SC/MP Microprocessor Applications Handbook

National Semiconductor

SC/MP Applications Handbook

PREFACE

In conjunction with other support documents (listed below), this Applications Guide provides the user with sufficient information to build, checkout, and utilize a wide variety of SC/MP-based systems. The information is organized in capsule form; thus, the designer can, with minimum effort, expand, modify, or customize a given application. The applications (chapter 2) are organized by class — Analog-to-Digital/Digital-to-Analog Systems, Keyboard/Display Systems, Multiprocessor Systems, and so on. Chapter 1 and the appendixes provide general design data as regards the instruction set, addressing modes, input/output capabilities, interrupt structures, and other applications-related features.

To complete your SC/MP support library, the following documents are presently available:

- Data Sheet, ISP-8A/500D Single-Chip 8-bit MicroProcessor (SC/MP) publication number 420305227-001. Provides electrical characteristics and functional overview of SC/MP chip.
- SC/MP Technical Description publication number 4200079. Comprises comprehensive descriptions of functional details, general interfacing characterisites, supporting hardware, and systems information.
- SC/MP Assembly Language Programming Manual order number ISP-8S/994Y. Contains comprehensive overview of the SC/MP Microprocessor as it relates to assembly language programming and detailed descriptions of the assembly language, sundry source statements, programming techniques, and assembly input/output formats.

The information in this handbook is believed to be reliable; nevertheless, the National Semiconductor Corporation does not assume responsibility for inaccuracies and the material presented is subject to change without notice. Furthermore, such information does not convey to the user of semiconductor devices described any license under the patent rights of the National Semiconductor Corporation or others.

February 1977R

© National Semiconductor Corporation 2900 Semiconductor Drive Santa Clara, California 95051

CONTENTS

Chapter		Page
	PREFACE	
1	SC/MP AS A GENERAL PURPOSE APPLICATIONS MICROPROCESSOR	
	INTRODUCTION	1-1
	APPLICATIONS OVERVIEW OF SC/MP	1-1
	SC/MP Timing	1-1
	Sense Lines	1-1
	Serial Input/Output	1-2
	Control Flags	1-2
	8-Bit Data Bus	1-2
	12-Bit Address Bus	1-2
	Power Requirements	1-2
	Putting the Basics of SC/MP to Use	1-2
	SC/MP Hardware	1-3
	Accumulator Register	1-3
	Pointer Registers	1-3
	Extension Register	1-6
	Status Register	1-6
	SC/MP Pinouts	1-8
	ADDRESSING CAPABILITIES AND INSTRUCTION SET OF SC/MP	1-11
	Addressing	1-11
	PC-Relative Addressing	1-11
	Immediate Addressing	1-11
	Indexed Addressing	1-11
	Auto-Indexed Addressing	1-11
	Instruction Set	1-12
	IMPLEMENTING A MINIMUM (LOW-COST) SC/MP SYSTEM	1-16
	EXPANDING THE SECURITY-ENTRY SYSTEM	1-16
	BUFFERING AND INTERFACE CHARACTERISTICS OF SC/MP	1-19
	TTL/MOS Interfaces	1-19
	Buffering SC/MP	1-19
	TRI-STATE Considerations	1-21
2	CONCEPTS AND PRINCIPLES OF SC/MP INTERFACING	
	GENERAL CONCEPTS OF A/D AND D/A CONVERTERS	2C1-0
	SINGLE-INPUT ANALOG-TO-DIGITAL CONVERTER	2C1-0
	General Description	2C1-0
	System Operation	2C1-0
	System Adjustments	2C1-2
	Software Considerations	2C1-2

CONTENTS (Continued)

	Page
ANALOG-TP-DIGITAL CONVERSION USING MULTIPLE CONVERTERS	2C1-3
General Description	2C1-3
System Operation	2C1-3
System Adjustments	2C1-5
Software Considerations	2C1-5
ANALOG-TO-DIGITAL CONVERTER USING MULTIPLEXED UNITS	2C1-7
General Description	2C1-7
System Operation	2C1-7
System Adjustments	2C1-7
Software Considerations	2C1-9
CONCEPTS FOR A LOW-COST SYSTEM	2C1-10
General Description	2C1-10
System Operation	2C1-10
INTERFACING A KEYBOARD TO SC/MP	2C2-1
USING SC/MP AS A KEYBOARD SCANNER	2C2-1
General Description	2C2-1
System Operation	2C2-1
Software Considerations	2C2-3
USING SC/MP WITH A KEYBOARD (20-KEY) ENCODER	2C2-7
General Description	2C2-7
System Operation	2C2-7
Software Considerations	2C2-7
USING SC/MP WITH THE MM5740 (90-KEY) ENCODER	2C2-13
General Description	2C2-13
System Operation	2C2-13
Software Considerations	2C2-13
AN INTERRUPT-DRIVEN KEYBOARD/DISPLAY SYSTEM	2C2-15
General Description	2C2-15
System Operation	2C2-17
READ Mode	2C2-17
MODIFY Mode	2C2-17
XECUTE Mode	2C2-17
ABORT Mode	
Software Considerations	2C2-18
System Schematics	2C2-18
INTERFACING SC/MP WITH A BURROUGHS SELF-SCAN DISPLAY	2C2-37
General Description	2C2-37
Software Considerations	2C2-37
System Operation	2C2-37
MULTIPROCESSOR SYSTEM	2C3-1
General Description	2C3-1
System Operation	2C3-1
Software Considerations	2C3-1

CONTENTS (Continued)

Chapter		Page
	INTERFACING A SC/MP SYSTEM WITH A CASSETTE RECORDER	2C4-1
	General Description	2C4-1
	Operator Control	2C4-2
	System Operation	2C4-2
	Software Considerations	2C4-5
	INTERFACING SC/MP WITH A SEIKO PRINTER	2C4-13
	General Description	2C4-13
	System Operation	2C4-16
	Software Considerations	2C4-17
	APPENDIX A. CLOCK CONSIDERATIONS FOR SC/MP	A-1
	APPENDIX B. ADDRESS ASSIGNMENTS AND DECODING METHODS	B-1
	APPENDIX C. SC/MP INTERRUPT SYSTEM	C-1
	APPENDIX D. MATH ROUTINES	D-1
	APPENDIX E. IMPLEMENTING PROGRAM DELAYS FOR SC/MP	E-1
	LIST OF TABLES	
Table	Title	Page
1-1	Description of SC/MP Pinouts	1-10
1-2	SC/MP Instruction Summary	1-12
1-3	Instruction Execution Time	1-13
1-4	Symbols and Notations Used to Express Instruction Execution	1-14
2C2-1	Alphanumeric Characters and Corresponding Hex-Input Codes	
2C4-1	Cassette Recorders Used for Accuracy and Reliability Tests.	
	LIST OF ILLUSTRATIONS	
Figure	Title	Page
1-1	Basic Functions of SC/MP.	1-1
1-2	CPU Architecture and Pinouts of SC/MP	1-4
1-3	40-Pin SC/MP Chip	1-8
1-4	SC/MP Timing (Based on 1-MHz Crystal) and Processing Sequences	
1-5	SC/MP Program Execution	1-15
1-6	Minimum Security System Using SC/MP and PROM.	1-17
1-7	Expanded Security System Using SC/MP, PROM, a 4-by-10 Decoder, and Miscellaneous Components	1-18
1-8	One Method of Buffering Data, Address, and Control Lines of SC/MP	1-20
1.9	TRI-STATE Bus Interface.	1-21
1-10	One Method of TRI-STATE Control	1-22
2C1-1		2C1-0
2C1-1 2C1-2		2C1-0
2C1-2 2C1-3	Timing Summary for Single-Converter System	2C1-1
2C1-3 2C1-4		2C1-1
2C1-4 2C1-5		
2C1-5 2C1-6	Multiple-Converter Analog-to-Digital System	2C1-4 2C1-5
2C1-6 2C1-7	Flowchart and Program Listing for Multiple-Converter System	2C1-3
		2C1-8 2C1-9
2C1-8	Flowchart and Program Listing for Analog-to-Digital Converter System with Multiplexed Inputs	201-9

LIST OF ILLUSTRATIONS (Continued)

Figure	Title	Page
2 C1-9	Low-Cost Converter System	2C1-12
2C1-10	Flowchart and Program Listing for Low-Cost Converter System	
2C2-1	Using SC/MP as a Keyboard Scanner	2C2-2
2C 2-2	Flowchart for SC/MP Interfaced with a 6x8 Keyboard Matrix	2C2-3
2C2-3	Program Listing for SC/MP Interfaced with a 6x8 Keyboard Matrix	2C2-4
2C2-4	Using SC/MP with a Keyboard (20-Key) Encoder	2C2-8
2C 2-5	Using Sense B of SC/MP to Input Keycode Data—Flowchart and Program Listing	2C2-9
2 C2-6	Using Keyboard as Interrupt Device (via Sense A)—Flowchart and Program Listing	2C2-11
2C2-7	Interfacing SC/MP with the MM5740 (90-Key) Encoder	2C2-14
2C2-8	Interrupt-Driven Keyboard/Display System—Block Diagram and Memory Map	2C2-16
2C2-9	Flow Diagram for Interrupt Service Routine	2C2-22
2C2-10	Flow Diagrams for READ, MODIFY, XECUTE, and ABORT Subroutines	2C2-23
2C 2-11	Flow Diagrams for G4HEX and G2HEX Subroutines	2C2-24
2C 2-12	Flow Diagrams for SCAN/MUXDIS and DONE Subroutines	2C2-25
2C 2-13	Program Listing for Interrupt-Driven Keyboard/Display System	2C2-26
2C2-14	Interrupt-Driven Keyboard/Display System—Schematic Diagram	2C2-36
2C2-15	SC/MP Interfaced with Burroughs Self-Scan Display	2C2-38
2C2-16	Flowchart for Control and Moving-Message Program	2C2-39
2C2-17	Program Listing for Control and Moving-Message Program	2C2-40
2 C3-1	Using SC/MP in a Multiprocessing System	2C3-2
2C 3-2	Flowchart for Multiprocessing System and Program Listing for KITBUG	2C3-3
2C3-3	Program Listing for Burroughs Self-Scan Routine	2C3-12
2C4-1	Cassette Recorder Interfaced with SC/MP System-Block Diagram and Message Format	2C4-1
2C4- 2	Decoding and Memory-Interface Circuits	2C4-3
2C4- 3	Cassette-to-SC/MP Interface Circuits	2C4-4
2C4-4	SC/MP-to-Cassette Interface—Write and Read Flowcharts	2C4-5
2C4-5	SC/MP-to-Cassette Interface—Program Listing	2C4-6
2C4-6	SC/MP Interfaced with Seiko Digital Printer	2C4-14
2C4-7	Column/Character Relationships and Timing for One Print Cycle	2C4-15
2C4-8	Memory Allocations for Printer Program	2C4-16
2C4-9	Summary and Detailed Flowchart for SC/MP-to-Printer Interface	2C4-18
2C4-10	Program Listing for SC/MP-to-Printer Interface	2C4-19
A-1	Connecting Capacitor or Crystal to SC/MP	A-1
A- 2	Oscillator Frequency versus Capacitance	A-1
A- 3	Using External Clock for SC/MP Timing	• A-2
A-4	Alternate Methods of Generating External Clock Signals	A-3
B -1	Using External Logic and Spare Address Lines to Select RAM/PROM Memory or Input/Output Periph	nerals B-1
B -2	Using 2-by-4 Decoder to Select Memory and Input/Output Peripherals	B-4
B- 3	Using Address Bits 12-15 and 4-by-16 Decoder to Select anyone of 16 Input/Output Peripherals	B-5
B-4	Using Read/Write Strobes to Implement Address Decodes	B- 7
B- 5	Using 6-Bit Bus Comparators to Select Peripherals	B- 8
C-1	SC/MP Interrupt/Instruction Fetch Process	C-1
C-2	Using SC/MP and a Priority Encoder to Implement a Multilevel Interrupt System	C-2
C-3	Flowchart and Program Listing for Multilevel Interrupt System	C-4

Chapter 1

SC/MP AS A GENERAL PURPOSE APPLICATIONS MICROPROCESSOR

INTRODUCTION

This document defines the internal architecture, the pinouts, and the interfacing techniques of the SC/MP microprocessor from an applications point-of-view; it is also addressed to the concepts, principles, hook-up detail, and general implementation procedures that relate to the many applications for which SC/MP is suitable. It is assumed that the user of this document is somewhat familiar with SC/MP hardware and software. If additional information is required in either of these areas, the following support documents are available:

- Data Sheet, ISP-8A/500D Single-Chip 8-bit Microprocessor (SC/MP) publication number 420305227-001. Provides electrical characteristics and functional overview of SC/MP chip.
- SC/MP Technical Description publication number 4200079. Comprises comprehensive descriptions of functional details, general interfacing characteristics, supporting hardware, and systems information.
- SC/MP Assembly Language Programming Manual—order number ISP-8S/994Y. Contains comprehensive overview of the SC/MP Microprocessor as it relates to assembly language programming and detailed descriptions of the assembly language, sundry source statements, programming techniques, and assembly input/output formats.

APPLICATIONS OVERVIEW OF SC/MP

SC/MP is a single-chip 8-bit microprocessor with a 16-bit addressing capability that provides the user with a simple, cost-effective, and general-purpose tool for implementing a wide range of applications. The basic functions of SC/MP are shown in figure 1-1. The following sections are addressed to the purpose and use of these basic functions as they relate to the broad spectrum of SC/MP applications.

SC/MP Timing

For applications where timing is not particularly critical, only a capacitor is required for the clock — all other timing circuits are an integral part of the chip. If the application requires precision clock control, the capacitor can be replaced with a crystal — shown connected by broken lines in figure 1-1. In either case, no external timing circuits (clock drivers, phase splitters, buffers, and so forth) are required. Refer to appendix A for information on using a capacitor or a crystal, and for external clock considerations.

Sense Lines

SC/MP uses two sense lines (Sense A and Sense B) as its "eyes" to see what is happening external to the processor; the sense inputs shown in figure 1-1 are an integral part of the chip. Under program control, either or both sense lines

Figure 1-1. Basic Functions of SC/MP

can be examined and a decision based on the logic state of one or both inputs can be made.

The Sense A line serves a dual function in that it is used as the interrupt input; when Sense A is used as an interrupt, SC/MP can monitor asynchronous events while running other programs. (Refer to appendix C for implementation detail of SC/MP interrupts.) In certain applications, the Sense A line can also be used for polling.

Serial Input/Output

The serial interface capability of SC/MP is provided by a single 8-bit register (the Extension Register) and a "ninth-bit" output latch for the least significant digit of the word. The serial input/output capability is especially useful for Teletype[®] applications, since the Teletype data are in 8-bit format — a parity bit plus a 7-bit code. The serial interface is also cost-effective in inexpensive analog-to-digital systems, X-Y plotters, display systems, data-acquisition systems, and a host of other applications where inputs are generated in serial order and the output device can be driven serially.

Control Flags

Discrete control of events that occur external to the microprocessor are provided by three control flags (0, 1, and 2); these TTL-compatible outputs are built into the SC/MP chip. Under software control, each flag output can produce pulses or fixed voltage levels; thus, lamps, motors, relays, and other similar devices can be serviced as required by the application. Since any combination of the flags can be set with a simple series of instructions, there is a significant savings in external decoding logic.

8-Bit Data Bus

The 8-bit data bus provides a means of bidirectional data transfer between the Accumulator, which is internal to SC/MP, and standard memory components or peripheral devices, which are external to SC/MP. Valid input data are expected to be on the bus at negative read-strobe (NRDS) time, whereas output data are valid on the bus at negative write-strobe (NWDS) time. The four most significant address bits (AD 12, AD 13, AD 14, and AD 15) and four input/ output status signals (RFLG, IFLG, DFLG, and HFLG) are multiplexed on the data bus and appear at negative addressstrobe (NADS) time; if the application requires, the address and status signals can be externally latched. (Note: In applications that use Direct Memory Access (DMA), data transfers between memory and a peripheral can be made without entering the data port of SC/MP; that is, SC/MP does not actively participate in the actual transfer of data.

® Registered trademark of the Teletype Corporation.

Refer to the SC/MP Technical Description for details of DMA operation.)

12-Bit Address Bus

SC/MP provides 12 dedicated address lines (AD 00 through AD 11) that are internally latched — an applications feature that can save much external logic. As previously indicated, the 4 most significant address bits (AD 12 through AD 15) are time-multiplexed on the 8-bit data bus; thus, a SC/MP system can be expanded easily to 65,536 bytes of memory.

Power Requirements

For direct interface with TTL and MOS devices, both +5-volt and -7-volt sources are required. From an applications viewpoint, it is advantageous to use low-power TTL and MOS devices, since the SC/MP interface can be implemented without buffering.

Putting the Basics of SC/MP to Use

Before looking at the internal architecture of SC/MP, let us first see how an applications concept can be developed by using nothing more than the basic features just described and some simple software. Consider a "fire alarm system" with a fire-sensing device connected to the Sense A/interrupt line. The interrupt capability of the Sense A line is enabled by software and, on each instruction fetch to memory, the interrupt input is interrogated. As long as there is no fire, the interrupt status does not change and SC/MP stays in the main program. If a fire occurs, the interrupt input becomes active (high), and on the next instruction fetch, SC/MP is directed to another program; this program is written by the user and is called an interrupt service routine. The interrupt service routine can be written to serve any or all of several functions - turning on the fire alarms, playback of prerecorded evacuation procedures and perhaps opening emergency exits, turning on the sprinkler system, calling the fire department, and so on. All of these functions can be performed by software control of flags 0, 1, and 2. For instance, the alarm system and playback of evacuation procedures might be activated simply by setting flag 0 from a logic '0' to a logic '1'. A series of pulses on flag 1 might be used to open one or more emergency exits and to turn on the sprinkler systems. Flag 2 might be used to activate an automatic phone dialer – a coded pulse train could indicate the number to be dialed. The phone systems could also be activated and the dial-up code transmitted via the serial input/ output port of SC/MP. Except for memory and external interface circuits, all hardware required to implement the fire control system is resident in the SC/MP chip; thus, optimal cost-effectiveness is obtained.

SC/MP Hardware

In the preceding section, SC/MP is defined in basic terms with little emphasis on the internal architecture of SC/MP. To view SC/MP from a general-purpose applications perspective, a study of the CPU architecture and a description of the pinouts are in order. Figure 1-2 shows the functional subdivisions and identifies each input/output pin of the SC/MP chip. In subsequent sections, all functions and pinouts that are related directly to applications are described in terms of both hardware and software.

Accumulator Register

Almost any data movement within the SC/MP system involves the 8-bit Accumulator; thus, the Accumulator is used in every type of application. In terms of interface and software control, functions of the Accumulator can be summarized as follows.

- Data transfers to and from memory are made via the Accumulator.
- Under software control, the low-order or high-order data byte of any Pointer Register can be exchanged directly with the contents of the Accumulator; data can also be exchanged between the Extension Register and the Accumulator.
- Data can be copied from the Status Register to the Accumulator and vice versa.
- Results of all operations performed by the Arithmetic Logic Unit are left in the Accumulator.

Pointer Registers

Except for Pointer Register 0 (P0), which is dedicated for use as the Program Counter (PC), the remaining three Pointer Registers (P1, P2, and P3) are available for addressing memory and other peripheral devices. In a given application, a Pointer Register might be used as follows: 16 bits (2 bytes) of address data are transferred via the Accumulator to a

designated Pointer Register — say, P1. Now, when an 'LD 1' Instruction is executed, SC/MP is instructed to load 8-bits of data from the external device whose address is specified by the contents of P1. Another pointer—P3, for example—could be loaded with the memory location in which the data are to be stored, that is, an 'ST 3' Instruction. When this instruction is executed, the foregoing data are transferred from the Accumulator to the memory location specified by P3.

From a programming point-of-view, certain conventions regarding pointer register assignments are beneficial; some typical assignments are as follows:

```
Pointer Register 1 ------- ROM Pointer
Pointer Register 2 ------- RAM Pointer
Pointer Register 3 ------ Subroutine Pointer
```

As previously indicated, the low-order or the high-order byte of any Pointer Register can be exchanged with the Accumulator; also, the 16-bit content of the Program Counter (PC) can be exchanged with any of the other Pointer Registers. Not only are these exchanges useful in implementing the addressing schemes of SC/MP, the 16-bit exchange is particularly useful in executing subroutine calls. For example, using the foregoing convention, Pointer Register 3 is loaded with the memory location that just precedes the subroutine address; that is, if the subroutine address is X'FE15, then, Pointer Register 3 is set to X'FE14. The content of P3 now is exchanged with the Program Counter, and since the PC is incremented before the instruction fetch, the instruction at address X'FE15 is executed. During subroutine nesting, it is important to save the contents of P3 because they are the only return link to the basic program. This is easily accomplished via the Accumulator and two store instructions – one for the low-order byte and one for the highorder byte. The following examples assume that SUBR is the label on the first instruction of the subroutine.

Figure 1-2. CPU Architecture and Pinouts of SC/MP

SUBROUTINE JUMP

FE14	SUBR 1	=	SUBR-1	
C414		LDI	L(SUBR 1)	;LOAD LOWER SUBROUTINE ADDRESS
33		XPAL	P3	;TRANSFER LOWER TO P3L
C4FE		LDI	H(SUBR 1)	;LOAD UPPER SUBROUTINE ADDRESS
37		XPAH	P3	;TRANSFER UPPER TO P3H
3F		XPPC	P3	;EXCHANGE PC AND P3
SUBROUTINE RETU	JRN			
3F		XPPC	P3	RETURN FROM SUBROUTINE EXCHANGE

If multilevel subroutines are used, the current contents of the Pointer Register should be saved on the top of the stack and should be restored upon return from the subroutine.

C414 33 CEFF C4FE	LDI XPAL ST LDI	L(SUBR 1) P3 @-1(P2) H(SUBR 1)	;LOAD LOWER SUBROUTINE ADDRESS ;TRANSFER TO P3 ;SAVE P3L ON STACK ;LOAD UPPER SUBROUTINE ADDRESS
37	XPAH	P3	TRANSFER TO P3H
CEFF	ST	@-1(P2)	;SAVE P3H ON STACK
3F	XPPC	P3	JUMP TO SUBROUTINE
C6FF	LD	@1(P2)	RETURN FROM SUBROUTINE, LOAD
			;P3H FROM STACK
37	XPAH	P3	;TRANSFER TO P3H
C601	LD	@1(P2)	;LOAD P3L FROM STACK
33	XPAL	P3	TRANSFER P3L FOR RETURN TO
			;CALLING SUBROUTINE

A subroutine call can also be implemented via the Jump to Subroutine Instruction (JS). The SC/MP assembler treats this pseudo instruction the same as any other assembly-language statement except that, in this case, one or more machine-language instructions are generated. Following is an example:

JUMP TO SUBROUTINE (JS)

	Operation	Operands
Format:	JS	ptr, expression
Memory:	7 bytes	
Generated Code:	LDI XPAH LDI XPAL XPPC	H(expression) ptr L(expression)-1 ptr ptr

When a Jump to Subroutine is invoked, the code generated results in the setting of the specified Pointer Register (ptr) to the value, expression-1. In calculating this value, the memory page structure of SC/MP must be considered—refer to SC/MP Assembly Language Programming Manual. The

contents of the Pointer Register are exchanged with the To implement multilevel (nested) subroutines, a memory "stack" is required. In accordance with the foregoing assignments, Pointer Register 2 can be used as the stack pointer in RAM. The address loaded into P2 points to the top of the stack; this address is a location in read/write memory. contents of the Program Counter. As a result, the next instruction to be executed will be at the location addressed by the expression. The Pointer Register will contain the address of the XPPC Instruction, allowing a subroutine return to the instruction that follows.

If P3 is used as a subroutine pointer and its contents are not disturbed, the subroutine can be called repeatedly without reloading P3. The following setup shows how this can be accomplished.

Extension Register

Basically, the 8-bit Extension Register is a backup for the Accumulator as the Accumulator can be loaded from the Extension Register with a Load AC from Extension Instruction (LDE) or the contents of the two registers can be exchanged with an Exchange AC and Extension Instruction

(XAE). Also a serial input/output can be implemented via the Extension Register and the Serial Input/Output Instruction (SIO). Technically, the Extension Register can be thought of as a 9-bit register; the additional bit in the output latch is useful for implementing 'starts' and 'stops' while still maintaining 8 bits of data in the register. A simple sequence of instructions to initialize the output latch is shown below.

INITIALIZE:	LI	0	;LOAD ACCUMULATOR WITH ALL ZEROES
	XAE		;TRANSFER CONTENTS OF ACCUMULATOR TO
			;E-REGISTER
	SIO		;SET OUTPUT LATCH TO ZERO

In the first Load Immediate Instruction (LI), the Accumulator is loaded with all zeroes; the second Exchange AC and Extension Instruction (XAE) fills the 8-bit Extension Register with zeroes. Now, a Serial Input/Output Instruction (SIO) is executed; this right-shifts the Extension Register one position and brings the data at the serial input (SIN) port into the most significant bit position, while shifting a 'O' into the output latch. (Note: The Extension Register also can be used for addressing — refer to "Addressing Capabilities and Instruction Set of SC/MP," located later in

this section, for additional information about addressing.)

Status Register

Conditional responses of SC/MP are based on the logic '0' or logic '1' states of the 8 bits in this register. As shown in figure 1-2, bits 0,1, and 2, respectively, are dedicated to control flags 0, 1, and 2. One or more of the control flags are set by loading a bit pattern into the Accumulator and then copying the contents of the Accumulator to the Status Register; refer to series of instructions that follows.

				
1 2	PFLG:	LDI CAS	01	;SET LSB OF ACCUMULATOR TO '1' :SET FLAG 0 to '1'
3		LDI	00	;SET CONTENTS OF ACCUMULATOR ;EQUAL TO 0
4		CAS		;RESET FLAG 0 FROM LOGIC '1' TO ;LOGIC '0'
•				
21	SFLG:	LDI	03	;SET BIT POSITIONS '0' AND '1' OF ;ACCUMULATOR TO LOGIC '1'
22		CAS		;SET FLAGS 0 AND 1 SIMULTANEOUSLY

From the preceding instructions, it is readily seen that flags 0, 1, and 2 are software-controlled to produce a series of pulses or a DC level at the output pins in whatever timing sequence the application requires. The state of the flags can

be tested by copying the contents of the Status Register to the Accumulator and by using a masking or bit-testing operation — similar to the Sense A/Sense B program that follows.

1	CSA		COPY CONTENTS OF STATUS REGISTER INTO ACCUMULATOR
2	ANI	010	;MASK TO TEST SENSE A (BIT 4)
3	JNZ	SASET	;JUMP TO SASET IF SENSE A = 1
•			CONTINUE PROGRAM IF SENSE A = 0
•			
•			
11	CSA		COPY CONTENTS OF STATUS REGISTER INTO ACCUMULATOR
12	ANI	020	;MASK TO TEST SENSE B (BIT 5)
13	JNZ	SBSET	;JUMP TO SBSET IF SENSE B = 1
•			CONTINUE PROGRAM IF SENSE B = 0
•			
•			
21	CSA		COPY CONTENTS OF STATUS REGISTER INTO ACCUMULATOR
22	ANI	030	;MASK TO TEST SENSE A AND SENSE B (BITS 4 AND 5)
23	JNZ	ORSET	JUMP TO ORSET IF SENSE A OR SENSE B IS EQUAL TO '1'
			CONTINUE PROGRAM IF BOTH SENSE A AND SENSE B
			;EQUALS '0'

As shown in the foregoing code, the operational sequence for testing each sense input is the same — the only difference being that for Sense A the mask coincides with bit 4 and that for Sense B it coincides with bit 5. When the two sense lines are tested simultaneously (lines 21, 22, and 23), the program does not immediately identify which sense line is high but simply jumps to a location (ORSET) if either Sense A or Sense B is set. This method of testing might be useful in a polling system where time is critical and it takes too long to check discretely each sense line every time the program circulates through the polling loop. By simultaneously checking both inputs and by jumping to an appropriate subroutine, software can be used to discriminate between Sense A and Sense B - if, in fact, one of the sense inputs is high.

Many applications require an interrupt input, and the Sense A line can be used for this purpose. The SC/MP interrupt system is enabled simply by using an Enable Interrupt Instruction (IEN) to set bit 3 in the Status Register; alternately,

the interrupt system can be enabled, first, by setting bit 3 of the Accumulator to a logic '1' and, then, by executing a copy AC to Status Instruction (CAS). In either case, with bit 3 of the status register set to a logic '1', the Sense A line becomes an interrupt input — refer to appendix C for implementation detail of the interrupts. The interrupt system can be disabled in either of two ways: (1) a Disable Interrupts Instruction (DINT) can be used to set bit 3 of the Status Register to a logic '0', or (2) the interrupt system can be disabled, first, by setting bit 3 of the Accumulator to '0' and, then, by executing a Copy AC to Status Instruction (CAS). With bit 3 of the Status Register as a logic '0', the Sense A input is now returned to the sense mode and its function is once again identical to that of Sense B.

In some applications it may be desired to enable (or disable) the interrupt line and to set (or pulse) one or more flags with the same series of instructions. This can be done as follows:

1 2 3 •	CSA ORI	009	;ENABLE INTERRUPT (IEN) AND SET FLAG ;COPY STATUS TO ACCUMULATOR ;ENABLE INTERRUPT AND SET FLAG 0
• 9 10 11 12	CSA ANI CAS	OF6	;DISABLE INTERRUPT (DINT) AND RESET FLAG ;COPY STATUS TO ACCUMULATOR ;DISABLE INTERRUPT AND RESET FLAG 0 ;COPY ACCUMULATOR TO STATUS

Bits 4 and 5 of the Status Register correspond, respectively, to the Sense A and Sense B inputs. If the Sense A line is high, a logic '1' is read into bit 4 of the Status Register, whereas if the Sense B line is high, status bit 5 is set to a logic '1'. The following series of instructions show one way

to test the Sense A/Sense B status. The code in lines 1, 2, and 3 tests the status of Sense A (in the sense mode) and the code in lines 11, 12, and 13 tests the status of the Sense B input; the code in lines 21, 22, and 23 shows how both sense lines can be tested simultaneously.

Bits 6 and 7 of the Status Register provide arithmetic control; these control functions can be summarized as follows:

Bit 6 — Overflow (OV); this bit is set if an arithmetic overflow occurs during an add instruction (ADD, ADI, or ADE) or during a complement-and-add instruction (CAD, CAI, or CAE). Overflow is not affected by the decimal-add instructions (DAD, DAI, or DAE).

Bit 7 — Carry/Link (CY/L); this bit is set if a carry from the most significant bit occurs during an add, a complement-and-add, or a decimal-add instruction. The bit is also included in the Shift Right with Link (SRL) and the Rotate Right with Link (RRL) Instructions. CY/L is input as a carry into the bit 0 position of the add, complement-and-add, and decimal-add instructions.

SC/MP Pinouts

As shown in figure 1-3, SC/MP is housed in a 40-pin, dual-in-line package. Two of the pins are used for input power and two are used for timing; the remaining 36 pins are used for control, addressing, and data input/output functions. In a usual application, the 8 input/output pins (DB 00 through DB 07) are connected to a common data bus and the 12 address pins (AD 00 through AD 11) are connected to a common address bus. In conjunction with bus access and other appropriate control signals, three functions are implemented: (1) 8-bit data are input to SC/MP, (2) 8-bit data are output from SC/MP, and (3) address and status information are output from SC/MP. Timing detail and a description of each pinout are described in other documents; however, as an applications convenience, these functions are summarized, respectively, in figure 1-4 and table 1-1.

Figure 1-3. 40-Pin SC/MP Chip

Figure 1-4. SC/MP Timing (Based on 1-MHz Crystal) and Processing Sequences

Table 1-1. Description of SC/MP Pinouts

PIN	Basic Function	Design Considerations	PIN	Basic Function	Design Considerations
X1 37 X2	Timing	Connect capacitor between these pins for applications where timing is not critical; use crystal where timing is	NRST	Negative Reset	When this input is set low, in-process oper ations are aborted.
38		critical. (Refer to Appendix A for component characterization and the use of an external clock.)	NHOLD 6	Wait	In conjunction with CONT, the NHOLD input can be used to implement single cycle/single-instruction control of SC/MP — refer to figure 1-4e for extended input/
V _{SS} 20 V _{GG}	Power	$V_{SS} = +5V (\pm 5\%)$			output timing.
40 40		V _{GG} = -7V (±5%)	SIN	Serial Input/	When the SIO instruction is executed,
Sense A 17 Sense B	External sensing and software- controlled interrupt	These TTL-level inputs are connected directly to bit positions 4 and 5 of the status register. Both bits can be copied from the status register to the accumulator but neither bit can be written into from the accumulator, that is, they are	23 SOUT 24	Output	the MSB of the input data is shifted into the MSB of the extension register, and the LSB is shifted from the E-Register to an output latch, that is, the contents of the register can be changed without affecting the state of the output latch.
		"read only" inputs. With the interrupt armed (bit 3 of status register set high), the Sense A pin becomes the interrupt input — see figure 1-4g for processing sequence of interrupt request and Appendix C for implementation detail of the interrupt system.	NADS	Negative Address Strobe	When low, indicates valid address and status outputs are present on the system buses. The NADS leading edge of the strobe can be used to externally latch input/output status and the four
Flag 0 19 Flag 1	External control of peripherals	Each flag output is TTL-compatible and can drive a 1.6-milliampere load. The flags are software-controlled and can be			MSB of the 16-bit address; refer to figures 1-4c, 1-4d, and 1-4e for I/O timing of NADS.
21 Flag 2 22		set or pulsed in a single or multiple sequence.	NRDS	Negative Read Strobe	A Tri-State output that, when low, indicates SC/MP is ready to accept data from the 8-bit input/output bus; as shown in figure 1-4c, data are input on
BREQ ENIN	Bus-Access, DMA, and Multiprocessor	In simple stand-alone applications, BREQ can be connected to V _{GG} through a 6.8 kilohm resistor, ENOUT can be ig-	:		the trailing edge of this strobe.
ENOUT	Control	nored, and ENIN can be connected to VSS so that the SC/MP microprocessor has access to system buses whenever the BREQ pin is high. In systems that require bus-sharing, the common bus-request	NWDS	Negative Write Strobe	A Tri-State output that, when low, indicates output data from SC/MP is valid on 8-bit input/output bus; refer to figure 1-4d for output timing.
		line is continually tested by each micro- processor; when the request line is low, system buses can be accessed, and if BREQ and ENIN are set high, bus access is granted.		Input/Output data	At NADS time, I/O status and 4-MSB of 16-bit address are output from SC/MP; at NRDS time, data are input to SC/MP and, at NWDS time, data are output from SC/MP. Each pin is bidirectional
CONT 8	Start/Stop	Permits suspension of operations with- out loss of internal status. Can be used with 'HALT' flag to implement a pro-	AD 00	Latabad	and Tri-State.
		grammed halt; also, can be used with NHOLD (Wait) signal to implement single-cycle/single-instruction control of microprocessor.	AD 00- 11 25 36	Latched Address	At NADS time, the 12-bit latched address is valid and, as shown in figures 1-4c and 1-4d, a read <i>or</i> write function then is implemented.

^{*}Refer to SC/MP data sheet for minimum/maximum values.

ADDRESSING CAPABILITIES AND INSTRUCTION SET OF SC/MP

Addressing

During execution, instructions and data defined in a program are stored into and loaded from specific memory locations, the Accumulator, or selected registers. Because SC/MP memory (read/write and read-only), and peripherals are on a common data bus, any instruction used to address memory may be used to address the peripherals. The formats of the instruction groups that reference memory are shown below.

Memory Reference Instructions

Memory Increment/ Decrement Instructions and Transfer Instructions

Memory-reference instructions use the PC-relative, indexed, or auto-indexed methods of addressing memory. The memory-increment/decrement instructions and the transfer instructions use the PC-relative or indexed methods of addressing. The various methods of addressing memory and peripherals are shown below.

Type of	Operand Formats				
Addressing	m ptr		disp		
PC-relative	0	0	-128* to +127		
Indexed	0	1, 2, or 3	-128* to +127		
Immediate†	1	0	-128* to +127		
Auto-indexed	1	1, 2, or 3	-128* to +127		

- * For PC-relative, indexed, and audo-indexed memoryreference instructions, another feature of the addressing architecture is that the contents of the Extension Register are substituted for the displacement if the instruction displacement equals -128 (X'80).
- Immediate addressing is an addressing format specific to immediate instructions.

NOTE

All arithmetic operations associated with address format affect only the 12 low-order address bits; no carry is provided to the 4 high-order bits. For systems employing memories of 4K or less, the high-order bits can be ignored, as they are set to 0000 following initialization. For systems em-

ploying larger memories, the high-order bits must be set to the starting address of the desired 4K block of memory. For example, when the 4 high-order bits are 0001_2 , memory locations 1000_{16} - $1FFF_{16}$ are addressed; when 0010_2 , memory locations 2000_{16} - $2FFF_{16}$ are addressed; and so forth.

PC-Relative Addressing

A PC-relative address is formed by adding the displacement value specified in the operand field of the instruction to the current contents of the Program Counter. The displacement is an 8-bit twos-complement number, so the range of the PC-relative addressing format is -127_{10} to $+127_{10}$ locations from the current contents of the Program Counter.

Immediate Addressing

Immediate addressing uses the value in the second byte of a double-byte instruction as the operand for the operation to be performed. For example, compare a Load Instruction (LD) to a Load Immediate Instruction (LDI). The Load Instruction uses the contents of the second byte of the instruction in computing the effective address of the data to be loaded. The Load Immediate Instruction uses the contents of the second byte as the data to be loaded.

Indexed Addressing

Indexed addressing enables the programmer to address any location in memory through the use of the Pointer Register and the displacement value of an instruction. When indexed addressing is specified in an instruction, the contents of the designated Pointer Register are added to the displacement to form the effective address. The contents of the Pointer Register are not modified by indexed addressing.

Auto-Indexed Addressing

Audo-indexed addressing provides the same capabilities as indexed addressing along with the ability to increment or decrement the contents of the designated Pointer Register by the value of the displacement. If the displacement is less than zero, the contents of the Pointer Register is decremented by the displacement before the contents of the effective address are fetched or stored. If the displacement is equal to or greater than zero, the contents of the Pointer Register are used as the effective address, and the contents of the Pointer Register are incremented by the displacement after the contents of the effective address are fetched or stored.

Instruction Set

The SC/MP instruction set provides the general-purpose user of microprocessors a powerful programming capability along with above-average flexibility and speed. The instruction set consists of 46 instructions, which comprise 8 general categories. A listing of the complete instruction set is provided in table 1-2; typical instruction execution times are given in table 1-3, and notations and symbols used as shorthand expressions of instruction capability are defined in table 1-4.

The instruction set includes both single-byte and doublebyte instructions. A single-byte instruction consists of an 8bit operation code that specifies an operation that SC/MP can execute without further reference to memory. A double-byte instruction consists of an 8-bit operation code and an 8-bit data or displacement field. When the second byte represents a data field, the data are processed by SC/MP during execution of the instruction, thereby eliminating the need for further memory references. When the second byte represents a displacement value, it is used to calculate a memory address that will be accessed (written into or read from) during execution of the instruction.

Figure 1-5 provides a flowchart that illustrates the execution sequence for the various classes of SC/MP instructions.

Table 1-2. SC/MP Instruction Summary

Mnemonic	Description	Object Format	Operation	Micro- Cyçles
DOUBLE-B	YTE INSTRUCTIONS			
	Memory Reference Instructions	76543210 76543210		
LD	Load	1 1 0 0 0 mptr disp	(AC)←(EA)	18
ST	Store	1 1 0 0 1 m ptr disp	(EA)←(AC)	18
AND	AND	1 1 0 1 0 m ptr disp	(AC)←(AC) (EA)	18
OR	OR	11011mptr disp	(AC)←(AC) V (EA)	18
XOR	Exclusive-OR	1 1 1 0 0 m ptr disp	(AC)←(AC) V (EA)	18
DAD	Decimal Add	11101mptr disp	(AC)←(AC) ₁₀ + (EA) ₁₀ + (CY/L);(CY/L)	23
ADD	Add	1 1 1 1 0 mptr disp	(AC)←(AC) + (EA) + (CY/L);(CY/L),(OV)	19
CAD	Complement and Add	11111mptr disp	(AC)←(AC) + ~(EA) + (CY/L);(CY/L),(OV)	20
	Memory Increment/Decrement Instructions	17654321101765432101		
ILD	Increment and Load	101010 ptr disp	(AC), (EA)←(EA) + 1	22
DLD	Decrement and Load	101110	(AC), (EA)←(EA) – 1	22
	Immediate Instructions	76543210 76543210		
LDI	Load Immediate	1 1 0 0 0 1 0 0 data	(AC)←data	10
ANI	AND Immediate	11010100 data	(AC)←(AC) data	10
ORI	OR Immediate	11011100 data	(AC)←(AC) V data	10
XRI	Exclusive-OR Immediate	11100100 data	(AC)←(AC) V data	10
DAI	Decimal Add Immediate	11101100 data	(AC)←(AC) ₁₀ + data ₁₀ + (CY/L);(CY/L)	15
ADI	Add Immediate	1 1 1 1 0 1 0 0 data	$(AC)\leftarrow(AC) + data + (CY/L);(CY/L),(OV)$	11
CAI	Complement and Add Immediate	11111100 data	$(AC)\leftarrow (AC) + \sim data + (CY/L); (CY/L), (OV)$	12
	Transfer Instructions	765432 10 76543210		
JMP	Jump	100100 ptr disp	(PC)←EA	11
JP	Jump if Positive	100101 ptr disp	If (AC) ≥ 0, (PC)←EA	9, 11
JZ	Jump if Zero	100110 ptr disp	If (AC) = 0, (PC)←EA	9, 11
JNZ	Jump if Not Zero	100111 ptr disp	If (AC) ≠ 0, (PC)←EA	9, 11
	Double-Byte Miscellaneous Instructions	76543210 76543210		
DLY	Delay	10001111 data	count AC to -1,	13 to
			delay = 13 + 2(AC) + 2 disp + 29 disp	131, 593
			microcycles	

Table 1-2 (Concluded)

Mnemonic	Description	Object Format	Operation	Micro- Cycles
SINGLE-BY	TE INSTRUCTIONS			
	Extension Register Instructions	76543210		
LDE	Load AC from Extension	01000000	(AC)←(E)	6
XAE	Exchange AC and Extension	0000001	(AC)↔(E)	7
ANE	AND Extension	01010000	(AC)←(AC) (E)	6
ORE	OR Extension	01011000	(AC)←(AC) V (E)	6
XRE	Exclusive-OR Extension	01100000	(AC)←(AC) V (E)	6
DAE	Decimal Add Extension	01101000	$(AC)\leftarrow (AC)_{10} + (E)_{10} + (CY/L);(CY/L)$	11
ADE	Add Extension	01110000	$(AC)\leftarrow (AC) + (E) + (CY/L);(CY/L),(OV)$	7
CAE	Complement and Add Extension	01111000	$(AC)\leftarrow(AC)+\sim(E)+(CY/L);(CY/L),(OV)$	8
	Pointer Register Move Instructions	76543210		
XPAL	Exchange Pointer Low	0 0 1 1 0 0 ptr	(AC)↔(PTR _{7·0})	8
XPAH	Exchange Pointer High	0 0 1 1 0 1 ptr	(AC)↔(PTR _{15:8})	8
XPPC	Exchange Pointer with PC	0 0 1 1 1 1 ptr	(PC)↔(PTR)	7
	Shift, Rotate, Serial I/O Instructions	76543210		
SIO	Serial Input/Output	00011001	$(E_i) \rightarrow (E_{i-1})$, SIN $\rightarrow (E_7)$, $(E_0) \rightarrow SOUT$	5
SR	Shift Right	00011100	$(AC_i) \rightarrow (AC_{i-1}), 0 \rightarrow (AC_7)$	5
SRL	Shift Right with Link	00011101	$(AC_i)\rightarrow (AC_{i-1}), (CY/L)\rightarrow (AC_7)$	5
RR	Rotate Right	00011110	$(AC_i) \rightarrow (AC_{i-1}), (AC_0) \rightarrow (AC_7)$	5
RRL	Rotate Right with Link	00011111	$(AC_i) \rightarrow (AC_{i-1}), (AC_0) \rightarrow (CY/L) \rightarrow (AC_7)$	5
	Single-Byte Miscellaneous Instructions	76543210		
HALT	Halt	0000000	Pulse H-flag	8
CCL	Clear Carry/Link	0000010	(CY/L)←0	5
SCL	Set Carry/Link	00000011	(CY/L)←1	5
DINT	Disable Interrupt	00000100	(IE)←0	6
IEN	Enable Interrupt	00000101	(IE)←1	6
CSA	Copy Status to AC	00000110	(AC)←(SR)	5
CAS	Copy AC to Status	00000111	(SR)←(AC)	6
NOP	No Operation	00001000	None	5

Table 1-3. Instruction Execution Time

Instruction	Read Cycles	Write Cycles	Total Microcycles
ADD	3	0	19
ADE	1	0	7
ADI	2	0	11
AND	3	0	18
ANE	1	0	6
ANI	2	0	10
CAD	3	0	20
CAE	1	0	8
CAI	2	0	12
CAS	1	0	6
CCL	1	0	5
CSA	1	0	5
DAD	3	0	23
DAE	1	0	11
DAI	2	0	15
DINT	1	0	6
DLD	3	1	22
DLY	2	0	13 - 131593
HALT	2	0	8
IEN	1	0	6
ILD	3	1	22
JMP	2	0	11
JNZ	2	0	9, 11 for Jump

Instruction	Read Cycles	Write Cycles	Total Microcycles
JP	2	0	9, 11 for Jump
JZ	2	0	9, 11 for Jump
LD	3	0	18
LDE	1	0	6
LDI	2	0	10
NOP	1	0	5
OR	3	0	18
ORE	1	0	6
ORI	2	0	10
RR	1	0	5
RRL	1	0	5
SCL	1	0	5
SIO	1	0	5
SR	1	0	5
SRL	1	0	5
ST	2	1	18
XAE	1	0	7
XOR	3	0	18
XPAH	1	0	8
XPAL	1	0	8
XPPC	1	0	7
XRE	1	0	6
XRI	2	0	10

Table 1-4. Symbols and Notations Used to Express Instruction Execution

Symbol and Notation	Meaning					
AC	8-bit Accumulator.					
CY/L	Carry/Link Flag in the Status Register.					
data	8-bit immediate data field. Data may represent a signed or unsigned twos complement number or two binary-coded-decimal (BCD) numbers.					
disp	Displacement; represents a signed 8-bit address modifier in a memory reference, memory increment/decrement, or transfer instruction.					
EΑ	Effective Address as specified by the instruction.					
E	Extension Register; provides for temporary storage, variable displacements and separate serial input/output port.					
i IE	Represents a bit in one of the bit positions, 7 through 1, of the Accumulator or the Extension Register. Interrupt Enable Flag.					
m	Mode bit, used in memory reference instructions. Blank parameter sets m = 0, @ sets m = 1.					
ov	Overflow Flag in the Status Register.					
PC	Program Counter (Pointer Register 0); during address formation, PC points to the last byte of the instruction being executed.					
ptr	Pointer Register (ptr = 0 through 3). The register specified in byte 1 of the instruction.					
ptr _{n:m}	Pointer register bits; n:m = 7 through 0 or 15 through 8.					
SIN	Serial Input pin.					
SOUT	Serial Output pin.					
SR	8-bit Status Register.					
()	Means "contents of." For example, (EA) is contents of Effective Address.					
[]	Means optional field in the assembler instruction format.					
~	Ones complement of value to right of \sim .					
→	Means "replaces."					
←	Means "is replaced by."					
↔	Means "exchange."					
@	When used in the operand field of the instruction, sets the mode bit (m) to 1 for auto-incrementing/auto-decrementing indexing.					
10 ⁺	Modulo 10 addition.					
٨	AND operation.					
V	Inclusive-OR operation.					
∨	Exclusive-OR operation.					
≥	Greater than or equal to.					
=	Equals.					
≠	Does not equal.					

Figure 1-5. SC/MP Program Execution

IMPLEMENTING A MINIMUM (LOW-COST) SC/MP SYSTEM

The preceding information can be summarized to say that SC/MP is a complete CPU without an on-chip memory. The stand-alone CPU is an advantage because memory requirements are frequently an applications function and, with SC/MP, the user can select the memory that is best suited for a particular use. With the addition of memory, a SC/MP-based low-cost system can be developed easily; such a system is shown in figure 1-6. This 2-chip system (SC/MP plus memory) is a minimal configuration that may be used in some applications, a few of which are described later in this book. This particular system can be used in many security-entry applications — to open a door or to gain coded-access to files, safes, and so forth. Operation of the system is summarized as follows:

- 8-bit employee-access code is input one bit at a time via the DATA SET and DATA ENTER switches.
- Entered code is compared to a prestored reference in memory.
- If code is valid, ACCEPT indicator lights and LOCK opens; if code is invalid, REJECT indicator lights and system is reset to zero.

The system must indicate to the employee when to enter data; this is done via flag 0 (F0) and its associated ENTER DATA indicator. When the indicator is lit, the system is ready to accept data, and when the indicator is extinguished, the system is reading the status of the DATA SET switch. Flags 1 and 2, respectively, are used to specify code-accept and code-reject conditions. In keeping with the theme of minimum cost, LEDs are used for the enter-data, code-accept, and code-reject indicators; since the devices are inherently current-limiting, no surge resistor is required in the base of the transistor and no series resistor is required in the collector circuit.

One other function is required for system operation — some way of determining when 8 bits (the complete access code) are entered. Referring to the Extension Register and output latch shown as a screened inset in figure 1-6, it is seen that if the most significant bit (bit 7) is preloaded with a '1' and then the 8-bit access code is inputted, the preloaded value of '1' is shifted into the output latch. If the latch is preloaded with a '0' (which is done by the software) and is connected to Sense A of SC/MP, the system can determine when the code is complete (8 bits are entered) simply by checking Sense A after the entry of each bit. When Sense A is equal to '1', the input code is accepted, compared with a prestored reference, and if the two codes are in agreement,

the lock is opened. If the two codes do not agree, the RE-JECT indicator lights.

Reviewing the operation, the user looks to see if the ENTER DATA indicator is lit – if it is lit, the least significant bit of the authorization code is selected with the DATA SET switch and entered with the ENTER DATA pushbutton. While this bit is being read, the ENTER DATA indicator extinguishes and then comes back on; at this time, the setdata/enter-data sequence is repeated for the second bit of the access code. At the end of the eighth entry, a '1' appears at the serial output port (Sense A). The Sense A line is tested at the completion of each entry, and when the output latch is equal to '1', the code is complete and is checked against a prestored reference for validity. The program is setup such that each entry is timed for 20 seconds; if the next bit is not entered within this time period, the system resets to all zeroes. This prevents partial entries from disabling the system.

EXPANDING THE SECURITY-ENTRY SYSTEM

In the preceding system, coded access is provided for a "single" lock, drawer, or door. The same basic system can be expanded to serve several access points; such a system is shown in figure 1-7. The added component is a CMOS 1-of-10 line decoder with a high-current pullup capability at the output. As shown, three inputs to the decoder are supplied by flags 0, 1, and 2; the fourth input is supplied by the inverted output of the SOUT line. Code-entry and code-reject features are similar to those shown in figure 1-6. As long as the serial output (SOUT) line is a logic '0' and every flag is a logic '0', the DATA ENTRY line (pin 9) is selected. When flag 0 is high and other inputs are the same as before, the REST (ready for data) line is selected.

Figure 1-6. Minimum Security System Using SC/MP and PROM

Figure 1-7. Expanded Security System Using SC/MP, PROM, a 4-by-10 Decoder, and Miscellaneous Components

BUFFERING AND INTERFACE CHARACTERISTICS OF SC/MP

In any application, buffering and interfacing capabilities of SC/MP are important design considerations; the following sections are addressed to these parameters.

TTL/MOS Interfaces

From an overall interface point-of-view, the current and voltage characteristics of SC/MP are summarized as follows.

- Except for BREQ (pin 5) and X1/X2 (pins 37/38), all *input* pins typically present a 1.4-milliampere TTL load to any driving device.
- Except for BREQ, all *output* pins can drive a 1.6-milliampere TTL load.
- With V_{SS} = +5V and V_{GG} = -7V, SC/MP is voltagecompatible with TTL devices; thus, it can interface directly with TTL logic. Direct interface with 5-volt MOS logic also can be implemented.

NOTE

Refer to SC/MP Data Sheet for minimum/ maximum input/output specifications.

To minimize buffering requirements, it is advantageous to use MOS, or Low-Power TTL devices for direct interface with SC/MP. Usually, the low-power devices present much less than a 1.6-milliampere load and their propagation delay times compare favorably with the timing parameters of SC/MP.

Buffering SC/MP

As indicated in the preceding paragraph, SC/MP can generally interface with MOS and low-power TTL circuits without the use of buffers. In applications where the SC/MP drives more than one TTL load, buffering is required. One method of buffering SC/MP outputs is shown in figure 1-8. To minimize component count and to conserve power, low-power Schottky TRI-STATE® octal buffers are used; in addition to data-, address-, and control-line buffering, the high-order address bits (AD 12-AD 15) are latched to support large memories and/or a full complement of input/ output peripherals. Each buffered output line can drive 10 or more TTL loads - approximately 16 milliamperes. To determine if buffered or direct-to-chip connections are required for a particular application, the user must consider carefully such system parameters as overall loading, sink-current capabilities of SC/MP, duty cycle, peak power, and so on. Refer to the SC/MP Data Sheet for parametric specifications.

The power-up and initialization circuit shown in figure 1-8 is designed to accommodate any 'clock' technique (appendix A) that is used with SC/MP. An RC network can be used for the NRST input but does not provide timing that is as precise and probably not as reliable as would be provided by the Schmitt Trigger. (Note: If a manual reset is desired, a switch can be connected from the input of the Schmitt trigger to ground.)

[®] Registered trademark of the National Semiconductor Corporation

Figure 1-8. One Method of Buffering Data, Address, and Control Lines of SC/MP

TRI-STATE Considerations

In figures 1-2 and 1-4, the 12-bit latched address port (AD 00-AD 11), the 8-bit input/output port (DB 00-DB 07), and the read (NRDS)/Write (NWDS) strobes have three separate output states — a TTL logic '0', a TTL logic '1', and a high-impedance (HI-Z) (TRI-STATE) output. The '0' and '1' states are self-explanatory; an examination of figure 1-9 will show why the third (HI-Z) state is required. As shown, the 8-bit input/output bus is bidirectional; that is, during a read cycle, the internal receivers of SC/MP are connected to the bus and, during a write cycle, the SC/MP

drivers are connected to the bus. If the TRI-STATE device (shown shaded in figure 1-9) is removed, the TTL outputs of SC/MP and of the TTL device are connected directly to the bus and both will attempt to drive it. Generally, the drive capability of the TTL device is the greater of the two; thus, it will prevail and system control by SC/MP is lost. With the TRI-STATE device connected, the TTL device is effectively disconnected from the bus; however, at read strobe (NRDS) time, the output of the buffer is enabled and the drivers of SC/MP are disabled. Accordingly, the SC/MP receivers read whatever is put on the bus by the buffer.

Figure 1-9. TRI-STATE Bus Interface

Figure 1-10 shows a method of implementing TRI-STATE control. With both TRI-STATE ENABLE lines high, both the memory and peripheral devices are effectively disconnected from the data bus; that is, the output drivers of each device are in the high-impedance mode. At read strobe time, one of the devices is selected; if address bit (AD 08) is low (inverted high), the TRI-STATE ENABLE line of ROM/PROM is driven low and this memory device is selected as

the bus driver. Conversely, if AD 08 is high, the other select line is enabled and the peripheral is selected to drive the bus. Since each device is selected by a discrete address, the processor has absolute control over each "receiver" or "transmitter" connected to the bus. (Note: The basic address-decoding scheme shown in figure 1-10 can be expanded to serve small-memory systems (up to 4K) that require multiple read/write peripherals; refer to appendix B for further detail.)

Figure 1-10. One Method of TRI-STATE Control

Chapter 2

CONCEPTS AND PRINCIPLES OF SC/MP INTERFACING

In the preceding section of this manual, SC/MP is defined in terms of general-purpose applications—timing, loading, peripheral interfacing, software manipulation, and so on. In this section, these SC/MP parameters are brought together to explain how to hook-up, how to implement, and how to control a variety of functional SC/MP-based applications. For current convenience and future add-on flexibility, the applications are organized by class.

GENERAL CONCEPTS OF A/D AND D/A CONVERTERS

Generalized concepts of how a SC/MP-based system can be used in a general-purpose analog-to-digital converter are shown in figure 2C1-1. The analog source can be any device capable of producing a current or a low-voltage output over a predetermined range. Under program control and system timing parameters, the analog source is sampled by the Analog-to-Digital Converter and the resulting output is a digital word with 8-bit resolution. The digital word is stored in RAM where, under program direction, it can serve a number of functions. For example, the converted data can be compared to a previously stored reference value; thus, in a quality-control configuration, for example, a pass or a reject decision can be made. As another example, the difference between the input data and the stored reference can be treated as an error signal, and when reconverted to its analog equivalent (shown with broken-line blocks and lines), it can be used in applications that require coordinate control. The output data also can be listed

alphanumerically for statistical studies in applications where time is plotted against some other variable. In subsequent sections, some typical analog-to-digital conversion schemes are described. Refer to chapter 1 of this manual for timing information, pinout descriptions, and interfacing detail of the SC/MP chip.

SINGLE-INPUT ANALOG-TO-DIGITAL CONVERTER

General Description

The SC/MP-controlled analog-to-digital converter shown in figure 2C1-2 is well-suited to applications such as simple machine control, single-parameter testing, data acquisition, and other single-input functions. Requiring few components, minimum memory, and a simple program, the single-input analog-to-digital converter is easy and inexpensive to implement. Operating principles of analog-to-digital converters and logic circuits used in this application are well-defined in textbooks and industrial manuals; thus, the following descriptions are aimed primarily at the functional interfaces, user-supplied system parameters, and control and supervision of the software.

System Operation

Other than supply voltages, the single-input converter system requires a start pulse, clock pulses, an output-enable gate, and, of course, an analog input. Providing that a valid

Figure 2C1-1. Principles of Analog-to-Digital/Digital-to-Analog Conversion

Figure 2C1-2. Single-Converter Analog-to-Digital System

start-converter pulse is present (logic 1 at pin 6), the conversion starts on the trailing edge (high-to-low transition) of the first clock pulse and continues for 40 clock cycles. When the conversion is completed, an 8-bit digital word is loaded into an output latch and an end-of-conversion (EOC) logic level is generated. The binary output (DB0 through DB7) is TRI-STATE to permit the use of common bus lines. When a valid address is received, an output-enable signal is generated; at this time, the digital output enters the accumulator of SC/MP and subsequently is stored in a designated memory location. Valid data are held in the output latch from the end of one conversion to the end of the next; thus, data transfers to memory can be implemented asynchronously.

Timing for one conversion cycle is summarized in figure 2C1-3. As shown, the conversion begins on the trailing edge of the clock pulse; thus, the 'start converter' gate must be at least as wide and preferably somewhat wider than one clock cycle. Referring to figure 2C1-3, it is seen that the width of the 'start' gate (STRT CONV) is determined by the write strobe (NWDS) of SC/MP. If the analog-to-digital clock is slower than NWDS, a pulse-stretching

circuit similar to that noted in figure 2C1-2 is required; the unused flip-flop in the DM7474 package is available for this purpose. In figure 2C1-2, a starting address of X'0800 has been arbitrarily chosen—any other nonconflicting address could be used.

Figure 2C1-3. Timing Summary for Single-Converter System

When the conversion cycle starts, the analog input is admitted at pin 12 of the converter chip and the end-of-conversion (EOC) gate is set low. During the next 40 clock cycles, the input is sampled continuously and, via a process of successive approximation, the analog signal is converted into an 8-bit digital word. At the end of the fortieth clock cycle, the conversion is complete and two things happen—the EOC gate is set high and the digital word is loaded into an output latch on the converter chip.

When the output is enabled (Output Enable set high), the latched data (DB0 through DB7) are available at pins 13, 14, 16, 17, and 1 through 4, respectively. In likeness to the STRT CONV gate, the Output Enable gate is generated via an arbitrary address—in this case, 0400_{16} . The Output Enable gate is synchronized by the address strobe (NADS) from SC/MP, and the gate remains active high until the bus request line (BREQ) is released (goes low) by the microprocessor. The output control functions are under software control and, as shown in figure 2C1-2, are implemented by a flip-flop.

System Adjustments

With supply voltages as shown, the analog-to-digital converter in figure 2C1-2 is designed to operate over an input range of 10 volts (±5 volts). Two adjustments (R1 and R2)

are provided to optimize conversion accuracy. Variable resistor R1 is the zero adjustment, and for a 10-volt scale, it is set for a transition from '111111111' to '11111110' to occur at 19.53 millivolts (that is, one-half of the least significant bit value). If the voltage difference between pins 5 and 15 is more than 10 volts, then the half-bit zero-adjustment value is obtained by dividing 528 (the number of half-bit values) into the difference voltage. For instance, if the voltage between pins 5 and 15 is 10.24 volts, R1 is adjusted for 20 millivolts at the transition point-'11111111' to '11111110'. Resistor R2 is the full-scale adjustment, and for a 10-volt scale, it is set for the transition from '00000001' to '00000000' to occur at 58.6 millivolts (that is, one and one-half times the least significant bit value). Again, if the difference voltage is 10.24 volts, R2 is adjusted for 60 millivolts at the transition point-'00000001' to '00000000'.

Software Considerations

The flowchart and program listing in figure 2C1-4 shows how the single-input analog-to-digital converter system (figure 2C1-2) can be software-controlled to provide the functions described under system operation. Referring to figures 2C1-2 and 2C1-4, the software-hardware interface can be summarized as follows.

Figure 2C1-4. Flowchart and Program Listing for Single-Converter System

NOTE

At the start of the program, P2 is loaded with the starting address, X'0800 (lines 6 through 9), a STore Instruction is executed, and the 12-line address port of SC/MP is latched at X'0800 for the remainder of the input/output cycle. Accordingly, AD10 goes low, AD11 goes high, and, at write strobe (NWDS) time, the conversion starts. Since there are seven instructions executed prior to the Load Instruction, the NOPS are not required unless the converter clock rate is slowed down. If the clock rate is considerably less than 1.0 megahertz, more delay may be required — refer to appendix E for delay calculations.

Once the analog-to-digital conversion is completed (after 40 clock cycles), the digital data are accepted by SC/MP and are stored in a specified memory location. As indicated by lines 15 through 20 of the program, P2 is loaded with the address for "data acceptance" — in this case, X'0400 — and P3 is loaded with the "memory-destination" address (X'0200). When the LD Instruction (line 21) is executed, the 8-bit digital output of the converter is read into the Accumulator, and when the next instruction (STore, line 22) is executed, the data are stored in memory location X'0200. Observe that when the X'0400 address is valid, the output data are gated into the Accumulator via the address strobe (NADS) rather than the read strobe (NRDS); the NADS signal provides adequate time for the transfer of data, whereas the NRDS signal may not.

ANALOG-TO-DIGITAL CONVERSION USING MULTIPLE CONVERTERS

General Description

The SC/MP-based multiple analog-to-digital converter shown in figure 2C1-5 is simply an extension of the principles and concepts used in the single configuration (figure 2C1-2). The multiple system is adaptable to almost any application where analog-to-digital conversion is required — complex control systems, multiple-parameter testing, precision measurements, environmental studies, and many others. Among other advantages, the multiple-converter system is easy and relatively inexpensive to implement.

System Operation

Other than supply voltages, the multiple system requires start/select signals for each converter, a user-supplied clock source, output buffers, and appropriate control and decoding logic.

In figure 2C1-5, it is assumed that each analog signal source is located some distance from the other; thus, the analog-to-digital conversion is performed at the origin rather than at the destination. This is done because a digital signal can be transmitted over a reasonable distance with little or no degradation, whereas an analog signal may require additional circuits for equivalent accuracy and stability. If the signal sources are in close proximity and sampling time is not a critical factor, the inputs can be multiplexed as shown in figure 2C1-7.

Some of the multiple-converter circuits are functionally equivalent to those of the single converter; thus, they are described by reference only.

The eight analog-to-digital converters shown in figure 2C1-5 can be started and the associated output selected in any sequential order — this being determined by the users program and being implemented by the two BCD-to-decimal decoders. The 'start' and 'select' decoders operate as follows. A starting address of X'0800 has been arbitrarily selected; any other nonconflicting address can be used. The chosen address is recognized when address bit 11 (AD11) is high and address bit 10 (AD10) is low. When the write data strobe (NWDS) goes active-low, the decoder input logic (G1, G2A, and G2B) is enabled and address bits 0, 1, and 2 are decoded to produce any one of eight start signals. The start decoding truth table is shown as an inset to the upper BCD-to-decimal decoder block of figure 2C1-5.

The 'select' decoder uses an arbitrary address of X'0400 and is synchronized by the address strobe (NADS) from SC/MP. With address bit 10 (AD10) high and address bit 11 (AD11) low, a logic '1' appears at pin 2 of the flip-flop. At NADS time, a high also appears at pin 3 of the flip-flop; accordingly, the \overline{Q} output (pin 6) is driven low. Likewise, the 'D' input (pin 12) of the decoder is low and address bits 0, 1, and 2 are decoded to produce any one of eight 'select' signals. The converter-select signal remains valid until the bus request line is released by the microprocessor (BREQ goes low) — at which time, the decoding logic is disabled (\overline{Q} goes high).

Figure 2C1-5. Multiple-Converter Analog-to-Digital System

In a multiple-converter system, timing for one conversion cycle is identical to that shown in figure 2C1-3; however, there are noteworthy differences in the start and select functions. The eight converters in figure 2C1-5 can be started in any random order and, after an appropriate delay (40 × clock period), the outputs can be selected at random. For instance, it may be desirable to start the converters in 2-6-1-7-4-3-8-5 order and to enable the outputs in 7-2-5-4-1-3-8-6 order, or in some other sequence that suits a particular application. Output levels (DB0 through DB7) of each converter are TTL-compatible and, as previously indicated, the data lines are TRI-STATE to permit common bus lines. If the output lines must drive multiple loads, a TRI-STATE buffer such as the DM81LS95 (shown as a broken-line block in figure 2C1-5), is required.

System Adjustments

The zero (R1) and full-scale (R2) adjustments for each converter in figure 2C1-5 are identical to those described for the single digital-to-analog system (figure 2C1-2).

Software Considerations

The flowchart and the program listing in figure 2C1-6 shows how the multiple analog-to-digital converter system (figure 2C1-5) can be software-controlled to provide the functions described under system operation. Software concepts are identical to those shown and described for the single-converter system except that eight converters must be serviced rather than just one converter.

An address of X'080N — where N = 0 through 7 — is selected to start the conversion; line 10 of the multiple-converter

program (figure 2C1-6) stores to the address of the first converter (X'0800). When the program is executed by SC/MP, address bits 0, 1, and 2 (figure 2C1-5) are modified by lines 11 through 17 of the program and are decoded by the 74LS138 chip; in this case, the converters are started in a 1-through-8 sequence. Any other starting sequence can be obtained by rearrangement of the store instructions. The last Store Instruction is followed by four NOP Instructions, each consuming 10 microseconds; thus, a delay of 40 microseconds is introduced. Assuming a 1.0-megahertz clock, no delay is required for this program; the NOP instructions are included only to indicate how a 'short' delay can be implemented. If a 100-kilohertz clock is used, the conversion time is 400 microseconds (that is, $40 \times 1/\text{fclock}$). In this case, a delay of not less than 104 microseconds is required assuming the converter outputs are loaded and stored in the "starting" sequence. If the load/store operations are performed in random order, the worst case delay is 292 microseconds - refer to appendix E for program delays of this magnitude.

After the analog-to-digital conversions are complete and select address X'040N — where N=0 through 7 — is valid, the digital outputs of converters 1 through 8 are loaded into the Accumulator and are transferred to the memory location pointed to by P3. In likeness to the single-converter system, the output data are gated into the Accumulator via the address strobe (NADS); the slow access time of the converter peripherals does not permit the use of the read strobe (NRDS). As previously indicated, the program can be arranged to allow sampling of the converter outputs in any random order.

Figure 2C1-6. Flowchart and Program Listing for Multiple-Converter System

```
1
                         TITLE
                                 SCMP, 'MULTIPLE A/D CONVERTER PRGM'
 2
 3
        0002
               P2
                                 2
 4
        0003
               P3
                        =
                                 3
 5
 6 0000 08
                        NOP
                                           BASE ST ADRS -> PTR2
 7 0001 0400
               START:
                                 Й
                        LDI
 8 0003 32
                        XPAL
                                 P2
 9 0004 C408
                        LDI
                                 8
10 0006 36
                        XPAH
                                 P2
11 0007 CA00
                                 CONVO(P2); START CONVERTERS 0 - 7
                        ST.
12 0009 CA01
                        ST
                                 CONV1(P2)
13 000B CA02
                        ST
                                 CONV2(P2)
14 000D CA03
                        ST
                                 CONV3(P2)
15 000F CA04
                        ST
                                 CONV4(P2)
16 0011 CA05
                        ST.
                                 CONV5(P2)
17 0013 CA06
                        ST
                                 CONV6(P2)
18 0015 CA07
                        ST
                                 CONV7(P2)
19 0017 08
                        NOP
                                           ; IF REQUIRED, DELAY
20 0018 08
                                           ; INTRODUCED TO COMPLETE
                        NOF
21 0019 08
                                           ; THE CONVERSION.
                        NOF
22 0018 08
                        NOP
23 001B C404
               ACCEPT: LDI
                                 4
                                           ;LD P2 WITH BASE CONVRTR ADRS
24 001D 36
                                 P2
                        XPAH
                                           ;LD P3 WITH MEM ADRS FOR
25 001E C402
                        LDI
                                 2
26 0020 37
                        XPAH.
                                 F3
                                           CONVERTED DIGITAL OUTPUT
27 0021 0400
                        LDI
                                 Ø
28 0023 33
                        XPAL
                                 P3
29 0024 0200
                        LD
                                 CONVØ(P2)
30 0026 CF01
                        ST
                                 @1(P3)
31 0028 0201
                        LD
                                 CONV1(P2)
32 002A CF01
                        ST
                                 @1(PR)
33 0020 0202
                        LD
                                 CONV2(P2)
34 002E CF01
                        ST
                                 @1(P3)
35 0030 0203
                        LD
                                 CONV3(P2)
36 0032 CF01
                        ST
                                 @1(P3)
37 0034 0204
                                 CONV4(P2)
                        LD
38 0036 CF01
                        ST.
                                 @1(P3)
39 0038 0205
                        LD
                                 CONV5(P2)
40 003A CF01
                        ST
                                 @1(P3)
41 003C C206
                        LD
                                 CONV6(P2)
42 003E CF01
                        ST
                                 @1(P3)
43 0040 0207
                        LD
                                 CONV7(P2)
44 0042 CF01
                        ST
                                 @1(P3)
45
46
               EXIT:
                                           JUSER RETURN ROUTINE
47
        9999
               CONVØ
48
                                 Ø
                        =
49
        0001
               CONV1
                                 1
                        =
50
        0002
               CONV2
                        =
                                 2
                                 3
51
        0003
               CONVS
52
        0004
               CONV4
                        =
                                 4
53
        0005
               CONV5
                        =
                                 5
54
               CONV6
                                 6
        0006
                        =
```

Figure 2C1-6 (Continued)

7 55 56	0007	CONV7	=	7			•
57 57	0001		END	START			
ACCEPT CONV2 CONV5 EXIT START	0018 0002 0005 0044 0001	*	CONVØ CONV6 P2	9999 9993 9996 9992	CONV1 CONV4 CONV7 P3	0001 0004 0007 0003	
NO ERRO SOURCE	—	:S SUM=0C47					NS10539

Figure 2C1-6 (Concluded)

ANALOG-TO-DIGITAL CONVERTER USING MULTIPLEXED INPUTS

General Description

Except for the input multiplexer, the analog-to-digital converter system shown in figure 2C1-7 is functionally equivalent to the multiple-converter system (figure 2C1-5). Both systems can be readily adapted to such applications as complex controllers, multiple-parameter testing, precision measurements, and numerous other applications that fall within the analog-to-digital and digital-to-analog class. The multiplexed-input system is particularly well-suited to applications where a multiple-input profile is required and where cost is an absolute restraining factor. Assuming reasonable input sources and sound transmission techniques, no input calibration is required and, as shown in figure 2C-7, the saving of hardware is appreciable. The multiplexed-input system can be expanded easily to serve most output requirements - refer to note 4 of figure 2C1-7 for one possible technique.

System Operation

The 'start' and 'select' procedures for the multiplexed-input system are identical to those described for the multiple system shown in figure 2C1-5 — a starting address of X'080N is arbitrarily selected and the output is enabled at address X'040N; in both cases, 'N' = 0 through 7. The start function is implemented at write strobe (NWDS) time, whereas the output is enabled at address strobe (NADS) time; the output-

enable signal remains valid until the output bus is released by the microprocessor (BREQ goes low).

The analog input $(V_{\rm IN}/{\rm pin}\ 12)$ to the converter is selected via an 8-channel multiplexer (AM3705), which is driven by a clocked latch. A quad-D flip-flop (DM8551) is used to perform the latching function; the input disable gates (pins 9/10) eliminate the possibility of false clocking and, at the same time, ensure that valid output codes are maintained during the clock period. At read strobe (NRDS) time, outputs A, B, and C of the latch are set to agree with the binary pattern of address bits 0, 1, and 2. These three outputs are then decoded in the multiplexer to select one of eight analog inputs; the selected signal is outputted at pin 3 and serves as the input for the analog-to-digital converter. The signal select decoding truth table is shown as an inset to the multiplexer block in figure 2C1-7.

Under program control, analog input signals #1 through #8 can be selected in any random order; in fact, if the application requires, the same signal can be examined over and over again. When a particular conversion is complete, the end-of-conversion (EOC) gate goes high and the 8-bit digital word is loaded into an on-chip latch. The output data lines (DBO through DB7) are TRI-STATE to permit the use of common system buses and are TTL-compatible for fanout flexibility.

System Adjustments

The zero (R1) and full-scale (R2) adjustments for the converter are identical to those described for the single-input analog-to-digital system (figure 2C1-2).

Figure 2C1-7. Analog-to-Digital Converter System Using Multiplexed Inputs

Software Considerations

Figure 2C1-8 shows the flowchart and the program listing that are applicable to the multiplexed-input system of figure 2C1-7. The basic concepts are the same as those of the single- and multiple-converter systems — that is, start the converter, accept the 8-bit digital data, and store the output in memory.

The program is set up to start the converters in a 1-to-8 sequence (hexadecimal address X'00 through X'07); this is an arbitrary choice and can be altered to select any one of the converters by changing the 8 low-order bits of P2. Since there is a one-to-one correspondence between the selected

converter and the memory storage location, converter X'0800 is stored in memory location X'0200, converter X'0801 in location X'0201, and so on for the remaining six converters. The memory addresses likewise should be altered by appropriate changes in the 8 low-order bits of P3. After each conversion, the program checks to see if all eight analog-to-digital operations are completed; as shown by the flow-chart, this is done by inclusively ORing the Accumulator with a constant — in this case, '7'. If the OR-result is not equal to '0', the program loops back and continues with the next conversion. If the OR-result is '0', the eighth conversion is completed and, as written, the program will exit to an appropriate users routine.

Figure 2C1-8. Flowchart and Program Listing for Analog-to-Digital Converter System with Multiplexed Inputs

12	0009	36		XPAH	P2	
13	000A	C200		LD	(P2)	;LOAD ANALOG SWITCH ADRS LATCH
14	000C	CA00		ST	(P2)	START CONVERSION
15	000E	C404		LD I	4	
16	0010	36		XPAH	P2	
17	0011			LDI	2	
18	0013			XPAH	P3	CONVERSION COMPLETE IN 40 MIC
19	0014	C200		LD	(P2)	ACCEPT CONVERTER OUTPUT
20	0016	CB00		ST	(P3)	STORE CONVERTER OUTPUT
21	0018	33		XPAL.	P 3	
22	0019			XAE		
23	001A			LDE		
24				XRI	7	CHECK IF ALL ANALOG
25	001D	980A		JZ	EXIT	;SIGNALS CONVERTED
26	001F	. –		LDE		
27	0020	F401		ADI	1	; ADRS FOR NEXT ANALOG SIGNAL
28	0022	01		XAE		
29	0023	40		LDE		
30	0024	33		XPAL	P3	
31	0025			LDE		
32	0026	32		XPAL.	P2	
33	0027	900E		JMP	LOOP	
34						
35			EXIT:			;USER RETURN ROUTINE
36						
37		9999		END		
EX1	ΙΤ	0029		LOOP	0007	P1 0001 *
P2		0002		P3	0003	START 0001 * NS10541

Figure 2C1-8 (Concluded)

CONCEPTS FOR A LOW-COST SYSTEM

General Description

The 4-chip system shown in figure 2C1-9 illustrates a very simple technique for converting a digital input to an analog output and also demonstrates how this analog signal can be used to generate the digital equivalent of some unknown voltage. Converter systems of this type can be usefully employed in such applications as security/alarm systems, errorcontrol loops, digital plotters, and any other application where these techniques are applicable. The connection scheme shown in figure 2C1-9 requires a dedicated microprocessor during the conversion cycle and the scheme is limited to a single 8-bit output. However, this low-cost system requires little external hardware, no bus connections, and only a few control signals. The system is further enhanced by the fact that Sense B, the serial input/output capability, and flags 0, 1, and 2 are not used, so conceivably these resources of SC/MP can be put to use in other applications.

System Operation

As shown, the 8-bit data word (DB0 through DB7) enters two flip-flops that serve as input latches. When a valid address is received — hexadecimal address X'0400 has been arbitrarily chosen — the 'data input disable' lines (pins 9 and 10) are driven low. At write strobe (NWDS) time with both disable lines low, outputs D, C, B, and A of one latch are set to agree with the logic states of the 4 least significant bits (DB0, 1, 2, and 3, respectively), and the other latch is set to agree with the logic states of the 4 most significant bits. Thus, the 8-bit word is latched and is applied to the DA1200 for the digital-to-analog conversion process. The digital-to-analog converter uses a series of current-weighted switches, an ultrastable resistor network, a precision voltage reference, and three high-gain operational amplifiers to produce the analog-voltage equivalent of the 8-bit digital input.

The input currents are summed and compared to a precision reference voltage; in the system shown, the +10-volt reference (pin 14) is supplied externally — although the internal

reference can be used for most purposes. The difference voltage that results from comparing the weighted input currents (pin 19) of the digital word. It is readily seen that if the digital input consists of all ones (FF), the analog output is 10 volts; whereas, if the input word consists of all zeroes, the analog output is 0 volt. Suppose the input bit pattern is 10000000 (80); since this number is halfway between 00 and FF, the analog output is very close to 5 volts. This analog output can be buffered and used as an error-control signal or for any other purpose that the application requires.

The system shown in figure 2C1-9 can also be used to produce an 8-bit word that is the digital equivalent of an unknown voltage. Such an unknown voltage — within the conversion range — is shown connected to pin 3 of the voltage comparator (LM311); pin 2 of the comparator is connected to the output of the digital-to-analog converter. Using successive approximation techniques, the inputs at pins 2 and 3 are compared and, under software direction, appropriate adjustment is made to the input word (DB0 through DB7) after each approximation. With some assumptions, the operation can be summarized as follows. Since the inherent resolving power of the system is 8 bits, there are 256 digital increments from one end of the conversion range to

the other; that is, if 0 volt is represented by a bit pattern of all zeroes, the 10-volt limit is represented by a bit pattern of all ones. Assuming an unknown value of 7 volts, the input word for the first approximation is set to the halfway point - in hexadecimal format X'80. Since the unknown voltage is higher than the analog-voltage equivalent of the first input approximation, the Sense-A line of SC/MP is driven high. The software differentiates between these two conditions (Sense A = '0' and Sense A = '1') in such a way that if the line is high, the input word is set halfway between X'80 and X'FF. If the sense line is low, the input word is set halfway between X'00 and X'80. In the current example, the input word is set to X'CO and a second approximation is performed. Assuming a digital-to-analog relationship that is nearly linear, the output at pin 19 (approximately 7.5 volts) is now higher than the unknown and the Sense-A line is driven low. A third approximation is made between X'CO X'80, that is, at X'A0. Similar input adjustments based on the high or the low state of sense A are contained until eight approximations are completed; at this time, an 8-bit word that is very near the analog equivalent of the unknown voltage will appear in the Accumulator of SC/MP. This word can be stored away and used later to plot the unknown voltage or for any other purpose the application requires.

Figure 2C1-9. Low-Cost Converter System

Software Considerations. The flowchart and program listing shown in figure 2C1-10 shows one method of implementing software control of the low-cost D-A/A-D system.

The software can easily be expanded to utilize the analog data for whatever purpose the application requires.

Figure 2C1-10. Flowchart and Program listing for Low-Cost Converter System

```
10 0001 0400
               CONVI
                       LDI
                                          SETUP PTR REG ADRS
11 0003 32
                                P2
                       XPAL.
12 0004 0400
                       LDI
                                0
13 0006 33
                       XPAL
                                F3
14 0007 0402
                       LDI
                                2
15 0009 37
                       MERH
                                PB
16 000A C408
                       LDI
                                9:
17 0000 36
                                F2
                                          FADRS OF D/A CONVRTR IN P2
                       SPAH
18 000D C480
               NEXT:
                       LDI
                                080
                                          FIRST APPROX TO ACU
19 000F CB00
                       ST
                                MASK(P3)
                                          ; SAVE APPROX TO USE AS
20
                                          ⇒A MASK
21 0011 0801
                                          STORE APPROX IN TEMP
               AGAIN:
                       51
                                TEMP(P3)
22 0013 0400
                                          COMPLEMENT INPUT
                       LDI
23 0015 FB01
                       CHD
                                TEMP(P3)
24 0017 CA00
                                          APPROX TO DZA LATCH
                       57
                                0(P2)
25 0019 CB01
                       ST
                                TEMP(P3)
26 0018 0400
                       LDI
                                Ø
27 001D FB01
                                TEMP(P3)
                       CAD
                                          FRECOMPLEMENT APPROX
28 001F 01
                       XAE
                                          ;APPROX TO EXT REG
29 0020 0300
                                          > MASK TO ACU
                       LD
                                MASK (P3)
30 0022 E401
                       MRI
                                1.
                                          ; COMPARE MASK TO X/01
31 0024 9813
                       .12
                                          ; APPROX COMPLETE
                                EXIT
32 0026 06
                                          STATUS TO ACU
                       CSA
33 0027 D420
                       ANI
                                020
                                          ; CHECK SENSE B
34 0029 9008
                       JNZ
                                          ; SENSE B HIGH
                                HIGH
35 002B C300
              SHIFT:
                                          ; MASK TO ACU
                       LD
                                MASK(P3)
36 002D 10
                       SE
                                          ;SHIFT RIGHT MASK
37 002E CB00
                       ST
                                         STORE NEXT APPROX
                                MASK(P3)
38 0030 60
                       XRE
                                          SET NEXT LOW ORDER
39
                                          BIT IN EXT REG
40 0031 90DE
                       JMF
                                AGAIN.
41 0033 0300
                                MASK(P3) ; MASK TO ACU
                       L.D
               HIGH:
42 0035 60
                       XRE
                                          FRESET BIT TO 0
43 0036 01
                       MAE
                                          ; APPROX TO EXT REG
44 0037 90F2
                                          JMP TO SHIFT MASK
                       JMF
                                SHIFT
45
                                          ; AND SET NEXT BIT
46
              EXIT:
                                          FEXIT WITH THE VALUE OF ANALOG
47
                                          ;SGNAL IN EXT REG.
48
49
        0000
                        END
AGAIN
        0011
                      CONV
                               0001 *
                                             EXIT
                                                     0039
                               0000
                                             MEXT
                                                     000D *
HIGH
        0033
                      MASK
P1.
        0001 *
                      P2
                               0002
                                             P3
                                                     0003
SHIFT
        002B
                      TEMP
                               0001
NO ERROR LINES
SOURCE CHECKSUM=4F0F
                                                                   NS10543
```

Figure 2C1-10 (Concluded)

INTERFACING A KEYBOARD TO SC/MP

SC/MP applications that require a keyboard interface usually use one of two methods to generate keycodes. In one method, SC/MP is used as a keyboard scanner, whereas in the other method, SC/MP is interfaced with a keyboard encoder. For either type of interface, programs can be developed for continuous keyboard scan or for using the keyboard as an interrupt device.

When SC/MP is interfaced with an appropriate keyboard and is supported with the proper software, any application that can be controlled by alphanumeric inputs is feasible—lawn-sprinkler control, home and business lighting, vending machines, combination locks, kitchen appliances, games, and so on. Some basic principles of keyboard interfacing are shown in the following illustrations and are described in the supporting text.

USING SC/MP AS A KEYBOARD SCANNER

General Description

The keyboard matrix shown in figure 2C2-1 consists of six rows with eight keys in each row. Functional relationships between the keyboard and SC/MP can be summarized as follows. The entire key matrix is scanned by testing input data to the microprocessor for a value other than zero; this condition occurs if any key is depressed. After key detect, a software debounce is performed. Then, the program determines the row and the column corresponding to the key, computes the correct binary code, tests for key release,

puts the keycode in the SC/MP Extension Register, and returns to the calling program.

System Operation

A fixed address (X'0900) is assigned to the "keyboard peripheral" and when a load (LD) instruction is executed, the TRI-STATE buffers are simultaneously activated. Thus, if any key (S0 through S47) is pressed, one of the bits (DB0 through DB7) on the data bus appears as a logic '1'.

The program "LOOP" checks for the "nonzero" condition and provides a debounce time of 5 milliseconds. After debounce, the value of the key is determined by updating a counter in RAM. The counter is incremented by "8" for each row scanned and by "1" for each column scanned. For example, assume that S9 (row 2/column 2 of figure 2C2-1) is pressed. The first row is scanned by the software, and finding no key pressed, the row counter (row select) is incremented by 8 and the second row is scanned. In this row, one of the bits in the data word is a logic '1'; accordingly, the column counter is now incremented by 1 and comparisons are made to determine which switch is pressed – for this example, it is the second switch (S9) in the column. It can readily be seen that a different binary code (keycode) is produced for each switch in the matrix. The keycode is saved in temporary memory, and the keyboard is tested for key release by executing a Load Instruction to the keyboard. This activates all the buffers, and, upon key release, the keycode is transferred from temporary memory to the Extension Register. The designated pointer then is exchanged with the Program Counter to return to the calling program.

Figure 2C2-1. Using SC/MP as A Keyboard Scanner

The flowchart in figure 2C2-2 and the program listing in figure 2C2-3 show how SC/MP can be utilized by software to perform a keyboard scanning function.

Figure 2C2-2. Flowchart for SC/MP Interfaced with A 6×8 Keyboard Matrix

```
TITLE SCANNE, / SC/MP/
             SCHAMP ACTS AS A KEYBOARD SCANNER. THE KEYBOARD
              15 A 6 BY 8 MATRIX.
 F...
 \mathbb{C}
-04
                  STYPICAL MAIN PROGRAM
114
11
12
1......
             THIS SECTION OF CODE SETS UP THE RAM POINTER
             THAT THE POINTER FOR THE SCAN ROUTINE.
14
4 (3)
1.6
3.7
18 8888 0488
                        LDI L(RAM)
19 0002 32
                      XPAL.
28 8683 U483
                             H(RAM)
                       LDI
24 0005 36
                     XPAH
22 8066 C40F
                       LDI
                             L(SCHN)-1
                      XPAL.
23 6006 32
24 0909 0400
                       LDI H(SCAN)
25 0006 37
                       XPAH 3
                       MPPC 3
26 0000 SF
                                         CALL SCAN ROUTINE
27 0000 40 START:
                                        PUT CODE INTO ACCUM
                       LDE
28 000E CA00
                        ST SAVE(2)
                                         SAVE CODE IN RAM
700
13
__1_
200
               SUSERS PROGRAM WOULD BEGIN HERE AND OPERATES
               GON THE KEY CODE STORED IN LOCATION (SAVE)
3:4
, r.,
36
38
401
             THE SCAN ROUTINE FORMS THE CORRECT CODE IN
41
42
             FLOCATION 'SWITCH' AFTER CHECKING FOR KEY
             FRELEASE, CONTROL IS RETURNED TO THE CALLING
4
             FPROGRAM WITH THE KEYCODE IN THE E REGISTER.
44
6 E
46
47
                        XPAL 3
48 0010 33
              SCAN:
49 0011 CA01
                         ST TEMPL(2)
                                          SAVE PTR 3 LO
50 0013 37
                       XPAH
                              TEMPH(2) ; SAVE PTR 3 HI
51 0014 CA02
                         ST
52 0016 0400
                        LDI
                              L(PERIPH)
53 0018 33
                        MPAL
54 0019 C409
                         LDI
                              H(PERIPH)
```

Figure 2C2-3. Program Listing for SC/MP Interfaced with A 6×8 Keyboard Matrix

```
55 001B 37 XPAH 3
                                       SET UP PERIPHERAL
 1
                                        POINTER
 57 0010 02 OVER:
                     CCL
 58 801D C400
                      LDI
                            Ü
 59 801F CA03
                       ST SWITCH(2) ; CLR SWITCH WORD
 68
 61
 62
 6.3
                   THE ACTUAL SCANNING OF THE KEYBOARD
 64
                    FORMING THE KEYCODE AND TESTING FOR
 i=1,\ldots, n
                   TAKEY RELEASE BEGINS WITH THE LABEL /LOOP/
 656
                    - FAND ENDS WITH THE INSTRUCTION "JNZ RELEAS"
 67
 63
 69 0021 CSBF LOOP:
                       LD ALLKYS(3)
 70 0023 01
                       MAE
                                        SAVE CODE
 71 0024 SF05
                      DLY 5
                                        DEBOUNCE 5 MS
 72 0026 C33F
                       LD ALLKYS(3)
 73 0028 50
                       FINE
                                        COMPARE NEW WITH OLD
 74 9029 98F6
                           LOOP
                       JZ
                                        ; IF = 0, INVALID KEY
 25 002B C420
                       LDI X120
 76 002D 01 LOOP1:
                      MAE
                                       ROW DRIVER TO E REG.
                       LD -128(3)
 77 002E C386
                                       READ ROW INTO ACCUM
 78 0030 9000
                       JNZ SHIFT
                                        ::IF NOT 0, VALID KEY
 79 0032 C20X
                       L.D
                           SWITCH(2)
 80 0034 F408
                       AD I
                           8
                                        FINCR SWITCH BY 8
 81 0036 CAOS
                       51
                           SWITCH(2)
 82 0038 01
                      ×HE.
                                        FROW DRIVER INTO ACCUM
 83 8039 10
                       SR
 84 003A 98E0
                       JZ
                           OVER
                                        NO KEY FOUND
 85 803C 90EF
                       JMP
                           LOOF1
             SHIFT: '
 86 003E 1C
                       SR
87 003F 9806
                       JΖ
                           RELEAS
                                        F IF = 0, KEY DECODED
88 0041 01
                       XAE
                                        SAVE CODE IN E REG
89 0042 AHOS
                       TLD
                           SWITCH(2)
                                       ; INCR SWITCH VALUE
 90 0044 01
                       XAE
                                        RECALL FOR NEXT SHFT
91 0045 90F7
                       JMP SHIFT
             RELEAS:
92 0047 C33F
                       LD
                           ALLKYS(3)
                                      READ KEY MATRIX
93 0049 01
                       XAE
                                        ;SAVE CODE
94 004A 8F05
                       DLY
                                        DEBOUNCE 5 MS
95 004C C33F
                       LD
                           ALLKYS(3)
96 004E 50
                      AME.
                                        COMPARE NEW WITH OLD
                      JNZ
97 004F 9CF6
                           RELEAS
                                        FIF 0, KEY RELEASED
98 0051 0201
                       LD
                            TEMPL(2)
                    XPAL
99 0053 33
100 0054 0202
                       LD
                           TEMPH(2)
                     XPAH
101 0056 37
                                       ; RESTORE PTR 3
102 0057 0203
                      LD SWITCH(2)
                                       GET KEYCODE
103 0059 01
                      XAE
                                        SAVE CODE IN E REG
                   XPPC 3
104 005A 3F
                                       RETURN TO CALLING
105
                                       ; PROGRAM
106 005B 90B3
                      JMP SCAN
107
```

Figure 2C2-3 (Continued)

108

```
109
119
1.1.1
                JOHTH HREA
112
113
          0300
                RAM = X10300
114
115
116
          gggg
                SAVE = 0
117
118
          0001
                TEMPL = 1
119
129
          00002
                TEMPH = 2
121
122
                SWITCH = 3
          MENTS
123
124
          ्राज्ञाच्य
                KEYMD = 4
125
126
          MOSE
                ALLKYS = X'3F
127
                PERIPH = X10900
128
          0900
129
130
          0000
                                  EIND
1.31
  HILLKYS.
           003F
                         KEYMD
                                  0004 *
                                                 LOOP
                                                          0021
                                                          0900
  LOOP1
           0020
                         OVER
                                  0010
                                                 PERIPH
                                  0047
                                                 SAVE
                                                          0000
           0390
                         RELEAS.
  屋田門
  SCHN
           0010
                         SHIFT
                                  003E
                                                 START
                                                          000D *
                                                          0001
                         TEMPH
                                                 TEMPL
  SWITCH 0003
                                  0002
  NO ERROR LINES
  SOURCE CHECKSUM=557B
  ***DISC SECTORS USED***
  FIRST INPUT SECTOR HEX -
                               0292
  FINAL INPUT SECTOR HEX -
                               0296
                                                               NS10546
```

Figure 2C2-3 (Concluded)

USING SC/MP WITH A KEYBOARD (20-KEY) ENCODER

General Description

The keyboard matrix and the 20-key encoder shown in figure 2C2-4 can be used with SC/MP to provide continuous keyboard scanning or the keyboard can be used as an interrupt device. For continuous scanning, the 'Sense B' input to SC/MP is tested for a 'logic 1', and if this condition is detected, the 5-bit keycode is stored in RAM and the program halts. In a real-life system, the code could be saved in the Extension Register and control could be transferred to a user routine that processes the keycode data.

When the keyboard is used as an interrupt device, SC/MP executes a 'main' program until a 'logic 1' (keycode input available) is detected at the 'Sense A' input. The program then jumps to an interrupt service routine, which inputs the code, saves it in the Extension Register, and returns control to the interrupted program.

System Operation

In figure 2C2-1 where SC/MP is used as a keyboard scanner, the binary code for each key is computed by the program. As shown in figure 2C2-4, the TRI-STATE CMOS encoder (MM74C923) provides all of the key-encoding logic, and, in addition, it provides switch debouncing and a 2-key rollover function. The 2-key rollover guarantees that the Data Available Signal at pin 13 goes from a logic '1' (upon valid key entry) to a logic '0'—even though a second key is depressed before the first 1-to-0 transition is completed. A logic '1' for the second key will then appear at pin 13 after some predetermined debounce interval. Operation of the key encoder system is very simple and straightforward. When closure of a key contact is detected, the encoder debounces

the key and loads the appropriate binary code into five TRI-STATE output latches; the presence of this output data is indicated by driving the Data Available Signal high. As shown, the Data Available Pin is connected to the Sense B input of SC/MP or, if the keyboard is interrupt-driven, to Sense A. In either case, SC/MP responds by outputting the assigned keyboard address, and at read-strobe (NRDS) time, pin 14 (the Output Enable Signal) of the encoder is driven low. Subsequently, the latched keycode data are read into the Accumulator.

Software Considerations

Minimum software support for the keyboard encoder shown in figure 2C2-4 includes a scan (or interrupt service) routine for inputting data to SC/MP. In more-sophisticated software systems, the program, in addition to the basic scan function, may include recognition code for any combination of hex/command keys and also some sort of debug code to ensure valid processing of the input data. Some software examples are given in figures 2C2-5 and 2C2-6; a summary of these programs follows.

Figure 2C2-5

This program uses the Sense B input for keyboard interrogation and uses the Extension Register to index the keys; the keycode data are stored in memory with no processing involved.

Figure 2C2-6

This program uses Sense A as a keyboard interrupt; the interrupt service routine gets the keycode, saves it in the Extension Register, and then returns to the main program.

Figure 2C2-4. Using SC/MP with A Keyboard (20-Key) Encoder

Figure 2C2-5. Using Sense B of SC/MP to Input Keycode Data - Flowchart and Program Listing

```
;SET E REGISTER = 2
27 000F 01
                      XAE
28 0010 C401 ENTRY:
                      LDI L(KYBD)
29 0012 31
                      XPAL 1
30 0013 C409
                      LDI H(KYBD)
                                       ; POINTER 1 = KEYBOARD ADDRESS
31 0015 35
                      XPAH 1
32
33
                      ; THE NEXT SECTION OF CODE STARTING WITH
34
35
                      ;THE LABEL 'SCAN' AND ENDING WITH THE
                      ; INSTRUCTION JNZ RELEASE IS THE ACTUAL
36
                      ; TESTING FOR KEYBOARD INPUT AND KEY RELEASE.
37
38
39
40
41
42 0016 06
              SCAN:
                      CSA
                                      ; MASK TO TEST SENSE B INPUT
                           X120
43 0017 D429
                      ANI
                          INPUT
                                      ;SENSE B = 1, VALID KEY
44 0019 9002
                      JNZ.
45 001B 90F9
                      JMP
                          SCAN
                                      ; SENSE B = 0, CONTINUE
                                      GET KEYBOARD
                           (1)
46 001D C100
             INPUT:
                      LD
                          X′1F
                                      ;BLANK HI 3
47 001F D41F
                      ANI
                                      SAVE KEYCODE
48 0021 CA01
                      ST
                           1(2)
49 0023 06
              RELEAS: CSA
                                       ; MASK TO TEST
                           X120
                                                       SENSE B
50 0024 D420
                      ANI
                                       ; IF ACCUM = 1, LOOP UNTIL
51 0026 9CFB
                      JNZ RELEAS
                                       ; KEY RELEASED
52
                                      GET KEYCODE
53 0028 C201
              MAIN:
                      LD
                           1(2)
                                      ; SAVE KEYCODE IN DATA BUFF.
54 002A CA80
                      ST
                           -128(2)
55 0020 02
                      CCL
56 002D 40
                      LDE
57 002E F401
                      ADI
                           1
58 0030 01
                      XAE
                                       ; E REGISTER UPDATED FOR USE
                                       ; AS INDEX ON DATA BUFFER
59
60 0031 BA00
                      DLD (2)
                                       DECREMENT COUNT
61 0033 9CE1
                      JNZ
                           SCAN
                                        ; AFTER 20 KEYS TAKEN CONTINUE
              EXIT:
62
63
                                        USER PROGRAM
64
65
66
        0901
              KYBD = X'0901
67
        0300
              RAM = X'0300
68
69
70
        0000
                             END
ENTRY
        0010 *
                     EXIT
                             0035 *
                                           INPUT
                                                   001D
                             0028 *
                                           RAM
KYBD
        0901
                     MAIN
                                                   0300
RELEAS
        0023
                     SCAN
                             0016
NO ERROR LINES
SOURCE CHECKSUM=81EB
                                                                 NS10548
```

Figure 2C2-5 (Concluded)

Figure 2C2-6. Using Keyboard as Interrupt Device (via Sense A) - Flowchart and Program Listing

```
27
                       THE NEXT INSTRUCTION SIMULATES A
28
                       ;USERS MAIN PROGRAM.
                                              IN THIS CASE THE
29
                       PROGRAM IS WASTING TIME WAITING FOR
                       AN INTERRUPT FROM THE KEYBOARD.
30
31
32
33
34 000F 90FE LOOP:
                       JMP
                               LOOP
                                          AWAITING INTERRUPT
35
36
                     THE FOLLOWING CODE IS THE INTERRUPT
37
38
                                THIS ROUTINE GETS THE KEYCODE,
                     ; SERVICE.
39
                     SAVES IT IN THE E REGISTER AND RETURNS
40
                     ; TO THE MAIN PROGRAM.
41
42
43
44 0011 C100
              KEYSAY: LD
                               (1)
                                        JGET KEYCODE
45 0013 D41F
                       ANI
                               X'1F
                                        BLANK HI 3
46 0015 01
                       XAE
                                        ; SAVE CODE IN E REG
47 0016 06
              RELEAS: CSA
48 0017 D410
                               X'10
                                        ; MASK TO TEST
                       ANI
                                                        SENSE A
49 0019 9CFB
                                        ; WAIT FOR KEY RELEASE
                       JNZ
                               RELEAS
50
51
                       FAT THIS POINT THE USER SHOULD SAVE
                       ; THE KEYCODE IN TEMP STORAGE, OR
52
                       CONTINUE TO PROCESS THE CODE IN
53
54
                       ; THE INTERRUPT ROUTINE
55
56
57
58 001B C702
                                       ; MODIFY P3 TO SKIP LOOP
                  LD
                           @2(3)
59
                                       ; AND CONTINUE MAIN PROG.
60 001D 05
                  IEN
                                       ; ENABLE INTERRUPT
61 001E 3F
                  XPPC
                                       FRETURN TO MAIN PROG.
                                       ; WITH KEYCODE IN E REG.
62
                           KEYSAY
63 001F 90F0
                  JMP
64
65
66
        0901
              KYBD
                       = X'0901
67
68
        0000
                        END
SCAN1 SC/MP TO 20 KEY KEYBOARD
KEYSAY
        0011
                      KYBD
                              0901
                                            LOOP
                                                    000F
RELEAS
        0016
NO ERROR LINES
SOURCE CHECKSUM=8D75
                                                              NS10549
```

Figure 2C2-6 (Concluded)

USING SC/MP WITH THE MM5740 (90-KEY) ENCODER

General Description

Figure 2C2-7 shows one way in which SC/MP might be interfaced to a relatively large key matrix. This particular scheme uses a 90-key encoder with supporting circuit peripherals, a unified bus comparator for address assignment, and a TRI-STATE octal output buffer. The encoder is capable of providing a 9-bit output code; however, in figure 2C2-7, only 8 bits are used — DB0 through DB6 for keycode information and DB7 for parity. The encoder also provides internal switch debouncing and a 2-key (or N-key) rollover function.

System Operation

Clock requirements for the encoder are supplied by an LM555 oneshot; this circuit provides a suitable operating frequency. The shift, shift lock, and special-character control functions are implemented, respectively, by switches

S1, S2, and S3; a shift-lock indicator is provided also. The encoder is operated in the pulse data strobe mode; hence, when valid data are entered by the keyboard, the valid-data 'flag' (pins 13/14) is latched for timing compatibility with the Sense A (interrupt mode) or the Sense B (scan mode) inputs. For either operating mode, SC/MP responds by outputting the assigned keyboard address, and at read-strobe (NRDS) time, the output of the TRI-STATE buffer is enabled. Accordingly, the keycode data (BD0 through BD7) is read into SC/MP.

Software Considerations

Software requirements for the MM5740 system could be similar to those shown in figure 2C2-5 (scan mode) and figure 2C2-6 (interrupt mode). In some applications, the keycode data can be interpreted by more than one program. For instance, one program might implement a quality control function, another could use the same data for display purposes, while a third program could use the data for statistical analysis.

Figure 2C2-7. Interfacting SC/MP with the MM5740 (90-Key) Encoder

AN INTERRUPT-DRIVEN KEYBOARD/DISPLAY SYSTEM

General Description

The preceding applications (figures 2C2-1, 2C2-4, and 2C2-7) show how SC/MP can be used to input and process data from a keyboard. This application shows how SC/MP can be used to develop a functional keyboard/display system that is interrupt-driven; a block diagram of the system is shown in figure 2C2-8. Besides SC/MP, the system hardware consists of a 20-key matrix (16 hexadecimal and 4 command keys), a 20-key encoder, a 6-digit/7-segment LED display that is software multiplexed, and appropriate memory, decode, and buffer/driver devices. System software consists of a monitor program that allows user to read or modify (write into) a memory location, to execute a program starting at any address, and to abort the interrupt service at any time. Four main subroutines are callable

from the keyboard: SCAN, MUXDIS, G4HEX, and G2HEX. The SCAN subroutine gets valid keycode data from the 20-key matrix; also, this subroutine automatically calls the MUXDIS subroutine, which services the LED display. The G4HEX and G2HEX subroutines also call up SCAN and get, respectively, four hexadecimal characters and two hexadecimal characters from the keyboard. The hexadecimal characters are stored in a temporary table (six consecutive memory locations) and then are packed in three contiguous memory locations with the following assignments: HIGH ADDRESS, LOW ADDRESS, and DATA.

Memory assignments for the entire keyboard/display system are shown in the memory map of figure 2C2-8. The foregoing monitor program is resident in the 512-by-8 PROM; an additional 30 words of RAM also are required for this program. Memory services for the keyboard and display peripherals are as shown.

Figure 2C2-8. Interrupt-Driven Keyboard/Display System-Block Diagram and Memory Map

System Operation

Any one of the 20 keys can be pressed to initiate an interrupt, and when this condition occurs, the six LED indicators display a 00d000 as an 'interrupt-recognition' code.

NOTE

Although the depression of any key causes an interrupt, the interrupt will automatically *abort* if the key is not a legitimate command — thus, the operator may not see the initial message 00d000.

Once the interrupt is accepted, the keyboard/display system can be utilized in any one of three modes — READ, MODIFY, and EXECUTE; a fourth mode (ABORT) is used to return control to the interrupted program. The first key entered must be a legitimate READ, MODIFY, or EXECUTE command; if the key entry is invalid, or if a valid command is followed by an illegal sequence of keys, the interrupt service is exited just as though the 'ABORT' key were pressed.

Operating procedures and a summary of results for each command key are given below.

READ Mode

- 1. Depress and release READ key.
- 2. Enter address by 'press-and-release' of any four hexadecimal keys; display will show 4-digit hexadecimal address and 2-digit hexadecimal data in that address. After address is entered, it can be incremented and display updated by successively pressing READ key.
- 3. To modify a memory location while in read mode, proceed as follows:

Press MODIFY key and then whichever two hexadecimal keys are required for data modification. Before new data are entered, display will show hexadecimal address and 'old' data; after modification, display will show same address and 'new' data.

4. Return to interrupted program by 'press-and-release' of ABORT key.

MODIFY Mode

- 1. Depress and release MODIFY key.
- Enter address by 'press-and-release' of any four hexadecimal keys; enter data in selected address by 'pressand-release' of any two hex keys. Before new data is entered, display will show hexadecimal address and 'old' data; after modification, display will show same address and 'new' data.
- 3. After address is entered, it can be incremented and display updated by successively pressing MODIFY key.

NOTE

If, after entry of each modify command, user fails to enter 2-key hexadecimal data, interrupt service is terminated and control is returned to interrupted program.

4. To transfer from modify mode to read mode, simple 'press-and-release' READ key after completion of any legitimate modify command.

XECUTE Mode

- 1. Depress and release XECUTE key.
- Press and release four hexadecimal keys to specify point-of-entry address and to transfer control to user's program.

NOTE

Entry errors for first three keys can be nullified by pressing ABORT and then repeating operating sequence for XECUTE. Once fourth key is entered and address is in error, system may require reinitialization.

ABORT Mode

- 1. Depress and release ABORT key.
- 2. Interrupt service is exited and control is transferred to interrupted program.

Software Considerations

The following entry and subroutine-calling codes (or their functional equivalents) must be implemented in the users program if the keyboard/display is used for anything other than a passive monitor.

Coding schemes to satisfy each of the preceding requirements are described in the listings that follow. Figures 2C2-9 through 2C2-12 that follow the listings provide a software flowchart for each subroutine and other relevant code; figure 2C2-13 provides a complete printout of the monitor program.

- 1. Entry Code to INTERRUPT SERVICE Routine
- 2. Calling Code for MUXDIS Subroutine
- 3. Calling Code for Keyboard SCAN Routine
- 4. Calling Code for G4HEX Routine
- 5. Calling Code for G2HEX Routine

System Schematics

Pin-to-pin wiring of the keyboard/display system is shown schematically in figure 2C2-14.

Purpose: Calling Interrupt Service Routine via Pointer 3.

Conditions: Following Code must appear somewhere in users program.

Code:

```
USERS PROGRAM
LDI
        X'FF
                            GET LOW-ORDER BYTE OF INTERRUPT ADDRESS
XPAL
         3
                            :PUT IN POINTER REGISTER 3
LDI
        Χ'n
                            ;GET HIGH-ORDER BYTE OF INTERRUPT ADDRESS
XPAH
        3
                            ;PUT IN POINTER REGISTER 3
```

;POINTER 3 NOW LOADED WITH '1-LESS' THAN THE ADDRESS OF

;THE INTERRUPT SERVICE ROUTINE

IEN ENABLE INTERRUPT

CONTINUE USERS PROGRAM

;WHEN ANY KEY IS DEPRESSED, USERS PROGRAM IS ;INTERRUPTED AND KEYBOARD MONITOR PROGRAM IS

:EXECUTED

Purpose: Call MUXDIS Subroutine.

Conditions: Locations X'D80 through X'D85 must be preloaded with the information to be displayed the hex digit in X'D80 and least significant digit in X'D85; Pointer 2 must be equal to X'D80. This subroutine saves the contents of calling Pointer 1 upon entry and restores this pointer upon exit.

Code:

RETURN:

```
USERS PROGRAM
DINT
                          ;DISABLE INTERRUPT
LDI
        X'55
                          GET LOW-ORDER BYTE OF MUXDIS SUBROUTINE ADDRESS
XPAL
                          ;PUT LOW-ORDER BYTE IN POINTER 1
        1
                          ;GET HIGH-ORDER BYTE OF MUXDIS SUBROUTINE ADDRESS
LDI
        X'F
XPAH
        1
                          ;PUT HIGH-ORDER BYTE IN POINTER 1
                          ;POINTER 1 NOW LOADED WITH '1-LESS' THAN THE ADDRESS
                          OF THE MUXDIX SUBROUTINE
XPPC
                          ;CALL MUXDIS SUBROUTINE
<--->
                          INSTRUCTION TO BE EXECUTED UPON RETURN FROM MUXDIS
IEN
                          ENABLE INTERRUPT SO MONITOR PROGRAM CAN BE EXECUTED
                          :UPON ENTRY FROM KEYBOARD
                             CONTINUE USERS PROGRAM
```

Purpose: Calling Keyboard SCAN Subroutine via Pointer 3.

Conditions: Pointer 2 must be loaded with X'D80. If Pointer 2 is already being used as the RAM pointer, the following code

is required to implement the subroutine call.

DINT :DISABLE INTERRUPT Code: LDI **H(USER RAM BASE)** GET HIGH-BASE RAM ADDRESS IN ACCUMULATOR **XPAH** :PUT HIGH-BASE RAM ADDRESS IN POINTER 2 AND 'OLD' 2 :P2-HIGH IN ACCUMULATOR XAE :TEMPORARILY SAVE 'OLD' P2-HIGH IN EXTENSION LDI L(USER RAM BASE) GET LOW-BASE RAM ADDRESS IN ACCUMULATOR ;PUT LOW-BASE RAM ADDRESS IN POINTER 2 AND 'OLD' **XPAL** :P2-LOW IN ACCUMULATOR ;SAVE 'OLD' P2-LOW IN P2SAV ST P2SAV(2) LDE ;PUT 'OLD' P2-HIGH IN ACCUMULATOR ST P2SAV+1(2) ;SAVE 'OLD' P2-HIGH IN P2SAV+1 WHERE 'P2SAV' AND ;'P2SAV+1' ARE RESERVED RAM LOCATIONS WITHIN :BASE-VALUE DISPLACEMENT RANGE OF USER RAM LDI X'29 :LOAD ACCUMULATOR WITH '1-LESS' THAN LOW-ORDER :ADDRESS OF SCAN ROUTINE ;PUT LOW-ORDER ADDRESS OF SCAN IN POINTER 3 AND **XPAL** 3 ;OLD' P3-LOW IN ACCUMULATOR ST P2SAV+2(2) ;SAVE 'OLD' P3-LOW IN P2SAV+2(2) LDI X'F GET HIGH-ORDER ADDRESS OF SCAN ROUTINE XPAH ;PUT HIGH-ORDER ADDRESS OF SCAN IN POINTER 3 AND 3 :'OLD' P3-HIGH IN ACCUMULATOR ST P2SAV+3(2) ;SAVE 'OLD' P3-HIGH IN P2SAV+3 WHERE 'P2SAV+2' AND :'P2SAV+3' ARE RESERVED RAM LOCATIONS WITHIN ;BASE-VALUE DISPLACEMENT RANGE OF USERS RAM LDI X'80 GET LOW-ORDER RAM-BASE ADDRESS FOR SCAN **XPAL** :PUT LOW-ORDER ADDRESS IN POINTER 2 2 Χ'D LDI GET HIGH-ORDER RAM-BASE ADDRESS FOR SCAN **XPAH** :PUT HIGH-ORDER ADDRESS IN POINTER 2 2 **XPPC :CALL SCAN ROUTINE** 3 < > RETURN FROM SCAN WITH KEYCODE IN EXTENSION REGISTER LDI H(USER RAM BASE) ;GET HIGH-BASE RAM ADDRESS IN ACCUMULATOR **XPAH** RESTORE HIGH-BASE RAM LDI GET LOW-BASE RAM ADDRESS IN ACCUMULATOR L(USER RAM BASE) XPAL RESTORE LOW-BASE RAM LDE GET KEYCODE IN ACCUMULATOR ST ESAV(2) SAVE KEYCODE IN USERS RAM LD P2SAV+3(2) ;GET 'OLD' HIGH-ORDER CONTENT OF POINTER 3 **XPAH** 3 ;RESTORE 'OLD' P3-HIGH LD P2SAV+2(2) :GET 'OLD' LOW-ORDER CONTENT OF POINTER 3 **XPAL** ;RESTORE 'OLD' P3-LOW LD P2SAV+1(2) GET 'OLD' LOW-ORDER CONTENT OF P2 XAE TEMPORARILY SAVE 'OLD' P2-LOW IN EXTENSION LD P2SAV(2) GET 'OLD' HIGH-ORDER CONTENT OF P2 XPAH 2 :RESTORE 'OLD' HIGH-ORDER CONTENT OF POINTER 2 LDE ;GET 'OLD' P2-LOW FROM EXTENSION XPAL 2 ;RESTORE 'OLD' LOW-ORDER CONTENT OF POINTER 2 CONTENTS OF P2 IS NOW THE SAME AS IT WAS BEFORE

;CALLING SCAN ROUTINE ;CONTINUE USERS PROGRAM

•

Purpose: How to save and restore pointers when calling

G4HEX Subroutine via Pointer 1.

Conditions: Pointer 3 must contain SCAN address and

Pointer 2 must point to X'D80 (RAM base for code that follows). Locations SAV3LO/SAV3HI must be preloaded by the user for program return in case of an entry error from keyboard. Pointer 2 is the RAM pointer for the users program; thus, a few RAM locations within displacement range of the base-value of the users fixed RAM must be reserved—see illustration.

Code:	•		; USERS PROGRAM
	DINT		:DISABLE INTERRUPT
	LDI	H/IISERS RAM RASE)	GET HIGH-BASE RAM ADDRESS IN ACCUMULATOR
	XPAH	2	;PUT HIGH-BASE RAM ADDRESS IN POINTER 2 AND 'OLD' ;P2-HIGH IN ACCUMULATOR
	XAE		TEMPORARILY SAVE 'OLD' P2-HIGH IN EXTENSION
	LDI	L(USERS RAM BASE)	GET LOW-BASE RAM ADDRESS IN ACCUMULATOR
	XPAL	2	;PUT LOW-BASE RAM ADDRESS IN POINTER 2 AND 'OLD'
			;P2-LOW IN ACCUMULATOR. POINTER 2 IS NOW EQUAL
			;TO USERS RAM BASE.
	ST	P2SAVL(2)	;SAVE 'OLD' VALUE OF P2-LOW
	LDE		;PUT 'OLD' VALUE OF P2-HIGH IN ACCUMULATOR
	ST	P2SAVH(2)	;SAVE 'OLD' VALUE OF P2-HIGH
	LDI	X'29	;LOAD ACCUMULATOR WITH '1-LESS' THAN LOW-ORDER
			;ADDRESS OF SCAN ROUTINE
	XPAL	3	;PUT LOW-ORDER ADDRESS OF SCAN IN POINTER 3 AND
			;'OLD' P3-LOW IN ACCUMULATOR
	ST	P3SAVL(2)	;SAVE 'OLD' P3-LOW IN P3SAVL(2)
	LDI	X'F	GET HIGH-ORDER ADDRESS OF SCAN ROUTINE
	XPAH	3	;PUT HIGH-ORDER ADDRESS OF SCAN IN POINTER 3 AND
			;OLD' P3-HIGH IN ACCUMULATOR
	ST	P3SAVH(2)	;SAVE 'OLD' P3-HIGH IN P3SAVL(2) WHERE 'P3SAVL(2)'
			;AND 'P3SAVH(2)' ARE RESERVED RAM LOCATIONS WITHIN
			;BASE-VALUE DISPLACEMENT RANGE OF USERS RAM
	LDI	X'82	;LOAD ACCUMULATOR WITH '1-LESS' THAN LOW-ORDER
			;ADDRESS OF G4HEX SUBROUTINE
	XPAL	1	;PUT LOW-ORDER ADDRESS OF G4HEX IN POINTER 1 AND
			;'OLD' P1-LOW IN ACCUMULATOR
	ST	P1SAVL(2)	;SAVE 'OLD' P1-LOW
	LDI	X'F	GET HIGH-ORDER ADDRESS OF G4HEX SUBROUTINE

	XPAH	1	;PUT HIGH-ORDER ADDRESS OF G4HEX IN POINTER 1
			;AND 'OLD' P1-HIGH IN ACCUMULATOR
	ST	P1SAVH(2)	;SAVE 'OLD' P1-HIGH
	LDI	X'80	GET LOW-ORDER RAM BASE FOR G4HEX CODE
	XPAL	2	;PUT LOW-ORDER BYTE IN POINTER 2
	LDI	X′D	GET HIGH-ORDER RAM BASE FOR G4HEX CODE
	XPAH	2	;PUT HIGH-ORDER BYTE IN POINTER 2. POINTER 2
			;NOW CONTAINS BASE RAM ADDRESS.
	LDI	L(CALL)	GET LOW-ORDER CALLING ADDRESS FOR G4HEX
	ST	X'F8(2)	;LOCATIONS X'DF8/X'DF9 ARE ESCAPE ROUTES IN CASE
			OF ERROR AND MUST BE LOADED WITH THE ADDRESS OF
			;USERS PROGRAM WHERE THE CALL TO G4HEX OCCURS.
CALL:	XPPC	1	;CALL G4HEX SUBROUTINE
	DINT		;DISABLE INTERRUPT
	LDI	H(USER RAM BASE)	;RETURN FROM G4HEX
	XPAH	2	
	LDI	L(USER RAM BASE)	
	XPAL	2	;POINTER 2 NOW EQUAL TO BASE ADDRESS OF USERS RAM
	LD	P3SAVL(2)	GET 'OLD' LOW-ORDER CONTENT OF POINTER 3
	XPAL	3	;RESTORE 'OLD' P3-LOW
	LD	P3SAVH	GET 'OLD' HIGH-ORDER CONTENT OF POINTER 3
	XPAH	3	;RESTORE 'OLD' P3-HIGH
	LD	P1SAVL(2)	;GET 'OLD' LOW-ORDER CONTENT OF P1
	XPAL	1	;RESTORE 'OLD' P1-LOW
	LD	P1SAVH(2)	;GET 'OLD' HIGH-ORDER CONTENT OF P1
	XPAH	1	;RESTORE 'OLD' HIGH-ORDER CONTENT OF POINTER 1
	LD	P2SAVL(2)	;GET 'OLD' LOW-ORDER CONTENT OF P2
	XAE		;TEMPORARILY SAVE 'OLD' P2-LOW IN EXTENSION
	LD	P2SAVH(2)	;GET 'OLD' HIGH-ORDER CONTENT OF P2
	XPAH	2	;RESTORE 'OLD' HIGH-ORDER CONTENT OF POINTER 2
	LDE		;GET 'OLD' P2-LOW FROM EXTENSION
	XPAL	2	;RESTORE 'OLD' LOW-ORDER CONTENT OF POINTER 2
			CONTENTS OF P2 IS NOW THE SAME AS IT WAS BEFORE
			;CALLING G4HEX ROUTINE
	IEN		;ENABLE INTERRUPT
	•		;CONTINUE USERS PROGRAM
	•		;
	•		

Return Status: Upon return to users program, the G4HEX Subroutine has loaded and packed 4-hex characters as indicated below.

Purpose: How to save and restore pointers when calling G2HEX Subroutine.

Conditions: Setup and control of pointers 1, 2, and 3 and the escape locations are similar to their functional counterparts in

parts in the preceding G4HEX subroutine.

Code: Same as G4HEX code.

Return Status: Upon return to users program, the G2HEX subroutine has loaded and packed 2-hex characters as indicated

below.

Figure 2C2-9. Flow Diagram for Interrupt Service Routine

Figure 2C2-10. Flow Diagrams for READ, MODIFY, XECUTE, and ABORT Subroutines

Figure 2C2-11. Flow Diagrams for G4HEX and G2HEX Subroutines

Figure 2C2-12. Flow Diagrams for SCAN/MUXDIS and DONE Subroutines

```
TITLE
                                         KYDISI, ' KYBD & DISPLY '
 1
 2
 3
 4
 5
                       ; THIS ROUTINE IS AN INTERRUPT SERVICE.
                                                                 WHEN ANY KEY
 6
                       ; IS PRESSED, THE PRESENT PROGRAM IS INTERRUPTED
 7
                       ; AND THE KEYBOARD & DISPLAY ARE SERVICED UNTIL AN
 8
                       ; ILLEGAL ENTRY IS MADE OR THE ABORT KEY IS PRESSED.
 9
                       A STATUS REGISTER IN RAM INDICATES WHETHER
10
                       FREAD OR MODIFY MODES CHOSEN
11
12
13
                       JUSERS MAIN PROGRAM MUST LOAD POINTER 3
14
                       ; WITH X'0DFF OR X'0E5C AND ENSURE THAT
                       ; INTERRUPTS ARE ENABLED WHEN KEYBOARD
15
                       CONTROL IS DESIRED.
16
17
18
19
20
21
22
23
24
                       ; COMMANDS
                                   ; MODIFY = X'10
25
26
                                   ; XECUTE = X'11
                                           = X'12
27
                                   ; READ
28
                                   ; ABORT = X'13
29
30
        0E00
                                =X'0E00
31
32
33
                       FLOCATIONS 'SAVE' THRU 'SAVS' ARE USED
                       FTO SAVE THE STATUS OF THE INTERRUPTED
34
35
                       PROGRAM.
36
37
38
39
        ØDFF
                       SAVA:
40
        0DFE
                       SAVE:
                                 = . -1
41
        0DFD
                       SAV1L0:
                                 = . -1
42
        ODFC
                       SAV1HI: . = .-1
43
        ODFB
                       SAV2L0: = .-1
44
        ODFA
                       SAV2HI: . = .-1
45
        ØDF9
                       SAV3L0: = .-1
46
        ØDF8
                       SAV3HI: . = . -1
47
                               . = . -1
        0DF7
                       SAVS:
                               = X'D80
48
        0080
                       RAM
49
                       KYBD
        FFFF
                               = -1
50
        0000
                       LEDS
                               = X'D00
51
52
                       FITHE NEXT GROUP OF EQUATE STATEMENTS
53
54
                       ; DEFINE TEMPORARY WORKING RAM USED
```

Figure 2C2-13. Program Listing for Interrupt-Driven Keyboard/Display System

```
55
                       WITH POINTER 2
56
57
58
59
         0000
                        TABLE
                                = 0
60
         0006
                        STATUS
                                = 6
61
         0007
                        HADDR
                                = 7
62
63
         0008
                        LADDR
                                = 8
                                = 9
64
         0009
                        DATA1
65
                        LTEMP2
                                = X'A
         000A
                        HTEMP2 = X'B
66
         000B
                        SAV1
                                = X'C
         000C
67
                        SAV2
                                = X'D
68
         000D
69
         000E
                        INDX
                                = X'E
                        ESAY
                                = X'F
70
         000F
                        L03
                                = X'10
71
         0010
                        HI3
                                = X'11
72
         0011
73
         0012
                        CNT
                                = X'12
 74
         0013
                        SAVL1
                                = X'13
 75
         0014
                        SRVL2
                                = X'14
 76
 77
                          = X'E00
 78
         0E00
79
80
81
               INTRPT: ST
                                                 ; SAVE ACCUM
82 0E00 C8FF
                                SAVA
                        LDE
83 0E02 40
84 0E03 C8FB
                        ST
                                SAVE
                                                 ; SAVE E REGISTER
                                                 GET STATUS
85 ØEØ5 Ø6
                        CSA
86 0E06 C8F1
                                SAVS
                                                 ; SAVE STATUS REGISTER
                        ST
                                L(MUXDIS)-1
87 0E08 C455
                        LDI
88 ØEØR 31
                        XPAL
                                 1
                                SAV1L0
89 0E0B C8F2
                        ST
                                H(MUXDIS)
90 0E0D C40F
                        LDI
91 0E0F 35
                        XPAH
92 0E10 C8EC
                        ST
                                 SAV1HI
                                                 FPTR 1 SAVED
                                L(RAM)
93 0E12 C480
                        LDI
                        XPAL
94 0E14 32
95 0E15 C8E6
                        ST
                                 SAV2L0
96 0E17 C40D
                        LDI
                                 H(RAM)
97 0E19 36
                        XPAH
                                                 FOLD PTR 2 SAVED, NEW
98 0E1A C8E0
                        ST
                                 SAV2HI
                                                 ;PTR2 = RAM
99
                                                 GET KYBD SCAN ADDR
100 0E1C C429
                        LDI
                                 L(SCAN)-1
101 0E1E 33
                        XPAL
                                 3
102 0E1F C8DA
                                 SRV3L0
                        ST
103 0E21 C40F
                                 H(SCAN)
                        LDI
104 0E23 37
                        XPAH
105 0E24 C8D4
                                 SAV3HI
                        ST
106 0E26 C400
                        LDI
                                 а
107 0E28 CA00
                                                 CLEAR DISPLAY TABLE
                        ST
                                 TABLE(2)
                                 TABLE+1(2)
108 0E2A CA01
                        ST
109 0E2C CR04
                        ST
                                 TABLE+4(2)
```

Figure 2C2-13 (Continued)

```
110 0E2E CA05
                       ST
                                TABLE+5(2)
111 0E30 CA06
                                 STATUS(2)
                       ST
112 0E32 CA0E
                       ST
                                INDX(2)
113 0E34 CA03
                       ST
                                TABLE+3(2)
114 0E36 C40D
                       LDI
                                XYD
                                                3 1D1
115 0E38 CA02
                       ST.
                                TABLE+2(2)
116 ØE3A 3D
                       MPPC
                                                >DISPLAY 100D0001
117 0E3B 9039
                       JMP
                                CMLOOP
118 0E3D C400
              EXIT:
                       LDI
                                                #ZERO STATUS BITS
119 0E3F CA06
                       ST.
                                STATUS(2)
120 0E41 C0BC
                       LD
                                SAV1LO
121 ØE43 31
                       XPAL
                                1
122 0E44 C0B8
                                SAV1HI
                       1.0
123 0E46 35
                       XPAH
                                                FPTR 1 RESTORED
                                1
124 ØE47 CØB4
                       LD
                                SAV2LO
125 0E49 32
                       XPAL
                                2
126 0E4A 00B0
                       LD
                                SAV2HI
127 ØE40 36
                       XPAH
                                                FPTR 2 RESTORED
                                2
128 ØE4D CØAC
                       LD
                                SAV3L0
129 ØE4F 33
                       XPAL
                                3
                                SAVBHI
130 0E50 C0A8
                       LD
131 ØE52 37
                       XPAH
                                                FPTR 3 RESTORED
                                3
132 0E53 C0A4
                       LD
                                SAVS
                                                GET OLD STATUS
133 0E55 07
                       CAS
                                                FSTATUS REG RESTORED
134 0E56 C0A8
                                SAVE
                                                GGET OLD E REGISTER
                       LD
135 0E58 01
                       XAE
                                                ⇒E REG RESTORED
                                                FGET OLD ACCUM
136 0E59 C0A6
                       LD
                                SAVA
137 ØE58 Ø5
                       IEN
                                                FENABLE INTERRUPTS
138 ØE50 3F
                       XPPC
                                                FRETURN TO INTERRUPTED
                                                ⇒ PROGRAM
139
140 0E5D 90A1
                       JMP
                                INTRET
141
142
143
144
145 ØE5F C482 XECUTE: LDI
                                L(G4HEX)-1
146 ØE61 31
                       XPAL
                                1
147 ØE62 C4ØF
                       LDI
                                H(G4HEX)
148 0E64 35
                       XPAH
                                1
                                                GGET 4 DIGIT HEX ADDR.
149 0E65 3D
                       XPPC
150 0E66 C208
                       LD
                                LADDR(2)
                                                GET LO 8 ADDR
151 0E68 31
                       XPAL
                                               GET HI 8 ADDR
152 0E69 C207
                       LD
                                HADDR(2)
153 0E6B 35
                       XPAH
154 ØE6C C4FF
                                L(INTRPT)-1
                       LDI
155 ØE6E 33
                       XPAL
                                3
156 ØE6F C4ØE
                       LDI
                                HCINTRPT
157 ØE71 37
                                                RESTORE INTERRUPT POINTER
                       XPAH
                                3
158 ØE72 C5FF
                       LD
                                0-1(1)
                                                DECREMENT PC PRIOR TO FETCH
159 0E74 05
                                                FENABLE INTERRUPT
                       IEN
160 0E75 3D
                       MPPC
                                                FEXECUTE USERS PROGRAM
161
162 0E76 3F
               CMLOOP: XPPC
                                3
                                                FOALL SCAN
163 0E77 40
                       LDE
                                                #GET CODE
164 0E78 E413
                       XRI
                               X113
                                                MASK TO TEST ABORT KEY
```

Figure 2C2-13 (Continued)

```
; IF=1, EXIT INTRPT
                                EXIT
165 0E7A 98C1
                        JΖ
166 ØE7C 40
                        LDE
                                                 ; MASK TO TEST MODIFY COMMAND
167 ØE7D E410
                        XRI
                                X110
168 0E7F 980C
                                MODIFY
                        JΖ
169 ØE81 40
                        LDE
                                                 ; MASK TO TEST
                                                                 XECUTE COMMAND
                                X111
                        XRI
170 0E82 E411
171 0E84 98D9
                                XECUTE
                        JΖ
172 ØE86 40
                        LDE
                                X112
                                                 ; MASK TO TEST
                                                                 READ COMMAND
173 0E87 E412
                        XRI
174 ØE89 986B
                                READ
                        JZ
175 0E8B 90B0
                        JMP.
                                EXIT
                                                 HEX ENTERED, ABORT
176
               ; MODIFY COMMAND
                                    ENTER COMMAND KEY FOLLOWED BY A 4 DIGIT
177
                                   ;HEX ADDRESS, THEN 2 HEX DIGITS OF DATA.
178
                                   ;AFTER FIRST ENTRY, THE OPERATOR CAN INCR
179
                                  ; AND LOAD SUCCESIVE LOCATIONS BY PRESSING
180
                                  ; MODIFY KEY FOLLOWED BY TWO HEX DATA ENTRIES
181
182
183
                                                 GET STATUS BIT
184 ØE8D C206
               MODIFY: LD
                                 STATUS(2)
185 ØE8F D401
                        ANI
                                 1
                                 UPDATE
                                                 ; IF 1, THIS KMODE
186 ØE91 9020
                        JNZ
                                                  ; PREVIOUSLY ENTERED
187
                                 STATUS(2)
188 ØE93 C206
                        LD
189 0E95 D402
                        ANI
                                 2
                                                 ; IF 0, MODIFY ENTERED
                                 MOD1
190 0E97 9806
                        JΖ
                                                  FOR FIRST TIME
191
192 0E99 C401
                        LDI
                                 STATUS(2)
193 0E9B CA06
                        ST
                                                 FREAD WAS ENTERED
                        JMP.
                                 DATA
194 0E9D 900B
195 0E9F C401
               MOD1:
                        LDI
                                                  ;SET MODE STATUS IF
                                 STATUS(2)
196 ØEA1 CAØ6
                        ST
                                                  ; THIS IS 1ST ENTRY
197
                        LDI
                                 L(G4HEX)-1
198 @EA3 C482
                        XPAL
199 ØEA5 31
                                 H(G4HEX)
200 0ER6 C40F
                        LDI
                        XPAH
201 0EA8 35
                                 1
                                                  GET 4 HEX CHARACTERS
                        XPPC
202 0EA9 3D
203 0EAA C48E
                DATA:
                        LDI
                                 L(G2HEX)-1
204 0EAC 31
                        XPAL
                                 1
                                 H(G2HEX)
205 0EAD C40F
                        LDI
206 0EAF 35
                        XPAH
                                 1
207 0EB0 3D
                        XPPC
                                 LADDR(2)
208 0EB1 C208
                        LD
209 0EB3 31
                        XPAL
210 0EB4 C207
                        LD
                                 HADDR(2)
                                                  JUPPATED ADDRESS RESTORED
211 0EB6 35
                        XPAH
                                 1
                        LD
                                 DATA1(2)
                                                  GET PACKED DIGITS
212 ØEB7 C209
213 0EB9 C900
                                 (1)
                                                  FLOCATION MODIFIED
                        ST
214 ØEBB 905C
                        JMP
                                 G2DAT1
215
216
                ; THIS SECTION OF CODE UPDATES THE ADDRESS POINTER
217
                ; AND THE DISPLAY TABLE UPON SUCCESSIVE COMMAND
218
                ; KEY ENTRIES
219
```

Figure 2C2-13 (Continued)

```
220
221
222 ØEBD 90B7
                                CMLOOP
               LINK:
                       JMP
               UPDATE: CCL
223 ØEBF Ø2
224 ØECØ C2Ø8
                       LD
                                LADDR(2)
225 ØEC2 F401
                                                ; INCREMENT LO ADDRESS
                       ADI
                                1
226 ØEC4 CRØ8
                       ST
                                LADDR(2)
227 ØEC6 Ø6
                       CSA
228 ØEC7 D480
                       ANI
                                X'80
                                                # MASK TO TEST CARRY/LINK
229 ØEC9 9807
                                PUTC
                       JΖ
230 ØECB C207
                       LD
                                HADDR(2)
231 ØECD 02
                       CCL
232 ØECE F401
                       ADI
                                                ; INCREMENT HI ADDRESS
233 0ED0 CA07
                       ST
                                HADDR(2)
234 ØED2 C208 PUTC:
                       LD
                                LADDR(2)
235 ØED4 D4ØF
                                                BLANK UPPER 4
                       ANI
                                X'F
                                                CHANGE ADDR DISPLAY LSD
236 ØED6 CRØ3
                                TABLE+3(2)
                       ST
237 ØED8 C208
                       LD
                                LADDR(2)
238 ØEDA 1C
                       SR
239 ØEDB 1C
                       SR
240 0EDC 1C
                       SR
241 ØEDD 10
                       SR
242 ØEDE CA02
                       ST
                                TABLE+2(2)
                                                CHANGE ADDR DISPLAY 2ND LSD
243 ØEEØ C207
                       LD
                                HADDR(2)
244 ØEE2 D4ØF
                       ANI
                                X'F
245 0EE4 CR01
                                                ;3RD LSD ADDR INTO
                       ST
                                TABLE+1(2)
246
                                                DISPLAY TABLE
247 ØEE6 C207
                                HADDR(2)
                       LD
248 ØEE8 1C
                       SR
249 ØEE9 1C
                       SR
250 ØEEA 1C
                       SR
251 ØEEB 1C
                       SR
252 ØEEC CA00
                       ST
                                                ; MSD ADDR INTO
                                TABLE(2)
                                                ; DISPLAY TABLE
253
254 ØEEE C206
                       LD
                                STATUS(2)
255 0EF0 D402
                       ANI
256 ØEF2 98B6
                       JZ
                                DATA
                                                GET 2 HEX DATA & DISPLAY
257 ØEF4 901D
                       JMP
                                G2DATA
258
259
260
261
262 ØEF6 C206 READ:
                       LD
                                STATUS(2)
                                                GET PROGRAM STATUS WORD
263 ØEF8 D402
                       ANI
264 ØEFR 9CC3
                       JNZ
                                UPDATE
                                                ; IF 1, THIS KMODE
                                                ; PREVIOUSLY ENTERED
265
266 ØEFC C206
                       LD
                                STATUS(2)
267 ØEFE D401
                                                ; MASK TO TEST MODIFY
                       ANI
268 0F00 9806
                       JΖ
                                READ1
                                                ; IF 0, READ ENTERED FOR FIRST
269
                                                ; TIME
270 0F02 C402
                       LDI
271 0F04 CR06
                       ST
                                STATUS(2)
272 0F06 900B
                                                ; MODIFY WAS ENTERED
                       JMP
                                G2DATA
273 0F08 C402
              READ1:
                       LDI
274 0F0A CA06
                       ST
                                STATUS(2)
                                                SET MODE STATUS WORD
```

Figure 2C2-13 (Continued)

```
275 0F0C C482
                                 L(G4HEX)-1
                        LDI
276 0F0E 31
                        XPAL
                                 1
277 0F0F C40F
                        LDI
                                 H(G4HEX)
278 0F11 35
                        XPAH
                                 1
279 0F12 3D
                                                  GET 4 HEX DIGIT ADDRESS
                        XPPC
                                 1
280 0F13 C208
                G2DATA: LD
                                 LADDR(2)
281 0F15 31
                        XPAL
                                 1
282 0F16 C207
                                 HADDR(2)
                        LD
                                                  ;PTR 1 = ADDR TO BE READ
283 ØF18 35
                        XPAH
                                 1
284 0F19 C100
                G2DAT1: LD
                                 (1)
                                                  GET DATA
                                                  ; SAVE DATA IN E REG
285 0F1B 01
                        XRE
                                                  GET PACKED DATA
286 ØF1C 40
                        LDE
287 0F1D 1C
                        SR
288 ØF1E 1C
                        SR
289 0F1F 1C
                        SR
290 0F20 1C
                        SR
                                                  ; MSD IN LO 4
291 0F21 CR04
                        ST
                                 TABLE+4(2)
                                                  ; MSD DATA INTO TABLE
                                                  GET DATA
292 0F23 40
                        LDE
                                 X'F
                                                  ; BLANK UPPER 4
293 0F24 D40F
                        ANI
                                 TABLE+5(2)
                                                  ; LSD DATA INTO TABLE
294 0F26 CR05
                        ST
295 0F28 9093
                        JMP
                                 LINK
296
297
298
299
300
                ; NEXT SECTION OF CODE IS THE KEYBOARD SCAN AND JUMP TO
301
                ; THE MULTIPLEXED DISPLAY ROUTINE
302
303
304
305 0F2R C455
                SCRN:
                        LDI
                                 L(MUXDIS)-1
306 0F2C 31
                        XPAL
307 0F2D CR0A
                        ST
                                 LTEMP2(2)
308 0F2F C40F
                        LDI
                                 H(MUXDIS)
309 0F31 35
                        XPAH
                                 HTEMP2(2)
310 0F32 CR0B
                        ST
311 0F34 06
                LOOK:
                        CSA
                                                  ; TEST SENSE A
312 0F35 D410
                        ANI
                                 X'10
                                                  ; IF 1, KEY IS PRESSED
313 0F37 9C03
                                 INPUT
                         JNZ
                                                  ; REFRESH THE DISPLAY
314 0F39 3D
                        XPPC
                                 1
                                 LOOK
315 0F3A 90F8
                         JMP
                                                  GET KEYCODE
316 0F3C C2FF
                INPUT:
                        LD
                                 KYBD(2)
                                                  BLANK UPPER 5
                                 X'1F
317 0F3E D41F
                        ANI
318 0F40 CR0F
                                 ESAV(2)
                                                  ; SAVE CODE
                         ST
319 0F42 06
                RELEAS: CSA
320 0F43 D410
                                 X'10
                        ANI
                                                  ; IF 0, KEY RELEASED
321 0F45 9803
                                 RETURN
                         .17
322 ØF47 3D
                        XPPC
                                                  ; REFRESH THE DISPLAY
323 0F48 90F8
                         JMP
                                 RELEAS
                RETURN: LD
324 0F4R C20A
                                 LTEMP2(2)
                        XPAL
325 ØF4C 31
326 0F4D C20B
                        LD
                                 HTEMP2(2)
                                                  ; PTR 1 RESTORED
327 ØF4F 35
                        XPAH
328 0F50 C20F
                        LD
                                 ESRY(2)
                                                  GET CODE
329 0F52 01
                        XAE
```

Figure 2C2-13 (Continued)

```
330 0F53 3F
                       XPPC:
                                                FRETURN TO CALLING ROUTINE
                                3
331 0F54 90D4
                        JMP
                                SCAN
332
333
               ; THE NEXT SECTION OF CODE PERFORMS THE MULTIPLEX
334
335
               REFRESH OF THE DISPLAY.
336
337
               FITHE 6 DIGITS TO BE DISPLAYED ARE STORED IN 6
338
339
               CONSECUTIVE LOCATIONS STARTING AT X1080.
340
341
342 ØF56 C400
               MUXDIS: LDI
                                L(LEDS)
343 ØF58 31
                        XPAL
                                                SAVE OLD P1 LO
344 0F59 CA0C
                        ST
                                SAV1(2)
345 0F5B C40D
                        LDI
                                H(LEDS)
346 0F5D 35
                       XPAH
                                1
347 0F5E CR0D
                        ST
                                                SAVE OLD P1 HI
                                SAV2(2)
348
               POINTER 1 NOW IS THE BASE ADDRESS OF THE DISPLAY
349
350
351
352
353 0F60 C420
                       LDI
                                X120
354 0F62 01
               LOOP:
                       XAE
                                                ; E REG = DIGIT DRIVE
355 0F63 C601
                       LD
                                @1(2)
                                                GET HEX DIGIT
356 0F65 C980
                                                DISPLAY THE DIGIT
                        ST
                                -128(1)
357 0F67 40
                                                #GET DIGIT DRIVE
                       LDE
358 0F68 1C
                                                CHANGE DIGIT
                        SR
359 0F69 9CF7
                                LOOP
                        JNZ
360 0F6B C900
                                                #BLANK DISPLAY
                        ST
                                (1)
361 0F6D C480
                       LDI
                                L(RAM)
362 ØF6F 32
                                                FRESTORE PTR 2 LO
                       XPAL
                                2
363 0F70 C20D
                       LD
                                SAV2(2)
                                                GET OLD PTR 1 HI
364 0F72 35
                       XPAH
365 ØF73 C2ØC
                       LD
                                                GET OLD PTR 1 LO
                                SAV1(2)
366 0F75 31
                       XPAL
                                1
367 ØF76 3D
                       XPPC
                                1
                                                FRETURN TO CALLING PROG
368 0F77 90DD
                        JMP
                                MUXDIS
369
370
371
372
373
               ;THE G4HEX ROUTINE GETS 4 HEX DIGITS AND STORES THEM
               ; IN THE DISPLAY TABLE. IF A COMMAND KEY IS ENTERED
374
               ; DURING THIS SEQUENCE, THE INTERRUPT SERVICE IS EXITED
375
376
               DISPLAY TABLE IS AT X1080 THRU X1085
377
378
379 0F79 C480
               ERROR:
                                L(RAM)
                        LDI
380 0F7B 32
                        XPAL
381 0F7C C43C
                        LDI
                                L(EXIT)-1
382 0F7E 31
                        XPAL
                                1
383 0F7F C40E
                        LDI
                                H(EXIT)
384 0F81 35
                       XPAH
                                1
```

Figure 2C2-13 (Continued)

```
385 0F82 3D XPPC
386 0F83 31 G4HEX: XPAL
                                     XPPC 1
                                                                             # ; EXIT INTERUPT
387 0F84 CA13 ST
388 0F86 35 XPAH
389 0F87 CA14 ST
390 0F89 3F XPPC
391 0F8R C404 LDI
392 0F8C 31 XPAL
393 0F8D 9014 JMP
                                                     SAVL1(2)
                                                     1
                                                     SAVL2(2)
                                                     3
                                                                               CALL SCAN
                                                     1
394 ØF8F 31 G2HEX: XPAL 395 ØF90 CA13
                                                  FIRST
                                                                                SAVE P1 LO
                         ST
XPAH
ST
XPPC
                                                      SAVL1(2)
                                                                                SAVE P1 LO
 396 0F92 35
                                                      1
 397 0F93 CR14
                                                     SAVL2(2)
 398 0F95 3F
                                                                               GRALL SCAN, RETURN WITH CODE
                                                     3
                                                                                ; IN E REG.
 399
                                    LDI 2
XPAL 1

      400 0F96 C402
      LDI

      401 0F98 31
      XPAL

      402 0F99 C604
      LD

      403 0F98 9006
      JMP

                                                   @4(2)
                                                                         MODIFY P2 FOR INDEXING
                                                    FIRST
 404 0F9D C212 LOOP1: LD
                                                     CNT(2)
 406 0FR0 C20E
407 0FR0 20
                                       XPAL
                                                     1
                                                     INDX(2) ; GET PREVIOUS INDEX VALUE
2 ; SET UP P2
                                      LD
 407 0FA2 32
                                       XPAL
 408
 409
 410
411
                      ;PTR 2 IS AUTO INDEXED THRU THE DISPLAY TABLE.
;THE 1ST FOUR LOCATIONS CONTAIN THE HEX ADDRESS
;TO BE DISPLAYED.
 412
 413
414
415 0FA3 40 FIRST: LDE.
416 0FA4 D410 ANI X'10
417 0FA6 9CD1 JNZ ERROR
418 0FA8 40 LDE
419 0FA9 D40F ANI X'F
420 0FAB CE01 ST 01(2)
421 0FAD 31 XPAL 1
422 0FAE 02 CCL
423 0FAF F4FF ADI -1
424 0FB1 980C JZ DONE
425 0FB3 31 XPAL 1
426 0FB4 C480 LDI L(RAM)
427 0FB6 32 XPAL 2
428 0FB7 CA0E ST INDX(2)
429 0FB9 31 XPAL 1
430 0FBA CA12 ST CNT(2)
431 0FBC 3F XPPC 3
432 0FBD 90DE JMP LOOP1
 414
                                                                             ;GET CODE
;MASK TO TEST COMMAND
                                                                                ; IF 1, ABORT INTRPT
                                                                                GET LOOP COUNT
                                                                               JDECR LOOP COUNT
                                                                               REPLACE LOOP COUNT
                                                                             ;RESTORE P2
;SAVE INDEX VALUE
                                                                               CALL SCAN
                                                      L00P1
                                        JMP
 432 0FBD 90DE
 433
 434
                       THE SECTION OF CODE BEGINNING WITH 'DONE', TAKES ADDRESS AND DATA FROM THE DISPLAY TABLE LOCATIONS
 435
                         ; AND PACKS INTO LOCATIONS LADDR, HADDR, AND DATA1.
 437
 438
 439
```

Figure 2C2-13 (Continued)

```
440
441
442 0FBF C480
                DONE:
                        LDI
                                 L(RAM)
                                                   ; RESTORE P2
443 0FC1 32
                        XPAL
                                 2
                                 3
444 0FC2 C403
                        LDI
                                                   ;P1 IS LOOP CNTR
445 0FC4 31
                        XPAL
446 0FC5 C487
                        LDI
                                 X'87
                                                   ; NEW BASE FOR P3
                                                   ; MODIFY P3 FOR INDEXING
447 0FC7 33
                        XPAL
                                 3
                                 L03(2)
                                                   ; SAVE P3 LO
448 0FC8 CA10
                         ST
                                 H(RAM)
449 0FCR C40D
                        LDI
450 0FCC 37
                        XPAH
                                 7
451 0FCD CA11
                         ST
                                 HI3(2)
452 ØFCF C601
                PACK:
                                                  GET CODE FROM TABLE
                        LD
                                 @1(2)
453 @FD1 1E
                        RR
454 ØFD2 1E
                        RR
455 0FD3 1E
                        RR
456 0FD4 1E
                                                   SHIFTED LEFT 4
                        RR
457 0FD5 01
                        XAE
458 0FD6 C601
                                 @1(2)
                        LD
459 0FD8 58
                         ORE
460 0FD9 CF01
                         ST
                                 @1(3)
                                                   ; HADDR/LADDR/DATA1
461 ØFDB 31
                         XPAL
                                                   GET LOOP COUNT
462 ØFDC Ø2
                         CCL
463 0FDD F4FF
                         AD I
                                                   ; DECR
                                  -1
464 0FDF 9803
                         JΖ
                                 OUT
465 0FE1 31
                         XPAL
                                                   * RESTORE COUNT
                                  1
466 ØFE2 90EB
                         JMP
                                 PACK
                OUT:
                         LDI
467 0FE4 C480
                                 L(RAM)
468 ØFE6 32
                                                   RESTORE P2
                         XPAL
                                 2
469 ØFE7 C210
                         LD
                                 L03(2)
470 0FE9 33
                        XPAL
                                 3
471 ØFEA C211
                                 HI3(2)
                         LD
472 ØFEC 37
                         XPAH
                                                   RESTORE P3
                                  7
473 ØFED C213
                        LD
                                 SAVL1(2)
474 ØFEF 31
                                                   ; RESTORE P1
                         XPAL
                                 1
475 ØFFØ C214
                                 SAVL2(2)
                         LD
476 ØFF2 35
                         XPAH
                                 1
477 ØFF3 3D
                         XPPC
                                 1
                                                  FRETURN TO CALLING COMMAND
478
479
         9999
                          END
          CMLOOP
                   0E76
                                 CNT
                                         0012
                                                        DATA
                                                                 ØEAA
          DATA1
                   0009
                                 DONE
                                          ØFBF
                                                        ERROR
                                                                 ØF79
          ESRY
                   000F
                                 EXIT
                                          ØE3D
                                                        FIRST
                                                                 ØFA3
          G2DAT1
                   ØF19
                                 G2DATA
                                          0F13
                                                        G2HEX
                                                                 ØF8F
          G4HEX
                   0F83
                                 HADDR
                                          0007
                                                        HI3
                                                                 0011
          HTEMP2
                   000B
                                 INDX
                                          000E
                                                        INPUT
                                                                ØF3C
                                                        LADDR
          INTRPT
                   0E00
                                 KYBD
                                         FFFF
                                                                9998
          LEDS
                   0000
                                 LINK
                                          ØEBD
                                                        LO3
                                                                 0010
                                                        L00P1
          LOOK
                   0F34
                                 LOOP
                                          0F62
                                                                 0F9D
                                 MOD1
                                                        MODIFY
                                                                ØE8D
          LTEMP2
                   000A
                                          0E9F
                                                        PACK
                                                                 ØFCF
          MUXDIS
                   0F56
                                 OUT
                                          ØFE4
          PUTC
                                                        READ
                                 RAM
                                          0080
                                                                 ØEF6
                   ØED2
                   0F08
          READ1
                                 RELEAS
                                         0F42
                                                        RETURN
                                                                ØF4A
          SAV1
                   000C
                                 SAV1HI
                                         ØDFD
                                                        SAV1L0
                                                                ODFE
```

Figure 2C2-13 (Continued)

T-							•	4
	SAV2 SAV3HI SAVE SAVS TABLE	000D 0DF9 0DFF 0DF8 0000	SAV2HI SAV3LO SAVL1 SCAN UPDATE	0DFB 0DFA 0013 0F2A 0EBF	SAV2LO SAVA SAVL2 STATUS XECUTE	0DFC 0E00 0014 0006 0E5F		
		DR LINES CHECKSUM=1	.050					
							NS10555	

Figure 2C2-13 (Concluded)

Figure 2C2-14. Interrupt Driven Keyboard/Display System-Schematic Diagram

INTERFACING SC/MP WITH A BURROUGHS SELF-SCAN DISPLAY

General Description

The SC/MP-and-display interface shown in figure 2C2-15 provides an easy and relatively inexpensive method of generating 64 alphanumeric characters — any 32 of which are simultaneously shown on a single-row display panel. This SC/MP-based system can be used efficiently for any closeview (up to 10 feet) moving-message or static display.

System Operation

As shown in figure 2C2-15, data are input from SC/MP via a low-power TRI-STATE buffer (DM81LS95) and these data are latched by the DM74199. Under software supervision, flag 0 is used to generate the "write" pulse and Sense B is used to indicate "status" — the status specifying when a new character can be input to the display. Each of the 64 characters is defined by a 6-bit binary-to-hexadecimal code; the characters and their equivalent hexadecimal codes are shown in table 2C2-1.

Table 2C2-1. Alphanumeric Characters and Corresponding Hex-Input Codes

HEX INPUT	CHARACTER	HEX INPUT	CHARACTER	HEX INPUT	CHARACTER	HEX INPUT	CHARACTER
00	@	10	Р	20	(BLANK)	30	0
01	Α	11	a	21	!	31	1
02	В	12	R	22	"	32	2
03	С	13	S	23	#	33	3
04	D	14	Т	24	\$	34	4
05	E	15	υ	25	٠/.	35	5
06	F	16	V	26	&	36	6
07	G	17	w	27	/	37	7
08	Н	18	×	28	<	38	8
09	i	19	Y	29	>	39	9
A	J	1A	Z	2A	*	3A	:
В	K	1B	[2B	+	3B	;
С	L	1C	~	2C	,	3C	<
D	М	1D	1	2D	_	3D	=
E	N	1E	 	2E	•	3E	>
F	0	1F	}	2F	لم	3F	?

Software Considerations

Memory interfaces for the SC/MP-display system are shown in figure 2C2-15. The control program is stored in ROM – X'000 through X'01FF; RAM utilizes locations X'0F00 through X'0FFF with a display address of X'0800. There are no special timing restraints required to communicate with the self-scan display.

Each character of the message is brought in from the buffer; then, the program checks to see if the character is valid, and if it is valid, the software converts the 7-bit ASCII input code to a 6-bit ASCII output code. After this conversion is made, the clear bit and display-blanking bit are set to the proper condition and are ORed with the character. The character word now is written into the DM74199 latch. Subsequently, the Data Present line is pulsed and the Write Flag is tested to see if the display is ready to accept new data. Figures 2C2-16 and 2C2-17, respectively, show the flowchart and the program listing for the Control and Message-Moving Program that is used to print a message that is greater than 32 words long.

Figure 2C2-15. SC/MP Interfaced with Burroughs Self-Scan Display

Figure 2C2-16. Flowchart for Control and Moving-Message Program

```
TITLE DISP, 'MOVING MESSAGE
 1.
                       MESSAGE MUST BE 32 CHARACTERS.
 4
 5
 6
                       3717776
 7
 8
 4
                       RAM LOCATIONS USED.
10
11
                       06.00
                               ADDRESS OF MESSAGE HIGH
12
13
                       0F01
                               ADDRESS OF MESSAGE LOW
                       0602
                               NEXT ADDRESS OF MESSAGE HIGH
14
15
                       HERE
                               NEXT ADDRESS OF MESSAGE LOW
                       9F 94
                               CHAR PER LINE COUNTER
1.6
17
18
19
20
                                                ::SAME AS 0F00
        Decide HST
                                                ; SAME AS 0F01
21.
        Recent 1
              LST
                               1.
22
                                                SAME AS 0F02
        BBBZ HIMF
23
                                                SAME AS 0F03
        English:
              L 1 Min
24
                                                ⇒SAME AS 0F04
        Signal 4
              COUNTY
                               4
        ideacid HOF
25
                               9899
                                                GADDRESS OF DISPLAY.
                                                START OF RAM.
26
        Ci dd - Mar
                               0F00
27
28
        Lockers
                                                STARTING ADDRESS.
99
29
3.1
                       MESSAGE IS ASCII STRING IN MEMORY.
32
                       END OF MESSAGE IS A BYTE OF ALL 0.
3:3
34
35
36
                              8F26
                                               ; ADDRESS OF MESSAGE.
        erze mmsu
37
\mathbb{R}(\Xi)
7.9
                        PAGE
40
41
              START:
42 0000 08
                       NOP:
43 0001 C40F
                       LDI
                                H(RAM)
                                               - PUT RAM ADDRESS IN P3.4
44 0003 37
                       XPAH
45 0004 0400
                       LDI
                               L.(RAM)
46 0006 33
                       XPAL
47 0007 C40F
                       LDI
                               H(MMSG)
                                               SET STARTING ADDRESS IF MESSA
48 0909 CB00
                                                SAVE IN RAM.
                       ΞT
                               HST(3)
49 0008 0420
                       LDI
                                L(MMSG)
50 0000 0001
                       57
                               LST(3)
51 000F 0408
                                               FIGURE ADDRESS OF DISPLAY IN P1.
                       LD1
                               H(ADR)
52 0011 35
                       XPAH
53 0012 0400
                       LDI
                               L(ADR)
54 0014 31
                       XPBL.
                               :1.
55 0015 C400
                                                GCLEAR DISPLAY.
                       LDI
                                131
```

Figure 2C2-17. Program Listing for Control and Moving-Message Program

```
56 0017 0900
                        ST
                                (1)
 57 0019 0420
                                                SET LINE COUNT.
                                32
                        LDI
 58 0018 CE94
                        ST
                                COUNT(3)
FPUT ADDRESS IN TEMP.
 60 8010 6301
                        LD
                                LST(3)
 61 001F CB03
                        ST
                                LTMP(3)
 62 0021 32
                                                 SET P2 TO ADDRESS.
                        XPAL
 63 9922 0300
                                HST(3)
                        LD
 64 0824 CB02
                                HTMP(3)
                        ST
 65
               FENT:
                                                 HIGH ADDRESS IN P2.
 66 0006 36
                        XPAH
 67
               FRINE:
 68 0927 0601
                                @1(2)

    GET NEXT WORD.

                        L.D
                                                CHECK IF DONE.
 69 0025 5022
                        JMZ
                                SELF
 70 0028 0302
                                HTMP(3)
                                                ; RESTORE POINTER.
                        LD
 21 0020 36
                        ZPBH
 72 092E 0303
                                LIMP(3)
                        1.15
 73 0000 12
                        MPHL
                                2
 74 0031 900D
                                MORE
                        JMF
 75
               ON:
 76 0003 32
                        XPAL.
                                                SAVE IN P2 LOW.
 77 0004 US02
                        LD
                                HTMP(3)

    RESTORE HIGH.

 78 0030 90EE
                        JMF
                                PENT
 799
               NEH.
 89 9938 0428
                        LDI
                                32
                                                 SAVE LINE COUNT.
 81 0039 CB04
                        ST
                                COUNT(3)
                                                 DO A SHORT DELAY.
 82 903C C4FF
                        LDI
                                MEE
 83 003E SES0
                        DLY
                                989
 84
               MORE:
 85 0040 0200
                                                 GOHECK IF DONE.
                        LD
                                (2)
 86 0042 9809
                        JZ
                                5
 87 8044 8303

    BUMP RAM POINTER.

                        TLD
                                LTMP(3)
 88 0046 9CEB
                        JNZ
                                ÜH
 89 0048 32
                        MPAL
                                                 FINEXT ADDRESS.
                                2
 90 0049 8802
                                HTMP(3)
                                                 BUMP HIGH.
                        TLD
 91 004B 90DA
                        THE
                                PRINT
 \oplus \bigcirc
               SELF:
 93 0040 01
                                                 SAVE CHAR.
                        MAE
 94 8946 49
                                                GET CHAR.
                        LDE
 95 past 62
                                                CLEAR LINK.
                        CCL
 94 0050 F4E0
                                                - ; CHECK IF LESS THAN 020.
                        HDL
                                ØEU
                        JP
 97 0052 9481
                                GT.LF
                                                - ;NO > 01F.
 98 9954 1461
                                                ;LESS THAN 01F RETURN.
                        JMP
                                PEINT
 C) C)
               1512F
199 8855 82
                        COL
                                                CLEAR LINK.
104 0057 F400
                                                ;CHECK IF > 05F.
                        HOL
                                 800
                                                ; YES RETURN.
102 0059 9400
                        .11-
                                PEINT
102 9058 40
                                                 GCHAR IS VALID.
                        LOE
                                                 STRIP OFF HIGH BITS.
104 0050 D43F
                                03F
                        14141
                                                 SET CLEAR AND DISPLAY BITS.
105 005E DCS8
                        ORI
                                686
106 0060 0900
                        ST
                                                 SEND WORD.
                                 \langle 2, \rangle
107 0062 06
                        CSB
                                                 SET WRITE CYCLE FLAG 0.
108 0063 DC01
                       0ET
                                                 ; NOW SET FLAG Ø.
109 0065 07
                        1.65
                                                 3 NOW RESET FLAG.
110 0066 DRFE
                        HNI
                                 OFE
                                                  300 IT.
111 0068 07
                        1.85
```

Figure 2C2-17 (Continued)

```
1.12
                DOMHIT:
113 0069 06
                        CSA
                                                  ; GET STATUS.
                                                  FOHECK IF SENSE B IS SET.
114 006A D420
                        HHI
                                 020
                                                  FWAIT IF SET.
115 006C 9CFB
                        JNZ
                                 DOMBIT
116 006E BB04
                        DLD
                                 COUNT(3)
                                                  BUMP COUNTER.
117 9070 9806
                        JZ
                                 NEW
118 0072 9003
                        JMP
                                 PRINT
119
129
1.21
122
         2366
                         END
        ADE:
                0800
                              COUNT
                                       9994
                                                     DOWAIT
                                                             0069
        GT1F
                0056
                                       9999
                                                     HTMP
                                                             0002
                              HST
        LST
                0001
                              LIMP
                                       9993
                                                     MMSG
                                                             0F20
        MORE
                0049
                                                             0033
                              NEW
                                       0038
                                                     ON
        PRINT
                0027
                              FENT
                                       9926
                                                     RAM
                                                             0F00
        5
                0010
                              SELF
                                       004D
                                                     START
                                                             0000 *
        NO ERROR LINES
        SOURCE CHECKSUM=99A5
                                                                        NS10559
```

Figure 2C2-17 (Concluded)

MULTIPROCESSOR SYSTEM

General Description

Figure 2C3-1 shows how two microprocessors -SC/MP #1 and SC/MP #2 — can be interconnected to perform different tasks on a time- and memory-share basis. SC/MP #1 is the basic SC/MP kit (1SP-8K/200) with a TTY input/output interface, whereas SC/MP #2 is used to drive a Burroughs self-scan display — see figure 2C2-15. The control program for each microprocessor is stored in a separate ROM; the 256 bytes of RAM are shared. The basic functions of SC/MP #1 are defined in the SC/MP Kit Users Manual; however, with more RAM and with the latching and buffering techniques shown in figure 1-8, the kit capabilities can be expanded to provide a complete keyboard/display system.

System Operation

When power is applied to the multiprocessor system, NRST of SC/MP #2 is driven high via the RC network and the processor initializes at address X'0001; for the time being, SC/MP #1 is held off by the low input from flag 1 of SC/MP #2. Each processor uses the Sense A input for program direction; that is, if Sense A is low for SC/MP #2, it branches to the Burroughs self-scan routine. After this

decision is implemented by setting P3 to the proper address, the SC/MP #2 software sets flag 1 high (NRST #1 now is driven high); this causes SC/MP #1 to initialize at address X'0001. Since the Sense A input of SC/MP #1 is tied high, it branches to the KITBUG Routine.

With both processors initialized and directed to their respective programs, bus requests are made and ENIN is tested for bus access. If ENIN is low, the processor requesting access must wait until its ENIN lines goes high. If the ENIN line is high and no bus request is issued, the "bus available" signal is passed to the next processor — in this case, SC/MP #2 — via the ENOUT line. (Refer to figure 1-4f for functional detail of bus-access control.)

Software Considerations

Figure 2C3-2 shows the system flowchart and the program listing for KITBUG; a detailed flowchart for KITBUG is shown in the SC/MP Kit Users Manual. The program listing for the self-scan routine is shown in figure 2C3-3; except for address assignments, this listing is similar to that shown in figure 2C2-17. The flowchart for the multiprocessor "self-scan" program is functionally equivalent to that shown in figure 2C2-16. There are no timing constraints; the system is self-clocking and self-synchronizing.

Figure 2C3-1. Using SC/MP in a Multiprocessing System

Figure 2C3-2. Flowchart for Multiprocessor System and Program Listing for KITBUG

```
52 000E C0EA
                       LD
                               STACK+PT1 ; RESTORE P1
 53 0010 35
                       XPAH
                               P1
 54 0011 C0E8
                       LD
                               STACK+PT1+1
 55 0013 31
                       XPAL
                               P1
 56 0014 C0E6
                       LD
                               STACK+PT2
                                            ; RESTORE P2
 57 0016 36
                       XPAH
                               P2
 58 0017 C0E4
                       LD
                               STACK+PT2+1
 59 0019 32
                       XPAL
                               P2
 60 001A CODC
                       LD
                               STACK+PC
                                               ; PUT DESIRED PC IN P3
 61 001C 37
                       XPAH
                               P3
 62 001D C0DA
                               STACK+PC+1
                       LD
 63 001F 33
                       XPAL
                               P3
 64 0020 C7FF
                                               ADD EXIT OFFSET TO PC
                       LD
                               @EXOFF(P3)
 65 0022 C0DC
                       LD
                               STACK+SR
                                               RESTORE SR
 66 0024 07
                       CAS
 67 0025 C0D7
                               STRCK+AC
                       LD
 68 0027 3F
                       XPPC
                               P3
 69
 70
               DEBUG ENTRY POINT
 71
 72 0028 C8D4 ENTER:
                       ST
                               STACK+AC
 73 002A 06
                       CSA
 74 002B C8D3
                       ST
                               STACK+SR
 75 002D 01
                       XAE
                                               ; SAVE EXTENSION REGISTER
 76 002E C8CF
                       ST
                               STACK+EX
 77 0030 36
                       XPAH
                               P2
                                                   POINTER
 78 0031 0809
                       ST
                               STACK+PT2
 79 0033 32
                       XPAL
                               P2
 80 0034 C8C7
                       ST
                               STRCK+PT2+1
 81 0036 35
                       XPAH
                               P1
                                                   STACK
 82 0037 0801
                       ST
                               STACK+PT1
 83 0039 31
                       XPAL
                               P1
 84 003A C8BF
                       ST
                               STACK+PT1+1
 85 0030 37
                       XPAH
                               P3
 86 003D C8B9
                       ST
                               STACK+PC
 87 003F 33
                       XPAL
                               P3
 88 0040 C8B7
                       ST
                               STACK+PC+1
 89
                       . PAGE
                               'MAIN COMMAND LOOP'
 90
                       . LOCAL
 91
               ; THIS CODE INITIALIZES POINTER REGISTERS AND
 92
               ; PROMPTS FOR AND GETS THE NEXT COMMAND.
 93
 94
               ; ON EXIT, E HOLDS THE COMMAND CHARACTER
 95
 96
 97 0042 C4F6 CMDLP: LDI
                               L(P2ADR)
 98 0044 32
                       XPAL
                               P2
 99 0045 C40F
                       LDI
                               H(P2ADR)
100 0047 36
                       XPAH
                               P2
101 0048 C401
                               H(PUTC)
                                              ; PRINT CR-LF
                       LDI
102 004R 37
                       XPAH
                               Р3
103 004B C4C3
                               L(PUTC)-1
                       LDI
```

Figure 2C3-2 (Continued)

```
104 004D 33
                       XPAL
                               P3
105 004E C40D
                       LDI
                               ØD
106 0050 3F
                       XPPC
                               P3
                                            PRINT CR
107 0051 C40R
                      LDI
                               ØA.
108 0053 3F
                      XPPC
                               P3
                                            PRINT LF
109 0054 C42D
                               1.....
                      LDI
110 0056 3F
                               P3
                       XPPC
111 0057 C484
                               L(GECO)-1
                                            ; P3 HIGH OK.
                       LDI
112 0059 33
                       XPAL
                               P3
                                             GET COMMAND CHAR.
113 005A 3F
                       XPPC
                               P3
114
                       . PAGE
                               'GO'
115
                       . LOCAL
116
              RESTORE MACHINE STATE AND TRANSFER CONTROL
117
               TO SPECIFIED ADDRESS.
118
119
               G ADDRESS
120
121
122 005B 40
                       LDE
               GO:
123 005C E447
                               'G'
                       XRI
124 005E 9C07
                               $5KIP
                       JNZ
125 0060 3F
                       XPPC
                               Р3
                                            > CALL GECO
126 0061 E40D
                       XRI
                               ØD.
127 0063 98A6
                       JΖ
                               EXIT
                       JMP
128 0065 9064
                               ERROR
129
               $SKIP:
130
                               'TYPE'
                       . PAGE
131
                       . LOCAL
132
133
              TYPE OR MODIFY MEMORY.
134
                                             ; CHECK FOR TYPE COMMAND, IF
135 0067 40
               TYPE:
                       LDE
                               171
136 0068 E454
                                                NOT 'T' SKIP COMMAND.
                       XRI
137 006A 9809
                       JZ
                               $2
138 006C 40
               MOD:
                       LDE
139 006D E44D
                               'M'
                       XRI
140 006F 9C5A
                               $SKIP
                       JNZ
141 0071 C400
                       LDI
                               0
142 0073 9002
                       JMP
                               $1
143 0075 C401
              $2:
                       LDI
                               1
144 0077 CEFF
                       ST
                               @-1(P2)
                                            SAVE FLAG FOR TYPE OR MODIFY
               $1:
145 0079 C400
                                             GET ADDRESS
                       JS
                               P3, GHEX
    007B 37C4
    007D DE33
    007F 3F
                                              CHECK TERMINATOR
146 0080 E40D
                       XRI
                               ØD
147 0082 9047
                       JNZ
                               ERROR
                                           ; PUT STARTING ADDRESS IN STAC
148 0084 C601
                       LD
                               @1(P2)
149 0086 35
                       XPAH
                               P1
150 0087 C601
                               @1(P2)
                       LD
151 0089 31
                       XPAL
                               P1
                               H(PUTC)
                                            PRINT CR-LF
.152 008A C401 $4:
                       LDI
```

Figure 2C3-2 (Continued)

```
153 008C 37
                       XPAH
                               P3
154 008D C4C3
                               L(PUTC)-1
                       LDI
155 008F 33
                       XPAL
                               P3
156 0090 C40D
                               ØD
                       LDI
157 0092 3F
                      XPPC
                               P3
                                            ; PRINT CR
158 0093 C40A
                      LDI
                               0A
159 0095 3F
                      XPPC
                               P3
                                            ; PRINT LF
160 0096 35
                      XPAH
                               F1
                                             PRINT HIGH BYTE
161 0097 01
                       XAE
                                             ; READ AND RESTORE BYTE FROM P
162 0098 40
                       LDE
163 0099 35
                       XPAH
                               P1
164
                                             ⇒P3 HIGH OK.
165 009A C442
                      LDI
                               L(PHEX2)-1
166 009C 33
                       XPAL
                               P3
167 009D 40
                       LDE
168 009E 3F
                                            ; CALL PHEX2
                       XPPC
                               Р3
169 009F 31
                       XPAL
                                             PRINT LOW BYTE
                               P1
170 00A0 01
                       XAE
171 00A1 40
                       LDE
172 00A2 31
                       XPAL
                               P1
173 00A3 40
                       LDE
174 00A4 3F
                       XPPC
                               P3
                                            CALL PHEX1
175 00A5 C501
                               @1(P1)
                      LD
                       XPPC
176 00A7 3F
                               P3
                                            ; PRINT 2-DIGIT HEX FOLLOWED B
177
                                                 BLANK (PHEX1)
178 00A8 C200
                       LD
                               (P2)
                                             CHECK TYPE OR MODIFY FLAG
179 00AA 9CDE
                       JNZ
                               $4
180
                                             ;P3 HIGIH IS STILL OK.
                       LDI
181 00AC C484
                               L(GECO)-1
182 00AE 33
                       XPAL
                               P3
183 00AF 3F
                       XPPC
                               P3
                                            GO TO GECO.
184 00B0 E40D
                       XRI
                               ØD
185 00B2 98D6
                       JΖ
                               $4
186 00B4 E415
                       XRI
                               015
                                            ## OD XOR 018 (CAN)
187 00B6 988A LOOP1: JZ
                               CMDLP
188 00B8 C400
                       JS
                               P3, GHEX2
    00BA 37C4
    00BC DA33
    00BE 3F
189 00BF E40D
                       XRI
                               ØD
190 0001 9008
                       JNZ
                               ERROR
191 00C3 C601
                       LD
                               @1(P2)
192 00C5 C601
                       LD
                               @1(P2)
193 00C7 C9FF
                       ST
                               -1(P1)
194 00C9 90BF
                       JMP
                               $4
195
               $SKIP:
196
                       . PAGE
                               'ERROR PROCESSING'
197
                       . LOCAL
198
              ; PRINT CARRAIGE RETURN , LINE FEED AND LOOP
199
200
              ; TO THE TOP OF THE COMMAND LOOP.
201
202 00CB C401 ERROR: LDI
                             H(PUTC) ; PRINT LINE FEED
```

Figure 2C3-2 (Continued)

```
203 00CD 37
                       XPAH
                               P3
204 00CE C4C3
                               L(PUTC)-1
                       LDI
205 00D0 33
                       XPAL
                               P3
206 00D1 C40A
                       LDI
                               ØA.
207 00D3 3F
                       XPPC
                               P3
208 00D4 C43F
                       LDI
                               171
                      XPPC
209 00D6 3F
                               P3
210 00D7 C400
                      LDI
                               О
                               L00P1
211 00D9 90DB
                       JMP
212
                      . PAGE
                               'HEX NUMBER INPUT'
213
                       . LOCAL
214
215
              GHEX GETS A 16-BIT VALUE AND PUSHES IT TO THE STACK.
216
              GHEX2 ASSUMES THE FIRST CHAR IS IN THE E REGISTER.
217
              ONLY THE LAST 4 INPUT DIGITS ARE SAVED.
218
              RETURNS VALUE IN TOP 2 WORDS OF STACK AND TERMINATOR
219
220
              J IN THE AC AND EX REGISTERS.
221
222 000B C401 GHEX2: LDI
                               1
223 00DD 9002
                       JMP
                               $6
224 00DF C400 GHEX:
                       LDI
                                             RESET GHEX2 FLAG
                               Ø
225 00E1 CAFB $6:
                               -5(P2)
                       ST
                               L(GECO)-1
                                             SAVE RETURN ADDRESS AND SET
226 00E3 C484
                       LDI
227 00E5 33
                       XPAL
                               P3
                                               TO GECO
                                             ,
228 00E6 CEFD
                               @-3(P2)
                                             STORE RETURN ADDRESS TO LEAV
                       ST
229 00E8 C401
                     LDI
                               H(GECO)
                                                 FOR RESULT
230 00EA 37
                      XPAH
                               P3
231 00EB CEFF
                       ST
                               @-1(P2)
232 00ED C2FF
                      LD
                               -1(P2)
233 00EF 9C01
                       JNZ
                               $1
234 00F1 3F
                      XPPC
                               P3
235 00F2 C400 $1:
                      LDI
                               ø
                                            🦙 INITIALIZE RESULT TO 0
236 00F4 CA03
                               3(P2)
                       ST
237 00F6 CA02
                       ST
                               2(P2)
238 00F8 40
               $L00P:
                      LDE
239 00F9 03
                       SCL
                               191+1
                                           ⇒ CHECK FOR 0-9
240 00FA FC3A
                       CAI
241 00FC 940F
                       JP
                               $2
                                             ; NOT 0-9, TOO LARGE
242 00FE 03
                       SCL
                               101-191-1
                                           ; CHECK FOR 0-9
243 00FF FCF6
                       CAI
244 0101 9419
                       JP
                                             ; IF POSITIVE, NUMBER IS
                               $3
245
                                                 IN RANGE AND CONVERTED.
                                             ; NUMBER IS NOT A HEX DIGIT,
246 0103 C601
                      LD
                               @1(P2)
               $RET:
247 0105 37
                       XPAH
                               P3
                                             ; RETURN
248 0106 C601
                       LD
                               @1(P2)
249 0108 33
                       XPAL
                               P3
250 0109 40
                       LDE
                      XPPC
251 010A 3F
                               P3
252 010B 90D2
                       JMP
                               GHEX
253 010D 03
               $2:
                       SCL
                              'F'+1-'9'-1 ; CHECK FOR DIGITS A-F.
254 010E FC0D
                       CAI
255 0110 94F1
                       JP
                               $RET
                                             ; NUMBER TOO LARGE
```

Figure 2C3-2 (Continued)

```
256 0112 03
                       SCL
                                181-1F1-1
257 0113 FCFA
                        CAI
258 0115 9402
                        JP
                                $4
                                               ; DIGIT BETWEEN A&F
259 0117 90EA
                        JMP
                                $RET
260 0119 02
                $4:
                        CCL
                                               FADJUST DIGIT VALUE FOR 10-16
261 011A F40A
                        ADI
                                10
262 011C CAFF
               $3:
                        ST
                                -1(P2)
                                              SAVE ADJUSTED DIGIT
                                              SET UP BIT COUNTER FOR
263 011E C404
                        LDI
                                -2(P2)
264 0120 CRFE
                        ST
                                                   SHIFT.
265 0122 02
               $5:
                                              ; SHIFT HEX DIGIT LEFT ONE
                        CCL
266 0123 C203
                        LD
                                3(P2)
                                                   DIGIT, ONE BIT EACH
267 0125 F203
                                3(P2)
                        ADD
                                                  TIME THROUGH LOOP.
268 0127 CR03
                        ST
                                3(P2)
269 0129 C202
                        LD
                                2(P2)
270 012B F202
                        ADD
                                2(P2)
271 012D CA02
                        ST
                                2(P2)
272 012F BAFE
                        DLD
                                -2(P2)
273 0131 9CEF
                        JNZ
                                $5
274 0133 02
                        CCL
275 0134 C203
                        LD
                                3(P2)
                                              ADD CURRENT DIGIT INTO
276 0136 F2FF
                        ADD
                                -1(P2)
                                                   NUMBER
277 0138 CR03
                        ST
                                3(P2)
                        XPPC
278 013A 3F
                                P3
                                               GET NEXT CHAR
279 013B 90BB
                        JMP
                                $LOOP
                                               ; AND LOOP
280
                        . PAGE
                                'HEX NUMBER OUTPUT'
281
                        . LOCAL
282
               ; PRINT HEX NUMBER WITH TRAILING BLANK (PHEX1) OR
283
284
               ; WITHOUT IT (PHEX2). NUMBER TO BE PRINTED IS
285
               IN AC.
286
287 013D CEFF
               PHEX1:
                        ST
                                @-1(P2)
                                              SAVE AC
                                              SET FLAG TO PRINT BLANK AFTE
288 013F C420
                        LDI
                                020
289 0141 9004
                        JMP
                                $1
                                                   NUMBER
290 0143 CEFF
               PHEX2:
                        ST
                                @-1(P2)
                                              SAVE AC
291 0145 C400
                       LDI
                                a
                                              CLEAR FLAG TO PRINT BLANK
292 0147 CEFF
                                @-1(P2)
               $1:
                        ST
                                                   AFTER NUMBER
293 0149 C4C3
                                L(PUTC)-1
                                              ; LOAD ADDRESS OF PUTC TO P3
                        LDI
294 014B 33
                        XPAL
                                                   AND SAVE RETURN ADDRESS
                                P3
295 014C CEFF
                        ST
                                @-1(P2)
296 014E C401
                       LDI
                                H(PUTC)
297 0150 37
                       XPAH
                                P3
298 0151 CEFF
                                @-1(P2)
                        ST
299 0153 C402
                                               ; SET FLAG FOR 1ST NUMBER
                        LDI
300 0155 CEFF
                        ST
                                @-1(P2)
301 0157 C204
                        LD
                                4(P2)

    GET ORIGINAL VALUE

302 0159 1C
                                               ; SHIFT TO LOW 4 BITS
                        SR
303 015A 1C
                        SR
304 015B 1C
                        SR
305 015C 1C
                        SR
306 015D 02
               $5:
                        CCL
                                               ; CONVERT TO ASCII
307 015E F4F6
                        ADI
                                -10
308 0160 9404
                        JP
                                $2
                                               ; NUMBER IS A THRU F
```

Figure 2C3-2 (Continued)

```
101+10
309 0162 F43R
                       ADI
310 0164 9002
                        JMP
                                $3
                                181-1
                                            ; THE -1 TAKES CARE OF CARRY I
311 0166 F440
               $2:
                       ADI
312 0168 3F
               $3:
                       XPPC
                                P3
                                              ; PRINT NUMBER
313 0169 BA00
                       DLD
                                (P2)
314 016B 9806
                        JΖ
                                $4
315 016D C204
                       LD
                                4(P2)
                                             ; GET ORIGINAL NUMBER
316 016F D40F
                       ANI
                                ØF
                                              MASK 2ND DIGIT
317 0171 90EA
                        JMP
                                $5
                                             CHECK FOR PRINTING BLANK
318 0173 C203
                       LD
                                3(P2)
               $4:
319 0175 9801
                        JΖ
                                $6
320 0177 3F
                                             🦙 IF NOT Ø, PRINT BLANK
                       XPPC
                                P3
321 0178 C201
                                1(P2)
                                              RESTORE RETURN ADDRESS
                        LD
               $6:
322 017A 37
                       XPAH
                                P3
323 017B C202
                       LD
                                2(P2)
324 017D 33
                       XPAL
                                P3
325 017E C604
                                @4(P2)
                       LD
                                             ; RESTORE STACK AND AC
                                @1(P2)
326 0180 C601
                       LD
327 Ø182 3F
                       XPPC
                                P3
                                              ; RETURN
328 0183 90B8
                        JMP
                                PHEX1
329
                        . PAGE
                                'GECO'
                       . LOCAL
330
331
332
               ; GECO IS USED FOR KEYBOARD INPUT SO IT ECHOS THE
               ; CHARACTER BUT DOES NOT ENABLE THE READER RELAY.
333
334
335 0185 C408 GECO:
                                              set count = 8
                       LDI
                                -1(P2)
336 0187 CAFF
                       ST
337 0189 06
                                              ; WAIT FOR START BIT
                       CSA
               $2:
338 018A D420
                                020
                       ANI
339 Ø18C 9CFB
                                              ; NOT FOUND
                       JNZ
                                $2
340 018E C457
                       LDI
                                87
                                              ; DELAY 1/2 BIT TIME
341 0190 8F04
                       DLY
                                4
                                              ; IS START BIT STILL THERE?
342 0192 06
                       CSA
343 0193 D420
                                020
                       ANI
344 0195 9CF2
                        JNZ
                                $2
                                              ; NO
                                              ; SEND START BIT (NOTE THAT
345 0197 06
                       CSA
346 0198 DC01
                                                  OUTPUT IS INVERTED)
                       ORI
                                1
347 019A 07
                       CAS
                                              ; DELAY 1 BIT TIME
348 019B C47E
               $L00P:
                       LDI
                                126
349 019D 8F08
                       DLY
350 019F 06
                       CSA
                                              # GET BIT (SENSEB)
351 0180 D420
                       ANI
                                020
352 01A2 9802
                                $3
                       JZ
353 01A4 C401
                       LDI
354 0186 CRFE $3:
                                -2(P2)
                                              ; SAVE BIT VALUE (0 OR 1)
                       ST
                                              ; ROTATE INTO LINK
355 01A8 1F
                       RRL
356 01A9 01
                       XAE
357 01RA 1D
                                              SHIFT INTO CHARACTER
                       SRL
358 01AB 01
                       XAE
                                              ; RETURN CHAR TO E
359 01AC 06
                                              ; ECHO BIT TO OUTPUT
                       CSA
360 01AD DC01
                       ORI
361 01AF E2FE
                                -2(P2)
                       XOR
```

Figure 2C3-2 (Continued)

```
362 01B1 07
                     CAS
363 0182 BAFF
                     DLD
                                           DECREMENT BIT COUNT
                               -1(P2)
364 01B4 9CE5
                       JNZ
                               $L00P
                                            ; LOOP UNTIL 0
365 01B6 06
                       CSA
                                            SET STOP BIT
366 Ø1B7 D4FE
                               ØFE
                       ANI
367 0189 07
                       CAS
368 01BA 8F08
                      DLY
369 01BC 40
                      LDE
                                            ; AC HAS INPUT CHARACTER
370 018D D47F
                       ANI
                               07F
371 01BF 01
                       XAE
372 0100 40
                       LDE
373 01C1 3F
                       XPPC
                               Р3
                                           RETURN
374 0102 9001
                       JMP.
                               GEC0
375
                       . PAGE
                               'PUTC'
376
                       . LOCAL
377
              PUT CHARACTER IN AC TO TTY. ALL REGS SAVED.
378
              FIF INPUT DETECTED, CONTROL PASSES TO PROMPT.
379
              NOTE: TTY LOGIC LEVELS ARE INVERTED FOR OUTPUT
380
381
382 01C4 01
               PUTC:
                       XAE
383 01C5 C4FF
                               255
                       LDI
384 01C7 8F17
                       DLY
                               23
385 0109 06
                       CSA
                                            SET OUTPUT BIT TO LOGIC 0 FL
386 01CA DC01
                                                FOR START BIT. (NOTE INVER
                       ORI
387-01CC 07
                       CAS
                                           INITIALIZE BIT COUNT
388 01CD C409
                       LDI
389 01CF CAFF
                       ST
                               -1(P2)
                                            ;AT 0FF5
390 01D1 C48A $1: LDI
                               138

    DELAY 1 BIT TIME

391 01D3 8F08
                      DLY
                               8
392 01D5 BAFF
                       DLD
                               -1(P2)
                                           DECREMENT BIT COUNT.
393 0107 9810
                       JZ
                               $EXIT
394 01D9 40
                       LDE
                                            PREPARE NEXT BIT
395 01DA D401
                       ANI
396 01DC CAFE
                               -2(P2)
                                            ;AT ØFF4
                       ST
397 01DE 01
                                            ; SHIF DATA RIGHT 1 BIT
                       XAE
398 01DF 1C
                       SR
399 01E0 01
                       XAE
                                            ; SET UP OUTPUT BIT
400 01E1 06
                       CSA
401 01E2 DC01
                       ORI
402 01E4 E2FE
                       XOR
                               -2(P2)
403 01E6 07
                       CAS
                                            ; PUT BIT TO TTY
404 01E7 90E8
                       JMP
405 01E9 06
               $EXIT: CSA
                                            ; SET STOP BIT
406 01EA D4FE
                               0FE
                       ANI
407 01EC 07
                       CAS
                                            ; CHECK FOR KEYBOARD INPUT SEN
408 01ED D420
                       ANI
                               020
409 01EF 9803
                       JΖ
                               $2
                                           ; ATTEMPTED INPUT (NOTE THAT
                                                 INPUT IS NOT INVERTED)
410
                       XPPC
                               P3
411 01F1 3F
                                            RETURN
                       JMP
                               PUTC
412 01F2 90D0
                               P3, CMDLP
413 01F4 C400 $2:
                       JS
```

Figure 2C3-2 (Continued)

```
01F6 37C4
    01F8 4133
    01FA 3F
414
         0000
                         . END
            AC
                    FFFE
                                   CMDLP
                                            0042
                                                          ENTER
                                                                   0028
            ERROR
                     00CB
                                            FFFF
                                                          EXIT
                                                                   000B
                                   EΧ
            EXOFF
                    FFFF
                                   GEC0
                                            0185
                                                           GHEX
                                                                   00DF
            GHEX2
                     000B
                                   GO
                                            005B *
                                                          L00P1
                                                                   0086
                                            9991
            MOD
                     006C *
                                   P1
                                                          P2
                                                                   0002
            P2ADR
                     0FF6
                                   P3
                                            0003
                                                           PC:
                                                                   FFF8
            PHEX1
                     013D
                                   PHEX2
                                            0143
                                                           PT1
                                                                   FFFA
            PT2
                     FFFC
                                   PUTC
                                            01C4
                                                           SR
                                                                   0000
                                                           TYPE
            STACK
                     ØFFF
                                   START
                                            0001 *
                                                                    0067 *
                     0077
                                            00F2
                                                                    0147
            $1
                                   $1
                                                           $1
            $1
                     01D1
                                   $2
                                            0075
                                                           $2
                                                                    010D
            $2
                     0166
                                   $2
                                            0189
                                                           $2
                                                                    01F4
            $3
                     011C
                                   $3
                                            0168
                                                           $3
                                                                    Ø1A6
            $4
                                   $4
                                                           $4
                                                                    0173
                     998A
                                            0119
            $5
                     0122
                                   $5
                                            015D
                                                           $6
                                                                    00E1
                                                           $LOOP
                                                                    00F8
            $6
                     0178
                                   $EXIT
                                            01E9
            $L00P
                     019B
                                   $RET
                                            0103
                                                           $SKIP
                                                                    0067
            $SKIP
                     00CB
            NO ERROR LINES
            SOURCE CHECKSUM=E86E
            FIRST INPUT SECTOR HEX -
                                         0290
            FINAL INPUT SECTOR HEX -
                                         02A0
                                                                             NS10561
```

Figure 2C3-2 (Concluded)

```
.TITLE DISP, 'MOVING MESSAGE FOR MULTI '
 1
 3
                       MESSAGE MUST BE > 32 CHARACTERS.
 5
 6
                       3/17/76
 8
                       RAM LOCATIONS USED.
 9
10
11
                                ADDRESS OF MESSAGE HIGH
12
                       0F00
                       0F01
                                ADDRESS OF MESSAGE LOW
13
                       0F02
                                NEXT ADDRESS OF MESSAGE HIGH
14
15
                       0F03
                                NEXT ADDRESS OF MESSAGE LOW
16
                       0F04
                                CHAR PER LINE COUNTER
17
18
19
                                                 ; SAME AS 0F00
20
        0000
              HST
21
        0001
               LST
                                                 ; SAME AS 0F01
22
        0002
               HTMP
                                2
                                                 ; SAME AS 0F02
23
        0003
              LTMP
                                3
                                                 ; SAME AS 0F03
24
        0004
               COUNT
                                                 ; SAME AS 0F04
                                                 JADDRESS OF DISPLAY.
25
        9899
               ADR
                        =
                                0800
        0F00
                                                 ;START OF RAM.
26
               RAM
                                0F00
27
28
        0400
                                0400
                                                 ; STARTING ADDRESS.
29
30
                       MESSAGE IS ASCII STRING IN MEMORY.
31
                       END OF MESSAGE IS A BYTE OF ALL 0.
32
33
34
                       . PAGE
35
               START:
36
                       NOP
37 0400 08
                                                 ; SET F1; TURN ON SC/MP 1.
                                020
38 0401 0420
                       LDI
                                                 # SEND FLAG.
                       CAS
39 0403 07
                                                 ; PUT RAM ADDRESS IN P3.
                                H(RAM)
40 0404 C40F
                       LDI
                       XPAH
41 0406 37
                                3
42 0407 C400
                       LDI
                                L(RAM)
                       XPAL
43 0409 33
                                3
                                                 ; SET STARTING ADDRESS IF MESSA
                       LDI
                                H(MMSG)
44 040A C404
                       ST
                                                 ; SAVE IN RAM.
45 040C CB00
                                HST(3)
46 040E C477
                       LDI
                                L(MMSG)
                                LST(3)
47 0410 CB01
                        ST
                                                 ; PUT ADDRESS OF DISPLAY IN P1.
48 0412 0408
                        LDI
                                H(ADR)
49 0414 35
                        XPAH
                                1
                        LDI
                                L(ADR)
50 0415 C400
                        XPAL
51 0417 31
                                1
                                                 ; CLEAR DISPLAY.
52 0418 C400
                        LDI
                                0
53 041A C900
                        ST
                                (1)
                                                 ; SET LINE COUNT.
54 041C C420
                        LDI
                                32
                                COUNT(3)
55 041E CB04
                        ST
56
                                                 ; PUT ADDRESS IN TEMP.
                                LST(3)
                        LD
57 0420 C301
                                LTMP(3)
58 0422 CB03
                        ST
```

Figure 2C3-3. Program Listing for Burroughs Self-Scan Routine

```
59 0424 32
                        XPAL
                                2
                                                 FISET P2 TO ADDRESS.
60 0425 0300
                                HST(3)
                        LD
61 0427 CB02
                                HTMP(3)
                        ST
               PRNT:
62
63 0429 36
                        XPAH.
                                                 ; HIGH ADDRESS IN P2.
                                2
64
               PRINT:
 65 042A C601
                        LD
                                @1(2)
                                                 GET NEXT WORD.
                                 SELF
                                                 GOHECK IF DONE.
 66 0420 9022
                        JNZ
                                                 FRESTORE POINTER.
67 042E C302
                        LD
                                HTMP(3)
 68 0430 36
                        XPAH
                                 2
69 0431 C303
                                LTMP(3)
                        LD
70 0433 32
                        XPAL
                                 2
71 0434 900D
                                MORE
                        JMP.
72
                ON:
73 0436 32
                        XPAL
                                 2
                                                 ;SAVE IN P2 LOW.
 74 0437 C302
                                HTMP(3)
                                                 FRESTORE HIGH.
                        LD
 75 0439 90EE
                        JMP
                                PRNT
 76
               NEW:
 77 043B C420
                                                 SAVE LINE COUNT.
                        LDI
                                 32
 78 043D CB04
                        ST
                                 COUNT(3)
 79 043F C4FF
                        LDI
                                                 ; DO A SHORT DELAY.
                                 0FF
 80 0441 8F80
                        DLY
                                 080
 81
               MORE:
                                                 CHECK IF DONE.
 82 0443 C200
                        LD
                                 (2)
 83 0445 98D9
                        JΖ
                                 5
84 0447 AB03
                                                 BUMP RAM POINTER.
                        ILD
                                LTMP(3)
 85 0449 9CEB
                        JNZ
                                 ON
86 044B 32
                        XPAL
                                                 REXT ADDRESS.
                                 2
87 044C AB02
                                HTMP(3)
                                                 ; BUMP HIGH.
                        ILD
88 044E 90DA
                        JMP
                                 PRINT
89
               SELF:
90 0450 01
                                                 3 SAVE CHAR.
                        MAE
                                                 # GET_CHAR.
91 0451 40
                        LDE
92 0452 02
                        COL
                                                 GCLEAR LINK.
 93 0453 F4E0
                        ADI
                                 0E0
                                                 ;CHECK IF LESS THAN 020.
 94 0455 9402
                        JP
                                 GT1F
                                                 ⇒NO > 01F.
 95 0457 90D1
                        JMP
                                 PRINT
                                                 ;LESS THAN 01F RETURN.
 96
               GT1F:
97 0459 02
                                                 CLEAR LINK.
                        CCL
98 045A F4C0
                                 aca
                                                 GCHECK IF > 05F.
                        AD I
99 0450 9400
                        JP
                                 PRINT
                                                 ; YES RETURN.
                        LDE
100 045E 40
                                                 ⇒CHAR IS VALID.
101 045F D43F
                                 03F
                                                 STRIP OFF HIGH BITS.
                        ANI
                                                 SET CLEAR AND DISPLAY BITS.
102 0461 DC80
                        ORI
                                 080
103 0463 C900
                        ST
                                 (1)
                                                 # SEND WORD.
104 0465 06
                        CSA
                                                 FISET WRITE CYCLE FLAG 0.
105 0466 DC01
                        ORI
                                                 ; NOW SET FLAG 0.
106 0468 07
                        CAS
107 0469 D4FE
                        ĤΝΙ
                                 0FE
                                                 ; NOW RESET FLAG.
108 046B 07
                                                  300 IT.
                        CAS
109
                DOWAIT:
110 0460 06
                        CSA
                                                 GET STATUS.
                                                 CHECK IF SENSE B IS SET.
111 046D D420
                        ANI
                                 020
                                                 WAIT IF SET.
                                 DOWALT
112 046F 9CFB
                        JNZ
                                                 BUMP COUNTER.
113 0471 BB04
                        DLD
                                 COUNT(3)
114 0473 9806
                        JZ
                                 NEM
115 0475 90B3
                        JMP
                                 PRINT
116
               MMSG:
117
```

Figure 2C3-3 (Continued)

```
MULTI PROCESSOR OPERATION OF 1
118 0477 2020
                      . ASCII
   0479 2020
   047B 2020
   047D 2020
   047F 2020
   0481 4D55
   0483 4054
   0485 4920
   0487 5052
   0489 4F43
   048B 4553
   048D 534F
    048F 5220
    0491 4F50
    0493 4552
    0495 4154
    0497 494F
    0499 4E20
    049B 4F46
    049D 20
                       .ASCII 'TWO SC/MPS, ONE RUNNING KITBUG THE OTHER'
119 049E 5457
    04R0 4F20
    04R2 5343
    0484 2F4D
    04A6 5053
    04R8 2C20
    04AA 4F4E
    04AC 4520
    04AE 5255
    04B0 4E4E
    04B2 494E
    04B4 4720
    0486 4849
    04B8 5442
    04BA 5547
    04BC 2054
    04BE 4845
    04C0 204F
    04C2 5448
    0404 4552
120 0406 2052
                        . ASCII / RUNNING A BURROUGHS SELF SCAN DISPLAY.
    04C8 554E
    04CR 4E49
    04CC 4E47
    04CE 2041
    04D0 2042
    04D2 5552
    04D4 524F
    04D6 5547
    04D8 4853
    04DA 2053
    04DC 454C
    04DE 4620
    04E0 5343
    04E2 414E
    04E4 2044
    04E6 4953
    04E8 504C
    04EA 4159
```

Figure 2C3-3 (Continued)

```
04EC 2E20
      04EE 2020
      04F0 20
                          BYTE
  121 04F1 00
                                 Ø
  122
  123
           0000
                          END
  124
DISP MOVING MESSAGE FOR MULTI
ADR
        0800
                     COUNT
                             0004
                                           DOWAIT
                                                   046C
GT1F
        0459
                     HST
                             0000
                                           HTMP
                                                   0002
LST
        0001
                     LTMP
                             0003
                                           MMSG
                                                   0477
MORE
                             043B
                                                   0436
        0443
                     NEW
                                           ON
PRINT
        042A
                     PRNT
                             0429
                                           RAM
                                                   0F00
                                                   0400 *
                                           START
        0420
                     SELF
                             0450
NO ERROR LINES
SOURCE CHECKSUM=D136
                                                                    NS10562
```

Figure 2C3-3 (Concluded)

INTERFACING A SC/MP SYSTEM WITH A CASSETTE RECORDER

General Description

Figure 2C4-1 shows how a casette tape recorder can be interfaced with a SC/MP-based system to provide approximately 40K 8-bit bytes of data on each side of a 30-minute tape. As an alternative to using paper tape, PROMs, or more complex and expensive media, the cassette interface can be used to store and transport program libraries; also, systems of similar design could be used for small-business inventories and many other applications.

Off-the-shelf integrated circuits were used to implement the system shown in figure 2C4-1. A recorder in the cost range of 50 dollars will provide satisfactory performance; however, a higher priced (\$80 to \$100) recorder should provide better consistency and greater reliability. The recorders listed in table 2C4-1 were used to verify the accuracy and reliability of this application. Using the four recorders, a 10K-byte program was loaded 10 times in succession and then two playbacks were made from each recorder. A different re-

corder was used to record and playback and, in all cases, the results were error-free. The transmission rate of 330 baud (40 bytes/second) is sufficient for most applications; the clocking scheme permits the storage of 17 2K-byte programs (including interprogram gaps) to be recorded on each 15-minute side of the cassette tape.

Table 2C4-1. Cassette Recorders Used for Accuracy and Reliability Tests

Make	Model	Approximate Cost
Panasonic	RQ309AS	\$ 40
Panasonic	RQ423S	\$ 70
Sony	TC-40	\$100
Sony	TC-55	\$155

*Specifying the ideal recorder for a particular application is difficult; it is recommended that the output waveform (WF-A, figure 2C4-3) be used as a guide to selection.

Figure 2C4-1. Cassette Recorder Interfaced with SC/MP System-Block Diagram and Message Format

Operator Control

An input/output program residing in PROM provides all timing and control functions required to send and receive information between the CPU and the recorder. The send operation can be summarized as follows. Using a keyboard or a tape reader, the operator loads RAM locations X'8203 (high-order byte) and X'8204 (low-order byte) with a 4digit hexadecimal address that corresponds to the starting address of the program - see MESSAGE FORMAT in figure 2C4-1. Next, RAM locations X'820C (high-order byte) and X'820D (low-order byte) are loaded with the POINT OF ENTRY ADDRESS. This entry point may be the starting address of any program to which the operator wants to transfer control upon completion of loading (playback mode). Finally, the high and low order bytes for LENGTH OF PROGRAM are loaded into RAM locations X'820A and X'820B, respectively. To initiate the output cycle, the operator turns on the recorder and transfers control to address X'80C7 – the beginning of the data write routines. After the TAPE LEADER (128 bytes of zeros) is run through, the Search (LED) Indicator lights and stays on until the data transmission is complete; at this time, the Search Indicator is turned off, the End-of-Transmission Indicator is turned on, and the program halts at location X'8142. NOTE: If the recorder is inadvertently stopped before the output cycle is completed, the tape must be rewound and the cycle restarted.

In the receive (playback) mode, the operator transfers control via the keyboard to X'8000 — the starting address of the bootstrap loader routine. The bootstrap loader conditions SC/MP and then addresses the receive routine. Now, when the cassette is turned on and the operator selects the playback mode, the Search Indicator is turned on until the IDENTIFICATION WORD (figure 2C4-1) is recognized; then, the indicator is turned off. NOTE: For normal operation, the Search Indicator should be "on" from 3 to 5 seconds; if it is on for a longer period because of defective tape, dirty heads, or another malfunction, the operator should abort the operation and restart it at X'8000. If the checksum is good, the Search Indicator is turned on again when the transmission-of-data is completed.

When in the playback mode, the volume control of recorder should be adjusted until the "monitor output" is just below the clipping level when measured with an oscilloscope. Using the Search Indicator on-off time of approximately 5 seconds as a limit switch, the adjustment can be optimized by a trial-and-error method.

System Operation

Transmission of data from SC/MP to the cassette recorder is accomplished by using a scheme that is self-synchronizing

on a bit-time basis; that is, data are referenced to a "timeframe" rather than a leading or trailing pulse edge; thus, there is no cumulative error buildup in the system. The "approximate" 4-millisecond time frame (duration between clock pulses) is established by the send routine. A logic '0' is represented by the absence of a pulse at the midpoint of the time frame; a logic '1' is represented by the presence of a pulse. The clock and bit (data) pulses are generated by the address decoder circuits shown in figure 2C4-2. To generate either a clock or a bit (logic '1') pulse, a unique address is presented to the system address bus during the execution of a STore Instruction by SC/MP. The clock or bit pulse is then transmitted to the cassette recorder via the interface circuits shown in figure 2C4-3. A negative-going pulse is produced to begin the time frame. If the data bit is a '1', the decoder is addressed at the midpoint (between clock pulses) of the time frame and a second negative-going pulse is generated. If the data bit is a '0', the decoder is not addressed and no pulse appears between the clock pulses of the time-frame.

To record, the data write routines generate a long leader of zeros plus the identification word (X'A5) shown in figure 2C4-1; these data are presented to the interface circuits in figure 2C4-3. The leader allows the tape-drive motor and AGC loop to stabilize; the leader also serves as an interprogram gap that facilitates multiple-program recording on a single side of the cassette tape. As shown by the idealized waveforms in figure 2C4-3, TTL inputs from the address decoder are changed to signals that are suitable for recording on the tape. User data are transmitted following the identification word.

In the playback mode of operation, the recorder output (WF-A, figure 2C4-3) is translated to a TTL signal (WF-B) that drives the Sense B input (WF-C) of SC/MP. The processor tests the Sense B line (output of "send" latch) for a logic '0', which occurs at the first clock pulse of the time frame. The latch is reset by SC/MP and, after a predetermined delay (approximately one-half time frame), Sense B is again tested. If a negative-going pulse is found at the "center" of the time frame, the data bit is recognized as a logic '1' and the latch is reset. If there is no zero-transition between the first and last pulses of the time frame, the bit is recognized as a logic '0'. As previously indicated, this technique - referencing the data bit to a time interval rather than to the leading or trailing edge of a pulse - prevents cumulative error buildup in the system. Tape format is such that upon completion of loading a program from the cassette, the program may be executed or control can be transferred to another existing program; for instance, a debug program. As previously indicated, the user can transfer program control by simply loading the POINT OF ENTRY ADDRESS (figure 2C4-1) with the proper starting location.

Figure 2C4-2. Decoding and Memory-Interface Circuits

Figure 2C4-3. Cassette-to-SC/MP Interface Circuits

Software Considerations

The "data write" and "data receive" routines are stored in ROM. A "minimum control" routine is also stored in ROM; this routine directs communications between the operator and a "hex" keyboard, and controls the LED indicators shown in figure 2C4-2. Send and receive flowcharts and a complete program listing for the cassette-to-SC/MP interface are shown in figures 2C4-4 and 2C4-5, respectively.

To transfer control to RAM or to modify locations in RAM, an input/output interface capability is required by the operator. Such a capability is provided by the SC/MP Low Cost Development System or by the SC/MP minimum debug kit with a "hex" keyboard/display and the necessary interface circuits. NOTE: Refer to figures 2C2-8 and 2C2-14 for guidelines to design a keyboard-entry/display interface.)

Figure 2C4-4. SC/MP-to-Cassette Interface-Write and Read Flowcharts

```
TITLE
                                 TAPEIO, / SC/MP ROUTINES/
 1
 2
 3
        8000
                        . =X18000
 4
 5
                                 X18200
                                           ; RAM ADDRESS FOR POINTER
        8200
               REM
                                              PERIPHERAL ADDRESS FOR POINT
 6
        8300
               PERIPH
                                 X18300
 7
 8
        0003
               F3
                                 3
                                              POINTER #3
                                 2
                                             POINTER #2
 9
        0002
               P2
                                             POINTER #1
                                 1
10
        0001
               F1
11
12
               ; TEMPORARY DATA IN RAM
13
                                              INSIDE COUNTER FOR LEADER
1.4
         0000
               CNTU
                                              OUTSIDE COUNTER FOR LEADER
                        =
15
        0001
               CNTL
                                 1.
                                              CHECK SUM COUNTER
16
        0002
               CKSUM
                        =
                                 2
17
        भिभिमे ३
               STARTU
                                 3
                                              STARTING ADDRESS (UPPER)
                                 4
                                              STARTING ADDRESS (LOWER)
18
        0004
               STARTL
                                 5
                                              BIT COUNTER
19
        0005
               BITCHT
                        ==
                                 6
                                              TEMPORARY STORAGE LOCATIONS
20
        0006
               TEMP1
                                 7
21
        9997
               TEMP2
                                                           **
                                                                      ..
                                                  ..
                                 8
        6008
               TEMP3
                        ---
22
                                                                      **
23
        0009
               TEMP4
                        =
                                 9
                                              WORD COUNT (UPPER)
                                 10
24
        999A
               MDCNTU
                                              WORD COUNT (LOWER)
25
        BOOD
               MDCNTL
                                 11
                        =
                                              TRANSFER ADDRESS (UPPER)
26
        9990
               JUMPU
                        =
                                 12
                                              TRANSFER ADDRESS (LOWER)
27
        0000
               JUMPL.
                                 13
28
               ; PERIPHERAL ORDER CODES
29
30
                                            ; END OF TAPE LED ON POINTER
                                 Ø
31
         0000
               EOTON
                                             END OF TAPE LED OFF POINTER
                                 1
32
         0001
               EOTOFF
                        =
                                              SEARCH LED ON POINTER
                                 2
33
         0002
               SECHON
                        ==
                                              SEARCH LED OFF POINTER
                                 3
34
         0003
               SRCHOF
                        =
                                 4
                                            ; READ/WRITE FLAG
35
                        =
         9994
               FLAG
36
37
```

Figure 2C4-5. SC/MP-to-Cassette Interface-Program Listing

```
. PAGE /BOOTSTRAP LOADER/
38
39
                BOOTSTRAP LOADER ROUTINE.
                                            RECEIVES PROGRAM FROM TAPE.
40
41
                ALL NECCESSARY INFORMATION FOR LOADING IS ON TAPE.
42
                THIS PROGRAM MAY BE REASSEMBLED TO ADDRESS X10000 TO
43
                FUNCTION AS A POWER-ON LOADER.
44
45
45
                INPUT OPERATION OF LED INDICATORS:
47
48
                      SEARCH LED ON WHEN PROGRAM STARTS
                      SEARCH LED OFF WHEN IDENTIFIER CHARACTER RECEIVED
49
                      END OF TAPE (EOT) LED ON WHEN RECEPTION COMPLETE
50
                     SEARCH LED ON IF CHECKSUMS COMPARE
51
52
53
                     CONTROL IS THEN TRANSFERED TO USER PROGRAM
54
55
                                                ; FOR RELOCATION TO X10000
56 8000 08
              BOOT:
                       NOP
57
  8001 0400
                       LDI
                               L(RAM)
                                                  INITIALIZE RAM POINTER
                                                  IN P2
58 8003 32
                       XPAL
                               P2
59 8004 C482
                       LDI
                               H(RAM)
60 8006 36
                       XPAH
                               P2
61 8007 0400
                                                CLEAR ACCUMULATOR
                      LDI
                                                 INITIALIZE CHECKSUM COUNTER
62 8009 CA02
                       5T
                               CKSUM(P2)
                                                  PUT PERIPHERAL POINTER
63 800B 0400
                       LDI
                               L(PERIPH)
                                                ; IN P3
64 800D 33
                       XPAL.
                               F3
                               H(PERIPH)
65 800E 0483
                       LDI
66 8010 37
                       XPAH.
                               FE
67 8011 CB02
                                                ; TURN ON SEARCH LED
                       ST
                               SRCHON(P3)
68 8013 CB01
                       ST
                               EOTOFF(P3)
                                                  TURN OFF END OF TAPE LED
                                                  CLEAR ACCUMULATOR
69 8015 0400
                       LDI
70 8017 01
                       XHE
                                                  CLEAR E REGISTER
                                                  PLACE ADDRESS OF GET BIT
71 8018 C48F
                       LDI
                               L(GETBIT)-1
72 801A 31
                       XPAL.
                               P1
                                                 IN P1
                               H(GETBIT)
73 8018 0480
                       LDI
74 801D 35
                       XPAH
                               F1.
75 801E 3D
              LOCID:
                       MPPC
                                                ; GO TO GETBIT FOR INPUT
                               F1
76 801F 40
                       LDE
77 8020 E4A5
                       XRI
                               X1A5
                                               ; CHECK FOR PROPER ID CHARACTE
                                                ) IF ID RECEIVED, TAKE REST OF
78 8022 9802
                       JZ
                               SETPNT
                                                ; PROGRAM, ELSE GET NEXT BIT
79 8024 90F8
                       JMP
                               LOCID
              SETPNT: ST
                               SRCHOF(P3)
80 8026 CB03
                                                ; TURN OFF SEARCH LED
                                                ; PLACE ADDRESS OF BYTE RECEIV
81 8028 C46D
                               L(RECV)-1
                      LDI
82 802A 31
                      XPAL
                               F'1
                                                ; IN P1
83 802B C480
                               H(RECV)
                      LDI
84 802D 35
                      XPAH
                               P1
85 802E 3D
                                                ; GET STARTING ADDRESS (LOWER)
                       MPPC
                               F'1
86 802F 33
                                                  AND PLACE IN P3
                       XEAL
                               P3
                                                  GET STARTING ADDRESS (UPPER)
87 8030 3D
                       XPPC
                               F'1
                               P3
88 8031 37
                       XPAH
                                               GET TRANSFER ADDRESS AND
89 8032 3D
                       XPPC
                               F'1
90 8033 CA0D
                               JUMPL(P2)
                                                SAVE IN RAM
                       ST
                               P1
91 8035 3D
                       MPPC
```

Figure 2C4-5 (Continued)

```
ST
                                JUMPU(P2)
 92 8036 CA0C
 93 8038 3D
                       XPPC.
                               F:1
                                                ; GET WORD COUNT (LOWER)
 94 8039 CA0B
                       ST
                               WDCNTL(P2)
 95 8038 30
                       XPPC.
                                                ; GET WORD COUNT (UPPER)
 96 803C CA0A
                       ST
                               WDCNTU(P2)
 97
                                                GO TO RECEIVE
 98 803E 3D
               BOOTIN: XPPC
                                F1
                                                STORE AND INCREMENT POINTER
 99 803F CF01
                       ST
                                01(P3)
                                CKSUM(P2)
                                                FADD CHARACTER TO CHECKSUM
100 8041 F202
                       ADD
                                CKSUM(P2)
101 8043 CA02
                       5T
                               WDCNTL(P2)
                                                INCREMENT LOWER WORD COUNTER
102 8045 AA0B
                       ILD.
                                                > CHECK FOR ZERO
103 8047 9CF5
                               BOOTIN
                       JNZ
104 8049 AA0A
                               WDCNTU(P2)
                                                J INCREMENT UPPER WORD COUNTER
                       ILD
105 804B 9CF1
                       JNZ.
                               BOOTIN
                                               CHECK FOR END OF TRANSMISSION
106 804D 3D
                       XPPC
                               P1
                                               GET CHECKSUM FROM TAPE
107 804E E202
                       XOR
                                CKSUM(P2)
                                               COMPARE TO CALCULATED VALUE
                                                EXECUTE LOADED PROGRAM.
108 8050 9809
                       JZ
                               EXECPR
109 8052 0400
                       LDI
                               L(PERIPH)
110 8054 33
                       XPAL
                               P3
111 8055 C483
                               H(PERIPH)
                       LDI
112 8057 37
                       XPAH
                               P3
113 8058 CB00
                       \Xi T
                               EOTON(P3)
                                                FURN ON EOT LED TO INDICATE
114 805A 00
                       HALT
                                                CHECKSUM ERROR AND HALT
115
116 805B C400
               EXECPR: LDI
                               L(PERIPH)
117 805D BB
                       XPAL
                               FΩ
118 805E 0483
                       LDI
                               H(PERIPH)
119 8060 37
                       SPAH
                                P3
                                                ; TURN ON END OF TAPE LED
120 8061 CB00
                       \exists \mathsf{T}
                                EOTON(P3)
                                               TURN ON SEARCH LED
121 8063 CB02
                       ST
                                SRCHON(P3)
                                                ; LOAD TRANSFER ADDRESS
122 8065 C20D
                       LD
                                JUMPL(P2)
123 8067 33
                       XPAL
                                PR.
124 8068 0200
                       L.D
                                JUMPU(P2)
125 806A 37
                       XPAH
                                P3
                                                ; DECREMENT POINTER FOR FETCH
126 806B C7FF
                       LD
                                @-1(P3)
127 8060 BF
                       MPPC
                               F3
                                                EXECUTE
128
129
                                   RECEIVES ONE 8-BIT CHARACTER INTO
                 RECEIVE ROUTINE.
130
131
                 ACCUMULATOR.
132
133
                                                ; PLACE ADDRESS OF GETBIT
134 806E C48F
               RECV:
                       LDI
                               L(GETBIT)-1
135 8070 31
                       MPAL
                               P1
                                                ; IN P1
136 8071 CA07
                                TEMP2(P2)
                                                ; SAVE CURRENT CONTENTS OF P1
                       ΞT
137 8073 C480
                       LDI
                               H(GETBIT)
138 8075 35
                       XPAH
                               F'1
139 8076 CA06
                       ST
                                TEMP1(P2)
                                                ; SET BIT COUNT
140 8078 C408
                       LDI
141 807A CA05
                               BITCHT(P2)
                       ST.
142 8070 0400
                                                ; CLEAR ACCUMULATOR
                       LDI
                                Й
                                                👉 CLEAR E REGISTER
143 807E 01
                       XAE
                                                GO TO GETBIT
144 807F 3D
               LOOP:
                       MPPC
                               P1
                               BITCHT(P2)
                                                DECREMENT BIT COUNT
145 8080 BA05
                       DLD
                                                ; CHECK FOR ZERO
146 8082 9802
                       JZ
                               RETRN2
```

Figure 2C4-5 (Continued)

```
147 8084 90F9
                       JMP.
                               LOOP
                                              RESTORE P1 TO ORIGINAL
148 8086 C207
               RETRN2: LD
                                TEMP2(P2)
149 8088 31
                       MPAL
                               F1
                                                CONTENTS
150 8089 0206
                                TEMP1(P2)
                       LD
151 808B 35
                       XPAH
                               F1
                                                > PLACE CHARACTER IN ACC.
152 8080 40
                       LDE
153 808D 3D
                       XPPC
                               F1
                                                RETURN
154 808E 90DE
                       JMF
                               RECV
155
156
157
               GET BIT ROUTINE.
                                   RECEIVES 1 BIT INTO E REGISTER
158
159
160 8090 C400 GETBIT: LDI
                               L(PERIPH)
                                                FLACE PERIPHERAL ADDR. IN P3
161 8092 33
                       XPAL
                               FΒ
162 8093 CA09
                       5T
                                TEMP4(P2)
                                                SAVE ORIGINAL CONTENTS OF P3
163 8095 0483
                               H(PERIPH)
                       LDI
164 8097 37
                       XPAH
                               FΒ
165 8098 CA08
                       ST
                               TEMP3(P2)
166 809A 19
                                                SHIFT E REGISTER
                       SIO
167 809B 06
               CKSA:
                       CSA
                                                COPY STATUS TO ACCUMULATOR
168 809C D420
                               X120
                       ANI
                                                  MASK
169 809E 9802
                                                J IF ZERO, BIT RECEIVED
                       JZ
                                CLOCK
170 80A0 90F9
                       JMF
                                CKSA
                                                ; CHECK AGAIN
171 80A2 C400
                                                  CLEAR ACCUMULATOR FOR DELAY
               CLOCK:
                       LDI
                                Й.
172 80A4 8F01
                                                ; DELAY 1 MS (1/4 BIT TIME)
                       DLY
                                1.
173 80A6 CB04
                                                  RESET LATCH
                       ST
                               FLAG(P3)
                                                INIT ACCUMULATOR FOR DELAY
174 80A8 0400
                       LDI
                                Ø.
                                                ; DELAY PAST MIDDLE OF WINDOW
175 80AA 8F02
                       DLY
                                2
                                                ; COPY STATUS TO ACCUMULATOR
176 80AC 06
                       CSB
177 80AD 0420
                               X120
                                                → MASK
                       HHI
                                                ; IF ZERO, THEN BIT IS A "1"
178 80AF 9802
                       JZ
                               DMF
179 8081 9004
                       JMP
                               RESET
180 80B3 40
               ONE:
                       LDE
181 8084 DC80
                       OBLI
                               X180
                                                ; ADD "1" BIT TO CHARACTER
182 8086 01
                                                  SAVE IN E REGISTER
                       XAE
183 80B7 CB04
               RESET:
                               FLAG(P3)
                                                RESET LATCH
                       ST
184 8089 06
                       CSH
                                                COPY STATUS TO ACCUMULATOR
                               X120
                                                ; MASK
185 808A 0420
                       ANI
                                                ; CHECK IF LATCH IS RESET
186 80BC 98F9
                               RESET
                       32
187 80BE 0209
               RETRNS: LD
                               TEMP4(P2)
                                                ; RESTORE P2
188 8000 33
                       XPAL.
189 8001 0208
                       LD
                               TEMP3(P2)
190 8003 37
                       XPAH
                               P3
191 8004 30
                               F1
                                                RETURN
                       MPPC
192 8005 9009
                       JMF
                               GETRIT
193
194
                        PAGE "DATA WRITE ROUTINES"
195
196
               ; SEND 4 SECONDS OF "0" (ABOUT 1000) TO ALLOW FOR
197
               ; TAPE TO SETTLE ON PLAY BACK AND ACT AS LEADER
198
199
               OUTPUT OPERATION OF LED INDICATORS:
200
```

Figure 2C4-5 (Continued)

```
201
                      SEARCH LED ON WHEN LEADER COMPLETE
202
203
                      SEARCH LED OFF WHEN TRANSMISSION COMPLETE
                      END OF TAPE LED ON WHEN TRANSMISSION COMPLETE
204
205
206
                                                FLACE RAM POINTER IN P2
207 8007 0400
              INIT:
                       LDI
                               L(RAM)
208 8009 32
                       XPAL
                               F2
                                                       (LOWER)
209 80CA 0482
                       LDI
                               H(RAM)
210 8000 36
                       XPAH
                               P2
                                                       (UPPER)
211 80CD C400
                       LDI
                               L(PERIPH)
                                                FLACE PERIPHERAL ADDRESS
212 80CF 33
                                                 IN P3
                       MPAL
                               FΞ
                               H(PERIPH)
213 80D0 0483
                       LDI
214 8002 37
                       XPAH
                               P3
               COMP:
215 80D3 0400
                               Ø
                                                ; CLEAR ACCUMULATOR
                       LOI
216 80D5 02
                                                CLEAR CARRY/LINK FLAG
                       COO
217 80D6 FA0B
                       CBD
                               WDCNTL(P2)
                                                FORM 1'S COMP OF LOWER COUNT
218 80D8 CA08
                               WDCNTL(P2)
                       5T
219 30DA 0400
                       LDI
                                                CLEAR ACCUMULATOR
220 80DC FAGA
                       CHD
                               WDCNTU(P2)
                                                FORM 14S COMP OF UPPER COUNT
221 SODE CAOA
                       S. f
                               MDCNTU(P2)
                                                  TURN OFF SEARCH LED
222 80E0 CB03
                       ST
                                SRCHOF(P3)
223 80E2 CB01
                                                  TURN OFF END OF TAPE LED
                       ST
                               EOTOFF(P3)
224 80E4 C408
                                                  SET OUTER COUNTER
              SNDLDR LDI
225 80E6 CA01
                       ST
                               CNTL(P2)
226 80E8 C480
                       LDT
                               X180
                                                SET INNER COUNTER
               CNTL
   80EA CA00
                       SI
                               CNTU(P2)
                                                FULSE WRITE FLAG
228 80EC CB04
               CNT2.
                       51
                               FLAG(P3)
229 80EE 0400
                       LDI
                               Ð.
                                                CLEAR ACCUMULATOR
230 80F0 8F04
                       DLY
                               4
                                                  DELAY 1 BIT TIME
231 80F2 BA00
                                                DECREMENT INNER COUNTER
                       DLD
                               CNTU(P2)
232 80F4 90F6
                       JHZ
                               CNT2
                                                  CHECK FOR ZERO
                                                  DECREMENT OUTER COUNTER
233 80F6 BA01
                               CNTL (P2)
                       OLD
                                                  CHECK FOR LESS THEN ZERO
234 80F8 94EE
                       .TF
                               CNT1
235 80FA CB02
                       ST
                                                ; TURN ON SEARCH LED
                               SRCHON(P3)
236
237
                                           SENDS BLOCK OF DATA TO CASETTE
238
                 BLOCK TRANSFER ROUTINE.
239
240
                 THE FOLLOWING ADDRESSES MUST BE LOADED BY USER BEFORE
                 EXECUTING THE WRITE PROGRAM:
241
242
243
                 X18203 -- UPPER 8 BITS OF PROGRAM ADDRESS
                 X18204 -- LOWER 8 BITS OF PROGRAM ADDRESS
244
245
                 M1820A -- UPPER 8 BITS OF PROGRAM LENGTH
246
                 X1820B -- LOWER 8 BITS OF PROGRAM LENGTH
247
               > X18200 -- UPPER 8 BITS OF TRANSFER ADDRESS (ENTRY POINT)
248
               3 X1820D -- LOWER 8 BITS OF TRANSFER ADDRESS
249
250
                                               CLEAR ACCUMULATOR
251 80FC C400 BLOCK:
                       LDI
                               Й
                               CKSUM(P2)
                                               ; INITIALIZE CHECKSUM COUNTER
252 80FE CA02
                       ST
                                                FLACE ADDRESS OF WRITE IN P1
253 8100 C481
                       LDI
                               H(WRITE)
254 8102 35
                       XPAH.
                               F1
255 8103 C444
                               L(WRITE)-1
                       LDI
```

Figure 2C4-5 (Continued)

```
256 8105 31
                      SEAL
                               F-1
257 8106 C4A5
                      LDI
                               R1 A5
                                               LOAD ACCUMULATOR WITH ID
258 8108 3D
                       MERC
                               F1
                                               WRITE ID ON TAPE
259 8109 0204
                               STARTL(P2)
                                               GET STARTING ADDRESS
                       LD
260 810B 3D
                       区产产电
                               f-°i
                                                WRITE ONTO TAPE
261 8100 0203
                       LD
                               STARTUCE2)
262 810E 3D
                       ZEEC
                               f^*.1
263 810F 020D
                               JURELLEZ)
                                                 GET TRANSFER ADDRESS
                       LO
264 8111 3D
                       MPPC
                               FIL
265 8112 0200
                       LD
                               JUMPUCP2)
                       XPPC
266 8114 3D
                               F1
                                               GET LENGTH
267 8115 0208
                               MDCNTL(P2)
                       LD
268 8117 BD
                       MERC
                               F1
269 8118 C20A
                       1 D
                               MDCNTU(P2)
                       MPPC
270 811A BD
                               F-1
                                               PLACE CURRENT ADDRESS IN P1
271 8118 0204
               GETBYT: LD
                               STARTL(P2)
272 8110 31
                       MPAL.
                               F-1
273 811E 0203
                       1.1
                               STARTU(P2)
                               F.1
                       XEFIN
274 8120 35
275 8121 0501
                                                  GET CHARACTER THROUGH
                       L.D
                               91、61)
                                                  POINTER AND SAVE IN E REG.
                       FIE
276 8123 01
                                                ; GET ADDRESS OF WRITE AND
277 8124 0444
                       LDI
                               L.CBRITE)-1
                                                  SAVE CURRENT CONTENTS OF P1
278 8126 31
                       ZEAL.
                               P1.
279 8127 CH04
                       \Xi T
                                STARTL(P2)
280 8129 C481
                       4.04
                               HKMR17E)
                       XPAH
281 8128 35
                               F-1.
282 8120 CA02
                       ST
                               STARTU(P2)
                       LOE
283 812E 40
284 812F F202
                       ADD
                               CHOUNCE20
                                                 UPDATE CHECKSUM
285 8131 CA02
                       5T
                               CKSUMCP27
286 8133 40
                                                FLACE CHARACTER IN ACC.
                       LDE
287 8134 3D
                                                  SEND CHARACTER
                       KEPU
                               F^*I
288 8135 AA0B
                       ILD
                               WDONTL(P2)
                                                  INCREMENT WORD COUNTER
                                                  CHECK FOR ZERO
289 8137 9CE2
                       JNZ
                               GETEYT
290 8139 AAOA
                               MDCNTUCP20
                       ILO
291 813B 90DE
                               GETERT
                       JMZ
                                               SEND CHECKSUM TO TAPE
292 813D 0202
                       LD
                               CKSUMCP20
293 813F 3D
                       MPPC
                               P1
294 8140 CB03
                       51
                               SRCHOF(P3)
                                               ; TURN OFF SEARCH LED
                                                  TURN ON END OF TAPE LED
295 8142 CB00
                       ST
                               ECTON(P3)
296 8144 00
                       HHL.T
                                                ; HALT WHEN FINISHED
297
298
                DATA WRITE ROUTINE. WRITES 1 8-BIT CHARACTER ON TAPE
299
300
301
302 8145 01
               WRITE:
                                                  SAVE CHARACTER IN E REG.
                       ZAE
                                                  SET BIT COUNT
303 8146 0408
                       LDI
                               BITCHT(P2)
304 8148 CA05
                       ST
305 814A 40
               MASK:
                       LDE
306 814B D401
                                               ⇒ MASK
                       FHH
                                               ⇒ CHECK IF BIT "0" OR "1"
307 814D 9008
                       JNZ
                               SEND1
308 814F C400
                                               CLEAR ACCUMULATOR FOR DELAY
                       LDI
309 8151 CB04
                               FLAG(P3)
                                              ; PULSE WRITE FLAG
               SEND0:
                       ST
310 8153 8F04
                       DUY
                                               DELAY 1 BIT TIME ( 4 MS )
```

Figure 2C4-5 (Continued)

```
JMF
311 8155 9000
                                SHIFT
312 8157 0400
               SEND1:
                       LDI
313 8159 CB04
                       ST
                                FLAG(P3)
                                                ⇒ PULSE WRITE FLAG
314 815B 8F02
                       DLY
                                                > DELAY TO MIDDLE OF WINDOW
315 815D CB04
                       ST
                                FLAG(P3)
                                                PULSE WRITE FLAG
316 815F C400
                       LDI
                                                CLEAR ACC. FOR DELAY
317 8161 8F02
                       DLY
                                2
                                                DELAY TO END OF WINDOW
318
319 8163 19
               SHIFT:
                       510
                                                SHIFT E REGISTER
                                                DECREMENT BIT COUNTER
320 8164 BA05
                        DLD
                                BITCHT(P2)
321 8166 9802
                        JZ
                                RETRN1
                                                CHECK FOR ZERO
322 8168 90E0
                        JMF
                                MASK
                                                SEND NEXT BIT
323 816A 3D
               RETRN1: XPPC
                                                RETURN
                                F1
324 816B 90D8
                        JMF
                                WRITE
325
326
         8000
                        END
                                BOOT
        0905
                     BLOCK
                              80FC *
                                           BOOT
                                                   8000
BITCHT
                                                   0002
                     CNSH
                                           CKSUM
BOOTIN
        803E
                              8098
                     CNT1.
                                           CNT2
                                                   80EC
CLOCK
        80A2
                              80E8
        0001
                     CNTU
                              មួយមួយ
                                           COMP
                                                   80D3 *
CNTL
        0001
EOTOFF
                     EOTON
                                           EXECPR
                                                   8058
                              មួយមួយ
        0004
FLAG
                     GETEIT
                             8696
                                           GETBYT
                                                   8118
INIT
        8007 *
                     JUMPL
                              9990
                                           JUMPU
                                                   0000
LOCID
        801E
                     LOOP
                              802F
                                           MASK
                                                   814A
ONE
                              0001
                                                   0002
        8083
                     F-1
                                           F2
P3
        0003
                     PERIPH
                              8300
                                           RAM
                                                   8200
RECV
        806E
                     RESET
                              8087
                                           RETRN1
                                                   816A
RETRN2
        8086
                     RETENE
                              80BE *
                                           SENDO
                                                   8151 *
SEND1
        8157
                     SETENT
                              8026
                                           SHIFT
                                                   8163
SNDLDR
        80E4 *
                     SROHOF
                              0003
                                           SECHON
                                                   0002
STARTL
        0004
                     STARTU
                              0003
                                           TEMP1
                                                   0006
TEMP2
        9997
                     TEMPS
                              0008
                                           TEMP4
                                                   0009
WDCNTL
        000B
                     MDCNTU
                              BBBA
                                           WRITE
                                                   8145
NO ERROR LINES
SOURCE CHECKSUM=C694
                                                                      NS10567
```

Figure 2C4-5 (Concluded)

INTERFACING SC/MP WITH A SEIKO PRINTER

General Description

Figure 2C4-6 shows how the SC/MP microprocessor can be interfaced with the Model 310 Seiko Digital Printer; this particular printer is small and compact, and is widely used

in applications where simplicity and economy are prime factors. The printer requires a single supply voltage (17V) and can operate at speeds in the range of two to five lines per second — with a choice of two colors. The Model 310 provides a 16-column print format with any one of 12 characters selected per column. The columns generally can be designated as follows.

Functional operation of the printer is described in documents furnished by the manufacturer (Shinshu Seiki Co., Ltd. of Japan); however, as an aid to the user, an operational summary is included here. When a print command (figure 2C4-7) is received from SC/MP, the motor-drive signal is driven low; accordingly, the printer motor is activated and the main shaft begins to rotate. The 16 print wheels (D1 through D16) are mechanically linked to the shaft and the position of each wheel is detected by a photo-diode arrangement. A timing pulse $(T_0, T_1, T_2 - \cdots - T_{11})$ is generated for each digit or symbol position of the print wheels and, for any given print cycle, the timing pulses select the digit

 $(\underline{D}1)$ position for each wheel. During the T_4 to T_8 interval, color information is transmitted to select the color of tape to be printed. When the position of the wheel corresponds to the selected digit (or symbol) for that column, the print wheel is stopped and mechanically latched; thus, at the trailing edge of timing pulse T_{11} , all the print wheels are locked in position. When the platten print signal goes high, the selected characters for each column are transferred to the paper and, then, the paper is advanced. After completion of the print cycle, the motor drive signal is terminated and each print wheel returns to the initial blank (B) position.

Figure 2C4-6. SC/MP Interfaced with Seiko Digital Printer

Figure 2C4-7. Column/Character Relationships and Timing for One Print Cycle

System Operation

The SC/MP-to-printer interface is implemented via a special-purpose chip set that includes interface logic #1 (DS 8693), interface logic #2 (DS 8694), and two transistor arrays (DS 8692). The DS 8693 device contains the interface logic for the color solenoid driver, the motor driver, and seven of the column/character select solenoid drivers; the DS 8694 chip contains the interface logic for eight column/character solenoid drivers plus the clock oscillator and timing-signal buffer. Each transistor array contains eight common-emitter output circuits — each circuit features active pull down and each can sink up to 350 milliamperes of current. Address decoding for the printer interface is performed by a BCD-to-decimal decoder (DM 74LS138). Hexadecimal address X'0200 is assigned to access the printer; address assignments for interface control are as follows:

Hex Address	Function	Remarks
0200	Printer Interface	
0201	Clock IN1	Used to load DS 8693 with print information for columns D10 through D16
0202	Clock IN2	Used to load DS 8694 with print information for columns D1 through D9
0203	Common Clock	Used to clear DS 8693 and DS 8694
0204	Print	Used to issue PRINT COM-MAND

The printer program continuously monitors a data buffer that is maintained in RAM (figure 2C4-8). This buffer is filled by any appropriate input device (keyboard, tape, or other), and when filled, the program is executed to print a line consisting of 16 characters. As shown in figure 2C4-7, the 16 columns (each column corresponding to a print wheel) are divided into two column words - COLWORD 1 representing the characters to be printed for columns D1 through D9 (D3 is blank) and COLWORD 2 representing characters for the remaining columns (D10 through D16). The character codes for each column and the constants used to select a particular column are stored in ROM. When the characters stored in the data buffer for a particular column agree with those in the character code list, the print wheel for that column is mechanically latched; thus, at the end of the timing cycle $(T_0 - - - T_{11})$, all 16 print wheels are locked in position and the line is printed. The following example shows the interrelationships between the columns, the characters, the timing pulses, and COLWORDS 1 and 2.

Figure 2C4-8. Memory Allocations for Printer Program

(NOTE: The TTL to MOS inverters in the interface devices require that the column drivers be driven with a logic '0' for selection; that is, the print wheels lock into position at a particular timing pulse if the COLWORD bit corresponding to that position is a logic '0'.)

After the line of data is printed, all print wheels are unlatched and return to the blank (B) position; the motor

drive signals also are reset until the arrival of the next print command.

Software Considerations

The flowcharts (figure 2C4-9) and program listing (figure 2C4-10) shows how the SC/MP-to-printer interface can be software-controlled to provide the foregoing printing capabilities.

Figure 2C4-9. Summary and Detailed Flowchart for SC/MP-to-Printer Interface

```
TITLE SCMP, 'SEIKO PRINTER PRGM'
 1
 2
3
        0001
              P1
                                1
                                2
 4
        0002
              P2
                                3
 5
        0003
              P3
 6
                                1
        0001
              CLK1
7
                                2
        0002
              CLK2
8
        0003
              CLK3
                               3
9
                                4
        0004
              PRINT
                                0200
10
        0200
              SEIKO
11
        0001
              TEMP1
                                1
              TEMP2
                                2
12
        0002
                                4
13
        0004
              CLKCTR
        0005
              COLWR1
                                5
14
15
        0006
              COLWR2
                                6
16
17 0000 08
                       NOP
                                                SET UP POINTER ADRS.
18 0001 C400
              PRNT:
                       LDI
                               L(SEIKO)
19 0003 33
                       XPAL
                               P3
                               H(SEIKO)
20 0004 0402
                       LDI
21 0006 37
                       XPAH
                               P3
                                PRINT(P3)
                                                START PRINTER
22 0007 CB04
                       ST
                                                 ; SET UP HIGHER MEMORY ADRS.
23 0009 C401
                       LDI
24 000B 35
                       XPAH
                                P1
25 0000 0400
                       LDI
                                0
26 000E 36
                       XPAH
                                P2
                       LDI
                                010
27 000F C410
                                                ; SET UP TEMP. STORAGE ADRS.
                                P1
28 0011 31
                       XPAL
29 0012 C400
                       LDI
30 0014 0904
                       ST
                                CLKCTR(P1)
                                                 CLR CLK COUNTER
31
32 0016 C4FF
              CONTPRT:LDI
                                ØFF
                                                 CLR COL WORD1
                                COLWR1(P1)
33 0018 C905
                       ST
                                                 CLR COL WORDS
34 001A C906
                       ST
                                COLWR2(P1)
                                                 ; SET UP DATA BER ADRS.
35 001C C401
                       LDI
                                1
                       XPAH
                                P3
36 001E 37
37 001F C400
                       LDI
                                0
38 0021 33
                       XPAL
                                P3
                                                 SET UP POINTER FOR
39 0022 C104
                       LD
                                CLKCTR(P1)
                                000
                                                 ; COL1 CODE LIST
40 0024 F4C0
                       ADI
41 0026 32
                       XPAL
                                P2
                                                BEGIN SCAN FOR DATA COMPR
42 0027 0701
                       LD
                                @1(P3)
43 0029 E200
                       XOR
                                (P2)
44 002B 9827
                       JΖ
                                COMPR1
                                                ; SET UP POINTER FOR CODE LIST
                                CLKCTR(P1)
45 002D C104
              RETCOMP:LD
46
                                                 SELECT COL2 CODE LIST
                                000
47 002F F4D0
                       ADI
                       XPAL
                                P2
48 0031 32
                                @1(P3)
                                                 ; NO PRINTING IN COL3
49 0032 0701
                       LD
                                                 ;CHECK IF DATA=CODE LIST CHAR
              CONTSON: XOR
                                (P2)
50 0034 E200
51 0036 9827
                                COMPR2
                       JZ
                       XPAL
52 0038 33
                                P3
                                TEMP1(P1)
53 0039 0901
                       ST
                                                 ; MASK UPPER 4 BITS OF P3
54 003B D40F
                       ANI
                                ØF
```

Figure 2C4-10. Program Listing for SC/MP-to-Printer Interface

```
GCHECK IF SCANNING COMPLET.
 55 003D E40F
               SCNCHK: XRI
                                ØF
 56 003F 980C
                                TEST
                                                JMP TO WAIT FOR PRTR CLK
                        JΖ
                                TEMP1(P1)
                                                JLD DATA BFR ADRS.
 57 0041 C101
                        LD
 58 0043 33
                        XPAL
                                P3
 59 0044 C104
                        LD
                                CLKCTR(P1)
 60 0046 F4E0
                                                JLD COL4 TO 16 CODE ADRS.
                        ADI
                                0E0
 61 0048 32
                        XPAL
                                P2
 62 0049 0701
                        LD
                                @1(P3)
 63 004B 90E7
                        JMF
                                CONTSON
 64
 65 004D 06
               TEST:
                        CSA
 66 004E D410
                        ANI
                                010
                        JΖ
 67 0050 98FB
                                TEST
                                FNSHSCN
 68 0052 9033
                        JMP
 69
 70 0054 C4F0
               COMPR1: LDI
                                0F0
                                                FLD COL WORD CONST. ADRS.
 71 0056 32
                        XPAL
                                P2
                                                GOLWORD CONST TO ACU
 72 0057 C200
                        LD
                                (P2)
 73
 74 0059 D105
                        AND
                                                #GENERATE COLWRD 1
                                COLWR1(P1)
 75 005B C905
                        ST
                                COLWR1(P1)
                                                 ;SAVE NEW COLWRD1
 76 005D 90CE
                        JMP'
                                RETCOMP
 77
 78 005F 33
               COMPR2: XPAL
                                PR.
 79 0060 0901
                        ST
                                TEMP1(P1)
                                                 ;SAVE DATA BFR ADRS
                                                 ; MASK UPPER BITS
 80 0062 D40F
                        ANI
                                ЙF
 81 0064 0902
                        ST
                                TEMP2(P1)
                                                 SAVE COLMN COUNT
 82 0066 F4F7
                        AD I
                                -9
                                                # COL COUNT>8
 83 0068 940F
                        JP
                                GENCOL2
                                                #GET COL COUNT
 84 006A C102
                       LD
                                TEMP2(P1)
 85 006C F4F0
                                0F0
                                                ; ADD ADRS FOR COLWRD CONST
                        AD I
 86 006E 32
                        XPAL
                                P2
 87 006F C2FF
                        LD
                                -1(P2)
                                                COLURD CONST TO ACU
                                                GENERATE COLURD1
 88 0071 D105
                        AND
                                COLWR1(P1)
 89 0073 0905
                        ST
                                COLWR1(P1)
                                                 SAVE NEW COLURD1
90 0075 C102
              COL2RET:LD
                                TEMP2(P1)
                                                FLD COLMN COUNT
 91 0077 9004
                                                GO TO SCAN COMPLT CHK RTN.
                        JMF
                                SCNCHK
                                                #GET COL COUNT
 92 0079 0102
               GENCOL2:LD
                                TEMP2(P1)
 93 007B 02
                        CCL
 94 007C F4F0
                        AD I
                                0F0
                                                # ADD ADRS FOR COLWRD CONST.
 95 007E 32
                       XPAL
                                P2
                                                COLURD CONST TO ACU
 96 007F C2FF
                                -1(P2)
                       LD
 97 0081 D106
                        AND
                                COLUR2(P1)
                                                 ; GENERATE COLWRD2
 98 0083 C906
                                                 ;SAVE NEW COLWRD2
                        ST
                                COLWR2(P1)
 99 0085 90EE
                        JMP
                                COL2RET
100
101 0087 06
               FNSHSCN: CSA
                                                 ;XFR SENSEA TO ACU
102 0088 D410
                                010
                                                ; CHECK IF SENSE A PRESENT
                       ANI
                                                ; LOOP BACK TO FINISH SCAN
103 008A 9CFB
                        JNZ
                                FNSHSCN
                                                #GET SEIKO ADRS.
104 008C C400
                                L(SEIKO)
                       LDI
105 008E 33
                       XPAL
                                P3
106 008F C402
                                H(SEIKO)
                       LDI
107 0091 37
                       XPAH
                                P3
108 0092 C105
                       LD
                                COLWR1(P1)
                                                GET COLWRD1
109 0094 CB02
                       ST
                                CLK2(P3)
```

Figure 2C4-10 (Continued)

```
110 0096 C106
                       LD
                                COLWR2(P1)
                                                ⇒GET COLWRD2
111 0098 CB01
                       ST
                                                FXFR COLWRD2 TO PRINTER
                                CLK1(P3)
112 009A A904
                       ILD
                                CLKCTR(P1)
                                                FINCREMENT CLK COUNTER
113 009C E40D
                       XRI
                                                # CHECK CLK CTR = 13 .
                                13
114 009E 9808
                                DONE
                        JΖ
115 00A0 C400
                       LDI
                                a
                       XPAH
                                P3
116 00A2 37
117 00A3 C415
                       LDI
                                015
118 00A5 33
                       XPAL
                                P3
119 00A6 93FF
                                (P3)
                        JMP
120 00A8 C4FF
               DONE:
                       LDI
                                ØFF
121 00AA CB03
                        ST
                                CLK3(P3)
                                                GCLR PRTR LATCHES
122
123
               EXIT:
                                                JUSER RETURN ROUTINE
124
125
126
         00C0
                       . =000
127
128 0000 43
               COL1: BYTE 100% (I/) (1/) (U/) (5/) (6/) (A/) (M/
    0001 49
    0002 31
    00C3 55
    0004 35
    0005 36
    0006 41
    00C7 4D
129 00C8 4B

    BYTE TK (5 YEA) YPA YNA

    00C9 45
    00CA 50
    00CB 4E
130
131
         00D0
                       . =0D0
132
133 00D0 2A
               COL2:
                       BYTE
                                | イ*イティ#イティ+イティーイティなイディ=イディ6イディアイ
    00D1 23
    00D2 2B
    00D3 2D
    00D4 25
    00D5 3D
    00D6 36
    00D7 37
                      134 00D8 53
    00D9 54
    00DA 3A
    00DB 58
135
136
         00E0
                       . =0E0
137
                               701, 111, 121, 131, 141, 151, 161, 171
138 00E0 30
                       . BYTE
               COL4:
    00E1 31
    00E2 32
    00E3 33
    00E4 34
    00E5 35
    00E6 36
```

Figure 2C4-10 (Continued)

```
00E7 37
                                  784, 794, 7, 7, 7-7
139 00E8 38
                         . BYTE
    00E9 39
    00EA 2E
    00EB 2D
140
141
         00F0
                         . = 0F0
142
                                  0FE, 0FD, 0FB, 0F7, 0EF, 0DF, 0BF, 07F
143 00F0 FE
                CONST: BYTE
    00F1 FD
    00F2 FB
    00F3 F7
    00F4 EF
    00F5 DF
    00F6 BF
    00F7 7F
144 00F8 FE
                         BYTE
                                  0FE, 0FD, 0FB, 0F7, 0EF, 0DF, 0BF, 07F
    00F9 FD
    00FA FB
    00FB F7
    00FC EF
    00FD DF
    00FE BF
    00FF 7F
145
146
          0001
                         . END
                                  PRNT
CLK1
         0001
                       CLK2
                                0002
                                              CLK3
                                                       0003
CLKCTR
         0004
                       COL1
                                0000 *
                                              COL2
                                                       00D0 *
COL2RE
         0075
                       COL4
                                00E0 *
                                              COLWR1
                                                       0005
COLWR2
                       COMPR1
         0006
                                0054
                                              COMPR2
                                                       005F
CONST
         00F0 *
                       CONTER
                                0016 *
                                              CONTSC
                                                       0034
DONE
         00A8
                       EXIT
                                00AC *
                                              FNSHSC
                                                       0087
GENCOL
         0079
                       P1
                                0001
                                              P2
                                                       0002
P3
         0003
                       PRINT
                                0004
                                              PRNT
                                                       0001
RETCOM
         002D
                       SCNCHK
                                003D
                                              SEIKO
                                                       0200
TEMP1
         0001
                       TEMP2
                                0002
                                                       004D
                                              TEST
NO ERROR LINES
SOURCE CHECKSUM=4E54
                                                                             NS10572
```

Figure 2C4-10 (Concluded)

APPENDIX A

CLOCK CONSIDERATIONS FOR SC/MP

GENERAL

The on-chip oscillator and timing generator of SC/MP can be controlled by any one of the following three methods:

- CAPACITOR if timing is not a critical parameter
- CRYSTAL if more precise timing is required
- EXTERNAL DRIVE if application requires that SC/MP be synchronized with system clock

CAPACITOR TIMING

As shown in figure A-1, the capacitor is connected between X1 (pin 37) and X2 (pin 38) of the SC/MP chip. A non-polarized ceramic or silver mica capacitor with a working

voltage that is equal to or greater than 25 volts is recommended. Lead length from the body of SC/MP to the body of the capacitor should not exceed 1.25 inches. When a capacitor is used, the frequency varies according to the capacitance as shown in figure A-2.

CRYSTAL TIMING

When a crystal is used, the on-chip oscillator of SC/MP operates at the resonant frequency of the crystal. Pin connections and lead lengths for a crystal are identical to those for a capacitor; however, as shown in figure A-1, a capacitor may be required to suppress crystal harmonics. The crystal should be hermetically sealed (HC type can) and should meet the following electrical specifications.

Figure A-2. Oscillator Frequency versus Capacitance

- Resonant frequency ----> 900 kHz
- Series resistance at resonance ---- ≤ 600-ohms
- Load capacitance at resonance - - 20-to-30 pf

Suitable crystals can be obtained from several manufacturers; four such manufacturers are listed below.

- X-Tron Electronics, Hayward, California
- M-Tron Industries, Yankton, South Dakota
- Crystek Crystal Co., Ft. Myers, Florida

USING AN EXTERNAL CLOCK

SC/MP can be synchronized with an external clock simply by connecting appropriate drive circuits to the X1/X2 inputs. A recommended method of implementing the external-clock circuit is shown in figure A-3a; the true and complemented "idealized" waveforms are shown in figure A-3b. Alternate methods of generating the X1/X2 input signals are shown in figure A-4.

Figure A-3. Using External Clock for SC/MP Timing

Figure A-4. Alternate Methods of Generating External Clock Signals

APPENDIX B

ADDRESS ASSIGNMENTS AND DECODING METHODS

INTRODUCTION

The addresses for memory and peripheral devices can be assigned and decoded in a number of different ways; some address assignments and decoding methods are shown and described in the sections that follow.

Nondecoded Peripheral Addressing

As previously indicated, 16 address lines (AD 00 through AD 15) are available; 12 of these lines (AD 00 through AD 11) are internally latched on the SC/MP chip; whereas the other 4 lines (AD 12 through AD 15) are output (at

Figure B-1. Using External Logic and Spare Address Lines to Select RAM/PROM Memory or Input/Output Peripherals

NADS time) on the 8-bit input/output bus. Most applications do not require all 16 address lines for memory. For example, consider the system shown in figure B-1 consisting of 512-by-8 words of PROM, 256-by-8 words of RAM, a read device, and a write device. Nine address lines (AD 00-AD 08) are required to discretely identify each of the 512 bytes of PROM and only 8 lines (AD 00-AD 07) are required for RAM; thus, the 3 remaining address bits (AD 09/AD 10/AD 11) are free and can be used for device selection. The 'device select truth table' shows how this can be done.

When power is applied and SC/MP is initialized, all the address bits are low (set to '0') and PROM is selected; thus, program execution begins at PROM address X'0001. Observe that with AD 09 set to '0', RAM is not selected because $\overline{CS2}$ is high and neither the read nor the write devices can be selected because both \overline{SEL} signals are high. For an application example, suppose the PROM program requires access to RAM, to the read device, and to the write device; the following series of instructions shows one way to implement the read and write functions.

ne.			
READ FR	OM RAM:		
	•		
	•		
	•		TO HIGH BOINTED BY
	LDI	02	;WHEN TRANSFERRED TO HIGH POINTER BY ;NEXT INSTRUCTION, TURNS ON BIT 9 TO ;SELECT RAM
	XPAH	2	;SET BIT 9 OF POINTER 2
	LDI	05	;LOAD RAM ADDRESS 5 INTO ACCUMULATOR
	XPAL	2	;PUT RAM ADDRESS IN LOW POINTER 2
	LD	(2)	;LOAD DATA FROM RAM ADDRESS SPECIFIED IN ;POINTER 2
	•		
	•		
	•		
WRITE IN	ITO RAM:		
	•		
	•		
	LDI	02	;WHEN TRANSFERRED TO HIGH POINTER BY ;NEXT INSTRUCTION, TURNS ON BIT 9 TO ;SELECT RAM
	XPAH	2	;SET BIT 9 OF POINTER 2
	LDI	X′10	;LOAD RAM ADDRESS (DECIMAL 16) INTO ;ACCUMULATOR
	XPAL	2	;PUT RAM ADDRESS IN LOW POINTER 2
	LD	DATA	;LOAD DATA TO BE STORED
	ST	(2)	;STORE DATA IN RAM ADDRESS SPECIFIED BY ;POINTER 2
DATA:	.BYTE	X'1F	;DATA TO BE STORED
	•		
	•		
	•		
READ FR	OM "READ DE	VICE":	
	•		
	•		
	•		
	LDI	04	;WHEN TRANSFERRED TO HIGH POINTER BY NEXT ;INSTRUCTION, TURNS ON BIT 10 TO SELECT ;"READ DEVICE"
	XPAH	1	SET BIT 10 OF POINTER 1
	LD	(1)	READ DATA FROM DEVICE (NOTE: LOW POINTER 1
	•	• •	(IS NOT REQUIRED FOR THIS OPERATION)
	•		•
	•		

WRITE INTO "WRITE DEVICE":

80 LDI WHEN TRANSFERRED TO HIGH POINTER BY NEXT INSTRUCTION, TURNS ON BIT 11 TO SELECT "WRITE DEVICE" **XPAH** 1 SET BIT 11 OF POINTER 1 LD DATA LOAD DATA TO BE WRITTEN ST (1) WRITE DATA DATA: .BYTE X'AA ;DATA TO BE WRITTEN

READ AND/OR WRITE:

LDI	ОС	WHEN TRANSFERRED TO HIGH POINTER BY :NEXT INSTRUCTION, TURNS ON BITS 10 & 11
		;TO SELECT READ AND WRITE DEVICE
XPAH	1	SET BITS 10 & 11 OF PTR 1
LD	(1)	;READ DATA FROM READ DEVICE
ST	(1)	WRITE DATA THAT WAS PREVIOUSLY READ

Observe that the read and write peripherals must be strobed by NRDS or NWDS; otherwise, the selected peripheral would input or output data as soon as the address is valid, and, at the same time, SC/MP would output address and status information. By strobing the chip selects, reading or writing of data is delayed until the "address" and "status" outputs from SC/MP are completed. Strobes are not required in the address logic of the RAM or PROM since the on-chip output-enable (OD) signal provides this function.

Decoded Addressing of Peripherals

In many applications, the addressing requirements of the system exceed those shown in figure B-1. For these systems, discrete selection logic is expensive, cumbersome, and complicates the software; thus, some form of address decoding is preferred. Figure B-2 shows one way of implementing a simple decoding scheme. Here, address bits 10 and 11 are decoded by one half of the 74LS155 to yield four output select signals; address bit 9 is used to select RAM or PROM. In figure B-2, all chip selects are strobed via the decoder; thus, access time of the memory chip is an

important consideration. If the access time is greater than the strobe width, bipolar memories can be used or the RAM/PROM devices can be selected as shown in figure B-1-via the external logic and the latched address lines.

In figures B-1 and B-2, three latched address lines are always available since memory is arbitrarily restricted to 512 bytes. Some applications require 4K of memory (or more) and, in this case, there are no spare address lines for device selection; figure B-3 shows how address bits 12-15 can be used to implement a system of this type. The 4 address bits (AD 12-AD 15) are output on the data bus at "address/status time," and the leading edge of the address strobe (NADS) latches these bits into the DM85L51 chip. The binary address code then is inputted to the 4-by-16 decoder, which selects 1 of 16 peripheral input/output devices in accordance with the decoding select logic. In figure B-3, the 16 peripherals can be any combination of read, write, and read/write devices whose input/output characteristics are compatible with SC/MP. Observe that the decoder is strobed; thus, access time of all peripherals must be less than the strobe widths-refer to figure 1-4 for timing parameters.

Figure B-2. Using 2-by-4 Decoder to Select Memory and Input/Output Peripherals

Figure B-3. Using Address Bits 12-15 and 4- by-16 Decoder to Select Any One of 16 Input/Output Peripherals

Figure B-4 shows how address decodes can be enabled via the write strobe (NWDS) and the read strobe (NRDS). Two decoders are used—one to generate eight write strobes and the other to generate eight read strobes. In systems that require multiple read/write peripherals, this decoding method is simple, easy to implement, and relatively inexpensive.

Another method of address decoding is shown in figure B-5. Here, each peripheral is selected by a 6-bit unified-bus comparator, and since the comparators have on-chip latches and are low-power devices (typically, a 15-microampere load), they are well suited to applications where physical space and low-power consumption are prime considerations. The selection code for each peripheral is designated by the user and is hardwired at pins 2, 4, 6, 10, 12, and 14 of the comparator; when the output address of SC/MP

agrees with the preset code (T1 = B1, T2 = B2, and so on), the device is selected. For example, with the select codes shown, PROM is selected when power is applied and the system is initialized; thus, any program beginning at address X'0001 in PROM will be executed. To select RAM, the preset code can be altered as shown by changing 'T6' (AD 15) from a '0' to a '1.'

If a 4K memory is used in figure B-5, address lines AD 10 and AD 11 are unavailable for device selection; thus, these pins (B1 and B2) and their preset counterparts (T1 and T2) can be grounded or connected to +5V—whichever is most convenient. Observe that each peripheral device (whether read or write) is strobed by both NRDS and NWDS; this is necessary because the outputs are latched and must be cleared at the beginning of each input/output cycle.

Figure B-4. Using Read/Write Strobes to Implement Address Decodes

Figure B-5. Using 6-Bit Bus Comparators to Select Peripherals

APPENDIX C

SC/MP INTERRUPT SYSTEM

SINGLE-LEVEL INTERRUPTS

The interrupt system of SC/MP is supervised as shown in figure C-1. Before an instruction is fetched, bit 3 of the Status Register is tested. If the bit is a logic '0' (interrupt enable flag not set) and the CONTinue input is high (a logic '1'), the Program Counter is incremented and the next instruction is fetched and executed. If bit 3 of the Status Register is set to a logic '1' and the Sense A input is high, the interrupt is serviced; the interrupt enable flag (bit 3 of the Status Register) is reset and the contents of the Program Counter are exchanged with the contents of Pointer Register 3 — the pointer contains the address of the subroutine that services the interrupt.

In summary, Pointer Register 3 must be initialized with the address of the interrupt service routine, and then to arm the interrupt system, the interrupt enable flag (bit 3 of the Status Register) must be set to a logic '1'. For example, to enable the interrupt system at some point in the main program with the interrupt service routine residing at location X'1020, the following series of instructions could be implemented.

Main Program

Figure C-1. SC/MP Interrupt/Instruction Fetch Process

MULTI-LEVEL INTERRUPTS

A system with more than one interrupt level can be easily implemented by interfacing a priority encoder to SC/MP. In such systems, the interrupt service routine for each interrupting device should be carefully written to avoid complicated software conflicts; this is particularly true in saving the "current" status of the machine when the interrupt occurs. The "saving-of-status" can be quite complicated, especially in a nested prioritized interrupt system; in this case, the higher priority interrupt level can interrupt the service routine of the lower priority interrupt. Since "nested" interrupt routines are a function of the user's software, implementation techniques are not described in this document.

Figure C-2 shows one method of interfacing a priority encoder to SC/MP. Each of the eight inputs (INT 0 through INT 7) should come from a latched output which is reset by SC/MP during execution of the interrupt service routine.

Figure C-2. Using SC/MP and a Priority Encoder to Implement a Multilevel Interrupt System

The encoder "ORs" the interrupt inputs and, if any one is "active-low," the Sense A (interrupt mode) line of SC/MP is raised to a logic '1' via the E0 output line (pin 15). If two or more inputs request interrupt service at the same time, they are assigned the service on a prioritized basis – INT 7 being the highest priority interrupt and INT 0 being the lowest. The A0, A1, and A2 outputs of the encoder are a 3-bit binary code that corresponds to the highest priority interrupt: this code forms the least significant bits of the interrupt data word (0010 0XXX) and is input to SC/MP via the TRI-STATE buffer. The output of the buffer provides the upper 8-bits of the 16-bit address required for each interrupt service routine. As shown in figure C-2, the highest priority interrupt (INT 7) is arbitrarily assigned an address of X'2000; the next highest priority (INT 6) – an address of X'2100; (INT 5) - an address of X'2200; and so on for the remaining interrupt levels. The output data word for each interrupt level is shown below.

Interrupt			Inte	errupt E	Buffer O	utput			
Level		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	2	1	0
Interrupt	#7	0	0	1	0	0	0	0	0
	#6	0	0	1	0	0	0	0	1
	#5	0	0	1	0	0	0	1	0
	#4	0	0	1	0	0	0	1	1
	#3	0	0	1	0	0	1	0	0
	#2	0	0	1	0	0	1	0	1
	#1	0	0	1	0	0	1	1	0
	#0	0	0	1	0	0	1	1	1

Memory allocations for the eight interrupt service routines (INT 0-INT 7) are also shown in figure C-2. These allocations include the *interrupt start routine*, the *interrupt return routine*, and *temporary storage for status information*. The addresses are chosen such that these locations fall within the same page boundary — this arrangement permits the use of PC-relative addressing for the start/return routines.

The interrupt start routine is written to save the status of the machine (Accumulator, Program Counter, Pointer Registers, and so on) and to direct the program to the interrupt service routine of the highest priority interrupt. To transfer control to the service routine, the program clears the lower half of a pointer register — in the example shown, Pointer Register P2. The program then reads in the address data word (0010 0XXX) of the highest priority interrupt; this information is transferred to the upper half of a pointer register, which provides a 16-bit address of the required interrupt service routine. At this point, the Program Counter and Pointer Register are exchanged and the interrupt service routine is executed. As shown in figure C2, each interrupt must go through the start routine to execute the fore-

going steps. (Note: Once an interrupt is recognized, all pending interrupts-even those with higher priority – must wait for service.

Interrupt service routines 0 through 7 contain a program to service the particular interrupting device. Typically, these programs perform input/output transfer of data, exercise electrical/mechanical control of peripherals, furnish timing synchronization, and/or other relevant functions. The flow-chart and program listing (figure C-3) is a flexible and general-purpose scheme that represents one of many ways to implement a multilevel interrupt system using SC/MP. For example, the interrupt service routines can be started at locations other than X'2000 by simply rearranging the inputs to the TRI-STATE buffer in figure C-2. Also, the service routines need not be 256 words in length; the number of words can be altered by rearranging the buffer inputs and by loading the lower half of the pointer instead of the upper half.

Upon completion of the interrupt service routine, all interrupts must go through the *interrupt return routine*. This routine essentially restores the status of machine as it was before the interrupt was recognized. The interrupt enable flag (bit 3 of the Status Register) is set to service interrupts that are still pending. The interrupt start and return routines could be changed to save more or less status than shown. Also, some of the status words can be changed; these changes depend largely on what is done during the interrupt service routine.

In the preceding example of multiple interrupts, it should be noted that P3 is used in a unique manner. Pointer Register P3 is used as the interrupt service pointer and is loaded with X'0F1B. Referring to the memory map the ROM/RAM boundary was chosen to be X'0F00 which is close to the pointer register value. When the Pointer Register is exchanged with the Program Counter due to an interrupt, the status is saved in RAM by use of PC-relative addressing. At the end of the service routine, the status is restored by use of PC-relative addressing.

Due to the choice of the value for the Pointer Register when the main program is being executed, P3 may be used as a pointer for temporary (scratch pad) storage by the main program by the use of indexed addressing. The area available for scratch pad in this example is the area between the end of the save area (X'0EF6) and -127 from the value in the Pointer Register (X'0F1B-7F) or X'0E9C. Pointer Register 3 may also be used to access constants stored in ROM at the end of the interrupt start routine via the indexed addressing mode. The area available for constant storage is X'0F40 to X'0F9A (X'0F1B+7F).

Figure C-3. Flowchart and Program Listing for Multilevel Interrupt System

```
FINTERRUPT RETURN ROUTINE. RESTORES SYSTEM STATUS
             3 AND RETURNS TO MAIN PROGRAM.
35
36 0F00 C0F6 INTRIN: LD
                              EXT
                                              FRESTORE EXT REG
37 0F02 01
                      XAE
38 0F03 C0F8
                              F'1L
                                              RESTORE P1
                      LD
39 0F05 31
                      XF'AL
                              F'1
40 0F06 C0F4
                              F1H
                      LD
41 0F08 35
                      XPAH
                              F1
42 0F09 C0F0
                      LD
                              PEL
                                             RESTORE P2
43 0F0B 32
                      MPAL
                              P2
44 0F00 00E0
                      LD
                              PEH
45 0F0E 36
                     XPAH
                              F2
                              FICIL
46 0F0F C0EE
                                              RESTORE RETURN ADDR.
                     LD
47 0F11 33
                              PB
                      XPAL
48 0F12 C0EA
                      L.D
                              PCH
49 0F14 37
                      XPAH
                              P3
50 0F15 00E0
                                             RESTORE STATUS REG.
                     LD
                              STATUS
51 0F17 07
                      CAS
52 0F18 C0DF
                     LD
                             ACU
                                             RESTORE ACU
53 0F1A 05
                      IEN
54 0F18 3F
                      XPPC
                              FΞ
55
56
                              MINTERRUPT ROUTINES
                      F'AGE
57
58
             INTERRUPT ROUTINE. READS PRIORITY ENCODER TO DETERMINE
59
             INTERRUPT NEEDING SERVICE AND BRANCHES THERE.
60
\epsilon_1
62 0F1C C8DB INTRPT: ST
                              ACU
                                             SAVE ACU
63 0F1E 06
                      CSA
64 0F1F 08D6
                      ST
                              STATUS
                                             :;SAVE STATUS REG.
65 0F21 33
                      XPAL
                              P3
                                              SAVE RETURN ADDR.
                              FOL
ST
67 0F24 37
                      XEAH
                             P3
68 0F25 C8D7
                      ST
                             PCH
69 0F27 31
                     XPAL
                              F1.
                                             SAVE P1
70 0F28 C8D3
                      ST
                              F1L
71 0F2A 35
                      XPAH
                              F'1
72 0F2B 08CF
                              F1H
                      ST
73 0F2D 32
                      XPAL
                             P2
                                             SAVE P2
                      ST
74 0F2E C8CB
                              P2L
75 0F30 36
                      XPAH
                             P2
76 0F31 C8C7
                      ST
                             P2H
77 0F33 01
                      XAE
78 0F34 0802
                             EXT
                                             ; SAVE_EXT_REG.
                      5T
                                              CLEAR P2
79 0F36 C400
            RDSTAT: LDI
                              0
80 0F38 32
                             P2
                      XPAL
                                             SET ADDR OF ENCODER
81 0F39 C430
                      LDI
                              030
82 0F3B 36
                      XPAH
                              P2
                              (P2)
83 0F3C C200
                     L.D
                                             READ PRIORITY ENCODER
                                             SET VECTOR IN P2
84 0F3E 36
                     XPAH
                              P2
```

Figure C-3 (Continued)

```
ØF3F 3E
                         MPPC
                                  F2
                                               300 TO SERVICE ROUTINE
86
87
88
89
                      SERVICE ROUTINE RETURN, SERVICE ROUTINE EXECUTES
90
          :"MPPC P2"
                      INSTRUCTION.
91
   0F40 90BE
92
                SRETRN:
                         JMF
                                             FRETURN FROM SERVICE,
                                                                      GO TO
                                  INTERN
93
                                             ; INTERUPT RETURN
94
95
         9999
                          END
                                                       INTERT
                                                                0F10
       ACU
                9EF8
                               EXT
                                        ØEF7
                0F00
                               MAIN
                                        0001 *
                                                       F'1
                                                                0001
       INTETN
                               F1.L
                                        BEFO
                                                       F\geq
                                                                0002
       F1H
                GEFB
                                                       FI
                                                                0003
                               P2L
                                        DEFA
       PSH
                ØEF9
                                        DEFE
                                                       ROSTAT
                                                                0F36 *
       FOH
                GEFD
                               FOL
       SRETEN
                0F40 *
                               STATUS
                                        ØEF6
       NO ERROR LINES
       SOURCE CHECKSUM≕C25E
                                                                         NS10584
```

Figure C-3 (Concluded)

INTERRUPT RESPONSE TIME

For both single-level and multilevel interrupts, the interrupt response time (IRT) is an important parameter. As shown in figure C-1, an interrupt can occur with the CONT input high and SC/MP running or with the CONT input low and SC/MP in the halt mode. The maximum interrupt response time for an operation when SC/MP is executing an instruction of a main program is equal to the *Maximum (worst case) Execution Time + Overhead*. The execution time for instruction DAD requires 23 machine cycles (23 x 2 T_x), where T_x is a clock cycle that is equal to 1 microsecond for

a 1-megahertz clock frequency. The overhead based on the microcodes equals $14T_{\rm x}+200$ nanoseconds. The total maximum interrupt response time equals $46T_{\rm x}+(14T_{\rm x}+200$ nanoseconds); this time does not include the "delay" instruction because of its variable nature and does not include the "hold" operation. In general, the interrupt response time depends upon the instruction that is being executed. For a more precise interrupt response time, the system configuration can put SC/MP in the HALT mode by driving the CONTinue line low and keeping the interrupts enabled. Now, when an interrupt occurs, the response time is guaranteed to be $12T_{\rm x} \leqslant T_{\rm ir} \leqslant (14T_{\rm x}+200$ nanoseconds).

APPENDIX D MATH ROUTINES

The SC/MP instruction set (table 1-2) provides the following 'math' capabilities. The routines (tables D-1 through D-8) are allocated contiguously in memory; however, any one of the routines can be used discretely by simply altering the end-of-routine 'jump (JMP) address' to agree with a particular applications program. For programming techniques and other software information, the user is referred to the 'SC/MP Assembly Language Programming Manual—order number ISP-85/994Y.'

f	PREFACE MATERIAL —
1 2 3 4	TITLE MATH SU/MP MATH ROUTINES/ 12/29/75 SC/MP MATH ROUTINES
5 6	ALL MATH ROUTINES WORK WITH THE STACK
	OPERANDS ARE "PULLED" FROM THE STACK, AND THE RESULT IS THEN "PUSHED" ONTO THE STACK.
10 11 12 13	IN ALL EXAMPLES, OP1 REFERS TO THE TOP BYTE OF THE STACK, RELATIVE TO THE ORIGINAL POINTER; OP2 IS THE NEXT BYTE, ETC.
14 15 16	STACK EXAMPLE FOR DOUBLE-ADD:
	DADD: (OP3,OP4) = (OP1,OP2) + (OP3,OP4) STACK IS FROM 0000 TO 001F IN THIS EXAMPLE:
20 21	0018 OP1 (HIGH1)
22 23 24	001D OP3 (HIGH2) < STACK POI NTER ON EXIT 001E OP4 (LOW2) 001F <bottom of="" stack=""></bottom>
25 26	
27 28 29 30	REGISTERS A AND E (AND P1 IF USED) ARE NOT SAVED. REGISTER P2 IS USED AS THE STACK POINTER. REGISTER P3 IS THE SUBROUTINE CALLING REGISTER.
31 32 33	ALL OF THESE ROUTINES MAY BE REPEATED WITHOUT RELOADING P3 AFTER THE FIRST CALL.
34	

·	TABLE D-1.	DOUBLE A	DD (DADD	D), DOUBLE NEGATE (DNEG), AND DOUBLE SUBTRACT (DSUB)
			PAGE	1DADD, DNEG, DSUB1
35	1999		-	01.000
36		3		
37		3	DADD:	DOUBLE ADD
38		3		(OP3,OP4) = (OP1,OP2) + (OP3,OP4)
39		3		
40 10	aaa as	DADD:	NOP	
41 19	001 02		COL	
42 19	002 0201		LD	1(2) ; ADD LOW ORDER BYTE
43 19	004 F203		ADD	3(2) ; (CARRY MAY BE SET)
44 19	006 CA03		ST	3(2) ; SAVE RESULT
45 10	008 C200		LD	0(2) ; ADD HIGH ORDER BYTES + CARRY
46 19	00A F202		ADD	2(2)
47 19	00C CA02		ST	2(2)
48 19	00E 0602		LD	@2(2)
49 19	010 3F		XPPC	3
٠				

```
50 1011 90ED
            JMP DADD
                                            JUMP FUR RECHLE
51
52
                    DNEG: DOUBLE NEGATE (21S COMPLEMENT)
53
                            (0P1,0P2) = -(0P1,0P2)
54
55
            DNEG: NOP
56 1013 08
57 1014 03
                                             SET CARRY IN
                    \pm 0.1
                           Ø
58 1015 0400
                    LDI
                                             NEGATE LOW BYTE & SET CARRY
59 1017 FA01
                           1(2)
                    CAD
                           1(2)
60 1019 CA01
                    ST
                           Ø
                   LDI
61 1018 0400
                                             COMPLEMENT HIGH BYTE AND
                   CAD
62 101D FA00
                           0(2)
                                                ADD CARRY IN
                   ST
                           0(2)
63 101F CA00 .
                   XPPC
64 1021 3F
                            7:
                    JMP
65 1022 90EF
                           DNEG
66
67
                  DSUB: DOUBLE SUBTRACT
68
69
                           -(0P3,0P4) \approx (0P3,0P4) - (0P1,0P2)
70
            DSUB: NOP
71 1024 08
72 1025 03
                                           SET CARRY IN (BORROW)
                    SCL
73 1026 0203
                           3(2)
                                           ⇒ ADD LOW BYTES -
                   LD
                   CAD
74 1028 FA01
                           1(2)
                                              -0P4 + (-0P2)
                   ST.
75 102A CA03
                            3(2)
                  LD
CAD
ST
LD
XPPC
76 1020 0202
                            2(2)
                                            DO HIGH BYTES
77 102E FA00
                           0(2)
78 1030 CA02
                            2(2)
79 1032 0602
                           02(2)
                                        FIX POINTER
80 1034 3F
81 1035 90ED
                    JMF
                            DSUB
82
```

```
TABLE D-2. UNSIGNED MULTIPLY —
                      PAGE YUNSIGNED MULTIPLYY
83
                     LOCAL
85
                   MPY: UNSIGNED MULTIPLY
86
87
                            (OP1,OP2) = (OP1) * (OP2)
88
                     ONE BYTE OF STACK MEMORY IS USED FOR
89
90
                     TEMPORARY STORAGE: -1(2)= BIT COUNT
91
92
                     EXECUTION TIME: ABOUT 2,5 MILLISEC.
                     MAX TIME: ABOUT 3 MILLISEC.
93
94
             MPY:
95 1037 08
                    NOP
                    LD 0(2)
                                    ; GET MULTIPLIER
96 1038 C200
```

```
XAE
LDI
97 103A 01
                                             ; SAVE IN E-REG
 98 103B C400
                              Ø
                     ST
                                          ; ZERO OP1
99 103D CA00
                              0(2)
100 103F C408
                     LDI
                              9
                              -1(2)
                                              SAVE COUNTER
101 1041 CAFF
                     ST
102 1043 40
              $LOOP: LDE

    LOAD MULTIPLIER

103 1044 D401
                      ĤΝΙ
                                             TEST LEAST BIT
                              NO
104 1046 9815
                      JZ
                                             BIT IS NOT ONE -
                      LD
                              0(2)
                                            ; ADD MULTIPLICAND (8 BITS)
105 1048 C200
106 104A F201
                      ADD
                              1(2)
                                                   TO 16-BIT RESULT
107
              NOADD:
108 1040 02
                      COL
                                              GCLEAR LINC
109 104D 1F
                      RRL
                                              ; SHIFT
110 104E CA00
                              0(2)
                      ST
111 1050 40
                      LDE
112 1051 1F
                      RRL
                                              ⇒ ROTATE
113 1052 01
                      XAE
                     DLD
114 1053 BAFF
                              -1(2)
                                              DECREMENT COUNTER
115 1055 9CEC
                      JNZ
                              $L00P
116 1057 40
                     LDE
                     ST
117 1058 CA01
                              1(2)
                     XPPC
                                             RETURN
118 105A 3F
                              3
                     JMP
119 105B 90DA
                              MEY
119 105B 90DA JMP
120 105D C200 NO: LD
                              0(2)
121 105F 90EB
                      JMP
                              NOADD
122
123
```

```
TABLE D-3. SIGNED MULTIPLY —
                     ...PAGE //SIGNED MULTIPLY/
124
125
                    SMPY: SIGNED MULTIPLY
                              (OP1,OP2) = (OP1) * (OP2)
126
127
                              WHERE OP1 AND OP2 ARE SIGNED NUMBERS
                              IN THE RANGE -128 TO 127
128
129
130 1061 08
              SMPY: NOP
                                          ) SET P3 TO CALL MPY
131 1062 0410
                             H(MPY)
                     LDI
132 1064 37
                                            WHILE SAVING ORIGINAL P3 IN
                     XPAH
                             3
133 1065 35
                     XPAH
                             1
134 1066 C437
                     LDI
                             L(MPY)
135 1068 33
                     XPAL
                             3
136 1069 31
                     XPAL
                             1
                                            ; COMPARE SIGNS
137 106A 02
                    CCL
138 106B C200
                             0(2)
                    LD
139 106D E201
                    XOR
                             1(2)
140 106F 9404
                     JP
                             $SAME
                     LDI
141 1071 C4FF
                             -1
                             $MPY
142 1073 9002
                     JMP
143 1075 C400 $SAME: LDI
                             Ø
144 1077 CAFE $MPY: ST
                             -2(2)
               LD
JP
145 1079 C200
                     LD
                             0(2)
                                            CHECK SIGN OF EACH
                             $MPY2
146 107B 9407
```

$m{\sim}$			
147 107D 0 3	SCL		
148 107E C400	L.D.I	0	
149 1080 FA00	CAD	0(2)	; NEGATE 1ST OPERAND
150 1082 CA00	ST	0(2)	
151 1084 C201 \$MPY2:	LD	1(2)	
152 1086 9407	JP	\$MPY3	
15 3 10 88 0 3	SOL		
154 1089 C400	LDI	0	
155 108B FA01	CAD	1(2)	
156 108D CA01	ST	1(2)	
157 108F 3F \$MPY3:	XPPC	3	; DO UNSIGNED MULTIPLY
158 1090 C2FE	LD	-2(2)	; CHECK SIGN FLAG
159 1092 940D	JF:	≱MP ₽4	
160 1094 03	SCL		
161 1095 C400	LDI	0	
162 1097 FA01	CAD	1(2)	; NEGATE RESULT
163 1099 CA01	ST	1(2)	
164 109B C400	LDI	<u> </u>	
165 109D FA00	CAD	0(2)	
166 109F CA00	ST	0(2)	
167 10A1 35 \$MPY4:	XPAH	1	; GET RETURN ADDR FROM P1
168 10A2 37	XPAH	3	
169 10A3 31	XPAL	1	
170 10A4 33	XPAL	3	
171 10A5 3F	XPPC	3	; RETURN
172 10A6 90B9	JMP	SMPY	
173			
			

		TABLE D-4. UNSIGNED DIVIDE
		PAGE /UNSIGNED DIVIDE/
174		. LOCAL
175	3	
176	3	DIV: UNSIGNED DIVIDE
177	3	
178	3	DIVIDE A 16-BIT UNSIGNED NUMBER BY AN 8-BIT
179	j.	UNSIGNED NUMBER. RESULT IS A 16-BIT QUOTIENT
180	;	AND AN 8-BIT REMAINDER.
181	,	
182	;	EXECUTION TIME: ABOUT 5 TO 20 MILLISEC.
18 3	j	
184	j	CALL: XPPC 3
185	;	<pre><error return=""></error></pre>
186	j	<pre><normal return=""></normal></pre>
187	j.	
188	j	STACK USAGE:
189	j	REL ENTRY USE RETURN
190	j	
191		-5 TEMP
192	;	-4 COUNT
193	;	-3 REM(H)
194	j	-2 REM(L)
195		-1 DIVISOR(H)
196		(P2)-> 0 DIVISOR DIVISOR(L) REMAINDER
<u> </u>	٠	The second secon

```
1 DIVIDEND(H) QUOTIENT(H) QUOTIENT(H)
2 DIVIDEND(L) QUOTIENT(L) QUOTIENT(L)
197
198
199
200
201 10A8 08
              DIV:
                    NOP
202 10A9 0200
                     LD
                            0(2)
                                              CHECK FOR ZERO DIVISOR
                             $D1.
203 10AB 9003
                     JNZ
                     XPPC
                                           : ERROR - RETURN
204 10AD 3F
                             3:
                     JMP
205 10AE 90F8
                            DIV
206 10B0 C409 | $D1:
                            9
                                              COUNT = 9
                     LDI
207 10B2 CAFC
                     ST
                             -4(2)
208 1084 0200
                     LD
                             Ø(2)
209 1086 01
                     TXAE
              $SET: LDE

    ) NORMALIZE THE DIVISOR

210 10B7 40
211 1088 9402
                     JP
                              +4
212 10BA 9007
                     JMP
                             $SETUP
213 1080 02
                     COL
                                            SHIFT LEFT 1 BIT
214 108D 70
                     ADE
215 10BE 01
                     XAE
216 108F AAFC
                            -4(2)
                                            ; COUNT = COUNT + 1
                    ILD
217 1001 90F4
                     JMF
                             $SET
218
219 1003 40
              $SETUP: LDE
220 1004 CAFF
                     ST
                             -1(2)

    ; SAVE DIVISOR

221 1006 0201
                             1(2)
                     LD
                                          ; COPY DIVIDEND TO
222 1008 CAFD
                     ST
                             -3(2)
                    LD
                                            J INITIAL REMAINDER
223 100A 0202
                             2(2)
                    ST
LDI
224 1000 CAFE
                             -2(2)
225 10CE C400
                             Ø
                                          ; INITIALIZE LOW BYTE OF DIVIS
                    ST
ST
                             0(2)
226 10D0 CA00
                                            ; AND RESULT TO ZERO
227 10D2 CA01
                            1(2)
228 10D4 CA02
                     ST
                             2(2)
229
230 10D6 03
              $LOOP: SCL
                           -2(2)
               LD
ceb
                                           ; SUBTRACT:
231 10D7 C2FE
                             \theta(2)
                                            ; REMAINDER-DIVISOR
232 10D9 FA00
                    CAD
233 10DB 01
                    XAE
                             -3(2)
234 10DC C2FD
                    LD
235 10DE FAFF
                    CAD
                             -1(2)
                    ST
                                            SAVE TEMPORARILY
236 10E0 CAFB
                             ~5(2)
237 10E2 06
                    CSA
                                            ; CHECK CARRY:
238 10E3 E480
                    XRI
                             080
                                            ; JUMP IF RESULT >= 0
                             $DVGR
239 10E5 941E
                     JF
                    DLD
JZ
                                            240 10E7 BAFC
                             -4(2)
                                            ; CHECK IF DONE
                             $DONE
241 10E9 9829
                     COL
                                                 NO
242 10EB 02
                                           ; DOUBLE LEFT SHIFT:
243 10EC 0202
                    LD
                             2(2)
                    ADD
                                            ; ADD QUOTIENT TO ITSELF
                             2(2)
244 10EE F202
                    ST
245 10F0 CA02
                             2(2)
                    LD
246 10F2 0201
                             1(2)
                    ADD
247 10F4 F201
                             1(2)
                    ST
248 10F6 CA01
                             1(2)
249 10F8 02
                     COL
                                           ; SHIFT DIVISOR RIGHT 1 BIT
250 10F9 C2FF
                    LD
                             -1(2)
251 10FB 1F
                     RRL
```

~				
252 10FC CAFF		ST	-1(2)	
		ፈወ	8(2)	
254 1100 1F		RRL.		
255 1101 CA00		ST	0(2)	
256 1103 90D1		JMP	≇L00P	
257	β			
258 1105 C2FB	≢DVGR:	LD	-5(2)	SAVE NEW REMAINDER
259 1107 CAFD		ST	-3(2)	FOLLOWING SUBTRACTION
260 1109 01		XAE		
261 110A CAFE		ST	-2(2)	
262 110C AA02		ILD	2(2)	; INCREMENT QUOTIENT
263 110E 9006		JNZ	\$L00₽	
264 1110 AA01		ILD	1(2)	
265 1112 9002		JMP	\$L00P	
266	j.			
267 1114 C2FE	≢DONE :	LD	-2(2)	; DONE: COPY FINAL REMAINDER
268 1116 CA00		ST	0(2)	
 269 1118 0702		LD	0 2(3)	; INCREMENT P3 FOR NORMAL RETU
270 111A 3F		XPPC	3	
271 111B 908B		JMP	DIV	
272				
273				

		TABLE	D-5. BCD MULTI	PLY	· · · · · · · · · · · · · · · · · · ·
		PAGE 180	D MULTIPLY		
274		. LOCAL			
275	j				
276	j	BCDMPY: MUL	TIPLY TWO 6-	-DIGIT BOD NUM	IBERS
277	j	RES	ULT IS 12 DI	IGITS	
278	j.				
279	j	EXECUTION T	IME: 6 TO 27	⁷ MILLISEC. ((17 TYPICAL)
280	<i>j.</i>				
281	j	STACK USAGE	:		
282	;	REL	ENTRY	USE	RETURN
283	j				
284	j	-10		TEMP	
285	;	-9		PRODUCT(1)	
286	3	-8		PRODUCT(2)	
287	3	-7		PRODUCT(3)	
288	j	-6		PRODUCT(4)	
289	<i>j</i>	-5		PRODUCT(5)	
290	j	-4		PRODUCT(6)	
291	j	-3		COUNT	
292	;	-2		M1(1)	
293	;	-1		M1(2)	
294	j	(P2)-> 0	M1(SIGN)	M1(3)	
295	j	1.	M1(1)	M1(4)	PRODUCT(SIGN)
296	j.	2	M1(2)	M1(5)	PRODUCT(1)
297	3	3	M1(3)	M1(6)	PRODUCT(2)
298	j	4	M2(SIGN)	PROD(SIGN)	PRODUCT(3)
299	;	5	M2(1)	M2(1)	PRODUCT(4)
300	j	6	M2(2)	M2(2)	PRODUCT(5)
301		7	M2(3)	M2(3)	PRODUCT(6)

```
302
303
                                               # MULTIPLICAND (6 WORDS)
         FFFE
                               -2
304
               111
                               5
                                               HULTIPLIER (3 WORDS)
305
         0005
               112
                       =
                                              PRODUCT (6 WORDS)
306
         FFF7
               FF
                               -9
307
         FFFD
               COUNT
                               -3
                                              DIGIT COUNT (1 WORD)
                                              SHIFT COUNT OR MULTIPLIER DI
308
         EEEE
               TEHE
                       =
                               -1.0
309
         FFF6
               113
                               -10
                                              MULTIPLIER DIGIT
310
311
               BCDMPY: NOP
312 1110 08
313 111E C200
                       LD
                               0(2)
                                               CALCULATE SIGN OF PRODUCT
                       ÓOL.
314 1120 02
315 1121 F204
                       ADD
                               4(2)
316 1123 D401
                       ANI
                               1
317 1125 CA04
                      ST.
                               4(2)
                                                    AND SAVE IT FOR LATER
318 1127 0400
                      LDI
                               Ø
                                              INITIALIZE PRODUCT
319 1129 CAF7
                               PR(2)
                       ST
                                                    AND MULTIPLICAND EXTENSIO
                      ST
                               PR+1(2)
320 1128 CAF8
                               PR+2(2)
321 112D CAF9
                      ST
322 112F CAFA
                      ST
                               PR+3(2)
                      ST
                               PR+4(2)
323 1131 CAFB
324 1133 CAFC
                      ST
                               PR+5(2)
325 1135 CAFE
                      ST
                               141 (2)
326 1137 CAFF
                       ST
                               M1+1(2)
327 1139 CA00
                      5T
                               M1+2(2)
328 1138 0406
                      LDI
                               6
                                               # DIGIT COUNT = 6
329 113D CAFD
                      ST
                               COUNT(2)
330 113F C207
              $L00P: LD
                               M2+2(2)
                                               J LOAD MULTIPLIER
331 1141 D40F
                       IMA
                               ΘF
                                                    USE LOWEST BCD DIGIT
                               NEXTD
332 1143 9828
                       JZ
                                              IF ZERO THEN GO TO NEXT DIGI
333 1145 CAF6
                       ST
                               M3(2)
334 1147 02
               ≇L1:
                     CCL
                                               ADD MULTIPLICAND TO PRODUCT
335 1148 0203
                               M1+5(2)
                      LD
336 114A EAFC
                       DAD
                               PR+5(2)
337 1140 CAFC
                       ST
                               PR+5(2)
338 114E 0202
                      LD
                               M1+4(2)
339 1150 EAFB
                      DAD
                               PR+4(2)
340 1152 CAFB
                      ST.
                               PR+4(2)
341 1154 0201
                      LD
                               M1+3(2)
342 1156 EAFA
                      DAD
                               PR+3(2)
343 1158 CAFA
                      ST
                               PR+3(2)
344 115A C200
                      LD
                               M1+2(2)
345 1150 EAF9
                      DAD
                               PR+2(2)
346 115E CAF9
                      ST
                               PR+2(2)
347 1160 C2FF
                      LD
                               M1+1(2)
348 1162 EAF8
                     DAD
                               PR+1(2)
349 1164 CAF8
                      ST
                               PR+1(2)
350 1166 C2FE
                      LD
                               M1(2)
351 1168 EAF?
                      DAD
                               PR(2)
352 116A CAF7
                       ST
                               PR(2)
353 1160 BAF6
                               M3(2)
                       DLD
                                               DECREMENT MULTIPLIER
354 116E 9CD7
                       JNZ
                                                    AND ADD AGAIN IF NOT ZERO
                               $L1
                                               .
355 1170 BAFD
              NEXTD: DLD
                               COUNT(2)
                                               DECREMENT DIGIT COUNT
356 1172 9849
                                                    QUIT IF DONE
                       JΖ
                               $0UT
```

```
SHIFT MULTIPLICAND LEFT
357 1174 0404
                     LDI
                              TEMP(2)
358 1176 CAF6
                      ST
                                                4 BITS (1 DIGIT)
              ≢L2:
                      COL
359 1178 02
360 1179 0203
                      L.D
                              M1+5(2)
361 117B F203
                      ADD
                              M1+5(2)
362 117D CA03
                      ST
                              M1+5(2)
363 117F 0202
                      LD
                              M1+4(2)
364 1181 F202
                      ADD
                              M1+4(2)
                     ST
365 1183 CA02
                              M1+4(2)
366 1185 0201
                     LD
                              M1+3(2)
                    ADD
367 1187 F201
                              M1+3(2)
368 1189 CA01
                     ST
                              M1+3(2)
369 118B 0200
                     LD
                              M1+2(2)
370 118D F200
                    ADD
                              M1+2(2)
371 118F CA00
                     ST
                              M1+2(2)
372 1191 C2FF
                              M1+1(2)
                    LD
373 1193 F2FF
                    ADD
                              M1+1(2)
374 1195 CAFF
                     ST
                              M1+1(2)
375 1197 C2FE
                     LD
                              M1(2)
                              M1(2)
376 1199 F2FE
                     ADD
377 119B CAFE
                     ST
                              M1(2)
                    DLD
                              TEMP(2)
378 119D BAF6
379 119F 9CD7
                     JNZ
                              $L2
                     LD
380 11A1 C2FD
                              COUNT(2)
                                             GET NEXT MULTIPLIER DIGIT
381 11A3 D401
                     ANI
                                              J IF COUNT IS EVEN THEN USE NE
                              1
382 11A5 980A
                      JZ
                             ≉L3
383 11A7 C207
                     LD
                              M2+2(2)
                                          OTHERWISE SHIFT LOW WORD RIG
                     SR
SR
384 11A9 10
385 11AA 10
                    SR
SR
ST
386 11AB 10
387 11AC 1C
388 11AD CA07
                              M2+2(2)
                     JMP
389 11AF 908E
                              $1,00P
390 11B1 0206 $L3: LD
                              M2+1(2)
                      ST
391 11B3 CA07
                              M2+2(2)
                     LD
                              M2(2)
392 1185 C205
393 1187 CA06
                     ST
                              M2+1(2)
394 1189 0207
                     LD
                              M2+2(2)
395 1188 9082
                     JMP
                              $L00P
                                             ; COPY SIGN TO OUTPUT
396 11BD C204
              $OUT:
                    LD
                              4(2)
397 11BF CA01
                      ST
                              1(2)
398 1101 C2F7
                      LD
                              PR(2)
399 1103 CA02
                     ST
                              2(2)
400 1105 C2F8
                     LD
                              PR+1(2)
401 1107 CA03
                     ST
                              3(2)
402 11C9 C2F9
                     LD
                              PR+2(2)
403 11CB CA04
                     ST
                              4(2)
                     LD
                              PR+3(2)
404 11CD C2FA
                              5(2)
405 11CF CA05
                     ST
                     LD
                              PR+4(2)
406 11D1 C2FB
407 11D3 CA06
                      ST
                              6(2)
408 11D5 C2FC
                      LD
                              PR+5(2)
409 11D7 CA07
                      ST
                              7(2)
                     XPPC
410 11D9 3F
                              3
                                              RETURN
                              H(BCDMPY)
                                             JUMP TO BCDMPY
411 11DA C411
                      LDI
```

```
412 11DC 35 XPAH 1
413 11DD C41D LDI L(BCDMPY)
414 11DF 31 XPAL 1
415 11E0 91FF JMP Ø(1)
416
417
```

```
TABLE D-6. BCD ADD/SUBTRACT
                               1800 ADD/SUBTRACT1
                        PRIGE
418
                        LOCAL
419
420
                       BCD ADDITION AND SUBTRACTION
                       EACH OPERAND IS 6 DIGIT MAGNITUDE PLUS SIGN
421
422
423
                       EXECUTION TIME: 630 TO 1110 MICROSEC.
424
425
                       BCDADD: OP2 = OP2 + OP1
                       BCDSUB: OP2 = OP2 - OP1
426
427
428
                                OP1 IS NOT ALTERED
429
430
                       SIGN BYTE: 0=POSITIVE, 1=NEGATIVE
431
432
                                XPPC 3
                       CALL:
433
                                COVERFLOW RETURNS
434
                                CNORMAL RETURNS
435
436
                       STACK USAGE:
437
438
                                REL ENTRY
                                                 RETURN
439
440
                                  0 OP1(SIGN)
                                                 OP1(SIGN)
441
                                  1 OP1(1)
                                                 OP1(1)
442
                                  2 OP1(2)
                                                 OP1(2)
443
                                  3
                                    OP1(3)
                                                 OP1(3)
444
                                  4 OP2(SIGN)
                                                 RESULT(SIGN)
445
                                  5
                                    OP2(1)
                                                 RESULT(1)
446
                                  \epsilon
                                    OP2(2)
                                                 RESULT(2)
447
                                  7 OP2(3)
                                                 RESULT(3)
448
449
         0001
               $0P1
                                                FIRST OPERAND
                                1
450
         0005
               $0P2
                                5
                                                ; SECOND OPERAND
451
452
               BCDSUB:
453 11E2 C201
                       LD
                                $0P1(2)
                                                GCHECK FOR ZERO OP1.
454 11E4 9008
                       JNZ
                                ≴BSUB
                                                ; NOT ZERO.
455 11E6 0202
                       LD
                                $0P1+1(2)
                                                GCHECK FOR ZERO OP1.
456 11E8 9C04
                       JNZ
                                $BSUB
                                                NOT ZERO.
457 11EA 0203
                       LD
                                $0P1+2(2)
                                                GOHECK FOR ZERO OP1.
458 11EC 9827
                       JZ
                                $OUT
                                                GOP1 IS ZERO RETURN.
459 11EE C200
               ≴BSUB:
                       LD
                                $0P1-1(2)
                                               ; CHANGE SIGN OF SUBTRAHEND
460 11F0 E401
                       XRI
                                01
                                                     THEN DO ADDITION
461 11F2 01
                       XAE
```

```
462 11F3 9003
                        JMP.
                                 $CHK
                                                : COMPARE SIGNS
463 11F5 C200
               BCDADD: LD
                                 $0P1-1(2)
464 11F7 01
                        XAE
465 11F8 C204
               ≇CHK:
                                 $0P2-1(2)
                        LD
466 11FA 60
                        XRE
                                 $DIFF
                                                  ; DIFFERENT SIGNS - JUMP
467 11FB 9021
                        JNZ
                        COL
                                                  ; SAME SIGNS -
468 11FD 02
                SAME:
469 11FE 0203
                        LD
                                 $0P1+2(2)
                                                       ADD MAGNITUDES
                        DAD
                                 $0P2+2(2)
470 1200 EA07
                                 $0P2+2(2)
471 1202 CA07
                        ST
472 1204 C202
                        LD
                                 $0P1+1(2)
473 1206 EA06
                        DAD
                                 $0P2+1(2)
474 1208 CA06
                        ST
                                 $0P2+1(2)
475 120A C201
                        LD
                                 $0P1(2)
476 120C EA05
                        DAD
                                 $0P2(2)
                                 $0P2(2)
477 120E CA05
                        ST
478 1210 06
                                                  J IS THERE AN END CARRY?
                        CSA
479 1211 D480
                        ANI
                                 080
                                                  ; YES - OVERFLOW
480 1213 9002
                        JNZ
                                 ≉0∀FL
481 1215 C702
                ≢OUT:
                        LD
                                 02(3)
                                                 INCREMENT P3 BY 2 FOR NORMAL
482 1217 3F
                #OVEL:
                        XPPC
                                 3
                                                  FETURN
483
484
485
                OP2Z:
486 1218 0401
                        LDI
                                                  FSET OP2 SIGN NEG.
487 121A CA04
                        ST
                                 *0P2-1(2)
488 1210 90DF
                        JMP
                                                  ; NOW ADD OP1 TO OP2.
                                 SAME
489
490
491
492
493
494
495
               ♯DIFF:
                                                  ; IF OP1 IS NEGATIVE THEN SET
                                                       TO GET OP2-OP1 = -(OP1-OP)
496 121E 40
                        LDE
                                                    JUMP IF OP1(SIGN) IS ZERO
497 121F 9802
                        JΖ
                                 $2
498 1221 0401
                        LDI
                                 $0P2-1(2)
                                                  ; SIGN FLAG IS IN SIGN.
499 1223 CA04
               $2:
                        ST
500 1225 C205
                        LD
                                 $0P2(2)
                                                  CHECK IF OP2 IS ZERO.
501 1227 9008
                        JINZ
                                                  DINO.
502 1229 0206
                        LD
                                 40P2+1(2)
                        JMZ
503 1228 9004
                                 OK:
                                 $0P2+2(2)
504 122D 0207
                        LD
                                                  JOP2 IS ZERO.
505 122F 98E7
                        JZ
                                 OP2Z
                                                   SET P2 TO POINT TO OP2
506 1231 0605
                        LD
                                 @$OP2(2)
               OK:
                                                    COMPLEMENT OP2
507 1233 0412
                        LDI
                                 HICBODOMPO:
508 1235 35
                        XPAH
509 1236 C47D
                        LUI
                                 LICECDOMP)
510 1238 31
                        XPAL.
                                 4
511 1239 02
                        CCL
512 123A 3D
                        MERC
                                 @-$OP2(2)
                                                    RESTORE P2
513 123B 06FB
                        \Box D
                                                    ADD MAGNITUDES
                        COL
514 123D 02
515 123E 0203
                        LD
                                 $0P1+2(2)
516 1240 EA07
                        DAD
                                 $0P2+2(2)
```

```
517 1242 CA07
                      ST
                               $0P2+2(2)
518 1244 0202
                      LD
                                #0P1+3(2)
519 1246 EA06
                      DAD
                                $0P2+1(2)
520 1248 CA06
                      ST
                                #0P2+1(2)
521 124A 0201
                       LD
                                $0P1(2)
522 1240 EA05
                                $0P2(2)
                       DAD
523 124E CA05
                       ST
                                $0P2(2)
524 1250 06
                                                J IS THERE AN END CARRY?
                       CSA
525 1251 D480
                       ANI
                                080
526 1253 9010
                       JNZ
                                #PLUS
                                                  YES - SIGN IS POSITIVE
                                                  SET P2 TO RESULT
527 1255 0605
                       LD
                                @$OP2(2)
528 1257 0412
                       LDI
                               HCBCDCMP)
                                               1015 COMPLEMENT THE RESULT.
529 1259 35
                       MERH
                               -1
530 125A 047D
                       LDI
                               LICEODOMPO:
531 1250 31
                       XPAL.
                                4
532 125D 02
                       CCL
533 125E 3D
                       MERC
                                1
534 125F 06FB
                       LD
                                0-$0P2(2)
                                              ; RESTORE P2
535 1261 0401
                                                SIGN IS NEGATIVE
                       LDI
                                1
536 1263 9002
                       JMF
                               #RTN2
537 1265 0400
              ≇PLUS:
                       LDI
                                ii 
                                                SIGN IS POSITIVE
538 1267 E204
                                $0P2-1(2)
              $RTN2:
                       \times 0R
                                               OHANGE SIGN IF FLAG SET
539 1269 CA04
                       ST
                                $0P2-1(2)

    SAVE CORRECTED SIGN OF RESUL

540 126B C205
                       LD
                                $0P2(2)

    CHECK FOR ZERO.

541 126D 90A6
                       JNZ
                                ≢OUT
                                                RETURN
542 126F C206
                       LD
                                $0P2+1(2)
543 1271 9CA2
                       JNZ
                                $00T
544 1273 C207
                                $0P2+2(2)
                       LD
545 1275 909E
                       JNZ
                                $00T
546 1277 0400
                       LDI
                               Ø
547 1279 CA04
                               $0P2-1(2)
                       ST
                                          ; ZERO SIGN.
548 127B 9098
                       JMF
                               ≉OUT
549
550
              ,
551
```

```
TABLE D-7. BCD COMPLEMENT—
                        . PAGE
                                4BCD COMPLEMENT4
552
                       LOCAL
553
554
                        BODOMP: COMPLEMENT A 6-DIGIT BOD NUMBER.
555
556
557
558
559
                       CALL:
                                XPPC 1
560
                       P2 POINTS TO FIRST BYTE OF NUMBER TO BE COMPLEMENTED.
561
562
                        USED BY BCD ADD/SUBTRACT ONLY
563
564 127D 08
               BCDCMP: NOP
565 127E 049A
                        LDI
                                09A
566 1280 01
                        XAE
```

```
567 1281 40
                         LDE
568 1282 FA02
                         CAD
                                  2(2)
569 1284 CA02
                         ST
                                  2(2)
570 1286 02
                         CCL
571 1287 40
                         LDE
572 1288 FA01
                         CAD
                                  1(2)
573 128A CA01
                         ST
                                  1(2)
                         CCL
574 1280 02
575 128D 40
                         LDE
576 128E FA00
                         CAD
                                  0(2)
577 1290 CA00
                         ST
                                  0(2)
578 1292 03
                         SCL
579 1293 C400
                         LDI
                                  Ø
580 1295 EA02
                                  2(2)
                         DAD
581 1297 CA02
                         ST.
                                  2(2)
582 1299 C400
                         LDI
                                  Ø
583 129B EA01
                         DAD
                                  1(2)
584 129D CA01
                         ST
                                  1(2)
585 129F C400
586 12A1 EA00
                         LDI
                                  Ø
                         DAD
                                  (2)
587 12A3 CA00
                         ST
                                  (2)
588 12A5 3D
                         XPPC
                                  1
589
590
```

		TABLE D-8. BCD DIVIDE
		PAGE (BOD DIVIDE)
591		LOCAL
592	;	
5 93	;	BODDIV: BOD DIVIDE
594	3	
595	3	OPERANDS ARE 6 DIGITS PLUS SIGN
596	3	
597	j	EXECUTION TIME: 6 TO 127 MILLISEC. (35 TYPICAL)
598	<i>j</i>	
599	j.	CALL: XPPC 3
600	;	<pre><error return=""></error></pre>
601	j	<pre><normal return=""></normal></pre>
602	j	
603	j	STACK USAGE:
604	j	REL ENTRY USE RETURN
605	j	NOT THE WARR THE
606	j	-8 TEMP
607	j	-7 COUNT
608	j.	-6 P3(H) SAVE
609	;	-5 P3(L) SAVE
610		-4 QUOTIENT(SIGN)
611	j.	-3 QUOTIENT(1)
612	3	-2 QUOTIENT(2)
61 3	3	-1 QUOTIENT(3)
614	;	(P2)-> 0 DIVISOR(S) DIVISOR(SIGN)
615	;	1 DIVISOR(1) DIVISOR(1)
616	;	2 DIVISOR(2) DIVISOR(2)
)	4	

```
617
                                      DIVISOR(3) DIVISOR(3)
                                      DIVIDEND(S) DIVIDEND(S) QUOTIENT(S)
                     (P2, EXIT) ->
618
                                   4
                                      DIVIDEND(1) DIVIDEND(1) QUOTIENT(1)
                                   5
619
                                   6
                                      DIVIDEND(2) DIVIDEND(2) QUOTIENT(2)
620
                                      DIVIDEND(3) DIVIDEND(3) QUOTIENT(3)
621
622
623
         FFF8
                $TEMP
                                 -8
         FFF9
                                 -7
624
                ≢CNT
                $₽3
625
         FFFA
                                 -6
                                                  ; QUOTIENT
626
         FFFD
                $Q.
                                 -3
                                                  DIVISOR
627
         0001
                $D1
                                 1
628
         0005
                $D2
                                                  ; DIVIDEND (QUOTIENT UPON RETU
629
                BCDDIV: NOP
630 12A6 08
                                                  ; CHECK FOR ZERO DIVISOR
631 12A7 C201
                        LD
                                 ≇D1(2)
632 12A9 9C0B
                        JNZ
                                 $C1
633 12AB 0202
                                 $D1+1(2)
                        LD
634 12AD 9007
                        JNZ
                                 $C1
                                 $D1+2(2)
635 12AF 0203
                        LD
636 12B1 9003
                        JNZ
                                 $01
                                                  ; ERROR - RETURN
637 12B3 3F
                        MPPC
638 12B4 90F0
                        JMF.
                                 BODDIV
639 1286 37
                $01:
                        XPAH
                                                  ; SAVE P3
                                 $P3(2)
640 1287 CAFA
                        ST
641 12B9 33
                        XPAL
                                 $P3+1(2)
642 12BA CAFB
                        \subseteq T
643 12BC C401
                        LDI
                                 1
                                                     COUNT = 1
                        ST
644 12BE CAF9
                                 $CNT(2)
645 1200 0200
                        L.D
                                 0(2)
                                                  GET SIGN.
                                                  CHECK IF THE SAME
646 1202 E204
                        XOR
                                 4(2)
                        ST
                                                  FSAVE SIGN.
647 1204 CAFC
                                 -4(2)
                                                  ; NORMALIZE THE DIVISOR
                                 $D1(2)
648 1206 0201
                $SET:
                        LD
                                                  ; CHECK FOR ZERO HIGH DIGIT
                                 BEB
649 1208 D4F0
                        ANI
                                                        NOT ZERO - NORMALIZATION
                                 ≢SETUP
650 120A 901F
                        JNZ
651 1200 0404
                        LDI
                                 4
652 12CE CAF8
                        ST
                                 $TEMP(2)
                                                     SHIFT DIVISOR LEFT 1 BIT
                $5L1:
                        COL
653 12D0 02
                                                        (DONE 4 TIMES)
                                 $D1+2(2)
654 12D1 0203
                        LD
                                 $D1+2(2)
655 12D3 F203
                        ADD:
656 12D5 CA03
                        5T
                                 #D1+2(2)
657 12D7 0202
                        LD
                                 *D1+i(2)
                        ADD
                                 #D1+1(2)
658 12D9 F202
659 12DB CA02
                        ST
                                 *D1+1(2)
                        LD
                                 $D1(2)
660 12DD 0201
                        ADD
661 12DF F201
                                 *D1(2)
662 12E1 CA01
                        ST
                                 $D1(2)
663 12E3 BAF8
                        DLD
                                 *TEMP(2)
664 12E5 9CE9
                        JNZ
                                 #5L1
                                                  \Rightarrow COUNT = COUNT + 1
665 12E7 AAF9
                        11.0
                                 $CNT(2)
666 12E9 90DB
                        JMP
                                 #SET
                ≇SETUP
                        LOI
                                 Ö
                                                  ; OUOTIENT = 0
667 12EB 0400
                        ST
                                 $Q(2)
668 12ED CAFD
669 12EF CAFE
                        ST
                                 李良+主(2)
                        ST.
670 12F1 CAFF
                                 40+2(2)
                        5.1
                                 0(2)
                                                  JEERO SIGNS.
671 12F3 CA00
```

```
672 12F5 CA04
                       ST
                               4(2)
673 12F7 9002
                                                  START WITH SUBTRACTION
                       JHF
                               $SUB
674
675
                       INCREMENT QUOTIENT - ILD MAY BE USED SINCE THERE
676
                       WILL NEVER BE A CARRY FROM 1 DIGIT TO THE NEXT
677 12E9 8AFE
               ≢INCQ:
                       ILD
                               $0+2(2)
                                                  INCREMENT QUOTIENT (BCD)
                               HCBCDSUB)
678 12FB 0411
               ≇SUB:
                       LDI
                                                CALL BODSUB
679 12FD 37
                       XPAH
                                                     TO DO SUBTRACTION
680 12FE C4E1
                       LDI
                               L(BCDSUB)-1
                                                     (DIVIDEND-DIVISOR)
681 1300 33
                       XPAL
682 1301 3F
                       MERC
683 1302 9000
                       JMP
                               ONN
                                               J IS RESULT POSITIVE?
684 1304 0204
              ONN:
                       LD
                               $D2-1(2)
685 1306 98F1
                       JZ
                               $INCQ
                                               ,
                                                   YES - INCREMENT QUOTIENT
                                              j
                                                     NO - ADD DIVISOR BACK TO
686 1308 C411
                       LDI
                               H(BCDADD)
687 130A 37
                       XPAH.
688 130B C4F4
                       LDI
                               LKBCDADDJ-1
689 130D 33
                       MPAL
690 130E 3F
                       MPPC
691 130F 9000
                       JMF
                               ON
                                                 COUNT = COUNT - 1
692 1311 BAF9
              ON.
                       DLD
                                #CNT(2)
693 1313 982D
                       JZ
                               *DONE
                                                  IF COUNT=0 THEN DIVISION IS
694 1315 0404
                       LDI
695 1317 CAF8
                       ΞT
                               *TEMP(2)
696 1319 C201
                                              DIVIDE DIVISOR BY 10
              $SL2:
                       i...D
                               $D1(2)
                                                     (SHIFT RIGHT 4 BITS)
697 1318 02
                       CCL
698 1310 1F
                       F.F.L.
699 131D CA01
                       ST
                               *D1(2)
700 131F 0202
                       LD
                               $D1+1(2)
701 1321 1F
                       FFL
702 1322 CA02
                       ST
                               $D1+1(2)
703 1324 0203
                       LD
                               $D1+2(2)
704 1326 1F
                       ERL
705 1327 CA03
                       ST
                               4D1+2(2)
706 1329 02
                                                 MULTIPLY QUOTIENT BY 10
                       COL
707 132A C2FF
                       LD
                               $0+2(2)
                                                (SHIFT LEFT 4 BITS)
708 1320 F2FF
                       ADD
                               $Q+2(2)
709 132E CAFF
                       ST
                               | 季息+202)
710 1330 C2FE
                       LD
                               $0+1(2)
711 1332 F2FE
                       ADD.
                               *0+1(2)
712 1334 CAFE
                      ST
                               $Q+1(2)
713 1336 C2FD
                      LD
                               $0(2)
714 1338 F2FD
                      ADD:
                               $0(2)
                      ST
715 133A CAFD
                               $0(2)
716 1330 BAF8
                      DLD
                               #TEMP(2)
717 133E 9CD9
                       JNZ
                               $51.2
718 1340 9089
                       JMP
                               $5UB
719
720 1342 C2FC
              #DONE: LD
                               $0-1(2)
                                              COPY QUOTIENT TO
                               $D2-1(2)
721 1344 CA04
                       ST
                                               RETURN LOCATIONS
722 1346 C2FD
                       LD
                               $Q(2)
723 1348 CA05
                      ST.
                               $D2(2)
                      LD
724 134A C2FE
                               $Q+1(2)
725 1340 CA06
                      ST
                               $D2+1(2)
726 134E C2FF
                      LD
                               $Q+2(2)
```

```
727 1350 CA07
                       ST
                                $D2+2(2)
728 1352 C2FA
                                               👉 RESTORE P3 TO ORIGINAL VALUE
                       LD
                                $P3(2)
729 1354 37
                       XPAH
730 1355 C2FB
                                $P3+1(2)
                       L.D
731 1357 33
                       XPAL
732 1358 0702
                       LD
                                02(3)
                                                INCREMENT P3 BY 2 FOR NORMAL
733 135A 0604
                                04(2)
                                                > INCREMENT P2 TO POINT TO QUO
                       LD
734 1350 3F
               ≢OUT:
                       XPP0
                                                FETURN
                                3
735 135D C412
                       LDI
                                H(BCDDIV)
736 135F 35
                       XPAH
                                1
737 1360 C4A6
                       LDI
                               L(BCDDIV)
738 1362 31
                       XPAL.
                                1.
739 1363 91FF
                       JMF
                                0(1)
                                                3 GO TO BODDIV
740
741 1365 C2FA
                                $P3(2)
                                               👉 OVERFLOW IN BCDADD OR BCDSUB
               $ERR:
                       LD
742 1367 37
                       XPAH
                                                     RESTORE P3 AND RETURN
                                $P3+1(2)
743 1368 C2FB
                       LD
744 136A 33
                       MPAL
                                3
745 136B 90EF
                       JMF
                                ≢OUT
746
747
748
749
         0000
                        END
```

1		14	IEMUK I ASS	IGNMENTS —		
	BCDADD	11F5	BODOMP	127D	BCDDIV	1286
	BODMEY	1110	BCDSUB	11E2	COUNT	FFFD
	DADD	1000	DIV	10A8	DNEG	1013
	DSUB	1024	M1	FFFE	M2	0005
	MΒ	FFF6	MEY	1037	NEXTD	1170
	NO	1050	NOADD	1040	OK	1231
	ON	1311	ONN	1304	0P2Z	1218
	PR	FFF7	SAME	11FD	SMPY	1061
	TEMP	FFF6	\$ 2	1223	≇BSUB	11EE
	\$ 01	1286	≇ CHK	11F8	≉CNT	FFF9
	≇ D1	1080	\$ D1	0001	\$ D2	9995
	≇DIFF	121E	 \$D0NE	1114	\$DONE	1342
	≉DVGR	1105	#ERR	1365 *	\$INCQ	12F9
	\$L1.	1147	\$ L2	1178	\$ L3	1181
	\$L00P	1043	\$L00P	1006	\$L00P	113F
	#MPY	1077	\$MPY2	1084	\$ M₽Y3	108F
	≇MPY4	1.0A1	# 0P1	0001	\$0P2	0005
	\$ 0UT	11BD	\$0UT	1215	≉OUT	1350
	\$0VFL	1217	\$P3	FFFA	\$PLUS	1265
	\$ Q	FFFD	≉RTN2	1267	\$SAME	1075
	\$SET	1087	 \$SET	1206	≴ SETU	1003
	\$ SETU	12EB	\$SL1	1200	 \$5L2	1319
	\$SUB	12FB	\$TEMP	FFF8		-

APPENDIX E IMPLEMENTING PROGRAM DELAYS FOR SC/MP

In some applications, programming delays may be required to properly interface SC/MP with other components of the system. Delays of a few microcycles can be implemented by executing one or more NOP commands—each NOP instruction provides a minimum delay of 5-microcycles (undefined 1-byte opcodes) and a maximum delay of 10-microcycles (undefined 2-byte opcodes). The following table shows how the decimal 'displacement' value and the decimal value of 'accumulator' can be used to achieve any delay within the range of 13-to-131,593 microcycles (1 microcycle = 2 T_X , where T_X = 1/Fosc). If the required delay falls between two values in the table, adequate resolution can be obtained by interpolation.

Delay μcycles	Decimal Disp.	Decimal ACC									
13	0	00	1555	3	00	5153	10	00	12863	25	00
53	0	20	1595	3	20	5193	10	20	12903		20
93	0	40	1635	3	40	5233	10	40	12943	25	40
133	0	60	1675	3	60	5273	10	60	12983	25	60
173	0	80	1715	3	80	5313	10	80	13023	25	80
213	0	100	1755	3	100	5353	10	100	13063		100
253	0	120	1795	3	120	5393	10	120	13103		120
293	0	140	1835	3	140	5433	10	140	13143		140
333 373	0 0	160 180	1875 1915	3	160	5473	10 10	160 180	13183		160
3/3		100	1915	3	180	5513	10	160	13223	25	180
413	0	200	1955	3	200	5553	10	200	13263	25	200
453 493	0 0	220 240	1995	3 3	220	5593	10	220	13303		220
523	0	255 255	2035	3	240	5633	10 10	240 255	13343	25 25	240
323	U	255	2065	3	255	5663	10	255	13373	25	255
527	1	00	2069	4	00	7723	15	00	15433	30	00
567	1	20	2109	4	20	7763	15	20	15473	30	20
607	1	40	2149	4	40	7803	15	40	15513	30	40
647	1	60	2189	4	60	7843	15	60	15553	30	60
687	1	80	2229	4	80	7883	15	80	15593	30	80
727	1	100	2269	4	100	7923	15	100	15633	30	100
767	1	120	2309	4	120	7963	15	120	15673	30	120
807	1	140	2349	4	140	8003	15	140	15713	30	140
847	1	160	2389	4	160	8043	15	160	15753	30	160
887	1	180	2429	4	180	8083	15	180	15793	30	180
927	1	200	2469	4	200	8123	15	200	15833	30	200
967	1	220	2509	4	220	8163	15	220	15873	30	220
1007	1	240	2549	4	240	8203	15	240	15913	30	240
1037	1	255	2579	4	255	8233	15	255	15943	30	255
1041	2	00	2583	5	00	10293	20	00	18003	35	00
1081	2	20	2623	5	20	10333	20	20	18043	35	20
1121	2	40	2663	5	40	10373	20	40	18083	35	40
1161	2	60	2703	5 5	60	10413	20	60	18123	35	60
1201	2	80	2743	5	80	10453	20	80	18163	35	80
1241	2	100	2783	5	100	10493	20	100	18203	35	100
1281	2	120	2823	5 5		10533	20	120	18243	35	120
1321	2	140	2863	5	140	10573	20	140	18283	35	140
1361	2	160	2903	5 5	160	10613	20	160	18323	35	160
1401	2	180	2943	5	180	10653	20	180	18363	35	180
1441	2	200	2983	5	200	10693	20	200	18403	35	200
1481	2	220	3023	5	220	10733	20	220	18443	35	220
1521	2	240	3063	5		10773	20	240	18483	35	240
1551	2	255	3093	5	255	10803	20	255	18513	35	255

Delay μcycles	Decimal Disp.	Decimal ACC	Delay μcycles	Decimal Disp.	Decimal ACC	Delay μcycles	Decimal Disp.	Decimal ACC	Delay µcycles	Decimal Disp.	Decimal ACC
20573	40	00	28283	55	00	35993	70	00	43703	85	00
20613	40	20	28323	55	20	36033	70	20	43743	85	20
20653	40	40	28363	55	40	36073	70	40	43783	85	40
20693	40	60	28403	55	60	36113	70	60	43823	85	60
20733	40	80	28443	55	80	36153	70	80	43863	85	80
20773	40	100	28483	55	100	36193	70	100	43903	85	100
20813	40	120	28523	55	120	36233	70	120	43943	85	120
20853	40	140	28563	55	140	36273	70	140	43983	85	140
20893	40	160	28603	55 55	160	36313	70	160	44023	85 or	160
20933	40	180	28643	55	180	36353	70	180	44063	85	180
20973	40	200	28683	55	200	· 36393	70	200	44103	85	200
21013	40	220	28723	55	220	36433	70	.220	44143	85	220
21053	40	240	28763	55	240	36473	70	240	44183	85	240
21083	40	255	28793	55	255	36503	70	255	44213	85	255
23143	45	00	30853	60	00	38563	75	00	46273	90	00
23183	45	20	30893	60	20	38603	75	20	46313	90	20
23223	45	40	30933	60	40	38643	75	40	46353	90	40
23263	45	60	30973	60	60	38683	75	60	46393	90	60
23303	45	80	31013	60	80	38723	75	80	46433	90	80
23343	45	100	31053	60	100	38763	75	100	46473	90	100
23383	45	120	31093	60	120	38803	75	120	46513	90	120
23423	45	140	31133	60	140	38843	75	140	46553	90	140
23463	45	160	31173	60	160	38883	75	160	46593	90	160
23503	45	180	31213	60	180	38923	75	180	46633	90	180
23543	45	200	31253	60	200	38963	75	200	46673	90	200
23583	45	220	31293	60	220	39003	75	220	46713	90	220
23623	45	240	31333	60	240	39043	75	240	46753	90	240
23653	45	255	31363	60	255	39073	75	255	46783	90	255
25713	50	00	33423	65	00	41133	80	00	48843	95	00
25753	50	20	33463	65	20	41173	80	20	48883	95	20
25793	50	40	33503	65	40	41213	80	40	48923	95	40
25833	50	60	33543	65	60	41253	80	60	48963	95	60
25873	50	80	33583	65	80	41293	80	80	49003	95	80
25913	50	100	33623	65	100	41333	80	100	49043	95	100
25953	50	120	33663	65	120	41373	80	120	49083	95	120
25993	50	140	33703	65	140	41413	80	140	49123	95	140
26033	50	160	33743	65	160	41453	80	160	49163	95	160
26073	50	180	33783	65	180	41493	80	180	49203	95	180
26113	50	200	33823	65	200	41533	80	200	49243	95	200
26153	50	220	33863	65	220	41573	80	220	49283	95	220
26193	50 50	240	33903	65 65	240	41613	80	240	49323	95 05	240
26223	50	255	33933	65	255	41643	80	255	49353	95	255

Delay µcycles	Decimal Disp.	Decimal ACC	Delay	Decimal Disp.	Decimal ACC	Delay	Decimal Disp.	Decimal ACC	Delay μcycles	Decimal Disp.	Decimal ACC
E1412	100		50100	115	00	CC022	120	00	74543	145	00
51413 51453	100 100	00 20	59123	115 115	00 20	66833 66873	130 130	00 20	74543	145 145	20
51453	100	40	59163 59203	115	40	66913	130	40	74583	145	40
51533	100	60	59243	115	60	66953	130	60	74663	145	60
51573	100	80	59283	115	80	66993	130	80	74703	145	80
51613	100	100	59323	115	100	67033	130	100	74743	145	100
51653	100	120	59363	115	120	67073	130	120	74783 74823	145	120 140
51693	100	140 160	59403	115 115	140 160	67113 67153	130 130	140 160	74863	145 145	160
51733 51773	100 100	180	59443	115	180	67193	130	180	74803	145	180
51773	100	160	59483	115	160	07193	130	180	74303	145	180
51813	100	200	59523	115	200	67233	130	200	74943	145	200
51853	100	220	59563	115	220	67273	130	220	74983	145	220
51893	100	240	59603	115	240	67313	130	240	75023	145	240
51923	100	255	59633	115	255	67343	130	255	75053	145	255
53983	105	00	61693	120	00	69403	135	00	77113	150	00
54023	105	20	61733	120	20	69443	135	20	77153	150	20
54063	105	40	61773	120	40	69483	135	40	77193	150	40
54103	105	60	61813	120	60	69523	135	60	77233	150	60
54143	105	80	61853	120	80	69563	135	80	77273	150	80
54183	105	100	61893	120	100	69603	135	100	77313	150	100
54223	105	120	61933	120	120	69643	135	120	77353	150	120
54263	105	140	61973	120	140	69683	135	140	77393	150	140
54303	105	160	62013	120	160	69723	135	160	77433	150	160
54343	105	180	62053	120	180	69763	135	180	77473	150	180
54383	105	200	62093	120	200	69803	135	200	77513	150	200
54423	105	220	62133	120	220	69843	135	220	77553	150	220
54463	105	240	62173	120	240	69883	135	240	77593	150	240
54493	105	255	62203	120	255	69913	135	255	77623	150	255
56553	110	00	64263	125	00	71973	140	00	79683	155	00
56593	110	20	64303	125	20	72013	140	20	79723	155	20
56633	110	40	64343	125	40	72053	140	40	79763	155	40
56673	110	60	64383	125	60	72093	140	60	79803	155	60
56713	110	80	64423	125	80	72133	140	80	79843	155	80
56753	110	100	64463	125	100	72173	140	100	79883	155	100
56793	110	120	64503	125	120	72173	140	120	79923	155	120
56833	110	140	64543	125	140	72213	140	140	79963	155	140
56873	110	160	64583	125	160	72293	140	160	80003	155	160
56913	110	180	64623	125	180	72333	140	180	80043	155	180
56052	110	200	64663	100	200	72272	140	200	80083	155	200
56953 56993	110 110	200 220	64663 64703	125 125	200 220	72373	140 140	200 220	80083	155 155	200 220
57033	110	240	64703	125	240	72413 72453	140	220 240	80123	155	240
57063	110	255	64743	125	255	72483	140	255	80193	155	255
			0-77-7-0	120	200		170	200		100	

Delay µcycles	Decimal Disp.	Decimal ACC	Delay μcycles	Decimal Disp.	Decimal ACC	Delay μcycles	Decimal Disp.	Decimal ACC	Delay µcycles	Decimal Disp.	Decimal ACC
82253	160	00	89963	175	00	97673	190	00	105383	205	00
82293	160	20	90003	175	20	97713	190	20	105423	205	20
82333	160	40	90043	175	40	97753	190	40	105463	205	40
82373	160	60	90083	175	60	97793	190	60	105503	205	60
82413	160	80	90123	175	80	97833	190	80	105543	205	80
82453	160	100	90163	175	100	97873	190	100	105583	205	100
82493	160	120	90203	175	120	97913	190	120	105623	205	120
82533	160	140	90243	175	140	97953 97993	190	140	105663 105703	205	140
82573	160 160	160	90283 90323	175 175	160 180	98033	190 190	160 180	105703	205 205	160 180
82613		180									
82653	160	200	90363	175	200	98073	190	200	105783	205	200
82693	160	220	90403	175	220	98113	190	220	105823	205	220
82733	160	240	90443 90473	175	240	98153 98183	190	240 255	105863 105893	205 205	240 255
82763	160	255		175	255		190	255		205	
84823	165	00	92533	180	00	100243	195	00	107953	210	00
84863	165	20	92573	180	20	100283	195	20	107993	210	20
84903	165	40	92613	180	40	100323	195	40	108033 108073	210	40
84943 84983	165 165	60 80	92653 92693	180 180	60 80	100363 100403	195 195	60 80	108073	210 210	60 80
04903	100	80	92093	160	80		195	80			00
85023	165	100	92733	180	100	100443	195	100	108153		100
85063	165	120	92773	180	120	100483	195	120	108193		120
85103	165	140	92813	180	140	100523	195	140	108233	210	140
85143	165	160	92853	180	160	100563 100603	195	160	108273 108313	210	160
85183	165	180	92893	180	180		195	180		210	180
85223	165	200	92933	180	200	100643	195	200	108353	210	200
85263	165	220	92973	180	220	100683	195	220	108393		220
85303	165	240	93013		240	100723	195	240	108433		240
85333	165	255	93043	180	255	100753	195	255	108463	210	255
87393	170	00	95103	185	00	102813	200	00	110523		00
87433	170	20	95143	185	20	102853	200	20	110563		20
87473	170	40	95183	185	40	102893	200	40	110603		40
87513	170	60	95223	185	60	102933 102973	200	60	110643 110683		60
87553	170	80	95263	185	80	102973	200	80	110003	215	80
87593	170	100	95303	185	100	103013	200	100	110723		100
87633	170	120	95343	185	120	103053	200	120	110763	215	120
87673	170	140	95383	185	140	103093	200	140	110803	215	140
87713 87753	170	160	95423 95463	185 105	160	103133 103173	200	160	110843 110883	215	160
6//53	170	180	90403	185	180	103173	200	180	10003	215	180
87793	170	200	95503	185	200	103213	200	200	110923	215	200
87833	170	220	95543	185	220	103253	200	220	110963	215	220
87873	170	240	95583	185	240	103293	200	240	111003	215	240
87903	170	255	95613	185	255	103323	200	255	111033	215	255

Delay µcycles	Decimal Disp.	Decimal ACC	Delay μcycles	Decimal Disp.	Decimal ACC	Delay μ cycles	Decimal Disp.	Decimal ACC	Delay µcycles	Decimal Disp.	Decimal ACC
113093	220	00	120803	235	00	128513	250	00			
113133	220	20	120843	235	20	128553	250	20			
113173	220	40	120883	235	40	128593	250	40			
113213	220	60	120923	235	60	128633	250	60			
113253	220	80	120963	235	80	128673	250	80			
113293	220	100	121003	235	100	128713	250	100			
113333	220	120	121043	235	120	128753	250	120			
113373	220	140	121083	235	140	128793	250	140		ļ	
113413	220	160	121123	235	160	128833	250	160			
113453	220	180	121163	235	180	128873	250	180			
113493	220	200	121203	235	200	128913	250	200			
113533	220	220	121243	235	220	128953	250	220			
113573	220	240	121283	235	240	128993	250	240			
113603	220	255	121313	235	255	129023	250	255			
115663	225	00	123373	240	00	131083	255	00	!		
115703	225	20	123413	240	20	131123	255	20			
115743	225	40	123453	240	40	131163	255	40			
115783	225	60	123493	240	60	131203	255	60			
115823	225	80	123533	240	80	131243	255	80			
115863	225	100	123573	240	100	131283	255	100			
115903	225	120	123613	240	120	131323	255	120			
115943	225	140	123653	240	140	131363	255	140			
115983	225	160	123693	240	160	131403	255	160			
116023	225	180	123733	240	180	131443	255	180			
116063	225	200	123773	240	200	131483	255	200			
116103		220	123813	240	220	131523	255	220			
116143	225	240	123853	240	240	131563	255	240			
116173	225	255	123883	240	255	131593	255	255			ĺ
118233	230	00	125943	245	00		:				
118273	230	20	125983	245	20						
118313	230	40	126023	245	40						
118353	230	60	126063	245	60						
118393	230	80	126103	245	80						
118433	230	100	126143	245	100						
118473	230	120	126183	245	120		•				
118513	230	140	126223	245	140						
118553	230	160	126263	245	160						
118593	230	180	126303	245	180						
118633	230	200	126343	245	200						
118673	230	220	126383	245	220]	
118713	230	240	126423	245	240						
118743	230	255	126453	245	255						