

Telecommunications Databook

- Line Card Components
- ISDN
- Modems
- Analog Telephone

A Corporate Dedication to Quality and Reliability

National Semiconductor is an industry leader in the manufacture of high quality, high reliability integrated circuits. We have been the leading proponent of driving down IC defects and extending product lifetimes. From raw material through product design, manufacturing and shipping, our quality and reliability is second to none.

We are proud of our success . . . it sets a standard for others to achieve. Yet, our quest for perfection is ongoing so that you, our customer, can continue to rely on National Semiconductor Corporation to produce high quality products for your design systems.

antic work

Charles E. Sporck President, Chief Executive Officer National Semiconductor Corporation

Wir fühlen uns zu Qualität und Zuverlässigkeit verpflichtet

National Semiconductor Corporation ist führend bei der Herstellung von integrierten Schaltungen hoher Qualität und hoher Zuverlässigkeit. National Semiconductor war schon immer Vorreiter, wenn es galt, die Zahl von IC Ausfällen zu verringern und die Lebensdauern von Produkten zu verbessern. Vom Rohmaterial über Entwurf und Herstellung bis zur Auslieferung, die Qualität und die Zuverlässigkeit der Produkte von National Semiconductor sind unübertroffen.

Wir sind stolz auf unseren Erfolg, der Standards setzt, die für andere erstrebenswert sind. Auch ihre Ansprüche steigen ständig. Sie als unser Kunde können sich auch weiterhin auf National Semiconductor verlassen.

La Qualité et La Fiabilité: Une Vocation Commune Chez National

Semiconductor Corporation

National Semiconductor Corporation est un des leaders industriels qui fabrique des circuits intégrés d'une très grande qualité et d'une fiabilité exceptionelle. National a été le premier à vouloir faire chuter le nombre de circuits intégrés défectueux et a augmenter la durée de vie des produits. Depuis les matières premières, en passant par la conception du produit sa fabrication et son expédition, partout la qualité et la fiabilité chez National sont sans équivalents.

Nous sommes fiers de notre succès et le standard ainsi défini devrait devenir l'objectif à atteindre par les autres sociétés. Et nous continuons à vouloir faire progresser notre recherche de la perfection; il en résulte que vous, qui êtes notre client, pouvez toujours faire confiance à National Semiconductor Corporation, en produisant des systèmes d'une très grande qualité standard.

Un Impegno Societario di Qualità e Affidabilità

National Semiconductor Corporation è un'industria al vertice nella costruzione di circuiti integrati di altà qualità ed affidabilità. National è stata il principale promotore per l'abbattimento della difettosità dei circuiti integrati e per l'allungamento della vita dei prodotti. Dal materiale grezzo attraverso tutte le fasi di progettazione, costruzione e spedizione, la qualità e affidabilità National non è seconda a nessuno.

Noi siamo orgogliosi del nostro successo che fissa per gli altri un traguardo da raggiungere. Il nostro desiderio di perfezione è d'altra parte illimitato e pertanto tu, nostro cliente, puoi continuare ad affidarti a National Semiconductor Corporation per la produzione dei tuoi sistemi con elevati livelli di qualità.

Charlie Sponk

Charles E. Sporck President, Chief Executive Officer National Semiconductor Corporation

TELECOMMUNICATIONS DATABOOK

1987 Edition

Line Card Components

ISDN Components

Modems

Analog Telephone Components

Application Notes

Reliability/Physical Dimensions

TRADEMARKS

Following is the most current list of National Semiconductor Corporation's trademarks and registered trademarks.

Abuseable[™] Anadig™ ANS-R-TRAN™ APPSTM Auto-Chem Deflasher™ BI-FET™ BI-FET II™ BI-LINE™ **BIPLANTM BLCTM BLXTM** Brite-Lite™ **BTLTM** CheckTrack™ СІМТМ **CIMBUSTM** Clock//Chek™ **СОМВОТМ** COMBO I™ COMBO IITM COPS™ microcontrollers Datachecker® **DENSPAKTM** DIBTM Digitalker® **DISCERNTM** DISTILL™ **DNRTM DPVMTM ELSTAR™**

E-Z-LINK™ 5-Star Service™ **GENIX™ GNXTM** HEX 3000™ НРС™ ICMTM **INFOCHEXTM** Integral ISE™ IntelisplayTM **ISE™** ISE/06™ ISE/08TM ISE/16™ ISE32TM KeyScan™ LMCMOSTM M²CMOS™ Macrobus™ Macrocomponent[™] Meat⊮Chek™ Microbus™ data bus MICBO-DACTM utalker™ Microtalker™ **MICROWIRETM** MICROWIRE/PLUS™ **MOLETM MSTTM**

Naked-8™ National® **NAX 800TM** Nitride Plus™ Nitride Plus Oxide™ **NMLTM NOBUSTM** NSC800TM NSX-16™ NS-XC-16™ **NURAM™ OXISS™** P²CMOS™ Perfect Watch™ Pharmar/Chek™ PLANTM Polycraft[™] POSitalker™ Power & Control™ QUAD3000TM **QUIKLOOKTM RAT™** BTX16™ **SABR™** Script/Chek™ SCXTM SERIES/800™ Series 3000™ Series 32000®

Shelf⊮Chek™ **SPIRETM** STARTM StarlinkTM **STARPLEX™** STARPLEX II™ SuperChip™ SuperScript™ SYS32™ TapePak™ TDSTM TeleGate™ The National Anthem® Timer/Chek™ TINATM **TLCTM** Trapezoidal™ TRI-CODE™ **TRI-POLY™** TRI-SAFE™ **TRI-STATE® TURBOTRANSCEIVER™** VIPTM **VR32™ XMOS™** XPU™ Z STARTM 883B/RETS™ 883S/RETS™

STARLAN® is a registered trademark of AT&T Bell Laboratories

PAL® is a registered trademark of and used under license with Monolithic Memories, Inc.

Z80® is a registered trademark of Zilog Corporation

IBM-PC™ is a trademrk of IBM Corporation

MOS-DOS™ is a trademark of Microsoft Corporation

VAX™ and VAX-11™ are trademarks of Digital Equipment Corporation

UNIX[™] is a trademark of Bell Laboratories

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 2900 Semiconductor Drive, P.O. Box 58090, Santa Clara, California 95052-8090 (408) 721-5000 TWX (910) 339-9240

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied, and National reserves the right, at any time without notice, to change said circuitry or specifications.

Introduction

To coincide with the advent of the Integrated Services Digital Network (ISDN), this new 1987 Telecommunications Data Book clearly portrays the continuing evolution of the Telecommunications Network and the Integrated Circuit technology required to support it. Previous editions focused heavily on analog telephones and analog line card components for digital switching. This catalog shows components supporting the emerging of a fully digital network, which upon implementation will give all of us greater world wide communications capability and flexibility than ever imagined.

The Integrated Circuits required for modern day telecommunications technology and presented within this data book are no longer simple functions but are complete systems in themselves. Their functionality and parametric performance is at levels never before achieved, and they utilize the most advanced silicon process technology available today. In response to the system designer's tasks and dilemma, this data book contains a complete product listing and data sheets for all "dedicated" telecommunications components, both present and future.

Shipping over 5 million subscriber or trunk lines per year, National Semiconductor is an industry leader in the field of

telecommunications specific Integrated Circuit functions. Starting in 1977 with the introduction of the world's first commercially available integrated Codec, the TP3000, then evolving it into the worlds' first industry standard single chip codec/filter COMBO™ TP3054/57. In 1986 the announcement of the TP3070 COMBO II™ proved Nationals' ability to continue to provide high performance and cost effective state of the art solutions. Other Line Card component developments such as the parallel COMBO, Magnetic Compensation SLIC MC, Time Slot Assigner Circuit (TSAC), and now ISDN are clear signs of Nationals' dedication and long term committment to the market.

National Semiconductor will continue to monitor the evolving applications requirements in the telecommunications industry and will drive new IC designs which provide additional features and further improve cost effectiveness. Systems designers utilizing telecommunications Integrated Circuits from National Semiconductor should be confident they can design both now and in the future with the most advanced technology available, and have further assurances of success by designing in products supplied by the company which has the highest quality and reliability standards in the world.

Table of Contents

Section 1 Line Card Components	
*TP3200/TP3202/TP3204 SLIC-MC Magnetic Compensation SLICs	1-3
*TP3070/TP3071 Programmable Codec/Filter COMBO IITM	1-11
TP3051/TP3056 Parallel Interface Codec/Filter COMBO™	1-28
*TP3058/TP3059 Microprocessor Compatible COMBO	1-39
TP3052/TP3052-1/TP3053/TP3053-1/TP3054/TP3054-1/TP3057/TP3057-1	
Monolithic Serial Interface Codec/Filter COMBO Family	1-50
*TP3052-X/TP3053-X/TP3054-X/TP3057-X Extended Temperature Monolithic Serial	1.64
TP2064/TP2067 Manalithia Social Interface Codes/Filter COMPO	1-04
*TP3150 Time Slot Assignment Circuit	1-77
TP3155 Time Slot Assignment Circuit	1-90
TP3020/TP3020-1/TP3021/TP3021-1 PCM Monolithic Codece	1-37
TD51164 /TD51164 1/TD51564 /TD51564 1 DCM Monolithic Codecs	1 1 1 2
TP3110A/TP3110A-1/TP3150A/TP3150A-TPCW Woholding Coulds	1-112
Definitions and Timing Conventions	1.107
Section 2 ISDN /Integrated Services Digital Network) Components	1-12/
Introduction to National Somiconductor Basic Access Chin Set	2.2
*TP3401 DASL Digital Adapter for Subscriber Loope	2-3
*TP2410 "L" Interface Device	2-0
*TP2420 "S" Interface Device	2-22
*UPC16040 High Derformance Microcontroller	2-23
*UPC16400/UPC26400/UPC26400/Upc26400/Upc26400	2-40
	2-05
Section 2 Modeme	2-05
MM7/HC9/2 300 Baud Modern	3-3
MM74HC943 300 Baud Modem	3-0
*TP3330 Full Dunley 1200 RPS Bell 2124 /V 22 Modern with LART	3.16
*TP7515 Full Dupley 1200 BPS Bell 2124 /V 22 Serial Modern	3-34
Section 4 Analog Telephone Components	0-0-4
TP5088 DTME Generator for Binary Data	4-3
TP5089 DTMF (Touch-Tone) Generator	4.7
TP5700A Telephone Speech Circuit	4-11
Section 5 Application Notes	
AN-336 Understanding Integrated Circuit Package Power Capabilities	5-3
AN-347 MM74HC942 and MM74HC943 Design Guide	5-8
AN-349 CMOS 300 Baud Modem	5-15
AN-370 Techniques for Designing with Codec/Filter COMBO Circuits	5-20
AN-439 TP3200 MC-SLIC Application Guide	5-23
AN-450 Small Outline (SO) Package Surface Mounting Methods—Parameters and Their	
Effect on Product Reliability	5-32
AN-466 Improving the Performance of a High Speed PBX Backplane	5-42
LB-18 + 5V to - 15V DC Converter	5-47
Section 6 Reliability of Telecom Devices/Physical Dimensions	
Reliability of Telecom Devices	6-3
Physical Dimensions	6-4
Data Bookshelf	
Authorized Distributors	

*Devices not covered in last publication

Alpha-Numeric Index

AN-336 Understanding Integrated Circuit Package Power Canabilities	5.3
AN-347 MM7HC942 and MM74HC943 Design Guide	5-8
AN-340 CMOS 300 Baud Modem	5-15
AN-370 Techniques for Designing with Codec/Filter Combo Circuits	5-20
AN-430 TP3200 MC. SLIC Application Guide	5-23
AN-450 Small Outline (SO) Package Surface Mounting Methods—Parameters and	
Their Effect on Product Beliability	5-32
AN-466 Improving the Performance of a High Speed PBY Backhlane	5-42
*HPC16040 High Performance Microcontroller	2-40
*HPC16400 High Performance Controller with HDLC	2-65
*HPC36400 High Performance Controller with HDLC	2-65
*HPC46400 High Performance Controller with HDLC	2-65
$1 \text{ B}_{-18} \pm 5 \text{ V}$ to -15 V DC Converter	5-47
MM74HC942 300 Baud Modem	3-3
MM74HC943 300 Baud Modem	3-9
TP3020 PCM Monolithic Codec	1_104
TP3020-1 PCM Monolithic Codec	1-104
TP3021 PCM Monolithic Codec	1_104
TP3021-1 PCM Monolithic Codec	1-104
TP3040 PCM Monolithic Filter	1-119
TP3040-1 PCM Monolithic Filter	
TP3040A PCM Monolithic Filter	1-119
TP3040A-1 PCM Monolithic Filter	1-119
TP3051 Parallel Interface Codec/Filter COMBO	
TP3052 Monolithic Serial Interface CMOS Codec/Filter COMBO	
TP3052-1 Monolithic Serial Interface CMOS Codec/Filter COMBO	
TP3053 Monolithic Serial Interface CMOS Codec/Filter COMBO	
TP3053-1 Monolithic Serial Interface CMOS Codec/Filter COMBO	
TP3054 Monolithic Serial Interface CMOS Codec/Filter COMBO	
TP3054-1 Monolithic Serial Interface CMOS Codec/Filter COMBO	
*TP3052-X Extended Temperature Monolithic Serial Interface CMOS Codec/Filter COMBO	1-64
*TP3053-X Extended Temperature Monolithic Serial Interface CMOS Codec/Filter COMBO	
*TP3054-X Extended Temperature Monolithic Serial Interface CMOS Codec/Filter COMBO	1-64
TP3056 Parallel Interface Codec/Filter COMBO	1-28
TP3057 Monolithic Serial Interface CMOS Codec/Filter COMBO	1-50
TP3057-1 Monolithic Serial Interface CMOS Codec/Filter COMBO	1-50
*TP3057-X Extended Temperature Monolithic Serial Interface CMOS Codec/Filter COMBO	1-64
*TP3058 Microprocessor Compatible COMBO	1-39
*TP3059 Microprocessor Compatible COMBO	1-39
TP3064 Monolithic Serial Interface CMOS Codec/Filter COMBO	1-77
TP3067 Monolithic Serial Interface CMOS Codec/Filter COMBO	1-77
*TP3070 Programmable CMOS Codec/Filter COMBO II	1-11
*TP3071 Programmable CMOS Codec/Filter COMBO II	1-11
*TP3150 Time Slot Assignment Circuit	1-90
TP3155 Time Slot Assignment Circuit	1-97

*Devices not covered in last publication.

Alpha-Numeric Index (Continued)

*TP3200 SLIC-MC Magnetic Compensation SLICs	1-3
*TP3202 SLIC-MC Magnetic Compensation SLICs	1-3
*TP3204 SLIC-MC Magnetic Compensation SLICs	1-3
*TP3330 Monolithic Full Duplex 1200/600/300 BPS Bell 212 A/V.22 Modem with UART	
*TP3401 DASL Digital Adapter for Subscriber Loops	
*TP3410 Digital "U" Subscriber Interface	
*TP3420 Four Wire Digital Transceiver "S" Interface	
TP5088 DTMF Generator for Binary Data	
TP5089 DTMF (Touch Tone) Generator	
TP5116A PCM Monolithic Codec	1-112
TP5116A-1 PCM Monolithic Codec	1-112
TP5156A PCM Monolithic Codec	1-112
TP5156A-1 PCM Monolithic Codec	
TP5700A Telephone Speech Circuit	
*TP7515 Full Duplex 1200 Baud Bell 212 A/V.22 Serial Modem	

*Devices not covered in last publication.

Section 1 Line Card Components

Section 1 Contents

*TP3200/TP3202/TP3204 SLIC-MC Magnetic Compensation SLICs	1-3
*TP3070/TP3071 Programmable CMOS Codec/Filter COMBO II	1-11
TP3051/TP3056 Parallel Interface Codec/Filter COMBO	1-28
*TP3058/TP3059 Microprocessor Compatible COMBO	1-39
TP3052/TP3052-1/TP3053/TP3053-1/TP3054/TP3054-1/TP3057/TP3057-1 Monolithic	
Serial Interface CMOS Codec/Filter COMBO Family	1-50
*TP3052-X/TP3053-X/TP3054-X/TP3057-X Extended Temperature Monolithic Serial	
Interface CMOS Codec/Filter COMBO Family	1-64
TP3064/TP3067 Monolithic Serial Interface CMOS Codec/Filter COMBO	1-77
*TP3150 Time Slot Assignment Circuit	1-90
TP3155 Time Slot Assignment Circuit	1-97
TP3020/TP3020-1/TP3021/TP3021-1 Monolithic PCM Codecs	1-104
TP5116A/TP5116A-1/TP5156A/TP5156A-1 Monolithic PCM Codecs	1-112
TP3040/TP3040-1/TP3040A/TP3040A-1 Monolithic PCM Filter	1-119
Definitions and Timing Conventions	1-127

*Devices not covered in last publication

TP3200/TP3202/TP3204 SLIC-MC Magnetic Compensation SLICs

General Description

The TP3200, TP3202 and TP3204 are monolithic Bipolar integrated circuits intended for use on subscriber and trunk interface cards of digital PABX and central office equipment. Each device contains a magnetic compensation circuit, a supervision circuit and three relay drivers with latched inputs.

The magnetic compensation circuit allows the use of a small, low cost line transformer by measuring the loop current, and producing an output current proportional to the d.c. value of the loop current. This output current is passed through a winding of the line transformer in such a way as to cancel the d.c. component of the magnetic flux. Thus the transformer may be wound on a small ferrite core without an air gap.

The supervision output is used to detect off-hook, replicate dial pulses and terminate ringing on detection of ring-trip.

One of the three relay drivers is dedicated to the ring function, the other two are general purpose. TP3200 and TP3202 have PNP relay drivers, while TP3204 has NPN relay drivers.

Features

- Magnetic Compensation Circuit allows the use of low cost ferrite core transformers
- Supervision Circuitry provides hook-switch detect, ringtrip detect and dial pulse replication
- Ring relay driver synchronized to zero-crossings
- Automatic ring-trip circuit—TP3200, TP3204
- Three Latched relay drivers
- -48 Volt relay drivers—TP 3200, TP3202
- +5 Volt relay drivers—TP 3204
- Requires only ±5V supplies
- Thermal shutdown protection
- Power-Up reset on relay driver latches

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Distributors for availability and	a specifications.	Vovwrt GND (TP3204)	201/
Operating Temperature	-25°C to +85°C	Voltage at Sensing Inputs	300 V
Storage Temperature	-65°C to +150°C	T+, T-, R+, R-, w.r.t. GND	(continuous)
V _{CC} w.r.t. GND	7V	I _{BY} (TP3200, TP3202)	- 50 mA
V _{BB} w.r.t. GND	-7V	I _{BY} (TP3204)	120 mA
V _{CC} w.r.t. V _{BB}	14V	Power Dissipation (Note 1)	1.5W

VIC w.r.t. GND

V_{BY} w.r.t. GND (TP3200, TP3202)

-70V

-70V

Electrical Characteristics Unless otherwise specified, Limits printed in bold characters are guaranteed for $V_{CC} = \pm 5.0V$, $V_{BB} = -5.0V \pm 5\%$ and $T_A = 0^{\circ}C$ to 70°C by correlation with 100% production testing at $T_A = 25^{\circ}C$. All other limits are assured by correlation with other production tests and/or product design and characterization. Typical values are measured at $V_{CC} = \pm 5.0V$, $V_{BB} = -5.0V$, and $T_A = 25^{\circ}C$.

		·	· · · · · · · · · · · · · · · · · · ·			
Symbol	Parameter	Conditions	Min	Тур	Max	Units
COMPENSA	TION CIRCUIT		-			
R _{IN}	Input Resistance	T+, T-, R+, R-		200		ΚΩ
V _{OS}	Offset Voltage at V _C	I _{LCOP} =0 mA, R _S =100Ω V _{BAT} =-48V, VC Open 30			+30	mV
Av	Differential Voltage Gain	$R_L = 150\Omega$, $R_S = 100$, Measure from T+, T-, R+ and R- to VC, $I_{LOOP} = 10-100$ mA	0.147	-	0.153	V/V
IC	Maximum Compensation Current	The Output Current is Nominally Given by V_C/R_L , Where R_L is Connected from VC to GND.			25	mA
R ₀	Output Resistance	Measure at CAP1	80	100	120	KΩ
VICSat	Saturation Voltage at IC	I _C =20 mA. Measure from VC to IC.		-0.3	- 1.5	V
R _{IC}	IC Output Impedance	$R_L = 150\Omega, f = 1 \text{ kHz}, I_C = 10 \text{ mA}$ $I_C = 20 \text{ mA}$		2 300		ΜΩ ΚΩ
N	Idle Noise	$IC = 20 \text{ mA}, \text{R}_L = 150\Omega$ Connect 1500 Ω from IC to V _{BAT} , Measure at IC.		0	10	dBrnC
SUPERVISI	ON CIRCUITRY					·
lo	Ring-Trip Current Source	At CAP2		10		μΑ
IR	Ring-Trip Threshhold	CAP2=0.1 μ F, f=20 Hz, R _S =100 Ω		12		mA
1+	Off-hook Positive Threshold	R _S =100. Increase Loop Current 11		13	15	mA
Н	Off-hook Hysteresis	R _S = 100. Decrease Loop Current from I + until SUP Switches High.		2		mA
RELAY DRI	VERS					······································
VRYsat	Relay Driver Saturation Voltage	TP3200, TP3202, IRY = 30 mA TP3204, IRY = 80 mA			-2.2 1	V V
DIGITAL IN	TERFACE (SUP, EN, RC1, R	IC2, RING, RSYNC)				· · · · · · · · · · · · · · · · · · ·
VOL	Output Low Level	I _{OL} =1.6 mA			0.4	V
V _{OH}	Output High Level	I _{OH} =0.1 mA	4			v
VIL	Input Low Level				0.7	V
VIH	Input High Level		2			V
l	Input Current	0.7 <v<sub>IN <2.0</v<sub>	0.1		0.1	mA
POWER DIS	SIPATION					
I _{CC} 0	V _{CC} Supply I _{DLE} Current	RL = 150Ω, RS = 100Ω 3 I _{LOOP} = 0 mA, All Relays Off 3		4.5	mA	
I _{BB} 0	V _{BB} Supply I _{DLE} Current	$ \begin{array}{c c} R_L = 150\Omega, \ R_S = 100\Omega, \ I_{LOOP} = 0 \ mA \\ All \ Relays \ Off. \end{array} $		4	mA	
I _{CC} 1	V _{CC} Supply Active Current	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		4.7	mA	
I _{BB} 1	V _{BB} Supply Active Current	$\begin{array}{c c} R_L = 150\Omega, R_S = 100\Omega \\ I_{LOOP} = 40 \text{ mA}, I_{RY} = 10 \text{ mA} \end{array} \qquad \qquad 2.5 \qquad \textbf{4.2}$		4.2	mA	
PSRR+	Power Supply Rejection	$\Delta V_{C}/\Delta V_{CC}$, f = 1 kHz	-60	-80		dB
PSRR-	Hatio	$\Delta V_{\rm C} / \Delta V_{\rm BB}$, f = 1 kHz	-38	-50		dB

TP3200/TP3202/TP3204

Electrical Characteristics Unless otherwise specified, Limits printed in bold characters are guaranteed for $V_{CC} = +5.0V$, $V_{BB} = -5.0V \pm 5\%$ and $T_A = 0^{\circ}C$ to 70°C by correlation with 100% production testing at $T_A = 25^{\circ}C$. All other limits are assured by correlation with other production tests and/or product design and characterization. Typical values are measured at $V_{CC} = +5.0V$, $V_{BB} = -5.0V$, and $T_A = 25^{\circ}C$.

		······································		· · · · · · · · · · · · · · · · · · ·					
Symbol	Parameter	Conditions	Min	Тур	Max	Units			
TIMING (SEE DEFINITIONS AND TIMING CONVENTIONS FOR TEST METHOD INFORMATION)									
tSRE	Set-up Time	Measure from RING, or RC1, RC2 Valid to EN Falling Edge.	1			μs			
t _{HER}	Hold Time	Measure from EN Falling Edge to RING, RC1, or RC2 Invalid.	1			μs			
t _{WEN} t _{WRS}	Input Pulse Width EN RSYNC	Active High	2 3			μs μs			
tDEY	RY1, RY2 Drivers Delay Time	Measure from En Active and RC1, RC2, Valid to RY1, RY2 On or Off. $I_{RY (on)} = 10$ mA, $I_{RY (off)} = 0.1$ mA			20	μs			
^t DRY	RYR Driver Delay Time	Measure from RSYNC Rising Edge to RYR On or Off. $I_{RYR (on)} = 10 \text{ mA},$ $I_{RYR (off)} = 0.1 \text{ mA}$			20	μs			
t _{HS}	Off-Hook Detection Time	Measure from $I_{LOOP} = 20 \text{ mA}$ to SUP Transition from High to Low.		2.5		μs			
t _R	Ring-Trip Detection Time	Measure from $I_{LOOP} = 20$ mA to, RYR Off, CAP2 = 0.1 μ F, f = 20 Hz, I _{RYR} (on) = 10 mA, I _{RYR} (off) = 0.1 mA			150	ms			

Note 1: Derate based on 150°C maximum junction temperature and thermal resistance of 80°C/W, junction to ambient.

Timing Diagram

Description of Pin Functions

Name

T+ Tip positive voltage sense input connected to the positive (GND) side of the Tip current sense resistor.

Function

- T Tip negative voltage sense input connected to the negative (line) side of the Tip current sense resistor.
- BGND Battery ground return for the relay drivers. This ground should be connected in such a way as to minimize noise due to relay switching and also to avoid large voltage transients in the presence of lightning. Preferably it should be connected to GND on the backplane.
- R Ring negative voltage sense input connected to the negative (V_{BAT}) side of the Ring current sense resistor.
- R + Ring positive voltage sense input connected to the positive (line) side of the Ring current sense resistor.

V_{BB} -5 volts ±5%

- IC Compensation current output. The current sourced by this output is proportional to the d.c. loop current flowing through the line transformer. By passing this current through an auxiliary winding of appropriate winding ratio, the average magnetic flux in the transformer core can be cancelled.
- CAP1 External capacitor input required to filter voice frequency components from the loop current.

Function

- External capacitor input required to perform charging and discharging by I_O for one cycle of ring frequency in order to perform the ring-trip function.
- VC Compensation voltage output. The output voltage at this pin is proportional to the d.c. loop current flowing through the line transformer. An external resistor R_L connected from VC to GND causes a current to flow from IC which is in turn proportional to the d.c. loop current.

GND Analog ground.

Name

CAP2

- V_{CC} +5 volts ±5% SUP Supervision output indicating off-hook, Dial Pulse and Ring Trip status.
- EN Enable input. The RING, RC1 and RC2 inputs are gated in during the high state of EN and latched on the falling edge.
- RC1 General purpose relay control input 1, used to turn on or off relay driver 1 (RY1) when enabled by EN.
- RC2 General purpose relay control input 2 used to turn on or off relay driver 2 (RY2) when enabled by EN.
- RING Ring command input used to turn on or off the ring relay driver when enabled by EN.

TP3200/TP3202/TP3204

Description of Pin

Functions (Continued)

Name	Function
RSYNC	Ring Synchronization input used to synchronize
	the opening and closing of the ring relay with
	zero crossings of the ring signal, i.e., the mini-
	mum voltage across the relay contacts. RSYNC
	should nominally be a square wave generated
	by a zero crossing detector from the ringing sig-
	nal, and should have the same frequency as the
	ringing signal.
סעס	Dine velou debien output

RYR	Ring	relay	driver	output.	
	-				

- RY1 General purpose relay driver output 1.
- General purpose relay driver output 2. RY2

Functional Description

MAGNETIC COMPENSATION CIRCUIT (Figure 1)

The magnetic compensation circuit measures the loop current by sensing the voltage across two matched battery feed resistors, R_S, using a high impedance thin film resistor bridge, and produces a voltage proportional to the instantaneous loop current at the output of the OpAmp, A1. This voltage is filtered by the external capacitor CAP1. The output voltage follower A2 and output transistor Q1 then reproduce this voltage at the VC output. Capacitor CAP1 is selected such that the voice frequency components of the loop current are attenuated enough to prevent the compensation current from affecting the subscriber circuit output impedance. A resistor RL connected from VC to GND causes a current V_C/R_L to flow from the IC output. This output is connected to an auxiliary winding on the line transformer. By proper selection of resistor ratios and transformer winding ratios, the current IC can exactly cancel the flux produced by the d.c. component of the loop current. The equation relating these parameters is:

$$NP/NC = A_VR_S/R_L$$

SUPERVISION CIRCUIT (Figure 2)

The supervision circuit consists of a loop current comparator with built-in hysteresis. The input of the supervision circuit is taken from the output of the Op Amp A1. The voltage at this point represents the instantaneous loop current. The output is the SUP output. During on-hook operation SUP is high. When the loop current increases beyond approximately 13 mA the SUP output goes low, indicating off-hook. When the loop current falls below approximately 11 mA SUP will go high indicating on-hook. In the presence of dial pulses, SUP will produce a square-wave replication of the dial pulses. During ringing, the comparator will detect the instantaneous ringing current through the loop, causing SUP to produce a square-wave with a mark-to-space ratio larger than 50% during the on-hook condition. When the telephone goes off-hook, the resultant dc loop current causes the mark-to-space ratio to decrease until the threshhold is reached when the duty cycle of SUP output is exactly 50%. This change in duty cycle can easily be detected digitally and the ringing terminated. This is the most flexible form of ring trip since it is frequency independent and is compatible with multi-frequency ringing. A second method of ring trip is described in the next section.

FIGURE 2. Supervision Circuit

Functional Description (Continued)

RING TRIP CIRCUIT (Figure 3)

The ring trip circuit takes its input from the output of A1, which represents the combination of instantaneous ringing current and DC off-hook loop current, if any. A1 output voltage is compared against a reference voltage at A4. Depending on the polarity of the comparator's output, current source I_O either sources or sinks 10 μ A into CAP2. This results in the charging and discharging of CAP2. Each positive transition of RSYNC enables comparator A5 for approximately 20 μ s through the one-shot circuit, after which CAP2 is discharged via Q2. Thus, the resulting voltage on CAP2 after one ring cycle indicates the average DC component of the loop current. When the threshold of approximately 12 mA is reached, comparator A5 generates a pulse output at RT which is used to reset the ring driver flip-flop at approximately the zero crossing of the ringing signal.

If multiple ring frequencies must be used on the same line, then a compromise capacitor value for CAP2 must be used. A 0.1 μF value is recommended for ringing frequencies of 16 Hz to 40 Hz, and 0.033 μF for 30 Hz to 70 Hz. Alternately, if SUP output is used to perform ring trip detect externally, CAP2 input should be grounded.

FIGURE 3. Ring Trip Circuit

RING RELAY DRIVER (Figure 4)

The ring relay driver consists of the ring trip latch, a ring relay flip-flop and a relay driver output transistor. Based on the state of the ring input, the ring-trip latch is set or cleared when EN is active high, and latched on the falling edge of EN. It is also cleared by the ring trip circuit. Based on the output of the ring-trip latch, the ring relay flip-flop is set or cleared on the positive transition of RSYNC, insuring that the ring relay is turned on or off near the zero crossing of the ring signal to minimize relay contact wear. After the ring relay driver is turned on, the RING and/or EN inputs should be kept at logic low in order to prevent relay chattering.

GENERAL PURPOSE RELAY DRIVERS (Figure 5)

The general purpose relay drivers consist of a relay driver latch and relay driver output transistor. Depending on the state of the appropriate input RC1 or RC2, the relay driver latches are set or cleared when EN is active high, and latched on the falling edge of EN. On the TP3200 and TP3202 the relay driver pnp transistors operate between BGND and a negative supply as high as -70 volts, with relay currents as high as 30 mA. On the TP3204, the relay driver npn transistors operate with a positive supply voltage up to 20 volts.

TP3200/TP3202/TP3204

TL/H/5589-11

FIGURE 6. Typical Applications Schematic

RIN

2.2 µF

250V

RING 3

63

iC

vc

RSYNC

RC1

RC2

E٨

SUP

BGND

Ňp

150±1%

CONTROL

STROBE

SUP

R_F=100

 $R_{F} = 100$

tμl

T +

R 4

RYR

RY1

RY2

CAP2

S S

CAP1

TP3200/2

Note 1: Resistors R_S , R_F are matched to within $\pm 0.1\%$ to achieve 60 dB longitudinal balance.

CAP2

(see text)

1

Note 2: Transformer specifications for 600 Ω Line Impedance, 5:1 cancellation ratio, Z₀ = R_i = 300 \Omega.

Rs=100

R_S=100

RING

GEN

5

RING

BAT.REV.

RING

TEST

primary windings	Np	210T	AWG 36
secondary windings	Ns	2x220T	AWG 38
compensation winding	Nc	2100T	AWG 42
Siemens Type RM 8-T	35 core	(A _L = 840	0 nH/T2)

Applications Information

Figure 6 illustrates the use of the TP3200/02/04 in one of many possible configurations. In this application, 200 ohm feed resistors (R_S + R_F) are used with a fixed -48 volt battery feed. 100 ohm current sense resistors in series with additional 100 ohm resistors insure that the T and R sense inputs of the device never see more than one half of any line transient voltages. The two general purpose relay drivers are used to operate a line test relay and a battery reversal relay. The a.c. line termination impedance is set by resistors Ri and Zo (which should be equal to properly balance the hybrid), and the square of the turns ratio of the transformer, (2Np/NS)2. The two amplifiers on the secondary side of the transformer are normally part of the PCM filter such as the TP3040, or the TP3050, TP3060, or TP3070 series of COMBO™ Codec/Filters. Zbal represents the line circuit balance network. It is recommended that the IC pin be connected to the finish of the compensation winding in order to reduce the effective loading of the line impedance as well as Z_{bal} due to the reflected capacitance from the compensation winding at IC.

Ring voltage insertion is accomplished by breaking the battery feed path and superimposing the a.c. voltage upon the battery voltage. To prevent the feed decoupling capacitor from shunting ring current, a break contact is placed in series with C_F . To prevent the line transformer primary windings from attenuating the ring voltage or introducing distortion, make contacts are connected in shunt with the transformer primary.

Each relay driver output must be protected by a diode connected close to the relay coil. The IC pin must also be protected against line transients coupled through the transformer. Standard secondary transient suppression must also be connected from Tip to GND and Ring to GND.

In order to minimize errors in flux cancellation, the ratio of resistors R_S and R_L must be carefully controlled. Normally, all would reside on a common hybrid circuit. The two resistors, R_S , must be very accurately matched as must the two resistors, R_F , although R_F need not match R_S .

FP3200/TP3202/TP3204

Application Information (Continued)

The a.c. loop voltage will appear at IC, amplified by the ratio $N_C/(2N_p)$. A d.c. bias voltage must be provided which is sufficiently negative to prevent the compensation transistor from saturating without producing excessive power dissipation in the integrated circuit. This bias voltage can be an intermediate supply voltage or may be generated by the compensation current flowing through a resistance. The resistance may be made up of the transformer winding resistance and discrete resistances such as the filter resistor shown in *Figure 6*. If the bias voltage is generated by an IR drop, a higher supply voltage or lower compensation current ratio will be required to allow for large variations in loop current, resulting in higher circuit power dissipation.

Design Example

Assuming a 0 TLP on the line of 0 dBm into 600Ω , a 3 dB overload corresponds to a peak signal level of 1.55 volts. The peak a.c. voltage at IC is therefore 1.55N, where $N=N_C/(2N_P)$. At minimum loop current, the d.c. bias at IC must be sufficiently positive of the zener voltage to allow negative swings without clipping. Allowing for the winding resistance and reactance, a safe limit is:

 $R_{C} \bullet I_{LOOP} (min)/N > 1.55N - V_{Z min} + |V_{BAT}|_{max}$ (1)

where V_Z is the zener voltage, R_C is the total resistance from IC to V_{BAT}

At the opposite extreme, the compensation transistor must not saturate with maximum loop current and positive peak swings. This corresponds to a voltage at IC of not less than

 $-\text{VIC}_{\text{sat}} + \text{VC} = 1.5 + I_{\text{LOOP}} (\text{max}) \bullet 2\text{R}_{\text{S}} \bullet \text{A}_{\text{V}}.$

Thus we require:

$$|V_{BAT}|$$
 (min) > R_C • I_{LOOP} (max)/N + 1.55N - VIC_{SAT}
+ I_{LOOP}(max) • 2R_S • A_V (2)

Substituting for R_C,

$$|V_{BAT}|(min) > (1.55N - V_{Zmin} + |V_{BAT}|_{max})$$

• $I_{LOOP}(max)/I_{LOOP}(min) + 1.55N + 1.5 + 30I_{LOOP}(max)$ Thus for a minimum loop current of 20 mA and a maximum of 100 mA, with a minimum zener voltage of 58 volts, and battery voltage from -42V to -54V, the maximum compensation current ratio is 6.18:1.

If N = 5 is chosen, i.e. N_C = 10 Np, the allowable range for R_C can then be calculated. From 1), R_C > 938 Ω , and from 2), R_C < 1487 Ω . Since the resistance of the compensation winding may typically be 600 Ω , an additional 820 Ω can safely be added in series to form a high frequency filter on the battery supply.

Finally, from Np/Nc = $A_V \bullet R_S/R_L$, $R_L = 150\Omega$.

Further Information

For additional information on design of suitable transformers see National Semiconductor Application Note AN-439.

For information on the design of matched attenuators suitable for setting Receive TLP levels, see the data sheet "TP3052 Family of COMBOTM Devices".

PRELIMINARY

TP3070/TP307

National Semiconductor Corporation

TP3070/TP3071 COMBO II™ Programmable PCM CODEC/Filter

General Description

The TP3070 series are second-generation combined PCM CODEC and Filter devices optimized for digital switching applications on subscriber and trunk line cards. Using advanced switched capacitor techniques, COMBO II combines transmit bandpass and receive lowpass channel filters with a companding PCM encoder and decoder. The devices are A-law and μ -law selectable and employ a conventional serial PCM interface capable of being clocked up to 4.096 MHz. A number of programmable functions may be controlled via a serial control port.

Channel gains are programmable over a 25.4 dB range in each direction, and a programmable filter is included to enable Hybrid Balancing to be adjusted to suit a wide range of loop impedance conditions. Both transformer and active SLIC interface circuits with real or complex termination impedances can be balanced by this filter, with cancellation in excess of 30 dB being readily achievable when measured across the passband against standard test termination networks.

To enable COMBO II to interface to the SLIC control leads, a number of programmable latches are included; each may be configured as either an input or an output. The TP3070 provides 6 latches and the TP3071 5 latches.

Features

- Complete CODEC and FILTER system including:
 - Transmit and receive PCM channel filters
 - $\mu\text{-law}$ or A-law companding coder and decoder
 - Receive power amplifier drives 300Ω
 - 4.096 MHz serial PCM data (max)
- Programmable Functions:
 - Transmit gain: 25.4 dB range, 0.1 dB steps
 - Receive gain: 25.4 dB range, 0.1 dB steps
 - Hybrid balance cancellation filter
 - Time-slot assignment; up to 64 slots/frame
 - 2 port assignment (TP3070)
 - 6 interface latches (TP3070)
 - A or µ-law
 - Analog loopback
 - Digital loopback
- Direct interface to solid-state SLICs
- Simplifies transformer SLIC; single winding secondary
- Standard serial control interface
- 70 mW operating power (typ)
- 5 mW standby power (typ)
- Meets or exceeds all CCITT and LSSGR specifications
- TTL and CMOS compatible digital interfaces

Connection Diagrams

Order Number TP3070V See NS Package Number V28A

Description

Pin Descriptions

Pin

- V_{CC} + 5V ±5% power supply.
- V_{BB} -5V ±5% power supply.
- GND Ground. All analog and digital signals are referenced to this pin.
- FS_X Transmit Frame Sync input. Normally a pulse or squarewave waveform with an 8 kHz repetition rate is applied to this input to define the start of the transmit time slot assigned to this device (non-delayed frame mode), or the start of the transmit frame (delayed frame mode using the internal time-slot assignment counter).
- FS_R Receive Frame Sync input. Normally a pulse or squarewave waveform with an 8 kHz repetition rate is applied to this input to define the start of the receive time slot assigned to this device (non-delayed frame mode), or the start of the receive frame (delayed frame mode using the internal time-slot assignment counter).
- BCLK Bit clock input used to shift PCM data into and out of the D_R and D_x pins. BCLK may vary from 64 kHz to 4.096 MHz in 8 kHz increments, and must be synchronous with MCLK.
- MCLK Master clock input used by the switched capacitor filters and the encoder and decoder sequencing logic. Must be 512 kHz, 1.536/1.544 MHz, 2.048 MHz or 4.096 MHz and synchronous with BCLK.
- $\begin{array}{ll} \mathsf{VF_xl} & \mbox{The Transmit analog high-impedance input. Voice} \\ \mbox{frequency signals present on this input are encoded} \\ \mbox{ed as an A-law or } \mu\mbox{-law PCM bit stream and shift} \\ \mbox{ed out on the selected } \mathsf{D_x pin.} \end{array}$
- $\label{eq:VFRO} VF_RO \quad \mbox{The Receive analog power amplifier output, capable of driving load impedances as low as 300 \Omega} (depending on the peak overload level required). PCM data received on the assigned D_R pin is decoded and appears at this output as voice frequency signals.$

Description

Pin

- D_x0 D_x1 is available on the TP3070 only; D_x0 is available on all devices. These Transmit Data TRI-STATE® outputs remain in the high impedance state except during the assigned transmit time slot on the assigned port, during which the transmit PCM data byte is shifted out on the rising edges of BCLK.
- $\overline{TS}_x 0$ $\overline{TS}_x 1$ is available on the TP3070 only; $\overline{TS}_x 0$ is
- $\overline{\text{TS}}_{x1} \quad \begin{array}{l} \text{available on all devices. Normally these opendrain outputs are floating in a high impedance state except when a time-slot is active on one of the D_x outputs, when the appropriate \overline{\text{TS}}_{x}$ output pulls low to enable a backplane line-driver.
- D_R0 D_R1 is available on the TP3070 only; D_R0 is avail-
- D_{R1} able on all devices. These receive data input(s) are inactive except during the assigned receive time slot of the assigned port when the receive PCM data is shifted in on the falling edges of BCLK.
- CCLK Control Clock input. This clock shifts serial control information into or out from CI/O when the \overline{CS} input is low, depending on the current instruction. CCLK may be asynchronous with the other system clocks.
- CI/O This is the Control Data I/O pin which is provided on the TP3071. Serial control information is shifted into or out from COMBO II on this pin when \overline{CS} is low. The direction of the data is determined by the current instruction as defined in Table I.
- CI This is a separate Control Input, available only on the TP3070. It can be connected to CO if required.
- CO This is a separate Control Output, available only on the TP3070. It can be connected to CI if required.
- CS Chip Select input. When this pin is low, control information can be written into or out from COMBO II via the CI/O pin (or CI and CO).
- IL5-IL0 IL5 through IL0 are available on the TP3070. IL4 through IL0 are available on the TP3071. Each Interface Latch I/O pin may be individually

Pin Descriptions (Continued)

Pin

Description

programmed as an input or an output determined by the state of the corresponding bit in the Latch Direction Register (LDR). For pins configured as inputs, the logic state sensed on each input is latched into the Interface Latch Register (ILR) whenever control data is written to COMBO II, while \overline{CS} is low, and the information is shifted out on the CO (or CI/O) pin. When configured as outputs, control data written into the ILR appears at the corresponding IL pins.

MR This logic input must be pulled low for normal operation of COMBO II. When pulled momentarily high (at least 1 μsec.), all programmable registers in the device are reset to the states specified under "Power-On Initialization".

Functional Description

POWER-ON INITIALIZATION

When power is first applied, power-on reset circuitry initializes the COMBO II and puts it into the power-down state. The gain control registers for the transmit and receive gain sections are programmed for minimum gain, the hybrid balance circuit is turned off, the power amp is disabled and the device is in the non-delayed timing mode. The Latch Direction Register (LDR) is pre-set with all IL pins programmed as inputs, placing the SLIC interface pins in a high impedance state. The CI/O pin is set as an input ready for the first control byte of the initialization sequence. Other initial states in the Control Register are indicated in Section 2.0.

A reset to these same initial conditions may also be forced by driving the MR pin momentarily high. This may be done either when powered-up or down. For normal operation this pin must be pulled low.

The desired modes for all programmable functions may be initialized via the control port prior to a Power-up command.

POWER-DOWN STATE

Following a period of activity in the powered-up state the power-down state may be re-entered by writing a Power-Down instruction into the serial control port as indicated in Table I. The power down instruction may be included within any other instruction code. It is recommended that the chip be powered down before executing any instructions. In the power-down state, all non-essential circuitry is de-activated and the D_x0 (and D_x1) outputs are in the high impedance TRI-STATE condition.

The coefficients stored in the Hybrid Balance circuit and the Gain Control registers, the data in the LDR and ILR, and all control bits remain unchanged in the power-down state unless changed by writing new data via the serial control port, which remains active. The outputs of the Interface Latches also remain active, maintaining the ability to monitor and control the SLIC.

TRANSMIT FILTER AND ENCODER

The Transmit section input, VF_xI , is a high impedance summing input which is used as the differencing point for the internal hybrid balance cancellation signal. No external components are necessary to set the gain. Following this circuit is a programmable gain/attenuation amplifier which is controlled by the contents of the Transmit Gain Register (see Programmable Functions section). An active pre-filter

then precedes the 3rd order high-pass and 5th order lowpass switched capacitor filters. The A/D converter has a compressing characteristic according to the standard CCITT A or μ 255 coding laws, which must be selected by a control instruction during initialization (see Tables I and II). A precision on-chip voltage reference ensures accurate and highly stable transmission levels. Any offset voltage arising in the gain-set amplifier, the filters or the comparator is canceled by an internal auto-zero circuit.

Each encode cycle begins immediately following the assigned Transmit time-slot. The total signal delay referenced to the start of the time-slot is approximately 165 μ s (due to the Transmit Filter) plus 125 μ s (due to encoding delay), which totals 290 μ s. Data is shifted out on D_X0 or D_X1 during the selected time slot on eight rising edges of BCLK.

DECODER AND RECEIVE FILTER

PCM data is shifted into the Decoder's Receive PCM Register via the D_R0 or D_R1 pin during the selected time-slot on the 8 falling edges of BCLK. The Decoder consists of an expanding DAC with either A or μ 255 law decoding characteristic, which is selected by the same control instruction used to select the Encode law during initialization. Following the Decoder is a 5th order low-pass switched capacitor filter with integral Sin x/x correction for the 8 kHz sample and hold. A programmable gain amplifier, which must be set by writing to the Receive Gain Register, is included, and finally a Post-Filter/Power Amplifier capable of driving a 300Ω load to \pm 3.6V or a 15 kΩ load to \pm 4.0V at peak overload.

A decode cycle begins immediately after each receive timeslot, and 10 μ s later the Decoder DAC output is updated. The total signal delay is 10 μ s plus 120 μ s (filter delay) plus 62.5 μ s ($\frac{1}{2}$ frame) which gives approximately 190 μ s.

PCM INTERFACE

The FS_x and FS_R frame sync inputs determine the beginning of the 8-bit transmit and receive time-slots respectively. They may have any duration from a single cycle of BCLK HIGH to one MCLK period LOW. Two different relationships may be established between the frame sync inputs and the actual time-slots on the PCM busses by setting bit 3 in the Control Register (see Table II). Non-delayed data mode is similar to long-frame timing on the TP3050/60 series of devices; (COMBO ITM) time-slots begin nominally coincident with the rising edge of the appropriate FS input. The alternative is to use Delayed Data mode, which is similar to short-frame sync timing on COMBO I, in which each FS input must be high at least a half-cycle of BCLK earlier than the time-slot. The Time-Slot Assignment circuit on the device can only be used with Delayed Data timing.

When using Time-Slot Assignment, the beginning of the first time-slot in a frame is identified by the appropriate FS input. The actual transmit and receive time-slots are then determined by the internal Time-Slot Assignment counters.

Transmit and Receive frames and time-slots may be skewed from each other by any number of BCLK cycles. During each assigned Transmit time-slot, the selected $D_x0/1$ output shifts data out from the PCM register on the rising edges of BCLK. TS_x0 (or TS_x1 as appropriate) also pulls low for the first 7½ bit times of the time-slot to control the TRI-STATE Enable of a backplane line-driver. Serial PCM data is shifted into the selected $D_R0/1$ input during each assigned Receive time-slot on the falling edges of BCLK. D_x0 or D_x1 and D_R0 or D_R1 are selectable on the TP3070 only, see Section 6.

	TABL	E I. F	rogr	amm	able	Regi	ister	Instruc	tions
Function			By	te 1 ((Note	e 1)			Byte 2 (Note 1)
	7	6	5	4	3	2	1	0	7 6 5 4 3 2 1 0
Single Byte Power-Up/Down	Р	Х	Х	х	х	х	0	Х	None
Write Control Register	Р	0	0	0	0	0	1	х	See Table II
Read-Back Control Register	Р	0	0	0	0	1	1	х	See Table II
Write to Interface Latch Register	Р	0	0	0	1	0	1	х	See Table V
Read Interface Latch Register	Р	0	0	0	1	1	1	х	See Table V
Write Latch Direction Register	Р	0	0	1	0	0	1	x	See Table IV
Read Latch Direction Register	Р	0	0	1	0	.1	1	х	See Table IV
Write Receive Gain Register	P	0	1	0	0	0	1	х	See Table VIII
Read Receive Gain Register	Р	0	1	0	0	1	1	х	See Table VIII
Write Transmit Gain Register	Р	0	1	0	1	0	1	х	See Table VII
Read Transmit Gain Register	Р	0	1	0	1	1	1	Х	See Table VII
Write Receive Time-Slot/Port	Р	1	0	0	1	0	1	x	See Table VI
Read-Back Receive Time-Slot/Port	Р	1	0	0	1	1	1	х	See Table VI
Write Transmit Time-Slot/Port	Р	1	0	1	0	0	1	х	See Table VI
Read-Back Transmit Time-Slot/Port	Р	1	0	1	0	1	1	х	See Table VI

Note 1: Bit 7 of bytes 1 and 2 is always the first bit clocked into or out from the CI, CO or CI/O pin. X = don't care.

Note 2: "P" is the power-up/down control bit, see "Power-up" section. ("0" = Power Up, "1" = Power Down)

Note 3: 3 additional registers are provided for the Hybrid Balance Filter, see Section 9.0.

Functional Decription (Continued)

SERIAL CONTROL PORT

Control information and data are written into or read-back from COMBO II via the serial control port consisting of the control clock CCLK; the serial data input/output, CI/O, (or separate input, CI, and output, CO, on the TP3070 only); and the Chip Select input, CS. All control instructions require 2 bytes, as listed in Table I, with the exception of a single byte power-up/down command.

To shift control data into COMBO II, CCLK must be pulsed high 8 times while \overline{CS} is low. Data on the CI/O (or CI) input is shifted into the serial input register on the falling edge of each CCLK pulse. After all data is shifted in, the contents of the input shift register are decoded, and may indicate that a 2nd byte of control data will follow. This second byte may either be defined by a second byte-wide \overline{CS} pulse or may follow the first contiguously, i.e. it is not mandatory for \overline{CS} to return high in between the first and second control bytes. At the end of CCLK8 in the 2nd control byte the data is loaded into the appropriate programmable register. \overline{CS} may remain low continuously when programming successive registers, if desired. However, \overline{CS} should be set high when no data transfers are in progress.

To readback Interface Latch data or status information from COMBO II, the first byte of the appropriate instruction is strobed in during the first \overline{CS} pulse, as defined in Table I. \overline{CS} must then be taken low for a further 8 CCLK cycles, during which the data is shifted onto the CO or CI/O pin on the rising edges of CCLK. When \overline{CS} is high the CO or CI/O pin is in the high-impedance TRI-STATE, enabling the CI/O pins of many devices to be multiplexed together.

Programmable Functions

1.0 POWER-UP/DOWN CONTROL

Following power-on initialization, power-up and power-down control may be accomplished by writing any of the control instructions listed in Table I into COMBO II with the "P" bit set to "0" for power-up or "1" for power-down. Normally it is recommended that all programmable functions be initially programmed while the device is powered down. Power state control can then be included with the last programming instruction or the separate single-byte instruction. Any of the programmable registers may also be modified while the device is powered-up or down by setting the "P" bit as indicated. When the power up or down control is entered as a single byte instruction, Bit one (1) must be reset to a 0.

When a power-up command is given, all de-activated circuits are activated, but the TRI-STATE PCM output(s), D_x0 (and D_x1), will remain in the high impedance state until the second FS_x pulse after power-up.

2.0 CONTROL REGISTER INSTRUCTION

The first byte of a READ or WRITE instruction to the Control Register is as shown in Table I. The second byte has the following bit functions:

	TABLE II.	Control	Register	Byte 2	Functions
--	-----------	---------	----------	--------	-----------

	Bit Number and Name)	
7	6	5	4	3	2	1	0	Function
F ₁	Fo	MA	IA	DN	DL	AL	PP	
0 0 1 1	0 1 0 1							MCLK = 512 kHz MCLK = 1.536 or 1.544 MHz MCLK = 2.048 MHz* MCLK = 4.096 MHz
		0 1 1	X 0 1					Select μ-255 law* A-law, Including Even Bit Inversion A-law, No Even Bit Inversion
				0 1				Delayed Data Timing Non-Delayed Data Timing*
					0 1 0	0 X 1		Normal Operation* Digital Loopback Analog Loopback
							0 1	Power Amp Enabled in PDN Power Amp Disabled in PDN*

* = State at power-on initialization.

Programmable Functions (Continued)

TABLE III. Coding Law Conventions

	μ255 law MSB LSB	True A-law with even bit inversion MSB LSB	A-law without even bit inversion MSB LSB
V _{IN} = +Full Scale	1000000	10101010	11111111
$V_{IN} = 0V$	11111111 01111111	11010101 01010101	10000000 00000000
$V_{IN} = -Full Scale$	0000000	00101010	01111111

Note 1: The MSB is always the first PCM bit shifted in or out of COMBO II.

2.1 Master Clock Frequency Selection

A Master clock must be provided to COMBO II for operation of the filter and coding/decoding functions. The MCLK frequency must be either 512 kHz, 1.536 MHz, 1.544 MHz, 2.048 MHz, or 4.096 MHz and must be synchronous with BCLK. Bits F₁ and F₀ (see Table II) must be set during initialization to select the correct internal divider.

2.2 Coding Law Selection

Bits "MA" and "IA" in Table II permit the selection of μ 255 coding or A-law coding, with or without even bit inversion.

2.3 Analog Loopback

Analog Loopback mode is entered by setting the "AL" and "DL" bits in the Control Register as shown in Table II. In the analog loopback mode, the Transmit input VF_xI is isolated from the input pin and internally connected to the VF_RO output, forming a loop from the Receive PCM Register back to the Transmit PCM Register. The VF_RO pin remains active, and the programmed settings of the Transmit and Receive gains remain unchanged, thus care must be taken to ensure that overload levels are not exceeded anywhere in the loop.

2.4 Digital Loopback

Digital Loopback mode is entered by setting the "AL" and "DL" bits in the Control Register as shown in Table II. This mode provides another stage of path verification by enabling data written into the Receive PCM Register to be read back from that register in any Transmit time-slot at $D_x0/1$. No PCM decoding or encoding takes place in this mode, VF_RO maintains a low impedance idle output.

3.0 INTERFACE LATCH DIRECTIONS

Immediately following power-on, all Interface Latches assume they are inputs, and therefore all IL pins are in a high impedance state. Each IL pin may be individually programmed as a logic input or output by writing the appropriate instruction to the LDR, see Tables I and IV.

Bits L_5-L_0 must be set by writing the specified instruction to the LDR with the L bits in the second byte set as follows:

TABLE IV. Byte 2 Functions of Latch Direction Register

Byte 2 Bit Number								
7	6	5	4	3	2	1	0	
եօ	L ₁	L2	L3	L ₄	L ₅	Х	Х	
L _n Bit				l	L Direct	ion		
0				Input				
1					Outpu	t		

X = don't care

4.0 INTERFACE LATCH STATES

Interface Latches configured as outputs assume the state determined by the appropriate data bit in the 2-byte instruction written to the Interface Latch Register (ILR) as shown in Tables I and V. Latches configured as inputs will sense the state applied by an external source, such as the Off-Hook detect output of a SLIC. All bits of the ILR, i.e. sensed inputs and the programmed state of outputs, can be read back in the 2nd byte of a READ from the ILR.

It is recommended that, during initialization, the state of IL pins to be configured as outputs should first be programmed, followed immediately by the Latch Direction Register.

TABLE V. Interface Latch Data Bit Order

Bit Number									
7	6	5	4	3	2	1	0		
D ₀	D ₁	D ₂	D ₃	D ₄	D ₅	х	х		

5.0 TIME-SLOT ASSIGNMENT

COMBO II can operate in either fixed time-slot or time-slot assignment mode for selecting the Transmit and Receive PCM time-slots. Following power-on, the device is automatically in Non-Delayed Timing mode, in which the time-slot always begins with the leading (rising) edge of frame sync inputs FS_x and FS_r. Time-Slot Assignment may only be used with Delayed Data timing; see *Figure 5*. FS_x and FS_r may have any phase relationship with each other in BCLK period movements.

Alternatively, the internal time-slot assignment counters and comparators can be used to access any time-slot in a frame, using the frame sync inputs as marker pulses for the beginning of transmit and receive time-slot 0. In this mode, a frame may consist of up to 64 time-slots of 8 bits each. A time-slot is assigned by a 2-byte instruction as shown in Tables I and VI. The last 6 bits of the second byte indicate the selected time-slot from 0–63 using straight binary notation. A new assignment becomes active on the second frame following the end of the Chip-Select for the second control byte. The "EN" bit allows the PCM inputs, $D_RO/1$, or outputs, $D_xO/1$, as appropriate, to be enabled or disabled.

Time-Slot Assignment mode requires that the FS_x and FS_R pulses must conform to the delayed data timing format shown in *Figure 6.*

FP3070/TP3071

	TABLE VI. Time-Slot and Port Assignment Instruction								
	Bit Number and Name							Function	
7 EN	6 PS (Note 1)	5 T ₅ (Note 2)	4 T4	3 T ₃	2 T2	1 T ₁	0 T ₀		
0	0	x	х	x	x	x	х	Disable D _x 0 Output (Transmit Instruction) Disable D _R 0 Input (Receive Instruction)	
0	1	x	х	×	х	x	х	Disable D_x 1 Output (Transmit Instruction) Disable D_R 1 Input (Receive Instruction)	
1	1 0 Assign One Binary Coded Time-Slot from 0–63 Assign One Binary Coded Time-Slot from 0–63					Enable D _x 0 Output (Transmit Instruction) Enable D _R 0 Input (Receive Instruction)			
1	1	Assi Assi	gn One Bi gn One Bi	nary Codeo nary Codeo	d Time-Slo d Time-Slo	t from 0–6 t from 0–6	3 3	Enable D_x 1 Output (Transmit Instruction) Enable D_R 1 Input (Receive Instruction)	

Note 1: The "PS" bit MUST always be set to 0 for the TP3071.

Note 2: T5 is the MSB of the Time-slot assignment.

Programmable Functions (Continued)

6.0 PORT SELECTION

On the TP3070 only, an additional capability is available; 2 Transmit serial PCM ports, D_x0 and D_x1 , and 2 Receive serial PCM ports, D_R0 and D_R1 , are provided to enable two-way space switching to be implemented. Port selections for transmit and receive are made within the appropriate time-slot assignment instruction using the "PS" bit in the second byte. Port Selection may only be used in Delayed Data timing mode.

On the TP3071, only ports D_x0 and D_R0 are available, therefore the "PS" bit MUST always be set to 0 for these devices.

Table VI shows the format for the second byte of both transmit and receive time-slot and port assignment instructions.

7.0 TRANSMIT GAIN INSTRUCTION BYTE 2

The transmit gain can be programmed in 0.1 dB steps by writing to the Transmit Gain Register as defined in Tables I and VII. This corresponds to a range of 0 dBm0 levels at VF_xI between 1.619 Vrms and 0.087 Vrms (equivalent to +6.4 dBm to -19.0 dBm in 600 Ω).

To calculate the binary code for byte 2 of this instruction for any desired input 0 dBm0 level in Vrms, take the nearest integer to the decimal number given by:

200 × log₁₀ (V/0.08595)

and convert to the binary equivalent. Some examples are given in Table VII.

8.0 RECEIVE GAIN INSTRUCTION BYTE 2

The receive gain can be programmed in 0.1 dB steps by writing to the Receive Gain Register as defined in Tables I

TABLE VII. Byte 2 of Transmit Gain Instructions

Bit Number 7 6 5 4 3 2 1 0	0 dBm0 Test Level (Vrms) at VF _x i
00000000	No Output
00000001	0.087
00000010	0.088
	a a secondaria de la composición de la
11111110	1.600
11111111	1.619

and VIII. Note the following restrictions on output drive capability:

- a) 0 dBm0 levels \leq 1.96 Vrms at VF_RO may be driven into a load of \geq 15 k Ω to GND;
- b) 0 dBm0 levels \leq 1.90 Vrms at VF_RO may be driven into a load of \geq 600 Ω to GND;
- c) 0 dBm0 levels \leq 1.70 Vrms at VFRO may be driven into a load of \geq 300 Ω to GND.

To calculate the binary code for byte 2 of this instruction for any desired output 0 dBm0 level in Vrms, take the nearest integer to the decimal number given by:

$200 \times \log_{10} (V/0.1046)$

and convert to the binary equivalent. Some examples are given in Table VIII.

TABLE VIII. Byte 2 of Receive Gain Instruction

Bit Number 7 6 5 4 3 2 1 0	0 dBm0 Test Level (Vrms) at VF _R O
00000000	No Output (Low Z to GND)
00000001	0.106
00000010	0.107
_	<u> </u>
11111110	1.95
11111111	1.96

Programmable Functions (Continued)

9.0 HYBRID BALANCE FILTER

The Hybrid Balance Filter on COMBO II is a programmable filter consisting of a second-order Bi-Quad section, Hybal1, followed by a first-order section, Hybal2, and a programmable attenuator. Either of the filter sections can be bypassed if only one is required to achieve good cancellation. A selectable 180 degree inverting stage is included to compensate for interface circuits which also invert the transmit input relative to the receive output signal. The Bi-quad is intended mainly to balance low frequency signals across a transformer SLIC, and the first order section to balance midrange to higher audio frequency signals.

As a Bi-Quad, Hybal1 has a pair of low frequency zeroes and a pair of complex conjugate poles. When configuring the Bi-Quad, matching the phase of the hybrid at low to midband frequencies is most critical. Once the echo path is correctly balanced in phase, the magnitude of the cancellation signal can be corrected by the programmable attenuator.

The Bi-Quad mode of Hybal1 is most suitable for balancing interfaces with transformers having high inductance of 1.5 Henries or more. An alternative configuration for smaller transformers is available by converting Hybal1 to a simple first-order section with a single real low frequency pole and 0 Hz zero. In this mode, the pole frequency may be programmed.

Many line interfaces can be adequately balanced by use of the Hybal1 section only, in which case the Hybal2 filter should be de-selected to bypass it.

Hybal2, the higher frequency first-order section, is provided for balancing an electronic SLIC, and is also helpful with a transformer SLIC in providing additional phase correction for mid and high-band frequencies, typically 1 kHz to 3.4 kHz. Such a correction is particularly useful if the test balance impedance includes a capacitor of 100 nF or less, such as the loaded and non-loaded loop test networks in the United States. Independent placement of the pole and zero location is provided.

Figure 2 shows a simplified diagram of the local echo path for a typical application with a transformer interface. The magnitude and phase of the local echo signal, measured at VF_xI, are a function of the termination impedance Z_T, the line transformer and the impedance of the 2W loop, ZL. If the impedance reflected back into the transformer primary is expressed as ZL' then the echo path transfer function from VF_RO to VF_xI is:

$$H(w) = Z_{L}'/(Z_{T} + Z_{L}')$$
 (1)

9.1 PROGRAMMING THE FILTER

On initial power-up the Hybrid Balance filter is disabled. Before the hybrid balance filter can be programmed it is necessary to design the transformer and termination impedance in order to meet system 2W input return loss specifications, which are normally measured against a fixed test impedance (600 or 900Ω in most countries). Only then can the echo path be modeled and the hybrid balance filter programmed. Hybrid balancing is also measured against a fixed test impedance, specified by each national Telecom administration to provide adequate control of talker and listener echo over the majority of their network connections. This test impedance is Z₁ in Figure 2. The echo signal and the degree of transhybrid loss obtained by the programmable filter must be measured from the PCM digital input, D_B0, to the PCM digital output, Dx0, either by digital test signal analysis or by conversion back to analog by a PCM CODEC/Filter.

Three registers must be programmed in COMBO II to fully configure the Hybrid Balance Filter as follows:

Register 1:	select/de-select Hybrid Balance Filter;
	invert/non-invert cancellation signal;
	select/de-select Hybal2 filter section;
	attenuator setting.

- Register 2: select/de-select Hybal1 filter; set Hybal1 to Bi-quad or 1st order; pole and zero frequency selection.
- Register 3: program pole frequency in Hybal2 filter; program zero frequency in Hybal2 filter.

Standard filter design techniques may be used to model the echo path (see Equation 1) and design a matching hybrid balance filter configuration. Alternatively, the frequency response of the echo path can be measured and the hybrid balance filter designed to replicate it.

A Hybrid Balance filter design guide and software optimization program are available under license from National Semiconductor Corporation; order TP3077SW.

FIGURE 2. Simplified Diagram of Hybrid Balance Circuit

Applications Information

Figure 3 shows a typical application of the TP3071 together with a transformer-based SLIC using the TP3204 Magnetic Compensation device. Four of the IL latches are configured as outputs to control the relay drivers on the SLIC, while IL4 is an input for the Supervision signal. *Figure 4* shows a similar arrangement with a monolithic SLIC.

POWER SUPPLIES

While the pins of the TP3070 COMBO II devices are well protected against electrical misuse, it is recommended that the standard CMOS practice of applying GND to the device before any other connections are made should always be followed. In applications where the printed circuit card may

be plugged into a hot socket with power and clocks already present, an extra long ground pin on the connector should be used.

To minimize noise sources all ground connections to each device should meet at a common point as close as possible to the GND pin in order to prevent the interaction of ground return currents flowing through a common bus impedance. Power supply decoupling capacitors of 0.1 μ F should be connected from this common point to V_{CC} and V_{BB} as close to the device pins as possible.

Further guidelines on PCB layout techniques are provided in Application Note AN-370.

45V

FIGURE 3. Typical Application with Transformer SLIC

TL/H/8635-7

TL/H/8635-6

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

V _{CC} to GND	7V
Voltage at VF _x I	V_{CC} + 1V to V_{BB} – 1V
Voltage at any Digital Input	V_{CC} + 1V to GND - 1V

Storage Temperature Range	-65°C to + 150°C
V _{BB} to GND	-7V
Current at VF _r 0	± 100 mA
Current at any Digital Output	± 50 mA
Lead Temperature (Soldering, 10 sec.)	300°C
ESD rating is to be determined (TBD).	

Electrical Characteristics

Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for $V_{CC} = +5V \pm 5\%$, $V_{BB} = -5V \pm 5\%$; $T_A = 0^{\circ}$ C to 70°C by correlation with 100% electrical testing at $T_A = 25^{\circ}$ C. All other limits are assured by correlation with other production tests and/or product design and characterization. All signals referenced to GND. Typicals specified at $V_{CC} = +5V$, $V_{BB} = -5V$, $T_A = 25^{\circ}$ C.

Symboi	Parameter	Conditions	Min	Тур	Max	Units
DIGITAL	INTERFACES					
VIL	Input Low Voltage	All Digital Inputs (DC Meas.)*			0.7	v
VIH	Input High Voltage	All Digital Inputs (DC Meas.)*	2.0			V
V _{OL}	Output Low Voltage	D_x 0, D_x 1 and CO, $I_L = 3.2 \text{ mA}$, All Other Digital Outputs, $I_L = 1 \text{ mA}$			0.4	v
V _{OH}	Output High Voltage	D_X0 , D_X1 and CO, $I_L = -3.2 \text{ mA}$, All Other Digital Outputs (except \overline{TS}_X), $I_L = -1 \text{ mA}$ All Digital Outputs, $I_L = -100 \mu A$	2.4 V _{CC} – 0.5			v v
ارر	Input Low Current	Any Digital Input, GND < V _{IN} < V _{IL}	- 10		10	μA
Чн	Input High Current	Any Digital Input, V _{IH} < V _{IN} < V _{CC}	- 10		10	μA
I _{OZ}	Output Current in High Impedance State (TRI-STATE)	D_x 0, D_x 1, CO and CI/O (as an Output) IL5–IL0 When Selected as Inputs GND < V_{OUT} < V_{CC}	- 10		10	μΑ
ANALOG	INTERFACES					
IVFXI	Input Current, VF _X 1	-3.3V < VF _x I < 3.3V	- 10.0		10.0	μA
R _{VFXI}	Input Resistance	-3.3V < VF _X I < 3.3V	390			kΩ
VOS _X	Input Offset Voltage at VF _X I				20	mV
RL _{VFRO}	Load Resistance	-3.5V < VF _R O < 3.5V	300			Ω
CL _{VFRO}	Load Capacitance	$RL_{VFRO} \ge 300\Omega$ CL_{VFRO} from VF_RO to GND			200	pF
RO _{VFRO}	Output Resistance	Steady Zero PCM Code Applied to D_R0 or D_R1		1.0	3.0	Ω
VOSR	Output Offset Voltage at V _{FRO}	Alternating \pm Zero PCM Code Applied to D _R 0 or D _R 1, Maximum Receive Gain	200		200	mV
POWER	DISSIPATION					
I _{CC} 0	Power Down Current	CCLK, CI/O, CI, CO, $= 0.4$ V, $\overline{CS} = 2.4$ V Interface Latches Set as Outputs with No Load, All Other Inputs Active, Power Amp Disabled			1.5	mA
I _{BB} 0	Power Down Current	As Above			-0.3	mA
I _{CC} 1	Power Up Current	CCLK, CI/O, CI, CO = $0.4V$, $\overline{CS} = 2.4V$ No Load on Power Amp Interface Latches Set as Outputs with No Load		7.0	10.0	mA
I _{BB} 1	Power Up Current	As Above		-7.0	- 10.0	mA
Note *: Se	e definitions and timing conven	tions section.				

TP3070/TP3071

Timing Specifications

Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for $V_{CC} = +5V \pm 5\%$; $V_{BB} = -5V \pm 5\%$; $T_A = 0^{\circ}C$ to 70°C by correlation with 100% electrical testing at $T_A = 25^{\circ}C$. All other limits are assured by correlation with other production tests and/or product design and characterization. All signals referenced to GND. Typicals specified at $V_{CC} = +5V$, $V_{BB} = -5V$, $T_A = 25^{\circ}C$.

All timing parameters are measured at V_{OH} = 2.0V and V_{OL} = 0.7V.

See Definitions and Timing Conventions section for test methods information.

MASTER CLC f _{MCLK} F twmh F	OCK TIMING Frequency of MCLK Period of MCLK High Period of MCLK Low Bise Time of MCLK Low	Selection of Frequency is Programmable (See Table III) Measured from V _{IH} to V _{IH} (See Note)		512 1536 1544 2048 4096		kHz kHz kHz
fMCLK F	Frequency of MCLK Period of MCLK High Period of MCLK Low Bise Time of MCLK	Selection of Frequency is Programmable (See Table III) Measured from V _{IH} to V _{IH} (See Note)		512 1536 1544 2048 4096		kHz kHz kHz
t _{WMH} F	Period of MCLK High Period of MCLK Low Bise Time of MCLK	Measured from V _{IH} to V _{IH} (See Note)				kHz kHz
	Period of MCLK Low	14 14 14 10 NI I V	80			ns
t _{WML} F	Bise Time of MCI K	Measured from VIL to VIL (See Note)	80			ns
t _{RM} F		Measured from V_{IL} to V_{IH}			30	ns
t _{FM} F	Fall Time of MCLK	Measured from V_{IH} to V_{IL}			30	ns
t _{HBM} H	HOLD Time, BCLK LOW to MCLK HIGH	TP3070 Only	50			ns
PCM INTERF	ACE TIMING					
f _{BCLK} F	Frequency of BCLK	May Vary from 64 kHz to 4096 kHz in 8 kHz Increments	64		4096	kHz
t _{WBH} F	Period of BCLK High	Measured from VIH to VIH	80			ns
t _{WBL} F	Period of BCLK Low	Measured from VIL to VIL	80			ns
t _{RB} F	Rise Time of BCLK	Measured from V_{IL} to V_{IH}			30	ns
t _{FB} F	Fall Time of BCLK	Measured from VIH to VIL			30	ns
t _{HBF} H	Hold Time, BCLK Low to FS _{X/R} High or Low		0			ns
t _{SFB} S	Setup Time, FS _{X/R} High to BCLK Low		30			ns
t _{DBD} [Delay Time, BCLK High to Data Valid	Load = 100 pF Plus 2 LSTTL Loads			80	ns
t _{DBZ} [Delay Time, BCLK Low or FS _X Low to D _x 0/1 Disabled	Applies to the Later Edge In Non-Delayed Data Mode Only	15		80	ns
t _{dbt} [= F	Delay Time, BCLK High to \overline{TS}_X Low if FS _X High, or FS _X High to \overline{TS}_X Low if BCLK High	Load = 100 pF Plus 2 LSTTL Loads			60	ns
t _{ZBT} I I	$\begin{array}{l} TRI-STATE Time, BCLK \\ Low to \overline{TS}_X \operatorname{High} if \operatorname{FS}_X \\ Low, or BCLK High to \overline{TS}_X \\ High if \operatorname{FS}_X \operatorname{High} \end{array}$		15		60	ns
t _{DFD} I	Delay Time, FS _{X/R} High to Data Valid	$\begin{array}{l} \text{Load} = 100 \text{ pF Plus 2 LSTTL Loads,} \\ \text{Applies if FS}_{X/R} \text{ Rises Later than} \\ \text{BCLK Rising Edge in Non-Delayed Data} \\ \text{Mode Only} \end{array}$			80	ns
t _{SDB}	Setup Time, D _R 0/1 Valid to BCLK Low	·	30			ns
t _{HBD} I	Hold Time, BCLK Low to D _R 0/1 Invalid		10			ns

TP3070/TP3071

Timing Specifications (Continued)

Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for $V_{CC} = +5V \pm 5\%$, $V_{BB} = -5V \pm 5\%$; $T_A = 0^{\circ}$ C to 70°C by correlation with 100% electrical testing at $T_A = 25^{\circ}$ C. All other limits are assured by correlation with other production tests and/or product design and characterization. All signals referenced to GND. Typicals specified at $V_{CC} = +5V$, $V_{BB} = -5V$, $T_A = 25^{\circ}$ C.

All timing parameters are measured at $V_{\mbox{OH}}$ = 2.0V and $V_{\mbox{OL}}$ = 0.7V.

See Definitions and Timing Conventions section for test methods information.

Symbol	Parameter	Conditions	Min	Тур	Max	Units	
SERIAL CONTROL PORT TIMING							
fcclk	Frequency of CCLK				2048	kHz	
twch	Period of CCLK High	Measured from V_{IH} to V_{IH}	160			ns	
tWCL	Period of CCLK Low	Measured from VIL to VIL	160			ns	
t _{RC}	Rise Time of CCLK	Measured from VIL to VIH			50	ns	
t _{FC}	Fall Time of CCLK	Measured from VIH to VIL			50	ns	
tHCS	Hold Time, CCLK Low to CS Low	CCLK1	10			ns	
tHSC	Hold Time, CCLK Low to CS High	CCLK 8	100			ns	
tssc	Setup Time, CS Transition to CCLK Low		50			ns	
tSDC	Setup Time, Cl (OI/O) Data In to CCLK Low		50			ns	
^t HCD	Hold Time, CCLK Low to CI/O Invalid		50			ns	
tDCD	Delay Time, CCLK High to CI/O Data Out Valid	Load = 100 pF plus 2 LSTTL Loads			50	ns	
t _{DSD}	Delay Time, CS Low to CO (CI/O) Valid	Applies Only if Separate CS used for Byte 2			50	ns	
t _{DDZ}	Delay Time, CS High to CO (CI/O) High Impedance	Applies when CS High Occurs before 9th CCLK High	15		80	ns	
INTERFAC	E LATCH TIMING						
tsLC	Setup Time, IL to CCLK 8 of Byte 1	Interface Latch Inputs Only	100			ns	
t _{HCL}	Hold Time, IL Valid from 8th CCLK Low (Byte 1)		50			ns	
t _{DCL}	Delay Time CCLK 8 of Byte 2 to IL	Interface Latch Outputs Only $C_L = 50 \text{ pF}$			200	ns	
MASTER F	RESET PIN						
t _{WMR}	Duration of Master Reset High		1			μs	

170597\070597

Transmission Characteristics

Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for $V_{CC} = +5V \pm 5\%$, $V_{BB} = -5V \pm 5\%$; $T_A = 0^{\circ}C$ to 70°C by correlation with 100% electrical testing at $T_A = 25^{\circ}C$. f = 1015.625 Hz, $VF_XI = 0$ dBm0, D_R0 or $D_R1 = 0$ dBm0 PCM code. Transmit and receive gains programmed for maximum 0 dBm0 test levels, hybrid balance filter disabled. All other limits are assured by correlation with other production tests and/or product design and characterization. All signals referenced to GND. Typicals specified at $V_{CC} = +5V$, $V_{BB} = -5V$, $T_A = 25^{\circ}C$.

Symbol	Parameter	Conditions	Min	Тур	Max	Units	
AMPLITUDE RESPONSE							
-	Absolute Levels	The Maximum 0 dBm0 Levels are: VF _x I VF _R O (15 kΩ Load)		1.619 1.963		Vrms Vrms	
		The Minimum 0 dBm0 Levels are: VF _x I VF _R O (Any Load > 300Ω)		87.0 106.0		mVrms mVrms	
T _{max}	Maximum Overload	The Nominal Overload Levels are: VF_xI —A-law μ -law VF_RO —A-law (600 Ω Load) μ -law (600 Ω Load) The Maximum Overload Levels are: VF_xI —A-law μ -law VF_RO —A-law (15 k Ω Load) μ -law (15 k Ω Load) The Minimum Overload Levels are: VF_xI —A-law μ -law VF_RO —A-law μ -law (Any Load > 300 Ω) μ -law (Any Load > 300 Ω)		2.32 2.33 2.73 2.74 2.32 2.33 2.82 2.83 124.9 125.3 152.2 152.7		Vrms Vrms Vrms Vrms Vrms Vrms Vrms mvrms mvrms mvrms mvrms mvrms	
G _{XA}	Transmit Gain Absolute Accuracy	$\begin{array}{l} \mbox{Transmit Gain Programmed for Maximum} \\ 0 \mbox{ dBm0 Test Level.} \\ \mbox{Measure Deviation of Digital Code from} \\ \mbox{Ideal 0 dBm0 PCM Code at } D_x 0/1. \\ \mbox{T}_A = 25^\circ \mbox{C}, \mbox{V}_{CC} = 5 \mbox{V}, \mbox{V}_{BB} = -5 \mbox{V}. \end{array}$	-0.15		0.15	dB	
G _{XAG}	Transmit Gain Variation with Programmed Gain	Measure Transmit Gain Over the Range from Maximum to Minimum. Calculate the Deviation from the Programmed Gain Relative to G_{XA} , i.e., $G_{XAG} = G_{actual} - G_{prog} - G_{XA}$. $T_A = 25^{\circ}$ C, $V_{CC} = 5$ V, $V_{BB} = 5$ V	-0.1		0.1	dB	
G _{XAF}	Transmit Gain Variation with Frequency	$ \begin{array}{l} \mbox{Relative to 1015.625 Hz, (Note 4)} \\ \mbox{Minimum Gain} < G_X < \mbox{Maximum Gain} \\ \mbox{D}_R 0 \ (or \ D_R 1) = 0 \ \ dBm 0 \ \ Code, \\ \mbox{f} = 60 \ \ \ Hz \\ \mbox{f} = 200 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$			-26 -0.1 0.15 0.0 -14 -32	dB dB dB dB dB dB	

Transmission Characteristics (Continued)

Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for $V_{CC} = +5V \pm 5\%$, $V_{BB} = -5V \pm 5\%$; $T_A = 0^{\circ}C$ to 70°C by correlation with 100% electrical testing at $T_A = 25^{\circ}C$. f = 1015.625 Hz, $VF_XI = 0$ dBm0, D_R0 or $D_R1 = 0$ dBm0 PCM code. Transmit and receive gains programmed for maximum 0 dBm0 test levels, hybrid balance filter disabled. All other limits are assured by correlation with other production tests and/or product design and characterization. All signals referenced to GND. Typicals specified at $V_{CC} = +5V$, $V_{BB} = -5V$, $T_A = 25^{\circ}C$.

Symbol	Parameter	Conditions	Min	Тур	Max	Units		
AMPLITUDE RESPONSE (Continued)								
G _{XAF} (Continued)		$\begin{array}{l} G_X = 0 \; dB, VF_x I = 1.619 \; Vrms \\ D_R 0 \; or \; D_R 1 = 0 \; dBm0 \; Code \; (Note \; 4) \\ f = 62.5 \; Hz \\ f = 203.125 \; Hz \\ f = 203.125 \; Hz \\ f = 515.625 \; Hz \\ f = 515.625 \; Hz \\ f = 3015.625 \; Hz \\ f = 3015.625 \; Hz \\ f = 3984.375 \; Hz \\ f = 4593.750 \; Hz , Measure \; 3406.25 \; Hz \\ f = 5015.625 \; Hz , Measure \; 2984.375 \; Hz \\ f = 10015.625 \; Hz , Measure \; 2015.625 \; Hz \\ \end{array}$	- 1.7 - 0.15 - 0.15 - 0.15 - 0.15 - 0.7		-24.9 -0.1 0.15 0.15 0.15 0.0 -13.5 -32 -32 -32	dB dB dB dB dB dB dB dB dB dB dB dB		
G _{XAT}	Transmit Gain Variation with Temperature	$\begin{array}{l} \mbox{Measured Relative to } G_{XA}, V_{CC} = 5V, \\ V_{BB} = -5V, \\ \mbox{Minimum gain} < G_X < \mbox{Maximum Gain} \end{array}$	-0.1		0.1	dB		
G _{XAV}	Transmit Gain Variation with Supply	Measured Relative to G_{XA} $V_{CC} = +5V \pm 5\%$, $V_{BB} = -5V \pm 5\%$ $T_A = 25^{\circ}C$, $G_X =$ Maximum Gain	-0.05		0.05	dB		
G _{XAL}	Transmit Gain Variation with Signal Level	Sinusoidal Test Method. Reference Level = 0 dBm0. $VF_xI = -40 dBm0 to +3 dBm0$ $VF_xI = -50 dBm0 to -40 dBm0$ $VF_xI = -55 dBm0 to -50 dBm0$	-0.2 -0.4 -1.2		0.2 0.4 1.2	dB dB dB		
G _{RA}	Receive Gain Absolute Accuracy	Receive Gain Programmed for Maximum 0 dBm0 Test Level. Apply 0 dBm0 PCM Code to D_R0 or D_R1 . Measure VFrO. $T_A = 25^{\circ}$ C, $V_{CC} = 5$ V, $V_{BB} = -5$ V.	-0.15		0.15	dB		
G _{RAG}	Receive Gain Variation with Programmed Gain	Measure Receive Gain Over the Range from Maximum to Minimum Setting. Calculate the Deviation from the Programmed Gain Relative to G_{RA} , i.e. $G_{RAG} = G_{actual} - G_{prog} - G_{RA}$. $T_A = 25^{\circ}C$, $V_{CC} = 5V$, $V_{BB} = -5V$	-0.1		0.1	dB		
G _{RAT}	Receive Gain Variation with Temperature	Measured Relative to G _{RA} . $V_{CC} = 5V, V_{BB} = -5V.$ Minimum Gain $< G_R <$ Maximum Gain	-0.1		0.1	dB		
G _{RAV}	Receive Gain Variation with Supply	Measured Relative to G_{RA} . V _{CC} = +5V ±5%, V _{BB} = -5V ±5% T _A = 25°C, G _R = Maximum Gain	-0.05		0.05	dB dB		
G _{RAF}	Receive Gain Variation with Frequency		-0.25 -0.15 -0.7		0.15 0.15 0.0 14	dB dB dB dB		

Transmission Characteristics (Continued)

Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for $V_{CC} = +5V \pm 5\%$, $V_{BB} = -5V \pm 5\%$; $T_A = 0^{\circ}C$ to 70°C by correlation with 100% electrical testing at $T_A = 25^{\circ}C$. f = 1015.625 Hz, $VF_XI = 0$ dBm0, D_R0 or $D_R1 = 0$ dBm0 PCM code. Transmit and receive gains programmed for maximum 0 dBm0 test levels, hybrid balance filter disabled. All other limits are assured by correlation with other production tests and/or product design and characterization. All signals referenced to GND. Typicals specified at $V_{CC} = +5V$, $V_{BB} = -5V$, $T_A = 25^{\circ}C$.

Symbol	Parameter	Conditions	Min	Тур	Max	Units	
AMPLITUDE RESPONSE (Continued)							
G _{RAF} (Continued)		$\begin{array}{l} G_{R} = 4 \; dB, D_{r} 0 = 0 \; dBm0 \; Code, \\ G_{X} = 0 \; dBm0, VF_{x} I = 0 \; dBm. \; (Note \; 4) \\ f = 203.125 \; Hz \\ f = 296.875 \; Hz \\ f = 515.625 \; Hz \\ f = 515.625 \; Hz \\ f = 3015.625 \; Hz \\ f = 3406.250 \; Hz \\ f = 3984.375 \; Hz \end{array}$	-0.25 -0.15 -0.15 -0.15 -0.15 -0.7		0.15 0.15 0.15 0.15 0.15 0.0 – 13.5	dB dB dB dB dB dB dB	
G _{RAL}	Receive Gain Variation with Signal Level	Sinusoidal Test Method. Reference Level = 0 dBm0. $D_r0 = -40 dBm0 \text{ to } + 3 dBm0$ $D_r0 = -50 dBm0 \text{ to } -40 dBm0$ $D_r0 = -55 dBm0 \text{ to } -50 dBm0$	0.2 0.4 1.2		0.2 0.4 1.2	dB dB dB	
ENVELOPE D	DELAY DISTORTION WITH FREQUE	ENCY					
D _{XA}	Tx Delay, Absolute	f = 1600 Hz			315	μs	
D _{XR}	Tx Delay, Relative	f = 500-600 Hz f = 600-800 Hz f = 800-1000 Hz f = 1000-1600 Hz f = 1600-2600 Hz f = 2600-2800 Hz f = 2800-3000 Hz			220 145 75 40 75 105 155	μs μs μs μs μs μs μs	
D _{RA}	Rx Delay, Absolute	f = 1600 Hz			200	μs	
D _{RR}	Rx Delay, Relative	f = 500-1000 Hz f = 1000-1600 Hz f = 1600-2600 Hz f = 2600-2800 Hz f = 2800-3000 Hz	-40 -30		90 125 175	μs μs μs μs μs	
NOISE							
N _{XC}	Transmit Noise, C Message Weighted, μ-law Selected	(Note 1) All '1's in Gain Register		12	15	dBrnC0	
N _{XP}	Transmit Noise, P Message Weighted, A-law Selected	(Note 1) All '1's in Gain Register		-74	-67	dBm0p	
N _{RC}	Receive Noise, C Message Weighted, µ-law Selected	PCM Code is Alternating Positive		8	11	dBrnC0	
N _{RP}	Receive Noise, P Message Weighted, A-law Selected	PCM Code Equals Positive Zero		-82	-79	dBm0p	
N _{RS}	Noise, Single Frequency	f = 0 kHz to 100 kHz, Loop Around Measurement, VF _x I = 0 Vrms			-53	dBm0	
PPSRX	Positive Power Supply Rejection, Transmit	$V_{CC} = 5.0 V_{DC} + 100 \text{ mVrms}$ f = 0 kHz-50 kHz (Note 2)	30			dBC	
NPSR _X	Negative Power Supply Rejection, Transmit	$V_{BB} = -5.0 V_{DC} + 100 \text{ mVrms}$ f = 0 kHz-50 kHz (Note 2)	30			dBC	

TP3070/TP3071

Transmission Characteristics (Continued)

Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for $V_{CC} = +5V \pm 5\%$, $V_{BB} = -5V \pm 5\%$; $T_A = 0^{\circ}$ C to 70°C by correlation with 100% electrical testing at $T_A = 25^{\circ}$ C. f = 1015.625 Hz, $VF_XI = 0$ dBm0, D_R0 or $D_R1 = 0$ dBm0 PCM code. Transmit and receive gains programmed for maximum 0 dBm0 test levels, hybrid balance filter disabled. All other limits are assured by correlation with other production tests and/or product design and characterization. All signals referenced to GND. Typicals specified at $V_{CC} = +5V$, $V_{BB} = -5V$, $T_A = 25^{\circ}$ C.

Symbol	Parameter	Conditions	Min	Тур	Max	Units		
NOISE (Continued)								
PPSR _R	Positive Power Supply Rejection, Receive	PCM Code Equals Positive Zero $V_{CC} = 5.0 V_{DC} + 100 \text{ mVrms}$ Measure VF _R O f = 0 Hz-4000 Hz f = 4 HHz-25 khz f = 25 kHz-50 kHz	30 40 36			dBC dB dB		
NPSR _R	Negative Power Supply Rejection, Receive	$\begin{array}{l} \mbox{PCM Code Equals Positive Zero} \\ \mbox{V}_{BB} = -5.0 \ \mbox{V}_{DC} + 100 \ \mbox{mVrms} \\ \mbox{Measure VF}_{R}O \\ \mbox{f} = 0 \ \mbox{Hz} - 4000 \ \mbox{Hz} \\ \mbox{f} = 4 \ \mbox{Hz} - 25 \ \mbox{Hz} \\ \mbox{f} = 25 \ \mbox{Hz} - 50 \ \mbox{Hz} \end{array}$	30 40 36			dBC dB dB		
SOS	Spurious Out-of-Band Signals at the Channel Output	0 dBm0, 300 Hz to 3400 Hz Input PCM Code Applied at D_R0 (or D_R1) 4600 Hz-7600 Hz 7600 Hz-8400 Hz 8400 Hz-50,000 Hz			-30 -40 -30	dB dB dB		
DISTORT	ION							
STD _X STD _R	Signal to Total Distortion Transmit or Receive Half-Channel, μ-law Selected	Sinusoidal Test Method Level = 3.0 dBm0 = 0 dBm0 to - 30 dBm0 = -40 dBm0 XMT RCV = -45 dBm0	33 36 29 30 25			dBC dBC dBC dBC dBC		
SFD _X	Single Frequency Distortion, Transmit				-46	dB		
SFD _R	Single Frequency Distortion, Receive				-46	dB		
IMD	Intermodulation Distortion	Transmit or Receive Two Frequencies in the Range 300 Hz–3400 Hz			-41	dB		
CROSSTALK								
CT _{X-R}	Transmit to Receive Crosstalk, 0 dBm0 Transmit Level	f = 300 Hz - 3400 Hz $D_R = Steady PCM Code$		-90	-75	dB		
CT _{R-X}	Receive to Transmit Crosstalk, 0 dBm0 Receive Level	f = 300 Hz-3400 Hz (Note 2)		-90	-70	dB		

Note 1: Measured by extrapolation from the distortion test result at -50 dBm0.

Note 2: $PPSR_x$, $NPSR_x$, and CT_{R-X} are measured with a -50 dBm0 activation signal applied to VF_xI .

Note 3: A signal is Valid if it is above V_{IH} or below V_{IL} and Invalid if it is between V_{IL} and V_{IH}. For the purposes of this specification the following conditions apply: a) All input signals are defined as: $V_{IL} = 0.4V$, $V_{IH} = 2.7V$, $t_R < 10$ ns, $t_F < 10$ ns.

b) t_R is measured from V_{IL} to V_{IH}. t_F is measured from V_{IH} to V_{IL}.

c) Delay Times are measured from the input signal Valid to the output signal Valid.

d) Setup Times are measured from the data input Valid to the clock input Invalid.

e) Hold Times are measured from the clock signal Valid to the data input Invalid.

f) Pulse widths are measured from V_{IL} to V_{IL} or from V_{IH} to V_{IH}.

Note 4: A multi-tone test technique is used.
National Semiconductor Corporation

microCMOS

TP3051/TP3056 Parallel Interface CODEC/Filter COMBO™

General Description

The TP3051, TP3056 family consists of a μ -law and A-law monolithic PCM CODEC/filter set utilizing the A/D and D/A conversion architecture shown in *Figure 1* and a parallel I/O data bus interface. The devices are fabricated on National's advanced microCMOS process.

The transmit section consists of an input gain adjust amplifier, an active RC pre-filter, and a switched-capacitor bandpass filter that rejects signals below 200 Hz and above 3400 Hz. A compressing coder samples the filtered signal and encodes it in the µ-255 law or A-law PCM format. Autozero circuitry is included on-chip. The receive section consists of an expanding decoder which reconstructs the analog signal from the compressed µ-law or A-law code, and a low pass filter which corrects for the sin x/x response of the decoder output and rejects signals above 3400 Hz. The receive output is a single-ended power amplifier capable of driving low impedance loads. The TP3051 μ -law and TP3056 A-law devices are pin compatible parallel interface COMBOs for bus-oriented systems. They are ideally suited for use with the TP3100 family of digital line interface controllers (DLIC) in switching system applications. The DLIC communicates with the main switch controller via integrated data, signaling and control channels, and provides local time-slot and space switching capability for up to 32 TP3051 or TP3056 COMBOs.

Features

- Complete CODEC and filtering system including:
 - Transmit high pass and low pass filtering
 - Receive low pass filter with sin x/x correction
 - Receive power amplifier
 - Active RC noise filters
 - µ-255 law COder and DECoder-TP3051
 - A-law COder and DECoder-TP3056
 - Internal precision voltage reference
 - Internal auto-zero circuitry
- Meets or exceeds all LSSGR and CCITT specifications
- ±5V operation
- Low operating power-typically 60 mW
- Power-down standby mode—typically 3 mW
- High speed TRI-STATE® data bus
- 2 loopback test modes

Connection Diagrams

Top View

Order Number TP3051V or TP3056V See NS Package Number V20P

Pin Description

put.

Symbol	- Function
V _{BB}	Negative power supply pin. $V_{BB} = -5V \pm 5\%$.
GNDA	Analog ground. All analog signals are referenced to this pin.
VF _R O	Analog output of the receive power amplifier. This output can drive a 600Ω load to $\pm 2.5V$.
V _{CCA}	Positive power supply voltage pin for the analog circuitry. V_{CCA} = 5V $\pm 5\%$. Must be connected to V_{CCD}.
<u>CS</u>	Device chip select input which controls READ, WRITE and TRI-STATE operations on the data bus. CS does not control the state of any ana- log functions.
DB7	Bit 7 I/O on the data bus. The PCM LSB.
DB6	Bit 6 I/O on the data bus.
DB5	Bit 5 I/O on the data bus.
DB4	Bit 4 I/O on the data bus.
GNDD	Digital ground. All digital signals are referenced to this pin.
DB3	Bit 3 I/O on the data bus.
DB2	Bit 2 I/O on the data bus.
DB1	Bit 1 I/O on the data bus.
DB0	Bit 0 I/O on the data bus. This is the PCM sign bit.
CLK	The clock input for the switched-capacitor fil- ters and CODEC. Clock frequency must be 768 kHz, 772 kHz, 1.024 MHz or 1.28 MHz and must be synchronous with the system clock in-

Order Number TP3051J or TP3056J See NS Package Number JH20

Symbol	Function
PCM/CNTL	This control input determines whether the in- formation on the data bus is PCM data or con- trol data.
V _{CCD}	Positive power supply pin for the bus drivers. $V_{CCD}=5V~\pm5\%.$ Must be connected to $V_{CCA}.$
GS _X	Analog output of the transmit input amplifier. Used to externally set gain.
VF _X I-	Inverting input of the transmit input amplifier.
VF _X I+	Non-inverting input of the transmit input amplifi-

Functional Description

CLOCK AND DATA BUS CONTROL

The CLK input signal provides timing for the encode and decode logic and the switched-capacitor filters. It must be one of the frequencies listed in Table I and must be correctly selected by control bits C0 and C1.

CLK also functions as a READ/WRITE control signal, with the device reading the data bus on a positive half-clock cycle and writing the bus on a negative half-clock cycle, as shown in *Figures 4a* and *4b*.

POWER-UP

When power is first applied, power-on reset circuitry initializes the COMBO and sets it in the power-down mode. All non-essential circuits are deactivated and the data bus outputs, DB0–DB7, and receive power amplifier output, VF_RO , are in high impedance states.

The TP3051, TP3056 is powered-up via a command to the control register (see Control Register Functions). This sets

TP3051/TP3056

Functional Description (Continued)

the device in the standby mode with all circuitry activated, but encoding and decoding do not begin until PCM READ and PCM WRITE chip selects occur.

TABLE I. Control Bit Functions

Control Bits	Function								
C0, C1	Sele	Select Clock Frequency							
	CO	C0 C1 Frequency							
	0	Х	1.024 MHz						
	1	0	0.768 MHz or 0.772 MHz						
	1	1	1.28 MHz						
C2, C3	Digit	Digital and Analog Loopback							
	C2	C2 C3 Mode							
	1	1 X digital loopback							
	0	1	analog loopback						
	0	0	normal						
C4	Pow	er-Dow	n/Power-Up (Note 1)						
			1 = power-down						
			0 = power-up						
C5	TP30)51—D	on't care (Note 1)						
	TP30	056							
	1 = A-law without even bit inversion								
	0	= A-lav	w with even bit inversion						
C6-C7	Don	t Care	(Note 1)						

Note 1: These bits are always set to logical "1" when reading back the control register.

DATA BUS NOMENCLATURE

The normal order for serial PCM transmission is sign bit first, whereas the normal order for serial data is LSB first. For compatibility with the TP3110/TP3120 DLIC, the parallel data bus is defined as follows:

Data Type	DB0	DB7
PCM	Sign Bit	LSB
Control Data	C0	C7

READING THE BUS

If CLK is low when \overline{CS} goes low, bus data is gated in during the next positive half-clock cycle of CLK and latched on the negative-going transition. If $\overline{PCM}/CNTL$ is low during the falling \overline{CS} transition, then the bus data is defined as PCM voice data, which is latched into the receive register. This also functions as an internal receive frame synchronization pulse to start a decode cycle and must occur once per receive frame, i.e., at an 8 kHz rate.

If PCM/CNTL is high during the falling CS transition, the bus data is latched into the control register. This does not affect frame synchronization.

WRITING THE BUS

If CLK is high when \overline{CS} goes low, at the next falling transition of CLK, the bus drivers are enabled and either the PCM transmit data or the contents of the control register are gated onto the bus, depending on the level of $\overline{PCM}/CNTL$ at the \overline{CS} transition. If $\overline{PCM}/CNTL$ is low during the \overline{CS} falling transition, the transmit register data is written to the bus. An internal transmit frame synchronization pulse is also generated to start an encode cycle, and this must occur once per transmit frame; i.e., at an 8 kHz rate.

If $\overline{\text{PCM}}/\text{CNTL}$ is high during the $\overline{\text{CS}}$ falling transition, the control register data is written to the bus. This does not affect frame synchronization.

The receive register contents may also be written back to the bus, as described in the Digital Loopback section.

Except during a WRITE cycle, the bus drivers are in TRI-STATE mode.

CONTROL REGISTER FUNCTIONS

Writing to the control register allows the user to set the various operating states of the TP3051 and TP3056. The control register can also be read back via the data bus to verify the current operating mode of the device.

1. CLK Select

Since one of three distinct clock frequencies may be used, the actual frequency must be known by the device for proper operation of the switched-capacitor filters. This is achieved by writing control register bits C0 and C1, normally in the same WRITE cycle that powers-up the device, and before any PCM data transfers take place.

2. Digital Loopback

In order to establish that a valid path has been selected through a network, it is sometimes desirable to be able to send data through the network to its destination, then loop it back through the network return path to the originating source where the data can be verified. This loopback function can be performed in the TP3051 or TP3056 by setting control register bit C2 to 1. With C2 set, the PCM data in the receive register will be written back onto the data bus during the next PCM WRITE cycle. In the digital loopback mode, the receive section is set to an idle channel condition in order to maintain a low impedance termination at VF_RO.

3. Analog Loopback

In the analog loopback mode, the transmit filter input is switched from the gain adjust amplifier to the receive power amplifier output, forming a unity-gain loop from the receive register back to the transmit register. This mode is entered by setting control register bits C2 to 0 and C3 to 1. The receive power amplifier continues to drive the load in this mode.

4. Power-Down/Power-Up

The TP3051 or TP3056 may be put in the power-down mode by setting control register bit C4 to 1. Conversely, setting bit C4 to 0 powers-up the device.

TRANSMIT FILTER AND ENCODE SECTION

The transmit section input is an operational amplifier with provision for gain adjustment using two external resistors, see *Figure 2*. The low noise and wide bandwidth allow gains in excess of 20 dB across the audio passband to be realized. The op amp drives a unity-gain filter consisting of a 2nd order RC active pre-filter, followed by an 8th order switched-capacitor bandpass filter clocked at 256 kHz. The output of this filter directly drives the encoder sample-and-hold circuit. The A/D is of companding type according to μ -255 law (TP3051) or A-law (TP3056) coding schemes. A precision voltage reference is trimmed in manufacturing

Functional Description (Continued)

to provide an input overload (t_{MAX}) of nominally 2.5V peak (see table of Transmission Characteristics). Any offset voltage due to the filters or comparator is cancelled by sign bit integration in the auto-zero circuit.

The total encoding delay referenced to a PCM WRITE chip select will be approximately 165 μ s (due to the transmit filter) plus 125 μ s (due to encoding delay), which totals 290 μ s.

DECODER AND RECEIVE FILTER SECTION

The receive section consists of an expanding DAC which drives a 5th order switched-capacitor low pass filter clocked

TL/H/8834-4

Non-inverting transmit gain = $20 \log_{10} \left(\frac{R1 + R2}{R2} \right)$

Set gain to provide peak overload level = t_{MAX} at GS_X (see Transmission Characteristics)

FIGURE 2. Transmit Gain Adjustment

Maximum output power = 7.2 dBm total, 4.2 dBm to the load.

TL/H/8834-5

See Applications information for attenuator design guide.

FIGURE 3. Receive Gain Adjustment

Absolute Maximum Ratings

V _{BB} to GNDD or GNDA	-7V
Voltage at Any Analog	
Input or Output	V_{CC} + 0.3V to V_{BB} – 0.3V

Voltage at Any Digital Input or Output V_{CC} + 0.3V to GNDD - 0.3V Operating Temperature Range -25°C to + 125°C Storage Temperature Range -65°C to + 150°C Lead Temp. (Soldering, 10 sec.) 300°C ESD rating is to be determined.

Electrical Characteristics

Unless otherwise noted: $V_{CCA} = V_{CCD} = 5.0V \pm 5\%$, $V_{BB} = -5V \pm 5\%$, GNDD = GNDA = 0V, $T_A = 0^{\circ}C$ to 70°C; typical characteristics specified at nominal supply voltages, $T_A = 25^{\circ}C$; all digital signals are referenced to GNDD, all analog signals are referenced to GNDA. Limits printed in **BOLD** characters are guaranteed for $V_{CCA} = V_{CCD} = 5.0V \pm 5\%$ and $V_{BB} = -5.0V \pm 5\%$; $T_A = 0^{\circ}C$ to 70°C by correlation with 100% Electrical testing at $T_A = 25^{\circ}C$. All other limits are assured by correlation with other production test and/or product design and characteristics.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
DIGITAL INT	ERFACE					
VIL	Input Low Voltage				0.6	V
VIH	Input High Voltage		2.2			v
V _{OL}	Output Low Voltage	DB0-DB7, $I_L = 2.5 \text{ mA}$			0.4	v
V _{OH}	Output High Voltage	DB0–DB7, $I_{\rm H} = -2.5 \rm mA$	2.4			V
۱ _{IL}	Input Low Current	$GNDD \le V_{IN} \le V_{IL}$	-3		3	μΑ
Чн	Input High Current	$V_{IH} \le V_{IN} \le V_{CC}$	-3		3	μΑ
loz	Output Current in High Impedance State (TRI-STATE)	DB0-DB7, GNDD $\leq V_{O} \leq V_{CC}$	-3		3	μΑ
ANALOG INT	ERFACE WITH TRANSMIT INPUT A	MPLIFIER				
IIXA	Input Leakage Current	$-2.5V \leq V \leq +2.5V,$ VF_XI $^+$ or VF_XI $^-$	-200		200	nA
R _I XA	Input Resistance	$-2.5V \leq V \leq +2.5V,$ VF_XI $^+$ or VF_XI $^-$	10			MΩ
R _O XA	Output Resistance, GS _X	Closed Loop, Unity Gain		1	3	Ω
R _L XA	Load Resistance, GS _X		10			kΩ
C _L XA	Load Capacitance, GS _X				50	pF
V _O XA	Output Dynamic Range, GS _X	$R_L = 10 k\Omega$	-2.8		2.8	v
A _V XA	Voltage Gain	VF _X I ⁺ to GS _X	5000			V/V
FυXA	Unity-Gain Bandwidth		1	2		MHz
V _{OS} XA	Offset Voltage		-20		20	mV
V _{CM} XA	Common-Mode Voltage	CMRRXA > 60 dB	-2.5		2.5	v
CMRRXA	Common-Mode Rejection Ratio	D.C. Test	60			dB
PSRRXA	Power Supply Rejection Ratio	D.C. Test	60			dB
RECEIVE PO	WER AMPLIFIER					
R _O RF	Output Resistance, VF _R O			1	3	Ω
RLRF	Load Resistance	$VF_{R}O = \pm 2.5V$	600			Ω
CLRF	Load Capacitance				50	pF
VOS _R O	Output DC Offset Voltage		-200		200	mV
POWER DISS	SIPATION					
Icco	Power-Down Current	No Load		0.5	1.5	mA
I _{BB0}	Power-Down Current	No Load		0.05	0.3	mA
ICC1	Active Current	No Load		6.0	9.0	mA
I _{BB1}	Active Current	No Load		6.0	9.0	mA

TP3051/TP3056

Timing Specifications

Unless otherwise noted: $V_{CCA} = V_{CCD} = 5.0V \pm 5\%$, $V_{BB} = -5V \pm 5\%$, GNDD = GNDA = 0V, $T_A = 0^{\circ}C$ to 70°C; typical characteristics specified at nominal supply voltages, $T_A = 25^{\circ}C$; all digital signals are referenced to GNDD, all analog signals are referenced to GNDA. Limits printed in **BOLD** characters are guaranteed for $V_{CCA} = V_{CCD} = 5.0V \pm 5\%$ and $V_{BB} = -5.0V \pm 5\%$; $T_A = 0^{\circ}C$ to 70°C by correlation with 100% Electrical testing at $T_A = 25^{\circ}C$. All other limits are assured by correlation with other production test and/or product design and characteristics. All timing parameters are measured at $V_{OH} = 2.0V$ and $V_{OL} = 0.7V$. See Definitions and Timing Conventions section for test method information.

Symbol	Parameter	Conditions	Min	Max	Units
t _{PC}	Period of Clock		760		ns
twch	Width of Clock High		330		ns
twcL	Width of Clock Low		330		ns
t _{RC}	Rise Time of Clock			50	ns
t _{FC}	Fall Time of Clock			50	ns
t _{HCCS}	Hold Time from CLK to CS Low		100		ns
t _{SCLC}	Set-Up Time of CS Low to CLK		100		ns
tSCHC	Set-Up Time from CS High to Second CLK Edge		o		ns
twcs	Width of Chip Select		100		ns
t _{SPCM}	Set-Up Time of PCM/CNTL to CS		0		ns
t _{HPCM}	Hold Time from CS to PCM/CNTL		100		ns
t _{SDC}	Set-Up Time of Data In to CLK		50		ns
t _{HCD}	Hold Time from CLK to Data In		20		ns
tDDO	Delay Time to Data Out Valid	$C_L = 0 \text{ pF to } 200 \text{ pF}$	90	260	ns
t _{DDZ}	Delay Time to Data Output Disabled	$C_L = 0 \text{ pF to } 200 \text{ pF}$	20	80	ns

Switching Time Waveforms

PCM/CNTL

DB0-D87

tspc

DATA IN

turn.

TL/H/8834-7

FIGURE 4b. Timing Waveforms for COMBO Reading from the Bus

Note 5: READ and WRITE CS pulses must each occur at an 8 kHz rate, and may occur on consecutive half-cycles of CLK if required, although this is not a restriction.

Transmission Characteristics

Unless otherwise specified: $T_A = 0^{\circ}C$ to +70°C, $V_{CCA} = V_{CCD} = 5V \pm 5\%$, $V_{BB} = -5V \pm 5\%$, GNDD = GNDA = 0V, f = 1.02 kHz, $V_{IN} = 0$ dBm0, transmit input amplifier connected for unity-gain non-inverting. Limits printed in **BOLD** characters are guaranteed for $V_{CCA} = V_{CCD} = 5.0V \pm 5\%$ and $V_{BB} = -5.0V \pm 5\%$; $T_A = 0^{\circ}C$ to 70°C by correlation with 100% electrical testing at $T_A = 25^{\circ}C$. All other limits are assured by correlation with other production tests and/or product design and characteristics.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
	DE RESPONSE					
	Absolute Levels	Nominal 0 dBm0 Level is 4 dBm (600Ω)				
	0 dBm0	TP3051 TP3056		1.2276 1.2276		Vrms Vrms
t _{MAX}	Maximum Overload Level	TP3051 (+3.17 dBm0) TP3056 (+3.14 dBm0)		2.501 2.492		V _{DC} V _{DC}
G _{XA}	Transmit Gain, Absolute	$\begin{split} T_A &= 25^\circ\text{C}, V_{CCA} = V_{CCD} = 5.0\text{V}, \\ V_{BB} &= -5.0\text{V} \\ \text{Input at } GS_X &= 0 \text{ dBm0 at } 1020 \text{ Hz} \end{split}$	-0.15		0.15	dB
G _{XR}	Transmit Gain, Relative to G _{XA}	f = 16 Hz f = 50 Hz f = 60 Hz f = 200 Hz f = 300 Hz - 3000 Hz f = 3300 Hz f = 3400 Hz f = 4600 Hz and Up, Measure Response from 0 Hz to 4000 Hz	- 1.8 - 0.15 - 0.35 - 0.7		-40 -30 -26 -0.1 0.15 0.1 0 -14 -32	dB dB dB dB dB dB dB dB dB dB
G _{XAT}	Absolute Transmit Gain Variation with Temperature	Relative to G _{XA}	-0.1		0.1	dB
G _{XAV}	Absolute Transmit Gain Variation with Supply Voltage	Relative to G _{XA}	-0.05		0.05	dB
G _{XRL}	Transmit Gain Variation with Level	Sinusoidal Method Reference Level = -10 dBm0 VF _X I ⁺ = $-40 \text{ dBm0 to } + 3 \text{ dBm0}$ VF _X I ⁺ = $-50 \text{ dBm0 to } -40 \text{ dBm0}$ VF _X I ⁺ = $-55 \text{ dBm0 to } -50 \text{ dBm0}$	-0.2 -0.4 -1.2		0.2 0.4 1.2	dB dB dB
G _{RA}	Receive Gain, Absolute	$\label{eq:transform} \begin{array}{l} T_A = 25^\circ C, V_{CCA} = V_{CCD} = 5V, V_{BB} = -5V \\ \text{Input} = \text{Digital Code Sequence for} \\ \text{0 dBm0 Signal at 1020 Hz} \end{array}$	-0.15		0.15	dB
G _{RR}	Receive Gain, Relative to G _{RA}	f = 0 Hz to 3000 Hz f = 3300 Hz f = 3400 Hz f = 4000 Hz	0.15 0.35 0.7		0.15 0.05 0 - 14	dB dB dB dB
G _{RAT}	Absolute Receive Gain Variation with Temperature	Relative to G _{RA}	-0.1		0.1	dB
G _{RAV}	Absolute Receive Gain Variation with Supply Voltage	Relative to G _{RA}	-0.05		0.05	dB
G _{RRL}	Receive Gain Variation with Level	Sinusoidal Test Method; Reference Input PCM Code Corresponds to an Ideally Encoded – 10 dBm0 Signal PCM Level = -40 dBm0 to +3 dBm0 PCM Level = -50 dBm0 to -40 dBm0 PCM Level = -55 dBm0 to -50 dBm0	-0.2 -0.4 -1.2		0.2 0.4 1.2	dB dB dB
V _{RO}	Receive Output Drive Level	$R_L = 600\Omega$	-2.5		2.5	V

TP3051/TP3056

Unless otherwise specified: $T_A = 0^{\circ}C$ to $+70^{\circ}C$, $V_{CCA} = V_{CCD} = 5V \pm 5\%$, $V_{BB} = -5V \pm 5\%$, GNDD = GNDA = 0V, f = 1.02 kHz, $V_{IN} = 0$ dBm0, transmit input amplifier connected for unity-gain non-inverting. Limits printed in **BOLD** characters are guaranteed for $V_{CCA} = V_{CCD} = 5.0V \pm 5\%$ and $V_{BB} = -5.0V \pm 5\%$; $T_A = 0^{\circ}C$ to $70^{\circ}C$ by correlation with 100% electrical testing at $T_A = 25^{\circ}C$. All other limits are assured by correlation with other production tests and/or product design and characteristics.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
ENVELOP	EDELAY DISTORTION WITH FREE	JUENCY				
D _{XA}	Transmit Delay, Absolute	f = 1600 Hz		290	315	μs
D _{XR}	Transmit Delay, Relative to D_{XA}	f = 500 Hz-600 Hz f = 600 Hz-800 Hz f = 800 Hz-1000 Hz f = 1000 Hz-1600 Hz f = 1600 Hz-2600 Hz f = 2600 Hz-2800 Hz f = 2800 Hz-3000 Hz		195 120 50 20 55 80 130	220 145 75 40 75 105 155	μs μs μs μs μs μs
D _{RA}	Receive Delay, Absolute	f = 1600 Hz		180	200	μs
D _{RR}	Receive Delay, Relative to D _{RA}	f = 500 Hz - 1000 Hz f = 1000 Hz - 1600 Hz f = 1600 Hz - 2600 Hz f = 2600 Hz - 2800 Hz f = 2800 Hz - 3000 Hz	-40 -30	-25 -20 70 100 145	90 125 175	μs μs μs μs μs
NOISE						
N _{XC}	Transmit Noise, C Message Weighted	TP3051, (Note 2)		12	15	dBrnC0
N _{XP}	Transmit Noise, P Message Weighted	TP3056, $VF_XI^+ = 0V$ (Note 2)		-74	-69	dBm0p
N _{RC}	Receive Noise, C Message Weighted	TP3051, PCM Code Equals Alternating Positive and Negative Zero		8	11	dBrnC0
N _{RP}	Receive Noise, P Message Weighted	TP3056, PCM Code Equals Positive Zero		-82	-79	dBm0p
N _{RS}	Noise, Single Frequency	f = 0 kHz to 100 kHz, Loop Around Measurement, $VF_XI^+ = 0V$			-53	dBm0
PPSR _X	Positive Power Supply Rejection, Transmit	$ \begin{array}{l} VF_XI^+ = 0V, \\ V_{CCA} = V_{CCD} = 5.0 \ V_{DC} + 100 \ mVrms \\ f = 0 \ kHz - 50 \ kHz \ (Note 3) \end{array} $	40			dBC
NPSR _X	Negative Power Supply Rejection, Transmit	$VF_XI^+ = 0 Vrms,$ $V_{BB} = -5.0 V_{DC} + 100 mVrms$ f = 0 kHz - 50 kHz (Note 3)	40			dBC
PPSR _R	Positive Power Supply Rejection, Receive	$\begin{array}{l} \mbox{PCM Code Equals Positive Zero for} \\ \mbox{TP3051 and TP3056} \\ \mbox{V}_{CC} = 5.0 \ \mbox{V}_{DC} + 100 \ \mbox{mVrms} \\ \mbox{f} = 0 \ \mbox{Hz} - 4000 \ \mbox{Hz} \\ \mbox{f} = 4 \ \mbox{Hz} - 25 \ \mbox{Hz} \\ \mbox{f} = 25 \ \mbox{Hz} - 50 \ \mbox{Hz} \end{array}$	40 40 36			dBC dBC dBC
NPSR _R	Negative Power Supply Rejection, Receive	$\begin{array}{l} \mbox{PCM Code Equals Positive Zero for} \\ \mbox{TP3051 and TP3056} \\ \mbox{V}_{BB} = -5.0 \ \mbox{V}_{DC} + 100 \ \mbox{mVrms} \\ \mbox{f} = 0 \ \mbox{Hz} - 4000 \ \mbox{Hz} \\ \mbox{f} = 4 \ \mbox{Hz} - 25 \ \mbox{Hz} \\ \mbox{f} = 25 \ \mbox{Hz} - 50 \ \mbox{Hz} \end{array}$	40 40 36			dBC dBC dBC
SOS	Spurious Out-of-Band Signals at the Channel Output	0 dBm0, 300 Hz–3400 Hz Input Applied to VF_XI^+ , Measure Individual Image Signals at VF_RO 4600 Hz–7600 Hz 7600 Hz–8400 Hz 8400 Hz–100,000 Hz			-32 -40 -32	dB dB dB

Transmission Characteristics (Continued)

Unless otherwise specified: $T_A = 0^{\circ}C$ to $+70^{\circ}C$, $V_{CCA} = V_{CCD} = 5V \pm 5^{\circ}$, $V_{BB} = -5V \pm 5^{\circ}$, GNDD = GNDA = 0V, f = 1.02 kHz, $V_{IN} = 0$ dBm0, transmit input amplifier connected for unity-gain non-inverting. Limits printed in **BOLD** characters are guaranteed for $V_{CCA} = V_{CCD} = 5.0V \pm 5^{\circ}$ and $V_{BB} = -5.0V \pm 5^{\circ}$; $T_A = 0^{\circ}C$ to $70^{\circ}C$ by correlation with 100% electrical testing at $T_A = 25^{\circ}C$. All other limits are assured by correlation with other production tests and/or product design and characteristics.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
DISTORTIO	N			·		
STD _X STD _R	Signal to Total Distortion Transmit or Receive Half-Channel	Sinusoidal Test Method (Note 4) Level = 3.0 dBm0 = 0 dBm0 to -30 dBm0 = -40 dBm0 XMT RCV = -55 dBm0 XMT RCV	33 36 29 30 14 15			dB dB dB dB dB dB
SFDX	Single Frequency Distortion, Transmit				-46	dB
SFDR	Single Frequency Distortion, Receive				-46	dB
IMD	Intermodulation Distortion	$VF_XI^+ = -4 dBm0$ to $-21 dBm0$, Two Frequencies in the Range 300 Hz-3400 Hz			-41	dB
CROSSTAL	к					
CT _{X-R}	Transmit to Receive Crosstalk 0 dBm0 Transmit Level	f = 300 Hz-3400 Hz at 0 dBm0 Transmit Level Steady PCM Receive Code		-90	-70	dB
CT _{R-X}	Receive to Transmit Crosstalk 0 dBm0 Receive Level	f = 300 Hz-3400 Hz at 0 dBm0 (Note 3)		-90	-70	dB

Note 2: Measured by extrapolation from the distortion test result.

Note 3: CT_{R-X} , PPSR_X, and NPSR_X are measured with a -50 dBm0 activation signal applied at VF_XI⁺.

Note 4: Using C message weighted filter.

Encoding Format at Data Bus Output

		ΤΡ3051 μ-Law							(Inc	True	TP3 A-La Ever	8056 Iw, Câ n Bit I	5 = 0 nvers	sion)		
	Ì М	SB					L	SB	M	SB					LS	SB
V _{IN} = + Full-Scale	1	0	0	0	0	0	0	0	1	0	1	0	1	0	1	0
$V_{IN} = 0V$	1	1	1	1	1	1	1	1	1	1	0	1	0	1	0	1
V _{IN} = - Full-Scale	0	1	1	1	1	1	1	1	0	1	0	1	0	1	0	1
	0	0	0	0	0	0	0	0	0	0	1	0	1	0	1	0
			N	ot Ap	plicat	le			S	ign +	- Mag	initua	de A-l	Law, (C5 =	1
			(C5	i is Do	on't C	are)				(Be	fore	Even	Bit Ir	vers	ion)	
V _{IN} = + Full-Scale									1	1	1	1	1	1	1	1
$V_{\rm IN} = 0V$									1	0	0	0	0	0	0	0
									0	0	0	0	0	0	0	0
V _{IN} = - Full-Scale									0	1	1	1	1	1	1	1

Applications Information

POWER SUPPLIES

While the pins of the TP3051/6 family are well protected against electrical misuse, it is recommended that the standard CMOS practice be followed, ensuring that ground is connected to the device before any other connections are made. In applications where the printed circuit board may be plugged into a "hot" socket with power and clocks already present, an extra long ground pin in the connector should be used. GNDA and GNDD MUST be connected together adjacent to each COMBO not on the connector or backplane wiring.

All ground connections to each device should meet at a common point as close as possible to the GNDA pin. This minimizes the interaction of ground return currents flowing through a common bus impedance. 0.1 μF supply decoupling capacitors should be connected from this common ground point to V_{CCA} and $V_{BB}.$

For best performance, the ground point of each COMBO on a card should be connected to a common card ground in star formation, rather than via a ground bus. This common ground point should be decoupled to V_{CC} and V_{BB} with 10 μF capacitors.

The positive power supply to the bus drivers, V_{CCD}, is provided on a separate pin from the positive supply for the CODEC and filter circuits to minimize noise injection when driving the bus. V_{CCA} and V_{CCD} MUST be connected together close to the CODEC/filter at the point where the 0.1 μ F decoupling capacitor is connected.

RECEIVE GAIN ADJUSTMENT

For applications where a TP3050 family COMBO receive output must drive a 600Ω load, but a peak swing lower than $\pm 2.5V$ is required, the receive gain can be easily adjusted by inserting a matched T-pad or π -pad at the output. (See *Figure 5.*) Table II lists the required resistor values for 600Ω terminations. As these are generally non-standard values, the equations can be used to compute the attenuation of the closer practical set of resistors. It may be necessary to use unequal values for the R1 or R4 arms of the attenuators to achieve a precise attenuation. Generally it is tolerable to allow a small deviation of the input impedance from nominal while still maintaining a good return loss. For example a 30 dB return loss against 600Ω is obtained if the output impedance of the attenuator is in the range 282Ω to 319Ω (assuming a perfect transformer).

TABLE II. Attenuator Tables for Z1	=	Ζ2	=	300 Ω
(All Values in Ω)				

	•		•	
dB	R1	R2	R3	R4
0.1	1.7	26k	3.5	52k
0.2	3.5	13k	6.9	26k
0.3	5.2	8.7k	10.4	17.4k
0.4	6.9	6.5k	13.8	13k
0.5	8.5	5.2k	17.3	10.5k
0.6	10.4	4.4k	21.3	8.7k
0.7	12.1	3.7k	24.2	7.5k
0.8	13.8	3.3k	27.7	6.5k
0.9	15.5	2.9k	31.1	5.8k
1.0	17.3	2.6k	34.6	5.2k
2	34.4	1.3k	70	2.6k
3	51.3	850	107	1.8k
4	68	650	144	1.3k
5	84	494	183	1.1k
6	100	402	224	900
7	115	380	269	785
8	379	284	317	698
9	143	244	370	630
10	156	211	427	527
11	168	184	490	535
12	180	161	550	500
13	190	142	635	473
14	200	125	720	450
15	210	110	816	430
16	218	98	924	413
18	233	77	1.17k	386
20	246	61	1.5k	366

Note: See Application Note 370 for further details.

 $R4 = Z1 \left(\frac{N^2 - 1}{N^2 - 2NS + 1} \right)$ FIGURE 5. T-Pad and π -Pad Attenuator Models

 $\sqrt{\frac{Z1Z2}{2}}\left(\frac{N^2-1}{N}\right)$

T1 /H/8834-9

Typical Applications

The benefits of a COMBO with a parallel data bus, rather than the usual serial port, are illustrated in Figure 6. This shows a 16-channel line card in which the TP3051 or TP3056 share the data bus interface to a TP3110 family Digital Line Interface Controller. The DLIC can access up to 128 channels on the serial backplane, providing fully nonblocking time and space switching capability with optional redundancy. In conjunction with a local microprocessor, typically from the INS8048 family, a standard HDLC control channel can be assigned, providing secure message capability between the line card and the system control processor. The local microprocessor can also collect and process line status and signaling information, off-loading these tasks from the main processor. A prioritized vectored interrupt scheme is used for data transfers between the microprocessor and DLIC.

System flexibility can be further enhanced by adding 2 additional bits per frame to the PCM data, operating the DLIC with 80k b/s channels rather than 64k b/s channels.

Another application of the TP3051 or TP3056 is in the alldigital telephone. The analog and digital loopback test modes are particularly useful, enabling the switching system to verify the integrity of virtually the complete channel. The transmit op amp can be set for gains in excess of 20 dB, enabling a simple AC connection to an electret microphone (with integral FET buffer) to be made. A receive transducer with an impedance no less than 600 Ω can be driven directly by the receive amplifier, with a resistive network providing gain adjustment and sidetone. Low impedance transducers require an audio matching transformer.

FIGURE 6. Typical 16-Channel Line Card using TP3110/TP3120 Digital Line Interface Controller (DLIC)

TP3058/TP3059

TP3058/TP3059 Microprocessor Compatible COMBO™

General Description

The TP3058, TP3059 family consists of a μ -law and A-law monolithic PCM COMBO set utilizing the A/D and D/A conversion architecture shown in *Figure 1* and a parallel I/O microprocessor bus interface. The devices are fabricated on National's advanced microCMOS process.

The transmit section consists of an input gain adjust amplifier, an active RC pre-filter, and a switched-capacitor bandpass filter that rejects signals below 200 Hz and above 3400 Hz. A compressing coder samples the filtered signal and encodes it in the μ -225 law or A-law PCM format. Autozero circuitry is included on-chip. The receive section consists of an expanding decoder which reconstructs the analog signal from the compressed μ -law or A-law code, and a low pass filter which corrects for the sin x/x response of the decoder output and rejects signals above 3400 Hz. The receive output is a single-ended power amplifier capable of driving low impedance loads.

The TP3058 μ -law and TP3059 A-law devices are pin compatible parallel interface CODEC/filters for microprocessor and digital signal processor systems.

Features

- Complete CODEC and filtering system including:
 - Transmit high pass and low pass filtering
 - Receive low pass filter with sin x/x correction
 - Receive power amplifier
 - Active RC noise filters
 - μ-255 law COder and DECoder—TP3058
 - A-law COder and DECoder-TP3059
 - Internal precision voltage reference - Internal auto-zero circuitry
- Meets or exceeds all LSSGR and CCITT specifications
- Meets of exceeds all LSSGH and COTT specificatio
 Microprocessor interface independant of frame sync
- Microprocessor interface independant of
 Low operating power—typically 60 mW
- Power-down standby mode—typically 3 mW
- 2 loopback test modes

Connection Diagram

TL/H/8833-2

Top View

Order Number TP3058J or TP3059J See NS Package Number J22A

Pin Descriptions

Symbol	Function	Symbol	Function
V_{BB}	Negative power supply pin. $V_{BB} = -5V \pm 5\%$	CLK	The clock input for the switched-capacitor fil- ters and CODEC. Clock frequency must be
GNDA	Analog ground. All analog signals are refer- enced to this pin.		768 kHz, 772 kHz, 1.024 MHz or 1.28 MHz and must be synchronous with the system clock in-
VF _R O	Analog output of the receive power amplifier. This output can drive a 600 Ω load to $\pm 2.5V$.	FS	put. Frame sync input, which starts a new Encode
V _{CCA}	Positive power supply voltage pin for the ana- log circuitry. $V_{CCA} = 5V \pm 5\%$. Must be con-		to meet CCITT and LSSGR specifications.
	nected to V _{CCD} .	R	Input from the Microprocessor READ signal,
DB7	Bit 7 I/O on the data bus. The PCM LSB.		asynchronous with FS
DB6	Bit 6 I/O on the data bus.	w	Input from the Microprocessor WRITE signal
DB5	Bit 5 I/O on the data bus		which enables the COMBO bus receivers. May
DB4	Bit 4 I/O on the data bus.		be asynchronous with FS.
GNDD	Digital ground. All digital signals are referenced to this pin.	PCM/ CNTL	This control input determines whether the infor- mation on the data bus is PCM data or control
DB3	Bit 3 I/O on the data bus.		data.
DB2	Bit 2 I/O on the data bus.	V _{CCD}	Positive power supply pin for the bus drivers.
DB1	Bit 1 I/O on the data bus.		$V_{CCD} = 5V \pm 5\%$. Must be connected to V_{CCA} .
DB0	Bit 0 I/O on the data bus. This is the PCM sign bit.	GSX	Analog output of the transmit input amplifier. Used to externally set gain.
		VF _X I ⁻	Inverting input of the transmit input amplifier.
		VF _X I ⁺	Non-inverting input of the transmit input amplifi- er.

Functional Description

POWER-UP

When power is first applied, power-on reset circuitry initializes the COMBO and sets it in the power-down mode. All non-essential circuits are deactivated and the data bus outputs, DB0–DB7, and receive power amplifier output, VF_RO , are in high impedance states.

The TP3058 and TP3059 are powered-up via a command to the control register (see Control Register Functions). This sets the device in the standby mode with all circuitry activated, but encoding and decoding do not begin until PCM READ and PCM WRITE chip selects occur.

TABLE I. Control Bit Functions

Control Bits	Function				
C0, C1	Sele	ct Cloci	k Frequency		
	CO	C1	Frequency		
	0	Х	1.024 MHz		
	1	0	0.768 MHz or 0.772 MHz		
	1	1	1.28 MHz		
C2, C3	Digit	Digital and Analog Loopback			
	C2 C3 Mode				
	1	х	digital loopback		
	0	·1	analog loopback		
	0	0	normal		
C4	Pow	er-Dow	n/Power-Up		
			1 = power-down		
			0 = power-up		
C5	TP3058—Don't care (Note 1)				
	TP3059				
	1 = A-law without even bit inversion				
	0	= A-lav	v with even bit inversion		
C6-C7	Don'	t Care ((Note 1)		

Note 1: These bits are always set to "1" when reading back the control register.

DATA BUS NOMENCLATURE

The order of the data bus is as follows:

Data Type	DB0	DB7
РСМ	Sign Bit	LSB
Control Data	C0	C7

MICROPROCESSOR WRITING THE BUS

The microprocessor may write to either the Control Register or PCM Receive Register by first setting up the PCM/CNTL address bit during a WRITE cycle. A CNTL WRITE may take place at any time without restriction, during either the powered-up or powered-down state.

A PCM WRITE cycle normally occurs once per frame, and may occur any time in the frame except during the \overline{FS} falling edge. PCM data is held in a register and will not update the DAC until the next \overline{FS} pulse starts a new decoding cycle.

MICROPROCESSOR READING THE BUS

The microprocessor may read either the Control Register, to verify the status of the device, or the PCM Transmit Register. Selection is again by means of the $\overline{PCM}/CNTL$ address input. A CNTL READ may take place at any time without restriction, during either the powered-up or powered-down state. A PCM READ cycle normally occurs once per frame, and may occur any time in the frame except during the FS falling edge.

COMBO TIMING

The CLK input signal provides timing for the encode and decode logic and the switched-capacitor filters. It must be one of the frequencies listed in Table I and must be correctly selected by control bits C0 and C1. FS is a sync input which starts both the Encode and Decode cycles. It must be an integer sub-multiple of CLK, and must occur at an 8 kHz rate to meet CCITT and LSSGR transmission specifications. Timing functions in the COMBO are not synchronized to timing on the data bus, however.

CONTROL REGISTER FUNCTIONS

Writing to the control register (see Table I) allows the user to set the various operating states of the TP3058 and TP3059. The control register can also be read back via the data bus to verify the current operating mode of the device. 1. CLK Select

Since one of three distinct clock frequencies may be used, the actual frequency must be known by the device for proper operation of the switched-capacitor filters. This is achieved by writing control register bits C0 and C1, normally in the same WRITE cycle that powers-up the device, and before any PCM data transfers take place.

2. Digital Lookback

In order to establish that a valid path has been selected through a network, it is sometimes desirable to be able to send data through the network to its destination, then loop it back through the network return path to the originating source where the data can be verified. This loopback function can be performed in the TP3058 and TP3059 by setting control register bit C2 to 1. With C2 set, the PCM data in the receive register will be written back onto the data bus during the next PCM WRITE cy-

- cle. In the digital loopback mode, the receive section is set to an idle channel condition in order to maintain a low impedance termination at VF_RO .
- 3. Analog Loopback

In the analog loopback mode, the transmit filter input is switched from the gain adjust amplifier to the receive power amplifier output, forming a unity-gain loop from the receive register back to the transmit register. This mode is entered by setting control register bits C2 to 0 and C3 to 1. The receive power amplifier continues to drive the load in this mode.

4. Power-Down/Power-Up

The TP3058, TP3059 may be put in the power-down mode by setting control register bit C4 to 1. Conversely, setting bit C4 to 0 powers-up the device.

Functional Description (Continued)

TRANSMIT FILTER AND ENCODE SECTION

The transmit section input is an operational amplifier with provision for gain adjustment using two external resistors, see *Figure 2*. The low noise and wide bandwidth allow gains in excess of 20 dB across the audio passband to be realized. The op amp drives a unity-gain filter consisting of a 2nd order RC active pre-filter, followed by an 8th order switched-capacitor bandpass filter clocked at 256 kHz. The output of this filter directly drives the encoder sample-and-hold circuit. The A/D is of companding type according to μ -255 law (TP3058) or A-law (TP3059) coding schemes. A precision voltage reference is trimmed in manufacturing to provide an input overload (t_{MAX}) of nominally 2.5V peak (see table of Transmission Characteristics). Any offset voltage due to the filters or comparator is cancelled by sign bit integration in the auto-zero circuit.

The total encoding delay referenced to a frame sync input select will be approximately 165 μ s (due to the transmit filter) plus 125 μ s (due to encoding delay), which totals 290 μ s.

TRANSMIT GAIN ADJUSTMENT

Figure 2 shows the connections for setting the Transmit input amplifier in non-inverting mode. Gains in excess of 20 dB can be obtained with this amplifier without significantly impairing the transmission performance of the device.

TL/H/8833-3

Non-inverting transmit gain = $20 \log_{10} \left(\frac{R1 + R}{R2} \right)$

Set gain to provide peak overload level = $t_{MAX} \mbox{ at } GS_X$ (see Transmission Characteristics)

FIGURE 2. Transmit Gain Adjustment

DECODER AND RECEIVE FILTER SECTION

The receive section consists of an expanding DAC which drives a 5th order switched-capacitor low pass filter clocked at 256 kHz. The decoder is of A-law (TP3059) or μ -law (TP3058) coding law and the 5th order low pass filter corrects for the sin x/x attenuation due to the 8 kHz sampled

hold. The filter is then followed by a 2nd order RC active post-filter. The power amplifier output stage is capable of driving a 600Ω load to a level of 7.2 dBm. The receive section has unity-gain. Each decoding cycle begins just prior to a FS pulse. The total decoder delay is 110 μ s (filter delay) plus 62.5 μ s (½ frame), which gives approximately 170 μ s, relative to the FS pulse following the microprocessor PCM WRITE cycle.

RECEIVE GAIN ADJUSTMENT

Receive gain adjustments with a high impedance load can be implemented with a simple 2-resistor potentiometer. Gain adjustments requiring matching to a transformer should use the equations given in the Applications section.

Maximum output power = 7.2 dBm total, 4.2 dBm to the load.

TL/H/8833-8

See Applications information for attenuator design guide.

FIGURE 3. Receive Gain Adjustment

Absolute Maximum	Ratings
------------------	---------

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications. GNDD to GNDA ±0.3V

V _{CCA} or V _{CCD} to GNDD or GNDA	7V
V _{BB} to GNDD or GNDA	7V

Voltage at Any Analog Input or Output	$V_{CC} + 0.3V$ to $V_{BB} - 0.3V$
Voltage at Any Digital Input or Output	V _{CC} +0.3V to GNDD-0.3V
Operating Temperature Range	-25°C to +125°C
Storage Temperature Range	-65°C to +150°C
Lead Temp. (Soldering, 10 sec.)	300°C
ESD rating is to be determined.	

Electrical Characteristics

Unless otherwise noted: $V_{CCA} = V_{CCD} = 5.0V \pm 5\%$, $V_{BB} = -5V \pm 5\%$, GNDD = GNDA = 0V, $T_A = 0^{\circ}C$ to 70°C; typical characteristics specified at nominal supply voltages, $T_A = 25^{\circ}C$; all digital signals are referenced to GNDD, all analog signals are referenced to GNDA. Limits printed in **BOLD** characters are guaranteed for $V_{CCA} = V_{CCD} = 5.0V \pm 5\%$, $V_{BB} = -5.0V \pm 5\%$; $T_A = 0^{\circ}C$ to 70°C by correlation with 100% electrical testing at $T_A = 25^{\circ}C$. All other limits are assured by correlation with other production tests and/or product design characterizations.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
DIGITAL IN	ITERFACE					
VIL	Input Low Voltage				0.6	V
VIH	Input High Voltage		2.2			v
V _{OL}	Output Low Voltage	DB0-DB7, $I_{L} = 2.5 \text{ mA}$			0.4	V
V _{OH}	Output High Voltage	DB0-DB7, $I_{\rm H} = 2.5 \rm mA$	2.4			v
կլ	Input Low Current	$GNDD \le V_{IN} \le V_{IL}$	-3		3	μΑ
IIH	Input High Current	$V_{IH} \le V_{IN} \le V_{CC}$	-3		3	μΑ
loz	Output Current in High Impedance State (TRI-STATE®)	DB0–DB7, GNDD $\leq V_O \leq V_{CC}$	-3		3	μΑ
ANALOG I	NTERFACE WITH TRANSMIT INPUT	AMPLIFIER				
l _l XA	Input Leakage Current	$-2.5V \le V \le +2.5V$, VF _X I ⁺ or VF _X I ⁻	-200		200	nA
R _I XA	Input Resistance	$-2.5V \leq V \leq +2.5V,$ VF_XI $^+$ or VF_XI $^-$	10			MΩ
R _O XA	Output Resistance, GS _X	Closed Loop, Unity Gain		1	3	Ω
R _L XA	Load Resistance, GS _X		10			kΩ
CLXA	Load Capacitance, GS _X				50	рF
V _O XA	Output Dynamic Range, GS _X	$R_L = 10 k\Omega$	-2.8		2.8	v
A _V XA	Voltage Gain	VF_XI^+ to GS_X	5000			V/V
F _U XA	Unity-Gain Bandwidth		1	2		MHz
V _{OS} XA	Offset Voltage		-20		20	mV
V _{CM} XA	Common-Mode Voltage	CMRRXA > 60 dB	-2.5		2.5	V
CMRRXA	Common-Mode Rejection Ratio	DC Test	60			dB
PSRRXA	Power Supply Rejection Ratio	DC Test	60			dB
RECEIVE F	OWER AMPLIFIER					
R _O RF	Output Resistance, VF _R O			1	3	Ω
RLRF	Load Resistance	$VF_{R}O = \pm 2.5V$	600			Ω
CLRF	Load Capacitance				50	pF
VOS _R O	Output DC Offset Voltage		-200		200	mV
POWER DI	SSIPATION					
lcco	Power-Down Current	No Load		0.5	1.5	mA
I _{BB0}	Power-Down Current	No Load		0.05	0.3	mA
I _{CC1}	Active Current	No Load		6.0	9.0	mA
I _{BB1}	Active Current	No Load		6.0	9.0	mA

TP3058/TP3059

Timing Specifications

Unless otherwise noted, $V_{CCA} = V_{CCD} = 5.0V \pm 5\%$, $V_{BB} = -5.0V \pm 5\%$, GNDA = 0V, $T_A = 0^{\circ}C$ to 70°C; typical characteristics specified at $V_{CCA} = V_{CCD} = 5.0V$, $V_{BB} = -5.0V$, $T_A = 25^{\circ}C$; all signals are referenced to GNDA. Timing specifications are measured at $V_{OH} = 2.0V$ and $V_{OL} = 0.7V$. Limits printed in **BOLD** characters are guaranteed for $V_{CCA} = V_{CCD} = 5.0V \pm 5\%$, $V_{BB} = -5.0V \pm 5\%$; $T_A = 0^{\circ}C$ to 70°C by correlation with 100% electrical testing at $T_A = 25^{\circ}C$. All other limits are assured by correlation with other production tests and/or product design characterizations. See Definitions and Timing Conventions for test methods information.

Symbol	Parameter	Conditions	Min	Max	Units
t _{PC}	Period of Clock		760		ns
t _{WCH}	Width of Clock High		330		ns
twcL	Width of Clock Low		330		ns
tRC	Rise Time of Clock			50	ns
t _{FC}	Fall Time of Clock			50	ns
tWFL	Width of FS Low		200	100	ns μs
t _{HFB}	Hold Time, FS Low to R	PCM READ Only	100		ns
t _{SRF}	Set-Up Time, R Low to FS	PCM READ Only	100		ns
tHFW	Hold Time, FS Low to W	PCM WRITE Only	100		ns
tSWF	Set-Up Time, W Low to FS	PCM WRITE Only	100		ns
twrn	Width of R High		75		ns
twwn	Width of W High		125		ns
t _{DRD}	Delay Time, R to Data Valid	C _L = 100 pF		65	ns
t _{ZRD}	Float Delay, R Low to DB High-Z		0	80	ns
tsow	Set-Up Time, DB to W Low		75		ns
tHWD	Hold Time, W Low to DB		25		ns
tspwn	Set-Up Time, PCM/CNTL to R or W		20		ns
t _{HWRP}	Hold-Time, W or R to PCM/CNTL		100		ns
t _{HCF}	Hold-Time, FS Low after CLK High		100		ns
tSFC	Set-Up Time, FS High to CLK High		100		ns
tPFS	Period of FS (Note 5)	CLK = 1.024 MHz	70		μs

Timing Diagram

TP3058/TP3059

Transmission Characteristics

Unless otherwise specified: $T_A = 0^{\circ}$ C to 70°C, $V_{CCA} = V_{CCD} = 5V \pm 5\%$, $V_{BB} = -5V \pm 5\%$, GNDD = GNDA = 0V, f = 1.02 kHz, $V_{IN} = 0$ dBm0, transmit input amplifier connected for unity-gain non-inverting. Limits printed in **BOLD** characters are guaranteed for $V_{CCA} = V_{CCD} = 5.0V \pm 5\%$ and $V_{BB} = -5.0V \pm 5\%$; $T_A = 0^{\circ}$ C to 70°C by correlation with 100% testing at $T_A = 25^{\circ}$ C. All other limits are assured by correlation with production tests and/or product design and characterization.

AMPLITUDE RESPONSEAbsolute LevelsNominal 0 dBm0 Level is 4 dBm (6001)1.2276 $0 dBm0$ TP30581.2276 1_{MAX} Maximum Overload LevelTP3058 (+ 3.17 dBm0) TP3059 (+ 3.14 dBm0)2.501 2.492 G_{XA} Transmit Gain, AbsoluteTA = 25°C, V _{CCA} = V _{CCD} = 5.0V, V _{BB} = -5.0V Input at GSx = 0 dBm0 at 1020 Hz-0.15 G_{XR} Transmit Gain, Relative to G_{XA} f = 16 Hz f = 50 Hz f = 300 Hz-1.8 -0.15 G_{XR} Transmit Gain, Relative to G_{XA} f = 460 Hz f = 300 Hz-0.15 -0.35 G_{XAT} Absolute Transmit Gain Variation with TemperatureRelative to G_{XA} -0.1 G_{XAV} Absolute Transmit Gain Variation with Supply VoltageRelative to G_{XA} -0.1 G_{XRL} Transmit Gain Variation with LevelSinusoidal Test Method Reference Level = -10 dBm0 VFxl+ = -50 dBm0 to -40 dBm0 VFxl+ = -50 dBm0 to -30 dBm0-0.2 -0.4 G_{RR} Receive Gain, Relative to G_{RA} f = 0 Hz dBm0 gain 0 - 50 dBm0 VFxl+ = -50 dBm0 to -40 dBm0 VFxl+ = -50 dBm0 to -50 dBm0-0.15 -0.15 G_{RR} Receive Gain, Relative to G_{RA} f = 0 Hz to 3000 Hz f = 300 Hz -0.2 = 50 dBm0 Hz -0.35-0.15 -0.35 G_{RR} Receive Gain, Relative to G_{RA} f = 0 Hz to 3000 Hz f = 3400 Hz-0.15 -0.35 G_{RR} Receive Gain, Relative to G_{RA} f = 0 Hz to 3000 Hz f = 3400 Hz-0.15 -0.35 G_{RR} Receive Gain, Relative to G_{RA} f = 0 Hz to 3000 Hz f = 3400 Hz<	nbol	Parameter	Conditions	Min	Тур	Max	Units
	PLITU	DE RESPONSE					
ImaxMaximum Overload LevelTP3058 (+ 3.17 dBm0) TP3059 (+ 3.14 dBm0)2.501 2.492GxATransmit Gain, Absolute $T_A = 25^{\circ}C, V_{CCA} = V_{CCD} = 5.0V, V_{BB} = -5.0V$ Input at GS _X = 0 dBm0 at 1020 Hz -0.15 GxRTransmit Gain, Relative to GXA $f = 16$ Hz $f = 50$ Hz $f = 300$ Hz -1.8 -0.35 -0.35 $f = 3400$ Hz -0.15 GXATAbsolute Transmit Gain Variation with TemperatureRelative to GXA -0.7 $f = 4000$ Hz $f = 4000$ Hz -0.1 GXATAbsolute Transmit Gain Variation with Supply VoltageRelative to GXA -0.1 GXRLTransmit Gain Variation with LevelRelative to GXA -0.05 GRAReceive Gain, AbsoluteTransmit Gain Variation $VF_XI^+ = -55$ dBm0 to -30 dBm0 $VF_XI^+ = -55$ dBm0 to -50 dBm0 -0.2 -0.15 GRAReceive Gain, AbsoluteTA = 25^{\circ}C, V_{CCA} = V_{CCD} = 5V, V_{BB} = -5V Input = Digital Code Sequence for 0 dBm0 Signal at 1020 Hz -0.15 GRAReceive Gain, AbsoluteTA = 25^{\circ}C, V_{CCA} = V_{CCD} = 5V, V_{BB} = -5V Input = Digital Code Sequence for 0 dBm0 Signal at 1020 Hz -0.15 GRAReceive Gain, AbsoluteTA = 25^{\circ}C, V_{CCA} = V_{CCD} = 5V, V_{BB} = -5V Input = Digital Code Sequence for 0 dBm0 Signal at 1020 Hz -0.15 GRAReceive Gain, AbsoluteTA = 25^{\circ}C, V_{CCA} = V_{CCD} = 5V, V_{BB} = -5V Input = Digital Code Sequence for 0 dBm0 Signal at 1020 Hz -0.15 GRAReceive Gain, f = 0 Hz to 3000 Hz f = 3000 Hz -0.35 -0.75 -0.75 GRAReceive Gain, f =		Absolute Levels 0 dBm0	Nominal 0 dBm0 Level is 4 dBm (600Ω) TP3058 TP3059		1.2276		Vrms Vrms
G_{XA} Transmit Gain, Absolute $T_A = 25^{\circ}C, V_{CCA} = V_{CCD} = 5.0V, V_{BB} = -5.0V$ Input at $GS_X = 0$ dBm0 at 1020 Hz -0.15 G_{XR} Transmit Gain, Relative to G_{XA} $f = 16$ Hz $f = 50$ Hz $f = 200$ Hz -1.8 $f = 300$ Hz - -0.15 $f = 300$ Hz - -0.35 $f = 300$ Hz - -0.35 $f = 3400$ Hz G_{XAT} Absolute Transmit Gain Variation with TemperatureRelative to G_{XA} -0.1 G_{XAT} Absolute Transmit Gain Variation with Supply VoltageRelative to G_{XA} -0.1 G_{XARL} Absolute Transmit Gain Variation with Supply VoltageRelative to G_{XA} -0.05 G_{RARL} Transmit Gain Variation With LevelSinusoidal Test Method Reference Level = -10 dBm0 $VF_XI^+ = -50$ dBm0 to -40 dBm0 -0.4 $VF_XI^+ = -50$ dBm0 to -6.4 	x	Maximum Overload Level	TP3058 (+ 3.17 dBm0) TP3059 (+ 3.14 dBm0)		2.501 2.492		V _{DC} V _{DC}
$ \begin{array}{c c} G_{XR} \\ G_{XR} \\ Relative to G_{XA} \\ & f = 16 \text{Hz} \\ f = 50 \text{Hz} \\ f = 50 \text{Hz} \\ f = 60 \text{Hz} \\ f = 300 \text{Hz} \\ f = 4000 H$	٩	Transmit Gain, Absolute	$T_A = 25^{\circ}C, V_{CCA} = V_{CCD} = 5.0V, V_{BB} = -5.0V$ Input at GS _X = 0 dBm0 at 1020 Hz	-0.15		0.15	dB
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	a l	Transmit Gain, Relative to G _{XA}	f = 16 Hz f = 50 Hz f = 60 Hz f = 200 Hz f = 300 Hz - 3000 Hz f = 3300 Hz f = 3400 Hz f = 4000 Hz f = 4600 Hz and Up, Measure Response from 0 Hz to 4000 Hz	- 1.8 - 0.15 - 0.35 - 0.7		-40 -30 -26 -0.1 0.15 0.1 0 -14 -32	dB dB dB dB dB dB dB dB dB dB dB
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	AT	Absolute Transmit Gain Variation with Temperature	Relative to G _{XA}	-0.1		0.1	dB
$ \begin{array}{c c} G_{XRL} & Transmit Gain Variation \\ with Level & Sinusoidal Test Method \\ Reference Level = -10 dBm0 \\ VF_XI^+ = -40 dBm0 to +3 dBm0 \\ VF_XI^+ = -50 dBm0 to -40 dBm0 \\ VF_XI^+ = -55 dBm0 to -50 dBm0 \\ I.2 \end{array} $	AV	Absolute Transmit Gain Variation with Supply Voltage	Relative to G _{XA}	-0.05		0.05	dB
$ \begin{array}{c c} G_{RA} & \mbox{Receive Gain, Absolute} & T_A = 25^\circ C, V_{CCA} = V_{CCD} = 5V, V_{BB} = -5V \\ \mbox{Input} = Digital Code Sequence for} & 0.15 \\ \mbox{od Bm0 Signal at 1020 Hz} & -0.15 \\ \mbox{G_{RR}} & \mbox{Receive Gain,} & f = 0 \mbox{Hz} to 3000 \mbox{Hz} & -0.35 \\ \mbox{f} = 3400 \mbox{Hz} & -0.35 \\ \mbox{f} = 4000 \mbox{Hz} & -0.7 \\ \m$	RL	Transmit Gain Variation with Level	Sinusoidal Test Method Reference Level = -10 dBm0 VF _X I ⁺ = -40 dBm0 to $+3 \text{ dBm0}$ VF _X I ⁺ = -50 dBm0 to -40 dBm0 VF _X I ⁺ = -55 dBm0 to -50 dBm0	-0.2 -0.4 1.2		0.2 0.4 1.2	dB dB dB
G_{RR} Receive Gain, Relative to G_{RA} $f = 0 Hz$ to 3000 Hz -0.15 $f = 3300 Hz$ -0.35 -0.35 $f = 3400 Hz$ -0.7 $f = 4000 Hz$ -0.7	A	Receive Gain, Absolute	$T_A = 25^{\circ}C$, $V_{CCA} = V_{CCD} = 5V$, $V_{BB} = -5V$ Input = Digital Code Sequence for 0 dBm0 Signal at 1020 Hz	-0.15		0.15	dB
Goat Absolute Beceive Gain Relative to Go	R	Receive Gain, Relative to G _{RA}	f = 0 Hz to 3000 Hz f = 3300 Hz f = 3400 Hz f = 4000 Hz	-0.15 -0.35 -0.7		0.15 0.05 0 - 14	dB dB dB dB
Variation with Temperature	AT	Absolute Receive Gain Variation with Temperature	Relative to G _{RA}	-0.1		0.1	dB
G _{RAV} Absolute Receive Gain Relative to G _{RA} -0.05 Variation with Supply Voltage - - - - - - 0.05 - - 0.05 - - 0.05 - - 0.05 - - 0.05 - - 0.05 0.05 - 0.05 </td <td>AV</td> <td>Absolute Receive Gain Variation with Supply Voltage</td> <td>Relative to G_{RA}</td> <td>-0.05</td> <td></td> <td>0.05</td> <td>dB</td>	AV	Absolute Receive Gain Variation with Supply Voltage	Relative to G _{RA}	-0.05		0.05	dB
G _{RRL} Receive Gain Variation with Level Sinusoidal Test Method; Reference Input PCM Code Corresponds to an Ideally Encoded PCM Level -40 dBm0 to +3 dBm0 = -50 dBm0 to -40 dBm0 = -55 dBm0 to -50 dBm0 -0.2 -0.4 -1.2	RL	Receive Gain Variation with Level	Sinusoidal Test Method; Reference Input PCM Code Corresponds to an Ideally Encoded PCM Level = $-40 \text{ dBm0 to} + 3 \text{ dBm0}$ = $-50 \text{ dBm0 to} -40 \text{ dBm0}$ = $-55 \text{ dBm0 to} -50 \text{ dBm0}$	-0.2 -0.4 -1.2		0.2 0.4 1.2	dB dB dB
V_{RO} Receive Output Drive Level $R_L = 600\Omega$ 2.5	5	Receive Output Drive Level	$R_L = 600\Omega$	2.5		2.5	V

Transmission Characteristics (Continued)

Unless otherwise specified: $T_A = 0^{\circ}C$ to 70°C, $V_{CCA} = V_{CCD} = 5V \pm 5\%$, $V_{BB} = -5V \pm 5\%$, GNDD = GNDA = 0V, f = 1.02 kHz, $V_{IN} = 0$ dBm0, transmit input amplifier connected for unity-gain non-inverting. Limits printed in **BOLD** characters are guaranteed for $V_{CCA} = V_{CCD} = 5.0V \pm 5\%$ and $V_{BB} = -5.0V \pm 5\%$; $T_A = 0^{\circ}C$ to 70°C by correlation with 100% testing at $T_A = 25^{\circ}C$. All other limits are assured by correlation with production tests and/or product design and characterization.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
ENVELOP	E DELAY DISTORTION WITH FREQUEN	ICY				
D _{XA}	Transmit Delay, Absolute	f = 1600 Hz		290	315	μS
D _{XR}	Transmit Delay, Relative to D _{XA}	f = 500 Hz-600 Hz f = 600 Hz-800 Hz f = 800 Hz-1000 Hz f = 1000 Hz-1600 Hz f = 1600 Hz-2600 Hz f = 2600 Hz-2800 Hz f = 2800 Hz-3000 Hz		195 120 50 20 55 80 130	220 145 75 40 75 105 155	μs μs μs μs μs μs μs
D _{RA}	Receive Delay, Absolute	f = 1600 Hz		180	200	μs
D _{RR}	Receive Delay, Relative to D _{RA}	f = 500 Hz - 1000 Hz f = 1000 Hz - 1600 Hz f = 1600 Hz - 2600 Hz f = 2600 Hz - 2800 Hz f = 2800 Hz - 3000 Hz	-40 -30	-25 -20 70 100 145	90 125 175	μs μs μs μs μs
NOISE			I <u></u>			
Nxc	Transmit Noise, C Message Weighted	TP3058, (Note 2)		12	15	dBrnC0
N _{XP}	Transmit Noise, P Message Weighted	TP3059, (Note 2)		-74	-69	dBm0p
N _{RC}	Receive Noise, C Message Weighted	TP3058, PCM Code Equals Alternating Positive and Negative Zero		8	11	dBrnC0
N _{RP}	Receive Noise, P Message Weighted	TP3059, PCM Code Equals Positive Zero		-82	-79	dBm0p
N _{RS}	Noise, Single Frequency	f = 0 kHz to 100 kHz, Loop Around Measurement, VF _X I ⁺ = 0V			-53	dBm0
PPSRX	Positive Power Supply Rejection, Transmit	$\label{eq:VCCA} \begin{split} V_{CCA} &= V_{CCD} = 5.0 \ V_{DC} + 100 \ \text{mVrms} \\ f &= 0 \ \text{kHz} - 50 \ \text{kHz} \ (\text{Note 3}) \end{split}$	40			dBC
NPSR _X	Negative Power Supply Rejection, Transmit	$V_{BB} = -5.0 V_{DC} + 100 \text{ mVrms}$ f = 0 kHz-50 kHz (Note 3)	40			dBC
PPSR _R	Positive Power Supply Rejection, Receive	PCM Code Equals Positive Zero for TP3058 and TP3059 $V_{CC} = 5.0 V_{DC} + 100 \text{ mVrms}$ f = 0 Hz-4000 Hz f = 4 kHz-25 kHz f = 25 kHz-50 kHz	40 40 36			dBC dBC dBC
NPSRR	Negative Power Supply Rejection, Receive	PCM Code Equals Positive Zero for TP3058 and TP3059 $V_{BB} = -5.0 V_{DC} + 100 \text{ mVrms}$ f = 0 Hz-4000 Hz f = 4 kHz-25 kHz f = 25 kHz-50 kHz	40 40 36			dBC dBC dBC
SOS	Spurious Out-of-Band Signals at the Channel Output	0 dBm0, 300 Hz–3400 Hz Input Applied to VF _X I + , Measure Individual Image Signals at VF _R O 4600 Hz–7600 Hz 7600 Hz–8400 Hz 8400 Hz–100,000 Hz			- 32 -40 - 32	dB dB dB

Transmission Characteristics (Continued)

(All Devices) Unless otherwise specified: $T_A = 0^{\circ}C$ to 70°C, $V_{CCA} = V_{CCD} = 5V \pm 5\%$, $V_{BB} = -5V \pm 5\%$, GNDD = GNDA = 0V, f = 1.02 kHz, $V_{IN} = 0$ dBm0, transmit input amplifier connected for unity-gain non-inverting. Limits printed in **BOLD** characters are guaranteed for $V_{CC} = 5.0V \pm 5\%$ and $V_{BB} = -5.0V \pm 5\%$; $T_A = 0^{\circ}C$ to 70°C by correlation with 100% testing at $T_A = 25^{\circ}C$. All other limits are assured by correlation with production tests and/or product design and characterization.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
DISTORTIO	N					
STD _X STD _R	Signal to Total Distortion Transmit or Receive Half-Channel	Sinusoidal Test Method (Note 4) Level = 3.0 dBm0 = 0 dBm0 to -30 dBm0 = -40 dBm0 XMT RCV = -55 dBm0 XMT RCV	33 36 29 30 14 15			dB dB dB dB dB dB
SFDX	Single Frequency Distortion, Transmit				-46	dB
SFD _R	Single Frequency Distortion, Receive				-46	dB
IMD	Intermodulation Distortion	$VF_XI^+ = -4 dBm0$ to $-21 dBm0$, Two Frequencies in the Range 300 Hz-3400 Hz			-41	dB
CROSSTAL	.K	•	· · · · · · · · · · · · · · · · · · ·		-	

CT _{X-R}	Transmit to Receive Crosstalk 0 dBm0 Transmit Level	f = 300 Hz-3000 Hz at 0 dBm0 Transmission Level Steady PCM Receive Code	-90	-70	dB
CT _{R-X}	Receive to Transmit Crosstalk 0 dBm0 Receive Level	f = 300 Hz-3000 Hz at 0dBm0 Transmit Level (Note 3)	-90	-70	dB

Note 2: Measured by extrapolation from the distortion test result.

Note 3: CT_{R-X} , PPSR_X, and NPSR_X are measured with a -50 dBm0 activation signal applied at VF_XI⁺.

Note 4: Using C message weighted filter.

Note 5: Must be 125 µs to meet CCITT and LSSGR specifications.

Encoding Format At Data Bus Output

				ΤΡ3 μ-L	1058 .aw		-			(Incl	True ludes	TP3 A-La Ever	059 w, C5 n Bit I	5 = 0 nvers	sion)	
	MS	в					L	.SB	MS	в					L	.SB
V _{IN} = + Full-Scale	1	0	0	0	0	0	0	0	1	0	1	0	1	0	1	0
V _{IN} = 0V	1 0	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 0	1 1	0 0	1 1	0 0	1 1	0 0	1
V _{IN} = - Full-Scale	0	0	0	0	0	0	0	0	0	0	1	0	1	0	1	0
		Not Applicable (C5 is Don't Care)				- Sign B	+ Ma efore	gnitud Even	le A-L Bit In	aw, C versio	5 = 5n)	1				
V _{IN} = + Full-Scale									1	1	1	1	1	1	1	1
V _{IN} = 0V									1 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
V _{IN} = - Full-Scale									0	1	1	1	1	1	1	1

Applications Information

POWER SUPPLIES

While the pins of the TP3058/9 family are well protected against electrical misuse, however, it is recommended that the standard CMOS practice be followed, ensuring that ground is connected to the device before any other connections are made. In applications where the printed circuit board may be plugged into a "hot" socket with power and clocks already present, an extra long ground pin in the connector should be used. GNDA and GNDD MUST be connected together adjacent to each COMBO, not on the connector or backplane wiring.

All ground connections to each device should meet at a common point as close as possible to the GNDA pin. This minimizes the interaction of ground return currents flowing through a common bus impedance. 0.1 μ F supply decoupling capacitors should be connected from this common ground point to V_{CCA} and V_{BB}.

For best performance, the ground point of each COMBO on a card should be connected to a common card ground in star formation, rather than via a ground bus. This common ground point should be decoupled to V_{CC} and V_{BB} with 10 μ F capacitors.

The positive power supply to the bus drivers, V_{CCD}, is provided on a separate pin from the positive supply for the COMBO circuits to minimize noise injection when driving the bus. V_{CCA} and V_{CCD} MUST be connected together close to the COMBO at the point where the 0.1 μ F decoupling capacitor is connected.

Application Note AN370 provides further guidance on board layout techniques.

RECEIVE GAIN ADJUSTMENT

For applications where a TP3050 family CODEC/filter receive output must drive a 600 Ω load, but a peak swing lower than ± 2.5 V is required, the receive gain can be easily adjusted by inserting a matched T-pad or π -pad at the output as shown in *Figure 4*. Table II lists the required resistor values for 600 Ω terminations. As these are generally non-standard values, the equations can be used to compute the attenuation of the closest practical set of resistors. It may be necessary to use unequal values for the R1 or R4 arms of the attenuators to achieve a precise attenuation. Generally it is tolerable to allow a small deviation of the input impedance from nominal while still maintaining a good return loss. For example a 30 dB return loss against 600 Ω is obtained if the output impedance of the attenuator is in the range 282 Ω to 319 Ω (assuming a perfect transformer).

Also: $Z = \sqrt{Z_{SC} Z_{OC}}$ Where $Z_{SC} =$ Impedance with short circuit termination and $Z_{OC} =$ Impedance with open circuit termination

 $R4 = Z1 \left(\frac{N^2 - 1}{N^2 - 2NS + 1}\right)$ FIGURE 4. Receive Gain Adjustment for Matched Loads

Applications Information (Continued)

TABLE II. Attenuator Tables for $Z1 = Z2 = 300\Omega$ (All Values in Ω)

dB	R1	R2	R3	R4
0.1	1.7	26k	3.5	52k
0.2	3.5	13k	6.9	26k
0.3	5.2	8.7k	10.4	17.4k
0.4	6.9	6.5k	13.8	13k
0.5	8.5	5.2k	17.3	10.5k
0.6	10.4	4.4k	21.3	8.7k
0.7	12.1	3.7k	24.2	7.5k
0.8	13.8	3.3k	27.7	6.5k
0.9	15.5	2.9k	31.1	5.8k
1.0	17.3	2.6k	34.6	5.2k
2	34.4	1.3k	70	2.6k
3	51.3	850	107	1.8k
4	68	650	144	1.3k
5	84	494	183	1.1k
6	100	402	224	900

TABLE II. Attenuator Tables for Z1 = Z2 = 30	OΩ
(All Values in Ω) (Continued)	

dB	R1	R2	R3	R4
7	115	380	269	785
8	379	284	317	698
9	143	244	370	630
10	156	211	427	527
11	168	184	490	535
12	180	161	550	500
13	190	142	635	473
14	200	125	720	450
15	210	110	816	430
16	218	98	924	413
18	233	77	1.17k	386
20	246	61	1.5k	366

Typical Application

Figure 5 shows a typical application of the TP3058/9 with a microprocessor having non-multiplexed address and data ports. The COMBO clocks, CLK and FS, are derived from a crystal-controlled counter chain. The 8 kHz FS signal is also used as an Interrupt to the processor, prompting it to generate a PCM READ and PCM WRITE cycle sometime during the next frame period.

TP3058/TP3059

TP3052/TP3052-1/TP3053/TP3053-1 TP3054/TP3054-1/TP3057/TP3057-1 Serial Interface CODEC/FILTER COMBO™ Family

General Description

The TP3052, TP3053, TP3054, TP3057 family consists of μ -law and A-law monolithic PCM CODEC/filters utilizing the A/D and D/A conversion architecture shown in *Figure 1*, and a serial PCM interface. The devices are fabricated using National's advanced double-poly CMOS process (microCMOS).

The encode portion of each device consists of an input gain adjust amplifier, an active RC pre-filter which eliminates very high frequency noise prior to entering a switched-capacitor band-pass filter that rejects signals below 200 Hz and above 3400 Hz. Also included are auto-zero circuitry and a companding coder which samples the filtered signal and encodes it in the companded µ-law or A-law PCM format. The decode portion of each device consists of an expanding decoder, which reconstructs the analog signal from the companded u-law or A-law code, a low-pass filter which corrects for the sin x/x response of the decoder output and rejects signals above 3400 Hz followed by a single-ended power amplifier capable of driving low impedance loads. The devices require two 1.536 MHz, 1.544 MHz or 2.048 MHz transmit and receive master clocks, which may be asynchronous; transmit and receive bit clocks, which may vary from 64 kHz to 2.048 MHz; and transmit and receive frame sync pulses. The timing of the frame sync pulses and PCM data is compatible with both industry standard formats.

Features

- Complete CODEC and filtering system (COMBO) including:
 - Transmit high-pass and low-pass filtering
 - -- Receive low-pass filter with sin x/x correction
 - Active RC noise filters
 - µ-law or A-law compatible COder and DECoder
 - Internal precision voltage reference
 - Serial I/O interface
 - Internal auto-zero circuitry
- μ-law with signaling, TP3020 or TP5116A timing— TP3052
- μ -law with signaling, TP5116A family timing—TP3053
- µ-law without signaling, 16-pin—TP3054
- A-law, 16-pin-TP3057
- Meets or exceeds all D3/D4 and CCITT specifications
- ±5V operation
- Low operating power-typically 60 mW
- Power-down standby mode—typically 3 mW
- Automatic power-down
- TTL or CMOS compatible digital interfaces
- Maximizes line interface card circuit density
- Dual-In-Line on PCC surface mount packages

Pin Description

Symbol	Function	Symbol	Function
V _{BB}	Negative power supply pin. $V_{BB} = -5V \pm 5\%$.	SFR	When high during FS _R , this input indicates a receive signal frame.
GNDA	Analog ground. All signals are referenced to this pin.	SIG _R	The eighth bit of the PCM data appears at this output after each receive signalling
VF _R O	Analog output of the receive power ampli- fier.	SIGX	frame. Signal data input. Data at this input is in-
V _{CC}	Positive power supply pin. $V_{CC} = +5V \pm 5\%$.		serted into the 8th bit of the PCM word during transmit signaling frames.
FS _R	Receive frame sync pulse which enables $BCLK_B$ to shift PCM data into D_B . FSB is	SFX	When high during FS _X , this input indicates a transmit signaling frame.
	an 8 kHz pulse train. See <i>Figures 2</i> and <i>3</i> for timing details.	MCLKX	Transmit master clock. Must be 1.536 MHz, 1.544 MHz or 2.048 MHz. May be
D _R	Receive data input. PCM data is shifted into D_R following the FS _R leading edge.		asynchronous with MCLK _R . Best perform- ance is realized from synchronous opera-
BCLK _R /CLKSEL	. The bit clock which shifts data into D_R af-	50	tion.
	ter the FS _R leading edge. May vary from 64 kHz to 2.048 MHz. Alternatively, may be a logic input which selects either 1.536 MHz/1 544 MHz or 2.048 MHz for master	rδχ	ables BCLK _X to shift out the PCM data on D_X . FS _X is an 8 kHz pulse train, see <i>Figures 2</i> and <i>3</i> for timing details.
	clock in synchronous mode and BCLK _X is used for both transmit and receive directions (see Table 1).	BCLKX	The bit clock which shifts out the PCM data on D_X . May vary from 64 kHz to 2.048 MHz, but must be synchronous with
MCLK _R /PDN	Receive master clock. Must be 1.536	-	MCLKX.
	MHz, 1.544 MHz or 2.048 MHz. May be asynchronous with MCLK _X , but should be	D _X	is enabled by FS _X .
	synchronous with MCLK _X for best per- formance. When MCLK _R is connected	TSX	Open drain output which pulses low during the encoder time slot.
	all internal timing. When MCLK _R is con-	GS _X	Analog output of the transmit input amplifi- er. Used to externally set gain.
	powered down.	VF _X I ⁻	Inverting input of the transmit input amplifier.
		VF _X I+	Non-inverting input of the transmit input amplifier.

Functional Description

POWER-UP

When power is first applied, power-on reset circuitry initializes the COMBO and places it into a power-down state. All non-essential circuits are deactivated and the D_X and VF_RO outputs are put in high impedance states. To power-up the device, a logical low level or clock must be applied to the MCLK_R/PDN pin and FS_X and/or FS_R pulses must be present. Thus, 2 power-down control modes are available. The first is to pull the MCLK_R/PDN pin high; the alternative is to hold both FS_X and FS_R inputs continuously low—the device will power-down approximately 2 ms after the last FS_X or FS_R pulse. Power-up will occur on the first FS_X or FS_R pulse. The TRI-STATE PCM data output, D_X, will remain in the high impedance state until the second FS_X pulse.

SYNCHRONOUS OPERATION

For synchronous operation, the same master clock and bit clock should be used for both the transmit and receive directions. In this mode, a clock must be applied to MCLK_X and the MCLK_R/PDN pin can be used as a power-down control. A low level on MCLK_R/PDN powers up the device and a high level powers down the device. In either case, MCLK_X will be selected as the master clock for both the transmit and receive circuits. A bit clock must also be applied to BCLK_X and the BCLK_R/CLKSEL can be used to select the proper internal divider for a master clock of 1.536 MHz, 1.544 MHz or 2.048 MHz. For 1.544 MHz operation, the device automatically compensates for the 193rd clock pulse each frame.

With a fixed level on the BCLK_R/CLKSEL pin, BCLK_X will be selected as the bit clock for both the transmit and receive directions. Table 1 indicates the frequencies of operation which can be selected, depending on the state of BCLK_R/CLKSEL. In this synchronous mode, the bit clock, BCLK_X, may be from 64 kHz to 2.048 MHz, but must be synchronous with MCLK_X.

Each FS_X pulse begins the encoding cycle and the PCM data from the previous encode cycle is shifted out of the enabled D_X output on the positive edge of BCLK_X. After 8 bit clock periods, the TRI-STATE D_X output is returned to a high impedance state. With an FS_R pulse, PCM data is latched via the D_R input on the negative edge of BCLK_X (or BCLK_R if running). FS_X and FS_R must be synchronous with MCLK_{X/R}.

TA	BLE	١.	Selection	of	Master	Clock	Frequencies
----	-----	----	-----------	----	--------	-------	-------------

	Maste Frequenc	r Clock y Selected
BCLK _R /CLKSEL	TP3057	TP3052 TP3053 TP3054
Clocked	2.048 MHz	1.536 MHz or 1.544 MHz
0	1.536 MHz or	2.048 MHz
1 (or Open Circuit)	1.544 MHz 2.048 MHz	1.536 MHz or 1.544 MHz

ASYNCHRONOUS OPERATION

For asynchronous operation, separate transmit and receive clocks may be applied. MCLK_X and MCLK_R must be 2.048

MHz for the TP3057, or 1.536 MHz, 1.544 MHz for the TP3052, 53, 54, and need not be synchronous. For best transmission performance, however, MCLK_R should be synchronous with MCLK_X, which is easily achieved by applying only static logic levels to the MCLK_R/PDN pin. This will automatically connect MCLK_X to all internal MCLK_R functions (see Pin Description). For 1.544 MHz operation, the device automatically compensates for the 193rd clock pulse each frame. FS_X starts each encoding cycle and must be synchronous with MCLK_X and BCLK_X. FS_R starts each decoding cycle and must be synchronous with BCLK_R BCLK_R must be a clock, the logic levels shown in Table 1 are not valid in asynchronous mode. BCLK_X and BCLK_R may operate for 64 kHz to 2.048 MHz.

SHORT FRAME SYNC OPERATION

The COMBO can utilize either a short frame sync pulse (the same as the TP3020/21 CODECs) or a long frame sync pulse. Upon power initialization, the device assumes a short frame mode. In this mode, both frame sync pulses, FS_x and FS_R, must be one bit clock period long, with timing relationships specified in Figure 2. With FS_X high during a falling edge of BCLK_X, the next rising edge of BCLK_X enables the D_X TRI-STATE output buffer, which will output the sign bit. The following seven rising edges clock out the remaining seven bits, and the next falling edge disables the Dy output. With FS_B high during a falling edge of BCLK_B (BCLK_X in synchronous mode), the next falling edge of BCLK_B latches in the sign bit. The following seven falling edges latch in the seven remaining bits. All four devices may utilize the short frame sync pulse in synchronous or asynchronous operating mode.

LONG FRAME SYNC OPERATION

To use the TP5116A/56A long frame mode, both the frame sync pulses, FS_X and FS_R, must be three or more bit clock periods long, with timing relationships specified in Figure 3. Based on the transmit frame sync, FS_X, the COMBO will sense whether short or long frame sync pulses are being used. For 64 kHz operation, the frame sync pulse must be kept low for a minimum of 160 ns. The D_X TRI-STATE output buffer is enabled with the rising edge of FS_X or the rising edge of BCLK_X, whichever comes later, and the first bit clocked out is the sign bit. The following seven BCLKx rising edges clock out the remaining seven bits. The D_X output is disabled by the falling BCLK_X edge following the eighth rising edge, or by FS_X going low, whichever comes later. A rising edge on the receive frame sync pulse, FS_R, will cause the PCM data at D_B to be latched in on the next eight falling edges of BCLK_R (BCLK_X in synchronous mode). All four devices may utilize the long frame sync pulse in synchronous or asynchronous mode.

SIGNALING

The TP3052 and TP3053 μ -law COMBOs contain circuitry to insert and extract signaling information in the PCM data stream. The TP3052 is intended for short frame sync applications, and the TP3053 for long frame sync applications, although the TP3053 may also be used in short frame sync applications. The TP3054 and TP3057 have no provision for signaling.

Functional Description (Continued)

Signaling for the TP3052 is accomplished by applying a frame sync pulse two bit clock periods long, as shown in Figure 2. With FS_X two bit clock periods long, the data present at SIG_X input will be inserted as the LSB in the PCM data transmitted during that frame. With FS_R two bit clock periods long, the LSB of the PCM data read into the D_R input will be latched and appear on the SIG_R output pin until updated following the next signaling frame. The decoder will then interpret the lost LSB as "1/₂" to minimize noise and distortion. This short frame signaling may also be implemented using the TP3053, providing SF_R and SF_X are left open circuit or tied low. The TP3052 is not capable of inserting or extracting signaling information in the long frame mode.

Signaling for the TP3053 may be accomplished in either short or long frame sync mode. The short mode signaling is the same as the TP3052. For long frame signaling, two additional frame sync pulses are required, SF_X and SF_R, which indicate transmit and receive signaling frames, respectively. With an SF_X signaling frame sync, the data present at the SIG_X input will be inserted as the LSB in the PCM data transmitted during that frame. With an SF_R signaling frame sync, the LSB of the PCM data at D_R will be latched and appear on the SIG_R output pin until the next signaling frame. The decoder will also do the "½" step interpretation to compensate for the loss of the LSB.

TRANSMIT SECTION

The transmit section input is an operational amplifier with provision for gain adjustment using two external resistors, see *Figure 4*. The low noise and wide bandwidth allow gains in excess of 20 dB across the audio passband to be realized. The op amp drives a unity-gain filter consisting of RC

active pre-filter, followed by an eighth order switched-capacitor bandpass filter clocked at 256 kHz. The output of this filter directly drives the encoder sample-and-hold circuit. The A/D is of companding type according to µ-law (TP3052, TP3053, TP3054) or A-law (TP3057) coding conventions. A precision voltage reference is trimmed in manufacturing to provide an input overload (t_{MAX}) of nominally 2.5V peak (see table of Transmission Characteristics). The FSy frame sync pulse controls the sampling of the filter output, and then the successive-approximation encoding cycle begins. The 8-bit code is then loaded into a buffer and shifted out through D_X at the next FS_X pulse. The total encoding delay will be approximately 165 µs (due to the transmit filter) plus 125 µs (due to encoding delay), which totals 290 µs. Any offset voltage due to the filters or comparator is cancelled by sign bit integration.

RECEIVE SECTION

The receive section consists of an expanding DAC which drives a fifth order switched-capacitor low pass filter clocked at 256 kHz. The decoder is A-law (TP3057) or μ -law (TP3052, TP3053, TP3054) and the 5th order low pass filter corrects for the sin x/x attenuation due to the 8 kHz sample/hold. The filter is then followed by a 2nd order RC active post-filter/power amplifer capable of driving a 600 Ω load to a level of 7.2 dBm. The receive section is unity-gain. Upon the occurrence of FS_R, the data at the D_R input is clocked in on the falling edge of the next eight BCLK_R (BCLK_X) periods. At the end of the decoder time slot, the decoding cycle begins, and 10 μ s later the decoder DAC output is updated. The total decoder delay is ~ 10 μ s (decoder update) plus 110 μ s (filter delay) plus 62.5 μ s ($\frac{1}{2}$ frame), which gives approximately 180 μ s.

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

V _{CC} to GNDA	7V
V _{BB} to GNDA	-7V
Voltage at any Analog Input	
or Output	V_{CC} + 0.3V to V_{BB} - 0.3V

 Voltage at any Digital Input or Output
 V_{CC}+0.3V to GNDA-0.3V

 Operating Temperature Range
 -25°C to + 125°C

 Storage Temperature Range
 -65°C to + 150°C

 Lead Temperature (Soldering, 10 seconds)
 300°C

Lead Temperature (Soldering, 10 seconds) 300°C ESD rating is to be determined.

Electrical Characteristics Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for $V_{CC} = 5.0V \pm 5\%$, $V_{BB} = -5.0V \pm 5\%$; $T_A = 0^{\circ}C$ to 70°C by correlation with 100% electrical testing at $T_A = 25^{\circ}C$. All other limits are assured by correlation with other production tests and/or product design and characterization. All signals referenced to GNDA. Typicals specified at $V_{CC} = 5.0V$, $V_{BB} = -5.0V$, $T_A = 25^{\circ}C$.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
DIGITAL IN	ITERFACE			-		
VIL	Input Low Voltage				0.6	V
VIH	Input High Voltage		2.2			V
V _{OL}	Output Low Voltage	D_X , $I_L = 3.2 \text{ mA}$			0.4	V
		$SIG_R, I_L = 1.0 \text{ mA}$			0.4	V
Vau	Output High Voltage	$D_{X} _{U} = -3.2 \text{ mA}$	24			
∙он		SIG_{R} , $I_{H} = -1.0 \text{ mA}$	2.4			v
հլ	Input Low Current	GNDA ≤ VIN ≤ VIL, All Digital Inputs	- 10		10	μΑ
Чн	Input High Current	V _{IH} ≤V _{IN} ≤V _{CC}	- 10		10	μA
l _{OZ}	Output Current in High Impedance State (TRI-STATE)	D _X , GNDA≤V _O ≤V _{CC}	- 10		10	μA
ANALOG I	NTERFACE WITH TRANSMIT INPUT	AMPLIFIER (ALL DEVICES)				
I _I XA	Input Leakage Current	$-2.5V \le V \le +2.5V$, VF _X I ⁺ or VF _X I ⁻	-200		200	nA
R _I XA	Input Resistance	$-2.5V \le V \le +2.5V$, VF _X I ⁺ or VF _X I ⁻	10			MΩ
R _O XA	Output Resistance	Closed Loop, Unity Gain		1	3	Ω
R _L XA	Load Resistance	GS _X	10			kΩ
CLXA	Load Capacitance	GS _X		·	50	pF
V _O XA	Output Dynamic Range	GS _X , R _L ≥10 kΩ	-2.8		2.8	V
A _V XA	Voltage Gain	VF _X I + to GS _X	5000			V/V
F _U XA	Unity Gain Bandwidth		1	2		MHz
V _{OS} XA	Offset Voltage	· · · ·	-20		20	mV
V _{CM} XA	Common-Mode Voltage	CMRRXA > 60 dB	-2.5		2.5	V
CMRRXA	Common-Mode Rejection Ratio	DC Test	60			dB
PSRRXA	Power Supply Rejection Ratio	DC Test	60			dB
ANALOG I	NTERFACE WITH RECEIVE FILTER (ALL DEVICES)				
R _O RF	Output Resistance	Pin VF _R O		1	3	Ω
RLRF	Load Resistance	$VF_{R}O = \pm 2.5V$	600			Ω
CLRF	Load Capacitance				500	рF
VOS _R O	Output DC Offset Voltage		-200		200	mV
POWER DI	SSIPATION (ALL DEVICES)					
ICC0	Power-Down Current	No Load		0.5	1.5	mA
I _{BB} 0	Power-Down Current	No Load		0.05	0.3	mA
Icc1	Power-Up Active Current	No Load		6.0	9.0	mA
I _{BB} 1	Power-Up Active Current	No Load		6.0	9.0	mA

1	
ı	ŭ
1	2
j	Ň
1	1
	Ū
	g
1	σī
	Ϋ́.
1	-
1	
	မ
1	20
ì	ω.
1	\geq
	Ū,
1	ဗ
1	ຕັ
	Ϋ́.
	-
	မ
	2
	4
	7
1	Ď.
	ö
1	Š
	T
	~
	ω
	5
	2
	Ē
	2
	õ
	5
	4

1

Timing Specifications Unless otherwise noted, limits printed in BOLD characters are guaranteed for V _{CC} = 5.0V
$\pm 5\%$, V _{BB} = -5.0V $\pm 5\%$; T _A = 0°C to 70°C by correlation with 100% electrical testing at T _A = 25°C. All other limits are
assured by correlation with other production tests and/or product design and characterization. All signals referenced to GNDA.
Typicals specified at $V_{CC} = 5.0V$, $V_{BB} = -5.0V$, $T_A = 25^{\circ}C$. All timing parameters are measured at $V_{OH} = 2.0V$ and $V_{OL} = -5.0V$.
0.7V. See Definitions and Timing Conventions section for test methods information.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
1/t _{PM}	Frequency of Master Clocks	Depends on the Device Used and the BCLK _R /CLKSEL Pin. MCLK _X and MCLK _R		1.536 1.544 2.048		MHz MHz MHz
twmH	Width of Master Clock High	MCLK _X and MCLK _R	160			ns
t _{WML}	Width of Master Clock Low	MCLK _X and MCLK _R	160			ns
^t SBFM	Set-Up Time from $BCLK_X$ High to $MCLK_X$ Falling Edge	First Bit Clock after the Leading Edge of FS_X	100			ns
twBH	Width of Bit Clock High	V _{IH} =2.2V	160			ns
twBL	Width of Bit Clock Low	V _{IL} =0.6V	160			ns
t _{HBFL}	Holding Time from Bit Clock Low to Frame Sync	Long Frame Only	0			ns
thefs	Holding Time from Bit Clock High to Frame Sync	Short Frame Only	0			ns
t _{SFB}	Set-Up Time from Frame Sync to Bit Clock Low	Long Frame Only	80			ns
^t DBD	Delay Time from BCLK _X High to Data Valid	Load = 150 pF plus 2 LSTTL Loads	0		140	ns
t _{DBTS}	Delay Time to TS _X Low	Load = 150 pF plus 2 LSTTL Loads			140	ns
tDZC	Delay Time from BCLK _X Low to Data Output Disabled	$C_L = 0 pF$ to 150 pF	50		165	ns
tDZF	Delay Time to Valid Data from FS_X or $BCLK_X$, Whichever Comes Later	C _L =0 pF to 150 pF	20		165	ns
tSSFF	Set-Up Time from $SF_{X/R}$ High to $FS_{X/R}$	TP3053 Only	60			ns
tSSFB	Set-Up Time from Signal Frame Sync High to BCLK _{X/R} Clock	TP3053 Only	60			ns
tSSGB	Set-Up Time from SIG_X to $BCLK_X$	TP3052 and TP3053	100			ns
tHBSG	Hold Time from $BCLK_X$ High to SIG_X	TP3052 and TP3053	50			ns
t _{SDB}	Set-Up Time from D_R Valid to BCLK _{R/X} Low		50			ns
t _{HBD}	Hold Time from ${\rm BCLK}_{{\rm R}/{\rm X}}$ Low to ${\rm D}_{\rm R}$ Invalid		50			ns
tHBSF	Hold Time from BCLK _{X/R} Low to Signaling Frame Sync	TP3053 Only	100			ns
t _{SF}	Set-Up Time from FS _{X/R} to BCLK _{X/R} Low	Short Frame Sync Pulse (1 Bit Clock Period Long)	50			ns
t _{HF}	Hold Time from BCLK _{X/R} Low to FS _{X/R} Low	Short Frame Sync Pulse (1 Bit Clock Period Long)	100			ns
t _{HBFI}	Hold Time from 3rd Period of Bit Clock Low to Frame Sync (FS _X or FS _R)	Long Frame Sync Pulse (from 3 to 8 Bit Clock Periods Long)	100			ns
tWFL	Minimum Width of the Frame Sync Pulse (Low Level)	64k Bit/s Operating Mode	160			ns
t _{RM}	Rise Time of Master Clock	MCLK _X and MCLK _R			50	ns
t _{FM}	Fall Time of Master Clock	MCLK _X and MCLK _R			50	ns
t _{PB}	Period of Bit Clock		485	488	15725	ns

TP3052/TP3052-1/TP3053/TP3053-1/TP3054/TP3054-1/TP3057/TP3057-1

1-56

TP3052/TP3052-1/TP3053/TP3053-1/TP3054/TP3054-1/TP3057-1

1-57

Transmission Characteristics Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for $V_{CC} = 5.0V \pm 5\%$, $V_{BB} = -5.0V \pm 5\%$; $T_A = 0^\circ$ C to 70°C by correlation with 100% electrical testing at $T_A = 25^\circ$ C. All other limits are assured by correlation with other production tests and/or product design and characterization. GNDA = 0V, f = 1.02 kHz, $V_{IN} = 0$ dBm0, transmit input amplifier connected for unity gain non-inverting. Typicals specified at $V_{CC} = 5.0V$, $V_{BB} = -5.0V$, $T_A = 25^\circ$ C.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
AMPLITU	JDE RESPONSE		· ···		,	
	Absolute Levels (Definition of Nominal Gain)	Nominal 0 dBm0 Level is 4 dBm (600Ω) 0 dBm0		1.2276		Vrms
t _{MAX}		Max Overload Level TP3052, TP3053, TP3054 (3.17 dBm0) TP3057 (3.14 dBm0)		2.501 2.492		V _{PK} V _{PK}
G _{XA}	Transmit Gain, Absolute	$T_A = 25^{\circ}C$, $V_{CC} = 5V$, $V_{BB} = -5V$ Input at $GS_X = 0$ dBm0 at 1020 Hz TP3052/53/54/57 TP3052/53/54/57-1	-0.15 -0.20		0.15 0.20	dB dB
G _{XR}	Transmit Gain, Relative to G _{XA}	f = 16 Hz f = 50 Hz f = 60 Hz (TP3052/53/54/57-1) f = 60 Hz (TP3052/53/54/57) f = 200 Hz f = 300 Hz - 3000 Hz f = 3300 Hz f = 3400 Hz (TP3052/53/54/57) f = 3400 Hz (TP3052/53/54/57-1) f = 4000 Hz f = 4600 Hz and Up, Measure Response from 0 Hz to 4000 Hz	- 1.8 - 0.15 - 0.35 - 0.7 - 0.95		-40 -30 -22 -26 -0.1 0.15 0.05 0.05 -14 -32	dB dB dB dB dB dB dB dB dB dB dB dB dB d
G _{XAT}	Absolute Transmit Gain Variation with Temperature	Relative to G _{XA}	-0.1		0.1	dB
G _{XAV}	Absolute Transmit Gain Variation with Supply Voltage	Relative to G _{XA}	-0.05		0.05	dB
G _{XRL}	Transmit Gain Variations with Level	Sinusoidal Test Method Reference Level = -10 dBm0 VF _X I ⁺ = -40 dBm0 to $+3 \text{ dBm0}$ VF _X I ⁺ = -50 dBm0 to -40 dBm0 VF _X I ⁺ = -55 dBm0 to -50 dBm0	-0.2 -0.4 -1.2		0.2 0.4 1.2	dB dB dB
G _{RA}	Receive Gain, Absolute	$T_A = 25^{\circ}C$, $V_{CC} = 5V$, $V_{BB} = -5V$ Input = Digital Code Sequence for 0 dBm0 Signal at 1020 Hz TP3052/53/54/57 TP3052/53/54/57-1	-0.15 -0.20		0.15 0.20	dB dB
G _{RR}	Receive Gain, Relative to G _{RA}	f=0 Hz to 3000 Hz f=3300 Hz f=3400 Hz f=4000 Hz	-0.15 -0.35 -0.7	•	0.15 0.05 0 - 14	dB dB dB dB
G _{RAT}	Absolute Receive Gain Variation with Temperature	Relative to G _{RA}	-0.1		0.1	dB
G _{RAV}	Absolute Receive Gain Variation with Supply Voltage	Relative to G _{RA}	-0.05		0.05	dB
G _{RRL}	Receive Gain Variations with Level	Sinusoidal Test Method; Reference Input PCM Code Corresponds to an Ideally Encoded PCM Level = $-40 \text{ dBm0 to } + 3 \text{ dBm0}$ = $-40 \text{ dBm0 to } + 3 \text{ dBm0}$ (TP3052/53/54/57-1 only) = $-50 \text{ dBm0 to } -40 \text{ dBm0}$ = $-55 \text{ dBm0 to } -50 \text{ dBm0}$	-0.2 -0.25 -0.4 -1.2		0.2 0.25 0.4 1.2	dB dB dB dB
	Dentile Ontent Directional	P - 0000	25	<u>├───</u>	0.5	

Transmission Characteristics (Continued) Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for $V_{CC} = 5.0V \pm 5\%$, $V_{BB} = -5.0V \pm 5\%$; $T_A = 0^{\circ}C$ to 70°C by correlation with 100% electrical testing at $T_A = 25^{\circ}C$. All other limits are assured by correlation with other production tests and/or product design and characterization. GNDA = 0V, f = 1.02 kHz, $V_{IN} = 0$ dBm0, transmit input amplifier connected for unity gain non-inverting. Typicals specified at $V_{CC} = 5.0V$, $V_{BB} = -5.0V$, $T_A = 25^{\circ}C$.

Symbol	Parameter	Conditions	Min	Тур	Max	Units	
ENVELOPE DELAY DISTORTION WITH FREQUENCY							
D _{XA}	Transmit Delay, Absolute	f=1600 Hz		290	315	μs	
D _{XR}	Transmit Delay, Relative to D _{XA}	f = 500 Hz-600 Hz f = 600 Hz-800 Hz f = 800 Hz-1000 Hz f = 1000 Hz-1600 Hz f = 1600 Hz-2600 Hz f = 2600 Hz-2800 Hz f = 2800 Hz-3000 Hz		195 120 50 20 55 80 130	220 145 75 40 75 105 155	μs μs μs μs μs μs	
D _{RA}	Receive Delay, Absolute	f= 1600 Hz		180	200	μs	
D _{RR}	Receive Delay, Relative to D _{RA}	f = 500 Hz - 1000 Hz f = 1000 Hz - 1600 Hz f = 1600 Hz - 2600 Hz f = 2600 Hz - 2800 Hz f = 2800 Hz - 3000 Hz	-40 -30	-25 -20 70 100 145	90 125 175	μs μs μs μs μs	
NOISE							
N _{XC}	Transmit Noise, C Message Weighted	TP3052, TP3053, TP3054 TP3052/53/54-1 (Note 1)		12	15 16	dBrnC0 dBrnC0	
N _{XP}	Transmit Noise, P Message Weighted	TP3057 TP3057-1 (Note 1)		-74	-67 -66	dBm0p dBm0p	
N _{RC}	Receive Noise, C Message Weighted	PCM Code is Alternating Positive and Negative Zero — TP3052/53/54 TP3052/53/54-1		8	11 13	dBrnC0 dBrnC0	
N _{RP}	Receive Noise, P Message Weighted	TP3057 PCM Code Equals Positive Zero — TP3057 -1		-82	-79 -77	dBm0p dBm0p	
N _{RS}	Noise, Single Frequency	f=0 kHz to 100 kHz, Loop Around Measurement, VF _X I ⁺ = 0 Vrms			-53	dBm0	
PPSRX	Positive Power Supply Rejection, Transmit	$VF_XI^+ = -50 \text{ dBm0}$ $V_{CC} = 5.0 V_{DC} + 100 \text{ mVrms}$ f = 0 kHz - 50 kHz (Note 2)	40			dBC	
NPSRX	Negative Power Supply Rejection, Transmit	$\label{eq:VF_X} \begin{array}{l} VF_X I^+ = -50 \ dBm0 \\ V_{BB} = -5.0 \ V_{DC} + 100 \ mVrms \\ f = 0 \ kHz - 50 \ kHz \ (Note \ 2) \end{array}$	40			dBC	
PPSR _R	Positive Power Supply Rejection, Receive	$\begin{array}{l} \mbox{PCM Code Equals Positive Zero} \\ \mbox{V}_{CC} = 5.0 \ \mbox{V}_{DC} + 100 \ \mbox{mVrms} \\ \mbox{Measure VF}_{R}0 \\ f = 0 \ \mbox{Hz} - 4000 \ \mbox{Hz} \\ f = 4 \ \mbox{Hz} - 25 \ \mbox{Hz} \\ f = 25 \ \mbox{Hz} - 50 \ \mbox{Hz} \\ f = 0 - 4 \ \mbox{Hz} \ (TP3052/53/54/57-1) \\ f = 4 - 50 \ \mbox{Hz} \ (TP3052/53/54/57-1) \\ \end{array}$	40 40 36 38 35			dBC dB dB dBC dB	
NPSR _R	Negative Power Supply Rejection, Receive	$\label{eq:BCM} \begin{array}{l} \text{PCM Code Equals Positive Zero} \\ \text{V}_{BB} = -5.0 \ \text{V}_{DC} + 100 \ \text{mVrms} \\ \text{Measure VF}_{R}0 \\ \text{f} = 0 \ \text{Hz} - 4000 \ \text{Hz} \\ \text{f} = 4 \ \text{Hz} - 25 \ \text{kHz} \\ \text{f} = 25 \ \text{kHz} - 50 \ \text{kHz} \\ \end{array}$	40 40 36			dBC dB dB	

Transmission Characteristics (Continued) Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for $V_{CC} = 5.0V \pm 5\%$, $V_{BB} = -5.0V \pm 5\%$; $T_A = 0^{\circ}$ C to 70°C by correlation with 100% electrical testing at $T_A = 25^{\circ}$ C. All other limits are assured by correlation with other production tests and/or product design and characterization. GNDA = 0V, f = 1.02 kHz, V_{IN} = 0 dBm0, transmit input amplifier connected for unity gain non-inverting. Typicals specified at V_{CC} = 5 0V, V_{DD} = -5 0V, T_A = 25°C.

$5.0^{\circ}, v_{BB} = -5.0^{\circ}, 1_{A} = 25 \text{ G}.$										
Symbol	Paramete	r	Conditions	N	lin 1	Гур	Max	Units		
sos	Spurious Out-of-Bar	nd Signals	Loop Around Measurement, 0 dBm0	,			-30	dB		
	at the Channel Outp	ut	300 Hz to 3400 Hz Input PCM Code Applied							
			at D _R .				00	-10		
			4600 Hz 7600 Hz				30	dB		
			8400 Hz-100.000 Hz				-40 -30	dB		
DISTORT										
STD _X	Signal to Total Disto	rtion	Sinusoidal Test Method (Note 3)							
STDR	Transmit or Receive	1	Level = 3.0 dBm0	3	33			dBC		
	Half-Channel		= 0 dBm0 to $-$ 30 dBm0	1	36			dBC		
			= - 40 dBm0 XMT	2	29			dBC		
			RCV	3	30			dBC		
			= -55 dBm0 XMT		14			dBC		
		t	нсу		15			dBC		
SFDX	Single Frequency Di Transmit	stortion,	·				-46	dB		
SFD _R	Single Frequency Di Receive	istortion,					-46	dB		
IMD	Intermodulation Dist	ortion	Loop Around Measurement, $VF_X^+ = -4 \text{ dBm0 to } -21 \text{ dBm0, Two}$ Frequencies in the Range 300 Hz-3400 Hz				-41	dB		
CROSST	ALK									
CT _{X-R}	Transmit to Receive 0 dBm0 Transmit Le	Crosstalk,	f=300 Hz-3400 Hz Dp=Quiet PCM Code		-	-90	-75	dB		
CTn v	Receive to Transmit	Crosstalk	f = 300 Hz - 3400 Hz VEv I = Multiton			- 90	-70	dB		
01 <u>H-X</u>	0 dBm0 Receive Lev	vel	(Note 2)				(Note 2)	42		
ENCODING FORMAT AT D _X OUTPUT										
TP3052, TP30 μ-La				TP3057						
			TP3052, TP3053, TP3054		A-Law					
		μ-Law	(Inc	ludes E	ven B	it Inversion)			
IMD CROSSTA CT _{X-R} CT _{R-X}	Intermodulation Dist ALK Transmit to Receive 0 dBm0 Transmit Le Receive to Transmit 0 dBm0 Receive Let	Crosstalk, vel Crosstalk, vel	Loop Around Measurement, $VF_X^+ = -4 \text{ dBm0 to} -21 \text{ dBm0, Tw}$ Frequencies in the Range 300 Hz-3400 Hz f=300 Hz-3400 Hz $D_R = \text{Quiet PCM Code}$ $f=300 \text{ Hz}-3400 \text{ Hz}, VF_XI = \text{Multiton}$ (Note 2) ENCODING FORMAT AT D _X OUTPU TP3052, TP3053, TP3054 μ -Law	vo le T (Inc		- 90 - 90 TP305 A-Lav ven B	-41 -75 -70 (Note 2) 7 w iit Inversion	dB dB dB		

VIN (at GS_X) = - Full-Scale Note 1: Measured by extrapolation from the distortion test result at -50 dBm0.

(1

lo

Note 2: PPSR_X, NPSR_X, and CT_{R-X} are measured with a -50 dBm0 activation signal applied to VF_XI+.

Note 3: All devices are measured using C message weighted filter.

VIN (at GS_X) = + Full-Scale

VIN (at GSX)=0V

Applications Information

POWER SUPPLIES

While the pins of the TP3050 family are well protected against electrical misuse, it is recommended that the standard CMOS practice be followed, ensuring that ground is connected to the device before any other connections are made. In applications where the printed circuit board may be plugged into a "hot" socket with power and clocks already present, an extra long ground pin in the connector should be used.

All ground connections to each device should meet at a common point as close as possible to the GNDA pin. This minimizes the interaction of ground return currents flowing through a common bus impedance. 0.1 μF supply decoupling capacitors should be connected from this common ground point to V_{CC} and V_{BB}, as close to the device as possible.

For best performance, the ground point of each CODEC/ FILTER on a card should be connected to a common card ground in star formation, rather than via a ground bus. This common ground point should be decoupled to V_{CC} and V_{BB} with 10 μF capacitors.

RECEIVE GAIN ADJUSTMENT

For applications where a TP3050 family CODEC/filter receive output must drive a 600 Ω load, but a peak swing lower than ± 2.5 V is required, the receive gain can be easily adjusted by inserting a matched T-pad or π -pad at the output. Table II lists the required resistor values for 600 Ω terminations. As these are generally non-standard values, the equations can be used to compute the attenuation of the closest practical set of resistors. It may be necessary to use unequal values for the R1 or R4 arms of the attenuators to achieve a precise attenuation. Generally it is tolerable to allow a small deviation of the input impedance from nominal while still maintaining a good return loss. For example a 30 dB return loss against 600 Ω is obtained if the output impedance of the attenuator is in the range 282 Ω to 319 Ω (assuming a perfect transformer).

T-Pad Attenuator

Where $Z_{SC} =$ impedance with short circuit termination and $Z_{CC} =$ impedance with open circuit termination

Note: See Application Note 370 for further details

Applications Information (Continued)

dB	R1	R2	R3	R4
0.1	1.7	26k	3.5	52k
0.2	3.5	13k	6.9	26k
0.3	5.2	8.7k	10.4	17.4k
0.4	6.9	6.5k	13.8	13k
0.5	8.5	5.2k	17.3	10.5k
0.6	10.4	4.4k	21.3	8.7k
0.7	12.1	3.7k	24.2	7.5k
0.8	13.8	3.3k	27.7	6.5k
0.9	15.5	2.9k	31.1	5.8k
1.0	17.3	2.61	34.6	5.2k
2	34.4	1.3k	70	2.6k
3	51.3	850	107	1.8k
4	68	650	144	1.3k
5	84	494	183	1.1k
6	100	402	224	900
7	115	380	269	785
8	379	284	317	698
9	143	244	370	630
10	156	211	427	527
11 ·	168	184	490	535
12	180	161	550	500
13	190	142	635	473
14	200	125	720	450
15	210	110	816	430
16	218	98	924	413
18	233	77	1.17k	386
20	246	61	1.5k	366

TABLE II. Attentuator Tables for $Z1 = Z2 = 300\Omega$ (All Values in Ω)

Typical Synchronous Application

National Semiconductor Corporation

TP3052-X/TP3053-X/TP3054-X TP3057-X Extended Temperature Monolithic Serial Interface CMOS CODEC/FILTER COMBO™ Family

General Description

The TP3052, TP3053, TP3054, TP3057 family consists of μ -law and A-law monolithic PCM CODEC/filters utilizing the A/D and D/A conversion architecture shown in *Figure 1*, and a serial PCM interface. The devices are fabricated using National's advanced double-poly CMOS process (microCMOS).

The encode portion of each device consists of an input gain adjust amplifier, an active RC pre-filter which eliminates very high frequency noise prior to entering a switched-capacitor band-pass filter that rejects signals below 200 Hz and above 3400 Hz. Also included are auto-zero circuitry and a companding coder which samples the filtered signal and encodes it in the companded µ-law or A-law PCM format. The decode portion of each device consists of an expanding decoder, which reconstructs the analog signal from the companded u-law or A-law code, a low-pass filter which corrects for the sin x/x response of the decoder output and rejects signals above 3400 Hz, and a single-ended power amplifier capable of driving low impedance loads. The devices require two 1.536 MHz, 1.544 MHz or 2.048 MHz transmit and receive master clocks, which may be asynchronous; transmit and receive bit clocks, which may vary from 64 kHz to 2.048 MHz; and transmit and receive frame sync pulses. The timing of the frame sync pulses and PCM data is compatible with both industry standard formats.

Features

- -40°C to +85°C operation
- Complete CODEC and filtering system (COMBO) including:
 - Transmit high-pass and low-pass filtering
 - Receive low-pass filter with sin x/x correction
 - Active RC noise filters
 - µ-law or A-law compatible COder and DECoder
 - Internal precision voltage reference
 - Serial I/O interface
 - Internal auto-zero circuitry
- µ-law with signaling, TP3020 or TP5116A timing— TP3052
- μ-law with signaling, TP5116A family timing—TP3053
- μ-law without signaling, 16-pin—TP3054
- A-law, 16-pin-TP3057
- Meets or exceeds all D3/D4 and CCITT specifications
- ±5V operation
- Low operating power-typically 60 mW
- Power-down standby mode—typically 3 mW
- Automatic power-down
- TTL or CMOS compatible digital interfaces
- Maximizes line interface card circuit density

Connection Diagrams

1

Pin Description

Symbol	Function	Symbol	Function		
V _{BB}	Negative power supply pin. $V_{BB} = -5V \pm 5\%$.	SFR	When high during FS _R , this input indicates a receive signal frame.		
GNDA	Analog ground. All signals are referenced to this pin.	SIG _R	The eighth bit of the PCM data appears at this output after each receive signalling		
VF _R O	Analog output of the receive power ampli- fier.	SIGx	frame. Signal data input. Data at this input is in-		
V _{CC}	Positive power supply pin. V _{CC} = $+5V \pm 5\%$.		serted into the 8th bit of the PCM word during transmit signaling frames.		
FSR	Receive frame sync pulse which enables $BCLK_R$ to shift PCM data into D_R . FSR is	SFX	When high during FS _X , this input indicates a transmit signaling frame.		
	an 8 kHz pulse train. See <i>Figures 2</i> and <i>3</i> for timing details.	MCLKX	Transmit master clock. Must be 1.536 MHz, 1.544 MHz or 2.048 MHz. May be		
D _R	Receive data input. PCM data is shifted into D_R following the FS _R leading edge.		asynchronous with MCLK _R , but should b synchronous for best performance.		
BCLK _R /CLKSEI	L The bit clock which shifts data into D_R after the FS _R leading edge. May vary from 64 kHz to 2.048 MHz. Alternatively, may be a logic input which selects either 1.536	FS _X	Transmit frame sync pulse input which en- ables $BCLK_X$ to shift out the PCM data on D_X . FS _X is an 8 kHz pulse train, see <i>Fig- ures 2</i> and <i>3</i> for timing details.		
	MHz/1.544 MHz or 2.048 MHz for master clock in synchronous mode and $BCLK_X$ is used for both transmit and receive directions (see Table 1).	BCLK _X	The bit clock which shifts out the PCM data on D_X . May vary from 64 kHz to 2.048 MHz, but must be synchronous with MCLK _X .		
MCLK _R /PDN	Receive master clock. Must be 1.536 MHz, 1.544 MHz or 2.048 MHz. May be	D _X	The TRI-STATE [®] PCM data output which is enabled by FS _X .		
	asynchronous with $MCLK_X$, but should be synchronous with $MCLK_X$ for best per-	TSX	Open drain output which pulses low during the encoder time slot.		
	formance. When $MCLK_R$ is connected continuously low, $MCLK_X$ is selected for	GS _X	Analog output of the transmit input amplifi- er. Used to externally set gain.		
	nected continuously high, the device is powered down.	VF _X I-	Inverting input of the transmit input amplifi- er.		
		VF _X I+	Non-inverting input of the transmit input amplifier.		

Functional Description

POWER-UP

When power is first applied, power-on reset circuitry initializes the COMBO and places it into a power-down state. All non-essential circuits are deactivated and the D_X and VF_RO outputs are put in high impedance states. To power-up the device, a logical low level or clock must be applied to the MCLK_R/PDN pin and FS_X and/or FS_R pulses must be present. Thus, 2 power-down control modes are available. The first is to pull the MCLK_R/PDN pin high; the alternative is to hold both FS_X and FS_R inputs continuously low—the device will power-down approximately 2 ms after the last FS_X or FS_R pulse. Power-up will occur on the first FS_X or FS_R pulse. The TRI-STATE PCM data output, D_X, will remain in the high impedance state until the second FS_X pulse.

SYNCHRONOUS OPERATION

For synchronous operation, the same master clock and bit clock should be used for both the transmit and receive directions. In this mode, a clock must be applied to MCLK_X and the MCLK_R/PDN pin can be used as a power-down control. A low level on MCLK_R/PDN powers up the device and a high level powers down the device. In either case, MCLK_X will be selected as the master clock for both the transmit and receive circuits. A bit clock must also be applied to BCLK_X and the BCLK_R/CLKSEL can be used to select the proper internal divider for a master clock of 1.536 MHz, 1.544 MHz or 2.048 MHz. For 1.544 MHz operation, the device automatically compensates for the 193rd clock pulse each frame.

With a fixed level on the BCLK_R/CLKSEL pin, BCLK_X will be selected as the bit clock for both the transmit and receive directions. Table I indicates the frequencies of operation which can be selected, depending on the state of BCLK_R/CLKSEL. In this synchronous mode, the bit clock, BCLK_X, may be from 64 kHz to 2.048 MHz, but must be synchronous with MCLK_X.

Each FS_X pulse begins the encoding cycle and the PCM data from the previous encode cycle is shifted out of the enabled D_X output on the positive edge of BCLK_X. After 8 bit clock periods, the TRI-STATE D_X output is returned to a high impedance state. With an FS_R pulse, PCM data is latched via the D_R input on the negative edge of BCLK_X (or BCLK_R if running). FS_X and FS_R must be synchronous with MCLK_{X/R}.

	Master Clock Frequency Selected					
BCLK _R /CLKSEL	TP3057	TP3052 TP3053 TP3054				
Clocked	2.048 MHz	1.536 MHz or				
		1.544 MHz				
0	1.536 MHz or	2.048 MHz				
	1.544 MHz					
1 (or Open Circuit)	2.048 MHz	1.536 MHz or				
		1.544 MHz				

TABLE I. Selection of Master Clock Frequencies

ASYNCHRONOUS OPERATION

For asynchronous operation, separate transmit and receive clocks may be applied. $MCLK_X$ and $MCLK_B$ must be 2.048

MHz for the TP3057, or 1.536 MHz, 1.544 MHz for the TP3052, 53, 54, and need not be synchronous. For best transmission performance, however, MCLK_R should be synchronous with MCLK_X, which is easily achieved by applying only static logic levels to the MCLK_R/PDN pin. This will automatically connect MCLK_X to all internal MCLK_R functions (see Pin Description). For 1.544 MHz operation, the device automatically compensates for the 193rd clock pulse each frame. FS_X starts each encoding cycle and must be synchronous with MCLK_X and BCLK_X. FS_R starts each decoding cycle and must be synchronous with BCLK_R. BCLK_R must be a clock, the logic levels shown in Table I are not valid in asynchronous mode. BCLK_X and BCLK_R may operate from 64 kHz to 2.048 MHz.

SHORT FRAME SYNC OPERATION

The COMBO can utilize either a short frame sync pulse (the same as the TP3020/21 CODECs) or a long frame sync pulse. Upon power initialization, the device assumes a short frame mode. In this mode, both frame sync pulses, FS_X and FS_R, must be one bit clock period long, with timing relationships specified in Figure 2. With FS_X high during a falling edge of BCLK_X, the next rising edge of BCLK_X enables the D_x TRI-STATE output buffer, which will output the sign bit. The following seven rising edges clock out the remaining seven bits, and the next falling edge disables the D_X output. With FS_R high during a falling edge of BCLK_R (BCLK_X in synchronous mode), the next falling edge of BCLK_R latches in the sign bit. The following seven falling edges latch in the seven remaining bits. All four devices may utilize the short frame sync pulse in synchronous or asynchronous operating mode.

LONG FRAME SYNC OPERATION

To use the long (TP5116A/56A CODECs) frame mode, both the frame sync pulses, FS_X and FS_B, must be three or more bit clock periods long, with timing relationships specified in Figure 3. Based on the transmit frame sync, FS_X, the COM-BO will sense whether short or long frame sync pulses are being used. For 64 kHz operation, the frame sync pulse must be kept low for a minimum of 160 ns. The D_X TRI-STATE output buffer is enabled with the rising edge of FS_X or the rising edge of BCLK_X, whichever comes later, and the first bit clocked out is the sign bit. The following seven BCLK_X rising edges clock out the remaining seven bits. The D_X output is disabled by the falling BCLK_X edge following the eighth rising edge, or by FS_X going low, whichever comes later. A rising edge on the receive frame sync pulse, FS_B, will cause the PCM data at D_B to be latched in on the next eight falling edges of BCLK_B (BCLK_X in synchronous mode). All four devices may utilize the long frame sync pulse in synchronous or asynchronous mode.

SIGNALING

The TP3052 and TP3053 μ -law COMBOs contain circuitry to insert and extract signaling information in the PCM data stream. The TP3052 is intended for short frame sync applications, and the TP3053 for long frame sync applications, although the TP3053 may also be used in short frame sync applications. The TP3054 and TP3057 have no provision for signaling.

Functional Description (Continued)

Signaling for the TP3052 Package is accomplished by applying a frame sync pulse two bit clock periods long, as shown in *Figure 2*. With FS_X two bit clock periods long, the data present at SIG_X input will be inserted as the LSB in the PCM data transmitted during that frame. With FS_R two bit clock periods long, the LSB of the PCM data read into the D_R input will be latched and appear on the SIG_R output pin until updated following the next signaling frame. The decoder will then interpret the lost LSB as "½" to minimize noise and distortion. This short frame signaling SF_R and SF_X are left open circuit or tied low. The TP3052 is not capable of inserting or extracting signaling information in the long frame mode.

Signaling for the TP3053 may be accomplished in either short or long frame sync mode. The short mode signaling is the same as the TP3052. For long frame signaling, two additional frame sync pulses are required, SF_X and SF_R, which indicate transmit and receive signaling frames, respectively. With an SF_X signaling frame sync, the data present at the SIG_X input will be inserted as the LSB in the PCM data transmitted during that frame. With an SF_R signaling frame sync, the LSB of the PCM data at D_R will be latched and appear on the SIG_R output pin until the next signaling frame. The decoder will also do the "½" step interpretation to compensate for the loss of the LSB.

TRANSMIT SECTION

The transmit section input is an operational amplifier with provision for gain adjustment using two external resistors, see *Figure 4*. The low noise and wide bandwidth allow gains in excess of 20 dB across the audio passband to be realized. The op amp drives a unity-gain filter consisting of RC

active pre-filter, followed by an eighth order switched-capacitor bandpass filter clocked at 256 kHz. The output of this filter directly drives the encoder sample-and-hold circuit. The A/D is of companding type according to µ-law (TP3052, TP3053, TP3054) or A-law (TP3057) coding conventions. A precision voltage reference is trimmed in manufacturing to provide an input overload (t_{MAX}) of nominally 2.5V peak (see table of Transmission Characteristics). The FS_x frame sync pulse controls the sampling of the filter output, and then the successive-approximation encoding cycle begins. The 8-bit code is then loaded into a buffer and shifted out through D_X at the next FS_X pulse. The total encoding delay will be approximately 165 µs (due to the transmit filter) plus 125 µs (due to encoding delay), which totals 290 µs. Any offset voltage due to the filters or comparator is cancelled by sign bit integration.

RECEIVE SECTION

The receive section consists of an expanding DAC which drives a fifth order switched-capacitor low pass filter clocked at 256 kHz. The decoder is A-law (TP3057) or μ -law (TP3052, TP3053, TP3054) and the 5th order low pass filter corrects for the sin x/x attenuation due to the 8 kHz sample/hold. The filter is then followed by a 2nd order RC active post-filter/power amplifer capable of driving a 600 Ω load to a level of 7.2 dBm. The receive section is unity-gain. Upon the occurrence of FS_R, the data at the D_R input is clocked in on the falling edge of the next eight BCLK_R (BCLK_X) periods. At the end of the decoder time slot, the decoding cycle begins, and 10 μ s later the decoder DAC output is updated. The total decoder delay is \sim 10 μ s (decoder update) plus 110 μ s (filter delay) plus 62.5 μ s (1/2 frame), which gives approximately 180 μ s.

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/Distributors for availability and specifications. V_{CC} to GNDA 7V Voltage at any Digital Input or

Output	V _{CC} +0.3V to GNDA-0.3V
Operating Temperature Range	-55°C to + 125°C
Storage Temperature Range	-65°C to +150°C
Lead Temperature (Soldering, 10	sec.) 300°C

 VBB to GNDA
 -7V

 Voltage at any Analog Input or Output
 V_{CC}+0.3V to V_{BB}-0.3V

Electrical Characteristics Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for V_{CC} = +5.0V ±5%, V_{BB} = -5.0V ±5%; T_A = -40°C to +85°C by correlation with 100% electrical testing at T_A = 25°C. All other limits are assured by correlation with other production tests and/or product design and characterization. All signals referenced to GNDA. Typicals specified at V_{CC} = +5.0V, V_{BB} = -5.0V, T_A = 25°C.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
DIGITAL IN	ITERFACE					
VIL	Input Low Voltage	· · · · · · · · · · · · · · · · · · ·			0.6	V
VIH	Input High Voltage		2.2			V
V _{OL}	Output Low Voltage	D_X , I_L = 3.2 mA SIG _R , I_L = 1.0 mA TS _X , I_L = 3.2 mA, Open Drain			0.4 0.4 0.4	V V V
V _{OH}	Output High Voltage	D_X , $I_H = -3.2 \text{ mA}$ SIG _R , $I_H = -1.0 \text{ mA}$	2.4 2.4			v v
l _{IL}	Input Low Current	GNDA ≤ VIN ≤ VIL, All Digital Inputs	- 10		10	μΑ
I _{IH}	Input High Current	V _{IH} ≤V _{IN} ≤V _{CC}	- 10		10	μΑ
loz	Output Current in High Impedance State (TRI-STATE)	D _X , GNDA≤V _O ≤V _{CC}	- 10		10	μΑ
ANALOG I	NTERFACE WITH TRANSMIT INPUT	AMPLIFIER (ALL DEVICES)				
I _I XA	Input Leakage Current	$-2.5V \le V \le +2.5V$, VF _X I ⁺ or VF _X I ⁻	-200		200	nA
RIXA	Input Resistance	$-2.5V \le V \le +2.5V$, VF _X I ⁺ or VF _X I ⁻	10			MΩ
R _O XA	Output Resistance	Closed Loop, Unity Gain		1	3	Ω
RLXA	Load Resistance	GS _X	10			kΩ
CLXA	Load Capacitance	GS _X			50	рF
V _O XA	Output Dynamic Range	$GS_X, R_L \ge 10 k\Omega$	-2.8		2.8	V
AVXA	Voltage Gain	VF _X I+ to GS _X	5000			V/V
F _U XA	Unity Gain Bandwidth		1	2		MHz
V _{OS} XA	Offset Voltage		-20		20	mV
V _{CM} XA	Common-Mode Voltage	CMRRXA > 60 dB	-2.5		2.5	V
CMRRXA	Common-Mode Rejection Ratio	DC Test	60			dB
PSRRXA	Power Supply Rejection Ratio	DC Test	60			dB
ANALOG I	NTERFACE WITH RECEIVE FILTER (ALL DEVICES)	_			
R _O RF	Output Resistance	Pin VF _R O		1	3	Ω
RLRF	Load Resistance	VF _R O=±2.5V	600			Ω
CLRF	Load Capacitance				500	рF
VOS _R O	Output DC Offset Voltage		-200		200	mV
POWER DI	SSIPATION (ALL DEVICES)					
I _{CC} 0	Power-Down Current	No Load		0.65	2.0	mA
I _{BB} 0	Power-Down Current	No Load		0.01	0.33	mA
Icc1	Power-Up (Active) Current	No Load		7.0	11.0	mA
I _{BB} 1	Power-Up (Active) Current	No Load		7.0	11.0	mA

Timing Specifications Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for $V_{CC} = \pm 5.0V \pm 5\%$, $V_{BB} = -5.0V \pm 5\%$; $T_A = -40^\circ$ C to $\pm 85^\circ$ C by correlation with 100% electrical testing at $T_A = 25^\circ$ C. All other limits are assured by correlation with other production tests and/or product design and characterization. All signals referenced to GNDA. Typicals specified at $V_{CC} = \pm 5.0V$, $V_{BB} = 5.0V$, $T_A = 25^\circ$ C.

All timing parameters are assured at $V_{OH} = 2.0V$ and $V_{OL} = 0.7V$.

See Definitions and Timing Conventions section for test methods information.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
1/t _{PM}	Frequency of Master Clocks	Depends on the Device Used and the $BCLK_R/CLKSEL$ Pin. $MCLK_X$ and $MCLK_R$		1.536 1.544 2.048		MHz MHz MHz
t _{WMH}	Width of Master Clock High	MCLK _X and MCLK _R	160			ns
twmL	Width of Master Clock Low	MCLK _X and MCLK _R	160			ns
^t SBFM	Set-Up Time from $BCLK_X$ High to $MCLK_X$ Falling Edge	First Bit Clock after the Leading Edge of FS _X Long Frame	100 125			ns
twBH	Width of Bit Clock High	V _{IH} =2.2V	160			ns
twBL	Width of Bit Clock Low	V _{IL} =0.6V	160			ns
t _{HBFL}	Holding Time from Bit Clock Low to Frame Sync	Long Frame Only	0			ns
^t HBFS	Holding Time from Bit Clock High to Frame Sync	Short Frame Only	0			ns
t _{SFB}	Set-Up Time from Frame Sync to Bit Clock Low	Long Frame Only	95			ns
t _{DBD}	Delay Time from BCLK _X High to Data Valid	Load = 150 pF plus 2 LSTTL Loads	0		140	ns
t _{DBTS}	Delay Time to $\overline{TS_X}$ Low	Load = 150 pF plus 2 LSTTL Loads			140	ns
t _{DZC}	Delay Time from BCLK _X Low to Data Output Disabled	C _L =0 pF to 150 pF	50		165	ns
t _{DZF}	Delay Time to Valid Data from FS _X or BCLK _X , Whichever Comes Later	C _L = 0 pF to 150 pF	20		165	ns
tSSFF	Set-Up Time from $SF_{X/R}$ High to $FS_{X/R}$	TP3053 Only	60			ns
tSSFB	Set-Up Time from Signal Frame Sync High to BCLK _{X/R} Clock	TP3053 Only	60			ns
tSSGB	Set-Up Time from SIG_X to $BCLK_X$	TP3052 and TP3053	100			ns
t _{HBSG}	Hold Time from $BCLK_X$ High to SIG_X	TP3052 and TP3053	50			ns
t _{SDB}	Set-Up Time from D _R Valid to BCLK _{R/X} Low		50			ns
t _{HBD}	Hold Time from $BCLK_{R/X}$ Low to D_R Invalid		50			ns
t _{HBSF}	Hold Time from BCLK _{X/R} Low to Signaling Frame Sync	TP3053 Only	100			ns
t _{SF}	Set-Up Time from FS _{X/R} to BCLK _{X/R} Low	Short Frame Sync Pulse (1 Bit Clock Period Long)	50			ns
tHF	Hold Time from BCLK _{X/R} Low to FS _{X/R} Low	Short Frame Sync Pulse (1 Bit Clock Period Long)	100			ns
t _{HBFI}	Hold Time from 3rd Period of Bit Clock Low to Frame Sync (FS _X or FS _R)	Long Frame Sync Pulse (from 3 to 8 Bit Clock Periods Long)	100			ns
twFL	Minimum Width of the Frame Sync Pulse (Low Level)	64k Bit/s Operating Mode	160			ns

1-70

1-71

Transmission Characteristics

Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for $V_{CC} = +5.0V \pm 5\%$, $V_{BB} = -5.0V \pm 5\%$; $T_A = -40^{\circ}$ C to $+85^{\circ}$ C by correlation with 100% electrical testing at $T_A = 25^{\circ}$ C. All other limits are assured by correlation with other production tests and/or product design and characterization. GNDA = 0V, f = 1.02 kHz, $V_{IN} = 0$ dBm0, transmit input amplifier connected for unity gain non inverting. Typicals are specified at $V_{CC} = +5.0V$, $V_{BB} = -5.0V$, $T_A = 25^{\circ}$ C.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
AMPLITU	DE RESPONSE					
	Absolute Levels (Definition of Nominal Gain)	Nominal 0 dBm0 Level is 4 dBm (600Ω) 0 dBm0		1.2276		Vrms
t _{MAX}		Max Overload Level TP3052, TP3053, TP3054 (3.17 dBm0) TP3057 (3.14 dBm0)		2.501 2.492		V _{PK} V _{PK}
G _{XA}	Transmit Gain, Absolute	$T_A = 25^{\circ}C$, $V_{CC} = 5V$, $V_{BB} = -5V$ Input at $GS_X = 0$ dBm0 at 1020 Hz	-0.15		0.15	dB
G _{XR}	Transmit Gain, Relative to G _{XA}		- 1.8 - 0.15 - 0.35 - 0.7		-40 -30 -26 -0.1 0.15 0.1 0 -14 -32	dB dB dB dB dB dB dB dB dB dB
G _{XAT}	Absolute Transmit Gain Variation with Temperature	Relative to G _{XA}	-0.15		0.15	dB
G _{XAV}	Absolute Transmit Gain Variation with Supply Voltage	Relative to G _{XA}	-0.05		0.05	dB
G _{XRL}	Transmit Gain Variations with Level	Sinusoidal Test Method Reference Level = -10 dBm0 VF _X I ⁺ = -40 dBm0 to $+3 \text{ dBm0}$ VF _X I ⁺ = -50 dBm0 to -40 dBm0 VF _X I ⁺ = -55 dBm0 to -50 dBm0	-0.2 -0.4 -1.2		0.2 0.4 1.2	dB dB dB
G _{RA}	Receive Gain, Absolute	$T_A = 25^{\circ}C$, $V_{CC} = 5V$, $V_{BB} = -5V$ Input = Digital Code Sequence for 0 dBm0 Signal at 1020 Hz	-0.15		0.15	dB
G _{RR}	Receive Gain, Relative to G _{RA}	f=0 Hz to 3000 Hz f=3300 Hz f=3400 Hz f=4000 Hz	-0.15 -0.35 -0.7		0.15 0.1 0 - 14	dB dB dB dB
G _{RAT}	Absolute Receive Gain Variation with Temperature	Relative to G _{RA}	-0.15		0.15	dB
G _{RAV}	Absolute Receive Gain Variation with Supply Voltage	Reletive to G _{RA}	-0.05		0.05	dB
G _{RRL}	Receive Gain Variations with Level	Sinusoidal Test Method; Reference Input PCM Code Corresponds to an Ideally Encoded PCM Level = -40 dBm0 to +3 dBm0 PCM Level = -50 dBm0 to -40 dBm0 PCM Level = -55 dBm0 to -50 dBm0	-0.2 -0.4 -1.2		0.2 0.4 1.2	dB dB dB
VRO	Receive Output Drive Level	$R_L = 600\Omega$	-2.5		2.5	

Transmission Characteristics (Continued)

Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for $V_{CC} = +5.0V \pm 5\%$, $V_{BB} = -5.0V \pm 5\%$; $T_A = -40^{\circ}$ C to $+85^{\circ}$ C by correlation with 100% electrical testing at $T_A = 25^{\circ}$ C. All other limits are assured by correlation with other production tests and/or product design and characterization. GNDA = 0V, f = 1.02 kHz, $V_{IN} = 0$ dBm0, transmit input amplifier connected for unity gain non inverting. Typicals are specified at $V_{CC} = +5.0V$, $V_{BB} = -5.0V$, $T_A = 25^{\circ}$ C.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
ENVELOP	E DELAY DISTORTION WITH FREQU	JENCY				
D _{XA}	Transmit Delay, Absolute	f=1600 Hz		290	315	μs
D _{XR}	Transmit Delay, Relative to D _{XA}	f = 500 Hz - 600 Hz f = 600 Hz - 800 Hz f = 800 Hz - 1000 Hz f = 1000 Hz - 1600 Hz f = 1600 Hz - 2600 Hz f = 2600 Hz - 2800 Hz		195 120 50 20 55 80	220 145 75 40 75 105	μs μs μs μs μs μs
Dev	Receive Delay, Absolute	f= 1600 Hz		180	200	μ <u>3</u> μS
D _{RR}	Receive Delay, Relative to D _{RA}	f = 500 Hz-1000 Hz f = 1000 Hz-1600 Hz f = 1600 Hz-2600 Hz f = 2600 Hz-2800 Hz f = 2800 Hz-3000 Hz	-40 -30	-25 -20 70 100 145	90 125 175	μs μs μs μs μs
NOISE			L			<u>µ</u> o
N _{XC}	Transmit Noise, C Message Weighted	TP3052, TP3053, TP3054 (Note 1)		12	16	dBrnC0
N _{XP}	Transmit Noise, P Message Weighted	TP3057 (Note 1)		-74	-67	dBm0p
N _{RC}	Receive Noise, C Message Weighted	PCM Code is Alternating Positive and Negative Zero — TP3052/53/54		8	11	dBrnC0
N _{RP}	Receive Noise, P Message Weighted	TP3057 PCM Code Equals Positive Zero —		-82	-79	dBm0p
N _{RS}	Noise, Single Frequency	f=0 kHz to 100 kHz, Loop Around Measurement, VF _X I+=0 Vrms			-53	dBm0
PPSRX	Positive Power Supply Rejection, Transmit	V _{CC} =5.0 V _{DC} +100 mVrms f=0 kHz-50 kHz (Note 2)	40			dBC
NPSRX	Negative Power Supply Rejection, Transmit	V _{BB} = -5.0 V _{DC} +100 mVrms f=0 kHz-50 kHz (Note 2)	40			dBC
PPSR _R	Positive Power Supply Rejection, Receive	PCM Code Equals Positive Zero V_{CC} = 5.0 V_{DC} + 100 mVrms Measure VF _R 0 f = 0 Hz-4000 Hz f = 4 kHz-25 kHz f = 25 kHz-50 kHz	38 38 35			dBC dB dB
NPSR _R	Negative Power Supply Rejection, Receive	$\label{eq:product} \begin{array}{l} \mbox{PCM Code Equals Positive Zero} \\ \mbox{V}_{BB} = -5.0 \ \mbox{V}_{DC} + 100 \ \mbox{mVrms} \\ \mbox{Measure VF}_{R}0 \\ \mbox{f} = 0 \ \mbox{Hz} - 4000 \ \mbox{Hz} \\ \mbox{f} = 4 \ \mbox{Hz} - 25 \ \mbox{Hz} \\ \mbox{f} = 25 \ \mbox{Hz} - 50 \ \mbox{Hz} \end{array}$	38 38 35			dBC dB dB

Transmission Characteristics (Continued)

Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for $V_{CC} = +5.0V \pm 5\%$, $V_{BB} = -5.0V \pm 5\%$; $T_A = -5.0V \pm 5\%$; -40° C to $+85^{\circ}$ C by correlation with 100% electrical testing at T_A = 25°C. All other limits are assured by correlation with other production tests and/or product design and characterization. GNDA = 0V, f = 1.02 kHz, V_{IN} = 0 dBm0, transmit input amplifier connected for unity gain non inverting. Typicals are specified at $V_{CC} = +5.0V$, $V_{PP} = -5.0V$, $T_A = 25^{\circ}C$

Symbol	Paramete	r				Condi	tions			M	in	Тур	T	Max	Τ	Units
SOS	Spurious Out-of-Bar at the Channel Outp	nd Signals out	Loop Around Measurement, 0 dBm0, 300 Hz to 3400 Hz Input PCM Code Applied at D _R . 4600 Hz-7600 Hz 7600 Hz-8400 Hz 8400 Hz-100.000 Hz									-30 -30 -40 -30		dB dB dB dB		
DISTORT	ION															
STD _X STD _R	Signal to Total Disto Transmit or Receive Half-Channel	prtion	Sinu: Leve	soidal = 3.0 = 0 0 = -	Test 0 dBm dBm0 40 dB 55 dB	Metho 10 to -3 m0 m0	d (Not 0 dBn XMT RCV XMT RCV	e 3) nÖ		3 3 2 2 1 1	3 6 8 9 3 4					dBC dBC dBC dBC dBC dBC dBC
SFD _X	Single Frequency Di Transmit	istortion,										-43		dB		
SFD _R	Single Frequency Di Receive	istortion,							- N.		-43		dB			
IMD	Intermodulation Dist	tortion	Loop Around Measurement, $VF_X^+ = -4 \text{ dBm0 to } -21 \text{ dBm0, Two}$ Frequencies in the Range 300 Hz - 3400 Hz								-41		dB			
CROSST	ALK															
CT _{X-R}	Transmit to Receive 0 dBm0 Transmit Le	Crosstalk, evel	f=30 D _R =	00 Hz = Quie	3400 et PCI) Hz VI Code	e (Not	e 4)				-90		-75		dB
CT _{R-X}	Receive to Transmit 0 dBm0 Receive Le	t Crosstalk, vel	Ik, f=300 Hz-3400 Hz, VF _X I = Multitone (Note 2)						-90	(- 70 Note 2		dB			
ENCODING FORMAT AT D _X OUTPUT																
T T			TP3052, TP3053, TP3054 μ-Law			TP3057 A-Law (Includes Even Bit Inversion)										
V _{IN} (at G	iS _X) = + Full-Scale	1 0	0	0	0	0	0	0	1	0	1	0	1	0	1	0
V _{IN} (at G	$(at GS_X) = 0V \begin{cases} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 &$			0 0	1 1											

VIN (at GS_X) = - Full-Scale Note 1: Measured by extrapolation from the distortion test result at -50 dBm0.

0 Note 2: PPSR_X, NPSR_X, and CT_{R-X} are measured with a -50 dBm0 activation signal applied to VF_XI+.

0 0 0 0 0 0

Note 3: TP3052/53/54/57 are measured using C message weighted filter.

Note 4: CT_{X-R} @ 1.544 MHz MCLK_X freq. is ~70 dB max. 50% ±5% BCLK_X duty cycle.

0

0 0 1 0 1 0 1 0

Applications Information

POWER SUPPLIES

While the pins of the TP3050 family are well protected against electrical misuse, it is recommended that the standard CMOS practice be followed, ensuring that ground is connected to the device before any other connections are made. In applications where the printed circuit board may be plugged into a "hot" socket with power and clocks already present, an extra long ground pin in the connector should be used.

All ground connections to each device should meet at a common point as close as possible to the GNDA pin. This minimizes the interaction of ground return currents flowing through a common bus impedance. 0.1 μF supply decoupling capacitors should be connected from this common ground point to V_{CC} and V_{BB} as close to device pins as possible.

For best performance, the ground point of each CODEC/ FILTER on a card should be connected to a common card ground in star formation, rather than via a ground bus. This common ground point should be decoupled to V_{CC} and V_{BB} with 10 μ F capacitors.

RECEIVE GAIN ADJUSTMENT

For applications where a TP3050 family CODEC/filter receive output must drive a 600 Ω load, but a peak swing lower than ± 2.5 V is required, the receive gain can be easily adjusted by inserting a matched T-pad or π -pad at the output. Table II lists the required resistor values for 600 Ω terminations. As these are generally non-standard values, the equations can be used to compute the attenuation of the closest practical set of resistors. It may be necessary to use unequal values for the R1 or R4 arms of the attenuators to achieve a precise attenuation. Generally it is tolerable to allow a small deviation of the input impedance from nominal while still maintaining a good return loss. For example a 30 dB return loss against 600 Ω is obtained if the output impedance of the attenuator is in the range 282 Ω to 319 Ω (assuming a perfect transformer).

T-Pad Attenuator

Where Z_{SC} = impedance with short circuit termination and Z_{OC} = impedance with open circuit termination

Note: See Application Note 370 for further details.

Applications Information (Continued)

dB	R1	R2	R3	R4
0.1	1.7	26k	3.5	52k
0.2	3.5	13k	6.9	26k
0.3	5.2	8.7k	10.4	17.4k
0.4	6.9	6.5k	13.8	13k
0.5	8.5	5.2k	17.3	10.5k
0.6	10.4	4.4k	21.3	8.7k
0.7	12.1	3.7k	24.2	7.5k
0.8	13.8	3.3k	27.7	6.5k
0.9	15.5	2.9k	31.1	5.8k
1.0	17.3	2.61	34.6	5.2k
2	34.4	1.3k	70	2.6k
3	51.3	850	107	1.8k
4	68	650	144	1.3k
5	84	494	183	1.1k
6	100	402	224	900
7	115	380	269	785
8	379	284	317	698
9	143	244	370	630
10	156	211	427	527
11	168	184	490	535
12	180	161	550	500
13	190	142	635	473
14	200	125	720	450
15	210	110	816	430
16	218	98	924	413
18	233	77	1.17k	386
20	246	61	1.5k	366

TABLE II. Attentuator Tables for Z1 = Z2 = 300Ω (All Values in Ω)

Typical Synchronous Application

TP3064/TP3067 Monolithic Serial Interface CMOS CODEC/FILTER COMBO™

General Description

The TP3064 (μ -law) and TP3067 (A-law) are monolithic PCM CODEC/FILTERS utilizing the A/D and D/A conversion architecture shown in *Figure 1*, and a serial PCM interface. The devices are fabricated using National's advanced double-poly CMOS process (microCMOS).

Similar to the TP3050 family, these devices feature an additional Receive Power Amplifier to provide push-pull balanced output drive capability. The receive gain can be adjusted by means of two external resistors for an output level of up to $\pm 6.6V$ across a balanced 600 Ω load.

Also included is an Analog Loopback switch and a $\overline{\mathsf{TS}_X}$ output.

- Complete CODEC and filtering system including:
 - Transmit high-pass and low-pass filtering
 - Receive low-pass filter with sin x/x correction
 - Active RC noise filters
 - — µ-law or A-law compatible COder and DECoder
 - Internal precision voltage reference
 - Serial I/O interface
 - Internal auto-zero circuitry
 - Receive push-pull power amplifiers
- μ-law—TP3064
- A-law—TP3067
- Meets or exceeds all D3/D4 and CCITT specifications
- ±5V operation
- Low operating power—typically 70 mW
- Power-down standby mode—typically 3 mW
- Automatic power-down
- TTL or CMOS compatible digital interfaces
- Maximizes line interface card circuit density

Features

microCMOS

1

Connection Diagrams

Pin Description

Function
The non-inverted output of the receive power amplifier.
Analog ground. All signals are referenced to this pin.
The inverted output of the receive power amplifier.
Inverting input to the receive power amplifier.
Analog output of the receive filter.
Positive power supply pin. $V_{CC} = +5V \pm 5\%$.
Receive frame sync pulse which enables
$BCLK_R$ to shift PCM data into D_R . FS _R is an
8 KHz pulse train. See <i>Figures 2</i> and 3 for timing details.
Receive data input. PCM data is shifted into
D _R following the FS _R leading edge.
The bit clock which shifts data into D _R after
the FS _R leading edge. May vary from 64 kHz to 2.048 MHz. Alternatively, may be a logic input which selects either
1.536 MHz/1.544 MHz or 2.048 MHz for
master clock in synchronous mode and
BCLK _X is used for both transmit and receive directions (see Table I).
Receive master clock. Must be 1.536 MHz, 1.544 MHz or 2.048 MHz. May be
asynchronous with MCLK _X , but should be
performance When MCLKp is connected
continuously low. MCLKy is selected for all
internal timing. When MCLK _B is connected
continuously high, the device is powered down.

Top View

Order Number TP3064V, TP3064V-1 or TP3067V or TP3067V-1 See NS Package V20A

Order Number TP3064J, TP3067J See NS Package J20A

Symbol	Function
MCLKX	Transmit master clock. Must be 1.536 MHz, 1.544 MHz or 2.048 MHz. May be
	asynchronous with MCLK _R . Best performance is realized from synchronous operation.
BCLK _X	The bit clock which shifts out the PCM data on D_X . May vary from 64 kHz to 2.048 MHz, but must be synchronous with MCI Ky.
D _X	The TRI-STATE® PCM data output which is enabled by FS _X .
FS _X	Transmit frame sync pulse input which enables BCLK _X to shift out the PCM data on D _X . FS _X is an 8 kHz pulse train, see <i>Figures 2</i> and 3 for timing details.
TSX	Open drain output which pulses low during the encoder time slot.
ANLB	Analog Loopback control input. Must be set to logic '0' for normal operation. When pulled to logic '1', the transmit filter input is disconnected from the output of the transmit
	preamplifier and connected to the VPO+ output of the receive power amplifier.
GS _X	Analog output of the transmit input amplifier. Used to externally set gain.
VF _X I-	Inverting input of the transmit input amplifier.
VF _X I+	Non-inverting input of the transmit input amplifier.
V_{BB}	Negative power supply pin. V _{BB} = $-5V \pm 5\%$.

Functional Description

POWER-UP

When power is first applied, power-on reset circuitry initializes the COMBOTM and places it into a power-down state. All non-essential circuits are deactivated and the D_X, VF_RO, VPO⁻ and VPO⁺ outputs are put in high impedance states. To power-up the device, a logical low level or clock must be applied to the MCLK_R/PDN pin *and* FS_X and/or FS_R pulses must be present. Thus, 2 power-down control modes are available. The first is to pull the MCLK_R/PDN pin high; the alternative is to hold both FS_X and FS_R inputs continuously low—the device will power-down approximately 2 ms after the last FS_X or FS_R pulse. Power-up will occur on the first FS_X or FS_R pulse. The TRI-STATE PCM data output, D_X, pulse.

SYNCHRONOUS OPERATION

For synchronous operation, the same master clock and bit clock should be used for both the transmit and receive directions. In this mode, a clock must be applied to MCLK_X and the MCLK_R/PDN pin can be used as a power-down control. A low level on MCLK_R/PDN powers up the device and a high level powers down the device. In either case, MCLK_X will be selected as the master clock for both the transmit and receive circuits. A bit clock must also be applied to BCLK_X and the BCLK_R/CLKSEL can be used to select the proper internal divider for a master clock of 1.536 MHz, 1.544 MHz or 2.048 MHz. For 1.544 MHz operation, the device automatically compensates for the 193rd clock pulse each frame.

With a fixed level on the BCLK_R/CLKSEL pin, BLCK_X will be selected as the bit clock for both the transmit and receive directions. Table I indicates the frequencies of operation which can be selected, depending on the state of BCLK_R/CLKSEL. In this synchronous mode, the bit clock, BCLK_X, may be from 64 kHz to 2.048 MHz, but must be synchronous with MCLK_X.

Each FS_X pulse begins the encoding cycle and the PCM data from the previous encode cycle is shifted out of the enabled D_X output on the positive edge of BCLK_X. After 8 bit clock periods, the TRI-STATE D_X output is returned to a high impedance state. With an FS_R pulse, PCM data is latched via the D_R input on the negative edge of BCLK_X (or BCLK_R if running). FS_X and FS_R must be synchronous with MCLK_{X/R}.

	Master Clock Frequency Selected					
DOENA, OENOEE	TP3067	TP3064				
Clocked	2.048 MHz	1.536 MHz or				
		1.544 MHz				
0	1.536 MHz or	2.048 MHz				
	1.544 MHz					
1 (or Open Circuit)	2.048 MHz	1.536 MHz or				
		1.544 MHz				

TABLE I. Selection of Master Clock Frequencies

ASYNCHRONOUS OPERATION

For asynchronous operation, separate transmit and receive clocks may be applied. $MCLK_X$ and $MCLK_R$ must be 2.048 MHz for the TP3067, or 1.536 MHZ, 1.544 MHz for the TP3064, and need not be synchronous. For best transmis-

sion performance, however, MCLK_R should be synchronous with MCLK_X, which is easily achieved by applying only static logic levels to the MCLK_R/PDN pin. This will automatically connect MCLK_X to all internal MCLK_R functions (see Pin Description). For 1.544 MHz operation, the device automatically compensates for the 193rd clock pulse each frame. FS_X starts each encoding cycle and must be synchronous with MCLK_X and BCLK_X. FS_R starts each decoding cycle and must be synchronous with BCLK_R. BCLK_R must be a clock, the logic levels shown in Table I are not valid in asynchronous mode. BCLK_X and BCLK_R may operate from 64 kHz to 2.048 MHz.

SHORT FRAME SYNC OPERATION

The COMBO can utilize either a short frame sync pulse (the same as the TP3020/21 CODECs) or a long frame sync pulse. Upon power initialization, the device assumes a short frame mode. In this mode, both frame sync pulses, FS_X and FS_B, must be one bit clock period long, with timing relationships specified in Figure 2. With FS_X high during a falling edge of BCLK_X, the next rising edge of BCLK_X enables the D_X TRI-STATE output buffer, which will output the sign bit. The following seven rising edges clock out the remaining seven bits, and the next falling edge disables the D_X output. With FS_R high during a falling edge of BCLK_R (BCLK_X in synchronous mode), the next falling edge of BCLK_R latches in the sign bit. The following seven falling edges latch in the seven remaining bits. All devices may utilize the short frame sync pulse in synchronous or asynchronous operating mode.

LONG FRAME SYNC OPERATION

To use the long (TP5116A/56 CODECs) frame mode, both the frame sync pulses, FS_X and FS_R, must be three or more bit clock periods long, with timing relationships specified in Figure 3. Based on the transmit frame sync, FS_X, the COM-BO will sense whether short or long frame sync pulses are being used. For 64 kHz operation, the frame sync pulse must be kept low for a minimum of 160 ns. The D_X TRI-STATE output buffer is enabled with the rising edge of FS_X or the rising edge of BCLK_X, whichever comes later, and the first bit clocked out is the sign bit. The following seven BCLK_X rising edges clock out the remaining seven bits. The D_X output is disabled by the falling BCLK_X edge following the eighth rising edge, or by FS_X going low, whichever comes later. A rising edge on the receive frame sync pulse, FS_B, will cause the PCM data at D_B to be latched in on the next eight falling edges of BCLK_R(BCLK_X in synchronous mode). All devices may utilize the long frame sync pulse in synchronous or asynchronous mode.

TRANSMIT SECTION

The transmit section input is an operational amplifier with provision for gain adjustment using two external resistors, see *Figure 4*. The low noise and wide bandwidth allow gains in excess of 20 dB across the audio passband to be realized. The op amp drives a unity-gain filter consisting of RC active pre-filter, followed by an eighth order switched-capacitor bandpass filter clocked at 256 kHz. The output of this filter directly drives the encoder sample-and-hold circuit. The A/D is of companding type according to μ -law (TP3064) or A-law (TP3067) coding conventions. A precision voltage reference is trimmed in manufacturing to provide an input overload (t_{MAX}) of nominally 2.5V peak (see

Functional Description (Continued)

table of Transmission Characteristics). The FS_X frame sync pulse controls the sampling of the filter output, and then the successive-approximation encoding cycle begins. The 8-bit code is then loaded into a buffer and shifted out through D_X at the next FS_X pulse. The total encoding delay will be approximately 165 μs (due to the transmit filter) plus 125 μs (due to encoding delay), which totals 290 μs . Any offset voltage due to the filters or comparator is cancelled by sign bit integration.

RECEIVE SECTION

The receive section consists of an expanding DAC which drives a fifth order switched-capacitor low pass filter clocked at 256 kHz. The decoder is A-law (TP3067) or μ -law (TP3064) and the 5th order low pass filter corrects for the sin x/x attenuation due to the 8 kHz sample/hold. The filter is then followed by a 2nd order RC active post-filter with its output at VF_RO. The receive section is unity-gain, but gain can be added by using the power amplifiers. Upon the occurrence of FS_R, the data at the D_R input is clocked in on the falling edge of the next eight BCLK_R (BCLK_X) peri-

ods. At the end of the decoder time slot, the decoding cycle begins, and 10 μ s later the decoder DAC output is updated. The total decoder delay is ~10 μ s (decoder update) plus 110 μ s (filter delay) plus 62.5 μ s (½ frame), which gives approximately 180 μ s.

RECEIVE POWER AMPLIFIERS

Two inverting mode power amplifiers are provided for directly driving a matched line interface transformer. The gain of the first power amplifier can be adjusted to boost the $\pm 2.5V$ peak output signal from the receive filter up to $\pm 3.3V$ peak into an unbalanced 300 Ω load, or $\pm 4.0V$ into an unbalanced 15 k Ω load. The second power amplifier is internally connected in unity-gain inverting mode to give 6 dB of signal gain for balanced loads.

Maximum power transfer to a 600 Ω subscriber line termination is obtained by differentially driving a balanced transformer with a $\sqrt{2}$:1 turns ratio, as shown in *Figure 4*. A total peak power of 15.6 dBm can be delivered to the load plus termination.

ENCODING FORMAT AT D_X OUTPUT

				ΤΡ3 μ-L	064 aw					(1	nclude	TP3 A-L es Ever	1067 .aw n Bit In	versio	n)	
V _{IN} = +Full-Scale	1	0	0	0	0	0	0	0	1	0	1	0	1	0	1	0
$V_{IN} = 0V$	<u></u> 1	1	1	1	1	1	1	1	1	1	0	1	0	1	0	1
	lo	1	1	1	1	1	1	1	0	1	0	1	0	1	0	1
$V_{IN} = -Full-Scale$	0	0	0	0	0	0	0	0	0	0	1	0	1	0	1	0

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

7V
-7V
V_{CC} + 0.3V to V_{BB} - 0.3V

 Voltage at any Digital Input or Output
 V_{CC}+0.3V to GNDA-0.3V

 Operating Temperature Range
 -25°C to +125°C

 Storage Temperature Range
 -65°C to +150°C

 Lead Temp. (Soldering, 10 sec.)
 300°C

 ESD rating to be determined.
 -300°C

Electrical Characteristics Unless otherwise noted, limits printed in BOLD characters are guaranteed for V _{CC} =
+5.0V ±5%, V _{BB} = $-5.0V$ ±5%; T _A = 0°C to 70°C by correlation with 100% electrical testing at T _A = 25°C. All other limits
are assured by correlation with other production tests and/or product design and characterization. All signals referenced to
GNDA. Typicals specified at V _{CC} = $+5.0V$, V _{BB} = $-5.0V$, T _A = 25°C.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
POWER DISSIPATION (ALL DEVICES)						
I _{CC} 0	Power-Down Current			0.5	1.5	mA
I _{BB} 0	Power-Down Current			0.05	0.3	mA
I _{CC} 1	Active Current	$VPI=0V$; VF_RO , VPO^+ and VPO^- unloaded		7.0	10.0	mA
I _{BB} 1	Active Current	$VPI = 0V$; VF_RO , VPO^+ and VPO^- unloaded		7.0	10.0	mA
DIGITAL	INTERFACE					
VIL	Input Low Voltage				0.6	V [°]
VIH	Input High Voltage		2.2			V
VOL	Output Low Voltage	D _X , I _L =3.2 mA			0.4	v
		TS_X , I _L = 3.2 mA, Open Drain			0.4	V
V _{OH}	Output High Voltage	D_{X} , $I_{H} = -3.2 \text{ mA}$	2.4			V
կլ	Input Low Current	GNDA≤V _{IN} ≤V _{IL} , All Digital Inputs	-10		10	μA
ŀн	Input High Current	V _{IH} ≤V _{IN} ≤V _{CC}	- 10		10	μΑ
loz	Output Current in High Impedance State (TRI-STATE)	D _X , GNDA≤V _O ≤V _{CC}	- 10		10	μA

Electrical Characteristics (Continued)

Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for $V_{CC} = +5.0V \pm 5\%$, $V_{BB} = -5.0V \pm 5\%$; $T_A = 0^{\circ}$ C to 70°C by correlation with 100% electrical testing at $T_A = 25^{\circ}$ C. All other limits are assured by correlation with other production tests and/or product design and characterization. All signals referenced to GNDA. Typicals specified at $V_{CC} = +5.0V$, $V_{BB} = -5.0V$, $T_A = 25^{\circ}$ C.

Symbol	Parameter	Conditions	Min	Тур	Max	Units	
ANALOG IN	TERFACE WITH TRANSMIT INPU	T AMPLIFIER (ALL DEVICES)					
IJXA	Input Leakage Current	$-2.5V \le V \le +2.5V$, VF _X I ⁺ or VF _X I ⁻	-200	_	200	nA	
R _I XA	Input Resistance	$-2.5V{\leq}V{\leq}{+}2.5V,$ VF_XI $^+$ or VF_XI $^-$	10			MΩ	
R _O XA	Output Resistance	Closed Loop, Unity Gain		1	3	Ω	
R _L XA	Load Resistance	GS _X	10			kΩ	
CLXA	Load Capacitance	GS _X			50	pF	
V _O XA	Output Dynamic Range	GS_X , $R_L \ge 10 \ k\Omega$	-2.8		+ 2.8	v	
A _V XA	Voltage Gain	VF _X I ⁺ to GS _X	5000			V/V	
F _U XA	Unity-Gain Bandwidth		1	2		MHz	
V _{OS} XA	Offset Voltage		-20		20	mV	
V _{CM} XA	Common-Mode Voltage	CMRRXA > 60 dB	-2.5		2.5	V	
CMRRXA	Common-Mode Rejection Ratio	DC Test	60			dB	
PSRRXA	Power Supply Rejection Ratio	DC Test	60			dB	
ANALOG I	ANALOG INTERFACE WITH RECEIVE FILTER (ALL DEVICES)						
RORF	Output Resistance	Pin VF _R O		1	3	Ω	
RLRF	Load Resistance	$VF_{R}O = \pm 2.5V$	10			kΩ	
CLRF	Load Capacitance	Connect from VF _R O to GNDA			25	pF	
VOS _R O	Output DC Offset Voltage	Measure from VF _R O to GNDA	-200		200	mV	
ANALOG I	NTERFACE WITH POWER AMPLIF	IERS (ALL DEVICES)	_				
IPI	Input Leakage Current	-1.0V≤VPI≤1.0V	- 100		100	nA	
RIPI	Input Resistance	-1.0V≤VPI≤1.0V	10			MΩ	
VIOS	Input Offset Voltage		-25		25	mV	
ROP	Output Resistance	Inverting Unity-Gain at VPO+ or VPO-		1		Ω	
F _C	Unity-Gain Bandwidth	Open Loop (VPO ⁻)		400		kHz	
С _L P	Load Capacitance				100	pF	
GA _P +	Gain from VPO to VPO+	$R_L = 600 \Omega \text{ VPO}^+ \text{ to VPO}^-$ Level at VPO ⁻ = 1.77 Vrms		-1		V/V	
PSRRP	Power Supply Rejection of V_{CC} or V_{BB}	VPO Connected to VPI 0 kHz-4 kHz 4 kHz-50 kHz	60 36			dB dB	
RLP	Load Resistance	Connect from VPO+ to VPO-	600			Ω	

Timing Specifications

Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for $V_{CC} = +5.0V \pm 5\%$, $V_{BB} = -5.0V \pm 5\%$, $T_A = 0^{\circ}$ C to 70°C by correlation with 100% electrical testing at $T_A = 25^{\circ}$ C. All other limits are assured by correlation with other production tests and/or product design and characterization. All signals are referenced to GNDA. Typicals specified at $V_{CC} = +5.0V$, $V_{BB} = -5.0V$, $T_A = 25^{\circ}$ C. All timing parameters are measured at $V_{OH} = 2.0V$ and $V_{OL} = 0.7V$. See Definitions and Timing Conventions section for test methods information.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
1/t _{PM}	Frequency of Master Clock			1.536 1.544		MHz MHz
		MCLK _X and MCLK _R		2.048		MHz
twmH	Width of Master Clock High	MCLK _X and MCLK _R	160			ns
twmL	Width of Master Clock Low	MCLK _X and MCLK _R	160			ns
t _{SBFM}	Set-Up Time from $BCLK_X$ High to $MCLK_X$ Falling Edge	First Bit Clock after the Leading Edge of FS _X	100			ns
t _{WBH}	Width of Bit Clock High		160			ns
t _{WBL}	Width of Bit Clock Low		160			ns
t _{HBFL}	Holding Time from Bit Clock Low to Frame Sync	Long Frame Only	0			ns
t _{HBFS}	Holding Time from Bit Clock High to Frame Sync	Short Frame Only	0			ns
tSFB	Set-Up Time for Frame Sync to Bit Clock Low	Long Frame Only	80			ns
tDBD	Delay Time from BCLK _X High to Data Valid	Load = 150 pF plus 2 LSTTL Loads	0		180	ns
tDBTS	Delay Time to $\overline{TS_X}$ Low	Load = 150 pF plus 2 LSTTL Loads			140	ns
t _{DZC}	Delay Time from BCLK _X Low to Data Output Disabled		50		165	ns
^t DZF	Delay Time to Valid Data from FS_X or BCLK _X , Whichever Comes Later	C _L =0 pF to 150 pF	20		165	ns
t _{SDB}	Set-Up Time from D_R Valid to BCLK $_{R/X}$ Low		50			ns
thed	Hold Time from $\operatorname{BCLK}_{R/X}$ Low to D_R Invalid		50			ns
t _{SF}	Set-Up Time from FS _{X/R} to BCLK _{X/R} Low	Short Frame Sync Pulse (1 Bit Clock Period Long)	50			ns
t _{HF}	Hold Time from $BCLK_{X/R}$ Low to $FS_{X/R}$ Low	Short Frame Sync Pulse (1 Bit Clock Period Long)	100			ns
^t HBFI	Hold Time from 3rd Period of Bit Clock Low to Frame Sync (FS _X or FS _R)	Long Frame Sync Pulse (from 3 to 8 Bit Clock Periods Long)	100			ns
tWFL	Minimum Width of the Frame Sync Pulse (Low Level)	64k Bit/s Operating Mode	160			ns

FIGURE 2. Short Frame Sync Timing

1-84

Transmission Characteristics

Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for $V_{CC} = +5.0V \pm 5\%$, $V_{BB} = -5.0V \pm 5\%$; $T_A = 0^{\circ}$ C to 70°C by correlation with 100% electrical testing at $T_A = 25^{\circ}$ C. All other limits are assured by correlation with other production tests and/or product design and characterization. GNDA = 0V, f = 1.02 kHz, $V_{IN} = 0$ dbm0, transmit input amplifier connected for unity gain non-inverting. Typicals specified at $V_{CC} = +5.0V$, $V_{BB} = -5.0V$, $T_A = 25^{\circ}$ C.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
AMPLITU	DE RESPONSE					
	Absolute Levels (Definition of nominal gain)	Nominal 0 dBm0 Level is 4 dBm (600Ω) 0 dBm0		1.2276		Vrms
t _{MAX}		Max Transmit Overload Level TP3064 (3.17 dBm0) TP3067 (3.14 dBm0)		2.501 2.492		V _{PK} V _{PK}
G _{XA}	Transmit Gain, Absolute	T _A =25°C, V _{CC} =5V, V _{BB} =-5V TP3064, TP3067	-0.15		0.15	dB
G _{XR}	Transmit Gain, Relative to G _{XA}	f = 16 Hz f = 50 Hz f = 60 Hz, TP3064, TP3067 f = 200 Hz f = 300 Hz.3000 Hz f = 3300 Hz, TP3064, TP3067 f = 4000 Hz f = 4600 Hz and Up, Measure Response from 0 Hz to 4000 Hz	1.8 0.15 0.35 0.7		40 30 26 0.1 0.15 0.05 0 14 32	dB dB dB dB dB dB dB dB dB dB
G _{XAT}	Absolute Transmit Gain Variation with Temperature	Relative to G _{XA}	-0.1		0.1	dB
G _{XAV}	Absolute Transmit Gain Variation with Supply Voltage	Relative to G _{XA}	0.05		0.05	dB
G _{XRL}	Transmit Gain Variations with Level	Sinusoidal Test Method Reference Level = -10 dBm0 VF _X I + = -40 dBm0 to $+3 \text{ dBm0}$ VF _X I + = -50 dBm0 to -40 dBm0 VF _X I + = -55 dBm0 to -50 dBm0	-0.2 -0.4 -1.2		0.2 0.4 1.2	dB dB dB
G _{RA}	Receive Gain, Absolute	$T_A = 25^{\circ}C$, $V_{CC} = 5V$, $V_{BB} = -5V$ Input = Digital Code Sequence for 0 dBm0 Signal TP3064, TP3067	-0.15		0.15	dB
G _{RR}	Receive Gain, Relative to G _{RA}	f = 0 Hz to 3000 Hz f = 3300 Hz f = 3400 Hz f = 4000 Hz	-0.15 -0.35 -0.7		0.15 0.05 0 - 14	dB dB dB dB
G _{RAT}	Absolute Receive Gain Variation with Temperature	Relative to G _{RA}	-0.1		0.1	dB
G _{RAV}	Absolute Receive Gain Variation with Supply Voltage	Relative to G _{RA}	-0.05		0.05	dB
G _{RRL}	Receive Gain Variations with Level	Sinusoidal Test Method; Reference Input PCM Code Corresponds to an Ideally Encoded - 10 dBm0 Signal PCM Level = -40 dBm0 to +3 dBm0 TP3064, TP3067 PCM Level = -50 dBm0 to -40 dBm0 PCM Level = -55 dBm0 to -50 dBm0	- 0.2 - 0.4 - 1.2		0.2 0.4 1.2	dB dB dB
V _{RO}	Receive Filter Output at VF _R O	RL=10 kΩ	-2.5		2.5	V

TP3064/TP3067

Transmission Characteristics (Continued)

Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for $V_{CC} = +5.0V \pm 5\%$, $V_{BB} = -5.0V \pm 5\%$; $T_A = 0^{\circ}$ C to 70°C by correlation with 100% electrical testing at $T_A = 25^{\circ}$ C. All other limits are assured by correlation with other production tests and/or product design and characterization. GNDA = 0V, f = 1.02 kHz, $V_{IN} = 0$ dbm0, transmit input amplifier connected for unity gain non-inverting. Typicals specified at $V_{CC} = +5.0V$, $V_{BB} = -5.0V$, $T_A = 25^{\circ}$ C.

Symbol	Parameter	Conditions	Min	Тур	Max	Units	
ENVELOP	ENVELOPE DELAY DISTORTION WITH FREQUENCY						
D _{XA}	Transmit Delay, Absolute	f=1600 Hz		290	315	μs	
D _{XR}	Transmit Delay, Relative to D_{XA}	f = 500 Hz - 600 Hz f = 600 Hz - 800 Hz f = 800 Hz - 1000 Hz f = 1000 Hz - 1600 Hz f = 1600 Hz - 2600 Hz f = 2600 Hz - 2800 Hz f = 2800 Hz - 3000 Hz		195 120 50 20 55 80 130	220 145 75 40 75 105 155	μs μs μs μs	
D _{RA}	Receive Delay, Absolute	f== 1600 Hz		180	200	μs	
D _{RR}	Receive Delay, Relative to D _{RA}	f = 500 Hz - 1000 Hz f = 1000 Hz - 1600 Hz f = 1600 Hz - 2600 Hz f = 2600 Hz - 2800 Hz f = 2800 Hz - 3000 Hz	-40 -30	-25 -20 70 100 145	90 125 175	μs μs μs μs μs	
NOISE							
N _{XC}	Transmit Noise, C Message Weighted	TP3064 (Note 1)		12	15	dBrnC0	
N _{XP}	Transmit Noise, P Message Weighted	TP3067 (Note 1)		-74	-67	dBm0p	
N _{RC}	Receive Noise, C Message Weighted	PCM Code Equals Alternating Positive and Negative Zero TP3064		8	11	dBrnCO	
N _{RP}	Receive Noise, P Message Weighted	PCM Code Equals Positive Zero TP3067		-82	-79	dBm0p	
N _{RS}	Noise, Single Frequency	f=0 kHz to 100 kHz, Loop Around Measurement, VF _X I + = 0 Vrms			- 53	dBm0	
PPSRX	Positive Power Supply Rejection, Transmit	$V_{CC} = 5.0 V_{DC} + 100 \text{ mVrms}$ f = 0 kHz - 50 kHz (Note 2)	40			dBC	
NPSR _X	Negative Power Supply Rejection, Transmit	$V_{BB} = -5.0 V_{DC} + 100 mVrms$ f = 0 kHz - 50 kHz (Note 2)	40			dBC	
PPSR _R	Positive Power Supply Rejection, Receive	PCM Code Equals Positive Zero V_{CC} = 5.0 V_{DC} + 100 mVrms Measure VF _R O f = 0 Hz - 4000 Hz f = 4 kHz - 50 kHz	38 25			dBC dB	
NPSR _R	Negative Power Supply Rejection, Receive	$\label{eq:BCM} \begin{array}{l} \mbox{PCM Code Equals Positive Zero} \\ \mbox{V}_{BB} = -5.0 \ \mbox{V}_{DC} + 100 \ \mbox{mVrms} \\ \mbox{Measure VF}_{RO} \\ \mbox{f} = 0 \ \mbox{Hz} - 4000 \ \mbox{Hz} \\ \mbox{f} = 4 \ \mbox{Hz} - 25 \ \mbox{Hz} \\ \mbox{f} = 25 \ \mbox{Hz} - 50 \ \mbox{Hz} \\ \end{array}$	40 40 36			dBC dB dB	
SOS	Spurious Out-of-Band Signals at the Channel Output	0 dBm0, 300 Hz – 3400 Hz Input PCM Code Applied at DR Measure Individual Image Signals at VF _R O 4600 Hz–7600 Hz 7600 Hz–8400 Hz 8400 Hz–100,000 Hz			- 32 -40 - 32	dB dB dB	

Transmission Characteristics (Continued)

Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for $V_{CC} = +5.0V \pm 5\%$, $V_{BB} = -5.0V \pm 5\%$; $T_A = 0^{\circ}$ C to 70°C by correlation with 100% electrical testing at $T_A = 25^{\circ}$ C. All other limits are assured by correlation with other production tests and/or product design and characterization. GNDA = 0V, f = 1.02 kHz, $V_{IN} = 0$ dbm0, transmit input amplifier connected for unity gain non-inverting. Typicals specified at $V_{CC} = +5.0V$, $V_{BB} = -5.0V$, $T_A = 25^{\circ}$ C.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
DISTORT	ION					
STD _{X,} STD _R	Signal to Total Distortion Transmit or Receive Half-Channel	Sinusoidal Test Method (Note 3)Level = 3.0 dBm0= 0 dBm0 to $-30 dBm0$ = -40 dBm0XMTRCV= -55 dBm0XMTRCV	33 36 29 30 14 15			dBC dBC dBC dBC dBC dBC
SFDX	Single Frequency Distortion, Transmit				-46	dB
SFD _R	Single Frequency Distortion, Receive				-46	dB
IMD	Intermodulation Distortion	Loop Around Measurement, VF _X I ⁺ = -4 dBm0 to -21 dBm0, Two Frequencies in the Range 300 Hz -3400 Hz			-41	dB
CROSST	ALK					
CT _{X-R}	Transmit to Receive Crosstalk	f=300 Hz-3000 Hz D _R =Quiet PCM Code		-90	-75	dB
CT _{R-X}	Receive to Transmit Crosstalk	f=300 Hz-3000 Hz, VF _X t=0V (Note 2)		-90	-70	dB
POWER A	MPLIFIERS					
V _O PA	Maximum 0 dBm0 Level (Better than \pm 0.1 dB Linearity over the Range $-$ 10 dBm0 to $+$ 3 dBm0)	Balanced Load, R _L Connected Between VPO ⁺ and VPO ⁻ . $R_L = 600\Omega$ $R_L = 1200\Omega$ $R_L = 30 k\Omega$	3.3 3.5 4.0			Vrms Vrms Vrms
S/D _P	Signal/Distortion	$R_L = 600\Omega$	50			dB
Note 1: Me	asured by extrapolation from the distortion test res	ult.				

Note 2: PPSR_X, NPSR_X, and CT_{R-X} are measured with a -50 dBm0 activation signal applied to VF_XI^+ .

Note 3: TP3064 is measured using C message weighted filter. TP3067 is measured using P message weighted filter.

Applications Information

POWER SUPPLIES

While the pins of the TP3060 family are well protected against electrical misuse, it is recommended that the standard CMOS practice be followed, ensuring that ground is connected to the device before any other connections are made. In applications where the printed circuit board may be plugged into a "hot" socket with power and clocks already present, an extra long ground pin in the connector should be used.

All ground connections to each device should meet at a common point as close as possible to the GNDA pin. This

Typical Asynchronous Application

minimizes the interaction of ground return currents flowing through a common bus impedance. 0.1 μ F supply decoupling capacitors should be connected from this common ground point to V_{CC} and V_{BB}, as close to the device as possible.

For best performance, the ground point of each CODEC/ FILTER on a card should be connected to a common card ground in "STAR" formation, rather than via a ground bus. This common ground point should be decoupled to V_{CC} and V_{BB} with 10 μ F capacitors.

Note: See Application Note 370 for further details

TP3150 Time Slot Assignment Circuit

General Description

The TP3150 is a monolithic CMOS logic circuit designed to generate transmit and receive frame synchronization pulses for up to 4 COMBO™ CODEC/Filters. Each frame sync pulse may be independently assigned to a time slot in a frame of up to 32 time slots. Assignments are controlled by loading in an 8-bit word via a simple serial interface port. This control interface is compatible with that used on the TP3020/TP3021 and 2910/2911 CODECs, enabling an easy upgrade to COMBO CODEC/Filters to be made.

Features

- Controls up to 4 COMBO CODEC/Filters
- Independent transmit and receive time slot assignments
- Asynchronous transmit and receive clocks
- Up to 32 time slots per frame
- Serial control interface compatible with TP3020/TP3021 CODECs
- LS TTL and CMOS compatible inputs
- 5 mW, 5V operation

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

V_{CC} Relative to GND

7V

Voltage at Any Input

or Output

 V_{CC} + 0.3V to GND - 0.3V

DC Electrical Characteristics

Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for $V_{CC} = +5.0V$ to $\pm 5\%$, $T_A = 0^{\circ}C$ to 70°C by correlation with 100% electrical testing at $T_A = 25^{\circ}C$. All other limits are assured by correlation with other production tests and/ or product design and characterization. Typicals specified at $V_{CC} = +5.0V$, $T_A = 25^{\circ}C$.

Operating Temperature Range

Storage Temperature Range

Maximum Lead Temperature

(Soldering, 10 seconds)

ESD rating to be determined

Parameter	Conditions	Min	Тур	Max	Units
Input Voltage Levels V _{IH} , Logic High V _{IL} , Logic Low		2.0		0.7	v v
Input Currents All Inputs Except MODE MODE	$V_{IL} < V_{IN} < V_{IH}$ $V_{IN} = 0V$	- 1 - 100		1	μΑ μΑ
Output Voltage Levels V _{OH} , Logic High V _{OL} , Logic Low	FS_X and FS_R Outputs, $I_{OH} = 3 \text{ mA}$ FS_X and FS_R Outputs, $I_{OL} = 5 \text{ mA}$ $\overline{TS_X}$ Output, $I_{OL} = 5 \text{ mA}$	2.4		0.4 0.4	v v v
Power Dissipation Operating Current	BCLK = 2.048 MHz, All Outputs Open-Circuit		1	1.5	mA

Timing Specifications

Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for $V_{CC} = +5.0V$ to $\pm 5\%$, $T_A = 0^{\circ}C$ to 70°C by correlation with 100% electrical testing at $T_A = 25^{\circ}C$. All other limits are assured by correlation with other production tests and/ or product design and characterization. Typicals specified at $V_{CC} = +5.0V$, $T_A = 25^{\circ}C$. All timing parameters are measured at $V_{OH} = 2.0V$ and $V_{OL} = 0.7V$.

See Definitions and Timing Conventions section for test methods information.

Symbol	Parameter	Conditions	Min	Max	Units
t _{PC}	Period of Clock	BCLK _X , BCLK _R , CLK _C	480		ns
t _{WCH}	Width of Clock High	BCLK _X , BCLK _R , CLK _C	160		ns
t _{WCL}	Width of Clock Low	BCLK _X , BCLK _R , CLK _C	160		ns
t _{SDC}	Set-Up Time from D _C to CLK _C		50		ns
t _{HCD}	Hold Time from CLK _C to D _C		50		ns
t _{SCC}	Set-Up Time from \overline{CS} to CLK_C		30		ns
t _{HCC}	Hold Time from CLK _C to CS		100		ns
tSCHC	Set-Up Time from Channel Select to CLK _C		50		ns
t _{HCHC}	Hold Time from CLK _C to Channel Select		50		ns
t _{DBF}	Delay Time from BCLK _X or BCLK _R Low to $FS_{X/R} 0-3$ High or Low	$C_L = 50 pF$		100	ns
tHSYNC	Hold Time from BCLK _X , BCLK _R to Frame Sync		50		ns
tSSYNC	Set-Up Time from Frame Sync to BCLK _X , BCLK _R		100		ns
t _{DTL}	Delay from $BCLK_X$ or $BCLK_R$ High to \overline{TS}_X Low	$C_L = 50 pF$		140	ns
t _{DTH}	Delay from $BCLK_X$ or $BCLK_R$ Low to \overline{TS}_X High	$R_L = 1k \text{ to } V_{CC}$	30	140	ns
t _{RC} , t _{FC}	Rise and Fall Time of Clock	BCLK _X , BCLK _B , CLK _C		50	ns

-25°C to +125°C

-65°C to +150°C

300°C

Connection Diagram

Top View

TL/H/8804-5

Order Number TP3150J or TP3150N See NS Package Number J20A or N20A

Pin Descriptions

Complete	Description	Oursels al	Description
Symbol	Description	Symbol	Description
FS _X 1	A conventional CMOS frame sync output	BCLKX	The transmit bit clock input, which should
	which is normally low, and goes active-high		run at the same rate as that for the
	for 8 cycles of BCLK when a valid transmit		CODEC/Filter COMBO, and controls four
	time slot assignment is made.		FS _X outputs.
FS _R 1	A conventional CMOS frame sync output	XSYNC	The transmit TS0 sync pulse input. Must be
	which is normally low, and goes active-high		synchronous with BCLK _X .
	for 8 cycles of BCLK when a valid receive	RSYNC	The receive TS0 sync pulse input. Must be
	time slot assignment is made.		synchronous with BCLK _R .
FS _X 0	A transmit frame sync output similar to pin	CH1	The input for the next significant bit of the
	1.		channel select word.
FS _B 0	A receive frame sync output similar to pin 2.	CH0	The input for the LSB of the channel select
TSx	An open-drain N-channel output which is		word, which defines the frame sync output
X	normally high impedance but pulls low		affected by the following control word.
	during any active transmit time slot.	FS _v 3	A transmit frame sync output similar to pin
Dc	The input for an 8-bit serial control word. \overline{X}	X	1.
U	is the first bit clocked in.	FS _B 3	A receive frame sync output similar to pin 2.
CLKc	The clock input for the control interface.	FS _x 2	A transmit frame sync output similar to pin
cs	The active-low chip select for the control	<i>n</i>	1.
	interface.	FS _R 2	A receive frame sync output similar to pin 2.
BCLK _R	The receive bit clock input, which should	Vcc	The positive supply to the device. 5V \pm 5%.
	run at the same rate as that for the		
	CODEC/Filter COMBO, and controls four		
	FSp outputs.		
	· -U		

GND The 0V ground connection to the device.

Functional Description

OPERATING MODES

The TP3150 control interface requires an 8-bit serial control word which is compatible with the TP3020/TP3021 and 2910/2911 CODECs. Two bits, \overline{X} and \overline{R} , define which of the two groups of frame sync outputs, FS_X0 to FS_X3 or FS_B0 to FS_B3, is affected by the control word, and a 6-bit assignment field specifies the selected time slot, from 0 to 31. A frame sync output is active-high for one time slot, which is always 8 cycles of BCLKX or BCLKR. A frame may consist of any number of time slots up to 32. If a timeslot is assigned which is beyond the number of time slots in a frame, the FS_X or FS_B output to which it was assigned will remain inactive. Pin 13 is the RSYNC input which defines the start of each receive frame, and the four outputs, FS_B0-FS_B3, are assigned with respect to RSYNC. Pin 12 is the XSYNC input defines the start of each transmit frame and outputs FS_X0-FS_X3 are assigned with respect to XSYNC. XSYNC may have any phase relationship with RSYNC. Inputs CH0 and CH1 select the channel, from 0 to 3 (see Table Ia).

For asynchronous systems the TP3150 provides independent clocking and synchronization for the transmit and receive time slot counters. $BCLK_X$ and XSYNC control four outputs and $BCLK_B$ and RSYNC control four FS_B outputs.

POWER-UP INITIALIZATION

During power-up, all frame sync outputs, FS_X0-FS_X3 and FS_R0-FS_R3 , are inhibited and held low. No outputs will go active until a valid time slot assignment is made.

LOADING CONTROL DATA

During the loading of control data, the binary code for the selected channel must be set on inputs CH0 and CH1 (see Table I).

Control data is clocked into the D_C input on the falling edges of CLK_C while \overline{CS} is low.

A new time slot assignment is transferred to the selected assignment register on the high going transition of \overline{CS} . The new assignment is re-synchronized to the system clock such that the new FS output pulses will start at the next complete valid time slot after the rising edge of \overline{CS} .

TIME SLOT COUNTER OPERATION

At the start of TS0 of each transmit frame, defined by the first falling edge of BCLK_X after XSYNC goes high, the transmit time slot counter is reset to 000000 and begins to increment once every 8 cycles of BCLK_R. Each count is compared with the 4 transmit assignment registers and, on finding a match, a frame sync pulse is generated at that FS_X output.

Similarly, the first falling edge of BCLK_R after RSYNC goes high defines the start of receive TS0, and outputs FS_R0-FS_R3 are generated with respect to TS0 when the receive time slot counter matches the appropriate receive assignment register.

TS_X OUTPUT

This output pulls low whenever any FS_X output pulse is being generated. At all other times it is open-circuit, allowing the \overline{TS}_X outputs of a number of TSACS to be wire-ANDed together with a common pull-up resistor. This signal can be used to control the TRI-STATE® enable input of a line driver to buffer the transmit PCM bus from the CODEC/Filters to the backplane.

TABLE I. Control Codes (TP3020/TP3021 Compatible)

X	R	T5	T4	тз	T2	T1	то

 \overline{X} is the first bit clocked into the D_C input.

Т5		T4	Т3	T2	T1	то	Time Slot		
0		0	0	0	0	0	0		
0		0	0	0	0 0		1		
0		0	0	0	0 1 0		2		
							:		
0		1	1	1	1	0	30		
0		1	1	1	1	1	31		
1		Х	х	х	Х	х	(Note 1)		
CH1 CH0					Channel Selected				
0 0		0	A	Assign to FS _x 0 and/or FS _R 0					
0			1	A:	Assign to FS _x 1 and/or FS _R 1				
	1		0	A:	Assign to FS _x 2 and/or FS _R 2				
	1 1			A	Assign to FS _x 3 and/or FS _R 3				
X	R	Action							
0	0	Assign time slot to both selected FS_X and FS_B							
0	1	Assign time slot to selected FS _X only							
1	0	Assign time slot to selected FS _R only							

1 1 Disable both selected FS_X and FS_R

Note 1: When T5 = 1 then the appropriate FS_X or FS_R output is inactive.

TP3150

Applications Information

A combination of the TP3150 TSAC and any CODEC/Filter COMBO from the TP3052/3/4/7 or TP3064/7 series will result in data timing as shown in *Figure 1*. Although the FS_x output pulse goes high before BCLK_x goes high, the D_x output of the combo remains in the TRI-STATE mode until both are high. The eight bit period is shortened to prevent a bus clash, just as it is on the TP3020/1 CODECs.

Alternatively, eight full-length bits can be obtained by inverting the BCLK to the combo devices, thereby aligning rising edges of BCLK and $\mathsf{FS}_{X/R}.$

Figure 2 shows typical timing for the control data interface. Figure 3 shows the digital interconnections of a typical line card application.

FIGURE 3. Digital Interconnections on a Typical Synchronous Line Card

1-96

TP3150

TP3155

TP3155 Time Slot Assignment Circuit

General Description

The TP3155 is a monolithic CMOS logic circuit designed to generate transmit and receive frame synchronization pulses for up to 8 COMBO™ CODEC/Filters. Each frame sync pulse may be independently assigned to a time slot in a frame of up to 32 time slots. Assignments are controlled by loading in an 8-bit word via a simple serial interface port. This control interface is compatible with that used on the TP3020/TP3021 and 2910/2911 CODECs, enabling an easy upgrade to COMBO CODEC/Filters to be made.

Features

- Controls up to 8 COMBO CODEC/Filters
- Independent transmit and receive time slot assignments
- 8-channel unidirectional mode
- Up to 32 time slots per frame
- Serial control interface compatible with TP3020/TP3021 CODECs
- LS TTL and CMOS compatible inputs
- 5 mW, 5V operation

Typical Application

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

7V
V_{CC} + 0.3V to GND $-0.3V$

-25°C to +125°C
-65°C to +150°C
300°C

DC Electrical Characteristics

Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for $V_{CC} = 5.0V \pm 5\%$; $T_A = 0^{\circ}C$ to $+70^{\circ}C$ by correlation with 100% electrical testing at $T_A = 25^{\circ}C$. All other limits are assured by correlation with other production tests and/ or product design and characterization. Typicals specified at $V_{CC} = 5.0V$, $T_A = 25^{\circ}C$.

Parameter	Conditions	Min	Тур	Max	Units	
Input Voltage Levels V _{IH} , Logic High		2.0		0.7	v	
Input Currents All Inputs Except MODE MODE	$V_{IL} < V_{IN} < V_{IH}$ $V_{IN} = 0V$	-1 -100		1	μΑ μΑ	
Output Voltage Levels V _{OH} , Logic High V _{OL} , Logic Low	FS_X and FS_R Outputs, $I_{OH} = 3 \text{ mA}$ FS_X and FS_R Outputs, $I_{OL} = 5 \text{ mA}$ TS_X Output, $I_{OL} = 5 \text{ mA}$	2.4		0.4 0.4	V V V	
Power Dissipation Operating Current	BCLK = 2.048 MHz, All Outputs Open-Circuit		1	1.5	mA	

Timing Specifications

Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for $V_{CC} = 5.0V \pm 5\%$, $T_A = 0^{\circ}C$ to $+70^{\circ}C$ by correlation with 100% electrical testing at $T_A = 25^{\circ}C$. All other limits are assured by correlation with other production tests and/ or product design and characterization. Typicals specified at $V_{CC} = 5.0V$, $T_A = 25^{\circ}C$. All timing parameters are measured at $V_{OH} = 2.0V$ and $V_{OL} = 0.7V$.

See Definitions and Timing Conventions section for test methods information.

Symbol	Parameter	Conditions	Min	Max	Units
t _{PC}	Period of Clock	BCLK, CLK _C	480		ns
twcH	Width of Clock High	BCLK, CLK _C	160		ns
twcL	Width of Clock Low	BCLK, CLK _C	160		ns
tSDC	Set-Up Time from D_C to CLK_C		50		ns
t _{HCD}	Hold Time from CLK_C to D_C		50		ns
t _{SCC}	Set-Up Time from \overline{CS} to CLK_C		30		ns
tHCC	Hold Time from CLK _C to CS		100		ns
t _{SCHC}	Set-Up Time from Channel Select to CLK _C		50		ns
tнснс	Hold Time from Channel Select to CLK _C	· · · · · · · · · · · · · · · · · · ·	50		ns
t _{DBF}	Delay Time from BCLK Low to FS _{X/R} 0-3 High or Low	C _L = 50 pF		100	ns
t _{HSYNC}	Hold Time from BCLK to Frame Sync		50		ns
t _{SSYNC}	Set-Up Time from Frame Sync to BCLK		100		ns
t _{DTL}	Delay to TS _X Low	$C_L = 50 pF$		140	ns
t _{DTH}	Delay to TS _X High	$R_L = 1k \text{ to } V_{CC}$	30	140	ns
t _{RC} , t _{FC}	Rise and Fall Time of Clock	BCLK, CLK _C		50	ns

1-99

U
Connection Diagrams

Plastic Chip Carrier (PCC) Package

Order Number TP3155V See NS Package Number V20A

Pin Descriptions

Symbol	Description
FS _X 1	A conventional CMOS frame sync output which is normally low, and goes active-high for 8 cycles of BCLK when a valid transmit time slot assignment is made.
FS _R 1	A conventional CMOS frame sync output which is normally low, and goes active-high for 8 cycles of BCLK when a valid receive time slot assignment is made.
FS _X 0	A transmit frame sync output similar to pin 1.
FS _R 0	A receive frame sync output similar to pin 2.
TS _X	An open-drain N-channel output which is nor- mally high impedance but pulls low during any active transmit time slot.
D _C	The input for an 8-bit serial control word. \overline{X} is the first bit clocked in.
CLKC	The clock input for the control interface.
CS	The active-low chip select for the control in- terface.
MODE	The mode select input. When left open-circuit or connected to V_{CC} , mode 1 is selected, and when connected to GND, mode 2 is selected.
GND	The 0V ground connection to the device.

TL/H/5118-6

Top View

Order Number TP3155J or TP3155N See NS Package Numbers J20A, N20A

Symbol	Description
BCLK	The bit clock input, which should run at the same rate as that for the COMBO CODEC/ Filter COMBO.
XSYNC	The transmit TS0 sync pulse input. Must be synchronous with BCLK.
RSYNC/CH2	The function of this input is determined by the MODE input (pin 9). In mode 1 this is the receive TSO sync pulse, RSYNC, which must be synchronous with BCLK. In mode 2 this is the CH2 input for the MSB of the channel select word.
CH1	The input for the next significant bit of the channel select word.
CH0	The input for the LSB of the channel select word, which defines the frame sync output affected by the following control word.
FS _X 3	A transmit frame sync output similar to pin 1.
FS _R 3	A receive frame sync output similar to pin 2.
FS _X 2	A transmit frame sync output similar to pin 1.
FS _R 2	A receive frame sync output similar to pin 2.
V _{CC}	The positive supply to the device. 5V $\pm 5\%$.

Functional Description

OPERATING MODES

The TP3155 control interface requires an 8-bit serial control word which is compatible with the TP3020/TP3021 and 2910/2911 CODECs. Two bits, \overline{X} and \overline{R} , define which of the two groups of frame sync outputs, FS_X0 to FS_X3 or FS_R0, to FS_R3, is affected by the control word, and a 6-bit assignment field specifies the selected time slot, from 0 to 31. A frame sync output is active-high for one time slot, which is always 8 cycles of BCLK. A frame may consist of any number of time slots up to 32. If a timeslot is assigned which is beyond the number of time slots in a frame, the FS_X or FS_R output to which it was assigned will remain inactive.

Two modes of operation are available. Mode 1 is for systems requiring different time slot assignments for the transmit and receive direction of each channel. Mode 1 is selected by leaving pin 9 (MODE) open-circuit or connecting it to V_{CC}. In this case, Pin 13 is the RSYNC input which defines the start of each receive frame, and the four outputs, FS_R0–FS_R3, are assigned with respect to RSYNC. The XSYNC input defines the start of each transmit frame and outputs FS_X0–FS_X3 are assigned with respect to XSYNC. XSYNC may have any phase relationship with RSYNC. Inputs CH0 and CH1 select the channel, from 0 to 3 (see Table Ia).

Mode 2 provides the option of assigning all 8 frame sync outputs with respect to the XSYNC input. Mode 2 is selected by connecting pin 9 (MODE) to GND. This makes the TP3155 TSAC useful for either an 8-channel undirectional controller or for systems in which the transmit and receive directions of each channel are always assigned to the same time slot as the other, i.e., the FS_X and FS_R inputs on the COMBO CODEC/Filter are hard-wired together. In this case, logical selection of the channel to be assigned is made via inputs CH0, CH1 and CH2 (see Table Ib).

POWER-UP INITIALIZATION

During power-up, all frame sync outputs, FS_X0-FS_X3 and FS_R0-FS_R3 , are inhibited and held low. No outputs will go active until a valid time slot assignment is made.

LOADING CONTROL DATA

During the loading of control data, the binary code for the selected channel must be set on inputs CH0 and CH1 (and CH2 in mode 2), see Tables Ia and Ib.

Control data is clocked into the D_C input on the falling edges of CLK_C while $\overline{\mathsf{CS}}$ is low.

A new time slot assignment is transferred to the selected assignment register on the high going transition of $\overline{\text{CS}}$. The new assignment is re-synchronized to the system clock such that the new FS output pulses will start at the next complete valid time slot after the rising edge of $\overline{\text{CS}}$.

TIME SLOT COUNTER OPERATION

At the start of TS0 of each transmit frame, defined by the first falling edge of BCLK after XSYNC goes high, the transmit time slot counter is reset to 000000 and begins to increment once every 8 cycles of BCLK. Each count is compared with the 4 transmit assignment registers and, on finding a match, a frame sync pulse is generated at that FS_X output. Similarly, the first falling edge of BCLK after RSYNC goes high defines the start of receive TS0, and outputs FS_R0-FS_R3 are generated with respect to TS0 when the receive time slot counter matches the appropriate receive assignment register.

TS_X OUTPUT

In mode 1 (separate transmit and receive assignments), this output pulls low whenever any FS_X output pulse is being generated. In mode 2, this output pulls low whenever any FS_R or FS_R output is being generated. At all other times it is open-circuit, allowing the \overline{TS}_X outputs of a number of TSACS to be wire-ANDed together with a common pull-up resistor. This signal can be used to control the TRI-STATE® enable input of a line driver to buffer the transmit PCM bus from the CODEC/Filters to the backplane.

TABLE la.	Control Mode 1	
(TP3020/TP	3021 Compatible	e)

X	R	T5	T4	Т3	T2	T1	то

 \overline{X} is the first bit clocked into the D_{C} input.

	Control Data Format									
Т5	T4	тз	T2	T1	TO	Time Slot				
0	0	0	0	0	0	0				
0	0	0	0	0	1	1				
0	0	0	0	1	0	2				
						:				
0	1	1	1	1	0	30				
0	1	1	1	1	1	31				
1	X	X	Х	X	Х	(Note 1)				

CH1	CH0 Channel Selected				
0	0	Assign to FS _x 0 and/or FS _R 0			
0	1	Assign to FS _x 1 and/or FS _R 1			
1	0	Assign to FS _x 2 and/or FS _R 2			
1	1	Assign to FS _x 3 and/or FS _R 3			

X	R	Action
0	0	Assign time slot to both selected FS_X and FS_R
0	1	Assign time slot to selected FS _X only
1	0	Assign time slot to selected FS _R only
1	1	Disable both selected FS_X and FS_R

TABLE Ib. Control Mode 2

СН	2	CH1	CH0 Channel Selected		
0		0	0	Assign to FS _X 0	
0		0	1	Assign to FS _X 1	
0		1	0	Assign to FS _X 2	
0		1	1	Assign to FS _X 3	
1		0	0	Assign to FS _R 0	
1	1 0 1 Assign to		Assign to FS _R 1		
1		1	0 Assign to FS _B 2		
1		1	1	Assign to FS _R 3	
x	R		ł	Action	
0	0)			
0	1	}	Assign time slot to selected outp		
1	0	J			
1	1		Disable sel	ected output	

Note 1: When T5 = 1, then the appropriate FS_X or FS_R output is inactive.

Applications Information

A combination of the TP3155 TSAC and any CODEC/Filter COMBO from the TP3052/3/4/7 or TP3064/7 series will result in data timing as shown in *Figure 1*. Although the FS_x output pulse goes high before BCLK goes high, the D_x output of the combo remains in the TRI-STATE mode until both are high. The eight bit period is shortened to prevent a bus clash, just as it is on the TP3020/1 CODECs. Alternatively, eight full-length bits can be obtained by inverting the BCLK to the combo devices, thereby aligning rising edges of BCLK and $FS_{X/R}$.

Figure 2 shows typical timing for the control data interface. Figure 3 shows the digital interconnections of a typical line card application.

1-103

TP3155

National Semiconductor Corporation

TP3020/TP3020-1/TP3021/TP3021-1 Monolithic CODECs

General Description

The TP3020 and TP3021 are monolithic PCM CODECs implemented with double-poly CMOS technology. The TP3020 is intended for μ -law applications and contains logic for μ -law signaling insertion and extraction. The TP3021 is intended for A-law applications.

Each device contains separate D/A and A/D circuitry, all necessary sample and hold capacitors, a precision voltage reference and internal auto-zero circuit. A serial control port allows an external controller to individually assign the PCM input and output ports to one of up to 32 time slots or to place the CODEC into a power-down mode. Alternately, the TP3020/TP3021 may be operated in a fixed time slot mode. Both devices are intended to be used with the TP3040 monolithic PCM filter which provides the input anti-aliasing function for the encoder and smoothes the output of the decoder and corrects for the sin x/x distortion introduced by the decoder sample and hold output.

Features

- Low operation power---45 mW typical
- Low standby power-1 mW typical
- ±5V operation
- TTL compatible digital interface
- Time slot assignment or alternate fixed time slot modes
- Internal precision reference
- Internal sample and hold capacitors
- Internal auto-zero circuit
- TP3021—A-law coding
- Synchronous or asynchronous operation

Connection Diagrams

Order Number TP3020J or TP3020J-1 See NS Package Number J24A

Description of Pin Functions

Symbol

Function

SC1 Internally connected to GNDA.

- SC2 Connects VF_X to an external sample/hold capacitor if fitted for use with pin-compatible NMOS CO-DECs. Ensures gain compatibility.
- VF_X Analog input to the encoder. This signal will be sampled at the end of the encoder time slot and the resulting PCM code will be shifted out during the subsequent encode time slot.
- GND Analog and digital ground. All analog and digital signals are referenced to this pin.
- SIG_R Receive signaling bit output. During receive signaling frames the least significant (last) bit shifted into D_R is internally latched and appears at this output—SIG_R will then remain valid until changed during a subsequent receive signaling frame or reset by a power-down command.
- PDN TTL output level which goes high when the CO-DEC is in the power-down mode. May be used to power-down other circuits associated with the PCM channel.
- $\begin{array}{lll} VF_R & \mbox{Analog output from the decoder. The decoder} \\ sample and hold amplifier is updated approximate- \\ \mbox{ly 15 } \mu S \ after the end of the decode time slot. \end{array}$

Dual-In-Line Package

Order Number TP3021J or TP3021J-1 See NS Package Number J22A

Function

Symbol

NC Unused

- D_X Serial PCM TRI-STATE® output from the encoder. During the encoder time slot, the PCM code for the previous sample of VF_X is shifted out, most significant bit first, on the rising edge of CLK_X.
- $\overline{\text{TS}}_X \qquad \text{Time slot output. This TTL compatible open-drain} \\ \text{output pulses low during the encoder time slot.} \\ \text{May be used to enable external TRI-STATE bus} \\ \text{drivers if highly capacitive loads must be driven.} \\ \text{Can be wire ANDed with other } \overline{\text{TS}}_X \text{ outputs.} \end{cases}$
- V_{CC} 5V (±5%) Power Supply.
- CLK_R Master decoder clock input used to shift in the PCM data on D_R and to operate the decoder sequencer. May operate at 1.536 MH_z, 1.544 MH_z or 2048 MHz. May be asynchronous with CLK_X or CLK_C.
- $\begin{array}{lll} \text{FS}_R & \text{Decoder frame sync pulse. Normally occurring at} \\ \text{an 8 kHz rate, this pulse is nominally one } \text{CLK}_R \\ \text{cycle wide. Extending the width of } \text{FS}_R \text{ to two or} \\ \text{more cycles of } \text{CLK}_R \text{ signifies a receive signaling} \\ \text{frame.} \end{array}$
- CLK_X Master encoder clock input used to shift out the PCM data on D_X and to operate the encoder sequencer. May operate at 1.536 MHz, 1.544 MHz or 2.048 MHz. May be asynchronous with CLK_R or CLK_C.
- FS_X Encoder frame sync pulse. Normally occurring at an 8 kHz rate, this pulse is norminally one CLK_X cycle wide. Extending the width of FS_X to two or more cycles of CLK_X signifies a transmit signaling frame.

Desc Symbo	cription of Pin	Functions (Continued)	Symbol	. Fi	
SIG _X	Transmit signaling ir ing frame, the signal place of the least sig	nput. During a transmit signal- at SIG _X is shifted out of D_X in gnificant (last) bit of PCM data.	CLKC	Control clock input use into D_C . CLK _C must proof time less than or e	
V_{BB}	-5V (±5%) input.			though the 8 pulses m	
D _C	D _C Serial control data input. Serial data on D _C is shift- ed into the CODEC on the falling edge of CLK _c . In the fixed time slot mode, D _C doubles as a power- down input.			ry. CLK _C need not be CLK _R . Connecting CL the TP3020/TP3021 in	
Abso	olute Maximu	m Ratings			
Operati	ing Temperature	-25°C to + 125°C	Voltage	at Any Analog	
Storage	e Temperature	-65°C to + 150°C	Input o	or Output	
V _{CC} wit	th Respect to GND	7V	Voltage	at Any Digital	

Operating Temperature	-25°C to + 125°C
Storage Temperature	-65°C to + 150°C
V _{CC} with Respect to GND	7\
V _{BB} with Respect to GND	-7\
ESD rating is to be determined.	

unction

ed to shift serial control data ulse 8 times during a period equal to one frame time, alay overlap a frame boundasynchronous with CLK_X or K_C continuously high places nto the fixed time slot mode.

Voltage at Any Analog Input or Output	V_{BB} = 0.3V to V_{CC} + 0.3V
Voltage at Any Digital Input or Output	GND $-0.3V$ to V _{CC} $+0.3V$
Lead Temperature (Soldering, 10 seconds)	300°C

DC Electrical Characteristics

Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for V_{CC} = $+5.0V \pm 5\%$, V_{BB} = $-5.0V \pm 5\%$; T_A = 0°C to 70°C by correlation with 100% electrical testing at $T_A = 25$ °C. All other limits are assured by correlation with other production tests and/or product design and characterization. All signals referenced to GND. Typicals specified at V_{CC} = + 5.0V, V_{BB} = -5.0V and T_A = 25°C.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
DIGITAL IN	ITERFACE					
4	Input Current	0 <vin<vcc< td=""><td> 10</td><td></td><td>10</td><td>μΑ</td></vin<vcc<>	10		10	μΑ
VIL	Input Low Voltage				0.6	V
VIH	Input High Voltage		2.2			V
V _{OL}	Output Low Voltage	D_{x} , I_{OL} = 4.0 mA SIG _R , I_{OL} = 0.5 mA TS _x , I_{OL} = 3.2 mA, Open Drain PDN, I_{OL} = 1.6 mA			0.4 0.4 0.4 0.4	V V V V
V _{OH}	Output High Voltage	D _x , I _{OH} =6 mA SIG _R , I _{OH} =0.6 mA	2.4 2.4			V V
ANALOG I	NTERFACE					
ZI	VF _x Input Impedance when Sampling	Resistance in Series with Approximately 70 pF	2.0			kΩ
z _o	Output Impedance at VFR	-3.1V <vf<sub>R<3.1V</vf<sub>		10	20	Ω
V _{OS}	Output Offset Voltage at VF _R	D _R =PCM Zero Code (TP3020) or Alternating ± 1 Code (TP3021)	-25		25	mV
IIN	Analog Input Bias Current	V _{IN} =0V	-0.1		0.1	μΑ
R1 imes C1	DC Blocking Time Constant		4.0			ms
C1	DC Blocking Capacitor		0.1			μF
R1	Input Bias Resistor				160	kΩ
POWER DI	SSIPATION				-	
I _{CC0}	Standby Current, V _{CC}			0.1	0.4	mA
I _{BB0}	Standby Current, V _{BB}			0.03	0.1	mA
I _{CC1}	Operating Current, V _{CC}			4.5	8.0	mA
I _{BB1}	Operating Current, V _{BB}		[4.5	8.0	mA

TP3020/TP3020-1/TP3021/TP3021-1

AC Electrical Characteristics

Unless otherwise noted, the analog input is a 0 dBm0, 1.02 kHz sine wave. The digital input is a PCM bit stream generated by passing a 0 dBm0, 1.02 kHz sine wave through an ideal encoder. All output levels are sin x/x corrected. Limits printed in **BOLD** characters are guaranteed for $V_{CC} = +5V \pm 5\%$, $V_{BB} = -5V \pm 5\%$; $T_A = 0^{\circ}$ C to $+70^{\circ}$ C by correlation with 100% electrical testing at $T_A = 25^{\circ}$ C. All other limits are assured by correlation with other production tests and/or product design and characterization. All signals referenced to GND. Typicals specified at $V_{CC} = +5V$, $V_{BB} = -5V$, $T_A = 25^{\circ}$ C.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
	Absolute Level	The nominal 0 dBm0 levels for the TP3020 and TP3021 are 1.520 Vrms and 1.525 Vrms respectively. The resulting nominal overload level is 3.096V peak for both devices. All gain measurements for the encode and decode portions of the TP3020/TP3021 are based on these nominal levels after the necessary sin x/x corrections are made.				
G _{RA}	Receive Gain, Absolute TP3020, TP3021 TP3020-1, TP3021-1	$T = 25^{\circ}C, V_{CC} = 5V, V_{BB} = -5V$	-0.125 -0.175		0.125 0.175	dB dB
G _{RAT}	Absolute Receive Gain Variation with Temperature	T=0°C to 70°C	-0.05		0.05	dB
G _{RAV}	Absolute Receive Gain Variation with Supply Voltage	$V_{CC} = 5V \pm 5\%,$ $V_{BB} = -5V \pm 5\%$	-0.07		0.07	dB
G _{XA}	Transmit Gain, Absolute TP3020, TP3021 TP3020-1, TP3021-1	$T = 25^{\circ}C, V_{CC} = 5V, V_{BB} = -5V$	-0.325 -0.375		-0.075 -0.025	dB dB
G _{XAT}	Absolute Transmit Gain Variation with Temperature	T=0°C to 70°C	-0.05		0.05	dB
G _{XAV}	Absolute Transmit Gain Variation with Supply Voltage	$V_{CC} = 5V \pm 5\%,$ $V_{BB} = -5V \pm 5\%$	-0.07		0.07	dB
G _{RAL}	Absolute Receive Gain Variation with Level	CCITT Method 2 Relative to - 10 dBm0 0 dBm0 to 3 dBm0 - 40 dBm0 to 0 dBm0 - 50 dBm0 to - 40 dBm0 - 55 dBm0 to - 50 dBm0	-0.3 -0.2 -0.4 -1.0		0.3 0.2 0.4 1.0	dB dB dB dB
G _{XAL}	Absolute Transmit Gain Variation with Level	CCITT Method 2 Relative to - 10 dBm0 0 dBm0 to 3 dBm0 - 40 dBm0 to 0 dBm0 - 50 dBm0 to - 40 dBm0 - 55 dBm0 to - 50 dBm0	- 0.3 - 0.2 - 0.4 - 1.0		0.3 0.2 0.4 1.0	dB dB dB dB
S/D _R	Receive Signal to Distortion Ratio	Sinusoidal Test Method Input Level - 30 dBm0 to 0 dBm0 - 40 dBm0 - 45 dBm0	35 29 25			dBc dBc dBc
S/D _x	Transmit Signal to Distortion Ratio	Sinusoidal Test Method Input Level - 30 dBm0 to 0 dBm0 - 40 dBm0 - 45 dBm0	35 29 25			dBc dBc dBc
NR	Receive Idle Channel Noise	D _R = Steady State PCM Code			6	dBrnc0
N _x	Transmit Idle Channel Noise	TP3020, (No Signaling) TP3021 (Note 1)			13 -66*	dBrnc0 dBn0p
HDR	Receive Harmonic Distortion	2nd or 3rd Harmonic			-47	dB
HDx	Transmit Harmonic Distortion	2nd or 3rd Harmonic			-47	dB
PPSRX	Positive Power Supply Rejection, Transmit	Input Level = 0V, V_{CC} = 5.0 V_{DC} + 300 mVrms, f = 1.02 kHz	50			dB
Note 1: Mea	asured by extrapolation from the distortion	test result at -50 dBm0 level.				

AC Electrical Characteristics (Continued)

Unless otherwise noted, the analog input is a 0 dBm0, 1.02 kHz sine wave. The digital input is a PCM bit stream generated by passing a 0 dBm0, 1.02 kHz sine wave through an ideal encoder. All output levels are sin x/x corrected. Limits printed in **BOLD** characters are guaranteed for $V_{CC} = +5V \pm 5\%$, $V_{BB} = -5V \pm 5\%$; $T_A = 0^{\circ}C$ to $+70^{\circ}C$ by correlation with 100% electrical testing at $T_A = 25^{\circ}C$. All other limits are assured by correlation with other production tests and/or product design and characterization. All signals referenced to GND. Typicals specified at $V_{CC} = +5V$, $V_{BB} = -5V$, $T_A = 25^{\circ}C$.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
PPSRR	Positive Power Supply Rejection, Receive	$D_R =$ Steady PCM Code, $V_{CC} = 5.0 V_{DC} + 300 \text{ mVrms}$, F = 1.02 kHz	40			dB
NPSRX	Negative Power Supply Rejection, Transmit	Input Level = 0V, V_{BB} = -5.0 V_{DC} + 300 mVrms, f = 1.02 kHz	50			dB
NPSRR	Negative Power Supply Rejection, Receive	$D_{\rm R} = \text{Steady PCM Code,} \\ V_{\rm BB} = -5.0 V_{\rm DC} + 300 \text{ mVrms,} \\ f = 1.02 \text{ kHz}$	45			dB
CT _{XR}	Transmit to Receive Crosstalk	D _R = Steady PCM Code			-75	dB
CT _{RX}	Receive to Transmit Crosstalk	Transmit Input Level=0V TP3020 TP3021			-70 -65 (Note 2)	dB dB

Note 2: Theoretical worst-case for a perfectly zeroed encoder with alternating sign bit, due to the decoding law.

Timing Specification Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for $V_{CC} = +5V \pm 5\%$, $V_{BB} = -5V \pm 5\%$; $T_A = 0^{\circ}C$ to 70°C by correlation with 100% electrical testing at $T_A = 25^{\circ}C$. All other limits are assured by correlation with other production tests and/or product design and characterization. All digital signals referenced to GND. Typicals specified at $V_{CC} = +5V$, $V_{BB} = -5V$, $T_A = 25^{\circ}C$. All timing parameters are measured at $V_{OH} = 2.0V$ and $V_{OL} = 0.7V$.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
tPC	Period of Clock	CLK _C , CLK _R , CLK _X	485			ns
t _{RC} , t _{FC}	Rise and Fall Time of Clock	CLK _C , CLK _R , CLK _X			30	ns
twch	Width of Clock High	CLK _C , CLK _R , CLK _X	165			ns
twcL	Width of Clock Low	CLK _C , CLK _R , CLK _X	165			ns
t _{A/D}	A/D Conversion Time	From End of Encoder Time Slot to Completion of Conversion			16	Time Slots
t _{D/A}	D/A Conversion Time	From End of Decoder Time Slot to Transition of VF_R			2	Time Slots
tSDC	Set-Up Time, D _C to CLK _C		100			ns
t _{HDC}	Hold Time, CLK _C to DC		100			ns
tSFX	Set-Up Time, FS _X to CLK _X		100			ns
t _{HFX}	Hold Time, CLK _X to FS _X		100			ns
t _{DZX}	Delay Time to Enable D _X on TS Entry	C _L =150 pF	25		125	ns
t _{DDX}	Delay Time, CLK _X to D _X	C _L =150 pF			125	ns
t _{DXZ}	Delay Time, D _X to High Impedance State on TS Exit	C _L =0 pF	50		165	ns
tDTSL	Delay to TS _X Low	0≤C _L ≤ 150 pF	30		185	ns
t _{DTSH}	Delay to TS _X Off	C _L =0 pF	30		185	ns
tssx	Set-Up Time, SIG _X to CLK _X		100			ns
t _{HSX}	Hold Time, CLK _X to SIG _X		100			ns
tSFR	Set-Up Time, FS _R to CLK _R		100			ns
t _{HFR}	Hold Time, CLK _R to FS _R		100			ns
t _{SDR}	Set-Up Time, D _R to CLK _R		40			ns
t _{HDR}	Hold Time, CLK _R to D _R		30			ns
t _{DSR}	Delay Time, CLK _R to SIG _R	C _L = 100 pF			300	ns

1

Functional Description

Upon application of power, internal circuitry initializes the CODEC and places it into the power-down mode. No sequencing of 5V or -5V is required. In the power-down mode, all non-essential circuits are deactivated, the TRI-STATE PCM data output D_X is placed in the high impedance state and the receive signaling output of the TP3020, SIG_R, is reset to logical zero. Once in the power-down mode, the method of activating the TP3020/TP3021 depends on the chosen mode of operation, time slot assignment or fixed time slot.

TIME SLOT ASSIGNMENT MODE

The time slot assignment mode of operation is selected by maintaining CLK_C in a normally low state. The state of the CODEC is updated by pulsing CLK_C eight times within a period of 125 µS or less. The falling edge of each clock pulse shifts the data on the D_C input into the CODEC. The first two control bits determine if the subsequent control bits B3-B8 are to specify the time slot for the encoder (B1=0). the decoder (B2=0) or both (B1 and B2=0) or if the CO-DEC is to be placed into the power-down mode (B1 and B2=1). The desired action will take place upon the occurrence of the second frame sync pulse following the first pulse of CLK_C. Assigning a time slot to either the encoder or decoder will automatically power-up the entire CODEC circuit. The D_X output and D_B input, however, will be inhibited for one additional frame to allow the analog circuitry time to stabilize. If separate time slots are to be assigned to the encoder and the decoder, the encoder time slot should be assigned first. This is necessary because up to four frames are required to assign both time slots separately, but only three frames are necessary to activate the D_X output. If the encode time slot has not been updated the PCM data will be outputted during the previously assigned time slot which may now be assigned to another CODEC.

FIXED TIME SLOT MODE

There are several ways in which the TP3020/TP3021 may operate in the fixed time slot mode. The first and easiest method is to leave CLK_C disconnected or to connect CLK_C to V_{CC}. In this situation, D_C behaves as a power-down input. When D_C goes low, both encode and decode time slots are set to one on the second subsequent frame sync pulse. Time slot one corresponds to the eight CLK_X or CLK_R cycles starting one cycle from the nominal leading edge of FS_X or FS_R respectively. As in the time slot assignment mode, the D_X output is inhibited for one additional frame after the circuit is powered up. A logical "1" on D_C powers the CODEC down on the second subsequent FS_X pulse.

A second fixed time slot method is to operate CLK_C continuously. Placing a "1" on D_C will then cause the serial control register to fill up with ones. With B1 and B2 equal to "1" the CODEC will power-down. Placing a "0" on D_C will cause the serial control register to fill up with zeroes, assigning time slot one to both the encoder and decoder and powering up the device. One important restriction with this method of operation is that the rising transition of D_C must occur at least 8 cycles of CLK_c prior to FS_X. If this restriction is not fol-

lowed, it is possible that on the frame prior to power-down, the encoder could be assigned to an incorrect time slot (e.g., 1, 3, 7, 15 or 31), resulting in a possible PCM bus conflict.

SERIAL CONTROL PORT

When the TP3020/TP3021 is operated in the time slot assignment mode or the fixed time slot mode with continuous clock, the data on D_C is shifted into the serial control register, bit 1 first. In the time slot assignment mode, depending on B1 and B2, the data in the RCV or XMT time slot registers is updated at the second FS_R or FS_X pulse after the first CLK_C pulse, or the CODEC is powered down. In the continuous clock fixed time slot mode, the CODEC is powered up or down at every second FS_R or FS_X pulse. The control register data is interpreted as follows:

B1	B2		Action						
0	0	Assig	Assign time slot to encoder and decoder						
0	1	Assig	in time s	slot to e	ncoder				
1	0	Assig	n time s	slot to d	ecoder				
1	1	Powe	er-down	CODEC)				
B 3	B4	B5	B6	B7	B 8	Time Slot			
0	0	0	0	0	0	1			
0	0	0	0	0	1	2			
0	0	0	0	1	0	3			
0	0	0	0	1	1	4			
			•		.				
•	•	•	•	•	•				
			•	•					
1	1	1	1	1	0	63			
1	1	1	1	1	1	64			

During the power-down command, bits 3 through 8 are ignored. Note that with 64 possible time slot assignments it is frequently possible to assign a time slot which does not exist. This can be useful to disable an encoder or decoder without powering down the CODEC.

SIGNALING

The TP3020 μ -law CODEC contains circuitry to insert and extract signaling information for the PCM data. The transmit signaling frame is signified by widening the FS_X pulse from one cycle of CLK_X to two or more cycles.

When this occurs, the data present on the SIG_X input at the eighth clock pulse of the encode time slot is inserted into the last bit of the PCM data stream. A receive signaling frame is indicated in a similar fashion by widening the FS_R pulse to two or more cycles of CLK_R.

During a receive signaling frame, the last PCM bit shifted in is latched into a flip-flop and appears at the SIG_R output. This output will remain unchanged until the next signaling frame, until a power-down is executed or until power is removed from the device. Since the least significant bit of the PCM data is lost during a signaling frame, the decoder interprets the bit as a "1/2" (i.e., half way between a "0" and a "1"). This minimizes the noise and distortion due to the signaling.

Functional Description (Continued) ENCODING DELAY

The encoding process begins at the start of the encode time slot and is concluded no later than 17 time slots later. In normal applications, this PCM data is not shifted out until the next time slot 125 μ S later, resulting in an encoding delay of 125 μ S. In some applications it is possible to operate the CODEC at a higher frame rate to reduce this delay. With a 2.048 MHz clock, the FS rate could be increased to 15 kHz reducing the delay from 125 μ S to 67 μ S.

DECODING DELAY

The decoding process begins immediately after the end of the decoder time slot. The output of the decoder sample and hold amplifier is updated 28 CLK_R cycles later.

Typical Application

The decoding delay is therefore approximately 28 clock cycles plus one half of a frame time or 81 μ S for a 1.544 MHz system with an 8 kHz frame rate or 76 μ S for a 2.048 MHz system with an 8 kHz frame rate. Again, for some applications the frame rate could be increased to reduce this delay.

TYPICAL APPLICATION

A typical application of the TP3020/TP3021 used in conjunction with the TP3040 PCM filter is shown. The values of resistor R1 and DC blocking capacitor C1, are non-critical. The capacitor value should exceed 0.1 μ F, R1 should not exceed 160 k Ω , and the product R1 \times C1 should exceed 4 rms. 0.1 μ f power supply bypass capacitors should be used and placed as close to the device as possible.

TL/H/5538-5

The power supply decoupling capacitors should be 0.1 µF. In order to take advantage of the excellent noise performance of the TP3020/TP3021/TP3040, care must be taken in board layout to prevent coupling of digital noise into the sensitive analog lines.

*The external sample/hold capacitor required for use with pin-compatible NMOS CODECs introduces attenuation due to the capacitive divider formed with C1. The SC pin connects VF_X to this sample/hold capacitor (via a 300Ω resistor) to ensure gain compatibility. The TP3020/TP3021 itself does not require an external sample/hold capacitor.

National Semiconductor Corporation

TP5116A/TP5116A-1/TP5156A/TP5156A-1 Monolithic CODECs

General Description

The TP5116A and TP5156A are monolithic PCM CODECs implemented with double-poly CMOS technology. The TP5116A is intended for μ -law applications and the TP5156A is for A-law applications.

Each device contains separate D/A and A/D circuitry, all necessary sample and hold capacitors, and internal autozero circuits. Each device also contains a precision internal voltage reference, eliminating the need for an external reference. There are no internal connections to pins 15 or 16, making them directly interchangeable with CODECs using external reference components.

All devices are intended to be used with the TP3040 monolithic PCM filter which provides the input anti-aliasing function for the encoder, smooths the output of the decoder and corrects for the sin x/x distortion introduced by the decoder sample and hold output.

Features

- TP5116A—µ-law coding (sign plus magnitude format)
- TP5156A—A-law coding
- Synchronous or asynchronous operation
- Precision voltage reference on-chip
- Internal sample-and-hold capacitors
- Internal auto-zero circuit
- Low operation power—40 mW typical
- ±5V operation
- TTL compatible digital interface

ENCODING FORMAT AT DIGITAL OUTPUT																
			Sig	TP51 n + M	16A agnitu	de			TP5156A A-Law (Includes Even Bit Inversion)							
V _{IN} = +Full-Scale	1	1	1	1	1	1	1	1	1	0	1	0	1	0	1	0
$V_{\rm ev} = 0V$	∫_1	0	0	0	0	0	0	0	1	1	0	1	0	1	0	1
VIN - UV	lo	0	0	0	0	0	0	0	0	1	0	1	0	1	0	1
$V_{IN} = -Full-Scale$	0	1	1	1	1	1	1	1	0	0	1	0	1	0	_1	0

Functional Description

Approximately 4 μ s after the rising edge of the XMIT SYNC pulse, the voltage present on the ANALOG INPUT is sampled and the process of encoding that sample into a PCM code is begun. Simultaneously, the 8-bit PCM code corresponding to the previous sample is shifted out of the DIGI-TAL OUTPUT, MSB first, on the rising edge of the next eight cycles of the XMIT CLOCK. When XMIT SYNC (which is normally eight XMIT CLOCK cycles long) goes low, the TRI-STATE DIGITAL OUTPUT is returned to the high impedance state. On the TP5116A, the PCM code is in a μ -law sign plus magnitude format. The TP5156A uses the standard A-law coding.

An 8-bit PCM code is shifted into DIGITAL INPUT on the rising edge of the first eight RCV CLOCK pulses after RCV SYNC goes high. RCV SYNC is nominally eight RCV CLOCK cycles wide. Approximately 15 μ s after RCV SYNC goes low, the ANALOG OUTPUT is updated to the voltage corresponding to the PCM input code.

All encoding and decoding operations are run from the MASTER CLOCK. MASTER CLOCK should be in the range of 1.536 MHz to 2.048 MHz and must be synchronous with XMIT CLOCK. The XMIT and RCV CLOCK may vary from 64 kHz to 2.048 MHz.

ENCODING DELAY

The encoding process begins immediately at the beginning of the encode time slot and is concluded no later than 18 time slots later. In normal applications, the PCM data is not shifted out until the next time slot 125 μ s later, resulting in an encoding delay of 125 μ s. In some applications it is possible to operate the CODEC at a higher frame rate to reduce this delay. With a 2.048 MHz MASTER CLOCK, the FS rate could be increased to 15 kHz, reducing the delay from 125 μ s to 67 μ s.

DECODING DELAY

The decoding process begins immediately after the end of the decoder time slot. The output of the decoder sample and hold amplifier is updated 28 MASTER CLOCK cycles later. The decoding delay is therefore approximately 28 clock cycles plus one half of a frame time or, 81 μ s for a 1.544 MHz system with an 8 kHz frame rate or, 76 μ s for a 2.048 MHz system with an 8 kHz frame rate. Again, for some applications the frame rate could be increased to reduce this delay.

Typical Application

A typical application of these CODECs used in conjunction with the TP3040 PCM filter is shown below. The values of resistor R1 and DC blocking capacitor C1, are non-critical. The capacitor value should exceed 0.1 μ F, R1 should be less than 50 kΩ, and the product R1×C1 should exceed 4 ms.

$XMIT GAIN = 20 \times \log\left(\frac{R3}{2}\right)$	$\left(\frac{1 + R2}{R2}\right)$	+ 3 dB
RCV GAIN = 20 $ imes$ log	$\left(\frac{R4}{R4+F}\right)$,

The power supply decoupling capacitors should be 0.1 $\mu F.$ In order to take advantage of the excellent noise performance of these CODECs, care must be taken in board layout to prevent coupling of digital noise into the sensitive analog lines. For card insertion into a hot connector, care should be taken to insure that GNDA and GNDD are contacted prior to V_{CC} and V_{BB}.

TL/H/6663-5

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Operating Temperature	-25°C to +125°C
Storage Temperature	-65°C to +150°C
V ⁺ with Respect to DIGITAL GROUND	7V
V ⁻ with Respect to DIGITAL GROUND	-7V

Voltage at Any Analog Input or Output	$V^ 0.3V$ to $V^+ + 0.3V$
Voltage at Any Digital Input or Output	GNDD-0.3V to V+ + 0.3V
Lead Temperature (Solderdip 10 sec.)	300°C
ESD rating to be determined.	

DC Electrical Characteristics

Unless otherwise noted $T_A = 0^{\circ}$ C to 70°C, V⁺ = 5.0V ±5%, V⁻ = -5.0V ±5%. Typical characteristics are specified at V⁺ = 5.0V, V⁻ = -5.0V and $T_A = 25^{\circ}$ C. All digital signals are referenced to DIGITAL GROUND. All analog signals are referenced to ANALOG GROUND. Limits printed in bold characters are guaranteed for V⁺ = 5.0V ±5%, V⁻ = -5.0V ±5%; T_A = 0°C to 70°C by correlation with 100% electrical testing at T_A = 25°C. All other limits are assured by correlation with other production tests and/or product design and characterization.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
DIGITAL INTER	RFACE					
lj –	Input Current	0V <vin<v+< td=""><td>-10</td><td></td><td>10</td><td>μA</td></vin<v+<>	-10		10	μA
VIL	Input Low Voltage				0.6	V
ViH	Input High Voltage		2.2			v
V _{OL}	Output Low Voltage	I _{OL} = 3.2 mA			0.4	v
V _{OH}	Output High Voltage	$I_{OH} = 6 \text{mA}$	2.4			V
ANALOG INTE	RFACE				•	
ZI	Analog Input Impedance when Sampling	Resistance in Series with Approximately 70 pF	2			kΩ
z _o	Output Impedance at Analog Output			10	20	Ω
I _{IN}	Analog Input Bias Current	$V_{IN} = 0V$	-0.1		0.1	μΑ
R1 × C1	DC Blocking Time Constant		4.0			ms
C1	DC Blocking Capacitor		0.1			μF
R1	Input Bias Resistor				50	kΩ
POWER DISSI	ATION					
ICC1	Operating Current, V _{CC}			3.5	8.0	mA
I _{BB1}	Operating Current, V _{BB}			3.5	8.0	mA

AC Electrical Characteristics

Unless otherwise noted, $T_A = 25^{\circ}$ C, $V^+ = 5.0$ V, $V^- = -5.0$ V. The analog input is a 0 dBm0, 1.02 kHz sine wave. The DIGITAL INPUT is a PCM bit stream generated by passing a 0 dBm0, 1.02 kHz sine wave through an ideal encoder. All output levels are sin x/x corrected, limits printed in bold characters are guaranteed for $V^+ = 5.0V \pm 5\%$, $V^- = -5.0V \pm 5\%$; $T_A = 0^{\circ}$ C to 70°C by correlation with 100% electrical testing at $T_A = 25^{\circ}$ C. All other limits are assured by correlation with other production tests and/or product design and characterization.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
	Absolute Level	The nominal 0 dBm0 levels for the TP5116A is 1.227 Vrms and 1.231 Vrms for the TP5156A. The resulting nominal overload level is 2.5V peak for all devices. All gain measurements for the encode and decode portions of the devices are based on these nominal levels after the necessary sin x/x corrections are made.				
G _{RA}	Receive Gain, Absolute	T _A = 25°C, V ⁺ = 5V, V ⁻ = -5V TP5116A, TP5156A TP5116A-1, TP5156A-1	-0.125 -0.175		0.125 0.175	dB dB
G _{RAT}	Absolute Receive Gain Variation with Temperature	$T_A = 0^{\circ}C$ to 70°C	-0.05		0.05	dB

TP5116A/TP5116A-1/TP5156A/TP5156A-1

AC Electrical Characteristics (Continued)

Unless otherwise noted, $T_A = 25^{\circ}$ C, $V^+ = 5.0^{\circ}$, $V^- = -5.0^{\circ}$. The analog input is a 0 dBm0, 1.02 kHz sine wave. The DIGITAL INPUT is a PCM bit stream generated by passing a 0 dBm0, 1.02 kHz sine wave through an ideal encoder. All output levels are sin x/x corrected. Limits printed in bold characters are guaranteed for $V^+ = 5.0^{\circ}$ $\pm 5^{\circ}$, $V^- = -5.0^{\circ}$ $\pm 5^{\circ}$; $T_A = 0^{\circ}$ C to 70°C by correlation with 100% electrical testing at $T_A = 25^{\circ}$ C. All other limits are assured by correlation with other production tests and/or product design and characterization.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
G _{RAV}	Absolute Receive Gain Variation with Supply Voltage	$V^+ = 5V \pm 5\%, V^- = -5V \pm 5\%$	-0.07		0.07	dB
G _{XA}	Transmit Gain, Absolute	$T_A = 25^{\circ}C$, $V^+ = 5V$, $V^- = -5V$ TP5116A, TP5156A TP5116A-1, TP5156A-1	-0.125 0.175		0.125 0.175	dB
G _{XAT}	Absolute Transmit Gain Variation with Temperature	$T_A = 0^{\circ}C$ to 70°C	-0.05		0.05	dB
G _{XAV}	Absolute Transmit Gain Variation with Supply Voltage	$V^+ = 5V \pm 5\%, V^- = -5V \pm 5\%$	-0.07		0.07	dB
G _{RAL}	Absolute Receive Gain Variation with Level	CCITT Method 2 Relative to - 10 dBm0 0 dBm0 to 3 dBm0 - 40 dBm0 to 0 dBm0 - 50 dBm0 to - 40 dBm0 - 55 dBm0 to - 50 dBm0	-0.3 -0.2 -0.4 -1.0		0.3 0.2 0.4 1.0	dB dB dB dB
G _{XAL}	Absolute Transmit Gain Variation with Level	CCITT Method 2 Relative to - 10 dBm0 0 dBm0 to 3 dBm0 - 40 dBm0 to 0 dBm0 - 50 dBm0 to - 40 dBm0 TP5116A, TP5156A TP5116A-1, TP5156A-1 - 55 dBm0 to - 50 dBm0	-0.3 -0.2 -0.4 -0.475 -1.0		0.3 0.2 0.4 0.475 1.0	dB dB dB dB dB
STD _R	Receive Signal to Distortion Ratio	Sinusoidal Test Method Input Level 30 dBm0 to 0 dBm0 40 dBm0 45 dBm0	35 29 25			dBC dBC dBC
STD _X	Transmit Signal to Distortion Ratio	Sinusoidal Test Method Input Level - 30 dBm0 to 0 dBm0 - 40 dBm0 - 45 dBm0	35 29 25			dBC dBC dBC
NB	Receive Idle Channel Noise	D _B = Idle Code			8	dBrnC0
N _X	Transmit Idle Channel Noise	TP5116A, $VF_X = 0V$ TP5156A, $VF_x = 0V$			13 -66	dBrnC0 dBm0p
PPSRX	Positive Power Supply Rejection, Transmit	Input Level = 0V, V_{CC} = 5.0 V_{DC} + 300 mVrms, f = 1.02 kHz	50			dB
PPSRR	Positive Power Supply Rejection, Receive	$D_{R} = Idle Code$ $V_{CC} = 5.0 V_{DC} + 300 \text{ mVrms},$ f = 1.02 kHz	40			dB
NPSR _X	Negative Power Supply Rejection, Transmit	Input Level = 0V, $V_{BB} = -5.0 V_{DC}$ + 300 mVrms, f = 1.02 kHz	50			dB
NPSR _R	Negative Power Supply Rejection, Receive	$\begin{array}{l} D_{R} = Steady PCM Code, \\ V_{BB} = -5.0 V_{DC} + 300 mVrms, \\ f = 1.02 kHz \end{array}$	45			dB
CT _{XR}	Transmit to Receive Crosstalk	D _R = Steady PCM Code			-75	dB
CT _{RX}	Receive to Transmit Crosswalk	Transmit Input Level = 0V TP5116A TP5156A			70 65 (Note 2)	dB dB

Note 1: Measured by extrapolation from the distortion test result at -50 dBm0 level.

Note 2: Theoretical worst-case for a perfectly zeroed encoder with alternating sign bit, due to the decoding law.

Timing Specifications Unless otherwise noted, $T_A = 0^{\circ}C$ to 70°C, $V^+ - +5V \pm 5^{\circ}$, $V^- = -5V \pm 5^{\circ}$. All digital signals are referenced to DIGITAL GROUND and are measured at V_{IH} and V_{IL} as indicated in the Timing Waveforms. Limits printed in bold characters are guaranteed for $V^+ = 5.0V \pm 5^{\circ}$, $V^- = -5.0V \pm 5^{\circ}$; $T_A = 0^{\circ}C$ to 70°C by correlation with 100% electrical testing at $T_A = 25^{\circ}C$. All other limits are assured by correlation with other production tests and/or product design and characterization. All timing specifications measured at $V_{OH} = 2.0V$ and $V_{OL} = 0.7V$.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
F _M	MASTER CLOCK Frequency		1.5	2.048	2.1	MHz
F _X , F _R	XMIT, RCV CLOCK Frequency		0.064	2.048	2.1	MHz
PWCLK	Clock Pulse Width	MASTER, XMIT, RCV CLOCKS	150			ns
t _{RC} , t _{FC}	Clock Rise and Fall Time	MASTER, XMIT, RCV CLOCKS			50	ns
t _{RS} , t _{FS}	Sync Pulse Rise and Fall Time	RCV, XMIT, SYNC			50	ns
t _{RCS} , t _{XCS}	Clock to Sync Delay	RCV, XMIT	0			ns
txss	XMIT SYNC Set-Up Time		150			ns
t _{XDD}	XMIT Data Delay	Load = 100 pF + 2 LSTTL Loads			200	ns
t _{XDP}	XMIT Data Present	Load = 100 pF + 2 LSTTL Loads			200	ns
t _{XDT}	XMIT Data TRI-STATE®				150	ns
tSRC	RCV CLOCK to RCV SYNC Delay		0			ns
t _{RDS}	RCV Data Set-Up Time		0			ns
t _{RSS}	RCV SYNC Set-Up Time		150			ns
t _{RDH}	RCV Data Hold Time		100			ns
t _{XSL}	XMIT SYNC Low Time	64 kHz Operation	300			ns
t _{RSL}	RCV SYNC Low Time	64 kHz Operation	17			(Note 3)

Note 3: RCV SYNC must remain low for at least 17 cycles of MASTER CLOCK, each frame.

Timing Waveforms

TP3040/TP3040-1/TP3040A/TP3040A-1 PCM Monolithic Filter

General Description

The TP3040/TP3040-1/TP3040A/TP3040A-1 filter is a monolithic circuit containing both transmit and receive filters specifically designed for PCM CODEC filtering applications in 8 kHz sampled systems.

The filter is manufactured using microCMOS technology and switched capacitor integrators are used to simulate classical LC ladder filters which exhibit low component sensitivity.

TRANSMIT FILTER STAGE

The transmit filter is a fifth order elliptic low pass filter in series with a fourth order Chebyshev high pass filter. It provides a flat response in the passband and rejection of signals below 200 Hz and above 3.4 kHz.

RECEIVE FILTER STAGE

The receive filter is a fifth order elliptic low pass filter designed to reconstruct the voice signal from the decoded/ demultiplexed signal which, as a result of the sampling process, is a stair-step signal having the inherent sin x/x frequency response. The receive filter approximates the function required to compensate for the degraded frequency response and restore the flat passband response.

Block Diagram

Features

- Exceeds all D3/D4 and CCITT specifications
- +5V, -5V power supplies
- Low power consumption:
 45 mW (0 dBm0 into 600Ω)
 30 mW (power amps disabled)
- Power down mode: 0.5 mW
- 20 dB gain adjust range
- No external anti-aliasing components
- Sin x/x correction in receive filter
- 50/60 Hz rejection in transmit filter
- TTL and CMOS compatible logic
- All inputs protected against static discharge due to handling

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltages	±7V
Power Dissipation	1 W/Package
Input Voltage	±7V

Output Short-Circuit Duration	Continuous
Operating Temperature Range	-25°C to +125°C
Storage Temperature	-65°C to +150°C
Lead Temperature (Soldering, 10 secor	nds) 300°C
ESD Rating to be determined	

DC Electrical Characteristics

Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for $V_{CC} = +5.0V \pm 5\%$, $V_{BB} = -5.0V \pm 5\%$; $T_A = 0^{\circ}$ C to 70°C by correlation with 100% electrical testing at $T_A = 25^{\circ}$ C. All other limits are assured by correlation with other production tests and/or product design and characterization. Typicals specified at $V_{CC} = +5.0V$, $V_{BB} = -5.0V$, $T_A = 25^{\circ}$ C. Clock frequency is 2.048 MHz. Digital interface voltages measured with respect to digital ground, GNDD. Analog voltages measured with respect to analog ground, GNDA.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
POWER	DISSIPATION					
I _{CC0}	V _{CC} Standby Current	$V_{CC} = 5.25V, V_{BB} = -5.25V,$ CLK0 (Pin 14) = -5.25V All other pins at GND (0V) TP3040, TP3040A TP3040-1, TP3040A-1		50	100 400	μΑ μΑ
I _{BB0}	V _{BB} Standby Current	$V_{CC} = 5.25V, V_{BB} = -5.25V,$ CLK0 (Pin 14) = -5.25V All other pins at GND (0V) TP3040, TP3040A TP3040-1, TP3040A-1		50	100 400	μΑ μΑ
Icc1	V _{CC} Operating Current	PWRI = V _{BB} , Power Amp Inactive		3.0	4.0	mA
I _{BB1}	V _{BB} Operating Current	$PWRI = V_{BB}$, Power Amp Inactive		3.0	4.0	mA
I _{CC2}	V _{CC} Operating Current	(Note 1)		4.6	6.4	mA
I _{BB2}	V _{BB} Operating Current	(Note 1)		4.6	6.4	mA
DIGITAL	INTERFACE					
IINC	Input Current, CLK	$V_{BB} \le V_{IN} \le V_{CC}$	- 10		10	μΑ
I _{INP}	Input Current, PDN	$V_{BB} \le V_{IN} \le V_{CC}$	- 100			μA
lino	Input Current, CLK0	$V_{BB} \le V_{IN} \le V_{CC} - 0.5V$	- 10		-0.1	μA
VIL	Input Low Voltage, CLK, PDN		0		0.8	v
VIH	Input High Voltage, CLK, PDN		2.2		V _{CC}	v
VILO	Input Low Voltage, CLK0	•	V _{BB}		V_{BB} + 0.5	v
VIIO	Input Intermediate Voltage, CLK0		-0.8		0.8	V
_V _{IH0}	Input High Voltage, CLK0		V _{CC} -0.5		V _{CC}	v
TRANSM						
IB _x I	Input Leakage Current, VF _x I	$-3.2V \le V_{IN} \le +3.2V$	- 100		100	nA
RI _x I	Input Resistance, VF _x I	$V_{BB} \le VF_xI \le V_{CC}$	10			MΩ
VOS _x I	Input Offset Voltage, VF _x I	$-2.5V \le V_{IN} \le +2.5V$	-20		20	mV
V _{CM}	Common-Mode Range, VF _x I		-2.5		2.5	V
CMRR	Common-Mode Rejection Ratio	$-2.5V \le V_{IN} \le 2.5V$	60			dB
PSRR	Power Supply Rejection of V_{CC} or V_{BB}		60			dB
ROL	Open Loop Output Resistance, GS _x			1		kΩ
RL	Minimum Load Resistance, GS _x		10			kΩ
CL	Maximum Load Capacitance, GS _x				100	pF
VO _x I	Output Voltage Swing, GS _x	R _L ≥ 10k	±2.5			v
Avol	Open Loop Voltage Gain, GS _x	R _L ≥ 10k	5,000			V/V
_F _c	Open Loop Unity Gain Bandwidth, GS _x			2		MHz

AC Electrical Characteristics

Unless otherwise specified, $T_A = 25^{\circ}$ C. All parameters are specified for a signal level of 0 dBm0 at 1 kHz. The 0 dBm0 level is assumed to be 1.54 Vrms measured at the output of the transmit or receive filter. Limits printed in **BOLD** characters are guaranteed for $V_{CC} = +5.0V \pm 5\%$, $V_{BB} = -5.0V \pm 5\%$; $T_A = 0^{\circ}$ C to 70^{\circ}C by correlation with 100% electrical testing at $T_A = 25^{\circ}$ C. All other limits are assured by correlation with other production tests and/or product design and characterization. Typicals specified at $V_{CC} = +5.0V$, $V_{BB} = -5.0V$, $T_A = 25^{\circ}$ C.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
TRANSM otherwise	TRANSMIT FILTER (Transmit filter input op amp set to the non-inverting unity gain mode, with VF _x I = 1.09 Vrms unless otherwise noted.)					less
RL _x	Minimum Load Resistance, VF _x O	-2.5V <v<sub>OUT<2.5V -3.2V<v<sub>OUT<3.2V</v<sub></v<sub>	3 10			kΩ kΩ
CLx	Load Capacitance, VF _x O				100	pF
RO _x	Output Resistance, VF _x O			1	3	Ω
PSRR1	V_{CC} Power Supply Rejection, VF _x O	f=1 kHz, VF _x I+=0 Vrms	30			dB
PSRR2	V_{BB} Power Supply Rejection, VF _x O	Same as Above	35			dB
GA _x	Absolute Gain	f=1 kHz (TP3040A, TP3040A-1) f=1 kHz (TP3040, TP3040-1)	2.9 2.875	3.0 3.0	3.1 3.125	dB dB
GR _x	Gain Relative to GA _x	Below 50 Hz 50 Hz 60 Hz 200 Hz (TP3040A, TP3040A-1) 200 Hz (TP3040, TP3040-1) 300 Hz to 3 kHz (TP3040A, TP3040A-1) 300 Hz to 3 kHz (TP3040, TP3040-1) 3.3 kHz 3.4 kHz 4.0 kHz 4.6 kHz and Above	- 1.5 - 1.5 - 0.125 - 0.15 - 0.35 - 0.70	41 35 15	-35 -30 0.05 0.125 0.15 0.03 -0.1 -14 -32	 dB
DAx	Absolute Delay at 1 kHz				230	μs
DDx	Differential Envelope Delay from 1 kHz to 2.6 kHz				60	μs
DP _x 1	Single Frequency Distortion Products				-48	dB
DP _x 2	Distortion at Maximum Signal Level	0.16 Vrms, 1 kHz Signal Applied to VF _x I + , Gain=20 dB, R _L =10k			45	dB
NC _x 1	Total C Message Noise at VF_xO	TP3040, TP3040A TP3040-1, TP3040A-1		2	5 6	dBrnc0 dBrnc0
NC _x 2	Total C Message Noise at VF _x O	Gain Setting Op Amp at 20 dB, Non-Inverting (Note 3) $T_A = 0^{\circ}C$ to 70°C TP3040, TP3040A TP3040-1, TP3040A-1		3	6 7	dBrnc0 dBrnc0
GA _x T	Temperature Coefficient of 1 kHz Gain			0.0004		dB/°C
GA _x S	Supply Voltage Coefficient of 1 kHz Gain	$V_{CC} = 5.0V \pm 5\%$ $V_{BB} = -5.0V \pm 5\%$		0.01		dB/V
CT _{RX}	Crosstalk, Receive to Transmit 20 $\log \frac{VF_xO}{VF_RO}$	Receive Filter Output = 2.2 Vrms VF _x I + = 0 Vrms, f = 0.2 kHz to 3.4 kHz Measure VF _x O			-70	dB
GR _x L	Gaintracking Relative to GA _X	Output Level = +3 dBm0 +2 dBm0 to -40 dBm0 -40 dBm0 to -55 dBm0	-0.1 -0.05 -0.1		0.1 0.05 0.1	dB dB dB

1

AC Electrical Characteristics (Continued)

Unless otherwise specified, $T_A = 25^{\circ}$ C. All parameters are specified for a signal level of 0 dBm0 at 1 kHz. The 0 dBm0 level is assumed to be 1.54 Vrms measured at the output of the transmit or receive filter. Limits printed in **BOLD** characters are guaranteed for $V_{CC} = +5.0V \pm 5\%$, $V_{BB} = -5.0V \pm 5\%$; $T_A = 0^{\circ}$ C to 70^{\circ}C by correlation with 100% electrical testing at $T_A = 25^{\circ}$ C. All other limits are assured by correlation with other production tests and/or product design and characterization. Typicals specified at $V_{CC} = +5.0V$, $V_{BB} = -5.0V$, $T_A = 25^{\circ}$ C.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
RECEIVE FILTER (Unless otherwise noted, the receive filter is preceded by a sin x/x filter with an input signal level of 1.54 Vrms.)						
IB _R	Input Leakage Current, VF _R I	−3.2V≤V _{IN} ≤3.2V	- 100		100	nA
RI _R	Input Resistance, VF _R I		10			MΩ
ROR	Output Resistance, VF _R O			1	3	Ω
CL _R	Load Capacitance, VF _R O				100	рF
RL _R	Load Resistance, VF _R O		10			kΩ
PSRR3	Power Supply Rejection of V_{CC} or V_{BB} , VF_RO	VF _R I Connected to GNDA f=1 kHz	35			dB
VOS _R O	Output DC Offset, VF _R O	VF _R I Connected to GNDA	-200		200	mV
GA _R	Absolute Gain	f=1 kHz (TP3040A, TP3040A-1) f=1 kHz (TP3040, TP3040-1)	-0.1 -0.125	0 0	0.1 0.125	dB dB
GR _R	Gain Relative to Gain at 1 kHz	Below 300 Hz 300 Hz to 3.0 kHz (TP3040A, TP3040A-1) 300 Hz to 3.0 kHz (TP3040, TP3040-1) 3.3 kHz 3.4 kHz 4.0 kHz 4.6 kHz and Above	-0.125 -0.15 -0.35 -0.7		0.125 0.125 0.15 0.03 -0.1 -14 -32	dB dB dB dB dB dB dB
DAR	Absolute Delay at 1 kHz				100	μs
DDR	Differential Envelope Delay 1 kHz to 2.6 kHz				100	μs
DP _R 1	Single Frequency Distortion Products	f=1 kHz			- 48	dB
DP _R 2	Distortion at Maximum Signal Level	2.2 Vrms Input to Sin x/x Filter, $f = 1 \text{ kHz}$, $R_L = 10 \text{ k}$			-45	dB
NCR	Total C-Message Noise at VF_RO	TP3040, TP3040A TP3040-1, TP3040A-1		3	5 6	dBrnc0 dBrnc0
GA _R T	Temperature Coefficient of 1 kHz Gain			0.0004		dB/⁰C
GA _R S	Supply Voltage Coefficient of 1 kHz Gain			0.01		dB/V
CT _{XR}	$\frac{\text{Crosstalk, Transmit to Receive}}{20 \log \frac{\text{VF}_{\text{R}}\text{O}}{\text{VF}_{\text{x}}\text{O}}}$	Transmit Filter Output=2.2 Vrms VF _R I=0 Vrms, f=0.3 kHz to 3.4 kHz Measure VF _R O			-70	dB
GR _R L	Gaintracking Relative to GA _R	Output Level = + 3 dBm0 + 2 dBm0 to -40 dBm0 -40 dBm0 to -55 dBm0 (Note 5)	-0.1 -0.05 -0.1		0.1 0.05 0.1	dB dB dB

AC Electrical Characteristics (Continued)

Unless otherwise specified, $T_A = 25^{\circ}$ C. All parameters are specified for a signal level of 0 dBm0 at 1 kHz. The 0 dBm0 level is assumed to be 1.54 Vrms measured at the output of the transmit or receive filter. Limits printed in **BOLD** characters are guaranteed for $V_{CC} = +5.0V \pm 5\%$, $V_{BB} = -5.0V \pm 5\%$; $T_A = 0^{\circ}$ C to 70°C by correlation with 100% electrical testing at $T_A = 25^{\circ}$ C. All other limits are assured by correlation with other production tests and/or product design and characterization. Typicals specified at $V_{CC} = +5.0V$, $V_{BB} = -5.0V$, $T_A = 25^{\circ}$ C.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
RECEIVE	OUTPUT POWER AMPLIFIER					
IBP	Input Leakage Current, PWRI	$-3.2V \le V_{IN} \le 3.2V$	0.1		3	μA
RIP	Input Resistance, PWRI		10			MΩ
ROP1	Output Resistance, PWRO+, PWRO-	Amplifiers Active		1		Ω
CLP	Load Capacitance, PWRO+, PWRO-				500	рF
GA _p + GA _p -	Gain, PWRI to PWRO + Gain, PWRI to PWRO -	$R_L = 600 \Omega$ Connected Between PWRO+ and PWRO-, Input Level=0 dBm0 (Note 4)		1 -1		V/V V/V
GR _p L	Gaintracking Relative to 0 dBm0 Output Level, Including Receive Filter	V=2.05 Vrms, $R_L = 600\Omega$ (Notes 4, 5) V=1.75 Vrms, $R_L = 300\Omega$	0.1 0.1		0.1 0.1	dB dB
S/Dp	Signal/Distortion	V = 2.05 Vrms, $R_L = 600\Omega$ (Notes 4, 5) V = 1.75 Vrms, $R_L = 300\Omega$			45 45	dB dB
VOSP	Output DC Offset, PWRO+, PWRO-	PWRI Connected to GNDA	-50		50	mV
PSRR5	Power Supply Rejection of V_{CC} or V_{BB}	PWRI Connected to GNDA	45			dB

Note 1: Maximum power consumption will depend on the load impedance connected to the power amplifier. This specification listed assumes 0 dBm is delivered to 600Ω connected from PWRO+ to PWRO-.

Note 2: Voltage input to receive filter at 0V, VFRO connected to PWRI, 600Ω from PWRO+ to PWRO-. Output measured from PWRO+ to PWRO-.

Note 3: The 0 dBm0 level for the filter is assumed to be 1.54 Vrms measured at the output of the XMT or RCV filter.

Note 4: The 0 dBm0 level for the power amplifiers is load dependent. For $R_L = 600\Omega$ to GNDA, the 0 dBm0 level is 1.43 Vrms measured at the amplifier output. For $R_L = 300\Omega$ the 0 dBm0 level is 1.22 Vrms.

Note 5: VF_RO connected to PWRI, input signal applied to VF_RI.

Typical Application

TL/H/6660-2

Note 1: Transmit voltage gain $=\frac{R1 + R2}{R2} \times \sqrt{2}$ (The filter itself introduces a 3 dB gain), (R1 + R2 \ge 10k)

Note 2: Receive gain = $\frac{R4}{R3 + R4}$

(R3 + R4≥10k)

Note: In the configuration shown, the receive filter power amplifiers will drive a 600 Ω T to R termination to a maximum signal level of 8.5 dBm. An alternative arrangement, using a transformer winding ratio equivalent to 1.414:1 and 300 Ω resistor, R_S, will provide a maximum signal level of 10.1 dBm across a 600 Ω termination impedance.

FIGURE 2

1

Connection Diagram

Order Number TP3040J or TP3040AJ or TP3040J-1 or TP3040AJ-1 See NS Package J16A

See NS Package V20A

Description of Pin Functions

Symbol ction

• ,		T allocion				
VF _x I+	The	non-inverting	input	to	the	tr

- ansmit filter stage.
- VF_xI-The inverting input to the transmit filter stage.
- The output used for gain adjustments of the GSx transmit filter.
- VF_BO The low power receive filter output. This pin can directly drive the receive port of an electronic hybrid.
- PWRI The input to the receive filter differential power amplifier.
- PWRO+ The non-inverting output of the receive filter power amplifier. This output can directly interface conventional transformer hybrids.
- PWRO-The inverting output of the receive filter power amplifier. This output can be used with PWRO+ to differentially drive a transformer hybrid.

VBB The negative power supply pin. Recommended input is -5V.

Vcc The positive power supply pin. The recommended input is 5V.

VF_BI The input pin for the receive filter stage.

Symbol	Fu	Function				
GNDD	Digital ground input pir erenced to this pin.	Digital ground input pin. All digital signals are referenced to this pin.				
CLK	Master input clock. In lected as 2.048 MHz,	put frequency can be se- 1.544 MHz or 1.536 MHz.				
PDN	The input pin used to power down the TP3040/ TP3040A during idle periods. Logic 1 (V_{CC}) input voltage causes a power down condition. An inter- nal pull-up is provided.					
CLK0	This input pin selects internal counters in accord- ance with the CLK input clock frequency:					
	CLK	Connect CLK0 to:				
	2048 kHz	V _{CC}				
	1544 kHz	GNDD				
	1536 kHz	V _{BB}				
	An internal pull-up is p	rovided.				
GNDA	Analog ground input p referenced to this pin to GNDD.	oin. All analog signals are Not internally connected				

VF_xO The output of the transmit filter stage.

Functional Description

The TP3040/TP3040A monolithic filter contains four main sections; Transmit Filter, Receive Filter, Receive Filter Power Amplifier, and Frequency Divider/Select Logic (*Figure 1*). A brief description of the circuit operation for each section is provided below.

TRANSMIT FILTER

The input stage of the transmit filter is a CMOS operational amplifier which provides an input resistance of greater than 10 MΩ, a voltage gain of greater than 5,000, low power consumption (less than 3 mW), high power supply rejection, and is capable of driving a 10 kΩ load in parallel with up to 25 pF. The inputs and output of the amplifier are accessible for added flexibility. Non-inverting mode, inverting mode, or differential amplifier mode operation can be implemented with external resistors. It can also be connected to provide a gain of up to 20 dB without degrading the overall filter performance.

The input stage is followed by a prefilter which is a two-pole RC active low pass filter designed to attenuate high frequency noise before the input signal enters the switched-capacitor high pass and low pass filters.

A high pass filter is provided to reject 200 Hz or lower noise which may exist in the signal path. The low pass portion of the switched-capacitor filter provides stopband attenuation which exceeds the D3 and D4 specifications as well as the CCITT G712 recommendations.

The output stage of the transmit filter, the postfilter, is also a two-pole RC active low pass filter which attenuates clock frequency noise by at least 40 dB. The output of the transmit filter is capable of driving a $\pm 3.2V$ peak to peak signal into a 10 k Ω load in parallel with up to 25 pF.

RECEIVE FILTER

The input stage of the receive filter is a prefilter which is similar to the transmit prefilter. The prefilter attenuates high frequency noise that may be present on the receive input signal. A switched capacitor low pass filter follows the prefilter to provide the necessary passband flatness, stopband rejection and sin x/x gain correction. A postfilter which is similar to the transmit postfilter follows the low pass stage. It attenuates clock frequency noise and provides a low output impedance capable of directly driving an electronic subscriber-line-interface circuit.

RECEIVE FILTER POWER AMPLIFIERS

Two power amplifiers are also provided to interface to transformer coupled line circuits. These two amplifiers are driven by the output of the receive postfilter through gain setting resistors, R3, R4 (*Figure 2*). The power amplifiers can be deactivated, when not required, by connecting the power amplifier input (pin 5) to the negative power supply V_{BB}. This reduces the total filter power consumption by approximately 10 mW-20 mW depending on output signal amplitude.

POWER DOWN CONTROL

A power down mode is also provided. A logic 1 power down command applied on the PDN pin (pin 13) will reduce the total filter power consumption to less than 1 mW. Connect PDN to GNDD for normal operation.

FREQUENCY DIVIDER AND SELECT LOGIC CIRCUIT

This circuit divides the external clock frequency down to the switching frequency of the low pass and high pass switched capacitor filters. The divider also contains a TTL-CMOS interface circuit which converts the external TTL clock level to the CMOS logic level required for the divider logic. This interface circuit can also be directly driven by CMOS logic. A frequency select circuit is provided to allow the filter to operate with 2.048 MHz, 1.544 MHz or 1.536 MHz clock frequencies. By connecting the frequency select pin CLK0 (pin 14) to V_{CC} , a 2.048 MHz clock input frequency is selected. Digital ground selects 1.544 MHz and V_{BB} selects 1.536 MHz.

Applications Information

GAIN ADJUST

Figure 2 shows the signal path interconnections between the TP3040/TP3040A and the TP3020 signal-channel CO-DEC. The transmit RC coupling components have been chosen both for minimum passband droop and to present the correct impedance to the CODEC during sampling.

Optimum noise and distortion performance will be obtained from the TP3040/TP3040A filter when operated with system peak overload voltages of $\pm 2.5V$ to $\pm 3.2V$ at VFxO and VF_RO. When interfacing to a PCM CODEC with a peak overload voltage outside this range, further gain or attenuation may be required.

For example, the TP3040/TP3040A filter can be used with the TP3020/21 series CODEC which has a 5.5V peak overload voltage. A gain stage following the transmit filter output and an attenuation stage following the CODEC output are required.

BOARD LAYOUT

Care must be taken in PCB layout to minimize power supply and ground noise. Analog ground (GNDA) of each filter should be connected to digital ground (GNDD) at a single point, which should be bypassed to both power supplies. Further power supply decoupling adjacent to each filter and CODEC is recommended. Ground loops should be avoided, both between GNDA and GNDD and between the GNDA traces of adjacent filters and CODECs.

Definitions and Timing Conventions

DEFINITIONS	
VIH	V_{IH} is the d.c. input level above which an input level is guaranteed to appear as a logical one. This parameter is to be measured by performing a functional test at reduced clock speeds and nominal timing, (i.e. not minimum set-up and hold times or output strobes), with the high level of all driving signals set to V_{IH} and maximum supply voltages applied to the device.
ViL	V_{IL} is the d.c. input level below which an input level is guaranteed to appear as a logical zero to the device. This parameter is measured in the same manner as V_{IH} but with all driving signal low levels set to V_{IL} and minimum supply voltages applied to the device.
V _{OH}	V_{OH} is the minimum d.c. output level to which an output placed in a logical one state will converge when loaded at the maximum specified load current.
V _{OL}	V_{OL} is the maximum d.c. output level to which and output placed in a logical zero state will converge when loaded at the maximum specified load current.
Threshold Region	The threshold region is the range of input voltages between V_{IL} and $V_{IH}. \label{eq:VIL}$
Valid Signal	A signal is Valid if it is in one of the valid logic states, (i.e. above V_{IH} or below V_{IL}). In timing specifications, a signal is deemed valid at the instant it enters a valid state.
Invalid Signal	A signal is Invalid if it is not in a valid logic state, i.e. when it is in the threshold region between V_{IL} and V_{IH} . In timing specifications, a signal is deemed Invalid at the instant it enters the threshold region.

TIMING CONVENTIONS

For the purposes of this timing specification the following conventions apply:

Input Signals	All input signals may be characterized as: $V_L=$ 0.4V, $V_H=$ 2.4V, $t_R<$ 10 ns, $t_F<$ 10 ns.
Period	The period of clock signal is designated as t_{Pxx} where $_{xx}$ represents the mnemonic of the clock signal being specified.
Rise Time	Rise times are designated as t_{Ryy} , where yy represents a mnemonic of the signal whose rise time is being specified. t_{Ryy} is measured from V _{IL} to V _{IH} .
Fall Time	Fall times are designated as t_{Fyy} , where yy represents a mnemonic of the signal whose fall time is being specified. t_{Fyy} is measured from V _{IH} to V _{IL} .
Pulse Width High	The high pulse width is designated as t _{WzzH} , where zz represents the mnemonic of the input or output signal whose pulse width is being specified. High pulse widths are measured from V _{IH} to V _{IH} .
Pulse Width Low	The low pulse width is designated as t_{WzzL} , where zz represents the mnemonic of the input or output signal whose pulse width is being specified. Low pulse widths are measured from V _{IL} to V _{IL} .
Set-up Time	Set-up times are designated as t_{Swwxx} , where ww represents the mnemonic of the input signal whose set-up time is being specified relative to a clock or strobe input represented by mnemonic xx. Set-up times are measured from the ww Valid to xx Invalid.
Hold Time	Hold times are designated as t_{Hxxww} , where ww represents the mnemonic of the input signal whose hold time is being specified relative to a clock or strobe input represented by the mnemonic xx. Hold times are measured from xx Valid to ww Invalid.
Delay Time	Delay times are designated as t _{Dxxyy[H/L]} , where xx represents the mnemonic of the input reference signal and yy represents the mnemonic of the output signal whose timing is being specified relative to xx. The mnemonic may optionally be terminated by an H or L to specify the high going or low going transition of the output signal. Maximum delay times are measured from xx Valid to yy Valid. Minimum delay times are measured from xx Valid to yy Invalid. This parameter is tested under the load conditions specified in the Conditions col- umn of the Timing Specifications section of this datasheet.

1

Section 2 ISDN Components

Section 2 Contents

Introduction to National Semiconductor Basic Access I.C. Set	2-3
*TP3401 DASL Digital Adaptor for Subscriber Loops	2-8
*TP3410 "U" Interface Device	2-22
*TP3420 "S" Interface Device	2-23
*HPC16040 High Performance Controller	2-40
*HPC16400/HPC36400/HPC46400 High Performance Controller with HDLC	2-65
ISDN Definitions	2-85

*Devices not covered in last publication

Introduction To National Semiconductor Basic Access I. C. Set

In developing the architecture of this ISDN chip set, National's major objective has been to create a flexible set of building blocks which provide elegant and cost-effective solutions for a wide range of applications. With just a few highly integrated devices, a broad spectrum of ISDN equipment can be designed, ranging from Central Office and PBX line cards to X.25 and ISDN Terminals and telephones, PC and Terminal Adapters, packet-mode statistical multiplexers, NT-1's and other ISDN equipment.

One of the keys to this flexibility is the concept that device functions in the chip set should be specifically aligned with the first 3 layers of the ISO 7 layer Protocol Reference Model. Thus, National's chip set has a distinct partitioning of functions into several transceivers which provide the bit-level transport for Layer 1, (the Physical Layer), while the functions of Layer 2, (the Data Link Layer), and Layer 3, (the Network Layer), are supported entirely by a single microprocessor. All devices in the chip set, together with other standard components such as COMBOs, can be interconnected via a common serial interface without the need for any "glue" components. The result is a very elegant architecture offering many advantages including the following:

- A high degree of modularity with minimal component count
- The same transceiver at both ends of a loop
- · No interrupts for D-Channel flow control
- · Powerful Packet buffer management

Other chip set architectures, which divide a layer into some functions in one device and the rest in other devices, are unable to offer all these advantages.

ISO Layer	National	Others	
4–7	NS32322		
3	HPC16400	Chip C	Chin B
2	111 010400	Chip B	
1	TP3401 DASL or TP3410 EC or TP3420 SID	Chip A	Chip A

ISDN Chip Set Partitioning

NSC Solutions for Layer 1

National's solution for Layer 1 consists of 3 CMOS transceivers, which cover a wide variety of twisted-pair applications for ISDN Basic Access. Each transceiver is capable of transmitting and receiving 2 'B' channels plus 1 'D' channel, and has mode selections to enable it to operate at either end of the loop.

Transceiver Number 1

The TP3400 Digital Adapter for Subscriber Loops (DASL) is a low-cost burst-mode transceiver for 2 wire PBX and private network loops up to 6 kft in range. Scrambled Alternate Mark Inversion coding is used, together with adaptive equalization and timing-recovery, to ensure low bit error rates on a wide variety of cable types. All activation and loop timing control circuitry is also included.

Transceiver Number 2

The TP3410 Echo-canceller Family is a set of 2-wire transceivers designed to meet the rigorous requirements of the 'U' interface. Derived from a common basic architecture, these devices will be compatible with the line-code and framing structure specifications of various PTT administrations and with the U.S. standard.

NSC ISDN Transceiver Chip Set

TL/X/0008-1

Transceiver Number 3

The TP3420 'S' Interface Device (SID), is a 4-wire transceiver which includes all the Layer 1 functions specified in CCITT Recommendation I.430. In addition, the TP3420 includes noise filtering and adaptive equalization, as well as a high resolution digital phase-locked loop, to provide transmission performance far in excess of that specified in I.430. All Activation and 'D' channel access sequences are handled automatically without the need to invoke any action from a microprocessor.

Digital Chip to Chip Interfaces

To retain the flexibility of interfacing components from this chip set with a variety of other products, two digital interfaces are provided on each device. One is for the synchronous transfer of 'B' and 'D' channel information in any of several popular multiplexed serial formats. This means that National's chip to chip interface is all encompassing of proprietary frame structures such as the IOM, IDL, ST-BUS and more.

A second interface, for device mode control, e.g. power up/ down, setting loopbacks etc., uses the popular MICRO-WIRE/PLUSTM_MICROWIRE/PLUS is a synchronous serial data transfer between a microcontroller and one or more peripheral devices. National's HPC and COPSTM microcontroller families, together with a broad range of peripheral devices, support this interface, which is also easy to emulate with any microprocessor.

NSC Solutions for Layers 2 and 3

National has developed an extremely powerful solution for implementing various protocols for both Layer 2 (Data Link Layer) and Layer 3 (Network Layer), including X.25 LAPB and LAPD (Q.921 and Q.931), together with the capability of several packet-mode Terminal Adaption schemes*. A single device incorporates all the processing for these functions: the HPC16400. One of National's growing family of 16-bit single chip CMOS microcontrollers, the HPC16400 is based on a high-speed (17 MHz) 16-bit CPU "core". To this core has been added 2 full HDLC formatters supported by DMA to external memory, and a UART.

This set of features makes the HPC16400 an ideal processor for running all the functions of an ISDN Terminal Adapter, TE or telephone, or the communications port of a highend terminal. In a typical application, one of the HDLC channels may be dedicated to running the LAPD protocol in the 'D' channel, while the other provides packet-mode access to one of the 'B' channels. The UART would serve as an RS232 interface running at any of the standard synchronous or asynchronous rates up to 128 kbaud. A serial interface decoder allows either or both HDLC controllers to be directly interfaced to any of the 3 Layer 1 transceivers or to a variety of backplanes, line-card controllers and other devices using time-division multiplexed serial interfaces.

Because of the large ROM and RAM requirements for Layer 3 and the Control Field procedures of Layer 2 in LAPB and LAPD protocols, the HPC16400 has 256 bytes of RAM and no internal ROM for storage of user variables. Packet storage RAM and all user ROM is off-chip, this is by far the most

*For example, as per DMI Modes 2 and 3.

cost-effective and flexible combination. A multiplexed bus to external memory provides direct addressing for up to 64 kbytes of memory, and on-chip I/O allows for expanded addressing for up to 544 kbytes of memory.

The HDLC controllers on the HPC16400 allow continuous HDLC data rates up to 4.1 Mb/s to be used. In addition to handling all Layer 2 framing, the HDLC circuitry includes automatic multiple address recognition to support, for example, multiple TEI's in LAPD. Furthermore, the DMA controller provides several register sets for packet RAM management with minimal CPU intervention, including "chaining" of successive packets. This integrated design achieves a high throughput of packet data without the need for costly FIFO's and external interrupts, thereby minimizing the impact of packet handling on CPU time.

In many applications a number of other peripheral functions must also be provided, such as sensing switches or scanning a small keyboard, interfacing to a display controller etc. A number of extra I/O ports and a MICROWIRE/PLUS serial data expansion interface are available on the HPC16400 to service these functions. In addition, 4 user configurable 16 bit timer-counters simplify the many time-outs required to manage such a system, including the default timers specified in the various protocol specifications.

Terminal adaption consistent with the CCITT V.110 method, which is based on a synchronous 80 bit frame, is readily implemented with another member of the HPC family, the HPC16040. Around the standard core CPU, the 16040 has on board I/O and 4 additional PWM timers, a UART, 4k of ROM and 256 bytes of RAM.

HPC16400 Simplified Block Diagram

TL/X/0008-3

NSC Solutions: Systems Level

Building an ISDN TE or TA

Shown below is a typical application of the chip set in a Basic Access TE, which offers one voice channel and an RS232 interface to support an external terminal. The TP3420 'S' Interface Device ensures that the system is compatible with any 'S' or 'T' standard jack socket and provides the multiplexing for the other devices operating in the 'B' and 'D' channels. All timing for the TE is derived by the TP3420 from the received line signal. In a typical application, LAPD signalling in the 'D' channel is provided via

HDLC #1 on the HPC16400. HDLC #2 is working in conjunction with the UART to provide an X.25 or LAPD packetmode in a 'B' channel at 64 kb/s. Terminal Adaption of both the data and the terminal handshaking signals is performed by the HPC16400 via the UART and HDLC controller #2, which can use either of the 'B' channels. DMI modes 2 and 3 (for a single channel) can be supported using this method, with the necessary data buffers set up in internal RAM. The other 'B' channel is occupied by the TP3054/7 PCM COM-BO providing the digitized voice channel.

PBX 2 Wire Terminals

The following example shows how simple it is to convert an 'S' Interface terminal, which requires 2 twisted pairs, to a terminal using only a single pair by replacing the

TP3420 SID with a TP3401 DASL. The clean partitioning of device functions makes this possible with no other changes to the design.

TL/X/0008-5

NSC Solutions: Systems Level

Basic Access Line Cards

For operation on a line card in a C.O., PABX or NT-2, each of the 3 transceiver devices can be set to operate as the timing master for the loop, being synchronized to the system clock and controlling all loop frame timing. If programmable time-slot assignment is required, the TP3155 TSAC provides 8 individually programmable frame sync pulse outputs locked to a common frame marker. 'B' channels can be interfaced to standard backplane interfaces, while 'D' channels can be either multiplexed on and off the card for processing or can undergo Layer 2 processing on the card itself.

For the latter method, one HPC16400 handles Layer 2 framing for 2 basic access lines. In this manner, packets are first identified as data or signalling type by analysis of the SAPI field, with data packets being routed separately to a packet switch access node. If required, signalling packets can undergo protocol conversion in the HPC to an existing internal switch control protocol.

Building an NT-1

An NT-1 Network Termination is defined as a Layer 1 device only, which converts the 2-wire long-haul 'U' interface to the limited distance 4-wire 'S' interface. It has no capability for intercepting higher layers of the 'D' channel protocol. As such, it is built simply by connecting a TP3420 SID, configured in NT (or Master) mode, to a TP3410 Echo-canceller operating in Slave mode. Sharing a common 15.36 MHz crystal, these devices pass 'B' and 'D' channel information across the standard 4-wire interface. Layer 1 maintenance protocols across both the 'U' and the 'S/T' interfaces, which are as of yet not definitively specified by most adminstrations, may be handled by a low cost 4-Bit COPSTM Microcontroller via its Microwire Interface.

2
National Semiconductor Corporation

TP3401 DASL Digital Adapter for Subscriber Loops

General Description

The TP3401 is a complete monolithic transceiver for data transmission on twisted pair subscriber loops. It is built on National's advanced double poly microCMOS process, and requires only a single +5 Volt supply. Alternate Mark Inversion (AMI) line coding, in which binary '1's are alternately transmitted as a positive pulse then a negative pulse, is used to ensure low error rates in the presence of noise with lower emi radiation than other codes such as Bi-phase (Manchester).

Full-duplex transmission at 144 kb/s is achieved on a single twisted wire pair using a burst-mode technique (Time Compression Multiplexed). Thus the device operates as an ISDN 'U' Interface for short loop applications, typically in a PBX environment, providing transmission for 2 B channels and 1 D channel. On #26 cable, the range is at least 1.8 km (6k ft).

System timing is based on a Master/Slave configuration, with the line card end being the Master which controls loop timing and synchronisation. All timing sequences necessary for loop activation and de-activation are generated on-chip. A 2.048 MHz clock, which may be synchronized to the system clock, controls all transmission-related timing functions.

The system is designed to operate on any of the standard types of cable pairs commonly found in premise wiring in-

stallations, including mixed gauges from #26AWG to #19AWG. Within certain constraints the system can operate with good margins even when Bridge Taps are present. Three serial digital interfaces are provided on the TP3401; one for the transfer of B1 and B2 channel information, one for the transfer of D channel information and a third serial MICROWIRE™ compatible interface for control and status information.

Features

Complete ISDN PBX 2-Wire Data Transceiver including:

- 2 B plus D channel interface for PBX U Interface
- 144 kb/s full-duplex on 1 twisted pair using Burst Mode
- Loop range up to 6 kft (#26AWG)
- Alternate Mark Inversion coding with transmit filter and scrambler for low emi radiation
- Adaptive line equalizer
- On-chip timing recovery, no external components
- System interface with D channel Separate from B
- 2.048 MHz clock
- Driver for line transformer
- 2 loop-back test modes
- +5V only, 80 mW Active Power
- 5 mW idle mode

Connection Diagram

TL/H/9264-2

Order Number TP3401 See NS Package Number J20A

Pin Descriptions

Name	Description
GND	Negative power supply pin, normally 0V. All analog and digital signals are referred to this pin.
V _{CC}	Positive power supply input, which must be $+5V\pm5\%$.
MCLK/XTAL	The 2.048 MHz Master Clock input, which re- quires either a crystal* to be tied between this pin and GND, or a logic level clock input from a stable source. When using a crystal, no other external loading components are necessary.
MBS/FS _C	In Master Mode, this pin is the Master Burst Sync input, which may be clocked at 4 kHz to synchronize Transmit bursts from a number of devices at the Master end only. The 4 kHz should be nominally a square wave signal. In Slave mode, this pin is a short Frame Sync output, suitable for driving another DASL in Master Mode to provide a repeater (i.e. range-extender) capability.
BCLK	Bit Clock logic signal which determines the data shift rate for B channel data on the digital interface side of the device. In Master mode this pin is an input which may be any multiple of 8 kHz from 256 kHz to 4.1 MHz, but must be synchronous with MCLK. In Slave mode this pin is an output at 2.048 MHz.
FSa	In Master mode only, this pin is the Transmit Frame Sync pulse input, requiring a positive edge to indicate the start of the active chan- nel time for transmit B channel data into B_x . In Slave mode only, this pin is a digital output pulse which indicates the 8-bit periods of the B1 channel data transfer at both B_x and B_r .

FS_b In Master mode only, this pin is the Receive Frame Sync pulse input, requiring a positive edge to indicate the start of the active channel time of the device for receive B channel data out from B_r. In Slave mode only, this pin is a digital output pulse which indicates the 8-bit periods of the B2 channel data transfer at both B_x and B_r.

- B_x Digital input for B1 and B2 channel data to be transmitted to the line; must be synchronous with BCLK.
- Br Digital output for B1 and B2 channel data received from the line; must be synchronous with BCLK.
- TS_r/LSD In master mode only, this pin is an opendrain output which is normally high impedance but pulls low during both B channel active receive time slots. In Slave mode only, this pin is an output which is normally high impedance and pulls low when a valid line signal is received.
- D_x Digital input for D channel data to be transmitted to the line; must be synchronous with DCLK.
- Dr Digital output for D channel data received from the line; must be synchronous with DCLK.
- DCLK/DEN In Master mode this pin is an input for the 16 kHz serial shift clock for D channel data on D_x and D_r , which should be synchronous with BCLK. It may also be re-configured via the Control Register to act as an enable input for clocking the D channel interface synchronized to BCLK. In Slave mode this is a 16 kHz clock output for D channel data.

*Crystal specifications: 2.048 MHz parallel resonant, $R_S \le 100\Omega$.

TP3401

2-9

Pin Descriptions (Continued)

Name

CI

TP3401

Description

- MICROWIRE control channel serial data input.
- CO MICROWIRE control channel serial data output.
- CCLK Clock input for the MICROWIRE control channel.
- CS Chip Select input which enables the MICRO-WIRE control channel data to be shifted in and out when pulled low. When high, this pin inhibits the MICROWIRE interface.
- INT Interrupt output, a latched output signal which is normally high-impedance and goes low to indicate a change of status of the loop transmission system. This latch is cleared when the Status Register is read by the microprocessor.
- Li Receive AMI signal input from the line transformer. This is a high impedance input which requires an external line termination impedance.

Functional Description

POWER-UP/POWER-DOWN CONTROL

Following the initial application of power, the TP3401 DASL enters the power-down (de-activated) state, in which all the internal circuits are inactive and in a low power state except for the line-signal detect circuit; the line output L_0 is in a high impedance state and all digital outputs are inactive. All bits in the Control Register power-up initially set to '0', so that the device always initializes as the Master end. Thus, at the Slave end, a control word must be written through the MI-CROWIRE port to select Slave mode. While powered-down, the Line-Signal Detect circuits in both Master and Slave devices continually monitor the line, to enable loop transmission to be initiated from either end.

To power-up the device and initiate activation, bit C6 in the Control Register must be set high. Setting C6 low de-activates the loop and power-down the device, see Table I.

MBS/FS _c Pin I/P at Master	C6 State	Action
4 kHz or 1	0	Powered-down, Line-Signal Detect active
1	1	Powered-up, sending frames synchronized to FS _a at Master, or received burst at Slave
4 kHz	1	Powered-up, sending frames synchronized to MBS at Master, or received burst at Slave

	ΕL	Power-II	n/Powe	ar-Down	Control
IADL	.	LOM61-0	preume	SI-DOWII	CONTROL

LINE TRANSMIT SECTION

Alternate Mark Inversion (AMI) line coding is used on the TP3401 because of its spectral efficiency and null dc energy content. All transmitted bits, excluding the start bit in burst mode, are scrambled by a 9-bit scrambler to provide good spectral spreading with a strong timing content. The scrambler feedback polynomial is:

$$x^9 + x^5 + 1$$
.

Pulse shaping is obtained by means of a transmit filter, in order to limit ff energy and crosstalk while minimizing intersymbol interference (isi). *Figure 3* shows the pulse shape at the L₀ output, while a template for the typical power spectrum transmitted to the line with random data is shown in *Figure 4*.

The line-driver output, L_o , is designed to drive a transformer through a capacitor and termination resistor. A 1:1 transformer, terminated in 100 Ω , results in a signal amplitude of typically 1.3V pk-pk on the line. Over-voltage protection must be included in the interface circuit.

LINE RECEIVE SECTION

The front-end of the receive section consists of a continuous anti-alias filter followed by a switched-capacitor lowpass filter designed to limit the noise bandwidth with minimum isi. To correct pulse attenuation and distortion caused by the transmission line an AGC circuit and first-order equalizer adapt to the received pulse shape, thus restoring a "flat" channel response with maximum received eye opening over a wide spread of cable attenuation characteristics.

From the equalized output a DPLL (Digital Phase-Locked Loop) recovers a low-jitter clock for optimum sampling of the received symbols. The MCLK input provides the reference clock for the DPLL at 2.048 MHz. At the Master end of the loop this reference is the network clock, which controls all transmit functions the DPLL clock being used only for received data sampling. At the Slave end, however, a 2.048 MHz crystal is required to generate a stable local oscillator which is used as a reference by the DPLL to run both the receive and transmit sides of the DASL device.

Following detection of the recovered symbols, the received data is de-scrambled by the same x^9+x^5+1 polynomial and presented to the digital system interface circuit.

When the device is de-activated, a Line-Signal Detect circuit remains powered-up to detect the presence of incoming bursts if the far-end starts to activate the loop. From a "cold" start, acquisition of bit timing and equalizer convergence with random scrambled data takes approximately 25 ms at each end of the loop. Full loop burst synchronization is achieved approximately 50 ms after the "activate" command at the originating end.

BURST MODE OPERATION

For full-duplex operation over a single twisted-pair, burst mode timing is used, with the line-card (exchange) end of the link acting as the timing Master.

2

Each burst from the Master consists of the B1, B2 and D channel data from 2 consecutive frames combined in the format shown in Figure 5. During transmit bursts the Master's receiver input is inhibited to avoid disturbing the adaptive circuits. The Slave's receiver is enabled at this time and it synchronizes to the start bit of the burst, which is always an unscrambled '1' (of the opposite polarity to the last '1' sent in the previous burst). When the Slave detects that 36 bits following the start bit have been received, it disables the receiver input, waits 5 line symbol periods to match the other end settling guard time, and then begins to transmit its burst back towards the Master, which by this time has enabled its receiver input. The burst repetition rate is thus 4 kHz, which can either free-run or be locked to a synchronizing signal at the Master end by means of the MBS input, (See Figure 10). In the latter case, with all Master-end transmitters in a system synchronized together, near-end crosstalk between pairs in the same cable binder may be eliminated, with a consequent increase in signal-to-noise ratio (SNR).

ACTIVATION/DE-ACTIVATION

Activation (i.e. power-up and loop synchronization) may be initiated from either end of the loop. If the Master is activating the loop, it sends normal bursts of scrambled '1's, which are detected by the Slave's line-signal detect circuit, causing it to power-up. The Slave then replies with bursts of scrambled '1's synchronized to received bursts, and the flywheel circuit at each end searches for 4 consecutive correctly formatted receive bursts to acquire full loop synchronization. Each receiver indicates when it is correctly in sync with received bursts by setting the C1 bit in the Status Register high and pulling INT low.

To activate the loop from the Slave end, bit C6 in the Control Register must be set high, which will power-up the device and begin transmission of alternate bursts i.e., the burst repetition rate is 2 kHz, not 4 kHz. At this point the Slave is running from its local oscillator and is not receiving any sync information from the Master. When the Master's line-signal detect circuit recognizes this "wake-up" signal, the Master powers up and begins to transmit bursts, synchronized, as normal, to the MBS or FS_a input with a 4 kHz repetition rate. This enables the Slave's receiver to correctly identify burst timing from the Master and to re-synchronize its own burst transmissions to those it receives. The flywheel circuits then acquire full loop sync as described earlier.

Loop synchronization is considered to be lost if the flywheel finds 4 consecutive receive burst "windows" (i.e. where a receive burst should have arrived based on timing from previous bursts) do not contain valid bursts. At this point bit C1 in the Status Register is set low, the INT output is set low and the receiver searches to re-acquire loop sync.

DIGITAL SYSTEM INTERFACE

The digital system interface on the TP3401 separates B and D channel information onto different pins to provide maximum flexibility. On the B channel interface, phase skew be-

tween transmit and receive directions may be accommodated at the Master end since separate frame sync inputs, Fs_a and Fs_b , are provided. Each of these synchronizes a counter which gates the transfer of B1 and B2 channels in consecutive time-slots across the digital interface; since the counters are edge-synchronized the duration of the F_s input signals may vary from a single-bit pulse to a square-wave. The serial shift rate is determined by the BCLK input, and may be any frequency from 128 kHz to 2.048 MHz, as shown in *Figure 6.*

At the Slave end, both Fs_a and Fs_b are outputs. Fs_a goes high for 8 cycles of BCLK coincident with the 8 bits of the B1 channel in both Transmit and Receive directions. Fs_b goes high for the next 8 cycles of BCLK, which are coincident with the 8 bits of the B2 channel in both Transmit and Receive directions. BCLK is also an output at 2.048 MHz, the serial data shift rate, as shown in *Figure 7*. Data may be exchanged between the B1 and B2 channels as it passes through the device, by selling Control bit C0 = 1. An additional Frame Sync output, FS_c , is provided to enable a repeater to be built by connecting a DAS Lin Slave Mode to a DASL in Master Mode. The FS_c output from the Slave directly drives the FS_a and FS_b inputs on the Master.

D channel information, being packet-mode, requires no synchronizing input. This interface consists of the transmit data input, D_x , receive data output, D_r , and 16 kHz serial shift clock DCLK, which is an input at the Master end and an output at the Slave end. Data shifts in to D_x on falling edges of DCLK and out from D_r on rising edges, as shown in *Figure 11*. DCLK should be Synchronous with BCLK.

An alternative function of the DCLK/DEN pin allows D_x and D_r to be clocked at the same rate as BCLK at the Master end only. By setting bit C1 in the Control Register to a 1, DCLK/DEN becomes an input for an enabling pulse to gate 2 cycles of BCLK for shifting the 2 D bits per frame. Thus, at the Master end, the D channel bits can be interfaced to a TDM bus and assigned to a time-slot (the same time-slot for both transmit and receive), as shown in *Figure 12*.

CONTROL INTERFACE

A serial interface, which can be clocked independently from the B and D channel system interfaces, is provided for microprocessor control of various functions on the DASL device. All data transfers consist of a single byte shifted into the Control Register via CI simultaneous with a single byte shifted out from the Status Register via CO, see Figure 13. Data shifts in to CI on rising edges of CCLK and out from CO on falling edges when CS is pulled low for 8 cycles of CCLK. An Interrupt output, INT goes low to alert the microprocessor whenever a change in one of the status bits, C1 and/or C0 has occurred. This latched output is cleared high following the first CCLK pulse when \overline{CS} is low. No interrupt is generated when status bit C2 goes high, however. This bit is set whenever 1 or more violations of the AMI coding rule is received, and cleared everytime the CS is pulsed. Statistics on the line bit error rate can be accumulated by regularly polling this bit.

During the reading of the Status Register, the contents of the Control Register are protected, and data on the Cl input is ignored.

Figure 13 shows the timing for this interface, and Table II lists the control functions and status indicators.

Bit	State	Control Register Function	Status Register Function
C7	0	Master Mode	Read Back C7 from Control Register
0,	1	Slave Mode	Read Back C7 from Control Register
C6	0	De-Activate and Power Down	Read Back C6 from Control Register
00	1	Activate	Read Back C6 from Control Register
C5	0	Normal Through Connection	Read Back C5 from Control Register
	1	Loopback to Digital Interface	Read Back C5 from Control Register
CA	0	Normal Through Connection	Read Back C4 from Control Register
	1	Loopback B1 + B2 + D to Line (Note 1)	Read Back C4 from Control Register
C3	0	Normal Through Connection	Read Back C3 from Control Register
	1	Loopback B1 Only to Line (Note 1)	Read Back C3 from Control Register
0.2	0	Normal Through Connection	No Error
02	1	Loopback B2 Only to Line (Note 1)	Bipolar Violation Since Last READ (Note 2)
C1	0	DCLK/DEN pin = 16 kHz Clock	Out-Of-Sync
	1	DCLK/DEN pin = D Channel Enable (Note 3)	Loop In-Sync and Activation Complete
CO	0	B1/B2 Channels Direct	No Line Signal at Receiver Input
	1	B1/B2 Channels Exchanged	Line Signal Present at Receiver Input

TARLEIL	Control	and Statue	Donietor	Functione
	00110101	and Status	negiater	1 unctions

Note 1: Receive data active.

Note 2: After the device is in sync.

Note 3: In Master mode only.

Timing Diagrams

÷

1

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature Range	-65°C to +150°C
Current at Lo	±100 mA
Current at any Digital Output	± 50 mA
Lead Temperature (Soldering, 10 sec.)	300°C
ESD rating is to be determined.	

V _{CC} to GND	7
Voltage at L _i , L _o	V_{CC} + 1V to V_{SS} - 1V
Voltage at any Digital Input	V_{CC} + 1V to V_{SS} - 1V

Electrical Characteristics Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for $V_{CC} = +5.0V \pm 5\%$, $T_A = 0^{\circ}C$ to 70°C by correlation with 100% electrical testing at $T_A = 25^{\circ}C$. All other limits are assured by correlation with other production tests and/or product design and characterization. All signals referenced to GND. Typicals specified at $V_{CC} = +5.0V$. $T_A = 25^{\circ}C$.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
DIGITAL IN	ITERFACES					
VIL	Input Low Voltage	All Digital Inputs			0.7	v
VIH	Input High Voltage	All Digital Inputs	2.0			V
V _{OL}	Output Low Voltage	B_r = 3.2 mA All Other Digital Outputs, I _L = 1 mA			0.4	v
V _{OH}	Output High Voltage	$B_r = -3.2 \text{ mA}$ All Other Digital Outputs, $I_L = -1 \text{ mA}$	2.4			v
t _i	Input Current	Any Digital Input, GND < V _{IN} < V _{CC}	-10			μΑ
l _{OZ}	Output Current in High Impedance State (TRI-STATE®)	B _r , GND < V _{OUT} < V _{CC}	- 10		10	μΑ
LINE INTE	RFACES		-			
l _{Li}	Input Leakage	$0V < L_i < 5.0V$	-1.0		1.0	μA
R _{Li}	Input Resistance	$0V < L_i < 5.0V$	200			kΩ
RLLo	Load Resistance	L_0 to GND	60			Ω
CLLo	Load Capacitance	100 Ω in Series with 100 Ω & 1 μ F in Parallel from L _o to GND. CL _{Lo} from L _o to GND.			100	pF
RO	Output Resistance at L _o				3.0	Ω
V _{DC}	Mean d.c. Voltage at L _o			1.85		v
POWER DI	SSIPATION					
I _{CC} 0	(De-activated)			1		mA
I _{CC} 1	Power Up Current	$RL_{LO} = 200\Omega$		16.0		mA
TRANSMIS	SION PERFORMANCE					
	Transmit Pulse Amplitude at Lo	$R_L = 100\Omega$ in Series with 0.1 μ F to GND	±1.1	±1.3	±1.5	Vpk
	Input Pulse Amplitude at Li		±60			mVpk
	Input Clock Jitter	2.048 MHz Input, 18 kHz < f < 200 kHz			200	ns pk-pk
	Timing Recovery Jitter	BCLK at Slave Relative to MCLK at Master SNR \geq 20 dB		50	100	ns pk-pk
	Wake-up Time	Complete Loop from Cold Start		50	60	ms

 Timing Characteristics

 Unless otherwise noted: $V_{CC} = +5V \pm 5\%$, $T_A = 0^{\circ}C$ to 70°C. Typical characteristics are specified at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

 All signals are referenced to GND.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
FMCK	Master Clock Frequency			2.048		MHz
	Master Clock Tolerance		-50		+ 50	ppm
t _{WMH,} t _{WML}	Clock Pulse Width Hi & Low for MCLK	V _{IH} = 2.0V V _{IL} = 0.7V	160			ns
DIGITAL INT	ERFACE <i>(Figure 10)</i>					
F _{BCK}	Bit Clock Frequency	Master Mode Only			2.1	MHz
t _{WBH,} t _{WBL}	Clock Pulse Width Hi & Low for BCLK	V _{IH} = 2.0V V _{IL} = 0.7V	100			ns
t _{MR,} t _{MF}	Rise and Fall Time of MCLK				15	ns
t _{BR,} t _{BF}	Rise and Fall Time of BCLK				15	ns
t _{SFB}	Set-Up Time, FS _a FS _b to BCLK Low	Master Mode Only	20			ns
tHCFL	Hold Time, BCLK Low to FS_a and FS_b Low	Master Mode Only	100			ns
^t DCF	Delay Time, BCLK High to FS_a , FS_b Transition	Slave Mode Only			60	ns
tsBC	Set Up Time, B _X Valid to BCLK Low		30			ns
tнсв	Hold Time, BCLK Low to B _X Invalid		50			ns
t _{DCB}	Delay Time, BCLK High to B _r Valid	Load = 2 LSTTL Inputs Plus 100 pF			160	ns
^t DCBZ	Delay Time, BCLK Low to B _r High-Impedance		60		220	ns
^t DCT	Delay Time, BCLK High to TS _r Low	Load = 2 LSTTL Inputs Plus 100 pF			140	ns
t _{DCTZ}	Delay Time, BCLK Low to TS _r High-Impedance		60		185	ns
t _{SMBC}	Set-Up Time, MSB to BCLK Low (Note 1)	Master Mode Only	60			ns
twmbh	Width of MSB High	Master Mode Only		125		μs

Note 1: MSB transitions may occur anywhere in the Frame, and require no specific relationship to FSa or FSb.

Timing Characteristics (Continued) Unless otherwise noted: $V_{CC} = +5V \pm 5\%$, $T_A = 0^{\circ}C$ to 70°C. Typical characteristics are specified at $V_{CC} = 5V$, $T_A = 25^{\circ}C$. All signals are referenced to GND.

Symbol	Parameter	Conditions	Min	Max	Units
D CHANNEL INTE	ERFACE <i>(Figure 11 & 12)</i>				
tSDDC	Set Up Time, D _X Valid to DCLK Low		100		ns
t _{HCD}	Hold Time, DCLK Low to D _X Invalid		100		ns
tDDCD	Delay Time, DCLK High to D _r Data Valid	Load = 100 pF +2 LSTTL Inputs		190	ns
t _{SDCB}	Set-Up Time, DCLK Transitions to BCLK High	Master Mode Only	50		ns
^t HBDC	Hold Time, BCLK High to DCLK Transitions	Master Mode Only	50		ns
tSDCF	Set-Up Time, DCLK Transitions to FS _a HIgh	Master Mode Only	100		ns
t _{HFDC}	Hold Time, FS _a HIgh to DCLK Transition	Master Mode Only. Load = 50 pF	50		ns
^t DDED	Delay Time, DEN High to D _r Valid			140	ns
t _{SDEB}	Set-Up Time, DEN to BCLK Low		100		ns
tSDBC	Set-Up Time, D _x to BCLK Low		30		ns
^t HBCD	Holt Time, BCLK Low to D _x Invalid		50		ns
tDBCD	Delay Time, BCLK High to D _r Valid	Load == 100 pF + 2 LSSTL Inputs		190	ns
t _{DCDZ}	Delay Time, DEN Low to D _r High Impedance			140	ns.
CONTROL INTER	RFACE <i>(Figure 13)</i>				
tсн	CCLK High Duration		250		ns
t _{CL}	CCLK Low Duration		250		ns
tsic	Setup Time, Cl Valid to CCLK High		100		ns
tHCI	Hold Time, CCLK High to CI Invalid		0		ns
tssc	Setup Time from CS Low to CCLK High		200		ns
t _{HCS}	Hold Time from CCLK Low to CS		10		ns
t _{DCO}	Delay Time from CCLK Low to C0 Data Valid	Load = 100 pF +2 LSTTL inputs		150	ns
t _{DSO}	Delay Time from CS Low to CO Valid	1st Bit Only		100	ns
t _{DSZ}	Delay Time from CS High to CO Tri-State			100	ns
t _{DCI}	Delay Time from CCLK1 High to INT Tri-State			120	ns

Definitions Convention	and Timing s	Rise Time	Rise times are designated at t_{Ryy} , where yy represents a mnemonic of the signal whose rise time is being specified. t_{Ryy} is measured from V _{IL} to
VIH	V_{IH} is the d.c. input level above which an input level is guaranteed to appear as a logical one. This parameter is to be measured by performing a function- al test at reduced clock speeds and	Fall Time	V_{IH} . Fall times are designated as t_{Fyy} , where yy represents a mnemonic of the signal whose fall time is being specified. t_{Fyy} is measured from V_{IH} to V_{IL} .
W.	and hold times or output strobes), with the high level of all driving signals set to V_{IH} and maximum supply voltages applied to the device.	Pulse Width High	The high width is designated as t _{WzzH} , where zz represents the mnemonic of the input or output signal whose pulse width is being specified. High pulse widths are measured from you to you
VIL	$V_{ L }$ is the d.c. Input level below which an input level is guaranteed to appear as a logical zero to the device. This pa- rameter is measured in the same man- ner as $V_{ H }$ but with all driving signal low levels set to $V_{ L }$ and minimum supply voltages applied to the device.	Pulse Width Low	The low pulse width is designed as t_{WzzL} , where zz represents the mne- monic of the input or output signal whose pulse width is being specified. Low pulse widths are measured from V_{IL} to V_{IL} .
V _{OH}	V _{OH} is the minimum d.c. output level to which an output placed in a logical one state will converge when loaded at the maximum specified load current.	Setup Time	Setup times are designated as t _{Swwxx} , where ww represents the mnemonic of the input signal whose setup time is be- ing specified relative to a clock or
V _{OL}	V _{OL} is the maximum d.c. output level to which an output placed in a logical zero state will converge when loaded at the maximum considered load current		strobe input represented by mnemonic xx. Setup times are measured from the ww Valid to xx Invalid.
Threshold Region	The threshold region is the range of in- put voltages between V_{IL} and V_{IH} .	Hold Time	Hold times are designated as t _{Hxxww} , where ww represents the mnemonic of the input signal whose hold time is be- ing specified relative to a clock or
Valid Olghar	valid logic states, (i.e. above V_{IH} or be- low V_{IL}). In timing specifications, a sig- nal is deemed valid at the instant it en-	Delay Time	strobe input represented by mnemonic xx. Hold times are measured from xx Valid to ww invalid.
Invalid Signal	A signal is Invalid if it is not in a valid logic state, i.e. when it is in the threshold region between V_{IL} and V_{IH} . In timing specifications, a signal is deemed invalid at the instant it enters the threshold region.		H L], where xx represents the mne- monic of the input reference signal and yy represents the mnemonic of the out- put signal whose timing is being speci- fied relative to xx. The mnemonic may optionally be terminated by an H or L to specify the high going or low going
TIMING CONVENTIONS			transition of the output signal. Maxi-
For the purpose of this timing specification the following conventions apply:			mum delay times are measured from xx Valid to yy Valid. Minimum delay times are measured from xx Valid to vy inval-
Input Signals	All input signals may be characterized as: VL = 0.4V, VIH = 2.4V, t_R < 10 ns, t_F < 10 ns.		id. This parameter is tested under the load conditions specified in the Condi- tions column of the Timing Specifica-
Period	The period of clock signal is designated at $t_{P_{XX}}$ where xx represents the mnemonic of the clock signal being specified.		tion section of this data sheet.

National Semiconductor Corporation

ADVANCED INFORMATION

TP3410 "U" Interface Transceiver

General Description

The TP3410 is a microCMOS monolithic digital transceiver which provides voice or data communications capability over a twisted pair of wires in the Public Network. The device functions at either end of the subscriber loop, handling voice and data transmissions between the Network Termination (NT) to the Central Office (CO) line card.

The TP3410 has facilities to transmit and receive using the standard ISDN 2B+D (2 64 kb/s and 1 16 kb/s channels) 144 kb/s full duplex channels plus extra channels (for loop maintenance and performance monitoring) for a total of 160 kb/s. These channels will operate over very long Central office subscriber loops of mixed gauges from #26 to #19 AWG (0.4–0.8 mm), which may include bridge taps.

At the time of this writing, the United States T1D1 committee for the Standardization of the U interface has not yet finalized the performance specification.

Preliminary Features

- 160 kb/s full duplex transmission for 2B+D
- Handles all layer 1 functions
- 2B1Q line coding
- Range at least 18 kft
- #26-#19 AWG (0.4-0.9 mm) mixed gauge wire compatibility
- 70 dB of Echo Cancellation
- Bridge Tap Equalization
- microCMOS, +5V only

Block Diagram

TL/H/9151-1

microCMOS

TP3420 ISDN Transceiver "S" Interface Device

General Description

The TP3420 (S Interface Device) is a complete monolithic transceiver for data transmission on twisted pair subscriber loops. It is built on National's advanced double metal micro-CMOS process, and requires only a single +5V supply. All functions specified in CCITT recommendation 1.430 for ISDN basic access at the 'S' and 'T' interfaces are provided, and the device can be configured to operate either in a TE (Terminal Equipment), in an NT-1 or NT-2 (Network Termination) or as a PABX line-card device.

As specified in I.430, full-duplex transmission at 192 kb/s is provided on separate transmit and receive twisted wire pairs using inverted Alternate Mark Inversion (AMI) line coding. Various channels are combined to form the 192 kb/s aggregate rate, including 2 'B' channels, each of 64 kb/s, and 1 'D' channel at 16 kb/s. In addition, the TP3420 provides the 800 b/s multiframe channels for Layer 1 maintenance.

All I.430 wiring configurations are supported by the TP3420 SID, including the "passive bus" for up to 8 TE's distributed within 200 meters of low capacitance cable, and point-topoint and point-to-star connections up to at least 1500 meters. Adaptive receive signal processing enables the device to operate with low bit error rates on any of the standard types of cable pairs commonly found in premise wiring installations.

Features

- Single Chip 4 Wire 192 kb/s Transceiver
- Provides all CCITT I.430 Layer 1 Functions
- Exceeds I.430 range: 1.5 km Point-to-Point
- Adaptive and Fixed Timing Options for NT-1
- Clock Resynchronizer and Data Buffers for NT-2
- Multiframe Channel for Layer 1 Maintenance
- Selectable System Interface Formats
- MicrowireTM compatible serial control interface
- microCMOS, +5V only
- 20 Pin Package

Applications

- Same Device for NT, TE and PBX Line Card
- Point-to-Point Range Extended to 1.5 km
 - Point-to-Multipoint for all I.430 Configurations
 - Easy Interface to:
 - LAPD Processor HPC16400 Terminal Adapter HPC16400 Codec/Filter COMBO™ TP3054/7 "U" Interface Device TP3410 Line Card Backplanes

2

2-23

Connection Diagrams

Order Number TP3420N See NS Package Number N20A

Pin Descriptions

	•
Name	Description
GND	Negative power supply pin, normally 0V (ground). All analog and digital signals are referred to this pin.
V _{CC}	Positive power supply input, which must be $+5V \pm 5\%$.
MCLK/XTAL	The 15.36 MHz Master Clock input, which requires either a crystal* to be tied between this pin and XTAL2, or a logic level clock input from a stable source. When using a crystal, no other external loading components are necessary.
XTAL2	The output of the crystal oscillator, which should be connected to one end of the crystal, if used.
BCLK	The Bit Clock pin, which determines the data shift rate for 'B' and 'D' channel data on the digital interface side of the device. When NT mode or TE mode Digital System Interface (DSI) Slave is selected, BCLK is an input which may be any multiple of 8 kHz from 256 kHz to 4.096 MHz. It need not be synchronous with MCLK. When TE mode DSI Master is selected, this pin is an output at frequency selected by the Digital Interface Format. This clock is phase-locked to the received line signal. In TE mode DSI Master this pin is an output clock with the frequency depending on the interface format selected. It is synchronous
FSa	with the data on B_x and B_r . In NT modes and TE mode DSI Slave, this pin is the Transmit Frame Sync pulse input, requiring a positive edge to indicate the start of the active channel time for transmit 'B' and 'D' channel data into B_x . In TE mode DSI Master only, this pin is a digital output pulse which indicates the start of the 'B' channel data transfer at both B_x and B_r .

|--|

In NT modes and TE mode DSI Slave, this pin is the Receive Frame Sync pulse input, requiring a positive edge to indicate the start of the active channel time of the device for receive 'B' and 'D' channel data out from B_r. In TE mode DSI Master only this pin is an 8 bit wide pulse which indicates the active slot for the B2 channel on the digital interface.

Digital input for 'B' and 'D' channel data to be transmitted to the line; must be synchronous with BCLK.

Digital output for 'B' and 'D' channel data received from the line; must be synchronous with BCLK.

- In TE mode DSI Master, this pin is an output which is normally low and pulses high to indicate the active bit-times for 'D' channel Transmit data at the B_x input. It is intended to be gated with BCLK to control the shifting of data from a Layer 2 device to the TP3420 transmit buffer. In TE mode DSI Slave, this pin is an output BCLK at the frequency selected by the Digital Interface Format. This clock is phased-locked to the received line signal.
- MICROWIRE control channel serial data input.
 - Control channel serial data output for status information. When not enabled by $\overline{\text{CS}}$, this output is Tri-state.
- CCLK Clock input for the Control Channel.
 - Chip Select input which enables the control channel data to be shifted in and out when pulled low. When high, this pin inhibits the Control interface.
- INT Interrupt output, a latched output signal which is normally Tri-state, and goes low to indicate a change of status of the loop transmission system.
- LSD The Line Signal Detect output, which is normally high-impedance, but pulls low when the device is powered down and a received line signal is detected. It is intended to be used to "wake-up" a microprocessor from a low-power idle mode. This output is disabled when the device is powered up.
- L_o+, L_o- Transmit AMI signal differential outputs to the line transformer. When used with a 2:1 step-down transformer, the line signal conforms to the output pulse masks in I.430.
- L₁+, L₁- Receive AMI signal differential inputs from the line transformer. A 1:2 step-up transformer should be used. The L₁- pin is also the internal voltage reference pin, and must be decoupled to GND with a 10 μf capacitor in parallel with a 0.1 μF ceramic capacitor.

*Crystal specification: 15.36 MHz parallel resonant; $R_s \le 100\Omega$.

CI

co

CS

Functional Description

POWER-ON INITIALIZATION

Following the initial application of power, the TP3420 SID enters the power-down (de-activated) state, in which all the internal circuits including the Master oscillator are inactive and in a low power state except for the line-signal detect circuit; the line outputs $L_0 + /L_0 -$ are in a high impedance state and the System Interface is inactive. All bits in the Control Register power-up as indicated in Table 1. A Control Register instruction is required following power-up to define the format of the Digital Interface, and to select TE mode if required, (see Device Modes Section). In both NT and TE modes, a Line-Signal Detect circuit monitors the line while powered-down, to enable loop transmission to be initiated from either end.

LINE CODING AND FRAME FORMAT

For both directions of transmission, Alternate-Mark Inversion (AMI) coding with inverted binary is used, as illustrated in *Figure 1*. This coding rule requires that a binary ONE is represented by 0V high impedance output, whereas a binary ZERO is represented by a positive or negative-going 100% duty-cycle pulse. Normally, binary ZEROs alternate in polarity to maintain a d.c.-balanced line signal.

The frame format used in the TP3420 SID follows the CCITT recommendation specified in 1.430 and illustrated in *Figure 2*. Each complete frame consists of 48 bits, with a line bit rate of 192 kb/s, giving a frame repetition rate of 4 kHz. A violation of the AMI coding rule is used to indicate a frame boundary, by using a 0⁺ bit followed by a 0⁻ balance bit to indicate the start of a frame, and forcing the first binary zero following the balance bit to be of the same polarity as the balance bit.

In the Network Termination (NT-1) to the Terminal Equipment (TE) transmission direction the frame contains an echo channel, the E bit, which is used to retransmit the D

bits that are received from the TE. The last bit of this frame is used as a frame balancing bit. In the TE to NT direction, d.c.-balancing is carried out for each channel, as illustrated in *Figure 2*.

LINE TRANSMIT SECTION

The differential line-driver outputs, $L_{o}+$ and $L_{o}-$, are designed to drive a transformer with an external termination resistor. A 2:1 transformer, terminated in 50Ω , results in a signal amplitude of nominally 750 mV pk on the line. When driving a binary 1 symbol the output presents a high impedance in accordance with 1.430. When driving a 0+ or 0- symbol a voltage-limited current source is turned on. Short-circuit protection is included in the output stage; over-voltage protection is required externally, see the Applications section.

LINE RECEIVE SECTION

The receive input signal should be derived via a 1:2 transformer which may be of the same type used for the transmit direction. At the front-end of the receive section is a continuous filter which limits the noise bandwidth. To correct pulse attenuation and distortion caused by the transmission line in point-to-point and extended passive bus applications, an adaptive equalizer enhances the received pulse shape, thereby restoring a "flat" channel response with maximum eye opening over a wide spread of cable attenuation characteristics. This equalizer is always enabled when either TE mode or NT Mode Adaptive Sampling is selected, but is disabled for short passive bus applications when NT Mode Fixed Sampling is selected. An adaptive threshold circuit maximizes the Signal-to-Noise ratio in the eye at the detector for all loop conditions.

A DPLL (Digital Phase-Locked Loop) recovers a low-jitter clock for optimum sampling of the received symbols.

FIGURE 1. Inverted AMI Line-Coding Rule

2-26

The MCLK input provides the reference clock for the DPLL at 15.36 MHz. Clocks for the digital interface timing may either be locked to this recovered clock, as in TE mode Digital System Interface Master, or may be slaved to an external source, as in the T-interface side of an NT-2. In this latter mode, and when the device is in NT mode, re-timing circuitry on the TP3420/1 allows the MCLK frequency to be plesiochronous with respect to the network clock, i.e. the 8 kHz FS_x input, provided the frequency inaccuracy of the network clock plus that of the MCLK source does not exceed 500 ppm from nominal.

When the device is powered-down, a Line-Signal Detect circuit, which can discriminate a valid line signal from noise, is enabled to detect the presence of incoming data if the farend starts to activate the loop.

DIGITAL SYSTEM INTERFACE

The digital system interface (DSI) on the TP3420 combines 'B' and 'D' channel data onto common pins to provide maximum flexibility with minimum pin count. Several multiplexed formats of the B and D channel data are available as shown in *Figure 3*. Selection is made via the Control Register. At this interface, phase skew between transmit and receive directions may be accommodated at the line card or NT-1/2 end since separate frame sync inputs, FS_a and FS_b, are provided. Each of these synchronizes a counter which gates the transfer of B1 and B2 channels in consecutive time-slots across the digital interface. The serial shift rate is determined by the BCLK input, and may be any frequency from 256 kHz to 4.096 MHz. Thus, for applications on a PABX line-card (in NT mode), the 'B' and 'D' channel slots can be interfaced to a TDM bus and assigned to a time-slot.

At the TE end, FS_a is an output indicating the start of both transmit and receive 'B' channel data transfers. BCLK is also an output at the serial data shift rate, which is dependent on the format selected.

CONTROL INTERFACE

A serial interface, which can be clocked independently from the 'B' and 'D' channel system interface, is provided for microprocessor control of various functions in the TP3420. All data transfers consist of a single byte shifted into the Control Register via the Cl pin, simultaneous with a single byte shifted out from the Status Register via the CO pin.

Data shifts in to CI on rising edges of CCLK and out from CO on falling edges when \overline{CS} is pulled low for 8 cycles of CCLK. An Interrupt output, \overline{INT} goes low to alert the microprocessor whenever a change occurs in one or more of the conditions indicated in the Status Register. This latched output is cleared to a high impedance state by the first rising CCLK edge after \overline{CS} goes low. When reading the Status Register the CI input is ignored.

Figure 4 shows the timing for this interface, and Tables I and II list the control functions and status indicators.

2-29

N

Functional Description (Continued)

TABLE I. Control Register Functions

Function	Mnemonic	Bit Number							
Function	MITERIORIC	7	6	5	4	3	2	1	0
Activation/Deactivation									
*Power-Down	PDN	0	0	0	0	0	0	0	0
Power-Up	PUP	0	0	1	0	0	0	0	0
Deactivation Request	DR	0	0	0	0	0	0	0	1
Timer 1 (NI) or Timer 3 (TE) Expired	T13	0	0	0	0	0	0	1	0
Activation Request	AR	0	0	0	0	0	0	1	1
Device Modes									
*NT Mode Adaptive Sampling	NTA	0	0	0	0	0	1	0	0
NT Mode Fixed Sampling	NTF	0	0	0	0	0	1	0	1
TE Mode Digital System Interface Slave	TES	0	0	0	0	0	1	1	0
TE Mode Digital System Interface Master	ТЕМ	0	0	0	0	0	1	1	1
Digital Interface Formats									
*Digital System Interface Format 1	DIF1	0	0	0	0	1	0	0	0
Digital System Interface Format 2	DIF2	0	0	0	0	1	0	0	1
Digital System Interface Format 3	DIF3	0	0	0	0	1	0	1	0
Digital System Interface Format 4	DIF4	0	0	0	0	1	0	1	1
B Channel Exchange									
*B Channels Mapped Direct, B1 to B1, B2 to B2	BDIR	0	0	0	0	1	1	0	0
B Channels Exchanged, B1 to B2, B2 to B1	BEX	0	0	0	0	1	1	0	1
D Channel Access									
D Channel Request, Class 1 Message	DREQ1	0	0	0	0	1	1	1	0
D Channel Request, Class 2 Message	DREQ2	0	0	0	0	1	1	1	1
End of Message Interrupt							- 112		
*EOM Interrupt Enabled	EIE	0	0	0	1	0	0	0	0
EOM Interrupt Disabled	EIO	0	0	0	1	0	0	0	1
Multiframe Circuit and Interrupt									
Multiframe Circuit and Interrupt Enabled	MIE	0	0	0	1	0	0	1	0
*Multiframe Circuit and Interrupt Disabled	MID	0	0	0	1	0	0	1	1
Multiframe Transmit Register									
Write to Multiframe Transmit Register	MFT	0	0	1	1	M1	M2	МЗ	M4
B1 Channel Enable/Disable									
B1 Channel Enabled	B1E	0	0	0	1	0	1	0	0
*B1 Channel Disabled	B1D	0	0	0	1	0	1	0	1
B2 Channel Enable/Disable									
*B2 Channel Enabled	B2E	0	0	0	1	0	1	1	0
B2 Channel Disabled	B2D	0	0	0	1	0	1	1	1
* Indicates initial state following Power-on Initialization.									

2-30

TABLE I. Control Register Functions (Continued)

Function	Mnemonic	Bit Number								
		7	6	5	4	3	2	1	0	
Loopback Test Modes										
Loopback B1 Towards Line Interface	LBL1	0	0	0	1	1	0	0	0	
Loopback B2 Towards Line Interface	LBL2	0	0	0	1	1	0	0	1	
Loopback 2B + D Towards System Interface	LBS	0	0	0	1	1	0	1	0	
*Clear All Loopbacks	CAL	0	0	0	1	1	0	1	1	

TABLE II. Status Register Functions

Franchise a		Bit Number							
Function	Mnemonic	7	6	5	4	3	2	1	0
No Change	NOC	0	0	0	0	0	0	0	0
Line Signal Detected from Far-End	LSD	0	0	0	0	0	0	1	0
Activation Pending	AP	0	0	0	0	0	0	1	1
End of Message	EOM	0	0	0	0	0	1	1	0
Lost Contention	CON	0	0	0	0	0	1	1	1
Multiframe Receive Buffer Requires Service	MFR	0	0	1	1	M1	M2	MЗ	M4
Activation Indication	AI	0	0	0	0	1	1	0	0
Error Indication	EI	0	0	0	0	1	1	1	0
Deactivation Indication	DI	0	0	0	0	1	1	1	1

STATUS INDICATOR DESCRIPTIONS

- LSD If set, indicates that the far-end of the line is attempting to Activate the interface. May be used as an alternative to the LSD pin to "wake-up" a microprocessor.
- AP If set, indicates that either INFO 1 frames have been identified in an NT receiver, or INFO 2 or INFO 4 frames have been identified in a TE receiver. Requires an AR control instruction to allow Activation to be completed.
- EOM Set when the closing flag of a D-channel message has been transmitted by a TE on the S interface, indicating successful completion of a packet. The Interrupt associated with this bit can be disabled via the Control Register if desired.
- CON Set when, during transmission of a packet in the D channel, a received E bit does not match the last transmitted D bit, indicating a lost collision.
- MFR Set when the Multiframe receive data buffer requires servicing, after 3 consecutive identical Multiframe words have been detected. All Multiframing functions can be disabled via the Control Register if desired.
- AI If set, indicates that the interface has been successfully Activated in response to an Activation Request.
- El Set when loss of frame alignment is detected.
- DI If set, indicates that the interface has been Deactivated.

CONTROL FUNCTION DESCRIPTIONS

The Control Functions listed in Table I have been separated into groups to indicate that only 1 function within each group should be selected at a time.

ACTIVATION/DEACTIVATION

- PUP This power-up command enables all analog circuitry, starts the XTAL and resets the state machines to the de-activated state, i.e. transmitting INFO 0 (no signal). It also inhibits the LSD output.
- PDN This power-down command immediately forces the device to a low power state, without sequencing through any of the de-activation states. It should therefore only be used after the TP3420 has been put in a known state, e.g. in a TE after a DI status indication has been reported.
- AR Activation Request, which initiates the specified Activation sequence. It is recommended that an AR be delayed at least 2 ms after the device is powered-up.
- DR Deactivation Request, which forces the device through the appropriate deactivation sequence specified in I.430. Should be used at the NT end only.
- T13 Indicates that the appropriate Activation Timer has expired without Activation being achieved, and forces an orderly deactivation.

DEVICE MODES

- NTA NT Mode, Adaptive Sampling should be selected when the device is in an NT on any wiring configuration up to the maximum specified length for operation. Multiple terminals, if required, must be grouped within approximately 50 meters of each other (depending on cable capacitance, see I.430). The Digital System Interface is a slave to external BCLK and FS sources.
- NTF NT Mode Fixed Sampling should be selected when the device is in an NT on a passive bus wiring configuration up to approximately 200 meters in length (depending on cable type). In this mode the receiver DPLL is disabled and sampling of the received symbols is fixed, to enable multiple terminals (nominally up to 8) to be connected anywhere along the passive bus. Again, the DSI is a slave to external BCLK and FS sources.
- TEM TE Mode DSI Master should be selected when the device is in a TE. The TP3420 is then the source of the BCLK and FS signals, and access to the Transmit D channel, including the priority and contention resolution control, is enabled as described in the section on TE Mode D-Channel Access.
- TES TE Mode DSI Slave should be selected when the device is used on the T-interface side of an NT-2. The TP3420 System Interface is then driven by BCLK and FS sources in the NT-2. Data buffers and a clock re-synchronizer enable this interface to function with jittering sources for BCLK and FS. All D Channel access control circuitry is disabled, i.e. D Channel data at the Bx input is continuously transmitted to the line; there is no monitoring of the D-echo channel from the network direction, and DREQ instructions are ignored.

DIGITAL INTERFACE FORMATS

 DIF1)
 These instructions select the format of the Digital

 DIF2)
 Interface timing, see Figure 3.

DIF3)

DIF4)

B CHANNEL CONTROL

- BDIR) These commands provide for the exchange of BEX) data between the B1 and B2 channels as it passes through the device.
- B1E) When either or both B channels are disabled, bi-
- B1D) nary 1s are transmitted on the line in those B channel bit positions, regardless of data at the Bx
- B2E) input, and the Br output is Tri-state in those bit positions.

D CHANNEL ACCESS

DREQ1) This is a request from Layer 2 to the TP3420 in a

DREQ2) TE (in Mode TEM only) to attempt to access the transmit D channel at the S interface. The correct priority class for the pending message must also be selected.

LOOPBACK TEST MODES

Two classes of loopback mode are available on the SID, selected by writing the appropriate Control instruction.

- LBS This loopback at the system interface is a full loopback of the 2B + D channels from the Bx input to the Br output. It may be set when the device is either activated, in which case it is transparent (i.e. the composite signal is also transmitted to the line), or when it is deactivated.
- LBL1/2 These loopbacks turn each individual B channel from the line receive input back to the line transmit output. They may be set separately or together.

MULTIFRAME TRANSMIT REGISTER

MFT With the device in TE Mode, data entered in bit positions M1, M2, M3 and M4 is transmitted towards the NT in multiframe bit positions Q1, Q2, Q3 and Q4 respectively. With the device in NT Mode, data entered in the M bit positions is transmitted towards the TE in multiframe bit positions S1, S2, S3 and S4 respectively. The Multiframe Channel and Interrupt must be enabled by an MIE command to use these channels.

ACTIVATION/DE-ACTIVATION: TP3420 IN NT MODE

Activation (i.e. transmission and loop synchronization) may be initiated from either end of the loop. With the TP3420 configured in an NT, the device must be powered up, using a PUP command, followed 2 ms later by an AR instruction to the Control Register. Network timing, i.e., an 8 kHz input to FS_a, must be present at this time. The device then begins to send data framed as INFO 2 type, in which bits in the B, D and D-echo channels are set to binary 0. These frames are detected by the TE, which replies with data framed as INFO 3 type, synchronized to received frames. A flywheel circuit in the TP3420 NT searches for 3 consecutive correctly formatted receive frames to acquire full loop synchronization. When it is correctly in sync with received bursts, the NT sends INFO 4 frames, in which the B and D channels are enabled for transmission: Status Indication type AI is set. and the INT output is pulled low to indicate Activation complete.

When Activation is initiated by a TE, the TP3420 in NT mode will detect the incoming INFO 1 signal and, if it is powereddown will pull the \overline{LSD} pin and \overline{INT} low, either of which can be used to "wake-up" a microprocessor. A PUP command must then be written to power-up the TP3420. Upon identifying the INFO 1 signal, the device will set Status Indication type AP and pull \overline{INT} low to indicate that Activation is pending. No INFO 2 frames will be transmitted until a Control instruction type AR is written to the device, which allows the Activation sequence to proceed as described above.

Once Activated, loss of frame alignment is assumed by the TP3420 when a time which is equivalent to three frames has passed without it detecting any of the valid pairs of line code violations which obey the framing rule. If the NT does detect alignment loss it will start to transmit INFO 2. At this point the Error Indication (EI) primitive is set, the INT output is pulled low and the receiver searches to identify the incom-

ing signal and attempt to re-acquire loop synchronization. If it successfully re-establishes synchronization with the incoming signal (INFO 3 frames), a further interrupt is generated with Status Indication type AI. If, however, the receiver subsequently identifies that the incoming line signal has ceased, i.e. INFO 0 is being received, the loop is de-activated and the transmitter output set to INFO 0. Status Indication type DI is set and the INT output pulled low to indicate De-activation.

If required, a PDN instruction may be written to the Control Register to power-down the device and enable the LSD output.

I.430 recommends 2 timers should be available in an NT. An Activation Request to the TP3420 should be associated with the start of an external Timer 1, if required. Timer 1 should be stopped when the Al interrupt is generated following successful Activation. If Timer 1 expires before Al is generated, however, Control Instruction type T13 should be written to the device to force de-activation. Timer 2, which is specified to prevent unintentional reactivation, is not required since the TP3420 can uniquely recognise INFO 1 frames.

ACTIVATION/DE-ACTIVATION: TP3420 IN TE MODE

To activate the loop with the TP3420 at the TE end the device must first be powered-up by a PUP command, followed 2 ms later by a Control Instruction type AR, which is the Activation Request to begin transmission of INFO 1 frames after verifying that INFO 0 is being received from the NT. INFO 1 is a continuous pattern of 0+, 0-, and 6 '1's repeated. At this point the TE is running from its local oscillator and is not receiving any sync information from the NT. When the NT recognises this "wake-up" signal, it begins to transmit INFO 2, synchronized to the network clock. This enables the phase-locked loop in the TE's receiver to correctly identify bit timing from the NT and to synchronize its own transmission to that of the NT. On identifying INFO 2 for 3 consecutive frames, the TE changes its transmit data to INFO 3 and awaits the return of INFO 4 from the NT. Identification of INFO 4 completes the Activation sequence, so Status Indication type AI is set, and the INT output pulled low.

When Activation is initiated by the NT, if the TP3420 in TE mode is powered down, it will pull the <u>LSD</u> pin and <u>INT</u> low on receiving a line signal. Either of these can be used to "wake-up" a microprocessor. A PUP command is required to enable the device to power-up, identify the received signal, and acquire bit and frame synchronization. Once INFO 2 has been identified, the TP3420 will pull <u>INT</u> low, with Status Indication type AP set, to alert the microprocessor that Activation is pending. The microprocessor must respond by writing Control Instruction type AR in order for Activation to proceed. INFO 3 frames are then transmitted with active data.

As in NT mode, once Activated, loss of frame alignment is assumed by the TP3420 when a time equivalent to three frames has passed without it detecting any of the valid pairs of line code violations which obey the framing rule. If the TE does detect alignment loss it will cease transmitting immediately. At this point the Error Indication (EI) primitive is set in the Status Register, the INT output is pulled low and the receiver searches to re-acquire loop synchronization if INFO 2 or INFO 4 frames are still being received. If synchronization is re-established, a further interrupt is generated, with Status Indication type AI. If, however, the receiver subsequently identifies that the incoming line signal has ceased, i.e. INFO 0 is being received, the loop is de-activated, Status Indication type DI is set and the INT output pulled low to indicate De-activation.

I.430 does not provide for Deactivation to be initiated by a TE. However, a Power-down state may be forced if required, normally after Deactivation has been established by the network.

If required, an external Timer 3 should be started when an Activation Request is sent to the TP3420. The subsequent AI interrupt, indicating Activation is complete, should be used to stop the timer. If the timer expires before an AI is generated, Control Instruction type T13 must be written to the device to force the transmission of INFO 0.

TE MODE D-Channel Access

In TE mode DSI Master only, the TP3420 SID arbitrates access for Layer 2 Transmit frames to the D-channel bit positions in accordance with the 1.430 Priority Mechanism (I.430 Section 6.1). The shifting of D-channel transmit data from the Layer 2 device into the SID buffer is controlled by gating the DEN_x output with BCLK. When no Layer 2 frame is pending, "1"s are always transmitted by the SID in D-bit positions at the S interface. DEN_x output pulses are inhibited and no D-channel data is shifted into the Bx input. An external Layer 2 device requiring to start transmission of a packet should first prime its Transmit buffer such that the opening flag is ready to be shifted across the digital interface. Then a Control instruction, type DREQ, will initiate the D-channel access sequence. DREQ instructions require either that a Priority Class 1 (signalling) packet, or a Priority Class 2 packet, is selected.

In response to the DREQ instruction, the DEN_x output is enabled to pre-fetch the opening flag from the Layer 2 device into the D-channel buffer. Meanwhile, the Priority Counter checks that no other TE connected to the S interface (in a point-to-multipoint wiring configuration) is transmitting in the D-channel. This is assured by counting consecutive "1"s in the E-bit position of frames received from the NT. At least 8 consecutive "1"s must be detected before transmission of the pending D-channel frame begins, in accordance with Table III.

Number of Consecutive "1"s in the E-Channel	D-Channel Access
7	Abort. Possible re-try by the transmitting TE.
8	Signalling packet (Priority Class 1) may begin (Note 1).
9	Signalling packet may begin unconditionally.
10	Any packet type may begin (Note 2).
11	Any packet type may begin unconditionally

TABLE III. D-Channel Access Criteria

Note 1: Only if, since the SID last transmitted a complete Class 1 packet, a sequence of \geq 9 consecutive "1"s has been detected in the E-channel. Note 2: Only if, since the SID last transmitted a complete packet of either class, a sequence of \geq 11 consecutive "1"s has been detected in the E-channel.

If another TE is active in the D-channel, DEN_x pulses are inhibited once the opening flag is in the Transmit buffer, to prevent further fetching of transmit data from the Layer 2 device until D-channel access is achieved. As soon as the required number of consecutive E-channel "1"s has been counted, the leading 0 of the opening flag is transmitted in the next D-bit position towards the NT. DEN_x pulses are also re-enabled in order to shift D-channel bits from the Layer 2 device into the SID transmit buffer. No interrupts are necessary for local flow control between the Layer 2 processor and the TP3420.

During transmission in the D-channel the TP3420 SID continues to compare each E-bit received from the NT with the D-channel bit previously transmitted before proceeding to send the next D-bit. In the event of a mis-match, a contention for the previous D-bit is assumed to have been won by another TE. Transmission of the current packet therefore ceases and "1"s are transmitted in all following D-bit positions. Status Indication type CON is set, and the $\overline{\text{INT}}$ output is pulled low to interrupt the Layer 2 transmit processor. DEN_x output pulses are again inhibited.

In order to retransmit the lost packet, the Layer 2 device must begin as before, by priming its Transmit buffer with the packet header and writing a DREQ instruction into the Control Register.

Successful completion of a transmit packet is detected by the TP3420 when the closing flag is transmitted in the D channel. '1's are then transmitted in the following D bit positions, with the DEN_x output held low to prevent further transfer of data from the Layer 2 device. The $\overline{\text{INT}}$ output is pulled Low (if enabled), with Status Indication type EOM set, to indicate the End of Message.

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications. V_{CC} to GND 7V

Storage Temperature Range	-65°C to+150°C
Current at L ₀	\pm 100 mA
Current at any Digital Output	\pm 50 mA
Lead Temperature (Soldering, 10 sec.)	300°C
ESD rating to be determined.	

ACC ID GIND	/v
Voltage at L _i , L ₀	V_{CC} + 1V to GND - 1V
Voltage at any Digital Input	V_{CC} + 1V to GND - 1V

Electrical Characteristics

Unless otherwise noted: $V_{CC} = 5V \pm 5\%$, GND = 0V, $T_A = 0^{\circ}C$ to 70°C. Typical characteristics are specified at $V_{CC} = 5V$, $T_A = 25^{\circ}C$. All signals are referenced to GND

Symbol	Parameter	Conditions		Units		
Cymbol		Conditiona	Min	Max		
DIGITAL IN	TERFACES			· . ·		
VIL	Input Low Voltage	All Digital Inputs		0.7	v	
VIH	Input High Voltage	All Digital Inputs	2.2		v	
V _{OL}	Output Low Voltage	B_x , $I_L = -3.2 \text{ mA}$ All Other Digital Outputs, $I_L = -1 \text{ mA}$		0.4	v	
V _{OH}	Output High Voltage	B_x , $I_L = -3.2 \text{ mA}$ All Other Digital Outputs, $I_L = -1 \text{ mA}$	2.4		v	
- li	Input Current	Any Digital Input, GND < V _{IN} < V _{CC}	-10	10	μΑ	
l _{OZ}	Output Current in High Impedance State (Tri-State)	B _x GND < V _{OUT} < V _{CC}	-10	10	μA	
LINE INTER	FACES					
l _{Li}	Input Leakage	$0V < L_i + , L_i - < 5.0V$	-1.0	1.0	μA	
R _{Li}	Input Resistance	$0V < L_i + , L_i - < 5.0V$	20		kΩ	
V _{Li}	Input Voltage Range		0.5	V_{CC} + 0.5V	v	
RL _{L0}	Load Resistance	Between L ₀ + and L ₀	200		Ω	
CLLO	Load Capacitance			200	pF	
VOS	Differential Output Offset Voltage at L_0+ , L_0-	Driving Binary 1s	-20	+ 20	mV	
POWER DIS	SIPATION					
I _{CC} 0	Power Down Current (Deactivated)	All Outputs Open-Circuit		600	μΑ	
I _{CC} 1	Power Up Current	As Above		15.0	mA	
TRANSMIS	SION PERFORMANCE					
	Transmit Pulse Amplitude	$R_L = 200 \Omega$ Between $L_0 + and L_0 -$	±1.4	±1.6	Vpk	
	Input Pulse Amplitude	Differential Between $L_i + and L_i -$	±100		mVpk	
	MCLK/XTAL Input Clock Jitter			50	ns	
	Timing Recovery Jitter	BCLK Output at TE Relative to MCLK at NT	-130	+ 130	ns	

Symbol	Parameter	Conditions	Min	Тур	Max	Units
GITAL SYST	EM INTERFACE					
F _{MCK}	Master Clock Frequency			15.36		MHz
FBCK	Bit Clock Frequency		256		4096	kHz
t _{MH} , t _{ML}	Clock Pulse Width Hi & Low for MCLK	$V_{IH} = 2.0V$ $V_{IL} = 0.8V$	20			ns
t _{BH} , t _{BL}	Clock Pulse Width Hi & Low for BCLK	$V_{IH} = 2.0V$ $V_{IL} = 0.8V$	60			ns
t _{MR} , t _{MF}	Rise and Fall Time of MCLK	Used as a Logic Input			10	ns
t _{BR} , t _{BF}	Rise and Fall Time of BCLK				15	ns
t _{SBC}	Set up Time, B _x Valid to BCLK Low		30			ns
t _{HCB}	Hold Time, BCLK Low to B _x Invalid		20			ns
tHCF	Hold Time, BCLK High to FS_a and FS_b		0			ns
tSFC	Set up Time, FS _a to BCLK Low	NT and TES Modes only	30			ns
^t HCF	Hold Time, BCLK Low to FS _b Low	NT and TES Modes only	20			ns
t _{DBF}	Delay Time, BCLK High to FS_a and FS_b Transitions	TEM mode only			30	ns
tDCB	Delay Time, BCLK High to Data Valid		20		80	ns
tdcbz	Delay Time, BCLK Low to Data Invalid	TEM Mode only	50		120	ns
t _{DCD}	Delay Time, BCLK High to DEN _x Transition	TEM Mode only			30	ns
NTROL INT	ERFACE					_
t _{CH}	CCLK High Duration		100			ns
t _{CL}	CCLK Low Duration		100			ns
tsic	Setup Time, CI Valid to CCLK High		50			ns
tнсı	Hold Time, CCLK High to Cl Invalid		20			ns
tssc	Setup Time from CS Low to CCLK High		50			ns
t _{DSO}	Delay Time from \overline{CS} Low to CO Valid	Bit C7 only			50	ns
tDCO	Delay Time from CCLK Low to CO Data Valid				20	ns
tDCZ	Delay Time from CCLK 8 Low to CO Tri-State				50	ns

2

Timing Information tMR t_{мн}́ MCLK t_{BH} t_{RI} - t_{BF} BCLK tsfc |++ ^tHCF t_{DBF} -t_{HCF} -FS_a, FS_b tocd t_{DCD} DENx I← t_{DCBZ} t_{DCB} ----Br ^tнсв tSBC B_x TL/H/9143-9

TP3420

FIGURE 6. Timing Details for Digital System Interface

Definitions and Timing Conventions

DEFINITIONS		F
VIH	V_{IH} is the d.c. input level above which an input level is guaranteed to appear as a logical one. This parameter is to be measured by performing a functional test at reduced clock speeds and nominal timing, (i.e. not minimum setup and hold times or output strobes), with the high level of all driving signals set to V_{IH} and maximum supply voltages applied to the device.	1
VIL	$\begin{array}{l} V_{IL} \text{ is the d.c. input level below which an} \\ \text{input level is guaranteed to appear as a} \\ \text{logical zero to the device. This parameter is measured in the same manner as} \\ V_{IH} \text{ but with all driving signal low levels} \\ \text{set to } V_{IL} \text{ and minimum supply voltages} \\ \text{applied to the device.} \end{array}$	ſ
V _{OH}	V_{OH} is the minimum d.c. output level to which an output placed in a logical one state will converge when loaded at the maximum specified load current.	5
V _{OL}	V _{OL} is the maximum d.c. output level to which an output placed in a logical zero state will converge when loaded at the maximum specified load current.	
Threshold Region	The threshold region is the range of in- put voltages between VIL and VIH.	I
Valid Signal	A signal is Valid if it is in one of the valid logic states, (i.e. above V_{IH} or below V_{IL}). In timing specifications, a signal is deemed valid at the instant it enters a valid state.	
Invalid Signal	A signal is Invalid if it is not in a valid logic state, i.e. when it is in the threshold region between V_{IL} and V_{IH} . In timing specifications, a signal is deemed invalid at the instant it enters the threshold region.	I
TIMING CONVEN	TIONS	
For the purposes conventions apply:	of this timing specification the following	
Input Signals	All input signals may be characterized as: $V_L = 0.4V$, $V_H = 2.4V$, $t_R < 10$ ns,	

 $\begin{array}{ll} \text{as: } V_L = 0.4 \text{V}, \ V_H = 2.4 \text{V}, \ t_R < 10 \ \text{ns}, \\ t_F < 10 \ \text{ns}. \end{array}$ Period The period of clock signal is designated as t_{Pxx} where xx represents the mnemonic of the clock signal being speci-

fied.

Pico Timo	Riso times are designated as to
	where yy represents a mnemonic of the signal whose rise time is being specified. t_{Ryy} is measured from V _{IL} to V _{IH} .
Fall Time	Fall times are designated as t_{Fyy} , where yy represents a mnemonic of the signal whose fall time is being specified. t_{Fyy} is measured from V_{IH} to V_{IL} .
Pulse Width High	The high pulse width is designated as t_{WzzH} , where zz represents the mne- monic of the input or output signal whose pulse width is being specified. High pulse widths are measured from V _{IH} to V _{IH} .
Pulse Width Low	The low pulse width is designated as t_{WzzL} , where zz represents the mnemonic of the input or output signal whose pulse width is being specified. Low pulse widths are measured from V _{IL} to V _{IL} .
Setup Time	Setup times are designated as t_{Swwxx} , where ww represents the mnemonic of the input signal whose setup time is be- ing specified relative to a clock or strobe input represented by mnemonic xx. Set- up times are measured from the ww Val- id to xx Invalid.
Hold Time	Hold times are designated as t_{Hxxww} , where ww represents the mnemonic of the input signal whose hold time is being specified relative to a clock or strobe in- put represented by mnemonic xx. Hold times are measured from xx Valid to ww Invalid.
Delay Time	Delay times are designated as t _{Dxxyy} [H L], where xx represents the mnemonic of the input reference signal and yy represents the mnemonic of the output signal whose timing is being specified relative to xx. The mnemonic may optionally be terminated by an H or L to specify the high going or low going transition of the output signal. Maximum delay times are measured from xx Valid to yy Valid. Minimum delay times are measured from xx Valid This parameter is tested under the load conditions specified in the Conditions section of the induction section.

PRELIMINARY

HPC16040/HPC26040/HPC36040/HPC46040/HPC16030/ HPC36030/HPC46030 High-Performance Microcontrollers

General Description

The HPC16040 is a member of the HPCTM family of High Performance microControllers. Each member of the family has the same identical core CPU with a unique memory and I/O configuration to suit specific applications. Each part is fabricated in National's advanced microCMOS technology. This process combined with an advanced architecture provides fast, flexible I/O control, efficient data manipulation, and high speed computation.

The HPC16040 is a complete microcomputer on a single chip. All system timing, internal logic, ROM, RAM, and I/O are provided on the chip to produce a cost effective solution for high performance applications. On-chip functions such as UART, eight 16-bit timers, vectored interrupts, WATCH-DOGTM logic and MICROWIRE/PLUSTM provide a high level of system integration. The ability to address up to 64k bytes of external memory enables the HPC16040 to be used in powerful applications typically performed by micro-processors and expensive peripheral chips.

The microCMOS process results in very low current drain and enables the user to select the optimum speed/power product for his system. The IDLE and HALT modes provide further current savings. The HPC16040 is available in 68-pin PCC, LCC and PGA packages.

Features

- HPC family—core features:
 - 16-bit architecture, both byte and word
 - 16-bit data bus, ALU, and registers
 - 64k bytes of external memory addressing
 - FAST!—240 ns for register instructions when using 17.0 MHz clock
 - High code efficiency—most instructions are single byte
 - 16 x 16 multiply and 32 x 16 divide
 - Eight vectored interrupt sources
 - Four 16-bit timer/counters with 3 input capture registers and 4 synchronous outputs
 - WATCHDOG logic monitors processor
 - MICROWIRE/PLUS serial I/O interface
 - CMOS—very low power with two power save modes: IDLE and HALT (2 mA, 250 μA —typ.)
- UART—full duplex, programmable baud rate
- Four additional 16-bit timer/counters with pulse width modulated outputs
- 52 general purpose I/O lines (memory mapped)
- 4k bytes of ROM, 256 bytes of RAM on chip
- ROMIess versions available
- Wide voltage supply range: 3V to 5.5V
- Industrial (-40°C to +85°C) and military (-55°C to +125°C) temperature ranges

Block Diagram

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

V _{CC} with	Respec	t to GND
----------------------	--------	----------

-0.5V to 7.0V

All Other Pins $(V_{CC} + 0.5)V$ to (GND - 0.5)VNote: Absolute maximum ratings indicate limits beyond

Note: Absolute maximum ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications are not ensured when operating the device at absolute maximum ratings.

Total Allowable Source or Sink Current100 mAStorage Temperature Range-65°C to +150°CLead Temperature (Soldering, 10 sec)300°C

DC Electrical Characteristics $V_{CC} = 5.0V \pm 10\%$ unless otherwise specified, $T_A = 0^{\circ}C$ to $+70^{\circ}C$ for

HPC46040, -40°C to +85°C for HPC36040, -40°C to +105°C for HPC26040, -55°C to +125°C for HPC16040

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
ICC1	Supply Current	$V_{CC} = 5.0V$, f _{in} = 17.0 MHz*		20		mA
		$V_{CC} = 5.0V$, f _{in} = 2.0 MHz		2.4		mA
ICC2	IDLE Mode Current	$V_{CC} = 5.0V$, $f_{in} = 17.0$ MHz, $T_A = 25^{\circ}C^{*}$		2		mA
		$V_{CC} = 5.0V$, f _{in} = 2.0 MHz, T _A = 25°C		0.2		mA
I _{CC3}	HALT Mode Current	$V_{CC} = 5.0V$, f _{in} = 0 kHz, T _A = 25°C*		250		μΑ
		$V_{CC} = 2.5V$, f _{in} = 0 kHz, T _A = 25°C		150		μΑ
INPUT V	OLTAGE LEVELS RESET, NMI, CK	I AND WO (SCHMITT TRIGGERED)				
V _{IH1}	Logic High		0.9 V _{CC}			V
V _{IL1}	Logic Low				0.1 V _{CC}	V
ALL OTH	ER INPUTS					
V _{IH2}	Logic High		0.7 V _{CC}			V
V _{IL2}	Logic Low				0.2 V _{CC}	V
ILI	Input Leakage Current				±1	μA
CI	Input Capacitance			10		pF
CIO	I/O Capacitance			20		pF
OUTPUT	VOLTAGE LEVELS CMOS OPERA	TION				
V _{OH1}	Logic High	$I_{OH} = -10 \ \mu A$	V _{CC} - 0.1			V
V _{OL1}	Logic Low	l _{OH} = 10 μA			0.1	V
V _{OH2}	Port A/B Drive, CK2	$I_{OH} = -7 \text{ mA}, V_{CC} = 5.0 \text{ V}$	2.4			V
V _{OL2}	(A ₀ -A ₁₅ , B ₁₀ , B ₁₁ , B ₁₂ , B ₁₅)	I _{OL} = 3 mA			0.4	V
V _{OH3}	Other Port Pin Drive, WO (open	$I_{OH} = -1.6 \text{ mA}, V_{CC} = 5.0 \text{ V}$	2.4			V
V _{OL3}	drain) (B ₀ -B ₉ , B ₁₃ , B ₁₄ , P ₀ -P ₃)	$I_{OL} = 0.5 \text{ mA}$			0.4	V
V _{OH4}	ST1 and ST2 Drive	$I_{OH} = -6 \text{ mA}, V_{CC} = 5.0 \text{ V}$	2.4			V
V _{OL4}		I _{OL} = 1.6 mA			0.4	V
V _{RAM}	RAM Keep-Alive Voltage			2.5		V
loz	TRI-STATE Leakage Current			±5		μA

*Note: I_{CC_1} , I_{CC_2} , I_{CC_3} measured with no external drive (I_{OH} and $I_{OL} = 0$, I_{IH} and $I_{IL} = 0$).

AC Electrical Characteristics	AC	Elect	trical	Chara	cteristics
-------------------------------	----	-------	--------	-------	------------

 V_{CC} = 5.0V \pm 10%, f_C = 17.0 MHz, T_A = 0°C to +70°C for HPC46040, -40°C to +85°C for HPC36040

Symbol	Parameter	Min	Тур	Max	Units
$f_{\rm C} = \rm CKI$ freq.	Operating Frequency	2		17.0	MHz
$t_{C1} = 1/f_C$	Clock Period	59			ns
$t_{\rm C} = 2/f_{\rm C}$	Timing Cycle	118	120		ns
$t_{LL} = \frac{1}{2} t_C - 9$	ALE Pulse Width	50	60		ns
$t_{ST} = \frac{1}{4} t_{C} - 6$	Address Valid to ALE Trailing Edge	23	30		ns
$t_{WAIT} = t_C = WS$	Wait State Period	118	120		ns
$f_{XIN} = \frac{1}{19 t_{C1}}$	External Timer Input Frequency		877		kHz
$t_{XIN} = 3 t_{C1}$	Pulse Width for Timer Inputs		180		ns
$f_{\rm XOUT} = \frac{1}{16 t_{\rm C1}}$	Timer Output Frequency		1.04		MHz
$f_{MW} = \frac{1}{19 t_{C1}}$	External MICROWIRE/PLUS Clock Input Frequency		877		kHz
$f_U = \frac{1}{19 t_{C1}}$	External UART Clock Input Frequency		877		kHz
tDC1C2	CK2 Delay from CK1			55	ns

Read Cycle Timing with One Wait State

Symbol	Parameter	Min	Тур	Max	Units
$t_{ARR} = \frac{1}{4} t_{C} - 5$	ALE Trailing Edge to RD Falling Edge	24			ns
$t_{RW} = \frac{1}{2} t_{C} + WS - 10$	RD Pulse Width	167			ns
$t_{DR} = \frac{3}{4} t_{C} - 15$	Data Hold after Rising Edge of RD	0		75	ns
$t_{ACC} = t_{C} + WS - 55$	Address Valid to Input Data Valid			181	ns
$t_{RD} = \frac{1}{2} t_{C} + WS - 65$	RD Falling Edge to Data in Valid			112	ns
$t_{RDA} = t_C - 5$	RD Rising Edge to Address Valid	111			ns
$t_{VPR} = \frac{1}{4} t_C - 5$	Address Valid from ALE Trailing Edge Prior to RD	24	35		ns

Write Cycle Timing with One Wait State

Symbol	Parameter	Min	Тур	Max	Units
$t_{ARW} = \frac{1}{2} t_C - 5$	ALE Trailing Edge to WR Falling Edge	54			ns
$t_{WW} = \frac{3}{4} t_{c} + WS - 15$	WR Pulse Width	192			ns
$t_{HW} = \frac{1}{4} t_C - 5$	Data Hold after Trailing Edge of WR	24			ns
$t_V = \frac{1}{2} t_C + WS - 5$	Data Valid before Trailing Edge of WR	172			ns
$t_{VPW} = \frac{1}{4} t_C + 20$	Address Valid from Trailing Edge Prior to WR	50			ns

Note: Bus Output (Port A) $C_L = 100 \text{ pF}$, CK2 Output $C_L = 50 \text{ pF}$, other Outputs $C_L = 80 \text{ pF}$.

Symb	ol	Parameter		Min	Тур	Max	Units
$t_{\text{DAR}} = \frac{1}{4} t_{\text{C}} +$	WS - 50	Falling Edge of ALI to Falling Edge of F			100		ns
$t_{\rm RWP} = t_{\rm C}$		RDY Pulse Width			120		ns
$t_{SALE} = \frac{1}{4} t_C$	+ 40	Falling Edge of HLI to Rising Edge of A			70		ns
$t_{HWP} = t_{C} + 1$	0	HLD Pulse Width			130		ns
tHAD		Rising Edge on HL Rising Edge on HL	D to DA		120		ns
$t_{HAE} = t_C + 1$	00	Falling Edge on HL Falling Edge on HL	.D to .DA		220	•	ns
$t_{BF} = t_C + 30$		Bus Float before Falling Edge on HL	.DA		150		ns
$t_{BE} = 2 t_{C} + 5$	0	Bus Enable from Rising Edge of HLL	5		290		ns
Note: t _{HAE} may be a	s long as (3t _C + 4w	s + 72t _C + 90) depending on	which instruction	n is being e	xecuted, the addre	essing mode and nu	mber of wait states.
Status Tim	ing f _C = 16.7	8 MHz					
Symb	ol	Parameter		Min	Тур	Max	Units
t _{SRS2} = 40 -	(1⁄4 t _C + 25)	Setup Time for ST Rising Edge of AL	2 on E		- 15		ns
$t_{\rm HRS2} = \frac{3}{4} t_{\rm C}$	- 15	Hold Time for ST2 Rising Edge of AL	2 on E		75		ns
t _{SFS2} = 40 -	(¼ t _C + 25)	Setup Time for ST Falling Edge of AL	2 on E		- 15		ns
$t_{\rm HFS2} = \frac{3}{4} t_{\rm C}$	- 15	Hold Time for ST2 Falling Edge of AL	2 on _E		75		ns
t _{SFS1}		Setup Time for ST Falling Edge of R	1 on 5		20		ns
$t_{\rm HRS1} = \frac{1}{2} t_{\rm C}$	- 15	Hold Time for ST1 Rising Edge of RD	i on 5		45		ns
JPI Read/	Write Timi	ing					
Symbol	F	Parameter	Min		Тур	Max	Units
t _{UAS}	Address Falling Ed	Setup Time to Ige of UPIRD			5		ns
t _{UAH}	Address Rising Ec	Hold Time from			5		ns
t _{RPW}	UPIRD P	ulse Width			100		ns
t _{OE}	UPIRD Fa Data Out	alling Edge to Valid			60		ns
tod	End of U Data Out	PIRD to Valid			35		ns
^t DRDY	RDRDY I Edge of U	Delay from Trailing JPIRD			70		ns
twow	UPIWR P	ulse Width			40		ns
^t UDS	Data in V Trailing E	alid before dge of UPIWR			10		ns
^t UDH	Data in H Trailing E	old after dge of UPIWR			15		ns
t _A	WRRDY	Delay from Trailing			70		ns

HPC16040/HPC26040/HPC36040/HPC46040/HPC16030/HPC36030/HPC46030

2

HPC16040/HPC26040/HPC36040/HPC46040/HPC16030/HPC36030/HPC46030

2-44

2

The HPC16040 is available in 68-pin PCC and LCC packages, and a 48-pin ceramic DIP.

I/O PORTS

Port A is a 16-bit bidirectional I/O port with a data direction register to enable each separate pin to be individually defined as an input or output. When accessing external memory, port A is used as the multiplexed address/data bus.

Port B is a 16-bit port with 12 bits of bidirectional I/O similar in structure to Port A. Pins B10, B11, B12 and B15 are general purpose outputs only in this mode. Port B may also be configured via a 16-bit function register BFUN to individually allow each pin to have an alternate function.

B0:	TDX	UART Data Output
B1:		
B2:	СКХ	UART Clock (Input or Output)
B3:	T2IO	Timer2 I/O Pin
B4:	T310	Timer3 I/O Pin
B5:	SO	MICROWIRE/PLUS Output
B6:	SK	MICROWIRE/PLUS Clock (Input or Output)
B7:	HLDA	Hold Acknowledge Output
B8:	TS0	Timer Synchronous Output
B9:	TS1	Timer Synchronous Output
B10:	UA0	Address 0 Input for UPI Mode
B11:	WRRDY	Write Ready Output for UPI Mode
B12:		

B13:	TS2	Timer Synchronous Output
B14:	TS3	Timer Synchronous Output
B15:	RDRDY	Read Ready Output for UPI Mode

When accessing external memory, four bits of port B are used as follows:

ALE	Address Latch Enable Output
WR	Write Output
HBE	High Byte Enable Output/Input
	(sampled at reset)
RD	Read Output
	ALE WR HBE RD

Port I is an 8-bit input port that can be read as general purpose inputs and is also used for the following functions: I0:

11:	NMI	Nonmaskable Interrupt Input
12:	INT2	Maskable Interrupt/Input Capture/URD
13:	INT3	Maskable Interrupt/Input Capture/UWR
14:	INT4	Maskable Interrupt/Input Capture
15:	SI	MICROWIRE/PLUS Data Input
16:	RDX	UART Data Input
17:		

Port D is an 8-bit input port that can be used as general purpose digital inputs.

Port P is a 4-bit output port that can be used as general purpose data, or selected to be controlled by timers 4

HPC16040/HPC26040/HPC36040/HPC46040/HPC16030/HPC36030/HPC46030

Pin Descriptions (Continued)

through 7 in order to generate frequency, duty cycle and pulse width modulated outputs.

POWER SUPPLY PINS

V _{CC}	Positive	Power	Supply	(3V	to	5.5\	/)
-----------------	----------	-------	--------	-----	----	------	----

- GND Ground for On-Chip Logic
- DGND Ground for Output Buffers

Note: There are two electrically connected V_{CC} pins on the chip, GND and DGND are electrically isolated. Both V_{CC} pins and both ground pins must be used.

CLOCK PINS

CKI The Chip System Clock Input

СКО The Chip System Clock Output (inversion of CKI)

Pins CKI and CKO are usually connected across an external crystal.

CK2 Clock Output (CKI divided by 2)

OTHER PINS

- wo This is an active low open drain output that signals an illegal situation has been detected by the Watch Dog logic.
- ST1 Bus Cycle Status Output: indicates first opcode fetch.
- ST2 Bus Cycle Status Output: indicates machine states (skip, interrupt and first instruction cycle).
- RESET is an active low input that forces the chip to restart and sets the ports in a TRI-STATE® mode.
- RDY/HLD has two uses, selected by a software bit. It's either a READY input to extend the bus cycle for slower memories, or a HOLD request input to put the bus in a high impedance state for DMA purposes.

- NC (no connection) unused at this time.
- EXM External memory enable (active high) disables internal ROM and maps it to external memory.
- EI External interrupt address with vector FFF1:FFF0. (active high)
- EXUI External interrupt which is internally OR'ed with the UART interrupt with vector address FFF3:FFF2 (Active Low).

Connection Diagrams

Top View

Order Number HPC16040E or V See NS Package Number E68B or V68A

Pin Grid Array Pinout

	- INDEX MARK
7	15 13 V _{CC2} B0 B2 B4 B6 WO CK1
	97531666
	I ₆ I ₄ I ₂ EXULB ₁ B ₃ B ₅ B ₇ GND
¹ 7 10	1) 8 6 4 2 68 66 64 62 60 CKO
D ₀ (12)	(13 D ₁ lo 59 58 l ₁
D ₂ 👍	(5) D3 ST1 (57) (56) ST2
El 16	17 D ₄ RESET 53 54 A ₀
D ₅ (18)	(1) D ₆ A ₁ (53 (52 A ₂
D ₇ @	2) EXM A3 (5) (5) A4
Po 22	23 P1 A5 49 48 A6
P ₂ 🕑	23 P3 A7 40 46 RDY/
NC 26	28 30 32 34 36 38 40 42 43 44 D _{GND}
	B ₁₄ B ₁₂ B ₁₀ B ₈ A ₁₄ A ₁₂ A ₁₀ A ₈ CK2
	29 39 33 33 35 37 39 41 43
	B ₁₅ B ₁₃ B ₁₁ B ₉ A ₁₅ A ₁₃ A ₁₁ A ₉ V _{CC}

TL/DD/8340-30

Top View (looking down on component side of PC Board)

Order Number HPC16040U See NS Package Number U68A 2-17

Ports A and B

The highly flexible A and B ports are similarly structured. The Port A (see *Figure 9*), consists of a data register and a direction register. Port B (see *Figure 10*) has an alternate function register in addition to the data and direction registers. All the control registers are read/write registers.

The associated direction registers allow the port pins to be individually programmed as inputs or outputs. Port pins selected as inputs, are placed in a TRI-STATE mode by resetting corresponding bits in the direction register.

A write operation to a port pin configured as an input causes the value to be written into the data register, a read operation returns the value of the pin. Writing to port pins configured as outputs causes the pins to have the same value, reading the pins returns the value of the data register.

Primary and secondary functions are multiplexed onto Port B through the alternate function register (BFUN). The secondary functions are enabled by setting the corresponding bits in the BFUN register.

Operating Modes

To offer the user a variety of I/O and expanded memory options, the HPC16040 has four operating modes. The four modes are Single-Chip, Expanded, Single-Chip ROMless, and Expanded ROMless. The four modes are determined by the state of both the External Memory (EXM) pin and the External Access (EA) bit in the PSW Register. The HPC16040 System bus consists of port A and four bits of port A is defined as the address/data bus and the four bits of port B are referred to as the control bus.

SINGLE-CHIP MODE

In this mode, the HPC16040 functions as a self-contained microcomputer. It can address internal memory consisting of 256 bytes of RAM and 4 kbytes of ROM. All ports are configured as memory mapped I/O ports. The HPC16040 reads 8 bits or 16 bits of data from the ports, depending on whether a byte or word format instruction is used (see *Figure 11*). The EXM pin and EA bit of the PSW Register are both logic "0" during Single-Chip mode signifying that on-chip ROM is being addressed and the range is limited to 4k (see Table II).

T/	ABLE	11.	Ope	rating	Modes

External Memory Pin (EXM)	External Access Bit (EA)	Operation Mode		
0	0	Single Chip		
0	1	Expanded		
1	0	Single Chip ROMless		
1	1	Expanded ROMless		

EXPANDED MODE

The Expanded mode (see *Figures 12* and *13*) is entered by setting the EA bit in the PSW Register. The HPC16040 can operate within the full 64 kbytes of address space. The 64 kbytes of addressable memory includes all on-chip memory because the EXM pin is grounded during this mode. The external memory may be any combination of RAM and ROM. External memory can be accessed with the data bus defined as either 8 bits wide or 16 bits wide. The System bus may be configured in the 8-bit mode by pulling the HBE pin high at reset. Upon entering the expanded mode, port A

Operating Modes (Continued)

FIGURE 10b. Structure of Port B Pins B3, B4, B8, B9, B13 and B14 (Timer Synchronous Pins)

Operating Modes (Continued)

becomes the Address/Data bus. Four bits of port B become ALE, WR, HBE and RD signals. The RD and WR signals are generated only if the selected address is off-chip. The HBE is generated only in the 16-bit bus configuration.

ROMIess MODES

There are two ROMless modes; Single-Chip ROMless and Expanded ROMless. Both ROMless modes are entered by pulling the EXM pin high, (see Figure 12 and 13). The EA bit in the PSW Register determines whether the HPC16040 addresses the Single-Chip memory range of 4 kbytes or the Expanded range of 64 kbytes, (see Table II for this information). In both ROMless modes, the HPC16040 continues to use the internal 256 bytes of RAM. The external 4k or 64k of addressed memory may be any combination of RAM and ROM. The address space corresponding to internal ROM is mapped into external memory.

Note: The HPC16040 uses 16-bit words for stack memory. Therefore, when using the 8-bit mode, User's Stack must be in internal RAM.

EXPANDED

FIGURE 12. 8-Bit External Memory

HPC16040/HPC26040/HPC36040/HPC46040/HPC16030/HPC36030/HPC46030

FIGURE 13. 16-Bit External Memory

Wait States

The HPC16040 provides four software selectable Wait States that allow access to slower memories. The Wait States are selected by the state of two bits in the PSW register. Additionally, the RDY input may be used to extend the instruction cycle, allowing the user to interface with slow memories and peripherals.

Power Save Modes

Two power saving modes are available on the HPC16040: HALT and IDLE. In the HALT mode, all processor activities are stopped. In the IDLE mode, the on-board oscillator and timer T0 are active but all other processor activities are stopped. In either mode, all on-board RAM, registers and I/O are unaffected.

HALT MODE

The HPC16040 is placed in the HALT mode under software control by setting bits in the PSW. All processor activities, including the clock and timers, are stopped. In the HALT mode, power requirements for the HPC16040 are minimal and the applied voltage (V_{CC}) may be decreased without altering the state of the machine. There are two ways of exiting the HALT mode: via the RESET or the NMI. The RESET input reinitializes the processor. Use of the NMI input will generate a vectored interrupt and resume operation from that point with no initialization. The HALT mode can be enabled or disabled by means of a control register HALT enable. To prevent accidental use of the HALT mode the HALT enable register can be modified only once.

IDLE MODE

The HPC16040 is placed in the IDLE mode through the PSW. In this mode, all processor activity, except the onboard oscillator and Timer T0, is stopped. External interrupt (EXUI) is shared with the UART interrupt. This interrupt is level-low sensitive. To select this interrupt disable the ERI and ETI UART interrupt bits in the ENUI register. To select the UART interrupt leave this pin floating or tie it high. As with the HALT mode, the processor is returned to full operation by the RESET or NMI inputs, but without waiting for oscillator stabilization. A timer T0 overflow will also cause the HPC16040 to resume normal operation.

HPC16040 Interrupts

Complex interrupt handling is easily accomplished by the HPC16040's vectored interrupt scheme. There are eight possible interrupt sources as shown in Table III.

Vector Address	Interrupt Source	Arbitration Ranking
\$FFFF:FFE	RESET	0
\$FFFD:FFFC	Nonmaskable external on	1
	rising edge of 11 pin	
\$FFFB:FFFA	External interrupt on I2 pin	2
\$FFF9:FFF8	External interrupt on I3 pin	3
\$FFF7:FFF6	External interrupt on I4 pin	4
\$FFF5:FFF4	Overflow on internal timers	5
\$FFF3:FFF2	Internal on the UART	
	transmit/receive complete	6
	or external on EXUI	
\$FFF1:FFF0	External interrupt on EI pin	7

TABLE III. Interrupts

Interrupt Arbitration

The HPC16040 contains arbitration logic to determine which interrupt will be serviced first if two or more interrupts occur simultaneously. The arbitration ranking is given in Table III. The interrupt on Reset has the highest rank and is serviced first.

Interrupt Processing

Interrupts are serviced after the current instruction is completed except for the RESET, which is serviced immediately.

RESET and EXUI are level-LOW-sensitive interrupts and EI is level-HIGH-sensitive. All other interrupts are edge-sensitive. NMI is positive-edge sensitive. The external interrupts on I2, I3 and I4 can be software selected to be rising or falling edge.

Interrupt Control Registers

The HPC16040 allows the various interrupt sources and conditions to be programmed. This is done through the various control registers. A brief description of the different control registers is given below.

INTERRUPT ENABLE REGISTER (ENIR)

RESET and the External Interrupt on I1 are non-maskable interrupts. The other interrupts can be individually enabled or disabled. Additionally, a Global Interrupt Enable Bit in the ENIR Register allows the Maskable interrupts to be collectively enabled or disabled. Thus, in order for a particular interrupt to be serviced, both the individual enable bit and the Global Interrupt bit (GIE) have to be set.

INTERRUPT PENDING REGISTER (IRPD)

The IRPD register contains a bit allocated for each interrupt vector. The occurrence of specified interrupt trigger conditions causes the appropriate bit to be set. There is no indication of the order in which the interrupts have been received. The bits are set independently of the fact that the interrupts may be disabled. IRPD is a Read/Write register. The bits corresponding to the maskable, external interrupts

are normally cleared by the HPC16040 after servicing the interrupts.

For the interrupts from the on-board peripherals, the user has the responsibility of resetting the interrupt pending flags through software.

The NMI bit is read only and I2, I3, and I4 are designed as to only allow a zero to be written to the pending bit (writing a one has no affect). A LOAD IMMEDIATE instruction is to be the only instruction used to clear a bit or bits in the IRPD register. This allows a mask to be used, thus ensuring that the other pending bits are not affected.

INTERRUPT CONDITION REGISTER (IRCD)

Three bits of the register select the input polarity of the external interrupt on I2, I3, and I4.

Servicing the Interrupts

The Interrupt, once acknowledged, pushes the program counter (PC) onto the stack thus incrementing the stack pointer (SP) twice. The Global Interrupt Enable bit (GIE) is copied into the CGIE bit of the PSW register; it is then reset, thus disabling further interrupts. The program counter is loaded with the contents of the memory at the vector address and the processor resumes operation at this point. At the end of the interrupt service routine, the user does a RETI instruction to pop the stack and re-enable interrupts if the CGIE bit is set, or RET to just pop the stack if the CGIE bit is clear, and then returns to the main program. The GIE bit can be set in the interrupt service routine to nest interrupts if desired. *Figure 14* shows the Interrupt Enable Logic.

Reset

The RESET input initializes the processor and sets ports A, B, and P in the TRI-STATE condition. RESET is an activelow Schmitt trigger input. The processor vectors to FFFF:FFFE and resumes operation at the address contained at that memory location (which must correspond to an on board location).

2<u></u>___

Timer Overview

The HPC16040 contains a powerful set of flexible timers enabling the HPC16040 to perform extensive timer functions; not usually associated with microcontrollers.

The HPC16040 contains eight 16-bit timers. Each timer has an associated 16-bit register. Timer T0 is a free-running timer, counting up at a fixed CKI/16 (Clock Input/16) rate. It is used for Watch Dog logic, high speed event capture, and to exit from the IDLE mode. Consequently, it cannot be stopped or written to under software control. Timer T0 permits precise measurements by means of the capture registers I2CR, I3CR, and I4CR. A control bit in the register TMMODE configures timer T1 and its associated register R1 as capture registers I3CR and I2CR. The capture registers I2CR, I3CR, and I4CR respectively, record the value of timer T0 when specific events occur on the interrupt pins I2, 13, and 14. The control register IRCD programs the capture registers to trigger on either a rising edge or a falling edge of its respective input. The specified edge can also be programmed to generate an interrupt (see Figure 15).

The timers T2 and T3 have selectable clock rates. The clock input to these two timers may be selected from the following two sources: an external pin, or derived internally by dividing the clock input. Timer T2 has additional capability of being clocked by the timer T3 underflow. This allows the user to cascade timers T3 and T2 into a 32-bit timer/ counter. The control register DIVBY programs the clock input to timers T2 and T3 (see *Figure 16*).

The timers T1 through T7 in conjunction with their registers form Timer-Register pairs. The registers hold the pulse duration values. All the Timer-Register pairs can be read from or written to. Each timer can be started or stopped under software control. Once enabled, the timers count down, and upon underflow, the contents of its associated register are automatically loaded into the timer.

SYNCHRONOUS OUTPUTS

The flexible timer structure of the HPC16040 simplifies pulse generation and measurement. There are four synchronous timer outputs (TS0 through TS3) that work in conjunction with the timer T2. The synchronous timer outputs can be used either as regular outputs or individually programmed to toggle on timer T2 underflows (see *Figure 16*). Timer/register pairs 4–7 form four identical units which can generate synchronous outputs on port P (see *Figure 17*).

FIGURE 17. Timers T4-T7 Block

Timer Registers

There are four control registers that program the timers. The divide by (DIVBY) register programs the clock input to timers T2 and T3. The timer mode register (TMMODE) contains control bits to start and stop timers T1 through T3. It also contains bits to latch and enable interrupts from timers T0 through T3. The control register PWMODE similarly programs the pulse width timers T4 through T7 by allowing them to be started, stopped, and to latch and enable interrupts on underflows. The PORTP register contains bits to preset the outputs and enable the synchronous timer output functions.

Timer Applications

The use of Pulse Width Timers for the generation of various waveforms is easily accomplished by the HPC16040.

Frequencies can be generated by using the timer/register pairs. A square wave is generated when the register value is a constant. The duty cycle can be controlled simply by changing the register value.

Synchronous outputs based on Timer T2 can be generated on the 4 outputs TS0–TS3. Each output can be individually programmed to toggle on T2 underflow. Register R2 contains the time delay between events. *Figure 19* is an example of synchronous pulse train generation.

Watch Dog Logic

The Watch Dog Logic monitors the operations taking place and signals upon the occurrence of any illegal activity. The illegal conditions that trigger the Watch Dog logic are potentially infinite loops and illegal addresses. Should the Watch Dog register not be written to before Timer T0 overflows

TL/DD/8340-23

FIGURE 19. Synchronous Pulse Generation

twice, or more often than once every 4096 counts, an infinite loop condition is assumed to have occurred. An illegal condition also occurs when the processor generates an offchip address when in the Single-Chip mode. The illegal condition forces the Watch Out (WO) pin low. The WO pin is an open drain output and can be connected to the RESET or NMI inputs or to the users external logic.

MICROWIRE/PLUS

MICROWIRE/PLUS is used for synchronous serial data communications (see *Figure 20*). MICROWIRE/PLUS has an 8-bit parallel-loaded, serial shift register using SI as the input and SO as the output. SK is the clock for the serial shift register (SIO). The SK clock signal can be provided by an internal or external source. The internal clock rate is programmable by the DIVBY register. A DONE flag indicates when the data shift is completed.

FIGURE 20. MICROWIRE/PLUS

The MICROWIRE/PLUS capability enables it to interface with any of National Semiconductor's MICROWIRE peripherals (i.e., A/D converters, display drivers, EEPROMs). The HPC16040 can enter the MICROWIRE/PLUS mode as the master or a slave. A control bit in the IRCD register determines whether the HPC16040 is the master or slave. The shift clock is generated when the HPC16040 is configured as a master. An externally generated shift clock on the SK pin is used when the HPC16040 is configured as a slave. When the HPC16040 is a master, the DIVBY register programs the frequency of the SK clock. The DIVBY register allows the SK clock frequency to be programmed in 15 selectable steps from 64 Hz to 1 MHz with CKI at 16.0 MHz.

The contents of the SIO register may be accessed through any of the memory access instructions. Data waiting to be transmitted in the SIO register is clocked out on the falling edge of the SK clock. Serial data on the SI pin is clocked in on the rising edge of the SK clock.

MICROWIRE/PLUS Application

Figure 21 illustrates a MICROWIRE/PLUS arrangement for an automotive application. The microcontroller-based system could be used to interface to an instrument cluster and various parts of the automobile. The diagram shows two HPC16040 microcontrollers interconnected to other MI-CROWIRE peripherals. HPC16040 # 1 is set up as the master and initiates all data transfers. HPC16040 # 2 is set up as a slave answering to the master.

The master microcontroller interfaces the operator with the system and could also manage the instrument cluster in an automotive application. Information is visually presented to the operator by means of a VF display controlled by the COP470 display driver. The data to be displayed is sent serially to the COP470 over the MICROWIRE/PLUS link. Data such as accumulated mileage could be stored and retrieved from the EEPROM COP494. The slave HPC16040 could be used as a fuel injection processor and generate timing signals required to operate the fuel valves. The master processor could be used to periodically send updated values to the slave via the MICROWIRE/PLUS link. To speed up the response, chip select logic is implemented by connecting an output from the master to the external interrupt input on the slave.

HPC16040 UART

The HPC16040 contains a software programmable UART. The UART (see Figure 22) consists of a transmit shift register, a receiver shift register and five addressable registers, as follows: a transmit buffer register (TBUF), a receiver buffer register (RBUF), a UART control and status register (ENU), a UART receive control and status register (ENUR) and a UART interrupt and clock source register (ENUI). The ENU register contains flags for transmit and receive functions; this register also determines the length of the data frame (8 or 9 bits) and the value of the ninth bit in transmission. The ENUR register flags framing and data overrun errors while the UART is receiving. Other functions of the ENUR register include saving the ninth bit received in the data frame and enabling or disabling the UART's Wake-up Mode of operation. The determination of an internal or external clock source is done by the ENUI register, as well as selecting the number of stop bits and enabling or disabling transmit and receive interrupts.

The baud rate clock for the Receiver and Transmitter can be selected for either an internal or external source using two bits in the ENUI register. The internal baud rate is programmed by the DIVBY register. The baud rate may be selected from a range of 8 Hz to 64 kHz in binary steps or T3 underflow. By selecting a 9.83 MHz crystal, all standard baud rates from 75 baud to 38.4 kBaud can be generated. The external baud clock source comes from the CKX pin. The Transmitter and Receiver can be run at different rates by selecting one to operate from the internal clock and the other from an external source.

The HPC16040 UART supports two data formats. The first format for data transmission consists of one start bit, eight data bits and one or two stop bits. The second data format for transmission consists of one start bit, nine data bits, and one or two stop bits. Receiving formats differ from transmission only in that the Receiver always requires only one stop bit in a data frame.

UART Wake-up Mode

The HPC16040 UART features a Wake-up Mode of operation. This mode of operation enables the HPC16040 to be networked with other processors. Typically in such environments, the messages consist of addresses and actual data. Addresses are specified by having the ninth bit in the data frame set to 1. Data in the message is specified by having the ninth bit in the data frame reset to 0.

The UART monitors the communication stream looking for addresses. When the data word with the ninth bit set is received, the UART signals the HPC16040 with an interrupt. The processor then examines the content of the receiver buffer to decide whether it has been addressed and whether to accpet subsequent data.

FIGURE 22. UART Block Diagram

Universal Peripheral Interface

The Universal Peripheral Interface (UPI) allows the HPC16040 to be used as an intelligent peripheral to another processor. The UPI could thus be used to tightly link two HPC16040's and set up systems with very high data exchange rates. Another area of application could be where a HPC16040 is programmed as an intelligent peripheral to a host system such as the Series 32000 microprocessor. *FIG-URE 23* illustrates how a HPC16040 could be used an an intelligent peripheral for a Series 32000-based application.

The interface consists of a Data Bus (port A), a Read Strobe (URD), a Write Strobe (UWR), a Read Ready Line (RDRDY), a Write Ready Line (WRRDY) and one Address Input (UA0). The data bus can be either eight or sixteen bits wide.

The URD and UWR inputs may be used to interrupt the HPC16040. The RDRDY and WRRDY outputs may be used to interrupt the host processor.

The UPI contains an Input Buffer (IBUF), an Output Buffer (OBUF) and a Control Register (UPIC). In the UPI mode, port A on the HPC16040 is the data bus. UPI can only be used if the HPC16040 is in the Single-Chip mode.

Shared Memory Support

Shared memory access provides a rapid technique to exchange data. It is effective when data is moved from a peripheral to memory or when data is moved between blocks of memory. A related area where shared memory access proves effective is in multiprocessing applications where two CPUs share a common memory block. The HPC16040 supports shared memory access with two pins. The pins are the RDY/HLD input pin and the HLDA output pin. The user can software select either the Hold or Ready function by the state of a control bit. The HLDA output is multiplexed onto port B.

The host uses DMA to interface with the HPC16040. The host initiates a data transfer by activating the HLD input of the HPC16040. In response, the HPC16040 places its system bus in a TRI-STATE Mode, freeing it for use by the host. The host waits for the acknowledge signal (HLDA) from the HPC16040 indicating that the sytem bus is free. On receiving the acknowledge, the host can rapidly transfer data into, or out of, the shared memory by using a conventional DMA controller. Upon completion of the message transfer, the host removes the HOLD request and the HPC16040 resumes normal operations.

FIGURE 24 illustrates an application of the shared memory interface between the HPC16040 and a Series 32000 system.

Memory

The HPC16040 has been designed to offer flexibility in memory usage. A total address space of 64 kbytes can be addressed with 4096 bytes of ROM and 256 bytes of RAM available on the chip itself. The ROM may contain program instructions, constants or data. The ROM and RAM share the same address space allowing instructions to be executed out of RAM.

Program memory addressing is accomplished by the 16-bit program counter on a byte basis. Memory can be addressed directly by instructions or indirectly through the B, X and SP registers. Memory can be addressed as words or bytes. Words are always addressed on even-byte boundaries. The HPC16040 uses memory-mapped organization to support registers, I/O and on-chip peripheral functions.

The HPC16040 memory address space extends to 64 kbytes and registers and I/O are mapped as shown in Table IV.

HPC16040/HPC26040/HPC36040/HPC46040/HPC16030/HPC36030/HPC46030

2

HPC16040 CPU

The HPC16040 CPU has a 16-bit ALU and six 16-bit registers

Arithmetic Logic Unit (ALU)

The ALU is 16 bits wide and can do 16-bit add, subtract and shift or logic AND, OR and exclusive OR in one timing cycle. The ALU can also output the carry bit to a 1-bit C register.

Accumulator (A) Register

The 16-bit A register is the source and destination register for most I/O, arithmetic, logic and data memory access operations.

Address (B and X) Registers

The 16-bit B and X registers can be used for indirect addressing. They can automatically count up or down to sequence through data memory.

Boundary (K) Register

The 16-bit K register is used to set limits in repetitive loops of code as register B sequences through data memory.

Stack Pointer (SP) Register

The 16-bit SP register is the pointer that addresses the stack. The SP register is incremented by two for each push or call and decremented by two for each pop or return. The stack can be placed anywhere in user memory and be as deep as the available memory permits.

Program (PC) Register

The 16-bit PC register addresses program memory.

Addressing Modes

ADDRESSING MODES—ACCUMULATOR AS DESTINATION

Register Indirect

This is the "normal" mode of addressing for the HPC16040 (instructions are single-byte). The operand is the memory addressed by the B register (or X register for some instructions).

Direct

The instruction contains an 8-bit or 16-bit address field that directly points to the memory for the operand.

HPC Instruction Set Description

Indirect

The instruction contains an 8-bit address field. The contents of the WORD addressed points to the memory for the operand.

Indexed

The instruction contains an 8-bit address field and an 8- or 16-bit displacement field. The contents of the WORD addressed is added to the displacement to get the address of the operand.

Immediate

The instruction contains an 8-bit or 16-bit immediate field that is used as the operand.

Register Indirect (Auto Increment and Decrement)

The operand is the memory addressed by the X register. This mode automatically increments or decrements the X register (by 1 for bytes and by 2 for words).

Register Indirect (Auto Increment and Decrement) with Conditional Skip

The operand is the memory addressed by the B register. This mode automatically increments or decrements the B register (by 1 for bytes and by 2 for words). The B register is then compared with the K register. A skip condition is generated if B goes past K.

ADDRESSING MODES-DIRECT MEMORY AS DESTINATION

Direct Memory to Direct Memory

The instruction contains two 8- or 16-bit address fields. One field directly points to the source operand and the other field directly points to the destination operand.

Immediate to Direct Memory

The instruction contains an 8- or 16-bit address field and an 8- or 16-bit immediate field. The immediate field is the operand and the direct field is the destination.

Double Register Indirect Using the B and X Registers

Used only with Reset, Set and IF bit instructions; a specific bit within the 64 kbyte address range is addressed using the B and X registers. The address of a byte of memory is formed by adding the contents of the B register to the most significant 13 bits of the X register. The specific bit to be modified or tested within the byte of memory is selected using the least significant 3 bits of register X.

Mnemonic	Description	Action						
RITHMETIC INSTRUCTIO	THMETIC INSTRUCTIONS							
ADD	Add	$MA + MemI \rightarrow MA$ carry $\rightarrow C$						
ADC	Add with carry	$MA + MemI + C \longrightarrow MA carry \longrightarrow C$						
DADC	Decimal add with carry	$MA+MemI+C \rightarrow MA$ (Decimal) carry $\rightarrow C$						
SUBC	Subtract with carry	$MA-MemI+C \rightarrow MA$ carry $\rightarrow C$						
DSUBC	Decimal subtract w/carry	$MA-MemI+C \rightarrow MA$ (Decimal) carry $\rightarrow C$						
MULT	Multiply (unsigned)	MA*MemI \rightarrow MA & X, 0 \rightarrow K, 0 \rightarrow C						
DIV	Divide (unsigned)	MA/MemI \rightarrow MA, rem. \rightarrow X, 0 \rightarrow K, 0 \rightarrow C						
IFEQ	If equal	Compare MA & Meml, Do next if equal						
IFGT	If greater than	Compare MA & MemI, Do next if MA > MemI						
AND	Logical and	MA and MemI \rightarrow MA						
OR	Logical or	MA or MemI \rightarrow MA						
XOR	Logical exclusive-or	MA xor MemI → MA						
EMORY MODIFY INSTRU	JCTIONS							
INC	Increment	Mem + 1 → Mem						
DECSZ	Decrement, skip if 0	Mem $-1 \rightarrow$ Mem, Skip next if Mem = 0						

Mnemonic	Description	Action
INSTRUCTIONS		
SET	Set bit	$1 \rightarrow \text{Mem.bit}$ (bit is 0 to 7 immediate)
BESET	Beset bit	$0 \rightarrow \text{Mem bit}$
IF	If bit	If Mem bit is true, do next instr.
MOBY TRANSFER INS	TRUCTIONS	
	Lood	
	Load incr/docr X	$Mom(Y) \longrightarrow A + 1 (or 2) \longrightarrow Y$
et .	Storo to Momony	$Mem(\Lambda) \xrightarrow{\longrightarrow} \Lambda, \Lambda \pm \Gamma(0, Z) \xrightarrow{\longrightarrow} \Lambda$
v	Store to Memory	
^	Exchange iner/deer X	$A \longleftrightarrow Mom(Y) X \pm 1 (or Q) \longrightarrow Y$
DUCU	Exchange, incr/decr A	$A \longrightarrow Mem(x), x \pm 1 (ol 2) \longrightarrow x$
PUSH	Push Memory to Stack	$W \rightarrow W(SP), SP+2 \rightarrow SP$
PUP	Pop Stack to Memory	$SP = 2 \rightarrow SP, W(SP) \rightarrow W$
LDS	Load A, incr/decr B,	Mem(B) \rightarrow A, B ± 1 (or 2) \rightarrow B,
	Skip on condition	Skip next if B greater/less than K
XS	Exchange, incr/decr B,	$Mem(B) \longleftrightarrow A, B \pm 1 \text{ (or 2)} \longrightarrow B,$
	Skip on condition	Skip next if B greater/less than K
GISTER LOAD IMMEDI	ATE INSTRUCTIONS	
	Load R immediate	
	Load Kimmediate	
	Load K immediate	
	Load X Immediate	$\lim_{n \to \infty} M \to M$
LUBK	Load B and K Immediate	
CCUMULATOR AND C I	NSTRUCTIONS	
CLR A	Clear A	$0 \rightarrow A$
INC A	Increment A	$A + 1 \rightarrow A$
DEC A	Decrement A	$A - 1 \rightarrow A$
COMPA	Complement A	1's complement of A \rightarrow A
SWAP A	Swap nibbles of A	A15:12 ← A11:8 ← A7:4 ↔ A3:0
RRC A	Rotate A right thru C	$C \rightarrow A15 \rightarrow \ldots \rightarrow A0 \rightarrow C$
RLC A	Rotate A left thru C	$C \leftarrow A15 \leftarrow \ldots \leftarrow A0 \leftarrow C$
SHR A	Shift A right	$0 \rightarrow A15 \rightarrow \ldots \rightarrow A0 \rightarrow C$
SHL A	Shift A left	$C \leftarrow A15 \leftarrow \ldots \leftarrow A0 \leftarrow 0$
SET C	Set C	$1 \rightarrow C$
BESETC	Beset C	$0 \rightarrow C$
IFC	IEC	Do next if $C = 1$
	IF not C	Do next if $C = 0$
JSRP	Jump subroutine from table	$PC \rightarrow W(SP), SP+2 \rightarrow SP$
		$W(table \#) \rightarrow PC$
JSR	Jump subroutine relative	$PC \rightarrow W(SP), SP+2 \rightarrow SP, PC+ \# \rightarrow PC$
ļ		(#is +1025 to −1023)
JSRL	Jump subroutine long	$PC \rightarrow W(SP), SP + 2 \rightarrow SP, PC + \# \rightarrow PC$
JP	Jump relative short	$PC + # \rightarrow PC(# \text{ is } + 32 \text{ to } -31)$
JMP	Jump relative	PC+ # → PC(#is +257 to -255)
JMPL	Jump relative long	$PC+ # \rightarrow PC$
JID	Jump indirect at PC + A	PC+A+1 → PC
JIDW	•	then Mem(PC) + PC \rightarrow PC
NOP	No Operation	$PC + 1 \rightarrow PC$
BET	Beturn	$SP-2 \rightarrow SP.W(SP) \rightarrow PC$
BETS	Return then skin next	$SP-2 \rightarrow SP.W(SP) \rightarrow PC. \& skin$
DETI	Detum from interrunt	$SD_{-} \rightarrow SD_{-} \otimes DC_{-} $ interrupt re-enabled

MA is Accumulator A or direct memory (8 or 16-bit)

Mem is 8-bit byte or 16-bit word of memory

Meml is 8- or 16-bit memory or 8 or 16-bit immediate data

imm is 8-bit or 16-bit immediate data

2

Memory Usage

	Using Accumulator A							To Direct Memory			
	Reg I (B)	Indir. (X)	Direct	Indir	Index	Immed.	Dir *	ect **	Imr *	ned. **	
LD	1	1	2(4)	3	4(5)	2(3)	3(5)	5(6)	3(4)	5(6)	
х	1	1	2(4)	3	4(5)	_	_		_		
ST	1	1	2(4)	3	4(5)	—				—	
ADC	1	2	3(4)	3	4(5)	4(5)	4(5)	5(6)	4(5)	5(6)	
SBC	1	2	3(4)	3	4(5)	4(5)	4(5)	5(6)	4(5)	5(6)	
DADC	1	2	3(4)	3	4(5)	4(5)	4(5)	5(6)	4(5)	5(6)	
DSBC	1	2	3(4)	3	4(5)	4(5)	4(5)	5(6)	4(5)	5(6)	
ADD	1	2	3(4)	3	4(5)	2(3)	4(5)	5(6)	4(5)	5(6)	
MULT	1	2	3(4)	3	4(5)	2(3)	4(5)	5(6)	4(5)	5(6)	
DIV	1	2	3(4)	3	4(5)	2(3)	4(5)	5(6)	4(5)	5(6)	
IFEQ	1	2	3(4)	3	4(5)	2(3)	4(5)	5(6)	4(5)	5(6)	
IFGT	1	2	3(4)	3	4(5)	2(3)	4(5)	5(6)	4(5)	5(6)	
AND	1	2	3(4)	3	4(5)	2(3)	4(5)	5(6)	4(5)	5(6)	
OR	1	2	3(4)	3	4(5)	2(3)	4(5)	5(6)	4(5)	5(6)	
XOR	1	2	3(4)	3	4(5)	2(3)	4(5)	5(6)	4(5)	5(6)	

Number Of Bytes For Each Instruction (number in parenthesis is 16-Bit field)

*8-bit direct address

**16-bit direct address

Instructions that modify memory directly

	(B)	(X)	Direct	Indir	Index	B&X
SET	1	2	3(4)	3	4(5)	1
RESET	1	2	3(4)	3	4(5)	1
IF	1	2	3(4)	3	4(5)	1
DECSZ	3	2	2(4)	3	4(5)	
INC	3	2	2(4)	3	4(5)	

Immediate Load Instructions

	Immed.
LD B,*	2(3)
LD X,*	2(3)
LD K,*	2(3)
LD BK,*,*	3(5)

Register Indirect Instructions with Auto Increment and Decrement

Register B With Skip					
(B+) (B-)					
LDS A,*	1	1			
XS A,*	1	1			

Register X					
(X+) (X-)					
LD A,*	1	1			
X A,*	1	1			

Instructions Using A and C

CLR	A	1
INC	Α	1
DEC	Α	1
COMP	Α	1
SWAP	Α	1
RRC	Α	1
RLC	Α	1
SHR	Α	1
SHL	Α	1
SET	С	1
RESET	С	1
l IF	С	1
IFN	С	1

JSRP 1 JSR 2

Transfer of Control Instructions

JSR	2
JSRL	3
JP	1
JMP	2
JMPL	3
JID	1
JIDW	1
NOP	1
RET	1
RETS	1
RETI	1

Stack Reference Instructions

	Direct
PUSH	2
POP	2

Code Efficiency

One of the most important criteria of a single chip microcontroller is code efficiency. The more efficient the code, the more features that can be put on a chip. The memory size on a chip is fixed so if code is not efficient, features may have to be sacrificed or the programmer may have to buy a larger, more expensive version of the chip.

The HPC16040 has been designed to be extremely codeefficient. The HPC16040 looks very good in all the standard coding benchmarks; however, it is not realistic to rely only on benchmarks. Many large jobs have been programmed onto the HPC16040, and the code savings over other popular microcontrollers has been considerable—often the jobs take less than one-half the memory!

Reasons for this saving of code include the following:

SINGLE BYTE INSTRUCTIONS

The majority of instructions on the HPC16040 are singlebyte. There are two especially code-saving instructions:

JP is a 1-byte jump. True, it can only jump within a range of plus or minus 32, but many loops and decisions are often within a small range of program memory. Most other micros need 2-byte instructions for any short jumps.

JSRP is a 1-byte call subroutine. The user makes a table of his 16 most frequently called subroutines and these calls will only take one byte. Most other micros require two and even three bytes to call a subroutine. The user does not have to decide which subroutine addresses to put into his table; the assembler can give him this information.

EFFICIENT SUBROUTINE CALLS

The 2-byte JSR instructions can call any subroutine within plus or minus 1k of program memory.

MULTIFUNCTION INSTRUCTIONS FOR DATA MOVE-MENT AND PROGRAM LOOPING

The HPC16040 has single-byte instructions that perform multiple tasks. For example, the XS instruction will do the following:

- 1. Exchange A and memory pointed to by the B register
- 2. Increment the B register
- 3. Compare the B register versus the K register
- 4. Generate a conditional skip if B is greater than K

The value of this multipurpose instruction becomes evident when looping through sequential areas of memory and exiting when the loop is finished.

BIT MANIPULATION INSTRUCTIONS

Any bit of memory, I/O or registers can be set, reset or tested by the single byte bit instructions. The bits can be addressed directly or indirectly. Since all registers and I/O are mapped into the memory, it is very easy to manipulate specific bits to do efficient control.

The one exception to the above is with the IRPD register. A LOAD IMMEDIATE instruction is to be the only instruction used to clear a bit or bits in this register (see Interrupt Pending Register section).

DECIMAL ADD AND SUBTRACT

This instruction is needed to interface with the decimal user world.

It can handle both 16-bit words and 8-bit bytes.

The 16-bit capability saves code since many variables can be stored as one piece of data and the programmer does not have to break his data into two bytes. Many applications store most data in 4-digit variables. The HPC16040 supplies 8-bit byte capability for 2-digit variables and literal variables.

MULTIPLY AND DIVIDE INSTRUCTIONS

The HPC16040 has 16-bit multiply, 16-bit by 16-bit divide, and 32-bit by 16-bit divide instructions. This saves both code and time. Multiply and divide can use immediate data or data from memory. The ability to multiply and divide by immediate data saves code since this function is often needed for scaling, base conversion, computing indexes of arrays, etc.

Development Support

The MOLE (Microcontroller On-Line Emulator) is a low cost development system and emulator for all microcontroller products. These include COPs, TMP, 8050U and the HPC Family of Products. The MOLE consists of a BRAIN Board, Personality Board and optional host software.

The purpose of a MOLE is to provide the user with a tool to write and assemble code, emulate code for the target microcontroller and assist in both the software & hardware debugging of the system.

It is a self-contained computer with its own firmware which provides for all system operation, emulation control, communication, PROM programming and diagnostic operations.

It contains three serial ports because multiple ports are usually needed to optionally connect to a terminal, a host system, a printer or modem, or to connect to other MOLEs in a multi-MOLE environment.

MOLE can be used in either a stand alone mode or in conjunction with selected host systems, i.e., those using CP/M or PC-DOS. Communicating via RS-232 port.

Dial-A-Helper is a service provided by the MOLE applications group. If a user is having difficulty in getting a MOLE to operate in a particular mode or it is acting peculiar, he can contact us via his system and a modem. He can leave messages on our electronic bulletin board which we will respond to, or he can arrange for us to actually take control of his system via modem for debugging purposes.

The applications group can then cause his system to execute various commands and try to resolve the customer's problem by actually getting the customer's system to respond. 99% of the time the problem is resolved. This allows us to respond in minutes instead of days when applications help is needed.

The system can also be used to download available applications software.

Part Selection

The HPC family includes devices with many different options and configurations to meet various application needs. The number HPC16040 has been generically used throughout this datasheet to represent the whole family of parts. The following chart explains how to order various options available when ordering HPC family members.

Note: All options may not currently be available.

FIGURE 8. HPC Family Part Numbering Scheme

TL/DD/8340-12

Examples

HPC46030E17— ROMless, Commercial temp. (0°C to 70°C), LCCHPC16040XXX/U174k masked ROM, Military temp. (-55°C to + 125°C), PGAHPC26040XXX/V174k masked ROM, Automotive temp. (-40°C to + 105°C), PCC

PRELIMINARY

HPC16400/HPC36400/HPC46400 High-Performance Microcontrollers with HDLC Controller

General Description

The HPC16400 is a member of the HPCTM family of High Performance microControllers. Each member of the family has the same identical core CPU with a unique memory and I/O configuration to suit specific applications. Each part is fabricated in National's advanced microCMOS technology. This process combined with an advanced architecture provides fast, flexible I/O control, efficient data manipulation, and high speed computation.

The HPC16400 has 4 functional blocks to support a wide range of communication application-2 HDLC channels, 4 channel DMA controller to facilitate data flow for the HDLC channels, programmable serial interface and UART.

The serial interface decoder allows the 2 HDLC channels to be used with devices using interchip serial link for point-topoint & multipoint data exchanges. The decoder generates enable signals for the HDLC channels allowing multiplexed D and B channel data to be accessed.

The HDLC channels manage the link by providing sequencing using the HDLC framing along with error control and retransmission based upon a cyclic redundancy check (CRC). Multiple frame addressing, and both bit and byte modes of operation are supported.

The HPC16400 is available in 68-pin PCC, LCC and PGA packages.

Features

- HPC family—core features:
 - 16-bit data bus, ALU, and registers
 - 64 kbytes of external memory addressing
 - --- FAST!---17.0 MHz system clock
 - High code efficiency
 - 16 x 16 multiply and 32 x 16 divide
 - Eight vectored interrupt sources
 - Four 16-bit timer/counters with WATCHDOG logic
 - MICROWIRE/PLUS serial I/O interface
 - CMOS-low power with two power save modes
- Two full duplex HDLC channels
 - Optimized or X.25 and LAPD applications
 - Programmable frame address recognition
 - Up to 4.1 Mbps aggregate serial data rate
 - Built in diagnostics
- Programmable interchip serial data decoder
- Four channel DMA controller
- UART—full duplex, programmable baud rate
- 544 kbytes of extended addressing
- Easy interface to National's 'U' and 'S' transceiver— TP3400, TP3410 and TP3420
- Wide voltage supply range: 3 to 5.5V
- Industrial (-40°C to +85°C) and military (-55°C to +125°C) temperature ranges

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Total Allowable Source or Sink Current	100 mA
Storage Temperature Range	-65°C to +150°C
Lead Temperature (Soldering, 10 sec)	300°C

V_{CC} with Respect to GND

-0.5V to 7.0V

DC Electrical Characteristics $V_{CC} = 5.0V \pm 10\%$ unless otherwise specified, $T_A = 0^{\circ}C$ to $+ 70^{\circ}C$ for
HPC46040, -40°C to +85°C for HPC36040, -40°C to +105°C for HPC26040, -55°C to +125°C for HPC16400

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
I _{CC1}	Supply Current	$V_{CC} = 5.0V$, f _{in} = 17.0 MHz*		20		mA
		$V_{CC} = 5.0V$, f _{in} = 2.0 MHz		2.4		mA
I _{CC2}	IDLE Mode Current	$V_{CC} = 5.0V$, f _{in} = 17.0 MHz, T _A = 25°C*		2		mA
		$V_{CC} = 5.0V$, f _{in} = 2.0 MHz, T _A = 25°C		0.2		mA
I _{CC3}	HALT Mode Current	$V_{CC} = 5.0V$, f _{in} = 0 kHz, T _A = 25°C*		25		μA
		$V_{CC} = 2.5V$, f _{in} = 0 kHz, T _A = 25°C		10		μA
	LTAGE LEVELS RESET, NMI, C	KI AND WO (SCHMITT TRIGGERED)				
V _{IH1}	Logic High			0.9 V _{CC}		v
V _{IL1}	Logic Low			0.1 V _{CC}		v
ALL OTH	ER INPUTS				-	
V _{IH2}	Logic High			0.7 V _{CC}		v
V _{IL2}	Logic Low			0.2 V _{CC}		v
ILI	Input Leakage Current			±1		μΑ
CI	Input Capacitance			10		pF
CIO	I/O Capacitance			20		pF
OUTPUT	VOLTAGE LEVELS CMOS OPER	RATION				
V _{OH1}	Logic High	l _{OH} = -10 μA		$V_{CC} - 0.2$		v
V _{OL1}	Logic Low	l _{OH} = 10 μA		0.2		v
V _{OH2}	Port A/B Drive	$I_{OH} = -7$ mA, $V_{CC} = 5.0V$		2.4		v
V _{OL2}	(A ₀ -A ₁₅ , B ₁₀ , B ₁₁ , B ₁₂ , B ₁₅)	$I_{OL} = 3 \text{ mA}$		0.4		v
V _{OH3}	Other Port Pin Drive	$I_{OH} = -1.6 \text{ mA}, V_{CC} = 5.0 \text{ V}$		2.4		v
V _{OL3}	(B ₀ -B ₉ , B ₁₃ , B ₁₄ , P ₀ -P ₃)	$I_{OL} = 0.5 \text{ mA}$		0.4		v
V _{OL4}	WO (Watchdog Out) Drive	$I_{OL} = 0.5 \text{ mA}, V_{CC} = 5.0 \text{V}$		0.4		v
V _{OH6}	CK2 Drive	$I_{OH} = -12 \text{ mA}, V_{CC} = 5.0 \text{V}$		2.4		v
V _{OL6}		I _{OL} = 3.5 mA		0.4		v
V _{OH7}	ST1 and ST2 Drive	$I_{OH} = -6 \text{ mA}, V_{CC} = 5.0 \text{ V}$		2.4		v
V _{OL7}		l _{OL} = 1.6 mA		0.4		v
V _{RAM}	RAM Keep-Alive Voltage			2.5		v
loz	TRI-STATE Leakage Current			±5		μA

*Note: I_{CC_1} , I_{CC_2} , I_{CC_3} measured with no external drive (I_{OH} and $I_{OL} = 0$, I_{IH} and $I_{IL} = 0$).

Symbol	Parameter	Min	Тур	Max	Units
r _C = CKI freq.	Operating Frequency		16.78	17.0	MHz
$c_{\rm C1} = 1/f_{\rm C}$	Clock Period		60		ns
$t_{\rm C} = 2/f_{\rm C}$	Timing Cycle		120		ns
$t_{LL} = \frac{1}{2} t_C$	ALE Pulse Width		60		ns
$t_{\rm ST} = \frac{1}{4} t_{\rm C}$	Address Valid to ALE Trailing Edge		30		ns
$t_{WAIT} = t_C = WS$	Wait State Period		120		ns
$f_{XIN} = \frac{1}{19} t_{C1}$	External Timer Input Frequency		877		kHz
$t_{XIN} = 3 t_{C1}$	Pulse Width for Timer Inputs		180		ns
$f_{XOUT} = \frac{1}{16} t_{C1}$	Timer Output Frequency		1.04		MHz
$f_{MW} = \frac{1}{19} t_{C1}$	External MICROWIRE/PLUS Clock Input Frequency		877		kHz
$f_{11} = \frac{1}{19} t_{C1}$	External UART Clock Input Frequency		877		kHz

Read Cycle Timing $f_{C} = 16.78$ MHz with One Wait State

Symbol	Parameter	Min	Тур	Max	Units
$t_{ARR} = \frac{1}{4} t_{C} + 5$	ALE Trailing Edge to RD Falling Edge		35		ns
$t_{\rm RW} = \frac{1}{2} t_{\rm C} + WS$	RD Pulse Width		180		ns
t _{DR}	Data Valid before Trailing Edge of RD		15		ns
$t_{ACC} = t_C + WS - 55$	Address Valid to Input Data Valid		185		ns
$t_{\rm RD} = \frac{1}{2} t_{\rm C} + WS - 65$	RD Falling Edge to Data in Valid		115		ns
$t_{RDA} = WS = t_C$	RD Falling Edge to Address Valid		120		ns
$t_{VPR} = \frac{1}{4} t_C + 5$	Address Valid from ALE Trailing Edge Prior to RD		35		ns
$t_{HZ} = \frac{3}{4} t_{C} - 10$	End of RD to Input Data Float		80		ns

Write Cycle Timing $f_{C} = 16.78$ MHz with One Wait State

Symbol	Parameter	Min	Тур	Max	Units
$t_{ARW} = \frac{1}{2} t_C$	ALE Trailing Edge to WR Falling Edge		60		ns
$t_{WW} = \frac{3}{4} t_{c} + WS + 5$	WR Pulse Width		215		ns
t _{HW}	Data Hold after Trailing Edge of WR		20		ns
$t_V = \frac{1}{2} t_C + WS + 5$	Data Valid before Trailing Edge of WR		185		ns
$t_{VPW} = \frac{1}{4} t_{C} + 25$	Address Valid from Trailing Edge Prior to WR		55		ns

HPC16400/HPC36400/HPC46400

2

Symbol	Parameter	Min	Тур	Max	Units
$t_{\text{DAR}} = \frac{1}{4} t_{\text{C}} + \text{WS} - 50$	Falling Edge of ALE to Falling Edge of RDY		100		ns
$t_{RWP} = t_C$	RDY Pulse Width		120		ns
$t_{SALE} = \frac{1}{4} t_{C} + 40$	Falling Edge of HLD to Rising Edge of ALE		70		ns
$t_{HWP} = t_{C} + 10$	HLD Pulse Width		130		ns
^t HAD	Rising Edge on HLD to Rising Edge on HLDA		120		ns
$t_{HAE} = t_{C} + 100$	Falling Edge on HLD to Falling Edge on HLDA		220	*	ns
$t_{BF} = t_C + 30$	Bus Float before Falling Edge on HLDA		150		ns
$t_{BE} = 2 t_{C} + 50$	Bus Enable from Rising Edge of HLD		290		ns

*Note: tHAE may be as long as (3tc + 4ws + 72tc + 90) depending on which instruction is being executed, the addressing mode and number of wait states.

Status Timing f_C = 16.78 MHz

Symbol	Parameter	Min	Тур	Max	Units
$t_{SRS2} = 40 - (1/4 t_{C} + 25)$	Setup Time for ST2 on Rising Edge of ALE		- 15		ns
$t_{HRS2} = \frac{3}{4} t_{C} - 15$	Hold Time for ST2 on Rising Edge of ALE		75		ns
$t_{SFS2} = 40 - (1/4 t_{C} + 25)$	Setup Time for ST2 on Falling Edge of ALE		-15		ns
$t_{HFS2} = \frac{3}{4} t_{C} - 15$	Hold Time for ST2 on Falling Edge of ALE		75		ns
tSFS1	Setup Time for ST1 on Falling Edge of RD		20		ns
$t_{\rm HRS1} = \frac{1}{2} t_{\rm C} - 15$	Hold Time for ST1 on Rising Edge of RD		45		ns

Timing Waveforms

2-69

2

FIGURE 5. Status Timing

Pin Descriptions[†]

I/O PORTS

Port A is a 16-bit multiplexed address/data bus used for accessing external program and data memory. Four associated bus control signals are available on port B. The Address Latch Enable (ALE) signal is used to provide timing to demultiplex the bus. Reading from and writing to external memory are signalled by RD* and WR* respectively. External memory can be addressed as either bytes or words with the decoding controlled by two lines, Bus High Byte enable (HBE*) and Address/Data Line 0 (A0).

Port B is a 16-bit port, with 12 bits of bidirectional I/O similar in structure to port A. Pins B10, B11, B12 and B15 are the control bus signals for the address/data bus. Port B may also be configured via a function register BFUN to individually allow each bidirectional I/O pin to have an alternate function.

B0:	TDX	UART Data Output
B1:		
B2:	СКХ	UART Clock (Input or Output)
B3:	T2IO	Timer2 I/O Pin
B4:	T3IO	Timer3 I/O Pin
B5:	SO	MICROWIRE/PLUS Output
B6:	SK	MICROWIRE/PLUS Clock (Input or Output)
B7:	HLDA*	Hold Acknowledge Output
B8:	TS0	Timer Synchronous Output
B9:	TS1	Timer Synchronous Output
B10:	ALE	Address Latch Enable Output for Address/
		Data Bus
B11:	WR*	Address/Data Bus Write Output
B12:	HBE*	High Byte Enable Output for Address/Data
		Bus
B13:	TS2	Timer Synchronous Output
B14:	TS3	Timer Synchronous Output
B15:	RD*	Address/Data Bus Read Output
When	operating	in the extended memory addressing mode,
four bi	its of port	B can are used as follows—
B8:	BSC	Memory bank switch output 0 (LSB)
B9:	BS1	Memory bank switch output 1

B13:	BS2	Memory bank switch output 2
B14:	BS3	Memory bank switch output 3 (MSB)

Port I is an 8-bit input port that can be read as general purpose inputs and can also be used for the following functions:

10:		
11:	NMI	Nonmaskable Interrupt Input
12:	INT2	Maskable Interrupt/Input Capture
13:	INT3	Maskable Interrupt/Input Capture
15:	SI	MICROWIRE/PLUS Data Input
16:	RDX	UART Data Input
17:	FS	IDL Frame Sync Input Signal

Port D is an 8-bit input port that is used for the following functions:

D0:	RX1	HDLC # 1 Receive Data Input
D1:	CLK1	HDLC # 1 Clock Input
D2:	REN1	HDLC # 1 Receiver Enable Input
D3:	TEN1	HDLC # 1 Transmit Enable Input
D4:	RX2	HDLC # 2 Receive Data Input
D5:	CLK2	HDLC # 2 Clock Input
D6:	REN2	HDLC # 2 Receiver Enable Input
D7:	TEN2	HDLC # 2 Transmit Enable Input

Port R is an 8-bit bidirectional I/O port available for general purpose I/O operation. Additional functions are present as indicated.

R0:	TX1	HDLC #1 Transmit Output
R1:	TX2	HDLC #2 Transmit Output
R2:		
R3:		
R4:		
R5:		
R6:		
R7:		

[†]The formation of the various functions into specified ports has changed. Please contact factory for updated port configurations.

Pin Descriptions (Continued)

POWER SUPPLIES

V _{CC}	Positive Power Supply (two pins)
GND	Ground for On-Chip Logic
DGND	Ground for Output Buffers
CLOCK P	INS
СКІ	The System Clock Input
СКО	The System Clock Output (Inversion of CKI)
Pins CKI a crystal.	and CKO are usually connected across an external

CK2 Clock Output (CKI divided by 2)

OTHER PINS

- WO This is an active low open drain output which signals an illegal situation has been detected by the Watch Dog logic.
- ST1 Bus Cycle Status Output indicates first opcode fetch.
- ST2 Bus Cycle Status Output indicates machine states (skip and interrupt).
- RESET Active low input that forces the chip to restart and sets the ports in a TRI-STATE mode.
- RDY/HLD Has two uses, selected by a software bit. This pin is either a READY input to extend the bus cycle for slower memories or a HOLD-REQUEST input to put the bus in a high impedance state for external DMA purposes.
- EXM External memory enable which must be tied high for normal operation.

Connection Diagram ·

Plastic and Leadless Chip Carriers

*The Pin Configuration has changed. Please contact factory for updated pin placement information.

Wait States

The HPC16400 provides four software selectable Wait States that allow access to slower memories. The Wait States are selected by the state of two bits in the PSW register. Additionally, the RDY input may be used to extend the instruction cycle, allowing the user to interface with slow memories and peripherals.

Power Save Modes

Two power saving modes are available on the HPC16400: HALT and IDLE. In the HALT mode, all processor activities are stopped. In the IDLE mode, the on-board oscillator and timer TO are active but all other processor activities are stopped. In either mode, all on-board RAM, registers and I/O are unaffected.

HALT MODE

The HPC16400 is placed in the HALT mode under software control by setting bits in the PSW. All processor activities, including the clock and timers, are stopped. In the HALT mode, power requirements for the HPC16400 are minimal and the applied voltage (V_{CC}) may be decreased without altering the state of the machine. There are two ways of exiting the HALT mode: via the RESET or the NMI. The RESET input reinitializes the processor. Use of the NMI input will generate a vectored interrupt and resume operation from that point with no initialization. The HALT mode can be enabled or disabled by means of a control register HALT enable. To prevent accidental use of the HALT mode the HALT enable register can be modified only once.

IDLE MODE

The HPC16400 is placed in the IDLE mode through the PSW. In this mode, all processor activity, except the onboard oscillator and Timer T0, is stopped. The HPC16400 resumes normal operation upon timer T0 overflow. As with the HALT mode, the processor is returned to full operation by the RESET or NMI inputs, but without waiting for oscillator stabilization.

HPC16400 Interrupts

Complex interrupt handling is easily accomplished by the HPC16400's vectored interrupt scheme. There are eight possible interrupt sources as shown in Table I.

Vector/ Address Interrupt Source		Arbitration Ranking	
FFFF	Reset	0	
FFFD FFFC	Nonmaskable Ext (NMI)	1	
FFFB FFFA	External on I2	2	
FFF9 FFF8	External on I3	3	
FFF7 FFF6	HDLC/DMA Error	4	
FFF5 FFF4	Overflow on Timers	5	
FFF3 FFF2	Internal on UART	6	
FFF1 FFF0	End of Message (EOM)	7	

TABLE I. Interrupts

The 16400 contains arbitration logic to determine which interrupt will be serviced first if two or more interrupts occur simultaneously. Interrupts are serviced after the current instruction is completed except for the RESET which is serviced immediately.

The NMI interrupt will immediately stop DMA activity-byte transfers in progress will finish thereby allowing an orderly transition to the interrupt service vector (see DMA description). The HDLC channels continue to operate, and the user must service data errors that might have occurred during the NMI service routine.

Interrupt Processing

Interrupts are serviced after the current instruction is completed except for the RESET, which is serviced immediately. RESET is a level-sensitive interrupt. All other interrupts are

edge-sensitive. NMI is positive-edge sensitive. The external interrupts on I2, I3 can be software selected to be rising or falling edge.

Interrupt Control Registers

The HPC16400 allows the various interrupt sources and conditions to be programmed. This is done through the various control registers. A brief description of the different control registers is given below.

INTERRUPT ENABLE REGISTER (ENIR)

RESET and the External Interrupt on 11 are non-maskable interrupts. The other interrupts can be individually enabled or disabled. Additionally, a Global Interrupt Enable Bit in the ENIR Register allows the Maskable interrupts to be collectively enabled or disabled. Thus, in order for a particular interrupt to be serviced, both the individual enable bit and the Global Interrupt bit (GIE) have to be set.

INTERRUPT PENDING REGISTER (IRPD)

The IRPD register contains a bit allocated for each interrupt vector. The occurrence of specified interrupt trigger conditions causes the appropriate bit to be set. There is no indication of the order in which the interrupts have been received. The bits are set independently of the fact that the interrupts may be disabled. IRPD is a Read/Write register. The bits corresponding to the maskable, external interrupts are normally cleared by the HPC16400 after servicing the interrupts.

For the interrupts from the on-board peripherals, the user has the responsibility of resetting the interrupt pending flags through software.

INTERRUPT CONDITION REGISTER (IRCD)

Three bits of the register select the input polarity of the external interrupt on I2, I3, and I4.

Servicing the Interrupts

The Interrupt, once acknowledged, pushes the program counter (PC) onto the stack thus incrementing the stack pointer (SP) twice. The Global Interrupt Enable (GIE) bit is reset, thus disabling further interrupts. The program counter is loaded with the contents of the memory at the vector address and the processor resumes operation at this point. At the end of the interrupt service routine, the user does a RETI instruction to pop the stack, set the GIE bit and return to the main program. The GIE bit can be set in the interrupt service routine to rest interrupts if desired. *Figure* 6 shows the Interrupt Enable Logic.

Reset

The RESET input initializes the processor and sets ports A, B, and P in the TRI-STATE condition. RESET is an activelow Schmitt trigger input. The processor vectors to FFFF:FFFE and resumes operation at the address contained at that memory location.

Timer Overview

The HPC16400 contains a powerful set of flexible timers enabling the HPC16400 to perform extensive timer functions; not usually associated with microcontrollers.

The HPC16400 contains eight 16-bit timers. Each timer has an associated 16-bit register. Timer T0 is a free-running timer, counting up at a fixed CKI/16 (Clock Input/16) rate. It is used for Watch Dog logic, high speed event capture, and to exit from the IDLE mode. Consequently, it cannot be stopped or written to under software control. Timer T0 permits precise measurements by means of the capture registers I2CR, I3CR, and I4CR. A control bit in the register TMMODE configures timer T1 and its associated register R1 as capture registers I3CR and I2CR. The capture registers I2CR, I3CR, and I4CR respectively, record the value of timer T0 when specific events occur on the interrupt pins I2, 13, and 14. The control register IRCD programs the capture registers to trigger on either a rising edge or a falling edge of its respective input. The specified edge can also be programmed to generate an interrupt (see Figure 7).

The timers T2 and T3 have selectable clock rates. The clock input to these two timers may be selected from the following two sources: an external pin, or derived internally by dividing the clock input. Timer T2 has additional capability of being clocked by the timer T3 underflow. This allows the user to cascade timers T3 and T2 into a 32-bit timer/ counter. The control register DIVBY programs the clock input to timers T2 and T3 (see *Figure 8*).

The timers T1 through T7 in conjunction with their registers form Timer-Register pairs. The registers hold the pulse duration values. All the Timer-Register pairs can be read from or written to. Each timer can be started or stopped under software control. Once enabled, the timers count down, and upon underflow, the contents of its associated register are automatically loaded into the timer.

Timer Overview (Continued)

TL/DD/8802-9

SYNCHRONOUS OUTPUTS

The flexible timer structure of the HPC16400 simplifies pulse generation and measurement. There are four synchronous timer outputs (TS0 through TS3) that work in conjunction with the timer T2. The synchronous timer outputs can be used either as regular outputs or individually programmed to toggle on timer T2 underflows (see *Figure 8*). Timer/register pairs 4–7 form four identical units which can

generate synchronous outputs on port P (see Figure 9).

Timer Registers

There are four control registers that program the timers. The divide by (DIVBY) register programs the clock input to timers T2 and T3. The timer mode register (TMMODE) contains control bits to start and stop timers T1 through T3. It also contains bits to latch and enable interrupts from timers T0 through T3. The control register PWMODE similarly programs the pulse width timers T4 through T7 by allowing them to be started, stopped, and to latch and enable interrupts on underflows. The PORTP register contains bits to

preset the outputs and enable the synchronous timer output functions.

Timer Applications

The use of Pulse Width Timers for the generation of various waveforms is easily accomplished by the HPC16400.

Frequencies can be generated by using the timer/register pairs. A square wave is generated when the register value is a constant. The duty cycle can be controlled simply by changing the register value.

TL/DD/8802-12

FIGURE 10. Square Wave Frequency Generation

Synchronous outputs based on Timer T2 can be generated on the 4 outputs TSO-TS3. Each output can be individually programmed to toggle on T2 underflow. Register R2 contains the time delay between events. *Figure 11* is an example of synchronous pulse train generation.

TL/DD/8802-13

Watch Dog Logic

The Watch Dog Logic monitors the operations taking place and signals upon the occurrence of any illegal activity. The illegal conditions that trigger the Watch Dog logic are potentially infinite loops and illegal addresses. Should the Watch Dog register not be written to before Timer T0 overflows twice, or more often than once every 4096 counts, an infinite loop condition is assumed to have occurred. The illegal condition forces the Watch Out (WO) pin low. The WO pin is an open drain output and can be connected to the RESET or NMI inputs or to the users external logic.

MICROWIRE/PLUS

MICROWIRE/PLUS is used for synchronous serial data communications (see *Figure 12*). MICROWIRE/PLUS has an 8-bit parallel-loaded, serial shift register using SI as the input and SO as the output. SK is the clock for the serial shift register (SIO). The SK clock signal can be provided by an internal or external source. The internal clock rate is programmable by the DIVBY register. A DONE flag indicates when the data shift is completed.

The MICROWIRE/PLUS capability enables it to interface with any of National Semiconductor's MICROWIRE peripherals (i.e., A/D converters, display drivers, EEPROMs).

FIGURE 11. Synchronous Pulse Generation

FIGURE 12. MICROWIRE/PLUS

MICROWIRE/PLUS Operation

The HPC16400 can enter the MICROWIRE/PLUS mode as the master or a slave. A control bit in the IRCD register determines whether the HPC16400 is the master or slave. The shift clock is generated when the HPC16400 is configured as a master. An externally generated shift clock on the SK pin is used when the HPC16400 is configured as a slave. When the HPC16400 is a master, the DIVBY register programs the frequency of the SK clock. The DIVBY register allows the SK clock frequency to be programmed in 15 selectable steps from 64 Hz to 1 MHz with CKI at 17.0 MHz.

The contents of the SIO register may be accessed through any of the memory access instructions. Data waiting to be transmitted in the SIO register is clocked out on the falling edge of the SK clock. Serial data on the SI pin is clocked in on the rising edge of the SK clock.

HPC16400 UART

The HPC16400 contains a software programmable UART. The UART (see Figure 13) consists of a transmit shift register, a receiver shift register and five addressable registers, as follows: a transmit buffer register (TBUF), a receiver buffer register (RBUF), a UART control and status register (ENU), a UART receive control and status register (ENUR) and a UART interrupt and clock source register (ENUI). The ENU register contains flags for transmit and receive functions; this register also determines the length of the data frame (8 or 9 bits) and the value of the ninth bit in transmission. The ENUR register flags framing and data overrun errors while the UART is receiving. Other functions of the ENUR register include saving the ninth bit received in the data frame and enabling or disabling the UART's Wake-up Mode of operation. The determination of an internal or external clock source is done by the ENUI register, as well as selecting the number of stop bits and enabling or disabling transmit and receive interrupts.

The baud rate clock for the Receiver and Transmitter can be selected for either an internal or external source using two bits in the ENUI register. The internal baud rate is programmed by the DiVBY register. The baud rate may be selected from a range of 8 Hz to 128 kHz in binary steps or T3 underflow. By selecting a baud rate crystal, all standard baud rates from 75 baud to 38.4 kbaud can be generated. The external baud clock source comes from the CKX pin. The Transmitter and Receiver can be run at different rates by selecting one to operate from the internal clock and the other from an external source.

The HPC16400 UART supports two data formats. The first format for data transmission consists of one start bit, eight

HPC16400 UART (Continued)

data bits and one or two stop bits. The second data format for transmission consists of one start bit, nine data bits, and one or two stop bits. Receiving formats differ from transmission only in that the Receiver always requires only one stop bit in a data frame.

UART Wake-up Mode

The HPC16400 UART features a Wake-up Mode of operation. This mode of operation enables the HPC16400 to be networked with other processors. Typically in such environments, the messages consist of addresses and actual data. Addresses are specified by having the ninth bit in the data frame set to 1. Data in the message is specified by having the ninth bit in the data frame reset to 0.

The UART monitors the communication stream looking for addresses. When the data word with the ninth bit set is received, the UART signals the HPC16400 with an interrupt. The processor then examines the content of the receiver buffer to decide whether it has been addressed and whether to accept subsequent data.

Programmable Serial Decoder Interface

The programmable serial decoder interface allows the two HDLC channels to be used with devices employing several popular serial protocols for point-to-point and multipoint data exchanges. These protocols combine the 'B' and 'D' channels onto common pins—received data, transmit data, clock and Sync, which normally occurs at an 8 KHz rate and provides framing for the particular protocol.

The decoder uses the serial link clock and Sync signals to generate internal enables for the 'D' and 'B' channels, thereby allowing the HDLC channels to access the appropriate channel data from the multiplexed link.

HDLC Channel Description

HDLC/DMA Structure

HDLC 1	

1	HD	۱L	С	2

HDLC1	HDLC1	HDLC2	HDLC2
Receive	Transmit	Receive	Transmit
DMAR1	DMAT1	DMAR2	DMAT2

GENERAL INFORMATION

Both HDLC channels on the HPC16400 are identical and operate up to 4.1 Mbps. When used in an ISDN basic access application, HDLC channel #1 has been designated for use with the 16 Kbps D-channel or the B1 channel and HDLC #2 can be used with either of the 64 Kbps B-channels. If the 'D' and 'B' channels are present on a common serial link, the programmable serial decoder interface generates the necessary enable signals needed to access the D and B channel data.

LAPD, the Link Access Protocol for the D channel is derived from the X.25 packet switching LAPB protocol. LAPD specifies the procedure for a terminal to use the D channel for the transfer of call control or user-data information. The procedure is used in both point-to-point and point-to-multipoint configurations. On the 16400, the HDLC controller contains user programmable features that allow for the efficient processing of LAPD Information.

HDLC Channel Pin Description

- RX Receive Serial Data Input. Data clocked in on positive CLK edge.
- CLK HDLC Channel Clock Input Signal.
- REN HDLC Channel Receiver Enable Input.
- TX Transmit Serial Data Output. Data clocked out on negative CLK edge.
- TEN HDLC Channel Transmitter Enable Input.

HDLC Functional Description

TRANSMITTER DESCRIPTION

Data information is transferred from external memory through the DMA controller into the transmit buffer register from where it is loaded into a 8-bit serial shift registers. The CRC is computed and appended to the frame prior to the closing flag being transmitted. Data is output at the TX output pin. If no further transmit commands are given the transmitter sends out continous flags or the idle pattern as selected by the control register.

An interrupt is generated when the transmit shift register is empty or on a transmit error condition. An assoicated transmit status register will contain the status information indicating the specific interrupt source.

TRANSMITTER FEATURES

Interframe fill: the transmitter can send either continuous '1's or repeated flags between the closing flag or one packet and the opening flag of the next. When the CPU commands the transmitter to open a new frame, the interframe fill is terminated immediately.

Abort: the 7 '1's abort sequence will be immediately sent on command from the CPU. If required it may be followed by a new opening flag to resend the aborted packet.

Bit/Byte boundaries: The message length between packet headers may have any number of bits and is not confined to byte boundaries. Three bits in the control register are used to indicate the number of valid bits in the last byte when operating in the bit mode. These bits are loaded by the users software.

RECEIVER DESCRIPTION

Data is input to the receiver on the RX pin. The receive clock can be externally input at the HDLC CLK pin, or it can be internally generated via the programmable timer chain.

Incoming data is routed through one of several paths depending on whether it is the flag, data, or CRC.

Once the receiver is enabled it waits for the opening flag of the incoming frame, then starts the zero bit deletion, addressing handling and CRC checking. All data between the flags is shifted through two 8-bit serial shift registers before being loaded into the buffer register. The user programmable address register values are compared to the incoming data while it resides in the shift registers. If an address match occurs or if operating in the transparent mode, the DMA channel is signaled that attention is required and the byte is transferred by it to external memory. Appropriate interrupts are generated to the CPU on the reception of a complete frame as indicated by a correct CRC, or on the occurance of a frame error.

HDLC Functional Description

(Continued)

There are two sources for the receive channel enable signal. It can be internally generated from the serial interface or it can be externally enabled.

The receive interrupt, in conjunction with status data in the control registers allows interrupts to be generated on the following conditions—CRC error, receive error and receive complete.

RECEIVER FEATURES

Flag sharing: the closing flag of one packet may be shared as the opening flag of the next. Receiver will be able to share a zero between flags—011111101111110 is a valid two flag sequence for receive (not transmit).

Interframe fill: the receiver automatically accepts either repeated flags or all '1's as the interframe fill.

Idle: Reception of successive 1's as the interframe fill sequence to be signaled to the user by setting the Idle bit in the Receive control and status register.

Short Frame Rejection: Reception of less than 4 bytes between flags will generate a frame error, terminating reception of the current frame and setting the Frame Error (FER) status bit in the Receive Control and Status register.

Abort: the 7 '1's abort sequence (received with no zero insertion) will be immediately recognized and will cause the receiver to reinitialize and return to searching the incoming data for an opening flag. Reception of the abort will cause the abort status bit in the Interrupt Error Status register to be set.

Bit/Byte boundaries: The message length between packet headers may have any number of bits and it is not confined to byte boundaries. Three bits in the status register are used to indicate the number of valid bits in the last byte when operating in the bit mode.

Addressing: Two user programmable bytes are available to allow frame address recognition on the two bytes immediately following the opening flag. When the received address matches the programmed value(s), the frame is passed through to the DMA channel. If no match occurs, the received frame address information is disregarded and he receiver returns to searching for the next opening flag and the address recognition process starts anew.

Support is provided to allow recognition of the broadcast address sequence of seven consecutive 1's. Additionally, a transparent mode of operation is available where no address decoding is done.

HDLC INTERRUPT CONDITIONS

The end of message interrupt (EOM) indicates that a complete frame has been received or transmitted by the HDLC controller. Thus, there are four separate sources for this interrupt, two each from each HDLC channel. The Message Control Register contains the pending bits for each source.

The HDLC/DMA error interrupt groups several related error conditions. Error conditions from both transmit/receiver channels can cause this interrupt, and the possible sources each have a status bit in the below register that is set on the occurrence of an error. The bit must then be serviced by the user.

HDLC CHANNEL CLOCK

Each HDLC channel uses the rising edge of the clock to sample the receive data. Outgoing transmit data is shifted

*The specific registers and/or register names may have changed. Please contact the factory for updated information.

out on the falling edge of the external clock. The maximum data rate when using the externally provided clocks is 4.1 Mb/s.

CYCLIC REDUNDACY CHECK

There are two standard CRC codes used in generating the 16-bit Frame Check Sequence (FCS) that is appended to the end of the data frame. Both codes are supported and the user selects the error checking code to be used through software control (Configuration reg). The two error checking polynomials available are:

(1) CRC-16 (x16 + x15 + x2 + 1)

(2) CCITT CRC (x16 + x12 + x5 + 1)

LOOP BACK OPERATIONAL MODE

The user has the ability, by appropriately configuring the control registers, to internally route the transmitter output at the TX pin to the receiver input at the RX pin. The transmit clock would then be internally connected to the receive clock.

DMA Controller*

GENERAL INFORMATION

The HPC16400 uses Direct Memory Access (DMA) logic to facilitate data transfer between the 2 full Duplex HDLC channels and external packet RAM. There are four DMA channels to support the four individual HDLC channels. Control of the DMA channels is accomplished through registers which are configured by the CPU. These control registers define specific operation of each channel and changes are immediately reflected in DMA operation. In addition to individual control registers, a global control bit (MSS in Message Control Register) is available so that the HDLC channels mels may be globally controlled.

The DMA issues a bus request to the CPU when one or more of the individual HDLC channels request service. Upon receiving a bus acknowledge from the CPU, the DMA completes all requests pending and any requests that may have occurred during DMA operation before returning control to the CPU. If no further DMA transfers are pending, the DMA relinquishes the bus and the CPU can again initiate a bus cycle.

Four memory expansion bits have been added for each of the four channels to support data transfers into the expanded memory bank areas.

The DMA has priority logic for a DMA requesting service. The priorities are:

1st priority	Receiver channel 1
2nd priority	Transmit channel 1
3rd priority	Receive channel 2
4th priority	Transmit channel 2

RECEIVER DMA OPERATION

A receiver DMA operation is initiated by the Buffer register. Once a byte has been placed in the Buffer register from the HDLC, it generates a request and upon obtaining control of the bus, the DMA places the byte in external memory.

RECEIVER REGISTERS

All the following registers are Read/Write

A. Frame Length Register

This user programmable 16-bit register contains the maximum number of bytes to be placed in a data "block". If

DMA Controller (Continued)

this number is exceeded, a Frame Too Long (FTLR1, FTLR2) error is generated. This register is decremented by one each Receiver DMA cycle.

B. CNTRL ADDR 1 The CNTRL ADDR register contains the external memory address where DATA ADDR 1 CNTRL ADDR 2 the Frame Header (Control & Address fields) are to be stored and the DATA DATA ADDR 2 ADDR register contains an equivalent address for the Information field.

TRANSMITTER DMA OPERATION

A transmitter DMA cycle is initiated by the TX Data Buffer (TDB). The TX Data Buffer generates a request when empty and the DMA responds by placing a Byte in the TDB. The HDLC transmitter can then accept the Byte to send when needed, upon which the TDB will issue another request, resulting in a subsequent DMA cycle.

TRANSMITTER REGISTERS

The following registers are Read/Write:

- A. Field Address 1 (FA1) FA1 and FA2 are starting addresses of blocks of informa-# Bytes Field 1 (NBF1) tion to transmitter. Field Address (FA2)
 - # Bytes Field 2 (NBF2)

NBF1 and NBF2 are the number of bytes in the block to be

transmitted starting the FA1.

The following registers are Read only:

B. Working Field Address (WFA)

Working Number of Bytes (WNB)

WFA is the present value of the Field address and will be the next memory location where the next byte will be accessed. WNB is the present value of the number of bytes to be transmitted. The value will be the number of bytes to be fetched from memory before the block information transfer is completed. On each transmit DMA cvcle. WFA is incremented and WNB is decremented.

Shared Memory Support

Shared memory access provides a rapid technique to exchange data. It is effective when data is moved from a peripheral to memory or when data is moved between blocks of memory. A related area where shared memory access proves effective in multiprocessing applications where two CPUs share a common memory block. The HPC16400 supports shared memory access with two pins. The pins are the RDY/HLD input pin and the HLDA output pin. The user can software select either the Hold or Ready function by the state of a control bit. The HLDA output is multiplexed onto port B.

The host uses DMA to interface with the HPC16400. The host initiates a data transfer by activating the HLD input of the HPC16400. In response, the HPC16400 places its system bus in a TRI-STATE Mode, freeing it for use by the host. The host waits for the acknowledge signal (HLDA) from the HPC16400 indicating that the sytem bus is free. On receiving the acknowledge, the host can rapidly transfer data into, or out of, the shared memory by using a conventional DMA controller. Upon completion of the message transfer, the host removes the HOLD request and the HPC16400 resumes normal operations.

Figure 14 illustrates an application of the shared memory interface between the HPC16400 and a Series 32000 system.

FIGURE 14. Shared Memory Application: HPC16400 Interface to Series 32000 System

Memory

The HPC16400 has been designed to offer flexibility in memory usage. A total address space of 64 kbytes can be addressed with 256 bytes of RAM available on the chip itself.

Program memory addressing is accomplished by the 16-bit program counter on a byte basis. Memory can be addressed directly by instructions or indirectly through the B, X and SP registers. Memory can be addressed as words or bytes. Words are always addressed on even-byte boundaries. The HPC16400 uses memory-mapped organization to support registers, I/O and on-chip peripheral functions.

The HPC16400 memory address space extends to 64 kbytes and registers and I/O are mapped as shown in Table II.

Extended Memory Addressing

If more than 64k of addressing is desired in a HPC16400 system, on board bank select circuitry is available that al-

lows four I/O lines of Port B (B9, B10, B13, B14) to be used in extending the address range. This gives the user a main routine area of 32k and 16 banks of 32k each for subroutine and data, thus getting a total of 544k of memory.

The Extended Memory Addressing mode is entered by setting the EMA control bit in the Message Control Register. If this bit is not set, the port B lines (B9, B10, B13, B14) are available as general purpose I/O or synchronous outputs as selected by the BFUN register.

The main memory area contains the interrupt vectors & service routines, stack memory, and common memory for the bank subroutines to use. The 16 banks of memory can contain program or data memory (note- since the on chip resources are mapped into addresses 0000-01FF, the first 512 bytes of each bank are not usable).

FFFF:FFF0 FFEF:FFD0	Interrupt Vectors JSRP Vectors	
FFCF:FFCE : : 0201:0200	External expansion Memory	USER MEMORY
01FF:01FE		
01C1:01C0		
018B:018A 0189:0188 0187:0186 0185:0184 0183:0182 0181:0180	Configuration Reg Rec Addr Comp Reg 2 Rec Addr Comp Reg 1 Interrupt Error Stat Xmit Cntrl & Status Recv Cntrl & Status	HDLC # 2
01AB:01AA 01A9:01A8 01A7:01A6 01A5:01A4 01A3:01A2 01A1:01A0	Configuration Reg Rec Addr Comp Reg 1 Rec Addr Comp Reg 1 Interrupt Error Stat Xmit Cntrl & Status Recv Cntrl & Status	HDLC # 1
0195:0194	Watch Dog Address	Watch Dog Logic
0193:0192 0191:0190 018F:018E 018D:018C 018B:018A 0189:0188 0187:0186 0185:0184 0185:0184 0183:0182 0181:0180	TOCON Register TMMODE Register DIVBY Register T3 Timer R3 Register T2 Timer R2 Register/R1 I3CR Register/R1 I3CR Register/T1 I4CR Register	Timer Block T0:T3
017D:017C 017B:017A 0179:0178 0177:0176 0175:0174 0173:0172 0171:0170	Working # Bytes Working Field Addr # Bytes 2 Field Addr 2 # Bytes 1 Field Addr 1 Xmit Cntrl & Status	DMAT # 2 (Xmit)
016B:016A 0169:0168 0167:0166 0165:0164 0163:0162 0161:0160	Frame Length Data Addr 2 Cntrl Addr 2 Data Addr 1 Cntrl Addr 1 Recv Cntrl & Status	DMAR # 2 (Recv)

TABLE II. Memory Map*	TABLE II. Me	mory	Map*
-----------------------	--------------	------	------

015D:015C W	/orking # Bytes	
0155:015A # 0159:0158 # 0157:0156 F 0155:0154 # 0153:0152 F 0151:0150 X	/orking Field Addr Bytes 2 ield Addr 2 Bytes 1 ield Addr 1 mit Cntrl & Status	DMAT # 1 (Xmit)
014B:014A F 0149:0148 D 0147:0146 C 0145:0144 D 0143:0142 C 0141:0140 F	rame Length ata Addr 2 intri Addr 2 iata Addr 1 intri Addr 1 iecv Cntri & Status	DMAR # 1 (Recv)
0131:0130 M	lessage Control	
0128 E 0126 T 0124 R 0122 E 0120 E	NUR register BUF register BUF register NIU register NU register	UART
0107:0106 D 0105:0104 P 0103:0102 S 0101:0100 P	IR R register ort R register erial Decoder ort D register	PORTS
00F5:00F4 B 00F3:00F2 D 00F1:00F0 D	FUN register IR B register IR A register	PORTS A & B CONTROL
00E7:00E6 R	eserved	
00E3:00E2 P 00E1:00E0 P	ort B ort A	PORTS A & B
00DE M 00DD:00DC H 00D8 P 00D6 S 00D4 H 00D2 H 00D2 F 00D0 E	licrocode ROM dump latt Enable register ort I input register IO register RCD register RPD register NIR register	PORT CONTROL & INTERRUPT CONTROL REGISTERS
00CF:00CE X 00CD:00CC B 00CB:00CA K 00C9:00C8 A 00C7:00C6 P 00C5:00C4 S 00C3:00C2 (r 00C1:00C0 P	register register register Cregister Cregister Pregister eserved) SW register	HPC10640 CORE REGISTERS
00BF:00BE C : : F 0001:0000	on Chip IAM	USER RAM

*The Memory Map has changed. Please contact factory for an updated version of the Memory Map.
HPC16400 CPU

The HPC16400 CPU has a 16-bit ALU and six 16-bit registers.

Arithmetic Logic Unit (ALU)

The ALU is 16 bits wide and can do 16-bit add, subtract and shift or logic AND, OR and exclusive OR in one timing cycle. The ALU can also output the carry bit to a 1-bit C register.

Accumulator (A) Register

The 16-bit A register is the source and destination register for most I/O, arithmetic, logic and data memory access operations.

Address (B and X) Registers

The 16-bit B and X registers can be used for indirect addressing. They can automatically count up or down to sequence through data memory.

Boundary (K) Register

The 16-bit K register is used to set limits in repetitive loops of code as register B sequences through data memory.

Stack Pointer (SP) Register

The 16-bit SP register is the stack pointer that addresses the stack. The SP register is incremented by two for each push or call and decremented by two for each pop or return. The stack can be placed anywhere in user memory and be as deep as the available memory permits.

Program (PC) Register

The 16-bit PC register addresses program memory.

Addressing Modes

ADDRESSING MODES—ACCUMULATOR AS DESTINATION

Register Indirect

This is the "normal" mode of addressing for the HPC16400 (instructions are single-byte). The operand is the memory addressed by the B register (or X register for some instructions).

Direct

The instruction contains an 8-bit or 16-bit address field that directly points to the memory for the operand.

Indirect

The instruction contains an 8-bit address field. The contents of the WORD addressed points to the memory for the operand.

Indexed

The instruction contains an 8-bit address field and an 8- or 16-bit displacement field. The contents of the WORD addressed is added to the displacement to get the address of the operand.

Immediate

The instruction contains an 8-bit or 16-bit immediate field that is used as the operand.

Register Indirect (Auto Increment and Decrement)

The operand is the memory addressed by the X register. This mode automatically increments or decrements the X register (by 1 for bytes and by 2 for words).

Register Indirect (Auto Increment and Decrement) with Conditional Skip

The operand is the memory addressed by the B register. This mode automatically increments or decrements the B register (by 1 for bytes and by 2 for words). The B register is then compared with the K register. A skip condition is generated if B goes past K.

ADDRESSING MODES—DIRECT MEMORY AS DESTINATION

Direct Memory to Direct Memory

The instruction contains two 8- or 16-bit address fields. One field directly points to the source operand and the other field directly points to the destination operand.

Immediate to Direct Memory

The instruction contains an 8- or 16-bit address field and an 8- or 16-bit immediate field. The immediate field is the operand and the direct field is the destination.

Double Register Indirect using the B and X Registers

Used only with Reset, Set and IF bit instructions; a specific bit within the 64 kbyte address range is addressed using the B and X registers. The address of a byte of memory is formed by adding the contents of the B register to the most significant 13 bits of the X register. The specific bit to be modified or tested within the byte of memory is selected using the least significant 3 bits of register X.

HPC Instruction Set Description Action Mnemonic Description **ARITHMETIC INSTRUCTIONS** ADD Add $MA + MemI \rightarrow MA$ carry $\rightarrow C$ ADC Add with carry $MA + MemI + C \rightarrow MA$ carry $\rightarrow C$ DADC Decimal add with carry $MA + MemI + C \rightarrow MA$ (Decimal) carry $\rightarrow C$ SUBC Subtract with carry $MA - MemI + C \rightarrow MA$ carry $\rightarrow C$ DSUBC $MA-MemI+C \rightarrow MA$ (Decimal) carry $\rightarrow C$ Decimal subtract w/carry MA*MemI \rightarrow MA & X, 0 \rightarrow K, 0 \rightarrow C MULT Multiply (unsigned) DIV Divide (unsigned) MA/MemI \rightarrow MA, rem. \rightarrow X, 0 \rightarrow K, 0 \rightarrow C IFEQ Compare MA & Meml, Do next if equal If equal If greater than Compare MA & MemI, Do next if MA → MemI IFGT AND Logical and MA and MemI -> MA OR Logical or MA or MemI → MA XOR Logical exclusive-or MA xor MemI → MA MEMORY MODIFY INSTRUCTIONS INC Increment Mem + 1 \rightarrow Mem DECSZ Decrement, skip if 0 Mem $-1 \rightarrow$ Mem, Skip next if Mem = 0**BIT INSTRUCTIONS** SET Set bit $1 \rightarrow$ Mem.bit (bit is 0 to 7 immediate) RESET Reset bit $0 \rightarrow Mem.bit$ IF If bit If Mem.bit is true, do next instr. MEMORY TRANSFER INSTRUCTIONS LD I oad MemI → MA Load, incr/decr X $Mem(X) \rightarrow A, X \pm 1 \text{ (or 2)} \rightarrow X$ ST Store to Memory $MA \rightarrow Mem$ х Exchange $A \leftrightarrow Mem; Mem \leftrightarrow Mem$ Exchange, incr/decr X $A \leftrightarrow Mem(X), X \pm 1 \text{ (or 2)} \rightarrow X$ PUSH $W \rightarrow W(SP), SP + 2 \rightarrow SP$ Push Memory to Stack POP Pop Stack to Memory $SP-2 \rightarrow SP, W(SP) \rightarrow W$ LDS $Mem(B) \rightarrow A, B \pm 1 \text{ (or 2)} \rightarrow B,$ Load A, incr/decr B, Skip next if B greater/less than K Skip on condition XS Exchange, incr/decr B, $Mem(B) \leftrightarrow A, B \pm 1 \text{ (or 2)} \rightarrow B,$ Skip next if B greater/less than K Skip on condition **REGISTER LOAD IMMEDIATE INSTRUCTIONS** Load A immediate $imm \rightarrow A$ LD A LD B Load B immediate $\operatorname{imm} \rightarrow B$ $\operatorname{imm} \rightarrow \mathsf{K}$ LD K Load K immediate Load X immediate $\operatorname{imm} \rightarrow X$ LD X Load B and K immediate imm \rightarrow B,imm' \rightarrow K LD BK ACCUMULATOR AND C INSTRUCTIONS CLR A Clear A $0 \rightarrow A$ INC A Increment A $A + 1 \rightarrow A$ DEC A Decrement A $A - 1 \rightarrow A$ COMP A Complement A 1's complement of A \rightarrow A SWAP A Swap nibbles of A A15:12 \leftarrow A11:8 \leftarrow A7:4 \leftrightarrow A3:0 Rotate A right thru C RRC A $C \rightarrow A15 \rightarrow \ldots \rightarrow A0 \rightarrow C$ $C \leftarrow A15 \leftarrow \ldots \leftarrow A0 \leftarrow C$ Rotate A left thru C RLC A $0 \rightarrow A15 \rightarrow \ldots \rightarrow A0 \rightarrow C$ Shift A right SHR A SHL A Shift A left $C \leftarrow A15 \leftarrow \ldots \leftarrow A0 \leftarrow 0$ Set C $1 \rightarrow C$ SET C $0 \rightarrow C$ RESET C Reset C IF C IF C Do next if C = 1 IFN C IF not C Do next if C = 0

2

HPC16400/HPC36400/HPC46400

Mnemonic	Description	Action
TRANSFER OF C	ONTROL INSTRUCTIONS	
JSRP	Jump subroutine from table	$PC \rightarrow W(SP), SP + 2 \rightarrow SP$ $W(table #) \rightarrow PC$
JSR	Jump subroutine relative	PC → W(SP),SP+2 → SP,PC+ # → PC (#is + 1024 to - 1023)
JSRL	Jump subroutine long	$PC \rightarrow W(SP), SP + 2 \rightarrow SP, PC + \# \rightarrow PC$
JP	Jump relative short	$PC+ # \rightarrow PC(# is + 32 to - 31)$
JMP	Jump relative	$PC+ # \rightarrow PC(#is + 256 to - 255)$
JMPL	Jump relative long	$PC + # \rightarrow PC$
JID	Jump indirect at PC + A	$PC+A+1 \rightarrow PC$
JIDW		then Mem(PC) + PC \rightarrow PC
NOP	No Operation	$PC \leftarrow PC + 1$
RET	Return	$SP-2 \rightarrow SP,W(SP) \rightarrow PC$
RETS	Return then skip next	$SP-2 \rightarrow SP,W(SP) \rightarrow PC, \& skip$
RETI	Return from interrupt	$SP-2 \rightarrow SP,W(SP) \rightarrow PC$, interrupt re-enabled

Note: W is 16-bit word of memory

MA is Accumulator A or direct memory (8 or 16-bit)

Mem is 8-bit byte or 16-bit word of memory

Meml is 8- or 16-bit memory or 8 or 16-bit immediate data

imm is 8-bit or 16-bit immediate data

Memory Usage

Number Of Bytes For Each Instruction (number in parenthesis is 16-Bit field)

Using Accumulator A						To Direct	Memory			
	Reg (B)	Indir. (X)	Direct	Indir	Index	Immed.	Dir +	ect	Imn *	ned. **
LD	1	1	2(4)	3	4(5)	2(3)	3(5)	5(6)	3(4)	5(6)
X	1	1	2(4)	3	4(5)		_	_		
ST	1	1	2(4)	3	4(5)	_	-	_	_	
ADC	1	2	3(4)	3	4(5)	4(5)	4(5)	5(6)	4(5)	5(6)
SBC	1	2	3(4)	3	4(5)	4(5)	4(5)	5(6)	4(5)	5(6)
DADC	1	2	3(4)	3	4(5)	4(5)	4(5)	5(6)	4(5)	5(6)
DSBC	ĺ 1	2	3(4)	3	4(5)	4(5)	4(5)	5(6)	4(5)	5(6)
ADD	1	2	3(4)	3	4(5)	2(3)	4(5)	5(6)	4(5)	5(6)
MULT	1	2	3(4)	3	4(5)	2(3)	4(5)	5(6)	4(5)	5(6)
DIV	1	2	3(4)	3	4(5)	2(3)	4(5)	5(6)	4(5)	5(6)
IFEQ	1	2	3(4)	3	4(5)	2(3)	4(5)	5(6)	4(5)	5(6)
IFGT	1	2	3(4)	3	4(5)	2(3)	4(5)	5(6)	4(5)	5(6)
AND	1	2	3(4)	3	4(5)	2(3)	4(5)	5(6)	4(5)	5(6)
OR	1	2	3(4)	3	4(5)	2(3)	4(5)	5(6)	4(5)	5(6)
XOR	1	2	3(4)	3	4(5)	2(3)	4(5)	5(6)	4(5)	5(6)

*8-bit direct address **16-bit direct address

Instructions that modify memory directly

	(B)	(X)	Direct	Indir	index	B&X
SET	1	2	3(4)	3	4(5)	1
RESET	1	2	3(4)	3	4(5)	1
IF	1	2	3(4)	3	4(5)	1
DDSZ	3	3	2(4)	3	4(5)	
INCD	3	3	2(4)	3	4(5)	

Immediate Load Instructions

	Immed.
LD B,*	2(3)
LD X,*	2(3)
LD K,*	2(3)
LD BK,*,*	3(5)

Memory Usage (Continued)

Register Indirect Instructions with Auto Increment and Decrement

Register B With Skip				
(B+) (B-)				
LDS A,*	1	1		
XS A,*	1	1		

Register X				
(X+) (X-)				
LD A,*	1	1		
X A,*	1	1		

Instructions Using A and C

CLR	Α	1
INC	Α	1
DEC	Α	1
COMP	Α	1
SWAP	Α	1
RRC	Α	1
RLC	Α	1
SHR	Α	1
SHL	Α	1
SET	С	1
RESET	С	1
IF	С	1
IFN	С	1

Transfer of Control Instructions

JSRP	1
JSR	2
JSRL	3
JP	1
JMP	2
JMPL	3
JID	1
JIDW	1
NOP	1
RET	1
RETS	1
RETI	1

Stack Reference Instructions

	Direct
PUSH	2
POP	2

Code Efficiency

One of the most important criteria of a single chip microcontroller is code efficiency. The more efficient the code, the more features that can be put on a chip. The memory size on a chip is fixed so if code is not efficient, features may have to be sacrificed or the programmer may have to buy a larger, more expensive version of the chip.

The HPC16400 has been designed to be extremely codeefficient. The HPC16400 looks very good in all the standard coding benchmarks; however, it is not realistic to rely only on benchmarks. Many large jobs have been programmed onto the HPC16400, and the code savings over other popular microcontrollers has been considerable—often the jobs take less than one-half the memory!

Reasons for this saving of code include the following:

SINGLE BYTE INSTRUCTIONS

The majority of instructions on the HPC16400 are singlebyte. There are two especially code-saving instructions:

JP is a 1-byte jump. True, it can only jump within a range of plus or minus 32, but many loops and decisions are often within a small range of program memory. Most other micros need 2-byte instructions for any short jumps.

JSRP is a 1-byte call subroutine. The user makes a table of his 16 most frequently called subroutines and these calls will only take one byte. Most other micros require two and even three bytes to call a subroutine. The user does not have to decide which subroutine addresses to put into his table; the assembler can give him this information.

EFFICIENT SUBROUTINE CALLS

The 2-byte JSR instructions can call any subroutine within plus or minus 1k of program memory.

MULTIFUNCTION INSTRUCTIONS FOR DATA MOVE-MENT AND PROGRAM LOOPING

The HPC16400 has single-byte instructions that perform multiple tasks. For example, the XS instruction will do the following:

- 1. Exchange A and memory pointed to by the B register
- 2. Increment the B register
- 3. Compare the B register versus the K register
- 4. Generate a conditional skip if B is greater than K

The value of this multipurpose instruction becomes evident when looping through sequential areas of memory and exiting when the loop is finished.

BIT MANIPULATION INSTRUCTIONS

Any bit of memory, I/O or registers can be set, reset or tested by the single byte bit instructions. The bits can be addressed directly or indirectly. Since all registers and I/O are mapped into the memory, it is very easy to manipulate specific bits to do efficient control.

DECIMAL ADD AND SUBTRACT

This instruction is needed to interface with the decimal user world.

It can handle both 16-bit words and 8-bit bytes.

The 16-bit capability saves code since many variables can be stored as one piece of data and the programmer does not have to break his data into two bytes. Many applications store most data in 4-digit variables. The HPC16400 supplies 8-bit byte capability for 2-digit variables and literal variables.

MULTIPLY AND DIVIDE INSTRUCTIONS

The HPC16400 has 16-bit multiply and divide instructions. This saves both code and time. Multiply and divide can use immediate data or data from memory. The ability to multiply and divide by immediate data saves code since this function is often needed for scaling, base conversion, computing indexes of arrays, etc.

Development Support

The MOLE (Microcontroller On-Line Emulator) is a low cost development system and emulator for all microcontroller products. These include COPs, TMP, 8050U and the HPC Family of Products. The MOLE consists of a BRAIN Board, Personality Board and optional host software.

The purpose of a MOLE is to provide the user with a tool to write and assemble code, emulate code for the target microcontroller and assist in both the software & hardware debugging of the system.

It is a self-contained computer with its own firmware which provides for all system operation, emulation control, communication, PROM programming and diagnostic operations.

It contains three serial ports because multiple ports are usually needed to optionally connect to a terminal, a host system, a printer or modem, or to connect to other MOLEs in a multi-MOLE environment.

MOLE can be used in either a stand alone mode or in conjunction with selected host systems, i.e., those using CP/M or PC-DOS. Communicating via RS-232 port.

Dial-A-Helper is a service provided by the MOLE applications group. If a user is having difficulty in getting a MOLE to operate in a particular mode or it is acting peculiar, he can contact us via his system and a modem. He can leave messages on our electronic bulletin board which we will respond to, or he can arrange for us to actually take control of his system via modem for debugging purposes.

The applications group can then cause his system to execute various commands and try to resolve the customer's problem by actually getting the customer's system to respond. 99% of the time the problem is resolved. This allows us to respond in minutes instead of days when applications help is needed.

Part Selection

The HPC family includes devices with many different options and configurations to meet various application needs. The number HPC16400 has been generally used throughout this datasheet to represent the whole family of parts. The following chart explains how to order various options available when ordering HPC family members. Note: All options may not currently be available.

FIGURE 15. HPC Family Part Numbering Scheme

Examples

HPC46400V17-Commercial temp (0° to +70°C), PCC HPC16400E17-Military temp (-55°C to +125°C), LCC

ISDN DEFINITIONS

A "B" (for Basic) channel is a 64 kb/s full-duplex transparent data channel. It is octet (=byte) oriented, that is it can be considered as a channel bearing 8k octets/sec. "B" channels are synchronized to the network and are generally circuit-switched (not packet switched). The 64 kb/s rate is also known as a DS0 interface.

"D" Channel

The "D" channel is a packet-mode message-oriented channel on which the data-link layer (layer 2) protocol is carried in HDLC frames. At a basic access point the "D" channel runs at 16 kb/s, while at a primary access point it runs at 64 kb/s. (There is no reason why a "D" channel could not be defined to run at even higher speeds, e.g., 1.544 or 2.048 Mb/s, though that does not seem to be a part of current standardization work.)

Three types of data may be handled by a "D" channel:

- 1. Type "s" (signaling) using layer 3 of the LAPD protocol.
- 2. Type "p" (packet) user's packet-oriented data.
- 3. Type "t" (telemetry) data, typically alarms and energy monitoring functions operating at a low scan rate.

The data type is identified by the SAPI (Service Access Point Identifier) in the HDLC extended address field.

Basic Access to the ISDN

Two independent "B" channels (B1 and B2) together with a "D" channel operating at 16 kb/s form the basic access structure. A minimum transmission rate of 144 kb/s full duplex is therefore required for basic access transport, although in some applications additional bits are used for localized functions.

Figure 1 shows the names of the functional blocks and interfaces as defined in CCITT specifications.

The 'U' interface is the single twisted pair loop between a customer's premises and the local central office. To transmit 144 kb/s or more full-duplex over this link, which may be several miles long and have over 40 dB of attenuation of the data signal, requires a complex transceiver. Adaptive echo-cancellation techniques are necessary and, although the transmission format is not yet specified by CCITT, considerable work is in progress in the U.S. T1D1.3 ISDN Study Group to establish a standard for North America. 160 kb/s is the likely transmission rate, while the line code will be 2B1Q.

The 'S' interface passes the same 2 'B' channels and the 'D' channel on to the terminals, together with some additional bits used for synchronization, contention control in the 'D' channel, and other housekeeping functions. CCITT specification I.430 defines the physical layer of this interface. A transceiver is required for transmission at the 192 kb/s bit rate, over separate transmit and receive twisted pairs (which already exist in both office and residential telephone wiring within the premises in many countries). Alternate Mark Inversion coding is used.

2 additional pairs are specified as an option, 1 for power and 1 for spare, making this an 8 wire interface. A plug and jack have been standardized so that the 'S' interface can be a

Primary Access to the ISDN

Primary access is provided at a DS1 interface, consisting of either:

- 1. Twenty-three "B" channels plus one 64 kb/s "D" channel at 1.544 Mb/s (North America), or :
- 2. Thirty "B" channels plus one 64 kb/s "D" channel at 2.048 Mb/s (Europe and Rest of World).

CCITT specification I.431 defines the multiplexing and control schemes for primary access.

TE—Terminal Equipment

Two sub-groups of terminals are defined:

- TE-1 is a full ISDN terminal which is synchronized to the network channels (not just the far-end terminal) and uses LAPD signaling. It connects to the ISDN at the "S" reference point, which is intended to be the point in the network at which any type of **basic** access terminal can be connected, i.e., the "portability" point.
- TE-2 is a non-ISDN terminal, generally one of today's asynchronous or synchronous terminals operating at rates < 64 kb/s. This includes terminals which have RS232C, RS449, V.21, V.24, V.35, X.21 or X.25 packetmode interfaces. Each type of interface must be adapted from the "R" reference point to the "S" reference point by means of a Terminal Adapter (TA).

TA—Terminal Adapter

A terminal adapter converts either asynchronous or synchronous data from non-ISDN terminals into data which is synchronized with ISDN B or D channels. The data rate must be adapted by means of stuffing extra bits in a prescribed pattern into the bit stream to adapt the data rate to 64 kb/s.

Terminal adaption also requires the conversion of modem handshaking signals to ISDN compatible signaling, and currently there are 2 competing schemes: either using LAPD in the D channel (i.e. out-of-band signaling) or applying LAPDtype messages but passing them end-to-end via the B channel (i.e. in-band). There are strong arguments for both methods, mostly concerned with how signaling is converted at the boundary between an ISDN and today's network ("interworking"), and it remains to be seen which will win as a standard.

NT—Network Termination

The NT terminates the network at the user's end of the 2 wire loop at the customer's premises. It converts the "U" interface to the "S" and "T" interface (see *Figure 1*) and acts as the "master" end of the user's passive bus. B and D channels must pass transparently through the NT, and there is no capability for intercepting LAPD messages in the NT.

Thus a typical NT for **basic** access will consist of an 'S' interface transceiver and a 'U' interface transceiver connected back-to-back with appropriate power supplies and fault monitoring capability.

An NT can also be an intelligent controller such as a PABX, LAN access node, or a terminal cluster controller.

LT—Line Termination

Typically, the LT consists of the "U" interface tranceiver and power feeding functions on the ISDN line card. These functions must interface to the switch at the "V" reference point, which is not currently being standardized by CCITT. It could be a proprietary backplane interface or a nationally specified interface which would allow the LT to be physically and electrically separated from the switch.

ISO Layered Protocol Model

The ISO (International Standards Organization) has defined a 7 layer model structure which describes convenient break points between various parts of the hardware and software in any data communications system.

Layer 1: Physical layer, that is the hardware which transports bits across interfaces. This includes ISDN transceivers, modems etc., power supplies, methods of activating and de-activating a transmission link, and also the transmission medium itself, such as wire, fiber, plugs and sockets, etc.

Layer 2: Data Link layer, which describes a basic framing structure and bit assignments to enable higher layer messages to be passed across a physical link. HDLC framing, addressing and error control are the major elements of this layer in ISDN.

Layer 3: Network layer, that is those parts of a message associated with setting-up, controlling and tearing-down a call through the network. These are all software control functions, and generally this is the highest layer in the ISO protocol model which is considered in chip development.

The top 4 layers relate to the structure of the actual application programs;

Layer 4: Transport layer, concerned with defining sources and destinations within an operating system for the transfer of application programs. Layer 5: Session layer.

Layer 6: Presentation layer.

Layer 7: Application layer.

These layers are generally running on a high level machine, and discussion regarding this machine is outside the scope of this document.

LAPD

Link Access Protocol in the "D" channel is the name given to the packet-mode signaling protocol defined in CCITT specs Q920 and Q921 for the data link layer (layer 2) and Q930 and Q931 for the network layer (layer 3 in the ISO 7 layer reference model). At layer 2, LAPD uses the HDLC framing format. This protocol defines the bits, bytes and sequence of states necessary between the user and the network to establish, control and terminate calls using any of the 100 or more types of services which may be available via an ISDN. If the users at both ends of the call are connected to the ISDN and there is a through path for the D channel then end-to-end call control is available.

Because of this extensive range of services, implementation of full LAPD requires considerable memory and processing power. Standards work has recently focused on definition of a minimal subset of LAPD to cover the basic requirements of call control.

Activation/De-activation

Activation is the process of powering up the 'S' and 'U' interfaces from their standby (i.e. de-activated) states and sending specific signals across the interfaces to get the whole loop synchronized to the network. A small state machine in each TE and the NT controls this sequence of events, and uses timers to ensure that, if the activation attempt should fail for any reason, the user or network is alerted. At the end of a call an orderly exit from the network is effected by sending de-activation sequences before any equipment can power-down.

2-87

e L K and the second

Section 3 Modems

Section 3 Contents

MM74HC942 300 Baud Modem	3-3
MM74HC943 300 Baud Modem	3-9
*TP3330 Full Duplex 1200 BPS Bell 212A/V.22 Modem with UART	3-16
*TP7515 Full Duplex 1200 BPS Bell 212A/V.22 Serial Modem	3-34

*Devices not covered in last publication

MM74HC942 300 Baud Modem

General Description

The MM74HC942 is a full duplex low speed modem. It provides a 300 baud bidirectional serial interface for data communication over telephone lines and other narrow bandwidth channels. It is Bell 103 compatible.

The MM74HC942 utilizes microCMOS Technology, 2 layers of polysilicon and 1 layer of metal P-well CMOS. Switched capacitor techniques are used to perform analog signal processing.

MODULATOR SECTION

The modulator contains a frequency synthesizer and a sine wave synthesizer. It produces a phase coherent frequency shift keyed (FSK) output.

LINE DRIVER AND HYBRID SECTION

The line driver and hybrid are designed to facilitate connection to a 600Ω phone line. They can perform two-to-fourwire conversion and drive the line at a maximum of 0 dBm.

DEMODULATOR SECTION

The demodulator incorporates anti-aliasing filters, a receive filter, limiter, discriminator, and carrier detect circuit. The nine pole receive filter provides 60 dB of transmitted tone rejection. The discriminator is fully balanced for stable operation.

Features

- Drives 600Ω at 0 dBm
- All filters on chip
- Transmit level adjustment compatible with universal service order code
- TTL and CMOS compatible logic
- All inputs protected against static damage
- ±5V supplies
- Low power consumption
- Full duplex answer or originate operation
- Analog loopback for self test
- Power down mode

Applications

- Built-in low speed modems
- Remote data collection
- Radio telemetry
- Credit verification
- Stand-alone modems
- Point-of-sale terminals
- Tone signalling systems
- Remote process control

Absolute Maximum Ratings (Notes 1 & 2)

Supply Voltago (V = -)	-0.5 ± 0.1
Supply voltage (vCC)	-0.510 ± 7.00
Supply Voltage (V _{BB})	+0.5 to -7.0V
DC Input Voltage (VIN)	$V_{BB}\!-\!1.5$ to $V_{CC}\!+\!1.5V$
DC Output Voltage (V _{OUT})	$V_{BB}{-}0.5$ to $V_{CC}{+}0.5V$
Clamp Diode Current (I _{IK} , I _{OK})	± 20 mA
DC Output Current, per pin (I _{OUT})	±25 mA
DC V _{CC} or GND Current, per pin (1 _{C0}	c) ±50 mA
Storage Temperature Range (T _{STG})	-65°C to +150°C
Power Dissipation (P _D) (Note 3)	.500 mW
Lead Temp. (T _L)	
(Soldering 10 seconds)	260°C

Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC})	4.5	5.5	v
Supply Voltage (V _{BB})	-4.5	-5.5	V
DC Input or Output Voltage (V _{IN} , V _{OUT})	0	Vcc	v
Operating Temp. Range (T _A) MM74HC	-40	+85	°C
Input Rise or Fall Times (t _r , t _f)		500	ns
Crystal frequency		3.579	MHz

DC Electrical Characteristics

Symbol	Parameter	Conditions	T=25°C		74HC T= −40 to 85°C	Units
			Тур	Guaranteed Limits		
VIH	Minimum High Level Input Voltage			3.15	3.15	v
VIL	Maximum Low Level Input Voltage			1.1	1.1	v
V _{OH}	Minimum High Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} = 20 \ \mu A$ $ I_{OUT} = 4.0 \text{ mA}, V_{CC} = 4.5 \text{ V}$	V _{CC}	V _{CC} -0.1 3.98	V _{CC} -0.1 3.7	v v
V _{OL}	Maximum Low Level Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} = 20 \ \mu A$ $ I_{OUT} = 4.0 \text{ mA}, V_{CC} = 4.5 \text{ V}$		0.1 0.26	0.1 0.4	v v
I _{IN}	Maximum Input Current	V _{IN} =V _{CC} or GND		±0.1	±1.0	μΑ
loz	Output TRI-STATE® Leakage Current RXD and CD Outputs	ALB=SQT=V _{CC}			±5	μΑ
I _{CC} , I _{BB}	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}, V_{IL} = GND$ ALB or SQT = GND Transmit Level = -9 dBm	8.0	12.0	12.0	mA
I _{CC} , I _{BB}	Power Down Supply Current	$ALB = SQT = V_{CC}$ $V_{IH} = V_{CC}, V_{IL} = GND$			300	μΑ

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: ~ 12 mW/*C from 65*C to 85*C; ceramic "J" package: ~ 12 mW/*C from 100*C to 125*C. *The demodulator specifications apply to the MM74HC942 operating with a modulator having frequency accuracy, phase jitter and harmonic content equal to or better than the MM74HC942 modulator.

AC Electrical Characteristics

Unless otherwise specified, all specifications apply to the MM74HC942 over the range -40° C to $+85^\circ$ C using a $V_{CC}=+5V\pm10\%$, a $V_{BB}=-5V\pm10\%$ and a 3.579MHz $\pm0.1\%$ crystal.*

Symbol	Parameter	Cor	nditions	Min	Тур	Max	Units
TRANSMITTER							
F _{CE}	Carrier Frequency Error					4	Hz
	Power Output	V _{CC} =5.0V	R _{TLA} = 0	-3	-1.5	0	dBm
		$R_L = 1.2 k\Omega$	$R_{TLA} = 5.49 k\Omega$	-12	- 10.5	-9	dBm
	2nd Harmonic Energy				-62	-56	dBm
RECEIVE	FILTER AND HYBRID						
	Hybrid Input Impedance (Pins 15 and 16)			50			kΩ
	FTLC Output Impedance			5	10	50	kΩ
	Adjacent Channel Rejection	RXA2=GND TXA=GND or V _{CC} Input to RXA1		60			dB
DEMODUL	ATOR (INCORPORATING HYBF	RID, RECEIVE FIL	TER AND DISCRIMIN	ATOR)			
	Carrier Amplitude			-48		-9	dBm
	Bit Jitter	SNR = 30 dB Input = -38 dBm Baud Rate = 300 Baud			100	200	μS
	Bit Bias	Alternating 1-0 Pattern			5	10	%
	Carrier Detect Trip Points	CDA = 1.2V	Off to On	-45	-42	-40	dBm
		V _{CC} =5.0V	On to Off	-47	-45	-42	dBm
	Carrier Detect Hysteresis	V _{CC} =5V		2	3	4	dB

AC Specification Circuit

TL/F/5348-3

Description of Pin Functions

Pin No. Name Function

- 1 DSI Driver Summing Input: This may be used to transmit externally generated tones such as dual tone multifrequency (DTMF) dialing signals.
- 2 ALB Analog Loop Back: A logic high on this pin causes the modulator output to be connected to the demodulator input so that data is looped back through the entire chip. This is used as a chip self test. If ALB and SQT are simultaneously held high the chip powers down.
- 3 CD Carrier Detect: This pin goes to a logic low when carrier is sensed by the carrier detect circuit.
- 4 CDT Carrier Detect Timing: A capacitor on this pin sets the time interval that the carrier must be present before the CD goes low.
- 5 RXD Received Data: This is the data output pin.
- 6 V_{CC} Positive Supply Pin: A + 5V supply is recommended.
- 7 CDA Carrier Detect Adjust: This is used for adjustment of the carrier detect threshold. Carrier detect hysteresis is set at 3 dB.
- 8 XTALD Crystal Drive: XTALD and XTALS connect to a 3.5795 MHz crystal to generate a crystal locked clock for the chip. If an external circuit requires this clock XTALD should be sensed. If a suitable clock is already available in the system, XTALD can be driven.
- 9 XTALS Crystal Sense: Refer to Pin 8 for details.
- 10 FTLC Filter Test/Limiter Capacitor: This is connected to a high impedance output of the receive filter. It may thus be used to evalu-

Functional Description

INTRODUCTION

A modem is a device for transmitting and receiving serial data over a narrow bandwidth communication channel. The MM74HC942 uses frequency shift keying (FSK) of an audio frequency tone. The tone may be transmitted over the switched telephone network and other voice grade channels. The MM74HC942 is also capable of demodulating FSK signals. By suitable tone allocation and considerable signal processing the MM74HC942 is capable of transmitting and receiving data simultaneously.

The tone allocation by the MM74HC942 and other Bell 103 compatible modems is shown in Table I. The terms "originate" and "answer" which define the frequency allocation come from use with telephones. The modem on the end of the line which initiates the call is called the originate modem. The other modem is the answer modem.

TABLE	I.	BELL	103	Allocation
	••		100	Allocation

Data	Originate	Modem	Answer Modem		
Data	Transmit	Transmit Receive Transmit R		Receive	
Space	1070Hz	2025Hz	2025Hz	1070Hz	
Mark	1270Hz	2225Hz	2225Hz	1270Hz	

ate filter performance. This pin may also be driven to evaluate the demodulator. RXA1 and RXA2 must be grounded during this test.

For normal modem operation FTLC is AC grounded via a 0.1 μF bypass capacitor.

- TXD Transmitted Data: This is the data input.
- 12 V_{BB} Negative Supply: The recommended supply is -5V.
- 13 O/Ā Originate/Answer mode select: When logic high this pin selects the originate mode of operation.
- 14 SQT Squelch Transmitter: This disables the modulator when held high. The EXI input remains active. If SQT and ALB are simultaneously held high the chip powers down.
- 15 RXA2 Receive Analog #2: RXA2 and RXA1 are analog inputs. When connected as recommended they produce a 600Ω hybrid.
- 16 RXA1 Receive Analog #1: See RXA2 for details.
- 17 TXA Transmit Analog: This is the output of the line driver.
- 18 EXI External Input: This is a high impedance input to the line driver. This input may be used to transmit externally generated tones. When not used for this purpose it should be grounded.
- 19 GND Ground: This defines the chip 0V.
- 20 TLA Transmit Level Adjust: A resistor from this pin to V_{CC} sets the transmit level.

THE LINE INTERFACE

11

The line interface section performs two to four wire conversion and provides impedance matching between the modem and the phone line.

THE LINE DRIVER

The line driver is a power amplifier for driving the line. If the modem is operating as an originate modem, the second harmonics of the transmitted tones fall close to the frequencies of the received tones and degrade the received signal to noise ratio (SNR). The line driver must thus produce low second harmonic distortion.

THE HYBRID

The voltage on the telephone line is the sum of the transmitted and received signals. The hybrid subtracts the transmitted voltage from the voltage on the telephone line. If the telephone line was matched to the hybrid impedance, the output of the hybrid would be only the received signal. This rarely happens because telephone line characteristic impedances vary considerably. The hybrid output is thus a mixture of transmitted and received signals.

THE DEMODULATOR SECTION

The Receive Filter

The demodulator recovers the data from the received signals. The signal from the hybrid is a mixture of transmitted signal, received signals and noise. The first stage of the receive filter is an anti-alias filter which attenuates high frequency noise before sampling occurs. The signal then goes to the second stage of the receive filter where the transmitted tones and other noise are filtered from the received signal. This is a switched capacitor nine-pole filter providing at least 60 dB of transmitted tone rejection. This also provides high attenuation at 60 Hz, a common noise component.

The Discriminator

The first stage of the discriminator is a hard limiter. The hard limiter removes from the received signal any amplitude modulation which may bias the demodulator toward a mark or a space. It compares the output of the receive filter to the voltage on the 0.1 μ F capacitor on the FTLC pin.

The hard limiter output connects to two parallel bandpass filters in the discriminator. One filter is tuned to the mark frequency and the other to the space frequency. The outputs of these filters are rectified, filtered and compared. If the output of the mark path exceeds the output of the space path the RXD output goes high. The opposite case sends RXD low.

The demodulator is implemented using precision switched capacitor techniques. The highly critical comparators in the limiter and discriminator are auto-zeroed for low offset.

Carrier Detector

The output of the discriminator is meaningful only if there is sufficient carrier being received. This is established in the carrier detection circuit which measures the signal on the line. If this exceeds a certain level for a preset period (adjustable by the CDT pin) the \overline{CD} output goes low indicating that carrier is present. Then the carrier detect threshold is lowered by 3 dB. This provides hysteresis ensuring the \overline{CD} output remains stable. If carrier is lost \overline{CD} goes high after the preset delay and the threshold is increased by 3 dB.

MODULATOR SECTION

The modulator consists of a frequency synthesizer and a sine wave synthesizer. The frequency produces one of four tones depending on the O/\overline{A} and TXD pins. The frequencies are synthesized to high precision using a crystal oscillator and variable dual modulus counter. The counters used respond quickly to data changes, introducing negligible bit jitter while maintaining phase coherence.

The sine wave synthesizer uses switched capacitors to "look up" the voltages of the sine wave. This sampled signal is then further processed by switched capacitor and continuous filters to ensure the high spectral purity required by FCC regulations.

Applications Information

TRANSMIT LEVEL ADJUSTMENT

The transmitted power levels of Table II refer to the power delivered to a 600Ω load from the external 600Ω source impedance. The voltage on the load is half the TXA voltage. This should be kept in mind when designing interface circuits which do not match the load and source impedances. The transmit level is programmable by placing a resistor

from TLA to VCC. With a 5.5k resistor the line driver transmits a maximum of -9 dBm. Since most lines from a phone installation to the exchange provide 3 dB of attenuation the maximum level reaching the exchange will be -12 dBm. This is the maximum level permitted by most telephone companies. Thus with this programming the MM74HC942 will interface to most telephones. This arrangement is called the "permissive arrangement." The disadvantage with the permissive arrangement is that when the loss from a phone to the exchange exceeds 3 dB, no compensation is made and SNR may be unnecessarily degraded.

SNR can be maximized by adjusting the transmit level until the level at the exchange reaches -12 dBm. This must be done with the cooperation of the telephone company. The programming resistor used is specific for a given installation and is often included in the telephone jack at the installation. The modem is thus programmable and can be used with any jack correctly wired. This arrangement is called the universal registered jack arrangement and is possible with the MM74HC942. The values of resistors required to program the MM74HC942 follow the most common code in use; the universal service order code. The required resistors are given in Table II.

TABLE II. Universal Service Order Code Resistor Values

Line Loss (dB)	Transmit Level (dBm)	Programming Resistor (R _{TLA}) (Ohms)
0	-12	Open
1	-11	19,800
2	-10	9,200
3	-9	5,490
4	-8	3,610
5	-7	2,520
6	-6	1,780
7	-5	1,240
8	-4	866
9	-3	562
10	-2	336
11	-1	150
12	0	0

CARRIER DETECT THRESHOLD ADJUSTMENT

The carrier detect threshold is directly proportional to the voltage on CDA. This pin is connected internally to a high impedance source. This source has a nominal Thevenin equivalent voltage of 1.2V and output impedance of $100 \text{ k}\Omega$. By forcing the voltage on CDA the carrier detect threshold may be adjusted. To find the voltage required for a given threshold the following equation may be used;

$$V_{CDA} = 244 \times V_{ON}$$

$$V_{CDA} = 345 \times V_{OFF}$$

CARRIER DETECT TIMING ADJUSTMENT

- CDT: A capacitor on Pin 4 sets the time interval that the carrier must be present before CD goes low. It also sets the time interval that carrier must be removed before CD returns high. The relevant timing equations are:
 - $T_{\overline{CD}L} \cong 6.4 \times C_{\overline{CDT}} \ \, \text{for} \ \, \overline{CD} \ \, \text{going low}$

 $T_{\overline{CDH}} \cong 0.54 \times C_{CDT}$ for \overline{CD} going high

Where T_{CDL} & T_{CDH} are in seconds, and C_{CDT} is in μ F.

Applications Information (Continued)

DESIGN PRECAUTIONS

Power supplies to digital systems may contain high amplitude spikes and other noise. To optimize performance of the MM74HC942 operating in close proximity to digital systems, supply and ground noise should be minimized. This involves attention to power supply design and circuit board layout. Power supply decoupling close to the device is recommended. Ground loops should be avoided. For further discussion of these subjects see the Audio/Radio Handbook published by National Semiconductor Corporation.

Complete Acoustically Coupled 300 Baud Modem

MM74HC943 300 Baud Modem

General Description

National Semiconductor Corporation

The MM74HC943 is a full duplex low speed modem. It provides a 300 baud bidirectional serial interface for data communication over telephone lines and other narrow bandwidth channels. It is Bell 103 compatible.

The MM74HC943 utilizes microCMOS Technology, 2 layers of polysilicon and 1 layer metal P-well CMOS. Switched capacitor techniques are used to peform analog signal processing.

MODULATOR SECTION

The modulator contains a frequency synthesizer and a sine wave synthesizer. It produces a phase coherent frequency shift keyed (FSK) output.

LINE DRIVER AND HYBRID SECTION

The line driver and hybrid are designed to facilitate connection to a 600Ω phone line. They can perform two to four wire conversion and drive the line at a maximum of -9 dBm.

DEMODULATOR SECTION

The demodulator incorporates anti-aliasing filters, a receive filter, limiter, discriminator, and carrier detect circuit. The nine-pole receive filter provides 60 dB of transmitted tone rejection. The discriminator is fully balanced for stable operation.

Connection and Block Diagrams

Features

- 5V supply
- Drives 600Ω at -9 dBm
- All filters on chip
- Transmit level adjustment compatible with universal service order code
- TTL and CMOS compatible logic
- All inputs protected against static damage
- Low power consumption
- Full duplex answer or originate operation
- Analog loopback for self test
- Power down mode

Applications

- Built-in low speed modems
- Remote data collection
- Radio telemetry
- Credit verification
- Stand-alone modems
- Point-of-sale terminals
- Tone signaling systems
- Remote process control

Dual-In-Line Package DSI 11 20 🗕 TLA ALB 2 GNDA 19 CD 3 18 EXI COT -4 17 - TXA RXD 5 16 **RXA1** RXA2 Vcc 6 15 CDA -- SOT 14 XTALD . 13 0/Ã XTALS -12 - GND FTLC тхо 110 11 TOP VIEW TL/F/5349-1 Order Number MM74HC943J or MM74HC943N See NS Package J20A or N20A

3

Absolute Maximum Ratings (Notes 1 & 2)

Supply Voltage (V _{CC})	-0.5 to +7.0V
DC Input Voltage (V _{IN})	-1.5 to V _{CC} +1.5V
DC Output Voltage (V _{OUT})	-0.5 to V _{CC} $+0.5V$
Clamp Diode Current (I _{IK} , I _{OK})	±20 mA
DC Output Current, per pin (I _{OUT})	±25 mA
DC V_{CC} or GND Current, per pin (I _{CC})	±50 mA
Storage Temperature Range (T _{STG})	-65°C to +150°C
Power Dissipation (PD) (Note 3)	500 mW
Lead Temp. (T_L) (Soldering 10 seconds)	260°C

Operating Conditions

• • • • • • • • • • • • • • • • • • •			
	Min	Max	Units
Supply Voltage (V _{CC})	4.5	5.5	V
DC Input or Output Voltage (V _{IN} , V _{OUT})	0	V _{CC}	v
Operating Temp. Range (T _A) MM74HC	-40	+85	°C
Input Rise or Fall Times (t _r , t _f)		500 2 570	ns Mil~
Crystal nequency		3.579	IVITIZ

DC Electrical Characteristics $V_{CC} = 5V \pm 10\%$ (unless otherwise specified)

Symbol	Parameter	Conditions	T _A =25°C		74HC T _A = - 40 to 85°C	Units
			Тур	Guaranteed Limits		
VIH	Minimum High Level Input Voltage			3.15	3.15	v
VIL	Maximum Low Level Input Voltage			1.1	1.1	V
V _{OH}	Minimum High Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} = 20 \ \mu A$ $ I_{OUT} = 4.0 \text{ mA}, V_{CC} = 4.5 \text{ V}$	V _{CC-EE}	V _{CC} -0.1 3.84	V _{CC} -0.1 3.7	v v
V _{OL}	Maximum Low Level Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} = 20 \ \mu A$ $ I_{OUT} = 4.0 \text{ mA}, V_{CC} = 4.5 \text{ V}$		0.1 0.33	0.1 0.4	v v
I _{IN}	Maximum Input Current	V _{IN} =V _{CC} or GND		±0.1	±1.0	μΑ
l _{oz}	Output TRI-STATE® Leakage Current, RXD and CD Outputs	ALB=SQT=V _{CC}			±5	μΑ
lcc	Maximum Quiescent Supply Current	$V_{IH} = V_{CC}, V_{IL} = GND$ ALB or SQT = GND	8.0		10.0	mA
IGNDA	Analog Ground Current	Transmit Level = -9 dBm	1.0		2.0	mA
Icc	Power Down Supply Current	$ALB = SQT = V_{CC}$ $V_{IH} = V_{CC}, V_{IL} = GND$			300	μA

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: -12 mW/°C from 65°C to 85°C; ceramic "J" package: -12 mW/°C from 100°C to 125°C. *The demodulator specifications apply to the MM74HC943 operating with a modulator having frequency accuracy, phase jitter and harmonic content equal to or better than the MM74HC943 modulator.

AC Electrical Characteristics

Unless otherwise specified, all specifications apply to the MM74HC943 over the range -40° C to $+85^{\circ}$ C using a V_{CC} of +5V $\pm 10\%$, and a 3.579 MHz $\pm 0.1\%$ crystal.*

Symbol	Parameter	Conditi	ons	Min	Тур	Max	Units
TRANSM	TTER						
F _{CE}	Carrier Frequency Error					4	Hz
	Power Output	$V_{CC} = 5.0V$ R _L = 1.2 k Ω	$R_{TLA} = 5490\Omega$	-12	- 10.5	-9	dBm
	2nd Harmonic Energy				-62	-56	dBm
RECEIVE	FILTER AND HYBRID						
	Hybrid Input Impedance (Pins 15 and 16)			50			kΩ
	FTLC Output Impedance			5	10	50	kΩ
	Adjacent Channel Rejection	RXA2 = GNDA, TXD = GND or V _{CC} Input to RXA1		60			dB
DEMODULATOR (INCORPORATING HYBRID, RECEIVE FILTER AND DISCRIMINATOR)							
	Carrier Amplitude		<u>.</u>	-48		-12	dBm
	Bit Jitter	SNR = 30 dB Input = -38 dBm Baud Rate = 300 Baud			100	200	μS
	Bit Bias	Alternating 1-0 Pattern			5	10	%
	Carrier Detect Trip Points	CDA=1.2V	Off to On	-45	-42	-40	dBm
		V _{CC} =5.0V	On to Off	-47	-45	-42	dBm
	Carrier Detect Hystereisis	V _{CC} =5.0V		2	3	4	dB

AC Specification Circuit

3

Description of Pin Functions

Pin Name Function No.

- 1 DSI Driver Summing Input: This input may be used to transmit externally generated tones such as dual tone multifrequency (DTMF) dialing signals.
- 2 ALB Analog Loop Back: A logic high on this pin causes the modulator output to be connected to the demodulator input so that data is looped back through the entire chip. This is used as a chip self test. If ALB and SQT are simultaneously held high the chip powers down.
- 3 CD Carrier Detect: This pin goes to a logic low when carrier is sensed by the carrier detect circuit.
- 4 CDT Carrier Detect Timing: A capacitor on this pin sets the time interval that the carrier must be present before the CD goes low.
- 5 RXD Received Data: This is the data output pin.
- $6~V_{CC}~$ Positive Supply Pin: A $+\,5V$ supply is recommended.
- 7 CDA Carrier Detect Adjust: This is used for adjustment of the carrier detect threshold. Carrier detect hysteresis is set at 3 dB.
- 8 XTALD Crystal Drive: XTALD and XTALS connect to a 3.5795 MHz crystal to generate a crystal locked clock for the chip. If an external circuit requires this clock XTALD should be sensed. If a suitable clock is already available in the system. XTALD can be driven.
- 9 XTALS Crystal Sense: Refer to pin 8 for details.
- 10 FTLC Filter Test/Limiter Capacitor: This is connected to a high impedance output of the receiver filter. It may thus be used to evalu-

Functional Description

INTRODUCTION

A modem is a device for transmitting and receiving serial data over a narrow bandwidth communication channel. The MM74HC943 uses frequency shift keying (FSK) of audio frequency tone. The tone may be transmitted over the switched telephone network and other voice grade channels. The MM74HC943 is also capable of demodulating FSK signals. By suitable tone allocation and considerable signal processing the MM74HC943 is capable of transmitting and receiving data simultaneously.

The tone allocation used by the MM74HC943 and other Bell 103 compatible modems is shown in Table I. The terms "originate" and "answer" which define the frequency allocation come from use with telephones. The modem on the end of the line which initiates the call is called the originate modem. The other modem is the answer modem.

TABLE I. Bell 103 Tone Allocation	TABLE	I. Bell 103	Tone Allocation
-----------------------------------	-------	-------------	------------------------

Data	Originate	Modem	Answer Modem		
Data	Transmit	Receive	Transmit	Receive	
Space	1070Hz	2025Hz	2025Hz	1070Hz	
Mark	1270Hz	2225Hz	2225Hz	1270Hz	

ate filter performance. This pin may also be driven to evaluate the demodulator. RXA1 and RXA2 must be grounded during this test.

For normal modem operation FTLC is AC grounded via a 0.1 μ F bypass capacitor.

- 11 TXD Transmitted Data: This is the data input.
- 12 GND Ground: This defines the chip 0V.
- 13 O/Ā Originate/Answer mode select: When logic high this pin selects the originate mode of operation.
- 14 SQT Squelch Transmitter: This disables the modulator when held high. The EXI input remains active. If SQT and ALB are simultaneously held high the chip powers down.
- 15 RXA2 Receive Analog #2: RXA2 and RXA1 are analog inputs. When connected as recommended they produce a 600Ω hybrid.
- 16 RXA1 Receive Analog #1: See RXA2 for details.
- 17 TXA Transmit Analog: This is the output of the line driver.
- 18 EXI External Input: This is a high impedance input to the line driver. This input may be used to transmit externally generated tones. When not used for this purpose it should be grounded to GNDA.
- 19 GNDA Analog Ground: Analog signals within the chip are referred to this pin.
- 20 TLA Transmit Level Adjust: A resistor from this pin to V_{CC} sets the transmit level.

THE LINE INTERFACE

The line interface section performs two to four wire conversion and provides impedance matching between the modem and the phone line.

THE LINE DRIVER

The line driver is a power amplifier for driving the line. If the modem is operating as an originate modem, the second harmonics of the transmitted tones fall close to the frequencies of the received tones and degrade the received signal to noise ratio (SNR). The line driver must thus produce low second harmonic distortion.

THE HYBRID

The voltage on the telephone line is the sum of the transmitted and received signals. The hybrid subtracts the transmitted voltage from the voltage on the telephone line. If the telephone line was matched to the hybrid impedance, the output of the hybrid would be only the received signal. This rarely happens because telephone line characteristic impedances vary considerably. The hybrid output is thus a mixture of transmitted and received signals.

MM74HC943

THE DEMODULATOR SECTION

The Receive Filter

The demodulator recovers the data from the received signals. The signal from the hybrid is a mixture of transmitted signal, received signals and noise. The first stage of the receive filter is an anti-alias filter which attenuates high frequency noise before sampling occurs. The signal then goes to the second stage of the receive filter where the transmitted tones and other noise are filtered from the received signal. This is a switch capacitor nine pole filter providing at least 60 dB of transmitted tone rejection. This also provides high attenuation at 60Hz, a common noise component.

The Discriminator

The first stage of the discriminator is a hard limiter. The hard limiter removes from the received signal any amplitude modulation which may bias the demodulator toward a mark or a space. It compares the output of the receive filter to the voltage on the 0.1 μ F capacitor on the FTLC pin.

The hard limiter output connects to two parallel bandpass filters in the discriminator. One filter is tuned to the mark frequency and the other to the space frequency. The outputs of these filters are rectified, filtered and compared. If the output of the mark path exceeds the output of the space path the RXD output goes high. The opposite case sends RXD low.

The demodulator is implemented using precision switched capacitor techniques The highly critical comparators in the limiter and discriminator are auto-zeroed for low offset.

Carrier Detector

The output of the discriminator is meaningful only if there is sufficient carrier being received. This is established in the carrier detection circuit which measures the signal on the line. If this exceeds a certain level for a preset period (adjustable by the CDT pin) the \overline{CD} output goes low indicating that carrier is present. Then the carrier detect threshold is lowered by 3 dB. This provides hysteresis ensuring the \overline{CD} output remains stable. If carrier is lost \overline{CD} goes high after the preset delay and the threshold is increased by 3 dB.

MODULATOR SECTION

The modulator consists of a frequency synthesizer and a sine wave synthesizer. The frequency synthesizer produces one of four tones depending on the O/\overline{A} and TXD pins. The frequencies are synthesized to high precision using a crystal oscillator and variable dual modulus counter.

The counters used respond quickly to data changes, introducing negligible bit jitter while maintaining phase coherence.

The sine wave synthesizer uses switched capacitors to "look up" the voltages of the sine wave. This sampled signal is then further processed by switched capacitor and continuous filters to ensure the high spectral purity required by FCC regulations.

Applications Information

TRANSMIT LEVEL ADJUSTMENT

The transmitted power levels of Table II refer to the power delivered to a 600Ω load from the external 600Ω source

impedance. The voltage on the load is half the TXA voltage. This should be kept in mind when designing interface circuits which do not match the load and source inpedances.

The transmit level is programmable by placing a resistor from TLA to V_{CC}. With a 5.5k resistor the line driver transmits a maximum of -9 dBm. Since most lines from a phone installation to the exchange provide 3 dB of attenuation the maximum level reaching the exchange will be -12 dBm. This is the maximum level permitted by most telephone companies. Thus with this programming the MM74HC943 will interface to most telephones. This arrangement is called the "permissive arrangement." The disadvantage with the permissive arrangement is that when the loss from a phone to the exchange exceeds 3 dB, no compensation is made and SNR may be unnecessarily degraded.

TABLE II	Universal	Service	Order Code	Resistor	Values
IADLE II.	Universal	OCI AICC	Ulder Code	nesisioi	values

Line Loss (dB)	Transmit Level (dBm)	Programming Resistor (R _{TLA}) (Ω)
0	- 12	Open
1	-11	19,800
2	- 10	9,200
3	-9	5,490

CARRIER DETECT THRESHOLD ADJUSTMENT

The carrier detect threshold is directly proportional to the voltage on CDA. This pin is connected internally to a high impedance source. This source has a nominal Thevenin equivalent voltage of 1.2V and output impedance of 100 k Ω .

By forcing the voltage on CDA the carrier detect threshold may be adjusted. To find the voltage required for a given threshold the following equation may be used:

$$\begin{array}{l} V_{CDA} = 244 \times V_{ON} \\ V_{CDA} = 345 \times V_{OFF} \end{array}$$

CARRIER DETECT TIMING ADJUSTMENT

CDT: A capacitor on Pin 4 sets the time interval that the carrier must be present before CD goes low. It also sets the time interval that carrier must be removed before CD returns high. The relevant timing equations are:

$$T_{\overline{CD}L}\cong 6.4{\times}C_{\overline{CDT}} \ \ \, \text{for } \overline{CD} \text{ going low}$$

 $T_{\overline{CDH}} \cong 0.54 \times C_{CDT}$ for \overline{CD} going high

Where T_{CDL} & T_{CDH} are in seconds, and C_{CDT} is in μ F.

DESIGN PRECAUTIONS

Power supplies to digital systems may contain high amplitude spikes and other noise. To optimize performance of the MM74HC943 operating in close proximity to digital systems, supply and ground noise should be minimized. This involves attention to power supply design and circuit board layout. Power supply decoupling close to the device is recommended. Ground loops should be avoided. For further discussion of these subjects see the Audio/Radio Handbook published by National Semiconductor Corporation.

Applications Information (Continued)

4 Wire Connection

TL/F/5349-5

 C_{CDT} and R_{TLA} should be chosen to suit the application. See the Applications Information for more details.

Note: The efficiency of the acoustic coupling will set the values of R1 and R2.

National Semiconductor Corporation

PRELIMINARY

TP3330 Monolithic Full Duplex 1200/600/300 BPS Bell 212A/V.22 Modem

General Description

The TP3330 is a single chip full duplex 1200/600/300 BPS voiceband modem that operates over two wire voice-grade phone lines. It is compatible with Bell 212A, Bell 103/113 (1200/300 BPS) and CCITT V.22 A,B (1200/600 BPS) modem standards. All modulation, demodulation and filtering functions are performed on-chip.

The TP3330 contains an on-chip USART that performs serial-to-parallel and parallel-to-serial conversions on data characters. It can be connected directly to the host processor or controller through a standard microprocessor bus. The device provides status information on error conditions (parity, overrun, framing and break detect) as well as modem status conditions to the CPU. Also included on-chip is a full prioritized interrupt system which reduces software overhead in the CPU. When operating in asynchronous mode, it is functionally equivalent to the INS8250A UART.

Additional functions on the device are an on-chip DTMF generator and call progress tone detector to facilitate autodialing. Hook-switch control output and an interrupt input for Ring Detect are provided to facilitate auto-answering. Interfacing to the phone line is simplified by the on-chip hybrid circuit.

The TP3330 is implemented with National's advanced dualmetal silicon gate microCMOS process. The device operates from a single +5V supply, and is ideal for portable or battery operated systems.

Features

- Bell 212A and Bell 103/113 compatible
- CCITT V.22 A,B compatible
- On-chip USART with full prioritized interrupt system
- Synchronous transmission: 1200/600 BPS
- Asynchronous transmission: 1200/600/300 BPS
- Hybrid and line driver with switched audio access
- DTMF generator
- Call progress tone detection
- Loopback test modes
- +5V only single supply operation
- LSTTL and CMOS compatible logic

Connection Diagrams

Dual-In-Line Package

Order Number TP3330N See NS Package Number N28B Plastic Chip Carrier (PCC)

Pin Descriptions

Pin Number	Name	Function
21	CS	Chip Select: When \overline{CS} is low, the device is selected, enabling communication between the TP3330 and the CPU. When \overline{CS} is high, the Data Bus is in TRI-STATE, \overline{RD} and \overline{WR} will have no effect on the device.
15	RD	Read Strobe: With \overline{CS} low, a logic low at \overline{RD} input allows the CPU to read data or status information from the TP3330.
14	WR	
16–18	A0, A1, A2	Register Select: These 3 inputs are the address selects to a particular in- ternal register of the TP3330 to read from or write to during a read or write operation. A0 is the LSB.
6–13	D7-D0	Data Bus: This data bus is comprised of 8 TRI-STATE input/output lines. The bus provides bidirectional commu- nications between the CPU and the TP3330. Data, control words and status information are transferred via this bus. D0 is the LSB and D7 is the MSB. Serial data on the line is LSB first.
22	INTR	Interrupt Output: This line goes high whenever any one of the interrupt types has an active high condition and is enabled via the Interrupt Enable Register. The INTR output is TRI- STATE when Bit 3 of MCR2 is set to logic 0.

Top View

Order Number TP3330V See NS Package Number V28A

Pin Number	Name	Function
19	XTAL1/ CLK	This is the input of the on-chip oscilla- tor circuit which requires an external 4.91520 MHz crystal. It can also be used as the input for an external 4.91520 MHz clock signal.
20	XTAL2	This is the output of the on-chip oscil- lator high gain inverter.
24	Vcc	Positive power supply pin. The supply voltage is $+5V~\pm5\%$ referenced to GND. A 0.1 μF bypass capacitor is required to be connected from V _{CC} to GND.
5	GND	Ground: All digital signals are referenced to this pin.
27	VCM	Analog Common Mode: This pin is bi- ased to $\frac{1}{2}$ V _{CC} by an internal resistor divider and must be AC bypassed by an external 100 μ F electrolytic and a 0.1 μ F ceramic capacitor. All analog signals are referenced to this pin.
26	ТХА	Transmit analog output of the line driver amplifier.
2, 1	RXA1, RXA2	Receive Analog Inputs: RXA1 and RXA2 are analog high impedance inputs to the receiver buffer amplifier. When connected as recommended, they produce a 600Ω hybrid circuit.

TP3330

Pin Descriptions (Continued)

Pin Number	Name	Function
25	EXI	External Audio Input: This is a high impedance input to the line driver amplifier which can be used to transmit an externally generated tone or voice. The EXI input is switched on or off by Bit 5 of the Handshaking Control Register. The input signal from EXI is not filtered by the Transmit filter, and should be less than 1 Vp-p in order to prevent output clipping. When not used, it should be connected to V_{CM} .
3	EXO	External Audio Output: This is a buffered audio output of the receiver, capable of driving a 10 k Ω load. The EXO output is switched on or off by Bit 4 of the Handshaking Control Register.
28	R _{XAVG}	This is the comparator input of the in- ternal slicer circuit. An external 0.01 μ F capacitor must be connected from this pin to V _{CM} .
4	ĦS	Hook Switch Output: This logical latched output may be used to drive an external relay driver for hook-switch control. It is programmed by Bit 7 of the Dialing Control Register. A logic high at Bit 7 will set the HS output to logic low level.
23	RI	Ring Indicator: A logical low at this input indicates the presence of ringing signal received by an external ring detector. The CPU can monitor the \overline{RI} input by reading Bit 6 of the Modem Status Register 2. Whenever the \overline{RI} input changes from a low to high state, an interrupt is generated if the Modem Status Interrupt is enabled.

Functional Description

POWER-UP INITIALIZATION

When power is first applied, the internal power-on reset circuitry initializes the TP3330. Internal registers (except the Receive Buffer, Transmitter Holding and Sync-character Registers) are reset to their initial conditions. The state of the output signals are also set to their inactive conditions. (Refer to Table I.) A Master Reset can be generated by setting Bit 2 of the Modem Control Register 2.

TRANSMITTER

The transmitter section consists of a digital modulator and spectrum controller, a switched capacitor transmit equalizer, a post filter, and a line driver amplifier. At 1200/600 BPS, the modulator is a DPSK (Differential Phase Shift-Keyed) modulator with a scrambler circuit that prevents loss of synchronization. At 300 BPS, the modulator is a phase-coherent FSK (Frequency Shift-Keyed) modulator. Data information from the CPU is converted into a phase modulated or a frequency modulated sine wave that can be transmitted over the switched telephone network.

Half-channel fixed compromised equalization is provided by the transmit equalizer, which also attenuates any unwanted frequency components, so that the out-of-band emission is within the limits of FCC and CCITT specifications. *Figure 1* shows the out-of-band energy relative to the transmit carrier.

The line driver is a low distortion power amplifier that outputs the transmit carrier or the DTMF signal and is able to drive a -9 dBm signal into a 600Ω line. When the modem is not transmitting data or DTMF signals, externally generated tones or voice can be transmitted to the line from the EXI input. It is enabled by setting Bit 5 of the Handshaking Control Register. When not used, this input should be connected to V_{CM}.

Table II shows the frequency assignments of the Transmit Carrier.

Register/Signals	Reset State	
Interrupt Enable Register	All Bits Low	
Interrupt Identification Register	fication Register Bit 0 is High, Bits 1-7 are Low	
Line Control Register 1	All Bits Low	
Modem Control Register 2	All Bits Low	
Line Status Register	All Bits Low, Except Bits 5 & 6 which are High	
Modem Status Register 2	All Bits Low, Except Bit 6 which is an input	
Line Control Register 2	All Bits Low	
Modem Control Register 1	All Bits Low	
Dialing Control Register	All Bits Low	
Handshaking Control Register	All Bits Low	
Modem Status Register 1	All Bits Low	
Test Mode Register	All Bits Low	
INTR	Low	
HS	High	

TABLE I. Reset Functions

TP3330

Functional Description (Continued) TABLE II. Transmit Carrier Frequency Assignment

Standard	Data Rate	Nominal Carrier Frequency (Hz)	Actual Carrier Frequency (Hz)	% Deviation from Nominal
Bell 212A	300 BPS Mark Originating Space	1270 1070	1265.625 1068.750	-0.34 -0.12
	300 BPS Mark Answering Space	2225 2025	2221.875 2025	-0.14 0
	1200 BPS Low Band	1200	1200	0
	1200 BPS High Band	2400	2400	0
	Answer Tone	2225	2221.875	-0.14
CCITT	600/1200 BPS Low Band	1200	1200	0
V.22	600/1200 BPS High Band	2400	2400	0
	Answer Tone	2100	2100	0
	Guard Tone	550 1800	553.125 1800	+0.57 0

FIGURE 1. Out-of-Band Energy Relative to Transmit Carrier

RECEIVER

The receiver consists of a 2-to-4 wire hybrid amplifier, an anti-alias filter, a switched capacitor receive bandpass filter and a low distortion digital demodulator. When connected as recommended, the input buffer amplifier performs as a 2-to-4 wire converter, canceling the transmitted signal from the incoming received signal.

An audio output is provided at EXO for audio monitoring of the received signals from the line. It can be used to drive an external power amplifier, such as the LM386, for audio monitoring of call progress. It is enabled by setting Bit 4 of the Handshaking Control Register.

The receive filter is a 22-pole switched capacitor bandpass filter which can be programmed to operate in the low band or high band channel. It rejects out-of-band transmission, noise components and the undesirable adjacent channel echo signals which can be fed from the transmitter section to the receiver section over the 2-wire phone line. For CCITT V.22 operation, a programmable 550 Hz or 1800 Hz notch filter is also included to reject the guard tone that is transmitted along with the high band carrier. A half channel amplitude and group delay equalizer is also included to ensure low bit error rate and low bit length distortion when connected to any voice grade phone line.

At 1200/600 BPS, the demodulator is a DPSK demodulator with a phase-locked loop clock recovery circuit. The received data is descrambled using the inverse of the transmit scrambler polynomial. In the asynchronous mode, the syncto-async converter re-inserts the stop bit deleted by the transmitting modem. At 300 BPS, the demodulator is a FSK demodulator.

CARRIER DETECTOR

The carrier detector monitors the level of the receive signal. To prevent transmission of erroneous data to the CPU, the receive data output from the demodulator is clamped to logic high when the carrier falls below the receive threshold level for a time greater than $t_{CD OFF}$. Whenever the receive signal is above the threshold level for a time greater than $t_{CD ON}$, Bit 7 in the Modem Status Register 2 (CD) is set to logic 1, indicating the presence of valid carrier, and the demodulator output is enabled.

When the Call Progress Tone Detector is enabled, the sampling clock frequency of the receive bandpass filter is scaled down by 2.5 times, so that it covers the passband (350 Hz to 620 Hz) of the precise call progress tones. CD ON indicates the presence of tones, while CD OFF indicates the absence of tones. Such a cadence is easily monitored by the CPU, which can discriminate between the types of call progress tones as shown in the following table:

Dial Tone	350 Hz + 440 Hz	Continuous
Busy Tone	480 Hz + 620 Hz	0.5s ON /0.5s OFF
Re-Order Tone	480 Hz + 620 Hz	0.25s ON /0.25s OFF
Ringback Tone from Central Office: from PBX:	440 Hz + 480 Hz 440 Hz + 480 Hz	2s ON /4s OFF 1s ON /3s OFF

The Modem Answer Tone is detected by the Answer Tone Detector, which is reflected by Bit 1 of the Modem Status Register 2.

DTMF GENERATOR

An on-chip DTMF generator facilitates auto-dialing. It accepts BCD input from the CPU, and is able to generate all 16 standard DTMF tone pairs. With DTMF ENABLE (Bit 4 of the Dialing Control Register) set to logic high, a 4-bit binary number previously loaded into locations Bits 0–3 is decoded and sets the high group and low group programmable counters to the appropriate divider ratios. The output voltage at TXA is the sum of the high and low group sine waves superimposed on a DC level of approximately $1/_2$ V_{CC}. The modulator and EXI are disabled, and the gain of the receive loading the receive filter section.

Table III shows the output tone frequencies, and Table IV is the functional truth table.

Functional Description (Continued) TABLE III. DTMF Output Frequency Accuracy

Tone Group	Standard DTMF Frequency (Hz)	Tone Output Frequency (Hz)	% Deviation	
Low Group f _L	697 770 852 941	693.750 768.750 853.125 937.500	-0.47 -0.16 +0.13 -0.37	
High Group f _H	1209 1336 1477 1633	1209.375 1340.625 1481.250 1631.250	+ 0.03 + 0.35 + 0.29 - 0.11	

TABLE IV. Functional Truth Table for DTMF Dialing

Keyboard		BCD I	nputs		DTMF	DTMF	Output
Equivalence	Bit 3	Bit 2	Bit 1	Bit 0	Enable Bit 4	f _L (Hz)	f _H (Hz)
x	x	x	x	x	0	0	0
1	0	0	0	1	1	697	1209
2	0	0	1	0	1	697	1336
3	0	0	1	1	1	697	1477
4	0	1	0	0	1	770	1209
5	0	1	0	1	1	770	1336
6	0	1	. 1	0	1	770	1477
7	0	1	1	11	1	852	1209
8	1	0	0	0	1	852	1336
9	1	0	0	1	1	852	1477
0	1	0	1	0	1	941	1336
*	1	0	1	1	1	941	1209
#	1	1	0	0	1	941	1477
A	1	1	0	1	1	697	1633
В	1	1	1	0	1	770	1633
С	1	1	1	1	1	852	1633
D	0	0	0	0	1	941	1633

TEST MODES

The TP3330 provides several test modes to allow the user or the CPU to verify that the modem is operating properly.

Analog Loopback

In the Analog Loopback mode, the receive bandpass filter and demodulator are configured to process the same channel as the transmitter. The transmitted carrier output is looped back to the receiver input via an internal attenuator, while still maintaining the modulated carrier to the output pin TXA.

Digital Loopback

When the Digital Loopback mode is enabled, the digital output of the demodulator is looped back to the digital input of the modulator. At 1200/600 BPS, the recovered clock of the receiver is also looped back internally to the transmit clock. The serial data input to the receive shift register of the USART is clamped to logic high, and the transmit data from the USART is ignored.

Remote Digital Loopback

The TP3330 supports Remote Digital Loopback by providing the Dotting Pattern detector for the originator. A Dotting Pattern Generator and an unscramble mark detector are provided for the remote modem for the handshaking process.

USART Digital Loopback

This test mode allows the user to test the USART's functions and interrupt system independently of the rest of the circuit. In this test mode, the serial data output from the transmit shift register is looped internally to the serial data input of the receive shift register. The data input from the demodulator is ignored. The four modem control bits (RTS, DTR, OUT1 and OUT2) are internally connected to the four modem status bits (CTS, DSR, RI and CD).

USART

The on-chip USART performs serial-to-parallel conversion on data characters received from the line and parallel-to-serial conversion on data characters received from the CPU. Status information on error conditions (parity, overrun, framing or break interrupt) is provided to the CPU at any time during the functional operation. In asynchronous transmission, the USART is functionally equivalent to National's INS8250A UART, providing start-stop framing to the data. In synchronous transmission, the programmable synchronous characters are transmitted at the beginning or during data transmission in order to achieve synchronization.

ACCESSIBLE REGISTERS

The operation of TP3330 is programmable via the internal accessible registers. Table V summarizes those registers which are used to control and monitor the modem's operation. The registers listed in Table VI are used to control the USART's operations in data transfer and monitor the error conditions.

Modem Control Register 1

This register specifies the general operating conditions for the TP3330.

Bit 0: In combination with Bit 1, this bit selects the data rate of transmission.

Bit 1	Bit 0	Data Rate
0	0	1200 BPS DPSK
0	1	300 BPS FSK
{ 1	0	1200 BPS DPSK
1	1	600 BPS DPSK

Bit 1: A logic low selects the Bell 212A and logic high selects the CCITT V.22 modem standard. The answer tone is automatically set to 2225 Hz for Bell 212A, and 2100 Hz for V.22. Bits 2, 3: These 2 bits specify the threshold level for the carrier detector and call progress tone detector.

	, ,					
Bit 3	Bit 2	Carrier ON Threshold (dBm)	Carrier OFF Threshold (dBm)			
0	0	-43	-46			
0	1	-38	41			
1	0	-33	-36			
1	1	-33	-36			

Bits 4, 5: These 2 bits specify the nominal transmit carrier amplitude and DTMF levels at the TXA output.

Bit 5	Bit 4	Carrier (mVrms)	DTMF V _L /V _H (mVrms)
0	0	550	615/775
0	1	435	490/615
1	0	345	390/490
1	1	275	310/390

- Bit 6: This bit selects the guard tone frequency to be transmitted along with the DPSK high band carrier when TP3330 is operating at V.22 mode. A logic low selects 1800 Hz, and a logic high selects 550 Hz.
- Bit 7: A logic 0 for this bit selects the Asynchronous transmission with start-stop bits. A logic 1 selects the Synchronous transmission mode. At 300 BPS, this bit is ignored and transmission is always in Asynchronous mode only.

Dialing Control Register

This register controls the operation of TP3330 in the DTMF dialing mode.

Bits 0-3: These bits specify a 4 bit BCD digit defined in Table IV. The di it is decoded to generate the corresponding DTMF tone pair.

AL3	1	1	1	1	1
A0-A2	0	1	2	2	3
	Modem Control Register 1	Dialing Control Register	Handshake Control Register (Write Only)	Modem Status Register 1 (Read Only)	Test Mode Register
Bit	MCR1	DCR	HCR	MSR1	TMR
0	LOW/HIGH Speed	DTMF No Bit 0	Transmit Output Enable	Receive Speed Indicator 1200/300 BPS	Power Up Enable
1	Bell 212A/ V.22	DTMF No Bit 1	Transmit Scrambler Enable	2225 Hz/High Band Unscrambled Mark Detect	ALB Enable
2	Carrier Threshold Select	DTMF No Bit 2	Guard Tone Enable	Scrambled Mark Detect	DLB Enable
3	Carrier Threshold Select	DTMF No Bit 3	Answer Tone Enable	Low Band Unscrambled Mark Detect	0
4	Level Adjust	DTMF Enable	EXO Enable	Dotting Pattern Detect	0
5	Level Adjust	Enable Call Progress Tone Detect	EXI Enable	0	0
6	Guard Tone Select	Receive Mute Enable	ORIG/ANS Mode Select	0	0
7	ASYNC/ SYNC Select	Hook Switch Control	Dotting Pattern Enable	0	0

TABLE V. Summary of Modem Registers

	<u>, </u>	, <u> </u>	· — — —	 	TABLE VI. S	unmary of		sters	·	· · · · ·	· · · · · · · · · · · · · · · · · · ·	r
AL3	0	0	0	0	0	X	0	0	0	1	1	1
A0-2	0 DLAB=0	0 DLAB=0	1 DLAB=0	2	3	4	5	6	7	5	6	7
	Receive Buffer Register (Read Only)	Transmit Holding Register (Write Only)	Interrupt Enable Register	Interrupt Identification Register (Read Only)	Line Control Register 1	Modem Control Register 2	Line Status Register	Modem Status Register 2	Scratch Pad Register	Line Control Register 2	Sync Character Register 1	Sync Character Register 2
Bit	RBR	THR	IER	IIR	LCR 1	MCR2	LSR	MSR2	SCR	LCR2	SYNC1	SYNC2
0	Data Bit 0	Data Bit 0	Enable Receive Data Ready Interrupt	0 If Interrupt Pending	Word Length Bit 0	Data Terminal Ready (DTR)	Receive Data Ready (DR)	Delta Clear to Send (DCTS)	Bit 0	Transmit Enable	Bit 0	Bit 0
1	Data Bit 1	Data Bit 1	Enable Transmit Holding Register Empty Interrupt	Interrupt ID Bit 0	Word Length Bit 1	Request to Send (RTS)	Overrun Error (OE)	Delta Data Set Ready (DDSR)	Bit 1	Receive Enable	Bit 1	Bit 1
2	Data Bit 2	Data Bit 2	Enable Line Status Interrupt	Interrupt ID Bit 1	Stop Bit Select (ASYNC Mode)	OUT 1 (Reset)	Parity Error (PE)	Trailing Edge of Ring Indicator (TERI)	Bit 2	Sync Character Select	Bit 2	Bit 2
3	Data Bit 3	Data Bit 3	Enable Modem Status Interrupt	Interrupt ID Bit 2	Parity Enable	OUT 2 (INTR Output Enable)	Framing Error (FE)	Delta Carrier Detect (DCD)	Bit 3	Int/Ext Syndet Select	Bit 3	Bit 3
4	Data Bit 4	Data Bit 4	0	0	Even Parity	Loop	Break Interrupt (ASYNC)/ SYNDET (SYNC)	Clear to Send (CTS)	Bit 4	Ext Syndet Input	Bit 4	Bit 4
5	Data Bit 5	Data Bit 5	0	0	Stick Parity	0	THRE Empty	Data Set Ready (DSR)	Bit 5	Enter Hunt	Bit 5	Bit 5
6	Data Bit 6	Data Bit 6	0	0	Set Break	0	TEMT	Ring Indicator (RI)	Bit 6	Slave Timing Enable	Bit 6	Bit 6
7	Data Bit 7	Data Bit 7	0	0	DLAB	AL3	0	Carrier Detect (CD)	Bit 7	0	Bit 7	Bit 7

Note: Bit 0 is the least significant bit.

It is the first bit serially transmitted or received.

---- ---

3-22

TP3330

- Bit 4: When this bit is set to logic 1, the DTMF generator is enabled.
- Bit 5: When set to logic 1, the Call Progress Tone Detector is enabled. Bit 7 (CD) of Modem Status Register 2 indicates the presence (logic 1) or absence (logic 0) of call progress tones within the passband of 350 Hz to 620 Hz. After ringback tone is detected by the CPU, Bit 5 should be reset to logic 0, putting the TP3330 in normal data mode.
- Bit 6: A logic high for this bit mutes the receiver buffer amplifier. Muting is useful during pulse dialing to prevent transient overloading of the receiver.
- Bit 7: This bit controls the HS output signal for hookswitch control, and can be used for pulse dialthrough by setting and resetting this bit with the right timing. The following table shows the timing requirement for pulse dialing in North America.

Pulsing Rate	8 to 11	pps
Percentage Break	58 to 64	%
Inter-Digital Pause	0.6 to 1	Sec

Handshaking Control Register

This register controls the handshaking process of the TP3330.

- Bit 0: A logic high enables the transmission of carrier or DTMF signals at the TXA output. A logic low will set TXA at the V_{CM} voltage.
- Bit 1: When this bit is set to logic 1, it enables the scrambler circuit inserted in the data path for the DPSK modulator. Setting this bit low bypasses the scrambler.
- Bit 2: A logic high enables the transmission of the guard tone frequency selected by Bit 6 of the Modem Control Register 1. The carrier amplitude is automatically reduced by about 1 dB in order to maintain the same total transmitted power output.
- Bit 3: A logic high enables the transmission of the modem answer tone, which is 2225 Hz for Bell 212A, or 2100 Hz for V.22.
- Bit 4: A logic high enables the receiver audio output at EXO. When disabled by a logic low, the EXO output is set to V_{CM} voltage.
- Bit 5: A logic high enables the external audio input at EXI to the line driver amplifier.
- Bit 6: A logic high selects the originating mode. The TP3330 transmits at the low band and receives at the high band frequency. A logic low selects the answer mode, transmitting at the high band and receiving at the low band frequency.
- Bit 7: A logic high enables the transmission of the Dotting Pattern (scrambled alternating one's and zero's) for the handshaking process required to initialize a Remote Digital Loopback for 600 BPS or 1200 BPS. Bit 1 must also be set to logic 1 to enable the transmitter's scrambler.

Modem Status Register 1

This register provides status information regarding the incoming received signal from the phone line. When the Modem Status Interrupt is enabled, the low to high transition of the status bits in this register will generate an interrupt output at INTR. It is reset by a read operation on the Modem Status Register 1.

- Bit 0: This status bit is the received data speed indicator for the Bell 212A answering mode only. A logic low indicates receiving at 1200 BPS, while a logic high indicates receiving at 300 BPS. Bit 0 is reset to logic 0 whenever CD (Bit 7 of MSR2) changes from logic 1 to logic 0.
- Bit 1: This bit is the answer tone indicator. It goes high whenever a 2225 Hz answer tone or high band unscrambled mark has been received for more than 160 ms during handshaking.
- Bit 2: This bit is the DPSK scrambled mark indicator. It goes high whenever a scrambled mark is received for 267 ms. (t_{SM})
- Bit 3: This bit is the Low band DPSK unscrambled mark indicator. It goes high when an unscrambled mark is detected for more than 160 ms.
- Bit 4: This bit is the Dotting Pattern indicator. It goes high whenever a pattern of DPSK scrambled alternating 1's and 0's are received for 267 ms, indicating that a Remote Digital Loopback is being acknowledged by the far end modem.

Bits

- 5,6,7: These bits are not used.
- Note: Bits 1 to 4 are reset to logic 0 whenever the CPU reads the content of the Modem Status Register 1.

Test Mode Register

This register programs the modes of operation of the TP3330.

- Bit 0: When this bit is programmed to logic low, the TP3330 is put in the power-down mode, minimizing current consumption. All non-essential circuits are de-activated, analog outputs TXA and EXO are TRI-STATE and the digital output HS is at inactive state. The internal registers are unaffected, and the RI input and its associate interrupt function as normal. When power is first applied to TP3330, the user should program a logic high in Bit 0 to set the device in the power-up mode.
- Bit 1: A logic high enables the Analog Loopback test mode.
- Bit 2: A logic high enables the Digital Loopback test mode.
- Bits 3-7: These bits are not used, and should be set to logic 0.

Line Control Register 1

The Line Control Register 1 specifies the format of asynchronous data communication. The programmer may retrieve the contents of both Line Control Registers for inspection. This feature simplifies system programming and eliminates the need for separate storage in system memory.

Bits 0,1: These 2 bits specify the number of data bits in each transmitted or received serial character. In the asynchronous mode for 1200 BPS/600 BPS, the sync-to-async converter allows 8, 9, 10, or 11 character length (start bit + data bits + parity bit + stop bits), the selections for word length, parity bit and stop bits must be matched to these requirements. Table VII shows the valid combinations for character lengths.

Bit 1	Bit 0	Word Length
0	0	5 Bits
0	1	6 Bits
1	0	7 Bits
1	1	8 Bits

- Bit 2: This bit specifies the number of stop bits in each transmitted character for asynchronous communication. If Bit 2 is a logic 0, one stop bit is generated in the transmitted data. If Bit 2 is a logic 1 when a 5-bit word length is selected via Bits 0 and 1, one and a half stop bits are generated. If Bit 2 is a logic 1 when either a 6-, 7- or 8-bit word length is selected, two stop bits are generated. The receiver checks the first stop bit only, regardless of the number of stop bits selected.
- Bit 3: This is the Parity Enable bit. When Bit 3 is a logic 1, a Parity bit is generated (transmit data) or checked (receive data) between the last data word bit and stop bit of the serial data.
- Bit 4: This is the Even Parity Select bit. When Parity is enabled via Bit 3, a logic 0 at Bit 4 selects the Odd Parity and a logic 1 selects the Even Parity.
- Bit 5: This is the Stick Parity select bit. When Parity is enabled via Bit 3, a logic 1 at Bit 5 enables the Stick Parity. If Bit 4 is a logic 1, the Parity bit is transmitted and checked by the receiver as a logic 0. If Bit 4 is a logic 0, then the Parity bit is transmitted as a logic 1.
- Bit 6: This is the Break Control bit. When it is set to a logic 1, the serial output of the USART is forced to the Spacing (logic 0) state. The break is disabled by resetting bit 6 to a logic 0.
- Note: To prevent any erroneous characters being transmitted because of the break, the following sequence is recommended:
- 1. Load an all 0's pad character in response to THRE.
- 2. Set break after the next THRE.
- 3. Wait for the transmitter to be idle (TEMT = 1) and clear break when normal transmission has been restored.
- Bit 7: This bit is the Access Bit (DLAB). It must be set to logic 0 to access the Receiver Buffer Register, the Transmitter Holding Register, or the Interrupt Enable Register.

Line Control Register 2

The Line Control Register 2 specifies the format of Synchronous transmission.

- Bit 0: A logic 1 enables the transmitter of the USART. Data begins to shift serially into the modulator circuit. A logic 0 disables the transmitter of the USART, and the serial data input to the modulator is clamped at logic high. When disabled while the modem is in operation, all the data that was previously loaded into the USART will be transmitted before the USART is shut down.
- Bit 1: A logic high enables the receiver of the USART.
- Bit 2: A logic low at this input selects double synchronization characters to be transmitted or received. A logic high selects single synchronization character.
- Bit 3: A logic high at this input selects the external syncdetect mode. A logic low selects the internal syncdetect mode.
- Bit 4: This bit is the External Sync-detect Input. When external sync-detect mode is selected via Bit 3, synchronization is achieved by applying a logic high at Bit 4, which forces the USART to exit the Hunt mode and start assembling serial data into the parallel format.
- Bit 5: When Bit 5 is set to logic high, the Hunt mode is enabled. If internal sync-detect mode is programmed by Bit 3, the received data in the buffer register is compared at each bit boundary with the first sync character until a match is found. If the USART is programmed for double sync characters, the subsequent character is also compared. If both sync characters are detected, the USART exits the Hunt mode and is in synchronization.
- Bit 6: A logic high selects the Slave Timing mode for Synchronous Transmission. The transmit clock is phase-locked to the recovery clock of the DPSK demodulator.
- Bit 7: This bit is always at logic 0.

Sync-Character Registers 1,2

Bits 0-7: These registers are used to store the programmable synchronization characters for insertion at the beginning of, or during the transmission of synchronous messages. If the CPU does not respond to the TEMT and the USART is programmed for single sync-character, the content of Sync-Character Register 1 will be transmitted before the normal data transmission resumes. If dual sync-characters are being programmed, the contents of both Sync-Character Registers 1 and 2 will be transmitted.

Bit 2	Bit 3	Bit 3	Bit 3	Bit 3	Bit 3	Bit 3	Bit 3	Bit 3	Bit 3	Bit 3	Bit 3	Bit 1	Bit 0			Char	acte	r Length (Bits)									
	Ditto		DICO	Start	+	Data	+	Parity	+	Stop																		
0	0	0	1	1	+	6	+	0	+	1	= 8																	
0	0	1	0	1	+	7	+	0	+	1	= 9																	
0	0	1	1	1	+	8	+	0	+	1	= 10																	
0	1	0	0	1	+	5	+	1	+	1	= 8																	
0	1	0	1	1	+	6	+	1	+	1	= 9																	
0	1	1	0	1	+	7	+	1	+	1	= 10																	
0	1	1	1	1	+	8	+	1	+	1	= 11																	
1	0	0	1	1	+	6	+	0	+	2	= 9																	
1	0	1	0	1	+	7	+	0	+	2	= 10																	
1	0	1	1	1	+	8	+	0	+	2	= 11																	
1	1	0	1	1	+	6	+	1	+	2	= 10																	
1	1	1	0	1	+	7	+	1	+	2	= 11																	

TABLE VII. Asynchronous Character Formats for 600/1200 BPS

Line Status Register

The Line Status Register provides status information to the CPU concerning the data transfer. It is intended for read operation only, writing to this register is not recommended.

- Bit 0: This is the Receive Data Ready (DR) indicator. It is set to a logic 1 whenever a complete incoming character has been received and transferred into the Receive Buffer Register. Bit 0 is reset to a logic 0 by reading the data in the Receive Buffer Register.
- Bit 1: This is the Overrun Error (OE) indicator. A logic 1 at Bit 1 indicates that data in the Receive Buffer Register was not read by the CPU before the next character was transferred into the Receive Buffer Register, thereby destroying the previous character. The OE indicator is reset whenever the CPU reads the contents of the Line Status Register.
- Bit 2: This is the Parity Error (PE) indicator. Bit 2 is set to a logic 1 whenever the received data character does not have the correct even or odd parity, as selected by the parity select bit. It is reset to logic 0 whenever the CPU reads the contents of the Line Status Register.
- Bit 3: This is the Framing Error (FE) indicator. Bit 3 indicates that the received character did not have a valid stop bit. It is set to a logic 1 whenever the stop bit following the last data bit or parity bit is at the spacing level. Bit 3 is reset whenever the CPU reads the contents of the Line Status Register.
- Bit 4: When asynchronous transmission is selected, this bit is the Break Interrupt (BI) indicator. It is set to a logic 1 whenever the received data input is held in the spacing (logic 0) state for longer than a full word transmission time (that is, the total time of start bit + data bits + parity + stop bits). When Synchronous transmission is selected, this bit is the sync-detect indicator. It is set to logic 1 whenever the USART detects a valid sync-character (or two consecutive sync-characters when in dual sync mode). Bit 4 is reset whenever the CPU reads the contents of the Line Status Register.
- Note: Bits 1 through 4 are the error conditions that produce a receiver Line Status Interrupt whenever any of the corresponding conditions is detected.

- Bit 5: This is the Transmitter Holding Register Empty (THRE) indicator. It is set to logic 1 when a character is transferred from the Transmitter Holding Register into the Transmitter Shift Register, indicating that the USART is ready to accept a new character for transmission. It also issues an interrupt to the CPU if the Transmitter Holding Register Empty Interrupt is enabled. Bit 5 is reset to logic 0 concurrently with the loading of the Transmitter Holding Register by the CPU.
- Bit 6: This is the Transmitter Empty (TEMT) indicator. It is set to a logic 1 whenever the Transmitter Holding Register (THR) and the Transmitter Shift Register (TSR) are both empty. It is reset to logic 0 whenever either the THR or TSR contains a data character.
- Bit 7: This bit is permanently set to logic 0.

Interrupt Enable Register

This register enables the 4 types of interrupts to separately activate the Interrupt (INTR) output signal. The interrupt system can be totally disabled by resetting bits 0 through 3 of the Interrupt Enable Register. Disabling the interrupt system inhibits the Interrupt Identification Register and the active (high) INTR output from the device. All other system functions operate in their normal manner, including the setting of the Line Status and Modem Status Registers. The interrupt output signal can be put into TRI-STATE by resetting Bit 3 of the Modem Control Register 2 to logic 0.

- Bit 0: A logic 1 enables the Received Data Available Interrupt.
- Bit 1: A logic 1 enables the Transmitter Holding Register Empty Interrupt.
- Bit 2: A logic 1 enables the Line Status Interrupt.
- Bit 3: A logic 1 enables the Modem Status Interrupt (Interrupt sourced from either Modem Status Register 1 or 2).

Bits 4-7: These four bits are always at logic 0.

Interrupt Identification Register

Information indicating that a prioritized interrupt is pending and the type of that interrupt is stored in the Interrupt Identification Register (IIR). In order to provide minimum software

overhead during data transfer, the TP3330 prioritizes interrupts into five levels. When addressed during chip-select time, the IIR freezes the highest priority interrupt pending and no other interrupts are acknowledged until the particular interrupt is serviced by the CPU.

- Bit 0: This bit can be used in either a hardwired prioritized or polled environment to indicate whether an interrupt is pending. When Bit 0 is a logic 0, an interrupt is pending and the IIR content may be used as a pointer to the appropriate interrupt service routine. When bit 0 is a logic 1, no interrupt is pending.
- Bits 1-3: These 3 bits of the IIR are used to identify the highest priority interrupt pending as indicated in Table VIII.
- Bits 4-7: These 4 bits of the IIR are always at logic 0.

Modem Control Register 2

This register controls the modem interface with the TP3330.

- Bit 0: This bit is the Data Terminal Ready indicator. A logic high indicates that the CPU is ready for data transfer. When Bit 0 is reset from a high to low state for more than 50 ms, a loss of DTR disconnect sequence is generated.
- Bit 1: This bit is the Request to Send indicator. It is not used by the TP3330.
- Bit 2: This bit is the Output 1 (OUT1) signal. It is internally connected to generate a Master Reset to the TP3330 when this bit is set to a logic 1. During normal operation, this bit must be kept at logic low.
- Bit 3: This bit is the Output 2 (OUT2) signal. When Bit 3 is set to logic 0, it is internally connected to disable the interrupt (INTR) output signal, and INTR is in TRI-STATE. Bit 3 should be set to logic 1 to enable the Interrupt output line.

Interrupt Identification Register					Interrupt Set and Reset Functions					
Bit 3	Bit 2	Bit 1	Bit 0	Priority Level	Interrupt Type	Interrupt Source	Interrupt Reset Control			
0	0	0	1	_	None None					
0	1	1	0	Highest	Receiver Line Status	Overrun, or Parity, or Framing Error, or Break Interrupt, or Sync-Detect	Reading the Line Status Register			
0	1	0	0	Second	Received Data Available	Receiver Data Available	Reading the Receiver Buffer Register			
0	0	1	0	Third	Transmitter Holding Register Empty	Transmitter Holding Register Empty	Reading the IIR Register, (If Source of Interrupt) or Writing into the Transmitter Holding Register			
0	0	0	0	Fourth	Modem Status	Clear to Send, Data Set Ready, Ring Indicator, Carrier Detect, Call Progress Tone Detect	Reading the Modem Status Register 2			
1	0	0	0	Fifth	Modem Status	2225 Hz Answer Tone, Scrambled 1, Unscrambled 1, Receive Speed, Dotting Pattern Detected	Reading the Modem Status Register 1			

TABLE VIII. Interrupt Control Functions

- Bit 4: A logic 1 enables the USART Digital Loopback test mode. It should be reset to logic 0 for normal data transfer.
- Bits 5,6: These bits are permanently set to logic 0.
- Bit 7: This is the Address Select Bit for the internal registers of TP3330. (Refer to Tables V and VI.)

Modem Status Register 2

This register provides information on the current state of the interface control signals from the modem to the CPU.

- Bit 0: This bit is the Delta Clear to Send (DCTS) indicator. A logic 1 indicates that the Clear to Send (CTS) status bit has changed state since the last time it was read by the CPU.
- Bit 1: This bit is the Delta Data Set Ready (DDSR) indicator. Bit 1 indicates that the Data Set Ready status bit has changed state since the last time it was read by the CPU.
- Bit 2: This bit is the Trailing Edge of Ring Indicator (TERI) detector. Bit 2 indicates that the RI input to the device has changed from a low to a high state.
- Bit 3: This bit is the Delta Carrier Detect (DCD) indicator. Bit 3 indicates that the Carrier Detect or Call Progress Tone Detect (CD) indicator has changed state.
- Bit 4: This bit is the Clear to Send Indicator. It goes to a logic 1 when the TP3330 completes the modem

- Bit 5: This bit is the Data Set Ready indicator. Bit 4 indicates to the CPU that the TP3330 is ready. It is set to logic 1 when the TP3330 is in power up mode, and reset to logic 0 when the device is powered down. When Bit 4 of the MCR2 is set to a logic 1, this bit is equivalent to DTR of the MCR2.
- Bit 6: This bit is the complement of the Ring Indicator (RI) input. If Bit 4 of the MCR2 is set to a logic 1, this bit is equivalent to OUT1 in the MCR2.
- Bit 7: This bit is the Carrier Detect (CD) indicator. A logic 1 indicates that a valid carrier signal exceeding the pre-selected threshold level is received for a period exceeding t_{CDON}. When the Call Progress Tone Detector is enabled by setting Bit 5 of the Dialing Control Register, Bit 7 indicates the presence of the call progress tones within the passband of 350–620 Hz. When Bit 4 of the MCR is set to a logic 1, this bit is equivalent to OUT2 of the MCR2.

Scratchpad Register

This 8-bit Read/Write register is intended as a scratchpad register to be used by the programmer to hold data temporarily. It does not control the device's function in any way.

TL/H/8792-12

Typical Application
Absolute Maximum Ratings

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Operating Temperature Range	-25°C to +80°C
Storage Temperature Range	-65°C to +150°C
V _{CC} with Respect to GND	+7V

Voltage at Any Input Voltage at Any Output Any Output Voltage at Any Output A

 $\begin{array}{l} V_{CC} + \ 0.3V \ \text{to} \ \text{GND} - \ 0.3V \\ V_{CC} + \ 0.3V \ \text{to} \ \text{GND} - \ 0.3V \\ 1W \end{array}$

300°C

DC Electrical Characteristics (Note 1)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
VIL	Input Low Voltage				0.7	V
VIH	Input High Voltage		2.0			V
VOL	Output Low Voltage	$l_{OL} = +1.0 \text{ mA}$			0.4	v
V _{OH}	Output High Voltage	I _{OH} = -0.1 mA	2.4			V
Ι _{ΙL}	Input Low Current All Digital Inputs	GND < V _{IN} < V _{IL}	-10		10	μΑ
lін	Input High Current All Digital Inputs	$V_{IH} < V_{IN} < V_{CC}$	-10		10	μΑ
I _{OZ}	TRI-STATE® Output Leakage Current	D0-D7, INTR, GND < V _O < V _{CC}	-20		20	μΑ
I _{CC} 0	Power-Down Current	Outputs Open		0.4		mA
I _{CC} 1	Power-Up Current	Outputs Open		30		mA

AC Electrical Characteristics (Note 1)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
TRANSMIT	TER					
V _{OXA}	Output Level at TXA	$\label{eq:VCC} V_{CC} = 5.0V, R_{LXA} = 1.2 \ \text{k}\Omega$ Bit 4, 5 of MCR1 = 0 High Band Carrier 2100/2225 Hz Answer Tone 550/1800 Hz Guard Tone DTMF, High Group DTMF, Low Group		550 550 275 775 615		mVrms mVrms mVrms mVrms mVrms
PE	DTMF High Group Pre-Emphasis		1.0	2.0	3.0	dB
V _{OS}	Mean Output DC Offset Voltage at TXA	$V_{CC} = 5.0V$		2.5		v
E _{OX}	Out-of-Band Spectral Density Reference to Carrier	3.4 kHz < f < 8 kHz 8 kHz < f < 256 kHz		-45 -65		dB dB
THD	DTMF Distortion	$V_{CC} = 5.0V, R_{LXA} = 1.2 \text{ k}\Omega,$ 300 Hz-3.4 kHz	-20			dB
G _{XI}	Voltage Gain from EXI to TXA	Input = 100 mVrms, $f = 1 \text{ kHz}$ Bit 5 of HCR = 1	dB	9.5		
R _{OXA}	Output Dynamic Resistance		Ω	1		
R _{LXA}	Load Resistance		1	1.2		kΩ
	Load Capacitance		1		100	pF

Note 1: Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for $V_{CC} = 5.0V \pm 5\%$, GND = 0V, $T_A = 0^{\circ}C$ to +70°C by correlation with 100% electrical testing at $T_A = 25^{\circ}C$. All other limits are assured by correlation with other production tests and/or product design and characterization. Typical values are measured at $V_{CC} = 5.0V$, $T_A = 25^{\circ}C$.

Note 2: All tests on AC parameters of Transmitter and Receiver are based on test circuit shown in Figure 3.

Note 3: 0 dBm into $600\Omega = 0.775$ Vrms.

Note 4: Crystal specification: Parallel Resonant 4.9152 MHz, R_S < 150 Ω , L = 67.6 MH, C_M = 0.015 pF, C_H = 5 pF.

AC El	ectrical Characteri	stics (Note 1) (Continued)				
Symbol	Parameter	Conditions	Min	Тур	Max	Units
RECEIVE	R					
R _{RIN}	Input Resistance	From RXA1 to GND		10		kΩ
		From RXA2 to GND		100		kΩ
S _R	Input Signal Level		-43		-12	dBm
TH _{CD}	Carrier Detect Threshold	Bits 3, 2 or MCR1 = 0, 0 ON OFF OFF Bits 3, 2 of MCR1 = 0, 1 ON OFF OFF Bits 3, 2 of MCR1 = 1, 0 ON OFF OFF		-43 -46 -38 -41 -33 -36		dBm dBm dBm dBm dBm dBm
H _{CD}	Carrier Detect Hysteresis	Measured from TH _{CD} ON to TH _{CD} OFF	2	3	5	dB
ID	Peak Intersymbol Distortion (Isochronous ±Bias)	Back-to-Back, Received Level at – 12 dBm, 300 BPS, 511-Bit Pattern		5		%
BER	Bit Error Rate	Back-to-Back, with Additive $300 \text{ Hz}-3.4 \text{ kHz}$ Flat Noise, Received Level at -12 dBm 511-Bit Pattern 300 BPS, S/N = 5 dB 600 BPS, S/N = 10 dB 1200 BPS, S/N = 12 dB		10 ⁻⁵ 10 ⁻⁶ 10 ⁻⁶		
G _{RO}	Voltage Gain from RXA1 to EXO	Input = 200 mVrms, f = 1 kHz Bit 4 of HCR = 1		6		dB
R _{LEXO}	Load Resistance at EXO		10			kΩ
C _{LEXO}	Load Capacitance at EXO				100	pF
^t CDON	Carrier Detector Acquisition Time	300 BPS 600/1200 BPS Originating Mode	100 230 755	160 267 765	200 310 775	ms ms
tCDOFF	Carrier Detector Release Time		10	17	24	ms
t _{PDON}	Call Progress Tone Detector Acquisition Time	350 Hz < f < 620 Hz		40		ms
t _{PDOFF}	Call Progress Tone Detector Release Time	350 Hz < f < 620 Hz		40		ms
^t CTSON	CTS ON Acquisition Time	300 BPS, Originating Mode Answering Mode 600 BPS/1200 BPS, Originating/Answering Mode	755 100 755	765 160 765	775 200 775	ms ms ms
^t DTRD	Loss of DTR Disconnect Time	From DTR OFF to CD or CTS OFF	57	68	77	ms
tCDD	Loss of Carrier Disconnect Time	From CD OFF to CTS OFF	405	415	425	ms

Note 1: Unless otherwise noted, limits printed in **bold** characters are guaranteed for $V_{CC} = 5.0V \pm 5\%$, GND = 0V, $T_A = 0^{\circ}C$ to $+70^{\circ}C$ by correlation with 100% electrical testing at $T_A = 25^{\circ}C$. All other limits are assured by correlation with other production tests and/or product design and characterization. Typical values are measured at $V_{CC} = 5.0V$, $T_A = 25^{\circ}C$.

TP3330

Symbol	Parameter	Conditions	Min	Max	Units
BUS TIMING READ CYCLI	E				
t _{SCR}	Chip Select Setup before RD		50		ns
t _{HRC}	Chip Select Hold Time after \overline{RD}		20		ns
t _{SAR}	Address Setup before RD		60		ns
t _{HRA}	Address Hold Time after RD		20		ns
twrd	RD Pulse Width		125		ns
t _{DRD}	Data Delay from RD	C _L = 100 pF		125	ns
t _{ZRD}	RD Invalid to Data Floating	$C_L = 100 pF$	0	100	ns
t _{RC}	Read Cycle Time		360		ns
WRITE CYCL	-E				
tscw	Chip Select Setup before WR		50		ns
tHWC	Chip Select Hold Time after WR		20		ns
tSAW	Address Setup before WR		60		ns
t _{HWA}	Address Hold Time after WR		20		ns
twwR	WR Pulse Width		100		ns
t _{SDW}	Data Set Up before WR		40		ns
t _{HWD}	Data Hold Time after WR		40		ns
twc	Write Cycle Time		360		ns

Note 1: Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for $V_{CC} = 5.0V \pm 5\%$, GND = 0V, $T_A = 0^{\circ}C$ to +70°C by correlation with 100% electrical testing at $T_A = 25^{\circ}C$. All other limits are assured by correlation with other production tests and/or product design and characterization. Typical values are measured at $V_{CC} = 5.0V$, $T_A = 25^{\circ}C$.

Note 2: All tests on AC parameters of Transmitter and Receiver are based on test circuit shown in Figure 3.

Note 3: 0 dBm into $600\Omega = 0.775$ Vrms

Note 4: Crystal specification: Parallel Resonant 4.9152 MHz, R_S < 150 Ω , L = 67.6 mH, C_M = 0.015 pF, C_H = 5 pF.

TP3330

National Semiconductor Corporation

PREL	IMI.	NARY
------	------	------

TP7515 Full Modem Duplex 1200 Baud Bell 212A/V.22 Serial Modem

General Description

The TP7515 is a complete general purpose monolithic DPSK and FSK modem implemented in microCMOS process technology. It may be configured to either generate and receive phase modulated signals at data rates of 1200 bits per second or 600 bits per second or frequency modulated signals at data rates up to 300 bits per second on voice grade telephone lines. It is capable of operating to meet three pin selectable standards; CCITT V.22 A/B, Bell 212A and its low speed mode, or Bell 103.

All filtering functions required for frequency generation, out of band noise rejection and demodulation are performed by on-chip switched-capacitor filters. In phase modulation mode, the modem provides all data buffering and scrambling function necessary for bit synchronous format and asynchronous character format modes of operation. Internal frequencies are generated from a 4.9152 MHz crystal reference.

Features

- Meets popular 1200 bps full duplex specifications: CCITT V.22 Bell 212A Bell 103
- Includes all filtering
- Serial data interface
- Answer tone selection
- Synchronous/Asynchronous selection
- Channel selection (answer/originate)
- Low speed mode selection
- Low power CMOS, ±5V power supplies
- 28-pin dual in-line or surface mount package

Section 4 Analog Telephone Components

Section 4 Contents

TP5088 DTMF Generator for Binary Data	4-3
TP5089 DTMF (Touch-Tone) Generator	4-7
TP5700A Telephone Speech Circuit	4-11

PRELIMINARY

TP5088/TP5088-1

National Semiconductor Corporation

TP5088 DTMF Generator for Binary Data

General Description

This CMOS device provides low cost tone-dialing capability in microprocessor-controlled telephone applications. 4-bit binary data is decoded directly, without the need for conversion to simulated keyboard inputs required by standard DTMF generators. With the TONE ENABLE input low, the oscillator is inhibited and the device is in a low power idle mode. On the low-to-high transition of TONE ENABLE, data is latched into the device and the selected tone pair from the standard DTMF frequencies is generated. An open-drain N-channel transistor provides a MUTE output during tone generation.

Features

- Direct microprocessor interface
- Binary data inputs with latches
- Generates 16 standard tone pairs
- On-chip 3.579545 MHz crystal-controlled oscillator
- Better than 0.64% frequency accuracy
- High group pre-emphasis
- Low harmonic distortion
- MUTE output interfaces to speech network
- Low power idle mode
- 3.5V-8V operation

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage ($V_{DD} - V_{SS}$)	12V
MUTE Voltage	12V
Maximum Voltage at	
Any Other Pin	V_{DD} + 0.3V to V_{SS} - 0.3V

Operating Temperature, T_A Storage Temperature Maximum Power Dissipation -- 30°C to + 70°C -- 55°C to + 150°C 500 mW

Electrical Characteristics

Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for $V_{DD} = 3.5V$ to 8V, $T_A = 0^{\circ}C$ to $+70^{\circ}C$ by correlation with 100% electrical testing at $T_A = 25^{\circ}C$. All other limits are assured by correlation with other production tests and/ or product design and characterization.

Parameter	Conditions	Min	Тур	Max	Units
Minimum Supply Voltage, V _{DD} (min)	Generating Tones	3.5			v
Minimum Supply Voltage for Data Input, TONE ENABLE and MUTE Logic Functions		2			v
Operating Current Idle Generating Tones	$R_L = \infty$, D0-D3 Open V _{DD} = 3.5V, Mute Open		55 1.5	350 2.5	μA mA
Input Pull-Up Resistance D0-D3 TONE ENABLE			100 50		kΩ kΩ
Input Low Level TONE ENABLE, D0-D3				0.2 V _{DD}	v
Input High Level TONE ENABLE, D0–D3		0.8 V _{DD}			v
MUTE OUT Sink Current (TONE ENABLE LOW)	$V_{DD} = 3.5V$ $V_o = 0.5V$	0.4			mA
MUTE OUT Leakage Current (TONE ENABLE HIGH)	$V_{DD} = 3.5V$ $V_o = V_{DD}$		1		μΑ
Output Amplitudes Low Group High Group	$ \begin{aligned} R_L &= 240 \ \Omega \\ V_DD &= 3.5V \\ T_A &= 25^\circC \end{aligned} $	130 180	170 230	220 310	mVrms mVrms
Mean Output DC Offset	$V_{DD} = 3.5V$ $V_{DD} = 8V$		1.2 3.6		v v
High Group Pre-Emphasis		2.2	2.7	3.2	dB
Dual Tone/Total Harmonic Distortion Ratio	1 MHz Bandwidth, $V_{DD} = 5V$ R _L = 240 Ω	-20			dB
Start-Up Time (to 90% Amplitude), t _{OSC}			4		ms
Data Set-Up Time, t _S (<i>Figure 2</i>)	$V_{DD} = 5V$	100			ns
Data Hold Time, t _H	$V_{DD} = 5V$	280			ns
Data Duration t _W	$V_{DD} = 5V$	600			ns

Note 1: ${\sf R}_{\sf L}$ is the external load resistor connected from TONE OUT to ${\sf V}_{\sf SS}.$

Connection Diagram

Order Number TP5088M or TP5088N See NS Package M14B or N14A

Functional Description

With the TONE ENABLE pin pulled low, the device is in a low power idle mode, with the oscillator inhibited and the output transistor turned off. Data on inputs D0-D3 is ignored until a rising transition on TONE ENABLE. Data meeting the timing specifications is latched in, the oscillator and output stage are enabled, and tone generation begins. The decoded data sets the high group and low group programmable counters to the appropriate divide ratios. These counters sequence two ratioed-capacitor D/A converters through a series of 28 equal duration steps per sine wave cycle. On-chip regulators ensure good stability of tone amplitudes with variations in supply voltage and temperature. The two tones are summed by a mixer amplifier, with preemphasis applied to the high group tone. The output is an NPN emitter-follower requiring the addition of an external load resistor to VSS.

Table I shows the accuracies of the tone output frequencies and Table II is the Functional Truth Table.

Tone Group	Standard DTMF (Hz)	Tone Output Frequency	% Deviation from Standard			
Low	697	694.8	-0.32			
Group	770	770.1	+0.02			
fL	852	852.4	+0.03			
	941	940.0	-0.11			
High	1209	1206.0	-0.24			
Group	1336	1331.7	-0.32			
f _H	1477	1486.5	+0.64			
	1633	1639.0	+0.37			

TABLE I. Output Frequency Accuracy

Pin Descriptions

 V_{DD} (Pin 1): This is the positive supply to the device, referenced to $V_{SS}.$ The collector of the TONE OUT transistor is also connected to this pin.

 \mathbf{V}_{SS} (Pin 5): This is the negative voltage supply. All voltages are referenced to this pin.

OSC IN, OSC OUT (Pins 6 and 7): All tone generation timing is derived from the on-chip oscillator circuit. A low-cost 3.579545 MHz A-cut crystal (NTSC TV color-burst) is needed between pins 6 and 7. Load capacitors and a feedback resistor are included on-chip for good start-up and stability. The oscillator is stopped when the TONE ENABLE input is pulled to logic low.

TONE ENABLE Input (Pin 2): This input has an internal pull-up resistor. When TONE ENABLE is pulled to logic low, the oscillator is inhibited and the tone generators and output transistor are turned off. A low to high transition on TONE ENABLE latches in data from D0–D3. The oscillator starts, and tone generation continues until TONE ENABLE is pulled low again.

MUTE (Pin 8): This output is an open-drain N-channel device that sinks current to V_{SS} when TONE ENABLE is low and no tones are being generated. The device turns off when TONE ENABLE is high.

D0, D1, D2, D3 (Pins 9, 10, 11, 12): These are the inputs for binary-coded data, which is latched in on the rising edge of TONE ENABLE. Data must meet the timing specifications of *Figure 2.* At all other times these inputs are ignored and may be multiplexed with other system functions.

TONE OUT (Pin 14): This output is the open emitter of an NPN transistor, the collector of which is connected internally to V_{DD} . When an external load resistor is connected from TONE OUT to V_{SS} , the output voltage on this pin is the sum of the high and low group tones superimposed on a DC offset. When not generating tones, this output transistor is turned off to minimize the device idle current.

SINGLE TONE ENABLE (Pin 3): This input has an internal pull-up resistor. When pulled to V_{SS} , the device is in single tone mode and only a single tone will be generated at pin 14 (for testing purposes). For normal operation, leave this pin open-circuit or pull to V_{DD} .

GROUP SELECT (Pin 4): This pin is used to select the high group or low group frequency when the device is in single tone mode. It has an internal pull-up resistor. Leaving this pin open-circuit or pulling it to V_{DD} will generate the high group, while pulling to V_{SS} will generate the low group frequency at the TONE OUT pin.

TP5088/TP5088-1

Keyboard		Data Inputs			TONE	TONE	S OUT	MUTE
Equivalent	D3	D2	D1	D0	ENABLE	f _L (Hz)	f _H (Hz)	MOTE
x	x	х	x	x	0	٥V	οv	ov
1	0	0	0	1		697	1209	O/C
2	0	0	1	0		697	1336	0/0
3	0	0	1	1		697	1477	0/0
4	0	1	0	0		770	1209	O/C
5	0	1	0	1		770	1336	0/0
6	0	1	1	0		770	1477	0/C
7	0	1	1	1		852	1209	0/0
8	1	lo	0	0		852	1336	0/0
9	1	0	0	1		852	1477	0/0
0	1	0	1	0		941	1336	0/0
*	1	0	1	1		941	1209	0/0
#	1 1	1	0	0		941	1477	0/C
Α	1	1	0	1		697	1633	0/C
В	1	1	1	0		770	1633	0/0
С	1	1	1	1		852	1633	0/0
D	0	0	0	0		941	1633	0/C

Timing Diagram

Typical Application

*Adjust R_E for desired tone amplitude.

FIGURE 3

PRELIMINARY

TP5089 DTMF (TOUCH-TONE) Generator

General Description

The TP5089 is a low threshold voltage, field-implanted, metal gate CMOS integrated circuit. It interfaces directly to a standard telephone keypad and generates all dual tone multi-frequency pairs required in tone-dialing systems. The tone synthesizers are locked to an on-chip reference oscillator using an inexpensive 3.579545 MHz crystal for high tone accuracy. The crystal and an output load resistor are the only external components required for tone generation. A MUTE OUT logic signal, which changes state when any key is depressed, is also provided.

Features

- 3.5V-10V operation when generating tones
- 2V operation of keyscan and MUTE logic
- Static sensing of key closures or logic inputs
- On-chip 3.579545 MHz crystal-controlled oscillator
- Output amplitudes proportional to supply voltage
- High group pre-emphasis
- Low harmonic distortion
- Open emitter-follower low-impedance output
- SINGLE TONE INHIBIT pin

FP5089

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Operating Temperature Storage Temperature Maximum Power Dissipation -30°C to +60°C -55°C to + 150°C 500 mW

Supply Voltage (V _{DD} - V _{SS})	15V
Maximum Voltage at Any Pin	V_{DD} + 0.3V to V_{SS} – 0.3V

Electrical Characteristics Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for $V_{DD} = 3.5V$ to 10V, $T_A = 0^{\circ}C$ to $+60^{\circ}C$ by correlation with 100% electrical testing at $T_A = 25^{\circ}C$. All other limits are assured by correlation with other production tests and/or product design and characterization.

Parameter	Conditions	Min	Тур	Max	Units
Minimum Supply Voltage for Keysense and MUTE Logic Functions		2			v
Minimum Operating Voltage for generating tones		3.5			v
Operating Current Idle Generating Tones	Mute open $R_L = \infty$ $V_{DD} = 3.5V$	25 2.5	2 1.1		μA mA
Input Resistors COLUMN and ROW (Pull-Up) SINGLE TONE INHIBIT (Pull-Down) TONE DISABLE (Pull-Up)		25 120	50		kΩ kΩ
Input Low Level				0.2 V _{DD}	v
Input High Level		0.8 V _{DD}			V
MUTE OUT Sink Current (COLUMN and ROW Active)	$V_{DD} = 3.5V$ $V_0 = 0.5V$	0.4			mA
MUTE Out Leakage Current	$V_0 = V_{DD}$		1		μΑ
Output Amplitude Low Group	$R_{L} = 240 \Omega$ $V_{DD} = 3.5 V$	190	250	340	mVrms
	$R_{L} = 240\Omega$ $V_{DD} = 10V$	510	700	880	mVrms
Output Amplitude High Group	$R_{L} = 240\Omega$ $V_{DD} = 3.5V$	270	340	470	mVrms
	$R_{L} = 240\Omega$ $V_{DD} = 10V$	735	955	1265	mVrms
Mean Output DC Offset	$V_{DD} = 3.5V$ $V_{DD} = 10V$		1.3 4.6		v v
High Group Pre-Emphasis		2.2	2.7	3.2	dB
Dual Tone/Total Harmonic Distortion Ratio	$V_{DD} = 4V, R_L = 240\Omega$ 1 MHz Bandwidth	-22	-23		dB
Start-Up Time (to 90% Amplitude)			3	5	mS

Note 1: R_L is the external load resistor connected from TONE OUT to $\mathsf{V}_{SS}.$

Note 2: Crystal specification: Parallel resonant 3.579545 MHz, R_S \leq 150 Ω , L = 100 mH, C_O = 5 pF, C_I = 0.02 pF.

Description

The MUTE output is an open-

key input is sensed. The MUTE

output will switch regardless of

drain N-channel device that sinks current to V_{SS} with any key input and is open when no

the state of the SINGLE TONE INHIBIT input. The SINGLE TONE INHIBIT

input is used to inhibit the generation of other than valid tone pairs due to multiple rowcolumn closures. It has a pulldown resistor to VSS, and when left open or tied to VSS any input condition that would normally result in a single tone will now result in no tone, with all other functions operating normally. When tied to VDD, single or dual tones may be generated, see Table II.

This output is the open emitter of an NPN transistor, the collector of whch is connected to VDD. When an external load resistor is connected from TONE OUT to VSS, the output voltage on this pin is the sum of the high and low group sinewaves superimposed on a DC offset. When not generating tones, this output transistor is turned OFF to minimize the device idle current.

Adjustment of the emitter load resistor results in variation of the mean DC current during tone generation, the sinewave signal current through the output transistor, and the output distortion. Increasing values of load resistance decrease both the signal current and distortion.

Functional Description

With no key inputs to the device the oscillator is inhibited, the output transistor is pulled OFF and device current consumption is reduced to a minimum. Key closures are sensed statically. Any key closure activates the MUTE output, starts the oscillator and sets the high group and low group programmable counters to the appropriate divide ratio. These counters sequence two ratioed-capacitor D/A converters through a series of 28 equal duration steps per sine-wave cycle. The two tones are summed by a mixer amplifier, with pre-emphasis applied to the high group tone. The output is an NPN emitter-follower requiring the addition of an external load resistor to VSS. This resistor facilitates adjustment of the signal current flowing from VDD through the output tran-

The amplitude of the output tones is directly proportional to the device supply voltage.

Tone Group	Valid Input	Standard DTMF (Hz)	Tone Output Frequency	% Deviation from Standard
Low	R1	697	694.8	-0.32
Group	R2	770	770.1	+0.02
fL	R3	852	852.4	+ 0.03
	R4	941	940.0	-0.11
High	C1	1209	1206.0	-0.24
Group	C2	1336	1331.7	-0.32
fн	C3	1477	1486.5	+0.64
	C4	1633	1639.0	+ 0.37

TABLE I. Output Frequency Accuracy

TABLE II. Functional Truth Table

SINGLE TONE	TONE	BOW		TON	EOUT	MUTE
INHIBIT	DISABLE		COLONNY	Low	High	more
X	0	0/0	0/0	0V	٥٧	0/C
× X	x	0/C	0/C	ov	ov	0/C
x	0	One	One	Vos	Vos	0
X	1	One	One	f	fH	0
1 1	1	2 or More	One		fн	0
1 '	1	One	2 or More	f_ f_	-	0
1	1	2 or More	2 or More	Vos	Vos	0
0	1	2 or More	One	Vos	Vos	0
0	1	One	2 or More	Vos	Vos	0
0	1	2 or More	2 or More	Vos	Vos	0

Note 1: X is don't care state.

Note 2: VOS is the output offset voltage.

TP5089

National Semiconductor Corporation

TP5700A Telephone Speech Circuit

General Description

The TP5700A is a linear bipolar device which includes all the functions required to build the speech circuit of a telephone. It replaces the hybrid transformer, compensation circuit and sidetone network used in traditional designs. When used with an electret microphone (with integral FET buffer) and dynamic receiver, superior audio linearity, distortion and noise performance are obtained. Loop attenuation compensation is also included.

The low voltage design enables the circuit to work over a wide range of operating conditions, including long loops, extension telephones and subscriber carrier applications. Operating power is derived from the telephone line.

Features

- 5 mA-120 mA loop operation
- Voltage swing down to 1.0V
- Electret microphone amplifier
- Receive amplifier with push-pull outputs
- Automatic gain compensation for loop length
- Sidetone impedance independent of input impedance
- DTMF interface with muting
- Voltage regulator outputs for DTMF generator etc.
- Works in parallel with a standard phone on 20 mA loop
- Available in small outline surface mount package

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications. V^+ with Bespect to V^- 20/

v with Respect to v	200
Voltage at Any Other Pin	V^+ + 0.3V to V^- - 0.3V

Operating Temperature, T _A	-25°C to +70°C
Power Dissipation (Note 3)	1W
Storage Temperature, T _S	-65°C to +150°C
Junction Temperature	150°C
Lead Temperature (Soldering, 10	seconds) 300°C

DC Electrical Characteristics

Unless otherwise specified, all tests based on the test circuits shown in *Figure 1*, all limits printed in bold characters are guaranteed at $T_A = 0^{\circ}$ C to + 60°C by correlation with 100% testing at $T_A = 25^{\circ}$ C. All other limits are assured by by correlation with other production tests, and/or product design and characterization.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{T-R}	Tip-Ring Voltage including nominal 1.4V polarity guard (See <i>Figure 1</i>)	I _{LOOP} = 5 mA = 20 mA = 50 mA = 80 mA = 120 mA		2.8 7 10.5 15	4.5	V V V V
VI	Minimum Instantaneous Voltage Swing	V ⁺ to V ⁻ I _{LOOP} = 5mA		1.0		v
TRANSMI	TAMPLIFIER					
R _{XIN}	Input Resistance	From Pin 7 to V-	15	30	50	kΩ
G _{XA}	Gain at 1 kHz	$R_{AGC} = 0\Omega$ to V ⁻ I _{LOOP} = 20 mA, T _A = 25°C only	33	35	37	dB
G _{XT}	Gain Variation v. T _A	· ·		±1		dB
G _{XI}	Gain Variation v. ILOOP	$I_{LOOP} = 20 \text{ to } 100 \text{ mA}$		-6		dB
N _X	Transmit Noise	$MIC IN_1 = 0V$		12	18	dBrnC
S/D _X	Signal/Total Harmonic Distortion	$I_{LOOP} \ge 20 \text{ mA}$ V _L = 800 mVrms		2	10	%
G _{XM}	Gain Change when MUTED	MUTE IN ≥ V _{MON}		-55		dB
DTMF AM	PLIFIER					
R _{DIN}	Input Resistance	From Pin 8 to V ⁻	10	20	55	kΩ
G _{XD}	Gain at 1 kHz	$R_{AGC} = 0\Omega$ to V ⁻ I _{LOOP} = 20 mA, T _A = 25°C only	3.5	5.5	7.5	dB
S/D _{XD}	Signal/Total Harmonic Distortion	$I_{LOOP} = 20 \text{ mA}$ V _L = 1.06 Vrms, T _A = 25°C only		3	10	%
G _{XDT}	Gain Variation v. T _A			± 1		dB
G _{XDI}	Gain Variation v. ILOOP	$I_{LOOP} = 20$ to 100 mA		-6		dB
MUTE INP	UT					
I _{MIN}	Input Current	Pin 9 = 1.5V		40		μΑ
V _{MOFF}	MUTE OFF Input Voltage				0.5	v
V _{MON}	MUTE ON Input Voltage		1.5			V

DC Electrical Characteristics (Continued)

Unless otherwise specified, all tests based on the test circuits shown in *Figure 1*, all limits printed in bold characters are guaranteed at $T_A = 0^{\circ}$ C to + 60°C by correlation with 100% testing at $T_A = 25^{\circ}$ C. All other limits are assured by by correlation with other production tests, and/or product design and characterization.

Symbol	Parameter	Conditions	Min	Тур	Max	Units	
RECEIVE	RECEIVE AMPLIFIER						
R _{RIN}	Input Resistance	From Pin 12 to V ⁻	20	35	55	kΩ	
G _{RA}	Gain at 1 kHz	$R_{AGC} = 0\Omega$, MUTE IN $\leq V_{MOFF}$ I _{LOOP} = 20 mA, T _A = 25°C only	- 5.5	-4	-2.5	dB	
G _{RT}	Gain Variation v. T _A			±0.5		dB	
G _{RI}	Gain Variation v. ILOOP	$I_{LOOP} = 20$ to 100 mA		-6		dB	
G _{RM}	Gain Change when MUTED	MUTE IN $\geq V_{MON}$	-15	-20	-23	dB	
NR	Receive Noise	V _{RCVIN} = 0V		0	10	dBrnC	
S/D _R	Signal/Total Harmonic Distortion	$V_{R} = 200 \text{ mVrms}$ $I_{LOOP} \ge 20 \text{ mA}$		2	10	%	
V _R C	Output Clipping Level	$I_{LOOP} \ge 20 \text{ mA}$		1		Vp-р	
V _{ROS}	Output Offset Voltage				±100	mV	
SIDETON	E CHARACTERISTICS						
STC	Sidetone Cancellation at 1kHz	20 mA \leq I _{LOOP} \leq 100 mA, (Note 2)	11	15		dB	
VOLTAGE	REGULATOR OUTPUTS						
V _{REG1}	Output Voltage, Pin 10	$I_{LOOP} \ge 20 \text{ mA}$ MUTE IN $\le V_{MOFF}$ MUTE IN $\ge V_{MON}$	2 3	3.2		v v	
I _{REG1}	Maximum Output Current, Pin 10	$\begin{array}{l} \text{MUTE IN} \leq \text{V}_{\text{MOFF}} \\ \text{MUTE IN} \geq \text{V}_{\text{MON}} \end{array}$		200 2.7		μA mA	
V _{REG2}	Output Voltage, Pin 11	$I_{LOOP} \ge 20 \text{ mA}$	1.1	1.2		V	
I _{REG2}	Maximum Output Current, Pin 11	$I_{LOOP} \ge 20 \text{ mA}$	300	500		μA	

FIGURE 1. Test Circuits for Electrical Characteristics

Note 1. Adjust V_{DC} to set specified I_{LOOP} current.

Note 2. To measure Sidetone Cancellation, set oscillator in Fig. 1a for V_L = 100 mVrms; measure V_S. Then in Fig. 1b set oscillator = 100 mVrms; measure V_R. STC=20log V_R/V_S.

Note 3. For operation above 25°C, the device must be derated based on a 150°C maximum junction temperature and a thermal resistance of 70°C/W junction to ambiant.

Functional Description

The TP5700A Telephone Speech Circuits are powered from the telephone Tip and Ring terminals via a full-wave rectifier bridge to protect against loop polarity reversals. The devices provide the following functions:

LINE REGULATOR

A DC regulator sinks current from the loop in order to maintain a DC slope resistance similar to that of a standard phone.

 R_{DC} provides an adjustment for the slope resistance.

MICROPHONE AMPLIFIER

A single-ended input amplifier on the TP5700A enables a low cost electret microphone to be used. This provides superior distortion, linearity and noise performance compared to a traditional carbon microphone. The electret should be capacitively coupled to the amplifier input. The acoustic sensitivity of the microphone is intended to be in the range of -60 to -70 dBV/µBar.

Loss can be inserted if required by adding a resistive potentiometer either at MIC $\rm IN_1$ or the connection between the pre-amp output and driver stage input. The driver stage pro-

Functional Description (Continued)

vides automatic gain compensation to reduce the gain as loop length decreases. The AGC range can be adjusted by means of R_{AGC} to limit the maximum loss on a short loop from 0 to 6 dB.

RECEIVE AMPLIFIER

This buffer amplifier provides the necessary gain or loss for the receive signal. RCV IN should be AC coupled to SIDE-TONE (pin 4). Automatic gain control is built into the amplifier to reduce the gain as loop length decreases. The AGC range is adjusted in common with the transmit AGC range with a range of adjustment for maximum loss from 0 to 6 dB. Push-pull complementary outputs provide balanced direct drive to a dynamic transducer, which may have an impedance as low as 100Ω. The effective receive gain can be reduced by adding a resistor in series with the transducer. The receive gain is automatically reduced by 20 dB when the MUTE input is pulled high.

SIDETONE CIRCUIT

The level of Sidetone cancellation may be adjusted by connecting an external balance impedance to SIDETONE (pin 4) and coupling this point to V⁺. For good sidetone cancellation the balance impedance should be approximately 10 times the subscriber line input impedance. Some typical component values to match a precise 600Ω termination for test purposes are shown in *Figure 2*. Use the component values shown in the Applications Section for better results over a wide range of telephone line impedances.

DTMF AMPLIFIER

An additional transmit amplifier is included to enable the open-emitter output of a conventional DTMF generator to be connected to the line via the transmit output stage. This path includes the transmit AGC section. When the MUTE input is pulled high, the DTMF input is enabled and the MIC input disabled. When MUTE IN is open-circuit or pulled to V⁻ the DTMF input is switched off and the MIC input is enabled.

VOLTAGE REGULATOR OUTPUTS

A precision band-gap voltage reference controls a regulator to provide bias for internal circuits. Two auxiliary outputs are also available. V_{REG1} is provided specifically for powering a low voltage pulse dialer or DTMF generator. In order to protect this output in low voltage situations where the instantaneous voltage across the Speech Circuit may swing below the V_{REG1} output voltage, an internal switch controls the maximum available output current. In speech mode, MUTE IN is low, V_{REG1} output will track approximately $1/_2$ the Tip-Ring voltage and the available output current is limited to 200 μ A. This is adequate to power a DTMF generator in standby mode. When MUTE IN is pulled high to switch the Speech Circuit to the DTMF dialing mode, V_{REG1} is switched to a 3V regulated output and up to 2 mA may be drawn from it to power the active DTMF generator.

A 1.2V regulated output is also provided at V_{REG2} to power a low voltage 2-wire electret microphone such as the Primo EM80-PMI₂.

* See Figure 3

Note: ZBAL circuit shown is for test purposes with a resistive line termination. See Applications Information for suggested component values for normal reactive line applications.

FIGURE 2. TP5700A Telephone Speech Circuits

Connection Diagram

Top View

Order Number TP5700AM, TP5700AN or TP5700N See NS Package M16B or N16A

Pin Descriptions

Pins 1, 2 RCV0+ and RCV0-

The push-pull complementary outputs of the receive amplifier. Dynamic transducers with a minimum impedance of 100 Ω can be directly driven by these outputs.

Pin 3 V-

This is the negative supply input to the device and should be connected to the negative output of the polarity guard. All other voltages on the device are referred to this pin.

Pin 4 S/T

This is the output of the Sidetone cancellation signal, which requires a balance impedance of approximately 10 times the subscriber's line impedance to be connected from this pin to V⁺ (pin 13).

Pin 5 XDI

The input to the line output driver amplifier. Transmit AGC is applied in this stage.

Pin 6 XPO

This is the transmit pre-amp output which is normally capacitively coupled to pin 5.

Pin 7 MIC IN1

This is the inverting input to the transmit pre-amplifier and is intended to be capacitively coupled to an FET-buffered electret microphone.

Pin 8 DTMF IN

The DTMF input which has an internal resistor to V^- to provide the emitter load resistor for a CMOS DTMF generator. This input is only active when MUTE IN (pin 9) is pulled high.

Pin 9 MUTE IN

The MUTE Input, which must be pulled at least 1.5V higher than V $^-$ to mute MIC IN and enable DTMF IN.

Pin 10 V_{REG1}

The regulated output for biasing a pulse dialer or DTMF generator. A 4.7 μF decoupling capacitor to V- should be fitted if this output is used.

Pin 11 V_{REG2}

A 1.2V regulated output suitable for powering a low-voltage electret microphone. A $1\mu F$ decoupling capacitor to V-should be fitted if this output is used.

Pin 12 RCV IN

The receive AGC amplifier input.

Pin 13 V+

This is the positive supply input to the device and should be connected to the positive output of the polarity guard. The current through this pin is modulated by the transmit signal.

Pin 14 R_{DC}

An external 1W resistor is required from this pin to V⁻⁻ to control the DC input impedance of the circuit. The nominal value is 56Ω for low voltage operation. Values up to 82Ω may be used to increase the available transmit output voltage swing at the expense of low voltage operation.

Pin 15 VBIAS

This internal voltage bias line must be connected to V⁺ via an external resistor, R_o, and decoupled to V⁻ with a 22 μ F capacitor. R_o dominates the AC input impedance of the circuit and should be 620 Ω for a 600 Ω input impedance or 910 Ω for a 900 Ω input impedance.

Pin 16 RAGC

The range of transmit and receive gain variations between short and long loops may be adjusted by connecting a resistor from this pin to V^- (pin 3). *Figure 3* shows the relationship between the resistor value and the AGC range. This pin may be left open-circuit to defeat AGC action.

> (B) 39 4 2 0 0 5 10 5 10 5 10 0 0 5 100 0 8 4 0 0 5 100 0 8 4 0 0 5 100 0 100

> > FIGURE 3

TL/H/5201-7

Applications Information

The TP5700A and TP5700 are flexible circuits designed with several user adjustments to enable the performance to be optimized for different applications. The choice of transducer types and the cavities in which they are mounted will also greatly influence the acoustic performance of the telephone. Some of the consequences of circuit adjustments are as follows:

R_{DC} ADJUSTMENT

56Ω is the recommended value for R_{DC} if it is required to meet a maximum Tip-Ring voltage of 4.5V on a 20 mA loop (assuming no more than 1.4V is dropped across the polarity guard). If a higher Tip-Ring voltage is acceptable, R_{DC} may be increased, which will provide a small increase in the available transmit output voltage swing before clipping occurs. R_{DC} should be less than 82Ω to avoid exceeding the maximum rated voltage on a short loop.

RAGC ADJUSTMENT

The available AGC range is more than adequate to compensate for the loss of most loops. R_{AGC} should be chosen only to partly compensate for the anticipated maximum loop loss, as over-compensation may tend to exaggerate the variations of sidetone with loop length.

SIDETONE ADJUSTMENT

The component values used for Z_{BAL} should be selected to provide a clear sidetone sound without excessive "hollowness." The capacitor value and ratio of the two resistors will fix the pole location. To avoid reducing the low voltage performance of the circuit the sum of the two resistors should not exceed 10 k Ω .

POWERING ELECTRET MICROPHONES

Electret microphones with integral FET buffers are available in both two-wire and three-wire versions and a range of operating voltage ranges. There are four methods of powering the microphone.

- 1. The 1.2V V_{REG2} output provides the lowest voltage method for microphones rated down to 1V. V_{REG2} must be decoupled with a 1 μ F capacitor to ground. (See *Figure 5.*)
- 2. If V_{REG1} is not required for DTMF generator operation, it may be used to provide up to 200 μ A for microphone power.
- 3. V_{BIAS} (pin 15) may be used as a decoupled, but unregulated, supply for electrets requiring a higher operating voltage than V_{REG1} or V_{REG2}. The additional current drawn through R₀ will, however, raise the minimum operating voltage of the Speech Circuit. If this method is used the decoupling capacitor must be increased to at least 100 μ F to maintain good low frequency return loss. (See *Figure 4.*)
- An electret type with a good power supply rejection ratio can be powered from V⁺, or a regulated and decoupled supply dropped from V⁺.

TONE DIALING TELEPHONE

Figure 4 shows the TP5700 directly interfacing to a low voltage DTMF generator. V_{REG1} supplies the necessary 2V minimum bias to enable the low voltage tone dialer to sense key closures and pull its MUTE output high. V_{REG1} then switches to a 3V regulated output to sustain the Tone Dialer during tone generation. The TP5700A DTMF input incorporates the necessary load resistor to V⁻ and provides gain plus AGC action to compensate for loop length. A muted tone level is heard in the receiver. For DTMF generators with a higher output level, a resistive potentiometer should

Applications Information (Continued)

be added to reduce the level at the speech circuit DTMF Input. For application requiring higher DTMF level, the signal swing across the device can be raised by using 620 Ω in series with 270 Ω for R₀. The 270 Ω has to be bypassed by a 10 μ f capacitor in order to maintain same AC off hook impedance.

PULSE DIALING TELEPHONE

The TP5700A can reduce the number of components required to build a pulse dialing telephone, as shown in *Figure 5*. The usual current source can be eliminated by using the V_{REG1} output to power a low-voltage (1.7V) series mode pulse dialer via a blocking diode. A low forward-voltage drop diode such as a Schottky type is necessary because

 V_{REG1} is used in its non-regulated mode and its output voltage may fall to 2V on a 20 mA loop. A 100 μ F decoupling capacitor is required to hold up the pulse dialer supply voltage during dialing. This capacitor will take about one second to charge up when the telephone is first connected to the line, but thereafter the 20 MΩ resistor required to retain the last-number dialed memory will keep this capacitor charged. Partial muting is obtained by directly connecting the N-channel open-drain MUTE output of the pulse dialer to the RCV IIN pin on the Speech Circuit.

A fully muted pulse dialer design requires the use of a shuntmode dialer.

*Low voltage drop diode (e.g. Schottky)

† Low leakage type

Indicates National Semiconductor discrete transistor process number

FIGURE 5. Typical Pulse Dialing Telephone

Section 5 Application Notes

Section 5 Contents

AN-336 Understanding Integrated Circuit Package Power Capabilities	5-3
AN-347 MM74HC942 and MM74HC943 Design Guide	5-8
AN-349 CMOS 300 Baud Modem	5-15
AN-370 Techniques for Designing with Codec/Filter COMBO Circuits	5-20
AN-439 TP3200 MC-SLIC Application Guide	5-23
AN-450 Small Outline (SO) Package Surface Mounting Methods—Parameters and Their	
Effect on Product Reliability	5-32
AN-466 Improving the Performance of a High Speed PBX Backplane	5-42
LB-18 + 5V to - 15V DC Converter	5-47

Understanding Integrated Circuit Package Power Capabilities

National Semiconductor Corp. Application Note 336 Charles Carinalli Josip Huljev

INTRODUCTION

The short and long term reliability of National Semiconductor's interface circuits, like any integrated circuit, is very dependent on its environmental condition. Beyond the mechanical/environmental factors, nothing has a greater influence on this reliability than the electrical and thermal stress seen by the integrated circuit. Both of these stress issues are specifically addressed on every interface circuit data sheet, under the headings of Absolute Maximum Ratings and Recommended Operating Conditions.

However, through application calls, it has become clear that electrical stress conditions are generally more understood than the thermal stress conditions. Understanding the importance of electrical stress should never be reduced, but clearly, a higher focus and understanding must be placed on thermal stress. Thermal stress and its application to interface circuits from National Semiconductor is the subject of this application note.

FACTORS AFFECTING DEVICE RELIABILITY

Figure 1 shows the well known "bathtub" curve plotting failure rate versus time. Similar to all system hardware (mechanical or electrical) the reliability of interface integrated circuits conform to this curve. The key issues associated with this curve are infant mortality, failure rate, and useful life.

FIGURE 1. Failure Rate vs Time

Infant mortality, the high failure rate from time t0 to t1 (early life), is greatly influenced by system stress conditions other than temperature, and can vary widely from one application to another. The main stress factors that contribute to infant mortality are electrical transients and noise, mechanical maltreatment and excessive temperatures. Most of these failures are discovered in device test, burn-in, card assembly and handling, and initial system test and operation. Although important, much literature is available on the subject of infant mortality in integrated circuits and is beyond the scope of this application note.

Failure rate is the number of devices that will be expected to fail in a given period of time (such as, per million hours). The mean time between failure (MTBF) is the average time (in hours) that will be expected to elapse after a unit has failed before the next unit failure will occur. These two primary "units of measure" for device reliability are inversely related:

$$MTBF = \frac{1}{Failure Rate}$$

Although the "bathtub" curve plots the overall failure rate versus time, the useful failure rate can be defined as the percentage of devices that fail per-unit-time during the flat portion of the curve. This area, called the useful life, extends between t1 and t2 or from the end of infant mortality to the onset of wearout. The useful life may be as short as several years but usually extends for decades if adequate design margins are used in the development of a system.

Many factors influence useful life including: pressure, mechanical stress, thermal cycling, and electrical stress. However, die temperature during the device's useful life plays an equally important role in triggering the onset of wearout.

FAILURE RATES vs TIME AND TEMPERATURE

The relationship between integrated circuit failure rates and time and temperature is a well established fact. The occurrence of these failures is a function which can be represented by the Arrhenius Model. Well validated and predominantly used for accelerated life testing of integrated circuits, the Arrhenius Model assumes the degradation of a performance parameter is linear with time and that MTBF is a function of temperature stress. The temperature dependence is an exponential function that defines the probability of occurrence. This results in a formula for expressing the lifetime or MTBF at a given temperature. The ratio of these two MTBFs is called the acceleration factor F and is defined by the following equation:

$$\mathsf{F} = \frac{\mathsf{X1}}{\mathsf{X2}} = \exp\left[\frac{\mathsf{E}}{\mathsf{K}}\left(\frac{1}{\mathsf{T2}} - \frac{1}{\mathsf{T1}}\right)\right]$$

Where: X1 = Failure rate at junction temperature T1

- X2 = Failure rate at junction temperature T2
- T = Junction temperature in degrees Kelvin
- E = Thermal activation energy in electron volts (ev)
- K = Boltzman's constant

5

AN-336

However, the dramatic acceleration effect of junction temperature (chip temperature) on failure rate is illustrated in a plot of the above equation for three different activation energies in *Figure 2*. This graph clearly demonstrates the importance of the relationship of junction temperature to device failure rate. For example, using the 0.99 ev line, a 30° rise in junction temperature, say from 130°C to 160°C, results in a 10 to 1 increase in failure rate.

FIGURE 2. Failure Rate as a Function of Junction Temperature

DEVICE THERMAL CAPABILITIES

There are many factors which affect the thermal capability of an integrated circuit. To understand these we need to understand the predominant paths for heat to transfer out of the integrated circuit package. This is illustrated by *Figures* 3 and 4.

Figure 3 shows a cross-sectional view of an assembled integrated circuit mounted into a printed circuit board.

Figure 4 is a flow chart showing how the heat generated at the power source, the junctions of the integrated circuit

flows from the chip to the ultimate heat sink, the ambient environment. There are two predominant paths. The first is from the die to the die attach pad to the surrounding package material to the package lead frame to the printed circuit board and then to the ambient. The second path is from the package directly to the ambient air.

Improving the thermal characteristics of any stage in the flow chart of *Figure 4* will result in an improvement in device thermal characteristics. However, grouping all these characteristics into one equation determining the overall thermal capability of an integrated circuit/package/environmental condition is possible. The equation that expresses this relationship is:

$$T_{J} = T_{A} + P_{D}(\theta_{JA})$$

Where: T_J = Die junction temperature

T_A = Ambient temperature in the vicinity device

P_D = Total power dissipation (in watts)

 θ_{JA} = Thermal resistance junction-to-ambient

 θ_{JA} , the thermal resistance from device junction-to-ambient temperature, is measured and specified by the manufacturers of integrated circuits. National Semiconductor utilizes special vehicles and methods to measure and monitor this parameter. All interface circuit data sheets specify the thermal characteristics and capabilities of the packages available for a given device under specific conditions—these package power ratings directly relate to thermal resistance junction-to-ambient or θ_{JA} .

Although National provides these thermal ratings, it is critical that the end user understand how to use these numbers to improve thermal characteristics in the development of his system using interface components.

FIGURE 3. Integrated Circuit Soldered into a Printed Circuit Board (Cross-Sectional View)

DETERMINING DEVICE OPERATING JUNCTION TEMPERATURE

From the above equation the method of determining actual worst-case device operating junction temperature becomes straightforward. Given a package thermal characteristic, θ_{JA} , worst-case ambient operating temperature, $T_A(max)$, the only unknown parameter is device power dissipation, P_D . In calculating this parameter, the dissipation of the integrated circuit due to its own supply has to be considered, the dissipation within the package due to the external load must also be added. The power associated with the load in a dynamic (switching) situation must also be considered. For example, the power associated with an inductor or a capacitor in a static versus dynamic (say, 1 MHz) condition is significantly different.

The junction temperature of a device with a total package power of 600 mW at 70°C in a package with a thermal resistance of 63°C/W is 108°C.

 $T_J = 70^{\circ}C + (63^{\circ}C/W) \times (0.6W) = 108^{\circ}C$

The next obvious question is, "how safe is 108°C?"

MAXIMUM ALLOWABLE JUNCTION TEMPERATURES

What is an acceptable maximum operating junction temperature is in itself somewhat of a difficult question to answer. Many companies have established their own standards based on corporate policy. However, the semiconductor industry has developed some defacto standards based on the device package type. These have been well accepted as numbers that relate to reasonable (acceptable) device lifetimes, thus failure rates.

National Semiconductor has adopted these industry-wide standards. For devices fabricated in a molded package, the maximum allowable junction temperature is 150°C. For these devices assembled in ceramic or cavity DIP packages, the maximum allowable junction temperature is 175°C. The numbers are different because of the differences in package types. The thermal strain associated with the die package interface in a cavity package is much less than that exhibited in a molded package where the integrated circuit chip is in direct contact with the package material.

Let us use this new information and our thermal equation to construct a graph which displays the safe thermal (power) operating area for a given package type. *Figure 5* is an example of such a graph. The end points of this graph are easily determined. For a 16-pin molded package, the maximum allowable temperature is 150°C; at this point no power dissipation is allowable. The power capability at 25°C is 1.98W as given by the following calculation:

$$P_D @ 25^{\circ}C = \frac{T_J(max) - T_A}{\theta_{JA}} = \frac{150^{\circ}C - 25^{\circ}C}{63^{\circ}C/W} = 1.98W$$

The slope of the straight line between these two points is minus the inversion of the thermal resistance. This is referred to as the derating factor.

Derating Factor =
$$-\frac{1}{\theta_{JA}}$$

As mentioned, *Figure 5* is a plot of the safe thermal operating area for a device in a 16-pin molded DIP. As long as the intersection of a vertical line defining the maximum ambient temperature (70°C in our previous example) and maximum device package power (600 mW) remains below the maximum package thermal capability line the junction temperature will remain below 150°C—the limit for a molded package. If the intersection of ambient temperature and package power fails on this line, the maximum junction temperature will be 150°C. Any intersection that occurs above this line will result in a junction temperature in excess of 150°C and is not an appropriate operating condition.

FIGURE 5. Package Power Capability vs Temperature

The thermal capabilities of all interface circuits are expressed as a power capability at 25°C still air environment with a given derating factor. This simply states, for every degree of ambient temperature rise above 25°C, reduce the package power capability stated by the derating factor which is expressed in mW/°C. For our example—a θ_{JA} of 63°C/W relates to a derating factor of 15.9 mW/°C.

FACTORS INFLUENCING PACKAGE THERMAL RESISTANCE

As discussed earlier, improving any portion of the two primary thermal flow paths will result in an improvement in overall thermal resistance junction-to-ambient. This section discusses those components of thermal resistance that can be influenced by the manufacturer of the integrated circuit. It also discusses those factors in the overall thermal resistance that can be impacted by the end user of the integrated circuit. Understanding these issues will go a long way in understanding chip power capabilities and what can be done to insure the best possible operating conditions and, thus, best overall reliability.

AN-336

Die Size

Figure 6 shows a graph of our 16-pin DIP thermal resistance as a function of integrated circuit die size. Clearly, as the chip size increases the thermal resistance decreases—this relates directly to having a larger area with which to dissipate a given power.

FIGURE 6. Thermal Resistance vs Die Size

Lead Frame Material

Figure 7 shows the influence of lead frame material (both die attach and device pins) on thermal resistance. This graph compares our same 16-pin DIP with a copper lead frame, a Kovar lead frame, and finally an Alloy 43 type lead frame—these are lead frame materials commonly used in the industry. Obviously the thermal conductivity of the lead frame material has a significant impact in package power capability. Molded interface circuits from National Semiconductor use the copper lead frame exclusively.

Board vs Socket Mount

One of the major paths of dissipating energy generated by the integrated circuit is through the device leads. As a result of this, the graph of *Figure 8* comes as no surprise. This compares the thermal resistance of our 16-pin package soldered into a printed circuit board (board mount) compared to the same package placed in a socket (socket mount). Adding a socket in the path between the PC board and the device adds another stage in the thermal flow path, thus increasing the overall thermal resistance. The thermal capabilities of National Semiconductor's interface circuits are specified assuming board mount conditions. If the devices are placed in a socket the thermal capabilities should be reduced by approximately 5% to 10%.

Air Flow

When a high power situation exists and the ambient temperature cannot be reduced, the next best thing is to provide air flow in the vicinity of the package. The graph of *Figure 9* illustrates the impact this has on thermal resistance. This graph plots the relative reduction in thermal resistance normalized to the still air condition for our 16-pin molded DIP. The thermal ratings on National Semiconductor's interface circuits data sheets relate to the still air environment.

Other Factors

A number of other factors influence thermal resistance. The most important of these is using thermal epoxy in mounting ICs to the PC board and heat sinks. Generally these techniques are required only in the very highest of power applications.

Some confusion exists between the difference in thermal resistance junction-to-ambient (θ_{JA}) and thermal resistance junction-to-case (θ_{JC}). The best measure of actual junction temperature is the junction-to-ambient number since nearly all systems operate in an open air environment. The only situation where thermal resistance junction-to-case is important is when the entire system is immersed in a thermal bath and the environmental temperature is indeed the case temperature. This is only used in extreme cases and is the exception to the rule and, for this reason, is not addressed in this application note.

NATIONAL SEMICONDUCTOR PACKAGE CAPABILITIES

Figures 10 and 11 show composite plots of the thermal characteristics of the most common package types in the National Semiconductor Interface Circuits product family. *Figure 10* is a composite of the copper lead frame molded package. *Figure 11* is a composite of the ceramic (cavity) DIP using poly die attach. These graphs represent board mount still air thermal capabilities. Another, and final, thermal resistance trend will be noticed in these graphs. As the number of device pins increase in a DIP the thermal resistance decreases. Referring back to the thermal flow chart, this trend should, by now, be obvious.

RATINGS ON INTERFACE CIRCUITS DATA SHEETS

In conclusion, all National Semiconductor Interface Products define power dissipation (thermal) capability. This information can be found in the Absolute Maximum Ratings section of the data sheet. The thermal information shown in this application note represents average data for characterization of the indicated package. Actual thermal resistance can vary from $\pm 10\%$ to $\pm 15\%$ due to fluctuations in assembly quality, die shape, die thickness, distribution of heat sources on the die, etc. The numbers quoted in the interface data sheets reflect a 15% safety margin from the average num-

bers found in this application note. Insuring that total package power remains under a specified level will guarantee that the maximum junction temperature will not exceed the package maximum.

The package power ratings are specified as a maximum power at 25°C ambient with an associated derating factor for ambient temperatures above 25°C. It is easy to determine the power capability at an elevated temperature. The power specified at 25°C should be reduced by the derating factor for every degree of ambient temperature above 25°C. For example, in a given product data sheet the following will be found:

Maximum Power Dissipation* at 25°C Cavity Package 1509 mW

Molded Package	1476 mW	
----------------	---------	--

 Derate cavity package at 10 mW/°C above 25°C; derate molded package at 11.8 mW/°C above 25°C.

If the molded package is used at a maximum ambient temperature of 70°C, the package power capability is 945 mW.

$$P_D @ 70^{\circ}C = 1476 \text{ mW} - (11.8 \text{ mW})^{\circ}C) \times (70^{\circ}C - 25^{\circ}C)$$

= 945 mW

MM74HC942 and MM74HC943 Design Guide

National Semiconductor Corp. Application Note 347 Peter Single Steve Munich

SECTIONS

- 1) Timing and Control
 - a) Input and Output Thresholds
 - b) Logic States and Control Pin Function
- c) The Oscillator
- 2) The Modulator
 - a) Operation
 - b) Transmit Level Adjustment
- 3) The Line Driver
 - a) Operation
 - b) Second Harmonic Distortion
 - c) Dynamic Range
 - d) Transmission of Externally Generated Tones i) Using the Line Driver

ii) Using TRI-STATE® Capability

1) TIMING AND CONTROL

a) Input and Output Thresholds

The MM74HC942/943 may be used in a CMOS or TTL environment. In a CMOS environment, no interfacing is required. If the MM74HC942/943 is interfaced to NMOS or bipolar logic circuits, standard interface techniques may be used. These are discussed in detail in National Semiconductor Application Note AN-314. This note is included in the National Semiconductor MM54HC/74HC High Speed micro-CMOS Logic Family Databook.

b) Logic States and Control Pin Function

Transmitted Data

TXD (pin 11) in conjunction with O/A selects the frequency of the transmitted tone and thus controls the transmitted data.

 $TXD = V_{CC}$ selects a "mark" and thus the high tone of the tone pair. This is discussed further in the following section.

Originate and Answer Mode

This is controlled by O/A (pin 13). O/A = V_{CC} selects originate mode. O/A = GND selects answer mode. These modes refer to the tone allocation used by the modem. When two modems are communicating with each other one will be in originate mode and one will be in answer mode. This assures that each modem is receiving the tone pair that the other modem is transmitting. The modem on the phone that originated the phone call is called the originate modem. The other modem is the answer modem.

The other pin controlling the transmitted tone is TXD (pin 11).

- 4) The Hybrid
- 5) The Receive Filter
- 6) The FTLC Pin
- 7) The Carrier Detect Circuit
 - a) Operation
 - b) Threshold Control
 - c) Timing Control
- 8) The Discriminator
- a) The Hard Limiter
- b) Discriminator Operation
- 9) Power Supplies
 a) DC Levels and Analog Interface
 b) Power Supply Noise

Bell 103 Tone Allocation						
Data Originate Modem Answer Modem						
Data	Transmit	Receive Transmit		Receive		
Space Mark	1070 Hz 1270 Hz	2025 Hz 2225 Hz	2025 Hz 2225 Hz	1070 Hz 1270 Hz		

Squeich Transmitter

Transmitter squelch is achieved by putting SQT = V_{CC} (SQT is pin 14). The line driver remains active in this state (assuming ALB = GND).

This state is commonly used during the protocol of establishing a call. The originate user initiates a phone call with its transmitter squelched, and waits for a tone to be received before beginning transmission. During the wait time, the modem is active to allow tone detection, but no tone may be transmitted.

The state SQT = V_{CC} may also be used if the line driver is required but a signal other than modem tones (e.g., DTMF tones or voice) is to be transmitted. This is discussed further in Transmission of Externally Generated Tones (section 3d).

Analog Loop Back

ALB = V_{CC}, SQT = GND selects the state "analog loop back". (The state ALB = SQT = V_{CC} is discussed in the following section.)

In analog loop back mode, the modulator output (at the line driver) is connected to the demodulator input (at the hybrid), and the demodulator is tuned to the transmitted frequency tone set. Thus the data on the TXD pin will, after some delay, appear at the RXD pin. This provides a simple "self test" of the modern.

The signal applied to the demodulator during analog loop back is sufficient to cause the carrier detect output CD to go low indicating receipt of carrier.

In analog loop back mode, the modulator and transmitter are active, so the transmitted tone is not squelched.

Power-Down Mode

The state SQT = ALB = V_{CC} puts the MM74HC942/943 in power-down mode. In this state, the entire circuit except the oscillator is disabled. (The oscillator is left running in case it is required for a system clock). In power-down mode the supply current falls from 8 mA (typ) to 180 μ A (typ), and all outputs, both analog and digital, TRI-STATE (become Hi-Z).

The ability of the outputs to TRI-STATE allows the modem to be connected to other circuitry in a bus-like configuration with the state SQT or ALB = GND being the modem chip select.

c) The Oscillator

The oscillator is a Pierce crystal oscillator. The crystal used in such an oscillator is a parallel resonant crystal.

TL/H/5531-2

The capacitors used on each end of the crystal are a combination of on-chip and stray capacitances. This generally means the crystal is operating with less than the specified parallel capacitance. This causes the oscillator to run faster than the frequency of the crystal. This is not a problem as the frequency shift is small (approximately 0.1%).

The oscillator is designed to run with equal capacitive loading on each side of the crystal. This should be taken into consideration when designing PC layouts. This need not be exact. If a 3.58 MHz oscillator is available, the XTALD pin may be driven. The internal inverter driving this pin is very weak and can be overpowered by any CMOS gate output.

The Oscillator and Power-Down Mode

When the chip powers down, all circuits except the oscillator are switched off. The oscillator is left running so it may be used as a clock to drive other circuits within the system.

It is possible to shut the oscillator down by clamping the XTALS pin to V_{CC} or GND. This will cause the total chip current to fall to less than 5 μ A. This may be useful in battery powered systems where minimizing supply current is important.

Powering Down the Oscillator

TL/H/5531-3

2) MODULATOR SECTION

a) Operation

The modulator receives data from the transmit data (TXD) pin and synthesizes a frequency shift keyed, phase coherent sine wave to be transmitted by the line driver through the transmit analog (TXA) pin. Four different sine wave frequencies are generated, depending on whether the modem is set to the originate or answer mode and whether the data input to TXD is a logical high or low. See Timing and Control (section 1) for more information.

The TXD and O/A pins set the divisor of a dual modulus programmable divider. This produces a clock frequency which is sixteen times the frequency of the carrier to be transmitted. The clock signal is then fed to a four bit counter whose outputs go to the sine ROM. The ROM acts like a four-to-sixteen decoder that selects the appropriate tap on the D/A converter to synthesize a staircase-approximated sine wave. A switched capacitor filter and a low pass filter smooth the sine wave, removing high frequency components and insuring that noise levels are below FCC regulations.

b) Transmit Level Adjustment

The maximum transmit level of the MM74HC943 is -9dBm. Since most phone lines attenuate the signal by 3 dB, the maximum level that will be received at the exchange is -12 dBm. This level is also the maximum allowed by most phone companies. The MM74HC942 has a maximum transmit level of 0 dBm, making possible adjustments for line losses up to -12 dB. The resistor values required to adjust the transmit level for both the MM74HC942 and the MM74HC943 follow the Universal Service Order Code and can be found in the data sheets. This resistor added between the TLA pin and V_{CC} serves to control the voltage reference at the top of the D/A ladder, adjusting output levels accordingly.

Note that for transmission above -9 dBm the required resistor must be chosen with the co-operation of the relevant phone company. This resistor is usually wired into the phone jack at the installation as the resistor value is specific to the particular phone line. This is called the Universal Registered Jack Arrangement. This arrangement is possible only with the MM74HC942 because of the dynamic range constraints of the MM74HC943.

3) THE LINE DRIVER

a) Operation

The line driver is a class A power amplifier for transmitting the carrier signals from the modulator. It can also be used to transmit externally generated tones such as DTMF signals, as discussed in section 3d. When used for transmitting modem-produced tones, the external input (EXI) pin should be grounded to pin 19 for both the MM74HC942 and the MM74HC943. The line driver output is the transmit analog (TXA) pin.

b) Second Harmonic Distortion

If the modem is operating in the originate mode, the line driver output has frequencies of 1070 Hz for a space and 1270 Hz for mark. The second harmonic for a space frequency is at 2140 Hz, and this falls in the originate modem's receive frequency band from 2025 Hz to 2225 Hz. While the modulator produces very little second harmonic energy, the amplifier has been designed not to degrade the analog output any further. The result is that the second harmonic is below -56 dBm. Thus it is well below the minimum carrier amplitude recognized by the demodulator.

c) Dynamic Range

The decision to use the MM74HC942 or the MM74HC943 is a tradeoff between output dynamic range and power supply constraints. The power supply is discussed in another section. The MM74HC942 will transmit at 0 dBm while the maximum transmit level of the MM74HC943 is -9 dBm. This level applies to externally generated tones as well as the standard modem tone set.

It is important to realize that the signal levels referred to above, and in the data sheet's specifications, are the levels referred to a 600Ω load resistor (representing the phone line) when driven from the external 600Ω source resistor. Also, the transmit levels discussed previously are maximum values. Typical values are 1 dB to 2 dB below these.

d) Transmission of Externally Generated Tones

Since a phone line connection is usually made on the TXA pin, it may be useful to use the line driver to transmit DTMF, voice or other externally generated tones. Both the inverting and non-inverting inputs to the line driver are available for this purpose. A DTMF tone generator with a TRI-STATE output may instead be directly connected to the same node as the TXA pin rather than the line driver. The choice of which method to use depends on whether the MM74HC942 or MM74HC943 is being used and the signal level of the transmission. Most phone companies allow DTMF tone generation at 0 dBm. This level is the maximum that the MM74HC942 can produce and is beyond the range of the MM74HC943.

If the line driver is to be used for external tone generation, the modern must be powered up and the transmission must be squelched by the SQT pin being held high. This will disable the output of the modulator section. The choice between the EXI pin and DSI pin is up to the user. The EXI pin gives a fixed gain of about 2. The DSI input allows for adjustable gain as a series resistor is necessary.

TL/H/5531-6

A better solution may be to use the power-down mode of the MM74HC942/943 with a DTMF tone generator that has a TRI-STATE output. Such a device is a TP53130 and is shown in the diagram following. When the tone generator is not in use and the modem is not squelched, the DTMF generator's output is in TRI-STATE. Rather than using the line driver, the tone generator's output is instead connected to the same node as the TXA pin. The tone generator is active when the modem is in power-down. Power-down TRI-STATEs the TXA output.

Interfacing to DTMF Generator Using TRI-STATE Feature

4) THE HYBRID

The MM74HC942/943 has an on-chip hybrid. (A hybrid in this context refers to a circuit which performs two-to-four wire conversion.)

Under ideal conditions the phone line and isolation network have an equivalent input impedance of 600Ω . Under these conditions the gain from the transmitter to the op amp output

is zero, while the gain from the phone line to the op amp output is unity. Thus the hybrid, by subtracting the transmitted signal from the total signal on the phone line, has removed the transmitted component.

Unfortunately, these ideal conditions rarely exist and filtering is used to remove the remaining transmitted signal component. This is discussed further in the next section.

Note that the signals into the hybrid must be referred to GND in the MM74HC942 and GNDA in the case of the MM74HC943. Thus blocking capacitors are required in the latter case. This is discussed further in DC Levels and Analog Interface (section 9a).

5) THE RECEIVE FILTER

The signal from the hybrid is a mixture of transmitted and received signals. The receive filter removes the transmitted signals so only received signal goes to the discriminator.

The receive filter may be characterized by driving RXA1 or RXA2 with a signal generator. The filter response may then be observed at the FTLC pin with the capacitor removed. In this state the output impedance of the FTLC pin is 16 k Ω nominal.

6) THE FTLC PIN

The FTLC pin is at the point of the circuit where the receive filter output goes to the hard limiter input and the carrier detect circuit input.

The signal at the output of the receive filter may be as low as 7 mVrms. It is thus important that the wiring to the FTLC pin and the associated circuit be clean. Ideally the track from the capacitor to pin 19 (GND on the MM74HC942, GNDA on the MM74HC943) should be shared by no other devices.

If these precautions are not observed, circuit performance may be unnecessarily degraded.

7) THE CARRIER DETECT CIRCUIT

a) Operation

The carrier detect circuit senses if there is carrier present on the line. If carrier is not present, the data output is clamped high.

The RC circuit filters the DC from the output of the receive filter. The comparator inputs are thus the filter output, and the DC level of the receive filter minus the controlled offset. The controlled offset sets the amount that the AC signal must exceed the DC level (and thus the AC amplitude) before the comparator switches. When this happens, the comparator output sets a resettable one-shot which converts the periodic comparator output to a continuous signal. This signal then controls the time delay set by the CDT pin. After the preset time delay the CD bar output goes low. This shifts the comparator offset providing hysteresis to the overall circuit.

b) Threshold Control

The carrier detect threshold may be adjusted by adjusting the voltage on the CDA pin.

The carrier detect trip points are nominally set at -43 dBm and -46 dBm. The CDA pin sits at a nominal 1.2V. The carrier detect trip points are directly proportional to the voltage on this pin, so doubling the voltage causes a 6 dB increase in the carrier detect trip points. Similarly, halving the voltage causes a 6 dB decrease in carrier detect trip points

Note that as the carrier detect trip point is reduced, the system noise will approach the carrier level, and the accuracy and predictability of the carrier detect trip points will decrease.

The output impedance of the CDA pin is high. It is constant $(\pm 10\%)$ from die to die but has a very high temperature coefficient. It is thus advisable, if the CDA pin is driven, to drive from a low source impedance.

Because the output impedance of the CDA pin is high, capacitive coupling from the adjacent XTALD pin can present a problem. For this reason a 0.1 μ F capacitor is usually connected from the CDA pin to ground. If the CDA pin is driven from a low impedance source, this capacitor may be omitted.

If a resistor is connected from the CD bar pin to the CDA pin, the CDA voltage will vary depending on whether carrier is detected. This will effectively increase the carrier detect hysteresis.

Increased Carrier Detect Hysteresis

TL/H/5531-11

Similarly an inverter and a resistor from the CD bar pin to the CDA pin will reduce the hysteresis. This is not recommended as the 3 dB nominal figure chosen is close to the minimum value useable for stable operation.

c) Timing Control

The capacitor on the CDT pin adjusts the amount of time that carrier must be present before the carrier is recognized as valid.

TL/H/5531-12

This circuit is designed for a long off-to-on time compared to the on-to-off time. This means carrier must be present and stable to be acknowledged, and that if carrier is marginal it will be rejected quickly.

The equations for the capacitor value are

 $T_{on-to-off} = C \times 0.54$ seconds

and

 $T_{off-to-on} = C \times 6.4$ seconds.

The ratio of on-to-off and off-to-on times may be adjusted over a narrow range by the addition of pull-up or pull-down resistors on the CDT pin.

The repeatability of the times is high from die to die at fixed temperature, but is strongly temperature dependent. The times will shift by approximately $\pm 30\%$ over process and temperature.

8) THE DISCRIMINATOR

a) The Hard Limiter

The signal to the inverting input of the comparator has the same DC component as the signal to the non-inverting input. The differential input to the comparator is thus the AC component of the filter output. The comparator has very low input offset and so the limiter will operate with very low input signal levels.

The demodulator employed requires an input signal having equal amplitude for a mark and a space. It also requires a high level signal. The hard limiter converts all signals to a square wave. All amplitude information is lost but frequency information is retained. By removing the capacitor from the FTLC pin, the hard limiter ceases to operate, but the filter output may be observed. This is useful for circuit evaluation and testing.

b) Discriminator Operation

The discriminator separates the incoming energy into mark and space energy. This occurs in the band pass filters which are tuned to the mark and space frequencies. The outputs of the mark and space band pass filters are rectified to extract the output amplitudes. The rectifier outputs are filtered to remove ripple. The low pass filter outputs are compared to determine if the mark or space path is receiving greater energy, and thus if the incoming data is a mark or a space.

The output of the discriminator is only valid if carrier is being received. If carrier is not being received (as determined in the carrier detect circuit) the RXD output is clamped high. This stops the discriminator from attempting to demodulate a signal which is too low for reliable operation.

9) POWER SUPPLIES

a) DC Levels and Analog Interface

The MM74HC942 refers all analog inputs and outputs to GND (pin 19). The analog interface thus requires no DC blocking capacitors.

The MM74HC943 refers all analog inputs and outputs to GNDA (pin 19) which requires a nominal 2.5V supply. The current requirements of GNDA are low, so the GNDA supply may be derived with a simple resistive divider. The GNDA supply can then be referenced to GND using capacitors. This GNDA supply will have poor load regulation so the high current interface must be connected to GND and a DC blocking capacitor used.

As the FTLC capacitor is connected to the input of the hard limiter, any noise on the FTLC ground return will couple directly into this circuit. The signal on FTLC may be only millivolts, so it is important that the FTLC capacitor ground be at the same potential as the chip's ground reference. Thus when using the MM74HC943 the FTLC capacitor ground return should go directly to GNDA (pin 19). For both the MM74HC942 and MM74HC943 this ground return should be shared by no other circuits. Failure to observe this precaution could result in unnecessary reduction of dynamic range and carrier detect accuracy, and an increase in error rate.

TL/H/5531-14

b) Power Supply Noise

It is important that the power supplies to the MM74HC942/ 943 be stable supplies, having low noise, particularly in the frequency band from 50 kHz to 10 MHz.

The MM74HC942/943 use switched capacitor techniques extensively. A feature of switched capacitor circuits is their ability to translate noise from high frequency bands to low frequency bands. At the same time it is difficult to design op amps with high power supply rejection at high frequencies. (The MM74HC942/943 has 19 op amps internally.) As a result the high frequency PSSR of the MM74HC942/943 is not high, so high frequency noise on the power supply can degrade circuit operation.

This should not cause a problem if the circuits are powered from a three terminal regulator, and no other circuitry shares the regulator. Power supply noise could be a problem if:

a) One or both of the power supplies are switching regulator circuits. Switching regulators can produce a lot of supply noise. b) The modem shares its supply with a large digital circuit. Digital circuits, particularly high speed CMOS (the HC family) can produce large spikes on the supplies. These spikes have wide spectral content.

Ideally the modem could have its own supply. This may not be cost effective, so in some applications power supply filters may be necessary. These may just be RC filters but LC filters may be necessary depending on the extent of the supply noise. Miniature inductors in half watt resistor packages are cheap, lend themselves to automatic insertion, and are ideal for these filters.

It is difficult to set specifications for a "clean" supply because spectral density considerations are important. The following guidelines should be taken as "rule of thumb":

a) From 50 kHz to 20 MHz the ripple should not exceed -60 dBV.

b) From DC to 50 kHz the ripple should not exceed $-50\ \text{dBV}.$

MM74HC942 Analog Interface

TL/H/5531-15

MM74HC943 Analog Interface

TL/H/5531-16

CMOS 300 Baud Modem

National Semiconductor Corp. Application Note 349 Anthony Chan Peter Single Daniel Deschene

The advent of low cost microprocessor based systems has created a strong demand for low cost, reliable means of data communication via the dial-up telephone network. The most widespread means for this task is the Bell 103 type modem, which has become the de facto standard of low speed modems. This type of modem uses frequency shift keying (FSK) to modulate binary data asynchronously at speeds up to 300 baud.

The success of this type of modem, despite its modest transmission speed, is largely due to its ability to provide full duplex data transmission at low error rates even with unconditioned telephone lines. It also has a significant cost advantage over the other types of modems available today. Advances in CMOS and circuit design technology have made possible the MM74HC942—a high performance, low power, Bell 103 compatible single chip modem. This chip combines both digital and linear circuity to bring the benefits of system level integration to modem and system designers.

THE PROCESS—microCMOS

The chip was designed with National's double poly CMOS (microCMOS) process used extensively for its line of PCM CODECs and filters. This is a self-aligned, silicon gate CMOS process with two layers of polysilicon, one of which is primarily used for gates of the MOS transistors. Thus there are three layers of interconnect available (two polysilicon and one metal layer) making possible a very dense lay-out.

The two polysilicon layers also offer a near perfect capacitor structure which is used to advantage in the linear portions of the chip. The self-aligned silicon gate P and N-channel MOSFETs combine high gain with minimal parasitic gate-todrain overlap capacitance, facilitating the design of operational amplifiers with high gain-bandwidth product and excellent dynamic range.

CHIP ARCHITECTURE

The chip architecture was arrived at after critically evaluating several trial system partitionings of the Bell 103 type data set. The overriding goal was to integrate as much of the function as possible without sacrificing versatility and cost effectiveness in new applications. The resulting chip architecture reflects this philosophy. Since the majority of users of this device would probably be digital designers unfamiliar with filter design and analog signal processing, inclusion of these functions was thus mandatory. The precision filters needed for a high performance modem also make discrete implementations expensive. On the other hand, the majority of new systems will typically include a microprocessor which is guite capable of handling the channel establishment protocol. Besides, different systems may require different protocols. Circuitry for this task was therefore omitted.

A block diagram illustrating the chip architecture is shown in *Figure 1*. The on-chip line driver and line hybrid greatly simplify interfacing to the phone line by saving two external op amps. The output of the line hybrid, which is used to reduce

5

the effect of the local transmit signal on the received signal, goes to a programmable receive bandpass filter. This filter improves the signal-to-noise ratio at the input of the frequency discriminator, which performs the actual FSK demodulation. The output of the receive filter is also monitored by a carrier detector which compares the amplitude of the received signal to an externally adjustable threshold level.

The modulator consists of a frequency synthesizer which generates a clock at a frequency determined by the TXD (transmit data) and O/\overline{A} (originate/answer) inputs. This is subsequently shaped by the sine converter into the final modulated transmit carrier signal.

All internal clocks and control signals are derived from an on-chip oscillator operating from a common 3.58 MHz TV crystal. On-chip control logic allows the modem to be set to answer or originate mode operation, or to an analog loopback mode via the O/\overline{A} and ALB inputs respectively. The line driver can be squelched via the SQT input, which typically occurs during the channel establishment sequence.

Another feature of this design not obvious from the block diagram of *Figure 1* is that the chip can be powered down by asserting the ALB and SQT inputs simultaneously, a condition that does not occur during normal operation. This cuts power consumption to typically under 50 μ A, making it very suitable for battery operation.

DEMODULATOR

Receive Filter

This is a nine pole, switched capacitor^{1,2} bandpass filter. It is programmable by internal logic to one of two passbands, corresponding to originate or answer mode operation. The measured frequency response of the filter is shown in *Figure 2*. It shows that better than 60 dB of adjacent channel rejection has been achieved. Note also the deep notches at the frequencies of the locally transmitted tone pair.

FIGURE 2. Measured Frequency Response of the Receive Filter

A key design goal was to minimize the delay distortion of the filter. This has also been met as evidenced by the delay response curves shown in *Figures 3a* and *3b*. These curves have been normalized to the delays at 1170 Hz and 2125 Hz respectively. They show that the delay distortion in the 1020 Hz to 1320 Hz band is approximately 70 μ s, while that in the 1975 Hz to 2275 Hz band is approximately 110 μ s. These bands contain all the significant sidebands of a 300 baud FSK signal. The low delay distortion of the receive filter translates directly into low jitter in the demodulated data.

FIGURE 3a. Normalized Delay Response of the Receive Filter In Answer Mode

FIGURE 3b. Normalized Delay Response of the Receive Filter in Originate Mode

An on-chip, second order, real time anti-aliasing filter precedes the receive filter. This masks the sampled data nature of the switched capacitor design from the user, contributing to the ease of use of the chip.

Frequency Discriminator

Referring to *Figure 4*, the filtered receive carrier is first hard limited to remove any residual amplitude modulation. It is then split into two parallel, functionally indentical paths, each consisting of a second order bandpass filter (BPF), a full wave detector and a post detection lowpass filter (LPF). The bandpass filter in the upper path is tuned to the 'mark'

The barlopass liner in the upper path is turied to the mark frequency, and that in the lower path to the 'space' frequency. The detectors are full wave rectifier circuits which, together with the post detection filters, measure the energy in the mark and space frequencies. These are compared by the trailing comparator to decide whether a mark or space has been received.

FIGURE 4. Block Diagram of the Frequency Discriminator

Carrier Detector

The carrier detector compares the output of the receive filter against an externally adjustable threshold voltage. Referring back to *Figure 1*, if the CDA (carrier detect adjust) pin is left floating, the threshold is nominally set to ON at -44 dBm, and OFF at -47 dBm. This can be modified by forcing an external voltage at the CDA input. If the received carrier exceeds the set threshold, the CD (carrier detect) output will go low after a preset time delay. This delay is set externally by a timing capacitor connected to the CDT (carrier detect timing) pin.

MODULATOR

As shown in *Figure 5*, the modulator consists of a frequency synthesizer and a sine wave converter. The transmit data (TXD) and mode (O/ \overline{A}) inputs set the divisor of a dual modulus programmable divider. This produces a clock at sixteen times the frequency of the transmitted tone. This then clocks a four bit counter, whose states represent the voltage levels corresponding to the sixteen time slots in one cycle of a staircase approximated sine wave. The sine ROM decodes the state of the counter and drives a digital-to-analog converter to synthesize the frequency shift keyed sine wave. This modulator design also preserves phase coherence in the transmit carrier across frequency excursions.

The reference voltage for the digital-to-analog converter is derived from a reference generator controlled by an external resistor (RTLA). This allows the transmit signal level to be programmable in accordance with the Universal Service Order Code. This code specifies the programming resistances corresponding to various transmit levels. If no external resistor is connected, the transmit level defaults to -12 dBm.

The synthesized sine wave is filtered by a second order, real time low pass filter to remove spurious harmonics before being fed to the line driver amplifier.

LINE INTERFACE

Line Driver

This is a class A power amplifier designed to drive a 600 Ω line through an external 600 Ω terminating resistor. With the proper transmit level programming resistor installed, it will drive the line at 0 dBm when operated from ±5V supplies. The quiescent current of the output stage of the driver varies with the programmed transmit level to maximize the efficiency of the amplifier. A class A design was chosen mainly because it can tolerate a wider range of reactive loads.

As shown in *Figure 6*, both inverting and non-inverting inputs of the driver amplifier are accessible externally, making it easy to accommodate an external signal source, such as a tone dialer. An external capacitor can also be connected between the inverting input and the amplifier output to give it a lowpass response.

Line Hybrid

The line hybrid is essentially a difference amplifier which, when connected as shown in *Figure 6*, causes the transmit carrier to appear as common-mode signal and be cancelled from the output. If the termination resistor (R_T) and phone line impedance are perfectly matched, the output of the line hybrid would be just the received carrier. In practice, perfect matching is impossible and 10 dB to 20 dB of transmit carrier rejection is more realistic. The residual is more than adequately rejected by the receive filter of the demodulator.

TIMING AND CONTROL

This includes an oscillator amplifier, divider chain and internal control logic. The oscillator, in conjunction with an external 3.58 MHz TV crystal and the divider chain, provides all the internal clocks for the switched capacitor circuits and the frequency synthesizer. The control logic orchestrates the various operating modes of the chip (e.g., originate, answer or analog loop-back modes).

APPLICATIONS

AN-349

Figure 7 shows the MM74HC942 in an acoustically coupled modern application. It demonstrates the simplicity of the resulting design and a dramatic reduction in parts count. Figure 8 shows two typical direct connect modern applications. The simplicity of these circuits is again evident.

The simple power supply requirement (\pm 5V), low power (60 mW when transmitting at -9 dBm, 0.5 mW standby) and low external component count makes the MM74HC942 an efficient implementation of the 300 baud modem function.

FIGURE 8. Typical Implementations of Direct Connect Modems Using the MM74HC942

SUMMARY

In conclusion, the MM74HC942 integrates the entire data path of a Bell 103 type data set into a 20-pin package with the following features:

- On-chip 9 pole receive filter
- · Carrier detector with adjustable threshold
- · Analog demodulator with low bit jitter and bias
- · Phase coherent modulator with low spurious harmonics
- 600Ω line driver with adjustable transmit level
- · On-chip line hybrid

- · Full duplex originate or answer mode operation
- Low power operation, power-down mode
- Simple supply requirements (±5V)

REFERENCES

1. J. Caves et al., "Sampled Analog Filtering using Switched Capacitors as Resistor Equivalents", *IEEE Journal of Solid State Circuits*, Vol. SC-12, No. 6, Dec. 1977

2. W. Black et al., "A High Performance Low Power CMOS Channel Filter", *IEEE Journal of Solid State Circuits*, Vol. SC-15, No. 6, Dec. 1980.

Techniques for Designing with Codec/Filter Combo Circuits

PCM CODEC/Filter Combo devices are complex analog and digital sub-systems on a single chip. They contain, for example, an A/D and a D/A converter, each with 13 bit (for u-law) resolution at low signal levels on the bottom chord of the companding characteristic. The TP3050/60 family of microCmos Combos are, however, capable of providing extremely high performance even in the unfriendly electrical environment of a multi-channel subscriber line card so long as the printed circuit board is carefully designed as an integral part of the system. Indeed, this family can achieve performance superior to that of other 1 or 2 chip CODEC/Filter circuits due to two key factors;superior Power Supply Rejection Ratio, particularly at high frequencies, and the fact that the critical connection between the transmit filter and the encoder is carefully shielded inside the device. Nevertheless, the following guidelines should be adhered to in order to maintain this high performance in any switching or transmission system.

GROUND AND POWER SUPPLY LAYOUT

- Different techniques are necessary for the layout of analog circuits on the card (Combo, SLIC and any external gain sections) and the digital control and switching circuits. Use the GNDA pin of each Combo device as the Ground Reference Point (GRP) for each channel. All AN-ALOG ground connections for each channel should connect as close as possible to the reference point. This includes:
 - a. The analog ground from the 4-wire side of the SLIC circuit.
 - b. The ground for the transmit op amp connection.
 - c. The ground side of the 0.1 μ F decoupling capacitors for the +5V and -5V Combo power supplies.
 - d. The analog ground for any external gain or loss adjustment stage.
- 2. Ground return currents from logic circuits, relays and other audio channels must not flow into or out from the channel GRPs to avoid generating noise voltages. Therefore a separate ground return should be run from each channel GRP to a common point close to the ground pin on the card connector, commonly called the MECCA. Thus there is a STAR formation from the MECCA to each channel GRP. It is NOT recommended to run separate analog and digital ground returns to the shelf power supply. Relays and other circuits operating from the station battery should, however, have a separate return bus to the battery ground.
- 3. Decouple the +5V and -5V power supplies to the MEC-CA close to the card connector. A minimum of 10 μ F should be used for each supply, and a capacitor type with a low Effective Series Resistance should be selected. Beware of the effects of the inrush current charging these capacitors as the card is plugged into a "hot" socket. This current flowing through the wire and trace inductance can cause voltage spikes which easily exceed the absolute maximum ratings of various devices on the card and may even damage the connector contacts. The trace length from the connector to the capacitors should be kept short, and excessive values of decoupling capacitor avoided.

National Semiconductor Corp. Application Brief Chris Stacey

- 4. The +5V and -5V supply busses to the Combo circuits should be routed adjacent to a ground bus to help ensure that any r.f. noise pick-up is common mode. Each supply must be decoupled by 0.1μ F capacitors with short traces to the GRP of each Combo. Ceramic capacitors are best for good high frequency decoupling.
- 5. The +5V bus for the switching and control logic circuits should be a separate connection from the decoupled point close to the card connector. It should not share any common path with the +5V connection to the Combo circuits. Each logic circuit should be decoupled with a 0.01 μ F ceramic capacitor from +5V to ground close to the device.
- 6. The ground connections for the logic circuits and low voltage relays may use a ground bus or, better still, a ground grid system to maintain good noise margins on digital signals. This logic ground should connect directly to the card MECCA such that logic ground currents do not share common paths with any channel GRP returns.
- 7. TTL and LSTTL logic families draw considerably different supply currents when their outputs are in the high and low logic states, causing large switching currents to flow through the busses and decoupling capacitors. In contrast, CMOS logic circuits only draw significant currents during state transitions, and these currents are substantially balanced. A CMOS logic system therefore generates far less electrical noise than a similar TTL System. The use of the 74HC CMOS logic family is highly recommended for line card design. It helps to preserve high

transmission performance in the analog circuits and offers better noise margins than TTL in the presence of transient voltages induced by relays and ringing signals.

NOISE CONSIDERATIONS

- Logic signals should be routed well away from the analog circuits and their power supply connections wherever possible to minimize high frequency noise being capacitively coupled into the channel and aliased down into the audio passband by the sampling action of the filters and encoder.
- All signals and circuits capable of inducing large emf's into the audio signals should be located around the edge of the card wherever possible. This includes:
 - a. Relay drive and output signals
 - b. Ringing distribution
 - c. The 2-wire side of the SLIC circuits.
 - d. 48V battery
 - e. d.c. to d.c. converters
- 3. Ground planes may be used to shield audio signals from noise sources such as clock and data signals and the high voltages listed above. A ground plane is only effective, however, if it carries NO NOISE-INDUCING CUR-RENTS itself. A single point connection from the ground plane to a quiet return is the best way to assure this.
- 4. The transmit op amp connections become a potential noise source particularly if a high gain is required. The feedback resistor value should not exceed 50K ohms, and the bodies of the feedback and input resistorsshould

be close to the op amp input to minimize capacitive noise pick-up.

5. In asynchronous applications (typically transmission systems) the best idle channel noise and signal/distortion performance will be achieved if the transmit and receive filters are clocked synchronously. Thus the MCLK_R/PDN input on the TP3050/60 Combo devices should either be connected to MCLK_X or controlled solely by logic signals as a PDN input only (the Combo will automatically use MCLK_X internally). Note that MCLK_R does not need to be synchronized to BCLK_R and FS_R.

CIRCUIT PROTECTION

CMOS CODEC/Filter Combos are capable of providing extremely reliable and stable long-term performance provided a few simple precautions are followed:

- Normal CMOS handling techniques should be used to prevent build-up of static charge on the device. These include the use of conductive carriers, and grounding personnel while handling devices.
- Ensure that ground is always connected to each device before any other supplies or signals. An extended ground pin should be used on line card connectors.
- Buffer all digital input and output signals between Combo circuits and the line card backplane. This both protects the Combo circuits from backplane transients and preserves good logic signal transition times and noise margins.

- 4. CMOS inputs, outputs and supply connections must be protected against even momentary transitions outside the supply voltages. Schottky diodes should be fitted on each card between +5V and GND, and between GND and -5V to clamp transient power supply reversals during power-up. Type 1N5820 is a good choice.
- 5. If the Combo circuit is connected to a transformer-type of SLIC circuit additional protection is required against line transients. An input resistor of 5K ohms or more is adequate to protect the transmit op amp inputs, VF_XI^+ and VF_XI^- . If this is not possible, silicon diodes or a pair of back-to-back 3.9V zener diodes (depending on the required dynamic range) should be connected between the vulnerable input and GND.
- 6. A pair of back-to-back 3.9V zener diodes may also be necessary to protect the receive power amplifier output(s). Select a zener type with a sharp "knee" on the V-I characteristic, and low leakage current at voltages below the knee to avoid impairing the gain-tracking of the receive channel at high signal levels.

Figure 1 illustrates an idealized circuit card layout embodying many of the above techniques. While space constraints may limit the application of some of these techniques, the closer they can be followed, the better the system performance will be.

TP3200 MC-SLIC Application Guide

INTRODUCTION

In a Central Office or Private Branch Exchange, each subscriber's telephone line is interfaced to the switching equipment through a Subscriber Line Interface Circuit (SLIC) on the line card. To integrate the SLIC function has been a challenge for IC designers. The requirements for the SLIC function are very stringent in that they involve an environment of 48V battery feed and up to 150 Vrms of ringing voltage on the line, not to mention the ability to withstand 1500V lightning surges. Another particularly difficult problem to solve is the maintenance of a good longitudinal balance against common mode current induced by adjacent power cables.

Several implementations of an all-monolithic SLIC have been demonstrated, although they require a somewhat expensive high voltage process and involves tradeoffs in performance. A transformer-based SLIC, on the other hand, offers the most cost-effective and reliable solution for many applications.

The TP3200, TP3202 and TP3204 Magnetic Compensation SLIC are intended to reduce both the size and cost of implementing the SLIC while retaining all the advantages of a

National Semiconductor Corp. Application Note 439 T. K. Chin John Shaw

N-439

transformer-based design. The MC-SLIC also provides onchip supervision and ring trip functions together with three relay drivers with latched inputs.

This applications note provides line card designers with a thorough understanding of the device's operation as well as some application hints that are useful to the circuit designer.

A block diagram illustrating the device's architecture is shown in *Figure 1*. TP3200 and TP3202 are designed with PNP relay drivers, while TP3204 is designed with NPN relay drivers.

MAGNETIC COMPENSATION

The TP3200 family of MC-SLIC's reduces the size of the line interface transformer by using a flux cancellation technique. The device senses the loop current magnitude by means of a differential amplifier A1 (see *Figure 2*) and an on-chip high precision sensing resistor bridge across the external feeding resistor pair Rs.

The output of the amplifier A1 produces a voltage proportional to the instantaneous loop current. And the low pass filter formed by R1 and external capacitor CAP1 prevents the AC component of the loop current from disturbing the

flux cancellation. For a typical CAP1 of 1 µF, the cutoff frequency is approximately 2 Hz.

The voltage follower A2 and output transistor Q1 reproduce a voltage at VC output, proportional to the average DC loop current. A resistor RL connected from VC to GND creates a current flow from the IC pin into the compensation winding of the transformer. By proper selection of R₁ and the transformer winding ratio, the flux created by the compensation current can exactly cancel the flux produced by the DC loop current. The output current source requires a high output impedance at IC (typically 5 M Ω) in order to ensure that the reflected impedance from the compensation winding to the line will not create a loading effect on the line impedance. The IC pin should be connected to the finish of the compensation winding in order to reduce the capacitive loading of the transformer, thereby, increasing the effective reflected impedance from the compensation winding. It is recommended to connect RL and CAP1 to the same ground point in order to prevent ground noise from injecting into the subscriber loop via the compensation winding.

With the DC flux removed, the hybrid transformer can be wound on a small ferrite core without an air gap, yet can maintain a large inductance without running into magnetic saturation.

Figure 2 shows a simplified schematic of the magnetic compensation circuit and Figure 3 is a plot of V_C versus the loop current.

Equations relating to the magnetic compensation circuit are:

$$V_{\rm C} = A_{\rm V} \times 2 \times R_{\rm S} \times I_{\rm LOOP} \tag{1}$$

$$I_{\rm C} = V_{\rm C}/R_{\rm L}$$

= A_V × 2 × R_S × I_{LOOP}/R_L (2)

$$= A_V \times 2 \times R_S \times I_{LOOP}/R_L$$

For perfect flux cancellation.

or.

 $I_{LOOP} \times 2 \times N_P = I_C \times N_C$

$$B_{\rm L} = A_{\rm V} \times B_{\rm S} \times N_{\rm C}/N_{\rm P} \tag{3}$$

The reflected impedance from the compensation winding is: $Z_{\rm C} = R_{\rm IC} \times (2N_{\rm P}/N_{\rm C})^2$

$$CAP1 = 1.6/f \,\mu F$$

Where RIC is the output impedance at IC, f is the upper cutoff frequency.

SUPERVISION

The supervision circuit of the TP3200 family consists of a loop current comparator with hysteresis. It provides status information on off-hook detection, dial pulse replication and ring-trip detection.

Referring back to *Figure 2*, the input to the comparator A3 is taken from the output of amplifier A1, which represents the instantaneous loop current. In the on-hook condition, the SUP output is at logic high. When the loop current rises above 13 mA, the SUP output switches low, indicating off-hook. When the loop current falls below approx. 11 mA, the SUP output will go high, indicating an on-hook condition. These comparator thresholds are selected so that in the extreme case of a very short loop, any possible cable leakage will not be misinterpreted as an off-hook. At the other extreme of a very long loop, there is enough safety margin for reliable detection of off-hook for very weak loop current of less than 15 mA.

During pulse dialing, the loop current changes from 0 mA during the break period and goes back to normal magnitude during the make period. The SUP output will produce a logic-replication of the dial pulses. However, under the worst case condition of a line loaded with 5 ringers, and with a cable leakage of 15 k Ω , the heavy capacitive loading of the ringers will cause excessive delay in loop current decay during break interval, creating dial pulse distortion. This results in shortening of the break period as reflected at the SUP output. *Figure 4* shows the relationship between SUP and the loop current under this condition.

and 15 kΩ Cable Leakage

To repeat these dial pulses through the switching system, a software routine is recommended to be included in the callcontrol processor, which monitors the SUP output and reconstructs the dial pulses in the appropriate break-make ratio.

During ringing, the comparator A3 will detect the instantaneous AC ringing current through the loop and create a waveform at SUP output. During on-hook, the waveform is a square wave with a mark-to-space ratio of larger than 50%. When the telephone goes off-hook, the DC loop current superimposed on the AC ringing current will cause the comparator to generate a waveform with less than 50% duty cycle. This change in duty cycle can be easily monitored by the call-control processor as a test for ring-trip.

This is the most flexible way to detect ring-trip as it is independent of the ringing frequency. However, the CPU must be fast enough to make the detection within 200 mS.

AUTOMATIC RING-TRIP

The automatic ring-trip circuit consists of a ring-trip detection circuit and a double-latched ring relay driver. *Figure 5* shows a simplified schematic diagram.

Based on the state of the RING input, the D-latch is set or reset while the strobe EN is active high, and latched on the falling edge of EN. RSYNC is the clock input to the ring flip-flop. It is driven by the output of the external zero-crossing detector of the ringing voltage on the line. Based upon the state of the output of the D-latch, the ring flip-flop is set or reset at the rising edge of RSYNC. This scheme ensures that the ring relay is turned on or off near the zero crossing of the ringing current to prevent arcing and minimize relay contact wear.

The ring-trip circuit takes its input from the output of amplifier A1, which represents the instantaneous AC ringing current superimposed on the DC off-hook loop current. The comparator A4 compares this instantaneous loop current against a threshold equivalent to approximately 12 mA. Depending upon the polarity of the comparator's output, the constant current source I_O either sources or sinks 10 μ A into CAP2. This results in charging and then discharging CAP2 in each ring cycle. Depending on the duty cycle of the output from A4, this charging and discharging process creates a resultant voltage on CAP2 after one ringing cycle, which is then compared against a threshold of about 50 mV at comparator A5. When the DC loop current increases to above 12 mA, the duty cycle of the output of amplifier A4 is less than 50%. The resultant voltage at CAP2 after a

complete ring cycle then exceeds the 50 mV threshold. As a result, the A5 amplifier generates an output at the next rising edge of RSYNC, which resets the ring latches.

Each positive transition of RSYNC enables the comparator A5 for 20 μ S via the one-shot circuit, after which CAP2 is discharged to GND for 100 μ S via Q2 to ensure that CAP2 always charges up from 0V. The reset pulse from A5 will always appear at the rising edge of RSYNC to ensure that the ring relay is reset at the zero-crossing of the ringing current. *Figure 6* shows the timing diagram for ring-trip.

CAP2 is selected such that the constant current source I_O (approx. 10 μ A) when integrated over half of one ringing cycle, will not create a charging voltage at CAP2 exceeding \pm 3V. A 0.1 μ F is recommended for ringing frequency range of 16 Hz to 40 Hz, and 0.033 μ F for 30 Hz to 70 Hz.

The automatic ring-trip circuit provides a reliable ring-trip detection. Normally, one ring cycle is needed for detection, and the second ring cycle to generate the reset pulse. The worst case ring-trip detection time will be within 3 ringing cycles. If the SUP output is used to detect ring-trip externally, the input at CAP2 should be grounded. Or the TP3202 could be used.

The RING or EN inputs should be kept at logic low after the ring relay is turned on in order to prevent relay chattering when the loop current is near to the 12 mA threshold. This is the condition where the automatic ring-trip tries to turn off the ring relay and the RING and EN inputs try to turn it on again. This results in relay chattering which may cause damage to the relay.

COMPENSATION ACCURACY

The accuracy of flux cancellation is one of the critical factors determining the size of the hybrid transformer. On chip Si-chrome resistors are used for the sensing resistor bridge to ensure high accuracy in loop current tracking. The offset voltage at V_C is zener trimmed to within 30 mV to further minimize the compensation error.

The tolerances of resistors R_S and R_L also contribute to compensation error. The feeding resistors R_S , however, are normally matched to each other to within $\pm 0.1\%$, as are feeding resistors R_F , to ensure 60 dB longitudinal balance.

The following table shows a list of parameters that contribute to compensation errors:

Parameter	Typical	Tolerance
Av	0.15 V/V	2%
V _{OS}	0	30 mV
Rs	100Ω	0.1%
RL	150Ω	0.5%
N _C /N _P	10	0.05%

From Equation 2 above, the compensation error can be derived as follows:

Compensation Error = ILOOR

$$ror = I_{LOOP} - I_C \times N_C/2N_P$$

= $I_{LOOP} - (N_C/2N_P) \times (A_V \times 2R_S \times I_{LOOP} \pm V_{OS})/R_L$
= $(1 - N_C/N_P \times A_V \times B_C/B_V) \times I_{LOOP}$

$$= (1 - N_{C}/N_{P} \times A_{V} \times R_{S}/R_{L}) \times I_{LOOP}$$

$$\pm V_{OS}/R_{L}$$
(4)

$$= \pm (0.026 \times I_{LOOP} + 0.2) \,\text{mA}$$
 (4)

For a maximum loop current of 100 mA for Central Office application, the worst case compensation error is ± 2.8 mA. For a maximum loop current of 60 mA for PBX application, the worst case compensation error is ± 1.8 mA. The ferrite material of the hybrid transformer must be able to handle this uncompensated DC current before magnetic saturation starts.

TRANSFORMER DESIGN

The size and design of the hybrid transformer is influenced by the following factors:

- 1. Low frequency Return Loss, which in turn determines the minimum inductance of the primary windings.
- 2. The worst case compensation error, which determines the ampere-turn before magnetic saturation occurs.
- 3. The permeability and magnetization characteristics of the ferrite material.
- 4. Insertion loss and frequency response.

Figure 7 shows a simplified equivalent circuit for a hybrid transformer. r_p and r_s are the coil resistance of the primary and secondary windings. R_T and C_T are the terminating impedances of the secondary winding, and L is the total primary inductance. As the compensation winding is driven by a high impedance current source, it can be ignored from the equivalent circuit.

The return loss against a reference impedance Z_{O} can be calculated from the equation:

Figure 8 is a plot of return loss against a reference impedance of $600\Omega + 2.16 \,\mu\text{F}$. To achieve a 20 dB return loss, it can be seen from the plot that it requires a primary inductance of more than 0.8H even under the worst case compensation error of 2.8 mA. An acceptable ferrite is Siemens RM8-T35 ferrite core with a typical inductance factor of 8400 nH/T². Following similar calculation, it can be found that it requires a minimum primary inductance of 1.4H in order to achieve a 20 dB return loss against a reference impedance of $900\Omega + 2.16 \,\mu\text{F}$. A suitable ferrite is Siemens RM10-T35 ferrite core with a typical inductance factor of 11000 nH/T².

To ensure a 60 dB longitudinal balance, the two primary windings must be carefully wound for symmetry. Usually this is done by winding the two primary windings with bifilar wires of the same gauge. Furthermore, to prevent heating up the ferrite core for a 0 K ft loop, the primary resistance has to be kept to a minimum and is recommended to be below 30Ω .

OUTPUT BIASING

The AC line voltage across the subscriber loop will appear at the IC output and is amplified by the turns ratio $N_C/2N_P$. A suitable DC bias voltage must be provided for the compensation winding to ensure sufficient swing for the AC signals.

At minimum loop current (see *Figure 9a*), the DC bias at IC must be sufficiently positive with respect to the zener voltage to allow negative swing without clipping. Thus:

 $I_{CMIN} \times (R_C + r_C) > N \times V_P - (V_{ZMIN} - |V_{BAT}|_{MAX})$ or,

 $\begin{array}{l} (\mathsf{R}_{\mathsf{C}} + \mathsf{r}_{\mathsf{C}}) \times \mathsf{I}_{\mathsf{LOOPMIN}} / \mathsf{N} > \mathsf{N} \times \mathsf{V}_{\mathsf{P}} - \mathsf{V}_{\mathsf{ZMIN}} + \\ |\mathsf{V}_{\mathsf{BAT}}|_{\mathsf{MAX}} \end{array}$

Where, V_{ZMIN} is the minimum zener voltage at IC

- VBATMAX is the maximum battery voltage
- ${\sf R}_{\sf C}$ is the filtering resistor for the compensation winding
- $r_{\mbox{C}}$ is the coil resistance of the compensation winding
- N is the transformer turn ratio N_C/2N_P
- V_{P} is the AC peak voltage swing across Tip and Ring

The maximum current range of IC of 25 mA places a constraint on the minimum compensation to primary turn-ratio of the transformer.

$$\begin{split} N &= N_{C}/2N_{P} \\ &= I_{LOOP}/I_{C} \end{split}$$
 Thus,

GND

$$N_{MIN} = I_{LOOPMAX}/25$$

(7)

(5)

AN-439

To allow for a +3 dBm line signal over loop current from 20 mA to 100 mA, with a zener voltage of 62V ±5%, and battery voltage of -42V to -54V, the compensation turn ratio and total resistance (R_C + r_C) can be calculated from the above equations and is shown in the following table:

	Line Impedance		
	600Ω	900Ω	
Minimum N	4.0	4.0	
Maximum N	6.67	5.45	
$\begin{array}{l} \text{Minimum (R}_{C} + r_{C}) \\ \text{for N} = 5 \end{array}$	712.5Ω	1143.8Ω	
Maximum ($R_C + r_C$) for N = 5	1487.5Ω	1401.3Ω	

INPUT COMMON MODE RANGE

Consideration should be given to the various subscriber line voltages and currents, such that the magnetic compensation circuitry only operates within its dynamic range.

The A1 amplifier's differential input is biased using negative feedback so that it works within the range of V_{BB} + 0.5V to V_{CC} - 1V, where V_{CC} = +5V ±5%, and V_{BB} = -5V ±5%. The input common mode voltage V_{IN} is given by the following expression:

$$V_{\rm IN} = 0.0155 \times (V_{\rm BAT} + V_{\rm R} \sin wt + 2R_{\rm S} \times I_{\rm CM}) - 1$$

 $0.05R_S imes (I_{LOOP} + I_R sin (wt + A))$

where, VBAT is the battery voltage

ILOOP is the DC loop current

 V_R is the peak ringing voltage

 I_{R} is the peak ringing current

 I_{CM} is the peak longitudinal current of arbitrary phase It should be noted that for short subscriber loops, the component of voltage at $V_{\rm IN}$ due to the ringing current is in antiphase to the ringing voltage. For longer loops, the phase angle A between the ringing voltage and the ringing current increases. Thus the resulting voltage for $V_{\rm IN}$ will be a vector summation. Under the latter condition, however, the sub-

and I_R, and consequently reduce their influence on V_{IN}. As an example, consider an application with V_{BAT} = -48V, V_R = 110V rms at 60 Hz, I_{LOOP} = 100 mA, I_{CM} = 30 mA peak, and a ringer impedance of 2 k Ω + 4.7 μ F. During onhook ringing, the voltage swing at V_{IN} can be derived from equation (8) as follows:

scriber loop resistance is greater, which will reduce ILOOP

 $-2.93V < V_{IN} < 1.45V$

When the telephone goes off-hook, and at the point before ring trip, the voltage swing at $V_{\rm IN}$ becomes :

 $-2.86V < V_{IN} < 0.38V$

This reduction in voltage swing is due to the small phase angle A and the increase of AC ringing current.

OVER-VOLTAGE PROTECTION

The TP3200 family has been designed on a standard 70V bipolar process requiring no expensive dielectric isolation. In fact, any possible line transient voltage is scaled down

through the feeding resistors R_S and R_F, insuring that the device will never see more than one half of the line transient. However, to prevent excessively high transient voltage induced by lightning or from nearby power cables, it is essential to provide some protective device across Tip and Ring. It is recommended to put a 10 Ω current-limit resistor and a 300V peak transcient suppressor from Tip to GND and from Ring to GND.

Moreover, any transient voltage on the line will also be reflected into the compensated winding as well as the secondary winding. Such a transient in the compensation winding is especially significant as it is boosted up by the turn ratio $N_C/2N_P$. A fast actuating 62V zener diode is necessary to connect from IC output to GND for protection. On the secondary winding, two 3.9V zener diodes connected backto-back will insure the COMBO will never see any transient voltage exceeding its supply voltages.

The on-chip relay driver has been designed to sink 30 mA for TP3200 and TP3202, and 80 mA for TP3204. When the relay is turned off, the back emf in the coil winding may possibly cause damage to the output driver. Each relay driver should be protected by a rectifier diode connected close to the relay coil in order to dissipate the stored energy in the coil.

A TYPICAL LINE CARD

(8)

Figure 10 shows a typical line card architecture with 16 subscriber lines. The on-chip receive power amplifier and transmit buffer amplifier of the TP3051/56 COMBO is connected as a simple 2–to–4 wire converter. To provide sufficient swing to +3 dBm to the line, a 900: 600 Ω hybrid transformer is used. This ensures that the receive output VFrO of the COMBO will always drive a 600 Ω load at less than 3V peak to peak.

Ringing voltage is inserted into the line by breaking the battery feed path and superimposing the AC ringing voltage via a 4-pole relay connected to RYR output. To prevent the feed decoupling capacitor from shunting the ringing current, a break contact is placed in series with C_F. Furthermore, to prevent the primary windings from attenuating the ringing voltage or introducing distortion, make contacts are connected in shunt with the transformer primary. The two general purpose relay drivers RY1 and RY2 can be used to control battery reversal and testing by connecting to 2-pole relays.

The DLIC TP3110/20 controls the flow of data between each subscriber COMBO and the TDM highways. Typically they run at 2.048 Mb/s with 32 64 Kb/s channels, or at 1.536 Mb/s with 24 64 Kb/s channels. All time slot assignments are loaded by the line card microprocessor into a RAM, know as the Time-Slot Map on the DLIC to provide non-blocking access to as many as 128 channels on these highways.

The line card microprocessor is typically from the INS 8048 family. It controls the COMBO's through the DLIC's interface register, and controls each SLIC by scanning the digital inputs (RING,RC1,RC2 and EN) and SUP output via the P1 and P2 ports.

For additional information on design of a suitable zero crossing detector, see National Semiconductor Linear Application Note AN-74.

5-29

S

664-NA

AN-439

APPEND Impedance	IX A: Transfo ce	rmer Specif	ication for 600)Ω Line	APPENDIX Impedance	(B: Transfor	mer Specifi	cation for 90	0Ω Line
1. Turn R	atio				1. Turn Ra	tio			
Np1:	Start 11,	end 2,	210 T,	AWG #36	Np1:	Start 11,	end 2,	255 T,	AWG #36
Np2:	Start 12,	end 1,	210 T,	AWG #36	Np2:	Start 12,	end 1,	255 T,	AWG #36
Ns :	Start 8,	end 5,	440 T,	AWG #38	Ns :	Start 8,	end 5,	440 T,	AWG #38
Nc :	Start 7,	end 6,	2100T,	AWG #42	Nc :	Start 7,	end 6,	2550T,	AWG #41
2. Ferrite	Core				2. Ferrite C	Core			
Siemer	ns RM8-T35 d	or equivaler	it		Siemens	s RM10-T35	or equivale	nt	
AL =	8400 nH/T ²	+30/-20%	6		AL = 1	1000 nH/T ²	+30/-20	%	
3. DC Resistance			3. DC Resistance						
Np1:	15 Ω max				Np1 :	$20\Omega max$			
Np2:	15 Ω max				Np2 :	20 Ω max			
Ns :	45Ω max				Ns :	55 Ω max			
Nc :	650 Ω max				Nc :	800 Ω max			
4. Inducta	ance				4. Inductar	nce			
(total p ing)	primary induct	ance with N	lp1 and Np2 i	n series aid-	(total pri ing)	mary inducta	ince with N	p1 and Np2	in series aid
1.5 H typical at 0 mA primary current			2.5 H typical at 0 mA DC primary current						
0.7 H min at 3 mA DC primary current			1.3 H min at 3 mA DC primary current						
5. Impedance: 600Ω to 600Ω			5. Impedance: 900 Ω to 600 Ω						
6. Frequency response			6. Frequency response						
\pm 0.5 dB reference to 1 kHz, 300–3500 Hz			\pm 0.5 dB reference to 1 kHz, 300–3500 Hz						
7. Longitudinal Balance			7. Longitudinal Balance						
60 dB min with 2–12 grounded, 6–7 AC decoupled, 5 or 8 grounded			60 dB min with 2-12 grounded, 6-7 AC decoupled, 5 or 8 grounded						
8. Dielect	tric				8. Dielectri	ic			
1500 Vrms from primary to any other conductors			1500 Vrms from primary to any other conductors						

TL/H/8682-13

P/N 328-0036 AIE Magnetics 701 Murfreesboro Road Nashville, Tennessee 37210 (615) 244-9024

P/N 328-0035

Appendix C: Transformer Specification for a Center Tap Transformer

1. Turns Ratio

Np1:	Start 1,	End 4,	175 T
Np2:	Start 3,	End 6,	175 T
Ns1:	Start 12,	End 11,	175 T
Ns2:	Start 11,	End 9,	175 T
Nc :	Start 10,	End 7,	1750T

- 2. Wire Gauge
 - Np1, Np2 wound by Bifilar wires, 0.125 mm Ns1, Ns2 wound by Bifilar wires, 0.125 mm Nc wound by 0.06 mm wires
- 3. Ferrite Core Siemens RM8-T38 or equivalent,
 - $A_L = 12500 \text{ nH}/\text{T}^2 + 30/-40\%$
- 4. Resistance matching of coils Np1 to Np2: 1% max Ns1 to Ns2: 1% max

- 5. Inductance
- (total primary inductance with Np1 and Np2 in series aiding)
- 0.8H min at 3 mA DC primary current. f = 300 Hz.
- 6. High Voltage Isolation 1500V between all coils
- 7. Suggested Vendors Ferroglen Research Ltd. 20 Tanfield Road Croyden Surrey CRO 1 AL or Gardners Transformers Ltd. Christchurch Dorset BH23 3PN

TL/H/8682-17

AN-450

Small Outline (SO) Package Surface Mounting Methods-Parameters and Their Effect on Product Reliability

The SO (small outline) package has been developed to meet customer demand for ever-increasing miniaturization and component density.

COMPONENT SIZE COMPARISON

Because of its small size, reliability of the product assembled in SO packages needs to be carefully evaluated.

SO packages at National were internally qualified for production under the condition that they be of comparable reliability performance to a standard dual in line package under all accelerated environmental tests. *Figure A* is a summary of accelarated bias moisture test performance on 30V bipolar and 15V CMOS product assembled in SO and DIP (control) packages.

National Semiconductor Corp. Application Note 450 Josip Huljev W. K. Boey

In order to achieve reliability performance comparable to DIPs—SO packages are designed and built with materials and processes that effectively compensate for their small size.

All SO packages tested on 85%RA, 85°C were assembled on PC conversion boards using vapor-phase reflow soldering. With this approach we are able to measure the effect of surface mounting methods on reliability of the process. As illustrated in *Figure A* no significant difference was detected between the long term reliability performance of surface mounted S.O. packages and the DIP control product for up to 6000 hours of accelerated 85%/85°C testing.

SURFACE-MOUNT PROCESS FLOW

The standard process flowcharts for basic surface-mount operation and mixed-lead insertion/surface-mount operations, are illustrated on the following pages.

Usual variations encountered by users of SO packages are:

- · Single-sided boards, surface-mounted components only.
- Single-sided boards, mixed-lead inserted and surfacemounted components.
- Double-sided boards, surface-mounted components only.
- Double-sided boards, mixed-lead inserted and surfacemounted components.

In consideration of these variations, it became necessary for users to utilize techniques involving wave soldering and adhesive applications, along with the commonly-used vaporphase solder reflow soldering technique.

PRODUCTION FLOW

Basic Surface-Mount Production Flow

Thermal stress of the packages during surface-mounting processing is more severe than during standard DIP PC board mounting processes. Figure B illustrates package temperature versus wave soldering dwell time for surface mounted packages (components are immersed into the molten solder) and the standard DIP wave soldering process. (Only leads of the package are immersed into the molten solder).

For an ideal package, the thermal expansion rate of the encapsulant should match that of the leadframe material in order for the package to maintain mechanical integrity during the soldering process. Unfortunately, a perfect matchup of thermal expansion rates with most presently used packaging materials is scarce. The problem lies primarily with the epoxy compound.

Normally, thermal expansion rates for epoxy encapsulant and metal lead frame materials are linear and remain fairly close at temperatures approaching 160°C, Figure C. At lower temperatures the difference in expansion rate of the two materials is not great enough to cause interface separation. However, when the package reaches the glass-transition temperature (Tg) of epoxy (typically 160-165°C), the thermal expansion rate of the encapsulant increases sharply, and the material undergoes a transition into a plastic state. The epoxy begins to expand at a rate three times or more greater than the metal leadframe, causing a separation at the interface.

TL/F/8766-26

Cuα=16 LEAD-FRAME

Τg T(°C)

When this happens during a conventional wave soldering process using flux and acid cleaners, process residues and even solder can enter the cavity created by the separation and become entrapped when the material cools. These contaminants can eventually diffuse into the interior of the package, especially in the presence of moisture. The result is die contamination, excessive leakage, and even catastrophic failure. Unfortunately, electrical tests performed immediately following soldering may not detect potential flaws.

Most soldering processes involve temperatures ranging up to 260°C, which far exceeds the glass-transition temperature of epoxy. Clearly, circuit boards containing SMD packages require tighter process controls than those used for boards populated solely by DIPs.

Figure D is a summary of accelerated bias moisture test performance on the 30V bipolar process.

- Group 1 Standard DIP package
- Group 2 SO packages vapor-phase reflow soldered on PC boards
- Group 3-6 SO packages wave soldered on PC boards
- Group 3 dwell time 2 seconds
 - 4 dwell time 4 seconds
 - 5 dwell time 6 seconds
 - 6 dwell time 10 seconds

TL/F/8766-7

FIGURE D

It is clear based on the data presented that SO packages soldered onto PC boards with the vapor phase reflow process have the best long term bias moisture performance and this is comparable to the performance of standard DIP packages. The key advantage of reflow soldering methods is the clean environment that minimized the potential for contamination of surface mounted packages, and is preferred for the surface-mount process.

When wave soldering is used to surface mount components on the board, the dwell time of the component under molten solder should be no more than 4 seconds, preferrably under 2 seconds in order to prevent damage to the component. Non-Halide, or (organic acid) fluxes are highly recommended.

PICK AND PLACE

The choice of automatic (all generally programmable) pickand-place machines to handle surface mounting has grown considerably, and their selection is based on individual needs and degree of sophistication. The basic component-placement systems available are classified as:

- (a) In-line placement
 - Fixed placement stations
 - Boards indexed under head and respective components placed
- (b) Sequential placement
 - Either a X-Y moving table system or a θ, X-Y moving pickup system used
 - -Individual components picked and placed onto boards
- (c) Simultaneous placement
 - Multiple pickup heads
 - Whole array of components placed onto the PCB at the same time
- (d) Sequential/simultaneous placement
 - X-Y moving table, multiple pickup heads system
 - Components placed on PCB by successive or simultaneous actuation of pickup heads

The SO package is treated almost the same as surfacemount, passive components requiring correct orientation in placement on the board.

Pick and Place Action

TL/F/8766-8

BAKE

This is recommended, despite claims made by some solder paste suppliers that this step be omitted.

The functions of this step are:

- Holds down the solder globules during subsequent reflow soldering process and prevents expulsion of small solder balls.
- Acts as an adhesive to hold the components in place during handling between placement to reflow soldering.
- Holds components in position when a double-sided surface-mounted board is held upside down going into a vapor-phase reflow soldering operation.
- Removes solvents which might otherwise contaminate other equipment.
- · Initiates activator cleaning of surfaces to be soldered.
- Prevents moisture absorption.

The process is moreover very simple. The usual schedule is about 20 minutes in a 65°C-95°C (dependent on solvent system of solder paste) oven with adequate venting. Longer bake time is not recommended due to the following reasons:

- The flux will degrade and affect the characteristics of the paste.
- Solder globules will begin to oxidize and cause solderability problems.
- The paste will creep and after reflow, may leave behind residues between traces which are difficult to remove and vulnerable to electro-migration problems.

REFLOW SOLDERING

There are various methods for reflowing the solder paste, namely:

- Hot air reflow
- · Infrared heating (furnaces)
- · Convectional oven heating
- · Vapor-phase reflow soldering
- Laser soldering

For SO applications, hot air reflow/infrared furnace may be used for low-volume production or prototype work, but vapor-phase soldering reflow is more efficient for consistency and speed. Oven heating is not recommended because of "hot spots" in the oven and uneven melting may result. Laser soldering is more for specialized applications and requires a great amount of investment.

HOT GAS REFLOW/INFRARED HEATING

A hand-held or table-mount air blower (with appropriate orifice mask) can be used.

The boards are preheated to about 100°C and then subjected to an air jet at about 260°C. This is a slow process and results may be inconsistent due to various heat-sink properties of passive components.

Use of an infrared furnace is the next step to automating the concept, except that the heating is promoted by use of IR lamps or panels. The main objection to this method is that certain materials may heat up at different rates under IR radiation and may result in damage to these components (usually sockets and connectors). This could be minimized by using far-infrared (non-focused) system.

VAPOR-PHASE REFLOW SOLDERING

Currently the most popular and consistent method, vaporphase soldering utilizes a fluoroinert fluid with excellent heat-transfer properties to heat up components until the solder paste reflows. The maximum temperature is limited by the vapor temperature of the fluid.

The commonly used fluids (supplied by 3M Corp) are:

- FC-70, 215°C vapor (most applications) or FX-38
- FC-71, 253°C vapor (low-lead or tin-plate)

HTC, Concord, CA, manufactures equipment that utilizes this technique, with two options:

- Batch systems, where boards are lowered in a basket and subjected to the vapor from a tank of boiling fluid.
- In-line conveyorized systems, where boards are placed onto a continuous belt which transports them into a concealed tank where they are subjected to an environment of hot vapor.

Dwell time in the vapor is generally on the order of 15–30 seconds (depending on the mass of the boards and the loading density of boards on the belt).

CONDENSATION COILS VAPOR BELT COILS COILS LIQUID

In-Line Conveyorized Vapor-Phase Soldering

TL/F/8766-9

The question of thermal shock is asked frequently because of the relatively sharp increase in component temperature from room temperature to 215°C. SO packages mounted on representative boards have been tested and have shown little effect on the integrity of the packages. Various packages, such as cerdips, metal cans and TO-5 cans with glass seals, have also been tested.

Vapor-Phase Furnace

TL/F/8766-10

9

Solder Joints on a SO-14 Package on PCB

TL/F/8766-12

PRINTED CIRCUIT BOARD

The SO package is molded out of clean, thermoset plastic compound and has no particular compatibility problems with most printed circuit board substrates.

The package can be reliably mounted onto substrates such as:

- G10 or FR4 glass/resin
- FR5 glass/resin systems for high-temperature applications
- Polymide boards, also high-temperature applications
- Ceramic substrates
- General requirements for printed circuit boards are:
- Mounting pads should be solder-plated whenever applicable.
- Solder masks are commonly used to prevent solder bridging of fine lines during soldering.

The mask also protects circuits from processing chemical contamination and corrosion.

If coated over pre-tinned traces, residues may accumulate at the mask/trace interface during subsequent reflow, leading to possible reliability failures.

Recommended application of solder resist on bare, clean traces prior to coating exposed areas with solder.

General requirements for solder mask:

- Good pattern resolution.
- Complete coverage of circuit lines and resistance to flaking during soldering.
- Adhesion should be excellent on substrate material to keep off moisture and chemicals.
- Compatible with soldering and cleaning requirements.

SOLDER PASTE SCREEN PRINTING

With the initial choice of printed circuit lithographic design and substrate material, the first step in surface mounting is the application of solder paste.

Solder Joints on a SO-14 Package on PCB

TL/F/8766-13

The typical lithographic "footprints" for SO packages are illustrated below. Note that the 0.050" lead center-center spacing is not easily managed by commercially-available air pressure, hand-held dispensers.

Using a stainless-steel, wire-mesh screen stencilled with an emulsion image of the substrate pads is by far the most common and well-tried method. The paste is forced through the screen by a V-shaped plastic squeegee in a sweeping manner onto the board placed beneath the screen.

The setup for SO packages has no special requirement from that required by other surface-mounted, passive components. Recommended working specifications are:

- Use stainless-steel, wire-mesh screens, #80 or #120, wire diameter 2.6 mils. Rule of thumb: mesh opening should be approximately 2.5–5 times larger than the average particle size of paste material.
- Use squeegee of Durometer 70.
- Experimentation with squeegee travel speed is recommended, if available on machine used.
- Use solder paste of mesh 200–325.
- Emulsion thickness of 0.005" usually used to achieve a solder paste thickness (wet) of about 0.008" typical.
- Mesh pattern should be 90 degrees, square grid.
- Snap-off height of screen should not exceed 1/8", to avoid damage to screens and minimize distortion.

SOLDER PASTE

Selection of solder paste tends to be confusing, due to numerous formulations available from various manufacturers. In general, the following guidelines are sufficient to qualify a particular paste for production:

Particle sizes (see photographs below). Mesh 325 (approximately 45 microns) should be used for general purposes, while larger (solder globules) particles are preferred for leadless components (LCC). The larger particles can easily be used for SO packages.

 Uniform particle distribution. Solder globules should be spherical in shape with uniform diameters and minimum amount of elongation (visual under 100/200 × magnification). Uneven distribution causes uneven melting and subsequent expulsion of smaller solder balls away from their proper sites.

RECOMMENDED SOLDER PADS FOR SO PACKAGES

- Composition, generally 60/40 or 63/37 Sn/Pb. Use 62/36 Sn/Pb with 2% Ag in the presence of Au on the soldering area. This formulation reduces problems of metal leaching from soldering pads.
- RMA flux system usually used.
- Use paste with aproximately 88-90% solids.

TL/F/8766-16

Comparison of Particle Size/Shape of Various Solder Pastes

200 imes Alpha (62/36/2)

200 × Kester (63/37)

AN-450

Comparison of Particle Size/Shape of Various Solder Pastes (Continued)

TL/F/8766-19

TL/F/8766-20

TL/F/8766-21

CLEANING

The most critical process in surface mounting SO packages is in the cleaning cycle. The package is mounted very close to the surface of the substrate and has a tendency to collect residue left behind after reflow soldering.

Important considerations in cleaning are:

- Time between soldering and cleaning to be as short as possible. Residue should not be allowed to solidify on the substrate for long periods of time, making it difficult to dislodge.
- A low surface tension solvent (high penetration) should be employed. Solvents commercially available are:

Freon TMS (general purpose) Freon TE35/TP35 (cold-dip cleaning) Freon TES (general purpose)

It should also be noted that these solvents generally will leave the substrate surface hydrophobic (moisture repellent), which is desirable.

Prelete or 1,1,1-Trichloroethane Kester 5120/5121

- A defluxer system which allows the workpiece to be subjected to a solvent vapor, followed by a rinse in pure solvent and a high-pressure spray lance are the basic requirments for low-volume production.
- For volume production, a conveyorized, multiple hot solvent spray/jet system is recommended.
- Rosin, being a natural occurring material, is not readily soluble in solvents, and has long been a stumbling block to the cleaning process. In recent developments, synthetic flux (SA flux), which is readily soluble in Freon TMS solvent, has been developed. This should be explored where permissible.

The dangers of an inadequate cleaning cycle are:

- Ion contamination, where ionic residue left on boards would cause corrosion to metallic components, affecting the performance of the board.
- Electro-migration, where ionic residue and moisture present on electrically-biased boards would cause dentritic growth between close spacing traces on the substrate, resulting in failures (shorts).

REWORK

Should there be a need to replace a component or re-align a previously disturbed component, a hot air system with appropriate orifice masking to protect surrounding components may be used.

When rework is necessary in the field, specially-designed tweezers that thermally heat the component may be used to remove it from its site. The replacement can be fluxed at the

Hot-Air Rework Machine

TL/F/8766-23

lead tips or, if necessary, solder paste can be dispensed onto the pads using a varimeter. After being placed into position, the solder is reflowed by a hot-air jet or even a standard soldering iron.

WAVE SOLDERING

In a case where lead insertions are made on the same board as surface-mounted components, there is a need to include a wave-soldering operation in the process flow.

Two options are used:

- Surface mounted components are placed and vapor phase reflowed before auto-insertion of remaining components. The board is carried over a standard wave-solder system and the underside of the board (only lead-inserted leads) soldered.
- Surface-mounted components are placed in position, but no solder paste is used. Instead, a drop of adhesive about 5 mils maximum in height with diameter not exceeding 25% w.dth of the package is used to hold down the package. The adhesive is cured and then proceeded to autoinsertion on the reverse side of the board (surface-mounted side facing down). The assembly is then passed over a "dual wave" soldering system. Note that the surfacemounted components are immersed into the molten solder.

Lead trimming will pose a problem after soldering in the latter case, unless the leads of the insertion components are pre-trimmed or the board specially designed to localize certain areas for easy access to the trim blade.

The controls required for wave soldering are:

- Solder temperature to be 240–260°C. The dwell time of components under molten solder to be short (preferably kept under 2 seconds), to prevent damage to most components and semiconductor devices.
- RMA (Rosin Mildly Activated) flux or more aggressive OA (Organic Acid) flux are applied by either dipping or foam fluxing on boards prior to preheat and soldering. Cleaning procedures are also more difficult (aqueous, when OA flux is used), as the entire board has been treated by flux (unlike solder paste, which is more or less localized). Nonhalide OA fluxes are highly recommended.
- Preheating of boards is essential to reduce thermal shock on components. Board should reach a temperature of about 100°C just before entering the solder wave.
- Due to the closer lead spacings (0.050" vs 0.100" for dual-in-line packages), bridging of traces by solder could occur. The reduced clearance between packages also causes "shadowing" of some areas, resulting in poor solder coverage. This is minimized by dual-wave solder systems.

/F/8766-22

AN-450

A typical dual-wave system is illustrated below, showing the various stages employed. The first wave typically is in turbulence and given a transverse motion (across the motion of the board). This covers areas where "shadowing" occurs. A second wave (usually a broad wave) then proceeds to perform the standard soldering. The departing edge from the solder is such to reduce "icicles," and is still further reduced by an air knife placed close to the final soldering step. This air knife will blow off excess solder (still in the fluid stage) which would otherwise cause shorts (bridging) and solder burps.

AQUEOUS CLEANING

- For volume production, a conveyorized system is often used with a heated recirculating spray wash (water temperature 130°C), a final spray rinse (water temperature 45–55°C), and a hot (120°C) air/air-knife drying section.
- For low-volume production, the above cleaning can be done manually, using several water rinses/tanks. Fastdrying solvents, like alcohols that are miscible with water, are sometimes used to help the drying process.
- Neutralizing agents which will react with the corrosive materials in the flux and produce material readily soluble in water may be used; the choice depends on the type of flux used.
- Final rinse water should be free from chemicals which are introduced to maintain the biological purity of the water. These materials, mostly chlorides, are detrimental to the assemblies cleaned because they introduce a fresh amount of ionizable material.

Dual Wave

TL/F/8766-25

CONFORMAL COATING

Conformal coating is recommended for high-reliability PCBs to provide insulation resistance, as well as protection against contamination and degradation by moisture. Requirements:

· Complete coating over components and solder joints.

- Thixotropic material which will not flow under the packages or fill voids, otherwise will introduce stress on solder joints on expansion.
- Compatibility and possess excellent adhesion with PCB material/components.
- Silicones are recommended where permissible in application.

SMD Lab Support

FUNCTIONS

Demonstration—Introduce first-time users to surfacemounting processes.

Service-Investigate problems experienced by users on surface mounting.

Reliability Builds—Assemble surface-mounted units for reliability data acquisition. **Techniques**—Develop techniques for handling different materials and processes in surface mounting.

Equipment—In conjunction with equipment manufacturers, develop customized equipments to handle high density, new technology packages developed by National.

In-House Expertise—Availability of in-house expertise on semiconductor research/development to assist users on packaging queries.

Improving The Performance Of A High Speed PBX Backplane

ABSTRACT

This article will provide solutions to performance problems associated with PBX backplanes. Some of these problems are: long settling time, excessive propagation delay, low impedance bus lines, crosstalk, and electromagnetic radiation (EMR). These problems are caused by high output capacitance drivers that use TTL signal levels. National's solution to these problems is the Backplane Transceiver Logic (BTL) family of devices.

INTRODUCTION

To be able to meet the bandwidth and high system reliability requirements of the next generation PBXs, the industry must use parallel, high speed Pulse Code Modulation (PCM) highways. This article will deal with the following problems encountered by these high speed PCM highways.

- Crosstalk
- Power Consumption
- Noise Margin
- · Bus Impedance
- Signal Settling Time
- Propagation Delays
- · Propagation Delay Skew
- · Live Insertion
- · Extending A Bus Beyond The Rack
- Bus Termination
- Pin Layout

National Semiconductor Corp. Application Note 466 Ramiro Calvo

I. REDUCING CROSSTALK

Crosstalk can reduce the data integrity of the system or even cause a total shutdown. Crosstalk amplitude is proportional to the slew rate, signal swing, and physical layout of the board. To reduce crosstalk, the DS3890/92/98: shrink the standard TTL three volt swing to the Backplane Transceiver Logic (BTL) one volt swing; slow down the rise and fall time to 6 ns; use low pass filters and precision thresholds on the receivers.

II. REDUCING POWER CONSUMPTION

Because of excessive heat dissipation and a mandatory battery backup, power consumption must be kept to a minimum. Low impedance, open collector busses that use TTL signal levels need drivers capable of sinking approximately 300 mA. By using the BTL one volt signal swing, the drivers need only sink 50 mA. Refer to the section **Signal Settling Time** for more details. The reduction in power consumption will enable PBXs to coexist with other office equipment in "normal" office environments.

III. NOISE MARGIN

Noise margins protect the system from crosstalk, ground noise, and external EMR. The magnitude of the absolute noise margin is a good measure of how well protected the system is against external electro magnetic interference (EMI) and ground noise. The relative noise margin is a good measure as to how well protected the system is against crosstalk, assuming most signals within the system have the

same voltage swing. As shown below, BTL signals improve both the absolute and relative noise margins

Absolute Noise Margin

Despite the smaller signal swing, BTL signals have a 300 mV noise margin, as compared to the 200 or 400 mV guaranteed noise margin in TTL signals (see *Figure 1*). The absolute noise margin is usually not very critical since PBXs are usually well protected from external EMR by the metallic racks.

Relative Noise Margin

Based on the data sheet guaranteed limits, BTL signals have a 30% [(300 mV absolute noise margin)/(1V signal swing)] relative noise margin, as compared to 7% [(200 mV absolute noise margin)/(3V swing)] in standard TTL signals.

IV. IMPROVING BUS IMPEDANCE

Standard TTL drivers do not have sufficient drive current to drive a heavily loaded backplane. A larger output transistor is needed to increase the drive current. The large TTL output transistor, however, increases the capacitance loading, which decreases the bus impedance, which in turn requires more drive current. The BTL drivers have a Schottky diode in series with the driver transistor's collector. When the driver transistor is off, the diode is reverse biased, which reduces the reduced output capacitance to only 1–2 pF. As shown below, the reduced output capacitance greatly improves the overall bus impedance.

TL/F/9111-3

FIGURE 2

- L_x = Board Spacing = 0.6 in
- L_{foot} = 20 loads per foot
- C_{x-TTL} = Capacitance per TTL Driver
 - = Transceiver Capacitance + PC Trace and Connector Capacitance

= 15 pF + 5 pF

- = 20 pF per load
- C_{x-BTL} = Capacitance per BTL Driver
 - = Driver Capacitance + Receiver Capacitance + PC Trace and Connector Capacitance
 - = 2 pF + 2 pF + 1 pF + 5 pF

- C_{L-TTL} = (20 load per foot) × (20 pF per load)
 - = 400 pF per Foot
- C_{L-BTL} = (20 load per foot) × (10 pF per load) = 200 pF per Foot
- Unloaded Bus Impedance
- L = Standard PC Board Inductance Per Foot
 - = 0.2 μ H per foot
- C = Standard PC Board Capacitance Per Foot
 - = 20 pF per foot

 $Z_{O} = (L/C)^{1/2}$

 $= (0.2 \ \mu H/20 \ pF)^{1/2} = 100 \Omega$

 Loaded Bus Impedance (for a uniform capacitive loading C_X spaced at equal intervals)

 $Z_L = Z_O/(1 + C_L/C)^{1/2}$

 $Z_{L-TTL} = 100/(1 + 400/20)^{1/2} = 22\Omega$

 $Z_{L-BTL} = 100/(1 + 200/20)^{1/2} = 30\Omega$

Note that each driver sees TWO loaded line impedances in parallel (see *Figure 2*). This reduces the bus impedance by half.

V. PROPAGATION DELAYS (related to excessive capacitance loading)

Since the DS3890 reduces the backplane capacitance loading, the propagation delay through the bus lines is improved by 28%, as shown below.

Unloaded Bus Propagation Delay (data based on a single strip line PC board)

$$T_{P} = (LC)^{1/2} = [(0.2 \ \mu H/ft) \times (20 \ pF/ft)]^{1/2}$$

= 2 ns per foot

- Loaded Bus Propagation Delay (data based on a single strip line PC board)
- $T_{PL} = (T_P) \times (1 + C_L/C)^{1/2}$
- $T_{PL-TTL} = (2 \text{ ns}) \times [1 + (400 \text{ pF per Foot})(20 \text{ pF})]^{1/2}$ = 9.2 ns/ft
- $\begin{array}{rcl} T_{PL\text{-}BTL} &= T_P \times (1 + C_L/C)^{1/2} = (2 \text{ ns}) \times [1 + (200 \text{ pF})] \\ & \text{per Foot})/(20 \text{ pF})]^{1/2} = 6.6 \text{ ns/ft} \end{array}$

Improvement = (6.6 ns per foot)/(9.2 ns per foot) \times (100) = 28%

VI. SIGNAL SETTLING TIME

The signal settling time refers to the amount of time the signal takes to cross the threshold. In low impedance busses, the signaling settling time depends NOT ONLY on the slew rate, but more importantly, on the current driving capability of the driver, bus impedance, reflections, and bus length.

For example, in a fully loaded open collector TTL bus $(Z_{O-TTL} = 22\Omega)$ with 50 mA drivers, the first output transition is $[V_1 = (I_D) \times (Z_O || Z_O) = (50 \text{ mA}) \times (11\Omega)]$ 0.55V. This means that the signal does NOT cross the threshold region (V_{TH} = 0.8 to 2V) on the first signal transition (see *Figure 3*). The second transition appears after a round trip prop delay [R.T.D. = (2) \times (T_{L-TTL})]. In a one foot fully loaded bus, the delay can be 18.4 ns [R.T.D. = (2) \times (9.2 ns per foot)]. If it takes several signal transitions to cross the threshold, the ACTUAL signal settling time consists of several round trip prop delays. Also note that the signal crosses the threshold in a staircase fashion, which may cause false triggering.

FIGURE 3

 $\begin{array}{ll} V_{\text{I-TTL}} &= (50 \text{ mA}) \times (11 \Omega) = 0.55 \text{V} \\ \text{Round Trip Prop Delay of the Bus} &= (2) \times (\text{T}_{\text{L-TTL}}) \\ &= (2) \times (2 \text{ ns per foot}) \end{array}$

= 4 ns/ft (unloaded bus)

= (2) \times (9.2 ns per foot) = 18.4 ns/ft (loaded bus)

In a fully loaded BTL bus ($Z_{O-BTL} = 30\Omega$), the first output transition is 0.75V [V1 = (50 mA) × (15\Omega)]. Since V_{TH} is between 1.5V and 1.6V, the FIRST output transition crosses the threshold (see *Figure 4*). The actual settling time consists of ONLY the slew rate. The danger of false triggering is eliminated because the reflections are not seen as the signal crosses the threshold.

 $V_{I-BTL} = (50 \text{ mA})^* (15\Omega) = 0.75V$

FIGURE 4

Therefore, despite the slower slew rate, the BTL devices have a much shorter settling time due to the lower output

capacitance, one volt signal swing, and precision threshold. This improves the data integrity and speed of the bus.

VII. PROPAGATION DELAY SKEW

The propagation delay consists of the delays through the driver, receiver, and transmission medium (PC strip). These delays can vary if the ICs have differences in their process, temperature, V_{CC}, or PC board layout. In parallel address/ data lines, propagation delay skews are very critical. If the signals arrive at their destination at different times, the system must delay all signals to assume for a worst case delay. Therefore, if the propagation delay skew is small, the worst case delay is also small. It is safe to assume that ICs on a single board or system have the same temperature, same V_{CC}, and similar PC board layout configurations. This reduces the propagation delay skew to only the variations in the process.

VIII. LIVE INSERTION GUIDELINES

Live insertion of line cards is a must for PBX maintenance without interrupting customer service. The DS3890/92/98 support live insertion by guaranteeing glitch-free power up/ down. However, uncharged by-pass capacitors and board static can bring the system down when plugging in a line card. One way of avoiding these problems is to use an umbilical cord (temporary power line) to discharge static and slowly charge by-pass capacitors. This method will set the line card V_{CC} and GND equal to the levels of the system before it is plugged in.

FIGURE 5. Temporary Power Cord

TL/F/9111-6

IX. EXTENDING A BUS BEYOND THE RACK

The DS3898 (BTL repeater) is ideal for cases where the system bus must be extended. If the bus is of considerable length, the repeaters regenerate the signal levels. The repeaters also isolate, or separate, different electrical environments. For example, if a ribbon cable is used to connect one rack to another, the repeaters will isolate the different impedance and noise levels present in a ribbon cable from the bus on the rack.

X. USING THE PROPER BUS TERMINATION

FIGURE 6

An ideal termination (Z_L) should match the bus impedance (Z_O) in order to eliminate reflections. If the termination matches the impedance of a fully loaded bus, then Z_L = Z_O = 30Ω. With the 30Ω terminations, the driver is required to drive a (Z_L||Z_L = 30||30) 15Ω load. However, the lowest load that a standard TTL driver will guarantee is (5V/50 mA) 100Ω. If the designer uses the (Z_L||Z_L = 200||200 = 100Ω load) 200Ω terminations on the 30Ω bus, the reflections will be very large. On the other hand, BTL drivers can guarantee a (1V/50 mA) 20Ω load. In this case, the (Z_L||Z_L = 40||40 = 20Ω load) 40Ω terminations will have small reflections. Note that the improvement of the guaranteed load (from 100Ω to 20Ω) was achieved by reducing the voltage swing and driver output capacitance, NOT by increasing the current capabilities of the drivers.

XI. TWO VOLT RAIL

There are many ways of supplying the two volt rail needed for the 90/92/98. Four possibilities are: a separate two volt

power supply; a voltage divider; a voltage regulator; and a high current voltage follower. The two volt power supply is very expensive to implement and does not track the five volt supply voltage, thereby reducing the effectiveness of the precision threshold. However, it is very efficient in terms of power consumption, making it appropriate for very large systems. The voltage divider is inexpensive, tracks the five volt supply voltage, but consumes too much current when the line is high. The voltage regulator is moderately efficient with current consumption, but does not track the five volt supply voltage. Finally, the high current voltage follower does not waste current when the line is high; is inexpensive to implement; and tracks the five volt supply voltage. Therefore, the high current voltage follower seems to be the best choice for small systems where cost is a major consideration.

AN-466

XII. NOISE REDUCTION THROUGH IMPROVED PIN LAYOUT

In order to reduce ground noise caused by long lead inductance, one must make V_{CC} and GND lead lengths as short as possible. The packaging of National's BTL circuits contributes to shorter V_{CC} and GND lead inductance by placing the power pins in the center of the IC package, instead of the corners.

5-45

XIII. OVERVIEW OF THE BTL TRAPEZOIDAL PRODUCT LINE

The BTL Trapezoidal products have low output capacitance (5 pF max), one volt signal swing, and noise immunity features which make them ideal for driving parallel, low impedance bus lines with minimum power dissipation.

• DS3890

The DS3890 is an octal BTL driver. It is designed specifically to overcome problems associated with driving densely populated backplanes. The trapezoidal wave forms and the one volt swing reduces noise coupling to adjacent lines. The open collector driver output allows for wired-OR connections.

DS3892

The DS3892 is an octal receiver. The receivers have precision thresholds to increase the noise margins, and low pass filters to filter out crosstalk.

• DS3898

The DS3898 is an octal repeater. It combines the BTL characteristics of the DS3890 and DS3892. The part is ideal for extending backplanes.

DS3896

The DS3896 is an octal high speed schottky bus transceiver with common control signals. It provides high package density for data/address lines.

DS3897

The DS3897 is a quad transceiver with independent driver input and receiver output pins. It has a separate driver disable for each driver.

• DS3893

The DS3893 is the newest member of the family. It is designed to drive and receive signals at data rates of up to 100 MBaud. The trapezoidal feature has been removed to reduce the propagation delay down to 15 ns for the driver and receiver combination.

National's BTL drivers, receivers, and transceivers offer the most complete approach for operating high speed parallel backplanes.

+5 to -15 Volts DC Converter

INTRODUCTION

It is frequently necessary to convert a DC voltage to another higher or lower DC-voltage while maximizing efficiency. Conventional switching regulators are capable of converting from a high input DC voltage to a lower output voltage and satisfying the efficiency criteria. The problem is a little more troublesome if a higher output voltage than the input voltage is desired. Particularly, generating DC voltage with opposite polarity to the input voltage usually involves a complicated design.

This brief demonstrates the use of the switching regulator idea for a +5 volts to -15 volts converter. The converter has an application as a power supply for MOS memories in a logic system where only +5 volts is available. However, the principle used can be amplied for almost any input output combination.

OPERATION

The method by which the regulator generates the opposite polarity is explained in *Figure 1*. The transistor Q is turned ON and OFF with a given duty cycle. If the base drive is sufficient the voltage across the inductor is equal to the

TL/H/8467-2 FIGURE 1. Switching Circuit for Voltage Conversion supply voltage minus V_{SAT} . The current change in the inductor is given by:

$$\Delta I = \frac{V_{SS} - V_{SAT}}{L} \times T_{ON} \approx \frac{V_{SS}}{L} T_{ON}$$
 (1)

National Semiconductor Corp. Linear Brief 18

Turning OFF the transistor the inductor current has a path through the catch diode and this in turn builds up a negative voltage across R_L .

The figure also shows the current and voltage levels versus time. A capacitor in parallel to the resistor will prevent the voltage from dropping to zero during the transistor ON time. Assuming a large capacitor, we can also write the current change as:

$$\Delta I = \frac{V_{OUT} - V_D}{L} \times T_{OFF} \approx \frac{V_{OUT}}{L} \times T_{OFF}$$
(2)

In order to get a general idea of the operation for certain input output conditions, we will develop a set of equations. During the transistor ON time, energy is loaded into the inductor. In the same time interval, the capacitor is drained due to the load resistor R_L .

Drop in capacitor voltage:

$$\Delta V = \frac{I_{LOAD} \times T_{ON}}{C}$$
(3)

During the T_{OFF} time the stored energy in the inductor is transferred to the load and capacitor. A rough estimate of T_{OFF} can be expressed as:

$$\Gamma_{OFF} = \frac{V_{SS}}{V_{OUT}} \times T_{ON}$$
(4)

The capacitor voltage will be restored with a average current given by:

$$I_{C} = \frac{\Delta V \times C}{T_{OFF}} = \frac{I_{LOAD} \times V_{OUT}}{V_{SS}}$$
(5)

The total inductor current during the OFF time can be written as:

$$I_{\text{INDUCTOR}} = I_{\text{LOAD}} + I_{\text{C}}$$
(6)

Inspecting *Figure 1.* We find: $I_{-} = \Delta I_{-} = V_{SS} \times T_{ON}$

$$C = \frac{2L}{2} = \frac{1}{2 \times L}$$
(7)

which yields:

$$T_{ON} = \frac{2 \times L \times I_{LOAD} \times V_{OUT}}{V_{SS}^2}$$
(8)

Taking into account that the efficiency is in the order of 75% the final expression is:

$$T_{ON} = \frac{1.5 \times L \times I_{LOAD} \times V_{OUT}}{V_{SS}^2}$$
(9)

The above equations will be applied to the regulator shown at *Figure 2*. The regulator must deliver -15 volts at 200 mA from a +5 volt supply. Using a 1 mH inductor the T_{ON} time for Q₂ is 0.18 ms from equation 9. T_{OFF} is 60 μ s from equation 14 and the oscillator frequency to:

$$F = \frac{1}{T_{ON} + T_{OFF}} \approx 4 \text{ kHz}$$

5

B-18

FIGURE 2. Switching Regulator for Voltage Conversion

The LM311 performs like a free running multivibrator with high duty cycle. The IC is designed to operate from a standard single 5 volt supply and has a high output current capability for driving the switching transistor Q_2 . The duty cycle is given by the voltage divider R_3 and R_4 and the frequency of C_1 in conjunction with R_5 .

By setting the duty cycle higher than first calculated, the output voltage will tend to increase above the desired output voltage of 15 volts. However, an extra loop performed by Q_1 and the zener diode in conjunction with the resistor network will modify the oscillator duty cycle until the desired output level is obtained.

The output voltage is given by:

LB-18

$$V_{OUT} = \left(V_{Z} + V_{BE}\right) \left(\frac{R_{1}}{R_{2}} + 1\right)$$

Data and results obtained with the design:

 $V_{IN} = 5$ volts

 $V_{OUT} = -15$ volts

 $I_{OUT} = max 200 mA$

Efficiency ≈ 75%

Frequency \cong 6 kHz 80% duty cycle

 $\label{eq:VRIPPLE} \begin{array}{l} \cong \mbox{ 100 mV @ 200 mA load} \\ \mbox{Line regulation:} \quad V_{IN} = \mbox{ 5V to 10V} < 3\% \ V_{OUT} \\ \mbox{ } I_{LOAD} = \mbox{ 200 mA} \end{array}$

Load regulation: $V_{IN} = 5V < 3\% V_{OUT}$ $I_{LOAD} = 0 - 100 \text{ mA}$

Section 6 Reliability of Telecom Devices/ Physical Dimensions

Section 6 Contents

Reliability of Telecom Devices	6-3
Physical Dimensions	6-4
Data Bookshelf	
Authorized Distributors	

RELIABILITY OF TELECOM DEVICES

To insure maximum reliability of the field, all of the line card devices which contain mixed analog and digital functions on the same integrated circuit are subjected to a dynamic burn in for 22 hours at 156 degrees centigrade. This time and temperature directly correlates and is equal to a 96 hour 125 degree burn in, and allows a complete burn in rotation within a 24 hour period. This flow maximizes the production output of the devices, while at the same time removes any devices which might be candidates for infant mortality.

MIXED ANALOG/DIGITAL DEVICE PRODUCT FLOW INCLUDING 100% BURN IN

WAFER FAB

↓

WAFER SORT

Ť

ASSEMBLY

Ť

100% DYNAMIC BURN IN

T

100% FINAL TEST

t

SHIP

Devices burined in:	TP3020	TP3021
	TP5116A	TP5156A
	TP3040 Family	
	TP3051	TP3052
	TP3053	TP3054
	TP3056	TP3057
	TP3058	TP3059
	TP3064	TP3067
	TP3070	TP3071
	TP3400	TP3420
	TP3330	

6-4

6

6-6

.

Physical Dimensions

6

1.013-1.040 (25.73-26.42) 0.092×0.030 (2.337×0.762) 0.032 ±0.005 20 18 18 17 16 15 14 13 12 11 20 19 MAX DP (0.813±0.127) RAD 0.260 ±0.005 PIN NO. 1 IDENT C + (6.604 ±0.127) PIN NO. 1 IDENT 0.280 OPTION 1 (7.112) त्ति 2 3 4 5 6 7 8 9 10 1 MIN 0.090 OPTION 2 0.300-0.320 (2.286) (7.620-8.128) 0.060 NOM 0.040 **OPTION 2** 0.130 0.005 (1.524) (1.016) 4° (4X) 0.065 (3.302 0.127) TYP TYP (1.651) 0.145-0.200 (3.683 - 5.080)95°± 5° 0°±0.004 0.009-0.015 0.020 (0.229-0.381) 0.100 ± 0.010 TYP 0.125-0.140 (0.508)0.060 ±0.005 (2.540 ± 0.254) 0.018 ± 0.003 MIN (3.175-3.556) 0.325 +0.040 (1.524 ± 0.127) (0.457 ± 0.076) (8.255 +1.016 -0.381) NZOA (REV G) **NS Package N20A** 28 27 26 25 24 23 22 21 20 19 18 17 16 15 0.062 (1.575) RAD 0.510 ± 0.005 + + (12.95±0.127) 2 3 4 5 6 7 8 9 10 11 12 13 14 1 PIN NO. 1 IDENT 1.393 - 1.420 (35.38-36.07) 0.050 (1.270) TYP 0.600 ~ 0.620 0.145-0.210 MAX 0.125-0.165 (15.24-15.75) (3.683 - 5.334) (3.175-4.191) 0.020 MIN (0.508) 0.009-0.015 . . 95°±5° 86° 94° TYP (0.229-0.381) (14.73) MIN 0.580 0.050 ± 0.015 0.100±0.010 0.018 ± 0.003 0.125-0.145 (1.270±0.381) (2.540±0.254) (0.457±0.076) (3.175-3.683) 0.625 + 0.025 (15.88 + 0.635) N28B (REV E) **NS Package N28B**

6

Physical Dimensions

0.030

(0.762)

Ā

Physical Dimensions

Physical Dimensions

6

Bookshelf of Technical Support Information

National Semiconductor Corporation recognizes the need to keep you informed about the availability of current technical literature.

This bookshelf is a compilation of books that are currently available. The listing that follows shows the publication year and section contents for each book.

Please contact your local National sales office for possible complimentary copies. A listing of sales offices follows this bookshelf.

We are interested in your comments on our technical literature and your suggestions for improvement.

Please send them to:

Technical Communications Dept. M/S 23-200 2900 Semiconductor Drive P.O. Box 58090

Santa Clara, CA 95052-8090

For a recorded update of this listing plus ordering information for these books from National's Literature Distribution operation, please call (408) 749-7378.

ALS/AS LOGIC DATABOOK-1987

Introduction to Bipolar Logic • Advanced Low Power Schottky • Advanced Schottky

ASIC DESIGN MANUAL/GATE ARRAYS & STANDARD CELLS-1987

SSI/MSI Functions • Peripheral Functions • LSI/VLSI Functions • Design Guidelines • Packaging

DATA CONVERSION/ACQUISITION DATABOOK-1984

Selection Guides • Active Filters • Amplifiers • Analog Switches • Analog-to-Digital Converters Analog-to-Digital Display (DVM) • Digital-to-Analog Converters • Sample and Hold • Sensors/Transducers Successive Approximation Registers/Comparators • Voltage References

HYBRID PRODUCTS DATABOOK—1982

Operational Amplifiers • Buffers • Instrumentation Amplifiers • Sample & Hold Amplifiers • Comparators Non-Linear Functions • Precision Voltage Regulators and References • Analog Switches MOS Clock Drivers • Digital Drivers • A-D Converters • D-A Converters • Fiber-Optic Products Active Filters & Telecommunication Products • Precision Networks • 883/RETS

INTERFACE DATABOOK—1986

Transmission Line Drivers/Receivers • Bus Transceivers • Peripheral/Power Drivers • Display Controllers/Drivers Memory Support • Microprocessor Support • Level Translators/Buffers • Frequency Synthesis

INTERFACE/BIPOLAR LSI/BIPOLAR MEMORY/PROGRAMMABLE LOGIC DATABOOK—1983

Transmission Line Drivers/Receivers • Bus Transceivers • Peripheral/Power Drivers Level Translators/Buffers • Display Controllers/Drivers • Memory Support • Dynamic Memory Support Microprocessor Support • Data Communications Support • Disk Support • Frequency Synthesis Interface Appendices • Bipolar PROMs • Bipolar and ECL RAMs • 2900 Family/Bipolar Microprocessor Programmable Logic

INTUITIVE IC CMOS EVOLUTION—1984

Thomas M. Frederiksen's new book targets some of the most significant transitions in semiconductor technology since the change from germanium to silicon. *Intuitive IC CMOS Evolution* highlights the transition in the reduction in defect densities and the development of new circuit topologies. The author's latest book is a vital aid to engineers, and industry observers who need to stay abreast of the semiconductor industry.

INTUITIVE IC OP AMPS-1984

Thomas M. Frederiksen's new book, *Intuitive IC Op Amps*, explores the many uses and applications of different IC op amps. Frederiksen's detailed book differs from others in the way he focuses on the intuitive groundwork in the basic functioning concepts of the op amp. Mr. Frederiksen's latest book is a vital aid to engineers, designers, and industry observers who need to stay abreast of the computer industry.

LINEAR APPLICATIONS HANDBOOK-1986

The purpose of this handbook is to provide a fully indexed and cross-referenced collection of linear integrated circuit applications using both monolithic and hybrid circuits from National Semiconductor.

Individual application notes are normally written to explain the operation and use of one particular device or to detail various methods of accomplishing a given function. The organization of this handbook takes advantage of this innate coherence by keeping each application note intact, arranging them in numerical order, and providing a detailed Subject Index.

LINEAR SUPPLEMENT DATABOOK—1984

Amplifiers • Comparators • Voltage Regulators • Voltage References • Converters • Analog Switches Sample and Hold • Sensors • Filters • Building Blocks • Motor Controllers • Consumer Circuits Telecommunications Circuits • Speech • Special Analog Functions

LOGIC DATABOOK VOLUME I-1984

CMOS AC Switching Test Circuits and Timing Waveforms • CMOS Application Notes • MM54HC/MM74HC MM54HCT/MM74HCT • CD4XXX • MM54CXXX/MM74CXXX • LSI/VLSI

LS/S/TTL DATABOOK-1987

Introduction to Bipolar Logic • Low Power Schottky • Schottky • TTL • Low Power

MASS STORAGE HANDBOOK-1986

Disk Interface Design Guide and User Manual • Winchester Disk Support • Winchester Disk Data Controller Floppy Disk Support • Drive Interface Support Circuits

MEMORY SUPPORT HANDBOOK—1986

Dynamic Memory Control • Error Checking and Correction • Microprocessor Interface and Applications Memory Drivers and Support

THE NSC800 MICROPROCESSOR FAMILY DATABOOK-1985

CPU • Peripherals • Evaluation Board • Logic Devices • MA2000 Macrocomponent Family

NON-VOLATILE MEMORY DATABOOK-1987

CMOS EPROMs • EEPROMs • Bipolar PROMs

SERIES 32000 DATABOOK-1986

Introduction • CPU-Central Processing Unit • Slave Processors • Peripherals • Data Communications and LAN's Disk Control and Interface • DRAM Interface • Development Tools • Software Support • Application Notes

RANDOM ACCESS MEMORY DATABOOK—1987

Static RAMs • TTL RAMs • TTL FIFOs • ECL RAMs

RELIABILITY HANDBOOK—1986

Reliability and the Die • Internal Construction • Finished Package • MIL-STD-883 • MIL-M-38510 The Specification Development Process • Reliability and the Hybrid Device • VLSI/VHSIC Devices Radiation Environment • Electrostatic Discharge • Discrete Device • Standardization Quality Assurance and Reliability Engineering • Reliability and Documentation • Commercial Grade Device European Reliability Programs • Reliability and the Cost of Semiconductor Ownership Reliability Testing at National Semiconductor • The Total Military/Aerospace Standardization Program 883B/RETSTM Products • MILS/RETSTM Products • 883/RETSTM Hybrids • MIL-M-38510 Class B Products Radiation Hardened Technology • Wafer Fabrication • Semiconductor Assembly and Packaging Semiconductor Packages • Glossary of Terms • Key Government Agencies • AN/ Numbers and Acronyms Bibliography • MIL-M-38510 and DESC Drawing Cross Listing

THE SWITCHED-CAPACITOR FILTER HANDBOOK-1985

Introduction to Filters • National's Switched-Capacitor Filters • Designing with Switched-Capacitor Filters Application Circuits • Filter Design Program • Nomographs and Tables

TRANSISTOR DATABOOK—1982

NPN Transistors • PNP Transistors • Junction Field Effect Transistors • Selection Guides • Pro Electron Series Consumer Series • NA/NB/NR Series • Process Characteristics Double-Diffused Epitaxial Transistors Process Characteristics Power Transistors • Process Characteristics JFETs • JFET Applications Notes

VOLTAGE REGULATOR HANDBOOK—1982

Product Selection Procedures • Heat Flow & Thermal Resistance • Selection of Commercial Heat Sink Custom Heat Sink Design • Applications Circuits and Descriptive Information • Power Supply Design Data Sheets

48-SERIES MICROPROCESSOR HANDBOOK—1980

The 48-Series Microcomputers • The 48-Series Single-Chip System • The 48-Series Instruction Set Expanding the 48-Series Microcomputers • Applications for the 48-Series • Development Support Analog I/O Components • Communications Components • Digital I/O Components • Memory Components Peripheral Control Components

NATIONAL SEMICONDUCTOR CORPORATION AUTHORIZED DISTRIBUTORS

ALABAMA

Huntsville Arrow (205) 837-6955 Hamilton/Avnet (205) 837-7210 Kierulff (205) 883-6070 Pioneer (205) 837-9300 ARIZONA Phoenix Kierulff (602) 437-0750 Tempe Anthem Electronics (602) 966-6600 Arrow (602) 968-4800 Bell Industries (602) 966-7800 Hamilton/Avnet (602) 231-5100 CALIFORNIA Chatsworth Anthem Electronics (818) 700-1000 Arrow (818) 701-7500 Hamilton Electro Sales (818) 700-0440 Kierulff (818) 407-2500 Costa Mesa Avnet Electronics (714) 754-6050 Hamilton Electro Sales (714) 641-4159 Cypress Kierulff (714) 220-6300 Garden Grove **Bell Industries** (714) 895-7801 Hamilton Electro Sales (213) 217-6751 Gardena **Bell Industries** (213) 515-1800 Irvine Anthem Electronics (714) 768-4444 Los Angeles Kierulff (213) 725-0325 Ontario Hamilton/Avnet (714) 989-4602 Sacramento Hamilton/Avnet (916) 925-2216 (916) 922-6800 San Diego Anthem Electronics (619) 453-9005 Arrow (619) 565-4800 Hamilton/Avnet (619) 571-7510 Kierulff (619) 278-2112

San Jose Anthem Electronics (408) 295-4200 Kierulff (408) 947-3400 Sunnyvale Arrow (408) 745-6600 **Bell Industries** (408) 734-8570 Hamilton/Avnet (408) 743-3355 Thousand Oaks **Bell Industries** (805) 499-6821 Tustin Arrow (714) 838-5422 Kierulff (714) 731-5711 COLORADO Aurora Arrow (303) 696-1111 Englewood Anthem Electronics (303) 790-4500 Hamilton/Avnet (303) 799-9998 Kierulff (303) 790-4444 Wheatridge **Bell Industries** (303) 424-1985 CONNECTICUT Danbury Hamilton/Avnet (203) 797-2800 Meridian Lionex Inc. (203) 237-2282 Norwalk **Pioneer Northeast** (203) 853-1515 Wallingford Arrow (203) 265-7741 Kierulff (203) 265-1115 FLORIDA Altamonte Springs Pioneer (305) 834-9090 Kierulff (305) 682-6923 Deerfield Beach Arrow (305) 429-8200 Bell Industries (813) 541-4434 Pioneer (305) 428-8877 Fort Lauderdale Hamilton/Avnet (305) 971-2900 Kierulff (305) 486-4004 Largo **Bell Industries** (813) 541-4434 Palm Bay Arrow (305) 725-1480

St. Petersburg Hamilton/Avnet (813) 576-3930 Winter Park Hamilton/Avnet (305) 628-3888 GEORGIA Norcross Arrow (404) 449-8252 Bell Industries (404) 662-0923 Hamilton/Avnet (404) 447-7500 Pioneer (404) 448-1711 Kierulff (404) 447-5252 ILLINOIS Bensenville Hamilton/Avnet (312) 860-7780 Elk Grove Village Bell Industries (312) 640-1910 Pioneer (312) 437-9680 Itasca Kierulff (312) 250-0500 Schaumberg Arrow (312) 397-3440 Urbana **Bell Industries** (217) 328-1077 INDIANA Carmel Hamilton/Avnet (810) 260-3966 Indianapolis Advent (317) 872-4910 Arrow (317) 243-9353 **Bell Industries** (317) 634-8202 Pioneer (317) 849-7300 IOWA Cedar Rapids Advent Electronics (319) 363-0221 Arrow (319) 395-7230 **Bell Industries** (319) 395-0730 Hamilton/Avnet (319) 362-4757 KANSAS Lenexa Arrow (913) 541-9542 Overland Park Hamilton/Avnet (913) 888-8900 MARYLAND Columbia Arrow (301) 995-0003 Lionex (301) 964-0040

Gaithersburg Pioneer (301) 921-0660 Kierulff (301) 840-1155 MASSACHUSETTS Billerica Kierulff (617) 667-8331 Columbia Hamilton/Avnet (301) 995-3500 Lexington Pioneer Northeast (617) 861-9200 Nonwood Gerber Electronics (617) 769-6000 Peabody Hamilton/Avnet (617) 531-7430 Wilmington Lionex (617) 657-5170 Woburn Arrow (617) 933-8130 MICHIGAN Ann Arbor Arrow (313) 971-8220 Grand Rapids Arrow (616) 243-0912 Hamilton/Avnet (616) 243-8805 **R-M Michigan** (616) 531-9300 Livonia Hamilton/Avnet (313) 522-4700 Pioneer (313) 525-1800 MINNESOTA Edina Arrow (612) 830-1800 Kierulff (612) 941-7500 Minnetonka Hamilton/Avnet (612) 932-0600 Pioneer (612) 935-5444 MISSOURI Earth City Hamilton/Avnet (314) 344-1200 Kierulff (314) 997-4956 St. Louis Arrow (314) 567-6888 Kierulff (314) 997-4956 **NEW HAMPSHIRE** Manchester Arrow (603) 668-6968 **Bell Industries** (617) 273-4450 Hamilton/Avnet (603) 624-9400

NATIONAL SEMICONDUCTOR CORPORATION AUTHORIZED DISTRIBUTORS (Continued)

NEW JERSEY Cherry Hill Hamilton/Avnet (609) 424-0100 Fairfield Arrow (201) 575-5300 Hamilton/Avnet (201) 575-3390 Kierulff (201) 575-6750 Lionex (201) 227-7960 Nu Horizons Electronics (201) 882-8300 Mariton Arrow (609) 596-8000 Mt. Laurel Kierulff (609) 235-1444 Pine Brock **Pioneer Northeast** (201) 575-3510 NEW MEXICO Albuquerque Alliance Electronics (505) 292-3360 Arrow (505) 243-4566 **Bell Industries** (505) 292-2700 Hamilton/Avnet (505) 765-1500 NEW YORK Amityville Nu Horizons (516) 226-6000 Brookbayen Arrow (516) 924-0700 Buffalo Summit Distributors (716) 887-2800 Fairport Pionee (716) 381-7070 Hauppauge Arrow (516) 231-1000 Hamilton/Avnet (516) 434-7413 Lionex (516) 273-1660 Melville Arrow (516) 391-1300 Rochester Arrow (716) 427-0300 Hamilton/Avnet (716) 475-9130 Summit Electronics (716) 334-8110 Syracuse Hamilton/Avnet (315) 437-2641 Vestal Pioneer (607) 748-8211 Westbury Hamilton/Avnet (516) 997-6868 Woodbury Pionee (516) 921-8700

NORTH CAROLINA Charlotte Pioneer (704) 527-8188 Raleigh Arrow (919) 876-3132 Hamilton/Avnet (919) 878-0810 Kierulff (919) 872-8410 Salem Arrow (919) 725-8711 OHIO Beachwood Kierulff (216) 831-5222 Centerville Arrow (513) 435-5563 Cleveland Hamilton/Avnet (216) 831-3500 Pionee (216) 587-3600 Columbus Arrow (614) 885-8362 Davton **Bell Industries** (513) 435-8660 (513) 434-8231 Hamilton/Avnet (513) 439-6700 Pioneer (513) 236-9900 Kierulff (513) 439-0045 **Highland Heights** CAM/OHIO (216) 461-4700 Salon Arrow (216) 248-3990 Westerville Hamilton/Avnet (614) 882-7004 OKLAHOMA Tulsa Arrow (918) 665-7700 Kierulff (918) 252-7537 Quality Components (918) 664-8812 Radio Inc. (918) 587-9123 OREGON Beaverton Almac Electronics (503) 629-8090 Anthem Electronics (503) 643-1114 Lake Oswego Bell Industries (503) 241-4115 Hamilton/Avnet (503) 635-7850 Portland Kierulff (503) 641-9150 Tigard Arrow

(503) 684-1690

PENNSYLVANIA Horsham Lioney (215) 443-5150 Pioneer (215) 674-4000 Monroeville Arrow (412) 856-7000 Pittsburgh CAM RPC (412) 782-3770 Hamilton/Avnet (412) 281-4150 Pioneer (412) 782-2300 TENNESSEE Nashville **Bell Industries** (615) 367-4400 TEXAS Addison Quality Components (214) 733-4300 Austin Arrow (512) 835-4180 Hamilton/Avnet (512) 837-8911 Kierulff (512) 835-2090 Pioneer (512) 835-4000 Quality Components (512) 835-0220 Carroliton Arrow (214) 380-6464 Dallas Kierulff (214) 343-2400 Pionee (214) 386-7300 Houston Arrow (713) 530-4700 Kierulff (713) 530-7030 Pioneer (713) 988-5555 Irvina Hamilton/Avnet (214) 550-7755 Stafford Hamilton/Avnet (713) 240-7733 Sugarland Quality Components (713) 491-2255 UTAH Salt Lake City Anthem Electronics (801) 973-8555 Arrow (801) 972-0404 **Bell Industries** (801) 972-6969 Hamilton/Avnet (801) 972-4300 Kienulff (801) 973-6913

WASHINGTON Bellevue Almanac Electronics (206) 643-9992 Arrow (206) 643-4800 Hamilton/Avnet (206) 453-5844 Redmond Anthem Electronics (206) 881-0850 WISCONSIN Brookfield Arrow (414) 792-0150 Milwaukee Taylor Electric Co. (414) 241-4321 New Berlin Hamilton/Avnet (414) 784-4516 Waukesha **Bell Industries** (414) 547-8879 Kierulff (414) 784-8160 CANADA Western Provinces Calgary Hamilton/Avnet (403) 230-3586 Zentronics (403) 272-1021 Edmonton Zentronics (403) 468-9306 Richmond Zentronics (604) 694-1957 Winnipeg Zentronics (204) 775-8661 Eastern Provinces Brampton Zentronics (416) 451-9600 Doval Semad (514) 636-4614 Markham Semad (416) 475-8500 Mississauga Hamilton/Avnet (416) 677-7432 Nepean Hamilton/Avnet (613) 226-1700 Zentronics (613) 226-8840 St. Laurent Hamilton/Avnet (514) 331-6443 Zentronics (514) 735-5361 Willowdale Electrosonic (416) 494-1666

SALES OFFICES

ALABAMA Huntsville (205) 721-9367

ARIZONA Tempe (602) 966-4563 CALIFORNIA Inglewood (213) 645-4226 Roseville (916) 969-5577 Santa Clara (408) 730-3009 (408) 730-3054 San Diego (619) 587-0774 Tustin (714) 259-8880 Woodland Hills (818) 888-2602 COLORADO Englewood (303) 790-8090

CONNECTICUT Ridgefield (203) 431-8182 FLORIDA Boca Raton

(305) 997-8133 Orlando (305) 629-1720 GEORGIA Atlanta (404) 393-2626 ILLINOIS Schaumburg (312) 397-8777 INDIANA Carmel (317) 843-7160 Fort Wayne (219) 484-0722 Indianapolis (317) 545-6441 MARYLAND Hanover (301) 796-8900 MASSACHUSETTS Burlington (617) 273-3170 (617) 270-0160 MICHIGAN

W. Bloomfield (313) 855-0166 **MINNESOTA** Bloomington (612) 854-8200 MISSOURI Kansas City (816) 941-3535 St. Louis (314) 569-3103 NEW JERSEY Paramus (201) 599-0955 NEW MEXICO Albuquerque (505) 275-0466 NEW YORK Fairport (716) 425-1358 Liverpool (315) 451-9091 Melville Parallax Sales (516) 351-1000 NORTH CAROLINA Cary (919) 481-4311 оню Dayton (513) 435-6886 Highland Heights (216) 461-0191 OREGON Portland (503) 639-5442

PENNSYLVANIA Horsham (215) 675-6111 TEXAS Austin (512) 339-7555 Houston (713) 270-6141 Richardson (214) 690-4552 UTAH Salt Lake City (801) 261-5402 WASHINGTON Bellevue (206) 453-9944 WISCONSIN Milwaukee (414) 527-3800 CANADA Burnaby (604) 435-8107 Lachine (514) 636-8525 Mississauga (416) 678-2920 Nepean (613) 596-0411 PUERTO RICO **Rio Piedias** (809) 756-9211

National Semiconductor Corporation 2900 Semiconductor Drive P.O. Box 58090 Santa Clara, CA 95052-8090

SALES OFFICES (Continued)

INTERNATIONAL OFFICES

Electronica NSC de Mexico SA Juventino Rosas No. 118-2 Col Guadalupe Inn Mexico, 01020 D.F. Mexico Tel: (905) 524-9402

National Semicondutores Do Brasil Ltda.

Av. Brig, Faria Lima, 830 8 Andar 01452 Sao Paulo, SP, Brasil Tel: (55/11) 212-5066 Telex: 391-1131931 NSBR BR

National Semiconductor GmbH

Industriestrasse 10 D-8080 Furstenfeldbruck West Germany Tel: (08141) 103-0 Telex: 527 649

National Semiconductor (UK) Ltd. 301 Harpur Centre Horne Lane Bedford MK40 ITR United Kingdom Tel: (02 34) 27 00 27 Telex: 826 209 –

National Semiconductor Benelux

Vorstlaan 100 B-1170 Brussels Tel: (02) 672 53 60 Telex: 61 007

National Semiconductor (UK) Ltd. 1, Bianco Lunos Alle DK-1868 Fredriksberg C

Denmark Tel: (01) 213211 Telex: 15179

National Semiconductor Expansion 1000 28. rue de la Redoute

F-92260 Fontenay-aux-Roses France Tel: (01) 46 60 81 40 Telex: 250956

National Semiconductor S.p.A.

Via Solferino 19 I-20121 Milano Italy Tel: (02) 6596146

Tel: (02) 6596146 Telex: 332835 National Semiconductor AB

Box 2016 Stensatravagen 13 S-12702 Skarholman Sweden Tel: (08) 970190 Telex: 10731

National Semiconductor Calle Agustin de Foxa, 27

28036 Madrid Spain Tel: (01) 733-2958 Telex: 46133 National Semiconductor Switzerland Alte Winterthurerstrasse 53 Postfach 567 Ch-8304 Wallisellen-Zurich Tel: (01) 830-2727 Telex: 59000

National Semiconductor Pasilanraitio 6C SF-00240 Helsinki 24, Finland Tel: (90) 14 03 44 Telex: 124854

National Semiconductor Japan Ltd.

4-403 lkebukuro, Toshima-ku Tokyo 171, Japan Tel: (03) 988-2131 Fax: 011-81-3-988-1700

National Semiconductor Hong Kong Ltd. Southeast Asia Marketing Austin Tower, 4th Floor 22-26A Austin Avenue Tsimshatsui, Kowloon, H.K. Tal: 852 3-7243645 Cable: NSSEAMKTG

Telex: 52996 NSSEA HX

National Semiconductor

(Australia) PTY, Ltd. Bldg. F. 4th Floor, MacQuarie Tech Centre 11-17 Khartoum Rd. -North Ryde, N.S.W. 2113 Sydney, Australia Tel: 61-2-887-4455 Telex: AA27173

National Semiconductor (PTE),

Ltd. 200 Cantonment Road 13-01 Southpoint Singapore 0208 Tel: 2252226 Telex: RS 33877

National Semiconductor (Far East) Ltd.

Taiwan Branch

P.O. Box 68-332 Taipei 7th Floor, Nan Shan Life Bidg, 302 Min Chuan East Road, Taipei, Taiwan R.O.C. Tel: (86) 02-501-7227 Telex: 22837 NSTW Cable: NSTW TAIPEI

National Semiconductor (Far East) , Ltd.

Korea Office Third Floor, Hankyung Bldg. 4-25 Hannam-Dong Yongsan-Ku. Seoul 140, Korea Tel: (82) 797-8001/3 Telex: K24942 NSRK

© 1987 National Semiconductor Corp. TL/H/2018 RRD/RRD70M077/Printed in U.S.A.