

Integrated Circuit Databook

digital integrated circuits

NOVEMBER 1979

This publication is issued to provide outline information only and (unless specifically agreed to the contrary by the Company in writing) is not to form part of any order or contract or be regarded as a representation relating to the products or services concerned. We reserve the right to alter without notice the specification, design, price or conditions of supply of any product or service.

contents

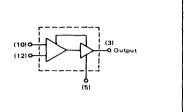
	Page
Product Index	7 - 10
Technical Data	
ECL III	13 - 71
Sub-nanosecond logic	74
SP8000 series high speed dividers	87 - 214
SP4000 series high speed dividers	77 - 85
NOV0L Non volatile logic	233 - 238
SP9000 series data conversion products	221 - 232
Package Outlines	242 - 248
Ordering Information	249
Plessey Semiconductors U.S.A.	252
Plessey Semiconductors World-Wide	254
Sales offices	
Agents	255
Distributors	256

product index

DEVICE TYPE

ECLIII PRODI	UCT INDEX	
SP1648B	Voltage controlled oscillator	13
SP1650B	Dual A/D comparator	21
SP1651B	Dual A/D comparator	21
SP1658B	Voltage controlled multivibrator	32
SP1660B	Dual 4-I/P OR/NOR gate Hi-Z	36
SP1662B	Quad 2-I/P NOR gate Hi-Z	39
SP1664B	Quad 2-I/P OR gate Hi-Z	42
SP1666B	Dual clocked R-S Flip-Flop Hi-Z	45
SP1668B	Dual clock latch Hi-Z	49
SP1670B	Master-slave D Flip-Flop Hi-Z	53
SP1672B	Triple 2-I/P exclusive OR gate Hi-Z	60
SP1674B	Triple 2-I/P exclusive NOR gate Hi-Z	63
SP1690B	UHF prescaler type D Flip-Flop	66
SP1692B	Quad line receiver	71
SUB-NANOSI	ECOND LOGIC	
SP 16 F60	Dual 4-I/P OR/NOR Gate	74

SP8000 SERIES HIGH SPEED DIVIDERS **Prescalers** SP8600A. B 250MHz ÷ 4 87 SP8601A, B 150HMz ÷ 4 91 SP8602A. B 500MHz ÷ 2 94 SP8605B & M 1.0GHz ÷ 2 97 SP8606B & M $1.3GHz \div 2$ 97 SP8607A. B $600MHz \div 2$ 100 SP8608B & M 1.0GHz ÷ 2 102 SP8609B & M 1.3GHz ÷ 2 102 SP8610B & M 1.0GHz ÷ 4 105 SP8611B & M 1.5GHz ÷ 4 105 SP8617B & M 1.3GHz ÷ 4 108 SP8619B & M 1.5GHz ÷ 4 108 SP8620A, B 400MHz ÷ 5 111 SP8627 150MHz ÷ 80 113 SP8628 150MHz ÷ 100 113 SP8629 150MHz ÷ 100 113 SP8630A. B 600MHz ÷ 10 116 SP8634B $700MHz \div 10 (BCD O/P)$ 119 SP8650A, B 600MHz ÷ 16 127 SP8656 200MHz ÷ 24 132 SP8658 200MHz ÷ 20 132 200MHz ÷ 32 Low power (50mW) SP8655A. B 130 SP8657A. B 200MHz ÷ 20 Low power (50mW) 130 SP8659A, B 200MHz ÷ 16 Low power (50mW) 130 SP8660A. B 200MHz ÷ 10 Low power (50mW) 134 SP8665B 1GHz ÷ 10 136 SP8667B 1.2GHz ÷ 10 136 SP8670A. B 600MHz ÷ 8 138 SP8675B & M 1GHz ÷ 8 141 SP8677B & M 1.2GHz ÷ 8 141 SP8680A. B $600MHz \div 10/11$ 143 Two Modulus SP8691A, B 200MHz ÷ 8/9 152 SP8735B 600MHz ÷ 8 with binary O/Ps 165 SP8750B & M 1GHz ÷ 64 185 SP8752B 1.2GHz ÷ 64 185 SP8755A, B 1200MHz ÷ 64 188 SP8770B 1 GHz ÷ 256 190 SP8772B 1.2GHz ÷ 256 190 SP8792 200MHz ÷ 80/81 Low power) 203 Two Modulus SP8793 200MHz ÷ 40/41 Low power 203 SP8901 1GHz ÷ 512 208 Four Modulus SP8906 500MHz ÷ 256 211


SP4000 SERIES Prescalers	HIGH SPEED DIVIDERS	
	\(\I\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	77
SP4020	VHF/UHF ÷ 64	
SP4021	950MHz ÷ 64	79
SP4040	VHF/UHF ÷ 256	81
SP4041	950MHz ÷ 265	83
SP4140	950MHz ÷ 265	85
SP4150	950MHz ÷ 265	85
NOVOL		
Non-Volatile Log	ic	
MN9102	Non Volatile Quad Latch	233
MN9105	Quad Up/Down Counter	235
MN9106	Six Decade Up Counter	238
Two-modulus Pr	ogrammable Dividers	
SP8643A, B	350MHz ÷ 10/11 (ECL O/P)	123
SP8647A, B	250MHz ÷ 10/11 (TTL O/P)	123
SP8685A	500MHz ÷ 10/11 (ECL)	147
SP8690A, B	200MHz ÷ 10/11 Low power TTL O/P (70mW)	149
OI 0030A, D	AC coupled I/P	
SP8695A, B	200MHz ÷ 10/11 Low power TTL O/P (70mW)	155
OI 0035A, D	DC coupled I/P	100
SP8720A, B	300MHz ÷ 3/4	158
SP8725A, B	300MHz ÷ 3/4	161
SP8740A, B	300MHz ÷ 5/6 AC coupled I/P	168
SP8741A, B	300MHz ÷ 6/7 AC coupled I/P	171
SP8743B & M	500MHz ÷ 8/9 AC coupled I/P	174
SP8745A, B	300MHz ÷ 5/6 DC coupled I/P	177
SP8746A, B	300MHz ÷ 6/7 DC coupled I/P	181
SP8785, B & M	1.0GHz ÷ 20/22	196
SP8786, B & M	1.3GHz ÷ 20/22	196
Modulus Extend	ers	
SP8790A, B	LP ÷ 4 control for all programmable devices (40mW)	200
SP8794A, B	LP ÷ 8 control for all programmable devices (40mW)	205
SP8760B & M	General purpose synthesiser circuit	193
SP8922	40 Channel CB Synthesiser IC Set	214
SP8921	40 Channel CB Synthesiser IC Set	214
SP8923	40 Channel CB Synthesiser IC Set	214

SP9000 SERIES	DATA CONVERSION PRODUCTS	
High Speed Com	parators	
SP9685	Ultra Fast Comparator	221
SP9687	Ultra Fast Dual Comparator	221
SP9750	High Speed Comparator	227

technical data

VOLTAGE-CONTROLLED OSCILLATOR

SP1648

Input Capacitance = 6 pF typ Maximum Series Resistance for L (External Inductance) = 50 Ω typ Power Dissipation = 150 mW typ/pkg (+5.0 Vdc Supply) Maximum Output Frequency = 225 MHz typ

The SP1648 is an emitter-coupled oscillator, constructed on a single monolithic silcon chip. Output levels are compatible with PECL III logic levels. The oscillator requires an external parallel tank circuit consisting of the inductor (L) and capacitor (C).

A varactor diode may be incorporated into the tank circuit to provide a voltage variable input for the oscillator (VCO). The SP1648 is used in the Phase-Locked Loop shown in Figure 9. This device may be used in many applications requiring a fixed or variable frequency clock source of high spectral purity (See figure 2).

The SP1648 may be operated from a +5.0 Vdc supply or a -5.2 Vdc supply, depending upon system requirements.

SUPPLY VOLTAGE	GND PINS	SUPPLY PINS
+5.0 Vdc	7, 8	1, 14
-5.2 Vdc	1, 14	7, 8

FIGURE 1 - CIRCUIT SCHEMATIC

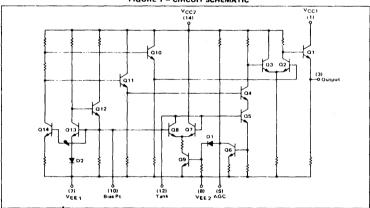
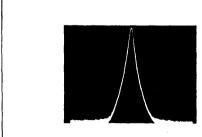
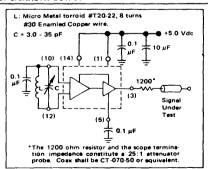
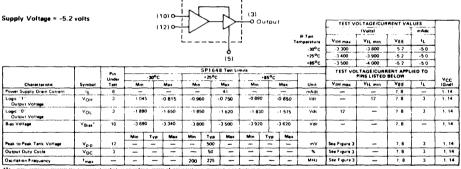




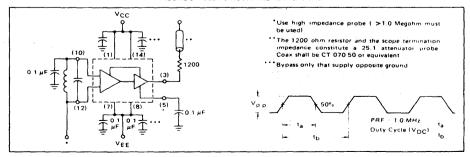
FIGURE 2 - SPECTRAL PURITY OF SIGNAL AT OUTPUT

B.W. = 10 kHz Scan Width - 50 kHz/div Center Frequency = 100 MHz Vertical Scale = 10 dB/div



ELECTRICAL CHARACTERISTICS

Supply Voltage = +5.	0 volts				10) 0- 12) 0-	1	5	3	(3)	Outp	ut		TEST V	OL TAGE/CUI	RRENT VA	LUES	r
						!レ		-	ĺ					(Volts)		mAde	1
								-	٤.			P Tost Temperature	VIH max	VIL mm	Vcc	16]
								٥				-30°C	+1 960	+1.410	5.0	-50	1
								(5)				+25°C	-1 800	+1 300	5.0	-50	1
											_	+85°C	-1 680	•1 180	5.0	-50	1
		Pin		-30°C		r	SP164	48 Test L	mits	+85°C				TAGE/CURP		ED TO	l
Characteristic	Symbol	Test	Min		Max	Men		Mex	Min		Max	Unit	VIH max	VIL min	Vcc	1	VEE (Gnd)
Power Supply Drain Current	¹E	8	_					40	_			mAdu			1 14		7.8
Cogic "f Output Voltage	VO:4	3	3 94		4 18	4 04		4 25	411		4 36	Vdc	T	17	1 14	3	7.8
Logic '0' Output Voltage	VOL	3	3 16		3 40	3 20	,	3 43	3 23	7	3 46	Vdc	- 12	-	1, 14	3	7.8
Bias Voltage	VB.as	10	1 51		1 86	1 40	5	1 70	1 28		1 58	Vdc			1 14		7.8
	1	•	Min	Typ	Mex	Min	Typ	Max	Min	Typ	Mex	1	t		t		
Peak to Peak Tank Voltage	Vp-p	12	-	_) <u>-</u> -	-	500	7	- 1	_	-	- nv	See Figure 3	i -	1 14	3	7.8
Output Duty Cycle	VDC	3	-	_	T =	-	50	T	1 - 1	-	-	1	See Figure 3		1.14	3	7.8
Oscillation Frequency	Imex	_	_	_	_	200	225	T-	- 1		T =	MH,	See Figure 3	_	1 14	3	7 8


[&]quot;This measurement guarantees theidc potential at the bias point for ourposes of incorporating a varactor funing those at this point

ELECTRICAL CHARACTERISTICS

This measurement guarantees the do potential at the bias point for purposes of incorporating a varactor tuning diode at this point

FIGURE 3 - TEST CIRCUIT AND WAVEFORMS

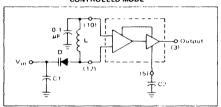

OPERATING CHARACTERISTICS

Figure 1 illustrates the circuit schematic for f. 2 SP1648. The oscillator incorporates positive feedback by coupling the base of transistor Q7 to the collector of Q8. An automatic gain control (AGC) is incorporated to limit the current through the emitter-coupled pair of transistors (Q7 and Q8) and allow optimum frequency response of the oscillator.

In order to maintain the high Q of the oscillator, and provide high spectral purity at the output, a cascode transistor (Q4) is used to translate from the emitter follower (Q5) to the output differential pair Q2 and Q3. Q2 and Q3, in conjunction with output transistor Q1, provide a highly buffered output which produces a square wave. Transistors Q10 thru Q14 provide the bias drive for the oscillator and output buffer. Figure 2 indicates the high spectral purity of the oscillator output (pin 3).

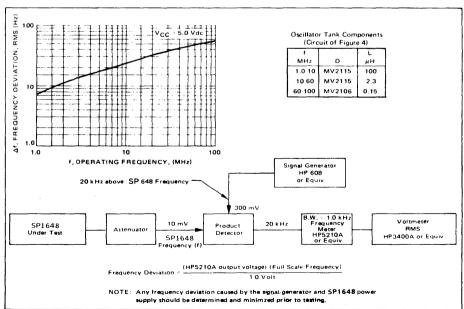
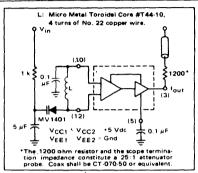

When operating the oscillator in the voltage controlled mode (Figure 4), it should be noted that the cathode of the varactor diode (D) should be biased at least 2 VBE above VEE (\approx 1.4 V for positive supply operation).

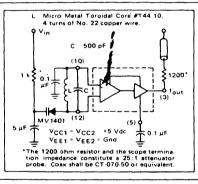
FIGURE 4 – THE SP1648 OPERATING IN THE VOLTAGE CONTROLLED MODE

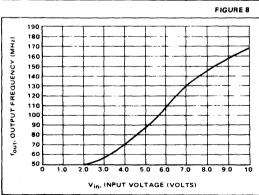
When the SP1648 is used with a constant do voltage to the variactor diode, the output frequency will vary slightly because of internal noise. This variation is plotted versus operating frequency in Figure 5.

FIGURE 5 - NOISE DEVIATION TEST CIRCUIT AND WAVEFORM



four, OUTPUT FREQUENCY (MHz)


TRANSFER CHARACTERISTICS IN THE VOLTAGE CONTROLLED MODE USING EXTERNAL VARACTOR DIODE AND COIL. TA = 25°C


FIGURE 6 60 56 52 48 44 40 36 32 28 24 20 16 12 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

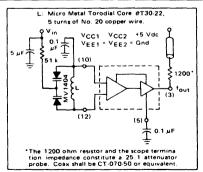

VID. INPUT VOLTAGE (VOLTS)

FIGURE 7 fout, OUTPUT FREQUENCY (MHz) 16 15 14 13 10 9 0 8.0 1.0 2.0 3.0 5.0 7.0 8.0 10 Vin. INPUT VOLTAGE (VOLTS)

Typical transfer characteristics for the oscillator in the voltage controlled mode are shown in Figures 6, 7 and 8. Figures 6 and 8 show transfer characteristics employing only the capacitance of the varactor diode (pluse the input capacitance of the oscillator, 6 pF typical). Figure 7 illustrates the oscillator operating in a voltage controlled mode with the output frequency range limited. This is achieved by adding a capacitor in parallel with the tank circuit as shown. The 1 k Ω resistor in Figures 6 and 7 is used to protect the varactor diode during testing. It is not necessary as long as the dc input voltage does not cause the diode to become forward biased. The larger-valued resistor (51 k Ω) in Figure 8 is required to provide isolation for the high-impedance junctions of the two varactor diodes.

The tuning range of the oscillator in the voltage controlled mode may be calculated as:

$$\frac{f_{max}}{f_{min}} = \frac{\sqrt{C_D (max) + C_S}}{\sqrt{C_D (min) + C_S}}$$

where
$$f_{min} = \frac{1}{2\pi \sqrt{L (C_D (max) + C_S)}}$$

CS = shunt capacitance (input plus external capacitance):

CD = varactor capacitance as a function of bias voltage. Good RF and low-frequency bypassing is necessary on the power supply pins (see Figure 2).

Capacitors (C1 and C2 of Figure 4) should be used to bypass the AGC point and the VCO input (varactor diode), guaranteeing only dc levels at these points.

For output frequency operation between 1 MHz and 50 MHz a $0.1~\mu F$ capacitor is sufficient for C1 and C2. At higher frequencies, smaller values of capacitance should be used; at lower frequencies, larger values of capacitance. At higher frequencies the value of bypass capacitors depends directly upon the physical layout of the system. All bypassing should be as close to the package pins as possible to minimize unwanted lead inductance.

The peak-to-peak swing of the tank circuit is set internally by the AGC circuitry. Since voltage swing of the tank circuit provides the drive for the output buffer, the AGC potential directly affects the output waveform. If it is desired to have a sine wave at the output of the SP1648, a series resistor is tied from the AGC point to the most negative power potential (ground if +5.0 volt supply is used, -5.2 volts if a negative supply is used) as shown in Figure 10.

At frequencies above 100 MHz typ, it may be necessary to increase the tank circuit peak-to-peak voltage in order to maintain a square wave at the output of the SP1648. This is accomplished by tying a series resistor (1 k Ω minimum) from the AGC to the most positive power potential (+5.0 volts if a +5.0 volt supply is used, ground if a -5.2 volt supply is used). Figure 11 illustrates this principle.

APPLICATIONS INFORMATION

The phase locked loop shown in Figure 9 illustrates the use of the SP1648 as a voltage controlled oscillator. The figure illustrates a frequency synthesizer useful in tuners for FM broadcast, general aviation, maritime and landmobile communications, amateur and CB receivers. The system operates from a single +5.0 Vdc supply, and requires no internal translation, since all components are compatible.

Frequency generation of this type offers the advantages of single crystal operation, simple channel selection, and elimination of special circuitry to prevent harmonic lock-up. Additional features include dc digital switching (pref-

erable over RF switching with a multiple crystal system), and a broad range of tuning (up to 150 MHz, the range being set by the varactor diode).

The output frequency of the synthesizer loop is determined by the reference frequency and the number programmed at the programmable counter; $f_{out} = Nf_{ref}$. The channel spacing is equal to frequency (f_{ref}) .

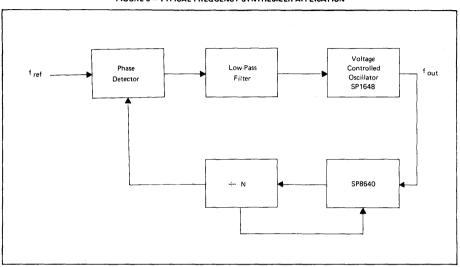


FIGURE 9 - TYPICAL FREQUENCY SYNTHESIZER APPLICATION

Figure 10 shows the SP1648 in the variable frequency mode operating from a +5.0 Vdc supply. To obtain a sine wave at the output, a resistor is added from the AGC circuit (pin 5) to VEE.

Figure 11 shows the SP1648 in the variable frequency mode operating from a +5.0 Vdc supply. To extend the useful range of the device (maintain a square wave output above 175 MHz), a resistor is added to the AGC circuit at pin 5 (1 k-ohm minimum).

FIGURE 10 - METHOD OF OBTAINING A SINE-WAVE OUTPUT

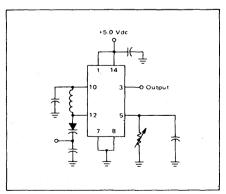
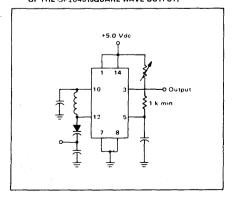



Figure 12 shows the SP1648 operating from +5.0 Vdc and +9.0 Vdc power supplies. This permits a higher voltage swing and higher output power than is possible from the PECL output (pin 3). Plots of output power versus total collector load resistance at pin 1 are given in Figures 13 and 14 for 100 MHz and 10 MHz operation. The total collector load includes R in parallel with Rp of L1 and C1 at resonance. The optimum value for R at 100 MHz is approximately 850 ohms.

FIGURE 11 - METHOD OF EXTENDING THE USEFUL RANGE OF THE ISP1648 (SQUARE WAVE OUTPUT)

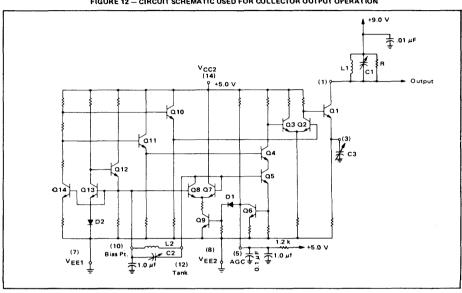


FIGURE 12 - CIRCUIT SCHEMATIC USED FOR COLLECTOR OUTPUT OPERATION

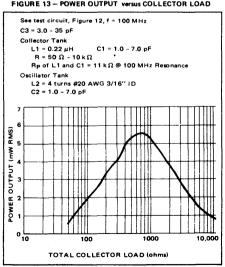
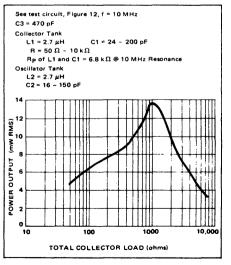
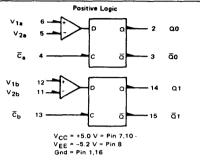




FIGURE 14 - POWER OUTPUT versus COLLECTOR LOAD

DUAL A/D COMPARATOR

SP1650 • SP1651

- PD = 330 mW typ/pkg (No Load)
- t_{pd} = 3.5 ns typ (SP1650)
- = 3.0 ns typ (SP1651)
- input Siew Rate = 350 V/µs (SP1 650) = 500 V/us (SP1651)
- Differential Input Voltage: -5.0 V to +5.0 V (-30°C to +85°C)
- Common Mode Range:
- -3.0 V to +2.5 V (-30°C to +85°C) (SP1650) -2.5 V to +3.0 V (-30°C to +85°C) (SP1651)
- Resolution: \leq 20 mV (-30°C to +85°C)
- Drives 50 Ω lines

The SP1650 and the SP1651 are very high speed comparators utilizing differential amplifier inputs to sense analog signals above or below a reference level. An output latch provides a unique sample-hold feature. The SP1 650 provides high impedance Darlington inputs, while the SP-1651 is a lower impedance option, with higher input slew rate and higher speed capability.

Complementary outputs permit maximum utility for applications in high speed test equipment, frequency measurement, sample and hold, peak voltage detection, transmitters, receivers, memory translation, sense amplifiers and more.

The clock inputs (\overline{C}_a and \overline{C}_b) operate from PECL III or PECL 10,000 digital levels. When Ca is at a logic high level, Q0 will be at a logic high level provided that V1> V2 (V1 is more positive than V2). Q0 is the logic complement of Q0. When the clock input goes to a low logic level, the outputs are latched in their present state.

Assessment of the performance differences between the SP1650 and the SP1651 may be based upon the relative behaviors shown in Figures 3 and 6.

	TRUTH TA	BLE	
Ē	v ₁ , v ₂	Ω0 _{n+1}	ā0 _{n+1}
н	V ₁ >V ₂	Н	L
н	V1 < V2	L	н
L	φ φ	00 _n	āo _n

φ = Don't Care

CIRCUIT SCHEMATIC SP1650 Inputs 1/2 of Device Shown (Both Devices) Vсс Gnd Gnd 7,10 9 16 02 O - ദെ റ് SP1651 Inputs V2

ELECTRICAL CHARACTERISTICS

This PECL III circuit has been designed to meet the dc specifications shown in the test table after thermal equilibrium has been established. The package should be housed in a suitable heat sink (IERC-LIC-214A2WCB or equivalent) or a transverse air flow greater than 500 linear fpm should be maintained while the circuit is either in a test socket or is mounted on a printed circuit board. Test procedures are shown for selected inputs and selected outputs. The other inputs and outputs are tested in a similar manner. Outputs are tested with a 50-ohm resistor to -2.0 Vdc. See general information section for complete thermal data

POSITIVE LOGIC V1a 6 V2a 5 D Q 2 Q0 Ca 3 \(\tilde{Q}\) V1b 12 V2b 11 Cb 13 C \(\tilde{Q}\) The Q 14 Q1

CERAMIC PACKAGE E

		TEST VOLTAGE VALUES														
		(Volts)														
@ Test Temperature	ViHmax	ViLmin	VIHAmin	VILAmax	VA1	VA2	VA3	VA4	V _{A5}	VA6	v _{cc} 3	vee 4				
-30°C	-0 875	-1.890	-1 180	-1.515	+0 020	-0.020					+5.0	-5.2				
+25°C	-0810	-1.850	-1.095	-1.485	+0.020	-0.020		See A	lote 🕙		+5.0	-5.2				
+85°C	-0 700	-1 830	-1 025	-1 440	+0.020	-0 020					+5.0	-5.2				

		1.	SF	P1656	SP169	Test	Limits	1					7557 110		PPLIED T						•	ĺ
		Pin	-3	0°C	+2	5°C	+8	5°C													T @	ĺ
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	ViHmax	VILmin	VIHAmin	VILAmax	VAI	VA2	VA3	VA4	V _{A5}	VA6	v _{cc} 3	VEE 3	Gnd
Power Supply Drain Current Positive Negative	¹CC	7,10 8	-		-	25°	-	-	mAdc mAdc	4.13	4,13 -	-	-	6,12 6,12	-	-	-	-	-	7,10 7,10	8 8	1,5,11,16 1,5,11,16
Input Current SP1650 SP1651	1 _{in}	6	-	-	-	10 40	-		µAdc µAdc	4	13 13	-	-	12 12	-	6	-	-	-	7.10 7.10	8	1,5,11,16 1,5,11,16
Input Leakage Current SP1650 SP1651	¹ R	6	-	_	-	7	-	-	μAdc μΑdc	4	13 13		~	12	-		-	6	=	7,10 7,10	8 8	1,5,11,16 1,5,11,16
Input Clock Current	LinH	4	-	-	-	350			μAdc	4	13	-		6.12	-	-	-	-	-	7,10	8	1,5,11,16
	I _{in} L	4	Ξ	-	0.5		-	-	μAdc		13	-		6,12		-	-	-		7,10	4,8	1,5,11,16
Logic "1" Output Voltage	VOL	2 2 2 2 3 3 3 3 2 2 2 2 2 3 3 3 3 3 3 3		-1650	-1850		-1830			4,13			-	5.11	5,11 	5,11 - 5,11 - 5,11 - 6,12	5,11 - - 6,12 - - 6,12 - - 5,11	5,11 	6.12 	7,10	8	1,5,11,16 1,6,12,16 1,16 1,5,11,16 1,5,11,16 1,16 1,16 1
Logic "1" Threshold Voltage (1 2) 3 4	Vона	2 2 3 3	-1.065 	-	-0.980	- - - -	-0910	-	Vdc		13	4	4	6	- 6 6	- - -	=	=	= = = = = = = = = = = = = = = = = = = =	7,10	8	1,5,16
Lagra "0" Threshold Voltage (1 2) 3 4	VOLA	3 3 2 2		-1.630	- -	-1.600	-	-1555 	Vdc	-	13	4 - 4 -	4	6	6 6 -	-	-	-	-	7,10	i	1,5,16

HOTES	0	All data is for % SP1650 or SP1651, except data marked (*) which refers to the entire package.
	@	These tests done in order indicated. See Figure 4.

இ Maximum ?oxcr Supply Voltages (beyond which device life may be impaired) | vps + ்்ரி ≨ 12 Vdc.

④	All Temperatures	V _{A3}	VA4	VA5	V _{A6}
	SP1650	+3.000	+2.980	-2.500	-2.480
	SP1651	+2.500	+2.480	-3.000	-2.980

CERAMIC PACKAGE E

POSITIVE LOGIC

V1a 6

V2a 5

D Q 2 Q0

Ca 4

C Q 3 Q0

V1b 12

V2b 11

C Q 115 Q1

C Q 15 Q1

9 Test Temperature -30°C +25°C

TEST VOLTAGE VALUES (Volts) vcc 0 VEE O V_{R3} ٧x VR1 V_{R2} V_{XX} +1.040 +2.000 +2.00 +7.00 -3.20 +2.000 See Note 4 +1.110 +2.00 +7.00 -3.20 +2.000 +1.190 +2.00 +7.00 -3.20

See Figure 2

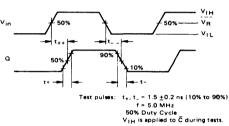
		Pin		SP1	650/	1651 T	est L	imits		-										
		Under	-30	o°C	+2	5°C	+80	5°C	Unit	- '6	SO VULI	AUE AFF	LIED IO	PINS LIST			├			_
Cheracteristic	Symbol	Test	Min	Max	Min	Max	Min	Mex		V _{R1}	V _{R2}	V _{R3}	٧x	V _{XX}	v _{cc} O	AEEQ	P1	P2	Р3	P4
Switching Times	t6+2+	2	2.0	5.0	2.0	5.0	2.0	5.7	ns	5	_	-	4	1,11,16	7,10	8	6	-	_	Τ-
Propagation Delay	t6+2+	2	1 1	1 i	1 1	۱,	[]	۱.	11	-	5	_		1 1	1	1 1	1 - 3	6	-	-
(50% to 50%)	t6+2+	2	1 1	11	1 1	1	1		1	-	-	5	1 1	1 1	1 1	1 1	-	_	6	-
V-Input to Output	t6+3-	3	1 1	l i	11	1			1	5	-	-			1 1	1 1	6	-	-	1 -
	t6+3-	3		l i		11	1 1			-	5	- 1	1 1	1 1	1 1	11	-	6	-	1 -
	t6+3-	3	1 1	11		1 1			11	~	- 1	5		l i	1	l I	- :	-	6	-
	t6-2-	2	1 1	1 1	l l	11	11	1 1	1 1	5	I –	-	1 1	1	1 1	1 1	6	_	- 1	-
	t6-2-	2	1 1	1 1		1 1		li	11	-	5	-	1 1	1 1	1 1	1 1	1 -	6	-	1 -
	¹ 6-2-	2	1 1	11	1 1		1 1	1 1	1 1	-	- 1	5	11	1 1	1 1	1 1	-	_	6	-
	t6-3+	3	1 1	1 1	1 1	11	11		11	5	i –		1 1	1 1	1 1		6	-	-	-
	t6-3+	3	1 4	۱ ∔	1	۱ ∔	۱ .		١.	l –	5	-	1 4	1 1	1 4	1 1	-	6	-	-
	t6-3+	3		_ •		7				-	_	5				,	-	_	6	1 =
Clock to Output ②	t4+2+	2	2.0	4.7	2.0	4.7	2.0	5.2	ns	5	-	_	-	1,11,16	7,10	- 8	6	-	-	4
	14+2-	2	1	1 1	1 1	1 1	1	lı	1 1	6	-	-	- 1	1 1	1 1	1	5	- 1	_	1.1
	14+3+	3	1 1	1 1	1 1	ΙI	l I	1 1	11	6	! -	-	- 1	1 1	1 1	1 1	5	-	-	1.1
	t4+3-	3	1	1	₹	. 7		1		5	-	-	1 –	1	1	1	6	- 1	-	1 7
Clock Enable Time 3	tsetup	6	-	-	2.5	-	-	-	ns	5	T -	-	-	1,11,16	7,10	8	6	-	-	4
Clock Aperture Time 3	tap	6	-	-	1.5		-	-	ns	5	-	-	-	1,11,16	7,10	8	6	-	-	4
Rise Time	t ₂₊	2	1.0	3.5	1.0	3.5	1.0	3.8	ns	5	-	-	4	1,11,16	7,10	8	6	-	-	ΤΞ
(10% to 90%)	t3+	3	1.0	3.5	1.0	3.5	1.0	3.8	ns	5	-	-	4	1,11,16	7,10	8	6	-	-	-
Fell Time	t2-	2	1.0	3.0	1.0	3.0	1.0	3.3	ns	5	T -	T -	4	1,11,16	7,10	8	6	_	-	1 -
(10% to 90%)	12_	3	1.0	3.0	1.0	3.0	1.0	3.3	ns	5	I -	_	4	1.11.16	7.10	8	6	-	-	1 -

NOTES: ① Meximum Power Supply Voltages (beyond which device life may be impaired: |VCC| + |VEE| ≤ 12 Vdc.

2 Unused clock inputs may be tied to ground.

3 See Figure 8.

④	All Temperatures	VR2	V _{R3}			
	SP1650	+4.900	-0.400			
	SP1651	+4.400	-0.900			


FIGURE 1 - SWITCHING TIME TEST CIRCUIT @ 25°C *Vout to Vin to Channel A V_{XX} = 9 +2.0 vdc VCC # +7.0 Vdc 9 CC Gnd ā V_X o VEE = -3.2 Vdc 50-ohm termination to ground located in each scope channel input All input and output cables to the scope are equal lengths of 50-ohm coaxiel cable. *Complement of output under test should always be loaded with 50-ohms to ground.

24

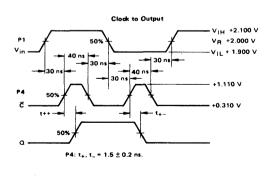
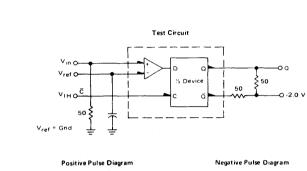
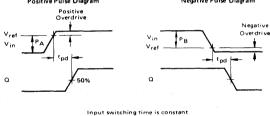
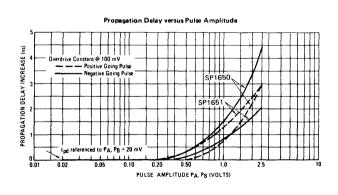
FIGURE 2 - SWITCHING AND PROPAGATION WAVEFORMS @ 25°C

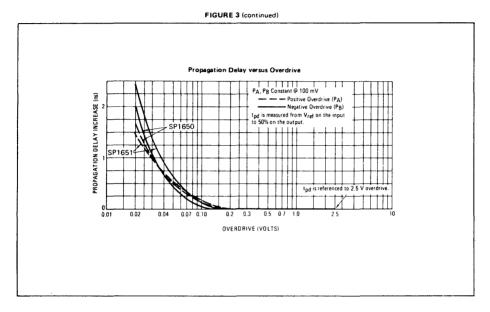
The pulse levels shown are used to check ac parameters over the full common-mode range.

V - Input to Output

TEST PULSE LEVELS

	Pul	se 1	Pul	se 2	Pulse 3				
	SP1650	SP1651	SP1650	SP1651	SP1650	SP1651			
ViH	+2.100 V	+2.100 V	+5.000 V	+4.500 V	-0.300 V	-0.800 ∨			
٧R	+2.000 V	+2.000 V	+4.900 V	+4.400 V	-0.400 V	-0.900 V			
VIL	+1.900 V	+1.900 V	+4.800 V	+4.300 V	-0.500 V	-1.000 V			


FIGURE 3 – PROPAGATION DELAY $(\tau_{\mathbf{pd}})$ versus INPUT PULSE AMPLITUDE AND CONSTANT OVERDRIVE

at 1.5 ns (10% to 90%).

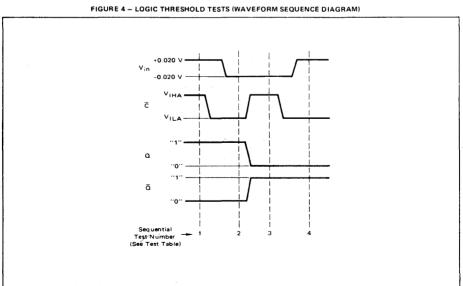


FIGURE 5 - TRANSFER CHARACTERISTICS (Q versus V in)

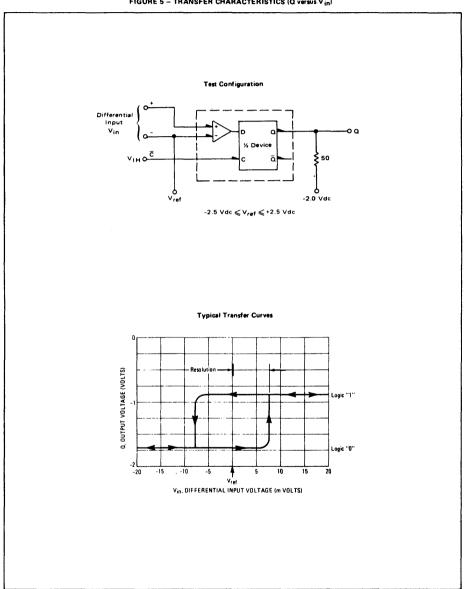


FIGURE 6 - OUTPUT VOLTAGE SWING Versus FREQUENCY

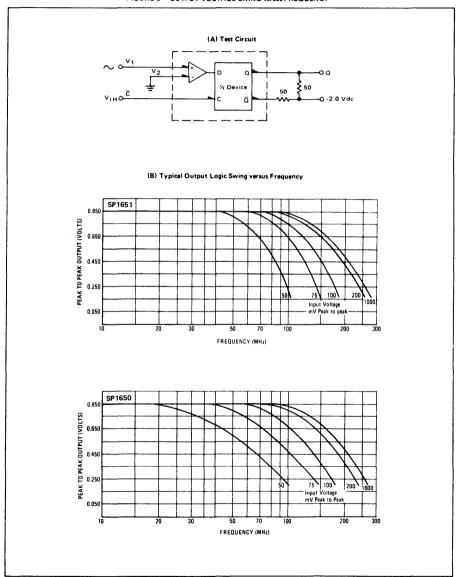
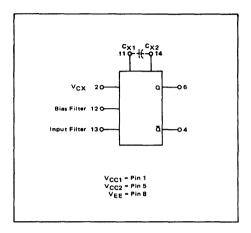
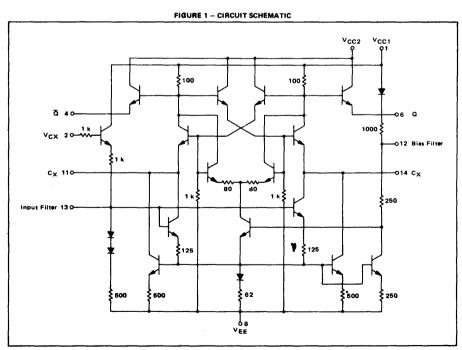



FIGURE 7 - INPUT CURRENT versus INPUT VOLTAGE TEST CIRCUIT νcc Vсс 50 0 -2.0 Vdc 50 Typical SP1650 (Complementary Input Grounded) Typical SP1651 (Complementary Input Grounded) lin. INPUT CURRENT (#A) In. INPUT CURRENT (MA) Vin. INPUT VOLTAGE (VOLTS) Vin. INPUT VOLTAGE (VOLTS)

FIGURE 8 - CLOCK ENABLE AND APERTURE TIME TEST CIRCUIT AND WAVEFORMS @ 25°C Vin to Channel A Vout to Channel B V_{CC} = +7.0 Vdc Q V_{XX} = +2.0 Q Vdc 0.1 Gnd V_{in O} Q VRO č٥ ã a VEE -0 VEE = -3.2 Vdc 0.1 µF 50-ohm termination to ground located in each scope channel input. All input and output cables to the scope are equal lengths of 50-ohm coaxial cable. Analog Signal Positive and Negative Slew Case -VR + 100 mV = +2.100 V Vin Negative -V_R = 2.000 V Clock Enable V_B - 100 mV = +1.900 V Time Vin Positive VIH = +1.110 V ō -VIL = +0.310 V Clock Aperture 50% Q Positive -Q Negative -50% Clock enable time = minimum time between analog and clock signal such that output switches, and $t_{\mbox{\scriptsize pd}}$ (analog to Q) is not degraded by more than 200 ps. ---- Clock aperture time = time difference between clock enable time and time that output does not switch and V is less than 150 mV.

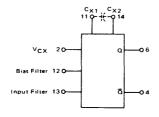
VOLTAGE CONTROLLED MULTIVIBRATOR


SP1658

The SP1658 is a voltage-controlled multivibrator which provides appropriate level shifting to produce an output compatible with PECL. III and PECL. 10,000 logic levels. Frequency control is accomplished through the use of voltage-variable current sources which control the slew rate of a single external capacitor.

The bias filter may be used to help eliminate ripple on the output voltage levels at high frequencies and the input filter may be used to decouple noise from the analog input signal.

The 'SP1658i is useful in phase-locked loops, frequency synthesizer and clock signal generation applications for instrumentation, communication, and computer systems.


32

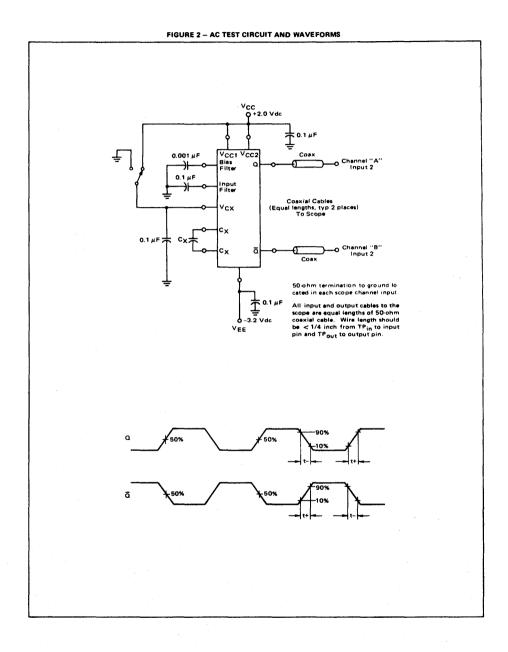
ELECTRICAL CHARACTERISTICS

This PECL III circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts.

CERAMIC PACKAGE E

	TEST VOLTAGE VALUES												
	Vdc ±1%												
@ Test					T								
Temperature	VIH	VIL	v ₃	VIHA	VEE								
-30°C	0.0	-2.0	-1.0	+2.0	-5.2								
+25°C	0.0	-2.0	-1.0	+2.0	-5.2								
+85°C	0.0	-2.0	-1.0	+2.0	-5.2								

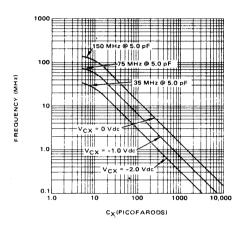
	1	Pin	SP 1658 Test Limits									VOLTAGE APPLIED TO PINS LISTED BELOW:				
	1	Under	-30°C		+25°C			+85°C			TOURSE AFFEIGN TO THIS EIGHT DECOM					(Vcc)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH	V _{IL}	V3	VIHA	VEE	Gnd
Power Supply Drain Current	¹E	8.		-	-	-	32 32	-	-	mAdc mAdc	2 2	-	-	=	8 8	1,5 1,5
Input Current	linH	2*	-	-	-	-	350	-	-	μAdc	2	-	-		8	1,5
Input Leakage Current	linL	2*	-	-	0.5	-		-	-	μAdc	-	2	- 1		8	1,5
''Q'' High Output Voltage	∨он	4° 6°	-1.045 -1.045	-0.875 -0.875	-0.960 -0.960	-	-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	Vdc Vdc	-	-	2 2	=	8	1,5 1,5
"Q" Low Output Voltage	VOL	4.	-1.890 -1.890	-1.650 -1.650	-1.850 -1.850	-	-1.620 -1.620	-1.830 -1.830	-1.575 -1.575	Vdc Vdc	-	-	2 2		8	1,5 1,5
AC Characteristics (Figure 2) (Tests shown for one output, but											CX1	C _{X2}	Gnd		VEE -3.2 V	V _{CC} +2.0 V
checked on both) Rise Time (10% to 90%) Fall Time (10% to 90%)	t+ t-	6 6	- -	2.7 2.7	-	1.6 1.4	2.7 2.7	-	3.0 3.0	ns ns	-	11,14 11,14	-	2 2	8 2	1,5 1,5
Oscillator Frequency	fosc1	-	130		130	155	175	110	-	MHz	-	11,14	-		8	1,5
	fosc2	-	-		78	90	100	_		MHz	11,14	-	- 1		8	1,5
Tuning Ratio Test 1	TR	-		-	3.1	4.5		_	-		11,14	-	-		8	1,5


^{*}Germanium diode (0.4 drop) forward biased from 11 to 14 (11 14).

*Germanium diode (0.4 drop) forward biased from 14 to 11 (11 14).

[†]TR = Output frequency at V_{CX} = Gnd
Output frequency at V_{CX} = -2.0 V

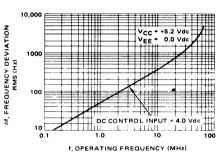
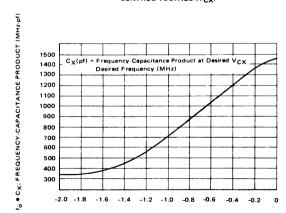
C1 = 0.01 µF connected from pin 12 to Gnd.

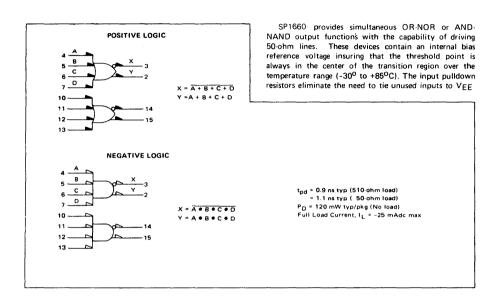

C2 = 0.001 µF connected from pin 13 to Gnd.
CX1 = 10 pF connected from pin 11 to pin 14.
CX2 = 5 pF connected from pin 11 to pin 14.

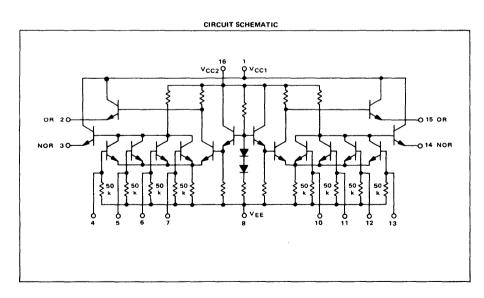
34

FIGURE 3 — OUTPUT FREQUENCY versus CAPACITANCE FOR VARIOUS VALUES OF INPUT VOLTAGE

FIGURE 4 – RMS NOISE DEVIATION versus OPERATING FREQUENCY

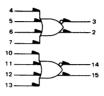




FIGURE 5 – FREQUENCY-CAPACITANCE PRODUCT versus
CONTROL VOLTAGE (VCX)



VCX, INPUT VOLTAGE (Vdc)

DUAL 4-INPUT GATE


SP1660

ELECTRICAL CHARACTERISTICS

This PECL III circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The package should be housed in a suitable heat sink (LIO21 4A2WCB or equivalent) or a transverse air flow greater than 500 linear fpm should be maintained while the circuit is either in a test socket or is mounted on a printed circuit board. Test procedures are shown for only one input and one output. The other inputs and outputs are tested in a similar manner. Outputs are tested with a 50-ohm resistor to -2.0 Vdc. See general information section for complete thermal data

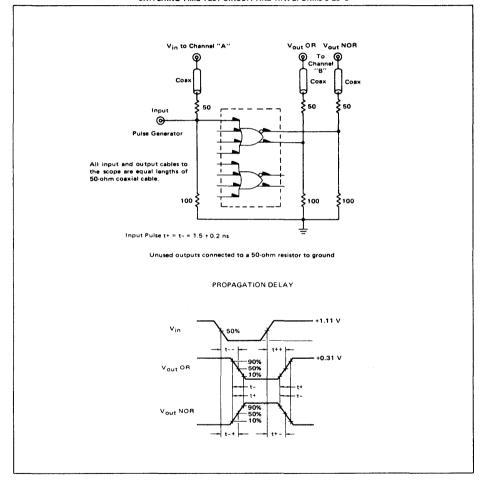
CERAMIC PACKAGE E

TEST VOLTAGE VALUES (Volts) V_{IHmax} V_{ILmin} V_{IHAmin} V_{ILAmax} V_{EE}
-0.875 -1.890 -1.180 -1.515 -5.2 -0.810 -1.850 -1.095 -1.485 -5.2

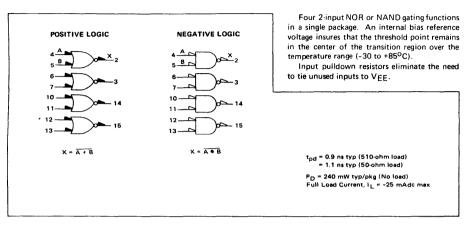
									+85°C	-0.700	-1.830	-1.025	-1.440	-5.2	J
	Pin	SP1660 Test Limits								TEST VOLTAGE APPLIED TO					
	ł	Under	-30°C			+25°C		5°C	1	ļ		LISTED BELOW:			(Vcc)
Characteristic	Symbol	Test	Min	Max	Min	Mex	Min	Max	Unit	ViHmex	VILmin	VIHAmin	VILAmex	VEE	Gnd
Power Supply Drain Current	IE.	8				28	<u> </u>	1 -	mAdc	-			-	8	1,16
Input Current	linH		-	-	-	350	-	-	μAdc		~	-	-	8	1,16
	linL		_	1 -	0.5	-	-	<u> </u>	μAdc	-		-		8	1,16
NOR Logic "1" Output Voltage	VOH ♥	3	-1.045	-0.875	-0.960	-0.810	-0.890	-0.700	Vdc	_	4	_	_	8	1,16
	1	1 1	11	1 1	1 1			1 1		1 -	5 6	1 -	1 =		1 1
	<u> </u>	•	•			•	•			-		-	-		,
NOR Logic "0" Output Voltage	VOL #	3	-1.890	-1.650	-1.850	-1.620	-1.830	-1.575	Vdc	4	-	-	-	8	1,16
				1 1	1 1] [11	1 1	5	-	-	-	11	
	l	•		+		♦	! •	! •	1 1		<u>-</u>	-	_	. +	+
OR Logic "1" Output Voltage	V _{OH} Ø	2	-1.045	-0.875	-0.960	-0.810	-0.890	-0.700	'Vdc	4	-	-		8	1,16
		1 1	1 1	1 1			1 1	1 1	1 1	5	-	-	-	1 1	1
	l	l .	1 1	١ ا	1 1	1	١ ٠	1 4	١ .	6 7	_		_	↓	
OR Logic "0" Output Voltage	VOL Ø	2	-1.890	-1.650	-1.850	-1.620	-1.830	-1.575	Vdc	<u> </u>	4	_		8	1,16
	"	ìī	1 1	1		1 7	1	1	1 1	- :	5	- 1	-	li	1
		1 1	i i	1 1	1		↓		↓	- 1	6 7	-	-	١.	
NOR Logic "1"	V _{OHA} ø	3	-1.065	 ' -	-0.980	-	-0.910		Vdc	-			-	+	1,16
Threshold Voltage	VOHA W	l i	-1.065	_	20.360	-	1 1	1 -	1	-	_		5	l i	170
-	l	1 1	1 1	-		-	1	-		-	-	-	6	1 1	1 1
		<u>'</u>	<u>'</u>	-	'	<u> </u>	- · ·		<u> </u>		<u> </u>		7		<u>'</u>
NOR Logic "0" Threshold Voltage	VOLA P	3	-	-1.630	_	-1.600	1 :	-1.555	Vdc	_	_	5		8	1,16
This ariono vortage			-	ll	-		1 -	1 1	1 1	-	_	6	-	ll	
		,	-	•		1		'	1	-		7	-		
OR Logic "1" Threshold Voltage	VOHA Ø	2	-1.065] [-0.980		-0.910	-	Vdc	_	-	4 5	-	8	1,16
				-		-		_		_	_	6	-		
		•	1	-	,			-	1		-	7	-	•	'
OR Logic "O" Threshold Voltage	VOLA P	2	-	-1.630	-	-1.600	-	-1.555	Vdc	-	-	-	4	8	1,16
		11	-				-	!	-		_	_	5 6	I	1 1
		+	_		-		-	+	†	_	_	_	7		<u> </u>
Switching Times (50 Ω Load)										Pulse In	Pulse Out			-3.2 V	+2.0 V
Propagation Delay	t4+3-	3	-	1.8	-	1.7	-	1.9	ns	4	3	1 - 1	-	8	1,16
	14-2-	2 2	_	1.8		1.7	_	1.9	11		2 2	1 - 1	-		
	14+2+ 14-3+	3	-	1.6	=	1.5] -	1.7	+	†	3	- 1	-		
Rise Time	13+	3	-	2.2	-	2.1	-	2.3	ns	4	3	-		8	1,16
	12+	2	-	2.2	-	2.1		2.3	ns	4	2		-	8	1,16
Fall Time	t3-	3		-2.2	-	2.1	-	2.3	ns	4	3	-	-	8	1,16
	12-	1 2	-	2.2	-	2.1		2.3	ns '	14	2	- 1	-	8	1,16

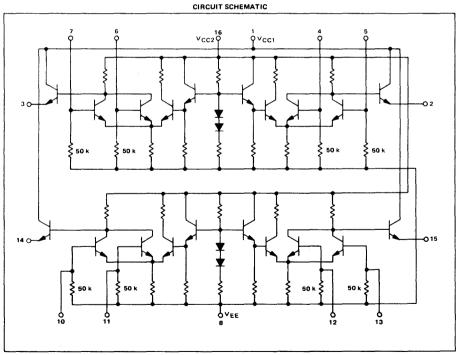
vidually test each input applying VIH or VIL to the input under test.

• NOTES


The electrical specifications shown above apply to the SP1660 under the following conditions:

1. The package is housed in a suitable heat sink.†


- Air is blown transversely over the package. See general information section for more details.

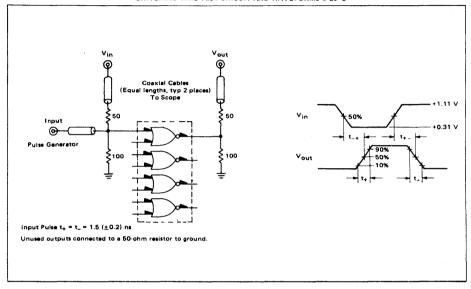

TA suitable heat sink is an IERC LICZIAAZWCs or equivalent

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

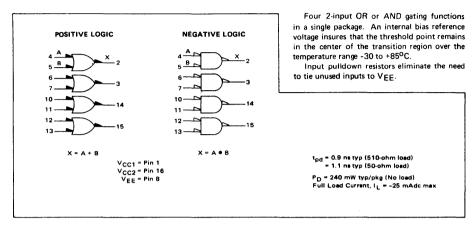
SP1662

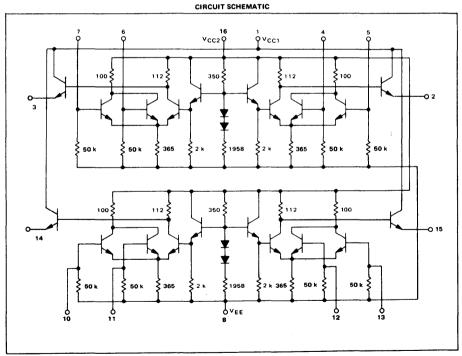
This PECL III circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The package should be housed in a suitable heat sink(IERC-21 4 A2WCB or equivalent) or a transverse air flow greater than 500 linear fpm should be maintained while the circuit is either in a test socket or is mounted on a printed circuit board. Test procedures are shown for only one input and one output. The other inputs and outputs are tested in a similar manner. Outputs are tested with a 50-ohm resistor to -2.0 Vdc. See general information section for complete thermal data.

CERAMIC PACKAGE E

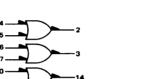


		TEST	VOLTAGE VAL	UES	
			(Valts)		
@ Test Temperature	V _{IH max}	VIL min	VIHA min	VILA max	VEE
-30°C	-0.875	-1.890	-1.180	-1.515	-5.2
+25°C	-0.810	-1.850	-1.095	-1.485	-5.2
+85°C	-0.700	-1.830	-1.025	-1.440	-5.2


·		Pin			SP1662	Test Limits				TEST VOLTAGE APPLIED TO PINS LISTED BELOW:					i
		Under	-30	PC	+2	5°C	+8	5°C		1231	VOLINGE AF	PERED TO PING	LISTED BELOW	'.	i
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	1E	8	-		-	56	-	_	mAdc	_	-	-	_	8	1,16
Input Current	¹ in H		-	_	-	350	-	-	μAdc	•		-	_	8	1,16
	lin L	•	-	-	0.5	-	-	-	μAdc	-	•	-	_	8	1,16
Logic "1" Output Voltage	Voн	2	-1.045 -1.045	-0.875 -0.875	-0.960 -0.960	-0.810 -0.810	-0.890 -0.890	~0.700 ~0.700	Vdc Vdc	-	4 5	-	=	8	1,16 1,16
Logic "0" Output Voltage	VOL	2 2	-1.890 -1.890	-1.650 -1.650	-1.850 -1.850	-1.620 -1.620	-1.830 -1.830	-1.575 -1.575	Vdc Vdc	4 5	=	=	=	8 8	1,16 1,16
Logic "1" Threshold Voltage	VOHA	2 2	-1.065 -1.065	=	-0.980 -0.980	-	-0.910 -0.910	-	Vdc Vdc	-	-	=	4 5	8 8	1,16 1,16
Logic "0" Threshold Voltage	VOLA	2 2	=	-1.630 -1.630	-	-1.600 -1.600	-	-1.555 -1.555	Vdc Vdc	-	-	4 5	-	8 8	1,16 1,16
Switching Times (50 Ω Load)										Pulse in	Pulse Out			-3.2 V	+2.0 V
Propagation Delay	t4+2+ t4-2-	2 2		1.6 1.8	1.0 1.1	1.5 1.7		1.7 1.9	ns ns	4	2 2	-	-	8	1,16 1,16
Rise Time	12+	2	-	2.2	1.4	2.1		2.3	ns	4	2	-	-	8	1,16
Fall Time	12-	2	-	2.2	1.2	2.1	-	2.3	ns	4	2	- 1		8	1,16


^{*}Individually test each input applying VIH or VIL to input under test.

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

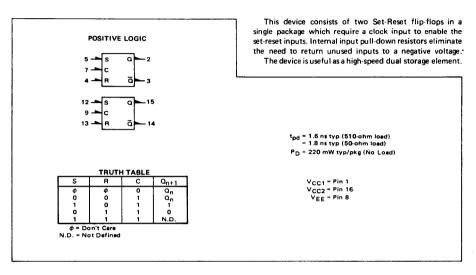


SP1664

This PECL III circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The package should be housed in a suitable heat sink(IERC-21 4 A2WCB or equivalent) or a transverse air flow greater than 500 linear fpm should be maintained while the circuit is either in a test socket or is mounted on a printed circuit board. Test procedures are shown for only one input and one output. The other inputs and outputs are tested in a similar manner. Outputs are tested with a 50-ohm resistor to -2.0 Vdc. See general information section for complete thermal deta.

CERAMIC PACKAGE E

[TEST	VOLTAGE VAL	.UES	
[(Volts)		
@ Test Temperature	VIH max	VIL min	VIHA min	VILA mex	VEE
-30°C	-0.875	-1.890	-1.180	-1.515	-5.2
+25°C	~0.810	-1.850	-1.095	-1.485	-5.2
+85°C	-0.700	-1.830	-1.026	-1.440	-5.2


					SP16	64 Test Lin	nits			TEST VOLTAGE APPLIED TO PINS LISTED BELOW:					
	1	Pin Under	-30	°C	+2	5°C	+85	5°C		1 1 2 3 1	VOLTAGE AF	PLIED IOPINS	LISTED BELOW		1
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	VIH mex	VIL min	VIHA min	VILA max	VEE	Gnel
Power Supply Drain Current	¹E	8	-	- "	-	56		-	mAdc	-	_	-		8	1,16
Input Current	lin H	•	T -	_	-	350	-	-	μAdc	•		-	_	8	1,16
	lin L	•	T -	-	0.5	-	-	-	μAdc	_	•	-	_	8	1,16
Logic "1" Output Voltage	∨он	2 2	-1.045 -1.045	-0.875 -0.875	-0.960 -0.960	-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	Vdc Vdc	4 5	-	-	_	8	1,16 1,16
Logic "0" Output Voltage	VOL	2 2	-1.890 -1.890	-1.650 -1.650	-1.850 -1.850	-1.620 -1.620	-1.830 -1.830	-1.575 -1.575	Vdc Vdc	-	4 5	-	= -	8	1,16 1,16
Logic "1" Threshold Voltage	VOHA	2 2	-1.065 -1.065	-	-0.980 -0.980	=	-0.910 -0.910	=	Vdc Vdc	-	-	4 5	=	8	1,16 1,16
Logic "0" Threshold Voltage	VOLA	2 2	-	-1.630 -1.630	-	-1.600 -1.600	-	-1.555 -1.555	Vdc Vdc	-	<u>-</u> ,	-	4 5	8	1,16 1,16
Switching Times (50 Ω Load)										Pulse In	Pulse Out			-3.2 V	+2.0 V
Propagation Delay	14+2+ 14-2-	2 2	-	1.6 1.8	-	1.5	-	1.7 1.9	ns ns	4 4	2 2	_	=	8	1,16 1,16
Rise Time	t ₂₊	2	-	2.2		2.1	-	2.3	ns	4	2	-	-	8	1,16
Fall Time	12-	2	-	2.2		2.1		2.3	ns	4	2			8	1,16

^{*}Individually test each input applying VIH or VIL to input under test.

V_{In} to Channel "A" Vout to Channel "B" Coax Coax Coax Vin Fulse Generator All input and output cables to the scope are equal lengths of 50-ohm coaxial cable. Unused outputs connected to a 50-ohm resistor to ground.

DUAL CLOCKED R-S FLIP-FLOP

SP1666

C V_{CC2} s ā Q R V_{CC1} R Q ā s c 9 16 12 14 VEE 15 13 1 4 2 VEE 3 5 7 50 k Numbers at ends of terminals denote pin numbers for L package (Case 620). Numbers in parenthesis denote pin numbers for F package (Case 620).

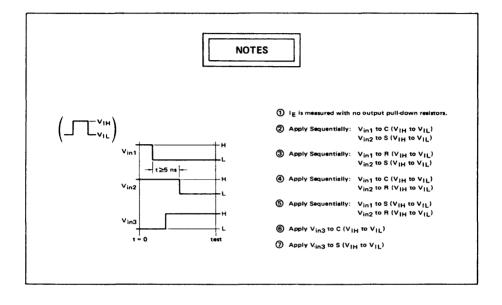
This PECL III circuit has been designed to meet the dc apscifications shown in the test table, after thermal equilibrium has been established. The package should be housed in a suitable heat sinkIERC21 4A2WCBor equivalent) or a transverse air flow greater than 500 linear fpm should be maintained while the circuit is either in a test socket or is mounted on a printed circuit board. Test procedures are shown for only one input and one output. The other inputs and outputs are tested in a similar menner. Outputs are tested with a 50-ohm resistor to -2.0 Vdc. See general information section for complete thermal data.

@ Test

Temperature

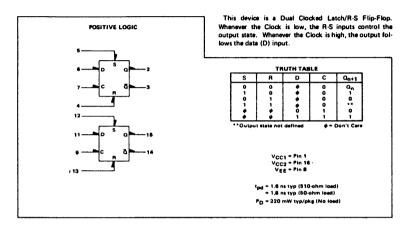
TEST VOLTAGE VALUES

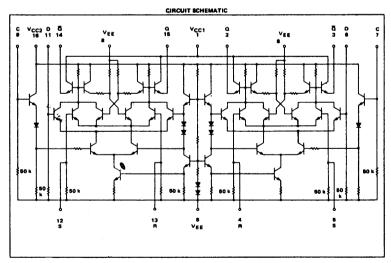
(Volts)

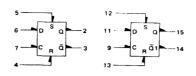

VIHMAX VILMIN VIHAMIN VILAMAX

CERAMIC PACKAGE E

0-ohm resistor to -2.0 Vdc.									-30°C	-0 875	-1 890	-1.180	-1 515	-5.2	1
formation section for comp its.	Hete therm	181							+25°C	-0.810	-1 850	-1 095	-1 485	-52	į
ite.									+85°C	-0 700	-1 830	-1 025	1.440	-5.2	l
		Pin				66 Test I	umits			1			PLIED TO		1
	1	Under	-30	°C	+2	5°C	+8	5]			LISTED B			(Vcc)
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	VIHmax	VILmin	VIHAmin	VILAmax	VEE	Gnd
Power Supply Drain Current	'E ①	8	-	-	-	55	-	_	mAdc	7.9	_	-	-	8	1.16
Input Current	1-nH	12	-	-	-	0.370	-	-	mAdc	9,12	-	-	-	8	1,16
	1	13	-	1 -	-	0.370	-	_	mAdc mAdc	913	_	-	_	8	1.16
		12		-	0 500	0.225			uAdc	-	12	-	-	8	1.16
	1.01	9,13		-	0 500	_	-	i -	Adc	-	9.13		_	8	1,16
"Q" Logic "1" Output Voltage	VOH	15 ②	-1 045	-0 875	-0 960	-0810	-0 890	-0.700	Vdc	7 -	13			.8	1,16
		15 ③	-1 045	-0 875	-0 960	-0810	-0 890	-0 700	Vdc	9	-			8	1.16
"Q" Logic "0" Output Voltage	VOL	15 🚳	-1 890	-1.650	-1 850	-1 620	-1 830	-1 575	Volc	-	12	-	-	8	1.16
		15 🕲	-1 890	-1.650	-1 850	-1 620	-1 830	-1 575	Vdc	9			-	8	1.16
"Q" Logic "1" Output Voltage	∨он	14 (6)	-1.045 -1.045	-0.875 -0.875	-0 960 -0 96 0	-0 810 -0 810	-0.890 -0.890	-0.700 -0.700	V dc V dc	9	12	_	_	8	1,16
Q Logic "0" Output Voltage			-1 890	-1.650	-1 850	-1.620	-1 830	-1.575	Vdc	-	13	-	-	8	1,16
d codic o Output voltage	VOL	14 ② 14 ③	-1.890	-1 650	-1 850	-1 620	-1 830	-1 575	Vdc	9	- '3	_	-	8	1,16
"Q" Logic "1" Output	VOHA	15 🚳	-1.065	-	-0.980	-	-0910	-	Vdc	-	-	12	13	8	1,16
Threshold Voltage	1	15 🕭	-1.065		-0.980		-0910		Vdc	-	13	9	-	8	1.16
"Q" Logic 0" Output Threshold Voltage	VOLA	15 🜀	-	-1 630	-	-1 600	-	-1 555	Vdc	-		13	12	8	1.16
Ö'' Logic "1" Output Threshold Voltage	VOHA	14 6	-1.065	-	-0.980	-	-0 910	-	Vdc	-	-	13	12	8	1,16
"Ö" Logic "O" Output	VOLA	14 © 14 Ø	-	-1 630	-	-1 600	-	-1 555	Vac	-	-	12	13	8	1,16
Threshold Voltage		14 ⑦		-1 630	-	-1 600	-	-1.555	Vdc		13	9	-	- 8	1.16
Switching Times (50 1) Load)	j		1	ł		i			1	Pulse In	Pulse Out			-3.2 V	+2.0 V
ck In	19+15+	15	1.0	2.7	1.0	2.5	1.1	2.8	1 05	9	15	-	-	8	1.16
	19-15-	14	1 1	1 1]]] [15	-			
	19+14-	14		7	1			7	1	7	14	-	-	1	
Set Input	112+15+	15	1.0	2.5	10	23	1,1	2.7	ns	12	15	-	-	8	1.16
	t12+14-	14			l i	1 1		il	ns	12	14	-	-	8	1.16
Reset Input	t13-14- t13+15+	14 15	•		1		•	ł	ns ns	13	14 15	-	-	8	1,16
Rise Time	t+	14,15	0.8	2.8	0.8	2.5	0.9	2.9	ns	9	14,15	-	-	8	1,16
Fal. Time	t-	14,15	0.5	2.4	0.5	22	0.5	2.6	ns	9	14,15	-	-	8	1,16


O Notes appear on page following Electrical Characteristics tables


SP1666 (continued)

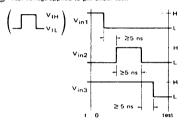

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C V_{in} To Channel "A" All input and output cables to the scope are equal lengths of 50-ohm coaxial cable. Coax 100 ≥ 50 50 C1 C2 +2.0 Vdc 01 Q2 ā1i <u>ā</u>2 R1 S2 R2 \$8 Input pulses by 2 pulse generators S 1 50 V_{in} To Channel "A" Coax 0-P20-Coax ₹100 100 € a -20 ns -SP1670 +1.11 V +0.31 V +1.11 V - +0.31 V - 20 ns --, 50% , 50% -- ts+Q+ SET/RESET TO Q/Q (Switch S1 in position shown) 90% 90% 50% 90% ā 50% 10% + ts+ā-- tā-50% 50% CLOCK TO Q/Q -tc+Q+ - tC+Q-(Switch S1 in opposite position) 50% ā , 50% 50% + tc+a+ -- tc+ā-

SP1668

This PECL III circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The package should be housed in a suitable heat sink (IERC-LIC-214A2WCB or equivalent) or a transverse air flow greater than 500 linear fpm should be maintained while the circuit is either in a test socket or is mounted on a printed circuit board. Test procedures are shown for selected inputs and selected outputs. The other inputs and outputs are tested in a similar manner. Outputs are tested with a 50-ohm resistor to -2.0 Vdc. See general information section for complete thermal data.

CERAMIC PACKAGE E

		TEST	VOLTAGE V	ALUES	
@Test			(Volts)		
Temperature	VIH max	VIL min	VIHA min	VILA max	VEE
-30°C	-0.875	-1 890	1.180	-1515	-5.2
+25°C	-0810	-1.850	-1.095	-1.485	-5.2
+85°C	-0.700	-1 830	-1.025	-1 440	-5.2


									+85°C	-0.700	-1830	-1.025	-1440	-5.2	1
		T		S	P1668.	Test Limit	ts								1
	İ	Pin	-3	0°C	+2	5°C	+8	5°C]	TEST VO	JE TAGE A	APPLIED TO	PINS LISTED	BELOW:	l vcc
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	VIH max	VIL min	V _{IHA min}	VILA max	VEE	Gnd
Power Supply Drain Current	IE (Hi-Z) 1	8			-	55	-	-	mAdc	7,9	-		_	8	1,16
Input Current	I _{in} H	11,12,13@		-	-	0.370	-	-	mAdc	11,12,13	-	-	-	8	1,16
		9		<u> </u>	-	0 225	L	-	mAdc	9	<u> </u>	-		8	1,16
	fin L	11,12,13②		l` -	0.500	l -		-	μAdc		11,12,13	-	-	8	1,16
	<u> </u>	9			0.500			-	μAdc	<u> </u>	9		-	8	1,16
"Q" Logic "1" Output Voltage	Voн	15 ③ 15 ④	-1.045 -1.045	-0.875	-0.960	-1.810	-0 890 -0 890	-0.700 -0.700	Vdc	,	13		- "	8	1,16
	ļ			-0.875	-0.960	-1.810	· · · · ·		Vdc		-	-	<u> </u>	8	1,16
"Q" Logic "0" Output Logic	VOL	15 ⑤ 15 ⑥	-1.890 -1.890	-1.650 -1.650	-1.850 -1.850	-1.620 -1.620	-1 830 -1.830	-1.575 -1.575	Vdc	9	12	-	-	8	1,16 1,16
"Ö" Logic "1"	 	14 (5)	-1.045	-0.875	-0.960	-0.810	-0.890	-0.700	Vdc	_	-	1		8	1,16
Output Voltage	∨он	14 6	-1.045	-0.875	-0.960	-0.810	-0.890	-0.700	Vdc Vdc	9	12	_		8	1.16
"Q" Logic "O"	VOL	14 ③	-1.890	-1.650	-1.850	-1.620	-1.830	-1.575	Vdc	<u> </u>	13			8	1,16
Output Voltage	VOL	14 🕙	-1.890	-1.650	-1.850	-1.620	-1.830	-1.575	Vdc	9	13		_	8	1,16
"Q" Logic "1" Output	VOHA	15	-1.065	-	-0.980	-1.020	-0.910	-	Vdc	<u> </u>	-	12	13	8	1,16
Threshold Voltage	TOHA	15 ⑦	1	-	1		1		l "i		_	;;		Ιĭ	l "i"
-		15 (S)		-	▼		▼	ŀ		11		9	-		♦
"Q" Logic "0" Output	VOLA	15	-	-1.630	-	-1.600		-1.555	Vdc	-	-	13	12	8	1,16
Threshold Voltage		15 6	-	1	-	1 1	-	ΙL	1	-	~	-	11	1 1	1
	1	15 ③			l						11	9			_ T
"Q" Logic "1" Output	VOLA	14	-1.065	-	-0.980		-0.910	-	Vdc	-	-	13	12	8	1,16
Threshold Voltage	1	14 © 14 ③		-	l	-			∤ ↓	-	-	-	11	1 1	1 1
"Q" Logic "O" Output	 						<u>'</u>		-		11	9		_ ·	-
Threshold Voltage	VOLA	14 14 Ø	-	-1.630	-	-1.600	-	-1.555	Vdc	-	-	12 11	13	8	1,16
I meshold voltage		14 (5)	_				_	l ♦	ا ا	1 :		''	_		۱ .
Switching Times (50 \Omega Load)	ļ	17.0		 	·		 	<u> </u>	<u> </u>	Pulse In	Pulse Out			-3.2 V	+2.0 V
Clock Input	tg+15+	15	1.0	2.7	1.0	2.5	1.1	2.8	ns	9	15	_	_	8	1,16
	19+15-	15	1	1 1	lí		1	i i	l i	lil	15		_	١ĭ	l "i"
	19+14-	14	1	1 1		1 1				1 1 1	14	- :		ΙI	1 1
	19+14+	14	7		V	7	7			7	14	-	-		V
Rise Time	t+	14,15	0.8	2.8	0.9	2.5	0.9	2.9	ns	9	14,15	-		8	1,16
Fall Time	t-	14,15	0.5	2.4	0.5	2.2	0.5	2.6	ns	9	14,15	-		8	1,16
Set Input	112+15+	15	1.0	2.5	1.1	2.3	1.1	2.7	ns	12	15	-	-	8	1,16
	¹ 12+14-	14	1.0	2.5	1.1	2.3	1.1	2.7	ns	12	14	_		8	1,16
Reset Input	t13+14+	14	1.0	2.5	1.1	2.3	1.1	2.7	ns	13	14	-	-	8	1,16
	₹13+15-	15	1.0	2.5	1.1	2.3	1.1	2.7	ns	13	15	-		18	1,16

ONotes appear on page following Electrical Characteristics tables.

SP1668 (continued)

NOTES

- 1 IE is measured with no output pulldown resistors.
- 2 Test voltage applied to pin under test.

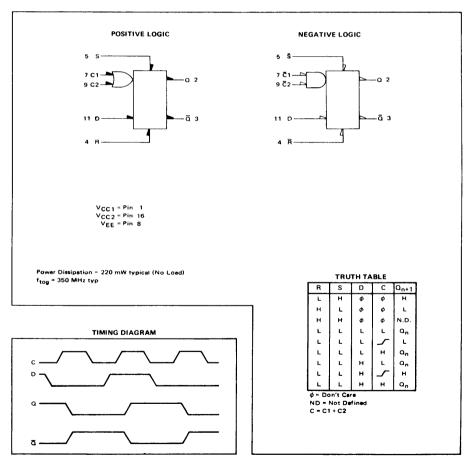
- 3 Apply Vin1 to S (VIH to VIL).
- $\begin{tabular}{ll} \textbf{(4)} & Apply Sequentially: & V_{In1} to $R(V_{IH}$ to V_{IL}) \\ & V_{in2} to $C(V_{IH},V_{IL})$ \\ & V_{in3} to $D(V_{IH}$ to V_{IL})$ \\ \end{tabular}$
- (S) Apply Vin1 to R (VIH to VIL)
- (6) Apply Sequentially: V_{in1} to S (V_{IH} to V_{IL}) V_{in2} to C (V_{IH} , V_{IL})
- $\begin{tabular}{ll} \begin{tabular}{ll} \be$

SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS @ 25°C v_{in} Vout To Channel "A" All input and output cables to the scope are equal lengths of 50-ohm coaxial cable. Coax Coax 100 ≨ V_{CC} = +2.0 Vdc V_{EE} = -3.2 Vdc 50 **∮50** C2 **\$** 50 02 1/2 ā2 О S1 R1 S2 R2 Input pulses by 2 pulse generators 50 V_{in} To Channel ' A' Coax Coax s i 100 € 100 С Q 100 SP1670 - 20 ns --ã D - +0.31 V ----- +1.11 V P2 -+0.31 V - 20 ns -, 50% , 50% 50% -- ts+0+ SET/RESET TO Q/Q - tR+Q--- ta+ - tα~ (Switch S1 in position shown) 90% -10% 90% a , 50% 90% ā 10% - tāts+0-С , 50% , 50% D CLOCK TO Q/Q *C+Q--tc+a+ (Switch S1 in opposite position) **50%** 50% ā , 50% 50% - tc+Q+ **-**- tc+ā-

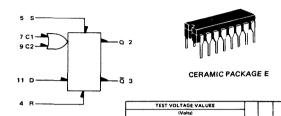
MASTER-SLAVE TYPE D FLIP-FLOP

SP1670

The SP16701 is a Type D Master-Slave Flip-Flop designed for use in high speed digital applications. Master slave construction renders the SP16707 relatively insensitive to the shape of the clock waveform, since only the voltage levels at the clock inputs control the transfer of information from data input (D) to output.

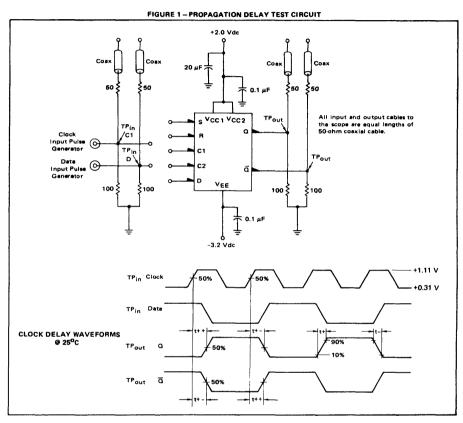

When both clock inputs (C1 and C2) are in the low state, the data input affects only the "Master" portion of the flip-flop. The data present in the "Master" is transferred to the "Slave" when clock inputs (C1 "OR" C2) are

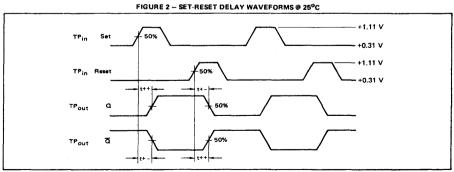
taken from a low to a high level. In other words, the output state of the flip-flop changes on the positive transition of the clock pulse.

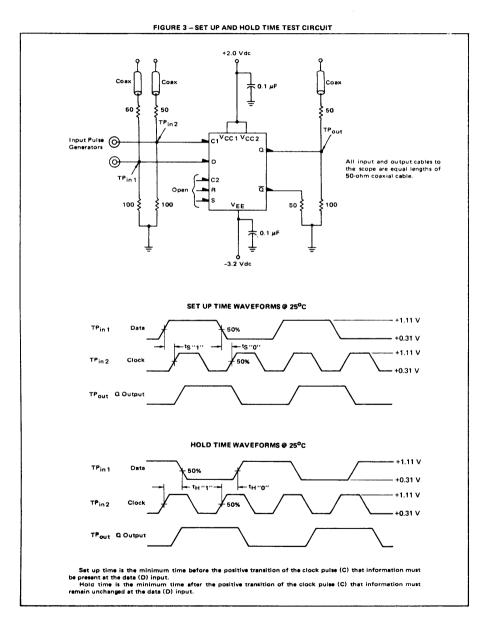

While either C1 "OR" C2 is in the high state, the "Master" (and data input) is disabled.

Asynchronous Set (S) and Reset (R) override Clock (C) and Data (D) inputs.

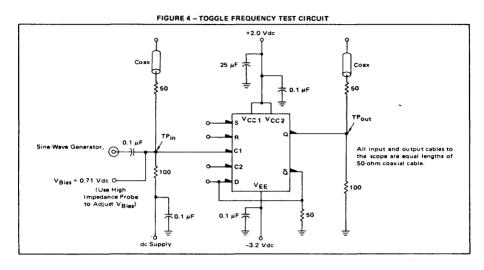
Input pulldown resistors eliminate the need to tie unused inputs to $\mbox{\em VEE}_{.}$

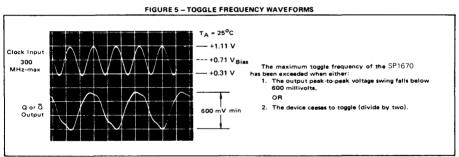



This PECL. III circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The package should be housed in a suitable heat sink (IERC-214A2WCB or equivalent) or a transverse air flow greater than 500 linear fpm should be maintained while the circuit is either in a test socket or is mounted on a printed circuit board. Test procedures are shown for only one input and one output. The other inputs and outputs are tested in a similar manner. Outputs are tested with a 50-ohm resistor to -2.0 Vdc. See general information section for complete thermal data.



nformation section fo leta.	•							Ten	-30 ^Q C	-0.875	V _{1L min} -1.890	-1.180	VILA max	-5.2		l		1
									+25°C	-0.810	-1.850	-1.095	-1.485	-5.2	1	l	1	1
									+85°C	-0.700	-1.830	-1.025	-1,440	-5.2				
		T			SP 16	70. Test	Limits			7	EST VOL	TAGE APPLI	ED TO PINS		1			
		Pin Under		o°C	+2!	5°C	+8	5°C			LI	STED BELO	N:					(VCC)
Charactelystic	Symbol	Test	Min	Max	Min	Max	Min	Mex	Unit	V _{IH max}	VIL min	VIHA min	VILA max	VEE	P1	P2	P3	Gnd
Power Supply Drain	16	8	-		-	48			mAdc	7,9	<u></u>	-		8	· .		_	1,16
Input Current	¹ in H	5	-	-	-	550 550			#Adc	5	-	-		8	-	-		1,16
		9			1 -	250	1 -	1 - 5		9					1			11
	J	7	-] -		250	j -]]]	7] -			11			-	1
		11		<u> </u>	-	270			<u> </u>	- 11	·		· · · · · ·	L'	Ŀ	<u> </u>	<u> </u>	1.
	lin L	5.			0.5				μAdc	9	5			8	١.			1,16
		9	-	-	}	-	_		1 1	;	9			Н	-	-		
		7		-	1 1			-	1 1	9	7			H	-	١.	1	11
		11		l	1				'-	9	11		<u> </u>	1.			Ŀ	-
Logic "1" Output Voltage	VOH	2	-1.045	-0.875	-0.960	-0.810	-0.890	-0.700	Vdc	11	4,7,11 5,9	-		8	9	5		1,16
Output vortage		2	1 1	1 1		1		1 1		;;	5,7	1 .	j		4	. 9		
		3	_'	1 1	•	•	*		•	l	4,9,11		-		5	7	<u> </u>	•
Logic "O"	VOL	2	-1.890	-1.650	-1.850	~1.620	-1.830	-1.575	Vdc	11	5.7			8	9	4	·	1,16
Output Voltage		3 2		! !		1 1	Ιİ		1 1		4,9,11 4,7,11			! !	7	5		
		3	+	+		į į	+	+	+	11	5,9			+	4	7		+
Logic "1"	VOHA	2	-1.065		-0.980	1	-0.910	-	Vdc		4,7,11	-	-	8	9	-	5	1,16
Threshold Voltage		3	1	-	l I	-	lт	-		11	5,9			П	7		4	1
		3			l f	-		<u> </u>		111	5,7 4,9,11			Ш	5	-	9	1
	1	2	1 1				Ιİ	_			5,7	11		11	4	9		П
		3		-	•	-	1	-	'	-	4,9	-	11	,	5	7	~	_'_
Logic "O"	VOLA	2	-	-1.630		-1.600	-	-1.555	Vdc	11	5,7	- 1	-	8	9		4	1,16
Threshold Voltage	1	3 2		1 1	-	1 1			1 1 '	۱ ـ	4,9,11 4,7,11				7		5	
		3		ł		1 1				11	5,9	_			4		7	
	1	2	ĺ	1 1		1.1	-			-	4,7		11	H	5	9	-	1
		3		<u> </u>		<u>'</u>	*	<u>'</u>		-	5,9	11	-	'	4	7	-	<u>'</u>
	ļ			· ·		l				Ì				-3.2				+2.0
Switching Parameters Clock to Output Delay			Min	Max	Min	Max	Min	Max						Vdc				1,16
(See Figure 1)	17+2+	9,2	1.0	2.7	3.1	2.5	1.1	2.9	ns	-				8	l ,	-		1,16
tocc rigare ri	17+3-	9,3		1 1	1	1		1 1		-	-		ì		-		-	
	17-3+	9,3		1 1	[[[[11		-	-	-	-		- 1			
Set to Output Delay (See Figure 2)	15+2+	5.2		11	1	1 1					-	-			- 1		_	
Reset to Output Delay	15+3- 14+2-	5,3 4,2			1	1 1	1	1			-		-		-	<u>-</u>	l I	
(See Figure 2)	14+3+	4,3		*	. *		*	, ,		1		-	- 1				-	
Output		1	Ì	1	1	1	l	l		I	İ	1	1					
Rise Time Fall Time	12+,13+	2,3	0.9 0.5	2.7	1.0	2.5 1.9	1.0	2.9					-		-		3	1
(See Figure 2)	1213-	2,3	0.5	' '	0.6	1.3	0.8	2.3		Ι ″			1		-		-	
Set Up Time	t ₁ "1"	2			-	0.4	-	- 1		- 1	6	-	-		-	-	-	
(See Figure 3)	ts0	2			-	0.5		-		-,	6	-	-		-	-		
Hold Time	tH**1**	2	-		-	0.3	-	-		-	6	-	-		-		-	1
(See Figure 3)	tH0	2			-	0.5		-			6		-	'			-	Ι'
Toggle Frequency	fTog	2	270	1	300	~	270	-	MHz	- :		-	-		-	- 1	-	-





56

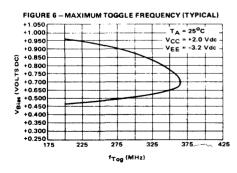
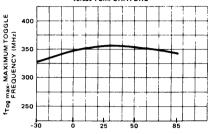



Figure 6 illustrates the variation in toggle frequency with the dc offset voltage (V_{Bias}) of the input clock signal. V_{Bias} is defined by the test circuit in Figure 4, and waveform Figure 5.

Figures 8 and 9 illustrate minimum clock pulse width recommended for reliable operation of the SP1670.

FIGURE 7 — TYPICAL MAXIMUM TOGGLE FREQUENCY versus TEMPERATURE

TA, AMBIENT TEMPERATURE (°C)

1	Temperature	-30°C	+25°C	+85°C
	V _{Bias}	+0.660 Vdc	+0.710 Vdc	+0.765 Vdc

FIGURE 8 — MINIMUM "DOWN TIME" TO CLOCK OUTPUT LOAD = 50 Ω

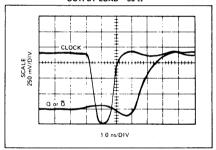


FIGURE 9 — MINIMUM "UP TIME" TO CLOCK OUTPUT LOAD = 50 Ω

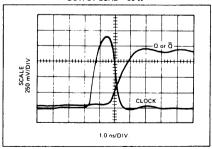
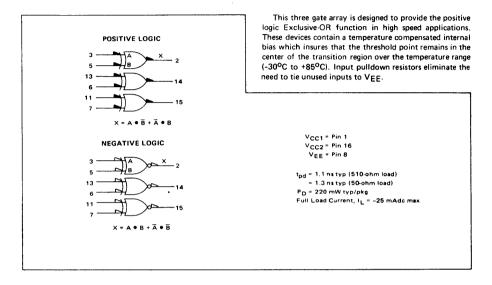
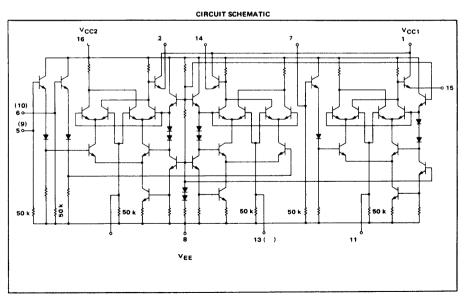
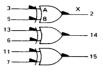




FIGURE 10 -SP1670 CIRCUIT SCHEMATIC

TRIPLE 2-INPUT EXCLUSIVE-OR GATE


SP1672

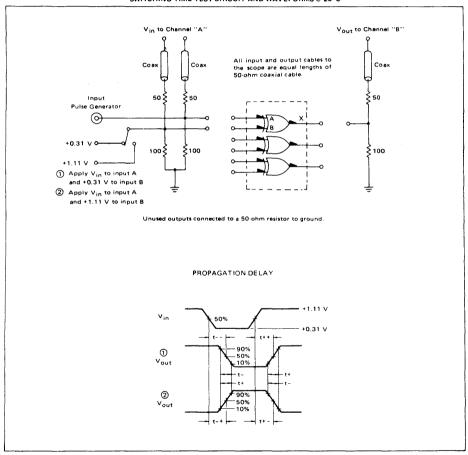
This PECL III circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The package should be housed in a suitable heat sink (IERC-LIC-214A2WCB or equivalent) or a transverse air flow greater than 500 linear fpm should be maintained while the circuit is either in a test socket or is mounted on a printed circuit board. Test procedures are shown for selected inputs and selected outputs. The other inputs and outputs are tested in a similar manner. Outputs are tested with a 50-ohm resistor to -2.0 Vdc. See general information section for complete thermal data.

CERAMIC PACKAGE E

-1.890

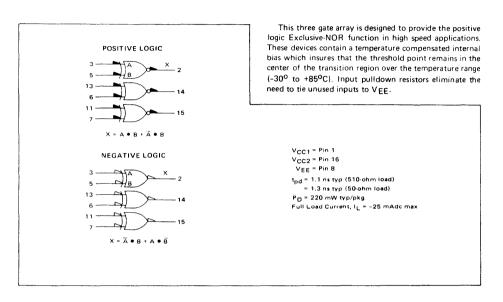
Temperature VtH mai

TEST VOLTAGE VALUES
(Volts)
min VIHA min V


-1.180

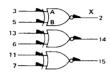
٧EE

VILA max


									-30 C	-0.675	-1.050	-1.160	-1.515	-3.2	1
									+25°C	-0.810	-1.850	-1.095	-1.485	-5.2	
									+85°C	-0.700	-1.830	-1.025	-1.440	-5.2	
		Pin			SP	1672 Test	Limits			TEST	VOI TAGE A	PPLIED TO PINS	LISTED RELOW		1
		Under	-3	9°C	+2	5°C	+8	5°C			TOLINGER	1	T. S. C. S. C. S.	`	(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA mex	VEE	Gnd
Power Supply Drain Current	IE .	8				55	-		mAdc	All Inputs		-	_	8	1,16
Input Current	lin H	3,11,13	-		-	350		-	μAdc		-		-	8	1,16
	0.75 I _{in H}	5,6,7	-		-	270	-		μAdc	•	- '''	-	-	8	1,16
	lin L	•	-		0.5	-			μAdc		•	-		8	1,16
Legic "1" Output Voltage	VOH	2 2	-1.045 -1.045	-0.875 -0.875	-0.960 -0.960	-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	Vdc Vdc	3 5	5			8	1,16
Logic "0" Output Voltage	VOL	2 2	-1.890 -1.890	-1.650 -1.650	-1.850 -1.850	-1.620 -1.620	-1.830 -1.830	-1.575 -1.575	Vdc Vdc	3,5	3,5	-	-	8	1.16 1,16
Logic "1" Threshold Voltage	VOHA	2 2	-1.065 -1.065	-	-0.980 -0.980	=	-0.910 -0.910	-	Vdc Vdc	-	-	3 5	5 3	8	1,16 1,16
Logic "0" Threshold Voltage	VOLA	2 2	-	-1.630 -1.630	-	-1.600 -1.600	-	-1.555 -1.555	Vdc Vdc	-	-	3,5	3,5	8	1,16 1,16
Switching Times (50 Ω Load)			Min	Max	Min	Max	Min	Max				Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	13+2+ 13-2+ 13+2- 13-2- 15+2+ 15-2+ 15-2-	2 2 2 2 2 2 2 2 2 2	-	2.0 2.0 2.1 2.1 2.5		1.8 1.8 1.9 1.9 2.3	-	2.3 2.3 2.4 2.4 2.8	ns	- - - - - -		5	2	8	1,16
Rise Time	t2+	2	-	2.7	-	2.5	-	2.9	าร	-	-	3	2	8	1,16
Fall Time	12-	2	-	2.4	-	2.2	-	2.6	ns		-	3	2	8	1,16

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

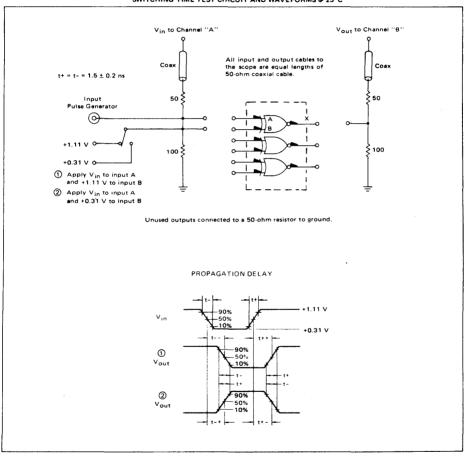
TRIPLE 2-INPUT EXCLUSIVE-NOR GATE


SP1674

CIRCUIT SCHEMATIC VCC2 16 2 (6) 14 7 10 50 k 50 k 50 k 50 k 50 k 11 VEE

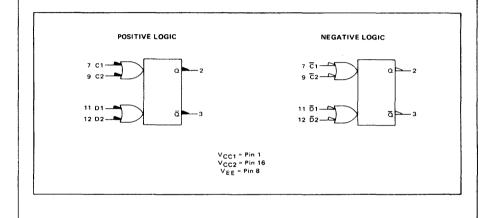
This PECL III circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The package should be housed in a suitable heat sink (IERC-LIC-214A2WCB or equivalent) or a transverse air flow greater than 500 linear fpm should be maintained while the circuit is either in a test socket or is mounted on a printed circuit board. Test procedures are shown for selected inputs and selected outputs. The other inputs and outputs are tested in a similar manner. Outputs are tested with a 50-ohm resistor to -2.0 Vdc. See general information section for complete thermal data.

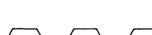
CERAMIC PACKAGE E

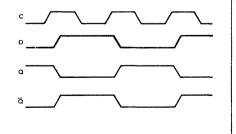

	1				
			(Volts)		
@ Test Temperature	V _{IHmax}	VILmin	VIHAmin	VIL Amax	VEE
-30°C	-0.875	-1.890	-1.180	-1.515	-5.2
+25°C	-0.810	-1.850	-1.095	-1.485	-5.2
+85°C	-0.700	-1.830	-1.025	-1.440	-5.2

TEST VOLTAGE VALUES

		Pin SP1674. Test Limits TEST VOLT							TAGE APP	LIED TO		1			
		Under	-30	°C	+25	5°C	+85	°C		Ĺ		STED BEL			(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	VIHmax	VILmin	VIHAmin	VIL Amax	VEE	Gnd
Power Supply Drain Current	le le	8	-	_		55			mAdc	All Inputs			_	8	1,16
Input Current	linH.	3,11,13	_		~	350	_	-	μAdc	•	_		_	8	1,16
	0.75 l _{in H}	5,6,7	_		-	270	-	-	шAdc	· -	-	_	-	8	1,16
	linL			-	0.5	_	-	-	μAdc	_	•		-	8	1,16
Logic "1" Output Voltage	VОНф	2 2	-1.045 -1.045	-0.875 -0.875	-0.960 -0.960	-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	Vdc Vdc	3,5	3,5	_	-	8	1,16 1,16
Logic "0" Output Voltage	VOLØ	2 2	-1.890 -1.890	-1.650 -1.650	-1.850 -1.850	-1.620 -1.620	-1.830 -1.830	-1.575 -1.575	Vdc Vdc	3 5	5 3	-	-	8 8	1,16 1,16
Logic "1" Threshold Voltage	VOHAф	2 2	-1.065 -1.065	-	-0.980 -0.980	-	-0.910 -0.910	_	Vdc Vdc	-	-	3,5 -	3,5	8	1,16 1,16
Logic "0" Threshold Voltage	VOLAφ	2 2	-	-1.630 -1.630	-	-1.600 -1.600	-	-1.555 -1.555	Vdc Vdc	-	_	3 5	5 3	8	1,16 1,16
Switching Times (50 Ω Load)												Pulse In	Pulse Out		
Propagation Delay	13+2+ 13-2+ 1312- 13-2- 15+2+ 15-2+	2 2 2 2 2 2	- - - - -	2.0 2.0 2.1 2.1 2.5	1 1 1 1 1	1.8 1.8 1.9 1.9 2.3	- - - -	2.3 2.3 2.4 2.4 2.8	ns	- - - -	- - - -	3 	2	8	1,16
	t5+2- t5-2-	2 2	-	+	-	•	=	•	+	-	-	•	+	•	•
Rise Time	t6+	2		2.7		2.5		2.9	ns			3	2	8	1,16
Fall Time	t6-	2	} –	2.4		2.2	-	2.6	ns		-	3	2	8	1,16


^{*}Individually test each input applying VIH or VIL to input under test.


SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C


SP1690

 $P_D = 200 \text{ mW typ/pkg (No Load)}$ $f_{tog} = 500 \text{ MHz min}$ The SP1690 is a high speed D master-slave flip-flop capable of toggle rates over 500 MHz. Designed primarily for high speed prescaling applications in communications and instrumentation, this device employs two data inputs, two clock inputs and complementary Q and $\overline{\rm Q}$ outputs. It is a higher frequency replacement for the SP1670 (350 MHz) D flip-flop. There are no set or reset inputs and an extra data input is provided.

TIMING DIAGRAM

TRUTH TABLE

С	D	Q _{n+1}
L	φ	Q _n
Н	φ	a _n
	L	L
	Н	н

C = C1 + C2 φ = Don't Care D = D1 + D2

This PECL III circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The package should be housed in a suitable heat sink (IERC-LIC-214A2WCB or equivalent) or a transverse air flow greater than 500 linear fpm should be maintained while the circuit is either in a test socket or is mounted on a printed circuit board. Test procedures are shown for selected inputs and selected outputs. The other inputs and outputs are tested in a similar manner. Outputs are tested with a 50-ohm resistor to -2.0 Vdc. See general information section for complete thermal data.

CERAMIC PACKAGE E

		TEST VOLTAGE VALUES											
	Volts												
@ Test Temperature	V _{IH max}	VIL min	VIHA min	VILA max	VEE								
-30°C	-0.875	-1.890	-1.180	-1.515	-5.2								
+25°C	-0 810	-1 850	-1 095	-1 485	-5.2								
+85°C	-0.700	-1 830	-1.025	-1.440	-5 2								

													1	!	1			
	l	Pin	SP1690. Test Limits						TEST VOLTAGE APPLIED TO PINS LISTED BELOW:						1 1			
Characteristic	Symbol	Under	-30°C		+25°C		+85°C			<u> </u>					4	Į.	(Vcc)	
		Test	Min	Max	Min	,	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	P1	P2	Gnd
Power Supply Drain Current	İΕ	8					59		1	mAdc	7,9,11,12				8	-	-	1,16
Input Current	lin H	7					250 270			μAdc μAdc	7 11				8 8	-		1,16 1,16
	¹ in L	7 11	Ė		0.5 0.5		-		-	μAdc μAdc		7 11			8 8	-		1,16 1,16
Logic "1" Output Voltage	Voн	2	-1.045	-0.875	-0.96	50	-0.810	-0.890	-0.700	Vdc	11				8	7		1,46
Logic "0" Output Voltage	VOL	2	-1.890	-1.650	-1.85	50	-1.620	-1 830	-1.575	Vdc		11			8	7		1,16
Logic "1" Threshold Voltage	VOHA	2	-1.065		-0.98	30		-0.910		Vdc	11				8		7	1,16
Logic "0" Threshold Voltage	VOLA	2	-	-1.630		1	-1.600		-1.555	Vdc		11			8		7	1,16
Switching Parameters		· ·			Min	Тур	Max								-3.2 Vdc			+2.0 Vd
Clock to Output Delay (See Figure 1)	17+2+ 19+2+	2	- -		-	1.5 1.5		-	-	ns	- -			-	8	-		1,16
Output Rise Time Fall Time	t+ t-		-	-	-	1.3				.				-		-	-	
Setup Time (See Figure 2)	t _{setup} H t _{setup} L		-			0.3 0.3			 		1-			-		-	-	
Hold Time (See Figure 2)	thold H thold L		_	_	-	0.2 0.3	-		-	🕴				-	†		-	₩
Toggle Frequency (See Figure 3)	ftog	2	500		500	540	-	500		MHz	-	-	-	-	8	-		1,16

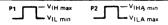
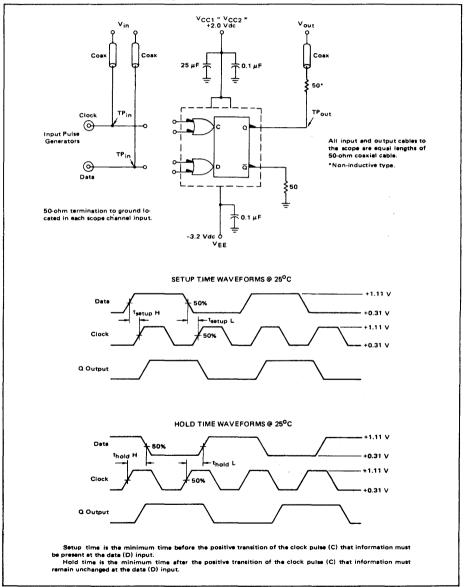
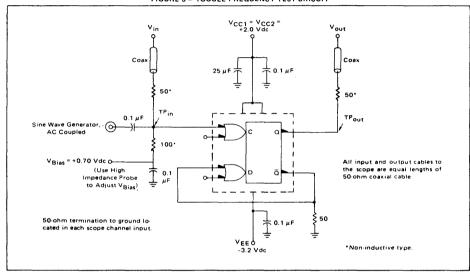
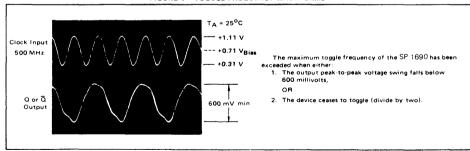
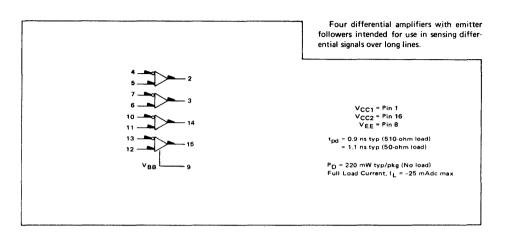



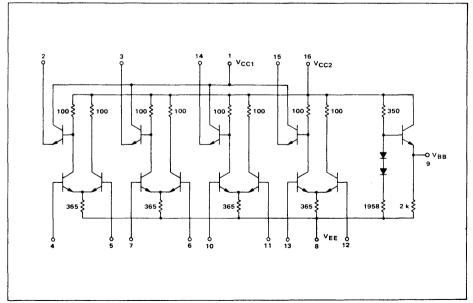
FIGURE 1 - PROPAGATION DELAY TEST CIRCUIT All input and output cables to the scope are equal lengths of 50-ohm coaxial cable. TP_{in} Clock Input Pulse O Generator TP_{in} D Data Input Pulse O Generator 50-ohm termination to ground lo-cated in each scope channel input. V_{EE} 0 CLOCK DELAY WAVEFORMS @ 25°C Cłock +0.31 V Data a

68

FIGURE 2 - SETUP AND HOLD TIME TEST CIRCUIT


FIGURE 3 - TOGGLE FREQUENCY TEST CIRCUIT



QUAD LINE RECEIVER

SP1692

CIRCUIT SCHEMATIC

See General Information section for packaging information.

This PECL III circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The package should be housed in a suitable heat sink (IERC-LIC-214A2WCB or equivalent) or a transverse air flow greater than 500 linear fpm should be maintained while the circuit is either in a test socket or is mounted on a printed circuit board. Test procedures are shown for selected inputs and selected outputs. The other inputs and outputs are tested in a similar manner. Outputs are tested with a 50-ohm resistor to -2.0 Vdc. See general information section for complete thermal data.

CERAMIC PACKAGE E

@ Test	TEST VOLTAGE VALUES											
Temperature	VIH max	VIL min	VIHA min	VILA max	V _{BB}	VEE						
-30°C	-0.875	-1.890	-1.180	-1.515	From	-5.2						
+25°C	-0.810	-1.850	-1.095	-1.485	Pin	-5.2						
+85°C	-0.700	-1.830	-1.025	-1.440	9	-5.2						

ſ		Pin			SP16	92 Test L	imits				FET 1/01 TA	25 ADDI 150 T	O DINE LISTS	D BELOW.		l
	l	Under	-30°C		+25°C		+85	+85°C		TEST VOLTAGE APPLIED TO PINS LISTED BELOW:						_
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	V _{BB}	VEE	Gnd
Power Supply Drain Current	1E	8	-	-	_	50	-	-	mAdc		4,7,10,13	-	-	5,6,11,12	8	1,16
Input Current	lin	4	-	-	-	250	-	-	μAdc	4	7,10,13	_	_	5,6,11,12	8	1,16
Input Leakage Current	l _R	4	-	-	-	100	-	-	μAdc		7,10,13	-	-	5,6,11,12	8,4	1,16
Logic "1" Output Voltage	νон	, a 2	-1.045	-0.875	-0.960	-0.810	-0.890	-0.700	Vdc	7,10,13	4		-	5,6,11,12	8	1,16
Logic "O" Output Voltage	VQL	2	-1.890	-1.650	-1.850	-1.620	-1.830	-1.575	Vdc	4	7,10,13	-		5,6,11,12	8	1,16
Logic "1" Threshold Voltage	VOHA	2	-1.065	-	-0.980	-	-0.910	-	Vdc	-	7,10,13	-	4	5,6,11,12	8	1,16
Logic "O" Threshold Voltage	VOLA	2		-1.630	-	-1.600	-	-1.555	Vdc	-	7,10,13	4	-	5,6,11,12	8	1,16
Reference Voltage	∨ _{BB}	9	1.375	1.275	-1.35	-1.25	1.30	1.20	Vdc		-	-	-	5,6,11,12	8	1,16
Switching Times (50 Ω Load)		Γ	Min	Max	Min	Max	Min	Max		Puh	e In	Puls	Out			
Propagation Dalay	14-2+	2	_	1.6	-	1.5	-	1.7	ns		•		2	5,6,11,12	8	1,16
	t4+2-	2	-	1.8	-	1.7	-	1.9	1				l	1 1	1 1	1 1
Rise Time	t2+	2	-	2.2	-	2.1	-	2.3	11	1 .	l	l .	l	1 1	1 1	1 1
Fall Time	t2-	2	-	2.2	-	2.1	-	2.3	. ▼	1	1		V	▼	. ▼	

APPLICATIONS INFORMATION

The SP1692 quad line receiver is used primarily to receive data from balanced twisted pair lines, as indicated in Figure 1. The line is driven with a SP1660 OR/NOR gate. The SP1660 is terminated with 50 ohm reisisors to -2.0 volts. At the end of the twisted pair a 100 ohm termination resistor is placed across

the differential line receiver inputs of the SP1692. Illustrated in Figure 2 is the sending and receiving waveforms at a data rate of 400 megabits per second over an 18 foot twisted pair cable. The waveform picture of Figure 3 shows a 5 nanosecond pulse being propagated down the 18 foot line. The delay time for the line is 1.68 ns/foot.

The SP1692' may also be applied as a high frequency schmitt trigger as illustrated in Figure 4. This circuit has been used in excess of 200 MHz. The SP1692 when loaded into 50 ohms will produce an output rising edge of about 1.5 nanoseconds.

FIGURE 1 - LINE DRIVER/RECEIVER

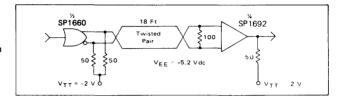


FIGURE 2 - 400 MBS WAVEFORMS

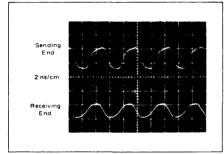
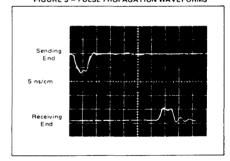



FIGURE 3 - PULSE PROPAGATION WAVEFORMS

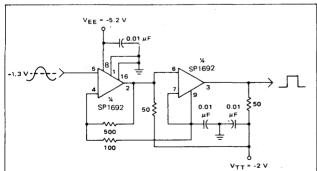


FIGURE 4 - 200 MHz SCHMITT TRIGGER

SUB-NANOSECOND LOGIC

ADVANCE INFORMATION

SP16F60

DUAL 4-INPUT OR/NOR GATE

SP16F60 provides simultaneous OR-NOR output functions with the capability of driving 50 Ω lines. This device contains an internal bias reference voltage, ensuring that the threshold point is always in the centre of the transition region over the temperature range (-30°C to $+85^{\circ}\text{C}$). Input pulldown resistors eliminate the need to tie unused inputs to VEE.

FEATURES

- Gate Switching Speed 550ps Typ.
- ECL III and ECL 10K Compatible
- 50Ω Line Driving Capability
- Operation With Unused I/Ps Open Circuit
- Low Supply Noise Generation
- Pin and Power Compatible with SP1660

Fig. 1 Logic diagram

APPLICATIONS

- Data Communications
- Instrumentation
- PCM Transmission Systems
- Nucleonics

ABSOLUTE MAXIMUM RATINGS

Power supply voltage | Vcc - VeE | 8V
Base input voltage O/V to VEE
O/P source current <40mA
-55°C to +150°C
Junction operating temperature <+125C

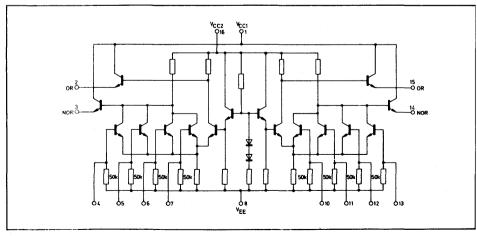


Fig. 2 Circuit diagram

3P16F60

ELECTRICAL CHARACTERISTICS

This ECL III circuit has been designed to meet the dc specifications shown in the test table, after thermal equiblirium has been established. The package should be housed in a suitable heat sink or a transverse air flow greater than 500 linear fpm should be maintained while the circuit is either in a test socket or mounted on a printed circuit board. Test procedures are shown for selected inputs and selected outputs. The other inputs and outputs are tested in a similar manner. Outputs are ested with a 50-ohm resistor to —2.0 Vdc.

										į.	TEST V	OLTAGE VA	LUES (V)		
									P Test operature			1,,	.,		
								I en	-30°C	VIH max - 0.875	V _{IL min} -1.890	-1,180	VILA max -1.515	V _{E E} −5.2	
									+25°C	-0.810	-1.850	-1.095	-1.485	-5.2	
									+85°C	-0.700	-1.830	-1.025	-1.440	-5.2	1
					SP16	60 Tes	Limits				L	L	L	L	i
Characteristic	Symbol	Pin Under	-30	o°C	+2	5°C	+8	5°C		TEST	OLTAGE AP	PLIED TO P	NS LISTED B	ELOW:	Vcc
	-,	Test	Min	Max	Min	Max	Min	Max	Units	VIH max	VIL min	VIHA min	VILA max	VEE	(Gnd
Power Supply Drain Current	lε	8	-	-	-	28	-	-	mA	_	-	-	-	8	1,16
Input Current	lin H		-	-	-	350	-	-	μA		-	_		8	1,16
	lin L			I -	0.5	-		-	μΑ		· .			8	1,16
NOR Logic 1	Voh	3	-1.045	-0.875	-0.960	-0.810	-1.890	-0.700	v	- '	4	-	-	8	1,16
Output Voltage		1 1	1 1	1	1 1	1 1	1 1	1	J	-	5	-	-	1 1 1	1
		ı	I ↓		l I	1 1	l I	ı	1 1	-	6	-	-		1 1
	·	<u>'</u>	1000	1 05-	<u> </u>		+ · ·	- V		- -	7			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	!
NOR Logic 0	Vol	3	-1.890	-1.650	-1.850	-1.620	-1.830	-1.5/5	Y	4	-	-	-	8	1,16
Output Voltage			11	1 1		H				5	-	-		l i l	1 1
		↓	I ∔	1 1	I ↓	↓		l l		6 7	-	-	-	↓	1 1
OR Logic 1		2	-1.045	-0.875	-0.960	0010	-0.890	0.700	 ;	4	-		-	8	1.16
	VoH	1 1	1.045	-0.875	-0.960	0.810	-0.890	-0.700	ľ	5	-		_	1 1	1,16
Output Voltage		1 1	1 1		1 1	1				6	_		_	1 1	1 1
		١ ↓	1 1			١ ↓	↓	١ ↓	1	7	_	_	1 -		1 1
OR Logic 0	Vol	2	-1.890	1.650	-1.850	-1.620	_1 830	-1.575	v		4			8	1,16
Output Voltage	VOL	lí	-1.090	1.050	1.650	1.020	1.630	1.3/3	ľ		5	I -	l _	l ĭ l	';''
Output Voltage							1	li	11.		6	_	l =	1 1 1	
			+	. • 1	+	١ ١	1	1 +	↓ .	_	7	-	l _	+	∔
NOR Logic 1	VOHA	3	-1.065		-0.980	_	-0.910	_	v	_			4	8	1.16
Threshold Voltage	1084	ĭ	1		0.000	_	0.0.0	l _	i i	_	_	_	5	l i	1 1
		1		-		_		۱ ـ		_	_	_	6	1 1	1 1
		+	+	_ 1		_	+	- 1	•	_	_	_	1 7	,	+
NOR Logic 0	VOLA	3	_	-1.630	_	-1.600	-	-1.555	v	_	_	4	-	8	1.16
Threshold Voltage	02.4	l i	_	1	_	1	_		1	_	_	5	_	1 1	l i
			_		_	1 1	ł _		1 1 1	_	_	6	_		i
		+	_		-	•		,	*			7			
OR Logic 1	VOHA	2	-1.065	-	-0.980	-	-0.910	-	v	-	-	4	-	8	1,16
Threshold Voltage				- 1		-		l - i		-	-	5	-	111	
				-	1 1	-		-		-	-	6	- 1	1 1 1	
		'	· ·					_	_			7			
OR Logic 0	VOLA	2	-	-1.630	- 1	-1.600	-	-1.555	V.	-	_	-	4	8	1,16
Threshold Voltage			-		- 1		- 1			-		-	5		1 1
			- 1	1	- 1	1	-	1		-	-	-	6		1
		<u> </u>		<u> </u>				,,					,	7	<u>'</u>
Switching Times (50Ω Load)		١.	Тур	Max	Typ 0.55	Max	Тур	Max		Pulse In	Pulse Out	ļ		-3.2V 8	+2.0\
Propagation Delay	4+3_	3	-	_	0.55	0.8	-	-	ns I	1 1	3 2	-	-		1,16
	4-2-	2 2	_	_				_			2	-	-		1 1
	14+2+	3	_	_	1 1	1	_ :	_	i I I	1	3		-	11	ıl
Rise Time	14-3+	3	1,5	2.1	0.4	7			ns	4	3			8	1,16
20% to 80%	t3+	2	1.5	2.1	0.4	0.6 0.6	_	_		4	2	_	ł <u>-</u>	8	1,16
Fall Time	t ₂₊	3	1.4	2.1	0.35	0.6			ns ns	4	3			8	1,16
20% to 80%	t3-	2	7.4	4.1	0.35	0.0	-	- 1	1115			_			1,16

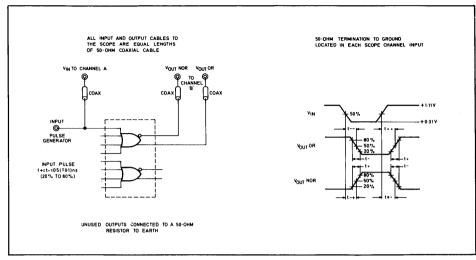


Fig. 3 Switching time test circuit and waveforms at +25°C

CONSUMER CIRCUITS

TV CIRCUITS

SP4020 VHF/UHF ÷ 64 PRESCALFR

The SP4020 is an ECL divide by 64 which will operate at frequencies in excess of 950 MHz, and is intended for use as a prescaler in television receiver synthesiser tuners.

The device has a typical power dissipation of 470 mW at the nominal supply voltage of +6.8V.

OPERATING NOTES

Two input ports are available on this device. Switching between these inputs is accomplished by operation of the band change input. A logic '1' activates the UHF input, logic '0' the VHF input. When an input is not in use the input signal must be removed to prevent cross-modulation occuring at high frequencies. Both inputs are terminated by a nominal 400Ω and should be AC coupled to their respective signal sources. Input power to the device is terminated to ground by the two decoupling capacitors on the reference pins. Input coupling and reference decoupling capacitors should be of a type suitable for use at a frequency of 1 GHz.

When the device is switched to the VHF input, an input hysteresis of 50 mV is set by the internal band change circuit. This improves the low frequency sinewave operation of the device. The hysteresis level may be neasured as VREF1 - VREF2

If the UHF input only is used and the device is required to operate with a sinewave input below 100 MHz, then the required hysteresis may be applied externally as shown in Fig. 5. Large values of hysteresis should be avoided as this will degrade the input sensitivity of the device at the maximum frequency. The divide by 64 output is designed to interface with TTL which has a common VEE (ground). The specified fan-out of 3 standard TTL inputs may be increased to 6 standard or 5 high power/Schottky inputs at a logic zero level of 0.5V. At low frequency the output will change when one of the clock inputs changes from a low to a high level.

FEATURES

- Dual Input Ports for VHF and UHF
- Self-Biasing Clock Inputs
- Input Dynamic Range of 300mV to 900mV p-p Over Entire Frequency Range
- Variable Input Hysteresis Capability for Wide Band Operation
- TTL/MOS Compatible Band Change Input
- Push Púll TTL O/P

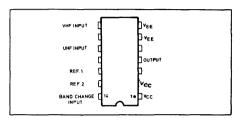


Fig. 1 Pin connections

ABSOLUTE MAXIMUM RATINGS

0V to +10V Power supply voltage V_{CC} - V_{FF} Input voltage, clock inputs 2.5V p-p Band change input +7.2 to -0.5V or -10mA Output current +30 mA to -30 mA Operating junction temperature +150°C Storage Temperature -55°C to +150°C

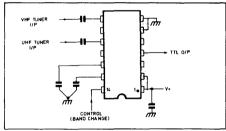


Fig. 2 Typical application

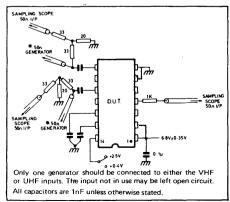


Fig. 3 AC test circuit

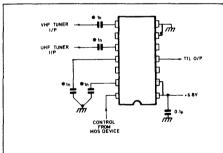
FLECTRICAL CHARACTERISTICS

Supply voltage: 6.8V ± 0.35V

Supply current: 68 mA typ., 90 mA max. Temperature range: +10°C to +55°C

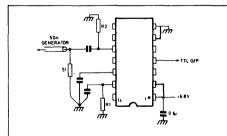
Clock inputs: AC coupled, self-biasing via 400Ω

Band change input: TTL type including negative input voltage clamp, 0.8 mA max. sink current


Test conditions (unless otherwise stated):

Supply voltage: $V_{EE} = 0V$, $V_{CC} = +6.45V$ to +7.15V

Clock input voltage: 300mV to 900mV p-p


Ta: +25°C

		Value			
Characteristic	Min.	Тур.	Max.	Units	Conditions
Clock Inputs					
Max. I/P frequency	950	1100		MHz	UHF I/P
Min. I/P frequency	*	150	450	MHz	UHF I/P
Max. I/P frequency	350	1000		MHz	VHF I/P
Min. I/P frequency		40	60	MHz	VHF I/P sinewave
Band change I/P			ļ		
High level	2.5			v	
Low level			0.4	V	
Low level I/P current			-0.8	mA	at 0.4V
Max. clamp current	-3			mA	at approx0.7V
Output					
Low Level			0.4	V	5mA current sink
High Level	2.5	3.5	4.5		
Supply Current		68	90	mA	V _{CC} = 6.8V

Connections to these pins should be made to have the minimum series inductance. Capacitors should be of a type suitable for use at 1GHz.

Fig. 4 Application circuit

Capacitors are 1 nf unless otherwise stated. Values should be increased if operation below 10 MHz is desired.

For 50 mV hysteresis R1 = 36k Ω R2 = ∞ For 100 mV hysteresis R1 = 18k Ω R2 = 18k Ω

Fig. 5 Wideband operation

PACKAGE DETAILS

The SP4020 is packaged in 14-lead DIL.

CONSUMER CIRCUITS

TV CIRCUITS

SP 4021

UHF + 64 PRESCALER

The SP4021 is an ECL divide by 64 which will operate at frequencies in excess of 950 MHz, and is intended for use as a prescaler in television receiver synthesiser tuners.

The device has a typical power dissipation of 500 mW at the nominal supply voltage of +6.8V.

OPERATING NOTES

The input is terminated by a nominal 400 Ω and should be AC coupled to the signal sources. Input power to the device is terminated to ground by the decoupling capacitors on the reference pins. Input coupling and reference decoupling capacitors should be of a type suitable for use at a frequency of 1 GHz.

If the device is required to operate with a sinewave input below 100 MHz, then the required hysteresis may be applied externally as shown in Fig. 5. Large values of hysteresis should be avoided as this will degrade the input sensitivity of the device at the maximum frequency. The divide by 64 output is designed to interface with TTL which has a common V_{EE} (ground). The specified fan-out of 3 standard TTL inputs may be increased to 6 standard or 5 high power Schottky inputs at a logic zero level of 0.5V. At low frequency the output will change when the clock input changes from a low to a high level.

FEATURES

- Self-Biasing Clock Input
- Input Dynamic Range of 300mV to 900mV p-p Over Entire Frequency Range
- Variable Input Hysteresis Capability for Wide Band Operation
- Push-Pull TTL O/P

ABSOLUTE MAXIMUM RATINGS

Power supply voltage V_{CC} - V_{FF} 0V to +10V Input voltage, clock input 2.5V p-p +30 mA to -30 mA Output current +150°C Operating junction temperature

-55°C to +150°C Storage Temperature

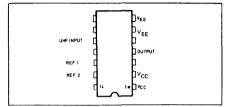


Fig. 1 - Pin connections

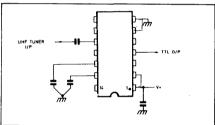


Fig. 2 — Typical application

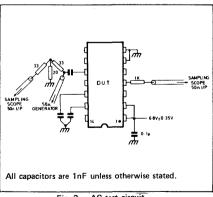


Fig. 3 - AC test circuit

ELECTRICAL CHARACTERISTICS

Supply voltage: 6.8V ± 0.35V

Supply current: 68 mA typ., 90 mA max. Temperature range: 0° C to + 65° C

Clock input: AC coupled, self-biasing via 400 Ω Band change input: TTL type including negative input voltage clamp, 0.8 mA max. sink current

Test conditions (unless otherwise stated):

Supply voltage: $V_{EE} = 0V$, $V_{CC} = +6.45V$ to

+7.15V T_A: +25^oC

		Value		·	
Characteristic	Min.	Тур.	Max.	Units	Conditions
Clock Input Max. I/P frequency Min, I/P frequency Sensitivity	950	1100	100 550 400 350 300 400 700	MHz MHz mV _{p-p} mV _{p-p} mV _{p-p} mV _{p-p}	100MH _z 200MH _z 300MH _z 500-700MH _z 800MH _z 950MH _z
Overload Level	1.2			V _{p-p}	100М Н _z
Output Low Level High Level	2.5	3.5	0.5 5.0	V	5mA current sink -1mA
Supply Current		70	100	mA	V _{CC} = 7.15V

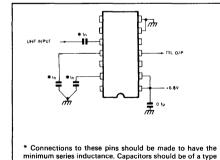
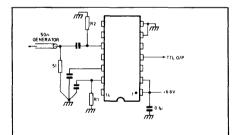



Fig. 3 Application circuit

Capacitors are 1 nF unless otherwise stated. Values should be increased if operation below 10 MHz is desired. For 50mV hysteresis R1 = 36k Ω R2 = ∞ For 100mV hysteresis R1 = 18k Ω R2 = 18k Ω

Fig. 4 Wideband operation

PACKAGE DETAILS

suitable for use at 1 GHz.

The SP4021 is packaged in 14-lead DIL.

CONSUMER CIRCUITS TV CIRCUITS

SP 4040 VHF/UHF ÷ 256 PRESCALER

The SP4040 is an ECL divide by 256 which will operate it frequencies in excess of 950 MHz, and is intended for use is a prescaler in television receiver synthesiser tuners.

The device has a typical power dissipation of 470 mW at he nominal supply voltage of +6.8V.

OPERATING NOTES

Two input ports are available on this device. Switching between these inputs is accomplished by operation of the band change input. A logic '1' activates the UHF input, logic 0' the VHF input. When an input is not in use the input signal must be removed to prevent cross-modulation occuring at high frequencies. Both inputs are terminated by a nominal 400 Ω and should be AC coupled to their espective signal sources. Input power to the device is erminated to ground by the two decoupling capacitors on the reference pins. Input coupling and reference decoupling apacitors should be of a type suitable for use at a frequency of 1 GHz.

When the device is switched to the VHF input, an input systeresis of 50 mV is set by the internal band change sircuit. This improves the low frequency sinewave speration of the device. The hysteresis level may be neasured as V_{REF1} - V_{REF2}

If the UHF input only is used and the device is required to operate with a sinewave input below 100 MHz, then the equired hysteresis may be applied externally as shown in Fig. 5. Large values of hysteresis should be avoided as this will degrade the input sensitivity of the device at the naximum frequency. The divide by 256 output is designed to interface with TTL which has a common V_{EE} (ground). The specified fan-out of 3 standard TTL inputs may be ncreased to 6 standard or 5 high power/Schottky inputs at 1 logic zero level of 0.5V. At low frequency the output will hange when one of the clock inputs changes from a low to 1 high level.

FEATURES

- Dual Input Ports for VHF and UHF
- Self-Biasing Clock Inputs
- Input Dynamic Range of 300mV to 900mV p-p Over Entire Frequency Range
- Variable Input Hysteresis Capability for Wide Band Operation
- TTL/MOS Compatible Band Change Input
- Push Pull TTL O/P

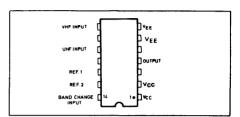


Fig. 1 Pin connections

ABSOLUTE MAXIMUM RATINGS

Power supply voltage V_{CC} - V_{EE}
Input voltage, clock inputs
2.5V p-p
Band change input
47.2 to -0.5V or -10mA
Output current
430 mA to -30 mA
Operating junction temperature
Storage Temperature
-55°C to +150°C

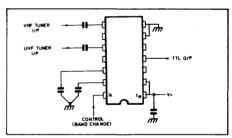


Fig. 2 Typical application

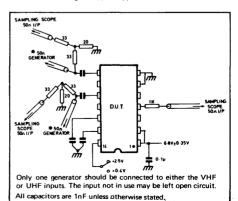


Fig. 3 AC test circuit

ELECTRICAL CHARACTERISTICS

Supply voltage: 6.8V ± 0.35V

Supply current: 68 mA typ., 90 mA max. Temperature range: +10°C to +55°C

Clock inputs: AC coupled, self-biasing via 400Ω

Band change input: TTL type including negative input voltage clamp, 0.8 mA max. sink current

Test conditions (unless otherwise stated):

Supply voltage: $V_{EE} = 0V$, $V_{CC} = +6.45V$ to +7.15V

Clock input voltage: 300mV to 900mV p-p

Ta: +25°C

		Value			0	
Characteristic	Min.	Тур.	Max.	Units	Conditions	
Clock Inputs						
Max. I/P frequency	950	1100	}	MHz	UHF I/P	
Min. I/P frequency		150	450	MHz	UHF I/P	
Max. I/P frequency	350	1000		MHz	VHF I/P	
Min. I/P frequency		40	60	MHz	VHF I/P sinewave	
Band change I/P						
High level	2.5			V		
Low level			0.4	V		
Low level I/P current			-0.8	mA	at 0.4V	
Max. clamp current	-3			mA	at approx0.7V	
Output						
Low Level			0.4	v	5mA current sink	
High Level	2.5	3.5	4.5			
Supply Current		68	90	mA	V _{CC} = 6.8V	

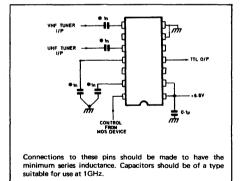
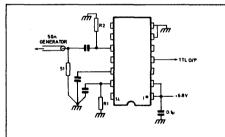



Fig. 4 Application circuit

Capacitors are 1 nf unless otherwise stated. Values should be increased if operation below 10 MHz is desired.

For 50 mV hysteresis R1 = $36k\Omega$ R2 = ∞ For 100 mV hysteresis R1 = $18k\Omega$ R2 = $18k\Omega$

Fig. 5 Wideband operation

PACKAGE DETAILS

The SP4020 is packaged in 14-lead DIL.

CONSUMER CIRCUITS

TV CIRCUITS

SP4041

UHF ÷ 256 PRESCALER

The SP4041 is an ECL divide by 256 which will operate at frequencies in excess of 950 MHz, and is intended for use as a prescaler in television receiver synthesiser tuners.

The device has a typical power dissipation of 500 mW at the nominal supply voltage of +6.8V.

OPERATING NOTES

The input is terminated by a nominal 400 Ω and should be AC coupled to the signal source. Input power to the device is terminated to ground by the decoupling capacitors on the reference pins. Input coupling and reference decoupling capacitors should be of a type suitable for use at a frequency of 1 GHz.

If the device is required to operate with a sinewave input below 100 MHz, then the required hysteresis may be applied externally as shown in Fig. 5. Large values of hysteresis should be avoided as this will degrade the input sensitivity of the device at the maximum frequency. The divide by 256 output is designed to interface with TTL which has a common V_{EE} (ground). The specified fan-out of 3 standard TTL inputs may be increased to 6 standard or 5 high power/Schottky inputs at a logic zero level of 0.5V. At low frequency the output will change when clock input changes from a low to a high level.

FEATURES

- Self-Biasing Clock Input
- Input Dynamic Range of 300mV to 900mV p-p over Entire Frequency Range
- Variable Input Hysteresis Capability for Wide Band Operation
- Push-Pull TTL O/P

ABSOLUTE MAXIMUM RATINGS

Power supply voltage V _{CC} - V _{EE}	0V to +10V
Input voltage, clock input	2.5V p-p
Output current	+30 mA to -30 mA
Operating junction temperature	+150 ⁰ C
Storage Temperature	55°C to +150°C

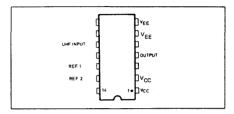


Fig. 1 - Pin connections

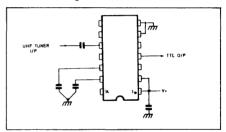


Fig. 2 - Typical application

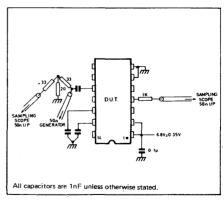


Fig. 3 - AC test circuit

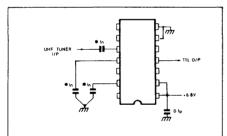
ELECTRICAL CHARACTERISTICS

Supply voltage: 6.8V ± 0.35V

Supply current: 68 mA typ., 90mA max.

Temperature range: 0°C to + 65°C.

Clock input: AC coupled, self-biasing via 400 Ω Band change input: TTL type including negative input voltage clamp, 0.8 mA max. sink current

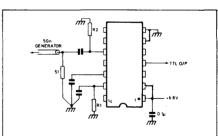

Test conditions (unless otherwise stated):

Supply voltage: $V_{EE} = 0V$, $V_{CC} = +6.45V$ to

+7.15V

Τ_Δ: +25^OC

Characteristic		Value		Units	Conditions
Characteristic	Min.	Тур.	Max.	Onits	Conditions
Clock Input					
Max. I/P frequency	950	1100		MHz	
Min. I/P frequency			100	MHzp-p	
Sensitivity			550	mV _{p-p}	100MH _z
			400	mV _{p-p}	200 MH _z
			350	mV _{p-p}	300 MH _z
			300	mV _{p-p}	500-700 MH _z
			400	mV _{p-p}	800 MH _z
			700	mV _{p-p}	950 MH _z
Overload Level	1.2			V p-p	100 MH _z
Output					
Low Level			0.5	v	5mA current sink
High Level	2,5	3.5	5.0	v	-1mA
Supply Current		70	100	mA	V _{CC} = 7.15V



^{*}Connections to these pins should be made to have the minimum series inductance. Capacitors should be of a type suitable for use at 1GHz.

Fig. 4 - Application circuit

PACKAGE DETAILS

The SP4041 is packaged in 14-lead DIL.

Capacitors are 1 nf unless otherwise stated. Values should be increased if operation below 10 MHz is desired.

For 50 mV hysteresis R1 = $36k\Omega$ R2 = ∞ For 100 mV hysteresis R1 = $18k\Omega$ R2 = $18k\Omega$

Fig. 5 - Wideband operation

CONSUMER CIRCUITS

TV CIRCUITS

SP4140/50

VHF/UHF÷ 256 PRESCALER

The SP 4140/50 are ECL divide by 256 which will operate at frequencies in excess of 950 MHz, and are intended for use as a prescaler in television receiver synthesiser tuners.

The device has a typical power dissipation of 300 mW at the nominal supply voltage of 5.0.

OPERATING NOTES

The input is terminated by a nominal 800Ω and should be AC coupled to the signal source. Input power to the device is terminated to ground by the decoupling capacitors on the reference pins. Input coupling and reference decoupling capacitors should be of a type suitable for use at a frequency of 1 GHz.

The SP4140 output is designed to interface with TTL which has a common V_{EE} (ground). The specified fan-out of 3 standard TTL inputs may be increased to 6 standard or 5 high power/Schottky inputs at a logic zero level of 0.5V. At low frequency the output will change when one of the clock inputs changes from a low to a high level.

The SP4150 output is designed to provide complementary emitter follower O/Ps so that the rise time of the output can be adjusted to suit system requirements.

FEATURES

- 5.0 Volt Operation
- Self-Biasing Clock Inputs
- Input Dynamic Range of 10mV to 600mV p-p Over Entire Frequency Range
- Variable Input Hysteresis Capability for Wide Band Operation
- Complementary ECL O/P
- Push Pull TTL O/P

ABSOLUTE MAXIMUM RATINGS

Power supply voltage $V_{CC} - V_{EE}$ 0V to +10V input voltage, clock inputs 2.5V p-p Output current +30 mA to -30 mA Operating junction temperature +150°C Storage Temperature -55°C to +150°C

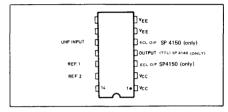


Fig. 1 - Pin connections

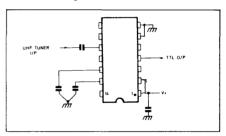


Fig. 2 - Typical appoication

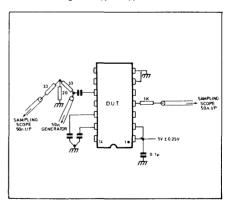


Fig. 3 - AC test circuit

ELECTRICAL CHARACTERISTICS

Supply voltage:

5.0 ± 0.25V

Supply current: 60 mA typ. Temperature range:

90 mA max

0°C to 70°C

Clock inputs: AC coupled, self-biasing via 800Ω

Test conditions (unless otherwise stated):

Supply voltage: V_{EE} = 0V, V_{CC} = 5.0V ±0.25

Clock input voltage:

10mV to 600mV p+p

 T_{amb} 500 to + 700C

Characteristics		Value		Units	Conditions
Citalacteristics	Min.	Тур.	Max.	Oiiits	Conditions
Clock Inputs					
Max. I/P frequency	950	1100		MHz	
Min. I/P frequency			80	MHz	
Output SP 4140			!		
Low Level	0		0.45	v	3 mA sink $V_{CC} = 5.0V$
High Level	3.8		4.6	V	3 mA sink $V_{CC} = 5.0V$ 1mA source $T_{amb} = 25^{\circ}C$
Output SP4150					
Voltage Swing	600	800		mV	No load each output
Supply Current	:	60	90	mA	V _{CC} = 5V

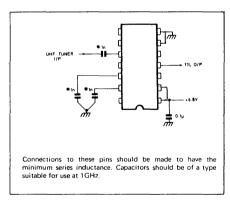


Fig. 4 - Application circuit

Capacitors are 1 nf unless otherwise stated. Values should be increased if operation below 10 MHz is desired.

Fig. 5 - Wideband operation

PACKAGE DETAILS

The SP 4140/50 is packaged in 14-lead DIP.

SP8000 SERIES HIGH SPEED DIVIDERS

SP8600A&B

250MHz ÷ 4 COUNTER

The SP8600 is a fixed ratio emitter coupled logic +4 counter with a specified input frequency range of 5—250 MHz. The operating temperature range is pecified by the device code suffix letter: 'A' denotes -55°C to +125°C, 'B' denotes 0°C to +70°C peration,

Intended for use with an external bias arrangement nd capacitive coupling to the signal source, the JP8600 can be either single driven, or double driven vith two complementary input signals.

The outputs are complementary free collectors that an have their load resistors taken to any bias voltage to 12V more positive than VEE.

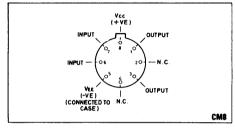


Fig. 1 Pin connections (bottom view)

EATURES

- Low Power
- Free Collector Outputs to Interface to TTL
- 250 MHz ÷ 4 Over Full Military Temp. Range

APPLICATIONS

- Synthesizers Mobile and Fixed
- Counters
- Timers

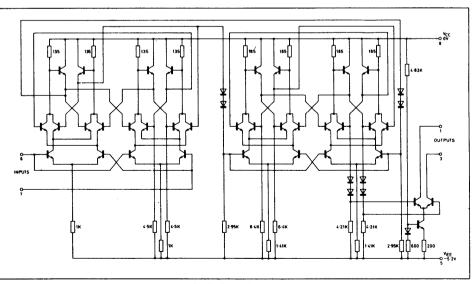


Fig. 2 Circuit diagram

SP8600

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

 T_{amb} : 'A' grade -55° C to $+125^{\circ}$ C 'B' grade 0° C to $+70^{\circ}$ C

Supply voltage 0V -5.2V

Input voltage (single driven — other input decoupled to ground plane)

Input voltage (double complementary input drive)

Input bias voltage

Vcc 400 to 800 mV p-p Vee 250 to 800 mV p-p Bias chain as in test circuit (see Fig. 3 and operating notes).

	ļ	Value				
Characteristic	Min.	Тур.	Max.	Units	Conditions	
Max. input frequency	250	390*		MHz	Typical figure quoted at +25°C.	
Min. input frequency with sinusoidal input Min. slew rate of			25	MHz		
square wave input for correct operation Output current	1.6		20	V/μs mA	Single input drive Input f=250 MHz.	
Power supply drain current		16*	25	mA	$V_{EE} = -5.2 \text{V}, V_{BIAS} \text{ as}$ Fig. 3.	

^{*}At +25°C

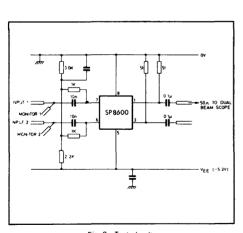


Fig. 3 Test circuit

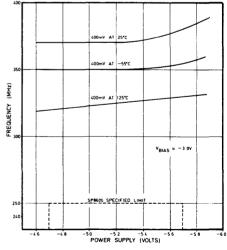


Fig. 4 Maximum input frequency v. power supply voltage (typical)

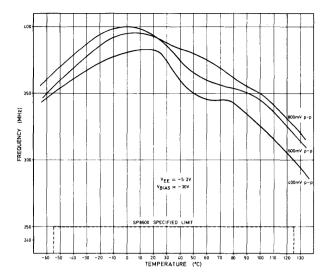


Fig. 5 Maximum input frequency v. temperature

PERATING NOTES

The circuit performance obtained from the SP8600 is timized if normal high frequency rules for circuit rout are obeyed—leads should be kept short, pacitors and resistors should be of non-inductive less etc.

The signal source is normally AC coupled to one of e inputs or, if complementary signals are available, to th inputs. The inputs require an external bias chain set the DC potential on the inputs (see Fig. 3). No preciable change in performance is observed over a 19e of DC bias from -2.5V to -3.5V.

Any tendency for the circuit to self-oscillate in the sence of input signal (or when the input signal is very all) can be overcome by offsetting the two inputs by proximately 40mV, using, for example, the bias angement shown in Fig. 6. The input wave form may sinusoidal, but below 25 MHz incorrect operation by occur because of the limited slew rate of the but signal. A square wave input with a slew rate aater than 20V/µs ensures correct operation down DC.

The output is in the form of complementary free llectors with at least 2mA available from them. For issfactory high frequency interfacing to ECL or hottky TTL the circuit techniques illustrated in Fig. 7 recommended.

For maximum frequency operation, it is essential that $\mathfrak d$ output load risistor values be such that the output noistors do not saturate. If the load resistors are nnected to the 0V rail, then saturation can occur with sistance values greater than 600Ω . Of course, if the id resistors are taken to a more positive potential, an higher values can be used. N.B. If only one output used, the other output should be connected to 0V.

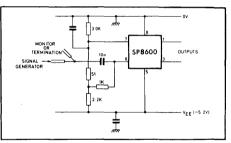


Fig. 6 Bias arrangement to prevent self-oscillation under no-signal conditions

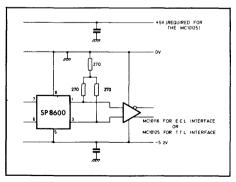


Fig. 7 ECL and Schottky TTL interfacing

SP8600

ABSOLUTE MAXIMUM RATINGS

Power supply voltage V_{CC}—V_{EE} 10V Not greater than supply voltage in use

Bias voltage on o/p's Vour-

14V

VEE Operating junction temperature Storage temperature

+175°C max. -55°C to +175°C

SP8000 SERIES HIGH SPEED DIVIDERS

SP8601A & B

150MHz-4

The SP8601 is a fixed ratio emitter coupled logic $\div 4$ counter with a maximum specified input frequency of 50 MHz but with a typical maximum operating requency well in excess of this (see Typical Operating Characteristics). The operating temperature range is pecified by the final coding letter: 'A' denotes -55°C to +125°C, 'B' denotes 0°C to +70°C.

The SP8601 can be operated with single input drive or with double, complementary, I/P drive. It can be lriven with direct coupling from ECL II levels (or rom an SP8602 device), or it can be capacitively coupled to the signal source if an external bias is provided.

There are complementary free collector outputs that an have their external load resistor connected to any ias up to 12 volts more positive than V_{EE} .

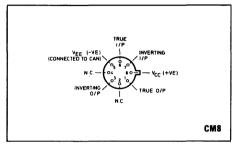


Fig. 1 Pin connections (bottom view)

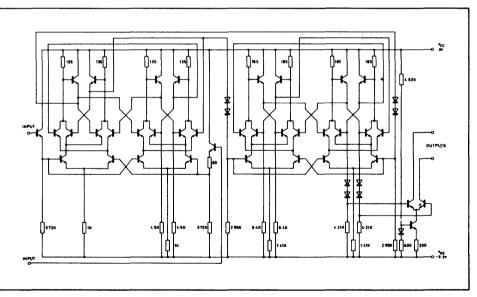


Fig. 2 Circuit diagram

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

'A' grade

'B' grade

Operating supply voltage Vcc V_{EE}

Input voltage (single drive - other input decoupled to

ground plane) Input voltage (double drive)

Bias voltage

-55°C to +125°C 0°C to +70°C

OV.

 $-5.2V \pm 0.25V$

400 to 800 mV (p-p)

250 to 800 mV (p-p)

Bias chain as in test circuit (see Fig. 2).

		Value			
Characteristic	Min	Тур.	Max.	Units	Conditions
Max. input frequency Min. input freq. with sinusoidal input.	150		15	MHz. MHz.	
Min. slew rate of square wave input for correct operation			20	V/µs	Single input drive
Output current Power supply drain current	1.6	18	25	mA mA	Input freq.= 150 MHz. R _{load} = 50Ω V _{FF} = -5.2V

OPERATING NOTES

Circuit performance obtained from the SP8601 is optimised if normal high frequency rules for circuit layout are obeyed — leads should be kept short, capacitors and resistors should be of non-inductive types, etc.

The signal source is normally directly coupled into the device, which will tolerate a wide range of input bias voltages, but was designed for inputs from ECL II levels and can therefore be satisfactorily driven from SP8602 range of counters. The bias voltage on the input marginally affects the overall power consumption of the device (For typical operating characteristics with varying bias voltages see Fig. 4).

If it is not practicable to directly couple the input signal, then a bias chain similar to the one shown in Fig. 3 can be used.

The input waveform may be sinusoidal, but below about 10 MHz incorrect operation may occur because of the limited slew rate of the input signal. A square wave input with a slew rate of greater than 20 V/µs ensures correct operation down to DC.

The output is in the form of complementary free collectors with 2 mA min. available from them. The output voltage swing obviously depends on the value of load resistor used and also the frequency of operation. The following table gives some typical examples of output voltage for different load resistors. With careful board layout to minimise capacitance these figures can easily be exceeded.

Min. Output	Load	Input
Voltage	Resistor	Frequency
1.1V	1kΩ	120 MHz
320mV	200Ω	150 MHz
80mV	50Ω	180 MHz

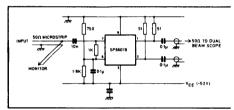
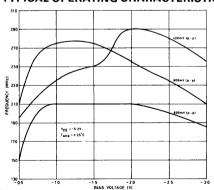



Fig. 3 Test circuit

TYPICAL OPERATING CHARACTERISTICS

NOTE: The value of the coupling and decoupling capacitors used are uncritical but they should be of a type and value suitable for the frequencies involved.

Fig. 4 Maximum input frequency v. bias voltage at single input drive levels of 400, 600 and 800 mV (typical device)

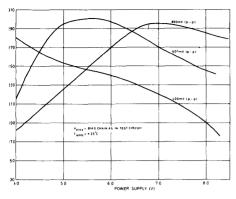


Fig. 5 Maximum frequency v. power supply voltage at single input drive levels of 400, 600 and 800 mV (typical device)

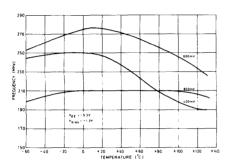


Fig. 6 Maximum input frequency v. temperature at single input drive levels of 400, 600 and 800 mV (typical device)

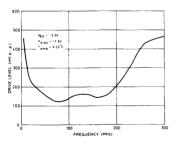


Fig. 7 Minimum single input drive level for correct operation v. input frequency (typical device)

APPLICATION NOTES

The SP8601 used with two SP8602 series $\div 2$ counters to give a 500 MHz divide-by-sixteen precaler is shown in Fig. 8. Capacitors marked thus* may leed to be increased in value for low frequency peration.

For correct operation when interfacing with TTL and ECL II the circuits shown in Figs. 9, 10 and 11 are recommended.

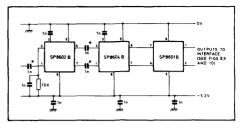


Fig. 8 Divide-by-sixteen prescaler

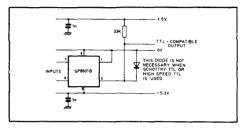


Fig. 9 TTL interface (fanout = 1 TTL gate)

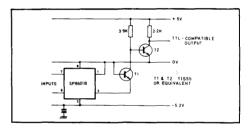


Fig. 10 High fanout TTL interface

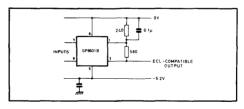


Fig. 11 ECL II interface

ABSOLUTE MAXIMUM RATINGS

Power supply voltage

V_{CC}—V_{EE} 10 V

Input voltage V_{in} Not greater than the supply voltage in use

Bias voltage on outputs

14 \/

V_{out}—V_{EE}
(see Operating Notes)

Operating junction temperature +175°C

Storage temperature -55°C to +175°C

SP8000 SERIES HIGH SPEED DIVIDERS

SP8602 A&B

500MHz+2

The SP8602 is a fixed ratio ECL-2 counters with maximum specified I/P frequencies of 500 MHz. The operating temperature range is specified by the final coding letter: 'A' denotes -55°C to +125°C, 'B' denotes 0°C to +70°C.

The device can be operated with single input drive or with double, complementary, input drive; in both cases the input is normally capacitively coupled to the signal source. Two complementary emitter follower outputs are provided.

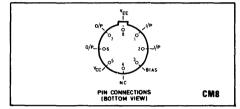


Fig. 1 Pin connections

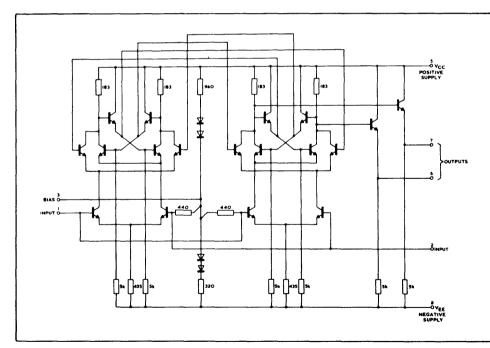


Fig. 2 Circuit diagram (all resistor values are nominal)

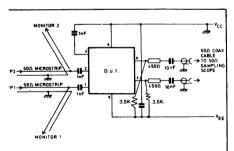
28602

.ECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated)

Tamb 'A' Grade
'B' Grade
Operating supply voltage: V_{CC}
Vee
Input voltage (single drive- other input and bias decoupled to ground plane)
Input voltage (double drive- bias decoupled to ground plane)
Output load

0°C to +70°C 0V -5.2V± 0.25V 400 to 800 mV p-p 250 to 800 mV p-p


 500Ω and 3pF

-55°C to +125°C

			Value			
Characteristic	Туре	Min.	Тур.	Max.	Units	Conditions
Max. input freq.	SP8602A,B.	500			MHz	V _{ee} = -5.2V
Min. input freq. with sinusoidal input			20	40	MHz	
Min, slew rate of square wave input for correct operation			30	100	V/μS	single input drive
Output voltage swing		400			mV	$V_{ee} = -5.2V$ $T_{amb} = -55^{\circ}C \text{ to } +70^{\circ}C$
Output voltage swing		350			mV	V _{ee} = -5.2V T _{amb} = +125°C I/P freq. = 500 MHz
Power supply drain current			12	20	mA	V _{ee} = -5.2V See note 1

OTES

In practice, the $3.5k\Omega$ resistors specified in the test circuit (Fig.3) are not essential; omission of these resistors will reduce the maximum pply current to 18mA.

Note: The values of the coupling and decoupling capacitors used are uncritical but they should be of a type and value suitable for the frequencies involved.

Fig. 3 Test circuit

ABSOLUTE MAXIMUM RATINGS

Power supply voltage V_{cc} -V_{ee} 8V

Input voltage V_{in} Not greater than the

supply voltage in use
Output current lout 10 mA

Operating junction +150°C

temperature

Storage temperature -55°C to +150°C

range

OPERATING NOTES

It is recommended that a positive earth plane be used for the circuit layout, thus preventing damage if the output emitter followers are inadvertently shorted to ground. All components used in the circuit layout should be suitable for the frequencies involved, and outside a controlled impedance environment, leads and connections should be kept short to minimise stray inductance.

The signal source is normally capacitively coupled to the input. A 1000pF capacitor is usually sufficient. If the input signal is likely to be interrupted a $15 \mathrm{K}\Omega$ resistor should be connected between the input and the negative rail. In the single drive case it is preferable to connect the resistor to the input not in use — in the double drive case either input can be used. The addition of the input pulldown resistor causes a slight loss of input sensitivity,

but it prevents circuit oscillation under no-sign conditions.

The input waveform may be sinusoidal, but belo about 40 MHz the operation of the circuit become dependent on the slew rate of the input rather than the amplitude. A square wave input with a slew rate of moi than 100 V/µS will permit correct operation down to D(

The output voltage swing can be increased by the addition of a DC load to the output emitter follower Pulldown resistors of 1.5 K to the negative rail provide a increase of typically 25% in the output voltage swing.

APPLICATION NOTES

SP8602B interfacing to ECL 10 000 and ECL III

By increasing the output voltage swing using externoulldown resistors (see operating notes), the SP 8602B canl coupled directly into an E C L III or E C L 10 000 gate, buthere is a reduction of the noise immunity. Where noise immunity is important the device can be connected to a E C L 10 000 or E C L III line receiver.

Divide-by-16 frequency scaler.

The SP8602B interfacing with the SP8601B at high-speed TTL to give a divide-by-16 frequency scal is shown in Fig. 4.

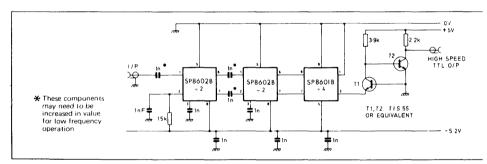


Fig. 4 Divide-by-16 frequency scaler

SP8000 SERIES HIGH SPEED DIVIDERS

SP8605 B & M 1.0GHz ÷ 2 SP8606 B & M 1.3GHz ÷ 2

The SP8605/6 UHF counters are fixed ratio \div 2 synchronous emitter coupled logic counters with, in e case of the SP8606 a maximum operating frencery in excess of 1.3GHz, over a temperature range $^{\circ}$ 0° C to 70° C (B Grade) and $^{\circ}$ 40° C to $^{\circ}$ 85° C (M rade). The input is normally capacitively coupled if the signal source but can be DC coupled if it is quired. The two complementary emitter follower stputs are capable of driving 100-ohm lines and terfacing to ECL with the same positive supply. The P8605/6 require supplies of OV and $^{\circ}$ 5.2V \pm 0.25V).

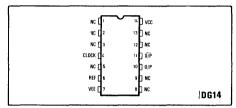


Fig. 1 Pin connections

EATURES

- DC to 1.3GHz Operation
- 0°C to 70°C (B Grade) and —40°C to +85°C (M Grade) Operation Guaranteed at Maximum Specified Frequency and Over a Wide Dynamic Input Range.
- Complementary Emitter Follower O/Ps.
- ECL III Compatible.

ABSOLUTE MAXIMUM RATINGS

Power supply voltage IVcc — VEEI 10V Input voltage VINac 2.5V p — p
Output current Storage temperature range —55° C to +150° C
Maximum operating junction temperature +150° C

PPLICATIONS

- UHF Instrumentation, including Counters and Timers.
- Prescaling for UHF Synthesisers.

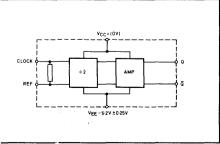


Fig. 2 Functional diagram

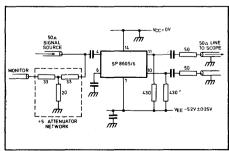


Fig. 3 Toggle frequency test circuit

SP8605/6

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

T_{amb}: B Grade 0° C to +70° C M Grade -40° C to +85° C

Supply voltage Vcc = OV

 $Vee=-5.2V\pm0.25~V$

Input voltage 400 - 1000mV p - p

Characteristic	Type		Value		Units	Conditions
		Min.	Тур.	Max.]	
Max. toggle frequency	SP8606B SP8605B	1.3 1.0			GHz GHz	
Min. toggle frequency for correct operation with sine wave input	All			150	MHz	Vin=600mv to 1.0v p-p
Min. slew rate for sq. wave input to guarantee operation to 0Hz.	All			200	V//us	
Output voltage swing	All	500	600		mV	430 Ω to Vee
Power supply drain current	All		70	100	mA	VEE≕−5.45V, No load

TOGGLE FREQUENCY TEST BOARD LAYOUT

- 1. All connections to the device are kept short.
- 2. The capacitors are leadless ceramic types.
- In practice, the device is tested in an Augat 14 lead DIL socket which degrades the performance slightly. If the device is mounted in low profile socket or soldered into a printed circuit board, the specified performance will be exceeded.

OPERATING AND APPLICATION NOTE

The SP8605/6 dividers are very simple to use but normal high frequency rules should be followed for optimum performance, for example, all connections should be kept short, the capacitors and resistors should be types suitable for the frequencies involved.

The input is normally capacitively coupled to the signal source. There is an internal 400 ohm resistor connecting the input to a reference voltage; this biases the input in the middle of the transfer characteristic. The reference voltage is brought out onto pin 6, which should be decoupled to the earth plane. This

decoupling completes the input signal path to the device and therefore must be very low inductance to optimum performance. The sensitivity of the device call be increased by DC coupling the input signal about earth (see Fig. 4).

Vcc — Vee should be kept inside the specifie 5.2 volts \pm 0.25 volts but the actual value of Vc relative to earth is not very critical and can be varie between 2.7V and 3.3V with only a small effect operformance. A Vcc of about 3.0V is the optimum fc full temperature range operation.

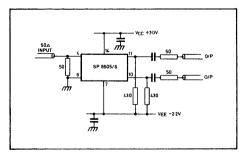


Fig. 4 Circuit for using the input signal about earth potential

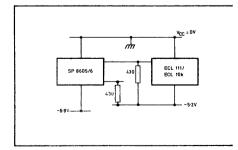


Fig. 5 Interfacing SP8605|6 series to ECL 10K and ECL III

In the absence of an input signal both the DC coupled and the capacitively coupled circuits will self coscillate with an output frequency of approximately 400 MHz. This can be prevented by connecting a 10Kohm resistor between the input and the negative rail. This offsets the input sufficiently to stop the oscillation but it also reduces the input sensitivity by approximately 100 mV.

The SP8605/6 will miscount with low frequency sinewave inputs of slow ramps. A slew rate of 200V//us or greater is necessary for safe operation at low frequencies.

The output can be interfaced to ECL 10K or ECL III

(See Fig. 5.). The unused output should be connected to a load resistor as shown to reduce output distortion.

The input impedance of the SP8605/6 is a function of frequency and minimises at about the same frequency as the maximum input sensitivity, so, although it can load the signal source significantly there is generally enough signal to operate the device satisfactorily when the input impedance is at a minimum. The worst case occurs at the maximum frequency because this is where the input sensitivity is worst.

The SP8605/6 can be used in instrumentation for direct counting applications up to 1.3GHz and in frequency synthesisers.

SP8000 SERIES

HIGH-SPEED DIVIDERS

SP8607 A&B

600 MHz ÷ 2

The SP8607 is a divide-by-2 counter with a minimum guaranteed toggle frequency of 600 MHz over a 0°C to +70°C temperature range. The device is designed for capacitive coupling to the signal source to either of the two inputs and it has two complementary emitter follower outputs. Power dissipation is typically only 70mW with a 5.2V supply.

FEATURES

- 600 MHz Operation
- -55°C to 125°C Guaranteed for 'A' grade
- Only 70mW Dissipation at 5.2V

Fig.. 1 Pin connections

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

Connections as test circuit, Fig. 3

T_{amb}: (A grade) -55°C to +125°C
(B grade) 0°C to +70°C

Supply voltage V_{CC} = 0V

 $V_{EE} = -5.2V \pm 0.25V$

Specified input voltage range: 400 to 800mV p-p

ABSOLUTE MAXIMUM RATINGS

Characteristic		Value		Units	Conditions
	Min	Тур.	Max	Units	Conditions
Max. toggle frequency	600	800		MHz	
Min. input frequency (sine wave)		50		MHz	
Min. slew rate of square wave input for correct operations to OHz Output voltage swing	400	40	100	V/μs mVp-p	V _{EE} = -5.2V, f _{in} = 600 MHz
Output voltage levels VOH		-0.75		v	f _{in} = OHz
V _{OL} Input impedance		-1.5 400		ν Ω	f _{in} = OHz
O/P pulldown resistors		4.0		kΩ	iii -
Bias voltage level		-2.6		V	2.7k Ω resistor
Power supply drain current		14	18	v	from pin 3 to V _{CC} V _{EE} = −5·2V

SP8607

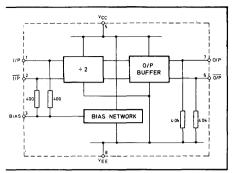


Fig. 2 SP8607 block diagram

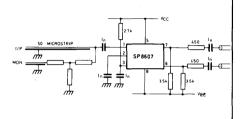


Fig. 3 Test circuit for SP8607

OPERATING NOTES

All components used with the SP8607 should be uitable for the frequencies involved, resistors and apacitors should be of low inductance types and interminated loads should be kept short to minimise incounted reflections. The test circuit uses positive earth because this minimises noise problems and the danger of incidently shorting the O/P transistors to a negative voltage. However, the device will operate satisfactorily and to the specification, with a negative earth provided that the positive supply is well decoupled to the UHF earth.

There are two complementary inputs connected to an nternally-generated temperature-compensated bias point ria two 400 ohm resistors. The signal source would normally be capacitively coupled to one of the inputs and the other should be decoupled to earth. If two complementary input signals are available (when cascading \$\text{978607s}\$ for example) both inputs should be used

The input signal can be directly connected to the device either by using a voltage dropping network or by using split power supplies (see Fig. 4). In this mode the device is very olerant of the actual values of V_{CC} and V_{EE} although $V_{CC} - V_{EE}$ should stay within $5.2V \pm 0.25V$. A $2.7k\Omega$ esistor is connected from V_{CC} to the bias pin in the test circuit because this greatly improves the device's ability to operate with large input signals

It is important that pins 2 and 3 are decoupled by a apacitor in the range $100-1000 \mathrm{pF}$ because device ensitivity can be reduced by decoupling to a poor earth

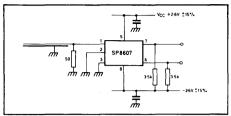


Fig. 4 Direct coupling using split power supplies

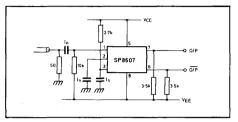


Fig. 5 SP8607: with input pulldown resistor

In the absence of an input signal, or if the input signal is of very low amplitude, the device may give an output signal of about 250 MHz. This is due to the balanced nature of the internal ÷2 circuit and can be stopped if required by connecting a 10 kohm resistor between the input and the negative rail. (See Fig. 5). This causes a drop in sensitivity of about 100 mV but typical devices still easily meet the 400 — 800 mV input amplitude specification. With sine wave inputs below 50MHz the SP8607 miscounts because the slew rate of the input signal is too slow. Below this frequency a square wave input is needed with a slew rate of 100V/µ or more.

Fig. 6 Typical operating characteristic

SP8000 SERIES

SP8608 B & M 1.0GHz ÷ 2 SP8609 B & M 1.3GHz ÷ 2

The SP8608/9 UHF counters are fixed ratio $\div 2$ asynchronous emitter coupled logic counters with, in the case of the SP8609 a maximum operating frequency in excess of 1.3GHz. The input is normally capacitively coupled to the signal source but can be DC coupled if it is required. The two complementary emitter follower outputs are capable of driving 100-ohm lines and interfacing to ECL with the same positive supply. The SP8608/9 require supplies of OV and -6.8V ($\pm 0.35V$).

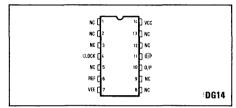


Fig. 1 Pin connections

FEATURES

- DC to 1.3GHz Operation
- 0°C to 70°C (B Grade) and —40°C to +85°C (M Grade) Operation Guaranteed at Maximum Specified Frequency and Over a Wide Dynamic Input Range.
- Complementary Emitter Follower O/Ps.
 ECL III Compatible.

APPLICATIONS

- UHF Instrumentation, including Counters and Timers.
- Prescaling for UHF Synthesisers.

ABSOLUTE MAXIMUM RATINGS

Power supply voltage | Vcc - Vee| 10V |
Input voltage | VINac 2.5V p - p |
Output current | 15mA |
Storage temperature range | -55° C to +150° C |
Maximum operating junction temperature +150° C

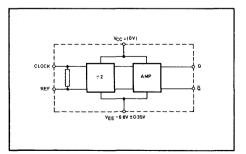


Fig. 2 Functional diagram

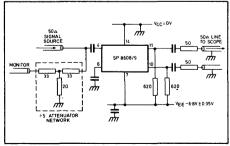


Fig. 3 Toggle frequency test circuit

SP8608/9

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

 T_{amb} : B Grade 0° C to +70° C M Grade -40° C to +85° C

Supply voltage Vcc = 0V

 $V_{EE} = -6.8V \pm |0.35V|$ Input voltage 400 to 1000mV p-p

Characteristic	Type		Value		Units	Conditions
		Min.	Тур.	Max.		
Max. toggle frequency	SP8608B & M SP8609B & M	1.3 1.0			GHz GHz	
Min. toggle frequency for correct operation with sine wave input	All			150	MHz	Vin=600mv to 1.0v p-p
Min. slew rate for sq. wave input to guarantee operation to 0Hz.	All			200	V/µs	
Output voltage swing	All	500	600		mV	620 Ω to VEE
Power supply drain current	All		70	100	mA	VEE= -7.15V No load

OGGLE FREQUENCY TEST BOARD LAYOUT

- . All connections to the device are kept short.
- The capacitors are leadless ceramic types.
- . In practice, the device is tested in an Augat 14 lead DIL socket which degrades the performance slightly. If the device is mounted in a low profile socket or soldered into a printed circuit board, the specified performance will be exceeded.

OPERATING AND APPLICATION NOTE

The SP8608/9 dividers are very simple to use but normal high frequency rules should be followed for pytimum performance, for example, all connections should be kept short, the capacitors and resistors should be types suitable for the frequencies involved.

The input is normally capacitively coupled to the signal source. There is an internal 400 ohm resistor connecting the input to a reference voltage; this classes the input in the middle of the transfer characteristic. The reference voltage is brought out onto pin 6, which should be decoupled to the earth plane. This

decoupling completes the input signal path to the device and therefore must be very low inductance for optimum performance. The sensitivity of the device can be increased by DC coupling the input signal about earth (see Fig. 4).

Vcc — VEE should be kept inside the specified 6.8 volts \pm 0.35 volts but the actual value of Vcc relative to earth is not very critical and can be varied between 4.2V and 5.0V with only a small effect on performance. A Vcc of about 4.6V is the optimum for full temperature range operation.

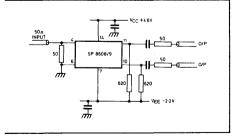


Fig. 4 Circuit for using the input signal about earth potential

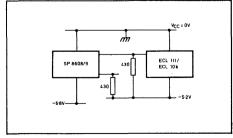


Fig. 5 Interfacing SP8608/9 series to ECL 10K and ECL III

In the absence of an input signal the devices will self oscillate with an output 'frequency of approximately 400 MHz. This can be prevented by connecting a 10Kohm resistor between the input and the negative rail. This offsets the input sufficiently to stop the oscillation but it also reduces the input sensitivity by approximately 100 mV.

The SP8608/9 will miscount with low frequency

The SP8608/9 will miscount with low frequency sinewave inputs of slow ramps. A slew rate of $200V//\mu s$ or greater is necessary for safe operation at low frequencies.

The output can be interfaced to ECL 10K or ECL III

(See Fig. 5.). The unused output should be connected to a load resistor as shown to reduce output distortion.

The input impedance of the SP8608/9 is a function of frequency and minimises at about the same frequency as the maximum input sensitivity, so, although it can load the signal source significantly there is generally enough signal to operate the device satisfactorily when the input impedance is at a minimum. The worst case occurs at the maximum frequency because this is where the input sensitivity is worst.

The SP8608/9 can be used in instrumentation for direct counting applications up to 1.3GHz and in frequency synthesisers.

SP8000 SERIES HIGH SPEED DIVIDERS

SP8610B & M 1.0GHz ÷ 4 SP8611 B & M 1.5GHz ÷ 4

The SP8610/11 UHF counters are fixed ratio $\div 4$ asynchronous emitter coupled logic counters with, in the case of the SP8611B, a maximum operating frequency in excess of 1.5GHz over a temperature range of 0°C to $+70^{\circ}\text{C}$. The input is normally capacitively coupled to the signal source but can be DC coupled if it is required. The two complementary emitter follower outputs are capable of driving $100\,\Omega$ lines and interfacing to ECL with the same positive supply. The SP8610/[11] require supplies of 0V and -5.2V $(\pm 0.25V)$.

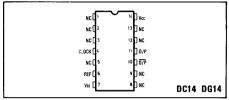


Fig. 1 Pin connections

FEATURES

- DC to 1.5GHz operation
- O°C to +70°C (B grade) and —40°C to +85°C (M grade) Operation Guaranteed at Maximum Specified Frequency and Over a Wide Dynamic Input Range
- Complementary Emitter Follower O/Ps, ECL III Compatible.

APPLICATIONS

- UHF Instrumentation, including Counters and Timers
- Prescaling for UHF Synthesisers

QUICK REFERENCE DATA

- $Vcc = OV Vee = [-5.2V] \pm 0.25V$
- Input Voltage Range 400mV to 1.0V
- Output Voltage Swing 600mV Typ.

ABSOLUTE MAXIMUM RATINGS

Power supply voltage VCC — VEE 10V Input voltage VINac 2.5V p—p Output current 15mA Storage temperature range Maximum operating junction temperature +150°C

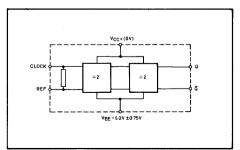


Fig. 2 Functional diagram

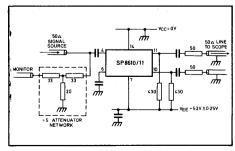


Fig. 3 Toggle frequency test circuit

SP8610/11

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
Tamb 0°C to +70°C ('B' Grade)
--40°C to +85°C ('M' Grade)

Supply voltage Vcc=0V

Input voltage

 $VEE = 5.2V \pm 0.25V$ 400 to 1000mV

Characteristic	Time		Value			0
	Туре	Min.	Тур.	Max.	Units	Conditions
Max. toggle frequency	SP8611B SP8611B SP8610B	1.3 1.5 1.0			GHz GHz GHz	V _{NI} =400mV to 1V p-p V _{IN} =800mV to 1V p-p V _{IN} =400mV to 1V p-p
Min. toggle frequency for correct operation with sine wave input	All			150	MHz	VIN=600mV to IV p-p
Min. slew rate for square wave input to guarantee operation to OHz	All			200	V/μs	
Output voltage swing	All	500	600		m∨	
Power supply drain current	All		70	100	mA	VEE =5.45V No load

TOGGLE FREQUENCY TEST BOARD LAYOUT

OPERATING AND APPLICATION NOTE

The SP8610 /11 dividers are very simple to use but normal high frequency rules should be followed for optimum performance. For example, all connections should be kept short and the capacitors and resistors should be types suitable for the frequencies involved.

The input is normally capacitively coupled to the signal source. There is an internal 400 Ω resistor connecting the input to a reference voltage; this biases the input in the centre of the transfer characteristic. The reference voltage is brought out onto pin 6, which should be decoupled to the ground plane. This decoupling completes the input signal path to the device and therefore must be very low inductance for optimum performance. The sensitivity of the device can be increased by DC coupling the input signal about ground (see Fig. 4).

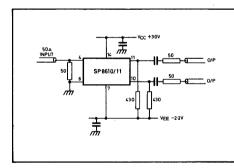


Fig. 4 Circuit for using the input signal about ground

^{1.} All connections to the device are kept short.

^{2.} The capacitors are leadless ceramic types.

^{3.} In practice, the device is tested in an Augat 14 lead DIL socket which degrades the performance slightly. If the device is mounted in a low profile socket or soldered into a printed circuit board, the specified performance will be exceeded.

 $|\mbox{Vcc} - \mbox{Vee}|$ should be kept inside the specified $5.2V \pm 0.25V$ but the actual value of Vcc relative to ground is not very critical and can be varied between 2.7V and 3.3V with only a small effect on performance. A Vcc of about 3.0V is the optimum for full temperature range operation.

In the absence of an input signal both DC coupled and capacitively coupled circuits will self-oscillate with an output frequency of approximately 200MHz. This can be prevented by connecting a $10 \mathrm{k}\,\Omega$ resistor between the input and the negative rail. This offsets the input sufficiently to stop the oscillation but it also reduces the input sensitivity by approximately 100mV.

The SP8610/11 will miscount with low frequency sinewave inputs or slow ramps. A slew rate of 200V/µs or greater is necessary for safe operation at low

frequencies.

The output can be interfaced to ECL10K or ECL III (see Fig. 5).

The input impedance of the SP8610/11 is a function of frequency and minimises at about the same frequency as the maximum input sensitivity. So, although it can load the signal source significantly, there is usually enough signal to operate the device satisfactorily when the input impedance is at a minimum. The worst case occurs at the maximum frequency because this is when the input sensitivity is worst.

The SP8610/11 can be used in instrumentation for direct counting applications up to 1.5GHz and in

frequency synthesisers.

In a frequency synthesiser the SP8610/11 and the SP8643 can be used together (see Fig. 6).

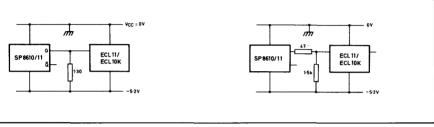


Fig. 5 Interfacing SP8610/11 to ECL10K and ECL III

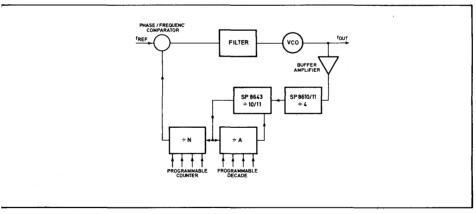


Fig.6 A 1.5GHz synthesiser loop

SP8000 SERIES HIGH SPEED DIVIDERS

SP8619B & M 1.5GHz ÷ 4 SP8617B & M 1.3GHz ÷ 4

The SP8619 series of UHF counters are fixed ratio $\div 4$ asynchronous emitter coupled logic counters with, in the case of the SP8619B a maximum operating frequency in excess of 1.5GHz. The input is normally capacitively coupled to the signal source but can be DC coupled if it is required. The two complementary emitter follower outputs are capable of driving 100 ohm lines and inter facing to ECL with the same positive supply. The SP8619 series require supplies of 0V and - 6.8V (\pm 0.35V).

Fig. 1 Pin connections

FEATURES

- DC to 1.5GHz Operation
- O°C to 70°C (B Grade) and —40°C to +85°C (M Grade) Operation Guaranteed at Maximum Specified Frequency and Over a Wide Dynamic Input Fange.
- Complementary Emitter Follower O/Ps, ECL10K and ECL1II Compatible

APPLICATIONS

- UHF Instrumentation, Including Counters and Timers
- Prescaling for UHF Synthesisers

QUICK REFERENCE DATA

- $Vcc = OVVee = -6.8V \pm 0.35V$
- Input Voltage Range 400mV to 1.2V p-p
- Temperature Range 0°C to +70°C
- Output Voltage Swing 800mV Typ.

ABSOLUTE MAXIMUM RATINGS

Power supply voltage |V_{CC}—V_{EE}|10V |
Input voltage V_{INec} 2.5V p-p
Output current 15mA
Storage temperature range —55°C to +150°C
Maximum operating function temperature +150°C

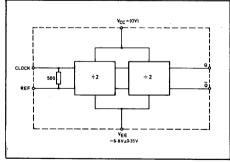


Fig. 2 Functional diagram

3P8617/9

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated)

T_{amb}: B Grade 0° C to +70° C
M Grade -40° C to +85° C
Supply voltage Vcc = 0V

 $V_{EE} = -6.8V \pm 0.35V$ Input voltage 400 to 1200mV p-p

Characteristic	_ Value				11	0 111	
Characteristic	Туре	Min.	Тур.	Max.	Units	Conditions	
Max. toggle frequency	SP8619 SP8617	1.5 1.3			GHz GHz		
Min. toggle frequency for correct operation with sine wave input	All			150	MHz	V _{IN} = 600mV to 1.2Vp-p	
Min. toggle frequency for correct operation with sine wave input Min slew rate for square	All			100	MHz	V _{IN} = 800mV to 1.2Vp-p	
wave input to guarantee operation to 0Hz Output voltage swing Power supply drain current	All All All	600	800 80	200 110	V/μs mV mA	V _{EE} = -7.15V	

Toggle Frequency Test Board Layout

- . All connections to the device are kept short
- 2. The capacitors are leadless ceramic types
- 3. In practice, the device is tested in an Augat 14 lead IIL socket which degrades the performance slightly. If he device is mounted in a low profile socket or soldered nto a printed circuit board, the specified performance vill be exceeded.

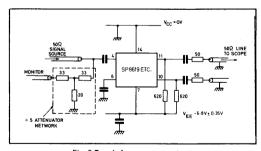


Fig. 3 Toggle frequency test circuit

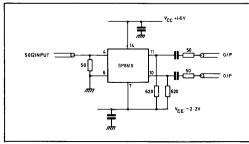


Fig. 4 Circuit for using the input signal about earth potential

OPERATING AND APPLICATION NOTE

The SP8619 series of dividers are very simple to use but normal high frequency rules should be followed for optimum performance - for example, all connections should be kept short and the capacitors and resistors should be types suitable for the frequencies involved.

The input is normally capacitively coupled to the signal source. There is an internal 400 ohm resistor connecting the input to a reference voltage; this biases the input in the middle of the transfer characteristic. The reference voltage is brought out onto pin 6, which should be decoupled to the earth plane.

The sensitivity of the device can be increased by DC coupling the input signal about earth (see Fig. 4).

 $|V_{\rm CC}-V_{\rm EE}|$ should be kept inside the specified 6.8V ± 0.35 V but the actual value of $V_{\rm CC}$ relative to earth is not very critical and can be varied between 4.2V and 5.0V with only a small effect on performance. A $V_{\rm CC}$ of about 4.6V is the optimum for full temperature range operation.

In the absence of an input signal both the DC coupled and the capacitively coupled circuits will self-oscillate with an output frequency of approximately 300MHz.

This can be prevented by connecting a 10k ohm resistor between the input and the negative rail. This offsets the input sufficiently to stop the oscillation but it also reduces the input sensitivity by approximately 100mV.

The SP8619 will miscount with low frequency sinewave inputs or slow ramps. A slew rate of 200V/µs or greater is necessary for safe operation at low frequencies.

The output can be interfaced to ECL 10K or ECL III (see Fig. 5).

The input impedance of the SP8619 is a function of frequency and minimises at about the same frequency as the maximum input sensitivity, so, although it can load the signal source significantly there is usually enough signal to operate the device satisfactorily when the input impedance is at a minimum input signal requirement. The worst case occurs at the maximum frequency because this is where the input sensitivity is worst.

The SP8619 series can be used in instrumentation for direct counting applications up to 1.5GHz and in frequency synthesisers.

In a frequency synthesiser, the SP8619 and the SP8643 can be used together (see Fig. 6).

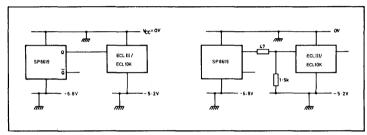


Fig. 5 Interfacing SP8619 series to ECL 10K and ECL III

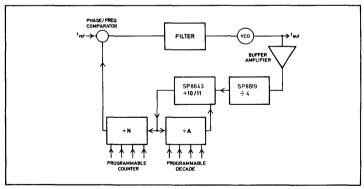


Fig. 6 A 1.5GHz synthesiser loop

SP8000 SERIES

HIGH SPEED DIVIDERS

+5 COUNTERS

SP8620 A&B

(400MHz)

The SP8620 is a fixed ratio emitter-coupled paic ÷5 counter with specified input frequency ange of DC to 400MHz. The operating temprature is specified by the final coding letter: -55°C to +125°C ('A' grade), 0°C to +70°C B' grade).

The counter is normally capacitively oupled to the signal source and is specified /ith an input signal range of 400-800mv p-p -4dBm to +22dBm). There are two bias points n the circuit that should be capacitively deoupled to the ground plane.

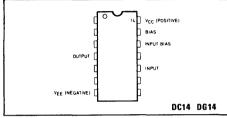


Fig. 1 Pin connections (bottom view)

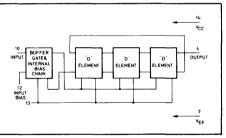


Fig.2 Circuit diagram (all resistor values are nominal)

FEATURES

- D.C. to 400MHz Operation.
- Temperature Ranges of --55°C to +125°C ('A' Grade), 0°C to +70°C ('B' Grade) Over Full Specified Input Range and Frequency

APPLICATIONS

- Frequency Counters and Timers
- Frequency Synthesisers

LECTRICAL CHARACTERISTICS

Test Conditions (unless otherwise stated)

Tamb:

'A' grade: -55°C to +125°C 'B' grade: 0°C to +70°C

ABSOLUTE MAXIMUM RATINGS Power supply voltage $|V_{CC} - V_{EE}|$ Input voltage VIN

Not greater than supply

Output current IOUT Operating junction temperature Storage temperature

15mA +150°C

-55° to +150°C

Characteristic	_		Value			Conditions
	Туре	Min.	Тур.	Max.	Units	
Max. input frequency	SP8620	400			MHz	
Min. input frequency with sinusoidal input			20	40	MHz	
Min. slew rate of square wave input for correct operation			30	100	V/μS	
Output voltage swing		400	800		mV	V _{FF} = -5.2V
Power supply drain current			55	70	mA	$V_{EE} = -5.2V$ $V_{EE} = -5.2V$

SP8620

OPERATING NOTES

It is recommended that a positive earth plane is used for the circuit layout, thus preventing damage if the output is short-circuited to earth.

The signal source is normally capacitively coupled to the input (see Fig. 3). A 1000pF capacitor is suitable at high frequencies, but if lower frequency operation is also required, say below 10MHz, then an additional capacitor should be connected in parallel: The device can be DC coupled if it is required — see Fig. 4.

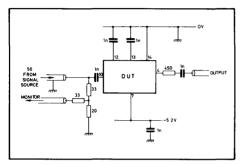


Fig.3 Test circuit

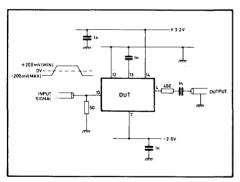


Fig.4 Divide by 16 frequency scaler

The circuit may self oscillate when there is no input signal or when the input signal is well below the specified input signal. This can be prevented by connecting a 15k Ω resistor between the input and the negative rail. This causes a loss in sensitivity of up to 100mV p-p.

The input waveform may be sinusoidal, but below about 20MHz the circuit tends to malfunction on minimum amplitude input signals and the condition becomes worse at the frequency is decreased. This is because correct operation of the circuit depends on the slew rate of the input signal. A square wave input with a slew rate greater than 100V/uS ensures correct operation down to DC.

The output swing of the devices can be significantly increased by the addition of a DC load on the emitter follower output. For instance, the maximum DC load of $1.5k\Omega$ will give an increase of typically 50% in output swing with no effect on input drive level or maximum operating frequency. This allows the SP8620 devices to interface directly to ECL II devices with no loss in noise immunity. If the devices are required to interface to ECL III or ECL 10,000 then an interface similar to Fig. ξ should be used.

The values of the decoupling capacitors are not critical but they should be of a type suitable for the frequencies involved.

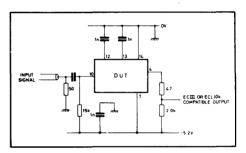


Fig. 5 Interfacing to ECL III or ECL 10,000

SP8000 SERIES HIGH SPEED DIVIDERS

SP8627 ÷ 80

SP8628 ÷ 100 (WITH RESET)

SP8629 ÷ 100

150 MHz PRESCALERS

The SP8629 is a fixed ratio ECL + 100 counter with minimum guaranteed toggle frequency of 150MHz /er a -30°Cito +70°C temperature range. The device in operate in the single-ended or differential input ode, and is typically capacitively coupled to the gnal source. An input amplifier is included to allow se of extremely small amplitude high frequency signals. ne output of the device is similar to Low Power chottky TTL and produces a square wave of frequency $_{\rm ut} = f_{\rm in}/100$.

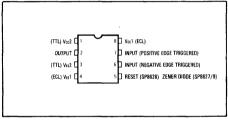
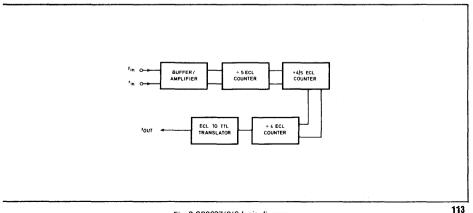



Fig. 1 Pin connections

EATURES

- I Low Power 170mW typica
- I High Frequency, DC to 150MHz, Small Input Amplitude
- | Single Supply Operation 5.2 $v \pm 10\%$
- Count Down Sequence avoids FM IF Harmonics
- **ECL Dividers reduce Switching Transients**
- ÷4 Reset on SP8628 Reduces Jitter on Frequency Display Systems

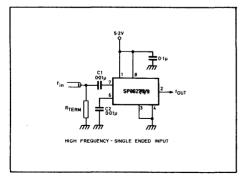
ABSOLUTE MAXIMUM RATINGS

Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The table of Electrical Characteristics provides conditions for actual device operation.

Power Supply Voltage |Vcc - VEE| Input Voltage Vin (DC) not greater than supply voltage Output voltage Vour 5.5V Output current lout 40mA Zener current 17 20mA 150°C Operating Junction temperature

Storage temperature range —30°C to +85°C

ELECTRICAL CHARACTERISTICS


Test conditions (unless otherwise stated): Supply voltage V_{CC} : + 5.2V \pm 0.52V, V_{EE} : OV, T_{amh} : 25°C

[Value			
l	Characteristic	Symbol	Min.	Тур.	Max.	Units	Conditions
	Maximum input frequency	f _{max}	150	200		MHz	$V_{CC} = 5.2V$, $V_{IN} = 600$ m $Vp - p$, single ended
ı	Input voltage	V _{IN} 1	200		1000	mVp -p	V _{CC} = 5.2V, single ended
ı	Input voltage	V _{IN} 2	100		1000	mVp −p	Vcc = 5.2V, differential
	Minimum input frequency with sine wave	f _{sine}	10			MHz	$V_{CC} = 5.2V$, $V_{IN} = 600 \text{mVp} - \text{p}$
ı	Minimum slew rate of						
١	square wave input;	dv/dt			50	V/µs	$V_{CC} = 5.2V$, $V_{IN} = 600$ m V p $-$ p
ļ	Logic 1 output voltage	Voн	2.4			V	$V_{cc} = Min$, $I_{OH} = -400/\mu A$
١			2.0			V	$V_{CC} = Min, I_{OH} = -1.6mA$
١	Output short circuit current		-10		-40	mA	Vcc = Max
ł	Logical 0 output voltage	Nor .			0.5		Vcc = Min, IoL = 8mA
ł	Supply current	Icc		33	45	mA	V _{CC} = Max
	Zener voltage, pin 5 (SP8627/9)	Vz		6.3		V	Iz = 5mA (see note 2)
ı	Reset input voltage						
1	(SP8628)	VIN(LO)			0.5	Ιv	
ı	(0. 5525)				0.5	1	
ı	Booot immust ausmant	V _{IN(HI)}	2.4			V	
	Reset input current (SP8628)	I _{IN}			- 1.6	mA	V _{IN} = 0.5V

NOTE

All currents into device pins shown as positive, out of device pins negative, all voltage referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

TYPICAL APPLICATIONS

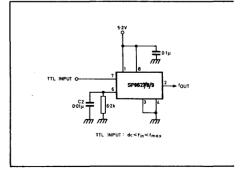


Fig. 3 High frequency, single-ended input

Fig. 4 TTL input (DC<fin<fmax)

PERATING NOTES.

Two ground and two V_{CC} connections are provided, eparating the ECL stages from the TTL section, solating the noise transients inherent in the TTL tructure. In most cases, shorting the two grounds to a lood ground plane and the V_{CC} to a wide V_{CC} bus vill provide sufficient isolation. All components used 1 the circuit layout should be suitable for the requencies involved and leads should be kept short to ninimise stray inductance.

The signal source is usually capacitively coupled to he input as shown in Fig. 3. In the single-ended mode a apacitor of $0.01\,\mu\text{F}$ (C2) should be connected between he unused input and the ground plane to provide a lood high frequency bypass. The capacitor should be ncreased at lower frequencies. If the input is likely to e interrupted, it may be desirable to connect a $100 \, \text{K} \, \Omega$ esistor between an input and ground. In the single inded mode it is preferable to connect the resistor to he unused input. The addition of the $100 \, \text{K} \, \Omega$ resistor auses a loss of input sensitivity, but prevents circuit scillations under no signal (open circuit) conditions.

The input waveform will normally be sinusoidal but elow 10MHz correct operation depends on the slew ate of the input signal. A slew rate of 50V/µs will nable the device to operate down to DC. The device vill operate with a TTL input signal as shown in Fig. 4 nd is DC coupled to the input.

The device can be used in phase locked loop pplications such as FM radio or other communications ands to prescale the input frequency down to a nore useable level. A digital frequency display system an also be derived separately or in conjunction with a hase locked loop, and it can extend the useful range f many inexpensive frequency counters to, typically, DOMHz

The on-chip Zener diode allows a simple stabilised lower supply to be constructed with the addition of a sw extra external components, as shown in Fig. 5, to he SP8627/9. The SP8628 has a reset facility on pin 5. his input acts as a data inhibit to the final divide-by-our when a high level is applied (or the input is left open circuit).

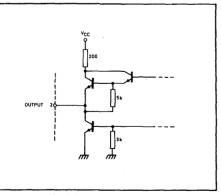


Fig. 7 Output circuit diagram

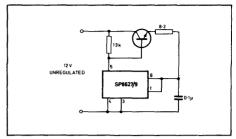


Fig. 5 Voltage regulator

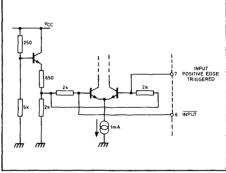


Fig. 6 Input circuit diagram

SP8000 SERIES HIGH SPEED DIVIDERS

SP8630 A&B

600MHz DECADE COUNTER

GENERAL DESCRIPTION

The SP8630 counter is a fixed ratio ÷ 10 circuit using emitter coupled logic, with maxinumspecified counting frequencies of 600 MHz over temperature ranges of -55°C to +125°C, 0°C to 70°C. A 6:4 mark/space square wave is provided at the emitter follower output. The input is normally single driven and capacitively coupled to the signal source. There are two bias points on the circuit which should be capacitively coupled to the ground plane.

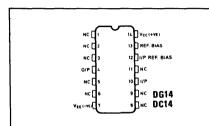
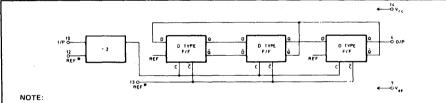



Fig. 1 Pin connections

- 1. All reference levels are internally generated and temperature compensated.
- Reference points marked * are bonded out and should be decoupled with a capacitor of between 15 and 1000pF

ELECTRICAL CHARACTERISTICS

Fig. 2 Block diagram

Test conditions (unless stated otherwise):

-55°C to +125°C Tamb: 'A' grade 0°C to +70°C 'B' grade

Operating supply voltage

Vcc

VEE

 $-5.2V \pm 0.25V$

Input voltage

Output load

400 to 800 mV (p-p)

500Ω & 3pF.

NOTE: The maximum input frequency is guaranteed a $V_{FF} = -5.2V$. For typical operating characteristics with power supply variations see Fig.5, which shows that the maximum operating frequency of a typical device increas with increasing power supply voltage

		Value				
Characteristic	Туре	Min	Тур	Max	Units	Conditions
Max input freq.	SP8630	600			MHz	
Min input freq: with	1		20	40	MHz	
sinusoidal input	1 1		Į.	l	!!	
Min. slew rate of square			30	100	V/μs	
wave I/P for correct	1 1		Į .	l		
operation			i			
Output voltage swing	1 1	400	600	ļ	mV	VEE = -5.2V
Power supply drain current	1 1		70	95	mA	VEE = -5.2V

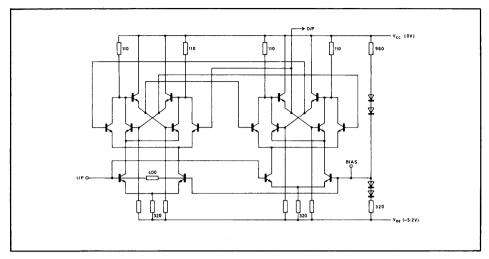


Fig. 3 Circuit diagram of 1st element (-2) showing input biasing arrangement

OPERATING NOTES

It is recommended that a positive earth plane be used for the circuit layout, thus preventing damage if the emitter follower outputs are inadvertantly shorted to ground.

The signal source is normally capacitively coupled to the input: 1000 pF is usually sufficient. If the input signal is likely to be interrupted a 15 k ohm resistor should be connected between the input pin and the negative rail to prevent circuit oscillation under no-signal conditions. The addition of the pulldown resistor causes a slight loss of sensitivity of the device, but this does not normally cause problems in practice.

The input waveform may be sinusoidal, but below 40 MHz the operation of the circuit becomes dependent on the slew rate of the waveform rather than the amplitude, A square wave input with a slew rate of $100 \text{ V/}\mu\text{s}$ will allow correct operation down to DC. At high frequencies, increasing drive level above minimum typically increases the max. operating frequency by up to 25%

The output swing of the device can be significantly increased by the addition of a DC load on the emitter follower output. For instance, the maximum DC load of 1.5k ohms will give an increase of typically 50% in output swing with no effect on input drive level or maximum operating frequency. This allows the SP8630 device to drive directly into ECL II devices withino loss in noise immunity.

The value of capacitance needed for the decoupling capacitors is not critical. Values down to 15 pF have been found satisfactory in practice.

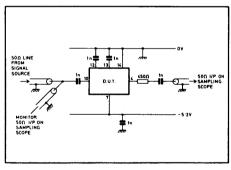


Fig. 4 Test circuit

Test Circuit Notes

The values of the coupling and decoupling capacitors are uncritical but they should be of a type and value suitable for the frequencies involved.

All connections should be physically short when not in a 50Ω environment to minimise reflections due to mismatching.

The +ve pin should be connected to a low impedance earth plane to minimise feed-through of the input signal to the output.

Typical Operating Characteristics

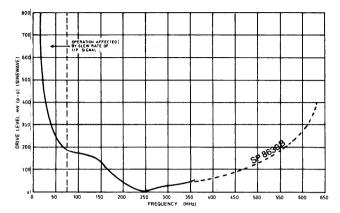


Fig. 5 Minimum drive level v. input frequency at 125 C

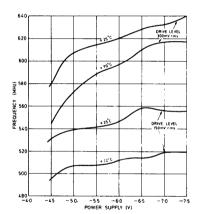


Fig. 6 Max. operating frequency v. power supply voltage for a typical SP8630B

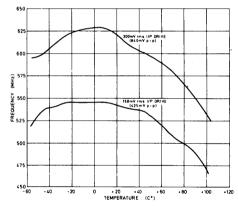


Fig. 7 Max. operating frequency v. ambient temperature for a typical SP8630B (Vcc = -5.2V)

APPLICATION NOTES

Direct coupling to the SP8630

It can be seen from the circuit diagram that the input arrangement of the SP8630 series is not compatible with the normal ECL logic levels. The input reference level is approximately -3.2 volts but it is not well defined and has a temperature coefficient of approximately -1.6 mV/°C. If DC coupling is required, the input would have to be larger than would be the case with capacitive coupling.

ABSOLUTE MAXIMUM RATINGS

Power supply voltage VCC - VEE

VCC - VEE

8V. Not greater than the supply voltage in use 15 mA

Output current IOUT
Operating junction
temperature

+150°C

Storage temperature

-55°C to +150°C

SP8000 SERIES **HIGH SPEED DIVIDERS**

SP8634B

÷ 10 700 MHz

The SP8634B, is a divide-by-ten circuit th binary coded decimal outputs for operaon from DC up to specified input frequencies 700 MHz, over a guaranteed temperature nge of 0° C to +70 $^{\circ}$ C.

These devices, optimised for counter applications in tems using both ECL and TTL, are intended to be erated between 0V and -5.2V power rails and to interface with TTL operating between OV and +5V. The BCD outputs and one of two carry outputs are TTL-compatible, while the second carry output is ECL-compatible. The clock input, which is normally capacitively coupled to the signal source, is gated by an ECL III/ECL 10k-compatible input. The TTL-compatible reset 'orces the 0000 state regardless of the state of the other inputs.

ATURES

Direct gating capability at up to 700 MHz TTL- compatible BCD outputs

TTL- and ECL-compatible carry outputs Power consumption less than 500 mW

Synthesisers

Timers

Wide dynamic input range PLICATIONS Counters

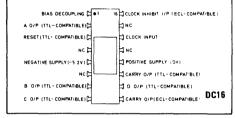


Fig. 1 Pin connections (top)

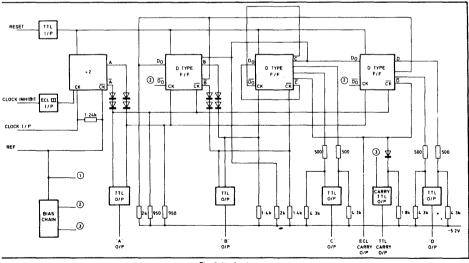


Fig. 2 Logic diagram

SP8634

ELECTRICAL CHARACTERISTICS (All types except where otherwise stated)

Test Conditions (unless otherwise stated)

Tamb

0°C to +70°C

Power Supplies Vcc

oν

VEE

-5.2V ± 0.25V

		Value				
Characteristic	Min. Typ. Max.			Units	Conditions	
Clock Input (pin 14)						
Max. input frequency SP8634B	700			MHz	Input voltage	
Min, input frequency	Ì	Ì			400-800mV p-p	
with sinusoidal I/P			40	MHz		
Min, slew rate of square wave for			100	V/µs		
correct operation down to DC						
Clock inhibit input (pin 16)						
Logic levels]			
High (inhibit)	-0.960			v	$T_{amb} = +25^{\circ}C$	
Low			-1.650	V	(see Note 1)	
Edge speed for correct operation	ł		2.5	ns	10%-90%	
at maximum clock I/P frequency	1					
Reset input (pin 3)	i					
Logic levels	\				1	
High (reset)	See Note 2				i	
Low	100		+0.4	V	Į.	
Reset ON time	100			ns		
TTL outputs ABCD (pins 2,7,8,10)					See Note 3 and Fig.	
Output Voltage			ł	l		
High	+2.4			V	10k Ω resistor and TTL gate from O/P	
Low			+0.4	v	to +5V rail	
TTL carry output (pin 11)						
Output Voltage						
High state	+2.4			v	5kΩ resistor and 3	
	}		}		TTL gates from o/p	
Low			+0.4	V	to 5V rail	
ECL carry output (pin 9)						
Output Voltage						
High	-0.975			V	$T_{amb} = +25^{\circ}C$	
	1				External current	
Low			-1.375	V	= 0mA (See Note 4)	
Power supply drain current		75	90	mA	V _{EE} = 5.2V	

NOTES

The clock inhibit input levels are compatible with ECL III and ECL 10000 levels throughout the temperature range 0°C to +70°C.

For a high state, the reset input requires a more positive input level than the specified worst case TTL VOH of +2.4V. Resetting should be done by connecting a 1.8k Ω resistor from the output of the driving TTL gate and only fanning out to the reset input of the SP8000 series device.

These outputs are current sources which can be readily made TTL-compatible voltages by connecting them to +5V via $10k\Omega$ resistors.

The FCL carry output is compatible with ECL II throughout the temperature range but can be made compatible with ECL III using the simple interface shown in Fig. 3.

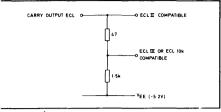


Fig. 3 ECL III/ECL 10000 interfacing

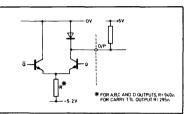


Fig. 4 TTL carry and ABCD output structure

PERATING NOTES

The devices are intended to be used with TTL and ECL 1 a counting system — the ECL and the decade counter eing connected between voltage rails of OV and -5.2V not the TTL between voltage rails of OV and +5.0V. rovided that this is done ECL and TTL compatability is chieved (see Figs. 4 and 5).

The clock is normally capacitively coupled to the signal purce: a 1000pF UHF capacitor is normally adequate. If w frequency operation is required the 1000pF capacitor ould be connected in parallel with a higher value apacitor. The bias decoupling (pin 1) should be connected a earth via a capacitor — preferably a chip type — but in ny case a low inductance type suitable for UHF pplications. The devices normally have an input amplitude perating range far greater than the specified 400 to 00 mV pk/pk. However, if the decoupling capacitor is not f a UHF type, or it is connected to an earth point that has significant impedance between the capacitor and the V_{CC}

connection, then the input dynamic range will suffer and the maximum signal for correct operation will be reduced.

Under certain conditions, the absence of an input signal may cause the device to self-oscillate. This can be prevented (while still maintaining the specified input sensitivity) by connecting a $68k\Omega$ resistor between the clock input and the negative supply. If the transition of either the clock input or the clock inhibit input is slow the device may start to self-oscillate during the transition. For this reason, the input slew rates should be greater than $100 \text{ V}/\mu\text{s}$. It should also be noted that a positive-going transition on either the clock input or the clock inhibit input will clock the device, provided that the other input is in the low state.

The BCD outputs give TTL-compatible outputs (fanout = 1) when a $10k\Omega$ resistor is connected from the output to the +5V rail. In this configuration the outputs will be very slow compared with the clocking rate of the decade and so the state on the BCD outputs can only be determined when the clock has stopped or is inhibited.

The fan out capability of the TTL carry output can be increased by buffering it with a PNP emitter follower. The interface is shown in Fig. 5.

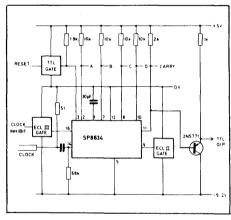


Fig. 5 Typical application configuration

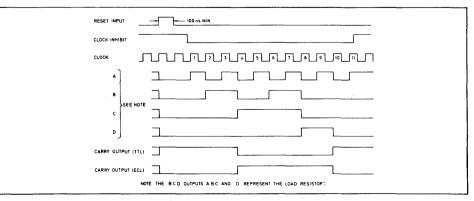


Fig. 6 Decade counter timing diagram

SP8634

ABSOLUTE MAXIMUM RATINGS

Power supply voltage $V_{CC} - V_{EE}$

Clock inhibit voltage Not greater than the supply

8V

voltage in use

Clock input voltage 2V pk/pk

Bias voltage (VOUT) on BCD outputs, $V_{OUT} - V_{EE}$ (10k Ω resistor in series with output)

11V

Bias voltage (VOUT) on TTL carry output, $V_{OUT} - V_{EE}$ (1.2k Ω resistor

in series with output) 11V

Output current from ECL carry

output (IOUT) (Note: the device will be destroyed if the ECL

output is shorted to the 10mA negative rail) +150°C

Operating junction temperature -55°C to +150°C Storage temperature range

QUICK REFERENCE DATA

Power Supplies 0V V_{CC}

 V_{EE} 5.2V ± 0.25V

Range of clock input amplitude 400-800mV p-p Operational temperature range 0° C to $+70^{\circ}$ C

Frequency range with sinusoidal I/P 40-700 MHz

Frequency range with square wave I/P DC to 700 MHz

SP 8000 SERIES HIGH SPEED DIVIDERS

SP 8643A & B₃₅₀ MHz SP 8647 A & B₂₅₀ MHz TTL OUTPUTS

UHF PROGRAMMARI F DIVIDERS +10/11

In frequency synthesis it is desirable to start rogrammable division at as high a frequency as possible, ecause this raises the comparison frequency and so nproves the overall synthesiser performance.

The SP8640 series are UHF integrated circuits that in be logically programmed to divide by either 10 or 11, ith input frequencies up to 350 MHz. The design of very ist fully programmable dividers is therefore greatly mplified by the use of these devices and makes them articularly useful in frequency synthesisers operating in the UHF band.

Inputs and outputs are ECL compatible throughout the

temperature range: the clock inputs and programming inputs are ECL III compatible while the two complementary outputs are ECL II compatible to reduce power consumption in the output stage. ECL 10K output compatability can be achieved very simply however (see Operating Notes). The SP8643/7 feature an additional TTL compatible output.

The division ratio is controlled by two \overline{PE} inputs. The counter will divide by 10 when either \overline{PE} input is in the high state and by 11 when both inputs are in the low state. Both the \overline{PE} inputs and the clock inputs have nominal 4.3k Ω pulldown resistors to V_{EE} (negative rail).

EATURES

- Military and Industrial Variants.
- 350 MHz Toggle Frequency
- Low Power Consumption
- ECL Compatibility on All I/Ps & O/Ps
- Low Propagation Delay
- True and Inverse Outputs
- Optional TTL Output

UICK REFERENCE DATA

Full Temperature Range Operation 'A' Grade −55°C to +125°C 'B' Grade 0°C to +70°C

Supply Voltage

 $|V_{CC} - V_{EE}| 5.2V$

- Power Consumption 250mW Typ.
- Propagation Delay 3ns Typ.

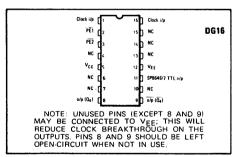


Fig. 1 Pin connections (top)

ABSOLUTE MAXIMUM RATINGS

Supply voltage $V_{CC} - V_{EE}$ Input voltage $V_{in (d.c.)}$

Not greater than the supply voltage in use.

Output current I out
Max. junction temperature

+150°C

20mA

Storage temperature range —55°C to +175°C

Clock Pulse	Qı	Q ₂ Q ₃		Q ₄	TTL O/P
1	L	н	н	н	н
2	L	L	н	Н	н
2 3	L	L.	L	н	н
4	н	L	L	н	н
5	н	н	L	н	н
6	L	н	н	L	L
7	L	L	н	L	L
8	L	L	L	L	L
9	н	L	L	L	L
10	_н	Н	_ L	_ L	_ L_
11	낸	±	고	ᆈ	_ 刊.

PE ₁	PE ₂	Div Ratio
L	L	11
н	L	10
L	н	10
Н	Ħ	10

Table 2 Truth table for control inputs

The maximum possible loop delay for control obtained if the L \rightarrow H transition from Q_4 or the H \rightarrow transition from $\overline{\mathbb{Q}}_4$ is used to clock the stage controlling th ÷10/11. The loop delay is 10 clock periods minus th internal delays of the ÷10/11 circuit.

Extra state

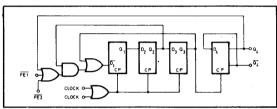


Fig. 2 Logic diagram (positive logic)

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

Tamb: -55 C to -125 C (A grade) 0 °C to --70 °C (B grade)

Supply voltage (see note 1): V_{CC} 0V

V_{EE} -5.2V

Static Characteristics (all SP8640 series devices)

Characteristic		Value		Units	Conditions	
onuractoristic.	Min.	Тур,	Max.		Conditions	
Clock and PE input voltage levels VINH	-1.10		-0.81	v	T _{amb} = +25°C,	
VINL	-1.85		-1.50		see Note 2	
Input pulldown resistance, between pins 1, 2, 3, and 16 and V _{EE} (pin 12)		4.3		ΚΩ	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
Output voltage levels Voh	-0.85			V	T _{amb} = +25°C,	
V _{OL}			-1.50	V	see Note 3. Iout (external) = 0mA (There is an internal circuit	
					equivalent to a $2k\Omega$ pulldown resistor on each output)	
Power supply drain current		50	65	mA	·	

NOTES

- The devices are specified for operation with the power supplies of V_{CC} = 0V and V_{EE} = $-5.2V \pm 0.25V$, which are the normal ECI supply rails. They will also operate satisfactorily with TTL rails of V_{CC} = +5V $\pm 0.25V$ and V_{EE} = 0V. The input reference voltage has the same temperature coefficient as ECL III and ECL 10K.
- The output voltage levels have the same temperature coefficients as ECL II output levels.

ynamic Characteristics

			Value			
Characteristic	Туре	Min.	Тур.	Max.	Units	Conditions
Clock input voltage levels						
VINH	ΑII	-1.10		-0.90	V	T _{amb} = +25°C,
VINL	All	-1.70		-1.50	V	see Note 4
Max. toggle frequency	SP8643 SP8647	350 250			MHz MHz	
Min. frequency with						l l
sinewave clock input	All			50	MHz	
Min. slew rate of square wave input for correct operation		:				
down to DC	ΑÜ			100	V/μs	
Output (ECL)	ΑÙ	500			mVpp	
Propagation delay					1	
(clock input to device output)	All		3		ns	ECL Output
Set-up time	All		1.5		ns	See note 5
Release time	All		1.5		ns	See note 6

OTES

- . The devices are dynamically tested using the circuit shown in Fig. 5. The bias chain has the same temperature coefficient as ECL III and ECL 10K, and therefore tracks the input reference throughout the temperature range. The devices are tested with input amplitudes of 400 and 800 mV p-p about that reference, over the full temperature range.
- . Set-up time is defined as the minimum time that can elapse between a L→H transition of a control input and the next L→H clock pulse transition to ensure that the ÷10 mode is forced by that clock pulse (see Fig. 3).
- '. SP8647 TTL output current = 8mA at VoL = +0.5V, measured at +25°C, temperature coefficient = +0.5mV/°C
- SP8647 Q4 to TTL output delay = 3ns, typical
- The TTL O/P is a free collector and requires a 2k Ω (typ) pull-up resistor. The current taken by this resistor must be included in the 8mA current in Note 7 above.

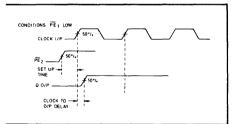


Fig. 3 Set-up timing diagram

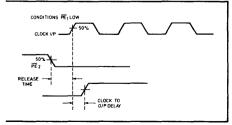


Fig. 4 Release timing diagram

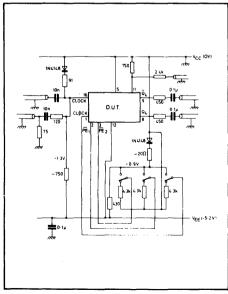


Fig. 5 Test circuit for dynamic measurements

SP8643/7

OPERATING NOTES

The SP8640 range of devices are designed to operate in the UHF band and therefore PCB layouts should comply with normal UHF rules, e.g. non-inductive resistors and capacitors should be used, power supply rails decoupled, etc.

All clock and control inputs are compatible with ECL III and ECL 10K throughout the temperature range. However, it is often desirable to capacitively-couple the signal source to the clock, in which case an external bias network is required as shown in Fig. 6.

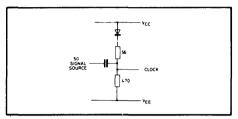


Fig. 6 Recommended input bias configuration for capacitive coupling to a continuous 50 Ω signal source.

The ÷10/11 can be controlled by a TTL fully programmable counter, provided that delays within the loop are kept to a minimum. The outputs and control inputs must therefore interface to TTL. The input TTL to ECL interface is accomplished with two resistors as shown in Fig. 7. The output ECL to TTL interface has been provided on chip in the SP8646/7. A discrete interface may be constructed as shown in Fig. 7. Both output interfaces will operate satisfactorily over the full military temperature range (-55°C to +125°C). The propagation delay through the divider plus the interface and one Schottky TTL gate is approximately 10 ns. At an input frequency of 350 MHz this would only leave about 16 ns for the fullyprogrammable counter to control the ÷10/11. The loop delay can be increased by extending the ÷10/11 function to, say, ÷20/21 or ÷40/41 (see Application Notes).

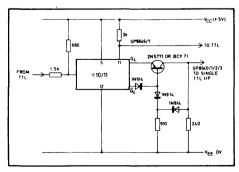


Fig. 7 TTL to ECL and ECL/TTL interfaces (for SP8640 devices and TTL operating from the same supply rails)

The SP8643 device ECL o/ps are compatible wit ECL II levels when there is no external loa... They can b made compatible with ECL III and ECL 10K with a simpl potential dividing network as shown in Fig. 8.

The control and clock inputs are already compatibl with ECL III and ECL 10K. The interface circuit of Fig. can be used to increase noise immunity when interfacin from ECL III and ECL 10K outputs at low current levels t ECL III and ECL 10K inputs.

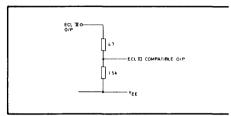


Fig. 8 ECL II to ECL III interface

SP8000 SERIES

HIGH SPEED DIVIDERS

SP8650A&B

600MHz+16

The SP8650 series of UHF16 counters are fixed ratio synchronous emitter coupled logic counters with, in the case of the SP8650, a maximum operating frequency in excess of 600MHz. All three devices operate up to their maximum specified operating frequencies over temperature ranges of -55°C to +125°C ('A' grade), 0°C to +20°C ('B' grade). The input is normally capacitively coupled to the signal source but the circuits can be DC driven if required. The inputs can be either single driven relative to the on-chip reference voltage or differentially driven.

There are two complementary emitter follower outputs.

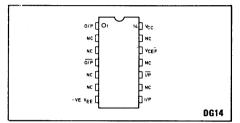


Fig. 1 Pin connections

FATURES

Low Power - Typically 250mW ECL II & ECL III Output Compatability Easy Operation From UHF Signal Source

PPLICATIONS

- Prescaling for UHF Synthesisers
- Instrumentation

QUICK REFERENCE DATA

- Power Supplies Vcc = OV
 - Vee = -5.2V + 0.25V

Temperature Range 'A' grade —55°C to +125°C 'B' grade 0°C to +70°C

- Input Amplitude Range 400mV to a-qVm008
- Output Voltage Swing 800mV typ. p-p

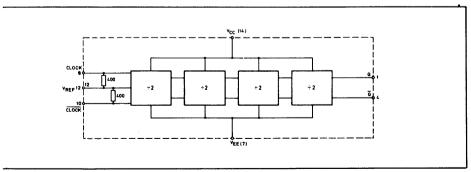


Fig. 2 Functional diagram

ELECTRICAL CHARACTERISTICS

Test Conditions (unless otherwise stated)

 $T_{amb} = -55^{\circ}C'to + 125^{\circ}C \text{ ('A' grade)}$ $0^{\circ}C \text{ to } +70^{\circ}C \text{ ('B' grade)}$

Supply Voltage

Vcc = 0V

 $Vee = -5.2V \pm 0.25V$

Output load = 500Ω in parallel with approx. 3pF

Characteristic	_		Value	•			
	Туре	Min.	Тур.	Max.	Units	Conditions	
Max. Toggle frequency Min. toggle frequency for correct	SP8650	600			HMz	Test circuit as in fig. 2 VIN = 400 to 800mV p-p	
operation with a sinewave input			ŀ	40	MHz	VIN = 400 to 800mV p-p	
Min. slew rate for square wave input to guarantee correct							
operation to OHz	1			100	V/µs		
Input reference voltage]		2.6		l v		
Output voltage swing (dynamic)		500	800		mV	р-р	
Output voltage (static)							
high state		8.95		.615	l v		
Low state		1.83		1.435	V		
Power supply drain current			45	60	mA		

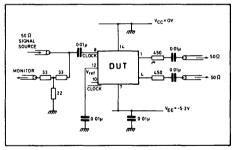


Fig. 3 Toggle frequency test circuit

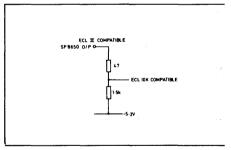


Fig. 4 SP8650 to ECL 10K interface

Toggle Frequency Test Circuit

- All leads are kept short to minimise stray capacitance and induction.
- Resistors and capacitors are non-inductive UHF types.
- Device is tested in a 14 lead Augat socket type No. 314-AGGA-R

ABSOLUTE MAXIMUM RATINGS

PERATING NOTE

Normal UHF layout techniques should be ed if the SP8650 divider is to operate satisstorily. If the positive supply is used as the rth connection, noise immunity is improved d the risk of damage due to inadvertently orting the output emitter followers to the gative rail is reduced.
The circuit is normally capacitively coupled to the

inal source. In the absence of an input signal the cuit will self-oscillate. This can be prevented by nnecting a 10KΩ resistor between one of the inputs

d the negative rail.

The device will also miscount if the input transitions ≥ slow — a slew rate of 100V/µs or greater is necessary r low frequency operation.

The outputs interface directly to ECL II or to ECL 10K

th a potential divider (see Fig. 4).

A typical application of the SP8650 device ould be in the divider chain of a synthesiser perating in the military frequency range 225 IHz to 512 MHz. A binary division rate is ptimum where power is at a premium and so ie SP8650 would normally be used in low ower applications.

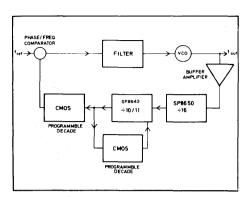


Fig. 5 A low power synthesiser loop

SP8000 SERIES

SP8655A & B (+32) SP8657A & B (+20) SP8659A & B (+16)

The SP8655A, B & M, SP8657A, B & M and SP8659A, B & M are fixed ratio (divide by 32, 20 and 16) low power counters for operation at frequencies in excess of 200 MHz over the temperature ranges -55°C to $+125^{\circ}\text{C}$ ('A' grade), 0°C to+ 70°C ('B' grade).

In all cases the input can be either single or double driven and must be capacitively coupled to the signal source. If single drive is used the unused input must be capacitively decoupled to the ground plane. There are two bias points, which should be capacitively decoupled to the ground plane.

The free collector saturating output stage is capable of interfacing with TTL and CMOS.

BIAS OF OF OLDCK INPUT BIAS OF OST OLDCK INPUT BIAS OF OST OLDCK INPUT BIAS OF OST OLDCK INPUT BIAS OF OST OLDCK INPUT BIAS OF OST OLDCK INPUT BIAS OF OST OLDCK INPUT BIAS OF OST OLDCK INPUT BIAS OF OST OLDCK INPUT BIAS OF OST OLDCK INPUT BIAS OF OST OLDCK INPUT BIAS OF OST OLDCK INPUT BIAS OF OST OLDCK INPUT BIAS OF OST OLDCK INPUT CMB

Fig. 1 Pin connections (viewed from beneath)

FEATURES

- VHF Operation
- Low Power Dissipation
- Output TTL and CMOS Compatible

APPLICATIONS

- Low Power VHF Communications
- Portable Counters

ABSOLUTE MAXIMUM RATINGS

Power supply voltage, Vcc—VEE Input voltage Vin

Output sink current, lo Operating junction temperature Storage temperature 8V Not greater than supply voltage in use 10mA

+150°C -55°C to +150°C

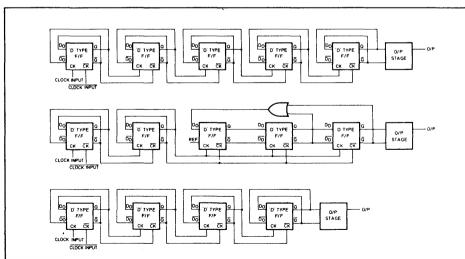


Fig. 2 Logic diagram

3P8655/7/9

LECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

Operating ambient temperature Tamb: -55°C to +125°C ('A' grade)

0°C to +70°C ('B' grade)

Operating supply voltages Vcc:

 $+5.2\overline{V}\pm0.25V$; VEE: OV

Input voltage single drive:

400mV to 800mV p-p

double drive :

250mV to 800mV p-p

Output load 3.3k Ω to $\pm 10V$, in parallel with 7pF.

		Value			Conditions	
Characteristic	Min.	Тур.	Max.	Units		
Maximum input frequency	200			MHz		
Minimum sinusoidal input frequency		20	40	MHz		
Minimum slew rate of square wave input		30	100	V/µs		
Power supply drain current		10	13	mA	Vcc=+5.2V	
Output level (high)	9.0			V		
Output level (low)			400	mV		

PERATING NOTES

Fig. 3 gives capacitor values for AC and DC coupling if the input and bias points on the test circuit; these alues are not critical and will depend on the operating equency.

The devices will normally self-oscillate in the sence of an input signal. This can be easily tprented by connecting a 39k Ω pulldown resistor from their input (double drive) to VEE; if the device is ngle driven then it is recommended that the pulldown sistor be connected to the decoupled unused input. Es light loss of input sensitivity resulting from this

technique does not seriously affect the operation of the device.

The input waveform will normally be sinusoidal but below 40MHz correct operation depends on the slew rate of the input signal. A slew rate of 100V/µs will enable the device to operate down to DC.

The output stage will drive three TTL gates without the addition of a pull-up resistor. Using a pull-up resistor of 3.3k Ω (or less) to a +10V will allow the output to drive a CMOS binary counter at a frequency of up to 5MHz.

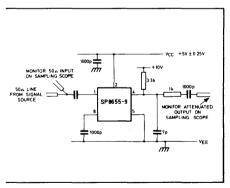


Fig. 3 Test circuit

SP8000 SERIES HIGH SPEED DIVIDERS

SP8656 ÷ (24) SP8658 ÷ (20)

The SP8656 and SP8658 are fixed ratio (divide by 24 and 20) low power counters for operation at frequencies in excess of 200MHz over the temperature ranges $\cdot 30^{\circ}\text{C}$ to $\cdot 70^{\circ}\text{C}$.

In all cases the input can be either single or double driven and must be capacitively coupled to the signal source. If single drive is used the unused input must be decoupled to the ground plane.

The free collector saturating output stage is capable of interfacing with TTL and CMOS.

FEATURES

- VHF Operation
- Low Power Dissipation
- Output TTL and CMOS Compatible

APPLICATIONS

- Low Power VHF Communications
- Portable Counters

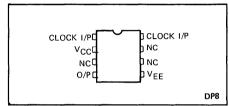


Fig. 1 — Pin connections (viewed from above)

ABSOLUTE MAXIMUM RATINGS

Power supply voltage: $[V_{CC} - V_{EE}]$ Input voltage V_{IN}

8V

Not greater than sup voltage in use.

Output sink current I₀

10mA

Operating junction temperature

+150^OC

Storage temperature

-55°C to +125°C

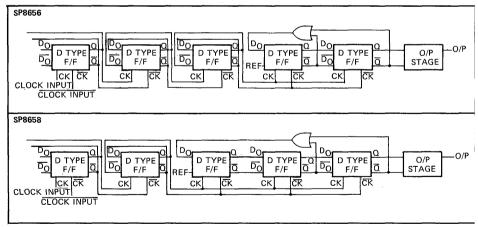


Fig. 2 Logic diagram

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

Operating ambient temperature T_{amb} -30°C to + 70°C

Operating supply voltage $V_{\rm CC}$: 4.75v to 5.25v

Input voltage single drive: 400mV to 800mV pk-pk

double drive: 250mV to 800mV pk-pk

Output load 3.3k Ω to -10V

		Value	1		Conditions	
Characteristic	Min.	Тур.	Max.	Units		
Maximum input frequency	200		1	MHz		
Minimum sinusoidal input frequency		20	40	MHz		
Minimum slew rate of square wave input		30	100	V/μsec		
Power supply drain current	- 1	20	30	mA	Vcc= +5.5V	
Output level (high)	9.0			V		
Output level (low)			400	m∨		

OPERATING NOTES

Fig. 3 gives capacitive values for AC and DC coupling of the input capacitor and bias points on the test circuit — these values are not critical and will depend on the operating frequency.

The devices will normally self-oscillate in the absence of an input signal. This can be easily prevented by connecting a 39k Ω resistor from either input (double drive) to V_{EE} ; if the device is single driven then it is recommended that the pulldown resistor be connected to the decoupled unused input. The slight loss of input sensitivity resulting from this technique does not seriously affect the operation of the device.

The input waveform will normally be sinusoidal but below 40MHz. correct operation depends on the slew rate of the input signal. A slew rate of $100V/\mu s$ will enable the device to operate down to DC.

The output stage will drive three TTL gates without the addition of a pull-up resistor. Using a pull-up resistor of 3.3k Ω to a +10V will allow the output to drive a CMOS counter at a frequency of up to 5MHz.



Fig. 3 Test circuit

SP8000 SFRIFS

HIGH SPEED DIVIDERS

SP8660 A&B

200 MHz

∴ 10 (LOW POWER)

The SP8660 is a fixed ratio (divide by 10) low power counter for operation at frequencies in excess of 100MHz over the temperature ranges -55°C to +125°C ('A' grade) 0°C to +70°C ('B' grade).

The input can be either single or double driven and must be capacitively coupled to the signal source. If single drive is used, the unused input must be capacitively decoupled to the ground plane. There are two bias points, which should also be capacitively decoupled to the ground plane.

The free collector saturating output stage is capable of interfacing with TTL and CMOS.

FEATURES

- VHF Operation
- Low Power Dissipation
- Output TTL and CMOS Compatible
- Military and Commercial Temperature Ranges

APPLICATIONS

- Low Power VHF Communications
- Portable Counters

ABSOLUTE MAXIMUM RATINGS

Power supply voltage, V_{CC} - V_{EE} 8V Input voltage Vin Not greater than supply voltage in use Output sink current, In 10mA Operating junction temperature +150°C

Storage temperature

-55°C to +150°C



Fig. 1 Pin connections (viewed from beneath)

OPERATING NOTES

Fig. 3 gives capacitor values for AC and DC coupling c the input and bias points on the test circuit; these values ar not critical and will depend on the operating frequency.

The device will normally self-oscillate in the absence c an input signal. This can be easily prevented by connectin a 39kΩ pulldown resistor from either input (double drive to VEE; if the device is single driven then it recommended that the pulldown resistor be connected t the decoupled unused input. The slight loss of inpu sensitivity resulting from this technique does not seriousl affect the operation of the device.

The input waveform will normally be sinusoidal bu below 40MHz correct operation depends on the slew rate c the input signal. A slew rate of 100V/µs will enable th device to operate down to DC.

The output stage will drive three TTL gates without th addition of a pull-up resistor. Using a pull-up resistor of 3.3k Ω (or less) to +10V will allow the output to drive CMOS binary counter at a frequency of up to 5MHz.

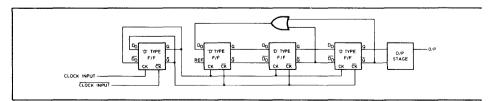


Fig. 2 Logic diagram

SP8660

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated)

Operating ambient temperature TA

'A' grade: -55°C to +125°C; 'B' grade: 0°C to 70°C;

Operating supply voltages

V_{CC}: +5.0V± 0.25V; V_{EE}: 0V

Input voltage

Single drive: 400mV to 800mV p-p; double drive: 250mV to 800mV p-p

Output load 3.3k Ω to +10V, in parallel with 7pF

Characteristic		Value	Units	Condition	
	Min.	Тур.	Max.	Onits	Condition
Maximum input frequency	200	250		MHz	
Minimum sinusoidal input frequency		20	40	MHz	
Minimum slew rate of square wave input		30	100	V/μs	
Power supply drain current		10	13	mA	V _{CC} = +5.0V
Output level (high)	9.0	1		v	
Output level (low)			400	mV	

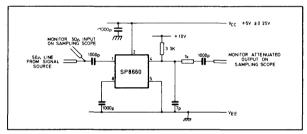


Fig. 3 Test circuit

SP8000 SERIES

UHF DECADE COUNTERS

SP8665B 1.0GHz ÷ 10

SP8667B 1.2GHz ÷ 10

The SP8665/7 high speed decade counters operating at an input frequency of up to 1GHz over the temperature range 0°C to +70°C.

The device has a typical power dissipation of 550mW at the nominal supply voltage of 6.8V.

The clock input is biased internally and is coupled to the signal source by a capacitor. The input signal path is completed by an input reference decoupling capacitor which is connected to earth. If no signal is present at the clock input the device will self-oscillate. If this is undesirable it may be prevented by connecting a 15k Ω resistor from the input to V_{EE} (pin 10 to pin 7). This will reduce the input sensitivity of the device by approximately 100 mV.

The clock inhibit input is compatible with standard ECL III circuits using a common V_{CC} to the SP8665/7. A 6k Ω pulldown resistor is included on the chip. The input should be left open circuit when not in use. The SP8665/7 outputs are compatible with standard ECL II circuits. They may be used to drive ECL 10K by the inclusion of two resistors as shown in Fig. 4.

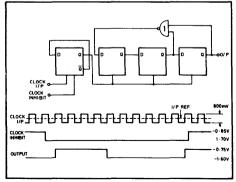


Fig. 2 Logic diagram

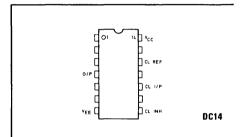


Fig. 1 Pin connections

FEATURES

- Guaranteed operation over large temperature range 0°C to 70°C
- Wide input dynamic range
- Self biasing clock input
- Clock inhibit input for direct gating capability

ABSOLUTE MAXIMUM RATINGS

Power supply voltage V_{CC} - V_{EE}
Input voltage inhibit input
Input voltage CP input
Output current
Operating junction temperature
Storage temperature

0V to +10V VEE to VCC 2.5V p-p 20mA +150°C -55°C to 150°C

P8665/7

LECTRICAL CHARACTERISTICS

Test Conditions (unless otherwise stated):

Supply voltage

6.8V ± 0.3V

Clock input

AC coupled, self-biasing

Clock inhibit input

ECL III compatible ECL II compatible

Output

Tamb

0°C to +70°C

Supply voltage

 $V_{CC} = 0V V_{EE} = -6.8V$

Clock input voltage

400mV to 1.2V (peak to peak)

Characteristics		Value			Units	Conditions	
		Min.	Тур.	Max.		Conditions	
Max. i/p frequency	SP8665	1.0			GHz	400mV to 1.2V p-p	
	SP8667	1.2			ĞHz	600mV to 1.2V p-p	
Min. i/p frequency				200	MHz	Sine wave input 400mV p-p	
Min. i/p frequency				100	MHz	Sine wave input 600mV p-p	
Min. slew rate for square wave input				200	V/μsec		
Clock i/p impedance			400		Ω	At low frequency	
Inhibit input reference level			~1.3		V	At 25°C compatible with	
						ECL III throughout the	
						temperature range.	
Inhibit input pulldown resistor (internal)			6		kΩ		
Output pulldown resistor (internal)			3		kΩ		
Power supply drain current			80	105	mA	At 25°C	

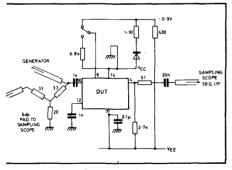


Fig. 3 Test circuit

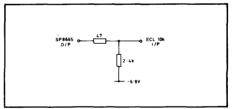


Fig. 4 SP8665 to ECL 10K

SP8000 SERIES

HIGH SPEED DIVIDERS

SP8670 A&B

600MHz:8

The SP8670, SP8671 and SP8672 are fixed ratio -8 asynchronous ECL counters with a maximum operating frequency of 600, 500 and 400 MHz respectively. The operating temperature is specified by the final coding letter: -55°C to +125°C ('A' grade), 0°C to +70°C ('B' grade). The input is normally capacitively coupled to the signal source but the circuit can be DC driven if required. The inputs can be either single driven, relative to the on-chip reference voltage, or driven differentially. There are two complementary emitter-follower outputs.

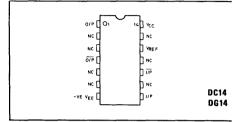


Fig. 1 Pin connections

FEATURES

- Low Power Typically 250mW
- ECL II & ECL III Output Compatibility
- Easy Operation From UHF Signal Source

APPLICATIONS

- Prescaling for UHF Synthesisers
- Instrumentation

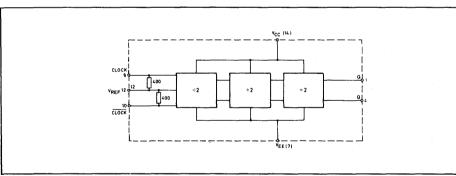


Fig. 2 Functional diagram

QUICK REFERENCE DATA

Power Supplies Vcc = 0V

 $V_{EE} = -5.2V \pm 0.25V$

■ Input Amplitude range 400mV to 800mV p-p

Output Voltage Swing 800mV typ. p-p

■ Temp. Ranges: -55°C to +125°C ('A' Grade)
0°C to +70°C ('B' Grade)

SP8670

ELECTRICAL CHARACTERISTICS

Test Conditions (unless otherwise stated)

'A' grade: -55°C to +125°C;
'B' grade: 0°C to 70°C; $T_{amb} =$

Supply Voltage

V_{CC} = 0V V_{EE} = -5.2V ± 0.25V

Output load = 500Ω line in parallel with approx. 3pF

Characteristic			Value			
Characteristic		Min.	Тур.	Max.	Units	Condition
Max. Toggle frequency	SP8670	600			MHz	
Min. Toggle frequency for correct				ļ		
operation with a sinewave input				40	MHz	V _{IN} = 400 to 800mV p-p
Min. slew rate for square wave input						
to guarantee correct operation to OHz				100	V/μs	
Input reference voltage			2.6		V	
Output voltage swing (dynamic)		500	800		mV	р-р
Output voltage (static)						
High state		-8.95		.615	V	
Low state		-1.83		-1.435	V	
Power supply drain current			45	60	mA	

oggle Frequency Test Circuit

- . All leads are kept short to minimise stray capacitance
- 1. Resistors and capacitors are non-inductive UHF types.
- I. Device is tested in a 14 lead Augat socket type No. 314-AGGA-R

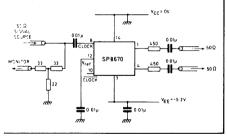


Fig. 3 Toggle frequency test circuit

OPERATING NOTE

Normal UHF layout techniques should be used to ensure atisfactory operation. If the positive supply is used as the earth connection, noise immunity is improved and the risk of damage due to inadvertently shorting the output emitter ollowers to the negative rail is reduced.

The circuit is normally capacitively coupled to the signal source. In the absence of an input signal the circuit will self-oscillate. This can be prevented by connecting a $10K\Omega$ resistor between one of the inputs and the negative rail.

V_{ref} must be decoupled to RF earth by a capacitor in the range 30pF to 1000pF. It is important that this decoupling is adequate, otherwise input sensitivity will be reduced

The device will also miscount if the input transitions are slow - a slew rate of 100V/us or greater is necessary for low frequency operation.

The outputs interface directly to ECL II or to ECL 10K with a potential divider (see Fig. 4).

A typical application of the SP8670 would be in the divider chain of a synthesiser operating in the military frequency range 225 MHz to 512 MHz. A binary division ratio is optimum where power is at a premium and so the SP8670 would normally be used in low power applications.

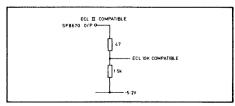


Fig. 4 SP8670 to ECL 10K interface

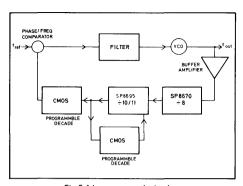


Fig. 5 A low power synthesiser loop

ABSOLUTE MAXIMUM RATINGS

Operating junction temperature

Power supply voltage |V_{CC} - V_{EE}| 8 volts 2.5V p-p Input voltage VINac Output source current lout 10mA Storage temperature range -55°C to +125°C 150°C max.

SP8000 SERIES

HIGH SPEED DIVIDERS

SP8675B&M 1.0GHz ÷8 SP8677B&M 1.2GHz ÷8

The SP8675/7 are high speed counters for peration at input frequencies up to 1.2GHz.

The devices have a typical power dissipation of 70mW at the nominal supply voltage of 6.8V.

The clock input is biased internally and is coupled the signal source by a capacitor. The input signal ath is completed by an input reference decoupling apacitor which is connected to earth. If no signal is resent at the clock input the device will self-oscillate. If this is undesirable it may be prevented by connecting 15k Ω resistor from the input V_{EE} (pin 10 to pin 7), his will reduce the input sensitivity of the device by pproximately 100mV.

The clock inhibit input is compatible with standard ICL III circuits using a common Vcc to the SP8675/7.

6k Ω pulldown resistor is included on the chip. The pput should be left open circuit when not in use. The IP8675/7 | outputs are compatible with standard ICL III circuits. They may be used to drive ECL 10K by he inclusion of two resistors as shown in Fig. 4.

| '...| 'Vcc | (- '...|) Vcc | (- '...|) | CL REF | CL PEF | CL PEF | CL PEF | CL DEF | CL

Fig. 1 Pin connections

EATURES

■ Guaranteed Operation over Large Temperature Range: 'B' Grade 0°C to

+70°C 'M' Grade —40°C to +85°C

- Wide Input Dynamic Range
- Self Biasing Clock Input
- Clock Inhibit Input for Direct Gating
- Capability

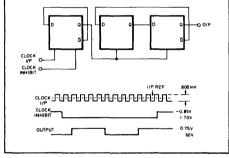


Fig. 2 Logic diagram and timing

ABSOLUTE MAXIMUM RATINGS

Power supply voltage V_{CC} — V_{EE} 0 to 10V Input voltage inhibit input V_{EE} to V_{CC} Input voltage CP input 2.5V p-p Output current 20mA Operating junction temperature $+150^{\circ}C$ Storage temperature $-55^{\circ}C$ to $+150^{\circ}C$

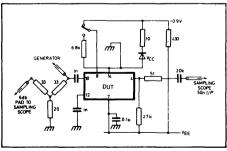


Fig. 3 Test circuit

SP8675/7

ELECTRICAL CHARACTERISTICS

Test Conditions (unless otherwise stated)

Supply voltage 6.8V±0.3V Clock input AC coupled, self-biasing

Clock inhibit input ECL III compatible
Output ECL II compatible

 $\begin{array}{lll} T_{amb} \ 'B' \ grade & 0 \cdot C \ to + 70 \cdot C \ (see \ note \ 1) \\ \ 'M' \ grade & -40 \cdot C \ to + 85 \cdot C \ (see \ note \ 1) \\ \ Supply \ voltage & V_{CC} = OV \ V_{EE} = -6.8V \\ \end{array}$

Clock input voltage 400mV to 1.2V (peak to peak)

Characteristic	Value			Units	Conditions
	Min.	Тур.	Max.	Units	Conditions
Max. i/p frequericy SP8675 SP8677 Min i/p frequency Min slew rate for square wave input Clock i/p impedance Inhibit input reference level		400 —1.3	200 150 200	GHz GHz MHz MHz V/μsec Ω	400mV to 1.2V p-p 600mV to 1.0V p-p Sine wave input 400mV p-p Sine wave input 600mV p-p At low frequency At 25°C compatible with ECL III throughout the temperature range
Inhibit input pulldown resistor (internal) Output pulldown resistor (internal)		6		kΩ kΩ	temperature range
Power supply drain current		70	95	mA	at 25°C

NOTES

^{1.} The SP8677M is tested at $T_{case} = -40$ °C to +85°C. The SP8677M requires a suitable heatsink to be connected during operation.

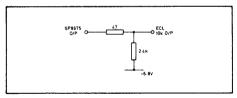


Fig. 4 SP8675 to ECL10K interface

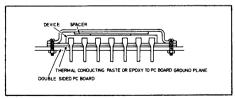


Fig. 5 Heat sink for 'M' grade devices

SP8000 SERIES **UHF PROGRAMMABLE DIVIDERS**

SP8680 A& B

600 MHz ÷ 10/11

The SP8680 A & B are high speed programmable -10/11 counters which operate at input frequencies up to 600 MHz over the temperature ranges -55°C to +125°C (A grade), -30°C to +70°C (B grade). The devices operate on a single +5V or T5.2V power supply and may be easily interfaced to E.C.L., or (by connecting the internal VRFF) capacitively coupled to the signal source. A clock enable, which is E.C.L. compatible, is provided. The division ratio is controlled by two mode inputs which are also ECL compatible. The counter will divide by 10 when either input is in the high state and by 11 when both inputs are low. The counter may be set to the eleventh state by applying a high level to the MS input. The set command is asynchronous and overrides the clock input. All inputs have internal -50K Ω pull down resistors, so that unused inputs may be left open circuit.

Two complementary ECL outputs are provided. They are both capable of driving 50Ω lines, A T.T.L.

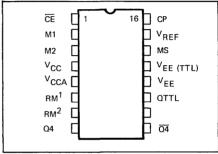


Fig. 1 - Pin Connections (Top View)

push pull output is also provided which may be powered up separately from the counter using the VFF on pin 13.

FEATURES

- D.C. to 600 MHz operation
- ECL and TTL compatible
- D.C. or A.C. clock input

- Clock enable
- Asynchronous master set

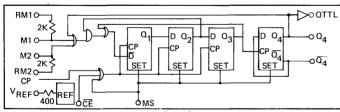


Fig. 2 - Logic Diagram

QUICK REFERENCE DATA

- Supply voltage (V_{CC} V_{FF}) = 5.0V + 0.5V-0.25V
- Power consumption 400mW typ. (no load)
 - T.T.L. output 20mW typ.
- Maximum input frequency 600 MHz SP8680B 550 MHz SP8680A Input amplitude (a.c. coupled) 350mV to 700mV.

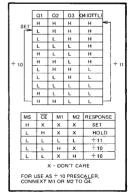


Fig. 3 - Count Sequence & Control Input Truth Table

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The table of Electrical Characteristics provides conditions for actual device operation.

Power Supply Voltage

 $[V_{CC} (V_{CCA}) - V_{EE}]$ -0.5 to +7V

Input Voltage V_{EE} TO V_{CC}

ECL Output Source Current
TTL Output Sink Current

50mA 30mA

Voltage Applied to TTL

Output High

VEE to VCC

Operating Ambient

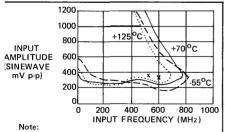
Temperature

-55°C to +125°C

Storage Temperature -55°C to +150°C

STATIC CHARACTERISTICS

Characteristics		Value		Units	Conditions
	Min	Тур.	Max		
Guaranteed					
Input High Voltage VINH	4.1		4.4	٧	$V_{CC} = +5.2V$ $T_{amb} = 25^{\circ}C$
Guaranteed		1			
Input Low Voltage V _{INL}	3.35		3.7	V	(See Note 2)
Input High Current INH					$V_{CC} = +5.2V$
CP and MS inputs			400	μΑ	T _{amb}
M1 and M2 inputs			250	μΑ	$V_{INH} = 4.4V$
Input Low Current I _{INL}	0.5			μΑ	V _{INL} ≈ 3.35V
E.C.L. Output Low					V _{CC} = +5.2V
Voltage V _{OL}	3.38	3.49	3.58	V	$V_{CC} = +5.2V$ Tamb = $25^{\circ}C$
E.C.L. Output High					Load 100Ω to +3.2V
Voltage V _{OH}	4.22	4.30	4.38	V	(See Note 2)
T.T.L. Output High	-				V _{CC} = V _{CCA} = 4.75V
Voltage V _{OH}	2.7	3.3		V	$V_{CC} = V_{CCA} = 4.75V$ $I_{OH} = -1 \text{mA}$ $Tamb = 25^{\circ}C$
T.T.L. Output Low					V _{CC} = V _{CCA} = 4.75V
Voltage V _{OL}		0.3	0.5	V	I _{OL} = 20mA
					Tamb = 25°C
T.T.L. Output Short					V _{CC} = V _{CCA} = 5.5V
Circuit Current	-80	-40	-20	mA	V _{OUT} = 0V
					Pin 14 = V _{INH}
M1, M2 Input Low					V _{CC} = V _{CCA} = 5.5V
Current (using int.	10			.	$V_{CC} = V_{CCA} = 5.5V$ $V_{IN} = 0.4V$
2KΩ pull up)	-4.0	-2.5		V	Pins 6, 7 = V _{CC}
Power Supply Current		75	105	mA	No Load
					Pins 6, 7, 13 open circuit
T.T.L. Output Stage		4		, mA	Mean, Output High
Supply Current	[1	and Low


DYNAMIC CHARACTERISTICS

Characteristics		Value		Units	Conditions
	Min	Тур.	Max		
Max. Count Frequency SP8680B SP8680A	600 550			MHz MHz	V _{CC} = +5.2V a.c. coupled input 350mV peak to peak -30°C to +70°C -55°C to +125°C
Min. Frequency with sinewave clock input			10	MHz	V _{CC} = +5.2V a.c. coupled input 600mV peak to peak Tamb = 25°C
Min. slew rate of square wave clock input			20	V/ usec	V _{CC} = +5.2V
Propagation Delay CP to Q4		2.2	3.0	nsec	Tamb = 25°C
Propagation Delay MS to Q4		4.5	6.0	nsec	Ouptut Load
Min Set Up Time M to CP		2.0	4.0	nsec	100Ω to +3.2V
ECL Output Rise & Fall Times		1.3		nsec	
Propagation Delay CP to QTTL		8	14	nsec	V _{CC} = +5.0V
TTL Output Rise Time		3		nsec	Tamb = 25°C
TTL Output Fall Time		3		nsec	

Votes:

- 1. The SP8680 may be used in a positive earth system with V_{CC} = 0V and V_{FF} = -4.75V to -5.5V.
- The input threshold has a temperature coefficient of 0.8mV/°C. This may be used to calculate V_{INH} and

The output high level has a temperature coefficient f $1.2 mV/^{O}C$, whilst the output low level has a oefficient of $0.2 mV/^{O}C$.

The above graphs are with the TTL output connected. Sensitivity in the 300 to 500 MHz frequency range is improved by 100mV peak to peak when pin 13 is disconnected.

ig. 4 Clock Input Frequency versus Amplitude (a.c. coupled)

- V_{INL} values at the temperature extremes.
- The E.C.L. outputs are capable of driving a 50Ω load to +3.2V over a limited temperature range of 0°C to 70°C. The output high level will be reduced by typically 50mV.

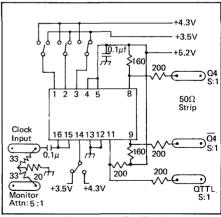
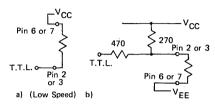


Fig. 5 - Dynamic Test Circuit

OPERATING NOTES

The SP8680 is designed to operate in the UHF band and therefore PCB layouts should comply with normal UHF rules, e.g., short tracks, low inductance capacitors, etc.

All clock and control inputs are compatible with ECL 10K throughout the temperature range. The clock input may be capacitively coupled by connecting pin 16 to pin 15. All inputs may be interfaced with T.T.L. logic as shown in Figure 6.


T.T.L. INTERFACE CP & CE

Two E.C.L. compatible outputs are available (true and inverse) both capable of driving a 100 Ω load (to +3.2V) over the full temperature range. These outputs have no internal pull down, so an external resistor to V_{EE} is required when interfacing to other E.C.L. logic. A T.T.L. output is also provided which is powered up by connecting pin 13 to V_{FE}.

The SP8680 may be controlled by a following variable divider to produce effective variable division at up to 600 MHz. Some points to be noted when this technique is employed are as follows:

 The 0 - 1 edge of the Q₄ or TTL outputs must be used to clock the following divider. This gives a maximum control loop delay time (equal to ten clock periods minus internal delays).

- At 600 MHz the required control loop delay time is only 13 nsec. (using ECL outputs) and, hence, only an E.C.L. variable divider can be used in the control loop. A suitable device is the 10136.
- 3) To overcome the above problem, the modulus may be extended from 10/11 to 20/21, 40/41 to 100/101. This will considerably increase the control loop delay time so that a TTL variable divider may be used in the control loop.

T.T.L. INTERFACE M1 & M2

- 4) The minimum division number of a 'two modulus' n/n + 1 when employed as a fully variable divider is n(n-1). Therefore, for a 10/11, this will give 90. If the modulus has been extended to 100/101, the minimum divide number will be 9,900 which may well be too large.
- 5) If the above two-modulus approach does not give a satisfactory systems' solution, then a four-modulus system may be required. An example of this would be a 100/101/110/111 followed by two control dividers. The two control dividers decide on the number of +1 and +10 counts required. The minimum division number of such a system is 900.

HIGH SPEED DIVIDERS

SP8685 A&B

UHF PROGRAMMABLE DIVIDER 500MHz + 10/11

The SP8685 A&B are high speed programmable -- 10/11 ounters operating at an input frequency of up to 500 MHz ver the temperature ranges -55°C to +125°C ('A' grade), oC to +70oC ('B' grade),

The clock input is biased internally and is coupled to ne signal source by a capacitor. The input signal path is ompleted by an input reference decoupling capacitor thich is connected to earth.

The division ratio is controlled by two PE inputs. The ounter will divide by 10 when either input is in the high tate, and by 11 when both inputs are in the low state. hese inputs are compatible with standard ECL 10K inputs nd have the same temperature characteristics. Both inputs ave nominal $4.3k\Omega$ internal pulldown resistors.

The true and inverse outputs are compatible with tandard ECL II outputs. They may be used to drive ECL OK circuits by the inclusion of two resistors as shown in in 4

When using the device as a divide-by-ten prescaler the overse output (o/p) should be connected to a PE input.

Clock Pulse	Q ₁	\mathbf{Q}_2	Q ₃	Q ₄
1	L	н	н	н
2	L	L	н	н
3	L	L	L	н
4	н	L	L	н
5	н	н	L	н
6	L	н	н	L
7	L	L	н	L
8	L	L	L	L
9	н	L	L	L
10	_ # _	H_		l _ <u>L _ l</u>
11	ᆫᄔ	_ 변 _	H	<u> </u>

Table 1 Count sequence

PE ₁	PE ₂	Div Ratio
L	L	11
н	L	10
L	Н	10
н	н	10

Table 2 Truth table for control inputs

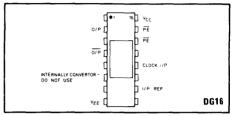


Fig. 1 Pin connections

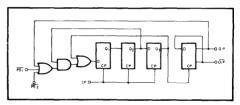


Fig. 2 Logic diagram SP8685

FEATURES

- Full temperature range operation:
 - 'A' grade -55°C to +125°C 'B' grade 0°C to +70°C Self Biasing CP Input
- Wide Input Dynamic Range
- Control Inputs ECL 10K Compatible
- Low Propagation Delay
- True and Inverse Outputs Available

ABSOLUTE MAXIMUM RATINGS

Power supply voltage $V_{CC} - V_{EE}$ 0V to +8V Input voltage, PE inputs 0V to V_{CC} Input voltage, CP input 2V peak-to-peak Output current 20mA Operating junction temperature +150°C -55°C to +150°C Storage temperature

ELECTRICAL CHARACTERISTICS

PE inputs - ECL 10K compatible

Outputs - ECL II compatible

Test conditions (unless otherwise stated)

'A' grade -55°C to +125°C 'B' grade 0°C to +70°C Tamb

Supply voltages: V_{CC} = +5.2V ±0.25V

VEE = 0V

Clock input voltage: 400mV to 800mV (p-p)

		Value		Units	044
Characteristic	Min.	Тур.	Max.	Units	Conditions
Max i/p frequency	500			MHz	V _{cc} = +5.2V
Min i/p frequency	İ		40	1	Sinewave Input
Min. slow rate for square wave input	1		100	V/μs	
Propogation delay	1		1	1	
(clock i/p to device o/p)	I	4		ns	
PE input reference level	1	+3.9		(v	V _{cc} = +5.2V, 25°C
Power supply drain current		45	60	mA	V _{cc} = +5.2V, 25°C
PE input pulldown	İ		i	}	
Resistors,	Į.	4.3		ΚΩ	
Clock i/p impedance	1				
(i/p to i/p ref low frequency)		400		Ω	

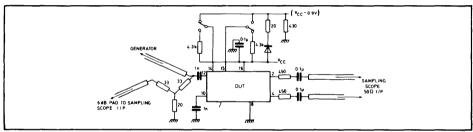


Fig. 3 Test circuit

APPLICATION NOTES

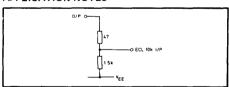


Fig. 4 SP8685 output — ECL 10K i/p and ECLII (or ECL 10K o/ps unloaded) — ECL 10K i/p

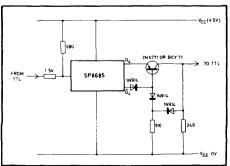


Fig. 5 TTL o/p – SP8685 \overline{PE} i/p; SL8685 o/p – TTL i/p.

(Total delay from SP8685 clock i/p to Schottky gate o/p = 15ns, typ.) 148

At an input frequency of 500 MHz the control loop delay time (SP8685 o/p to PE i/p) is approximately 16 ns. This will be a severe problem if TTL is used in the control loop.

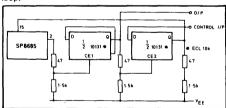


Fig. 6 Divide-by-20/22. Control loop delay time approximately

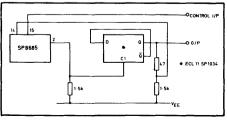


Fig. 7 Divide-by-20/21. Control loop delay time approximately 30ns using SP1034.

HIGH SPEED DIMDERS

SP8690 A & B 200 MHz ÷ 10/11 AC COUPLED VHF, LOW POWER, PROGRAMMABLE DIVIDERS

The SP8690 A&B are divider circuits that can be logicilly programmed to divide by either 10 or 11.

The device is available over three temperature ranges:
A' grade is —55 °C to +125 °C and the 'B' grade is 0 °C o +70 °C.

The clock inputs can be either single or differentially triven and must be AC-coupled to the signal source. If ingle driven then the unused input must be decoupled of the earth plane. The device will self-oscillate if no nput is present; to prevent this, a $68k\Omega$ resistor should be connected from pin 1 or 16 to 0V. This will educe the sensitivity of the device by approximately 100mV p-p.

The division ratio is controlled by two PE inputs which are ECL III and ECL 10K compatible throughout he temperature range. The device will divide by ten when either input is high and by eleven when both nputs are low. These inputs may be interfaced to TTL and CMOS by the inclusion of 2 resistors, as shown in Fig. 3. There is a free collector, saturating output stage for interfacing with either TTL or CMOS, ogether with true and inverse outputs with ECL II compatible levels. These may be interfaced to ECL 10K is shown in Fig. 4.

The device may be used as a fixed \div 10 by connecing $\overline{Q4}$ to one \overline{PE} input.

If the 0-1 transition of Q4 (or the 1-0 transition of $\overline{24}$) is used to clock the next stage then this will give he maximum loop delay for control, i.e. 10 clock periods minus the internal delays.

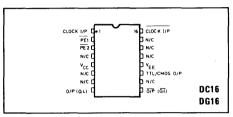
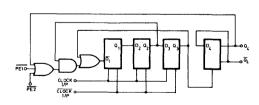



Fig.1 Pin connections

FFATURES

- Full Temperature Range Operation
 - 'A' Grade -55 °C to +125 °C 'B' Grade 0 °C to +70 °C
- Toggle Frequency in Excess of 200MHz
- Power Dissipation 70mW Typical
- ECL Compatibility on All Inputs
- Capacitively Coupled Clock Input for Synthesiser and Counter Applications
- True and Inverse Outputs Available with ECL Compatibility
- Output Available for Driving TTL or CMOS

Division ratio					
I/P	11	10	10	10	
PE1	۲	Н	L	Н	
PE2	۷	L	Н	Н	

С	Count sequence						
Q ₁	Q ₂	Ω_3	Q ₄				
L	н	н	н	ļ			
L	L	Н	Н				
L	L	L	Н	1			
Н	L	L	Н	1			
Н	H	L	Н				
L	Н	Н	L	1			
L	L	Н	L				
L	L	L	L]			
Н	L	L	L]			
Н	Н	L	L				
Н	н	Н	Н	Extra			

Extra state

ELECTRICAL CHARACTERISTICS

Test Conditions (unless otherwise stated):

'A' grade -55° C to $+125^{\circ}$ C 'B' grade 0° C to $+70^{\circ}$ C VCC =+5V ±0.25 V VEE =0V Tamb

Supply voltage

Clock I/P voltage 400mV to 800mV peak to peak

Pin 16 (decoupled to 0V)

		Value				
Characteristic	Min.	Тур.	Max.	Units	Conditions	
Max. toggle frequency	200			MHz		
Min. freq. with sine wave clock input		15		MHz		
Min. slew rate of square wave I/P for correct operation		40		V/μs		
PE input levels Vinh	+4.1		+4.5	v	Vcc=+5V	
VINL Q4 & Q4 output voltage levels	0.0		+3.5	\	Tamb=+25°C (note 1) Tamb=+25°C (note 2)	
Voн	4.15			V V	lout (external) = 0mA	
VoL			+3.5	V	(There is internal circuitry equivalent to a 3.8kΩ pulldown resistor on each output)	
TTL/CMOS output voltage					output)	
levels Vol			+0.4	l v	Sink current 3.2mA on	
Voн	see note 3				TTL output	
Input pulldown resistors between		10		kΩ		
input pins 2 & 3 and —ve rail Power supply drain current		14	19	mA	Vcc=+5V; Tamb=25°C	
Impedance of clock I/P		1.6		kΩ	in = 0Hz	
Clock to TTL output delay (O/P —ve going)		22		ns	8mA sink current	
Clock to TTL output delay (O/P —ve going)		R		l ns	TTL output	
Clock to ECL output delay		6		ns	1112 output	
Set up time Release time		8 6 2 4		ns ns	See note 4 See note 5	
neicase linie			L	113	See note 9	

NOTES

- The PE reference voltage level is compatible with ECL II and ECL 10k over the specified temperature range.
- The Q4 and $\overline{\rm Q4}$ output levels are compatible with ECL II and ECL 10k over the specified temperature range.
- 3. The TTL/CMOS output has a free collector, and the high state output voltage will depend on the supply that the collector load is taken to. This should not exceed +12V.
- Set up time is defined as the minimum time that can elapse between a L-H transition of a control input and the next L-H clock pulse transition to ensure that the \div 10 mode is forced by that clock pulse. Release time is defined as the minimum time that can elapse between a L—H transition of a control input and the next L—H clock
- pulse transition to ensure that the +11 mode is forced by that clock pulse.

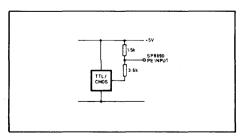


Fig.3 TTL/CMOS interface

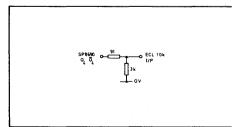


Fig.4 ECL 10K output interface

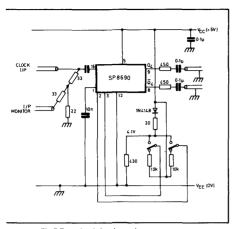


Fig.5 Test circuit for dynamic measurements

ABSOLUTE MAXIMUM RATINGS

Supply voltage Vcc—Veel Input voltage Vin d.c.

Supply voltageIVcc—VEEI
Input voltage Vin d.c.
Output current lout (Q4 & Q4)
Maximum junction temperature
Storage temperature range

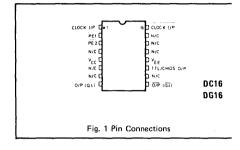
V8
Not greater than the supply voltage in use
10mA
150°C
-55°C to +150°C

HIGH SPEED DIVIDERS

SP8691 A & B

200 MHz ÷ 8/9

The SP8691 A & B are divider circuits that can be logically progressed to divide by either 8 or 9.


The device is available over two temperature ranges, 'A' variant is -55°C to +125°C and the 'B' variant is 0°C to +70°C.

The clock inputs can be either single or differentially driven and must be a.c. coupled to the signal source. If single driven then the unused input must be decoupled to the earth plane. The device will self-oscillate if no input is present. To prevent this a 68k resistor should be connected from pin 1 or 16 to OV. This will reduce the sensitivity of the device by approximately 100mV p-p.

The division ratio is controlled by two \overrightarrow{PE} inputs which are ECL \overrightarrow{III} , 10k compatible throughout the temperature range. The device will divide by eight when either input is high and by nine when both inputs are low. These inputs may be interfaced to TTL and CMOS by the inclusion of 2 resistors as shown in Fig. 3. There is a free collector, saturating output stage for interfacing with either TTL or CMOS together with true and inverse outputs with ECL II compatible levels. These may be interfaced to ECL 10k as shown in Fig. 4.

The device may be used as a fixed $\div 8$ by connecting $\overline{Q4}$ to one \overline{PE} input.

If the $0 \to 1$ transition of Q4 or the $1 \to 0$ transition of $\overline{Q4}$ is used to clock the next stage then this will give the maximum loop delay for control i.e., 8 clock periods minus the internal delays.

FEATURES

Full temperature range operation

'A' variant -55°C to +125°C 'B' variant 0°C to +70°C

Toggle frequency in excess of 200MHz Power dissipation 70mW typical ECL compatibility on all inputs Capacitively coupled clock input for synthesiser and counter applications

True and inverse outputs available with ECL compatibility Output available for driving TTL or CMOS

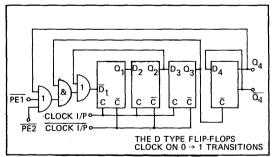
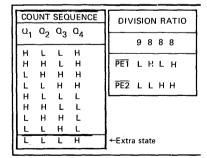



Fig. 2 LOGIC DIAGRAM (+VE LOGIC)

ABSOLUTE MAXIMUM RATINGS

Supply voltage $V_{CC} - V_{EE}$

8V

Output current $I_{Out}(Q_4 \& \overline{Q_4})$

10mA

Input voltage V_{IN} d.c.

Not greater than the supply voltage in use Maximum junction temperature Storage temperature range

150°C -55°C to +150°C

LECTRICAL CHARACTERISTICS

'est Conditions (unless otherwise stated) 'A' variant -55°C to +125°C 'B' variant 0°C to +70°C

Supply voltage

 V_{CC} = +5V ± 0.25V V_{EE} = 0V 400mV to 800mV peak to peak Clock I/P voltage (Clock I/P decoupled to O₁)

Characteristics		Value		Units	Conditions
Gilaracteristics	Min	Тур	Max	Units	Conditions
Max. toggle frequency	200			MHz	
Min. freq. with sine wave clock input		15		MHz	
Min. slew rate of square wave i/p for correct operation		40		V/μs	
PE input levels					
VIMH	+4.1		+4.5	volts	$V_{CC} = +5V$ $T_{amb} = +25^{\circ}C \text{ (note 1)}$
VINL	0.0		+3.5	volts	$T_{amb} = +25^{\circ}C \text{ (note 1)}$
Q4 & Q4 output voltage levels	4.45				$T_{amb} = +25^{\circ}C \text{ (note 2)}$
V _{OH} V _{OL}	4.15		+3.5	volts volts	1 _{out} (external) = OmA (There is internal
*OL			10.0	10.13	circuitry equivalent to a
					3.8k ohms pulldown resistor
					on each output.)
TTL/CMOS output voltage levels	,				
VOL			+0.4	volts	Sink current 3.2mA on
v _{OH}	see note 3				TTL output.
l					
Input pulldown resistors petween input pins 2 & 3					
and -ve rail	'	10		k ohms	
Power supply drain		, -			
current		14		mA	$V_{CC} = +5V$ $T_{amb} = +25^{\circ}C$
mpedance of clock i/p		1.6		k ohms	F _{IN} = OHz

VOTE 1

The PE reference voltage level is compatible with ECL II and 10k over the specified temperature range.

 $\frac{\text{NOTE 2}}{\text{The } \mathbf{Q_4} \text{ and } \overline{\mathbf{Q_4}} \text{ output levels are compatible with } : CL \ II \ \text{and } 10k \ \text{over the specified temperature range}.$

NOTE 3

The TTL/CMOS output has a free collector, and the high state output voltage will depend on the supply that the collector load is taken to. This should not exceed +12V.

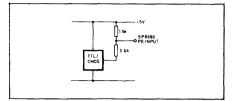


Fig.3 TTL/CMOS interface

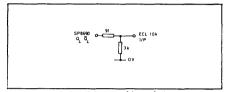


Fig.4 ECL 10K output interface

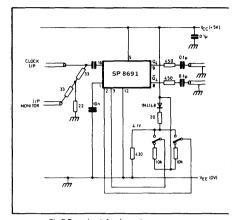


Fig.5 Test circuit for dynamic measurements

HIGH SPEED DIVIDERS

SP8695 A & B 200 MHz - 10/11

DC COUPLED VHF, LOW POWER, PROGRAMMABLE DIVIDERS

The SP8695 A&B are divider circuits that can be logially programmed to divide by either 10 or 11.

 $^{\prime}$ grade is —55 °C to +125 °C, the 'B' grade is 0 °C to .70 °C. The device is available over two temperature ranges,

The clock inputs are ECL II, III & 10K compatible

roughout the temperature range (see note 1).
The division ratio is controlled by two PE inputs hich are ECL III and ECL 10K compatible throughout e temperature range. The device will divide by ten hen either input is high and by eleven when both puts are low. These inputs may be interfaced to TTL and CMOS by the inclusion of 2 resistors, as shown

Fig. 3. There is a free collector, saturating output age for interfacing with either TTL or CMOS. gether with true and inverse outputs with ECL II impatible levels. These may be interfaced to ECL 10K shown in Fig. 4.

The device may be used as a fixed : 10 by connec-ng Q4 to one PE input.

If the $0 \rightarrow 1$ transition of Q4 (or the $1 \rightarrow 0$ transition of 4) is used to clock the next stage then this will give e maximum loop delay for control, i.e. 10 clock eriods minus the internal delays.

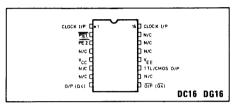
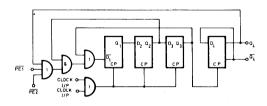



Fig.1 Pin connections

FEATURES

- Full Temperature Range Operation 'A' Grade -55 °C to +125 °C 'B' Grade 0°C to +70°C
- Toggle Frequency in Excess of 200MHz
- Power Dissipation 80mW Typ.
- ECL Compatibility on All Inputs
- Excellent Low Frequency Operation
- True and Inverse Outputs Available with ECL Compatibility.
- Output Available for Driving TTL or CMOS

	Div	ision ı	atio	
I/P	11	10	10	10
PE1	L	H	L	Н
PE2	L	L	Н	Н

Count sequence					
Q1	Q ₂	Q ₃	Ω4		
L	н	н	н		
L	L	Н	Н		
L	L	L	Н		
Н	L	L	Н		
Н	Н	L	Н		
L	Н	Н	L		
L	L	Н	L		
L	L	L	L		
Н	L	L	L		
Н	Н	L	L		
Н	н	н	Н		

ELECTRICAL CHARACTERISTICS

Test Conditions (unless otherwise stated):

'A' grade -55°C to +125°C Tamb 'B' grade 0°C to +70°C VCC = +5V ± 0.25 V

Supply voltage

VEE = OV

	Value					
Characteristics	Min.	Тур.	Max.	Units	Conditions	
Max. toggle frequency	200			MHz		
Min. freq. with sine wave clock input		1	•	MHz		
Min. slew rate of square wave I/P for correct operation		3		V/µs		
Clock I/P voltage levels	+4.0		4.2*	l v	V _{ref} =+3.8V	
VINL PE input levels	-3.4*		+3.6	v	at T _{amb} =25°C (note 1)	
Vinh	+4.1 0.0		+4.5	l v	T _{amb} =+25°C (note 2)	
VINL Q4 & Q4 output voltage levels			+3.5	`	T _{amb} =+25°C (note 3)	
Voн Vo	⊹4.15		+3.5	V V	lout (external)=0mA (There is internal circuitry equivalent to 13.8kΩ pulldown resistor on each output)	
TTL/CMOS output voltage levels			+0.4	V	Sink current 3.2mA on TTL output	
Voн	see note 4		"	,	omk carron on the datput	
Input pulldown resistors between input pins 1, 2, 3 & 16 and						
—ve rail		10		kΩ		
Power supply drain current Clock to TTL output delay		16	21	mA	Vcc=+5V; T _{amb} =+25 °C.	
(O/P -ve going) Clock to TTL output delay		22		ns	8mA sink current	
(O/P -ve going)		8		ns	TTL output	
Clock to ECL output delay	1	6		ns		
Set up time Release time		6 2 4		ns ns	See note 5 See note 6	

NOTES

- This reference level of ~ 3.8V will enable the clock inputs to be driven from ECL II, III & 10K when their outputs are sinking 3mA. The input reference voltage is compatible with ECL II, III and 10k over the specified temperature range.
- The PE reference voltage level is compatible with ECL II and 10k over the specified temperature range. 2.
- The Q₄ and $\overline{Q4}$ output levels are compatible with ECL II and ECL 10k over the specified temperature range. 3
- The TTL/CMOS output has a free collector, and the high state output voltage will depend on the supply that the collector load is taken to. This should not exceed - 12V.
- Set up time is defined as the minimum time that can elapse between a L-H transition of a control input and the next L-H clock pulse transition to ensure that the +10 mode is forced by that clock pulse.
- Release time is defined as the minimum time that can elapse between a L-H transition of a control input and the next L-H clock pulse transition to ensure that the +11 mode is forced by that clock pulse

^{*}High frequency limits only.

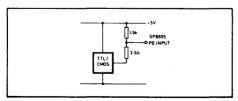


Fig.3 TTL/CMOS interface

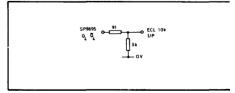


Fig.4 ECL 10K output interface

BSOLUTE MAXIMUM RATINGS

Supply voltage Vcc—VEE Input voltage Vin d.c.

٧8

Not greater than the supply voltage in use

Output current lout (Q4 & Q4) 10mA

Maximum junction temperature 150 C Storage temperature range —55 C —55 C to +150°C

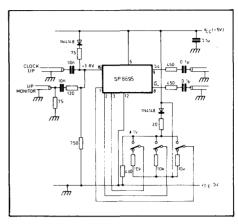


Fig.5 Test circuit for dynamic measurements

HIGH SPEED DIVIDERS

SP 8720 A & B

UHF PROGRAMMABLE DIVIDER 300 MHz ÷ 3/4

The SP8720 A&B are high speed programma|ble $\div 3/4$ counters operating at an input frequency of up to 300MHz over the temperature ranges -55° C to $+125^{\circ}$ C, 0°C to $+70^{\circ}$ C.

The clock input is biased internally and is coupled to the signal source by a capacitor. The input signal path is completed by an input reference decoupling capacitor which is connected to earth.

The division ratio is controlled by two PE inputs. The counter will divide by 3 when either input is in the high state, and by 4 when both inputs are in the low state. These inputs are compatible with standard ECL 10K inputs and have the same temperature characteristics. Both inputs have nominal 4.3k α internal pulldown resistors.

The true and inverse outputs are compatible with standard ECL II outputs. They may be used to drive ECL 10K circuits by the inclusion of two resistors as shown in Fig. 4.

When using the device as a divide-by-three prescaler the inverse output (Q2) should be connected to a PE input.

FEATURES

- Full temperature range operation:
 - 'A' Grade -55 °C to +125 °C 'B' Grade 0 °C to +70 °C
- Self Biasing CP Input
- Wide Input Dynamic Range
- Control Inputs ECL 10K Compatible
- Low Propagation Delay
- True and Inverse Outputs Available

ABSOLUTE MAXIMUM RATINGS

Power supply voltage | Vcc - VEE | 0V to +8V |
Input voltage, PE inputs | 0V to Vcc |
Input voltage, CP input | 2V peak-to-peak |
Output current | 20mA |
Operating junction temperature | +150°C |
Storage temperature | -55°C to +150°C |

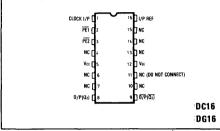


Fig. 1 Pin connections (top view)

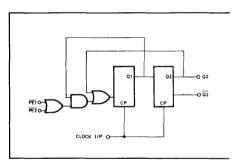


Fig. 2 Logic diagram SP8720

Clock Pulse	Q ₁	Q2	
1 2 3 4	L H H	H L _H;←	— Extra Stat

Table 1 Count sequence

PE ₁	PE ₂	Div Ratio.
HTH	LLTI	4 3 3

Table 2 Truth table for control inputs

P8720

LECTRICAL CHARACTERISTICS

PE inputs - ECL 10K compatible Outputs - ECL II compatible

Test conditions (unless otherwise stated) Tamb 'A' Grade: -55° C to $+125^{\circ}$ C 'B' Grade: 0° C to $+70^{\circ}$ C Supply voltages: $V_{CC} = +5.2V \pm 0.25V$

Clock input voltage: 400mV to 800mV (p-p)

Value Min. Typ. Max. Units Conditions Characteristic 300 MHz Vcc= + 5.2V Max. i/p frequency Min.i/p frequency 40 Sinewave Input Min. slew rate for square wave input 100 V/us Propagation delay (clock i/p to device o/p) ns 3.9 $V_{cc} = + 5.2V, 25^{\circ}C$ $V_{cc} = + 5.2V, 25^{\circ}C$ PE input reference level Power supply drain current 40 55 mΑ PE input pull down resistors 4.3 kΩ Clock i/p impedance (i/p to i/p ref. low frequency) 400 Ω

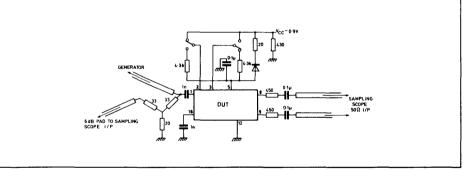


Fig. 3 Test circuit

IPPLICATION NOTES

When operating the SP8720 in a synthesiser loop at 00MHz, the delay time through the programmable diider controlling the SP8720 is approximately 5.5ns, nd will require ECL.

The simple passive interface from the output of the P8720 into ECL 10K logic is defined in Fig. 4.

If TTL is required, the input interface to the PE pins, nd the output of the SP8720 into TTL, is shown in ig.5.

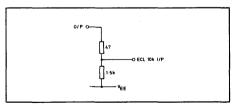


Fig. 4

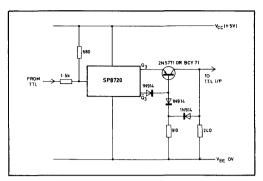


Fig. 5

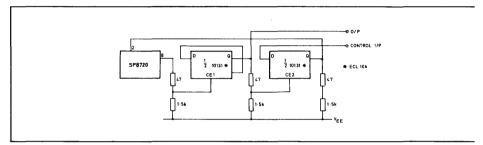


Fig. 6 Divide by 6/8 Control loop delay time approximately 20ns at 300MHz I/P frequency

HIGH-SPEED DIVIDERS

SP 8725 A & B

UHF PROGRAMMABLE DIVIDER 300MHz ÷ 3/4

In frequency synthesis it is desirable to start proprammable division at as high a frequency as possible, ecause this raises the comparison frequency and so approves the overall synthesiser performance.

The SP8725 series are UHF integrated circuits that an be logically programmed to divide by either 3 or 4 vith input frequencies up to 300MHz. The design of ery fast fully programmable dividers is therefore greatly implified by the use of these devices and makes them articularly useful in frequency synthesisers operating the UHF band.

All inputs and outputs are ECL-compatible throughut the temperature range: the clock inputs and rogramming inputs are ECL10K-compatible while the wo complementary outputs are ECLII-compatible to aduce power consumption in the output stage. ECL OK output compatibility can be achieved very simply, owever (see Operating Notes).

The division ratio is controlled by two \overline{PE} inputs. he counter will divide by 3 when either \overline{PE} input is in he high state and by 4 when both inputs are in the low tate. Both the PE inputs and the clock inputs have ominal $4.3k~\Omega$ pulldown resistors to VEE (negative ail).

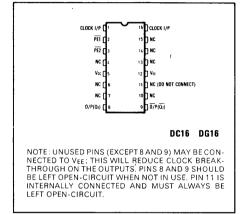


Fig. 1 Pin connections (top)

EATURFS

- Military and Industrial Variants
- 300 MHz Togale Frequency
- Low Power Consumption
- ECL Compatibility on All I/Ps and O/Ps
- Low Propagation Delay
- True and Inverse Outputs

LUICK REFERENCE DATA

- Temperature Ranges:
 - 'A' Grade 55 °C to + 125 °C
 - 'B' Grade 0° C to $+70^{\circ}$ C
- Supply Voltage | Vcc Vee | 5.2V
- Power Consumption 250mW Typ.
- Propagation Delay 3ns Typ.

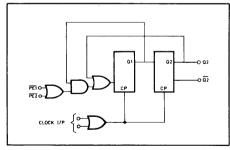


Fig. 2 Logic diagram (positive logic)

ABSOLUTE MAXIMUM RATINGS

Supply voltage |Vcc — VEE| Input voltage Vin (d.c.)

Output current |out | Max. junction temperature | Storage temperature range

Not greater than the supply voltage in use. 20mA - +150°C

-55°C to +175°C

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

T_{amb}: 'A' Grade —55°C to +125°C 'B' Grade 0°C to +70°C Supply coltage (see note 1): Vcc = 0V Vee = -5.2V

Static Characteristics

	Value					
Charactistic	Min	Тур.	Max.	Units	Conditions	
Clock and PE input voltage levels VINH VINL Input pulldown resistance, between pins 1, 2, 3 and 16 and VEE (pin 12)	—1.10 —1.85	4.3	0.81 1.50	V V	T _{amb} = +25°C, see note	
Öutput voltage levels Vон VoL	0.85		1.50	V V	$T_{amb} = +25 ^{\circ}\text{C},$ see note 3. $lout \text{ (external)} = 0\text{mA}$ (There is an internal circuit equivalent to a 2k Ω pulldown resistor on each output)	
Power supply drain current		45	60	mA	1	

NOTES

- The devices are specified for operation with the power supplies of $V_{CC}=0V$ and $V_{EE}=-5.2V\pm0.25V$, which are the normal ECI supply rails. They will also operate satisfactorily with TTL rails of $V_{CC}=+5V\pm0.25V$ and $V_{EE}=0V$. The input reference voltage has the same temperature coefficient as ECL III and ECL 10K.
- The output voltage levels have the same temperature coefficients as ECL II output levels.

Dynamic Characteristics

		Value			
Characteristic	Min.	Тур.	Max.	Units	Conditions
Clock input voltage levels					
Vinh	-1.10		-0.90	V	$T_{amb} = +25$ °C,
VINL	-1.70		—1.50	V	see note 4
Max. toggle frequency	300			MHz	
Min. frequency with					
sinewave clock input	i i		10	MHz	
Min. slew rate of square wave	1 1				
input for correct operation	1 1				
down to 0MHz			20	V/µs	
Propagation delay	f				
(clock input to device output)		3		ns	
Set-up time	1	1.5		ns	See note 5
Release time		1.5		ns	See note 6

NOTES

- The devices are dynamically tested using the circuit shown in Fig. 5. The bias chain has the same temperature coefficient as ECL II and ECL 10K, and therefore tracks the input reference throughout the temperature range. The devices are tested with input amplitude of 400 and 800 mV p-p about that reference, over the full temperature range.
- Set-up time is defined as the minimum time that can elapse between a L H transition of a control input and the next L H clock pulse transition to ensure that the $\div 3$ mode is forced by that clock pulse (see Fig.3).
- Release time is defined as the minimum time that can elapse between a $H \to L$ transition of a control input and the next $L \to H$ cloc pulse transition to ensure that the +4 mode is forced by that clock pulse (see Fig. 4.)

OPERATING NOTES

The SP8725 range of devices are designed to pperate in the UHF band and therefore PCB layouts should comply with normal UHF rules, e.g. non-inductive resistors and capacitors should be used, power supply rails decoupled, etc.

All clock and control inputs are compatible with ECL III and ECL 10K throughout the temperature ange. However, it is often desirable to capacitively-souple the signal source to the clock, in which case an external bias network is required as shown in Fig. 6.

The ÷3/4 requires ECL control logic at the maximum nput frequency, but can be controlled by a TTL fully programmable counter at a reduced input clock requency. When used the outputs and inputs must be nterfaced to TTL. The input TTL to ECL interface is

accomplished with two resistors as shown in Fig. 7. The output ECL to TTL interface requires some gain and therefore uses a transistor. This interface as shown on Fig. 7, gives the true output; the inverse can be obtained by interchanging the Q2 and Q2 outputs. The output interface will operate satisfactorily over the full military temperature range ($-55\,^{\circ}\mathrm{C}$ to $-125\,^{\circ}\mathrm{C})$ at frequencies in excess of 35MHz. It has a fan out of one and the propagation delay through the divider plus the interface and one Schottky TTL gate is approximately 10ns. At an input frequency of 1200MHz this would only leave about !5ns for the fully programmable counter to control the $\div 3/4$. The loop delay can be increased by extending the $\div 3/4$ function to, say, $\div 12/13$ or $\div 24/25$.

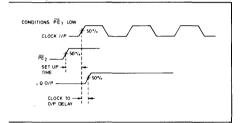


Fig. 3 Set-up timing diagram

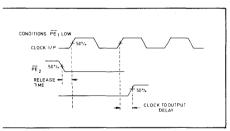


Fig. 4 Release timing diagram

-750

Fig. 5 Test circuit for dynamic measurements

Clock Pulse	Q ₁	Q2	
1 2 3 4		H L L H]←	—Extra State

Table 1 Count sequence

PE ₁	PE ₂	Div Ratio.
LHLH	LLHH	4 3 3 3

Table 2 Truth table for control inputs

The maximum possible loop delay for control is obtained if the L \cdot H transition from Q₂ or the H \cdot L transition from Q₂ is used to clock the stage controlling the \div 3/4 circuit. The loop delay is 3 clock periods minus the internal delays of the \div 3/4 circuit.

The SP8725 device O/Ps are compatible with ECL II levels when there is no external load. They can be made compatible with ECL III and ECL 10K with simple notestial dividing network as shown in Fig. 8

simple potential dividing network as shown in Fig. 8.

The control and clock inputs are already compatible with ECL III and ECL 10K. The interface circuit of Fig. 8 can also be used to increase noise immunity when interfacing from ECL III and ECL 10K outputs at low current levels to ECL III and ECL 10K inputs.

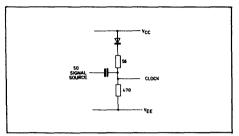


Fig 6. Recommended input bias configuration for capacitive coupling to a continuous 50 Ω signal source

Fig. 7 TTL to ECL and ECL/TTL interfaces (for SP8725 device and TTL operating from the same supply rails)

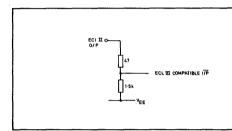


Fig. 8 ECL II to ECL III interface.

1641 Kaiser Avenue, Irvine.CA. 92714

SP8000 SERIES

HIGH SPEED DIVIDERS

SP8735B ÷8 AT 600MHz WITH BINARY OUTPUTS

The SP8735B is a divide-by-eight circuits with binary outputs for operation from DC up to specified input frequencies of 600 MHz and 500 MHz respectively over a guaranteed temparature range of 0°C to +70°C.

This device, optimised for counter applications in ystems using both ECL and TTL, are intended to be perated between 0V and —5.2V power rails and to iterface with TTL operating between 0V and +5V. he binary outputs and one of two carry outputs are TL-compatible, while the second carry output is ECL-ompatible. The clock input, which is normally capacively coupled to the signal source, is gated by an ECL I/ECL 10K compatible input. The TTL-compatible reset proces the 0000 state regardless of the state of the other iouts.

EATURES

- Direct Gating Capability at up to 600 MHz
- TTL Compatible Binary Outputs
- TTL and ECL Compatible Carry Outputs
- Power Consumption Less Than 450mW
- Wide Dynamic Input Range

IPPLICATIONS

- Counters
- Timers
- Synthesisers

DUICK REFERENCE DATA

■ Power Supplies: Vcc OV

 $V_{ee} - 5.2V \pm 0.25V$

Range of Clock Input Amplitude: 400 – 800 mV p-p

Operating Temperature Range:

0°C to 70°C

- Frequency Range with Sinusoidal I/P: 40 600MHz
- Frequency Range with Square Wave I/P: DC to 600MHz

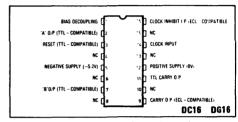


Fig. 1 Pin connections (viewed from top)

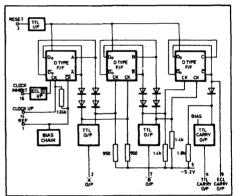


Fig.2 SP8735 logic diagram

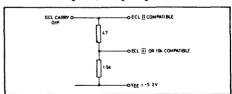


Fig.3 ECL | I to ECL 10K interface

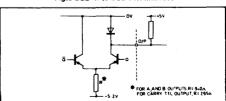


Fig. 4 TTL output circuit diagram

ELECTRICAL CHARACTERISTICS (All types except where otherwise stated)

Test Conditions (unless otherwise stated):

T_{amb} 0°C to +70°C Power Supplies Vcc 0V

VEE -5.2V ±0.25V

Characteristic		Value			Conditions
Cnaracteristic	Min.	Тур.	Max.	Units	Conditions
Clock input (pin 14)					
Max. input frequency				l '	
SP8735B Min. input frequency with	600			MHz	Input voltage 400–800mV p-p
sinusoidal I/P	1 1		40	MHz	
Min. slew rate of square wave for			40		-
correct operation down to DC			100	V/μs	
Clock inhibit input (pin 16)	1 1			'	
High level (inhibit)	-0.960			l v	$T_{amb} = +25$ °C (see note 1)
Low level			-1.650	V	
Edge speed for correct operation at	1		٦.		100/ += 000/
max. clock I/P frequency			2.5	ns	10% to 90%
Reset input (pin 3) High level (reset)	See note	2	İ	ا ا	see note 2
Low level	I I	2	+0.4	V	l
Reset ON time	100			ns	
TTL outputs A & B (pins 2 & 7)					
Output high level	+2.4		İ	V	10k Ω resistor and 3 TTL gate
Output low level			+0.4	V	from O/P to 5V rail (see note 3)
TTL carry output (pin 11)					
Output high level	+2.4			V	5k Ω resistor and 3 TTL gates
Out and I was broad				v	from O/P to +5V rail
Output low level	1		+0.4	V	
ECL carry output (pin 9) Output high level	_0.975			V	T _{amb} = +25°C
Output high level	[-0.875]		_1.375	ľv	External current = 0mA (See
Output low level			1.575	ľ	note 4)
Power supply drain current		70	90	mA	V _{EE} — 5.2V

NOTES

- 1. The clock inhibit input levels are compatible with the ECL III and ECL 10K levels throughout the temperature ranges specified.
- For a high state, the reset input requires a more positive input level than the specified worst case TTL VoH of +2.4V. Resetting should be done by connecting a 1.8k Ω resistor from the output of the driving TTL gate and only fanning out to the reset input of the SP8000 series devices.
- These outputs are current sources which can be readily made TTL compatible voltages by connecting them to +5V via 10k Ω resistors (see Fig. 4).
- The ECL carry output is compatible with ECL II throughout the temperature range but can be made compatible with ECL III using the simple interface shown in Fig. 3.

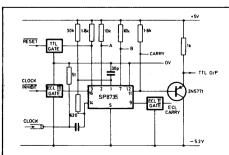


Fig.5 Typical operating diagram

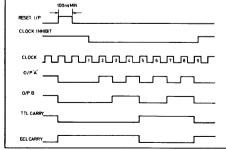


Fig.6 Output waveforms

OPERATING NOTES

The device is intended to be used with TTL and ECL n a counting system — the ECL and the decade counter being connected between voltage rails of 0V and -5.2V and the TTL between voltage rails of 0V and +5V. Provided that this is done ECL and TTL compatibility is achieved. (See Figs. 4 and 5)

The clock is normally capacitively coupled to the signal source: a 1000 pF UHF capacitor should be adequate. For low frequency operation, the 1000 pF capacitor should be connected in parallel with a nigher value capacitor. The bias decoupling (pin 1) should be connected to earth via a capacitor — preferbly a chip type, but in any case a low inductance type suitable for UHF applications. The devices normally have an input amplitude operating range far greater than he specified 400 to 800 mV p – p. However, if the devoupling capacitor is not of a UHF type, or it is connected on an earth point that has a significant impedance between the capacitor and the $V_{\rm GC}$ connection, then the nput dynamic range will suffer and the maximum signal or correct operation will be reduced.

Under certain conditions, the absence of an input

signal may cause the device to self-oscillate. This can be prevented (while still maintaining the specified input sensitivity) by connecting a 30Ω resistor between the clock input and the positive supply and a 620Ω resistor between clock and pin 1. If the transition of either the clock input or the clock inputi input is slow the device may start to self-oscillate during the transition. For this reason the input slew rates should be greater than 100V/ μs. It should also be noted that a positive-going transition on either the clock input or the clock inhibit will clock the device, provided that the other input is in the low state.

The binary outputs give TTL-compatible outputs (fan out =1) when a $10k\Omega$ resistor is connected from the output to the $\pm 5V$ rail. In this configuration the outputs will be very slow compared with the clocking rate of the counter and so the state on the TTL outputs can only be determined when the clock has stopped or is inhibited.

The fan out capability of the TTL carry output can be increased by buffering it with a PNP emitter follower. The interface is shown in Fig. 5.

A typical application is shown in Fig. 7.

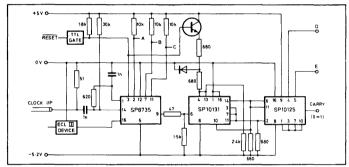


Fig.7 600MHz ÷ 32 with reset and inhibit

SP 8740.A & B

AC COUPLED UHF PROGRAMMABLE DIVIDER 300 MHz ÷ 5/6

The SP8740 A & B are high speed programmable \div 5/6 counters operating at an input frequency of up to 300 MHz over the temperature ranges -55° C to $+125^{\circ}$ C, 0° C to $+70^{\circ}$ C.

The clock input is biased internally and is coupled to the signal source by a capacitor. The input signal path is completed by an input reference decoupling capacitor which is connected to earth.

The division ratio is controlled by two PE inputs. The counter will divide by 5 when either input is in the high state, and by 6 when both inputs are in the low state. These inputs are compatible with standard ECL 10K inputs and have the same temperature characteristics. Both inputs have nominal 4.3kΩ internal pulldown resistors.

The true and inverse outputs are compatible with standard ECL II outputs. They may be used to drive ECL 10K circuits by the inclusion of two resistors as shown in Fig. 4.

When using the device as a divide-by-five prescaler the inverse output (o/p) should be connected to a PE input.

Clock Pulse	Q,	Q ₂	Q ₃	
1	L	Н	Н	
2	L	L	н	
2 3	L	l L	L	
4	Н	L	L	
5 6	H_	<u> </u>	L.	
6	ĮΉ.	<u>H</u>	<u>[₩</u>]⋖	—Extra state

Table 1 Count sequence

PE,	PE ₂	Div Ratio
L H L H	LHH	6 5 5

Table 2 Truth table for control inputs

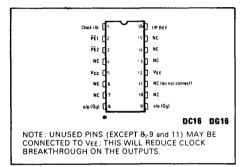


Fig. 1 Pin connections

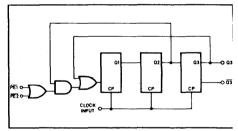


Fig. 2 Logic diagram SP8740

FEATURES

- Full Temperature Range Operation
 - 'A' Grade -55°C to +125°C 'B' Grade 0°C to +70°C
- Self Biasing CP Input
- Wide Input Dynamic Range
- Control Inputs ECL 10K Compatible
- Low Propagation Delay
- True and Inverse Outputs Available

ABSOLUTE MAXIMUM RATINGS

Power supply voltage $V_{CC} - V_{EE}$

Input voltage, PE inputs

0V to +8V 0V to Vcc

Input voltage, CP input

2V peak-to-peak

Output current

20mA

Operating junction temperature

+150°C

Storage temperature

-55°C to +150°C

!LECTRICAL CHARACTERISTICS

PE inputs - ECL 10K compatible Outputs - ECL II compatible

Test conditions (unless otherwise stated)

 T_{amb} : 'A' grade -55° C to $+125^{\circ}$ C 'B' grade 0° C to $+70^{\circ}$ C Supply voltages: V_{CC} = +5.2V ±0.25V

V_{EE} = 0V

Clock input voltage: 400mV to 800mV (p-p)

Characteristic		Value		Units	Conditions
Characteristic	Min.	Тур.	Max.		
Max i/p frequency	300			MHz	V _{cc} = +5.2V
Min i/p frequency	ĺ		40		Sinewave Input
Min. slew rate for square wave input			100	V/μs	l
Propagation delay	1				
(clock i/p to device o/p)		4	1	ns	
PE input reference level		+3.9		V	V _{cc} = +5.2V, 25°C V _{cc} = +5.2V, 25°C
Power supply drain current		45	60	mA	V _{cc} = +5.2V, 25°C
PE input pulldown	1				
Resistors		4.3		ΚΩ	
Clock i/p impedance			1 :		1
(i/p to i/p ref low frequency)	i	400	1	Ω	

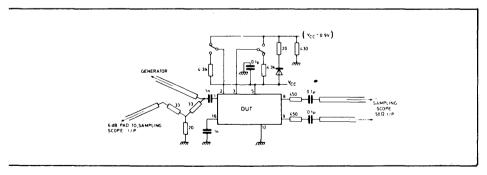


Fig. 3 Test circuit

APPLICATION NOTES

When operating the SP8740 in a synthesiser loop at 300MHz, the delay time through the programmable divider controlling the SP8740 is approximately 13ns. As we believe that this delay would be a severe problem with TTL, we strongly recommend the use of ECL.

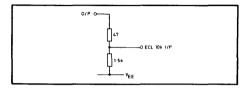


Fig. 4

The simple passive interface from the output of the SP8740 into ECL 10K logic is defined in Fig. 4.

If TTL is required, the input interface to the PE pins and the output of the SP8740 into TTL, is shown in Fig. 5

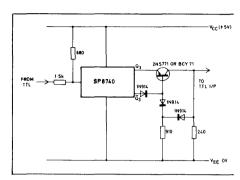


Fig. 5

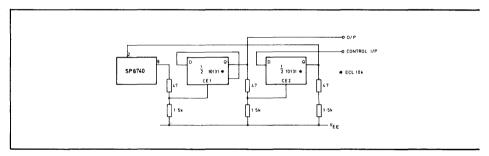


Fig. 6 Divide by 10/12. Control loop delay time approximately 33 ns

SP8000 SERIES HIGH SPEED DIVIDERS

SP 8741 A & B

AC COUPLED UHF PROGRAMMABLE DIVIDERS 300 MHz ÷ 6/7

The SP8741 A, B & M are high speed programmable \div 6/7 counters operating at an input frequency of up to 300 MHz over the temperature ranges -55° C to $+125^{\circ}$ C, 0° C to 70° C.

The clock input is biased internally and is coupled to the signal source by a capacitor. The input signal path is completed by an input reference decoupling capacitor which is connected to earth.

The division ratio is controlled by two \overrightarrow{PE} inputs. The sounter will divide by 6 when either input is in the high state, and by 7 'when both inputs are in the low state. These inputs are compatible with standard ECL 10K inputs and have the same temperature characteristics. Both inputs have nominal 4.3kQ internal pulldown resistors.

The true and inverse outputs are compatible with tandard ECL II outputs. They may be used to drive ECL 10K circuits by the inclusion of two resistors as shown in Fig. 4.

When using the device as a divide-by-six prescaler the nverse output (o/p) should be connected to a PE input.

Clock Pulse	\mathbf{G}^{1}	Q ₂	\mathbf{Q}_3
1	L	Н	Ŧ
2	L	L	Н
3	н	L	н
4	L	н	L
2 3 4 5 6	L	L	L
6	_Н_	ᆫᆫ	_L_
7	EH.	<u> </u>	[Ⅱ]→

Table 1 Count sequence

PE ₁	PE ₂	Div Ratio
ברבר	ココエエ	7 6 6 6

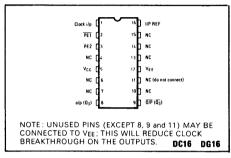


Fig. 1 Pin connections

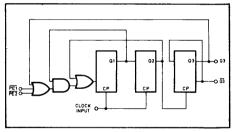


Fig. 2 Logic diagram

FEATURES

- Full Temperature Range Operation
 'A' Grade —55°C to +125°C
 'B' Grade 0°C to +70°C
- Self Biasing CP Input
- Wide Input Dynamic Range
- Control Inputs ECL 10K Compatible
- Low Propagation Delay
- True and Inverse Outputs Available

ABSOLUTE MAXIMUM RATINGS

Power supply voltage $|V_{CC} - V_{EE}|$ 0V to +8V Input voltage, PE inputs 0V to V_{CC} Input voltage, CP input 2V peak-to-peak 0Utput current 20mA Operating junction temperature +150°C Storage temperature -55°C to +150°C

ELECTRICAL CHARACTERISTICS

PE inputs - ECL 10K compatible Outputs - ECL II compatible

Test conditions (unless otherwise stated)

 T_{amb} :

'A' grade -55°C to +125°C 'B' grade 0°C to +70°C

Supply voltages: V_{CC} = +5.2V ±0.25V

V_{EE} = 0V

Clock input voltage: 400mV to 800mV (p-p)

Characteristic	Value			11-14-	Conditions
	Min.	Тур.	Max.	Units	Conditions
Max i/p frequency	300			MHz	V _{cc} = +5.2V
Min i/p frequency	1		40		Sinewave Input
Min. slew rate for square wave input	ŀ		100	V/μs	
Propagation delay	i				
(clock i/p to device o/p)	}	4	l :	ns	
PE input reference level	ļ	+3.9	i	٧	$V_{cc} = +5.2V, 25^{\circ}C$
Power supply drain current	1	45	60	mA.	$V_{cc} = +5.2V, 25^{\circ}C$
PE input pulldown	-				
Resistors	1	4.3		ΚΩ	
Clock i/p impedance	į				
(i/p to i/p ref low frequency)	j	400	i	Ω	

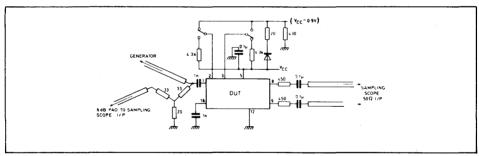
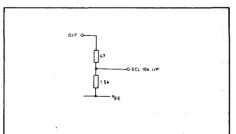



Fig. 3 Test circuit

APPLICATION NOTES

SP8640/1/2/3 TO SINGLE TIL I/P

Fig. 4

Fig. 5

V_{CC}(+ 5V)

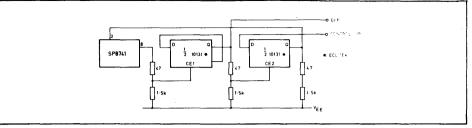


Fig. 6 Divide-by-12/14. Control loop delay time approximately 40ns.

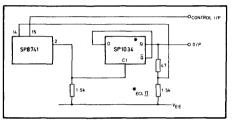


Fig. 7 Divide-by-12/13. Control loop delay time approximately 30ns using SP1034.

When operating the SP8741 in a synthesiser loop at 300MHz the delay time through the programmable divider controlling the SP8741 is approximately 16ns. As we believe that this delay would be a severe problem with TTL, we strongly recommend the use of ECL.

The simple passive interface from the output of the SP8741 into ECL 10K logic is defined in Fig. 4.

If TTL is required, the input interface to the \overrightarrow{PE} pins, and the output of the SP8741 into TTL, is shown in Fig. 5.

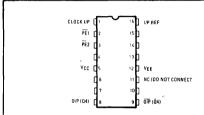
HIGH SPEED DIVIDERS

SP 8743 B & M

AC COUPLED UHF PROGRAMMABLE DIVIDER 500 MHz ÷8/9

The SP8743M and B are high speed, programmable \div 8/9 counters operating at an input frequency of up to 500MHz over the temperature ranges -40°C to $+85^{\circ}\text{C}$ and 0°C to 70°C respectively.

The clock input is biased internally and is coupled to the signal source by a capacitor. The input signal path is completed by an input reference decoupling capacitor which is connected to ground.


The division ratio is controlled by two \overline{PE} inputs. The counter will divide by 8 when either input is in the high state and by 9 when both inputs are in the low state. These inputs are compatible with standard ECL 10K inputs and have the same temperature characteristics. Both inputs have nominal $4.3 \mathrm{k}\Omega$ internal pulldown resistors.

The true and inverse outputs are compatible with standard ECL II outputs. They may be used to drive ECL 10K circuits by the inclusion of two resistors as shown in Fig. 4.

When using the device as a divide-by-eight prescaler the inverse output (o/p) should be connected to a PE input.

ABSOLUTE MAXIMUM RATINGS

Power supply voltage, $ V_{CC} - V_{EE} $	0V to +8V
Input voltage PE inputs	0V to V _{CC}
Input voltage CP input	2V p-p
Output current	20mA
Operating junction temperature	+150°C
Storage temperature	-55°C to +150°C

NOTE: UNUSED PINS (EXCEPT 8, 9 and 11) MAY BE CONNECTED TO VEE; THIS WILL REDUCE CLOCK BREAKTHROUGH ON THE OUTPUTS.

DG 16 DC 16

Fig. 1 Pin connections

FEATURES

Operating Temperature Range :

0°C to 70°C ('B' grade) -40°C to +85°C ('M' grade)

- Self Biasing Clock Input
- Wide Input Dynamic Range
- Control Inputs ECL 10K Compatible
- Low Propagation Delay
- True and Inverse Outputs Available

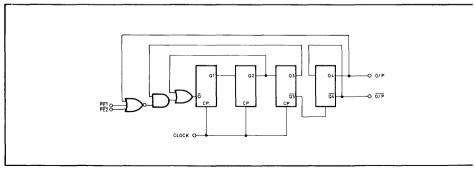


Fig. 2 SP8743 logic diagram

P8743

C	ount S	equen	ice	
Ω ₁	Ω_2	σ^3	04	
L	Ι	н	н	
L	L	Н	Н	1
Н	L	L	L	
H	Н	L	L	i
L	Н	Н	L	1
L	L	н	L	
[T	Ę	L	¨#	Extra state
Н		L.	H -	
Н	Н	L	Н	

Division Ratio						
	9	8	8	.8		
PE1 PE2	ا ا	LH	H	н		

LECTRICAL CHARACTERISTICS

E inputs – ECL 10K compatible outputs – ECL II compatible

Test Conditions (unless otherwise stated):

TAMB 0°C to ± 70 °C ('B' grade) -40°C to ± 85 °C ('M' grade)

Supply Voltage $V_{CC} = +5.2V \pm 0.25V V_{EE} = 0V$

Clock Input Voltage 400mV to 800mV p-p

01	1	Value	Units	0	
Characteristics	Min. Typ. Max.		Units	Conditions	
Max. i/p frequency	500			MHz	V _{CC} = +5.2V
Min. i/p frequency	1		40	1	Sinewave Input
Min. Slew rate for square wave input	1		100	V/μs	
Propagation delay (clock i/p to device o/p)	l	4	1	ns	
PE input reference level	J	+3.9	j	V	$V_{CC} = +5.2V, 25^{\circ}C$
Power Supply drain current	1	45	60	mA	V _{CC} = +5.2V, 25°C V _{CC} = +5.2V, 25°C
PE input pulldown resistors	1	4.3	1	kΩ	
Clock i/p impedance	1 .	400	1	Ω	
(i/p to i/p ref. low freq.)			1		

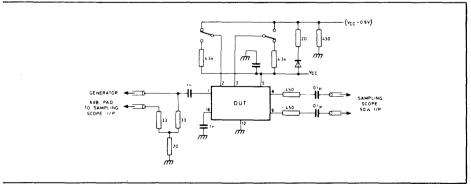


Fig. 3 Test circuit

APPLICATIONS INFORMATION

Interfaces

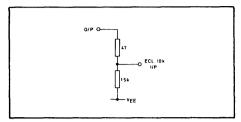


Fig. 4

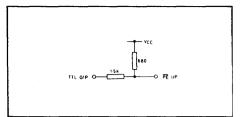


Fig. 5

When operating the SP8743 in a synthesiser loop at 500MHz, the delay time through the programmable divider controlling the SP8743 is approximately 12ns As we believe that this delay would be a severe problem with TTL, we strongly recommend the use of ECL.

The simple passive interface from the output of the SP8743 into ECL 10K logic is defined in Fig. 4.

If TTL is required, the input interface to the \overline{PE} pins, and the output of the SP8743 into TTL, is shown in Fig. 5.

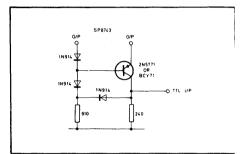


Fig. 6 SP8743 O/P to TTL 1/P. Total delay from SP8743 clock 1/i to Schottky gate O/P = 15ns typical.

Sub-Systems

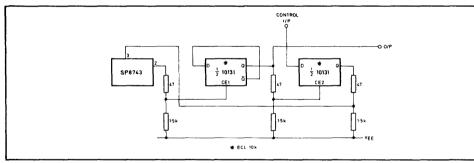


Fig.7 A \div 32/33 application. Control loop delay time approx. 56ns.

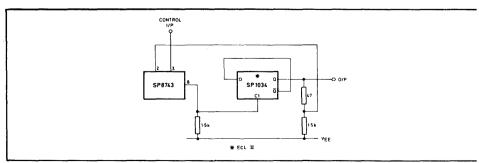


Fig.8 A:16/17 application. Control loop delay time approx. 24ns using SP1034

SP8000 SERIES HIGH SPEED DIVIDERS

SP 8745 A & B

DCCOUPLED UHF PROGRAMMABLE DIVIDER 300 MHz ÷ 5/6

In frequency synthesis it is desirable to start programmable division at as high a frequency as possible, secause this raises the comparison frequency and so moroves the overall synthesiser performance.

The SP8745 series are UHF integrated circuits that can se logically programmed to divide by either 5 or 6 with nput frequencies up to 300 MHz. MHz. The design of very ast fully programmable dividers is therefore greatly implified by the use of these devices and makes them particularly useful in frequency synthesisers operating in he UHF band.

All inputs and outputs are ECL-compatible throughout

the temperature range: the clock inputs and programming are ECL III-compatible while complementary outputs are ECL II-compatible to reduce power consumption in the output stage. ECL III output compatibility can be achieved very simply, however (see Operating Notes).

The division ratio is controlled by two PE inputs. The counter will divide by 5 when either PE input is in the high state and by 6 when both inputs are in the low state. Both the PE inputs and the clock inputs have nominal $4.3k\Omega$ pulldown resistors to VEE (negative rail)

FEATURES

- Military and Industrial Variants.
- 300 MHz Toggle Frequency
- Low Power Consumption
- ECL Compatibility on All I/Ps & O/Ps
- Low Propagation Delay
- True and Inverse Outputs

QUICK REFERENCE DATA

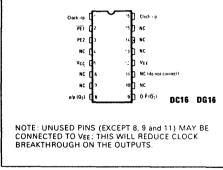
- Temperature Ranges: 'A' Grade -55° C to $+125^{\circ}$ C 'B' Grade 0° C to $+70^{\circ}$ C
- Supply Voltage

$$|V_{CC} - V_{EE}|$$
 5.2V

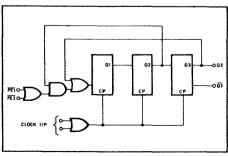
- Power Consumption 250mW Typ.
- Propagation Delay 3ns Typ.

ABSOLUTE MAXIMUM RATINGS

Supply voltage V_{CC} - V_{EE} Input voltage Vin (d.c.)


Not greater than the supply voltage in use.

Output current I out Max, junction temperature


+150°C -55°C to +175°C

20mA

Storage temperature range

Pin connections (top)

Logic diagram (positive logic)

Clock Pulse	Q ₁	Q ₂	\mathbf{Q}_3	
1	L	н	н	
2	L	L	н	
2	L	L.	L	
4	н	L	L	
5 6	Н	H	, L	_ Extra state
6	[H]	H	H.*	LXII a stati

PE ₁	PE ₂	Div Ratio	
L	L	6 5	
H	# #	5 5	

Table 1 Count sequence

Table 2 Truth table for control inputs

The maximum possible loop delay for control is obtained if the $L \rightarrow H$ transition from Q_3 or the $H \rightarrow L$ transition from \overline{Q}_3 is used to clock the stage controlling the ÷5/6. The loop delay is 5 clock periods minus the internal delays of the ÷5/6 circuit.

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

T_{amb}: (A grade) -55°C to +125°C (B grade) 0°C to +70°C Supply voltage (see note 1): V_{CC} 0V V_{EE} -5.2V

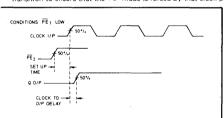
Static Characteristics

Characteristic	Value			Units	Conditions
	Min.	Тур.	Max.	Units	Conditions
Clock and PE input voltage levels VINH VINL Input pulldown resistance, between pins 1, 2, 3, and 16 and VEE (pin 12)	-1.10 -1.85	4.3	-0.81 -1.50	ν ν κΩ	T _{amb} = +25°C, see Note 2
Output voltage levels VoH VoL	-0.85		-1.50	V	T_{amb} = +25°C, see Note 3. I_{out} (external) = 0mA (There is an internal circuit equivalent to a 2k Ω pulldown resistor on each output)
Power supply drain current		50	65	mA	

NOTES

- The devices are specified for operation with the power supplies of V_{CC} = 0V and V_{EE} = -5.2V ± 0.25V, which are the normal EC supply rails. They will also operate satisfactorily with TTL rails of V_{CC} = +5V ± 0.25V and V_{EE} = 0V. The input reference voltage has the same temperature coefficient as ECL III and ECL 10K.
- The output voltage levels have the same temperature coefficients as ECL II output levels.

<u>Jynamic Characteristics</u>


Characteristic		Value				
	Туре	Min.	Тур.	Max.	Units	Conditions
Clock input voltage levels V _{INH} V _{INL}	Ali Ali	-1.10 -1.70		-0.90 -1.50	V V	T _{amb} = +25°C, see Note 4
Max. toggle frequency	All	300			MHz	
Min, frequency with sinewave clock input	Ail			10	MHz	
Min. slew rate of square wave input for correct operation down to 0MHz	All	:		20	V/μs	
Propagation delay (clock input to device output)	All		3		ns	
Set-up time	All		1.5		ns	See note 5
Release time	All		1.5		ns	See note 6

OTES

The devices are dynamically tested using the circuit shown in Fig. 5. The bias chain has the same temperature coefficient as ECL III and ECL 10K, and therefore tracks the input reference throughout the temperature range. The devices are tested with input amplitudes of 400 and 800 mV p.p about that reference, over the full temperature range.

Set-up time is defined as the minimum time that can elapse between a $L\rightarrow H$ transition of a control input and the next $L\rightarrow H$ clock pulse transition to ensure that the $\div 5$) mode is forced by that clock pulse (see Fig. 3).

Release time is defined as the minimum time that can elapse between a H->L transition of a control input and the next L->H clock pulse transition to ensure that the ÷6 mode is forced by that clock pulse (see Fig. 4).

CONDITIONS FEI LOW

CLOCK 1/P

FE 2 50",

RELEASE

TIME

CLOCK 'OOU'PU'

CELAY

Fig. 3 Set-up timing diagram

Fig. 4 Release timing diagram

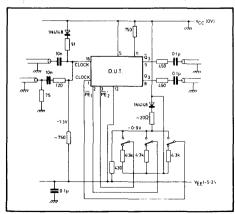


Fig. 5 Test circuit for dynamic measurements

OPERATING NOTES

The SP8745 range of devices are designed to operate in the UHF band and therefore PCB layouts should comply with normal UHF rules, e.g. non-inductive resistors and capacitors should be used, power supply rails decoupled, etc.

All clock and control inputs are compatible with ECL III and ECL 10K throughout the temperature range. However, it is often desirable to capacitively-couple the signal source to the clock, in which case an external bias network is required as shown in Fig.6, or alternatively an internally biased SP8742.

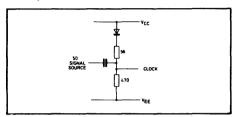


Fig. 6 Recommended input bias configuration for capacitive coupling to a continuous 50Ω signal source.

The can be controlled by a TTL fully-programmable counter, provided that delays within the loop are kept to a minimum. The outputs and control inputs must therefore interface to TTL. The input TTL to ECL interface is accomplished with two resistors as shown in Fig. 7. The output ECL to TTL interface requires some gain and therefore uses a transistor. This interface as shown on Fig. 7, gives the true output; the inverse can be obtained by interchanging the Q_3 and $\overline{Q_3}$ outputs. The output interface will operate satisfactorily over the full military temperature range (-55°C to +125°C) at frequencies in excess of 35MHz. It has a fan out of one and the propagation delay through the divider plus the interface and one Schottky TTL gate is approximately 10ns. At an input frequency of 300 MHz this would only leave about 6.5ns for the fully-programmable counter to control the ÷5/6. The loop delay can be increased by extending the ÷5/6 function to, say, ÷20/21 or ÷40/41 (see Application Notes).

The SP8745 device O/Ps are compatible with ECL II level: when there is no external load. They can be mad compatible with ECL III and ECL 10K with a simple potential dividing network as shown in Fig. 8.

The control and clock inputs are already compatibl with ECL III and ECL 10K. The interface circuit of Fig. can also be used to increase noise immunity whe interfacing from ECL III and ECL 10K outputs at lox current levels to ECL III and ECL 10K inputs.

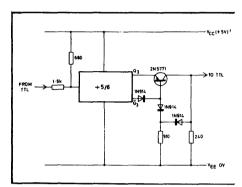


Fig. 7 TTL to ECL and ECL/TTL interfaces (for SP8745 device and TTL operating from the same supply rails)

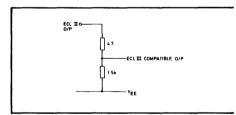


Fig. 8 ECL II to ECL III interface

SP8000 SERIES HIGH SPEED DIVIDERS

SP 8746 A&B

DC COUPLED UHF PROGRAMMABLE DIVIDER 300 MHz ÷ 6/7

In frequency synthesis it is desirable to start rogrammable division at as high a frequency as possible, ecause this raises the comparison frequency and so nproves the overall synthesiser performance.

The SP8746 series are UHF integrated circuits that an be logically programmed to divide by either 6 or 7, . ith input frequencies up to 300 MHz. The design of very 1st fully programmable dividers is therefore greatly mplified by the use of these devices and makes them articularly useful in frequency synthesisers operating in 1st UHF band.

All inputs and outputs are ECL-compatible throughout the temperature range: the clock inputs and programming uputs are ECL III -compatible while the two omplementary outputs are ECL III-compatible to reduce ower consumption in the output stage. ECL III output ompatibility can be achieved very simply, however (see iperating Notes).

The division ratio is controlled by two \overline{PE} inputs. The punter will divide by 6 when either \overline{PE} input is in the igh state and by 7 when both inputs are in the low state. oth the \overline{PE} inputs and the clock inputs have nominal 4.3k $\$ pulldown resistors to V_{EE} (negative rail).

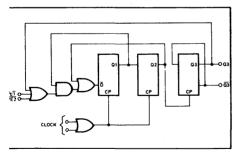


Fig. 2 Logic diagram (positive logic)

ABSOLUTE MAXIMUM RATINGS

Supply voltage $|V_{CC} - V_{EE}|$ Input voltage $V_{in (d.c.)}$

Not greater than the supply voltage in use. 20mA

Output current I out Max. junction temperature Storage temperature range

+150°C -55°C to +175°C

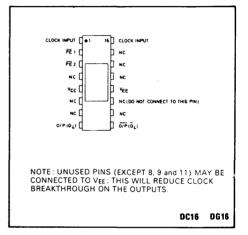


Fig. 1 Pin connections (top)

FEATURES

- Military and Industrial Variants.
- 300 MHz Toggle Frequency.
- Low Power Consumption
- ECL Compatibility on All I/Ps & O/Ps
- Low Propagation Delay
- True and Inverse Outputs

QUICK REFERENCE DATA

Temperature Ranges:

'A' Grade -55°C to +125°C 'B' Grade 0°C to +70°C

Supply Voltage

 $V_{CC} - V_{EE}$ 5.2V

- Power Consumption 250mW Typ.
- Propagation Delay 3ns Typ.

Clock Pulse	Q ₂	Q ₃	Q ₄		
1	L	н	н		
	L	L	Н		
2 3 4	н	L	Н		
4	L	н	L		
5	L	L	L		
6	н	- <u>L</u> -	Ł		
7 .	\mathbb{H}	H	Н		
Extra state					

Table 1 Count sequence

ELECTRICAL CHARACTERISTICS

Test conditions	(unless oth	nerwise stated):
-----------------	-------------	----------------	----

Tamb: 'A' grade -55°C to +125°C 0°C to +70°C

'B' grade Supply voltage (see note 1): V_{CC} 0V

V_{EE} -5.2V

PE,	PE ₂	Div Ratio
L	L	7
Н	L	6
L	н	6
н	н	6

Table 2 Truth table for control inputs

The maximum possible loop delay for control is obtained if the $L \rightarrow H$ transition from Q_3 or the $H \rightarrow L$ transition from \overline{Q}_3 is used to clock the stage controlling the ÷6/7. The loop delay is 6 clock periods minus the internal delays of the ÷6/7 circuit.

Static Characteristics

Characteristic		Value		Units	Conditions
Characteristic	Min.	Тур.	Max.	Onits	Conditions
Clock and $\overline{\text{PE}}$ input voltage levels VINH VINL Input pulldown resistance, between pins 1, 2, 3, and 16 and VEE (pin 12)	-1.10 -1.85	4,3	-0.81 -1.50	. Λ . Λ	T _{amb} = +25°C, see Note 2
Output voltage levels VoH VoL	-0.85		-1.50	Ÿ	T _{amb} = +25°C, see Note 3. I _{out} (external) = 0mA (There is an internal circuit equivalent to a 2kΩ pulldown resistor on each output)
Power supply drain current		50	65	mA	

NOTES

- The devices are specified for operation with the power supplies of V_{CC} = 0V and V_{EE} = -5.2V \pm 0.25V, which are the normal EC supply rails. They will also operate satisfactorily with TTL rails of V_{CC} = +5V \pm 0.25V and V_{EE} = 0V. The input reference voltage has the same temperature coefficient as ECL III and ECL 10K.
- The output voltage levels have the same temperature coefficients as ECL II output levels.

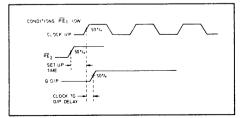


Fig. 3 Set-up timing diagram

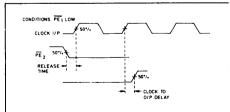


Fig. 4 Release timing diagram

ynamic Characteristics

			Value			
Characteristic	Туре	Min.	Тур.	Max.	Units	Conditions
Clock input voltage levels						
V _{INH}	All	-1.10		-0.90	v	$T_{amb} = +25^{\circ}C$,
VINL	All	-1.70		-1.50	V	see Note 4
Max. toggle frequency	All	300			MHz	
		1			MHz	
					MHz	
					MHz	
Min. frequency with sinewave clock input				10	MHz	
Min. slew rate of square wave						
input for correct operation						
down to 0MHz				20	V/μs	
Propagation delay						
(clock input to device output)			3		ns	
Set-up time	!		1.5		ns	See note 5
Release time			1.5		ns	See note 6

TES

The devices are dynamically tested using the circuit shown in Fig.5. The bias chain has the same temperature coefficient as ECL III and ECL 10K, and therefore tracks the input reference throughout the temperature range. The devices are tested with input amplitudes of 400 and 800 mV p-p about that reference, over the full temperature range.

Set-up time is defined as the minimum time that can elapse between a L→H transition of a control input and the next L→H clock pulse transition to ensure that the ± 6 mode is forced by that clock pulse (see Fig. 3).

Release time is defined as the minimum time that can elapse between a H->L transition of a control input and the next L->H clock pulse

transition to ensure that the ÷7 mode is forced by that clock pulse (see Fig. 4).

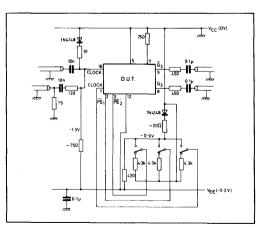


Fig. 5 Test circuit for dynamic measurements

SP8746

OPERATING NOTES

The SP8746 range of devices are designed to operate in the UHF band and therefore PCB layouts should comply with normal UHF rules, e.g. non-inductive resistors and capacitors should be used, power supply rails decoupled, etc.

All clock and control imputs are compatible with ECL III and ECL 10K throughout the temperature range. However, it is often desirable to capacitively-couple the signal source to the clock, in which case an external bias network is required as shown in Fig. 6. Alternatively an SP8741 can be substituted.

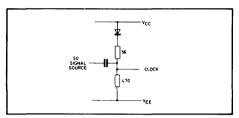


Fig. 6 Recommended input bias configuration for capacitive coupling to a continuous 50Ω signal source.

The ÷6/7 can be controlled by a fully-programmable counter, provided that delays within the loop are kept to a minimum. The outputs and control inputs must therefore interface to TTL. The input TTL to ECL interface is accomplished with two resistors as shown in Fig. 7. The output ECL to TTL interface requires some gain and therefore uses a transistor. This interface as shown on Fig. 7, gives the true output; the inverse can be obtained by interchanging the Q_3 and $\overline{Q_3}$ outputs. The output interface will operate satisfactorily over the full military temperature range (-55°C to +125°C) at frequencies in excess of 35MHz. It has a fan out of one and the propagation delay through the divider plus the interface and one Schottky TTL gate is approximately 10ns. At an input frequency of 300 MHz this would only leave about 10 ns for the fully programmable counter to control the +6/7. The loop delay can be increased by extending the ÷6/7 function to, say, ÷24/25 or 48/49 (see Application Notes)

The SP8746 device O/Ps are compatible with ECL II leve when there is no external load. They can be ma compatible with ECL III and ECL 10K with a simp potential dividing network as shown in Fig. 8.

The control and clock inputs are already compatit with ECL III and ECL 10K. The interface circuit of Fig. can also be used to increase noise immunity whiterfacing from ECL III and ECL 10K outputs at Ic current levels to ECL III and ECL 10K inputs.

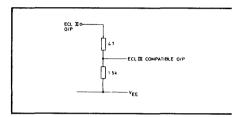


Fig. 8 ECL II to ECL III interface

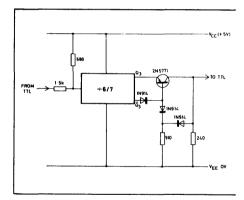


Fig. 7 TTL to ECL and ECL/TTL interfaces (for SP8746 device and TTL operating from the same supply rails)

HIGH SPEED DIVIDERS

SP 8750 B, M SP 8752 B 1.0 GHz 1.2 GHz

UHF ÷ 64 PRESCALERS

The SP8750 range of devices are ECL vide-by-sixtyfours which will operate at frequencies up to 2GHz.

The device has a typical power dissipation of 470mW at it is nominal supply voltage of +6.8V.

EATURES

- Input Ports for VHF and UHF
- Self-Biasing Clock Inputs
- Variable Input Hysteries Capability for Wide Band Operation
- TTL/MOS Compatible Band Change Input
- Push Pull TTL, O/P

BSOLUTE MAXIMUM RATINGS

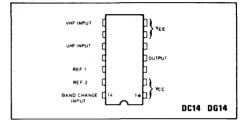


Fig. 1 Pin connections

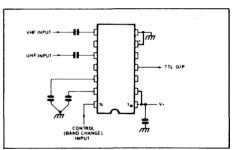


Fig. 2 Typical application

PERATING NOTES

Two input ports are available on this device. Switching etween these inputs is accomplished by operation of the and change input. A logic '1' activates the UHF input, rgic '0' the VHF input. When an input is not in use the put signal must be removed to prevent cross-modulation ccuring on the other input at high frequencies. Both inuts are terminated by a nominal 400 and should be AC oupled to their respective signal sources. Input power to ne device is terminated to ground by the two decoupling apacitors on the reference pins. Input coupling and afference decoupling capacitors should be of a type suitable or use at a frequency of 1.2Hz.

When the device is switched to the VHF input, an input ysteresis of 50mV is set by the internal band change ircuit. This improves the low frequency sinewave operation of the device. The hysteresis level may be measured s VREF1-V REF2.

If the UHF input only is used and the device is required to operate with a sinewave input below 100 MHv, then the required hysteresis may be applied externally as shown in Fig. 5. Large values of hysteresis should be avoided as this will degrade the input sensitivity of the device at the maximum frequency. The divide by 64 output is designed to interface with TTL which has a common VEE (ground). The specified fan-out of 3 standard TTL inputs may be increased to 6 standard or 5 high power/Schottky inputs at a logic zero level of 0.5V. At low frequency the output will change when one of the clock inputs changes from a low to a high level.

The devices may be operated down to very low frequencies if a square wave input is applied with an edge speed of greater than 200V/µs.

The divider is clocked on low to high transitions of either clock input.

ELECTRICAL CHARACTERISTICS

Supply voltage: 6.8V ± 0.35V

Supply current: 68 mA typ., 90 mA max.

Temperature range: 'B' grade 0°C to +70°C, 'M' grade -40°C to +85°C

Clock inputs: AC coupled, self-biasing via 400 Ω

Band change input: TTL type including negative input voltage clamp, 0.8 mA max. sink current

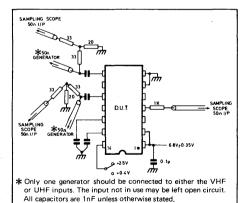
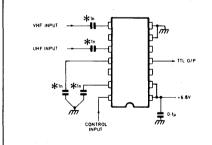
Test conditions (unless otherwise stated):

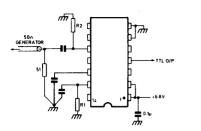
Supply voltage: $V_{EE} = 0V$, $V_{CC} = +6.45V$ to +7.15V

Clock input voltage: 400mV to 1.0Vp-p

 $T_{amb} = 0^{\circ} C \text{ to } +70^{\circ} C \text{ ('B' grade)}, -40^{\circ} C \text{ to } +85^{\circ} C \text{ ('M' grade)}$

	Value		Units				
Characteristic	Туре	Min. Typ.		Max.		Conditions	
UHF clock input							
Max, input frequency	SP8752	1.2		ļ	GHz	600mV p-p input	
	SP8751	1.1			GHz	600mV p-p input	
	SP8750	1.0			GHz	400mV p-p input	
Min. input frequency	All		ŀ	100	MHz	600mV p-p sinewave input	
Min. slew rate for square wave input	All			200	v/μs		
VHF clock input							
Max. input frequency	All		1.0		GHz		
Min. input frequency			30	50	MHz	600mV p-p sinewave input	
Band change input		}	į		1		
High level	All	2.5			V		
Low level			1	0.4	V		
Low level input current	All	Į.	1	0.8	mA	at 0.4V	
Max. clamp current	All	-3			mA	at approx0.7V	
Output				ł			
High level	All	2.5	3.5	4.5	l v		
Low level				0.4	v	5mA current sink	
Supply current	All		68	90	mA	V _{CC} = 6.8V	


Fig. 3 AC test circuit

*Connections to these pins should be made to have the minimum series inductance. Capacitors should be of a type suitable for use at 1GHz.

For single input operation leave pins 8 and 14 open circuit.

Fig. 4 Application circuit

Capacitors are 1 nf unless otherwise stated. Values should be increased if operation below 10 MHz is desired. For 50 mV hysteresis R1 = $36k\Omega$ R2 = ∞ For 100 mV hysteresis R1 = $18k\Omega$ R2 = $18k\Omega$

Fig. 5 Wideband operation

SP8000 SERIES HIGH SPEED DIVIDERS

SP8755A & B 1200 MHz ÷ 64 PRESCALER

FEATURES

- DC to 1200MHz
- -55°C to +125°C temperature range
- TTL compatible output

OUICK REFERENCE DATA

- Supply voltage 5V ±0,25V
- Power consumption 270mW typ. (no load)

ABSOLUTE MAXIMUM RATINGS

Power supply voltage V_{CC} - V_{FF} 0V to +10V

Input voltage, clock inputs 2.5V p-p

Output current +30 mA to -30 mA

Operating junction temperature +150°C

-55°C to +150°C Storage Temperature

OPERATING NOTES

The input is terminated by a nominal 400 Ω and should be AC coupled to the signal source. Input power to the device is terminated to ground by the decoupling capacitor on the reference pin, Input coupling and reference decoupling capacitors should be of a type suitable for use at a frequency of 1GHz.

If the device is required to operate with a sinewave input below 100MHz, then the required hysteresis may be applied externally as shown in Fig. 5. Large values of hysteresis should be avoided as this will degrade the input sensitivity of the device at the maximum frequency. The divide by 64 output is designed to interface with TTL which has a common V_{FF} (ground). The specified fan-out of 3 standard TTL inputs may be increased to 6 standard or 5 high power/Schottky inputs at a logic zero level of 0.5V. At low frequency the output will change when the clock input changes from a low to a high level.

The device may be operated down to very low frequencies if a square wave input is applied with an edge speed of greater than $200V/\mu s$.

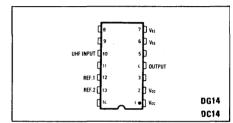


Fig. 1 Pin connections

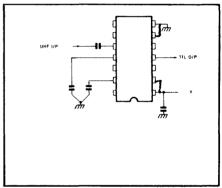


Fig. 2 Typical application

LECTRICAL CHARACTERISTICS

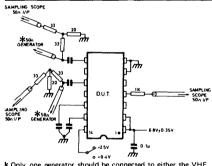
st conditions (unless otherwise stated):

Supply voltage V_{cc}

: 4.75V to 5.25V

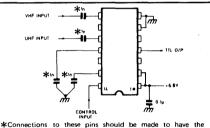
Input signal amplitude

: 400mV to 1.0V (f < 1GHz)


600mV to 1.2V (1GHz≤ f < 1.2GHz)

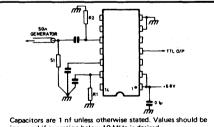
Ambient temperature

: -30°C to +70°C (SP8755B)


-55°C to +125°C (SP8755A)

Characteristics	Value			Units	Conditions
	Min.	Тур.	Max.	Oilles	Concessions
Supply current		54	75	mA	
Max. input frequency	1200			MHz	600mV pk-pk sine wave input
Min. input frequency			100	MHz	
Min. slew rate (with square wave input)			200	V/μS	
Output voltage level (high)	2.5		4.5	V	V _{cc} = 5.0V
Output voltage level (low)			0.4	v	5mA current into pin 4

k Only one generator should be connected to either the VHF or UHF inputs. The input not in use may be left open circuit. All capacitors are 1nF unless otherwise stated.


Fig. 3 AC Test Circuit

minimum series inductance. Capacitors should be of a type suitable for use at 1GHz.

For single input operation leave pins 8 and 14 open circuit.

Fig. 4 Application Circuit

increased if operation below 10 MHz is desired.

For 50 mV hysteresis R1 = $36k\Omega$ R2 = ∞ For 100 mV hysteresis R1 = $18k\Omega$ R2 = $18k\Omega$

Fig. 5 Wideband Operation

SP8000 SERIES HIGH SPEED DIVIDERS

SP8770B SP8772B 1.0GHz 1.2GHz

UHF-256 PRESCALERS

The SP8770/1/2 are ECL divide by 256 prescalers which will operate at frequencies up to 1.2 GHz.

The device has a typical power dissipation of 500mW at the nominal supply voltage of +6.8V.

FEATURES

- Self-Biasing Clock Input
- Variable Input Hysteries Capability for Wide Band Operation
- Push Pull TTL O/P

Fig. 1 Pin Connections

OPERATING NOTES

The input is terminated by a nominal $400\,\Omega$ and should be AC coupled to the signal source. Input power to the device is terminated to ground by the two decoupling capacitors on the reference pins. Input coupling and reference decoupling capacitors should be of a type suitable for use at a frequency of 1 GHz.

If the device is required to operate with a sinewave input below 100 MHz, then the required hysteresis may be applied externally as shown in Fig. 4.

Large values of hysteresis should be avoided as this will degrade the input sensitivity of the device at the maximum frequency. The divide by 256 output is designed to interface with TTL which has a common VEE (ground). The specified fan-out of 3 standard TTL inputs may be increased to 6 standard or 5 high power/ Schottky inputs at a logic zero level of 0.5V. At low frequency the output will change when one of the clock inputs changes from a low to a high level.

The devices may be operated down to very low frequencies if a square wave input is applied with an edge speed of greater than 200V/µs...

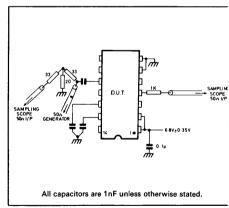


Fig. 2 AC test circuit

ABSOLUTE MAXIMUM RATINGS

Power supply voltage Vcc -VEE	0V to +10V
Input voltage, clock input	2.5V p-p
Output current	+30mA to -30mA
Operating junction temperature	+150°C
Storage temperature	-55°C to +150°C

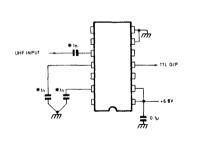
2/8770

.ECTRICAL CHARACTERISTICS

Supply voltage : $6.8V \pm 0.35V$ Supply current : 72mA typ., 95mA max. Temperature range : $0^{\circ}C$ to $+70^{\circ}C$

Clock input: AC coupled, self biasing via 400 \(\Omega \)

Test conditions (unless otherwise stated):


Supply voltage: VEE= 0V,

 $V_{CC} = +6.45V \text{ to } + 7.15V$

Clock input voltage: 400mV to 1.2V p-p

 $T_{amb} = 25^{\circ}C$

Characteristic		Value				Conditions
Onar doter is	Characteristic		Тур.	Max.	Units	- Conditions
Max. input frequency	SP8770 SP8772	1.0 1.2	·		GHz GHz	400mV p-i. input 600mV p-j. input
Min input frequency				200 100 75	MHz MHz MHz	
Min. slew rate for square wa	ave input			200	V/µs	1
Output High level Low level Supply current		2.5	3.5 68	4.5 0.4 90	V V mA	5mA current sink Vcc=6.8V

^{*} Connections to these pins should be made to have the minimum series inductance. Capacitors should be of a type suitable for use at 1 GHz.

Fig. 3 Application circuit

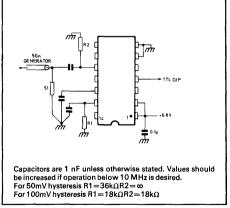
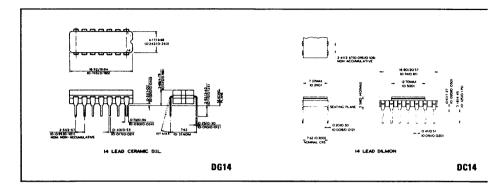



Fig. 4 Wideband operation

PACKAGE DETAILS

Dimensions are shown thus: mm (in)

HIGH SPEED DIVIDERS

SP8760 B & M

GENERAL PURPOSE SYNTHESISER CIRCUIT

The SP8760 is a multi-function device for use in itse-lock-loop systems. It contains a crystal oscillator aintaining circuit, followed by a divide-by-four stage; digital phase/frequency comparator; and a two-odulus divider programmable to divide by 15 or 16. It may be used with a prescaler to phase-lock single

It may be used with a prescaler to phase-lock single equency transmitters or receivers in the HF, VHF or HF bands.

The addition of an MOS/CMOS programmable plus ted divider will generate a complete frequency syntheser. The maximum frequency requirement of the control vice is only 1 MHz, enabling complex functions to be rformed using LSI technologies. With suitable prealers, the controlled frequency source may extend to the IGHz region.

The SP8760 is available in two temperature grades: C to $+70^{\circ}$ C ('B' grade) and -40° C to $+85^{\circ}$ C ('M'

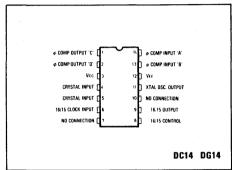


Fig. 1 Pin connections

EATURES

- I TTL/MOS Compatible Inputs and Outputs
- Low Power Consumption (<250mW Typ)
- 1 Minimum External Components
- Voltage Pump Outputs on Phase/ Frequency Comparator
- I Zero Phase Difference Pulses <30nSec
- I Crystal Oscillator Stability + 5 ppm at 4MHz, 0°C to + 70°C
- 1 Crystal Oscillator Interfaces with SL680 for Very High Stability Applications

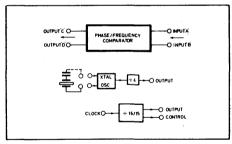


Fig. 2 SP8760 block diagram

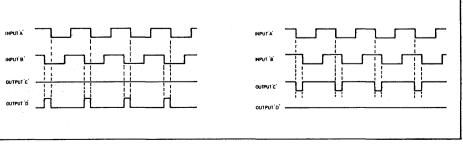


Fig. 3 Phase/frequency comparator waveforms

SP8760

ELECTRICAL CHARACTERISTICS

Supply voltage

5V + 0.5V

Supply current

45mA typ

Test conditions (unless otherwise stated): $\begin{array}{c} V_{CC} = 4.5 V \text{ to } 5.5 V \\ V_{EE} = 0 V \end{array}$

TAMB 0°C to +70°C ('B' grade) -40°C to +85°C ('M' grade)

1	Characteristic		Value			Conditions	
			Min. Typ. Max.		Units	Conditions	
	Power Supply Current		45	65	mA		
	Crystal Osc. #4				i	*	
1	Crystal series capacitor]	28] pF	•at 4MHz	
i	Crystal series capacitor		20		pF	at 10 MHz	
	Temperature Stability			0.2	ppm/°C	at 4MHz, excluding crystal temperature coefficient.	
	Supply voltage stability External oscillator		1		ppm/V	at 4 MHz	
	drive required		±1		mA	See Fig. 8.	
Ĺ	Divide-by-four output, external	1		l	1		
	current sink capability	5		1	mA	at 0.5V	
	Phase/Frequency Comparator						
- [Input current		250	350	uA	at Vin = 2.4V	
	Output 'C' current sink capability Output 'D' current	6			mA	at 0.5V	
1	source capability	6		ł	ł	at (V _{CC} - 1.15V)	
	Zero phase pulse width			30	ns	,	
	Input to Output delay		40		ns		
	Divide by 16/15						
	Control input current		250	350	μΑ	at Vin = 2.4V	
	Clock input current		-1.0	-1.6	mΑ	at Vin = 0.4V	
1	Output external current						
	sink capability	5			mA	at 0.5V	
	Maximum clock frequency	16	28	ĺ	MHz	Divide by 16	
	Clock to output delay	12	18 35		MHz ns	Divide by 15 Output 1 - 0	

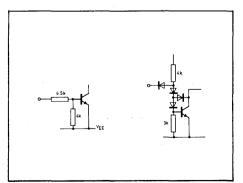


Fig. 4 Phase comp./divider control inputs

ABSOLUTE MAXIMUM RATINGS

Power supply Vcc – Vee 0V to +10V Output current 20mA Operating junction temperature $+150\,^{\circ}\text{C}$ Storage temperature $-55\,^{\circ}\text{C}$ to $+150\,^{\circ}\text{C}$

PERATING NOTES

The crystal oscillator is an emitter coupled circuit th an internal roll off capacitor to prevent oscillation overtone frequencies. The crystal is connected in ries with a capacitor between pins 4 and 5. It may be ed with series resonant crystals at frequencies up to MHz. The stability of the crystal oscillator is better an ± 5 p.p.m. at 4MHz over the temp range 0°C to 1°C (excluding the temperature coefficient of the ystal). If a higher stability is required the SL680 crystal cillator maintaining circuit should be used. This may interfaced to the SP8760 as shown in Fig. 8. The vide by four has a free collector output with an internal 5 K Ω resistor to Vcc.

The phase frequency comparator is an infinite pull-range circuit which gives zero phase shift lock. The rouit triggers on the 1 - 0 edge of each input and ves an output which is proportional to the phase fference between the two edges (see Fig. 3). When e input 'A' edge precedes the input 'B' edge output 'will pulse to a low level while output 'D' will remain a permanent low level. When the input 'B' edge predes the input 'A' edge, output 'D' will pulse to a high vel while output 'C' will remain at a permanent high vel. The two outputs may be used to drive a charge imp and filler as shown in Figs. 5 and 6. The output of efilter may be used to drive directly the varactor line

of a voltage controlled oscillator. For optimum 'noise' performance the output pulses from the phase detector must tend to zero when 'in lock'. The leakage on the filter output must therefore be kept to a minimum. If the varactor line draws a significant current it should be buffered using an emitter follower arrangement as shown in Fig. 7.

The phase/frequency comparator inputs are of the current source type as shown in Fig. 4. These may be driven by standard TTL or CMOS. Output 'C' is a free collector with an internal $10K\Omega$ resistor to Vcc. Output 'D' is an emitter follower with an internal $10K\Omega$ resistor to VEE.

The two-modulus prescaler may be controlled to divide by 16 or 15 using the control input. With the control input high the circuit will divide by 16. When a counter is used to control the two-modulus it should be clocked on the 1-0 edge of the 16/15 output. If the two-modulus is used only as a fixed divide-by-16 the control input - should be tied to Vcc. The prescaler clock input is a current sink input with a standard TTL fan in of one. It may be driven by standard or low power Schottky TTL. The control input is identical to the phase/frequency comparator inputs as shown in Fig. 4. The two modulus output is a free collector with an internal $1.5 \mathrm{K}\Omega$ resistor to Vcc.

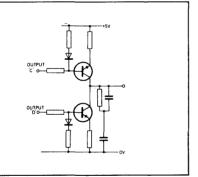


Fig. 5 Low voltage charge pump and filter
Divider clock input

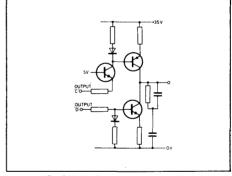


Fig. 6 High voltage charge pump and filter

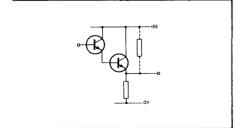


Fig. 7 Emitter follower buffer

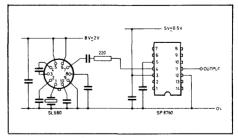


Fig. 8 SL680 to SP8760 interface

HIGH SPEED DIVIDERS

SP8785B&M 1.0GHz \div 20/22 SP8786B&M 1.3GHz \div 20/22

UHF PROGRAMMABLE DIVIDERS

The SP8785 B & M and SP8786 B & M are high speed programmable $\pm 20/22$ counters which operate at input frequencies up to 1.0GHz and 1.3GHz respectively over the temperature ranges 0 °C to ± 70 °C (B grade) and ± 40 °C to ± 85 °C (M grade).

The clock input is biased internally and is coupled to the signal source by a capacitor. The input RF path is completed by two input reference decoupling capacitors which are connected to earth.

The division ratio is controlled by two PE inputs. The counter will divide by 20 when either input is in the high state and by 22 when both inputs are in the low state. These inputs are ECL III/10K compatible and have internal $4.3 \text{K}\Omega$ pulldown, unused inputs may therefore be left open. When using the device as a \pm 20 prescaler the inverse output should be connected to a PE input.

In keeping with the device performance the complementary outputs are ECL 10K compatible.

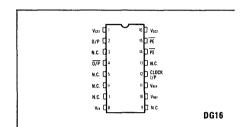


Fig. 1 Pin connections (viewed from above)

FEATURES

- DC to 1.3GHz operation
- 0°C to +70°C operation (B Grade)
- \blacksquare -40 to +85°C operation (M grade)
- Complementary outputs and control inputs are ECL 10K/ECL III compatible.
- AC coupled clock input with wide dynamic range.

QUICK REFERENCE DATA

- Supply voltage $V_{CC} V_{EE} = 5.2V \pm .25v$
- Power Consumption 440 mW typ (no load)
- ECL compatible
- Maximum input frequency 1GHz (SP8785),1.3GHz (SP8786)
- Control loop delay time 12 ns typ with 1.3GHz input.

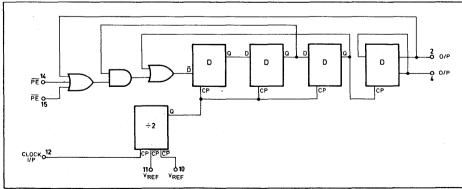


Fig. 2 Logic diagram

CLOCK PULSE	Q ₁	Q ₂	Q3	Q4
2	L	H	Н	H
4	L	L	Н	Н
6	L	L	L	Н
8	H	L	L	Ή
10	Н	Н	L	Н
12	L	Н	Н	L
14	L	L	Н	L
16	L	L	L	L
18	Н	L	L	L
20	Н	Н	L	L
22	Н	Н	Н	Н

1			DIV
i	PE	PE	RATIO
	L	L	22
	Н	L	20
1	L	Н	20
	Н	Н	20

The maximum possible loop delay for control is obtained if the L \rightarrow H transition from Q4 or the H \rightarrow L transition from Q₄ is used to clock the stage controlling the $\div 20/22$. The loop delay is 20 clock periods minus the internal delays of the $\div 20/22$ circuit.

Table 1 Count sequence and control input truth table

LECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated): Tamb 0°C to +70°C (B Grade) -40°C to +85°C (M Grade)

Supply voltage

Vcc = OV $V_{EE} = -5.2V*$

tatic characteristics

		Value				
Characteristic	Min.	Тур.	Max.	Units	Conditions	
PE input voltage Vinh	96		Vcc	V	T _{amb} =25°C	
Vinl	VEE		-1.62	V	see note 2	
PE input pulldown resistor		4.3		ΚΩ		
Output Voltage levels						
Voн	93		78	V	$T_{amb} = 25$ °C	
Vol	-1.85		-1.62	V	430Ω from o/p to VEE see note 2	
Power supply current		85	115	mA	No load	

The SP8785/6 may be operated with a +5.2V supply provided sufficient care is taken with supply decoupling and interfacing of input and itouts

ynamic characteristics

Characteristic		Value			
	Min.	Тур.	Max.	Units	Conditions
Max. toggle frequency					
SP8786	1300			MHz	See Note 3
SP8785	1000	1		MHz	
Min. frequency sinewave drive	1		150	MHz	
Min. slew rate of square wave					
for correct operation to D.C.		1	200	V//μS	
Propagation delay clock				1	
input to output	İ	2.5		μS	
Set up time	1	.5-		nS	See note 4
Release time		.5		l nS	See note 5

OTES:

Correct operation is specified for $Vcc - Vee = 5.2V \pm .25V$

The input threshold and output voltage levels have the same temperature coefficients as ECL 111/10K.

The devices are dynamically tested using the circuit shown in Fig. 4 with input amplitudes of 400 and 1000 mVpp over the full temperae range.

Set up is defined as the minimum time that can elapse between a L → H transition of control input and the last L → H clock pulse nsition to ensure the +20 mode is selected.

Release time is defined as the minimum time that can elapse between a H -+ L transition of the control input and the last L -+ H clock Ise transition to ensure the +22 mode is selected.

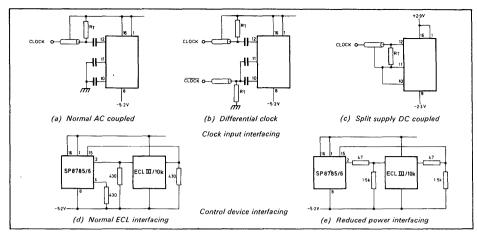


Fig. 3 Interface circuit configurations

OPERATING NOTES

It is recommended that high frequency construction techniques are used with these devices with the positive rail connected to a ground plane. All components used in the circuit layout should be suitable for the frequencies involved.

The clock input to the device is normally capacitively coupled to the signal source as shown in Fig. 3a. The input is self biased by an internal 400Ω resistor to a bias voltage, and in order to complete the input path the two input reference pins must be decoupled to the earth plane with minimum of series inductance. Alternative connections which allow the use of complementary drive or DC coupling for added sensitivity are also shown in Fig. 3.

In the absence of an input signal, circuit will self oscillate with an output frequency of approximately 50MHz. This can be prevented by connecting a 10K or resistor between pin 11 and the negative rail. This offsets the input sufficiently to stop the oscillation but it also reduces the input sensitivity by approximately 100mV.

The SP8785/6 will miscount with low frequency sinewave inputs or slow ramps. A slew rate of 200V/µs or greater is necessary for safe operation at low frequencies.

The input impedance of the SP8785/6 is a function of frequency and minimises at about the same frequency as the maximum input sensivity, so although it can load the signal source significantly there is generally enough signal to operate the device satisfactorily when the input impedance is at a minimum. The worst case occurs at the maximum frequency because this is where the input sensitivity is worst.

The modulus control inputs have been designed to interface directly to ECL III/ECL10k since on ECL counter such as the 10136 is required to directly control the device at the maximum input clock frequency. If the input frequency is reduced or the modulus extended as shown in the application notes, the device may be controlled by a TTL, or CMOS. counter provided the loop delay requirements are met and suitable interfacing is applied. Unused PE inputs should be left open circuit.

The SP8785/6 have outputs which are compatable with the ECL 10k logic family. The device will drive 100Ω lines and can be used with line impedances down to $50\,\Omega$ with a small loss in noise immunity.

An equal load on the unused output will reduce waveform distortion.

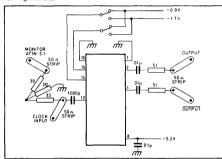


Fig. 4 Dynamic test circuit (all capacitors 1000pF unless stated)

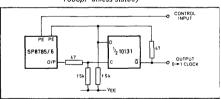


Fig. 5 ÷ 40/42 control loop delay time 24ns typ.

APPLICATION NOTES

The SP8785/6 when used in a system operating at 1.3GHz may be controlled by a variable divider to give effective variable division at half the input frequency. The variable divider must produce a control signal within the period of the output of the SP8785/6 minus the delays within this device. The control loop delay time is typically 12 nsec.

Two methods may be used to achieve a satisfactory delay time within the control divider—

- An extra divider may be inserted to increase the division ratio of the two modulus from 20/22 to 40/42, 80/82 or 100/102, hence reducing the control divider frequency and increasing the control loop delay time.
- An ECL variable counter may be used to produce the control command. A device which is suitable is the 10136, in the ECL10k range.

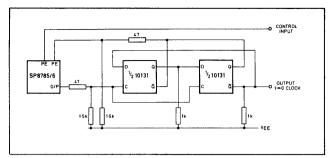


Fig. 6 ÷ 80/81 control loop delay time 55ns typ.

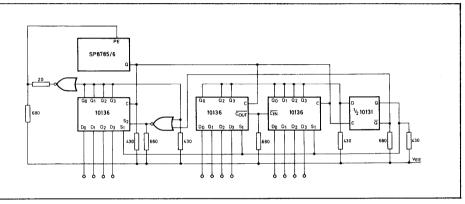


Fig. 7 1.3 GHz variable divider (200-2000 in steps of 2)

ABSOLUTE MAXIMUM RATINGS

HIGH SPEED DIVIDERS

SP8790 A&B

÷4 FXTENDER FOR 2-MODULUS COUNTERS

The SP8790 is a divide-by-four counter designed for use with 2-modulus counters. It increases the minimum division ratio of the 2-modulus counter while retaining the same difference in division ratios. Thus a divide-by-10 or 11 with the SP8790 becomes a divide-by-40 or 11, a divide by 5 or 6 becomes a divide by 20 or 21.

The function is especially useful in low power frequency synthesisers because it can bring the output frequency of the combined 2-modulus counter and SP8790 into the region where CMOS or low power TTL can control the divider. The power-saving advantages are obvious.

The device interfaces easily to the SP8690 range of divide by 10 or 11s. The control inputs are TTL and CMOS compatible and the output is a free collector which, with the addition of a pull-up resistor, interfaces to CMOS and TTL.

The SP8790 is available in three temperature grades: 0°C to +70°C (SP8790B) -55°C to +125°C (SP8790A) The SP8790 requires supplies of OV and +5V ±0.25V.

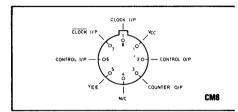


Fig. 1 Pin connections

FEATURES

- Ultra-Low Power: 40mW
- Full Military Temperature Range
- I/P and O/P Interface Direct to CMOS/TTL

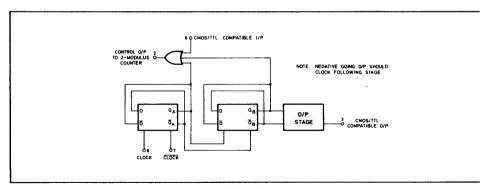


Fig. 2 Logic diagram

ABSOLUTE MAXIMUM RATINGS

Power supply voltage I Vcc—VEEI DC input voltage AC input voltage Output bias voltage Control input bias voltage Operating junction temperature Storage temp. range

8V Not greater than supply 2.5Vp-p 12V 12V +150°C -55°C to 150°C

P8790

LECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
Tamb: -55°C to -125°C (A grade)
0°C to -70°C (B grade)
VCC=-5V = 5%
VEE=0V

Clock input voltage with double complementary drive to CLOCK and CLOCK=300mV to 1V p-p.

	Value		<u> </u>	Ī	
Characteristic	Min.	Тур.	Max.	Units	Conditions
Dynamic Toggle frequency Min toggle frequency	See note 1			MHz	
with sine-wave input			20	MHz	See note 2
Min toggle frequency with square wave input Clock to O/P delay	0			Hz	Slew rate 50V/μs
(O/P - ve going)		14		ns	
Clock to O/P delay (O/P + ve going)		28		ns	
Control I/P to control O/P delay (O/P—ve going)	-	20		ns	10kΩ pulldown on control O/P (See note 5)
Clock I/P to control O/P delay (O/P+ve going)		10		ns	10kΩ pulldown on control O/P (See note 5)
Control I/P to control O/P delay (O/P—ve going)		12		ns	4.3kΩ pulldown on control O/P (See note 6)
Control I/P to control O/P delay (O/P+ve going)		9		ns	4.3kΩ pulldown on control O/P (See note 6)
Clock to control O/P delay (O/P —ve going)		26		ns	10kΩ pulldown on control O/P (See note 5)
Clock to control O/P delay (O/P —ve going)		12		ns	10kΩ pulldown on control O/P (See note 5)
Clock to control O/P delay (O/P-ve going)		17		ns	4.3kΩ pulldown on control O/P (See note 6)
Clock to control O/P delay (O/P – ve going)		12		ns	4.3kΩ pulldown on control O/P (See note 6)
Static Control I/P voltage level High state Low state	3.5 0		10 1.5	V	See note 3
Output voltage level					
VoL Voн (See note 4)			0.4	\ \	Sink current=6.0mA
Input impedance	}	1.6		kΩ	fin=0Hz
Input vias voltage (CLOCK and CLOCK)		2.4		v	Inputs open circuit
Power supply drain current		8.0	11	mA	,

NOTES

- The maximum frequency of operation is in excess of 60MHz when the SP8790 is used as a prescaler. The limitation on this maximum frequency is the saturating O/P stage. When the SP8790 is used as a controller its internal delays do not permit operation at frequencies in excess of 40MHz.
- The device will normally be driven from a 2-modulus divider which will have fast output edges. Hence, there is normally no input slew rate problem.
- TTL devices require a pull-up resistor to ensure the required minimum of 3.5V. Note that the device can interface from 10V CMOS
 with no additional components.
- 4. VoH will be the supply voltage that the output pull-up resistor is connected to. This voltage should not exceed 12V.
- 5. The $10k\Omega$ pulldown is the value of the input pulldown of the SP8695 with which the SP8790 can be used.
- The 4.3kΩ pulldown is the value of the input pulldown of the SP8640 series SP8745 and SP8746 with which the SP8790 can be used.

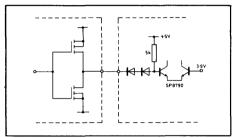


Fig. 3 CMOS and TTL compatible control input

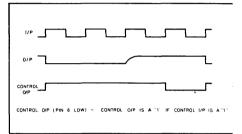


Fig. 4 SP8790 waveforms

OPERATING NOTES

The SP8790 extends the division ratio of 2-modulus counters while retaining the same 2-modulus resolution. A typical application to give a $\pm 40/41$ function is shown in Fig. 5. In this basic form, however, the devices will self-oscillate if no input signal source is present. This may be prevented by using one of the arrangements shown in Fig. 6.

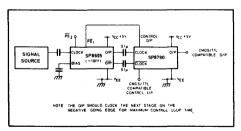


Fig. 5 SP8790 with SP8695 connected to give a :40/4

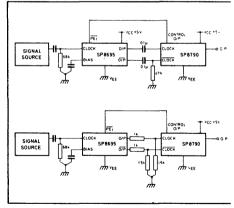


Fig. 6 Methods of preventing self-oscillation

TRUTH TABLE					
Control Input	Div. Ratio With ÷10/11				
0	41				
1	40				

Max input frequency to combination=200MHz (min.). Power consumption of combination=120mWtyp. Time available to control the ÷40/41=(40 clock periods minus delays through the dividers) — 340ns (fin=100MHz).

HIGH SPEED DIVIDERS

SP8792 ÷ 80/81 200 MHz LOW POWER TWO MODULUS PRESCALER SP8793 ÷ 40/41

200 MHz LOW POWER TWO MODULUS PRESCALER

GENERAL DESCRIPTION

The SP8792/3 A&B are divider circuits that can be logically programmed to divide by either 40/41 or 80/81.

The devices are available over two temperature ranges, "A" variant is $^{-}55^{\circ}C$ to $^{+}125^{\circ}C$ and the "B" variant is $^{\circ}C$ to $^{+}70^{\circ}C$.

The clock inputs can be either single or differentially driven and must be a.c. coupled to the signal source. If single driven, then the unused input must be decoupled to the earth plane. The device will self-oscillate if no input is present. To prevent this a 68K resistor should be connected from pins 5 or 6 to 0V. This will reduce the sensitivity of the device by approximately 100MV peak to peak.

The division ratio is controlled by the control input which is CMOS compatible throughout the temperature range. The device will divide by 40 or 80 when the input

CONTROL INPUT C1 8 DVCC1 VCC2 FOR TTL O/PC2 7 DECOUPLE OUTPUT C3 6 D CLOCK GROUNDC 4 5 D CLOCK

Fig. 1 - Pin connections

is high and by 41 or 81 when the input is low. The input may be interfaced directly with CMOS. There is a free collector saturating output stage for interfacing with either TTL or CMOS. When using TTL, $V_{\rm CC2}$ must be connected to 5V. For use with CMOS, $V_{\rm CC2}$ should not be connected and the external pullup resistor (10K) to the CMOS supply is required.

The devices may be used as a fixed \div 40 or 80 by connecting O/P to control input.

FEATURES

- Full temperature range operation

 "A" variant -55°C to +125°C

 "B" variant 0°C to +70°C
- Toggle frequency > 250 MHz typical
- Power dissipation 70mW typical

- Capacitively coupled clock input for synthesiser and counter applications
- ECL compatibility on the programming inputs
- True and inverse outputs available with CMOS compatibility

QUICK REFERENCE DATA

■ Supply voltage 6.8V to 9.5V

Supply current 5mA typ., 7mA max.

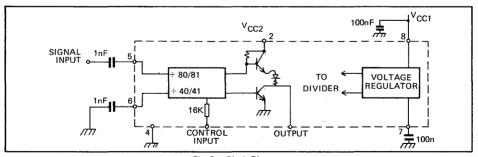


Fig. 2 - Block Diagram

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated): Supply voltage V_{cc} : 6.8V to 9.5V

Input signal amplitude: 200mV to 800mV pk-pk Ambient temperature: -30°C to +70°C

Characteristics		Value		Units	Conditions
Characteristics	Min	Тур	Max	Units	Conditions
Supply current		5	7	mA	Pin 2 open circuit
Max. input frequency	200			MHz	
Min. input frequency			20	MHz	400mV pk-pk sine wave input
Min. slew rate					
with square wave input)			50	V/μS	
Output voltage level (low)			0.5	v	2mA current, Pin 2 open or linked to pin 8.
Output voltage level (high)	4.8			v	V _{cc} = 6.8V, Pins 2, 8
Control input level (low)			2.0	V	÷ 41 or ÷ 81
Control input level (high)	4.0		1	v	÷ 40 or ÷ 80
Propagation Delay,					
clock input to output		40		nS	Output 1 to 0 transition
Set up time		4		nS.	See note 1.
Release time		4		nS	See note 2.

NOTES:

1. The minimum time between a L \rightarrow H signal input transition to ensure the \div 40 or \div 80 mode is selected.

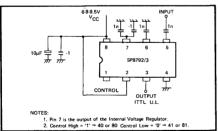
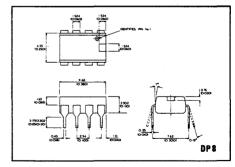


Fig. 3 - SP8792/3 Application Diagram

ABSOLUTE MAXIMUM RATINGS


Supply voltage (pins 2, 3 and 8): 12V

Storage temperature : -55°C to +125°C
Operating temperature : -30°C to +70°C

 The minimum time between a H → L transition of control input and the last L → H signal input transition to ensure the ÷ 41 or ÷ 81 mode is selected.

PACKAGE DETAILS

Dimensions are shown thus: mm (in)

HIGH SPEED DIVIDERS

SP 8794 A&B

÷ 8 CONTROL CIRCUIT FOR 2 - MODULUS DIVIDERS

The SP8794 is a divide by eight counter designed for use with 2-modulus counters. It increases the minimum division ratio of the 2-modulus counter while retaining the same difference in division ratios. Thus a divide by 10 or 11 with the SP8794 becomes a divide by 80 or 81, a divide by 5 or 6 becomes a divide by 40 or 41.

The function is especially useful in low power frequency synthesisers because it can bring the output frequency of the combined 2-modulus counter and SP8794 into the region where CMOS or low power TTL can control the divider.

The device interfaces easily to the SP8000 range of 2-modulus dividers. The control I/Ps are TTL and CMOS compatible and the output is a free collector which, with the addition of a pull-up resistor, interfaces to CMOS and TTL.

The SP8794 is available over three temperature ranges: 0° C to $+70^{\circ}$ C (SP8794B), -40° C to $+85^{\circ}$ C (SP8794M) and -55° C to $+125^{\circ}$ C (SP8794A).

The SP8794 requires supplies of 0V and +5V ± 0.25V

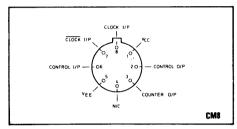


Fig. 1 Pin connections.

FEATURES

- Ultra-Low Power: 40mW
- Full Military Temperature Range
- Direct I/P & O/P Interfacing to CMOS & TTL
- Operates with 500MHz ÷ 10/11

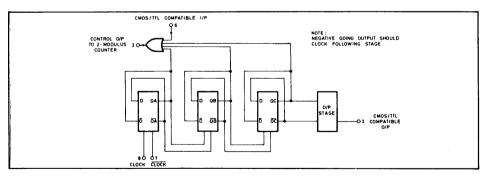


Fig. 2 Logic diagram.

ABSOLUTE MAXIMUM RATINGS

APPLICATION

Frequency Synthesisers

Power supply voltage | V_{CC} - V_{EE} | 8

Not greater than supply

DC input voltage AC input voltage

2.5Vp-p

Output bias voltage
Control input bias voltage

12V 12V

Operating juntion temperature

+150°C

Storage temp, range

-55°C to 150°C

SP8794

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

T_{amb}: 'A' grade -55° C to $+125^{\circ}$ C 'B' grade 0° C to $+70^{\circ}$ C

V_{CC} = +5V ±5%

 $V_{FF} = 0V$

Clock input voltage with double complementary drive

to CLOCK and CLOCK = 300mV to 1V p-p.

Ot		Value		Units	Conditions
Characteristic	Min.	Тур.	Max.	Units	Conditions
Dynamic					
Toggle frequency	120			MHz	SP8794 as a prescaler (see note 1)
	40			MHz	SP8794 controlling a 2-modulus
					divider (see note 1)
Min. toggle frequency with sinewave input			20	MHz	See note 2
Min. toggle frequency with square wave input	0			Hz	Slew rate > 50V/μs
Clock to O/P delay (O/P -ve going)		18		ns	
Clock to O/P delay (O/P +ve going)	1	32		ns	
Control I/P to control O/P delay (O/P -ve going)		20] .	ns	10k Ω pulldown on O/P, see note 5
Control I/P to control O/P delay (O/P +ve going)	ŀ	10		ns	10k Ω pulldown on O/P, see note 5
Control I/P to control O/P delay (O/P -ve going)		12		ns	4.3k Ω pulldown on O/P, see note (
Control I/P to control O/P delay (O/P +ve going)		9		ns	4.3kΩ pulldown on O/P, see note (
Clock to control O/P delay (O/P -ve going)	ĺ	30		ns	10k Ω pulldown on O/P, see note 5
Clock to control O/P delay (O/P +ve going)	1	16		ns	10kΩ pulldown on O/P, see note 5
Clock to control O/P delay (O/P -ve going)		21		ns	4.3k Ω pulldown on O/P, see note (
Clock to control O/P delay (O/P +ve going)		16		ns	4.3k Ω pulldown on O/P, see note (
tatic					
Control I/P voltage level					
High state	3.5	İ	10	V	See note 3
Low state	0		1.5	V	
Output voltage level	1			1	
V _{OL}			0.4	٧	Sink current = 6.0mA
V _{OH} (see note 4)			12	٧	See note 4
Input impedance		1.6		kΩ	f _{in} = 0Hz
I/P bias voltage (CLOCK & CLOCK)	1			1	
Power supply drain current				1	

NOTES

- The maximum frequency of operation is in excess of 120MHz when the SP8794 is used as a prescaler. The limitation on its maximum
 operating frequency is the saturating output stage. When the SP8794 is used as a controller for a 2-modulus device its internal delays do not
 permit operation at frequencies above 40MHz.
- The device will normally be driven from a 2-modulus divider which will have fast output edges. Hence, there is normally no input slew rate problem.
- TTL devices require a pull-up resistor to ensure the required minimum of 3.5V. Note that the device can interface from 10V CMOS with no additional components.
- 4. VOH will be the supply voltage that the output pull-out resistor is connected to. This voltage should not exceed 12V.
- 5. The 10k Ω pulldown is the value of the input pulldown of the SP8695, with which the SP8794 can be used.
- The 4.3kΩ pulldown is the value of the input pulldown of all the SP8640 series ÷ 10/11 devices, the SP8740 & SP8745 ÷ 5/6, the SP8741 & SP8746 ÷ 6/7 and the SP8743 ÷ 8/9, with which the SP8794 can be used.

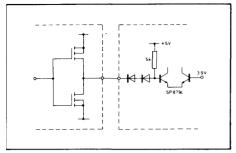


Fig. 3 CMOS and TTL compatible control I/P.

TF	TRUTH TABLE					
Control I/P	Control I/P Div. Ratio with ÷ 10/11					
0	81					
1	80					

Max input frequency to combination = 200MHz (min.). Power consumption of combination = 120mWtyp. Time available to control the \div 80/81 = 80 clock periods minus delays through dividers \cong 740ns (f_{in} = 100MHz)

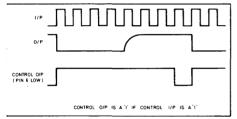


Fig. 4 SP8794 waveforms

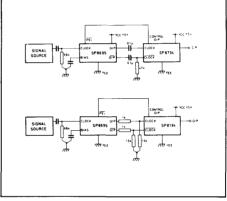


Fig. 6 Methods of preventing self-oscillation.

APPLICATION NOTES

The SP8794 extends the division ratio of 2-modulus counters while retaining the same 2-modulus resolution. A typical application to give a \div 80/81 function is shown in Fig. 5. In this basic form, however, the devices will self-oscillate if no input signal source is present, This may be prevented by using one of the arrangements shown in Fig. 6.

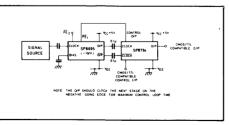


Fig. 5 SP8794 with SP8695 connected to give a low power ÷ 80/81

HIGH SPEED DIVIDER

SP8901

1GHz ÷ 512

The SP8901 is a four modulus ÷512 operating at frequencies up to 1GHz. The device has a typical power dissipation of 500mW, and operates over the temperature range -30°C to 70°C. The SP8901 has been designed to interface with the NJ8911 and NJ8916 to produce a 16 bit binary programmed frequency synthesiser but can also be interfaced with standard programmable divider to produce a wide range of general purpose synthesisers.

FEATURES

- Self Biasing Clock Inputs
- Current Limited TTL/MOS Compatible Inputs
- TTL/MOS Compatible Control Inputs
- 15V Supply
- Variable Input Hysterisis Capability
 For Wide Band Operation

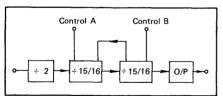


Fig. 2-Logic Diagram

Control A	Control B	Ratio
1	1	512
0	1	510
1	0	480
0	0	478

Fig. 3 - Table of Divide Ratios

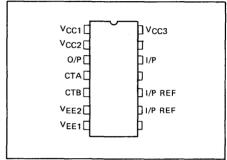


Fig. 1 - Pin Configuration

APPLICATIONS

- Mobile Radio
- Scanning Radio Receivers
- Microprocessor Controlled Frequency Synthesis

ABSOLUTE MAXIMUM RATINGS

Power Supply voltage ($V_{CC} - V_{EE}$) 8V Input voltage, Clock inputs 2.5V peak to peak Control inputs -0.5V to 8V Operating Junction temperature +150°C

Storage temperature -55°C to 150°C

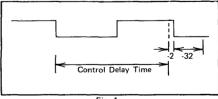


Fig. 4

ELECTRICAL CHARACTERISTICS

Fest conditions (unless otherwise stated)

Supply Voltage: V_{CC} +5.0V ±0.25V V_{EE}: OV

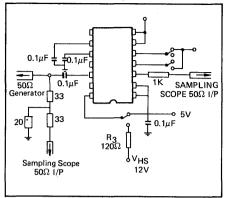
T_{amb}: -30°C to +70°C

Clock Input: 400mV to 1.0V peak to peak

DYNAMIC CHARACTERISTICS

	ľ	Value			
Characteristic	Min	Тур	Max	Units	·Conditions
Max. Input frequency	900			MHz	V _{CC3} ≈ 5V See Fig. 5.
Max. Input frequency	1.0			GHz	V_{HS} = +12v R ₃ = 120 Ω See Fig. 5.
Min. Input frequency with sine wave input			100	MHz	600mV p-p
Min. slew rate of square wave input			200	V/μS	
Clock to output delay		40	60	nsec	
Control setup and release time:					
Control A Input		2		nsec	
Control B Input		5		nsec	

OPERATING NOTES ~


The circuit is configured as two ÷15/16 counters which are clocked via a front end÷2 counter as shown in figure 2. The circuit will divide by 512 when the control inputs are left open circuit or both inputs are at logic '1'. The control A and B pins control the minus 2 and 32 counters respectively, when a logic '0' signal is applied. Figure 3 shows the division ratio table. The minus 2 counts of the control A occur before the negative going output edge, whereas the minus 32 counts occur after the negative going edge as shown in figure 4. The maximum possible control delay is obtained by clocking the control device on the negative going edge of the SP8901, and is equal to 480 clock input periods (minus the internal delays in the SP8901).

The clock input should be correctly terminated and all input coupling and decoupling capacitors should be of a type suitable for operation at 1GHz. At low frequencies the divider is limited by the slew rate of the input signal and for correct operation this must be greater than 200V/µs. The low frequency sinewave operation of the device can be improved by adding hysterisis to the

reference inputs. This can be carried out externally as shown in figure 5 and can be measured as Vref1 — Vref2. Care must be taken when applying hysterisis as large values of hysterisis will degrade the input sensitivity at maximum frequency. A maximum value of 50mV $\{R1=32K\Omega\}$ should not be exceeded.

The output is TTL or MOS compatable and is current limited at 3 mAsink in the low state and 5ma source in the high state. The modulus control inputs have a $5k\Omega$ pull up resistor and can be interfaced to open collector or open drain circuits. There are separate supply lines for the output (VCC2· VEE2) to reduce both input to output and output to input coupling.

A separate supply pin (V_{CC3}) is available for the front end $\div 2$, and determines the maximum frequency of the device. With V_{CC3} connected to the 5v supply the circuit will operate up to 900MHz. The high frequency limit may be increased to 1GHz by connecting V_{CC3} via a resistor to a supply greater than 10v as shown in Fig. 6. The resistor value is given by: $R_3 = [V_{HS} \text{ (MIN)} -7)/25.] \text{ K}\Omega$.

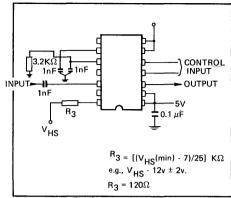


Fig. 6. - Application Circuit

STATIC CHARACTERISTICS

		Value				
Characteristics	Min	Тур	Max	Units	Conditions	
Logic '1' Output Voltage	3.5			v		
	2.5			v	1ma source	
Output short circuit current			10	mA		
Logic '0' output voltage			0.5	v	2mA sink	
Supply Current		100	135	mA		
Control inputs:						
Min. Input high level			2.3	v		
Max. input low level	1.3V			v		
Low level input current	1	0.8	1.2	mA	Vin = 0.5V	

NOTE 1:

"Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The table "Electrical Characteristics" provides conditions for actual device operation.

NOTE 2:

Unless otherwise stated, tests are carried out at $T_{amb} = +25^{\circ}C$.

NOTE 3:

All currents into device pins shown as positive, out of device pins negative, all voltage referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

HIGH SPEED DIVDERS

SP8906

500 MHz ÷ 256

The SP8906 is a four modulus $\div 256$ operating at frequencies up to 500MHz. The device has a typical power dissipation of 400mW, and operates over the temperature range $\cdot 30^{\circ}\text{C}$ to 70°C . The SP8906 has been designed to interface with the NJ8911 and NJ8916 to produce a 16 bit binary programmed frequency synthesiser, but can also be interfaced with standard programmable dividers to produce a wide range of general purpose synthesisers.

FEATURES

- Self Biasing Clock Inputs
- Current Limited TTL/MOS Compatible Inputs
- TTL/MOS Compatible Control Inputs
- 5V Supply

APPLICATIONS

- Mobile Radio
- Scanning Radio Receivers
- Microprocessor Controlled Frequency Synthesis

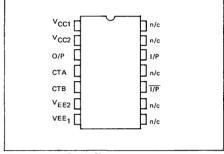


Fig. 1 Pin Configuration

ABSOLUTE MAXIMUM RATINGS

Power Supply voltage (${\rm V_{CC}}-{\rm V_{EE}}$) 8V Input voltage, Clock inputs 2.5V peak to peak Control inputs -0.5V to 8V Operating Junction temperature +150°C 55°C to 150°C

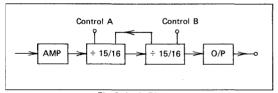


Fig. 2 Logic Diagram

Control A	Control B	Ratio
1	1	256
0	1	255
1	0	240
0	0	239
	1	4

Fig. 3. Table of Divide Ratios

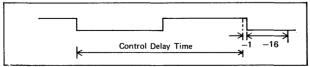


Fig. 4. Output Waveform

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise

Supply Voltage: V_{CC} + 5.0V ±0.25V V_{EE}: OV

T_{amb}: -30°C to +70°C

Clock Input: 400mV to 1.0V peak to peak

STATIC CHARACTERISTICS

Characteristics		Value		Units	Conditions	
Ondi deteristics	Min	Тур	Max	Omis	Conditions	
Logic '1' Output Voltage	3.5 2.5			v v	1 mA source	
Output short circuit current		ľ	10	mA		
Logic '0' output voltage			0.5	V	2mA sink	
Supply Current		75	100	mA		
Control inputs: Min. Input high level			2.3	v		
Max. Input low level	1.3v			V		
Low level input current		0.8	1.2	mΑ	Vin=0.5V	

NOTE 1:

"Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The table "Electrical Characteristics" provides conditions for actual device operation.

NOTE 2

Unless otherwise stated, tests are carried out at $T_{amb} = +25^{\circ}C$.

NOTE 3

All currents into device pins shown as positive, out of device pins negative, all voltage referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

DYNAMIC CHARACTERISTICS

Characteristics	Value			Units	Conditions
	Min	Тур	Max	Ointo	Conditions
Max. input frequency	500			MHz	V _{CC} =5V See Fig. 5
Min. Input frequency with sine wave input		10	20	MHz	600mV p-p
with sine wave input		10	20	IVITIZ	000mv p-p
Min. slew rate of square			50	V/ _μ S	
wave input		1	ŀ	'	
Clock to output delay		40	60	nsec	
Control setup and					
release time:					
Control A Input		2		nsec	
Control B Input		5		nsec	

PERATING NOTES

The circuit is configured as two ÷15/16 counters which are clocked via a front end amplifier as shown in igure 2. The circuit will divide by 256 when the control iputs are left open circuit or both inputs are at logic '1'. he control A and B pins control the minus 1 and 16 ounters respectively, when a logic '0' signal is applied igure 3 shows the division ratio table. The minus 1 ounts of the control A occur before the negative going utput edge, whereas the minus 16 counts occur after the agative going edge as shown in figure 4. The maximum ossible control delay is obtained by clocking the control evice on the negative going edge of the SP8906, and is qual to 240 clock input periods (minus the internal slays in the SP8906).

n the negative going edge of the SP8906, and is equal to 40 clock input periods (minus the internal delays in the P8906).

The clock input should be correctly terminated and all input coupling and decoupling capacitors should be of a type suitable for operation at 500MHz. At low frequencies the divider is limited by the slew rate of the input signal and for correct operation this must be greater than 50 V/ $_{\mu \rm S}$. If the input to the device is likely to be interrupted the device will tend to self oscillate at an output frequency of 2MHz. This can be prevented by the addition of R $_1$ = 120K Ω but will cause a loss of input sensitivity. (See Figure 6.)

The output is TTL or MOS compatable and is current limited at 3mo sink in the low state and 5ma source in the high state. The modulus control inputs have a $5k\Omega$ pull up resistor and can interface to open collector, open drain circuits or standard TTL outputs. There are separate supply lines for the output (VCC2, VEE2) to reduce both input to output and output to input coupling.

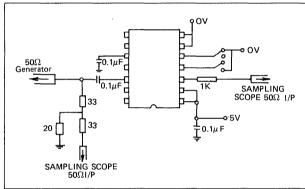


Fig. 5 - Test Circuit

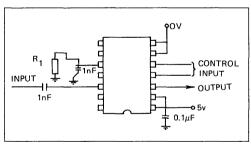


Fig. 6. Application Circuit

CB CIRCUITS

PROVISIONAL DATA

40 - CHANNEL CITIZENS' BAND SYNTHESISER IC SETS

SP8922 SP8921 SP8923

Recognising the different requirements of citizens' band transceiver manufacturers, Plessey Semiconductors have developed a range of integrated circuits for 40-channel CB. This datasheet describes three of these: SP8921, SP8922 and SP8923.

The devices are designed for use in pairs. SP8922 and SP8921 incorporate all the functions for a synthesised local oscillator with binary-coded channel entry; the SP8923/21 pair offering similar facilities but with BCD channel entry.

FEATURES

- Low External Component Count
- Binary (SP8922) or BCD (SP8923) Channel Setting
- Internal Pulldowns on Channel I/Ps
- Integral 10.24MHz Crystal Oscillator with Buffered O/P
- 10.695MHz IF Offset for Double Conversion
 - 455 kHz IF offset for Single Conversion
- No Mixing or Prescaling Required between VCO and Synthesiser I/P
- Digital Phase/Frequency Comparator has Source and Sink O/Ps
- Lock Detect O/P
- 5V Supply Rail
- Low Power: 225mW Typ. (SP8921) 225mW Typ. (SP8922) 325mW Typ. (SP8923)

The synthesisers are partitioned into two parts as shown in Figs. 2 and 3. The SP8922 and SP8923 contain a preamplifier followed by a fixed divide by four prescaler. The amplifier input will accept a signal at a frequency up to 30MHz. The input is a high impedance and requires an AC coupled source which is achieved by a series capacitor. The prescaler is followed by seven bits of programmable division. In the SP8922, these seven bits are programmed from the six binary inputs, as shown in Table 1, plus the 5kHz program input.

The SP8923 is programmed by seven BCD channel inputs (see Table 2), the 40 input codes being converted by a decoding matrix to the appropriate citizens' band frequencies.

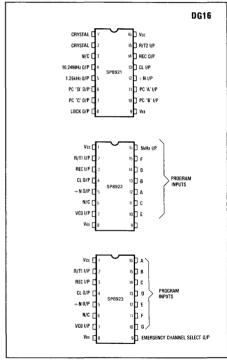


Fig. 1 Pin connections (top view)

A receive/transmit (R/T) input is provided on both SP8922 and SP8923 to give an offset of 91 counts (corresponding to -455kHz) when the receive mode is selected.

Clock and preset outputs to the SP8921 are provided by SP8922 and SP8923, which in turn accept a recognition signal from the SP8921.

Pin 9 on the SP8923 is an Emergency Channel Select output, which gives a low output whenever channel 9,

or a non-permitted channel, is selected. When this output is low, the synthesiser programs to channel 9.

The device common to both sets, SP8921, contains the six most significant bits of the programmable counter, a 10.24MHz crystal oscillator maintaining circuit, a 213 fixed divider, and a digital phase/frequency comparator. The six bits of the programmable counter have a fixed preset code which, combined with the variable code of the SP8922 or SP8923, give the total count required to select the 40 citizens' band frequencies. The R/T input to the SP8921 gives an offset in the programmable count of minus 2048 (corresponding to —10.24 MHz) when in the receive mode.

The crystal oscillator has a direct emitter follower output which may be used as an input to the second mixer in a double conversion transceiver as shown in Fig. 4. The oscillator is connected internally to the fixed divider, which gives an output reference frequency of 1.25kHz with a 10.24MHz crystal. The phase/frequency comparator has two outputs which may be used to drive a variety of charge pump filter circuits as shown in Figs. 7 through10.There is also a 'lock detect' output which requires an external filter as shown in Figs. 2 and 3.

The frequencies available from the SP8922/1 and SP8923/1 when connected in a synthesiser loop are shown in Tables 1 and 2 respectively.

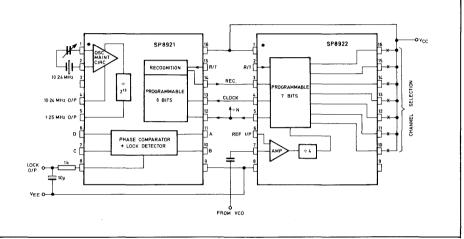


Fig. 2 SP8921/SP8922 interconnections (10.695MHz receive offset)

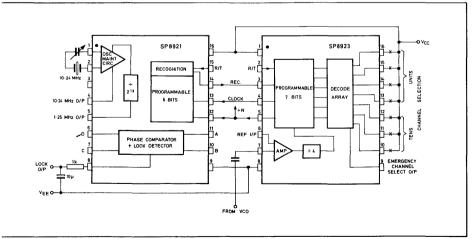


Fig. 3 SP8921/SP8923 interconnections (10.695MHz receive offset)

ELECTRICAL CHARACTERISTICS

Test Conditions (unless otherwise stated)

 $V_{EE} = 0V$, $V_{CC} = +4.75V$ to +5.5V

 $T_A = -30$ °C to +70°C

		Value				
Characteristic	Min.	Тур.	Max.	Units	Conditions	
Inputs (see Note 1)						
Low	0		0.5	٧		
High	2.4		Vcc	٧		
VCO	0.4		1.0	Vp-p	AC-coupled	
Max. clock frequency	30	50		MHz		
Outputs (except 10.24MHz O/P and phase comparator C and D O/Ps)			_			
Low	l		0.5	V	6mA sink	
High	Vcc — 0.5			V	No load, see Note 2	
10.24MHz O/P	600	800		mVp-p∃		
Phase comp. C O/P			50	μΑ		
Leakage O/P high O/P low			0.5	v v	5mA sink	
Phase comp. D O/P			50			
Leakage O/P low O/P high	Vcc-1.2		30	μA V	5mA source	
Power supply						
Vcc	+4.75		+5.5	٧		
Icc SP8921		45	60	mA		
SP8922		45	60	mA		
SP8923		65	90	mA		

NOTES

2. Outputs have an internal 5kΩ pull up resistor to Vcc. Lock output (SP8921 pin 8) has an internal 10kΩ pull up resistor to Vcc.

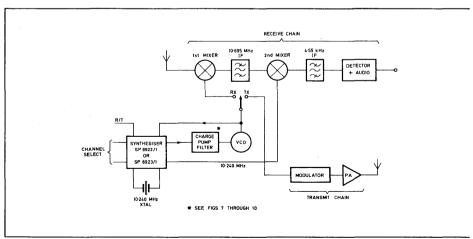


Fig. 4 Double conversion transceiver

^{1.} Programming inputs may be left open circuit as input low, or connected Vcc as input high. All inputs (except VCO I/P) have internal 10k pull down resistors to VEE. SP8922, SP8923 pin 6 is the VCO I/P reference; this pin may be left open circuit, or decoupled to VEE to improve I/P sensitivity.

Channel No.	Input Code F E D C B A	Output frequency with $R/T=0~(MHz)$
1 2 3 4 5 6 7 8 9 10 11 2 3 14 5 6 7 8 9 10 11 2 3 2 2 2 2 2 2 2 3 3 3 3 3 5 6 7 8 9 4 0 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3	0 0 0 1 1 1 0 0 1 0 0 0 0 0 1 0 1 1 0 0 1 1 0 0 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 0 1 0 0 0 0	26.965 26.975 26.985 27.005 27.015 27.025 27.035 27.055 27.065 27.076 27.085 27.105 27.115 27.125 27.135 27.125 27.135 27.15 27.125 27.215 27.225 27.235 27.245 27.255 27.265 27.375 27.385 27.375 27.385 27.385 27.395 27.395 27.395 27.395

Channel No.	Input Code G F E D C B A	Output Frequency with $R/T=0~(MHz)$
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 6 17 18 19 22 1 22 32 4 25 6 27 28 29 31 32 33 34 35 6 37 38 34 35 6 37 38 34 90	0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 0	26.965 26.975 26.985 27.005 27.015 27.025 27.035 27.055 27.055 27.085 27.105 27.115 27.125 27.135 27.155 27.155 27.165 27.175 27.185 27.175 27.185 27.25 27.215 27.25 27.215 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.25 27.27 27.285 27.27 27.285 27.27 27.285 27.27 27.285 27.27 27.285 27.27 27.285 27.27 27.285 27.27 27.285 27.27 27.285 27.27 27.285 27.27 27.285 27.27 27.285 27.27 27.285 27.27 27.285 27.27 27.285 27.27 27.285 27.27 27.285 27.375 27.385 27.375 27.385 27.375 27.385 27.375 27.385 27.375 27.385

nble 1 SP8922/1 O/P frequencies with 10.240 crystal (0 = nntact open, 1 = contact closed to Vcc)

Table 2 SP8923/1 O/P frequencies with 10.240 crystal (0 = contact open, 1 = contact closed to VCC)

R/T 1	R/T 2	Offset
0	0	0
1	0	455kHz
0	1	10.240MHz
1	1	10.695MHz

Table 3 Receive/Transmit truth table

SP8921 CRYSTAL OSCILLATOR PERFORMANCE

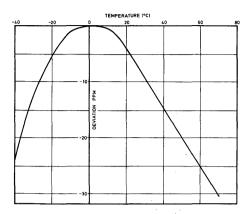


Fig. 5 Frequency/temperature characteristics of CB 10.24 MHz crystal oscillator

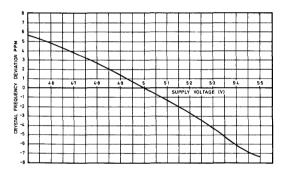


Fig. 6 Crystal frequency v. supply voltage

CHARGE PUMP FILTER ARRANGEMENTS (FIGS.7 THROUGH 10)

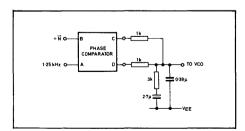


Fig. 7 Filter A. Simple voltage pump, output range 2.5V

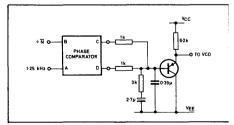


Fig. 8 Filter B. Simple voltage pump with buffered output

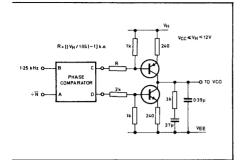


Fig. 9 Filter C. Current pump, output voltage range V_H – 1.5V for V_H less than 12V

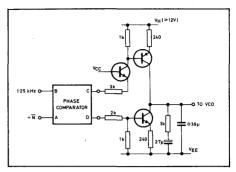


Fig. 10 Filter D. Current pump output voltage range $V_H - 1.5V$ for V_H greater than 12V

NPUT/OUTPUT CIRCUITS (FIGS.11 THROUGH 16)

The following diagrams show input and output sircuit configurations used on the SP8921, 2 and 3.

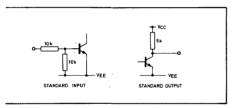


Fig. 11 Standard input and output

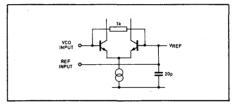


Fig. 12 VCO input

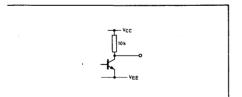


Fig. 13 Lock detect output

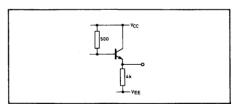


Fig. 14 10.24 MHz output

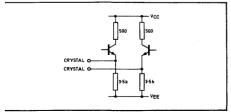


Fig. 15 Crystal oscillator inputs

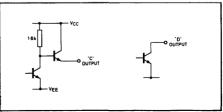


Fig. 16 Phase/frequency comparator outputs

FURTHER APPLICATIONS

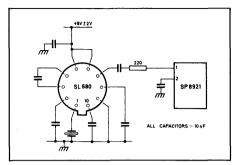


Fig. 17 High stability crystal reference oscillator using SL680

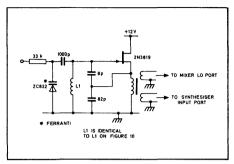


Fig. 18 Voltage controlled oscillator for 27MHz CB synthesiser

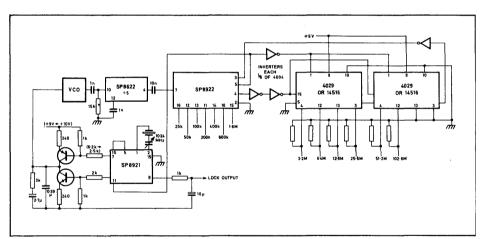


Fig. 19 200 MHz general purpose binary programmed synthesiser with 25KHz resolution using SP8921/22

SP 9685 ULTRA FAST COMPARATOR

The SP 9685 is an ultra-fast comparator, and the SP 9687 is an ultra-fast dual comparator, both manufactured with a high performance bipolar process which makes possible very short propagation delays 2.2 nS typ. / 2.7 nS typ. respectively. The iricuits have differential inputs and complementary outputs fully compatible with ECL logic levels. The output currents capability are adequate for driving 50 ohm terminated transmission lines. The high resolution available makes the devices ideally suited to inalogue-to-digital signal processing applications.

With the SP 9685 a latch function is provided to allow the comparator to be used in a sample-hold mode. When the latch mable input is ECL high, the comparator functions normally. When the latch enable is driven low, the outputs are forced to an anambiguous ECL logic state dependent on the input conditions at the time of the latch input transition. If the latch function is not used the latch enable may be connected to ground.

With the SP 9687 a latch function is provided to allow the comparator to operate in the follow-hold or sample-hold mode. The latch function inputs are intended to be driven from the complementary outputs of a standard ECL gate. If TE is high, and TE is low, the comparator function is in operation. When TE is driven low and TE high, the outputs are locked into the logical states at the time of arrival of the latch signal. If the latch function is not used, TE Must be connected to ground.

Both devices are compatible with the AM 685/AM 687 espectively but operate from conventional +5V and-5.2V rails.

EATURES

- Propagation Delay 2.2 ns typ/2.7 ns typ respectively.
- Latch Set-up Time 1 ns max./0.5 ns typ
- Complementary ECL Outputs
- 50 Ω Line Driving Capability
- Excellent Common Mode Rejection
- Pin Compatible with AM 685/687 but faster

JUICK REFERENCE DATA

- Supply voltages +5V, -5.2V
- Operating tempurature range -30°C to +85°C

ABSOLUTE MAXIMUM RATINGS

Positive supply voltage	6V
Negative supply voltage	—6V
Output current	30mA
Input voltage	± 5V
Differential input voltage	± 5V
Power dissipation	500mW
Storage	-55° to 150°C
Lead temperature (soldering 60 sec)	300°

:LECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

Tamb = 25°C Vcc = $+5.0V \pm .25V$ Vee = $-5.2V \pm .25V$ RL = 50Ω

SP9000 SERIES

DATA CONVERSION PRODUCTS

SP 9687

ULTRA FAST DUAL COMPARATOR

Fig. 1 Pin connections

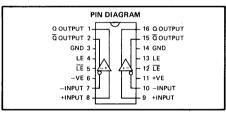


Fig. 1A

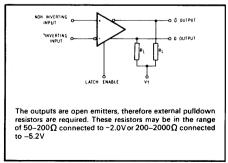


Fig. 2 Functional diagram

Input offset voltage	
Input bias current Input offset current Supply Currents Icc IEE SP 9685 19 23 mA mA mA mA mA mA mA m	nditions
Input offset current Supply Currents Icc SP 9685 SP 9685 SP 9687	ohms
Supply Currents ICC IEE SP 9685 SP 9687 SP 9687 SP 9685 SP 9685 SP 9685 SP 9685 SP 9685 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687	
SP 9687 SP 9687 SP 9685 SP 9685 SP 9687 SP 9685 SP 9687 SP 9	
SP 9687 SP 9685 SP 9685 SP 9685 SP 9685 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9687 SP 9685 SP 9687 SP 9687 SP 9685 SP 9687 SP 9	
Total Power Dissipation SP 9685 SP 9687 430 mW MW Nominal Office SP 9687 SP 96	
Total Power Dissipation SP 9685 SP 9687 A30 mW mW Nominal of SP 9687 SP 9687 SP 9685 SP 9687 O.5 ns ns ns ns ns ns ns n	
Min. Latch Set-up Time	
Min. Latch Set-up Time SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9685 SP 9685 SP 9685 SP 9685 SP 9685 SP 9685 SP 9685 SP 9685 SP 9685 SP 9685 SP 9685 SP 9685 SP 9687 SP 9685 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9687 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 968	
SP 9687 SP 9685 SP 9685 SP 9685 SP 9687 SP 9687 SP 9685 SP 9687 SP 9	Conditions
SP 9687 SP 9685 SP 9685 SP 9685 SP 9685 SP 9685 SP 9685 SP 9685 SP 9685 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9685 SP 9687 SP 9	
SP 9687	
SP 9687	
Input to \(\overline{Q}\) Output Delay SP 9685 SP 9687 2.7 4 ns 100 mV 100 m	
SP 9687 SP 9685 SP 9685 SP 9685 SP 9685 SP 9687 SP 9685 SP 9687 SP 9	
Latch to Q delay SP 9685 2.5 3 ns ns SP 9687 SP 9685 2.7 4 ns SP 9685 SP 9685 2.5 3 ns SP 9687 2.7 4 ns Min. latch pulse width Min. hold time Both 2 3 ns Common Mode Range Both 1 ns Input Capacitance Both 3 pF Input Resistance Both 60 K ohms	nV pulse
SP 9687 2.7 4 ns ns ns SP 9685 2.5 3 ns ns ns ns ns ns ns	V Overdrive
Latch to \$\overline{Q}\$ delay SP 9685 SP 9687 2.5 3 ns ns ns ns ns ns ns ns ns ns ns ns ns	· Overanie
SP 9687 Min. latch pulse width Min. hold time Common Mode Range Input Capacitance Output Logic Levels SP 9687 Both Both Both -2.5 Both 3 pF K ohms	
Min. latch pulse width Min. hold time Common Mode Range Input Capacitance Input Resistance Output Logic Levels Both Both Both Both Both Both Both Bot	
Min. hold time Both Common Mode Range Both Both -2.5 +2.5 V Input Capacitance Both Both GO Cutput Logic Levels	
Common Mode Range Both —2.5 +2.5 V Input Capacitance Both	
Input Capacitance Both 3 pF Input Resistance Both 60 K ohms Output Logic Levels	
Input Resistance Both 60 K ohms Output Logic Levels	
Output Logic Levels	
Output High Both 96 81 V At Nomir	
Output Low Both -1.85 -1.65 V Voltages.	
Common Mode Rejection Both 80 dB See Fig. 4	+
Ratio	
Supply Voltage Rejection	
Ratio Both 60 dB	

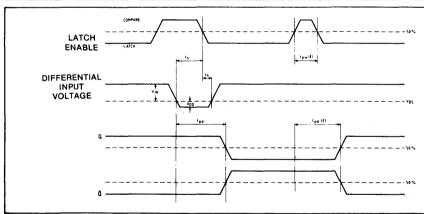


Fig. 3 Timing diagram

OPERATING NOTES

Timing diagram

The timing diagram, Figure 3, shows in graphic form a sequence of events in the SP9685. It should not be interpreted as 'typical' in that several parameters are multi-valued and the worst case conditions are illustrated. The top line shows two latch enable pulses, high for 'compare', and low for latch. The first pulse is used to highlight the 'compare' function, where part of the input action takes place in the compare mode. The leading edge of the input signal, here illustrated as a large amplitude, small overdrive pulse, switches

the comparator over after a time tpd. Output Q and \overline{Q} transitions are essentially similar in timing. The input signal must occur at a time t_b before the latch falling edge, and must be maintained for a time t_h after the latch falling edge, in order to be acquired. After t_h , the output ignores the input status until the latch is again strobed. A minimum latch pulse with $t_{pw(E)}$ is required for the strobe operation, and the output transitions occur after a time $t_{bd(E)}$.

Definition of terms

Vos Input offset voltage – The potential difference required between the input terminals to obtain zero output potential difference.

los Input offset current - The difference betweer

the currents into the inputs when there is zero potential difference between the outputs.

Input bias currents - The average of the two input currents. In is a chip design trade-off parameter; externally, it is desirable to have In as low as possible, while internally, circuit performance requirements demand higher In.

RIN Input resistance - The resistance looking into either input with the other grounded.

C_{IN} Input capacitance - The capacitance looking into either input pin with the other grounded.

Switching terms (refer to Fig. 3)

t_{pd+} Input to output high delay – The propagation delay measured from the time the input signal crosses the input offset voltage to the 50% point of an output LOW to HIGH transition.

t_{pd}— Input to output low delay – The propagation delay measured from the time the input signal crosses the input offset voltage to the 50% point of an output HIGH to LOW transition.

t_{pd+(E)} Latch enable to output high delay – The propagation delay measured from the 50% point of the latch enable signal LOW to HIGH transition to the 50% point of an output LOW to HIGH transition.

t_{pd}—(E) Latch enable to output low delay – The propagation delay measured from the 50% point of the latch enable signal LOW to HIGH transistion to the 50% point of an output HIGH to LOW transition.

ts Minimum set-up time – The minimum time before the negative transition of the latch enable signal that an input signal change must be present in order to be acquired and held at the outputs.

th The minimum time after the negative transition of the latch enable signal that the input signal must remain unchanged in order to be acquired and held at the outputs.

t_{pw(E)} Minimum latch enable pulse width – The minimum time that the latch enable signal must be HIGH in order to acquire and hold an input signal change.

Vcm Input voltage range – The range of input voltages for which the offset and propagation delay specifications are valid.

CMRR Common mode rejection ratio – The ratio of the input voltage range to the peak-to-peak change in input offset voltage over this range.

Latched and unlatched gain

The gain of a high speed, high gain comparator is difficult to measure, because of input noise and the possibility of oscillations when in the linear region. For a full ECL output level swing, the unlatched input shift required is approximately 1mV. In the latched mode, the feedback action in effect enhances the gain and the limitation in the noise/oscillation level; under these conditions the usable resolution is 100 µV,

although this is only achieved by careful circuit design

Interconnection techniques

and layout.

High speed components in general need special precautions in circuit board design to achieve optimum system performance. The SP 9685 / SP9687, with around 50 dB gain at 200MHz, should be provided with a ground plane having a low inductance ground return. All lead lengths should be as short as possible, and RF decoupling capacitors should be mounted close to the supply pins. In most applications, it will be found to be necessary to

solder the device directly into the circuit board. The output lines should be designed as microstrip transmission lines backed by the ground plane with a characteristic impedance between $50\,\Omega$ and $150\,\Omega$. Terminations to -2V, or Thevenin equivalents, should be used.

Measurement of propagation and latch delays

A simple test circuit is shown in Figure 4. The operating sequence is:

- Power up and apply input and latch signals. Input 100mV square wave, latch ECL levels. Connect monitoring scope(s).
- Select 'offset null'
- Adjust offset null potentiometer for an output which switches evenly between states on clock pulses.
- Measure input/output and latch/output delays at 5mV offset, 10mV offset and 25mV offset.

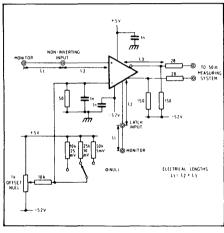


Fig. 4 SP9685/9687 test circuit

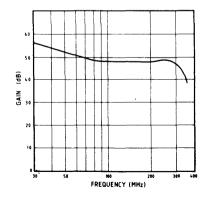


Fig. 5 Open loop gain as a function of frequency

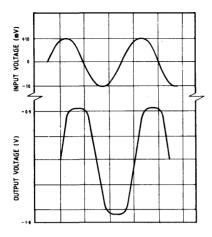


Fig. 6 Response to a 100MHz sine wave

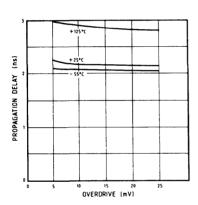


Fig. 8 Propagation delay, input to output as a function overdrive

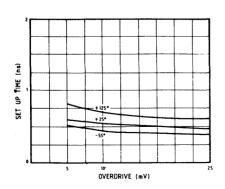


Fig. 10 Set-up time as a function of input overdrive

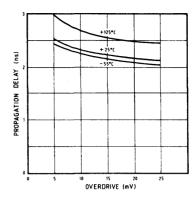


Fig. 7 Propagation delay, latch to output as a function of overdrive

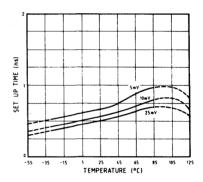


Fig. 9 Set-up time as a function of temperature

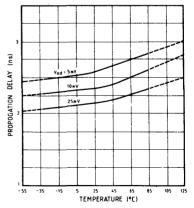


Fig. 11 Propagation delay, input to output as a function of temperature

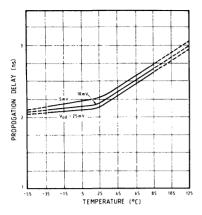


Fig. 12 Propagation delay, latch to output as a function of temperature

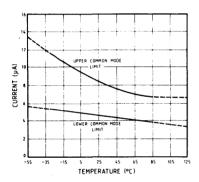


Fig. 14 Input bias currents as a function of temperature

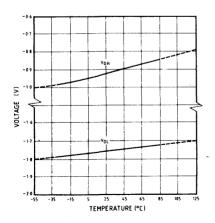


Fig. 16 Output levels as a function of temperature

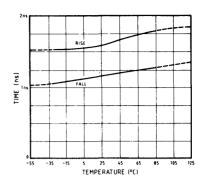


Fig. 13 Output rise and fall times as a function of temperature

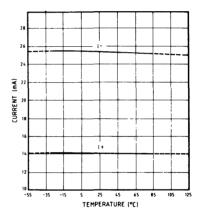


Fig. 15 Supply current as a function of temperature

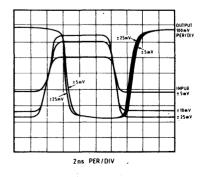


Fig. 17 Response to various input signal levels

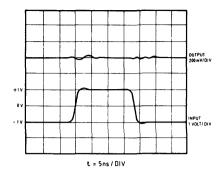


Fig. 18 Common mode pulse response

SP9000 SERIES DATA CONVERSION PRODUCTS

SP9750

HIGH SPEED COMPARATOR

The SP9750 is a high speed comparator with a latch circuit and other facilities intended for use in the construction of fast A–D converter systems. The speed capability of the device is compatible with conversion rates of up to 100 Mega-samples per second. Input and output logic levels are ECL compatible.

FEATURES

- Latch Set-up Time 2ns Max.
- Max. Input Offset Voltage 5mV
- Propagation Delay 3ns (Typ.)
- ECL Compatible
- Comparator Output Gating
- Wired OR Decoding for 4 Bits
- Current Output Settling to 0.2% in 8ns

ABSOLUTE MAXIMUM RATINGS

Positive supply voltage +5.5VNegative supply voltage -5.5V Reference supply voltage -8.5VReference current output 15 mA +4V Input voltage Differential input voltage +6V Power dissipation 500 mW -30°C to +85°C Operating temperature range -65°C to +150°C Storage temperature range

Lead temperature (soldering 30 sec) 300°C

Logic input voltages to gate and latch VEE to 0

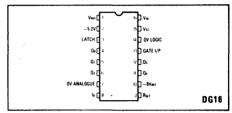


Fig. 1 Pin connections

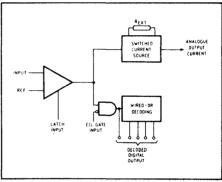


Fig. 2 Block diagram of SP9750

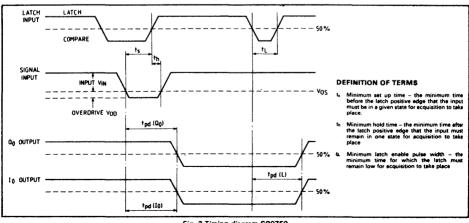


Fig. 3 Timing diagram SP9750

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

 $\begin{array}{l} {\sf T_{AMB}} = +25^{\circ}{\sf C} \\ {\sf Vcc} = +5{\sf V} \pm 0.25{\sf V} \\ {\sf Vee} = -5.2{\sf V} \pm 0.25{\sf V} \\ {\sf Vref} = -8{\sf V} \end{array}$

Characteristic	Value			Units	Conditions	
Silai acteristic	Min.	Тур.	Max.	Omits	Conditions	
Input offset voltage Input bias current Input offset current Supply currents Vcc VEE VREF Total power dissipation Analogue O/P current 'on' Analogue O/P current 'off' Precision current stability Min. latch set-up time (t _s) Input to 0 _o O/P delay (tpd (Q _o)) Input to 1 _o delay (tpd (I _o)) Delay gate input to 01-4 high Delay gate input to 01-4 low Latch to 1 _o (tpd (LI _o)) between 50% points to 1% settling to 0.2% settling Min. hold time th Min. latch pulse width (tL) Common mode range Diff. mode range Node capacitance 1 _o Node capacitance analogue input Input resistance Output logic levels Logic '1' Logic '0'	-2.5V 60 98 -1.85	16 35 14 390 5 20 3 1.5 1.5 1.5	+5 25 20 42 18 470 5 2 4.5 4.5 2.5 2.5 2.5 4.5 3 -0.78 -1.6	mV μA mA mA mW mA ppm/°C ns ns ns ns ns NS NS NS NS NS NS NS NS NS NS NS NS NS	See operating note 1 $+5$ V on pin 8 Also depends on RexT See operating note 2 Vin = 100 mV, 25 mV over drive, 50Ω load on I_0 to 0 volts (Note 3) See operating note 4 See operating note 5 $Vcc = +5$ V, $Vec = -5.2$ V Rt = 220Ω to -2 V	

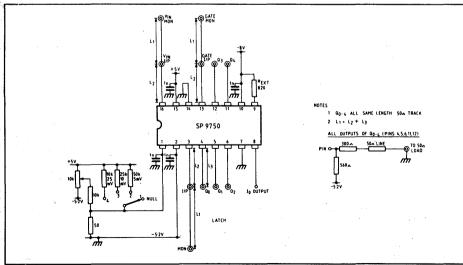


Fig. 4 Test circuit

GENERAL DESCRIPTION

The SP9750 is a fast comparator combined with a atch facility which allows the device to be operated in he sample and hold mode.

When the latch is 'low' the comparator is in the ollow' mode, and when the latch is driven 'high' the utput is locked in the existing state. The latch circuitry vill therefore always produce a decision on the input tate

The comparator has a relatively low gain in the follow node, which assists in achieving an extremely fast esponse. However, due to the positive feedback action of the latch function, the gain approaches infinity luring the latch cycle, thereby ensuring high resolution.

In addition to the basic comparator, the following unctions are provided on the chip to optimise the erformance of high speed parallel-series-parallel A to) converter systems.

- An ECL compatible gating function for simplified nulti-comparator output logic.
- 2. Four emitter follower outputs from the gate to rovide wired OR decoding for four bits.
- 3. A precision current source, set by an external esistor.
- 4. A high speed switch for the precision current provide a fast and convenient reconstruction of the halogue input. Summing the currents in a multi-level omparator chain provides the D to A conversion irectly for the construction of converters of the paralleleries-parallel type.

The philosophy adopted in the SP9750 makes ossible the construction of ultra-fast, high accuracy arallel-series-parallel converters by integrating a ignificant portion of the system function on the same hip as the comparator. The result is not only to reduce onsiderably the total hardware count but to reduce the ropagation delays where they are most critical, and liminate redundant operations.

PERATING NOTES

- 1. The analogue output current (lo) is set by means f an external setting resistor (R_{EXT}) and is equal to the eference voltage on Pin 9 (-8V nominal), divided by
- x Rext. The accuracy of this reference voltage must e consistent with the conversion accuracy required. he output (Pin 8) compliance is -0.8V to +5.0 volts or correct operation.
- 2. This parameter is defined with +100 mV input nd -10 mV overdrive, corrected to take account of the omparator offset, i.e. the switching threshold effectively is at OV on the input waveform. The relationship etween setup time and overdrive is shown in Fig. 7c. he test circuit diagram, Fig. 4 indicates a method of erforming this test.
- 3. Due to the relatively low gain of the comparator in ne unlatched state, propagation measurements are efined with a 25 mV overdrive. The relationship etween overdrive and delay is shown in Figs. 7a and
- 4. The gate input accepts an ECL drive. The outputs h to O_4 are active when the gate input is at an ECL ow level, (-1.75V) and are switched by the internicuitry. A 'high' gate input (-0.9 V) switches the utputs to 'low', allowing the bussing of multiple

devices onto the Q1 - Q4 rails.

- 5. Output settling times are measured at 10 mV overdrive conditions; larger overdrives produce shorter delays
- 6. The test arrangement shown in Fig. 4 provides for a simple dynamic test of the SP9750 functions. When the switch is in position 1, the input offset voltage is nulled with the potentiometer, a condition detected by observing the output to be at the mid-point of its range (lo or Qo). The latch must be 'low' for this measurement. The offset voltage can be measured with a high impedance instrument. Positions 2, 3 and 4 provide increasing amounts of bias to the reference input corresponding to overdrives of 5mV, 10 mV, and 25 mV. For convenience of operation, the input analogue signal is referred to ground, and the reference input is set above ground, so that an input waveform which is positive going and referred to ground is all that is necessary. It should have an amplitude of (100 mV + overdrive voltage) and should have less than 5% overshoot. The risetime should be about 2 nS. Simple circuit modifications and a negative going signal would provide for inputs of opposite polarity. For accurate timing, the path length L₁ should be equal to L_{2+L₃} properly terminated.

Static (DC) measurements can also be performed on the same test arrangement.

APPLICATIONS

Although the SP9750 was aimed at a particular system configuration it is sufficiently flexible to find application in a variety of conversion methods. In an all-parallel A-D converter, the SP9750 is capable of achieving sampling rates of up to 100 Megasamples per second. This technique is usable up to 5-bit accuracy. For higher bit accuracies, techniques such as the parallelseries method are required. Fig. 5 shows the schematic diagram of an A-D converter system capable of giving 8-bit accuracy at sampling rates of up to 30 Megasamples per second. The SP9750 is used in two 4-bit stages operating in the parallel-series-parallel mode. The analogue current output settling time from the first stage (an effective DAC facility) is dominated by the settling time of the one comparator which has the smallest overdrive. All other comparators have longer to settle, since the preceding sample and hold must be allowed to settle. For an 8-bit system, each comparator in the first 4-bit conversion has a weighting of 1/15 of full scale input. Therefore the settling band of interest for $\pm \frac{1}{2}$ L.S.B. is 2.9%. Typically the SP9750 settles to less than this, 1%, in four nanoseconds. illustrating the possibility of converter construction at higher speeds, or higher accuracies.

In order to achieve the optimum performance of this device, care must be taken to ensure that good layout practice is used, consistent with high frequency practice. A ground plane construction should be used and all leads should be designed to be microstrip transmission lines. The device should be soldered directly into the circuit board and the supplies decoupled with RF capacitors as close to each device as possible. In addition, to achieve the shortest possible settling time for the analogue current output, it is essential to keep the strây capacitance on Pin 9 (Rstr) to a minimum.

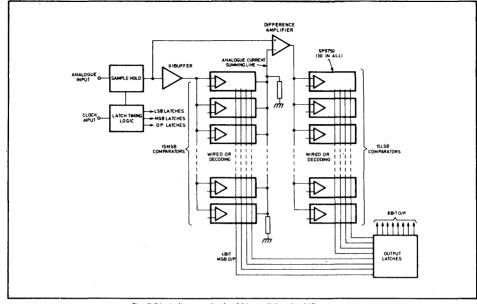


Fig. 5 Block diagram of a 4 x 4 bit parallel-series A/D converter

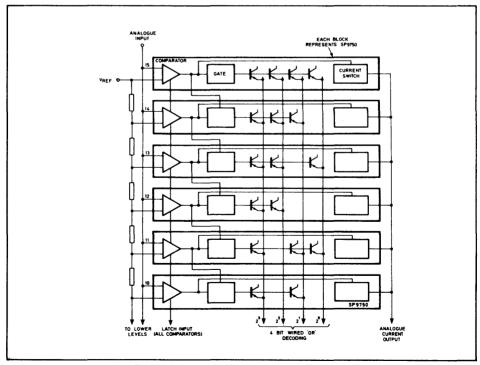


Fig. 6 Block diagram of 4-bit LSB stage showing top six levels

Fig. 7 Performance curves. Unless otherwise specified, standard conditions for all curves are $T_{AMB}=25^{\circ}C$, $V_{CC}=5.0V$, $V_{EE}=-5.2V$, $V_{REF}=-8.0V$, I_{O} load $=50\Omega$

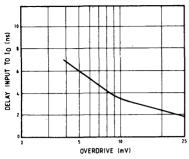


Fig. 7a input to 10 output delay v. overdrive

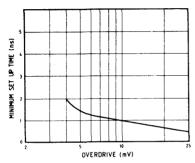


Fig. 7c Ts v. overdrive set-up time

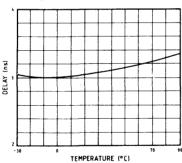


Fig. 7e Input to 10 output delay as a function ot temperature

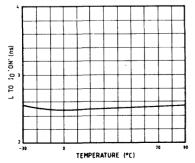


Fig. 7g Latch to Io'on' delay as a function of temperature

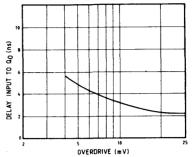


Fig. 7b Input to Qo output delay v. overdrive

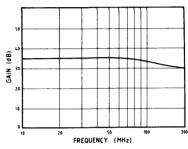


Fig. 7d Small signal gain v. frequency (to Qo output). Latch input

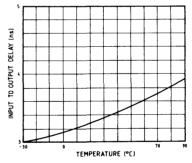


Fig. 7f Input to Qo output delay as a function of temperature

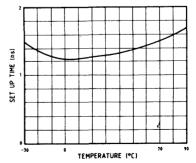


Fig. 7h Minimum set-up time as a function of temperature

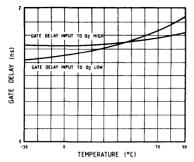


Fig. 7i Gate input to Q1 - Q4 delay variation with temperature

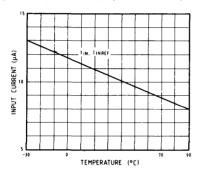


Fig. 7k Input current variation with temperature

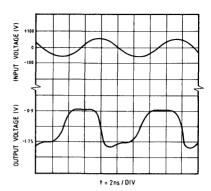


Fig. 7j Response to 100MHz sine wave

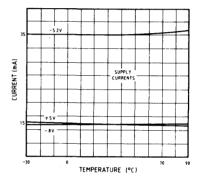


Fig. 7/ Supply current variation with temperature

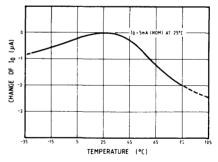


Fig. 7M Analogue output current variation with temperature

PROVISIONAL DATA MN9102 NON-VOLATILE QUAD LATCH

The Plessey MN9102 is a non-volatile 4-bit data latch which uses MNOS transistors as memory elements to retain stored data in the absence of applied power. The data that is applied to the four inputs is written into the memory when the SAVE control is taken to a logic '0' level and the data subsequently appears on the four outputs. The stored data is also automatically restored to the outputs whenever power is re-applied to the device.

An OUTPUT ENABLE is also available, which when taken to logic '0' level presents a high impedance state on each data output line, permitting multiplexed operation.

operation.

The high voltage usually associated with MNOS memory devices is generated internally, requiring only a single external capacitor to act as a charge reservoir for supplying current when writing into the memory. The device therefore operates from standard voltage rails and requires no additional drive circuitry.

Fig. 1. Pin connections (top).

FEATURES

- Data Retention for One Year in the Absence of Applied Power
- Simple to Use
- Standard Power Supplies Only (+5V, —12V)
- CMOS/TTL Compatible
- 14-lead DIL Package
- Typically Ten Million SAVE Operations

APPLICATIONS

- Metering Systems
- Elapsed Time Indicators
- Security Code Storage
- Last Channel Memory for Digital Tuning

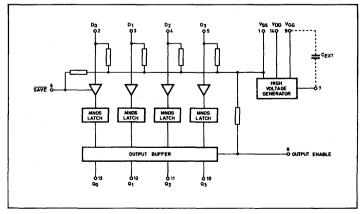


Fig. 2 Block diagram of MN9102

FLECTRICAL CHARACTERISTICS

Operating conditions (unless otherwise stated):

 $V_{SS} = +5V \pm 5\%$

 $V_{DD} = 0V$ $V_{GG} = -12V \pm 5\%$

Output loading = 1 TTL load

Ambient operating temperature range including data retention

in the absence of applied power: 0°C to + 70°C

Characteristic	Symbol	Value		Units	Conditions	
Characteristic	Syllibol	Min.	Тур.	Max.	Omits	Conditions
Logic '0' input voltage	VIL			0.8	V	Nominal 20kohms internal pullup
Logic '1' input voltage	ViH	Vss-1			V	resistor to V _{SS} on all inputs
Logic '0' output voltage	VoL	1		0.6	V	Output current = -1.6mA
Logic '1' output voltage	VoH	Vss—1			V	Output current = 100 μA
Output leakage current		<u>—</u> 10		+10	μA	V _{SS} ≥ V _{OUT} ≥ V _{DD} with OUTPUT
						$ ENABLE = V_{DD} $
Output voltage on C _{EXT}			-38		V	Load on C _{EXT} ≥ 10Mohms
External reservoir capacitor	CEXT	0.1		0.47	μF	See note 1
Data set-up time	ts	1			μs	
Data hold time	th	1		1	μs	
Data settling time	td			7	μs	$C_{LOAD} = 47pf$
Output enable delay	to			2.5	μs	$C_{LOAD} = 47pf$
SAVE time	t SAVE	10			ms	See note 2
SAVE duty cycle				50	%	See note 3
SAVE cycles		106	107	ì	1	See note 5
SAVE rise and fall times	te			5	μs	
Data retention time		1		l	year	
Power dissipation			50	100	mW	See note 4

ABSOLUTE MAXIMUM RATINGS

(all voltages with respect to Vss)

Voltage on C_{EXT} —46 to + 0.3V Voltage on V_{GG} —20 to + 0.3V Voltage on any other pin —7 to + 0.3V

Storage temperature —55°C to + 125°C
Ambient operating temperature —40°C to + 80°C

The above limits are absolute limiting values beyond which the lifetime and performance of the device may be impaired. No guarantee is implied that the device will function at any condition other than specified under the operating conditions.

OPERATING NOTES

1. When two or more devices are used, the C_{EXT} outputs may be tied together with a single external capacitor. The size of this capacitor should be increased in proportion to the number of devices.

2. Data can be entered into the latch with SAVE times much less than ten milliseconds, however the retention time is then significantly reduced. It is therefore important that spurious SAVE pulses do not occur, particularly when power is applied to the device.

3. Duty cycles in excess of 50% may be required in certain applications. An external supply (—37V \pm 5%) must then be used to maintain sufficient voltage on the C_{EXT} output.

4. The majority of the power dissipation arises from the current flow between Vss and Vsc. The current level on Vpb is the sum of the logic '0' level current plus leakage currents.

5. Exceeding this number of SAVE cycles can cause permanent damage to the device. It should also be noted that rapid changes of data in excess of 10⁵ may cause a reduction in the data retention time.

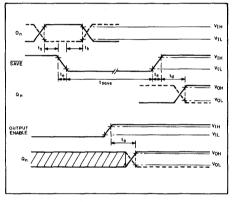


Fig. 3 Timing diagram

ANTI-STATIC PRECAUTIONS

All inputs have suitable protection devices to minimise the possibility of damage due to static discharge. Care should still be taken when handling the device and the leads should at all times be shorted together until actually incorporated in the circuit in which the device is being used. Care should be taken to avoid static charges occurring in the circuit before completion and soldering should be carried out with an earthed bit.

To ensure no damage occurs during transit, the devices are supplied packed in conducting foam or other suitable carriers.

PROVISIONAL DATA MN9105 QUAD DECADE UP/DOWN COUNTER

The Plessey MN9105 is a 4-decade BCD counter which counts up or down on negative transitions of the CLOCK input. In parallel with the counter is a 16-bit non-volatile MNOS memory into which the contents of the counter can be written by holding CLOCK low and then taking SAVE to a low level. When data has been written into the memory, it can be retained even in the absence of applied power, and then subsequently be recalled from the memory to preset the counter.

Also associated with each counter decade is a 4-bit latch, the outputs of which follow the count sequence when LOAD is low. When LOAD goes high, the latches retain the data present at the time of the transition. The outputs from each latch are multiplexed onto a 4-bit data highway under the control of a 2-bit address (MX1, MX2). All four outputs may be put into a high input impedance state by holding OUTPUT ENABLE high, so allowing multiplexed operation between devices.

The final decade has a CARRY output to enable devices to be cascaded in series. An input CLOCK pulse ripples through to the CARRY output when the counter is in the 'up' mode and the '9999' state or when in the 'down' mode and the '0000' state.

The high voltage usually associated with MNOS devices is generated internally, requiring only a single capacitor to act as a charge reservoir for supplying current when writing into the memory. The device therefore operates from standard voltage rails and requires no additional drive circuitry.

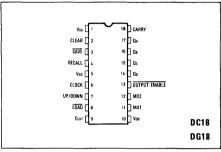


Fig. 1 Pin connections (top)

FEATURES

- Data Retention Guaranteed for One Year in the Absence of Applied Power Over Temperature Range 0°C to +70°C
- DC to 250 kHz Count Frequency
- Up/Down Count Facilities
- Standard Power Supplies (+5V, -12V)
- TTL/CMOS Compatibility
- 18-pin DIL Package

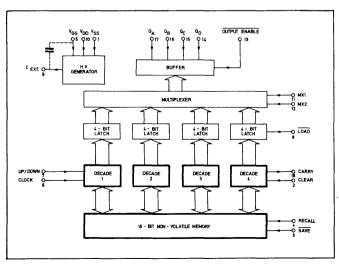


Fig. 2 MN9105 block diagram

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

 $V_{SS} = + 5V \pm 5\%$

 $V_{DD} = 0V$

 $V_{GG} = -12V \pm 5\%$

Output loading = 1 TTL load

Ambient operating temperature range including data retention

in the absence of applied power: 0°C to + 70°C

			Value			
Characteristic	Symbol	Min.	Тур.	Max.	Units	Conditions
Logic '0' input voltage Logic '1' input voltage Logic '0' output voltage Logic '1' output voltage High impedance leakage current External capacitor Output voltage on CEXT External leakage on CEXT SAVE duty cycle SAVE cycles Data retention time Total integrated RECALL time between SAVE cycles Power dissipation	VIL VIH VOL VOH	Vss-1 -10 0.1 106 1	-37 10 ⁷	0.8 0.6 +10 0.47 2.5 10	V V V V µA µF V µA % year secs mW	Output current = -1.6mA Output current = 100 µA VSS > VOUT > VDD with OUTPUT ENABLE = VSS See Note 3 See Note 2 See Note 1

OPERATING NOTES

1. The majority of the power dissipation arises from current flow between Vss and Vgg. The current level on Vpp is the sum of the logic '0' level currents plus leakage current only.

2. Exceeding this number of SAVE cycles can cause permanent damage to the device. It should also be noted that rapid changes of data in excess of 106 may cause a reduction in the data retention time.

3. An external capacitor is required to act as a charge reservoir for the high voltage which is generated on-chip from a high impedance source. Excessive external leakage on this capacitor or exceeding the quoted duty cycle can cause appreciable loading of the high voltage resulting in reduced data retention times. If operation outside these limits is required then an external high voltage (-37 volts $\pm 5\%$) may be used to maintain the voltage level.

4. The CARRY pulse is equivalent to a CLOCK pulse which ripples through the counter when in the correct count sequence. For CLOCK pulse widths greater than or equal to 5 µs, the CARRY output may be connected directly to the input of a following device. For smaller widths, then pulse stretching must be used on the CARRY output to maintain the pulse width.

5. Data can be entered into the memory with SAVE times much less than 10 milliseconds; however the data retention time is then significantly reduced. It is therefore important that spurious SAVE pulses do not occur particularly when power is applied to the device.

MX2	MX1	OE	QD, Qc, QB, QA	SAVE	Clock	Clear	Recall	Up/Down	Mode
*		1	High output impedance	1	1	0	0	0	Count up
Ιo	0	lo	Decade 1	1	1	Ō	Ó	1 1	Count down
Ιō	1 1	Ó	Decade 2	1		1 1	0	*	Set counter to 0000
1 1	l 0	0	Decade 3	1		0	1	*	Preset counter from memory
1	1	0	Decade 4	0	0	0	0	*	Write into memory

^{*} Logic '0' or '1' level

Table 1 Function table

ABSOLUTE MAXIMUM RATINGS

(all voltage with respect to Vss)

Voltage on C_{EXT} —46 to + 0.3V Voltage on V_{GG} —20 to + 0.3V

Voltage on any other pin -7 to + 0.3V Storage temperature -55°C to + 125°C

Ambient operating temperature -40°C to + 80°C

The above limits are absolute limiting values beyond which the lifetime and performance of the device may be impaired. No guarantee is implied that the device will function at any condition other than specified under the operating conditions.

ANTI-STATIC PRECAUTIONS

All inputs have suitable protection devices to minimise the possibility of damage due to static discharge. Care should still be taken when handling the device and the leads should at all times be shorted together until actually incorporated in the circuit in which the device is being used. Care should be taken to avoid static charges occurring in the circuit before completion and soldering should be carried out with an earthed bit.

To ensure no damage occurs during transit, the devices are supplied packed in conducting foam or other suitable carriers.

Logic '1' to '0' transition

SWITCHING CHARACTERISTICS

Loading = 1TTL LOAD

 $C_L = 10_P F$

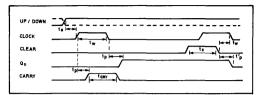


Fig. 3 Counter timing

Parameter	Symbol	Value	Units	Notes
Maximum CLOCK frequency		250	kHz	
Minimum CLOCK width	l t _W	2	μs	
Minimum CLEAR width	t _C	1	μs	
Minimum up/down select	t _S	1	μs	
Maximum CLOCK to On delay Maximum CLOCK to CARRY delay	tp	3	μs	
Maximum CLEAR to On delay	tp'	2	μs	
Minimum CARRY width	tCRY	2	μs	$tw = 5\mu s$ (Note 4)
Maximum CLOCK rise/fall time Maximum CLEAR rise/fall time	t _e	10	μs	

Table 2 Counter switching characteristics

Fig. 4 Output control timing

Parameter	Symbol	Value	Units	Notes
Minimum CLOCK to LOAD delay Maximum Load to Qn delay	^t CL	2	μs	
Maximum MX1/MX2 to Qn delay	tp	3	μs	

Table 3 Output control switching characteristics

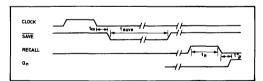
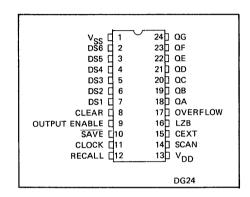


Fig. 5 Memory timing

Parameter	Symbol	Value	Units	Notes
Minimum SAVE time Minimum CLOCK to SAVE delay Minimum RECALL width Maximum RECALL to On delay Maximum SAVE rise/fall time Maximum RECALL rise/fall time	t _{SAVE} t _{CS} t _R t _p	10 2 2 3	ms µs µs	Note 5

NOVOL NON-VOLATILE LOGIC


MN9106

SIX-DECADE UP-COUNTER

The MN9106 is a six-decade up-counter with a 24-bit parallel MNOS memory which can provide non-volatile data storage of the current count position. An additional latch and memory bit is also available to indicate a count overflow condition. In addition to the conventional counter controls there are RECALL and SAVE inputs available to control the two-way transfer of data between the counter and memory.

Output data is available in the form of multiplexed seven segment outputs with multiplexing under the control of an on-chip oscillator which can also be overdriven by an external source. The device operates from a single 12 volts supply and the high voltage required for the MNOS memory is generated on-chip requiring only a single external capacitor on CEXT.

The chip design for this device includes additional facilities discussed in the appendix such that variants of the device could be easily available using simple changes to the metallisation interconnection pattern.

MAIN FEATURES

- DC to 100KHz count frequency
- Non-volatile data retention for 1 year over the temperature range 0°C to 70°C.
- Operation from single 12 volt supply with CMOS compatible inputs.
- Operation from split supplies (+5, -7volts) allowing inputs to interface with TTL.

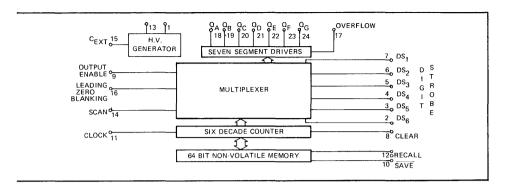
ABSOLUTE MAXIMUM RATINGS

(All voltages w.r.t. V_{SS})

Externally applied voltage on C_{EXT}

Voltage on any other pin

Current drain on any digit strobe
Current drain on any other output
Ambient operating temperature


Storage temperature

+0.3 to -46 volts
+0.3 to -15 volts
10mA
25mA
-40°C to 80°C
-55°C to 125°C

The above limits are absolute limiting values above which the lifetime and performance of the device may be

- Data "SAVE" time of 10 milliseconds.
- Leading zero and full blanking facilities.
- Multiplexed seven-segment outputs.
- Self scanning multiplexing.
- Counter overflow indicator.

impaired. No guarantee is implied that the device will function at any condition other than specified under the operating conditions.

OPERATING CONDITIONS

Ambient operating temperature (including non-volatile date retention in the absence of applied power).

 0° C to 70° C $V_{SS} = 0$ volts $V_{DD} = -12\pm 1$ volts

ELECTRICAL CHARACTERISTICS

PARAMETER	MIN	TYP	MAX	UNITS	CONDITIONS
Logic '0' input level			V _{ss} -4	Volts	
Logic '1' input level	V _{ss} -1			Volts	
Input leakage current*	-10		+10	μΑ	V _{DD} ≪V _{IN} SV _{SS}
Logic '0' output leakage current	-10		+10	μΑ	V _{DD} ≤V _{out} ΣV _{SS}
Logic '1' output current					
Segment Drivers	10			mA)	
Overflow	10			mA)	$V_{out} = V_{ss}$ -3volts
Digit Strobes	3	ļ		mA)	
Count frequency	D.C.		100	KHz	
Clear width	5			μS	
Recall width	5			μS	
Clock width	5			μS	
Save width	10			mS	
Output delay			10	μS	
Internal Scan frequency		1		KHz	
External Scan frequency			25	KHz	
High Voltage output		-42		Volts)	
Save duty cycle			10	% }	

^{*}Not applicable to SCAN input when overdriving from an external source.

CIRCUIT DESCRIPTION

The counter is a synchronous six decade B.C.D. counter, the outputs of which are multiplexed onto a 4-bit data highway and subsequently decoded into a seven segment format which drives open drain output transistors. An additional output transistor is driven directly from the overflow latch. Blanking facilities are

available such that by holding OB at a logical '1', all eight outputs are turned off. When LZB is at a logical '1', leading zeros are blanked by turning off the seven segment outputs provided that the overflow latch is not at a logical 1. All outputs are also blanked when the device is in RECALL or CLEAR mode.

Count Sequ	ence	Q _A	σ^{B}	Оc	σD	σ_{E}	α _F	Q_G	
0000	(0)	1	1	1	1	1	1	0	
0001	(1)	0	1	1	0	0	0	0	1
0010	(2)	1	1	0	1	1	0	1	三
0011	(3)	1	1	1	1	0	0	1	\exists
0100	(4)	0	1	1	0	0	1	1	4
0101	(5)	1	0	1	1	0	1	1	5
0110	(6)	1	0	1	1	1	1	1	5
0111	(7)	1	1	1	0	0	0	0	7
1000	(8)	1	1	1	1	1	1	1	日
1001	(9)	1	1	1	1	0	1	1	7
INVALID*		0	1	1	1	1	1	0	11

^{*}Incorrect use of the device or operation outside of normal conditions can result in invalid B.C.D. characters appearing in the counter.

TABLE 1.

OE	LZB	OVERFLOW LATCH	$Q_A - Q_G$
1	х	×	Outputs off
0	0	0	As table 1
0	0	1	As table 1
0	1	0	As table 1 but with leading zero blanking
0	1	1	As table 1

TABLE 2

The multiplexing sequence is generated from an on-chip oscillator whose frequency is set by an external capacitor between the SCAN input and $V_{\rm SS}$. This oscillator may also be forced from an external scan signal which must be capable of sinking and sourcing current on the SCAN input. The multiplex control scans through the counter a decade at a time in the sequence most significant decade to least significant. The decoded data from a particular decade is present for an entire oscillator period and the corresponding digit strobe output is turned on. The digit strobe outputs are independent of the LZB input, but all digit strobes are turned off during RECALL and CLEAR modes and also when OB = 0. The scan sequence is also reset at this time. The scan position increments on negative transitions of the scan input.

COUNT MODE - (Minimum CLOCK width = 5µsec)

The device is in count mode when RECALL and CLEAR are at a logical 'O' input level and $\overline{\text{SAVE}}$ is at a

logical '1'. The counter then increments on negative transitions of the CLOCK input. When the counter is in the '999999' state, the next negative CLOCK edge will set the overflow latch to a high state and counting commences again at "000000".

RECALL MODE — (Minimum RECALL width = 5µsec)
During recall mode the contents of the memory are preset into the counter and the overflow latch, the multiplex scanning sequence is reset and all outputs are turned off. The scanning sequence then recommences at the end of the recall period. The device is put into recall mode by taking the RECALL input to a logical '1' while CLEAR = 0, and SAVE = 1. The CLOCK input is disabled when in RECALL mode.

CLEAR MODE - (Minimum CLEAR width = 5µsec)

A logical '1' level on the CLEAR input with SAVE = 1 disables the CLOCK and RECALL inputs and puts the device into CLEAR mode. The counter and overflow latch are then reset to the all zeros state and the outputs are again turned off and the scanning sequence reset.

SAVE MODE - (SAVE width = 10 milliseconds)

During save mode, the data content of the counter and the overflow latch is written into the non-volatile memory. This is achieved by pulling the SAVE input to a logical '0' level, however if CLEAR, CLOCK or RECALL are at a logical '1' level, then the SAVE mode is inhibited until all of these three inputs have returned to a logical '0' level. These inputs are then subsequently disabled for the save period. This means that no external synchronisation is required between the save command and the other control inputs and ensures that valid data is present in the counter before saving and that this data is fixed throughout the entire save period.

Mode	Recall		Clear Clock	
Clear	х	1	×	1
Recall	1	0	×	1
Count	0	0	↓	1
Save *	0	0	0	0

X = Don't Care \(\psi = \text{Logical '1' to '0' transition.} \)

* Once this condition is satisfied any changes on CLOCK, CLEAR or RECALL are disabled until SAVE returns to a logical '1'.

NOTE:

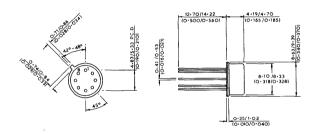
Automatic recall at power-on is not included as the circuitry could only be guaranteed with carefully defined rise and fall times on the power rail, and would cause difficulties in other applications where rise and fall times are not controlled. No guarantee is therefore given as to the state of the counter at power-on and it is therefore the users responsibility to generate a RECALL or CLEAR pulse at power-on.

APPENDIX

The chip design for this device includes additional features that may be subsequently used for variants of the MN9106. These additional features do not impose any system or economic restrictions on the basic device, and variants of the device will be available by producing a modified aluminum interconnection layer only. The features included are:

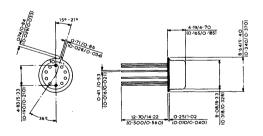
- Provision for CARRY output for cascading devices — The OVERFLOW output will be replaced by a CARRY output. This output will be such that an input CLOCK pulse
- appears on this output when the counter is in the "999999" state. The output characteristics of the CARRY will be the same as for the OVERFLOW output but the blanking function will be removed.
- Provision for making one or more of the decard counters a divide by six element. By use of aluminum variants it is possible to have a range of counters specifically for timing applications (e.g., Elapsed time indicators, programmable timers). Possible counting configurations are then:

	Hours	Minutes	Seconds	Seconds/100	Input Freq.
Variant A		59	59	99	100 Hz
Variant B		9999	59		1 Hz
Variant C	99	59	59		1 Hz
Variant B	9999	59			1/60 Hz

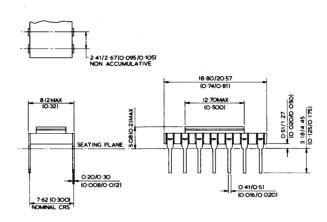

packages

package outlines

Dimensioned outline diagrams of the packages currently available for standard products are given on this and the following pages. Whilst every effort is made to ensure that the packages offered conform to these diagrams, certain changes may occur from time to time dependent on the supplies of piece parts. However, Plessey Semiconductors will attempt to ensure that such changes, should they occur, shall be minimal.


The code used to identify package outlines is that shown on the appropriate datasheet and on the following diagrams. The Pro-Electron code (see Ordering Information) is used — with the addition of numerals indicating the number of leads.

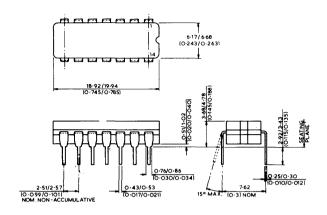
Note: Dimensions are shown thus: mm (inches)


8 LEAD TO-5

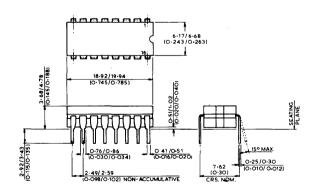
CM8


10 LEAD TO-5

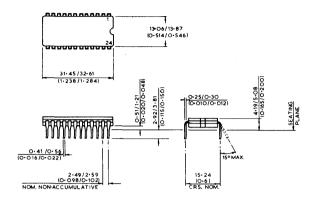
CM10


14 LEAD DILMON

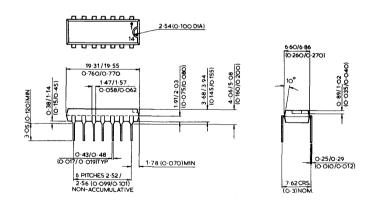
DC14


16 LEAD DILMON

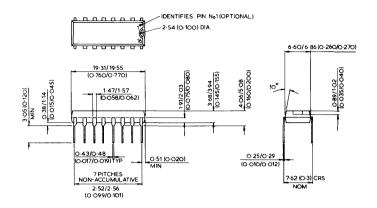
DC16


14 LEAD CERAMIC DIL

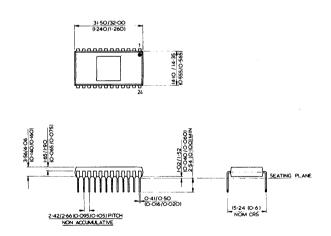
DG14


16 LEAD CERAMIC DIL

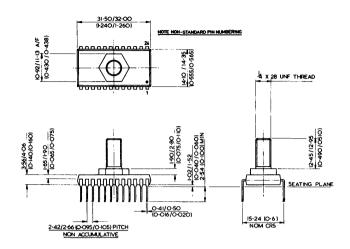
DG16


24 LEAD CERAMIC DIL

DG24


14 LEAD PLASTIC DIL

DP14


16 LEAD PLASTIC DIL

DP16

24 LEAD PLASTIC DIL

DP24

24 LEAD PLASTIC DIL WITH HEAT SINK STUD

DP24

ordering information

ordering information

U.K. ORDERS

Orders for quantities up to 99 received by Plessey Semiconductors at Swindon will be referred automatically to our U.K. distributors; quantities of 1000 and over must be ordered from Plessey Semiconductors direct, at the following address:

Plessey Semiconductors Cheney Manor Swindon Wilts. SN2 2QW

Tel: (0793) 36251 Telex: 449637

OVERSEAS ORDERS

Products contained in this Databook can be ordered from your listed Plessey Office. Agent or Distributor.

PLESSEY SEMICONDUCTORS IC TYPE NUMBERING

Plessey Semiconductors integrated circuits are allocated type numbers which must be used when ordering. The Pro-Electron code is used to identify package putlines.

CM - Multilead TO-5

DC - Dilmon

DG - Ceramic Dual In-Line

DP - Plastic Dual In-Line

EP - Power Stud

This package code is for reference purposes only and need only be used when ordering where a device is offered in more than one package style. The package code does not appear on the device itself.

Plessey Semiconductors U.S.A.

PLESSEY SALES REPRESENTATIVES:

ALABAMA:	Huntsville	(205) 883-9260	REMCO
ARIZONA:	Scottsdale	(602) 948-4404	Faser Technical Sales
	Phoenix	(602) 997-1042	Eltron
CALIFORNIA:	Goleta	(805) 964-8751	The Thorson Company of So. California
	Marina Del Rey	(213) 822-1187	RELCOM
	San Diego	(714) 455-0055	Littlefield and Smith Assocs.
	Sunnyvale	(408) 245-9890	Bryan Procter
FLORIDA:	Kenneth City	(813) 546-6390	Kirkwood Assocs.
GEORGIA:	Duluth	(404) 476-1730	REMCO
ILLINOIS:	Elk Grove Village	(312) 439-9090	R-TEK
MARYLAND:	Beltsville	(301) 937-8321	Applied Engineering Consultants
MASSACHUSETTS:	Wayland	(617) 655-6080	Wayland Engineering Sales
MICHIGAN:	Brighton	(313) 227-1786	S.A.I. Marketing Corp.
MINNESOTA:	Bloomington	(612) 884-8291	Electronic Sales Agency Inc.
MISSOURI:	Independence	(816) 254-3600	Engineering Services Company
	St. Louis	(314) 997-1515	Engineering Services Company
NEW YORK:	Plainview	(516) 681-3155	Robert Smith Assocs.
	Spring Valley	(914) 354-6067	Robert Smith Assocs.
	Skaneateles	(315) 685-5731	Robtron Inc.
NORTH CAROLINA:	Raleigh	(919) 787-1461	REMCO
OHIO:	Shaker Hieghts	(216) 751-3633	S.A.I. Marketing Corp.
	Centerville	(513) 435-3181	S.A.I. Marketing Corp.
	Zanesville	(614) 454-8942	S.A.I. Marketing Corp.
ONTARIO:	Bolton	(416) 626-3805	MacKay Associates
OREGON:	Portland	(503) 227-0599	Bryan Procter
PENNSYLVANIA:	Pittsburgh	(412) 782-5120	S.A.I. Marketing Corp.
	Huntingdon Valley	(215) 947-5641	Dick Knowles Assocs.
TEXAS:	Arlington	(817) 640-9101	W. Pat Fralia Company Inc.
	Houston	(713) 772-1572	W. Pat Fralia Company Inc.
	Austin	(512) 451-3325	W. Pat Fralia Company Inc.
VIRGINIA:	Lorton	(703) 550-9799	Applied Engineering Consultants
WASHINGTON:	Seattle	(206) 345-0376	Bryan Procter

PLESSEY DISTRIBUTORS: (Dial direct for orders under 100 pieces and faster delivery)

MARYLAND:	Beltsville	(301) 937-8321	Applied Engineering Consultants
NEW YORK:	Plainview	(516) 822-5357	Plainview Electronics Supply Corp.
TEXAS:	Arlington	(817) 640-8081	Patco Supply

PLESSEY REGIONAL OFFICES:

PAUL COOPER	BRYAN PROCTER	JONATHAN HILL	BERNARD ERDE	A.J. Willis
National Sales Manager	Western Sales/Applications	Midwest Sales Manager	Eastern Sales Manager	S.E. Sales/Applications
1641 Kaiser Avenue	710 Lakeway	4825 N. Scott	89 Marcus Blvd.	Mailing Address:
Irvine, CA 92714	Suite 265	Suite 308	Hauppauge, New York 11787	89 Marcus Blvd.
(714) 540-9979	Sunnyvale, CA 94086	Schiller Park, IL 60176	(516) 273-3060	Hauppauge, N.Y. 11787
TWX 910-595-1930	(408) 245-9890	(312) 678-3280/3281	TLX 961419 TELL USA HAUP	Orlando Answering Service
		TWX 910-227-3746		(305) 859-4643

Plessey Semiconductors world-wide

iales offices

RANCE Plessey France S.A., 16/20 Rue Petrarque, 75016 Paris. Tel: 727 43 49 Tx: 62789

「ALY Plessey S.p.A., Corso Sempione 73, 20149 Milan. Tel: 349 1741 Tx: 37347

CANDINAVIA Svenska Plessey A.B., Alstromergatan 39, 4tr, S-112 47 Stockholm 49, (P.O. Box 49023 S-100 28 Stockholm 49) Sweden, Tel: 08 23 55 40 Tx: 10558

WITZERLAND Plessey Verkaufs A.G., Glattalstrasse 18, CH-8052 Zurich. Tel: 50 36 55/50 36 82 Tx: 54824

NITED KINGDOM Plessey Semiconductors, Cheney Manor, Swindon, Wilts. SN2 2QW Tel: 0793 36251 Tx: 449637

SA Plessey Semiconductor Products, 1641 Kaiser Avenue, Irvine, Calif. 92714, Tel: (714)540-9979 Twx: 910 595 1930

essey Microsystems, Semiconductor Products Divn., 4825 N. Scott Street, Suite 308 74A, Schiller Park, III. 60176 Tel: (312) 671 4554 Twx: 910-227-0794

EST GERMANY Plessey GmbH., 8 Munchen 40, Motorstrasse 56, Tel: (89) 351 6021/6024 Tx: 5215322

Plessey GmbH, Moselstrasse 18, Postfach 522, 4040 Neuss. Tel: (02101) 44091 Tx: 517844

agents

USTRALIA Plessey Ducon Pty. Ltd., P.O. Box 2, Christina Road, Villawood, N.S.W. 2163. Tel:72 0133 Tx: 20384

USTRIA Plessey GmbH., Rotenturmstrasse 25, Postfach 967, A-1011 Vienna. Tel: 63 45 75 Tx: 75 963

ELGIUM & LUXEMBOURG Plessey S.A., Chausee de St. Job 638, Brussels 1180, Belgium. Tel: 74 5971. Tx: 22100

RAZIL Plessey Brazil, Caixa Postal 7821, Sao Paulo. Tel: (011) 269 0211. Tx: 112338

ANADA Plessey Canada Ltd., 300 Supertest Road, Downsview, Toronto, Ontario. Tel: 661 3711. Tx: 065-24488

ASTERN EUROPE Commercial Manager, Mid and Eastern Europe, Plessey Co. Ltd., Ilford, Essex, IG1 4AQ England.

Tel: 01-478-3040, Tx: 23166

IRE Plessey Ireland Ltd., Mount Brown, Old Kilmainham, Dublin 8. Tel: 75 84 51/2. Tx: 4831

ONG KONG Plessey Co. Ltd., Room 1002, Connaught Building, 54-46 Connaught Road C, (P.O. Box 617) Tel: 5-452145.

Tx: 74754

APAN Cornes & Co Ltd., Maruzen Building, 2 Chome Nihonbashi-Dori. C.P.O. Box 158, Chuo-ku, Tokyo 103. Tel: 272-5771.

Tx: 24874

Cornes & Co Ltd., Marden House, C.P.O. Box 239, Osaka. Tel: 532-1012/1019. Tx: 525-4496

ETHERLANDS Plessey Fabrieken N.V., Van de Mortelstraat 6, P.O. Box 46, Noordwijk. Tel: 01719 19207. Tx: 32008

EW ZEALAND Plessey (N.Z.) Ltd., Ratanui Street, Private Bag, Henderson, Auckland 8. Tel: Henderson 64 189. Tx: 2851

DRTUGAL Plessey Automatica Electrica, Portugesa S.A.R.L., Av. Infant D. Henrique 333, Apartado 1060, Lisbon 6. Tel:

313173/9 Tx: 12190

DUTH AFRICA Plessey South Africa Ltd., Forum Building, Struben Street, (P.O. Box 2416) Pretoria 0001, Transvaal. Tel:

34511 Tx: 30277

PAIN The Plessey Company Ltd, Calle Martires de Alcala, 4-3 Dcha., Madrid 8. Tel: 248 12 18 and 248 38 82 Tx: 42701

distributors

FRANCE Scientech, 11 Avenue Ferdinand Buisson, 75016 Paris. Tel: 609 91 36 Tx: 26042

ITALY Melchioni, Via P. Colletta 39, 20135 Milan, Tel: 5794

SCANDINAVIA Scansupply A/S., Nannasgade 20, Dk-2200 Copenhagen, Denmark, Tel: 93 5090 Tx: 19037

Oy Ferrado A.B. Nylandsgatan 2C, 00120 Helsinki 12, Finland. Tel: 65 60 05 Tx: 121394

Skandinavisk Elektronikk A/S., Ostre Aker Vei 99, Veitvedt, Oslo 5, Norway. Tel: (02) 15 00 90 Tx: 11963

SWITZERLAND Lacoray S.A., 8049 Zurich, Ackersteinstrasse 161, Tel: 56 56 70 Tx: 57653

UNITED KINGDOM (For all circuits except T.V.)

Farnell Electric Components Ltd., Canal Road, Leeds LS12 2TU Tel: 0532 636311 Tx: 55147

Gothic Electronic Components, Beacon House, Hampton Street, Birmingham B19 3LP. Tel: 021 236 8541 Tx: 338731

Semiconductor Specialists (UK) Ltd., Premier House, Fairfield Road, Yiewsley, West Drayton, Middlesex. Tel: 08954 46415

Tx: 21958

SDS Components Ltd., Hilsea Industrial Estate, Portsmouth, Hampshire PO3 5JW. Tel: 0705 65311 Tx:86114

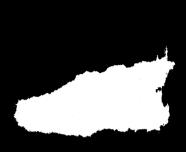
For T.V. circuits only:-

Best Electronics (Slough) Ltd., Unit 4, Farnburn Avenue, Slough, Bucks SL1 4XU Tel: (0753) 31700 Tx: 847571

C.P.C. Ltd., 194-200 North Road, Preston PR1 1YP. Tel: (0772) 55034 Tx: 677122

USA Semiconductor Specialists, P.O. Box 66125, O'Hare Internatl Airport, Chicago, III. Tel: 312 279 1000 Twx: 910-254-01

WEST GERMANY


PLZ1 Dr. Guenther Dohrenberg, 1000 Berlin 30, Bayreuther Strasse 3, Tel: (030) 21 38 043-45

PLZ2 Nordelektronik GmbH-KG, 2085 Quickborn, Harksheiderweg 238-240. Tel: (04 106) 4031 Tx: 02 14299

PLZ6 Mansfield GmbH & Co. KG, 6000 Frankfurt, Zobelstrasse 11. Tel: (0611) 4470 20

PLZ7 Astronic GmbH & Co. KG, 7000 Stuttgart-Vaihingen, Gruendgenstrasse 7. Tel: (0711) 734918

PLZ8 Nuemuller & Co. GmbH, 8 Munchen 2, Karlstrasse 55. Tel: 089 5991 231 Tx: 0522106

Marry

SEMICONDUCTORS Irvine, CA 92714
Tel (714) 540-9979 A Division Of Plessey Trading Corporation

1641 Kaiser Ave.

