PanaXSeriesg

MN101CO0O Series
LS| User Manual

Panasonic

This Material Copyrighted By Its Respective Manufacturer

This Materi al

PanaXSeries is a trademark of Matsushita Electric Industries, Ltd.

(1

2

3

)

3

Request for your special attention and precautions in using the technical information and

semiconductors described in this book

An export permit needs to be obtained from the competent authorities of the Japanese Government if any
of the products or technologies described in this book and controlled under the "Foreign FExchange and

Forcign Trade Control Law" is to be exported or taken out of Japan.

The contents of this book are subject to change without notice in matters of improved function. When
finalizing your design,therefore,ask for the most up-to-date version in advance in order to check for any

changes.

We are not liable for any damage arising out of the use of the contents of this book, or for any

infringment of patents or any other rights owned by a third party.

No part of this book may be reprinted or reproduced by any means without written permission from our

company.

This book deals with standard specifications. Ask for the latest individual Product Standards or
Specifications in advance for more detailed information required for your design,purchasing and

applications.

If you have any inquiries or questions about this book or our semiconductors,please contact one of
our sales offices listed at the back of this book or Matsushita Electronics Corporation's Sales
Department.

Copyrighted By Its Respective Manufacturer

Table of Contents
List of Figures and Tables

Chapter 1 - General Description

Chapter 2 - Basic CPU Functions

Appendices

This Material Copyrighted By Its Respective Manufacturer

Reading This Manual

H Topics Covered by this Manual

‘This manual describes the standard specifications common to the MN101COO Series, but there are products to which
not all of these specilications apply. Some products in this series may have peripheral [unctions or pins not covered in
this manual. When using these Panasonic products, please be sure to verily the precise specilications, including the

applicable content of this manual.

M General Outline of the Manual
Chapter 1 introduces an outline of the hardware, the hardware conliguration and basic specilications. Chapter 2

primarily covers the operation and functions of the hardware block.

H Organization of the Manual
‘The various items in this manual include a title, summary, main text, supplementary inlormation, and precautions and

warnings. The layout and definitions are indicated below.

Main title

<EXAMPLE=>

Sub-title

Lowest title level

2-1 Clock Generator and Machine Clock

Summary

2-1-1 Clock generator
; Introduction to the section
Precautions and

The MN101C00 series has two internal oscillator circuits, one for a high-

warnings speed clock (OSCI, OSCO) and one for a low-speed clock (X, XO). An
- and cay are connected externally. A crystal or ceramic
Precautions and oscillator (max. 20 MHz) is connected between OSCI and OSCO, and 2
wa.mings related to ceramic oscillator, typically of 32 kHz is connected between XI and XO. M ai n text

possible degradation of

Cither of these clocks can be programmed as the machine clock (the basic CPU
clock). The machine clock is divided by two. If the low-speed clock is selected, it is

device function or

also possible to stop operation of the high-speed oscillation circuit to reduce power

device damage. Please You st ;"",m:':;’h':: v pin dissipation. Tf the CPU is switched to STOP mode to reduce power dissipation,
read these sections shortost possible distance, operation of both oscillation circuits is also stopped.
thoroughly. 5 MNTU1COD Series Instruction N
Manual] K ™
H oscl
High-speed
oscillation :l
3—{ 08Co
Reference mark VIN101C00 series
Ihe connection shown is 2
Indicates the location of solf excitod ossillation dosign. +— X
Low-epeed
thﬁ rﬁlatﬁd infonnation If an external ciock is to be oscillation l:l
used as le microcomputer 5‘_{ X0
system dock, use an external
excited oscilialor. In this case,
::“ *;:’:"’O’S“C’:'“‘f i ’;’f"”"’ Fig. 2-1-1 Oscillator Gircuit Gonnection (self-excited oscillation)
rough the OSC! pin, and the
OSCO pin is open (or. H 1
Supplementary alternatively, input through the Key |nf0rmat|0n
h A X pint arrd the XO pirt is oper). L. . .
information Critical information
Information supplemen- To minimize distortion, mount the crystal and capacitor as close forming the key point of
as possible to the pins. h ain loxl
tary to the main text, Also connect the Vss pin to a thick ground line with the shortest 1¢ main text.
. . ossible distance.
including glossary terms. s

14 Clock Generator and Machine Clack

Reading This Manual-1

This Material Copyrighted By Its Respective Manufacturer

Ml Search method

To locate the required information rapidly, there are four methods of searching in this manual.

(1) Refler 1o the index at the [ront ol the manual 1o locate the beginning ol each section.

(2) Refer to the Contents at the [ront of the manual o locate titles.

(3) Refer to the List of Figures and Tables at the front of the manual to locate titles of illustrations and tables.

(4) The Chapter name is given at the top of every page, and the main title at the bottom of every page. This makes it

possible to scan through the manual quickly to locate a desired section.

H Related manuals

The following manuals are available for the MIN10200 Series Linear Adrressing Version:

@ "MN101CO00 Series Instruction Manual”
<Describes the instruction set>
® "MN101C00 Series Cross-assembler User's Manual”
<Describes the assembler syntax and notation>
@ "MN101CO00 Series C Compiler User's Manual: Usage Guide"
<Describes the installation, the commands, and options of the C Compiler>
@ "MN101CO0O0 Series C Compiler User's Manual: Language Description”
<Describes the syntax of the C Compiler>
@ "MN101CO00 Series C Compiler User's Manual: Library Reference”
<Describes the the standard library of the C Compiler>
@ "MN101CO00 Scrics C Source Code Debugger User's Manual”
<Describes the use of the C source code debugger>
@ "MN101CO00 Series PanaX Series Installation Manual"”
<Describes the installation of the C compiler, cross-assembler and C source code

debugger and the procedure for bringing up the in-circuit emulator>

M Inquiries and comments
Please direct any comments, suggestions or inquiries to your closest semiconductor design center. A list of addresses

is provided at the rear of this manual for your convenience.

Reading This Manual -2

This Material Copyrighted By Its Respective Manufacturer

Reading This Manual-3

This Material Copyrighted By Its Respective Manufacturer

Table of Contents
List of Figures and Tables

This Material Copyrighted By Its Respective Manufacturer

Contents

Chapter 1 General Description

1-1

1-2
1-3
1-4
1-5

General DesCriplionooeeeviiiiiiiiiiiii it 2
1-1-1 INtroductioncooooiiiiiiiiiiiiiii s 2
LI-1-2 COMCEPL ittt 2

1-1-3 Applications ..

1-1-4 Fcatures ...

1-1-5 OIVETVIEW ettt e et e et e et e e e et ee et aeearannnn 4

Basic Specifications 8
BIoCK DIAZTAIN ..coeviieeeiiieeeeeee et e 9
Addressiing MOAEs o.ooevieiiieriiriiieeieeee ettt 11
List of INSrUCIONS ..ccovviiiiiiiiiiiiiiie e 12

Chapter 2 Basic CPU Functions

2-1

12
\e}

12
(9]

2-4

2-5

<Contents 2>

This Materi al

Clock Generation and Machine ClOCKcccvvvieeiieeieeiiiieiecceiiieieeveeeeees 14
.14

2-1-1 Clock generator ...

2-1-2 Machine Clock ..o 15
Instruction Execution Controllerccccvvviiiiiiiiiiiiiiiiiinieeiiie e 16
2-2-1 CONTIGUIALION vttt ee et e et 16
Internal REGISETS ..ovveiriiiiriieiiieeie ettt 17
2-3-1 Address TTEEISIETS .ooiuiiiiiieie et 17
2-3-2 Operation TCEISICTSuviiiriieiieeie e 18
2-3-3 Processor status WOTTd ... e 19
Special Function RegiStersooceevvieemniieimieiieiieccee e 21
Interrupt CONLLOLIET .cvveveeieieieieeeeeeeee e 22
2-5-1 OULHNE .ooiiiiiiiiiiiiiiii e 22
2-5-2 Interruptl cONrol TEEISIETS .oooviiiiiiiriiiiiiieiiiiiecce e 27
2-5-3 Interruptlevel ..., 29
2-5-4 Interrupt acceptance operationc.ccoooiiiiiiiiiiiiee e 32
2-5-5 Interrupt return OPerationccooviiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeee 33
2-5-6 Multiplex interrupt enablecccoooiiiiiiiii 34

Copyrighted By Its Respective Manufacturer

2-6 Standby TUNCHON ..eeeieeeee e 36

2-6-1 OULINE e 36
2-6-2 CPU mode control regiStercccooiiiiiiiiiiiiiiieiiiiee e 38
2-6-3 Transition between ST.OW and NORMALTL. ... 39
2-6-4 Transition to STANDBY modeccccevvvvimerieiiieeiieeeiiie e, 41
2-7 Reset FUNCHIONcoooviiiiiiiiiiiiiiciic e 43
2-8 IMIEITIOLY ceueuiiieeeieeietit e ettt e e e ettt e e e e ee ettt s e e e eeeee et e e eeeaeenes 45
2-8-1 Setting MemOry MOdecoovvriiiiiiiiereeeeieiiiiieee et 45
2-8-2 Single-chip modeccooiiiiiiiiiiiiniiiii 46
2-8-3 Memory expansion MOdesccccoooiiiiiiiiiiiiiiii e 47
2-8-4 ProcesSor MOACouuiiiiiiiiiiiiiiiie e 48
2-9 BUS CONIOTIET oottt e et e e e ae e e 49
2-9-1 OULHNG .evvieiiiieeiiiieeeiiie ettt ettt ettt st 49
2-9-2 Fixed wait cycle Modecccovveermeeiniiiieeeeieeeee e 50
2-9-3 Handshake MOdeeeeeeiiieiiiiiiiiiiiieiieeiiee et 52
2-10 DMA Support Functionccccciviiiiiiiiiiiiiiiiiiiiiciiecie e 53
2-10-1 Bus arbitration functioncccceeveciiiiiiiiiiiiiiin e 53
Appendices
INSIUCHON S +.eeeiieieeee ettt et e e e 56
InStruction MEDooooiiiiiiii e 62

<Contents 3>

This Material Copyrighted By Its Respective Manufacturer

List of

Figures
and Tables

List of Figures

Chapter 1 General Description

Fig
Fig
Fig
Fig

.1-1-1
.1-1-2
.1-1-3
. 1-3-1

Processor Status Word (PSW) .oouiue e ettt e e e e aeeen 4
AdATEss SPACE ...coooiiiiiii e 6
Interrupt Veclor Table ... 7
Block Function DIagraimccceeeiiiiiiiiiiiiiiiiiine e 9

Chapter 2 Basic CPU Functions

Fig.
Fig.
Fig.
Fig.
Tiig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Tiig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Tiig.
Fig.
Fig.
Fig.
Fig.
Fig.

<Contents 4>

This Materi al

2-1-1
2-1-2
2-1-3
2-2-1
2-3-1

Oscillator Circuit Connection (self-excited oscillation)ccccoeevevvvvvvevnerrveenenn. 14
Machine Clock with NO Wait CYCIEcoevivuiiiieeieiiiee ettt 15
Machine Clock with Memory Wait Cycles ... 15
Instruction Execution Controller Configuration . 16
Address Register Configurationcooeveveiiiiiimiiiii e 17
Operation Register Configuration ...l 18
Processor Status Word Configurationc.ooooeiiiiiiiiiiiiiii e 19
Interrupt Controller Configuration ...t 24
Interrupt Priority OULINEcoooveeeiieeiiiie et 25
Interrupt Processing Sequence (maskable interrupts)ccccceeeveeeeiieenireeeieeennee. 26
Maskable Interrupt Control Register (xXxICR) ...cccovviiiiiiiiiiiiiiiii i 27
Non-Maskable Interrupt Control Register (MNICR)ccccooiviiiiiiiiniiiiiiecces 28
Interrupt Acceptance Determinationccceevvieiiiiniiiiiiiiiiiniii e 29

Processing Sequence for Maskable Interrupts (excluding multiplex interrupts) ... 31

Stack Condition during Interrupt ACCCPLANCESooeeriieriiiiiiiiiiiiiieiieiiieeee e, 32
Processing Sequence with Multiple Interrupts Enabled ... 35
Transition Between Operation Modes ... 36
Operation Mode Control and Clock Oscillation On/Offcoocveeerniveennieeneeeee 38
Transition to/lrom STANDBY MoOdeooocvviiiiiiiiiiiiiiicii 41
Reset Release SeqUENCE ...ooeiiiiiiiiiiiiiiiiiiii e 43
Single-chip Mode Configurationccccceerriiiiiieiiiiiiieeeineiiiie e 46
Memory Expansion Mode ... 47
Processor Mode ... 48
Bus Controller Block DIia@ramcoooiiiiiiiiiiiiiiie e 49
Memory Control Register (MEMOCTR) ..o 51
Handshake Mode Pin Connection Exampleccocceervveeimneieneieeieeiieceie e, 52
Bus Arbitration TImingeeeeeeeeereeeriirriieeieeee ettt 54

Copyrighted By Its Respective Manufacturer

This Materi al

List of Tables

Chapter 1

Table 1-2-1
Table 1-3-1
Table 1-4-1
Table 1-5-1

Chapter 2

Table 2-3-1
Table 2-4-1
Table 2-5-1
Table 2-5-2
Table 2-7-1
Table 2-8-1

General Description

Basic Specifications........cccooevuuiiiiiiiiiiiiiii e 8
Block Function OVEIVIEWcccoiiiiiiiiiiiiiiiiiiiee et 10
AdAressing Mode OVEIVIEW ooouviuiiiriiiiiiiiiii ettt 11
List Of INSTIUCHIONIS ..vvvviiiiiiiiiiiiiiciic i 12

Basic CPU Functions
Interrupt Mask Level and Interrupt ACCEPLaNCeceeveeeeeuieeeiieeeeiieeeiieeeiieeeeneen 20
List of Special ReISIETS ..c...ueieiiieeiieeeiiieeeiiie et 21

Interrupt Controller Outline
Interrupt Mask Levels and Interrupt Levels

Register Initialization at Reset

E NN
UlﬁOO[\J

Setting The Memory Modeoooiiiiii e

<Contents 5>

Copyrighted By Its Respective Manufacturer

This Material Copyrighted By Its Respective Manufacturer

Chapter 1 - General Description

This Material Copyrighted By Its Respective Manufacturer

Chapter 1 - General Description

1-1 General Description

1-1-1 Introduction

The MN101CO0O series features a streamlined, high-performance
architecture. It optimizes the overall performance of the hardware and
software while maintaining ease of use and top cost performance. It offers

* ‘The high cost performance demanded ot microcomputers for embedded systems.
* Extensive support for program development (assembler or C) and execution
environments.

It adopts a programming model based on an instruction set and opcodes designed to
minimize object code sizes while responding to the demand for a more efficient
program development environment supporting development in the high-level

programming language, C.

1-1-2 Concept

* Microcomputers that deliver high cost performance while supporting
development in the C programming language.

* Source code level portability to Panasonic's 16-bit MIN10200 series.

* ASSP microcomputers offering flexible peripheral expansion for use in system
integration.

1-1-3 Applications

Embedded systems for use in audiovisual equipment, home appliances, home

information products, and a broad range of other applications.

2 General Description

This Material Copyrighted By Its Respective Manufacturer

Chapter 1 - General Description

1-1-4 Features

The MN101CO0O0 series brings to embedded microcomputer applications
flexible, optimized hardware configurations and a simple, efficient instruction
set for both economy and speed. Specific features include the following:

1. Minimized code sizes with instruction lengths based on 4-bit increments
The series keeps code sizes down by adopting a basic instruction length of one
byte and a half-byte instruction approach using a program counter capable of
addressing instructions in 4-bit increments. As a result, the serics minimizes code
sizes in spite of its simple instruction set limiting data transfers to and from

memory to load/store operations.

2. Minimum execution time of one cycle
This cycle is 100 ns at 20-MHz oscillation.

3. Minimized register set that simplifies the architecture and supports C
code development
The instruction set is based on a thorough analysis of the code gencrated by C
compilers and that used in assembly language programming and of the tradeoffs
between hardware scale and performance. As a result, the instruction set has been
minimized to that supporting development in C and is notable for its simplicity.

General Description 3

This Material Copyrighted By Its Respective Manufacturer

Chapter 1 - General Description

1-1-5 Overview

This section describes the basic configuration and functions of the series.

M Processor Status Word (PSW)
The processor status word (PSW) holds the operation result flags and interrupt

mask level.
7 0
PSW‘—‘MIE‘IM1‘IMO‘VF‘NF‘CF‘ZF‘
At reset 0 0 0 0 0 o o 0

The zero flag (ZF) is set when the result of an
ALU operation is 0 and cleared otherwise.

The carry flag (CF) is set when an ALU operation
results in a carry or borrow from the most significant
bit and cleared otherwise.

The negative flag (NF) is set when the result of an ALU
operation contains a "1" in the most significant bit and
cleared otherwise.

The overflow flag (VF) is set when an ALU operation results in an
overflow or underflow and cleared otherwise.

These two bits indicate the interrupt mask level (IM).
They offer levels from '0' (00) to '3' (11) with level 0 being the highest mask level.
The CPU accepts only interrupts with priority levels higher than this
specification.
When the CPU accepts an interrupt, it sets these bits to that interrupt's priority
level so as to block acceptance of subsequent interrupts with that or a lower
priority level until it has finished processing the current interrupt.

L This control bit enables/disables all maskable interrupts.

A "0" disables all maskable interrupts. A "1" enables interrupt control using the interrupt
enable flag (xxxIE) and interrupt level (IL=xxxLV1-xxxLV0) for the individual maskable
interrupt.

Reserved (always "0")

Fig. 1-1-1 Processor Status Word (PSW)

4 General Description

This Material Copyrighted By Its Respective Manufacturer

Chapter 1 - General Description

H Internal Register, Memory and Special Function Register Configuration

Program counter

18 0
The 19-bit program counter holds the address of the pPC |
program instruction being executed.
Stack pointer
15 0
The stack pointer holds the top address of the stack sp |
arca.
Address registers
15 0
The address registers hold the locations of data in | AO |
memory. | Al |

Data registers

7 0
The data registers are general-purpose registers used | Do |
to perform arithmetic or logic operations. | D1 |
| D2 |
| 3 |

Processor status word

The processor status word (PSW) stores the operation
PSW

result flags and the interrupt mask level.

Memory, special registers and 1/O ports

Memory (ROM, RAM), special function register
controlling peripheral functions, and I/O ports can be RAM
allocated to the same address space.

ROM
Internal control register* CPUM, MEMCTR
Interrupt control register® NMICR, ICRn
Scrial interface*® SCnCTR, SCnTRB
A/D converter* ANCTR, ANBUFn
Timer counter® TMnBC, TMnMD, etc.
Memory control* MEMMD
1/O ports* PnOUT, PnIN, etc.
* This is a typical example. Actual memory, peripheral function, special register and /O port
configurations will vary with the product model.

General Description 5

This Material Copyrighted By Its Respective Manufacturer

Chapter 1 - General Description

This is a typical example.
Actual memory configuration
will vary with the specific
product.

6 General Description

x'00000’
abs8 addressing
256 bytes access area
x'00100'
16 KB Data i
'O3F00' . .
256 bytes % Special function
viesl register area
128 bytes X0 nternupt
256 KB v vector table
64 bytes ' X04080" g b_routine
48 KB v vector table
x'040CO0
Instruction | oM area
\,/fpde
7 iable data
T Xx"10000'
Instruetion .
192 KB ———esde
v i X3FFFF'|

B Address Space

The series supports an address space of 256 kilobytes.

Instructions and data share the same address space, but data is limited to the first
64 kilobytes. Here data refers to both RAM data and ROM table data.

The data address space includes a 256-byte area most efficiently accessed with
abs8 addressing and a second 256-byte area most efficiently accessed with I/O
short addressing.

The internal RAM and special function registers are assigned to regions within
the 16-kilobyte area X'00000'-X'03FFFF".

Up to 4 kilobytes of external RAM may be added starting at the address X'02F00'".
There are processor modes for using external ROM and RAM together either with
both the onboard ROM and RAM or with the onboard RAM alone. The MMOD
pin and the EXMEM flag in the memory control register (MEMCTR) specify the
mode.

Fig. 1-1-2 Address Space

This Material Copyrighted By Its Respective Manufacturer

Chapter 1 - General Description

H Interrupt Control Block

When an MN101CO0O microcomputer accepts an interrupt, the hardware
automatically executes a processing sequence that branches to the interrupt service

routine whosc starting address is specified in the interrupt vector table.

« Interrupt vectors
There arc 31 interrupt vectors for specifying the starting addresses for interrupt
service routines. They are initially assigned to ROM addresses X'04000" X'0407B".

V
nﬁ;:éoerr Address Interrupt
0 X'04000' Reset interrupt
1 X'04004' Non-maskable interrupt
2 X'04008' Peripheral function interrupt 1
to to to
30 X'04078' Peripheral function interrupt 29

Fig. 1-1-3 Interrupt Vector Table

General Description 7

This Material Copyrighted By Its Respective Manufacturer

Chapter 1 - General Description

8 Basic Specifications

This Material Copyrighted By Its Respective Manufacturer

1-2 Basic Specifications

This section introduces the basic specifications of the series.
For detailed specifications, see the manuals for each chip.

Table 1-2-1 Basic Specifications

Structure

Load/store architccture

Six registers

Data: 8-bitX4
Address: 16-bitX2

Other PC: 19-bit
PSW: 8-biL
SP: 16-bit
Instructions Number of instructions 37
Addressing modes 9

Instruction length

Basic portion: 1 byte (min.)
Extended portion: 0.5-byteXn(0<n<9)

Basic performance

Internal operating frequency (max)

10 MHz (20 MHz external oscillator)

Instruction execution

Min. 1 cycle

Inter-register operation

Min. 2 cycles

Load/store

Min. 2 cycles

Conditional branch

2 to 3 cycles

Pipeline

3-stage (instruction fetch, decode, execution)

Address space

256 KB (max. 64 KB for data)

Instruction/data common space

External bus

Address

18-bit (max.)

Data

8-bit

Minimum bus cycle

1 clock (100 ns at 20 MI1z)

Interrupt Vector interrupt 3 interrupt levels
Low-power STOP mode
dissipation mode | HALT mode

1-3 Block Diagram

Address registers

Stack pointer A0

I | -

A !

Bt

Data registers

Do

D1

D2

D3

Program
counter

Incrementer
/7

ALU

Processor status word

PSW

!

Program address

!

!

Operand address

!

Chapter 1 - General Description

T1 +—— Clock [+— Source oscillation

T2 -«—— generator

Instruction execution

controller

Interrupt decoder

Instr
qu

uction Interrupt
eue controller

Interrupt bus

Bus controller

Q ROM bus)

< RAM bus

Intemal ROM

Intemal RAM

| External interface |

4 i)
External expansion bus

sy}

=l

Fig. 1-3-1 Block Function Diagram

This Material Copyrighted By Its Respective Manufacturer

Perpheral expansion bus

Intemal peripheral
functions

Block Diagram 9

Chapter 1 - General Description

Table 1-3-1 Block Function Overview

Block Function Se.e
section
Clock generator Uses a clock oscillator circuit driven by an external crystal or ccramic 2-1)
resonator to supply clock signals to CPU blocks.
Program counter Gencrates addresscs for the instructions to be inscrted into the instruction qucuc. (2-3)
Normally incremented by sequencer indication, but may be set to branch destina-
tion address or ALU operation result when branch instructions or interrupts occur.
Instruction queue Stores up to 2 bytes of pre-fetched instructions. 2-2)
Instruction decoder Decodes the instruction queue, sequentially generates the control signals
needed for instruction execution, and executes the instruction by controlling
the blocks within the chip.
Instruction execution Controls CPU block operations in response to the result decoded by the
controller instruction decoder and interrupt requests.
ALU Executes arithmetic operations, logic operations, shift operations, and
calculates operand addresses for register relative indirect addressing mode.
Internal ROM,RAM Assigned to the execution program, data and stack region. (2-9)
Address register (An) Stores the addresses specitying memory for data transfer. Stores the base (2-3)
address for register relative indirect addressing mode.
Data register (Dn) Holds data for operations,. Two 8-bit registers can be connected to form
a 16-bit register.
Interrupt controller Detects interrupt requests from peripheral functions and requests CPU shift (2-5)
to interrupt processing.
Bus controller Controls connection of CPU internal bus and CPU external bus. Includes bus 2-9)

usage arbitration function.

Internal peripheral functions

Includes peripheral functions (timer, serial, A/D converter, D/A converter,

etc.). Peripheral functions vary with model.

This Materia

10 Block Diagram

Copyrighted By Its Respective Manufacturer

1-4 Addressing Modes

Chapter 1 - General Description

The MN101CO00 series supports the nine addressing modes shown below.
Register operations offer a choice of register direct and immediate
addressing modes. [MN101CO0O0 Series Instruction Manual]

Table 1-4-1 Addressing Mode Overview

Addressing mode

Effective address

Explanation

Register direct

Dn/DWn
An/SP
PSW

Directly specifies the register. Only internal
registers can be specified.

Immediate

imm3/imm4
imma&/imm1ieée

Direct operation on the operand or mask
value appended to the instruction code.

Register indirect (An) I15 - Ol I’Sepgeiggres the address using an address
(d8, Ar) 15 (o] Specifies the address using an address
4 L An+d8 1 register with 8-bit displacement.
15 o Specifies the address using an address
(d16, An) 1 An+dl16e 1 register with 8-bit displacement.
(d4, PC) |17 ey OIHI Specifies the address using the program
(branch instructions only) == counter with 4-bit displacement and H bit.
~1
I':zﬁ’:é?r relative (d7, PC) 17 oH Specifies the address using the program
(branch instructions only) L PCrdy M | - counter with 7-bit displacement and H bit.
(d11, PC) |17 o |H| Specifies the address using the program
PCodil i _bit di i
(branch instructions only) = - counter with 11-bit displacement and H bit.
(d12, PC) 17 oH Specifies the address using the program
h " 1 Perdiz N | counter with 12-bit displacement and H bit.
(branch instructions only) -1
(d186, PC) 17 oH Specifies the address using the program
(branch instructions only) 1 PC+d16 M | - counter with 16-bit displacement and H bit.
(d4, SP) |15 OI Specifies the address using the stack
’ SPxdd pointer with 4-bit displacement.
Stack relative (d8, SP) 15 [¢] Specifies the address using the stack
indirect ’ 1 SPids 1 pointer with 8-bit displacement.
a16. SP 15 (o] Specifies the address using the stack
(’) | | SPi+d16 1 pointer with 16-bit displacement.
yd o
(abs8)
(abs12) 11 [o] Specifies the address using the operand
value appended to the instruction code.
Absolute 15 o Optimum operand length can be used to
(abs16) I =bs16 1 specify the address.
17 oOH
(abs18)
(branch instructions only) L abs18 11 -9
RAM short (abs8) z S o Specifies an 8-bit offset from the address
shor X'00000".
. 15 o] Specifies an 8-bit offset from the top
17O sh = N - "
short (i08) 1 1I0TOP+io8 1 address of the special function register area.
Reuses the last memory address accessed
Handy (HA) S and is only available with the MOV and

MOVW instructions. Combined use with
absolute addressing reduces code size.

This Materia

Copyrighted By Its Respective

Manuf act ur er

*1 H: half-byte bit

Addressing Modes 11

Chapter 1 - General Description

1-5 List of Instructions

The MN101CO0O0 series provides 37 assembler instructions, shown below.

Table 1-5-1 List of Instructions

Type Mnemonic Description

Data transfer MOV Transfer 8-bit data between register and memory
MOVW Transfer 16-bit data between register and memory
PUSH Save register contents onto stack
POP Restore register contents from stack
EXT Sign-extend data

Arithmetic ADD Add (8-bit)

operations ADDC Add with carry
ADDW Add (16-bit)
ADDUW Add with zero extension (16-bit)
ADDSW Add with sign extension (16-bit)
SUB Subtract (8-birt)
SUBRC Subtract with borrow
SUBW Subtract (16-bit)
MULU Unsigned multiplication
DIVU Unsigned division
CMP Compare (8-bit)
CMPW Compare (16-bit)

Logical AND Logical AND

operations OR Logical OR
XOR Exclusive logical OR
NOT Not (one's complement)
ASR Arithmetic shift right
I.SR Iogical shift right
ROR Right rotate

Bit manipulation | BSET Bil test and sel (byle processing)
BCLR Bit test and clear (byte processing)
BTST Bit test

Program Bee Conditional branch (PC relative)

branching CBcc Compare and conditional branch (PC relative)
TBcc Bit test and conditional branch (PC rclative)
JMP Unconditional branch (absolute, register indirect)
JSR Branch o subroutine (absolute, register indirect)
JSRV Branch to subroutine (vector table indirect)
NOP No opcration
RTS Return from subroutine
RTI Return from maskable interrupt

Control operations REP Repeat

12 List of Instructions

This Material Copyrighted By Its Respective Manufacturer

Chapter 2 - Basic CPU Functions

This Material Copyrighted By Its Respective Manufacturer

Chapter 2 - Basic CPU Functions

2-1 Clock Generator and Machine Clock

2-1-1 Clock generator

The MN101COO series has two internal oscillator circuits, one for a high-
speed clock (OSCI, OSCO) and one for a low-speed clock (Xi, XO). An
oscillator and capacitor are connected externally. A crystal or ceramic
oscillator (max. 20 MHz) is connected between OSCI and OSCO, and a
ceramic oscillator, typically of 32 kHz is connected between Xl and XO.

Either of these clocks can be programmed as the machine clock (the basic CPU
clock). The machine clock is divided by two. If the low-speed clock is selected, it is
also possible to stop operation of the high-speed oscillation circuit to reduce power
dissipation. If the CPU is switched to STOP mode to reduce power dissipation,
operation of both oscillation circuits is also stopped.

E‘—| }T[oscl
High-speed

oscillation I:l
OSCO

MN101C00 seties

The connection shown is a

self-excited oscillation design. j—| }TE Xl

Low-speed
If an external clock is to be oscillation |:|

used as the microcomputer j_| }L[XO

system clock, use an external-

excited oscillator. In this case,
the external clock is input
through the OSCI pin, and the
OSCO pin is open (or,

Fig. 2-1-1 Oscillator Circuit Connection (self-excited oscillation)

alternatively, input through the
Xl pin and the XO pin is open).

To minimize distortion, mount the crystal and capacitor as close
as possible to the pins.

Also connect the Vss pin to a thick ground line with the shortest
possible distance.

14 Clock Generator and Machine Clock

This Material Copyrighted By Its Respective Manufacturer

Chapter 2 - Basic CPU Functions

2-1-2 Machine clock

Source oscillation is divided by two to form system clock. Machine clock is
generated by the system clock. CPU control and execution uses this
machine clock for basic timing.

The machine clock consists of a two-phasc (T1 and T2) clock.

W During external memory access (no wait)

OSCO (source oscillation) _I_l_,_l_l_l_l_l_l_l_,_l_l_l_
! \ \
System clock —I ' | | |

| |
S e B | | | —
| |

1 machine clock
(1 bus cycle)

Fig. 2-1-2 Machine Clock with No Wait Cycle

W During external memory access (0, 1, 2, or 3 waits)

OSCO (source oscillation) _I_l_l_l_l_l_,_l_,_|_,_|_,_|_

System clockJ ! | !

T1 (1 wait cycle) J

L

T1 (2 wait cycles) J ‘

T1 (3 wait cycles) J | 3

L

~-No wait cycle)-‘:
1 machine clock 1 waitcycle W=
(1 bus cycle) 42 wait cycle3*¢—%—h

4—3 wait cycles—————————————p

Fig. 2-1-3 Machine Clock with Memory Wait Cycles

At reset start, memory access is set to fixed wait mode with three
wait cycles.

Clock Generator and Machine Clock 15

This Material Copyrighted By Its Respective Manufacturer

Chapter 2 - Basic CPU Functions

2-2 Instruction Execution Controller

2-2-1 Configuration

The instruction execution controller consists of four blocks: memory,
instruction queue, instruction registers, and instruction decoder.

Instructions are fetched in 1l-byte units, and temporarily stored in the 2-byte
instruction queue. Transfer is made in 1-byte or half-byte units from the instruction
queue to the instruction register to be decoded by the instruction decoder.

7 0

T T~

Memory

15 0
Instruction queue |

1 byte or a half byte

Instruction register

Instruction decoder ' Instruction decoding

CPU control signals

Fig. 2-2-1 Instruction Execution Controller Configuration

16 Instruction Execution Controller

This Material Copyrighted By Its Respective Manufacturer

2-3 Internal Registers

2-3-1 Address registers

Address registers include the 19-bit program counter (PC), address registers (An),
and stack pointer (SP).

Program address specification

18 0
‘ PC ‘ Program
counter
15 [o]
| Ao |
Address
15 0 registers
| At |
\ |
Operand address specification
15 Stack
SP pointer

Stack address specification

Fig. 2-3-1 Address Register Configuration

B Program Counter (PC)

This register gives the address of the currently exccuting instruction. It is 19 bits
wide to provide access to a 256-kilobytc address space in 4-bit increments. The
program's instruction code can use the full linear 256-kilobyte address space, but
data must be located within the first 64 kilobytes. A jump subroutine instruction
(JSR) pushes these 19 bits into three bytes on the stack for use as the return address.

B Address Registers (A0, A1)

These registers are used as address pointers specifying data locations in memory.
They support only the operations involved in address calculations (i.e., addition,
subtraction, and comparison). Transfers between these registers and memory are
always in 16-bit units. These transfers do not require that the memory address be

aligned on an even-numbered boundary.

B Stack Pointer (SP)
This register gives the address of the byte at the top of the stack. It is decremented

during push operations and incremented during pop operations.

This Material Copyrighted By Its Respective Manufacturer

Chapter 2 - Basic CPU Functions

MN101C00 device registers
are divided into CPU core
internal registers and special
registers for control. Internal
registers include address
registers, operation registers
and processor status word
(PSW).

The contents of An and SP are
undefined at reset start. Please
initialize them with the initiali-
zation program.

Internal Registers 17

Chapter 2 - Basic CPU Functions

Dn is undefined at reset start.
You must initialize these
values.

* 8-bit transfer

Transfer source 8-bit data

7
=

» 16-bit transfer

2-3-2 Operation registers

Operation registers include four 8-bit data registers (Dn).

7 (Y
| Do |
7 0 DWO
Data ‘ D1 ‘ -
registers| 7 [
| Dz |
7 o | DWi
L D3 |

Fig. 2-3-2 Operation Register Configuration

M Data Registers (DO to D3)

Data registers DO to D3 are 8-bit general-purpose registers that support all
arithmetic, logical and shift operations. All registers can be used for data transfers

with memory.

The [our data registers may be paired to form the 16-bit data registers DWO
(DO+D1) and DW1 (D2+4D3).

Data register (Dn)

—— [ws \

Transfer source 16--bit data Data register (DWn)

7
‘MSB‘ n+1

07
HMSB‘ n —_— ‘qu Dn+1 HMSB‘ Dn

18 Internal Registers

This Material Copyrighted By Its Respective Manufacturer

2-3-3 Processor status word

The processor status word (PSW) is an 8-bit register that stores flags for the
state of the CPU interrupt control circuit, operation results and other data.

Four tlags (VF, NF, CF, and ZF) reflect an operation's result and are reset to '0'

upon reset. They can be used with the Bec command in programs. Two kinds of
tlags (IM1, IMO, and MIE) are used for controlling interrupts.

resel o '00" and MIE is reset (o '0" upon reset.

IM1 and IMO are

The PSW is automatically pushed onto the stack when an interrupt occurs and is

automatically popped when the interrupt service routine returns.

Chapter 2 - Basic CPU Functions

7 6 5 4 3 2 1 o]
PSW E— IME IMA1 IMO VF NF CF ZF
At reset 0 0 0 0 0 0 0 0

ZF Zero flag
0 Operation results are not all '0'
1 All operation results are '0'

CF Carry flag

0 A carry or a borrow from MSB

did not occur
1 A carry or a borrow from MSB
occured

NF Negative flag
0 MSB of operation results is '0'
1 MSB of operation results is ‘1"

VF Overflow flag
0 Overflow did not occur
1 Overflow occured

IM1 to O] Interrupt mask level
Controls maskable interrupt acceptance
MIE Maskable interrupt enable
Reserved 0 All maskable interrupts disabled

(Always '0". '1' is ignored if it is written.)

Fig. 2-3-3 Processor Status Word Configuration

This Material Copyrighted By Its Respective Manufacturer

Enables (xxxLVn,xxxIE) for each
interrupt

Internal Registers

Chapter 2 - Basic CPU Functions

B Zero Flag (ZF)
The zero flag (ZF) is sct when all the bits in the operation result arc '0'. Otherwisc,

the zero flag is cleared.

W Carry Flag (CF)
The carry flag (CF) is set when a carry from or a borrow to the MSB occurs. The

carry flag is cleared when no carry or borrow occurs.

B Negative Flag (NF)
The negative flag (NI7) is set when the MSB is 'l' and reset when the MSB is '0'.

The negative flag is used to handle a signed value.

W Overflow Flag (VF)
The overflow flag (VF) is set when the arithmetic operation results as a signed
value. Otherwise, the overflow flag is cleared.

The overflow flag is used to handle a signed value.

M Interrupt Mask Level (IM1 and IMO)

The interrupt mask level (IM1 and IMO) controls the maskable interrupt acceptance
in accordance with the interrupt factor interrupt priority for the interrupt control
circuit in the CPU. The two-bit control flag defines levels '0' (00) to '3' (11). Level
0 is the highest mask level. The interrupt will be accepted only when the level set in
the interrupt level flag (xxxI.Vn) of the interrupt control register (ICRn) is higher
than the interrupt mask level. When the interrupt is accepted, the level is resct to
IM1-IMO, and interrupts whosc mask levels arc the same or lower arc rejected

during the accepted interrupt processing.

Table 2-3-1 Interrupt Mask Level and Interrupt Acceptance

Inlt“(3|r1rupt maskl:\(z\éel Acceptable interrupt levels Priority
0 0 Non-maskable interrupt (NMI) only High
0 1 Level O, NMI
1 0 Levels O to 1, NMI f
1 1 Levels 0 to 2, NMI Low

B Maskable interrupt enable (MIE)

The maskable interrupt enable flag (MIE) enables/disables acceptance of maskable
interrupts by the CPU's internal interrupt acceptance circuit. A 'l' enables maskable
interrupts; a '0" disables all maskable interrupts regardless of the interrupt mask level
(IM1-IMO) setting in the PSW.

This [lag is not changed by interrupts.

20 Internal Registers

This Material Copyrighted By Its Respective Manufacturer

Chapter 2 - Basic CPU Functions

2-4 Special Function Registers

The MN101CO00 series locates the peripheral circuit registers in memory
space (X'03F00' to X'O3FFF') with memory-mapped 1/0. Special function
registers control these peripheral circuits and the CPU.

Table 2-4-1 List of Special Function Registers

Address Symbol R/W Name
X3Foo' CPUM R/W * CPU mode control registery(r==2-6-2) * Some bits are read only.
X3FOo1' MEMCTR R/W Memory control registery(v= 2-10-2)
X'3F02'
to Depends on specific chip.
X'3FDF'
X'3FEQ Reserved (for debugger)
Non-maskable interrupt register
X'3FE1’ NMICR RW
(==2-5-2)
X'3FEZ Maskable interrupt register
to xxxICR R/W
X'3FFE’ (ra-5-2)
x'3FFF Reserved (used by hardware to read the interrupt vector data)

Special Registers 21

This Material Copyrighted By Its Respective Manufacturer

Chapter 2 - Basic CPU Functions

2-5 Interrupt Controller

2-5-1 Outline

The MN101CO0O series speeds up interrupt response by adopting the
interrupt vector approach of branching to an interrupt service routine. The
interrupt vector table can have up to 32 entries. In addition to the reset and
non-maskable interrupts, there can be up to 29 peripheral interrupts. Vector
31 is reserved for use by an in-circuit emulator.

Table 2-5-1 Interrupt Controller Overview
Vector | Table)
Interrupt type number| address Interrupt level Interrupt factor Operation generated
Reset (interrupt) , , R ST nin i : :
(=27 Reset Function) 0 X'04000 _ External RST pin input Direct input to CPU core
- External NMIRQ pin
input Input to CPU core from
Non-maskable)
)) _ - kabl
interrupt 1 X'04004 - CPU run-away non-mas a. © Interrupt
L control register (NMICR)
detection interrupt
- External pin input Input to CPU core of
2 X'04008' Can be set to levels | - Internal peripheral interrupt request level set in
Maskable interupt to to 0 to 2 by software function (timer, serial, | interrupt level flag (xxxL Vn)
30 X'0407F etc.) of maskable interrupt
control register (xxxICR)

22 Interrupt Controller

This Materia

The IVBM flag in the MEMCTR register permits changing the starting address for
the interrupt vector table to X'00100' in the internal RAM region.

Copyrighted By Its Respective Manufacturer

Chapter 2 - Basic CPU Functions

Accept operation

Starting address

Machine cycles
until accepted

PSW status after acceptance

Always accepts

Always accepts

Acceptance determined by
interrupt control of interrupt mask
level (IMn) in the processor status
word (PSW) and interrupt control
register (xxxICRn)

Address
specified by
vector address

12 All flags are cleared to "0"

Interrupt mask level of the PSW
12 ; o

is cleared to "0

The interrupt level (IL=xxxLV1-

xxxLVO) for the interrupt is copied
1o to the interrupt mask (IM=IM1-IMO)

in the processor status word
(PSW).
(==2-5-6 Multiplex Interrupt Enabled)

Note: The maskable interrupt enable flag (MIE) is not changed by interrupts.

Interrupt Controller 23

This Material Copyrighted By Its Respective Manufacturer

Thi s

Chapter 2 - Basic CPU Functions

24

Mat eri al

PSW
6 5 4 3 10
L[[eee] [[[|
Level
deter- —D—> Interrupt
mined
CPU core
AM4 TRQLVL 4
2.0 IRQNMI
VECTOR 1
e A
1 < :
1
1
1
1 7 6 5 4 2 |1 o 1
' | [[
1
1
: A 1
: 1 NMIRQ
' .
1
1
' ! WDOG
1
' — |
VECTOR 2

DEC

7 6 S 4 3 2 1 o0
xxxIRCL | xxxLLV1- 0 |/]XXXIEIXXXIR|
J

Peripheral
1 function
xxxLV : Interrupt Level

xxxIE : Intertupt Enable
xxxIR : Interrupt Request

7 (4] S 4 3

1 0

|xxxIEIxxxIR|

DEC

Interrupt Controller

Fig. 2-5-1

Interrupt Controller Configuration

Copyrighted By Its Respective Manufacturer

Peripheral
1 function
xxxLV : Interrupt Level

xxxIE : Intcrrupt Enablc
xxxIR : Interrupt Request

Chapter 2 - Basic CPU Functions

H Setting Interrupt Groups and Masking Levels

The MN10COO series permits up to four interrupt factors per interrupt group. While
the number of interrupt groups and details of allocation of interrupt factors to each
group varies with the product used, the user can program the interrupt level for all

groups except vector O (reset) and vector 1 (reserved for non-maskable interrupt). With the exception of vectors 0

There are three hierarchical interrupt levels. If multiple interrupts have the same and 1, each interrupt has a
priority, the one with the lowest vector number takes priority. For example, il a maskable interrupt control
register (xxxICR) which cont-

vector 3 set to level 1 and a vector 4 set to level 2 request interrupts simultaneously, .
rols the interrupts.

vector 3 will be accepted.

| Vector 1 (Non-maskable interrupt) | Priority If multiple interrupts have the
1 Veclor 1 same priority, the one with the
% Level 0 | Vediors 2, 5, 6 | 2 Veclor 2 lowest vector number takes
é, 3 Veclor 5 precedence.
S
£ Level 1 | Vector 3 | 4 Vector 6
°
5 5 Vector 3
é‘ Level 2 | Vectors 4, 8 | 6 Vector 4
D
= 7 Vector 8

Fig. 2-5-2 Interrupt Priority Outline

B Determination of Interrupt Acceptance

A maskablec interrupt is accepted if the maskable interrupt cnable flag (MIE) in the
processor status word (PSW) is 'l', the interrupt enable flag (xxxIE) in the
corresponding interrupt control register (xxxICR) is 'l', and the interrupt level
(xxxLV1-—=xxxILVO0) in the interrupt control register (xxxICR) for the interrupt is
lower than the interrupt mask level (IM1-IMO) in the processor status word (PSW).
The interrupt mask level (IMO-IM1) is updated to the interrupt level
(xxxLV1-xxxLLVO0), and the interrupt reset [lag (xxxICR) is reset 1o '0". Reset input
and non-maskable interrupts are always accepted, regardless of mask level or the
MIE flag setting.

Interrupt Controller 25

This Material Copyrighted By Its Respective Manufacturer

Chapter 2 - Basic CPU Functions

H Interrupt Processing Sequence

For interrupts other than reset, the interrupt processing sequence consists of
interrupt request, interrupt acceptance, and hardware processing. After the interrupt
is accepted, the program counter (PC) and processor status word (PSW) are saved
onto the stack, the interrupt mask (IM1-IMO) and interrupt request (xxxIR) flags are
updated, and execution branches to the address specified by the corresponding

interrupt vector.

‘When the interrupt service routine returns, the hardware restores saved register

value.

®)
Interrupt service routine
Main program Interrupt
request (xxxIR)
flag cleared
at head

@
Hardware processing
Save up PC, PSW, etc.

e}
Interrupt /\/

Max. 12 machine cydes

11 machine cycles

4

(5)
Hardware processing

Restart Restore PSW, PC up, elc.

Fig. 2-5-3 Interrupt Processing Sequence (maskable interrupts)

26 Interrupt Controller

This Material Copyrighted By Its Respective Manufacturer

2-5-2

Interrupt control registers

The interrupt control registers include the maskable interrupt control
registers (xxxICR) and the non-maskable interrupt control register (NMICR).

H Maskable Interrupt Control Register (xxxICR)

A maskable interrupt control register (xxxICR) controls the interrupts for each

maskable interrupt group (but not group 0). The register consists of the interrupt

level field (xxxLV1-xxxI.VO0), interrupt enable flag (xxxIE), and interrupt request
[Mag (xxxIIR).

xxxICR ‘ xxxLV1 ‘ xxxLVO ‘ ‘

xxxIE ‘ xxxIR ‘

At reset: 0 0

This Materi al

Interrupt level

This 2-bit field determines the interrupt

level (O to 3) for the interrupt group.

Interrupt enable flag

0 0

Interrupt request flag
A '1'in this bit indicates an interrupt request.
It is cleared to '0" by the interrupt acceptance.

A 1" in this bit enables interrupts for the group.
Tf the interrupt request flag (xxxTR) is '1", changing this bit from '0' to "1’
sends an immediate interrupt request to the CPU.

Fig. 2-5-4 Maskable Interrupt Control Register (xxxICR)

Copyrighted By Its Respective Manufacturer

Chapter 2 - Basic CPU Functions

xxxICR can be labelled (for
instance as TMICR for a time
function) to clarify its relation to
peripheral functions.

An interrupt level (xxxL V0—
xxxLV1) of '11" (level 3)
disables interrupts for the
group regardless of interrupt
enable and interrupt request
flags.

For interrupt factors which are
critical or have short permis-
sible processing times, set the
interrupt (xxxLV1—
xxxLV0) to a high level (small
value).

level

Always reset the maskable
interrupt enable flag (MIE) to
"0" before manipulating the
contents of a maskable
inferrupt control register.

The initialization routine or
other software manipulating
the interrupt request flag
(xxxIR) must first set the IR
write enable flag (IRWE) in the
memory control register
(MEMCTR) to "1" and reset the
flag to "0" after the operation.

Interrupt Controller

27

Chapter 2 - Basic CPU Functions

Table 2-5-2 Interrupt Mask Levels and Interrupt Levels

Interrupt mask level Acceptable interrupt level Priority
(PSW)
0 Non-maskable interrupt (NMI) only High
1 Level 0, NMI T
2 Levels Oor 1, NMI
‘ 3 Levels Oto 2, NMI Low

B Non-Maskable Interrupt Control Register (NMICR address: X'3FE1")

The non-maskable interrupt
The non-maskable interrupt control register (NMICR) is assigned to vector 1. Bits

specifications vary with the
specific product. See the
specifications for the particular Such interrupt requests arc accepted regardless of the interrupt mask level (IM1-

product IMO) setting in the PSW. The hardware then branches to the address stored at

in this register indicate the interrupt factors for non-maskable interrupt requests.

location X'4004' in the interrupt vector table.

7 0
NMICR‘—‘ ‘7‘7‘PIR‘WDIH‘NMIH‘
At reset: X X X X X _0 0 0
NMIR External non-maskable interrupt request
0 No interrupt request
1 Interrupt request generated
WDIR Watchdog interrupt request
0 No interrupt request
1 Interrupt request generated
PIR Program interupt request
0 No interrupt request
1 Interrupt request generated
Fig. 2-5-5 Non-Maskable Interrupt Control Register (NMICR)
H External Non-Maskable Interrupt Request Flag (NMIR)
‘ The external non-maskable interrupt request tlag is set to 'l' when a negative edge
= (minimum pulsewidth 4 cycles) is detected by the external NMIRQ pin.

The external non-maskable

interrupt request (NMIR) and B Watchdog Timer Overflow Interrupt Request Flag (WDIR)

watchhdog timer overflow inter- The watchdog timer overtlow interrupt request tlag is set to 'l' when the watchdog
rupt request (WDIR) flags are timer overflows.

preserved after the interrupts

are accepted. Use the non- MW Program Interrupt Request Flag (PIR)

maskable interrupt processing

The program interrupt r st flag is set to '1' by software.
program to clear these flags. 1€ program Interrupt reque ag cL 1o y soltware

28 Interrupt Controller

This Material Copyrighted By Its Respective Manufacturer

2-5-3 Interrupt level

The interrupt level can be set for each interrupt group. Maskable interrupt
requests may be accepted or not depending on the states of the maskable
interrupt enable flag (MIE) and the interrupt mask level (IM1, IMO) in the
processor status word (PSW) and the interrupt enable flag (xxxIE) in the
maskable interrupt control register (xxxICR).

Current interrupt mask level (IMn)

7 0
PSW ‘ ‘MIE IM1|IM VF‘NF‘CF‘ ZF‘

o

S~ 7
o ///
-

Le\;\e\l determined. Accepted if ILVn<IMn

~ ~.
// \\

7 0
XXXICR [xooL Vool Vi ‘ ‘ ‘ ‘xxxIE‘xxxIR‘

Generated interrupt level (xxxLVn)

Fig. 2-5-6 Interrupt Acceptance Determination

The sequence from interrupt request generation to acceptance is described below.

(1) When an interrupt request is generated, the interrupt request flag (xxxICR) in

the corresponding maskable interrupt control register (xxxICR) is set to '1".

(2) If the interrupt enable flag (xxxIE) in the same register is 'l', the interrupt

request is output to the CPU.

(3) The level sct in the interrupt level field (xxxLLV1—=xxxL.VO0) for the group is
output to the CPU.

(4) II the output interrupt request signal has a level lower than the processor status
word (PSW) interrupt mask level (IM1, 0), and the PSW maskable interrupt
enable flag (MIE) is 'l' (enabled), the interrupt is accepted.

(5) When the hardware accepts the interrupt, it resets the corresponding interrupt

request flag (xxxIR) to "0."

This Material Copyrighted By Its Respective Manufacturer

Chapter 2 - Basic CPU Functions

Q

Acceptance of an interrupt does
not reset the corresponding
interrupt enable flag (xxxIE) to
g

Interrupt Controller 29

Chapter 2 - Basic CPU Functions

If interrupts of the same level MIE='0" and interrupts are disabled when:

are generated at the same « MIE in the PSW is reset to '0' by a program
time, priority is given to the

interrupt with the lower vector * Reset is detected

number. MIE="1" and interrupts are enabled when:

* MIE in the PSW is set to 'l' by a program

‘The value of the interrupt mask level changes when:
* The program writes a new value to IM1, O in the PSW
« Reset is detected. In this case, IM 1=IMO="00'

* A maskable interrupt is accepted, and its interrupt level becomes the interrupt

mask level

‘ + The RTT instruction is executed at the end of an interrupt service routine, and the
Ll
mask level from before interrupt acceptance is restored

The MN101CO00 series does
not reset the maskable
interrupt enable flag (MIE) flag
in the processor status word
(PSW) to "0" when accepting If maskable and non-maskable interrupts are generated
interrupts. Note that this simultaneously, the non-maskable interrupt has priority.

behavior is different from that
of the MN10200, MN1860,
MN 1870, and MN1880 series.

30 Interrupt Controller

This Material Copyrighted By Its Respective Manufacturer

Figure 2-5-7 shows the processing flow when a second interrupt with a lower
priority level (xxxLLV1-—xxxI.LVO='10") arrives during the processing of one with a
higher priority level (xxxL.V1-xxxI.VO="00").

coarme —=(___ Rost)

IMO,1="00")

| Set MIE |

[om0t]

Interrupt 1 generated —z» | Accepted because IL<IM and MIE="1"
(xxxLV1,0='00")

(M1,0=00) — |Inlerrupl acceptance cycle|

Clnterrupt service routine: 1)

X Interrupt 2 generated
(xxxLV1,0="10")

2 RTI —=— (m1,0=117)

(IM1,0="10") — [Interrupt acceptance cycle]

Gnterrupt service routine: 2)

Interrupt generated —z-#= | Not accepted because IM=IL
(xxxLV1,0="11")

\

Fig. 2-5-7 Processing Sequence for Maskable Interrupts

This Material Copyrighted By Its Respective Manufacturer

RTI —~a— (IM1,0="11Y)

Chapter 2 - Basic CPU Functions

Parentheses () indicate
hardware processing.

(1)

If, during the processing of the
first interrupt, an interrupt
request with an interrupt level
(IL) numerically lower than the
inferrupt mask (IM) arrives, it is
accepted as a nested inferrupt.
If ILAUIM, however, the inter-
rupt is not accepted.

(2)

The second interrupt, postpon-
ed because its interrupt level
(IL) was numerically greater
than the interrupt mask (IM) for
the first interrupt service
routine, is accepted when the
first interrupt handler returns.

Interrupt Controller 31

Chapter 2 - Basic CPU Functions

2-5-4 Interrupt acceptance operation

When accepting an interrupt, the MN101C00 hardware saves the handy
address register, the return address from the program counter, and the
processor status word (PSW) to the stack and branches to the interrupt
handler using the starting address in the vector table.

The following is the hardware processing scquence invoked by interrupt acceptance.

1. The stack pointer (SP) is updated.
(SP-6 — SP)

The handy address register is 2. The contents of the handy address register (HA) are saved to the stack.

an internal register used by the Upper half of ITA — (SP+5)

handy addressing function. The Lower half of HA —> (SP+4)

hardware saves its contents fo

the stack to prevent the 3. The contents of the program counter (PC)—i.e., the return address—are saved

interrupt from interfering with

; , to the stack.
operaltion of the function.

PC bits 18, 17, and 0 —> (SP+3)
PC bits 16-9 —> (SP+2)
PC bits 81 —> (SP+1)

4. The contents of the PSW are saved to the stack.
PSW — (SP)

5. The interrupt level (xxxI.Vn) for the interrupt is copied to the interrupt mask
(IM) in the PSW.
Interrupt level (xxxLVn) — IM

6. The hardware branches to the address in the vector table.

NS

New SP ———» PSW Lower
(after interrupt pCS 1
acceptance)
PC16 -9
PCO ///// PC 18,17 Address
HA7-0 l
HA15-8
OdSP— Higher
(before interrupt
acceptance) /,_/

Fig. 2-5-8 Stack Operation during Interrupt Acceptance

32 Interrupt Controller

This Material Copyrighted By Its Respective Manufacturer

Chapter 2 - Basic CPU Functions

2-5-5 Interrupt return operation

An interrupt handler ends by restoring, using the POP instruction and other means,
the contents ol any registers used during processing and then executing the return
[rom interrupt (RTI) instruction to return to the point at which execution was

interrupted.
The following is the processing sequence invoked by the RTT instruction.
1. The contents of the PSW are restored from the stack. (SP)

2. The contents of the program counter (PC)—i.e., the return address—are
restored from the stack. (SP+1 to SP+3)

3. The contents of the handy address register (HA) are restored from the stack.
(SP+4, SP+5)

4. The stack pointer is updated. (SP+6 —SP)

5. Execution branches to the address in the program counter.

Interrupt Controller 33

This Material Copyrighted By Its Respective Manufacturer

This Materia

Chapter 2 - Basic CPU Functions

It is possible to forcibly rewrite
IM to accept an interrupt with a
priority lower than the interrupt
being processed, but be
careful of stack overflow.

2-5-6 Multiplex interrupt enable

When an MN101CO00 series device accepts an interrupt, it automatically
disables acceptance of subsequent interrupts with the same or lower priority
level.

‘When the hardware accepts an interrupt, it copies the interrupt level (xxxL.Vn) for
the interrupt to the interrupt mask (IM) in the PSW. As a result, subsequent
interrupts with the same or lower priority levels are automatically masked. Only
interrupts with higher priority levels are accepted. The net result is that interrupts
are normally processed in decreasing order of priority. It is, however, possible to

alter this arrangement.

1. To disable interrupt nesting
* Reset the MIL bit in the PSW to "0."”
* Raise the priority level of the interrupt mask (IM) in the PSW.

2. To enable interrupts with lower priority than the currently accepted interrupt
« [Lower the priority level of the interrupt mask (IM) in the PSW.

Do not operate the maskable
interrupt control register
(xxxICR) when multiple inter-
rupts are enabled. If operation
is necessary, first clear the
PSW MIE flag.

34 Interrupt Controller

Multiplex interrupts are only enabled for interrupts with levels
higher than the PSW interrupt mask level (IM).

Copyrighted By Its Respective Manufacturer

Chapter 2 - Basic CPU Functions

Figure 2-5-10 shows the processing flow for multiple interrupts (interrupt 1:
xxxL.V1-xxxI.VO="10', and interrupt 2: xxxLV 1-xxxI.V0='00").

(Main program)

| mio=1t]

Interrupt 1 generated —z» Accepted because xxxLV1,0<IM

(xxxLV1,0="10")

(IM1,0="10") — |Inlerrupl acceptance cycle|

Parentheses () indicate
hardware processing.

(Interrupt service routine: 1)

Interrupt 2 generated —z»
(xxxLV1,0="00")

Accepted because xxxLV1,0<IM

(IM1,0="00"

Restart interrupt processing program 1

) — |Inlerrupl acceplance cycle|

C Interrupt service routine: 2)

RTI =— (mM1,0-10')

RTI —=— (m1,0-11")

Fig. 2-5-10 Processing Sequence with Multiple Interrupts Enabled

Interrupt Controller 35

This Material Copyrighted By Its Respective Manufacturer

Chapter 2 - Basic CPU Functions

Reset

Sample programs for programs
1 to 5 are shown later in this
chapter.

36 Standby Function

This Material Copyrighted By

2-6 Standby Function

2-6-1 Outline

The MN101CO00 series has two sets of system clock oscillator pins (high-
speed and low-speed oscillation), two CPU operation modes (NORMAL and
SLOW), and two standby modes (HALT and STOP). Effective use of these
modes can reduce power dissipation.

CPU operation mode STANDBY mode
Interrupt S —
STOPO
NORMAL mode OSC: Halt
Program 5 EXlHat J
NORMAL
OSC: Oscillation 4 \
XI: Oscillation
Interrupt
£ HALT 0 E
E OSC: Oscillationg]
£ X| Oscillation 3
Program 4
Program 3
STOP mode
ldle state
QOSC: Oscillation
Xl: Oscillation
Program1
HALT mode
Program 2
Interrupt = =
STOP1 =
OSC: Halt =
SLOW XI: Halt =
OSC: Halt Program &
XI: Oscillation \ /
Interrupt r]
CTHALT 1 J
SLOW mode E OSC: Oscillation]
£ XI: Oscillation 3
Program 4

:CPU half == Wait period for oscillation stabilization is inserted OSC: High-speed oscillation clock
Xl: Low-speed oscillation clock (32kHz)

= Some products have only one system clock oscillation circuit, so do not support the HALTT,
SLOW, and STOP1 modes.

» Some products have a pin that permits selection of the initial mode affer a reset. Others do
not offer this choice.

Fig. 2-6-1 Transition Between Operation Modes

Its Respective Manufacturer

Chapter 2 - Basic CPU Functions

B HALT Modes (HALTO, HALT1)

* The CPU stops operating, but the oscillators remain operational. An interrupt
produces an immediate return to the CPU's operational state.

« In the HALTO mode, both the high- and low-speed oscillators remain operational.
An interrupt produces a return to the NORMAL mode.

B STOP Modes (STOPO, STOP1)

« The CPU and the oscillators stop operating. An interrupt restarts the oscillators.
The CPU restarts after allowing time for the oscillators to stabilize.

¢ From the STOPO mode, an interrupt returns the CPU to the NORMAI. mode.

¢ From the STOPI mode, an interrupt returns the CPU to the SLOW mode.

B SLOW Mode
« This mode executes the software using the low-speed clock. Since the high-speed
oscillator is turned off, the device consumes less power while exccuting the

softwarc.

B IDLE Mode
* This mode allows time for the high-speed oscillator to stabilize when the software
is changing from SLOW to NORMAL modec.

T'o reduce power dissipation in STOP and HAL'T' modes, it is necessary to check
both the output current from pins and port level of input pins. For output pins, the
output level should match the external level or direction control should be changed
to input mode. For input pins, the external level should be fixed.

The MIN101COO series has two system clock oscillation circuits. OSCI is for high-

speed operation (NORMAL mode) and XI is for low-speed operation (SLOW

mode). Transition between NORMAL and SLOW modes or to standby mode is

controlled by the CPU mode control register (CPUM). Reset and interrupts are the

return factors from standby mode. A wait period is inserted for oscillation CPUM - X'3F00" B/W
stabilization at reset and when returning [rom STOP mode, but not when returning [=2-7 Reset Function]
from HALT mode. High/low-speed oscillation mode is automatically returned to the

same state as existed before entering standby mode.

To stabilize the synchronization at the moment of switching clock speed between
high-speed and low-speed, high-speed oscillation frequency (fosc) should be set to

2.5 times or higher frequency than the low-speed oscillation frequency (£x).

Standby Function 37

This Material Copyrighted By Its Respective Manufacturer

Chapter 2 - Basic CPU Functions

2-6-2 CPU mode control register

CPUM: X'3F00" R/ W Transition to other modes is controlled by operating the related flags in the

CPU mode control register (CPUM).

7 0
CPUM ‘ 0 ‘ 0 ‘ 0 ‘ —_— ‘STOP‘ HALT‘ OSC1‘OSCO‘
Use MOV instruction to write At reset: 0 0 0 0 0
data in the CPUM register. 4
This bit must always be '0"
l l Status
©Operalion | sTop | HALT | 0sC1 | 0sCo ool | xuxo Sg'litf;’ CPU
NORMAL 0 0 0 0 Oscillation|Oscillation| OSCI Operating
IDLE 0 0 0 1 Oscillation|Oscillation Xl Operating
SLOW 0 0 1 1 Halt |Oscillation Xl Operating
HALTO 0 1 0 0 Oscillation|Oscillation| OSCI Halt
HALTH 0 1 1 1 Halt |Oscillation Xl Halt
STOPO 1 0 0 0 Halt Halt Halt Halt
STOP1 1 0 1 1 Halt Halt Halt Halt

Fig. 2-6-2 Operation Mode Control and Clock Oscillation On/Off

The procedure for transition from NORMAL to HALT or STOP mode is given

below.

(1) If the return factor is a maskable interrupt, set the MIE tlag in the PSW to "1"

and set the interrupt mask (IM) to a level permitting acceptance ol the interrupt.

(2) Clear the interrupt request flag (xxxIR) in the maskable interrupt control

register (xxxICR) , sct the interrupt cnable flag (xxxIE) for the return factor,

and set the IE flag in the PSW.

(3) Set CPUM to HALT or STOP mode.

38 Standby Function

This Material Copyrighted By Its Respective Manufacturer

2-6-3 Transition between SLOW and NORMAL

The MN101CO00 series has two CPU operating modes, NORMAL and
SLOW. Transition from SLOW to NORMAL requires passing through an idle

state.

A sample program for transition from NORMAL to SLOW modc is given below.

Transition from NORMAL to SLOW mode, when the low-speed clock has tully

Program 1 ex.1l)
MOV
MOV

cx.2)
BSET
BSET

x'3', DO ; set SLOW mode
DO, (CPUM)

(CPUM)0
(CPUM)L

stabilized, can be done by writing to the CPU mode control register. In this case,

transition through the idle state is not needed.

For transition from the SLOW to NORMAL mode, the program must maintain the

idle state until high-speed clock oscillation is fully stable.

Even though the same length of wait time is needed to stabilize
@ oscillation at reset, timing count must be controlled by the

program in this case.
We recommend selecting the oscillation stabilization interval
after consulting with the oscillator manufacturer.

This Material Copyrighted By Its Respective Manufacturer

Chapter 2 - Basic CPU Functions

In the idle state, the CPU
operates on the low-speed

clock.

Standby Function

39

Chapter 2 - Basic CPU Functions

Sample program for transition from SLOW to NORMAL mode is given below.

Program 2 ex.l)
MOV x'01', DO ; set IDLE mode
MOV DO, (CPUM)

BCLR (CPUM)L

Program 3 ex.l)

MOV x'OB', DO ; A loop to keep low-speed clock

LOOP ADD -1,DO ; (32 kHz) operation for apprx. 6.7ms when
BNE LOOP ; changed to high-speed clock (20 MHz).
SUB DO, DO ; set NORMAL mode

MOV DO, (CPUM)

cx.2)
MOV x'OB', DO
LOOP SUB 1, DO

BNE LOOP
BCLR (CPUM)0O

40 Standby Function

This Material Copyrighted By Its Respective Manufacturer

2-6-4 Transition to STANDBY mode

Chapter 2 - Basic CPU Functions

The program controls transition from CPU operation mode to STANDBY
mode, and the interrupt initiates the return process.

Before the transition to STANDBY mode, the following settings are necessary:

(1) Clear interrupt enable flag (MIE) in the processor status word (PSW) and

If the interrupt is enabled and
interrupt priority level of the
interrupt fo be used is not equal

interrupt enable tlag (xxxIE) in the maskable interrupt control register (xxxICR) to or higher than the mask level

o disable all interrupts temporarily.

in PSW before transition to
HALT or STOP mode, it is

(2) Dectermine the interrupt for the return factor to transfer control from STANDBY impossible to return to CPU
mode to CPU operation mode, and set the appropriate xxxIE only. Set MIE flag operation mode by maskable

in PSW as well.

NORMAL/SLOW
mode

I 1
[All interrupts disabled|

Enable interrupt which
will trigger return

.

Set HALT/STOP
mode

When returning from STOP -
mode, walit for oscillation to)

stabilize

NORMAL/SLOW
mode

|Interrupt acceptance cycle |

Clear MIE flag in the PSW and all interrupt enable flags (xxx IE)
in the maskable interrupt control register.

Set the xxx |IE of the return factor,
and set MIE flag in the PSW.

HALT/STOP
mode

occured

—~a—— § HALT: restarts counting

Watchdog timer)
STOP: disabled

Fig. 2-6-3 Transition to/from STANDBY Mode

This Material Copyrighted By Its Respective Manufacturer

interrupt.

Processing inside parentheses
() is handled by hardware.

'atchdog timer
HALT: stop counting

STOP: reset

Return factor interrupt

Standby Function 41

Chapter 2 - Basic CPU Functions

M Transition to HALT mode

The system transfers from NORMAIL mode to HALTO mode, and from SLLOW
mode to HALT1 mode. In both cases, oscillation is maintained and only the CPU is
halted. Return from HALT mode is initiated by an interrupt or a reset. A reset is just
as in normal reset operation, and the interrupt restores the system to the state it was
in prior to HALT. If the watchdog timer is enabled when the system switches to
HALT mode, the watchdog timer count is halted and restarts continuously when the

system returns to CPU operation.

Program 4 ex.l)
MOV x4, DO ; set HALT mode
MOV DO, (CPUM)
NOP , After written in CPUM, some NOP
NOP ; instructions (three or less) arre
NOP ; executed.
ex.2)
BSET (CPUM)2
NOP
NOP
NOP

CPUM: X3F00" R/ W

M Transition to STOP mode
The system transfers from NORMAL mode to STOPO mode, and from SLOW

) o mode to STOP1 mode. In both cases, oscillation and the CPU are both halted.
If the wait for oscillation . o . o
stabilization ends and the Return trom STOP mode is initiated by an interrupt or a reset. At transition to

system switches to CPU STOP mode, the watchdog timer is reset and acts as a counter [or the oscillation
operation mode, the watchdog stabilization period, and alter that it is disabled.

timer is autornatically disabled.

If watchdog timer monitoring is

required, enable it specifically. Program 5 1
ogra X.

MOV x'8', DO ; set STOP mode

MOV DO, (CPUM)

NOP ; After written in CPUM, some NOP
NOP ; instructions (three or less) are
NOP ; executed.

ex.2)
BSET (CPUM)3
NOP
NOP
NOP

42 Standby Function

This Material Copyrighted By Its Respective Manufacturer

2-7 Reset Function

Setting the RST pin to low level will reset the CPU internally and initialize
the registers.

(1) The system shifts to the resct state® when the RST pin gocs low.

(2) When the RST pin switches from low to high, the internal 15-bit binary counter
begins to count the source oscillation clock. It counts for a period called the
oscillation stabilization wait time and releases the internal reset when

oscillations have stabilized.

RST

1 Osgillalion
| stabilization wait

Internal RST

Fig. 2-7-1 Reset Release Sequence

The wait time for oscillation stabilization is determined as given below.

ITigh-speed oscillation: Oscillation stabilization time for oscillation frequency fosci.
tosciw=215 X (1/fosci)
Tor example, when fosci=20MIIz, tosciw=1.6384ms

T.ow-speed oscillation: Oscillation stabilization time for oscillation frequency fxi.
txiw=2" X (1/fxi)

For example, when fxi=32kHz, txiw=1.024s

(3) Hardware implemented reset processing initializes the following internal and

special registers.

This Material Copyrighted By Its Respective Manufacturer

Chapter 2 - Basic CPU Functions

The RST pin must be held low
for at least four cycles of the
source oscillation clock.

In some chips, the reset pin is
shared with a port. In these
cases, sefting the port to 0 will
shift fo reset state.

When a low-voltage detect
circuit is connected fo the RST
pin, be sure to use a circuit
capable of generating a
sufficient low pulse in the event
of instantaneous drop in the
level. Even if the pulsewidth is
less than four source oscilla-
tion cycles, it is possible that a
reset will be friggered, so be
careful of noise.

Reset Function 43

Chapter 2 - Basic CPU Functions

44

This Materia

Table 2-7-1 Register Initialization at Reset

Register name Register address Initial value

Processor status word PSW -- X'o0'
Program counter PC - Q%ﬁrggg?tored in
Address register An -- Not fixed
Data register Dn -- Not fixed
CPU mode control register CPUM X'03F00' X'00
Memory control register MEMCTR X'03F01' X'CB'
Interrupt control register xxxICR(NMICR) [X'03FE2 to '03FEF' X'00'

(4) When the oscillation stabilization wait time is over, the internal reset is released
and program cxccution is started from the address that is written in the vector
table at address X'04000'. The initialization program should be located at the
beginning of the program.

(5) Immediately after reset processing, the CPU operates in three-wait cycle WAIT
mode for the external memory and in fixed three-wait cycle WAIT mode for the

special register space in accordance with the initial setting of the MEMCTR

register.

[2-9 Bus Controller]

Reset Function

Copyrighted By Its Respective Manufacturer

Chapter 2 - Basic CPU Functions

2-8 Memory

2-8-1 Setting memory mode

For memory, ROM is the read only area and RAM is the memory area which
contains readable/writable data.ln addition to these, peripheral resources
such as memory-mapped special registers are allocated. The MN101C00
series supports three memory modes in its memory model.

The MN101CO00 series allocates ROM, RAM, /O, and peripheral
circuit control registers to the same address space.

Mode selection range and set

Modes are specified with the mode set pin (MMOD) and EXMEM flag in the method vary with product.
MEMCTR register.

Table 2-8-1 Setting The Memory Mode

) EXMEM flag in
MMOD pin MEMCTR register Memory mode
L 0 Single chip mode
L 1 Memory expansion mode
H Don't care Processor mode

Memory 45

This Material Copyrighted By Its Respective Manufacturer

Chapter 2 - Basic CPU Functions

2-8-2

Single-chip mode

In single-chip mode, the system consists of only internal memory. This is the
optimized memory model and allows construction of systems with the

highest performance.

The single-chip mode uses only internal ROM and internal RAM. The MN101C00
series devices offer up to 12 kilobytes of RAM and up to 240 kilobytes of ROM.

For the exact amounts, check the specilications ol the individual product.

Single chip mode

16 KB

48 KB

192 KB

46 Memory

Xx'00000" i
256 bytes abs8 addressing +
' access area Internal RAM
<'00100" Sata (max. 12 KB)
x'02F00'
x'03F00' ,
256 bytes Petripheral /O
Y
x'04000" Interrupt
128 bytes ' vector table
X'04080' Subroutine
64 bytes
VECLOE Tdabie
x'040C0O"
Instructions,
ROM data Internal ROM
(max. 240 KB)
x'10000"
Instruction code
x'3 FFFF'
MMOD pin=L

EXMEM flag=0

Fig. 2-8-1 Single-chip Mode Configuration

This Material Copyrighted By Its Respective Manufacturer

Chapter 2 - Basic CPU Functions

2-8-3 Memory expansion modes

The MN101CO0OO series can connect external ROM, RAM and I/O ports for
operation in memory expansion modes. This is the mode to expand to
external memory while using internal ROM and RAM.

In memory expansion modes, the start address at reset is
allocated to internal ROM, so at least 8 Kbytes of internal ROM is

needed.

H Memory expansion mode

This mode permits the use of external expansion ROM and RAM to augment the
internal ROM and RAM. T'o use this mode, set the EXMEM flag in the memory
control register (MEMCTR) to "1." The following regions are available for

expansion.

RAM: X'02T'00'-X'03EIT" (4 kilobytes)
ROM: X"20000'-X"3I'TTT" (128 kilobytes)

Note that, in this mode, the internal ROM region ends at X'|FFFF'. Any internal
ROM above the address X'2000' is ignored, with only the external ROM accessed.

Memory expansion mode

A x'00000' abss ac ing
256 bytes access area Internal RAM
001 00" Data ({max. 12 KB)
16 KB .)
x'02F00 External expansion 4 KB
A x'03F00' ,
256 bytes Peripheral /O
Y Y
x'04000" nier
128 bytes
¥ vector table
o 7{ x'04080" Subrottine
48 KB & ytes vecior lapie
x'040C0' Internal ROM
Instrictions; (max. 112 KB)
RON
¥
J x'10000" .
64 KB Instruction code
y
x'20000"
: External expansion
| d
nstruction code oo 128 KB
x'3 FFFF' —r
MMOD pin=L
EXMEM flag=1
Fig. 2-8-2 Memory Expansion Mode

Memory 47

This Material Copyrighted By Its Respective Manufacturer

Chapter 2 - Basic CPU Functions

2-8-4 Processor mode

This mode accesses only the external expansion ROM, ignoring any internal
ROM present.

This mode uses internal RAM and external ROM. To use this mode, drive the

MMOD pin at "H" level. The following region is available for expansion.

RAM: X'02FO00'-X'03EFE' (4 kilobytes)

Processor mode

Y x'00000" abs8 addressin
g
256 bytes actess area Internal RAM
X00100° Jata (max. 12 KB)
16 KB . .
X'02F00 External expansion 4 KB
RANM
A Xx'03F00'
256 bytes Peripheral: /O
Y Y
i X'04000" Interrupt
128 bytes vector table
X'04080" Subroutine
15 KB 64 bytes vector table
X'040C0"
Instructions,
ROM data External expansion 240 KB
memory
y
J X'10000' .
64 KB Instruction code
X'20000
Instruction code
x'3 FFFF'
MMOD pin=H

EXMEM flag=don't care

Fig. 2-8-3 Processor Mode

48 Memory

This Material Copyrighted By Its Respective Manufacturer

Chapter 2 - Basic CPU Functions

2-9 Bus Controller

2-9-1 Outline

The MN101CO0O0 series has separate bus lines that are connected to internal
memory and internal peripheral circuits to reduce the loading on each bus
line and enhance operation speed.

There are four separate bus lines: ROM bus, RAM bus, peripheral expansion bus
and external expansion bus. The bus control block controls the parallel operation of
instruction read and data access, the access speed adjustment [or low-speed external
devices, and arbitration of bus access when using master devices on the external bus

lines.

A functional block diagram of the bus controller is given below.

Instruction Interrupt
queue ‘ Program address ‘ ‘ Operand address control

Bus controller

‘ Memory control register Interrupt
‘ bus

Address decode
Memory mode setting
Bus access (wait)
control

Bus
arbitor

|| |
"" Perpheral |
— ROM bus -, — RAM bus - <« extensionbus | —,
— | | \ | — - i
A D A D A I D
Int |
| | Internal RAM nierna

peripheral functions

UJ‘
Pl

‘
Ol

External interface

Internal ROM

External extension bus
< >

R

Fig. 2-9-1 Bus Controller Block Diagram

Bus Controller 49

This Material Copyrighted By Its Respective Manufacturer

Chapter 2 - Basic CPU Functions

Q

The fixed wail state mode
(inserts 3 wait cycles) is
selected at RESET. When
handshake mode is selected or
when manually reconfiguring
the wait state, it is possible to
change the wail cycle by
setting the value to the MCR.

50 Bus Controller

When the external expansion bus line is set to memory expansion mode or
processor mode, data transfer will occur between the external expansion bus line
and the external device. The external expansion bus line access sequence has two
modes, fixed wait mode and handshake mode. The mode is selected using the

memory control register (MEMCTR).

2-9-2 Fixed wait cycle mode

The MN101COO series can connect low-speed devices (ROM, RAM, I/0 expander,
etc.) to the external expansion bus by inserting multiple wait cycles. The number of

wait cycles can be selected by the memory control register (MEMCTR).

Fixed wait cycle mode is used to automatically insert the number of wait cycles
specified by the tixed wait counter (WAI'l'n, WAI'TIOn) in the MEMC'TR.

This Material Copyrighted By Its Respective Manufacturer

Chapter 2 - Basic CPU Functions

0
MEMCTR ‘ IOW1 ‘ IOWo ‘ IVBM ‘EXMEM‘ FEXW‘ IRWE ‘ EXW1 ‘ EXWO‘

At reset: 1 1 0 L _0 1 1
Number of fixed When bus cycle
EXW1T100| ™ ait cycles |(20 MHz) oscillation
00 No wait cycles 100 ns
01 1 wait cycle 150 ns
10 2 wait cycles 200 ns
11 3 wait cycles 250 ns
—] IRWE Interrupt request software write enable flag
Software writes disabled
0 Writes to an interrupt control register
(xxxICR) do not medify the state of the
interrupt request flag (xxxIR).
1 Software writes enabled
FEXW Fixed wait mode/handshake mode
0 Handshake mode
1 Fixed wait mode
EXMEM External memory expansion mode
0 External memory not expanded
1 External memory expanded
IVBM Base address of the interrupt vector table
0 Base address=x'04000"
1 Base address=x'00100"
Number of IO When bus cycle
IOW1 1o 0 bus wait cycles (20 MHz) oscillation
00 No wait cycles 100 ns
01 1 wait cycle 150 ns
10 2 wait cycles 200 ns
11 3 wait cycles 250 ns

The wait cycle value written to

Fig. 2-9-2 Memory Control Register (MEMCTR) the MEMCTR will be valid
immediately after the wwrite
instruction.

+ The IOWI1-TOWO wait settings affect accesses to the special registers located at

the addresses X'3F00'-X'3FFF'. Limit the setting of IRWE to "1"
to initialization routines. After
* The EXWI1-EXWO wait settings affect accesses to external devices in the setting it to "1" to permit

manipulation of interrupt control
registers, always reset it fo "0"

processor and memory expansion modes.

when such manipulations are
complete. Leaving it at "1" can
lead to the loss of interrupt
requests.

Bus Controller 51

This Material Copyrighted By Its Respective Manufacturer

Chapter 2 - Basic CPU Functions

It is possible to use the Walch
Dog Timer (WDT) to detect a
malfunction (no DK signal
response form the external
device). The CPU waits for the
‘DK signal until WDT overflows
and then generates a non-
maskable interrupt.

52 Bus Controller

2-9-3 Handshake mode

Handshake mode uses the interlock control method in the data transfer
sequence, with a transfer enable signals (RE, WE) and a data acknowledge

signal (DK).

The method is described below:

1) The CPU sets RE or WE to 'L

RE is set when read, and WE is set when write.

2) The external device detects RE='L' or WE='L' and reacts as follows:
When RE='L' (Data Read: External Device > CPU):
If the external device can send the data on the data bus line, it sets DK=L".
When WE='L' (Data Write: CPU > External Device):

Il the external device can read data [rom the data bus line, it sets DK="L.".
3) The CPU detects DK=L, scts RE or WE to 'H', and ends the bus cycle.

4) ‘The external device detects RE='L' or WE='H' and immediately sets DK=H'.

Handshake mode adjusts the wait cycle [or each external device that has a dillerent

access speed when the DK generation circuit is provided for each device.

] External
MN101C00 series Address bus device
A17 to 00 > A
) Data bus
D7 t0 0 [V| D
DK |« DK
We WE
RE RE

Fig. 2-9-3 Handshake Mode Pin Connection Example

This Material Copyrighted By Its Respective Manufacturer

Chapter 2 - Basic CPU Functions

2-10 DMA Support Function

2-10-1 Bus arbitration function*

The bus arbitration function handles bus usage rights between the
MN101CO0O0 series and external devices. The bus master request signal (BR)
and the bus master permission signal (BG) are used. The CPU releases the

*Not supported by all products.

line, and the external device which has received permission then executes
DMA or other memory access.

B Bus Master Request Signal (BR)

The external device generates this signal. The MN101C0O series samples the BR
signal on the falling edge of the main oscillator while the system clock (PSYSCLK)
is high. When the CPU detects BR='L', it sets A23 to A0O and D15 1o DOO to high
impedance alter completing the current bus cycle. It then sets BG=L' and releases
the bus line to the external device. When the CPU detects BR="H', it sets BG="H' on
the next rising edge of the main oscillator and receives the rights back.

B Bus Master Permission Signal (BG)
The CPU generates this signal. The external device recognizes that the CPU has
released the bus-line with the detection of BG="L'. Always wait for BG="L' before

using the bus line.

DMA Support Function 53

This Material Copyrighted By Its Respective Manufacturer

Chapter 2 - Basic CPU Functions

uilj is
- L
e,
L /

IT 1 T T
]

]

L o
i it i i
]

OSCO/XO

ET1

A18-A00
RE

D7-Do

Bus is occupied by

No memory
external device

CPU memory

CPU memory
access

access

access

(write)

(read)

Fig 2-10-1 Bus Arbitration Timing

DMA Support Function

54

Copyrighted By Its Respective Manufacturer

This Materi al

Appendices

This Material Copyrighted By Its Respective Manufacturer

Appen

dices

MN101C00 SERIES INSTRUCTION SET

| Group Mnemonic Operation Flag ICode(Cycle| Re- Machine Code Notes| Pag1
VF[NF|CF|zF|Size peat| Ext. 1 2 3 4 5 6 7 9 10

Data Transfer Instructions

MoV MOV Dn,Dm Dn—sDm —|— 21 1010 DnDm 25
MOV imm8,Dm imm8—Dm —|— 4| 2 1010DmDm <#8. ..> 25
MOV Dn,PSW Dn—PSW LIK] 3 3 0010 1001 01Dn 26
MOV PSW Dm PSW—-Dm —_— 3 2 0010 0001 01Dm 26
MOV (An),Dm mem8(An)—Dm —|— 2|2 0100 1ADmM 27
MOV (d8,An),Dm mem8(d8+An)—Dm —|— 4|2 0110 1ADmM <d8. ..> |27
MOV (d16,An),Dm mem8(d16+An) >Dm —|— 7| 4 0010 0110 1ADmM <d16 ... > 28
MOV (d4,8P),Dm mem8&(d4+SP)—Dm —|— 3 2 0110 01Dm <d4> 2 |28
MOV (d8,5P),Dm mem8&(d8+SP)—~Dm —|— 5 3 0010 0110 01Dm <d8. .= "3 |29
MOV (d16,SP),Dm mems(d16+SP)—Dm Y 7|4 0010 0110 00DM <d16 > 29
MOV (io8),Drm mem8(I0TOP 4+i08)—>Dm —|—= 4|2 0110 00DM <io8 ..> 30
MOV (abs8),Dm mem8(abs8)—>Dm —|— 4 | 2 0100 01Dm <abs 8.> 30
MOV (abs12),Dm mem8(abs12)—Dm —|— 5|2 0100 00DM <abs 12. .> 31
MOV (abs16),Dm mem8(abs 16)—>Dm —|— 7|4 0010 1100 00DmM <abs 16. .. .> 31
MOV Dn,(Am) Dn >mems8(Am) —|— 2|2 0101 1aDn 32
MOV Dn,(d8,Am) Dn—smem8(d8+Am) —|— 4 | 2 0111 1aDn <d8. ..> |32
MOV Dn,(d16,Am) Dn—mem8(d16+Am) —|— 7| 4 0010 0111 1aDn <di16 ... TS 33
MOV Dn,(d4,5P) Dn—s>mem8(d4+SP) —|= 3|2 0111 01Dn <dd> 2 |33
MOV Dn,(d8,SP) Dn—mem38(d8+SP) —|— 5 3 0010 0111 O1Dn <d8. .> *3 |34
MOV Dn,(d16,SP) Dn—smem8(d16+SP) —|— 7|4 0010 0111 00DN <di6> 34
MOV Dn,(io8) Dn—mem8(IOTOP+io8) —— 4 | 2 0111 00Dn <«io8 ..> 35
MOV Dn,(abs8) Dn—mem8(abs8) —|— 4| 2 0101 01Dn <abs 8.> 35
MOV Dn,(abs12) Dn—smem8(abs12) —|— 5|2 0101 00Dn <abs 12. .> 36
MOV Dn,(abs16) Dn—smem8(abs16) —|— 7|4 0010 1101 00Dn <abs 16..> 36
MOV imm8,(io8) imm8—mem8(IOTOP+io8) —|— 6| 3 0000 0010 <io8 ..» <#8. ..> 37
MOV imm8,(abs8) imm8—mem8(abs8) —— 6|3 0001 0100 <abs 8.> <#8. ..> 37
MOV imm8 (abs12) imm8—smem8(abs12) —|— 7|38 0001 0101 <abs 12 > <8 > 38
MOV imm8,(abs16) imm8—mem8(abs16) —|— 9|5 0011 1101 1001 <«abs 16.> <#8 38
MOV Dn,(HA) Dn_smem8(HA) —|— 2|2 1101 00Dn 39

MOVW |MOVW (An),DWm mem16(An)—>DWm = 2|3 1110 00Ad 40
MOVW (An),Am mem16(An)—Am —|— 3| 4 0010 1110 10Aa *4 |40
MOVW (d4,SP),DWm mem16(d4+SP)—~DWm —|— 3|3 1110 O011d <d4> - EL
MOVW (d4,5P),Am mem16(d4+SP)—Am —|— 3|3 1110 010a <d4> 2 |4
MOVW (d8,SP),DWm |mem16(d8+SP)—>DWm —|— 5| 4 0010 1110 011d <d8. .> 3 |42
MOVW (d8,SP),Am mem16(d8+SP)>Am —|— 5|4 0010 1110 010a <d8. .> 3 |42
MOVW (d16,SP),DWm | mem16(d16+SP)sDWm —|— 7|5 0010 1110 001d <d16> 43
MOVW (d16,SP) Am mem16(d16+SP)—>Am —|— 7|5 0010 1110 0002 <d16> 43
MOVW (abs8),DWm mem16(abs8) >DWm —|— 4 |3 1100 011d <abs 8.> 44
MOVW (abs8),Am mem16(abs8) >Am —|— 4 | 3 1100 010a <abs 8.> 44
MOVW (abs16),DWm mem16(abs16)—>DWm —|— 7|5 0010 1100 O11d <abs 16.>» 45
MOVW (abs16),Am mem16(abs16)—>Am —|— 7|5 0010 1100 010a <abs 16.> 45
MOVW DWn,(Am) DWn_smem16(Am) = 2|3 1111 00aD 46
MOVW An,(Am) An—smem16(Am) —|— 3|4 0010 1111 10aA 4 |46
MOVW DWn,(d4 SP) DWn_smem16(d4+SP) N 3|3 1111 011D <dd> 2 |47
MOVW An,(d4,SP) An—smem16(d4-+SP) —_|—= 3|3 1111 O10A <dd> 2 |47
MOVW DWn,(d8,SP) DWn >mem16(d8+SP) —|— 514 0010 1111 011D <d8. > *3 |48
MOVW An,(d8,SP) An—mem16(d8+SP) — = 5|4 0010 1111 O10A <d8. .> "3 |48
MOVW DWn,(d16,SP) DWn—mem16(d16+SP) —|— 7|5 0010 1111 001D <di6 > 49
MOVW An,(d16,SP) An—s>mem16(d16+5P) —|= 705 0010 1111 000A <di6 ... > 49
MOVW DWn,(abs8) DWn—mem16(abs8) —|— 4|3 1101 011D <abs 8.> 50
MOVW An,(abs8) An—mem16(abs8) —|— 4|3 1101 O10A <abs 8.> 50
MOVW DWn,(abs16) DWn—mem16(abs16) —|— 7|5 0010 1101 011D <abs 16. .. .> 51
MOVW An,(abs16) An—mem16{abs16) —|— 7|5 0010 1101 O10A <abs 16.> 51
MOVW DWn,(HA) DWn >mem16{HA) —|— 2 3 1001 010D 52
MOVW An,(HA) An—mem16(HA) —|— 2 3 1001 O11A 52
MOVW imm8,DWm sign(imm8)—DWm —— 4 | 2 0000 110d <#8. .. *5 |83
MOVW imm8,Am zero(imm8)—Am —— 4|2 0000 111a <#8. ..> *6 | 53
MOVW imm16,DWm imm16—->DWm —|— 6 3 1100 111d <#16 ... > 54

Note: Page refers to the corresponding page in the Instruction Manual.

56

This Materia

Instruction Set

Copyrighted By Its Respective Manufacturer

*1 d8 sign extended
*2 d4 zero extended
*3 d8 zero extended

*4 A=An, a=Am
*5 #8 sign extended
*6 #8 zero extended

MN101C00 SERIES INSTRUCTION SET

Appendices

| Group ‘ Mnemonic Operation Flag od! yclﬁﬂe— Machine Code NotesPag1
VFINF|CF|zF|Size peat| Ext 1 2 3 4 5 6 7 8 9 10
MOVW imm16,Am imm16—>Am —|—|—|—| &8 | 3 1101 111a <#16 .. > 54
MOVW SP.Am SP—>AmM —|—|—|—] 3 3 0010 0000 100a 55
MOVW An,SP An—SP —|—|—|—] 3 3 0010 0000 101A 55
MOVW DWn,DWm DWn—DWm —|—|—|—1 3 3 0010 1000 0ODd "1 | 56
MOVW DWn,Am DWn—Am —|—|—|—| 8| 3 0010 0100 11Da 56
MOVW An,DWm An—DWm —|—=|—=—] 8 3 0010 1100 11Ad 57
MOVW An,Am An—Am —|—|—|—| 3 | 8 0010 0000 00Aa 2 | 57
PUSH PUSH Dn SP-1—-8P,Dn—mem8(SP) —|—|—]|—| 2 | 3 1111 10Dn 58
PUSH An SP-2-58P,An—>mem16(SP) —|—|—|—| 2 | 5 0001 O11A 58
POP POP Dn mem8(SP)—Dn,SP+1->8P —|—|—|—| 2 | 8 1110 10Dn 59
POP An mem16(SP)—>An,SP+2>SP —|—|=|—] 2| 4 0000 O11A 59
EXT EXT Dn,DWm sign(Dn) >DWm —|—|—|—] 3 3 0010 1001 000d *3 | 60
Arithmetic Operation Instructions
ADD ADD Dn,Dm Dm+Dn—Dm ® ® ® ® 3|2 |v 0011 0011 DnDm 61
ADD imm4,Dm Dm+sign(imm4)—Dm o e e e 3 2 1000 00DmM <#4> *6 | 61
ADD imm8,Dm Dm+imm8&—>Dm ol o o0l 4|2 0000 10Dm <#8. ..> 62
ADDC ADDC Dn,Dm Dm+Dn+CF—Dm o e ® @ 3 2 | ¢ | 0011 1011 DnDm 63
ADDW |ADDW DWn,DWm DWm+DWn—DWm oo o e 3 3 | v | 0010 0101 00Dd "1 |64
ADDW DWn Am Am+DWn—Am [AN K BN Ji] 3 | v | 0010 0101 10Da 64
ADDW imm4,Am Amasign(imm4) >Am o|® @ @ 3 |2 1110 110a <#4> *6 | 65
ADDW imm8g,Am Am+sign(imm8)—Am ele @@ 5|3 0010 1110 110a <#8. ..> *7 |85
ADDW imm16,Am Am+imm16—Am el o @ 7 |4 0010 0101 Off1a <#16 ... > 66
ADDW imm4,8P SPa+sign{imm4)—»>SP —|—|—|—] 8 2 1111 1101 <#4d> *6 | 66
ADDW imm8,SP SP+sign{imm8)—»>SP —|—|—=|—] 4| 2 1111 1100 <#8. ..> *7 |67
ADDW imm16,SP SP+imm16—>SP — === 7 | 4 0010 1111 1100 <#16 .. > 67
ADDW imm16,DWm DWm+imm16—DWm o o e @ 7 |4 0010 0101 010d <#16 ... > 68
ADDUW |ADDUW Dn Am Am+zero(Dn) >Am oo e e 3 3 | ¥ | 0010 1000 1aDn *8 | 69
ADDSW |ADDSW Dn,Am Ama+sign(Dn) >Am o o0 e 3 3 | v | 0010 1001 1aDn 70
suUB SUB DnDm{when DnzDmj [Dm-Dn—Dm e e ® @ 3|2 |v 0010 1010 DnDm 7
SUB Dn,Dn Dn-Dn—Dn ojlo|o|1]| 2|1 1000 01Dn n
SUB imm8,Dm Dm-imm8—Dm o e @ e 5 3 0010 1010DmMDm <#8. .. 72
SUBC SUBC Dn,Dm Dm-Dn-CF—Dm oo e @ 3 2 | v | 0010 1011 DnDm 73
SUBW SUBW DWn,DWm DWm-DWn—->DWm o o o @ 3 3 0010 0100 00Dd 1|74
SUBW DWn,Am Am-DWn—Am o o e @ 3 3 0010 0100 10Da 74
SUBW imm16,DWm DWm-imm16 >DWm oo o e 7 |4 0010 0100 010d <#16 ... > 75
SUBW imm16,Am Am-immi16—Am o e e e 7|4 0010 0100 O11a <#16 ... > 75
MULU |MULU Dn,Dm Dm*Dn—DWk ‘lele /e 3 8 0010 1111 111D "4 |76
DIVU DIVU Dn,DWm DWm/Dn—>DWm-|...DWm-h e e @@ 3 9 0010 1110 111d *5 |77
CMP CMP Dn,Dm Dm-Dn...PSW o e o @ 3 2 0011 0010 DnDm 78
CMP imm8,Dm Dm-imm8...PSW oo o @ 4|2 1100 0O0DmM <#8. ..~ 78
CMP imm8,(abs8) mem8(abs8)-imm8...PSW o ® @ ® 6 |3 0000 0100 <abs 8.> <#8. .. 79
CMP imm8 {abs12) mem8(abs12)-imm8...PSW oo @ @ 7 |3 0000 0101 <abs 12. .> <#8 ..> 79
CMP imm8 (abs16) mem8(abs16)-imm8...PSW o ® @ ® 9 |5 0011 1101 1000 <abs 16.. ... > <#B, > 80
CMPW |CMPW DWn DWm DWm-DWn.. PSW e e e e 3 3 0010 1000 01Dd * |81
CMPW DWn Am Am-DWn...PSW e e ® e 3 3 0010 0101 11Da 81
CMPW An,Am Am-An.. PSW o e @ @® 3 3 0010 0000 O1Aa 2 |82
CMPW imm16,DWm DWm-imm16.. PSW o ® ® ® 6 |3 1100 110d <#16 .. > 82
CMPW imm16,Am Am-imm16...PSW o ® ®|l® 6 |3 1101 110a <#16 ... > 83
Logical Operation Instructions
AND AND Dn,Dm Dm&Dn—sDm 0O|®@/0|®@ 3|2 0011 0111 DnDm 84
AND immg,Dm Dm&imm8—Dm o|l@|o0|@ 4|2 0001 11Dm <#8. .> 84
AND imm8,PSW PSW&Iimm8—-PSW o ® e o 5 3 0010 1001 0010 <#8. .. 85
OR OR Dn,Dm DmIDn—Dm 0|@|/0|®@ 3|2 0011 0110 DnDm 86
OR imm8,Dm Dmlimm8—Dm o|@/0| @ 4|2 0001 10Dm <#8. ..> 86
OR imm8,PSW PSWIimma—>PSW e o e|/® 5 3 0010 1001 0011 <«#8. ..> 87
XOR XOR Dn,Dm DmADn—Dm 0O|®@/0|® 3|2 0011 1010 DnDm *9 |88
XOR imm8,Dm DmAimm8—Dm O/@/0/® 5|3 0011 1010DmMDm <#8. ..> 88
Note: Page refers to the carrespanding page in the Instruction Manual. *1 D=DWn, d=DWm *5 D=DWm g men
*2 A=An, a=Am *6 #4 sign extended
*3 d=DWm *7 #8 sign extended
*4 D=DWKk *8 Dn zero extended
Instruction Set 57

This Materia

Copyrighted By Its Respective Manufacturer

Appendices

MN101C00 SERIES INSTRUCTION SET

| Group ‘ Mnemonic Operation Flag Cod clﬂ Re- Machine Code NotesPag<1
VF|NF|CF|zF| Size peat| Ext 1 2 3 4 5 6 7 9 10
NOT NOT Dn —Dn—Dn o|e@|o @ 3|2 0010 0010 10Dn 89
ASR ASR Dn Dn.msb—>temp,Dn.Isb—CF 0O|— ®|®| 3| 2|+ |0010 0011 10Dn 90
Dn>>1-Dn temp—Dn.msb
LSR LSR Dn Dn.lsb—CF,Dn>>1—-Dn 0|0 @®|®| 3|2 | v |0010 0011 11Dn 91
0—>Dn.msb
ROR ROR Dn Dn.Isb—stemp,Dn>>1-sDn 0O|®@|®|® 3| 2|+ |0010 0010 11Dn 92
CF >Dn.msb,temp >CF
Bit Manipulation Instructions
BSET BSET (io8)bp mem8(I0TOP+io8)&bpdata..PSW| 0 (@ |0 |@®| 5 | 5 0011 1000 Obp. <ic8 ..> 93
1—-mem8(IOTOP+io8)bp
BSET (abs8)bp mem8(abs8)&bpdata.. PSW 0O/@|0|® 4| 4 1011 Obp. <abs 8.> 93
1—mem8(abs8)bp
BSET (abs16)bp mem8(abs16)&bpdata..PSW |0 (@ |0 |®| 7 | 6 0011 1100 Obp. <abs 16.> 94
1—mem8(abs16)bp
BCLR BCLR (io8)bp memg(IOTOP+io8)&bpdata..PSW| 0 (@ |0 |@®| 5 | 5 0011 1000 1bp. <io8 ..> 95
0 >mem8(IOTOP+io8)bp
BCLR (abs8)bp mem8(abs8)&bpdata...PSW 0O|@®@|0|® 4 | 4 1011 1bp. <abs 8.» 95
0—->mem8(abs8)bp
BCLR (abs16)bp mem8(abs16)&bpdata. PSW |0 (@ |0 |@| 7 | 6 0011 1100 1bp. <abs 16. .. .> 96
0—-mem8&(abs16)bp
BTST BTST imm8,Dm Dm&imm8...PSW o/e|0|®| 5|3 0010 0000 11Dm <#8. ..> 97
BTST (abs16)bp mem8(abs16)&bpdata..PSW (0 |@|0 | @ 7 | 5 0011 1101 Obp. <abs 16.. ... > 97
Branch Instructions
Bee BEQ label if(ZF=1), PC+3+d4(label)+H—>PC | — —|—|—| 3 |2/3 1001 000H <dd> *1 |98
if(ZF=0), PC+3—PC
BEQ label if(ZF=1), PC+4+d7(label)+H—-PC | — —| —|—| 4 |2/3 1000 1010 <d7. ..H *2 |98
if(ZF=0), PC+4 >PC
BEQ label if(ZF=1), PC+5+d11(label}+H—>PC| — —|—|—| & |2/3 1001 1010 <di11H *3 |99
if(ZF=0), PC+5—PC
BNE label if(ZF=0), PC+3+d4(label)+H->PC|— —|—|—| 3 |2/3 1001 001H <«d4> *1 100
if(ZF=1), PC+3—PC
BNE label i(ZF=0), PC+4+d7(label)+HsPC| — — | _|_| 4 |2/3 1000 1011 «d7. ..H 2 (100
if(ZF=1), PC+4—PC
BNE label #f(ZF=0), PC+5+d11{labelprHsPC| — | || 5 |23 1001 1011 <d11 .. .H 3 [101
if(ZF=1), PC+5 >PC
BGE label IH{(VFANF}=0),PC+4+07(labell+H—PC| — — ||| 4 [2s3 1000 1000 <d7. ..H 2 [109]
if((VFANF)=1),PC+4—PC
BGE label if{(VFANF)=0),PC+5+d11(label}+H—-PC| — — | —|—| 5 |2/3 1001 1000 «dii .. . H *3 [102]
if((VFANF)=1),PC+5—PC
BCC label iH(CF=0),PC+4+d7(labelytHPC| | | [4 |23 1000 1100 «d7. ..H 2 (103
if(CF=1), PC+4—PC
BCC label {{(CF=0), PC+5+d11(label)+H>PC — — | || 5 |23 1001 1100 <d11 .. .H 3 (103
if(CF=1), PC+5—PC
BCS label iH(CF=1),PC+4+d7(labely+H—PC| _ _|_|_| 4 |23 1000 1101 <d7. .H 2 [104]
if(CF=0), PC+4—PC
BCS label if(CF=1), PC+5+d11{label)}+H—->PC _ | _|_| 5 |2/3 1001 1101 «di1 .. . H *3 104
if(CF=0), PC+5PC
BLT label If{(VFANF)=1) PC444d7(labellsH—PC| _ _|_|_| 4 |2/3 1000 1110 «d7. ..H 2 |10§
if((VFANF)=0),PC+4—-PC
BLT label H{(VFANF)=1},PC454d/11 (abell4H—PC| — — |—|—| 5 |2/3 1001 1110 «di1 .. .H 3 |108|
if((VFANF)=0),PC4+5—5PC
BLE label H{(VFANF)[ZF=1),PCs41d7{abelpH PG — — | —[—| 4 |2/3 1000 1111 <d7. .H 2 [108
if((VFANF)|ZF=0),PC+4 >PC
BLE label H{(VEANF)|ZF=1).PC+5+11(abel}sH—PG— — | —|—| & |23 1001 1111 <d11H =3 [108]
if((VFANF)|ZF=0),PC+5—PC
BGT label if{(VFANF)|ZF=0),PC+5+d7(labe+H—-PG — — | —|—| 5 |3/4 0010 0010 0001 <d7. ..H *2 107
if((VFANF)|ZF=1),PC+5PC

Note: Page refers to the corresponding page in the Instruction Manual. .
9 P 9 pag *1 d4 sign extended

*2 d7 sign extended
*3d11 sign extended

58 Instruction Set

This Material Copyrighted By Its Respective Manufacturer

MN101C00 SERIES INSTRUCTION SET

Appendices

| Group ‘ Mnemonic Operation Flag Coderclﬁ Re- Machine Code NmesPag1
VE[NF|CF|ZF|Size peat| Ext. 1 2 3 4 5 6 7 8 9 10
Bee BGT label H((VFANF)|ZF=0),PC+6+d11(|abel s H>PC| — | — S 0010 0011 0001 «di1 H *3 107
if((VFANF)|ZF=1),PC+6—PC
BHI label if{CFIZF=0),PC+5+d7({label)}+H—>PC| — | — 5 |3/4 0010 0010 0010 <d7. H *2 |108§]
if(CFIZF=1), PC+5 >PC
BHI label if{CFIZF=0),PC+6+d11{label)}+H—>PQ — | — 6 |3/4 0010 0011 0010 <d11H *3 |108|
if(CFIZF=1), PC+6—~PC
BLS label if{CFIZF=1) PC+5+d7{label)}+H—>PC| — | — 5 |3/4 0010 0010 0011 <«d7. .H *2 (109
if(CFIZF=0), PC+5—>PC
BLS label if(CFIZF=1),PC+6+d 11 (label)+H>PQ — | — 6 |3/4 0010 0011 0011 «di1 .. .H *3 |109
if(CFIZF=0), PC+6—>PC
BNC label if(NF=0),PC+5+d7(label)+H—PC| — | — 5 |3/4 0010 0010 0100 <d7. ..H 2 [11d
if(NF=1),PC+5—PC
BNC label if(NF=0),PC+6+d11(label)}+H—-PC — | — 6 |3/4 0010 0011 0100 <di1i H *3 110
if(NF=1),PC+6PC
BNS label if(NF=1),PC+5+d7(label)+H—>PC| — | — 5 |3/4 0010 0010 0101 «d7. H 2 111
if(NF=0),PC4+5sPC
BNS label If(NF=1),PC+6+d11(label)+H—>PC — | — 6 |34 0010 0011 0101 «d11H 3 (111
if(NF=0),PC+6 >PC
BVC label iH(VF=0),PC+5+d7(label)}+H—>PC| — | — 5 |3/4 0010 0010 0110 <d7. ..H 2 (119
if(VF=1),PC+5—PC
BVC label if(VF=0),PC+6+d11(label)+H—-PC| — | — 6 |3/4 0010 0011 0110 «d11 .. .H *3 119
if(VF=1),PC+6PC
BVS label if(VF=1),PC+5+d7(label)+H>PC| — | — 5 |3/4 0010 0010 0111 «d7. ..H 2 113
if(VF=0),PC45—PC
BVS label if(VF=1),PC+6+d11(label)+H—>PC| — | — 6 |3/4 0010 0011 0111 <d11H *3 |13
if(VF=0),PC+6 >PC
BRA label PC+3+d4(label)+H—~PC —|— 3 3 1110 111H <dd> 1 |114
BRA label PC+4+d7(label)+H—PC —|— 4 |3 1000 1001 <d7. H 2 114
BRA label PC+5+d11(label)+H—>PC —|— 5|3 1001 1001 <di1 ..H *3 115
CBEQ CBEQ imm8,Dm,label if{Dm=imm8),PC+8+d7(label)+H>PC @ | ® 6 |3/4 1100 10Dm <#8. > <«d7. H *2 |11§
if(Dm4imm8),PC+6—PC
CBEQ imm&,Dm,label if{Dm=imm8),PC+8+d11(labsl)}+H>PC @ | @ 8 |4/5 0010 1100 10Dm <#8. > <di1H *3 |11§
if(Dm+4imm8),PC+8 >PC
CBEQ imm8 (abs8),label |if(mem8(abs8)=immg),PC+8+d7(labeltH>Pl{ @ | @ 9 |e/7 0010 1101 1100 <abs 8.> <#8 ..> <d7. .H 2 117
i{mem8(abs8)£imm8),PC+9—PC|
CBEQ imm8,(abs8),label |if{mem8{absB)=imm8)PC+10+d11{label+H—PG @ | @ 10 | 6/7 0010 1101 1101 <abs 8.> <«#8 ..> <«di1 .. . H *3 117
if(mem8(abs8)#imm8) PC+10—PC|
CBEQ imm8,(abs16),label |if{mem8{abs18)=imms)PC+11+d7(label+H—P} @ | @ 11 |7/8 0011 1101 1100 <abs 16 > <#8 > «d7. H *2 |11
iffmem8(abs 16)#imm8),PC+11—PC|
CBEQ imm8,{abs16),label |ifmems{absit)=imms),PC+12+d11{label+H Pl @ | @ 12 |7/8 0011 1101 1101 <abs 16, > <#8 .> <dli H |*3 |11
iffmem8(abs16)4imm8),PC+12 >PC|
CBNE |CBNE imm8,Dm,label if(Dm4imm8),PC+6+d7(labell+H—-PC @ | @ 6 |3/4 1101 10Dm <#8. > <d7. .H> 2 119
if(Dm=imm8),PC+6—PC
CBNE imm8,Dm,label iH{Dm#imm8),PC+8+d11{labelj+H>PC @ | @ 8 |4/5 0010 1101 10Dm <#8. > «di1 L .H *3 119
if(Dm=imm8),PC+8—>PC
CBNE imm8,(abs8),label |if{mema{abs8}#imme),PC+8+d7(labell+H>Pl @ | @ 9 |6/7 0010 1101 1110 <abs 8.> <#8 ..> <d7. H *2 120
iffmem8(abs8)=imm8),PC+9—PC|
CBNE imm8,(abs8),label | if{mems{abs8)mms) PC+10+d11(label+H >P(@ | @ 10 |6/7 0010 1101 1111 <abs 8.> <«#8 .> <di1 .. .H *3 120
ifilmem8(abs8)=imm8),PC+10 >PC|
CBNE imm8,{abs16),label |iffmem8{abs18)#mms),PC+11+d7({lebel+H—PC @ | @ 11|7/8 0011 1101 1110 <abs 16. .. .> <#8 .> <d7. .H 221
if{mem8(abs 16)=imm8),PC+11—PC|
CBNE imm8,(abs16),label |i(mem8{abs16)mm8)PC+12+d11(labell+H—PC @ | @ 12 |7/8 0011 1101 1111 <abs 16. .. .> <#8 .> <1 ... _H |8 [121
if{mem8(abs16)=imm8),PC+12—P(
TBZ TBZ p,label if{mema(absa)bp=0},PC+7+07(abdbH—>PQ O | @ 7 |67 0011 0000 Obp. <abs 8.» <d7. .H 2 |12
iffmem8(abs8)bp=1),PC+7—PC|
TBZ (abs8)bp Jabel ifmema{absa)bp=0),PC+8+d 11 {labaliH—P 0 | @ 8 [6/7 0011 0000 1bp. <abs 8.» <di1 .. .H 3 [129
iffmem8(abs8)bp=1),PC+8—PC|

Note: Page refers to the corresponding page in the Instruction Manual.

This Materia

Copyrighted By Its Respective

*1 d4 sign extended
*2 d7 sign extended
*3 di1 sign extended

Instruction Set

59

Manuf act ur er

Appendices

MN101CD0 SERIES INSTRUCTION SET
Group Mnemonic Operation Flag CodeCycle Re- Pag
VFINF[CF[ZF|Size| |peat

TBZ TBZ (io8)bp,label Tf{mem8{|OTOP4io8)bp=0),PC+T+d7(labell+4HPC | O | @ | O | @ | 7 |6/7 0011 0100 Obp. <«io8 ..> «d7. ..H o123
if{mem8(IOTOP+i08)bp=1),PC+7-PC
TBZ (i08)bp,label THimem{IOTOP-i08)bp=0), PC+8+d1 1 {label}H-PC
if(mem8(IOTOP +io8)bp=1),PC+8-PC
TBZ (abs16)bp,label if{memB({abs16)op=0),PC+9+d7{label+H-PC
if(mem8(abs16)bp=1),PC+9-PC
TBZ (abs16)bp,label if{mem8{abs16Yap=0), PC+10+011(label}+H-PC
if{mem8(abs16)bp=1),PC+10-PC
TBNZ TBNZ (abs8)bp label it{mem8{abs8)bp=1), C+7-+d7{label}+H-PC
if(mem8(abs8)bp=0),PC+7-PC
TBNZ label 1),PC+8+411{label}sH PC
if{mem8(abs8)bp=0),PC+8 ;PC
TBNZ (io8)bp label ii{merme{io)bop=1},PC.+7+d7{labely+HoPC
ifilmem8(io)bp=0),PC+7-PC
TBNZ (io8)bp,label if{mem8(io)op=1),PC+8+d11{label}+H-PC
if(mem8(io)bp=0),PC+8-PC
TBNZ (abs16)bp,label [fimema{aps!8)op=1),PC+04d7abaliHoPC
if{mem8(abs16)bp=0),PC+9-PC
TBNZ (abs16)bp,label lif{mem8{abs16)ap=1) PC+10+¢11({label}+H »PC
iffmem8(abs16)bp=0),PC+10 ,PC
JMP JMP (An) 0-PC.17-16,An-PC.15-00-PCH | —|—|—|—| 8 | 4 0010 0001 OOAQ 128
JMP label abs18(label)+H-PC —|—|—|—1 7|5 0011 1001 OaaH <abs 18b pi15- 0.> 5 [128]
JSR JER (An) SP-3-SP,(PC+3).bp7-0-mem8(SP) | —|—|—|—| 3 | 7 0010 0001 OOAT1 129
(PC+3).bp15-8-mem8(SP+1)
(PC+3).H-mem8(SP+2).bp7,
0-mem8({SP+2).bp6-2,
(PC+3).bp17-16-smem8(SP+2).bp1-0
0-PCbp17-16
AnoPC.bp15-0,0-PC.H

JSR label SP-3-SP,(PC+5).bp7-0-mem8(SP) | —|—|—|—| 5 | & 0001 000H <di12 .. .> *3 129
(PC+5).bp15-8-mem8(SP+1)
(PC+5).H-mem8(SP+2).bp7,
0-mem8(SP+2).bp6—2,
(PC+5).bp17-16-mem8(SP+2).bp1-0
PC+5+d12(label)+H-PC
JSR label SP-358P,(PC+6).0p7-0-mem8(SP) | — | —|—|—| 6 | 7 0001 00TH <d16 > *4 130
(PC+6).bp15-8-mem8(SP+1)
(PC+6).H-mem8(SP+2).bp7,
0-mem8(SP+2).bp6—2,
(PC+6).bp17-16-mem8(SP+2).bp1-0
PC+6+d16(label)+H-PC
JSR label SP-358P,(PC+7) bp7-0-mem8(SP) | —|—|—|—| 7 | 8 0011 1001 1aaH <abs 18b pl5 0. 5 130
(PC+7).bp15-8-mem8(SP+1)
(PC+7).H-mem8(SP+2).bp7,
0 smem8(SP+2).bp6—2,
(PC+7).bp17-16-mem8{SP+2).bp1-0
abs18(label)+H-PC
JSRV (1bl4) SP-3)SP,(PC+3).bp7-0 mem8(SP} | —|—| —|—| 3 | @ 1111 1110 <td> 131
(PC+3).bp15-8-mem8(SP+1)
(PC+3).H-mem8(SP+2).bp7
0-mem8(SP+2).bp6—2,
(PC+3).bp17-16-smem8{SP+2).bp1-0
mem8{x'004080+tbl4<<2)PC.bp7-0
mem8({x'004080+1bl4<<2+1)-PC.bp15-8
mem8(x'004080-+bl4<<2+2).bp7-PC.H
mem8{x'004080+tbl4<<2+2) bp1-0-
PC.bpi7-16
NOP NOP PC+2-PC — === 2 1| v 0000 0000 132

Note: Page refers to the carrespanding page in the Instruction Manual.

Machine Code Notes)
5 6 7

Ext. 1 2 3 4

o
[]
o
[]
®

6/7 0011 0100 1bp. <io8 ..» <d11 .. .H 2 |123

o
[]
o
[
©

778 0011 1110 Obp. <abs 16.> <d7. .H 1124

o
[J
o
[J
=

78 0011 1110 1bp. <abs 16. .. .> <d11 .. .H 2 124

o
[]
o
[]
~

6/7 0011 0001 Obp. <abs 8.> <d7. .H *1 125

o
[]
o
[]
®

6/7 0011 0001 1bp. <abs 8.> <d11H *2 |125

o
[]
o
[]
N

&/7 0011 0101 Obp. <io8 .> <d7. .H *1 o |126)

o
[]
o
[]
[+

6/7 0011 0101 1bp. <ic8 .> <«di1 .. _.H 2 |12

o
[]
o
[]
©

7/8 0011 1111 Obp. <abs 16.> <d7. ..H *1 127

o
[]
o
[]
5

7/8 0011 1111 1bp. <abs 16.> <di1 .. .H 2 [127]

*1 d7 sign extended
*2 d11 sign extended
*3 d12 sign extended
*4 d16 sign extended
*5 aa=abs18.17-16

60 Instruction Set

This Material Copyrighted By Its Respective Manufacturer

Appendices

MN101C00 SERIES INSTRUCTION SET
Group Mnemonic Operation Flag CodeCycle Re- Pag
VFNF[CF[zZF|Size| ~ [peat

RTS RTS mem8(SP)—(PC).bp7-0 —|—=|=|—2 |7 0000 0001 133
mem8(SP+1)—>(PC+3).bp15-8
mem8(SP+2).bp7—(PC4+3).H
mem8{SP+2).bp1-0—(PC+3).bp17-16
SP+3->8P

RTI RTI mem8(SP)—»>PSW eo|e o @ 2 11 0000 0011 134]
mem8(SP+1)—(PC).bp7-0
mem8(SP+2)—(PC+3).bp15-8
mem8(SP+3).bp7 >(PC+3).H
mem8{SP-+3}.bp1-0—{PC+3).bp17-16

Notes)

Machine Code
6 7

Ext. 1 2 3 4 5 8 9 10

mem8(SP+4)—>HA-|
mem8(SP+5)—>HA-h
SP+6->SP
Control Instructions
[ReP REP imm3 imm3—RPC [—|—=]=][=[38]2] [oo010 0001 {rep [*1 [135

Note: Page refers to the corresponding page in the Instruction Manual. *1 No repeat when Imm3=0

Instruction Set 61

This Material Copyrighted By Its Respective Manufacturer

Appendices

MN101C00 SERIES INSTRUCTION MAP

1st nibble/2nd nibble
o] 1

0

1

Extended code: b'0010"
1st nibble/2nd nibble

This Materia

2 3 4 5 6 7 8 9 A B C D E F
NOP |RTS |MOV#s{ios) RTI CMP #8 (abs8)(abs12) [POP An ADD #8,Dm MOVW #8,DWm| MOVW #8,Am
JSR di12(label) |JSR d16(label) | MOV #8,(abs8)/fabs12) [PUSH An OR #8,Dm AND #8,Dm
When extended code is b'0010"
When extended code is b'0011"
MOV (abs12),Dm MOV (abs8),Dm MOV (An),Dm
MOV Dn,(abs12) MOV Dn,(abs8) MOV Dn,(Am)
MOV (io8),Dm MOV (d4,SP),Dm MOV (d8,An),Dm
MOV Dn,(io8) MOV Dn,(d4,SP) MOV Dn,(d8,Am)
ADD #4,Dm SUB Dn,Dn BGE d7|BRA d7 |BEQ d7 | BNE d7 |BCC d7|BCS d7 | BLT d7 |BLE d7
BEQ d4 BNE d4 MOVW DWn,(HA)|MOVW An,(HA) [BGE d11[BRA d11|BEQd11|BNE d11|BCC d11|BCS d11|BLT d11 | BLE d11
MOV Dn,Dm / MOV #8,Dm
BSET (abs8)bp BCLR (abs8)bp
GCMP #8,Dm MOVW (abs8),Am|MOVW (abs8),DWm|CBEQ #8,Dm,d7 CMPW #16,DWm| MOVW #16,DWm
MOV Dn,(HA) MOVW An,(abs8) [MOVW DWn,(abs8) | CBNE #8,Dm,d7 CMPW #16,Am|MOVW #16,Am
MOVW (An),DWm MOVW (d4,SP),Am| MOVW (d4,SP),DWm |POP Dn ADDW #4,Am |BRA d4
MOVW DWn,(Am) MOVW An,(d4,SP) | MOVW DWn,(04,SP) |PUSH Dn ADDW #8.SP| ADDW #4.SP| JSRV (fol4)
0 1 2 3 4 5 6 7 8 9 A B (¢] D E F
MOVW An,Am CMPW An,Am MOVW SP,Am [MOVW An,SP [BTST #8,Dm
JMP (A0)| JSR (A0)| JMP (A1)]JSR (A1)| MOV PSW,Dm REP #3
BGT d7 |BHI d7 |BLS d7 [BNC d7|BNS d7 |BVC d7 |BVS d7 [NOT Dn ROR Dn
BGT d11|BHId11 |BLS d11 |BNC d11|BNS d11|BVC d11|BVS d11|ASR Dn LSR Dn
SUBW DWn,DWm SUBW #16,DWm|SUBW #16,Am [SUBW DWn,Am MOVW DWn,Am

ADDW DWn,DWm

ADDW #16,DWm|

ADDW #16,Am

ADDW DWn,Am

CMPW DWn,Am

MOV (d16,SP),Dm

MOV (d8,SP),Dm

MOV (d16,An),Dm

MOV Dn,(d16,SP)

MOV Dn,(d8,SP)

MOV Dn,(d16,Am)

MOVW DWn,DWm (NOPL @n=m)

CMPW DWn,DWm

ADDUW Dn,Am

EXT Dn,DWm |AND#8‘PSW| OR#8,PSW

MOV Dn,PSW

ADDSW Dn,Am

SUB Dn,Dm / SUB #8,Dm

SUBG Dn,Dm

MOV (abs16),Dm

MOVW (abs16),Am

MOVW (abs16) DWm

CBEQ #8,Dm,d11

MOVW An,DWm

MOV Dn,(abs16)

MOVW An,(abs16)

MOVW DW, (abs16)

CBNE #8,Dm,d11

[CBEQ #8,(abs8),d7/d11 [CBNE #8,(abs8),d7/d11

MOVW (d16,SP),Am| MOVW (d15,8P),DWn,

MOVW (d8,SP),Am

MOVW (38,SP), DWm

MOVW (An),Am

ADDW #8,Am |DIVU Dn,DWm

MOVW An (d16,SP) | MOVW DWn (616,5P)

MOVW An,(d8,SP)

MOVW DWn, (d8,SP)

MOVW An,(Am)

ADDW #16,5P

IMULU Dn,Dm

Instruction Map

Copyrighted By Its Respective Manufacturer

Appendices

Extended code: b'0011"
2nd nibble/3rd nibble

0 1 2 3 4 5 6 7 8 9 A B c D E F
0 |TBZ (abs8)bp,d7 TBZ (abs8)bp,d11
1 | TBNZ (abs8)bp,d7 TBNZ (abs8)bp,d11

2 |CMP Dn,Dm

3 |ADD Dn,Dm

4 |TBZ (i08)bp,d7 TBZ (i08)bp,d11

5 |TBNZ (i08)bp,d7 TBNZ (i08)bp,d11

6 |OR Dn,Dm

7 |AND Dn,Dm

8 |BSET (i08)bp BCLR (io8)bp

9 |JMP absi8(label) JSR absi8(label)

A |XOR Dn,Dm / XOR #8,Dm

B |ADDG Dn,Dm

C |BSET (abs16)bp BCLR (abs16)bp

D |BTST (absi6)bp cmpﬁ&(absw)|mov#&(absw)| CBEQ#s,(absw),dwm|caNE#e,(absws),d7m
E |TBZ (abs16)bp,d7 TBZ (abs16)bp,d11

F |TBNZ (abs16)bp,d7 TBNZ (abs16)bp,d1 1

Instruction Map 63

This Material Copyrighted By Its Respective Manufacturer

MN101C00 Series
LS| User's Manual

December, 1996 Version 0.02

Issued by Matsushita Electronics Corporation Micro Computer SE
© Matsushita Electronics Corporation

This Material Copyrighted By Its Respective Manufacturer

