulldown						
Resistors		4.3		κΩ		
Clock i/p impedance						
(i/p to i/p ref low frequency)		400		Ω		

APPLICATION NOTES

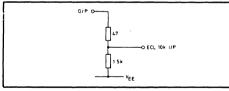


Fig. 4 SP8685 output – ECL 10K i/p and ECLII (or ECL 10K o/ps unloaded) – ECL 10K i/p

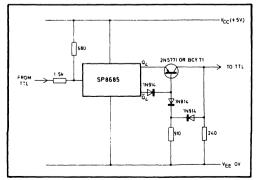
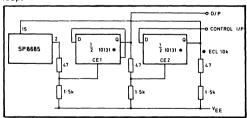
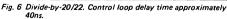




Fig. 5 TTL υ/ρ – SP8685 PE i/ρ; SL8685 o/ρ – TTL i/ρ. (Total delay from SP8685 clock i/ρ to Schottky gate o/ρ = 15ns, typ.)

Fig. 3 Test circuit

At an input frequency of 500 MHz the control loop delay time (SP8685 o/p to PE i/p) is approximately 16 ns. This will be a severe problem if TTL is used in the control loop.

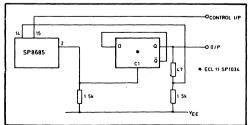


Fig. 7 Divide-by-20/21. Control loop delay time approximately 30ns using SP1034.

SP8000 SERIES

HIGH SPEED DIVIDERS

SP8690 A & B 200 MHz ÷ 10/11 AC COUPLED VHF, LOW POWER, PROGRAMMABLE DIVIDERS

The SP8690 A&B are divider circuits that can be logically programmed to divide by either 10 or 11.

The device is available over three temperature ranges : 'A' grade is -55 C to +125 C and the 'B' grade is 0 C to +70 C,

The clock inputs can be either single or differentially driven and must be AC-coupled to the signal source. If single driven then the unused input must be decoupled to the earth plane. The device will self-oscillate if no input is present; to prevent this, a $68k\Omega$ resistor should be connected from pin 1 or 16 to 0V. This will reduce the sensitivity of the device by approximately 100mV p-p.

The division ratio is controlled by two \overline{PE} inputs which are ECL III and ECL 10K compatible throughout the temperature range. The device will divide by ten when either input is high and by eleven when both inputs are low. These inputs may be interfaced to TTL and CMOS by the inclusion of 2 resistors, as shown in Fig. 3. There is a free collector, saturating output stage for interfacing with either TTL or CMOS, together with true and inverse outputs with ECL II compatible levels. These may be interfaced to ECL 10K as shown in Fig. 4.

The device may be used as a fixed \div 10 by connecting Q4 to one PE input.

If the $0 \rightarrow 1$ transition of Q4 (or the $1 \rightarrow 0$ transition of Q4) is used to clock the next stage then this will give the maximum loop delay for control, i.e. 10 clock periods minus the internal delays.

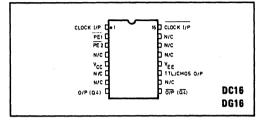


Fig.1 Pin connections

FEATURES

- Full Temperature Range Operation 'A' Grade — 55°C to +125°C 'B' Grade 0°C to +70°C
- Toggle Frequency in Excess of 200MHz
- Power Dissipation 70mW Typical
- ECL Compatibility on All Inputs
- Capacitively Coupled Clock Input for Synthesiser and Counter Applications
- True and Inverse Outputs Available with ECL Compatibility
- Output Available for Driving TTL or CMOS

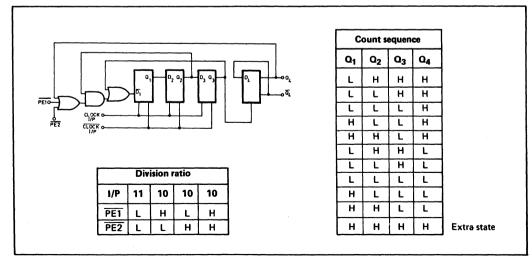


Fig.2 Logic diagram

ELECTRICAL CHARACTERISTICS

Test Conditions (unless otherwise stated):

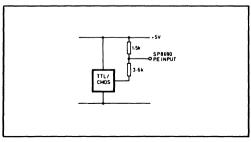
I	ar	nl	b

'A' grade -55°C to +125°C 'B' grade 0°C to +70°C $\dot{Vcc} = +5V \pm 0.25V$ Supply voltage VEE = OV Clock I/P voltage

400mV to 800mV peak to peak Pin 16 (decoupled to 0V)

	Value				
Characteristic	Min.	Тур.	Max.	Units	Conditions
Max. toggle frequency	200			MHz	
Min. freq. with sine wave clock input		15		MHz	
Min. slew rate of square wave I/P for correct operation PE input levels		40		V/µs	
Vinh	+4.1		+4.5	v	Vcc=+5V
VINL Q4 & Q4 output voltage levels	0.0		+3.5	v	Tamb=+25°C (note 1) Tamb≕+25°C (note 2)
Vон Vol	4.15		+3.5	V V	l_{out} (external) = 0mA (There is internal circuitry equivalent to a 3.8k Ω pulldown resistor on each
TTL/CMOS output voltage					output)
levels Vol Voн	see		+0.4	v	Sink current 3.2mA on TTL output
Input pulldown resistors between	note 3				
input pins 2 & 3 and –ve rail Power supply drain current Impedance of clock I/P		10 14 1.6	19	kΩ mA . kΩ	$Vcc=+5V$; $T_{amb}=25$ °C in=0Hz
Clock to TTL output delay (O/P -ve going)		22		ns	8mA sink current
Clock to TTL output delay (O/P —ve going) Clock to ECL output delay		8 6		ns ns	TTL output
Set up time Release time		8 6 2 4		ns ns	See note 4 See note 5

NOTES


1

The PE reference voltage level is compatible with ECL II and ECL 10k over the specified temperature range. The Q4 and Q4 output levels are compatible with ECL II and ECL 10k over the specified temperature range. 2

The TTL/CMOS output has a free collector, and the high state output voltage will depend on the supply that the collector load is 3. taken to. This should not exceed +12V.

4. Set up time is defined as the minimum time that can elapse between a L-H transition of a control input and the next L-H clock pulse transition to ensure that the -10 mode is forced by that clock pulse.

5. Release time is defined as the minimum time that can elapse between a L-H transition of a control input and the next L-H clock pulse transition to ensure that the \div 11 mode is forced by that clock pulse.

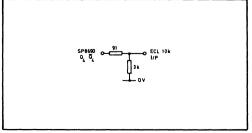


Fig.3 TTL/CMOS interface

Fig.4 ECL 10K output interface

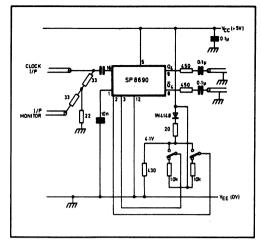


Fig.5 Test circuit for dynamic measurements

ABSOLUTE MAXIMUM RATINGS

Supply voltage Vcc—VEE Input voltage VIN d.c.

V8

 Supply Voltage/VCC-VEI
 V8

 Input voltage/VN d.c.
 Not greater than the supply voltage in use

 Output current lout (Q4 & Q4)
 10mA

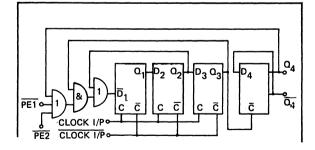
 Maximum junction temperature range
 55°C to +150°C

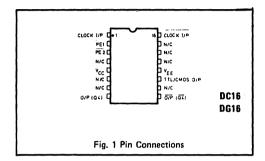
SP8000 SERIES HIGH SPEED DIVIDERS

SP8691 A & B

200 MHz + 8/9

The SP8691 A & B are divider circuits that can be logically progressed to divide by either 8 or 9.


The device is available over two temperature ranges, 'A' variant is -55° C to $+125^{\circ}$ C and the 'B' variant is 0° C to $+70^{\circ}$ C.


The clock inputs can be either single or differentially driven and must be a.c. coupled to the signal source. If single driven then the unused input must be decoupled to the earth plane. The device will self-oscillate if no input is present. To prevent this a 68k resistor should be connected from pin 1 or 16 to OV. This will reduce the sensitivity of the device by approximately 100mV p.p.

The division ratio is controlled by two \overline{PE} inputs which are ECL III, 10k compatible throughout the temperature range. The device will divide by eight when either input is high and by nine when both inputs are low. These inputs may be interfaced to TTL and CMOS by the inclusion of 2 resistors as shown in Fig. 3. There is a free collector, saturating output stage for interfacing with either TTL or CMOS together with true and inverse outputs with ECL II compatible levels. These may be interfaced to ECL 10k as shown in Fig. 4.

The device may be used as a fixed $\div 8$ by connecting $\overline{\text{Q4}}$ to one $\overline{\text{PE}}$ input.

If the $0 \rightarrow 1$ transition of Q4 or the $1 \rightarrow 0$ transition of $\overline{Q4}$ is used to clock the next stage then this will give the maximum loop delay for control i.e., 8 clock periods minus the internal delays.

FEATURES

Full temperature range operation

'A' variant -55⁰C to +125⁰C 'B' variant 0⁰C to +70⁰C

Toggle frequency in excess of 200MHz Power dissipation 70mW typical ECL compatibility on all inputs Capacitively coupled clock input for synthesiser

and counter applications True and inverse outputs available with ECL compatibility

Output available for driving TTL or CMOS

COUN	T SEQUEN	CE DIVISION RATIO
u ₁ Q	2 ⁰ 3 ⁰ 4	9888
H L	LH	
нн		PEILHLH
L H	нн	PE2 LLHH
н с	LL	
н н	LL	
]] L Н	ΗL	
L L	ΗL	1

SP8691

ABSOLUTE MAXIMUM RATINGS

Supply voltage V_{CC} - V_{EE} 8V

Input voltage V_{IN} d.c.

Not greater than the supply voltage in use

ELECTRICAL CHARACTERISTICS

Test Conditions (unless otherwise stated)

 T_{amb} 'A' variant -55°C to +125°C

'B' variant 0⁰C to +70⁰C

Output current $I_{out}(Q_4 \& \overline{Q_4})$ 10mA

Supply voltage

Clock I/P voltage

Maximum junction temperature 150°C Storage temperature range -55°C to +150°C

erature range -55°C to

 $V_{CC} = +5V \pm 0.25V$ $V_{EE} = O_V$ 400mV to 800mV peak to peak (Clock I/P decoupled to O_V)

Characteristics	acteristics Value Unit		Units	Conditions	
010100101131103	Min	Тур	Max		Conditions
Max. toggle frequency	200			MHz	
Min. freq. with sine wave clock input		15		MHz	
Min. slew rate of square wave i/p for correct operation		40		V/µs	
PE input levels					
VIMH VINL	+4.1 0.0		+4.5 +3.5	volts volts	$V_{CC} = +5V$ $T_{amb} = +25^{\circ}C$ (note 1)
Q4 & Q4 output voltage levels					T _{amb} = +25 ⁰ C (note 2)
Vон Vol	4.15		+3.5	volts volts	1 and (external) = OmA (There is internal circuitry equivalent to a 3.8k ohms pulldown resistor on each output.)
TTL/CMOS output voltage levels VOL VOH	see note 3		+0.4	volts	Sink current 3.2mA on TTL output.
Input pulldown resistors between input pins 2 & 3 and -ve rail		10		k ohms	
Power supply drain		10		K OTTINS	
current		14		mA	$V_{CC} = +5V$ $T_{amb} = +25^{\circ}C$
Impedance of clock i/p		1.6		k ohms	F _{IN} = OHz

NOTE 1

The PE reference voltage level is compatible with ECL II and 10k over the specified temperature range.

The O_4 and $\overline{O_4}$ output levels are compatible with ECL II and 10k over the specified temperature range.

NOTE 3

The TTL/CMOS output has a free collector, and the high state output voltage will depend on the supply that the collector load is taken to. This should not exceed +12V.

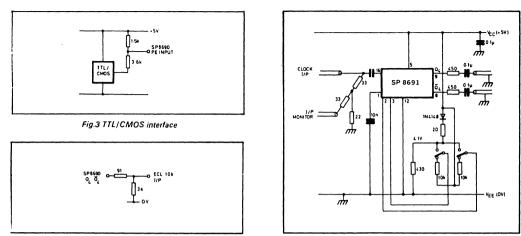
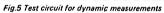



Fig.4 ECL 10K output interface

SP8000 SERIES

HIGH SPEED DIVIDERS

SP8695 A & B 200 MHz ÷ 10/11

DC COUPLED VHF, LOW POWER, PROGRAMMABLE DIVIDERS

The SP8695 A&B are divider circuits that can be logically programmed to divide by either 10 or 11.

The device is available over two temperature ranges, 'A' grade is -55 C to ± 125 C, the 'B' grade is 0 C to ± 70 C.

The clock inputs are ECL II, III & 10K compatible throughout the temperature range (see note 1).

The division ratio is controlled by two PE inputs which are ECL III and ECL 10K compatible throughout the temperature range. The device will divide by ten when either input is high and by eleven when both inputs are low. These inputs may be interfaced to TTL and CMOS by the inclusion of 2 resistors, as shown in Fig. 3. There is a free collector, saturating output stage for interfacing with either TTL or CMOS, together with true and inverse outputs with ECL II compatible levels. These may be interfaced to ECL 10K as shown in Fig. 4.

The device may be used as a fixed \therefore 10 by connecting Q4 to one PE input.

If the 0 \rightarrow 1 transition of Q4 (or the 1 \rightarrow 0 transition of Q4) is used to clock the next stage then this will give the maximum loop delay for control, i.e. 10 clock periods minus the internal delays.

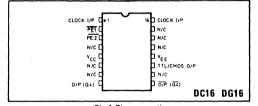


Fig.1 Pin connections

FEATURES

- Full Temperature Range Operation 'A' Grade —55°C to +125°C 'B' Grade 0°C to +70°C
- Toggle Frequency in Excess of 200MHz
- Power Dissipation 80mW Typ.
- ECL Compatibility on All Inputs
- Excellent Low Frequency Operation
- True and Inverse Outputs Available with ECL Compatibility.
- Output Available for Driving TTL or CMOS

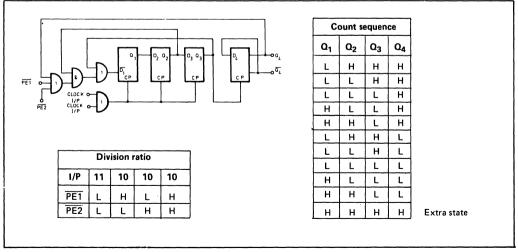


Fig.2 Logic diagram

ELECTRICAL CHARACTERISTICS

Test Conditions (unless otherwise stated):

Tamb

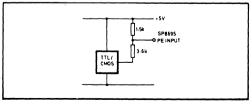
'A' grade -55°C to +125°C 'B' grade 0° C to $+70^{\circ}$ C Vcc = $+5V \pm 0.25V$ VEE = 0V Supply voltage

	Value				
Characteristics	Min.	Тур.	Max.	Units	Conditions
Max. toggle frequency Min. freg. with sine wave clock	200			MHz	
input		1		MHz	
Min. slew rate of square wave I/P for correct operation		3	!	V/µs	
Clock I/P voltage levels		Ū			
Vinh Vinl			4.2* +3.6	V V	$V_{ref} = +3.8V$
PE input levels	3.4		+3.0	v	at Tamb=25°C (note 1)
Vinh	4.1		+4.5	V	T _{amb} ≕+25°C (note 2)
VINL Q4 & Q4 output voltage levels	0.0		+3.5	v	Tamb≕+25°C (note 3)
Voн	-4.15			v	lout (external)=0mA
Vol			+3.5	V	(There is internal circuitry equivalent to 13.8 k Ω pulldown resistor on each output)
TTL/CMOS output voltage levels					13.0K2 pullow mesistor of each output)
Vo∟ Voн			+0.4	V	Sink current 3.2mA on TTL output
VOH	see note 4				
Input pulldown resistors between					
input pins 1, 2, 3 & 16 and —ve_rail		10		kΩ	
Power supply drain current		16	21	mA	$Vcc=+5V$; $T_{amb}=+25$ °C.
Clock to TTL output delay (O/P - ve going)		22		ns	8mA sink current
Clock to TTL output delay				.13	
(O/Pve going) Clock to ECL output delay		8 6		ns	TTL output
Set up time		2		ns ns	See note 5
Release time		4		ns	See note 6

NOTES

This reference level of - 3.8V will enable the clock inputs to be driven from ECL II, III & 10K when their outputs are sinking 3mA. 1. The input reference voltage is compatible with ECL II, III and 10k over the specified temperature range.

2 The PE reference voltage level is compatible with ECL II and 10k over the specified temperature range.


3. The Q₁ and $\overline{O4}$ output levels are compatible with ECL II and ECL 10k over the specified temperature range.


4. The TTL/CMOS output has a free collector, and the high state output voltage will depend on the supply that the collector load is taken to. This should not exceed ~ 12V.

Set up time is defined as the minimum time that can elapse between a L-H transition of a control input and the next L-H clock 5. pulse transition to ensure that the \div 10 mode is forced by that clock pulse.

Release time is defined as the minimum time that can elapse between a L-H transition of a control input and the next L-H clock 6. pulse transition to ensure that the \div 11 mode is forced by that clock pulse.

*High frequency limits only.

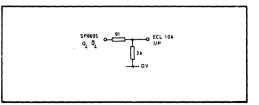


Fig.4 ECL 10K output interface

SP8695

ABSOLUTE MAXIMUM RATINGS

.

 Supply voltage Vcc—VEE
 V8

 Input voltage ViN d.c.
 Not greater than the supply voltage in use

 Output current lout (Q4 & Q4)
 10mA

 Maximum junction temperature
 150 C

 Storage temperature range
 --55 C to 150 C

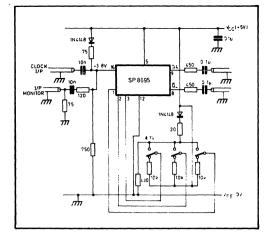


Fig.5 Test circuit for dynamic measurements

SP8000 SERIES HIGH SPEED DIVIDERS

SP 8720 A & B

UHF PROGRAMMABLE DIVIDER 300 MHz ÷ 3/4

The SP8720 A&B are high speed programmable $\div 3/4$ counters operating at an input frequency of up to 300MHz over the temperature ranges -55° C to $+125^{\circ}$ C, 0°C to $+70^{\circ}$ C.

The clock input is biased internally and is coupled to the signal source by a capacitor. The input signal path is completed by an input reference decoupling capacitor which is connected to earth.

The division ratio is controlled by two $\overline{\text{PE}}$ inputs. The counter will divide by 3 when either input is in the high state, and by 4 when both inputs are in the low state. These inputs are compatible with standard ECL 10K inputs and have the same temperature characteristics. Both inputs have nominal 4.3k Ω internal pulldown resistors.

The true and inverse outputs are compatible with standard ECL II outputs. They may be used to drive ECL 10K circuits by the inclusion of two resistors as shown in Fig. 4.

When using the device as a divide-by-three prescaler the inverse output ($\overline{02}$) should be connected to a \overline{PE} input.

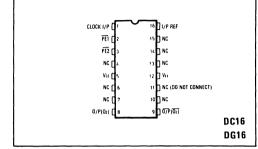


Fig. 1 Pin connections (top view)

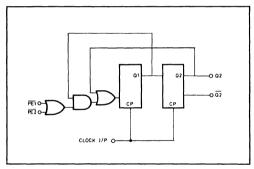


Fig. 2 Logic diagram SP8720

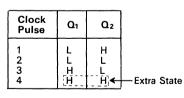


Table 1 Count sequence

PE ₁	PE ₂	Div Ratio.
L	L	4
H	L	3
L	H	3
H	H	3

Table 2 Truth table for control inputs

FEATURES

■ Full temperature range operation : 'A' Grade -55°C to+125°C

'B' Grade 0° C to $+ 70^{\circ}$ C

- Self Biasing CP Input
- Wide Input Dynamic Range
- Control Inputs ECL 10K Compatible
- Low Propagation Delay
- True and Inverse Outputs Available

ABSOLUTE MAXIMUM RATINGS

Power supply voltage Vcc - Ve	ε 0V to +8V
Input voltage, PE inputs	OV to Vcc
Input voltage, CP input	2V peak-to-peak
Output current	20mA
Operating junction temperature	+150°C
Storage temperature	

SP8720

ELECTRICAL CHARACTERISTICS

PE inputs - ECL 10K compatible Outputs - ECL II compatible

Value						
Characteristic	Min.	Тур.	Max.	Units	Conditions	
Max. i/p frequency Min.i/p frequency Min. slew rate for square wave input Propagation delay	300		40 100	MHz V/µs	Vcc= + 5.2V Sinewave Input	
(clock i/p to device o/p) PE input reference level Power supply drain current		4 + 3.9 40	55	ns V mA		
PE input pull down resistors Clock i/p impedance (i/p to i/p ref. low frequency)		4.3 400		kΩ Ω		

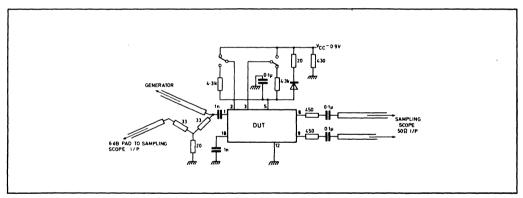


Fig. 3 Test circuit

APPLICATION NOTES

When operating the SP8720 in a synthesiser loop at 300MHz, the delay time through the programmable divider controlling the SP8720 is approximately 5.5ns, and will require ECL.

The simple passive interface from the output of the SP8720 into ECL 10K logic is defined in Fig. 4. If TTL is required, the input interface to the PE pins,

If TTL is required, the input interface to the PE pins, and the output of the SP8720 into TTL, is shown in Fig.5.

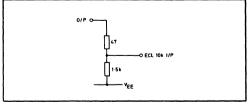
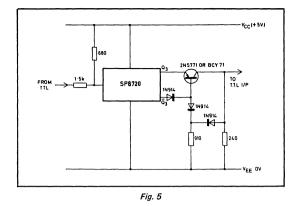
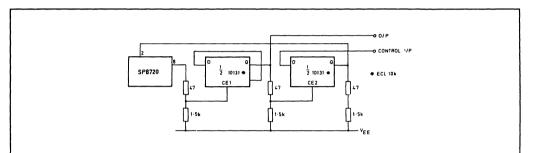
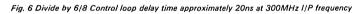





Fig. 4

SP 8000 SERIES

HIGH SPEED DIVIDERS

SP8735B ÷8 AT 600MHz WITH BINARY OUTPUTS

The SP8735B is a divide-by-eight circuits with binary outputs for operation from DC up to specified input frequencies of 600 MHz and 500 MHz respectively over a guaranteed temperature range of 0° C to $+70^{\circ}$ C.

This device, optimised for counter applications in systems using both ECL and TTL, are intended to be operated between OV and -5.2V power rails and to interface with TTL operating between OV and +5V. The binary outputs and one of two carry outputs are TTL-compatible, while the second carry output is ECL-compatible. The clock input, which is normally capacitively coupled to the signal source, is gated by an ECL III/ECL 10K compatible input. The TTL-compatible reset forces the 0000 state regardless of the state of the other inputs.

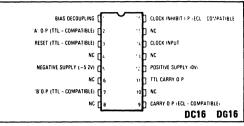


Fig. 1 Pin connections (viewed from top)

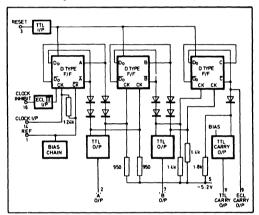


Fig.2 SP8735 logic diagram

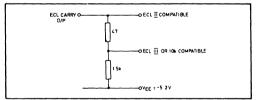


Fig.3 ECL II to ECL 10K interface

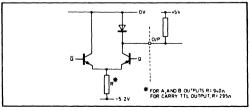


Fig. 4 TTL output circuit diagram

FEATURES

- Direct Gating Capability at up to 600 MHz
- TTL Compatible Binary Outputs
- TTL and ECL Compatible Carry Outputs
- Power Consumption Less Than 450mW
- Wide Dynamic Input Range

APPLICATIONS

- Counters
- Timers
- Synthesisers

QUICK REFERENCE DATA

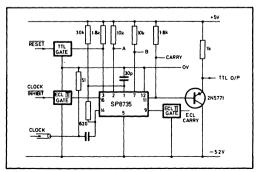
- Power Supplies : Vcc OV
 - $V_{ee} 5.2V \pm 0.25V$
- Range of Clock Input Amplitude : 400 800 mV p-p
- Operating Temperature Range : 0°C to 70°C
- Frequency Range with Sinusoidal I/P:40-600MHz
- Frequency Range with Square Wave I/P: DC to 600MHz

194

SP8735

ELECTRICAL CHARACTERISTICS (All types except where otherwise stated)

Test conditions (unless otherwise stated):


Tamb 0°C Power Supplies Vcc

0°C to +70°C Vcc OV VEE −5.2V±0.25V

Characteristic	Characteristic				Conditions	
	Min.	Тур.	Max.	Units		
Clock input (pin 14) Max. input frequency SP8735B Min. input frequency with sinusoidal I/P	600		40	MHz	Input voltage 400–800mV p-p	
Min. slew rate of square wave for correct operation down to DC			100	V/µs		
Clock inhibit input (pin 16) High level (inhibit) Low level	0.960			V V	$T_{amb} = +25^{\circ}C$ (see note 1)	
Edge speed for correct operation at max. clock I/P frequency			2.5	ns	10% to 90%	
	I See note	2		-	see note 2	
Low level Reset ON time	100		+0.4	V ns		
TTL outputs A & B (pins 2 & 7) Output high level Output low level	+2.4		+0.4	v v	$10k~\Omega$ resistor and 3 TTL gate from O/P to 5V rail (see note 3)	
TTL carry output (pin 11) Output high level	+2.4			v	5k Ω resistor and 3 TTL gates from O/P to +5V rail	
Output low level			+0.4	V		
ECL carry output (pin 9) Output high level Output low level	0.975		1.375	v v	T _{amb} = +25°C External current = 0mA (See note 4)	
Power supply drain current		70	90	mA	VEE - 5.2V	

NOTES

- 1. The clock inhibit input levels are compatible with the ECL III and ECL 10K levels throughout the temperature ranges specified.
- 2. For a high state, the reset input requires a more positive input level than the specified worst case TTL Von of +2.4V. Resetting should be done by connecting a 1.8k Ω resistor from the output of the driving TTL gate and only fanning out to the reset input of the SP8000 series devices.
- These outputs are current sources which can be readily made TTL compatible voltages by connecting them to +5V via 10k Ω resistors (see Fig. 4).
- The ECL carry output is compatible with ECL II throughout the temperature range but can be made compatible with ECL III using the simple interface shown in Fig. 3.

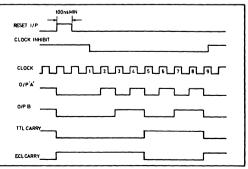


Fig.5 Typical operating diagram

OPERATING NOTES

The device is intended to be used with TTL and ECL in a counting system — the ECL and the decade counter being connected between voltage rails of 0V and -5.2V and the TTL between voltage rails of 0V and +5V. Provided that this is done ECL and TTL compatibility is achieved. (See Figs. 4 and 5)

The clock is normally capacitively coupled to the signal source: a 1000 pF UHF capacitor should be adequate. For low frequency operation, the 1000 pF capacitor should be connected in parallel with a higher value capacitor. The bias decoupling (pin 1) should be connected to earth via a capacitor — preferably a chip type, but in any case a low inductance type suitable for UHF applications. The devices normally have an input amplitude operating range far greater than the specified 400 to 800 mV p – p. However, if the decoupling capacitor is not of a UHF type, or it is connected to an earth point that has a significant impedance between the capacitor and the V_{cc} connection, then the input dynamic range will suffer and the maximum signal for correct operation will be reduced.

Under certain conditions, the absence of an input

signal may cause the device to self-oscillate. This can be prevented (while still maintaining the specified input sensitivity) by connecting a $30\,\Omega$ resistor between the clock input and the positive supply and a $620\,\Omega$ resistor between clock and pin 1. If the transition of either the clock input or the clock inhibit input is slow the device may start to self-oscillate during the transition. For this reason the input slew rates should be greater than $100V/\mu$ s. It should also be noted that a positive-going transition on either the clock input or the clock inhibit will clock the device, provided that the other input is in the low state.

The binary outputs give TTL-compatible outputs (fan out ... 1) when a 10k Ω resistor is connected from the output to the \cdot 5V rail. In this configuration the outputs will be very slow compared with the clocking rate of the counter and so the state on the TTL outputs can only be determined when the clock has stopped or is inhibited.

The fan out capability of the TTL carry output can be increased by buffering it with a PNP emitter follower. The interface is shown in Fig. 5.

A typical application is shown in Fig. 7.

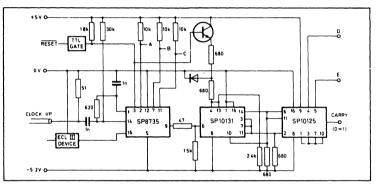


Fig.7 600MHz ÷ 32 with reset and inhibit

SP8000 SERIES HIGH SPEED DIVIDERS

SP 8740 A & B

AC COUPLED UHF PROGRAMMABLE DIVIDER 300 MHz ÷ 5/6

The SP8740 A & B are high speed programmable \div 5/6 counters operating at an input frequency of up to 300 MHz over the temperature ranges -55° C to $+125^{\circ}$ C, 0° C to $+70^{\circ}$ C.

The clock input is biased internally and is coupled to the signal source by a capacitor. The input signal path is completed by an input reference decoupling capacitor which is connected to earth.

The division ratio is controlled by two $\overrightarrow{\text{PE}}$ inputs. The counter will divide by 5 when either input is in the high state, and by 6 when both inputs are in the low state. These inputs are compatible with standard ECL 10K inputs and have the same temperature characteristics. Both inputs have nominal 4.3k Ω internal pulldown resistors.

The true and inverse outputs are compatible with standard ECL II outputs. They may be used to drive ECL 10K circuits by the inclusion of two resistors as shown in Fig. 4.

When using the device as a divide-by-five prescaler the inverse output (o/p) should be connected to a PE input.

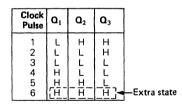


Table 1 Count sequence

PE ₁	\overline{PE}_2	Div Ratio	
LHLH	L L H H	6 5 5 5	

Table 2 Truth table for control inputs

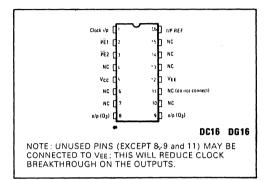


Fig. 1 Pin connections

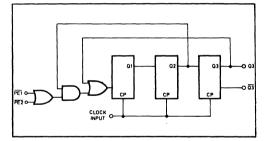


Fig. 2 Logic diagram SP8740

FEATURES

- Full Temperature Range Operation 'A' Grade —55°C to +125°C 'B' Grade 0°C to +70°C
- Self Biasing CP Input
- Wide Input Dynamic Range
- Control Inputs ECL 10K Compatible
- Low Propagation Delay
- True and Inverse Outputs Available

SP8740

ABSOLUTE MAXIMUM RATINGS

Power supply voltage $V_{CC} - V_{EE}$	0V to +8V
Input voltage, PE inputs	0V to V _{CC}
Input voltage, CP input	2V peak-to-peak
Output current	20mA
Operating junction temperature	+150°C
Storage temperature	–55°C to +150°C

ELECTRICAL CHARACTERISTICS

PE inputs – ECL 10K compatible Outputs – ECL II compatible

Test conditions (unless otherwise stated)

 Tamb:
 'A' grade -55°C to +125°C

 'B' grade
 0 C to +70°C

 Supply voltages:
 VCC = +5.2V ±0.25V

 VEE = 0V
 Clock input voltage: 400mV to 800mV (p-p)

Characteristic		Value		Units	Conditions
Characteristic	Min. Typ. Max.		Units	Conditions	
Max i/p frequency	300			MHz	V _{cc} = +5.2V
Min i/p frequency			40		Sinewave Input
Min. slew rate for square wave input			100	V/µs	
Propagation delay					
(clock i/p to device o/p)		4		ns	
PE input reference level		+3.9		v	V _{cc} = +5.2V, 25°C V _{cc} = +5.2V, 25°C
Power supply drain current		45	60	mA	V _{cc} = +5.2V, 25°C
PE input pulldown					
Resistors		4.3		κΩ	
Clock i/p impedance					
(i/p to i/p ref low frequency)		400		Ω	

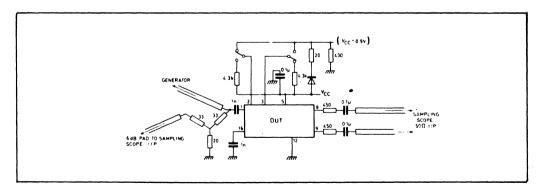


Fig. 3 Test circuit

APPLICATION NOTES

When operating the SP8740 in a synthesiser loop at 300MHz, the delay time through the programmable divider controlling the SP8740 is approximately 13ns. As we believe that this delay would be a severe problem with TTL, we strongly recommend the use of ECL.

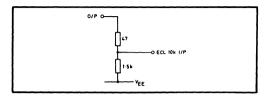


Fig. 4

The simple passive interface from the output of the SP8740 into ECL 10K logic is defined in Fig. 4.

If TTL is required, the input interface to the $\overrightarrow{\text{PE}}$ pins, and the output of the SP8740 into TTL, is shown in Fig. 5.

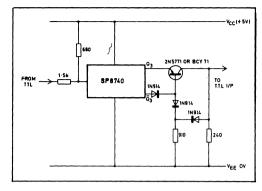


Fig. 5

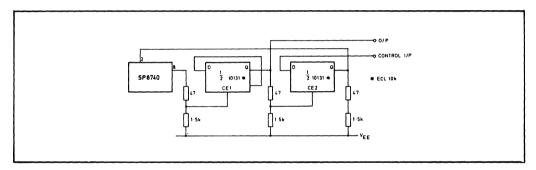


Fig. 6 Divide by 10/12. Control loop delay time approximately 33 ns

SP8000 SERIES

HIGH SPEED DIVIDERS

SP 8741 A & B

AC COUPLED UHF PROGRAMMABLE DIVIDERS 300 MHz ÷ 6/7

The SP8741 A, B & M are high speed programmable \div 6/7 counters operating at an input frequency of up to 300 MHz over the temperature ranges -55° C to $+125^{\circ}$ C, 0° C to 70° C,

The clock input is biased internally and is coupled to the signal source by a capacitor. The input signal path is completed by an input reference decoupling capacitor which is connected to earth.

The division ratio is controlled by two \overline{PE} inputs. The counter will divide by 6 when either input is in the high state, and by 7 'when both inputs are in the low state. These inputs are compatible with standard ECL 10K inputs and have the same temperature characteristics. Both inputs have nominal 4.3k Ω internal pulldown resistors.

The true and inverse outputs are compatible with standard ECL II outputs. They may be used to drive ECL 10K circuits by the inclusion of two resistors as shown in Fig. 4.

When using the device as a divide-by-six prescaler the inverse output (o/p) should be connected to a PE input.

Clock Pulse	٥ı	Q ₂	Q ₃	
1 2 3 4 5 6 7		H L L H L L H	╫ ╫ ╫ ╻╻	— Extra state

Table 1 Count sequence

PE ₁	PE ₂	Div Ratio
L	L	7
H	L	6
L	H	6
H	H	6

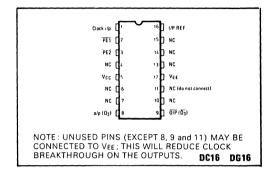
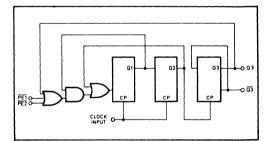



Fig. 1 Pin connections

Fig. 2 Logic diagram

Full Temperature Range Operation 'A' Grade —55°C to +125°C 'B' Grade 0°C to +70°C

- Self Biasing CP Input
- Wide Input Dynamic Range
- Control Inputs ECL 10K Compatible
- Low Propagation Delay
 - True and Inverse Outputs Available

ABSOLUTE MAXIMUM RATINGS

Power supply voltage $V_{CC} - V_{EE}$	0V to +8V
Input voltage, PE inputs	0V to V _{CC}
Input voltage, CP input	2V peak-to-peak
Output current	20mA
Operating junction temperature	+150°C
Storage temperature	–55°C to +150°C

Table 2 Truth table for control inputs

SP8741

ELECTRICAL CHARACTERISTICS

PE inputs – ECL 10K compatible Outputs – ECL II compatible

Test conditions (unless otherwise stated)

Characteristic		Value		Units	Conditions	
Characteristic	Min.	Min. Typ. Max.		Units	Conditions	
Max i/p frequency	300			MHz	V _{cc} = +5.2V	
Min i/p frequency			40		Sinewave Input	
Min. slew rate for square wave input			100	V/μs		
Propagation delay			1			
(clock i/p to device o/p)		4		ns		
PE input reference level		+3.9	1	V	V _{cc} = +5.2V, 25°C	
Power supply drain current		45	60	mA	$V_{cc} = +5.2V, 25^{\circ}C$	
PE input pulldown			1			
Resistors		4.3		ΚΩ		
Clock i/p impedance						
(i/p to i/p ref low frequency)		400		Ω		

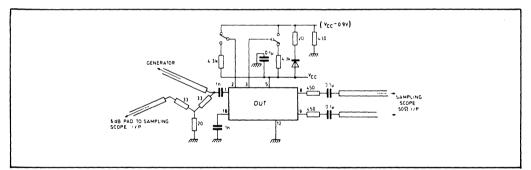
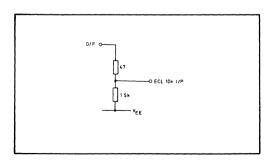



Fig. 3 Test circuit

APPLICATION NOTES

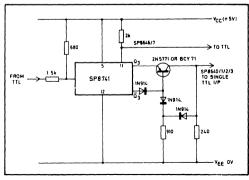


Fig. 4

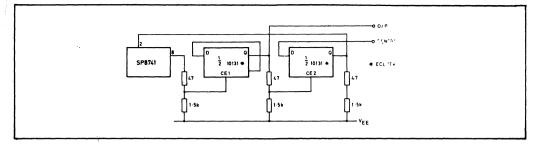


Fig. 6 Divide-by-12/14. Control loop delay time approximately 40ns.

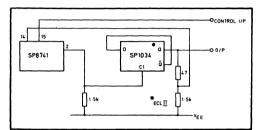


Fig. 7 Divide-by-12/13. Control loop delay time approximately 30ns using SP1034.

When operating the SP8741 in a synthesiser loop at 300MHz the delay time through the programmable divider controlling the SP8741 is approximately 16ns. As we believe that this delay would be a severe problem with TTL, we strongly recommend the use of ECL.

The simple passive interface from the output of the SP8741 into ECL 10K logic is defined in Fig. 4.

If TTL is required, the input interface to the PE pins, and the output of the SP8741 into TTL, is shown in Fig. 5.

SP 8000 SERIES

HIGH SPEED DIVIDERS

SP 8743 B & M

AC COUPLED UHF PROGRAMMABLE DIVIDER 500 MHz ÷8/9

The SP8743M and B are high speed, programmable \div 8/9 counters operating at an input frequency of up to 500MHz over the temperature ranges -40° C to $+85^{\circ}$ C and 0° C to 70° C respectively.

The clock input is biased internally and is coupled to the signal source by a capacitor. The input signal path is completed by an input reference decoupling capacitor which is connected to ground.

The division ratio is controlled by two $\overrightarrow{\text{PE}}$ inputs. The counter will divide by 8 when either input is in the high state and by 9 when both inputs are in the low state. These inputs are compatible with standard ECL 10K inputs and have the same temperature characteristics. Both inputs have nominal 4.3k Ω internal pulldown resistors.

The true and inverse outputs are compatible with standard ECL II outputs. They may be used to drive ECL 10K circuits by the inclusion of two resistors as shown in Fig. 4.

When using the device as a divide-by-eight prescaler the inverse output (o/p) should be connected to a $\overrightarrow{\text{PE}}$ input.

ABSOLUTE MAXIMUM RATINGS

Power supply voltage, V _{CC} - V _{EE}	0V to +8V
Input voltage PE inputs	0V to V _{CC}
Input voltage CP input	2V p-p
Output current	20mA
Operating junction temperature	+150°C
Storage temperature	–55°C to +150°C

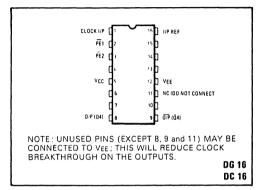


Fig. 1 Pin connections

FEATURES

- Operating Temperature Range : 0°C to 70°C ('B' grade) -40°C to +85°C ('M' grade)
- Self Biasing Clock Input
- Wide Input Dynamic Range
- Control Inputs ECL 10K Compatible
- Low Propagation Delay
- True and Inverse Outputs Available

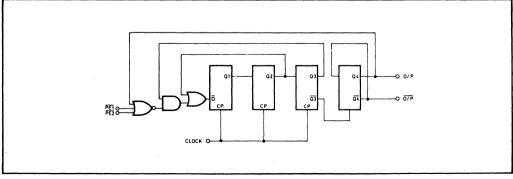
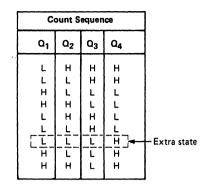



Fig. 2 SP8743 logic diagram

Division Ratio						
	9	8	8	.8		
PE1 PE2	L L	L H	H L	нн		

i

ELECTRICAL CHARACTERISTICS

PE inputs – ECL 10K compatible Outputs – ECL II compatible

Test Conditions (unless otherwise stated):

 $\label{eq:TAMB0CC} \begin{array}{l} T_{AMB}0\,^\circ C \ to \ +70\,^\circ C \ ('B'\ grade) \ -40\,^\circ C \ to \ +85\,^\circ C \ ('M'\ grade) \ \\ Supply \ Voltage \ V_{CC} = +5.2V \ \pm \ 0.25V \ V_{EE} = 0V \ \\ Clock \ Input \ Voltage \ 400mV \ to \ 800mV \ p-p \end{array}$

Characteristics	Value			Units	O distant
	Min.	Тур.	Max.	Units	Conditions
Max. i/p frequency Min. i/p frequency Min. Slew rate for square wave input Propagation delay (clock i/p to device o/p) PE input reference level Power Supply drain current PE input pulldown resistors Clock i/p impedance (i/p to i/p ref. low freq.)	500	4 +3.9 45 4.3 400	40 100 60	MHz V/μs ns V mA kΩ Ω	$V_{CC} = +5.2V$ Sinewave Input $V_{CC} = +5.2V, 25^{\circ}C$ $V_{CC} = +5.2V, 25^{\circ}C$

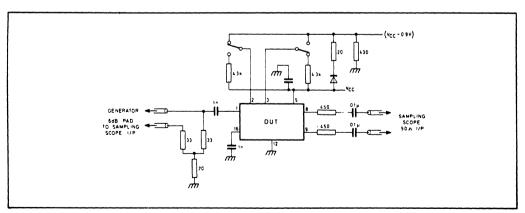
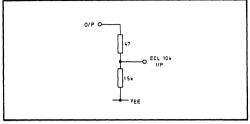
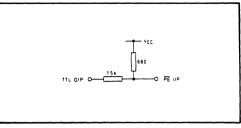



Fig. 3 Test circuit

APPLICATIONS INFORMATION

Interfaces



When operating the SP8743 in a synthesiser loop at 500MHz, the delay time through the programmable divider controlling the SP8743 is approximately 12ns As we believe that this delay would be a severe problem with TTL, we strongly recommend the use of ECL.

The simple passive interface from the output of the SP8743 into ECL 10K logic is defined in Fig. 4.

If TTL is required, the input interface to the PE pins, and the output of the SP8743 into TTL, is shown in Fig. 5.

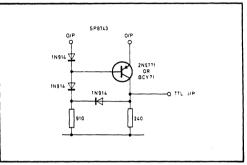


Fig. 6 SP8743 O/P to TTL I/P. Total delay from SP8743 clock I/P to Schottky gate O/P = 15ns typical.

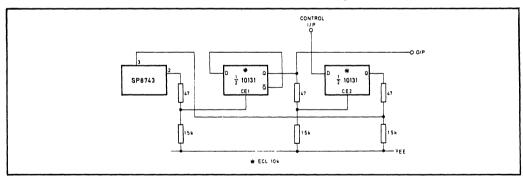


Fig.7 A \div 32/33 application. Control loop delay time approx. 56ns.

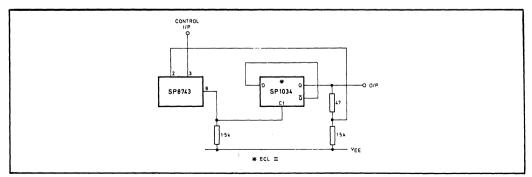


Fig.8 A+16/17 application. Control loop delay time approx. 24ns using SP1034

Sub-Systems

SP8000 SERIES HIGH SPEED DIVIDERS

SP8755A & B 1200 MHz ÷ 64 PRESCALER

FEATURES

- DC to 1200MHz
- -55^oC to +125^oC temperature range
- TTL compatible output

QUICK REFERENCE DATA

- Supply voltage 5V ±0.25V
- Power consumption 270mW typ. (no load)

ABSOLUTE MAXIMUM RATINGS

Power supply voltage $V_{CC} - V_{EE}$	0V to +10V
Input voltage, clock inputs	2.5V p-p
Output current	+30 mA to -30 mA
Operating junction temperature	+150 ⁰ C
Storage Temperature	-55 ⁰ C to +150 ⁰ C

OPERATING NOTES

The input is terminated by a nominal 400 Ω and should be AC coupled to the signal source. Input power to the device is terminated to ground by the decoupling capacitor on the reference pin. Input coupling and reference decoupling capacitors should be of a type suitable for use at a frequency of 1GHz.

If the device is required to operate with a sinewave input below 100MHz, then the required hysteresis may be applied externally as shown in Fig. 5. Large values of hysteresis should be avoided as this will degrade the input sensitivity of the device at the maximum frequency. The divide by 64 output is designed to interface with TTL which has a common V_{EE} (ground). The specified fan-out of 3 standard TTL inputs may be increased to 6 standard or 5 high power/Schottky inputs at a logic zero level of 0.5V. At low frequency the output will change when the clock input changes from a low to a high level.

The device may be operated down to very low frequencies if a square wave input is applied with an edge speed of greater than $200V/\mu s$.

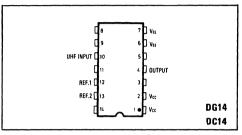


Fig. 1 Pin connections

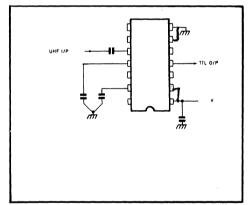


Fig. 2 Typical application

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

Supply voltage V _{CC}	:	4.75V to 5.25V
Input signal amplitude	:	400mV to 1.0V (f < 1GHz) 600mV to 1.2V (1GHz≤ t < 1.2GHz)
Ambient temperature	:	-30 ⁰ C to +70 ⁰ C (SP8755B)

-55°C to +125°C (SP8755A)

Characteristics		Value		Units	Conditions	
Gildidotariatios	Min.	Typ.	Max.	Units		
Supply current		54	75	mA		
Max, input frequency	1200			MHz	600mV pk-pk sine wave input	
Min. input frequency			100	MHz		
Min. slew rate (with square wave input)			200	V/µS		
Output voltage level (high)	2.5		4.5	v	V _{cc} = 5.0V	
Output voltage level (low)			0.4	v	5mA current into pin 4	

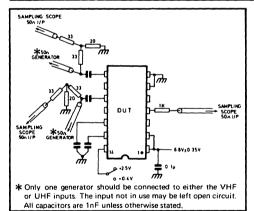
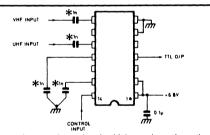
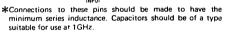




Fig. 3 AC Test Circuit

For single input operation leave pins 8 and 14 open circuit.

Fig. 4 Application Circuit

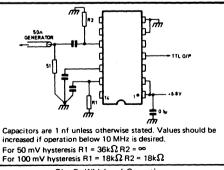


Fig. 5 Wideband Operation

SP 8000 SERIES

HIGH SPEED DIVIDERS

SP8760 B & M

GENERAL PURPOSE SYNTHESISER CIRCUIT

The SP8760 is a multi-function device for use in phase-lock-loop systems. It contains a crystal oscillator maintaining circuit, followed by a divide-by-four stage; a digital phase/frequency comparator; and a two-modulus divider programmable to divide by 15 or 16.

It may be used with a prescaler to phase-lock single frequency transmitters or receivers in the HF, VHF or UHF bands.

The addition of an MOS/CMOS programmable plus fixed divider will generate a complete frequency synthesiser. The maximum frequency requirement of the control device is only 1 MHz, enabling complex functions to be performed using LSI technologies. With suitable prescalers, the controlled frequency source may extend into the IGHz region.

The SP8760 is available in two temperature grades : 0 °C to +70 °C ('B' grade) and -40 °C to +85 °C ('M' grade).

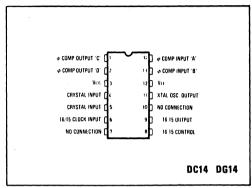


Fig. 1 Pin connections

FEATURES

- TTL/MOS Compatible Inputs and Outputs
- Low Power Consumption (<250mW Typ)
- Minimum External Components
- Voltage Pump Outputs on Phase/ Frequency Comparator
- Zero Phase Difference Pulses <30nSec
- Crystal Oscillator Stability + 5 ppm at 4MHz, 0°C to + 70°C
- Crystal Oscillator Interfaces with SL680 for Very High Stability Applications

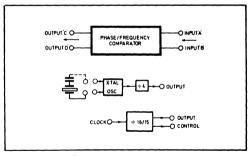
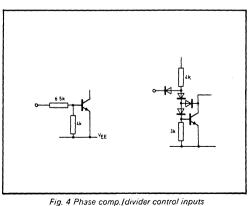


Fig. 2 SP8760 block diagram



Fig. 3 Phase/frequency comparator waveforms


ELECTRICAL CHARACTERISTICS \pm 0.5V

Supply voltage	$5V\pm$ 0. $5V$
Supply current	45mA typ

Test conditions (unless otherwise stated): Vcc = 4.5V to 5.5V VEE = 0V

Тамв 0°С to -70°С ('B' grade) -40°С to - 85°С ('M' grade)

Characteristic		Value			Conditions
	Min.	Тур.	Max.	Units	Conditions
Power Supply Current		45	65	mA	
Crystal Osc. ÷4					
Crystal series capacitor	1	28	1	pF	∙at 4MHz
Crystal series capacitor		20		pF	at 10 MHz
Temperature Stability			0.2	ppm/°C	at 4MHz, excluding crystal
			1	1	temperature coefficient.
Supply voltage stability		-1	1	ppm/V	at 4 MHz
External oscillator			1		
drive required		±1	1	mA	See Fig. 8.
Divide-by-four output, external	~				
current sink capability	5		1	mA	at 0.5V
Phase/Frequency Comparator					
Input current		250	350	uA	at Vin = $2.4V$
Output 'C' current sink capability	6			mA	at 0.5V
Output 'D' current	6			1	
source capability	0		30		at (V _{CC} - 1.15V)
Zero phase pulse width Input to Output delay		40	30	ns ns	
		40		115	
Divide by 16/15		250	350		at $Vin = 2.4V$
Control input current Clock input current		250 -1.0	-1.6	μA mA	at Vin = 2.4V at Vin = 0.4V
Output external current		-1.0	-1.0	, in A	
sink capability	5			mA	at 0.5V
Maximum clock frequency	16	28		MHz	Divide by 16
Maximum crock nequency	12	18		MHz	Divide by 15
Clock to output delay	-	35		ns	Output 1 - 0

ABSOLUTE MAXIMUM RATINGS

Power supply Vcc – VEE OV to +10V Output current 20mA Operating junction temperature +150 °C Storage temperature – 55 °C to +150 °C

OPERATING NOTES

The crystal oscillator is an emitter coupled circuit with an internal roll off capacitor to prevent oscillation at overtone frequencies. The crystal is connected in series with a capacitor between pins 4 and 5. It may be used with series resonant crystals at frequencies up to 10MHz. The stability of the crystal oscillator is better than ± 5 p.p.m. at 4MHz over the temp range 0°C to 70°C (excluding the temperature coefficient of the crystal). If a higher stability is required the SL680 crystal oscillator maintaining circuit should be used. This may be interfaced to the SP8760 as shown in Fig. 8. The divide by four has a free collector output with an internal 2.5 KQ resistor to Vcc.

The phase frequency comparator is an infinite pullin range circuit which gives zero phase shift lock. The circuit triggers on the 1 - 0 edge of each input and gives an output which is proportional to the phase difference between the two edges (see Fig. 3). When the input 'A' edge precedes the input 'B' edge output 'C' will pulse to a low level while output 'D' will remain at a permanent low level. When the input 'B' edge precedes the input 'A' edge, output 'D' will pulse to a high level while output 'C' will remain at a permanent high level. The two outputs may be used to drive a charge pump and filler as shown in Figs. 5 and 6. The output of the filter may be used to drive directly the varactor line

Fig. 5 Low voltage charge pump and filter Divider clock input

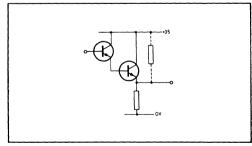


Fig. 7 Emitter follower buffer

of a voltage controlled oscillator. For optimum 'noise' performance the output pulses from the phase detector must tend to zero when 'in lock'. The leakage on the filter output must therefore be kept to a minimum. If the varactor line draws a significant current it should be buffered using an emitter follower arrangement as shown in Fig. 7.

The phase/frequency comparator inputs are of the current source type as shown in Fig. 4. These may be driven by standard TTL or CMOS. Output 'C' is a free collector with an internal $10K\Omega$ resistor to Vcc. Output 'D' is an emitter follower with an internal $10K\Omega$ resistor to Vcc.

The two-modulus prescaler may be controlled to divide by 16 or 15 using the control input. With the control input high the circuit will divide by 16. When a counter is used to control the two-modulus it should be clocked on the 1-0 edge of the 16/15 output. If the two-modulus is used only as a fixed divide-by-16 the control input - should be tied to Vcc. The prescaler clock input is a current sink input with a standard or low power Schottky TTL. The control input is identical to the phase/frequency comparator inputs as shown in Fig. 4. The two resistor to Vcc.

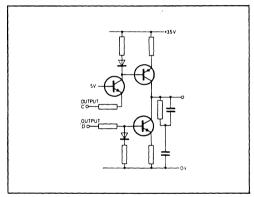


Fig. 6 High voltage charge pump and filter

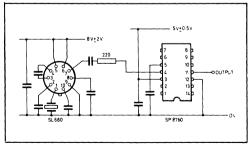


Fig. 8 SL680 to SP8760 interface

SP8000 SERIES HIGH SPEED DIVIDERS

SP8775 1.2 GHz

UHF÷256 PRESCALERS

The SP8775 are ECL divide by 256 prescalers which will operate at frequencies up to 1.2 GHz. The device has a typical power dissipation of 500mW at the nominal supply voltage of +5V.

FEATURES

Self-Biasing Clock Input

- Variable Input Hysteries Capability for Wide Band Operation
- Push Pull TTL O/P

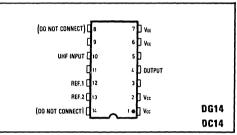


Fig. 1 Pin Connections

OPERATING NOTES

The input is terminated by a nominal 400Ω and should be AC coupled to the signal source. Input power to the device is terminated to ground by the two decoupling capacitors on the reference pins. Input coupling and reference decoupling capacitors should be of a type suitable for use at a frequency of 1 GHz.

If the device is required to operate with a sinewave input below 100 MHz, then the required hysteresis may be applied externally as shown in Fig. 4.

Large values of hysteresis should be avoided as this will degrade the input sensitivity of the device at the maximum frequency. The divide by 256 output is designed to interface with TTL which has a common V_{EE} (ground). The specified fan-out of 3 standard TTL inputs may be increased to 6 standard or 5 high power/Schottky inputs at a logic zero level of 0.5V. At low frequency the output will change when one of the clock inputs changes from a low to a high level.

The devices may be operated down to very low frequencies if a square wave input is applied with an edge speed of greater than 200V/µs.

ABSOLUTE MAXIMUM RATINGS

Power supply voltage Vcc-VEE	0V to +10V
Input voltage, clock input	2.5V p-p
Output current	+30mA to30mA
Operating junction temperature	+150°C
Storage temperature	-55°C to +150°C

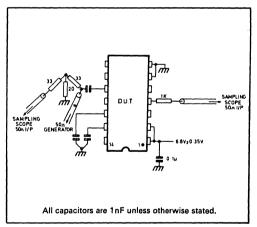


Fig. 2 AC test circuit

ELECTRICAL CHARACTERISTICS

Supply voltage: $5.0V \pm 0.25V$ Supply current: 72mA typ., 95mA max. Temperature range: 0°C to +70°C Clock input: AC coupled, self biasing via 400 Ω

Test conditions (unless otherwise stated):

Supply voltage : VEE = 0V,

 $\label{eq:Vcc} \begin{array}{l} V_{cc}=+5.0V~\pm~0.25V\\ \mbox{Clock input voltage: 400mV to 1.2V p-p}\\ T_{amb}=25\,^{\circ}\mbox{C} \end{array}$

Characteristic		Value			Conditions
	Min.	Тур.	Max.	Units	
Max. Input frequency SP8775 Min input frequency Min. slew rate for square wave input	1.2		200 100 75 200	MHz MHz	600mV p-j. input 400mV p-j. sinewave input 600mV p-j. sinewave input 800mV p-j. sinewave input
Output High level Low level Supply current	2.5	3.5 68	4.5 0.4 90	V V mA	5mA current sink Vcc= 5.0V

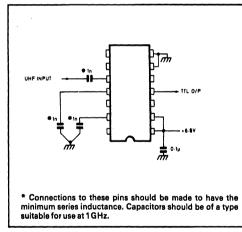


Fig. 3 Application circuit

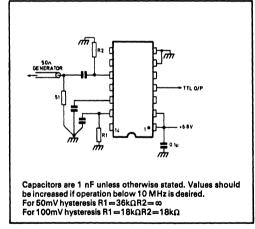


Fig. 4 Wideband operation

SP8000 SERIES HIGH SPEED DIVIDERS

SP8785B&M 1.0GHz ÷ 20/22 SP8786B&M 1.3GHz ÷ 20/22 UHF PROGRAMMABLE DIVIDERS

The SP8785 B & M and SP8786 B & M are high speed programmable $\div 20/22$ counters which operate at input frequencies up to 1.0GHz and 1.3GHz respectively over the temperature ranges 0°C to +70°C (B grade) and -40°C to +85°C (M grade).

The clock input is biased internally and is coupled to the signal source by a capacitor. The input RF path is completed by two input reference decoupling capacitors which are connected to earth.

The division ratio is controlled by two PE inputs. The counter will divide by 20 when either input is in the high state and by 22 when both inputs are in the low state. These inputs are ECL III/10K compatible and have internal $4.3K\Omega$ pulldown, unused inputs may therefore be left open. When using the device as a \div 20 prescaler the inverse output should be connected to a PE input.

In keeping with the device performance the complementary outputs are ECL 10K compatible.

FEATURES

- DC to 1.3GHz operation
- O°C to +70°C operation (B Grade)
- -40 to --85°C operation (M grade)
- Complementary outputs and control inputs are ECL 10K/ECL III compatible.
- AC coupled clock input with wide dynamic range.

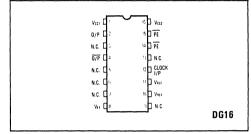


Fig. 1 Pin connections (viewed from above) ·

QUICK REFERENCE DATA

- Supply voltage $V_{cc} V_{EE} = 5.2V \pm .25v$
- Power Consumption 440 mW typ (no load)
- ECL compatible
- Maximum input frequency 1GHz (SP8785), 1.3GHz (SP8786)
- Control loop delay time 12 ns typ with 1.3GHz input.

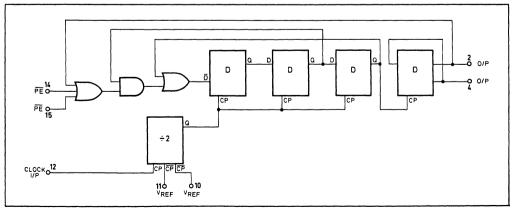


Fig. 2 Logic diagram

CLOCK	Q1	Q ₂	Q3	Q4
PULSE	<u> </u>			
2	L	н	Н	Н
4	L	L	Н	Н
6	L	L	L	н
8	н	L	L	н
10	н	н	L	н
12	L	Н	Н	L
14	L	L	н	L
16	L	L	L	L
18	Н	L	L	L
20	н	Н	L	L
22	н	н	Н	н

		DIV
PE	P,E	RATIO
L	L	22
Н	L	20
L	Н	20
Н	Н	20

The maximum possible loop delay for control is obtained if the L \rightarrow H transition from Q4 or the H \rightarrow L transition from Q4 is used to clock the stage controlling the $\div 20/22$. The loop delay is 20 clock periods minus the internal delays of the $\div 20/22$ circuit.

Table 1 Count sequence and control input truth table

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated): T_{amb} 0°C to +70°C (B Grade) -40°C to +85°C (M Grade) Supply voltage

Vcc=0V VEE == -5.2V*

Static characteristics

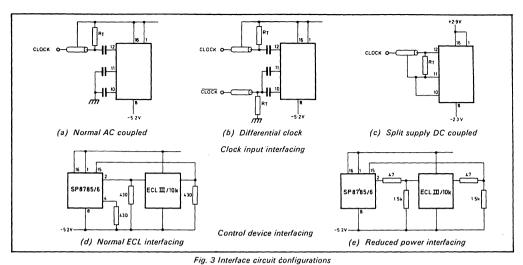
	Value				
Characteristic	Min.	Тур.	Max.	Units	Conditions
PE input voltage VINH	96		Vcc	v	T _{amb} =25°C
VINL	Vee		-1.62	V ·	see note 2
PE input pulldown resistor		4.3		ΚΩ	
Output Voltage levels					
Voh Vol	–.93 –1.85		78 -1.62	V	T _{amb} =25°C 430Ω from o/p to Vεε
VOL	1.00		1.02	•	see note 2
Power supply current		85	115	mA	No load

* The SP8785/6 may be operated with a + 5.2V supply provided sufficient care is taken with supply decoupling and interfacing of input and outputs.

Dynamic characteristics

	Value		1		
Characteristic	Min.	Тур.	Max.	Units	Conditions
Max. toggle frequency SP8786 SP8785	1300 1000			MHz MHz	See Note 3
Min. frequency sinewave drive			150	MHz	
Min. slew rate of square wave for correct operation to D.C.			200	V//µS	
Propagation delay clock input to output		2.5		μS	
Set up time		.5		nS	See note 4
Release time		.5		nS	See note 5

NOTES :


1. Correct operation is specified for Vcc - VEE - 5.2V + .25V

2. The input threshold and output voltage levels have the same temperature coefficients as ECL 111/10K.

3. The devices are dynamically tested using the circuit shown in Fig. 4 with input amplitudes of 400 and 1000 mVpp over the full temperature range.

4. Set up is defined as the minimum time that can elapse between a L -- H transition of control input and the last L -- H clock pulse transition to ensure the \div 20 mode is selected.

5. Release time is defined as the minimum time that can elapse between a H -+ L transition of the control input and the last L -+ H clock pulse transition to ensure the \div 22 mode is selected.

OPERATING NOTES

It is recommended that high frequency construction techniques are used with these devices with the positive rail connected to a ground plane. All components used in the circuit layout should be suitable for the frequencies involved.

The clock input to the device is normally capacitively coupled to the signal source as shown in Fig. 3a. The input is self biased by an internal 4000 resistor to a bias voltage, and in order to complete the input path the two input reference pins must be decoupled to the earth plane with minimum of series inductance. Alternative connections which allow the use of complementary drive or DC coupling for added sensitivity are also shown in Fig. 3.

In the absence of an input signal, circuit will self oscillate with an output frequency of approximately 50MHz. This can be prevented by connecting a $10K\Omega$ resistor between pin 11 and the negative rail. This offsets the input sufficiently to stop the oscillation but it also reduces the input sensitivity by approximately 100mV.

The SP8785/6 will miscount with low frequency sinewave inputs or slow ramps. A slew rate of $200V/\mu s$ or greater is necessary for safe operation at low frequencies.

The input impedance of the SP8785/6 is a function of frequency and minimises at about the same frequency as the maximum input sensivity, so although it can load the signal source significantly there is generally enough signal to operate the device satisfactorily when the input impedance is at a minimum. The worst case occurs at the maximum frequency because this is where the input sensitivity is worst.

The modulus control inputs have been designed to interface directly to ECL III/ECL10k since on ECL counter such as the 10136 is required to directly control the device at the maximum input clock frequency. If the input frequency is reduced or the modulus extended as shown in the application notes, the device may be controlled by a TTL. or CMOS. counter provided the loop delay requirements are met and suitable interfacing is applied. Unused PE inputs should be left open circuit.

The SP8785/6 have outputs which are compatable with the ECL 10k logic family. The device will drive 100Ω lines and can be used with line impedances down to 50Ω with a small loss in noise immunity.

An equal load on the unused output will reduce waveform distortion.

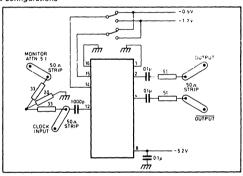


Fig. 4 Dynamic test circuit (all capacitors 1000pF unless stated)

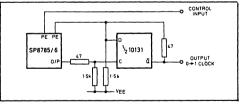


Fig. 5 := 40/42 control loop delay time 24ns typ.

APPLICATION NOTES

The SP8785/6 when used in a system operating at 1.3GHz may be controlled by a variable divider to give effective variable division at half the input frequency. The variable divider must produce a control signal within the period of the output of the SP8785/6 minus the delays within this device. The control loop delay time is typically 12 nsec.

Two methods may be used to achieve a satisfactory delay time within the control divider-

- An extra divider may be inserted to increase the division ratio of the two modulus from 20/22 to 40/42, 80/82 or 100/102, hence reducing the control divider frequency and increasing the control loop delay time.
- 2. An ECL variable counter may be used to produce the control command. A device which is suitable is the 10136, in the ECL10k range.

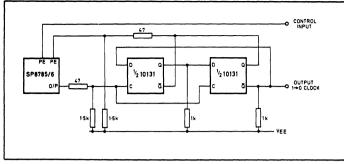


Fig. $6 \div 80/81$ control loop delay time 55ns typ.

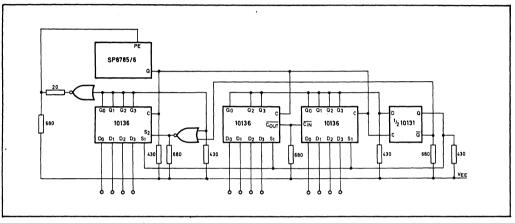


Fig. 7 1.3 GHz variable divider (200-2000 in steps of 2)

ABSOLUTE MAXIMUM RATINGS

Power supply voltage Vcc - VEE	0V to +8V
Input voltage, PE inputs	VEE to VCC
Input voltage	2V peak to peak
Output current	40mA
Operating function temperature	+150°C
Storage temperature	-55°C to +150°C

SP8000 SERIES

HIGH SPEED DIVIDERS

SP8790 A & B

+4 EXTENDER FOR 2-MODULUS COUNTERS

The SP8790 is a divide-by-four counter designed for use with 2-modulus counters. It increases the minimum division ratio of the 2-modulus counter while retaining the same difference in division ratios. Thus a divide-by-10 or 11 with the SP8790 becomes a divide-by-40 or 41, a divide by 5 or 6 becomes a divide by 20 or 21.

The function is especially useful in low power frequency synthesisers because it can bring the output frequency of the combined 2-modulus counter and SP8790 into the region where CMOS or low power TTL can control the divider. The power-saving advantages are obvious.

The device interfaces easily to the SP8690 range of divide by 10 or 11s. The control inputs are TTL and CMOS compatible and the output is a free collector which, with the addition of a pull-up resistor, interfaces to CMOS and TTL.

The SP8790 is available in three temperature grades : 0 $^{\circ}$ C to + 70 $^{\circ}$ C (SP8790B) – 55 C to + 125 $^{\circ}$ C (SP8790A)

The SP8790 requires supplies of OV and $\pm 5V$ $\pm 0.25V.$

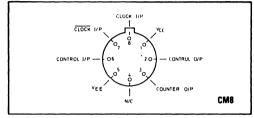


Fig. 1 Pin connections

FEATURES

Ultra-Low Power : 40mW

Full Military Temperature Range

I/P and O/P Interface Direct to CMOS/TTL

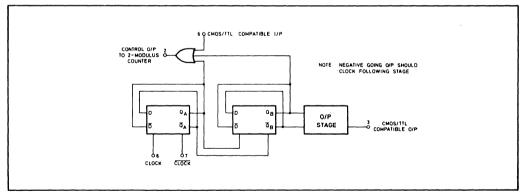


Fig. 2 Logic diagram

ABSOLUTE MAXIMUM RATINGS

Power supply voltage Vcc—VEE	8V
DC input voltage	Not greater than supply
AC input voltage	2.5Vp-p
Output bias voltage	12V
Control input bias voltage	12V
Operating junction temperature	+150°C
Storage temp. range	—55°C to 150°C

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated): Tamb: -55 C to -125 C (A grade) 0 C to -70°C (B grade) VCC = -5V: 5% VEE:=0V Clock input voltage with double complementary drive to CLOCK and CLOCK=300mV to 1V p-p.

Value					Conditions
Characteristic	Min.	Түр.	Max.	Units	Conditions
Dynamic		1	_		
Toggle frequency Min toggle frequency	See note 1			MHz	
with sine-wave input			20	MHz	See note 2
Min toggle frequency with square wave input	0			Hz	Slew rate 50V/µs
Clock to O/P delay					
(O/P – ve going) Clock to O/P delay		14		ns	
(O/P – ve going)		28		ns	
Control I/P to control O/P delay (O/P—ve going)		20		ns	10kΩ pulldown on control O/P (See note 5)
Clock I/P to control O/P delay (O/P → ve going)		10		ns	10kΩ pulldown on control O/P (See note 5)
Control I/P to control O/P delay (O/P–ve going)		12		ns	4.3kΩ pulldown on control O/P (See note 6)
Control I/P to control O/P delay (O/P+ve going)		9		ns	4.3kΩ pulldown on control O/P (See note 6)
Clock to control O/P delay (O/Pve going)		26		ns	10kΩ pulldown on control O/P (See note 5)
Clock to control O/P delay (O/Pve going)		12		ns	10kΩ pulldown on control O/P (See note 5)
Clock to control O/P delay (O/P-ve going)		17		ns	4.3kΩ pulldown on control O/P (See note 6)
Clock to control O/P delay (O/P - ve going)		12		ns	4.3kΩ pulldown on control O/P (See note 6)
Static					
Control I/P voltage level High state Low state	3.5 0		10 1.5	v v	See note 3
Output voltage level					
Vol Voh (See note 4)			0.4	V	Sink current==6.0mA
Input impedance		1.6		kΩ	fin – OHz
Input vias voltage (CLOCK and CLOCK)		2.4		v	Inputs open circuit
Power supply drain current		8.0	11	mA	

NOTES

- The maximum frequency of operation is in excess of 60MHz when the SP8790 is used as a prescaler. The limitation on this maximum frequency is the saturating O/P stage. When the SP8790 is used as a controller its internal delays do not permit operation at frequencies in excess of 40MHz.
- 2. The device will normally be driven from a 2-modulus divider which will have fast output edges. Hence, there is normally no input slew rate problem.
- 3. TTL devices require a pull-up resistor to ensure the required minimum of 3.5V. Note that the device can interface from 10V CMOS with no additional components.
- 4. Vor will be the supply voltage that the output pull-up resistor is connected to. This voltage should not exceed 12V.
- 5. The 10kΩ pulldown is the value of the input pulldown of the SP8695 with which the SP8790 can be used.
- 6. The $4.3k\Omega$ pulldown is the value of the input pulldown of the SP8640 series SP8745 and SP8746 with which the SP8790 can be used.

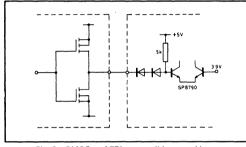


Fig. 3 CMOS and TTL compatible control input



Fig. 4 SP8790 waveforms

OPERATING NOTES

The SP8790 extends the division ratio of 2-modulus counters while retaining the same 2-modulus resolution. A typical application to give a $\div 40/41$ function is shown in Fig. 5. In this basic form, however, the devices will self-oscillate if no input signal source is present. This may be prevented by using one of the arrangements shown in Fig. 6.

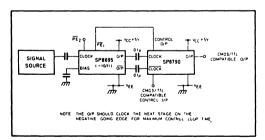


Fig. 5 SP8790 with SP8695 connected to give a +40/4

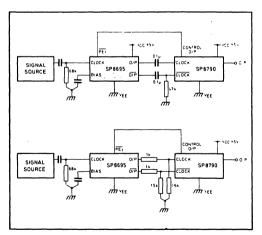


Fig. 6 Methods of preventing self-oscillation

TRUTH TABLE						
Control Input Div. Ratio With ÷10/11						
0	41					
1	40					

Max input frequency to combination=200MHz (min.). Power consumption of combination=120mWtyp. Time available to control the \div 40/41 = (40 clock periods minus delays through the dividers) — 340ns (fin=100MHz).

SP8792 ÷ 80/81 SP8793 ÷ 40/41

200 MHz VERY LOW POWER PROGRAMMABLE DIVIDERS

The SP8792 and SP8793 are very low power (20mW) programmable \div 80/81 and \div 40/41 counters which operate at input frequencies in excess of 200MHz over the temperature range – 30°C to +70°C.

The signal (clock) inputs are biased internally and require to be capacitor coupled. The output stage, normally open collector, can be powered up by linking pins 2 and 7 to drive one TTL load.

FEATURES

DC to 200 MHz Operation

- -30°C to +70°C Temperature Range
 - Control Inputs and Output CMOS Compatible

QUICK REFERENCE DATA

Supply Voltages:6:8V to 13.5V or 5.2V ±0.25V

Supply Current: 4mA typ., 7mA max.

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated): Supply voltage V_s : 6.8V to 13.5V (pin 8) or 5.2V $\pm 0.25V$ (pins 7 + 8) Input signal amplitude: 100 mV to 800 mV pk-pk Ambient temperature: -30° C to 70° C

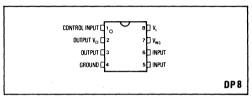


Fig.1 Pin connections (viewed from above)

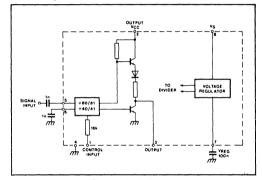


Fig.2 Block diagram

Characteristic	Value		Value		Value		Value		Value		Value		Value		Opendikland
	Mìn	Тур.	Max	Units	Conditions										
Supply current		4	7	mA	Control input O/C. TTL O/P not connected.										
Max. input frequency	200			MHz											
Min. input frequency			20	MHz	400 mV pk-pk sine wave input										
Min. slew rate (with square wave input)		12	20	V/µs											
Output voltage level (low)			0.5	v	2mA current, pin 2 open or linked to pin 7.										
Output voltage level (high)	4.8	1		v	Vcc = 6.8V, pins 2,7 linked.										
Control input level (low)]	2.0	l v	÷41 or÷81										
Control input level (high)	4.0			v	÷ 40 or ÷ 80										
Propagation delay, clock input to output		30 35		ns ns	Output 1 to 0 transition — SP8793 SP8792										
Set up time		8		ns	See note 1.										
Release time		8		ns	See note 2.										
Output mark-space ratio		1:2			At 200 MHz at 50% of output swing.										

NOTES

- The minimum time between a L → H transition of control input and the last L → H signal input transition to ensure the ÷40 or ÷80 mode is selected.
- The minimum time between a H → L transition of control input and the last L → H signal input transition to ensure the ÷41 or ÷81 mode is selected.

to + 125°C

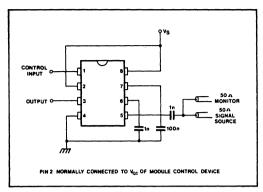


Fig.3 SP8792/3 application diagram. The regulator can be used to supply other circuitry if required. If load exceeds 1 mA an emitter follower transistor must be used.

ABSOLUTE MAXIMUM RATINGS

Supply voltage (pins 8,2)	:	14.5V
Storage temperature	:	-55°C

SP8000 SERIES HIGH SPEED DIVIDERS

SP 8794 A & B + 8 CONTROL CIRCUIT FOR 2 - MODULUS DIVIDERS

The SP8794 is a divide by eight counter designed for use with 2-modulus counters. It increases the minimum division ratio of the 2-modulus counter while retaining the same difference in division ratios. Thus a divide by 10 or 11 with the SP8794 becomes a divide by 80 or 81, a divide by 5 or 6 becomes a divide by 40 or 41.

The function is especially useful in low power frequency synthesisers because it can bring the output frequency of the combined 2-modulus counter and SP8794 into the region where CMOS or low power TTL can control the divider.

The device interfaces easily to the SP8000 range of 2-modulus dividers. The control I/Ps are TTL and CMOS compatible and the output is a free collector which, with the addition of a pull-up resistor, interfaces to CMOS and TTL.

The SP8794 is available over three temperature ranges: 0° C to +70°C (SP8794B), -40°C to +85°C (SP8794M) and -55°C to +125°C (SP8794A).

The SP8794 requires supplies of OV and +5V ± 0.25V

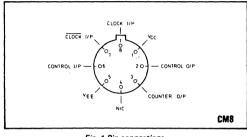
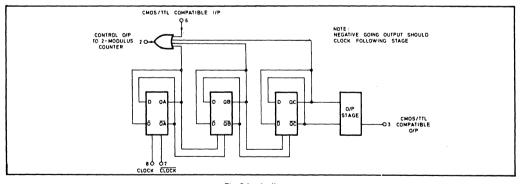



Fig. 1 Pin connections.

FEATURES

- Ultra-Low Power: 40mW
- Full Military Temperature Range
- Direct I/P & O/P Interfacing to CMOS & TTL
- Operates with 500MHz ÷ 10/11

Fig. 2 Logic diagram.

APPLICATION

ABSOLUTE MAXIMUM RATINGS

Power supply voltage | V_{CC} - V_{EE} | 8V DC input voltage Not AC input voltage 2.5V Output bias voltage 12V Control input bias voltage 12V Operating juntion temperature +150 Storage temp. range -55

8V Frequency Synthesisers Not greater than supply 2.5Vp-p 12V 12V +150°C -55°C to 150°C

222

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

 $\begin{array}{ll} T_{amb}\colon \ \ \text{`A' grade} & -55\,^\circ\text{C} \ \ to \ +125\,^\circ\text{C} \\ & \text{`B' grade} & 0\,^\circ\text{C} \ \ to \ +70\,^\circ\text{C} \\ V_{CC} = +5V\,\pm5\% \\ V_{EE} = 0V \\ \end{array}$

Clock input voltage with double complementary drive to CLOCK and CLOCK = 300mV to 1V p-p.

Characteristic		Value			0
		Тур.	Max.	Units	Conditions
Dynamic					
Toggle frequency	120			MHz	SP8794 as a prescaler (see note 1)
	40			MHz	SP8794 controlling a 2-modulus
					divider (see note 1)
Min. toggle frequency with sinewave input			20	MHz	See note 2
Min. toggle frequency with square wave input	0			Hz	Slew rate $> 50 V/\mu s$
Clock to O/P delay (O/P -ve going)		18		ns	
Clock to O/P delay (O/P +ve going)		32		ns	
Control I/P to control O/P delay (O/P -ve going)		20		ns	10k Ω pulldown on O/P, see note 5
Control I/P to control O/P delay (O/P +ve going)		10		ns	10k Ω pulldown on O/P, see note 5
Control I/P to control O/P delay (O/P -ve going)		12		ns	4.3k Ω pulldown on O/P, see note 6
Control I/P to control O/P delay (O/P +ve going)		9		ns	4.3k Ω pulldown on O/P, see note 6
Clock to control O/P delay (O/P -ve going)		30		ns	10k Ω pulldown on O/P, see note 5
Clock to control O/P delay (O/P +ve going)		16		ns	$10k\Omega$ pulldown on O/P, see note 5
Clock to control O/P delay (O/P -ve going)		21		ns	4.3k Ω pulldown on O/P, see note 6
Clock to control O/P delay (O/P +ve going)		16		ns	4.3k Ω pulldown on O/P, see note 6
Static					
Control I/P voltage level					
High state	3.5		10	v	See note 3
Low state	0		1.5	v	
Output voltage level					
V _{OL}			0.4	v	Sink current = 6.0mA
V _{OH} (see note 4)			12	v	See note 4
Input impedance		1.6		kΩ	f _{in} = 0Hz
I/P bias voltage (CLOCK & CLOCK)					
Power supply drain current					

NOTES

The maximum frequency of operation is in excess of 120MHz when the SP8794 is used as a prescaler. The limitation on its maximum operating frequency is the saturating output stage. When the SP8794 is used as a controller for a 2-modulus device its internal delays do not permit operation at frequencies above 40MHz.

2. The device will normally be driven from a 2-modulus divider which will have fast output edges. Hence, there is normally no input slew rate problem.

TTL devices require a pull-up resistor to ensure the required minimum of 3.5V. Note that the device can interface from 10V CMOS with no
additional components.

4. VOH will be the supply voltage that the output pull-out resistor is connected to. This voltage should not exceed 12V.

5. The 10k Ω pulldown is the value of the input pulldown of the SP8695, with which the SP8794 can be used.

6. The 4.3k Ω pulldown is the value of the input pulldown of all the SP8640 series ÷ 10/11 devices, the SP8740 & SP8745 ÷ 6/6, the SP8741 & SP8746 ÷ 6/7 and the SP8743 ÷ 8/9, with which the SP8794 can be used.

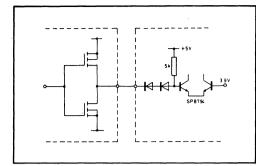
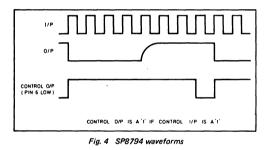
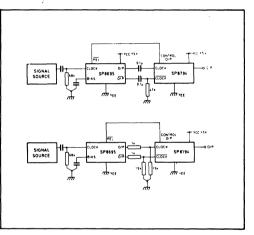




Fig. 3 CMOS and TTL compatible control I/P.

TF	TRUTH TABLE						
Control I/P	Control I/P Div. Ratio with ÷ 10/11						
0	81						
1	80						

Max input frequency to combination = 200MHz (min.). Power consumption of combination = 120mWtyp. Time available to control the \div 80/81 = 80 clock periods minus delays through dividers \cong 740ns (f_{in} = 100MHz)

APPLICATION NOTES

The SP8794 extends the division ratio of 2-modulus counters while retaining the same 2-modulus resolution. A typical application to give a \div 80/81 function is shown in Fig. 5. In this basic form, however, the devices will self-oscillate if no input signal source is present, This may be prevented by using one of the arrangements shown in Fig. 6.

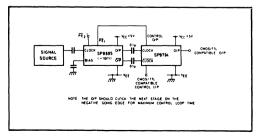


Fig. 5 SP8794 with SP8695 connected to give a low power ÷ 80/81

Fig. 6 Methods of preventing self-oscillation.

SP 8000 SERIES HIGH SPEED DIVIDERS

SP8901

FOUR-MODULUS DIVIDER (÷ 512)

The SP8901 is a four modulus \div 512 operating at frequencies up to 1GHz. The device has a typical power dissipation of 500 mW, and operates over the temperature range -30° C to 70°C. The SP8901 has been designed to interface with the NJ8811 to produce a 16-bit binary programmed frequency synthesiser.

FEATURES

Self Biasing Clock Inputs

- Current Limited TTL/MOS Compatible Inputs
- TTL/MOS Compatible Control Inputs
- 5V Supply
 - Variable Input Hysteresis Capability For Wide Band Operation

APPLICATIONS

- Mobile Radio
 - Scanning Radio Receivers
 - Microprocessor Controlled Frequency Synthesis

ABSOLUTE MAXIMUM RATINGS

Power Supply voltage (V _{CC} V _{EE})	8V
Input voltage, Clock inputs	2.5V p-p
Control inputs	-0.5V to +8V
Storage temperature	-55°C to +150°C

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated)

Supply Voltage: V_{CC} + 5.0V ± 0.25V, V_{EE} : 0V T_{amb} : - 30°C to + 70°C Clock Input: 400mV to 1.0V peak to peak

Dynamic Characteristics

Characteristic	Value		Value		Value		Value		Value		Conditions
Characteristic	Min	Тур.	Max	Units	Conditions						
Max. input frequency	900			MHz	V _{CC3} = 5V See Fig.4						
Max. input frequency	1.0			GHz	V _{CC3} = 6.8V See Fig.4						
Min. input frequency with sinewave input		50	100	MHz	600mV p-p						
Min. slew rate of square wave input			200	V/µs							
Clock to output delay		40	60	ns							
Control setup and release time:											
Control A input		2		ns							
Control B input		5		ns							

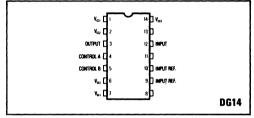


Fig.1 Pin connections

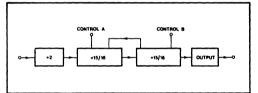


Fig.2 Logic diagram of SP8901

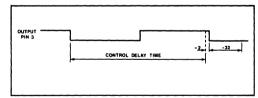


Fig.3 Output waveform

SP8901

Static Characteristics ($T_{amb} = +25^{\circ}C$)

Characteristic		Value		Units	Unite	Conditions
Characteristic	Min	Тур.	Max	Units	Conditions	
Logic '1' output voltage	3.5			V		
	2.5			v	1 mA source	
Output short circuit current			10	mA		
Logic '0' output voltage			0.5	v	2mA sink	
Supply current		100	135	mA		
Control inputs:						
Min. input high level			2.3	v		
Max. input low level	1.3v			v		
Low level input current		0.8	1.2	mA	V _{in} = 0.5V	

OPERATING NOTES

The circuit is configured as two \div 15/16 counters which are clocked via a front end \div 2 counter as shown in Fig.2. The circuit will divide by 512 when the control inputs are left open circuit or both inputs are at logic '1'. The control A and B pins control the minus 2 and 32 counters respectively, when a logic '0' signal is applied. Table 1 shows the division ratios. The minus 2 counts of the control A occur before the negative going output edge, whereas the minus 32 counts occur after the negative going edge as shown in Fig.3. The maximum possible control delay is obtained by clocking the control device on the negative going edge of the SP8901, and is equal to 480 clock input periods (minus the internal delays in the SP8901).

The clock input should be correctly terminated and all input coupling and decoupling capacitors should be of a type suitable for operation at 1GHz. At low frequencies the divider is limited by the slew rate of the input signal and for correct operation this must be greater than 200V/µs. The low frequency sinewave operation of the device can be improved by adding hysteresis to the reference inputs. This can be carried out externally as shown in Fig.4 and can be measured as $V_{ref1} - V_{ref2}$. Care must be taken when applying hysteresis as large values of hysteresis will degrade the input sensitivity at maximum frequency. A maximum value of 50mV (R1 = 33k Ω) should not be exceeded.

The output is TTL or MOS compatible and is current limited at 3mA sink in the low state and 5mA source in the high state. The modulus control inputs have a 5kΩ pull up resistor and can be interfaced to open collector or open drain circuits. There are separate supply lines for the output (V_{CC2} , V_{EE2}) to reduce both input to output and output to input coupling.

A separate supply pin (V_{CC3}) is available for the front end ÷2, and determines the maximum frequency of the device. With V_{CC3} connected to the 5V supply the circuit will operate up to 900MHz. The high frequency limit may be increased to 1GHz by connecting V_{CC3} to 6.8V. Under certain conditions, an oscillation can occur when the device is dynamically clocked. This may be cured by the insertion of a 1_µH RF choke in series with V_{CC1} & V_{CC2}. Under these conditions, V_{CC1} & V_{CC2} pins should not be decoupled.

Control A	Control B	Ratio
1	1	512
0	1	510
1	0	480
o	0	478

Table 1 Divide ratios

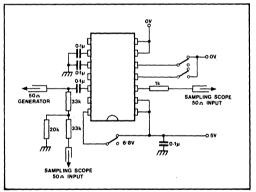


Fig.4 Test circuit

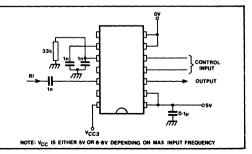


Fig.5 Application circuit

SP8906

FOUR-MODULUS DIVIDER (÷256)

The SP8906 is a four modulus $\div 256$ operating at frequencies up to 500 MHz. The device has a typical power dissipation of 400 mW, and operates over the temperature range - 30°C to 70°C. The SP8906 has been designed to interface with the NJ8811 to produce a 16 bit binary programmed frequency synthesiser, but can also be interfaced with standard MOS programmable dividers to produce a wide range of general purpose synthesisers.

FEATURES

- Self Biasing Clock Inputs
- Current Limited TTL/MOS Compatible
- TTL/MOS Compatible Control Inputs
- 5V Supply

APPLICATIONS

- Mobile Radio
- Scanning Radio Receivers

ELECTRICAL CHARACTERISTICS

Dynamic Characteristics

Test conditions (unless otherwise stated): Supply voltage: V_{CC} +5.0V ±0.25V V_{EE} : 0V T_{amb} : -30°C to +70°C

Clock input: 400 mV to 1.0V peak to peak

Microprocessor Controlled Frequency Synthesis

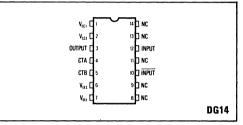


Fig.1 Pin connections

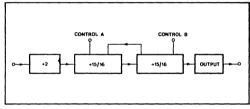


Fig.2 Block diagram

Fig.3 Output waveform

Characteristic	Value			Units	Conditions
	Min	Тур.	Max	Units	Conditions
Max. input frequency	500			MHz	$V_{cc} = 5V$
Min. input frequency with sine wave input		10	20	MHz	600mV p-p
Min. slew rate of square wave input			50	V/µs	
Clock to output delay		40	60	ns	
Control setup and release time:					
Control A Input		2		ns	
Control B Input		5		ns	

SP8906 Static characteristics ($T_{AMB} = 25^{\circ}C$)

Characteristic	Value			Units	Conditions
	Min	Min Typ. Max		Units	Conditions
Logic '1' output voltage	3.5 2.5			v v	1mA source
Output short circuit current			10	mA	
Logic '0' output voltage			0.5	v	2 mA sińk
Supply current		75	100	mA	
Control inputs:					
Min. input high level			2.3	v	
Max. input low level	1.3			v	
Low level input current		0.8	1.2	mA	Vin = 0.5V

OPERATING NOTES

The circuit is configured as two ÷15/16 counters which are clocked via a front end amplifier as shown in Fig.2. The circuit will divide by 256 when the control inputs are left open circuit or both inputs are at logic '1'. The control A and B pins control the minus 1 and 16 counters respectively, when a logic '0' signal is applied. Fig.3 shows the division ratio table. The minus 1 counts of the control A occur before the negative going output edge, whereas the minus 16 counts occur after the negative going edge as shown in Fig.4. The maximum possible control delay is obtained by clocking the control device on the negative going edge of the SP8906, and is equal to 240 clock input periods (minus the internal delays in the SP8906).

The clock input should be correctly terminated and all input coupling and decoupling capacitors should be of a type suitable for operation at 500 MHz. At low frequencies the divider is limited by the slew rate of the input signal and for correct operation this must be greater than $50V\mu s$. If the input to the device is likely to be interrupted the device will tend to self-oscillate at an output frequency of 2MHz. This can be prevented by the addition of $R_1 = 120 kD b$ duwill cause a loss of input sensitivity. (See Fig.8.) Under certain conditions, an oscillation can occur when the device is dynamically clocked. This may be cured by the insertion of a 1μ H RF choke in series with V_{CC1} and V_{CC2} . Under these conditions, V_{CC1} and V_{CC2} pins should not be decoupled.

The output is TTL or MOS compatable and is current limited at 3mA sink in the low state and 5mA source in the high state. The modulus control inputs have a 5kΩ pull up resistor and can interface to open collector, open drain circuits on totem pole outputs. There are separate supply lines for the output (V_{CC2} , V_{EE2}) to reduce both input to output and output to input coupling.

Control A	Control B	Ratio
1	1	256
0	1	255
1	0	240
0	0	239

Table 1 Divide ratios

ABSOLUTE MAXIMUM RATINGS

Power supply voltage ($V_{CC} - V_{EE}$) Input voltage, clock inputs Control inputs Storage temperature 8V 2.5V peak to peak -0.5V to 8V -55°C to 150°C

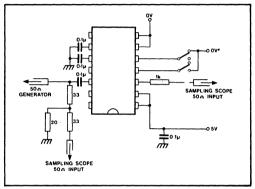


Fig.4 Test circuit

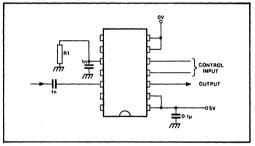


Fig.5 Application circuit

CB CIRCUITS

40 – CHANNEL CITIZENS' BAND SYNTHESISER IC SETS

SP8922 SP8921 SP8923

Recognising the different requirements of citizens' band transceiver manufacturers, Plessey Semiconductors have developed a range of integrated circuits for 40-channel CB. This datasheet describes three of these : SP8921, SP8922 and SP8923.

The devices are designed for use in pairs. SP8922 and SP8921 incorporate all the functions for a synthesised local oscillator with binary-coded channel entry; the SP8923/21 pair offering similar facilities but with BCD channel entry.

FEATURES

- Low External Component Count
- Binary (SP8922) or BCD (SP8923) Channel Setting
- Internal Pulldowns on Channel I/Ps
- Integral 10.24MHz Crystal Oscillator with Buffered O/P
- 10.695MHz IF Offset for Double Conversion
- 455 kHz IF offset for Single Conversion
- No Mixing or Prescaling Required between VCO and Synthesiser I/P
- Digital Phase/Frequency Comparator has Source and Sink O/Ps
- Lock Detect O/P
- 5V Supply Rail

Low Power : 225mW Typ. (SP8921) 225mW Typ. (SP8922)
325mW Typ. (SP8923)

The synthesisers are partitioned into two parts as shown in Figs. 2 and 3. The SP8922 and SP8923 contain a preamplifier followed by a fixed divide by four prescaler. The amplifier input will accept a signal at a frequency up to 30MHz. The input is a high impedance and requires an AC coupled source which is achieved by a series capacitor. The prescaler is followed by seven bits of programmable division. In the SP8922, these seven bits are programmed from the six binary inputs, as shown in Table 1, plus the 5kHz program input.

The SP8923 is programmed by seven BCD channel inputs (see Table 2), the 40 input codes being converted by a decoding matrix to the appropriate citizens' band frequencies.

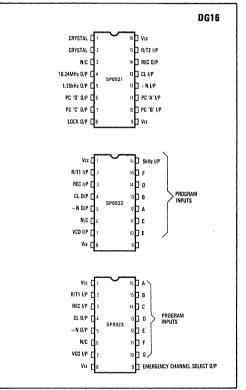


Fig. 1 Pin connections (top view)

A receive/transmit (R/T) input is provided on both SP8922 and SP8923 to give an offset of 91 counts (corresponding to -455kHz) when the receive mode is selected.

Clock and preset outputs to the SP8921 are provided by SP8922 and SP8923, which in turn accept a recognition signal from the SP8921.

Pin 9 on the SP8923 is an Emergency Channel Select output, which gives a low output whenever channel 9, or a non-permitted channel, is selected. When this output is low, the synthesiser programs to channel 9.

The device common to both sets, SP8921, contains the six most significant bits of the programmable counter, a 10.24MHz crystal oscillator maintaining circuit, a 2¹³ fixed divider, and a digital phase/frequency comparator. The six bits of the programmable counter have a fixed preset code which, combined with the variable code of the SP8922 or SP8923, give the total count required to select the 40 citizens' band frequencies. The R/T input to the SP8921 gives an offset in the programmable count of minus 2048 (corresponding to -10.24MHz) when in the receive mode. The crystal oscillator has a direct emitter follower output which may be used as an input to the second mixer in a double conversion transceiver as shown in Fig. 4. The oscillator is connected internally to the fixed divider, which gives an output reference frequency of 1.25kHz with a 10.24MHz crystal. The phase/frequency comparator has two outputs which may be used to drive a variety of charge pump filter circuits as shown in Figs. 7 through10.There is also a 'lock detect' output which requires an external filter as shown in Figs. 2 and 3.

The frequencies available from the SP8922/1 and SP8923/1 when connected in a synthesiser loop are shown in Tables 1 and 2 respectively.

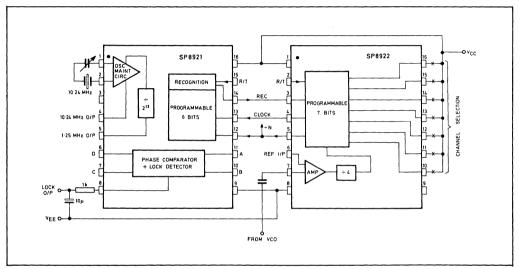


Fig. 2 SP8921/SP8922 interconnections (10.695MHz receive offset)

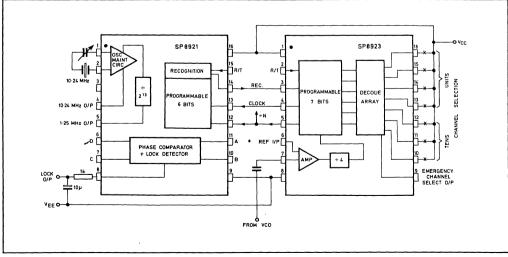


Fig. 3 SP8921/SP8923 interconnections (10.695MHz receive offset)

ELECTRICAL CHARACTERISTICS

Test Conditions (unless otherwise stated)

 $V_{EE} = 0V, V_{CC} = +4.75V \text{ to } +5.5V$

 $T_A = -30^{\circ}C$ to $+70^{\circ}C$

		Value			
Characteristic	Min.	Тур.	Max.	Units	Conditions
Inputs (see Note 1)					
Low	0		0.5	V	
High	2.4		Vcc	V	
VCO	0.4		1.0	Vp-p	AC-coupled
Max. clock frequency	30.	50		MHz	
Outputs (except 10.24MHz O/P and phase comparator C and D O/Ps) Low High	Vcc-0.5		0.5	v	6mA sink No load, see Note 2
10.24MHz O/P	600	800		mVp-p	
Phase comp. C O/P Leakage O/P high O/P low			50 0.5	μΑ V	5mA sink
Phase comp. D O/P Leakage O/P low O/P high	Vcc-1.2		50	μA V	5mA source
Power supply Vcc Icc SP8921	+4.75	45	+5.5 60	V mA	
SP8922 SP8922 SP8923		45 45 65	60 60 90	mA mA	

NOTES

1. Programming inputs may be left open circuit as input low, or connected V_{CC} as input high. All inputs (except VCO I/P) have internal 10k Ω pull down resistors to V_{EE}. SP8922, SP8923 pin 6 is the VCO I/P reference; this pin may be left open circuit, or decoupled to V_{EE} to improve I/P sensitivity.

2. Outputs have an internal 5kΩ pull up resistor to Vcc. Lock output (SP8921 pin 8) has an internal 10kΩ pull up resistor to Vcc.

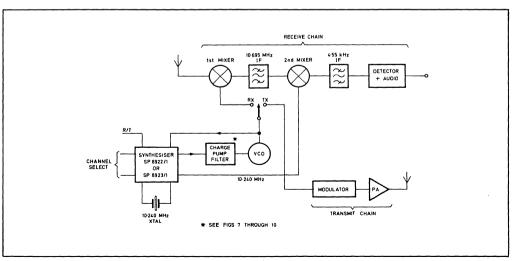


Fig. 4 Double conversion transceiver

hannel No.	Input Code F E D C B A	Output frequency with $R/T = 0$ (MHz)
1	000111	26.965
2 3 4 5 6 7	001000	26.975
3	001001	26.985
4	001011	27.005
5	001100	27.015
6	001101	27.025
/	001110	27.035
8 9	010000	27.055 27.065
9 10	010001	27.065
		27.075
11 12		27.085
13	010101	27.105
14	010111	27.115
15	011000	27.135
16	011010	27.155
17		27.165
18	011100	27.175
19	011101	27.185
20		27.205
21	100000	27.215
22	100001	27.225
23	100100	27.255
24	100010	27.235
25	100011	27.245
26	100101	27.265
27	100110	27.275
28	100111	27.285
29	101000	27.295
30	101001	27.305
31	101010	27.315
32	101011	27.325
33	101100	27.335
34	101101	27.345
35	101110	27.355
36	101111	27.365
37	110000	27.375
38	110001	27.385
39	110010	27.395
40	110011	27.405

Channel No.	Input Code G F E D C B A	Output Frequency with R/T — 0 (MHz)
1 3 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 24 5 6 7 8 9 10 11 23 24 5 6 7 8 9 10 11 23 24 5 6 7 8 9 10 11 23 24 5 6 7 8 9 10 11 23 24 5 6 7 8 9 10 11 23 24 5 6 7 8 9 10 11 23 24 5 6 7 8 9 10 11 23 24 5 6 7 8 9 10 11 23 24 5 6 7 8 9 10 11 23 24 5 6 7 8 9 22 23 24 5 6 7 8 9 23 24 5 6 7 8 9 31 2 23 24 5 6 7 8 9 31 2 23 24 5 6 7 8 9 31 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	$\begin{array}{c} 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$	26.965 26.975 26.985 27.005 27.015 27.025 27.035 27.055 27.065 27.065 27.075 27.085 27.105 27.115 27.125 27.135 27.155 27.165 27.165 27.165 27.165 27.175 27.185 27.255 27.215 27.255 27.225 27.235 27.245 27.255 27.245 27.255 27.255 27.245 27.255 27.255 27.255 27.265 27.275 27.285 27.305 27.315 27.355 27.355 27.355 27.365 27.365 27.375 27.385
39 40	0111001 1000000	27.395 27.405

 Table 1
 SP8922/1
 O/P
 frequencies
 with
 10.240
 crystal
 (0

 contact open, 1
 contact closed to VCC)

 Table 2 SP8923/1 O/P frequencies with 10.240 crystal (0 contact open, 1 contact closed to VCC)

R/T 1	R/T 2	Offset
0	0	0
1	0	—455kHz
0	1	—10.240MHz
1	1	—10.695MHz

Table 3 Receive/Transmit truth table

SP8921 CRYSTAL OSCILLATOR PERFORMANCE

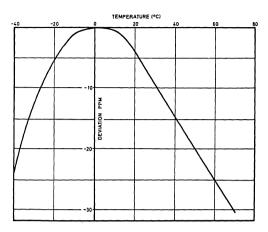


Fig. 5 Frequency/temperature characteristics of CB 10.24 MHz crystal oscillator

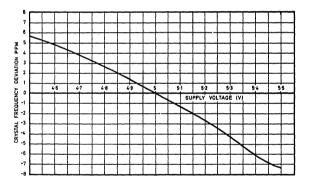


Fig. 6 Crystal frequency v. supply voltage

CHARGE PUMP FILTER ARRANGEMENTS (FIGS.7 THROUGH 10)

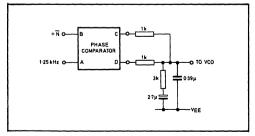


Fig. 7 Filter A. Simple voltage pump, output range 2.5V

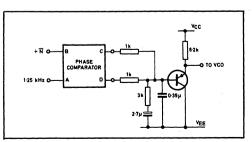


Fig. 8 Filter B. Simple voltage pump with buffered output

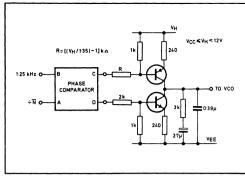


Fig. 9 Filter C. Current pump, output voltage range $V_{H}-1.5V$ for V_H less than 12V

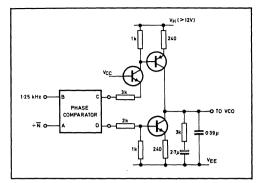


Fig. 10 Filter D. Current pump output voltage range $V_{H}\!-\!1.5V$ for V_{H} greater than 12V

INPUT/OUTPUT CIRCUITS (FIGS.11 THROUGH 16)

The following diagrams show input and output circuit configurations used on the SP8921, 2 and 3.

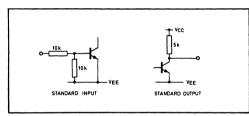


Fig. 11 Standard input and output

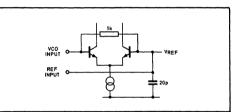


Fig. 12 VCO input

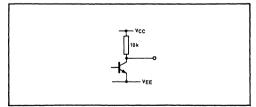


Fig. 13 Lock detect output

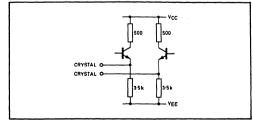


Fig. 15 Crystal oscillator inputs

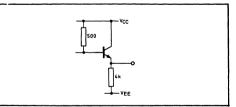


Fig. 14 10.24 MHz output

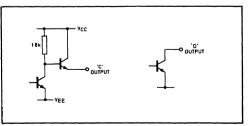
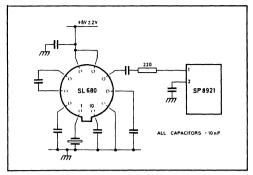



Fig. 16 Phase/frequency comparator outputs

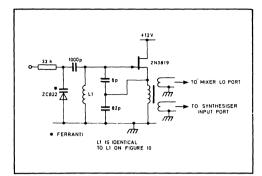


Fig. 17 High stability crystal reference oscillator using SL680

Fig. 18 Voltage controlled oscillator for 27MHz CB synthesiser

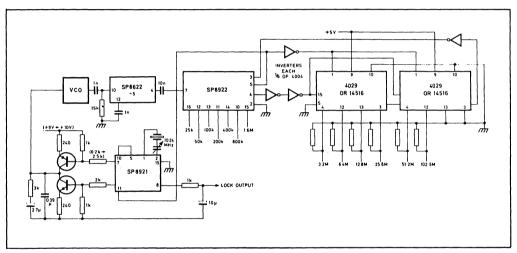


Fig. 19 200 MHz general purpose binary programmed synthesiser with 25KHz resolution using SP8921/22

MN9102

NON-VOLATILE QUAD LATCH

The Plessey MN9102 is a non-volatile 4-bit data latch which uses MNOS transistors as memory elements to retain stored data in the absence of applied power. The data that is applied to the four inputs is written into the memory when the SAVE control is taken to a logic '0' level and the data subsequently appears on the four outputs. The stored data is also automatically restored to the outputs whenever power is re-applied to the device.

An OUTPUT ENABLE is also available, which when taken to logic '0' level presents a high impedance state on each data output line, permitting multiplexed operation.

The high voltage usually associated with MNOS memory devices is generated internally, requiring only a single external capacitor to act as a charge reservoir for supplying current when writing into the memory. The device therefore operates from standard voltage rails and requires no additional drive circuitry.

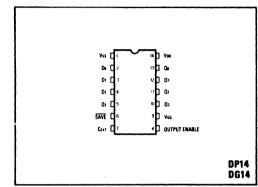


Fig. 1. Pin connections (top)

FEATURES

- Data Retention for One Year at 70°C in the Absence of Applied Power
- Simple to Use
- Standard Power Supplies Only (+5V, -12V)
- CMOS/TTL Compatible
- 14-lead DIL Package

APPLICATIONS

- Metering Systems
- Elapsed Time Indicators
- Security Code Storage
- Last Channel Memory for Digital Tuning

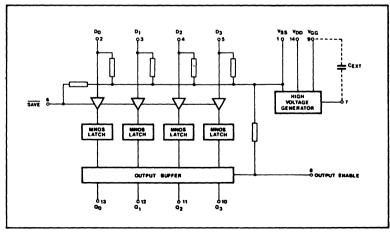


Fig. 2 Block diagram of MN9102

MN9102 ELECTRICAL CHARACTERISTICS

Operating conditions (unless otherwise stated):

	Ourshall	Value			Units	Opendiations
Characteristic	Symbol	Min.	Typ.	Max.	Units	Conditions
Logic '0' input voltage Logic '1' input voltage	Vil Vih	V _{ss} -1		0.8	v v	Nominal 20k ohms internal pullup resistor to V_{SS} on all inputs
Logic '0' output voltage	Vol Voh	Vss—1		0.4	V	Output current = 1.6mA Output current ==100 μA
Logic '1' output voltage Output leakage current	∨он	-10		+10	μΑ	Vss \ge Vout \ge Vob with OUTPUT ENABLE Vob
External reservoir capacitance	Cext	100		220	nF	
Output voltage on CEXT			38		V.	See note 2
External leakage on C _{EXT}				2.0	μΑ	,
Data set-up time	ts				μs	
Data hold time	th			7	μs	0 17-1
Data settling time	td	1		2.5	μs	CLOAD == 47pf
Output enable delay	to			2.5	μs	CLOAD == 47pf
SAVE time	t save	10			ms	See note 1
SAVE duty cycle				10	8	See note 2
SAVE cycles		106				See note 4
SAVE rise and fall times	te			10	μs	
Data retention time		12			months	$T_{amb} = -40^{\circ}C$ to $70^{\circ}C$
		3			months	$T_{amb}^{amb} = -40^{\circ}C$ to 85°C
Power dissipation			50	100	mW	See note 3

ABSOLUTE MAXIMUM RATINGS

(all voltages with respect to Vss)

Voltage on C_{EXT} —46 to + 0.3V Voltage on V_{GG} —20 to + 0.3V Voltage on any other pin —7 to + 0.3V Storage temperature —55°C to + 125°C Ambient operating temperature —40°C to + 85°C

The above limits are absolute limiting values beyond which the lifetime and performance of the device may be impaired. No guarantee is implied that the device will function at any condition other than specified under the operating conditions.

OPERATING NOTES

1.

Data can be entered into the latch with SAVE times much less than ten milliseconds, however the retention time is then significantly reduced. It is therefore important that spurious SAVE pulses do not occur, particularly when power is applied to the device. 2.

An external capacitor is required to act as a charge reservoir for the high voltage which is generated on chip from a high impedance source. Excessive external leakage current on this capacitor or exceeding the quoted duty cycle can cause appreciable loading of the high voltage resulting in reduced data retention times. If operation outside of these limits is required, then an external high voltage (-38 volts \pm 5%) may be used to maintain the voltage level.

3.

The majority of the power dissipation arises from the current flow between Vss and Vsc. The current level on V_{DD} is the sum of the logic '0' level current plus leakage currents.

4.

Exceeding this number of SAVE cycles can cause permanent damage to the device. It should also be noted that rapid changes of data in excess of 10^6 may cause a reduction in the data retention time.

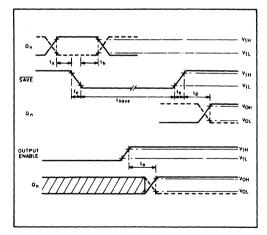


Fig. 3 Timing diagram

ANTI-STATIC PRECAUTIONS

All inputs have suitable protection devices to minimise the possibility of damage due to static discharge. Care should still be taken when handling the device and the leads should at all times be shorted together until actually incorporated in the circuit in which the device is being used. Care should be taken to avoid static charges occurring in the circuit before completion and soldering should be carried out with an earthed bit.

To ensure no damage occurs during transit, the devices are supplied packed in conducting foam or other suitable carriers.

MN9105

QUAD DECADE UP/DOWN COUNTER

The Plessey MN9105 is a 4-decade BCD counter which counts up or down on negative transitions of the CLOCK input. In parallel with the counter is a 16-bit non-volatile MNOS memory into which the contents of the counter can be written by holding CLOCK low and then taking SAVE to a low level. When data has been written into the memory, it can be retained even in the absence of applied power, and then subsequently be recalled from the memory to preset the counter.

Also associated with each counter decade is a 4-bit latch, the outputs of which follow the count sequence when LOAD is low. When LOAD goes high, the latches retain the data present at the time of the transition. The outputs from each latch are multiplexed onto a 4-bit data highway under the control of a 2-bit address (MX1, MX2). All four outputs may be put into a high output impedance state by holding OUTPUT ENABLE high, so allowing multiplexed operation between devices.

The final decade has a CARRY output to enable devices to be cascaded in series. An input CLOCK pulse ripples through to the CARRY output when the counter is in the 'up' mode and the '9999' state or when in the 'down' mode and the '0000' state.

The high voltage usually associated with MNOS devices is generated internally, requiring only a single capacitor to act as a charge reservoir for supplying current when writing into the memory. The device therefore operates from standard voltage rails and requires no additional drive circuitry.

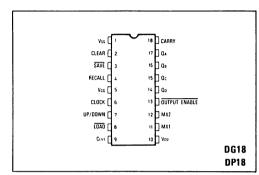


Fig. 1 Pin connections (top)

FEATURES

- Data Retention for One Year at 70°C in the Absence of Applied Power
- DC to 250 kHz Count Frequency
- Up/Down Count Facilities
 - Standard Power Supplies (+5V, -12V)
 - TTL/CMOS Compatibility
 - 18-pin DIL Package

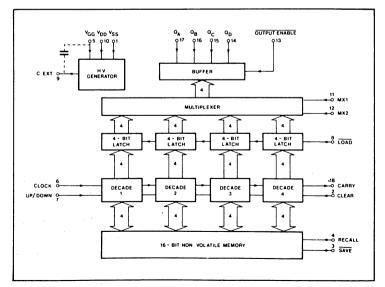


Fig. 2 MN9105 block diagram

MN9105 ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

			Value			Conditions	
Characteristic	Symbol	Min.	Тур.	Max.	Units		
Logic '0' input voltage Logic '1' input voltage Logic '0' output voltage	VIL VIH VOL	Vss-1		0.8	V V V	Output current==1.6mA	
Logic '1' output voltage Output leakage current	Voн	Vss-1 -10		+10	V µA	Output current -100µA Vss > Vout > Vod with OUTPUT ENABLE Vss	
External capacitor Output voltage on CEXT External leakage on CEXT SAVE duty cycle	Cext	0.1	-38	0.22 2.0 10	μF V μA %	See Note 3	
SAVE cycles Data retention time		10 ⁶ 12 3			months months		
Total integrated RECALL time between SAVE cycles Power dissipation		105	250	500	secs mW	See Note 1	

OPERATING NOTES

1. The majority of the power dissipation arises from current flow between Vss and Vgc. The current level on Vpp is the sum of the logic '0' level currents plus leakage current only.

 Exceeding this number of SAVE cycles can cause permanent damage to the device. It should also be noted that rapid changes of data in excess of 10⁶ may cause a reduction in the data retention time.

3. An external capacitor is required to act as a charge reservoir for the high voltage which is generated on-chip from a high impedance source. Excessive external leakage on this capacitor or exceeding the quoted duty cycle can cause appreciable loading of the high voltage resulting in reduced data retention times. If operation

4. The CARRY pulse is equivalent to a CLOCK pulse which ripples through the counter when in the correct count sequence. For CLOCK pulse widths greater than or equal to 5 µs, the CARRY output may be connected directly to the input of a following device. For smaller widths, then pulse stretching must be used on the CARRY output to maintain the pulse width.

5. Data can be entered into the memory with SAVE times much less than 10 milliseconds; however the data retention time is then significantly reduced. It is therefore important that spurious SAVE pulses do not occur particularly when power is applied to the device.

MX2	MX1	ŌĒ	QD, QC, QB, QA	SAVE	CLOCK	CLEAR	RECALL	UP/DOWN	MODE
•	•	1	High output impedance	1	÷	o	0	0	Count up
0	0	0	Decade 1	1	1	0	0	1	Count down
0	1	0	Decade 2	11	•		Ō		Set counter to 0000
1	0	0	Decade 3	1 1	•	0	, i	•	Preset counter from memory
1	1	0	Decade 4	0	0	Ŏ	0	•	Write into memory

Table 1 Function table

Logic '0 or '1' level

+ Logic '1' to '0' transition

ABSOLUTE MAXIMUM RATINGS

(all voltage with respect to Vss)

Voltage on C_{EXT} —46 to + 0.3V Voltage on V_{GG} —20 to + 0.3V Voltage on any other pin —7 to + 0.3V Storage temperature —55 C to + 125 C Ambient operating temperature —40 C to + 85 C

The above limits are absolute limiting values beyond which the lifetime and performance of the device may be impaired. No guarantee is implied that the device will function at any condition other than specified under the operating conditions.

ANTI-STATIC PRECAUTIONS

All inputs have suitable protection devices to minimise the possibility of damage due to static discharge. Care should still be taken when handling the device and the leads should at all times be shorted together until actually incorporated in the circuit in which the device is being used. Care should be taken to avoid static charges occurring in the circuit before completion and soldering should be carried out with an earthed bit.

To ensure no damage occurs during transit, the devices are supplied packed in conducting foam or other suitable carriers.

SWITCHING CHARACTERISTICS

Loading -= 1TTL LOAD

$C_L = 10_PF$

	Γ		Value			
Parameter	Symbol	Min.	Тур.	Max.	Units	Notes
Clock Frequency				250	KHz	
Up/Down select time	t _s	1			μs	
Clock pulse width	tp	2			μs	
Clear pulse width	t _c	1 1			μs	
Recall pulse width	t,	2			μs	
Save pulse width	t _{save}	10			ms	Note 5
Clear to clock set up time	t _{cp}	2			μs	
Recall to clock set up time	t _{rp}	2			μs	
Clock to load set up time	t _{pl}	2			μs	
Clock to save set up time	t _{ps}	0			μs	
Clear to output delay	t _{cd}			2	μs	
Recall to output delay	t _{rd}			4	μs	
Clock to output delay	t _{pd}			4	μs	
MX1/MX2 to output delay	t _{md}			4	μs	
Load to output delay	t _{id}			4	μs	
Clock to carry output delay	t _{pc}			4	μs	
Carry output width	t _{cry}	2			μs	t _p = 5μs (Note 4)
Input rise and fall times				10	μs	

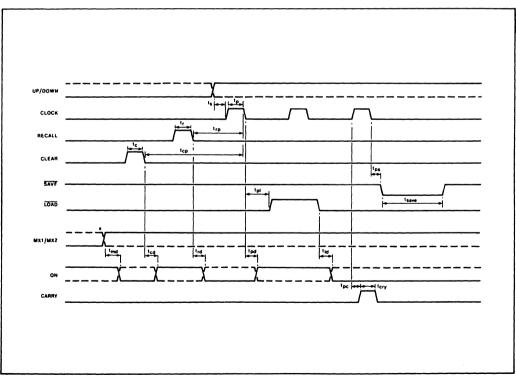


Fig. 3 Timing diagram

MN9106/7/8 SIX-DECADE UP COUNTERS

The MN9106 is a six decade up counter in parallel with a twenty four bit MNOS memory which can provide nonvolatile data storage of the current count position. An overflow latch and memory bit are also available to indicate a counter overflow condition. In <u>addition</u> to the conventional counter controls, RECALL and SAVE inputs are provided to control the two way transfer of data between the counter and memory.

Output data is presented in the form of multiplexed seven segment outputs and six digit strobes. The multiplexing sequence is controlled by an internal oscillator which may also be forced from an external oscillator on the SCAN input. The device operates from a single 12 volts supply and the higher voltage required for the MNOS memory is provided internally by a generator which requires only a single external capacitor.

The MN9107 and MN9108 are adaptations of the basic device intended specifically for timer applications. Certain decades in these devices have been replaced with divideby six elements to give the facility of counting hours, minutes and seconds when provided with the correct input frequency.

MN9107 99 hours, 59 minutes, 59 seconds MN9108 9999 hours, 59 minutes or 9999 minutes, 59 seconds

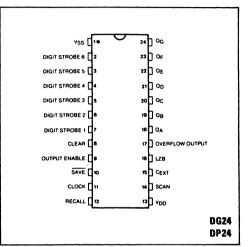


Fig. 1 Pin connections (top)

FEATURES

- Data Retention Guaranteed For One Year In The Absence of Applied Power over Temperature Range of -40°C to +70°C
- DC to 200kHz Count Frequency
- Operation From Single 12V Supply with CMOS Compatible Inputs
- Leading Zero and Full Blanking Facilities
- Multiplexed Seven-Segment Outputs
- Counter Overflow Indicator
- Self Scanning Multiplexing
- Operation from Split Supplies (+5. -7V) Allowing Inputs to Interface with TTL
- Data SAVE Time of 10 Milliseconds.

ABSOLUTE MAXIMUM RATINGS

(all voltages with respect to Vss)

Voltage on CEXT - 46V to + 0.3V Voltage on any other pin - 15V to + 0.3V Storage temperature - 55°C to + 125°C Ambient operating temperature - 40°C to + 85°C

The above limits are absolute limiting values beyond which the lifetime and performance of the device may be impaired. No guarantee is implied that the device will function at any condition other than specified under the operating conditions.

ANTI-STATIC PRECAUTIONS

All inputs have suitable protection devices to minimise the possibility of damage due to static discharge. Care should be taken when handling the device and the leads should at all times be shorted together until actually incorporated in the circuit in which the device is being used. Care should be taken to avoid static charges occurring in the circuit before completion and soldering should be carried out with an earthed bit.

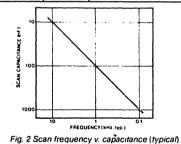
To ensure no damage occurs during transit, the devices are supplied packed in conducting foam or other suitable carriers.

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated): T_{Amb} --40°C to +85°C

Characteristic	Combal	Value					
Characteristic	Symbol	Min	Тур	Max	Units	Conditions	
Supply voltage Supply current		VSS 13 6		VSS 11 22	V mA	OUTPUT ENABLE = VIL SCAN = open circuit	
Logic '0' input voltage Logic "1" input voltage Input leakage current	VIL VIH	V _{SS} 1 -1		V _{SS} 4 +1	V V µA	VDD≤VIN≤VSS(Except	
Scan input current (Logic '0') Scan input current (Logic '1') Logic '1' output resistance -		-12		+120	mΑ μΑ	SCAN input) VIN = VSS6 VIN = VSS1	
segments Logic '1' output resistance -			150	300	Ω	Vout = Vss-3	
overflow Logic '1' output resistance			150	300	Ω	VOUT = VSS-3	
digit strobes Logic '0' output leakage current Output loading - segments		-10	500	1000 +1 15	Ω μA mA)	VOUT = VSS-3 VDD≤VOU'i ≤VSS	
Output loading - overflow Output loading - digit strobes High voltage output			V _{SS} -40	15 5	mA mA V	See note 3	
External reservoir capacitance External leakage current on CEXT	CEXT	100		220 2.0	nF uA	See note 3	
Save duty cycle Number of save cycles Data retention time		10⁰ 12		5	μA %	See note 4 T _A = 70°C	
Data retention time Total integrated RECALL time between SAVE cycles		3 10 ⁶			Months secs	$T_A = 85^{\circ}C$	
Count frequency Clock width Recall width Clear width	f	2.5 5 5		200	kHz µs µs µs	See note 2 See note 2 See note 2	
Save width Input rise and fall times Internal scan frequency		10	1	10	μs ms μs kHz	See notes 2 and 5 SCAN capacitance = 100nF	
External scan frequency				25	kHz		

Output Enable	Count Position	QA	QB	ବ୦	QD	QE	QF	QG
0	*	0	0	0	0	0	0	0
1	0	1	1	1	1	1	1	0
1	1	0	1	1	0	0	0	0
1	2	1	1	0	1	1	0	1
1	3	1	1	1	1	0	0	1
1	4	0	1	1	0	0	1	1
1	5	1	0	1	1	0	1	1
1	6	1	0	1	1	1	1	1
1	7	1	1	1	0	0	0	0
1	8	1	1	1	1	1	1	1
1	9	1	1	1	1	0	1	1
1	Invalid†	0	1	1	1	1	1	0


Table 1 - Output function table

<u>≜</u> F<u>|G</u>|B E|__|C Segment identification

* Don't care condition

D

† Incorrect use of the device may cause invalid BCD characters to appear in the counter.

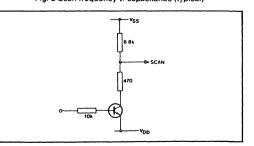
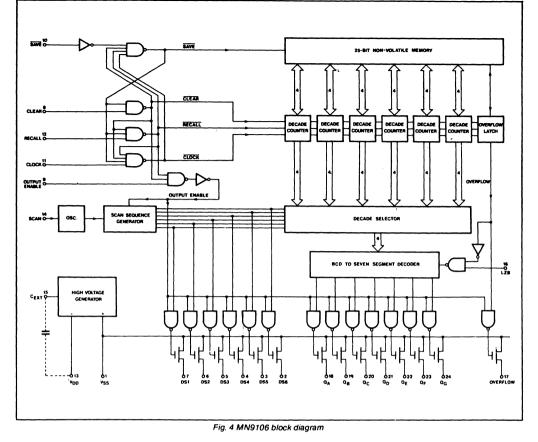



Fig. 3 Typical external drive circuit for SCAN input

OPERATING NOTES

 The counter is a synchronous six decade counter multiplexed onto a four bit data highway and then decoded into seven segment format which drives open drain MOS transistors. An additional output transistor is also driven directly from the overflow latch.

Multiplexing is provided internally from an oscillator whose frequency is determined by a capacitor between the SCAN input and VSS (Fig.2). This oscillator may also be forced externally from a signal which must be capable of sinking and sourcing current on the SCAN input (Fig.3). The decoded data and the corresponding digit strobe output are available for an entire oscillator period and the multiplex control scans the decades in sequence from most significant (DS6) to least significant (DS1). The scan position changes on negative transitions of the SCAN input.

With OUTPUT ENABLE held at a low level, the blanking facility turns off the segment outputs, the digit strobe outputs and the overflow output. The multiplexing scan sequence is reset to the most significant decade at this time A similar blanking and reset function also occurs whenever the device is put into recall or clear modes.

With LZB at a high level, leading zeros are blanked provided that the overflow latch is not at a high level. Leading zero blanking is not applicable to the MN9107 and applies only to three most significant decades in the MN9108.

2. Clear mode: — In clear mode the counter and overflow latch are reset to zero, all outputs are turned off and the multiplexing sequence is reset. The device is <u>put into</u> clear mode by taking CLEAR to a high level while SAVE is also held high. Once the clear function has begun, any subsequent changes on the SAVE input are inhibited. RECALL and CLOCK inputs are always inhibited when the CLEAR input is high.

Recall mode:— In recall mode the counter and overflow latch are preset from the memory, all outputs are turned off and the multiplexing sequence is reset. The device is put into recall mode by <u>taking</u> RECALL to a high level while CLEAR is low and SAVE is high. Once the <u>recall</u> function has begun, any subsequent changes on the SAVE input are inhibited. The CLOCK input is always inhibited when the RECALL input is high.

Count mode:— In count mode the counter will increment on negative transitions of the clock input. If the counter is in the "999999" state, the next counting edge will set the overflow latch to a high level and counting will begin again at "000000". The device is in count mode when RECALL and CLEAR are at a low level and SAVE is high. However, once the CLOCK input has been taken high, any subsequent changes on the SAVE input are inhibited until the CLOCK returns to a low level.

	Clock	Recall	Clear	SAVE
Clear mode Recall mode	*	* 1	1	1† 1†
Count mode Save mode	1 0†	o ot	0 0†	1† 0

TABLE 2. Control Truth Table

* Don't care condition.

† These conditions need only apply to enter the specified mode, once this has happened, changes on these inputs are inhibited internally until that particular mode is completed. Should the SAVE input be taken to a low level simultaneously with any other input going high, then a race condition will exist and although it is not possible to predict which mode will be entered, the device will not malfunction. The device may switch directly from one operating mode to another provided the minimum mode times are maintained. These features mean that no external synchronisation is required between the SAVE and other inputs and ensures that valid data is present before saving and that the data is fixed during the save period.

3. The high voltage for the memory is generated internally from a high impedance source and an external capacitor is needed on CEXT to provide a charge reservoir. Exceeding the save duty cycle or excessive external leakage from CEXT may cause appreciable loading of this high voltage resulting in reduced data retention. Should it be required to operate outside the specified limits then an external voltage supply may be used to maintain the high voltage level.

4. Exceeding the specified number of save cycles may cause a reduction in data retention time and eventually the device may suffer permanent damage.

5. Data can be entered into the memory with save times much less than ten milliseconds, however, the retention time is then significantly reduced. It is therefore important that spurious save pulses do not occur which could disturb or corrupt the stored data. This is most likely to occur at power on and power off. To eliminate this possibility it is sufficient to ensure that the SAVE input remains within one volt of V_{SS} at all times except during valid save periods. 6. Current limiting resistors should always be included on all outputs to prevent excessive output current.

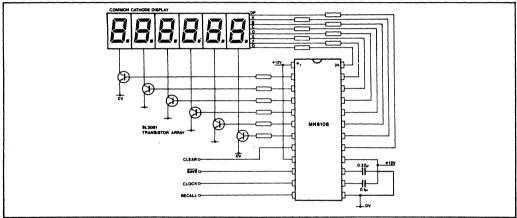
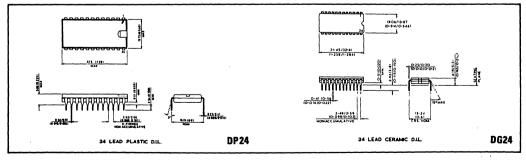



Fig. 5 Common cathode display interface with decimal point overflow indication.

PACKAGE DETAILS

Dimensions are shown thus: mm (in)

MN9210

256 BIT MEMORY (64 x 4)

The Plessey MN9210 is a 64-word by 4-bit electrically alterable non-volatile memory, fabricated using MNOS technology. The device operates from power supplies of +5V and -12V and a low current programming supply of -39V.

Data input and output is multiplexed internally for common I/O bus compatibility. Latches are provided for address and I/O data allowing efficient interfacing. For ease of system expansion, two CHIP SELECT inputs are provided. If either or both are held high, the data lines are forced into a high impedance state and Read, Erase and Write functions are inhibited.

With the READ/WRITE input high, when STROBE is taken high, data from the addressed word is latched and is then subsequently available as output data when STROBE returns to the low level (Fig.3).

Any word may be independently reprogrammed by executing an erase-write cycle, initiated on the falling edge of READ/WRITE. This transition latches the input address and forces the data lines into a high impedance state.

When STROBE is taken high the addressed word is erased and the data latch enabled. When STROBE returns low the write data now present on the data lines is latched and written into the addressed word. When READWRITE returns high the write operation is terminated and the written data appears as output data (Fig.4). Alternatively the write operation may be terminated by taking either or both CHIP SELECT inputs high.

FEATURES

- Guaranteed Data Retention of One Year in the Absence of Applied Power over Temperature Range of – 40°C to + 70°C
- Latching Data and Address Inputs
- Three-state Outputs on Data Lines
- TTL/CMOS Compatibility
- Single Word Preprogramming Facilities
- 18-pin DIL Package

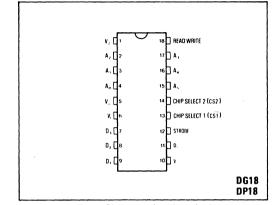


Fig.1 Pin connections (top view)

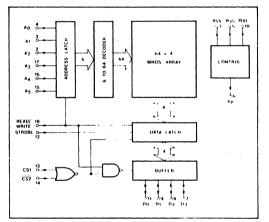


Fig.2 MN9210 block diagram

ANTI-STATIC PRECAUTIONS

All inputs have suitable protection devices to minimise the possibility of damage due to static discharge. Care should still be taken when handling the device and the leads should at all times be shorted together until actually incorporated in the circuit in which the device is being used. Care should be taken to avoid static charges occurring in the circuit before completion and soldering should be carried out with an earthed bit.

To ensure no damage occurs during transit, the devices are supplied packed in conducting foam or other suitable carriers.

ABSOLUTE MAXIMUM RATINGS (all voltages with respect to V_{ss})

Voltage on V_P - 47V to +0.3V Voltage on V_{GG} - 20V to +0.3V Voltage on any other pin - 7V to +0.3V Storage temperature - 55°C to +125°C Ambient operating temperature - 40°C to +85°C

The above limits are absolute limiting values beyond which the lifetime and performance of the device may be impaired. No guarantee is implied that the device will function at any condition other than specified under the operating conditions.

ELECTRICAL CHARACTERISTICS

Operating conditions (unless otherwise stated) $V_{SS} = +5V \pm 5\%$ $V_{DD} = 0V$ $V_{GG} = -12V \pm 5\%$ Ambient operating temperature range - 40°C to +85°C

Characteristic	Symbol	Value			Units	Conditions	
Characteristic	Symbol	Min.	Тур.	Max.	Units	Conditions	
DC Characteristics							
Logic '0' input voltage	V _{IL}			0.8	v		
Logic '1' input voltage	VIH	V _{ss} -1			v		
Logic '0' output voltage	V _{oL}			0.4	v	l _{ouτ} = +1.6mA	
Logic '1' output voltage	V _{OH}	V _{ss} -1			v	I _{out} = - 100μA	
High output impedance leakage current		- 10		+10	μA	V _{DD} ≼V _{OUT} ≼V _{SS}	
Power dissipation				450	mW	Note 1	
Non volatile data retention time		12			months	T _{amb} = 70°C	
		3			months	T _{amb} = 85°C	
Programming voltage	Vp	-41		- 37	V	Note 4	
V _P supply current averaged over	lp lp	- 350			μA	V _P = -37V	
a single write period							
V _P supply current at all other	lp	- 120			μΑ	$V_{P} = -37 V$	
times							
Read Characteristics (Fig.3)							
Chip select set-up time	t _{RCS}	7.5			μs		
Address set-up time	t _{RAS}	7.5			μs		
Strobe width	t _{RS}	5		100	μs		
Address hold time	t _{RAH}	0					
Chip select to output delay	t _{co}			2.5	μs	Output Loading	
Strobe to output delay	t _{RO}			2.5	μs	1 TTL load +50 pF	
Strobe rise and fall times				5	μs		
Number of read cycles on any one word		10°				Note 2	
Erase-Write Characteristics (Fig.4)							
Chip select set-up time	t _{PCS}	0			}		
Address set-up time	tPAS	2.5			μS		
Address hold time	tPAH	2.5			μS		
Strobe delay	to	0					
Erase width	terase	10			ms		
Write width	twRITE	10			ms		
Data set up time	t _{DS}	2.5			μs		
Data hold time	t _{DH}	2.5			μs		
Strobe rise and fall times				5	μs		
Number of erase/write cycles on							
any one word		10°				Note 3	

CS1	CS2	READ/WRITE	STROBE	MODE
1	x	×	X	NOT SELECT **
X	1	x	x	NOT SELECT **
0	0	1	0	STANDBY *
0	0	1	1	READ •
0	0	0	1	ERASE **
0	0	0	0	WRITE **

Outputs correspond to previously read or written data
 High output impedance

.

MN9210 OPERATING NOTES

1. The majority of the power dissipation arises from the current flow between V_{SS} and V_{GG} . The current I_{DD} is the sum of the Logic '0' output currents and approximately $300\mu A.$

2. Exceeding the permitted number of read cycles on any one word will cause a reduction of data retention, necessitating refresh of the stored data.

3. Exceeding the permitted number of erase-write cycles on any one word will reduce the data retention capability and eventually permanent damage may occur.

4. A suggested circuit for the generation of the programming voltage $V_{\rm P}$ is shown in Fig.5.

5. In applications requiring fastest possible

reprogramming it may be of advantage to pre-erase memory words in advance, so that the subsequent reprogramming cycles need only write.

An erase-only operation, like the programming cycle, begins with READWRITE low followed by STROBE high, but is terminated after 10ms by taking either or both CHIP SELECT inputs high. STROBE should then be returned to the low level and READWRITE to the high level. All memory words so erased will read '1111', i.e. all four data lines high.

Words pre-erased in this manner may then subsequently be reprogrammed with a shortened erasewrite cycle in which the STROBE pulse width (STROBE high time, defining the erase period) is substantially reduced, the minimum permissible value being 25μ s. Thus reprogramming may be accomplished in little more than 10ms per word.

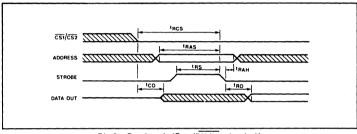


Fig.3 Read cycle (Read/Write = Logic 1)

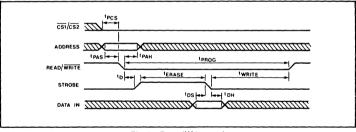


Fig.4 Erase/Write cycle

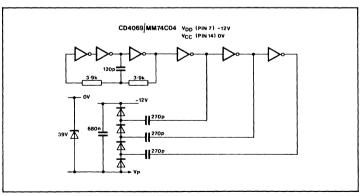
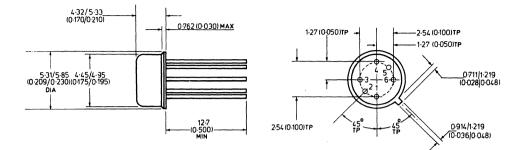
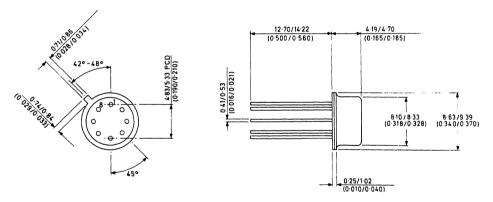
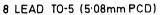
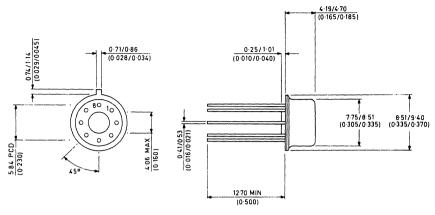



Fig.5 Suggested circuit for generating programming voltage V_p (Will provide – 37 V to – 41 V @ – 240 μ A minimum suitable for continuous erase/write cycling @ 20ms per word, i.e. write duty cycle of 50%)

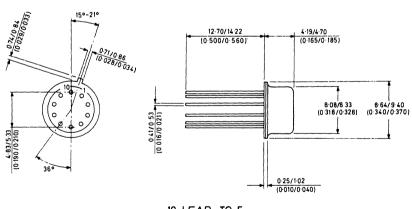
250


.

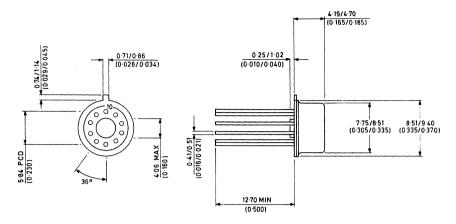

8. Packages.



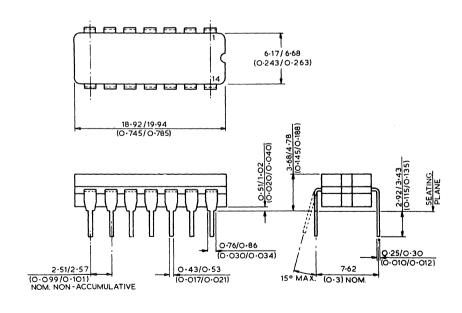
CM6



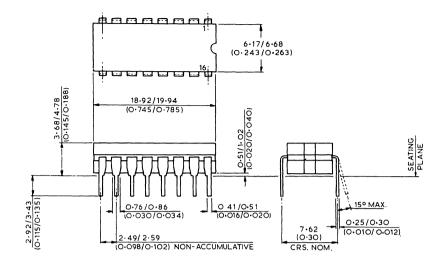
CM8



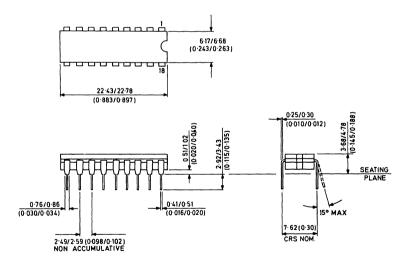
CM8

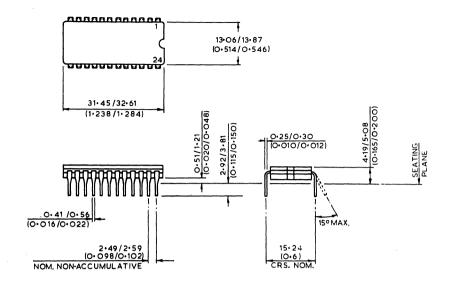


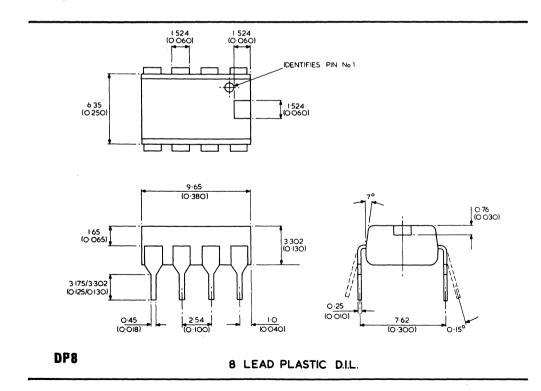
CM10

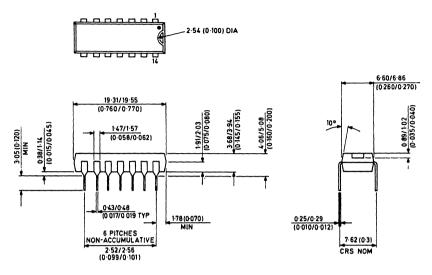


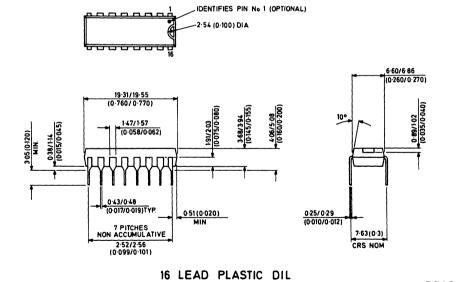
CM10

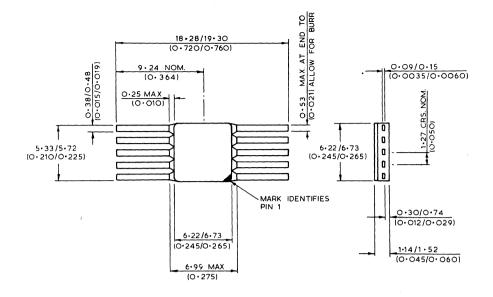




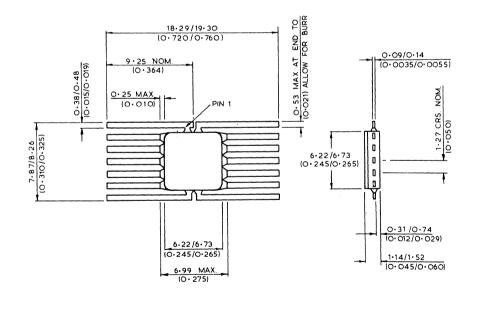

18 LEAD CERAMIC DIL



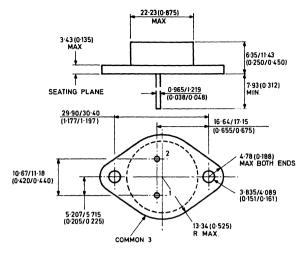

24 LEAD CERAMIC D.I.L.



DP14

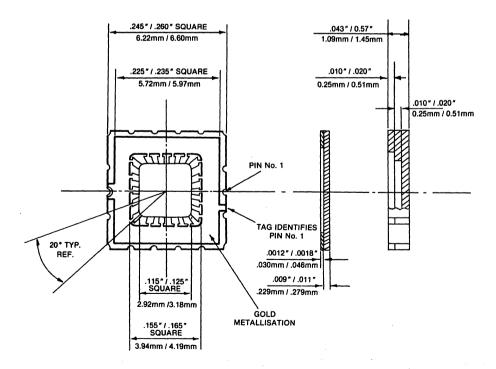






IO LEAD FLAT PACK

GM 14



18 LEAD LEADLESS CARRIER

GC 18

9. Plessey Semiductors World Wide.

PLESSEY SALES REPRESENTATIVES:

ALABAMA:	Huntsville	(205) 883-9260	REMCO
ARIZONA:	Scottsdale	(602) 948-4404	Faser Technical Sales
CANADA:	Bolton	(416) 857-4302	MacKay Associates
CALIFORNIA:	Goleta	(805) 964-8751	The Thorson Company of So. California
	Woodland Hills	(213) 340-9143	RELCOM
FLORIDA:	Plantation	(305) 473-2101	Gallagher Associates
GEORGIA:	Duluth	(404) 476-1730	REMCO
ILLINOIS:	Elk Grove Village	(312) 956-1000	Micro Sales Inc.
MARYLAND:	Beltsville	(301) 937-8321	Applied Engineering Consultants
MASSACHUSETTS:	Natick	(617) 655-6080	Wayland Engineering Sales
MICHIGAN:	Brighton	(313) 227-1786	S.A.I. Marketing Corp.
MINNESOTA:	Bloomington	(612) 884-8291	Electronics Sales Agency Inc.
MISSOURI:	Independence	(816) 254-3600	Engineering Services Company
	St Louis	(314) 997-1515	Engineering Sales Company
NEW MEXICO	Phoenix	(602) 266-2164	Eltron
NEW YORK:	Plainview	(516) 681-3155	Robert Smith Assocs.
	Spring Valley	(914) 354-6067	Robert Smith Assocs.
	, Skaneateles	(315) 685-5731	Robtron Inc.
NORTH CAROLINA:	Raleigh	(919) 787-1461	REMCO
OHIO:	Shaker Heights	(216) 751-3633	S.A.I. Marketing Corp.
	Centerville	(513) 435-3181	S.A.I. Marketing Corp.
	Zanesville	(614) 454-8942	S.A.I. Marketing Corp.
PENNSYLVANIA	Pittsburgh	(412) 782-5120	S.A.I. Marketing Corp.
	Huntingdon Valley	(215) 947-5641	Dick Knowles Assocs.
TEXAS:	Arlington	(817) 640-9101	W. Pat Fralia Company Inc.
	Houston	(713) 772-1571	W. Pat Fralia Company Inc.
	Austin	(512) 451-3325	W. Pat Fralia Company Inc.
VIRGINIA:	Lorton	(713) 550-9799	Applied Engineering Consultants
WASHINGTON:	Seattle	(206) 345-0376	Bryan Procter

PLESSEY DISTRIBUTORS

(Dial direct for orders under 100 pieces and faster delivery)

CALIFORNIA:	Irvine	(714) 540-9979	Plessey Semiconductors
CANADA:	Toronto	(416) 364-9281	G.E.C. Canada Ltd.
MARYLAND:	Beltsville	(301) 937-8321	Applied Engineering Consultants
NEW YORK:	Plainview	(516) 249-6677	Plainview Electronic Supply Corp.
TEXAS:	Ft. Worth	(817) 649-8981	Patco Supply

PLESSEY REGIONAL OFFICES

BRYAN PROCTER Western Sales Manager 710 Lakeway Suite 265 Sunnyvale, CA 94086 (408) 245-9890

JONATHAN HILL Midwest Sales Manager 4849 N. Scott Suite 121 Schiller Park, IL 60176 (312) 678-3280/3281 TWX 910-227-0794

PAT REDKO Eastern Sales Manager 89 Marcus Blvd. Hauppauge, NY 11787 (516) 273-3060 TLX 961419 TELL USA HAUP

A.J. WILLIS S.E. Sales/Applications 7094 Peachtree Ind. Blvd. Suite 295 Norcross, GA 30071 (404) 447-6910 TLX 70-7309 Service NSCS

VERN REEB Central Sales/Applications 112 East High Street Hicksville, OH 43526 (419)542-7544

EUROPE sales offices

BENELUX Plessey S.A., Chausee de St. Job 638, Brussels 1180, Belgium. Tel: 02 374 59 73. Tx: 22100
 FRANCE Plessey France S.A., 16, 20 Rue Petrarque, 75016 Paris. Tel: 727 43 49 Tx: 62789
 ITALY Plessey S.p.A., Corso Sempione 73, 20149 Milan. Tel: 349 1741 Tx: 37347
 SCANDINAVIA Svenska Plessey A.B., Alstromergatan 39, 4tr, S-112 47 Stockholm 49, (P.O. Box 49023 S-100 28 Stockholm 49) Sweden. Tel: 08 23 55 40 Tx: 10558
 SWITZERLAND Plessey Verkaufs A.G., Glattalstrasse 18, CH-8052 Zurich. Tel: 50 36 55, 50 36 82 Tx: 54824
 UNITED KINGDOM Plessey Semiconductors, Cheney Manor, Swindon, Wilts. SN2 20W Tel: 0793 36251
 WEST GERMANY Plessey GmbH., 8 Munchen 40, Motorstrasse 56, Tel: (89) 351 6021/6024 Tx: 5215322

Plessey GmbH, Moselstrasse 18, Postfach 522, 4040 Neuss. Tel: (02101) 44091 Tx: 517844

agents

- AUSTRALIA Plessey Australia Pty. Ltd., Components Div., P.O. Box 2, Christina Road, Villawood, N.S.W. 2163. Tel: 72 0133 Tx: 20384
- AUSTRIA Plessey GesmbH., Postfach 967, A-1011 Vienna. Tel: 63 45 75 Tx: 75 963
- BRAZIL Plessey Brazil, Caixa Postal 7821, Sao Paulo. Tel: (011) 269 0211. Tx: 112338
- CANADA Plessey Canada Ltd., 300 Supertest Road, Downsview, Toronto, Ontario. Tel: 661 3711. Tx: 065-24488
- EASTERN EUROPE Plessey Co. Ltd., 29 Marylebone Rd., London NW1 5JU, England. Tel: 01 486 4091. Tx: 27331
- EIRE Plessey Ireland Ltd., Mount Brown, Old Kilmainham, Dublin 8. Tel: 75 84 51/2. Tx: 4831
- GREECE Plessey Co. Ltd., Hadjigianni Mexi 2, Athens. Tel: (21) 724 3000. Tx. 219251
- HONG KONG Plessey Company Ltd., Tugu Insurance Building, 12th floor, 1 Lockhart Road. GPO Box 617 Tel: 5-275555 Tx: 74754
- JAPAN Cornes & Co Ltd., Maruzen Building, 2 Chome Nihonbashi-Dori. C.P.O. Box 158, Chuo-ku, Tokyo 103. Tel: 272-5771. Tx: 24874

Cornes & Co Ltd., Marden House, C.P.O. Box 329, Osaka. Tel: 532-1012/1019. Tx: 525-4496

- NETHERLANDS Plessey Fabrieken N.V., Van de Mortelstraat 6, P.O. Box 46, Noordwijk. Tel: 01719 19207. Tx: 32008
- NEW ZEALAND Plessey (N.Z.) Ltd., Ratanui Street, Private Bag, Henderson, Auckland 8. Tel: Henderson 64 189. Tx: 2851
- PORTUGAL Plessey Automatica Electrica, Portugesa S.A.R.L., Av. Infant D. Henrique 333, Apartado 1060, Lisbon 6. Tel: 313171/9 Tx: 12190
- SOUTH AFRICA Plessey South Africa Ltd., Forum Building, Struben Street, (P.O. Box 2416) Pretoria 0001 Transvaal. Tel: 34511 Tx: 53-0277
- SPAIN The Plessey Company Ltd., Calle Martires de Alcala, 4-3° Dcha., Madrid 8. Tel: 248 12 18 and 248 38 82 Tx: 42701