
MITSUBISHI 1992 SEMICONDUCTORS

SINGLE-CHIP 8-BIT MICROCOMPUTERS Vol. 1

DE BOOK

ASSOCIATES
2216 O'Toole Avenue
San Jose, CA 95131
Phone (408) 432-1070

MITSUBISHI 1992 SEMICONDUCTORS

SINGLE-CHIP 8-BIT MICROCOMPUTERS Vol. 1

All values shown in this catalogue are subject to change for product improvement.

The information, diagrams and all other data included herein are believed to be correct and reliable. However, no responsibility is assumed by Mitsubishi Electric Corporation for their use, nor for any infringements of patents or other rights belonging to third parties which may result from their use.

1	GUIDANCE
2	MICROCOMPUTERS FOR TV
3	SERIES 740
4	MELPS 740 CPU CORE BASIC FUNCTIONS
5	APPENDICES

MITSUBISHI MICROCOMPUTERS INDEX

GUIDANCE			
	n		.1-3
		ters·····	
Symbology			.1-3
		,	
		,	
MICROCOM	IPUTERS FOR	TV	
	OM type microcomputer		
M37100M8-XXX		Single-Chip 8-Bit CMOS Microcomputer for	
WIST 100WIS-XXX	3F/1 F	VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER	2-3
8427102840 VVV	SP/FP, M37201M6-XXX		2-3
MIST TUZINIO-AAA	3F/FF, W3/201W0-AAA		
-		Single-Chip 8-Bit CMOS Microcomputer for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER	2F
M07100M4 VVV	OD.		2-5
M37103M4-XXX	5P	Single-Chip 8-Bit CMOS Microcomputer for	0 1
		VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER.	2-1
M37202M3-XXX	SP	Single-Chip 8-Bit CMOS Microcomputer for	
		VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER.	2-1
M37204M8-XXX	SP	Single-Chip 8-Bit CMOS Microcomputer for	
		VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER	2-1
M37250M6-XXX	SP	Single-Chip 8-Bit CMOS Microcomputer for	
		FREQUENCY SYNTHESIZER	
		with ON-SCREEN DISPLAY CONTROLLER	·2—2
M37260M6-XXX	SP	Single-Chip 8-Bit CMOS Microcomputer for ON-SCREEN DISPLAY ····	·2-2
2 — 2 Built-in I	PROM type microcompo	uters	
M37102E8-XXX	SP/FP, M37201E6-XXXS		
		PROM Version of M37102M8-XXXSP/FP, M37201M6-XXXSP·····	·2—3
SERIES 74	10		
	OM type microcompute	's	
M37120M6-XXX	FP	Single-Chip 8-Bit CMOS Microcomputer·····	.3-3
M37408M2-XXX	SP/FP	Single-Chip 8-Bit CMOS Microcomputer·····	
M37409M2-XXX	SP/FP	Single-Chip 8-Bit CMOS Microcomputer·····	
	(FP, M37410M4HXXXFI		
	,	Single-Chip 8-Bit CMOS Microcomputer·····	·3—1
M37412M4-XXX	FP	Single-Chip 8-Bit CMOS Microcomputer·····	
		Single-Chip 8-Bit CMOS Microcomputer·····	
M37414M5-XXX		Single-Chip 8-Bit CMOS Microcomputer·····	
M37415M4-XXX		Single-Chip 8-Bit CMOS Microcomputer·····	
M37416M2-XXX		Single-Chip 8-Bit CMOS Microcomputer	
		Single-Chip 8-Bit CMOS Microcomputer Single-Chip 8-Bit Chip 8	
	SP, M37420M6-XXXSP		
M37421M6-XXX		Single-Chip 8-Bit CMOS Microcomputer	
	SP, M37524M4-XXXSP	Single-Chip 8-Bit CMOS Microcomputer·····	
M37428M4-XXX		Single-Chip 8-Bit CMOS Microcomputer	.3—3
	ck type microcomputer		
M37409PSS		XXXSP	
M37415PFS	Piggyback for M37415M4-	XXXFP	·3-4

	-xxxsp3-410
3 — 3 Built-in PROM type microcomp	
M37120E6-XXXFP	PROM Version of M37120M6-XXXFP3—416
M37410E6HXXXFP, M37410E6HFS	PROM Version of M37410M3HXXXFP, M37410M4HXXXFP,
	M37410M6HXXXFP·····3—423
M37412E5-XXXFP	PROM Version of M37412M4-XXXFP3—434
M37413E6HXXXFP, M37413E6HFS	PROM Version of M37413M6HXXXFP ······3—448
M37414E5-XXXFP	PROM Version of M37414M5-XXXFP3—458
M37420E6-XXXSP, M37420E6SS	PROM Version of M37420M6-XXXSP······3—472
M37424E8-XXXSP, M37524E4-XXXSP	PROM Version of M37424M8-XXXSP, M37524M4-XXXSP3—480
MELPS 740 CPU CORE	BASIC FUNCTIONS 4-3
APPENDICES Series MELPS 740 Mask ROM Ordering	g Method ······5-3
Mark Specification Form ······	5-69

GUIDANCE 1

MITSUBISHI MICROCOMPUTERS INDEX BY FUNCTION

■Series MELPS 740 single-chip microcomputers

				Electric	al charac	teristics		
Туре	Circuit function and organization	Structure	Supply voltage (V)	Typ pwr dissipation (mW)	Min cycle time (μs)	Max. fre- quency (MHz)	Package	Page
M50708-XXXSP/FP×	6K-Byte Mask-Prog. ROM, 128-Byte RAM, Serial I/O	C, Si	5±10%	15	2	4	64P4B/72P6	Note1
M50740A-XXXSP/FP \times	3K-Byte Mask-Prog ROM, 96-Byte RAM	C, Si	5±10%	15	2	4	52P4B/50P6	Note1
M50740ASP ×	External ROM Type, 96-Byte RAM	C, Si	5±10%	15	2	4	52P4B	Note1
M50741-XXXSP/FP \times	4K-Byte Mask-Prog ROM, 96-Byte RAM	C, Sı	5±10%	15	2	4	52P4B/50P6	Note1
M50742-XXXSP/FP ×	4K-Byte Mask-Prog. ROM, 128-Byte RAM, Serial I/O	C, Sı	5±10%	15	2	4	64P4B/72P6	Note1
M50743-XXXSP/FP ×	4K-Byte Mask-Prog ROM, 128-Byte RAM	C, Si	5±10%	30	1	8	64P4B/72P6	Note1
M50744-XXXSP/FP ×	4K-Byte Mask-Prog ROM, 144-Byte RAM	C, Si	5±10%	15	2	4	64P4B/72P6	Note1
M50745-XXXSP/FP ×	6K-Byte Mask-Prog. ROM, 192-Byte RAM	C, Sı	5±10%	15	2	4	64P4B/60P6	Note1
M50746-XXXSP/FP *	6K-Byte Mask-Prog. ROM, 144-Byte RAM	C, Si	5±10%	15	2	4	64P4B/72P6	Note1
M50747-XXXSP/FP ×	8K-Byte Mask-Prog. ROM, 256-Byte RAM	C, Si	5±10%	30	1	8	64P4B/72P6	Note1
M50747H-XXXSP/FP	8K-Byte Mask-Prog ROM, 256-Byte RAM	C, Si	5±5%	45	0.67	12	64P4B/72P6	Note1
M50752-XXXSP ×	4K-Byte Mask-Prog. ROM, 128-Byte RAM, High Voltage Port, CR Oscillation Type	C, Si	5±10%	15	2	4	52P4B	Note1
M50753-XXXSP/FP	6K-Byte Mask-Prog ROM, 96-Byte RAM, 8-Bit A-D Converter	C, Sı	5±10%	15	2	4	64P4B/60P6	Note1
M50754-XXXSP/FP/GP	6K-Byte Mask-Prog ROM, 160-Byte RAM, PWM, High Voltage Port, Serial I/O	C, Sı	4~5.5	20	1.90	4.2	64P4B/72P6/ 64P6W	Note1
M50757-XXXSP ×	3K-Byte Mask-Prog. ROM, 96-Byte RAM, High Voltage Port, CR Oscillation Type	C, Sı	5±10%	15	2	4	52P4B	Note1
M50758-XXXSP ×	3K-Byte Mask-Prog. ROM, 96-Byte RAM, High Voltage Port, Ceramic Oscillation Type	C, Si	5±10%	15	2	4	52P4B	Note1
M50930-XXXFP	4K-Byte Mask-Prog. ROM, 128-Byte RAM, LCD Controller/Driver, Serial I/O	C, Si	5±10%	15	1.86	4.3	80P6	
M50931-XXXFP	4K-Byte Mask-Prog ROM, 512-Byte RAM, LCD Controller/Driver, Serial I/O	C, Si	5±10%	15	1.86	4.3	80P6	Note2
M50932-XXXFP	8K-Byte Mask-Prog ROM, 512-Byte RAM, LCD Controller/Driver, Serial I/O	C, Si	5±10%	15	1.86	4.3	80P6	
M50933-XXXFP	6K-Byte Mask-Prog. ROM, 192-Byte RAM, LCD Controller/Driver, Serial I/O	C, Si	3.8~5.5	15	1.86	4.3	80P6	Note2
M50934-XXXFP	8K-Byte Mask-Prog ROM, 256-Byte RAM, LCD Controller/Driver, Serial I/O	C, Si	3.8~5.5	15	1.86	4.3	80P6	110102
M50940-XXXSP/FP	4K-Byte Mask-Prog ROM, 128-Byte RAM, 8-Bit A-D Converter, High Voltage Port, Serial I/O	C, Sı	5±10%	15	2	4	64P4B/72P6	Note2
M50941-XXXSP/FP	8K-Byte Mask-Prog. ROM, 192-Byte RAM, 8-Bit A-D Converter, High Voltage Port, Serial I/O	C, Si	5±10%	15	2	4	64P4B/72P6	110.02
M50943-XXXSP/FP	8K-Byte Mask-Prog ROM, 192-Byte RAM, 8-Bit A-D Converter, Serial I/O	C, Sı	5±10%	30	1	8	64P4B/60P6	Note1
M50944-XXXSP/FP	12K-Byte Mask-Prog. ROM, 192-Byte RAM, 8-Bit A-D Converter, Two Serial I/O _S	C, Sı	3~5.5	15	1. 91	4. 19	64P4B/64P6S	Note2
M50945-XXXSP/FP	16K-Byte Mask-Prog. ROM, 256-Byte RAM, 8-Bit A-D Converter, High Voltage Port, Serial I/O	C, Si	5±10%	15	2	4	64P4B/72P6	Note2
M50950-XXXSP	6K-Byte Mask-Prog ROM, 144-Byte RAM, High Voltage Port, Two Serial I/Os	C, Sı	5±10%	20	1.6	5	52P4B	Note1
M50951-XXXSP	4K-Byte Mask-Prog ROM, 144-Byte RAM, High Voltage Port, Two Serial I/Os	C, Sı	5±10%	20	1.6	5	52P4B	Note1
M50954-XXXSP/FP/GP	8K-Byte Mask-Prog ROM, 192-Byte RAM, PWM, High Voltage Port, Serial I/O	C, Si	4~5.5	20	1.90	4. 2	64P4B/72P6/ 64P6W	Note1
M50955-XXXSP/FP/GP	10K-Byte Mask-Prog. ROM, 192-Byte RAM,	C, Si	4~5.5	20	1.90	4. 2	64P4B/72P6/	Note1

^{★:} New product ★★: Under development

Note1: Refer to the "1989 MITSUBISHI SEMICONDUCTORS DATA BOOK «SINGLE-CHIP 8-BIT MICROCOMPUTERS»"

^{2 :} Refer to the "1990 MITSUBISHI SEMICONDUCTORS DATA BOOK (SINGLE-CHIP 8-BIT MICROCOMPUTERS Enlarged edition)"

^{3:} Refer to the "1992 MITSUBISHI SEMICONDUCTORS DATA BOOK (SINGLE-CHIP 8-BIT MICROCOMPUTERS) vol. 2."

 $[\]divideontimes$: The production of this product is no longer planned due to announcement of new series or upgrades.

■Series MELPS 740 single-chip microcomputers (continued)

				Electrica	al charac	teristics		
Туре	Circuit function and organization	Structure	Supply voltage (V)	Typ. pwr dissipation (mW)	Min cycle time (μs)	Max fre- quency (MHz)	Package	Page
M50957-XXXSP/FP	10K-Byte Mask-Prog. ROM, 256-Byte RAM, PWM, High Voltage Port, 4-Bit Comparator, Serial I/O	C, Si	4~5.5	20	1.90	4. 2	64P4B/72P6	
M50958-XXXSP/FP _*	12K-Byte Mask-Prog. ROM, 256-Byte RAM, PWM, High Voltage Port, 4-Bit Comparator, Serial I/O	C, Si	4~5.5	20	1.90	4.2	64P4B/72P6	Note
M50959-XXXSP/FP *	16K-Byte Mask-Prog. ROM, 256-Byte RAM, PWM, High Voltage Port, 4-Bit Comparator Serial I/O	C, Si	4~5.5	20	1.90	4. 2	64P4B/72P6	
M50963-XXXSP/FP *	10K-Byte Mask-Prog. ROM, 160-Byte RAM, 8-Bit A-D Converter, 5-Bit D-A Converter, PWM, Serial I/O	C, Sı	5±10%	15	2	4	64P4B/72P6	Note
M50964-XXXSP/FP *	6K-Byte Mask-Prog. ROM, 160-Byte RAM, 8-Bit A-D Converter, 5-Bit D-A Converter, PWM, Serial I/O	C, Sı	5±10%	15	2	4	64P4B/72P6	Note
M50734SP/FP	External ROM, RAM Type, 5-Timer, 8-Bit A-D Converter, Serial I/O	C, Si	5±10%	30	1	8	64P4B/72P6	Note
M50734SP/FP-10	External ROM, RAM Type, 5-Timer, 8-Bit A-D Converter, Serial I/O				0.8	10	64P4B/72P6	Note
M37100M8-XXXSP/FP	16K-Byte Mask-Prog ROM, 320-Byte RAM, Two Serial I/O _S , A-D Converter, OSD Function	C, Sı	5±10%	27.5	2	4	64P4B/80P6	2-3
M37102M8-XXXSP/FP *	16K-Byte Mask-Prog. ROM, 320-Byte RAM, Two Serial I/Os, A-D Converter, PWM, OSD Function	C, Sı	5±10%	110	1	4	64P4B/80P6N	2-50
M37103M4-XXXSP *	8K-Byte Mask-Prog ROM, 320-Byte RAM, Serial I/O, A-D Converter, PWM, OSD Function	C, Si	5±10%	35	2	, 4	64P4B	2-10
M37120M6-XXXFP *	12K-Byte Mask-Prog. ROM, 256-Byte RAM, Serial I/O, A-D Converter, D-A Converter, OSD Function	C, Si	5±10%	75	1	4	80P6N	3-3
M37201M6-XXXSP ★	24K-Byte Mask-Prog ROM, 384-Byte RAM, Two Serial I/Os, A-D Converter, PWM, OSD Function	C, Si	5±10%	110	1	4	64P4B	250
M37202M3-XXXSP **	12K-Byte Mask-Prog ROM, 256-Byte RAM, Serial I/O, A-D Converter, PWM, OSD Function, Four Timers	C, Si	5±10%	110	1	4	64P4B	2—14
M37204M8-XXXSP ★★	32K-Byte Mask-Prog. ROM, 512-Byte RAM, Serial I/O, A-D Converter, D-A Converter, PWM, OSD Function, Four Timers	C, Sı	5±10%	110	1	4	64P4B	2—19
M37250M6-XXXSP ★	24K-Byte Mask-Prog ROM, 384-Byte RAM, Serial I/O, A-D Converter, PWM, OSD Function, PLL Function, Four Timers	C, Si	5±10%	137.5	1	4	64P4B	2—25
M37260M6-XXXSP **	24K-Byte Mask-Prog ROM, 320-Byte RAM, 8-Byte Serial I/O, OSD Function, Four Timers	C, Si	5±10%	110	1	4	52P4B	2-29
M37408M2-XXXSP/FP **	4K-Byte Mask-Prog ROM, 128-Byte RAM, Dual-Port RAM, UART, Bus Interface, Timer	C, Si	5±10%	50	0.8	10	42P4B/44P6N	3—47
M37409M2-XXXSP/FP	4K-Byte Mask-Prog ROM, 128-Byte RAM, Dual-Port RAM, Three UARTs, Bus Interface, Timer	C, Si	5±10%	50	0.8	10	52P4B/56P6N	3—73
M37410M3HXXXFP	6K-Byte Mask-Prog. ROM, 192-Byte RAM, Serial I/O, A-D Converter, LCD Controller/Driver	C, Si	2.5~5.5	30	1	8	80P6S	2 10
M37410M4HXXXFP	8K-Byte Mask-Prog. ROM, 256-Byte RAM	C, Si	2.5~5.5	30	1	8	80P6S	3—10
M37410M6HXXXFP	12K-Byte Mask-Prog ROM, 256-Byte RAM	C, Si	2.5~5.5	30	1	8	80P6S	
M37412M4-XXXFP	8K-Byte Mask-Prog ROM, 160-Byte RAM,Serial I/O, PWM, 8-Bit A-D Converter, 5-Bit D-A Converter	C, Si	5±10%	15	2	4	72P6	3-13
M37413M4HXXXFP	8K-Byte Mask-Prog. ROM, 256-Byte RAM, Serial I/O, A-D Converter	C, Sı	2.5~5.5	30	1	8	80P6S	3—16
M37413M6HXXXFP **	12K-Byte Mask-Prog. ROM, 256-Byte RAM	C, Sı	2.5~5.5	30	1	8	80P6S	
M37414M5-XXXFP *	10K-Byte Mask-Prog ROM, 160-Byte RAM, Serial I/O, PWM, 8-Bit A-D Converter, 5-Bit D-A Converter	C, Sı	5±10%	15	2	4	72P6	3-19
M37415M4-XXXFP	8K-Byte Mask-Prog ROM, 512-Byte RAM, Serial I/O, LCD Controller/Driver, DTMF Generator	C, Si	2.5~5.5	20	2.5	3. 2	80P6	3-2

^{★:} New product ★★: Under development

^{*:} The production of this product is no longer planned due to announcement of new series or upgrades.

Note1: Refer to the "1989 MITSUBISHI SEMICONDUCTORS DATA BOOK (SINGLE-CHIP 8-BIT MICROCOMPUTERS)"

^{2 :} Refer to the "1990 MITSUBISHI SEMICONDUCTORS DATA BOOK (SINGLE-CHIP 8-BIT MICROCOMPUTERS)" edition?"

^{3 :} Refer to the "1992 MITSUBISHI SEMICONDUCTORS DATA BOOK (SINGLE-CHIP 8-BIT MICROCOMPUTERS) vol 2."

MITSUBISHI MICROCOMPUTERS INDEX BY FUNCTION

■Series MELPS 740 single-chip microcomputers (continued)

		T		Electric	al charac	teristics		
Туре	Circuit function and organization		Supply voltage (V)	Typ pwr dissipation (mW)	Min cycle time (µs)	Max fre- quency (MHz)	Package	Page
M37416M2-XXXSP/FP ★	4K-Byte Mask-Prog. ROM, 128-Byte RAM, UART, Comparator, Bus interface, Key on wake up	C, Si	5±10%	50	1	8	52P4B/56P6N	3-263
M37420M4-XXXSP	8K-Byte Mask-Prog. ROM, 256-Byte RAM, PWM, Serial I/O, A-D Converter, D-A Converter, Timer	C, Sı	5±10%	30	1	8	52P4B	3-294
M37420M6-XXXSP	12K-Byte Mask-Prog. ROM, 256-Byte RAM	C, Si	5±10%	30	1	8	52P4B	
M37421M6-XXXSP/FP	12K-Byte Mask-Prog. ROM, 320-Byte RAM, PWM, Serial I/O, High Voltage Port, 4-Bit Comparator		5±10%	25	0.95	4.2	64P4B/72P6	3-323
M37424M8-XXXSP **	16K-Byte Mask-Prog. ROM, 256-Byte RAM, PWM, Serial I/O, 8-Bit A-D Converter, 5-Bit D-A Converter, Timer	C, Si	5±10%	30	1	4	64P4B	2 254
M37524M4-XXXSP **	16K-Byte Mask-Prog. ROM, 256-Byte RAM, PWM, Serial I/O, 8-Bit A-D Converter, 5-Bit D-A Converter, Timer	C, Si	5±10%	30	1	4	64P4B	3—354
M37428M4-XXXFP **	8K-Byte Mask-Prog. ROM, 384-Byte RAM, UART, LCD Controller/Driver, Timer	C, Si	5±10%	15	1	8	80P6N	3—391
M37450M2-XXXSP/FP	4K-Byte Mask-Prog. ROM, 128-Byte RAM, 8-Bit A-D Converter, 8-Bit D-A Converter, UART, DBB, Three Timers, PWM	C, Si	5±10%	30	0.8	10	64P4B/80P6	
M37450M4-XXXSP/FP	8K-Byte Mask-Prog. ROM, 256-Byte RAM	C, Si	5±10%	30	0.8	10	64P4B/80P6	Note3
M37450M8-XXXSP/FP	16K-Byte Mask-Prog ROM, 384-Byte RAM	C, Si	5±10%	30	0.8	10	64P4B/80P6	
M37450S1SP/FP	External ROM, 128-Byte RAM	C, Si	5±10%	30	0.8	10	64P4B/80P6	
M37450S2SP/FP	External ROM, 256-Byte RAM	C, Si	5±10%	30	0.8	10	64P4B/80P6	Note3
M37450S4SP/FP	External ROM, 384-Byte RAM	C, Si	5±10%	30	0.8	10	64P4B/80P6	
M37451M4-XXXSP/FP/GP ★	8K-Byte Mask-Prog. ROM, 256-Byte RAM, 8-Bit A-D Converter, 8-Bit D-A Converter, UART, DBB, Three Timers, PWM	C, Si	5±10%	40	0.64	12.5	64P4B/ 80P6N/80P6S	Note3
M37451M8-XXXSP/FP/GP ★	16K-Byte Mask-Prog. ROM, 384-Byte RAM	C, Si	5±10%	40	0.64	12.5	64P4B/ 80P6N/80P6S	Note3
M37451MC-XXXSP/FP/GP **	24K-Byte Mask-Prog. ROM, 512-Byte RAM	C, Si	5±10%	40	0.64	12.5	64P4B/ 80P6N/80P6S	Note3
M37451SSP/FP/GP **	External ROM, 1024-Byte RAM	C, Si	5±10%	40	0.64	12.5	64P4B/ 80P6N/80P6S	Note3
M37470M2-XXXSP ★	4K-Byte Mask-Prog. ROM, 128-Byte RAM, Serial I/O, A-D Converter	C, Si	2.7~5.5	17.5	1	4	32P4B	
M37470M4-XXXSP *	8K-Byte Mask-Prog. ROM, 192-Byte RAM	C, Si	2.7~5.5	17.5	1	4	32P4B	Note3
M37470M8-XXXSP ★	16K-Byte Mask-Prog. ROM, 384-Byte RAM	C, Si	2.7~5.5	17.5	1	4	32P4B	
M37471M2-XXXSP/FP ★	4K-Byte Mask-Prog. ROM, 128-Byte RAM, Serial I/O, A-D Converter	C, Si	2.7~5.5	17.5	1	4	42P4B/56P6N	N-4-2
M37471M4-XXXSP/FP *	8K-Byte Mask-Prog. ROM, 192-Byte RAM	C, Si	2.7~5.5	17.5	1	4	42P4B/56P6N	Note3
M37471M8-XXXSP/FP *	16K-Byte Mask-Prog. ROM, 384-Byte RAM	C, Si	2.7~5.5	17.5	1	4	42P4B/56P6N	

^{★:} New product ★★: Under development

Note1: Refer to the "1989 MITSUBISHI SEMICONDUCTORS DATA BOOK (SINGLE-CHIP 8-BIT MICROCOMPUTERS)"

^{2:} Refer to the "1990 MITSUBISHI SEMICONDUCTORS DATA BOOK (SINGLE-CHIP 8-BIT MICROCOMPUTERS Enlarged edition)"

^{3:} Refer to the "1992 MITSUBISHI SEMICONDUCTORS DATA BOOK (SINGLE-CHIP 8-BIT MICROCOMPUTERS) vol. 2."

^{*:} The production of this product is no longer planned due to announcement of new series or upgrades.

■Extended operating temperature version of microcomputers

				Electrical characteristics			,	
Туре	Circuit function and organization	Structure	Supply voltage (V)	Typ pwr dissipation (mW)	Min cycle time (μs)	Max fre- quency (MHz)	Package	Page
M50744T-XXXSP ×	4K-Byte Mask-Prog. ROM,144-Byte RAM, Extended Operating Temperature Version of M50744-XXXSP	C, Si	5±10%	15	2	4	64P4B	Note1
M50747T-XXXSP	8K-Byte Mask-Prog ROM,256-Byte RAM, Extended Operating Temperature Version of M50747-XXXSP	C, Sı	5±10%	30	1	8	64P4B	Note1
M50753T-XXXSP	6K-Byte Mask-Prog. ROM,96-Byte RAM, Extended Operating Temperature Version of M50753-XXXSP	C, Sı	5±10%	15	2	4	64P4B	Note1
M50930T-XXXFP	4K-Byte Mask-Prog ROM,128-Byte RAM, Extended Operating Temperature Version of M50930-XXXFP	C, Sı	5±10%	20	1.86	4.3	80P6	Note1
M37450M4TXXXSP/J	8K-Byte Mask-Prog ROM, 256-Byte RAM, Extended Operating Temperature Version of M37450M4-XXXSP	C, Sı	5±10%	30	0.8	10	64P4B/84P0	Note3
M37451M4DXXXSP/FP ★★	8K-Byte Mask-Prog. ROM, 256-Byte RAM, Extended Operating Temperature Version of M37451M4-XXXSP/FP	C, Sı	5±10%	40	0.64	12.5	64P4B/80P6N	Note3
M37451M8DXXXSP/FP ★★	16K-Byte Mask-Prog ROM, 384-Byte RAM, Extended Operating Temperature Version of M37451M8-XXXSP/FP	C, Sı	5±10%	40	0.64	12.5	64P4B/80P6N	Note3

■Piggyback type microcomputers (EPROM mounted type)

1				Electric	al charac	teristics		
Туре	Circuit function and organization	Structure	Supply voltage (V)	Typ pwr dissipation (mW)	Min cycle time (μs)	Max fre- quency (MHz)	Package	Page
M50740-PGYS	Piggyback for M50740/M50741	C, Si	5±5%		2	4	52S1M	Note1
M50742-PGYS	Piggyback for M50742/M50708	C, Si	5±5%	·—	2	4	64S1M	Note1
M50743-PGYS	Piggyback for M50743	C, Si	5±5%	_	1	8	64S1M	Note1
M50745-PGYS	Piggyback for M50745	C, Si	5±5%	_	2	4	64S1M	Note1
M50752-PGYS	Piggyback for M50757/M50752	C, Si	5±5%	_	2	4	52S1M	Note1
M50753-PGYS	Piggyback for M50753	C, Si	5±5%	_	2	4	64S1M	Note1
M50931-PGYS	Piggyback for M50930/M50931/M50932	C, Sı	5±5%	_	2	4	80S6M	Note1
M50945-PGYS	Piggyback for M50940/M50941/M50945	C, Si	5±5%	_	2	4	64S1M	Note2
M50950-PGYS	Piggyback for M50950/M50951	C, Sı	5±5%	_	1.6	5	52S1M	Note1
M50955-PGYS	Piggyback for M50754/M50954/M50955	C, Sı	5±5%	_	1.9	4.2	64S1M	Note1
M50957-PGYS	Piggyback for M50957/M50958/M50959	C, Si	5±5%	-	1.9	4.2	64S1M	Note2
M50964-PGYS	Piggyback for M50964/M50963	C, Si	5±5%	_	2	4	64S1M	Note1
M37409PSS ★	Piggyback for M37409M2-XXXSP	C, Si	5±5%	_	0.8	10	52S1M	3-397
M37415PFS	Piggyback for M37415M4-XXXFP	C, Si	3.0~5.5	_	2.5	3.2	80S6M	3-402
M37421P-000SS M37421P-001SS	Piggyback for M37421M6-XXXSP	C, Si	5±5%	_	0.95	4. 2	64S1M	3-410
M37450PSS	Piggyback for M37450M2/M4/M8-XXXSP	C, Si	5±5%	_	0.8	10	64S1M	Note3
M37450PFS	Piggyback for M37450M2/M4/M8-XXXFP	C, Si	5±5%	_	0.8	10	80S6M	Note3

^{★:} New product ★★: Under development

Note1: Refer to the "1989 MITSUBISHI SEMICONDUCTORS DATA BOOK (SINGLE-CHIP 8-BIT MICROCOMPUTERS)"

^{2 :} Refer to the "1990 MITSUBISHI SEMICONDUCTORS DATA BOOK (SINGLE-CHIP 8-BIT MICROCOMPUTERS Enlarged edition)"

^{3 :} Refer to the "1992 MITSUBISHI SEMICONDUCTORS DATA BOOK (SINGLE-CHIP 8-BIT MICROCOMPUTERS) vol 2 "

^{*:} The production of this product is no longer planned due to announcement of new series or upgrades

INDEX BY FUNCTION

■Built-in PROM type microcomputers

	type microcomputers		<u> </u>	Electric	al charac	teristics		
Туре	Circuit function and organization	Structure	Supply voltage (V)	Typ. pwr dissipation (mW)	Min cycle time (μs)	Max fre- quency (MHz)	Package	Page
M50746E-XXXSP/FP	One Time Programmable Version of M50746-XXXSP/FP	C, Si	5±5%	15	2	4	64P4B/72P6	Note1
M50746ES/EFS	PROM Version of M50746-XXXSP/FP	C, Si	5±5%	15	2	4	64S1B/72S6	Note1
M50747E-XXXSP/FP	One Time Programmable Version of M50747-XXXSP/FP	C, Si	5±5%	30	1	8	64P4B/72P6	Note1
M50747ES/EFS	PROM Version of M50747-XXXSP/FP	C, Si	5±5%	30	1	8	64S1B/72S6	Note1
M50944E-XXXSP/FP	One Time Programmable Version of M50944-XXXSP/FP	C, Si	3~5.5	15	1.9	4.2	64P4B/64P6S	Note1
M50944ES			1.9	4.2	64S1B			
M50957E-XXXSP	One Time Programmable Version of M50957-XXXSP	C, Si	5±5%	20	1.9	4.2	64P4B	Note1
M50957ES M50963E-XXXSP/FP	PROM Version of M50957-XXXSP One Time Programmable Version of M50963-XXXSP	C, Si	5±5% 5±5%	20 15	1.9	4.2	64S1B 64P4B/72P6	Note1
M50963ES/EFS	PROM Version of M50963-XXXSP/FP	C, Si	5±5%	15	2	4	64S1B/72S6	Note1
M37102E8-XXXSP/FP *	One Time Programmable Version of M37102M8-XXXSP/FP	C, Si	5±10%	110	1	4	64P4B/80P6N	2-354
M37120E6-XXXFP *	PROM Version of M37120M6-XXXFP	C, Si	5±5%	75	1	4	80P6N	3-416
M37201E6-XXXSP *	One Time Programmable Version of M37201M6-XXXSP	0, 01	5±10%	110	1	4	64P4B	2-354
M37410E6HXXXFP	One Time Programmable Version of M37410M6H-XXXFP	C, Si	2.5~5.5	30		8	80P6S	2 001
M37410E6HFS	PROM Version of M37410M6H-XXXFP	C, Si	2.5~5.5	30	1	8	80\$6	3-423
M37412E5-XXXFP	One Time Programmable Version of M37412M4-XXXFP	C, Si	5±5%	15	2	4	72P6	3-434
M37413E6HXXXFP**	One Time Programmable Version of M37413M6H-XXXFP	C, Sı	2.5~5.5	30	1	8	80P6S	
M37413E6HFS **	PROM Version of M37413M6H-XXXFP	C, Sı	5±5%	30	1	8	80S6	3-448
M37414E5-XXXFP *	One Time Programmable Version of M37414M5-XXXFP	C, Sı	5±5%	15	2	4	72P6	3-458
M37420E6-XXXSP ★	One Time Programmable Version of M37420M6-XXXSP	C, Si	5±5%	30	1	8	52P4B	2 470
M37420E6SS ★	PROM Version of M37420M6-XXXSP	C, Si	5±5%	30	1	8	52S1	3-472
M37424E8-XXXSP ★★	One Time Programmable Version of M37424M8-XXXSP	C, Si	5±10%	30	1	4	64P4B	3-480
M37524E4-XXXSP ★★	One Time Programmable Version of M37524M4-XXXSP	C, Si	5±10%	30	1	4	64P4B	3-480
M37450E4-XXXSP/FP	One Time Programmable Version of M37450M4-XXXSP/FP	C, Si	5±5%	30	0.8	10	64P4B/80P6	Note3
M37450E4SS/FS	PROM Version of M37450M4-XXXSP/FP	C, Sı	5±5%	30	0.8	10	64S1B/80S6	140165
M37450E8-XXXSP/FP ★	One Time Programmable Version of M37450M8-XXXSP/FP	C, Si	5±5%	30	0.8	10	64P4B/80P6	Note3
M37450E8SS/FS *	PROM Version of M37450M8-XXXSP/FP	C, Si	5±5%	30	0.8	10	64S1B/80D0	
M37450E4TXXXSP/J ★	One Time Programmable Version of M37450M4TXXXSP/J	C, Si	5±5%	30	0.8	10	64P4B/84P0	Note3
M37451E4-XXXSP/FP/GP ★	One Time Programmable Version of M37451M4-XXXSP/FP/GP	C, Si	5±10%	40	0.64	12.5	64P4B/80P6N/ 80P6S	Note3
M37451E4SS/FS *	PROM Version of M37451M4-XXXSP/FP	C, Si	5±10%	40	0.64	12.5	64S1B/80D0	Note3
M37451E8-XXXSP/FP/GP ★	One Time Programmable Version of M37451M8-XXXSP/FP/GP	C, Si	5±10%	40	0.64	12.5	64P4B/80P6N/ 80P6S	Note3
M37451E8SS/FS *	PROM Version of M37451M8-XXXSP/FP	C, Si	5±10%	40	0.64	12.5	64S1B/80D0	Note3
M37451EC-XXXSP/FP/GP ★★	One Time Programmable Version of M37451MC-XXXSP/FP/GP	C, Sı	5±10%	40	0.64	12.5	64P4B/80P6N/ 80P6S	Note3
M37451ECSS/FS **	PROM Version of M37451MC-XXXSP/FP	C, Sı	5±10%	40	0.64	12.5	64S1B/80D0	Note3
M37451E4DXXXSP/FP **	One Time Programmable Version of M37451M4TXXXSP/FP	C, Sı	5±10%	40	0.64	12.5	64P4B/80P6N	Note3
M37451E8DXXXSP/FP ★★	One Time Programmable Version of M37451M8TXXXSP/FP	C, Sı	5±10%	40	0.64	12.5	64P4B/80P6N	Note3
M37470E4-XXXSP ★	One Time Programmable Version of M37470M4-XXXSP	C, Sı	2.7~5.5	17.5	1	4	32P4B	Note3
M37470E8-XXXSP ★	One Time Programmable Version of M37470M8-XXXSP	C, Sı	2.7~5.5		1	4	32P4B	Note3
M37471E4-XXXSP/FP ★	One Time Programmable Version of M37471M4-XXXSP/FP	C, Sı	2.7~5.5		1	4	42P4B/56P6N	Note3
M37471E8-XXXSP/FP *	One Time Programmable Version of M37471M8-XXXSP/FP	C, Si	2.7~5.5		1	4	42P4B/56P6N	Note3
M37471E8SS *	PROM Version of M37471M8-XXXSP	C, Sı	2.7~5.5	17.5	11	4	42S1B	Note3

^{★:} New product ★★: Under development

Note1: Refer to the "1989 MITSUBISHI SEMICONDUCTORS DATA BOOK (SINGLE-CHIP 8-BIT MICROCOMPUTERS)"

■Series 38000 single-chip microcomputers

Refer to the "1992 MITSUBISHI SEMICONDUCTORS DATA BOOK (SINGLE-CHIP 8-BIT MICROCOMPUTERS) Vol. 2."

^{2:} Refer to the "1990 MITSUBISHI SEMICONDUCTORS DATA BOOK (SINGLE-CHIP 8-BIT MICROCOMPUTERS Enlarged edition)"

^{3 :} Refer to the "1992 MITSUBISHI SEMICONDUCTORS DATA BOOK (SINGLE-CHIP 8-BIT MICROCOMPUTERS) vol 2 "

^{*:} The production of this product is no longer planned due to announcement of new series or upgrades

MITSUBISHI MICROCOMPUTERS **DEVELOPMENT SUPPORT SYSTEMS**

Development support systems (1)

MELF	PS 740	Assembler		Debug system		For evaluation	
Type name	Processor mode	Assembler	Debugger	Option board	Control software	FOI EVAIUATION	
M50740A-XXXSP/FP M50741-XXXSP/FP M50740ASP	Single-chip mode		Р	PCA4040		M50740-PGYS	
M50742-XXXSP/FP M50708-XXXSP/FP	Single-chip mode			PCA4042		M50742-PGYS	
M50743-XXXSP/FP	Single-chip mode			PCA4043 or PCA4043R		M50743-PGYS	
M50744-XXXSP/FP M50744T-XXXSP M50746-XXXSP/FP	Single-chip mode		PCA4044G02 or PCA4044R		M50746ES/EFS		
M50746E-XXXSP/FP M50746ES/EFS	Microprocessor mode			PCA4044XG02		(Note 2)	
M50745-XXXSP/FP	Single-chip mode			PCA4045 or PCA4045R		M50745-PGYS	
M50747-XXXSP/FP M50747H-XXXSP/FP M50747T-XXXSP	Single-chip mode			PCA4047G02 or PCA4047RG02		M50747ES/EFS	
M50747E-XXXSP/FP M50747ES/EFS	Microprocessor mode			PCA4047XG02 or PCA4047XRG02		(Note 2)	
M50752-XXXSP M50757-XXXSP M50758-XXXSP	Single-chip mode			- PCA4057	,	M50752-PGYS	
M50753-XXXSP/FP M50753T-XXXSP	Single-chip mode			PCA4053		M50753-PGYS (Note 2)	
M50754-XXXSP/FP/GP M50954-XXXSP/FP/GP M50955-XXXSP/FP/GP	Single-chip mode	SRA74	BC4000E	PCA4054G02 or PCA4054RG02	DTT74	M50955-PGYS	
M50930-XXXFP M50930T-XXXFP M50931-XXXFP M50932-XXXFP M50933-XXXFP M50934-XXXFP	Single-chip mode	Shalf	F 04000E	PC4000E RTT74 PCA4093 or PCA4093R	N11/4	M50931-PGYS (Note 2,3)	
M50940-XXXSP/FP M50941-XXXSP/FP M50945-XXXSP/FP	Single-chip mode			PCA4094 or PCA4094RG02		M50945-PGYS	
M50943-XXXSP/FP	Single-chip mode	× 1		PCA4033		PCA4333G02 (Note 1)	
M50944-XXXSP/FP M50944E-XXXSP/FP M50944ES	Single-chip mode			PCA7044		M50944ES	
M50950-XXXSP M50951-XXXSP	Single-chip mode	PCA4054G02 or PCA4054RG02		PCA4095		M50950-PGYS	
M50957-XXXSP/FP M50957E-XXXSP M50957ES M50958-XXXSP/FP M50959-XXXSP/FP	Single-chip mode						M50957-PGYS M50957ES
M50963-XXXSP/FP M50963E-XXXSP/FP M50963ES/EFS M50964-XXXSP/FP	Single-chip mode		1		M50963ES/EFS		

^{★:} New products ★★:
Note 1: Evaluation board **★★**: Under development

^{2:} Notes for operating temperature range about the extended operating temperature version microcomputer

^{3:} Notes for supply voltage range about the M50932-XXXFP, M50933-XXXFP.

Development support systems (2)

MELI	PS 740	Assembler		Debug system		For evaluation																								
Type name	Processor mode	Assembler	Debugger	Option board	Control software	1 of Gvaluation																								
M37100M8-XXXSP/FP	Single-chip mode			M37100T-OPT or M37100T2-RTT		M37100P-000SS																								
M37102M8-XXXSP/FP M37102E8-XXXSP/FP M37102E8SS/FS	Single-chip mode		PC4000E	M37102T-RTT		M37102E8SS/FS**																								
M37103M4-XXXSP	Single-chip mode			M37100T2-RTT	1																									
M37120M6-XXXFP M37120E6-XXXFP	Single-chip mode			M37120T-RTT		M37120E6-XXXFP*																								
M37201M6-XXXSP M37201E6-XXXSP M37201E6SS						M37201E6SS**																								
M37202M3-XXXSP M37202E3-XXXSP M37202E3SS	Single-chip mode		PC4000E + PC4600*	M37201T5-POD*		M37202E3SS**																								
M37204M8-XXXSP M37204E8-XXXSP M37204E8SS								M37204E8SS**																						
M37250M6-XXXSP M37250E6-XXXSP M37250E6SS	Single-chip mode		PC4000E	M37250T-RTT*																		M37250E6SS**								
M37260M6-XXXSP M37260E6-XXXSP	Single-chip mode		PC4000E + PC4600*	M37260T5-POD*																										
M37260E6SS	Microprocessor mode			M37260TX-OPT* (Be necessary to order producing this board)			14107 200 2000																							
M37408M2-XXXSP/FP	Single-chip mode																													
M37409M2-XXXSP/FP	Single-chip mode			M37409T-OPT		M37409PSS*																								
M37410M3HXXXFP M37410M4HXXXFP M37410M6HXXXFP M37410E6HXXXFP M37410E6HFS	Single-chip mode	SRA74	le-chip mode SRA74		M37410T-OPT	RTT74	M37410E6HFS																							
M37412M4-XXXFP M37412E5-XXXFP	Single-chip mode			M37412T-OPT		M37412E5-XXXFP																								
M37413M4HXXXFP M37413M6HXXXFP M37413E6HXXXFP M37413E6HFS	Single-chip mode			M37413T-RTT		M37413E6HFS**																								
M37414M5-XXXFP M37414E5-XXXFP	Single-chip mode		DO 1000E	M37414T-RTT		M37414E5-XXXFP*																								
M37415M4-XXXFP	Single-chip mode		PC4000E	M37415T-OPT		M37415PFS																								
M37416M2-XXXSP/FP	Single-chip mode			M37416T-RTT*																										
M37420M4-XXXSP M37420M6-XXXSP M37420E6-XXXSP M37420E6SS	Single-chip mode	ı		M37420T-OPT		M37420E6SS*																								
M37421M6-XXXSP/FP	Single-chip mode			M37421T-OPT		M37421P-000SS M37421P-001SS																								
M37424M8-XXXSP M37424E8-XXXSP M37424E8SS	Single-chip mode		,	M37424T-RTT*		M37424E8SS**																								
M37524M4-XXXSP M37524E4-XXXSP M37524E4SS	Single-chip mode			M37524T-RTT*			M37524E4SS**																							
M37428M4-XXXFP	Single-chip mode		PC4000E + PC4600*(Note2)	M37428RFS																										

^{★:} New products ★★: Note 1: Evaluation board **: Under development

Note 2: Be necessary to order exchanging the monitor ROM.

Development support systems (3)

MEL	PS 740	Assembler		For evelvetion		
Type name	Processor mode		Debugger	Option board	Control software	For evaluation
M50734SP/FP			PC4000E	PCA4034G02 or		
M50734SP-10			PC4000E	PCA4034RG02		

Development support systems (4) series 7450

Series 7450			Debug system					
		Assembler	Control	Base PC4000E		Base PC4600		For evaluation
Type name	Processor mode	'	software	Debugger	Option board	Debugger	Emulator MCU	
M37450M2-XXXSP/FP M37450M4-XXXSP/FP M37450M4TXXXSP/J M37450M8-XXXSP/FP M37450E4-XXXSP/FP	Single-chip mode		DTT74	PC4000E	M37450T-OPT or M37450T-RTT		M37450RSS or M37450RFS (Note 2)	M37450PSS/PFS, M37450E4SS/FS or M37450E8SS/FS* (Note 3)
M37450E4TXXXSP/J M37450E4TXXXSP/J M37450E8-XXXSP/FP M37450E8SS/FS	Microprocessor mode				M37450TX-OPT or M37450TX-RTT	PC4000E		
M37450S1SP/FP M37450S2SP/FP M37450S4SP/FP	Microprocessor mode							
M37451M4-XXXSP/FP/GP M37451M6-XXXSP/FP/GP M37451MC-XXXSP/FP/GP M37451E4-XXXSP/FP/GP M37451E8-XXXSP/FP/GP M37451E8-XXXSP/FP/GP M37451EC-XXXSP/FP/GP M37451M4DXXXSP/FP M37451M4DXXXSP/FP M37451E8DXXXSP/FP M37451E8DXXXSP/FP	Single-chip mode Microprocessor mode	SRA74 RTT74 (Note 1)				+ PC4600*	M37451RSS or M37451RFS (Note 2)	M37451E4SS/FS*, M37451E8SS/FS* or M37451ECSS/FS** (Note 3)
M37451SSP/FP/GP	Microprocessor mode							

^{★:} New products

Note 1: PC4600 is supported by software version up

2: Pitch converter PCA4932 is necessary to RFS type

3: Notes for operating temperature range about the extended operating temperature version microcomputer

Development support systems (5) series 7470

Series 7470						
Type name	Processor mode	Assembler	Control software	Debugger	Emulator MCU	For evaluation
M37470M2-XXXSP M37470M4-XXXSP M37470M8-XXXSP M37470E4-XXXSP M37470E8-XXXSP				PC4000E		M37470E4-XXXSP* M37470E8-XXXSP*
M37471M2-XXXSP/FP M37471M4-XXXSP/FP M37471M8-XXXSP/FP M37471E4-XXXSP/FP M37471E8-XXXSP/FP M37471E8SS	Single-chip mode	SRA74	RTT74 (Note 1)	+ PC4600*	M37471RSS (Note 2,3)	M37471E8SS*

^{★:} New products

Note 1: PC4600 is supported by software version up

2 : Pitch converter PCA4906 is necessary to M37470

3 : Pitch converter PCA4907 is necessary to QFP package type

Development support systems (6) series 38000

Tuna nama	Assembler	Debug system			For evaluation	
Туре пате	Assembler	Control software	Debugger	Emulation MCU	For evaluation	
M38002M2-XXXSP/FP M38002E2-XXXSP/FP M38002E2-XXXSP/FP M38002E4-XXXSP/FP M38002E4-XXXSP/FP M38003M6-XXXSP/FP M38003E6-XXXSP/FP M38003E6SS/FS M38004M8-XXXSP/FP M38004E8-XXXSP/FP M38004E8-XXXSP/FP M38007M4-XXXSP/FP M38007E4-XXXSP/FP M38007E4-XXXSP/FP			PC4000E + PC4600*	M38007RSS (Note 2)	M38002E2SS/FS M38002E4SS/FS M38003E6SS/FS M38004E8SS/FS M38007E4SS/FS	
M38042M3-XXXFP M38042E3-XXXFP M38042E3FS				Under development	M38042E3FS	
M38062M3-XXXFP/GP M38062E3-XXXFP/GP M38062E3FS M38062E4-XXXFP/GP M38062E4-XXXFP/GP M38063E64FS M38063M6-XXXFP/GP M38063E6-XXXFP/GP M38063E6FS M38064M8-XXXFP/GP M38064E8-XXXFP/GP M38064E8-XXXFP/GP	SRA74	RTT74 (Note 1)		M38067RFS (Note 3)	M38062E3FS M38062E4FS M38063E6FS M38064E8FS	
M38102M5-XXXSP/FP M38102E5-XXXSP/FP M38102E5SS M38103M6-XXXSP/FP M38103E6-XXXSP/FP M38103E6SS					M38107RSS (Note 2)	M38102E5SS M38103E6SS
M38112M4-XXXSP/FP M38112E4-XXXSP/FP M38112E4SS				M38117RSS (Note 2)	M38112E4SS	
M38172M4-XXXFP M38172E4-XXXFP M38172E4FS M38173M6-XXXFP M38173E6-XXXFP M38173E6FS M38174M8-XXXFP M38174E8-XXXFP M38174E8FS				M38177RFS (Note 3)	M38172E4FS M38173E6FS M38174E8FS	
M38184M8-XXXFP M38184E8-XXXFP M38184E8FS				M38187RFS** (Note 3)	M38184E8FS	

★: New products ★★ Under development

Note 1 : PC 4600 is supported by software version up 2 : Pitch converter M38007T-PRB is necessary to QFP package type

3: Pitch converter PCA4932 is necessary

Program writing adapter for built-in PROM type microcomputers

Built in BROM type microsomputers		
Built-in PROM type microcomputers type name	Program writing adapter	
M50746E-XXXSP		
M50746ES	PCA4700G02	
M50746EFS		
M50746E-XXXFP	PCA4701G02	
M50747E-XXXSP		
M50747ES	PCA4700G02	
M50747ES M50747E-XXXFP		
	PCA4701G02	
M50747EFS		
M50944E-XXXSP	PCA4715	
M50944ES	, DOA4714	
M50944E-XXXFP	PCA4714	
M50957E-XXXSP	PCA4703	
M50957ES		
M50963E-XXXSP	PCA4700G02	
M50963ES		
M50963E-XXXFP	PCA4701G02	
M50963EFS		
M37102E8-XXXSP	PCA4724	
M37102E8SS		
M37102E8-XXXFP	PCA4725	
M37102E8FS		
M37120E6-XXXFP	PCA4716(Note 1)	
M37201E6-XXXSP	PCA4723	
M37201E6SS		
M37202E3-XXXSP		
M37202E3SS		
M37204E8-XXXSP	PCA4726*	
M37204E8SS		
M37250E6-XXXSP		
M37250E6SS		
M37260E6-XXXSP	PCA4736*	
M37260E6SS		
M37260E6-XXXFP	PCA4737*	
M37260E6FS		
M37410E6HXXXFP	PCA4705	
M37410E6HFS	PCA4706	
M37412E5-XXXFP	PCA4720	
M37413E6HXXXFP	PCA4728	
M37413E6HFS	PCA4729	
M37414E5-XXXFP	PCA4720	
M37420E6-XXXSP	PCA4727	
M37420E6SS	FON4121	
M37424E8-XXXSP		
M37424E8SS	DC 44701	
M37524E8-XXXSP	PCA4721	
M37524E8SS		
M37450E4-XXXSP		
M37450E4SS		
M37450E8-XXXSP		
M37450E8SS		
M37451E4-XXXSP	PCA4710	
M37451E4SS		
M37451E8-XXXSP	_	
M37451E8SS		

Program writing adapter for built-in PROM type microcomputers (continued)

Built-in PROM type microcomputers	Program writing adapter		
type name			
M37451ECSS	PCA4710		
M37450E4TXXXSP	DOLATE(N.). 1)		
M37450E4TXXXJ	PCA4712(Note 1)		
M37450E4-XXXFP			
M37450E4FS	PCA4711		
M37450E8-XXXFP			
M37450E8FS	,		
M37451E4FS	PCA4719		
M37451E8FS			
M37451ECFS			
M37451E4-XXXFP	,		
M37451E8-XXXFP	PCA4751*		
M37451EC-XXXFP			
M37451E4-XXXGP			
M37451E8-XXXGP	PCA4752 [★]		
M37451EC-XXXGP			
M37451E4DXXXSP	PCA4710		
M37451E8DXXXSP	FGA4710		
M37451E4DXXXFP	PCA4751*		
M37451E8DXXXFP	PUA4751		
M37460E8-XXXFP	PCA4713(Note 1)		
M37470E4-XXXSP			
M37470E8-XXXSP			
M37471E4-XXXSP	PCA4730		
M37471E8-XXXSP			
M37471E8SS			
M37471E4-XXXFP			
M37471E8-XXXFP	PCA4731		
M38002E2-XXXSP			
M38002E2-XXXFP			
M38002E2SS	Under development		
M38002E2FS			
M38002E4-XXXSP	PCA4738S-64		
M38002E4-XXXFP	PCA4738F-64		
M38002E4SS	PCA4738S-64		
M38002E4FS	PCA4738L-64**		
M38003E6-XXXSP			
M38003E6-XXXFP			
M38003E6SS	-		
M38003E6FS			
M38004E8-XXXSP	1		
M38004E8-XXXFP	-		
M38004E8SS	Under development		
M38004E8FS			
M38007E4-XXXSP			
M38007E4-XXXFP			
M38007E4-XXFP			
M38007E4FS			
M38042E3-XXXFP			
M38042E3FS			
M38062E3-XXXFP			
M38062E3-XXXGP			
M38062E3FS			

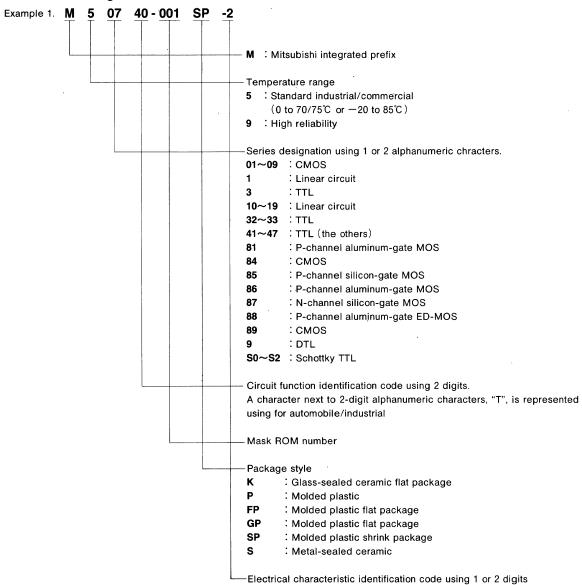
★: New product ★★: Under development

Note 1: Be necessary to order producing this board

Program writing adapter for built-in PROM type microcomputers (continued)

Built-in PROM type microcomputers	Program writing adapter	
type name		
M38062E4-XXXFP		
M38062E4-XXXGP	Under development	
M38062E4FS		
M38063E6-XXXFP	PCA4738F-80	
M38063E6-XXXGP	PCA4738G-80	
M38063E6FS	PCA4738L-80	
M38064E8-XXXFP		
M38064E8-XXXGP	Under development	
M38064E8FS		
M38102E5-XXXSP	PCA4738S-64	
M38102E5-XXXFP	PCA4738F-64	
M38102E5SS	PCA4738S-64	
M38103E6-XXXSP		
M38103E6-XXXFP	Under development	
M38103E6SS		
M38112E4-XXXSP	PCA4738S-64	
M38112E4-XXXFP	PCA4738F-64	
M38112E4SS	PCA4738S-64	
M38172E4-XXXFP		
M38172E4FS		
M38173E6-XXXFP		
M38173E6FS	Under development	
M38174E8-XXXFP		
M38174E8FS		
M38184E8-XXXFP	PCA4738F-100*	
M38184E8FS	Under development	

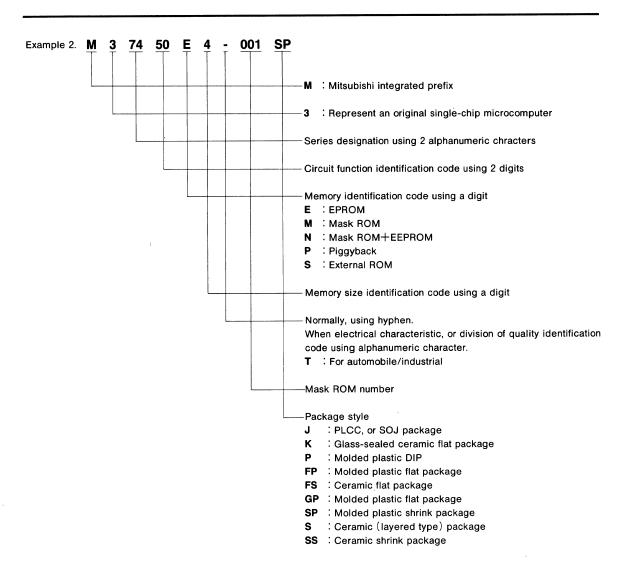
^{★:} New product ★★: Under development



MITSUBISHI MICROCOMPUTERS ORDERING INFORMATION

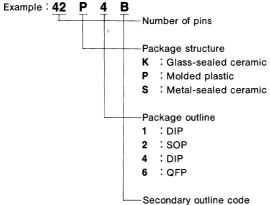
FUNCTION CODE

Mitsubishi integrated circuits may be ordered using the following simplified alphanumeric type-codes which define the function of the IC/LSIs and the package style.


1. Mitsubishi Original Products

MITSUBISHI MICROCOMPUTERS

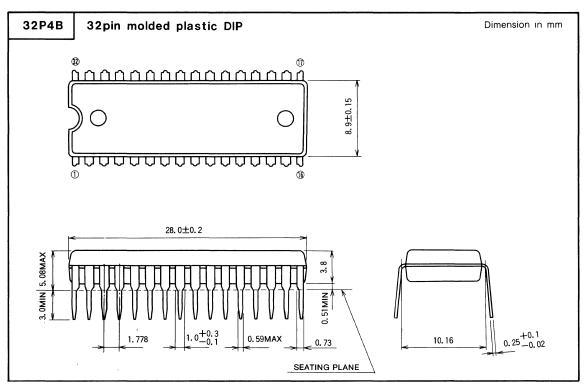
ORDERING INFORMATION

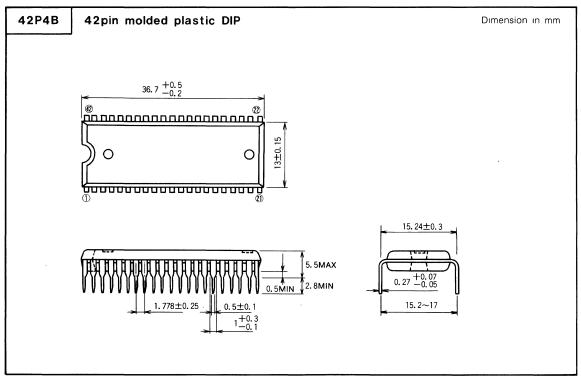


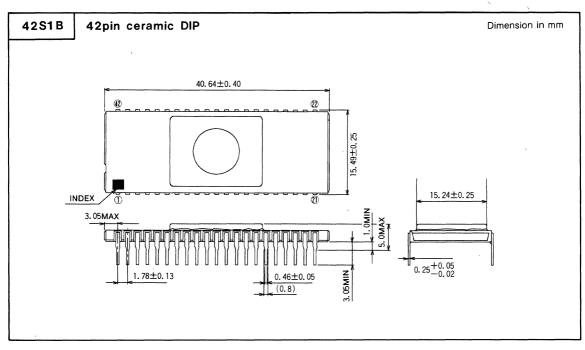
MITSUBISHI MICROCOMPUTERS

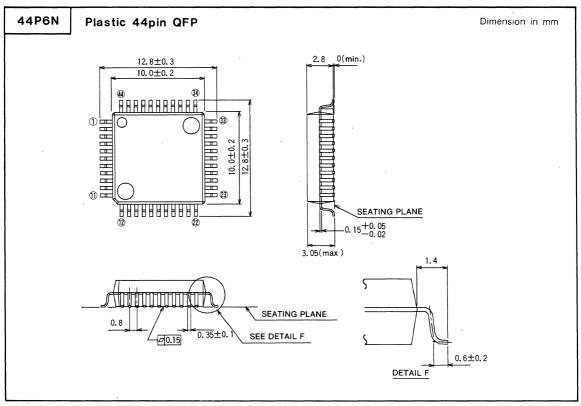
ORDERING INFORMATION

2. PACKAGE CODE

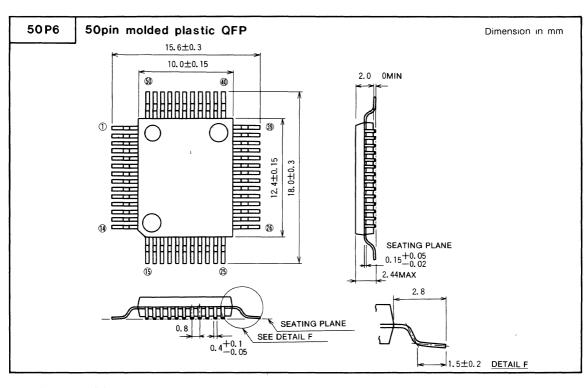

Package style may be specified by using the following simplified alphanumeric code.

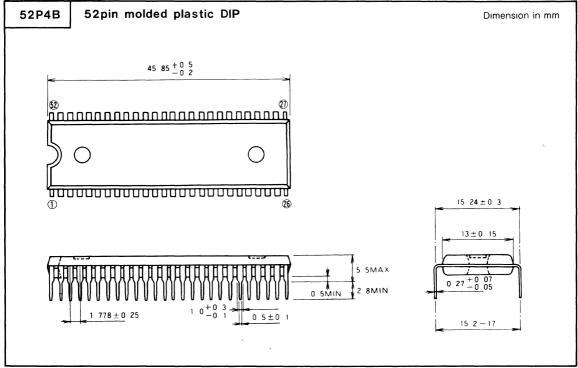


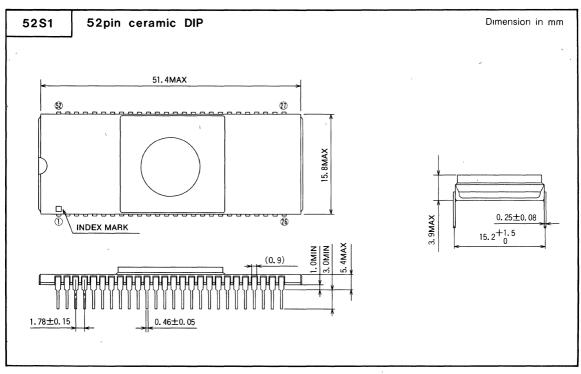

Special-purpose secondary codes describing outline are included as necessary. For details, contact your sales representative.

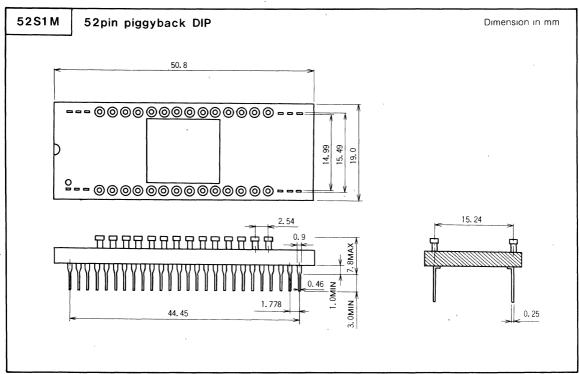


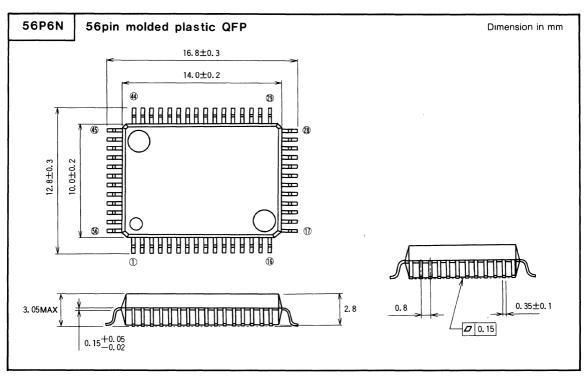
MITSUBISHI MICROCOMPUTERS PACKAGE OUTLINES

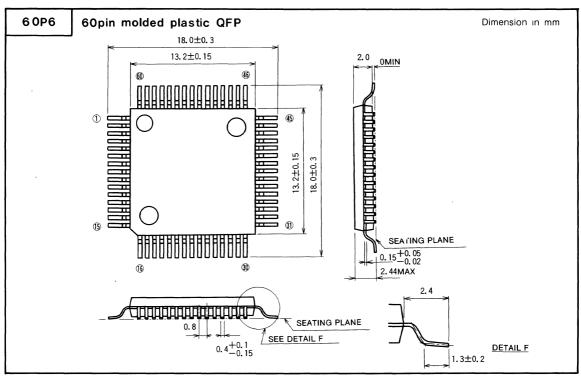


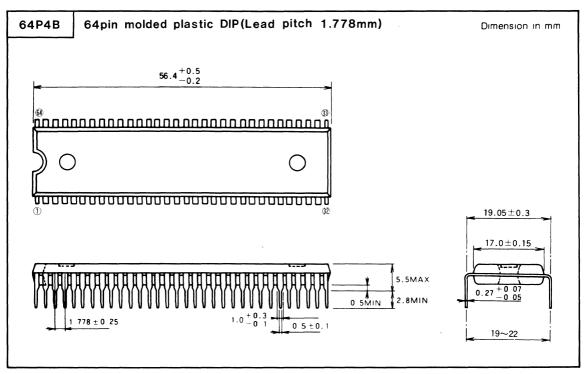


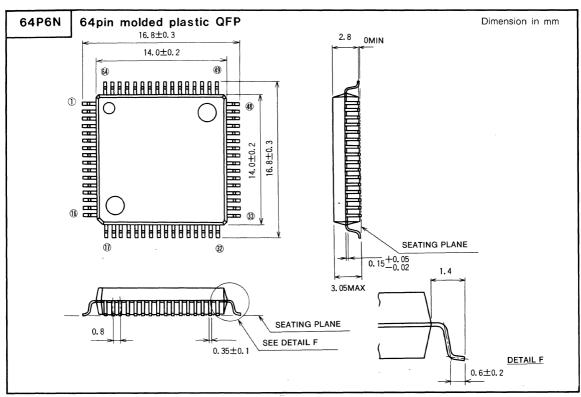


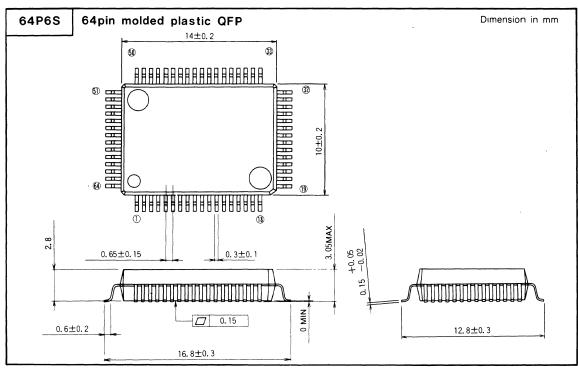


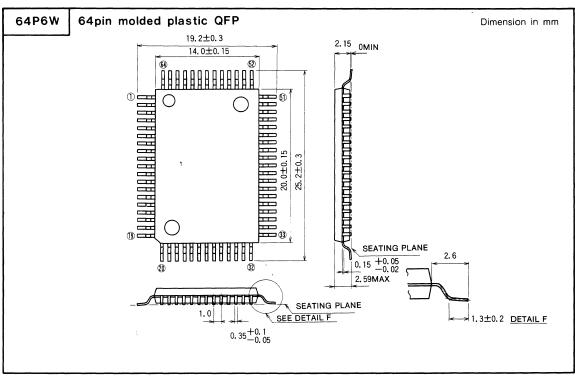


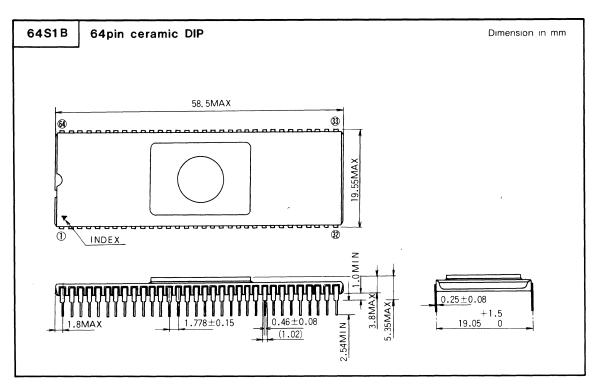


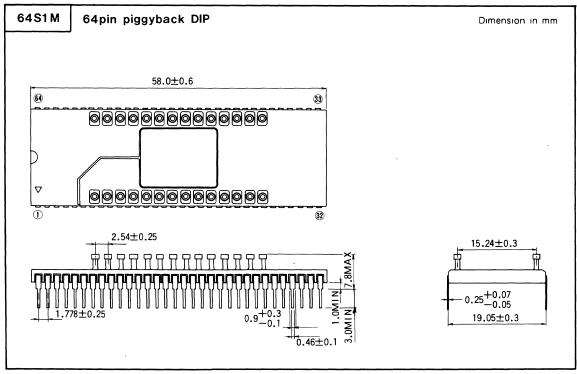


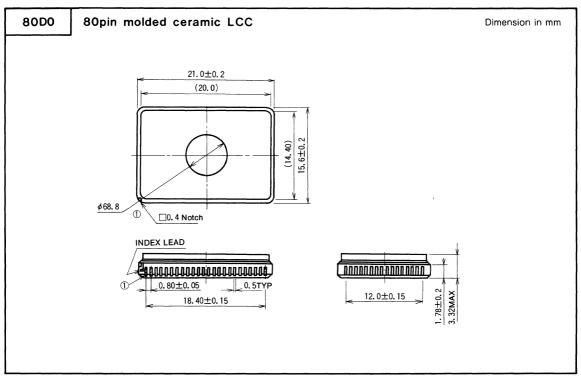


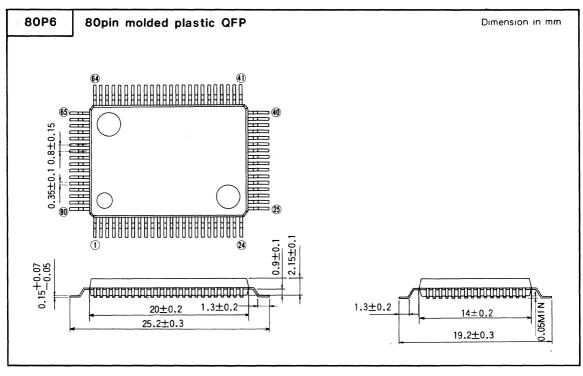


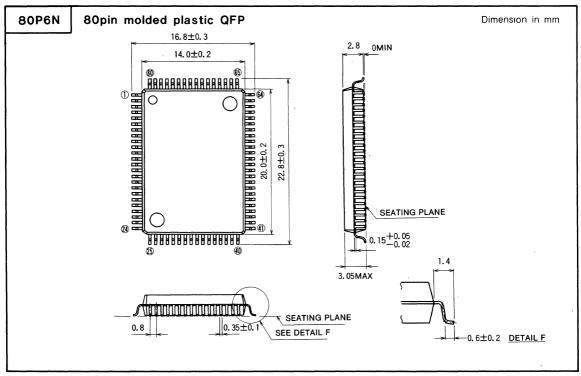


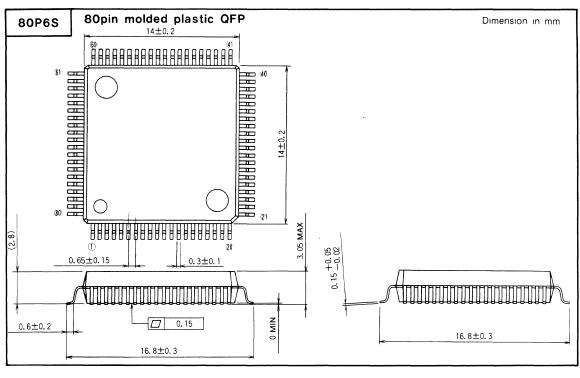


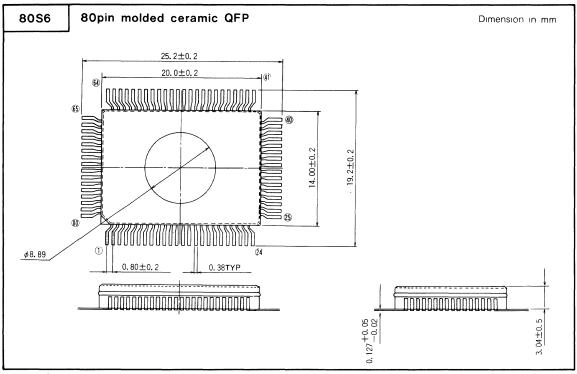


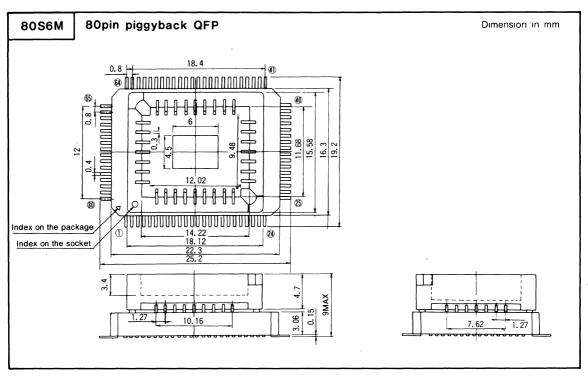


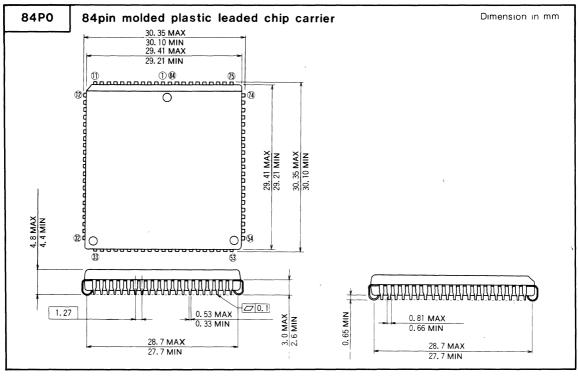


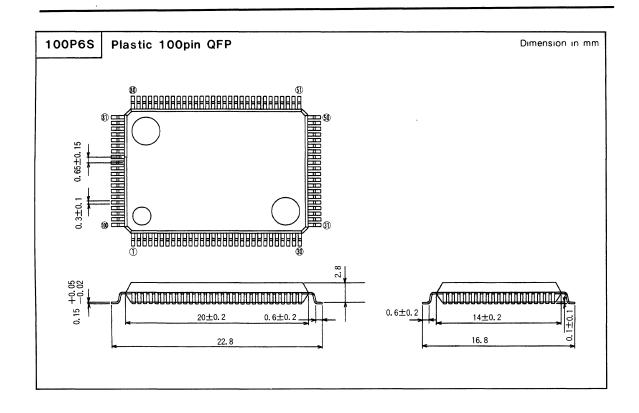












MITSUBISHI MICROCOMPUTERS PACKAGE OUTLINES

LETTER SYMBOLS FOR THE DYNAMIC PARAMETERS

1. INTRODUCTION

A system of letter symbols to be used to represent the dynamic parameters of intergrated circuit memories and other sequential circuits especially for single-chip microcomputers, microprocessors and LSIs for peripheral circuits has been discussed internationally in the TC47 of the International Electrotechnical Committee (IEC). Finally the IEC has decided on the meeting of TC47 in February 1980 that this system of letter symbols will be a Central Office document and circulated to all countries to vote which means this system of letter symbols will be a international standard.

The system is applied in this LSI data book for the new products only. Future editions of this data book will be applied this system. The IEC document which describes "Letter symbols for dynamic parameters of sequential integrated circuits, including memories" is introduced below. In this data book, the dynamic parameters in the IEC document are applied to timing requirements and switching characteristics.

2. LETTER SYMBOLS

The system of letter symbols outlined in this document enables symbols to be generated for the dynamic parameters of complex sequential circuits, including memories, and also allows these symbols to be abbreviated to simple mnemonic symbols when no ambiguity is likely to arise.

2.1. General Form

The dynamic parameters are represented by the general symbol of the form -

t_A(BC-DC)F(1)

where

Subscript A indicates the type of dynamic parameter being represented, for example; cycle time, setup time, enable time, etc.

Subscript B indicates the name of the signal or terminal for which a change of state or level (or establishment of a state or level) constitutes a signal event assumed to occur first, that is, at the beginning of the time interval. If this event actually occurs last, that is, at the end of the time interval, the value of the time interval is negative.

Subscript C indicates the direction of the transition and/or the final state or level of the signal represented by B. When two letters are used, the initial state or level is also indicated.

Subscript D indicates the name of the signal or terminal for which a change of state or level (or establishment of a state or level) constitutes a signal event assumed to occur last, that is, at the end of the time interval. If this event actually occurs first, that is, at the beginning of the time interval, the value of the time interval is negative.

Subscript E indicates the direction of the transition and/or the final state or level of the signal represented by D. When two letters are used, the initial state or level is also indi-

Subscript F indicates additional information such as mode of operation, test conditions, etc.

Note 1 Subscripts A to F may each consists of one or more letters

2 Subscripts D and E are not used for transition times

3 The "-" in the symbol (1) above is used to indicate "to", hence the symbol represents the time interval from signal event B occurring to signal event D occurring, and it is important to note that this convention is used for all dynamic parameters including hold times. Where no misunder-standing can occur the hyphen may be omitted.

2.2. Abbreviated Form

The general symbol given above may be abbreviated when no misunderstanding is likely to arise. For example to:

t_{A(B-D)}

or t_{A(B)}

or t_{A(D)} - often used for hold times

or taf — no brackets are used in this case

or t_A

or t_{BC-DE} - often used for unclassified time intervals

2.3. Allocation of Subscripts

In allocating letter symbols for the subscripts, the most commonly used subscripts are given single letters where practicable and those less commonly used are designated by up to three letters. As far as possible, some form of mnemonic representation is used. Longer letter symbols may be used for specialised signals or terminals if this aids understanding.

3. SUBSCRIPT A (For Type of Dynamic Parameter

The subscript A represents the type of dynamic parameter to be designated by the symbol and, for memories, the parameters may be divided into two classes:

 a) those that are timing requirements for the memory and

LETTER SYMBOLS FOR THE DYNAMIC PARAMETERS

b) those that are characteristics of the memory. The letter symbols so far proposed for memory circuits are listed in sub-clauses 3.1 and 3.2 below.

All subscripts A should be in lower-case.

3.1. Timing Requirements

The letter symbols for the timing requirements of semiconductor memories are as follows:

Term	Subscript
Cycle time	С
Time interval between two signal events	d
Fall time	f
Hold time	h
Precharging time	рс
Rise time	r
Recovery time	rec
Refresh time interval	rf
Setup time	su
Transition time	t
Pulse duration (width)	w

3.2. Characteristics

The letter symbols for the dynamic characteristics of semiconductor memories are as follows:

Characteristic	Subscript	
Access time	a	
Disable time	dis	
Enable time	en	
Propagation time	Р	
Recovery time		
Transition time	Т	
Valid time	ν	

Note Recovery time for use as a characteristic is limited to sense recovery time

4. SUBSCRIPTS B AND D (For Signal Name or Terminal Name)

The letter symbols for the signal name or the name of the terminal are as given below.

All subscripts B and D should be in upper-case.

Signal or terminal	Subscript
Address	Α
Clock	С .
Column address	CA
Column address strobe	CAS
Data input	D
Data input/output	DQ
Chip enable	E

Erasure	ER
Output enable	G
Program	PR
Data output	Q
Read	R
Row address	RA
Row address strobe	RAS
Refresh	RF
Read/Write	RW
Chip select	S
Write (write enable)	W

Note 1 In the letter symbols for time intervals, bars over the subscripts, for example CAS, should not be used

- 2 It should be noted, when further letter symbols are chosen, that the sub-script should not end with H, K, V, X, or Z (See clause 5)
- 3 If the same terminal, or signal, can be used for two functions (for example Data input/output, Read/Write) the waveform should be labelled with the dual function, if appropriate, but the symbols for the dynamic parameters should include only that part of the subscript relevant to the parameter

5. SUBSCRIPTS C AND E (For Transition of Signal)

The following symbols are used to represent the level or state of a signal:

Transition of signal	Subscript
High logic level	н
Low logic level	L
Valid steady-state level (either low or high)	V
Unknown, changing, or 'don't care' level	X
High-impedance state of three-state output	Z

The direction of transition is expressed by two letters, the direction being from the state represented by the first letter to that represented by the second letter, with the letters being as given above.

When no misunderstanding can occur, the first letter may be omitted to give an abbreviated symbol for subscripts C and E as indicated below.

All subscripts C and E should be in upper-case.

bscr	

	Examples	Full Abbreviated		
	ansition from high level to v level	HL	L	
	ensition from low level to th level	LH	н	
	ansition from unknown or anging state to valid state	xv	V	
	ansition from valid state to known or changing state	vx	×	
	ansition from high-impedance te to valid state	zv	V	
Note	Since subscripts C and E may be abbreviated	and cinco	subscripts P and D	

Since subscripts C and E may be abbreviated, and since subscripts B and D may contain an indeterminate number of letters, it is necessary to put the restriction on the subscripts B and D that they should not end with H, L, V, X, or Z, so as to avoid possible confusion

LETTER SYMBOLS FOR THE DYNAMIC PARAMETERS

6. SUBSCRIPT F (For Additional Information)

If necessary, subscript F is used to represent any additional qualification of the parameter such as mode of operation, test conditions, etc. The letter symbols for subscript F are given below.

Subscript F should be in upper-case.

Modes of operation	Subscript
Power-down	PD
Page-mode read	PGR
Page-mode write	PGW
Read	R
Refresh	RF
Read-modify-write	RMW
Read-write	RW
Write	W

MITSUBISHI MICROCOMPUTERS SYMBOLOGY

FOR DIGITAL INTEGRATED CIRCUITS

New symbol	Former symbol	Parameter—definition
0		Input consultation
C,		Input capacitance
Co		Output capacitance
C _{1/0}		Input/output terminal capacitance
C ₁ (\(\phi \)		Input capacitance of clock input
f		Frequency
f _(φ)		Clock frequency
1		Current—the current into an integrated circuit terminal is defined as a positive value and the current out of a terminal is defined as a negative value
I _{BB}		Supply current from VBB
BB(AV)		Average supply current from V _{BB}
Icc		Supply current from Vcc
ICC(AV)		Avarage supply current from Vcc
ICC(PD)		Power-down supply current from Vcc
1 _{DD}		Supply current from V _{DD}
IDD(AV)		Average supply current from V _{DD}
1 _{GG}		Supply current from V _{GG}
I _{GG} (AV)		Average supply current from V _{GG}
T ₁		Input current
Чн		High-level input current—the value of the input current when VOH is applied to the input considered
T _{IL}		Low-level input current—the value of the input current when V _{OL} is applied to the input considered
I _{LOAD}		Built-in resistor current
I _{PEAK}		Peak current -
Гон		High-level output current—the value of the output current when V _{OH} is applied to the output considered
IOL		Low-level output current—the value of the output current when V _{OL} is applied to the output considered
loz		Off-state (high-impedance state) output current—the current into an output having a three-state capability with input condition so applied that
		it will establish according to the product specification, the off (high-impedance) state at the output
lozh		Off state (high-impedance state) output current, with high-level voltage applied to the output
lozL		Off-state (high-impedance state) output current, with low level voltage applied to the output
los		Short-circuit output current
Iss		Supply current from V _{SS}
Pd		Power dissipation
New		Number of erase/write cycles
NRA		Number of read access unrefreshed
R,		Input resistance
RL	İ	External load resistance
Roff		Off-state output resistance
Ron		On-state output resistance
ta		Access time—the time interval between the application of a specified input pulse during a read cycle and the availability of valid data signal at an output
ta(A)	ta(AD)	Address access time—the time interval between the application of an address input pulse and the availability of valid data signals at an output
ta(CAS)	. ,	Column address strobe access time
t _{a(E)}	ta(CE)	Chip enable access time
ta(G)	ta(OE)	Output enable access time
t _{a(PR)}		Data access time after program
ta(RAS)	` '	Row address strobe access time
t _{a(S)}	ta(CS)	Chip select access time
t _c		Cycle time
t _{cR}	t _{C(RD)}	Read cycle time—the time interval between the start of a read cylce and the start of the next cycle
tore	t _{C(REF)}	Refresh cycle time—the time interval between successive signals that are intended to restore the level in a dynamic memory cell to its original level
t _{CPG}	t _{C(PG)}	Page-mode cycle time
J. J	5(.5)	

New symbol	Former symbol	Parameter—definition		
t _{CRMW}	to(DIAD)	Read-modify-write cycle time—the time interval between the start of a cycle in which the memory is read and new data is entered, and the start of		
CHMW ,	T _C (RMR)			
t _{cw} 、	t _{C(WR)}	the next cycle Write cycle time—the time interval between the start of a write cycle and the start of the next cycle		
td	-0(111)	Delay time—the time between the specified reference points on two pulses		
t _{d(ø)}		Delay time between clock pulses—e.g., symbology, delay time, clock 1 to clock 2 or clock 2 to clock 1		
td(CAS-RAS)		Delay time, column address strobe to row address strobe		
t _{d(CAS-W)}	td(CAS WR)	Delay time, column address strobe to write		
td(RAS-CAS)	-u(CAS Wh)	Delay time, row address strobe to column address strobe		
td(RAS-W)	td(RAS-WR)	Delay time, row address strobe to write		
tdis(R-O)	t _{dis(R-DA)}	Output disable time after read		
t _{dis(s)}	t _{PxZ(CS)}	Output disable time after chip select		
t _{dis(w)}	t _{PXZ} (w _R)	Output disable time after write		
t _{DHL}	1 12(111)	High-level to low-level delay time the time interval between specified reference points on the input and on the output pulses when the output is		
tolh		Low-level to high-level delay time Going to the low (high) level and when the device is driven with a specified loading networks		
t _{en(A-Q)}	t _{PZV(A-DQ)}	Output enable time after address		
ten(R-O)	t _{PZV(R-DQ)}	Output enable time after read		
t _{en(s-0)}	t _{PZX(CS-D0)}	Output enable time after chip select		
t _f	27 27(03 00)	Fall time		
th		Hold time—the interval of time during which a signal at a specified input terminal appears after an active transition occurs at another specified input terminal		
t _{h(A)}	th(AD)	Address hold time		
t _{h(A-E)}	th(AD-CE)	Chip enable hold time after address ,		
th(A-PR)	th(AD-PRO)	Program hold time after address		
th(CAS-CA)	-II(AD-PRO)	Column address hold time after column address strobe		
th(CAS-D)	th(CAS-DA)	Data-in hold time after column address strobe		
th(CAS-Q)	th(CAS-OUT)	Data-out hold time after column address strobe		
th (CAS-RAS)	-11(0A3 001)	Row address strobe hold time after column address strobe		
th(CAS-W)	th(CAS WR)	Write hold time after column address strobe		
t _{h(D)}	th(DA)	Data-in hold time		
th(D-PR)	th(DA-PRO)	Program hold time after data-in		
t _{h(E)}	th(CE)	Chip enable hold time		
th(E-D)	th(CE-DA)	Data- in hold time after chip enable		
th(E-G)	th(CE-OE)	Output enable hold time after chip enable		
th(R)	th(RD)	Read hold time		
th(RAS-CA)	1	Column address hold time after row address strobe		
th(RAS-CAS)		Column address strobe hold time after row address strobe		
th(RAS-D)	th(RAS-DA)	Data-in hold time after row address strobe		
th(RAS-W)	tn(RAS-WR)	Write hold time after row address strobe		
t _{h(S)}	th(CS)	Chip select hold time		
th(w)	th(WR)	Write hold time		
th(w-CAS)	th(WR-CAS)	Column address strobe hold time after write		
t _{h (w-D)}	th(WR-DA)	Data-in hold time after write		
th (W-RAS)	th(WR-RAS)	Row address hold time after write		
tpHL		High-level to low-level propagation time the time interval between specified reference points on the input and on the output pulses when the		
tpLH]	Low-level to high-level propagation time output is going to the low (high) level and when the device is driven and loaded by typical devices of stated type		
tr		Rise time		
trec(w)	twr	Write recovery time—the time interval between the termination of a write pulse and the initiation of a new cycle		
trec(PD)	t _{R(PD)}	Power-down recovery time		
tsu		Setup time—the time interval between the application of a signal which is maintained at a specified input terminal and a consecutive active		
1		tarnsition at another specified input terminal		
t _{SU(A)}	t _{SU(AD)}	Address setup time		
L				

MITSUBISHI MICROCOMPUTERS SYMBOLOGY

New symbol	Former symbol	Parameter—definition		
tour. =>	toures of	Chip enable setup time before address		
tsu(A-E)	tsu(AD-CE)			
t _{su(A-w)}	ISU(AD-WR)	Write setup time before address Row address strobe setup time before column address		
tsu(CA-RAS)		· · · · · · · · · · · · · · · · · · ·		
t _{su(D)}	tsu(DA)	Data-in setup time		
t _{Su(D-E)}	Tsu(DA-CE)	Chip enable setup time before data in		
tsu(D-W)	tsu(DA-WR)	Write setup time before data-in		
t _{su(E)}	tsu(CE)	Chip enable setup time		
t _{su(E-P)}	tsu(CE-P)	Precharge setup time before chip enable		
t _{su(G-E)}	t _{Su(OE-CE)}	Chip enable setup time běfore output enable		
t _{su(P-E)}	t _{Su(P-CE)}	Chip enable setup time before precharge		
t _{su(PD)}		Power down setup time		
t _{su(R)}	Tsu(RD)	Read setup time		
1.	t _{SU} (RA-CAS)	Column address strobe setup time before read		
TSU (RA-CAS)		Column address strobe setup time before row address		
t _{su(S)}	t _{su(CS)}	Chip select setup time		
t _{su(s-w)}	tsu(CS-WR)	Write setup time before chip select		
t _{su(w)}	tsu(wR)	Write setup time		
t _{THL}		High-level to low-level transition time the time interval between specified reference points on the edge of the output pulse when the output is going to the low (high) level and when a specified input signal is applied through a specified network and		
t _{TLH}		Low-level- to high-level transition time the output is loaded by another specified network		
t _{v(A)}	t _{dv(AD)}	Data valid time after address		
t _{v(E)}	t _{dv(CE)}	Data valid time after chip enable		
t _{v(E)PR}	t _{v(CE)PR}	Data valid time after chip enable in program mode		
t _{v(G)}	t _{v(OE)}	Data valid time after output enable		
t _{v (PR)}		Data valid time after program		
t _{v(S)}	t _{v(CS)}	Data valid time after chip select		
tw		Pulse width (pulse duration) the time interval between specified reference points on the leading and training edges of the waveforms		
t _{w(E)}	t _{w(CE)}	Chip enable pulse width		
t _{w(EH)}	t _{w(CEH)}	Chip enable high pulse width		
t _{w(EL)}	t _{w(EL)}	Chip enable low pulse width		
t _{w(PR)}		Program pulse width		
t _{w(R)}	t _{w(RD)}	Read pulse width		
t _{w(S)}	t _{w(CS)}	Chip select pulse width		
t _{w(w)}	t _{w(WR)}	Wrtie pulse width		
$t_{\mathbf{W}(\phi)}$		Clock pulse width		
Та		Ambient temperature		
Topr		Operating temperature		
Tstg		Storage temperature		
V _{BB}		V _{BB} supply voltage		
Vcc		V _{CC} supply voltage		
V _{DD}		V _{DD} supply voltage		
V _{GG}		V _{GG} supply voltage		
V _I		Input voltage		
V _{IH}		High-level input voltage—the value of the permitted high-state voltage at the input		
V _{IL}		Low-level input voltage—the value of the permitted low-state voltage at the input		
V ₀		Output voltage		
V _{OH}		High level output voltage—the value of the guaranteed high-state voltage range at the output		
V _{OL}		Low-level output voltage—the value of the guaranteed low state voltage range at the output		
V _{SS}		V _{SS} supply voltage		
L				

Note 1. These letter symbols are based on the IEC publication 148 except a part of them

1 INTRODUCTION

IC & LSI have made rapid technical progress in electrical performances of high integration, high speed, and sophisticated functionality. And now they have got boundless wider applications in electronic systems and electrical appliances.

To meet the above trend of expanding utilization of IC & LSI, Mitsubishi considers that it is extremely important to supply stable quality and high reliable products to customers.

Mitsubishi Electric places great emphasis on quality as a basic policy "Quality First", and has striven always to improve quality and reliability.

Mitsubishi has already developed the Quality Assurance System covering design, manufacturing, inventory and delivery for IC & LSI, and has supplied highly reliable products to customers for many years. The following articles describe the Quality Assurance System and examples of reliability control for Mitsubishi Single-chip 8-bit Microcomputer.

2. QUALITY ASSURANCE SYSTEM

The Quality Assurance System places emphasis on built-in reliability in designing and built-in quality in manufacturing. The System from development to delivery is summarized in Fig. 1.

2.1 Quality Assurance in Designing

The following steps are applied in the designing stage for a new product.

- Setting of perfomance, quality and reliability target for new product.
- (2) Discussion of performance and quality for circuit design, device structure, process, material and package.
- (3) Verification of design by CAD system to meet standardized design rule.
- (4) Functional evaluation for bread-board device to confirm electrical performance.
- (5) Reliability evaluation for TEG (Test Element Group) chip to detect basic failure mode and investigate failure mechanism.
- (6) Reliability test (In-house qualification) for new product to confirm quality and reliability target.
- (7) Decision of pre-production from the standpoint of performance, reliability, production flow/conditions, production capability, delivery and etc

2.2 Quality Assurance in Manufacturing

Quality assurance in manufacturing is performed as follows

- Environment control such as temperature, humidity and dust as well as deionized water and utility gases.
- (2) Maintenance and calibration control for automatized manufacturing equipments, automatic testing equipments, and measuring instruments.

- (3) Material control such as silicon wafer, lead frame, packaging material, mask and chemicals.
- (4) In-process inspections in wafer-fabrication, assembly and testing.
- (5) 100% final inspection of electrical characteristics, visual inspection and burn-in, if necessary.
- (6) Quality assurance test
 - -Electrical characteristics and visual inspection, lot by lot sampling
 - -Environment and endurance test, periodical sampling.
- (7) Inventory and shipping control, such as storage environment, date code identification, handling and ESD (Electro Static Discharge) preventive procedure.

2.3 Reliability Test

To verify the reliability of a product as described in the Mitsubishi Quality Assurance System, reliability tests are performed at three different stages in new product development, pre-production and mass-production.

At the development of a new product the reliability test plan is fixed corresponding to the quality and reliability target of each product, respectively. The test plan includes in-house qualification test and TEG evaluation, if necessary. TEG chips are designed and prepared for new device structure, new process and new material.

After the proto-type product has passed the in-house qualification test, the product advances to the pre-production. In the pre-production stage, the specific reliability tests are programmed and performed again to verify the quality of pre-production product.

In the mass production, the reliability tests are performed periodically to confirm the quality of the mass production product according to the quality assurance test program.

Table 1 shows an example of reliability test program for plastic encapsulated IC & LSI.

Table 1. TYPICAL RELIABILITY TEST PROGRAM FOR PLASTIC ENCAPSULATED IC & LSI

Group	Test	Test condition
1	Solderability	230°C, 5sec Rosin flux
	Soldering heat	260℃, 10sec
2	Thermal shock	-55°C, 125°C, 15cycles
	Temperature cycling	-65°C, 150°C, 100cycles
3	Lead fatigue	250gr, 90°; 2arcs
	Shock	1500G, 0.5msec
		20G, 100~2000Hz
4	Vibration	X, Y, Z direction
		4min./cycle, 4cycles/direction
,	Constant acceleration	20000G, Y direction, 1min
5	Operation life	T _a =125°C, Vccmax 1000hours
6	High temperature storage life	T _a =150℃, 1000hours
7	High temperature and high humidity	85°C, 85%, 1000hours
	Pressure cooker	121℃, 100%, 100hours

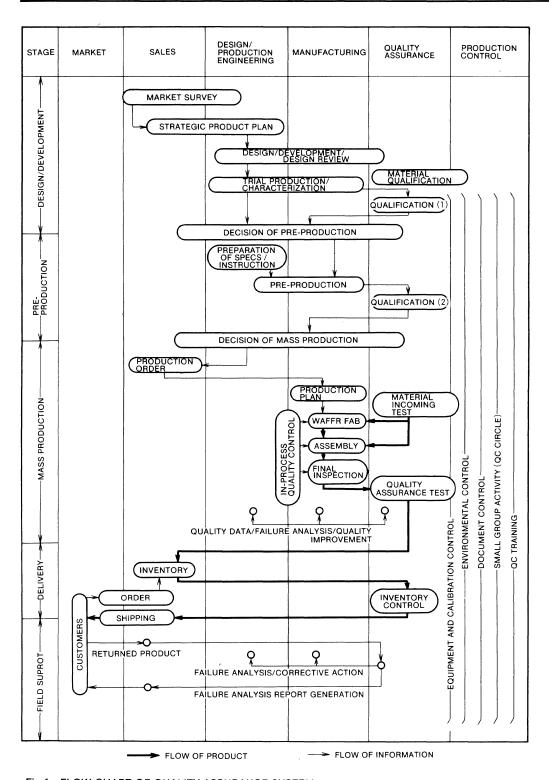


Fig.1 FLOW CHART OF QUALITY ASSURANCE SYSTEM

2.4 Returned Product Control

When failure analysis is requested by a customer, the failed devices are returned to Mitsubishi Electric via the sales office of Mitsubishi using the form of "Analysis Request of Returned Product"

Mitsubishi provides various failure analysis equipments to analyze the returned product. A failure analysis report is

generated to the customer upon completion of the analysis. The failure analysis result enforces taking corrective action for the design, fabrication, assembly or testing of the product to improve reliability and realize lower failure rate. Fig. 2 shows the procedure of returned product control from customer.

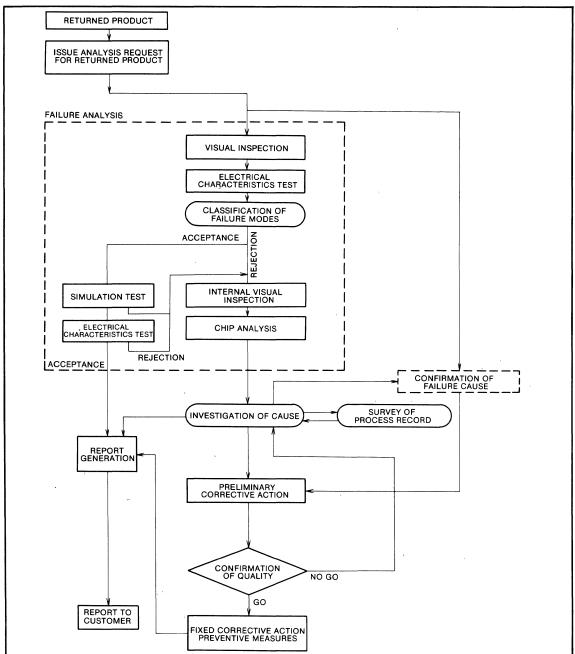


Fig.2 PROCEDURE OF RETURNED PRODUCT CONTROL

3 RELIABILITY TEST RESULTS

The reliability test results for Mitsubishi Single-chip 8-bit Microcomputers are shown in Table 2, Table 3 and Table 4. Table 2 shows the result of endurance tests of high temparature operation life and high temperature storage life test

for representative types of Single-chip 8-bit Microcomputers.

Table 2. ENDURANCE TEST RESULTS

Test	Series	Type Number	Test Condition	Number of Samples	Device Hours (Hours)	Number of Failures
		M37100M8-XXXSP		35	35000	0
		M37201M6-XXXSP		35	35000	0
	1451 00 740	M37260M6-XXXSP	105% 7.4	35	35000	0
	MELPS 740	M37120M6-XXXFP	125℃ 7 V	38	38000	0
High Temperature Operation Life		M37409M2-XXXSP		38	38000	0
		M37420M6-XXXSP		22	22000	0
		M37201E6-XXXSP			35000	0
	EPROM mounted type	M37410E6HXXXFP	125℃ 7 ∨	38	38000	0
		M37420E6-XXXSP		32	32000	0
		M37100M8-XXXSP		35	35000	0
	MEI DO 740	M37201M6-XXXSP	150%	35	35000	0
High Temperature Storage Life	MELPS 740	M37260M6-XXXSP	150℃	35	35000	0
		M37409M2-XXXSP		38	38000	0
	EDDOM	M37201M6-XXXSP	150℃	35	35000	0
	EPROM mounted type	M37420E6-XXXSP	175℃	22	35000 35000 38000 38000 22000 35000 38000 35000 35000 35000 35000 38000	0

Table 3 shows the results of the environment tests of thermal stress high temperature/high humidity and pressure. Table 4 shows the results of mechanical tests for reprecooker test for the same type of products in regards to en-

durance tests.

sentative products of various package types.

Table 3. ENVIRONMENTAL TEST RESULTS

Test	Series	Type Number	Test Co	Test Condition		Device Hours (Hours)	Number of Failures
High Temperature High Humidity Life		M37100M8-XXXSP			24	24000	0
		M37201M6-XXXSP			24	24000	0
	1451 BO 740	M37260M6-XXXSP	05% 054	DI	24	24000	0
	MELPS 740	M37120M6-XXXFP	85℃ 85%	RH 5 V	22	22000	0
		M37409M2-XXXSP	1		38	38000	0
		M37420M6-XXXSP			22	22000	0
	500014	M37201M6-XXXSP	05°0 0500	DII 5.4	24	24000	0
	EPROM mounted type	M37420E6-XXXSP	85℃ 85%	RH 5V	22	22000	0

Test	Series	Type Number Test Codition		96Hours	240Hours
		M37100M8-XXXSP	,	0/22	0/22
		M37201M6-XXXSP		0/22	0/22
	MELPS 740	M37260M6-XXXSP	121°C 2 atmospheres	0/22	0/22
Pressure Cooker	MELPS 740	M37120M6-XXXFP	121°C 2 atmospheres	0/22	0/22
		M37409M2-XXXSP		0/22	0/22
		M37420M6-XXXSP		0/22	0/22
		M37201E6-XXXSP		0/22	0/22
	EPROM mounted type	M37410E6HXXXFP	121°C 2 atmospheres	0/22	0/22
		M37420E6-XXXSP		0/22	0/22

Test	Series	Type Number	Test Codition	10Cycles	100Cycles
		M37100M8-XXXSP		0/38	0/38
		M37201M6-XXXSP	1	0/38	0/38
	MEI DO 740	M37260M6-XXXSP	05% 1150%	0/38	0/38
Temperature Cycling	MELPS 740 EPROM mounted type	M37120M6-XXXFP	-65℃~+150℃	0/38	0/38
		M37409M2-XXXSP		0/38	0/38
		M37420M6-XXXSP	1	0/22	0/22
		M37201E6-XXXSP		0/38	0/38
		M37410E6HXXXFP	-65°C~+125°C	0/38	0/38
		M37420E6-XXXSP	1	0/32	0/32

Table 4. MECHANICAL TEST RESULTS

Test	Test Condition	Package			
	Test Condition	52P4B 64P4B 60P6 8			80P6
Soldering Heat	260℃ 10sec	0/130	0/192	0/104	0/66
Thermal Shock	-40°C ~125°C 15Cycle	0/130	0/192	0/104	0/66
Solderebility	230℃ 5sec Using a rosin-type Flux	0/66	0/88	0/88	0/66
Free Fall	75cm Onto a maple wood board 3times		0/44	0/22	0/44
Shock	1500G 0.5msec X, Y, and Z directions 3times	0/44	0/44	0/22	0/22
Vibration	20G X, Y, and Z directions 4times 100~2000Hz 4minutes/Cycle	0/44	0/44	0/22	0/22
Constant Acceleration	20000G Y ₁ direction 1minute	0/44	0/44	0/22	0/22
Lead Integrity	250g 90° Berding 2times	0/30	0/30	0/15	0/15
	500g Tension 30sec	0/30	0/30	0/15	0/15

4 FAILURE ANALYSIS

Accelerated reliability tests are applied to observe failures casued by temperature, voltage, humidity, current, mechanical stress and those combined stresses on chips and packages.

Examples of typical failure modes are shown below.

Wire Bonding Failure by Thermal Stress
 Fig. 3, Fig. 4 and Fig. 5 are example of a failure occurred by temperature storage test of 225°C, 1000hours.

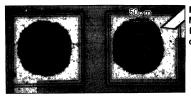


Fig.3 Micrograph of lifted Au ball trace on Al bonding pad

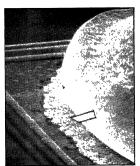
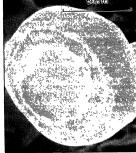
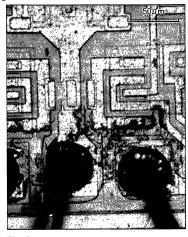


Fig.4
Au-Al plague formation
on bonding pad




Fig.5 Lifted Au wire ball base

Au-Al intermetaflic formation so-called "Purple plague" by thermal overstress makes Au wire lift off from aluminum metallization. The activation energy of this failure mode is estimated approximately 1.0eV and no failure has been observed so far in practical uses.

 Aluminum Corrosion Failure by Temperature/Humidity Stress.

Fig. 6, Fig. 7 and Fig. 8 are an example of corroded failure of aluminum metallization in plastic encapsulated IC after accelerated temperature/humidity storage test (pressure cooker test) of 121°C, 100% RH, 1000hours duration.

Aluminum bonding pad is dissolved by penetrated water from plastic package, and chlorine concentration is observed on corroded aluminum bonding pad as shown in Fig. 8.

Micrograph of corroded Aluminum metallization

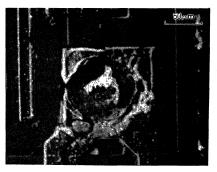


Fig.7
Enlarged
micrograph
of corroded
Aluminum
bonding pad

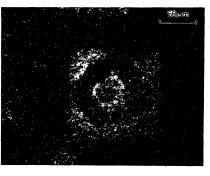
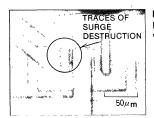



Fig.8 CI distribution on corroded Aluminum bonding pad

(3) Destructive Failure by Electrical Overstress ESD have been performed to reproduce the electrical overstress failure in field uses.

Fig. 9 and Fig. 10 are an example of failure observed by surge voltage test. The trace of destruction is verified as the aluminum bridge by X-ray micro analysis.

Micrograph of surge voltage destruction

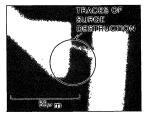


Fig.10
Aluminum trace
of destructive spot

(4) Aluminum Electromigration

Fig. 11 shows an open circuit of aluminum metallization in high current density region caused by accelerated operating life test. This failure is caused by the aluminum electromigration. Voids and hillock have been formed in aluminum metallization by high current density.

Fig.11 Voids and hillocks formation by Aluminum electromigration

5 SUMMARY

The Mitsubishi quality assurance system and examples of reliability control have been discussed. Customer's interest and requirement for high reliable IC & LSI are increasing significantly. To satisfy customer's expectancy. Mitsubishi as an IC vendor, would like to make perpetual efforts in the following areas.

- Emphasis on built-in reliability at design stage and reliability evaluation to investigate latent failure modes and acceleration factors.
- (2) Execution of periodical endurance, environment and mechanical test to verify reliability target and realize higher reliability.
- (3) Focus on development of advanced failure analysis techniques. Detail failure analysis, intensive corrective action and quick response to customer's analysis request
- (4) Collection of customer's quality data in qualification, incoming inspection, production and field use to improve PPM, fraction defective and FIT, failure rate.

Mitsubishi would highly appreciate if the customer would provide quality and reliability data of incoming inspection or field failure rate essential to verify and improve the quality/reliability of IC & LSI.

MITSUBISHI MICROCOMPUTERS

PRECAUTIONS IN HANDLING MOS IC/LSIs

A MOS transistor has a very thin oxide insulator under the gate electrode on the silicon substrate. It is operated by altering the conductance (g_m) between source and drain to control mobile charges in the channel formed by the applied gate voltage.

If a high voltage were applied to a gate terminal, the insulator-film under the gate electrode could be destroyed, and all Mitsubishi MOS IC/LSIs contain internal protection circuits at each input terminal to prevent this. It is inherently necessary to apply reverse bias to the P-N junctions of a MOS IC/LSI.

Under certain conditions, however, it may be impossible to completely avoid destruction of the thin insulator-film due to the application of unexpectedly high voltage or thermal destruction due to excessive current from a forward biased P-N junction. Therefore the following recommendations should be followed in handling MOS devices.

1. KEEPING VOLTAGE AND CURRENT TO EACH TERMINAL BELOW MAXIMUM RATINGS

- The recommended ranges of operating conditions provide adequate safety margins. Operating within these limits will assure maximum equipment performance and quality.
- Forward bias should not be applied to any terminal since excessive current may cause thermal destruction.
- Output terminals should not be connected directly to the power supply. Short-circuiting of a terminal to a power supply having low impedance may cause burn-out of the internal leads or thermal destruction due to excessive current.

2. KEEPING ALL TERMINALS AT THE SAME POTENTIAL DURING TRANSPORT AND STORAGE

When MOS IC/LSIs are not in use, both input and output terminals can be in a very high impedance state so that they are easily subjected to electrostatic induction from AC fields of the surrounding space or from charged objects in their vicinity. For this reason, MOS IC/LSIs should be protected from electrostatic charges while being transported and stored by conductive rubber foam, aluminum foil, shielded boxes or other protective precautions.

3. KEEPING ELECTRICAL EQUIPMENT, WORK TABLES AND OPERATING PERSONNEL AT THE SAME POTENTIAL

1. All electric equipment, work table surfaces and operat-

ing personnel should be grounded. Work tables should be covered with copper or aluminum plates of good conductivity, and grounded. One method of grounding personnel, after making sure that there is no potential difference with electrical equipment, is by the use of a wristwatch metallic ring, etc. attached around the wrist and grounded in series with a $1 m\Omega$ resistor. Be sure that the grounding meets national regulations on personnel safety.

 Current leakage from electric equipment must be prevented not only for personnel safety, but also to avert the destruction of MOS IC/LSIs, as described above. Items such as testers, curve-tracers and synchroscopes must be checked for current leakage before being grounded.

4. PRECAUTIONS FOR MOUNTING OF MOS IC/LSIs

- 1. The printed wiring lines between input and output terminals of MOS IC/LSIs should not be close to or parallel to high-voltage or high-power signal lines. Turning power on while the device is short-circuited, either by a solder bridge made during assembly or by a probe during adjusting and testing, may cause maximum ratings to be exceeded, which can result in the destruction of the device.
- 2. When input/output, or input and/or output, terminals of MOS IC/LSIs (now open-circuits) are connected, we must consider the possibility of current leakage and take precautions similar to §2 above. To reduce such undesirable trouble, it is recommended that an interface circuit be inserted at the input or output terminal, or a resistor with a resistance that does not exceed the output driving capability of the MOS IC/LSI be inserted between the power supply and the ground.
- A filter circuit should be inserted in the AC power supply line to absorb surges which can frequently be strong enough to destroy a MOS IC/LSI.
- Terminal connections should be made as described in the catalog while being careful to meet specifications.
- Ungrounded metal plates should not be placed near input or output terminals of any MOS IC/LSIs, since destruction of the insulation may result if they become electrostatically charged.
- 6. Equipment cases should provide shielding from electrostatic charges for more reliable operation. When a plastic case is used, it is desirable to coat the inside of the case with conductive paint and to ground it. This is considered necessary even for battery-operated equipment.

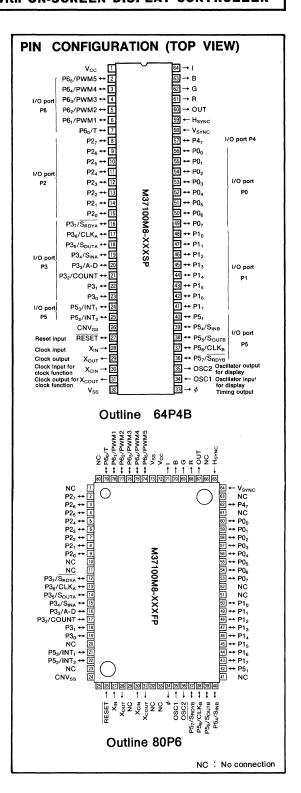
MICROCOMPUTERS FOR TV

M37100M8-XXXSP/FP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

DESCRIPTION

The M37100M8-XXXSP/FP is a single-chip microcomputer designed with CMOS silicon gate technology. It is housed in a 64-pin shrink plastic molded DIP or a 80-pin plastic molded QFP. This single-chip microcomputer is useful for the high-tech channel-selection system for TVs.


In addition to its simple instruction set, the ROM, RAM, and I/O addresses are placed on the same memory map to enable easy programming.

FEATURES

•	Number of basic instructions 69
•	Memory size
	ROM16384 bytes
	RAM······ 320 bytes
•	Instruction execution time
	2µs (minimum instructions at 4MHz frequency)
•	Single power supply5V±10%
	Power dissipation normal operation mode
	(at 4MHz frequency, CRT display off) 27.5mW
•	Subroutine nesting 96levels (Max.)
•	Interrupt 9types, 5vectors
•	8-bit timer ······· 3 (2 when used as serial I/O _A)
•	Programmable I/O ports
	(Ports P0, P1, P2, P3, P4, P5, P6)46
•	Serial I/O (8-bit)2
•	PWM function ······14-bit×1
	6-bit×2
•	Comparator ······1
•	Two clock generating circuits
	(One is for main clock, the other is for clock function)
•	63-character on screen display function
	Number of character 21 characters 3 lines
	Character configuration · · · · · 12×16 dots
	Kinds of character 96
	Horizontal character border function

APPLICATION

ΤV

SINGLE-CHIP

8-BIT

CMOS

with ON-SCREE

DISPLAY

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

FUNCTIONS OF M37100M8-XXXSP/FP

	Parameter		Functions		
Number of basic instructions			69		
Instruction execution time			2μs (minimum instructions, at 4MHz frequency)		
Clock frequency			4MHz		
M	ROM		16384bytes		
Memory size	RAM		320bytes		
	P0	1/0	8-bit×1 (middle-voltage N-channel open drain)		
	P1, P2	1/0	8-bit×2		
	P3	1/0	8-bit×1		
Input/Output ports	P4 ₇	1/0	1-bit×1		
	I, B, G, R, OUT	Output	1-bit×5 (for CRT display function)		
	V _{SYNC} , H _{SYNC}	Input	1-bit×2 (for CRT display function)		
	P5 ₂ , P5 ₃	1/0	2-bit×1 (can be used as an input for either INT ₂ or INT ₁)		
	P5 ₁ , P5 ₄ -P5 ₇	1/0	5-bit×1		
	P6 ₀ , P6 ₁	1/0	2-bit×1		
	P6 ₂ -P6 ₅	1/0	4-bit×1 (middle-voltage N-channel open drain)		
Serial I/O			8-bit×2		
Timers			8-bit timer×3 (×2, when used as serial I/O _A)		
Subroutine nesting			96levels (max.)		
		200000000000000000000000000000000000000	2 external interrupts, 6 internal interrupts,		
Interrupt			1 software interrupt		
			Two built-in circuits (externally connected ceramic or quartz crystal		
Clock generating circuit			oscillator), both circuits have option feedback resistors		
Supply voltage			5v±10%		
	at high annual annual	CRT display function ON	38.5mW (clock frequency X _{IN} =4MHz, f _{CRT} =6MHz)		
Davis dissination	at high-speed operation	CRT display function OFF	27.5mW (clock frequency X _{IN} =4MHz)		
Power dissipation	at low-speed operation	CRT display function OFF	0. 33mW (clock frequency X _{CIN} =32kHz)		
	at stop mode		I _{CC} =1μA (when clock is stopped)		
	Input/Output voltage		12V (input/output P0, P62-P65, input RFSET, CNVSS)		
			-0.3 to V _{CC} +0.3V(P1, P2, P3, P4 ₇ , P5, P6 ₀ , P6 ₁)		
Input/Output characteristics			0.5mA (P0, P1, P2, P3, P5, P62-P65 : N-channel open drain input/		
mpan output onarpotorionos	Output current		output)		
	Output current		0.5mA, -0.5mA (P47: CMOS input/output, R, G, B, I, OUT, P60-P61:		
			CMOS output)		
Operating temperature range)		—10 to 70℃		
Device structure		war and the same of the same o	CMOS silicon gate process		
Package	M37100M8-XXXSP		64-pın shrink plastic molded DIP		
· uonugo	M37100M8-XXXFP		80-pin plastic molded QFP -		
CRT display function	Number of character		21 characters×3lines		
On Fulsplay lunction	Kinds of character		96 (12×16 dots)		

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

PIN DESCRIPTION

Pin	Name	Input/ Output	Functions	
V _{CC} , V _{SS}	Supply voltage		Power supply inputs 5V±10% to V _{CC} , and 0V to V _{SS}	
CNV _{ss}	CNV _{SS}		This is connect to V _{SS} .	
RESET	Reset input	Input	To enter the reset state, the reset input pin must be kept at a "L" for more than 2µs (under normal V _{CC} conditions) If more time is needed for the crystal oscillator to stabilize, this "L" condition should be main tained for the required time	
X _{IN}	Clock input	Input	These are I/O pins of internal clock generating circuit for main clock. To control generating frequency, ar	
X _{OUT}	Clock output	Output	external ceramic or a quartz crystal oscillator is connected between the X_{IN} and X_{OUT} pins and external clock is used, the clock source should be connected to the X_{IN} pin and the X_{OUT} pin should be left open	
φ	Timing output	Output	This is the timing output pin In single-chip mode, the output can be controlled by selecting the option	
X _{CIN}	Clock input for clock function	Input	These are the I/O pins of the clock generating circuit for the clock function. To control generating frequency, an external ceramic or a quartz crystal oscillator is connected between the X _{CIN} and X _{COUT} pins and external condensary are connected. If no external clock is used, the clock course should be connected to the	
Хсоит	Clock output for clock function	Output	ternal condensers are connected if an external clock is used, the clock source should be connected to the X_{CIN} pin and the X_{COUT} pin should be left open	
P0 ₀ -P0 ₇	I/O port P0	1/0	Port P0 is an 8-bit I/O port with directional registers allowing each I/O bit to be individually programme input or output At reset, this port is set to input mode. The output structure is middle-voltage N-cha open drain	
P1 ₀ -P1 ₇	I/O port P1	1/0	Port P1 is an 8-bit I/O port and has basically the same functions as port P0 but the output structure N-channel open drain. It can be built in pull-up transister at each pin by selecting the option.	
P2 ₀ -P2 ₇	I/O port P2	1/0	Port P2 is an 8-bit I/O port and has basically the same functions as port P1	
P3 ₀ -P3 ₇	I/O port P3	1/0	Port P3 is an 8-bit I/O port and has basically the same functions as port P1 When serial I/O _A is used, P3 ₇ , P3 ₆ , P3 ₅ , and P3 ₄ work as $\overline{S_{RDYA}}$, CLK _A , S _{OUTA} , and S _{INA} pins, respectively. P3 ₃ , works as an analog input for comparator and P3 ₂ works as a counter input	
P4 ₇	I/O port P4	I/O	Port P4 ₇ is a 1-bit I/O port and has basically the same functions as port P0, but the output structure is CMOS output.	
I, B, G, R, OUT	CRT output	Output	This is a 5-bit output pin for CRT display. The output polarity can be changed by selecting the option. At reset, inactive polarity is selected. The output structure is CMOS output.	
H _{SYNC}	H _{SYNC} input	Input	This is the horizontal synchronizing signal input for CRT display. The input polarity can be changed by selecting the option.	
V _{SYNC}	V _{SYNC} Input	Input	This is the vertical synchronizing signal input for CRT display. The input polarity can be changed by selecting the option	
P5 ₂ , P5 ₃	I/O port P5	1/0	These ports have basically the same functions as port P1, and are in common with interrupt input pins	
P5 ₁ , P5 ₄ -P5 ₇			These ports have basically the same functions as port P1. When serial I/O _B is used, P5 ₇ , P5 ₅ , P5 ₅ and P5, work as $\overline{S_{RDYB}}$, CLK _B , S _{OUTB} and S _{INB} pins, respectively.	
P6 ₀ -P6 ₅	I/O port P6	1/0	Port P6 is a 6-bit I/O port and has basically the same functions as port P0. The output structure of P60, P6 is CMOS output and the output structure of P62-P65 is middle-voltage N-channel open drain P60, P61, P62, P63, P64, P65 can be programmed to function as timer output pin (T), PWM output pins (PWM1, PWM2, PWM3, PWM4 and PWM5), respectively	
OSC1, OSC2	Clock input for CRT display Clock output for CRT display	Input Output	This is the I/O pins of the clock generating circuit for the CRT display function To control generating frequency, external condensers and registers are connected.	

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

FUNCTIONAL DESCRIPTION Central Processing Unit (CPU)

The M37100 microcomputers use the standard MELPS 740 instruction set. For details of instructions, refer to the MELPS 740 CPU core basic functions, or the MELPS 740 Software Manual.

Machine-resident instructions are as follows:

The FST and SLW instructions are not provided.

The MUL and DIV instructions are not provided.

The WIT instruction can be used.

The STP instruction can be used.

MEMORY

· Special Function Register (SFR) Area

The special function register (SFR) area contains the registers relating to functions such as I/O ports and timers.

RAM

RAM is used for data storage as well as a stack area.

• ROM

ROM is used for storing user programs as well as the interrupt vector area.

· RAM for display

RAM for display is used to specify the character to be displayed on the CRT and its color.

• Interrupt Vector Area

The interrupt vector area is for storing jump destination addresses used at reset or when an interrupt is generated.

Zero Page

Zero page addressing mode is useful because it enables access to this area with fewer instruction cycles.

Special Page

Special page addressing mode is useful because it enables access to this area with fewer instruction cycles.

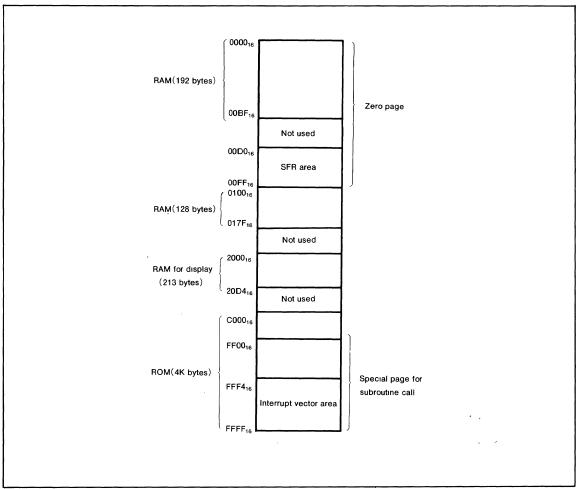


Fig. 1 Memory map

00D0 ₁₆	Horizontal position register	00E8 ₁₆	Port P3	
00D1 ₁₆	Vertical position register of block 1	00E9 ₁₆	'Port P3 directional register	
00D2 ₁₆	Vertical position register of block 2	00EA ₁₆	Port P4	
00D3 ₁₆	Vertical position register of block 3	00EB ₁₆	Port P4 directional register	
00D4 ₁₆	Color register 0	00EC ₁₆	Port P5	
00D5 ₁₆	Color register 1	00ED ₁₆	Port P5 directional register	
00D6 ₁₆	Color register 2	00EE ₁₆	Port P6	
00D7 ₁₆	Color register 3	00EF ₁₆	Port P6 directional register	
00D8 ₁₆	CRT control register	00F0 ₁₆		
00D9 ₁₆	Display block counter	00F1 ₁₆		
00DA ₁₆	Serial I/O _B mode register	00F2 ₁₆		
00DB ₁₆	Special mode register	00F3 ₁₆		
	Serial I/O _B register	00F4 ₁₆		
00DD ₁₆	Counter 0	00F5 ₁₆		
00DE ₁₆		00F6 ₁₆	Serial I/O _A mode register	
00DF ₁₆			Serial I/O _A register	
00E0 ₁₆	Port P0	00F8 ₁₆		
	Port P0 directional register	00F9 ₁₆		
00E2 ₁₆		00FA ₁₆		
00E3 ₁₆		00FB ₁₆		
00E4 ₁₆	Port P2	00FC ₁₆		
00E5 ₁₆	Port P2 directional register	00FD ₁₆		
00E6 ₁₆			Interrupt control register 1	
00E7 ₁₆	A-D control register	00FF ₁₆	Timer control register	ì

Fig. 2 SFR (Special Function Register) memory map

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

INTERRUPTS

Interrupts can be caused by 9 different events consisting of two external, six internal, and one software event.

Interrupts are vectored interrupts with priorities shown in Table 1. Reset is also included in the table because its operation is similar to an interrupt.

When an interrupt is accepted, the registers are pushed interrupt disable flag I is set, and the program jumps to the address specified in the vector table. The interrupt request bit is cleared automatically. The reset and BRK instruction interrupt can never be disabled. Other interrupts are disabled when the interrupt disable flag is set.

Falling edge active or rising edge active for each of the INT_1 and INT_2 external interrupts can be selected by bits 4 and 5 of the PWM control register. Whether the INT_1 and INT_2 external interrupts or the CRT display and serial I/O_B interrupts are to be accepted can be selected by bits 0 and 1 of interrupt control register 2.

Whether the timer 1 or serial I/O_A interrupt is to be accepted can be selected by bit 2 of the serial I/O_A mode register.

All interrupts except the BRK instruction interrupt have an interrupt request bit and an interrupt enable bit. The interrupt request bits and the interrupt enable bits are in interrupt control register 1 and timer control register. Figure 3 shows the structure of the interrupt control registers 1 and 2 and timer control register.

Interrupts other than the BRK instruction interrupt and reset are accepted when the interrupt enable bit is "1", interrupt request bit is "1", and the interrupt disable flag is "0". The interrupt request bit can be clear with a program, but not set. The interrupt enable bit can be set and clear with a program.

Reset is treated as a non-maskable interrupt with the highest priority. Figure 4 shows interrupts control.

Table 1. Interrupt vector address and priority.

Event	Priority	Vector addresses	Remarks
RESET	1	FFFF ₁₆ , FFFE ₁₆	Non-maskable
INT ₁ or CRT display interrupt	2	FFFD ₁₆ , FFFC ₁₆	INT ₁ external interrupt (phase programmable)
Timer 3 interrupt	3	FFFB ₁₆ , FFFA ₁₆	
Timer 2 interrupt	4	FFF9 ₁₆ , FFF8 ₁₆	
Timer 1 or serial I/O _A interrupt	5	FFF7 ₁₆ , FFF6 ₁₆	
INT ₂ or serial I/O _B interrupt			INT ₂ external interrupt (phase programmable)
(BRK instruction interrupt)	6	FFF5 ₁₆ , FFF4 ₁₆	BRK instruction interrupt (non-maskable software interrupt)

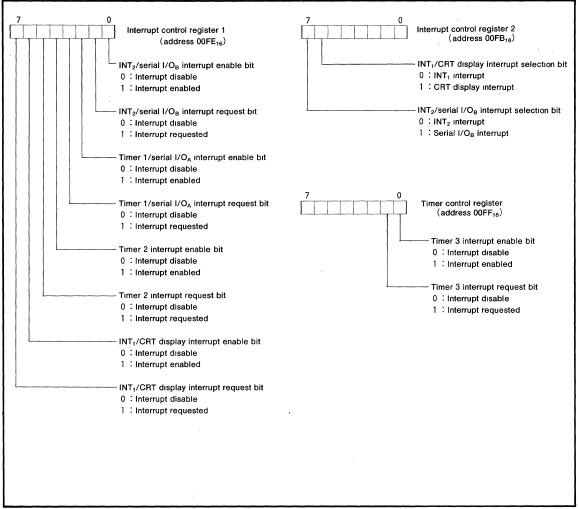


Fig. 3 Structure of registers related to interrupt

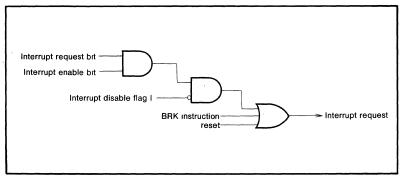


Fig. 4 Interrupt control

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

TIMER

The M37100M8-XXXSP/FP has three timers; timer 1, timer 2 and timer 3.

A block diagram of timer 1 through 3 is shown in Figure 6. The count source for timer 1 through 3 can be selected by using bit 2, 3 and 4 of the timer control register (address $00FF_{16}$), as shown in Figure 5. All of the timers are down count timers and have 8-bit latches. When a timer reaches "0" and the next count pulse is input to a timer, the contents of the reload latch are loaded into the timer. The division ratio of the timer is 1/(n+1), where n is the contents of timer latch.

The timer interrupt request bit which is in the interrupt control register 1 or timer control register (located at addresses $00FE_{16}$ and $00FF_{16}$ respectively) is set at the next count pulse after the timer reaches "0" (see interrupt section).

The starting and stopping of timer 2 is controlled by bit 5 of the timer control register. If the bit 5 is "0", the timer starts counting, and the bit 5 is "1", the timer stops.

At a reset or stop mode, FF_{16} is automatically set in timer 2 and 07_{16} in timer 3.

After a STP instruction is executed, timer 3, timer 2, and the clock (ϕ divided by 4) are connected in series (regardless of the status of bit 2 through 4 of the timer control register). This state is canceled if timer 3 interrupt request bit is set to "1", or if the system is reset. Before the STP instruction is executed, bit 5 of the timer control register (timer 2 count stop bit) must be set to "0".

For more details on the STP instruction, refer to the oscillation circuit section.

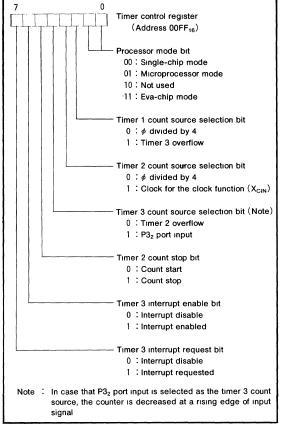


Fig. 5 Structure of timer control register

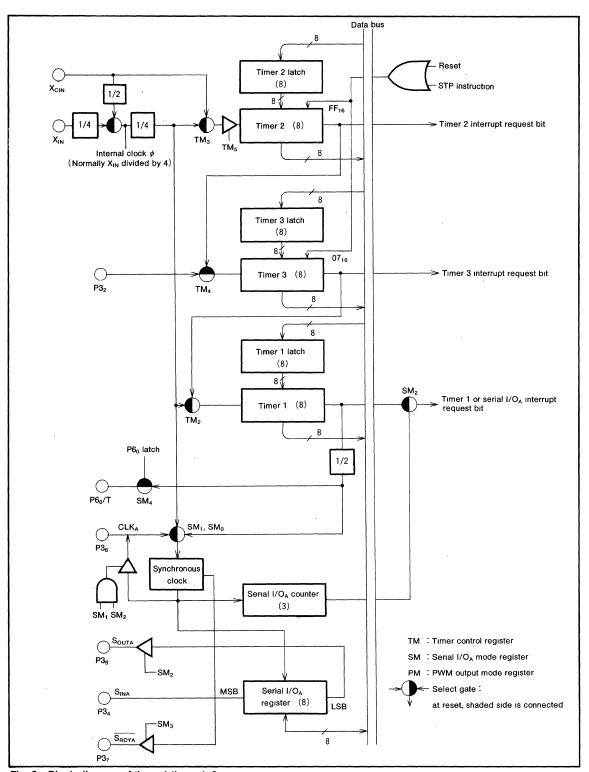


Fig. 6 Block diagram of timer 1 through 3

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

SERIAL I/O

M37100M8-XXXSP/FP has two serial I/O (serial I/O $_{\rm A}$ and serial I/O $_{\rm B}$).

SERIAL I/OA

The block diagram of serial I/O_A is shown in Figure 7. In the serial I/O_A mode the receive ready signal (S_{RDYA}) , synchronous input/output clock (CLK_A) , and the serial I/O_A (S_{OUTA}, S_{INA}) pins are used as P3₇, P3₆, P3₅, and P3₄, re-

spectively. The serial I/O_A mode register (address $00F6_{16}$) is an 8-bit register. Bit 0 and 1 of this register is used to select a synchronous clock source. When these bits are (00) or (01), an external clock from P3₆ is selected. When these bits are (10), the overflow signal divided by two from timer 1 becomes the synchronous clock. Therefore, changing the timer period will change the transfer speed. When the bits are (11), the internal clock ϕ divided by 4 becomes the clock.

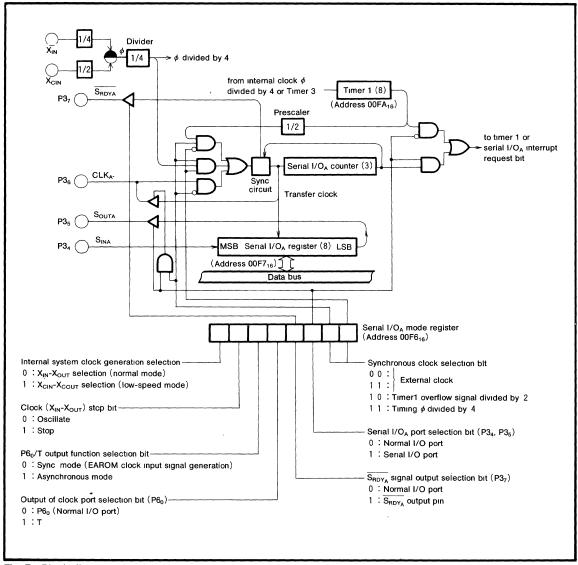


Fig. 7 Block diagram of serial I/O_A

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

Bits 2 and 3 decide whether parts of P3 will be used as a serial I/O_A or not. When bit 2 is "1", P3₆ becomes an I/O pin of the synchronous clock. When an internal synchronous clock is selected, the clock is output from P3₆. If the external synchronous clock is selected, the clock is input to P3₆. And P3₅ will be a serial output, and P3₄ will be a serial input. To use P3₄ as a serial input, set the directional register bit which corresponds to P3₄, to "0". For more information on the directional register, refer to the I/O pin section.

To use the serial I/O_A, bit 2 needs to be set to "1", if it is "0" P3₆ will function as a normal I/O. Interrupts will be generated from the serial I/O_A counter instead of timer 1. Bit 3 determines if P3₇ is used as an output pin for the receive data ready signal (bit 3="1", $\overline{S_{RDYA}}$) or used as a normal I/O pin (bit 3="0").

The function of serial I/O_A differs depending on the clock source; external clock or internal clock.

Internal Clock- The $\overline{S_{RDYA}}$ signal becomes "H" during transmission or while dummy data is stored in the serial I/O_A register. After the falling edge of write signal, the $\overline{S_{RDYA}}$

signal becomes low signaling that the M37100M8-XXXSP is ready to receive the external serial data. The $\overline{S_{RDYA}}$ signal goes "H" at the next falling edge of the transfer clock. The serial I/O_A counter is set to 7 when data is stored in the serial I/O_A register. At each falling edge of the transfer clock, serial data is output to P3₅. During the rising edge of this clock, data can be input from P3₄ and the data in the serial I/O_A register will be shifted 1 bit. Data is output starting with the LSB. After the transfer clock has counted 8 times, the serial I/O_A register will be empty and the transfer clock will remain at a high level. At this time the interrupt request bit will be set.

External Clock- If an external clock is used, the interrupt request bit will be set after the transfer clock has counted 8 times but the transfer clock will not stop. Due to this reason, the external clock must be controlled from the outside. The external clock should not exceed 250kHz at a duty cycle of 50%.

Timing diagrams are shown in Figure 8, and connection between two M37100M8-XXXSP's are shown in Figure 9.

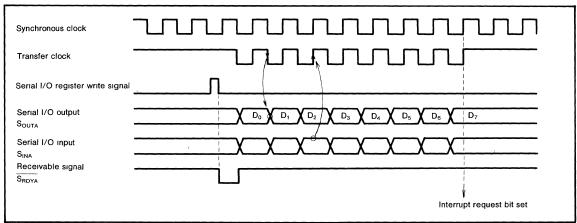


Fig. 8 Serial I/O_A timing

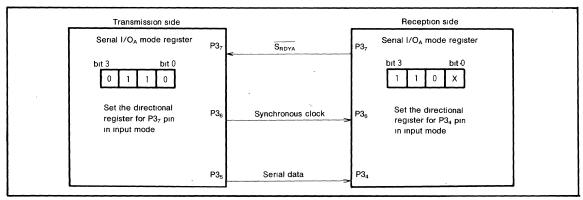


Fig. 9 Example of serial I/O_A connection

M37100M8-XXXSP/FP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

SERIAL I/OB

The block diagram of serial I/O_B is shown in Figure 10. In the serial I/O_B mode the receive ready signal $(\overline{S_{RDYB}})$, synchronous input/output clock (CLK_B) , and the serial I/O_B (S_{OUTB}, S_{INB}) pins are used as P5₇, P5₆, P5₅, and P5₄, respectively. The serial I/O_B mode register (address 00DA₁₆) is an 8-bit register. Bit 1 of this register is used to select a synchronous clock source. When this bit is "0", an external clock from P3₆ is selected. When this bit is "1", the overflow signal divided by two from clock counter 0 becomes the synchronous clock.

Clock counter 0 is a 8-bit down counter to provide synchronous clock for serial I/O_B . This counter divides internal clock ϕ . Structure of clock counter 0 is the same of timers. Therefore, changing the timer period will change the transfer speed.

Bits 2 and 3 decide whether parts of P5 will be used as a serial I/O_B or not. When bit 2 is "1", P5₆ becomes an I/O pin of the synchronous clock. When an internal synchronous

clock is selected, the clock is output from $P5_6$. If the external synchronous clock is selected, the clock is input to $P5_6$. And $P5_5$ will be a serial output, and $P5_4$ will be a serial input. To use $P5_4$ as a serial input, set the directional register bit which corresponds to $P5_4$, to "0". For more information on the directional register, refer to the I/O pin section.

To use the serial I/O_B, bit 2 needs to be set to "1", if it is "0" P5₆ will function as a normal I/O. Bit 3 determines if P5₇ is used as an output pin for the receive data ready signal (bit 3="1", $\overline{S_{ROYB}}$) or used as a normal I/O pin (bit 3="0"). Bit 4 is the special mode select bit. Serial I/O_B can be set to special mode by using this bit. Bits 0, 5, 6, and 7 are used for special mode. For details, see the section of special mode.

In the normal mode, operations of serial I/O_B are the same as that of serial I/O_A. For details, see the section of serial I/O.

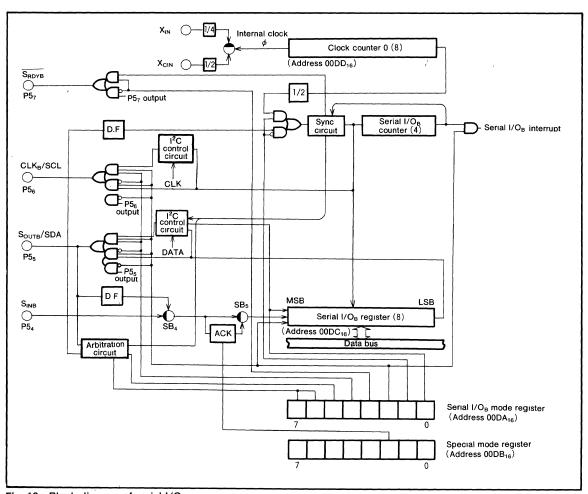


Fig. 10 Block diagram of serial I/O_B

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

SPECIAL MODE (I2C BUS:INTER IC BUS*)

M37100M8-XXXSP/FP has a special serial I/O circuit that can be reception or transmission of serial data in conformity with I²C (Inter IC) bus format.

I²C bus is a two line directional serial bus developed by Philips to transfer and control data among internal ICs of a machinery.

M37100M8-XXXSP/FP's special serial I/O is not included the clock synchronisation function and the arbitration detectable function at multimaster.

Operations of master transmission and master reception with special serial I/O are explained in the following:

(1) Master transmission

To generate an interrupt at the end of transmission, set bit 1 of interrupt control register 2 (address $00FB_{16}$) to "1" so as to serial I/O_B interrupt is selected. Then set bit 0 of interrupt control register 1 (address $00FE_{16}$) to "1" so as to serial I/O_B interrupt is enabled. Clear the interrupt disable flag I to "0" by using the CLI instruction.

The output signals of master transmission SDA and SCL are output from ports $P5_5$ and $P5_6$. Set all bits (bits 5 and 6) corresponding to $P5_5$ and $P5_6$ of the port $P5_5$ register (address $00EC_{16}$) and the port $P5_5$ direction register (address $00ED_{16}$) to "1".

Set the transmission clock. The transmission clock uses the overflow signal divided by 2 from clock counter 0. Set appropriate value in clock counter 0. (For instance, if 4 is set in clock counter 0 when $f(X_{\text{IN}})$ is 4MHz, the master transmission clock frequency is 100kHz).

Set contents of the special mode register (address $00DB_{16}$). (Usually, 03_{16} .) Set the bit 4 of serial I/O_B mode register (address $00DA_{16}$). Figure 13 shows the bit configurations of special mode register and serial I/O_B mode register

Initial setting is completed by the above procedure.

Write data to be transmitted in the serial I/O_B register (address $00DC_{16}$). Immediately after this, clear bits 0 and 1 of special mode reigister (to "0") to make both SDA and SCL output to "L". This is for arbitration. The start signal has been completed.

The hardware automatically sends out data of 9-clock cycle. The 9th clock is for ACK receiving and the output level becomes "H" at this clock. If other master outputs the start signal to transmit data simultaneously, it is not detected as an arbitration-lost.

When the ACK bit has been transmitted, bit 1 of the timer control register is set to "1" (issue of interrupt request), notifying the end of data transmission.

To transmit data successively, write data to be sent to the serial I/O_B register, and set the interrupt enabled state again. By repeating this procedure, unlimited number of bytes can be transmitted.

To terminate data transfer, clear bits 0 and 1 of the special mode register to "0", set bit 1 clock SCL to 1, then set bit 1

data SDA to "1". This procedure transmits the stop signal. Figure 11 shows master transmission timing explained above.

(2) Master reception

Master reception is carried out in the interrupt routine after data is transferred by master transmission. For master transmission and interrupt thereafter, see the preceding section (1) Master transmission.

In the interrupt routine, setmaster reception ACK provided (36_{16}) in the serial I/O_B mode register (address $00DB_{16}$), and write "FF₁₆" in the serial I/O_B register (address $00DC_{16}$). This sets data line SDA to "H" and to perform 8-clock master reception. Then, "L" is transmitted to data line SDA for ACK receiving. In the ACK provided mode, the above ACK is automatically sent out.

Repeat the above receiving operation for a necessary number of times. Then return to the master transmission mode and transmit the stop signal by the same procedure for the master transmission.

Figure 12 shows master reception timing.

(3) Wait function

Wait function 1 is held SCL line up "L" level after falling of the 8th clock.

Wait function 2 is held SCL line up "L" level after falling of the 9th clock.

The wait function is reset by setting bit 5, 6 of the special mode register to "1".

*:Purchase of Mitsubishi Electric Corporation's I²C components converys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

M37100M8-XXXSP/FP

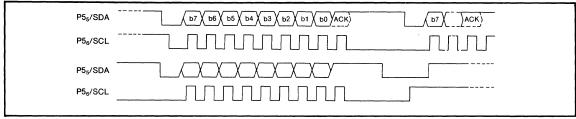


Fig. 11 Master transmission timing



Fig. 12 Master reception timing

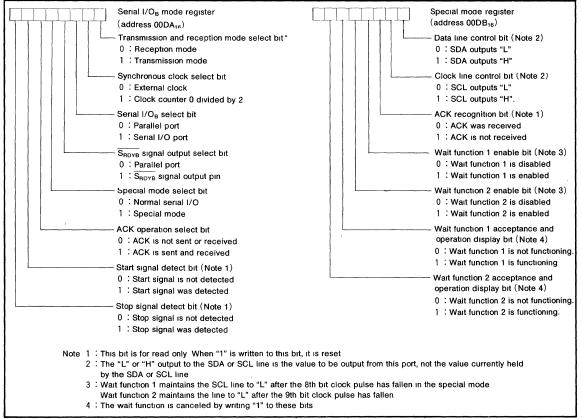


Fig. 13 Structure of registers related to serial I/O_B

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

PWM OUTPUT CIRCUIT

(1) Introduction

The M37100M8-XXXSP is equipped with one 14-bit PWM and four 6-bit PWMs. The 14-bit resolution gives PWM1 the minimum resolution bit width of 500ns (for $X_{\rm IN}=4{\rm MHz}$) and a repeat period of 8192 μ s. PWM2, PWM3, PWM4 and PWM5 have a 6-bit resolution with minimum resolution bit width of 16 μ s and repeat period of 1024 μ s. Accuracy and operation range is certified of PWM are $V_{\rm CC}=4.5$ to 5.5V regardless of input-frequency.

Block diagram of the PWM is shown in Figures 14.

The PWM timing generator section applies individual control signals to PWM1-PWM5, using clock input $X_{\rm IN}$ divided by 2 or $X_{\rm CIN}$ divided by 2 as a reference signal.

(2) Data setting

The output pins PWM1, PWM2, PWM3, PWM4 and PWM5 are in common with pins P6 $_1$, P6 $_2$, P6 $_3$, P6 $_4$ and P6 $_5$ of port P6 (i.e. for PWM output, PWM output selection bits and the P6 directional register D6 $_1$ -D6 $_5$ should be set). When PWM1 is used for output, first set the higher 8-bit of the PWM1-H register (address 00F0 $_{16}$), then the lower 6-bit of the PWM1-L register (address 00F1 $_{16}$). When one of the PWM2-PWM5 is used for output, set the 6-bit in the PWM2-PWM5 register, respectively. Note that the higher 2 bits of these 8-bit registers are ignored when used 6-bit register.

(3) Transferring data from registers to latches

The data written to the 6-bit PWM register is transferred to the PWM latch in each 6-bit PWM cycle period. For 14-bit PWM, the data is transferred in the next upper 8-bit period after the write. The signals output to the PWM pins correspond to the contents of these latches. When data at addresses $00F0_{16}$ to $00F4_{16}$ and $00F8_{16}$ is read, data in these latches has already been read allowing the data output by the PWM to be confirmed. When the 6-bit latch is being read, the upper 2 bits of the register becomes undefined. However, bit 7 of the PWM1-L register indicated the completion of the data transfer from the PWM1 register to the PWM1 latch. If bit 7 is "0", the transfer has been completed, if bit 7 is "1", the transfer has not yet begun.

(4) Operation of the 6-bit PWMs

The timing diagram of the two 6-bit PWMs (PWM2-PWM5) is shown in Figure 15. One period (T) is composed of 64 (2⁶) segments.

There are six different pulse types configured from bits 0 to 5 representing the significance of each bit. These are output within one period in the circuit internal section. Refer to Figure 15 (a).

Six different pulses can be output from the PWM. These can be selected by bits 0 through 5. Depending on the content of the 6-bit PWM latch, pulses from 5 to 0 is selected. The PWM output is the difference of the

sum of each of these pulses. Several examples are shown in Figure 15 (b). Changes in the contents of the PWM latch allows the selection of 64 lengths of highlevel area outputs varying from 0/64 to 63/64. An length of entirely high-level output cannot be output, i.e. 64/64.

(5) 14-bit PWM operation

The timing diagram of the 14-bit PWM1 is shown in Figure 16. The 14-bit PWM divides the data within the PWM latch into the lower 6 bits and higher 8 bits.

A high-level area within a length N timers τ is output every short area of t=256 τ =128 μ s as determined by data N of the higher 8 bits. (Refer to PWM output ② in the lower part of Figure 16.)

Thus, the time for the high-level area is equal to the time set by the lower 8 bits or that puls τ . As a result, the short-area period t (=128 μ s, approx. 7.8kHz) becomes an approximately repetitive period.

(6) Output after reset

At reset the output of port P6 is in the high impedance state and the contents of the PWM register and latch are undefined. Note that after setting the PWM register, its data is transferred to the latch.

Table 2. Relation between the 6 lower-order bits of data and the space set by the ADD bit

6 lower-order bits of data	Area longer by τ than that of other $t_m(m = 0 \text{ to } 63)$
0 0 0 0 0 ^{LSB}	Nothing
000001	m=32
000010	m=16, 48
000100	m= 8, 24, 40, 56
001000	m = 4, 12, 20, 28, 36, 44, 52, 60
010000	m= 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62
100000	m=1,3,5,7,57,59,61,63

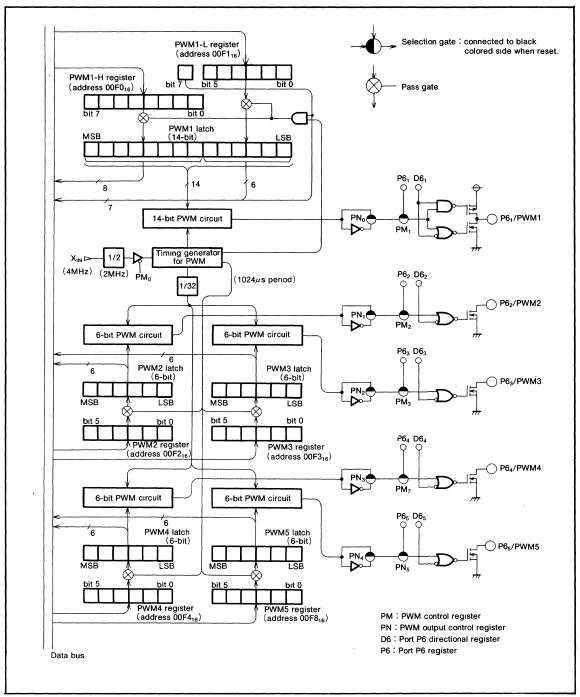


Fig. 14 Block diagram of the PWM circuit

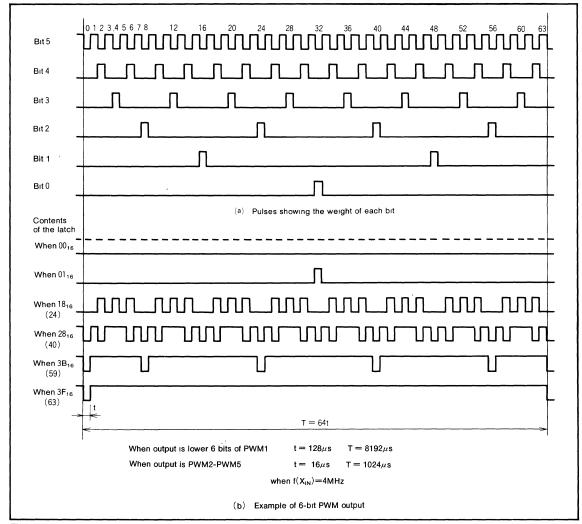


Fig. 15 6-bit PWM timing diagram

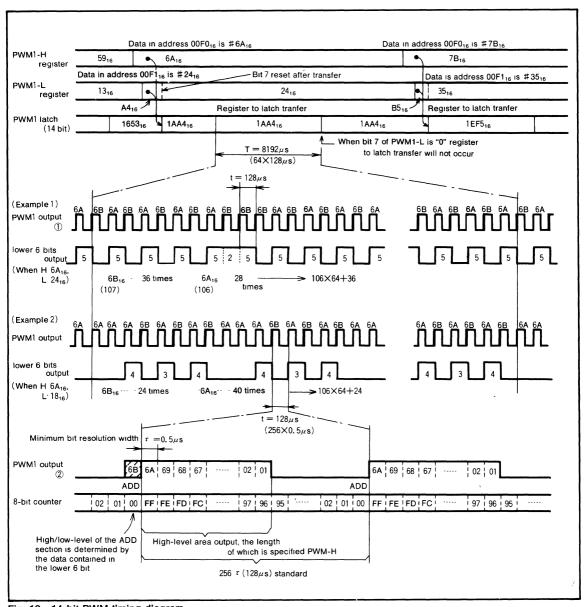


Fig. 16 14-bit PWM timing diagram

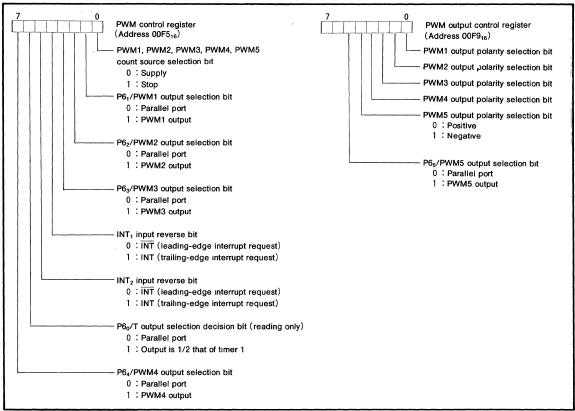


Fig. 17 Structure of registers related to PWM

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

PORT P60 / TIMER 1 OUTPUT

Bit 0 of port P6 outputs 1/2 the frequency of timer 1 when bit 4 (SM_4) of the serial I/O_A mode register (address $00F6_{16}$) is set to "1". The output switching can be accomplished with either of two procedures, synchronous mode or asynchronous mode, depending on the setting of bit 5 (SM_5) of the serial I/O_A mode register.

When SM_5 is set to "0" the synchronous mode is set. In such a case, after SM_4 has been changed, synchronization is set to the 1/2 frequency of timer 1 and switching between the port latch and timer takes place. It is possible to ascertain whether switching actually occurred by reading the value of bit 6 of the PWM control register.

From the time that the contents of SM_4 was changed to the point where switching completes, the contents of neither SM_4 nor $P6_0$ may be changed. Use of the synchronous mode prevents the generation of a pulse shorter than the timer output during switching. Figure 18 (a) gives an example of timing in the synchronous mode. Use of the synchronous mode allows generation of an EAROM clock input signal through the use of a simple program.

When SM_5 is set to "1", the asynchronous mode is set. In this case, the output switching occurs directly after SM_4 has been changed. Figure 18 (b) gives an example of timing in the asynchronous mode.

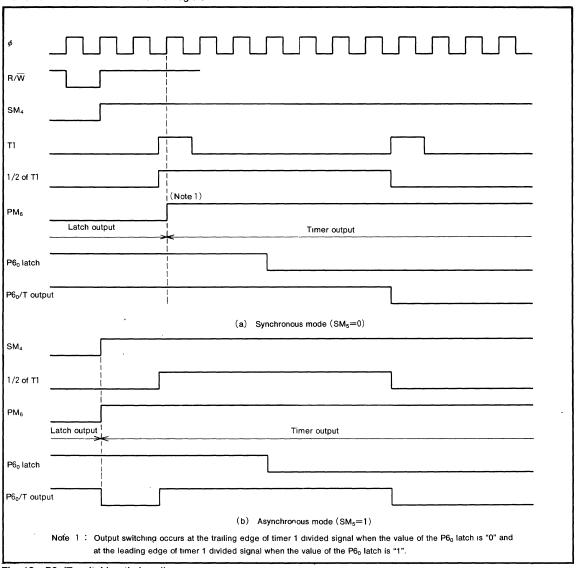


Fig. 18 $P6_0/T$ switching timing diagram

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

COMPARATOR CIRCUIT

The comparator circuit is shown in Figure 19. The comparator circuit consists of the switch tree, ladder resistor, comparator, comparator control circuit, A-D control register (address 00E7₁₆), and analog signal input pin (P3₃/A-D). The analog input pin is common with the digital input/out-put terminal to the data bus.

The 5-bit A-D control register can generate $1/16V_{\rm CC}$ -step internal analog voltage, based on the settings of bits 0 to 3. Table 3 gives the relation between the descriptions of A-D control register bits 0 to 3 and the generated internal analog voltage. The comparator result of the analog input voltage and the internal analog voltage is stored in the A-D control register, bit 4.

The data is compared by setting the directional register corresponding to port P3 $_3$ to "0" (port P3 $_3$ enters the input mode), to allow port P3 $_3$ /A-D to be used as the analog input pin. The digital value corresponding to the internal analog voltage to be compared is then written in the A-D control register (address $00E7_{16}$), bits 0 to 3. The voltage comparision starts as soon as the writing is completed. 4-cycle (required for comparating) later, the result of comparision is stored in the A-D control register, bit 4. Bit 4 is "1" when analog input voltage > internal analog voltage and "0" when analog input voltage < internal analog voltage.

When voltage is compared to by setting bits 0 to 3 of the comparator register "0", bit 4 of the A-D control register becomes "1" regardless of the analog input voltage.

Table 3. Relationship between the contents of A-D control register and internal voltage

A.	-D contr	ol regist	er	Internal analog voltage
bit 3	bit 2	bit 1	bit 0	internal analog voltage
0	0	0	1	1/16V _{CC} -1/32V _{CC}
0	0	1	0	2/16V _{CC} -1/32V _{CC}
0	0	1	1	3/16V _{cc} -1/32V _{cc}
, 0	1	0	0	4/16V _{CC} -1/32V _{CC}
0	1	0	1	5/16V _{CC} -1/32V _{CC}
0	1	1	0	6/16V _{CC} -1/32V _{CC}
0	1	1	1	7/16V _{CC} -1/32V _{CC}
1	0	0	0	8/16V _{CC} -1/32V _{CC}
1	0	0	1	9/16V _{CC} -1/32V _{CC}
1	0	1	0	10/16V _{CC} -1/32V _{CC}
1	0	1	1	11/16V _{CC} -1/32V _{CC}
1	1	0	0	12/16V _{CC} -1/32V _{CC}
1	1	0	1	13/16V _{CC} -1/32V _{CC}
1	1	1	0	14/16V _{CC} -1/32V _{CC}
1	1	1	1	15/16V _{CC} -1/32V _{CC}

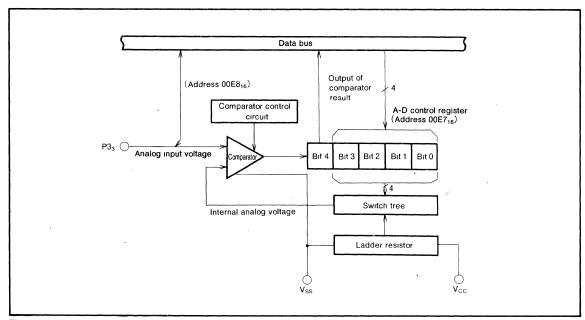


Fig. 19 Comparator Circuit

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

CRT DISPLAY FUNCTIONS

(1) Outline of CRT Display Functions

Table 4 outlines the CRT display functions. The M37100M8-XXXSP incorporates a 21 columns \times 3 lines CRT display control circuit. CRT display is controlled by the CRT display control register.

Up to 96 kinds of characters can be displayed, and colors can be specified for each character. Four colors can be displayed on one screen. A combination of up to 15 colors can be obtained by using each output signal (R, G, B, and I).

Characters are displayed in a 12×16 dot configuration to obtain smooth character patterns. (See Figure 20)

The following shows the procedure how to display characters on the CRT screen.

- Set the character to be displayed in display RAM.
- 2 Set the display color by using the color register.
- ③ Specify the color register in which the display color is set by using the display RAM.
- Specify the vertical position and character size by using the vertical position register.
- Specify the Horizontal position by using the horizontal position register.
- Write the display enable bit to the designated block display flag of the CRT control register. When this is done, the CRT starts operation according to the input of the V_{SYNC} signal.

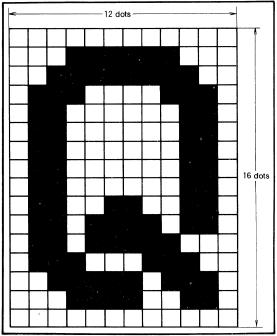


Fig. 20 CRT display character configuration

The CRT display circuit has an extended display mode. This mode allows multiple lines (more than 3 lines) to be displayed on the screen by interrupting the display each time one line is displayed and rewriting data in the block for which display is terminated by software.

Figure 22 shows a block diagram of the CRT display control circuit. Figure 21 shows the structure of the CRT display control register.

Table 4. Outline of CRT display functions

Parameter		Functions	
Numb	er of display character	21 characters × 3 lines	
Chara	acter configuration	12×16 dots (See Figure 20)	
Kır	nds of character	96	
(Character size	4 size selectable	
0-1	Kinds of color	15(max)	
Color	Coloring unit	a character	
Di	splay expansion	Possible (multiple lines)	

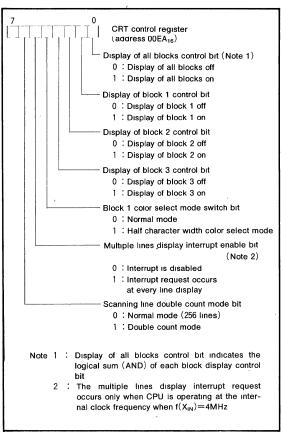


Fig. 21 Structure of CRT control register

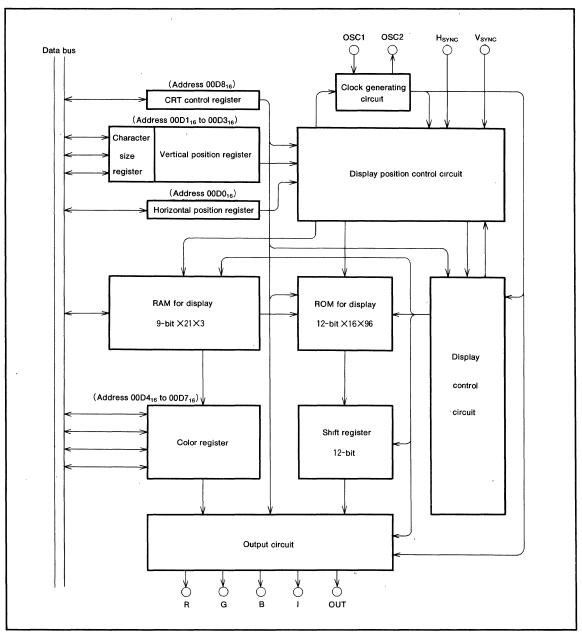


Fig. 22 Block diagram of CRT display control circuit

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

(2) Display Position

The display positions of characters are specified in units called a "block." There are three blocks, block 1 to block 3. Up to 21 characters can be displayed in one block. (See (4) RAM for Display.)

The display position of each block in both horizontal and vertical directions can be set by software.

The horizontal direction is common to all blocks, and is selected from 64-step display positions in units of 4Tc (Tc =oscillation cycle for display).

The display position in the vertical direction is selected from 64-step display positions for each block in units of four scanning lines.

If the display start position of a block overlaps with some other block ((b) in Figure 25), a block of the smaller block No. (1 to 3) is displayed.

If when one block is displaying, some other block is displayed at the same display position ((c) in Figure 25), the former block is overridden and the latter is displayed.

The vertical position can be specified from 64-step positions (four scanning lines per step) for each block by setting values 00_{16} to $3F_{16}$ to bits 0 to 5 in the vertical position register (addresses $00D1_{16}$ to $00D3_{16}$). Figure 23 shows the structure of the vertical position register.

The horizontal direction is common to all blocks, and can be specified from 64-step display positions (4Tc per step (Tc=oscillation cycle for display)) by setting values 00_{16} to $3F_{16}$ to bits 0 to 5 in the horizontal position register (address $00D0_{16}$).

Figure 24 shows the structure of the horizontal position register.

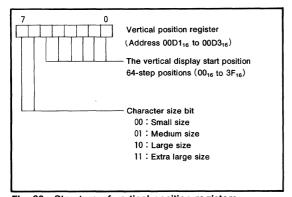


Fig. 23 Structure of vertical position registers

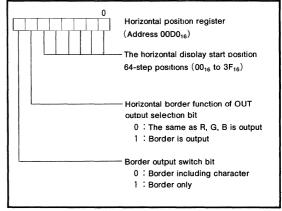


Fig. 24 Structure of horizontal position register

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

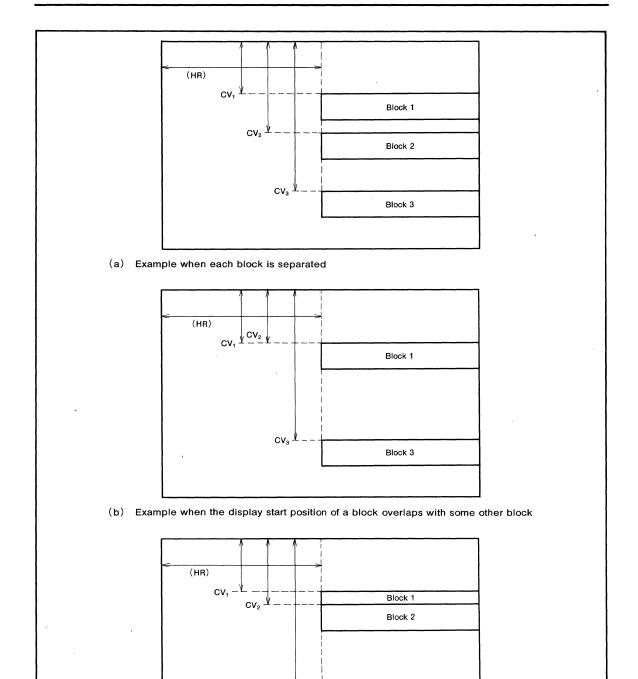


Fig. 25 Display position

(c) Example when one block is displaying some other block is superimposed.

Block 3

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

(3) Character Size

The size of characters to be displayed can be selected from four sizes for each block. Use the bit 6 and 7 of vertical position register to set a character size.

The character size can be selected from four sizes: small size, medium size, large size, and extra large size. Each character size is determined by the number of scanning lines in the height (vertical) direction and the cycle of dis-

play oscillation (=Tc) in the width (horizontal) direction. The small size consists of (one scanning line) \times (1 Tc); the medium size consists of (two scanning lines) \times (2 Tc); the large size consists of (three scanning lines) \times (3 Tc); and the extra large size consists of (four scanning lines) \times (4 Tc). Table 5 shows the relationship between the set values in the character size register and the character sizes.

Table 5. The relationship between the set values of the character size bits and the character sizes

Set values of the	Set values of the character size bits Bit 7 Bit 6		NACIONAL (haringanal) diagram	
Bit 7			Width (horizontal) direction	Height (vertical) direction
0	0	Small	1 T _C	1
0	1	Medium	2 T _C	2
1	0	Large	3 T _C	3
1	1	Extra large	4 T _C	4

Note: The display start position in the horizontal direction is not affected by the character size. In other words, the horizontal start position is common to all blocks even when the character size varies with each block. (See Figure 26)

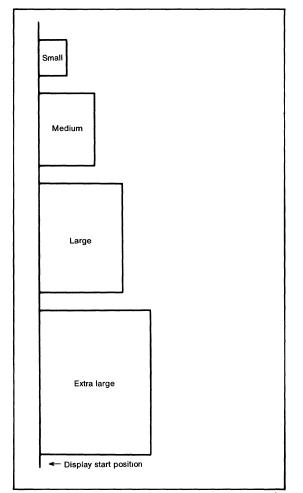


Fig. 26 Display start position of each character size (horizontal direction)

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

(4) RAM for Display

The CRT display RAM is allocated at addresses 2000₁₆ to 20D4₁₆, and is divided into a display character code specifying part and display color specifying part for each block. Table 6 shows the contents of the CRT display RAM.

When a character is to be display at the first character (leftmost) position in block 1, for example, it is necessary to write the character code to the seven low-order bits (bits 0 to 6) in address 2000₁₆ and the color register No. to the two low-order bits (bits 0 and 1) in address 2080₁₆. The color register No. to be written here is one of the four color registers in which the color to be displayed is set in advance. For details on color registers, refer to (5) Color Registers.

The structure of the CRT display RAM is shown in Figure 27.

Table 6. The contents of the CRT display RAM

Block	Display position (from left)	Character code specification	Color specification
	1 st Column	2000 ₁₆	2080 ₁₆
	2 nd Column	2001 ₁₆	2081 ₁₆
	3 rd Column	2002 ₁₆	2082 ₁₆
Block 1	:	:	:
	19th Column	2012 ₁₆	2092 ₁₆
	20th Column	2013 ₁₆	2093 ₁₆
	21th Column	2014 ₁₆	2094 ₁₆
		2015 ₁₆	2095 ₁₆
	Not used	to	to
		201F ₁₆	209F ₁₆
	1 st Column	2020 ₁₆	20A0 ₁₆
	2 nd Column	2021 ₁₆	20A1 ₁₆
	3 rd Column	2022 ₁₆	20A2 ₁₆
Block 2	:	:	:
*	19th Column	2032 ₁₆	20B2 ₁₆
	20th Column	2033 ₁₆	20B3 ₁₆
	21th Column	2034 ₁₆	20B4 ₁₆
		2035 ₁₆	20B5 ₁₆
	Not used	to	to
		203F ₁₆	20BF ₁₆
	` 1 st Column	2040 ₁₆	20C0 ₁₆
	2 nd Column	2041 ₁₆	20C1 ₁₆
	3 rd Column	2042 ₁₆	20C2 ₁₆
Block 3		:	:
	19th Column	2052 ₁₆	20D2 ₁₆
	20th Column	2053 ₁₆	20D3 ₁₆
	21th Column	2054 ₁₆	20D4 ₁₆
		2055 ₁₆	
	Not used	to	
r.		207F ₁₆	

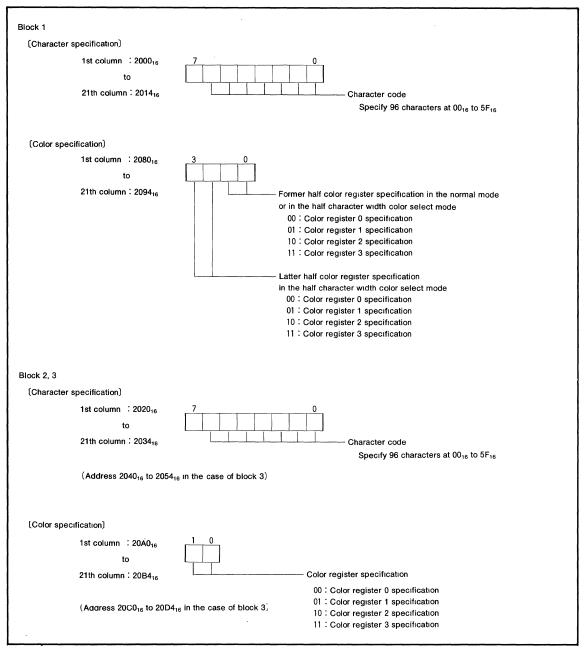


Fig. 27 Structure of the CRT display RAM

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

(5) Color Registers

The color of a displayed character can be specified by setting the color to one of the four color registers (CO0 to CO3: addresses 00D4₁₆ to 00D7₁₆) and then specifying that color register with the CRT display RAM.

There are four color outputs: R, G, B, and I. By using a combination of these outputs, it is possible to set 2^4 -1 (when no output) = 15 colors. However, because only four color registers are available, up to four colors can be displayed at one time.

R, G, B, and I outputs are set by using bits 0 to 3 in the color register. Bit 4 in the color register is used to set a character or blank output; bit 5 is used to specify whether a character output or blank output. Figure 28 shows the structure of the color register.

(6) Half Character Width Color Select Mode

By setting "1" to bit 4 in the CRT control register (address $00D8_{16}$) it is possible to specify colors in units of a half character size (vertical 16 dots×horizontal 6 dots) for characters in block 1 only.

In the half character width color select mode, colors of display characters in block 1 are specified as follows:

- The left half of the character is set to the color of the color register that is specified by bits 0 and 1 at the color register specifying addresses in the CRT display RAM (addresses 2080₁₆ to 2094₁₆).
- The right half of the character is set to the color of the color register that is specified by bits 2 and 3 at the color register specifying address in the CRT display RAM (addresses 2080₁₆ to 2094₁₆).

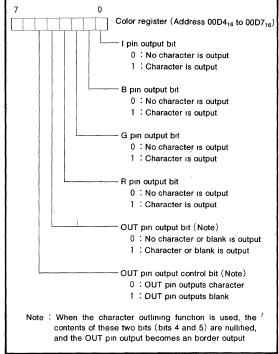


Fig. 28 Structure of color registers

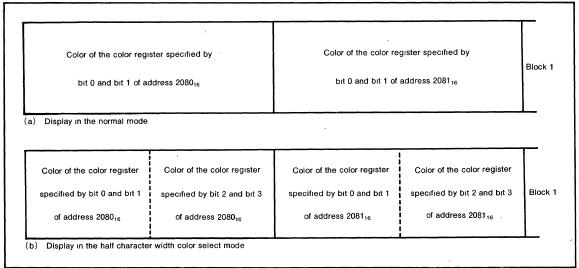


Fig. 29 Difference between normal color select mode and half character width color select mode

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

(7) Multiline Display

The M37100M8-XXXSP can normally display three lines on the CRT screen by displaying three blocks at different vertical positions.

In addition, it allows up to 16 lines to be displayed by using a CRT interrupt and display block counter.

The CRT interrupt works in such a way that when display of one block is terminated, an interrupt request is generated. In other words, character display for a certain block is initiated when the scanning line reaches the display position for that block (specified with vertical and horizontal position registers) and when the range of that block is exceeded, an interrupt is applied.

The display block counter is used to count the number of blocks that have just been displayed. Each time the display of one block is terminated, the contents of the counter are incremented by one.

Fig. 30 Structure of display block counter

For multiline display, it is necessary to enable the CRT interrupt (by clearing the interrupt disable flag to "0" and setting the CRT interrupt enable bit (bit 6 at address 00FE₁₆) to "1"), then execute the following processing in the CRT interrupt handling routine.

- ① Read the value of the display block counter.
- ② The block for which display is terminated (i.e., the cause of CRT interrupt generation) can be determined by the value read in ①.
- ③ Replace the display character data and display position of that block with the character data (contents of CRT display RAM) and vertical display position (contents of vertical position register) to be displayed next.

Figure 30 shows the structure of the display block counter.

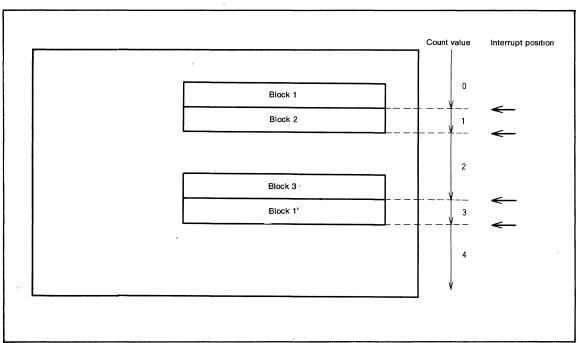


Fig. 31 Timing of CRT interrupt and count value of display block counter

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

(8) Scanning Line Double Count Mode

One dot in a displayed character is normally shown by one scanning line. In the scanning line double count mode, one dot can be shown by two scanning lines. As a result, the displayed dot is extended two times the normal size in the vertical direction only. (That is to say, the height of a character is extended twofold.)

In addition, because the scanning line count is doubled, the display start position of a character is also extended two-fold in the vertical direction. In other words, whereas the contents set in the vertical position register in the normal mode are 64 steps from 00_{16} to $3F_{16}$, or four scanning lines per step, the number of steps in the scanning line double

count mode is 31 from 00_{16} to $1F_{16}$, or eight scanning lines per step.

If the contents of the vertical position register for a block are set in the address range of 20_{16} to $3F_{16}$ in the scanning line double count mode, that block cannot be displayed (not output to the CRT screen).

In the scanning line double count mode can be specified by setting bit 6 in the CRT control register (address $00D8_{16}$) to "1".

Because this function works in units of screen, even when the mode is changed the mode about the scanning line count during display of one screen, the double count mode only becomes valid from the time the next screen is displayed.

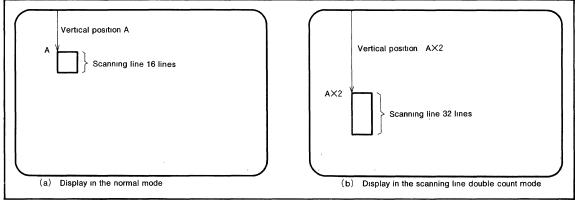


Fig. 32 Display in the normal mode and in the scanning line double count mode

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

(9) Horizontal Character Border Function

An border of a one clock (one dot) equivalent size can be added to a character to be displayed only horizontal direction.

The border is output from the OUT pin. In this case, bits 4 and 5 in the color register (contents output from the OUT pin) are nullified, and the border is output from the OUT pin instead.

Border can be specified in units of block by using the bit 6 and 7 of horizontal position register. Table 7 shows the relationship between the values set in the horizontal position register and the character border function.

Table 7. The relationship between the value set in the horizontal position register and the character border function

Horizontal po	osition register	F	.			
Bit 7 Bit 6		Functions	Example of output			
V	0	Named	R, G, B, I output			
Х	0	Normal	OUT output			
0	1	Bondon includes about the	R, G, B, I output			
		Border including character	OUT output			
1	1	Dordon not including above to	R, G, B, I output			
1	1	Border not including character	OUT output			

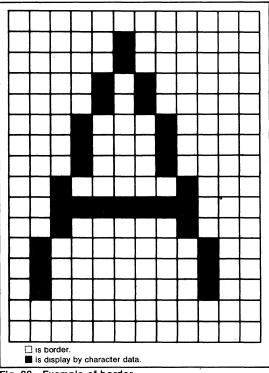


Fig. 33 Example of border

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

(10) Clock Oscillating Circuit for Display

The clock signal for display can be obtained by connecting a resistor and a capacitor between the I/O ports of the oscillating circuit (OSC1 and OSC2). Figure 34 shows an example of circuit.

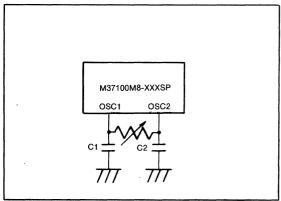


Fig. 34 Example of oscillating circuit for display

(11) Programming Notes

- Use STA instruction for data transfer to the following registers related to OSD functions.
 - 1) Horizontal position register (address 00D0₁₆)
 - ② Vertical position registers (address 00D1₁₆ to 00D3₁₆)
 - 3 Color registers (address 00D4₁₆ to 00D7₁₆)
- Do not display the display OFF blocks having different character sizes on a block display
- The highest vertical position (the vertical display start position bits are "00₁₆") can not be used.
- The interrupt to tell the end of block display is not caused and the display block counter is not incremented until the display of the block has been completed terminated.
- The display block counter (00D9₁₆) is reset while V_{SYNC} is "H" (when the option is positive in polarity) to "FF₋"
- If, during the display of a block, the display position of another block comes, the display of the subsequent block (having a larger vertical position register value) is preferred.
- When two or more blocks are displayed in the same vertical position, the display priority is CV1, CV2, and CV3 in this order. This is not affected by turning on/off of block display.

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

RESET CIRCUIT

The M37100 is reset according to the sequence shown in Figure 36. It starts the program from the address formed by using the content of address $FFFF_{16}$ as the high order address and the content of the address $FFFE_{16}$ as the low

order address, when the $\overline{\text{RESET}}$ pin is held at "L" level for no less than $2\mu s$ while the power voltage is $5V\pm 10\%$ and the crystal oscillator oscillation is stable and then returned to "H" level. The internal initializations following reset are shown in Figure 35.

-	
	Address
(1) Port P0 directional register	(D0)(E1 ₁₆) · 00 ₁₆
(2) Port P1 directional register	(D1)(E3 ₁₆)·· 00 ₁₆
(3) Port P2 directional register	(D2)(E5 ₁₆) 00 ₁₆
(4) Port P3 directional register	(D3)(E9 ₁₆) ·· 00 ₁₆
(5) Port P4 directional register	(D4)(EB ₁₆)
(6) Port P5 directional register	$(D5)(ED_{16})\cdots 0000000$
(7) Port P6 directional register	(D6)(EF ₁₆) 000000
(8) PWM control register	(PM)(F5 ₁₆) ··· 00 ₁₆
(9) Serial I/O _A mode register	(SM)(F6 ₁₆)·· 00 ₁₆
(10) PWM output control register	(PN)(F9 ₁₆)·
(11) Interrupt control register 2	(N)(FB ₁₆) 0 0
(12) Timer 2	(T2)(FC ₁₆) · FF ₁₆
(13) Timer 3	(T3)(FD ₁₆)·· 07 ₁₆
(14) Interrupt control register 1	(IM)(FE ₁₆) · 00 ₁₆
(15) Timer control register	(TM)(FF ₁₆) · 0 0 16
(16) Processor status register	(PS) 1
(17) Program counter	(PC _H)·· Contents of address FFFF ₁₆
	(PCL)·· Contents of address
(18) Horizontal location register	(HR)(D0 ₁₆)·· 00 ₁₆
(19) Color register 0	$(C\bar{O}O)(D4_{16}) \cdot \boxed{00000000}$
(20) Color register 1	$(C\bar{O}1)(D5_{16}) \cdot \boxed{0000000}$
(21) Color register 2	(CŌ2)(D 6 16) 0 0 0 0 0 0
(22) Color register 3	(CŌ3)(D7 ₁₆) 000000
(23) Display control register	(CC)(D8 ₁₆) · 0000000
(24) Serial I/O _B mode register	(SB)(DA ₁₆) 0 0 ₁₆
(25) Special mode register	(SC)(DB ₁₆) · 0000000
(26) Counter 0	(DD ₁₆) FF ₁₆
	both registers other than those listed re undefined at reset, it is necessary to

Fig. 35 Internal state of microcomputer at reset

M37100M8-XXXSP/FP



Fig. 36 Timing diagram at reset

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

I/O PORTS

(1) Port P0

Port P0 is an 8-bit I/O port with N-channel open drain and middle voltage output.

As shown in the memory map (Figure 2), port P0 can be accessed at zero page memory address $00E0_{16}$.

Port P0 has a directional register (address $00E1_{16}$) which can be used to program each individual bit as input ("0") or as output ("1"). If the pins are programmed as output, the output data is latched to the port register and then output. When data is read from the output port the output pin level is not read, only the latched data in the port register is read. This allows a previously output value to be read correctly even though the output voltage level is shifted up or down. Pins set as input are in the floating state and the signal levels can thus be read. When data is written into the input port, the data is latched only to the port latch and the pin still remains in the floating state.

Depending on the contents of the processor mode bits (bit 0 and bit 1 at address $00FF_{16}$), three different modes can be selected; single-chip mode, eva-chip mode and microprocessor mode.

In these modes it functions as address (A_7-A_0) output port (excluding single-chip mode). For more details, see the processor mode information.

(2) Port P1

In single-chip mode, port P1 has the same function as port P0 but the output structure is not middle voltage. It can be built in pull-up register at each pin by selecting the option. In other modes, it functions as address $(A_{15}-A_8)$ output port.

Refer to the section on processor modes for details.

(3) Port P2

In single-chip mode, port P2 has the same function as port P1. In other modes, it functions as data (D_0-D_7) input/output port.

Refer to the section on processor modes for details.

(4) Port P3

In single-chip mode, port P3 has the same function as port P1. P3₂-P3₇ have program selectable dual functions. P3₀, P3₁ function as control signals input/output port except in the single-chip mode. Refer to the section on processor modes for details.

(5) Port P4

This is an 1-bit I/O port with function similar to port P0, but the output structure is CMOS output.

This port is unaffected by the processor mode bits.

(6) Port P5

This is an 7-bit I/O port with function similar to port P1. P5₄-P5₇ have program selectable dual functions. P5₂, P5₃ are shared with external interrupt input pins (INT₁, INT₂)

This port is unaffected by the processor mode bits.

(7) Port P6

This is an 6-bit input/output port with function similar to port P0. The output structure of P6₀, P6₁ is CMOS output and the output structure of P6₂-P6₅ is N-channel open drain and middle voltage.

 $P6_0-P6_5$ have program selectable dual functions. This port is unaffected by the processor mode bits.

- (8) Function pins for CRT display function The horizontal synchronizing signal is input from H_{SYNC}. The vertical synchronizing signal is input from V_{SYNC}. I, B, G, R, OUT are output pins for CRT display. Refer to the section on CRT display functions for details.
- (9) φ pin.

The internal system clock (1/4 the frequency of the oscillator connected between the $X_{\rm IN}$ and $X_{\rm OUT}$ pins) can be output from this pin by selecting the option At low-speed mode, $X_{\rm CIN}$ divided by 2 is output from this pin.

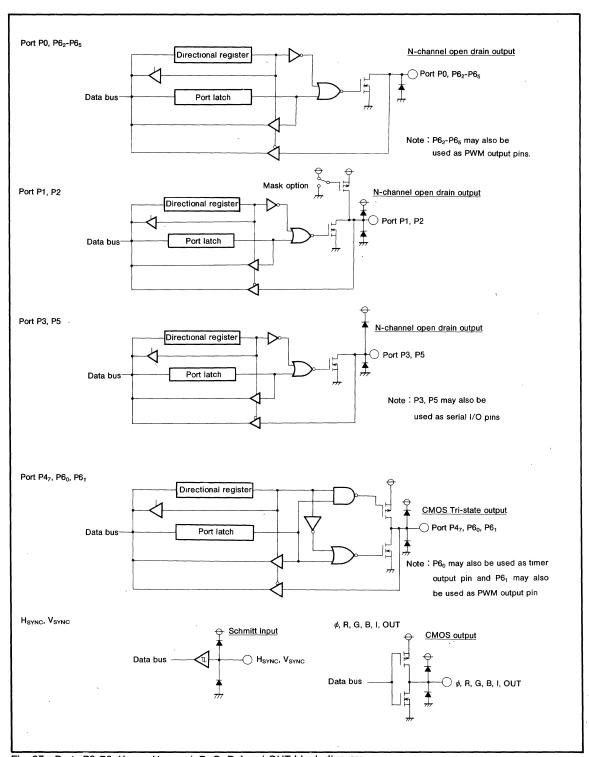


Fig. 37 Ports P0-P6, H_{SYNC} , V_{SYNC} , ϕ , R, G, B, I and OUT block diagram

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

PROCESSOR MODE

By changing the contents of the processor mode bit (bit 0 and 1 at address 00FF₁₆), three different operation modes can be selected; single-chip mode, microprocessor mode and evaluation chip (eva-chip) mode. In the microprocessor mode and eva-chip mode, ports P0-P3 can be used as multiplexed I/O for address, data and control signals, as well as the normal functions of the I/O ports.

Figure 39 shows the functions of ports P0-P3.

The memory map for the single-chip mode is illustrated in Figure 1 and for other modes, in Figure 38.

By connecting CNV_{SS} to V_{SS} , all three modes can be selected through software by changing the processor mode bits. Supplying 10V to CNV_{SS} places the microcomputer in the eva-chip mode. The three different modes are explained as follows:

0000 ₁₆ Internal RAM	Internal RAM
Not used	Not used
00D0 ₁₆ miscellaneous registers	miscellaneous registers
00E0 ₁₆	Port P0-P2
0E6 ₁₆ miscellaneous 0FF ₁₆ registers	miscellaneous registers
100 ₁₆ Internal RAM	Internal RAM
Not used	Not used
000 ₁₆ RAM for display	RAM for display
Not used	Not used
ROM for display 1	ROM for display
Not used	Not used
ROM for display 2	ROM for display
Not used	Not used
00016	
200016	
FFFF ₁₆ Microprocessor mode	Eva-chip mode

Fig. 38 External memory area in processor mode

(1) Single-chip mode (00)

The microcomputer will automatically be in the single-chip mode when started from reset, if CNV_{SS} is connected to V_{SS} . Ports P0-P3 will work as original I/O ports.

(2) Microprocessor mode [01]

The microcomputer will be placed in the microprocessor mode when CNV_{SS} is connected to V_{SS} and the processor mode bits are set to "01".

In this mode, the internal ROM is inhibited so the external memory is required.

In this mode, port P0 and P1 are used as the system address bus and the original function of the I/O pins is lost. Port P2 becomes the data bus (D_7-D_0) and loses its normal output functions. Port P3₁ and P3₀ become the SYNC and R/\overline{W} pins, respectively and the normal I/O functions are lost.

(3) Eva-chip mode [11]

When 10V is supplied to CNV_{SS} pin, the microcomputer is forced into the eva-chip mode.

In this mode, the internal ROM is inhibited so the external memory is required.

The lower 8 bits of address data for port P0 is output when ϕ goes to "H" state. When ϕ goes to the "L" state, P0 retains its original output functions.

Port P1's higher 8 bits of address data are output when ϕ goes to "H" state and as it changes back to the "L" state it retains its original output functions. Port P2 retains its original output functions while ϕ is at the "H" state, and works as a data bus of D_7 - D_0 (including instruction code) while at the "L" state. Pins P3₁ and P3₀ output the SYNC and R/ \overline{W} control signals, respectively while ϕ is in the "H" state. When in the "L" state, P3₁ and P3₀ retain their original I/O function.

The R/W output is used to read/write from/to the outside. When this pin is in the "H" state, the CPU reads data, and when in the "L" state, the CPU writes data.

The SYNC is a synchronous signal which goes to the "H" state when it fetches the OP CODE.

The relationship between the input level of CNV_{SS} and the processor mode is shown in Table 8.

Note: The standards of M37100M8-XXXSP/FP is assured only in single-chip mode. Use in the microprocessor mode or the eva-chip mode only at program development.

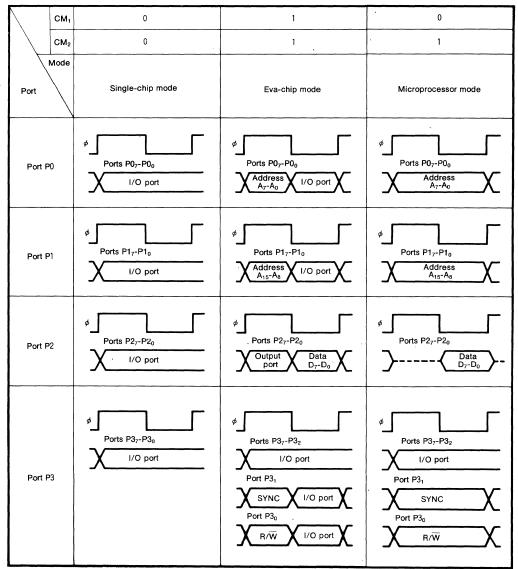


Fig. 39 Processor mode and functions of ports P0-P3

Table 8. Relationship between CNV_{SS} pin input level and processor mode

CNV _{SS}	Mode	Explanation
V _{SS}	Single-chip mode	The single-chip mode is set by the reset
1	Eva-chip mode	All modes can be selected by changing the processor mode bit with the program
	Microprocessor mode	•
10 V	Eva-chip mode	Eva-chip mode only

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

CLOCK GENERATING CIRCUIT

The M37100M8-XXXSP has two internal clock generating circuits. Figure 41 shows a block diagram of the clock generating circuits. Normally, the frequency applied to the clock input pin X_{IN} divided by four is used as the internal clock (timing output) ϕ . Bit 7 of serial I/O_A mode register can be used to switch the internal clock ϕ to 1/2 the frequency applied to the clock input pin X_{CIN} .

Figure 40 shows a circuit example using a ceramic (or crystal) oscillator. Use the manufacturer's recommended values for constants such as capacitance which will differ depending on each oscillator.

The M37100M8-XXXSP has two low power dissipation modes; stop and wait. The microcomputer enters a stop mode when the STP instruction is executed. The oscillator (both $X_{\rm IN}$ clock and $X_{\rm CIN}$ clock) stops with the internal clock ϕ held at "H" level. In this case timer 2 and timer 3 are forcibly connected and $\phi/8$ is selected as timer 2 input. When restarting oscillation, FF₁₆ is automatically set in timer 2 and 07₁₆ in timer 3 in order to enable the oscillator to stabilize. Before executing the STP instruction, the timer 2 count stop bit must be set to supply ("0"), timer 2 interrupt enable bit and timer 3 interrupt enable bit must be set to disable ("0").

Oscillation is restarted (release the stop mode) when INT_1 , INT_2 , or serial I/O_B or serial I/O_B interrupt is received. The interrupt enable bit of the interrupt used to release the stop mode must be set to "1". When restarting oscillation with an interrupt or canceling a reset, the internal clock ϕ is held "H" until timer 3 overflows and is not supplied to the CPU.

The microcomputer enters a wait mode when the WIT instruction is executed. The internal clock ϕ stops at "H" level, but the oscillator does not stop. ϕ is re-supplied (wait mode release) when the microcomputer is reset or when it receives an interrupt.

Instructions can be executed immediately because the oscillator is not stopped. The interrupt enable bit of the interrupt used to reset the wait mode must be set to "1" before executing the WIT instruction.

Low power dissipation operation is also achieved when the X_{IN} clock is stopped and the internal clock ϕ is generated from the X_{CIN} clock $(60\mu\text{A})$ or less at $f(X_{\text{CIN}})=32\text{kHz})$. X_{IN} clock oscillation is stopped when the bit 6 of serial I/O_A mode register (address $00\text{F6}_{16})$ is set and restarted when it is cleared. However, the wait time until the oscillation stabilizes must be generated with a program when restarting Figure 42 shows the transition of states for the system clock.

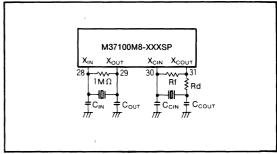


Fig. 40 Example ceramic resonator circuit

Fig. 41 Block diagram of clock generating circuit

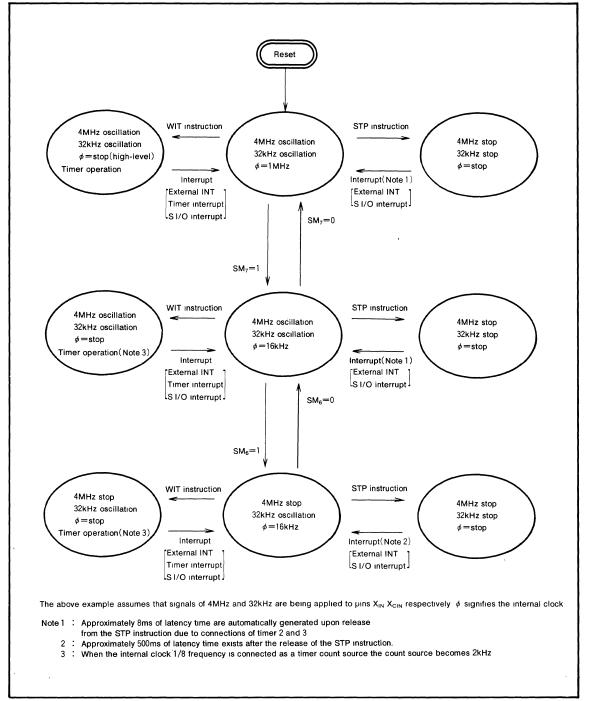


Fig. 42 Transition of states for the system clock

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

≪An example of flow for system

	Power on reset
ion	Clock X and clock for clock function X _C oscillation
peral	Internal system clock start $(X \rightarrow 1/4 \rightarrow \phi)$
al of	Program start from RESET vector
Normal operation	Normal program ←Operating at 4 MHz
	:
	Internal clock ϕ source switching X(4 MHz)→X _C (32.768kHz)(SM ₇ : 0 → 1)
J.	Clock X halt(X _C in operation)
Operation on the clock function only	Internal clock halt(WIT instruction)
the only	→Timer 3 (clock count) overflow
ation on the function only	Internal clock operation start (WIT instruction released)
ration	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Ope	Clock processing routine ← Operating at 32.768kHz
	: —Internal clock halt (WIT instruction)
	Interrupts from INT ₁ , timer 2, timer 1 or serial I/O _A , INT ₂ or serial I/O _B
_	Internal clock operation start (WIT instruction released)
cţio	Program start from interrupt vector
¥	Clock X oscillation start
용	On Whater was the continued of the conti
from	Oscillation rise time routine (software) ←Operating at 32.768kHz
Return from clock function	Internal clock ϕ source switching $(X_C \rightarrow X)(SM_7 : 1 \rightarrow 0)$
æ	Normal program →Operating at 4MHz
	opolating at time.
	,
tion	STP instruction preparation (pushing registers)
RAM backup function	Timer 2, timer 3 interrupt disable, $(IM_4 = 0, TM_6 = 0)$
ckup	Timer 2 count stop bit resetting (TM ₅ = 0)
M ba	Clock X and clock for clock function X _C halt (STP instruction)
Æ	:
	RAM backup status
5	Interrupts from INT ₁ , serial I/O _A , INT ₂ , serial I/O _B
uncti	Clock for clock function X _C oscillation start
kup f	Timer 3 overflow (X _C /8→timer 2 →timer 3) (Automatically connected by the hardware)
bac	Internal system clock start $(X_C \rightarrow 1/2 \rightarrow \phi)$
Return from RAM backup function	Program start from interrupt vector
- E0	,
重	Normal program
Ret	

M37100M8-XXXSP/FP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

PROGRAMMING NOTES

- (1) Processor status register
 - Except for the interrupt disable flag (I) being set to "1", the content of the processor status register (PS) is unpredictable after a reset. Therefore, flags affecting program execution must be initialized.
 - The T flag and D flag which affect arithmetic operations, must always be initialized.
 - A NOP instruction must be used after the execution of a PLP instruction.
- (2) Interrupts

Even though the BBC and BBS instructions are executed just after the interrupt request bits are modified (by the program), those instructions are only valid for the contents before the modification. Also, at least one instruction cycle must be used (such as a NOP) between the modification of the interrupt request bits and the execution of the BBC and BBS instructions.

- (3) Decimal operations
 - Decimal operations are performed by setting the decimal mode flag (D) and executing the ADC or SBC instruction. In this case, there must be at least one instruction following the ADC or SBC instruction before executing the SEC, CLC, or CLD instruction.
 - The N (Negative), V (Overflow), and Z (Zero) flags are ignored during decimal mode.
- (4) Timers

The frequency dividing ratio of timer is 1/(n+1).

(5) STP instruction

The STP instruction must be executed after setting the timer 2 count stop bit (bit 5 at address $00FF_{16}$) to supply ("0").

DATA REQUIRED FOR MASK ORDERING

Please send the following data for mask orders.

- mask ROM order confirmation form
- · mask specification form
- ROM data ······ EPROM 3 sets

Write the following option on the mask confirmation form

- (1) Port P1 pull-up transistor bit
- (2) Port P2 pull-up transistor bit
- (3) X_{IN} and X_{CIN} oscillation feed-back registers
- (4) CRT display signal input/output polarity
- (5) ϕ output

M37100M8-XXXSP/FP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		-0.3 to 6	V
Vi	Input voltage RESET, CNV _{SS}		-0.3 to 13	V.
Vı	Input voltage P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ -P3 ₇ , P4 ₇ , P5 ₁ -P5 ₇ , P6 ₀ -P6 ₅ , H _{SYNC} , V _{SYNC} , X _{IN} , X _{CIN} , OSC1	With respect to V _{SS} Output transistors are	-0.3 to V _{cc} +0.3	v
Vo	Output voltage P0 ₀ -P0 ₇ , P6 ₂ -P6 ₅	at "off" state	-0.3 to 13	V
Vo	Output voltage P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P4 ₇ , P3 ₀ -P3 ₇ , P5 ₁ -P5 ₇ , P6 ₀ , P6 ₁ , X _{OUT} , ϕ , X _{COUT} , OSC2, R, G, B, I, OUT		-0.3 to V _{CC} +0.3	v
Іон	Circuit current P6 ₀ , P6 ₁ , P4 ₇ , R, G, B, I, OUT		0 to 10(Note 1)	mA
I _{OL1}	Circuit current P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ -P3 ₇ , P4 ₇ , P5 ₁ -P5 ₇ , P6 ₀ , P6 ₁ , R, G, B, I, OUT		0 to 15(Note 2)	mA
	Circuit current DO DO DC DC	V ₀ ≤ 7 V	0 to 15(Note 2)	
I _{OL2}	Circuit current P0 ₀ -P0 ₇ , P6 ₂ -P6 ₅	V _o > 7 V	0 to 1(Note 2)	mA
Pd	Power dissipation	T _a = 25°C,	1000(Note 3)	mW
Topr	Operating temperature		—10 to 70	°C
Tstg	Storage temperature		-40 to 125	°C

Note 1: The total of I_{OH} should be 20mA(max).

2 : The total of I_{OL1} and I_{OL2} should be 50mA(max) 3 : 600mW in case of the flat package

RECOMMENDED OPERATING CONDITIONS

 $(V_{CC}=5V\pm10\%, T_a=-10 \text{ to } 70^{\circ}C \text{ unless otherwise noted})$

	D			Limits				
Symbol	1	Parameter			Тур.	Max	Unit	
V _{cc}	Supply Normal speed		t mode f(X _{IN})=4MHz f(OSC1)=5MHz	4.5	5.0	5.5	V	
	(Note 1)	Low-speed m	ode f(X _{CIN})=32kHz	3.0	5.0	5. 5		
Vss	Supply voltag	е		0	0	0	. V	
V _{IH}	"H" input voltage P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ -P3 ₇ , P4 ₇ , P5 ₁ -P5 ₇ , P6 ₀ -P6 ₅ , RESET, X _{IN} , X _{CIN} , Hsync, Vsync			0.8V _{CC}	ř	V _{cc}	V	
VIL	"L" input voltage P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ , P3 ₁ , P3 ₃ -P3 ₅ , P3 ₇ , P4 ₇ , P5 ₁ , P5 ₄ , P5 ₅ , P5 ₇ , P6 ₀ -P6 ₅			0		0. 4V _{CC}	V	
V _{IL}	"L" input volta		5 ₂ , P5 ₃ , P5 ₆ , RESET, SYNC, VSYNC	0		0. 2V _{CC}	٧	
l _{oL(avg)}	"L" average o	"L" average output current P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ -P3 ₇ , P4 ₇ , P5 ₁ -P5 ₇ , P6 ₀ -P6 ₅ , R, G, B, I, OUT				5	mA	
I _{OL} (avg)	"L" average output current V ₀ ≤7V				5 1	mA		
I _{OH} (avg)	"H" average output current P47, P60, P61, R, G, B, I, OUT				2	mA		
f(X _{IN})	Oscillating frequency (Note 2)			3.6	4	4. 4	MHz	
f(X _{CIN})	Oscillating from	Oscillating frequency			32	35	kHz	
f(OSC1)	Oscillating fr	equency		4	5	6	MHz	

Note 1: Apply $0.022\mu F$ or greater capacitance externally to the V_{CC} power supply pin so as to reduce power source noise

2: Use a ceramic resonator or a quartz crystal oscillator to generate of main clock

MITSUBISHI MICROCOMPUTERS M37100M8-XXXSP/FP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

ELECTRICAL CHARACTERISTICS ($V_{CC}=5V\pm10\%$, $V_{SS}=0$ V, $T_a=-10$ to 70°C, $f(X_{IN})=4MHz$)

Symbol	Parameter	Test conditions		Limits			Unit
Symbol	Farameter		15	Mın	Тур	Max	Onit
V _{OH}	"H" output voltage P47, P60, P61, R, G, B, I, OUT	$V_{CC}=4.5V$, $I_{OH}=-0.5mA$		2.4			V
V _{OH}	"H" output voltage ϕ	$V_{CC} = 4.5V$ $I_{OH} = -2.5 mA$	2.4			v	
V _{OL}	"L" output voltage P0 ₀ -P0 ₇ , P2 ₀ -P2 ₇ , P3 ₀ -P3 ₇ , P4 ₇ , P5 ₁ -P5 ₇ , P6 ₀ -P6 ₅ , R, G, B, I, OUT	V _{CC} =4.5V I _{OL} =0.5mA				0. 4	v
V _{OL}	"L" output voltage P1 ₀ -P1 ₇	V _{CC} =4.5V I _{OL} =10mA				1.5	v
V _{OL}	"L" output voltage φ	V _{CC} =4.5V I _{OL} =2.5mA				2	v
$V_{T+} - V_{T-}$	Hysteresis RESET	V _{CC} =5.0V			0.5	0.7	V
$V_{T+} - V_{T-}$	Hysteresis P3 ₂ , P3 ₆ , P5 ₂ , P5 ₃ , P5 ₆ , H _{SYNC} , V _{SYNC}	V _{CC} =5. 0V			0.5	1.3	V
Ru	Pull-up transister (Note 1) P1 ₀ -P1 ₇ , P2 ₀ - P2 ₇	V _{CC} =5. 0V V ₁ =0V		15	30	60	kΩ
I _{OZH}	"H" input leak current P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ -P3 ₇ , P4 ₇ , P5 ₁ -P5 ₇ , P6 ₀ -P6 ₅ , RESET, H _{SYNC} , V _{SYNC}	V _{cc} =5.5V V _o =5.5V				5	μА
l _{ozh}	"H" input leak current P0 ₀ -P0 ₇ , P6 ₂ -P6 ₅	V _{CC} =5.5V V _O =12V				10	μА
l _{OZL}	"L" input leak current P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ -P3 ₇ , P4 ₇ , P5 ₁ -P5 ₇ , P6 ₀ -P6 ₅ , H _{SYNC} , V _{SYNC} , RESET	V _{cc} =5.5V V _o =0V				5	μA
V _{RAM}	RAM retention voltage	At stop mode		2.5		5. 5	V
		V _{CC} =5.5V f(X _{IN})=4MHz At system operation and CF	RT display off		5	10	
		V _{CC} =5.5V f(X _{IN})=4MHz At system operation and CRT display on			7	14	mA
		V _{CC} =5.5V f(X _{IN})=4MHz At wait mode			1		
Icc	Supply current	X _{IN} -X _{OUT} stop f(X _{CIN})=32kHz	V _{cc} =5.5V		60	200	
		At system operation	V _{CC} =3V		25		
		$X_{IN}-X_{OUT}$ stop $f(X_{CIN})=32kHz$	V _{CC} =5.5V		25	100	μA
		At wait mode	V _{CC} =3V		5		,
•			V _{CC} =5.5V		1	10	1
		At stop mode	V _{CC} =3V		0.6		

Note 1: Pull-up transistor is mask option.

M37102M8-XXXSP/FP M37201M6-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

DESCRIPTION

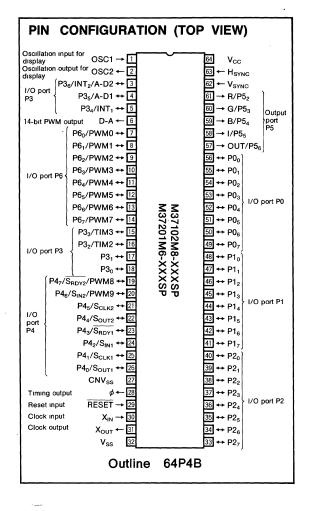
The M37102M8-XXXSP/FP is a single-chip microcomputer designed with CMOS silicon gate technology. It is housed in a 64-pin shrink plastic molded DIP or an 80-pin plastic molded QFP. This single-chip microcomputer is useful for the high-tech channel selection system for TVs.

In addition to their simple instruction sets, the ROM, RAM, and I/O addresses are placed on the same memory map to enable easy programming.

The differences between the M37102M8-XXXSP/FP and the M37201M6-XXXSP are noted below. The following explanations apply to the M37102M8-XXXSP. Specification variations for other chips are noted accordingly.

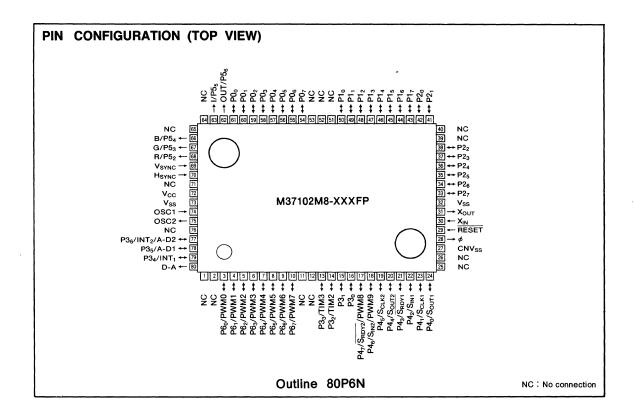
Type name	ROM size	RAM size
M37102M8-XXXSP/FP	16384 bytes	320 bytes
M37201M6-XXXSP	24576 bytes	384 bytes

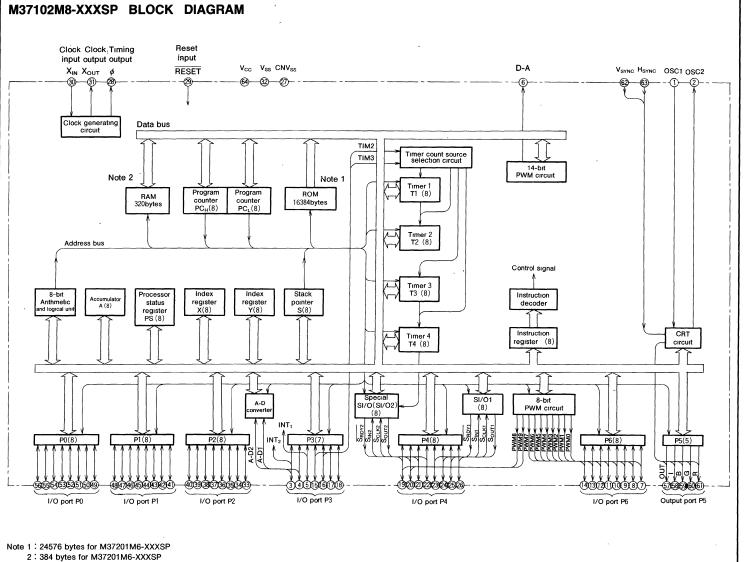
FEATURES


•	Number of ba	sic instructions····· 69
•	Memory size	ROM···· 16384 bytes (M37102M8-XXXSP/FP)
		24576 bytes (M37201M6-XXXSP)
		RAM ······320 bytes (M37102M8-XXXSP/FP)
		384 bytes (M37201M6-XXXSP)
•	Instruction exe	ecution time
	······ 1μs	(minimum instructions at 4MHz frequency)
•	Single power	supply5V±10%
•	Power dissipa	ition

	normal operation mode (at 4MHz frequency)
	110mW (V _{CC} =5.5V, CRT display)
•	Subroutine nesting 96 levels (Max.)
•	Interrupt
•	8-bit timer4
•	Programmable I/O ports
	(Ports P0, P1, P2, P3, P4, P6) 47
•	Output port (Port P5)5
•	Serial I/O (8-bit)2

•	PWM function ·····	· 14-bit×1
		8-bit×10
ullet	A-D converter (4-bit resolution)	2 channels


72-character on screen display function Number of character 24 characters X3 lines Kinds of character126


APPLICATION

M37102M8-XXXSP/FP M37201M6-XXXSP

SINGLE-CHIP

8-BIT

CMOS

MICROCOMPUTER for with ON-SCREE

M37102M8-XXXSP/FP M37201M6-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

FUNCTIONS OF M37102M8-XXXSP

Parameter			Functions	
Number of basic instructions			69	
Instruction execution time			1µs (minimum instructions, at 4MHz frequency)	
Clock frequency			4MHz	
	M37102M8-XXXSP/FP	ROM	16384bytes	
Memory size		RAM	320bytes .	
		ROM	24576bytes	
	M37201M6-XXXSP	RAM	384bytes	
	P0, P1, P2	1/0	8-bit×3	
	P3 ₀ , P3 ₁	1/0	2-bit×1	
,	D0 D0	1/0	5-bit×1 (can be used as timer input pins, INT ₁ , INT ₂ input pins and A-D	
Input/Output ports	P3 ₂ -P3 ₆	1/0	input pins)	
	P4	1/0	8-bit×1 (can be used as serial I/O function pins and PWM output pins)	
	P5	Output	5-bit×1 (can be used as R, G, B, I, OUT pins)	
	P6	1/0	8-bit×1 (can be used as PWM output pins)	
Serial I/O			8-bit×2 (Special serial I/O (8-bit)×1)	
Timers			8-bit timer×4	
Subroutine nesting			96levels (max)	
lata-m.at			Two external interrupts, nine internal interrupts,	
Interrupt			one software interrupt	
Clock generating circuit			Two built-in circuits (externally connected ceramic or quartz crystal oscillator)	
Supply voltage			5v±10%	
at CRT display ON			110mW (clock frequency X _{IN} =4MHz, V _{CC} =5.5V, Typ.)	
Power dissipation	at CRT display OFF		55mW (clock frequency X _{IN} =4MHz, V _{CC} =5.5V, Typ)	
	at stop mode		1.65mW (Max)	
l=4/0-4=-4i-4i	Input/Output voltage		5V (Port P4 ₆ , P4 ₇ , P6 ₀ -P6 ₇)	
Input/Output characteristics Output current			10mA (Port P2 ₄ -P2 ₇)	
Operating temperature range			−10 to 70°C	
Device structure			CMOS silicon gate process	
Daaliana	M37102M8-XXXSP, M37201M6-XXXSP		64-pin shrink plastic molded DIP	
Package	M37102M8-XXXFP		80-pin plastic molded QFP	
CDT deader fraction	Number of character		24 characters×3 lines	
CRT display function	Kinds of character		126 (12×16 dots)	

M37102M8-XXXSP/FP M37201M6-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

PIN DESCRIPTION

Pin	Name	Input/ Output	Functions	
V _{CC} , V _{SS}	Supply voltage		Power supply inputs 5V±10% to V _{CC} , and 0V to V _{SS}	
CNV _{ss}	CNVss		This is connected to V _{SS} .	
RESET	Reset input	Input	To enter the reset state, the reset input pin must be kept at a "L" for more than $2\mu s$ (under normal V_{c} conditions) If more time is needed for the crystal oscillator to stabilize, this "L" condition should be maintained for the required time.	
X _{IN}	Clock input	Input	This chip has an internal clock generating circuit. To control generating frequency, an external ceramic or a	
Хоит	Clock output	Output	quartz crystal oscillator is connected between the X _{IN} and X _{OUT} pins. If an external clock is used, the clock source should be connected the X _{IN} pin and the X _{OUT} pin should be left open.	
φ	Timing output	Output	This is the timing output pin.	
P0 ₀ -P0 ₇	I/O port P0	1/0	Port P0 is an 8-bit I/O port with directional registers allowing each I/O bit to be individually programmed as input or output At reset, this port is set to input mode. The output structure is CMOS output	
P1 ₀ -P1 ₇	I/O port P1	1/0	Port P1 is an 8-bit I/O port and has basically the same functions as port P0	
P2 ₀ -P2 ₇	I/O port P2	1/0	Port P2 is an 8-bit I/O port and has basically the same functions as port P0	
P3 ₀ -P3 ₆	I/O port P3	1/0	Port P3 is a 7-bit I/O port and has basically the same functions as port P0, but the output structure of P P3 ₁ is CMOS output and the output structure of P3 ₂ -P3 ₆ is N-channel open drain P3 ₂ , P3 ₃ are in common with external clock input pins of timer 2 and 3 P3 ₄ , P3 ₆ are in common with external interrupt input pins INT ₁ and INT ₂ P3 ₅ , P3 ₆ are in common with analog input pins of A-D conver (A-D1, A-D2)	
P4 ₀ -P4 ₇	I/O port P4	1/0	Port P4 is an 8-bit I/O port and has basically the same functions as port P0, but the output structure is N-channel open drain When serial I/O1 is used,P4 $_0$, P4 $_1$, P4 $_2$ and P4 $_3$ work as S _{OUT1} , S _{CLK1} , S _{IN1} and $\overline{S_{RDY1}}$ pins, respectively When serial I/O2 is used, P4 $_4$, P4 $_5$, P4 $_6$ and P4 $_7$ work as S _{OUT2} , S _{CLK2} , S _{IN2} and $\overline{S_{RDY2}}$ pins, respectively Also P4 $_6$, P4 $_7$ are in common with PWM output pins of PWM 8 and 9	
P6 ₀ -P6 ₇	I/O port P6	1/0	Port P6 is an 8-bit I/O port and has basically the same functions as port P0, but the output structure is N-channel open drain. This port is in common with PWM output pins PWM0-PWM7	
OSC1, OSC2	Clock input for CRT display Clock output for CRT display	Input Output	This is the I/O pins of the clock generating circuit for the CRT display function.	
H _{SYNC}	H _{SYNC} input	Input	This is the horizontal synchronizing signal input for CRT display	
V _{SYNC}	V _{SYNC} input	Input	This is the vertical synchronizing signal input for CRT display	
R, G, B, I, OUT	CRT output	Output	This is a 5-bit output pin for CRT display The output structure is CMOS output This is in common with por P5 ₂ -P5 ₆ .	
D-A	DA Output	Output	This is an output pin for 14-bit PWM	

M37102M8-XXXSP/FP M37201M6-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

FUNCTIONAL DESCRIPTION Central Processing Unit (CPU)

The M37102 microcomputers use the standard MELPS 740 instruction set. For details of instructions, refer to the MELPS 740 CPU core basic functions, or the MELPS 740 Software Manual.

Machine-resident instructions are as follows: The FST and SLW instructions are not provided. The MUL and DIV instructions are not provided.

The WIT instruction can be used. The STP instruction can be used.

CPU Mode Register

The CPU mode register is allocated to address 00FB₁₆. Bits 0 and 1 of this register are processor mode bits. This register also has a stack page selection bit.

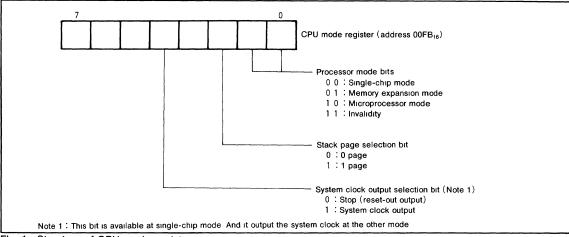


Fig. 1 Structure of CPU mode register

M37102M8-XXXSP/FP M37201M6-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

MEMORY

• Special Function Register (SFR) Area

The special function register (SFR) area contains the registers relating to functions such as I/O ports and timers.

• RAM

RAM is used for data storage as well as a stack area.

• ROM

ROM is used for storing user programs as well as the interrupt vector area.

RAM for display

RAM for display is used for specifing the character codes and colors to display.

· ROM for display

ROM for display is used for storing character data.

Interrupt Vector Area

The interrupt vector area is for storing jump destination addresses used at reset or when an interrupt is generated.

Zero Page

Zero page addressing mode is useful because it enables access to this area with fewer instruction cycles.

Special Page

Special page addressing mode is useful because it enables access to this area with fewer instruction cycles.

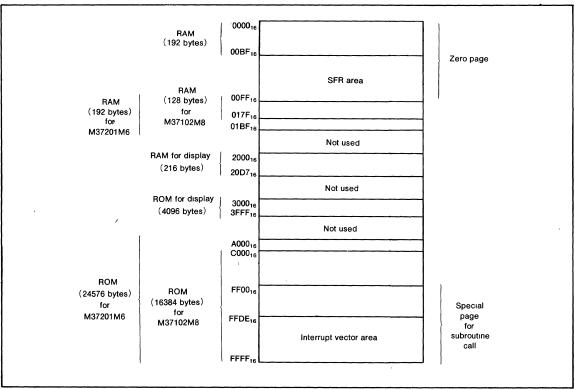


Fig. 2 Memory map

M37102M8-XXXSP/FP M37201M6-XXXSP

00C0 ₁₆	Port P0	00E0 ₁₆	Horizontal position register
10	Port P0 directional register	00E1 ₁₆	Vertical display start position register
00C2 ₁₆		00E2 ₁₆	
	Port P1 directional register	00E3 ₁₆	Vertical display start position register
00C4 ₁₆		00E4 ₁₆	
	Port P2 directional register	00E5 ₁₆	
00C6 ₁₆		00E6 ₁₆	Color register 0
	Port P3 directional register	00E7 ₁₆	
00C8 ₁₆		00E8 ₁₆	
00C9 ₁₆	Port P4 directional register	00E9 ₁₆	
00CA ₁₆	Port P5	00EA ₁₆	CRT control register
00CB ₁₆	Port P5 directional register	00EB ₁₆	Display block counter
00CC ₁₆	Port P6	00EC ₁₆	CRT port control register
00CD ₁₆	Port P6 directional register	00ED ₁₆	Scroll control register
00CE ₁₆	DA-H register	00EE ₁₆	Scroll start register
00CF ₁₆	DA-L register	00EF ₁₆	A-D control register
00D0 ₁₆	PWM 0 register	00F0 ₁₆	Timer 1
00D1 ₁₆	PWM 1 register	00F1 ₁₆	Timer 2
00D2 ₁₆	PWM 2 register	00F2 ₁₆	Timer 3
00D3 ₁₆	PWM 3 register	00F3 ₁₆	Timer 4
00D4 ₁₆	PWM 4 register	00F4 ₁₆	Timer 12 mode register
00D5 ₁₆	PWM output control register 1	00F5 ₁₆	Timer 34 mode register
00D6 ₁₆	PWM output control register 2	00F6 ₁₆	PWM 5
00D7 ₁₆	Interrupt space distinguish register	00F7 ₁₆	PWM 6
00D8 ₁₆	Interrupt space distinguish control register	00F8 ₁₆	PWM 7
00D9 ₁₆	Special serial I/O register	00F9 ₁₆	PWM 8
00DA ₁₆	Special mode register 1	00FA ₁₆	PWM 9
00DB ₁₆	Special mode register 2	00FB ₁₆	CPU mode register
00DC ₁₆	Serial I/O1 mode register	00FC ₁₆	Interrupt request register 1
00DD ₁₆	Serial I/O1 register		Interrupt request register 2
00DE ₁₆	Serial I/O2 mode register	00FE ₁₆	Interrupt control register 1
00DF ₁₆	Serial I/O2 register	00FF ₁₆	Interrupt control register 2

Fig. 3 SFR (Special Function Register) memory map

M37102M8-XXXSP/FP M37201M6-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

INTERRUPTS

Interrupts can be caused by 12 different events consisting of three external, eight internal, and one software events. Interrupts are vectored interrupts with priorities shown in Table 1. Reset is also included in the table because its operation is similar to an interrupt.

When an interrupt is accepted, the registers are pushed, interrupt disable flag I is set, and the program jumps to the address specified in the vector table. The interrupt request bit is cleared automatically. The reset and BRK instruction interrupt can never be disabled. Other interrupts are disabled when the interrupt disable flag is set.

All interrupts except the BRK instruction interrupt have an interrupt request bit and an interrupt enable bit. The interrupt request bits are in interrupt request registers 1 and 2 and the interrupt enable bits are in interrupt control registers 1 and 2. Figure 4 shows the structure of the interrupt request registers 1 and 2 and interrupt control registers 1 and 2.

Interrupts other than the BRK instruction interrupt and reset are accepted when the interrupt enable bit is "1", interrupt request bit is "1", and the interrupt disable flag is "0". The interrupt request bit can be reset with a program, but not set. The interrupt enable bit can be set and reset with a program.

Reset is treated as a non-maskable interrupt with the highest priority. Figure 5 shows interrupts control.

Table 1. Interrupt vector address and priority.

Event	Priority	Vector addresses	Remarks
RESET	1	FFFF ₁₆ , FFFE ₁₆	Non-maskable
CRT interrupt	2	FFFD ₁₆ , FFFC ₁₆	
INT ₂ interrupt	3	FFFB ₁₆ , FFFA ₁₆	
INT ₁ interrupt	4	FFF9 ₁₆ , FFF8 ₁₆	
Serial I/O 2 interrupt	5	FFF7 ₁₆ , FFF6 ₁₆	
Timer 4 interrupt	6	FFF5 ₁₆ , FFF4 ₁₆	
1 ms interrupt	7	FFF3 ₁₆ , FFF2 ₁₆	
V _{SYNC} interrupt	8	FFF1 ₁₆ , FFF0 ₁₆	
Timer 3 interrupt	9	FFEF ₁₆ , FFEE ₁₆	
Timer 2 interrupt	10	FFED ₁₆ , FFEC ₁₆	
Timer 1 interrupt	11	FFEB ₁₆ , FFEA ₁₆	
Serial I/O 1 interrupt	12	FFE9 ₁₆ , FFE8 ₁₆	
BRK instruction interrupt	13	FFDF ₁₆ , FFDE ₁₆	Non-maskable software interrupt

M37102M8-XXXSP/FP M37201M6-XXXSP

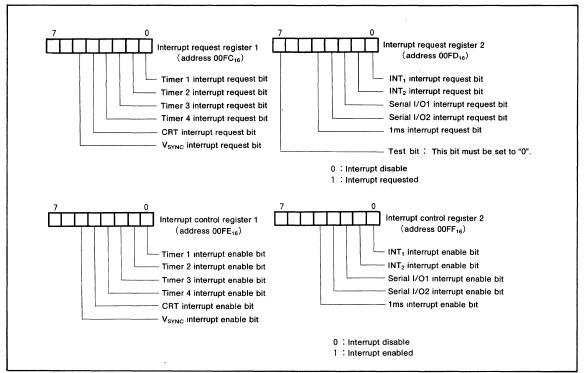


Fig. 4 Structure of registers related to interrupt

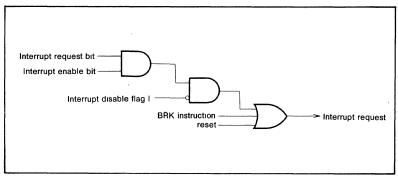


Fig. 5 Interrupt control

M37102M8-XXXSP/FP M37201M6-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

TIMER

The M37102M8-XXXSP has four timers; timer 1, timer 2, timer 3 and timer 4.

A block diagram of timer 1 through 4 is shown in Figure 7. The count source for timer 1 through 4 can be selected by using bit 0, 1, 4 of timer 12 mode register and timer 34 mode register (address $00F4_{16}$, $00F5_{16}$), as shown in Figure 6.

All of the timers are down count timers and have 8-bit latches. When a timer reaches "FF $_{16}$ " and the next count pulse is input to a timer, a value which is subtracted 1 from the contents of the reload latch are loaded into the timer. The division ratio of the timer is 1/(n+1), where n is the contents of timer latch. The timer interrupt request bit is set at the next count pulse after the timer reaches "FF $_{16}$ ".

The starting and stopping of the timer is controlled by bit 2, 3 of timer 12 mode register and timer 34 mode register.

At a reset or stop mode, FF $_{16}$ is automatically set in timer 3 and 07 $_{16}$ in timer 4 and timer 4, timer 3 and the clock (f(X $_{\rm IN}$) divided by 16) are connected in series.

When restarting oscillation or canceling a reset, the internal clock is not supplied to the CPU until timer 4 overflows.

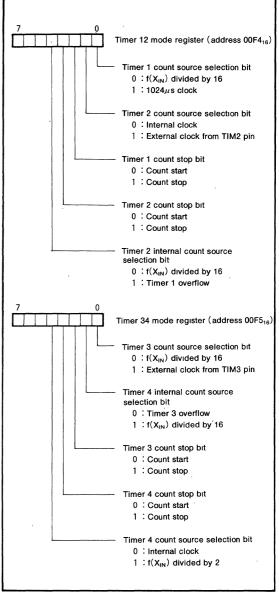


Fig. 6 Structure of timer 12 mode register and timer 34 mode register

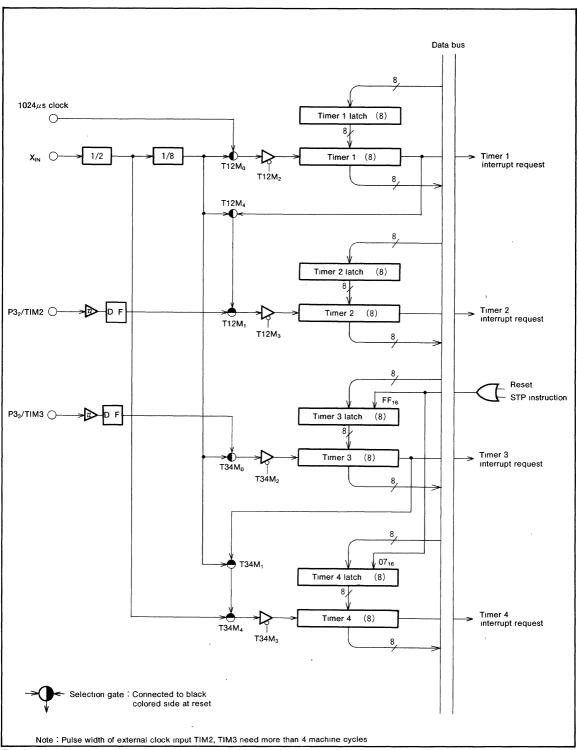


Fig. 7 Block diagram of timer 1, timer 2, timer 3 and timer 4

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

SERIAL I/O

M37102M8-XXXSP has two serial I/O (serial I/O 1, serial I/O 2). Serial I/O 1 has the same function as serial I/O 2. A block diagram of the serial I/O is shown in Figure 8. In the serial I/O mode the receive ready signal $(\overline{S_{RDYi}})$, synchronous input/output clock (S_{CLKi}) , and the serial I/O pins (S_{OUTi}, S_{INi}) are used as port P4. The serial I/O i mode registers (address $00DC_{16}, 00DE_{16})$ are 8-bit registers. Bits 0, 1 and 2 of these registers are used to select a synchronous clock source.

Bit 3 and 4 decide whether parts of P4 will be used as a serial I/O or not.

To use $P4_2$ or $P4_6$ as a serial input, set the directional register bit which corresponds to $P4_2$ or $P4_6$ to "0". For more information on the directional register, refer to the I/O pin section.

Also to use internal clock of serial I/O 2, bit 1 of special mode register 1 (address 00DA₁₆) needs to be set to "1". The serial I/O function is discussed below. The function of the serial I/O differs depending on the clock source; external clock or internal clock.

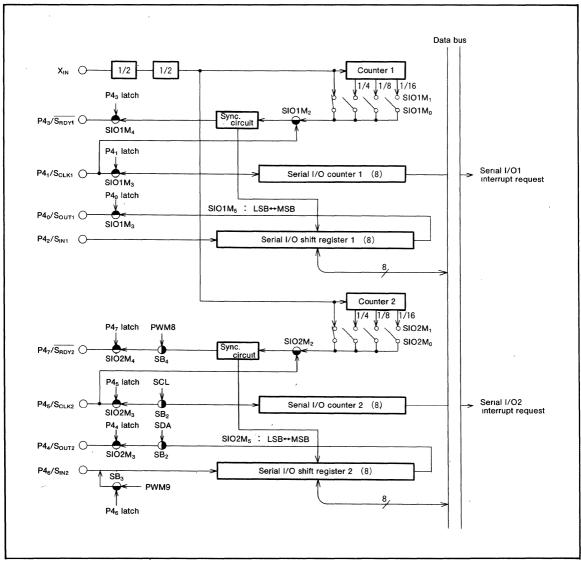


Fig. 8 Block diagram of serial I/O

M37102M8-XXXSP/FP M37201M6-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

Internal clock—The $\overline{S}_{RDY}i$ signal becomes "H" during transmission or while dummy data is stored in the serial I/O $_i$ register (address $00DD_{16}, 00DF_{16}$). After the falling edge of the write signal, the $\overline{S}_{RDY}i$ signal becomes low signaling that the M37102M8-XXXSP is ready to receive the external serial data. The $\overline{S}_{RDY}i$ signal goes "H" at the next falling edge of the transfer clock. The serial I/O $_i$ counter is set to 7 when data is stored in the serial I/O $_i$ register. At each falling edge of the transfer clock, serial data is output to $S_{OUT}i$. During the rising edge of this clock, data can be input from $S_{IN}i$ and the data in the serial I/O $_i$ register will be shifted 1 bit.

Transfer direction can be selected by bit 5 of serial I/O_i mode register. After the transfer clock has counted 8 times, the serial I/O_i register will be empty and the transfer clock will remain at a high level. At this time the interrupt request

bit will be set.

External clock- If an external clock is used, the interrupt request will be sent after the transfer clock has counted 8 times but transfer clock will not stop.

Due to this reason, the external clock must be controlled from the outside. The external clock should not exceed 500 kHz at a duty cycle of 50%. The timing diagram is shown in Figure 9. When using an external clock for transfer, the external clock must be held at "H" level when the serial I/O $_i$ counter is initialized. When switching between the internal clock and external clock, the switching must not be performed during transfer. Also, the serial I/O counter must be initialized after switching.

An example of communication between two M37102M8-XXXSPs is shown in Figure 10.

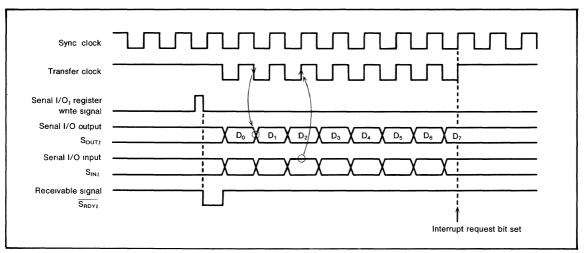


Fig. 9 Serial I/O timing

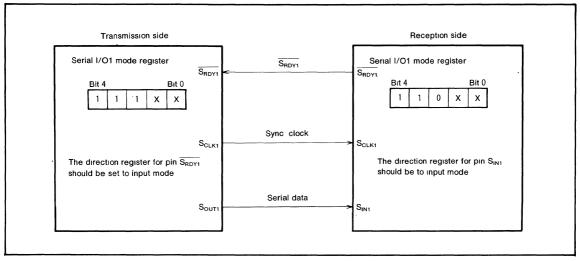


Fig. 10 Example of serial I/O connection

M37102M8-XXXSP/FP M37201M6-XXXSP

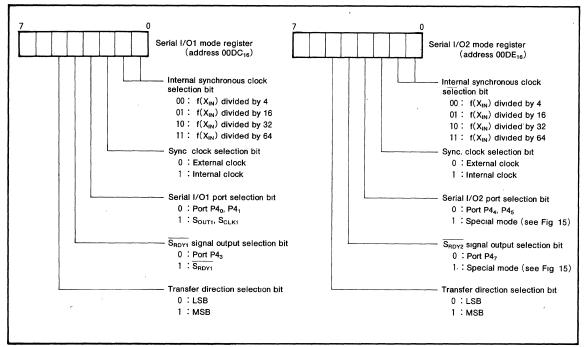


Fig. 11 Structure of serial I/O $_i$ mode register

M37102M8-XXXSP/FP M37201M6-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

SPECIAL MODE (I2C BUS MODE*)

M37102M8-XXXSP has a special serial I/O circuit that can be reception or transmission of serial data in conformity with I²C (Inter IC) bus format.

1²C bus is a two line directional serial bus developed by Philips to transfer and control data among internal ICS of a machinery.

M37102M8-XXXSP's special serial I/O is not included the clock synchronisation function and the arbitration detectable function at multimaster.

Operations of master transmission and master reception with special serial I/O are explained in the following:

(1) Master transmission

To generate an interrupt at the end of transmission, set bit 7 of special mode register 2 (address $00DB_{16}$) to "1" so as to special mode serial I/O interrupt is selected. Then set bit 3 of interrupt control register 2 (address $00FF_{16}$) to "1" so as to special mode serial I/O interrupt is enabled. Clear the interrupt disable flag I to "0" by using the CLI instruction

The output signals of master transmission SDA and SCL are output from ports $P4_4$ and $P4_5$. Set all bits (bits 4 and 5) corresponding to $P4_4$ and $P4_5$ of the port P4 register (address $00C8_{16}$) and the port P4 direction register (address $00C9_{16}$) to "1".

Set the transmission clock. The transmission clock uses the overflow signal of timer 4. Set appropriate value in timer 4. (For instance, if $f(X_{IN})/16$ is selected as the clock source of timer 4 and 4 is set in timer 4 when $f(X_{IN})$ is 4MHz, the master transmission clock frequency is 25kHz.)

Set contents of the special mode register 2 (address $00DB_{16}$). (Usually, "83 $_{16}$ ".)

Set the bit 3 of serial I/O2 mode register (address $00DE_{16}$). After that set the special mode register 1 (address $00DA_{16}$). Figure 15 shows the structure of special mode registers 1 and 2.

Initial setting is completed by the above procedure.

Write data to be transmitted in the special serial I/O regis-

ter (address 00D9₁₆). Immediately after this, clear bits 0 and 1 of special mode regiser 2 (to "0") to make both SDA and SCL output to "L". This is for arbitration. The start signal has been completed.

The hardware automatically sends out data of 9-clock cycle. The 9th clock is for ACK reception and the output level becomes "H" at this clock. If other master outputs the start signal to transmit data simultaneously with this 9th clock, it is not detected as an arbitration-lost.

When the ACK bit has been transmitted, bit 3 of the interrupt request register 2 is set to "1" (issue of interrupt request), notifying the end of data transmission.

To transmit data successively, write data to be sent to the special serial I/O register, and set the interrupt enabled state again. By repeating this procedure, unlimited number of bytes can be transmitted.

To terminate data transfer, clear bits 0 and 1 of the special mode register to "0", set bit 1 clock SCL to "1", then set bit 1 data SDA to "1". This procedure transmits the stop signal. Figure 13 shows master transmission timing explained above.

(2) Master reception

Master reception is carried out in the interrupt routine after data is transferred by master transmission. For master transmission and interrupt thereafter, see the preceding section (1) Master transmission.

In the interrupt routine, set master reception ACK provided (26_{16}) in the special mode register 1 (address $00DA_{16}$), and write "FF₁₆" in the special serial I/O register (address $00D9_{16}$). This sets data line SDA to "H" and to perform 8-clock master reception. Then, "L" is transmitted to data line SDA for ACK receiving. In the ACK provided mode, the above ACK is automatically sent out.

Repeat the above receiving operation for a necessary number of times. Then return to the master transmission mode and transmit the stop signal by the same procedure for the master transmission.

Figure 14 shows master reception timing.

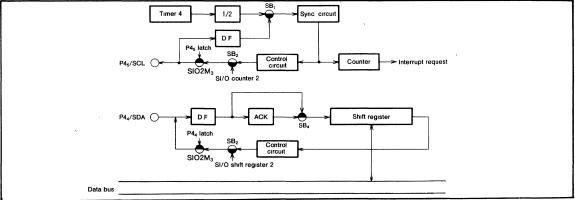


Fig. 12 Block diagram of special serial I/O

*: Purchase of Mitsubishi Electric Corporation's I²C components converys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

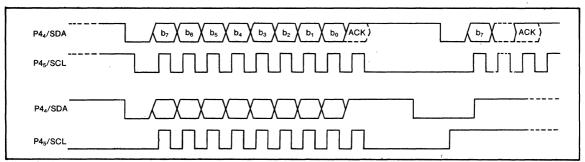


Fig. 13 Master transmission timing

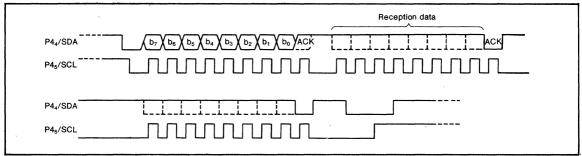


Fig. 14 Master reception timing

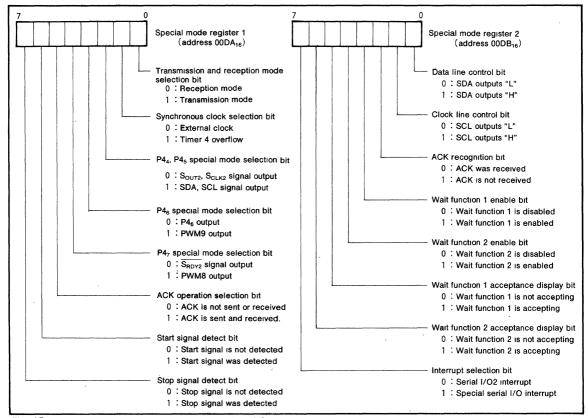


Fig. 15 Structure of special mode registers 1 and 2

M37102M8-XXXSP/FP M37201M6-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

PWM OUTPUT CIRCUIT

(1) Introduction

The M37102M8-XXXSP is equipped with one 14-bit PWM (DA) and ten 8-bit PWMs (PWM0-PWM9). The 14-bit resolution gives DA the minimum resolution bit width of 500ns (for X_{IN} =4MHz) and a repeat period of 8192 μ s. PWM0-PWM9 have a 8-bit resolution with minimum resolution bit width of 8 μ s and repeat period of 2048 μ s.

Block diagram of the PWM is shown in Figure 16.

The PWM timing generator section applies individual control signals to DA and PWM0-9 using clock input X_{IN} divided by 2 as a referece signal.

(2) Data setting

The output pins PWM0-7 are in common with port P6 and PWM8, 9 are in common with port P4₆, P4₇.

For PWM output, each PWM output selection bit (bit 1 to 7 of PWM output control register 1, bit 0, 1 of PWM output control register 2, bit 3, 4 of special mode register 1 and bit 4 of serial I/O 2 mode register) should be set. When DA is used for output, first set the higher 8-bit of the DA-H register (address 00CE₁₆), then the lower 6-bit of the DA-L register (address 00CF₁₆).

When one of the PWM0-9 is used for output, set the 8-bit in the PWM0-9 register (address 00D0₁₆ to 00D4₁₆, 00F6₁₆ to 00FA₁₆), respectively.

3) Transferring data from registers to latches

The data written to the PWM registers is transferred to the PWM latches at the repetition of the PWM period. The signals output to the PWM pins correspond to the contents of these latches. When data in each PWM register is read, data in these latches has already been read allowing the data output by the PWM to be confirmed. However, bit 7 of the DA-L register indicated the completion of the data transfer from the DA register to the DA latch. If bit 7 is "0", the transfer has been completed, if bit 7 is "1", the transfer has not yet begun.

(4) Operation of the 8-bit PWMs

The timing diagram of the ten 8-bit PWMs (PWM0-9) is shown in Figure 17. One period (T) is composed of 256 (2^8) segments.

There are eight different pulse types configured from bits 0 to 7 representing the significance of each bit. These are output within one period in the circuit internal section. Refer to Figure 17 (a).

Eight different pulses can be output from the PWM. These can be selected by bits 0 through 7. Depending on the content of the 8-bit PWM latch, pulses from 7 to 0 is selected. The PWM output is the difference of the sum of each of these pulses. Several examples are shown in Figure 17 (b). Changes in the contents of the PWM latch allows the selection of 256 lengths of highlevel area outputs varying from 0/256 to 255/256. An length of entirely high-level output cannot be output, i.e. 256/256.

(5) 14-bit PWM operation

The output example of the 14-bit PWM is shown in Figure 18. The 14-bit PWM divides the data within the PWM latch into the lower 6 bits and higher 8 bits.

A high-level area within a length D_H times τ is output every short area of t=256 τ =128 μ s as determined by data D_H of the higher 8 bits.

Thus, the time for the high-level area is equal to the time set by the lower 8 bits or that plus τ . As a result, the short-area period t (=128 μ s, approx. 7.8kHz) becomes an approximately repetitive period.

(6) Output after reset

At reset the output of port P4, P6 is in the high impedance state and the contents of the PWM register and latch are undefined. Note that after setting the PWM register, its data is transferred to the latch.

Table 2. Relation between the 6 low-order bits of data and high-level area increase space

6 low-order bits of data	Area longer by τ than that of other $t_m(m = 0 \text{ to } 63)$
0 0 0 0 0 LSB	Nothing
000001	m=32
000010	m=16,48
000100	m= 8, 24, 40, 56
001000	m = 4, 12, 20, 28, 36, 44, 52, 60
010000	m= 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62
100000	m=1,3,5,7,57,59,61,63

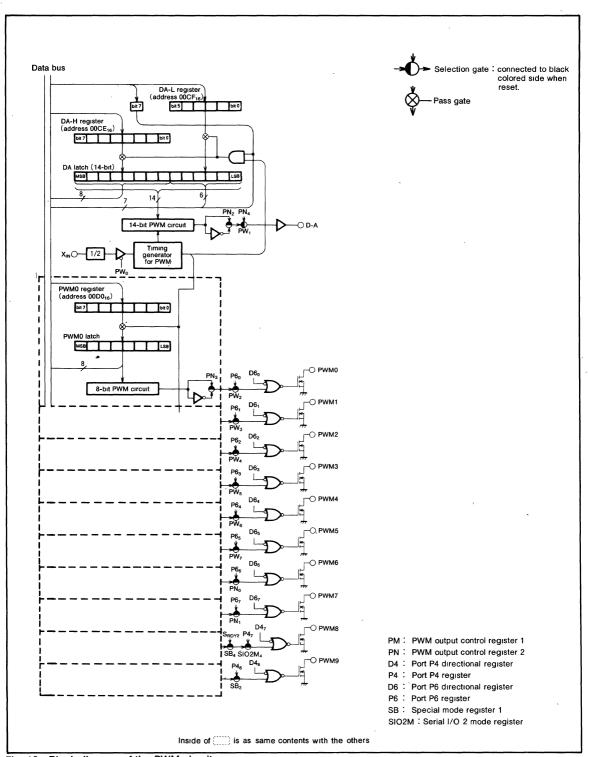


Fig. 16 Block diagram of the PWM circuit

M37102M8-XXXSP/FP M37201M6-XXXSP

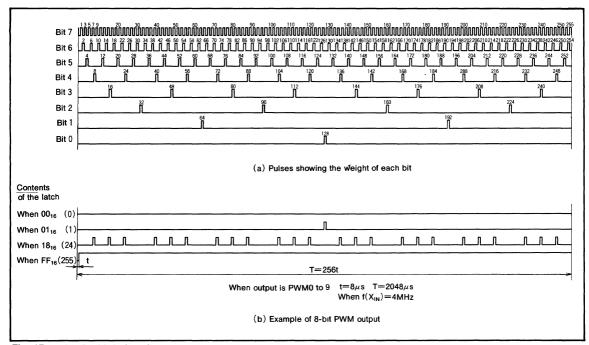


Fig. 17 8-bit PWM timing diagram

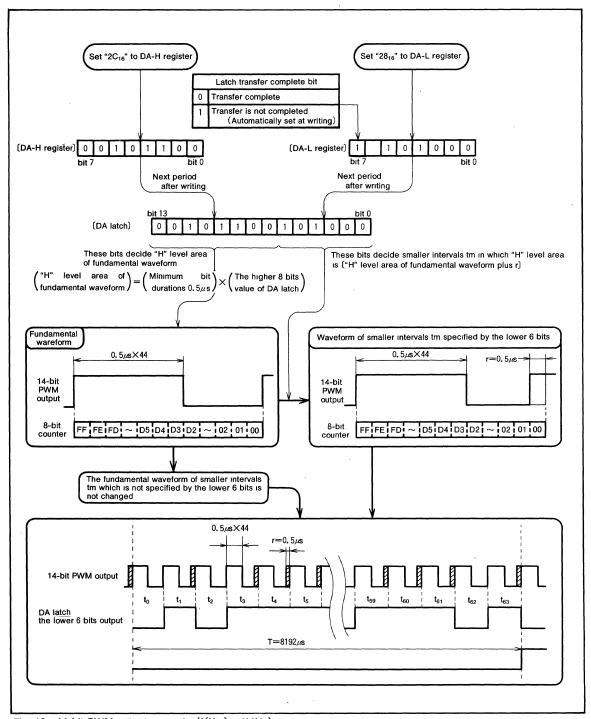


Fig. 18 14-bit PWM output example $(f(X_{IN})=4MHz)$

M37102M8-XXXSP/FP M37201M6-XXXSP

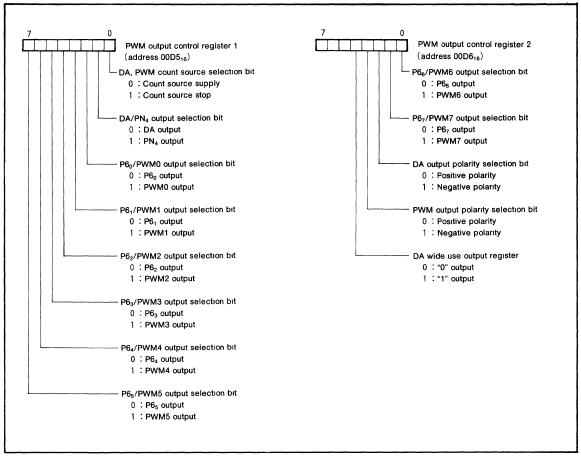


Fig. 19 Structure of PWM output control register 1 and 2

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

A-D CONVERTER

Block diagram of A-D converter is shown in Figure 21. A-D converter consists of 4-bit D-A converter and comparator. The A-D control register can generate 1/16 $V_{\rm CC}$ -step internal analog voltage based on the settings of bits 0 to 3.

Table 3 gives the relation between the descriptions of A-D control register bits 0 to 3 and the generated internal analog voltage. The comparison result of the analog input voltage and the internal analog voltage is stored in the A-D control register, bit 4.

The data is compared by setting the directional register corresponding to port P3 $_5$, P3 $_6$ to "0" (port P3 $_5$, P3 $_6$ enters the input mode), to allow port P3 $_5$ /A-D1, P3 $_6$ /A-D2 to be used as the analog input pin. The digital value corresponding to the internal analog voltage to be compared is then written in the A-D control register, bit 0 to 3 and an analog input pin is selected. After 16 machine cycle, the voltage comparison starts.

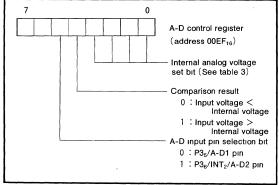


Fig. 20 Structure of A-D control register

Table 3. Relationship between the contents of A-D control register and internal analog voltage

	A-D control register			Internal analas cultura
Bit 3	Bit 2	Bit 1	Bit 0	Internal analog voltage
0	0	0	0	1/32 V _{CC}
0	0	, 0	1	3/32 V _{CC}
0	0	1	0	5/32 V _{CC}
0	0	1	1	7/32 V _{cc}
0	1	0	0	9/32 V _{CC}
0	1	0	1	11/32 V _{CC}
0	1	1	0	13/32 V _{CC}
0	1	1	1	15/32 V _{CC}
. 1	0	0	0	17/32 V _{CC}
1	0	0	1	19/32 V _{CC}
1	0	1	0	21/32 V _{CC}
1	0	1	1	23/32 V _{CC}
1	1	0	0	25/32 V _{CC}
1	1	0	1	27/32 V _{CC}
1	1	1	0	29/32 V _{CC}
1	1	1	1	31/32 V _{CC}

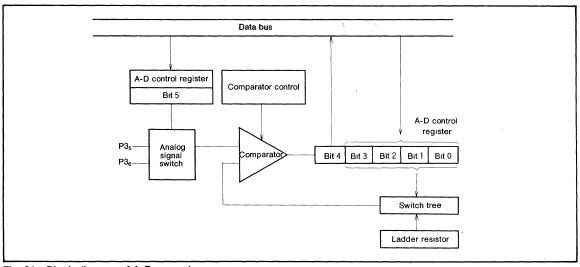


Fig. 21 Block diagram of A-D converter

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

CRT DISPLAY FUNCTIONS

(1) Outline of CRT Display Functions

Table 4 outlines the CRT display functions of the M37102M8-XXXSP. The M37102M8-XXXSP incorporates a 24 columns X 3 lines CRT display control circuit. CRT display is controlled by the CRT display control register.

Up to 126 kinds of characters can be displayed, and colors can be specified for each character. Four colors can be displayed on one screen. A combination of up to 15 colors can be obtained by using each output signal (R, G, B, and I).

Characters are displayed in a 12×16 dot configuration to obtain smooth character patterns. (See Figure 22)

The following shows the procedure how to display characters on the CRT screen.

Table 4. Outline of CRT display functions

Parameter		Functions	
Number of display		24 characters×3 lines	
character		24 Characters > 3 lines	
Character		12×16 dots (See Figure 22)	
config	guration	12/10 dots (See Figure 22)	
Kinds	of character	126	
Chara	acter size	4 size selectable	
Color	Kinds of color	15 (max.)	
Color	Coloring unit	a character	
Display expansion		Possible (multiple lines)	

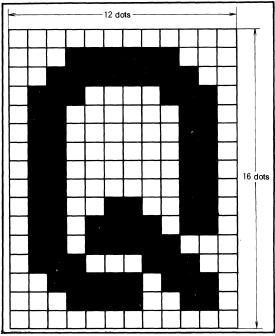


Fig. 22 CRT display character configuration

- ① Set the character to be displayed in display RAM.
- ② Set the display color by using the color register.
- ③ Specify the color register in which the display color is set by using the display RAM.
- ④ Specify the vertical position and character size by using the vertical position register and the character size register.
- Specify the horizontal position by using the horizontal position register.
- Write the display enable bit to the designated block display flag of the CRT control register. When this is done, the CRT starts operation according to the input of the V_{SYNC} signal.

The CRT display circuit has an extended display mode. This mode allows multiple lines (more than 4 lines) to be displayed on the screen by interrupting the display each time one line is displayed and rewriting data in the block for which display is terminated by software.

Figure 24 shows a block diagram of the CRT display control circuit. Figure 23 shows the structure of the CRT display control register.

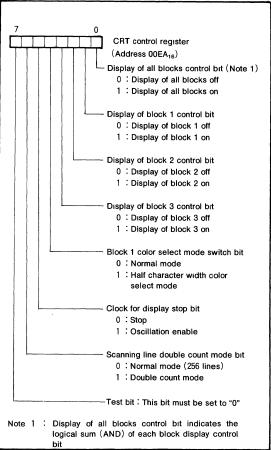


Fig. 23 Structure of CRT control register

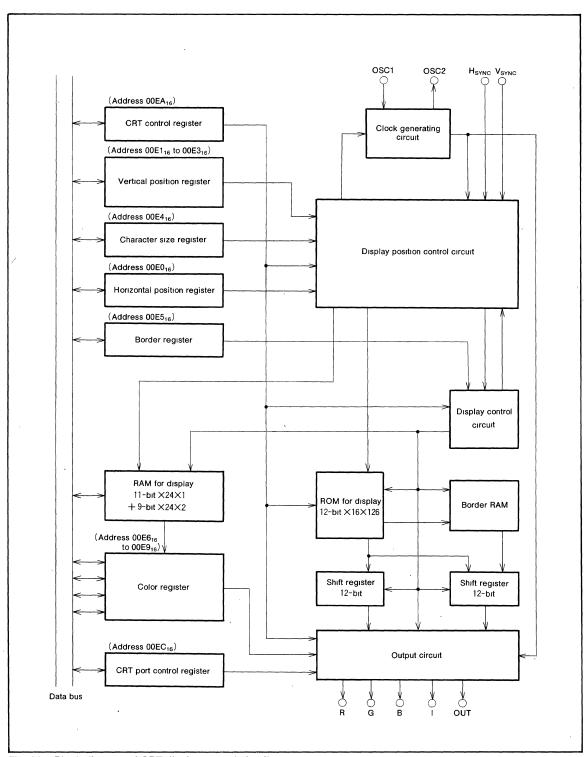


Fig. 24 Block diagram of CRT display control circuit

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

(2) Display Position

The display positions of characters are specified in units called a "block." There are three blocks, block 1 to block 3. Up to 24 characters can be displayed in one block. (See (4) Display Memory.)

The display position of each block in both horizontal and vertical directions can be set by software.

The horizontal direction is common to all blocks, and is selected from 64-step display positions in units of 4Tc (Tc =oscillation cycle for display).

The display position in the vertical direction is selected from 128-step display positions for each block in units of four scanning lines.

If the display start position of a block overlaps with some other block ((b) in Figure 27), a block of the smaller block No. (1 to 3) is displayed.

If when one block is displaying, some other block is displayed at the same display position ((c) in Figure 27), the former block is overridden and the latter is displayed.

The vertical position can be specified from 128-step positions (four scanning lines per step) for each block by setting values 00_{16} to $7F_{16}$ to bits 0 to 6 in the vertical position register (addresses $00E1_{16}$ to $00E3_{15}$). Figure 25 shows the structure of the vertical position register.

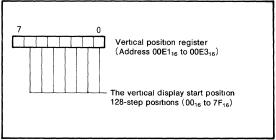


Fig. 25 Structure of vertical position registers

The horizontal direction is common to all blocks, and can be specified from 64 -step display positions (4Tc per step (Tc=oscillation cycle for display) by setting values 00_{16} to $3F_{16}$ to bits 0 to 5 in the horizontal position register (address $00E0_{16}$). Figure 26 shows the structure of the horizontal position register.

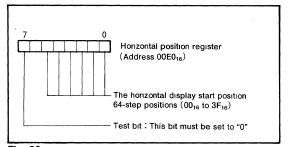


Fig. 26 Structure of horizontal position register

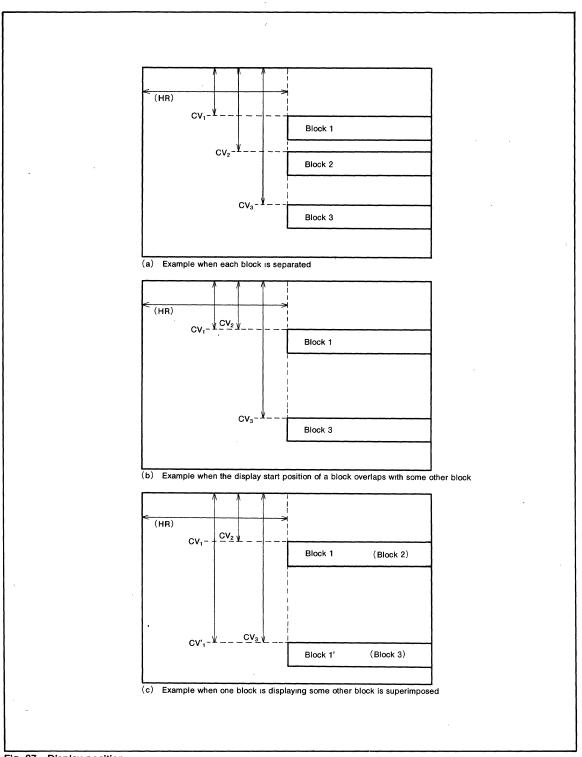


Fig. 27 Display position

M37102M8-XXXSP/FP M37201M6-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER
with ON-SCREEN DISPLAY CONTROLLER

(3) Character Size

The size of characters to be displayed can be selected from four sizes for each block. Use the character size register (address $00E4_{16}$) to set a character size. The character size in block 1 can be specified by using bits 0 and 1 in the character size register; the character size in block 2 can be specified by using bits 2 and 3; the character size in block 3 can be specified by using bits 4 and 5. Figure 28 shows the structure of the character size register.

The character size can be selected from four sizes: small size, medium size, large size, and extra large size. Each character size is determined by the number of scanning lines in the height (vertical) direction and the cycle of display oscillation (=Tc) in the width (horizontal) direction. The small size consists of [one scanning line] × [1 Tc]; the

The small size consists of lone scanning line] \times (1 Tc); the medium size consists of (two scanning lines) \times (2 Tc); the large size consists of (three scanning lines) \times (3 Tc); and the extra large size consists of (four scanning lines) \times (4 Tc). Table 5 shows the relationship between the set values in the character size register and the character sizes.

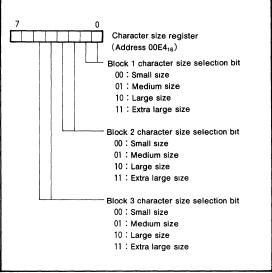


Fig. 28 Structure of character size register

Table 5. The relationship between the set values of the character size register and the character sizes

Set values of the character size register		Character	Width (horizontal)	Height (vertical)
CS _{n1}	CS _{n0}	size	direction	direction
0	0	Small	1 T _C	1
0	1	Medium	2 T _C	2
1	0	Large	3 T _C	3
1	1 .	Extra large	4 T _C	4

Note: The display start position in the horizontal direction is not affected by the character size. In other words, the horizontal start position is common to all blocks even when the character size varies with each block (See Figure 29).

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

(4) Display Memory

There are two types of display memory: ROM of CRT display (3000₁₆ to 3FFF₁₆) used to store character dot data (masked) and display RAM (2000₁₆ to 20D7₁₆) used to specify the colors of characters to be displayed. The following describes each type of display memory.

① ROM for CRT display (3000₁₆ to 3FFF₁₆)

The CRT display ROM contains dot pattern data for characters to be displayed. For characters stored in this ROM to be actually displayed, it is necessary to specify them by writing the character code inherent to each character (code determined based on the addresses in the CRT display ROM) into the CRT display RAM.

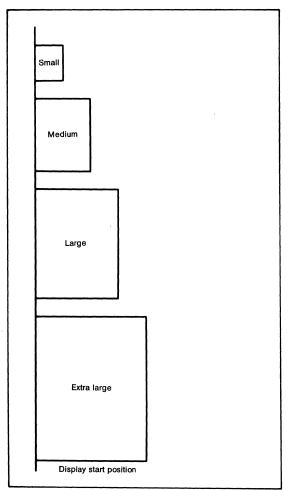


Fig. 29 Display start position of each character size (horizontal direction)

The CRT display ROM has a capacity of 4K bytes. Because 32 bytes are required for one character data, the ROM can contain up to 128 kinds of characters. Actually, however, because two characters are required for test pattern use, the ROM can contain up to 126 kinds of characters for display use.

The CRT display ROM space is broadly divided into two areas. The [vertical 16 dots] \times [horizontal (left side) 8 dots] data of display characters are stored in addresses 3000_{16} to $37FF_{16}$; the [vertical 16 dots] \times [horizontal (right side) 4 dots] data of display characters are stored in addresses 3800_{16} to $3FFF_{16}$. (See Figure 30) Note however that the four upper bits in the data to be written to addresses 3800_{16} to $3FFF_{16}$ must be set to "1" (by writing data $F0_{16}$ to FF_{16}).

Table 6. Character code list

Character code	Contained up addre	Contained up address of character data		
Character code	Left 8 dots lines	Right 4 dots lines		
	300016	380016		
00 ₁₆	to	to		
	300F ₁₆	380F ₁₆		
	3010 ₁₆	3810 ₁₆		
01 ₁₆	to	to		
	301F ₁₆	381F ₁₆		
	3020 ₁₆	382016		
02 ₁₆	to	to		
	302F ₁₆	382F ₁₆		
	303016	383016		
03 ₁₆	to	to		
	303F ₁₆	383F ₁₆		
:	:	:		
	310016	390016		
10 ₁₆	to	to		
	310F ₁₆	390F ₁₆		
	3110 ₁₆	3910 ₁₆		
11 ₁₆	to _	to		
	311F ₁₆	391F ₁₆		
:	:	:		
	34F0 ₁₆	3CF0 ₁₆		
4F ₁₆	to	to		
.5	34FF ₁₆	3CFF ₁₆		
	350016	3D00 ₁₆		
50 ₁₆	to	to		
-	350F ₁₆	3D0F ₁₆		
:	:	:		
	37D0 ₁₆	3FD0 ₁₆		
7D ₁₆	to	to		
. = 10	37DF ₁₆	3FDF ₁₆		
	37E0 ₁₆	3FE0 ₁₆		
7E ₁₆ *	to	to		
10	37EF ₁₆	3FEF ₁₆		
	37F0 ₁₆	3FF0 ₁₆		
7F ₁₆ *	to	to		
	37FF ₁₆	3FFF ₁₆		

* For test pattern

MITSUBISHI MICROCOMPUTERS M37102M8-XXXSP/FP

M37102M8-XXXSP/FP M37201M6-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

The character code used to specify a character to be displayed is determined based on the address in the CRT display ROM in which that character is stored.

Assume that data for one character is stored at $3XXO_{16}$ to $3XXF_{16}$ (XX denotes 00_{16} to $7F_{16}$) and $3YYO_{16}$ to $3YYF_{16}$ (YY denotes 80_{16} to FF_{16}), then the character code for it is "XX₁₆".

In other words, character code for any given character is configured with two middle digits of the four-digit (hexnotated) address (3000_{16} to $37FF_{16}$) where data for that character is stored.

Table 6 lists the character codes.

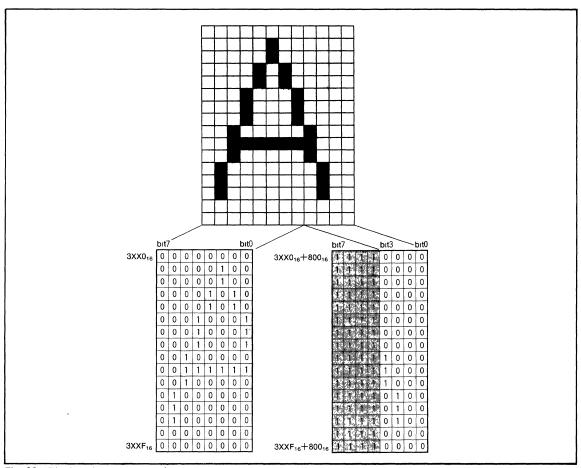


Fig. 30 Display character stored area

M37102M8-XXXSP/FP M37201M6-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

② CRT display RAM (2000₁₆ to 20D7₁₆)

The CRT display RAM is allocated at addresses 2000₁₆ to 20D7₁₆, and is divided into a display character code specifying part and display color specifying part for each block. Table 7 shows the contents of the CRT display RAM.

When a character is to be displayed at the first character (leftmost) position in block 1, for example, it is necessary to write the character code to the seven low-order bits (bits 0 to 6) in address 2000₁₆ and the color register No. to the two low-order bits (bits 0 and 1) in address 2080₁₆. The color register No. to be written here is one of the four color registers in which the color to be displayed is set in advance. For details on color registers, refer to (5) Color Registers.

The structure of the CRT display RAM is shown in Figure 30. Write the character patterns at Table 8 and 9, when M37102M8-XXXSP is mask-ordered.

Table 7. The contents of the CRT display RAM

Block	Display position (from left)	Character code specification	Color specification
	1st column	2000 ₁₆	2080 ₁₆
	2nd column	2001 ₁₆	2081 ₁₆
	3rd column	2002 ₁₆	2082 ₁₆
Block 1	:	:	:
	22th column	2015 ₁₆	2095 ₁₆
ν.	23th column	2016 ₁₆	2096 ₁₆
	24th column	2017 ₁₆	2097 ₁₆
		2018 ₁₆	2098 ₁₆
	Not used	to	to
		201F ₁₆	209F ₁₆
	1st column	2020 ₁₆	20A0 ₁₆
	2nd column	2021 ₁₆	20A1 ₁₆
	3rd column	2022 ₁₆	20A2 ₁₆
Block 2	:	:	:
	22th column	2035 ₁₆	20B5 ₁₆
	23th column	2036 ₁₆	20B6 ₁₆
	24th column	2037 ₁₆	20B7 ₁₆
		2038 ₁₆	20B8 ₁₆
	Not used	to	to
		203F ₁₆	20BF ₁₆
	1st column	2040 ₁₆	20C0 ₁₆
	2nd column	2041 ₁₆	20C1 ₁₆
	3rd column	2042 ₁₆	20C2 ₁₆
Block 3	:	:	:
	22th column	2055 ₁₆	20D5 ₁₆
	23th column	2056 ₁₆	20D6 ₁₆
	24th column	2057 ₁₆	20D7 ₁₆
		2058 ₁₆	
	Not used	to	
		207F ₁₆	

M37102M8-XXXSP/FP M37201M6-XXXSP

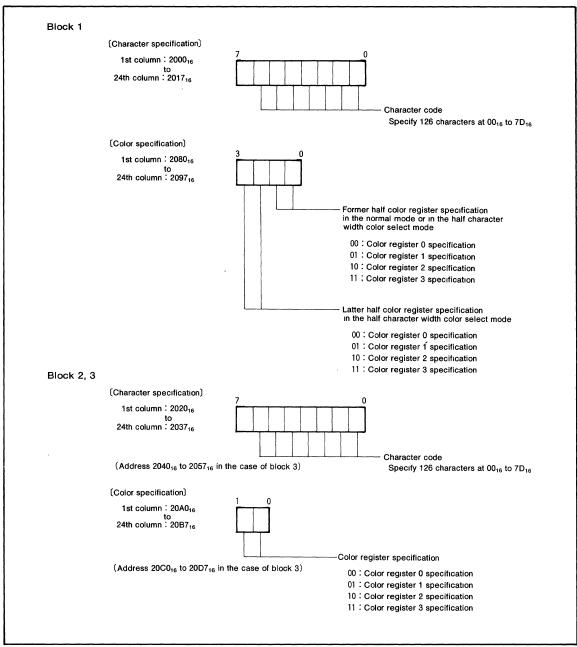


Fig. 31 Structure of the CRT display RAM

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER
with ON-SCREEN DISPLAY CONTROLLER

Table 8. Test character patterns 1

Address	Data	Address	Data
37E0 ₁₆	4016	3FE0 ₁₆	F0 ₁₆
37E1 ₁₆	0416	3FE1 ₁₆	F0 ₁₆
37E2 ₁₆	0016	3FE2 ₁₆	F4 ₁₆
37E3 ₁₆	2016	3FE3 ₁₆	F0 ₁₆
37E4 ₁₆	0216	3FE4 ₁₆	F0 ₁₆
37E5 ₁₆	0016	3FE5 ₁₆	F2 ₁₆
37E6 ₁₆	1016	3FE6 ₁₆	F0 ₁₆
37E7 ₁₆	0116	3FE7 ₁₆	F0 ₁₆
37E8 ₁₆	8016	3FE8 ₁₆	F0 ₁₆
37E9 ₁₆	0816	3FE9 ₁₆	F0 ₁₆
37EA ₁₆	0016	3FEA ₁₆	F8 ₁₆
37EB ₁₆	4016	3FEB ₁₆	F0 ₁₆
37EC ₁₆	0416	3FEC ₁₆	F0 ₁₆
37ED ₁₆	0016	3FED ₁₆	F4 ₁₆
37EE ₁₆	2016	3FEE ₁₆	F0 ₁₆
37EF ₁₆	0216	3FEF ₁₆	F0 ₁₆

Table 9. Test character patterns 2

Address	Data	Address	Data
37F0 ₁₆	0016	3FF0 ₁₆	F0 ₁₆
37F1 ₁₆	0016	3FF1 ₁₆	F0 ₁₆
37F2 ₁₆	0016	3FF2 ₁₆	F0 ₁₆
37F3 ₁₆	0016	3FF3 ₁₆	F0 ₁₆
37F4 ₁₆	0016	3FF4 ₁₆	F0 ₁₆
37F5 ₁₆	0016	3FF5 ₁₆	F0 ₁₆
37F6 ₁₆	0016	3FF6 ₁₆	F0 ₁₆
37F7 ₁₆	0016	3FF7 ₁₆	F0 ₁₆
37F8 ₁₆	0016	3FF8 ₁₆	F0 ₁₆
37F9 ₁₆	0016	3FF9 ₁₆	F0 ₁₆
37FA ₁₆	0016	3FFA ₁₆	F0 ₁₆
37FB ₁₆	0016	3FFB ₁₆	F0 ₁₆
37FC ₁₆	0016	3FFC ₁₆	F0 ₁₆
37FD ₁₆	0016	3FFD ₁₆	F0 ₁₆
37FE ₁₆	0016	3FFE ₁₆	F0 ₁₆
37FF ₁₆	· 00 ₁₆	3FFF ₁₆	F0 ₁₆

(5) Color Registers

The color of a displayed character can be specified by setting the color to one of the four color registers (CO0 to CO3: addresses 00E6₁₆ to 00E9₁₆) and then specifying that color register with the CRT display RAM.

There are four color outputs: R, G, B, and I. By using a combination of these outputs, it is possible to set 2^4 -1 (when no output) = 15 colors. However, because only four color registers are available, up to four colors can be displayed at one time.

R, G, B, and I outputs are set by using bits 0 to 3 in the color register. Bit 4 in the color register is used to set a character or blank output; bit 5 is used to specify whether a character output or blank output. Figure 32 shows the structure of the color register.

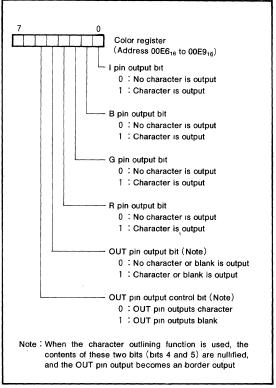


Fig. 32 Structure of color registers

M37102M8-XXXSP/FP M37201M6-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER
with ON-SCREEN DISPLAY CONTROLLER

(6) Half Character Width Color Select Mode
By setting "1" to bit 4 in the CRT control register (address
00EA₁₆) it is possible to specify colors in units of a half
character size (vertical 16 dots×horizontal 6 dots) for characters in block 1 only.

In the half character width color select mode, colors of display characters in block 1 are specified as follows:

- The left half of the character is set to the color of the color register that is specified by bits 0 and 1 at the color register specifying addresses in the CRT display RAM (addresses 2080₁₆ to 2097₁₆).
- ②The right half of the character is set to the color of the color register that is specified by bits 2 and 3 at the color register specifying address in the CRT display RAM (addresses 2080₁₆ to 2097₁₆).

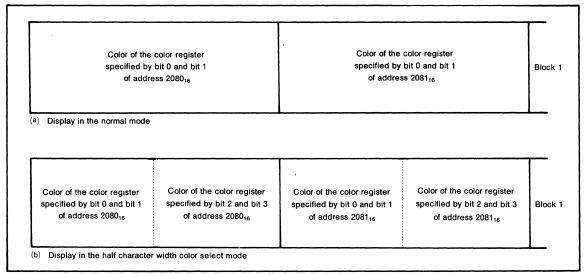


Fig. 33 Difference between normal color select mode and half character width color select mode

M37102M8-XXXSP/FP M37201M6-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

(7) Multiline Display

The M37102M8-XXXSP can normally display three lines on the CRT screen by displaying three blocks at different vertical positions.

In addition, it allows up to 16 lines to be displayed by using a CRT interrupt and display block counter.

The CRT interrupt works in such a way that when display of one block is terminated, an interrupt request is generated. In other words, character display for a certain block is initiated when the scanning line reaches the display position for that block (specified with vertical and horizontal position registers) and when the range of that block is exceeded, an interrupt is applied.

The display block counter is used to count the number of blocks that have just been displayed. Each time the display of one block is terminated, the contents of the counter are incremented by one.

For multiline display, it is necessary to enable the CRT interrupt (by clearing the interrupt disable flag to "0" and setting the CRT interrupt enable bit (bit 4 at address $00FE_{16}$) to "1"), then execute the following processing in the CRT interrupt handling routine.

- ①Read the value of the display block counter.
- ②The block for which display is terminated (i.e., the cause of CRT interrupt generation) can be determined by the value read in ①.
- ③ Replace the display character data and display position of that block with the character data (contents of CRT display RAM) and vertical display position (contents of vertical position register) to be displayed next.

Figure 34 shows the structure of the display block counter.

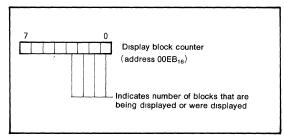


Fig. 34 Structure of display block counter

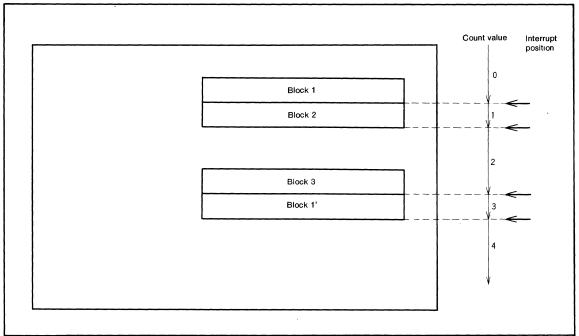


Fig. 35 Timing of CRT interrupt and count value of display block counter

M37102M8-XXXSP/FP M37201M6-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

(8) Scanning Line Double Count Mode

One dot in a displayed character is normally shown by one scanning line. In the scanning line double count mode, one dot can be shown by two scanning lines. As a result, the displayed dot is extended two times the normal size in the vertical direction only. (That is to say, the height of a character is extended twofold.)

In addition, because the scanning line count is doubled, the display start position of a character is also extended two-fold in the vertical direction. In other words, whereas the contents set in the vertical position register in the normal mode are 128 steps from 00_{16} to $7F_{16}$, or four scanning lines per step, the number of steps in the scanning line double count mode is 64 from 00_{16} to $3F_{16}$, or eight scanning lines per step.

If the contents of the vertical position register for a block are set in the address range of 40_{16} to $7F_{16}$ in the scanning line double count mode, that block cannot be displayed (not output to the CRT screen).

In the scanning line double count mode can be specified by setting bit 6 in the CRT control register (address $00EA_{16}$) to "1".

Because this function works in units of screen, even when the mode is changed the mode about the scanning line count during display of one screen, the double count mode only becomes valid from the time the next screen is displayed.

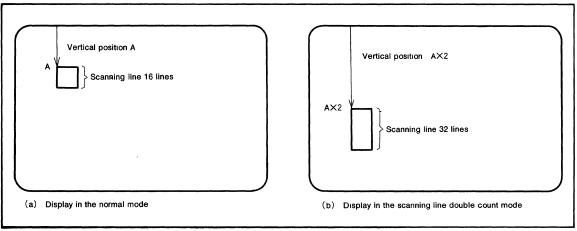


Fig. 36 Display in the normal mode and in the scanning line double count mode

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

(9) Character Border Function

An border of a one clock (one dot) equivalent size can be added to a character to be displayed in both horizontal and vertical directions.

The border is output from the OUT pin. In this case, bits 4 and 5 in the color register (contents output from the OUT pin) are nullified, and the border is output from the OUT pin instead.

Border can be specified in units of block by using the border select register (address $00E5_{16}$). Table 10 shows the relationship between the values set in the border select register and the character border function. Figure 38 shows the structure of the border select register.

Table 10. The relationship between the value set in the border selection register and the character border function

Border selec	ction register	Functions	Example of output		
MDn1	MDn0	runctions	Example of output		
	0	Normal	R, G, B, I output		
^	X 0	Normal	OUT output		
0	1	Bandan in Junium ale annu tau	R, G, B, I output		
"	'	Border including character	OUT output		
1	1		R, G, B, I output		
\		Border not including character	OUT output		

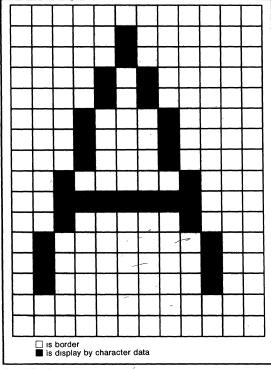


Fig. 37 Example of border

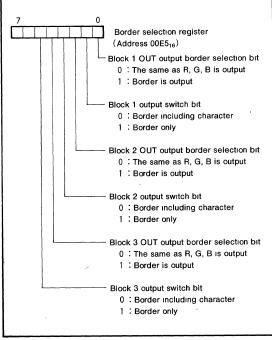


Fig. 38 Structure of border selection register

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

(10) CRT Output Pin Control

CRT output pins R, G, B, I, and OUT are respectively shared with port P5₂, P5₃, P5₄, P5₅, and P5₆. When the corresponding bits in the port P5 direction register are cleared to "0", the pins are set for CRT output; when the bits are set to "1", the pins function as port P5 (general-purpose output pins).

The polarities of CRT outputs (R, G, B, I, and OUT, as well as H_{SYNC} and V_{SYNC}) can be specified by using the CRT port control register (address $00EC_{16}$).

Use bits 0 to 4 in the CRT port control register to set the output polarities of $H_{\rm SYNC},\,V_{\rm SYNC},\,R/G/B,\,I,$ and OUT. When these bits are cleared to "0", a positive polarity is selected; when the bits are set to "1", a negative polarity is selected. Bits 5 to 7 in the CRT port control register are used to specify pin by pin whether normal video signals or R-MUTE, G-MUTE, and B-MUTE signals are output from each pin (R, G, B). When set for R-MUTE, G-MUTE, and B-MUTE outputs, the whole background colors of the screen become red, green, and blue.

Figure 39 shows the structure of the CRT port control register.

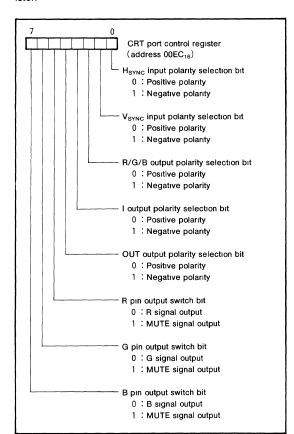


Fig. 39 Structure of CRT port control register

(11) Scroll Function

① Scroll mode

The M37102M8-XXXSP allows the display area to be gradually expanded or shrunk in the vertically direction in units of 1H (H: $H_{\rm SYNC}$ signal). There are three modes for this scroll method. Each mode has Down and UP modes, providing a total of six modes.

Table 11 shows the contents of each scroll mode.

2 Scroll speed

The scroll speed is determined by the vertical synchronization (V_{SYNC}) signal. For the NTSC interlace method, assuming that

V=16.7ms 262.5 H_{SYNC} signals per screen we obtain the scroll speed as shown in Table 12.

Scroll resolution varies with each scroll mode. In mode 1 and mode 2, one of three resolutions (1H, 2H, 4H) can be selected. In mode 3, scroll is done in units of 4H alone.

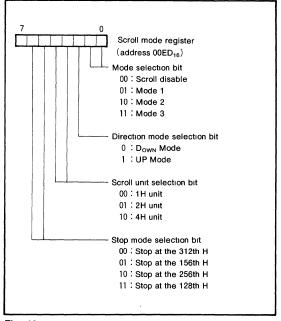


Fig. 40 Structure of scroll mode register

Table 11. Scroll operation in each mode and the values of scroll mode register

Mode		Scroll operation		Scroll mode register		
				Bit 2	Bit 1	Bit 0
1	Down	Appear from upper side	A B C D E F	0	0	1
	UP	Erase from	M N O P Q R S T U V W X	1	0	1
2	D _{own}	Erase from upper side	ABCDEF GHIJKL MNOPQR STUVWX	0	1	0
2	UP	Appear from lower side		1	1	0
3	D _{OWN}	Erase from both upper and lower side	ABCDEF GHIJKL	0	1	1
	UP	Appear to both upper and lower side	M N O P Q R S T U V W X	1	1	1

Table 12. Scroll speed

Scroll resolution	Scroll speed (in all picture)
1 H unit	$16.7 \text{ (ms) } \times 262.5 \div 1 \div 4 \text{ (s)}$
2 H unit	16.7 (ms) $\times 262.5 \div 2 \div 2$ (s)
4 H unit	16.7 (ms) $\times 262.5 \div 4 = 1$ (s)

Table 13. Scroll mode and scroll resolution

Mode	Scroll resolution	Scroll speed
Mode 1 Mode 2	1 H Unit	about 4 second
	2 H Unit	about 2 second
	4 H Unit	about 1 second
Mode 3	4 H Unit	about 1 second

M37102M8-XXXSP/FP M37201M6-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER
with ON-SCREEN DISPLAY CONTROLLER

INTERRUPT INTERVAL DETERMINATION FUNCTION

The M37102M8-XXXSP incorporates an interrupt interval determination circuit. This interrupt interval determination circuit has an 8-bit binary counter as shown in Figure 41. Using this counter, it determines a duration of time from the rising transition (falling transition) of an input signal pulse on the INT_1 or INT_2 to the rising transition (falling transition) of the signal pulse that is input next.

The following describes how the interrupt interval is determined.

- The interrupt input to be determined (INT₁ input or INT₂ input) is selected by using bit 2 in the interrupt interval determination control register (address 00D8₁₆). When this bit is cleared to "0", the INT₁ input is selected; when the bit is set to "1", the INT₂ input is selected.
- 2. When the INT₁ input is to be determined, the polarity is selected by using bit 3 in the interrupt interval determination control register; when the INT₂ input is to be determined, the polarity is selected by using bit 4 in the interrupt interval determination control register. When the relevant bit is cleared to "0", determination is made of the interval of a positive polarity (rising

- transition); when the bit is set to "1", determination is made of the interval of a negative polarity (falling transition).
- 3. The reference clock is selected by using bit 1 in the interrupt interval determination control register. When the bit is cleared to "0", a $64\mu s$ clock is selected; when the bit is set to "1", a $32\mu s$ clock is selected (based on an oscillation frequency of 4MHz in either case).
- Simultaneously when the input pulse of the specified polarity (rising or falling transition) occurs on the INT₁ pin (or INT₂ pin), the 8-bit binary counter starts counting up with the selected reference clock (64μs or 32 μs).
- 5. Simultaneously with the next input pulse, the value of the 8-bit binary counter is loaded into the determination register (address 00D7₁₆) and the counter is immediately reset (00₁₆). The reference clock is input in succession even after the counter is reset, and the counter restarts counting up from "00₁₆"
- 6. When count value "FE₁₆" is reached, the 8-bit binary counter stops counting. Then, simultaneously when the reference clock is input next, the counter sets value "FF₁₆" to the determination register.

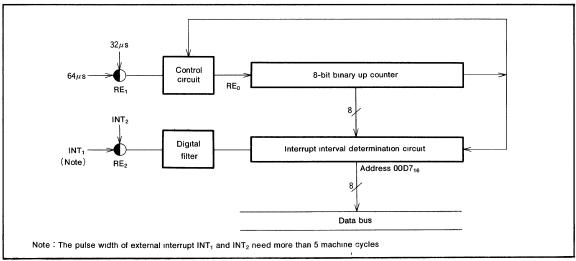


Fig. 41 Block diagram of interrupt interval determination circuit

M37102M8-XXXSP/FP M37201M6-XXXSP

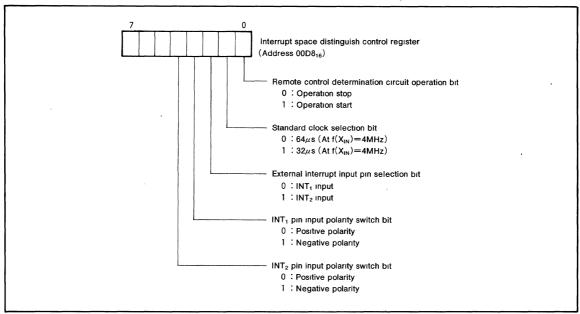
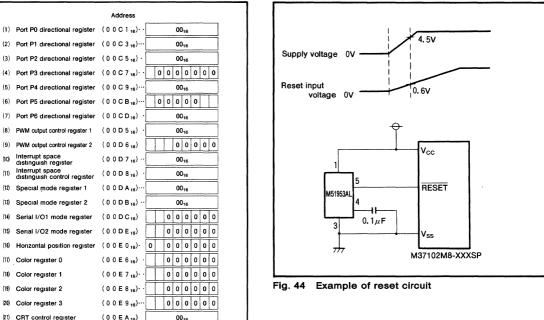


Fig. 42 Structure of interrupt space distinguish control register


SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

RESET CIRCUIT

The M37102M8-XXXSP is reset according to the sequence shown in Figure 45. It starts the program from the address formed by using the content of address FFFF₁₆ as the high order address and the content of the address FFFE₁₆ as the low order address, when the $\overline{\text{RESET}}$ pin is held at "L" level for no less than $2\mu s$ while the power voltage is $5V \pm 10\%$

and the crystal oscillator oscillation is stable and then returned to "H" level. The internal initializations following reset are shown in Figure 43.

An example of the reset circuit is shown in Figure 44. The reset input voltage must be kept below 0.6V until the supply voltage surpasses 4.5V.

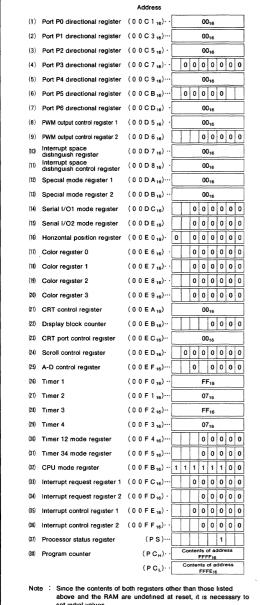


Fig. 43 Internal state of microcomputer at reset

At reset, "0" is read from all bits which is not used

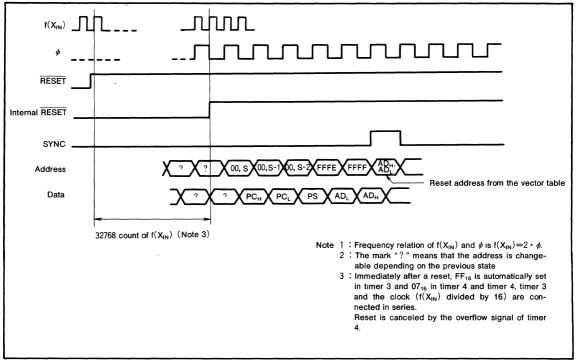


Fig. 45 Timing diagram at reset

M37102M8-XXXSP/FP M37201M6-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

I/O PORTS

(1) Port P0

Port P0 is an 8-bit I/O port with CMOS output. As shown in the memory map (Figure 3), port P0 can be accessed at zero page memory address 00C0₁₆. Port P0 has a directional register (address 00C1₁₆) which can be used to program each individual bit as input ("0") or as output ("1"). If the pins are programmed as output, the output data is latched to the port register and then output. When data is read from the output port the output pin level is not read, only the latched data in the port register is read. This allows a previously output value to be read correctly even though the output voltage level is shifted up or down. Pins set as input are in the floating state and the signal levels can thus be read. When data is written into the input port, the data is latched only to the port latch and

Depending on the contents of the processor mode bits (bit 0 and bit 1 at address 00FB₁₆), three different modes can be selected; single-chip mode, memory expansion mode and microprocessor mode.

the pin still remains in the floating state.

In these modes it functions as address (A_7-A_0) output port (excluding single-chip mode). For more details, see the processor mode information.

(2) Port P1

In single-chip mode, port P1 has the same function as port P0. In other modes, it functions as address (A_{15} - A_8) output port.

Refer to the section on processor modes for details.

(3) Port P2

In single-chip mode, port P2 has the same function as port P0. In other modes, it functions as data (D_0-D_7) input/output port. Refer to the section on processor modes for details.

(4) Port P3

Port P3 is an 7-bit I/O port with function similar to port P0, but the output structure of $P3_0$, $P3_1$ is CMOS output and $P3_2$ - $P3_6$ is N-channel open drain.

P3₂, P3₃ are in common with the external clock input pins of timer 2 and 3.

 $P3_4$, $P3_6$ are in common with the external interrupt input pins INT_1 , INT_2 and $P3_5$, $P3_6$ with the analog input pins of A-D converter A-D₁, A-D₂.

In the microprocessor mode or the memory expanding mode, $P3_0$, $P3_1$ works as R/\overline{W} signal output pin and SYNC signal output pin.

(5) Port P4

Port P4 is an 8-bit I/O port with function similar to port P0, but the output structure is N-channel open drain output.

All pins have program selectable dual functions. When a serial I/O 1 function is selected, P4₀-P4₃ work as input/output pins of serial I/O1. When a serial I/O2 function is selected, P4₄-P4₇ work as input/output pins of serial I/O2.

In the special serial I/O mode, P4₄, P4₅ work as SDA, SCL pins. P4₆, P4₇ are in common with PWM8 and 9 output pins.

- (6) OSC1, OSC2 pins
 - Clock input/output pins for CRT display function
- (7) H_{SYNC}, V_{SYNC} pins

 $H_{\mbox{\scriptsize SYNC}}$ is a horizontal synchronizing signal input pin for CRT display.

 V_{SYNC} is a vertical synchronizing signal input pin for CRT display.

- (8) R, G, B, I, OUT pins
 - This is an 5-bit output pin for CRT display and in common with $P5_2$ - $P5_6$.
- (9) Port P6

Port P6 is an 8-bit I/O port with function similar to port P0, but the output structure is N-channel open drain output.

This port is in common with 8-bit PWM output pin PWM0-PWM7.

- (10) D-A pin
 - This is a 14-bit PWM output pin.
- (11) **ø** pin

The internal system clock (1/4 the frequency of the oscillator connected between the $X_{\rm IN}$ and $X_{\rm OUT}$ pins) is output from this pin. If an STP or WIT instruction is executed, output stops after going "H".

M37102M8-XXXSP/FP M37201M6-XXXSP

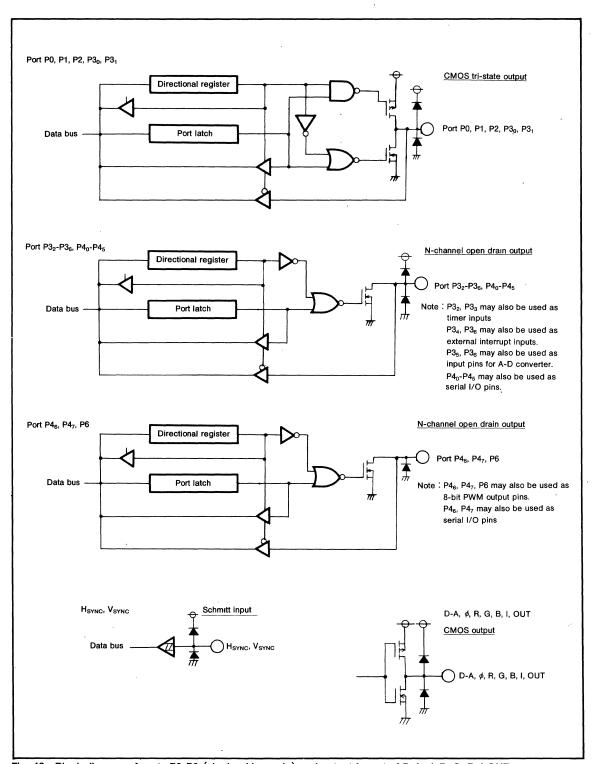


Fig. 46 Block diagram of ports P0-P6 (single-chip mode) and output format of D-A, ϕ , R, G, B, I OUT

M37102M8-XXXSP/FP M37201M6-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

PROCESSOR MODE

By changing the contents of the processor mode bit (bit 0 and 1 at address 00FB₁₆), three different operation modes can be selected; single-chip mode, memory expansion mode, and microprocessor mode.

In the memory expansion mode and the microprocessor mode, ports P0-P3 can be used as address, and data input/output pins.

Figure 48 shows the functions of ports P0-P3.

The memory map for the single-chip mode is shown in Figure 2 and for other modes, in Figure 47.

By connecting CNV $_{SS}$ to V $_{SS}$, all three modes can be selected through software by changing the processor mode bits. Connecting CNV $_{SS}$ to V $_{CC}$ automatically forces the M37102M8-XXXSP/FP into memory expansion mode. Connecting CNV $_{SS}$ to V $_{CC}$ automatically forces the M37201M6-

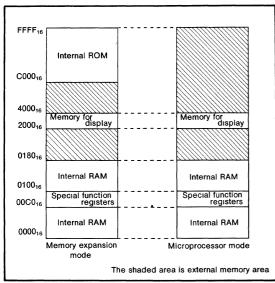


Fig. 47 External memory area at each processor mode

XXXSP into microprocessor mode.

The three different modes are explained as follows:

- (1) Single-chip mode [00]
 - The microcomputer will automatically be in the single-chip mode when started from reset, if CNV_{SS} is connected to V_{SS} . Ports P0-P3 will work as original I/O ports.
- (2) Memory expansion mode [01]

The microcomputer will be placed in the memory expansion mode after connecting CNV_{SS} to V_{CC} and initiating a reset or connecting CNV_{SS} to V_{SS} and the processor mode bits are set to "01". This mode is used to add external memory when the internal memory is not sufficient.

In this mode, port P0 and port P1 are as a system address bus and its I/O port function is lost.

Port P2 becomes the data bus of D_7 - D_0 (including instruction code) and loses its I/O port function. Port P3 $_0$ and P3 $_1$ works as R/ \overline{W} and ϕ .

(3) Microprocessor mode [10]

When CNV_{SS} is connected to V_{SS} and the processor mode bits are set to "10", the microcomputer will automatically default to microprocessor mode. In this mode, the internal ROM is inhibited so the external memory is required. Other functions are same as the memory expansion mode. The relationship between the input level of CNV_{SS} and the processor mode is shown in Table 14.

Note: Use the M37102M8-XXXSP in the microprocessor mode or the memory expansion mode only at program development.

The standards is assured only in the single-chip mode.

M37102M8-XXXSP/FP M37201M6-XXXSP

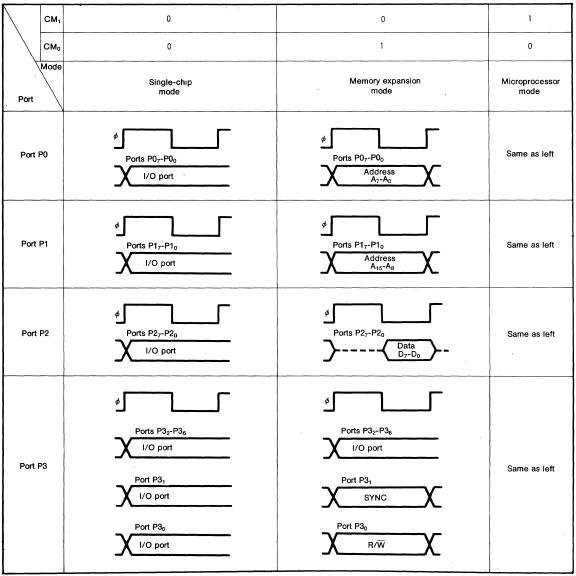


Fig. 48 Processor mode and function of port P0-P3

Table 14. Relationship between CNV_{SS} pin input level and processor mode

CNVss	Mode	Explanation	
V _{ss}	Single-chip mode Memory expansion mode Microprocessor mode	The single-chip mode is set by the reset All modes can be selected by changing the processor mode bit with the program	
V _{cc}	Memory expansion mode Microprocessor mode	The memory expansion mode is set by the reset (M37102M8-XXXSP/FP) The microprocessor mode is set by the reset (M37201M6-XXXSP)	

M37102M8-XXXSP/FP M37201M6-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

CLOCK GENERATING CIRCUIT

The built-in clock generating circuits are shown in Figure 51.

When an-STP instruction is executed, the internal clock ϕ stops oscillating at "H" level. At the same time, timer 3 and timer 4 are connected automatically and FF₁₆ is set in the timer 3, 07₁₆ is set in the timer 4, and timer 3 count source is forced to f(X_{IN}) divided by 16. This connection is cleared when an external interrupt is accepted or the reset is in, as discussed in the timer section.

The oscillator is restarted when an interrupt is accepted. However, the clock ϕ keeps its "H" level until timer 4 over-flows.

This is because the oscillator needs a set-up period if a ceramic or a quartz crystal oscillator is used

When the WIT instruction is executed, the clock ϕ stops in the "H" level but the oscillator continues running. This wait state is cleared when an interrupt is accepted. Since the oscillation does not stop, the next instructions are executed at once.

To return from the stop or the wait status, the interrupt enable bit must be set to "1" before executing STP or WIT instruction.

The circuit example using a ceramic oscillator (or a quartz crystal oscillator) is shown in Figure 49.

The constant capacitance will differ depending on which oscillator is used, and should be set to the manufactures suggested value.

The example of external clock usage is shown in Figure 50 X_{IN} is the input, and X_{OUT} is open.

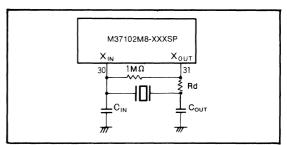


Fig. 49 External ceramic resonator circuit

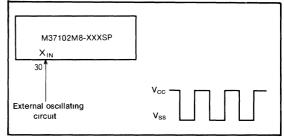


Fig. 50 External clock input circuit

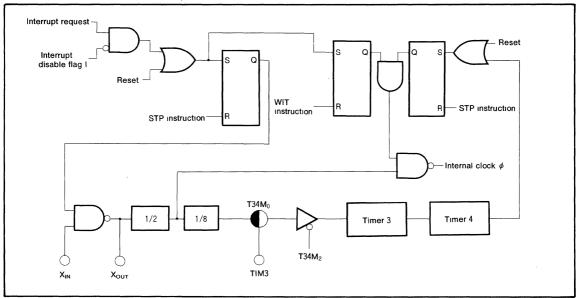


Fig. 51 Block diagram of clock generating circuit

M37102M8-XXXSP/FP M37201M6-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

PROGRAMMING NOTES

- (1) The frequency ratio of the timer is 1/(n+1).
- (2) Even though the BBC and BBS instructions are executed after the interrupt request bits are modified (by the program), those instruction are only valid for the contents before the modification. Also, at least one instruction cycle must be used (such as an NOP) between the modification of the interrupt request bits and the execution of the BBC and BBS instructions.
- (3) After the ADC and SBC instructions are executed (in decimal mode), one instruction cycle (such as an NOP) is needed before the SEC, CLC, or CLD instructions are executed.
- (4) An NOP instruction must be used after the execution of a PLP instruction.
- (5) In order to avoid noise and latch-up, connect a bypass capacitor ($\approx 0.1 \mu F$) directly between the V_{CC} pin and V_{SS} pin using a heavy wire.

DATA REQUIRED FOR MASK ORDERING

Please send the following data for mask orders.

- (1) mask ROM order confirmation form
- (2) mark specification form
- (3) ROM data ····· EPROM 3 sets

M37102M8-XXXSP/FP M37201M6-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
V _{CC}	Supply voltage		-0.3 to 6	V
Vı	Input voltage CNV _{SS}		-0.3 to 6	V
	Input voltage P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ ,	With respect to V _{SS}		
Vi	P3 ₀ -P3 ₆ , P4 ₀ -P4 ₇ , P6 ₀ -P6 ₇ ,	Output transistors are at "off" state	-0.3 to $V_{CC}+0.3$	V
	H _{SYNC} , V _{SYNC} , RESET			
	Output voltage P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ ,			
Vo	P3 ₀ -P3 ₆ , P4 ₀ -P4 ₅ , R, G, B, I, OUT,		-0.3 to V _{CC} +0.3	V
	D-A, X _{OUT} , OSC2			
Vo	Output voltage P4 ₆ , P4 ₇ , P6 ₀ -P6 ₇		-0.3 to 13	V
	Circuit current R, G, B, I, OUT, P0 ₀ -P0 ₇ ,			
I _{OH}	P1 ₀ -P1 ₇ , P2 ₀ -P2 ₃ ,		0 to 1(Note 1)	mA
	P3 ₀ , P3 ₁ , D-A			
	Circuit current R, G, B, I, OUT, P0 ₀ -P0 ₇ ,			
I _{OL1}	P1 ₀ -P1 ₇ , P2 ₀ -P2 ₃ ,		0 to 2(Note 2)	mA
	P3 ₀ -P3 ₆ , P4 ₀ -P4 ₃ , D-A	,		
I _{OL2}	Circuit current P6 ₀ -P6 ₇ , P4 ₆ , P4 ₇		0 to 1 (Note 2)	mA
I _{OL3}	Circuit voltage P2 ₄ -P2 ₇		0 to 10(Note 3)	mA
I _{OL4}	Circuit current P4 ₄ , P4 ₅		0 to 3(Note 2)	mA
Pd	Power dissipation	T _a =25℃	550	mW
Topr	Operating temperature	,	—10 to 70	°C
Tstg	Storage temperature		-40 to 125	°C

RECOMMENDED OPERATING CONDITIONS ($v_{cc}=5v\pm10\%$, $T_a=-10$ to 70° unless otherwise noted)

Symbol	Parameter		Limits			
Symbol	Parameter	Mın	Тур	Max	Unit ,	
V _{CC}	Supply voltage(Note 4) During the CRT operation	4.5	5.0	5.5	V	
V _{SS}	Supply voltage	0	0	0	V	
V _{IH}	"H" input voltage P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ -P3 ₆ , P4 ₀ -P4 ₃ , P4 ₆ ,P4 ₇ , P6 ₀ -P6 ₇ , H _{SYNC} , V _{SYNC} , RESET, X _{IN} , OSC1	0.8V _{CC}		V _{cc}	V	
V _{IH}	"H" input voltage P44, P45	0.7V _{CC}		Vcc	V	
VIL	"L" input voltage P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ , P3 ₁ , P3 ₅ , P4 ₀ , P4 ₃ -P4 ₅ , P4 ₇	0		0.4V _{CC}	V	
VIL	"L" input voltage P3 ₂ -P3 ₄ , P3 ₆ , P4 ₁ , P4 ₂ , P4 ₆ , H _{SYNC} , V _{SYNC} , RESET, X _{IN} , OSC1	0	,	0. 2V _{CC}	v	
Іон	"H" average output current (Note 1) R,G,B,I,OUT,P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ , P3 ₁			1	mA	
I _{OL1}	"L" average output current (Note 2) R,G,B,I,OUT,P0 ₀ -P0 ₇ , P2 ₀ -P2 ₃ , P3 ₀ -P3 ₆ , P4 ₀ -P4 ₃ , D-A		,	2	mA	
I _{OL2}	"L" average output current (Note 2) P6 ₀ -P6 ₇ , P4 ₆ , P4 ₇			1	mA	
I _{OL3}	"L" average output current (Note 3) P2 ₄ -P2 ₇			10	mA	
I _{OL4}	"L" average output current (Note 2) P44, P45			3	mA	
f _{CPU}	Oscillating frequency (for CRT operation) (Note 5)	3. 6	4.0	4. 4	MHz	
f _{CRT}	Oscillating frequency (for CRT display)	6.0	7. 0	8.0	MHz	
fhs	Input frequency P3 ₂ -P3 ₄ , P3 ₆ , P4 ₅			100	kHz	
fhs	Input frequency P4 ₁			1	MHz	

Note $\,1\,$: The total current that flows out of the IC should be 20mA (max)

2: The total of I_{OL1}, I_{OL2} and I_{OL4} should be 30mA (max.)

3 : The total of $\rm I_{OL}$ of port P2₄-P2₇ should be 20mA (max)

4 : Apply $0.022\mu F$ or greater capacitance externally between the $V_{CC}-V_{SS}$ power supply pins so as to reduce power source noise

Also apply 0.068 μ F or greater capacitance externally between the V_{CC}-CNV_{SS} pins

 $\mathbf{5}$: Use the crystal oscillator or ceramic resonator for CPU oscillation circuit

M37102M8-XXXSP/FP M37201M6-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

ELECTRIC CHARACTERISTICS (V_{CC}=5V±10%, V_{SS}=0V, T_a=-10 to 70°C, f(X_{IN})=4MHz unless other wise noted)

Symbol	Parameter	Test conditions	Limits			Unit
Symbol	Faranietei	r alametei r est conditions		Тур	Max.	Unit
		V_{CC} =5.5V, $f(X_{IN})$ =4MHz CRT OFF		10	20	4
Icc	Supply current	V_{CC} =5.5V, $f(X_{IN})$ =4MHz CRT ON		20	30	mA
	<u>`</u>	At stop mode			300	μA
V _{OH}	"H" output voltage P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ , P3 ₁ , R, G, B, I, OUT	$V_{CC} = 4.5V$ $I_{OH} = -0.5 \text{mA}$	2. 4			v
	"L" output voltage P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₃ , P3 ₀ -P3 ₆ , P4 ₀ -P4 ₃ , R, G, B, I, OUT, D-A	V _{CC} =4.5V I _{OL} =0.5mA			0.4	
V _{OL}	"L" output voltage P6 ₀ -P6 ₇ , P4 ₆ , P4 ₇	V _{CC} =4.5V I _{OL} =0.5mA			0.4	V
	"L" output voltage P2 ₄ -P2 ₇	V _{CC} =4.5V I _{OL} =10mA			3.0	
	"L" output voltage P4 ₄ , P4 ₅	V _{CC} =4.5V I _{OL} =3mA			0.4	
	Hysteresis RESET	V _{CC} =5.0V		0.5	0.7	
V _{T+} -V _{T-}	Hysteresis (Note 1) H _{SYNC} , V _{SYNC} , P3 ₂ -P3 ₄ , P3 ₆ , P4 ₁ , P4 ₂ , P4 ₄ -P4 ₆	V _{CC} =5.0V		0.5	1.3	V
	"H" input leak current RESET, P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ -P3 ₆ , P4 ₀ -P4 ₅	V _{CC} =5.5V V _O =5.5V			5	
l _{ozh}	"H" input leak current P6 ₀ -P6 ₇ , P4 ₆ , P4 ₇	V _{CC} =5.5V V _O =12V			10	μА
l _{ozL}	"L" input leak current RESET, P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ -P3 ₆ , P4 ₀ -P4 ₇ , P6 ₀ -P6 ₇	V _{CC} =5.5V V _O =0V			5	μА

Note 1. P3₂-P3₄, P3₆ have the hysteresis when these pins are used as interrupt input pins or timer input pins P4₁, P4₂, P4₄-P4₆ have the hysteresis when these pins are used as serial I/O ports.

M37103M4-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

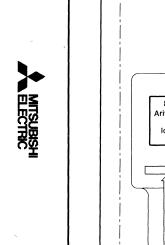
DISCRIPTION

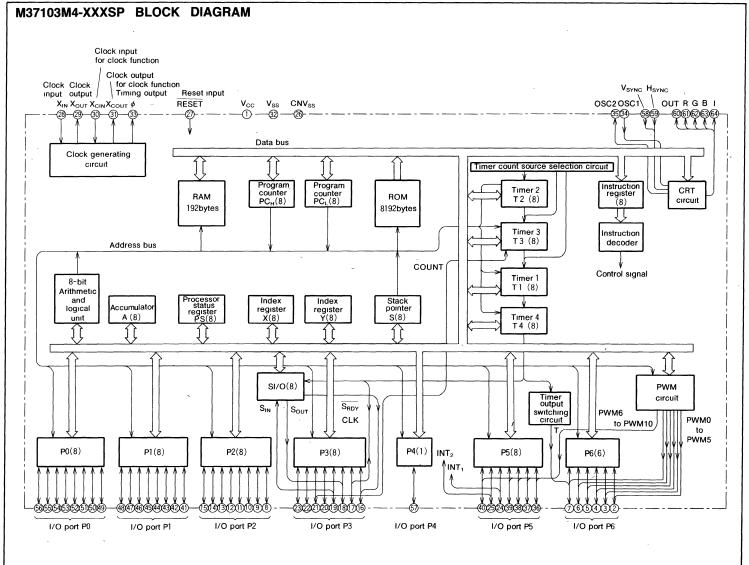
The M37103M4-XXXSP is a single-chip microcomputer designed with CMOS silicon gate technology. It is housed in a 64-pin shrink plastic molded DIP. This single-chip microcomputer is useful for the high-tech channel-selection system for TVs.

In addition to its simple instruction set, the ROM, RAM, and I/O addresses are placed on the same memory map to enable easy programming.

FE	ATURES
•	Number of basic instructions 69
•	Memory size
	ROM 8192 bytes
	RAM 192 bytes
•	Instruction execution time
	······· 2μs (minimum instructions at 4MHz frequency)
•	Single power supply5V±10%
•	Power dissipation
	normal operation mode (at 4MHz frequency)
	35mW (V _{CC} =5V, Typ.)
•	Subroutine nesting 96levels (Max.)
•	Interrupt·····8types, 5vectors
•	8-bit timer 4
•	Programmable I/O ports
	(Ports P0, P1, P2, P3, P4, P5, P6)46
•	Serial I/O (8-bit)1
•	PWM function ······14-bit×1
	6-bit×6
•	Comparator1
•	Generating function for clock input of EAROM
•	Two clock generating circuits
	(one is for main clock, the other is for clock function)

Number of character 21 character 3 lines Kinds of character 96




APPLICATION

63-Character on screen display function

T۷

SINGLE-CHIP

M37103M4-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

FUNCTIONS OF M37103M4-XXXSP

	Parameter		. Functions	
Number of basic instructions			69	
Instruction execution time			2μs (minimum instructions, at 4MHz frequency)	
Clock frequency			4MHz	
	ROM		8192bytes	
Memory size	RAM		192bytes	
	P0	1/0	8-bit×1 (middle-voltage N-channel open drain)	
	P1, P2	1/0	8-bit×2	
	P3	1/0	8-bit×1	
	P4 ₇	1/0	1-bit×1	
Innut/Outnut narta	I, B, R, G, OUT	Output	1-bit×5 (for CRT display)	
Input/Output ports	V _{SYNC} , H _{SYNC}	Input	1-bit×2 (for CRT display)	
	P5 ₂ , P5 ₃	1/0	2-bit×1 (can be used as an input for either INT ₂ or INT ₁)	
	P5 ₁ , P5 ₄ -P5 ₇	1/0	5-bit×1 (middle-voltage N-channel open drain)	
	P6 ₀ , P6 ₁	1/0	2-bit×1	
	P6 ₂ -P6 ₅	1/0	4-bit×1 (middle-voltage N-channel open drain)	
Serial I/O			8-bit×1	
Timers			8-bit timer×4	
Subroutine nesting			96levels (max)	
			Two external interrupts, three internal timer interrupts	
Interrupt			(or timerX2, serial I/OX1, CRTX1)	
Clock generating circuit			Two built-in circuits (externally connected ceramic or quartz crystal oscillator)	
Supply voltage			5V±10%	
	at high-speed operation	CRT display function ON	35mW (clock frequency X _{IN} =4MHz, f _{CRT} =6MHz)	
Power dissipation	at high-speed operation	CRT display function OFF	20mW (clock frequency X _{IN} =4MHz)	
rower dissipation	at low-speed operation	CRT display function OFF	0.3mW (clock frequency X _{CIN} =32kHz)	
	at stop mode		I _{CC} =1μA (when clock is stopped)	
	Input/Output voltage		12V (P0, P5 ₁ , P5 ₄ -P5 ₇ , P6 ₂ -P6 ₅ : input/output, RESET, CNV _{SS} : input)	
			-0.3 to V _{CC} +0.3V (P1, P2, P3, P4 ₇ , P5 ₂ , P5 ₃ , P6 ₀ , P6 ₁)	
Input/Output characteristics			0.5mA (P0, P1, P2, P3, P5, P6 ₂ -P6 ₅ : N-channel open drain input/output)	
	Output current		0.5mA, -0.5mA (P47: CMOS input/output,	
			R, G, B, I, OUT, P6 ₀ -P6 ₁ : CMOS output)	
Operating temperature range)		—10 to 70℃	
Device structure			CMOS silicon gate process	
Package			64-pin shrink plastic molded DIP	
CRT display function	Number of character		21 characters×3 lines	
On display function	Kinds of character		96 (12×16 dots)	

PIN DESCRIPTION

Pın	Name	Input/ Output	Functions	
V _{CC} , V _{SS}	Supply voltage		Power supply inputs 5V±10% to V _{CC} , and 0V to V _{SS}	
CNVss	CNV _{SS}		This is connect to V _{SS}	
RESET	Reset input	Input	To enter the reset state, the reset input pin must be kept at a "L" for more than $2\mu s$ (under normal V_{CC} conditions). If more time is needed for the crystal oscillator to stabilize, this "L" condition should be maintained for the required time	
X _{IN}	Clock input	Input	These are I/O pins of internal clock generating circuit for main clock. To control generating frequency, an external ceramic or a quartz crystal oscillator is connected between the X _{IN} and X _{OUT} pins and external	
X _{OUT}	Clock output	Output	condensers are connected if an external clock is used, the clock source should be connected the X_{IN} pin and the X_{OUT} pin should be left open	
φ	Timing output	Output	This is the timing output pin. In single-chip mode, the output can be controlled by selecting the option	
X _{CIN}	Clock input for clock function	Input	This is the I/O pins of the clock generating circuit for the clock function. To control generating frequency an external ceramic or a quartz crystal oscillator is connected between the X_{CIN} and X_{COUT} pins and external ceramic or a quartz crystal oscillator is connected between the X_{CIN} and X_{COUT} pins and external ceramic or a quartz crystal oscillator is connected between the X_{CIN} and X_{COUT} pins and external ceramic or a quartz crystal oscillator is connected between the X_{CIN} and X_{COUT} pins and external ceramic or a quartz crystal oscillator is connected between the X_{CIN} and X_{COUT} pins and external ceramic or a quartz crystal oscillator is connected between the X_{CIN} and X_{COUT} pins and external ceramic or a quartz crystal oscillator is connected between the X_{CIN} and X_{COUT} pins and external ceramic or X_{CIN} pins and X_{COUT} pins are X_{CIN} pins and X_{CIN} pins are X_{CIN} pins are X_{CIN} pins and X_{CIN} pins are X_{CIN} pins and X_{CIN} pins are X_{CIN} pins and X_{CIN} pins are	
Х _{СОИТ}	Clock output for clock function	Output	nal condensers are connected if an external clock is used, the clock source should be connected to the X_{CIN} pin and the X_{COUT} pin should be left open. This clock can be used as a program controlled the system clock	
P0 ₀ -P0 ₇	I/O port P0	I/O	Port P0 is an 8-bit I/O port with directional registers allowing each I/O bit to be individually program input or output. At reset, this port is set to input mode. The output structure is middle-voltage N-open drain.	
P1 ₀ -P1 ₇	I/O port P1	I/O	Port P1 is an 8-bit I/O port and has basically the same functions as port P0. It can be built in pull-up tra tor at each pin by selecting the option	
P2 ₀ -P2 ₇	I/O port P2	I/O	Port P2 is an 8-bit I/O port and has basically the same functions as port P1	
P3 ₀ -P3 ₇	I/O port P3	1/0	Port P3 is an 8-bit I/O port and has basically the same functions as port P0, but the output structur channel open drain. When serial I/O is used, P3 ₇ , P3 ₆ , P3 ₅ , and P3 ₄ work as $\overline{S_{RDY}}$, CLK, S _{OUT} , and S respectively P3 ₃ works as an analog input for comparator and P3 ₂ works as a counter input	
P4 ₇	I/O port P4 ₇	I/O	Port P4 ₇ is a 1-bit I/O port and has basically the same functions as port P0, but the output struction CMOS output	
I, B, G, R, OUT	CRT output	Output	This is a 5-bit output pin for CRT display The output polarity can be changed by selecting the option. At reset, inactive polarity is selected. The output structure is CMOS output	
H _{SYNC}	H _{SYNC} input	Input	This is the horizontal synchronizing signal input for CRT display. The input polarity can be changed by selecting the option	
V _{SYNC}	V _{SYNC} input	Input	This is the verifical synchronizing signal input for CRT display. The input polarity can be changed by selecting the option	
P5 ₂ , P5 ₃	I/O port P5	I/O	These ports have basically the same function as ports P3, and are in common with interrupt input pins	
P5 ₁ , P5 ₄ -P5 ₇			These ports have basically the same function as port P0, and can be programmed to function as PWM out- put pins	
P6 ₀ -P6 ₅	I/O port P6	1/0	Port P6 is a 6-bit I/O port and has basically the same functions as port P0. The output structure of P60, P60 is CMOS output and the output structure of P62-P65 is middle-voltage N-channel open drain. This port can be programmed to function as PWM output pins. Also P60 is in common with timer output pin (T)	
OSC1, OSC2	Clock input for CRT display Clock output for CRT display	Input Output	This is the I/O pins of the clock generating circuit for the CRT display function To control generating frequency, external condensers and resistors are connected	

FUNCTIONAL DESCRIPTION Central Processing Unit (CPU)

The M37103 microcomputers use the standard MELPS 740 instruction set. For details of instructions, refer to the MELPS 740 CPU core basic functions, or the MELPS 740 Software Manual.

Machine-resident instructions are as follows:

The FST and SLW instructions are not provided.

The MUL and DIV instructions are not provided.

The WIT instruction can be used.

The STP instruction can be used.

MEMORY

• Special Function Register (SFR) Area

The special function register (SFR) area contains the registers relating to functions such as I/O ports and timers.

• RAM

RAM is used for data storage as well as a stack area.

• ROM

ROM is used for storing user programs as well as the interrupt vector area.

RAM for display

RAM for display is used for specifing the character codes and colors to display.

• Interrupt Vector Area

The interrupt vector area is for storing jump destination addresses used at reset or when an interrupt is generated.

Zero Page

Zero page addressing mode is useful because it enables access to this area with fewer instruction cycles.

Special Page

Special page addressing mode is useful because it enables access to this area with fewer instruction cycles.

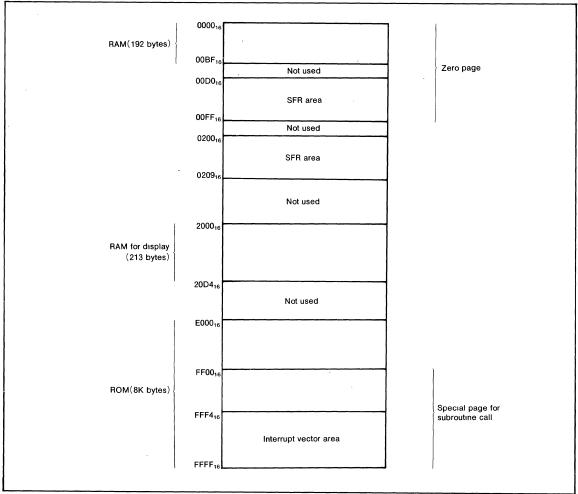


Fig. 1 Memory map

	Horizontal position register	00EE ₁₆	Port P6
00D1 ₁₆	Vertical position register of block 1	00EF ₁₆	Port P6 directional register
00D2 ₁₆	Vertical position register of block 2	00F0 ₁₆	PWM1-H register
00D3 ₁₆	Vertical position register of block 3	00F1 ₁₆	PWM1-L register
00D4 ₁₆	Color register 0	00F2 ₁₆	PWM2 register
00D5 ₁₆	Color register 1	00F3 ₁₆	PWM3 register
00D6 ₁₆	Color register 2	00F4 ₁₆	PWM4 register
00D7 ₁₆	Color register 3	00F5 ₁₆	PWM control register
00D8 ₁₆	Display control register	00F6 ₁₆	Serial I/O mode register
00D9 ₁₆	Display block counter	00F7 ₁₆	Serial I/O register
00DA ₁₆		00F8 ₁₆	PWM5 register
00DB ₁₆		00F9 ₁₆	PWM output control register
00DC ₁₆		00FA ₁₆	Timer 1
00DD ₁₆		00FB ₁₆	Interrupt control register 2
00DE ₁₆		00FC ₁₆	Timer 2
00DF ₁₆		00FD ₁₆	Timer 3
00E0 ₁₆	Port P0	00FE ₁₆	Interrupt control register 1
00E1 ₁₆		00FF ₁₆	Timer control register
00E2 ₁₆	Port P1	010016	L :
00E3 ₁₆		01FF ₁₆	·
00E4 ₁₆		020016	PWM0 register
00E5 ₁₆	Port P2 directional register	020116	PWM6 register
00E6 ₁₆		020216	PWM7 register
	A-D control register	020316	PWM8 register
00E8 ₁₆		0204 ₁₆	PWM9 register
00E9 ₁₆		020516	PWM10 register
00EA ₁₆		020616	PWM output control register
	Port P4 directional register	0207 ₁₆	
00EC ₁₆	Port P5	020816	Timer 4 control register
00ED ₁₆	Port P5 directional register	020916	Timer 4

Fig. 2 SFR (Special Function Register) memory map

MITSUBISHI MICROCOMPUTERS M37103M4-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

INTERRUPTS

Interrupts can be caused by 8 different events consisting of two external, five internal, and one software event.

Interrupts are vectored interrupts with priorities shown in Table 1. Reset is also included in the table because its operation is similar to an interrupt.

When an interrupt is accepted, the registers are pushed, interrupt disable flag I is set, and the program jumps to the address specified in the vector table. The interrupt request bit is cleared automatically. The reset and BRK instruction interrupt can never be disabled. Other interrupts are disabled when the interrupt disable flag is set.

Falling edge active or rising edge active can be selected for each of the INT_1 and INT_2 external interrupts selected by bits 4 and 5 of the PWM control register. Whether the INT_1 external interrupt or the CRT display is to be accepted can be selected by bit 0 of interrupt control register 2.

Whether the timer 1 or serial I/O interrupt is to be accepted can be selected by bit 2 of the serial I/O mode register.

All interrupts except the BRK instruction interrupt have an interrupt request bit and an interrupt enable bit. The interrupt request bits and the interrupt enable bits are in interrupt control register 1 and timer control register. Figure 3 shows the structure of the interrupt control registers 1 and 2 and timer control register.

Interrupts other than the BRK instruction interrupt and reset are accepted when the interrupt enable bit is "1", interrupt request bit is "1", and the interrupt disable flag is "0". The interrupt request bit can be clear with a program, but not set. The interrupt enable bit can be set and clear with a program.

Reset is treated as a non-maskable interrupt with the highest priority. Figure 4 shows interrupts control

Table 1. Interrupt vector address and priority.

Event	Priority	Vector addresses	Remarks
RESET	1	FFFF ₁₆ , FFFE ₁₆	Non-maskable
INT ₁ or CRT display interrupt	2	FFFD ₁₆ , FFFC ₁₆	INT ₁ external interrupt (phase programmable)
Timer 3 interrupt	3	FFFB ₁₆ , FFFA ₁₆	
Timer 2 interrupt	4	FFF9 ₁₆ , FFF8 ₁₆	
Timer 1 or serial I/O interrupt	5	FFF7 ₁₆ , FFF6 ₁₆	
INT ₂ interrupt		FFFF FFF4	INT ₂ external interrupt (phase programmable)
(BRK instruction interrupt)	6	FFF5 ₁₆ , FFF4 ₁₆	BRK instruction interrupt (non-maskable software interrupt)

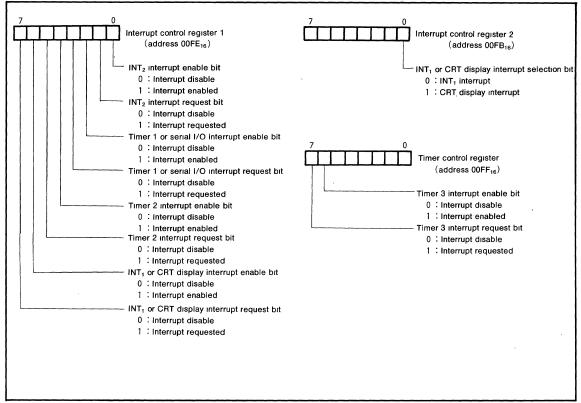


Fig. 3 Structure of registers related to interrupt

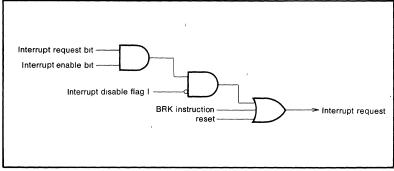


Fig. 4 Interrupt control

MITSUBISHI MICROCOMPUTERS M37103M4-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

TIMER

The M37103M4-XXXSP has four timers; timer 1, timer 2 timer 3, timer 4.

A block diagram of timer 1 through 3 is shown in Figure 5 and a block diagram of timer 4 is shown in Figure 6. The count source for timer 1 through 3 can be selected by using bit 2, 3, 4 of the timer control register (address $00FF_{16}$), as shown in Figure 7. Timer 1 through 3 are down count timers and have 8-bit latches. When a timer reaches "0" and the next count pulse is input to a timer, the contents of the reload latch are loaded into the timer. The division ratio of the timer is 1/(n+1), where n is the contents of timer latch.

Timer 1 through 3 has interrupt generating functions. The timer interrupt request bit which is in the interrupt control register 1 or timer control register (located at addresses 00FE₁₆ and 00FF₁₆ respectively) is set at the next count pulse after the timer reaches "0" (see interrupt section).

The starting and stopping of timer 2 is controlled by bit 5 of the timer control register 2. If the bit 5 is "0", the timer starts counting, and the bit 5 is "1", the timer stops.

The count source of timer 4 can be selected by bit 0 and bit 1 of timer 4 control register (address 0208_{16}). When bit 0 and bit 1 are set to (00) or (11), timer 4 stop counting. The structure of timer 4 control register is shown in Figure 8

Timer 4 has auto-reload register. The auto-reload register can be written by writing a data to timer 4 register. A data written to the auto-reload register is set to counter by setting bit 4 of timer 4 control register. And by reading a data from timer 4 register, the value of counter can be read.

When timer 4 is overflow, timer 4 overflow flag is set and the content of auto-reload register are loaded into the counter.

At a reset or stop mode, FF_{16} is automatically set in timer 2 and 07_{16} in timer 3.

After a STP instruction is executed, timer 3, timer 2, and the clock (ϕ divided by 4) are connected in series (regardless of the status of bit 2 through 4 of the timer control register). This state is canceled if timer 3 interrupt request bit is set to "1", or if the system is reset. Before the STP instruction is executed, bit 5 of the timer control register (timer 2 count stop bit) must be set to "0". For more details on the STP instruction, refer to the oscillation circuit section.

2-109

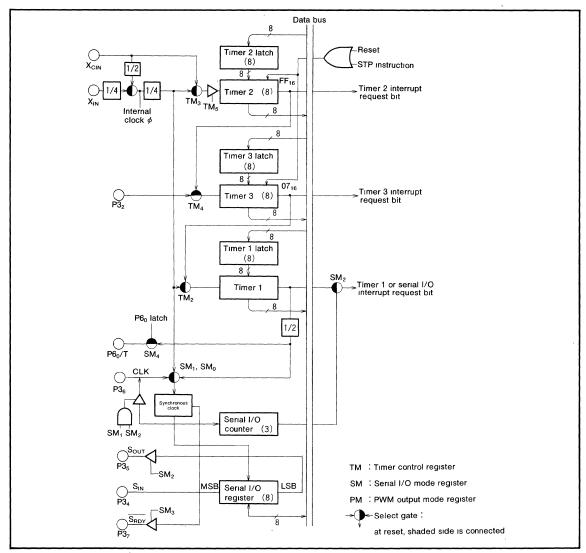


Fig. 5 Block diagram of timer 1 through 3

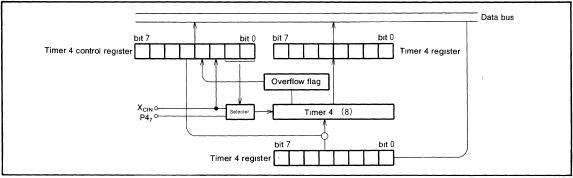


Fig. 6 Block diagram of timer 4

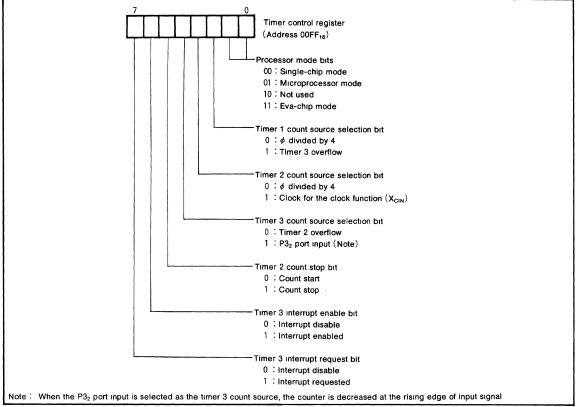


Fig. 7 Structure of timer control register

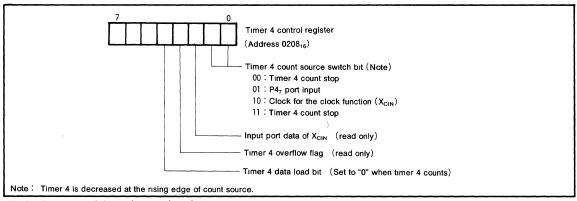


Fig. 8 Structure of timer 4 control register

SERIAL I/O

The block diagram of serial I/O is shown in Figure 9. In the serial I/O mode the receive ready signal $(\overline{S_{RDY}})$, synchronous input/output clock (CLK), and the serial I/O (S_{OUT}, S_{IN}) , pins are used as P3₇, P3₆, P3₅, and P3₄, respectively. The serial I/O mode register (address $00F6_{16}$) is an 8-bit register. Bit 0 and 1 of this register is used to select a syn-

chronous clock source. When these bits are (00) or (01), an external clock form P3₆ is selected. When these bits are (10), the overflow signal divided by two from timer 1 becomes the synchronous clock. Therefore, changing the timer period will change the transfer speed. When the bits are (11), the internal clock ϕ divided by 4 becomes the clock.

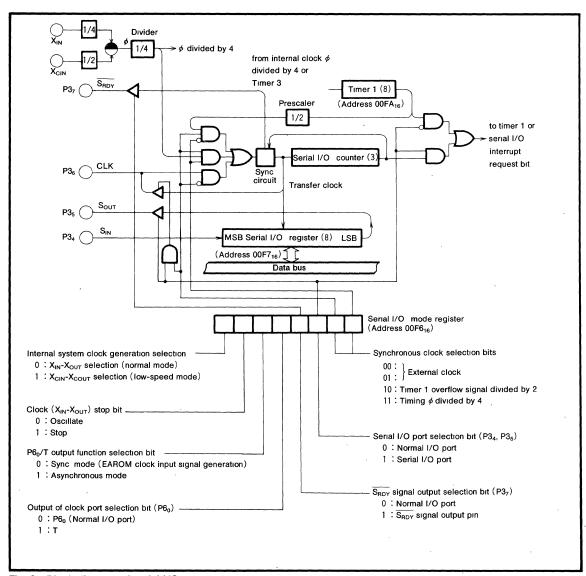


Fig. 9 Block diagram of serial I/O

Bits 2 and 3 decide whether parts of P3 will be used as a serial I/O or not. When bit 2 is "1", $P3_6$ becomes an I/O pin of the synchronous clock. When an internal synchronous clock is selected, the clock is output from $P3_6$. If the external synchronous clock is selected, the clock is input to $P3_6$. And $P3_5$ will be a serial output, and $P3_4$ will be a serial input. To use $P3_4$ as a serial input, set the directional register bit which corresponds to $P3_4$, to "0". For more information on the directional register, refer to the I/O pin section.

To use the serial I/O, bit 2 needs to be set to "1", if it is "0" $P3_6$ will function as a normal I/O. Interrupts will be generated from the serial I/O counter instead of timer 1. Bit 3 determines if $P3_7$ is used as an output pin for the receive data ready signal (bit 3="1", \overline{S}_{RDY}) or used as a normal I/O pin (bit 3="0").

The function of serial I/O differs depending on the clock source; external clock or internal clock.

Internal Clock- The $\overline{S_{RDY}}$ signal becomes "H" during transmission or while dummy data is stored in the serial I/O register. After the faling edge of write signal, the $\overline{S_{RDY}}$ signal

becomes low signaling that the M37103M4-XXXSP is ready to receive the external serial data. The $\overline{S_{RDY}}$ signal goes "H" at the next falling edge of the transfer clock. The serial I/O counter is set to 7 when data is stored in the serial I/O register. At each falling edge of the fransfer clock, serial data is output to P35. During the rising edge of this clock, data can be input from P34 and the data in the serial I/O register will be shifted 1 bit. Data is output starting with the LSB. After the transfer clock has counted 8 times, the serial I/O register will be empty and the transfer clock will remain at a high level. At this time the interrupt request bit will be

External Clock- If an external clock is used, the interrupt request bit will be set after the transfer clock has counted 8 times but the transfer clock will not stop. Due to this reason, the external clock must be controlled from the outside. The external clock should not exceed 250kHz at a duty cycle of 50%.

Timing diagrams are shown in Figure 10, and connection between two M37103M4-XXXSP's are shown in Figure 11.

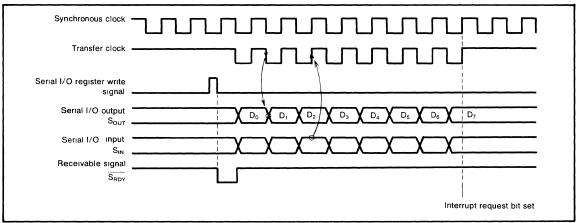


Fig. 10 Serial I/O timing

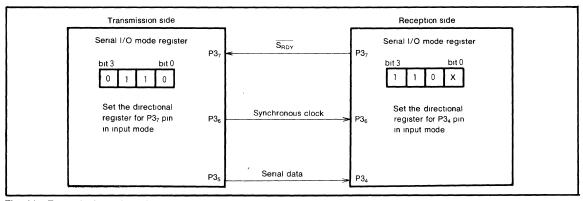


Fig. 11 Example fo serial I/O connection

PWM OUTPUT CIRCUIT

(1) Introduction

The M37103M4-XXXSP is equipped with one 14-bit PWM, four 8-bit PWMs and six 6-bit PWMs. The 14-bit resolution gives PWM1 the minimum resolution bit width of 500ns (for $\rm X_{IN}=4MHz$) and a repeat period of 8192 $\rm \mu s$. PWM7, PWM8, PWM9, PWM10 have a 8-bit resolution with minimum resolution bit width of 16 $\rm \mu s$ and repeat period of 4096 $\rm \mu s$. PWM0, PWM2, PWM3, PWM4, PWM5, PWM6 have a 6-bit resolution with minimum resolution bit width of 16 $\rm \mu s$ and repeat period of 1024 $\rm \mu s$. Accuracy and operation range is certified of PWM are $\rm V_{CC}=4.5$ to 5.5V regardless of input frequency.

Block diagram of the PWM is shown in Figures 12 and 13.

The PWM timing generator section applies individual control signals to PWM 0-10, using clock input $X_{\rm IN}$ divided by 2 or $X_{\rm CIN}$ divided by 2 as a reference signal.

(2) Data setting

The output pins PWM0-PWM5 are in common with pins $P6_0-P6_5$ of port P6 and PWM6-PWM10 are in common with pins $P5_1-P5_7$ of port P5 (i.e. for PWM output, PWM output selection bits and the P5, P6 directional register $D5_1-D5_7$, $D6_0-D6_5$ should be set). When PWM1 is used for output, first set the higher 8-bit of the PWM1-H register (address $00F0_{16}$), then the lower 6-bit of the PWM1-L register (address $00F1_{16}$). When either PWM0 and PWM2-10 is used for output, set the 8-bit in the PWM0 and PWM2-10 register, respectively. Note that the higher 2 bits of these 8-bit registers are ignored when used 6-bit register.

(3) Transferring data from registers to latches

The data written to the 6-bit or 8-bit PWM register is transferred to the PWM latch in each 6-bit PWM cycle period. For 14-bit PWM, the data is transferred in the next upper 8-bit period after the write. The signals output to the PWM pins correspond to the contents of these latches. When data at addresses 00F0₁₆ to 00F4₁₆, 00F8₁₆, 0200₁₆ to 0205₁₆ is read, data in these latches has already been read allowing the data output by the PWM to be confirmed. When the 6-bit latch is being read, the upper 2 bits of the register becomes undefined, However, bit 7 of the PWM1-L register indicated the completion of the data transfer from the PWM1 register to the PWM1 latch. if bit 7 is "0", the transfer has been completed, if bit 7 is "1", the transfer has not yet begun.

(4) Operation of the 6-bit PWMs

The timing diagram of the two 6-bit PWMs (PWM0 and PWM2-6) is shown in Figure 14. One period (T) is composed of 64 (2^6) segments.

There are six different pulse types configured from bits 0 to 5 representing the significance of each bit. These are output within one period in the circuit internal section. Refer to Figure 14 (a).

Six different pulses can be output from the PWM. These can be selected by bits 0 through 5. Depending on the content of the 6-bit PWM latch, pulses from 5 to 0 is selected. The PWM output is the difference of the sum of each of these pulses. Several examples are shown in Figure 14 (b). Changes in the contents of the PWM latch allows the selection of 64 lengths of high-level area outputs varying from 0/64 to 63/64. An length of entirely high-level output cannot be output. i.e. 64/64.

(5) 8-bit PWM operation

8-bit PWM operation is the same as 6-bit PWM operation except that one period (T) is composed of 256 (28) segments.

(6) 14-bit PWM operation

The timing diagram of the 14-bit PWM1 is shown in Figure 15. The 14-bit PWM divides the data within the PWM latch into the lower 6 bits and higher 8 bits.

A high-level area within a length N times τ is output every short area of t=256 τ =128 μ s as determined by data N of the higher 8 bits. (Refer to PWM output ② in the lower part of Figure 15.)

Thus, the time for the high-level area is equal to the time set by the lower 8 bits or that plus τ . As a result, the short-area period t (=128 μ s, approx. 7.8kHz) becomes an approximately repetitive period.

(7) Output after reset

At reset the output of port P5, P6 is in the high impedance state and the contents of the PWM register and latch are undefined. Note that after setting the PWM register, its data is transferred to the latch.

Table 2. Relation between the 6 lower-order bits of data and the space set by the ADD bit

6 lower-order bits of data	Area longer by τ than that of other $t_m(m = 0 \text{ to } 63)$
0 0 0 0 0 ^{LSB}	Nothing
000001	m=32
000010	m=16, 48
000100	m=8,24,40,56
001000	m= 4, 12, 20, 28, 36, 44, 52, 60
010000	m=2,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62
100000	m=1,3,5,7,57,59,61,63

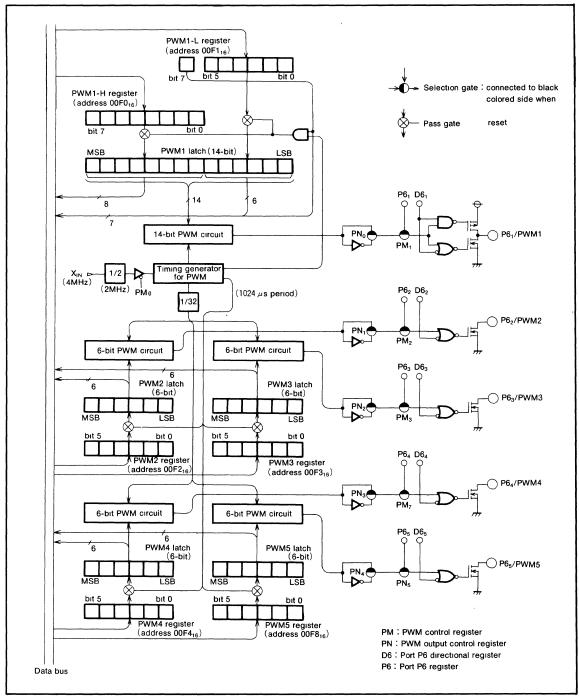


Fig. 12 Block diagram of the PWM cirucit (1)

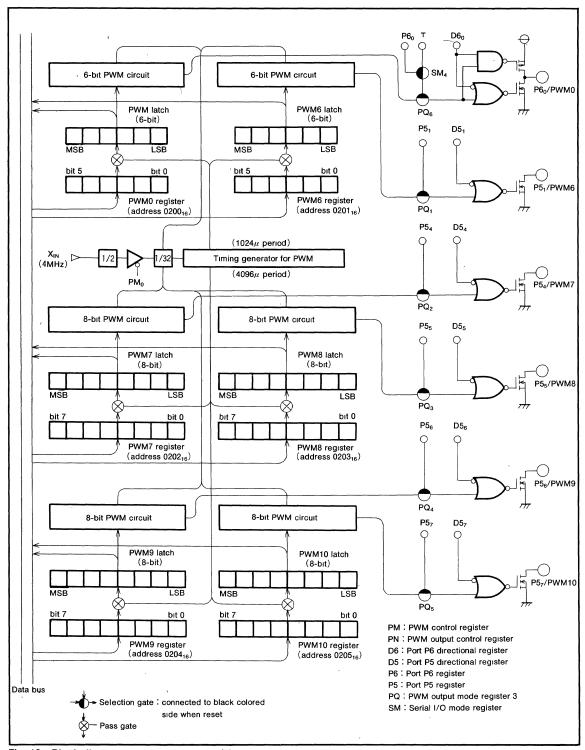


Fig. 13 Block diagram of the PWM circuit (2)

. \$

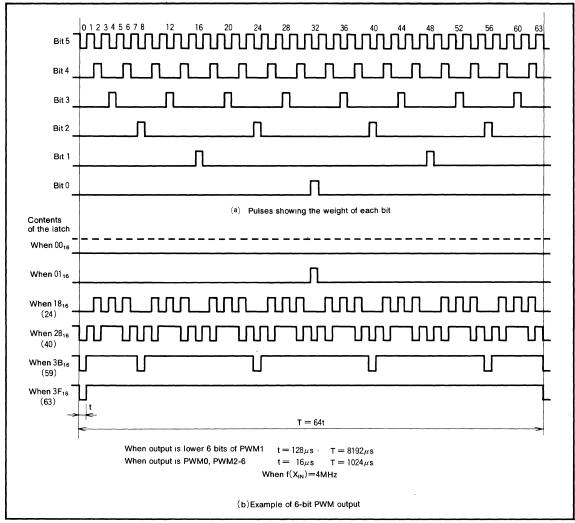


Fig. 14 6-bit PWM timing diagram

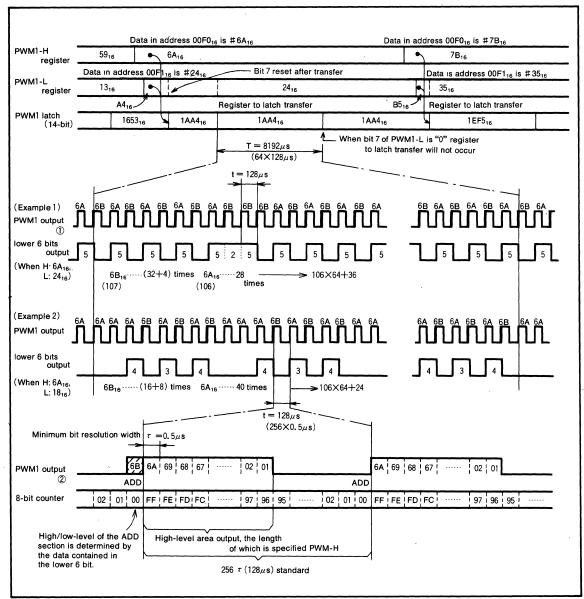


Fig. 15 14-bit PWM timing diagram

MITSUBISHI MICROCOMPUTERS M37103M4-XXXSP

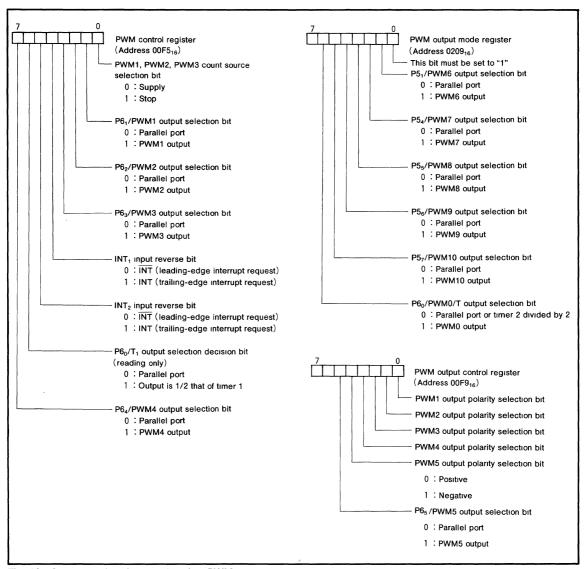


Fig. 16 Structure of registers related to PWM

PORT P60 / TIMER 1 OUTPUT

Bit 0 of port P6 outputs 1/2 the frequency of timer 1 when bit 6 of the PWM output mode register is set to "0" and bit 4 (SM_4) of the serial I/O mode register (address $00F6_{16}$) is set to "1". The output switching can be accomplished with either of two procedures, synchronous mode or asynchronous mode, depending on the setting of bit 5 (SM_5) of the serial I/O mode register.

When SM_5 is set to "0" the synchronous mode is set. In such a case, after SM_4 has been changed, synchronization is set to the 1/2 frequency of timer 1 and switching between the port latch and timer takes place. It is possible to ascertain whether switching actually occurred by reading

the value of bit 6 of the PWM control register.

From the time that the contents of SM_4 was changed to the point where switching completes, the contents of neither SM_4 nor $P6_0$ may be changed. Use of the synchronous mode prevents the generation of a pulse shorter than the timer output during swiching. Figure 17 (a) gives an example of timing in the synchronous mode. Use of the synchronous mode allows generation of an EAROM clock input signal through the use of a simple program.

When SM_5 is set to "1", the asynchronous mode is set. In this case, the output switching occurs directly after SM_4 has been changed. Figure 17 (b) gives an example of timing in the asynchronous mode.

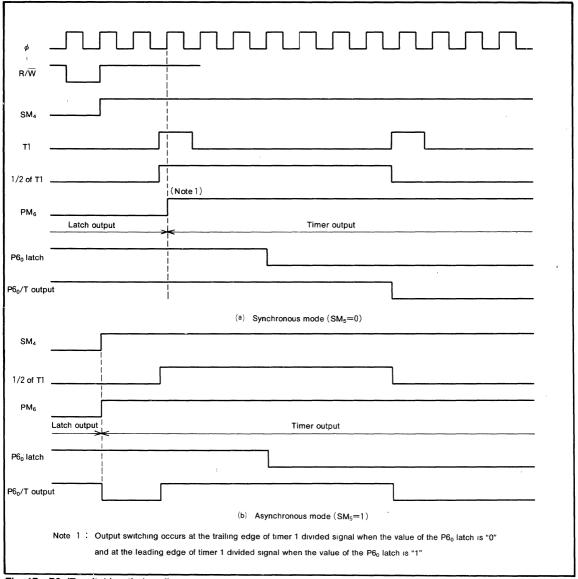


Fig. 17 P6₀/T switching timing diagram

COMPARATOR CIRCUIT

The comparator circuit is shown in Figure 18. The comparator circuit consists of the switch tree, ladder resistor, comparator, comparator control circuit, A-D control register (address 00E7₁₆), and analog signal input pin (P3₃/A-D). The analog input pin is common with the digital input/out-put terminal to the data bus.

The 5-bit A-D control register can generate 1/16 $V_{\rm CC}$ -step internal analog voltage, based on the settings of bits 0 to 3. Table 3 gives the relation between the descriptions of A-D control register bits 0 to 3 and the generated internal analog voltage. The comparator result of the analog input voltage and the internal analog voltage is stored in the A-D control register, bit 4.

The data is compared by setting the directional register corresponding to port P3 $_3$ to "0" (port P3 $_3$ enters the input mode), to allow port P3 $_3$ /A-D to be used as the analog input pin. The digital value corresponding to the internal analog voltage to be compared is then written in the A-D control register (address 00E7 $_{16}$), bits 0 to 3. The voltage comparision starts as soon as the writing is completed. 4-cycle (required for comparating) later, the result of comparision is stored in the A-D control register, bit 4 Bit 4 is "1" when analog input voltage > internal analog voltage and "0" when analog input voltage < internal analog voltage.

When voltage is compared to by setting bits 0 to 3 of the comparator register "0", bit 4 of the A-D control register becomes "1" regardless of the analog input voltage.

Table 3. Relationship between the contents of A-D control register and internal voltage

Α	-D contr	ol regist	er	Internal analysis valtage
bit 3	bit 2	bit 1	bit 0	Internal analog voltage
0	0	0	1	1/16V _{CC} -1/32V _{CC}
0	0	1	0	2/16V _{CC} -1/32V _{CC}
0	0	1	1	3/16V _{cc} -1/32V _{cc}
0	1	0	0	4/16V _{cc} -1/32V _{cc}
0	1	0	1	5/16V _{cc} -1/32V _{cc}
0	1	1	0	6/16V _{cc} -1/32V _{cc}
0	1	1	1	7/16V _{cc} -1/32V _{cc}
1	0	0	0	8/16V _{cc} -1/32V _{cc}
1	0	0	1	9/16V _{CC} -1/32V _{CC}
1	0	1	0	10/16V _{cc} -1/32V _{cc}
1	0	1	1	11/16V _{cc} -1/32V _{cc}
1	1	0	0	12/16V _{cc} -1/32V _{cc}
1	1	0	1	13/16V _{cc} -1/32V _{cc}
1	1	1	0	14/16V _{CC} -1/32V _{CC}
1	1	1	1	15/16V _{CC} -1/32V _{CC}

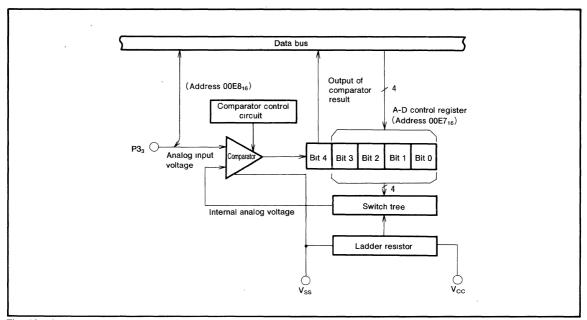


Fig. 18 Comparator Circuit

M37103M4-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

CRT DISPLAY FUNCTIONS

(1) Outline of CRT Display functions

Table 4 outlines the CRT display functions. The M37103M4-XXXSP incorporates a 21 columns × 3 lines CRT display control circuit. CRT display is controlled by the CRT display control register. Up to 96 kinds of characters can be displayed, and colors can be specified for each character. Four colors can be displayed on one screen. A combination of up to 15 colors can be obtained by using each output signal (R, G, B, and I).

Characters are displayed in a 12×16 dot configuration to obtain smooth character patterns. (See Figure 19)

The following shows the procedure how to display characters on the CRT screen.

- ① Set the character to be displayed in display RAM.
- ② Set the display color by using the color register.
- ③ Specify the color register in which the display color is set by using the display RAM.
- ④ Specify the vertical position and character size by using the vertical position register.
- Specify the horizontal position by using the horizontal position register.
- Write the display enable bit to the designated block display flag of the CRT control register. When this is done, the CRT starts operation according to the input of the V_{SYNC} signal.

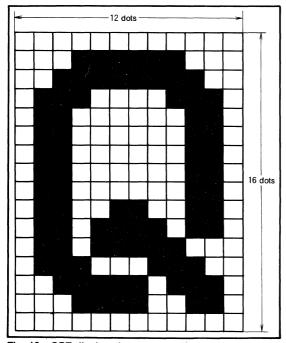


Fig. 19 CRT display character configuration

The CRT display circuit has an extended display mode. This mode allows multiple lines (more than 3 lines) to be displayed on the screen by interrupting the display each time one line is displayed and rewriting data in the block for which display is terminated by software.

Figure 21 shows a block diagram of the CRT display control circuit. Figure 20 shows the structure of the CRT display control register.

Table 4. Outline of CRT display functions

Parameter		Functions
Number of display character		21 characters × 3 lines
Character configuration		12×16 dots (See Figure 19)
Kinds of character		96
Character size		4 size selectable
0-1	Kinds of color	15(max)
Color	Coloring unit	a character
Display expansion		Possible (multiple lines)

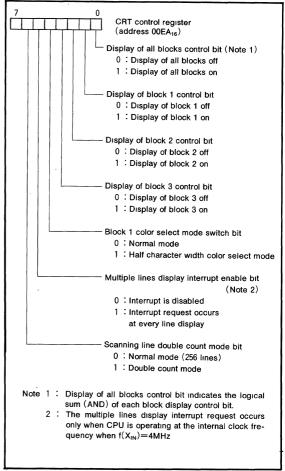


Fig. 20 Structure of CRT control register

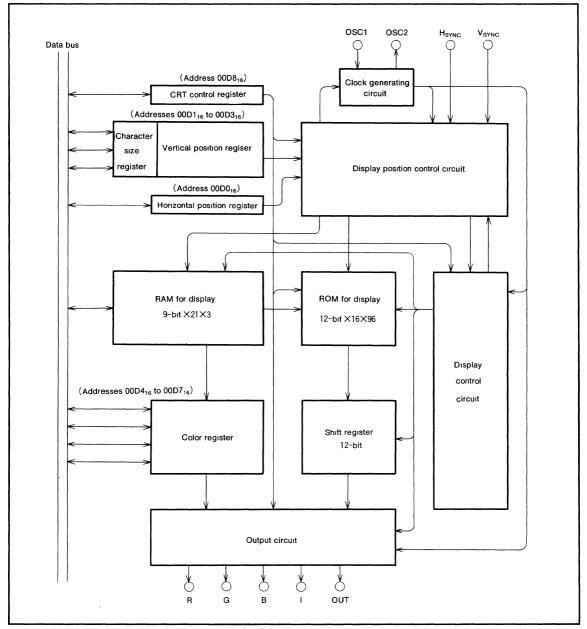


Fig. 21 Block diagram of CRT display control circuit

(2) Display Position

The display positions of characters are specified in units called a "block." There are three blocks, block 1 to block 3. Up to 21 characters can be displayed in one block. (See (4) Display Memory.)

The display position of each block in both horizontal and vertical directions can be set by software.

The horizontal direction is common to all blocks, and is selected from 64-step display positions in units of 4Tc (Tc=oscillation cycle for display).

The display position in the vertical direction is selected from 64-step display positions for each block in units of four scanning lines.

If the display start position of a block overlaps with some other block ((b) in Figure 24), a block of the smaller block No. (1 to 3) is displayed.

If when one block is displaying, some other block is displayed at the same display position ((c) in Figure 24), the former block is overridden and the latter is displayed.

The vertical position can be specified from 64-step positions (four scanning lines per step) for each block by setting values 00_{16} to $3F_{16}$ to bits 0 to 5 in the vertical position register (addresses $00D1_{16}$ to $00D3_{16}$). Figure 22 shows the structure of the vertical position register.

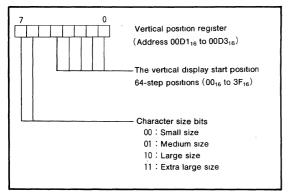


Fig. 22 Structure of vertical position registers

The horizontal direction is common to all blocks, and can be specified from 64-step display positions (4Tc per step (Tc=oscillation cycle for display) by setting values 00_{16} to $3F_{16}$ to bits 0 to 5 in the horizontal position register (address $00D0_{16}$).

Figure 23 shows the structure of the horizontal position register

Fig. 23 Structure of horizontal position register

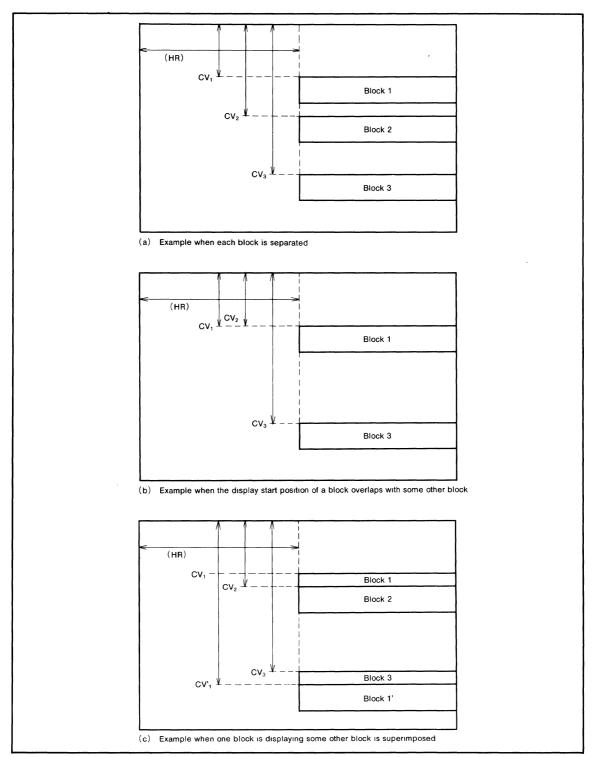


Fig. 24 Display position

(3) Character Size

The size of characters to be displayed can be selected from four sizes for each block. Use the bit 6 and 7 of vertical position register to set a character size.

The character size can be selected from four sizes: small size, medium size, large size, and extra large size. Each character size is determined by the number of scanning lines in the height (vertical) direction and the cycle of dis-

play oscillation (=Tc) in the width (horizontal) direction. The small size consists of (one scanning line) \times [1 Tc); the medium size consists of (two scanning lines) \times [2 Tc); the large size consists of (three scanning lines) \times [3 Tc); and the extra large size consists of (four scanning lines) \times [4 Tc). Table 5 shows the relationship between the set values in the character size register and the character sizes

Table 5. The relationship between the set values of the character size bits and the character sizes.

Set values of the character size bits		Character	Width (horizontal) direction	Height (vertical) direction	
Bit7	Bit6	size	width (nonzontal) direction	Height (vertical) direction	
0	0	Small	1 T _C	1	
0	1	Medium	2 T _C	2	
1	0	Large	3 T _C	3	
1	1	Extra large	4 T _C	4	

Note: The display start position in the horizontal direction is not affected by the chacacter size. In other words, the horizontal start position is common to all blocks even when the character size varies with each block (See Figure 25).

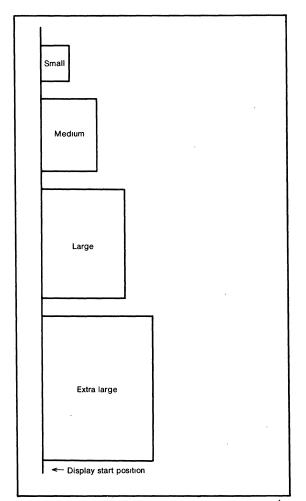


Fig. 25 Display start position of each character size (horizontal direction)

(4) RAM for display

RAM for display is allocated at addresses 2000₁₆ to 20D4₁₆, and is divided into a display character code specifying part and display color specifying part for each block. Table 6 shows the contents of the CRT display RAM.

When a character is to be display at the first character (leftmost) position in block 1, for example, it is necessary to write the character code to the seven low-order bits (bits 0 to 6) in address 2000₁₆ and the color register No. to the two low-order bits (bits 0 and 1) in address 2080₁₆. The color register No. to be written here is one of the four color registers in which the color to be displayed is set in advance. For details on color registers, refer to (5) Color Registers.

The structure of the CRT display RAM is shown in Figure 26.

Table 6. The contents of the CRT display RAM

Block	Display position (from left)	Character code specification	Color specification
Block 1	1 st Column	2000 ₁₆	2080 ₁₆
	² nd Column	2001 ₁₆	2081 ₁₆
	3 rd Column	2002 ₁₆	2082 ₁₆
	:	:	:
	19th Column	2012 ₁₆	2092 ₁₆
	20th Column	2013 ₁₆	2093 ₁₆
	21th Column	2014 ₁₆	2094 ₁₆
Not used		2015 ₁₆	2095 ₁₆
		to	to
		201F ₁₆	209F ₁₆
Block 2	1 st Column	2020 ₁₆	20A0 ₁₆
	2 nd Column	2021 ₁₆	20A1 ₁₆
	3 rd Column	2022 ₁₆	20A2 ₁₆
	:	:	:
	19th Column	2032 ₁₆	20B2 ₁₆
	20th Column	2033 ₁₆	20B3 ₁₆
	21th Column	2034 ₁₆	20B4 ₁₆
Not used		2035 ₁₆	20B5 ₁₆
		to	to
		203F ₁₆	20BF ₁₆
Block 3	1 st Column	2040 ₁₆	20C0 ₁₆
	2 nd Column	2041 ₁₆	20C1 ₁₆
	3 rd Column	2042 ₁₆	20C2 ₁₆
	:	:	:
	19th Column	2052 ₁₆	20D2 ₁₆
	20th Column	2053 ₁₆	20D3 ₁₆
	21th Column	2054 ₁₆	20D4 ₁₆
Not used		2055 ₁₆	
		to	
		207F ₁₆	

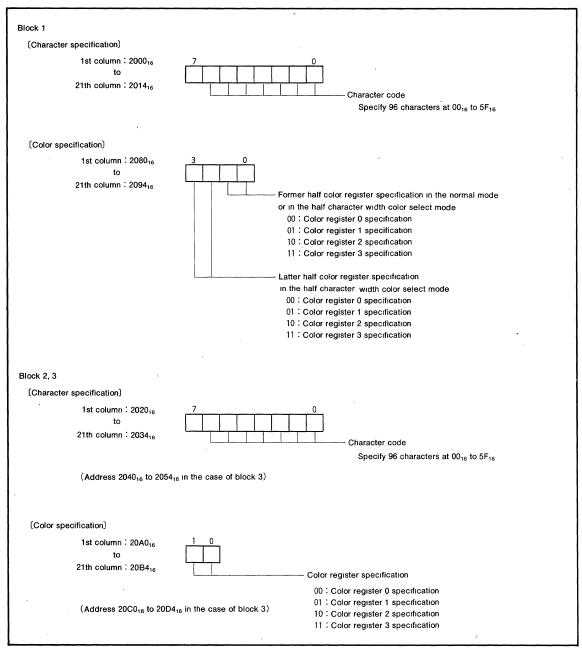


Fig. 26 Structure of the CRT display RAM

(5) Color Registers

The color of a displayed character can be specified by setting the color to one of the four color registers (CO0-CO3: addresses 00D4₁₆ to 00D7₁₆) and then specifying that color register with the CRT display RAM.

There are four color outputs: R, G, B, and I. By using a combination of these outputs, it is possible to set 2^4 -1 (when no output) = 15 colors. However, because only four color registers are available, up to four colors can be displayed at one time.

R, G, B, and I outputs are set by using bits 0 to 3 in the color register. Bit 4 in the color register is used to set a character or blank output; bit 5 is used to specify whether a character output or blank output. Figure 27 shows the structure of the color register.

(6) Half Character Width Color Select Mode

By setting "1" to bit 4 in the CRT control register (address $00D8_{16}$) it is possible to specify colors in units of a half character size (vertical 16 dots×horizontal 6 dots) for characters in block 1 only.

In the half character width color select mode, colors of display characters in block 1 are specified as follows:

- ① The left half of the character is set to the color of the color register that is specified by bits 0 and 1 at the color register specifying addresses in the CRT display RAM (addresses 2080₁₆ to 2094₁₆).
- ② The right half of the character is set to the color of the color register that is specified by bits 2 and 3 at the color register specifying address in the CRT display RAM (addresses 2080₁₆ to 2094₁₆).

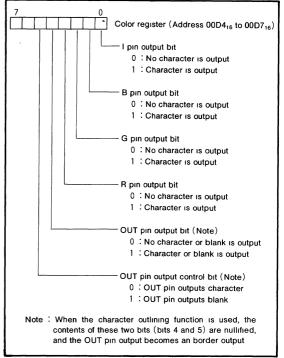


Fig. 27 Structure of color registers

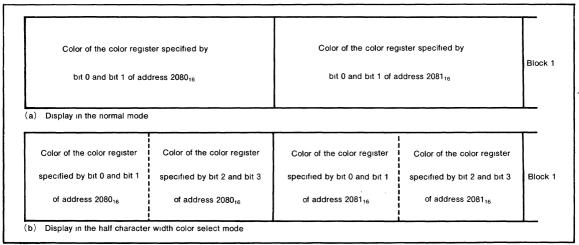


Fig. 28 Difference between normal color select mode and half character width color select mode

(7) Multiline Display

The M37103M4-XXXSP can normally display three lines on the CRT screen by displaying three blocks at different vertical positions.

In addition, it allows up to 16 lines to be displayed by using a CRT interrupt and display block counter.

The CRT interrupt works in such a way that when display of one block is terminated, an interrupt request is generated. In other words, character display for a certain block is initiated when the scanning line reaches the display position for that block (specified with vertical and horizontal position registers) and when the range of that block is exceeded, an interrupt is applied.

The display block counter is used to count the number of blocks that have just been displayed. Each time the display of one block is terminated, the contents of the counter are incremented by one.

For multiline display, it is necessary to enable the CRT interrupt (by clearing the interrupt disable flag to "0" and setting the CRT interrupt enable bit=bit 6 at address 00FE₁₆) to "1"), then execute the following processing in the CRT interrupt handling routine.

- 1 Read the value of the display block counter.
- The block for which display is terminated (i.e., the cause of CRT interrupt generation) can be determined by the value read in ①.
- ③ Replace the display character data and display position of that block with the character data (contents of CRT display RAM) and vertical display position (contents of vertical position register) to be displayed next.

Figure 29 shows the structure of the display block counter.

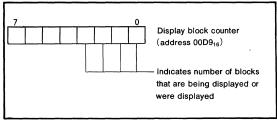


Fig. 29 Structure of display block counter

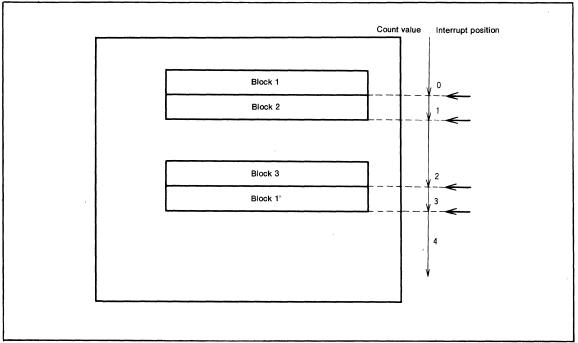


Fig. 30 Timing of CRT interrupt and count value of display block counter

MITSUBISHI MICROCOMPUTERS M37103M4-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

(8) Scanning Line Double Count Mode

One dot in a displayed character is normally shown by one scanning line. In the scanning line double count mode, one dot can be shown by two scanning lines. As a result, the displayed dot is extended two times the normal size in the vertical direction only. (That is to say, the height of a character is extended twofold.)

In addition, because the scanning line count is doubled, the display start position of a character is also extended two-fold in the vertical direction. In other words, whereas the contents set in the vertical position register in the normal mode are 64 steps from 00_{16} to $3F_{16}$, or four scanning lines per step, the number of steps in the scanning line double count mode is 32 from 00_{16} to $1F_{16}$, or eight scanning lines per step.

If the contents of the vertical position register for a block are set in the address range of 20_{16} to $3F_{16}$ in the scanning line double count mode, that block cannot be displayed (not output to the CRT screen).

In the scanning line double count mode can be specified by setting bit 6 in the CRT control register (address $00D8_{16}$) to "1".

Because this function works in units of screen, even when the mode is changed the mode about the scanning line count during display of one screen, the double count mode only becomes valid from the time the next screen is displayed.

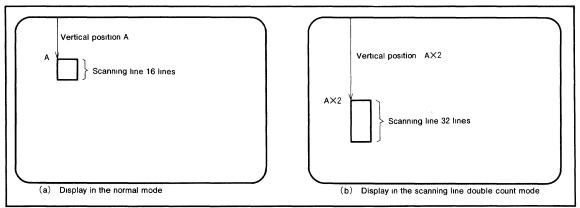


Fig. 31 Display in the normal mode and in the scanning line double count mode

M37103M4-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

(9) Horizontal Character Border Function

An border of a one clock (one dot) equivalent size can be added to a character to be displayed only horizontal direction.

The border is output from the OUT pin. In this case, bits 4 and 5 in the color register (contents output from the OUT pin) are nullified, and the border is output from the OUT pin instead.

Border can be specified in units of block by using the bits 6 and 7 of horizontal position register. Table 7 shows the relationship between the values set in the horizontal position register and the character border function.

Table 7. The relationship between the value set in the horizontal position register and the character border function

Horizontal position register		Functions		
Bit 7	Bit 6	Functions	Example of output	
· ·	0	Managar	R, G, B, I output	
X	U	Normal	OUT output	
0	•	Doudou in childing share share	R, G, B, I output	
0	•	Border including character	OUT output	
1	1	Dorder not including above to	R, G, B, I output	
'	1	Border not including character	OUT output	

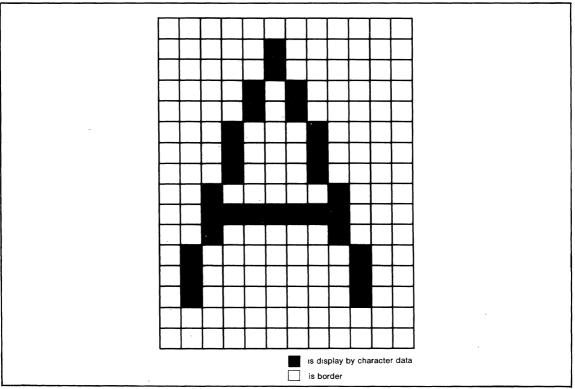


Fig. 32 Example of border

MITSUBISHI MICROCOMPUTERS M37103M4-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

(10) Programming notes

- Use STA instruction for data transfer to the following registers related to OSD functions.
 - ① Horizontal position register (address 00D0₁₆)
 - ② Vertical position registers (address 00D1₁₆ to 00D3₁₆)
- 3 Color registers (address 00D4₁₆ to 00D7₁₆)
- 4 CRT control register (address 00D8₁₆)
- Do not display the display OFF blocks having different character sizes on a block display.
- The highest vertical position (the vertical display start position bits are "00₁₆") can not be used.
- The interrupt to tell the end of block display is not caused and the display block counter is not incremented until the display of the block has been completed terminated.
- The display block counter (00D9₁₆) is reset while V_{SYNC} is "H" (when the option is positive in polarity) to "00₁₆".
- If, during the display of a block, the display position of another block comes, the display of the subsequent block (having a larger vertical position register value) is preferred.
- When two or more blocks are displayed in the same vertical position, the display priority is CV1, CV2, and CV3 in this order. This is not affected by turning on/off of block display.

M37103M4-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

RESET CIRCUIT

The M37103 is reset according to the sequence shown in Figure 34. It starts the program from the address formed by using the content of address FFFF $_{16}$ as the high order address and the content of the address FFFE $_{16}$ as the low order address, when the $\overline{\text{RESET}}$ pin is held at "L" level for no less than $2\mu \text{s}$ while the power voltage is 5V \pm 10% and the crystal oscillator oscillation is stable and then returned to "H" level. The internal initializations following reset are shown in Figure 33.

	Address				
(1) Port P0 directional register	(D0)(E1 ₁₆)	0 0 16			
(2) Port P1 directional register	(D1)(E3 ₁₆)	0 0 16			
(3) Port P2 directional register	(D2)(E5 ₁₆)	0 0 16			
(4) Port P3 directional register	(D3)(E9 ₁₆) ·	0 0 16			
(5) Port P4 directional register	(D4)(EB ₁₆)	0			
(6) Port P5 directional register	(D5)(ED ₁₆)	0 0 0 0 0 0			
(7) Port P6 directional register	(D6)(EF ₁₆)	000000			
(8) PWM control register	(PM)(F5 ₁₆)	0 0 16			
(9) Serial I/O mode register	(SM)(F6 ₁₆)	0 0 16			
(10) PWM output control register	(PN)(F9 ₁₆)	0 0 0 0 0 0			
(11) Interrupt control register 2	(IN)(FB ₁₆)				
(12) Timer 2	(T2)(FC ₁₆)	F F 16			
(13) Timer 3	(T3)(FD $_{16}$) \cdot	0 7 16			
(14) Interrupt control register 1	(IM)(FE ₁₆) ·	0 0 16			
(15) Timer control register	(TM.)(FF ₁₆)	0 0 16			
(16) Processor status register	(PS)				
(17) Program counter	(PC _H)	Contents of address FFFF ₁₆			
	(PC _L)	Contents of address FFFE ₁₆			
(18) Horizontal location register	(HR)(DO ₁₆)	0 0 16			
(19) Color register 0	(CÕO)(D4 ₁₆)	000000			
(20) Color register 1	(CŌ1)(D5 ₁₆)	000000			
(21) Color register 2	(CÕ2)(D6 ₁₆)	000000			
(22) Color register 3	(CŌ3)(D7 ₁₆)	000000			
(23) Display control register	(CC)(D8 ₁₆)	0000000			
(24) PWM output control register	(PQ)(0206 ₁₆) ·	0000000			
(25) Timer 4 control register (TN)(0208 ₁₆) 0 0 0 0 0 Note Since the contents of both registers other than those listed above and the RAM are undefined at reset, it is necessary to set initial values					

Fig. 33 Internal state of microcomputer at reset

MITSUBISHI MICROCOMPUTERS M37103M4-XXXSP

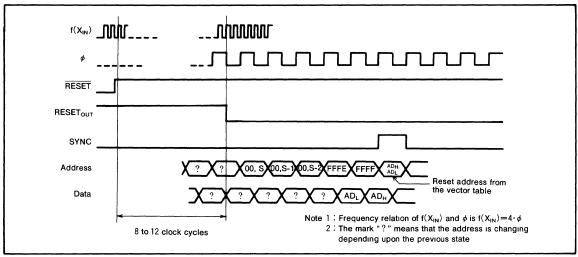


Fig. 34 Timing diagram at reset

I/O PORTS

(1) Port P0

Port P0 is an 8-bit I/O port with N-channel open drain and middle-voltage output.

As shown in the memory map (Figure 2), port P0 can be accessed at zero page memory address $00E0_{16}$.

Port P0 has a directional register (address $00E1_{16}$) which can be used to program each individual bit as input ("0") or as output ("1"). If the pins are programmed as output, the output data is latched to the port register and then output. When data is read from the output port the output pin level is not read, only the latched data in the port register is read. This allows a previously output value to be read correctly even though the output voltage level is shifted up or down. Pins set as input are in the floating state and the signal levels can thus be read. When data is written into the input port, the data is latched only to the port latch and the pin still remains in the floating state.

Depending on the contents of the processor mode bits (bit 0 and bit 1 at address $00FF_{16}$), three different modes can be selected; single-chip mode, eva-chip mode and microprocessor mode

In these modes it functions as address (A_7-A_0) output port (excluding single-chip mode). For more details, see the processor mode information.

(2) Port P1

In single-chip mode, port P1 has the same function as port P0. It can be built in pull-up register at each pin by selecting the option. In other modes, it functions as address (A_{15} - A_8) output port.

Refer to the section on processor modes for details.

(3) Port P2

In single-chip mode, port P2 has the same function as port P1. In other modes, it functions as data $(D_0$ - $D_7)$ input/output port. Refer to the section on processor modes for details.

(4) Port P3

In single-chip mode, port P3 has the same function as port P0 but the output structure is not middle voltage. $P3_2-P3_7$ have program selectable dual functions. $P3_0$, $P3_1$ function as control signals input/output port except in the single-chip mode. Refer to the section on processor modes for details.

(5) Port P4

This is a 1-bit I/O port with function similar to port P0, but the output structure is CMOS output.

This port is unaffected by the processor mode bits.

(6) Port P5

This is an 8-bit I/O port with function similar to port P0, but the output structure of P5₂ and P5₃ is not middle-voltage. P5₁ and P5₄-P5₇ have program selectable dual functions. P5₂, P5₃ are shared with external interrupt input pins (INT₁, INT₂).

This port is unaffected by the processor mode bits.

(7) Port P6

This is an 6-bit input/output port with function similar to port P0. The output structure of P6 $_0$, P6 $_1$ is CMOS output and the output structure of P6 $_2$ -P6 $_5$ is N-channel open drain and middle-voltage.

P6₀-P6₅ have program selectable dual functions.

This port is unaffected by the processor mode bits.

) Function pins for CRT display function.

The horizontal synchronizing signal is input from H_{SYNC} . The vertical synchronizing signal is input from V_{SYNC} . I, B, G, R, OUT are output pins for CRT display. Refer to the section on CRT display functions for details.

(9) ø pin.

The internal system clock (1/4 the frequency of the oscillator connected between the $X_{\rm IN}$ and $X_{\rm OUT}$ pins) can be output from this pin by selecting the option. At low-speed mode, $X_{\rm CIN}$ divided by 2 is output from this pin.

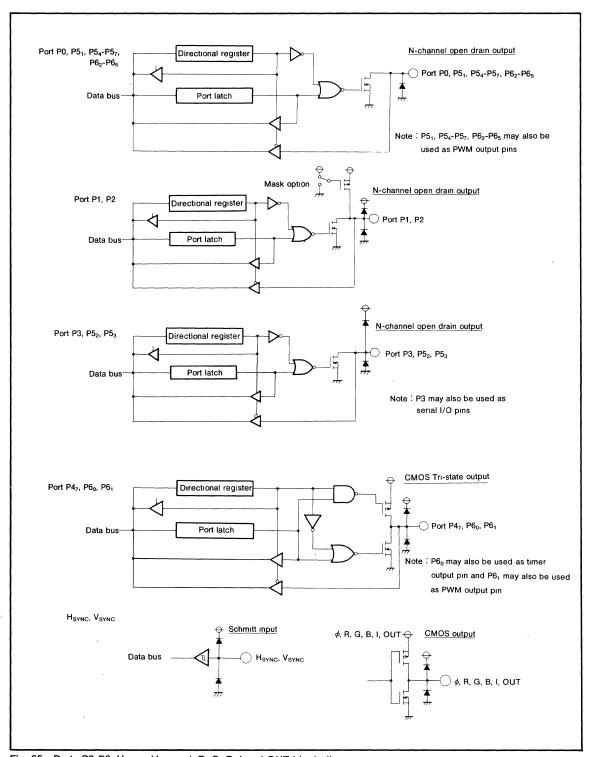


Fig. 35 Ports P0-P6, H_{SYNC} , V_{SYNC} , ϕ , R, G, B, I and OUT block diagram

PROCESSOR MODE

By changing the contents of the processor mode bit (bit 0 and 1 at address 00FF₁₆), three different operation modes can be selected; single-chip mode, microprocessor mode and evaluation chip (eva-chip) mode. In the microprocessor mode and eva-chip mode, ports P0-P3 can be used as multiplexed I/O for address, data and control signals, as well as the normal functions of the I/O ports.

Figure 37 shows the functions of ports P0-P3.

The memory map for the single-chip mode is illustrated in Figure 1 and for other modes, in Figure 36.

By connecting CNV_{SS} to V_{SS} , all three modes can be selected through software by changing the processor mode bits. Supplying 10V to CNV_{SS} places the microcomputer in the eva-chip mode. The three different modes are explained as follows:

000016			
00BF ₁₆	Internal RAM	Internal RAM	
	Not used	Not used	
00D0 ₁₆	miscellaneous	miscellaneous	
00DF ₁₆	registers	registers	
00E0 ₁₆		Port P0-P2	
00E5 ₁₆		Port PU-P2	
00EB ₁₆	miscellaneous	miscellaneous	
00FF ₁₆	registers	registers	
010016	Not used	Not used	
01FF ₁₆			
020016	miscellaneous	miscellaneous	
0004	registers	registers	
020A ₁₆	Not used	Not used	
2000 ₁₆	RAM for display	RAM for display	
20D4 ₁₆	Not used	Not useJ	
2000	Not used	Not used	
3000 ₁₆ 35FF ₁₆	ROM for display 1	ROM for display 1	
001 1 16	Not used	Not used	
3800 ₁₆ 3DFF ₁₆	ROM for display 2	ROM for display 2	
	Not used	Not used	
400016	7777777	////////////////////////////////////	
	<i>\/////</i>	- <i>\////////</i>	
	<i>Y//////</i>	- <i>\///////</i>	
E000 ₁₆			
	<i>Y//////</i>	<i>- \///////</i>	
		V///////	
FFFF ₁₆		Y///////	

Fig. 36 Example memory area in processor mode

(1) Single-chip mode (00)

The microcomputer will automatically be in the single-chip mode when started from reset, if CNV_{SS} is connected to V_{SS} . Port P0-P3 will work as original I/O ports.

(2) Microprocessor mode [01]

The microcomputer will be placed in the microprocessor mode when CNV_{SS} is connected to V_{SS} and the processor mode bits are set to "01".

In this mode, the internal ROM is inhibited so the external memory is required.

In this mode, port P0 and P1 are used as the system address bus and the original function of the I/O pins is lost. Port P2 becomes the data bus $(\mathsf{D}_7\text{-}\mathsf{D}_0)$ and loses its normal output functions. Port P3 $_1$ and P3 $_0$ become the SYNC and R/\overline{W} pins, respectively and the normal I/O functions are lost.

(3) Eva-chip mode [11]

When 10V is supplied to CNV_{SS} pin, the microcomputer is forced into the eva-chip mode.

In this mode, the internal ROM is inhibited so the external memory is required.

The lower 8 bits of address data for port P0 is output when ϕ goes to "H" state. When ϕ gose to the "L" state. P0 retains its original output functions.

Port P1's higher 8 bits of address data are output when ϕ goes to "H" state and as it changes back to the "L" state it retains its original output functions. Port P2 retains its original output functions while ϕ is at the "H" state, and works as a data bus of D₇-D₀ (including instruction code) while at the "L" state. Pins P3₁ and P3₀ output the SYNC and R/W control signals, respectively while ϕ is in the "H" state. When in the "L" state, P3₁ and P3₀ retain their original I/O function.

The R/\overline{W} output is used to read/write from/to the outside. When this pin is in the "H" state, the CPU reads data, and when in the "L" state, the CPU writes data.

The SYNC is a synchronous signal which goes to the "H" state when it fetches the OP CODE.

The relationship between the input level of CNV_{SS} and the processor mode is shown in Table 8.

Note: Use the M37103M4-XXXSP in the microprocessor mode or the memory expanding mode only at program development.

The standards is assured only in the single-chip mode.

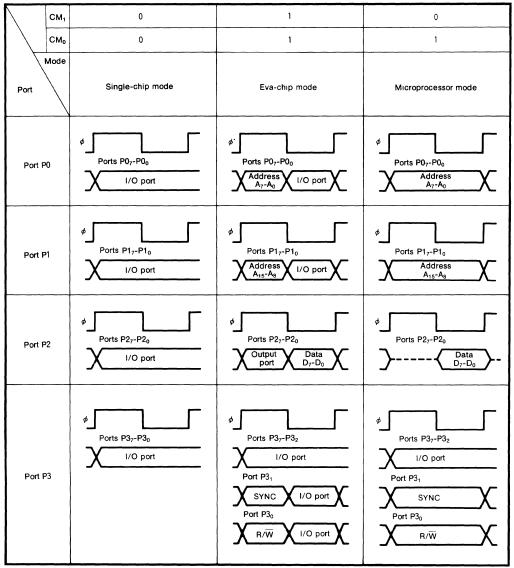


Fig. 37 Processor mode and functions of ports P0-P3

Table 8. Relationship between CNV_{SS} pin input level and processor mode

CNV _{SS}	Mode	Explanation
V _{SS}	Single-chip mode	The single-chip mode is set by the reset
İ	Eva-chip mode	All modes can be selected by changing the processor mode bit with the program
<u> </u>	Microprocessor mode	
10V	Eva-chip mode	Eva-chip mode only

CLOCK GENERATING CIRCUIT

The M37103M4-XXXSP has two internal clock generating circuits. Figure 40 shows a block diagram of the clock generating circuits. Normally, the frequency applied to the clock input pin $X_{\rm IN}$ divided by four is used as the internal clock (timing output) ϕ . Bit 7 of serial I/O mode register can be used to switch the internal clock ϕ to 1/2 the frequency applied to the clock input pin $X_{\rm CIN}$.

Figure 38 shows a circuit example using a ceramic (or crystal) oscillator. Use the manufacturer's recommended values for constants such as capacitance which will differ depending on each oscillator. When using an external clock signal, input from the X_{IN} (X_{CIN}) pin and leave the X_{OUT} (X_{COUT}) pin open. A circuit example is shown in Figure 39. The M37103M4-XXXSP has two low power dissipation modes; stop and wait. The microcomputer enters a stop mode when the STP instruction is executed. The oscillator (both X_{IN} clock and X_{CIN} clock) stops with the internal clock ϕ held at "H" level. In this case timer 2 and timer 3 are forcibly connected and $\phi/8$ is selected as timer 2 input. When restarting oscillation, FF16 is automatically set in timer 2 and 07₁₆ in timer 3 in order to enable the oscillator to stabilize. Before executing the STP instruction, the timer 2 count stop bit must be set to supply ("0"), timer 2 interrupt enable bit and timer 3 interrupt enable bit must be set to disable

Oscillation is restarted (release the stop mode) when INT_1 , INT_2 , or serial I/O interrupt is received. The interrupt enable bit of the interrupt used to release the stop mode must be set to "1". When restarting oscillation with an interrupt or reset, the internal clock ϕ is held "H" until timer 3 overflows and is not supplied to the CPU.

The microcomputer enters a wait mode when the WIT instruction is executed. The internal clock ϕ stops at "H" level, but the oscillator does not stop. ϕ is re-supplied (wait mode release) when the microcomputer is reset or when it receives an interrupt.

Instructions can be executed immediately because the oscillator is not stopped. The interrupt enable bit of the interrupt used to reset the wait mode must be set to "1" before executing the WIT instruction.

Low power dissipation operation is also achieved when the X_{IN} clock is stopped and the internal clock ϕ is generated from the X_{CIN} clock $(60\mu\text{A})$ or less at $f(X_{\text{CIN}})=32\text{kHz})$. X_{IN} clock oscillation is stopped when the bit 6 of serial I/O mode register (address $00\text{F6}_{16})$ is set and restarted when it is cleared. However, the wait time until the oscillation stabilizes must be generated with a program when restarting. Figure 41 shows the transition of states for the system clock.

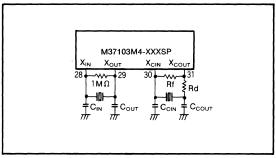


Fig. 38 Example ceramic resonator circuit

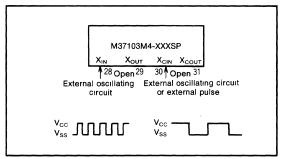


Fig. 39 Example clock input circuit

("0").

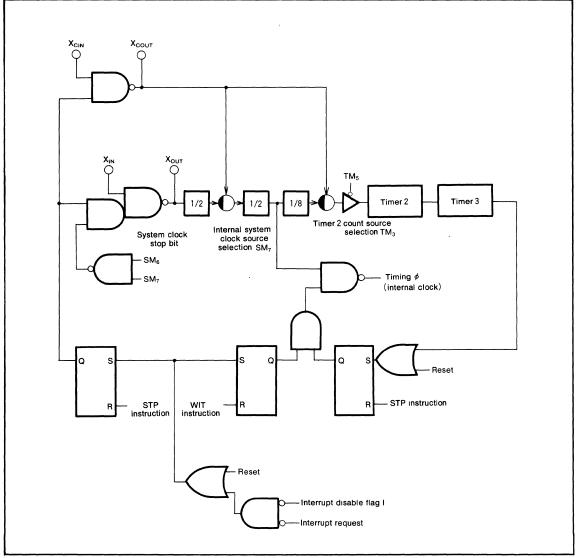


Fig. 40 Block diagram of clock generating cirucit

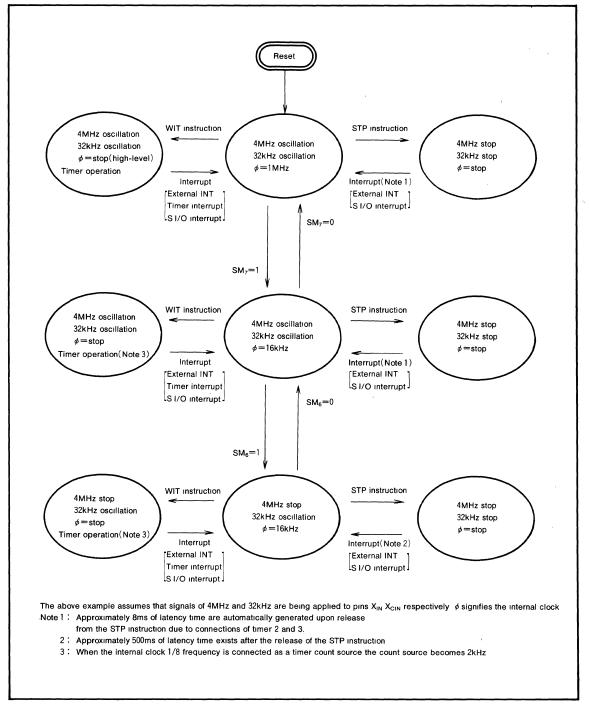


Fig. 41 Transition of states for the system clock

Power on reset Normal operation Clock X and clock for clock function X_C oscillation Internal system clock start $(X \rightarrow 1/4 \rightarrow \phi)$ Program start from RESET vector Normal program ←Operating at 4 MHz Internal clock ϕ source switching X(4 MHz) \rightarrow X_C(32.768kHz)(SM₇: 0 \rightarrow 1) Operation on the clock function only Clock X halt(X_C in operation) Internal clock halt(WIT instruction) Timer 3 (clock count) overflow Internal clock operation start (WIT instruction released) Clock processing routine ← Operating at 32.768kHz Internal clock halt (WIT instruction) Interrupts from $\overline{INT_1}$, timer 2, timer 1 or serial I/O, $\overline{INT_2}$ Return from clock function Internal clock operation start (WIT instruction released) Program start from interrupt vector Clock X oscillation start Oscillation rise time routine (software) ←Operating at 32. 768kHz Internal clock ϕ source switching $(X_C \rightarrow X)(SM_7 : 1 \rightarrow 0)$ Normal program →Operating at 4MHz RAM backup function STP instruction preparation (pushing registers) Timer 2, timer 3 interrupt disable, timer 3 interrupt no request ($IM_4 = 0$, $TM_6 = 0$, $TM_7 = 0$) Timer 2 count stop bit resetting $(TM_5 = 0)$ Clock X and clock for clock function X_C halt (STP instruction) RAM backup status Return from RAM backup function Interrupts from INT₁, serial I/O, INT₂ Clock for clock function X_C oscillation start Timer 3 overflow (X_C/8→timer 2 →timer 3) (Automatically connected by the hardware) Internal system clock start $(X_C \rightarrow 1/2 \rightarrow \phi)$ Program start from interrupt vector Normal program

∠An example of flow for system>

PROGRAMMING NOTES

- (1) Processor status register
 - Except for the interrupt inhibit flag (I) being set to "1", the content of the processor status register (PS) is unpredictable after a reset. Therefore, flags affecting program execution must be initialized.
 - The T flag and D flag which affect arithmetic operations, must always be initialized.
 - A NOP instruction must be used after the execution of a PLP instruction.
- (2) Interrupts

Even though the BBC and BBS instructions are executed just after the interrupt request bits are modified (by the program), those instructions are only valid for the contents before the modification. Also, at least one instruction cycle must be used (such as a NOP) between the modification of the interrupt request bits and the execution of the BBC and BBS instructions.

- (3) Decimal operations
 - Decimal operations are performed by setting the decimal mode flag (D) and executing the ADC or SBC instruction. In this case, there must be at least one instruction following the ADC or SBC instruction before executing the SEC, CLC, or CLD instruction.
 - The N (Negative), V (Overflow), and Z (Zero) flags are ignored during decimal mode.
- (4) Timers

The frequency dividing ratio of timer is 1/(n+1).

(5) STP instruction

The STP instruction must be executed after setting the timer 2 count stop bit (bit 5 at address $00FF_{16}$) to supply ("0").

DATA REQUIRED FOR MASK ORDERING

Please send the following data for mask orders.

- mask ROM order confirmation form
- mark specification form
- · ROM data ······ EPROM 3 sets

Write the following option on the mark confirmation form

- (1) Port P1 pull-up transistor bit
- (2) Port P2 pull-up transistor bit
- (3) X_{IN} and X_{CIN} oscillation feed-back resistor
- (4) CRT display signal input/output polarity

MITSUBISHI MICROCOMPUTERS M37103M4-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	, Conditions	Ratings	Unit
Vcc	Supply voltage		-0.3 to 6	V
Vi	Input voltage RESET, CNV _{SS}		-0.3 to 13	٧
	Input voltage P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ ,			
.,	P3 ₀ -P3 ₇ , P4 ₇ , P5 ₁ -P5 ₇ ,	1864b	0.34-1/10.3	.,
Vı	P60-P65, HSYNC, VSYNC,	With respect to V _{SS}	-0.3 to $V_{CC}+0.3$	V
	X _{IN} , X _{CIN} , OSC1	Output transistors are at "off" state		[
Vo	Output voltage P0 ₀ -P0 ₇ , P5 ₁ , P5 ₄ -P5 ₇ , P6 ₂ -P6 ₅	at on state	-0.3 to 13	V
Vo	Output voltage P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ -P3 ₇ ,			
	P4 ₇ , P5 ₂ , P5 ₃ , P6 ₀ , P6 ₁ , X _{OUT} , ϕ ,		-0.3 to $V_{CC}+0.3$	V
	X _{COUT} , OSC2, R, G, B, I, OUT			
I _{OH}	Circuit current P60, P61, P47, R, G, B, I, OUT		0 to 10(Note 1)	mA
I _{OL1}	Circuit current P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ -P3 ₇ , P4 ₇ ,		0 to 15(Note 2)	mA
	P5 ₂ , P5 ₃ , P6 ₀ , P6 ₁ , R, G, B, I, OUT		0 to 15(140te 2)	IIIA
1	Circuit current P0 ₀ -P0 ₇ , P5 ₁ , P5 ₄ -P5 ₇ , P6 ₂ -P6 ₅	V ₀ ≤ 7 V	0 to 15(Note 2)	mA
I _{OL2}	Official Current F00-F07, F31, F34-F37, F02-F05	$V_0 > 7 V$	0 to 1(Note 2)	IIIA
Pd	Power dissipation	T _a = 25℃	1000	mW
Topr	Operating temperature		-10 to 70	°C
Tstg	Storage temperature		-40 to 125	င

Note 1: The total of I_{OH} should be 20mA(max)

2: The total of I_{OL1} and I_{OL2} should be 50mA(max)

RECOMMENDED OPERATING CONDITIONS

(V_{CC}=5V \pm 10%, Ta=-10 to 70°C unless otherwise noted)

Symbol	Parameter			Limits			
		Para	meter	Mın	Тур	Max	Unit
V _{CC}	Supply voltage	Normal spee	d mode $f(X_{IN})=4MHz$ f(OSC1)=5MHz	4.5	5.0	5.5	V
	(Note 1)	Low-speed n	node f(X _{CIN})=32kHz	3.0	5.0	5.5	
V _{SS}	Supply voltag	е		0	0	0	٧
V _{IH}	"H" input volta	"H" input voltage P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ -P3 ₇ , P4 ₇ , P5 ₁ -P5 ₇ , P6 ₀ -P6 ₅ , X _{IN} , X _{CIN} , RESET, H5YNG, V _{SYNC}				V _{cc}	٧
VIL	"L" input volta	"L" input voltage P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ , P3 ₁ , P3 ₃ -P3 ₅ , P3 ₇ , P4 ₇ , P5 ₁ , P5 ₄ , P5 ₅ , P5 ₇ , P6 ₀ -P6 ₅				0.4V _{CC}	٧
VIL	"L" input volta	"L" input voltage P3 ₂ , P3 ₆ , P5 ₂ , P5 ₃ , P5 ₆ , RESET, X _{IN} , X _{CIN} , H _{SYNC} , V _{SYNC}				0.2V _{CC}	٧
I _{OL(avg)}	"L" average o	"L" average output current P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ -P3 ₇ , P4 ₇ , P5 ₁ -P5 ₇ , P6 ₀ -P6 ₅ , R, G, B, I, OUT				5	mA
1	"L" average o	utput current	V ₀ ≦7V			5	
l _{oL(avg)}	P0 ₀ -P0 ₇ , P5 ₁ , P5 ₄ -P5 ₇ , P6 ₂ -P6 ₅ V ₀ >7V				1	mA	
I _{он(avg)}	"H" average o			2	mA		
f(X _{IN})	Oscillating fre	Oscillating frequency (Note 2)				4. 4	MHz
f(X _{CIN})	Oscillating fre	equency		29	32	35	kHz
f(OSC1)	Oscillating fre	equency		4	5	6	MHz

Note 1 : Apply 0.022 μ F or greater capacitance externally to the V_{CC} power supply pin so as to reduce power source noise

2 : Use a quartz crystal oscillator or a ceramic resonator for the CPU oscillating circuit

M37103M4-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

ELECTRIC CHARACTERISTICS ($V_{cc}=5V\pm10\%$, $V_{ss}=0$ V, $T_a=-10$ to 70° C, $f(X_{IN})=4MHz$)

Symbol	Parameter	Test conditions			Limits		Unit
Symbol	Farameter			Mın.	Тур	Max	
V _{OH}	"H" output voltage P47, P60, P61, R, G, B, I, OUT	V_{CC} =4.5V, I_{OH} =-0.5mA		2. 4			V
V _{OH}	"H" output voltage ϕ	$V_{CC}=4.5V$ $I_{OH}=-2.5mA$		2.4			V
V _{OL}	"L" output voltage P0 ₀ -P0 ₇ , P2 ₀ -P2 ₇ , P3 ₀ -P3 ₇ , P4 ₇ , P5 ₁ -P5 ₇ , P6 ₀ -P6 ₅ , R, G, B, I, OUT	V _{CC} =4.5V I _{OL} =0.5mA				0.4	v
V _{OL}	"L" output voltage P1 ₀ -P1 ₇	V _{CC} =4.5V I _{OL} =10mA				1.5	V
V _{OL}	"L" output voltage ϕ	V _{CC} =4.5V I _{OL} =2.5mA				2	٧
$V_{T+} - V_{T-}$	Hysteresis RESET	V _{CC} =5.0V			0.5	0.7	V
$V_{T+} - V_{T-}$	Hysteresis P3 ₂ , P3 ₆ , P4 ₇ , P5 ₂ , P5 ₃ , P5 ₆ , H _{SYNC} , V _{SYNC} , X _{CIN} (Note 2)	V _{CC} =5.0V			0.5	1.3	V
Ru	Pull-up transister (Note 1) P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇	V _{cc} =5.0V V _i =0V		15	30	60	kΩ
l _{ozh}	"H" input current P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ -P3 ₇ , P4 ₇ , P5 ₁ -P5 ₇ , P6 ₀ -P6 ₅ , RESET, X _{IN} , X _{CIN} , H _{SYNC} , V _{SYNC}	V _{CC} =5.5V V _O =5.5V				5	μА
I _{OZH}	"H" input leak current P0 ₀ -P0 ₇ , P5 ₁ , P5 ₄ -P5 ₇ , P6 ₀ -P6 ₅	V _{cc} =5.5V V _o =12V				10	μA
l _{ozL}	"L" input leak current P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ -P3 ₇ , P4 ₇ , P5 ₁ -P5 ₇ , P6 ₀ -P6 ₅ , H _{SYNC} , V _{SYNC} , X _{CIN} , RESET	V _{CC} =5.5V V _O =0V				5	μА
V _{RAM}	RAM retention voltage	At stop mode		2.5		5. 5	V
Icc	Supply current	V _{CC} =5.5V, f(X _{IN})=4MHz At system operation and CRT	display off		5	10	
		V _{CC} =5.5V, f(X _{IN})=4MHz At system operation and CRT	display on		7	14	mA
		V _{CC} =5.5V, f(X _{IN})=4MHz At wait mode			1		
		$X_{IN} - X_{OUT}$ stop $f(X_{CIN}) = 32kHz$	V _{CC} =5.5V		60	200	
		At system operation	V _{cc} =3V		25	1	
		X _{IN} -X _{OUT} stop f(X _{CIN})=32kHz	V _{CC} =5.5V		25	100	μΑ
	,	At wait mode	V _{cc} =3V		5		-
		At stop mode	V _{cc} =5.5V		1	10	
		At stop mode	V _{cc} =3V		0.6		

Note 1: Pull-up transistor is mask option

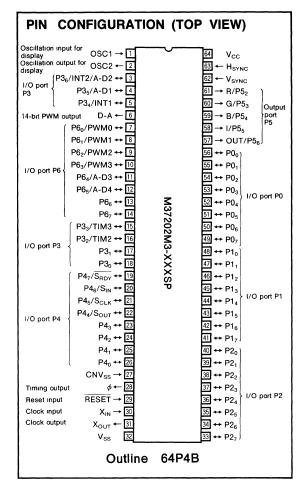
2 : Hysteresis of X_{CIN} is only when this port is used as timer 4 input

MITSUBISHI MICROCOMPUTERS

M37202M3-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

DESCRIPTION


The state of the s

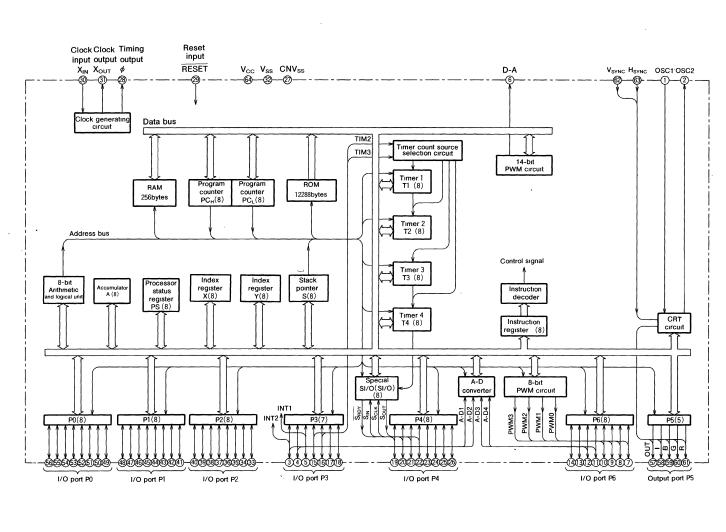
The M37202M3-XXXSP is a single-chip microcomputer designed with CMOS silicon gate technology. It is housed in a 64-pin shrink plastic molded DIP. This single-chip microcomputer is useful for the high-tech channel selection system for TVs and VTRs.

In addition to their simple instruction sets, the ROM, RAM, and I/O addresses are placed on the same memory map to enable easy programming.

FEATURES

•	Number of basic instructions 69
•	Memory size ROM ······12288 bytes
	RAM 256 bytes
•	Instruction execution time
	1µs (minimum instructions at 4MHz frequency)
•	Single power supply5V±10%
•	Power dissipation
	normal operation mode (at 4MHz frequency)
	110mW (V _{CC} =5.5V, CRT display)
•	Subroutine nesting ······ 96 levels (Max.)
•	Interrupt 12 types, 12 vectors
•	8-bit timer 4
•	Programmable I/O ports
	(Ports P0, P1, P2, P3, P4, P6) ····· 47
•	Output port (Port P5)5
•	Serial I/O (8-bit)1
•	Special serial I/O (I ² C bus* format)···········1
•	PWM function ·······14-bit×1
	8-bit×4
•	A-D converter (4-bit resolution) 4 channels
•	72-character on screen display function
	Number of character 24 characters × 3 lines
	Kinds of character 94

APPLICATION


TV. VTR

^{* :} Purchase of Mitsubishi Electric Corporation's I²C components converys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

SINGLE-CHIP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

FUNCTIONS OF M37202M3-XXXSP

1	Parameter		Functions	
Number of basic instructions			69	
Instruction execution time			1µs (minimum instructions, at 4MHz frequency)	
Clock frequency			4MHz	
	ROM		12288 bytes	
Memory size	RAM		256 bytes	
	P0, P1, P2	1/0	8-bit×3	
Input/Output ports	P3 ₀ , P3 ₁	1/0	2-bit×1	
	P3 ₂ -P3 ₆	1/0	5-bitX1 (can be used as timer input pins, INT1, INT2 input pins and A-D input pins)	
	P4 ₀ -P4 ₃	1/0	4-bit×1	
	P4 ₄ -P4 ₇	1/0	4-bit×1 (can be used as serial I/O pins)	
	P5	Output	5-bit×1 (can be used as R, G, B, I, OUT pins)	
	P6 ₀ -P6 ₅	1/0	6-bit×1 (can be used as PWM output pins and A-D input pins)	
	P6 ₆ , P6 ₇	1/0	2-bit×1	
Serial I/O	1	<u> </u>	8-bit×1 (Special serial I/O (8-bit)×1)	
A-D converter			4-bit (4-channel)	
Pulse width modulator	, , , , , , , , , , , , , , , , , , ,		14-bit×1, and 8-bit×4	
Timers			8-bit timer×4	
Subroutine nesting		The state of the s	96levels (max)	
			Two external interrupts, eight internal interrupts,	
Interrupt			one software interrupt	
Clock generating circuit			Two built-in circuits (externally connected ceramic or quartz crystal oscillator)	
Supply voltage			5V±10%	
	at CRT display ON		110mW (clock frequency X _{IN} =4MHz, V _{CC} =5.5V, Typ)	
Power dissipation	at CRT display OFF		55mW (clock frequency X _{IN} =4MHz, V _{CC} =5.5V, Typ)	
	at stop mode		1.65mW (Max)	
Input/Output characteristics	Input/Output voltage		12V (Port P4 ₀ ~P4 ₃ , P4 ₆ , P4 ₇ , P6 ₀ ~P6 ₃ , P6 ₆ , P6 ₇)	
Input/Output characteristics	Output current		10mA (Port P2 ₄ ~P2 ₇)	
Operating temperature range)		—10 to 70℃	
Device structure			CMOS silicon gate process	
Package			64-pin shrink plastic molded DIP	
	Number of character		24 characters×3 lines (maximum 16 lines by software)	
	Kinds of character		94 (12×16 dots)	
CRT display function	Character size		4 types	
	Color		15 types (Max) specified by character unit	
	Display position		64 (horizontal direction)×128 (vertical direction)	

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

PIN DESCRIPTION

Pin	Name	Input/ Output	Functions		
V _{CC} , V _{SS}	Supply voltage		Power supply inputs 5V \pm 10% (typ) to V _{CC} , and 0V to V _{SS}		
CNV _{ss}	CNV _{SS}		This is connected to Vss		
RESET	Reset input	Input	To enter the reset state, the reset input pin must be kept at a "L" for more than $2\mu s$ (under normal V_{CC} conditions). If more time is needed for the crystal oscillator to stabilize, this "L" condition should be maintained for the required time		
X _{IN}	Clock input	Input	This chip has an internal clock generating circuit. To control generating frequency, an external ceramic or a		
Хоит	Clock output	Output	quartz crystal oscillator is connected between the X_{IN} and X_{OUT} pins. If an external clock is used, the clock source should be connected the X_{IN} pin and the X_{OUT} pin should be left open		
φ	Timing output	Output	This is the timing output pin		
P0 ₀ to P0 ₇	I/O port P0	1/0	Port P0 is an 8-bit I/O port with directional registers allowing each I/O bit to be individually programmed as input or output. At reset, this port is set to input mode. The output structure is CMOS output		
P1 ₀ to P1 ₇	I/O port P1	1/0	Port P1 is an 8-bit I/O port and has basically the same functions as port P0		
P2 ₀ to P2 ₇	I/O port P2	1/0	Port P2 is an 8-bit I/O port and has basically the same functions as port P0		
P3 ₀ to P3 ₆	I/O port P3	I/O	Port P3 is an 7-bit I/O port and has basically the same functions as port P0, but the output structure of P3 ₀ , P3 ₁ is CMOS output and the output structure of P3 ₂ to P3 ₆ is N-channel open drain P3 ₂ , P3 ₃ are in common with external clock input pins of timer 2 and 3 P3 ₄ , P3 ₆ are in common with external interrupt input pins INT1 and INT2 \P3 ₅ , P3 ₆ are in common with analog input pins of A-D converter (A-D1, A-D2)		
P4 ₀ to P4 ₇	I/O port P4	1/0	Port P4 is an 8-bit I/O port and has basically the same functions as port P0, but the output structure is N-channel open drain When serial I/O is used, P44, P45, P46 and P47 work as S _{OUT} , S _{CLK} , S _{IN} and S _{RDY} pins, respectively Also P44, P45 are in common with special serial I/O pins of SDA and SCL		
P6 ₀ to P6 ₇	I/O port P6	1/0	Port P6 is an 8-bit I/O port and has basically the same functions as port P0, but the output structure is N-channel open drain Port P6 $_0$ to P6 $_3$ are in common with PWM output pips PWM0 to PWM3 Port P6 $_4$ and P6 $_5$ are in common with A-D converter analog input pins A-D3 and A-D4		
OSC1, OSC2	Clock input/output for CRT display	Input Output	This is the I/O pins of the clock generating circuit for the CRT display function		
H _{SYNC}	H _{SYNC} input	Input	This is the horizontal synchronizing signal input for CRT display.		
V _{SYNC}	V _{SYNC} input	Input	This is the vertical synchronizing signal input for CRT display		
R, G, B, I, OUT	CRT output	Output	This is an 5-bit output pin for CRT display. The output structure is CMOS output. This is in common with port P52 to P56		
D-A	DA Output	Output	This is a output pin for 14-bit PWM. The output structure is CMOS output		

FUNCTIONAL DESCRIPTION Central Processing Unit (CPU)

The M37202 microcomputers use the standard MELPS 740 instruction set. For details of instructions, refer to the MELPS 740 CPU core basic functions, or the MELPS 740 Software Manual.

Machine-resident instructions are as follows:

The FST and SLW instructions are not provided.

The MUL and DIV instructions are not provided.

The WIT instruction can be used.

The STP instruction can be used.

CPU Mode Register

The CPU mode register is allocated to address 00FB₁₆. Bits 0 and 1 of this register are processor mode bits. This register also has a stack page selection bit.

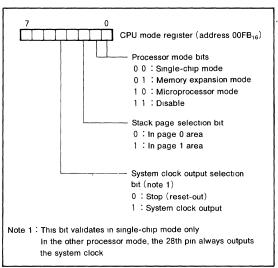


Fig. 1 Structure of CPU mode register

MEMORY

• Special Function Register (SFR) Area

The special function register (SFR) area contains the registers relating to functions such as I/O ports and timers.

RAM

RAM is used for data storage as well as a stack area

ROM

ROM is used for storing user programs as well as the interrupt vector area.

• Interrupt Vector Area

The interrupt vector area is for storing jump destination addresses used at reset or when an interrupt is generated.

Zero Page

Zero page addressing mode is useful because it enables access to this area with fewer instruction cycles.

Special Page

Special page addressing mode is useful because it enables access to this area with fewer instruction cycles.

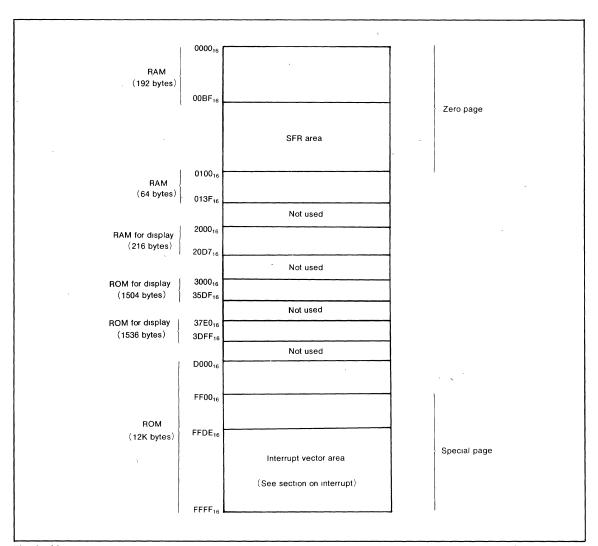


Fig. 2 Memory map

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

00C0 ₁₆	Port P0	00E0 ₁₆	Horizontal position register
00C1 ₁₆	Port P0 direction register	00E1 ₁₆	Vertical display start position register 1
00C2 ₁₆	Port P1	00E2 ₁₆	Vertical display start position register 2
00C3 ₁₆	Port P1 direction register	00E3 ₁₆	Vertical display start position register 3
00C4 ₁₆	Port P2	00E4 ₁₆	Character size register
00C5 ₁₆	Port P2 direction register	00E5 ₁₆	Border selection register
00C6 ₁₆	Port P3	00E6 ₁₆	Color register 0
00C7 ₁₆	Port P3 direction register	00E7 ₁₆	Color register 1
00C8 ₁₆	Port P4	00E8 ₁₆	Color register 2
00C9 ₁₆	Port P4 direction register	00E9 ₁₆	Color register 3
00CA ₁₆	Port P5	, 00EA ₁₆	CRT control register
00CB ₁₆	Port P5 direction register	00EB ₁₆	Display block counter
00CC ₁₆	Port P6	00EC ₁₆	CRT port control register
00CD ₁₆	Port P6 direction register	00ED ₁₆	
00CE ₁₆	DA-H register	00EE ₁₆	
00CF ₁₆	DA-L register	00EF ₁₆	A-D control register
00D0 ₁₆	PWM 0 register .	00F0 ₁₆	Timer 1
00D1 ₁₆	PWM 1 register	00F1 ₁₆	Timer 2
00D2 ₁₆	PWM 2 register	00F2 ₁₆	Timer 3
00D3 ₁₆	PWM 3 register	00F3 ₁₆	Timer 4
00D4 ₁₆		00F4 ₁₆	Timer 12 mode register
00D5 ₁₆	PWM output control register 1	00F5 ₁₆	Timer 34 mode register
00D6 ₁₆	PWM output control register 2	00F6 ₁₆	
00D7 ₁₆	Interrupt interval determination register	00F7 ₁₆	
00D8 ₁₆	Interrupt interval determination control register	00F8 ₁₆	
00D9 ₁₆	Special serial I/O register	00F9 ₁₆	
00DA ₁₆	Special mode register 1	00FA ₁₆	
00DB ₁₆	Special mode register 2	00FB ₁₆	CPU mode register
00DC ₁₆		00FC ₁₆	Interrupt request register 1
00DD ₁₆		00FD ₁₆	Interrupt request register 2
00DE ₁₆	Serial I/O mode register	00FE ₁₆	Interrupt control register 1
00DF ₁₆	Serial I/O register	00FF ₁₆	Interrupt control register 2

Fig. 3 SFR (Special Function Register) memory map

INTERRUPTS

Interrupts can be caused by 11 different events consisting of three external, seven internal, and one software events Interrupts are vectored interrupts with priorities shown in Table 1. Reset is also included in the table because its operation is similar to an interrupt.

When an interrupt is accepted, the registers are pushed as described in the stack pointer (S) section above, interrupt disable flag I is set, and the program jumps to the address specified in the vector table. The interrupt request flag is cleared automatically. The reset and BRK instruction interrupt can never be disabled. Other interrupts are disabled when the interrupt disable flag is set.

All interrupts except the BRK instruction interrupt have an interrupt request bit and an interrupt enable bit. The interrupt request bits are in interrupt request registers 1 and 2 and the interrupt enable bits are in interrupt control registers 1 and 2. Figure 4 shows the structure of the interrupt request registers 1 and 2 and interrupt control registers 1 and 2.

Interrupts other than the BRK instruction interrupt and reset are accepted when the interrupt enable bit is "1", interrupt request bit is "1", and the interrupt disable flag is "0". The interrupt request bit can be reset with a program, but not set. The interrupt enable bit can be set and reset with a program.

Reset is treated as a non-maskable interrupt with the highest priority. Figure 5 shows interrupts control.

Table 1. Interrupt vector address and priority.

Event	Priority	Vector addresses	Remarks
RESET	1	FFFF ₁₆ , FFFE ₁₆	Non-maskable
CRT interrupt	2	FFFD ₁₆ , FFFC ₁₆	
INT2 interrupt	3	FFFB ₁₆ , FFFA ₁₆	
INT1 interrupt	4	FFF9 ₁₆ , FFF8 ₁₆	
Serial I/O interrupt	5	FFF7 ₁₆ , FFF6 ₁₆	
Timer 4 interrupt	6	FFF5 ₁₆ , FFF4 ₁₆	
1 ms interrupt	7	FFF3 ₁₆ , FFF2 ₁₆	
V _{SYNC} interrupt	8	FFF1 ₁₆ , FFF0 ₁₆	
Timer 3 interrupt	9	FFEF ₁₆ , FFEE ₁₆	
Timer 2 interrupt	10	FFED ₁₆ , FFEC ₁₆	
Timer 1 interrupt	11	FFEB ₁₆ , FFEA ₁₆	
BRK instruction interrupt	12	FFDF ₁₆ , FFDE ₁₆	Non-maskable software interrupt

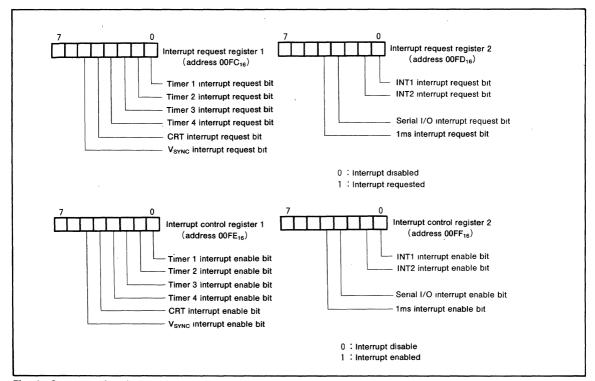


Fig. 4 Structure of registers related with interrupt

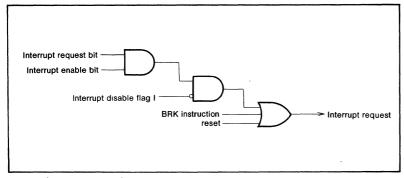


Fig. 5 Interrupt control

TIMER

The M37202M3-XXXSP has four timers; timer 1, timer 2, timer 3 and timer 4.

A block diagram of timer 1 through 4 is shown in Figure 7. The count source for timer 1 through 4 can be selected by using bit 0, 1, 4 of timer 12 mode register and timer 34 mode register (address $00F4_{16}$, $00F5_{16}$), as shown in Figure 6.

All of the timers are down count timers and have 8-bit latches. When a timer reaches " 00_{16} " and the next count pulse is input to a timer, a value which is subtracted 1 from the contents of the reload latch are loaded into the timer. The division ratio of the timer is 1/(n+1), where n is the contents of timer latch. The timer interrupt request bit is set at the next count pulse after the timer reaches " 00_{16} ".

The starting and stopping of the timer is controlled by bit 2, 3 of timer 12 mode register and timer 34 mode register.

At a reset or stop mode, FF₁₆ is automatically set in timer 3 and 07_{16} in timer 4 and timer 4, timer 3 and the clock $(f(X_{IN}))$ divided by 16) are connected in series.

When restarting oscillation or canceling a reset, the internal clock is not supplied to the CPU until timer 4 overflows.

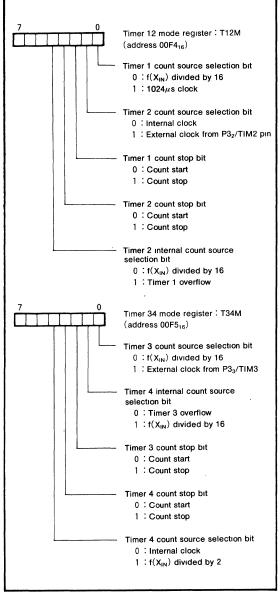


Fig. 6 Structure of timer 12 mode register and timer 34 mode register

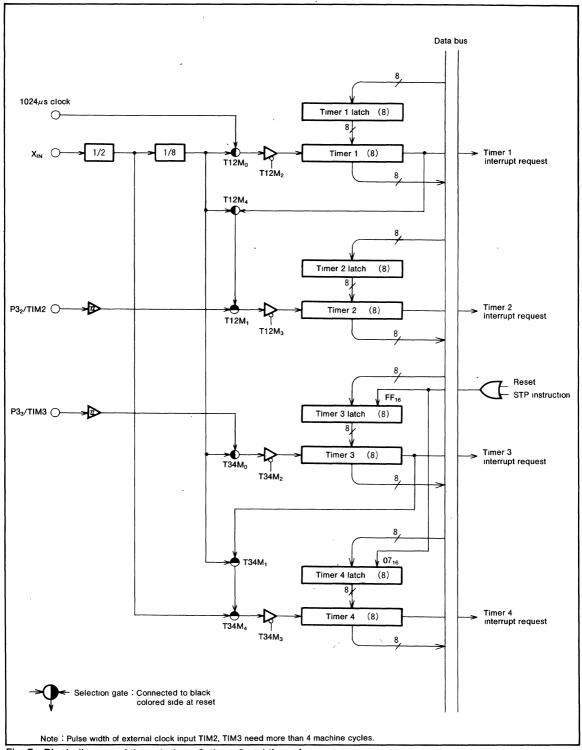


Fig. 7 Block diagram of timer 1, timer 2, timer 3 and timer 4

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

SERIAL I/O

A block diagram of the serial I/O is shown in Figure 8. In the serial I/O mode, port P44 to P47 are used as the serial I/O pins $(S_{\text{OUT}} \text{ and } S_{\text{IN}}),$ synchronous input/output clock pin (S_{CLK}) , and the receive ready signal pin $(\overline{S}_{\text{RDV}})$. The serial I/O mode registers (address $00DE_{16})$ are 8-bit registers. Bits 0, 1 and 2 of these registers are used to select a synchronous clock source.

Bit 3 and 4 decide whether port P4 will be used as a serial I/O or not.

To use $P4_6$ as a serial input, set the directional register bit which corresponds to $P4_6$ to "0". For more information on the directional register, refer to the I/O pin section.

Also to use internal clock of serial I/O, bit 1 of special mode register 1 (address 00DA₁₆) needs to be set to "1". The serial I/O function is discussed below. The function of the serial I/O differs depending on the clock source; external clock or internal clock.

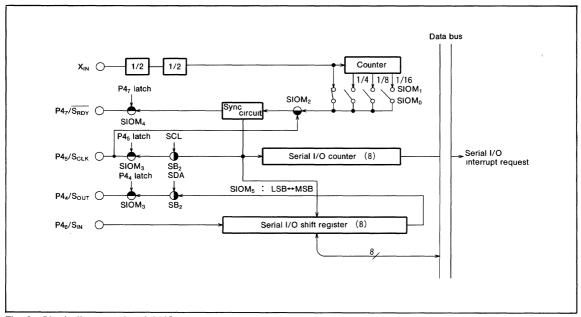


Fig. 8 Block diagram of serial I/O

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

Internal clock—The \overline{S}_{RDY} signal becomes "H" during transmission or while dummy data is stored in the serial I/O register (address $00DF_{16}$). After the falling edge of the write signal, the \overline{S}_{RDY} signal becomes low signaling that the M37202M3-XXXSP is ready to receive the external serial data. The \overline{S}_{RDY} signal goes "H" at the next falling edge of the transfer clock. The serial I/O counter is set to 7 when data is stored in the serial I/O register. At each falling edge of the transfer clock, serial data is output to \overline{S}_{OUT} . During the rising edge of this clock, data can be input from \overline{S}_{IN} and the data in the serial I/O register will be shifted 1 bit.

Transfer direction can be selected by bit 5 of serial I/O mode register. After the transfer clock has counted 8 times, the serial I/O register will be empty and the transfer clock will remain at a high level. At this time the interrupt request

bit will be set.

External clock- If an external clock is used, the interrupt request will be sent after the transfer clock has counted 8 times but transfer clock will not stop.

Due to this reason, the external clock must be controlled from the outside. The external clock should not exceed 500kHz at a duty cycle of 50%. The timing diagram is shown in Figure 9. When using an external clock for transfer, the external clock must be held at "H" level when the serial I/O counter is initialized. When switching between the internal clock and external clock, the switching must not be performed during transfer. Also, the serial I/O counter must be initialized after switching.

An example of communication between two M37202M3-XXXSPs is shown in Figure 10.

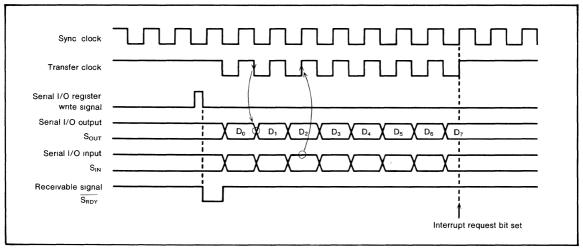


Fig. 9 Serial I/O timing

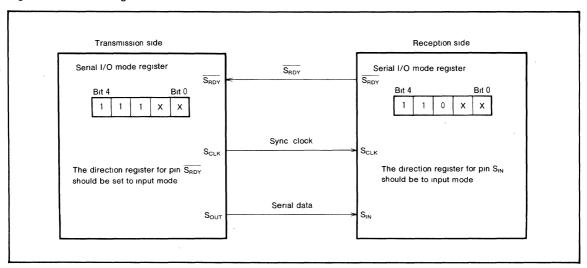


Fig. 10 Example of serial I/O connection

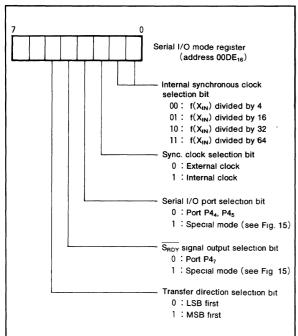


Fig. 11 Structure of serial I/O mode register

SPECIAL MODE (I²C BUS MODE)

M37202M3-XXXSP has a special serial I/O circuit that can be reception or transmission of serial data in conformity with $\rm I^2C$ (Inter IC) bus format.

I²C bus is a two line directional serial bus developed by Philips to transfer and control data among internal ICs of a machinery.

M37202M3-XXXSP's special serial I/O is not included the clock synchronisation function and the arbitration detectable function at multimaster.

Operations of master transmission and master reception with special serial I/O are explained in the following:

(1) Master transmission

To generate an interrupt at the end of transmission, set bit 7 of special mode register 2 (address $00DB_{16}$) to "1" so as to special mode serial I/O interrupt is selected. Then set bit 3 of interrupt control register 2 (address $00FF_{16}$) to "1" so as to special mode serial I/O interrupt is enabled. Clear the interrupt disable flag I to "0" by using the CLI instruction

The output signals of master transmission SDA and SCL are output from ports $P4_4$ and $P4_5$. Set all bits (bits 4 and 5) corresponding to $P4_4$ and $P4_5$ of the port P4 register (address $00C8_{16}$) and the port P4 direction register (address $00C9_{16}$) to "1".

Set the transmission clock. The transmission clock uses the overflow signal of timer 4. Set appropriate value in timer 4. (For instance, if $f(X_{IN})/16$ is selected as the clock source of timer 4 and 4 is set in timer 4 when $f(X_{IN})$ is 4MHz, the master transmission clock frequency is 25kHz.)

Set contents of the special mode register 2 (address $00DB_{16}$). (Usually, "83 $_{16}$ ".)

Set the bit 3 of serial I/O mode register (address $00DE_{16}$). After that set the special mode register 1 (address $00DA_{16}$). Figure 15 shows the structure of special mode registers 1 and 2.

Initial setting is completed by the above procedure.

Write data to be transmitted in the special serial I/O register (address $00D9_{16}$). Immediately after this, clear bits 0 and 1 of special mode regiser 2 (to "0") to make both SDA and SCL output to "L". This is for arbitration. The start signal has been completed.

The hardware automatically sends out data of 9-clock cycle. The 9th clock is for ACK receiving and the output level becomes "H" at this clock. If other master outputs the start signal to transmit data simultaneously with this 9th clock, it is not detected as an arbitration-lost.

When the ACK bit has been transmitted, bit 3 of the interrupt request register 2 is set to "1" (issue of interrupt request), notifying the end of data transmission.

To transmit data successively, write data to be sent to the special serial I/O register, and set the interrupt enabled state again. By repeating this procedure, unlimited number of bytes can be transmitted.

To terminate data transfer, clear bits 0 and 1 of the special mode register 2 to "0", set bit 1 clock SCL to "1", then set bit 1 data SDA to "1". This procedure transmits the stop signal.

Figure 13 shows master transmission timing explained above.

(2) Master reception

Master reception is carried out in the interrupt routine after data is transferred by master transmission. For master transmission and interrupt thereafter, see the preceding section (1) Master transmission.

In the interrupt routine, set master reception ACK provided

 (26_{16}) in the special mode register 1 (address $00DA_{16}$), and write "FF₁₆" in the special serial I/O register (address $00D9_{16}$). This sets data line SDA to "H" and to perform 8-clock master reception. Then, "L" is transmitted to data line SDA for ACK receiving. In the ACK provided mode, the above ACK is automatically sent out.

Repeat the above receiving operation for a necessary number of times. Then return to the master transmission mode and transmit the stop signal by the same procedure for the master transmission.

Figure 14 shows master reception timing.

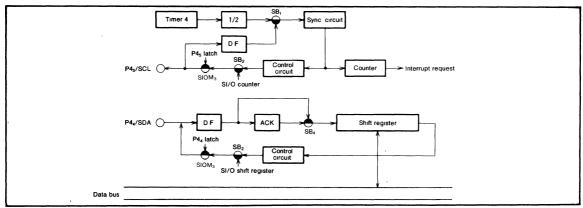


Fig. 12 Block diagram of special serial I/O

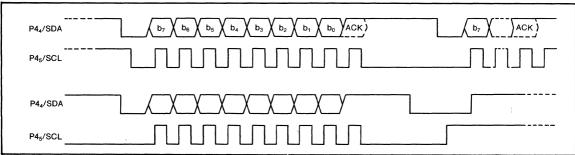


Fig. 13 • Master transmission timing

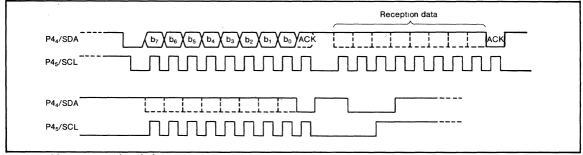


Fig. 14 Master reception timing

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

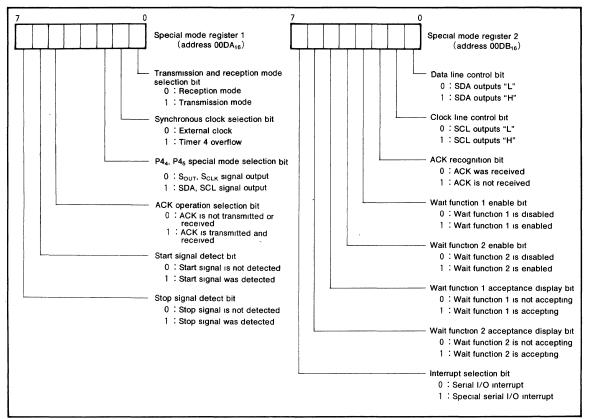


Fig. 15 Structure of special mode registers 1 and 2

(3) Wait functions

Wait function 1 holds the SCL line at "L" after the 8th clock falls in special mode. Wait function 2 holds the SCL line at "L" after the 9th clock falls in the same way.

When one of the wait functions operates, the internal counter that counts the clock must be reset after bit 3 or 4 of the special mode register 2 is set to "1", to enable the corresponding wait function 1 or 2 to operate. Reset the internal counter by writing data to the special serial I/O register (address 00D9₁₆), or by setting the START signal detection bit to "1". Reset the internal counter for each byte before data transfer.

The wait functions can be released by setting the corresponding bit 5 or 6 of the special mode register 2 to "1".

Note 1: Clear the START signal detection bit (bit 6) and the STOP signal detection bit (bit 7) of the special mode register 1 by writing "1" to bit 6 or bit 7.

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

PWM OUTPUT CIRCUIT

(1) Introduction

The M37202M3-XXXSP is equipped with one 14-bit PWM (DA) and four 8-bit PWMs (PWM0 to PWM3). The 14-bit resolution gives DA the minimum resolution bit width of 500ns (for $\rm X_{IN}{=}4MHz)$ and a repeat period of $\rm 8192\mu s$. PWM0 to PWM3 have a 8-bit resolution with minimum resolution bit width of $\rm 8\mu s$ and repeat period of $\rm 2048\mu s$.

Block diagram of the PWM is shown in Figure 16.

The PWM timing generator section applies individual control signals to DA and PWM0 to 3 using clock input X_{IN} divided by 2 as a referece signal.

(2) Data setting

The output pins PWM0 to 3 are in common with port

For PWM output, each PWM output selection bit (bit 2 to 5 of PWM output control register 1) should be set. When DA is used for output, first set the higher 8-bit of the DA-H register (address $00CE_{16}$), then the lower 6-bit of the DA-L register (address $00CF_{16}$).

When one of the PWM0 to 3 is used for output, set the 8-bit in the PWM0 to 3 register (address $00D0_{16}$ to $00D3_{16}$), respectively.

(3) Transferring data from registers to latches

The data written to the PWM registers is transferred to the PWM latches at the repetition of the PWM period. The signals output to the PWM pins correspond to the contents of these latches. When data in each PWM register is read, data in these latches has already been read allowing the data output by the PWM to be confirmed. However, bit 7 of the DA-L register indicated the completion of the data transfer from the DA register to the DA latch. If bit 7 is "0", the transfer has been completed, if bit 7 is "1", the transfer has not yet begun.

(4) Operation of the 8-bit PWMs

The timing diagram of the four 8-bit PWMs (PWM0 to 3) is shown in Figure 17. One period (T) is composed of 256 (28) segments.

There are eight different pulse types configured from bits 0 to 7 representing the significance of each bit. These are output within one period in the circuit internal section. Refer to Figure 17 (a).

Eight different pulses can be output from the PWM. These can be selected by bits 0 through 7. Depending on the content of the 8-bit PWM latch, pulses from 7 to 0 is selected. The PWM output is the difference of the sum of each of these pulses. Several examples are shown in Figure 17 (b). Changes in the contents of the PWM latch allows the selection of 256 lengths of highlevel area outputs varying from 0/256 to 255/256. An length of entirely high-level output cannot be output, i.e. 256/256.

(5) 14-bit PWM operation

The output example of the 14-bit PWM is shown in Figure 19. The 14-bit PWM divides the data within the PWM latch into the lower 6 bits and higher 8 bits.

A high-level area within a length D_H times τ is output every short area of t=256 τ =128 μ s as determined by data D_H of the higher 8 bits.

Thus, the time for the high-level area is equal to the time set by the lower 8 bits or that plus τ . As a result, the short-area period t (=128 μ s, approx. 7.8kHz) becomes an approximately repetitive period.

(6) Output after reset

At reset the output of port P6 is in the high impedance state and the contents of the PWM register and latch are undefined. Note that after setting the PWM register, its data is transferred to the latch.

Table 2. Relation between the 6 low-order bits of data and high-level area increase space

6 low-order bits of data	Area longer by τ than that of other $t_m(m = 0 \text{ to } 63)$
0 0 0 0 0 LSB	Nothing
000001	m=32
000010	m=16, 48
000100	m= 8, 24, 40, 56
001000	m= 4, 12, 20, 28, 36, 42, 50, 58
010000	m= 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62
100000	m=1,3,5,7,57,59,61,63

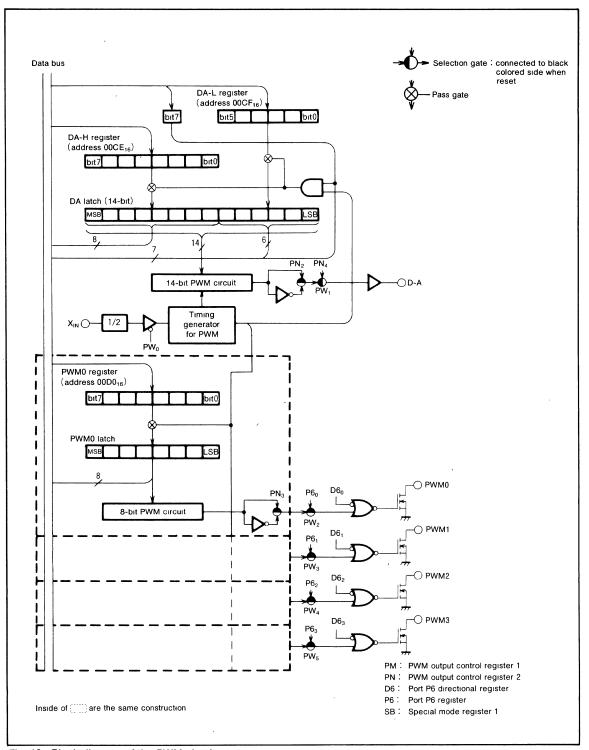


Fig. 16 Block diagram of the PWM circuit

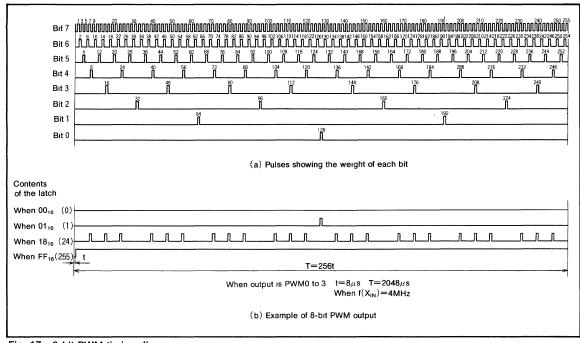


Fig. 17 8-bit PWM timing diagram

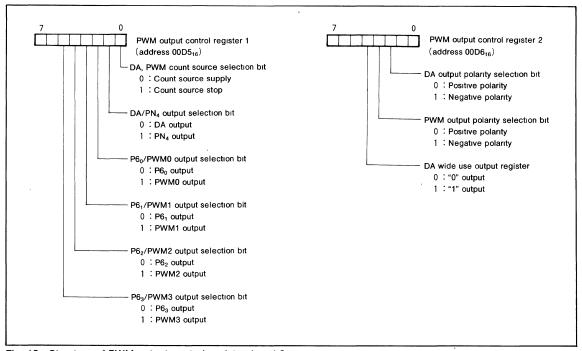


Fig. 18 Structure of PWM output control register 1 and 2

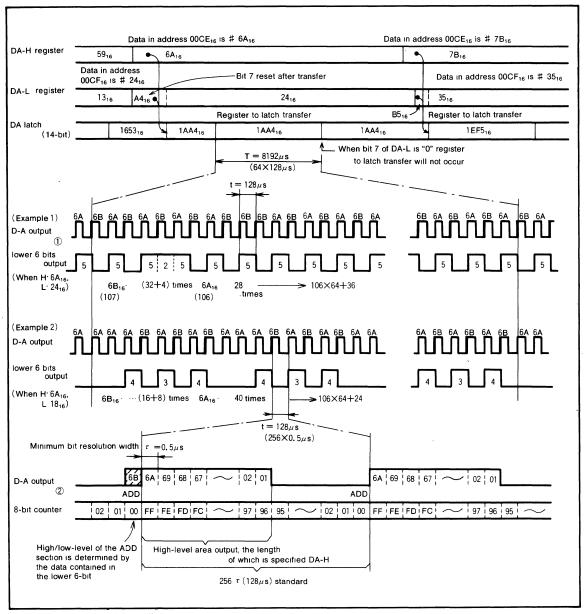


Fig. 19 14-bit PWM timing diagram

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

A-D CONVERTER

control register, bit 4.

converter consists of 4-bit D-A converter and comparator. The A-D control register can generate 1/16 $V_{\rm CC}$ -step internal analog voltage based on the settings of bits 0 to 3. Table 3 gives the relation between the descriptions of A-D control register bits 0 to 3 and the generated internal analog voltage. The comparison result of the analog input voltage and the internal analog voltage is stored in the A-D

Block diagram of A-D converter is shown in Figure 20. A-D

The data is compared by setting the direction register corresponding to port P3 $_5$, P3 $_6$, P6 $_4$ and P6 $_5$ to "0" (port P3 $_5$, P3 $_6$, P6 $_4$ and P6 $_5$ enters the input mode), to allow port P3 $_5$ / A-D1, P3 $_6$ /A-D2, P6 $_4$ /A-D3 and P6 $_5$ /A-D4 to be used as the analog input pin. The digital value corresponding to the internal analog voltage to be compared is then written in the A-D control register, bit 0 to 3 and an analog input pin is selected. After 20 machine cycle, the voltage comparison starts.

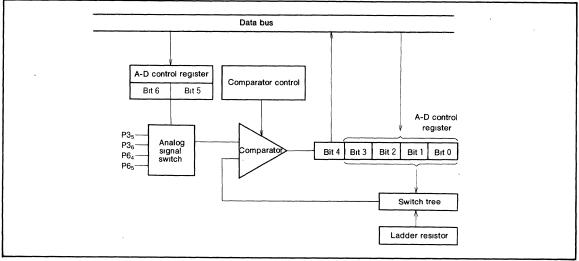


Fig. 20 Block diagram of A-D converter

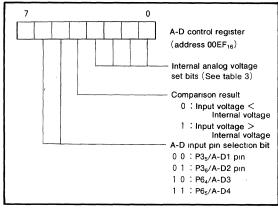


Fig. 21 Structure of A-D control register

Table 3. Relationship between the contents of A-D control register and internal analog voltage

	A-D contr	ol register		Internal analog voltage
Bit 3	Bit 2	Bit 1	Bit 0	Tillemai analog voltage
0	0	0	0	1/32 V _{cc}
0	0	0	1	3/32 V _{cc}
0	0	1	0	5/32 V _{cc}
0	0	1	1	7/32 V _{cc}
0	1 ,	0	0	9/32 V _{CC}
0	1	0	1	11/32 V _{cc}
0	1	1	0	13/32 V _{CC}
0	1	1	1	15/32 V _{cc}
1	0	0	0	17/32 V _{cc}
1	0	0	1	19/32 V _{cc}
1	0	1	0	21/32 V _{CC}
1	0	1	1	23/32 V _{CC}
1	1	0	0	25/32 V _{CC}
1	1	0	1	27/32 V _{CC}
1	1	1	0	29/32 V _{CC}
1	1	1	1	31/32 V _{CC}

CRT DISPLAY FUNCTIONS

(1) Outline of CRT Display Functions

Table 4 outlines the CRT display functions of the M37202M3-XXXSP. The M37202M3-XXXSP incorporates a 24 columns × 3 lines CRT display control circuit. CRT display is controlled by the CRT display control register.

Up to 94 kinds of characters can be displayed, and colors can be specified for each character. Four colors can be displayed on one screen. A combination of up to 15 colors can be obtained by using each output signal (R, G, B, and I).

Characters are displayed in a 12×16 dot configuration to obtain smooth character patterns. (See Figure 22)

The following shows the procedure how to display characters on the CRT screen.

Table 4. Outline of CRT display functions

Parameter		Functions	
Number of display		24 characters X3 lines	
chara	cter	24 Characters/Co lines	
Character		12×16 dots (See Figure 22)	
configuration		12/10 dots (See Figure 22)	
Kinds	of character	94	
Chara	acter size	4 size selectable	
Color	Kinds of color	15 (max)	
COIO	Coloring unit	a character	
Display expansion		Possible (multiple lines)	

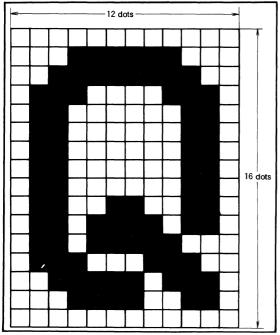


Fig. 22 CRT display character configuration

- ① Set the character to be displayed in display RAM.
- 2 Set the display color by using the color register.
- 3 Specify the color register in which the display color is set by using the display RAM.
- 4 Specify the vertical position and character size by using the vertical position register and the character size register.
- Specify the horizontal position by using the horizontal position register.
- Write the display enable bit to the designated block display flag of the CRT control register. When this is done, the CRT starts operation according to the input of the V_{SYNC} signal.

The CRT display circuit has an extended display mode. This mode allows multiple lines (more than 4 lines) to be displayed on the screen by interrupting the display each time one line is displayed and rewriting data in the block for which display is terminated by software.

Figure 23 shows the structure of the CRT display control register. Figure 24 shows a block diagram of the CRT display control circuit.

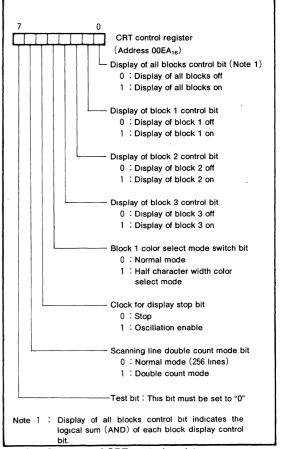


Fig. 23 Structure of CRT control register

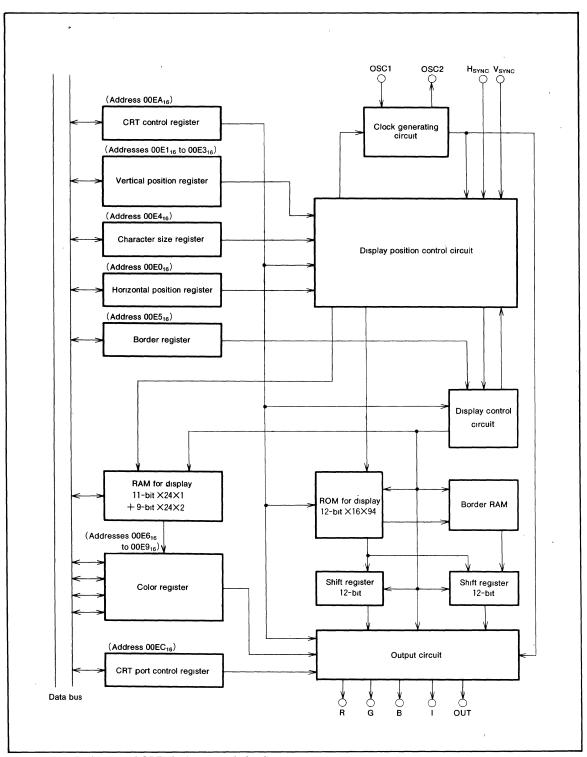


Fig. 24 Block diagram of CRT display control circuit

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

(2) Display Position

The display positions of characters are specified in units called a "block." There are three blocks, block 1 to block 3. Up to 24 characters can be displayed in one block. (See (4) Display Memory.)

The display position of each block in both horizontal and vertical directions can be set by software.

The horizontal direction is common to all blocks, and is selected from 64-step display positions in units of 4Tc (Tc =oscillation cycle for display).

The display position in the vertical direction is selected from 128-step display positions for each block in units of four scanning lines.

If the display start position of a block overlaps with some other block ((b) in Figure 27), a block of the smaller block No. (1 \sim 3) is displayed.

If one block has displayed, some other block is later displayed at the same display position ((c) in Figure 27), the former block is overridden and the latter is displayed.

The vertical position can be specified from 128-step positions (four scanning lines per step) for each block by setting values $00_{16} \sim 7F_{16}$ to bits $0 \sim 6$ in the vertical position register (addresses $00E1_{16} \sim 00E3_{16}$). Figure 25 shows the structure of the vertical position register.

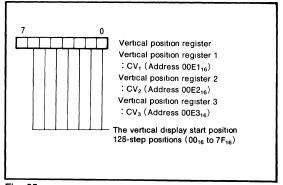


Fig. 25 Structure of vertical position registers

The horizontal direction is common to all blocks, and can be specified from 64-step display positions (4Tc per step (Tc=oscillation cycle for display) by setting values $00_{16} \sim 3F_{16}$ to bits $0 \sim 5$ in the horizontal position register (address $00E0_{16})$. Figure 26 shows the structure of the horizontal position register.

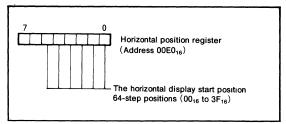
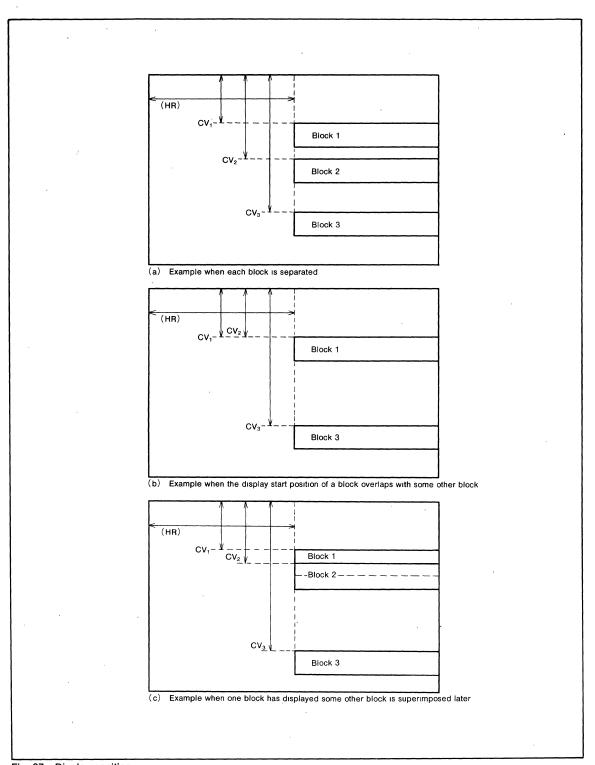
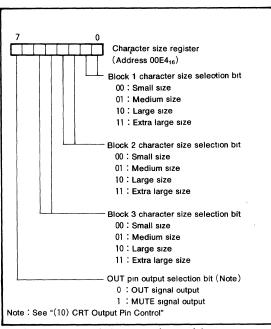


Fig. 26 Structure of horizontal position register




Fig. 27 Display position

(3) Character Size

The size of characters to be displayed can be selected from four sizes for each block. Use the character size register (address $00E4_{16}$) to set a character size. The character size in block 1 can be specified by using bits 0 and 1 in the character size register; the character size in block 2 can be specified by using bits 2 and 3; the character size in block 3 can be specified by using bits 4 and 5. Figure 28 shows the structure of the character size register.

The character size can be selected from four sizes: small size, medium size, large size, and extra large size. Each character size is determined by the number of scanning lines in the height (vertical) direction and the cycle of display oscillation (=Tc) in the width (horizontal) direction. The small size consists of [one scanning lines] \times [1 Tc]; the medium size consists of (two scanning lines] \times [2 Tc]; the large size consists of (three scanning lines) \times [3 Tc]; and the extra large size consists of (four scanning lines) \times [4 Tc]. Table 5 shows the relationship between the set values

in the character size register and the character sizes.

Small

Medium

Large

Extra large

Fig. 29 Display start position of each character size (horizontal direction)

Fig. 28 Structure of character size register

Table 5. The relationship between the set values of the character size register and the character sizes

Set values of the character size register Cl		Character	Width (horizontal) direction	Height (vertical) direction	
CS _{n1}	CS _{n⁰}	size	T _C : A cycle of display oscillation	(Scanning lines)	
0	0	Small	1 T _C	1	
0	1	Medium	2 T _C	2	
1	0	Large	3 T _C	3	
1	1	Extra large	4 T _C	4	

Note: The display start position in the horizontal direction is not affected by the character size. In other words, the horizontal start position is common to all blocks even when the character size varies with each block. (See Figure 29)

(4) Display Memory

There are two types of display memory: CRT display ROM (addresses 3000₁₆ to 35DF₁₆, 37E0₁₆ to 3DDF₁₆, and 3FE0₁₆ to 3FFF₁₆) used to store character dot data (masked) and display RAM (addresses 2000₁₆ to 20D7₁₆) used to specify the colors of characters to be displayed. The following describes each type of display memory.

1 ROM for CRT display (addresses 3000₁₆ to 35DF₁₆, 37E0₁₆ to 3DDF₁₆, and 3FE0₁₆ to 3FFF₁₆)

The CRT display ROM contains dot pattern data for characters to be displayed. For characters stored in this ROM to be actually displayed, it is necessary to specify them by writing the character code inherent to each character (code determined based on the addresses in the CRT display ROM) into the CRT display RAM.

The CRT display ROM has a capacity of 3K bytes. Because 32 bytes are required for one character data, the ROM can contain up to 96 kinds of characters. Actually, however, because two characters are required for test pattern use, the ROM can contain up to 94 kinds of characters for display

The CRT display ROM space is broadly divided into two areas. The [vertical 16 dots] \times [horizontal (left side) 8 dots] data of display characters are stored in addresses 3000_{16} to $35\mathrm{DF}_{16}$ and $37\mathrm{E0}_{16}$ to $37\mathrm{FF}_{16}$; the [vertical 16 dots] \times [horizontal (right side) 4 dots] data of display characters are stored in addresses 3800_{16} to $3\mathrm{DFF}_{16}$ and $3\mathrm{FE0}_{16}$ to $3\mathrm{FFF}_{16}$. (See Figure 30) Note however that the four upper bits in the data to be written to addresses 3800_{16} to $3\mathrm{DFF}_{16}$ and $3\mathrm{FEO}_{16}$ to $3\mathrm{FFF}_{16}$ must be set to "1" (by writing data FO_{16} to FF_{16}).

The character code used to specify a character to be displayed is determined based on the address in the CRT display ROM in which that character is stored.

Assume that data for one character is stored at addresses $3XX0_{16}$ to $3XXF_{16}$ (XX denotes 00_{16} to $5D_{16}$, $7E_{16}$, or $7F_{16}$) and $3YYO_{16}$ to $3YYF_{16}$ (YY denotes 80_{16} to DD_{16} , FE_{16} , or FF_{16}), then the character code for it is "XX₁₆".

In other words, character code for any given character is configured with two middle digits of the four-digit (hexnotated) addresses (3000_{16} to $35DF_{16}$ and $37E0_{16}$ to $37FF_{16}$) where data for that character is stored.

Table 6 lists the character codes

Table 6. Character code list

Character code	Contained up addré	ss of character data
Character code	Left 8 dots lines	Right 4 dots lines
	300016	3800 ₁₆
0016	to	to ·
	300F ₁₆	380F ₁₆
	3010 ₁₆	3810 ₁₆
01 ₁₆	to	to
	301F ₁₆	381F ₁₆
	3020 ₁₆	3820 ₁₆
02 ₁₆	to	to
	302F ₁₆	382F ₁₆
	3030 ₁₆	3830 ₁₆
03 ₁₆	to	to
	303F ₁₆	383F ₁₆
:	:	;
	3100 ₁₆	3900 ₁₆
10 ₁₆	to	to
	310F ₁₆	390F ₁₆
1	3110 ₁₆	3910 ₁₆
11 ₁₆	to	to
	311F ₁₆	391F ₁₆
:	:	:
	35C0 ₁₆	3DC0 ₁₆
5C ₁₆	to	to
	35CF ₁₆	3DCF ₁₆
	35D0 ₁₆	3DD0 ₁₆
5D ₁₆	to	to
	35DF ₁₆	3DDF ₁₆
	37E0 ₁₆	3FE0 ₁₆
7E ₁₆ *	to	to
	37EF ₁₆	3FEF ₁₆
	37F0 ₁₆	3FF0 ₁₆
7F ₁₆ *	to	to
L	37FF ₁₆	3FFF ₁₆

* : For test pattern

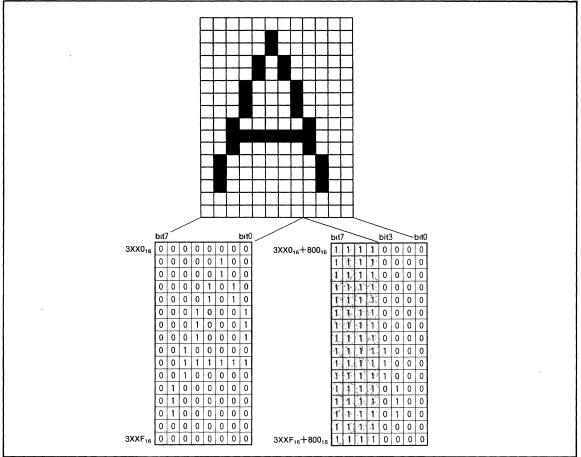


Fig. 30 Display character stored area

② CRT display RAM (2000₁₆ to 20D7₁₆)

The CRT display RAM is allocated at addresses 2000₁₆ to 20D7₁₆, and is divided into a display character code specifying part and display color specifying part for each block. Table 7 shows the contents of the CRT display RAM.

When a character is to be displayed at the first character (leftmost) position in block 1, for example, it is necessary to write the character code to the seven low-order bits (bits 0 to 6) in address 2000₁₆ and the color register No. to the two low-order bits (bits 0 and 1) in address 2080₁₆. The color register No. to be written here is one of the four color registers in which the color to be displayed is set in advance. For details on color registers, refer to (5) Color Registers.

The structure of the CRT display RAM is shown in Figure 31. Write the character patterns at Table 8 and 9, when M37202M3-XXXSP is mask-ordered.

Table 7. The contents of the CRT display RAM

Block	Display position (from left)	Character code specification	Color specification
	1st column	2000 ₁₆	208016
	2nd column	2001 ₁₆	2081 ₁₆
	3rd column	2002 ₁₆	2082 ₁₆
Block 1	:	:	:
	22th column	2015 ₁₆	2095 ₁₆
	23th column .	2016 ₁₆	2096 ₁₆
	24th column	2017 ₁₆	2097 ₁₆
		2018 ₁₆	2098 ₁₆
	Not used	to	to
	ı,	201F ₁₆	209F ₁₆
	1st column	2020 ₁₆	20A0 ₁₆
	2nd column	2021 ₁₆	20A1 ₁₆
	3rd column	2022 ₁₆	20A2 ₁₆
Block 2	:	:	:
	22th column	2035 ₁₆	20B5 ₁₆
	23th column	2036 ₁₆	20B6 ₁₆
	24th column	2037 ₁₆	20B7 ₁₆
		2038 ₁₆	20B8 ₁₆
	Not used	to	to
		203F ₁₆	20BF ₁₆
	1st column	2040 ₁₆	20C0 ₁₆
	2nd column	2041 ₁₆	20C1 ₁₆
	3rd column	2042 ₁₆	20C2 ₁₆
Block 3	:	:	:
	22th column	2055 ₁₆	20D5 ₁₆
	23th column	2056 ₁₆	20D6 ₁₆
	24th column	2057 ₁₆	20D7 ₁₆
		2058 ₁₆	
	Not used	to	
		207F ₁₆	

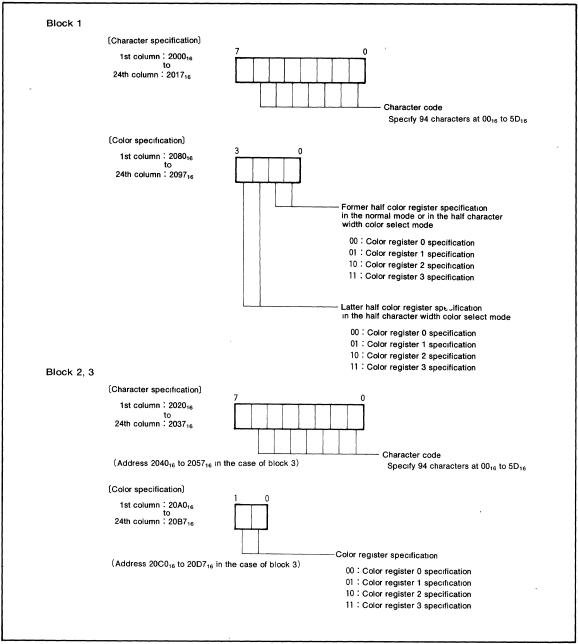


Fig. 31 Structure of the CRT display RAM

Table 8. Test character patterns 1

Address	Data	Address	Data
37E0 ₁₆	4016	3FE0 ₁₆	F0 ₁₆
37E1 ₁₆	04 ₁₆	3FE1 ₁₆	F0 ₁₆
37E2 ₁₆	0016	3FE2 ₁₆	F4 ₁₆
37E3 ₁₆	2016	3FE3 ₁₆	F0 ₁₆
37E4 ₁₆	0216	3FE4 ₁₆	F0 ₁₆
37E5 ₁₆	0016	3FE5 ₁₆	F2 ₁₆
37E6 ₁₆	10 ₁₆	3FE6 ₁₆	F0 ₁₆
37E7 ₁₆	0116	3FE7 ₁₆	F0 ₁₆
37E8 ₁₆	8016	3FE8 ₁₆	F0 ₁₆
37E9 ₁₆	0816	3FE9 ₁₆	F0 ₁₆
37EA ₁₆	0016	3FEA ₁₆	F8 ₁₆
37EB ₁₆	4016	3FEB ₁₆	F0 ₁₆
37EC ₁₆	0416	3FEC ₁₆	F0 ₁₆
37ED ₁₆	0016	3FED ₁₆	F4 ₁₆
37EE ₁₆	2016	3FEE ₁₆	F0 ₁₆
37EF ₁₆	0216	3FEF₁6	F0 ₁₆

Table 9. Test character patterns 2

Address	Data	Address	Data
37F0 ₁₆	0016	3FF0 ₁₆	F0 ₁₆
37F1 ₁₆	0016	3FF1 ₁₆	F0 ₁₆
37F2 ₁₆	0016	3FF2 ₁₆	F0 ₁₆
37F3 ₁₆	0016	3FF3 ₁₆	F0 ₁₆
37F4 ₁₆	0016	3FF4 ₁₆	F0 ₁₆
37F5 ₁₆	0016	3FF5 ₁₆	F0 ₁₆
37F6 ₁₆	0016	3FF6 ₁₆	F0 ₁₆
37F7 ₁₆	0016	3FF7 ₁₆	F0 ₁₆
37F8 ₁₆	0016	3FF8 ₁₆	F0 ₁₆
37F9 ₁₆	0016	3FF9 ₁₆	F0 ₁₆
37FA ₁₆	0016	3FFA ₁₆	F0 ₁₆
37FB ₁₆	0016	3FFB ₁₆	F0 ₁₆
37FC ₁₆	0016	3FFC ₁₆	F0 ₁₆
37FD ₁₆	0016	3FFD ₁₆	F0 ₁₆
37FE ₁₆	0016	3FFE ₁₆	F0 ₁₆
37FF ₁₆	0016	3FFF ₁₆	F0 ₁₆

(5) Color Registers

The color of a displayed character can be specified by setting the color to one of the four color registers (CO0 to CO3: addresses $00E6_{16}$ to $00E9_{16}$) and then specifying that color register with the CRT display RAM.

There are four color outputs: R, G, B, and I. By using a combination of these outputs, it is possible to set 2^4 -1 (when no output) = 15 colors. However, because only four color registers are available, up to four colors can be displayed at one time.

R, G, B, and I outputs are set by using bits 0 to 3 in the color register. Bit 4 in the color register is used to set a character or blank output; bit 5 is used to specify whether a character output or blank output. Figure 32 shows the structure of the color register.

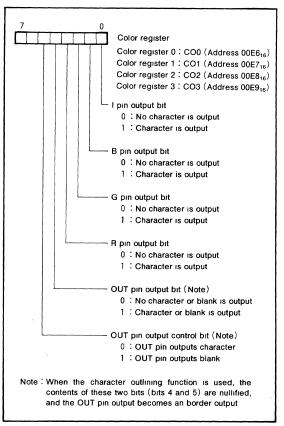


Fig. 32 Structure of color registers

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

(6) Half Character Width Color Select Mode By setting "1" to bit 4 in the CRT control register (address 00EA₁₆) it is possible to specify colors in units of a half character size (vertical 16 dots×horizontal 6 dots) for characters in block 1 only.

In the half character width color select mode, colors of display characters in block 1 are specified as follows:

- ①The left half of the character is set to the color of the color register that is specified by bits 0 and 1 at the color register specifying addresses in the CRT display RAM (addresses 2080₁₆ to 2097₁₆).
- ②The right half of the character is set to the color of the color register that is specified by bits 2 and 3 at the color register specifying address in the CRT display RAM (addresses 2080₁₆ to 2097₁₆).

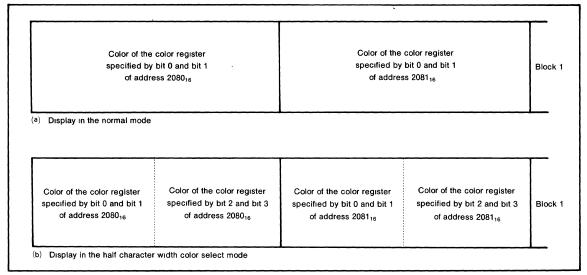


Fig. 33 Difference between normal color select mode and half character width color select mode

(7) Multiline Display

The M37202M3-XXXSP can normally display three lines on the CRT screen by displaying three blocks at different horizontal positions.

In addition, it allows up to 16 lines to be displayed by using a CRT interrupt and display block counter.

The CRT interrupt works in such a way that when display of one block is terminated, an interrupt request is generated. In other words, character display for a certain block is initiated when the scanning line reaches the display position for that block (specified with vertical and horizontal position registers) and when the range of that block is exceeded, an interrupt is applied.

The display block counter is used to count the number of blocks that have just been displayed. Each time the display of one block is terminated, the contents of the counter are incremented by one.

For multiline display, it is necessary to enable the CRT interrupt (by clearing the interrupt disable flag to "0" and setting the CRT interrupt enable bit=bit 4 at address 00FE₁₆) to "1"), then execute the following processing in the CRT interrupt handling routine.

- (1) Read the value of the display block counter.
- ②The block for which display is terminated (i.e., the cause of CRT interrupt generation) can be determined by the value read in ①.
- ③ Replace the display character data and display position of that block with the character data (contents of CRT display RAM) and display position (contents of vertical position and horizontal position registers) to be displayed next.

Figure 34 shows the structure of the display block counter.

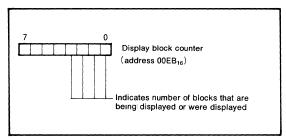


Fig. 34 Structure of display block counter

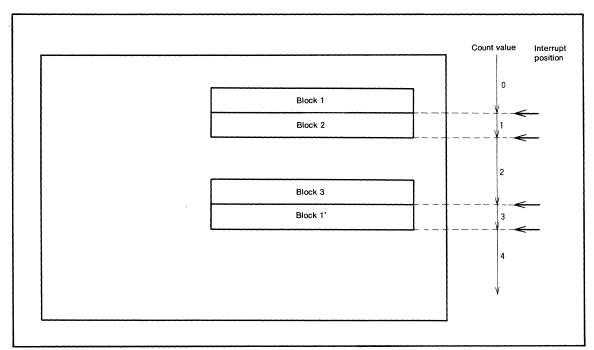


Fig. 35 Timing of CRT interrupt and count value of display block counter

(8) Scanning Line Double Count Mode

One dot in a displayed character is normally shown by one scanning line. In the scanning line double count mode, one dot can be shown by two scanning lines. As a result, the displayed dot is extended two times the normal size in the vertical direction only. (That is to say, the height of a character is extended twofold.)

In addition, because the scanning line count is doubled, the display start position of a character is also extended two-fold in the vertical direction. In other words, whereas the contents set in the vertical position register in the normal mode are 128 steps from 00_{16} to $7F_{16}$, or four scanning lines per step, the number of steps in the scanning line double count mode is 64 from 00_{16} to $3F_{16}$, or eight scanning lines per step.

If the contents of the vertical position register for a block are set in the address range of 40_{16} to $7F_{16}$ in the scanning line double count mode, that block cannot be displayed (not output to the CRT screen).

In the scanning line double count mode can be specified by setting bit 6 in the CRT control register (address $00EA_{16}$) to "1".

Because this function works in units of screen, even when the mode is changed the mode about the scanning line count during display of one screen, the double count mode only becomes valid from the time the next screen is displayed.

In the scanning line double count mode, the character border function (explain in (9))cannot be used.

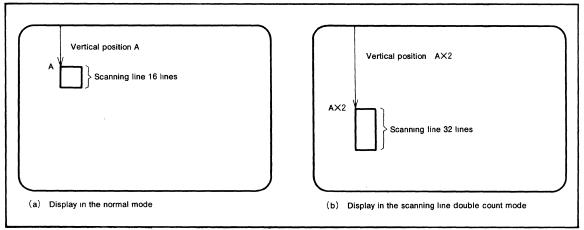


Fig. 36 Display in the normal mode and in the scanning line double count mode

(9) Character Border Function

An border of a one clock (one dot) equivalent size can be added to a character to be displayed in both horizontal and vertical directions. However, the border is not displayed over the 1st line and under the 16th line.

The border is output from the OUT pin. In this case, bits 4 and 5 in the color register (contents output from the OUT pin) are nullified, and the border is output from the OUT pin instead.

Border can be specified in units of block by using the border select register (address $00E5_{16}$). Table 10 shows the relationship between the values set in the border select register and the character border function. Figure 38 shows the structure of the border select register.

Table 10. The relationship between the value set in the border selection register and the character border function

Border sele	ection register	F	F			
MDn1	MDn0	Functions	Example of output			
X	0	Normal	R, G, B, I output			
^		Normai	OUT output			
0	1		1 Deader webster above	R, G, B, I output		
		Border including character	OUT output			
1		Dandan wat is alleding a share stan	R, G, B, I output			
'	'	Border not including character	OUT output			

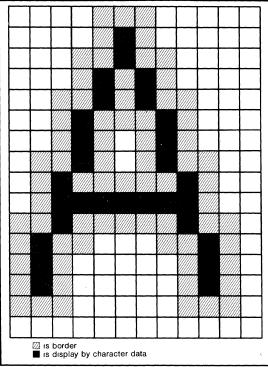


Fig. 37 Example of border

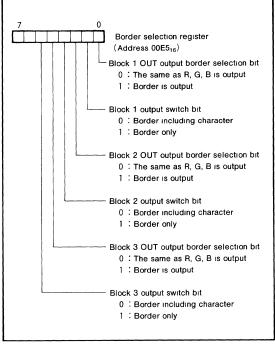


Fig. 38 Structure of border selection register

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

(10) CRT Output Pin Control

CRT output pins R, G, B, I, and OUT are respectively shared with port $P5_2$, $P5_3$, $P5_4$, $P5_5$, and $P5_6$. When the corresponding bits in the port P5 direction register are cleared to "0", the pins are set for CRT output; when the bits are set to "1", the pins function as port P5 (general-purpose output pins).

The polarities of CRT outputs (R, G, B, I, and OUT, as well as H_{SYNC} and V_{SYNC}) can be specified by using the CRT port control register (address $00EC_{16}$).

Use bits 0 to 4 in the CRT port control register to set the output polarities of $H_{\text{SYNC}},\,V_{\text{SYNC}},\,R/G/B,\,I,$ and OUT. When these bits are cleared to "0", a positive polarity is selected; when the bits are set to "1", a negative polarity is selected. R, G, B, and OUT signal output can be swiched to MUTE signal output. MUTE signal can color all displaying area of CRT.

The following is the explane of MUTE signal at MUTE signal output from B output pin for example (refer to Figure 40).

When the MUTE signal is output from B output pin, the all displaying area of CRT is colored blue. Then, a character data is output from R output pin, for example. If B output pin and R output pin are set to "Character is output" by color register at the character "I" output, the output character is colored "RED" mixed "BLUE". In this case, OUT pin output is not influenced.

At the character "O" output, if only R output pin is set to "Character is output", the output character is colored "RED" only that is not mixed "BLUE".

However at above case, the OUT output pin is necessary to set "Character is output".

The display screen can be also clear by setting the OUT pin to MUTE output. In this case, the MUTE signal is output from OUT pin, that is not influence the setting about OUT pin.

R, G, and B output signals are controlled by bits 5 to 7 of CRT port control register, and OUT output signal is controlled by bit 7 (CS $_7$) of character size register. Then, I output pin don't have MUTE output function.

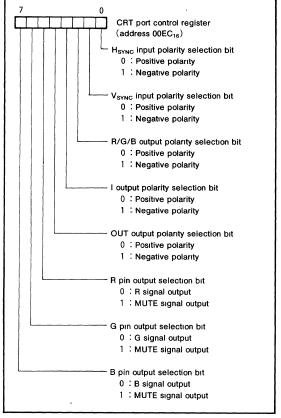


Fig. 39 Structure of CRT port control register

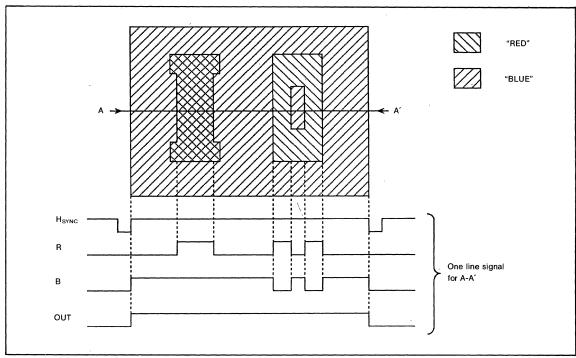


Fig. 40 MUTE signal output example

INTERRUPT INTERVAL DETERMINATION FUNCTION

The M37202M3-XXXSP incorporates an interrupt interval determination circuit. This interrupt interval determination circuit has an 8-bit binary counter as shown in Figure 41. Using this counter, it determines a duration of time from the rising transition (falling transition) of an input signal pulse on the INT1 or INT2 to the rising transition (falling transition) of the signal pulse that is input next.

The following describes how the interrupt interval is determined.

- The interrupt input to be determined (INT1 input or INT2 input) is selected by using bit 2 in the interrupt interval determination control register (address 00D8₁₆). When this bit is cleared to "0", the INT1 input is selected; when the bit is set to "1", the INT2 input is selected.
- 2. When the INT1 input is to be determined, the polarity is selected by using bit 3 in the interrupt interval determination control register; when the INT2 input is to be determined, the polarity is selected by using bit 4 in the interrupt interval determination control register. When the relevant bit is cleared to "0", determination is made of the interval of a positive polarity (rising

- transition); when the bit is set to "1", determination is made of the interval of a negative polarity (falling transition).
- 3. The reference clock is selected by using bit 1 in the interrupt interval determination control register. When the bit is cleared to "0", a 64µs clock is selected; when the bit is set to "1", a 32µs clock is selected (based on an oscillation frequency of 4MHz in either case).
- Simultaneously when the input pulse of the specified polarity (rising or falling transition) occurs on the INT1 pin (or INT2 pin), the 8-bit binary counter starts counting up with the selected reference clock (64μs or 32 μs).
- 5. Simultaneously with the next input pulse, the value of the 8-bit binary counter is loaded into the determination register (address 00D7₁₆) and the counter is immediately reset (00₁₆). The reference clock is input in succession even after the counter is reset, and the counter restarts counting up from "00₁₆"
- 6. When count value "FE₁₆" is reached, the 8-bit binary counter stops counting. Then, simultaneously when the reference clock is input next, the counter sets value "FF₁₆" to the determination register.

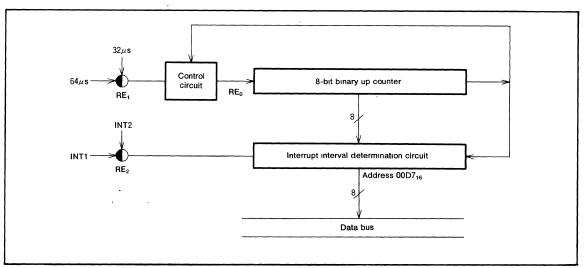


Fig. 41 Block diagram of interrupt interval determination circuit

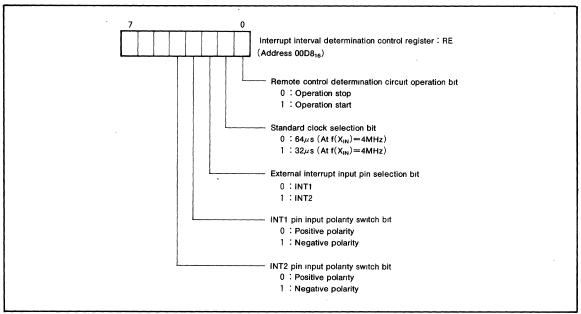


Fig. 42 Structure of interrupt interval determination control register

RESET CIRCUIT

The M37202M3-XXXSP is reset according to the sequence shown in Figure 45. It starts the program from the address formed by using the content of address FFFF₁₆ as the high order address and the content of the address FFFE₁₆ as the low order address, when the $\overline{\text{RESET}}$ pin is held at "L" level for no less than $2\mu s$ while the power voltage is $5V \pm 10\%$

and the crystal oscillator oscillation is stable and then returned to "H" level. The internal initializations following reset are shown in Figure 43.

An example of the reset circuit is shown in Figure 44. The reset input voltage must be kept below 0.6V until the supply voltage surpasses 4.5V.

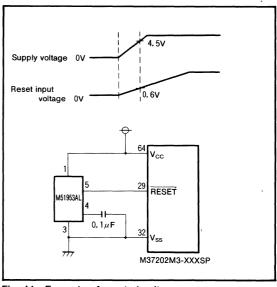


Fig. 44 Example of reset circuit

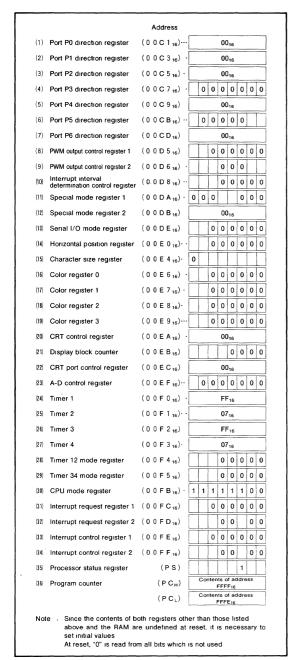


Fig. 43 Internal state of microcomputer at reset

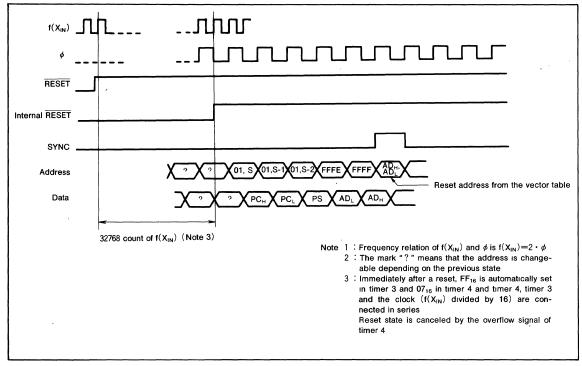


Fig. 45 Timing diagram at reset

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

I/O PORTS

(1) Port P0

Port P0 is an 8-bit I/O port with CMOS output.

As shown in the memory map (Figure 2), port P0 can be accessed at zero page memory address 00C0₁₆.

Port P0 has a directional register (address 00C1₁₆) which can be used to program each individual bit as input ("0") or as output ("1"). If the pins are programmed as output, the output data is latched to the port register and then output. When data is read from the output port the output pin level is not read, only the latched data in the port register is read. This allows a previously output value to be read correctly even though the output voltage level is shifted up or down. Pins set as input are in the floating state and the signal levels can thus be read. When data is written into the input port, the data is latched only to the port latch and the pin still remains in the floating state.

Depending on the contents of the processor mode bits (bit 0 and bit 1 at address 00FB₁₆), three different modes can be selected; single-chip mode, memory expansion mode and microprocessor mode.

In these modes it functions as address $(A_7 \text{ to } A_0)$ output port (excluding single-chip mode). For more details, see the processor mode information.

(2) Port P1

In single-chip mode, port P1 has the same function as port P0. In other modes, it functions as address (A_{15} to A_n) output port.

Refer to the section on processor modes for details.

(3) Port P2

In single-chip mode, port P2 has the same function as port P0. In other modes, it functions as data (D_0 to D_7) input/output port. Refer to the section on processor modes for details.

(4) Port P3

Port P3 is an 7-bit I/O port with function similar to port P0, but the output structure of $P3_0$, $P3_1$ is CMOS output and $P3_2$ to $P3_6$ is N-channel open drain.

 $P3_2$, $P3_3$ are in common with the external clock input pins of timer 2 and 3.

P3₄, P3₆ are in common with the external interrupt input pins INT1, INT2 and P3₅, P3₆ with the analog input pins of A-D converter A-D1, A-D2.

In the microprocessor mode or the memory expanding mode, P30, P31 works as R/\overline{W} signal output pin and SYNC signal output pin.

(5) Port P4

Port P4 is an 8-bit I/O port with function similar to port P0, but the output structure is N-channel open drain output.

All pins have program selectable dual functions. When a serial I/O function is selected, $P4_4$ to $P4_7$ work as input/output pins of serial I/O.

In the special serial I/O mode, P4₄, P4₅ work as SDA, SCL pins.

(6) OSC1, OSC2 pins

Clock input/output pins for CRT display function.

(7) H_{SYNC}, V_{SYNC} pins

 H_{SYNC} is a horizontal synchronizing signal input pin for CRT display.

 $V_{\mbox{\scriptsize SYNC}}$ is a vertical synchronizing signal input pin for CRT display.

(8) R, G, B, I, OUT pins

This is an 5-bit output pin for CRT display and in common with P5₂ to P5₆.

(9) Port P6

Port P6 is an 8-bit I/O port with function similar to port P0, but the output structure is N-channel open drain output.

 $P6_0$ to $P6_3$ are in common with 8-bit PWM output pin PWM0 to PWM3.

(10) D-A pin

This is a 14-bit PWM output pin.

(11) ϕ pin

The internal system clock (1/2 the frequency of the oscillator connected between the $X_{\rm IN}$ and $X_{\rm OUT}$ pins) is output from this pin. If an STP or WIT instruction is executed, output stops after going "H".

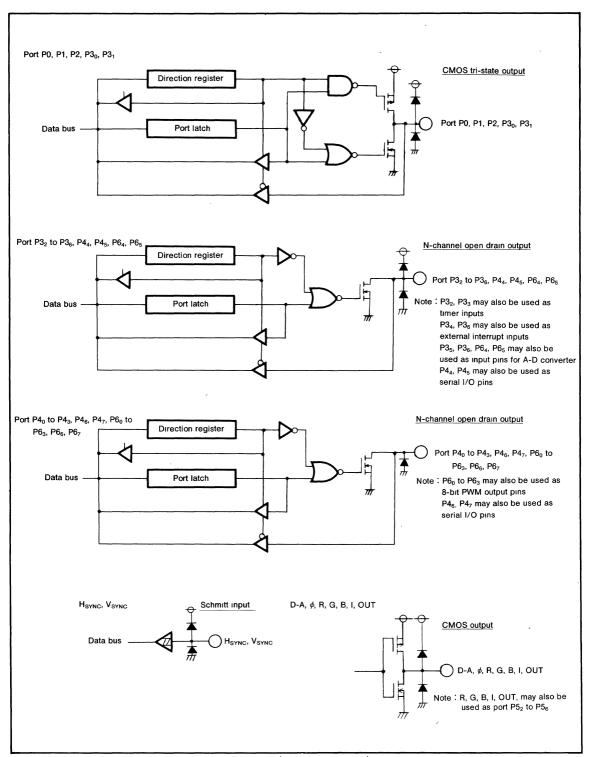


Fig. 46 Block diagram of port P0 to P6, H_{SYNC}, V_{SYNC} (single-chip mode) and output format of D-A, ϕ , R, G, B, I OUT

PROCESSOR MODE

By changing the contents of the processor mode bit (bit 0 and 1 at address $00FB_{16}$), three different operation modes can be selected; single-chip mode, memory expansion mode, and microprocessor mode.

In the memory expansion mode and the microprocessor mode, ports P0 to P3 can be used as address, and data input/output pins.

Figure 48 shows the functions of ports P0~P3.

The memory map for the single-chip mode is shown in Figure 1 and for other modes, in Figure 47.

By connecting CNV_{SS} to V_{SS} , all three modes can be selected through software by changing the processor mode bits. Connecting CNV_{SS} to V_{CC} automatically forces the microcomputer into microprocessor mode.

The three different modes are explained as follows:

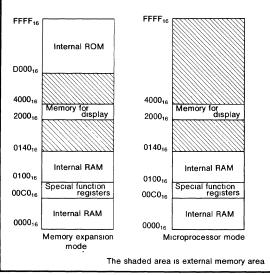


Fig. 47 Example memory area in processor mode

(1) Single-chip mode (00)

The microcomputer will automatically be in the singlechip mode when started from reset, if CNV_{SS} is connected to V_{SS}. Ports P0 to P3 will work as original I/O ports.

(2) Memory expansion mode [01]

When CNV_{SS} is connected to V_{SS} and the processor mode bits are set to "01", the microcomputer will automatically default to this mode. This mode is used to add external memory when the internal memory is not sufficient.

In this mode, port P0 and port P1 are as a system address bus and the original I/O pin function is lost.

Port P2 becomes the data bus of D_7 to D_0 (including instruction code) and loses its normal I/O function Port $P3_0$ and $P3_1$ works as R/\overline{W} and SYNC.

(3) Microprocessor mode [10]

The microcomputer will be placed in the microprocessor mode after connecting CNV_{SS} to V_{CC} or initiating a reset or connecting CNV_{SS} to V_{SS} and the processor mode bits are set to "10". In this mode, the internal ROM is inhibited so the external memory is required Other functions are same as the memory expansion mode. The relationship between the input level of CNV_{SS} and the processor mode is shown in Table 11.

Note: Use the M37202M3-XXXSP in the microprocessor mode or the memory expansion mode only at program development.

The standards is assured only in the single-chip mode.

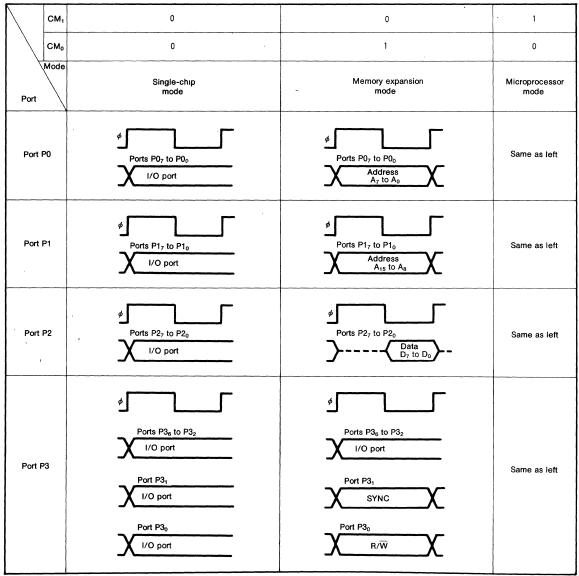


Fig. 48 Processor mode and function of ports P0 to P3

Table 11. Relationship between CNV_{SS} pin input level and processor mode

CNVss	Mode	Explanation
,	Single-chip mode	The single-chip mode is set by the reset All modes can be selected by changing the pro-
V _{SS}	Memory expansion mode	cessor mode bit with the program.
1	Microprocessor mode	
V _{cc}	Microprocessor mode	The microprocessor mode is set by the reset

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

CLOCK GENERATING CIRCUIT

The built-in clock generating circuits are shown in Figure 51

When an STP instruction is executed, the internal clock ϕ stops oscillating at "H" level. At the same time, timer 3 and timer 4 are connected automatically and FF₁₆ is set in the timer 3, 07₁₆ is set in the timer 4, and timer 3 count source is forced to f(X_{IN}) divided by 16. This connection is cleared when an external interrupt is accepted or the reset is in, as discussed in the timer section

The oscillator is restarted when an interrupt is accepted. However, the clock ϕ keeps its "H" level until timer 4 over-flows.

This is because the oscillator needs a set-up period if a ceramic or a quartz crystal oscillator is used.

When the WIT instruction is executed, the clock ϕ stops in the "H" level but the oscillator continues running. This wait state is cleared when an interrupt is accepted. Since the oscillation does not stop, the next instructions are executed at once.

To return from the stop or the wait status, the interrupt enable bit must be set to "1" before executing STP or WIT instruction.

The circuit example using a ceramic oscillator (or a quartz crystal oscillator) is shown in Figure 49.

The constant capacitance will differ depending on which oscillator is used, and should be set to the manufactures suggested value.

The example of external clock usage is shown in Figure 50 X_{IN} is the input, and X_{OUT} is open.

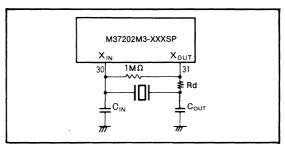


Fig. 49 External ceramic resonator circuit

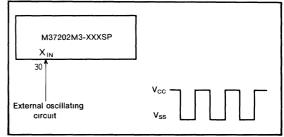


Fig. 50 External clock input circuit

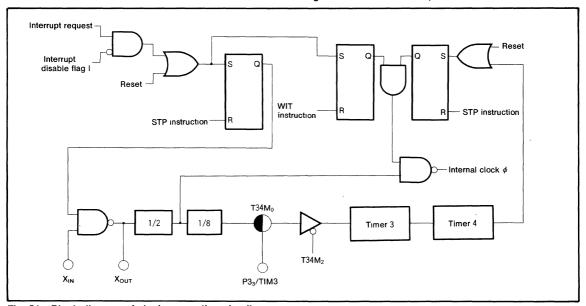


Fig. 51 Block diagram of clock generating circuit

MITSUBISHI MICROCOMPUTERS

M37202M3-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

PROGRAMMING NOTES

- (1) The frequency ratio of the timer is 1/(n+1).
- (2) Even though the BBC and BBS instructions are executed after the interrupt request bits are modified (by the program), those instruction are only valid for the contents before the modification. Also, at least one instruction cycle must be used (such as an NOP) between the modification of the interrupt request bits and the execution of the BBC and BBS instructions.
- (3) After the ADC and SBC instructions are executed (in decimal mode), one instruction cycle (such as an NOP) is needed before the SEC, CLC, or CLD instructions are executed.
- (4) An NOP instruction must be used after the execution of a PLP instruction.
- (5) In order to avoid noise and latch-up, connect a bypass capacitor ($\approx 0.1 \mu F$) directly between the V_{CC} pin and V_{SS} pin using a heavy wire.

DATA REQUIRED FOR MASK ORDERING

Please send the following data for mask orders.

- (1) mask ROM order confirmation form
- (2) mark specification form
- (3) ROM data EPROM 3 sets

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
V _{CC}	Supply voltage		-0.3 to 6	V
Vı	Input voltage CNV _{SS}		-0.3 to 6	V
Vı	Input voltage P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ -P3 ₆ , P4 ₀ -P4 ₇ , P6 ₀ -P6 ₇ , H _{SYNC} , V _{SYNC} , RESET	With respect to Vss	-0.3 to V _{cc} +0.3	v
V _o	Output voltage P4 ₀ -P4 ₃ , P4 ₆ , P4 ₇ , P6 ₀ -P6 ₃ , P6 ₆ , P6 ₇	Output transistors are at "off" state	-0.3 to 13	v
Vo	Output voltage P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ -P3 ₅ , P4 ₄ , P4 ₅ , P6 ₄ , P6 ₅ , R, G, B, I, OUT, D-A, X _{OUT} , OSC2		-0.3 to V _{CC} +0.3	v
I _{OH}	Circuit voltage R, G, B, I, OUT, P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ , P3 ₁ , D-A		0 to 1(Note 1)	mA
I _{OL1}	Circuit voltage R, G, B, I, OUT, P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₃ , P3 ₀ -P3 ₆ , P6 ₄ , P6 ₅ , D-A		0 to 2(Note 2)	mA
I _{OL2}	Circuit voltage P4 ₀ -P4 ₃ , P4 ₆ , P4 ₇ , P6 ₀ -P6 ₃ , P6 ₆ , P6 ₇		0 to 1(Note 2)	mA
I _{OL3}	Circuit voltage P2 ₄ -P2 ₇		0 to 10(Note 3)	mA
I _{OL4}	Circuit voltage P4 ₄ , P4 ₅		0 to 3(Note 2)	mA
Pd	Power dissipation	T _a =25℃	550	mW
Topr	Operating temperature		—10 to 70	င
Tstg	Storage temperature		-40 to 125	°C

RECOMMENDED OPERATING CONDITIONS (V_{CC}=5V±10%, T_a=-10 to 70°C unless otherwise noted)

Symbol	Parameter		Limits			
Symbol	Parameter	Min	Тур	Max 5.5 0 Vcc 0.4Vcc 0.2Vcc 1 2 10 3 4.4	Unit	
V _{cc}	Supply voltage(Note 4) During the CPU and CRT operation	4.5	5.0	5.5	V	
V _{SS}	Supply voltage	0	0	0	V	
V _{IH}	"H" input voltage P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ -P3 ₆ , P4 ₀ -P4 ₃ , P4 ₆ , P4 ₇ , P6 ₀ -P6 ₇ , H _{SYNC} , V _{SYNC} , RESET, X _{IN} , OSC1	0.8V _{CC}		V _{CC}	٧	
V _{IH}	"H" input voltage P44, P45	0.7V _{CC}		V _{CC}	V	
VIL	"L" input voltage P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ , P3 ₁ , P3 ₅ , P4 ₀ -P4 ₃ , P4 ₇ , P6 ₄ , P6 ₅	0		0. 4V _{CC}	٧	
VIL	"L" input voltage P3 ₂ -P3 ₄ , P3 ₆ , P4 ₆ , H _{SYNC} , V _{SYNC} , RESET, X _{IN} , OSC1	0		0. 2V _{CC}	٧	
VIL	"L" input voltage P44, P45	0		0.3V _{CC}	V	
I _{OH}	"H" average output current (Note 1) R,G,B,I,OUT,P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ , P3 ₁			1	mA	
I _{OL1}	"L" average output current (Note 2) R,G,B,I,OUT,P0 ₀ -P0 ₇ , P2 ₀ -P2 ₃ , P3 ₀ -P3 ₆ , P6 ₄ , P6 ₅ , D-A			2	mA	
I _{OL2}	"L" average output current (Note 2) P4 ₀ -P4 ₃ , P4 ₆ , P4 ₇ , P6 ₀ -P6 ₃ , P6 ₆ , P6 ₇			1	mA	
I _{OL3}	"L" average output current (Note 3) P2 ₄ -P2 ₇			10	mA	
I _{OL4}	"L" average output current (Note 2) P44, P45			3	mA	
f _{CPU}	Oscillating frequency (for CPU operation) (Note 5)	3.6	4.0	4.4	MHz	
f _{CRT}	Oscillating frequency (for CRT display)	6.0	7.0	8.0	MHz	
fhs	Input frequency P3 ₂ -P3 ₄ , P3 ₆ , P4 ₅ (S _{CLK})			100	kHz	
fhs	Input frequency P4 ₅ (S _{CLK})			1	MHz	

Note $\ 1\$: The total current that flows out of the IC should be 20mA (max)

2 : The total of $\rm I_{OL1},\, I_{OL2}$ and $\rm I_{OL4}$ should be 30mA (max)

3 : The total current of port P2₄-P2₇ should be 20mA (max)

Also apply 0.068 $\mu \rm F$ or greater capacitance externally between the $\rm V_{CC}-CNV_{SS}$ pins

5 : Use a quartz crystal oscillator or a ceramic resonator for CPU oscillation circuit

^{4 :} Apply $0.022\mu F$ or greater capacitance externally between the $V_{CC}-V_{SS}$ power supply pins so as to reduce power source noise

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

ELECTRIC CHARACTERISTICS (V_{CC}=5V±10%, V_{SS}=0V, T_a=-10 to 70°C, f(X_{IN})=4MHz unless other wise noted)

Symbol	Parameter	Test conditions		Limits			
Syllibol	Falameter	rest conditions	Min	Тур	Max	Uni	
		V_{CC} =5.5V, $f(X_{IN})$ =4MHz CRT OFF		10	20	mA	
Icc	Supply current	V_{CC} =5.5V, $f(X_{JN})$ =4MHz CRT ON		20	30	1117-	
		At stop mode			300	μΑ	
V _{OH}	"H" output voltage P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ , P3 ₁ , R, G, B, I, OUT	$V_{CC}=4.5V$ $I_{OH}=-0.5\text{mA}$	2. 4			v	
V _{OL}	"L" output voltage P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₃ , P3 ₀ -P3 ₆ , P6 ₄ , P6 ₅ , ¢, R, G, B, I, OUT, D-A	V _{CC} =4.5V I _{OL} =0.5mA			0.4	v	
	"L" output voltage P4 ₀ -P4 ₃ , P4 ₆ , P4 ₇ , P6 ₀ -P6 ₃ , P6 ₆ , P6 ₇	V _{CC} =4.5V I _{OL} =0.5mA			0.4		
	"L" output voltage P2 ₄ -P2 ₇	V _{CC} =4.5V I _{OL} =10mA			3. 0		
	"L" output voltage P4 ₄ , P4 ₅	V _{CC} =4.5V I _{OL} =3mA			0.4		
	Hysteresis RESET	V _{CC} =5.0V		0.5	0.7		
$V_{T+}-V_{T-}$	Hysteresis (Note 1) H _{SYNC} , V _{SYNC} , P3 ₂ -P3 ₄ , P3 ₆ , P4 ₄ -P4 ₆	V _{CC} =5.0V		0.5	1.3	V	
1	"H" input leak current RESET, P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ -P3 ₆ , P4 ₄ , P4 ₅ , P6 ₄ , P6 ₅	V _{cc} =5.5V V _o =5.5V			5		
lozh	"H" input leak current P4 ₀ -P4 ₃ , P4 ₆ , P4 ₇ , P6 ₀ -P6 ₃ , P6 ₆ , P6 ₇	V _{cc} =5.5V V _o =12V			10	μF	
lozL	"L" input leak current RESET, P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ -P3 ₆ , P4 ₀ -P4 ₇ , P6 ₀ -P6 ₇	V _{CC} =5.5V V _O =0V			5	μА	

Note 1. P3₂-P3₄, P3₆ have the hysteresis when these pins are used as interrupt input pins or timer input pins. P4₄-P4₆ have the hysteresis when these pins are used as serial I/O ports

MITSUBISHI MICROCOMPUTERS

M37204M8-XXXSP

PIN CONFIGURATION (TOP VIEW)

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

DESCRIPTION

The M37204M8-XXXSP is a single-chip microcomputer designed with CMOS silicon gate technology. It is housed in a 64-pin shrink plastic molded DIP. This single-chip microcomputer is useful for the high-tech channel selection system for TVs.

In addition to their simple instruction sets, the ROM, RAM, and I/O addresses are placed on the same memory map to enable easy programming.

Its screen display function enables it to display channel number and time as well.

FEATURES

FE	ATURES								
•	Number of ba	sic instructions······ 69							
•	Memory size	ROM32768 bytes							
		RAM 512 bytes							
•	Instruction execution time								
	1µs (minimum instructions at 4MHz frequency)								
•	Single power supply5V±10%								
•	Power dissipation								
	normal operation mode (at 4MHz frequency)								
,		············110mW (V _{CC} =5.5V, CRT display)							
•		sting ······96 levels (maximum)							
•	Interrupt ······	13types, 13vectors							
•	8-bit timer ····	4							
•	Programmable								
	(Ports P0, F	P1, P2, P3, P4, P6) ······ 47							
•	Output port (Port P5)5							
•	• Serial I/O (8-bit)2								
•	PWM function	14-bit×1							
		8-bit×10							
•		(6-bit resolution) ····· 8 channels							
•	CRT display f								
	Display cha	racters······ 24 characters X3 lines							
		(16 lines maximum)							
		aracter types ······ 254 kinds							
		e12×16 dots							
		ize ······ 4 kinds							
Kinds of color ········· Maximum 15 kinds (R, G, I Character unit/border/laster can be specified									
								Display layo	
		ıtal·····64 levels							
	Vertica	I······ 128 levels							

64 ← V_{CC} AD4/P7₀/OSC1 → 1 AD5/P7₁/OSC2 ++ 2 63 ← H_{SYNC} P3₆/INT2/AD2 ↔ 3 62 ← V_{SYNC} 61 → R/P5₂ P3₅/AD1 ↔ 4 60 → G/P5₃ P3₄/INT1 ++ 5 59 → B/P5₄ AD3/D-A ↔ 6 58 → I/P5₅/TIM1 P6₀/PWM0 ↔ 7 P6₁/PWM1 ↔ 8 57] → OUT/P5₆ P6₂/PWM2 ↔ 9 56 ↔ P0₀ P6₃/PWM3 ↔ 10 55 ↔ P0₁ P6₄/PWM4 ↔ 11 54 ↔ P0₂ 53 ↔ P0₃ P6₅/PWM5 ↔ 12 P6₆/PWM6 ↔ 13 52 ↔ P0₄ P6₇/PWM7 → 14 51 ↔ P0₅ P3₃/TIM3 ↔ 15 50 ↔ P0₆ AD6/P3₂/TIM2 ++ 16 49 ↔ P0₇ 48 ↔ P1₀ P3₁ ↔ 17

47 ↔ P1₁

46 ↔ P1₂

45 ↔ P1₃

44 ↔ P1₄

43 ↔ P1₅ 42 ↔ P1₆

41 ↔ P1₇

40 ↔ P2₀

39 ↔ P2₁ 38 ↔ P2₂

37 ↔ P2₃

36 ↔ P2₄

35 ↔ P2₅ 34 ↔ P2₆

33 ↔ P2₇

P3₀ ↔ 18

P4₇/S_{RDY2}/PWM8 ↔ 19

P4₆/S_{IN2}/PWM9 ↔ 20

AD7/P4₃/ $\overline{S}_{RDY1} \leftrightarrow 23$ AD8/P4₂/ $\overline{S}_{IN1} \leftrightarrow 24$

P4₅/S_{CLK2} ↔ 21

P4₄/S_{OUT2} ↔ 22

P4₁/S_{CLK1} ↔ 25

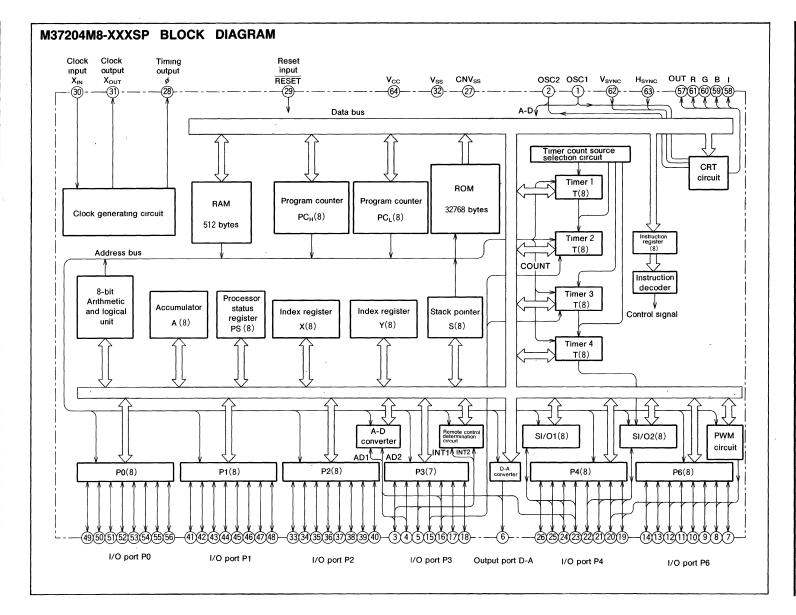
P4₀/S_{OUT1} ↔ 26

CNV_{ss} → 27

 $\phi \leftarrow 28$ RESET $\rightarrow 29$

 $X_{IN} \rightarrow 30$

X_{OUT} ← 31


Outline 64P4B

APPLICATION

T۷

T

M37204M8-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

FUNCTIONS OF M37204M8-XXXSP

	Parameter		Functions		
Number of basic instructions			69		
Instruction execution time			1μs (minimum instructions, at 4MHz frequency)		
Clock frequency			4MHz		
M	ROM		32768 bytes		
Memory size	RAM		512 bytes		
	P0, P1, P2	I/O	8-bit×3		
	P3 ₀ , P3 ₁	. 1/0	2-bit×1		
Innut (Output morts	P3 ₂ -P3 ₆ I/O		5-bit X1 (can be used as timer input pins, INT1, INT2 input pins and A input pins)		
Input/Output ports	P4	1/0	8-bit×1 (can be used as serial I/O function pins and PWM output pins and A-D input pins)		
	P5	Output	5-bit×1 (can be used as R, G, B, I, OUT pins)		
	P6	1/0	8-bit×1 (can be used as PWM output pins)		
Serial I/O			8-bit×2 (Special serial I/O (8-bit)×1)		
Timers			8-bit timer×4		
Subroutine nesting			96levels (maximum)		
Interrupt			Two external interrupts, nine internal interrupts,		
Interrupt			one software interrupt		
Clock generating circuit			Two built-in circuits (externally connected ceramic or quartz crystal oscillator)		
Supply voltage			5V±10%		
	at CRT display ON		110mW (clock frequency X _{IN} =4MHz, V _{CC} =5.5V, Typ)		
Power dissipation	at CRT display OFF		55mW (clock frequency X _{IN} =4MHz, V _{CC} =5.5V, Typ)		
	at stop mode		1.65mW (Maximum)		
Input/Output characteristics	Input/Output voltage		12V (Ports P4 ₆ , P4 ₇ , P6 ₀ —P6 ₇)		
input/Output characteristics	Output current		10mA (Ports P2 ₄ —P2 ₇)		
Operating temperature range	9		—10 to 70℃		
Device structure ,			CMOS silicon gate process		
Package	M37204M8-XXXSP	1	64-pin shrink plastic molded DIP		
	Display characters		24 characters×3 lines (maximum 16 lines in program)		
	Dot structure		12×16 dots		
CRT display function	Kinds of character types		254 kinds		
On I display function	Character size		4 kinds		
	Kinds of color		Maximum 15 kinds (R, G, B, I)		
	Display layout		Holizontal 64 levels		
			Vertical 128 levels		

M37204M8-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

PIN DESCRIPTION

Pin	Name	Input/ Output	Functions
V _{cc} , V _{ss}	Supply voltage		Power supply inputs 5V \pm 10% to V _{CC} , and 0V to V _{SS} .
CNV _{ss}	CNV _{SS}		This is connected to V _{SS}
RESET	Reset input	Input	To enter the reset state, the reset input pin must be kept at a "L" for more than $2\mu s$ (under normal V_{CC} conditions) If more time is needed for the crystal oscillator to stabilize, this "L" condition should be maintained for the required time
X _{IN}	Clock input	Input	This chip has an internal clock generating circuit To control generating frequency, an external ceramic or a
X _{out}	Clock output	Output	quartz crystal oscillator is connected between the X_{IN} and X_{OUT} pins if an external clock is used, the clock source should be connected the X_{IN} pin and the X_{OUT} pin should be left open
φ	Timing output	Output	This is the timing output pin
P0 ₀ P0 ₇	I/O port P0	I/O	Port P0 is an 8-bit I/O port with direction register allowing each I/O bit to be individually programmed as input or output. At reset, this port is set to input mode. The output structure is CMOS output.
P1 ₀ —P1 ₇	I/O port P1	1/0	Port P1 is an 8-bit I/O port and has basically the same functions as port P0
P2 ₀ P2 ₇	I/O port P2	1/0	Port P2 is an 8-bit I/O port and has basically the same functions as port P0
P3 ₀ —P3 ₆	I/O port P3	1/0	Port P3 is a 7-bit I/O port and has basically the same functions as port P0, but the output structure of P3 ₀ , P3 ₁ is CMOS output and the output structure of P3 ₂ —P3 ₆ is N-channel open drain. P3 ₂ , P3 ₃ are in common with external clock input pins of timer 2 and 3 P3 ₄ , P3 ₆ are in common with external interrupt input pins INT1 and INT2 P3 ₂ , P3 ₅ , P3 ₆ are in common with analog input pins of A-D converter (A-D6, A-D1, A-D2).
P4 ₀ —P4 ₇	I/O port P4	I/O	Port P4 is an 8-bit I/O port and has basically the same functions as port P0, but the output structure is N-channel open drain When serial I/O1 is used, P40, P41, P42 and P43 work as S_{OUT1} , S_{CLK1} , S_{IN1} and \overline{S}_{RDV1} pins, respectively When serial I/O2 is used, P44, P45, P46 and P47 work as S_{OUT2} , S_{CLK2} , S_{IN2} and \overline{S}_{RDV2} pins, respectively When special serial I/O is used, P44 and P45 work as SDA and SCL pins, respectively Also P46, P47 are in common with PWM output pins of PWM 9 and PWM 8 P42, P43 are in common with analog input pins of A-D converter (A-D8, A-D7).
P6 ₀ —P6 ₇	I/O port P6	1/0	Port P6 is an 8-bit I/O port and has basically the same functions as port P0, but the output structure is N-channel open drain. This port is in common with PWM output pins PWM0—PWM7.
		This is the I/O pins of the clock generating circuit for the CRT display function OSC1 and OSC2 pins are in common with analog input pins of A-D converter (A-D4, A-D5)	
H _{SYNC}	H _{SYNC} input	Input	This is the horizontal synchronizing signal input for CRT display
V _{SYNC}	V _{SYNC} input	Input	This is the vertical synchronizing signal input for CRT display
R, G, B, I, OUT	CRT output	Output	This is a 5-bit output pin for CRT display. The output structure is CMOS output. This is in common with port P52-P56
D-A	DA Output	Output	This is an output pin for 14-bit PWM, and in common with analog input pin of A-D converter (A-D3)

FUNCTIONAL DESCRIPTION Central Processing Unit (CPU)

The M37204 microcomputers use the standard MELPS 740 instruction set. For details of instructions, refer to the MELPS 740 CPU core basic functions, or the MELPS 740 Software Manual.

Machine-resident instructions are as follows:

The FST and SLW instructions are not provided.

The MUL and DIV instructions are not provided.

The WIT instruction can be used.

The STP instruction can be used.

CPU Mode Register

The CPU mode register is allocated to address 00FB₁₆. Bits 0 and 1 of this register are processor mode bits. This register also has a stack page selection bit.

Page 1 (addresses 0100_{16} to $01FF_{16}$) is normally used as a stack area. The zero page (addresses 0000_{16} to $00BF_{16}$) can also be used by setting bit 2 of the CPU mode register (address $00FB_{16}$) to "0".

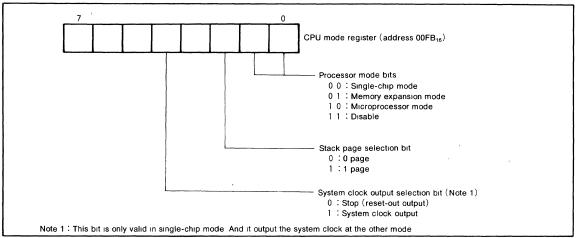


Fig. 1 Structure of CPU mode register

MEMORY

• Special Function Register (SFR) Area

The special function register (SFR) area contains the registers relating to functions such as I/O ports and timers.

• RAM

RAM is used for data storage as well as a stack area.

ROM

ROM is used for storing user programs as well as the interrupt vector area.

CRT display RAM

CRT display RAM is used for specifing the character codes and colors to display.

CRT display ROM

CRT display ROM is used for storing character data.

• Interrupt Vector Area

The interrupt vector area is for storing jump destination addresses used at reset or when an interrupt is generated.

Zero Page

Zero page addressing mode is useful because it enables access to this area with fewer instruction cycles.

Special Page

Special page addressing mode is useful because it enables access to this area with fewer instruction cycles.

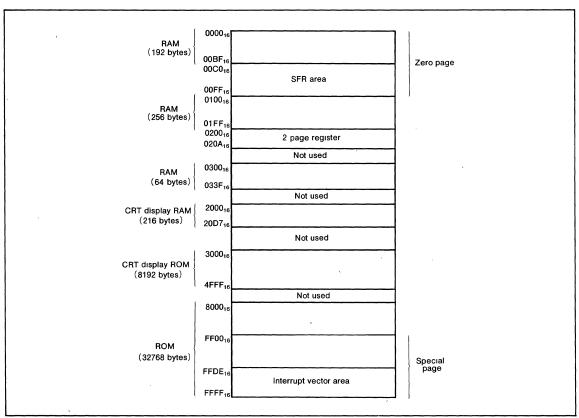


Fig. 2 Memory map

00C0 ₁₆	Port P0	00E0 ₁₆	Horizontal position register
00C1 ₁₆	Port P0 direction register	00E1 ₁₆	Vertical display start position register 1
00C2 ₁₆	Port P1	00E2 ₁₆	
00C3 ₁₆	Port P1 direction register	00E3 ₁₆	
00C4 ₁₆	Port P2	00E4 ₁₆	
00C5 ₁₆	Port P2 direction register	00E5 ₁₆	Border selection register
00C6 ₁₆	Port P3	00E6 ₁₆	Color register 0
00C7 ₁₆	Port P3 direction register	00E7 ₁₆	Color register 1
00C8 ₁₆	Port P4	00E8 ₁₆	Color register 2
	Port P4 direction register	00E9 ₁₆	Color register 3
	Port P5	00EA ₁₆	CRT control register 1
00CB ₁₆	Port P5 direction register	00EB ₁₆	Display block counter
	Port P6	00EC ₁₆	CRT port control register
00CD ₁₆	Port P6 direction register	00ED ₁₆	Scroll control register
00CE ₁₆	DA-H register	00EE ₁₆	Scroll start register
00CF ₁₆	DA-L register	00EF ₁₆	A-D control register 1
00D0 ₁₆	PWM 0 register	00F0 ₁₆	Timer 1
	PWM 1 register		Timer 2
00D2 ₁₆	PWM 2 register	00F2 ₁₆	Timer 3
00D3 ₁₆	PWM 3 register	00F3 ₁₆	Timer 4
00D4 ₁₆	PWM 4 register	00F4 ₁₆	Timer 12 mode register
00D5 ₁₆	PWM output control register 1	00F5 ₁₆	Timer 34 mode register
00D6 ₁₆	PWM output control register 2	00F6 ₁₆	PWM 5
00D7 ₁₆	Interrupt space distinguish register	00F7 ₁₆	PWM 6
00D8 ₁₆	Interrupt space distinguish control register	00F8 ₁₆	PWM 7
00D9 ₁₆	Special serial I/O register	00F9 ₁₆	PWM 8
00DA ₁₆	Special mode register 1	00FA ₁₆	PWM 9
00DB ₁₆	Special mode register 2	00FB ₁₆	CPU mode register
00DC ₁₆	Serial I/O1 mode register	00FC ₁₆	Interrupt request register 1
00DD ₁₆	Serial I/O1 register	00FD ₁₆	Interrupt request register 2
00DE ₁₆	Serial I/O2 mode register	00FE ₁₆	Interrupt control register 1
00DF ₁₆	Serial I/O2 register	00FF ₁₆	Interrupt control register 2

Fig. 3 SFR (Special Function Register) memory map

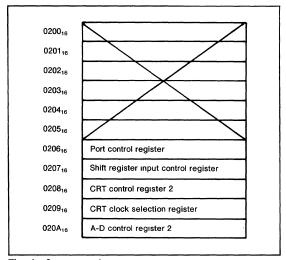


Fig. 4 2 page register memory map

MITSUBISHI MICROCOMPUTERS M37204M8-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

INTERRUPTS

Interrupts can be caused by 12 different events consisting of three external, eight internal, and one software events. Interrupts are vectored interrupts with priorities shown in Table 1. Reset is also included in the table because its operation is similar to an interrupt.

When an interrupt is accepted, the registers are pushed, interrupt disable flag I is set, and the program jumps to the address specified in the vector table. The interrupt request bit is cleared automatically. The reset and BRK instruction interrupt can never be disabled. Other interrupts are disabled when the interrupt disable flag is set.

All interrupts except the BRK instruction interrupt have an interrupt request bit and an interrupt enable bit. The interrupt request bits are in interrupt request registers 1 and 2 and the interrupt enable bits are in interrupt control registers 1 and 2. Figure 5 shows the structure of the interrupt request registers 1 and 2 and interrupt control registers 1 and 2.

Interrupts other than the BRK instruction interrupt and reset are accepted when the interrupt enable bit is "1", interrupt request bit is "1", and the interrupt disable flag is "0". The interrupt request bit can be reset with a program, but not set. The interrupt enable bit can be set and reset with a program.

Reset is treated as a non-maskable interrupt with the highest priority. Figure 6 shows interrupts control.

Table 1. Interrupt vector address and priority.

Event	Priority	Vector addresses	Remarks
RESET	1	FFFF ₁₆ , FFFE ₁₆	Non-maskable
CRT interrupt	2	FFFD ₁₆ , FFFC ₁₆	
INT2 interrupt	3	FFFB ₁₆ , FFFA ₁₆	
INT1 interrupt	4	FFF9 ₁₆ , FFF8 ₁₆	
Serial I/O2 interrupt	5	FFF7 ₁₆ , FFF6 ₁₆	
Timer 4 interrupt	6	FFF5 ₁₆ , FFF4 ₁₆	
1 ms interrupt	7 .	FFF3 ₁₆ , FFF2 ₁₆	
V _{SYNC} interrupt	8	FFF1 ₁₆ , FFF0 ₁₆	
Timer 3 interrupt	9	FFEF ₁₆ , FFEE ₁₆	
Timer 2 interrupt	10	FFED ₁₆ , FFEC ₁₆	
Timer 1 interrupt	11	FFEB ₁₆ , FFEA ₁₆	
Serial I/O1 interrupt	12	FFE9 ₁₆ , FFE8 ₁₆	
BRK instruction interrupt	13	FFDF ₁₆ , FFDE ₁₆	Non-maskable software interrupt

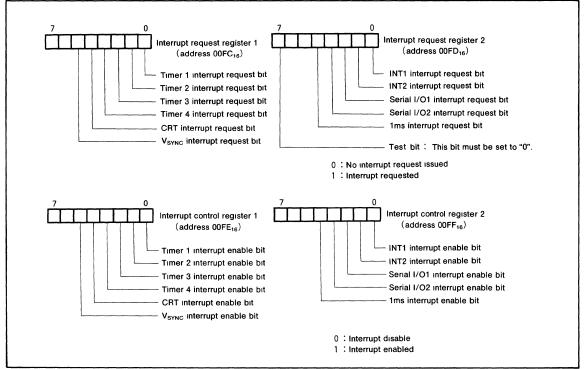


Fig. 5 Structure of registers related with interrupt

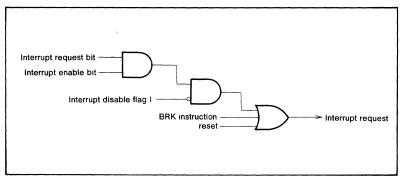


Fig. 6 Interrupt control

TIMER

The M37204M8-XXXSP has four timers; timer 1, timer 2, timer 3 and timer 4. All of timers are 8-bit structure and have 8-bit latches.

A block diagram of timer 1 through 4 is shown in Figure 8. All of the timers are down count timers and their division ratio are 1/(n+1), where n is the contents of timer latch. The same value is set to timer by writing the count value to the latch (00F0₁₆ to 00F3₁₆: timer 1 to timer 4). When a timer reaches "0016" and the next count pulse is input to a timer, a value which is the contents of the reload latch are loaded into the timer. The timer interrupt request bit is set at the next count pulse after the timer reaches "0016".

The contents of each timer is shown in following.

(1) Timer 1

Either $f(X_{IN})$ divided by 16 or a 1024 μ s clock (1 μ s interrupt signal) can be selected as the count source of timer 1.

When bit 0 of the timer 12 mode register (address 00F4₁₆) is "0", $f(X_{IN})$ divided by 16 is selected; when it is "1", the 1024µs clock is selected.

Timer 1 interrupt request is occurred with timer 1 overflow.

(2) Timer 2

 $f(X_{IN})$ divided by 16, timer 1 overflow signal, or an external clock input from P3₂/TIM2 pin can be selected as the count source of timer 2 by specifying bits 4 and 1 of the timer 12 mode register (address 00F4₁₆).

Timer 2 interrupt request is occurred with timer 2 overflow.

(3) Timer 3

Either $f(X_{IN})$ divided by 16 or an external clock input from P3₃/TIM3 pin can be selected as the count source of timer 3 by specifying bit 0 of the timer 34 mode register (address 00F5₁₆).

Timer 3 interrupt request is occurred with timer 3 overflow.

(4) Timer 4

 $f(X_{IN})$ divided by 16, $f(X_{IN})$ divided by 2, or timer 3 overflow signal can be selected as the count source of timer 4 by specifying bits 4 and 1 of the timer 34 mode register (address 00F5₁₆).

Timer 4 interrupt request is occurred with timer 4 overflow. And the timer 4 overflow signal can be used as the clock source of special serial I/O.

At reset or an STP instruction is executed timer 3 and timer 4 are connected automatically, and the value "FF16" is set to timer 3, and the value "07₁₆" is set to timer 4.

 $f(X_{IN})$ divided by 16 is selected as count source of timer 3. When the internal reset is removed or stop mode is removed, the internal clock is connected by timer 4 overflow at above state. In this reason, the program starts with stable clock.

The timer related registers structure is shown in Figure 7.

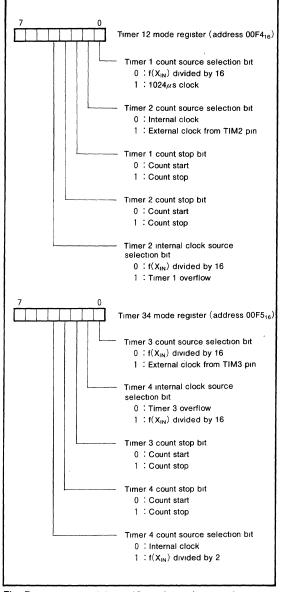


Fig. 7 Structure of timer 12 mode register and timer 34 mode register

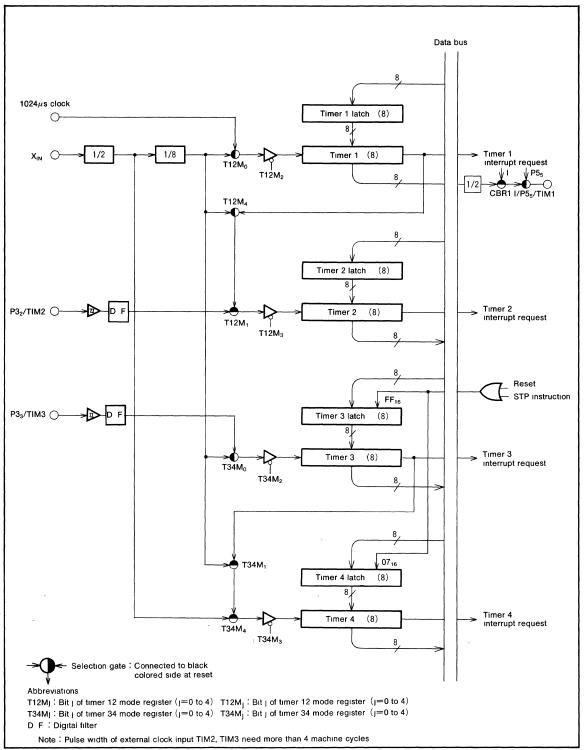


Fig. 8 Block diagram of timer 1, timer 2, timer 3 and timer 4

SERIAL I/O

M37204M8-XXXSP has two serial I/O (serial I/O1, serial I/O2). Serial I/O1 has the same function as serial I/O2. A block diagram of the serial I/O is shown in Figure 9. In the serial I/O mode the receive ready signal $(\overline{S_{RDYI}})$, synchronous input/output clock (S_{CLKI}) , and the serial I/O pins $(S_{OUTI},\,S_{INI})$ are used as port P4. The serial I/O $_{I}$ mode registers (addresses 00DC $_{16}$ and 00DE $_{16}$) are 8-bit registers. Bits 0, 1 and 2 of these registers are used to select a synchronous clock source.

Bits 3 and 4 decide whether parts of P4 will be used as a serial I/O or not.

To use $P4_2$ or $P4_6$ as a serial input, set the direction register bit which corresponds to $P4_2$ or $P4_6$ to "0". For more information on the direction register, refer to the I/O pin section.

Also to use internal clock of serial I/O2, bit 1 of special mode register 1 (address 00DA₁₆) needs to be set to "1". The serial I/O function is discussed below. The function of the serial I/O differs depending on the clock source; external clock or internal clock.

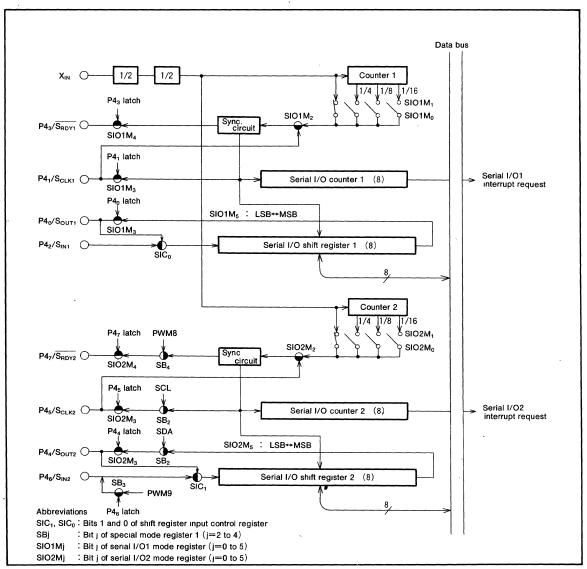


Fig. 9 Block diagram of serial I/O

Internal clock—The $\overline{S_{RDYI}}$ signal becomes "H" during transmission or while dummy data is stored in the serial I/O $_i$ register (addresses $00DD_{16}$ and $00DF_{16}$). After the falling edge of the write signal, the $\overline{S_{RDYI}}$ signal becomes low signaling that the M37204M8-XXXSP is ready to receive the external serial data. The $\overline{S_{RDYI}}$ signal goes "H" at the next falling edge of the transfer clock. The serial I/O $_i$ counter is set to 7 when data is stored in the serial I/O $_i$ register. At each falling edge of the transfer clock, serial data is output to S_{OUTi} . During the rising edge of this clock, data can be input from S_{INI} and the data in the serial I/O $_i$ register will be shifted 1 bit.

Transfer direction can be selected by bit 5 of serial I/O_t mode register. After the transfer clock has counted 8 times, the serial I/O_t register will be empty and the transfer clock will remain at a high level. At this time the interrupt request

bit will be set.

External clock- If an external clock is used, the interrupt request will be sent after the transfer clock has counted 8 times but transfer clock will not stop.

Due to this reason, the external clock must be controlled from the outside. The external clock should not exceed $500 \mathrm{kHz}$ at a duty cycle of 50%. The timing diagram is shown in Figure 10 When using an external clock for transfer, the external clock must be held at "H" level when the serial I/O_t counter is initialized When switching between the internal clock and external clock, the switching must not be performed during transfer. Also, the serial I/O counter must be initialized after switching.

An example of communication between two M37204M8-XXXSPs is shown in Figure 11.

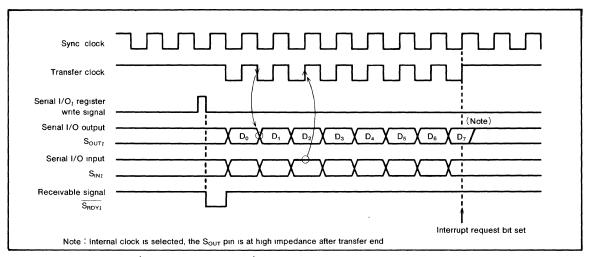


Fig. 10 Serial I/O timing (In the case of LSB first)

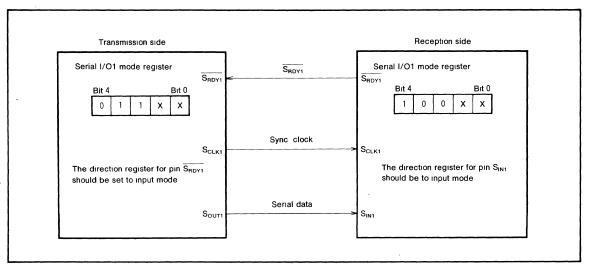


Fig. 11 Example of serial I/O connection

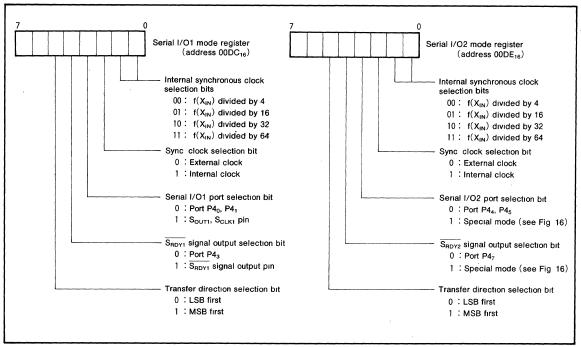


Fig. 12 Structure of serial I/O $_i$ mode register

SPECIAL MODE (I2C BUS MODE*)

M37204M8-XXXSP has a special serial I/O circuit that can be reception or transmission of serial data in conformity with I²C* (Inter IC) bus format.

I²C bus is a two line directional serial bus developed by Philips to transfer and control data among internal ICs of a machinery.

M37204M8-XXXSP's special serial I/O is not included the clock synchronisation function and the arbitration detectable function at multimaster.

Operations of master transmission and master reception with special serial I/O are explained in the following:

- (1) Master transmission
- ① To generate an interrupt at the end of transmission, set bit 7 of special mode register 2 (address 00DB₁₆) to "1" so as to special serial I/O interrupt is selected.
- ② Then set bit 3 of interrupt control register 2 (address 00FF₁₆) to "1" so as to special serial I/O interrupt is enabled. Clear the interrupt disable flag I to "0" by using the CLI instruction.
- 3 The output signals of master transmission SDA and SCL are output from ports P4₄ and P4₅. Set all bits (bits 4 and 5) corresponding to P4₄ and P4₅ of the port P4 register (address 00C8₁₆) and the port P4 direction register (address 00C9₁₆) to "1".
- ④ Set the transmission clock The transmission clock uses the overflow signal of timer 4. Set appropriate value in timer 4. (For instance, if $f(X_{IN})/16$ is selected as the clock source of timer 4 and 4 is set in timer 4 when $f(X_{IN})$ is 4MHz, the master transmission clock frequency is 25kHz.)
- Set contents of the special mode register 2 (address 00DB₁₆). (Usually,the value is "83₁₆".)
- 6 Set the bit 3 of serial I/O2 mode register (address 00DE₁₆). After that set the special mode register 1 (address 00DA₁₆). Figure 16 shows the structure of special mode registers 1 and 2.

Initial setting is completed by the above procedure

Write data to be transmitted in the special serial I/O register (address 00D9₁₆). Immediately after this, clear bits 0 and 1 of special mode regiser 2 (to "0") to make both

SDA and SCL output to "L". This is for arbitration. The start signal has been completed.

The hardware automatically sends out data of 9-clock cycle. The 9th clock is for ACK reception and the output level becomes "H" at this clock. If other master outputs the start signal to transmit data simultaneously with this 9th clock, it is not detected as an arbitration-lost.

When the ACK bit has been transmitted, bit 3 of the interrupt request register 2 is set to "1" (issue of interrupt request), notifying the end of data transmission.

- To transmit data successively, write data to be sent to the special serial I/O register, and set the interrupt enabled state again. By repeating this procedure, unlimited number of bytes can be transmitted.
- To terminate data transfer, clear bits 0 and 1 of the special mode register 2 to "0".
- 10 Set bit 1 clock SCL to "1".
- ① Then set bit 1 data SDA to "1". This procedure transmits the stop signal. Figure 14 shows master transmission timing explained above.
- (2) Master reception

Master reception is carried out in the interrupt routine after data is transferred by master transmission. For master transmission and interrupt thereafter, see the preceding section (1) Master transmission (the process until ⑦ in Figure 14).

In the interrupt routine, set master reception ACK provided (26_{16}) in the special mode register 1 (address $00DA_{16})$, and write "FF $_{16}$ " in the special serial I/O register (address $00D9_{16})$. This sets data line SDA to "H" and to perform 8-clock master reception. Then, "L" is transmitted to data line SDA for ACK receiving. In the ACK provided mode, the above ACK is automatically sent out.

Repeat the above receiving operation for a necessary number of times. Then return to the master transmission mode and transmit the stop signal by the same procedure for the master transmission (the process from (9) to (11) in Figure 14)

Figure 15 shows master reception timing.

* : Purchase of Mitsubishi Electric Corporation's I²C components converys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

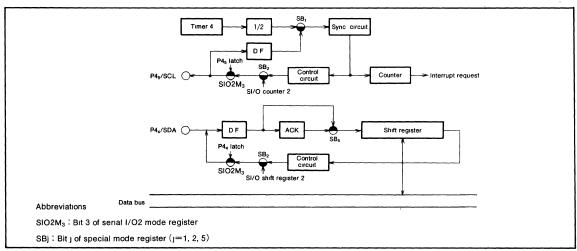


Fig. 13 Block diagram of special serial I/O

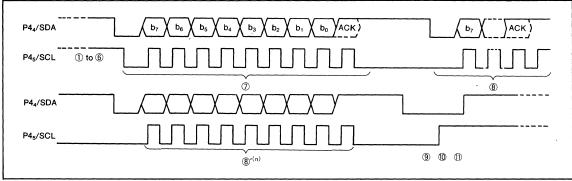


Fig. 14 Master transmission timing

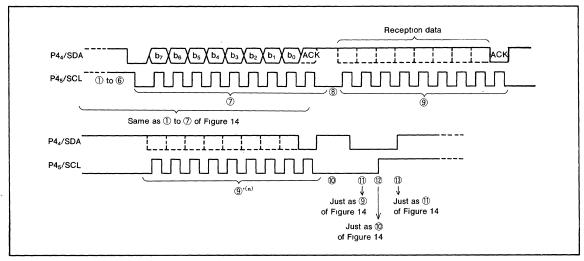
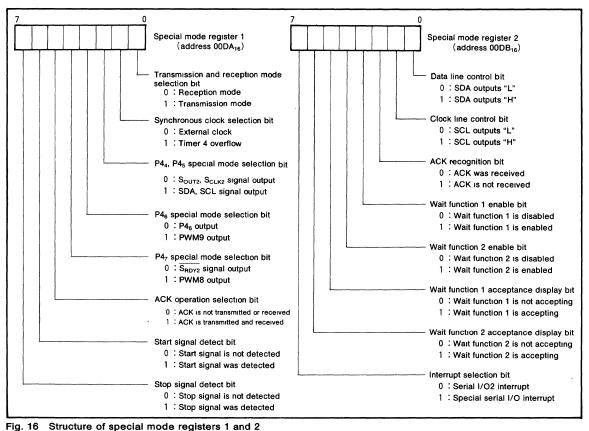


Fig. 15 Master reception timing


(3) Wait function

Wait function 1 holds the SCL line at "L" after the 8th clock falls in special mode. Wait function 2 holds the SCL line at "L" after the 9th clock falls in the same way.

When one of the wait functions operates, the internal counter that counts the clock must be reset after bit 3 or 4 of the special mode register 2 is set to "1", to enable the corresponding wait function 1 or 2 to operate. Reset the internal counter by writing data to the special serial I/O register (address 00D9₁₆), or by setting the START signal detection bit to "1". Reset the internal counter for each byte before data tranfer.

The wait functions can be released by setting the corresponding bit 5 or 6 of the special mode register 2 to "1".

Note 1: Clear the START signal detect bit (bit 6) and the STOP signal detect bit (bit 7) of the special mode register 1 by writing "1" to bit 6 or bit 7.

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

SERIAL I/O COMMON TRANSFER MODE

The S_{IN} and S_{OUT} signals can be switched internally, to switch between serial transmission and serial reception, by writing "1" to either bit 1 or bit 0 of the shift register input control register.

Signal lines in serial I/O common transfer mode are shown in Figure 19.

Note: During serial reception, make sure that serial reception start after "FF₁₆" is written to the serial I/O shift register.

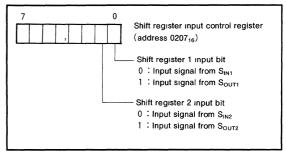


Fig. 17 Structure of the shift register input control register

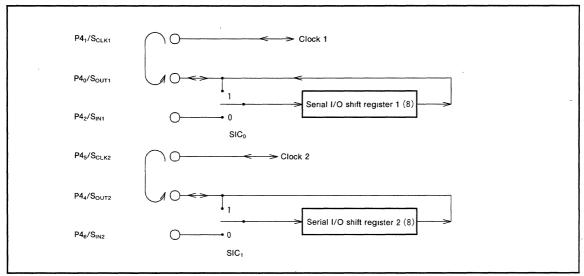


Fig. 18 Signal lines in serial I/O common transfer mode

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

PWM OUTPUT CIRCUIT

(1) Introduction

The M37204M8-XXXSP is equipped with one 14-bit PWM(DA) and ten 8-bit PWMs (PWM0—PWM9). The 14-bit resolution gives DA the minimum resolution bit width of 500ns (for X_{IN} =4MHz) and a repeat period of 8192 μ s. PWM0 — PWM9 have a 8-bit resolution with minimum resolution bit width of 8 μ s and repeat period of 2048 μ s.

Block diagram of the PWM is shown in Figure 19.

The PWM timing generator section applies individual control signals to DA and PWM0 — PWM9 using clock input $X_{\rm IN}$ divided by 2 as a referece signal.

(2) Data setting

The output pins PWM0 — PWM7 are in common with port P6 and PWM8, 9 are in common with port P47, P46. For PWM output, each PWM output selection bits (bits 2 to 7 of PWM output control register 1, bits 0 and 1 of PWM output control register 2, bits 3 and 4 of special mode register 1 and bit 4 of serial I/O2 mode register) should be set. When DA is used for output, first set the higher 8-bit of the DA-H register (address $00CE_{16}$), then the lower 6-bit of the DA-L register (address $00CF_{16}$).

When one of the PWM0-PWM9 is used for output, set the 8-bit in the PWM0-PWM9 register (addresses $00D0_{16}$ to $00D4_{16}$ and $00F6_{16}$ to $00FA_{16}$), respectively.

(3) Transferring data from registers to latches

The data written to the 8-bit PWM register is transferred to the PWM latch in each 8-bit PWM cycle period. For 14-bit PWM, the data is transferred in the next upper 8-bit period after the write. The signals output to the PWM pins correspond to the contents of these latches. When data in each PWM register is read, data in these latches has already been read allowing the data output by the PWM to be confirmed. However, bit 7 of the DA-L register indicated the completion of the data transfer from the DA register to the DA latch. If bit 7 is "0", the transfer has been completed, if bit 7 is "1", the transfer has not yet begun.

(4) Operation of the 8-bit PWMs

The timing diagram of the ten 8-bit PWMs (PWM0 — PWM9) is shown in Figure 20. One period (T) is composed of 256 (2^8) segments.

There are eight different pulse types configured from bits 0 to 7 representing the significance of each bit. These are output within one period in the circuit internal section. Refer to Figure 20 (a).

Eight different pulses can be output from the PWM. These can be selected by bits 0 through 7. Depending on the content of the 8-bit PWM latch, pulses from 7 to 0 is selected. The PWM output is the difference of the sum of each of these pulses. Several examples are shown in Figure 20 (b). Changes in the contents of the PWM latch allows the selection of 256 lengths of high-level area outputs varying from 0/256 to 255/256. An length of entirely high-level output cannot be output, i.e. 256/256.

(5) 14-bit PWM operation

The output example of the 14-bit PWM is shown in Figure 21. The 14-bit PWM divides the data within the PWM latch into the lower 6 bits and higher 8 bits.

A high-level area within a length D_H times τ is output every short area of t=256 τ =128 μ s as determined by data D_H of the higher 8 bits.

Thus, the time for the high-level area is equal to the time set by the higher 8 bits or that plus τ . As a result, the short-area period t (=128 μ s, approx. 7.8kHz) becomes an approximately repetitive period.

(6) Output after reset

At reset the output of port $P4_6$, $P4_7$ and P6 is in the high impedance state and the contents of the PWM register and latch are undefined. Note that after setting the PWM register, its data is transferred to the latch.

Table 2. Relation between the 6 low-order bits of data and high-level area increase space

6 low-order bits of data	Area longer by τ than that of other $t_m(m = 0 \text{ to } 63)$
0 0 0 0 0 LSB	Nothing
000001	m=32
000010	m=16, 48
000100	m= 8, 24, 40, 56
001000	m= 4, 12, 20, 28, 36, 44, 52, 60
010000	m= 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62
100000	m=1,3,5,7,57,59,61,63

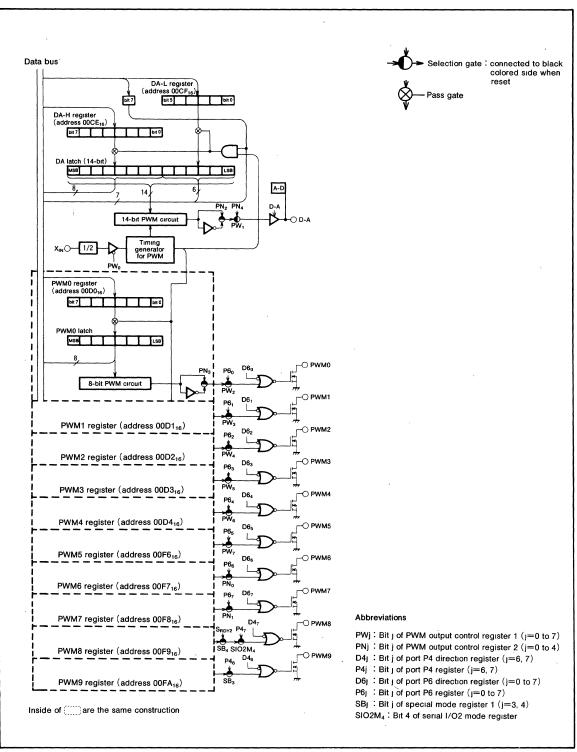


Fig. 19 Block diagram of the PWM circuit

MITSUBISHI MICROCOMPUTERS M37204M8-XXXSP

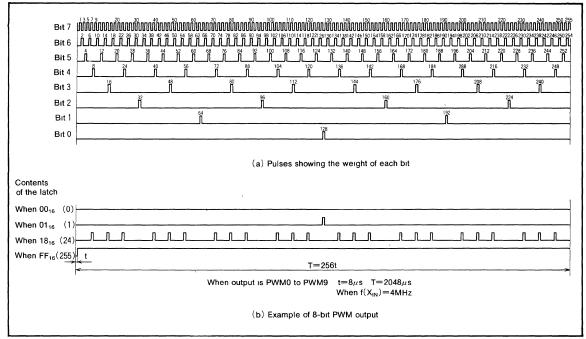


Fig. 20 8-bit PWM timing diagram

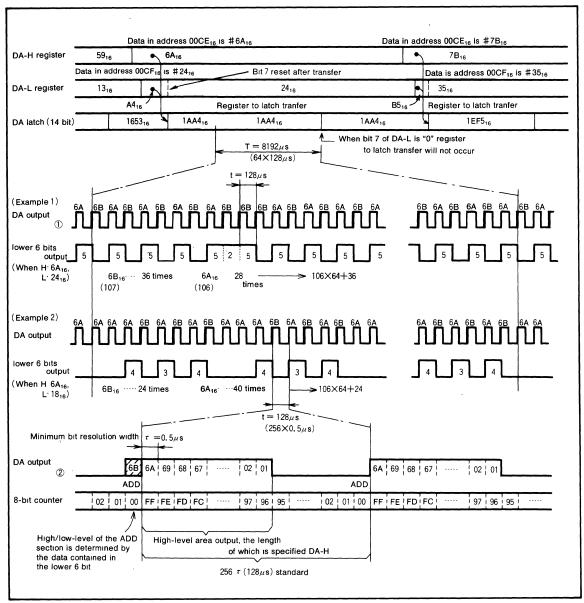


Fig. 21 14-bit PWM timing diagram

MITSUBISHI MICROCOMPUTERS M37204M8-XXXSP

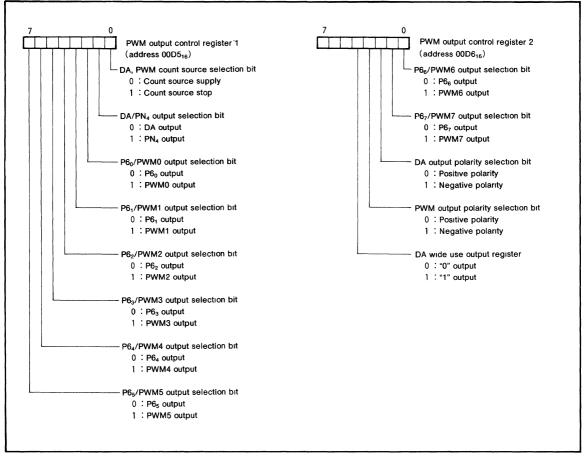


Fig. 22 Structure of PWM output control register 1 and 2

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

A-D CONVERTER

Block diagram of A-D converter is shown in Figure 24. A-D converter consists of 6-bit D-A converter and comparator. The A-D control register 2 (address $020A_{16}$) can generate $1/64\ V_{CC}$ -step internal analog voltage based on the settings of bits 5 to 0.

Table 3 gives the relation between the descriptions of A-D control register bits 5 to 0 and the generated internal analog voltage. The comparison result of the analog input voltage and the internal analog voltage is stored in the A-D control register 1 (address 00EF₁₆), bit 4.

The data is compared by setting the direction register corresponding to port P3 $_5$, P3 $_6$ to "0" (port P3 $_5$, P3 $_6$ enters the input mode), to allow port P3 $_5$ /A-D1, P3 $_6$ /A-D2 to be used as the analog input pin. The digital value corresponding to the internal analog voltage to be compared is then written in the A-D control register, bits 0 to 5 and an analog input pin is selected. After 16 machine cycle, the voltage comparison is completed.

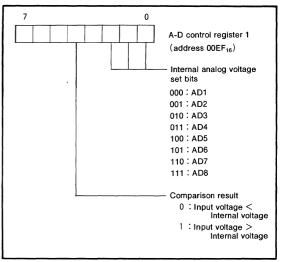


Fig. 23 Structure of A-D control register 1

Table 3. Relationship between the contents of A-D control register2 and internal analog voltage

A-D control register						Internal analog
Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	voltage
0	0	0	0	0	0	1/128 V _{CC}
0	0	0	0	0	1	3/128 V _{cc}
0	0	0	0	1	0	5/128 V _{cc}
0	0	0	0	1	1	7/128 V _{CC}
:	:	:	:	:	:	:
1	1	1	1	0	1	123/128 V _{CC}
1	1	1	1	1	0	125/128 V _{CC}
1	1	1	1	1	1	127/128 Vcc



Fig. 24 Block diagram of A-D converter

CRT DISPLAY FUNCTIONS

(1) Outline of CRT Display Functions

Table 4 outlines the CRT display functions of the M37204M8-XXXSP. The M37204M8-XXXSP incorporates a 24 columns \times 3 lines CRT display control circuit. CRT display is controlled by the CRT display control register.

Up to 254 kinds of characters can be displayed, and colors can be specified for each character. Four colors can be displayed on one screen. A combination of up to 15 colors can be obtained by using each output signal (R, G, B, and I).

Characters are displayed in a 12×16 dot configuration to obtain smooth character patterns. (See Figure 25)

The following shows the procedure how to display characters on the CRT screen.

Table 4. Outline of CRT display functions

Parameter Functions		Functions	
Displ	Display character 24 characters X3 lines (maximum 16		
Character configuration		12×16 dots (See Figure 25)	
Kınds	of characters	254 kinds	
Chara	acter size	4 kinds	
Calar	Kind of colors	15 (max.)	
Coloring unit		a character	
Exter	tion display	Possible (multiple lines)	

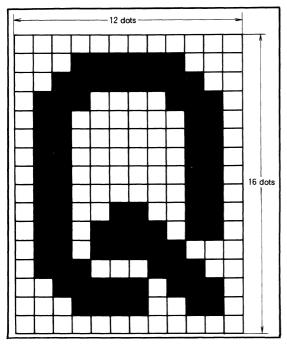


Fig. 25 CRT display character configuration

- ① Set the character to be displayed in display RAM.
- ② Set the display color by using the color register.
- ③ Specify the color register in which the display color is set by using the display RAM.
- ④ Specify the vertical position and character size by using the vertical position register and the character size register.
- Specify the horizontal position by using the horizontal position register.
- Write the display enable bit to the designated block display flag of the CRT control register. When this is done, the CRT starts operation according to the input of the V_{SYNC} signal.

The CRT display circuit has an extended display mode. This mode allows multiple lines (more than 4 lines) to be displayed on the screen by interrupting the display each time one line is displayed and rewriting data in the block for which display is terminated by software.

Figure 26 shows the structure of the CRT control register 1. Figure 27 shows a block diagram of the CRT display control circuit.

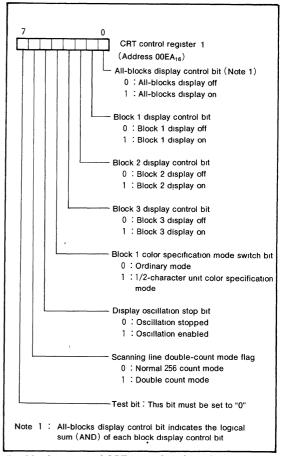


Fig. 26 Structure of CRT control register 1

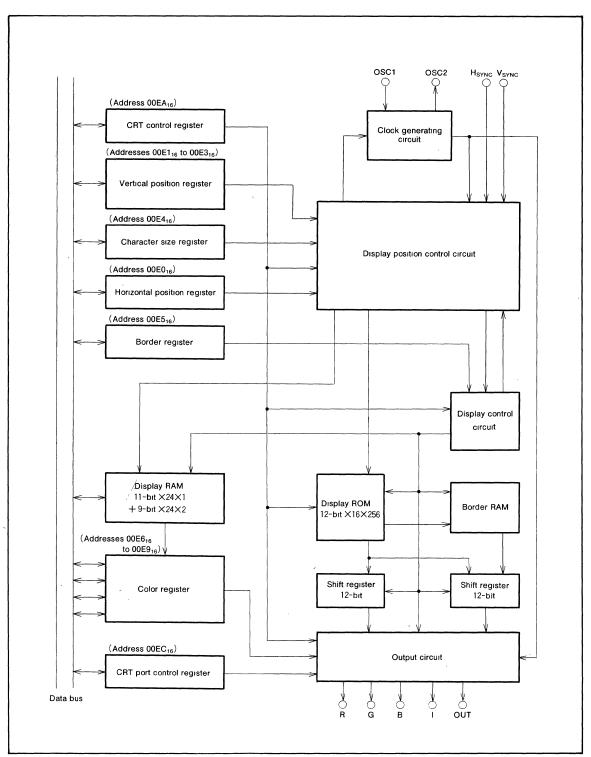


Fig. 27 Block diagram of CRT display control circuit

(2) Display Position

The display positions of characters are specified in units called a "block." There are three blocks, block 1 to block 3. Up to 24 characters can be displayed in one block. (See (4) Display Memory.)

The display position of each block in both horizontal and vertical directions can be set by software.

The horizontal direction is common to all blocks, and is selected from 64-step display positions in units of 4Tc (Tc =oscillation cycle for display).

The display position in the vertical direction is selected from 128-step display positions for each block in units of four scanning lines.

If the display start position of a block overlaps with some other block ((b) in Figure 30), a block of the smaller block No. (1 to 3) is displayed.

If when one block is displaying, some other block is displayed at the same display position ((c) in Figure 30), the former block is overridden and the latter is displayed.

The vertical position can be specified from 128-step positions (four scanning lines per step) for each block by setting values 00₁₆ to 7F₁₆ to bits 0 to 6 in the vertical position register (addresses 00E1₁₆ to 00E3₁₅). Figure 28 shows the structure of the vertical position register.

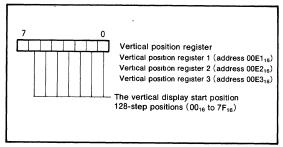


Fig. 28 Structure of vertical position registers

The horizontal direction is common to all blocks, and can be specified from 64-step display positions (4Tc per step (Tc=oscillation cycle for display)) by setting values 00_{16} to $3F_{16}$ to bits 0 to 5 in the horizontal position register (address $00E0_{16}$). Figure 29 shows the structure of the horizontal position register.

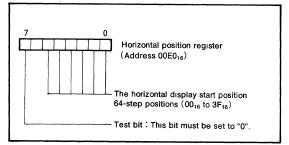


Fig. 29 Structure of horizontal position register

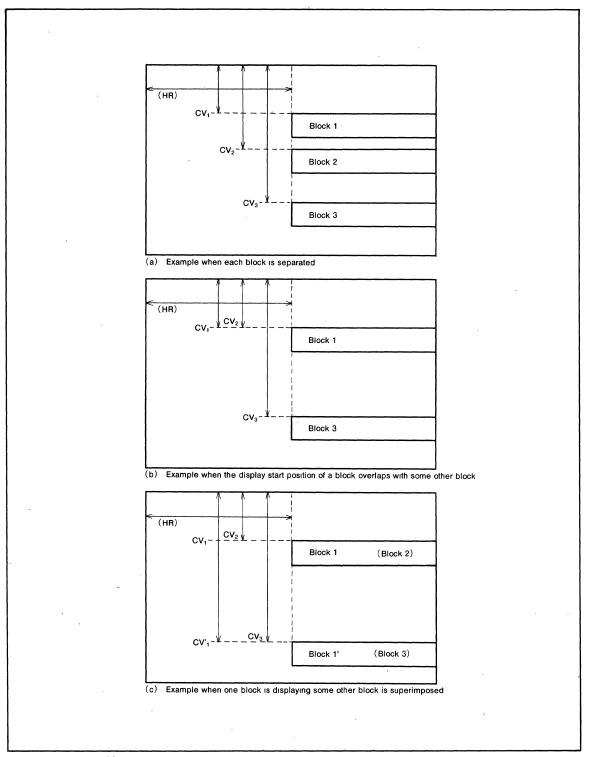


Fig. 30 Display position

(3) Character Size

The size of characters to be displayed can be selected from four sizes for each block. Use the character size register (address $00E4_{16}$) to set a character size. The character size in block 1 can be specified by using bits 0 and 1 in the character size register; the character size in block 2 can be specified by using bits 2 and 3; the character size in block 3 can be specified by using bits 4 and 5. Figure 31 shows the structure of the character size register.

The character size can be selected from four sizes: small size, medium size, large size, and extra large size. Each character size is determined by the number of scanning lines in the height (vertical) direction and the cycle of display oscillation (=Tc) in the width (horizontal) direction.

The small size consists of (one scanning lines) \times (1 Tc); the medium size consists of (two scanning lines) \times (2 Tc); the large size consists of (three scanning lines) \times (3 Tc); and the extra large size consists of (four scanning lines) \times (4 Tc). Table 5 shows the relationship between the set values in the character size register and the character sizes.

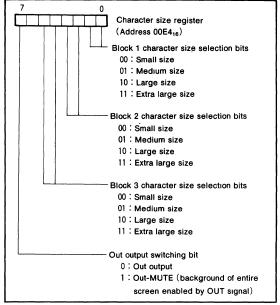


Fig. 31 Structure of character size register

Table 5. The relationship between the set values of the character size register and the character sizes

Set values of the character size register Character		Character	Width (horizontal) direction	Height (vertical) direction
CS _{n1}	CS _{n0}	size	Tc: a cycle of display oscillation	(scanning lines)
. 0	0	Small	1 T _C	1
0	1	Medium	2 T _C	2
1	0	Large	3 T _C	3
1	1	Extra large	4 T _C	4

Note: The display start position in the horizontal direction is not affected by the character size. In other words, the horizontal start position is common to all blocks even when the character size varies with each block. (See Figure 32)

Abbreviations

CSn₁, CSn₀: Bits 1 and 0 of the character size register

(4) Display Memory

There are two types of display memory: CRT display ROM (addresses 3000_{16} to $4FFF_{16}$) used to store character dot data (masked) and CRT display RAM (addresses 2000_{16} to $20D7_{16}$) used to specify the colors of characters to be displayed. The following describes each type of display memory.

① CRT display ROM (addresses 3000₁₆ to 4FFF₁₆)
The CRT display ROM contains dot pattern data for display characters. To display these stores characters in operation, specify character codes (codes determined based on the addresses in the CRT display ROM) that are specific to those characters, by writing them to the CRT display RAM.

Small Medium Large Extra large Display start position

Fig. 32 Display start position of each character size (horizontal direction)

Since the CRT display ROM contains 8K bytes and the data for one character takes up 32 bytes are required 256 characters can be stored. However, two-character space is required for test purposes, so in practice 254 characters can be stored for display.

Within the CRT display ROM area, data for part of each character that is [16 dots high] \times [left hand 8 dots wide] is stored at addresses 3000_{16} to $37FF_{16}$ and 4000_{16} to $47FF_{16}$, and data for part of each character that is [16 dots high] \times [right-side 4 dots wide] data of display characters are stored in addresses 3800_{16} to $3FFF_{16}$ and 4800_{16} to $4FFF_{16}$ (See Figure 33) However, note that the four upper bits in the data to be written to addresses 3800_{16} to $3FFF_{16}$ and 4800_{16} to $4FFF_{16}$ must all be set to "1" (by writing data 4800_{16} to 8

Table 6. Character code list

01	Contained up address of character data		
Character code	Left 8 dots lines	Right 4 dots lines	
00 ₁₆	3000 ₁₆ to 300F ₁₆	3800 ₁₆ to 380F ₁₆	
01 ₁₆	3010 ₁₆ to 301F ₁₆	3810 ₁₆ to 381F ₁₆	
02 ₁₆	3020 ₁₆ to 302F ₁₆	3820 ₁₆ to 382F ₁₆	
03 ₁₆	3030 ₁₆ to 303F ₁₆	3830 ₁₆ to 383F ₁₆	
:	:	:	
7E ₁₆ *	37E0 ₁₆ to 37EF ₁₆	3FE0 ₁₆ to 3FEF ₁₆	
7F ₁₆ *	37F0 ₁₆ to 37FF ₁₆	3FF0 ₁₆ to 3FFF ₁₆	
80 ₁₆	4000 ₁₆ to 400F ₁₆	4800 ₁₆ to 480F ₁₆	
81 ₁₆	4010 ₁₆ to 401F ₁₆	4810 ₁₆ to 481F ₁₆	
:	:	:	
FD ₁₆	47D0 ₁₆ to 47DF ₁₆	4FD0 ₁₆ to 4FDF ₁₆	
FE ₁₆	47E0 ₁₆ to 47EF ₁₆	4FE0 ₁₆ to 4FEF ₁₆	
FF ₁₆	47F0 ₁₆ to 47FF ₁₆	4FF0 ₁₆ to 4FFF ₁₆	

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

The character code used to specify a character to be displayed is determined based on the address in the CRT display ROM in which that character is stored.

Assume that data for one character is stored at $3XX0_{16}$ to $3XXF_{16}$ and $4XX0_{16}$ to $4XXF_{16}$ (XX denotes 00_{16} to $7F_{16}$) and $3YYO_{16}$ to $3YYF_{16}$ and $4YYO_{16}$ to $4YYF_{16}$ (YY denotes 80_{16} to FF_{16}), then the character code for it is "XX₁₆".

In other words, character code for any given character is configured with two middle digits of the four-digit (hexnotated) addresses (3000_{16} to $37FF_{16}$ and 4000_{16} to $47FF_{16}$) where data for that character is stored.

Table 6 lists the character codes

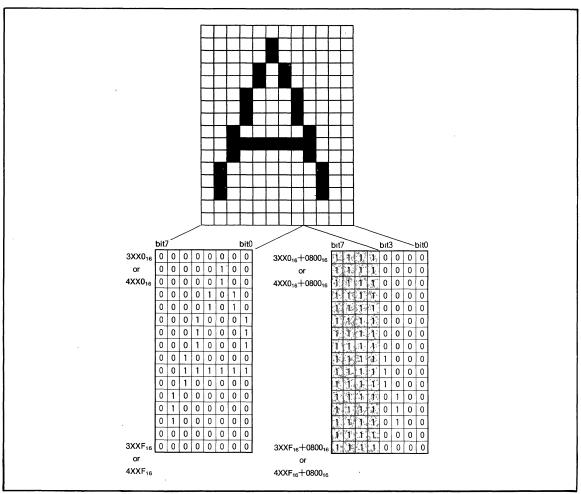


Fig. 33 Stored format for display characters

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

② CRT display RAM (addresses 2000₁₆ to 20D7₁₆)
The CRT display RAM is allocated at addresses 2000₁₆ to 20D7₁₆, and is divided into a display character code specifying part and display color specifying part for each block. Table 7 shows the contents of the CRT display RAM.

When a character is to be displayed at the first character (leftmost) position in block 1, for example, it is necessary to write the character code to the eight bits (bits 0 to 7) in address 2000_{16} and the color register No. to the two low-order bits (bits 0 and 1) in address 2080_{16} . The color register No. to be written here is one of the four color registers in which the color to be displayed is set in advance. For details on color registers, refer to (5) Color Registers.

The structure of the CRT display RAM is shown in Figure 33. Write the character patterns at Table 8 and 9, when M37204M8-XXXSP is mask-ordered.

Table 7. The contents of the CRT display RAM

Block	Display position (from left)	Character code specification	Color specification
	1st column	2000 ₁₆	2080 ₁₆
	2nd column	2001 ₁₆	2081 ₁₆
	3rd column	200216	2082 ₁₆
Block 1	:	· :	:
	22th column	2015 ₁₆	2095 ₁₆
	23th column	2016 ₁₆	2096 ₁₆
	24th column	2017 ₁₆	2097 ₁₆
		2018 ₁₆	2098 ₁₆
	Not used	to	to
		201F ₁₆	209F ₁₆
	1st column	2020 ₁₆	20A0 ₁₆
	2nd column	2021 ₁₆	20A1 ₁₆
	3rd column	2022 ₁₆	20A2 ₁₆
Block 2	:	:	:
	22th column	2035 ₁₆	20B5 ₁₆
,	23th column	2036 ₁₆	20B6 ₁₆
	24th column	2037 ₁₆	20B7 ₁₆
		2038 ₁₆	20B8 ₁₆
	Not used	to	to
		203F ₁₆	20BF ₁₆
	1st column	2040 ₁₆	20C0 ₁₆
	2nd column	2041 ₁₆	20C1 ₁₆
	3rd column	2042 ₁₆	20C2 ₁₆
Block 3	:	:	:
	22th column	2055 ₁₆	20D5 ₁₆
	23th column	2056 ₁₆	20D6 ₁₆
	24th column	2057 ₁₆	20D7 ₁₆
		2058 ₁₆	20D8 ₁₆
	Not used	to	to
		207F ₁₆	2FFF ₁₆

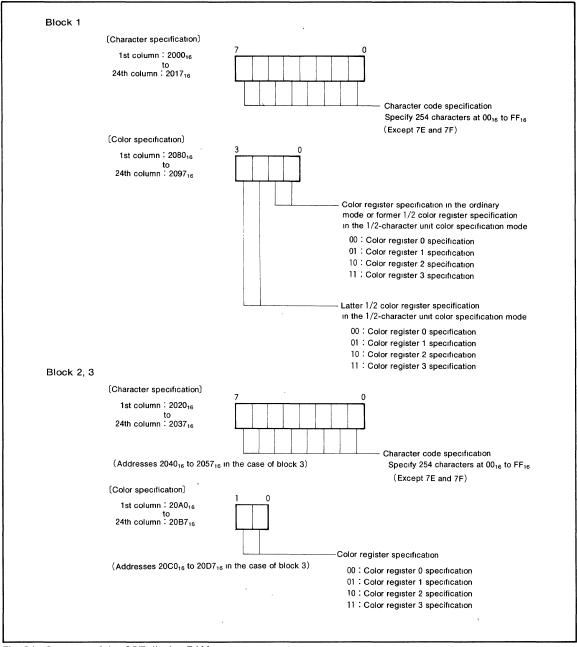


Fig. 34 Structure of the CRT display RAM

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

Table 8. Test character patterns 1

Address	Data	Address	Data
37E0 ₁₆	4016	3FE0 ₁₆	F0 ₁₆
37E1 ₁₆	04 ₁₆	3FE1 ₁₆	F0 ₁₆
37E2 ₁₆	0016	3FE2 ₁₆	F4 ₁₆
37E3 ₁₆	2016	3FE3 ₁₆	F0 ₁₆
37E4 ₁₆	0216	3FE4 ₁₆	F0 ₁₆
37E5 ₁₆	0016	3FE5 ₁₆	F2 ₁₆
37E6 ₁₆	1016	3FE6 ₁₆	F0 ₁₆
37E7 ₁₆	01 ₁₆	3FE7 ₁₆	F0 ₁₆
37E8 ₁₆	8016	3FE8 ₁₆	F0 ₁₆
37E9 ₁₆	0816	3FE9 ₁₆	F0 ₁₆
37EA ₁₆	0016	3FEA ₁₆	F8 ₁₆
37EB ₁₆	4016	3FEB ₁₆	F0 ₁₆
37EC ₁₆	04 ₁₆	3FEC ₁₆	F0 ₁₆
37ED ₁₆	0016	3FED ₁₆	F4 ₁₆
37EE ₁₆	2016	3FEE ₁₆	F0 ₁₆
37EF ₁₆	0216	3FEF ₁₆	F0 ₁₆

Table 9. Test character patterns 2

Address	Data	Address	Data
37F0 ₁₆	0016	3FF0 ₁₆	F0 ₁₆
37F1 ₁₆	0016	3FF1 ₁₆	F0 ₁₆
37F2 ₁₆	0016	3FF2 ₁₆	F0 ₁₆
37F3 ₁₆	0016	3FF3 ₁₆	F0 ₁₆
37F4 ₁₆	0016	3FF4 ₁₆	F0 ₁₆
37F5 ₁₆	0016	3FF5 ₁₆	F0 ₁₆
37F6 ₁₆	0016	3FF6 ₁₆	F0 ₁₆
37F7 ₁₆	0016	3FF7 ₁₆	F0 ₁₆
37F8 ₁₆	0016	3FF8 ₁₆	F0 ₁₆
37F9 ₁₆	0016	3FF9 ₁₆	F0 ₁₆
37FA ₁₆	0016	3FFA ₁₆	F0 ₁₆
37FB ₁₆	0016	3FFB ₁₆	F0 ₁₆
37FC ₁₆	0016	3FFC ₁₆	F0 ₁₆
37FD ₁₆	0016	3FFD ₁₆	F0 ₁₆
37FE ₁₆	0016	3FFE₁6	F0 ₁₆
37FF ₁₆	0016	3FFF ₁₆	F0 ₁₆

(5) Color Registers

The color of a displayed character can be specified by setting the color to one of the four color registers (CO0 to CO3 addresses 00E6₁₆ to 00E9₁₆) and then specifying that color register with the CRT display RAM.

There are four color outputs: R, G, B, and I. By using a combination of these outputs, it is possible to set 2^4 -1 (when no output) = 15 colors. However, because only four color registers are available, up to four colors can be displayed at one time.

R, G, B, and I outputs are set by using bits 0 to 3 in the color register. Bit 4 in the color register is used to set a character or blank output; bit 5 is used to specify whether a character output or blank output. Figure 35 shows the structure of the color register.

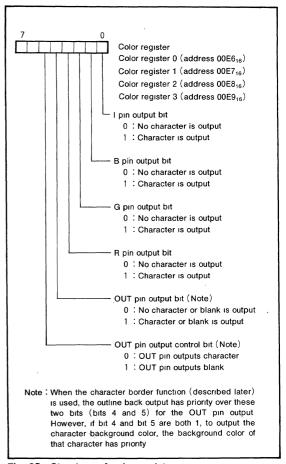


Fig. 35 Structure of color registers

MITSUBISHI MICROCOMPUTERS M37204M8-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

(6) 1/2-Character Unit Color Specification Mode By setting "1" to bit 4 in the CRT control register 1 (address 00EA₁₆) it is possible to specify colors in units of a 1/2-character size (16 dots high×6 dots wide) for characters in block 1 only.

In the 1/2-character unit color specification mode, colors of display characters in block 1 are specified as follows:

- ①The left half of the character is set to the color of the color register that is specified by bits 0 and 1 at the color register specifying addresses in the CRT display RAM (addresses 2080₁₆ to 2097₁₆).
- ②The right half of the character is set to the color of the color register that is specified by bits 2 and 3 at the color register specifying address in the CRT display RAM (addresses 2080₁₆ to 2097₁₆).

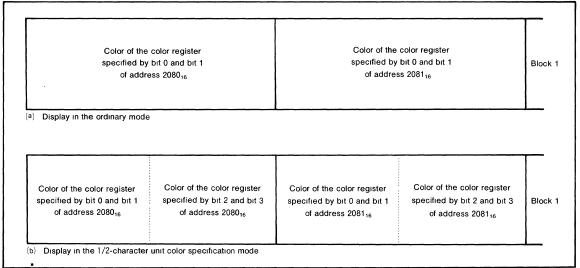


Fig. 36 Difference between ordinary color specification mode and 1/2-character unit color specification mode

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

(7) Multi-line Display

The M37204M8-XXXSP can ordinarily display three lines of characters, in three blocks with different vertical positions. In addition, up to 16 lines can be displayed by using CRT interrupts and the display block counter.

The CRT interrupt is a function that generates an interrupt for each block at the point at which the display of any desired number of dots has been completed. In other words, when a scanning line reaches the point of display position (specified with vertical and horizontal position registers) of a certain block, the character display of that block starts, and an interrupt is issued at the point at which the number of dots set by the interrupt position control register is exceeded.

The display block counter counts the number of times the display of a block has been completed, and its contents are incremented by 1 each time the display of one block is completed.

To provide multi-line display, enable CRT interrupts by clearing the interrupt disable flag to "0" and setting the CRT interrupt enable bit (bit 4 of address $00FE_{16}$) to "1". To processing within the CRT interrupt processing routine is as follows:

- ①Read the value of the display block counter.
- ②The block for which display is terminated (i.e., the cause of CRT interrupt generation) can be determined by the value read in ①.
- ③ Replace the display character data and display position of that block with the character data (contents of CRT display RAM) and vertical display position (contents of vertical position register) to be displayed next.

Figure 37 shows the structure of the display block counter.

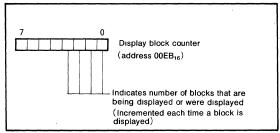


Fig. 37 Structure of display block counter

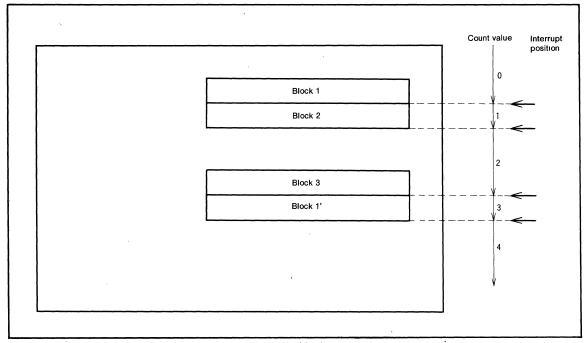


Fig. 38 Timing of CRT interrupt and count value of display block counter

(8) Scanning Line Double Count Mode

One dot in a displayed character is normally shown by one scanning line. In the scanning line double count mode, one dot can be shown by two scanning lines. As a result, the displayed dot is extended two times the normal size in the vertical direction only. (That is to say, the height of a character is extended twofold.)

In addition, because the scanning line count is doubled, the display start position of a character is also extended two-fold in the vertical direction. In other words, whereas the contents set in the vertical position register in the normal mode are 256 steps from 00_{16} to FF_{16} , or four scanning lines per step, the number of steps in the scanning line double count mode is 128 from 00_{16} to $7F_{16}$, or eight scanning lines per step.

If the contents of the vertical position register for a block are set in the address range of 80_{16} to FF₁₆ in the scanning line double count mode, that block cannot be displayed (not output to the CRT screen).

In the scanning line double count mode can be specified by setting bit 6 in the CRT control register 1 (address 00EA₁₆) to "1".

Because this function works in units of screen, even when the mode is changed the mode about the scanning line count during display of one screen, the double count mode only becomes valid from the time the next screen is displayed.

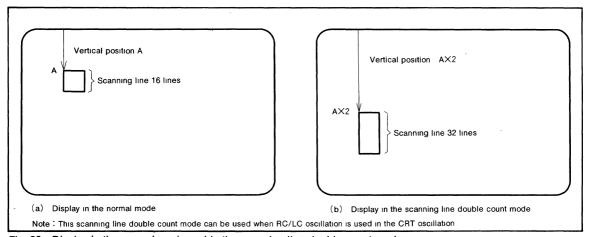


Fig. 39 Display in the normal mode and in the scanning line double count mode

(9) Character Border Function

A one clock (one dot) border can be drawn around each character displayed, in both horizontal and vertical directions

The border is output from the OUT pin. In this case, bits 4 and 5 in the color register (the OUT pin output contents) are ignored, and the border output is from the OUT pin.

The border can be set in block units by the border selection register (address $00E5_{16}$). The border output takes priority over OUT output of color register, but in case of character background coloring is set, the border output can't output. Table 10 shows the relationship between the values set in the border selection register and the character border function. Figure 41 shows the structure of the border selection register.

Table 10. The relationship between the value set in the border selection register and the character border function

Border sele	ction register	F	F				
MDn1	MDn0	Functions	Example of output				
V	0	Normal	R, G, B, I output				
^	X 0	Normai	OUT output				
0	1	1 Border including character	R, G, B, I output				
	'		OUT output				
1	1 1 Border excluding character					Pordor evaluding character	R, G, B, I output
1		Border excluding character	OUT output				

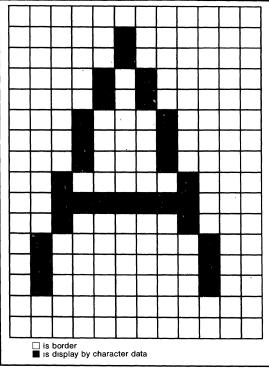


Fig. 40 Example of border

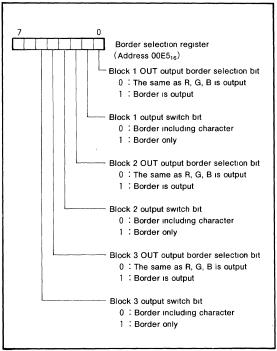


Fig. 41 Structure of border selection register

(10) CRT Output Pin Control

CRT output pins R, G, B, I, and OUT are respectively shared with port $P5_2$, $P5_3$, $P5_4$, $P5_5$, and $P5_6$. When the corresponding bits in the port P5 direction register are cleared to "0", the pins are set for CRT output; when the bits are set to "1", the pins function as port P5 (general- purpose output pins).

The polarities of CRT outputs (R, G, B, I, and OUT, as well as H_{SYNC} and V_{SYNC}) can be specified by using the CRT port control register (address $00EC_{16}$).

Use bits 0 to 4 in the CRT port control register to set the output polarities of H_{SYNC}, V_{SYNC}, R/G/B, I, and OUT. When these bits are cleared to "0", a positive polarity is selected;

when the bits are set to "1", a negative polarity is selected. Bits 5 to 7 in the CRT port control register, bit 0 in the CRT control register 2 (address 0208_{16}) and bit 7 in the character size register (address $00E4_{16}$) are used to specify pin by pin whether normal video signals or R-MUTE, G-MUTE, B-MUTE, I-MUTE, OUT-MUTE and signals are output from each pin (R, G, B, I, OUT). When set for R-MUTE, G-MUTE, and B-MUTE outputs, the whole background colors of the screen become red, green, and blue. When set for I-MUTE and OUT-MUTE output, the whole background of the screen become I and OUT signal.

Figure 42 shows the structure of the CRT port control register.

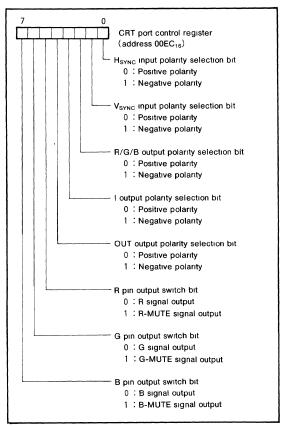


Fig. 42 Structure of CRT port control register

The CRT can be operated by clocks from three different sources that can be selected with bits 0 and 1 of the CRT clock selection register (address 0209_{16}).

	election register ss 0209 ₁₆)	CRT control register (address 00EA ₁₆)	CRT clock source	
Bit 1	Bit 0	Bit 6		
0	0 .	0 or 1 (Either one OK)	Connects the RC/LC pin to the OSC1 and OSC2 pins, and supplies the clock produced by an RC/LC oscillation circuit to the CRT	
0	1	0	Supplies the internal clock from OSC_{IN} and OSC_{OUT} (ceramic resonator) to the CRT. The oscillation frequency is limited, so the lateral size of display characters is also limited. In this case, the OSC1 and OSC2 pins can be used for AD input or port input	
1	0		Do not use this setting	
1	1	1	If a CRT-dedicated ceramic resonator and a feedback resistor are connected to the OSC1 and OSC2 pins, the clock generated by the resultant oscillation is supplied to the CRT (another ceramic resonator in addition to the one connected to the OSC _{IN} and OSC _{OUT} pins of the microcomputer is necessary)	

Fig. 43 CRT clock source and the vaules of CRT clock selection register and CRT control register

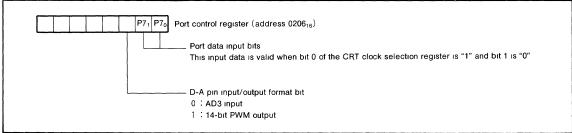


Fig. 44 Port control register

(11) Character background coloring

The backgroung part of a character (its 12×16 dot area) can be colored as specified by bits 4 and 5 of the color registers (addresses $00E6_{16}$ to $00E9_{16}$) and bits 2, 3, and 4 of the CRT control register 2 (address 0208_{16}).

Set "1" in bits 4 and 5 of the color register of the character whose background is to be colored, and specify the background color with bits 2, 3, and 4 of the CRT control register 2. This means that the color of the character is paired with the background color of that character, so that up to four color pairs can be used in each screen (eight background colors are possible).

The structure of the CRT control register 2 is shown in Figure 45.

Table 11. Coloring of character background by RGB output signals

CR	CRT control register 2					
Bit 4 (B)	Bit 3 (G)	Bit 2 (R)	Color			
0	0	0	Black			
0	0	1	Red			
0	1	0	Green			
0	1	1	Yellow			
11	0	0	Blue			
1	0	1	Magenta			
1	1	0	Cyan			
1	1	1	White			

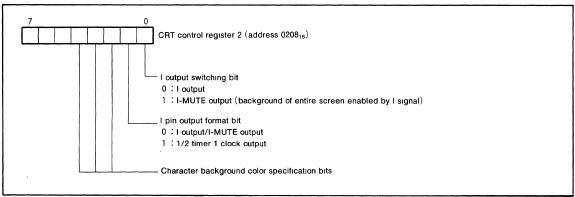


Fig. 45 Structure of CRT control register 2

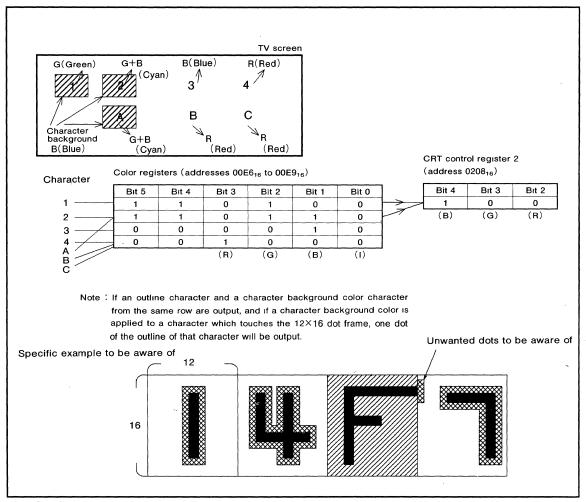


Fig. 46 Display example

(12) Scroll Function

① Scroll mode

The M37204M8-XXXSP allows the display area to be gradually expanded or shrunk in the vertically direction in units of 1H (H: H_{SYNC} signal). There are three modes for this scroll method. Each mode has DOWN and UP modes, providing a total of six modes.

Table 13 shows the contents of each scroll mode.

② Scroll speed

The scroll speed is determined by the vertical synchronization (V_{SYNC}) signal. For the NTSC interlace method, assuming that

V=16.7ms 262.5 H_{SYNC} signals per screen we obtain the scroll speed as shown in Table 14. Scroll resolution varies with each scroll mode. In mode 1 and mode 2, one of three resolutions (1H, 2H, 4H) can be selected. In mode 3, scroll is done in units of 4H alone.

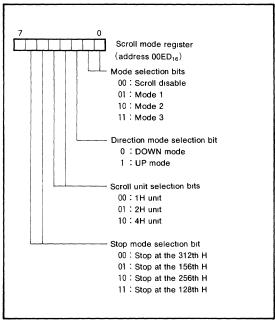


Fig. 47 Structure of scroll mode register

Table 12. Scroll operation in each mode and the values of scroll mode register

Mode			Scroll operation		Scroll mode register					
	Wide		Scroll operation	Bit 2	Bit 1	Bit 0				
1	DOWN	Appear from upper side	A B C D E F G H I J K L	0	0	1				
'	UP	Erase from lower side	M N O P Q R S T U V W X	1	0	1				
2	DOWN	Erase from upper side	ABCDEF GHIJKL	0	1	0				
_	UP	Appear from lower side	M N O P Q R S T U V W X	1	1	0				
3	DOWN	Erase from both upper and lower side	ABCDEF GHIJKL	0	1	1				
3	UP	Appear to both upper and lower side	M N O P Q R S T U V W X	1	1	1				

Table 13. Scroll speed

Scroll resolution	Scroll speed (in all picture)
1 H unit	16.7 (ms) $\times 262.5 \div 1 \div 4$ (s)
2 H unit	16.7 (ms) $\times 262.5 \div 2 = 2$ (s)
4 H unit	16.7 (ms) ×262.5÷ 4 ≒ 1 (s)

Table 14. Scroll mode and scroll resolution

Mode	Scroll resolution	Scroll speed .
Mode 1	1 H Unit	about 4 second
Mode 1	2 H Unit	about 2 second
Mode 2	4 H Unit	about 1 second
Mode 3	4 H Unit	about 1 second

INTERRUPT INTERVAL DETERMINATION FUNCTION

The M37204M8-XXXSP incorporates an interrupt interval determination circuit. This interrupt interval determination circuit has an 8-bit binary counter as shown in Figure 48. Using this counter, it determines a duration of time from the rising transition (falling transition) of an input signal pulse on the INT1 or INT2 to the rising transition (falling transition) of the signal pulse that is input next.

The following describes how the interrupt interval is determined.

- The interrupt input to be determined (INT1 input or INT2 input) is selected by using bit 2 in the interrupt interval determination control register (address 00D8₁₆). When this bit is cleared to "0", the INT1 input is selected; when the bit is set to "1", the INT2 input is selected.
- 2. When the INT1 input is to be determined, the polarity is selected by using bit 3 in the interrupt interval determination control register; when the INT2 input is to be determined, the polarity is selected by using bit 4 in the interrupt interval determination control register. When the relevant bit is cleared to "0", determination is made of the interval of a positive polarity (rising

- transition); when the bit is set to "1", determination is made of the interval of a negative polarity (falling transition).
- 3. The reference clock is selected by using bit 1 in the interrupt interval determination control register. When the bit is cleared to "0", a 64µs clock is selected; when the bit is set to "1", a 32µs clock is selected (based on an oscillation frequency of 4MHz in either case).
- Simultaneously when the input pulse of the specified polarity (rising or falling transition) occurs on the INT1 pin (or INT2 pin), the 8-bit binary counter starts counting up with the selected reference clock (64μs or 32 μs).
- 5. Simultaneously with the next input pulse, the value of the 8-bit binary counter is loaded into the determination register (address 00D7₁₆) and the counter is immediately reset (00₁₆). The reference clock is input in succession even after the counter is reset, and the counter restarts counting up from "00₁₆"
- 6. When count value "FE₁₆" is reached, the 8-bit binary counter stops counting. Then, simultaneously when the reference clock is input next, the counter sets value "FF₁₆" to the determination register.

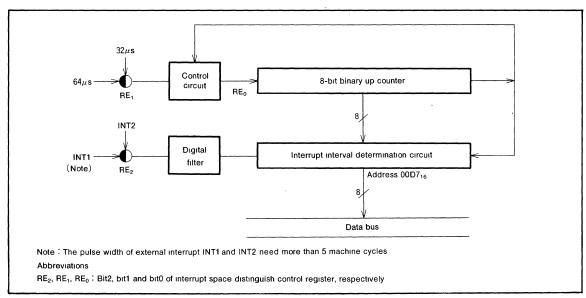


Fig. 48 Block diagram of interrupt interval determination circuit

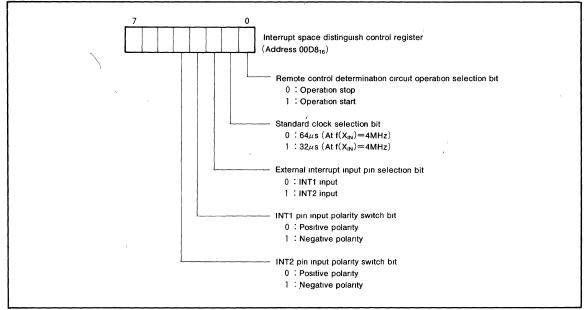


Fig. 49 Structure of interrupt space distinguish control register

RUNAWAY DETECTION FUNCTION

The M37204M8-XXXSP has a decode function for undefined instructions, to detect runaway.

If an opecode that is not defined in the instruction codes is input to the CPU, this function generates an undefined instruction decode signal from the CPU, the generation of this signal activates an internal reset, and the program restarts from the reset vector.

If the microcomputer is in single-chip mode and bit 4 of the CPU mode register is "0" $(CM_0 = CM_1 = CM_4 = 0)$, the ϕ output pin is switched to reset output to post the generation of the reset to the outside as well.

Note that this function cannot be disabled.

M37204M8-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

RESET CIRCUIT

The M37204M8-XXXSP is reset according to the sequence shown in Figure 50. It starts the program from the address formed by using the content of address FFFF₁₆ as the high order address and the content of the address FFFE₁₆ as the low order address, when the $\overline{\text{RESET}}$ pin is held at "L" level for no less than $2\mu s$ while the power voltage is $5V \pm 10\%$

and the crystal oscillator oscillation is stable and then returned to "H" level. The internal initializations following reset are shown in Figure 51.

An example of the reset circuit is shown in Figure 52. The reset input voltage must be kept below 0.6V until the supply voltage surpasses 4.5V.

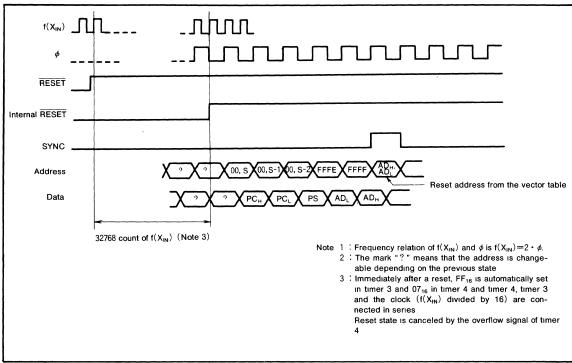


Fig. 50 Timing diagram at reset

M37204M8-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

(1)	Port P0 direction register	(0	0	С	1 16) •	\cdot	_		00	16			
(2)	Port P1 direction register	(0	0	С	3 16)…				00)16			_
(3)	Port P2 direction register	(0	0	С	5 16)…	·Ē			00	16	_		_
(4)	Port P3 direction register	(0	0	С	7 16)…		0	0	0	0	0	0	0
(5)	Port P4 direction register	(0	0	С	9 16) •	·Ē	_		00)16			
(6)	Port P5 direction register	(0	0	С	B 16)…	·Ē	0	0	0	0	0		Ī
(7)	Port P6 direction register	(0	0	С	D 16)	. [00	16			-
(8)	PWM output control register 1	(0	0	D	5 16)…				00)16			
(9)	PWM output control register 2	(0	0	D	6 16)…	·厂	Ň		0	0	0	0	1
(10)	Interrupt space distinguish register	(0	0	D	7 16)…	Ē			00)16	_		=
(11)	Interrupt space distinguish control register	(0	0	D	8 16)…	·F	_	_	00)16	_		-
(12)	Special mode register 1	(0	0	D.	A 16)··	. 🗀	_	_	00)16	_		=
(13)	Special mode register 2	(0	0	D	B 16)…	·F	_		00)16		_	=
(14)	Serial I/O1 mode register	(0	0	D	C 16)··		П	0	0	0	0	0	1
(15)	Serial I/O2 mode register				E 16)	-		0	0	0	0	0	-
(16)	Horizontal position register	(0	0	E	0 16)…			0	0	0	0	0	1
(17)	Color register 0				6 ₁₆) ·	-		0	0	0	0	0	1
(18)	Color register 1				7 16)	-	П	0	0	0	0	0	1
(19)	Color register 2				8 16)	1	П	0	0	0	0	0	1
(20)	Color register 3	(0	0	E	9 16) •	·广	П	0	0	0	0	0	1
(21)	CRT control register				A 16)··	-	<u></u>		00)16			-
22)	Display block counter				B ₁₆)·	-	[1			0	0	0	•
(23)	CRT port control register				C 16) ·	-			00)16			=
(24)	Scroll control register				D ₁₆)	-	0	0	0	=	0	0	•
(25)	A-D control register 1	(0	0	E	F 16)	ŀ	П	0		0	0	0	1
(26)	Timer 1	(0	0	F	0 16) •	·广			FF	16			-
(27)	Timer 2	(0	0	F	1 16).	·F	_	_	07	16	_	_	=
(28)	Timer 3	(0	0	F	2 16)…	·F	_	_	FF	16			=
(29)	Timer 4	(0	0	F	3 16)	<u>ا</u>			07	16	_		-
(30)	Timer 12 mode register	(0	0	F	4 16)				0	0	0	0	1
(31)	Timer 34 mode register	(0	0	F	5 ₁₆) ·	·Ē			0	0	0	0	1
(32)	CPU mode register	(0	0	F	B 16)	1	1	1	1	1	1	0	1
(33)	Interrupt request register 1	(0	0	F	C 16)	·广		0	0	0	0	0	1
(34)	Interrupt request register 2	(0	0	F	D ₁₆) -	·F	П		0	0	0	0	1
(35)	Interrupt control register 1	(0	0	F	E 16)··	·广	П	0	0	0	0	0	1
(36)	Interrupt control register 2	(0	0	F	F 16) ·	Ī	П		0	0	0	0	1
(37)	Port control register	(0	2	0	6 16)…		П			Г	0		Ť
(38)	Shift register input control register	(0	2	0	7 16).		П					0	1
(39)	CRT control register2				8 16)	T	П					0	-
(40)		r(0	2	0	9 16)		П				Ī	0	1
(41)	Processor status register				PS)	F	П	-		Г	1	Г	r
(42)	Program counter			(P	Сн).	F	Co	nte		of a	l lddr	ess	_
	P				C _L)	F	Co			of a	ddr	ess	
					-	_		-	FF	-61	6	_	-

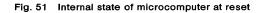
Supply voltage 0V

Reset input voltage 0V

0.6V

A.5V

Reset input voltage 0V


RESET

32

Vss

M37204M8-XXXSP

Fig. 52 Example of reset circuit

I/O PORTS

(1) Port P0

Port P0 is an 8-bit I/O port with CMOS output. As shown in the memory map (Figure 3), port P0 can be accessed at zero page memory address $00C0_{16}$. Port P0 has a direction register (address $00C1_{16}$) which can be used to program each individual bit as input ("0") or as output ("1"). If the pins are programmed as output, the output data is latched to the port register and then output. When data is read from the output port the output pin level is not read, only the latched data in the port register is read. This allows a previously output value to be read correctly even though the output voltage level is shifted up or down. Pins set as input are in the floating state and the signal levels can thus be read. When data is written into the

Depending on the contents of the processor mode bits (bit 0 and bit 1 at address 00FB₁₆), three different modes can be selected; single-chip mode, memory expansion mode and microprocessor mode.

input port, the data is latched only to the port latch and

the pin still remains in the floating state.

In these modes it functions as address (A_7-A_0) output port (excluding single-chip mode). For more details, see the processor mode information.

(2) Port P1

In single-chip mode, port P1 has the same function as port P0. In other modes, it functions as address $(A_{15}-A_8)$ output port.

Refer to the section on processor modes for details.

(3) Port P2

In single-chip mode, port P2 has the same function as port P0. In other modes, it functions as data (D_0-D_7) input/output port. Refer to the section on processor modes for details.

(4) Port P3

Port P3 is a 7-bit I/O port with function similar to port P0, but the output structure of P3₀, P3₁ is CMOS output and P3₂—P3₆ is N-channel open drain.

P3₂, P3₃ are in common with the external clock input pins of timer 2 and 3.

 $P3_4$, $P3_6$ are in common with the external interrupt input pins INT1, INT2 and $P3_2$, $P3_5$, $P3_6$ with the analog input pins of A-D converter A-D6, A-D1, A-D2.

In the microprocessor mode or the memory expansion mode, $P3_0$, $P3_1$ works as R/\overline{W} signal output pin and SYNC signal output pin respectively.

(5) Port P4

Port P4 is an 8-bit I/O port with function similar to port P0, but the output structure is N-channel open drain output.

All pins have program selectable dual functions. When a serial I/O1 function is selected, $P4_0-P4_3$ work as input/output pins of serial I/O1. When a serial I/O2 function is selected, $P4_4-P4_7$ work as input/output pins of serial I/O2.

In the special serial I/O mode, P44, P45 work as SDA, SCL pins. P46, P47 are in common with PWM9 and 8 output pins.

(6) OSC1, OSC2 pins

Clock input/output pins for CRT display function. OSC1, OSC2 are in common with the analog input pins of A-D converter A-D4, A-D5.

OSC1, OSC2 are in common with the input port $P7_0$, $P7_1$.

(7) H_{SYNC}, V_{SYNC} pins

 $H_{\mbox{\scriptsize SYNC}}$ is a horizontal synchronizing signal input pin for CRT display

 V_{SYNC} is a vertical synchronizing signal input pin for CRT display.

(8) R, G, B, I, OUT pins

This is a 5-bit output pin for CRT display and in common with $P5_2-P5_6$.

(9) Port P6

Port P6 is an 8-bit I/O port with function similar to port P0, but the output structure is N-channel open drain output.

This port is in common with 8-bit PWM output pin PWM0—PWM7.

(10) D-A pin

This is a 14-bit PWM output pin.

(11) ϕ pin

The internal system clock (1/2 the frequency of the oscillator connected between the $X_{\rm IN}$ and $X_{\rm OUT}$ pins) is output from this pin. If an STP or WIT instruction is executed, output stops after going "H".

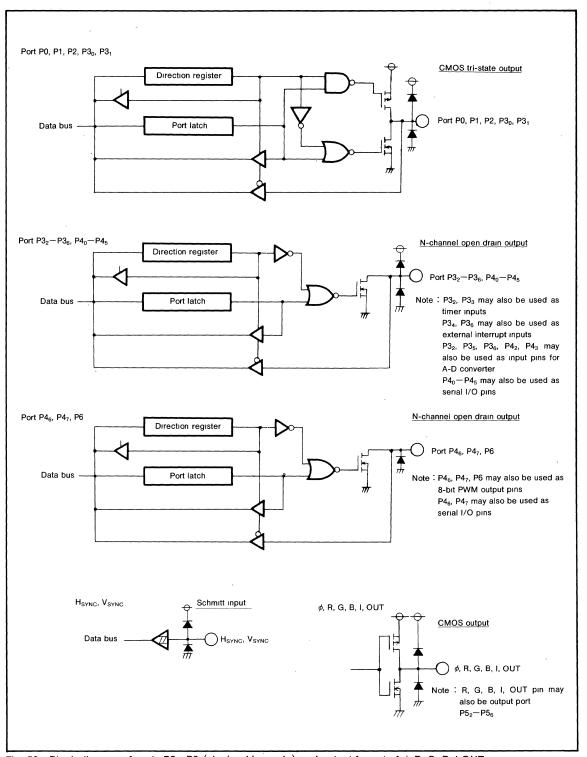


Fig. 53 Block diagram of ports P0-P6 (single-chip mode) and output format of ϕ , R, G, B, I OUT

PROCESSOR MODE

By changing the contents of the processor mode bits (bit 0 and 1 at address 00FB₁₆), three different operation modes can be selected; single-chip mode, memory expansion mode, and microprocessor mode.

In the memory expansion mode and the microprocessor mode, ports P0-P3 can be used as address, and data input/output pins.

Figure 55 shows the functions of ports P0-P3.

The memory map for the single-chip mode is shown in Figure 2 and for other modes, in Figure 54.

By connecting CNV $_{\rm SS}$ to V $_{\rm SS}$, all three modes can be selected through software by changing the processor mode bits. Connecting CNV $_{\rm SS}$ to V $_{\rm CC}$ automatically forces the M37204M8-XXXSP into memory expansion mode.

The three different modes are explained as follows:

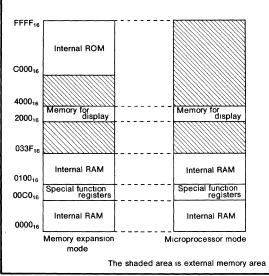


Fig. 54 External memory area at each processor mode

(1) Single-chip mode [00]

The microcomputer will automatically be in the single-chip mode when started from reset, if CNV_{SS} is connected to V_{SS}. Ports P0—P3 will work as I/O ports.

(2) Memory expansion mode (01)

The microcomputer will be placed in the memory expansion mode after connecting CNV_{SS} to V_{CC} and initiating a reset or connecting CNV_{SS} to V_{SS} and the processor mode bits are set to "01". This mode is used to add external memory when the internal memory is not sufficient.

In this mode, port P0 and port P1 are as a system address bus and its I/O port function is lost.

Port P2 becomes the data bus of $D_7 - D_0$ (including instruction code) and loses its I/O port function. Port P3₀ and P3₁ works as R/\overline{W} and ϕ .

(3) Microprocessor mode [10]

When $\mathsf{CNV}_{\mathsf{SS}}$ is connected to V_{SS} and the processor mode bits are set to "10", the microcomputer will automatically default to microprocessor mode. In this mode, the internal ROM is inhibited so the external memory is required. Other functions are same as the memory expansion mode. The relationship between the input level of $\mathsf{CNV}_{\mathsf{SS}}$ and the processor mode is shown in Table 14.

Note: Use the M37204M8-XXXSP in the microprocessor mode or the memory expansion mode only at program development.

The standards is assured only in the single-chip mode.

M37204M8-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

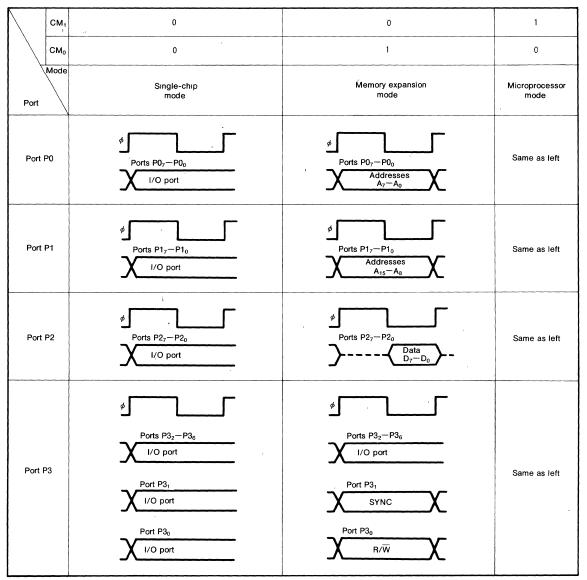


Fig. 55 Processor mode and function of ports P0-P3 (CM₁, CM₀: Bit 1 and bit 0 of CPU mode register)

Table 15. Relationship between CNV_{SS} pin input level and processor mode

CNV _{SS}	Mode	Explanation
V _{ss}	Memory expansion mode	The single-chip mode is set by the reset All modes can be selected by changing the processor mode bit with the program
	Microprocessor mode	
V _{cc}	 Memory expansion mode 	The memory expansion mode is set by the reset

M37204M8-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

CLOCK GENERATING CIRCUIT

The built-in clock generating circuits are shown in Figure 58

When an STP instruction is executed, the internal clock ϕ stops oscillating at "H" level. At the same time, timer 3 and timer 4 are connected automatically and FF₁₆ is set in the timer 3, 07₁₆ is set in the timer 4, and timer 3 count source is forced to $f(X_{IN})$ divided by 16. This connection is cleared when an external interrupt is accepted or the reset is in, as discussed in the timer section.

The oscillator is restarted when an interrupt is accepted. However, the clock ϕ keeps its "H" level until timer 4 over-flows.

This is because the oscillator needs a set-up period if a ceramic or a quartz crystal oscillator is used.

When the WIT instruction is executed, the clock ϕ stops in the "H" level but the oscillator continues running. This wait state is cleared when an interrupt is accepted. Since the oscillation does not stop, the next instructions are executed at once.

To return from the stop or the wait status, the interrupt enable bit must be set to "1" before executing STP or WIT instruction

The circuit example using a ceramic oscillator (or a quartz crystal oscillator) is shown in Figure 56.

The constant capacitance will differ depending on which oscillator is used, and should be set to the manufactures suggested value.

The example of external clock usage is shown in Figure 57 X_{IN} is the input, and X_{OUT} is open.

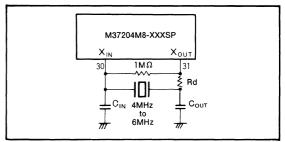
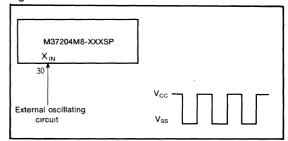



Fig. 56 External ceramic resonator circuit

ig. 57 External clock input circuit

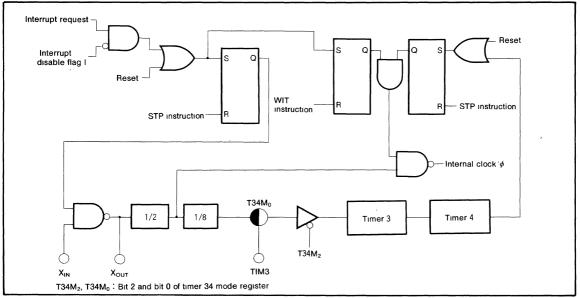


Fig. 58 Block diagram of clock generating circuit

DISPLAY OSCILLATION CIRCUIT

The CRT display clock oscillation circuit has built-in RC oscillation circuits, so that a clock can be obtained simply by connecting an RC circuit between the OSC1 and OSC2 pins.

An internal clock can also be used as the CRT display clock, in which case the OSC1 and OSC2 pins can be used as $P7_0$, $P7_1$, AD4, and AD5 input pins.

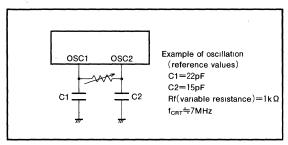


Fig. 59 Display oscillation circuit

AUTO CLAER CIRCUIT

When power is supplied, the auto-clear function can be performed by connecting the following circuit to reset pin.

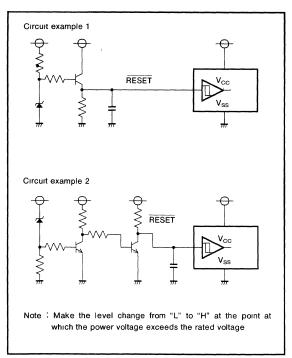


Fig. 60 Auto clear circuit example

PROGRAMMING NOTES

- (1) The frequency ratio of the timer is 1/(n+1).
- (2) Even though the BBC and BBS instructions are executed after the interrupt request bits are modified (by the program), those instruction are only valid for the contents before the modification. Also, at least one instruction cycle must be used (such as an NOP) between the modification of the interrupt request bits and the execution of the BBC and BBS instructions.
- (3) After the ADC and SBC instructions are executed (in decimal mode), one instruction cycle (such as an NOP) is needed before the SEC, CLC, or CLD instructions are executed.
- (4) An NOP instruction must be used after the execution of a PLP instruction.
- (5) In order to avoid noise and latch-up, connect a bypass capacitor ($\approx 0.1 \mu F$) directly between the V_{CC} pin and V_{SS} pin using a heavy wire.

DATA REQUIRED FOR MASK ORDERING

Please send the following data for mask orders

- (1) mask ROM order confirmation form
- (2) mark specification form
- (3) ROM data ····· EPROM 3 sets

MITSUBISHI MICROCOMPUTERS **M37204M8-XXXSP**

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
V _{cc}	Supply voltage		-0.3 to 6	V
V _I	Input voltage CNV _{SS}	7	-0.3 to 6	V
	Input voltage P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ -P3 ₆ ,	With respect to V _{SS}		
V _i	P4 ₀ P4 ₇ , P6 ₀ P6 ₇ , P7 ₀ -P7 ₇ ,A-D1A-D8	Output transistors are at "off" state	-0.3 to $V_{CC}+0.3$	V
	H _{SYNC} , V _{SYNC} , RESET, X _{IN} , OSC1			
	Output voltage P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ ,			
Vo	P3 ₀ -P3 ₆ , P4 ₀ -P4 ₅ , R, G, B, I, OUT,		-0.3 to $V_{CC}+0.3$	V
	D-A, X _{OUT} , OSC2			
Vo	Output voltage P4 ₆ , P4 ₇ , P6 ₀ -P6 ₇		-0.3 to 13	V
	Circuit current R, G, B, I, OUT, P00-P07,			
Іон	P1 ₀ —P1 ₇ , P2 ₀ —P2 ₃ ,		0 to 1(Note 1)	mA
	P3 ₀ , P3 ₁ , D-A			
	Circuit current R, G, B, I, OUT, P00-P07,			
l _{OL1}	P1 ₀ -P1 ₇ , P2 ₀ -P2 ₃ ,		0 to 2(Note 2)	mA
	P3 ₀ -P3 ₆ , P4 ₀ -P4 ₃ , D-A			
I _{OL2}	Circuit current P60-P67, P46, P47		0 to 1(Note 2)	mA
I _{OL3}	Circuit current P2 ₄ —P2 ₇		0 to 10(Note 3)	mA
I _{OL4}	Circuit current P44, P45		0 to 3(Note 3)	mA
Pd	Power dissipation	T _a =25℃	550	mW
Topr	Operating temperature		-10 to 70	°C
Tstg	Storage temperature		-40 to 125	°C

Note 1: The total current that flows out of the IC should be 20mA (max)

2 : The total of I_{OL1} , I_{OL2} and I_{OL4} should be 30mA (max)

3: The total of IoL of port P24-P27 should be 20mA (max)

RECOMMENDED OPERATING CONDITIONS (V_{CC}=5V±10%, T_a=-10 to 70°C unless otherwise noted)

			Unit		
Symbol	Parameter	Mın	Тур.	Max	Unit
V _{cc}	Supply voltage(Note 4) During the CPU and CRT operation	4.5	5.0	5.5	٧
V _{SS}	Supply voltage	0	0	0	٧
	"H" input voltage P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ ,				
	P3 ₀ -P3 ₆ , P4 ₀ -P4 ₃ , P4 ₆ ,P4 ₇ ,	0.8V _{CC}		Voc	V
V _{IH}	P60-P67, P70, P71, HSYNC, VSYNC,	0. 0 V CC		VGC	•
	RESET, XIN, OSC1				
ViH	"H" input voltage P44, P45	0.7V _{cc}		V _{CC}	V
.,	"L" input voltage P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ ,	0		0. 4V _{CC}	V
VIL	P3 ₀ , P3 ₁ , P3 ₅ , P4 ₀ , P4 ₃ —P4 ₅ , P4 ₇ , P7 ₀ , P7 ₁	0		0.4000	
.,	"L" input voltage P32-P34, P36, P41, P42, P44-P46,	0		0. 2V _{GG}	V
V _{IL}	H _{SYNC} , V _{SYNC} , RESET, X _{IN} , OSC1			0.2000	
	"H" average output current (Note 1) R,G,B,I,OUT,P00-P07,			1	mA
Іон	P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ , P3 ₁ ,D-A				
	"L" average output current (Note 2) R,G,B,I,OUT,P00-P07,				
I _{OL1}	P1 ₀ -P1 ₇ , P2 ₀ -P2 ₃ , P3 ₀ -P3 ₆ , P4 ₀ -P4 ₃ ,	1		2	mA
	D-A				
I _{OL2}	"L" average output current (Note 2) P60-P67, P46, P47			1	mA
I _{OL3}	"L" average output current (Note 3) P2 ₄ -P2 ₇			10	mA
I _{OL4}	"L" average output current (Note 2) P44, P45			3	mA
f _{CPU}	Oscillating frequency (for CPU operation) (Note 5)	3.6	4.0	6. 0	MHz
f _{CRT}	Oscillating frequency (for CRT display)	6.0	7.0	8. 0	MHz
fhs	Input frequency P32-P34, P36, P45			100	kHz
fhs	Input frequency P4 ₁			11	MHz

Note $\,\,$ 1 : The total current that flows out of the IC should be 20mA (max)

2 : The total of l_{OL1}, l_{OL2} and l_{OL4} should be 30mA (max.)

3 : The total of l_{OL} of port P2₄-P2₇ should be 20mA (max.)

4 : Apply 0.022µF or greater capacitance externally between the V_{CC}-V_{SS} power supply pins so as to reduce power source noise

Also apply 0. 068μ F or greater capacitance externally between the V_{CC} -CNV_{SS} pins

5 : Use the crystal oscillator or ceramic resonator for CPU oscillation circuit

MITSUBISHI MICROCOMPUTERS M37204M8-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

ELECTRIC CHARACTERISTICS ($V_{cc}=5V\pm10\%$, $V_{ss}=0V$, $T_a=-10$ to 70%, $f(X_{IN})=4MHz$ unless other wise noted)

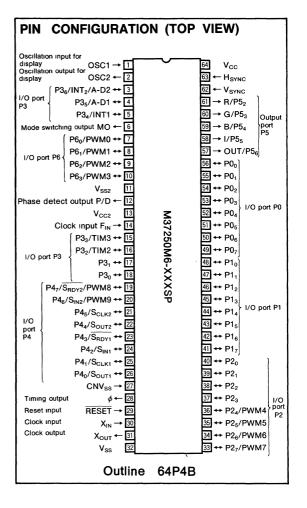
Symbol	Parameter	Test conditions		Unit			
Зупьы	raiametei	Test conditions	Mın	Тур	Max	Unit	
		V_{CC} =5.5V, $f(X_{IN})$ =4MHz CRT OFF		10	20		
I _{cc}	Supply current	V_{CC} =5.5V, $f(X_{IN})$ =4MHz CRT ON		20	50	mA	
		At stop mode			300	μА	
V _{OH}	"H" output voltage P0 ₀ —P0 ₇ , P1 ₀ —P1 ₇ , P2 ₀ —P2 ₇ , P3 ₀ , P3 ₁ , R, G, B, I, OUT, D-A	V_{CC} =4.5V I_{OH} =-0.5mA	2.4			V	
	"L" output voltage P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₃ , P3 ₀ -P3 ₆ , P4 ₀ -P4 ₃ , R, G, B, I, OUT, D-A	V _{CC} =4.5V I _{OL} =0.5mA			0.4		
V _{OL}	"L" output voltage P6 ₀ —P6 ₇ , P4 ₆ , P4 ₇	V _{CC} =4.5V I _{OL} =0.5mA	0.4		0.4	v	
	"L" output voltage P2 ₄ —P2 ₇	V _{CC} =4.5V I _{OL} =10.0mA			3.0		
	"L" output voltage P4 ₄ , P4 ₅	V _{CC} =4.5V I _{OL} =3.0mA			0.4		
	Hysteresis RESET	V _{CC} =5.0V		0.5	0.7		
$V_{T+}-V_{T-}$	Hysteresis (Note 1) H _{SYNC} , V _{SYNC} , P3 ₂ -P3 ₄ , P3 ₆ , P4 ₀ -P4 ₂ , P4 ₄ -P4 ₆	V _{CC} =5.0V		0.5	1.3	V	
	"H" input leak current RESET, P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ -P3 ₆ , P4 ₀ -P4 ₅ , AD1-AD8	V _{cc} =5.5V V _o =5.5V			5	μA	
lozh	"H" input leak current P60-P67, P46, P47	V _{cc} =5.5V V _o =12V			10		
l _{ozL}	"L" input leak current RESET, P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ -P3 ₆ , P4 ₀ -P4 ₇ , P6 ₀ -P6 ₇ , AD1-AD8	V _{cc} =5.5V V _o =0V			5	μА	

Note 1. P3₂-P3₄, P3₆ have the hysteresis when these pins are used as interrupt input pins or timer input pins P4₀-P4₂, P4₄-P4₆ have the hysteresis when these pins are used as serial I/O ports.

MITSUBISHI MICROCOMPUTERS

M37250M6-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for FREQUENCY SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER


DESCRIPTION

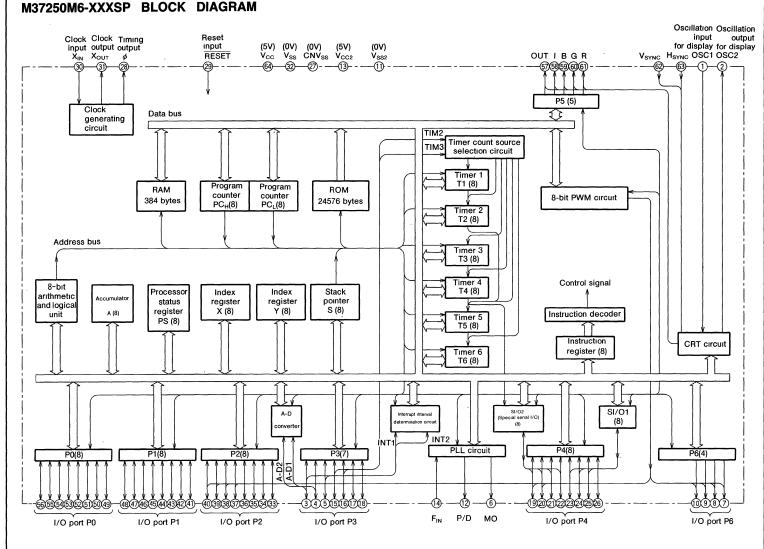
The M37250M6-XXXSP is a single-chip microcomputer designed with CMOS silicon gate technology. It is housed in a 64-pin shrink plastic molded DIP. This single-chip microcomputer is useful for the high-tech channel selection system for TVs and VCRs.

In addition to their simple instruction sets, the ROM, RAM, and I/O addresses are placed on the same memory map to enable easy programming.

FEATURES

	EATURES
•	Number of basic instructions 69
•	Memory size ROM ······24576 bytes
	RAM······ 384 bytes
•	Instruction execution time
	$\cdots 1\mu$ s (minimum instructions at 4MHz frequency)
•	Single power supply5V±10%
•	Power dissipation
	Normal operation mode (at 4MHz frequency)
	···· 137.5mW (V _{CC} =5.5V, CRT display, PLL operating)
•	Subroutine nesting 96 levels (Max.)
•	Interrupt 15types, 15vectors
•	8-bit timer ····· 6
•	Programmable I/O ports
	(Ports P0, P1, P2, P3, P4, P6) 43
•	Output port (Port P5)5
•	PLL function
	Programmable divider ····· 14-bit
	Swallow counter5-bit
•	Serial I/O (8-bit)2
•	Special serial I/O for master transfer*1
•	PWM function ·····8-bit×10
•	A-D converter (4-bit resolution) 2 channels
•	72-character on screen display function
	Number of character 24 characters 3 lines
	Kinds of character126

APPLICATION


TV, VCR

^{* :} Purchase of Mitsubishi Electric Corporation's I²C components converys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER ₩ith ON-SCREEN for FREQUENCY DISPLAY SYNTHESIZER

MITSUBISHI MICROCOMPUTERS

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for FREQUENCY SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

FUNCTIONS OF M37250M6-XXXSP

,	Parameter		Functions				
Number of basic instructions			69				
Instruction execution time			1μs (minimum instructions, at 4MHz frequency)				
Clock frequency			4MHz				
Mamaniana	ROM		24576 bytes				
Memory size	RAM		384 bytes				
	P0, P1	1/0	8-bit×2 (CMOS output)				
	P2	1/0	8-bit×1 (CMOS output, can be used as PWM output pins)				
	P3 ₀ , P3 ₁	1/0	2-bit×1 (CMOS output)				
	P3 ₂ to P3 ₆	1/0	5-bitX1 (CMOS output, can be used as timer input pins, INT1, INT2 input pins and A-D input pins)				
Input/Output ports	P4	1/0	8-bitX1 (CMOS output, can be used as serial I/O function pins and PWM output pins)				
	P5	Output	5-bt.X1 (N-channel open drain output, can be used as R, G, B, I, OUT pins)				
	P6	1/0	4-bit×1 (N-channel open drain output, can be used as PWM output pins)				
Serial I/O	,		8-bit×2 (Special serial I/O (8-bit)×1)				
Timers			8-bit timer×6				
PLL function		1000	Fixed dividing mode and swallow mode can be selected				
Subroutine nesting			96 levels (max)				
			Three external interrupts, ten internal interrupts,				
Interrupt			one software interrupt				
Clock generating circuit	The second secon		One built-in circuits (externally connected quartz crystal oscillator)				
Supply voltage			5V±10%				
	at CRT display ON and Pl	LL operating	137.5mW (clock frequency X _{IN} =4MHz, V _{CC} =5.5V, Typ)				
Danier disease to a	at CRT display OFF and F	PLL stopped	55mW (clock frequency X _{IN} =4MHz, V _{CC} =5.5V, Typ)				
Power dissipation	at wait mode		4mW (V _{CC} =5V, Max)				
	at stop mode		0.05mW (V _{CC} =5V, Max)				
I	Input/Output voltage		12V (Port P4 ₆ , P4 ₇ , P6 ₀ to P6 ₃)				
Input/Output characteristics	Output current		10mA (Port P2 ₄ to P2 ₇)				
Operating temperature range			—10 to 70℃				
Device structure			CMOS silicon gate process				
Package		-	64-pin shrink plastic molded DIP				
CDT display function	Number of character		24 characters×3 lines (maximum 16 lines by software)				
CRT display function	Kinds of character		126 (12×16 dots)				

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for FREQUENCY SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

PIN DESCRIPTION

Pin	Name	Input/ Output	Functions
V _{CC} , V _{CC2} , V _{SS} , V _{SS2}	Supply voltage		Power supply inputs 5V \pm 10% to V _{CC} and V _{CC2} , and 0V to V _{SS} and V _{SS2}
CNV _{ss}	CNV _{SS}		This is connected to V _{SS}
RESET	Reset input	Input	To enter the reset state, the reset input pin must be kept at a "L" for more than $2\mu s$ (under normal V_{CO} conditions) If more time is needed for the crystal oscillator to stabilize, this "L" condition should be maintained for the required time
XIN	Clock input	Input	This chip has an internal clock generating circuit. To control generating frequency, an external quartz crys-
X _{OUT}	Clock output	Output	tal oscillator is connected between the X_{IN} and X_{OUT} pins If an external clock is used, the clock source should be connected the X_{IN} pin and the X_{OUT} pin should be left open
φ	Timing output	Output	This is the timing output pin
P0 ₀ to P0 ₇	I/O port P0	1/0	Port P0 is an 8-bit I/O port with directional registers allowing each I/O bit to be individually programmed as input or output. At reset, this port is set to input mode. The output structure is CMOS output.
P1 ₀ to P1 ₇	I/O port P1	1/0	Port P1 is an 8-bit I/O port and has basically the same functions as port P0
P2 ₀ to P2 ₇	I/O port P2	1/0	Port P2 is an 8-bit I/O port and has basically the same functions as port P0 P2 ₄ to P2 ₇ are in common with PWM output port of PWM4 to PWM7
P3 ₀ to P3 ₆	I/O port P3	I/O	Port P3 is an 7-bit I/O port and has basically the same functions as port P0, but the output structure of P3 ₀ , P3 ₁ is CMOS output and the output structure of P3 ₂ to P3 ₆ is N-channel open drain P3 ₂ , P3 ₃ are in common with external clock input pins of timer 1, 2 and 3 P3 ₄ , P3 ₆ are in common with external interrupt input pins INT1 and INT2. P3 ₅ , P3 ₆ are in common with analog input pins of A-D converter (A-D1, A-D2)
P4 ₀ to P4 ₇	I/O port P4	I/O ,	Port P4 is an 8-bit I/O port and has basically the same functions as port P0, but the output structure is N-channel open drain When serial I/O1 is used,P4 ₀ , P4 ₁ , P4 ₂ and P4 ₃ work as S_{OUT1} , S_{CLK1} , S_{IN1} and $\overline{S_{RDY1}}$ pins, respectively When serial I/O2 is used, P4 ₄ , P4 ₅ , P4 ₆ and P4 ₇ work as S_{OUT2} , S_{CLK2} , S_{IN2} and $\overline{S_{RDY2}}$ pins, respectively Also P4 ₆ , P4 ₇ are in common with PWM output pins of PWM 8 and 9
OSC1,	Clock input for CRT display	Input	This is the I/O pins of the clock generating circuit for the CRT display function
OSC2	Clock output for CRT display	Output	·
H _{SÝNC}	H _{SYNC} Input	Input	This is the horizontal synchronizing signal input for CRT display
V _{SYNC}	V _{SYNC} input	Input	This is the vertical synchronizing signal input for CRT display
R, G, B, I, OUT	CRT output	Output	This is an 5-bit output pin for CRT display. The output structure is CMOS output. This is in common with port $P5_2$ to $P5_6$
P6 ₀ to P6 ₃	I/O port P6	1/0	Port P6 is an 4-bit I/O port and has basically the same functions as port P0, but the output structure in N-channel open drain. This port is in common with PWM output pins PWM0 to PWM3.
МО	Mode switching output	Output	This pin outputs the mode switching signal of prescaler When fixed dividing mode is selected, this pin can be used as 1-bit output port
P/D	Phase detect output	Output	The phase detector output level is set to "H" when the phase is leading the reference frequency, set to "L when lagging, and set to the floating state when in-phase
F _{IN}	Clock input	Input	This pin inputs clock from the prescaler

FUNCTIONAL DESCRIPTION Central Processing Unit (CPU)

The M37250 microcomputers use the standard MELPS 740 instruction set. For details of instructions, refer to the MELPS 740 CPU core basic functions, or the MELPS 740 Software Manual.

Machine-resident instructions are as follows:

The FST and SLW instructions are not provided.

The MUL and DIV instructions are not provided.

The WIT instruction can be used.

The STP instruction can be used.

CPU Mode Register

The CPU mode register is allocated to address 00FB₁₆. Bits 0 and 1 of this register are processor mode bits. This register also has a stack page selection bit.

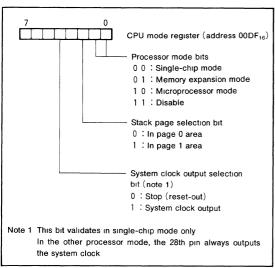


Fig. 1 Structure of CPU mode register

MEMORY

• Special Function Register (SFR) Area

The special function register (SFR) area contains the registers relating to functions such as I/O ports and timers.

• RAM

RAM is used for data storage as well as a stack area

• ROM

ROM is used for storing user programs as well as the interrupt vector area.

• Interrupt Vector Area

The interrupt vector area is for storing jump destination addresses used at reset or when an interrupt is generated.

Zero Page

Zero page addressing mode is useful because it enables access to this area with fewer instruction cycles.

Special Page

Special page addressing mode is useful because it enables access to this area with fewer instruction cycles.



Fig. 2 Memory map

Port P0 Port P0 Port P1 Port P2 Port P2 Port P2 Port P3 Port P3 Port P3 Port P4 Port P4 Port P4 Port P4 Port P5 Port P6 Port		
Port P1 Port P1 Port P2 Port P3 Port P3 Port P4 Port P5 Port	00C0 ₁₆	Port P0
Port P1 direction register	00C1 ₁₆	Port P0 direction register
00C416 Port P2 00C516 Port P2 direction register 00C716 Port P3 direction register 00C816 Port P4 00C816 Port P5 00CA16 Port P5 00CD16 Port P6 direction register 00CD16 Port P6 direction register 00CD16 Port P6 direction register 00CF16 PWM 0 register 00D116 PWM 1 register 00D216 PWM 2 register 00D416 PWM 3 register 00D416 PWM 3 register 00D416 PWM 4 register 00D416 PWM 3 register 00D416 PWM 4 register 00D416 PWM output control register 1 00D416 PWM output control register 2 00D416 PWM output control register 1 00D416 Special serial I/O register 00D416 Special mode register 2 00D416 Special mode register 2 00D416 Special mode register 1 00D416 Special mode register 2 00D416 <t< td=""><td>00C2₁₆</td><td>Port P1</td></t<>	00C2 ₁₆	Port P1
Port P2 direction register	00C3 ₁₆	Port P1 direction register
Port P3 Port P3 Port P3 Port P4 Port P4 Port P5 Port	00C4 ₁₆	Port P2
Port P3 direction register	00C5 ₁₆	Port P2 direction register
Port P4 Port P4 Port P5 Port P5 Port P5 Port P5 Port P6 Port	00C6 ₁₆	Port P3
Port P4 Port P4 Port P5 Port P5 Port P5 Port P5 Port P6 Port	00C7 ₁₆	Port P3 direction register
Port P5	00C8 ₁₆	
Port P5	00C9 ₁₆	Port P4 direction register
Port P5 direction register		
Port P6 Port		Port P5 direction register
Port P6 direction register	00CC ₁₆	
OOCE-16 OOCE		Port P6 direction register
DODO		
DODO	00CF ₁₆	
DOD16		PWM 0 register
DOD216		
DOD316		
ODD416		
DOD5-16		
ODD616 ODD716 ODD717 ODD717 ODD717 ODD717 ODD717 ODD717 ODD717 ODD718 OD		
Interrupt interval determination register		
Interrupt interval determination control register		
ODD916		
ODDA16		
ODDB16		
ODDC16		
ODDD16		
ODE16		
ODDF16		
Monzontal position register		
00E1 ₁₆ 00E2 ₁₆ 00E3 ₁₆ 00E3 ₁₆ 00E3 ₁₆ 00E4 ₁₆ 00E4 ₁₆ 00E4 ₁₆ 00E6 ₁₆ 00E6 ₁₆ 00E7 ₁₆ 00E9 ₁₆ 00EA ₁₆ 00EA ₁₆ 00EA ₁₆ 00EA ₁₆ 00EA ₁₆ 00EA ₁₆ 00EA ₁₆ 00EB ₁₆ 00ED ₁₆ 00ED ₁₆ 00ED ₁₆		
00E2 ₁₆ Vertical display start position register 2 00E3 ₁₈ Vertical display start position register 3 00E4 ₁₈ Character size register 00E5 ₁₆ Color register 0 00E7 ₁₈ Color register 1 00E8 ₁₆ Color register 2 00E9 ₁₆ Color register 3 00EA ₁₆ CRT control register 00E0 ₁₆ CRT control register 00E0 ₁₆ CRT port control register 00E0 ₁₆ CRT port control register		
00E316 Vertical display start position register 3 00E416 Character size register 00E516 Border selection register 00E716 Color register 0 00E816 Color register 1 00E816 Color register 2 00E416 Color register 3 00E416 CRT control register 00E016 Display block counter 00E016 CRT port control register 00E016 CRT port control register		
00E4 ₁₆ Character size register 00E5 ₁₆ Border selection register 00E6 ₁₆ Color register 0 00E7 ₁₆ Color register 1 00E8 ₁₆ Color register 2 00E9 ₁₆ Color register 3 00EA ₁₆ CRT control register 00EC ₁₆ CRT port control register 00ED ₁₆ CRT port control register 00EE ₁₆ 00EE ₁₆		
00E516 Border selection register 00E616 Color register 0 00E716 Color register 1 00E816 Color register 2 00E916 Color register 3 00EA16 CRT control register 00E616 Display block counter 00E016 CRT port control register 00ED16 00EE16		
00E6 ₁₆ Color register 0 00E7 ₁₆ Color register 1 00E8 ₁₆ Color register 2 00E9 ₁₆ Color register 3 00EA ₁₆ CRT control register 00EB ₁₆ Display block counter 00EC ₁₆ CRT port control register 00ED ₁₆ 00EE ₁₆		
00E7 ₁₆ 00E8 ₁₆ 00E9 ₁₆ 00E9 ₁₆ 00EA ₁₆ 00EB ₁₆ 00ED ₁₆ 00ED ₁₆ 00EE ₁₆		
00E8 ₁₆ Color register 2 00E9 ₁₈ Color register 3 00EA ₁₆ CRT control register 00EB ₁₆ Display block counter 00ED ₁₆ CRT port control register 00EE ₁₆ 00EE ₁₆		
00E916 Color register 3 00EA16 CRT control register 00EB16 Display block counter 00EC16 CRT port control register 00ED16 00EE16		
00EA ₁₆ CRT control register 00EB ₁₆ Display block counter 00EC ₁₆ CRT port control register 00ED ₁₆ 00EE ₁₆		
00EB ₁₆ Display block counter 00EC ₁₆ CRT port control register 00ED ₁₆ 00EE ₁₆		
00EC ₁₆ CRT port control register 00ED ₁₆ 00EE ₁₆		
00ED ₁₆ 00EE ₁₆		
00EE ₁₆		Offi port control register
OUEF 16 A-D COULTOI register		A D control requetor
	00EF ₁₆	V-D control tedister

00F016 Timer 1 00F116 Timer 2 00F216 Timer 3 00F316 Timer 4 00F516 Timer 4 00F516 PWM 5 register 00F716 PWM 6 register 00F816 PWM 7 register 00F816 PWM 9 register 00F816 Interrupt request register 1 00FE16 Interrupt request register 1 00FE16 Interrupt control register 1 00FE16 Interrupt control register 2 00F616 RAM 192 bytes 01EF16 00TE16 RAM 192 bytes 01FF16 020016 PLL control register 020116 PCL register 020216 PCL register		
00F2 ₁₆ Timer 3 00F3 ₁₆ Timer 4 00F4 ₁₆ Timer 4 00F5 ₁₆ Timer mode register 2 00F6 ₁₆ PWM 5 register 00F8 ₁₆ PWM 6 register 00F8 ₁₆ PWM 7 register 00F8 ₁₆ PWM 9 register 00F0 ₁₆ CPU mode register 00FD ₁₆ Interrupt request register 1 00FC ₁₆ Interrupt request register 2 00FE ₁₆ Interrupt control register 1 00FF ₁₆ Interrupt control register 2 0100 ₁₆ RAM 192 bytes 01EF ₁₆ Not used 01FF ₁₆ PLL control register 0200 ₁₆ PCH register 0201 ₁₆ PCH register	00F0 ₁₆	Timer 1
00F346 Timer 4 00F46 Timer mode register 1 00F546 Timer mode register 2 00F646 PWM 5 register 00F746 PWM 6 register 00F846 PWM 7 register 00F846 PWM 9 register 00FB46 PWM 9 register 00FB46 Interrupt request register 1 00FB46 Interrupt request register 1 00FB46 Interrupt request register 2 00FB46 Interrupt control register 2 00FB46 Interrupt control register 2 00FB46 RAM 192 bytes Not used 01FF46 Not used 020046 PLL control register 02016 PCH register 02016 PCH register	00F1 ₁₆	Timer 2
00F416 Timer mode register 1 00F516 Timer mode register 2 00F616 PWM 5 register 00F716 PWM 6 register 00F816 PWM 7 register 00F816 PWM 8 register 00FB16 CPU mode register 00FB16 Interrupt request register 1 00FB16 Interrupt request register 1 00FB16 Interrupt control register 2 00FB16 Interrupt control register 2 00FB16 RAM 01B716 RAM 01B716 Not used 01FF16 Not used 01FF16 PLL control register 020016 PCH register 020116 PCH register 020126 PCL register	00F2 ₁₆	Timer 3
00F516 Timer mode register 2 00F616 PWM 5 register 00F716 PWM 6 register 00F816 PWM 7 register 00F916 PWM 8 register 00F0416 PWM 9 register 00F0416 CPU mode register 00F0416 Interrupt request register 1 00F0416 Interrupt request register 2 00F0416 Interrupt control register 1 00F0416 RAM 00F0416 RAM 010046 Not used 01F640 PLL control register 020046 PCL register 02016 PCL register	00F3 ₁₆	Timer 4
00F616 PWM 5 register 00F716 PWM 6 register 00F816 PWM 7 register 00F916 PWM 8 register 00FA16 PWM 9 register 00FB16 CPU mode register 00FD16 Interrupt request register 1 00FD16 Interrupt request register 2 00FB18 Interrupt control register 1 00FB19 Interrupt control register 2 00FB19 RAM 010016 RAM 01BF16 Not used 01FF16 PLL control register 020016 PCH register 020116 PCH register 020216 PCL register	00F4 ₁₆	Timer mode register 1
00F7 ₁₆ PWM 6 register 00F8 ₁₆ PWM 7 register 00F9 ₁₆ PWM 8 register 00FA ₁₆ PWM 9 register 00FA ₁₆ CPU mode register 00FD ₁₆ Interrupt request register 1 00FD ₁₆ Interrupt request register 2 00FF ₁₆ Interrupt control register 2 0100 ₁₆ RAM 192 bytes 01FF ₁₆ Not used 01FF ₁₆ PLL control register 0200 ₁₆ PCH register 0201 ₁₆ PCH register 0202 ₁₆ PCL register	00F5 ₁₆	Timer mode register 2
00F816 PWM 7 register 00F916 PWM 8 register 00FA16 PWM 9 register 00FB16 CPU mode register 00FD16 Interrupt request register 1 00FB16 Interrupt control register 2 00FE16 Interrupt control register 1 010016 RAM 192 bytes 01FF16 Not used 01FF16 PLL control register 020016 PCH register 02016 PCH register PCL register PCL register	00F6 ₁₆	PWM 5 register
00F916 PWM 8 register 00FB16 CPU mode register 00FC16 Interrupt request register 1 00FE16 Interrupt request register 2 00FE16 Interrupt request register 1 00FE16 Interrupt control register 1 010016 RAM 192 bytes 01EF16 O1C016 PLL control register 01FF16 O2C016 PLL control register 02016 PLL control register 02016 PLL control register 02016 PLL control register 02017 PLL control register 02018 PLC register	00F7 ₁₆	PWM 6 register
00FA ₁₆ PWM 9 register 00FB ₁₆ CPU mode register 00FD ₁₆ Interrupt request register 1 00FE ₁₆ Interrupt request register 2 00FF ₁₆ Interrupt control register 1 0100 ₁₆ RAM 192 bytes 01FF ₁₆ Not used 01FF ₁₆ PLL control register 0200 ₁₆ PCH register 0201 ₁₆ PCH register 0202 ₁₆ PCL register	00F8 ₁₆	PWM 7 register
00FB ₁₆ CPU mode register 00FC ₁₆ Interrupt request register 1 10FF ₁₆ Interrupt control register 2 10FF ₁₆ 0100 ₁₆ RAM 192 bytes 01BF ₁₆ 01CO ₁₆ Not used 01FF ₁₆ 02OO ₁₆ PLL control register 02O1 ₁₆ PCL register 02C ₁₆ PCL register	00F9 ₁₆	PWM 8 register
00FC16 Interrupt request register 1 00FD16 Interrupt request register 2 00FF16 Interrupt control register 1 010016 RAM 192 bytes 01BF16 01C016 Not used 01FF16 02C016 PLL control register 020116 020216 PCH register 020216 PCL register	00FA ₁₆	PWM 9 register
00FD ₁₆ Interrupt request register 2 00FE ₁₆ 100FF ₁₆ 10100 ₁₆ RAM 192 bytes 01RF ₁₆ 01CO ₁₆ Not used 01FF ₁₆ 02CO ₁₆ PLL control register 02O1 ₁₆ PCL register	00FB ₁₆	CPU mode register
00FE ₁₆	00FC ₁₆	Interrupt request register 1
00FF ₁₆ 0100 ₁₆ RAM 192 bytes 01C0 ₁₆ Not used 01FF ₁₆ 0200 ₁₆ PLL control register 0201 ₁₆ PCH register 0202 ₁₈ PCL register	00FD ₁₆	Interrupt request register 2
0100 ₁₆ RAM 192 bytes 018F ₁₆ 0100 ₁₆ Not used 01FF ₁₆ 0200 ₁₆ PLL control register 0201 ₁₆ PCH register 0202 ₁₆ PCL register	00FE ₁₆	Interrupt control register 1
RAM 192 bytes 01BF16 01C016 Not used 01FF16 020016 020116 PCL control register 020216 PCH register 020216		Interrupt control register 2
192 bytes 01BF16 01C016 Not used 01FF16 020016 020116 PCH register 020216 PCL register	010016	
01BF ₁₆ 01CO ₁₆ Not used 01FF ₁₆ 02CO ₁₆ PLL control register 02Cl ₁₆ PCH register 02Cl ₁₆ PCL register		RAM
01BF ₁₆ 01CO ₁₆ Not used 01FF ₁₆ 02CO ₁₆ PLL control register 02Cl ₁₆ PCH register 02Cl ₁₆ PCL register		102 butco
Not used 01FF ₁₆ 0200 ₁₆ PLL control register 0201 ₁₆ PCH register 0202 ₁₈ PCL register		192 bytes
Not used 01FF ₁₆ 0200 ₁₆ PLL control register 0201 ₁₆ PCH register 0202 ₁₈ PCL register	01BF16	
01FF ₁₆ 0200 ₁₆ PLL control register 0201 ₁₆ PCH register 0202 ₁₆ PCL register	01C016	
0200 ₁₆ PLL control register 0201 ₁₆ PCH register 0202 ₁₆ PCL register		Not used
0200 ₁₆ PLL control register 0201 ₁₆ PCH register 0202 ₁₆ PCL register	01FF16	
0202 ₁₆ PCL register		PLL control register
	020116	PCH register
0203 SWC register	020216	PCL register
020016 OVVO Tegister	020316	SWC register
0204 ₁₆ Timer 5	020416	Timer 5
0205 ₁₆ Timer 6	020516	Timer 6

Fig. 3 SFR (Special Function Register) memory map INTERRUPTS

Interrupts can be caused by 14 different events consisting of three external, ten internal, and one software events. Interrupts are vectored interrupts with priorities shown in Table 1. Reset is also included in the table because its operation is similar to an interrupt.

When an interrupt is accepted, the registers are pushed as described in the stack pointer (S) section above, interrupt disable flag I is set, and the program jumps to the address specified in the vector table. The interrupt request flag is cleared automatically. The reset and BRK instruction interrupt can never be disabled. Other interrupts are disabled when the interrupt disable flag is set.

All interrupts except the BRK instruction interrupt have an interrupt request bit and an interrupt enable bit. The interrupt request bits are in interrupt request registers 1 and 2 and the interrupt enable bits are in interrupt control registers 1 and 2. Figure 4 shows the structure of the interrupt request registers 1, 2, interrupt control registers 1, and 2. Interrupts other than the BRK instruction interrupt and reset are accepted when the interrupt enable bit is "1", interrupt request bit is "1", and the interrupt disable flag is "0" The interrupt request bit can be reset with a program, but not set. The interrupt enable bit can be set and reset with a program.

Reset is treated as a non-maskable interrupt with the highest priority. Figure 5 shows interrupts control.

Table 1. Interrupt vector address and priority.

Event	Priority	Vector addresses	Remarks
Reset	1	FFFF ₁₆ , FFFE ₁₆	Non-maskable
CRT interrupt	. 2	FFFD ₁₆ , FFFC ₁₆	
INT2 interrupt	3	FFFB ₁₆ , FFFA ₁₆	
INT1 interrupt	4	FFF9 ₁₆ , FFF8 ₁₆	
Serial I/O2 interrupt	5	FFF7 ₁₆ , FFF6 ₁₆	,
Timer 4 interrupt	6	FFF5 ₁₆ , FFF4 ₁₆	
1 ms interrupt	7	FFF3 ₁₆ , FFF2 ₁₆	
V _{SYNC} interrupt	8	FFF1 ₁₆ , FFF0 ₁₆	
Timer 3 interrupt	9	FFEF ₁₆ , FFEE ₁₆	
Timer 2 interrupt	10	FFED ₁₆ , FFEC ₁₆	
Timer 1 interrupt	11	FFEB ₁₆ , FFEA ₁₆	
Serial I/O1 interrupt	12	FFE9 ₁₆ , FFE8 ₁₆	
Timer 5 interrupt	13	FFE7 ₁₆ , FFE6 ₁₆	
Timer 6 interrupt	14	FFE5 ₁₆ , FFE4 ₁₆	
BRK instruction interrupt	15	FFDF ₁₆ , FFDE ₁₆	Non-maskable software interrupt

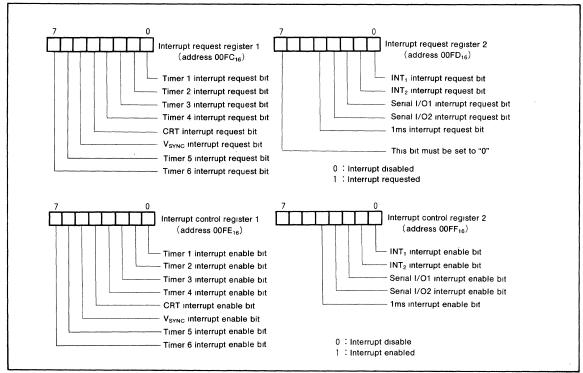


Fig. 4 Structure of registers related with interrupt

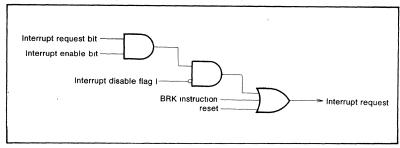


Fig. 5 Interrupt control

TIMER

The M37250M6-XXXSP has six timers; timer 1, timer 2, timer 3, timer 4, timer 5 and timer 6.

A block diagram of timer 1 through 6 is shown in Figure 7. All of the timers are down count timers and have 8-bit latches. When a timer reaches " 00_{16} " and the next count pulse is input to a timer, a value which is the contents of the reload latch are loaded into the timer. The division ratio of the timer is 1/(n+1), where n is the contents of timer latch. The timer interrupt request bit is set at the next count pulse after the timer reaches " 00_{16} ".

(1) Timer 1

The count source of timer 1 is selectable from $f(X_{IN})/16$ and the $1,024\mu$ second clock (by 1ms interrupt; it can be used at PWM count source generating) and external clock from P3₂/TIM2 pin by timer mode register 1 (address $00F4_{16}$).

Timer 1 interrupt request is occurred by overflow of timer 1. (2) Timer 2

The count source of timer 2 is selectable from $f(X_{IN})/16$, timer 1 overflow signal, and external clock from $P3_2/TIM2$ pin by timer mode register 1 (address $00F4_{16}$).

Timer 1 can be used as 8 bits prescaler when timer 1 overflow signal is selected as count source of timer 2.

Timer 2 interrupt request is occurred by overflow of timer 2.

(3) Timer 3

The count source of timer 3 is selectable from $f(X_{IN})/16$ and external clock from P3₃/TIM3 pin by timer mode register 2 (address $00F5_{16}$).

Timer 3 interrupt request is occurred by overflow of timer 3.

(4) Timer 4

The count source of timer 4 is selectable from $f(X_{IN})/16$, $f(X_{IN})/2$, and timer 3 overflow signal by timer mode register 2 (address $00F5_{16}$).

Timer 3 can be used as 8 bits prescaler when timer 3 overflow signal is selected as count source of timer 4.

Timer 4 interrupt request is occurred by overflow of timer 4. (5) Timer 5

The count source of timer 5 is selectable from $f(X_{1N})/16$, timer 2 overflow signal and timer 4 overflow signal by timer mode register 1 (address $00F4_{16}$) and timer mode register 2 (address $00F5_{16}$).

(6) Timer 6

The count source of timer 6 is selectable from $f(X_{IN})/16$ and timer 5 overflow signal by timer mode register 1 (address $00F4_{16}$).

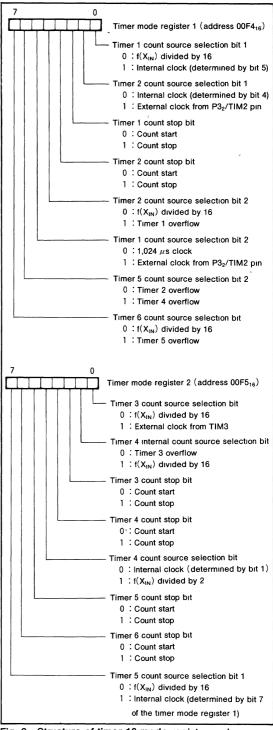


Fig. 6 Structure of timer 12 mode register and timer 34 mode register

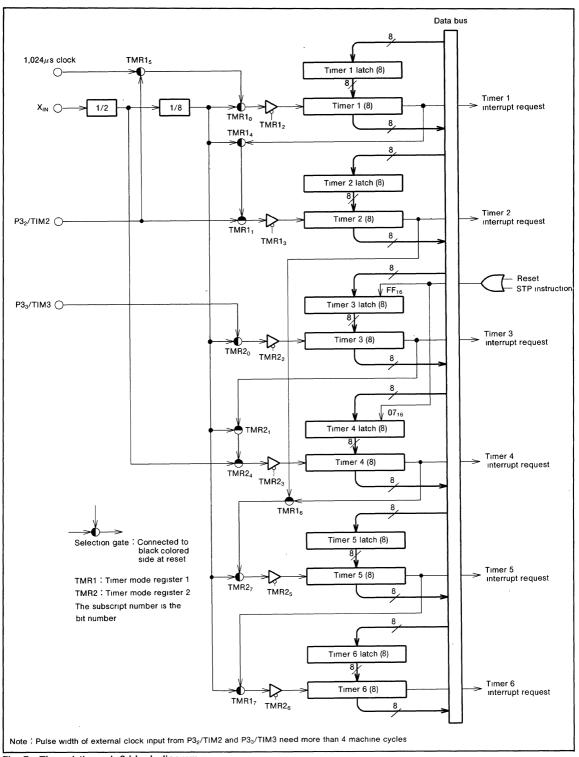


Fig. 7 Timer 1 through 6 block diagram

SERIAL I/O

M37250M6-XXXSP has two serial I/O (serial I/O1, serial I/O2). Serial I/O1 has the same function as serial I/O2.

A block diagram of the serial I/O is shown in Figure 8. In the serial I/O mode the receive ready signal (S_{RDYt}) , synchronous input/output clock (CLK_t) , and the serial I/O pins $(S_{OUT,t},S_{INt})$ are used as port P4. The serial I/O $_t$ mode registers (address $00DC_{16}$, $00DE_{16}$) are 8-bit registers. Bits 0, 1 and 2 of these registers are used to select a synchronous clock source.

Bit 3 and 4 decide whether parts of P4 will be used as a serial I/O or not.

To use P4₂ or P4₆ as a serial input, set the direction register bit which corresponds to P4₂ or P4₆ to "0". For more information on the direction register, refer to the I/O pin section

Also to use internal clock of serial I/O2, bit 1 of special mode register 1 (address 00DA₁₆) needs to be set to "1". The serial I/O function is discussed below. The function of the serial I/O differs depending on the clock source; external clock or internal clock.

Fig. 8 Serial I/O block diagram

Internal clock — The $\overline{S_{RDY}i}$ signal becomes "H" during transmission or while dummy data is stored in the serial I/O $_i$ register (address $00DD_{16}, 00DF_{16}$). After the falling edge of the write signal, the $\overline{S_{RDY}i}$ signal becomes low signaling that the M37250M6-XXXSP is ready to receive the external serial data. The $\overline{S_{RDY}i}$ signal goes "H" at the next falling edge of the transfer clock. The serial I/O $_i$ counter is set to 7 when data is stored in the serial I/O $_i$ register. At each falling edge of the fransfer clock, serial data is output to $S_{OUT}i$. During the rising edge of this clock, data can be input from $S_{IN}i$ and the data in the serial I/O $_i$ register will be shifted 1 bit.

Transfer direction can be selected by bit 5 of serial I/O_i mode register. After the transfer clock has counted 8 times, the serial I/O_i register will be empty and the transfer clock will remain at a high level. At this time the interrupt request

bit will be set.

External clock- If an external clock is used, the interrupt request will be sent after the transfer clock has counted 8 times but transfer clock will not stop.

Due to this reason, the external clock must be controlled from the outside. The external clock should not exceed 500kHz at a duty cycle of 50%. The timing diagram is shown in Figure 9. When using an external clock for transfer, the external clock must be held at "H" level when the serial I/O; counter is initialized. When switching between the internal clock and external clock, the switching must not be performed during transfer. Also, the serial I/O counter must be initialized after switching.

An example of communication between two M37250M6-XXXSPs is shown in Figure 10.

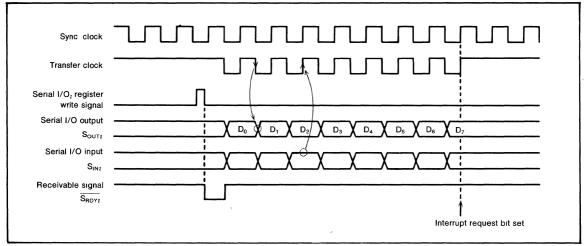


Fig. 9 Serial I/O timing

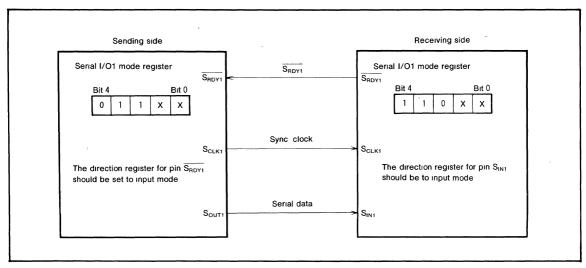


Fig. 10 Example of serial I/O connection

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for FREQUENCY SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

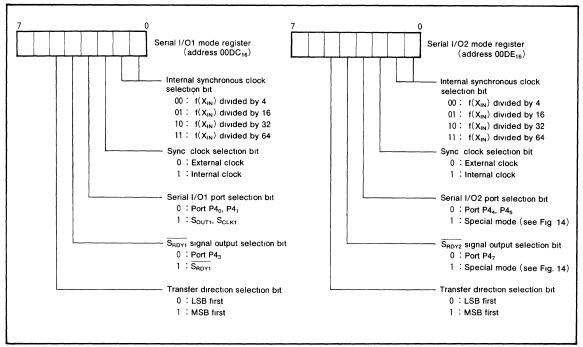


Fig. 11 Structure of serial I/O1 mode register and serial I/O2 mode register

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for FREQUENCY SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

SPECIAL MODE (I2C BUS MODE)

M37250M6-XXXSP has a special serial I/O circuit that can be reception or transmission of serial data in conformity with I²C (Inter IC) bus format.

I²C bus is a two line directional serial bus developed by Philips to transfer and control data among internal ICs of a machinery.

M37250M6-XXXSP's special serial I/O is not included the clock synchronisation function and the arbitration detectable function at multimaster.

Operations of master transmission and master reception with special serial I/O are explained in the following:

(1) Master transmission

To generate an interrupt at the end of transmission, set bit 7 of special mode register 2 (address 00DB₁₆) to "1" so as to special serial I/O interrupt is selected. Then set bit 3 of interrupt control register 2 (address 00FF₁₆) to "1" so as to special mode serial I/O interrupt is enabled. Clear the interrupt disable flag I to "0" by using the CLI instruction.

The output signals of master transmission SDA and SCL are output from ports $P4_4$ and $P4_5$. Set all bits (bits 4 and 5) corresponding to $P4_4$ and $P4_5$ of the port P4 register (address $00C8_{16}$) and the port P4 direction register (address $00C9_{16}$) to "1".

Set the transmission clock. The transmission clock uses the overflow signal of timer 4. Set appropriate value in timer 4 and timer mode register 2. (For instance, if $f(X_{IN})/16$ is selected as the clock source of timer 4 and "4" is set in timer 4 when $f(X_{IN})$ is 4MHz, the master transmission clock frequency is 25kHz.)

Set contents of the special mode register 2 (address 00DB₁₆). (Usually, "83₁₆".)

Set the bit 3 of serial I/O2 mode register (address 00DE₁₆) to "1". After that set the special mode register 1 (address 00DA₁₆). Figure 15 shows the structure of special mode registers 1 and 2.

Initial setting is completed by the above procedure.

Write data to be transmitted in the special serial I/O register (address $00D9_{16}$). Immediately after this, clear bits 0

and 1 of special mode regiser 2 (to "0") to make both SDA and SCL output to "L". This is for arbitration. The start signal has been completed.

The hardware automatically sends out data of 9-clock cycle. The 9th clock is for ACK receiving and the output level becomes "H" at this clock. If other master outputs the start signal to transmit data simultaneously with this 9th clock, it is not detected as an arbitration-lost.

When the ACK bit has been transmitted, bit 3 of the interrupt request register 2 is set to "1" (issue of interrupt request), notifying the end of data transmission.

To transmit data successively, write data to be sent to the special serial I/O register, and set the interrupt enabled state again. By repeating this procedure, unlimited number of bytes can be transmitted.

To terminate data transfer, clear bits 0 and 1 of the special mode register 2 to "0", set bit 1 clock SCL to "1", then set bit 1 data SDA to "1". This procedure transmits the stop signal.

Figure 13 shows master transmission timing explained above.

(2) Master reception

Master reception is carried out in the interrupt routine after data is transferred by master transmission. For master transmission and interrupt thereafter, see the preceding section (1) Master transmission.

In the interrupt routine, set master reception ACK provided (26_{16}) in the special mode register 1 (address $00DA_{16}$), and write "FF $_{16}$ " in the special serial I/O register (address $00D9_{16}$). This sets data line SDA to "H" and to perform 8-clock master reception. Then, "L" is transmitted to data line SDA for ACK receiving. In the ACK provided mode, the above ACK is automatically sent out.

Repeat the above receiving operation for a necessary number of times. Then return to the master transmission mode and transmit the stop signal by the same procedure for the master transmission.

Figure 14 shows master reception timing.

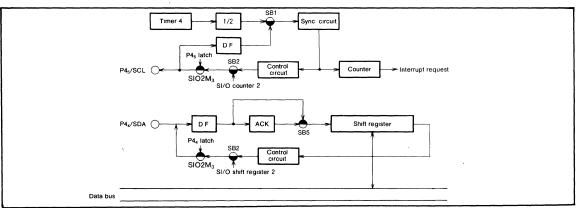


Fig. 12 Block diagram of special serial I/O

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for FREQUENCY SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

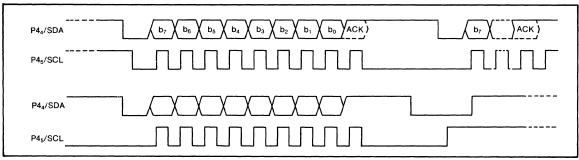


Fig. 13 Master transmission timing

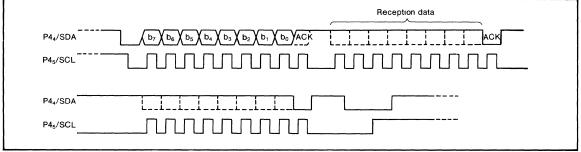


Fig. 14 Master reception timing

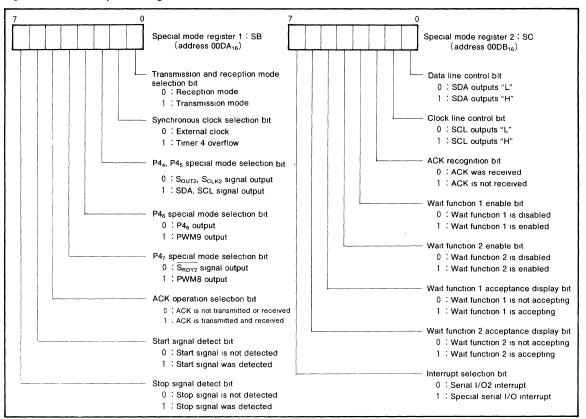


Fig. 15 Structure of special mode registers 1 and 2

(3) Wait function

Wait function 1 holds the SCL line at "L" after the 8th clock falls in special mode. Wait function 2 holds the SCL line at "L" after the 9th clock falls in the same way.

When one of the wait functions operates, the internal counter that counts the clock must be reset after bit 3 or 4 of the special mode register 2 is set to "1", to enable the corresponding wait function 1 or 2 to operate. Reset the internal counter by writing data to the special serial I/O register (address 00D9₁₆), or by setting the START signal detection bit to "1". Reset the internal counter for each byte before data tranfer.

The wait functions can be released by setting the corresponding bit 5 or 6 of the special mode register 2 to "1".

Note 1: Clear the START signal detect bit (bit 6) and the STOP signal detect bit (bit 7) of the special mode register 1 by writing "1" to bit 6 or bit 7.

PWM OUTPUT CIRCUIT

(1) Introduction

The M37250M6-XXXSP is equipped with ten 8-bit PWMs (PWM0 \sim PWM9). PWM0 to PWM9 have a 8-bit resolution with minimum resolution bit width of 8 μ s (for X_{IN} =4MHz) and repeat period of 2048 μ s.

Block diagram of the PWM is shown in Figure 16.

The PWM timing generator section applies individual control signals to PWM0 to 9 using clock input X_{IN} divided by 2 as a reference signal.

(2) Data setting

Set the 8-bit data for output in the PWM $_i$ register ($_i$ means 0 to 9; addresses $00D0_{16}$ to $00D4_{16}$ and $00F6_{16}$ to $00FA_{16}$).

(3) Transferring from registers to latches

The data written to the PWM registers is transferred to the PWM latches at the repetition of the PWM period. The signals output to the PWM pins correspond to the contents of these latches. When data in each PWM register is read, data in these latches has already been read allowing the data output by the PWM to be confirmed.

(4) Operation of the PWMs

The following is the explain about PWM operation.

At first, clear the bit 0 of PWM output control register 1 (address 00D5₁₆) to "0" (at reset, this bit already clear to "0" automatically), so that the PWM count source is supplyed.

PWM0 to 3 output pins and PWM4 to 7 output pins are in common with port P6 and port P2 respectively, and PWM8 and 9 output pins are in common with port P4 and serial I/O2 pins.

PWM0 to 7 are selected the pin function by setting of PWM output control register 1 (address 00D5₁₆) and PWM output control register 2 (address 00D6₁₆), and PWM8 and 9 are selected the pin function by the bit 3 and 4 of special

mode register 1 (address $00DA_{16}$) and bit 4 of serial I/O2 mode register (address $00DE_{16}$). When these pins are set as PWM output pins by these registers, the PWM output can be performed.

Figure 17 shows the timing diagram of PWM0 through 9. One cycle (T) is composed of 256 (28) segments. There are eight different pulse types configured from bits 0 to 7 representing the significance of each bit. These are output within one cycle in the circuit internal section. Refer Figure 17 (a).

Eight different pulses can be output from the PWM. These can be selected by bits 0 through 7. Depending on the content of the 8-bit PWM latch, pulses from 7 to 0 is selected. The PWM output is the difference of the sum of each of these pulses. Several examples are shown in Figure 17 (b).

Change in the contents of the PWM latch allows the selection of 256 lengths of high-level area outputs varying from 0/256 to 255/256. An length of entirely high-level output cannot be output, i. e. 256/256.

(5) Output after reset

At reset the output of port P2, P4, P6 is in the high impedance state and the contents of the PWM register and latch are undefined. Note that after setting the PWM register, the contents of the latch is undefined until its data is transferred to the latch.

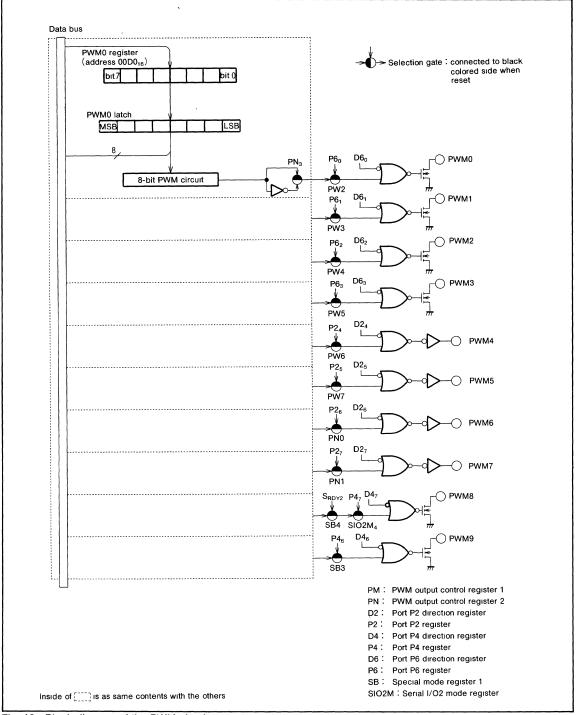


Fig. 16 Block diagram of the PWM circuit

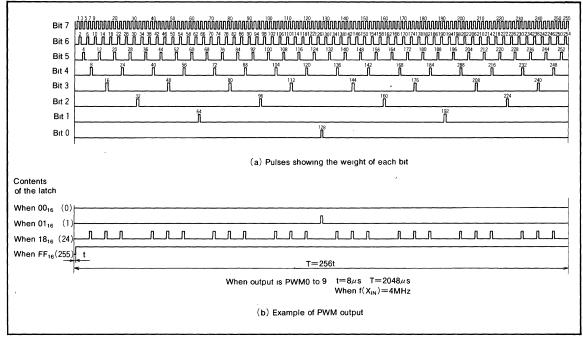


Fig. 17 PWM timing diagram

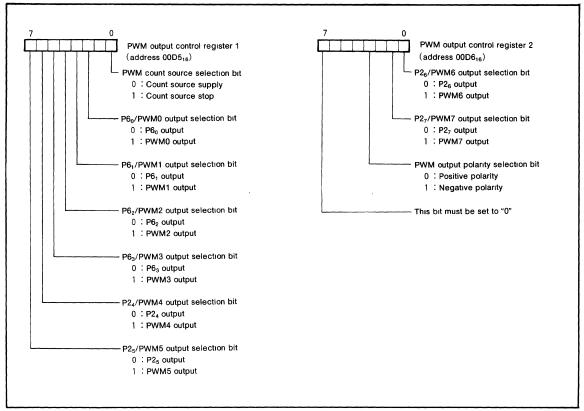


Fig. 18 Structure of PWM output control register 1 and 2

A-D CONVERTER

Block diagram of A-D converter is shown in Figure 19. A-D converter consists of 4-bit D-A converter and comparator. The A-D control register can generate 1/16 $V_{\rm CC}$ -step internal analog voltage based on the settings of bits 0 to 3.

Table 3 gives the relation between the descriptions of A-D control register bits 0 to 3 and the generated internal analog voltage. The comparison result of the analog input voltage and the internal analog voltage is stored in the A-D control register, bit 4.

The data is compared by setting the directional register corresponding to port $P3_5,\ P3_6$ to "0" (port $P3_5,\ P3_6$ enters the input mode), to allow port $P3_5/A\text{-D1},\ P3_6/A\text{-D2}$ to be used as the analog input pin. The digital value corresponding to the internal analog voltage to be compared is then written in the A-D control register, bit 0 to 3 and an analog input pin is selected. After 20 machine cycle, the voltage comparison starts.

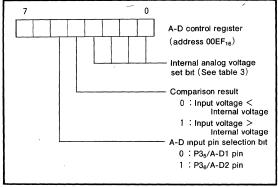


Fig. 20 Structure of A-D control register

Table 3. Relationship between the contents of A-D control register and internal analog voltage

	A-D contr	ol register	1-1	
Bit 3	Bit 2	Bit 1	Bit 0	Internal analog voltage
0	0	0	0	1/32 V _{cc}
0	0	0	1	3/32 V _{cc}
0	0	1	0	5/32 V _{CC}
0	0	1	1	7/32 V _{cc}
0	1	0	٠,0	9/32 V _{cc}
0	1	0	1	11/32 V _{cc}
0	1	1	0	13/32 V _{cc}
0	1	1	1	15/32 V _{CC}
1	0	0	0	17/32 V _{CC}
1	0	0	1	19/32 V _{cc}
1	0	1	0	21/32 V _{CC}
1	0	1	1	23/32 V _{CC}
1	1	0	0	25/32 V _{cc}
1	1	0	1	27/32 V _{CC}
1	1	1	0	29/32 V _{CC}
1	1	1	1	31/32 V _{CC}

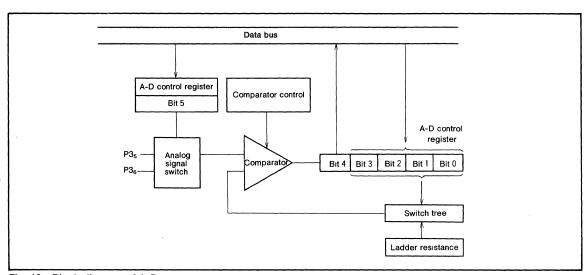


Fig. 19 Block diagram of A-D converter

PLL CIRCUIT

M37250M6-XXXSP has a built-in PLL circuit which is selectable either fixed dividing mode or swallow mode. PLL block diagram is shown in Figure 21.

(1) PLL control register

Switching fixed dividing mode/swallow mode, starting PLL operation, and selection of reference frequency are determined by PLL control register (address 0200₁₆)

When fixed dividing mode is selected by setting the bit 6 (PL_6) of PLL control register to "0", MO pin becomes 1-bit general purpose output port. In this case, the output level of MO pin is determined by bit 5 (PL_5) of PLL control register (address 0200₁₆).

(2) Reference frequency generator

Nine kinds reference frequency are generated by built-in reference frequency generator that divides the external clock (4MHz), in both fixed dividing mode and swallow mode. Reference frequency is determined by bit 0 (PL_0) to bit 4 (PL_4) of PLL control register.

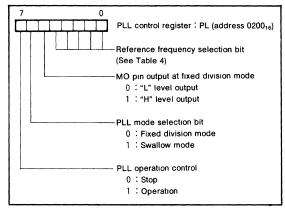


Fig. 22 Structure of PLL control register

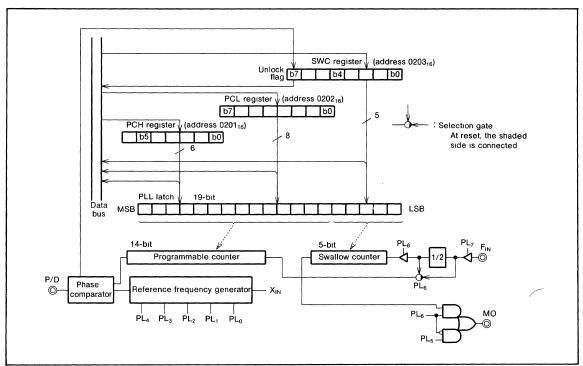


Fig. 21 PLL circuit block diagram

(3) Phase detector

Phase detector is a built-in circuit to detect a phase difference between reference frequency (f_{REF}) and division of VC0 output by programmable divider.

Output of phase detector is input into internal charge pump, and outputs the following level from P/D pin.

- "L" level where f_{REF} > f_{IN}/N
- "H" level where $f_{REF} < f_{IN}/N$
- Floating where $f_{REF} = f_{IN}/N$

f_{IN}: Oscillation frequency of VC0

N : Division ratio of all PLL system include external prescaler.

Table 4. PLL control register bit mapping about reference frequency

PLL control register (address 0200 ₁₆)					Reference frequency
PL ₄	PL ₃	PL ₂	PL ₁	PL ₀	Reference frequency
0	0	1	1	1	7. 8125kHz
0	1	0	0	1	5.0000kHz
0	1	0	1	0	0. 78125kHz
0	1	0	1	1	3. 125kHz
0	1	1	1	1	1. 953125kHz
1	0	1	0	0	1.5625kHz
1	0	1	1	0	0. 9765625kHz
1	0	1	1	1	3. 90625kHz

(4) Programmable divider

Programmable divider is a binary down-counter configured by 5-bit swallow counter and 14-bit programmable counter. Lower 5 bits of 19-bit PLL latch data are preset to swallow counter and higher 14 bits of 19-bit PLL latch data are preset to programmable counter at a time, and it is down-counted.

(5) PLL latch

Data is set to programmable counter through PLL latch. Contents of PLL latch is determinated by following sequence.

- Writing contents of swallow counter to SWC register (address 0203₁₆)
- Writing lower 8-bit of programmable counter to PCL register (address 0202₁₆)
- Writing higher 6-bit of programmable counter to PCH register (address 0201₁₆)

Each register data is transferred to PLL latch, after writing to PCH register. Even when only lower 8-bit of programmable counter or contents of swallow counter need to change, be sure to write to PCH register again.

When reading the addresses 0201₁₆ to 0203₁₆ assigned PCH register, PCL register, and SWC register, the contents of PLL latch is read

The contents of PLL latch is indeterminate during reset. And this PLL latch contents is indeterminated till the transfer is completed, even though data are set to PCH, PLL, and SWC registers.

(6) Unlock flag

When PLL system is unlock, namely when reference frequency $f_{\rm REF}$ is difficult from division output frequency of VCO, the pulse is output synchronized $f_{\rm REF}$ from phase detecter. Unlock flag is assigned in bit 7 of SWC register, and it is set to "1" by this pulse, and this flag is set to "0" by reading. So, reading cycle is necessary to be longer than $f_{\rm REF}$ cycle. If the reading cycle is shorter than $f_{\rm REF}$ cycle, unlocked PLL system is regard as locking, so that this microcomputer may be missing operation. More time than $f_{\rm REF}$ cycle need to read unlock flag at first, after PLL operation starts.

(7) Programmable divider determination method

When M54470L (division ratio is 1/128 or 1/136) is used as prescaler at swallow mode, determination method of programmable divider division value is as following.

$$fo = 8 \cdot f_{REF} (32N_P + A)$$

fo : Partial oscillation frequency

f_{REF} : Reference frequency

N_P : Division ratio of programmable counter

$$2^{14} \ge N_P \ge 16$$
 and $N_P > A$

A : Division ratio of swallow counter

$$31 \ge A \ge 0$$

When fixed prescaler (division ratio 1/K) is used at fixed dividing mode, determination method of programmable divider division value is as following.

$$fo = f_{REF} \, \cdot \, K \, \cdot \, N_P$$

CRT DISPLAY FUNCTIONS

(1) Outline of CRT Display Functions

Table 5 outlines the CRT display functions of the M37250M6-XXXSP. The M37250M6-XXXSP incorporates a 24 columns \times 3 lines CRT display control circuit. CRT display is controlled by the CRT display control register.

Up to 126 kinds of characters can be displayed, and colors can be specified for each character. Four colors can be displayed on one screen. A combination of up to 15 colors can be obtained by using each output signal (R, G, B, and I).

Characters are displayed in a 12×16 dot configuration to obtain smooth character patterns. (See Figure 23)

The following shows the procedure how to display characters on the CRT screen.

Table 5. Outline of CRT display functions

Parameter		Functions		
Number of display character		24 characters×3 lines		
Character configuration		12×16 dots (See Figure 23)		
Kinds of character		126		
Character size		4 size selectable		
Color	Kinds of color	15 (max)		
	Coloring unit	a character		
Display expansion		Possible (multiple lines)		

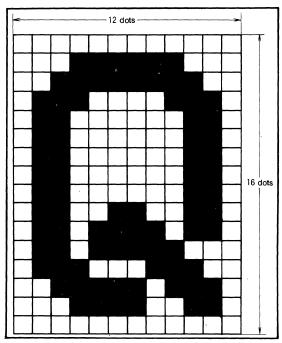


Fig. 23 CRT display character configuration

- ① Set the character to be displayed in display RAM.
- ② Set the display color by using the color register.
- ③ Specify the color register in which the display color is set by using the display RAM.
- ④ Specify the vertical position and character size by using the vertical position register and the character size register.
- Specify the horizontal position by using the horizontal position register.
- Write the display enable bit to the designated block display flag of the CRT control register. When this is done, the CRT starts operation according to the input of the V_{SYNC} signal.

The CRT display circuit has an extended display mode. This mode allows multiple lines (more than 4 lines) to be displayed on the screen by interrupting the display each time one line is displayed and rewriting data in the block for which display is terminated by software.

Figure 25 shows a block diagram of the CRT display control circuit. Figure 24 shows the structure of the CRT display control register.

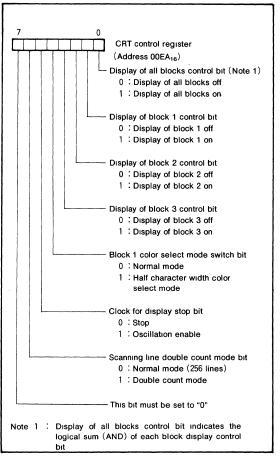


Fig. 24 Structure of CRT control register

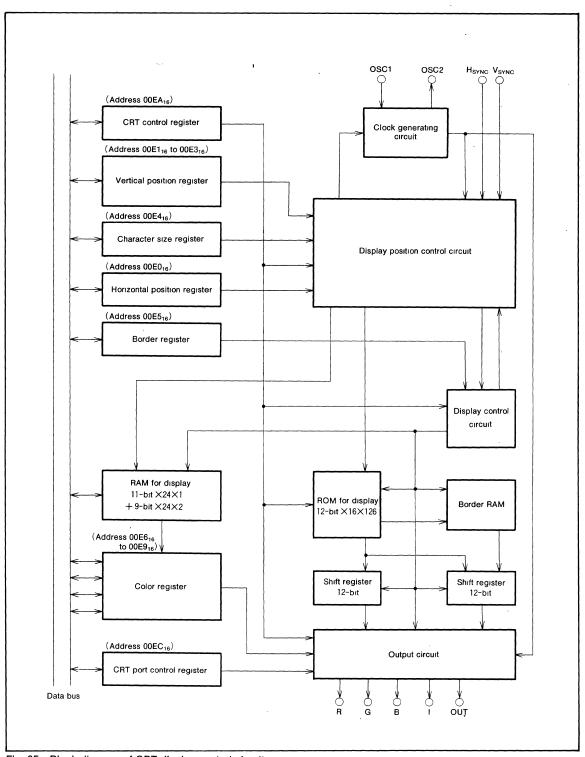


Fig. 25 Block diagram of CRT display control circuit

(2) Display Position

The display positions of characters are specified in units called a "block." There are three blocks, block 1 to block 3. Up to 24 characters can be displayed in one block. (See (4) Display Memory.)

The display position of each block in both horizontal and vertical directions can be set by software.

The horizontal direction is common to all blocks, and is selected from 64-step display positions in units of 4Tc (Tc =oscillation cycle for display).

The display position in the vertical direction is selected from 128-step display positions for each block in units of four scanning lines.

If the display start position of a block overlaps with some other block ((b) in Figure 28), a block of the smaller block No. (1 to 3) is displayed.

If when one block is displaying, some other block is displayed at the same display position ((c) in Figure 28), the former block is overridden and the latter is displayed.

The vertical position can be specified from 128-step positions (four scanning lines per step) for each block by setting values 00_{16} to $7F_{16}$ to bits 0 to 6 in the vertical position register (addresses $90E1_{16}$ to $90E3_{16}$). Figure 26 shows the structure of the vertical position register.

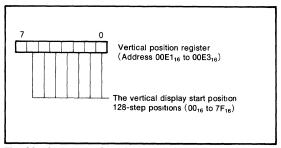


Fig. 26 Structure of vertical position registers

The horizontal direction is common to all blocks, and can be specified from 64-step display positions (4Tc per step (Tc=oscillation cycle for display) by setting values 00_{16} to $3F_{16}$ to bits 0 to 5 in the horizontal position register (address $00E0_{16}$). Figure 27 shows the structure of the horizontal position register.

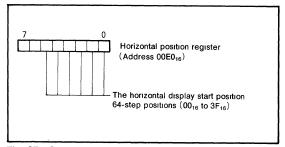


Fig. 27 Structure of horizontal position register

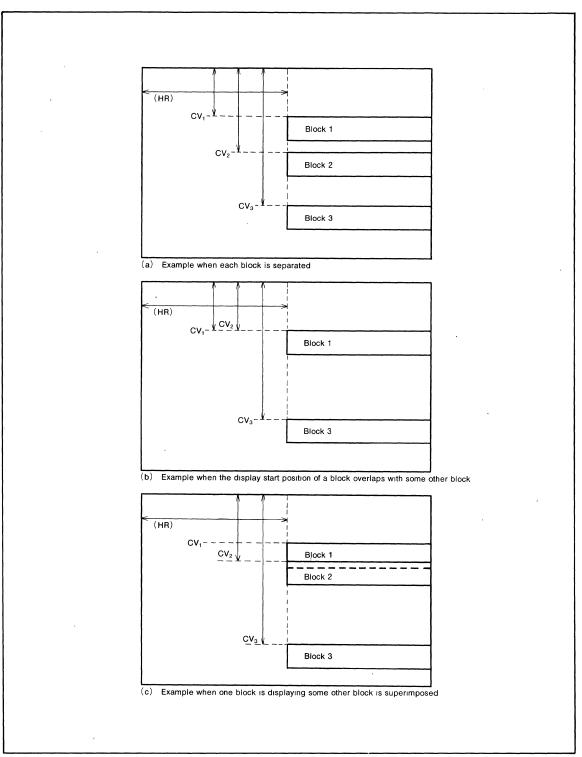


Fig. 28 Display position

(3) Character Size

The size of characters to be displayed can be selected from four sizes for each block. Use the character size register (address $00E4_{16}$) to set a character size. The character size in block 1 can be specified by using bits 0 and 1 in the character size register; the character size in block 2 can be specified by using bits 2 and 3; the character size in block 3 can be specified by using bits 4 and 5. Figure 29 shows the structure of the character size register.

The character size can be selected from four sizes: small size, medium size, large size, and extra large size. Each character size is determined by the number of scanning lines in the height (vertical) direction and the cycle of display oscillation (=Tc) in the width (horizontal) direction.

The small size consists of (one scanning line) \times (1 Tc); the medium size consists of (two scanning lines) \times (2 Tc); the large size consists of (three scanning lines) \times (3 Tc); and the extra large size consists of (four scanning lines) \times (4 Tc). Table 6 shows the relationship between the set values in the character size register and the character sizes.

Table 6. The relationship between the set values of the character size register and the character sizes

Set values of the character size register		Character	Width (horizontal)	Height (vertical)
CS _{n1}	CS _{n0}	sıze	direction	direction
0	0	Small	1 T _C	1
0	1	Medium	2 T _C	2
1	0	Large	3 T _C	3
1	1	Extra large	4 T _C	4

Note: The display start position in the horizontal direction is not affected by the character size. In other words, the horizontal start position is common to all blocks even when the character size varies with each block (See Figure 30).

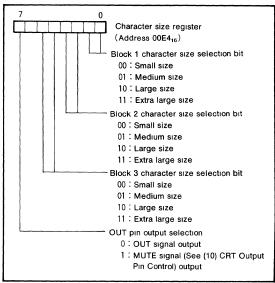


Fig. 29 Structure of character size register

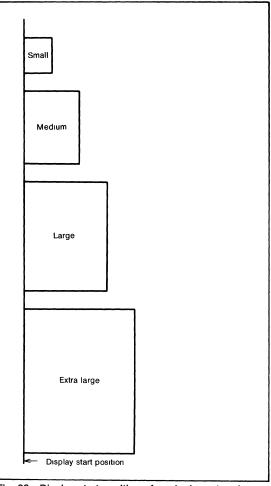


Fig. 30 Display start position of each character size (horizontal direction)

(4) Display Memory

There are two types of display memory: ROM of CRT display $(3000_{16} \text{ to } 3\text{FFF}_{16})$ used to store character dot data (masked) and display RAM $(2000_{16} \text{ to } 20\text{D7}_{16})$ used to specify the colors of characters to be displayed. The following describes each type of display memory.

① ROM for CRT display (3000₁₆ to 3FFF₁₆)

The CRT display ROM contains dot pattern data for characters to be displayed. For characters stored in this ROM to be actually displayed, it is necessary to specify them by writing the character code inherent to each character (code determined based on the addresses in the CRT display ROM) into the CRT display RAM.

The CRT display ROM has a capacity of 4K bytes. Because 32 bytes are required for one character data, the ROM can contain up to 128 kinds of characters. Actually, however, because two characters are required for test pattern use, the ROM can contain up to 126 kinds of characters for display use.

The CRT display ROM space is broadly divided into two areas. The [vertical 16 dots] \times [horizontal (left side) 8 dots] data of display characters are stored in addresses

Table 7. Character code list

Character code	Contained up addre	ess of character data
Character code	Left 8 dots lines	Right 4 dots lines
00 ₁₆	3000 ₁₆ to	3800 ₁₆ to
	300F ₁₆ 3010 ₁₆	380F ₁₆ 3810 ₁₆
01 ₁₆	to 301F ₁₆	to 381F ₁₆
02 ₁₆	3020 ₁₆ to 302F ₁₆	3820 ₁₆ to 382F ₁₆
03 ₁₆	3030 ₁₆ to 303F ₁₆	3830 ₁₆ to 383F ₁₆
:	:	:
10 ₁₆	3100 ₁₆ to 310F ₁₆	3900 ₁₆ to 390F ₁₆
11 ₁₆	3110 ₁₆ to 311F ₁₆	3910 ₁₆ to 391F ₁₆
:	:	:
4F ₁₆	34F0 ₁₆ to 34FF ₁₆	3CF0 ₁₆ to 3CFF ₁₆
50 ₁₆	3500 ₁₆ to 350F ₁₆	3D00 ₁₆ to 3D0F ₁₆
:	:	:
7D ₁₆	37D0 ₁₆ to 37DF ₁₆	3FD0 ₁₆ to 3FDF ₁₆
7E ₁₆ *	37E0 ₁₆ to 37EF ₁₆	3FE0 ₁₆ to 3FEF ₁₆
7F ₁₆ *	37F0 ₁₆ to 37FF ₁₆	3FF0 ₁₆ to 3FFF ₁₆

※ : The test pattern are stored

 3000_{16} to $37FF_{16}$; the [vertical 16 dots] \times [horizontal (right side) 4 dots] data of display characters are stored in addresses 3800_{16} to $3FFF_{16}$. (See Figure 31) Note however that the four upper bits in the data to be written to addresses 3800_{16} to $3FFF_{16}$ must be set to "1" (by writing data $F0_{16}$ to FF_{16}).

The character code used to specify a character to be displayed is determined based on the address in the CRT display ROM in which that character is stored.

Assume that data for one character is stored at $3XX0_{16}$ to $3XXF_{16}$ (XX denotes 00_{16} to $7F_{16}$) and $3YY0_{16}$ to $3YYF_{16}$ (YY denotes 80_{16} to FF_{16}), then the character code for it is "XX₁₆".

In other words, character code for any given character is configured with two middle digits of the four-digit (hexnotated) address (3000_{16} to $37FF_{16}$) where data for that character is stored.

Table 7 lists the character codes.

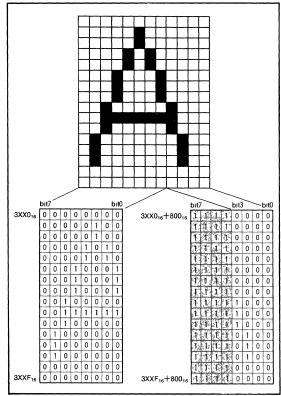


Fig. 31 Display character stored area

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for FREQUENCY SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

② CRT display RAM (2000₁₆ to 20D7₁₆)

The CRT display RAM is allocated at addresses 2000_{16} to $20D7_{16}$, and is divided into a display character code specifying part and display color specifying part for each block. Table 8 shows the contents of the CRT display RAM.

When a character is to be display at the first character (leftmost) position in block 1, for example, it is necessary to write the character code to the seven low-order bits (bits 0 to 6) in address 2000₁₆ and the color register No. to the two low-order bits (bits 0 and 1) in address 2080₁₆. The color register No. to be written here is one of the four color registers in which the color to be displayed is set in advance. For details on color registers, refer to (5) Color Registers.

The structure of the CRT display RAM is shown in Figure 32. Write the character patterns at Table 9 and 10 as test pattern, when M37250M6-XXXSP is mask-ordered.

Table 8. The contents of the CRT display RAM

Block	Display position (from left)	Character code specification	Color specification
	1st column	2000 ₁₆	2080 ₁₆
	2nd column	2001 ₁₆	2081 ₁₆
	3rd column	2002 ₁₆	2082 ₁₆
Block 1	:	:	:
	22th column	2015 ₁₆	2095 ₁₆
	23th column	2016 ₁₆	2096 ₁₆
	24th column	2017 ₁₆	2097 ₁₆
		2018 ₁₆	2098 ₁₆
	Not used	?	₹
		201F ₁₆	209F ₁₆
	1st column	2020 ₁₆	20A0 ₁₆
	2nd column	2021 ₁₆	20A1 ₁₆
	3rd column	2022 ₁₆	20A2 ₁₆
Block 2	:	:	:
	22th column	2035 ₁₆	20B5 ₁₆
	23th column	2036 ₁₆	20B6 ₁₆
	24th column	2037 ₁₆	20B7 ₁₆
		2038 ₁₆	20B8 ₁₆
	Not used	}	₹
		203F ₁₆	20BF ₁₆
	1st column	2040 ₁₆	20C0 ₁₆
	2nd column	2041 ₁₆	20C1 ₁₆
	3rd column	2042 ₁₆	20C2 ₁₆
Block 3	:	:	· :
	22th column	2055 ₁₆	20D5 ₁₆
	23th column	2056 ₁₆	20D6 ₁₆
	24th column	2057 ₁₆	20D7 ₁₆
		2058 ₁₆	
	Not used	₹	
		207F ₁₆	

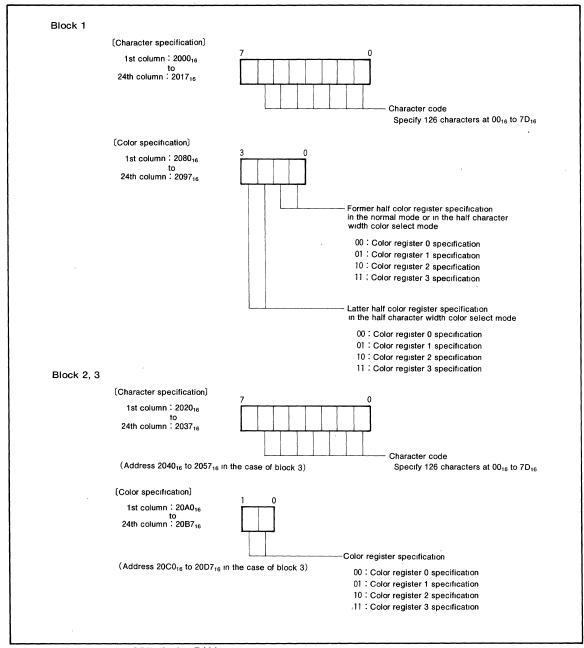


Fig. 32 Structure of the CRT display RAM

Table 9. Test character patterns 1

Address	Data	Address	Data
37E0 ₁₆	40 ₁₆	3FE0 ₁₆	F0 ₁₆
37E1 ₁₆	0416	3FE1 ₁₆	F0 ₁₆
37E2 ₁₆	0016	3FE2 ₁₆	F4 ₁₆
37E3 ₁₆	2016	3FE3 ₁₆	F0 ₁₆
37E4 ₁₆	0216	3FE4 ₁₆	F0 ₁₆
37E5 ₁₆	0016	3FE5 ₁₆	F2 ₁₆
37E6 ₁₆	1016	3FE6 ₁₆	F0 ₁₆
37E7 ₁₆	0116	3FE7 ₁₆	F0 ₁₆
37E8 ₁₆	8016	3FE8 ₁₆	F0 ₁₆
37E9 ₁₆	0816	3FE9 ₁₆	F0 ₁₆
37EA ₁₆	0016	3FEA ₁₆	F8 ₁₆
37EB ₁₆	4016	3FEB ₁₆	F0 ₁₆
37EC ₁₆	0416	3FEC ₁₆	F0 ₁₆
37ED ₁₆	0016	3FED ₁₆	F4 ₁₆
37EE ₁₆	2016	3FEE ₁₆	F0 ₁₆
37EF ₁₆	0216	3FEF ₁₆	F0 ₁₆

Table 10. Test character patterns 2

Address	Data	Address	Data
37F0 ₁₆	0016	3FF0 ₁₆	F0 ₁₆
37F1 ₁₆	0016	3FF1 ₁₆	F0 ₁₆
37F2 ₁₆	0016	3FF2 ₁₆	F0 ₁₆
37F3 ₁₆	0016	3FF3 ₁₆	F0 ₁₆
37F4 ₁₆	0016	3FF4 ₁₆	F0 ₁₆
37F5 ₁₆	0016	3FF5 ₁₆	F0 ₁₆
37F6 ₁₆	0016	3FF6 ₁₆	F0 ₁₆
37F7 ₁₆	0016	3FF7 ₁₆	F0 ₁₆
37F8 ₁₆	0016	3FF8 ₁₆	F0 ₁₆
37F9 ₁₆	0016	3FF9 ₁₆	F0 ₁₆
37FA ₁₆	0016	3FFA ₁₆	F0 ₁₆
37FB ₁₆	0016	3FFB ₁₆	F0 ₁₆
37FC ₁₆	0016	3FFC ₁₆	F0 ₁₆
37FD ₁₆	0016	3FFD ₁₆	F0 ₁₆
37FE ₁₆	0016	3FFE ₁₆	F0 ₁₆
37FF ₁₆	0016	3FFF ₁₆	F0 ₁₆

(5) Color Registers

The color of a displayed character can be specified by setting the color to one of the four color registers (CO0 to CO3: addresses $00E6_{16}$ to $00E9_{16}$) and then specifying that color register with the CRT display RAM.

There are four color outputs: R, G, B, and I. By using a combination of these outputs, it is possible to set 2^4 -1 (when no output) = 15 colors. However, because only four color registers are available, up to four colors can be displayed at one time.

R, G, B, and I outputs are set by using bits 0 to 3 in the color register. Bit 4 in the color register is used to set a character or blank output; bit 5 is used to specify whether a character output or blank output. Figure 33 shows the structure of the color register.

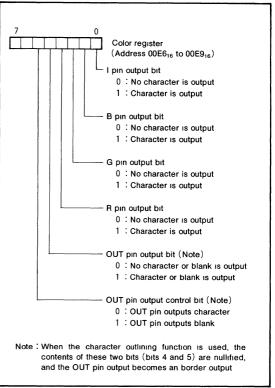


Fig. 33 Structure of color registers

(6) Half Character Width Color Select Mode By setting "1" to bit 4 in the CRT control register (address 00EA₁₆) it is possible to specify colors in units of a half character size (vertical 16 dots×horizontal 6 dots) for characters in block 1 only.

In the half character width color select mode, colors of display characters in block 1 are specified as follows:

- ①The left half of the character is set to the color of the color register that is specified by bits 0 and 1 at the color register specifying addresses in the CRT display RAM (addresses 2080₁₆ to 2097₁₆).
- ②The right half of the character is set to the color of the color register that is specified by bits 2 and 3 at the color register specifying address in the CRT display RAM (addresses 2080₁₆ to 2097₁₆).

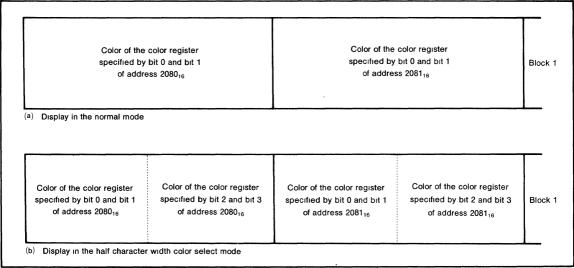


Fig. 34 Difference between normal color select mode and half character width color select mode

(7) Multiline Display

The M37250M6-XXXSP can normally display three lines on the CRT screen by displaying three blocks at different horizontal positions.

In addition, it allows up to 16 lines to be displayed by using a CRT interrupt and display block counter.

The CRT interrupt works in such a way that when display of one block is terminated, an interrupt request is generated. In other words, character display for a certain block is initiated when the scanning line reaches the display position for that block (specified with vertical and horizontal position registers) and when the range of that block is exceeded, an interrupt is applied.

The display block counter is used to count the number of blocks that have just been displayed. Each time the display of one block is terminated, the contents of the counter are incremented by one.

For multiline display, it is necessary to enable the CRT interrupt (by clearing the interrupt disable flag to "0" and setting the CRT interrupt enable bit=bit 4 at address 00FE₁₆) to "1"), then execute the following processing in the CRT interrupt handling routine.

- (1)Read the value of the display block counter.
- ②The block for which display is terminated (i.e., the cause of CRT interrupt generation) can be determined by the value read in ①.
- ③ Replace the display character data and display position of that block with the character data (contents of CRT display RAM) and display position (contents of vertical position and horizontal position registers) to be displayed next.

Figure 36 shows the structure of the display block counter.

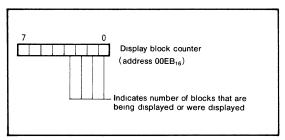


Fig. 36 Structure of display block counter

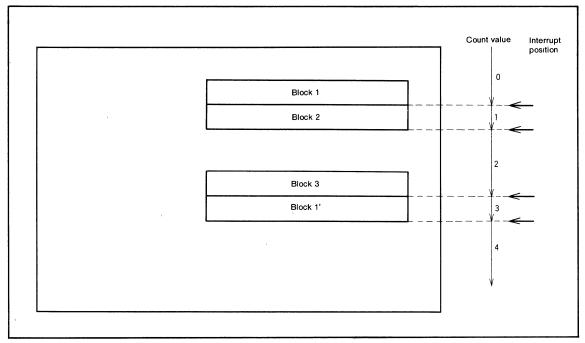


Fig. 35 Timing of CRT interrupt and count value of display block counter

(8) Scanning Line Double Count Mode

One dot in a displayed character is normally shown by one scanning line. In the scanning line double count mode, one dot can be shown by two scanning lines. As a result, the displayed dot is extended two times the normal size in the vertical direction only. (That is to say, the height of a character is extended twofold.)

In addition, because the scanning line count is doubled, the display start position of a character is also extended two-fold in the vertical direction. In other words, whereas the contents set in the vertical position register in the normal mode are 128 steps from 00_{16} to $7F_{16}$, or four scanning lines per step, the number of steps in the scanning line double count mode is 64 from 00_{16} to $3F_{16}$, or eight scanning lines per step.

If the contents of the vertical position register for a block are set in the address range of 40_{16} to $7F_{16}$ in the scanning line double count mode, that block cannot be displayed (not output to the CRT screen).

In the scanning line double count mode can be specified by setting bit 6 in the CRT control register (address $00EA_{16}$) to "1".

Because this function works in units of screen, even when the mode is changed the mode about the scanning line count during display of one screen, the double count mode only becomes valid from the time the next screen is displayed.

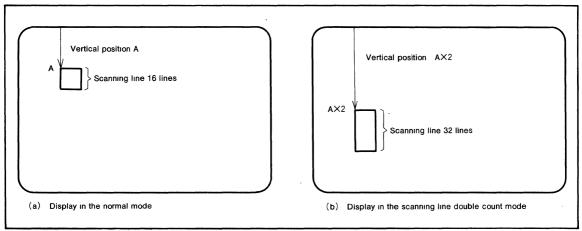


Fig. 37 Display in the normal mode and in the scanning line double count mode

(9) Character Border Function

A border of a one clock (one dot) equivalent size can be added to a character to be displayed in both horizontal and vertical directions.

The border is output from the OUT pin. In this case, bits 4 and 5 in the color register (contents output from the OUT pin) are nullified, and the border is output from the OUT pin instead.

Border can be specified in units of block by using the border select register (address $00E5_{16}$). Table 11 shows the relationship between the values set in the border select register and the character border function. Figure 39 shows the structure of the border select register.

Table 11. The relationship between the value set in the border selection register and the character border function

Border selection register		Firedom	Francis of Asia		
MDn1	MDn0	Functions	Example of output		
~	0	Name of	R, G, B, I output		
X	0	Normal	OUT output		
0	1	Border including character	R, G, B, I output		
U			OUT output		
1	1	Border not including character	R, G, B, I output		
ı	1		OUT output		

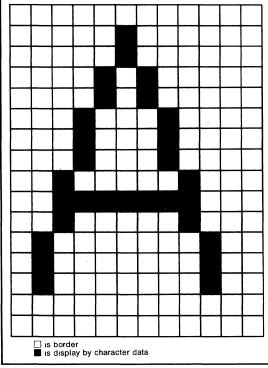


Fig. 38 Example of border

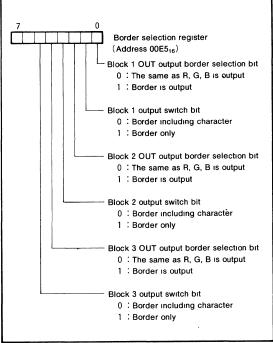


Fig. 39 Structure of border selection register

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for FREQUENCY SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

(10) CRT Output Pin Control

CRT output pins R, G, B, I, and OUT are respectively shared with port P5₂, P5₃, P5₄, P5₅, and P5₆. The output signal can control by port P5 direction register (address $00CB_{16}$) for each port. At reset, because the port P5 direction register is reset, CRT output pins R, G, B, I, and OUT become CRT signal (R, G, B, I, and OUT) output polarity. Bits 0 to 4 of CRT port control register (address $00EC_{16}$) can determine H_{SYNC} and V_{SYNC} input polarity and R, G, B, I, and OUT output polarity.

R, G, B, and OUT signal output can be switched to MUTE signal output. MUTE signal can color all displaying area of CRT.

The following is the explain of MUTE signal at MUTE signal output from B output pin for example (refer to Figure 40).

When the MUTE signal is output from B output pin, the all displaying area of CRT is colored blue. Then, a character data is output from R output pin, for example. If B output pin and R output pin are set to "Character is output" by color register at the character "I" output, the output character is colored "RED" mixed "BLUE"

In this case, OUT pin output is not influenced.

At the character "O" output, if only R output pin is set to "Character is output", the output character is colored "RED" only that is not mixed "BLUE".

However at above case, the OUT output pin is necessary to set "Character is output".

The display screen can be also clear by setting the OUT pin to MUTE output. In this case, the MUTE signal is output from OUT pin, that is not influence the setting about OUT pin by CRT display RAM.

R, G, and B output signals are controlled by bits 5 to 7 of CRT port control register, and OUT output signal is controlled by bit 7 (CS7) of character size register. Then, I output pin don't have MUTE output function.

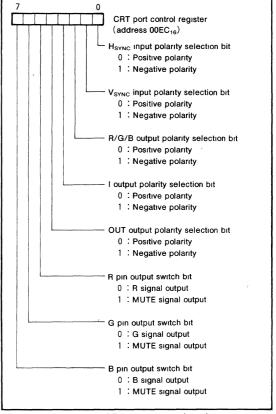


Fig. 41 Structure of CRT port control register

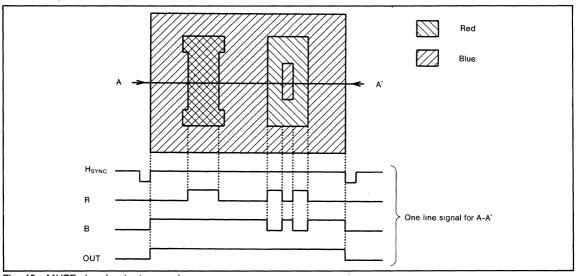


Fig. 40 MUTE signal output example

INTERRUPT INTERVAL DETERMINATION FUNCTION

The M37250M6-XXXSP incorporates an interrupt interval determination circuit. This interrupt interval determination circuit has an 8-bit binary counter as shown in Figure 42. Using this counter, it determines a duration of time from the rising transition (falling transition) of an input signal pulse on the INT1 or INT2 to the rising transition (falling transition) of the signal pulse that is input next.

The following describes how the interrupt interval is determined.

- The interrupt input to be determined (INT1 input or INT2 input) is selected by using bit 2 in the interrupt interval determination control register (address 00D8₁₆). When this bit is cleared to "0", the INT1 input is selected; when the bit is set to "1", the INT2 input is selected.
- 2. When the INT1 input is to be determined, the polarity is selected by using bit 3 in the interrupt interval determination control register; when the INT2 input is to be determined, the polarity is selected by using bit 4 in the interrupt interval determination control register. When the relevant bit is cleared to "0", determination is made of the interval of a positive polarity (rising

- transition); when the bit is set to "1", determination is made of the interval of a negative polarity (falling transition).
- 3. The reference clock is selected by using bit 1 in the interrupt interval determination control register. When the bit is cleared to "0", a 64µs clock is selected; when the bit is set to "1", a 32µs clock is selected (based on an oscillation frequency of 4MHz in either case).
- Simultaneously when the input pulse of the specified polarity (rising or falling transition) occurs on the INT1 pin (or INT2 pin), the 8-bit binary counter starts counting up with the selected reference clock (64μs or 32 μs).
- 5. Simultaneously with the next input pulse, the value of the 8-bit binary counter is loaded into the determination register (address 00D7₁₆) and the counter is immediately reset (00₁₆). The reference clock is input in succession even after the counter is reset, and the counter restarts counting up from "00₁₆"
- 6. When count value "FE₁₆" is reached, the 8-bit binary counter stops counting. Then, simultaneously when the reference clock is input next, the counter sets value "FF₁₆" to the determination register.

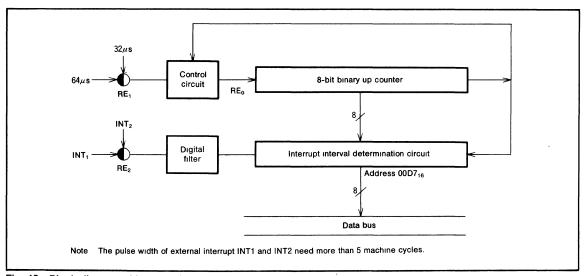


Fig. 42 Block diagram of interrupt interval determination circuit

MITSUBISHI FLECTRIC

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for FREQUENCY SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

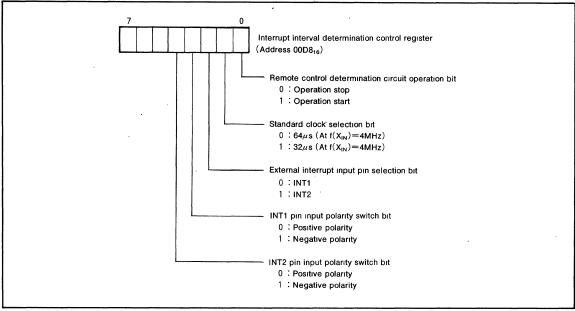
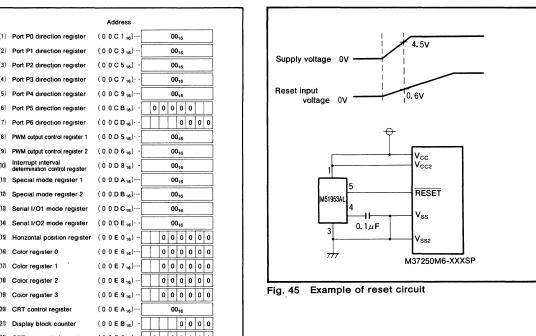
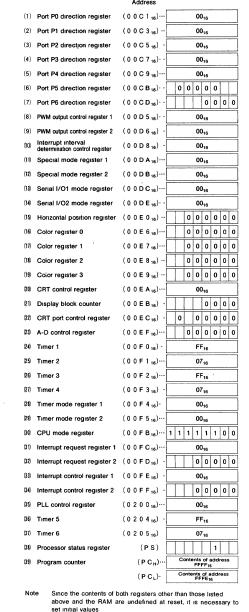


Fig. 43 Structure of interrupt interval determination control register


SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for FREQUENCY SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER


RESET CIRCUIT

The M37250M6-XXXSP is reset according to the sequence shown in Figure 46. It starts the program from the address formed by using the content of address FFFF₁₆ as the high order address and the content of the address FFFE₁₆ as the low order address, when the $\overline{\text{RESET}}$ pin is held at "L" level for no less than $2\mu s$ while the power voltage is $5V \pm 10\%$

and the crystal oscillator oscillation is stable and then returned to "H" level. The internal initializations following reset are shown in Figure 44.

An example of the reset circuit is shown in Figure 45. The reset input voltage must be kept below 0.6V until the supply voltage surpasses 4.5V.

At reset, "0" is read from all bits which is not used

Fig. 44 Internal state of microcomputer at reset

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for FREQUENCY SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

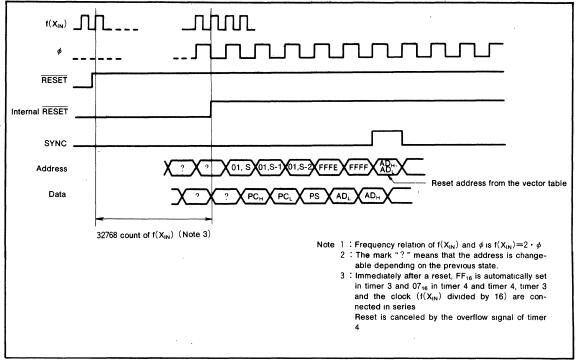


Fig. 46 Timing diagram at reset

I/O PORTS

(1) Port P0

Port P0 is an 8-bit I/O port with CMOS output.

As shown in the SFR memory map (Figure 3), port P0 can be accessed at zero page memory address 00CO₁₆.

Port P0 has a direction register (address 00C1₁₆) which can be used to program each individual bit as input ("0") or as output ("1"). If the pins are programmed as output, the output data is latched to the port register and then output. When data is read from the output port the output pin level is not read, only the latched data in the port register is read. This allows a previously output value to be read correctly even though the output voltage level is shifted up or down. Pins set as input are in the floating state and the signal levels can thus be read. When data is written into the input port, the data is latched only to the port latch and the pin still remains in the floating state.

Depending on the contents of the processor mode bits (bit 0 and bit 1 at address 00FB₁₆), three different modes can be selected; single-chip mode, memory expansion mode and microprocessor mode.

In these modes it functions as address $(A_7 \text{ to } A_0)$ output port (excluding single-chip mode). For more details, see the processor mode information.

(2) Port P1

In single-chip mode, port P1 has the same function as port P0. In other modes, it functions as address (A_{15} to A_{8}) output port.

Refer to the section on processor modes for details.

(3) Port P2

In single-chip mode, port P2 has the same function as port P0. Port P2 $_4$ to P2 $_7$ are in common with PWM output pins PWM4 to 7. In other modes, it functions as data (D $_0$ to D $_7$) input/output port. Refer to the section on processor modes for details

(4) Port P3

Port P3 is a 7-bit I/O port with function similar to port P0, but the output structure of $P3_0$, $P3_1$ is CMOS output and $P3_2$ to $P3_6$ is N-channel open drain.

 $P3_2$, $P3_3$ are in common with the external clock input pins of timer 2 and 3.

P3₄, P3₆ are in common with the external interrupt input pins INT1, INT2 and P3₅, P3₆ are in common with the analog input pins of A-D converter A-D1, A-D2.

In the microprocessor mode or the memory expansion mode, P30, P31 works as R/\overline{W} signal output pin and SYNC signal output pin.

(5) Port P4

Port P4 is an 8-bit I/O port with function similar to port P0, but the output structure is N-channel open drain output.

All pins have program selectable dual functions. When a serial I/O1 function is selected, P4₀ to P4₃ work as input/output pins of serial I/O1. When a serial I/O2 function is selected, P4₄ to P4₇ work as input/output pins of serial I/O2.

In the special serial I/O mode, P4₄, P4₅ work as SDA, SCL pins. P4₆, P4₇ are in common with PWM8 and 9 output pins.

(6) OSC1, OSC2 pins

Clock input/output pins for CRT display function.

(7) H_{SYNC}, V_{SYNC} pins

 H_{SYNC} is a horizontal synchronizing signal input pin for CRT display.

 $V_{\mbox{\scriptsize SYNC}}$ is a vertical synchronizing signal input pin for CRT display.

(8) R, G, B, I, OUT pins

This is a 5-bit output pin for CRT display and in common with $P5_2$ to $P5_6$.

(9) Port P6

Port P6 is a 4-bit I/O port with function similar to port P0, but the output structure is N-channel open drain output.

This port is in common with 8-bit PWM output pin PWM0 to PWM3.

(10) φ pin

The internal system clock (1/2 the frequency of the oscillator connected between the X_{IN} and X_{OUT} pins) is output from this pin. If an STP or WIT instruction is executed, output stops after going "H".

(11) MO pin

This pin outputs the mode switching signal of prescalor.

The output structure is CMOS output.

(12) P/D pin

Phase detector output pin.

(13) F_{IN} pin

The clock from prescalor is input to this pin.

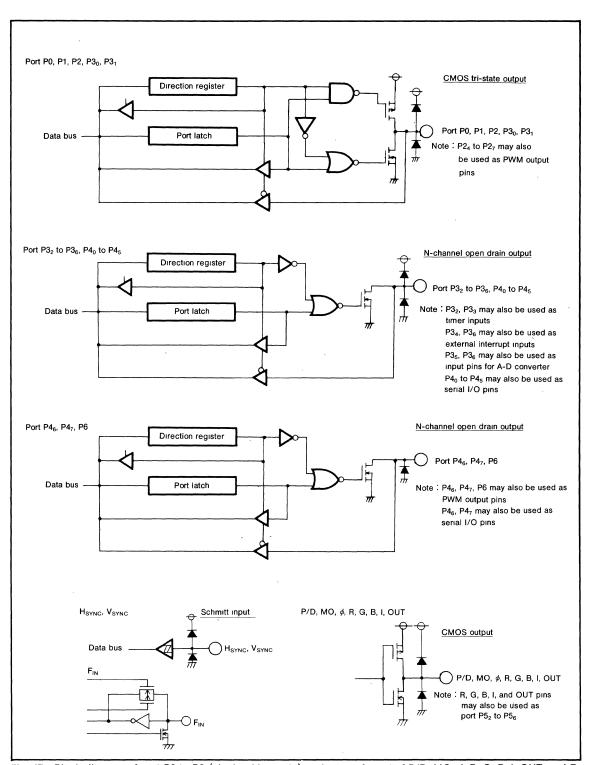


Fig. 47 Block diagram of port P0 to P6 (single-chip mode) and output format of P/D, MO, ϕ , R, G, B, I, OUT, and F_{IN}

PROCESSOR MODE

By changing the contents of the processor mode bit (bit 0 and 1 at address 00FB₁₆), three different operation modes can be selected; single-chip mode, memory expansion mode, and microprocessor mode.

In the memory expansion mode and the microprocessor mode, ports P0 to P3 can be used as address, and data input/output pins.

Figure 49 shows the functions of ports P0 to P3.

The memory map for the single-chip mode is illustrated in Figure 2 and for other modes, in Figure 48.

By connecting CNV $_{SS}$ to V $_{SS}$, all three modes can be selected through software by changing the processor mode bits. Connecting CNV $_{SS}$ to V $_{CC}$ automatically forces the microcomputer into microprocessor mode.

The three different modes are explained as follows:

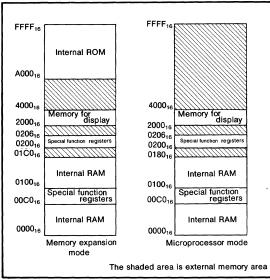


Fig. 48 Example memory area in processor mode

(1) Single-chip mode (00)

The microcomputer will automatically be in the single-chip mode when started from reset, if CNV_{SS} is connected to V_{SS} . Ports P0 to P3 will work as original I/O ports.

(2) Memory expansion mode (01)

The microcomputer will be placed in the memory expansion mode when CNV_{SS} is connected to V_{SS} and the processor mode bits are set to "01". This mode is used to add external memory when the internal memory is not sufficient.

In this mode, port P0 and port P1 are as a system address bus and the original I/O pin function is lost.

Port P2 becomes the data bus of D_7 to D_0 (including instruction code) and loses its normal I/O function. Port $P3_0$ and $P3_1$ works as R/\overline{W} and SYNC.

(3) Microprocessor mode [10]

When CNV_{SS} is connected to V_{SS} and the processor mode bits are set to "10", or after connecting CNV_{SS} to V_{CC} and initiating a reset the microcomputer will automatically default to this mode. In this mode, the internal ROM is inhibited so the external memory is required. Other functions are same as the memory expansion mode. The relationship between the input level of CNV_{SS} and the processor mode is shown in Table 14.

Note: Use the M37250M6-XXXSP in the microprocessor mode or the memory expansion mode only at program development.

The standards is assured only in the single-chip mode.

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for FREQUENCY SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

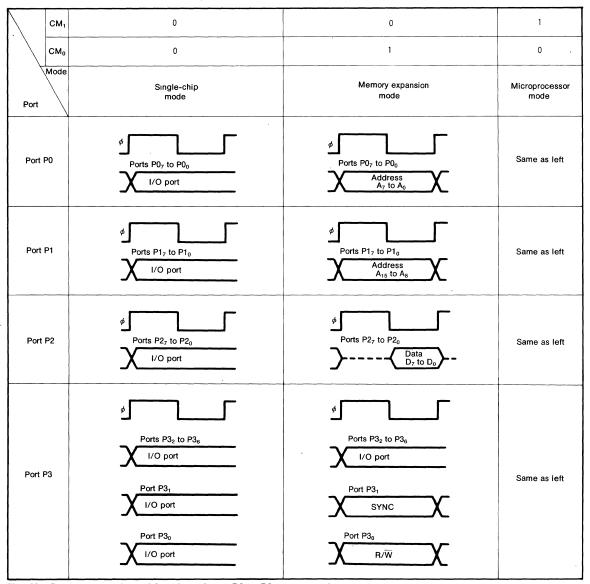


Fig. 49 Processor mode and function of port P0 to P3

Table 14. Relationship between CNV_{SS} pin input level and processor mode

CNV _{SS}	Mode	Explanation	
V _{ss}	Single-chip modeMemory expansion mode	The single-chip mode is set by the reset. All modes can be selected by changing the processor mode bit with the program.	
	Microprocessor mode		
V _{cc}	Microprocessor mode	The microprocessor mode is set by the reset	

CLOCK GENERATING CIRCUIT

The built-in clock generating circuits are shown in Figure 52.

When an STP instruction is executed, the internal clock ϕ stops oscillating at "H" level. At the same time, timer 3 and timer 4 are connected automatically and FF₁₆ is set in the timer 3, 07₁₆ is set in the timer 4, and timer 3 count source is forced to $f(X_{IN})$ divided by 16. This connection is cleared when an external interrupt is accepted or the reset is in, as discussed in the timer section.

The oscillator is restarted when an interrupt is accepted. However, the clock ϕ keeps its "H" level until timer 4 overflows.

This is because the oscillator needs a set-up period if a ceramic or a quartz crystal oscillator is used.

When the WIT instruction is executed, the clock ϕ stops in the "H" level but the oscillator continues running. This wait state is cleared when an interrupt is accepted. Since the oscillation does not stop, the next instructions are executed at once.

To return from the stop or the wait status, the interrupt enable bit must be set to "1" before executing STP or WIT instruction.

The circuit example using a ceramic oscillator (or a quartz crystal oscillator) is shown in Figure 50.

The constant capacitance will differ depending on which oscillator is used, and should be set to the manufactures suggested value.

The example of external clock usage is shown in Figure 51 X_{IN} is the input, and X_{OUT} is open.

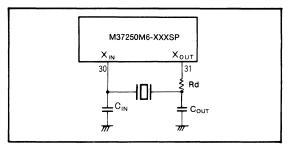


Fig. 50 External ceramic resonator circuit

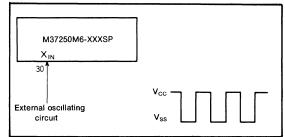


Fig. 51 External clock input circuit

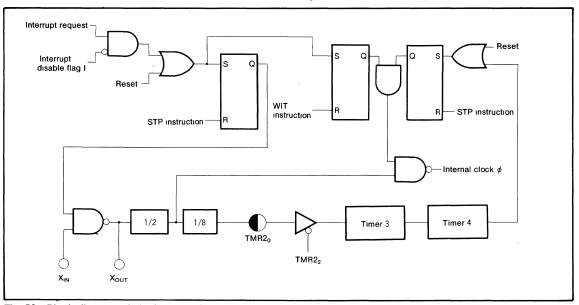


Fig. 52 Block diagram of clock generating circuit

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for FREQUENCY SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

PROGRAMMING NOTES

- (1) The frequency ratio of the timer is 1/(n+1).
- (2) Even though the BBC and BBS instructions are executed after the interrupt request bits are modified (by the program), those instruction are only valid for the contents before the modification. Also, at least one instruction cycle must be used (such as a NOP) between the modification of the interrupt request bits and the execution of the BBC and BBS instructions.
- (3) After the ADC and SBC instructions are executed (indecimal mode), one instruction cycle (such as a NOP) is needed before the SEC, CLC, or CLD instructions are executed.
- (4) A NOP instruction must be used after the execution of a PLP instruction.
- (5) In order to avoid noise and latch-up, connect a bypass capacitor ($\approx 0.1 \mu F$) directly between the V_{CC} pin and V_{SS} pin using a heavy wire.

DATA REQUIRED FOR MASK ORDERING

Please send the following data for mask orders.

- (1) mask ROM order confirmation form
- (2) mark specification form
- (3) ROM data EPROM 3 sets

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for FREQUENCY SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
V _{CC}	Supply voltage		-0.3 to 6	V
Vi	Input voltage CNV _{SS}	7	-0.3 to 6	V
	Input voltage P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ ,	With respect to V _{SS}		
V_i	P3 ₀ -P3 ₆ , P4 ₀ -P4 ₇ , P6 ₀ -P6 ₃ ,	Output transistors are at "off" state	-0.3 to $V_{CC}+0.3$	V
	H _{SYNC} , V _{SYNC} , RESET, F _{IN}			
	Output voltage P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ ,			
V_{o}	P3 ₀ -P3 ₆ , P4 ₀ -P4 ₅ ,		-0.3 to $V_{CC}+0.3$	V
	R, G, B, I, OUT, P/D, MO, X _{OUT} , OSC2			
Vo	Output voltage P46, P47, P60-P63		-0.3 to 13.0	V
	Circuit current R, G, B, I, OUT, P0 ₀ -P0 ₇ ,			,
I _{OH}	P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ ,		0 to 1(Note 1)	mA
	P3 ₀ , P3 ₁ , P/D, MO	1		
	Circuit current R, G, B, I, OUT, P0 ₀ -P0 ₇ ,			
I _{OL1}	P1 ₀ -P1 ₇ , P2 ₀ -P2 ₃ ,		0 to 2(Note 2)	mA
	P3 ₀ -P3 ₆ , P4 ₀ -P4 ₃ , P/D, MO		1	
I _{OL2}	Circuit current P6 ₀ -P6 ₃ , P4 ₆ , P4 ₇		0 to 1(Note 2)	·mA
I _{OL3}	Circuit current P2 ₄ -P2 ₇		0 to 10(Note 3)	mA
I _{OL4}	Circuit current P44, P45		0 to 3(Note 2)	mA
Pd	Power dissipation	T _a =25℃	550	mW
Topr	Operating temperature		—10 to 70	°C
Tstg	Storage temperature		-40 to 125	°C

RECOMMENDED OPERATING CONDITIONS ($V_{cc}=5V\pm10\%$, $T_a=-10$ to 70% unless otherwise noted)

0	Deservator		Limits			Unit
Symbol	Parameter		Mın.	Тур	Max	Unit
V _{CC}	Supply voltage(Note 4) During the PLL, CRT operation			5.0	5.5	٧
V _{ss}	Supply voltage		0	0	0	V
V _{IH}	"H" input voltage P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ -P3 ₆ , P4 ₀ -P4 ₃ , P4 ₆ ,P4 ₇ , P6 ₀ -P6 ₃ , H _{SYNC} , V _{SYNC} , RESET, X _{IN} , OSC1				V _{cc}	V
VIH	"H" input voltage P44, P45		0.7V _{CC}		V _{cc}	V
V _{IL}	"L" input voltage P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ , P3 ₁ , P3 ₅ , P4 ₀ , P4 ₃ -P4 ₅ , P4 ₇ , P6 ₀ -P6 ₃				0.4V _{CC}	V
V _{IL}	"L" input voltage P3 ₂ -P3 ₄ , P3 ₆ , P4 ₁ , P4 ₂ , P4 ₆ , H _{SYNC} , V _{SYNC} , RESET, X _{IN} , OSC1				0.2V _{CC}	٧
I _{OH}	"H" average output current (Note 1) R,G,B,I,OUT,P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ , P3 ₁ , P/D, MO				1	mA
I _{OL1}	"L" average output current (Note 2) R,G,B,I,OUT,P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₃ , P3 ₀ -P3 ₆ , P4 ₀ -P4 ₃ , P/D, MO				2	mA
I _{OL2}	"L" average output current (Note 2) P60-P6	i ₃ , P4 ₆ , P4 ₇			1	mA
I _{OL3}	"L" average output current (Note 3) P24-P2	l ₇			10	mA
I _{OL4}	"L" average output current (Note 2) P44, P45				3	mA
f _{CPU}	Oscillating frequency (for CPU operation)(Note 5)			4.0	4. 4	MHz
f _{CRT}	Oscillating frequency (for CRT display)			7.0	8.0	MHz
fhs	Input frequency P3 ₂ -P3 ₄ , P3 ₆ , P4 ₅				100	kHz
fhs	Input frequency P4 ₁				1	MHz
fhs	Input frequency F _{IN} V _I =0. 6 V _{P-P}	Sine wave	1.0		15	MHz
		Square wave	0.1		15	MHz

Note 1: The total current that flows out of the IC should be 20mA (max.)

- $2\,$: The total of $I_{OL1},\,I_{OL2},$ and I_{OL4} should be 30mA (max).
- 3: The total of IoL of port P24-P27 should be 20mA (max).
- 4 : Apply 0.15μF or grater capacitance externally between the V_{CC}-V_{SS} power supply pins so as to reduce power source noise Apply 0.15μF or grater capacitance externally between the V_{CC2}-V_{SS2} as same
 - Also apply 0. $15\mu F$ or greater capacitance externally between the $V_{CC}-CNV_{SS}$ pins
- 5 : Use the quartz crystal oscillator for CPU oscillation circuit

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for FREQUENCY SYNTHESIZER with ON-SCREEN DISPLAY CONTROLLER

ELECTRIC CHARACTERISTICS (V_{cc} =5 $V\pm10\%$, V_{ss} =0V, T_a =-10 to 70°C, f(X_{IN})=4MHz unless other wise noted)

Symbol	Parameter	Test conditions		Limits		Unit
- Oyiiiboi	rarancio	Test conditions	Min	Тур	Max	Oilit
		V_{CC} =5.5V, $f(X_{IN})$ =4MHz CRT OFF		10	20	
Icc	Supply current	V_{CC} =5.5V, $f(X_{IN})$ =4MHz CRT ON, PLL ON		25	35	mA
		At wait mode V _{CC} =5.0V		500	800	μA
		At stop mode V _{CC} =5.0V		1	10	μA
V _{OH}	"H" output voltage P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ , P3 ₁ , R, G, B, I, OUT, P/D, MO	$V_{CC} = 4.5V$ $I_{OH} = -0.5 \text{mA}$	2.4			v
	"L" output voltage P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₃ , P3 ₀ -P3 ₆ , P4 ₀ -P4 ₃ , R, G, B, I, OUT, P/D, MO	V _{CC} =4.5V I _{OL} =0.5mA			0. 4	
VoL	"L" output voltage P6 ₀ -P6 ₃ , P4 ₆ , P4 ₇	V _{CC} =4.5V I _{OL} =0.5mA			0.4	V
	"L" output voltage P2 ₄ -P2 ₇	V _{CC} =4.5V I _{OL} =10mA			3.0	
	"L" output voltage P4 ₄ , P4 ₅	V _{CC} =4.5V			0.4	
	Hysteresis RESET	V _{cc} =5.0V		0.5	0.7	
$V_{T+}-V_{T-}$	Hysteresis (Note) H _{SYNC} , V _{SYNC} , P3 ₂ -P3 ₄ , P3 ₆ , P4 ₁ , P4 ₂ , P4 ₄ -P4 ₆	V _{CC} =5.0V		0.5	1.3	V
	"H" input leak current RESET, P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ -P3 ₆ , P4 ₀ -P4 ₅	V _{CC} =5.5V V _O =5.5V			5	
I _{OZH}	"H" input leak current P6 ₀ -P6 ₃ , P4 ₆ , P4 ₇	V _{cc} =5.5V V _o =12V			10	μА
	"H" input leak current P/D	V _{cc} =5.5V V _o =5.5V			1	
l _{OZL}	"L" input leak current RESET, P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ -P3 ₆ , P4 ₀ -P4 ₇ , P6 ₀ -P6 ₃	V _{CC} =5.5V V _O =0V			5	μΑ
	"L" input leak current P/D	V _{cc} =5.5V V _o =0V			1	

Note 1. P3₂-P3₄, P3₆ have the hysteresis when these pins are used as interrupt input pins or timer input pins. P4₁, P4₂, P4₄-P4₆ have the hysteresis when these pins are used as serial I/O ports

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for ON-SCREEN DISPLAY

DESCRIPTION

The M37260M6-XXXSP is a single-chip microcomputer designed with CMOS silicon gate technology. It is housed in a 52-pin shrink plastic molded DIP. This single-chip microcomputer is useful for the high-tech on-screen display system for TVs.

In addition to their simple instruction sets, the ROM, RAM, and I/O addresses are placed on the same memory map to enable easy programming.

FEATURES

•	Number of ba	sic instructions····· 69
•	Memory size	ROM24576 bytes
		RAM 320 bytes
		CRT ROM ······20480 bytes
		CRT RAM····· 280 bytes
•	Instruction exe	ecution time
	······0.5 <i>μ</i> s	(minimum instructions at 8MHz frequency)
•	Single power	supply·····5V±10%
•	Power dissipa	
	(normal oper	ation mode at 4MHz frequency)
	•••••	············ 110mW (V _{CC} =5.5V, CRT display)
•		sting ····· 96 levels (Max.)
•	Interrupt	11 types, 11 vectors
•	8-bit timer ·····	4
•	Programmable	
	(Ports P0, F	P1, P2, P3)······ 30
•	Output port (F	Port P4)6
•	Input port (Po	rt P5) ······7
•	Serial I/O (ma	aximum 64-bit) ······1
•	CRT display for	
	Display cha	racters······ 40 characters×3 lines
		(25 lines max.)
		e12×20 dots or 16×20 dots
		ypes 510 types
	Character s	ize ······30 types
		(minimum dot width is 1/2 scanning line)
	Color types	Max 16 types (R, G, B, I)
	Character	unit/blank of line unit/raster can be spe-
	cified	
	Display la	
		I····· 256 levels
	Vertical	1024 levels

PIN CONFIGURATION (TOP VIEW) OSC1 → 1 52 ← V_{CC} 51 ↔ P0₀ OSC2 ← 2 50 ↔ P0₁ $H_{SYNC}/P5_0 \rightarrow \boxed{3}$ $V_{SYNC}/P5_1 \rightarrow \boxed{4}$ 49 ↔ P0₂ $MXR/P5_2 \rightarrow \boxed{5}$ 48 ↔ P0₃ 47 ↔ P0₄ $MXG/P5_3 \rightarrow \boxed{6}$ MXB/P5₄/TIM2 → 7 46 ↔ P0₅ $MXI/P5_5/TIM3 \rightarrow 8$ 45 ↔ P0₆ MXOUT/P5₆ → 9 44 ↔ P0₇ R/P4₀ ← 10 43 ↔ P1₀ 42 ↔ P1₁ G/P4₁ ← 11 B/P4₂ ← 12 41 ↔ P1₂ I/P4₃ ← 13 40 ↔ P1₃ OUT/P4₄ ← 14 39 ↔ P1₄ CSYN/P4₅ ← 15 38 ↔ P1₅ 37 ↔ P1₆ P3₁ ↔ 16 36 ↔ P1₇ P3₀ ↔ 17 35 ↔ P2₀ P3₂/INT/CS ↔ 18 P3₃/S_{RDY} ↔ 19 34 ↔ P2₁ P3₄/S_{IN}, S_{OUT}/SDA ↔ 20 33 ↔ P2₂ P3₅/S_{CLK}/SCL ↔ 21 32 ↔ P2₃ CNV_{SS} → 22 31 ↔ P2₄ RESET → 23 30 ↔ P2₅ $X_{IN} \rightarrow 24$ 29 ↔ P2₆ X_{OUT} ← 25 28 ↔ P2₇ V_{SS} → 26 27 → φ Outline 52P4B

APPLICATION

T۷

MITSUBISHI MICROCOMPUTERS

SINGLE-CHIP

8-BIT

CMOS

MICROCOMPUTER

ţ

ON-SCREEN

DISPLAY

OSC2 OSC1

Sync signal

input

I/O port P0

I/O port P3

-2829303132333435

I/O port P2

I/O port P1

Video signal

output

FUNCTIONS OF M37260M6-XXXSP

Parameter			Functions		
Number of basic instructions			69		
Instruction execution time			0.5 µs (minimum instructions, at 8MHz frequency)		
Clock frequency			8MHz (maximum)		
	ROM		24576 bytes		
Moment are	RAM		320 bytes		
Memory size	CRT ROM		20480 bytes		
	CRT RAM		280 bytes		
	P0, P1, P2	1/0	8-bit×3 (CMOS output)		
	P3 ₀ , P3 ₁	1/0	2-bit×1 (CMOS output)		
	D0 D0	1/0	4-bit×1 (can be used as serial I/O pins and external interrupt pin) (N-		
Input/Output ports	P3 ₂ —P3 ₅	1/0	channel open drain output)		
	P4	Output	6-bit×1 (can be used as R, G, B, I, OUT, and CSYN pins)(CMOS output)		
	P5	1	7-bit X1 (can be used as H _{SYNC} , V _{SYNC} , MXR, MXG, MXB, MXI, and		
	P5	Input	MXOUT pins)		
Serial I/O			64-bit (maximum)×1, Special serial I/O (8-bit)×1		
Timers			8-bit timer×4		
Subroutine nesting			96 levels (maximum)		
l=4			One external interrupt, eight internal interrupts,		
Interrupt			one software interrupt		
	Display characters		40 characters×3 lines (maximum 25 lines in program)		
	Dot structure		12×20 dots or 16×20 dots		
CRT display function	Characters types		510 types		
CRT display function	Character size	And the second s	30 types (mimimum dot width is 1/2 scanning line)		
	Color types		Max. 16 types (R, G, B, I)		
	Display layout		Holizontal 256 levels, Vertical 1024 levels		
Clock generating circuit			Two built-in circuits (externally connected ceramic or quartz crystal oscillator)		
Supply voltage			5V±10%		
	at CRT display ON		110mW (clock frequency X _{IN} =4MHz, V _{CC} =5.5V, Typ)		
Power dissipation at CRT display OFF			55mW (clock frequency X _{IN} =4MHz, V _{CC} =5.5V, Typ)		
at stop mode			1.65mW (maximum)		
Memory expansion			Possible		
Operating temperature ra	nge		−10 to 70°C		
Device structure			CMOS silicon gate process		
Package			52-pin shrink plastic molded DIP		

PIN DESCRIPTION

Pin	Name	Input/ Output	Functions	
V _{CC} , V _{SS}	Supply voltage		Power supply inputs 5V \pm 10% to V _{CC} , and 0V to V _{SS}	
CNVss	CNV _{SS}		This is connected to V_{SS} .	
RESET	Reset input	Input	To enter the reset state, the reset input pin must be kept at a "L" for more than $2\mu s$ (under normal V_{CC} conditions) If more time is needed for the crystal oscillator to stabilize, this "L" condition should be maintained for the required time.	
X _{IN}	Clock input	Input	This chip has an internal clock generating circuit. To control generating frequency, an external ceramic or a quartz crystal oscillator is connected between X_{IN} and X_{OUT} pins. If an external clock is used, the clock source should be connected the X_{IN} pin and the X_{OUT} pin should be left open.	
X _{OUT}	Clock output	Output		
φ	Timing output	Output	This is a timing output pin	
P0 ₀ P0 ₇	I/O port P0	1/0	Port P0 is an 8-bit I/O port with direction register allowing each I/O bit to be individually programmed as input or output. At reset, this port is set to input mode. The output structure is CMOS output.	
P1 ₀ —P1 ₇	I/O port P1	1/0	Port P1 is an 8-bit I/O port and has basically the same functions as port P0	
P2 ₀ -P2 ₇	I/O port P2	1/0	Port P2 is an 8-bit I/O port and has basically the same functions as port P0	
P3 ₀ —P3 ₅	I/O port P3	I/O	Port P3 is a 6-bit I/O port and has basically the same functions as port P0, but the output structure of P3 ₀ and P3 ₁ is CMOS output and the output structure of P3 ₂ —P3 ₅ is N-channel open drain P3 ₂ is in common with external interrupt input pin INT When serial I/O is used, P3 ₂ , P3 ₃ , P3 ₄ , and P3 ₅ work as $\overline{\text{CS}}$, $\overline{\text{S}}_{\text{RDV}}$, $\overline{\text{S}}_{\text{IN}}/\overline{\text{S}}_{\text{OUT}}$, and $\overline{\text{S}}_{\text{CLK}}$ pins, respectively. When special serial I/O is used, P3 ₄ and P3 ₅ work as SDA and SCL pins, respectively.	
OSC1	Clock input for CRT display	Input	There are I/O pins of the clock generating circuit for the CRT display function	
OSC2	Clock output for CRT display	Output		
H _{SYNC}	H _{SYNC} input	Input	This is a horizontal synchronizing signal input for CRT display. This pin is in common with input Port P50	
V _{SYNC}	V _{SYNC} input	Input	This is a vertical synchronizing signal input for CRT display. This pin is in common with input Port P5 ₁	
MXR, MXG, MXB, MXI, MXOUT	Video signal input for mixing	Input	These are video signal input pins. MXR, MXG, MXB, MXI, and MXOUT are in common with P5 ₂ , P5 ₃ , P5 ₄ , P5 ₅ , and P5 ₆ Also P5 ₄ and P5 ₅ are in common with external clock input pins TIM2 and TIM3	
R, G, B, I, OUT	Video signal output	Output	This is a 5-bit output pin for CRT display The output structure is CMOS output R, G, B, I, and OUT are in common with P4 ₀ , P4 ₁ , P4 ₂ , P4 ₃ , and P4 ₄	
CSYN	Composite sync signal output	Output	This is a composite sync signal output pin, and in common with output port P45	

FUNCTIONAL DESCRIPTION Central Processing Unit (CPU)

The M37260 microcomputers use the standard MELPS 740 instruction set. For details of instructions, refer to the MELPS 740 CPU core basic functions, or the MELPS 740 Software Manual.

Machine-resident instructions are as follows:

The FST and SLW instructions are not provided.

The MUL and DIV instructions are not provided.

The WIT instruction can be used.

The STP instruction can be used.

CPU Mode Register

The CPU mode register is allocated to address 00FB₁₆. Bits 0 and 1 of this register are processor mode bits. This register also has a stack page selection bit.

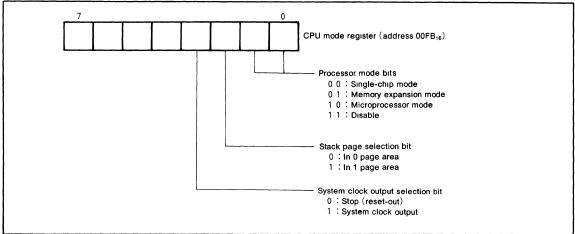


Fig. 1 Structure of CPU mode register

MEMORY

• Special Function Register (SFR) Area

The special function register (SFR) area contains the registers relating to functions such as I/O ports and timers.

• RAM

RAM is used for data storage as well as a stack area.

ROM

ROM is used for storing user programs as well as the interrupt vector area.

• RAM for display

RAM for display is used for specifing the character codes and colors to display.

· ROM for display

ROM for display is used for storing character data.

Interrupt Vector Area

The interrupt vector area is for storing jump destination addresses used at reset or when an interrupt is generated.

Zero Page

Zero page addressing mode is useful because it enables access to this area with fewer instruction cycles.

Special Page

Special page addressing mode is useful because it enables access to this area with fewer instruction cycles.

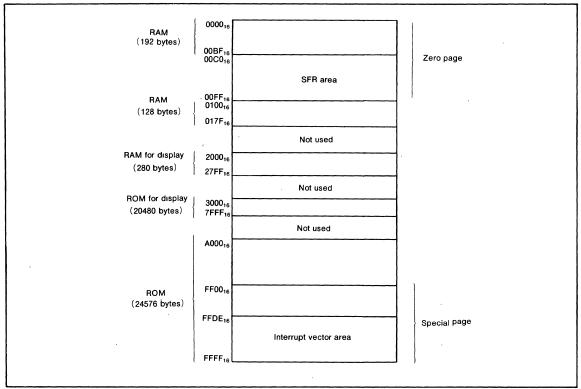


Fig. 2 Memory map

00C0 ₁₆	Port P0	00E0 ₁₆	Horizontal position register
00C1 ₁₆	Port P0 direction register	00E1 ₁₆	Vertical position register 1 (block 1)
0C2 ₁₆		00E2 ₁₆	Vertical position register 2 (block 2)
00C3 ₁₆	Port P1 direction register	00E3 ₁₆	
00C4 ₁₆	Port P2	00E4 ₁₆	Vertical position register 4 (block 1 to 3)
0C5 ₁₆	Port P2 direction register	00E5 ₁₆	Mixing circuit control register
0C6 ₁₆		00E6 ₁₆	
0C7 ₁₆	Port P3 direction register	00E7 ₁₆	
0C8 ₁₆	Port P4	00E8 ₁₆	CRT input polarity register
0C9 ₁₆	Port P4 mode register	00E9 ₁₆	Sync. generater control register
0CA ₁₆	Port P5	00EA ₁₆	CRT control register
0CB ₁₆		00EB ₁₆	Display block counter
0CC ₁₆		00EC ₁₆	CRT output polarity register
0CD ₁₆	Serial I/O mode register 1	00ED ₁₆	Wipe mode register
0CE ₁₆	Serial I/O mode register 2	00EE ₁₆	Wipe start register
0CF ₁₆	Serial I/O register 0	00EF ₁₆	
0D0 ₁₆	Serial I/O register 1	00F0 ₁₆	Timer 1
0D1 ₁₆	Serial I/O register 2	00F1 ₁₆	Timer 2
0D2 ₁₆	Serial I/O register 3	00F2 ₁₆	Timer 3
0D3 ₁₆	Serial I/O register 4	00F3 ₁₆	Timer 4
0D4 ₁₆	Serial I/O register 5	00F4 ₁₆	Timer 12 mode register
0D5 ₁₆	Serial I/O register 6	00F5 ₁₆	Timer 34 mode register
0D6 ₁₆	Serial I/O register 7	00F6 ₁₆	Special serial I/O register
0D7 ₁₆	Character size register 1 (block 1)	00F7 ₁₆	Special mode register 1
0D8 ₁₆	Character size register 2 (block 2)	00F8 ₁₆	Special mode register 2
0D9 ₁₆	Character size register 3 (block 3)	00F9 ₁₆	
0DA ₁₆	Blank control register 1 (block 1)	00FA ₁₆	
0DB ₁₆	Blank control register 2 (block 2)	00FB ₁₆	CPU mode register
0DC ₁₆	Blank control register 3 (block 3)	00FC ₁₆	Interrupt request register 1
0DD ₁₆	Block 1 interrupt occurrence position control register	00FD ₁₆	Interrupt request register 2
0DE ₁₆	Block 2 interrupt occurrence position control register	00FE ₁₆	Interrupt control register 1
0DF ₁₆	Block 3 interrupt occurrence position control register	00FF ₁₆	Interrupt control register 2

Fig. 3 SFR (Special Function Register) memory map

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for ON-SCREEN DISPLAY

INTERRUPTS

Interrupts can be caused by 10 different events consisting of two external, seven internal, and one software events. Interrupts are vectored interrupts with priorities shown in Table 1. Reset is also included in the table because its operation is similar to an interrupt.

When an interrupt is accepted, the registers are pushed, interrupt disable flag I is set, and the program jumps to the address specified in the vector table. The interrupt request bit is cleared automatically. The reset and BRK instruction interrupt can never be disabled. Other interrupts are disabled when the interrupt disable flag is set.

All interrupts except the BRK instruction interrupt have an interrupt request bit and an interrupt enable bit. The interrupt request bits are in interrupt request registers 1 and 2 and the interrupt enable bits are in interrupt control registers 1 and 2. Figure 4 shows the structure of the interrupt request registers 1 and 2 and interrupt control registers 1 and 2.

Interrupts other than the BRK instruction interrupt and reset are accepted when the interrupt enable bit is "1", interrupt request bit is "1", and the interrupt disable flag is "0". The interrupt request bit can be reset with a program, but not set. The interrupt enable bit can be set and reset with a program.

Reset is treated as a non-maskable interrupt with the highest priority. Figure 5 shows interrupts control.

Interrupt Causes

(1) V_{SYNC} and CRT interrupts

The V_{SYNC} interrupt is an interrupt request synchronized with the vertical synchronization signal.

The CRT interrupt is generated after character block display to the CRT is completed.

(2) INT interrupt

With an external interrupt input, the system detects that the level of a pin changes from "L" to "H" or from "H" to "L", and generates an interrupt request. The input active edge can be selected by bit 5 of the CRT input active edge register (address 00E8₁₆): when this bit is "0", a change from "L" to "H" is detected; when it is "1", a change from "H" to "L" is detected. Note that all bits are cleared to "0" at reset.

(3) Timer 1, 2, 3 and 4 interrupts An interrupt is generated by an overflow of timer 1, 2, 3 or 4

(4) Serial I/O interrupt

This is an interrupt request from the clock-synchronized serial I/O function.

Note that serial I/O or special serial I/O is selected by bit 3 of the serial I/O mode register 2 (address $00CE_{16}$).

(5) 1 ms interrupt

This interrupt is generated regularly with a $1024\mu s$ period. When the X_{IN} clock is 4MHz, set bits 7 and 4 of the sync generator control register to "0". When the X_{IN} clock is 8MHz, set bit 7 of the sync generator control register to "0" and bit 4 to "1"

(6) BRK instruction interrupt

This interrupt has the lowest priority of all software interrupts. It does not have a corresponding interrupt enable bit, and it is not affected by the interrupt disable flag (non-maskable).

Table 1. Interrupt vector address and priority.

Event	Priority	Vector addresses	Remarks
RESET	1	FFFF ₁₆ , FFFE ₁₆	Non-maskable
CRT interrupt	2	FFFD ₁₆ , FFFC ₁₆	
INT interrupt	3	FFFB ₁₆ , FFFA ₁₆	External interrupt
Serial I/O interrupt	4	FFF9 ₁₆ , FFF8 ₁₆	
1 ms interrupt	5	FFF7 ₁₆ , FFF6 ₁₆	
Timer 4 interrupt	6	FFF5 ₁₆ , FFF4 ₁₆	
V _{SYNC} interrupt	7	FFF3 ₁₆ , FFF2 ₁₆	External interrupt
Timer 3 interrupt	8	FFF1 ₁₆ , FFF0 ₁₆	
Timer 2 interrupt	9 ,	FFEF ₁₆ , FFEE ₁₆	
Timer 1 interrupt	10	FFED ₁₆ , FFEC ₁₆	
BRK instruction interrupt	11	FFDF ₁₆ , FFDE ₁₆	Non-maskable software interrupt

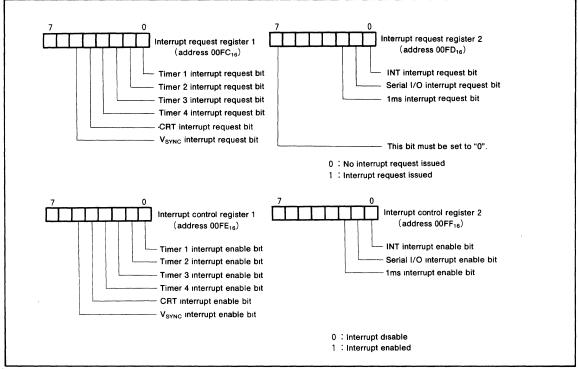


Fig. 4 Structure of registers related to interrupt

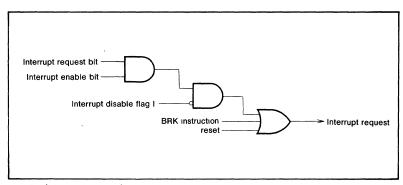


Fig. 5 Interrupt control

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for ON-SCREEN DISPLAY

TIMER

The M37260M6-XXXSP has four timers; timer 1, timer 2, timer 3 and timer 4. All of timers are 8-bit structure and have 8-bit latches.

A block diagram of timer 1 through 4 is shown in Figure 7. All of the timers are down count timers and their division ratio are 1/(n+1), where n is the contents of timer latch. The same value is set to timer by writing the count value to the latch (addresses $00F0_{16}$ to $00F3_{16}$: timer 1 to timer 4) When a timer reaches " 00_{16} " and the next count pulse is input to a timer, a value which is the contents of the reload latch are loaded into the timer. The timer interrupt request bit is set at the next count pulse after the timer reaches " 00_{16} ".

The contents of each timer is shown in following.

(1) Timer 1

Either $f(X_{IN})$ divided by 16 or a 1024 μ s clock can be selected as the count source of timer 1.

(When the X_{IN} clock is 4MHz, set bits 7 and 4 of the sync generator control register (address $00E9_{16}$) to "0". When the X_{IN} clock is 8MHz, set bit 7 of the sync generator control register to "0" and bit 4 to "1".) When bit 0 of the timer 12 mode register (address $00F4_{16}$) is "0", $f(X_{IN})$ divided by 16 is selected; when it is "1", the $1024\mu s$ clock is selected.

Timer 1 interrupt request is occurred with timer 1 overflow

(2) Timer 2

 $f(X_{\rm IN})$ divided by 16, timer 1 overflow signal, or an external clock input from P5₄/MXB/TIM2 pin can be selected as the count source of timer 2 by specifying bit 4 and 1 of the timer 12 mode register (address 00F4₁₆).

Timer 2 interrupt request is occurred with timer 2 overflow.

(3) Timer 3

Either $f(X_{IN})$ divided by 16 or an external clock input from P5₅/MXI/TIM3 pin can be selected as the count source of timer 3 by specifying bit 0 of the timer 34 mode register (address 00F5₁₆).

Timer 3 interrupt request is occurred with timer 3 overflow.

(4) Timer 4

 $f(X_{IN})$ divided by 16, $f(X_{IN})$ divided by 2, or timer 3 overflow signal can be selected as the count source of timer 4 by specifying bit 4 and 1 of the timer 34 mode register (address $00F5_{16}$).

Timer 4 interrupt request is occurred with timer 4 overflow. And the timer 4 over-flow signal can be used as the clock source of special serial I/O.

At reset or an STP instruction is executed, timer 3 and timer 4 are connected automatically, and the value "FF $_{16}$ " is set to timer 3, and the value "07 $_{16}$ " is set to timer 4

f(X_{IN}) divided by 16 is selected as count source of tim-

or 3

When the internal reset is removed or stop mode is removed, the internal clock is connected by timer 6 over-flow at above state. In this reason, the program starts with stable clock.

The timer related registers structure is shown in Figure 6

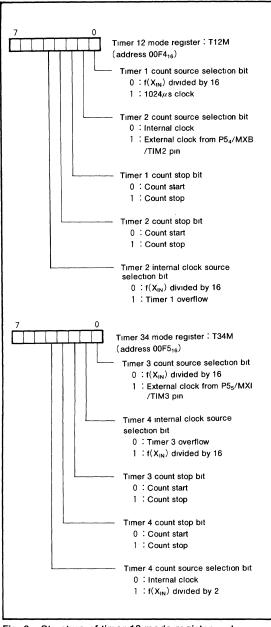


Fig. 6 Structure of timer 12 mode register and timer 34 mode register

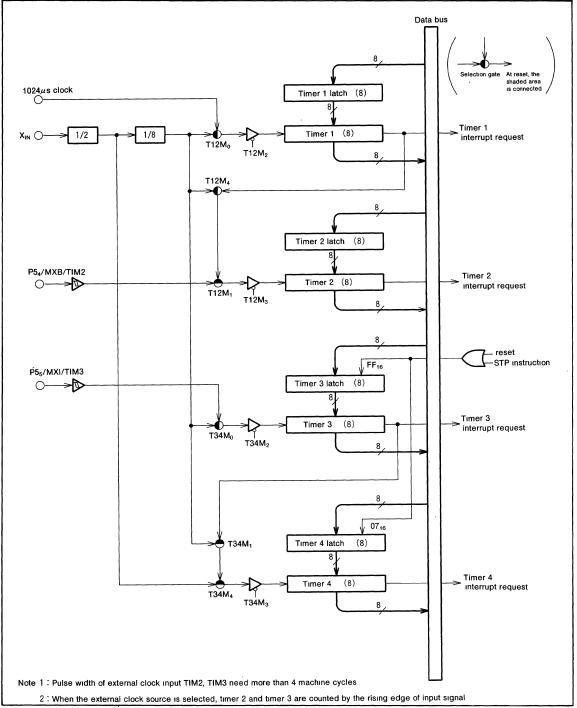


Fig. 7 Block diagram of timer 1, timer 2, timer 3 and timer 4

SERIAL I/O

The M37260M6-XXXSP has a built-in serial I/O function that can either transmit or receive up to 64-bits of serial data in clock-synchronized form. The serial I/O function can transfer up to 64 bits of data in 8-bit units according to the setting of the serial I/O shift register.

A block diagram of the serial I/O function is shown in Fig. 8. The serial I/O receive enabled signal pin $(\overline{S_{RDY}})$, synchronization clock I/O pin (S_{CLK}) , and data I/O pins $(S_{OUT}$ and $S_{IN})$ also function as the P3 port.

Bit 2 of the serial I/O mode register 1 (address $00CD_{16}$) selects whether the synchronizaion clock is supplied internally or externally (from the S_{CLK} pin) and, if the internal clock is selected, bits 1 and 0 select whether $f(X_{IN})$ is divided by 8, 16, 32, or 64. Bits4 and 3 select whether port P3 is used for serial I/O. Bits 2, 1, and 0 of the serial I/O mode register 2 select the count of the transfer clock at which the serial I/O interrupt request is generated. The operation of the serial I/O function is described below.

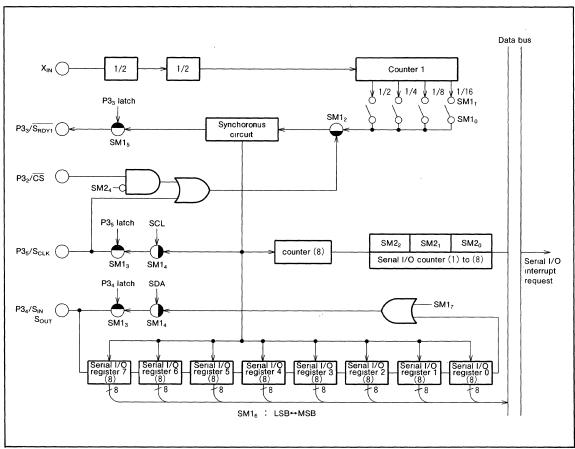


Fig. 8 Block diagram of serial I/O

If the serial I/O register 0 (address 00CF₁₆) is written to, the $\overline{S_{RDY}}$ signal is at "H" during the write cycle; it then goes "L" when the write cycle ends to indicate reception enabled status. If the serial I/O register's transfer clock goes "L" even once, the $\overline{S_{RDY}}$ signal goes "H". During the write cycle to the serial I/O register 0, the value set in the serial I/O mode register 2 is set in the serial I/O counter, and the serial I/O register's transfer clock is forced to "H". After the write cycle ends, the data in each register is shifted one bit in sequence from serial I/O register 0 to serial I/O register 1, serial I/O register 2, serial I/O register 3, serial I/O register 4, serial I/O register5, serial I/O register 6, to serial I/O register 7, until it is finally output from the S_{OUT} pin, each time the transfer clock changes from "H" to "L". Bit 6 of the serial I/O mode register selects whether transfer is from the lowest bit of each serial I/O register, or from the highest bit.

During reception, data is fetched from the S_{IN} pin each time the transfer clock changes from "L" to "H" and, at the same time, the data in each register is shifted one bit in sequence from serial I/O register 7 to serial I/O register 6, serial I/O register 5, serial I/O register 4, serial I/O register 3, serial I/O register 2, serial I/O register 1, to serial I/O register 0.

If the transfer clock is the count value set in the serial I/O mode register 2, when the serial I/O counter reaches "0", the transfer clock stops at "H" and the corresponding interrupt request bit is set.

If an external clock is selected as the clock source, it must

be controlled externally because the transfer clock does not stop, even when the interrupt request bit is set. Use a clock of no more that 1MHz with a duty cycle of 50% as the external clock.

Serial I/O timing is shown in Fig. 9. If an external clock is used for the transfer, the external clock must be "H" when the serial I/O counter is initialized. If the internal clock is switched to an external clock, make sure that it is switched while no transfer is in progress, and make sure that the serial I/O counter is initialized after the switch.

A connection example for transferring data from one M37260M6-XXXSP to another is shown in Fig. 10. If P3 $_2$ is used as the \overline{CS} pin, set the P3 $_2$ direction register to input ("0") and set bit 4 of the serial I/O mode register 2 to "0". This setting ensures that the transfer clock is fixed at "H" when the P3 $_2$ input signal is "H", and data is not shifted. If the P3 $_2$ input signal goes "L", data will be shifted according to the clock input from the P3 $_5/S_{CLK}$ pin. Note that if bit 4 of the serial I/O mode register 2 is set to "1", the data will be shifted according to the clock input from the P3 $_5/S_{CLK}$ pin, regardless of the P3 $_2$ input signal.

- Note 1: When writing programs, remember that the serial I/O counter will also be set by using bit manipulation instructions such as SEB and CLB to write to the serial I/O register 0.
 - 2 : When writing data to serial I/O registers 0 to 7, make sure that serial I/O register 0 is the last one written to.

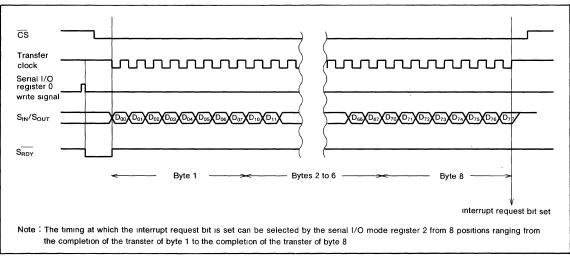


Fig. 9 Serial I/O timing

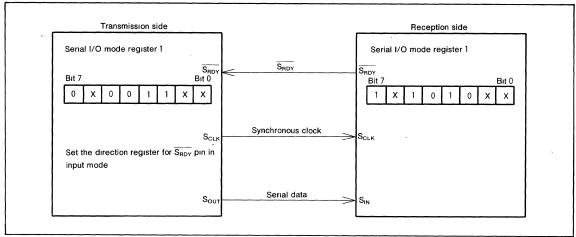


Fig. 10 Example of serial I/O connection

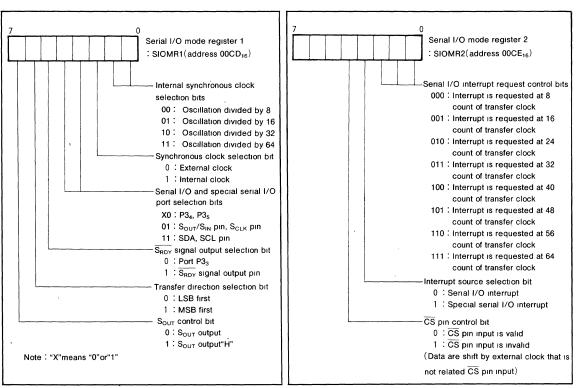
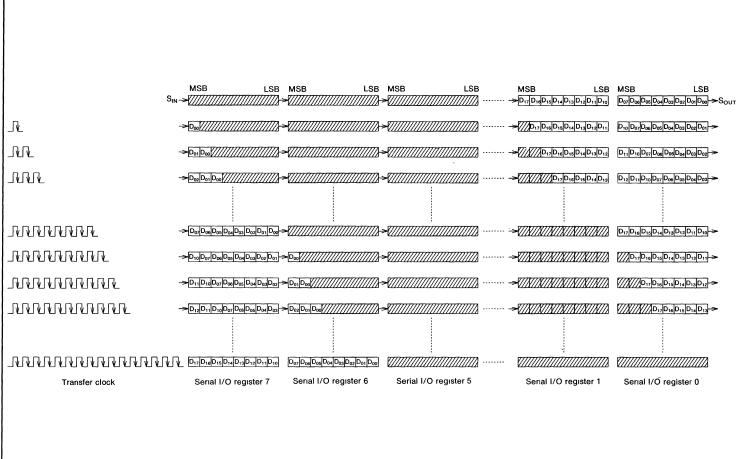


Fig. 11 Structure of serial I/O mode register 1

Fig. 12 Structure of serial I/O mode register 2

SINGLE-CHIP


8-BIT

CMOS

MICROCOMPUTER

ON-SCREEN DISPLAY

Fig. 13 Serial I/O register state during transmission of 2-byte

date

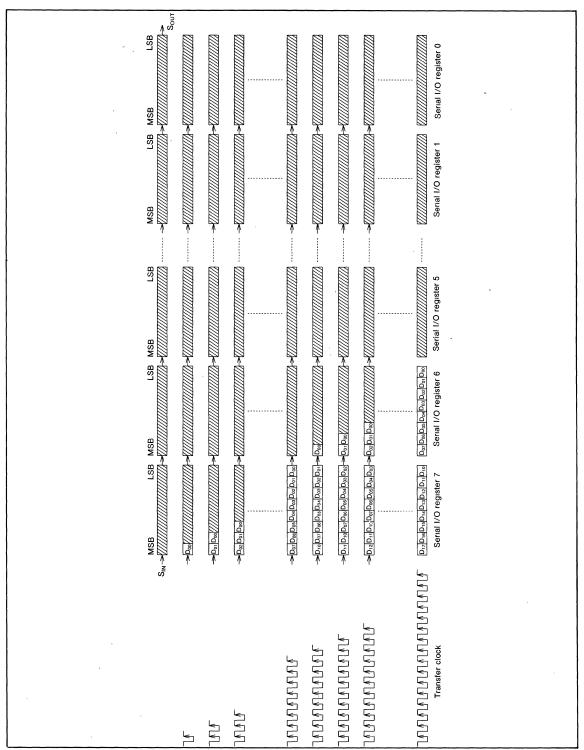


Fig. 14 Serial I/O register state during reception of 2-byte date

SPECIAL MODE (I2C BUS MODE*)

M37260M6-XXXSP has a special serial I/O circuit that can be reception or transmission of serial data in conformity with $\rm I^2C$ (Inter IC) bus format.

I²C bus is a two line directional serial bus developed by Philips to transfer and control data among internal ICs of a machinery.

M37260M6-XXXSP's special serial I/O is not included the clock synchronisation function and the arbitration detectable function at multimaster.

Operations of master transmission and master reception with special serial I/O explained in the following:

- (1) Master transmission
- To generate an interrupt at the end of transmission, set bit 3 of serial I/O mode register 2 (address 00CE₁₆) to "1" so as to special serial I/O interrupt is selected.
- Then set bit 1 of interrupt control register 2 (address 00FF₁₆) to "1" so as to special serial I/O interrupt is enabled. Clear the interrupt disable flag I to "0" by using the CLI instruction.
- The output signals of master transmission SDA and SCL are output from ports P3₄ and P3₅. Set all bits (bits 4 and 5) corresponding to P3₄ and P3₅ of the port P3 register (address 00C6₁₆) and the port P3 direction register (address 00C7₁₆) to "1".
- 4 Set the transmission clock. The transmission clock uses the overflow signal of timer 4. Set appropriate value in timer 4 and timer 34 mode register. (For instance, if f(X_{IN})/2 is selected as the clock source of timer 4 and 9 is set in timer 4 when f(X_{IN}) is 4MHz, the master transmission clock frequency is 100kHz.)
- Set contents of the special mode register 2 (address 00F8₁₆). (Usually, the vaule is "03₁₆".)
- Set the bits 3 and 4 of serial I/O mode register 1 (address 00CD₁₆) so as the port P3₄ and P3₅ is specified to SDA and SCL. After that set the special mode register 1 (address 00F7₁₆). Figure 18 shows the structure of special mode registers 1 and 2. Initial setting is completed by the above procedure.
- ⑦ Clear bits 0 and 1 of special mode register 2 (to "0") to make both SDA and SCL output to "L". This is for arbitration. Immediately after this, write data to be

transmitted in the special serial I/O register (address $00F6_{16}$). The start signal has been completed.

The hardware automatically sends out data of 9-clock cycle. The 9th clock is for ACK reception and the output level becomes "H" at this clock. If other master outputs the start signal to transmit data simultaneously with this 9th clock, it is not detected as an arbitrationlost

When the ACK bit has been transmitted, bit 1 of the interrupt request register 2 is set to "1" (issue of interrupt request), notifying the end of data transmission.

- To transmit data successively, write data to be sent to the special serial I/O register, and set the interrupt enabled state again. By repeating this procedure, unlimited number of bytes can be transmitted.
- To terminate data transfer, clear bits 0 and 1 of the special mode register 2 to "0".
- Set bit 1 clock SCL to "1".
- Then set bit 0 data SDA to "1". This procedure transmits the stop signal.
 - Figure 16 shows master transmission timing explained above. (the numbers in this figure are correspond to above explained numbers.)
- (2) Master reception

Master reception is carried out in the interrupt routine after data is transferred by master transmission. For master transmission and interrupt thereafter, see the preceding section (1) Master transmission (the process until ② in Figure 16.)

In the interrupt routine, set master reception ACK provided (22₁₆) in the special mode register 1 (address $00F7_{16}$), and write "FF₁₆" in the special serial I/O register (address $00F6_{16}$). This sets data line SDA to "H" and to perform 8-clock master reception. Then, a clock of "L" is transmitted to data line SDA for ACK receiving. In the ACK provided mode, the above ACK is automatically sent out.

Repeat the above receiving operation for a necessary number of times. Then return to the master transmission mode and transmit the stop signal by the same procedure for the master transmission (the process from (9) to (11) in Figure 16.)

Figure 17 shows master reception timing.

^{* :} Purchase of Mitsubishi Electric Corporation's I²C components converys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

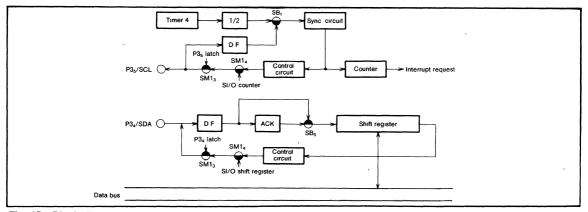


Fig. 15 Block diagram of special serial I/O

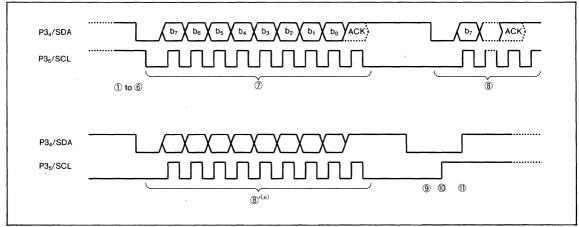


Fig. 16 Master transmission timing

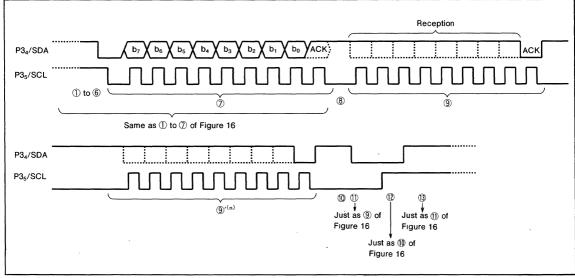


Fig. 17 Master reception timing

M37260M6-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for ON-SCREEN DISPLAY

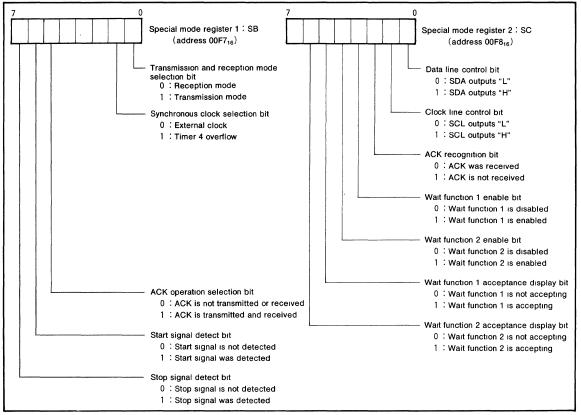


Fig. 18 Structure of special mode registers 1 and 2

(3) Wait functions

Wait function 1 holds the SCL line at "L" after the 8th clock falls in special mode. Wait function 2 holds the SCL line at "L" after the 9th clock falls in the same way.

When one of the wait functions operates, the internal counter that counts the clock must be reset after bit 3 or 4 of the special mode register 2 is set to "1", to enable the corresponding wait function 1 or 2 to operate, Reset the internal counter by writing data to the special serial I/O register (address 00F6₁₆), or by setting the START signal detection bit to "1". Reset the internal counter for each byte before data transfer.

The wait functions can be released by setting the corresponding bit 5 or 6 of the special mode register 2 to "1".

- Note 1: Clear the START signal detection bit (bit 6) and the STOP signal detection bit (bit 7) of the special mode register 1 by writing "1" to bit 6 or bit 7.
 - 2 : If the special serial I/O function is operating, change the value of bit 4 of the sync generator control register (address 00E9₁₆) to suit the frequency of the system clock (X_{IN}).

CRT DISPLAY FUNCTIONS

Table 2 outlines the CRT display functions of the M37260M6-XXXSP. The M37260M6-XXXSP incorporates a 40 columns \times 3 lines CRT display control circuit. CRT display is controlled by the CRT display control register.

Up to 510 kinds of characters can be displayed, and colors can be specified for each character. A combination of up to 16 colors can be obtained by using each output signal (R, G, B, and I).

Table 2. Outline of CRT display functions

	Item	Efficiency	
Diami		40 characters × 3 lines	
Dispi	ay characters	40 characters×3 lines (maximum 25 lines) 12×20 or 16×20 dots 510 kinds 30 kinds 16 (maximum) Character	
Chara	acter	12×20 or 16×20 data	
config	guration	12 \(\times 20 \) 01 10 \(\times 20 \) dots	
Kinds	of character	510 kınds	
Chara	acter size	30 kinds	
Color	Kinds of color	16 (maximum)	
Color	Coloring unit	Character	
Extension display		Possible (multiple lines)	

Characters are displayed in a 12×20 or 16×20 dots configuration to obtain smooth character patterns. (See Figure 19)

The following shows the procedure how to display characters on the CRT screen.

- ① Write the display character code to the display RAM.
- Write the color code to the display RAM.
- ③ Specify the vertical position and character size by using the vertical position register and the character size register.
- Specify the horizontal position by using the horizontal position register.
- Write the display enable bit to the designated block display flag of the CRT control register. When this is done, the CRT starts operation according to the input of the V_{SYNC} signal.

The CRT display circuit has an extended display mode. This mode allows multiple lines (more than 4 lines) to be displayed on the screen by interrupting the display each time one line is displayed and rewriting data in the block for which display is terminated by software.

Figure 20 shows a block diagram of the CRT display control circuit. Figure 21 shows the structure of the CRT display control register.

And the mixing circuit is built-in that can be output the signal mixed external color signals with internal color signals, so that the CRT display can be controlled by the 2-chip constructed system.

The sync generator that generates the synchronous signal can be output each synchronous signal as NTSC or PAL with/without interlacing.

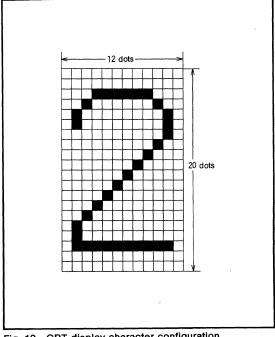


Fig. 19 CRT display character configuration

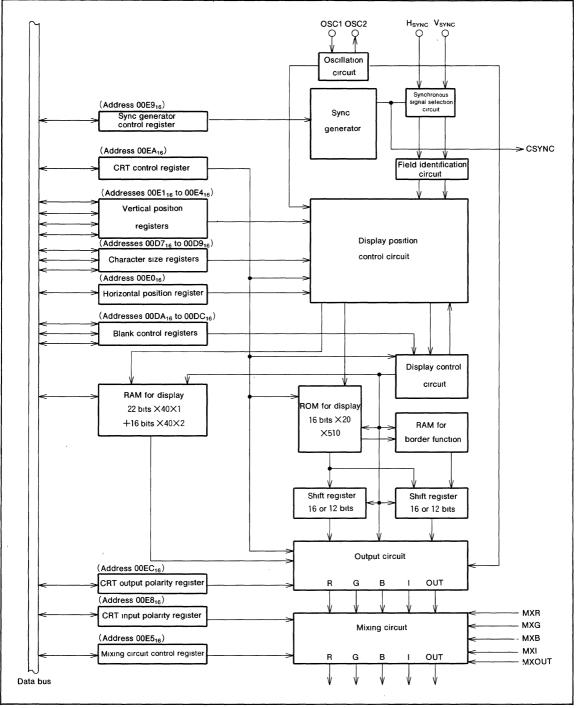


Fig. 20 CRT display control circuit block diagram

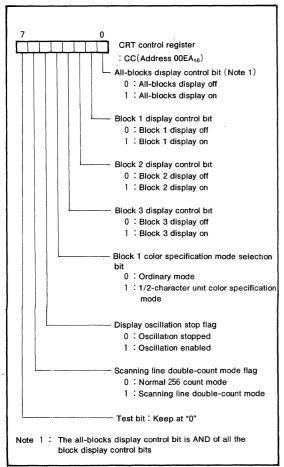


Fig. 21 Structure of CRT control register

(1) Display Position

Character display position is specified in units called blocks. There are three blocks—block 1 to block 3—and each block can hold up to 40 characters (for details, see the previous section (3) Display Memory.)

The display position of each block can be set horizontally and vertically by software.

Horizontal positions can be selected for all blocks in common from 256-steps in 4Tc units (Where Tc : display oscillation period).

Vertical display positions can be selected for each block from 1024-steps in single scanning line units.

If a display start position is superimposed on another block ((b) in Figure 23), the block with the smallest number (1 to 3) is displayed.

If the display position of a block comes while another block is displayed ((c) in Figure 23), the second block is displayed.

Vertical positions for each block can be set in 1024 steps (where each step is one scanning line) as values 00₁₆ to FF₁₆ in vertical position registers 1 to 3 (addresses 00E1₁₆ to 00E3₁₆) and values 00₁₆ to 3F₁₆ in bits 0 to 5 of vertical position register 4. The structures of the vertical position registers are shown in Figure 22.

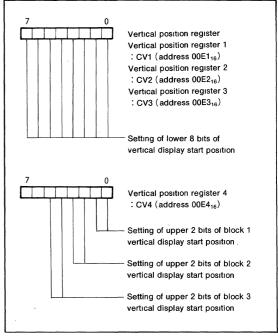


Fig. 22 Structure of vertical position registers

The horizontal position is common to all blocks, and can be set in 256 steps (where one step is $4T_C$, T_C being the display oscillation period) as values 00_{16} to FF_{16} in the horizontal position register (address $00E0_{16}$). The structure of the horizontal position register is shown in Figure 24.

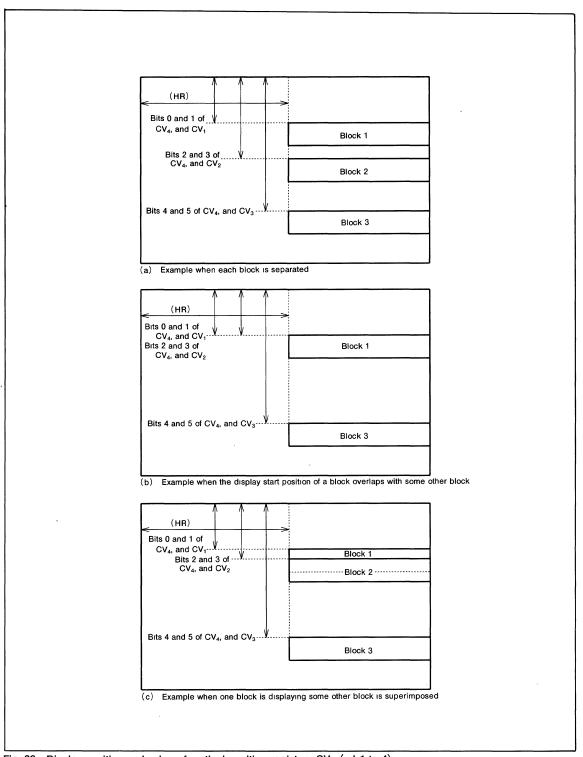


Fig. 23 Display position and value of vertical position registers CVx (x:1 to 4)

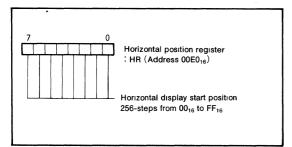


Fig. 24 Structure of horizontal position register

(2) Character Size

The size of characters to be displayed can be selected from 30 types, by combining 5 vertical types and 6 horizontal types in block units. Set the size with the character size registers (addresses $00D7_{16}$ to $00D9_{16}$). Either of two character font configurations, 12 dots wide×20 dots high or 16 dots wide×20 dots high, can be selected for each block. The configuration of the character ROM font is shown in Figure 26.

The display start position in the horizontal direction is the same, regardless of changes in character size, but it does differ if the character font configuration is changed. The display start position in the horizontal direction for 16 dots wide×20 dots high characters is 4T_C to the right of that for 12 dots wide×20 dots high characters.

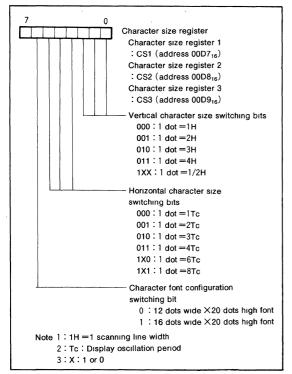


Fig. 25 Structure of character size registers

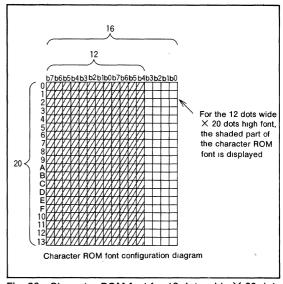


Fig. 26 Character ROM font for 12 dots wide X 20 dots high font

The 1 dot=1/2 scanning line display function differentiates between odd-numbered and even-numbered fields from differences in the waveform in the synchronization signals used by the interlace method, and displays one character font for both fields. Bit 6 of the sync generator control register (address $00E9_{16}$) controls the active edge of the field identification flag, and the character font divided for each field can be selected.

The field identification flag can also be read out from bit 6 of the display block counter (address 00EB₁₆).

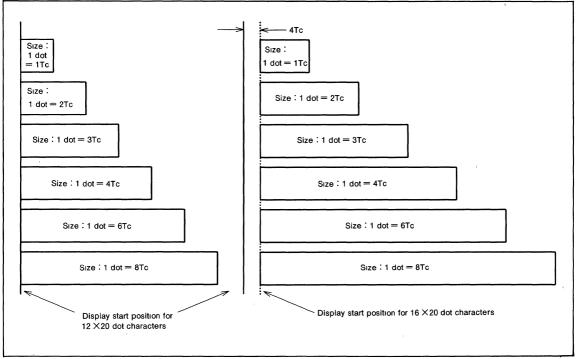
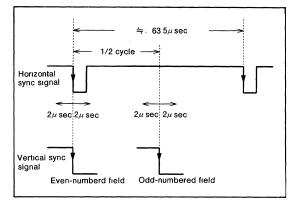


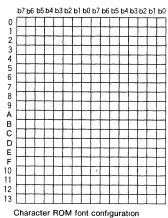
Fig. 27 Display start positions (horizontal) for each character size

The description below assumes that field identification is based on the case where the active edges of both the horizontal and vertical synchronization signals are negative.


Each field is identified as either odd or even by the hardware detecting the positions of the falling edges of the horizontal and vertical synchronization signals, and comparing them. Therefore, to ensure correct field identification, make sure that the two synchronization signals are input in accordance with the identification criteria given below.

Since the field identification is based on the system clock (X_{IN}), make sure that the value of bit 4 of the sync generator control register (address 00E916) is changed in accordance with the frequency of the system clock.

Even-numbered field: The vertical synchronization signal


falls within $2\mu s$ before or after the fall of the horizontal synchronization signal.

Odd-numbered field : The vertical synchronization signal falls within 2μ s before or after a point 1/2 a cycle after the fall of the horizontal synchronization signal.

Identification criteria for field identification

Field	Sync signal (Example: negative edge input)	Field identification flag active edge bit (bit 6 of the sync generator control register)	Field identification flag bit (bit 6 of the display block counter)	Display font
Odd-numbered field	Horizontal sync signal	0	1	☐ part
	Vertical sync signal	1	0	☐ part
Even-numbered field	Horizontal sync signal	0	0	☐ part
	Vertical sync signal	1	1	☐ part

Example: When the field identification flag active edge bit is 0, oddnumbered fields display the \square font and even-numbered fields display the \square font, Bit 6 of the display block counter can be read as the field identification flag: it is "1" for an oddnumbered field, "0" for an even-numbered field

Note: The field identification flag changes at the fall of the vertical sync signal (negative edge input)

Relationships between field identification flag and display font

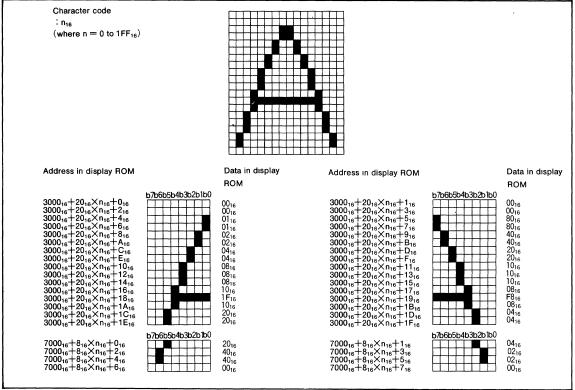


Fig. 30 Storage format of display characters

(3) Display Memory

There are two types of display memory: CRT display ROM (addresses 3000₁₆ to 7FFF₁₆) which contains previously stored (masked) character dot data, and display RAM (addresses 2000₁₆ to 27FF₁₆) which specifies characters and colors to be displayed. These memory types are described below.

① CRT display ROM (addresses 3000₁₆ to 7FFF₁₆)
The CRT display ROM contains dot pattern data for display characters. To display these stored characters in operation, specify character codes (code determined based on addresses in CRT display ROM) that are specific to those characters, by writing them to the CRT display RAM.

Since the CRT display ROM has contains 20K bytes and the data for one character takes up 40 bytes, 512 characters can be stored. However, a two-character space is required for test purposes, so in practice 510 characters can be stored for display.

Within the CRT display ROM area, data for part of each character that is [upper 16 dots high] \times [left-hand 8 dots wide] is stored at addresses $300X_{16}$ to $3FFX_{16}$ (where X = 0, 2, 4, 6, 8, A, C, E), data for part of each character that is [upper 16 dots high] \times [right-hand 8 dots wide] is stored at $300Y_{16}$ to $3FFY_{16}$ (where Y=1, 3, 5, 7, 9, B, D, F), data for part of each character that is [lower 4 dots high] \times [left-hand 8 dots wide] is stored at addresses $700M_{16}$ to $7FFM_{16}$ (where M=0, 2, 4, 6, 8, A, C, E), and data for part of each character that is [lower 4 dots high] \times [right-hand 8 dots wide] is stored at $700N_{16}$ to $7FFN_{16}$ (where N=1, 3, 5, 7, 9, B, D, F), as shown in Figure 30.

Table 3. Character Code Chart (Partially abbreviated)

	С	haracter data	storage add	ress
Character	Left-han	d 8 dots	Right-ha	nd 8 dots
code	Upper 16	Lower 4	Upper 16	Lower 4
	dots	dots	dots	dots
	300016	700016	300116	700116
	300216	700216	300316	700316
	300416	700416	300516	700516
	300616	700616	300716	7007 ₁₆
	300816		300916	, ,
	300A ₁₆		300B ₁₆	
	300C ₁₆	,	300D ₁₆	
	300E ₁₆		300F ₁₆	*
00016	3010 ₁₆		3011 ₁₆	
	3012 ₁₆		3013 ₁₆	
	3014 ₁₆		3015 ₁₆	
	3016 ₁₆		3017 ₁₆	
	3018 ₁₆		3017 ₁₆	
	3016 ₁₆		3019 ₁₆	
	301C ₁₆		301D ₁₆	
	301E ₁₆	7000	301F ₁₆	7000
	3020 ₁₆	7008 ₁₆	3021 ₁₆	7009 ₁₆
	3022 ₁₆	700A ₁₆	3023 ₁₆	700B ₁₆
	3024 ₁₆	700C ₁₆	3025 ₁₆	700D ₁₆
	3026 ₁₆	700E ₁₆	3027 ₁₆	700F ₁₆
	3028 ₁₆		3029 ₁₆	
	302A ₁₆		302B ₁₆	
	302C ₁₆		302D ₁₆	
001 ₁₆	302E ₁₆		302F ₁₆	
	3030 ₁₆		3031 ₁₆	
	3032 ₁₆		3033 ₁₆	
	3034 ₁₆		303516	
	3036 ₁₆		3037 ₁₆	
	3038 ₁₆	,	303916	
	303A ₁₆		303B ₁₆	
	303C ₁₆		303D ₁₆	
	303E ₁₆		303F ₁₆	
:	:	i	:	:
	6FE0 ₁₆	7FF8 ₁₆	6FE1 ₁₆	7FF9 ₁₆
4	6FE2 ₁₆	7FFA ₁₆	6FE3 ₁₆	7FFB ₁₆
	6FE4 ₁₆	7FFC ₁₆	6FE5 ₁₆	7FFD ₁₆
	6FE6 ₁₆	7FFE ₁₆	6FE7 ₁₆	7FFF ₁₆
	6FE8 ₁₆		6FE9 ₁₆	
	6FEA ₁₆		6FEB ₁₆	
	6FEC ₁₆		6FED ₁₆	
	6FEE ₁₆		6FEF ₁₆	
1FF ₁₆	6FF0 ₁₆		6FF1 ₁₆	
	6FF2 ₁₆		6FF3 ₁₆	
	6FF4 ₁₆		6FF5 ₁₆	
	6FF6 ₁₆		6FF7 ₁₆	
	6FF8 ₁₆		6FF9 ₁₆	
	6FFA ₁₆		6FFB ₁₆	
	6FFC ₁₆	1	6FFD ₁₆	
			1	
	6FFE ₁₆	L	6FFF ₁₆	L

Each character code used when specifying display characters is defined as n_{16} (where $n\!=\!0$ to 1FF), and is determined based on the address in CRT display ROM that contains the data for that character (see the storage format of display character shown in Fig. 30). The character codes are listed in Table 3.

② CRT display RAM (addresses 2000₁₆ to 27FF₁₆)

The CRT display RAM is allocated at addresses 2000₁₆ to 27FF₁₆, and is divided into a display character code specification part and a display color code specification part for each block. The contents of this area are shown in Table 4. For example, to display one character at the first character position (the left edge) of block 1, write the character code to bit 6 of address 20C0₁₆ and to address 2000₁₆, and write the color code to the lowermost 6 bits (bits 0 to 5) of address 20C0₁₆. For details of the color codes, see section (4) Color codes. The structure of the CRT display RAM is shown in Fig. 31.

When generating a mask for the M37260M6-XXXSP, note that the character patterns of Table 6 and Table 7 must be written to the specified addresses as a test character pattern.

M37260M6-XXXSP

Table 4. CRT display RAM description

Block	Display position	Character cod	e specification	Color code specification	1/2 character unit color code
DIOCK	(from left side)	High-order 1 bit	Low-order 8 bit	Color code specification	specification
	1st character	20C0 ₁₆	200016	20C0 ₁₆	2180 ₁₆
	2nd character	20C1 ₁₆	200116	20C1 ₁₆	2181 ₁₆
	3rd character	20C2 ₁₆	200216	20C2 ₁₆	2182 ₁₆
Block 1	:	1	:	:	:
	38th character	20E5 ₁₆	202516	20E5 ₁₆	21A5 ₁₆
	39th character	20E6 ₁₆	202616	20E6 ₁₆	21A6 ₁₆
	40th character	20E7 ₁₆	202716	20E7 ₁₆	21A7 ₁₆
		20E8 ₁₆	202816	20E8 ₁₆	
	Not used	to	to	to	
		20FF ₁₆	203F ₁₆	20FF ₁₆	
	1st character	210016	2040 ₁₆	2100 ₁₆	
	2nd character	2101 ₁₆	2041 ₁₆	2101 ₁₆	
	3rd character	210216	204216	2102 ₁₆	
Block 2	:		:	:	
	38th character	2125 ₁₆	2065 ₁₆	2125 ₁₆	
	39th character	2126 ₁₆	2066 ₁₆	2126 ₁₆	
	40th character	2127 ₁₆	2067 ₁₆	2127 ₁₆	
		2128 ₁₆	206816	2128 ₁₆	
	Not used	to	to	to	
		213F ₁₆	207F ₁₆	213F ₁₆	
	1st character	2140 ₁₆	208016	2140 ₁₆	
	2nd character	2141 ₁₆	208116	2141 ₁₆	
	3rd character	2142 ₁₆	208216	2142 ₁₆	
Block 3	:		:	i ·	
	38th character	2165 ₁₆	20A5 ₁₆	2165 ₁₆	
	39th character	2166 ₁₆	20A6 ₁₆	2166 ₁₆	
	40th character	2167 ₁₆	20A7 ₁₆	2167 ₁₆	
•		2168 ₁₆	20A8 ₁₆	2168 ₁₆	
	Not used	to	to	to	
		217F ₁₆	20BF ₁₆	217F ₁₆	

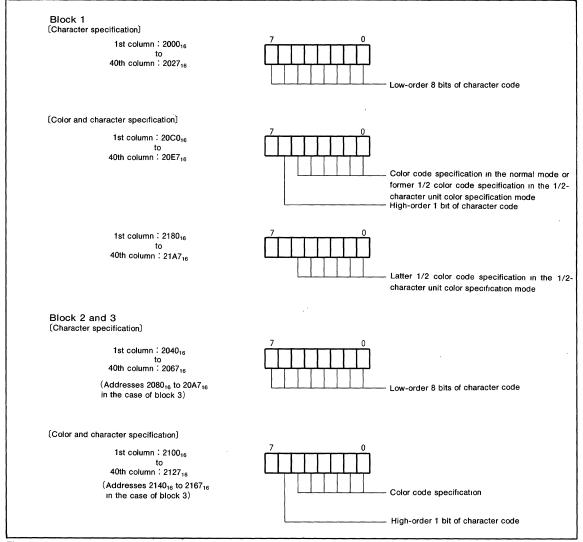


Fig. 31 Structure of CRT display RAM

3 Block overwriting function of display memory

Character codes or color codes for 40 characters can be written for each block in a batch by overwriting data at a specific address.

The addresses for block overwriting, the addresses in display memory overwritten by these addresses, and the contents of these addresses are listed in Table 5.

Table 5. Block overwriting of display memory

Address for block overwriting	Addresses in overwritten display memory	Memory contents
2200 ₁₆	2000 ₁₆ to 2027 ₁₆	Block 1 character code
2201 ₁₆	2040 ₁₆ to 2067 ₁₆	Block 2 character code
2202 ₁₆	2080 ₁₆ to 20A7 ₁₆	Block 3 character code
2203 ₁₆	20C0 ₁₆ to 20E7 ₁₆	Block 1 color code
2204 ₁₆	2100 ₁₆ to 2127 ₁₆	Block 2 color code
220516	2140 ₁₆ to 2167 ₁₆	Block 3 color code
2206 ₁₆	2180 ₁₆ to 21A7 ₁₆	Block 1 color code 2

Note: After a write instruction is executed for a block overwriting address, wait at least 60 machine cycles before issuing a read or write instruction from the CPU for a block overwriting address or for display memory.

4 Notes on display RAM data access

If the display RAM is accessed (data read or write, block write) from the CPU during OSD display, make sure that the display RAM for each block is accessed after it has been confirmed that the block has been displayed, by an event such as a CRT interrupt.

RAM data can be destroyed if the display RAM for a block that is currently being displayed is accessed.

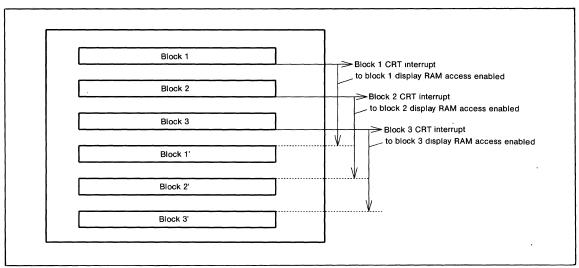


Fig. 32 Display RAM date access

Table 6. Test character pattern 1 settings

Address	Data	Address	Data
6FE0 ₁₆	0016	6FF0 ₁₆	0016
6FE1 ₁₆	0016	6FF1 ₁₆	0016
6FE2 ₁₆	0016	6FF2 ₁₆	0016
6FE3 ₁₆	0016	6FF3 ₁₆	0016
6FE4 ₁₆	0016	6FF4 ₁₆	0016
6FE5 ₁₆	0016	6FF5 ₁₆	0016
6FE6 ₁₆	0016	6FF6 ₁₆	0016
6FE7 ₁₆	0016	6FF7 ₁₆	0016
6FE8 ₁₆	0016	6FF8 ₁₆	0016
6FE9 ₁₆	0016	6FF9 ₁₆	0016
6FEA ₁₆	0016	6FFA ₁₆	0016
6FEB ₁₆	0016	6FFB ₁₆	0016
6FEC ₁₆	0016	6FFC ₁₆	0016
6FED ₁₆	0016	6FFD ₁₆	0016
6FEE ₁₆	0016	6FFE ₁₆	0016
6FEF ₁₆	0016	6FFF ₁₆	0016
7FF8 ₁₆	0016	7FFC ₁₆	0016
7FF9 ₁₆	0016	7FFD ₁₆	0016
7FFA ₁₆	0016	7FFE ₁₆	0016
7FFB ₁₆	0016	7FFF ₁₆	0016

Table 7. Test character pattern 2 settings

Address	Data	Address	Data
6FC0 ₁₆	8816	6FD0 ₁₆	2216
6FC1 ₁₆	11 ₁₆	6FD1 ₁₆	2216
6FC2 ₁₆	0016	6FD2 ₁₆	0016
6FC3 ₁₆	0016	6FD3 ₁₆	0016
6FC4 ₁₆	0016	6FD4 ₁₆	0016
6FC5 ₁₆	0016	6FD5 ₁₆	0016
6FC6 ₁₆	0016	6FD6 ₁₆	0016
6FC7 ₁₆	0016	6FD7 ₁₆	.0016
6FC8 ₁₆	4416	6FD8 ₁₆	11 ₁₆
6FC9 ₁₆	4416	6FD9 ₁₆	11 ₁₆
6FCA ₁₆	0016	6FDA ₁₆	0016
6FCB ₁₆	0016	6FDB ₁₆	0016
6FCC ₁₆	0016	6FDC ₁₆	0016
6FCD ₁₆	0016	6FDD ₁₆	0016
6FCE ₁₆	0016	6FDE ₁₆	0016
6FCF ₁₆	0016	6FDF ₁₆	0016
7FF0 ₁₆	0816	7FF4 ₁₆	0016
7FF1 ₁₆	8816	7FF5 ₁₆	0016
7FF2 ₁₆	0016	7FF6 ₁₆	8016
7FF3 ₁₆	0016	7FF7 ₁₆	11 ₁₆

(4) Color Codes

The color each display character can be specified by specifying the four color outputs (R, G, B, and I) with the CRT display RAM. A color code can be specified for each character, and 2⁴=16 colors can be set.

The R, G, B, and I outputs are set by bits 0 to 3 of the color code, character or blank output is set by bit 4, and character output or blank output is specified by bit 5. The structure of the color code is shown in Figure 33.

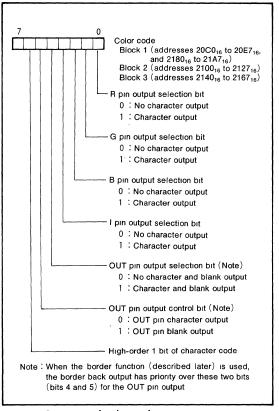


Fig. 33 Structure of color code

M37260M6-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for ON-SCREEN DISPLAY

(5) 1/2-Character Unit Color Specification Mode

Colors can be specified in 1/2-characters units for the characters of block 1 alone, by setting bit 4 of the CRT control register (address 00EA₁₆). In 1/2-character unit color specification mode, each half of a display character in block 1 is displayed as follows:

- Left-hand half: The color of the color code specified by
 bits 0 to 5 of color code specification addresses 20C0₁₆
 to 20E7₁₆ in the CRT display RAM.
- Right-hand half: The color of the color code specified by <u>bits 0 to 5</u> of color code specification addresses 2180₁₆ to 21A7₁₆ in the CRT display RAM.

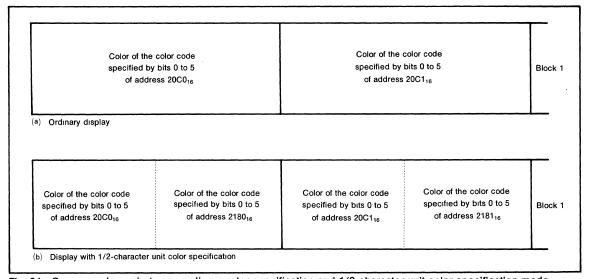


Fig. 34 Correspondence between ordinary color specification and 1/2-character unit color specification mode

(6) Multiline Display

The M37260M6-XXXSP can ordinarily display three lines of characters, in three blocks with different vertical positions. In addition, up to 25 lines can be displayed by using CRT interrupts and the display block counter.

A CRT interrupt is a function that generates an interrupt for each block at the point at which the display of any desired number of dots has been completed. In other words, when a scanning line reaches the point of the display position (specified by the vertical and horizontal position registers) of a certain block, the character display of that block starts, and an interrupt is issued at the point at which the number of dots set by the interrupt position control register is exceeded.

If the lateral character size has been set to 1 dot = 1/2 scanning line width, the CRT interrupt position can be set to 10 steps in 1 block/2 dot units; for all other scanning line widths it can be set to 20 steps in 1 block/1 dot units.

The display block counter counts the number of times the display of a block has been completed, and its contents are incremented by 1 each time the display of one block is completed.

To provide multiline display, enable CRT interrupts by clearing the interrupt disable flag to "0" and setting the CRT interrupt enable bit (bit 4 at address 00FE_{16}) to "1". The processing within the CRT interrupt processing routine is as follows.

- ①Read the value of the display block counter.
- ②The value of ① enables identification of a block whose display has completed (whether a CRT interrupt generation cause has occurred).
- ③Read the interrupt position control register.
- The value of ③ enables identification of the number of dots at which the CRT interrupt is to occur.
- (S) Write the display character code, color code, and display position of that block into the character code, color code (CRT display RAM contents), and vertical display position (contents of vertical position register) to be displayed next.

The structure of the display block counter is shown in Figure 35.

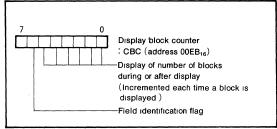


Fig. 35 Structure of display block counter

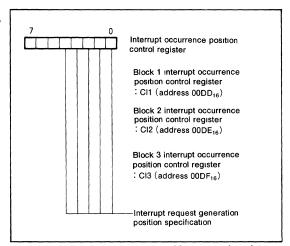


Fig. 36 Structure of interrupt position control register

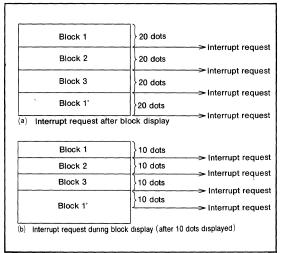


Fig. 37 Timing of CRT interrupts

(a)	(a) When lateral character size is not 1 dot = 1/2 scanning line width							
Inte	rrupt	occı	ırren	се				
posi	ition o	ontro	l regi	ster	Timing of interrupt request generation			
b4	b3	b2	b1	b0	· · · · · · · · · · · · · · · · · · ·			
0	0	0	0	0	Interrupt after completion of 1-dot display			
0	0	0	0	1	Interrupt after completion of 2-dot display			
0	0	0	1	0	Interrupt after completion of 3-dot display			
0	0	0	1	1	Interrupt after completion of 4-dot display			
ĺ		:			:			
1		:			:			
1	0	0	1	1	Interrupt after completion of 20-dot display			
ł		:			1			
1		:			Interrupts disabled (no interrupt requests)			
1	1	1_	1	1	J			

(b) When lateral character size is 1 dot =1/2 scanning line width

ŀ	Interrupt occurrence position control register				Timing of interrupt request generation			
b4	b3	b2	b1	b0	Odd-numbered Even-numbered			
	-		٠.			field	field	
0	0	0	0	×		1	2	
0	0	0	1	\times		3	4	
0	0	1	0	×	Interrupt after	5	6	dot
0	0	1	1	\times	completion of	7	8	display
}		:		\times		:	:	
ł		:		×		:	:	
1	0	0	1	×		19	20	
ſ		:		×				
}		:		×	Interrupts disabled (no interrupt requests)			
1	1	1	1	×]			

Fig. 38 Timing of interrupt request generation with respect to values in interrupt position control register

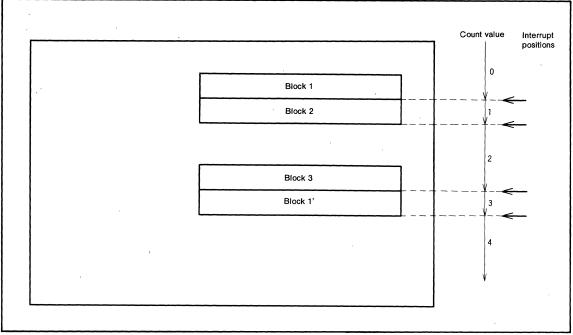


Fig. 39 Timing of CRT interrupts and values in display block counter

(7) Scanning Line Double-Count Mode

Scanning line double-count mode enables an increase in character size in the vertical direction to twice the normal size, and it can also double the display start position of the characters in the vertical direction by double-counting scanning lines. In other words, the vertical position register sets either a normal mode in which one step is one scanning line, or a scanning line double-count mode is which one step is two scanning lines.

Scanning line double-count mode can be specified by setting bit 6 of the CRT control register (address $00EA_{16}$) to "1".

Since this mode functions in screen units, a change in mode while a screen is being displayed is not validated until the next screen is displayed.

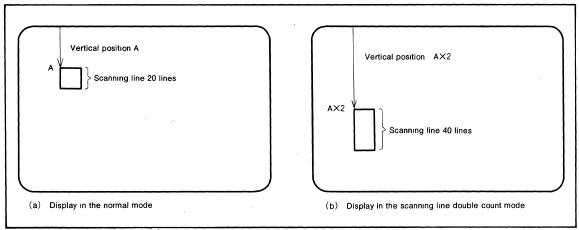


Fig. 40 Corresponding between normal mode display and scanning line double-count mode display

(8) Border Function

A one clock (one dot) border can be drawn around each character displayed, in both the horizontal and vertical directions.

This border is output from the OUT pin. In this case, bits 4 and 5 in the color code (the OUT pin output contents) are ignored, and the border output is output from the OUT pin.

The border can be set in block units by the blank control registers (addresses 00DA₁₆.to 00DC₁₆). The relationship between the settings of the blank control registers and the border function are listed in Table 8, and the structure of the blank control registers is shown in Fig. 42.

Table 8. Corresponding between the blank control register value and border function

Blank con	trol register	Function	Output example		
BLn1	BLn0	Function ,	Output example		
х	0	Normal	R, G, B, I output		
^	U	Normai	OUT output		
0	1	Border including character	R, G, B, I output		
· ·	}		OUT output		
1	1	1 Border excluding character	R, G, B, I output		
'			OUT output		

X:1 or 0

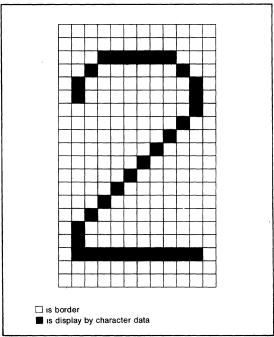


Fig. 41 Border example

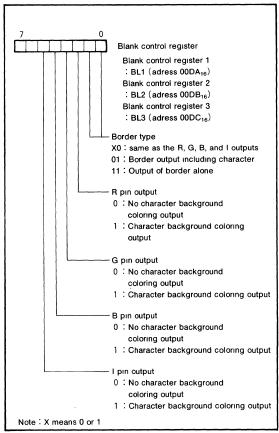


Fig. 42 Structure of blank control registers

(a) When vertical character size is not 1 dot = 1/2 scanning line width, borders avobe the uppermost dots and borders below the lowermost dots of the character font are not displayed

16 dots

20 dots

(b) When vertical character size is 1 dot = 1/2 scanning line width, borders avobe and below the uppermost dots and borders below the lowermost dots of the character font are not displayed

16 dots

Fig. 43 Notice of border function

(9) Character Background Color Function

The character background of the 16×20 or 12×20 area of a character (the blank part), excluding the character part itself, or character border part can be colored. The background color can be selected from 16 colors set by bits 2, 3, 4, and 5 of the blank control register. Since a background color can be set for each block, up to 15 background colors can be set for a screen when multi-line display is used.

Six character display types with background colors can be selected by combining bits 4 and 5 of the display memory color code with bits 0 and 1 of the blank control register.

Table 9. Display types

Display	memory	Blank	control	OUT signal		Furnation of
color	code	register		background	Example of output signal	Example of
BL2	BL1	BLn1	BLn0	coloring signal		character
×	0	×	0	No OUT signal No background coloring signal	R, G, B, and I for character OUT R, G, B, and I for background	A
0	1	×	0	OUT signal same as R, G, B, and I No background coloring signal	R, G, B, and I for character OUT R, G, B, and I for background	
×	×	0	1	Border including character Border coloring signal	R, G, B, and I for character OUT R, G, B, and I for background	
×	×	1	1	Border-only output Border coloring signal	R, G, B, and I for character OUT R, G, B, and I for background	
1	1	1	0	Blank output Background coloring (Note 1)	R, G, B, and I for character OUT R, G, B, and I for background	
1 ′	1	0	0	Blank output Background coloring with border (Note 1, 2)		

Note 1: If there are no character R, G, B, and I outputs, the background R, G, B, and I signals become the same as the OUT output 2 : When the characters (1 and 3 in Figure 44) have the dots which are displayed adjoining a character (2 in Figure 44) whose display type is the background coloring with border, the border of the adjoined characters (① and ③ in Figure 44), bear no relation to the display type; are displayed in the background area (2) in Figure 44)

n:1 to 3 ×:0 or 1

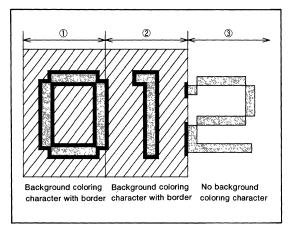


Fig. 44 Notice of character background color function

(10) Mixing Function

Color signals (MXR, MXG, MXB, MXI, and MXOUT) input from outside and color signals (R, G, B, I, and OUT) generated internally can be ORed and output as a mixed signal. The mixing control register (address 00E5₁₆) can be used to turn on and off the mixing of the external and internal color signals, and also to specify which of the two signals has priority when they are combined.

The I pin can be switched to output an overlapped signal indicating the parts of the external color signals (MXR, MXG, MXB, MXI, and MXOUT) and internal color signals (R, G, B, I, and OUT) that are overlapped.

The MXB and MXI pins can also be used as external input pins for timer 2 and timer 3.

Examples of displays generated with an internal color signal for the letter "I" and an external color signal for the letter "O" are shown in Figure 46.

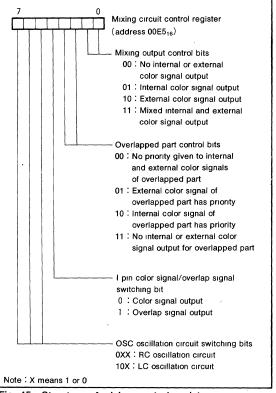


Fig. 45 Structure of mixing control register

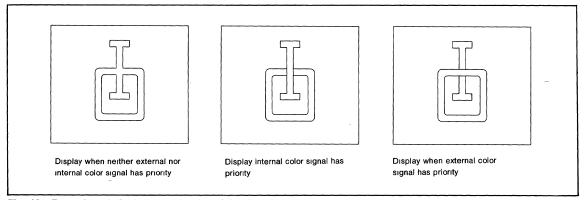


Fig. 46 Examples of display provided by mixing function

(11) CRT Output Pin Control

The CRT output pins R, G, B, I, and OUT and the syncgenerator output pin CSYN can also function as ports P4₀, P4₁, P4₂, P4₃, P4₄, and P4₅. Clear the corresponding bit of the port P4 mode register (address 00C9₁₆) to "0" to specify that pin as CRT output pin, or set it to "1" to specify it as an ordinary port P4 pin.

The input active edges of the H_{SYNC} , V_{SYNC} , MXR, MXG, MXB, MXI, and MXOUT signals can be specified with the bits of the CRT input polarity register (address $00E8_{16}$), and the output active edges of the R, G, B, I, and OUT signals can be specified with the bits of the CRT output polarity register (address $00EC_{16}$). Clear a bit to "0" to specify positive active edge; set it to "1" to specify negative active edge. The structure of the CRT output polarity register is shown in Fig. 48 and that of the CRT input polarity register

(12) Raster Coloring Function

is shown in Fig. 49.

An entire screen (raster) can be colored by setting the upper 5 bits of the CRT output polarity register. Since each of the R, G, B, and I pins can be switched to raster coloring output, 16 raster colors can be obtained.

If the OUT pin has been set to raster coloring output, a raster coloring signal is always output during the horizontal scanning period. This setting is necessary for erasing a background TV image.

If the R, G, B, and I pins have been set to raster coloring output, a raster coloring signal is output during the horizontal scanning period whenever there is no other color character output. This ensures that character colors do not mix with the raster color.

An example in which a magenta letter "I" and a red letter "O" are displayed with blue raster coloring is shown in Fig. 47.

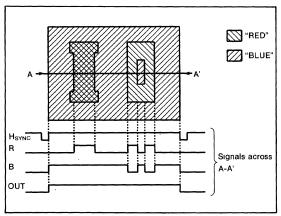


Fig. 47 Example of raster coloring

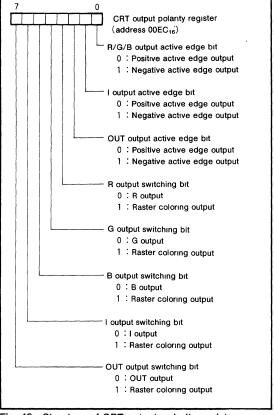


Fig. 48 Structure of CRT output polarity register

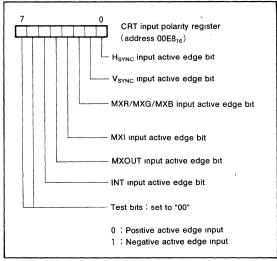


Fig. 49 Structure of CRT input polarity register

(13) Wipe Function

① Wipe mode

The M37260M6-XXXSP allows the display area to be gradually expanded or shrunk in the vertically direction in units

of 1H (H: $\rm H_{SYNC}$ signal). There are three modes for this wipe method. Each mode has Down and UP modes, providing a total of six modes.

Table 10 shows the contents of each wipe mode.

Table 10. Wipe operation in each mode and the values of wipe mode register

	M			Wipe mode register			
Mode			Wipe operation	Bit 2	Bit 1	Bit 0	
	D _{OWN}	Appear from upper side	ABCDEF	0	0	1	
1	UP	Erase from lower side	M N O P Q R S T U V W X	1	0	1	
2	Down	Erase from upper side	ABCDEF GHIJKL	0	1	0	
2	UP	Appear from lower side	M N O P Q R S T U V W X	1	1	0	
3	D _{OWN}	Erase from both upper and lower side	ABCDEF GHIJKL	0	1	1	
3	UP	Appear to both upper and lower side	M N O P Q R S T U V W X	1	1	1 .	

2 Wipe speed

The wipe speed is determined by the vertical synchronization (V_{SYNC}) signal. For the NTSC interlace method, assuming that

V=16.7ms

262.5 H_{SYNC} signals per screen

Table 11. Wipe speed (NTSC method with interlacing, H=262.5)

Wip	e res	olution	Wipe speed (in all picture)
1	Н	unit	16.7 (ms) $\times 262.5 \div 1 = 4 (s)$
2	Н	unit	16.7 (ms) $\times 262.5 \div 2 \div 2$ (s)
4	Н	unit	16.7 (ms) $\times 262.5 \div 4 \div 1$ (s)

The wipe speed is shown in Table 11.

Wipe resolution varies with each wipe mode. In mode 1 and 2, one of three resolutions (1H, 2H, 4H) can be selected. In mode 3, wipe is done in units of 4H alone.

Table 12. Wipe mode and wipe resolution

Mode	Wipe resolution	Wipe speed
M 1	1 H Unit	about 4 second
Mode 1	2 H Unit	about 2 second
Mode 2	4 H Unit	about 1 second
Mode 3	4 H Unit	about 1 second

Table 13. Relationship between wipe speed and wipe resolution

Min - read Min	Wipe speed (full screen)							
Wipe resolution	NTSC method	PAL method	Bi-scan method (525H/flame)					
1H (2H) unit	about 4 second	about 6 second	about 4 second					
2H (4H) unit	about 2 second	about 3 second	about 2 second					
4H (8H) unit	about 1 second	about 1.5 second	about 1 second					

Note: Values in parentheses refer to resolutions for bi-scan method.

To perform a wipe with the bi-scan method, set bit 6 of the CRT control register to "1"

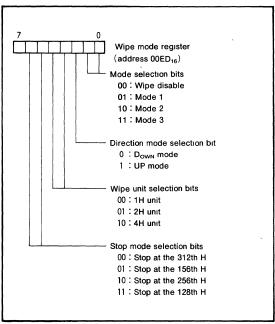


Fig. 50 Structure of wipe mode register

SYNC GENERATOR

The sync generator can output a total of six synchronization signals: NTSC method with interlacing, without interlacing, or bi-scan, and PAL method with interlacing, without interlacing, or bi-scan. Since the synchronization signal is output from the CSYN/P4₅ pin, set bit 5 of the port P4 mode register to "0".

Activate the sync generator by clearing bit 7 of the sync generator control register to "0" and setting bit 4 to match the $X_{\rm IN}$ clock frequency.

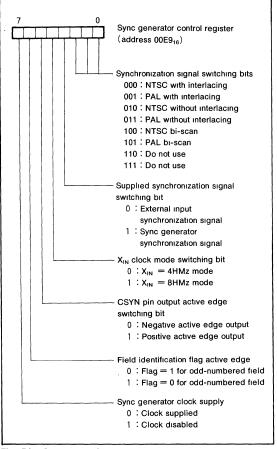


Fig. 51 Structure of sync generator control register

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for ON-SCREEN DISPLAY

		•							
	ync gnal	Contents of signal	90	1	S G O				Waveform (in case the CSYN pin negative active edge output)
	With interlace	With interlace Even-numbered field 262 5H/field With interlace Odd-numbered	O		0 0	_ _	∵	<u> </u>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
NTSC	Without	field 262 5H/field Without interlace 263H/field	a	1	0				- + 64μ sec - 200μ sec
	Bı-scan	Without interlace 525H/field	1	0	0	ſ	——		- 196μ sec - 196μ sec
	With	With interlace Even-numbered field 312 5H/field With interlace Odd-numbered	0	C	1			—— ——	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
PAL	Without interlace.	field 312 5H/field Without interlace 313H/field	0	1	1				- + 64μ sec
	Bi-scan	Without interlace 625H/field	1	0	1	ſ			32μ sec 164μ sec 164μ sec 164μ sec

RESET CIRCUIT

The M37260M6-XXXSP is reset according to the sequence shown in Figure 53. It starts the program from the address formed by using the content of address FFFF₁₆ as the high order address and the content of the address FFFE₁₆ as the low order address, when the $\overline{\text{RESET}}$ pin is held at "L" level for no less than $2\mu s$ while the power voltage is $5V \pm 10\%$

and the crystal oscillator oscillation is stable and then returned to "H" level. The internal initializations following reset are shown in Figure 54.

An example of the reset circuit is shown in Figure 55. The reset input voltage must be kept below 0.6V until the supply voltage surpasses 4.5V.

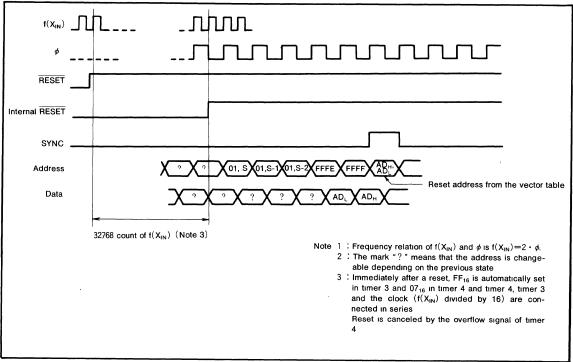


Fig. 53 Timing diagram in reset

Port P0 direction register	Address 0 0 C 1 ₁₆	Contents of register			
Port Pu direction register Port P1 direction register	0 0 C 3 16 ·	0016			
		0016			
	0 0 C 5 ₁₆	0016			
, roll of all collent regions.	0 0 C 7 ₁₆	× × 0 0 0 0 0			
5) Port P4 mode register	0 0 C 9 16	0016			
Serial I/O mode register 1	0 0 C D ₁₆	0016			
7) Serial I/O mode register 2	0 0 C E ₁₆	××× 0 0 0 0 0			
Character size register 1	0 0 D 7 ₁₆	×			
Character size register 2	0 0 D 8 ₁₆ ··	×			
0) Character size register 3	0 0 D 9 ₁₆	×			
Blank control register 1	0 0 D A ₁₆	××			
2) Blank control register 2	0 0 D B ₁₆ ·	X X			
3) Blank control register 3	0 0 D C 16	××			
Block 1 interrupt occurrence position control register	0 0 D D ₁₆	×××			
5) Block 2 interrupt occurrence position control register	0 0 D E 16	$\times \times \times$			
Block 3 interrupt occurrence position control register	0 0 D F ₁₆	$\times \times \times$			
7) Horizontal position register	0 0 E 0 16	0016			
8) Vertical position register 4	0 0 E 4 16	××			
9) Mixing circuit control register	0 0 E 5 16	0016			
ORT input polarity register	0 0 E 8 16	0016			
Sync generator control register	0 0 E 9 16	0016			
2) CRT control register	0 0 E A ₁₆	0016			
3) Display block counter	0 0 E B 16 ·	× 0 0 0 0 0 0			
4) CRT output polarity register	0 0 E C 16	0016			
Wipe mode register	0 0 E D ₁₆	× 0 0 0 0 0 0			
6) Timer 1	0 0 F 0 16	FF ₁₆			
(7) Timer 2	00F1 ₁₆ ·	0716			
8) Timer 3	00F2 ₁₆ ·	FF ₁₆			
9) Timer 4	00F3 ₁₆	0716			
Timer 12 mode register	00F4 ₁₆ ·	×××00000			
Timer 34 mode register	00F5 ₁₆	×××00000			
2) Special mode register 1	00F7 ₁₆ ·	0 0 0 × × × 0 0			
Special mode register 2	00F8 ₁₆	× 0 0 0 0 0 0			
4) CPU mode register	0 0 F B ₁₆	1 1 1 0 1 1 0 0			
interrupt request register 1	0 0 F C ₁₆	××000000			
6) Interrupt request register 2	0 0 F D ₁₆	\times × × × × 0 0 0			
interrupt control register 1	0 0 F E 16	××000000			
8) Interrupt control register 2	0 0 F F 16	$\times \times $			
Processor status register	10				
Program counter	РСн	Contents of address FFFF16			
- 1 Togram counter	P C _L	Contents of address			
	F U1	EEEE.c			

Fig. 54 Internal state of microcomputer at reset

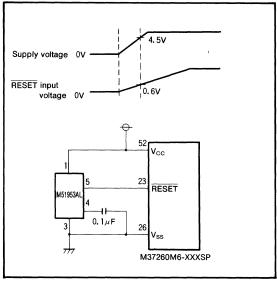


Fig. 55 Example of reset circuit

I/O PORTS

(1) Port P0

Port P0 is an 8-bit I/O port with CMOS output.

As shown in the memory map (Figure 3), port P0 can be accessed at zero page memory address 00C0₁₆.

Port P0 has a direction register (address 00C1₁₆) which can be used to program each individual bit as input ("0") or as output ("1"). If the pins are programmed as output, the output data is latched to the port register and then output. When data is read from the output port the output pin level is not read, only the latched data in the port register is read. This allows a previously output value to be read correctly even though the output voltage level is shifted up or down. Pins set as input are in the floating state and the signal levels can thus be read. When data is written into the input port, the data is latched only to the port latch and the pin still remains in the floating state.

Depending on the contents of the processor mode bits (bit 0 and bit 1 at address 00FB₁₆), three different modes can be selected; single-chip mode, memory expansion mode and microprocessor mode.

In these modes it functions as address $(A_7 \text{ to } A_0)$ output port (excluding single-chip mode). For more details, refer the processor mode information.

(2) Port P1

In single-chip mode, port P1 has the same function as port P0. In other modes, it functions as address (A_{15} to A_{8}) output port.

For more details, refer the processor mode information.

(3) Port P2

In single-chip mode, port P2 has the same function as port P0. In other modes, it functions as data (D_7 to D_0) input/output port. For more details, refer the processor modes information.

(4) Port P3

Port P3 is a 6-bit I/O port with function similar to port P0, but the output structure of P3 $_0$, P3 $_1$ is CMOS output, and P3 $_2$ -P3 $_5$ is N-channel open drain.

 $P3_2$ is in common with the external input pin INT and the serial I/O input pin \overline{CS} .

When a serial I/O function is selected, P3 $_3$ to P3 $_5$ work as $\overline{S_{RDV}}$, S_{IN}/S_{OUT} , and S_{CLK} pins.

When a special serial I/O function is selected, $P3_4$ and $P3_5$ work as SDA and SCL pins.

In microprocessor mode or memory expansion mode, $P3_0$ and $P3_1$ work R/\overline{W} output pin and SYNC output pin.

(5) OSC1, OSC2 pins

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for ON-SCREEN DISPLAY

Clock input/output pins for CRT display function.

(6) H_{SYNC}, V_{SYNC} pins

H_{SYNC} is a horizontal synchronizing signal input pin for CRT display.

 $V_{\mbox{\scriptsize SYNC}}$ is a vertical synchronizing signal input pin for CRT display.

(7) R, G, B, I, OUT pins

This is a 5-bit output pin for CRT display and in common with $P4_0-P4_4$.

(8) CSYN pin

CSYN pin outputs the composite sync signal by the sync generator.

CSYN pin is in common with P45.

(9) MXR, MXG, MXB, MXI, MXOUT pins

These are video signal input pins for mixing function. MXR, MXG, MXB, MXI, and MXOUT are in common with the input port P5₂, P5₃, P5₄, P5₅, P5₆. MXB and MXI are also in common with the external clock input pins TIM2 and TIM3.

(10) ϕ pin

The internal system clock (1/2 the frequency of the oscillator connected between the X_{IN} and X_{OUT} pins) is output from this pin. If an STP or WIT instruction is executed, output stops after going "H".

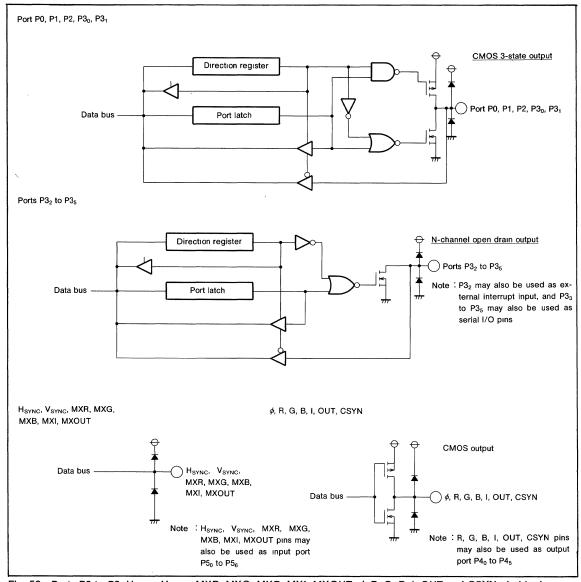


Fig. 56 Ports P0 to P3, H_{SYNC}, V_{SYNC}, MXR, MXG, MXB, MXI, MXOUT, φ, R, G, B, I, OUT and CSYN pin block diagram

PROCESSOR MODE

By changing the contents of the processor mode bits (bits 0 and 1 at address $00FB_{16}$), three different operation modes can be selected; single-chip mode, memory expansion mode, and microprocessor mode.

In the memory expansion mode and the microprocessor mode, ports P0 to P3 can be used as address, and data input/output pins.

Figure 60 shows the functions of ports P0 to P3.

The memory map for the single-chip mode is shown in Figure 2 and for other modes, in Figure 57.

By connecting CNV_{SS} to V_{SS} , all three modes can be selected through software by changing the processor mode bits. Connecting CNV_{SS} to V_{CC} automatically forces the

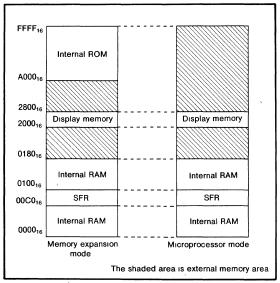


Fig. 57 External memory area at each processor mode

microprocessor mode.

The three different modes are explained as follows:

- (1) Single-chip mode [00]
 - The microcomputer will automatically be in the single-chip mode when started from reset, if CNV_{SS} is connected to V_{SS}. Ports P0-P3 will work as I/O ports.
- (2) Memory expansion mode (01)

The microcomputer will be placed in the memory expansion mode after connecting CNV_{SS} to V_{SS} and the processor mode bits are set to "01". This mode is used to add external memory when the internal memory is not sufficient.

In this mode, port P0 and port P1 are as a system address bus and its I/O pin function is lost.

Port P2 becomes the data bus of D_7 to D_0 (including instruction code) and loses its I/O port function. Port P3 $_0$ and P3 $_1$ works as R/ \overline{W} output pin and SYNC output pin.

(3) Microprocessor mode [10]

The microcomputer will be placed in the microprocessor mode after connecting CNV_{SS} to V_{CC} and initiating a reset or connecting CNV_{SS} to V_{SS} and processor mode bits are set to "10". In this mode, the internal ROM is inhibited so the external memory is required Other functions are same as the memory expansion mode. The relationship between the input level of CNV_{SS} and the processor mode is shown in Table 14.

- Note 1: Use the M37260M6-XXXSP in the microprocessor mode or the memory expansion mode only at program development.
 - The standard is assured only in the single-chip mode.
 - The display ROM cannot be placed on the external memory area.

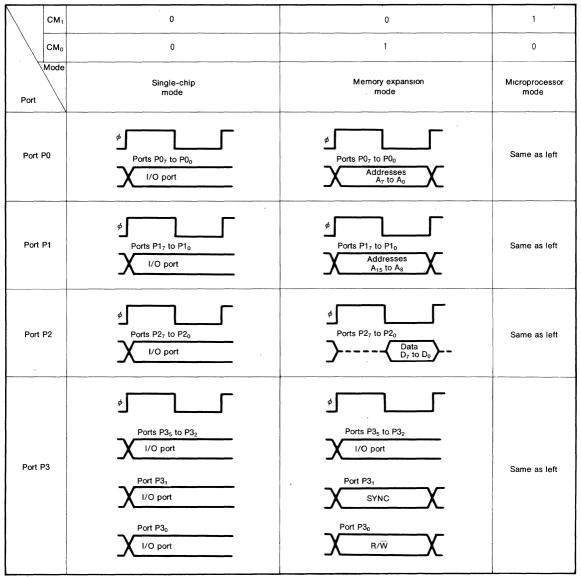


Fig. 58 Processor mode and function of ports P0 to P3 (CM₁, CM₀: bit 1 and bit 0 of CPU mode register)

Table 14. Relationship between CNV_{SS} pin input level and processor mode

CNVss	Mode	Explanation
• Single-chip mode The single-chip mode is set by the reset. All modes can be selected by cha		The single-chip mode is set by the reset. All modes can be selected by changing the pro-
V _{SS} • Memory expansion mode		cessor mode bit with the program.
	Microprocessor mode	,
V _{CC}	Microprocessor mode	The microprocessor mode is set by the reset

Data-set timing of CPU mode register

The value of bit 0 and bit 1 in the CPU mode register is set at the second rising edge of the SYNC signal after the writing instruction is executed.

However the value of bit 2 and bit 3 is set at the first rising edge of the SYNC signal, just as in the other registers.

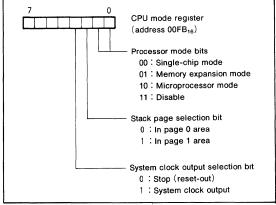


Fig. 59 Structure of CPU mode register

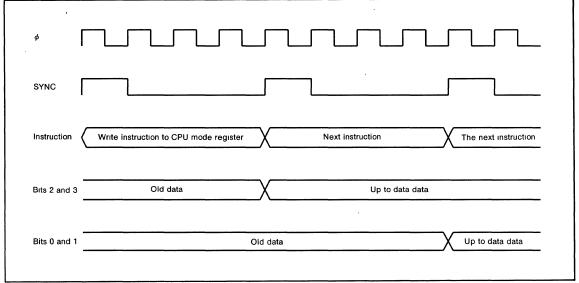


Fig. 60 Data-set timing of CPU mode register

Table 15. The value of CPU mode register at reset

CNV _{ss} pin	b7		CPU		b0			
V _{ss}	1	1	1	0	1	1	0	0
Vcc	1	1	1	0	1	1	1	0

CLOCK GENERATING CIRCUIT

The built-in clock generating circuits are shown in Figure 63.

When an STP instruction is executed, the internal clock ϕ stops oscillating at "H" level. At the same time, timer 3 and timer 4 are connected automatically and FF $_{16}$ is set in the timer 3, 01 $_{16}$ is set in the timer 4, and timer 3 count source is forced to $f(X_{\rm IN})$ divided by 16. This connection is cleared when an external interrupt is accepted or the reset is in, as discussed in the timer section.

The oscillator is restarted when an interrupt is accepted. However, the internal clock ϕ keeps its "H" level until timer 4 overflows.

This is because the oscillator needs a set-up period if a ceramic or a quartz crystal oscillator is used.

When the WIT instruction is executed, the internal clock ϕ stops in the "H" level but the oscillator continues running. This wait state is cleared when an interrupt is accepted. Since the oscillation does not stop, the next instructions are executed at once.

To return from the stop or the wait status, the interrupt enable bit must be set to "1" before executing STP or WIT instruction.

The circuit example using a ceramic oscillator (or a quartz crystal oscillator) is shown in Figure 61.

The constant capacitance will differ depending on which oscillator is used, and should be set to the manufactures suggested value.

The example of external clock usage is shown in Figure 62 X_{IN} is the input, and X_{OUT} is open.

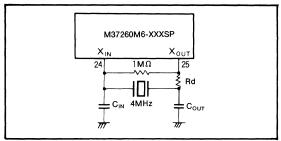


Fig. 61 External ceramic resonator circuit

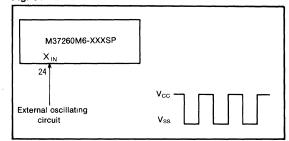


Fig. 62 External clock input circuit

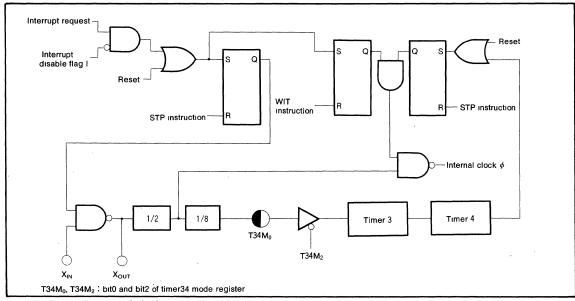


Fig. 63 Block diagram of clock generating circuit

DISPLAY OSCILLATION CIRCUIT

The CRT display clock oscillation circuit has built-in RC and LC oscillation circuits, so that a clock can be obtained simply by connecting an RC or LC circuit between the OSC1 and OSC2 pins.

Select the RC or LC oscillation circuit by setting bits 6 and 7 of the mixing control register (see the structure of the mixing control register in Figure 45).



Fig. 64 Display oscillation circuit

AUTO CLAER CIRCUIT

When power is supplied, the auto-clear function can be performed by connecting the following circuit to reset pin.

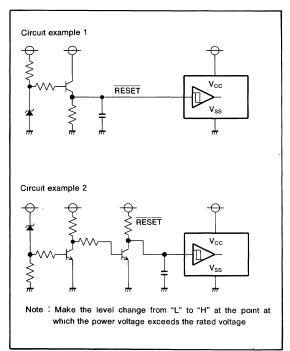


Fig. 65 Auto clear circuit example

PROGRAMMING NOTES

- (1) The frequency ratio of the timer is 1/(n+1).
- (2) Even though the BBC and BBS instructions are executed after the interrupt request bits are modified (by the program), those instruction are only valid for the contents before the modification. Also, at least one instruction cycle must be used (such as an NOP) between the modification of the interrupt request bits and the execution of the BBC and BBS instructions.
- (3) After the ADC and SBC instructions are executed (indecimal mode), one instruction cycle (such as an NOP) is needed before the SEC, CLC, or CLD instructions are executed.
- (4) An NOP instruction must be used after the execution of a PLP instruction.
- (5) In order to avoid noise and latch-up, connect a bypass capacitor ($\approx 0.1 \mu F$) directly between the V_{CC} pin and V_{SS} pin using a heavy wire.

DATA REQUIRED FOR MASK ORDERING

Please send the following data for mask orders.

- (1) mask ROM order confirmation from
- (2) mark specification from
- (3) ROM data ····· EPROM 3 sets

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		-0.3 to 6	V
V _I	Input voltage CNV _{SS}		-0.3 to 6	V
	Input voltage P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ ,	With respect to V _{SS}		
V_1	P3 ₀ -P3 ₅ , MXR, MXG, MXB, MXI,	Output transistors are at "off" state	-0.3 to $V_{CC}+0.3$	V
	MXOUT, H _{SYNC} , V _{SYNC} , RESET			
	Output voltage P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ ,			
Vo	P3 ₀ -P3 ₅ , R, G, B, I, OUT, CSYN,		-0.3 to $V_{CC}+0.3$	V
	X _{OUT} , OSC2			
	Circuit current R, G, B, I, OUT, CSYN, P00-P07,		0 to 1(Note 1)	
Іон	P1 ₀ P1 ₇ , P2 ₀ P2 ₇ , P3 ₀ , P3 ₁		U to I (Note I)	mA
	Circuit current R, G, B, I, OUT, CSYN, P00-P07,		0 to 2(Note 2)	4
I _{OL1}	P1 ₀ P1 ₇ , P2 ₀ P2 ₇ , P3 ₀ P3 ₅		0 to 2(Note 2)	mA
Pd	Power dissipation	T _a =25℃	550	mW
Topr	Operating temperature		—10 to 70	°C
Tstg	Storage temperature		-40 to 125	°C

RECOMMENDED OPERATING CONDITIONS ($T_a = -10$ to 70° C, $V_{cc} = 5V \pm 10\%$ unless otherwise noted)

			Limits		Unit
Symbol	Parameter	Mın	Тур	Max	Onit
V _{CC}	Supply voltage(Note 3) During the CPU and CRT operation	4.5	5.0	5.5	V
V _{SS}	Supply voltage	0	0	0	٧
V _{IH}	"H" input voltage P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ -P3 ₃ , H _{SYNC} , V _{SYNC} , MXR, MXG, MXB, MXI, MXOUT, RESET, X _{IN} , OSC1			V _{cc}	V
V _{IH}	"H" input voltage P3 ₄ , P3 ₅	0.7V _{CC}		V _{CC}	V
V _{IL1}	"L" input voltage P0 ₀ —P0 ₇ , P1 ₀ —P1 ₇ , P2 ₀ —P2 ₇ , P3 ₀ , P3 ₁ , P3 ₃ , MXR, MXG, MXOUT			0. 4V _{CC}	٧
V _{IL2}	"L" input voltage P3 ₂ , P3 ₄ , P3 ₅ , H _{SYNC} , V _{SYNC} , RESET, X _{IN} , OSC1, MXB, MXI			0.2V _{CC}	٧
I _{OH}	"H" average output current (Note 1) R, G, B, I, OUT, CSYN, P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ , P3 ₁			1	mA
l _{OL}	"L" average output current (Note'2) R, G, B, I, OUT, CSYN, P0 ₀ - P0 ₇ , P1 ₀ - P1 ₇ P2 ₀ - P2 ₇ , P3 ₀ - P3 ₅			2	mA
f _{CPU}	Oscillating frequency (for CPU operation)(Note 4)	3.6	4.0	8. 1	MHz
f _{CRT}	Oscillating frequency (for CRT display)	12.0	14.0	16.0	MHz
fhs	Input frequency INT, TIM2, TIM3, SCL		,	100	kHz
fhs	Input frequency S _{CLK}			1	MHz

Note 1: The total current that flows out of the IC should be 20mA (max)

2 : The total current shold be 30mA (max)

Also apply 0. 068μ F or greater capacitance externally between the V_{CC} -CNV_{SS} pins

4 : Use a quartz crystal oscillator or a ceramic resonator for the CPU oscillation circuit

^{3 :} Apply 0.022 μ F or greater capacitance externally between the $V_{CC}-V_{SS}$ power supply pins so as to reduce power source noise

ELECTRIC CHARACTERISTICS (V_{CC}=5V±10%, V_{SS}=0V, f(X_{IN}) =4MHz, T_a=-10 to 70°C unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			11-14
Symbol	Parameter	l est conditions	Min.	Тур	Max	Unit
		V _{CC} =5.5V, f(X _{IN})=4MHz CRT OFF		10	20	
Icc	Supply current	V_{CC} =5.5V, $f(X_{IN})$ =4MHz CRT ON		20	50	mA
		At stop mode			300	μA
V _{OH}	"H" output voltage P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ , P3 ₁ , R, G, B, I, OUT, CSYN	V _{CC} =4.5V I _{OH} =-0.5mA	2. 4			v
	"L" output voltage P0 ₀ —P0 ₇ , P1 ₀ —P1 ₇ , P2 ₀ —P2 ₇ , P3 ₀ —P3 ₃ , R, G, B, I, OUT, CSYN	V _{CC} =4.5V I _{OL} =0.5mA			0.4	>
V _{OL}	"L" output voltage P3 ₄ , P3 ₅	V _{CC} =4.5V I _{OL} =3mA	,		0.4	
	Hysteresis RESET	V _{CC} =5.0V		0.5	0.7	
$V_{T+}-V_{T-}$	Hysteresis (Note 1) H _{SYNC} , V _{SYNC} , P3 ₂ , P3 ₄ , P3 ₅ , MXB, MXI	V _{CC} =5.0V		0.5	1.3	٧
Гогн	"H" input leak current RESET, P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ -P3 ₅ , H _{SYNC} , V _{SYNC} , MXR, MXG, MXB, MXI, MXOUT	V _{CC} =5.5V V _O =5.5V			5	μΑ
l _{ozL}	"L" input leak current RESET, P0 ₀ —P0 ₇ , P1 ₀ —P1 ₇ , P2 ₀ —P2 ₇ , P3 ₀ —P3 ₅ , H _{SYNC} , V _{SYNC} , MXR, MXG, MXB, MXI, MXOUT	V _{cc} =5.5V V _o =0V			5	μА

Note 1. P3₂, MXB, MXI have the hysteresis when these pins are used as interrupt input pins or timer input pins. P3₄, P3₅ have the hysteresis when these pins are used as serial I/O and special serial I/O ports.

PROM VERSION of M37102M8-XXXSP/FP,M37201M6-XXXSP

DESCRIPTION

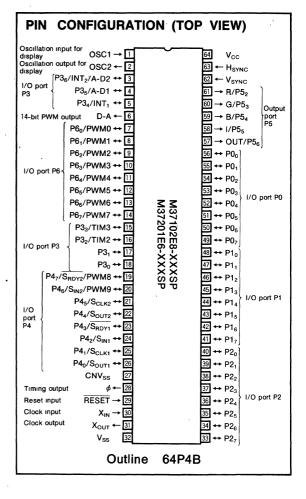
The M37102E8-XXXSP/FP is a single-chip microcomputer designed with CMOS silicon gate technology. It is housed in a 64-pin shrink plastic molded DIP or an 80-pin plastic molded QFP. The features of this chip are similar to those of the M37102M8-XXXSP/FP except that this chip has a 16384 bytes PROM built in. This single-chip microcomputer is useful for the high-tech channel selection system for TVs. In addition to its simple instruction sets, the PROM, RAM, and I/O addresses are placed on the same memory map to enable easy programming. Since general purpose PROM writers can be used for the built-in PROM, this chip is suitable for small quantity production runs.

The differences between the M37102E8-XXXSP and the M37201E6-XXXSP are noted below. The following explanations apply to the M37102E8-XXXSP

Specification variations for other chips are noted accordingly.

Type name	ROM size	RAM size
M37102E8-XXXSP	16384 bytes	320 bytes
M37201E6-XXXSP	24576 bytes	384 bytes

FEATURES


	EAIUHES	
•	Number of ba	sic instructions 69
•	Memory size	PROM ·· 16384 bytes (M37102E8-XXXSP/FP)
		-24576 bytes (M37201E6-XXXSP)
		RAM ·· 320 bytes (M37102E8-XXXSP/FP)
		384 bytes (M37201E6-XXXSP)
•	Instruction exe	ecution time
	1	(minimum instructions at ANALL francis

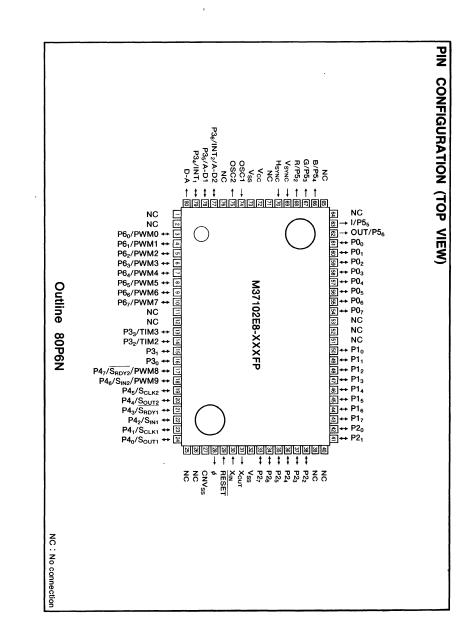
	1µs (minimum instructions at 4MHz frequency)
•	Single power supply5V±10%
•	Power dissipation
	normal operation mode (at 4MHz frequency)
	110mW (V _{CC} =5.5V, CRT display)
•	Subroutine nesting 96 levels (Max.)
•	Interrupt······ 13types, 13vectors
•	8-bit timer 4
•	Programmable I/O ports
	(Ports P0, P1, P2, P3, P4, P6) · · · · · 47
•	Output port (Port P5)5
•	Serial I/O (8-bit)2
•	PWM function ······14-bit×1
	8-bit×10
•	A-D converter (4-bit resolution) 2 channels
•	72-character on screen display function

Number of character 24 character 3 lines Kinds of character 126

Program voltage 12.5V

PROM (equivalent to the M5L27256)

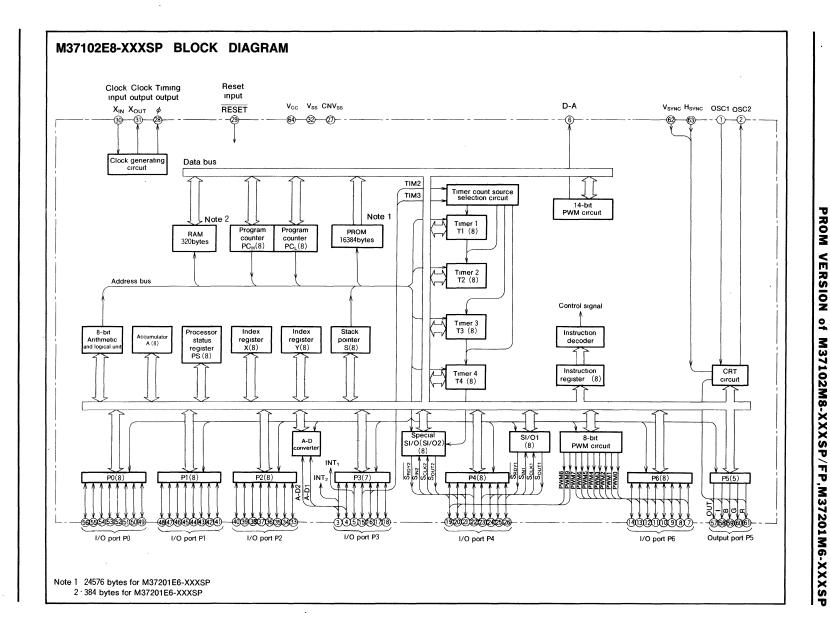
APPLICATION


Tν

MITSUBISHI MICROCOMPUTERS

M37102E8-XXXSP/FP M37201E6-XXXSP

PROM VERSION of M37102M8-XXXSP/FP,M37201M6-XXXSP



MITSUBISH

MICROCOMPUTERS

PROM VERSION of M37102M8-XXXSP/FP,M37201M6-XXXSP

FUNCTIONS OF M37102E8-XXXSP/FP, M37201E6-XXXSP

	Parameter		Functions		
Number of basic instructions			69		
Instruction execution time			1μs (minimum instructions, at 4MHz frequency)		
Clock frequency			4MHz		
	1407400F0 VVV0D/FD	ROM	16384 bytes		
M	M37102E8-XXXSP/FP	RAM	320 bytes		
Memory size	M07004F6 VVV0D	ROM	24576 bytes		
	M37201E6-XXXSP	RAM	384 bytes		
	P0, P1, P2	1/0	8-bit×3		
	P3 ₀ , P3 ₁	1/0	2-bit×1		
	D0 D0	1/0	5-bit×1 (can be used as timer input pins, INT ₁ , INT ₂ input pins and A-D		
Input/Output ports	P3 ₂ -P3 ₆	1/0	input pins)		
	P4	1/0	8-bit×1 (can be used as serial I/O function pins and PWM output pins)		
	P5	Output	5-bit×1 (can be used as R, G, B, I, OUT pins)		
	P6 ·		8-bit×1 (can be used as PWM output pins)		
Serial I/O			8-bit×2 (Special serial I/O (8-bit)×1)		
Timers			8-bit timer×4		
Subroutine nesting			96levels (max)		
Interrupt			Two external interrupts, nine internal interrupts,		
mterrupt			one software interrupt		
Clock generating circuit			Built-in circuit (externally connected ceramic or quartz crystal oscillator)		
Supply voltage			5V±10%		
	at CRT display ON		110mW (clock frequency X _{IN} =4MHz, V _{CC} =5.5V, Typ)		
Power dissipation	at CRT display OFF		55mW (clock frequency X _{IN} =4MHz, V _{CC} =5.5V, Typ)		
	at stop mode		1. 65mW (Max)		
Input/Output characteristics	Input/Output voltage		5V (Port P4 ₆ , P4 ₇ , P6 ₀ -P6 ₇)		
Output current			10mA (Port P2 ₄ -P2 ₇)		
Operating temperature range			−10 to 70°C		
Device structure			CMOS silicon gate process		
Package	M37102E8-XXXSP, M3720	1E6-XXXSP	64-pin shrink plastic molded DIP		
r achaye	M37102E8-XXXFP		80-pin plastic molded QFP		
CRT display function	Number of character		24 characters×3 lines		
On display full citori	Kinds of character		126 (12×16 dots)		

MITSUBISHI MICROCOMPUTERS

M37102E8-XXXSP/FP M37201E6-XXXSP

PROM VERSION of M37102M8-XXXSP/FP,M37201M6-XXXSP

PIN DESCRIPTION

Pin	Mode	Name	Input/ Output	Functions
V _{cc} ,	Single-chip	Power supply		Power supply inputs 5V±10% (typ) to V _{CC} , and 0V to V _{SS}
V _{ss}	EPROM			Power supply inputs 5V, or 6V (writing to built-in PROM) to $V_{\text{CC}},$ and 0V to V_{SS}
CNVss	Single-chip	CNVss	Input	This is connected to V _{SS}
	EPROM			V _{PP} inputs when writing to built-in PROM or verify check of built-in PROM contents
RESET	Single-chip	Reset input	Input	To enter the reset state, the reset input pin must be kept at a "L" for more than $2\mu s$ (under normal V_{CC} conditions) If more time is needed for the crystal oscillator to stabilize, this "L" condition should be maintained for the required time
	EPROM			Input "L" level
X _{IN}	Single-chip /EPROM	Clock input	Input	This chip has an internal clock generating circuit. To control generating frequency, an external ceramic or a quartz crystal oscillator is connected between the X _{IN} and
X _{OUT}		Clock output	Output	X_{OUT} pins If an external clock is used, the clock source should be connected the X_{IN} pin and the X_{OUT} pin should be left open
φ	Single-chip	Timing output	Output	This is the timing output pin and has the reset out signal output function
	EPROM			This pın ıs setting to open
P0 ₀ -P0 ₇	Single-chip	I/O port P0	1/0	Port P0 is an 8-bit I/O port with directional registers allowing each I/O bit to be individually programmed as input or output At reset, this port is set to input mode. The output structure is CMOS output.
	EPROM	Address input	Input	Low-order 8-bit of address is input
P1 ₀ -P1 ₇	Single-chip	I/O port P1	1/0	Port P1 is an 8-bit I/O port and has basically the same function as port P0
	EPROM	Address input	Input	High-order 8-bit of address is input.
P2 ₀ -P2 ₇	Single-chip	I/O port P2	I/O	Port P2 is an 8-bit I/O port and has basically the same function as port P0
	EPROM	Data input/output		8-bit data is input or output.
P3 ₀ -P3 ₆	Single-chip	I/O port P3	I/O	Port P3 is a 7-bit I/O port and has basically the same function as port P0, but the output structure of P3 $_0$ and P3 $_1$ is CMOS output and the output structure of P3 $_2$ -P3 $_0$ is N-channel open drain P3 $_2$ and P3 $_3$ are in common with external clock input pins of timer 2 and Timer 3 P3 $_4$ and P3 $_6$ are in common with external interrupt input pins INT $_1$ and INT $_2$ P3 $_5$ and P3 $_6$ are in common with analog input pins of A-D converter (A-D1, A-D2)
	EPROM	Mode input	Input	P3 $_0$ and P3 $_1$ are the input pins as \overline{OE} and \overline{CE} P3 $_2$ and P3 $_3$ are connected to V $_{CC}$ P3 $_4$ -P3 $_6$ are connected to V $_{SS}$
P4 ₀ -P4 ₇	Single-chip	I/O port P4	1/0	Port P4 is an 8-bit I/O port and has basically the same functions as port P0, but the output structure is N-channel open drain. When serial I/O1 is used, P4 ₀ , P4 ₁ , P4 ₂ and P4 ₃ work as S _{OUT1} , S _{CLK1} , S _{IN1} and S _{RDY1} pins, respectively. When serial I/O2 is used, P4 ₄ P4 ₅ , P4 ₆ , and P4 ₇ work as S _{OUT2} , S _{CLK2} , S _{IN2} and S _{RDY1} pins, respectively. Also P4 ₆ , P4 ₇ are in common with PWM output pins of PWM8 and PWM 9
	EPROM	Input port P4	Input	P4 ₀ -P4 ₆ are all connected to V _{SS} , and P4 ₇ is connected to V _{CC}
OSC1 OSC2	Single-chip	Clock I/O for CRT	1/0	This is the I/O pins of the clock generating circuit for the CRT display function
\	EPROM	display	Output	These pins are setting to open

MITSUBISHI MICROCOMPUTERS M27102E0 YYYED/ED

M37102E8-XXXSP/FP M37201E6-XXXSP

PROM VERSION of M37102M8-XXXSP/FP,M37201M6-XXXSP

PIN DESCRIPTION

Pin	Mode	Name	Input/ Output	Functions
H _{SYNC}	Single-chip	Horizontal synchronous	Input	This is the horizontal synchronizing signal input for CRT display.
	EPROM	signal		This is connected to V _{SS}
V _{SYNC}	Single-chip	Vertical synchronous	Input	This is the vertical synchronizing signal input for CRT display
	EPROM			This is connected to V _{SS} .
R, G, B, I, OUT	Single-chip	Video signal	Output	This is a 5-bit output pin for CRT display. The output structure is CMOS output. This is in common with ports P5 ₂ -P5 ₆
	EPROM			These pins are setting to open
P6 ₀ -P6 ₇	Single-chip	I/O port P6	1/0	Port P6 is an 8-bit I/O port and has basically the same functions as port P0, but the output structure is N-channel open drain. This port is in common with PWM output pins PWM0-PWM7.
	EPROM	Input port P6	Input	All pins are connected to V _{SS}
D-A	Single-chip	D-A output	Output	This is an output pin for 14-bit PWM
	EPROM			This pin is setting to open

PROM VERSION of M37102M8-XXXSP/FP,M37201M6-XXXSP

EPROM MODE

The M37102E8-XXXSP/FP features an EPROM mode in addition to its normal modes. When the \overline{RESET} signal level is low ("L") and CNV_{SS}/V_{PP} signal level is high ("H"), the chip automatically enters the EPROM mode. Table 1 list the correspondence between pins and Figure 1 to 3 give the pin connections in the EPROM mode. When in the EPROM mode, ports P0, P1, P2, P30, P31 and CNV_{SS} are used for the PROM (equivalent to the M5L27256). When in this mode, the built-in PROM can be written to or read-from using these pins in the same way as with the M5L27256. The oscillator should be connected to the $X_{\rm IN}$ and $X_{\rm OUT}$ pins, or external clock should be connected to the $X_{\rm IN}$ pin.

Table 1. Pin function in EPROM mode

	M37102E8-XXXSP/FP	M5L27256
V _{CC}	V _{cc}	V _{cc}
V _{PP}	CNV _{ss}	V_{PP}
V _{SS}	V _{ss}	V _{SS}
Address input	Ports P0, P1 ₀ -P1 ₆	A ₀ -A ₁₄
Data I/O	Port P2	D ₀ -D ₇
CE	P3 ₁	CE
ŌE	P3 ₀	OE

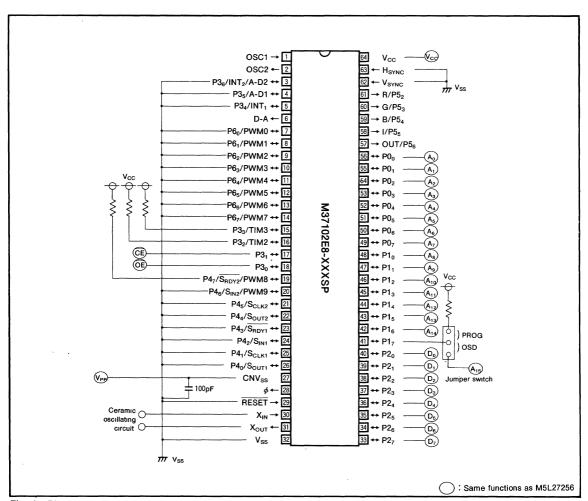


Fig. 1 Pin connection in EPROM mode

PROM VERSION of M37102M8-XXXSP/FP,M37201M6-XXXSP

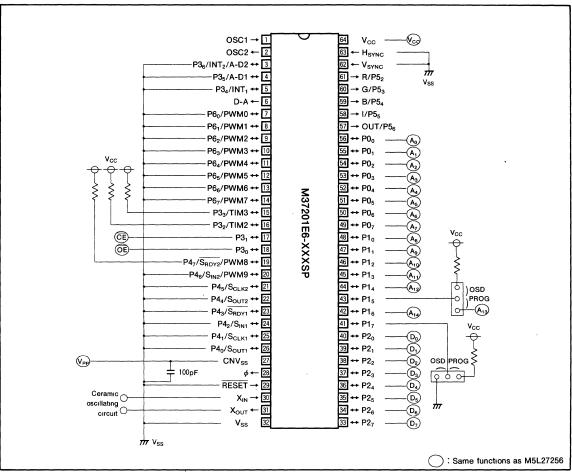


Fig. 2 Pin connection in EPROM mode

PROM VERSION of M37102M8-XXXSP/FP,M37201M6-XXXSP

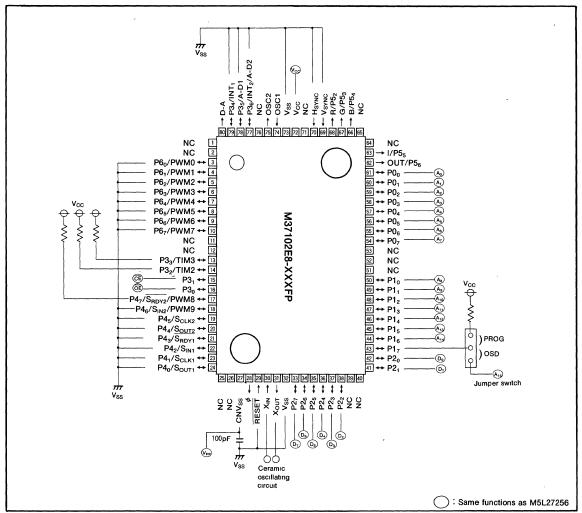
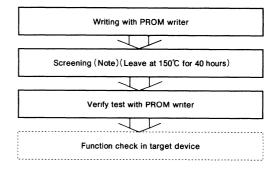


Fig. 3 Pin connection in EPROM mode

PROM VERSION of M37102M8-XXXSP/FP,M37201M6-XXXSP

PROM READING, WRITING AND ERASING Reading


To read the PROM, set the \overline{CE} and \overline{OE} pins to a "L" level, and supply 0V to the \overline{RESET} pin, 5V to the V_{CC} pin and the CNV_{SS} (V_{PP}) pin. Input the address of the data (A_0 - A_{14}) to be read and the data will be output to the I/O pins D_0 - D_7 . The data I/O pins will be floating when the \overline{OE} pin is in the "H" state.

Writing

To write to the PROM, set the \overline{OE} pin to an "H" level, and supply 0V to the \overline{RESET} pin, 6V to the V_{CC} pin and 12.5V to the V_{PP} pin. The CPU will enter the program mode when V_{PP} is applied to the V_{PP} pin. The address to be written to is selected with pins A_0 - A_{14} , and the data to be written is input to pins D_0 - D_7 . Set the \overline{CE} pin to a "L" level to begin writing.

NOTES ON HANDLING

- Since a high voltage is used to write data, care should be taken when turning on the PROM writer's power.
- (2) For the programmable microcomputer (shipped in blank or OTP type), Mitsubishi does not perform PROM write test and screening in the assembly process and following process. To improve reliability after write, performing write and test according to the flow below before use is recommended.
- (3) In EPROM mode, address A₁₅ is set to "H" automatically.

Note: Since the screening temperature is higher than storage temperature, never expose to 150℃ exceeding 100 hours.

Table 2. I/O signal in each mode

Pin	CE	ŌĒ	V _{PP}	V _{cc}	Data I/O
Read-out	V _{IL}	V _{IL}	5 V	5 V	Output
Output disable	VIL	V _{IH}	5 V	5 V	Floating
Programming	VIL	V _{IH}	12.5V	6 V	Input
Programming verify	V _{IH}	V _{IL}	12.5V	6V	Output
Program disable	V _{IH}	V _{IH}	12.5V	6 V	Floating

Note 1: V_{IL} and V_{IH} indicate a "L" and "H" input voltage, respectively

MITSUBISHI MICROCOMPUTERS

M37102E8-XXXSP/FP M37201E6-XXXSP

PROM VERSION of M37102M8-XXXSP/FP,M37201M6-XXXSP

ABSOLUTE MAXIMUM RATINGS

Symbol	_ Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		-0.3 to 6	V
Vı	Input voltage CNV _{SS}		-0.3 to 6	V
	Input voltage P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ ,	With respect to V _{SS}		
V _I	P3 ₀ -P3 ₆ , P4 ₀ -P4 ₇ , P6 ₀ -P6 ₇ ,	Output transistors are at "off" state	-0.3 to $V_{CC}+0.3$	V
	H _{SYNC} , V _{SYNC} , RESET			1
	Output voltage P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ ,			
Vo	P3 ₀ -P3 ₆ , P4 ₀ -P4 ₅ , R, G, B, I,		-0.3 to $V_{CC}+0.3$	V
	OUT, D-A, X _{OUT} , OSC2			
V _o	Output voltage P4 ₆ , P4 ₇ , P6 ₀ -P6 ₇		-0.3 to 13	V
	Circuit current R, G, B, I, OUT, P0 ₀ -P0 ₇			
I _{OH}	P1 ₀ -P1 ₇ , P2 ₀ -P2 ₃ ,		0 to 1(Note 1)	mA
	P3 ₀ , P3 ₁ , D-A			
	Circuit current R, G, B, I, OUT, P0 ₀ -P0 ₇ ,			
I _{OL1}	P1 ₀ -P1 ₇ , P2 ₀ -P2 ₃ ,		0 to 2(Note 2)	mA
	P3 ₀ -P3 ₆ , P4 ₀ -P4 ₃ , D-A			1
I _{OL2}	Circuit current P6 ₀ -P6 ₇ , P4 ₆ , P4 ₇		0 to 1(Note 2)	mA
I _{OL3}	Circuit current P2 ₄ -P2 ₇		0 to 10(Note 3)	mA
I _{OL4}	Circuit current P44, P45		0 to 3(Note 2)	mA
Pd	Power dissipation	T _a =25℃	550	mW
Topr	Operating temperature		-10 to 70	င
Tstg	Storage temperature		-40 to 125	℃,

RECOMMENDED OPERATING CONDITIONS (V_{cc}=5V±10%, T_a=-10 to 70°C, unless otherwise noted)

0	Parameter		Unit		
Symbol	Farameter		Тур	Max	Unit
Vcc	Supply voltage(Note 4) During the CRT operation	4.5	5.0	5.5	V
V _{ss}	Supply voltage	0	0	0	V
V _{IH}	"H" input voltage P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ -P3 ₆ , P4 ₀ -P4 ₃ , P4 ₆ ,P4 ₇ , P6 ₀ -P6 ₇ , H _{SYNC} , V _{SYNC} , RESET,	0.8V _{CC}		V _{cc}	V
	X _{IN} , OSC1				
V _{IH}	"H" input voltage P44, P45	0.7V _{CC}		Vcc	V
V_{IL}	"L" input voltage P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ , P3 ₁ , P3 ₅ , P4 ₀ , P4 ₃ -P4 ₅ , P4 ₇	0		0.4V _{CC}	V
VIL	"L" input voltage P3 ₂ -P3 ₄ , P3 ₆ , P4 ₁ , P4 ₂ , P4 ₆ , H _{SYNC} , V _{SYNC} , RESET, X _{IN} , OSC1	0		0. 2V _{CC}	٧
I _{OH}	"H" average output current (Note 1) R,G,B,I,OUT,P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ , P3 ₁			1	mA
I _{OL1}	"L" average output current (Note 2) R,G,B,I,OUT,P0 ₀ -P0 ₇ , P2 ₀ -P2 ₃ , P3 ₀ -P3 ₆ , P4 ₀ -P4 ₃ , D-A			2	mA
I _{OL2}	"L" average output current (Note 2) P6 ₀ -P6 ₇ , P4 ₆ , P4 ₇			1	mA
I _{OL3}	"L" average output current (Note 3) P2 ₄ -P2 ₇			10	mA
I _{OL4}	"L" average output current (Note 2) P44, P45			3	mA
f _{CPU}	Oscillating frequency (for CRT operation) (Note 5)	3.6	4.0	4. 4	MHz
f _{CRT}	Oscillating frequency (for CRT display)	6.0	7.0	8.0	MHz
fhs	Input frequency P3 ₂ -P3 ₄ , P3 ₆ , P4 ₅			100	kHz
fhs	Input frequency P4 ₁			1	MHz

Note 1: The total current that flows out of the IC should be 20mA (max.)

2 : The total of $\rm I_{OL1},\,I_{OL2}$ and $\rm I_{OL4}$ should be 30mA (max.)

 $3\,$: The total of $\rm I_{OL}$ of port $\rm P2_4\text{-}P2_7$ should be $\rm 20mA~(max~)$

4 : Apply $0.022\mu F$ or greater capacitance externally between the $V_{CC}-V_{SS}$ power supply pins so as to reduce power source noise

Also apply 0.068 μ F or greater capacitance externally between the V_{CC}-CNV_{SS} pins.

 ${\bf 5}\,$: Use the crystal oscillator or ceramic resonator for CPU oscillation circuit

MITSUBISHI MICROCOMPUTERS

M37102E8-XXXSP/FP M37201E6-XXXSP

PROM VERSION of M37102M8-XXXSP/FP,M37201M6-XXXSP

ELECTRIC CHARACTERISTICS ($V_{\text{CC}}=5V\pm10\%$, $V_{\text{SS}}=0V$, $T_{\text{A}}=-10$ to 70° C, $f(X_{\text{IN}})=4MHz$, unless otherwise noted)

Symbol	Parameter	Test conditions		Limits		
	Parameter	l'est conditions	Min	Тур	Max	Unit
		V_{CC} =5.5V, $f(X_{IN})$ =4MHz CRT OFF		10	20	mA
loc	Supply current	V_{CC} =5.5V, $f(X_{IN})$ =4MHz CRT ON		20	30	mA
		At stop mode			300	μA
V _{OH}	"H" output voltage P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ , P3 ₁ , R, G, B, I, OUT	V_{CC} =4.5V I_{OH} =-0.5mA	2. 4			v
	"L" output voltage P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₃ , P3 ₀ -P3 ₆ , P4 ₀ -P4 ₃ , R, G, B, I, OUT, D-A	V _{CC} =4.5V I _{OL} =0.5mA			0.4	
V _{OL}	"L" output voltage P6 ₀ -P6 ₇ , P4 ₆ , P4 ₇	V _{CC} =4.5V I _{OL} =0.5mA			0. 4	v
	"L" output voltage P2 ₄ -P2 ₇	V _{CC} =4.5V I _{OL} =10.0mA		3. 0		
	"L" output voltage P4 ₄ , P4 ₅	V _{CC} =4.5V			0.4	
	Hysteresis RESET	V _{CC} =5.0V		0.5	0. 7	
$V_{T+}-V_{T-}$	Hysteresis (Note 1) H _{SYNC} , V _{SYNC} , P3 ₂ -P3 ₄ , P3 ₆ , P4 ₁ , P4 ₂ , P4 ₄ -P4 ₆	V _{CC} =5.0V		0.5	1.3	V
	"H" input leak current RESET, P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ -P3 ₆ , P4 ₀ -P4 ₅	V _{cc} =5.5V V _o =5.5V			5	
l _{OZH}	"H" input leak current P6 ₀ -P6 ₇ , P4 ₆ , P4 ₇	V _{CC} =5.5V V _O =12V			10	μA
l _{ozL}	"L" input leak current RESET, P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ -P3 ₆ , P4 ₀ -P4 ₇ , P6 ₀ -P6 ₇	V _{CC} =5.5V V _O =0V			5	μA

Note 1 . P3₂-P3₄, P3₆ have the hysteresis when these pins are used as interrupt input pins or timer input pins. P4₁, P4₂, P4₄-P4₆ have the hysteresis when these pins are used as serial I/O ports

•

MITSUBISHI MICROCOMPUTERS

M37120M6-XXXFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

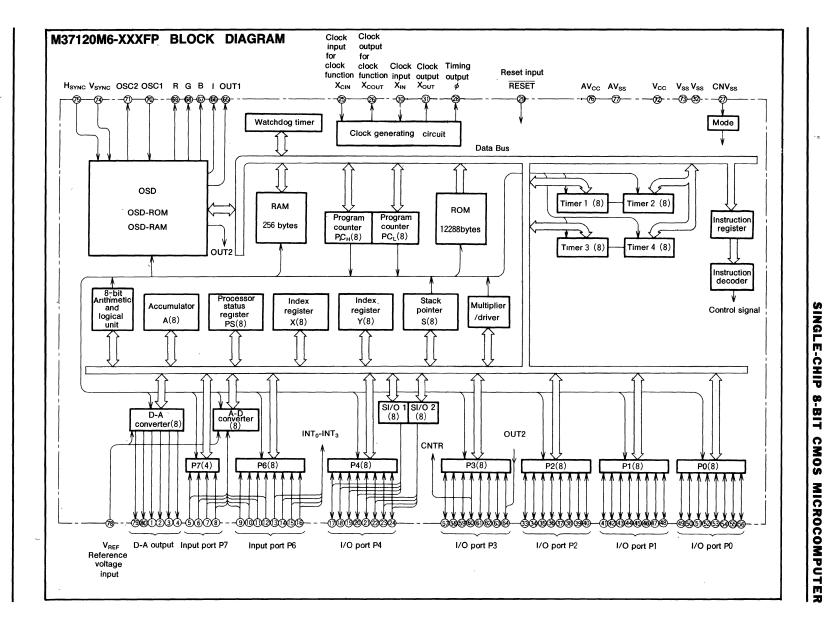
PIN CONFIGURATION (TOP VIEW)

DISCRIPTION

The M37120M6-XXXFP is a single-chip microcomputer designed with CMOS silicon gate technology. It is housed in an 80-pin plastic molded QFP. This single-chip microcomputer is useful for appliance controllers.

In addition to its simple instruction set, the ROM, RAM, and I/O addresses are placed on the same memory map to enable easy programming.

FEATURES


•	Number of basic instructions······ 71
•	Memory size
	ROM12288 bytes
	RAM 256 bytes
•	Instruction execution time
	1µs (minimum instructions at 4MHz frequency)
•	Single power supply
	$f(X_{IN})=4MHz$
•	Power dissipation
	normal operation mode
	(at 4MHz frequency) ·······75mW
•	Subroutine nesting ······128levels (Max.)
•	Interrupt ······ 14types, 14vectors
•	8-bit timer 4
•	Programmable I/O ports
	(Ports P0, P1, P2, P3, P4) ······ 40
•	Input ports (Ports P6, P7)12
•	Serial I/O (8-bit)2
•	A-D converter (8-bit resolution) ······ 8channels
•	D-A converter (8-bit resolution) ······ 6channels
•	Watchdog timer
•	72-character on screen display function
	Number of character 24 characters 3 lines
	Kinds of character ······126
•	Two clock generating circuits
	(One is for main clock, the other is for clock function)

+ P3₀/OUT2 D-A_{OUT3} ← I D-A_{OUT2} ← 83 ↔ P3₁ 81 ↔ P3₂ 81 ↔ P3₃ 80 ↔ P3₃/CNTR 83 ↔ P3₅ 83 ↔ P3₅ 83 ↔ P3₁/SYNC 85 ↔ P0₀/AD₀ 85 ↔ P0₀/AD₀ 85 ↔ P0₃/AD₃ 85 ↔ P0₃/AD₃ 85 ↔ P0₃/AD₃ 85 ↔ P0₃/AD₃ 85 ↔ P0₃/AD₃ 85 ↔ P0₃/AD₃ 85 ↔ P0₃/AD₃ 85 ↔ P0₃/AD₃ 86 ↔ P0₃/AD₃ 87 ↔ P1₃/AD₃ 88 ↔ P1₃/AD₃ 88 ↔ P1₃/AD₃ 89 ↔ P1₃/AD₃ 89 ↔ P1₃/AD₃ 80 ↔ P1₃/AD₃ 80 ↔ P1₃/AD₃ 80 ↔ P1₃/AD₃ 63 ↔ P3₁ D-A_{OUT1} ← D-A_{OUT0} ← P7₃/AN₇ → $P7_2/AN_6 \rightarrow 6$ $P7_1/AN_5 \rightarrow 7$ M37120M6-XXXFP P7₀/AN₄ - $P6_7/AN_3 \rightarrow P6_6/AN_2 \rightarrow P6_5/AN_1 \rightarrow$ P6₄/AN₀ -P6₃/INT₃ -P6₂/INT₂ -P6₁/INT₁ → $P6_0/INT_0$ P4₇/S_{RDY2} ↔ P46/S_{CLK2} +++ P45/S_{OUT2} ++-++ P1₂/AD₁₀ P4₄/S_{IN2} ++ 20 P4₃/S_{RDY1} ++ 21 → P1₃/AD₁₁ ↔ P1₄/AD₁₂ P4₂/S_{CLK1} ↔ → P1₅/AD₁₃ → P1₆/AD₁₄ → P1₇/AD₁₅ P4₁/S_{OUT1} ++ 23 P4₀/S_{IN1} ++ 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 4 111111 111 11111 Outline 80P6N

APPLICATION

TV, VCR

M37120M6-XXXFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

FUNCTIONS OF M37120M6-XXXFP

Parameter			Functions
Number of basic instructions			71
Instruction execution time			1μs (minimum instructions, at 4MHz frequency).
Clock frequency			4MHz
Memory size	ROM		12288bytes
Memory size	RAM		256bytes
	P0, P1, P2, P3	1/0	8-bit×4
	P4	1/0	8-bit×1
	P6	Input	8-bit×1
Input/Output port	P7	Input	4-bit×1
	I, B, G, R, OUT1	Output	1-bit×5 (for CRT display function)
	V _{SYNC} , H _{SYNC}	Input	1-bit×2 (for CRT display function)
	D-A _{OUT0} -D-A _{OUT5} Output		1-bit×6
Serial I/O			8-bit×2
Timers			8-bit timer×4
Subroutine nesting			128 (maximum)
Interrupt			Four external interrupts, nine internal interrupts, one software interrupt
Clock generating circuit			Two built-in circuits (ceramic or quartz crystal oscillator)
Supply voltage			5V±10%
Operating temperature ra	nge		−10 to 70°C
Device structure			CMOS silicon gate
Package			80-pin plastic molded QFP
CDT display function	Number of character	,	24 characters×3lines
CRT display function	Kinds of character		126 (12×16 dots)

M37120M6-XXXFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

PIN DESCRIPTION

Pin	Name	Input/ Output	Functions	
V _{CC} , V _{SS}	Supply voltage		Power supply inputs 5V $\pm 10\%$ to V _{CC} , and 0V to V _{SS}	
AV _{CC} , AV _{SS}	Analog power supply		Power supply input for A-D and D-A converters.	
c'nv _{ss}	CNV _{SS}		This is connect to V _{SS} .	
RESET	Reset input	Input	To enter the reset state, the reset input pin must be kept at a "L" for more than $2\mu s$ (under normal V_{CC} conditions) If more time is needed for the crystal oscillator to stabilize, this "L" condition should be maintained for the required time	
XIN	Clock input	Input	These are I/O pins of internal clock generating circuit for main clock. To control generating frequency, an	
X _{OUT}	Clock output	Output	external ceramic or a quartz crystal oscillator is connected between the X_{IN} and X_{OUT} pins if an external clock is used, the clock source should be connected the X_{IN} pin and the X_{OUT} pin should be left open	
φ	Timing output	Output	The function of this pin can be selected either timing output or resetout output	
X _{CIN}	Clock input for clock function	Input	This is the I/O pins of the clock generating circuit for the clock function. To control generating frequency, an external ceramic or quartz crystal oscillator is connected between the X _{CIN} and X _{COUT} pins. If an external clock is used, the clock course should be connected to the X _{CIN} pin and the X _{CIN} pin should be left one.	
Хсоит	Clock output for clock function	Output	clock is used, the clock source should be connected to the X _{CIN} pin and the X _{COUT} pin should be left open. This clock can be used as a program controlled the system clock	
D-A _{OUT0} -D-A _{OUT5}	D-A output	Output	Analog signal from D-A converter is output	
V _{REF}	Reference voltage input	Input	This is reference voltage input pin for the A-D and D-A converters	
P0 ₀ P0 ₇	I/O port P0	I/O	Port P0 is an 8-bit I/O port with directional registers allowing each I/O bit to be individually programmed as input or output. At reset, this port is set to input mode. The output structure is CMOS output.	
P1 ₀ P1 ₇	I/O port P1	1/0	Port P1 is an 8-bit I/O port and has basically the same functions as port P0	
P2 ₀ P2 ₇	I/O port P2	1/0	Port P2 is an 8-bit I/O port and has basically the same functions as port P0	
P3 ₀ P3 ₇	I/O port P3	I/O	Port P3 is an 8-bit I/O port and has basically the same functions as port P0 Port P3 ₀ is in common with CRT input pin and P3 ₄ is in common with counter input pin	
P4 ₀ P4 ₇	I/O port P4	1/0	Port P4 is an 8-bit I/O port and has basically the same function as port P0, but the output structure is N-channel open drain.	
P6 ₀ -P6 ₇	Input port P6	Input	Port P6 is an 8-bit input port P6 ₀ —P6 ₃ are in common with interrupt input pins and P6 ₄ —P6 ₇ are in common with analog input pins	
P7 ₀ -P7 ₃	Input port P7	Input	Port P7 is a 4-bit input port and in common with analog input pins	
OSC1, OSC2	Clock input for CRT display Clock output for CRT display	Input Output	This is the I/O pins of the clock generating circuit for the CRT display To control generating frequency, external condensers and registers are connected	
H _{SYNC}	H _{SYNC} input	Input	This is the horizontal synchronizing signal input for CRT display.	
V _{SYNC}	V _{SYNC} input	Input	This is the vertical synchronizing signal input for CRT display	
I, B, G, R, OUT1	CRT output	Output	This is a 5-bit output pin for CRT display	

FUNCTIONAL DESCRIPTION Central Processing Unit (CPU)

The M37120 microcomputers use the standard MELPS 740 instruction set. For details of instructions, refer to the MELPS 740 CPU core basic functions, or the MELPS 740 Programming Manual.

Machine-resident instructions are as follows:

The FST and SLW instructions are not provided.

The MUL and DIV instructions are provided.

The WIT instruction can be used.

The STP instruction can be used.

CPU Mode Register

The CPU mode register is allocated to address 00FB₁₆. Bits 0 and 1 of this register are processor mode bits. This register also has a stack page selection bit.

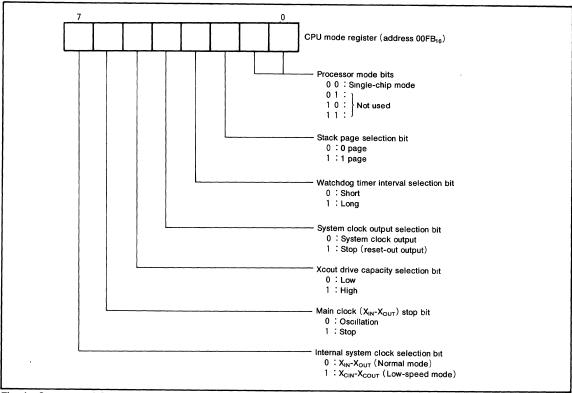


Fig. 1 Structure of CPU mode register

M37120M6-XXXFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

MEMORY

• Special Function Register (SFR) Area

The special function register (SFR) area contains the registers relating to functions such as I/O ports and timers.

• RAM

RAM is used for data storage as well as a stack area.

ROM

ROM is used for storing user programs as well as the interrupt vector area.

· RAM for display

RAM for display is used for specifing the character codes and colors to display.

· ROM for display

ROM for display is used for storing character data.

• Interrupt Vector Area

The interrupt vector area is for storing jump destination addresses used at reset or when an interrupt is generated.

Zero Page

Zero page addressing mode is useful because it enables access to this area with fewer instruction cycles.

Special Page

Special page addressing mode is useful because it enables access to this area with fewer instruction cycles.

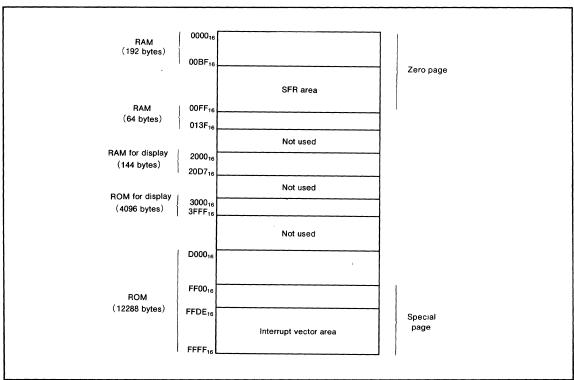


Fig. 2 Memory map

M37120M6-XXXFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

00Ç0 ₁₆			Horizontal position register
0C1 ₁₆		00E1 ₁₆	
0C2 ₁₆	Port P1	00E2 ₁₆	Vertical position register of block 2
0C3 ₁₆	Port P1 directional register	00E3 ₁₆	Vertical position register of block 3
0C4 ₁₆	Port P2	00E4 ₁₆	Character size register
0C5 ₁₆	Port P2 directional register	00E5 ₁₆	Border selection register
0C6 ₁₆	Port P3	00E6 ₁₆	Color register 0
0C7 ₁₆	Port P3 directional register	00E7 ₁₆	Color register 1
0C8 ₁₆	Port P4	00E8 ₁₆	Color register 2
0C9 ₁₆	Port P4 directional register	00E9 ₁₆	Color register 3
0CA ₁₆	Port P6		CRT control register
0CB ₁₆	Port P7		Display block counter
0CC ₁₆		00EC ₁₆	
0CD ₁₆		00ED ₁₆	
0CE ₁₆		00EE ₁₆	
0CF ₁₆		00EF ₁₆	
0D0 ₁₆		00F0 ₁₆	
0D1 ₁₆		00F1 ₁₆	
0D2 ₁₆		00F2 ₁₆	
0D3 ₁₆	A-D control register	00F3 ₁₆	Timer 4
0D4 ₁₆	INT edge selection register	00F4 ₁₆	
	A-D conversion result register	00F5 ₁₆	
0D6 ₁₆	D-A conversion register 5	00F6 ₁₆	
0D7 ₁₆	D-A conversion register 4	00F7 ₁₆	
0D8 ₁₆	D-A conversion register 3	00F8 ₁₆	Timer 12 mode register
0D9 ₁₆		00F9 ₁₆	Timer 34 mode register
0DA ₁₆	D-A conversion register 1	00FA ₁₆	
0DB ₁₆	D-A conversion register 0	00FB ₁₆	
0DC ₁₆	Serial I/O1 mode register	00FC ₁₆	
0DD ₁₆	Serial I/O1 register	00FD ₁₆	
0DE ₁₆	Serial I/O2 mode register	00FE ₁₆	Interrupt control register 1
0DF ₁₆	Serial I/O2 register	00FF ₁₆	Interrupt control register 2

Fig. 3 SFR (Special function register) memory map

INTERRUPTS

Interrupts can be caused by 14 different events consisting of four external, nine internal, and one software events.

Interrupts are vectored interrupts with priorities shown in Table 1. Reset is also included in the table because its operation is similar to an interrupt.

When an interrupt is accepted, the registers are pushed, interrupt disable flag I is set, and the program jumps to the address specified in the vector table. The interrupt request bit is cleared automatically. The reset and BRK instruction interrupt can never be disabled. Other interrupts are disabled when the interrupt disable flag is set.

All interrupts except the BRK instruction interrupt have an interrupt request bit and an interrupt enable bit. The interrupt request bits are in interrupt request registers 1 and 2 and the interrupt enable bits are in interrupt control registers 1 and 2. Figure 3 shows the structure of the interrupt request registers 1 and 2 and interrupt control registers 1 and 2.

Interrupts other than the BRK instruction interrupt and reset are accepted when the interrupt enable bit is "1", interrupt request bit is "1", and the interrupt disable flag is "0". The interrupt request bit can be clear with a program, but not set. The interrupt enable bit can be set and clear with a program.

Reset is treated as a non-maskable interrupt with the highest priority. Figure 5 shows interrupts control.

Table 1. Interrupt vector address and priority.

Event	Priority	Vector addresses	Remarks
RESET	1	FFFF ₁₆ , FFFE ₁₆	Non-maskable
V _{SYNC} interrupt	2	FFFD ₁₆ , FFFC ₁₆	By V _{SYNC} signal of OSD
CRT interrupt	3	FFFB ₁₆ , FFFA ₁₆	By display completion of character block
INT ₀ interrupt	4	FFF9 ₁₆ , FFF8 ₁₆	External interrupt (polarity programmable)
INT ₁ interrupt	5	FFF7 ₁₆ , FFF6 ₁₆	External interrupt (polarity programmable)
INT ₂ interrupt	6	FFF5 ₁₆ , FFF4 ₁₆	External interrupt (polarity programmable)
INT ₃ interrupt	7	FFF3 ₁₆ , FFF2 ₁₆	External interrupt (polarity programmable)
Timer 1 interrupt	8	FFF1 ₁₆ , FFF0 ₁₆	
Timer 2 interrupt	9	FFEF ₁₆ , FFEE ₁₆	
Timer 3 interrupt	10	FFED ₁₆ , FFEC ₁₆	
Timer 4 interrupt	11	FFEB ₁₆ , FFEA ₁₆	
Serial I/O 1 interrupt	12	FFE9 ₁₆ , FFE8 ₁₆	
Serial I/O 2 interrupt	13	FFE7 ₁₆ , FFE6 ₁₆	
A-D conversion completion interrupt	14	FFE5 ₁₆ , FFE4 ₁₆	_
Disable to use.		FFE3 ₁₆ , FFE2 ₁₆	,
Disable to use.		FFE1 ₁₆ , FFE0 ₁₆	
BRK instruction interrupt	15	FFDF ₁₆ , FFDE ₁₆	Non-maskable software interrupt

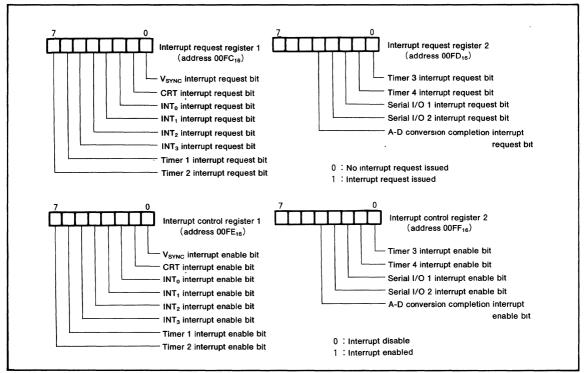


Fig. 4 Structure of registers related with interrupt

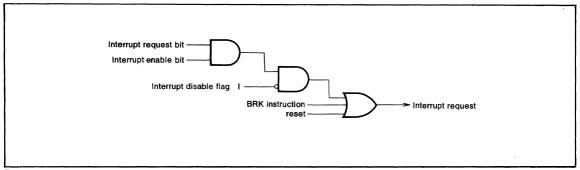


Fig. 5 Interrupt control

TIMER

The M37120M6-XXXFP has four timers; timer 1, timer 2, timer 3 and timer 4.

A block diagram of timer 1 through 4 is shown in Figure 6. The count source for timer 1 through 4 can be selected by using bit 0, 1, 4 of the timer 12 mode register (address $00F8_{16}$) and bit 0, 1 of the timer 34 mode register (address $00F9_{16}$), as shown in Figure 7.

All of the timers are down count timers and have 8-bit latches. When a timer reaches "0" and the next count pulse is input to a timer, the contents of the reload latch are loaded into the timer. The division ratio of the timer is 1/(n+1), where n is the contents of timer latch.

Also all of the timers have interrupt generating functions. The timer interrupt request bit is set at the next count pulse after the timer reaches "0" (see interrupt section).

The starting and stopping of timers are controlled by bit 2, 3 of the timer 12 mode register and the timer 34 mode register. If the corresponding bit is "0", the timer starts counting, and the corresponding bit is "1", the timer stops.

At a reset or stop mode, FF₁₆ is automatically set in timer 3 and 07₁₆ in timer 4. And timer 4, timer 3 and the clock (ϕ divided by 8) are connected in series. Reset or stop mode is cleared by timer 4 overflow.

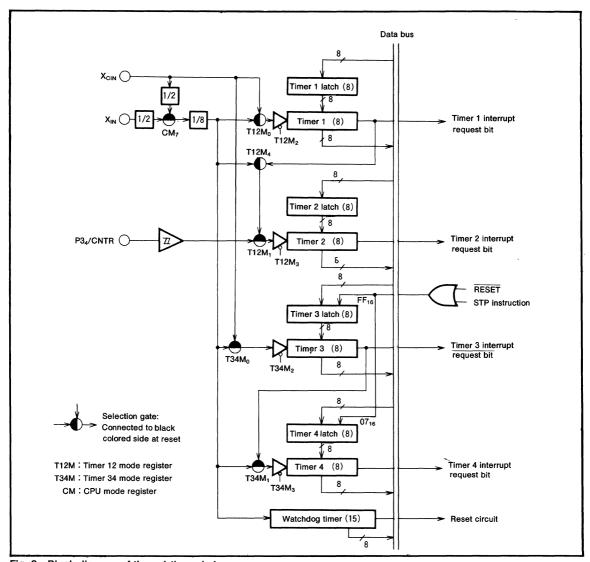


Fig. 6 Block diagram of timer 1 through 4

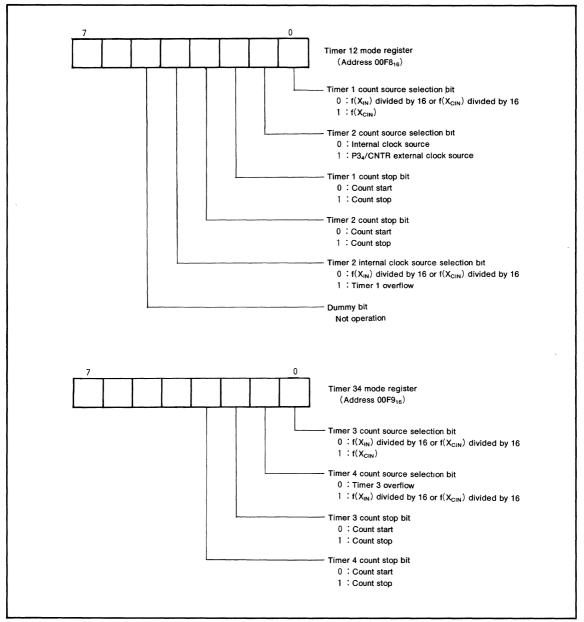


Fig. 7 Structure of timer mode registers

SERIAL I/O

M37120 has two serial I/Os which can operate in clock synchronous (Serial I/O 1, Serial I/O 2). Serial I/O 1 and 2 have the same function.

The block diagram of serial I/O is shown in Figure 8. In the serial I/O mode the receive ready signal $(\overline{S_{RDV}})$, synchronous input/output clock (S_{CLK}) , and the serial I/O (S_{OUT}, S_{IN}) , pins are used as port P4.

The serial I/O mode register 1 and 2 (addresses $00DC_{16}$ and $00DE_{16}$) are 8-bit registers. But the bits 7 and 6 are not used. Bit 0, 1, 2 of these registers are used to select a syn-

chronous clock source. Bits 3 and 4 decide whether P4 will be used as a serial I/O or not. When bit 3 is "1", P4 $_2$, P4 $_6$ become I/O pins of the synchronous clock. When an internal syncronous clock is selected, the clock is output from P4 $_2$, P4 $_6$. If the external synchronous clock is selected, the clock is input to P4 $_2$, P4 $_6$. And P4 $_1$, P4 $_5$ will be a serial output, and P4 $_0$, P4 $_4$ will be a serial input. To use P4 $_0$, P4 $_4$ as serial input, set the directional register bit which correspond to P4 $_0$, P4 $_4$, to "0". For more information on the directional register, refer to the I/O pin section.

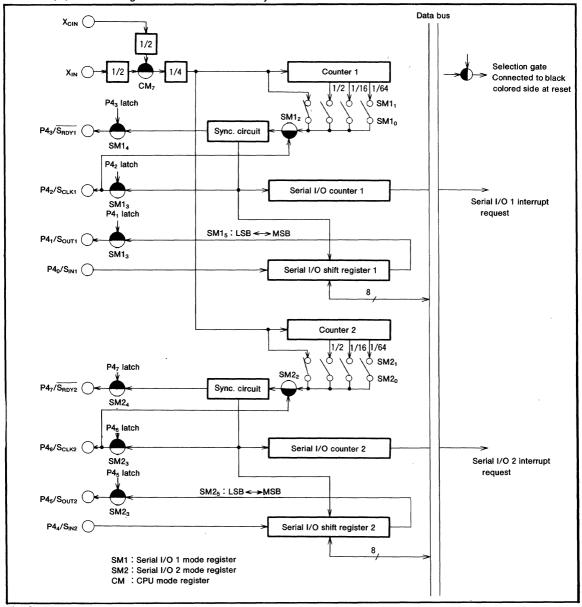


Fig. 8 Block diagram of serial I/O

To use the serial I/O, bit 3 of serial I/O mode register 1 and 2 needs to be set to "1", if it is "0" P4₂, P4₆ will function as a normal I/O. Bit 4 determines if P4₃, P4₇ are used as output pins for the receive data ready signal (bit 4="1", $\overline{S_{RDV}}$) or used as a normal I/O pin (bit 4="0"). Bit 5 is transfer direction selection bit. M37120 can be changed transfer direction by using this bit.

The function of serial I/O differs depending on the clock source; external clock or internal clock.

Internal clock- The \overline{S}_{RDY} signal becomes "H" during transmission or while dummy data is stored in the serial I/O register. After the falling edge of write signal, the \overline{S}_{RDY} signal becomes low signaling that the M37120M6-XXXFP is ready to receive the external serial data. The \overline{S}_{RDY} signal goes "H" at the next falling edge of the transfer clock. The serial I/O counter is set to 7 when data is stored in the serial I/O

register. At each falling edge of the transfer clock, serial data is output to P4₁, P4₅. During the rising edge of this clock, data can be input from P4₀, P4₄ and the data in the serial I/O register will be shifted 1 bit. After the transfer clock has counted 8 times, the serial I/O counter will be "0" and the transfer clock will remain at a high level. At this time the interrupt request bit will be set.

External Clock- If an external clock is used, the interrupt request bit will be set after the transfer clock has counted 8 times but the transfer clock will not stop. Due to this reason, the external clock must be controlled from the outside. The external clock should not exceed 500kHz at a duty cycle of 50%.

Timing diagrams are shown in Figure 9.

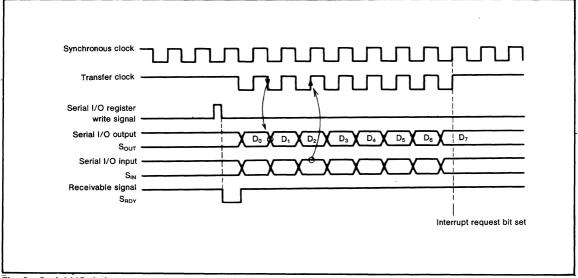


Fig. 9 Serial I/O timing

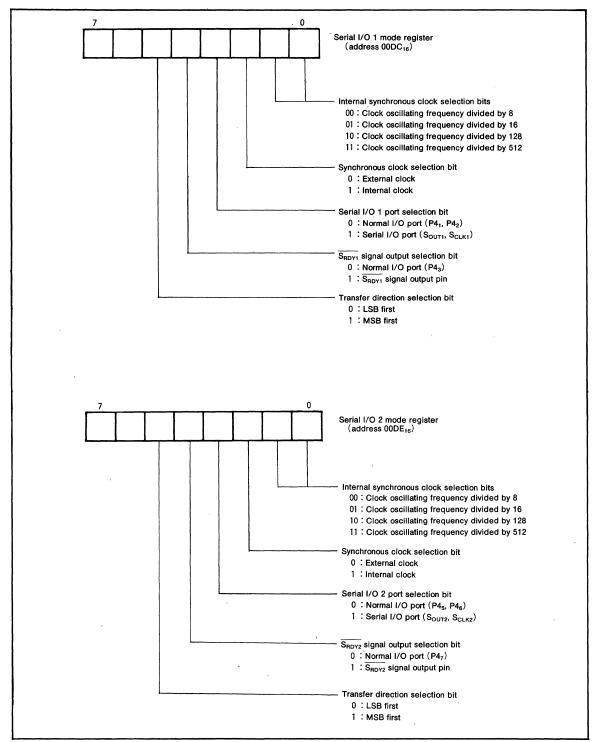


Fig. 10 Structure of serial I/O mode registers

A-D CONVERTER

The A-D converter circuit is shown in Figure 12. The analog input ports of the A-D converter (AN_0-AN_7) are in common with in port $P6_4-P6_7$, $P7_0-P7_3$.

The A-D control register is located at address 00D3₁₆. One of the eight analog inputs is selected by bits 0, 1 and 2 of this register. The AN pins, not to use as analog input, uses as normal I/O ports.

Bit 0, 1 and 2, and corresponding to analog input pin is shown in Figure 11. A-D conversion is accomplished by first selecting bit 0, 1 and 2 of the A-D control register for the analog input pin.

A-D conversion starts by setting "0" to bit 3 of the A-D control register. When A-D conversion is finished, an interrupt is generated. After A-D interrupt is accepted, the result of A-D conversion can be read from the A-D register.

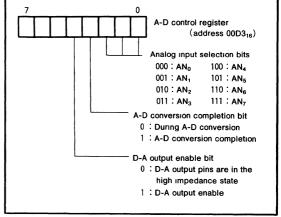


Fig. 11 Structure of A-D control register

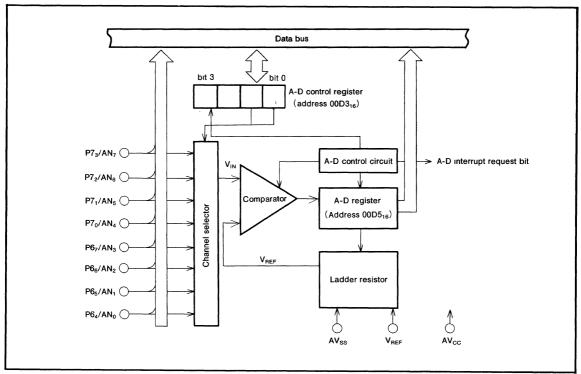


Fig. 12 A-D converter circuit

D-A CONVERTER

Six 8-bit resolution D-A converter channels are provided. Figure 13 shows a block diagram of the D-A converter. D-A conversion is performed by setting a value in the D-A conversion register (addresses $00D6_{16}$ to $00DB_{16}$). The result of D-A conversion is output from the D-A output pin. The output analog voltage V_{DA} is determined by the value n (decimal) set in the D-A conversion register as follows: $V_{DA} = V_{REF} \times n/256$ (n=0 to 255)

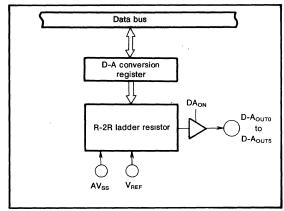


Fig. 13 D-A converter block diagram

CRT DISPLAY FUNCTIONS

(1) Outline of CRT Display Functions

Table 2 outlines the CRT display functions. The M37120M6-XXXFP incorporates a 24 columns × 3 lines CRT display control circuit. CRT display is controlled by the CRT display control register.

Up to 126 kinds of characters can be displayed, and colors can be specified for each character. Four colors can be displayed on one screen. A combination of up to 15 colors can be obtained by using each output signal (R, G, B, and I).

Characters are displayed in a 12 × 16 dot configuration to obtain smooth character patterns. (See Figure 14)

The following shows the procedure how to display characters on the CRT screen.

- ① Set the character to be displayed in display RAM.
- ② Set the display color by using the color register.
- 3 Specify the color register in which the display color is set by using the display RAM.
- ④ Specify the vertical position and character size by using the vertical position register and the character size register.
- Specify the horizontal position by using the horizontal position register.
- Write the display enable bit to the designated block display flag of the CRT control register. When this is done, the CRT starts operation according to the input of the V_{SYNC} signal.

The CRT display circuit has an extended display mode. This mode allows multiple lines (more than 3 lines) to be displayed on the screen by interrupting the display each time one line is displayed and rewriting data in the block for which display is terminated by software.

Figure 15 shows a block diagram of the CRT display control circuit. Figure 16 shows the structure of the CRT control register.

Table 2. Outline of CRT display functions

	Parameter	Functions
Numbe	er of display character	24characters× 3 lines
Chara	cter configuration	12×16 dots (See Figure 14)
Kinds	of character	126
chara	cter size	4 size selectable
0-1	Kinds of color	15(maximum)
Coloring unit		Character
Displ	ay expansion	Possible (multiple lines)

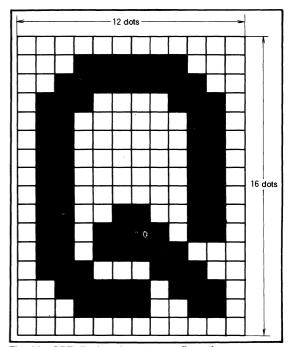


Fig. 14 CRT display character configuration

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

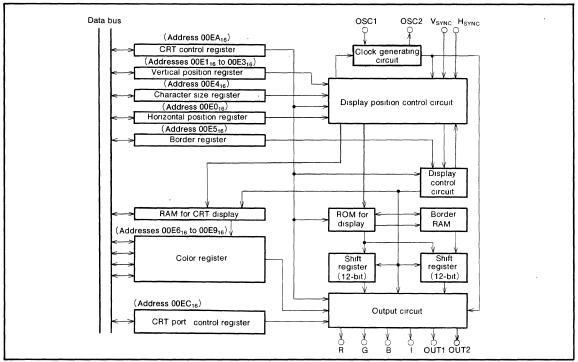


Fig. 15 Block diagram of CRT display control circuit

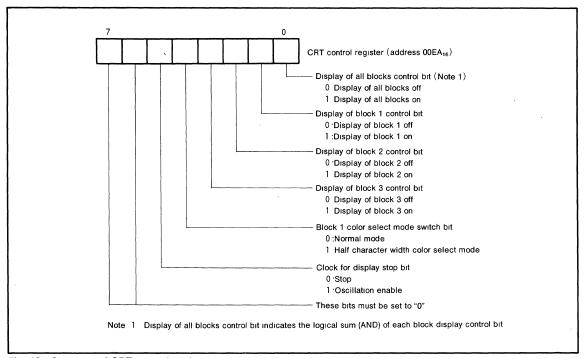


Fig. 16 Structure of CRT control register

(2) Display Position

The display positions of characters are specified in units called a "block." There are three blocks, block 1 to block 3. Up to 24 characters can be displayed in one block. (See (4) Display Memory.)

The display position of each block in both horizontal and vertical directions can be set by software.

The horizontal direction is common to all blocks, and is selected from 64-step display positions in units of 4Tc (Tc =oscillation cycle for display).

The display position in the vertical direction is selected from 128-step display positions for each block in units of four scanning lines.

If the display start position of a block overlaps with some other block ((b) in Figure 17), a block of the smaller block No. (1 to 3) is displayed.

If when one block is displaying, some other block is displayed at the same display position ((c) in Figure 17), the former block is overridden and the latter is displayed.

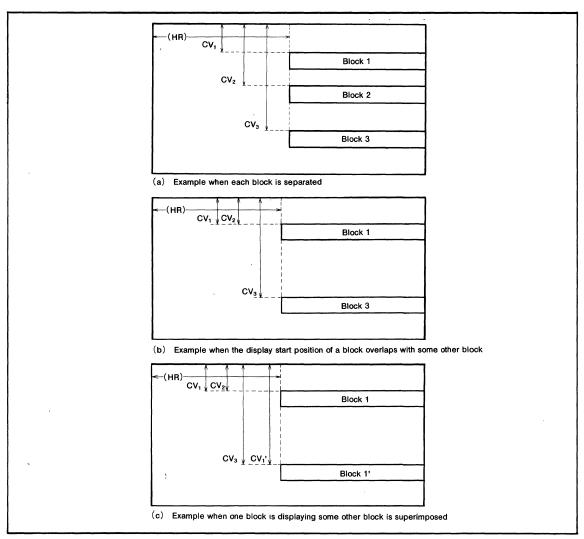


Fig. 17 Display position

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

The vertical position can be specified from 128-step positions (four scanning lines per step) for each block by setting values 00_{16} to $7F_{16}$ to bits 0 to 6 in the vertical position register (addresses $00E1_{16}$ to $00E3_{16}$). Figure 18 shows the structure of the vertical position register.

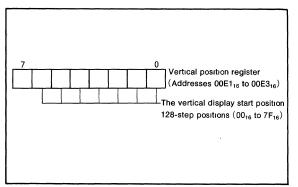


Fig. 18 Structure of vertical position registers

The horizontal direction is common to all blocks, and can be specified from 64-step display positions (4Tc per step (Tc=oscillation cycle for display)) by setting values 00_{16} to $3F_{16}$ to bits 0 to 5 in the horizontal position register (address $00E0_{16}$). Figure 19 shows the structure of the horizontal position register.

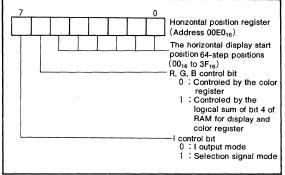


Fig. 19 Structure of horizontal position register

(3) Character Size

The size of characters to be displayed can be selected from four sizes for each block. Use the character size register (address 00E4₁₆) to set a character size.

The character size in block 1 can be specified by using bits 0 and 1 in the character size register; the character size in block 2 can be specified by using bits 2 and 3; the character size in block 3 can be specified by using bits 4 and 5. Figure 20 shows the structure of the character size register.

The character size can be selected from four sizes: small size, medium size, large size, and extra large size. Each character size is determined by the number of scanning lines in the height (vertical) direction and the cycle of display oscillation (=Tc) in the width (horizontal) direction.

The small size consists of (one scanning line) \times (1 Tc); the medium size consists of (two scanning lines) \times (2 Tc); the large size consists of (three scanning lines) \times (3 Tc); the extra large size consists of (four scanning lines) \times (4 Tc).

Table 3 shows the relationship between the set values in the character size register and the character sizes.

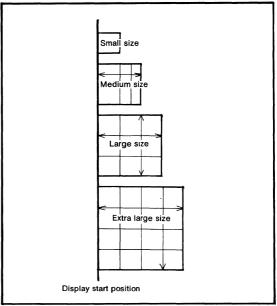


Fig. 21 Display start position of each character size (horizontal direction)

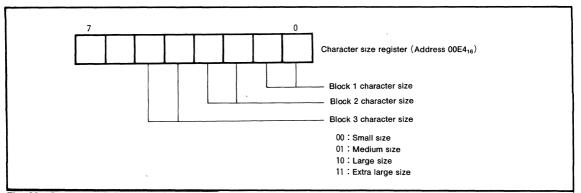


Fig. 20 Structure of character size register

Table 3. The relationship between the set values in the character size register and the character sizes

Set values in the cl	naracter size register	Character	Width (horizontal)	Height (vertical)
CSn ₁	CSn _o	size	direction	direction
0	0	Small	1 T _C	1
0	1	Medium	2 T _C	2
1	0	Large	3 T _C	3
1	1	Extra large	4 T _C	4

Note: The display start position in the horizontal direction is not affected by the character size. In other words, the horizontal start position is common to all blocks even when the character size varies with each block. (See Figure 21)

(4) Display Memory

There are two types of display memory: ROM for CRT display (addresses 3000₁₆ to 3FFF₁₆) used to store character dot data (masked) and RAM fof CRT display (addresses 2000₁₆ to 20D7₁₆) used to specify the colors of characters to be displayed. The following describes each type of display memory.

① ROM for CRT display (addresses 3000₁₆ to 3FFF₁₆) The CRT display ROM containns dot pattern data for characters to be displayed. For characters stored in this ROM to be actually displayed, it is necessary to specify them by writing the character code inherent to each character (code determined based on the addresses in the CRT display ROM) into the CRT display RAM.

The CRT display ROM has a capacity of 4K bytes. Because 32 bytes are required for one character data, the ROM can contain up to 128 kinds of characters. Actually, however, because two characters are required for test pattern use, the ROM can contain up to 126 kinds of characters for display use.

The CRT display ROM space is broadly divided into two areas. The [vertical 16 dots] \times [horizontal (left side) 8 dots] data of display characters are stored in addresses 3000_{16} to $37FF_{16}$; the [vertical 16 dots] \times [horizontal (right side) 4 dots] data of display characters are stored in addresses 3800_{16} to $3FFF_{16}$. (See Figure 22) Note however that the four upper bits in the data to be written to addresses 3800_{16} to $3FFF_{16}$ must be set to "1" (by writing data $F0_{16}$ to FF_{16}).

The character code used to specify a character to be displayed is determined based on the address in the CRT display ROM in which that character is stored.

Assume that data for one character is stored at $3XX0_{16}$ to $3XXF_{16}$ (XX denotes 00_{16} to $7F_{16}$) and $3YY0_{16}$ to $3YYF_{16}$ (YY denotes 80_{16} to FF_{16}), then the character code for it is " XX_{16} ."

In other words, character code for any given character is configured with two middle digits of the four-digit (hex- notated) addresses (3000_{16} to $37FF_{16}$) where data for that character is stored.

Table 4 lists the character codes.

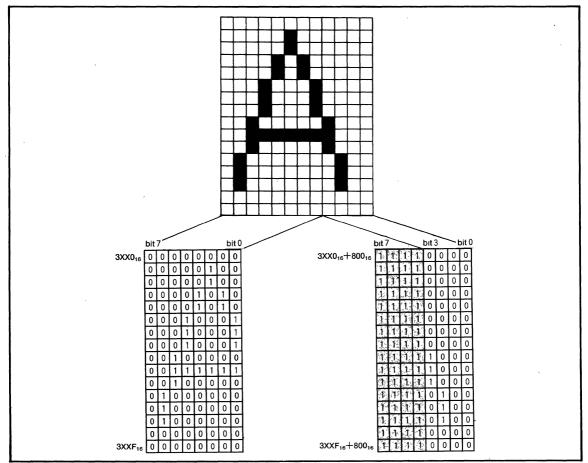


Fig. 22 Contained up form of display character

Table 4. List of the character code

Character code	Contained up addre	ess of character data
Character code	Left 8 dots lines	Right 4 dots lines
	3000 ₁₆	3800 ₁₆
0016	to	to
	300F ₁₆	380F ₁₆
	3010 ₁₆	3810 ₁₆
01 ₁₆	to	to
	301F ₁₆	381F ₁₆
	3020 ₁₆	3820 ₁₆
02 ₁₆	to	to
	302F ₁₆	382F ₁₆
	3030 ₁₆	3830 ₁₆
03 ₁₆	to	to
	303F ₁₆	383F ₁₆
:	:	:
	3100 ₁₆	3900 ₁₆
10 ₁₆	, to	to
	310F ₁₆	390F ₁₆
	3110 ₁₆	3910 ₁₆
11 ₁₆	to	to
	311F ₁₆	391F ₁₆
:	:	:
· ·	34F0 ₁₆	3CF0 ₁₆
4F ₁₆	to	to
	34FF ₁₆	3CFF ₁₆
	3500 ₁₆	3D00 ₁₆
50 ₁₆	to	to
	350F ₁₆	3D0F ₁₆
;	:	:
	37D0 ₁₆	3FD0 ₁₆
7D ₁₆	to	to
	37DF ₁₆	3FDF ₁₆
	37E0 ₁₆	3FE0 ₁₆
7E ₁₆ (Note)	to	to
	37EF ₁₆	3FEF ₁₆
	37F0 ₁₆	3FF0 ₁₆
7F ₁₆ (Note)	to	to
	37FF ₁₆	3FFF ₁₆

Note: The test patterns are contained up in addresses 37E0₁₆ to 37FF₁₆ and 3FE0₁₆ to 3FFF₁₆

② RAM for CRT display (addresses 2000₁₆ to 20D7₁₆) The CRT display RAM is allocated at addresses 2000₁₆ to 20D7₁₆, and is divided into a display character code specifying part and display color specifying part for each block. Table 5 shows the contents of the CRT display RAM.

When a character is to be display at the first character (leftmost) position in block 1, for example, it is necessary to write the character code to the seven low-order

bits (bits 0 to 6) in address 2000₁₆ and the color register No. to the two low-order bits (bits 0 and 1) in address 2080₁₆. The color register No. to be written here is one of the four registers in which the color to be displayed is set in advance. For details on color registers, refer to (5) Color Registers.

The structure of the CRT display RAM is shown in Figure 23. Write the character patterns at Table 6 and 7, when M37120M6-XXXFP is mask-ordered.

Table 5. The contents of RAM for CRT display

Block	Display position (from left)	Character code specification	Color specification
	1st column	2000 ₁₆	2080 ₁₆
	2nd column	2001 ₁₆	2081 ₁₆
	3rd column	2002 ₁₆	2082 ₁₆
Block 1	:	:	:
	22th column	2015 ₁₆	2095 ₁₆
	23th column	2016 ₁₆	2096 ₁₆
	24th column	2017 ₁₆	2097 ₁₆
		2018 ₁₆	2098 ₁₆
	Not used	:	:
		201F ₁₆	209F ₁₆
	1st column	2020 ₁₆	20A0 ₁₆
	2nd column	2021 ₁₆	20A1 ₁₆
	3rd column	2022 ₁₆	20A2 ₁₆
Block 2	:	:	:
	22th column	2035 ₁₆	20B5 ₁₆
	23th column	2036 ₁₆	20B6 ₁₆
	24th column	2037 ₁₆	20B7 ₁₆
	,	2038 ₁₆	20B8 ₁₆
	Not used	:	:
		203F ₁₆	20BF ₁₆
	1st column	2040 ₁₆	20C0 ₁₆
	2nd column	2041 ₁₆	20C1 ₁₆
	3rd column	2042 ₁₆	20C2 ₁₆
Block 3	:	:	:
	22th column	2055 ₁₆	20D5 ₁₆
	23th column	2056 ₁₆	20D6 ₁₆
	24th column	2057 ₁₆	20D7 ₁₆
1		2058 ₁₆	
	Not used	: ,	
		207F ₁₆	

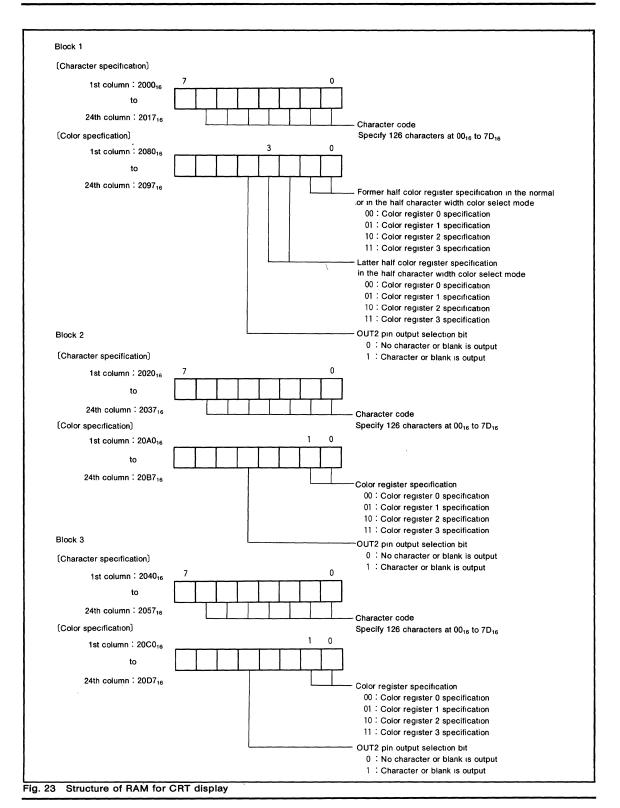


Table 6. Test character pattern 1

Address	Data	Address	Data
37E0 ₁₆	4016	3FE0 ₁₆	F0 ₁₆
37E1 ₁₆	0416	3FE1 ₁₆	F0 ₁₆
37E2 ₁₆	0016	3FE2 ₁₆	F4 ₁₆
37E3 ₁₆	2016	3FE3 ₁₆	F0 ₁₆
37E4 ₁₆	0216	3FE4 ₁₆	F0 ₁₆
37E5 ₁₆	0016	3FE5 ₁₆	F2 ₁₆
37E6 ₁₆	1016	3FE6 ₁₆	F0 ₁₆
37E7 ₁₆	0116	3FE7 ₁₆	F0 ₁₆
37E8 ₁₆	8016	3FE8 ₁₆	F0 ₁₆
37E9 ₁₆	0816	3FE9 ₁₆	F0 ₁₆
37EA ₁₆	0016	3FEA ₁₆	F8 ₁₆
37EB ₁₆	4016	3FEB ₁₆	F0 ₁₆
37EC ₁₆	0416	3FEC ₁₆	F0 ₁₆
37ED ₁₆	0016	3FED ₁₆	F4 ₁₆
37EE ₁₆	2016	3FEE ₁₆	F0 ₁₆
37EF ₁₆	0216	3FEF ₁₆	F0 ₁₆

Table 7. Test character pattern 2

Address	Data	Address	Data
37F0 ₁₆	0016	3FF0 ₁₆	F0 ₁₆
37F1 ₁₆	0016	3FF1 ₁₆	F0 ₁₆
37F2 ₁₆	0016	3FF2 ₁₆	F0 ₁₆
37F3 ₁₆	0016	3FF3 ₁₆	F0 ₁₆
37F4 ₁₆	0016	3FF4 ₁₆	F0 ₁₆
37F5 ₁₆	0016	3FF5 ₁₆	F0 ₁₆
37F6 ₁₆	0016	3FF6 ₁₆	F0 ₁₆
37F7 ₁₆	0016	3FF7 ₁₆	F0 ₁₆
37F8 ₁₆	0016	3FF8 ₁₆	F0 ₁₆
37F9 ₁₆	0016	3FF9 ₁₆	F0 ₁₆
37FA ₁₆	0016	3FFA ₁₆	F0 ₁₆
37FB ₁₆	0016	3FFB ₁₆	F0 ₁₆
37FC ₁₆	0016	3FFC ₁₆	F0 ₁₆
37FD ₁₆	0016	3FFD ₁₆	F0 ₁₆
37FE ₁₆	0016	3FFE ₁₆	F0 ₁₆
37FF ₁₆	0016	3FFF ₁₆	F0 ₁₆

(5) Color Registers

The color of a displayed character can be specified by setting the color to one of the four color registers (CO0 to CO3: addresses 00E6₁₆ to 00E9₁₆) and then specifying that color register with the CRT display RAM.

There are four color outputs: R, G, B, and I. By using a combination of these outputs, it is possible to set 2^4 -1 (when no output) = 15 colors. However, because only four

color registers are available, up to four colors can be displayed at one time.

R, G, B, and I outputs are set by using bits 0 to 3 in the color register. Bit 4 in the color register is used to set a character or blank output; bit 5 is used to specify whether a character output or blank output. Figure 24 shows the structure of the color registers.

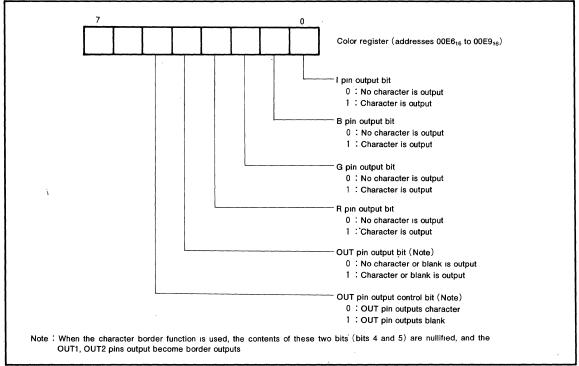


Fig. 24 Structure of color registers

(6) Half Character Width Color Select Mode

By setting "1" to bit 4 in the CRT control register (address $00EA_{16}$) it is possible to specify colors in units of a half character size (vertical 16 dots×horizontal 6 dots) for characters in block 1 only.

In the half character width color select mode, colors of display characters in block 1 are specified as follows:

- The left half of the character is set to the color of the color register that is specified by bits 0 and 1 at the color register specifying addresses in the CRT display RAM (addresses 2080₁₆ to 2097₁₆).
- The right half of the character is set to the color of the color register that is specified by bits 2 and 3 at the color register specifying address in the CRT display RAM (addresses 2080₁₆ to 2097₁₆).

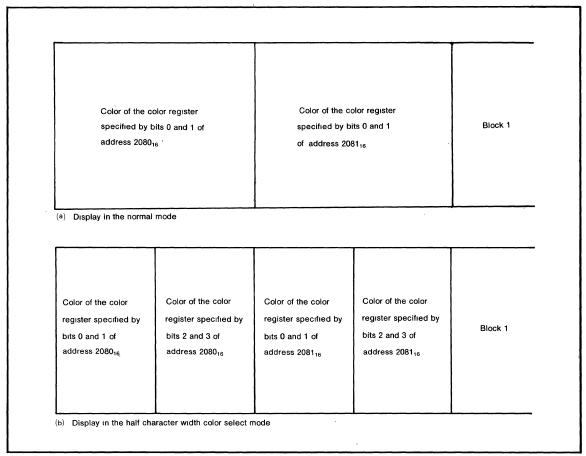


Fig. 25 Difference between normal color select mode and half character width color select mode.

(7) Multiline Display

The M37120M6-XXXFP can normally display three lines on the CRT screen by displaying three blocks at different horizontal positions.

In addition, it allows up to 16 lines to be displayed by using a CRT interrupt and display block counter.

The CRT interrupt works in such a way that when display of one block is terminated, an interrupt request is generated. In other words, character display for a certain block is initiated when the scanning line reaches the display position for that block (specified with vertical and horizontal position registers) and when the range of that block is exceeded, an interrupt is applied.

The display block counter is used to count the number of blocks that have just been displayed. Each time the display of one block is terminated, the contents of the counter are incremented by one. For multiline display, it is necessary to enable the CRT interrupt (by clearing the interrupt disable flag to "0" and setting the CRT interrupt enable bit (= bit 4 at address 00FE₁₆) to "1"), then execute the following processing in the CRT interrupt handling routine.

- Read the value of the display block counter.
- The block for which display is terminated (i.e., the cause of CRT interrupt generation) can be determined by the value read in ①.
- ③ Replace the display character data and display position of that block with the character data (contents of CRT display RAM) and display position (contents of vertical position and horizontal position registers) to be displayed next.

Figure 26 shows the structure of the display block counter.

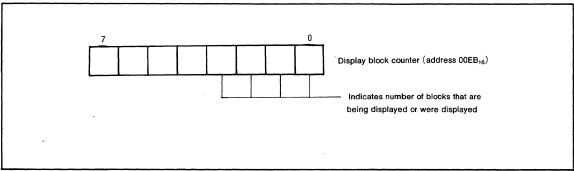


Fig. 26 Structure of display block counter

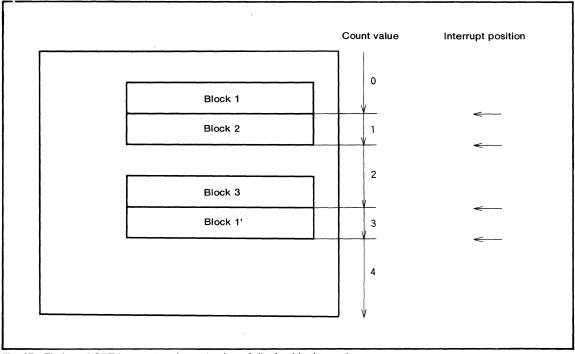


Fig. 27 Timing of CRT interrupt and count value of display block counter

(8) Character Border Function

A border of a one clock (one dot) equivalent size can be added to a character to be displayed in both horizontal and vertical directions.

The border is output from the OUT1, OUT2 pins. In this case, bits 4 and 5 in the color registers (contents output from the OUT pins) are nullified, and the border is output from the OUT pins instead.

Border can be specified in units of block by using the border selection register (address $00E5_{16}$). Table 8 shows the relationship between the values set in the border selection register and the character border function. Figure 29 shows the structure of the border selection register.

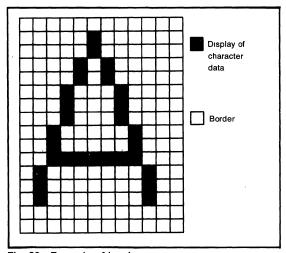


Fig. 28 Example of border

Table 8. The relationship between the values set in the border selection register and the character border function

Border sele	ction register	Functions	Example of output		
MDn1	MDn0	Functions	Example of output		
х	0	Normal	R, G, B, I output		
^		Normal	OUT1, OUT2 output		
0	,	Douglas in alleding above to	R, G, B, I output		
1	'	Border-including character	OUT1, OUT2 output		
1	•	Dandar wat including above the	R, G, B, I output		
.	•	Border not including character	OUT1, OUT2 output		

X: An X indicates either "0" or "1"

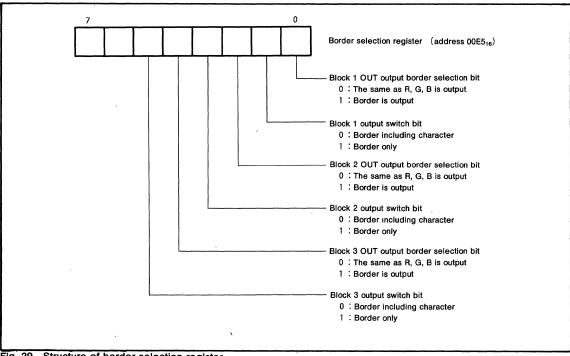


Fig. 29 Structure of border selection register

(9) CRT Output Pin Control

CRT output pins R, G, B, I, and OUT1 become output enable by setting bit 6 of CRT port control register. OUT2 is in common with port P3₀. This pin become output enable when bit 7 of CRT port control register is set after setting bit 0 of port P3 directional register.

The polarities of CRT outputs (R, G, B, I, and OUT1, as well as H_{SYNC} and V_{SYNC}) can be specified by using the CRT port control register (address $00EC_{16}$).

Use bits 0 to 4 in the CRT port control register to set the output polarities of H_{SYNC} , V_{SYNC} , R/G/B, I, and OUT1. When these bits are cleared to "0", a positive polarity is selected; when the bits are set to "1", a negative polarity is selected.

Figure 30 shows the structure of the CRT port control register.

(10) OUT2 Control

Because function selection (such as character or blank output control, border selection, etc.) of OUT1 is the same as that of OUT2, OUT2 outputs the same data of OUT1.

OUT2 can output characters in specified character area by specifying bit 4 of RAM for display. This function is no use when blank output is setting by color register.

Fig. 30 Structure of CRT port control register

WATCHDOG TIMER

The watchdog timer provides a method of returning to reset status if a runaway or other cause prevents a program from running a loop normally.

The watchdog timer is a 15-bit counter consisting of a lower seven bits and an upper eight bits (address $00EF_{16}$). At reset or after the watchdog timer is written to, $7FFF_{16}$ is set in this timer and it starts to count.

When the MSB reaches "0", an internal reset is generated. Therefore programs should normally be written to ensure that the watchdog timer is written to before this bit reaches

"0". If address 00EF₁₆ is read, the value in the upper eight bits of the counter is read. Directly after a reset, the watchdog timer is stopped.

The count source of the lower seven bits is a signal that is the system clock ϕ divided by eight. The count source of the upper eight bits can be selected as either the overflow signal from the 7-bit counter or a signal that is the system clock ϕ divided by eight, depending on the value of bit 3 of the CPU mode register (address 00FB₁₆).

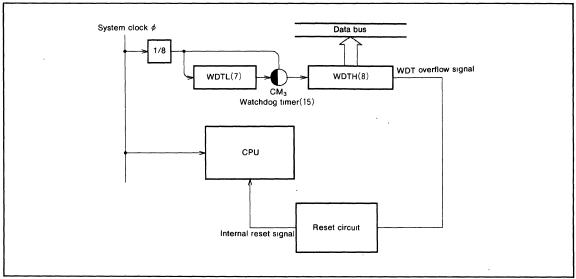


Fig. 31 Block diagram of runaway detection function

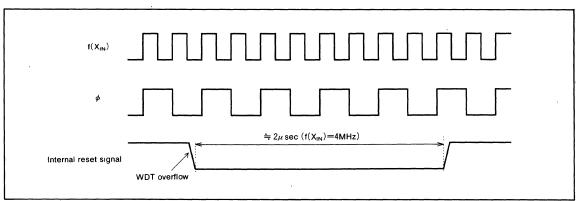


Fig. 32 Timing diagram of internal reset signal

RESET CIRCUIT

The M37120M6-XXXFP is reset according to the sequence shown in Figure 34. It starts the program from the address formed by using the content of address FFFF₁₆ as the high order address and the content of the address FFFE₁₆ as the low order address, when the $\overline{\text{RESET}}$ pin is held at "L" level for no less than $2\mu s$ while the power voltage is between 4 and 5.5V and the crystal oscillator oscillation is stable and then returned to "H" level.

The internal initializations following reset are shown in Fiqure 33.

Immediately after reset, the count of $X_{\rm IN}$ is stopped and $X_{\rm CIN}$ divided by 2 is selected as an internal clock. FF₁₆ is set timer 3 and 07₁₆ is set to timer 4 and timer 3 and timer 4 are connected. Also $X_{\rm CIN}$ divided by 16 is selected as the timer 3 count source. Reset is cleared by timer 4 overflow.

Fig. 33 Internal state of microcomputer at reset

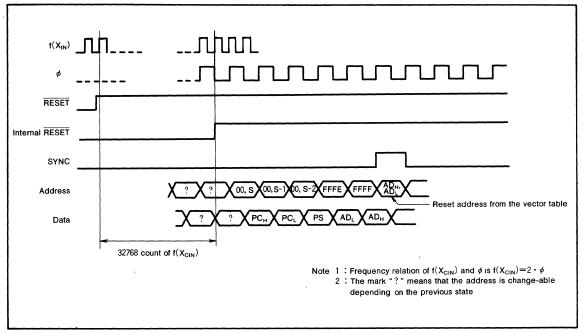


Fig. 34 Timing diagram at reset

I/O PORTS

(1) Port P0

Port P0 is an 8-bit I/O port with CMOS outputs and pull-up transistor options available. As shown in Figure 3, P0 can be accessed as memory through zero page address 00C016. Port P0's directional register allows each bit to be programmed individually as input or output. The directional register (zero page address 00C1₁₆) can be programmed as input with "0", or as output with "1". When in the output mode, the data to be output is latched to the port register and output. When data is read from the output port, the otuput pin level is not read, only the latched data of the port register is read. Therefore, a previously output value can be read correctly even though the output voltage level has been shifted up or down. Port pins set as input are in the high impedance state so the signal level can be read. When data is written into the input port, the data is latched only to the output register and the pin still remains in the high impedance state.

- (2) Port P1
 - Port P1 has the same function as P0.
- (3) Port P2
 - Port P2 has the same function as P0.
- (4) Port P3

Port P3 has the same functions P0 except that part of P3 is common with the CRT output pin and counter input pin.

(5) Port P4

Port P4 has the same function as P0. The output structure is N-channel open drain.

(6) Port P6

Port P6 has the same functions as P0. The lower 4-bit of this port are in common with interrupt input pins and the higher 4-bit of this port are in common with analog input pins.

(7) Port P7

Port P7 is a 4-bit input port This port is in common with analog input pins.

(8) I/O pins for CRT display function

 H_{SYNC} , V_{SYNC} are input pins for deciding the display location. R, G, B, I, OUT1 and OUT2 are output the pattern of CRT display.

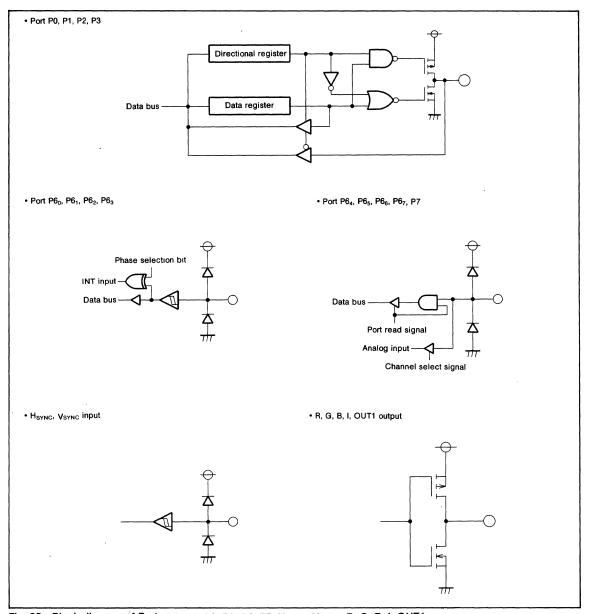


Fig. 35 Block diagram of Ports P0, P1, P2, P3, P6, P7, H_{SYNC}, V_{SYNC}, R, G, B, I, OUT1

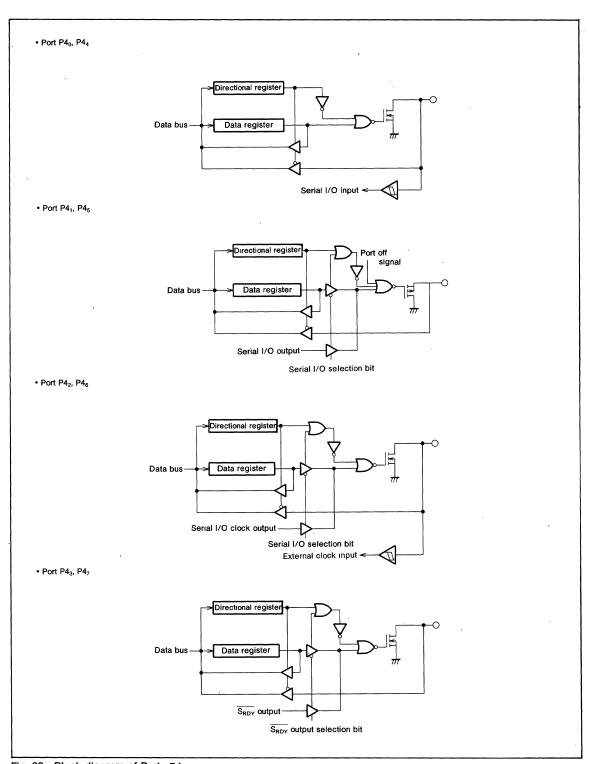


Fig. 36 Block diagram of Ports P4

CLOCK GENERATING CIRCUIT

The M37120M6-XXXFP has two internal clock generating circuits. Figure 40 shows a block diagram of the clock generating circuits. Normally, the frequency applied to the clock input pin $X_{\rm IN}$ divided by two is used as the internal clock (timing output) ϕ . Bit 7 of CPU mode register can be used to switch the internal clock ϕ to 1/2 the frequency applied to the clock input pin $X_{\rm CIN}$.

Figure 37 shows a circuit example using a ceramic (or crystal) oscillator. Use the manufacturer's recommended values for constants such as capacitance which will differ depending on each oscillator. When using an external clock signal, input from the X_{IN} (X_{CIN}) pin and leave the X_{OUT} (X_{COUT}) pin open. A circuit example is shown in Figure 38. An external clock signal cannot be supplied to the X_{CIN} pin open.

The M37120M6-XXXFP has two low power dissipation modes; stop and wait. The microcomputer enters a stop mode when the STP instruction is executed. The oscillator (both $X_{\rm IN}$ clock and $X_{\rm CIN}$ clock) stops with the internal clock ϕ held at "H" level. In this case timer 3 and timer 4 are forcibly connected and $\phi/8$ is selected as timer 3 input. When restarting oscillation, FF₁₆ is automatically set in timer 3 and 07₁₆ in timer 4 in order to enable the oscillator to stabilize. Before executing the STP instruction, the timer 3 count stop bit and timer 4 count stop bit must be set to supply ("0"), timer 3 interrupt enable bit must be set to disable ("0").

Oscillation is restarted (release the stop mode) when INT, or serial I/O interrupt is received. The interrupt enable bit of the interrupt used to release the stop mode must be set to "1". When restarting oscillation with an interrupt or reset, the internal clock ϕ is held "H" until timer 4 overflows and is not supplied to the CPU.

The microcomputer enters an wait mode when the WIT instruction is executed. The internal clock ϕ stops at "H" level, but the oscillator does not stop. ϕ is re-supplied (wait mode release) when the microcomputer is reset or when it receives an interrupt.

Instructions can be executed immediately because the oscillator is not stopped. The interrupt enable bit of the interrupt used to reset the wait mode must be set to "1" before executing the WIT instruction.

Low power dissipation operation is also achieved when the $X_{\rm IN}$ clock is stopped and the internal clock ϕ is generated from the $X_{\rm CIN}$ clock (36 μ A or less at f($X_{\rm CIN}$)=32kHz, $V_{\rm CC}$ =3V). $X_{\rm IN}$ clock oscillation is stopped when the bit 6 of CPU mode register (address 00FB₁₆) is set and restarted when it is cleared. However, the wait time until the oscillation stabilizes must be generated with a program when restarting. Figure 41 shows the transition of states for the system clock.

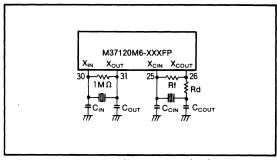


Fig. 37 Example ceramic resonator circuit

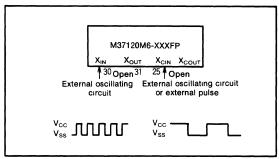


Fig. 38 Example clock input circuit

TIMER OSCILLATION CIRCUIT

Power is supplied to the timer clock oscillation circuit via a step-down regulator circuit to reduce the power consumption when the M37120M6-XXXFP is operating in timer mode. Since this step-down regulator circuit reduces the voltage applied to the $V_{\rm CC}$ pin to 1.4V (standard), the user can design a low-power timer mode. Bit 5 (CM $_{\rm 5}$) of the CPU mode register can be used to provide two-stage setting for the oscillation circuit: low-power mode when CM $_{\rm 5}=0$ 0 and high-power mode when CM $_{\rm 5}=1$ 0. Note that high-power mode is set after a reset, so the program must switch to low-power mode to enable low-power-consumption mode, after allowing time for the oscillation to stabilize.

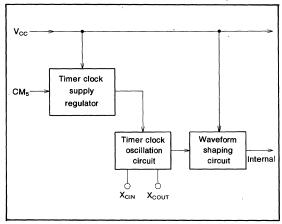


Fig. 39 Block diagram of the timer clock oscillation circuit

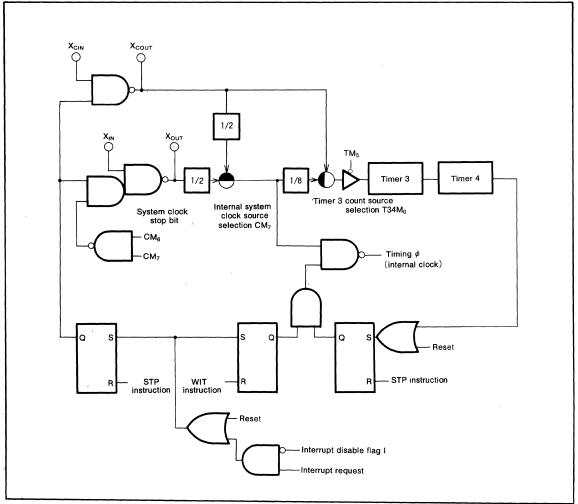


Fig. 40 Block diagram of clock generating circuit

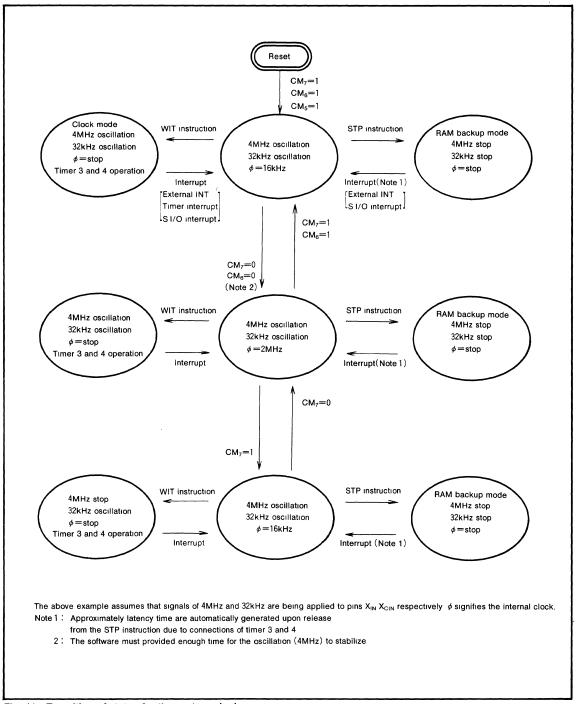


Fig. 41 Transition of states for the system clock

≪An example of flow for system

```
Power on reset
            Clock for clock function X<sub>C</sub> oscillation
            Internal system clock start (X_C \rightarrow 1/2 \rightarrow \phi)
Normal operation
            The count start after the time 3 and 4 are connected (Count source is X<sub>C</sub>)
            Timer 4 overflow
            Internal reset released
            Program start from RESET vector
                         Normal program
                                                   ←Operating at 32kHz
            X<sub>COUT</sub> drive capacity selection bit clear (CM<sub>5</sub>= 0)
            Clock processing inital value is set (i e Timer 3 and 4 set the value. Timer 3 interrupt disable.)
Operation on the clock
            Clock X halt(X<sub>C</sub> in operation)
            Internal clock halt(WIT instruction)
    function only
            Timer 4 (clock count)overflow
            Internal clock operation start (WIT instruction released)
                         Clock processing routine
                                                              ← Operating at 32.768kHz
            Internal clock halt (WIT instruction)
            Interrupts from INT<sub>1</sub>-INT<sub>3</sub>, serial I/O1, serial I/O2, timer 3
Return from clock function
            Internal clock operation start (WIT instruction released)
            Clock X oscillation start (CM<sub>6</sub>= 0)
                         Oscillation rise time routine (software)
                                                                              ←Operating at 32. 768kHz
            Internal clock \phi source switching (X_C \rightarrow X)(CM_7 : 1 \rightarrow 0)
                         Normal program
                                                   →Operating at 4MHz
RAM backup function
                         STP instruction preparation (pushing registers)
                         Timer 3, timer 4 interrupt disable (IM_0 = 0, TM_1 = 0). X_{COUT} drive capacity selection bit set (CM_5 = 1)
                         Timer 3, timer 4 count stop bit resetting (T34M_2 = 0, T34M_3 = 0)
                         Clock X and clock for clock function X<sub>C</sub> halt (STP instruction)
                         RAM backup status
Return from RAM backup function
            Interrupts from INT<sub>1</sub>-INT<sub>3</sub>, serial I/O1, serial I/O2
            Clock for clock function X_C oscillation start (CM<sub>6</sub>= 0 : Clock X oscillation start)
            Timer 4 overflow (X<sub>C</sub>/8→timer 3 →timer 4) (Automatically connected by the hardware)
            Internal system clock start
            Program start from interrupt vector
                         Normal program
                                  :
```


SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

PROGRAMMING NOTES

- (1) The frequency ratio of the timer is 1/(n+1).
- (2) Even though the BBC and BBS instructions are executed after the interrupt request bits are modified (by the program), those instructions are only valid for the contents before the modification. Also, at least one instruction cycle must be used (such as an NOP) between the modification of the interrupt request bits and the execution of the BBC and BBS instructions.
- (3) After the ADC and SBC instructions are executed (in decimal mode), one instruction cycle (such as an NOP) is needed before the SEC, CLC, or CLD instructions are executed.
- (4) An NOP instruction must be used after the exection of a PLP instruction.
- (5) When the interrupt is processed, confirm the interrupt enable bit is enable state after into the interrupt routine. If so, check the request flag after that.

DATA REQUIRED FOR MASK ORDERING

Please send the following data for mask orders.

- (1) mask ROM confirmation form
- (2) mask specification form
- (3) ROM data ····· EPROM 3 sets

4

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
V _{CC}	Supply voltage	,	-0.3 to 7.0	V
Vı	Input voltage RESET		-0.3 to 7.0	V
	Input voltage P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ ,	· .		
١.,	P3 ₀ -P3 ₇ , P4 ₀ -P4 ₇ , P6 ₀ -P6 ₇ ,		-0.3 to V _{CC} +0.3	v
V _i	P7 ₀ —P7 ₃ , X _{IN} , X _{CIN} ,	With respect to V _{SS}	-0.3 to V _{CC} -0.3	, v
	V _{REF} , V _{SYNC} , H _{SYNC}	Output transistors are		
		at "off" state	-0.3 to 2.5V (at high power mode)	V
V _o	Output voltage X _{COUT}		-0.3 to 1.5V (at low power mode)	V
	Output voltage P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ ,			
V _o	P3 ₀ -P3 ₇ , P4 ₀ -P4 ₇ , R, G, B, i, OUT1,		-0.3 to $V_{CC}+0.3$	V
	X _{OUT} , φ, D-A _{OUT0} to D-A _{OUT5}			

RECOMMENDED OPERATING CONDITIONS

(V_{CC} =A V_{CC} =5V±10%, T_a =-10 to 70°C unless otherwise noted)

0	D									
Symbol	Parameter		Mın	Тур	Max	Unit				
	0 1	f(X _{IN})=4MHz (Note 1)	4.0	5.0	5.5	.,				
V_{CC}	Supply voltage	f(X _{CIN})=32kHz (Note 2)	2.5	5.0	5. 5 5. 5 0 V _{CC}	٧				
V _{SS}	Supply voltage		0	0	0	V				
	"H" input voltage P00-P07, P10-P	1 ₇ , P2 ₀ —P2 ₇ ,								
	P3 ₀ -P3 ₇ , P4 ₀ -P4 ₇ , P6 ₀ -P6 ₇ ,		0 00		1,,	.,				
V _{IH}	P7 ₀ -P7 ₃ , X _{IN} , OSC1,		0.8V _{CC}		Vcc	٧				
	RESET, H _{SYNC} , V _S	SYNC								
	"L" input voltage P00-P07, P10-P	1 ₇ , P2 ₀ —P2 ₇	,							
VIL	P3 ₀ —P3 ₇ , P4 ₀ —P4	4 ₇ , P6 ₀ -P6 ₇ ,	0		0.2V _{CC}	V				
	P7 ₀ —P7 ₃ , X _{IN} , OS	C1, H _{SYNC} , V _{SYNC}								
VIL	"L" input voltage RESET		0		0.15V _{CC}	V				
V _{REF}	Reference voltage input V _{REF}		4.0		Vcc	V				
VIA	Analog input voltage AN ₀ -AN ₇		0		V _{REF}	V				
	"H" average output current P00-P0	0 ₇ , P1 ₀ —P1 ₇ ,			1					
I _{OH(avg)}	(Note 3) P2 ₀ —P2	2 ₇ , P3 ₀ -P3 ₇ ,			1	mA				
	R, G, B	, I, OUT1								
	"L" average output current P00-P0) ₇ , P1 ₀ —P1 ₇ ,								
loL(avg)	(Note 4) P2 ₀ —P2	2 ₇ , P3 ₀ —P3 ₇ ,			2	mΑ				
_	P4 ₀ —P4	7, R, G, B, I, OUT1								
f(X _{IN})	Clock oscillating frequency for mail	n clock (Note 5)			4. 2	MHz				
f(X _{CIN})	Clock oscillating frequency for cloc	k function (Note 5)			32. 768	kHz				
f(OSC1)	Clock oscillating frequency for OSI)	6.0	7. 0	8.0	MHz				

Note 1: At OSD operating, maximum value is 4.5V

2: It is only at clock operation mode

Any other operation mode, maximum value is 4.0V

3: The total of input current from IC should be 20mA max.

4: The total of input current from IC should be 30mA max.

5 : Oscillation frequency is at 50% duty cycle.

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

$\textbf{ELECTRICAL} \quad \textbf{CHARACTERISTICS} \; (v_{cc} = Av_{cc} = 5v \pm 10\%, \, T_{\textbf{a}} = -10 \; \text{to} \; 70\% \; \text{unless otherwise noted})$

Symbol	Parameter	Test conditions		Limits		Unit
Symbol	Parameter	rest conditions	Min	Тур	Мах.	Unit
V _{OH}	"H" output voltage P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ -P3 ₇ , ϕ , R, G, B, I, OUT1	V _{CC} =4.5V I _{OH} =-0.5mA	2. 4			v
V _{OL}	"L" output voltage P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ -P3 ₇ , P4 ₀ -P4 ₇ , ϕ , R, G, B, I, OUT1	V _{CC} =4.5V I _{OL} =0.5mA			0. 4	v
$v_{\tau^+} - v_{\tau^-}$	Hysteresis H _{SYNC} , V _{SYNC} , P6 ₀ —P6 ₃ , P4 ₀ , P4 ₂ , P4 ₄ , P4 ₆ , P3 ₄ (Note 1)	V _{CC} =5.0V		0.5		v
$V_{T+}-V_{T-}$	Hysteresis RESET	V _{CC} =5.0V		0.5		V
I _{IL}	"L" input current P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ -P3 ₇ , P4 ₀ -P4 ₇ , P6 ₀ -P6 ₇ , P7 ₀ -P7 ₃ , H _{SYNC} , V _{SYNC} , RESET	V _{CC} =5.5V V _I =0V			5	μА
t _{iei}	"H" input current P0 ₀ -P0 ₇ , P1 ₀ -P1 ₇ , P2 ₀ -P2 ₇ , P3 ₀ -P3 ₇ , P4 ₀ -P4 ₇ , P6 ₀ -P6 ₇ , P7 ₀ -P7 ₃ , H _{SYNC} , V _{SYNC} , RESET	V _{CC} =5.5V V _I =5.5V			5	μА
V _{RAM}	RAM retention voltage	At stop mode	2.0		5.5	٧
		At system operation, X _{IN} =4MHz, X _{CIN} =32kHz, f(OSC1)=7MHz, Output transistors are at "off" state		13	24	mA
	Supply current	At system operation, V _{CC} =3 0V, X _{IN} =stop, X _{CIN} =32kHz, Output transistors are at "off" state		18	36	
Icc	эцрру синент	At low—speed operation mode, V_{CC} =3 0V, X_{IN} =stop, X_{CIN} =32kHz, At wait mode (CM ₅ =0), Output transistors are at "off" state		2 8		μА
		At stop mode, X _{IN} =X _{CIN} =stop, Output transistors are at "off" state		1	10	
I _{ACC}	Analog power supply			0.5	1.0	mA

Note 1: $P4_0$, $P4_2$, $P4_4$, $P4_6$ have the hysteresis only when these are used for serial I/O pins $P3_4$ has the hysteresis only when this is used for a timer input pin

A-D CONVERTER CHARACTERISTICS

 $(\rm V_{CC} = AV_{CC} = 5~V,~V_{SS} = AV_{SS} = 0~V,~T_a = 25 °C,~f(\rm X_{IN}) = 4~MHz~unless~otherwise~noted)$

Symbol	Parameter	Test conditions		Limits		
Symbol	Farameter	Test conditions	Min	Тур	Max	Unit
_	Resolution				8	Bits
_	Absolute accuracy	V _{CC} =AV _{CC} =V _{REF} =5. 0V		±1.5	±3.0	LSB
T _{CONV}	Conversion time				24. 5	μs
VIA	Analog input voltage		AVss		V _{REF}	٧
V_{REF}	Reference input voltage		4.0		Vcc	٧
RLADDER	Ladder resistance value	V _{REF} =5.0V		40		kΩ
I _{VREF(AD)}	Reference input current (Note 1)	V _{REF} =5.0V			0.3	mA
VAVCC	Analog power supply input voltage			Vcc		٧
VAVSS	Analog power supply input voltage			0		V

Note 1 : The total of I_{VREF} is the sum of $I_{\text{VREF}(\text{AD})}$ and $I_{\text{VREF}(\text{DA})}.$

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

D-A CONVERTER CHARACTERISTICS

 $(\rm V_{CC} = \rm AV_{CC} = 5~V,~V_{SS} = \rm AV_{SS} = 0~V,~T_{A} = 25^{\circ}C,~f(\rm X_{IN}) = 4~MHz~unless~otherwise~noted)$

Cumbal	Parameter	Took our delens		Limits		
Symbol		Test conditions	Min	Тур.	Max	Unit
_	Resolution				8	Bits
_	Full scale deviation	V _{CC} =AV _{CC} =V _{REF} =5.0V			1.0	%
T _{su}	Set time				3	μs
V _{REF}	Reference input voltage		4		V _{CC}	V
R _{OUT}	Output resistance		1	2	4	kΩ
VAVSS	Analog power supply input voltage			0		V
I _{VREF(DA)}	Reference power input current (Note 1)		0	2.5	5.0	mÀ

Note 1: The total of I_{VREF} is the sum of I_{VREF(AD)} and I_{VREF(DA)}.

I_{VREF(DA)} is the reference power input current flowing when channel 1 of the DA converter is operating. (The other five DA converter register values are 00.c.)

MITSUBISHI MICROCOMPUTERS

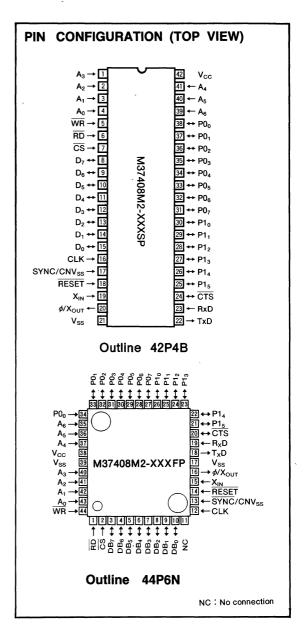
M37408M2-XXXSP/FP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

DESCRIPTION

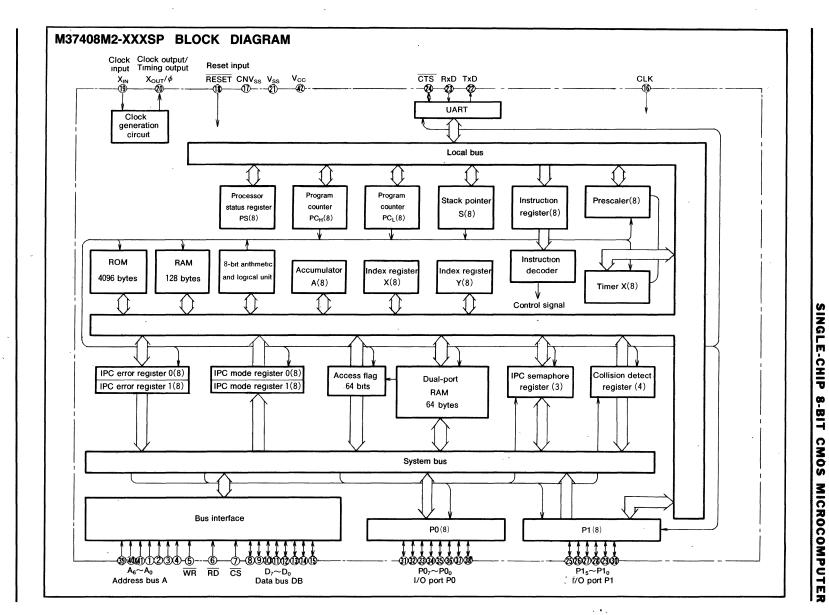
The M37408M2-XXXSP is a single-chip microcomputer designed with CMOS silicon gate technology. It is housed in a 42-pin shrink plastic molded DIP. This single-chip microcomputer can be used as a slave-microcomputer for communication applications.

In addition to its simple instruction set, the ROM, RAM, and I/O addresses are placed on the same memory map to enable easy programming.


The differences between the M37408M2-XXXSP and the M37408M2-XXXFP are the package and the power dissipation capability (absolute maximum ratings).

FFATURES

EATURES	
Number of bas	sic instructions······ 69
Memory size	ROM4096 bytes
	RAM 128 bytes
Instruction exe	ecution time
…0.8µs (ı	minimum instructions at 10MHz frequency)
Single power:	supply $f(X_{IN})=10MHz \cdots 5V\pm 10\%$
Power dissipa	tion
normal oper	ation mode (at 10MHz frequency) ·· 50mW
	sting ······64 levels (Max.)
	····· 6 types
	1
	uplex)·····1 channels
Dual-port RAM	n64 bytes
Communicatio	n registers
Access flag	64 bits
Collision de	tect register·····4-bit×1
IPC* semar	phore register ······3-bit×1
	egister·····8-bit×2
IPC error re	gister·····8-bit×2
Programmable	
(Ports P0, P	1, CTS)15
Bus interface	
Addrage hus	s······7
Data bus ····	8. al (WR , RD , CS)
	Number of bar Memory size Instruction exe


APPLICATION

Office automation equipment

*IPC···Intelligent Protcol Controller

MITSUBISHI MICROCOMPUTERS M37408M2-XXXSP/FP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

FUNCTIONS OF M37408M2-XXXSP

Parameter			Functions
Number of basic instructions			69
Instruction execution time			0.8μs (minimum instructions, at 10MHz frequency)
Clock frequency			10MHz
Memory size	ROM		4096 bytes
	RAM		128 bytes
Input/Output ports	P0 ₀ ~P0 ₇	1/0	8-bit×1 (System bus I/O)
	P1 ₀ ~P1 ₅	1/0	6-bit×1 (Local bus I/O, System bus input)
	CTS	1/0	1-bit (Common with UART transmit control input)
	A ₀ ~A ₆	Input	7-bit×1
Bus interface	D ₀ ~D ₇	1/0	8-bit×1
	RD, WR, CS	Input	1-bit×3
UART			1 (with programmable baud rate generator)
Timer			8-bit×1 (with 8-bit prescaler)
Interrupt			1 system bus (IPCM0) interrupt, 2 UART interrupts, 1 timer interrupt, 1 collision interrupt
Dual-port RAM			64 bytes
Communication registers	Access flag		64 bits
	Collision detect register		4-bit×1
	IPC semaphore register		3-bit×1
	IPC mode register		8-bit×2
	IPC error register		8-bit×2
Subroutine nesting			64 levels (max)
Clock generating circuit			Built-in (externally connected ceramic or quartz crystal)
Supply voltage			5V±10%
Power dissipation	at operation		50mW
	at wait mode		5mW
	at stop mode	T _a =25℃	0.05mW
		Ta=70℃	0.5mW
Operating temperature range			−10~70°C
Device structure			CMOS silicon gate process
Package	M37408M2-XXXSP		42-pin shrink plastic molded DIP
	M37408M2-XXXFP		44-pin plastic molded QFP

MITSUBISHI MICROCOMPUTERS M37408M2-XXXSP/FP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

PIN DESCRIPTION

Pin	Name	Input/ Output	Functions	
V _{CC} , V _{SS}	Supply voltage		Power supply inputs 5V \pm 10% to V _{CC} , and 0V to V _{SS}	
CNV _{ss}	CNV _{SS}		This is usually connected to V _{SS} .	
RESET	Reset input	Input	To enter the reset state, the reset input pin must be kept at a "L" for more than $2\mu s$ (under normal V_{CC} conditions) If more time is needed for the crystal oscillator to stabilize, this "L" condition should be maintained for the required time.	
XIN	Clock input	Input	This chip has an internal clock generating circuit. To control generating frequency, an external ceramic or quartz crystal is connected between the X_{IN} and X_{OUT} pins. If an external clock is used, the clock source should be connected to the X_{IN} pin and the X_{OUT} pin should be left open.	
Хоит	Clock output	Output		
φ	Timing output	Output	This is the timing output pin	
P0 ₀ ~P0 ₇	I/O port P0	1/0	Port P0 is an 8-bit I/O port with a directional register which allows each I/O bit to be individually programmed as input or output This port is connected only to the system bus, and can not be accessed from the local bus. At reset this port becomes input mode. The output structure is CMOS	
P1 ₀ ~P1 ₅	I/O port P1	1/0	Port P1 is an 6-bit I/O port and has basically the same functions as port P0. This port is connected to the local bus and can be used as only input port from the system bus. The output structure is CMOS output.	
T _× D	UART transfer output	Output	These are UART transfer data output pins.	
R _X D	UART receive input	Input	These are UART receive data input pins	
CTS	UART transfer control input	1/0	These are UART transfer control signal input pins and can be used as I/O port which have basically same function as port P1.	
CLK	UART clock input	Input	This port is an external clock input pin for baud rate	
A ₀ ~A ₆	Address input	Input	This port is input for system address	
D ₀ ~D ₇	Data input/output	1/0	This port is input or output the system data.	
cs	Chip select	Input	System data can be read or written by inputting "L" to this port	
RD	Read control input	Input	Memory or register data specified by A ₀ ~A ₆ is read from D ₀ ~D ₇ by inputting "L" to this port	
WR	Write control input	Input	Data input from D ₀ ~D ₇ is written to memory or register specified by A ₀ ~A ₆ by inputting "L" to this port	

M37408M2-XXXSP/FP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

FUNCTIONAL DESCRIPTION Central Processing Unit (CPU)

The M37408 microcomputers use the standard MELPS 740 instruction set. For details of instructions, refer to the MELPS 740 CPU core basic functions, or the MELPS 740 Software Manual.

Machine-resident instructions are as follows:

The FST and SLW instructions are not provided.

The MUL and DIV instructions are not provided.

The WIT instruction can be used.

The STP instruction can be used.

ADDRESS AREA

M37408M2-XXXSP has two buses; the local bus connected to the CPU of its own, and the system bus connected to the CPU of the external master computer. There are two corresponding address area.

The local bus has thirteen address buses and eight data buses. The address area, which is 8192 bytes, is addresses from 0000_{16} to $1FFF_{16}$.

For this local bus area, addresses 1000_{16} to $1FFF_{16}$ are assigned to the built-in ROM area which consists of 4096 bytes.

The system bus has seven address buses and eight data buses. The address area, which is 128 bytes, is addresses from 00_{16} to $7F_{16}$.

The internal memories and registers are connected to one or both of these buses. Therefore, it is necessary, in writing programs, to know the operation of each functional block as well as to which bus the memories and registers are connected at what addresses.

MEMORY

Special Function Register (SFR) Area

The special function register (SFR) area contains the registers relating to functions such as I/O ports and timers.

• RAM

RAM is used for data storage as well as a stack area.

• ROM

ROM is used for storing user programs as well as the interrupt vector area.

Interrupt Vector Area

The interrupt vector area is for storing jump destination addresses used at reset or when an interrupt is generated.

Zero Page

Zero page addressing mode is useful because it enables access to this area with fewer instruction cycles.

Special Page

Special page addressing mode is useful because it enables access to this area with fewer instruction cycles.

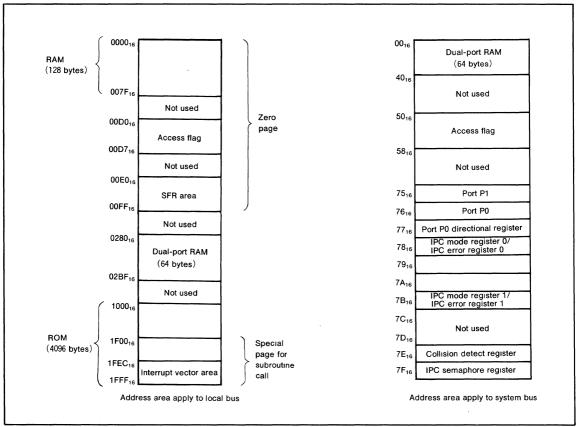


Fig. 1 Memory map

MITSUBISHI MICROCOMPUTERS M37408M2-XXXSP/FP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

0E0 ₁₆	Port P1	00F0 ₁₆	IPC mode register 0	
0E1 ₁₆	Port P1 directional register	00F1 ₁₆		\neg
0E2 ₁₆	Dual-port RAM direction specify register	00F2 ₁₆		
0E3 ₁₆		00F3 ₁₆	IPC mode register 1	
0E4 ₁₆		00F4 ₁₆	IPC error register 0	
0E5 ₁₆		00F5 ₁₆		
0E6 ₁₆		00F6 ₁₆		
0E7 ₁₆		00F7 ₁₆	IPC error register 1	
0E8 ₁₆		00F8 ₁₆		
0E9 ₁₆		00F9 ₁₆	IPC semaphore register	
0EA ₁₆		00FA ₁₆	Collision detect register	
0EB ₁₆		00FB ₁₆	Interrupt enable register	
0EC ₁₆	UART receive/transfer buffer register	00FC ₁₆	Interrupt request register	
0ED ₁₆	UART status register/UART mode register	00FD ₁₆	Prescaler X	
0EE ₁₆	UART control register	00FE ₁₆	Timer X	\neg
0EF ₁₆	UART divider for baud rate generate	00FF ₁₆	Timer control register	

Fig. 2 SFR(Special Function Register) memory map

Bus Interface

M37408M2-XXXSP has the bus interface to operate itself by the control signal sent from the master CPU. The master CPU can access the memories and registers located in the system address area described below via this bus interface. The bus interface has address pins A_0 to A_6 , data pins D_0 to D_7 , and three controls signals \overline{CS} , \overline{WR} , and \overline{RD} which can be directly connected to TTL.

Driving the $\overline{\text{CS}}$ pin to "L" put this microcomputer in the read/write enabled state. When writing data from the mas-

ter CPU, specify the address by $A_0 \sim A_6$ and set \overline{WR} to "L", and the data at $D_0 \sim D_7$ is written to the specified address. When reading data, specify the address by $A_0 \sim A_6$ and set \overline{RD} to "L", and the contents of the specified address are output to $D_0 \sim D_7$.

Driving the $\overline{\text{CS}}$ pin to "H" puts the M37408M2-XXXSP in the state which does not allow the read and write operations from the master CPU. At this time, the outputs of D₀ to D₇ are in the floating state.

Figure 3 shows the block diagram of the bus interface.

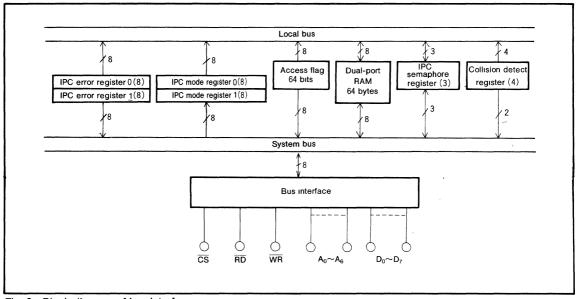


Fig. 3 Block diagram of bus interface

Dual-port RAM

The dual-port RAM, which is 64 bytes, is the memory which allows the read/write operation from both the local and system buses independently. From the local bus, it is allocated at addresses 0280_{16} to $02BF_{16}$; from the system bus, addresses 00_{16} to $3F_{16}$. Table 1 shows the result when the write and read operations from both buses compete at the same address.

Table 1. Result obtained by simultaneously accessing the same address from the system and local buses

	Write	Read
Simultaneous read from both buses		Correct data
Simultaneous write from both buses	Unpredictable	
Read from one bus, write from the other	Correct data	Uncertain

(Access flag)

Local bus: address $00D0_{16}\sim00D7_{16}$ System bus: address $50_{16}\sim57_{16}$

The access flag arbitrates the access to the dual-port RAM. One bit of access flag is allocated to one byte of dual port RAM, amounting 64 bits (8 bytes) in total. The access flag can be read from both the system and local buses. Figure 4 shows the relationship between each byte of the dual port RAM and each bit of the access flag. Each bit is cleared to "0" when an access to read is made to the dual port RAM from either bus, it is set to "1" when an access to write is made. If an access to read from one bus and an access to write from the other compete at the same address of the dual port RAM, the values of the corresponding access flags are uncertain. At reset, all access flags are cleared to "0".

[Dual-port RAM direction specify register]

Local bus : address 00E216

This register specifies that the read operation of which bus clears each bit of the access flag. One bit of this register corresponds to 32 bytes of the dual-port RAM (32 bits of the access flag). This register consists of two bits. Each access flag is cleared by the read operation from the system bus when the corresponding dual-port RAM direction specify register is "0"; when it is "1", each access flag is cleared by the read operation from the local bus. As for a write operation, the access flag is set regardless of which bus has made it. Table 2 shows the relationship between each bit of the dual-port RAM direction specify register and the dual-port RAM and the access flag. At reset, all bits are cleared to "0".

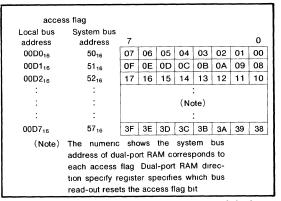


Fig. 4 Correspondence between each byte of dual-port RAM and each bit of access flag

Table 2. Correspondence among each bit of dual-port RAM direction specify register, dual-port RAM and access flag

Dual-port RAM direction	Dual-p	ort RAM	Acces	ss flag
specify register	Local bus address System bus address Local bus address System bus		System bus address	
bit 4	0280 ₁₆ ~029F ₁₆	00 ₁₆ ~1F ₁₆	00D0 ₁₆ ~00D3 ₁₆	50 ₁₆ ~53 ₁₆
bit 5	02A0 ₁₆ ~02BF ₁₆	20 ₁₆ ~3F ₁₆	00D4 ₁₆ ~00D7 ₁₆	54 ₁₆ ~57 ₁₆

[IPC mode register, IPC error register]

Local bus: address 00F0₁₆~00F7₁₆ System bus: address 78₁₆~7B₁₆

IPC mode registers $0\sim1$ (IPCM0 \sim IPCM1) and IPC error registers $0\sim1$ (ERR0 \sim ERR1) are the 8-bit registers which can be set by the user without restriction. IPC mode registers $0\sim1$ are used to specify the mode setting such as UART from the external master CPU via the system bus. IPC error registers $0\sim1$ are used to indicate the error found on the local CPU to the outside via the system bus. On the system bus, IPC mode registers $0\sim1$ and IPC error registers $0\sim1$ share two bytes of the same address, with the former being for write only and the latter for read only. On the local bus, the former is for read only and the latter is for both read and write.

The data written from the system bus to IPC mode registers $0 \sim 1$ can be read from the local bus only. If an access to read or write is performed from the system bus on IPC mode register 0/IPC error register 0, an interrupt request (IPCM0) is caused.

When IPC error registers $0\sim1$ are accessed for read from the system bus, only the bits which are found "1" are reset by hardware. When these registers are read from the local bus, their values remain unchanged.

(IPC semaphore register)

Local bus: address 00F9₁₆ System bus: address 7F₁₆

This register is for handshaking with the master CPU and consists of block semaphore flags $(BS_4 \sim BS_5)$ and the ready flag (RDY). $BS_4 \sim BS_5$ can be read/written from both the local and system buses. RDY can be read/written from the local bus and read only from the system bus. With this register, all bits can be read at a time but, in a write operation, only one bit can be written at a time. The low-order three bits of the data to be written are used to specify to which register bit the data is to be written. Bit 7 is used to specify whether to write "1" or "0". At reset, all bits are cleared to "0".

RDY is cleared to "0" also when an access to write is performed by the system bus on IPC mode register 0.



Fig. 5 Bit structure of IPC semaphore register

[Collision detect register]

Local bus: address 00FA₁₆ System bus: address 7E₁₆

This register consists of two bits of collision detect flags $(CD_4 \sim CD_5)$, the collision interrupt enable bit, and collision interrupt request bit. The collision detect flags are set when an access to read is performed by the system bus on the same address on the dual port RAM to which the local bus is writing data. These flags indicate that the data read by the master CPU may be incorrect. When these flags are set, a collision detect interrupt request occurs.

Each collision flag corresponds to each 32 bits of the dual port RAM. The flag bit corresponding to the address at which access competition occurred is set. The relationship between the flag bits and the dual port RAM is shown in Table 3. These flags can be read from both buses. All bits are cleared when read from the system bus or at reset.

The collision interrupt enable bit can be read/written from the local bus. When it is read from the system bus, "0" is always output. The collision interrupt request bit can be read only from the local bus. Only "0" can be written.

Table 3. Correspondence between collision detect flag and dual-port RAM

Collision detect	Dual-port RAM				
flag	Local bus address	System bus address			
CD₄	0280 ₁₆ ~029F ₁₆	00 ₁₆ ~1F ₁₆			
CD ₅	02A0 ₁₆ ~02BF ₁₆	20 ₁₆ ~3F ₁₆			

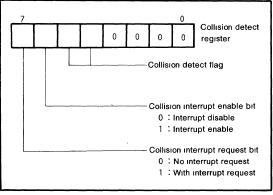


Fig. 6 Structure of collision detect register

INTERRUPT

Interrupts can be caused by 6 different events.

Interrupts are vectored interrupts with priorities shown in Table 4. Reset is also included in the table because its operation is similar to an interrupt.

When an interrupt is accepted, the registers are pushed, interrupt disable flag I is set, and the program jumps to the address specified in the vector table. The interrupt request flag is cleared automatically. The reset and BRK instruction interrupt can never be inhibited. Other interrupts are disabled when the interrupt inhibit flag is set.

All interrupts except the BRK instruction interrupt have an interrupt request bit and an interrupt enable bit.

Interrupts other than the BRK instruction interrupt and reset are accepted when the interrupt enable bit is "1",interrupt request bit is "1", and the interrupt inhibit bit is "0". The interrupt request bit can be reset with a program, but not set. The interrupt enable bit can be set and reset with a program.

Reset is treated as a non-maskable interrupt with the highest priority. Figure 7 shows interrupts control.

All interrupt request bits except the collision interrupt are in the interrupt request register (address 00FC₁₆). The collision interrupt request bit is in the collision detect register (address 00FA₁₆). The interrupt request bit is set when the following conditions occur:

- (1) When the data is set to receive buffer of UART
- (2) When the master CPU accesses the IPC mode/IPC error register 0 through bus interface
- (3) When the contents of the timer X goes to "0"
- (4) When one of the bit 4~bit 5 of the collision detect register is set to "1"
- (5) When the data is set to transmit buffer of UART

There are two interrupt enable bits for each interrupt except collision interrupt. One is in interrupt enable register (address $00FB_{16}$), the other is in UART control register (address $00EE_{16}$) or timer control register (address $00FF_{16}$). Interrupts are become enable when these two enable bits are both "1". The collision interrupt enable bit is in bit 6 of collision detect register.

UART transmit interrupt is controlled by $\overline{\text{CTS}}$ function select bit and $\overline{\text{CTS}}$ pin input (see UART section).

Since the BRK instruction interrupt and the UART transmit interrupt have the same vectored address, the contents of the B flag must be checked to determine if the BRK instruction caused the interrupt or if UART transmit generated the interrupt.

Table 4. Interrupt vector address and priority

Interrupt	Priority	Vector addresses
RESET	1	1FFF ₁₆ , 1FFE ₁₆
UART receive	2	1FF9 ₁₆ , 1FF8 ₁₆
IPCM0	3	1FF7 ₁₆ , 1FF6 ₁₆
Timer X	4	1FF5 ₁₆ , 1FF4 ₁₆
Collision	5	1FF3 ₁₆ , 1FF2 ₁₆
UART transmit/		455D 4550
BRK instruction	ъ	1FED ₁₆ , 1FEC ₁₆

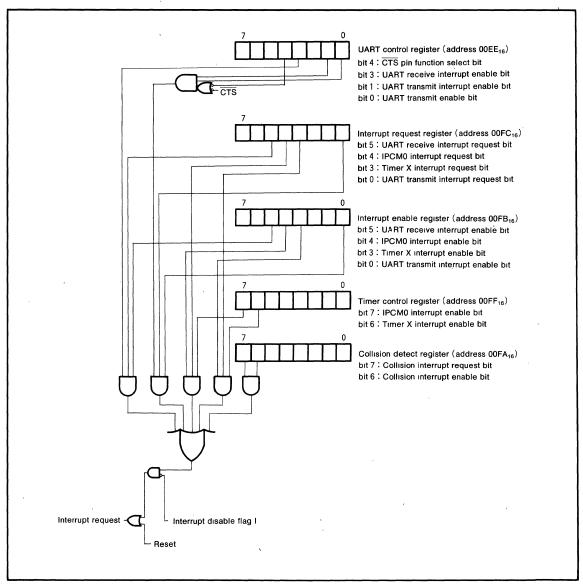


Fig. 7 Interrupt control

TIMER

The M37408M2-XXXSP has one timer: timer X. It has an 8-bit prescaler. Each timer or prescaler is structured with 8-bit counter. A block diagram of timer X is shown in Figure 9. Timer or prescaler is a down-counter which is reloaded from the latch when the next clock pulse after the timer reaches zero. The division ratio is defined as 1/(n+1) where n is the decimal contents of the timer latch. The timer interrupt request bit (bit 3 of the address $00FC_{16}$ of local address bus) is also set to "1" at this time. Timer counts the oscillation frequency divided by 16 when the bit 5 of timer control register is "0", and stops when "1". The structure of the timer control register is shown in Figure 8.

When the STP instruction is executed, or after reset, the prescaler and timer latch are set to FF₁₆ and 01₁₆, respectively. Also, when the STP instruction is executed, the oscillator's frequency (divided by 16) will become the counting source. This state will be released when the timer X interrupt request bit is set to "1", or after a reset. For more details on the STP instruction, refer to the oscillation circuit section.

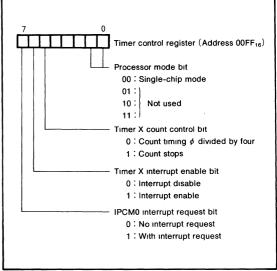


Fig. 8 Structure of timer control register

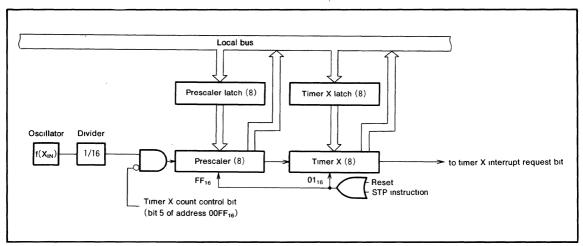


Fig. 9 Timer X block diagram

UART

The M37408M2-XXXSP contains one channel of UART. This UART has three pins TxD (transmit output), RxD (receive input), and $\overline{\text{CTS}}$ (clear to send) and contains the receive (transmit) shift register, the receive (transmit) buffer register, the UART mode register, the UART control register, the UART status register, and the baud rate generating divider. It also has a CLK pin the input pin of the external clock for baud rate generation. An interrupt can be generated at receive and transmit independently.

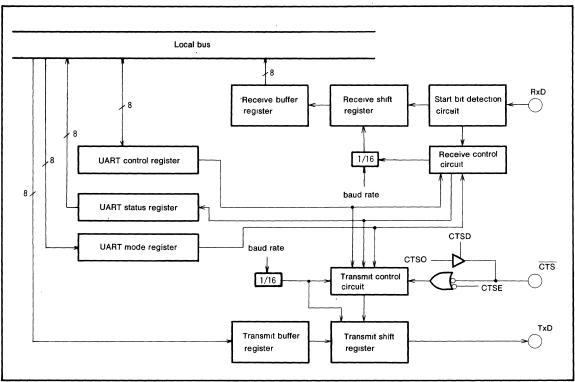


Fig. 10 UART block diagram

(Receive operation)

Setting the receive enable bit (bit 2 of the UART control register) to "1" puts the system in the receive enable state. When there is no input of receive data, "H" is input to RxD pin. When the falling edge is input to RxD pin and "L" input is detected twice consecutively by sampling with the clock having a frequency 16 times the baud rate, the start bit is triggered. Then, sampling is performed three time in the middle of the start bit. When "L" is detected twice or more, the receive operation begins, capturing the data bits into the receive shift register. If "L" has not been detected twice or more, start bit detection begins again. When the data bits and parity bit have been captured into the receive shift register and the stop bit is detected, the receive data is transferred from the receive shift register to the receive buffer register, setting the receiver ready flag (bit 1 of the UART status register). If a parity error occurred, the parity error flag is set. The framing error flag is set when the first stop bit is found "L". If the previous data has not been read out of the receive buffer register, the overrun error flag is set, clearing the previous data. The receiver ready flag is reset when the receive buffer register is read. Each error flag can be reset by writing "1" to the error flag reset bit (bit 7 of the UART control register). Any of these errors does not affect the receive operation. The data bit, the parity bit, and the stop bit are sampled three times in the middle of them each. When "L" or "H" is detected twice or more, "0" or "1" is determined respectively.

Each time a receive operation has been completed, setting the receiver ready flag, the UART receive interrupt request bit (bit 7 of the interrupt request register) is set. An interrupt is acknowledged when the two UART receive interrupt enable bits (bit 3 of the UART control register and bit 7 of the interrupt enable register) are both "1", and the interrupt disable flag I is "0". The UART receive interrupt request bit is reset when a UART receive interrupt is acknowledged. Setting the receive enable bit (bit 2 of the UART control register) to "0" puts the system in the receive stopped state. At this time, the receiver ready flag is "0" (ready), the receive shift register is in the stopped state, and the start bit detection is stopped.

(Transmit operation)

When the send data is written to the transmit buffer register, the start bit, parity bit, and stop bit are added to the data, which is transferred to the transmit shift register. The transmit shift register begins shift when it becomes enable for transmission, sending the serial data to TxD pin. For the description of the transmit enable state, see Table 5.

In the transmit enable state, each time transmission of the stop bit of the serial data being transmitted has been completed, it is checked whether the next data has been written to the transmit buffer register. If the data is found written, transmission of the next data begins. If the data is found not written, TxD pin is held at "H" until the next transmit data is written, setting the transmitter empty flag. When the transmit enable state is cleared during transmission, the transmission is stopped after completing the transmission of the transmit data so far written to the transmit buffer register.

When the transmitter ready flag (bit 0 of the UART status register) is "1", it indicates that the transmit buffer is ready for writing data. The immediately preceding data is transferred from the transmit buffer register to the transmit shift register. Every time the start bit is output from TxD pin, this flag is set. Every time the transmitter ready flag is set, the UART transmit interrupt request bit (bit 2 of the interrupt request register) is set. An interrupt is acknowledged when two UART transmit interrupt enable bits (bit 3 of the UART control register and bit 2 of the interrupt enable register) are both "1" and the interrupt disable flag 1 is "0". Note that an interrupt occurs only in the transmit ready state.

Bit 6 of the UART control register initializes the UART transmit side. When this bit "0", the transmit side is in the initial state.

Table 5. Bit and pin states when transmission is enable

TE	CTSE	CTS	TE	: UART transmit enable bit
1	0	X	CTSE	: CTS pin function selection bit
!	1	L	CTS	: CTS pin input level

[UART divider for baud rate generator]

This is an 8-bit programmable divider which generates the baud rate for the UART receive or transmit operation.

When the setting value is N_{BR} (0 to 255), the divide ratio becomes $1/(N_{BR}+1)$. There are three count sources; X_{IN} clock divided by 2, X_{IN} clock divided by 32, and the external clock. Choose sources by bits 4 and 5 of the UART mode register. Table 6 shows the baud rate calculation for each bit combination.

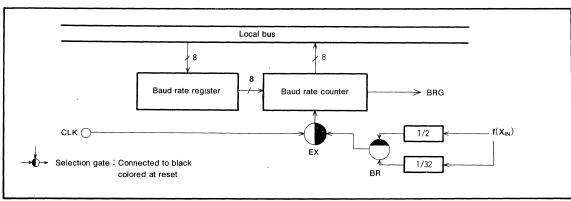

When the external clock is used, the frequency of the input clock must be below 1.6MHz. Writing to the baud rate generating divider must be performed when bits 2 and 6 of the UART control register are both "0".

Table 6. Baud rate calculation

EX	BR	Calculation
. 0	0	baud rate (bps)= $\frac{f(X_{IN})}{32(N_{BR}+1)}$
0	1	baud rate (bps)= $\frac{f(X_{IN})}{512(N_{BR}+1)}$
1	x	baud rate (bps)= $\frac{f(CLK)}{16(N_{BR}+1)}$

: Clock selection bit for baud rate generator

BR : Divide ratio selection bit for baud rate generator

FΧ

Fig. 11 Baud rate generating circuit

[CTS pin]

The CTS pin can be used as the 1-bit I/O port when bit 4 of the UART control register (CTSE) is "0". In this case, the input/output direction can be determined by bit 7 of the UART mode register (CTSD) and the output data can be set by bit 5 of the UART control register (CTSO). Additionally, the input level can be known by bit 7 of the UART status register (CTS).

(UART mode register)

Parity enable bit : PEN

Setting this bit to "1" adds a parity bit to the transmit data. In a receive operation, this bit is used for parity evaluation.

Parity select bit : EVN

This bit specifies the parity bit to be generated in a transmit operation and the parity bit to be evaluated in a receive operation. Depending on the content of this bit, the number of 1's in data is made even or odd.

- Character length select bit : CHL
 - This bit specifies the character length of data.
- Stop bit length select bit : ST
 - This bit specifies the stop bit length.
- Baud rate generating prescaler divide ratio select bit:
 BR

When this bit is "0", the signal obtained by dividing X_{IN} clock by 2 becomes the count source of the baud rate divider. When this bit is "1", the signal is obtained by dividing the clock by 32.

Baud rate generating synchronous clock selection bit :

EV

This bit specifies baud rate synchronous clock. When this bit is "1", external clock is input from the CLK pin.

CTS pin I/O select bit: CTSD
 When this bit is "0", the CTS pin is the input pin.
 When this bit is "1", the pin is the output pin. To use the CTS pin as the CTS input, set "0".

[UART control register]

- Transmit enable bit: TE
 - Setting this bit to "1" enables a transmit operation.
- Transmit interrupt enable bit: TIE
 When this bit is "1", the interrupt in a transmit operation is enabled.
- Receive enable bit : RE
 Setting this bit to "1" enables a receive operation.
- Receive interrupt enable bit: RIE
 When this bit is "1", the interrupt in a receive operation is enabled.
- CTS pin function select bit : CTSE
 When this bit is "1", the CTS pin becomes the CTS input.

- CTS output data select bit : CTSO
 When this bit is "0", "L" is output. When it is "1", "H" is output.
- Transmit side initialize bit : MR
 When this bit is "0", the transmit side is initialized.
- Error flag reset select bit: ERST
 Setting this bit to "1" resets all error flags. When this bit is read, "0" is always read.

[UART status register]

- Transmitter ready flag : TxRDY When this flag is "1", it indicates that the transmit buffer register is empty and ready for writing transmit data.
- Receiver ready flag: RxRDY
 When this flag is "1", it indicates that the receive buffer register is holding receive data. When the receive buffer register is read, it is cleared.
- Transmitter empty flag: TEMP
 When this flag is "1", it indicates that neither the transmit shift register nor the transmit buffer register holds the data to be transmitted.
- Parity error flag: PE
 This bit is set to "1" when the parity of the received data is different from the parity which was set.
- Overrun error flag: OR
 When this flag is "1", it indicates that, before the data in the receive buffer register is read, the next data is transferred from the receive shift register to the receive buffer register and the previous data is lost.
- Framing error flag: FE
 This flag is set to "1" when the stop bit is found "L"
 when data is transferred from the receive shift register
 to the receive buffer register.
- CTS pin input level flag: CTS
 When the input level of the CTS pin is "L", "0" is read;
 when it is "H", "1" is read.

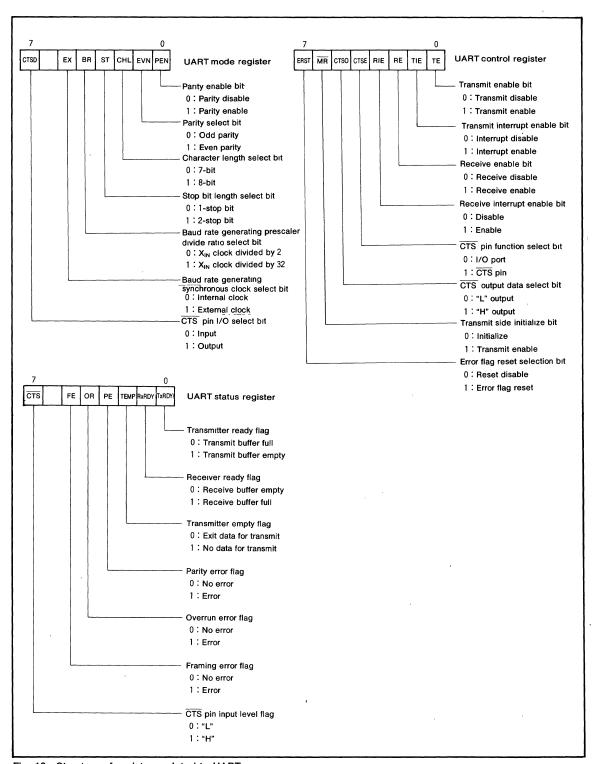


Fig. 12 Structure of registers related to UART

RESET CIRCUIT

The M37408M2-XXXSP is reset according to the sequence shown in Figure 14. It starts the program from the address formed by using the content of address 1FFF₁₆ as the high order address and the content of the address 1FFE₁₆ as the low order address, when the $\overline{\text{RESET}}$ pin is held at "L" level for more than $2\mu s$ while the power voltage is in the recom-

mended operating condition and the crystal oscillator oscillation is stable and then returned to "H" level. The internal initializations following reset are shown in Figure 15 and 16.

An example of the reset circuit is shown in Figure 13. When the power on reset is used, the $\overline{\text{RESET}}$ pin must be held "L" until the oscillation of X_{IN} - X_{OUT} becomes stable.

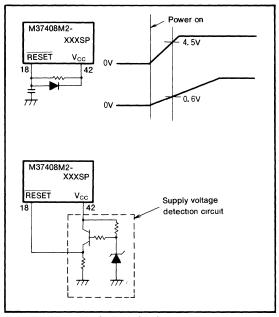


Fig. 13 Example of reset circuit

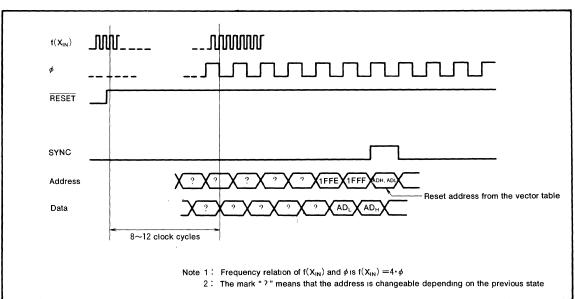


Fig.14 Timing diagram at reset

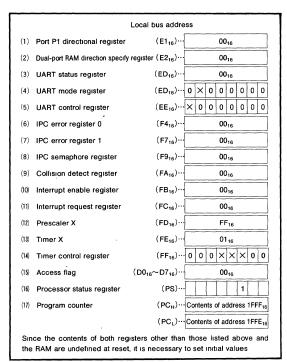


Fig.15 Internal state of microcomputer at reset (1)

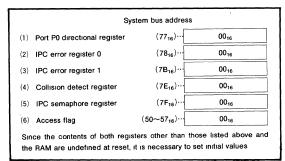


Fig.16 Internal state of microcomputer at reset (2)

I/O PORTS

(1) Port P0 System bus: address 76₁₆ Port P0 is an 8-bit I/O port with CMOS output. It can be accessed from system bus only and can not be accessed from local bus.

As shown in the memory map (Figure 1), port P0 can be accessed at system bus address 76₁₆. Port P0 has a directional register (address 77₁₆) which can be used to program each individual bit as input ("0") or as output ("1"). If the pins are programmed as output, the output data is latched to the port register and then output. When data is read from the output port the output pin level is not read, only the latched data in the port register is read. This allows a previously output value to be read correctly even though the output voltage level is shifted up or down. Pins set as input are in the floating state and the signal levels can thus be read. When data is written into the input port, the data is latched only to the port latch and the pin still remains in the floating state. This port becomes input at reset.

(2) Port P1 Local bus: address 00E0₁₆
System bus: address 75₁₆

Port P1 is an 6-bit I/O port and connected to local bus. It has the same function as port P0 except the connected bus.

It's directional register is at local bus address 00E1₁₆. Also port P1 can be read from system bus but the pin state is read regardless the value of the port P1 directional register.

(3) Address pins

Address pins $A_0 \sim A_6$ are the input pins directly connected to the system bus. The 7-bit address corresponding to the system bus is input to these pins. The input level is TTL.

(4) Data pins

Data pins $D_0 \sim D_7$ are the output pins directly connected to the system bus. The 8-bit data corresponding to the system bus is input/output on these pins. When the \overline{CS} pin is "L" and the \overline{RD} pin is "L", the data pins become the output pins. When the \overline{CS} pin is "L" and the \overline{WR} pin is "L", the data pins become the input pins. Setting the \overline{CS} pin to "H" puts pins $D_0 \sim D_7$ in the floating state. The I/O level is TTL.

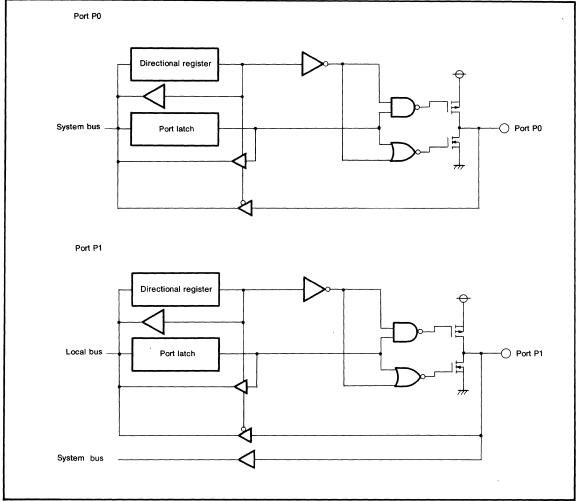


Fig. 17 Port P0, P1 block diagram

CLOCK GENERATING CIRCUIT

The built-in clock generating circuits are shown in Figure 18.

When the STP instruction is executed, the oscillation of internal clock ϕ is stopped in the "H" state.

Also, the prescaler X and timer X are loaded with FF_{16} and 01_{16} , respectively. The oscillator (dividing by 16) is then connected to the prescaler input. This connection is cleard when timer X overflows or the reset is in, as discussed in the timer section.

The oscillator is restarted when an interrupt is accepted. However, the internal clock ϕ keeps its "H" level until timer X overflows.

This is because the oscillator needs a set-up period if a ceramic or a quartz crystal oscillator is used.

When the WIT instruction is executed, the internal clock ϕ stops in the "H" level but the oscillator continues running. This wait state is cleared when an interrupt is accepted. Since the oscillation does not stop, the next instructions are executed at once.

To return from the stop or the wait status, the interrupt enable bit must be set to "1" before executing STP or WIT instruction. Especially, to return from the stop status, the timer X count stop bit (bit 5 of address $00FF_{16}$) must be set to "0" before executing STP instruction.

The circuit example using a ceramic oscillator (or a quartz crystal oscillator) is shown in Figure 19 and 20.

The constant capacitance will differ depending on which oscillator is used, and should be set to the manufactures suggested value.

The example of external clock usage is shown in Figure 21. X_{IN} is the input, and X_{OUT} is open.

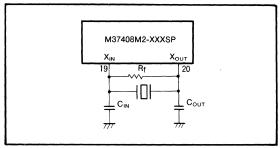


Fig. 19 External ceramic resonator circuit

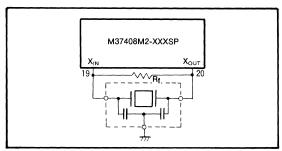


Fig. 20 External ceramic resonator circuit (capacity built-in type)

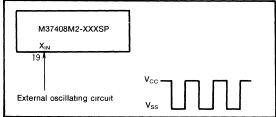


Fig. 21 External clock input circuit

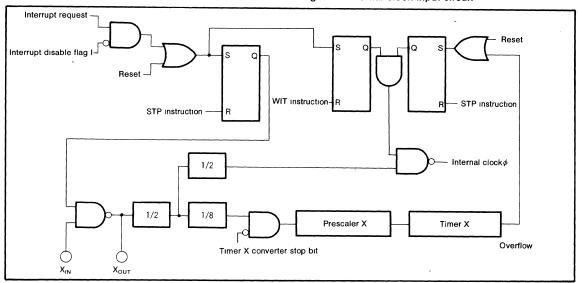


Fig. 18 Block diagram of clock generating circuit

MITSUBISHI MICROCOMPUTERS M37408M2-XXXSP/FP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

PROGRAMMING NOTES

- (1) The frequency ratio of the timer and the prescaler is 1/(n+1).
- (2) Even though the BBC and BBS instructions are executed after the interrupt request bits are modified (by the program), those instructions are only valid for the contents before the modification. Also, at least one instruction cycle must be used (such as a NOP) between the modification of the interrupt request bits and the execution of the BBC and BBS instructions.
- (3) Change the address $A_0 \sim A_6$ input and the \overline{CS} input when both the \overline{RD} input and \overline{WR} input are "H".
- (4) Registers whose values change when read, are connected to the system bus of the M37408M2-XXXSP. If the master CPU generates an invalid read cycle, data is not correctly transferred.
- (5) A NOP instruction must be used after the execution of a PLP instruction.
- (6) After the ADC and SBC instructions are executed (in decimal mode), one instruction cycle (such as a NOP) is needed before the SEC, CLC, or CLD instructions are executed.
- (7) The STP instruction must be executed after setting timer X count enable bit to enable "0", timer X interrupt enable bit to inhibit ("0"), and timer X interrupt request bit to no request ("0").
- (8) The power current is max. 10mA in DC. However, because a rush current and a bus charge-discharge current flow transiently, a bypass capacitor must be connected between V_{SS} and V_{CC}.

DATA REQUIRED FOR MASK ORDERING

Please send the following data for mask orders.

- (1) mask ROM confirmation form
- (2) mark specification form
- (3) ROM data ······ EPROM 3sets

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
V _{cc}	Supply voltage		-0.3~7	V
Vı	Input voltage, RESET, XIN		-0.3~7	V
Vı	Input voltage, $P0_0 \sim P0_7$, $P1_0 \sim P1_5$, $D_0 \sim D_7$, $A_0 \sim A_6$, \overline{RD} , \overline{WR} , \overline{CS} , CLK , R_XD , \overline{CTS}	With respect to V _{SS}	-0.3∼V _{CC} +0.3	V
Vı	Input voltage, CNV _{SS}	Output transistors cut-off	-0.3~13	٧
V _o	Output voltage, P0 ₀ \sim P0 ₇ , P1 ₀ \sim P1 ₅ , X _{OUT} , ϕ , D ₀ \sim D ₇ , T _X D, $\overline{\text{CTS}}$		-0.3∼V _{CC} +0.3	V
Pd	Power dissipation	T _a = 25℃	1000(Note 1)	mW
Topr	Operating temperature		-10~70	°C
Tstg	Storage temperature		−40~125	°C

Note 1: 300mW for QFP types

RECOMMENDED OPERATING CONDITIONS ($V_{cc} = 5V \pm 10\%$, $V_{ss} = 0V$, $T_a = -10 \sim 70^{\circ}C$, unless otherwise noted)

0	D		Limits		Unit	
Symbol	Parameter	Min	Тур	Max	Oill	
V _{CC}	Supply voltage	4.5	5	5.5	٧	
V _{SS}	Supply voltage		0		٧	
V _{IH}	"H" input voltage X _{IN} , RESET, CLK, P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₅ , R _X D, CTS	0.8V _{CC}		V _{cc} +0.3	٧	
V _{IH}	"H" input voltage A ₀ ~A ₆ , D ₀ ~D ₇ , \overline{RD} , \overline{WR} , \overline{CS}	2		V _{cc} +0.3	٧	
VIL	"L" input voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₅ , CLK, R _X D, CTS	-0.3		0. 2 V _{CC}	V	
V _{IL} .	"L" input voltage A ₀ ~A ₆ , D ₀ ~D ₇ , RD, WR, CS	-0.3		0.8	٧	
V _{IL}	"L" input voltage RESET	-0.3		0.12V _{CC}	V	
VIL	"L" input voltage X _{IN}	-0.3		0.16V _{CC}	٧	
I _{OH}	"H" output current $P0_0 \sim P0_7$, $P1_0 \sim P1_5$, ϕ , T_XD , \overline{CTS}			-10	mA	
Іон	"H" output current D ₀ ~D ₇			-1.0	mA	
loL	"L" output current $P0_0 \sim P0_7$, $P1_0 \sim P1_5$, ϕ , T_XD , \overline{CTS}			10	mA	
IOL	"L" output current D ₀ ~D ₇			-1.6	mA	

Note 1: The average output current I_{OL(avg)} and I_{OH(avg)} are the average value of a period of 100ms 2: Total of I_{OL(peak)} of ports P0, P1, T_XD and <u>CTS</u> is <u>-50mA</u>

Total of loH(peak) of ports P0, P1, T_XD and CTS is -50mA

ELECTRICAL CHARACTERISTICS ($v_{cc} = 5v$, $v_{ss} = 0v$, $t_a = 25^{\circ}c$, unless otherwise noted)

Come to al	Parameter	T			Limits		11
Symbol	Parameter	lest	conditions	Mın	Тур	Max	Unit
V _{QH}	"H" output voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₅ , φ, TxD, CTS	I _{OH} =-10mA	Į.	V _{CC} -2			V
V _{OH}	"H" output voltage D ₀ ~D ₇	I _{OH} =-1mA		2.4			V
VoL	"L" output voltage P0 ₀ ~ P0 ₇ , P1 ₀ ~P1 ₅ , φ, TxD, CTS	I _{OL} =10mA				2	V
VoL	"L" output voltage D ₀ ~D ₇	I _{OL} =1.6mA				0.4	V
l ₁	Input leak current A ₀ ~A ₆ , $\overline{\text{RD}}$, $\overline{\text{WR}}$, $\overline{\text{CS}}$, CLK	V _{SS} ≦V _I ≦V _{CC}		-5		5	μΑ
l,	Input leak current RESET, X _{IN}	V _{SS} ≦V _I ≦7V		-5		5	μΑ
loz	Tri-state leak current $P0_0 \sim P0_7$, $P1_0 \sim P1_5$, $D_0 \sim D_7$, \overline{CTS}	V _{SS} +0.5≦V _O ≦V _{CC} -0.5V		-5		5	μА
$V_{T+}-V_{T-}$	Hysteresis RESET, CLK, R _X D, CTS				0.6		V
		1	f(X _{IN})=10MHz Square wave			10	4
	Complex company	Output terminals are opened,	ditto (wait mode)			1	mA
loc	others to V _{SC} CS=V _{CC}	others to V _{SS} , $\overline{CS} = V_{CC}$	At stop mode Ta = 25°C	,		1	
		At stop mode T _a = 70℃			10	μ Α	

TIMING REQUIREMENTS

System bus $(V_{CC}=5V\pm10\%, V_{SS}=0V, T_a=-10\sim70\%, f(X_{IN})=10MHz, unless otherwise noted)$

				Limits		Unit
Symbol	Parameter	Test conditions	Mın.	Тур.	Max.	UIIK
t _{SU(A} -wR)	A ₀ ~A ₆ CS input set-up time		50			ns
t _{SU(A-RD)}	A ₀ ∼A ₆ CS input set-up time	Fig. 22	50			ns
t _{SU(D} -wR)	D ₀ ∼D ₇ input set-up time		80			ns
	A ₀ ~A ₆ CS input hold time		0			ns
th(RD-A)	A ₀ ∼A ₆ CS input hold time		0			ns
th(WR-D)	D ₀ ∼D ₇ input hold time		10			ns
t _{w(wR)}	WR input "L" pulse width		200			ns
t _{W(RD)}	RD input "L" pulse width		200			ns

Local bus $(V_{CC}=5V\pm10\%, V_{SS}=0V, T_a=-10\sim70^{\circ}C, f(X_{IN})=10MHz, unless otherwise noted)$

Symbol Paramet	Parameter	Test conditions		Limits		Unit
Symbol	Farameter	rest conditions	Min	Тур	Max.	Offic
t _{SU(P1} −ø)	P1 ₀ ~P1 ₅ input set-up time	Fig. 22	300			ns
th(ø-P1)	P1 ₀ ~P1 ₅ input hold time	Fig. 22	50			ns

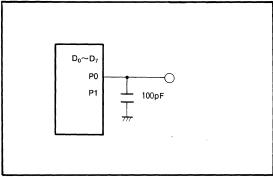
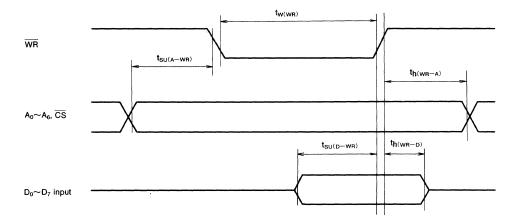
SWITCHING CHARACTERISTICS

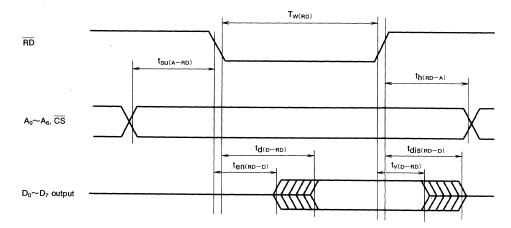
System bus $(V_{CC}=5V\pm10\%, V_{SS}=0V, T_a=-10\sim70^{\circ}C, f(X_{IN})=10MHz, unless otherwise noted)$

Symbol	Parameter	Parameter Test conditions	Limits			Unit
Symbol	Falameter		Mın	Тур	Max.	Unit
td(D-RD)	D ₀ ∼D ₇ output delay time				150	ns
t _{v(D-RD)}	D ₀ ∼D ₇ output effective time	Fig. 22	0			ns
ten(RD-D)	D ₀ ∼D ₇ output enable time	Fig. 22	10			ns
tdis(RD-D)	D ₀ ∼D ₇ output disable time				50	ns

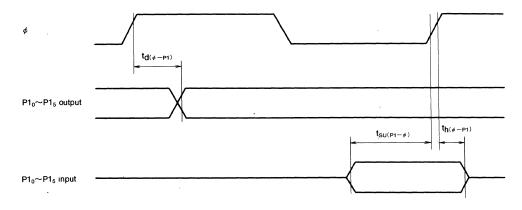
$\textbf{Local} \quad \textbf{bus} \ \, (v_{cc} = 5v \pm 10\%, \, v_{ss} = 0v, \, T_a = -10 \sim 70^\circ C, \, f(X_{IN}) = 10 MHz, \, unless \, otherwise \, noted)$

0	D	T t dit		Limits		
Symbol	Parameter	Test conditions	Mın	Тур	Max.	Unit .
t _{d(≠-P1)}	P1 ₀ ~P1 ₅ output delay time	Fig. 22			300	ns


Fig. 22 Port P0, P1, D₀~D₇ test circuit

TIMING DIAGRAMS


System bus write cycle

System bus read cycle

Local bus

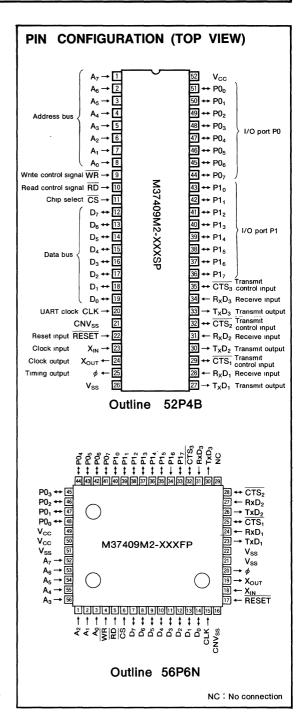
MITSUBISHI MICROCOMPUTERS

M37409M2-XXXSP/FP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

DESCRIPTION

The M37409M2-XXXSP is a single-chip microcomputer designed with CMOS silicon gate technology. It is housed in a 52-pin shrink plastic molded DIP (flat package type also available). This single-chip microcomputer is useful for the communication application used as a slave-microcomputer. In addition to its simple instruction sets, the ROM, RAM, and I/O addresses are placed on the same memory map to enable easy programming.


The differences between the M37409M2-XXXSP and the M37409M2-XXXFP are the package outline and the power dissipation ability (absolute maximum ratings).

FFATURES

FEATURES
Number of basic instructions 69
• Memory size ROM ······ 4096 bytes
RAM 128 bytes
Instruction execution time
⋯ 0.8 µs (minimum instructions at 10MHz frequency)
● Single power supply f(X _{IN})=10MHz ······5V±10%
Power dissipation
normal operation mode (at 10MHz frequency) ·· 50mW
• Subroutine nesting ······64 levels (Max.)
• Interrupt10 types
• 8-bit timer · · · · · 1
• UART (Full-duplex)······3 channels
• Dual-port RAM 192 bytes
Communication registers
Access flag ······192 bits
Collision detect register ······8-bit×1
IPC* semaphore register ······7-bit×1
IPC mode register ····· 8-bit×4
IPC error register ······8-bit×4
Programmable I/O ports
(Ports P0, P1, $\overline{\text{CTS}_1} \sim \overline{\text{CTS}_3}$)19
Bus interface
Address bus ·····8
Data bus8
Control signal (WR, RD, CS)3

APPLICATION

Office automation equipment

* IPC···Intelligent Protcol Controller

SINGLE-CHIP

8-BIT

CMOS

MICROCOMPUTER

MITSUBISHI MICROCOMPUTERS M37409M2-XXXSP/FP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

FUNCTIONS OF M37409M2-XXXSP

Parameter			Functions	
Number of basic instructions			69	
Instruction execution time			0. 8µs (minimum instructions, at 10MHz frequency)	
Clock frequency			10MHz	
	ROM		4096 bytes	
Memory size	RAM		128 bytes	
	P0 ₀ ~P0 ₇	1/0	8-bit×1 (System bus I/O)	
Input/Output ports	P1 ₀ ~P1 ₇	1/0	8-bit×1 (Local bus I/O, System bus input)	
	CTS ₁ ~CTS ₃	1/0	1-bit×3 (Common with UART transmit control input)	
	A ₀ ~A ₇	Input	8-bit×1	
Bus interface	D ₀ ~D ₇	1/0	8-bit×1	
	RD, WR, CS	Input	1-bit×3	
UART			3 (with programmable baud rate generator)	
Timer			8-bit×1 (with 8-bit prescaler)	
Interrupt			System bus (IPCM0) interrupt 1, UART interrupt 6, Timer interrupt 1, Collision interrupt 1	
Dual-port RAM			192 bytes	
	Access flag		192 bits	
	Collision detect regis	ter	8-bit×1	
Communication	IPC semaphore regis	ter	7-bit×1	
registers	IPC mode register		8-bit×4	
	IPC error register		8-bit×4	
Subroutine nesting			64 levels (max.)	
Clock generating circuit			Built-in (externally connected ceramic or quartz crystal oscillator)	
Supply voltage	CONTRACTOR OF THE PARTY OF THE		5v±10%	
	at operation		50mW	
	at wait mode		5mW	
Power dissipation		Ta=25℃	0. 05mW	
	at stop mode T _a =70℃		0.5mW	
Operating temperature range			−10~70°C	
Device structure			CMOS silicon gate process	
-	M37409M2-XXXSP		52-pin shrink plastic molded DIP	
Package	M37409M2-XXXFP		56-pin plastic molded QFP	

MITSUBISHI MICROCOMPUTERS M37409M2-XXXSP/FP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

PIN DESCRIPTION

x _{IN} Clock input Input This chip has an internal clock generating circuit. To control generating frequency, an external cerd quartz crystal oscillator is connected between the X _{IN} and X _{OUT} pins. If an external clock is used, if source should be connected the X _{IN} pin and the X _{OUT} pin should be left open. Dutput This is the timing output pin P0 ₀ ~P0 ₇ I/O port P0 I/O Port P0 is an 8-bit I/O port with directional register allowing each I/O bit to be individually prograin input or output. This port is connected to the system bus only, and can not be accessed from the I-At reset this port becomes input mode. The output structure is CMOS output. P1 ₀ ~P1 ₇ I/O port P1 I/O Port P1 is an 8-bit I/O port and has basically the same functions as port P0. This port is connected focal bus and can be used as only input port from the system bus. The output structure is CMOS of T _X D ₁ UART transfer output These are UART transfer data output pins R _X D ₁ UART receive input Input These are UART receive data input pins		·		
CNVss CNVss This is usually connected to Vss RESET Reset input Input To enter the reset state, the reset input pin must be kept at a "L" for more than 2μs (under no conditions). If more time is needed for the crystal oscillator to stabilize, this "L" condition should it tained for the required time X _{IN} Clock input Input This chip has an internal clock generating circuit. To control generating frequency, an external cerd quartz crystal oscillator is connected between the X _{IN} and X _{OUT} pins. If an external clock is used, it source should be connected the X _{IN} pin and the X _{OUT} pin should be left open Φ Timing output Output This is the timing output pin P0 ₀ ~P0 ₇ I/O port P0 I/O Port P0 is an 8-bit I/O port with directional register allowing each I/O bit to be individually prograt input or output. This port is connected to the system bus only, and can not be accessed from the I At reset this port becomes input mode. The output structure is CMOS output P1 ₀ ~P1 ₇ I/O port P1 I/O Port P1 is an 8-bit I/O port and has basically the same functions as port P0. This port is connected local bus and can be used as only input port from the system bus. The output structure is CMOS or TxD ₃ . R _X D ₁ UART transfer output Output These are UART transfer data output pins. TS ₃ UART transfer control input Input These are UART transfer control signal input pins an	Pın	Name		Functions
Reset input Input To enter the reset state, the reset input pin must be kept at a "L" for more than 2μs (under no conditions). If more time is needed for the crystal oscillator to stabilize, this "L" condition should it tained for the required time		Supply voltage		Power supply inputs 5V±10% to V _{CC} , and 0V to V _{SS}
Conditions). If more time is needed for the crystal oscillator to stabilize, this "L" condition should tained for the required time XiN	CNVss	CNV _{SS}		This is usually connected to V _{SS}
Xout Clock output Output Output Source should be connected between the X _{IN} and X _{Out} pins. If an external clock is used, it source should be connected the X _{IN} pin and the X _{Out} pin should be left open	RESET	Reset input	Input ,	To enter the reset state, the reset input pin must be kept at a "L" for more than $2\mu s$ (under normal V_{CC} conditions). If more time is needed for the crystal oscillator to stabilize, this "L" condition should be maintained for the required time
X _{OUT} Clock output Output source should be connected the X _{IN} pin and the X _{OUT} pin should be left open φ Timing output Output This is the timing output pin P0 ₀ ~P0 ₇ I/O port P0 I/O Port P0 is an 8-bit I/O port with directional register allowing each I/O bit to be individually program input or output. This port is connected to the system bus only, and can not be accessed from the I/A reset this port becomes input mode. The output structure is CMOS output. P1 ₀ ~P1 ₇ I/O port P1 I/O Port P1 is an 8-bit I/O port and has basically the same functions as port P0. This port is connected local bus and can be used as only input port from the system bus. The output structure is CMOS or I/O and I/O input. T _x D ₁ ~T _x D ₃ UART transfer output. Output. These are UART transfer data output pins. R _x D ₁ ~R _x D ₃ UART receive input. Input. These are UART receive data input pins. CTS ₁ ~CTS ₃ UART transfer control input. I/O These are UART transfer control signal input pins and can be used as I/O port which have basical function as port P1.	XIN	Clock input	Input	This chip has an internal clock generating circuit. To control generating frequency, an external ceramic or a
P0 ₀ ~P0 ₇ I/O port P0 I/O port P0 I/O Port P0 is an 8-bit I/O port with directional register allowing each I/O bit to be individually program input or output. This port is connected to the system bus only, and can not be accessed from the I/At reset this port becomes input mode. The output structure is CMOS output. P1 ₀ ~P1 ₇ I/O port P1 I/O Port P1 is an 8-bit I/O port and has basically the same functions as port P0. This port is connected local bus and can be used as only input port from the system bus. The output structure is CMOS of the control of	Хоит	Clock output	Output	
Input or output This port is connected to the system bus only, and can not be accessed from the At reset this port becomes input mode. The output structure is CMOS output P10~P17 I/O port P1 I/O Port P1 is an 8-bit I/O port and has basically the same functions as port P0 This port is connected local bus and can be used as only input port from the system bus. The output structure is CMOS of TxD1 VART transfer output. TxD1 VART transfer output. These are UART transfer data output pins. These are UART receive data input pins. These are UART transfer control signal input pins and can be used as I/O port which have basical function as port P1.	φ	Timing output	Output	This is the timing output pin
local bus and can be used as only input port from the system bus. The output structure is CMOS of the control	P0 ₀ ~P0 ₇	I/O port P0	1/0	Port P0 is an 8-bit I/O port with directional register allowing each I/O bit to be individually programmed as input or output. This port is connected to the system bus only, and can not be accessed from the local bus. At reset this port becomes input mode. The output structure is CMOS output.
~T _x D ₃ R _x D ₁	P1 ₀ ~P1 ₇	I/O port P1	1/0	Port P1 is an 8-bit I/O port and has basically the same functions as port P0. This port is connected to the local bus and can be used as only input port from the system bus. The output structure is CMOS output.
∼R _x D ₃ CTS ₁ ∼CTS ₃ UART transfer control I/O These are UART transfer control signal input pins and can be used as I/O port which have basical function as port P1.		UART transfer output	Output	These are UART transfer data output pins
∼CTS₃ input function as port P1.		UART receive input	Input	These are UART receive data input pins
CLK UART clock input Input This port is an external clock input pin for baud rate			1/0	These are UART transfer control signal input pins and can be used as I/O port which have basically same function as port P1.
	CLK	UART clock input	Input	This port is an external clock input pin for baud rate
A ₀ ~A ₇ Address input Input This port is input for system address	A ₀ ~A ₇	Address input	Input	This port is input for system address
D ₀ ~D ₇ Data input/output I/O This port is input or output the system data	D ₀ ~D ₇	Data input/output	1/0	This port is input or output the system data
CS Chip select Input System data can be read or written by inputting "L" to this port	CS	Chip select	Input	System data can be read or written by inputting "L" to this port
RD Read control input Input Memory or register data specified by A ₀ ~A ₇ is read from D ₀ ~D ₇ by inputting "L" to this port	RD	Read control input	Input	Memory or register data specified by A ₀ ~A ₇ is read from D ₀ ~D ₇ by inputting "L" to this port
WR Write control input Input Data input from D ₀ ~D ₇ is written to memory or register specified by A ₀ ~A ₇ by inputting "L" to this	WR	Write control input	Input	Data input from D ₀ ~D ₇ is written to memory or register specified by A ₀ ~A ₇ by inputting "L" to this port

MITSUBISHI MICROCOMPUTERS M37409M2-XXXSP/FP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

FUNCTIONAL DESCRIPTION Central Processing Unit (CPU)

The M37409 microcomputers use the standard MELPS 740 instruction set. For details of instructions, refer to the MELPS 740 CPU core basic functions, or the MELPS 740 Software Manual.

Machine-resident instructions are as follows: The FST and SLW instructions are not provided. The MUL and DIV instructions are not provided. The WIT instruction can be used.

The STP instruction can be used.

ADDRESS AREA

M37409M2-XXXSP has two buses; the local bus connected to the CPU of its own, and the system bus connected to the CPU of the external master computer. There are two corresponding address area.

The local bus has thirteen address buses and eight data buses. The address area, which is 8192 bytes, is addresses from 0000_{16} to 1FFF_{16} .

For this local bus area, addresses 1000_{16} to $1FFF_{16}$ are assigned to the built-in ROM area which consists of 4096 bytes.

The system bus has eight address buses and eight data buses. The address area, which is 256 bytes, is addresses from 00_{16} to FF₁₆.

The internal memories and registers are connected to one or both of these buses. Therefore, it is necessary, in writing programs, to know the operation of each functional block as well as to which bus the memories and registers are connected at what addresses

MEMORY

· Special Function Register (SFR) Area

The special function register (SFR) area contains the registers relating to functions such as I/O ports and timers.

• RAM

RAM is used for data storage as well as a stack area.

• BOM

ROM is used for storing user programs as well as the interrupt vector area.

• Interrupt Vector Area

The interrupt vector area is for storing jump destination addresses used at reset or when an interrupt is generated.

Zero Page

Zero page addressing mode is useful because it enables access to this area with fewer instruction cycles.

Special Page

Special page addressing mode is useful because it enables access to this area with fewer instruction cycles.

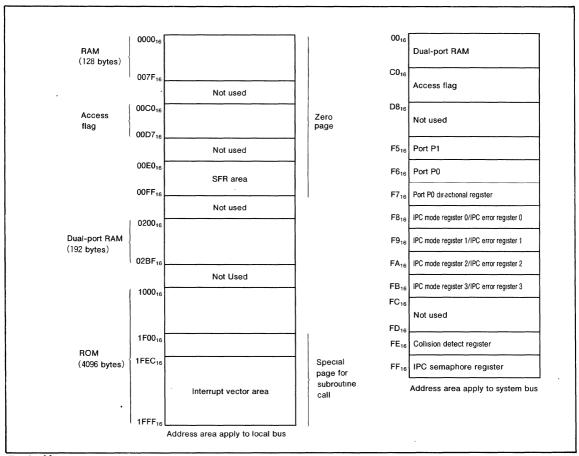


Fig. 1 Memory map

MITSUBISHI MICROCOMPUTERS M37409M2-XXXSP/FP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

00E0 ₁₆	Port P1	00F0 ₁₆	IPC mode register 0
00E1 ₁₆	Port P1 directional register	00F1 ₁₆	IPC mode register 1
00E2 ₁₆	Dual-port RAM direction specify register	00F2 ₁₆	IPC mode register 2
00E3 ₁₆		00F3 ₁₆	IPC mode register 3
00E4 ₁₆	UART1 receive/transfer buffer register	00F4 ₁₆	IPC error register 0
00E5 ₁₆	UART1 status register/UART1 mode register	00F5 ₁₆	IPC error register 1
00E6 ₁₆	UART1 control register	00F6 ₁₆	IPC error register 2
00E7 ₁₆	UART1 divider for baud rate generate	00F7 ₁₆	IPC error register 3
00E8 ₁₆	UART2 receive/transfer buffer register	00F8 ₁₆	
00E9 ₁₆	UART2 status register/UART2 mode register	00F9 ₁₆	IPC semaphore register
00EA ₁₆	UART2 control register	00FA ₁₆	Collision detect register
00EB ₁₆	UART2 divider for baud rate generate	00FB ₁₆	Interrupt enable register
00EC ₁₆	UART3 receive/transfer buffer register	00FC ₁₆	Interrupt request register
00ED ₁₆	UART3 status register/UART3 mode register	00FD ₁₆	Prescaler X
00EE ₁₆	UART3 control register	00FE ₁₆	Timer X
00EF ₁₆	UART3 divider for baud rate generate	00FF ₁₆	Timer control register

Fig. 2 SFR (Special Function Register) memory map

Bus Interface

M37409M2-XXXSP has the bus interface to operate itself by the control signal sent from the master CPU. The master CPU can access the memories and registers located in the system address area described below via this bus interface. The bus interface has address pins A_0 to A_7 , data pins D_0 to D_7 , and three controls signals \overline{CS} , \overline{WR} , and \overline{RD} which, can be directly connected to TTL.

Driving the \overline{CS} pin to "L" put this microcomputer in the read/write enabled state. When writing data from the mas-

ter CPU, specify the address by $A_0 \sim A_7$ and set \overline{WR} to "L", and the data at $D_0 \sim D_7$ is written to the specified address. When reading data, specify the address by $A_0 \sim A_7$ and set \overline{RD} to "L", and the contents of the specified address are output to $D_0 \sim D_7$.

Driving the $\overline{\text{CS}}$ pin to "H" puts the M37409M2-XXXSP in the state which does not allow the read and write operations from the master CPU. At this time, the outputs of D₀ to D₇ are in the floating state.

Figure 3 shows the block diagram of the bus interface.

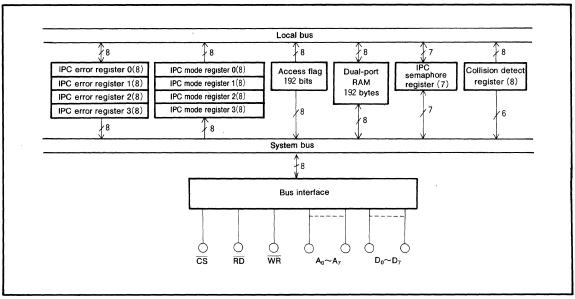


Fig. 3 Block diagram of bus interface

Dual-port RAM

The dual-port RAM, which is 192 bytes, is the memory which allows the read/write operation from both the local and system buses independently. From the local bus, it is allocated at addresses 0200_{16} to $02BF_{16}$; from the system bus, addresses 00_{16} to BF_{16} . Table 1 shows the result when the write and read operations from both buses compete at the same address.

Table 1. Result obtained by simultaneously accessing the same address from the system and local buses

	Write	Read
Simultaneous read from both buses		Correct data
Simultaneous write from both buses	Unpredictable	
Read from one bus, write from the other	Correct data	Uncertain

(Access flag)

Local bus: address $00C0_{16} \sim 00D7_{16}$ System bus: address $C0_{16} \sim D7_{16}$

The access flag arbitrates the access to the dual-port RAM. One bit of access flag is allocated to one byte of dual port RAM, amounting 192 bits (24 bytes) in total. The access flag can be read from both the system and local buses. Figure 4 shows the relationship between each byte of the dual port RAM and each bit of the access flag. Each bit is cleared to "0" when an access to read is made to the dual port RAM from either bus, it is set to "1" when an access to write is made. If an access to read from one bus and an access to write from the other compete at the same address of the dual port RAM, the values of the corresponding access flags are uncertain. At reset, all access flags are cleared to "0".

[Dual-port RAM direction specify register]

Local bus: address 00E216

This register specifies that the read operation of which bus clears each bit of the access flag. One bit of this register corresponds to 32 bytes of the dual-port RAM (32 bits of the access flag). This register consists of six bits. Each access flag is cleared by the read operation from the system bus when the corresponding dual-port RAM direction specify register is "0"; when it is "1", each access flag is cleared by the read operation from the local bus. As for a write operation, the access flag is set regardless of which bus has made it. Table 2 shows the relationship between each bit of the dual-port RAM direction specify register and the dual-port RAM and the access flag. At reset, all bits are cleared to "0".

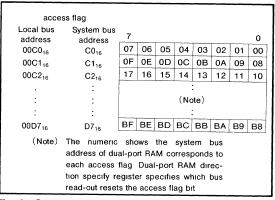


Fig. 4 Correspondence between each byte of dual-port RAM and each bit of access flag

Table 2. Correspondence among each bit of dual-port RAM direction specify register, dual-port RAM and access flag

Dual-port RAM direction	Dual-p	ort RAM	Access flag		
specify register	Local bus address	System bus address	Local bus address	System bus address	
bit 0	0200 ₁₆ ~021F ₁₆	00 ₁₆ ~1F ₁₆	00C0 ₁₆ ~00C3 ₁₆	C0 ₁₆ ~C3 ₁₆	
bit 1	0220 ₁₆ ~023F ₁₆	20 ₁₆ ~3F ₁₆	00C4 ₁₆ ~00C7 ₁₆	C4 ₁₆ ~C7 ₁₆	
bit 2	0240 ₁₆ ~025F ₁₆	40 ₁₆ ~5F ₁₆	00C8 ₁₆ ~00CB ₁₆	C8 ₁₆ ~CB ₁₆	
bit 3	0260 ₁₆ ~027F ₁₆	60 ₁₆ ~7F ₁₆	00CC ₁₆ ~00CF ₁₆	CC ₁₆ ~CF ₁₆	
bit 4	0280 ₁₆ ~029F ₁₆	80 ₁₆ ~9F ₁₆	00D0 ₁₆ ~00D3 ₁₆	D0 ₁₆ ~D3 ₁₆	
bit 5	02A0 ₁₆ ~02BF ₁₆	A0 ₁₆ ~BF ₁₆	00D4 ₁₆ ~00D7 ₁₆	D4 ₁₆ ~D7 ₁₆	

[IPC mode register, IPC error register]

Local bus: address 00F0₁₆~00F7₁₆ System bus: address F8₁₆~FB₁₆

IPC mode registers $0\sim3$ (IPCM0 \sim IPCM3) and IPC error registers $0\sim3$ (ERR0 \sim ERR3) are the 8-bit registers which can be set by the user without restriction. IPC mode registers $0\sim3$ are used to specify the mode setting such as UART from the external master CPU via the system bus. IPC error registers $0\sim3$ are used to indicate the error found on the local CPU to the outside via the system bus. On the system bus, IPC mode registers $0\sim3$ and IPC error registers $0\sim3$ share four bytes of the same address, with the former being for write only and the latter for read only. On the local bus, the former is for read only and the latter is for both read and write.

The data written from the system bus to IPC mode registers $0 \sim 3$ can be read from the local bus only. If an access to read or write is performed from the system bus on IPC mode register 0/IPC error register 0, an interrupt request (IPCM0) is caused.

When IPC error registers $0\sim3$ are accessed for read from the system bus, only the bits which are found "1" are reset by hardware. When these registers are read from the local bus, their values remain unchanged.

(IPC semaphore register)

Local bus: address 00F9₁₆ System bus: address FF₁₆

This register is for handshaking with the master CPU and consists of block semaphore flags (BS0 ~ BS5) and the ready flag (RDY). BS0~BS5 can be read/written from both the local and system buses. RDY can be read/written from the local bus and read only from the system bus. With this register, all bits can be read at a time but, in a write operation, only one bit can be written at a time. The low-order three bits of the data to be written are used to specify to which register bit the data is to be written. Bit 7 is used to specify whether to write "1" or "0". At reset, all bits are cleared to "0".

RDY is cleared to "0" also when an access to write is performed by the system bus on IPC mode register 0.

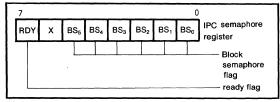


Fig. 5 Bit structure of IPC semaphore register

(Collision detect register)

Local bus: address 00FA₁₆ System bus: address FE₁₆

This register consists of six bits of collision detect flags $(CD_0 \sim CD_5)$, the collision interrupt enable bit, and collision interrupt request bit. The collision detect flags are set when an access to read is performed by the system bus on the same address on the dual port RAM to which the local bus is writing data. These flags indicate that the data read by the master CPU may be incorrect. When these flags are set, a collision detect interrupt request occurs.

Each collision flag corresponds to each 32 bits of the dual port RAM. The flag bit corresponding to the address at which access competition occurred is set. The relationship between the flag bits and the dual port RAM is shown in Table 3. These flags can be read from both buses. All bits are cleared when read from the system bus or at reset.

The collision interrupt enable bit can be read/written from the local bus. When it is read from the system bus, "0" is always output. The collision interrupt request bit can be read only from the local bus. Only "0" can be written.

Table 3. Correspondence between collision detect flag and dual-port RAM

Collision detect	Dual-port RAM				
flag	Local bus address	System bus address			
CD ₀	0200 ₁₆ ~021F ₁₆	00 ₁₆ ~1F ₁₆			
CD ₁	0220 ₁₆ ~023F ₁₆	20 ₁₆ ~3F ₁₆			
CD ₂	0240 ₁₆ ~025F ₁₆	40 ₁₆ ~5F ₁₆			
CD ₃	0260 ₁₆ ~027F ₁₆	60 ₁₆ ~7F ₁₆			
CD₄	0280 ₁₆ ~029F ₁₆	80 ₁₆ ~9F ₁₆			
CD ₅	02A0 ₁₆ ~02BF ₁₆	A0 ₁₆ ~BF ₁₆			

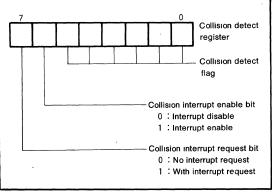


Fig. 6 Structure of collision detect register

INTERRUPT

Interrupts can be caused by 10 different events.

Interrupts are vectored interrupts with priorities shown in Table 4. Reset is also included in the table because its operation is similar to an interrupt.

When an interrupt is accepted, the registers are pushed, interrupt disable flag I is set, and the program jumps to the address specified in the vector table. The interrupt request flag is cleared automatically. The reset and BRK instruction interrupt can never be inhibited. Other interrupts are disabled when the interrupt inhibit flag is set.

All interrupts except the BRK instruction interrupt have an interrupt request bit and an interrupt enable bit.

Interrupts other than the BRK instruction interrupt and reset are accepted when the interrupt enable bit is "1",interrupt request bit is "1", and the interrupt inhibit bit is "0". The interrupt request bit can be reset with a program, but not set. The interrupt enable bit can be set and reset with a program.

Reset is treated as a non-maskable interrupt with the highest priority. Figure 7 shows interrupts control.

All interrupt request bits except the collision detect interrupt are in the interrupt request register (address $00FC_{16}$). The collision detect interrupt request bit is in the collision detect register (address $00FA_{16}$). The interrupt request bit is set when the following conditions occur:

- When the data is set to receive buffer of UART1, UART2, or UART3
- (2) When the master CPU accesses the IPC mode/IPC error register 0 through bus interface
- (3) When the contents of the timer X goes to "0"
- (4) When one of the bit 0~bit 5 of the collision detect register is set to "1"
- (5) When the data is set to transmit buffer of UART1, UART2, or UART3

There are two interrupt enable bits for each interrupt except collision detect interrupt. One is in interrupt enable register (address 00FB₁₆), the other is in UART1, UART2, UART3 control register (address 00E6₁₆, 00EA₁₆, 00EE₁₆) or timer control register (address 00FF₁₆). Interrupts are become enable when these two enable bits are both "1". The collision interrupt enable bit is in bit 6 of collision detect register.

Since the BRK instruction interrupt and the UART3 transmit interrupt have the same vectored address, the contents of the B flag must be checked to determine if the BRK instruction caused the interrupt or if UART3 transmit generated the interrupt.

Table 4. Interrupt vector address and priority

Interrupt	Priority	Vector addresses
RESET	1	1FFF ₁₆ , 1FFE ₁₆
UART1 receive	2	1FFD ₁₆ , 1FFC ₁₆
UART2 receive	3	1FFB ₁₆ , 1FFA ₁₆
UART3 receive	4	1FF9 ₁₆ , 1FF8 ₁₆
IPCM0	5	1FF7 ₁₆ , 1FF6 ₁₆
Timer X	6	1FF5 ₁₆ , 1FF4 ₁₆
Collision detect	7	1FF3 ₁₆ , 1FF2 ₁₆
UART1 transmit	8	1FF1 ₁₆ , 1FF0 ₁₆
UART2 transmit	9	1FEF ₁₆ , 1FEE ₁₆
UART3 transmit/	10	1EED 1EEC
BRK instruction	10	1FED ₁₆ , 1FEC ₁₆

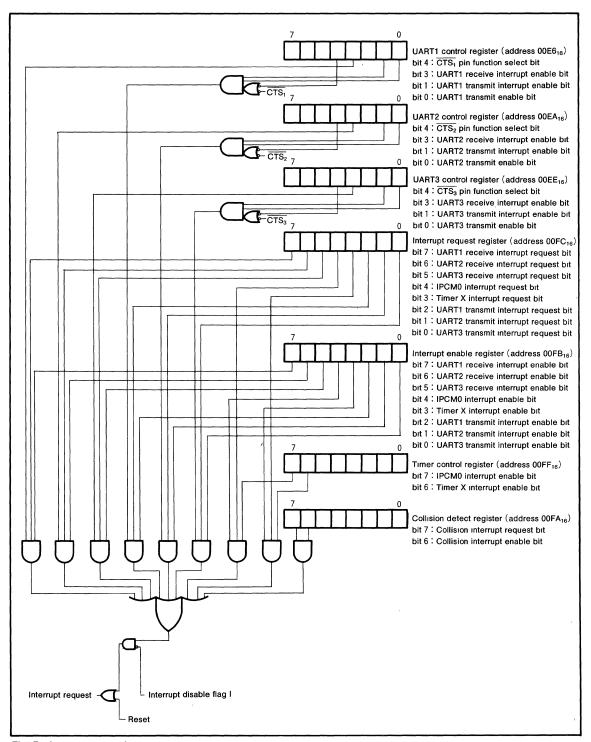


Fig. 7 Interrupt control

TIMER

The M37409M2-XXXSP has one timer: timer X. It has an 8-bit prescaler. Each timer or prescaler is structured with 8-bit counter. A block diagram of timer X is shown in Figure 9. Timer or prescaler is a down-counter which is reloaded from the latch when the next clock pulse after the timer reaches zero. The division ratio is defined as 1/(n+1) where n is the decimal contents of the timer latch. The timer interrupt request bit (bit 3 of the address $00FC_{16}$ of local address bus) is also set to "1" at this time. Timer counts the oscillation frequency divided by 16 when the bit 5 of timer control register is "0", and stops when "1". The structure of the timer control register is shown in Figure 8.

When the STP instruction is excuted, or after reset, the prescaler and timer latch are set to FF₁₆ and 01₁₆, respectively. Also, when the STP instruction is executed, the oscillator's frequency (divided by 16) will become the counting source. This state will be released when the timer X interrupt request bit is set to "1", or after a reset. For more details on the STP instruction, refer to the oscillation circuit section.

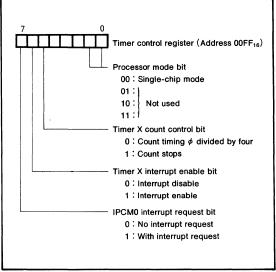


Fig. 8 Structure of timer control register

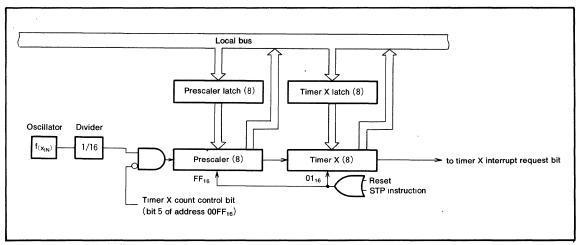


Fig. 9 Timer X block diagram

MITSUBISHI MICROCOMPUTERS M37409M2-XXXSP/FP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

UART

The M37409M2-XXXSP contains three channels of UART's (UARTi(i=1, 2, 3)). Functionally, they are all equal and can be separately operated. Each channel has three pins (TxDi (transmit output), RxDi(receive input), and $\overline{\text{CTSi}}$ (clear to send) and contains the receive (transmit) shift register, the receive (transmit) buffer register, the UARTi mode register, the UARTi control register, the UARTi status register, and the baud rate generating divider. It also has a CLK pin (the input pin of the external clock for baud rate generation) which is shared by three channels. An interrupt can be generated on each channel at receive and transmit independently. Figure 10 shows the UARTi block diagram. Because the differences between the channels are only pin numbers and internal addresses, the following description uses UART1 for reference.

[Receive operation]

Setting the receive enable bit (bit 2 of the UART1 control register) to "1" puts the system in the receive enable state. When there is no input of receive data, "H" is input to RxD1 pin. When the falling edge is input to RxD1 pin and "L" input is detected twice consecutively by sampling with the clock having a frequency 16 times the baud rate, the start bit is triggered. Then, sampling is performed three time in the middle of the start bit. When "L" is detected twice or more, the receive operation begins, capturing the data bits into the receive shift register. If "L" has not been detected twice or more, start bit detection begins again. When the data bits and parity bit have been captured into the receive shift register and the stop bit is detected, the receive data is transferred from the receive shift register to the receive buffer register, setting the receiver ready flag (bit 1 of the UART1 status register). If a parity error occurred, the parity error flag is set. The framing error flag is set when the first stop bit is found "L". If the previous data has not been read out of the receive buffer register, the overrun error flag is set, clearing the previous data. The receiver ready flag is reset when the receive buffer register is read. Each error flag can be reset by writing "1" to the error flag reset bit (bit 7 of the UART1 control register). Any of these errors does not affect the receive operation. The data bit, the parity bit, and the stop bit are sampled three times in the middle of them each. When "L" or "H" is detected twice or more, "0" or "1" is determined respectively.

Each time a receive operation has been completed, setting the receive, ready flag, the UART1 receive interrupt request bit (bit 7 of the interrupt request register) is set. An interrupt is acknowledged when the two UART1 receive interrupt enable bits (bit 3 of the UART1 control register and bit 7 of the interrupt enable register) are both "1", and the interrupt disable flag I is "0". The UART1 receive interrupt request bit is reset when a UART1 receive interrupt is acknowledged.

Setting the receive enable bit (bit 2 of the UART1 control register) to "0" puts the system in the receive stopped state. At this time, the receiver ready flag is "0" (ready), the receive shift register is in the stopped state, and the start bit detection is stopped.

[Transmit operation]

When the send data is written to the transmit buffer register, the start bit, parity bit, and stop bit are added to the data, which is transferred to the transmit shift register. The transmit shift register begins shift when it becomes enable for transmission, sending the serial data to TxD1 pin. For the description of the transmit enable state, see Table 5. In the transmit enable state, each time transmission of the stop bit of the serial data being transmitted has been completed, it is checked whether the next data has been written to the transmit buffer register. If the data is found written, transmission of the next data begins. If the data is found not written, TxD1 pin is held at "H" until the next transmit data is written, setting the transmitter empty flag. When the transmit enable state is cleared during transmission, the transmission is stopped after completing the transmission of the transmit data so far written to the transmit buffer register.

When the transmitter ready flag (bit 0 of the UART1 status register) is "1", it indicates that the transmit buffer is ready

for writing data. The immediately preceding data is transferred from the transmit buffer register to the transmit shift register. Every time the start bit is output from TxD_1 pin, this flag is set. Every time the transmitter ready flag is set, the UART1 transmit interrupt request bit (bit 2 of the interrupt request register) is set. An interrupt is acknowledged when two UART1 transmit interrupt enable bits (bit 3 of the UART1 control register and bit 2 of the interrupt enable register) are both "1" and the interrupt disable flag 1 is "0". Note that an interrupt occurs only in the transmit ready state

Bit 6 of the UART1 control register initializes the UART1 transmit side. When this bit "0", the transmit side is in the initial state.

Table 5. Bit and pin states when transmission is enable

TE ₁	CTSE ₁	CTS₁	TE₁	: UART1 transmit enable bit
1	0	Х	CTSE₁	: CTS ₁ pin function selection bit
ļ	1	L	CTS ₁	: CTS ₁ pin input level

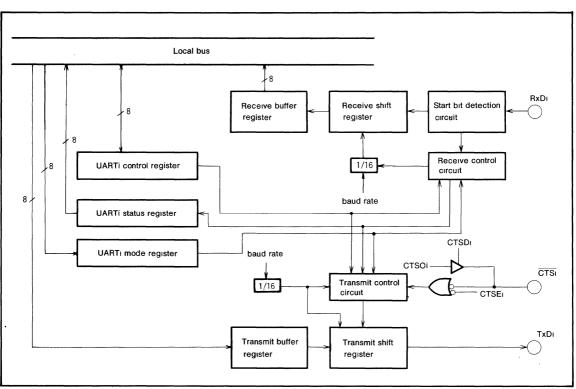


Fig. 10 UARTi block diagram

[UARTi divider for baud rate generator]

This is an 8-bit programmable divider which generates the baud rate for the UARTi receive or transmit operation.

When the setting value is N_{BR} (0 to 255), the divide ratio becomes $1/(N_{BR}+1)$. There are three count sources; X_{IN} clock divided by 2, X_{IN} clock divided by 32, and the external clock. Choose sources by bits 4 and 5 of the UARTi mode register. Table 6 shows the baud rate calculation for each bit combination.

When the external clock is used, the frequency of the input clock must be below 1.6MHz. Writing to the baud rate generating divider must be performed when bits 2 and 6 of the UARTi control register are both "0".

Table 6. Baud rate calculation

EXi	BRi	Calculation
0	0	baud rate (bps)= $\frac{f(X_{IN})}{32(N_{BR}+1)}$
0	1	baud rate (bps)= $\frac{f(X_{IN})}{512(N_{BR}+1)}$
1	×	baud rate (bps)= $\frac{f(CLK)}{16(N_{BR}+1)}$

EXi : Clock selection bit for baud rate generator

BRi Divide ratio selection bit for baud rate generator

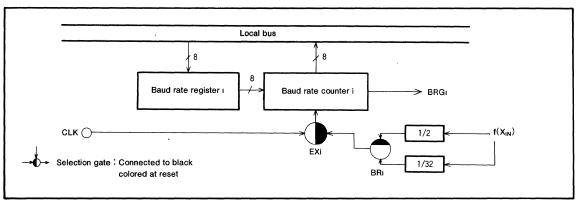


Fig. 11 Baud rate generating circuit

MITSUBISHI MICROCOMPUTERS M37409M2-XXXSP/FP

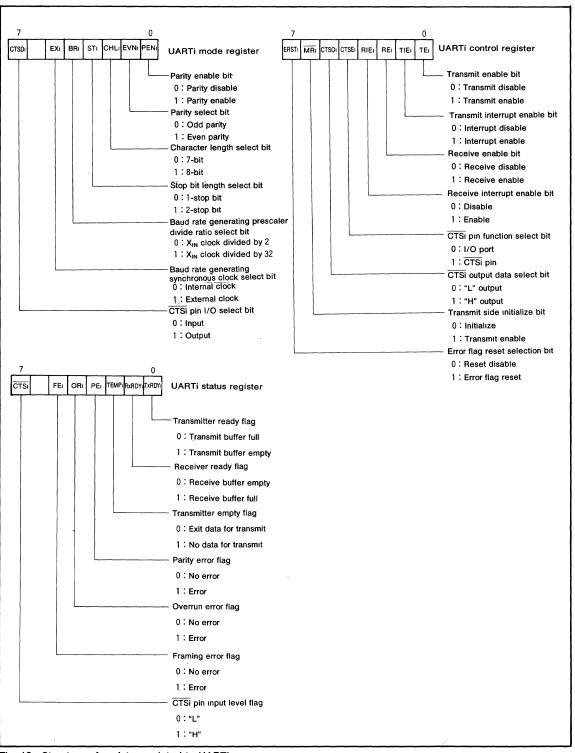


Fig. 12 Structure of registers related to UARTi

(CTSi pin)

The CTSi pin can be used as the 1-bit I/O port when bit 4 of the UARTi control register (CTSEi) is "0". In this case, the input/output direction can be determined by bit 7 of the UARTi mode register (CTSDi) and the output data can be set by bit 5 of the UARTi control register (CTSOi). Additionally, the input level can be known by bit 7 of the UARTi status register (CTSi).

(UARTi mode register)

- Parity enable bit : PENi
 - Setting this bit to "1" adds a parity bit to the transmit data. In a receive operation, this bit is used for parity evaluation.
- Parity select bit : EVNi
 - This bit specifies the parity bit to be generated in a transmit operation and the parity bit to be evaluated in a receive operation. Depending on the content of this bit, the number of 1's in data is made even or odd.
- Character length select bit: CHLi
 This bit specifies the character length of data.
- Stop bit length select bit : STi
 This bit specifies the stop bit length.
- Baud rate generating prescaler divide ratio select bit :
 - When this bit is "0", the signal obtained by dividing $\rm X_{IN}$ clock by 2 becomes the count source of the baud rate divider. When this bit is "1", the signal is obtained by dividing the clock by 32.
- Baud rate generating synchronous clock selection bit :
 - This bit specifies baud rate synchronous clock. When this bit is "1", external clock is input from the CLK pin.
- CTSi pin I/O select bit : CTSDi
 When this bit is "0", the CTSi pin is the input pin.
 When this bit is "1", the pin is the output pin. To use the CTSi pin as the CTSi input, set "0".

[UARTi control register]

- Transmit enable bit : TEi
 - Setting this bit to "1" enables a transmit operation.
- Transmit interrupt enable bit: TIEi
 When this bit is "1", the interrupt in a transmit operation is enabled.
- Receive enable bit : REi
 Setting this bit to "1" enables a receive operation.
- Receive interrupt enable bit: RIEi
 When this bit is "1", the interrupt in a receive operation is enabled.
- CTSi pin function select bit : CTSEi
 When this bit is "1", the CTSi pin becomes the CTSi input.

- CTSi output data select bit: CTSOi
 When this bit is "0", "L" is output. When it is "1", "H" is output.
- Transmit side initialize bit : MRi
 When this bit is "0", the transmit side is initialized.
- Error flag reset select bit: ERSTi
 Setting this bit to "1" resets all error flags. When this bit is read, "0" is always read.

[UARTi status register]

- Transmitter ready flag : TxRDYi
 When this flag is "1", it indicates that the transmit buffer register is empty and ready for writing transmit data.
- Receiver ready flag: RxRDYi
 When this flag is "1", it indicates that the receive buffer register is holding receive data. When the receive buffer register is read, it is cleared.
- Transmitter empty flag: TEMPi
 When this flag is "1", it indicates that neither the transmit shift register nor the transmit buffer register holds the data to be transmitted.
- Parity error flag: PEi
 This bit is set to "1" when the parity of the received data is different from the parity which was set.
- Overrun error flag: ORi
 When this flag is "1", it indicates that, before the data in the receive buffer register is read, the next data is transferred from the receive shift register to the receive buffer register and the previous data is lost.
- Framing error flag: FEi
 This flag is set to "1" when the stop bit is found "L" when data is transferred from the receive shift register to the receive buffer register.
- CTSi pin input level flag: CTSi
 When the input level of the CTSi pin is "L", "0" is read;
 when it is "H", "1" is read.

RESET CIRCUIT

The M37409M2-XXXSP is reset according to the sequence shown in Figure 14. It starts the program from the address formed by using the content of address 1FFF $_{16}$ as the high order address and the content of the address 1FFE $_{16}$ as the low order address, when the $\overline{\text{RESET}}$ pin is held at "L" level for more than $2\mu s$ while the power voltage is in the recom-

mended operating condition and the crystal oscillator oscillation is stable and then returned to "H" level. The internal initializations following reset are shown in Figure 15 and 16.

An example of the reset circuit is shown in Figure 13. When the power on reset is used, the $\overline{\text{RESET}}$ pin must be held "L" until the oscillation of X_{IN} - X_{OUT} becomes stable.

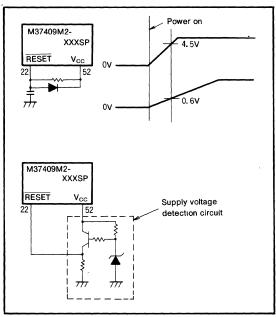


Fig. 13 Example of reset circuit

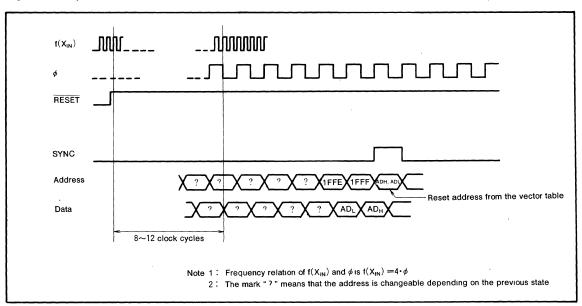


Fig.14 Timing diagram at reset

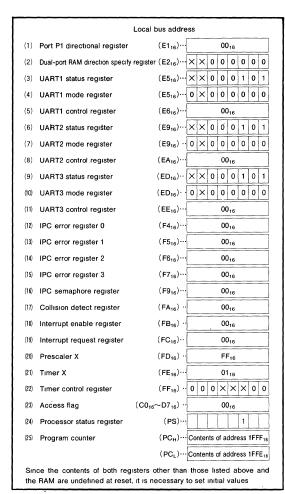


Fig.15 Internal state of microcomputer at reset (1)

Port P0 directional register	(F7 ₁₆) ··	0016
2) IPC error register 0	(F8 ₁₆)···	0016
3) IPC error register 1	(E9 ₁₆) ·	0016
4) IPC error register 2	(FA ₁₆)· ·	0016
5) IPC error register 3	(FB ₁₆)··	0016
6) Collision detect register	(FE ₁₆) ··	0016
7) IPC semaphore register	(FF ₁₆)	0016
8) Access flag	(C0~D7 ₁₆)⋅	0016

Fig.16 Internal state of microcomputer at reset (2)

1/O PORTS

 Port P0 System bus: address F6₁₆
 Port P0 is an 8-bit I/O port with CMOS output. It can be accessed from system bus only and can not be accessed from local bus.

As shown in the memory map (Figure 1), port P0 can be accessed at system bus address F6₁₆. Port P0 has a directional register (address F7₁₆) which can be used to program each individual bit as input ("0") or as output ("1"). If the pins are programmed as output, the output data is latched to the port register and then output. When data is read from the output port the output pin level is not read, only the latched data in the port register is read. This allows a previously output value to be read correctly even though the output voltage level is shifted up or down. Pins set as input are in the floating state and the signal levels can thus be read. When data is written into the input port, the data is latched only to the port latch and the pin still remains in the floating state. This port becomes input at reset.

(2) Port P1 Local bus: address 00E0₁₆
System bus: address F5₁₆

Port P1 is an 8-bit I/O port and connected to local bus. It has the same function as port P0 except the connected bus.

It's directional register is at local bus address 00E1₁₆. Also port P1 can be read from system bus but the pin state is read regardless the value of the port P1 directional register.

(3) Address pins

Address pins $A_0 \sim A_7$ are the input pins directly connected to the system bus. The 8-bit address corresponding to the system bus is input to these pins. The input level is TTL.

(4) Data pins

Data pins $D_0 \sim D_7$ are the output pins directly connected to the system bus. The 8-bit data corresponding to the system bus is input/output on these pins. When the \overline{CS} pin is "L" and the \overline{RD} pin is "L", the data pins become the output pins. When the \overline{CS} pin is "L" and the \overline{WR} pin is "L", the data pins become the input pins. Setting the \overline{CS} pin to "H" puts pins $D_0 \sim D_7$ in the floating state. The I/O level is TTL.

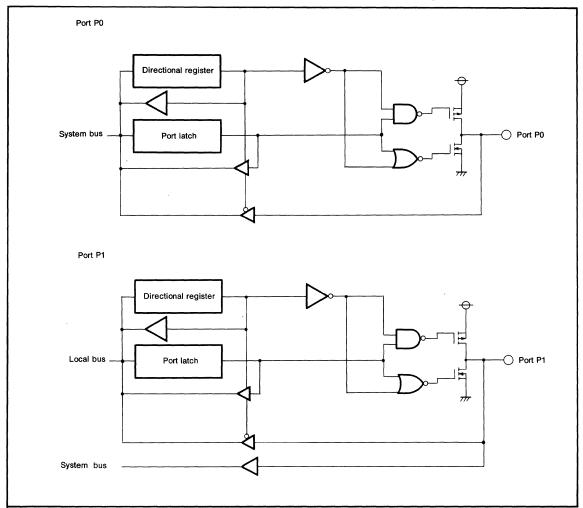


Fig. 17 Port P0, P1 block diagram

CLOCK GENERATING CIRCUIT

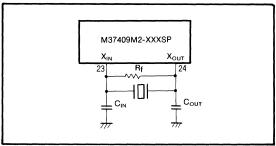
The built-in clock generating circuits are shown in Figure

When the STP instruction is executed, the oscillation of internal clock ϕ is stopped in the "H" state.

Also, the prescaler X and timer X are loaded with FF_{16} and 01_{16} , respectively. The oscillator (dividing by 16) is then connected to the prescaler input. This connection is cleard when timer X overflows or the reset is in, as discussed in the timer section.

The oscillator is restarted when an interrupt is accepted. However, the internal clock ϕ keeps its "H" level until timer X overflows.

This is because the oscillator needs a set-up period if a ceramic or a quartz crystal oscillator is used.


When the WIT instruction is executed, the internal clock ϕ stops in the "H" level but the oscillator continues running. This wait state is cleared when an interrupt is accepted. Since the oscillation does not stop, the next instructions are executed at once.

To return from the stop or the wait status, the interrupt enable bit must be set to "1" before executing STP or WIT instruction. Especially, to return from the stop status, the timer X count stop bit (bit 5 of address 00FF₁₆) must be set to "0" before executing STP instruction.

The circuit example using a ceramic oscillator (or a quartz crystal oscillator) is shown in Figure 19 and 20.

The constant capacitance will differ depending on which oscillator is used, and should be set to the manufactures suggested value.

The example of external clock uasge is shown in Figure 21. $X_{\rm IN}$ is the input, and $X_{\rm OUT}$ is open.

ig. 19 External ceramic resonator circuit

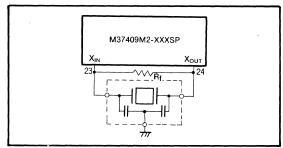


Fig. 20 External ceramic resonator circuit (capacity built-in type)

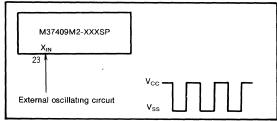


Fig. 21 External clock input circuit

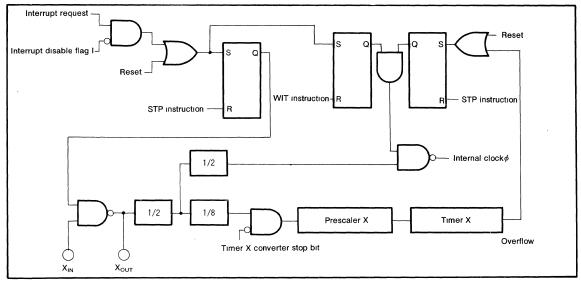


Fig. 18 Block diagram of clock generating circuit

MITSUBISHI MICROCOMPUTERS M37409M2-XXXSP/FP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

PROGRAMMING NOTES

- The frequency ratio of the timer and the prescaler is 1/(n+1).
- (2) Even though the BBC and BBS instructions are executed after the interrupt request bits are modified (by the program), those instructions are only valid for the contents before the modification. Also, at least one instruction cycle must be used (such as a NOP) between the modification of the interrupt request bits and the execution of the BBC and BBS instructions.
- (3) Change the address $A_0 \sim A_7$ input and the \overline{CS} input when both the \overline{RD} input and \overline{WR} input are "H".
- (4) Registers whose values change when read, are connected to the system bus of the M37409M2-XXXSP. If the master CPU generates an invalid read cycle, data is not correctly transferred.
- (5) A NOP instruction must be used after the execution of a PLP instruction.
- (6) After the ADC and SBC instructions are executed (in decimal mode), one instruction cycle (such as a NOP) is needed before the SEC, CLC, or CLD instructions are executed.
- (7) The STP instruction must be executed after setting timer X count enable bit to enable "0", timer X interrupt enable bit to inhibit ("0"), and timer X interrupt request bit to no request ("0").
- (8) The power current is max. 10mA in DC. However, because a rush current and a bus charge-discharge current flow transiently, a bypass capacitor must be connected between V_{SS} and V_{CC}.

DATA REQUIRED FOR MASK ORDERING

Please send the following data for mask orders.

- (1) mask ROM confirmation form
- (2) mark specification form
- (3) ROM data EPROM 3sets

3 - 95

MITSUBISHI MICROCOMPUTERS M37409M2-XXXSP/FP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
V _{cc}	Supply voltage		-0.3~7	٧
Vı	Input voltage, RESET, X _{IN}		-0.3~7	٧
Vı	Input voltage, P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , D ₀ ~D ₇ , A ₀ ~A ₇ , RD, WR, CS, CLK, R _X D ₁ ~R _X D ₃ , CTS ₁ ~CTS ₃	With respect to V _{ss} Output transistors cut-off	-0.3~V _{cc} +0.3	٧
Vı	Input voltage, CNV _{SS}		−0.3~13	٧
v _o	Output voltage, P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , X _{OUT} , ϕ , D ₀ ~D ₇ , T _X D ₁ ~T _X D ₃ , $\overline{\text{CTS}_1}$ ~ $\overline{\text{CTS}_3}$		-0.3∼V _{cc} +0.3	V
Pd	Power dissipation	T _a = 25℃	1000(Note 1)	mW
Topr	Operating temperature		−10~70	င
Tstg	Storage temperature		−40~125	°C

Note 1: 300mW for QFP types.

$\textbf{RECOMMENDED} \quad \textbf{OPERATING} \quad \textbf{CONDITIONS} \; (v_{oc} = 5v \pm 10\%, \tau_a = -10 \sim 70\%, \text{ unless otherwise noted})$

T	Peremeter		Limits			
Symbol	Parameter	Mın	Тур.	Max	Unit	
V _{CC}	Supply voltage	4.5	5	5.5	V	
Vss	Supply voltage		0		V	
V _{IH}	"H" input voltage X _{IN} , RESET, CLK, P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , R _x D ₁ ~R _x D ₃ , CTS ₁ ~CTS ₃	0.8V _{CC}		V _{cc} +0.3	٧	
V _{IH}	"H" input voltage A ₀ ~A ₇ , D ₀ ~D ₇ , RD, WR, CS	2		V _{cc} +0.3	V	
V _{IL}	"L" input voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , CLK, R _X D ₁ ~R _X D ₃ , CTS ₁ ~CTS ₃	-0.3		0. 2V _{CC}	V	
VIL	"L" input voltage A ₀ ~A ₇ , D ₀ ~D ₇ , RD, WR, CS	-0.3		0.8	٧	
VIL	"L" input voltage RESET	-0.3		0.12V _{CC}	V	
V _{IL}	"L" input voltage X _{IN}	-0.3		0.16V _{CC}	V	
Іон	"H" output current P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , ϕ , TyD ₁ ~TyD ₃ , CTS ₁ ~CTS ₃			-10	mA	
Іон	"H" output current D ₀ ~D ₇			-1.0	mA	
loL	"L" output current $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, ϕ , $T_X D_1 \sim T_X D_3$, $\overline{CTS_1} \sim \overline{CTS_3}$			10	mA	
loL	"L" output current D ₀ ~D ₇			-1.6	mA	

Note 1: The average output current I_{OL(avg)} and I_{OH(avg)} are the average value of a period of 100ms 2: Total of I_{OL(peak)}, of ports P0, P1, T_xD₁~T_xD₃ and $\overline{\text{CTS}_1}$ ~ $\overline{\text{CTS}_3}$ is -50mA Total of I_{OH}(peak), of ports P0, P1, T_xD₁~T_xD₃ and $\overline{\text{CTS}_1}$ ~ $\overline{\text{CTS}_3}$ is 50mA

MITSUBISHI MICROCOMPUTERS M37409M2-XXXSP/FP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

$\textbf{ELECTRICAL} \quad \textbf{CHARACTERISTICS} \,\, (\text{V}_{\text{CC}} = 5\text{V}, \, \text{V}_{\text{SS}} = 0\text{V}, \, \text{T}_{\textbf{a}} = 25\,\text{°C}, \, \text{unless otherwise noted})$

0	B	Test conditions		Limits			Unit	
Symbol	Parameter	l est c	onditions	Mın	Тур	Max.	Unit	
V _{OH}	"H" output voltage $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, ϕ , $TxD_1 \sim TxD_3$, $CTS_1 \sim CTS_3$	I _{OH} =-10mA		V _{CC} -2			V	
V _{OH}	"H" output voltage D ₀ ~D ₇	I _{OH} =-1mA		2.4			V	
V _{OL}	"L" output voltage $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, ϕ , $TxD_1 \sim TxD_3$, $\overline{CTS_1} \sim \overline{CTS_3}$	I _{OL} =10mA				2	٧	
VoL	"L" output voltage D ₀ ~D ₇	I _{OL} =1.6mA				0.4	٧	
l ₁	Input leak current A ₀ ~A ₇ , RD, WR, CS, CLK	V _{SS} ≦V _I ≦V _{CC}		-5		5	μA	
l _i	Input leak current RESET, X _{IN}	V _{SS} ≦V _I ≦7V		-5		5	μA	
loz	Tri-state leak current $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $D_0 \sim D_7$, $\overline{CTS_1} \sim \overline{CTS_3}$	V _{SS} +0.5≤V _O ≤V _{CC} -0.5V		-5		5	μΑ	
V _{T+} -V _{T-}	Hysteresis RESET, CLK, R _X D ₁ ~R _X D ₃ , CTS ₁ ~CTS ₃				0.6		V	
			f _(X_{IN}) =8~10MHz Square wave			10		
		Output terminals are opened,	ditto (wait mode)			1	mA	
Icc	Supply current	others to V _{SS} , $\overline{CS} = V_{CC}$	At stop mode T _a = 25℃			1		
			At stop mode Ta = 70°C			10	μΑ	

TIMING REQUIREMENTS

System bus $(V_{cc}=5V\pm10\%, V_{ss}=0V, T_a=-10\sim70^{\circ}C, f(X_{IN})=5\sim10MHz, unless otherwise noted)$

Symbol	Parameter	Test conditions	Limits			Unit	
Symbol Farameter		rest conditions	Min	Тур.	Max.	Unit	
t _{SU(A-WR)}	A ₀ ~A ₇ CS input set-up time		50			ns	
t _{SU(A-RD)}	A ₀ ~A ₇ CS input set-up time	*	50			ns	
t _{SU(D-WR)}	$D_0 \sim D_7$ input set-up time		80			ns	
th(wr-A)	A ₀ ∼A ₇ CS input hold time	Fi 00	0			ns	
th(RD-A)	A ₀ ~A ₇ CS input hold time	Fig. 22	0			ns	
th(wr-D)	D ₀ ∼D ₇ input hold time		10			ns	
t _{w(wr)}	WR input "L" pulse width		200			ns	
t _{W(RD)}	RD input "L" pulse width		200			ns	

$\textbf{Local} \quad \textbf{bus} \ \, (v_{cc} = 5V \pm 10\%, \, v_{ss} = 0V, \, T_{\textbf{a}} = -10 \sim 70\%, \, f(X_{\textbf{IN}}) = 5 \sim 10 \text{MHz, unless otherwise noted})$

Symbol Barameter		Test conditions	Limits			Unit
Symbol Parameter	Farameter	rest conditions	Mın.	Тур	Max.	Oille
t _{SU(P1-¢)}	P1 ₀ ~P1 ₇ input set-up time	Fig. 20	300			ns
th(ø-P1)	P1 ₀ ~P1 ₇ input hold time	Fig. 22	50			ns

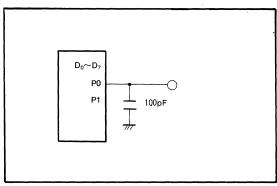
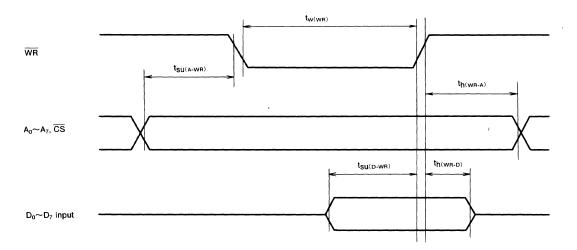
SWITCHING CHARACTERISTICS

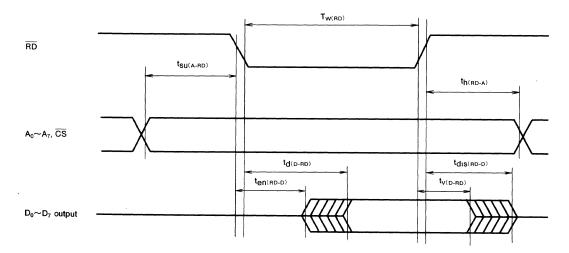
System bus $(V_{cc}=5V\pm10\%, V_{ss}=0V, T_a=-10\sim70^{\circ}C, f(X_{IN})=5\sim10MHz, unless otherwise noted)$

Symbol	Parameter	Test conditions	Limits			Lina
Symbol	raidilletei	rest conditions	Mın.	Тур.	Max.	Unit
td(D-RD)	D₀~D ₇ output delay time				150	ns
t _{V(D-RD)}	D ₀ ∼D ₇ output effective time	Fig. 22	0			ns
ten(RD-D)	D ₀ ∼D ₇ output enable time	Fig. 22	10			ns
tdis(RD-D)	D ₀ ∼D ₇ output disable time				50	ns

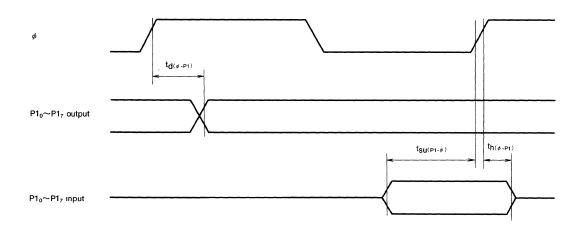
Local bus $(V_{CC}=5V\pm10\%, V_{SS}=0V, T_a=-10\sim70^{\circ}C, f(X_{IN})=5\sim10MHz, unless otherwise noted)$

Symbol	Parameter	Test conditions	Limits			Unit
Symbol	Farameter	rest conditions	Mın	Тур.	Мах	Unit
t _{d(ø-P1)}	P1 ₀ ~P1 ₇ output delay time	Fig. 22			300	ns


Fig. 22 Port P0, P1, D₀~D₇ test circuit

TIMING DIAGRAMS


System bus write cycle

System bus read cycle

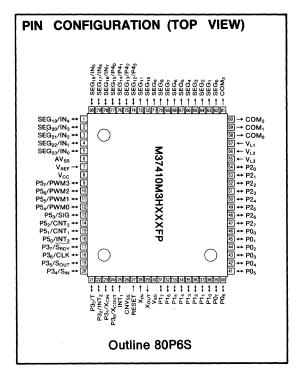
Local bus

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

DESCRIPTION

The M37410M3HXXXFP is a single-chip microcomputer designed with CMOS silicon gate technology. It is housed in a 80-pin plastic molded QFP. This single-chip microcomputer is useful for business equipment and other consumer applications.

In addition to its simple instruction set, the ROM, RAM, and I/O addresses are placed on the same memory map to enable easy programming.


This microcomputer is also suitable for applications which require controlling LCDs.

The differences among the M37410M3HXXXFP, the M37410M4HXXXFP and the M37410M6HXXXFP are noted below. The following explanations apply to the M37410M3H XXXFP. Specification variations for other chips are noted accordingly.

Type name	ROM size	RAM size
M37410M3HXXXFP	6144 bytes	192 bytes
M37410M4HXXXFP	8192 bytes	256 bytes
M37410M6HXXXFP	12288 bytes	256 bytes

FEATURES

FE	EATURES
•	Number of basic instructions 69
•	Memory size
	ROM 6144 bytes (M37410M3HXXXFP)
	8192 bytes (M37410M4HXXXFP)
	12288 bytes (M37410M6HXXXFP)
	RAM192 bytes (M37410M3HXXXFP)
	256 bytes (M37410M4HXXXFP,
	M37410M6HXXXFP)
•	Instruction execution time (minimum instructions)
	at high-speed mode $\cdots 1 \mu$ s
	at low-speed mode $\cdots \qquad 4\mu$ s
•	Single power supply
	f(X _{IN})=8MHz ······ 4.5~5.5V
	$f(X_{IN}) = 2MHz \cdots 2.5 \sim 5.5V$
•	Power dissipation
	normal operation mode (at 8MHz frequency)
	30mW (V _{CC} =5V, Typ.)
	low-speed operation mode (at 32kHz frequency for
	clock function) $\cdots 54\mu$ W ($V_{CC}=3V$, Typ.)
•	RAM retention voltage (stop mode)
	2.0V≦V _{RAM} ≦5.5V
•	Subroutine nesting 96levels (Max.)
•	Interrupt ······ 10types, 5vectors
•	8-bit timer ·······4 (3 when used as serial I/O)
•	16-bit timer ······· 1 (Two 8-bit timers make one set)
•	Programmable I/O ports
	(Ports P0, P1, P2, P3, P5) ······ 40
•	Input port (Port P4)4
•	Serial I/O (8-bit)1
•	A-D converter ······ 8-bit, 8channel

- (One is for main clock, the other is for clock function)

APPLICATION

Audio-visual equipment, Remote control, Camera

SINGLE-CHIP

8-BIT

CMOS

Reference voltage input I/O port P5 AVSS VREF $\mathsf{CNV}_{\mathsf{SS}}$

Timer 2

T2(8)

Timer 3

T3(8)

P1(8)

I/O port P1

P2(8)

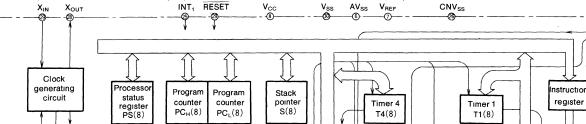
I/O port P2

P5(8)

INT₃

P0(8)

I/O port P0


Instruction

decoder

Control signal

A-D

start

Timer 5

T5(8)

INT₂

P3(8)

I/O port P3

8.

 X_{COUT} Note 2 Note 1

M37410M3HXXXFP BLOCK DIAGRAM

Clock input Clock output

8-brt ROM RAM Arithme Index 6144 Accumulato and 192 bytes register register bytes logical A(8) X(8) Y(8)

1x_{соџт}

Common Power supply

X_{CIN}

for LCD

СОМ Note 1 : 8192 bytes for M37410M4HXXXFP and 12288 bytes for M37410M6HXXXFP

2:256 bytes for M37410M4HXXXFP and M37410M6HXXXFP

output

LCD controller/driver

Segment output(24) SEG

SÉG

Timer 6 PWM T6(8) A-D converter Key on wake up(8) S I/O(8) LCD data memory P4(4)

Interrupt input Reset input

M37410M3HXXXFP,M37410M4HXXXFP M37410M6HXXXFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

FUNCTIONS OF M37410M3HXXXFP

	Parameter		Functions		
Number of basic instruction	ns		69		
Instruction execution time			1μs (minimum instructions, at 8MHz frequency)		
Clock frequency			8MHz (at V _{CC} =5V±10%)		
	M37410M3HXXXFP	ROM	6144bytes		
	M3/410M3FIXARP	RAM	192bytes		
	M37410M4HXXXFP	ROM	8192bytes		
Memory size	MS/410M4FIXAAFF	RAM	256bytes		
	M37410M6HXXXFP	ROM	12288bytes		
	WISTATOWIOTIXAAFF	RAM	256bytes		
	RAM for display LCD		12bytes		
	P0, P1, P2, P3, P5	1/0	8-bit×5		
Input/Output port	P4	Input	4-bit×1 (port P4 are in common with SEG)		
input/Output port	SEG	LCD output	24-bit×1		
	COM	LCD output	4-bit×1		
Serial I/O	`		8-bit×1		
Timers			8-bit timer×4		
Tillers			16-bit timer×1 (combination of two 8-bit timers)		
	Bias		1/2, 1/3 bias selectable		
LCD controller/driver	Duty ratio		1/2, 1/3, 1/4 duty selectable		
LCD controller/driver	Common output		4		
	Segment output		24 (SEG ₁₂ ~SEG ₂₃ are in common with port P4 and analog input pins IN ₇ ~IN ₀)		
Subroutine nesting	•		96 (max)		
Interrupt			Three external interrupts, three timer interrupts, serial I/O interrupt,		
interrupt			A-D interrupt, key on wake up, one software interrupt		
Clock generating circuit			Two built-in circuits (ceramic or quartz crystal oscillator)		
Operating temperature ran	nge		−20~75°C		
Device structure			CMOS silicon gate		
Package			80-pin plastic molded QFP		

M37410M3HXXXFP,M37410M4HXXXFP M37410M6HXXXFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

PIN DESCRIPTION

Pin	Pin Name Input/ Output		Functions			
V _{CC} , V _{SS}	Supply voltage		Power supply inputs 5V \pm 10% to V _{CC} , and 0V to V _{SS}			
CNV _{ss}	CNV _{SS}		This is connect to V _{SS}			
RESET	Reset input	Input	To enter the reset state, the reset input pin must be kept at a "L" for more than 16µs (under normal V _{CC} conditions). If more time is needed for the crystal oscillator to stabilize, this "L" condition should be maintained for the required time			
X _{IN}	Clock input	Input	These are I/O pins of internal clock generating circuit for main clock. To control generating frequency, an external ceramic or a quartz crystal oscillator is connected between the X _{IN} and X _{OUT} pins. If an external			
X _{OUT}	Clock output	Output	clock is used, the clock source should be connected the X _{IN} pin and the X _{OUT} pin should be left open			
INT ₁	Interrupt input	Input	This is the highest order interrupt input pin			
AV _{SS}	Voltage input for A-D		This is GND input pin for the A-D converter			
V _{REF}	Reference voltage input	Input	This is reference voltage input pin for the A-D converter			
P0 ₀ ~P0 ₇	I/O port P0	1/0	Port P0 is an 8-bit I/O port with directional registers allowing each I/O bit to be individually programmed as input or output. At reset, this port is set to input mode. The output structure is CMOS output.			
P1 ₀ ~P1 ₇	I/O port P1	1/0	Port P1 is an 8-bit I/O port and has basically the same functions as port P0, but the output structure is N-ch open drain			
P2 ₀ ∼ P2 ₇	I/O port P2	1/0	Port P2 is an 8-bit I/O port and has basically the same functions as port P0 and also works as the key on wake up function with mask option			
P3 ₀ ~P3 ₇	I/O port P3	1/0	Port P3 is an 8-bit I/O port and has basically the same functions as port P1. When serial I/O is used, P3 ₇ , P3 ₆ , P3 ₅ , and P3 ₄ work as $\overline{S_{RDY}}$, CLK, S_{OUT} , and S_{IN} pins, respectively. Also P3 ₃ , P3 ₂ , P3 ₁ , and P3 ₀ work as timer 4 overflow signal divided by 2 output pin (T), INT ₂ pin, X_{CIN} and X_{COUT} pins, respectively.			
SEG ₁₂ /P4 ₃	Segment output /Input port P4	Output / Input	SEG ₁₂ ~SEG ₁₅ work as input port P4 and also used by 2-bit unit as LCD segment output			
P5 ₀ ~P5 ₇	I/O port P5	1/0	Port P5 is an 8-bit I/O port and has basically the same function as P1 P5 ₀ , P5 ₁ , P5 ₂ and P5 ₃ are in common with INT ₃ , timer3 input, timer5 input and A-D trigger input respectively P5 ₄ ~P5 ₇ are also in common with PWM0~PWM3			
V _{L1} ~V _{L3}	Voltage input for LCD	Input	These are voltage input pins for LCD. Supply voltage as $0V \le V_{L1} \le V_{L2} \le V_{L3} \le V_{CC}$ $0 \sim V_{L3}V$ is supplied to LCD.			
COM₀∼ COM₃	Common output	Output	These are LCD common output pins At 1/2 duty, COM ₂ and COM ₃ pins are not used At 1/3 duty, COM ₃ is not used			
SEG₀∼ SEG₁₁	Segment output	Output	These are LCD segment output pins			
SEG ₁₆ /IN ₇ { SEG ₂₃ /IN ₀	Segment output /Analog input	1/0	SEG $_{18}\sim$ SEG $_{23}$ work as analog input pins IN $_7\sim$ IN $_0$ SEG $_{18}\sim$ SEG $_{19}$ are used by 2-bit unit and SEG $_{20}\sim$ SEG $_{23}$ by 4-bit unit			

M37410M3HXXXFP,M37410M4HXXXFP M37410M6HXXXFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

FUNCTIONAL DESCRIPTION Central Processing Unit (CPU)

The M37410 microcomputers use the standard MELPS 740 instruction set. For details of instructions, refer to the MELPS 740 CPU core basic functions, or the MELPS 740 Software Manual.

Machine-resident instructions are as follows:
The FST and SLW instructions are not provided.
The MUL and DIV instructions are not provided.
The WIT instruction can be used.
The STP instruction can be used.

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

MEMORY

• Special Function Register (SFR) Area

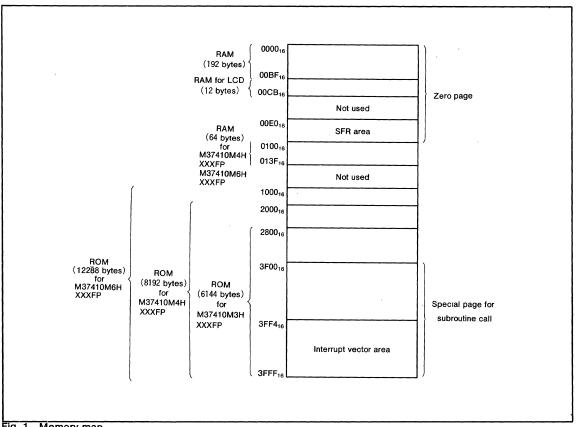
The special function register (SFR) area contains the registers relating to functions such as I/O ports and timers.

RAM is used for data storage as well as a stack area.

ROM

ROM is used for storing user programs as well as the interrupt vector area.

• Interrupt Vector Area


The interrupt vector area is for storing jump destination addresses used at reset or when an interrupt is generated.

Zero Page

Zero page addressing mode is useful because it enables access to this area with fewer instruction cycles.

Special Page

Special page addressing mode is useful because it enables access to this area with fewer instruction cycles.

Memory map

00E0 ₁₆	Port P0	00F0 ₁₆	Interrupt request distinguish register 2
00E1 ₁₆	Port P0 directional register	00F1 ₁₆	Timer 6 latch
00E2 ₁₆	Port P1	00F2 ₁₆	A-D control register
00E3 ₁₆	Port P1 directional register	00F3 ₁₆	PWM control register
00E4 ₁₆	Port P2	00F4 ₁₆	Segment control register
0 0E5 ₁₆	Port P2 directional register	00 F 5 ₁₆	LCD mode register
00E6 ₁₆		00F6 ₁₆	Serial I/O mode register
00E7 ₁₆		00F7 ₁₆	Serial I/O register
00E8 ₁₆	Port P3	00F8 ₁₆	Timer 4, 5, 6 mode register
00E9 ₁₆	Port P3 directional register	00F9 ₁₆	Timer 1 latch
00EA ₁₆	Port P4	00FA ₁₆	Timer 2 latch
00EB ₁₆	Interrupt request distinguish register 1	00FB ₁₆	Timer 3 latch
00EC ₁₆	Port P5	00FC ₁₆	Timer 4 latch
00ED ₁₆	Port P5 directional register	00FD ₁₆	Timer 5 latch
00EE ₁₆	P2 Key on wake up register	00FE ₁₆	Interrupt control register
00EF ₁₆	A-D register	00FF ₁₆	Timer control register

Fig. 2 SFR (Special Function Register) memory map

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

INTERRUPT

The M37410M3HXXXFP can be interrupted from ten sources; INT_1 , Timer 2 or Serial I/O, INT_3 or Key on wake up, INT_2 or Timer 3, Timer 6 or A-D, and BRK instruction.

"Key on wake up" can only be used at power down state by STP instruction or WIT instruction. When one of the P2 or P7 is "L", an interrupt occurs.

These interrupts are vectored and their priorities are shown in Table 1. Reset is included in this table since it has the same function as an interrupt.

When an interrupt is accepted, the contents of certain registers are pushed into specified locations, and the interrupt disable flag (I) is set, and the program jumps to the address specified by the interrupt vector, and the interrupt request bit is cleared automatically. The reset interrupt is the highest priority interrupt and can never be inhibited. Except for the reset interrupt, all interrupts are inhibited when the interrupt disable flag is set to "1". All of the other interrupts can further be controlled individually via the interrupt control register shown in Figure 3. An interrupt is accepted when the interrupt enable bit and the interrupt request bit are both "1" and the interrupt disable flag is "0".

The interrupt request bits are set when the following conditions occur:

- (1) When/the INT₁, INT₂ or INT₃ pins go from "H" to "L" or "L" to "H"
- (2) When the levels any pin of P2 or P7 goes "L" (at power down mode)
- (3) When the contents of timer 2, timer 3, timer 6 or the counter of serial I/O goes "0"

These request bits can be clear by a program but can not be set. The interrupt enable bit can be set and clear by a program.

When the two interrupt requests, which are the same priority and are at the same sampling, the priority process is processed by interrupt request distinguish register 1 and 2. The interrupt request distinguish bit is used by software to determine priority when two interrupt causes are allocated to the same interrupt vector (that is, the two interrupts have the same priority).

Irrespective of whether the interrupt is disabled or enabled, the interrupt request distinguish bit is automatically set to "1" when conditions arise that satisfy the interrupt cause.

However, the interrupt request distinguish bit is not automatically cleared. The bit must therefore be cleared by software in the interrupt service routine (before executing an RTI instruction).

Note that when using the instruction CLB to clear this bit, the request distinguish bit of an interrupt that is generated during execution of CLB will not be set(to "1"). Use one of the following two methods to clear interrupt request distinguish bits:

Use instruction LDM to write directly to address 00EB₁₆ (interrupt request distinguish register 1) or 00F0₁₆ (interrupt request distinguish register 2).

LDM #\$nn, \$zz

, Where zz is the address(00EB $_{16}$ or 00F0 $_{16}$)of the interrupt request

; distinguish register that includes the interrupt request distinguish

; bit that is to be cleared and nn sets the interrupt request disting; uish bit to be cleared to "0" and other interrupt request distinguish; bits to "1".

, Other control bits must be set according to the required control

, (interrupts enabled or disabled)

[Example] Clearing the INT2 interrupt request distinguish bit

LDM 1X1X0X1XB, \$00EB

1 1 1 1

Of the interrupt request distinguish bits, only the INT_2 interrupt request distinguish bit, which is to be cleared, should be set to "0". The values of bits marked "X" are determined by the control being effected

Use instructions LDA, ORA, AND, and STA to write via the accumulator to address 00EB₁₆ (interrupt request distinguish register 1) or 00F0₁₆ (interrupt request distinguish register 2).

LDA \$zz

ORA #\$nn

AND #\$nn

STA \$zz

, Where zz is the address(00EB $_{\rm 16}$ or 00F0 $_{\rm 16}$) of the interrupt request

, distinguish register that includes the interrupt request distinguish

, bit that is to be cleared and nn sets the interrupt request distinguish bit to be cleared to "0" and other interrupt request distinguish

, dish bit to be dicared to be and safet interrupt request distinguish

; bits to "1" Other control bits must be set according to the required ; control (interrupts enabled or disabled)

[Example] Clearing the timer 6 interrupt request distinguish bit

LDA \$00F0

ORA XX1X1X0XB

1 1 1

Of the interrupt request distinguish bits, only the interrupt request distinguish bit for timer 6, which is to be cleared, should be set to "0". The values of bits marked "x" are determined by the control being effected.

 $\downarrow \ \downarrow \ \downarrow$

AND XX1X1X0XB

STA \$00F0

Because an interrupt request is generated only at the time the interrupt request distinguish bit is set(to "1"), no interrupt will be generated while the interrupt request distinguish bit remains in the set state. For this reason, the interrupt request distinguish bit must be cleared by software in the interrupt service routine.

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

Since the BRK instruction interrupt and the timer 6 or A-D, interrupt have the same vectored address, the contents of the B flag must be checked to determine if the BRK instruction caused the interrupt or if timer 6 or A-D generated the interrupt.

Table 1. Interrupt vector address and priority

Event	Priority	Vector addresses	Remarks		
RESET	1	3FFF ₁₆ , 3FFE ₁₆	Non-maskable		
INT ₁ interrupt	2	3FFD ₁₆ , 3FFC ₁₆	External interrupt		
Serial I/O or timer 2 interrupt	3	3FFB ₁₆ , 3FFA ₁₆			
INT ₃ or key on wake up interrupt	4	3FF9 ₁₆ , 3FF8 ₁₆	External interrupt		
INT ₂ or timer 3 interrupt	5	3FF7 ₁₆ , 3FF6 ₁₆	External interrupt (INT ₂)		
Timer 6 or A-D interrupt	6	0554			
(BRK instruction interrupt)		3FF5 ₁₆ , 3FF4 ₁₆	(Non-maskable software interrupt)		

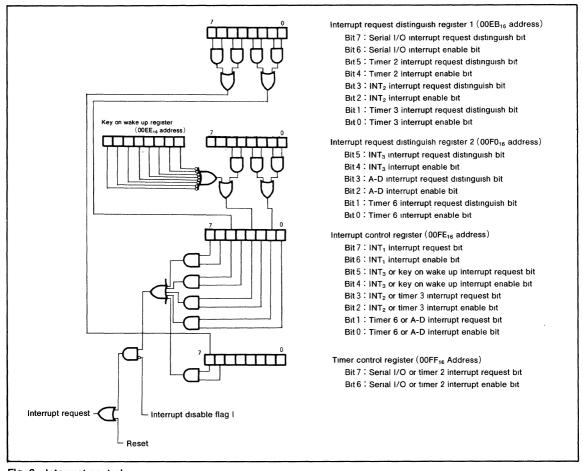


Fig. 3 Interrupt control

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

TIMER

The M37410M3HXXXFP has six timers; timer 1, timer 2, timer 3, timer 4, timer 5 and timer 6.

A block diagram of timer1 through 6 is shown in Figure 4. The count source for timer 1 through 3 can be selected by using bit 2, 3, 4 and 5 of the timer control register (address $00FF_{16}$), as shown in Figure 5. All of the timers are down count timers and have 8-bit latches. When a timer reaches "0" and the next count pulse is input to a timer, the contents of the reload latch are loaded into the timer. The division ratio of the timer is 1/(n+1), where n is the contents of timer latch.

Timer 2, 3 and 6 has interrupt generating functions. The timer interrupt request bit which is in the interrupt distinguish register 1 or 2 (located at addresses $00EB_{16}$ and $00F0_{16}$ respectively) is set at the next count pulse after the timer reaches "0" (see interrupt section).

The starting and stopping of timer1 is controlled by bit 7 of the interrupt distinguish register 2, timer 3 by bit 6 of the interrupt distinguish register 2 and timer 4 by bit 3 of timer 4, 5 and 6 mode register (00F8₁₆ address). If the corresponding bit is "0", the timer starts counting, and the corresponding bit is "1", the timer stops. The timer4 overflow signal divided by 2 can be outputed from port P3₃ by setting the bit 4 of the serial I/O mode register (00F6₁₆ address) to "1".

Timer 5 and 6 work as timer mode, event counter mode and PWM mode by changing the contents of bit 5 and bit 6 of the timer 4. 5 and 6 mode register.

(1) Timer Mode

This mode is the 16-bit timer, and the count source is $\phi/4$. When the bit 6 of PWM control register (00F3₁₆ address) is "1", the timer6 overflow singnal divided by 2 is output from CNT₂ pin (common with P5₂).

(2) Event Counter Mode

The count source is input from the CNT_2 pin. The count decremented each time the input goes from "L" to "H".

(3) PWM Mode

As shown in Figure 7, the output wave is controlled by the contents of the timer latch of timer 5 and 6.

PWM output can choose among PWM0, PWM1, PWM2 and PWM3 by bit 0, bit 1, bit 2 and bit 3 of PWM control register.

When the count value of all timers, from timer 1 to timer 6, are read, be careful not to change the input source.

When the count source is inputed from the external pin, the minimum pluse width should be $8\mu s$.

After a STP instruction is executed, timer 2, timer 1, and the clock (ϕ divided by 4) are connected in series (regardless of the status of bit 2 through 5 of the timer control register). This state is canceled if timer2 interrupt request bit is set to "1", or if the system is reset. Before the STP instruction is executed, bit 7 of the interrupt request distinguish register2 (timer1 count stop bit), bit 5 of the interrupt request distinguish register1, and bit 6 and bit 7 of the timer control

register must be set to "0" (prohibition). And also bit 4 of the interrupt request distinguish register1 must be set to "1". For more details on the STP instruction, refer to the oscillation circuit section.

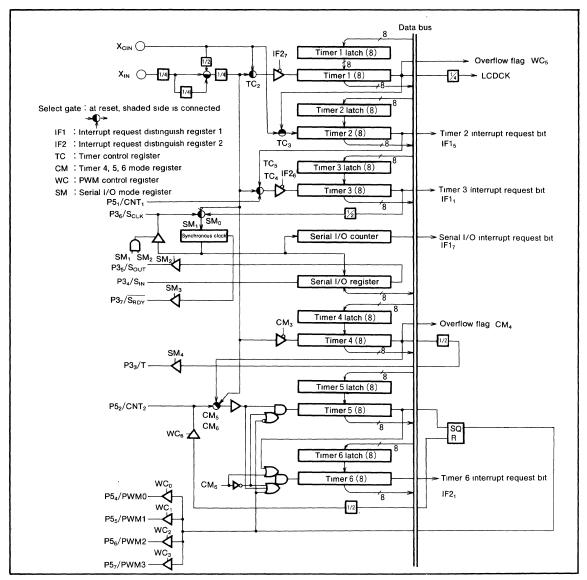


Fig. 4 Block diagram of timer 1 through 6

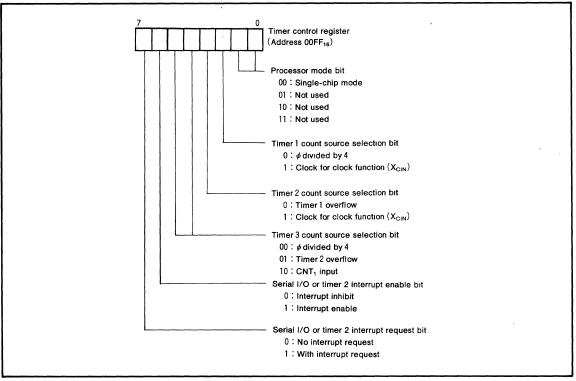


Fig. 5 Structure of timer control register

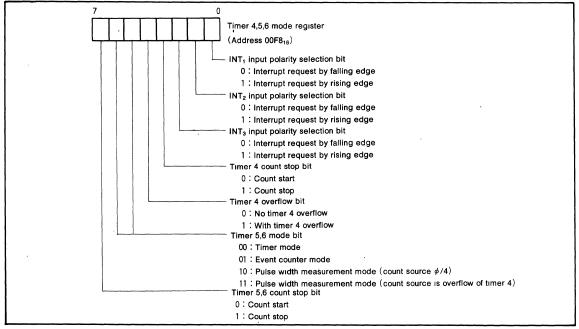


Fig. 6 Structure of timer 4,5,6 mode register

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

PWM

M37410M3HXXXFP has a pulse width modulated (PWM) output control circuit connecting with timer5 and timer6.

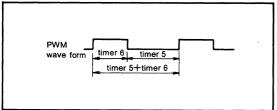


Fig. 7 PWM rectangular wave form

Figure 6 shows the structure of timer 4,5,6 mode register, Figure 7 shows the PWM rectangular wave form and Figure 8 shows the structure of PWM control register.

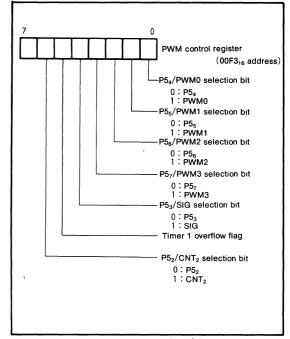


Fig. 8 Sturcture of PWM control register

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

SERIAL I/O

The block diagram of serial I/O is shown in Figure 9. In the serial I/O mode the receive ready signal $(\overline{S_{\text{RDV}}})$, synchronous input/output clock (CLK). and the serial I/O $(S_{\text{OUT}}, S_{\text{IN}})$ pins are used as P3₇, P3₆, P3₅, and P3₄, respectively. The serial I/O mode register (address 00F6₁₆) is an 8-bit register. Bit 1 and 0 of this register is used to select a synchronous clock source. When these bits are (00) or (01), an external clock from P3₆ is selected. When these bits are (10), the overflow signal divided by two from timer 3 becomes the synchronous clock. Therefore, changing the timer period will change the transfer speed. When the bits are

[11], the internal clock ϕ divided by 4 becomes the clock. Bits 2 and 3 decide whether parts of P3 will be used as a serial I/O or not. When bit 2 is "1", P3 $_6$ becomes an I/O pin of the synchronous clock. When an internal synchronous clock is selected, the clock is output from P3 $_6$. If the external synchronous clock is selected, the clock is input to P3 $_6$. And P3 $_5$ will be a serial output and P3 $_4$ will be a serial input. To use P3 $_4$ as a serial input, set the directional register bit which corresponds to P3 $_4$, to "0". For more information on the directional register, refer to the I/O pin section.

To use the serial I/O, bit 2 needs to be set to "1", if it is "0" $P3_6$ will function as a normal I/O. Bit 3 determines if $P3_7$ is

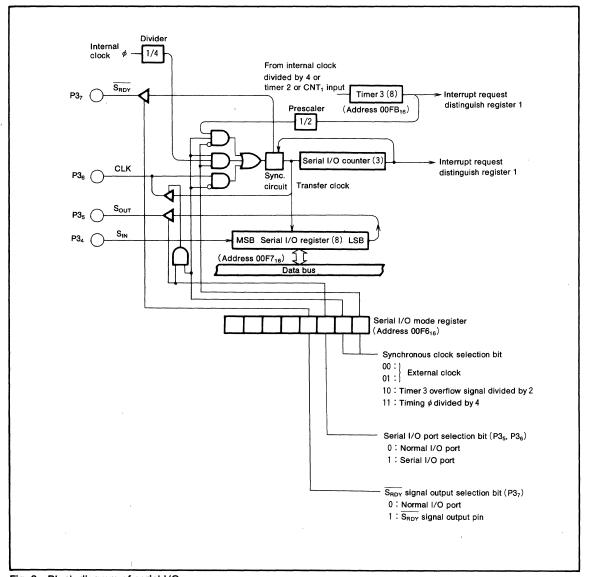


Fig. 9 Block diagram of serial I/O

M37410M3HXXXFP,M37410M4HXXXFP M37410M6HXXXFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

used as an output pin for the receive data ready signal (bit 3="1", $\overline{S_{RDY}}$) or used as a nomal I/O pin (bit 3="0").

The function of serial I/O differs depending on the clock source; external clock or internal clock.

Internal Clock — The $\overline{S_{RDY}}$ signal becomes "H" during transmission or while dummy data is stored in the serial I/O register. After the falling edge of write signal, the $\overline{S_{RDY}}$ signal becomes low signaling that the M37410M3HXXXFP is ready to receive the external serial data. The $\overline{S_{RDY}}$ signal goes "H" at the next falling edge of the transfer clock. The serial I/O counter is set to 7 when data is stored in the serial I/O register. At each falling edge of the transfer clock, serial data is output to P3₅. During the rising edge of this clock, data can be input from P3₄ and the data in the serial I/O register will be shifted 1 bit. Data is output starting with

the LSB. After the transfer clock has counted 8 times, the serial I/O register will be empty and the transfer clock will remain at a high level. At this time the interrupt request bit will be set.

External Clock — If an external clock is used, the interrupt request bit will be set after the transfer clock has counted 8 times but the transfer clock will not stop. Due to this reason, the external clock must be controlled from the outside. The external clock should not exceed 250kHz at a duty cycle of 50%. When the external clock is chosen, the P3₆ pin must be held at "H" level while the serial I/O is not used.

Timing diagrams are shown in Figure 10, and connection between two M37410M3HXXXFP's are shown in Figure 11.

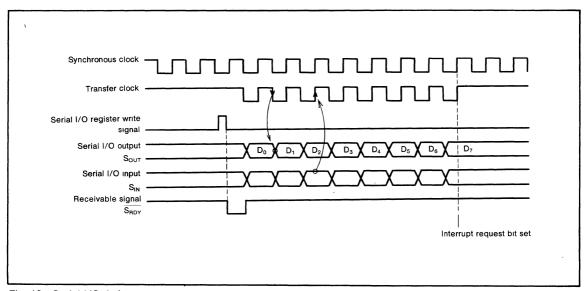


Fig. 10 Serial I/O timing

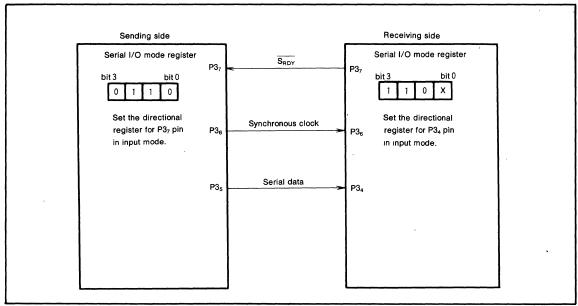


Fig. 11 Example of serial I/O connection

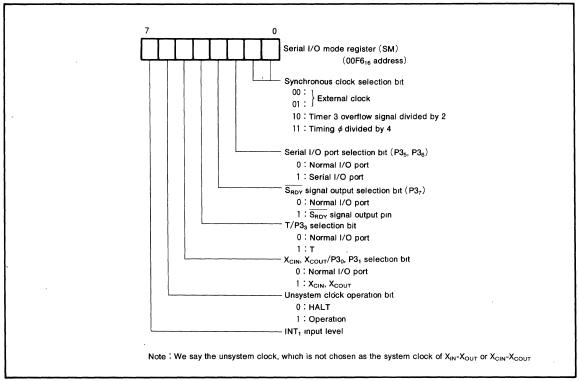


Fig. 12 Structure of serial I/O mode register

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

LCD CONTROLLER/DRIVER

The M37410M3HXXXFP has internal LCD controllers and drivers. A Block Diagram of LCD circuit is shown in Figure 15. The terminals for LCD consist of 4 common-pin and 24 segment-pin. $SEG_{12} \sim SEG_{15}$ are in common with input P4. Also $SEG_{16} \sim SEG_{23}$ are in common with $IN_0 \sim IN_7$. These are selected by bit $3 \sim 7$ of the LCD segment control register (00F4₁₆ address). Two biases (1/2 and1/3) can also be selected. When bit 2 of the LCD mode register is "1", 1/2 bias is selected. When bit 2 is "0", 1/3 bias is selected. 1/2,1/3, or 1/4 duty cycle can also be selected. When bits 0 and 1 of the LCD mode register (LM₀, LM₁) is n, the duty ratio is 1/(n+1).

Address $00C0_{16} \sim 00CB_{16}$ is the designated RAM for the LCD display. When 1s' are written to these addresses, the corresponding segments of the LCD display panel are turned on. A map of the LCD display RAM is shown in Figure 13.

The ON/OFF function for the LCD controller is controlled by bit 3 of the LCD mode register (LM $_3$). When this bit is "1" all the segments of the LCD are turned on. When this bit is "0" all the segments are turned off.

The structure of the LCD mode register is shown in Figure

When a 1/2 bias is used, V_{L1} and V_{L2} should be shorted together. An example circuit for each bias is shown in Figure 16. Also Figure 17 shows an example of 1/2 bias, 1/4 duty drive waveforms and resulting voltage differential between SEG_{Π} and COM $_{\Pi}$ and Figure 18 shows examples of drive waveforms for each bias and duty.

The LCDCK timing frequency (LCD driver timing) is generated internally and the frame frequency can be determined with the following equation:

$$f(LCDCK) = \frac{(frequency of timer 1 count source)}{((timer 1 setting+1) \times 4)}$$
Frame frequency = $\frac{f(LCDCK)}{f(LCDCK)}$; at 1/n duty

Bit Address	7	6	5	4	3	2	1	0
C0	1	1	1	1	0	0	0	0
C1	3	3	3	3	2	2	2	2
C2	5	5	5	5	4	4	4	4
СЗ	7	7	7	7	6	6	6	6
C4	9	9	9	9	8	8	8	8
C5	11	11	11	11	10	10	10	10
C6	13	13	13	13	12	12	12	12
C7	15	15	15	15	14	14	14	14
C8	17	17	17	17	16	16	16	16
C9	19	19	19	19	18	18	18	18
CA	21	21	21	21	20	20	20	20
СВ	23	23	23	23	22	22	22	22
	COM3	COM2	COM	COMo	COM3	COM2	COM1	COMo

Fig. 13 Map of RAM for LCD segment

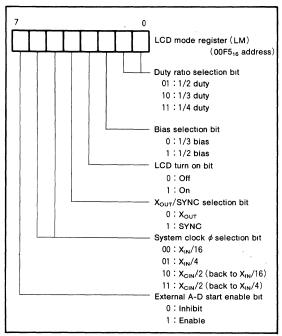
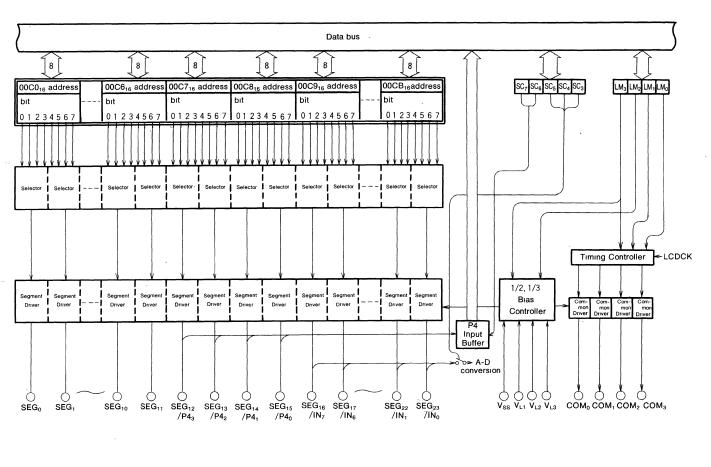



Fig. 14 Structure of LCD mode register

M37410M3HXXXFP

Fig. 5 Block diagram of LCD control circuit Data bus -8 8

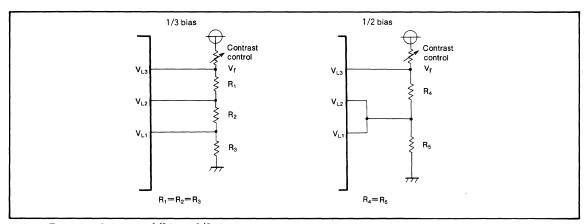


Fig. 16 Example of circuit at 1/3 bias, 1/2 bias

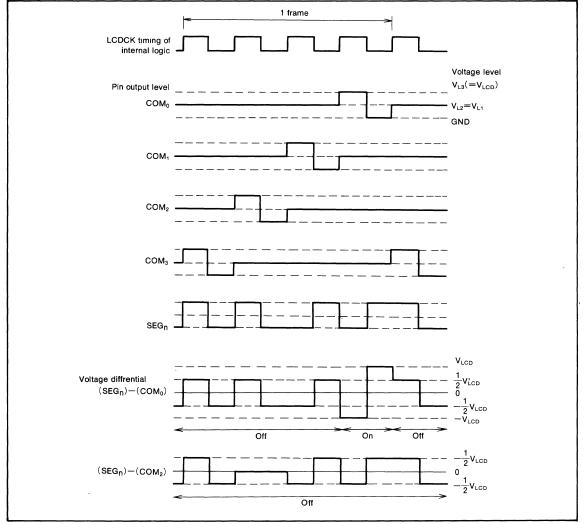


Fig. 17 Example of 1/2 bias, 1/4 duty waveforms and resulting voltage differential between SEG_n and COM_n.

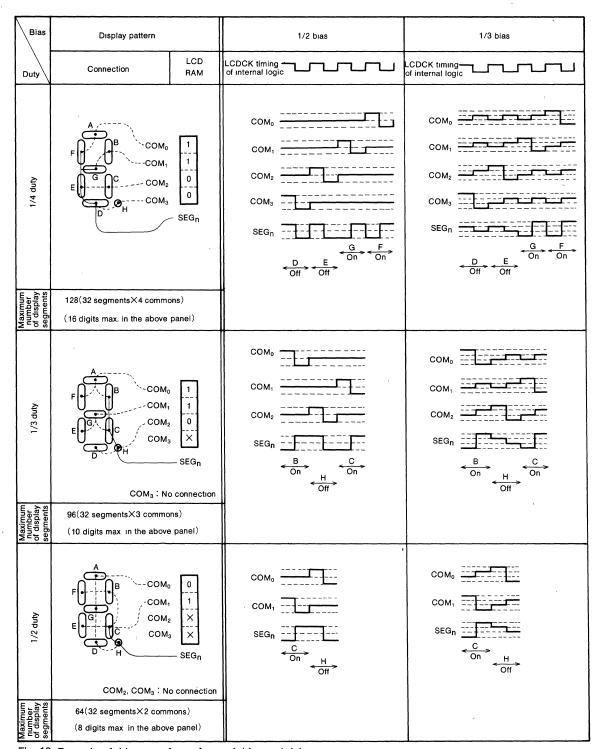


Fig. 18 Example of drive waveforms for each bias and duty

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

A-D CONVERTER

The A-D converter circuit is shown in Figure 20. The analog input ports of the A-D converter $(IN_0 \sim IN_7)$ are in common with the segment output ports.

The segment control register is located at address 00F4₁₆. One of the eight analog inputs is selected by bits 0, 1 and 2 of this register. The IN pins, not to use as analog input, uses as LCD segment output.

Bit 0, 1 and 2, and corresponding to analog input pin is shown in Figure 19. A-D conversion is accomplished by first selecting bit 0 and 1 of the A-D control register (address $00F2_{16}$) for the source of V_{REF} . And also the analog input pin is chosen by the analog input select bit of the segment control register. A-D conversion starts by writing a dummy data to the A-D register (address $00EF_{16}$) or changing the input level from SIG pin "H" to "L". When A-D conversion is finished, an interrupt is generated. After A-D interrupt is accepted, the result of A-D conversion can be read from the A-D register.

Note that the A-D conversion must be started to convert, after the reference voltage reaches stable level.

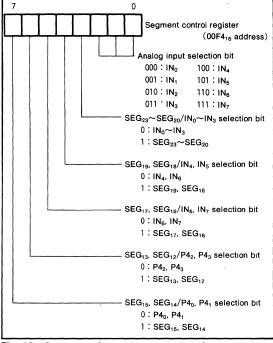


Fig. 19 Structure of segment control register

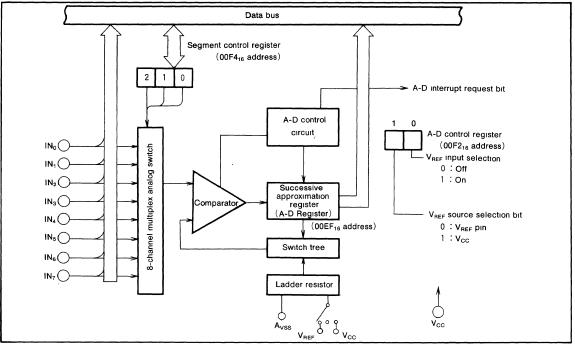


Fig. 20 A-D converter circuit

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

KEY ON WAKE UP

"Key on wake up" is one way of returning from a power down state caused by the STP or WIT instruction.

When the key on wake up option of port P2 is designated and key on wake up interrupt enable bit (IC₄) is set to "1", if the key on wake up option pin of port P2 has "L" level applied, key on wake up interrupt is generated and the microcomputer is returned to the normal operating state.

When the bit 4 of PWM control register (address 0053) is

When the bit 4 of PWM control register (address $00F3_{16}$) is set to "1", the pulse shown in Figure 21 is outputed from $P5_3$ pin.

As shown in Figure 22, if the key matrix of active "L" to input port P2 is constructed, the microcomputer is returned to normal operating state by the key push. Refer to the section of interrupt how to use the key on wake up function. In order to enter the power down state generated by the STP or WIT instruction at the interrupt disable flag (I) is "0" and IC4 is "1", the input designated as key on wake up by option in port P2 must be all "H".

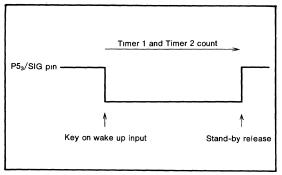


Fig. 21 Output from the SIG pin at wake up from the stop state

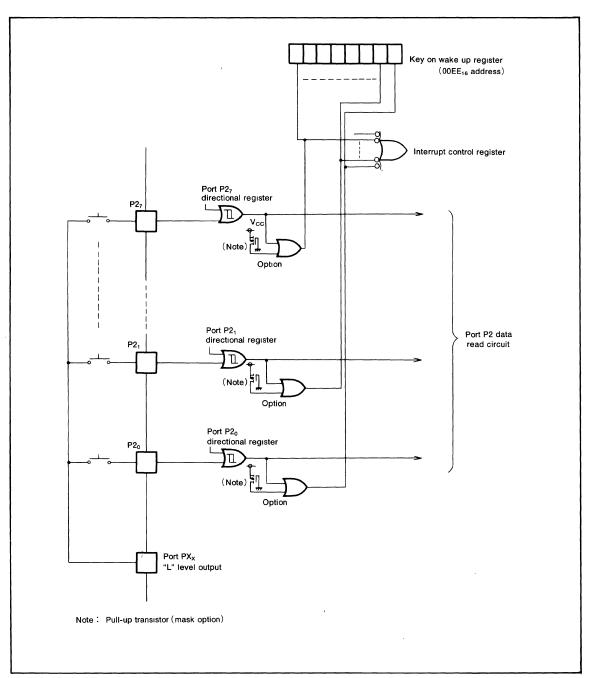


Fig. 22 Block diagram of port P2, and example of wired at used key on wake up

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

RESET CIRCUIT

The M37410M3HXXXFP is reset according to the sequence shown in Figure 25. It starts the program from the address formed by using the content of address 3FFF₁₆ as the high order address and the content of the address 3FFE₁₆ as the low order address, when the $\overline{\text{RESET}}$ pin is held at "L" level for no less than 16 μs while the power voltage is between 4 and 5.5V and the crystal oscillator oscillation is stable and

then returned to "H" level.

The internal initializations following reset are as shown in Figure 23 regardless of the status before reset (including stop mode or wait mode).

An example of the reset circuit is shown in Figure 24. When the power on reset is used, the $\overline{\text{RESET}}$ pin must be input "H" after the oscillation of $X_{\text{IN}}\text{-}X_{\text{OUT}}$ becomes stable.

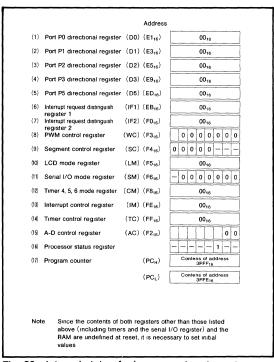


Fig. 23 Internal state of microcomputer at reset

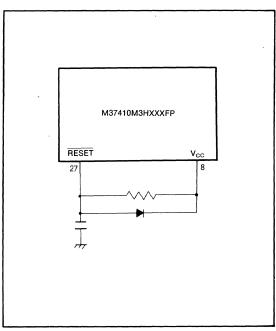


Fig. 24 Example of reset circuit

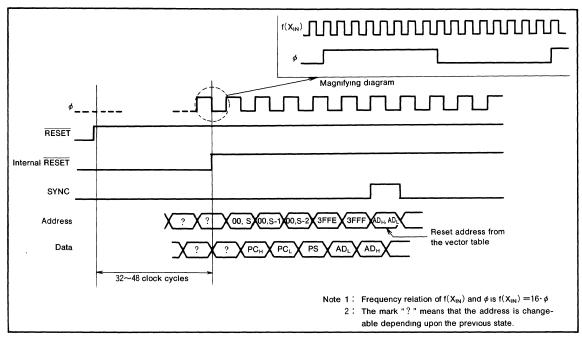


Fig. 25 Timing diagram at reset

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

I/O PORTS

(1) Port P0

Port P0 is an 8-bit I/O port with CMOS outputs and pull-up transistor options available. As shown in Figure 1, P0 can be accessed as memory through zero page address 00E0₁₆. Port P0's directional register allows each bit to be programmed individually as input or output. The directional register (zero page address 00E1₁₆) can be programmed as input with "0", or as output with "1". When in the output mode, the data to be output is latched to the port register and output. When data is read from the output port, the output pin level is not read, only the latched data of the port register is read. Therefore, a previously output value can be read correctly even though the output voltage level has been shifted up or down. Port pins set as input are in the high impedance state so the signal level can be read. When data is written into the input port, the data is latched only to the output register and the pin still remains in the high impedance state. This port can be built in a pull-up resistor option when it is used as a input port.

(2) Port P1

Port P1 has the same function as P0 but the output structure is N-ch open drain. This port can be built in a pull-up resistor option when it is used as a input port.

(3) Port P2

Port P2 has the same function as P0. The output structure is CMOS output. Following the execution of STP or WIT instruction, key matrix with port P2 can be used to generate the interrupt to bring the microcomputer back in its normal state. The pin to be used as the key on wake up must be with key on wake up option and its value in directional register must be "0". When P2 is used as a output port, pull-up option is inhibited.

(4) Port P3

Port P3 has the same functions P0 except that part of P3 is common with the serial I/O, output of timer4, clock oscillation of timer clock and interrupt input. The output is N-channel open drain. This port can be built in a pull-up resistor option. When P3 $_0$ and P3 $_1$ pins are used for $X_{\rm CIN}$ input, pull-up is inhibited.

(5) Port P4

Port P4 is an 4-bit input port which can be used as a segment output port. At reset, this port is pull-up to V_{L3}. Just after the reset, this port becomes high-impedance state. When port P4 is used as a segment output port, the pull-up option to these pins are inhibits.

(6) Port P5

Port P5 has the same functions as P0 except that part of P5 is common with the counter input pin, SIG pin, and PWM output pin. The output is N-channel open drain output. This port can be built in a pull-up resistor option.

- (7) Segment output(SEG₀~SEG₁₁) These ports drive and control the LCD segments. At reset, these output the level of V_{L3}.
- (8) Analog input(IN₀~IN₇) This is a port for an analog input of A-D converter. This can be used as the segment output. At reset, it is pullup to V_{L3}. Just after the reset, this becomes highimpedance state.
- (9) Common output(COM₀~COM₃) These port provides output drive and control for the LCD common lines. At reset, this outputs the level of
- (10) Power Supply for LCD(V_{L1}~V_{L3}) Supplies power to the LCD terminals.
- (11) INT₁

The INT₁ pin is an interrupt input pin. The INT₁ interrupt request bit (bit 7 of address $00FE_{16}$) is set to "1" when the input level of this pin changes from "H" to "L" (or "L" to "H"). This input level is read in the bit 7 of serial I/O mode register (addresss $00F6_{16}$).

(12) $INT_2(P3_2/INT_2)$

The INT₂ pin is an interrupt input pin common with P3₂. When P3₂'s directional register is set for input ("0"), this pin can be used as an interrupt input. The INT₂ interrupt request bit (bit 3 of address 00EB₁₆) is automatically set to "1" when the input level of this pin changes from "H" to "L" (or from "L" to "H").

(13) INT₃(P5₀/INT₃)

The INT_3 pin is an interrupt input pin common with $P5_0$. The other functions are the same as INT_2 .

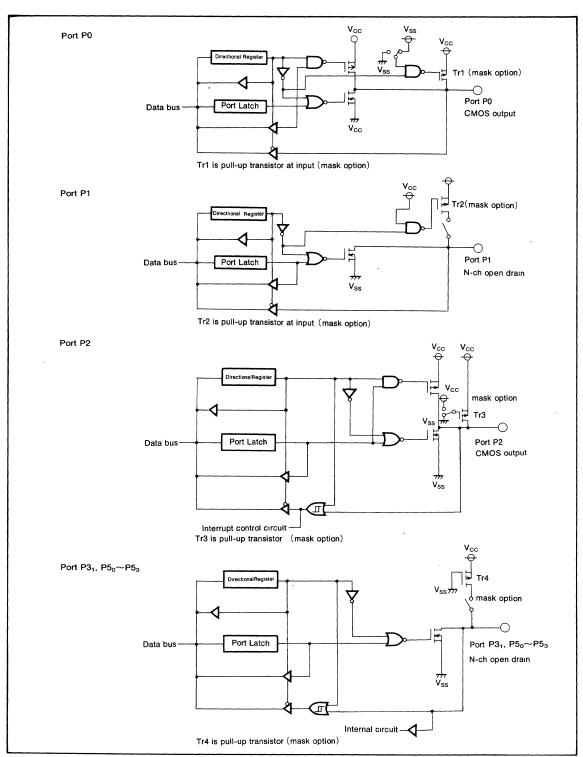


Fig. 26 Block diagram of ports P0~P2, P3, and P50~P53

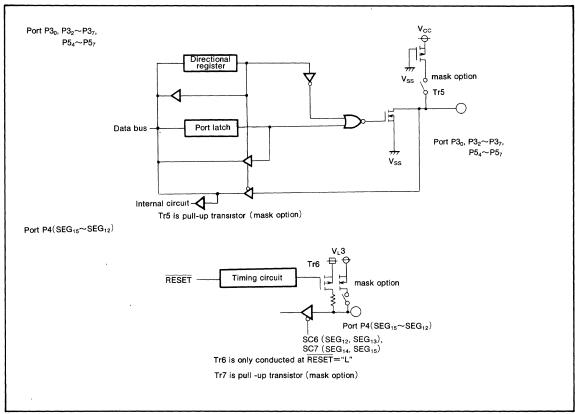


Fig. 27 Block diagram of Port P3₀, P3₂~P3₇, P4, P5₄~P5₇

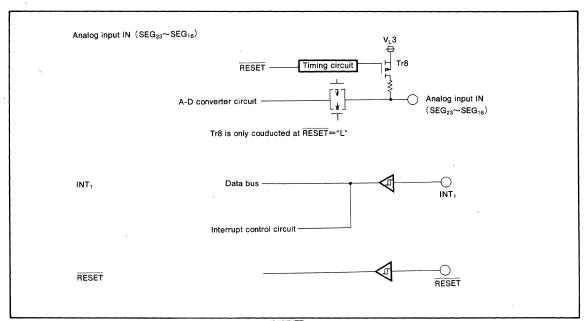


Fig. 28 Block diagram of analog input port IN, INT₁, RESET

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

CLOCK GENERATING CIRCUIT

The M37410M3HXXXFP has two internal clock generators. Figure 31 shows a block diagram of the clock generator. Normally, the frequency applied to the clock input pin $X_{\rm IN}$ divided by four is used as the internal clock (timing output) ϕ . Serial I/O mode register bit 5 can be used to switch the internal clock ϕ to 1/2 the frequency applied to the clock input pin $X_{\rm CIN}$. In this case, the pull-up option to these pins are inhibited.

These signals can also be changed via bit5 (LM_5) and bit6 (LM_6) of the LCD mode register. When LM_6 and LM_5 are [00], the internal clock is chosen $X_{IN}/16$. When they are [01], the internal clock is chosen $X_{IN}/4$. When they are [10] and [11], the internal clock is $X_{CIN}/2$. The one of clock X_{IN} and clock X_{CIN} , isn't in use for the internal clock (none system clock), stops when the bit6 (SM_6) of serial I/O mode register is "0". In order to restart the clock as the internal clock, SM_6 is set to "1" and wait until the oscillation becomes stability by the software then the internal clock is chosen LM_6 and LM_6 .

Figure 29 shows a circuit exmple using a ceramic (or crystal) oscillator. Use the manufacturer's recommended values for constants such as capacitance which is unique for each oscillator, when using an external clock signal, input from the $X_{\text{IN}}(X_{\text{CIN}})$ pin and leave the $X_{\text{OUT}}(X_{\text{COUT}})$ pin open. A circuit example is shown in Figure 30.

The M37410M3HXXXFP has two low power consumption modes, stop and wait. The microcomputer enters a stop mode when the STP instruction is executed. The oscillator (both X_{IN} clock and X_{CIN} clock) stops with the internal clock ϕ held at "H" level. In this case timer 1 and timer 2 are forcibly connected and $\phi/4$ is selected as timer 1 input. When restarting oscillation, set the suitable value for timer 1 and timer 2 in order to enable the oscillator to stabilize. Before executing the STP instruction, the timer 1 count stop bit must be set to supply ("0"), timer 2 interrupt enable bit (IF14) of interrupt request distinguish register 1 must be set to enable ("1"), timer 2 interrupt request bit (IF15) of interrupt request distinguish register must be set to disable ("0"). And serial I/O or timer 2 interrupt enable bit (TM₆) and serial I/O or timer 2 interrupt request bit (TM7) of timer control register must be set to disable ("0").

Oscillation is restarted (reset stop mode) when INT₁, INT₂, or INT₃ interrupt is received. The interrupt enable bit of the interrupt used to reset the stop mode must be set to "1". When restarting oscillation with an interrupt, the internal clock ϕ is held "H" until timer 2 overflows and is not supplied to the CPU. When oscillation is restarted by reset, "L" level must be applied to the $\overline{\text{RESET}}$ pin until the oscillation stabilizes because no wait time is generated.

The microcomputer enters a wait mode when WIT instruction is executed. The internal clock ϕ stops at "H" level, but the oscillator does not stop. ϕ is re-supplied (wait mode reset) when the processor is reset or when it receives an

interrupt. Instructions can be executed immediately because the oscillator is not stopped. The interrupt enable bit of the interrupt used to reset the wait mode must be set to "1" before executing the WIT instruction.

When the interrupt is accepted and after the interrupt subroutine is executed, the next instruction to STP or WIT is executed. It is possible to cancel stop and wait mode by reset. In this case, the execution is started from the address is set to reset vector.

Transition of states for the system clock is shown in Figure 32. The change order of the internal clock is shown in Figure 32.

When STP instruction is executed from the states of A, B, C, D and E, it will be the same state as H (stop state). If the interrupt is executed in stop state, it will return the state before STP instruction is executed.

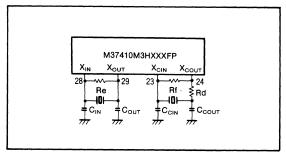


Fig. 29 External ceramic resonator circuit

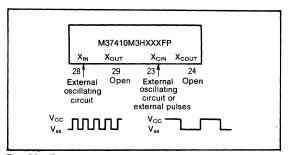


Fig. 30 External clock input circuit

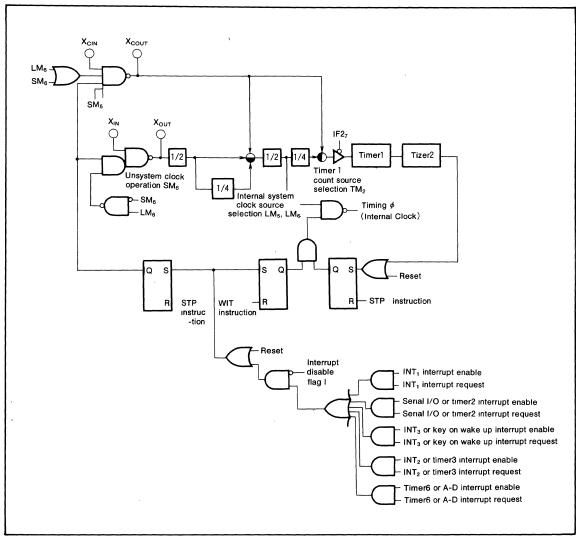


Fig. 31 Block diagram of clock generating circuit

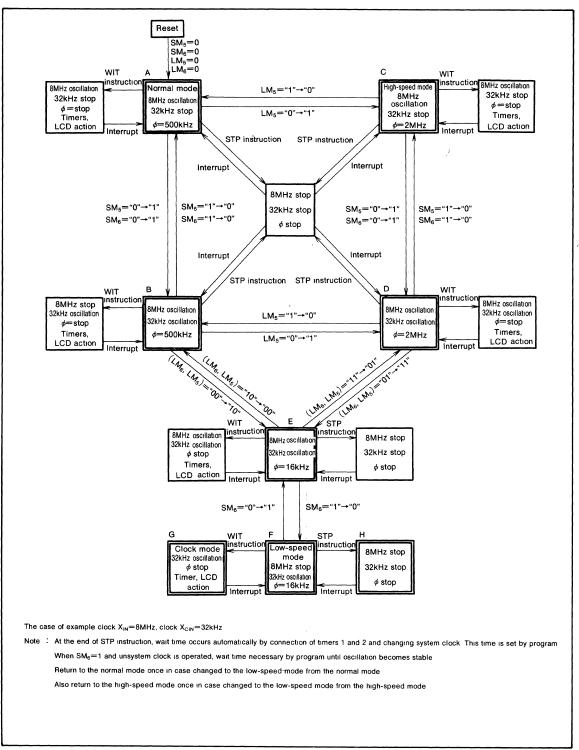


Fig. 32 Transition of states for the system clock

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

PROGRAMMING NOTES

- (1) The frequency ratio of the timer is 1/(n+1).
- (2) The count value of timers 1, 2, 3, 4 can be read at an arbitrary timing when the timing φ divided by 4 or timer overflow is input to these timers. If X_{CIN} or CNT₁ input is input to these timers, the value of timer 1, 2, 3, 4 must be read only when the input of timers is not changing or the timer count is stopped.

Also the count value of timers 5, 6 which are used in the event counter mode must be read when the external input is at the "L" level. When timers 5, 6 are used in the timer mode, the count value of these timers cannot be read.

- (3) Even though the BBC and BBS instructions are executed after the interrupt request bits are modified (by the program), those insructions are only valid for the contents before the modification. Also, at least one instruction cycle must be used (such as a NOP) between the modification of the interrupt request bits and the execution of the BBC and BBS instructions.
- (4) ① After the ADC and SBC instructions are executed (in decimal mode), one instruction cycle (such as a NOP) is needed before the SEC, CLC, or CLD instructions are executed.
 - ② In decimal mode, the negative (N), overflow (V) and zero (Z) flags are invalidated.
- (5) A NOP instruction must be used after the exection of a PLP instruction.
- (6) ① The timer 1 and timer 2 must be set the necessary value immediately before the execution of a STP instruction.

Also the following conditions must be satisfied:

- Timer 1 count stop bit is set to "0"
- Timer 2 interrupt enable bit is set to "1"
- . Timer 2 interrupt request bit is set to "0"
- Serial I/O or timer 2 interrupt enable bit is set to "0"
- Serial I/O or timer 2 interrupt request bit is set to "0"
- ② To restart oscillation when it is stopped by STP instruction or unsystem clock operation bit, wait for a specified time which is needed for the oscillator to stabilize.
- (7) Some instructions can be used to write contents of the interrupt request distinguish register 1, 2. If the SEB or CLB instruction or a set of instruction that acts as the SEB or CLB instruction (for instance, LDA TC+SEB 7, A+STA TC) is used, an interrupt request which is input during execution of these instructions may be cleared. Therefore, these instructions should be used only when there is no problem even if such an interrupt request is cleared. Usually, the LDM instruction or STA instruction is used. Especially to write contents of the interrupt request distinguish register 1, 2, use the flow chart as shown in Figure 33.

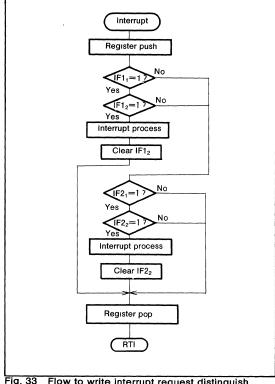


Fig. 33 Flow to write interrupt request distinguish registers

- (8) When LCD trun-on bit (bit 3 of address 00F5₁₆) of the LCD mode register is "1", don't stop the timers or count source for timers.
- (9) After switching the serial I/O transfer clock, initialize the serial I/O counter (write to address 00F7₁₆).
- (10) To use an external clock as the serial I/O transfer clock, initialize the serial I/O counter when the external clock is "H" level.
- (11) To use the P3₀ and P3₁ pins as the I/O pins of the clock for clock function, do not use the pull-up resistors by option.
- (12) If using A-D converter, supply power to the V_{REF} pin (set bits 1 and 2 of address 00F2₁₆), and make sure that the voltage of the V_{REF} pin has stabilized before activating the A-D conversion.

MITSUBISHI MICROCOMPUTERS

M37410M3HXXXFP,M37410M4HXXXFP M37410M6HXXXFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

DATA REQUIRED FOR MASK ORDERING

Please send the following data for mask orders.

- (1) mask ROM confirmation form
- (2) mark specification form
- (3) ROM data ····· EPROM 3sets

Write the following option on the mask ROM confirmation form

- · Port P0 pull-up transistor bit
- · Port P1 pull-up transistor bit
- · Port P2 pull-up transistor bit
- · Port P3 pull-up transistor bit
- Port P4 pull-up transistor bit
- · Port P5 pull-up transistor bit
- · Port P2 key on wake up

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
V _{CC}	Supply voltage		-0.3~7	V
Vı	Supply voltage for LCD V _{L1} ~V _{L3}	$V_{L1} < V_{L2} < V_{L3}$	$-0.3 \sim V_{cc} + 0.3$	V
Vı	Input voltage P0 ₀ ~P0 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ , P3 ₁ , P4 ₀ ~P4 ₃ , IN ₀ ~IN ₇ , V _{REF} , X _{IN}		-0.3∼V _{cc} +0.3	V
Vı	Input voltage CNV _{SS}		−0.3~7	V
`V _I	Input voltage INT ₁ , RESET, P1 ₀ ~P1 ₇ , P3 ₂ ~P3 ₇ , P5 ₀ ~P5 ₇ (Note 1)		−0.3~10	v
Vo	Output voltage P0 ₀ ~P0 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ , P3 ₁ , COM ₀ ~COM ₃ , SEG ₀ ~SEG ₂₃ , X _{OUT}		-0.3~V _{cc} +0.3	v
Vo	Output voltage P1 ₀ ~P1 ₇ , P3 ₂ ~P3 ₇ , P5 ₀ ~P5 ₇		-0.3~10	V
Pd	Power dissipation	T _a = 25℃	300	mW
Topr	Operating temperature		-20~75	°C
Tstg	Storage temperature		−40~125	င

Note 1 : When these ports are built in a pull-up resistor option, the value is $-0.3 \sim V_{CC} + 0.3 V$

RECOMMENDED OPERATING CONDITIONS (V_{CC}=2.5~5.5V, V_{SS}=0 V, T_a=-20~75°C, unless otherwise noted)

Symbol	Parameter	0	Limits			Unit
Symbol	Parameter	Conditions	Mın	Тур	Max	Unit
		f(X _{IN})= 8 MHz High-speed mode	4.5		5.5	
V_{CC}	Supply voltage (Note 1)	f(X _{IN})= 8 MHz Normal mode or	2.5			V
		f(X _{IN})= 2 MHz High-speed mode (Note 2)	2.5		5.5	
V _{ss}	Supply voltage			0		V
	"H" input voltage P0 ₀ ~P0 ₇ , P3 ₀ , P3 ₁ , P4 ₀ ~P4 ₃ ,		0.71		٠,,	.,
V _{IH}	X _{IN} , CNV _{SS} (Note 3)		0.7V _{CC}		V _{cc}	V
V _{IH}	"H" input voltage P20~P27		0.8V _{CC}		Vcc	٧
V _{IH}	"H" input voltage P1 ₀ ~P1 ₇ , P5 ₁ ~P5 ₇ , S _{IN}		0.7V _{cc}		10	٧
	"H" input voltage P32~P37, P50, INT1, INT2, INT3,		0.014		10	
V _{IH}	CNT ₁ , CNT ₂ , SIG, CLK	1	0.8V _{CC}		10	V
ViH	"H" input voltage RESET, X _{CIN}	·	0.85V _{CC}		10	V
.,	"L" input voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P3 ₀ , P3 ₁ ,	*			0.0514	.,
V _{IL}	P4 ₀ ~P4 ₃ , P5 ₁ ~P5 ₇ , S _{IN}		0		0.25V _{CC}	V
VIL	"L" input voltage P2 ₀ ~P2 ₇ , P3 ₂ ~P3 ₇ , P5 ₀ , INT ₁ ,		0		0.214	V
▼ IL	INT ₂ , INT ₃ , CNT ₁ , CNT ₂ , SIG, CLK		0		0.2V _{CC}	V
VIL	"L" input voltage RESET, X _{IN} , X _{CIN}		0		0.15V _{CC}	V
I _{OH}	"H" output current P0 ₀ ~P0 ₇ , P2 ₀ ~P2 ₇ , X _{OUT} (Note 4)				-1	mA
	"L" output current P0 ₀ ~P0 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₇					
loL	P5 ₀ ~P5 ₇ , X _{OUT} , PWM0~PWM3,				1	mA
	T, S _{OUT} , CLK, S _{RDY} , SIG (Note 5)					
loL	"L" output current P1 ₀ ~P1 ₇ (Note 6)	V _{CC} =3V			10	mA
'OL	L output current 1 in 1177 (Note 0)	V _{CC} =5V			20	ША
f(X _{IN})	Clock oscillating frequency		0. 2		8. 2	MHz
f(X _{CIN})	Clock oscillating frequency for clock function		30		50	kHz

Note 1: When only maintaining the RAM data, minimum value of V_{CC} is $2\,V$

- 2 : We say the high-speed mode, when the system clock is chosen X_{IN}/4, and the low-speed mode, when the system clock is chosen X_{IN}/16.
- 3 : When P3₁ is used as X_{CIN} , V_{IH} and V_{IL} of P3₁ is $0.85V_{CC} \le V_{IH} \le V_{CC}$ and $0 \le V_{IL} \le 0.15V_{CC}$
- 4 : The total l_{oht}(peak) of port P0, P2 and X_{out} is less than 35mA 5 : The total l_{oht}(peak) of port P0, P2, P3 and P5 is less than 32mA
- 6: The total peak current of IoL of port P1 is less than 80mA and the average current of total IoL of port P1 is less than 40mA

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

ELECTRICAL CHARACTERICS ($V_{ss}=0$ V, $T_a=-20\sim75$ °C, unless otherwise noted)

Symbol	Porc	meter	Test of	onditions		Limits		Unit
Symbol	Fala	meter	rest of	onditions	Min	Тур	Max	Oille
.,	"H" output voltage P0 ₀ ~P0 ₇	D0 - D0	V _{CC} =5V, I _{OH} =-0.5m	nA	4			V
V _{OH}	n output voltage Po ₀ ~Po ₇	P20~P27	V _{CC} =3V, I _{OH} =-0.3mA		2. 4			· ·
.,	"I I" autaut valtana V		V _{CC} =5V, I _{OH} =-0. 3mA		4			V
V _{OH}	"H" output voltage X _{OUT}		V _{CC} =3V, I _{OH} =-0.1m	nA	2. 4			. •
	"L" output voltage P0 ₀ ~P0 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₇ ,		V _{CC} =5V, I _{Cl} =1mA				1	
VoL		P5₀~P5₁, T, S _{OUT} , CLK,			-			V
	S _{RDY} , SIG	S _{RDY} , SIG, PWM0~PWM3					0.6	
VoL	"I " autout valtage D1 - D1		V _{CC} =5V, I _{OL} =20mA				2	v
VOL.	L output voltage F10 FF17	"L" output voltage P1 ₀ ~P1 ₇					1.5	
V	"I " output voltage V		V _{CC} =5V, I _{OL} =0.3mA				1	V
V _{OL}	"L" output voltage X _{OUT}		V _{CC} =3V, I _{OL} =0. 1mA				0.6	V
	Hysteresis INT ₁ , INT ₂ , INT ₃ ,	CLK, CNT ₁ ,	V _{cc} =5V			0.2		V
$V_{T+}-V_{T-}$	CNT ₂ , SIG, S _{IN} , F	2 ₀ ~P2 ₇ ,X _{CIN}	V _{CC} =3V			0.2		V
., .,			V _{CC} =5V			2		.,
V _{T+} V _T	Hysteresis RESET		V _{CC} =3V			1.0		V
			V _{CC} =5V			0.5		
V _{T+} V _{T-}	Hysteresis X _{IN}		V _{CC} =3V			0.35		V
	"L" input current P00~P07, P10~P17, P20~P27, P30~P37,		V _{CC} =5V V _I =0V				-5	
I _{IL}	P4 ₀ ~P4 ₃ , P5 ₀ ~	-P57 without pull-up Tr, (Note 1),			ļ			μA
	IN ₀ ~IN ₇ , INT ₁ ,	RESET, XIN	V _{cc} =3V V _i =0V				-3	
	"H" input current P00~P07, I	P2 ₀ ~P2 ₇ , P3 ₀ , P3 ₁ ,	V _{CC} =5V V _I =5V				5	A
I _{IH}	P4 ₀ ~P4 ₇ , I	No~IN7, XIN, XCIN, CNVSS	V _{CC} =3V V _I =3V				3	μΑ
	"H" input current {P10~P17, P307	~P3 ₇ , P5 ₀ ~P5 ₇ without pull-up T _r ,						
I _{IH}	INT ₁ , INT ₂ , INT	3, CNT ₁ ,	v _i =10v				10	μA
	CNT ₂ , SIG, RE	SET, S _{IN} , CLK						
R _{PL}	Pull-up T _r , P0 ₀ ~P0 ₇ , P1 ₀ ~P	1 ₇ , P2 ₀ ∼P2 ₇ ,	V _{CC} =5V, V _I =0V		7	15	30	kΩ
ΠPL	P3 ₀ ~P3 ₇ , P4 ₀ ~P	4 ₃ , P5 ₀ ∼P5 ₇	V _{CC} =3V, V _I =0V		10	30	60	K42
R _{COM}	Output impedance COM ₀ ~C	OM-	V _{L1} =V _{CC} /3	V _{CC} =5V		200		Ω
	Output impedance COM6 - C		V _{L2} =2V _{L1} , V _{L3} =V _{CC}	V _{CC} =3V		500		
Rs	Output impedance SEG ₀ ~S	FG	Other COM, SEG	V _{CC} =5V	2		kΩ	
	Output impedance of G0.43		pins are opened	V _{CC} =3V		3		
			f(X _{IN})=8MHz High-s			6	12	mA
	at operation	f(X _{IN})=8MHz Normal mode V _{CC} =3V				8		
Icc	Supply current		$f(X_{CIN})=32kHz, V_{CC}=3V$			18	36	μA
·CC	Supply current at wait mode	f(X _{IN})=8MHz Normal mode V _{CC} =3V			1		mA	
		at wait mode	$f(X_{CIN})=32kHz, V_{CC}=$	=3V		4	12	μA
		at stop mode	T _a =25℃			0.1	0.6	μ.
V _{RAM}	RAM retention voltage				2		5.5	V

Note 1: Also the same when each port is used as INT₂, INT₃, CNT₁, CNT₂, SIG, S_{IN} and X_{CIN}, respectively

MITSUBISHI MICROCOMPUTERS

M37410M3HXXXFP,M37410M4HXXXFP M37410M6HXXXFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

$\textbf{A-D} \quad \textbf{CONVERTER} \quad \textbf{CHARACTERISTICS} \; (V_{cc} = 5V, V_{ss} = AV_{ss} = 0 \; V, \; T_a = 25^{\circ}C, \; f(X_{IN}) = 8 \; \text{MHz, unless otherwise noted})$

Complexed	Deservator	Took conditions	Limits			Unit	
Symbol	Parameter	Test conditions	Mın	Тур	Тур Мах		
	Resolution				8	bits	
	Non-linearth error	V _{CC} =V _{REF} =5. 12V			±2	LCD	
	Non-linearity error	V _{CC} =V _{REF} =3. 072V			±2	LSB	
	Differential non-linearity	V _{CC} =V _{REF} =5. 12V			±0.9	LSB	
Diffe		V _{CC} =V _{REF} =3. 072V			±0.9		
.,	Zero transition error	V _{CC} =V _{REF} =5. 12V			2	LSB	
V _{OT}		V _{CC} =V _{REF} =3. 072V			2		
.,	Full coals transition areas	V _{CC} =V _{REF} =5. 12V			6	LSB	
V _{FST}	Full-scale transition error	V _{CC} =V _{REF} =3. 072V			10	LSB	
_	Conversion time	V _{CC} =2.5~5.5V High-speed mode		200/f(X _{IN})			
T _C	Conversion time	V _{CC} =2.5~5.5V Normal mode		800/f(X _{IN})		μS	
	Defended in the second	V _{REF} =5V		1.0	2. 5		
IREF	Reference input current	V _{REF} =3V		0.5	1.5	mA	
I _{IN}	Analog port input current	V _{IN} =0~V _{CC}		1	10	μΑ	
V _{IN}	Analog input voltage	V _{CC} =2.5~5.5V	AVss		V _{CC}	٧	
V _{REF}	Reference input voltage		2. 5		V _{CC}	٧	

MITSUBISHI MICROCOMPUTERS

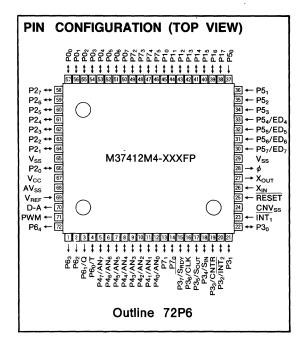
M37412M4-XXXFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

DESCRIPTION

The M37412M4-XXXFP is a single-chip microcomputer designed with CMOS silicon gate technology. It is housed in a 72-pin plastic molded QFP.

This single-chip microcomputer is useful for household appliance and other consumer applications.

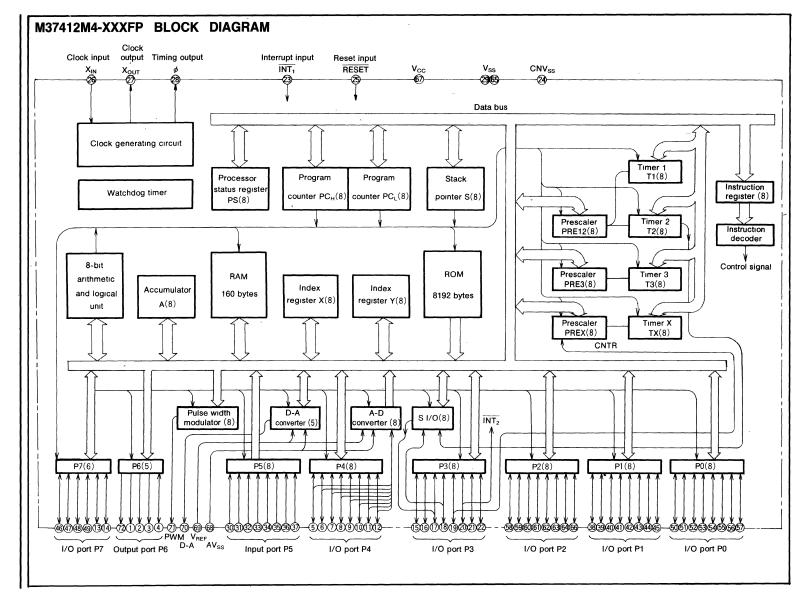

In addition to its simple instruction set, the ROM, RAM, and I/O addresses are placed on the same memory map to enable easy programming.

FEATURES

•	Number of ba	sic instructions·····	69
ullet	Memory size	ROM 8192 by	tes
		RAM160 by	tes
•	Instruction exe	ecution time	
	······ 2μs	(minimum instruction, at 4MHz frequence	су)
•	Single power	supply ·····5V±1	0%
•	Power dissipa	tion	
	normal oper	ration mode (at 4MHz frequency)····15r	nW
•	Subroutine ne	sting ······80 levels (Ma	x.)
•	Interrupt	······7 types, 5 vect	ors
•	8-bit timer ·····		⋯ 4
•		e I/O ports (Ports P0, P1, P2, P3, P4, I	
•	Programmable	e I/O ports (Ports P0, P1, P2, P3, P4, I	⊃7) 46
•	Programmable Input port (Po	e I/O ports (Ports P0, P1, P2, P3, P4, I	⊃7) 46 8
•	Input port (Po	e I/O ports (Ports P0, P1, P2, P3, P4, I	⊃7) 46 ···8 ···5
•	Input port (Po	e I/O ports (Ports P0, P1, P2, P3, P4, I	⊃7) 46 ···8 ···5
• • • • • •	Input port (Po Output port (F Serial I/O (8-I	e I/O ports (Ports P0, P1, P2, P3, P4, I	-7) -46 8 5
• • • • • • •	Input port (Po Output port (F Serial I/O (8-I 8-bit A-D cont 5-bit D-A cont	e I/O ports (Ports P0, P1, P2, P3, P4, I	27) 46 ··· 8 ··· 5 ··· 1 ··· 1
• • • • • • •	Programmable	e I/O ports (Ports P0, P1, P2, P3, P4, I rt P5) Port P6) bit)	97) 46 ··· 8 ··· 5 ··· 1 ··· 1 ··· 1

APPLICATION

VCR, Tuner, Audio-visual equipment Office automation equipment



SINGLE-CHIP

8-BIT

CMOS

MICROCOMPUTER

M37412M4-XXXFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

FUNCTIONS OF M37412M4-XXXFP

	Parameter		Functions	
Number of basic instructions			69	
Instruction execution time			2μs (minimum instructions, at 4MHz frequency)	
Clock frequency			4MHz	
Memory size	ROM		8192bytes	
Memory size	RAM		160bytes	
	ĪNT ₁	Input	1-bitX1	
	P0, P1, P2, P3, P4	1/0	8-bit×5 (a part of P3 is common with serial I/O, timer I/O, and interrupt input)	
Input/Output ports	P5	Input	8-bit×1	
	P6	Output	5-bit×1 (a part of P6 is common with external trigger output pin)	
	P7	1/0	6-bit×1	
Serial I/O			8-bit×1	
Timers			8-bit prescaler×3+8-bit timer×4	
A-D conversion			8-bit×1 (8 channels)	
D-A conversion			5-bit×1	
Pulse width modulator			8-bit×1	
Watchdog timer			15-bit×1	
Subroutine nesting			80 levels (max)	
Interrupts			Two external interrupts, Three internal timer interrupts	
Clock generating circuit			Built-ın (ceramic or quartz crystal oscillator)	
Supply voltage			5V±10%	
Power dissipation			15mW (at 4MHz frequency)	
In most (Outmost ob assessment)	Input/Output voltage		12V (Ports P0, P1, P3, P4, P5, P6, P7, INT ₁)	
Input/Output characteristics	Output current		5mA (Ports P0, P1, P2, P3, P4, P7)	
Memory expansion			Possible	
Operating temperature range	•		-10~70℃	
Device structure			CMOS silicon gate process	
Package			72-pin plastic molded QFP	

M37412M4-XXXFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

PIN DESCRIPTION

Pın	Name	Input/ Output	Functions	
V _{CC} , V _{SS}	Supply voltage		Power supply inputs 5V \pm 10% to V _{CC} , and 0V to V _{SS}	
CNV _{ss}	CNV _{SS}		This is usually connected to V _{SS} .	
RESET	Reset input	Input	To enter the reset state, the reset input pin must be kept at a "L" for more than $2\mu s$ (under norm conditions). If more time is needed for the crystal oscillator to stabilize, this "L" condition should be tained for the required time	
X _{IN}	Clock input	Input	This chip has an internal clock generating circuit. To control the generation frequency, an external ceramic or a quartz crystal oscillator is connected between the X _{IN} and X _{OUT} pins. If an external clock is used, the	
Хоит	Clock output	Output	clock source should be connected to the X _{IN} pin and the X _{OUT} pin should be left open	
φ	Timing output	Output	This is the timing output pin	
ĪNT ₁	Interrupt input	Input	This is the highest order interrupt input pin	
AVss	Voltage input for A-D and A-D		This is GND input pin for the A-D and D-A converters	
V _{REF}	Reference voltage	Input	This is reference voltage input pin for the A-D and D-A converters	
D-A	D-A output	Output	This is output pin from the D-A converter	
PWM	PWM output	Output	This is output pin from the pulse width modulator The output structure is N-channel open drain	
P0 ₀ ~P0 ₇	I/O port P0	1/0	Port P0 is an 8-bit I/O port with directional register allowing each I/O bit to be individually programmed as input or output. At reset, this port is set to input mode. The output structure is N-channel open drain	
P1 ₀ ~P1 ₇	I/O port P1	1/0	Port P1 is an 8-bit I/O port and has basically the same functions as port P0 The output structure is N-channel open drain	
P2 ₀ ~P2 ₇	I/O port P2	1/0	Port P2 is an 8-bit I/O port and has basically the same functions as port P0, but the output structure is CMOS output	
P3 ₀ ~P3 ₇	I/O port P3	1/0	Port P3 is an 8-bit I/O port and has basically the same functions as port P0. When serial I/O is used, P3 ₇ , P3 ₆ , P3 ₅ , and P3 ₄ work as $\overline{S_{RDY}}$, CLK, S_{OUT} , and S_{IN} pins, respectively. Also P3 ₃ and P3 ₂ work as CNTR pin and the lowest interrupt input pin ($\overline{INT_2}$), respectively.	
P4 ₀ ~P4 ₇	I/O port P4	1/0	Port P4 is an 8-bit I/O port and has basically the same functions as port P0. P4 ₇ ~P4 ₀ work as analog input port AN ₇ ~AN ₀ . The output structure is N-channel open drain	
P5 ₀ ~P5 ₇	Input port P5	Input	Port P5 is an 8-bit input port P5 ₄ ~P5 ₇ can be used as the edge sense inputs	
P6 ₀ ~P6 ₄	Output port P6	Output	Port P6 is a 5-bit output port. At external trigger output mode, P60 and P61 are in common with the trigger input pin (T) and the trigger output pin (Q), respectively. The output structure is N-channel open drain.	
P7 ₀ ~P7 ₅	I/O port P7	1/0	Port P7 is a 6-bit I/O port and has basically the same functions as port P0. The output structure is N-channel open drain	

FUNCTIONAL DESCRIPTION Central Processing Unit (CPU)

The M37412 microcomputers use the standard MELPS 740 instruction set. For details of instructions, refer to the MELPS 740 CPU core basic functions, or the MELPS 740 Software Manual.

Machine-resident instructions are as follows:

The FST and SLW instructions are not provided.

The MUL and DIV instructions are not provided.

The WIT instruction can be used.

The STP instruction can be used.

Timer Control Register

The timer control register is allocated to address 00FF₁₆. Bits 0 and 1 of this register are processor mode bits. This register also has a stack page selection bit.

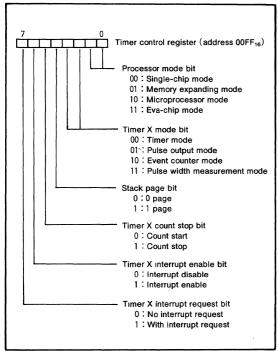


Fig. 1 Structure of timer control register

MEMORY

· Special Function Register (SFR) Area

The special function register (SFR) area contains the registers relating to functions such as I/O ports and timers.

• RAM

RAM is used for data storage as well as a stack area.

• ROM

ROM is used for storing user programs as well as the interrupt vector area.

• Interrupt Vector Area

The interrupt vector area is for storing jump destination addresses used at reset or when an interrupt is generated.

Zero Page

Zero page addressing mode is useful because it enables access to this area with fewer instruction cycles.

Special Page

Special page addressing mode is useful because it enables access to this area with fewer instruction cycles.

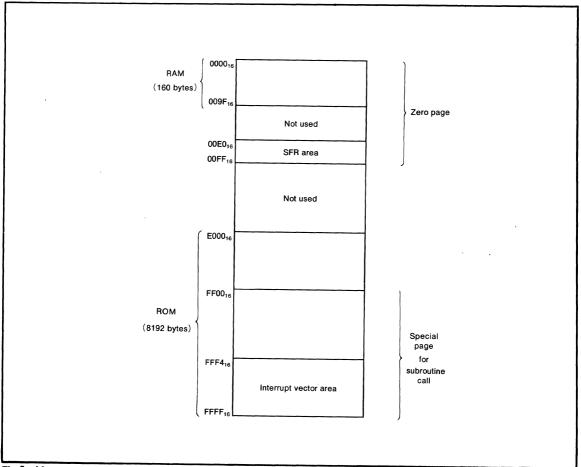


Fig.2 Memory map

00E0 ₁₆	Port P0	00F0 ₁₆	D-A conversion register
00E1 ₁₆	Port P0 directional register	00F1 ₁₆	Pulse width modulation register
00E2 ₁₆	Port P1	00F2 ₁₆	Successive approximation register
00E3 ₁₆	Port P1 directional register	00F3 ₁₆	A-D control register
00E4 ₁₆	Port P2	00F4 ₁₆	Watchdog timer
00E5 ₁₆	Port P2 directional register	00F5 ₁₆	Serial I/O mode register
00E6 ₁₆	Port P7	00F6 ₁₆	Serial I/O register
00E7 ₁₆	Port P7 directional register	00F7 ₁₆	Timer 3 prescaler
00E8 ₁₆	Port P3	00F8 ₁₆	Timer 3
00E9 ₁₆	Port P3 directional register	00F9 ₁₆	Timer 1, 2 prescaler
00EA ₁₆	Port P4	00FA ₁₆	Timer 1
00EB ₁₆	Port P4 directional register	00FB ₁₆	Timer 2
00EC ₁₆	Port P5	00FC ₁₆	Timer X prescaler
00ED ₁₆	Port P5 latch	00FD ₁₆	Timer X
00EE ₁₆	Port P6	00FE ₁₆	Interrupt control register
00EF ₁₆	Special function selection register	00FF ₁₆	Timer control register

Fig. 3 SFR (Special Function Register) memory map

INTERRUPT

The M37412M4-XXXFP can be interrupted from seven sources; $\overline{INT_1}$, timer X, timer 1, timer 2/serial I/O, or $\overline{INT_2}$ /BRK instruction.

However, the $\overline{\text{INT}_2}$ pin is used with port P3₂ and the corresponding directional register bit should be set to "0" when P3₂ is used as an interrupt input pin.

The value of bit 2 of the serial I/O mode register (address $00F5_{16}$) determine whether the interrupt is from timer 2 or from serial I/O. When bit 2 is "0" the interrupt is from timer 2, and when bit 2 is "1" the interrupt is from serial I/O. Also, when the bit 2 is "1", parts of port P3 are used for serial I/O. These interrupts are vectored and their priorities are shown in Table 1. Reset is included in this table since it has the same functions as the interrupts.

Table 1. Interrupt vector address and priority

Interrupt	Priority	Vector address
RESET	1	FFFF ₁₆ , FFFE ₁₆
INT ₁	2	FFFD ₁₆ , FFFC ₁₆
Timer X	3	FFFB ₁₆ , FFFA ₁₆
Timer 1	4	FFF9 ₁₆ , FFF8 ₁₆
Timer 2 or serial I/O	5	FFF7 ₁₆ , FFF6 ₁₆
INT ₂ (BRK)	6	FFF5 ₁₆ , FFF4 ₁₆

When an interrupt is accepted, the contents of certain registers are pushed into specified locations, the interrupt disable flag I is set, the program jumps to the address specified by the interrupt vector, and the interrupt request bit is cleared automatically. The reset interrupt is the highest priority interrupt and can never be inhibited. Except for the reset interrupt, all interrupt are inhibited when the interrupt disable flag I is set to "1". All of the other interrupts can further be controlled individually via the interrupt control register shown in Figure 4. An interrupt is accepted when the interrupt enable bit and the interrupt request bit are both "1" and the interrupt disable flag is "0".

The interrupt request bits are set when the following conditions occur:

- (1) When the $\overline{INT_1}$ or $\overline{INT_2}$ pins go from "H" to "L"
- (2) When the contents of timer X, timer 1, timer 2 (or the serial I/O counter) go to "0"

These request bits can be reset by the program but can not be set by the program. However, the interrupt enable bit can be set and reset by the program.

Since the BRK instruction and the $\overline{\text{INT}_2}$ interrupt have the same vectored address, the contents of the B flag must be checked to determine if the BRK instruction caused the interrupt or if $\overline{\text{INT}_2}$ generated the interrupt.

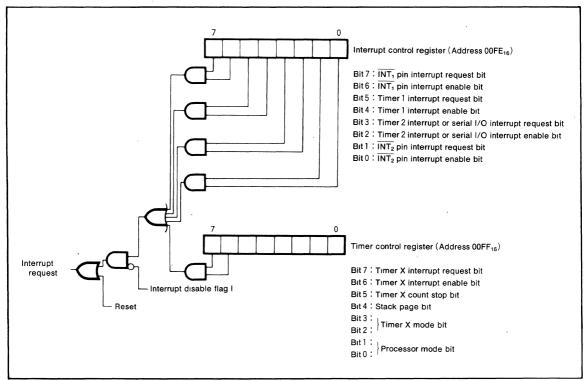


Fig. 4 Interrupt control

TIMER

The M37412M4-XXXFP has three timers; timer X, timer 1, timer 2 and timer 3. Since P3 (in serial I/O mode) and timer 2 use some of the same architecture, they cannot be used at the same time (see serial I/O section). Timer X has four modes which can be selected by bit 2 and 3 of the timer control register. When the timer X count stop bit (bit 5) is set to "1", the timer X will stop regardless of which mode it is in. A block diagram of timer X, timer 1, timer 2 and timer 3 is shown in Figure 5.

The P3 $_3$ /CNTR pin cannot be used as CNTR when P3 $_3$ is being used in the normal I/O mode.

Timer 1 and timer 2 share with a prescaler. This prescaler has an 8-bit programmable latch used as a frequency divider. The division ratio is defined as 1/(n+1), where n is the decimal contents of the prescaler latch. All four timers are down-count timers which are reloaded from the timer latch following the zero cycle of the timer (i.e. the cycle after the timer counts to zero).

The timer interrupt request bit is set to "1" during the next clock pulse after the timer reaches zero. The interrupt and timer control registers are located at addresses 00FE₁₆ and 00FF₁₆, respectively (see Interrupt section). The prescaler latch and timer latch can be loaded with any number.

The four modes of timer X as follows:

- (1) Timer mode [00]
 - In this mode the clock is driven by the oscillator frequency divided by 16. When the timer down-counts to zero, the timer interrupt request bit is set to "1" and the contents of the timer's latch is reloaded into the timer and the counting begins again.
- (2) Pulse output mode (01)
 - In this mode, the polarity of the CNTR signal is reversed each time the timer down-counts to zero.
- (3) Event counter mode [10]
 - This mode operates in the same manner as the timer mode except, the clock source is input to the CNTR pin. This mode will allow an interrupt to be generated whenever a specified number of external events have been generated. The timer down-counts every rising edge of the clock source.

(4) Pulse width measurement mode [11]

This mode measures the pulse width (between lows) input to the CNTR pin. The timer, driven by the oscillator frequency divided by 16, continues counting during the low cycle of the CNTR pin. When the timer contents reaches "0", the interrupt request bit is set to "1", the timer's reload latch is reloaded and the counting resumes.

The structure of the timer control register is shown in Figure 6.

When the STP instruction is executed, or after reset, the prescaler and timer latch are set to FF₁₆ and 01₁₆, respectively. Also, when the STP instruction is executed, the oscillator's frequency (divided by 16) will become the counting source, regardless of the timer X mode setting. This state will be released when the timer X interrupt request bit is set to "1", or after a reset. Timer X will then enter the mode specified by its mode bits. For more details on the STP instruction, refer to the oscillation circuit section.

The function of timer 3 is as same as that of timer 1 and timer 2, with the exception that the detection of its overflow is known by the overflow bit (bit 3 of address $00EF_{16}$). When the timer down-counts to zero, the overflow bit is set to "1" and the contents of the timer's latch is reloaded into the timer.

The reset of the overflow bit is made by:

- a) hard ware reset
- b) write "0" to overflow bit
- c) write instruction to timer 3

The structure of special function selection register is shown in Figure 7.

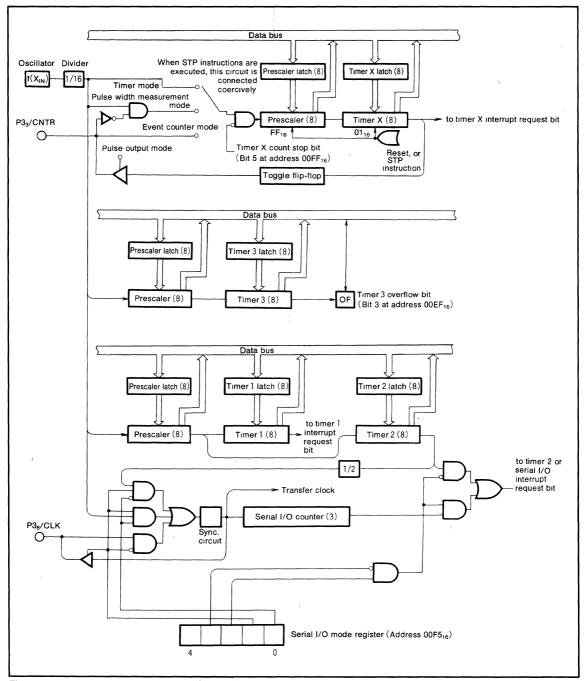


Fig. 5 Block diagram of timer X, timer 1, timer 2, and timer 3

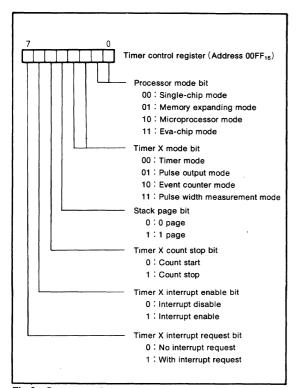


Fig.6 Structure of timer control register

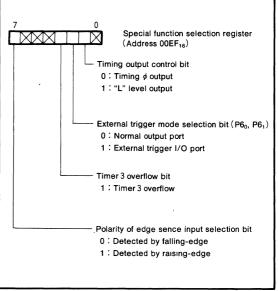


Fig.7 Structure of special function selection register

SERIAL I/O

A block diagram of the serial I/O is shown in Figure 8. In the serial I/O mode the receive ready signal $(\overline{S_{RDY}})$, synchronous input /output clock (CLK), and the serial I/O pins $(S_{OUT},\,S_{IN})$ are used as P37, P36, P35, and P34, respectively. The serial I/O mode register (address 00F516) is a 5-bit register. Bits 1 and 0 of this register is used to select a synchronous clock source.

When these bits are (00) or (01), an external clock from P36 is selected. When these bits are (10), the overflow signal from timer 2, divided by two, becomes the synchronous clock. Therefore, changing the timer period will change the

transfer speed. When the bits are [11], the oscillator frequency divided by 16, becomes the clock.

Bit 2 to 4 decide whether parts of P3 will be used as a serial I/O or not. When bit 3 is "0" and bit 2 is "1", P3 $_6$ becomes an I/O pin of the synchronous clock. When an internal synchronous clock is selected, the clock is output from P3 $_6$. If an external synchronous clock is selected, the clock is input to P3 $_6$ and P3 $_5$ will be a serial output and P3 $_4$ will be a serial input. To use P3 $_4$ as a serial input, set the directional register bit which corresponds to P3 $_4$ to "0". For more information on the directional register, refer to the I/O pin section.

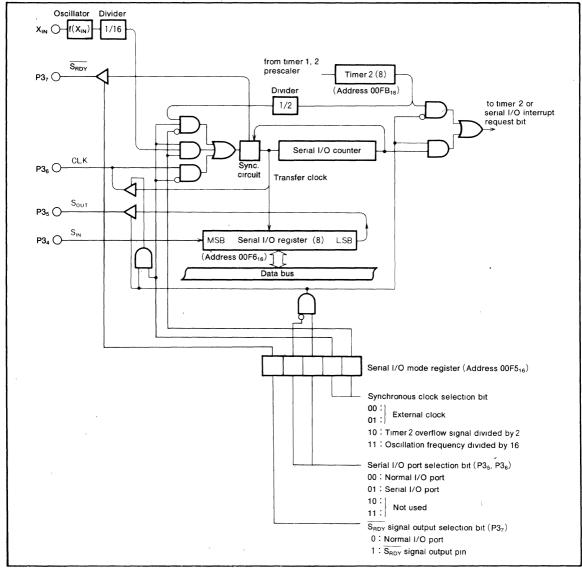


Fig. 8 Block diagram of serial I/O

To use the serial I/O, bit 3 and bit 2 need to be set to "01", if they are "00" P36 will function as a normal I/O. Interrupts will be generated from the serial I/O counter instead of timer 2. Bit 4 determines if P37 is used as an output pin for the receive data ready signal (bit 4=1, \overline{S}_{RDY}) or used as normal I/O pin (bit 4=0). The serial I/O function is discussed below. The function of the serial I/O differs depending on the clock source; external clock or internal clock.

Internal clock—The \overline{S}_{RDY} signal becomes "H" during transmission or while dummy data is stored in the serial I/O register (address $00F7_{16}$). After the falling edge of the write signal, the \overline{S}_{RDY} signal becomes low signaling that the M37412M4-XXXFP is ready to receive the external serial data. The \overline{S}_{RDY} signal goes "H" at the next falling edge of the transfer clock. The serial I/C counter is set to 7 when data is stored in the serial I/O register. At each falling

edge of the transfer clock, serial data is output to $P3_5$. During the rising edge of this clock, data can be input from $P3_4$ and the data in the serial I/O register will be shifted 1 bit.

Data is output starting with the LSB. After the transfer clock has counted 8 times, the serial I/O register will be empty and the transfer clock will remain at a high level. At this time the interrpt request bit will be set.

External clock—If an external clock is used, the interrupt request will be sent after the transfer clock has counted 8 times but transfer clock will not stop.

Due to this reason, the external clock must be controlled from the outside. The external clock should not exceed 500kHz at a duty cycle of 50%. The timing diagram is shown in Figure 9. An example of communication between two M37412M4-XXXFPs is shown in Figure 10.

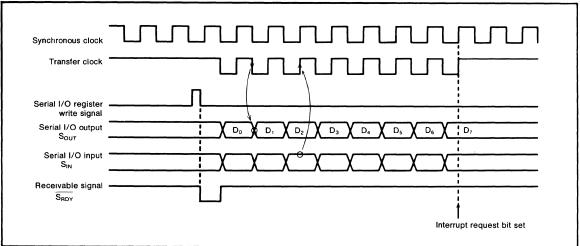


Fig.9 Serial I/O timing

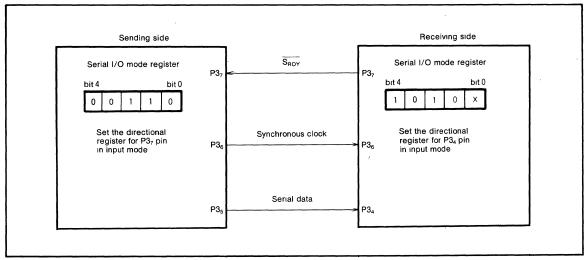


Fig.10 Example of serial I/O connection

A-D CONVERTER

An-8-bit successive approximation method of A-D conversion is employed providing a precision of ± 3 LSB. A block diagram of the A-D convertor is shown in Figure 11. Conversion is automatic once it is started with the program.

The six analog inputs are used in common with pins $P4_7 \sim P4_0$ of port 4. Bits 2, 1 and 0 of the A-D control register (address $00F3_{16}$) are used to select which pins are used for A-D conversion. The input condition is accomplished by setting to "0" the bit in the directional register that corresponds to the pin where A-D conversion is to take place. Bit 4 of the A-D control register is the A-D conversion end bit. During A-D conversion, this bit is "0", and upon completion becomes "1". Thus, it can be ascertained whether or not A-D conversion has been completed or not by inspecting this bit. The relation between the contents of the A-D control register and the selection of input pins are shown in Figure 12

The results of the conversion can be found be reading the contents of the successive approximation register address $00F2_{16}$ which stores the results of the conversion. The procedure for executing A-D conversion is next explained. Firstly, the pin that is to be used for the A-D conversion is selected by setting bit 1 and bit 0 of the A-D control register. Next, the successive approximation is written to upon which the A-D conversion starts. Since actual data is not written to the successive approximation, any type of may be

written. Simultaneous with its being written, the A-D conversion end bit (bit 4 of address $00F3_{16}$) is cleared to "0" signifying that A-D conversion operations are being conducted. A-D conversion completes after 198 clock cycles upon which the A-D conversion end bit is set to "1" and the results of the conversion can be found in the successive approximation register. Since the comparator consists of the capacitive coupled configuration, $f(X_{IN})$ is needed larger than 1MHz during A-D conversion.

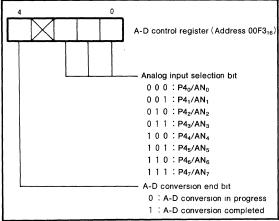


Fig.12 Structure of A-D control register

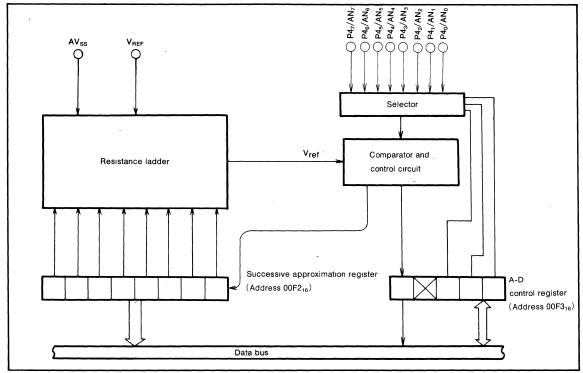


Fig.11 Block diagram of A-D converter

D-A CONVERTER

The R-2R method is used for D-A conversion. The block diagram is shown in Figure 13 An analog voltage is output that corresponds to the contents of the D-A conversion register (address $00F0_{16}$). Ideally, the relation of the analog

output voltage V and the contents (n) of the D-A conversion register is V=V_{REF} \times n/32(n=0~31).

Reset operation clears the content n of the D-A conversion register to 0_{16} .

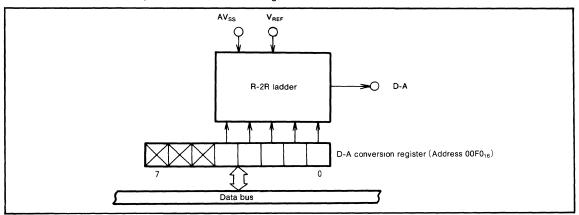


Fig.13 Block diagram of D-A converter

PULSE WIDTH MODULATOR

The pulse width modulation register (address 00F1₁₆) is configured of an 8-bit counter. The period of repetition is 4080 clock cycles. With the content of the pulse width modulation register m, the PWM pin becomes high-level for the

period of 4080 \times m/255 (m=0 \sim 255). Figure 14 shows that relationship. An N-channel open drain output is used for the PWM pin.

Reset sets the content m of the pulse width modulation register to $00_{16}. \\$

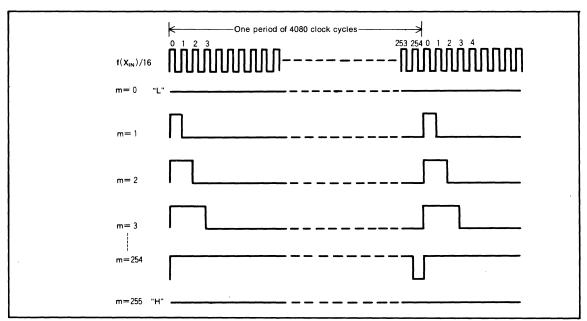


Fig.14 Relation between m and PWM output

WATCHDOG TIMER

The watchdog timer provides the means to return to a reset condition when a program runs wild and the program will not run the normal loops.

The watchdog timer (address 00F4₁₆) is a 15-bit counter. The watchdog timer counts 1/16th the output frequency of the oscillator. The watchdog timer is set to 7FFF₁₆ when a reset is accomplished a write operation has been made to it. As well as any of the instructions that generate a write signal, such as STA, LDM, and CLB, can be used to write data to the watchdog timer. An output of the most significant bits of the watchdog timer is input to the reset circuit. When 262144 clock cycles have been counted, the most significant bit becomes "0" and reset is carried out. When reset is carried out, the watchdog timer is set to 7FFF₁₆ and reset is released. The program then begins again from reset vector address. Normally, the program is written so that a writing operation is made to the watchdog timer prior to the most significant bit's becoming "0". Application of a +10V to the RESET pin will disable the watchdog timer function.

Since execution of the STP instruction causes both the clock and the watchdog timer to stop, an option is offered where the STP instruciotn can be disabled.

RESET CIRCUIT

The M37412M4-XXXFP is reset according to the sequence shown in Figure 15. It starts the program from the address formed by using the content of address FFFF₁₆ as the high order address and the content of the address FFFF₁₆ as the low order address, when the $\overline{\text{RESET}}$ pin is held at "L" level for more than $2\mu s$ while the power voltage is in the recommended operating condition and the crystal oscillator oscillation is stable and then returned to "H" level. The internal initializations following reset are shown in Figure 16. An example of the reset circuit is shown in Figure 17.

When the power on reset is used, the $\overline{\text{RESET}}$ pin must be held "L" until the oscillation of $X_{\text{IN}}\text{-}X_{\text{OUT}}$ becomes stable.

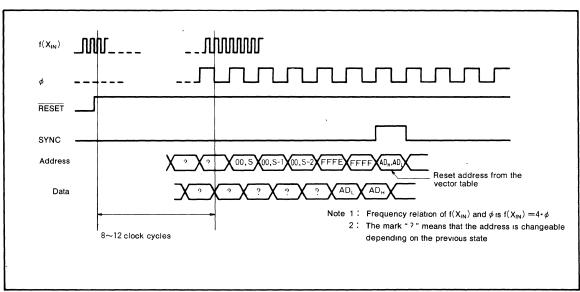


Fig.15 Timing diagram at reset

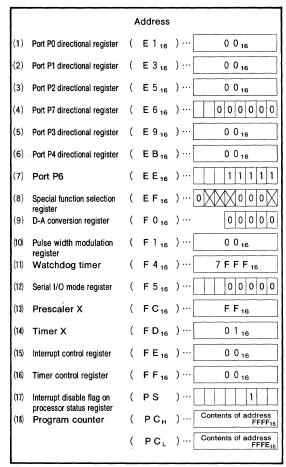
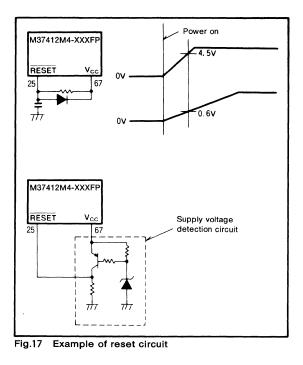



Fig.16 Internal state of microcomputer at reset

I/O PORTS

(1) Port P0

Port P0 is an 8-bit I/O port with N-channel open drain output.

As shown in the memory map (Figure 2), port P0 can be accessed at zero page memory address $00E0_{16}$. Port P0 has a directional register (address $00E1_{16}$) which can be used to program each individual bit as input ("0") or as output ("1"). If the pins are programmed as output, the output data is latched to the port register and then output. When data is read from the output port the output pin level is not read, only the latched data in the port register is read. This allows a previously output value to be read correctly even

though the output voltage level is shifted up or down. Pins set as input are in the floating state and the signal levels can thus be read. When data is written into the input port, the data is latched only to the port latch and the pin still remains in the floating state.

Depending on the contents of the processor status register (bit 0 and bit 1 at address 00FF₁₆), four different modes can be selected; single-chip mode, memory expanding mode, microprocessor mode and eva-chip mode. These modes (excluding single-chip mode) have a multiplexed address output function in addition to the I/O function. For more details, see the processor mode information.

(2) Port P1

In the single-chip mode, port P1 has the same function as P0, but it has CMOS output. In the other modes, P1's functions are slightly different from P0's. For more details, see the processor mode information.

(3) Port P2

In the single-chip mode, port P2 has the same function as P0. In the other modes, P2's functions are slightly different from P0's.

For more details, see the processor mode information.

(4) Port P3

In the single-chip mode, port P3 has the same function as P0. In the other modes, P3's functions are slightly different from P0's. Port P3 can also be used as serial I/O, $\overline{\text{INT}_2}$ and I/O pins for timer X. For more details, see the processor mode information.

(5) Port P4

Port P4 has the same function as port P0 in the singlechip mode. But P4₇ through P4₂ can also be used as analog input pins AN_7 through AN_2 .

(6) Port P5

Port P5 is an input port. P5 $_4$ through P5 $_7$ can also be used as edge sence inputs. In such a case, reading is begun from $00ED_{16}$. $00ED_{16}$ is provided with a latch which is set to "1" when the input changes from high-level to low-level.

And for P5, polarity of input edge can be selected by polarity of edge sense input selection bit (bit 7 of address $00EF_{16}$).

When this bit is set to "0", its latch is set to "1" at the input level goes to "L" from "H". When this bit is set to "1", its latch is set to "1" at the input level goes to "H" from "L". At the reset state, this bit is set to "0".

When content of polarity of edge sense input selection bit was set by program, the latch (bit 7 of address $00ED_{16}$) must be reset once.

The input pulse width must be at least 7 clock cycles wide. The latch is reset by using such instructions as LDM and CLB to write a "0" to the latch. When 00ED_{16} is read, the lower order 4 bits are always zero.

When port P5 is used as level sense input, read the contents of the address $00EC_{16}$.

(7) Port P6

Port P6 is a 5-bit output port. It has N-channel open drain output. P60 and P61 can be used as external trigger I/O pins, when external trigger mode selection bit (bit 2 of address $00EF_{16}$) is set to "1". In this case, P60 and P61 are trigger clock input pin and trigger output pin, respectively. Using external trigger mode, P60's latch must be set to "1" in order to off the output transistor. In external trigger mode, the content of P61's latch is output to pin when the rising or falling edge is input to P60 pin.

When external trigger mode selection bit is set to "0",

 $P6_0$ and $P6_1$ are normal output ports. At the reset state, this bit is set to "0".

(8) Port P7

Port P7 is a 6-bit I/O port. In this single-chip mode, port P7 has the same functions as port P0.

The functions of this port do not change even though the processor mode may change.

(9) Clock of output pin

In normal conditions, the oscillator frequency divided by four is output as ϕ . The timing output ϕ is fixed "L" state when the timing output control bit (bit 1 of address $00EF_{16}$) is set to "1". But in this case, except the timing output is active. The timing output ϕ is output again when the timing output control bit is set to "0". At reset state this bit is set to "0".

(10) INT₁ pin

The $\overline{INT_1}$ pin is an interrupt input pin. The $\overline{INT_1}$ interrupt request bit (bit 7 at address $00FE_{16}$) is set to "1" when the input level of this pin changes from "H" to "L".

(11) $\overline{INT_2}$ pin $(P3_2/\overline{INT_2}$ pin)

The INT₂ pin is an interrupt input pin used with P3₂. To use this pin as an interrupt pin, set the corresponding bit in the directional register to input ("0"). When this signal level changes from "H" to "L", the interrupt request bit (bit 1 at address 00FE₁₆) is set to "1".

(12) CNTR pin (P3₃/CNTR pin)

The $P3_3$ /CNTR pin is an I/O pin of timer X. To use this pin as the timer X input pin, set the corresponding directional register bit to input ("0"). In the event counter mode, CNTR becomes the input pin of the external pulse. In the pulse output mode, the CNTR output changes polarity each time the contents of timer X goes to "0". In the pulse width measurement mode, the pulse to be measured is input to this pin.

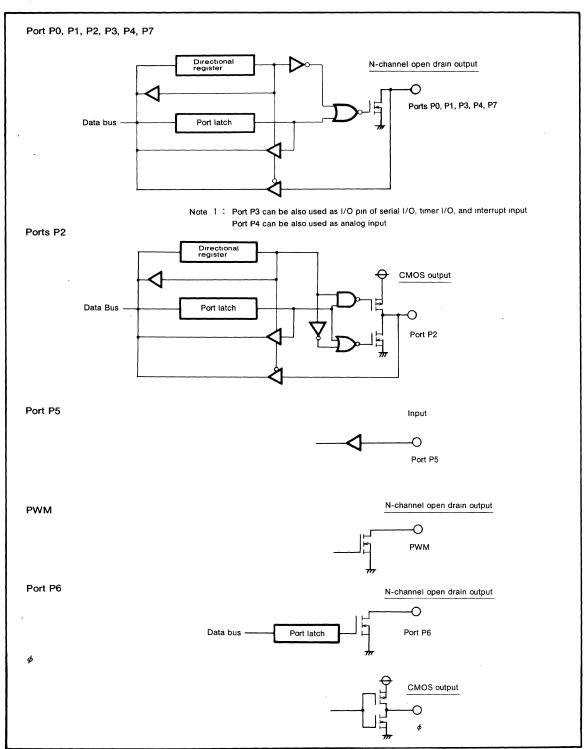


Fig.18 Block diagram of ports P0 \sim P7 (single-chip mode), and output format of ϕ .

PROCESSOR MODE

By changing the contents of the processor mode bit (bit 0 and 1 at address $00FF_{16}$), four different operation modes can be selected; single-chip mode, memory expanding mode, microprocessor mode and evaluation chip (evachip) mode. In the memory expanding mode, microprocessor mode and eva-chip mode, ports $P0 \sim P3$ can be used as multiplexed I/O for address, data and control signals, as well as the normal functions of the I/O ports.

Figure 20 shows the functions of ports P0~P3.

The memory map for the single-chip mode is illustrated in Figure 2 and for other modes, in Figure 19.

By connecting CNV_{SS} to V_{SS} , all four modes can be selected through software by changing the processor mode bits. Connecting CNV_{SS} to V_{CC} automatically forces the microcomputer into microprocessor mode. Supplying 10V to CNV_{SS} places the microcomputer in the eva-chip mode. The four different modes are explained as follows:

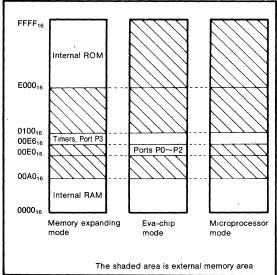


Fig.19 External memory area in processor mode

(1) Single-chip mode [00]

The microcomputer will automatically be in the single-chip mode when started from reset, if CNV_{SS} is connected to V_{SS} . Ports P0 \sim P3 will work as original I/O ports.

(2) Memory expanding mode (01)

The microcomputer will be placed in the memory expanding mode when CNV_{SS} is connected to V_{SS} and the processor mode bits are set to "01". This mode is used to add external memory when the internal memory is not sufficient.

In this mode, port P0 and port P1 are as a system address bus and the original I/O pin function is lost. P2 becomes the data bus $(D_7 \sim D_0)$ and loses its normal I/O functions. Pins P3₁ and P3₀ output the SYNC and R/ \overline{W} control signals, respectively.

(3) Microprocessor mode [10]

After connecting CNV_{SS} to V_{CC} and initiating a reset, the microcomputer will automatically default to this mode. With the exceptions that the internal ROM is disabled and that external memory must be attached in this mode, this mode is the same as the memory expanding mode.

(4) Eva-chip mode [11]

When 10V is supplied to CNV_{SS} pin, the microcomputer is forced into the eva-chip mode. The main purpose of this mode is to evaluate ROM programs prior to masking them into the microcomputer's internal ROM.

In this mode, the internal ROM is inhibited so the external memory is requierd.

The lower 8 bits of address data for port P0 is output when ϕ goes to "H" state. When ϕ goes to the "L" state, P0 retains its original I/O functions.

Port P1's higher 8 bits of address data are output when ϕ goes to "H" state and as it changes back to the "L" state it retains its original I/O functions. Port P2 retains its original I/O functions while ϕ is at the "H" state, and works as a data bus of $D_7 \sim D_0$ (including instruction code) while at the "L" state. Pins P3₁ and P3₀ output the SYNC and R/ \overline{W} control signals, respectively while ϕ is in the "H" state. When in the "L" state, P3₁ and P3₀ retain their original I/O function.

The R/W output is used to read/write from/to the outside. When this pin is in the "H" state, the CPU reads data, and when in the "L" state, the CPU writes data.

The SYNC is a synchronous signal which goes to the "H" state when it fetches the OP CODE.

The relationship between the input level of CNV_{ss} and the processor mode is shown in Table 2.

CM ₁	0	1	0	1
См₀	0	1	1	0
Port	Single-chip mode	Eva-chip mode	Memory expanding mode	Microprocessor mode
Port P0	Ports P0 ₇ ~P0 ₀	Ports $P0_7 \sim P0_0$ $Address A_7 \sim A_0$ I/O port	Ports $P0_7 \sim P0_0$ Address $A_7 \sim A_0$	Same as left
Port P1	Ports P1 ₇ ~P1 ₀ X I/O port	Ports $P1_7 \sim P1_0$ $Address$ $A_{15} \sim A_8$ $I/O port$	Ports P1 ₇ ~P1 ₀ Address A ₁₅ ~A ₈	Same as left
Port P2	Ports P2 ₇ ~P2 ₀	Ports $P2_7 \sim P2_0$ $Output Data D_7 \sim D_0$	Ports $P2_7 \sim P2_0$ $Data$ $D_7 \sim D_0$	Same as left
Port P3	Ports P3 ₇ ~P3 ₀	Ports P3 ₇ ~P3 ₂ X I/O port Port P3 ₁ X SYNC I/O port Port P3 ₀ R/W I/O port	Ports P3 ₇ ~P3 ₂ I/O port Port P3 ₁ SYNC Port P3 ₀ R/W	Same as left

Fig.20 Processor mode and functions of ports P0~P3

Table 2. Relationship between $\ensuremath{\mathsf{CNV}_{\mathsf{SS}}}$ pin input level and processor mode

CNVss	Mode	Explanation
V _{ss}	Single-chip mode	The single-chip mode is set by the reset
	* Memory expanding mode	All modes can be selected by changing the processor mode bit with the program
	Eva-chip mode	
	Microprocessor mode	
V _{cc}	Eva-chip mode	The microprocessor mode is set by the reset
	Microprocessor mode	Eva-chip mode can be also selected by changing the processor mode bit with the program.
10 V	Eva-chip mode	Eva-chip mode only.

CLOCK GENERATING CIRCUIT

The built-in clock generating circuits are shown in Figure 23

When the STP instruction is executed, the oscillation of internal clock ϕ is stopped in the "H" state.

Also, the prescaler X and timer X are loaded with FF_{16} and 01_{16} , respectively. The oscillator (dividing by 16) is then connected to the prescaler input. This connection is cleared when timer X overflows or the reset is in, as discussed in the timer section.

The oscillator is restarted when an interrupt is accepted. However, the internal clock ϕ keeps its "H" level until timer X overflows.

This is because the oscillator needs a set-up period if a ceramic or a quartz crystal oscillator is used.

When the WIT instruction is executed, the internal clock ϕ stops in the "H" level but the oscillator continues running. This wait state is cleared when an interrupt is accepted. Since the oscillation does not stop, the next instructions are executed at once.

The circuit example using a ceramic oscillator (or a quartz crystal oscillator) is shown in Figure 21.

The constant capacitance will differ depending on which oscillator is used, and should be set to the manufactures suggested value.

The example of external clock usage is shown in Figure 22. X_{IN} is the input, and X_{OUT} is open.

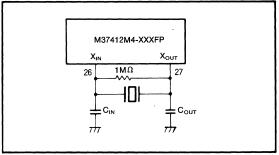


Fig.21 External ceramic resonator circuit

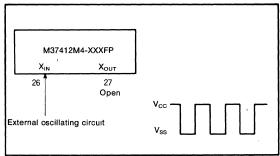


Fig.22 External clock input circuit

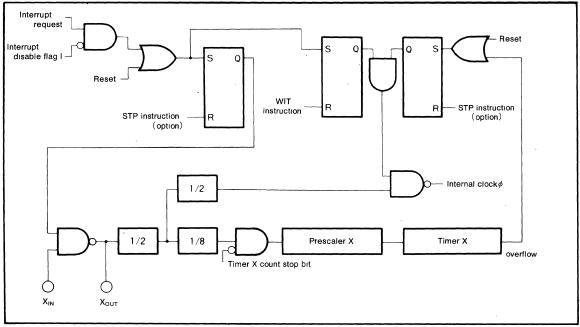


Fig.23 Block diagram of the clock generating circuit

PROGRAMMING NOTES

- (1) The frequency ratio of the timer and the prescaler is 1/(n+1).
- (2) Even though the BBC and BBS instructions are executed after the interrupt request bits are modified (by the program), those instructions are only valid for the contents before the modification. Also, at least one instruction cycle must be used (such as a NOP) between the modification of the interrupt request bits and the execution of the BBC and BBS instructions.
- (3) Reading the timer and prescaler must be avoided while the input to the prescaler is changing.
- (4) After the ADC and SBC instructions are executed (in decimal mode), one instruction cycle (such as a NOP) is needed before the SEC, CLC, or CLD instructions are executed.
- (5) A NOP instruction must be used after the execution of a PLP instruction.
- (6) Since the comparator consists of the capacitive coupled configuration, f(X_{IN}) is needed larger than 1MHz during A-D conversion. And during A-D conversion, don't use STP or WIT instruction.

DATA REQUIRED FOR MASK ORDERING

Please send the following data for mask orders.

- (1) mask ROM confirmation form
- (2) mark specification form
- (3) ROM data ······ EPROM 3sets Write the following option on the mask ROM confirmation
- · STP instruction option

3-159

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter Parame	Conditions	Ratings	Unit
V _{cc}	Supply voltage		− 0.3 ∼ 7	٧
Vi	Input voltage X _{IN}		−0.3∼ 7	٧
V _i	Input voltage P2 ₀ ~P2 ₇ , P4 ₀ ~P4 ₇		$-0.3 \sim V_{cc} + 0.3$	٧
Vı	Input voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P3 ₀ ~P3 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ , P7 ₀ ~P7 ₅ , INT ₁	With respect to V _{SS} Output transistors cut-off	-0.3~13	v
Vı	Input voltage ÇNV _{SS} , RESET		−0.3~13	٧
Vo	Output voltage P2 ₀ ~P2 ₇ , P4 ₀ ~P4 ₇ , X _{OUT} , ϕ , D-A		-0.3~V _{cc} +0.3	٧
Vo	Output voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P3 ₀ ~P3 ₇ , P6 ₀ ~P6 ₃ , P7 ₀ ~P7 ₅ , PWM		-0.3~13	V
Pd	Power dissipation	T _a =25℃	300	mW
Topr	Operating temperature		−10~70	င
Tstg	Storage temperature		−40~125	°

RECOMMENDED OPERATING CONDITIONS ($V_{cc}=5V\pm10\%$, $T_a=-10\sim70^{\circ}C$, unless otherwise noted)

0	D		Limits		11-14
Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{cc}	Supply voltage	4.5	5	5.5	٧
V _{ss}	Supply voltage		0		٧
V _{REF}	Reference voltage	4		Vcc	٧
V _{IH}	"H" input voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₇ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , INT ₁ , RESET, X _{IN} , CNV _{SS} , P6 ₀ , P7 ₀ ~P7 ₅	0.8V _{CC}		V _{cc}	v .
V _{IL}	"L" input voltage $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $P2_0 \sim P2_7$, $P3_0 \sim P3_7$, $P4_0 \sim P4_7$, $P5_0 \sim P5_7$, $\overline{INT_1}$, CNV_{SS} , $P6_0$, $P7_0 \sim P7_5$	0		0.2V _{CC}	V
V _{IL}	"L" input voltage RESET	0		0.12V _{CC}	٧
VIL	"L" input voltage X _{IN}	0		0.16V _{CC}	٧
l _{oL(peak)}	"L" peak output current P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₇ , P4 ₀ ~P4 ₇ , P7 ₀ ~P7 ₅ (Note 2)			10	mA
loL(peak)	"L" peak output current P6 ₀ ~P6 ₃ (Note 2)			15	mA
loL(peak)	"L" peak output current PWM (Note 2)			5	mA
I _{OL} (avg)	"L" average output current P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₇ , P4 ₀ ~P4 ₇ , P7 ₀ ~P7 ₅ (Note 1)			5	mA
I _{OL} (avg)	"L" average output current P6 ₀ ~P6 ₃ (Note 1)			7	mA
I _{OL} (avg)	"L" average output current PWM (Note 1)			2.5	mA
I _{OH} (peak)	"H" peak output current P2 ₀ ~P2 ₇ (Note 2)			-10	mA
I _{OH} (avg)	"H" average output current P2 ₀ ~P2 ₇ (Note 1)			-5	mA
f(X _{IN})	Internal clock oscillating frequency			٠ 4	MHz

Note 1: Average output current I_{OL}(avg) and I_{OH}(avg) are the average value of a period of 100ms.
2: Total of "L" output current I_{OL}, of ports P0, P1, P2, P3, P4, P6, P7 and PWM is 80mA max.

Total of "H" output current I_{OH}, of port P2 is 50mA max.

3: "H" input voltage of ports P0, P1, P3, P40 \sim P43, P5, P60, P7 and $\overline{\text{INT}}_1$ is available up to $\pm 12\text{V}$

ELECTRICAL CHARACTERISTICS ($V_{CC}=5V$, $V_{SS}=0V$, $T_{B}=25^{\circ}C$, $f(X_{IN})=4MHz$, unless otherwise noted)

0	Parameter	Test conditions		Limits			Unit
Symbol	Parameter	l est cond	ittions	Min	Тур	Max	Unit
V _{OH}	"H" output voltage P2 ₀ ~P2 ₇	I _{OH} =-10mA		3			٧
VoH	"H" output voltage φ	I _{OH} =-2.5mA	(3			٧
V _{OL}	"L" output voltage $P0_0\sim P0_7$, $P1_0\sim P1_7$, $P2_0\sim P2_7$, $P3_0\sim P3_7, P4_0\sim P4_7, P6_0\sim P6_3, \\ P7_0\sim P7_5$	I _{OL} =10mA				2	٧
VoL	"L" output voltage φ, PWM, P6 ₄	I _{OL} =5mA				2	٧
$V_{T+}-V_{T-}$	Hysteresis INT ₁			0.3		1	V
$V_{T+}-V_{T-}$	Hysteresis P3 ₆	When used as CLK inpu	ıt	0.3	0.8		٧
$V_{T+}-V_{T-}$	Hysteresis P3 ₂	When used as INT2 inpu	it	0.3		1	٧
$V_{T+}-V_{T-}$	Hysteresis P3 ₃	When used as CNTR in	out	0.5	1		٧
V _{T+} -V _{T-}	Hysteresis P6 ₀	When used as T input		0.5	1		٧
V _{T+} -V _{T-}	Hysteresis RESET				0.5	0.7	٧
V _{T+} V _{T-}	Hysteresis X _{IN}			0.1		0.5	V
IIL	"L" input current $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $P2_0 \sim P2_7$, $P3_0 \sim P3_7$, $P4_0 \sim P4_7$, $P5_0 \sim P5_7$, $P6_0$, $P7_0 \sim P7_5$, PWM	v _i =0v				-5	μΑ
I _{IL}	"L" input current INT ₁ , RESET, X _{IN}	V ₁ =0V				- 5	μА
l _{iH}	"H" input current $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $P3_0 \sim P3_7$, $P4_0 \sim P4_3$, $P5_0 \sim P5_7$, $P6_0$, $P7_0 \sim P7_5$, PWM	V ₁ =12 V				12	μΑ
I _{tH}	"H" input current INT ₁ , RESET, X _{IN} , P2 ₀ ~P2 ₇ , P4 ₀ ~P4 ₇	V ₁ =5V				5	μΑ
V _{RAM}	RAM retention voltage	At clock stop		2		1	٧
		ø, X _{OUT} , and D-A pins	f(X _{IN})=4MHz Square wave		, 3	6	mA
Icc	Supply current	opened, other pins at V _{SS} , and A-D converter	At clock stop Ta=25°C			1	
	in the finished condi- tion	At clock stop Ta=75°C			10	μΑ	

$\textbf{A-D} \quad \textbf{CONVERTER} \quad \textbf{CHARACTERISTICS} \; (v_{cc} = 5 \text{V, } V_{SS} = A V_{SS} = 0 \text{V, } T_{el} = 25 \text{°C, } f(X_{IN}) = 4 \text{MHz, unless otherwise noted})$

0	Parameter	Took on distance	Limits			Linut
Symbol Parameter	Test conditions	Min	Тур	Max	Unit	
_	Resolution	V _{REF} =V _{CC}			8	Bits
_	Absolute accuracy	V _{REF} =V _{CC}			±3	LSB
R _{LADDER}	Ladder resistance value	V _{REF} =V _{CC}	2	1	10	kΩ
t _{CONV}	Conversion time				50	μs
V _{REF}	Reference input voltage	,	2		V _{CC}	V
VIA	Analog input voltage		0		V _{REF}	V

$\textbf{D-A} \quad \textbf{CONVERTER} \quad \textbf{CHARACTERISTICS} \; (v_{cc} = 5v, \, v_{ss} = 4v_{ss} = 0v, \, \tau_{\textbf{a}} = 25^{\circ}\text{C}, \; \textbf{f}(X_{iN}) = 4\text{MHz, unless otherwise noted})$

0	Parameter	Test conditions	Limits			Unit
Symbol	Parameter		Mın	Тур	Max	Onit
_	Resolution	V _{REF} =V _{CC}			5	Bits
_	Error in full scale range	V _{REF} =V _{CC}			±1	%
t _{su}	Setup time	V _{REF} =V _{CC}			3	μs
Ro	Output resistance	V _{REF} =V _{CC}			3	kΩ
V _{REF}	Reference voltage		4		Vcc	٧

TIMING REQUIREMENTS

Single-chip mode ($V_{cc}=5V\pm10\%$, $V_{ss}=0V$, $T_a=25^{\circ}C$, $f(X_{IN})=4MHz$, unless otherwise noted)

Symbol	Parameter		Limits		Unit
Symbol	Parameter	Min.	Тур.	Max.	Unit
t _{su(POD=ø)}	Port P0 input setup time	270			ns
t _{Su(P1D-ø)}	Port P1 input setup time	270			ns
t _{su(P2D-ø)}	Port P2 input setup time	270			ns
t _{su(P3D—∳)}	Port P3 input setup time	270			ns
t _{SU(P4D—ø)}	Port P4 input setup time	270			√ ns
t _{su(P5D-ø)}	Port P5 input setup time	270			ns
t _{Su(P7D-ø)}	Port P7 input setup time	270			ns
th(∲—POD)	Port P0 input hold time	20			ns
th(≠P1D)	Port P1 input hold time	20			ns
th(ø—P2D)	Port P2 input hold time	20			ns
th(ø—P3D)	Port P3 input hold time	20			ns
th(ø—P4D)	Port P4 input hold time	20			ns
t _{h(≠—P5D)}	Port P5 input hold time	20			ns
th(ø—P7D)	Port P7 input hold time	20			ns
t _C	External clock input cycle time	250			ns
t _w	External clock input pulse width	75			ns
tr	External clock rising edge time			25	ns
tf	External clock falling edge time			25	ns

$\textbf{Eva-chip} \quad \textbf{mode} \ \, (\text{V}_{\text{CC}} = 5\text{V} \pm 10\%, \, \text{V}_{\text{SS}} = 0\text{V}, \, \text{T}_{\text{d}} = 25^{\circ}\text{C}, \, \text{f}(\text{X}_{\text{IN}}) = 4\text{MHz, unless otherwise noted})$

	Decomptor		Unit		
Symbol	Parameter	Min	Тур.	Max.	Unit
tsu(POD-#)	Port P0 input setup time	270			ns
tsu(P1D-#)	Port P1 input setup time	270			ns
t _{SU(P2Dø)}	Port P2 input setup time	270		,	ns
th(ø-POD)	Port P0 input hold time	20			ns
th(ø—P1D)	Port P1 input hold time	20			ns
th(# Pap)	Port P2 input hold time	20			ns

Memory expanding mode and microprocessor mode

(V_{CC}=5V \pm 10%, V_{SS}=0V, T_a=25°C, f(X_{IN})=4MHz, unless otherwise noted)

Cumbal	Parameter		Limits		Unit
Symbol	Parameter	Min	Тур.	Мах.	Onit
t _{SU(P2D—ø)}	Port P2 input setup time	270			ns
th(ø-P2D)	Port P2 input hold time	30			ns

SWITCHING CHARACTERISTICS

Single-chip mode ($V_{cc}=5V\pm10\%$, $V_{ss}=0V$, $T_a=25$ °C, $f(X_{IN})=4MHz$, unless otherwise noted)

0	Parameter	Test conditions	Limits			Unit
Symbol		rest conditions	Min.	Тур.	Max	Unit
td(ø-PoQ)	Port P0 data output delay time	Fig 24			230	ns
td(ø—P1Q)	Port P1 data output delay time	FIG 24			230	ns
t d(ø—P2Q)	Port P2 data output delay time	Fig.25			230	ns
td(ø_P3Q)	Port P3 data output delay time				230	ns
t _{d(øP4Q)}	Port P4 data output delay time	Fig 24			230	ns
td(ø-PGQ)	Port P6 data output delay time	FIG 24			230	ns
t _{d(\$P7Q)}	Port P7 data output delay time				230	ns

Eva-chip mode ($V_{cc}=5V\pm10\%$, $V_{ss}=0V$, $T_a=25^{\circ}C$, $f(X_{IN})=4MHz$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
Symbol	rarameter	rest conditions	Min	Тур.	Max	Unit
td(ø-POA)	Port P0 address output delay time				250	ns
t _{d(≠-POAF)}	Port P0 address output delay time				250	ns
t _{d(≠-P0Q)}	Port P0 data output delay time				200	ns
td(≠-POQF)	Port P0 data output delay time	504			200	ns
td(≠-P1A)	Port P1 address output delay time	Fig 24			250	ns
td(¢-P1AF)	Port P1 address output delay time	,			250	ns
t _{d(≠P1Q)}	Port P1 data output delay time				200	ns
td(ø-P1QF)	Port P1 data output delay time				200	ns
t _{d(≠-P2Q)}	Port P2 data output delay time	F: 0F			300	ns
td(ø-P2QF)	Port P2 data output delay time	Fig.25			300	ns
t _{d(≠-R/W)}	R/W signal output delay time				250	ns
td(ø—R/WF)	R/W signal output delay time				250	ns
t _{d(≠-P30Q)}	Port P3₀ data output delay time				200	ns
td(ø—P30QF)	Port P3 ₀ data output delay time	F:- 24			200	ns
td(ø-sync)	SYNC signal output delay time	Fig 24			250	ns
td(ø-synce)	SYNC signal output delay time				250	ns
t _{d(\$-P31Q)}	Port P3 ₁ data output delay time				200	ns
t _{d(≠P31QF)}	Port P3 ₁ data output delay time				200	ns

0	Parameter	Test conditions	Limits			Unit
Symbol		rest conditions	Min	Тур.	Max	Onit
t _{d(≠P0A)}	Port P0 address output delay time	Fig 24			250	ns
t _{d(#P1A)}	Port P1 address output delay time	Fig 24			250	ns
td(øP2Q)	Port P2 data output delay time	Fig 25			300	ns
td(ø-P2QF)	Port P2 data output delay time	Fig 25			300	ns
td(ø-R/W)	R/W signal output delay time	Fig 24			250	ns
td(ø-sync)	SYNC signal output delay time	Fig 24			250	ns

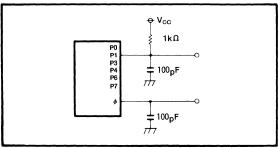
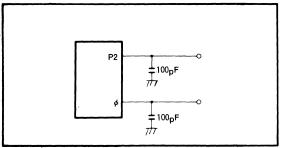
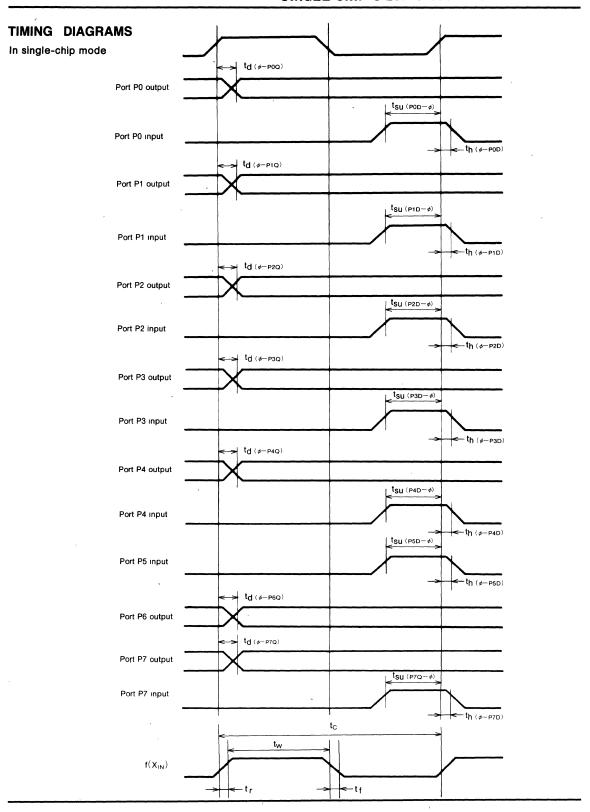
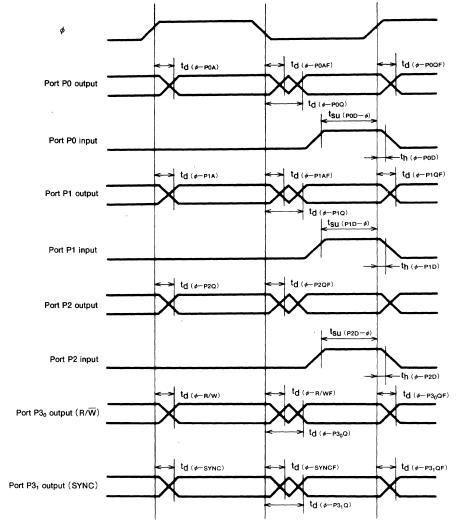
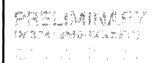


Fig.24 Ports P0, P1, P3, P4, P6 and P7 test circuit


Fig.25 Port P2 test circuit

In eva-chip mode


Port P2 output

Port P2 output

Port P3 output (R/W)

Port P3, output (SYNC)

M37413M4HXXXFP M37413M6HXXXFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

DESCRIPTION

The M37413M4HXXXFP is a single-chip microcomputer designed with CMOS silicon gate technology. It is housed in a 80-pin plastic molded QFP. This single-chip microcomputer is useful for business equipment and other consumer applications.

In addition to its simple instruction set, the ROM, RAM, and I/O addresses are placed on the same memory map to enable easy programming.

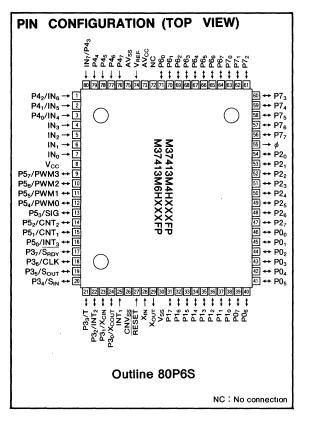
The differences between the M37413M4HXXXFP and the M37413M6HXXXFP are noted below. The following explanations apply to the M37413M4HXXXFP.

Specification variations for other chips are noted accordingly.

The M37413M4HXXXFP has the same functions as the M37413M4-XXXFP except for the method of writing to interrupt request distinguish registers.

Type name	ROM size
M37413M4HXXXFP	8192 bytes
M37413M6HXXXFP	12288 bytes

FE	EATURES	
•	Number of basi	ic instructions····· 69
•	Memory size	ROM ··· 8192 bytes (M37413M4HXXXFP)
	·	12288 bytes (M37413M6HXXXFP)
		RAM······256 bytes
•	Instruction exec	cution time
		minimum instructions at 8MHz frequency)
	at high-spee	d mode $\cdots 1 \mu$ s
	at normal mo	de 4 <i>µ</i> s
•	Single power s	upply
	high-speed r	node (at 8MHz frequency)
		4.5~5.5V
	normal mode	(at 8MHz frequency)
	high-speed r	node (at 2MHz frequency)
		2.5~5.5V
•	Power dissipat	ion
	high-speed r	node (at 8MHz frequency)
	low-speed	mode (at 32kHz frequency for clock
		54 μ W (V _{CC} =3V, Typ.)
•		voltage (stop mode)
		2.0V≦V _{RAM} ≦5.5V
•	Subroutine nes	ting ····· 96levels (Max.)
_	Cas. Calific Hoo	9

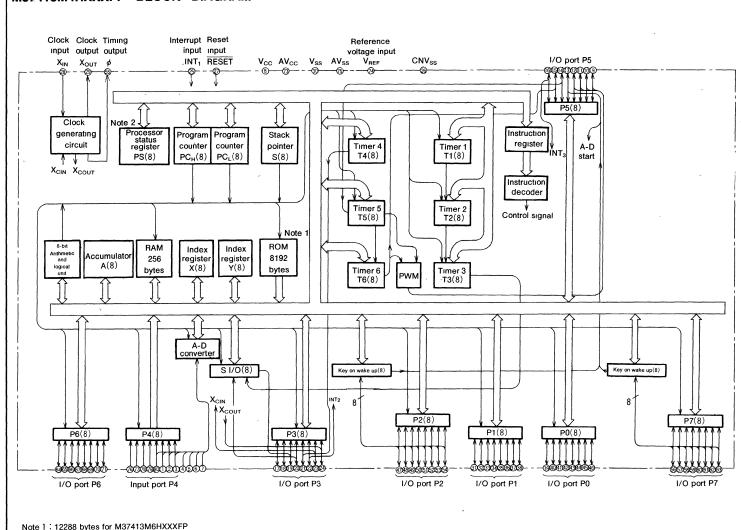

Interrupt 10types, 5vectors 8-bit timer ·······4 (3 when used as serial I/O) 16-bit timer ------1

(Ports P0, P1, P2, P3, P5, P6, P7)-----56 Serial I/O (8-bit) ------1 A-D converter8-bit, 8channel

(One is for main clock, the other is for clock function)

Programmable I/O ports

Two clock generating circuits



APPLICATION

Audio-visual equipment, VCR, Tuner, Office automation equipment, Camera, Communications apparatus, Cordless telephone.

2: PC_H uses 6 bits only

M37413M4HXXXFP M37413M6HXXXFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

FUNCTIONS OF M37413M4HXXXFP, M37413M6HXXXFP

Parameter			Functions
Number of basic instructions			69
Instruction execution time			1µs (minimum instructions, at 8MHz frequency)
Clock frequency			8MHz
	M37413M4HXXXFP	ROM	8192bytes
	M3/413M4HXXXFP	RAM	256bytes
Memory size	110711011011000050	ROM	12288bytes
	M37413M6HXXXFP	RAM	256bytes
	P0, P2, P7	1/0	8-bit×3 (CMOS output, Pull-up option)
Input/Output port	P1, P3, P5, P6	1/0	8-bit×4 (N-channel open drain output, Pull-up option)
	P4	Input	8-bit×1 (Pull-up option)
Serial I/O			8-bit×1
Timers Subroutine nesting			8-bit timer×4
			16-bit timer×1
			96 (max)
Interrupt			4 external interrupts, 5 internal interrupts, 1 software interrupt
Clock generating circuit			Two built-in circuits (ceramic or quartz crystal oscillator)
Operating temperature range			-20~75°C
Device structure			CMOS silicon gate
Package			80-pin plastic molded QFP

M37413M4HXXXFP M37413M6HXXXFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

PIN DESCRIPTION

Pın	Name	Input/ Output	Functions	
V _{CC} , V _{SS}	Supply voltage		Power supply inputs 5V±10% to V _{CC} , and 0V to V _{SS}	
CNVss	CNV _{SS}	,	This is connect to V _{SS}	
RESET	Reset input	Input	To enter the reset state, the reset input pin must be kept at a "L" for more than 16µs (under normal V _{CC} conditions). If more time is needed for the crystal oscillator to stabilize, this "L" condition should be maintained for the required time	
X _{IN}	Clock input	Input	These are I/O pins of internal clock generating circuit for main clock. To control generating frequency, an	
X _{OUT}	Clock output	Output	external ceramic or a quartz crystal oscillator is connected between the X _{IN} and X _{OUT} pins if an external clock is used, the clock source should be connected the X _{IN} pin and the X _{OUT} pin should be left open	
INT ₁	Interrupt input	Input	This is the highest order interrupt input pin	
AV _{CC}	Voltage input for A-D		This is power supply input pin for the A-D converter	
AV _{SS}	Voltage input for A-D		This is GND input pin for the A-D converters. Connect to V _{SS}	
V _{REF}	Reference voltage input	Input	This is reference voltage input pin for the A-D converter	
P0 ₀ ~P0 ₇	I/O port P0	1/0	Port P0 is an 8-bit I/O port with directional registers allowing each I/O bit to be individually programmed as input or output. At reset, this port is set to input mode. The output structure is CMOS output. Pull-up option of this port is valid only in input mode.	
P1 ₀ ~P1 ₇	I/O port P1	1/0.	Port P1 is an 8-bit I/O port and has basically the same functions as port P0, but the output structure is N-ch open drain Pull-up option of this port is valid only in input mode	
P2 ₀ ~P2 ₇	I/O port P2	1/0	Port P2 is an 8-bit I/O port and has basically the same functions as port P0 and also works as the key or wake up function with mask option. Pull-up option of this port is valid only in input mode.	
P3 ₀ ∼P3 ₇	I/O port P3	1/0	Port P3 is an 8-bit I/O port and has basically the same functions as port P1. When serial I/O is used, P3 ₇ P3 ₆ , P3 ₅ , and P3 ₄ work as \overline{S}_{RDV} , CLK, S _{OUT} , and S _{IN} pins, respectively. Also P3 ₃ , P3 ₂ , P3 ₁ , and P3 ₀ work as timer 4 overflow signal divided by 2 output pin (T), INT ₂ pin, X _{CIN} and X _{COUT} pins, respectively. Pull-up option of this port is valid in both input and output modes.	
P4 ₀ ~P4 ₇	Input port P4	Input	Port P4 is an 4-bit input port P4 ₀ ~P4 ₃ are in common with IN ₄ ~IN ₇ Pull-up option can be used when this port is used as a input port	
P5 ₀ ~P5 ₇	I/O port P5	1/0	Port P5 is an 8-bit I/O port and has basically the same function as P1. P5 ₀ , P5 ₁ , P5 ₂ and P5 ₃ are in commor with INT ₃ , timer 3 input, timer 5 input and A-D trigger input respectively P5 ₄ ~P5 ₇ are also in common with PWM0~PWM3 Pull-up option of this port is valid in both input and output modes.	
P6 ₀ ~P6 ₇	I/O port P6	1/0	Port P6 is an 8-bit I/O port and has basically the same functions as port P1. Pull-up option of this port is valid in both input and output modes.	
P7 ₀ ~P7 ₇	I/O port P7	1/0	Port P7 is an 8-bit I/O port and has basically the same functions as port P2 Pull-up option of this port is valid only in input mode	

M37413M4HXXXFP M37413M6HXXXFP

/ SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

FUNCTIONAL DESCRIPTION Central Processing Unit (CPU)

The M37413 microcomputers use the standard MELPS 740 instruction set. For details of instructions, refer to the MELPS 740 CPU core basic functions, or the MELPS 740 Software Manual.

Machine-resident instructions are as follows: The FST and SLW instructions are not provided. The MUL and DIV instructions are not provided. The WIT instruction can be used.

The STP instruction can be used.

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

MEMORY

• Special Function Register (SFR) Area

The special function register (SFR) area contains the registers relating to functions such as I/O ports and timers.

• RAM

RAM is used for data storage as well as a stack area.

• ROM

ROM is used for storing user programs as well as the interrupt vector area.

• Interrupt Vector Area

The interrupt vector area is for storing jump destination addresses used at reset or when an interrupt is generated.

Zero Page

Zero page addressing mode is useful because it enables access to this area with fewer instruction cycles.

Special Page

Special page addressing mode is useful because it enables access to this area with fewer instruction cycles.

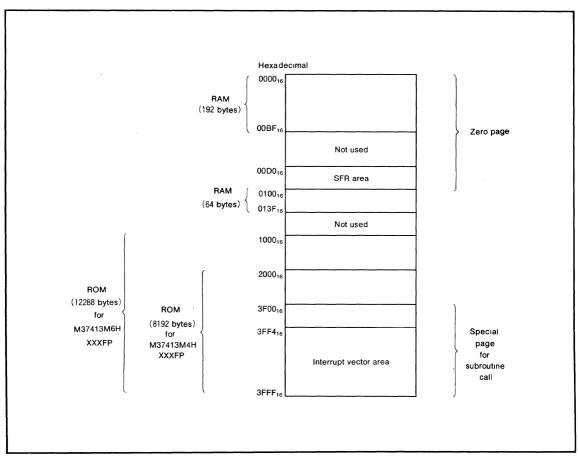


Fig. 1 Memory map

M37413M4HXXXFP M37413M6HXXXFP

00D0 ₁₆ Port P6	00E0 ₁₆	Port P0
00D1 ₁₆ Port P6 directional registe	or 00E1 ₁₆	Port P0 directional register
00D2 ₁₆ Port P7	00E2 ₁₆	Port P1
00D3 ₁₆ Port P7 directional register	er 00E3 ₁₆	Port P1 directional register
00D4 ₁₆	00E4 ₁₆	Port P2
00D5 ₁₆ P7 Key on wake up regis	ter 00E5 ₁₆	Port P2 directional register
00D6 ₁₆	00E6 ₁₆	
00D7 ₁₆	00E7 ₁₆	
00D8 ₁₆	00E8 ₁₆	Port P3
00D9 ₁₆	00E9 ₁₆	Port P3 directional register
00DA ₁₆	00EA ₁₆	Interrupt request distinguish register 2
00DB ₁₆	00EB ₁₆	Interrupt request distinguish register 1
00DC ₁₆	00EC ₁₆	Port P5
00DD ₁₆	00ED ₁₆	Port P5 directional register
00DE ₁₆	00EE ₁₆	P2 Key on wake up register
00DF ₁₆	00EF ₁₆	A-D register
	00F0 ₁₆	
	00F1 ₁₆	Timer 6 latch
	00F2 ₁₆	A-D control register
	00F3 ₁₆	PWM control register
	00F4 ₁₆	
	00F5 ₁₆	Port P4
	00F6 ₁₆	Serial I/O mode register
	00F7 ₁₆	Serial I/O register
	00F8 ₁₆	Timer 4, 5, 6 mode register
	00F9 ₁₆	Timer 1 latch
	00FA ₁₆	Timer 2 latch
	00FB ₁₆	Timer 3 latch
	00FC ₁₆	Timer 4 latch
	00FD ₁₆	Timer 5 latch
	00FE ₁₆	Interrupt control register
	00FF ₁₆	Timer control register

Fig. 2 SFR (Special Function Register) memory map

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

INTERRUPT

The M37413M4HXXXFP can be interrupted from ten sources; INT_1 , Timer 2 or Serial I/O, INT_3 or Key on wake up, INT_2 or Timer 3, Timer 6 or A-D, and BRK instruction.

"Key on wake up" can only be used at power down state by STP instruction or WIT instruction. When one of the P2 or P7 is "L", an interrupt occurs.

These interrupts are vectored and their priorities are shown in Table 1. Reset is included in this table since it has the same function as an interrupt

When an interrupt is accepted, the contents of certain registers are pushed into specified locations, and the interrupt disable flag (I) is set, and the program jumps to the address specified by the interrupt vector, and the interrupt request bit is cleared automatically. The reset interrupt is the highest priority interrupt and can never be inhibited. Except for the reset interrupt, all interrupts are inhibited when the interrupt disable flag is set to "1". All of the other interrupts can further be controlled individually via the interrupt control register shown in Figure 3. An interrupt is accepted when the interrupt enable bit and the interrupt request bit are both "1" and the interrupt disable flag is "0".

The interrupt request bits are set when the following conditions occur:

- When the INT₁, INT₂ or INT₃ pins go from "H" to "L" or "L" to "H"
- (2) When the levels any pin of P2 or P7 goes "L" (at power down mode)
- (3) When the contents of timer 2, timer 3, timer 6 or the counter of serial I/O goes "0"

These request bits can be clear by a program but can not be set. The interrupt enable bit can be set and clear by a program.

When the two interrupt requests, which are the same priority and are at the same sampling, the priority process is processed by interrupt request distinguish register 1 and 2. The interrupt request distinguish bit is used by software to determine priority when two interrupt causes are allocated to the same interrupt vector (that is, the two interrupts have the same priority).

Irrespective of whether the interrupt is disabled or enabled, the interrupt request distinguish bit is automatically set to "1" when conditions arise that satisfy the interrupt cause.

However, the interrupt request distinguish bit is not automatically cleared. The bit must therefore be cleared by software in the interrupt service routine (before executing an RTI instruction).

Note that when using the instruction CLB to clear this bit, the request distinguish bit of an interrupt that is generated during execution of CLB will not be set(to "1"). Use one of the following two methods to clear interrupt request distinguish bits:

Use instruction LDM to write directly to address 00EB₁₆ (interrupt request distinguish register 1) or 00EA₁₆ (interrupt request distinguish register 2).

LDM #\$nn, \$zz

- , Where zz is the address(00EB $_{16}$ or 00EA $_{16}$)of the interrupt request
- , distinguish register that includes the interrupt request distinguish
- , bit that is to be cleared and nn sets the interrupt request disting-
- , uish bit to be cleared to "0" and other interrupt request distinguish $% \left(1\right) =\left(1\right) \left(
- , bits to "1"
- , Other control bits must be set according to the required control
- , (interrupts enabled or disabled)

[Example] Clearing the $\ensuremath{\mathsf{INT_2}}$ interrupt request distinguish bit

LDM 1X1X0X1XB, \$00EB

1 1 1 1

Of the interrupt request distinguish bits, only the INT₂ interrupt request distinguish bit, which is to be cleared, should be set to "0". The values of bits marked "X" are determined by the control being effected.

Use instructions LDA, ORA, AND, and STA to write via the accumulator to address 00EB₁₆ (interrupt request distinguish register 1) or 00EA₁₆ (interrupt request distinguish register 2).

LDA \$zz

ORA #\$nn

AND #\$nn

STA \$zz

- , Where zz is the address(00EB $_{\rm 16}$ or 00EA $_{\rm 16}$) of the interrupt request
- , distinguish register that includes the interrupt request distinguish
- , bit that is to be cleared and nn sets the interrupt request disting-
- , uish bit to be cleared to "0" and other interrupt request distinguish
- , bits to "1" Other control bits must be set according to the required
- , control (interrupts enabled or disabled)

[Example] Clearing the timer 6 interrupt request distinguish bit

LDA \$00EA

ORA XX1X1X0XB

1 1 1

Of the interrupt request distinguish bits, only the interrupt request distinguish bit for timer 6, which is to be cleared, should be set to "0". The values of bits marked "x" are determined by the control being effected.

1 1 1

AND XX1X1X0XB

STA \$00EA

Because an interrupt request is generated only at the time the interrupt request distinguish bit is set(to "1"), no interrupt will be generated while the interrupt request distinguish bit remains in the set state. For this reason, the interrupt request distinguish bit must be cleared by software in the interrupt service routine.

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

Note that only method of 1 can be used in the M37413M4-XXXFP.

Since the BRK instruction interrupt and the timer 6 or A-D, interrupt have the same vectored address, the contents of the B flag must be checked to determine if the BRK instruction caused the interrupt or if timer 6 or A-D generated the interrupt.

Table 1. Interrupt vector address and priority

Event	Event Priority Vector addresses		Remarks
RESET	1	3FFF ₁₆ , 3FFE ₁₆	Non-maskable
INT ₁ interrupt	2	3FFD ₁₆ , 3FFC ₁₆	External interrupt
Serial I/O or timer 2 interrupt	3	3FFB ₁₆ , 3FFA ₁₆	
INT ₃ or key on wake up interrupt	4	3FF9 ₁₆ , 3FF8 ₁₆	External interrupt
INT ₂ or timer 3 interrupt	5	3FF7 ₁₆ , 3FF6 ₁₆	External interrupt (INT ₂)
Timer 6 or A-D interrupt	6	2555 2554	
(BRK instruction interrupt)		3FF5 ₁₆ , 3FF4 ₁₆	(Non-maskable software interrupt)



Fig. 3 Interrupt control

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

TIMER

The M37413M4HXXXFP has six timers; timer 1, timer 2, timer 3, timer 4, timer 5 and timer 6.

A block diagram of timer1 through 6 is shown in Figure 4. The count source for timer 1 through 3 can be selected by using bit 2, 3, 4 and 5 of the timer control register (address $00FF_{16}$), as shown in Figure 5. All of the timers are down count timers and have 8-bit latches. When a timer reaches "0" and the next count pulse is input to a timer, the contents of the reload latch are loaded into the timer. The division ratio of the timer is 1/(n+1), where n is the contents of timer latch.

Timer 2, 3 and 6 has interrupt generating functions. The timer interrupt request bit which is in the interrupt distinguish register 1 or 2 (located at addresses $00EB_{16}$ and $00EA_{16}$ respectively) is set at the next count pulse after the timer reaches "0" (see interrupt section).

The starting and stopping of timer1 is controlled by bit 7 of the interrupt distinguish register 2, timer 3 by bit 6 of the interrupt distinguish register 2 and timer 4 by bit 3 of timer 4, 5 and 6 mode register (00F8₁₆ address). If the corresponding bit is "0". the timer starts counting, and the corresponding bit is "1", the timer stops. The timer4 overflow signal divided by 2 can be outputed from port P3₃ by setting the bit 4 of the serial I/O mode register (00F6₁₆ address) to "1".

Timer 5 and 6 work as timer mode, event counter mode and PWM mode by changing the contents of bit 5 and bit 6 of the timer 4, 5 and 6 mode register.

(1) Timer Mode

This mode is the 16-bit timer, and the count source is $\phi/4$. When the bit 6 of PWM control register (00F3₁₆ address) is "1", the timer6 overflow singnal divided by 2 is output from CNT₂ pin (common with P5₂).

(2) Event Counter Mode

The count source is input from the CNT₂ pin. The count decremented each time the input goes from "L" to "H".

(3) PWM Mode

As shown in Figure 6, the output wave is controlled by the contents of the timer latch of timer 5 and 6.

PWM output can choose among PWM0, PWM1, PWM2 and PWM3 by bit 0, bit 1, bit 2 and bit 3 of PWM control register.

When the count value of all timers, from timer 1 to timer 6, are read, be careful not to change the input source.

When the count source is inputed from the external pin, the minimum pluse width should be $8\mu s.$

After a STP instruction is executed, timer 2, timer 1, and the clock (ϕ divided by 4) are connected in series (regardless of the status of bit 2 through 5 of the timer control register). This state is canceled if timer2 interrupt request bit is set to "1", or if the system is reset. Before the STP instruction is executed, bit 7 of the interrupt request distinguish register2 (timer1 count stop bit), bit 5 of the interrupt request distinguish register1 and bit 6 and bit 7 of the timer control

register must be set to "0". And also bit 4 of the interrupt request distinguish register1 must be set to "1". For more details on the STP instruction, refer to the oscillation circuit section.

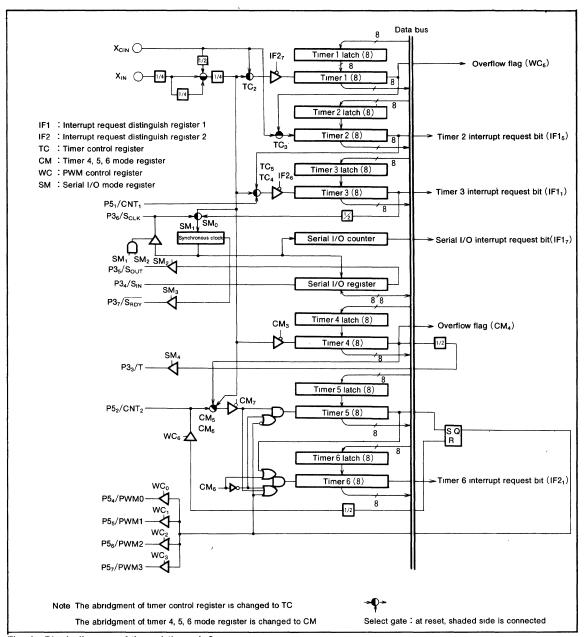


Fig. 4 Block diagram of timer 1 through 6

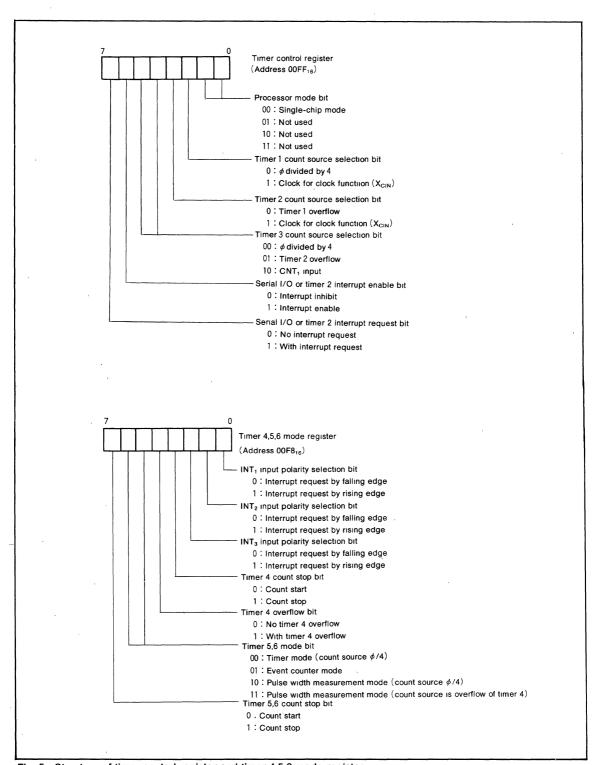


Fig. 5 Structure of timer control register and timer 4,5,6 mode register

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

PWM

M37413M4HXXXFP has a pulse width modulated (PWM) output control circuit connecting with timer5 and timer6.

Figure 5 shows the structure of timer 4,5,6 mode register, Figure 6 shows the PWM rectangular wave form and Figure 7 shows the structure of PWM control register.

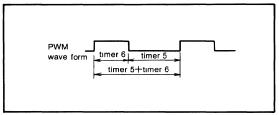


Fig. 6 PWM rectangular wave form

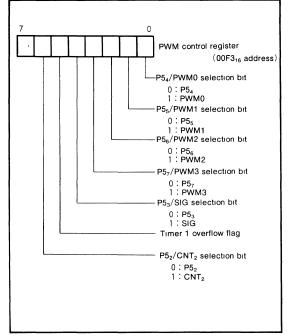


Fig. 7 Sturcture of PWM control register

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

SERIAL I/O

The block diagram of serial I/O is shown in Figure 9. In the serial I/O mode the receive ready signal $(\overline{S_{RDY}})$, synchronous input/output clock (CLK). and the serial I/O (S_{OUT}, S_{IN}) pins are used as P3₇, P3₆, P3₅, and P3₄, respectively.

FUNCTION OF SERIAL I/O MODE REGISTER

The serial I/O mode register (address 00F6₁₆) is an 8-bit register. Bit 1 and 0 of this register is used to select a synchronous clock source. When these bits are (00) or (01), an external clock from P36 is selected. When these bits are (10), the overflow signal divided by two from timer 3 becomes the synchronous clock. Therefore, changing the timer period will change the transfer speed. When the bits are (11), the internal clock ϕ divided by 4 becomes the clock. Bits 2 and 3 decide whether parts of P3 will be used as a serial I/O or not. When bit 2 is "1", P36 becomes an I/O pin of the synchronous clock. When an internal synchronous clock is selected, the clock is output from P36. If the external synchronous clock is selected, the clock is input to P36. And P35 will be a serial output and P34 will be a serial input. To use P34 as a serial input, set the directional register bit which corresponds to P34, to "0". For more information on the directional register, refer to the I/O pin section.

To use the serial I/O, bit 2 needs to be set to "1", if it is "0" $P3_6$ will function as a normal I/O. Bit 3 determines if $P3_7$ is used as an output pin for the receive data ready signal (bit 3="1", $\overline{S_{BDY}}$) or used as a nomal I/O pin (bit 3="0").

OPERATION OF SERIAL I/O

The function of serial I/O differs depending on the clock source; external clock or internal clock.

Internal Clock — The $\overline{S_{RDY}}$ signal becomes "H" during transmission or while dummy data is stored in the serial I/O register. After the falling edge of write signal, the $\overline{S_{RDY}}$ signal becomes low signaling that the M37413M4HXXXFP is ready to receive the external serial data. The $\overline{S_{RDY}}$ signal goes "H" at the next falling edge of the transfer clock. The serial I/O counter is set to 7 when data is stored in the serial I/O register. At each falling edge of the transfer clock, serial data is output to P35. During the rising edge of this clock, data can be input from P34 and the data in the serial I/O register will be shifted 1 bit. Data is output starting with the LSB. After the transfer clock has counted 8 times, the serial I/O register will be empty and the transfer clock will remain at a high level. At this time the interrupt request bit will be set.

External Clock — If an external clock is used, the interrupt request bit will be set after the transfer clock has counted 8 times but the transfer clock will not stop. Due to this reason, the external clock must be controlled from the outside. The external clock should not exceed 250kHz at a duty cycle of 50%. When the external clock is chosen, the P3₆ pin must be held at "H" level while the serial I/O is not used.

Timing diagrams are shown in Figure 10, and connection between two M37413M4HXXXFP's are shown in Figure 11.

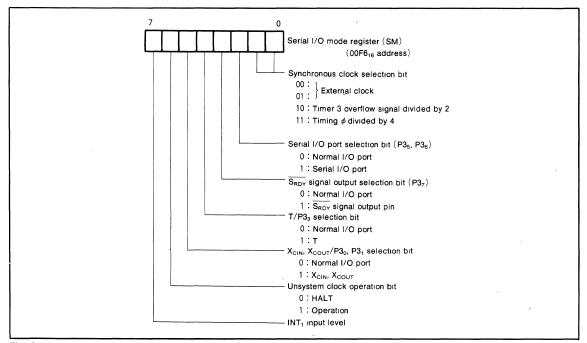


Fig. 8 Structure of serial I/O mode register

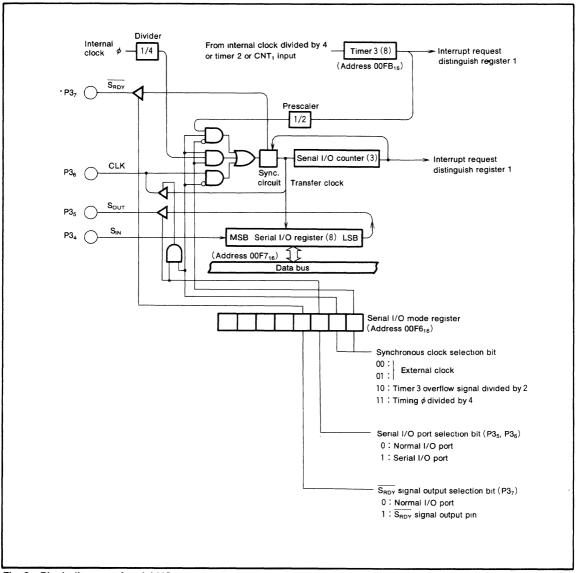


Fig. 9 Block diagram of serial I/O

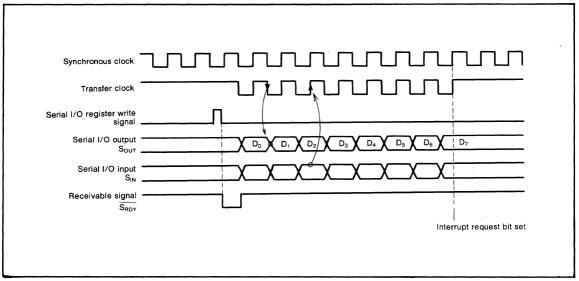


Fig. 10 Serial I/O timing

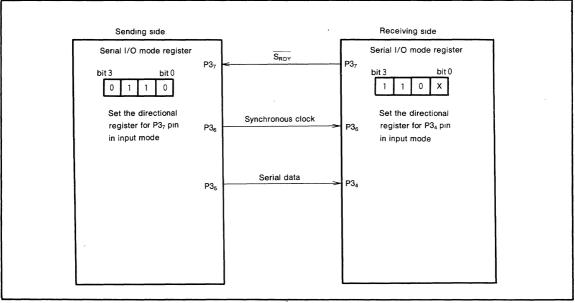


Fig. 11 Example of serial I/O connection

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

A-D CONVERTER

The A-D converter circuit is shown in Figure 12. One of the eight analog input ports of the A-D converter $(IN_0 \sim IN_7)$ are selected by bits 0, 1 and 2 of the A-D control register. The IN pins, not to use as analog input, uses as input port.

Bit 0, 1 and 2, and corresponding to analog input pin is shown in Figure 13. A-D conversion is accomplished by first selecting bit 3 and 4 of the A-D control register (address $00F2_{16}$) for the source of V_{REF} . And also the analog input pin is chosen by the analog input select bit of the A-D control register. A-D conversion starts by writing a dummy data to the A-D register or changing the input level from SIG pin "H" to "L". When A-D conversion is finished, an interrupt is generated. After A-D interrupt is accepted, the result of A-D conversion can be read from the A-D register.

Note that the A-D conversion must to be started to convert after the reference voltage reaches stable level.

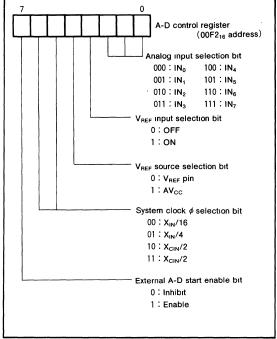


Fig. 13 Structure of segment control register

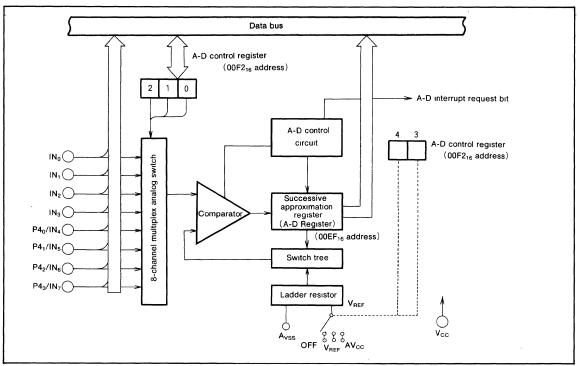


Fig. 12 A-D converter circuit

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

KEY ON WAKE UP

"Key on wake up" is one way of returning from a power down state caused by the STP or WIT instruction.

When the key on wake up option of port P2 and port P7 are designated and key on wake up interrupt enable bit (IC_4) is set to "1", if the key on wake up option pin of port P2, P7 have "L" level applied, key on wake up interrupt is generated and the microcomputer is returned to the normal operating state.

When the bit 4 of PWM control register (address $00F3_{16}$) is set to "1", the pulse shown in Figure 14 is outputed from $P5_3$ pin.

Fig. 14 Output from the SIG pin at wake up from the stop state

As shown in Figure 15, if the key matrix of active "L" to input port P2, P7 are constructed, the microcomputer is returned to normal operating state by the key push. Refer to the section of interrupt how to use the key on wake up function. In order to enter the power down state generated by the STP or WIT instruction at the interrupt disable flag (I) is "0" and IC₄ is "1", the input designated as key on wake up by option in port P2, P7 must be all "H".

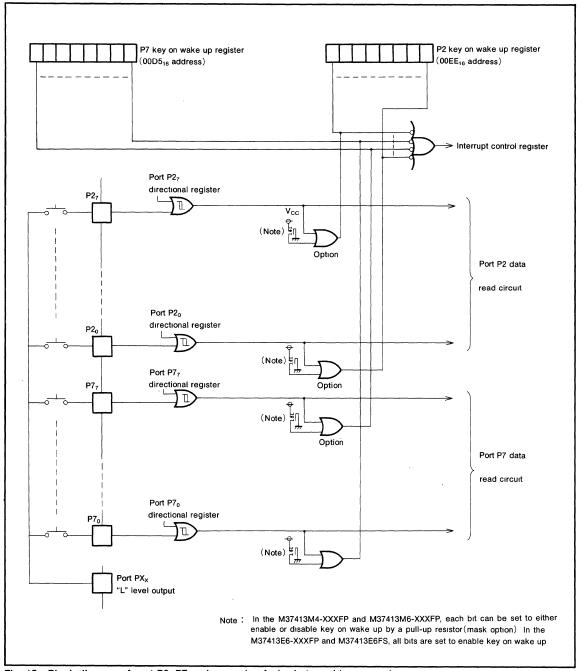


Fig. 15 Block diagram of port P2, P7 and example of wired at used key on wake up

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

RESET CIRCUIT

The M37413M4HXXXFP is reset according to the sequence shown in Figure 18. It starts the program from the address formed by using the content of address 3FFF $_{16}$ as the high order address and the content of the address 3FFE $_{16}$ as the low order address, when the RESET pin is held at "L" level for no less than 16 μ s while the power voltage is between 4 and 5.5V and the crystal oscillator oscillation is stable and then returned to "H" level.

The internal initializations following reset are as shown in Figure 16 regardless of the status before reset (including stop mode or wait mode).

An example of the reset circuit is shown in Figure 17. When the power on reset is used, the $\overline{\text{RESET}}$ pin must be input "H" after the oscillation of $X_{\text{IN}}\text{-}X_{\text{OUT}}$ becomes stable.

			Address			
(1)	Port P0 directional register	(D0)	(E1 ₁₆)	00 ₁₆		
(2)	Port P1 directional register	(D1)	(E3 ₁₆) ·	0016		
(3)	Port P2 directional register	(D2)	(E5 ₁₆)	0016		
(4)	Port P3 directional register	(D3)	(E9 ₁₆)····	0016		
(5)	Port P5 directional register	(D5)	(ED ₁₆)	0016		
(6)	Port P6 directional register	(D6)	(D1 ₁₆)	00 ₁₆		
(7)	Port P7 directional register	(D7)	(D3 ₁₆)	0016		
(8)	Interrupt request distinguish register 1	(IF1)	(EB ₁₆)	0016		
(9)	Interrupt request distinguish register 2	(IF2)	(EA ₁₆)	0016		
(10)	PWM control register	(wc)	(F3 ₁₆)····	0 0 0 0 0 0 0		
(11)	Serial I/O mode register	(SM)	(F6 ₁₆)····	- 0 0 0 0 0 0 0		
(12)	Timer 4, 5, 6 mode register	r(CM)	(F8 ₁₆)···	0016		
(13)	Interrupt control register	(IM)	(FE ₁₆)	0016		
(14)	Timer control register	(TC)	(FF ₁₆)	0016		
(15)	A-D control register	(AC)	(F2 ₁₆)···	0 0 0 0 0		
(16)	Processor status register					
(17)	Program counter		(PC _H)	Contens of address 3FFF ₁₆		
			(PC _L)	Contens of address 3FFE ₁₆		
Note: Since the contents of both registers other than those listed above (including timers, A-D control register and the serial I/O register) and the RAM are undefined at reset, it is necessary to set initial values						

Fig. 16 Internal state of microcomputer at reset

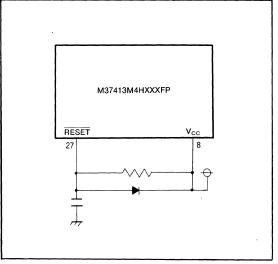


Fig. 17 Example of reset circuit

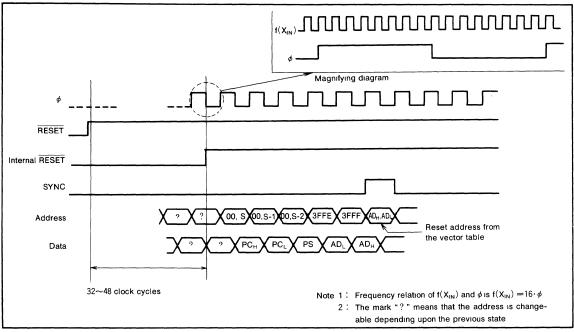


Fig. 18 Timing diagram at reset

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

I/O PORTS

(1) Port P0

Port P0 is an 8-bit I/O port with CMOS outputs and pull-up transistor options available. As shown in Figure 1, P0 can be accessed as memory through zero page address 00E0₁₆. Port P0's directional register allows each bit to be programmed individually as input or output. The directional register (zero page address 00E1₁₆) can be programmed as input with "0", or as output with "1". When in the output mode, the data to be output is latched to the port register and output. When data is read from the output port, the output pin level is not read, only the latched data of the port register is read. Therefore, a previously output value can be read correctly even though the output voltage level has been shifted up or down. Port pins set as input are in the high impedance state so the signal level can be read. When data is written into the input port, the data is latched only to the output register and the pin still remains in the high impedance state. This port can be built in a pull-up resistor option when it is used as a input port.

(2) Port P1

Port P1 has the same function as P0 but the output structure is N-ch open drain. This port can be built in a pull-up resistor option when it is used as a input port.

(3) Port P2

Port P2 has the same function as P0. The output structure is CMOS outputs. This port can be built in a pull-up resistor option when it is used as a input port. Following the execution of STP or WIT instruction, key matrix with port P2 can be used to generate the interrupt to bring the microcomputer back in its normal state. The pin to be used as the key on wake up must be with key on wake up option and its value in directional register must be "0".

(4) Port P3

Port P3 has the same functions P0 except that part of P3 is common with the serial I/O, output of timer4, clock oscillation of timer clock and interrupt input.

The output is N-channel open drain. This port can be built in a pull-up resistor option. When $P3_0$ and $P3_1$ pins are used for X_{CIN} input, pull-up is 'nhibited.

(5) Port P4

Port P4 is an 8-bit input port. $P4_0 \sim P4_3$ are in common with the $IN_4 \sim IN_7$. This port can be built in a pull-up resistor option when it is used as a input port.

(6) Port P5

Port P5 has the same functions as P0 except that part of P5 is common with the counter input pin, SIG pin, and PWM output pin. The output is N-channel open drain output. This port can be built in a pull-up resistor option.

(7) Port P6

Port P6 has the same function as P0 but the output structure is N-ch open drain. This port can be built in a pull-up resistor option.

(8) Port P7

Port P7 has the same function as P0. The output structure is CMOS outputs. This port can be built in a pull-up resistor option when it is used as a input port. Following the execution of STP or WIT instruction, key matrix with port P7 can be used to generate the interrupt to bring the microcomputer back in its normal state. The pin to be used as the key on wake up must be with key on wake up option and its value in directional register must be "0".

(9) Analog input(IN₀~IN₇) This is a port for an analog input of A-D converter. IN₄ ~IN₇ are in common with the P4₀~P4₃.

(10) INT₁

The INT_1 pin is an interrupt input pin. The INT_1 interrupt request bit (bit 7 of address $00FE_{16}$) is set to "1" when the input level of this pin changes from "H" to "L" (or "L" to "H"). This input level is read in the bit 7 of serial I/O mode register (address $00F6_{16}$).

(11) $INT_2(P3_2/INT_2)$

The INT₂ pin is an interrupt input pin common with P3₂. When P3₂'s directional register is set for input ("0"), this pin can be used as an interrupt input. The INT₂ interrupt request bit (bit 3 of address 00EB₁₆) is automatically set to "1" when the input level of this pin changes from "H" to "L" (or from "L" to "H").

(12) $INT_3(P5_0/INT_3)$

The INT₃ pin is an interrupt input pin common with P5₀. The other functions are the same as INT₂.

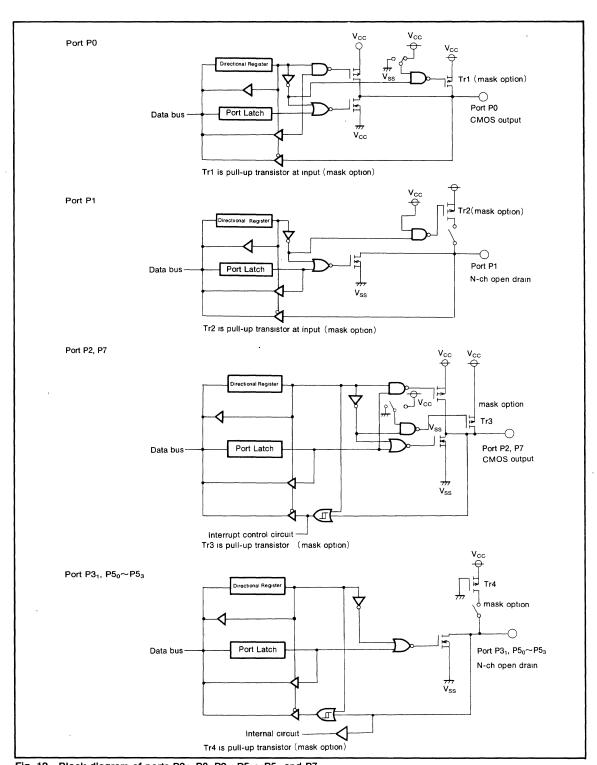


Fig. 19 Block diagram of ports P0 \sim P2, P3₁, P5₀ \sim P5₃ and P7

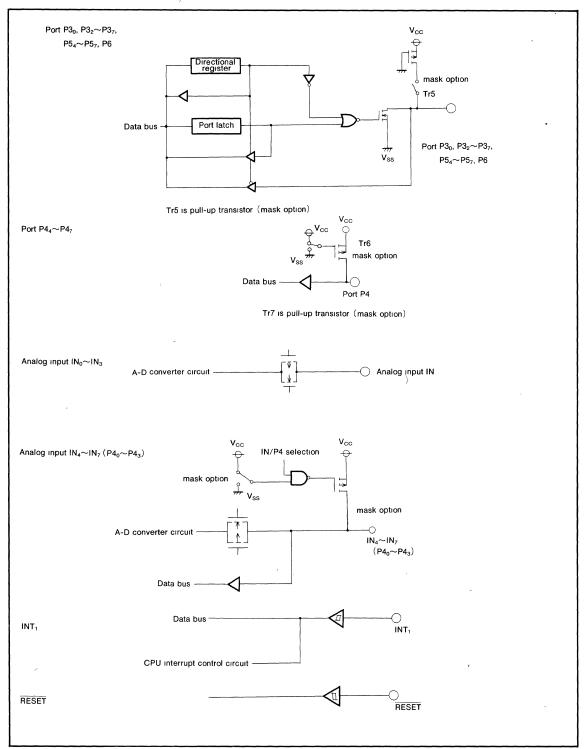


Fig. 20 Block diagram of ports P3₀,P3₂~P3₇, P4, P5₄~P5₇, P6, analog input port IN, INT₁, RESET

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

CLOCK GENERATING CIRCUIT

The M37413M4HXXXFP has two internal clock generators. Figure 23 shows a block diagram of the clock generator. Normally, the frequency applied to the clock input pin $X_{\rm IN}$ divided by 16 is used as the internal clock (timing output) ϕ . The internal clock ϕ can be changed to 1/4 the frequency applied to the clock input pin $X_{\rm IN}$ or 1/2 the frequency applied to the clock input pin $X_{\rm CIN}$. When $X_{\rm CIN}/2$ is selected, the pull-up option to P30, P31 pins are inhibited.

These signals can be changed via bit5 (AC_5) and bit6 (AC_6) of the A-D control register. When AC_6 and AC_5 are [00], the internal clock is chosen $X_{\rm IN}/16$. When they are [01], the internal clock is chosen $X_{\rm IN}/4$. When they are [10] and [11], the internal clock is $X_{\rm CIN}/2$. The one of clock $X_{\rm IN}$ and clock $X_{\rm CIN}$, isn't in use for the internal clock (none system clock), stops when the bit6 (SM_6) of serial I/O mode register is "0". In order to restart the clock as the internal clock, SM_6 is set to "1" and wait until the oscillation becomes stability by the software then the internal clock is chosen AC_6 and AC_5 .

The M37413M4HXXXFP has two low power consumption modes, stop and wait. The microcomputer enters a stop mode when the STP instruction is executed. The oscillator (both X_{IN} clock and X_{CIN} clock) stops with the internal clock ϕ held at "H" level. In this case timer 1 and timer 2 are forcibly connected and $\phi/4$ is selected as timer 1 input. When restarting oscillation, the internal clock ϕ is held "H" until timer 2 overflows and is not supplied to the CPU. So set the suitable value for timer 1 and timer 2 in order to enable the oscillator to stabilize. Before executing the STP instruction, the timer 1 count stop bit (IF27) must be set to supply ("0"), timer 2 interrupt enable bit (IF14) of interrupt request distinguish register 1 must be set to enable ("1"), timer 2 interrupt request bit (IF15) of interrupt request distinguish register 1 must be set to "0". And serial I/O or timer 2 interrupt enable bit (TC₆) and serial I/O or timer 2 interrupt request bit (TC₇) of timer control register must be set to "0".

Oscillation is restarted (reset stop mode) when an external interrupt is received. The interrupt enable bit of the interrupt used to reset the stop mode must be set to "1".

The microcomputer enters a wait mode when WIT instruction is executed. The internal clock ϕ stops at "H" level, but the oscillator does not stop. ϕ is re-supplied (wait mode reset) when it receives an external interrupt or internal timer interrupt. Instructions can be executed immediately because the oscillator is not stopped. The interrupt enable bit of the interrupt used to reset the wait mode must be set to "1" before executing the WIT instruction.

When the interrupt is accepted and after the interrupt subroutine is executed, the next instruction to STP or WIT is executed. It is possible to cancel stop and wait mode by reset. In this case, the execution is started from the address is set to reset vector. Transition of states for the system clock is shown in Figure 24. The change order of the internal clock is shown in Figure 24.

When STP instruction is executed from the states of A, B, C, D and E, it will be the same state as H (stop state). If the interrupt is executed in stop state, it will return the state before STP instruction is executed.

Figure 21 shows a circuit example using a ceramic (or crystal) oscillator. Use the manufacturer's recommended values for constants such as capacitance which is unique for each oscillator. There are slight differences in constants in the M37413M4HXXXFP and M37413M6HXXXFP. If using one of these chips in applications such as high-precision clocks, ask the resonator manufacturer for measurements of these constants. When using an external clock signal, input from the $X_{\text{IN}}(X_{\text{CIN}})$ pin and leave the $X_{\text{OUT}}(X_{\text{COUT}})$ pin open. A circuit example is shown in Figure 22.

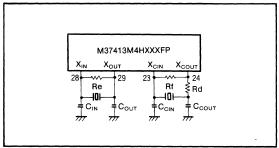


Fig. 21 External ceramic resonator circuit

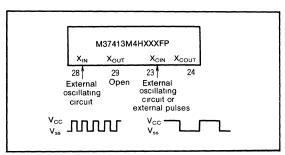


Fig. 22 External clock input circuit

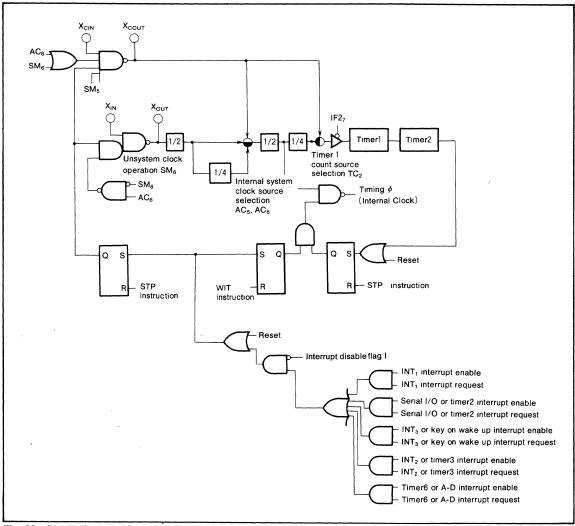


Fig. 23 Block diagram of clock generating circuit

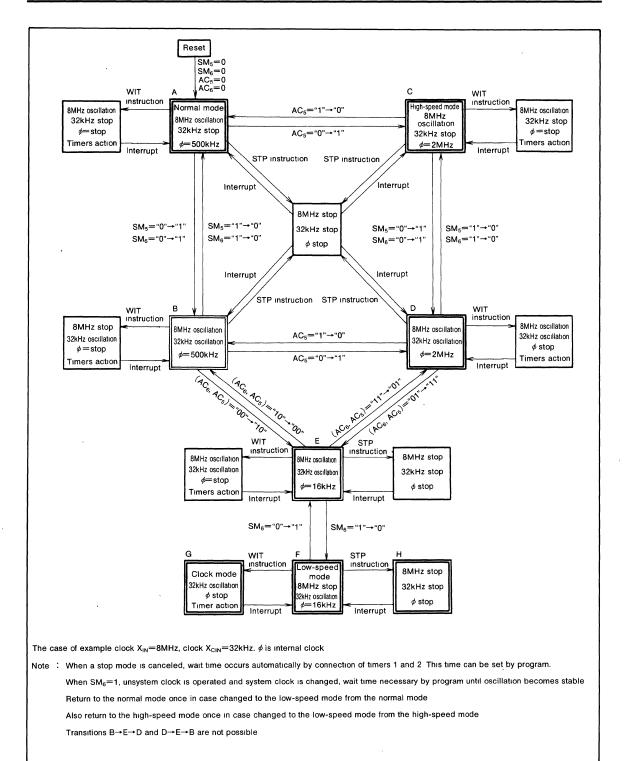


Fig. 24 Transition of states for the system clock

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

PROGRAMMING NOTES

- (1) The frequency ratio of the timer is 1/(n+1).
- (2) The count value of timers 1, 2, 3, 4 can be read at an arbitrary timing when the timing φ divided by 4 or timer overflow is input to these timers. If X_{CIN} or CNT₁ input is input to these timers, the value of timer 1, 2, 3, 4 must be read only when the input of timers is not changing or the timer count is stopped.
 - Also the count value of timers 5, 6 which are used in the event counter mode must be read when the external input is at the "L" level. When timers 5, 6 are used in the timer mode, the count value of these timers cannot be read.
- (3) Even though the BBC and BBS instructions are executed after the interrupt request bits are modified (by the program), those instructions are only valid for the contents before the modification. Also, at least one instruction cycle must be used (such as a NOP) between the modification of the interrupt request bits and the execution of the BBC and BBS instructions.
- (4) ① After the ADC and SBC instructions are executed (in decimal mode), one instruction cycle (such as a NOP) is needed before the SEC, CLC, or CLD instructions are executed.
 - ② In decimal mode, the negative (N), overflow (V) and zero (Z) flags are invalidated.
- (5) A NOP instruction must be used after the exection of a PLP instruction.
- (6) ① The timer 1 and timer 2 must be set the necessary value immediately before the execution of a STP instruction.

Also the following conditions must be satisfied:

- Timer 1 count stop bit is set to "0"
- Timer 2 interrupt enable bit is set to "1"
- Timer 2 interrupt request bit is set to "0"
- Serial I/O or timer 2 interrupt enable bit is set to "0"
- Serial I/O or timer 2 interrupt request bit is set to "0"
- ② To restart oscillation when it is stopped by STP instruction or unsystem clock operation bit, wait for a specified time which is needed for the oscillator to stabilize.
- ③ Connect I/O ports which are in input mode to V_{CC} or GND to get less power supply current after executing STP or WIT instruction. Connect P5₀~P5₃ to V_{CC} or GND also in output mode.
- (7) Some instructions can be used to write contents of the interrupt request distinguish register 1, 2. If the SEB or CLB instruction or a set of instruction that acts as the SEB or CLB instruction (for instance, LDA TC+SEB 7, A+STA TC) is used, an interrupt request which is input during execution of these instructions may be cleared. Therefore, these instructions should be used only when there is no problem even if such an interrupt request is cleared. Usually, the LDM instruction or STA instruction

- is used. Especially to write contents of the interrupt request distinguish register 1, 2, use the flow chart as shown in Figure 26.
- (8) After switching the serial I/O transfer clock, initialize the serial I/O counter (write to address 00F7₁₆).
- (9) To use an external clock as the serial I/O transfer clock, initialize the serial I/O counter when the external clock is "H" level.
- (10) To use the P3₀ and P3₁ pins as the I/O pins of the clock for clock function, do not use the pull-up resistors by option.
- (11) If using the A-D converter, supply power to the V_{REF} pin(set bits 3 and 4 of address 00F2₁₆), and make sure that the voltage of the V_{REF} pin has stabilized before activating the A-D conversion.

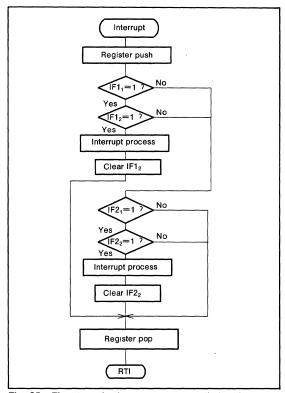


Fig. 25 Flow to write interrupt request distinguish registers

M37413M4HXXXFP M37413M6HXXXFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

DATA REQUIRED FOR MASK ORDERING

Please send the following data for mask orders.

- (1) mask ROM confirmation form
- (2) mark specification form
- (3) ROM data ····· EPROM 3sets

Write the following option on the mask ROM confirmation form

- · Port P0 pull-up transistor bit
- · Port P1 pull-up transistor bit
- · Port P2 pull-up transistor bit
- Port P3 pull-up transistor bit
- · Port P4 pull-up transistor bit
- · Port P5 pull-up transistor bit
- · Port P6 pull-up transistor bit
- · Port P7 pull-up transistor bit
- · Port P2 key on wake up
- · Port P7 key on wake up

M37413M4HXXXFP M37413M6HXXXFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
V _{CC}	Supply voltage		−0.3~7	V
AV _{CC}	Analog supply voltage	V _{CC} =AV _{CC}	−0.3~7	V
Vı	Input voltage P0 ₀ ~P0 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ , P3 ₁ , P4 ₀ ~P4 ₃ , P7 ₀ ~P7 ₇ , IN ₀ ~IN ₇ , V _{REF} , X _{IN}		-0.3∼V _{cc} +0.3	·v
Vı	Input voltage CNV _{SS}		−0.3~7	V
Vı	Input voltage INT ₁ , RESET, P1 ₀ ~P1 ₇ , P3 ₂ ~P3 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ (Note 1)	,	-0.3~10	v
Vo	Output voltage P0 ₀ ~P0 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ , P3 ₁ , P7 ₀ ~P7 ₇ , X _{OUT}		-0.3~V _{cc} +0.3	v
Vo	Output voltage P1 ₀ ~P1 ₇ , P3 ₂ ~P3 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ (Note 1)		-0.3~10	V
Pd	Power dissipation	T _a = 25℃	300	mW
Topr	Operating temperature		-20~75	င
Tstg	Storage temperature		-40~125	င

Note 1 : When these ports are built in a pull-up resistor option, the value is $-0.3 \sim V_{cc} + 0.3V$

RECOMMENDED OPERATING CONDITIONS (V_{CC}=2.5~5.5V, V_{SS}=0 V, T_a=-20~75°C, unless otherwise noted)

Symbol	Parameter	O and the area	Limits			11
Symbol	Parameter	Conditions	Mın.	Тур	Max	Unit
		f(X _{IN})= 8 MHz High-speed mode	4.5		5.5	
V_{CC}	Supply voltage (Note 1)	f(X _{IN})= 8 MHz Normal mode or	0.5			V
		$f(X_{IN}) = 2 \text{ MHz High-speed mode (Note 2)}$	2.5		5.5	
V _{SS}	Supply voltage			0		V
	"H" input voltage P0 ₀ ~P0 ₇ , P3 ₀ , P3 ₁ , P4 ₀ ~P4 ₇ ,		0.714			٧
V _{IH}	CNV _{SS} (Note 3)	1	0.7V _{CC}		Vcc	٧
V _{IH}	"H" input voltage P2 ₀ ~P2 ₇		0.8V _{CC}		Vcc	٧
V _{IH}	"H" input voltage P1 ₀ ~P1 ₇ , P5 ₁ ~P5 ₇ , P6 ₀ ~P6 ₇ , S _{IN}		0.7V _{CC}		10	٧
	"H" input voltage P3 ₂ ~P3 ₇ , P5 ₀ , INT ₁ , INT ₂ , INT ₃ ,		0.014		10	V
V _{IH}	CNT ₁ , CNT ₂ , SIG, CLK		0.8V _{CC}		10	V
V _{IH}	"H" input voltage RESET, Xin, Xcin		$0.85V_{\rm CC}$		Vcc	V
VIL	"L" input voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P3 ₀ , P3 ₁ ,		0		0. 25V _{CC}	V
V IL	P4 ₀ ~P4 ₃ , P5 ₁ ~P5 ₇ , P6 ₀ ~P6 ₇ , S _{IN}		J		0. 23 V CC	· ·
VIL	"L" input voltage P2 ₀ ~P2 ₇ , P3 ₂ ~P3 ₇ , P5 ₀ , INT ₁ ,		0		0. 2V _{GG}	v
	INT ₂ , INT ₃ , CNT ₁ , CNT ₂ , SIG, CLK					-
VIL	"L" input voltage RESET, X _{IN} , X _{CIN}		0		0.15V _{CC}	V
I _{OH}	"H" output current P0 ₀ ~P0 ₇ , P2 ₀ ~P2 ₇ , P7 ₀ ~P7 ₇ ,				-1	mA
·OH	X _{OUT} (Note 4)				<u> </u>	1117
	"L" output current $P0_0 \sim P0_7$, $P2_0 \sim P2_7$, $P3_0 \sim P3_7$,					
I _{OL}	P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ ,		1		1	mA
	X _{OUT} (Note 5)					
loL	"L" output current P1 ₀ ~P1 ₇ (Note 6)	V _{CC} =3V			10	mA
		V _{cc} =5V			20	
f(X _{IN})	Clock oscillating frequency		0.2		8. 2	MHz
f(X _{CIN})	Clock oscillating frequency for clock function		30		50	kHz

: When only maintaining the RAM data, minimum value of V_{CC} is $2\,\text{V}$

We say the high-speed mode, when the system clock is chosen X_{IN}/4, and the low-speed mode, when the system clock is chosen X_{IN}/16

3 : When P3₁ is used as X_{CIN}, V_{IH} and V_{IL} of P3₁ is 0.85V_{CC}≦V_{IH}≦V_{CC} and 0.≦V_{IL}≦0.15V_{CC}
4 : The total I_{OH}(peak) of port P0, P2, P7 and X_{OUT} is less than 35mA.

5 : The total I_{OH}(peak) of port P0, P2, P3, P5, P6 and P7 is less than 32mA

: The total peak current of I_{OL} of port P1 is less than 80mA and the average current of total I_{OL} of port P1 is less than 40mA

M37413M4HXXXFP M37413M6HXXXFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

ELECTRICAL CHARACTERICS ($v_{ss}=0$ V, $\tau_a=-20\sim75^{\circ}$ C, unless otherwise noted)

0	Parameter	T		Limits				
Symbol	Param	eter	Test conditions	Min	Тур	Max.	Unit	
.,	#117 BO BO FO	00 D0 D7 D7	V _{CC} =5V, I _{OH} =-0.5mA	4			.,	
V _{OH}	"H" output voltage P0 ₀ ~P0 ₇ , F	20~P27, P10~P17	V _{CC} =3V, I _{OH} =-0. 3mA	2. 4			V	
	#11 V		V _{CC} =5V, I _{OH} =-0. 3mA	4			v	
V _{OH}	"H" output voltage X _{OUT}		V _{CC} =3V, I _{OH} =-0.1mA	2.4			V	
VoL	"L" output voltage P0 ₀ ~P0 ₇ , P	2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₇ , P5 ₀ ~P5 ₇ , 7 ₀ ~P7 ₇ , T, S _{OUT} , CLK,	V _{CC} =5V, I _{OL} =1mA			1	v	
*OL		PWM0~PWM3	V _{CC} =3V, I _{OL} =0.5mA			0.6	•	
Vol	"I " output voltage P1 - P1		V _{CC} =5V, I _{OL} =20mA			2	V	
VOL	"L" output voltage P1 ₀ ~P1 ₇		V _{CC} =3V, I _{OL} =10mA			1.5	٧	
.,	"L" output voltage X _{OUT}		V _{CC} =5V, I _{OL} =0. 3mA			1		
V _{OL}	L output voltage Xout		V _{CC} =3V, I _{OL} =0.1mA			0.6	_ v	
	Hysteresis INT ₁ , INT ₂ , INT ₃ , C	LK, CNT ₁ , CNT ₂ ,	V _{cc} =5V		0.7		.,	
$V_{T+}-V_{T-}$	SIG, S _{IN} , P2 ₀ ~P2 ₇ , P7 ₀ ~P7 ₇ , X _{CIN}		V _{CC} =3V		0.5		V	
	Uniteresia DECET		V _{cc} =5V		2		V	
V _{T+} -V _{T-} Hysteresis RESET			V _{cc} =3V		1.2		7 °	
V V III.		V _{cc} =5V		0.5		V		
V _{T+} -V _{T-} Hysteresis X _{IN}			V _{cc} =3V		0.35		V	
I _{IL}	"L" input current [P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₇ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇] without pull-up T ₁ .		V _{CC} =5V V _i =0V			-5	μΑ	
4L	(Note 1), INT ₁ , R		V _{cc} =3V V _i =0V		i	-3		
	"H" input current P00~P07, P2	0∼P2 ₇ , P3 ₀ , P3 ₁ ,	V _{CC} =5V V _i =5V			5		
I _{IH}	P4 ₀ ~P4 ₇ , P7	0~P7, XIN, XCIN, CNVSS	V _{CC} =3V V ₁ =3V			3	μA	
I _{IH}	"H" input current [P1 ₀ ~P1 ₇ , P3 ₀ ~P3 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇] without pull-up Tr. INT ₁ , RESET		v _i =10V			10	μA	
_	Pull-up T _r P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇	, P2 ₀ ∼P2 ₇ ,	V _{CC} =5V, V _I =0V	12	25	50		
R _{PĻ}	P3 ₀ ~P3 ₇ , P4 ₀ ~P4 ₃	, P5 ₀ ∼P5 ₇	V _{CC} =3V, V _I =0V	25	50	100	kΩ	
		The state of the s	f(X _{IN})=8MHz High-speed mode V _{CC} =5V		6	12		
		at operation	f(X _{IN})=8MHz Normal mode V _{CC} =3V	1	1	4	mA	
			f(X _{CIN})=32kHz, V _{CC} =3V		18	36	6 μΑ	
Icc	Supply current (Note 2)		f(X _{IN})=8MHz, V _{CC} =3V			3	mA	
		at wait mode	f(X _{CIN})=32kHz, V _{CC} =3V		4			
			Ta=25℃	1	0.1	1.0	μΑ	
		at stop mode	T _a =75℃			6.0	Ì	
V _{RAM}	RAM retention voltage			2		5.5	V	

Note 1 : Also the same when each port is used as INT₂, INT₃, CNT₁, CNT₂, SIG, S_{IN} and X_{CIN}, respectively. 2 : I/O ports or input ports are connected to V_{CC} Output ports are opened

M37413M4HXXXFP M37413M6HXXXFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

$\textbf{A-D} \quad \textbf{CONVERTER} \quad \textbf{CHARACTERISTICS} \; (v_{\text{CC}} = 5\text{V}, \, V_{\text{SS}} = 4\text{V}_{\text{SS}} = 0 \; \text{V}, \, T_{\textbf{a}} = 25^{\circ}\text{C}, \, f(X_{\text{IN}}) = 8 \; \text{MHz}, \, \text{unless otherwise noted})$

0	Parameter	Test conditions		Limits		Unit	
Symbol	Parameter	lest conditions	Mın	Тур	Мах.		
	Resolution				8	bits	
	Non-lineauth, organ	Non-linearity error $ \frac{V_{CC} = V_{REF} = 5.12V}{V_{CC} = V_{REF} = 3.072V} $			±2		
	Non-linearity error				±2	LSE	
	Differential non-linearity	V _{CC} =V _{REF} =5. 12V			±0.9		
	Differential non-integrity	V _{CC} =V _{REF} =3. 072V			±0.9	LSE	
.,	Zero transition error	V _{CC} =V _{REF} =5.12V			2		
V _{OT} Ze	Zero transition error	V _{CC} =V _{REF} =3.072V			2	LSB	
.,	Full-scale transition error	V _{CC} =V _{REF} =5.12V			6	LSE	
V _{FST}	Full-scale transition error	V _{CC} =V _{REF} =3. 072V			10	LSE	
-	Conversion time	V _{CC} =2.5~5.5V High-speed mode		200/f(X _{IN})			
T _C	Conversion time	V _{cc} =2.5~5.5V Normal mode		800/f(X _{IN})		μs	
	Defended in the second	V _{REF} =5V		1.0	2.5	4	
REF	Reference input current	V _{REF} =3V		0.5	1.5	mA	
I _{IN}	Analog port input current	V _{IN} =0~V _{CC}		1	10	μΑ	
VIN	Analog input voltage	V _{CC} =2.5~5.5V	AVss		Vcc	٧	
V _{REF}	Reference input voltage		2.5		V _{CC}	V	

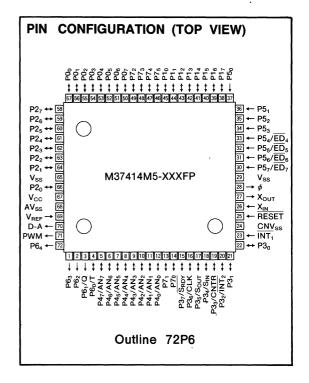
M37414M5-XXXFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

DESCRIPTION

The M37414M5-XXXFP is a single-chip microcomputer designed with CMOS silicon gate technology. It is housed in a 72-pin plastic molded QFP.

This single-chip microcomputer is useful for household appliance and other consumer applications.

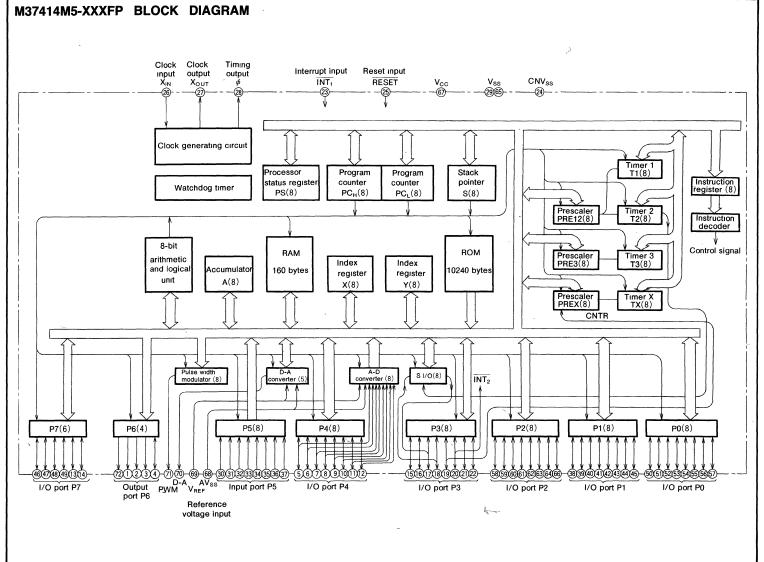

In addition to its simple instruction set, the ROM, RAM, and I/O addresses are placed on the same memory map to enable easy programming.

FEATURES

•	Number of basic instructions 69
•	Memory size ROM ······10240 bytes
	RAM160 bytes
ullet	Instruction execution time
	······ 2μs (minimum instructions at 4MHz frequency)
ullet	Single power supply $f(X_{IN})=4MHz\cdots5V\pm10\%$
•	Power dissipation
	normal operation mode (at 4MHz frequency) ···· 15mW
•	Subroutine nesting ······80 levels (Max.)
•	Interrupt·····7 types, 5 vectors
•	8-bit timer 4
•	Programmable I/O ports
	(Ports P0, P1, P2, P3, P4, P7) 46
•	Input port (Port P5)8
•	Output port (Port P6)5
•	Serial I/O (8-bit)1
•	A-D converter (8-bit resolution) ····· 8 channels
•	D-A converter (5-bit resolution) ······· 1 channels
•	8-bit PWM function
•	Watchdog timer

APPLICATION

VCR, Tuner, Audio-visual equipment Office automation equipment



SINGLE-CHIP

8-BIT

CMOS

MICROCOMPUTER

M37414M5-XXXFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

FUNCTIONS OF M37414M5-XXXFP

	Parameter		Functions	
Number of basic instructions			69	
Instruction execution time	Instruction execution time		2μs (minimum instructions, at 4MHz frequency)	
Clock frequency	Clock frequency		4MHz	
14	ROM		10240bytes	
Memory size	RAM		160bytes	
	ĪNT ₁	Input	1-bit×1	
	P0, P1, P2, P3, P4	1/0	8-bit×5 (a part of P3 is in common with serial I/O, timer I/O, and interrupt input)	
Input/Output port	P5	Input	8-bit×1	
	P6	Output	5-bit×1 (a part of P6 is in common with external trigger output pin)	
	P7	1/0	6-bit×1	
Serial I/O			8-bit×1	
Timers			8-bit prescalerX3+8-bit timerX4	
A-D converter			8-bit×1 (8 channels)	
D-A converter			5-bit×1	
Pulse width modulator			8-bit×1	
Watchdog timer			15-bit×1	
Subroutine nesting			80 levels (max)	
Interrupt			Two external interrupts, three internal timer interrupts	
Clock generating circuit			Built-in (ceramic or quartz crystal oscillator)	
Supply voltage			5V±10%	
Power dissipation	at high-speed operation		15mW (at 4MHz frequency)	
	Input/Output voltage		12V (Ports P3, P4, P5, P6, P7 ₀ , P7 ₁ , INT ₁)	
Input/Output characteristics Output current			5mA (Ports P0, P1, P2, P3, P4, P7)	
Memory expansion			Possible	
Operating temperature range			-10~70℃	
Device structure			CMOS silicon gate process	
Package			72-pin plastic molded QFP	

M37414M5-XXXFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

PIN DESCRIPTION

Pin	Name	Input/ Output	Functions	
V _{CC} , V _{SS}	Supply voltage		Power supply inputs 5V±10% to V _{CC} , and 0V to V _{SS}	
CNVss	CNV _{SS}		This is usually connected to V _{SS}	
RESET	Reset input	Input	To enter the reset state, the reset input pin must be kept at a "L" for more than $2\mu s$ (under normal V_{CC} conditions). If more time is needed for the crystal oscillator to stabilize, this "L" condition should be maintained for the required time	
XIN	Clock input	Input	This chip has an internal clock generating circuit. To control generating frequency, an external ceramic or quartz crystal oscillator is connected between the X _{IN} and X _{OUT} pins. If an external clock is used, the cloc	
Хоит	Clock output	Output	ource should be connected the X _{IN} pin and the X _{OUT} pin should be left open	
φ	Timing output	Output	is is the timing output pin	
ĪNT ₁	Interrupt input	Input	This is the highest order interrupt input pin	
AV _{SS}	Voltage input for A-D and D-A		This is GND input pin for the A-D and D-A converters	
V _{REF}	Reference voltage input	Input	This is reference voltage input pin for the A-D and D-A converters	
D-A	D-A output	Output	This is output pin from the D-A converter	
PWM	PWM output	Output	This is output pin from the pulse width modulator The output structure is N-channel open drain	
P0 ₀ ~P0 ₇	I/O port P0	1/0	Port P0 is an 8-bit I/O port with directional register allowing each I/O bit to be individually programmed as input or output. At reset, this port is set to input mode. The output structure is CMOS output.	
P1 ₀ ~P1 ₇	I/O port P1	1/0	Port P1 is an 8-bit I/O port and has basically the same functions as port P0 The output structure is CMOS output	
P2 ₀ ∼P2 ₇	I/O port P2	1/0	Port P2 is an 8-bit I/O port and has basically the same functions as port P0 The output structure is CMOS output	
P3₀~P3 ₇	I/O port P3	1/0	Port P3 is an 8-bit I/O port and has basically the same functions as port P0 When serial I/O is used, P37, P36, P35 and P34 work as $\overline{S_{RDV}}$, CLK, S_{OUT} and S_{IN} pins, respectively Also P33 and P32 work as CNTR pin and the lowest interrupt input pin $(\overline{INT_2})$, respectively. The output structure is N-channel open drain	
P4 ₀ ~P4 ₇	I/O port P4	1/0	Port P4 is an 8-bit I/O port and has basically the same functions as port P0 P4 ₀ ~P4 ₇ work as analog input port AN ₀ ~AN ₇ The output structure is N-channel open drain	
P5 ₀ ~P5 ₇	Input port P5	Input	Port P5 is an 8-bit input port P5 ₄ ~P5 ₇ can be used as the edge sense inputs	
P6 ₀ ~P6₄	Output port P6	Output	Port P6 is an 5-bit output port. At external trigger output mode, P6 ₀ and P6 ₁ are in common with the trigger input pin (T) and the trigger output pin (Q), respectively. The output structure is N-channel open drain	
P7 ₀ ∼P7 ₅	I/O port P7	. 1/0	Port P7 is an 6-bit I/O port and has basically the same functions as port P0 The output structure of P7 ₀ , P7 ₁ is N-channel open drain, and the output structure of P7 ₂ ~P7 ₅ is CMOS output	

FUNCTIONAL DESCRIPTION Central Processing Unit (CPU)

The M37414 microcomputers use the standard MELPS 740 instruction set. For details of instructions, refer to the MELPS 740 CPU core basic functions, or the MELPS 740 Software Manual.

Machine-resident instructions are as follows:

The FST and SLW instructions are not provided.

The MUL and DIV instructions are not provided.

The WIT instruction can be used.

The STP instruction can be used.

Timer Control Register

The timer control register is allocated to address 00FF₁₆. Bits 0 and 1 of this register are processor mode bits. This register also has a stack page selection bit.

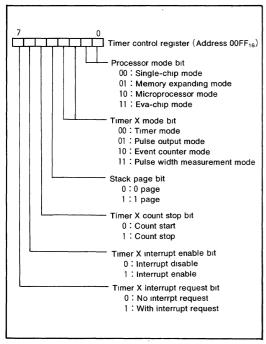


Fig.1 Structure of timer control register

MEMORY

• Special Function Register (SFR) Area

The special function register (SFR) area contains the registers relating to functions such as I/O ports and timers.

RAM

RAM is used for data storage as well as a stack area.

• ROM

ROM is used for storing user programs as well as the interrupt vector area.

• Interrupt Vector Area

The interrupt vector area is for storing jump destination addresses used at reset or when an interrupt is generated.

• Zero Page

Zero page addressing mode is useful because it enables access to this area with fewer instruction cycles.

Special Page

Special page addressing mode is useful because it enables access to this area with fewer instruction cycles.

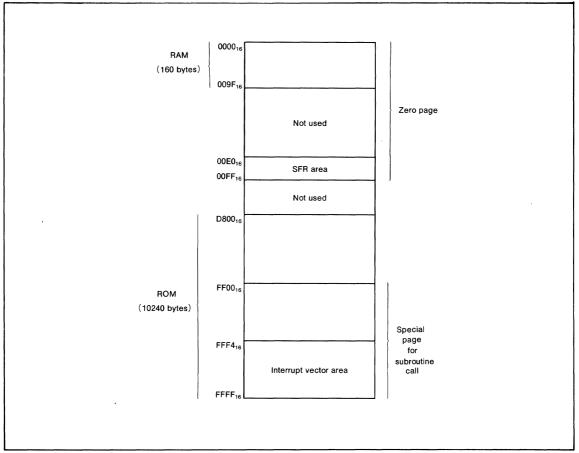


Fig.2 Memory map

MITSUBISHI MICROCOMPUTERS M37414M5-XXXFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

00E0 ₁₆	Port P0	00F0 ₁₆	D-A conversion register
00E1 ₁₆	Port P0 directional register	00F1 ₁₆	Pulse width modulation register
00E2 ₁₆	Port P1	00F2 ₁₆	Successive approximation register
00E3 ₁₆	Port P1 directional register	00F3 ₁₆	A-D control register
00E4 ₁₆	Port P2	00F4 ₁₆	Watchdog timer
00E5 ₁₆	Port P2 directional register	00F5 ₁₆	Serial I/O mode register
00E6 ₁₆	Port P7	00F6 ₁₆	Serial I/O register
00E7 ₁₆	Port P7 directional register	00F7 ₁₆	Timer 3 prescaler
00E8 ₁₆	Port P3	00F8 ₁₆	Timer 3
00E9 ₁₆	Port P3 directional register	00F9 ₁₆	Timer 1, 2 prescaler
00EA ₁₆	Port P4	00FA ₁₆	Timer 1
00EB ₁₆	Port P4 directional register	00FB ₁₆	Timer 2
00EC ₁₆	Port P5	00FC ₁₆	Timer X prescaler
00ED ₁₆	Port P5 latch	00FD ₁₆	Timer X
00EE ₁₆	Port P6	00FE ₁₆	Interrupt control register
00EF ₁₆	Special function selection register	00FF ₁₆	Timer control register

Fig. 3 SFR (Special Function Register) memory map

INTERRUPT

The M37414M5-XXXFP can be interrupted from seven sources; $\overline{INT_1}$, timer X, timer 1, timer 2/serial I/O, or $\overline{INT_2}$ /BRK instruction.

However, the $\overline{\text{INT}_2}$ pin is used with port P3₂ and the corresponding directional register bit should be set to "0" when P3₂ is used as an interrupt input pin.

The value of bit 2 of the serial I/O mode register (address $00F6_{16}$) determine whether the interrupt is from timer 2 or from serial I/O. When bit 2 is "0" the interrupt is from timer 2, and when bit 2 is "1" the interrupt is from serial I/O. Also, when the bit 2 is "1", parts of port P3 are used for serial I/O. These interrupts are vectored and their priorities are shown in Table 1. Reset is included in this table since it has the same functions as the interrupts.

When an interrupt is accepted, the contents of certain reg-

Table 1. Interrupt vector address and priority

Interrupt	Priority	Vector address
RESET	1	FFFF ₁₆ , FFFE ₁₆
INT ₁	2	FFFD ₁₆ , FFFC ₁₆
Timer X	3	FFFB ₁₆ , FFFA ₁₆
Timer 1	4	FFF9 ₁₆ , FFF8 ₁₆
Timer 2 or serial I/O	5	FFF7 ₁₆ , FFF6 ₁₆
INT ₂ (BRK)	6	FFF5 ₁₆ , FFF4 ₁₆

isters are pushed into specified locations, the interrupt disable flag I is set, the program jumps to the address specified by the interrupt vector, and the interrupt request bit is cleared automatically. The reset interrupt is the highest priority interrupt and can never be inhibited. Except for the reset interrupt, all interrupt are inhibited when the interrupt disable flag I is set to "1". All of the other interrupts can further be controlled individually via the interrupt control register shown in Figure 4. An interrupt is accepted when the interrupt enable bit and the interrupt request bit are both "1" and the interrupt disable flag is "0".

The interrupt request bits are set when the following conditions occur:

- (1) When the INT₁ or INT₂ pins go from "H" to "L"
- (2) When the contents of timer X, timer 1, timer 2 (or the serial I/O counter) go to "0"

These request bits can be reset by the program but can not be set by the program. However, the interrupt enable bit can be set and reset by the program.

Since the BRK instruction and the $\overline{\text{INT}_2}$ interrupt have the same vectored address, the contents of the B flag must be checked to determine if the BRK instruction caused the interrupt or if $\overline{\text{INT}_2}$ generated the interrupt.

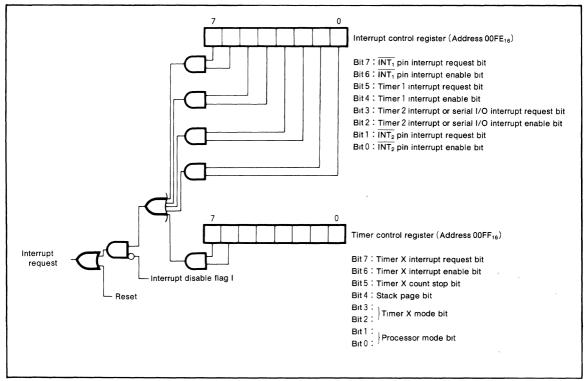


Fig.4 Interrupt control

TIMER

The M37414M5-XXXFP has three timers; timer X, timer 1, timer 2 and timer 3. Since P3 (in serial I/O mode) and timer 2 use some of the same architecture, they cannot be used at the same time (see serial I/O section). Timer X has four modes which can be selected by bit 2 and 3 of the timer control register. When the timer X count stop bit (bit 5) is set to "1", the timer X will stop regardless of which mode it is in. A block diagram of timer X, timer 1, timer 2 and timer 3 is shown in Figure 5.

The $P3_3/CNTR$ pin cannot be used as CNTR when $P3_3$ is being used in the normal I/O mode.

Timer 1 and timer 2 share with a prescaler. This prescaler has an 8-bit programmable latch used as a frequency divider. The division ratio is defined as 1/(n+1), where n is the decimal contents of the prescaler latch. All four timers are down-count timers which are reloaded from the timer latch following the zero cycle of the timer (i.e. the cycle after the timer counts to zero).

The timer interrupt request bit is set to "1" during the next clock pulse after the timer reaches zero. The interrupt and timer control registers are located at addresses $00FE_{16}$ and $00FF_{16}$, respectively (see Interrupt section). The prescaler latch and timer latch can be loaded with any number.

The four modes of timer X as follows:

- (1) Timer mode [00]
 - In this mode the clock is driven by the oscillator frequency divided by 16. When the timer down-counts to zero, the timer interrupt request bit is set to "1" and the contents of the timer's latch is reloaded into the timer and the counting begins again.
- (2) Pulse output mode [01] In this mode, the polarity of the CNTR signal is reversed each time the timer down-counts to zero.
- (3) Event counter mode [10]
 - This mode operates in the same manner as the timer mode except, the clock source is input to the CNTR pin. This mode will allow an interrupt to be generated whenever a specified number of external events have been generated. The timer down-counts every rising edge of the clock source.
- (4) Pulse width measurement mode (11)

This mode measures the pulse width (between lows) input to the CNTR pin. The timer, driven by the oscillator frequency divided by 16, continues counting during the low cycle of the CNTR pin. When the timer contents reaches "0", the interrupt request bit is set to "1", the timer's reload latch is reloaded and the counting resumes.

The structure of the timer control register is shown in Figure 6.

When the STP instruction is executed, or after reset, the prescaler and timer latch are set to FF₁₆ and 01₁₆, respectively. Also, when the STP instruction is ex-

ecuted, the oscillator's frequency (divided by 16) will become the counting source, regardless of the timer X mode setting. This state will be released when the timer X interrupt request bit is set to "1", or after a reset. Timer X will then enter the mode specified by its mode bits. For more details on the STP instruction, refer to the oscillation circuit section.

The function of timer 3 is as same as that of timer 1 and timer 2, with the exception that the detection of its overflow is known by the overflow bit (bit 3 of address 00EF₁₆). When the timer down-counts to zero, the overflow bit is set to "1" and the contents of the timer's latch is reloaded into the timer.

The reset of the overflow bit is made by;

- a) hard ware reset
- b) write "0" to overflow bit
- c) write instruction to timer 3

The structure of special function selection register is shown in Figure 7.

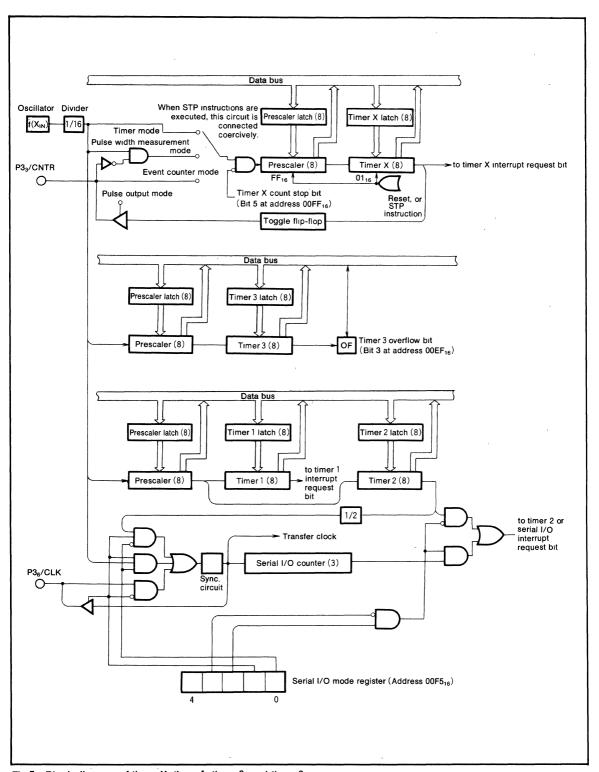


Fig.5 Block diagram of timer X, timer 1, timer 2, and timer 3

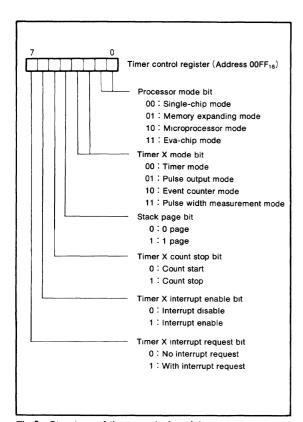


Fig.6 Structure of timer control register

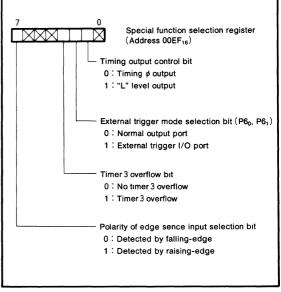


Fig.7 Structure of special function selection register

SERIAL I/O

A block diagram of the serial I/O is shown in Figure 8. In the serial I/O mode the receive ready signal $(\overline{S_{RDY}})$, synchronous input /output clock (CLK), and the serial I/O pins (S_{OUT}, S_{IN}) are used as P3₇, P3₆, P3₅, and P3₄, respectively. The serial I/O mode register (address 00F5₁₆) is a 5-bit register. Bits 1 and 0 of this register is used to select a synchronous clock source.

When these bits are (00) or (01), an external clock from P3₆ is selected. When these bits are (10), the overflow signal from timer 2, divided by two, becomes the synchronous clock. Therefore, changing the timer period will change the

transfer speed. When the bits are (11), the oscillator frequency divided by 16, becomes the clock.

Bit 2 to 4 decide whether parts of P3 will be used as a serial I/O or not. When bit 3 is "0" and bit 2 is "1", P3 $_6$ becomes an I/O pin of the synchronous clock. When an internal synchronous clock is selected, the clock is output from P3 $_6$. If an external synchronous clock is selected, the clock is input to P3 $_6$ and P3 $_5$ will be a serial output and P3 $_4$ will be a serial input. To use P3 $_4$ as a serial input, set the directional register bit which corresponds to P3 $_4$ to "0". For more information on the directional register, refer to the I/O pin section.

Fig.8 Block diagram of serial I/O

To use the serial I/O, bit 3 and bit 2 need to be set to "01", if they are "00" $P3_6$ will function as a normal I/O. Interrupts will be generated from the serial I/O counter instead of timer 2. Bit 4 determines if $P3_7$ is used as an output pin for the receive data ready signal (bit 4=1, \overline{S}_{RDV}) or used as normal I/O pin (bit 4=0). The serial I/O function is discussed below. The function of the serial I/O differs depending on the clock source; external clock or internal clock.

Internal clock—The \overline{S}_{RDY} signal becomes "H" during transmission or while dummy data is stored in the serial I/O register (address $00F7_{16}$). After the falling edge of the write signal, the \overline{S}_{RDY} signal becomes low signaling that the M37414M5-XXXFP is ready to receive the external serial data. The \overline{S}_{RDY} signal goes "H" at the next falling edge of the transfer clock. The serial I/O counter is set to 7 when data is stored in the serial I/O register. At each falling

edge of the transfer clock, serial data is output to $P3_5$. During the rising edge of this clock, data can be input from $P3_4$ and the data in the serial I/O register will be shifted 1 bit.

Data is output starting with the LSB. After the transfer clock has counted 8 times, the serial I/O register will be empty and the transfer clock will remain at a high level. At this time the interrpt request bit will be set.

External clock—If an external clock is used, the interrupt request will be sent after the transfer clock has counted 8 times but transfer clock will not stop.

Due to this reason, the external clock must be controlled from the outside. The external clock should not exceed 500kHz at a duty cycle of 50%. The timing diagram is shown in Figure 9. An example of communication between two M37414M5-XXXFPs is shown in Figure 10.

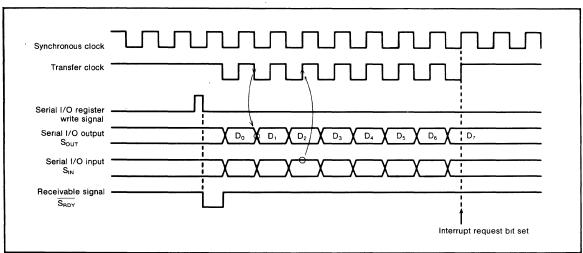


Fig.9 Serial I/O timing

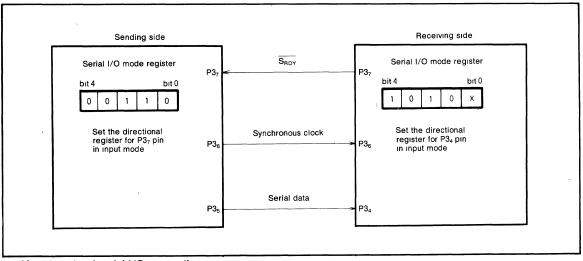


Fig.10 Example of serial I/O connection

A-D CONVERTER

An 8-bit successive approximation method of A-D conversion is employed providing a precision of ± 3 LSB. A block diagram of the A-D convertor is shown in Figure 11. Conversion is automatic once it is started with the program.

The eight analog inputs are used in common with pins $P4_7 \sim P4_0$ of port 4. Bits 1 and 0 of the A-D control register (address $00F3_{16}$) are used to select which pins are used for A-D conversion. The input condition is accomplished by setting to "0" the bit in the directional register that corresponds to the pin where A-D conversion is to take place. Bit 4 of the A-D control register is the A-D conversion end bit. During A-D conversion, this bit is "0", and upon completion becomes "1" Thus, it can be ascertained whether or not A-D conversion has been completed or not by inspecting this bit. The relation between the contents of the A-D control register and the selection of input pins are shown in Figure 12.

The results of the conversion can be found be reading the contents of the successive approximation register address $00F2_{16}$ which stores the results of the conversion. The procedure for executing A-D conversion is next explained. Firstly, the pin that is to be used for the A-D conversion is selected by setting bit 1 and bit 0 of the A-D control register. Next, the successive approximation is written to upon which the A-D conversion starts. Since actual data is not written to the successive approximation, any type of may be

written. Simultaneous with its being written, the A-D conversion end bit (bit 4 of address $00F3_{16}$) is cleared to "0" signifying that A-D conversion operations are being conducted. A-D conversion completes after 198 clock cycles upon which the A-D conversion end bit is set to "1" and the results of the conversion can be found in the successive approximation register. Since the comparator consists of the capacitive coupled configuration, $f(X_{IN})$ is needed larger than 1MHz during A-D conversion.

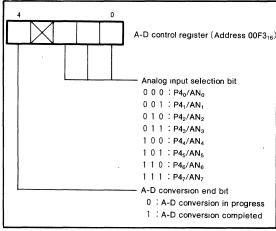


Fig.12 Structure of A-D control register

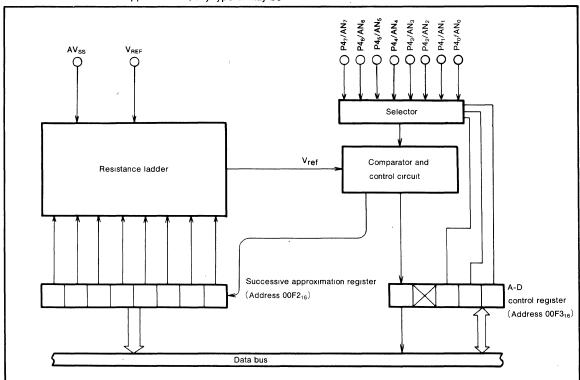


Fig.11 Block diagram of A-D converter

D-A CONVERTER

The R-2R method is used for D-A conversion. The block diagram is shown in Figure 13. An analog voltage is output that corresponds to the contents of the D-A conversion register (address 00F0₁₆). Ideally, the relation of the analog

output voltage V and the contents (n) of the D-A conversion register is V=V_{REF} \times n/32(n=0 \sim 31).

Reset operation clears the content n of the D-A conversion register to $0_{16}\cdot$

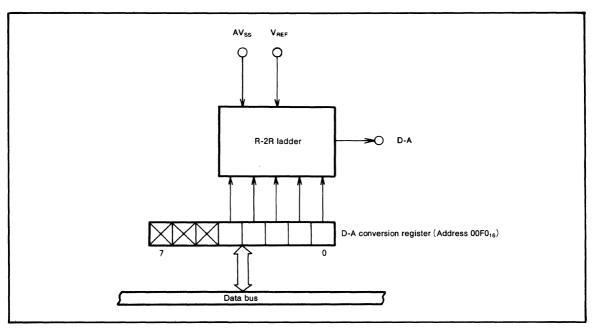


Fig.13 Block diagram of D-A converter

PULSE WIDTH MODULATOR

The pulse width modulation register (address 00F1₁₆) is configured of an 8-bit counter. The period of repetition is 4080 clock cycles. With the content of the pulse width modulation register m, the PWM pin becomes high-level for the

period of 4080 \times m/255 (m=0 \sim 255). Figure 14 shows that relationship. An N-channel open drain output is used for the PWM pin.

Reset sets the content m of the pulse width modulation register to $00_{16}.$

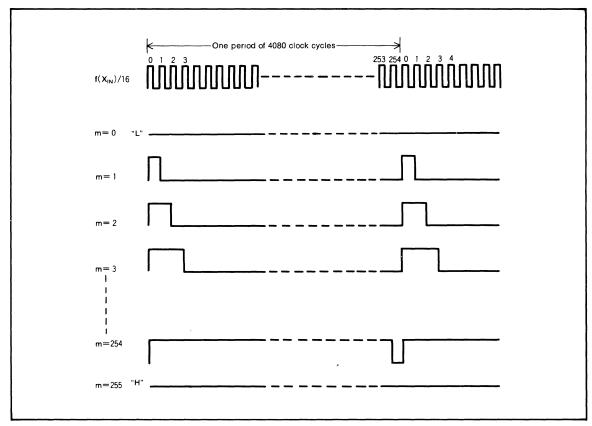


Fig.14 Relation between m and PWM output

WATCHDOG TIMER

The watchdog timer provides the means to return to a reset condition when a program runs wild and the program will not run the normal loops.

The watchdog timer (address 00F4₁₆) is a 15-bit counter. The watchdog timer counts 1/16th the output frequency of the oscillator. The watchdog timer is set to 7FFF₁₆ when a reset is accomplished a write operation has been made to it. As well as any of the instructions that generate a write signal, such as STA, LDM, and CLB, can be used to write data to the watchdog timer. An output of the most significant bits of the watchdog timer is input to the reset circuit. When 262144 clock cycles have been counted, the most significant bit becomes "0" and reset is carried out. When reset is carried out, the watchdog timer is set to 7FFF₁₆ and reset is released. The program then begins again from reset vector address. Normally, the program is written so that a writing operation is made to the watchdog timer prior to the most significant bit's becoming "0". Application of a +10V to the RESET pin will disable the watchdog timer

Since execution of the STP instruction causes both the clock and the watchdog timer to stop, an option is offered where the STP instruciotn can be disabled.

RESET CIRCUIT

The M37414M5-XXXFP is reset according to the sequence shown in Figure 15. It starts the program from the address formed by using the content of address FFFF₁₆ as the high order address and the content of the address FFFF₁₆ as the low order address, when the RESET pin is held at "L" level for more than $2\mu s$ while the power voltage is in the recommended operating condition and the crystal oscillator oscillation is stable and then returned to "H" level. The internal initializations following reset are shown in Figure 16 An example of the reset circuit is shown in Figure 17. When the power on reset is used, the RESET pin must be held "L" until the oscillation of $X_{\text{IN}}\text{-}X_{\text{OUT}}$ becomes stable.

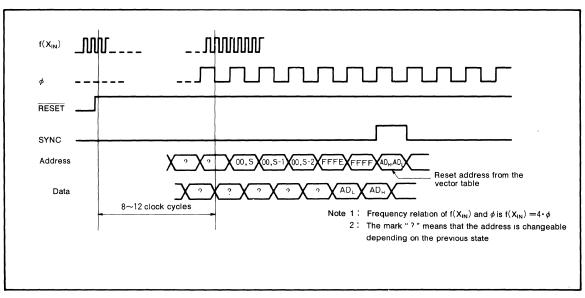


Fig.15 Timing diagram at reset

١			Addres	S	
	(1) Port P0 directional register	(E 1 16)	0 0 16
	(2) Port P1 directional register	(E 3 ₁₆)	0 0 16
	(3) Port P2 directional register	(E 5 ₁₆)	0 0 16
١	(4) Port P3 directional register	(E 9 ₁₆)	0 0 16
	(5) Port P4 directional register	(E B 16)	0 0 16
	(6) Port P6	(E E 16)	1 1 1 1 1
	(7) Port P7 directional register	(E 6 16)	000000
	(8) Special function selection register	(E F 16)	0 0 0 0
-	(9) D-A conversion register	(F 0 16) …	0 0 0 0 0
l	(10) Pulse width modulation register	(F 1 16)	0 0 16
l	(11) Watchdog timer	(F 4 ₁₆) · ·	7 F F F ₁₆
Ì	(12) Serial I/O mode register	(F 5 16)	00000
l	(13) Prescaler X	(F C 16) ·	F F 16
I	(14) Timer X	(F D ₁₆)	0 1 16
١	(15) Interrupt control register	(F E 16)	0 0 16
	(16) Timer control register	(F F 16)	0 0 16
	(17) Interrupt disable flag on processor status register	(PS)	1
	(18) Program counter	(РСн)	Contents of address FFFF ₁₆
		(PCL)	Contents of address FFFE ₁₆
1					

Fig.16 Internal state of microcomputer at reset

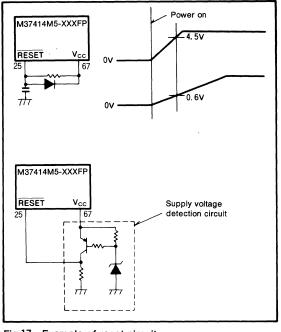


Fig.17 Example of reset circuit

I/O PORTS

(1) Port P0

Port P0 is an 8-bit I/O port with CMOS output.

As shown in the memory map (Figure 2), port P0 can be accessed at zero page memory address $00E0_{16}$. Port P0 has a directional register (address $00E1_{16}$) which can be used to program each individual bit as input ("0") or as output ("1"). If the pins are programmed as output, the output data is latched to the port register and then output. When data is read from the output port the output pin level is not read, only the latched data in the port register is read. This allows a previously output value to be read correctly even though the output voltage level is shifted up or down. Pins set as input are in the floating state and the signal levels can thus be read. When data is written into the input port, the data is latched only to the port latch and the pin still remains in the floating state.

Depending on the contents of the processor status register (bit 0 and bit 1 at address 00FF₁₆), four different modes can be selected; single-chip mode, memory expanding mode, microprocessor mode and eva-chip mode. These modes (excluding single-chip mode) have a multiplexed address output function in addition to the I/O function. For more details, see the processor mode information.

(2) Port P1

In the single-chip mode, port P1 has the same function as P0. In the other modes, P1's functions are slightly different from P0's. For more details, see the processor mode information.

(3) Port P2

In the single-chip mode, port P2 has the same function as P0. In the other modes, P2's functions are slightly different from P0's.

For more details, see the processor mode information.

(4) Port P3

In the single-chip mode, port P3 has the same function as P0, but it has N-channel open drain output. In the other modes, P3's functions are slightly different from P0's. Port P3 can also be used as serial I/O, $\overline{\text{INT}_2}$ and I/O pins for timer X. For more details, see the processor mode information.

(5) Port P4

Port P4 has the same function as port P0 in the single-chip mode, but it has N-channel open drain output. P4 $_7$ through P4 $_0$ can also be used as analog input pins AN $_7$ through AN $_0$.

(6) Port P5

Port P5 is an input port. P5 $_4$ through P5 $_7$ can also be used as edge sence inputs. In such a case, reading is begun from $00ED_{16}$. $00ED_{16}$ is provided with a latch which is set to "1" when the input changes from high-level to low-level.

And for $P5_7$, polarity of input edge can be selected by polarity of edge sense input selection bit (bit 7 of address $00EF_{16}$).

When this bit is set to "0", its latch is set to "1" at the input level goes to "L" from "H". When this bit is set to "1", its latch is set to "1" at the input level goes to "H" from "L". At the reset state, this bit is set to "0".

When content of polarity of edge sense input selection bit was set by program, the latch (bit 7 of address 00ED₁₆) must be reset once.

The input pulse width must be at least 7 clock cycles wide. The latch is reset by using such instructions as LDM and CLB to write a "0" to the latch. When $00ED_{16}$ is read, the lower order 4 bits are always zero

When port P5 is used as level sense input, read the contents of the address $00EC_{16}$

(7) Port P6

Port P6 is a 5-bit output port. It has N-channel open drain output. P6 $_0$ and P6 $_1$ can be used as external trigger I/O pins, when external trigger mode selection bit (bit 2 of address $00EF_{16}$) is set to "1". In this case, P6 $_0$ and P6 $_1$ are trigger clock input pin and trigger output pin, respectively. Using external trigger mode, P6 $_0$'s latch must be set to "1" in order to off the output transistor. In external trigger mode, the content of P6 $_1$'s latch is output to pin when the rising or falling edge is input to P6 $_0$ pin.

When external trigger mode selection bit is set to "0", P6₀ and P6₁ are normal output ports. At the reset state, this bit is set to "0".

(8) Port P7

Port P7 is a 6-bit I/O port. In the single-chip mode, port P7 has the same function as P0, but $P7_0$, $P7_1$ have N-channel open drain output.

See Figure 17 for more details.

(9) Clock φ output pin

In normal conditions, the oscillator frequency divided by four is output as ϕ . The timing output ϕ is fixed "L" state when the timing output control bit (bit 1 of address $00EF_{16}$) is set to "1". But in this case, except the timing output is active. The timing output ϕ is output again when the timing output control bit is set to "0". At reset state this bit is set to "0".

(10) $\overline{INT_1}$ pin

The $\overline{INT_1}$ pin is an interrupt input pin. The $\overline{INT_1}$ interrupt request bit (bit 7 at address $00FE_{16}$) is set to "1" when the input level of this pin changes from "H" to "L".

(11) $\overline{INT_2}$ pin (P3₂/ $\overline{INT_2}$ pin)

The $\overline{\text{INT}_2}$ pin is an interrupt input pin used with P3₂. To use this pin as an interrupt pin, set the corresponding bit in the directional register to input ("0"). When this signal level changes from "H" to "L", the interrupt request bit (bit 1 at address 00FE_{16}) is set to "1".

(12) CNTR pin (P3₃/CNTR pin)

The P3₃/CNTR pin is an I/O pin of timer X. To use this pin as the timer X input pin, set the corresponding directional register bit to input ("0"). In the event counter mode, CNTR becomes the input pin of the external

pulse. In the pulse output mode, the CNTR output changes polarity each time the contents of timer X goes to "0". In the pulse width measurement mode, the pulse to be measured is input to this pin.

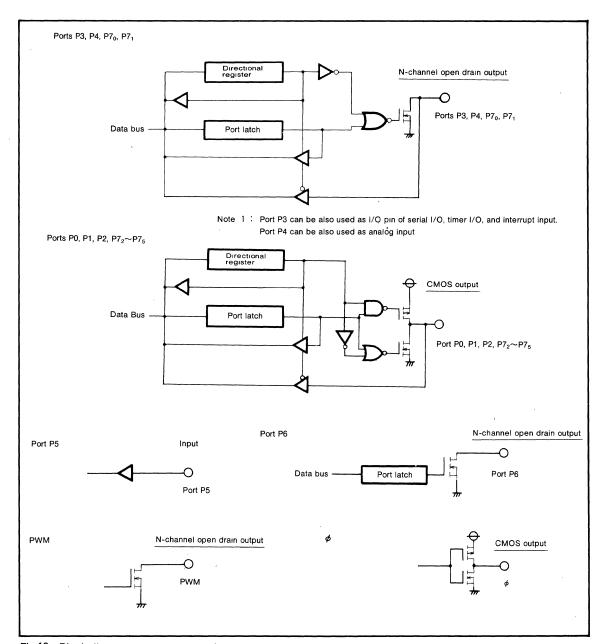


Fig.18 Block diagram of ports P0 \sim P7 (single-chip mode), and output format of ϕ .

PROCESSOR MODE

By changing the contents of the processor mode bit (bit 0 and 1 at address $00FF_{16}$), four different operation modes can be selected; single-chip mode, memory expanding mode, microprocessor mode and evaluation chip (evachip) mode. In the memory expanding mode, microprocessor mode and eva-chip mode, ports $P0 \sim P3$ can be used as multiplexed I/O for address, data and control signals, as well as the normal functions of the I/O ports.

Figure 20 shows the functions of ports P0~P3.

The memory map for the single-chip mode is illustrated in Figure 2 and for other modes, in Figure 19.

By connecting CNV_{SS} to V_{SS} , all four modes can be selected through software by changing the processor mode bits. Connecting CNV_{SS} to V_{CC} automatically forces the microcomputer into microprocessor mode. Supplying 10V to CNV_{SS} places the microcomputer in the eva-chip mode. The four different modes are explained as follows:

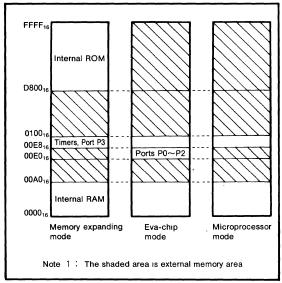


Fig.19 External memory area in processor mode

(1) Single-chip mode [00]

The microcomputer will automatically be in the single-chip mode when started from reset, if CNV_{SS} is connected to V_{SS} . Ports $\text{P0} \sim \text{P3}$ will work as original I/O ports.

(2) Memory expanding mode (01)

The microcomputer will be placed in the memory expanding mode when CNV_{SS} is connected to V_{SS} and the processor mode bits are set to "01". This mode is used to add external memory when the internal memory is not sufficient.

In this mode, port P0 and port P1 are as a system address bus and the original I/O pin function is lost. P2 becomes the data bus $(D_7 \sim D_0)$ and loses its normal I/O functions. Pins P3₁ and P3₀ output the SYNC and R/ \overline{W} control signals, respectively.

(3) Microprocessor mode [10]

After connecting CNV $_{\rm SS}$ to V $_{\rm CC}$ and initiating a reset, the microcomputer will automatically default to this mode. With the exceptions that the internal ROM is disabled and that external memory must be attached in this mode, this mode is the same as the memory expanding mode.

(4) Eva-chip mode (11)

When 10V is supplied to CNV_{SS} pin, the microcomputer is forced into the eva-chip mode. The main purpose of this mode is to evaluate ROM programs prior to masking them into the microcomputer's internal ROM.

In this mode, the internal ROM is inhibited so the external memory is requierd.

The lower 8 bits of address data for port P0 is output when ϕ goes to "H" state. When ϕ goes to the "L" state, P0 retains its original I/O functions.

Port P1's higher 8 bits of address data are output when ϕ goes to "H" state and as it changes back to the "L" state it retains its original I/O functions. Port P2 retains its original I/O functions while ϕ is at the "H" state, and works as a data bus of $D_7 \sim D_0$ (including instruction code) while at the "L" state. Pins P3₁ and P3₀ output the SYNC and R/\overline{W} control signals, respectively while ϕ is in the "H" state. When in the "L" state, P3₁ and P3₀ retain their original I/O function.

The R/W output is used to read/write from/to the outside. When this pin is in the "H" state, the CPU reads data, and when in the "L" state, the CPU writes data.

The SYNC is a synchronous signal which goes to the "H" state when it fetches the OP CODE.

The relationship between the input level of CNV_{SS} and the processor mode is shown in Table 2.

CM ₁	0	1	0	1
См₀	0	1	1	0
Mode	Single-chip mode	Eva-chip mode	Memory expanding mode	Microprocessor mode
Port P0	Ports P0 ₇ ~P0 ₀	Ports $P0_7 \sim P0_0$ $Address A_7 \sim A_0$ I/O port	Ports $P0_7 \sim P0_0$ Address $A_7 \sim A_0$	Same as left
Port P1	Ports P1,~P1 ₀	Ports $P1_7 \sim P1_0$ $Address$ $A_{15} \sim A_8$ $I/O port$	Ports P1,7~P10 Address A ₁₅ ~A ₈	Same as left
Port P2	Ports P2 ₇ ∼P2 ₀ X I/O port	Ports $P2_7 \sim P2_0$	Ports $P2_7 \sim P2_0$ $D_7 \sim D_0$	Same as left
Port P3	Ports P3 ₇ ~P3 ₀ I/O port	Ports P3 ₇ ~P3 ₂ I/O port Port P3 ₁ SYNC I/O port Port P3 ₀ R/W I/O port	Ports P3 ₇ ~P3 ₂ I/O port Port P3 ₁ SYNC Port P3 ₀ R/W	Same as left

Fig.20 Processor mode and functions of ports P0~P3

Table 2. Relationship between $\mbox{CNV}_{\mbox{\footnotesize SS}}$ pin input level and processor mode

CNVss	Mode	Explanation
V _{SS}	Single-chip mode	The single-chip mode is set by the reset
	Memory expanding mode	All modes can be selected by changing the processor mode bit with the program
	Eva-chip mode	
	Microprocessor mode	
Vcc	• Eva-chip mode	The microprocessor mode is set by the reset
	Microprocessor mode	Eva-chip mode can be also selected by changing the processor mode bit with the program
10 V	Eva-chip mode	Eva-chip mode only

CLOCK GENERATING CIRCUIT

The built-in clock generating circuits are shown in Figure 23.

When the STP instruction is executed, the oscillation of internal clock ϕ is stopped in the "H" state.

Also, the prescaler X and timer X are loaded with FF_{16} and 01_{16} , respectively. The oscillator (dividing by 16) is then connected to the prescaler input. This connection is cleared when timer X overflows or the reset is in, as discussed in the timer section.

The oscillator is restarted when an interrupt is accepted. However, the internal clock ϕ keeps its "H" level until timer X overflows.

This is because the oscillator needs a set-up period if a ceramic or a quartz crystal oscillator is used.

When the WIT instruction is executed, the internal clock ϕ stops in the "H" level but the oscillator continues running. This wait state is cleared when an interrupt is accepted. Since the oscillation does not stop, the next instructions are executed at once.

The circuit example using a ceramic oscillator (or a quartz crystal oscillator) is shown in Figure 21.

The constant capacitance will differ depending on which oscillator is used, and should be set to the manufactures suggested value.

The example of external clock usage is shown in Figure 22. X_{IN} is the input, and X_{OUT} is open.

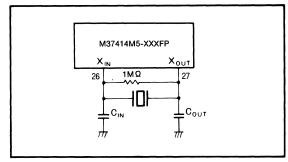


Fig.21 External ceramic resonator circuit

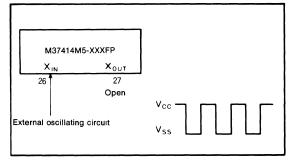


Fig.22 External clock input circuit

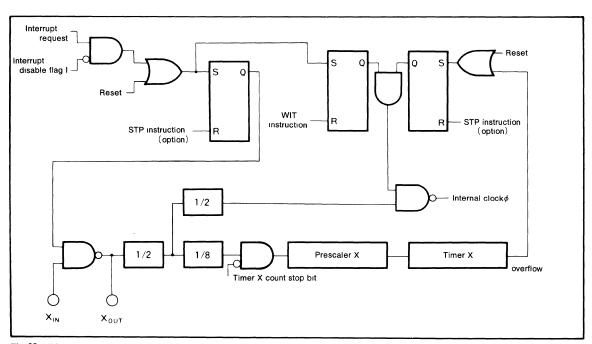


Fig.23 Block diagram of the clock generating circuit

PROGRAMMING NOTES

- (1) The frequency ratio of the timer and the prescaler is 1/(n+1).
- (2) Even though the BBC and BBS instructions are executed after the interrupt request bits are modified (by the program), those instructions are only valid for the contents before the modification. Also, at least one instruction cycle must be used (such as a NOP) between the modification of the interrupt request bits and the execution of the BBC and BBS instructions.
- (3) Reading the timer and prescaler must be avoided while the input to the prescaler is changing.
- (4) After the ADC and SBC instructions are executed (in decimal mode), one instruction cycle (such as a NOP) is needed before the SEC, CLC, or CLD instructions are executed.
- (5) A NOP instruction must be used after the execution of a PLP instruction.
- (6) Since the comparator consists of the capacitive coupled configuration, f(X_{IN}) is needed larger than 1MHz during A-D conversion. And during A-D conversion, don't use STP or WIT instruction.

DATA REQUIRED FOR MASK ORDERING

Please send the following data for mask orders.

- (1) mask ROM confirmation form
- (2) mark specification form
- (3) ROM data EPROM 3sets Write the following option on the mask ROM confirmation form

• STP instruction option

3-222

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
V _{CC}	Supply voltage		−0.3~7	٧
Vı	Input voltage X _{IN}		−0.3~7	٧
Vı	Input voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P4 ₀ ~P4 ₇ , P7 ₂ ~P7 ₅		-0.3~V _{cc} +0.3	V
Vı	Input voltage P3 ₀ ~P3 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ , P7 ₀ , P7 ₁ , INT ₁	With respect to V _{SS}	-0.3~13	٧
Vi	Input voltage CNV _{SS} , RESET	Output transistors cut-off	-0.3~13	٧
V _o	Output voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P4 ₀ ~P4 ₇ , P7 ₂ ~P7 ₅ , X _{OUT} , Ø, D-A		-0.3~V _{cc} +0.3	V
Vo	Output voltage P3 ₀ ~P3 ₇ , P6 ₀ ~P6 ₄ , P7 ₀ , P7 ₁ , PWM		-0.3~13	٧
Pd	Power dissipation	T _a =25℃	300	mW
Topr	Operating temperature		-10~70	°C
Tstg	Storage temperature		· -40~125	°C

RECOMMENDED OPERATING CONDITIONS ($V_{CC}=5V\pm10\%$, $T_a=-10\sim70^{\circ}C$, unless otherwise noted)

Symbol	Parameter		Limits		Unit
Symbol	- Parameter	Mın	Тур	Max	Unit
V _{cc}	Supply voltage	4.5	5	5.5	V
V _{SS}	Supply voltage		0		٧
V _{REF}	Reference voltage	4		V _{cc}	V
V _{IH}	"H" input voltage $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $P2_0 \sim P2_7$, $\frac{P3_0 \sim P3_7}{INT_1}, \frac{P4_0 \sim P4_7}{RESET}, X_{IN}, CNV_{SS}, P6_0, \\ P7_0 \sim P7_5$	0.8V _{CC}		V _{cc}	V
VIL	"L" input voltage $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $P2_0 \sim P2_7$, $P3_0 \sim P3_7$, $P4_0 \sim P4_7$, $P5_0 \sim P5_7$, $\overline{INT_1}$, CNV_{SS} , $P6_0$, $P7_0 \sim P7_5$	0		0. 2V _{CC}	V
VIL	"L" input voltage RESET	0		0.12V _{CC}	٧
VIL	"L" input voltage X _{IN}	0		0.16V _{CC}	٧
l _{oL(peak)}	"L" peak output current $P0_0\sim P0_7, P1_0\sim P1_7,$ $P2_0\sim P2_7, P3_0\sim P3_7,$ $P4_0\sim P4_7, P7_0\sim P7_5 \ (Note 2)$			10	mA
I _{OL(peak)}	"L" peak output current P6 ₀ ~P6 ₃ (Note 2)			15	, mA
I _{OL(peak)}	"L" peak output current PWM, P64 (Note 2)			5	mA
I _{OL} (avg)	"L" average output current $P0_0\sim P0_7$, $P1_0\sim P1_7$, $P2_0\sim P2_7, P3_0\sim P3_7, \\ P4_0\sim P4_7, P7_0\sim P7_5 \ (Note\ 1\)$			5	mA
I _{OL} (avg)	"L" average output current P6 ₀ ~P6 ₃ (Note 1)			7	mA
I _{OL} (avg)	"L" average output current PWM, P64 (Note 1)			2.5	mΑ
I _{он(peak)}	"H" peak output current $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $P2_0 \sim P2_7$, $P7_2 \sim P7_5$ (Note 2)			-10	mÀ
I _{он(avg)}	"H" average output current $P0_0\sim P0_7$, $P1_0\sim P1_7$, $P2_0\sim P2_7,\ P7_2\sim P7_5$ (Note 1)			-5	mA
f(X _{IN})	Internal clock oscillating frequency			4	MHz

Note 1: Average output current I_{OL(avg)} and I_{OH(avg)} are the average value of a period of 100ms 2: Total of "L" output current I_{OL}, of ports P0, P1, P2, P3, P4, P6, P7 and PWM is 80mA max

Total of "H" output current I_{OH}, of port P0, P1, P2, P7₂~P7₅ is 50mA max

3: "H" input voltage of ports P3, P5, P6₀, P7₀, P7₁ and INT₁ is available up to +12V

$\textbf{ELECTRICAL} \quad \textbf{CHARACTERISTICS} \; (v_{cc} = 5 \text{V, } v_{ss} = 0 \text{V, } \tau_a = 25 ^{\circ} \text{C, } f(X_{\text{IN}}) = 4 \text{MHz, unless otherwise noted})$

Symbol	Parameter	Test cond	itions		Limits		Unit
Syllibol	r arameter	l est cond		Min.	Тур.	Max.	Onit
V _{OH}	"H" output voltage $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $P2_0 \sim P2_7$, $P7_2 \sim P7_5$	I _{OH} =-10mA		3			V
V _{OH}	"H" output voltage φ	I _{OH} =-2.5mA		3			٧
V _{OL}	"L" output voltage $P0_0\sim P0_7$, $P1_0\sim P1_7$, $P2_0\sim P2_7$, $P3_0\sim P3_7$, $P4_0\sim P4_7$, $P6_0\sim P6_3$, $P7_0\sim P7_5$	I _{OL} =10mA				2	٧
VoL	"L" output voltage φ, PWM, P64	I _{OL} =5mA				2	٧
$V_{T+}-V_{T-}$	Hysteresis INT ₁			0.3		1	٧
$V_{T+}-V_{T-}$	Hysteresis P3 ₆	When used as CLK inpu	t	0.3	0.8		٧
$V_{T+}-V_{T-}$	Hysteresis P3₂	When used as INT ₂ inpu	t	0.3		1	٧
$V_{T+}-V_{T-}$	Hysteresis P3 ₃	When used as CNTR inp	out	0.5	1		٧
$V_{T+}-V_{T-}$	Hysteresis P6 ₀	When used as T input		0.5	1		٧
$V_{T+}-V_{T-}$	Hysteresis RESET				0.5	0.7	٧
$V_{T+}-V_{T-}$	Hysteresis X _{IN}			0.1		0.5	٧
lı.	"L" input current P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₇ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ , P7 ₀ ~P7 ₅ , PWM	V _i =0V				-5	μA
IIL	"L" input current INT ₁ , RESET, X _{IN}	V ₁ =0V				-5	μA
I _{IH}	"H" input current P3 ₀ ~P3 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ , P7 ₀ , P7 ₁ , PWM	V _I =12V				12	μA
l _{iH}	"H" input current $\overline{\text{INT}_1}$, $\overline{\text{RESET}}$, X_{IN} , $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $P2_0 \sim P2_7$, $P4_0 \sim P4_7$, $P7_2 \sim P7_5$	V _i =5V				5	μΑ
V _{RAM}	RAM retention voltage	At clock stop		2			٧
		φ, X _{OUT} , and D-A pins	f(X _{IN})=4MHz Square wave		3	6	mA
Icc	Supply current	opened, other pins at V _{SS} , and A-D converter in the finished condi-	At clock stop Ta=25℃			1	4
		tion the misned condi-	At clock stop Ta=75℃			10	μ Α

$\textbf{A-D} \quad \textbf{CONVERTER} \quad \textbf{CHARACTERISTICS} \; (v_{cc} = 5v, v_{ss} = 4v_{ss} = 0v, \tau_a = 25\%, f(x_{iN}) = 4\text{MHz, unless otherwise noted}) \\$

	Parameter	- 4	Limits			Unit
Symbol		Test conditions	Min	Тур	Max	Unit
_	Resolution	V _{REF} =V _{CC}			8	Bits
	Absolute accuracy	V _{REF} =V _{CC}			±3	LSB
R _{LADDER}	Ladder resistance value	V _{REF} =V _{CC}	2		10	kΩ
t _{CONV}	Conversion time				50	μs
V _{REF}	Reference input voltage		2		Vcc	V
VIA	Analog input voltage		0		VREF	V

$\textbf{D-A} \quad \textbf{CONVERTER} \quad \textbf{CHARACTERISTICS} \; (v_{cc} = 5V, \, V_{ss} = AV_{ss} = 0V, \, T_a = 25^{\circ}C, \, f(X_{in}) = 4MHz, \, unless \, otherwise \, noted)$

Symbol	Parameter	Ttditions	Limits			Unit
		Test conditions	Mın.	Тур	Max	Unit
_	Resolution	V _{REF} =V _{CC}			5	Bits
_	Error in full scale range	V _{REF} =V _{CC}			±1	%
tsu	Setup time	V _{REF} =V _{CC}			3	μs
Ro	Output resistance	V _{REF} =V _{CC}			3	kΩ
V _{REF}	Reference voltage		4		V _{CC}	V

TIMING REQUIREMENTS

Single-chip mode ($V_{cc}=5V\pm10\%$, $V_{ss}=0V$, $T_a=25^{\circ}C$, $f(X_{IN})=4MHz$, unless otherwise noted)

Symbol	Parameter		Limits		Unit
Symbol	Faranielei	Mın	Тур	Max	Oill
t _{su(P0D-ø)}	Port P0 input setup time	270			ns
t _{su(P1D-¢)}	Port P1 input setup time	270			ns
t _{Su(P2D-ø)}	Port P2 input setup time	270			ns
t _{su(P3D-ø)}	Port P3 input setup time	270			ns
t _{SU(P4D} ¢)	Port P4 input setup time	270			ns
t _{Su(P5D-\$)}	Port P5 input setup time	270			ns
t _{SU(P7D-p)}	Port P7 input setup time	270			ns
th(øPOD)	Port P0 input hold time	20			ns
th(øP1D)	Port P1 input hold time	20			ns
t _{h(<i>ϕ</i>_P2D)}	Port P2 input hold time	20			ns
t _{h(∳—P3D)}	Port P3 input hold time	20			ns
th(ø_P4D)	Port P4 input hold time	20			ns
th(ø—P5D)	Port P5 input hold time	20			ns
t _{h(ø—P7D)}	Port P7 input hold time	20			ns
t _C	External clock input cycle time	250			ns
tw	External clock input pulse width	75			ns
tr	External clock rising edge time			25	ns
tf	External clock falling edge time			25	ns

$\textbf{Eva-chip} \quad \textbf{mode} \ \, (v_{cc} = 5 \text{V} \pm 10\%, \, v_{ss} = 0 \text{V}, \, T_{a} = 25 ^{\circ} \text{C}, \, \text{f}(X_{\text{IN}}) = 4 \text{MHz}, \, \text{unless otherwise noted})$

	Parameter		Limits			
Symbol		Mın	Тур	Max	Unit	
tsu(POD-ø)	Port P0 input setup time	270			ns	
t _{su(P1D-ø)}	Port P1 input setup time	270			ns	
t _{su(P2D-ø)}	Port P2 input setup time	270			ns	
th(ø—POD)	Port P0 input hold time	20			ns	
th(P1D)	Port P1 input hold time	20			ns	
th(d_pan)	Port P2 input hold time	20			ns	

Memory expanding mode and microprocessor mode

 $(V_{CC}=5V\pm10\%, V_{SS}=0V, T_a=25^{\circ}C, f(X_{IN})=4MHz, unless otherwise noted)$

Symbol	D		Limits		Unit
	Parameter	Mın	Тур	Max	Unit
t _{su(P2D-ø)}	Port P2 input setup time	270			ns
th(A-P2D)	Port P2 input hold time	30			ns

SWITCHING CHARACTERISTICS

Single-chip mode ($V_{cc}=5V\pm10\%$, $V_{ss}=0V$, $T_a=25^{\circ}C$, $f(X_{IN})=4MHz$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Limit
Gynnboi	Farameter	rest conditions	Min	Тур	Max	Unit
t _{d(∲—P0Q)}	Port P0 data output delay time				230	ns
td(ø_P1Q)	Port P1 data output delay time	Fig 25			230	ns
t _{d(ø-P2Q)}	Port P2 data output delay time				230	ns
td(ø-P3Q)	Port P3 data output delay time				230	ns
td(#-P4Q)	Port P4 data output delay time	F1 - 04			230	ns
t _{d(≠−P6Q)}	Port P6 data output delay time	Fig 24			230	ns
• • •	Port P7 ₀ , P7 ₁ data output delay time				230	ns
^t d(<i>∲</i> P7Q)	Port P7 ₂ ~P7 ₅ data output delay time	Fig 25			230	ns

Eva-chip mode ($V_{CC}=5V\pm10\%$, $V_{SS}=0V$, $T_a=25^{\circ}C$, $f(X_{IN})=4MHz$, unless otherwise noted)

Cumbal	Parameter	Test conditions		Limits		Linut
Symbol	Parameter	l est conditions	Mın	Тур	Max	Unit
td(ø-POA)	Port P0 address output delay time				250	ns
td(ø-POAF)	Port P0 address output delay time				250	ns
td(ø—PoQ)	Port P0 data output delay time	,			200	ns
td(ø-POQF)	Port P0 data output delay time				200	ns
td(ø-P1A)	Port P1 address output delay time	F:- 2F			250	ns
td(ø-PIAF)	Port P1 address output delay time	Fig 25			250	ns
t _{d(≠P1Q)}	Port P1 data output delay time				200	ns
t _{d(ø—P1QF)}	Port P1 data output delay time				200	ns
t _{d(∲P2Q)}	Port P2 data output delay time				300	ns
td(ø-P2QF)	Port P2 data output delay time				300	ns
t _{d(ø—R/W)}	R/W signal output delay time				250	ns
t _{d(∲—R/WF)}	R/W signal output delay time				250	ns
t _{d(∲P30Q)}	Port P3 ₀ data output delay time				200	ns
t _{d(∲—P30QF)}	Port P3 ₀ data output delay time	E = 24			200	ns
td(ø_SYNC)	SYNC signal output delay time	Fig 24			250	ns
td(ø-syncf)	SYNC signal output delay time				250	ns
t _{d(≠-P31} Q)	Port P3 ₁ data output delay time				200	ns
td(ø-P31QF)	Port P3 ₁ data output delay time				200	ns

Memory expanding mode and microprocessor mode

 $(V_{CC}=5V\pm10\%, V_{SS}=0V, T_a=25^{\circ}C, f(X_{IN})=4MHz, unless otherwise noted)$

Crumb al	Parameter	Test conditions	Limits			11-4
Symbol			Min	Тур	Max	Unit
td(ø-POA)	Port P0 address output delay time				250	ns
t _{d(ø-P1A)}	Port P1 address output delay time	F 05			250	ns
td(øP2Q)	Port P2 data output delay time	Fig 25			300	ns
td(ø-P2QF)	Port P2 data output delay time				300	ns
td(ø-R/W)	R/W signal output delay time	F - 04			250	ns
td(ø_sync)	SYNC signal output delay time	Fig 24			250	ns

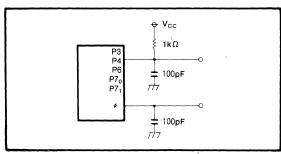
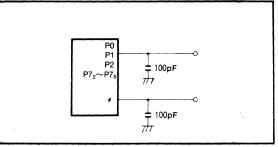
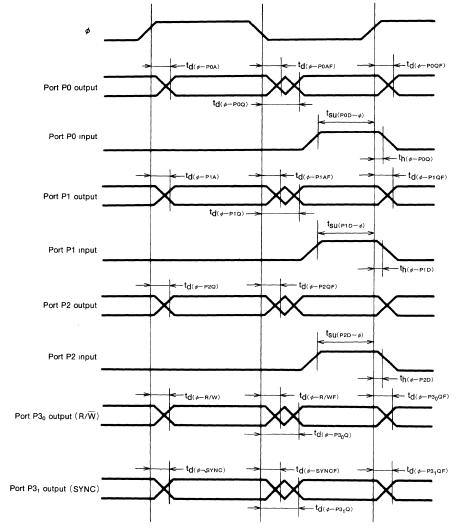
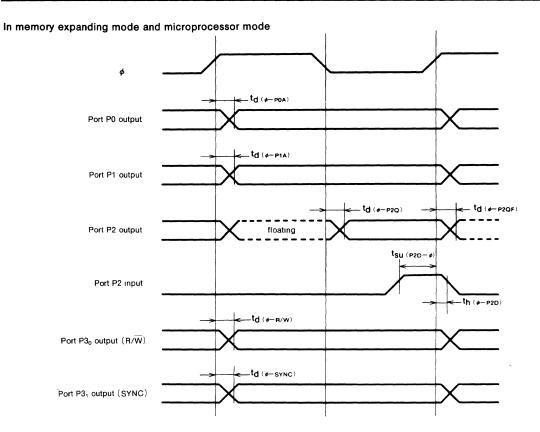


Fig.24 Ports P3, P4, P6, P7₀, P7₁ test circuit




Fig.25 Port P0, P1, P2, P72~P75 test circuit


TIMING DIAGRAMS In single-chip mode -t_{d(#-P0Q)} Port P0 output $t_{\text{SU}(\text{POD}-\phi)}$ Port P0 input th(*∲*−P0D) td(ø-P1Q) Port P1 output tsu(P1D-#) Port P1 input ---th(≠--P1D) td(#--P2Q) Port P2 output t_{SU(P2D-\$)} Port P2 input ·th(ø-P2D) t_{d(ø-P3Q)} Port P3 output t_{SU(P3D-\$)} Port P3 input -t_{h(∳--P3D)} —t_{d(∳--P4Q)} Port P4 output t_{SU(P4D-ø)} Port P4 input t_{SU(P5D-ø)} Port P5 input ← th(ø-P5D) -t_{d(∳--P6Q)} Port P6 output -t_{d(∲-P7Q)} Port P7 output t_{SU(P7D}−ø) Port P7 input t_{C} $f(X_{IN})$

In eva-chip mode

M37415M4-XXXFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

DESCRIPTION

The M37415M4-XXXFP is a single-chip microcomputer designed with CMOS silicon gate technology. It is housed in a 80-pin plastic molded QFP. This single-chip microcomputer is useful for business equipment and other consumer applications.

In addition to its simple instruction set, the ROM, RAM, and I/O addresses are placed on the same memory map to enable easy programming.

This microcomputer is also suitable for applications which require controlling LCDs and generating DTMF.

FEATURES

•	Number of basic instructions 69
•	Memory size
	ROM 8192 bytes
	RAM····· 512 bytes
	RAM for display LCD······16 bytes
•	Instruction execution time
	\cdots 2.5 μ s (minimum instructions at 3.2MHz frequency)
	5μs (minimum instructions at 1.6MHz frequency)
	···· 10 μs (minimum instructions at 800kHz frequency)
	20µs (minimum instructions at 400kHz frequency)
•	Single power supply
	f(X _{IN})=400kHz, or 800kHz ······ 2.5≦V _{CC} ≦5.5V
	f(X _{IN})=1.6MHz, or 3.2MHz······· 4.5V≦V _{CC} ≦5.5V
•	Power dissipation
	normal operation mode (at 3.2MHz frequency)
	20mW (DTMF output V _{CC} =5.0V typ.)
	15mW (DTMF off V _{CC} =5.0V typ.)
	low-speed operation mode
	(at 32kHz frequency for clock function)

low-speed operation mode
(at 32kHz frequency for clock function)
······ 225μW (V _{CC} =5.0V typ.)
stop mode (at 25°C) $\cdots 5\mu$ W ($V_{CC}=5.0V$ max.)
RAM retention voltage (stop mode) ····· 2V≦V _{RAM} ≦5.5V
Subroutine nesting ·······64 levels (max.)

Interrupt 8 types, 5 vectors
 8-bit timer 3 (2 when used as serial I/O)

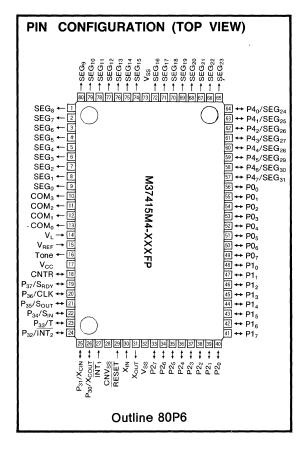
16-bit timer ··········1 (Two 8-bit timers makes one set)
 Programmable I/O ports

 (Ports P0, P1, P2, P3)
 32

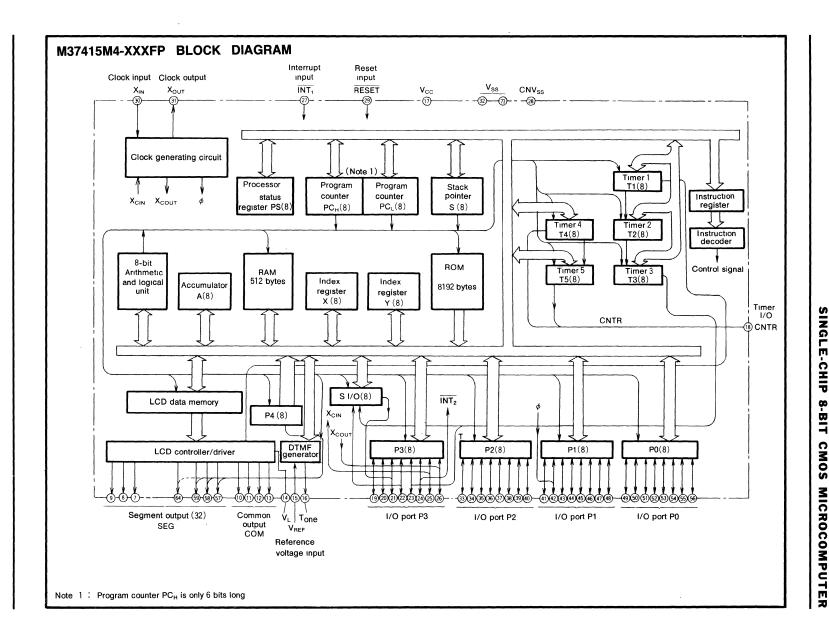
 Input port (Port P4)
 8

 Serial I/O (8-bit)
 1

DTMF (Dual-Tone Multi-Frequency) generator····Built-in
 LCD controller/driver


common output 4
resistor for LCD power supply Built-in

Two clock generator circuits
 One in for main clock, the other


(One is for main clock, the other is for clock function.)

APPLICATION

Home telephone, Multi function telephone

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

FUNCTIONS OF M37415M4-XXXFP

Parameter			Functions		
Number of basic instruction	าร		69		
		•	2.5 µs (minimum instructions, at 3.2MHz frequency)		
			5μs (minimum instructions, at 1.6MHz frequency)		
Instruction execution time			10 µs (minimum instructions, at 800kHz frequency)		
			20 µs (minimum instructions, at 400kHz frequency)		
Clock frequency			3. 2MHz, 1. 6MHz, 800kHz, 400kHz		
	ROM		8192 bytes		
Memory size	RAM		512 bytes		
	RAM for display LCD		16 bytes		
	P0, P1, P2, P3	1/0	8-bit×4		
	P4	Input	8-bit×1 (Port P4 are in common with SEG)		
Input/Output port	SEG	LCD output	32-bit×1		
	СОМ	LCD output	4-bit×1		
Serial I/O			8-bit×1		
			8-bit timer×3 (×2, when serial I/O is used)		
Timers			16-bit timer×1 (combination of two 8-bit timers)		
AMPLICATION OF THE RESIDENCE OF THE PARTY OF	Bias		1/2, 1/3, bias selectable		
	Duty ratio		1/2, 1/3, 1/4 duty selectable		
LCD controller/driver	Common output		4		
	Segment output		32(SEG ₂₄ ~SEG ₃₁ are in common with port P4)		
Subroutine nesting	1 - 3		64 (max)		
Cabrodino noting			Two external interrupts, Three timer internal interrupts		
Interrupt	,		(or two timer, one serial I/O)		
Clock generating circuit			Two built-in circuits (ceramic or quartz crystal oscillator)		
			2.5~5.5V(at 400kHz or 800kHz frequency)		
Supply voltage			4.5~5.5V(at 1.6MHz or 3.2MHz frequency)		
			RAM retention voltage at clock stop is 2~5.5V		
		At high-speed			
	DTMF output	operation V _{CC} =5V	20mW (at clock frequency f(X _{IN})=3 2MHz)		
		At high-speed			
Power dissipation		operation V _{CC} =5V	15mW (at clock frequency f(X _{IN})=3.2MHz)		
. onor alsorpation	DTMF off	At low-speed			
	D 7 1111 G 11	operation V _{CC} =5V	225μW (at clock frequency f(X _{CIN})=32kHz)		
		At stop mode	1μA (max 25°C)		
	Input/Output voltage	The stop made	5V		
	out/Output Output current		$I_{OH} = -2mA(V_{OH} = 3V)$		
Input/Output			$I_{OL}=10\text{mA}(V_{OL}=2V)$		
characteristics			Pull-up current : Min -30μA, Max -140μA, Typ -70μA		
			(V _{CC} =5V input voltage 0V)		
	Operating temperature range				
Operating temperature ran	nge		1 -10~70°C		
Operating temperature ran	nge		-10~70℃ CMOS silicon gate		

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

PIN DESCRIPTION

Pın	Name	Input/ Output	Functions
V _{CC} , V _{SS}	Supply voltage input		Power supply inputs 5V±10% to V _{CC} and 0V to V _{SS}
CNV _{ss}	CNV _{ss} input		Connect to V _{SS}
RESET	Reset input	Input	To enter the reset state, the reset input pin must be kept at a "L" for more than $2\mu s$ (under normal V_{CC} conditions). If more time is needed for the crystal oscillator to stabilize, this "L" condition should be maintained for the required time
XIN	Clock input	input	These are I/O pins of internal clock generating circuit for main clock. To control generating frequency, an external ceramic or a quartz crystal oscillator is connected between the X_{IN} and X_{OUT} pins. If an external
Хоит	Clock output	Output	clock is used, the clock source should be connected the X _{IN} pin and the X _{OUT} pin should be left open
ĪNT ₁	Interrupt input	Input	This is the highest order interrupt input pin. It can be measured input voltage level
P0 ₀ ~P0 ₇	I/O port P0	1/0	Port P0 is an 8-bit I/O port with directional register allowing each I/O bit to be individually programmed as input or output. At reset, this port is set to input mode. The output structure is CMOS output.
P1 ₀ ~P1 ₇	I/O port P1	1/0	Port P1 is an 8-bit I/O port and has basically the same functions as port P0
P2 ₀ ~P2 ₇	I/O port P2	1/0	Port P2 is an 8-bit I/O port and has basically the same functions as port P0
P3₀~P3 ₇	I/O port P3	1/0	Port P3 is an 8-bit I/O port and has basically the same functions as port P0 When serial I/O is used, P3 ₇ , P3 ₆ , P3 ₅ , and P3 ₄ work as $\overline{S_{RDY}}$, CLK, S_{OUT} , and S_{IN} pins, respectively Also P3 ₃ , P3 ₂ , P3 ₁ , and P3 ₀ work as timer 3 overflow signal divided by 2 output pin (T), $\overline{INT_2}$ pin, X_{CIN} and X_{COUT} pins, respectively
P4 ₀ ~P4 ₇	Input port P4	Input-	Port P4 is an 8-bit input port and can be used as segment output pins
VL	Voltage input for LCD	Input	This is a voltage input pin for LCD. Supply voltage is 0V ≤ V _L ≤ V _{CC} 0V~V _{LV} is supplied to LCD.
COM₀~ COM₃	Common output	Output	These are the LCD common output pins. At 1/2 duty, COM ₂ and COM ₃ pins are not use. At 1/3 duty, COM ₃ pin is not used.
SEG₀∼ SEG₂₃	Segment output	Output	These are LCD segment output pins
CNTR	Counter I/O	1/0	This is an output pin for timer 4 and 5. It can be measured input voltage level
V _{REF}	D-A convert power supply for DTMF	,	Reference voltage input for A-D converter of DTMF
Tone	DTMF output	Output	This is DTMF output pin

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

FUNCTIONAL DESCRIPTION Central Processing Unit (CPU)

The M37415 microcomputers use the standard MELPS 740 instruction set. For details of instructions, refer to the MELPS 740 CPU core basic functions, or the MELPS 740 Software Manual.

Machine-resident instructions are as follows:
The FST and SLW instructions are not provided.
The MUL and DIV instructions are not provided.
The WIT instruction can be used.
The STP instruction can be used.

MEMORY

Special Function Register (SFR) Area

The special function register (SFR) area contains the registers relating to functions such as I/O ports and timers.

• RAM

RAM is used for data storage as well as a stack area.

• ROM

ROM is used for storing user programs as well as the interrupt vector area.

• Interrupt Vector Area

The interrupt vector area is for storing jump destination addresses used at reset or when an interrupt is generated.

Zero Page

Zero page addressing mode is useful because it enables access to this area with fewer instruction cycles.

Special Page

Special page addressing mode is useful because it enables access to this area with fewer instruction cycles.

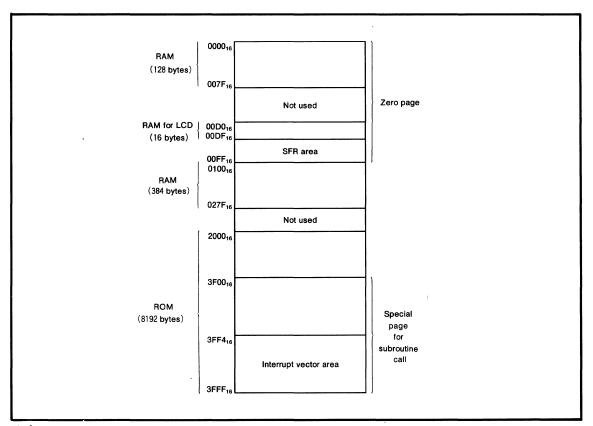


Fig.1 Memory map

00E0 ₁₆	Port P0	00F0 ₁₆		
00E1 ₁₆	Port P0 directional register	00F1 ₁₆		
00E2 ₁₆	Port P1	00F2 ₁₆		
00E3 ₁₆	Port P1 directional register	00F3 ₁₆		
00E4 ₁₆	Port P2	00F4 ₁₆	DTMF register	
0 0 E5 ₁₆	Port P2 directional register	00F5 ₁₆	LCD mode register	
00E6 ₁₆		00F6 ₁₆	Serial I/O mode register	
00E7 ₁₆		00F7 ₁₆	Serial I/O register	
00E8 ₁₆	Port P3	00F8 ₁₆	Timer 4, 5 mode register	
00E9 ₁₆	Port P3 directional register	00F9 ₁₆	Timer 1	
00EA ₁₆	Port P4	00FA ₁₆	Timer 2	
00EB ₁₆		00FB ₁₆	Timer 3	
00EC ₁₆		00FC ₁₆	Timer 4	
00ED ₁₆		00FD ₁₆	Timer 5	
00EE ₁₆		00FE ₁₆	Interrupt control register	
00EF ₁₆		00FF ₁₆	Timer control register	!
		•		

Fig. 2 SFR (Special Function Register) memory map

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

INTERRUPT

The M37415M4-XXXFP can be interrupted from eight sources; $\overline{\text{INT}_1}$, Timer 1, Timer 2, Timer 3 or Serial I/O, $\overline{\text{INT}_2}$ or key on wake up, and BRK instruction.

The value of bit 2 of the serial I/O register (address $00F6_{16}$) determines whether the interrupt is from timer 3 or from serial I/O. When the bit 2 is "1" the interrupt is from serial I/O, and when bit 2 is "0" the interrupt is from timer 3. Also, when bit 2 is "1", parts of port 3 are used for serial I/O. Bit 7 of the serial I/O register determines if an interrupt is from $\overline{INT_2}$ or from "key on wake up". When bit 7 is "0", the interrupt is from $\overline{INT_2}$. When bit 7 is "1" the interrupt is from "key on wake up" can only be used at power down by the STP or WIT instruction. These interrupts are vectored and their priorities are shown in Table 1. Reset is included in this table since it has the same function as interrupt.

Table 1. Interrupt vector address and priority

Interrupt	Priority	Vector address
RESET	1	3FFF ₁₆ , 3FFE ₁₆
ĪNT ₁	2	3FFD ₁₆ , 3FFC ₁₆
Timer 1	3	3FFB ₁₆ , 3FFA ₁₆
Timer 2	4	3FF9 ₁₆ , 3FF8 ₁₆
Timer 3 or serial I/O	5	3FF7 ₁₆ , 3FF6 ₁₆
INT2 or key on wake up(BRK)	6	3FF516. 3FF416

When an interrupt is accepted, the contents of certain registers are pushed into specified locations, as discussed in the stack pointer section, and the interrupt disable flag (I) is set, and the program jumps to the address specified by the interrupt vector, and the interrupt request bit is cleared automatically. The reset interrupt is the highest priority interrupt and can never be inhibited. Expect for the reset interrupt, all interrupts are inhibited when the interrupt disable flag is set to "1". All of the other interrupts except key on wake up function can further be controlled individually via the interrupt control register shown in Figure 3 An interrupt is accepted when the interrupt enable bit and the interrupt request bit are both "1" and the interrupt disable flag is "0". The interrupt request bits are set when the following conditions occur:

- (1) When the $\overline{INT_1}$ or $\overline{INT_2}$ pins goes from "H" to "L"
- (2) When the levels any pin of P2 goes "L" (at power down mode)
- (3) When the contents of timer 1, timer 2, timer 3 or the counter of serial I/O goes to "0"

These request bits can be clear by a program but can not be set. The interrupt enable bit can be set and clear by a program.

Since the BRK instruction interrupt and the $\overline{INT_2}$ interrupt have the same vectored address, the contents of the B flag must be checked to determine if the BRK instruction caused the interrupt of if $\overline{INT_2}$ generated the interrupt.

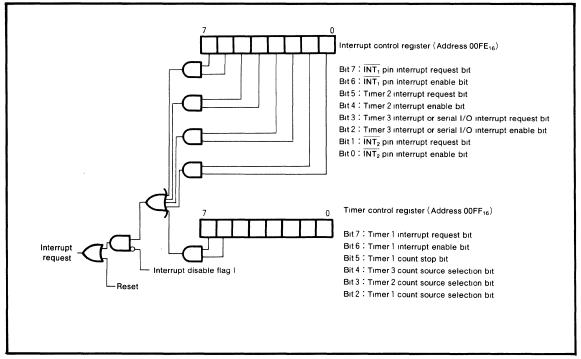


Fig.3 Interrupt control

TIMER

The M37415M4-XXXFP has five timers; timer 1, timer 2, timer 3, timer 4, and timer 5. The interrupt of timer 3 cannot be used when serial I/O is used (see serial I/O section). The count source for timer 1, timer 2, timer 3 can be selected by using bit 2, 3 and 4 of the timer control register (address 00FF₁₆), as shown in Figure 5. A block diagram of timer 1 through 5 is shown in Figure 4. All of the timers are down count timers and have 8-bit latches. When a timer reaches "0" and the next count pulse is input to a timer, the contents of the reload latch are loaded into the timer. The division ratio of the timers is 1/(n+1), where n is the contents of timer latch.

The timer interrupt request bit is set at the next count pulse after the timer reaches "0". The interrupt and timer control registers are located at addresses $00FE_{16}$, and $00FF_{16}$, respectively (see interrupt section). The starting and stopping of timer 1 is controlled by bit 5 of the timer control register. If bit 5 (address $00FF_{16}$) is "0", the timer starts counting. When bit 5 is "1", the timer stops.

After a STP instruction is executed, timer 2, timer 1, and the clock (ϕ divided by 4) are connected in series (regardless of the status of bit 2 though 4 of the timer control register). This state is canceled if timer 2 interrupt request bit is set to "1", or if the system is reset. Before the STP instruction is executed, bit 5 of the timer control register (timer 1, count stop bit), bit 6 of the timer control register (timer 1 interrupt enable bit), and bit 4 of interrupt control register (timer 2 interrupt enable bit) must be set to "0". For more details on the STP instruction, refer to the oscillation circuit section.

TIMER 4 AND TIMER 5 MODES

(1) Timer mode [00].

The internal clock divided by 4 is counted. When the timer counts to "0", the interrupt request bit is set to "1", the contents of the timer latch is reloaded, and the counting starts again.

- (2) Pulse output mode [01].
 - The output level of the CNTR pin inverts each timer the timer contents to zero.
- Event counter mode [10].
 - The same function is executed as that of mode "00", except that the counting source is input from the CNTR pin. The count decreased each time the CNTR input goes from "L" to "H".
- (4) Pulse width measurement mode [11].

This mode is used to measure the pulse width of a signal (between "L"s) input into the CNTR pin. The counting is done using the oscillation frequency divided by 4, and only while the CNTR pin is at a low level. When the contents of the counter reaches zero, the timer 5 overflow flag is set to "1", the timer is reloaded from the reload latch, and counting starts again. The overflow flag can be reset by writing a "0" to bit 7 of address 00F8₁₆.

The structure of timer 4, 5 mode register is shown in Figure 6.

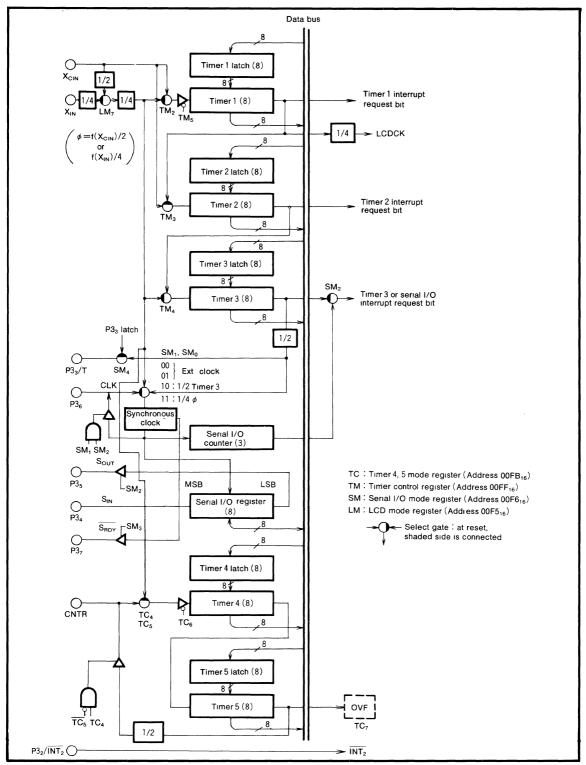


Fig.4 Block diagram of timers 1 through 5

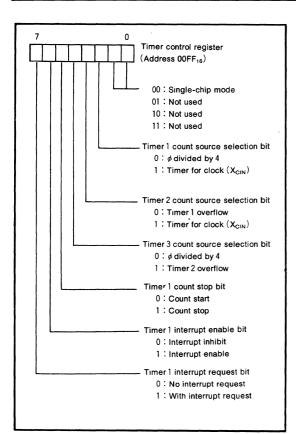


Fig.5 Structure of timer control register

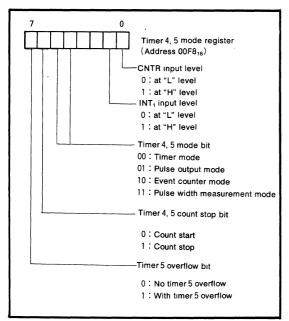


Fig.6 Structure of timer 4, 5 mode register

PORT P3₃/TIMER 3 OUTPUT

The signal that timer 3 is divided by 2 is output from P3 $_3$ (T), at the contents of bit 4 of the serial I/O mode register (address 00F6 $_{16}$) is "1"

WATCHDOG TIMER FUNCTION

Timer 4 and 5 can be used as a watchdog timer by connecting the CNTR pin and the $\overline{\text{RESET}}$ pin as shown in Figure 7, and by setting bit 4 and 5 of address $00F8_{16}$ to "01". At this time the output of the 1/2 divider counter (connected to timer 5) is initialized to "1" when data is written to timer 5. After a delay of 12.5 to $15.0\mu\text{s}$ (at $f(X_{\text{IN}}) = 800\text{kHz}$) after the reset is input, bits 4,5 and 6 of the timer 4,5 mode register are initialized to "0". The initialization program to set the watchdog timer mode should have the following sequence;

- Set the pulse output mode after writing a value to timer 4 and 5 registers.
- (2) If the program is running correctly, the CNTR pin should never go low due to data being continuously written to timer 5. If the program sequence is interrupted timer 5 will overflow and the CNTR pin will output a "L" and retain this value until the reset is executed.
- (3) 12.5 to 17.5 μ s (at f(X_{IN}) = 800kHz) after a reset, the CNTR pin will be in high impedance state.

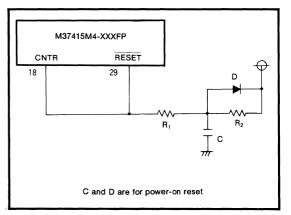


Fig.7 Reset circuit with the watchdog timer

SERIAL I/O

The block diagram of serial I/O is shown in Figure 8. In the serial I/O mode the receive ready signal $(\overline{S_{RDY}})$, synchronous input/output clock (CLK), and the serial I/O (S_{OUT}, S_{IN}) pins are used as P3₇, P3₆, P3₅, and P3₄, respectively. The serial I/O mode register (address 00F6₁₆) is an 8-bit

register. Bit 0 and 1 of this register is used to select a synchronous clock source. When these bits are [00] or [01], an external clock from P3 $_6$ is selected. When these bits are [10], the overflow signal divided by two from timer 3 becomes the synchronous clock. Therefore, changing the timer period will change the transfer speed. When the bits are [11], the internal clock ϕ divided by 4 becomes the clock.

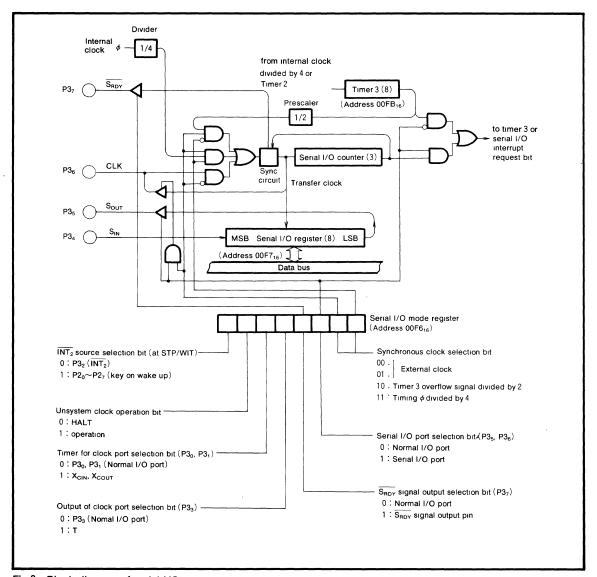


Fig.8 Block diagram of serial I/O

Bits 2 and 3 decide whether parts of P3 will be used as a serial I/O or not. When bit 2 is "1", $P3_6$ becomes an I/O pin of the synchronous clock. When an internal synchronous clock is selected, the clock is output from $P3_6$. If the external synchronous clock is selected, the clock is input to $P3_6$. And $P3_5$ will be a serial output, and $P3_4$ will be a serial input. To use $P3_4$ as a serial input, set the directional register bit which corresponds to $P3_4$, to "0". For more information on the directional register, refer to the I/O pin section.

To use the serial I/O, bit 2 needs to be set to "1", if it is "0" $P3_6$ will function as a normal I/O. Interrupts will be generated from the serial I/O counter instead of timer 3. Bit 3 determines if $P3_7$ is used as an output pin for the receive data ready signal (bit 3="1", \overline{S}_{RDY}) or used as a normal I/O pin (bit 3="0").

The function of serial I/O differs depending on the clock source; external clock or internal clock.

Internal Clock- The \overline{S}_{RDY} signal becomes "H" during transmission or while dummy data is stored in the serial I/O register. After the faling edge of write signal, the \overline{S}_{RDY} signal

becomes low signaling that the M37415M4-XXXFP is ready to receive the external serial data. The $\overline{S_{\text{RDY}}}$ signal goes "H" at the next falling edge of the transfer clock. The serial I/O counter is set to 7 when data is stored in the serial I/O register. At each falling edge of the transfer clock, serial data is output to P3₅. During the rising edge of this clock, data can be input from P3₄ and the data in the serial I/O register will be shifted 1 bit. Data is output starting with the LSB. After the transfer clock has counted 8 times, the serial I/O register will be empty and the transfer clock will remain at a high level. At this time the interrupt request bit will be

External Clock- If an external clock is used, the interrupt request bit will be set after the transfer clock has counted 8 times but the transfer clock will not stop. Due to this reason, the external clock must be controlled from the outside. The external clock should not exceed 50kHz at a duty cycle of 50%.

Timing diagrams are shown in Figure 9, and connection between two M37415M4-XXXFP's are shown in Figure 10.

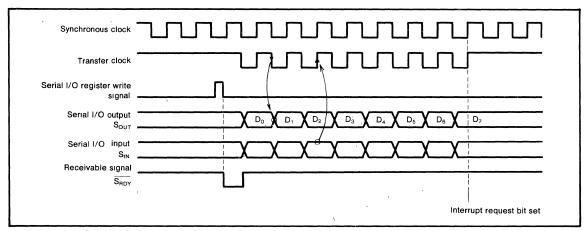


Fig.9 Serial I/O timing

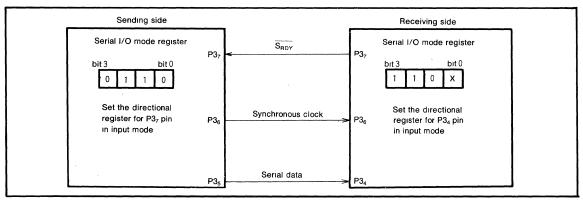


Fig.10 Example of serial I/O connection

DTMF FUNCTION

The M37415M4-XXXFP has the DTMF (Dual-Tone Multi-Frequency) output and control function. The value of bit 0, and bit 1 of DTMF register (address 00F4₁₆) determines the low frequency band value. And the value of bit 2, and bit 3 of DTMF register determines the high frequency band value. The DTMF output can be controlled by the value of bit 4, and bit 5 of the DTMF register. When bit 4 is "1" the low frequency band is output to Tone, and when bit 4 is "0" the output of low frequency band is stopped. When bit 5 is "1" the high frequency band is output to Tone, and when bit 5 is "0" the output of high frequency band is stopped.

The value of bit 6, and 7 of DTMF register determines the basic frequency. The structure of the DTMF register is shown in Figure 11. The accuracy of DTMF output value is shown in Table 2 and 3.

Table 2. Accuracy of DTMF output (at low frequency band value)

Standard frequency value [Hz)	Output frequency value [Hz]	Deflection	Error [%]
697	694. 44	-2.555	-0.367
770	769. 23	-0.769	-0.1
852	854. 7	2. 7	0.317
941	938, 97	-2.033	-0.216

Table 3. Accuracy of DTMF output (at high frequency band value)

Standard frequency value [Hz]	Output frequency value [Hz]	Deflection	Error [%]
1209	1204.8	-4. 181	-0.346
1336	1333. 3	-2.667	-0.2
1477	1470.6	-6.412	-0.434
1633	1639, 3	6, 344	0, 389

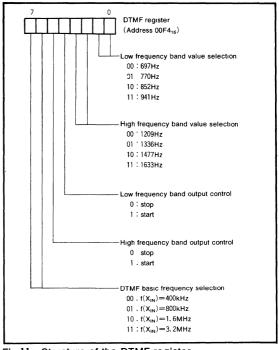


Fig.11 Structure of the DTMF register

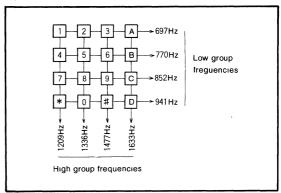


Fig.12 Telephone keys and DTMF

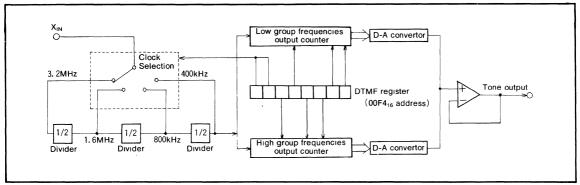


Fig.13 Block diagram of DTMF generator

LCD CONTROLLER/DRIVER

The M37415M4-XXXFP has internal LCD controllers and drivers. A block diagram of LCD circuit is shown in Figure 17.

The terminals for LCD consist of 4 common-pin and 32 segments pin. $SEG_{24} \sim SEG_{31}$ are in common with input P4. These pins are selected by bit 4 of the LCD mode register (LM₄, address 00F5₁₆). Two biases (1/2 and 1/3) can also be selected. When bit 2 of the LCD mode register is "1", 1/2 bias is selected. When bit 2 is "0", 1/3 bias is selected. A 1/2, 1/3, or 1/4 duty cycle can also be selected. When bits 0 and 1 of the LCD mode register (LM₀, LM₁) is n, the duty ratio is 1/(n+1).

Address $00D0_{16} \sim 00DF_{16}$ is the designated RAM for the LCD display. When 1s' are written to these addresses, the corresponding segments of the LCD display panel are turned on. A map of the LCD display RAM is shown in Figure 15. The ON/OFF function for the LCD controller is controlled by bit 3 of the LCD mode register (LM₃). When this bit is "1" all the segments of the LCD are turned on. When this bit is "0" all the segments are turned off. An example circuit for each bias is shown in Figure 18 and Figure 19 describes the LCD driver waveforms for each bias and duty cycle.

The LCDCK timing frequency (LCD driver timing) is generated internally and the frame frequency can be determined with the following equation;

$$f(LCDCK) = \frac{(frequency of timer 1 count source)}{((timer 1 setting+1) \times 4)}$$

Frame frequency=
$$\frac{f(LCDCK)}{n}$$
; at 1/n duty

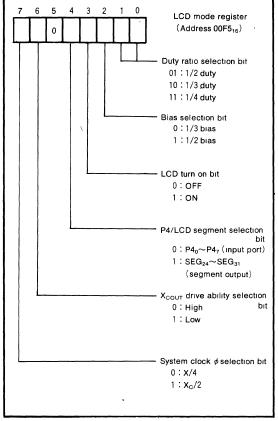


Fig.14 Structure of the LCD mode register

Bit Address	7	6	5	4	3	2	1	0
D0	1	1	1	1	0	0	0	0
D1	3	3	3	3	2	2	2	2
D2	5	5	5	5	4	4	4	4
D3	7	7	7	7	.6	6	6	6
D4	9	9	9	9	8	8	8	8
D5	11	11	11	11	10	10	10	10
D6	13	13	13	13	12	12	12	12
D7	15	15	15	15	14	14	14	14
D8	17	17	17	17	16	16	16	16、
D9	19	19	19	19	18	18	18	18
DA	21	21	21	21	20	20	20	20
DB	23	23	23	23	22	22	22	22
DC	25	25	25	25	24	24	24	24
DD	27	27	27	27	26	26	26	26
DE	29	29	29	29	28	28	28	28
DF	31	31	31	31	30	30	30	30
# Norman	COM3	COM	COM	COM	COM3	COM2	COM	COM
* Numbe	ıı ın dat	a memo	ry area	muicate	s corre	sponain	y segm	ent.

Fig. 15 Map of RAM for LCD segment

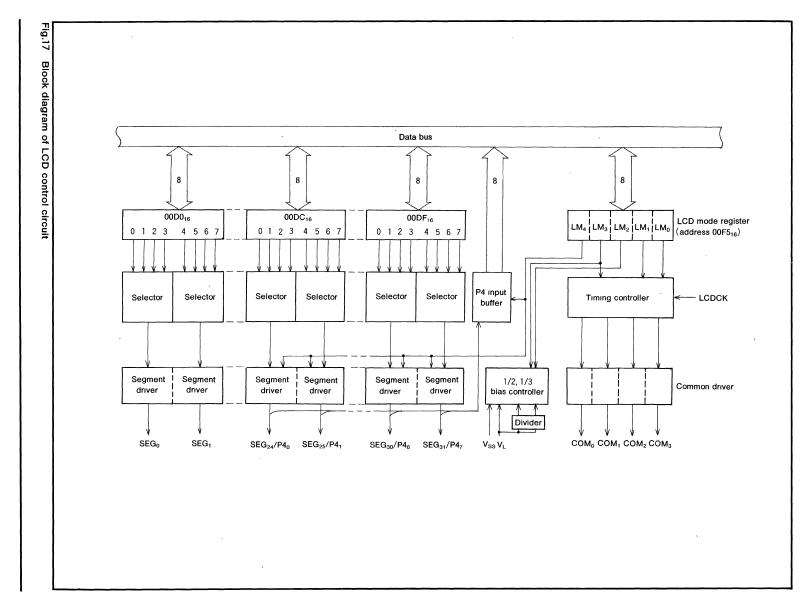



Fig.16 Internal circuit of LCD power supply input pin

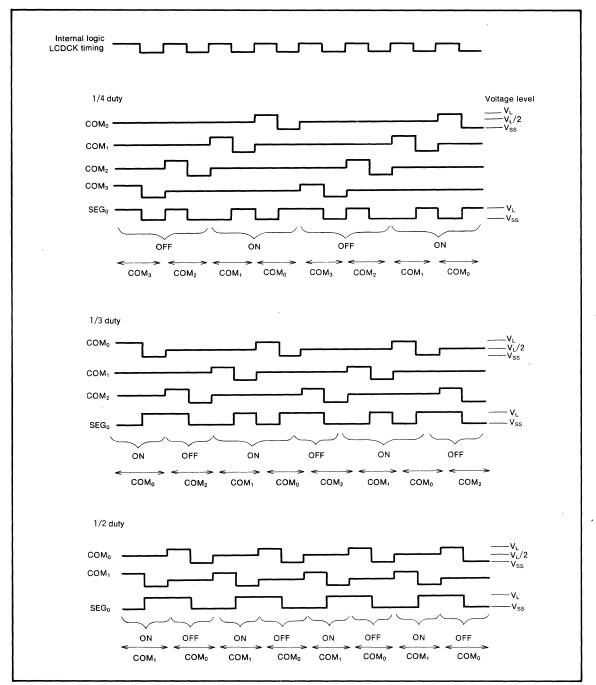
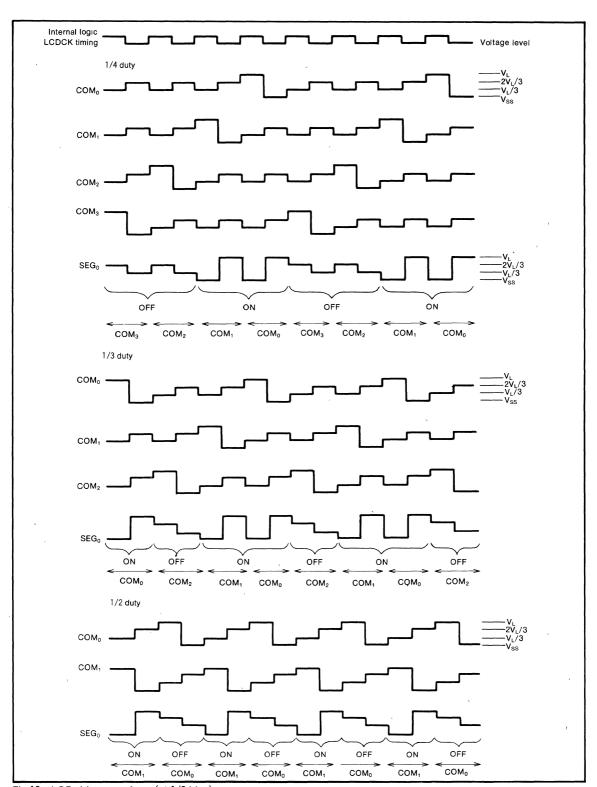
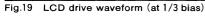




Fig.18 LCD drive waveform (at 1/2 bias)

KEY ON WAKE UP

"Key on wake up" is one way of returning from a power down state caused by the STP or WIT instruction. If any terminal of port P2 has a "L" level applied, after bit 7 of the serial I/O mode register (SM₇) is set to "1", an interrupt is generated and the microcomputer is returned to the normal operating state. As shown in Figure 20, a key matrix can be connected to port P2 and the microcomputer can be retuned to a normal state by pushing any key.

The key on wake up interrupt is common with the $\overline{\text{INT}_2}$ interrupt. When SM_7 is set to "1", the key on wake up function is selected. However, key on wake up cannot be used in the normal operating state. When the microcomputer is in the normal operating state, both key on wake up and $\overline{\text{INT}_2}$ are invalid.

In order to enter the power down state generated by the STP or WIT instruction at the interrupt disable flag (I) is "0" and SM_7 is "1", all of port P2 must be input "H"

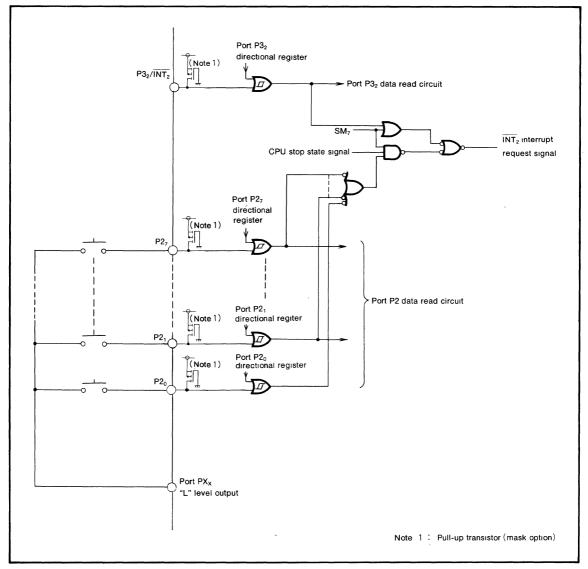


Fig.20 Block diagram of port P2 and P32, and example of wired at used key on wake up

RESET CIRCUIT

The M37415M4-XXXFP is reset according to the sequence shown in Figure 23. It starts the program from the address formed by using the content of address 3FFF $_{\rm 16}$ as the high order address and the content of the address 3FFF $_{\rm 16}$ as the low order address, when the $\overline{\rm RESET}$ pin is held at "L" level for at least 8 rising edges of $X_{\rm IN}$ while the power voltage is in the recommended oprating condition and the crystal

Address (1) Port P0 directional register 0016 (00E1₁₆) (2) Port P1 directional register (00E3₁₆) 0016 (3) Port P2 directional register (00E5₁₆) 0016 0016 (4) Port P3 directional register (00E9₁₆) (5) DTMF register (00F4₁₆) 0 0 0 0 (6) LCD mode register 0016 (00F5₁₆) Serial I/O mode register 0016 (00F6₁₆) Timer 4, 5 mode register (00F8₁₆) 0 0 0 0 (9) Interrupt control register (00FE₁₆) 0016 0016 Timer control register (00FF₁₆)[Interrupt disable flag for (PS) 1 processor status register Contents of address 3FFF (12) Program counter Since the contents of both registers other than Note: those listed above (including timers and the serial I/O register) and the RAM are undefined at reset, it is necessary to set initial values

Fig.21 Internal state of microcomputer at reset

oscillator oscillation is stable and then returned to "H" level. The internal initializations following reset are as shown in Figure 21, regardless of the status before reset (including stop mode or wait mode).

An example of the reset circuit is shown in Figure 22.

When the power on reset is used and the reset is used while the X_{IN} clock is stopped, the \overline{RESET} pin must be held "L" unitil the oscillation of X_{IN} - X_{OUT} becomes stable.

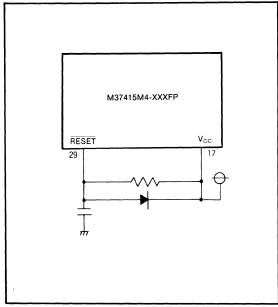


Fig.22 Example of reset circuit

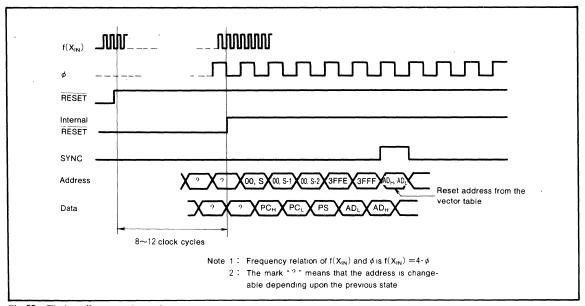


Fig.23 Timing diagram at reset

MITSUBISHI MICROCOMPUTERS M37415M4-XXXFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

I/O PORTS

(1) Port P0

Port P0 is an 8-bit I/O port with CMOS outputs and pull-up transistor options available. As shown in Figure 1, P0 can be accessed as memory through zero page address 00E016. Port P0's directional register allows each bit to be programmed individually as input or output. The directional register (zero page address 00E1₁₆) can be programmed as input with "0", or as output with "1". When in the output mode, the data to be output is latched to the port register and output. When data is read from the output port, the output pin level is not read, only the latched data of the port register is read. Therefore, a previously output value can be read correctly even though the output voltage level has been shifted up or down. Port pins set as input are in the high impedance state so the signal level can be read. When data is written into the input port, the data is latched only to the output register and the pin still remains in the high impedance state.

- (2) Port P1
 - Port P1 has the same function as P0.
- (3) Port P2

Port P2 has the same function as P0. Following the execution of STP or WIT instruction. P2 can be used to generate the "wake up mode". This mode is used to bring the microcomputer back in its normal oprating mode after being in the power-down mode.

(4) Port P3

Port P3 has the same function as P0 execept that part of P3 is common with the serial I/O lines (ie output of timer 3, input/output of timer clock, and interrupt input).

- (5) Segment output (SEG₀~SEG₂₃) These ports drive and control the LCD segments.
- (6) Port P4

Port P4 is an 8-bit input port which can be used as a LCD segment output port.

(7) Common output (COM₀~COM₃)

These port provides output drive and control for the LCD common lines.

(8) Power supply for LCD (V_L)

Supplies power to the LCD terminals.

(9) INT₁

The $\overline{INT_1}$ pin is an interrupt pin. The $\overline{INT_1}$ interrupt request bit (bit 7 of address $00FE_{16}$) is set to "1" when the input level of this pin changes from "H" to "L". This input level is read into bit 1 of the timer 4 and 5 mode register (address $00F8_{16}$).

(10) $\overline{INT_2}$ ($\overline{INT_2}/P3_2$)

The $\overline{INT_2}$ pin is an interrupt input pin common with P3₂. When P3₂'s directional register is set for input ("0"), this pin can be used as an interrupt input. The $\overline{INT_2}$ interrupt request bit (bit 1 of address 00FE₁₆) is automatically set to "1" when the input level of this pin changes from "H" to "L".

(11) CNTR

The CNTR pin is an I/O pin of timer 4 and 5. The input level is read into bit 0 of the timer 4 and 5's mode register (address 00F8₁₆).

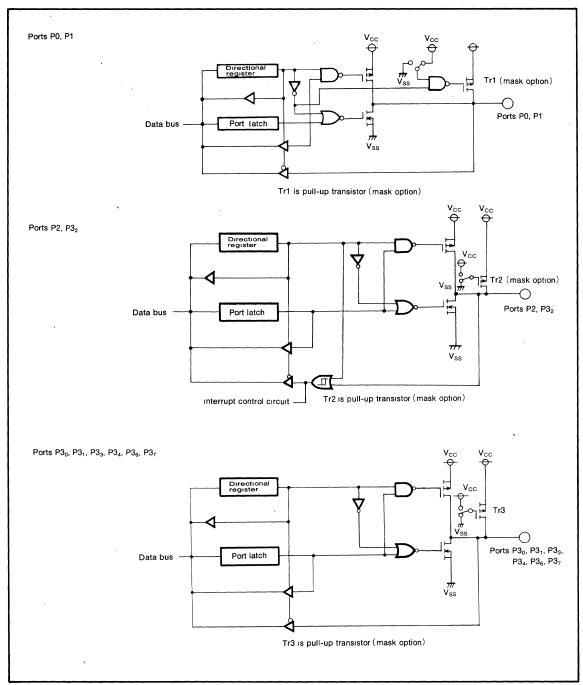


Fig.24 Block diagram of ports P0~P3

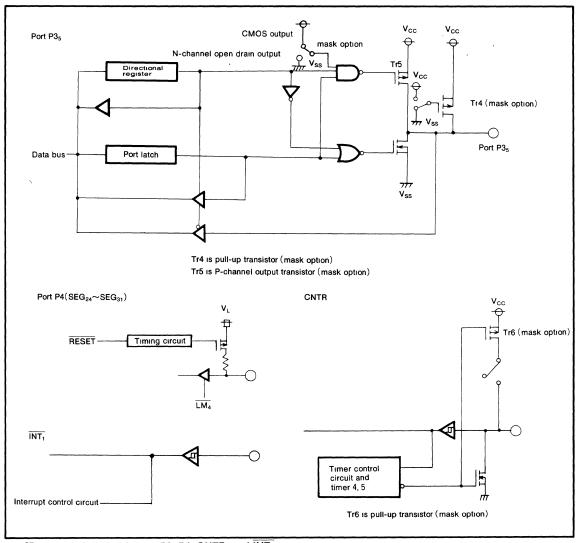


Fig.25 Block diagram of ports P3, P4, CNTR, and INT₁

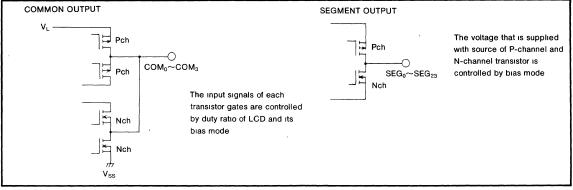


Fig.26 Block diagram of COM, SEG

CLOCK GENERATING CIRCUIT

The M37415M4-XXXFP has two internal clock generating circuit. Figure 29 shows a block diagram of the clock generating circuit. Normally, the frequency applied to the clock input pin $X_{\rm IN}$ divided by four is used as the internal clock (timing output) ϕ . Bit 7 of LCD mode register can be used to switch the internal clock ϕ to 1/2 the frequency applied to the clock input pin $X_{\rm CIN}$.

Figure 27 shows a circuit example using a ceramic (or cystal) oscillator. Use the manufacture's recommended values for constants such as capacitance which will differ depending on each oscillator. When using an external clock signal, input form the X_{IN} (X_{CIN}) pin and leave the X_{OUT} (X_{COUT}) pin open. A circuit example is shown in Figure 28. The M37415M4-XXXFP has two low power dissipation modes; stop and wait. The microcomputer enters a stop mode when the STP instruction is executed. The oscillator (both X_{IN} clock and X_{CIN} clock) stops with the internal clock ϕ held at "H" level. In this case timer 1 and timer 2 are forcibly connected and $\phi/4$ is selected as timer 1 input. Before executing the STP instruction, appropriate values must be set in timer 1 and timer 2 to enable the oscillator to stabilize when restarting oscillation. Before executing the STP

Oscillation is resarted (release the stop mode) when INT₁ INT₂, key on wake up or serial I/O interrupt is received. The interrupt enable bit of the interrupt used to release the stop mode must be set to "1". When restarting oscillation with an interrupt, the internal clock ϕ is held "H" unitil timer 2 overflows and is not supplied to the CPU.

instruction, the timer 1 count stop bit must be set to supply ("0"), timer 1 interrupt enable bit and timer 2 interrupt

enablb bit must be set to disable ("0"), and timer 2 inter-

rupt request bit must be set to no request ("0").

The microcomputer enters a wait mode when the WIT instruction is executed. The internal clock ϕ stops at "H" level, but the oscillator does not stop. ϕ is re-supplied (wait mode release) the microcomputer receives an interrupt. Instructions can be executed immediately because the oscillator is not stopped. The interrupt enable bit of the interrupt used to reset the wait mode must be set to "1" before executing the WIT instruction.

Low power disspation operation is also achieved when the X_{IN} clock is stopped and the internal clock ϕ is generated from the X_{CIN} clock. X_{IN} clock oscillation is stopped when the bit 6 of serial I/O mode register (address $00F6_{16}$) is set and restarted when it is cleared. However, the wait time until the oscillation stabilizes must be generated with a program when restaring. An "L" level must be kept to the RESET pin until the oscillation stabilizes when resetting while the X_{IN} clock is stopped. Figure 30 shows the transition states for the system clock.

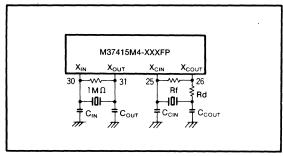


Fig.27 External ceramic resonator circuit

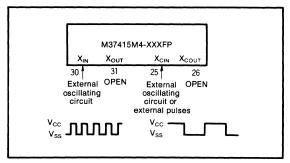


Fig.28 External clock input circuit

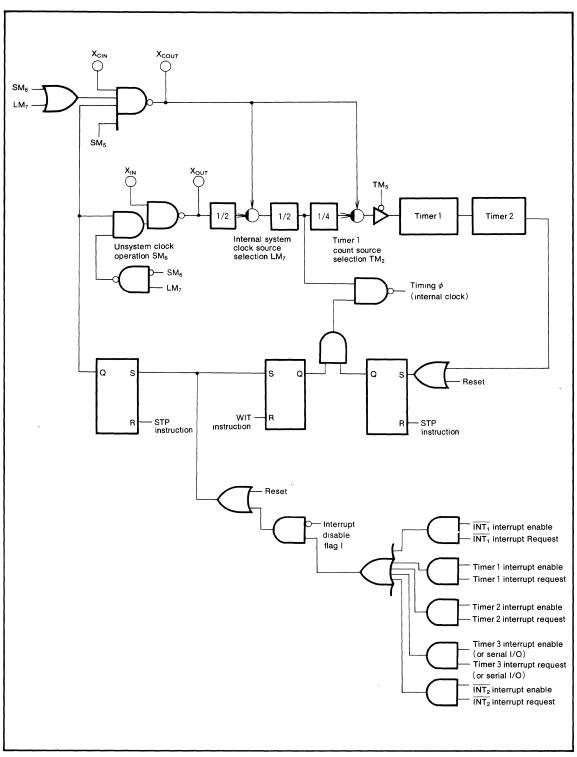


Fig.29 Block diagram of clock generating circuit

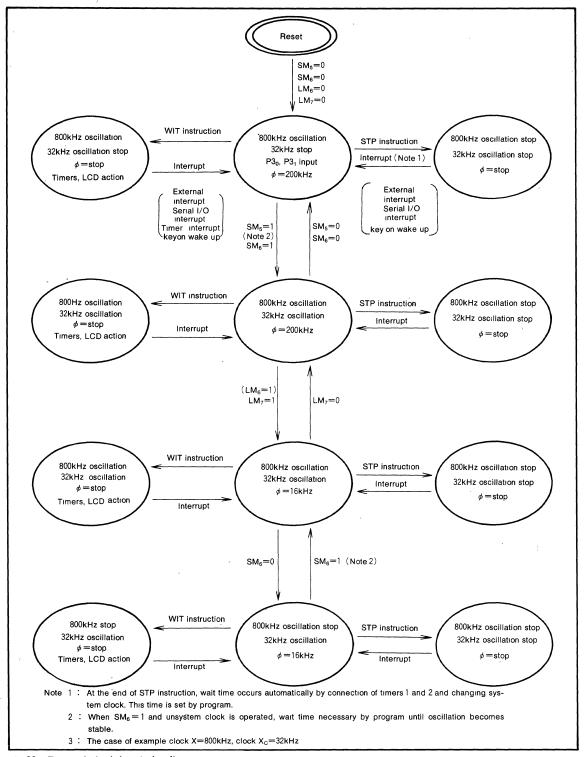


Fig.30 External clock input circuit

≪An example of flow for system>

```
Power on reset
                Clock X oscillation
Normal operation
                Internal system clock start (X \rightarrow 1/4 \rightarrow \phi)
                Program start from RESET vector·········X_C oscillation(SM<sub>5</sub>= 1, SM<sub>6</sub>= 1)
                             Normal program
                                                       ←Operating at 800kHz
Operation on the clock function only
                Clock for clock function X_C power down (LM<sub>6</sub>: 0 \rightarrow 1)
                Internal clock \phi source switching X(800kHz) \rightarrow X_{C}(32.768kHz)(LM_{7}: 0 \rightarrow 1)
                Clock X halt(X_C in operation)(SM_6 = 0)
                Internal clock halt(WIT instruction)
                Timer 1 (clock count) overflow
                Internal clock operation start (WIT instruction released)
                             Clock processing routine
                                                                  ← Operating at 32, 768kHz
                Internal clock halt (WIT instruction)
                Interrupts from \overline{INT_1}, timer 2, timer 3 or serial I/O, \overline{INT_2}, Key on wake up
Return from clock function
                Internal clock operation start (WIT instruction released)
                Program start from interrupt vector
                Unsystem clock X oscillation start (SM<sub>6</sub>= 1)
                             Oscillation rise time routine (software)
                                                                                   ←Operating at 32. 768kHz
                Internal clock \phi source switching X_C \rightarrow X (LM<sub>7</sub>: 1 \rightarrow 0)
                             Normal program
                                                       →Operating at 800kHz
R A M backup function
                             STP instruction preparation (pushing register)
                             Timer 1, and timer 2 interrupt disable (TM_6 = 0, IM_4 = 0)
                             Timer 1 count stop bit resetting (TM_5 = 0)
                             Clock \dot{X} and clock for clock function X_C halt (STP instruction)
                             RAM backup status
Return from R A M backup function
                Interrupts from INT<sub>1</sub> or serial I/O, INT<sub>2</sub>, key on wake up
                Clock X and clock for clock function X<sub>C</sub> oscillation start
                Timer 2 overflow (X/16 or X_C/8 \rightarrow timer 1 \rightarrow timer 2 )
                Internal system clock start (X/4 or X_C/2 \rightarrow \phi)
                Program start from interrupt vector
                             Normal program
                                      (
```

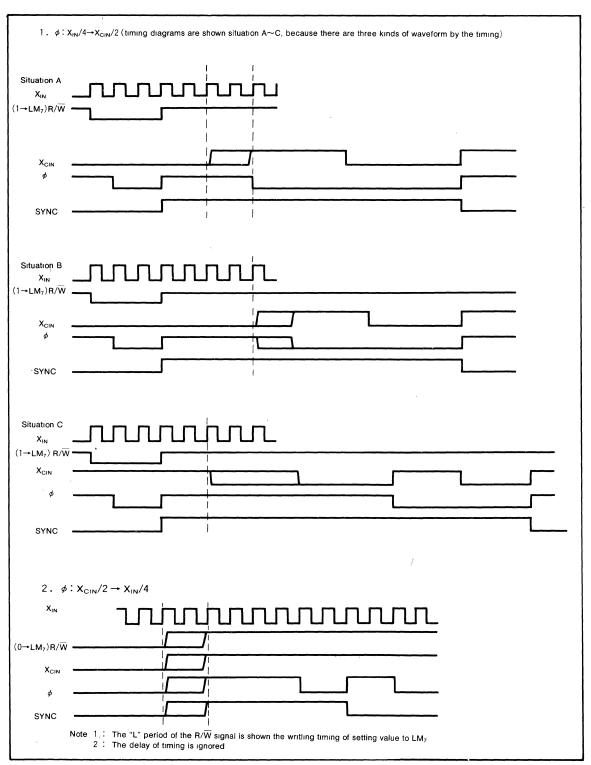



Fig.31 Timing diagram of the changing system clock

PROGRAMMING NOTES

- (1) The frequency ratio of the timer is 1/(n+1).
- (2) Even though the BBC and BBS instructions are executed after the interrupt request bits are modified (by the program), those instruction are only valid for the contents before the modifications are only valid for the contents before the modification. Also, at least one instruction cycle must be used (such as a NOP) between the modification of the interrupt request bits and the execution of the BBC and BBS instructions.
- (3) When the timer 4 and the timer 5 are used at event counter mode, read the contents of these timers either while the input of the these timers are not changing or after timer 4, 5 count stop bit (bit 6 of address 00F8₁₆) is set to "1".
 - Also, when the timer 1, timer 2, or timer 3 is input the clock except $\phi/4$ or it divided by timer, control the same as above.
- (4) After the ADC and SBC instructions are executed (in decimal mode), one instruction cycle (such as a NOP) is needed before the SEC, CLC, or CLD instructions are executed.
- (5) A NOP instruction must be used after the execution of a PLP instruction.
- (6) When LCD turn-on bit (bit 3 of address 00F5₁₆) of the LCD mode register is "1", don't stop the timers or count source for timers.
- (7) The timer 1 and timer 2 must be set the necessary value immediately before the execution of a STP instruction.
- (8) Notes on controlling the clock generation circuit
 - ① When system clock is changed $X_{IN}/4$ to $X_{CIN}/2$, set LM₇ to "1" after oscillation is stable by the software in side of clock X_C .
 - ② When system clock is changed $X_{\text{CIN}}/2$ to $X_{\text{IN}}/4$, set LM₇ to "0" after oscillation is stable by the software in side of clock X.
 - When SM₅ is "0" or when LM₇ is "0" and SM₆ is "0", LM₆ is automatically set to "0" by the hardware.
 - When system clock selection bit (bit 7 of address 00F5₁₆) of the LCD mode register is "1", don't set SM₅ to "0".

Just for reference, timing diagram of the changing system clock are shown in Figure 31.

- In order to avoid noise and latch-up, connect the following external circuit.
 - ① Connect a bypass capacitor (≈0.1µF) directly between the V_{CC} pin and V_{SS} pin using a heavy wire.
 - Connect a bypass capacitor (≈0.1µF) directly between the V_{REF} pin and V_{SS} pin using a heavy wire.

DATA REQUIRED FOR MASK ORDERING

Please send the following data for mask orders.

- (1) mask ROM confirmation from
- (2) mark specification from
- (3) ROM data EPROM 3 sets Write the following option on the mask ROM confirmation from
- Port P0 pull-up transistor bit (see the confirmation form)
- Port P1 pull-up transistor bit (see the confirmation form)
- Port P2 pull-up transistor bit (see the confirmation form)
- Port P3 pull-up transistor bit (see the confirmation form)
- Port P3₅/S_{OUT} output type (see the confirmation form)
- CNTR pin pull up transistor (see the confirmation form)

MITSUBISHI MICROCOMPUTERS **M37415M4-XXXFP**

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
V _{CC}	Supply voltage		−0.3~7	V
V _I	Input voltage for LCD V _L		$-0.3 \sim V_{CC} + 0.3$	V
Vı	Input voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ P3 ₀ ~P3 ₇ , SEG ₂₄ ~SEG ₃₁ , X _{IN}		-0.3~V _{cc} +0.3	v
Vı	Input voltage INT ₁ , CNV _{SS} , V _{REF}	1	−0.3~7	V
Vi	Input voltage RESET, CNTR	With respect to V _{SS}	-0.3~13	V
Vo	Output voltage $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $P2_0 \sim P2_7$ $P3_0 \sim P3_7$, $COM_0 \sim COM_3$, $SEG_0 \sim SEG_{31}$ X_{OUT}		-0.3~V _{cc} +0.3	v
, V _O	Output voltage CNTR		−0. 3~ 7	V
Pd	Power disspation	T _a = 25℃	300	mW
Topr	Operating temperature		-10~70	°C
Tstg	Storage temperature		−40~125	°C

$\textbf{RECOMMENDED} \quad \textbf{OPERATING} \quad \textbf{CONDITIONS} \; (v_{cc} = 2, 7 \sim 5.5 \text{V, } v_{ss} = 0 \text{V, } \tau_{a} = -10 \sim 70 ^{\circ} \text{C, unless otherwise noted})$

0		O ditu		Unit			
Symbol	Parameter	Conditions	Min	Тур	Max	UIII	
	(A)	$f(X_{IN})=3.2MHz$	4.5		5.5	V	
V _{cc}	Supply voltage(Note 1)	$f(X_{IN})=800kHz$	2.5		5.5	V	
V _{SS}	Supply voltage			0		٧	
V _{REF}	Supply voltage for DTMF	R _L ≥20kΩ	1.5		V _{CC} -0.5	V	
V _{IH}	"H" input voltage $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $P3_0$, $P3_1$ (Note 2), $P3_3 \sim P3_7 (Note \ 3)$ $P4_0 \sim P4_7$, \overline{RESET} , X_{IN} , CNV_{SS}		0.8V _{CC}		V _{cc}	٧	
V _{IH}	"H" input voltage P2 ₀ ~P2 ₇ , P3 ₂ , P3 ₆ (Note 4) INT ₁ , CNTR		0.74V _{cc}		V _{cc}	٧	
V _{IL}	"L" input voltage $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $P3_0$, $P3_1$ (Note 2), $P3_3 \sim P3_7 (\text{Note 3})$ $P4_0 \sim P4_7, \ CNV_{SS}$		0		0.3V _{CC}	V	
V _{IL}	"L" input voltage P2 ₀ ~P2 ₇ , P3 ₂ , P3 ₆ (Note 4) INT ₁ , CNTR		0		0. 2V _{CC}	V	
V _{IL}	"L" input voltage RESET		0		0.12V _{CC}	V	
V _{IL}	"L" input voltage X _{IN}		0		0.16V _{CC}	V	
Іон	"H" output current $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $P2_0 \sim P2_7$ $P3_0 \sim P3_7 (Note 5)$, X_{OUT}				-2	mA	
I _{OL} (peak)	"L" peak output current $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $P2_0 \sim P2_7$ $P3_0 \sim P3_7$, CNTR, X_{OUT} (Note 6)				10	mA	
I _{OL(avg)}	"L" average output current $P0_0\sim P0_7$, $P1_0\sim P1_7$, $P2_0\sim P2_7$ $P3_0\sim P3_7$, CNTR, $X_{OUT}(Note\ 7)$				5	mA	
f(X _{IN})	Clock oscillating frequency(Note 8)	V _{cc} =4.5~5.5V V _{cc} =2.5~5.5V	380 380		3300 1000	kHz	
f(X _{CIN})	Clock oscillating frequency for clock function		32		50	kHz	

Note 1: When only maintaining the RAM data minimum value of V_{CC} is 2V

2 : When using port P3₁ as X_{CIN} , 0. 85 $V_{CC} \le V_{IH} \le V_{CC}$, $0 \le V_{IL} \le 0$. 15 V_{CC} for port P3₁ 3 : In this case of using port P3₆ as normal input.

4 : In this case of using port P36 as CLK input. Especially when the input oscillation frequency is more than 50kHz, recommend the following: 0.8 V_{CC} ≤ V_H≤ V_{CC}, 0≤ V_H≤0.2 V_{CC}. 5: The total of I_{OH} of port P0, P1, P2, P3, X_{OUT} should be 35mA max

6 : The total of I_{oL(peak)} of port P0, P1, P2, P3 should be 55mA max, and the total of I_{oL(peak)} of port P3, CNTR and X_{out} should be 45mA max

7: I_{OL(avg)} is the average current in 100ms

8: When using DTMF function, f(X_{IN}) should be 400kHz, 800kHz, 1.6MHz, or 3.2MHz

MITSUBISHI MICROCOMPUTERS **M37415M4-XXXFP**

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

ELECTRICAL CHARACTERISTICS ($v_{ss} = 0v$, $\tau_a = -10 \sim 70^{\circ}C$, unless otherwise noted)

Symbol	Parameter			Test conditions			Limits			
5,501						Min	Тур	Max	Uni	
/ _{OH}	"H" output voltage P0 ₀ ~P0 ₇		_	$_{\rm C}$ =5V, $I_{\rm OH}$ = $-2r$		3			V	
	P3 ₀ ~P3 ₇	(Note 1)(Note 2)		$_{\rm c}$ =3V, $I_{\rm OH}$ =-0.		2				
√он	"H" output voltage X _{out}			$_{\rm c}$ =5V, $l_{\rm OH}$ =-1.		3			V	
- OH				$=3V$, $I_{OH}=-0$.		2				
√ o∟	"L" output voltage P0 ₀ ~P0 ₇		Vc	=5V, I _{OL} =10m	Α			2	V	
	P3 ₀ ~P3 ₇	(Note 2), CNTR		=3V, I _{OL} =3mA				1		
VoL	"L" output voltage X _{OUT}			₀ =5V, I _{OL} =1.5r				2	V	
				=3V, I _{OL} =0. 3r	n A			1		
$V_{T+}-V_{T-}$	Hysteresis INT ₁ , CNTR			=5V		0. 25		1	v	
	, , , , , , , , , , , , , , , , , , , ,		+	₀ =3V		0.15		0.7		
$V_{T+}-V_{T-}$	Hysteresis P3 ₆		Wh	- t	V _{cc} =5V		0.5		V	
			CL	K input	V _{cc} =3V		0.4			
V _{T+} -V _{T-}	Hysteresis P3 ₁		Wh	en used as	V _{cc} =5V		0.7		V	
	.,,,		Xcı	N input	V _{cc} =3V		0.5			
V _{T+} V _{T-}	Hysteresis P2 ₀ ~P2 ₇ , P3 ₂		Vc	=5 V			0.5		٧	
• I + • I -	1190010010 1 20 1 27, 1 02		Vc	=3V			0.4			
V _{T+} V _T	Hysteresis RESET		VC	∋=5 V			0.5	0.7	V	
• r+ • T-	THE STATE OF THE S		Vc	_⊃ =3 V	*		0.35		v	
V	Hysteresis X _{IN}		Vc	⇒=5 V			0.5		V	
VT+ VT-	TIYSTETESIS AIN		Vc	V _{CC} =3V			0.35			
	"L" input current SEG ₂₄ ~SEG ₃₁ (Except reset state) [P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₇] Without pull-up Tr INT ₁ , RESET, X _{IN}						5			
l _{IL}						-			μ	
			Vc	V _{CC} =3V, V _I =0V				-4		
IL.	"L" input current $\{P0_0 \sim P0_7, P1_0 \sim P1_7, P2_0 \sim P2_7 P3_0 \sim P3_7, CNTR\}$ With pull-up Tr		Vc	V _{CC} =5V, V _I =0V		-30	-70	-140	μА	
'IL			Vc	$_{c}$ =3V, V_{i} =0V	~	-6	-25	45		
l _{IL}	"L" input current SEG ₂₄ ~SEG ₃₁ (at reset state)		Vc	₀ =5V, V _L =5V, \	/ _I =0V	-30		-140	μ β	
'IL 			Vc	=3V, V _L =3V, V	/ ₁ =,0V	6		45		
	"H" input current SEG ₂₄ ~SEG ₃₁ (Except reset state)		V _{CC} -5V, V ₁ -5V				5			
l _{iH}		P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇	-	$V_{CC}=3V$, $V_1=3V$				4	μA	
	P3 ₀ ~P3 ₇ ,	INT ₁ , RESET, X _{IN}								
l _{ін}	"H" input current SEG24~SI	EG31(at reset state)		$V_{CC}=5V$, $V_L=5V$, $V_I=5V$				5	μ	
			V _{CC} =3V, V _L =3V, V _I =3V					4	ļ <i>~</i> .	
				$f(X_{IN}) = 3.2MH$			4	8		
			5	V _{CC} =5V	at DTMF wave form stop		3	6	m	
		Output pins are opened	atic	$f(X_{IN}) = 800kHz$	TOTTI Output		0.8	1.5		
		RESET, PO ₀ ~PO ₇ ,	operation	V _{CC} =3V	at DTMF wave form stop		0.5	1.0		
		P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ ,		T _a =25°C, X _{IN} = f(X _{CIN})=32.8kH	0V V _{CC} =5V		45			
		and P3 ₀ ~P3 ₇ are	¥	×	at low power mo	de		10		μ
		connected to V _{CC}		(LM ₆ =1)	$V_{CC}=3V$		18			
lcc	Supply current	Except the above pins	e e	$f(X_{IN}) = 3.2MH$	z, V _{CC} =5V		1		m.	
	., ,	are connected to V _{SS}	stat	$f(X_{IN})=800kHz$, V _{CC} =3V		0.3		111	
		However, X _{IN} and X _{CIN} are input signal according to	wait	T _a =25°C, X _{IN} = f(X _{CIN})=32.8kH	$V_{cc}=5V$		20	60		
		the conditions		at low power mo	de			10		
	110 0011410110	¥	(LM ₆ =1)	V _{cc} =3V		4	12			
		$\left \begin{array}{c} \mathbf{Q} \\ \mathbf{O} \end{array}\right \mathbf{f}(\mathbf{X}_{IN}) = 0$	T _a =25℃		0.1	1	μ			
		$\begin{cases} \text{to a } \\ \text{o } \text{o} \end{cases} \text{t}(X^{(N)}) = 0$		·a 255						
			¥	$f(X_{CIN})=0$ $V_{CC}=5V$	Ta=70℃			10		
L	V _L current			=V _L =5V,⅓ bia			10	25	μ	
				$_{\text{D}}=V_{\text{L}}=3V_{\text{1}}\sqrt{3}$ bia			6	15		
REF	V _{REF} current			=5V,V _{REF} =4.5			100	200	μ	
			_	$=3V, V_{REF}=2.5$			60	120		
V _{RAM}	RAM retention voltage		f(X	$_{IN})=0$, $f(X_{CIN})=$:0	2		5.5	٧	

Note 1: Except when the output type of P3 $_5$ is N-channel open drain (mask option) 2: If P3 $_0$ is used as X $_{\text{COUT}}$, capability of load driving is lower than the above

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

DTMF CHARACTERISTICS ($V_{ss} = 0V$, $T_a = -10 \sim 70^{\circ}C$, unless otherwise noted)

Cumbal	Symbol Parameter		Task and deliana		Limits			11-4	
Symbol				Test conditions			Тур	Max.	Unit
		High frequency	$V_{CC}=5V$, \	/ _{REF} =4.5V,	$R_L=20k\Omega$	470	490	510	
1.	Output voltage Tone	band group	$V_{CC}=3V$, \	/ _{REF} =2.5V,	$R_L=20k\Omega$	257	270	283	
V _{OT}	Output voltage Tone	Low frequency	$V_{CC}=5V$, \	/ _{REF} =4.5V,	$R_L=20k\Omega$	325	345	365	mVrms
	band	band group	$V_{CC}=3V$, \	/ _{REF} =2.5V,	$R_L=20k\Omega$	177	190	203	1
dB _{CR}	Output ratio of high frequency band to low frequency band		$R_L=20k\Omega$			2.5	3	3.5	dB
DIS	Disportional percentage		$R_L=20k\Omega$,	T _a =25℃			13		%

MITSUBISHI MICROCOMPUTERS

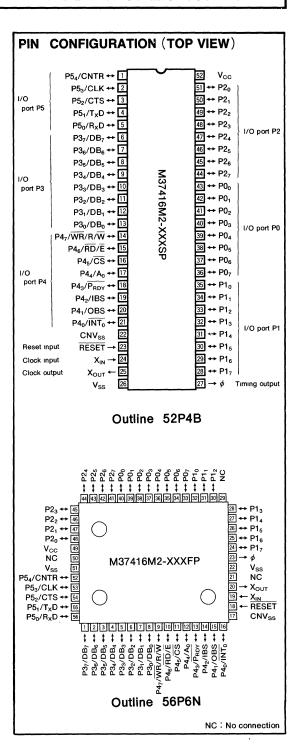
M37416M2-XXXSP/FP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

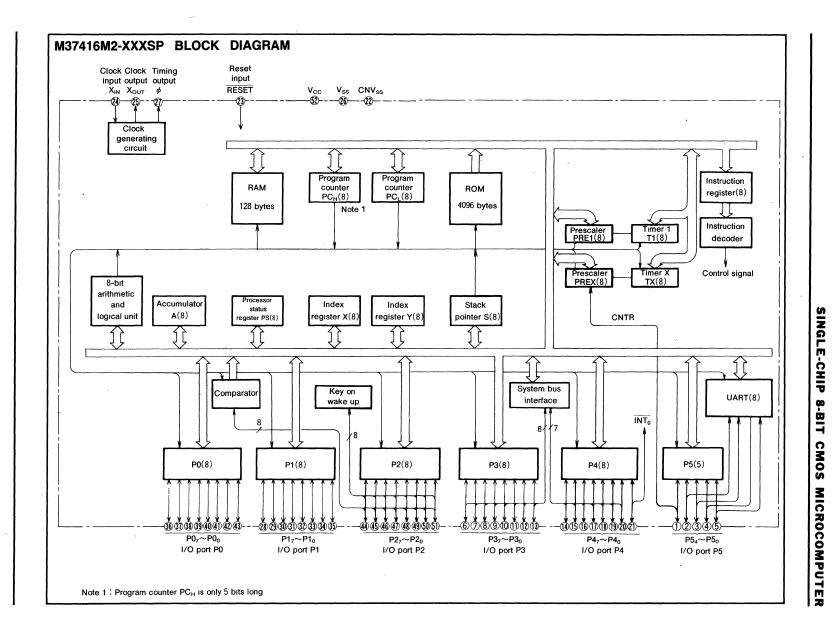
DESCRIPTION

The M37416M2-XXXSP is a single-chip microcomputer designed with CMOS silicon gate technology. It is housed in a 52-pin shrink plastic molded DIP (flat package type also available). This single-chip microcomputer is useful for office automation equipment and other consumer applications.

In addition to its simple instruction sets, the ROM, RAM, and I/O addresses are placed on the same memory map to enable easy programming.


The differences between the M37416M2-XXXSP and the M37416M2-XXXFP are the package outline and power dissipation ability (absolute maximum ratings).

FEATURES


•	Number of basic instructions·····69
•	Memory size ROM ·······4096 bytes
	RAM 128 bytes
•	Instruction execution time
	1µs (minimum instructions at 8MHz frequency)
•	Single power supply $f(X_{IN})=8MHz\cdots 5V\pm 10\%$
•	Power dissipation
	normal operation mode (at 8MHz frequency) ···· 50mW
•	Subroutine nesting ······ 64 levels (max.)
•	Interrupt ·····9
•	8-bit timer2
•	Programmable I/O ports
	(Ports P0, P1, P2, P3, P4, P5) ······45
•	UART (full duplex) ······1
•	Master CPU bus interface ·······1 byte
•	Comparator ·····8-channel
•	Key on wake up·····8

APPLICATION

Office automation equipment Key pad, Key board

MITSUBISHI MICROCOMPUTERS M37416M2-XXXSP/FP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

FUNCTIONS OF M37416M2-XXXSP

	Parameter		Functions
Number of basic instructions			69
Instruction execution time			1µs (minimum instructions, at 8MHz frequency)
Clock frequency			8MHz
Memory size	ROM		4096 bytes
	RAM		128 bytes
Input/Output ports	P0 ₀ ~P0 ₇	1/0	8-bit×1
	P1 ₀ ~P1 ₇	1/0	8-bit×1
	P2 ₀ ~P2 ₇	1/0	8-bit×1 (common with comparator input and key on wake up)
	P3 ₀ ~P3 ₇	1/0	8-bit×1 (common with data bus of system bus interface)
	P4 ₀ ~P4 ₇	1/0	8-bit×1 (common with control ports of system bus interface and $\overline{\text{INT}_0}$)
	P5 ₀ ~P5 ₄	1/0	5-bit×1 (common with UART)
UART			1 with programmable baud rate generator
Timers			8-bit×2 (with 8-bit prescaler)
Comparator			8-bit×1 (port P2) Built-in 3-bit DAC (can be used as variable V _{TH} input port)
Subroutine nesting			64 levels (max)
Interrupt			2 external, 6 internal, 1 software interrupts
System bus interface buffer			1-byte (separate input and output buffers)
Clock generating circuit			Built-ın (Ceramic or quartz crystal oscillator)
Supply voltage			5V±10%
Power dissipation	at operation		50mW
	at wait mode		5mW
	at stop mode	Ta=25℃	0. 05mW
		Ta=70℃	0.5mW
Input/Output	Input/Output voltage		V _{SS} -0.3~V _{CC} +0.3
characteristics	Output current		±5mA (max)
Operating temperature range			-10~70℃
Device structure			CMOS silicon gate
Package	M37416M2-XXXSP		52-pin shrink plastic molded DIP
raunaye	M37416M2-XXXFP		56-pin plastic molded QFP

MITSUBISHI MICROCOMPUTERS M37416M2-XXXSP/FP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

PIN DESCRIPTION

Pin	Name	Input/ Output	Functions	
V _{CC} , V _{SS}	Supply voltage		Power supply inputs 5V±10% to V _{CC} , and 0V to V _{SS}	
CNV _{ss}	CNV _{SS}		This is usually connected to V _{SS} .	
RESET	Reset input	Input	To enter the reset state, the reset input pin must be kept at a "L" for more than $2\mu s$ (under normal V_{CC} conditions). If more time is needed for the crystal oscillator to stabilize, this "L" condition should be maintained for the required time	
X _{IN}	Clock input	Input	This chip has an internal clock generating circuit. To control generating frequency, an external ceramic or a quartz crystal oscillator is connected between the X _{IN} and X _{OUT} pins. If an external clock is used, the clock source should be connected the X _{IN} pin and the X _{OUT} pin should be left open.	
X _{OUT}	Clock output	Output		
φ	Timing output	Output	This is the timing output pin.	
CNTR	Timer I/O	1/0	This is an I/O pin for the timer X	
ĪNT ₁	Interrupt input	Input	This is the highest order interrupt input pin	
P0 ₀ ~P0 ₇	I/O port P0	1/0	Port P0 is an 8-bit I/O port with directional registers allowing each I/O bit to be individually programmed as input or output. The output structure is CMOS output	
P1 ₀ ~P1 ₇	I/O port P1	1/0	Port P1 is an 8-bit I/O port and has basically the same function as port P0.	
P2 ₀ ~P2 ₇	I/O port P2	1/0	Port P2 is an 8-bit I/O port and has basically the same function as port P0. Analog input of comparator or key on wake up function can be selected with a program.	
P3 ₀ ~P3 ₇	I/O port P3	1/0	Port P3 is an 8-bit I/O port and has basically the same function as port P0. This port functions as an 8-bit data bus for the master CPU when slave mode is selected with a program	
P4 ₀ ~P4 ₇	I/O port P4	1/0	Port P4 is an 8-bit I/O port and has basically the same function as port P0. P4 ₁ ~P4 ₇ change to a control bus for the master CPU when slave mode is selected with a program. P4 ₀ can be used as external interrupt input pin.	
P5 ₀ ~P5 ₄	I/O port P5	1/0	Port P5 is an 8-bit I/O port and has basically the same function as port P0 UART function, CNTR input and timer output can be selected with a program	

MITSUBISHI MICROCOMPUTERS M37416M2-XXXSP/FP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

FUNCTIONAL DESCRIPTION Central Processing Unit (CPU)

The M37416 microcomputers use the standard MELPS 740 instruction set. For details of instructions, refer to the MELPS 740 CPU core basic functions, or the MELPS 740 Software Manual.

Machine-resident instructions are as follows: The FST and SLW instructions are not provided. The MUL and DIV instructions are not provided. The WIT instruction can be used.

The STP instruction can be used.

MEMORY

· Special Function Register (SFR) Area

The special function register (SFR) area contains the registers relating to functions such as I/O ports and timers.

• RAM

RAM is used for data storage as well as a stack area.

ROM

ROM is used for storing user programs as well as the interrupt vector area.

• Interrupt Vector Area

The interrupt vector area is for storing jump destination addresses used at reset or when an interrupt is generated.

Zero Page

Zero page addressing mode is useful because it enables access to this area with fewer instruction cycles.

Special Page

Special page addressing mode is useful because it enables access to this area with fewer instruction cycles.

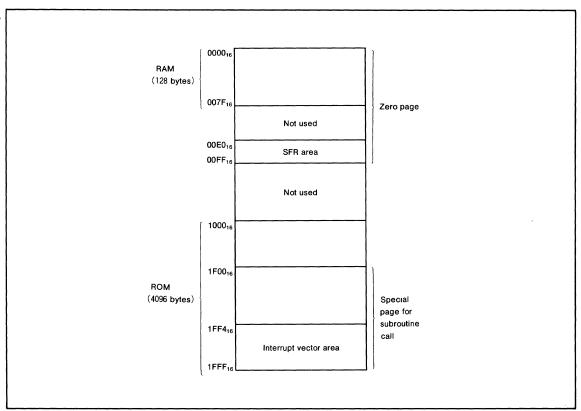


Fig. 1 Memory map

M37416M2-XXXSP/FP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

00E0 ₁₆	Port P0	00F0 ₁₆	Data bus receive buffer register	
0 0E 1 ₁₆	Port P0 directional register	00F1 ₁₆	Data bus buffer status register	
00E2 ₁₆	Port P1	00F2 ₁₆	Data bus buffer control register	
00E3 ₁₆	Port P1 directional register	00F3 ₁₆	UART transmit buffer register	
00E4 ₁₆	Port P2	00F4 ₁₆	UART receive buffer register	
00E5 ₁₆	Port P2 directional register	00F5 ₁₆	UART status register	
00E6 ₁₆	Port P3	00F6 ₁₆	UART mode register	
00E7 ₁₆	Port P3 directional register	00F7 ₁₆	UART control register	
00E8 ₁₆	Port P4	00F8 ₁₆	Driver for UART baud rate generator	
00E9 ₁₆	Port P4 directional register	00F9 ₁₆		
00EA ₁₆	Port P5	00FA ₁₆	Prescaler 1	
00EB ₁₆	Port P5 directional register	00FB ₁₆	Timer 1	
00EC ₁₆	Comparator control register	00FC ₁₆	Timer X prescaler	
00ED ₁₆	Comparator data register	00FD ₁₆	Timer X	
00EE ₁₆	Interrupt request distinguish register	00FE ₁₆	Interrupt control register	
00EF ₁₆	Data bus transmit buffer register	00FF ₁₆	Timer control register	

Fig. 2 SFR (Special Function Register) memory map

INTERRUPTS

Interrupts can be caused by 9 different events.

Interrupts are vectored interrupts with priorities shown in . Table 1. Reset is also included in the table because its operation is similar to an interrupt.

When an interrupt is accepted, the registers are pushed interrupt inhibit flag I is set, and the program jumps to the address specified in the vector table. The reset and BRK instruction interrupt can never be inhibited. Other interrupts are disabled when the interrupt inhibit flag is set.

All interrupts except the BRK instruction interrupt have an interrupt request bit and an interrupt enable bit.

Interrupts other than the BRK instruction interrupt and reset are accepted when the interrupt enable bit is "1", interrupt request bit is "1", and the interrupt inhibit bit is "0". There are two interrupt (three for UART transmit and UART receive) the interrupt becomes enable when both enable bits are "0".

The value of bit 3 of the data bus buffer control register (address $00F2_{16}$) determines whether the interrupt is from $\overline{INT_0}$ or from key on wake up. Only $\overline{INT_0}$ interrupt is effective when this bit is "1" at power down condition by STP or WIT instruction. When this bit is "1", interrupt is caused by inputting "L" level to any port P2 using input mode. The value of bit 1 and bit 3 of interrupt request distinguish register (address $00EE_{16}$) determine whether the interrupt is

from input buffer full or from UART receive. When bit 3 is "1", the interrupt is from the input buffer full interrupt, and bit 1 is "1", the interrupt is from UART receive. Also bit 5 and bit 7 of interrupt request distinguish register determine whether the interrupt is from output buffer empty or from UART transmit. When bit 7 is "1", the interrupt is from output buffer empty and when bit 5 is "1", the interrupt is from UART transmit.

Table 1. Interrupt vector address and priority

Interrupt	Priority	Vector address
RESET	1	FFFF ₁₆ , FFFE ₁₆
INT ₀ or key on wake up	2	FFFD ₁₆ , FFFC ₁₆
Timer X	3	FFFB ₁₆ , FFFA ₁₆
Timer 1	4	FFF9 ₁₆ , FFF8 ₁₆
Input bus buffer full or UART receive	5	FFF7 ₁₆ , FFF6 ₁₆
Output bus buffer full or UART transmit	6	FFF5 ₁₆ , FFF4 ₁₆

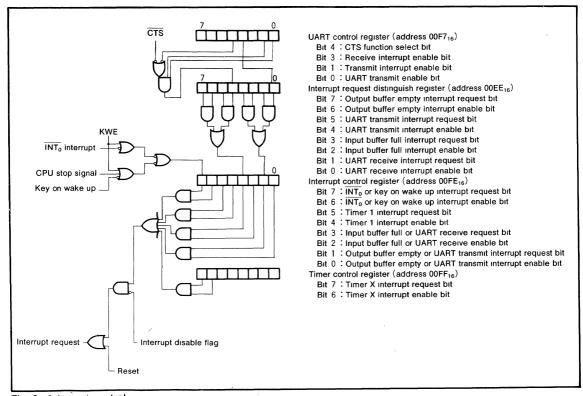


Fig. 3 Interrupt control

When the two interrupt requests, which are the same priority, are at the same sampling, the priority process is processed by interrupt request distinguish register.

These request bits can be reset by a program but can not be set. The interrupt requests bits which are in the interrupt control register and timer control register are reset automatically when interrupts are accepted. But the interrupt request bits which are in the interrupt request distinguish register are not reset automatically, so they must be reset by software. The contents of the B flag must be checked to determine if the BRK instruction caused or not.

TIMER

The M37416M2-XXXSP has two timers; timer X, and timer 1. Timer X has four modes which can be selected by bit 2 and 3 of the timer control register. When the timer X count stop bit (bit 5) is set to "1", the timer X will stop regardless of which mode it is in. A block diagram of timer X, and timer 1 is shown in Figure 4. The CNTR pin is common with P54 and can not be used when this pin is used as normal port.

The prescaler has an 8-bit programmable latch used as a frequency divider. The division ratio is defined as 1/(n+1), where n is the decimal contents of the prescaler latch. All timers are down-count timers which are reloaded from the timer latch following the zero cycle of the timer (i.e. the cycle after the timer counts to zero).

The timer interrupt request bit is set to "1" during the next clock pulse after the timer reaches zero. The interrupt and timer control registers are located at addresses $00FE_{16}$ and $00FF_{16}$, respectively (see interrupt section). The prescaler latch and timer latch can be loaded with any number except zero.

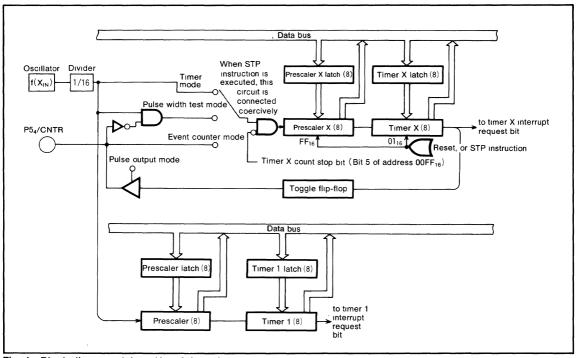


Fig. 4 Block diagram of timer X and timer 1

The four modes of timer X as follows:

(1) Timer mode (00)

In this mode the clock is driven by the oscillator frequency divided by 16. When the timer down-counts to zero, the timer interrupt request bit is set to "1" and the contents of the timer's latch is reloaded into the timer and the counting begins again.

- (2) Pulse output mode (01)
 - In this mode, the polarity of the P5₄/CNTR signal is reversed each time the timer down-counts to zero.
- (3) Event counter mode [10]

This mode operates in the same manner as the timer mode except the clock source is input to the CNTR pin. This mode will allow an interrupt to be generated whenever a specified number of external events have been generated. The timer down-counts every rising edge of the clock source.

(4) Pulse width measurement mode [11]

This mode measure's the pulse width (between lows) input to the P5₄/CNTR pin. The timer, driven by the oscillator frequency divided by 16, continues counting during the low cycle of the CNTR pin. When the timer contents reaches "0", the interrupt request bit is set to "1", the timer's reload latch is reloaded and the counting resumes.

The structure of the timer control register is shown in Figure 5.

When the STP instruction is executed, or after reset, the prescaler and timer latch are set to FF₁₆ and 01₁₆, respectively. Also, when the STP instruction is executed, the oscillator's frequency (divided by 16) will become the counting source, regardless of the timer X mode setting. This state will be released when the timer X interrupt request bit is set to "1", or after a reset. Timer X will then enter the mode specified by its mode bits. For more details on the STP instruction, refer to the oscillation circuit section.

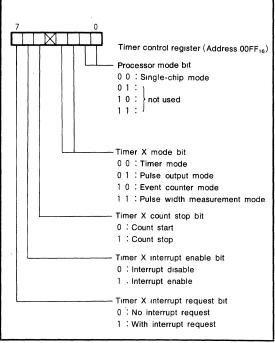


Fig. 5 Structure of timer control register

BUS INTERFACE

The M37416M2-XXXSP is equipped with a bus interface that is functionally similar to the M5L8041-XXXSP. Its operation can be controlled with control signals from the master CPU (slave mode).

The M37416M2-XXXSP bus interface can be connected directly to either a R/\overline{W} type CPU or separate \overline{RD} , \overline{WR} type CPU. Figure 7 shows a block diagram of the bus interface function.

Slave mode is selected with data bus buffer control register (address 00F2₁₆) bit 0 and 1 as shown in Figure 6.

An input buffer full interrupt occurs when data is received from the master CPU and an output buffer empty interrupt occurs when data is read by the master CPU.

In slave mode, ports $P3_0 \sim P3_7$ become a tri-state data bus used to transfer data, commands, and status to and from the master CPU.

Furthermore, ports $P4_4 \sim P4_7$ become master CPU control signal input pins and $P4_1 \sim P4_3$ becomes a slave status output pins.

[Data bus buffer status register] DBBSTS

This is an 8-bit register. Bits 0, 1, and 3 are read-only bits indicating the status of the data bus buffer. Bits 2, 4, 5, 6, and 7 are read/write enabled user-definable flags that can be set with a program. The host CPU can only read these flags by setting the A0 pin to "H".

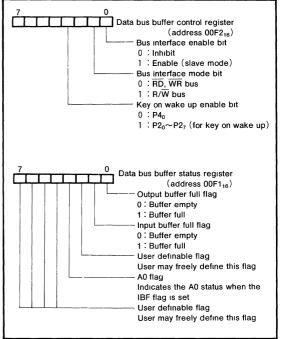


Fig. 6 Structure of bus interface relation registers

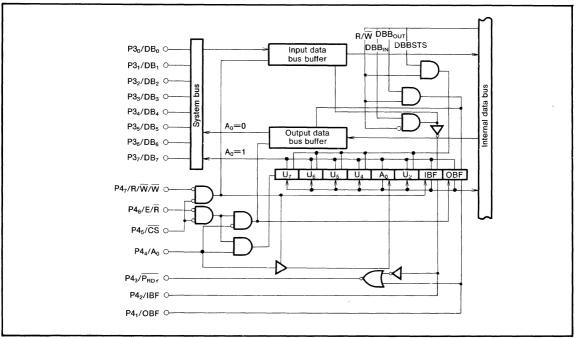


Fig. 7 Bus interface circuit diagram

· Output buffer full flag OBF

This flag is set when data is written in the output data bus buffer and cleared when the host CPU reads the data in the output data bus buffer. It is initialized to "1" at reset and cleared to "0" when the slave mode is selected with the bus interface enable bit set.

· input buffer full flag IBF

This flag is set when the host CPU writes data in the input data bus buffer and cleared when the slave CPU reads the data in the input data bus buffer. This bit is initialized to "0" at reset.

Execute the dummy write instruction to the input data bus buffer to clear this flag from the slave CPU side. The contents of input data bus buffer is not change because it is read only register.

Ao flag

The level of the A_0 pin is latched when the host CPU writes data in the input data bus buffer.

(Input data bus buffer) DBBIN

Data on the data bus is latched in DBBIN when there is a write request from the host CPU. The data in DBBIN can be read from the data bus buffer register (SFR address $00F0_{16}$).

[Output data bus buffer] DBBOUT

Data is written in DBBOUT by writing data in data bus buffer register (SFR address $00EF_{16}$). The data in DBBOUT is output to the data bus (P5) when the host CPU issues a read request with setting the A_0 pin to "L".

Table 2. Control I/O pin functions when bus interface function is selected

Pin	Name	Bus interface mode bit	Input/ Output	Function
P4 ₁	OBF	_	Output	Status output OBF signal is output
P4 ₂	IBF		Output	Status output IBF signal is output
P4 ₃	P _{RDY}		Output	Status output The NOR of OBF and IBE is outnput.
P4 ₄	A ₀	_	Input	Address input Used to select between DBBSTS and DBBOUT during host CPU read Also used to identify commands and data during write
P4 ₅	cs	_	Input	Chip select input Used to select the data bus buffer Select when "L"
P4 ₆	R	0	Input	Timing signal used by the host CPU to read data from the data bus buffer
	E	1	Input	Inputs a timing signal E or inverse of φ
P4 ₇	w	0	Input	Timing signal used by the host CPU to write data to the data bus buffer
	R/W	. 1	Input	Input R/\overline{W} signal used to control the data transfer direction. When this signal is "L", data bus buffer write is synchronized with the E signal. When it is "H", data bus buffer read is synchronized with the E signal.

[Transmit operation]

When the send data is written to the transmit buffer register, the start bit, the parity bit, and the stop bit are added to the data, which is transferred to the transmit shift register. The transmit shift register begins shift when it becomes enable for transmission, sending the serial data to TxD pin. For the description of the transmit enable state, see Table 3. In the transmit enable state, each time transmission of the stop bit of the serial data being transmitted has been completed, it is checked whether the next data has been written to the transmit buffer register. If the data is found written, transmission of the next data begins. If the data is found not written, TxD pin is held at "H" until the next transmit data is written, setting the transmitter empty flag. When the transmit enable state is cleared during transmission, the transmission is stopped after completing the transmission of the transmit data so far written to the transmit buffer register.

When the transmitter ready flag (bit 0 of the UART status register) is "1", it indicates that the transmit buffer is ready

for writing data. The immediately preceding data is transferred from the transmit buffer register to the transmit shift register. Every time the start bit is output from TxD pin, this flag is set. Every time the transmitter ready flag is set, the UART transmit interrupt request bit (bit 5 of the interrupt request distinguish register) is set. An interrupt is acknowledged when two UART transmit interrupt enable bits (bit 1 of the UART control register, and bit 0 of interrupt control register) are all "1" and the interrupt disable flag I is "0". Interrupt request bit (bit 1 of interrupt control register) is reset when the UART transmit interrupt is accepted.

Note that an interrupt occurs only in the transmit ready state.

Bit 6 of the UART control register initializes the UART transmit side. When this bit "0", the transmit side is in the initial state.

Table 3. Bit and pin status when transmission is ready

TE	CTSE	CTS	TE : UART transmit enable bit
4	0	Х	CTSE: CTS pin function selection bit
•	1	L	CTS : CTS pin input level

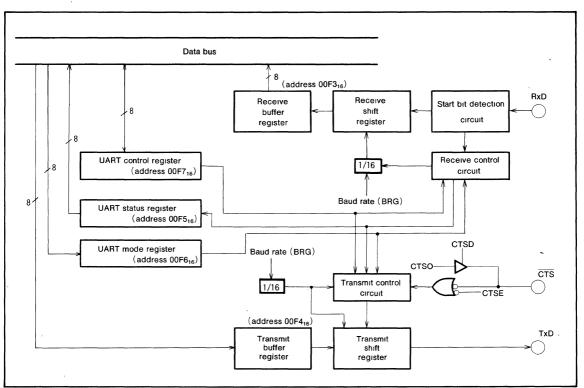


Fig. 8 UART block diagram

MITSUBISHI MICROCOMPUTERS M37416M2-XXXSP/FP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

UART

The M37416M2-XXXSP contains one channel UART. It has three pins (TxD (transmit output), RxD (receive input) and \overline{CTS} (clear to send)). The three pins RxD, TxD and \overline{CTS} are common with P50, P51 and P52 respectively. P50 \sim P52 are selected to UART function pins when UART enable bit (bit 6 of UART mode register) to "1". And it also has a CLK pin (the input pin of the external clock for band rate generation). This pin is selected as CLK function when the synchronous clock for band rate generating synchronous clock select bit (bit 5 of UART mode register) is set to "1". An interrupt can be generated at receive and transmit independently.

(Receive operation)

Setting the receive enable bit (bit 2 of the UART control register) to "1" puts the system in the receive ready state. When there is no input of receive data, "H" is input to RxD pin. When the falling edge is input to RxD pin and "L" input is detected twice consecutively by sampling with the clock having a frequency 16 times the baud rate, the start bit is triggered. Then, sampling is performed three time in the middle of the start bit. When "L" is detected twice or more, the receive operation begins, capturing the data bits into the receive shift register. If "L" has not been detected twice or more, start bit detection begins again. When the data bits and parity bit have been captured into the receive shift register and the stop bit is detected, the receive data is transferred from the receive shift register to the receive buffer register, setting the receiver ready flag (bit 1 of the UART status register). If a parity error occurred, the parity error flag is set. The framing error flag is set when the first stop bit is found "L". If the previous data has not been read out of the receive buffer register, the overrun error flag is set, clearing the previous data. Execute the dummy write instruction to the receive buffer register to clear the receiver ready flag. The contents of receive buffer register is not changed because it is read only register. Each error flag can be reset by writing "1" to the error flag reset bit (bit 7 of the UART control register). Any of these errors does not affect the receive operation. The data bit, the parity bit, and the stop bit are sampled three times in the middle of them each. When "L" or "H" is detected twice or more, "0" or "1" is determined respectively.

Each time a receive operation has been completed, setting the receiver ready flag, the UART receive interrupt request bit (bit 1 of the interrupt request distinguish register) is set. An interrupt is acknowledged when the two UART receive interrupt enable bits (bit 2 of interrupt control register and bit 3 of UART control register) are all "1" and the interrupt disable flag 1 is "0". The UART receive interrupt request bit which is in interrupt control register (address 00FE₁₆) is reset when a UART receive interrupt is acknowledged.

Setting the receive enable bit (bit 2 of the UART control

register) to "0" puts the system in the receive stopped state. At this time, the receiver ready flag is "0" (ready), the receive shift register is in the stopped state, and the start bit detection is stopped.

[UART divider for baud rate generator]

This is an 8-bit programmable divider which generates the baud rate for the UARTi receive or transmit operation.

When the setting value is N_{BR} (0 to 255), the divide ratio becomes $1/(N_{BR}+1)$. There are three count sources; X_{IN} clock divided by 2, X_{IN} clock divided by 32, and the external clock. Choose sources by bits 4 and 5 of the UARTi mode register. Table 4 shows the baud rate calculation and example for each bit combination.

When the external clock is used, the frequency of the input clock must be below 1.6 MHz. Writing to the baud rate generating divider must be performed when bits 2 and 6 of the UARTi control register are both "0".

Table 4. Baud rate calculation and example

EX	BR	Calculation	Count source	Baud rate
0	0	baud rate(bps)= $\frac{f_{(x_{ N})}}{32(N_{BR}+1)}$	f(X _{IN})=8.0 MHz	250000 bps
0	1	baud rate(bps)= $\frac{f_{(X_{IN})}}{512(N_{BR}+1)}$	f(X _{IN})=7. 3728 MHz	4800 bps
1	х	baud rate(bps)= $\frac{f(CLK)}{16(N_{BR}+1)}$	f(X _{IN})=1.536 MHz	9600 bps

EX : Clock selection bit for baud rate generator

BR : Divide ratio selection bit for baud rate generator

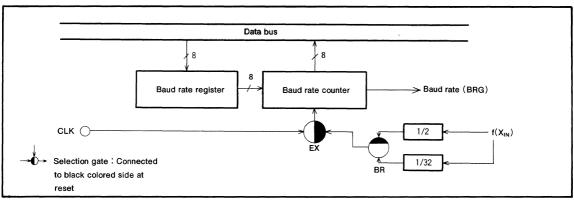


Fig. 9 Baud rate generating circuit

M37416M2-XXXSP/FP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

[CTS pin]

The CTS pin can be used as the 1-bit I/O port when bit 4 of the UART control register is "0". In this case, the input/out-put direction can be determined by bit 7 of the UART mode register and the output data can be set by bit 5 of the UART control register. Additionally, the input level can be known by bit 7 of the UART status register.

[UART mode register]

This register except the bit 6 is write-only register and cannot be read out. Use the LDM instruction to write to this register.

· Parity enable bit: PEN

Setting this bit to "1" adds a parity bit to the transmit data. In a receive operation, this bit is used for parity evaluation.

· Parity select bit: EVN

This bit specifies the parity bit to be generated in a transmit operation and the parity bit to be evaluated in a receive operation. Depending on the content of this bit, the number of 1's in data is made even or odd.

· Character length select bit: CHL

This bit specifies the character length of data.

· Stop bit length select bit: ST

This bit specifies the stop bit length.

Baud rate generating prescaler divide ratio select bit: BR

When this bit is "0", the signal obtained by dividing $\rm X_{IN}$ clock by 2 becomes the count source of the baud rate divider. When this bit is "1", the signal is obtained by dividing the clock by 32.

Baud rate generating synchronous clock selection bit: EX

This bit specifies baud rate synchronous clock. When this bit is "1", external clock is input from the clock pin.

· UART enable bit: UARTE

P5₀~P5₂ is selected UART function when this bit is "1".

· CTS pin I/O select bit: CTSD

When this bit is "0", the CTSi pin is the input pin.

When this bit is "1", the pin is the output pin. To use the $\overline{\text{CTS}}$ pin as the $\overline{\text{CTS}}$ input, set "0".

[UART control register]

· Transmit enable bit: TE

Setting this bit to "1" enables a transmit operation.

· Transmit interrupt enable bit: TIE

When this bit is "1", the interrupt in a transmit operation is enabled.

· Receive enable bit: RE

Setting this bit to "1" enables a receive operation.

· Receive interrupt enable bit: RIE

When this bit is "1", the interrupt in a receive operation is enabled.

· CTS pin function select bit: CTSE

When this bit is "1", the CTS pin becomes the CTS input.

· CTS output data select bit: CTSO

When this bit is "0", "L" is output. When it is "1", "H" is output.

· Transmit side initialize bit: MR

When this bit is "0", the transmit side is initialized.

· Error flag reset select bit: ERST

Setting this-bit to "1" resets all error flags. When this bit is read, "0" is always read.

(UART status register)

· Transmitter ready flag: TxRDY

When this flag is "1", it indicates that the transmit buffer register is empty and ready for writing transmit data.

· Receiver ready flag: RxRDY

When this flag is "1", it indicates that the receive buffer register is holding receive data. When the receive buffer register is read, it is cleared.

· Transmitter empty flag: TEMP

When this flag is "1", it indicates that neither the transmit shift register nor the transmit buffer register hold the data to be transmitted.

· Parity error flag: PE

This bit is set to "1" when the parity of the received data is different from the parity which was set.

· Overrun error flag: OR

When this flag is "1", it indicates that, before the data in the receive buffer register is read, the next data is transferred from the receive shift register to the receive buffer register and the previous data is lost.

· Framing error flag: FE

This flag is set to "1" when the stop bit is found "L" when data is transferred from the receive shift register to the receive buffer register.

· CTS pin input level flag: CTS

When the input level of the $\overline{\text{CTS}}$ pin is "L", "0" is read, when it is "H", "1" is read.

MITSUBISHI MICROCOMPUTERS M37416M2-XXXSP/FP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

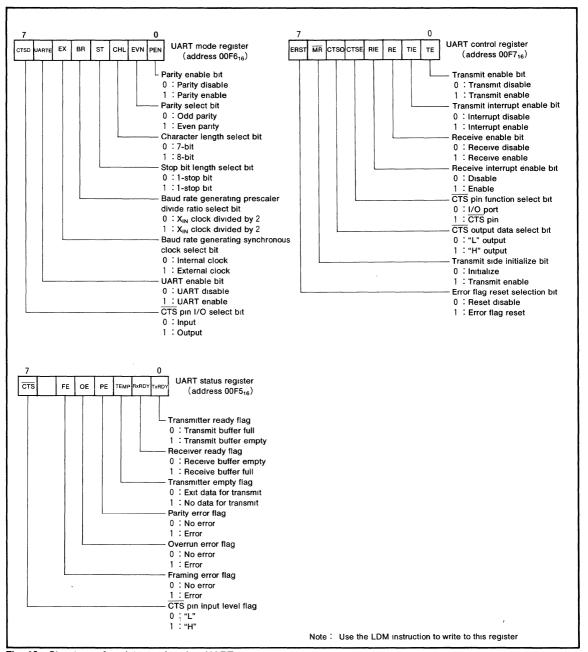


Fig. 10 Structure of registers related to UART

COMPARATOR CIRCUIT

The comparator circuit is shown in Figure 11. The comparator circuit consists of the switch tree, ladder resistor, comparator, comparator control circuit, comparator control register (address $00EC_{16}$), comparator data register (address $00FD_{16}$), and analog signal input pins, $P2_0 \sim P2_7$.

These analog input pins are common with the digital input/output terminal to the data bus.

The 3-bit comparator register can generate 1/8V_{CC}-step internal analog voltage, based on the settings of bits 0 to 2.

Table 5 gives the relation between the descriptions of comparator register bits 0 to 2 and the generated internal analog voltage. The comparator result of the analog input voltage and the internal analog voltage is stored in the comparator data register.

The digital value corresponding to the internal analog voltage to be compared is written in the comparator control register (address $00FC_{16}$), bits 0 to 2. The voltage comparision starts as soon as the writing is completed. 4-cycle (required for comparating) later, the result of comparision is stored in the comparator data register. Each bit of comparator data register is "1" when analog input voltage > internal analog voltage and "0" when analog input voltage < internal analog voltage.

When voltage is compared to by setting bits 0 to 2 of the comparator register "0", each bit of the comparator data register becomes "1" regardless of the analog input voltage. The reference voltage is generated for 4 cycles, when ladder resistor is ON. The ladder resistor is OFF for current power save, when the comparator does not operate.

Since the comparator consists of the capacitive coupled configuration, $f\left(X_{|N}\right)$ is needed larger than 1MHz during comparision.

Table 5. Relationship between the contents of comparator register and internal voltage

Comparator register		gister	Internal analog valtage			
bit 2	bit 1	bit 0	Internal analog voltage			
0	0	1	1/8V _{cc} -1/16V _{cc}			
0	1	0	2/8V _{cc} -1/16V _{cc}			
0	1	1	3/8V _{cc} -1/16V _{cc}			
1	0	0	4/8V _{cc} -1/16V _{cc}			
1	0	1	5/8V _{cc} -1/16V _{cc}			
1	1	0	6/8V _{cc} -1/16V _{cc}			
1	1	1	7/8V _{cc} -1/16V _{cc}			

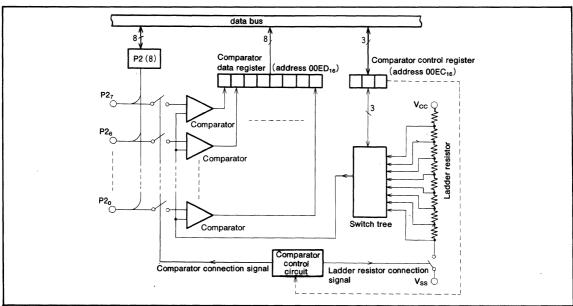


Fig. 11 Comparator circuit

KEY ON WAKE UP

"Key on wake up" is one way of returning from a power down state caused by the STP or WIT instruction. If any terminal of port P2 has a "L" level applied, after bit 3 of the data bus buffer control register (KWE) is set to "1", an interrupt is generated and the microcomputer is returned to the normal operating state. As shown in Figure 12, a key matrix can be connected to port P2 and the microcomputer can be returned to a normal state by pushing any key.

The key on wake up interrupt is common with the $\overline{\text{INT}_0}$ interrupt. When KWE is set to "1", the key on wake up function is selected. However, key on wake up cannot be used in the normal operating state. When the microcomputer is in the normal operating state, both key on wake up and $\overline{\text{INT}_0}$ are invalid.

In order to enter the power down state generated by the STP or WIT instruction at the interrupt disable flag (I) is "0" and KWE is "1", all of port P2 must be input "H".

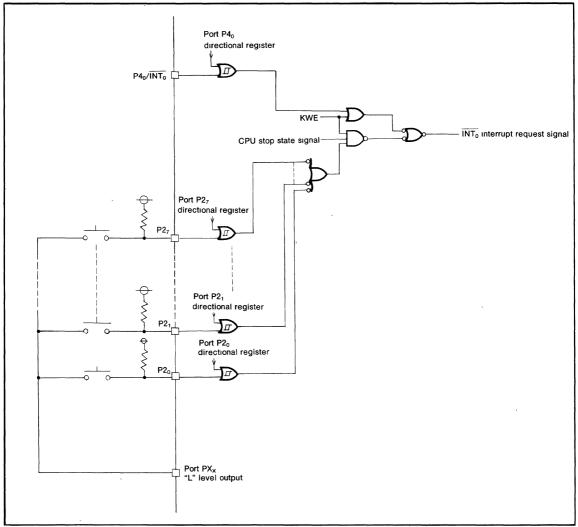


Fig. 12 Block diagram of port P2 and P32, and example of wired at used key on wake up

RESET CIRCUIT

The M37416M2-XXXSP is reset according to the sequence shown in Figure 15. It starts the program from the address formed by using the content of address 1FFF₁₆ as the high order address and the content of the address 1FFE₁₆ as the low order address, when the RESET pin is held at "L" level for more than $2\mu s$ while the power voltage is in the recommended operating condition and the crystal oscillator oscillation is stable and then returned to "H" level. The internal initializations following reset are shown in Figure 14. An example of the reset circuit is shown in Figure 13. When the power on reset is used, the RESET pin must be

held "L" until the oscillation of XIN-XOUT becomes stable.

Power on

RESET V_{CC}

OV

0, 6V

M37416M2-XXXSP

RESET V_{CC}

Supply voltage detection circuit

Fig. 13 Example of reset circuit

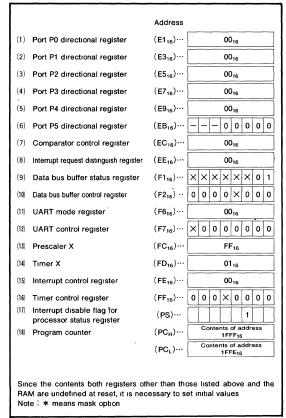


Fig. 14 Internal state of microcomputer at reset

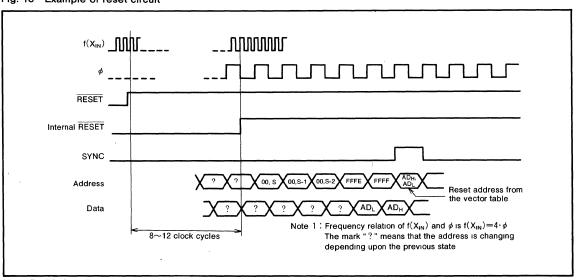


Fig. 15 Timing diagram at reset

MITSUBISHI MICROCOMPUTERS M37416M2-XXXSP/FP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

I/O PORTS

(1) Port P0

Port P0 is an 8-bit I/O port with CMOS output.

As shown in the memory map (Figure 1), port P0 can be accessed at zero page memory address $00E0_{16}$. Port P0 has a directional register (address $00E1_{16}$) which can be used to program each individual bit as input ("0") or as output ("1"). If the pins are programmed as output, the output data is latched to the port register and then output. When data is read from the output port the output pin level is not read, only the latched data in the port register is read. This allows a previously output value to be read correctly even though the output voltage level is shifted up or down. Pins set as input are in the floating state and the signal levels can thus be read. When data is written into the input port, the data is latched only to the port latch and the pin still remains in the floating state.

(2) Port P1

Port P1 has the same function as port P0. The I/O level is TTL compatible.

(3) Port P2

Port P2 has the same function as P0. Following the execution of STP or WIT instruction, P2 can be used to generate the "wake up mode". This mode is used to bring the microcomputer back in its normal operating mode after being in the power-down mode. Also this port has comparator function. For more detailes, see the comparator information.

(4) Port P3

This is an 8-bit I/O port with function similar to port P0. When slave mode is selected with a program, all ports change to the data bus for the master CPU. In this case, port input/output is unaffected by the directional register. The I/O level is TTL compatible.

(5) Port P4

This is an 8-bit input/output port with function similar to port P0. When slave mode is selected with a program, ports P4₁~P4₇ change to the control bus for the bus interface function. In this case, port input/output is unaffected by the directional register.

Port P4₀ are shared with the external interrupt input pin $(\overline{\text{INT}_0})$. The $\overline{\text{INT}_0}$ interrupt constantly monitors the status of this port and generates an interrupt at a valide edge. Therefore, if the $\overline{\text{INT}_0}$ interrupt is not used, it must be disabled and if it is used, this port must be set to input. The I/O level of port P4 is TTL compatible except the case that the input level of some ports which function as $\overline{\text{INT}_0}$. A₀ or $\overline{\text{CS}}$ are CMOS compatible.

(6) Port P5

Port P5 is an 5-bit I/O port with function similar to port P0. All pins have program selectable dual functions. When a UART function is selected, the input and output from pins $P5_0 \sim P5_3$ are determined by the contents of the UART mode register and UART control register.

Port P54 is common with CNTR pin.

The I/O level is TTL compatible except the case when some ports which function as RxD, $\overline{\text{CTS}}$, CLK and CNTR are CMOS compatible.

(7) Clock ϕ output pin

This is the timing output pin. When selected the main clock $(X_{\text{IN}}-X_{\text{OUT}})$ as the internal system clock, the clock frequency divided by four is outputed.

"H" is output from this pin when STP or WIT instruction is executed.

M37416M2-XXXSP/FP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

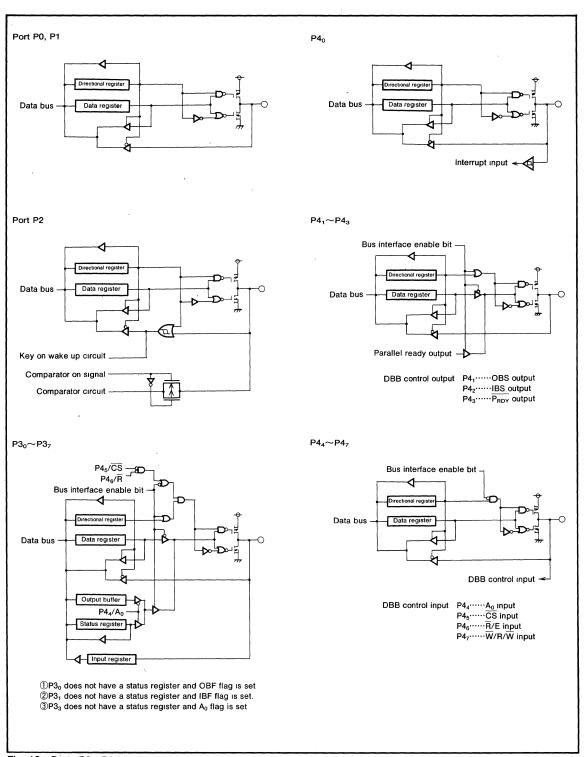


Fig. 16 Ports P0~P6 block diagram

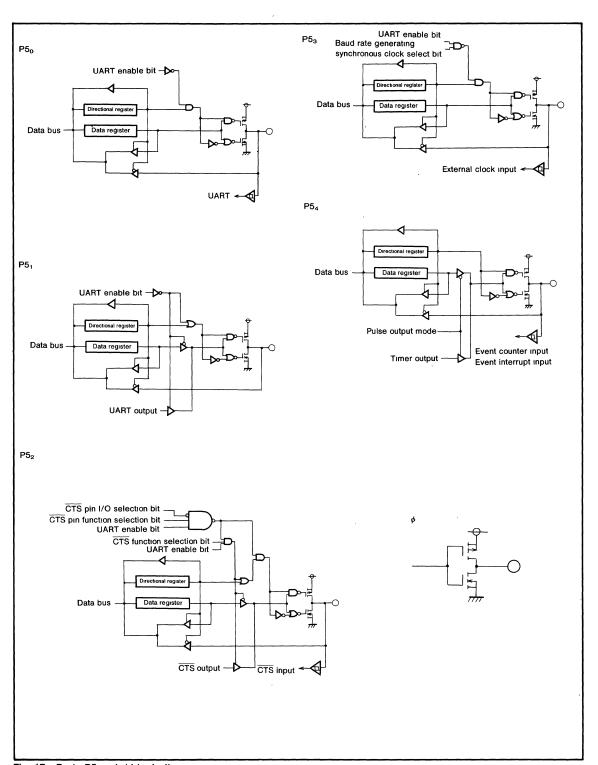


Fig. 17 Ports P5 and ϕ block diagram

M37416M2-XXXSP/FP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

CLOCK GENERATING CIRCUIT

The built-in clock generating circuits are shown in Figure 21

When the STP instruction is executed, the oscillation of internal clock ϕ is stopped in the "H" state.

Also, the prescaler X and timer X are loaded with FF_{16} and 01_{16} , respectively. The oscillator (dividing by 16) is then connected to the prescaler input. This connection is cleard when timer X overflows or the reset is in, as discussed in the timer section.

The oscillator is restarted when an interrupt is accepted. However, the internal clock ϕ keeps its "H" level until timer X overflows.

This is because the oscillator needs a set-up period if a ceramic or a quartz crystal oscillator is used.

When the WIT instruction is executed, the internal clock ϕ stops in the "H" level but the oscillator continues running. This wait state is cleared when an interrupt is accepted. Since the oscillation does not stop, the next instructions are executed at once.

To return from the stop or the wait status, the interrupt enable bit must be set to "1" before executing STP or WIT instruction. Especially, to return from the stop status, the timer X count stop bit (bit 5 of address 00FF₁₆) must be set to "0" before executing STP instruction.

The circuit example using a ceramic oscillator (or a quartz crystal oscillator) is shown in Figures 18 and 19.

The constant capacitance will differ depending on which oscillator is used, and should be set to the manufactures suggested value.

The example of external clock uasge is shown in Figure 20. X_{IN} is the input, and X_{OUT} is open.

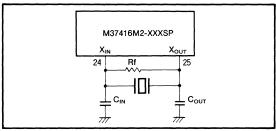


Fig. 18 External ceramic resonator circuit

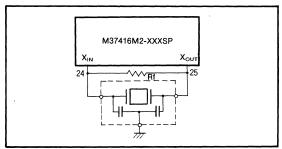


Fig. 19 External ceramic resonator (capacity built-in type) circuit

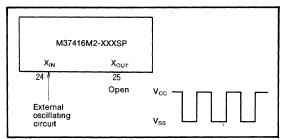


Fig. 20 External clock input circuit

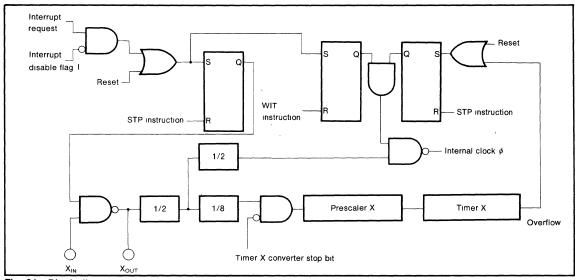


Fig. 21 Block diagram of clock generating circuit

PROGRAMMING NOTES

- The frequency ratio of the timer and the prescaler is 1/(n+1).
- (2) Even though the BBC and BBS instructions are executed after the interrupt request bits are modified (by the program), those instructions are only valid for the contents before the modification. Also, at least one instruction cycle must be used (such as a NOP) between the modification of the interrupt request bits and the execution of the BBC and BBS instructions.
- (3) When the timer X or timer 1 is input the clock except φ/4 or it divided by timer, read the contents of these timers either while the input of these timers are not changing or after counting of timers are stopped.
- (4) After the ADC and SBC instructions are executed (in decimal mode), one instruction cycle (such as a NOP) is needed before the SEC, CLC, or CLD instructions are executed.
- (5) A NOP instruction must be used after the execution of a PLP instruction.
- (6) The STP instruction must be executed after setting timer X count enable bit to enable "0", timer X interrupt enable bit to inhibit ("0"), and timer X interrupt request bit to no request ("0").
- (7) Use the LDA (immidiate, T=1) instruction to modify the interrupt request distinguish register. SEB and CLB instructions can be used only when interrupts in the register are not generated at executing these instructions.
- (8) Do not write any data into an address where no register nor port is assigned.
- (9) The power current is max. 10mA in DC. However, because a rush current and a bus charge-discharge current flow transiently, a bypass capacitor must be connected between V_{SS} and V_{CC}.

DATA REQUIRED FOR MASK ORDERING

Please send the following data for mask orders.

- mask ROM order confirmation form
- · mark specification form
- ROM data ······ EPROM 3 sets

3-287

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
V _{CC}	Supply voltage		−0.3~7	V
Vı	Input voltage X _{IN} , RESET	With respect to V _{SS} Output transistors are	−0.3~7	V
Vı	Input voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₇ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₄ , CNV _{SS}		-0.3~V _{cc} +0.3	v
v _o	Output voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₇ , P5 ₀ ~P5 ₄ , X _{OUT} , ϕ	at "off" state.	-0.3~V _{cc} +0.3	v
Pd	Power dissipation	T _a = 25℃	1000(Note 1)	mW
Topr	Operating temperature		-10~70	°C
Tstg	Storage temperature		−40~125	°C

Note 1: 500mW in case of the flat package

RECOMMENDED OPERATING CONDITIONS

 $(V_{CC}=5V\pm10\%, T_a=-10\sim70^{\circ}C$ unless otherwise noted)

Symbol	Poromotor		Limits			
Symbol	Parameter	Mın.	Тур	Max	Unit	
V _{cc}	Supply voltage	4.5	5	5.5	٧	
V _{ss}	Supply voltage		0	'	٧	
V _{IH}	"H" input voltage RESET, XIN, CNVSS (Note 1)	0.8V _{CC}		Vcc	٧	
V _{IH}	"H" input voltage P1 ₀ ~P1 ₇ , P3 ₀ ~P3 ₇ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₄ , (expect Note 1)	2. 0		V _{cc}	٧	
VIH	"H" input voltage P0 ₀ ~P0 ₇ , P2 ₀ ~P2 ₇ (Note 2)	0.7V _{CC}		Vcc	٧	
V _{IL}	"L" input voltage CNV _{SS} (Note 1)	0		0.2V _{CC}	٧	
V _{IL}	"L" input voltage P1 ₀ ~P1 ₇ , P3 ₀ ~P3 ₇ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₄ , (expect Note 1)	0		0.8	٧	
V _{IL}	"L" input voltage P0 ₀ ~P0 ₇	0		0.3V _{CC}	٧	
VIL	"L" input voltage P2 ₀ ~P2 ₇ (Note 2)	0		0.26V _{CC}	٧	
V _{IL}	"L" input voltage RESET	0		0.12V _{CC}	٧	
VIL	"L" input voltage X _{IN}	0		0.16V _{CC}	٧	
lou(peak)	"L" peak output current $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $ P2_0 \sim P2_7, P3_0 \sim P3_7, \\ P5_0 \sim P5_4 $			10	mA	
I _{OL(avg)}	"L" average output current $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $P2_0 \sim P2_7$, $P3_0 \sim P3_7$, $P5_0 \sim P5_4$ (Note 3)			5	mA	
l _{он(peak)}	"H" peak output current P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₇ , P5 ₀ ~P5 ₄		1	-10	mA	
I _{он(avg)}	"H" average output current $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $P2_0 \sim P2_7$, $P3_0 \sim P3_7$, $P5_0 \sim P5_4$ (Note 3)	,		-5	mA	
f _(XIN)	Internal clock oscillating frequency	1		8	MHz	

Note 1 : Ports operating as special function pins $INT_0(P4_0)$, $A_0(P4_0)$, $\overline{CS}(P4_5)$, $RxD(P5_0)$, $CTS(P5_2)$, CLK(P5₃), CNTR

- $2\ \ \vdots$ See comparator characteristics for input voltage as comparator input
- 3 : The total of I_{OL} of Port P0, P1, P2 and ϕ should be 40mA (max.).

The total of IOL of Port P3 and P5 should be 40mA (max)

The total of I_{OH} of Port P0, P1, P2 and ϕ should be 40mA (max). The total of I_{OH} of Port P3 and P5 should be 40mA (max.)

MITSUBISHI MICROCOMPUTERS M37416M2-XXXSP/FP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

ELECTRIC CHARACTERISTICS ($v_{cc}=5v\pm10\%$, $v_{ss}=0$ v, $t_a=-10\sim70$ °C, $f(X_{in})=8MHz$)

Cumbal	Parameter	Test conditions		Limits			Unit
Symbol	Parameter			Mın	Тур	Max	Unit
V _{OH}	"H" output voltage ϕ	I _{OH} = - 2 mA		V _{cc} -1			٧
V _{OH}	"H" output voltage $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $P2_0 \sim P2_7$, $P3_0 \sim P3_7$, $P5_0 \sim P5_4$	I _{OH} = - 5 mA		V _{cc} -1			>
V _{OL}	"L" output voltage $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $P2_0 \sim P2_7$, $P3_0 \sim P3_7$, $P5_0 \sim P5_4$	I _{OL} =2 mA				0.45	٧
V _{OL}	"L" output voltage $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $P2_0 \sim P2_7$, $P3_0 \sim P3_7$, $P5_0 \sim P5_4$	I _{OL} =5 mA				1	٧
$V_{T+} - V_{T-}$	Hysteresis P2 ₀ ~P2 ₇ , INT ₀ (P4 ₀), A ₀ (P4 ₄), \overline{CS} (P4 ₅), RxD(P5 ₀), \overline{CTS} (P5 ₂), CLK(P5 ₃), CNTR	Function input level		0.3		1	v
$V_{T+} - V_{T-}$	Hysteresis RESET					0.7	V
$V_{T+} - V_{T-}$	Hysteresis X _{IN}			0.1		0.5	V
l _{IL}	"L" input current $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $P2_0 \sim P2_7$, $P3_0 \sim P3_7$, $P4_0 \sim P4_7$, $P5_0 \sim P5_4$, \overline{RESET} , X_{IN}	$V_i = V_{SS}$		-5		5	μА
l _{IH}	"H" input current $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $P2_0 \sim P2_7$, $P3_0 \sim P3_7$, $P4_0 \sim P4_7$, $P5_0 \sim P5_4$, \overline{RESET} , X_{IN}	V _i =V _{CC}		-5		5	μА
V _{RAM}	RAM retention voltage	At stop mode		2			V
		f(X _{IN})=8MHz At system operation, comparator not operation				10	
Icc	Supply current	f(X _{IN})=8MHz, Comparator is operation, At system operation, square wave				15	mA
		At stop mode (Note 1)	Ta=25℃ Ta=70℃			1 10	μА

Note 1 : Output pin ϕ is open V_{SS} is inputs to ports. Comparator conversion is complete condition

COMPARATOR CHARACTERISTICS $(v_{cc}=5v\pm5\%, v_{cc}=0v, T_a=25\%, f(X_{IN})=8MHz)$

		Unit		
Parameter	Min.	Тур	Max	Olik
Resolution	_	· —	(1/8)V _{CC}	V
Internal analog voltage error	_	_	±(1/8)V _{CC}	٧
Analog input voltage	0	_	Vcc	V

TIMING REQUIREMENTS

 $\textbf{Port/single-chip} \quad \textbf{mode} \ \, (v_{cc} = 5V \pm 10\%, \, v_{ss} = 0V, \, T_{a} = -10 \sim 70\%, \, \text{unless otherwise noted})$

Symbol	Parameter	Test condition	Limits			Unit
Symbol	Farameter	Test condition	Min	Тур	Max.	Oille
t _{SU(POD} −ø)	Port P0 input setup time		200			ns
t _{SU(P1D} −ø)	Port P1 input setup time		200			ns
t _{SU(P2D} -ø)	Port P2 input setup time		200			ns
t _{su(P3D} -ø)	Port P3 input setup time		200			ns
t _{SU(P4D} −ø)	Port P4 input setup time		200			, ns
t _{SU(P5D-ø)}	Port P5 input setup time		200			ns
th(ø-POD)	Port P0 input hold time		40			ns
th(ø-P1D)	Port P1 input hold time		40			ns
t _{h(∳-P2D)}	Port P2 input hold time	Fig 22	40		-	ns
th(ø −P3D)	Port P3 input hold time		40			ns
t _{h(∳-P4D)}	Port P4 input hold time		40			ns
t _{h(∳-P5D)}	Port P5 input hold time		40			ns
t _C (X _{IN})	External clock input cycle time		125		1000	ns
t _W (X _{IN} L)	External clock input "L" pulse width		30			ns
$t_W(X_{IN}H)$	External clock input "H" pulse width		30			ns
$t_{\Gamma}(X_{IN})$	External clock rising edge time				20	ns
$t_f(X_{IN})$	External clock falling edge time				20	ns

Master CPU bus interface timing $(\overline{R} \text{ and } \overline{W} \text{ separation type mode})$

 $(V_{CC}=5V\pm10\%, V_{SS}=0V, T_a=-10\sim70^{\circ}C, \text{ unless otherwise noted})$

Symbol	Parameter	Total condition	Limits			Unit
	Parameter	Test condition	Mın	Тур	Max	Unit
t _{su(cs-R)}	CS setup time		0			ns
t _{su(cs-w)}	CS setup time	ı	0			ns
th(R-cs)	CS hold time		0			ns
th(w-cs)	CS hold time		0			ns
t _{su(A-R)}	A ₀ setup time		40			ns
t _{su(A-w)}	A ₀ setup time	Fig 23	40			ns
th(R-A)	A ₀ hold time		10			ns
th(w-a)	A ₀ hold time		10			ns
t _{W(R)}	Read pulse width		160			ns
t _{W(W)}	Write pulse width		160			ns
t _{su(D-w)}	Date input setup time before write		100			ns
th(w-p)	Date input hold time after write		10			ns

Master CPU bus interface timing $(R/\overline{W}$ type mode)

(V_{CC} =5V±10%, V_{SS} =0V, T_a =-10~70°C, unless otherwise noted)

Symbol	Parameter	T	Limits			Unit
	Parameter	Test condition	Mın	Тур	Max	Oill
t _{su(CS-E)}	CS setup time		0			ns
th(E-cs)	CS hold time		0			ns
t _{SU(A-E)}	A ₀ setup time		40			ns
th(E-A)	A ₀ hold time		10			ns
t _{su(RW-E)}	R/W setup time	Fig 23	40			ns
th(E-RW)	R/W hold time		10			ns
t _{W(EL)}	Enable clock "L" pulse width		160			ns
t _{W(EH)}	Enable clock "H" pulse width		160			ns
t _{r(E)}	Enable clock rising edge time				25	ns
t _{f(E)}	Enable clock falling edge time				25	ns
t _{su(D-E)}	Data input setup time before write		100			ns
th(E-D)	Data input hold time after write		10			ns

SWITCHING CHARACTERISTICS

Port/single-chip mode ($V_{CC}=5V\pm10\%$, $V_{SS}=0V$, $T_a=-10\sim70^{\circ}C$, $f(X_{IN})=8MHz$ unless otherwise noted)

0 1 1	0	T1	Limits			Unit
Symbol	Parameter	Test condition	Mın	Тур.	Max.	Unit
td(ø-POQ)	Port P0 data output delay time				200	ns
td(ø-P1Q)	Port P1 data output delay time				200	ns
t _{d(\$\phi - P2Q)}	Port P2 data output delay time	Fig 22			200	ns
t _{d(∳-P3Q)}	Port P3 data output delay time				200	ns
td(ø-P5Q)	Port P5 data output delay time				200	ns

Master CPU bus interface (\overline{R} and \overline{W} separation type mode)

 $(V_{CC}=5V\pm10\%, V_{SS}=0V, T_a=-10\sim70\%, f(X_{IN})=8MHz \text{ unless otherwise noted})$

Symbol	B	Task and date	Limits			
	Parameter	Test condition	Mın.	Тур.	Max	Unit
t _{a(R-D)}	Data output enable time after read				120	ns
t _{V(R-D)}	Data output disable time after read		10		85	ns
t _{PHL(R-OBF)}	OBF output transmission time after read	500			150	ns
t _{PLH(R-PR)}	P _{RDY} output transmission time after read	Fig 23			150	ns
t _{PHL(W-IBF)}	IBF output transmission time after write				150	ns
t _{PLH(W-PR)}	P _{RDY} output transmission time after write				150	ns

Master CPU bus interface (R/W type mode)

 $(V_{CC}=5V\pm10\%, V_{SS}=0V, T_a=-10\sim70^{\circ}C, f(X_{IN})=8MHz \text{ unless otherwise noted})$

Symbol		-		Limits		
	Parameter	Test condition	Mın	Тур.	Max	Unit
ta(E-D)	Data output enable time after read				120	ns
t _{V(E-D)}	Data output disable time after read		10		85	ns
t _{PHL(E-OBF)}	OBF output transmission time after E clock	Fig.23			150	ns
t _{PLH(E-IBF)}	IBF output transmission time after E clock	1			150	ns
t _{PLH(E-PB)}	P _{RDY} output transmission time after E clock				150	ns

TEST CONDITION

Input voltage level: V_{IH} 2.4V

V_{IL} 0.4V

Output test level: V_{OH} 2.0V

V_{OL} 0.8V

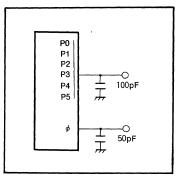


Fig. 22 Test circuit in single-chip mode

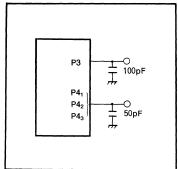
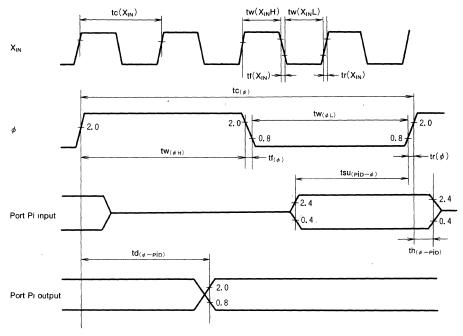
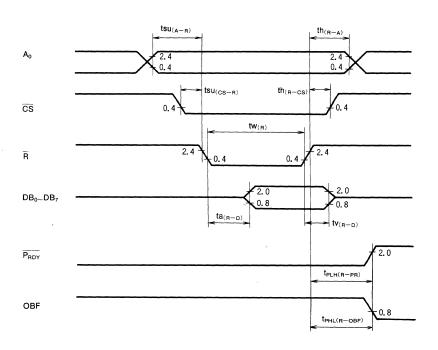
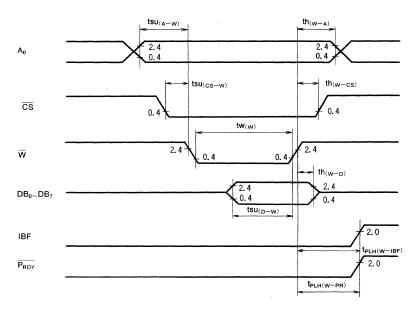



Fig. 23 Master CPU bus interface test circuit

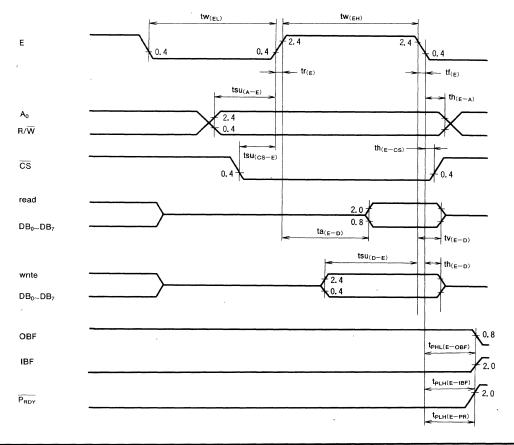
TIMING DIAGRAM


Port/single-chip mode timing diagram

Note : V_{IH} =0.8 V_{CC} , V_{IL} =0.16 V_{CC} of X_{IN}


Master CPU bus interface/ \overline{R} and \overline{W} separation type timing diagram

Read



Write

Master CPU interface/ R/W type timing diagram

M37420M4-XXXSP M37420M6-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

DESCRIPTION

The M37420M4-XXXSP and the M37420M6-XXXSP are single-chip microcomputers designed with CMOS silicon gate technology. All are housed in a 52-pin shrink plastic molded DIP.

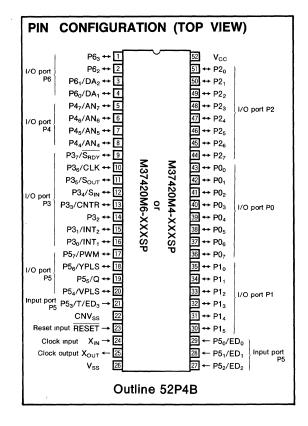
These single-chip microcomputers are useful for household appliance and other consumer applications.

In addition to its simple instruction sets, the ROM, RAM, and I/O addresses are placed on the same memory map to enable easy programming.

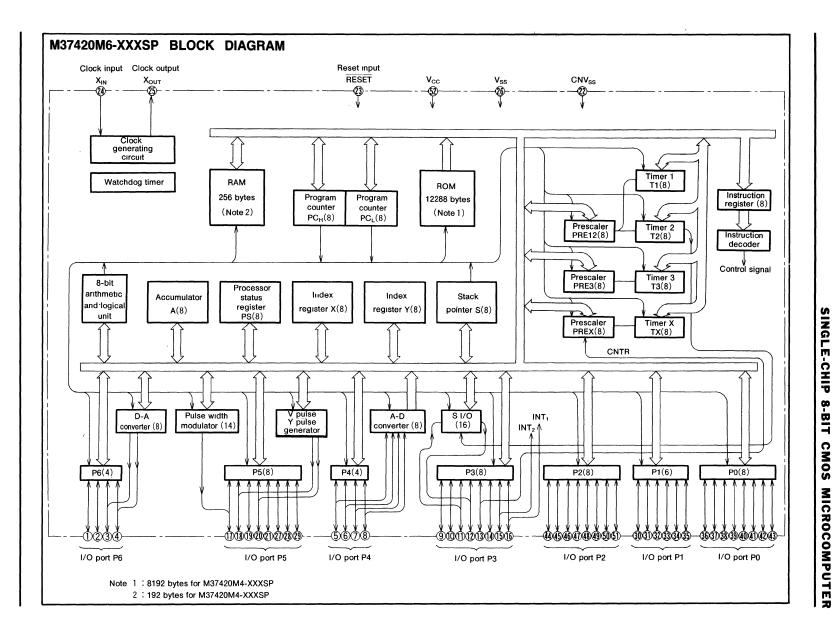
The differences between the M37420M4-XXXSP and the M37420M6-XXXSP are noted below. The following explanations apply to the M37420M6-XXXSP.

Specification variations for other chips are noted accordingly.

Type name	ROM size	RAM size
M37420M4-XXXSP	8192 bytes	192 bytes
M37420M6-XXXSP	12288 bytes	256 bytes


FFATURES

•	Number of ba	sic instructions····· 69
•	Memory size	ROM ···12288 bytes (M37420M6-XXXSP)
		8192 bytes (M37420M4-XXXSP)
		RAM······ 256 bytes (M37420M6-XXXSP)
		192 bytes (M37420M4-XXXSP)
•	Instruction ex	ecution time
	······1μs ((minimum instructions, at 8MHz frequency)
•	Single power	supply $f(X_{IN})=8MHz\cdots5V\pm10\%$
•	Power dissipa	
	normal ope	ration mode (at 8MHz frequency) ···· 30mW
•		esting ·····96 levels (Max.)
•		7 types, 5 vectors
•	•	4


- D-A converter
- 14-bit PWM function
- Watchdog timer

APPLICATION

VCR, TV, Audio-visual equipment

MITSUBISHI MICROCOMPUTERS

M37420M4-XXXSP M37420M6-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

FUNCTIONS OF M37420M6-XXXSP

Parameter			Functions	
Number of basic instructions			69	
Instruction execution time			1μs (minimum instructions, at 8MHz frequency)	
Clock frequency			8MHz	
Memory size	ROM		12288bytes (8192 bytes for M37420M4-XXXSP)	
Memory size	RAM		256bytes (192 bytes for M37420M4-XXXSP)	
Input/Output ports	P0, P1, P2, P3, P4, P5 ₄ ~P5 ₇ , P6	1/0	8-bit×3, 6-bit×1, 4-bit×3	
mput/Output ports	P5 ₀ ~P5 ₃	Input	4-bit×1	
Serial I/O			8-bit×1 or 16-bit×1	
Timers			8-bit prescaler×3+8-bit timer×4	
A-D conversion			8-bit×1 (4 channels)	
D-A conversion			8-bit×2	
Pulse width modulator			14-bit×1	
Watchdog timer			15-bit×1	
Subroutine nesting			96 levels (max)	
Interrupts			Two external interrupts, Three internal timer interrupts (or timerX2, SI/OX1)	
Clock generating circuit			Built-in (ceramic or quartz crystal oscillator)	
Supply voltage			5V±10%	
Power dissipation at high-speed operation			30mW (at 8MHz frequency)	
Input/Output characteristics Input/Output voltage			12V (Ports P0, P1, P3)	
Operating temperature range			-10~70℃	
Device structure			CMOS silicon gate process	
Package			52-pin shrink plastic molded DIP	

MITSUBISHI MICROCOMPUTERS

M37420M4-XXXSP M37420M6-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

PIN DESCRIPTION

Pin	Name	Input/ Output	Functions	
V _{CC} , V _{SS}	Supply voltage		Power supply inputs 5V \pm 10% to V _{CC} , and 0V to V _{SS} .	
CNV _{ss}	CNV _{SS}		This is usually connected to V _{SS} .	
RESET	Reset input	Input	To enter the reset state, the reset input pin must be kept at a "L" for more than $2\mu s$ (under normal V_{CC} conditions). If more time is needed for the crystal oscillator to stabilize, this "L" condition should be maintained for the required time	
XIN	Clock input	Input	This chip has an internal clock generating circuit. To control generating frequency, an external ceramination of the control generating frequency, an external ceramination of the control generating frequency.	
Хоит	Clock output	Output	quartz crystal oscillator is connected between the X_{IN} and X_{OUT} pins if an external clock is used, the clock source should be connected the X_{IN} pin and the X_{OUT} pin should be left open.	
P0 ₀ ~P0 ₇	I/O port P0	1/0	Port P0 is an 8-bit I/O port with directional register allowing each I/O bit to be individually programmed as input or output. At reset, this port is set to input mode. The output structure is N-channel open drain	
P1 ₀ ~P1 ₅	I/O port P1	1/0	Port P1 is an 6-bit I/O port and has basically the same functions as port P0 The output structure is N-channel open drain	
P2 ₀ ~P2 ₇	I/O port P2	1/0	Port P2 is an 8-bit I/O port and has basically the same functions as port P0, but the output structure is CMOS output	
P3 ₀ ~P3 ₇	I/O port P3	1/0	Port P3 is an 8-bit I/O port and has basically the same functions as port P0. When serial I/O is used, P3 ₇ , P3 ₆ , P3 ₅ , and P3 ₄ work as $\overline{S_{RDY}}$, CLK, S_{OUT} , and S_{IN} pins, respectively. Also P3 ₃ and P3 ₂ work as CNTR pin and the lowest interrupt input pin ($\overline{INT_2}$), respectively.	
P4 ₄ ~P4 ₇	I/O port P4	1/0	Port P4 is an 8-bit I/O port and has basically the same functions as port P0 P4 ₂ ~P4 ₇ work as analog input port AN ₄ ~AN ₇	
P5 ₀ ~P5 ₃	Input port P5	Input	Low-order 4-bit of port P5 is input port. These can be used as the edge sence inputs P50~P52 detect the rising edge and P53 detects both edges. Also, P53 is common with the external trigger and V pulse, Y pulse generator trigger input.	
P5 ₄ ~P5 ₇	I/O port P5	1/0	High-order 4-bit of port P5 is I/O port and has basically the same function as port P0 P5 ₇ is common with the 14-bit PWM. The output structure is CMOS output	
P6 ₀ ∼P6 ₃	Output port P6	Output	Port P6 is an 4-bit output port. At external trigger output mode, P6 ₀ and P6 ₁ are in common with the trigger input pin (T) and the trigger output pin (Q), respectively. The output structure is N-channel open drain.	

FUNCTIONAL DESCRIPTION Central Processing Unit (CPU)

The M37420 microcomputers use the standard MELPS 740 instruction set. For details of instructions, refer to the MELPS 740 CPU core basic functions, or the MELPS 740 Software Manual.

Machine-resident instructions are as follows:

The FST and SLW instructions are not provided.

The MUL and DIV instructions are not provided.

The WIT instruction can be used.

The STP instruction can be used.

Timer Control Register

The timer control register is allocated to address 00FF₁₆. This register has a stack page bit.

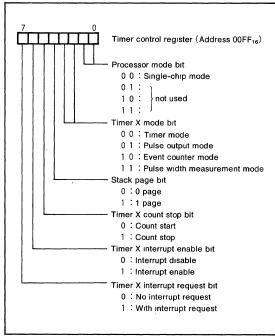


Fig.1 Structure of timer control register

MEMORY

• Special Function Register (SFR) Area

The special function register (SFR) area contains the registers relating to functions such as I/O ports and timers.

• RAM

RAM is used for data storage as well as a stack area.

• ROM

ROM is used for storing user programs as well as the interrupt vector area.

• Interrupt Vector Area

The interrupt vector area is for storing jump destination addresses used at reset or when an interrupt is generated.

Zero Page

Zero page addressing mode is useful because it enables access to this area with fewer instruction cycles.

Special Page

Special page addressing mode is useful because it enables access to this area with fewer instruction cycles.

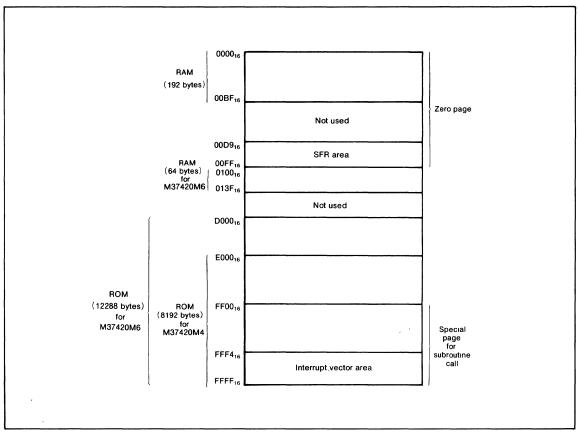


Fig.2 Memory map

MITSUBISHI MICROCOMPUTERS

M37420M4-XXXSP M37420M6-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

00D9 ₁₆	D-A conversion register 1	00EC ₁₆	Port P5
00DA ₁₆	D-A conversion register 2	00ED ₁₆	Port P5 latch/directional register
00DB ₁₆	V pulse preset value P	00EE ₁₆	Port P6
00DC ₁₆	V pulse preset value N	00EF ₁₆	Port P6 directional register
00DD ₁₆	V pulse register	00F0 ₁₆	Pulse width modulation register H
00DE ₁₆	Serial I/O register L	00F1 ₁₆	Pulse width modulation register L
00DF ₁₆	Serial I/O register H	00F2 ₁₆	Successive approximation register
00E0 ₁₆	Port P0	00F3 ₁₆	A-D control register
00E1 ₁₆	Port P0 directional register	00F4 ₁₆	Watchdog timer
00E2 ₁₆	Port P1	00F5 ₁₆	Serial I/O mode register
00E3 ₁₆	Port P1 directional register	00F6 ₁₆	Special function selection register
00E4 ₁₆	Port P2	00F7 ₁₆	Timer 3 prescaler
00E5 ₁₆	Port P2 directional register	00F8 ₁₆	Timer 3
00E6 ₁₆		00F9 ₁₆	Timer 1,2 prescaler
00E7 ₁₆		00FA ₁₆	Timer 1
00E8 ₁₆	Port P3	00FB ₁₆	Timer 2
00E9 ₁₆	Port P3 directional register	00FC ₁₆	Timer X prescaler
00EA ₁₆	Port P4	00FD ₁₆	Timer X
00EB ₁₆	Port P4 directional register	00FE ₁₆	Interrupt control register
•		00FF ₁₆	Timer control register

Fig. 3 SFR (Special Function Register) memory map

INTERRUPT

The M37420M6-XXXSP can be interrupted from seven sources; INT₁, timer X, timer 1, timer 2/serial I/O, or INT₂/BRK instruction.

However, the INT_1 pin is used with port $P3_0$ and the INT_2 pin is used with port $P3_1$ and the corresponding directional register bit should be set to "0" when each port used as an interrupt input pin.

The value of bit 2 and bit 3 of the serial I/O mode register (address $00F5_{16}$) determine whether the interrupt is from timer 2 or from serial I/O. When the value of bit 2 and bit 3 is [00], the interrupt is from timer 2, and the value of bit 2 and bit 3 is [01], the interrupt is from serial I/O. Also, when the value of bit 2 and bit 3 is [01], parts of port P3 are used for serial I/O. These interrupts are vectored and their priorities are shown in Table 1. Reset is included in this table since it has the same functions as the interrupts.

When an interrupt is accepted, the contents of certain registers are pushed into specified locations, the interrupt disable flag I is set, the program jumps to the address specified by the interrupt vector, and the interrupt request bit is cleared automatically. The reset interrupt is the highest priority interrupt and can never be inhibited. Except for the reset interrupt, all interrupt are inhibited when the interrupt disable flag I is set to "1". All of the other interrupts can further be controlled individually via the interrupt control register shown in Figure 4. An interrupt is accepted when

the interrupt enable bit and the interrupt request bit are both "1" and the interrupt disable flag is "0".

The interrupt request bits are set when the following conditions occur:

- (1) When the level of INT₁ or INT₂ pin changes
- (2) When the contents of timer X, timer 1, timer 2 (or the serial I/O counter) go to "0"

Table 1. Interrupt vector address and priority

Interrupt	Priority	Vector address
RESET	1	FFFF ₁₆ , FFFE ₁₆
ĪNT ₁	2	FFFD ₁₆ , FFFC ₁₆
Timer X	3	FFFB ₁₆ , FFFA ₁₆
Timer 1	4	FFF9 ₁₆ , FFF8 ₁₆
Timer 2 or serial I/O	5	FFF7 ₁₆ , FFF6 ₁₆
INT ₂ (BRK)	6	FFF5 ₁₆ , FFF4 ₁₆

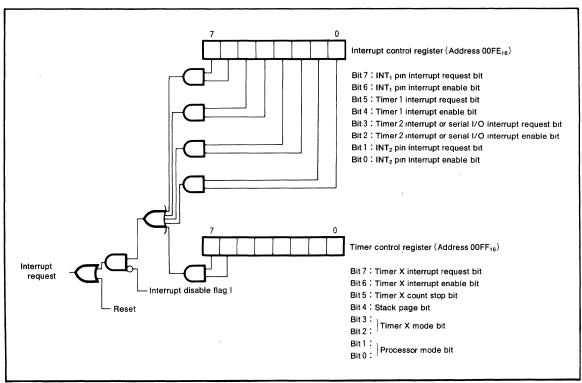


Fig.4 Interrupt control

M37420M4-XXXSP M37420M6-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

The change in level at which the INT pins generate a interrupt varies according to the content of bits 4 and 5 of the special function selection register (address $00F6_{16}$). When these bits are "0", the interrupt request is generated when INT changes from high-level to low-level. When these bits are "1", the interrupt request is generated when INT changes from low-level to high-level. Bits 4 and 5 correspond to INT₁ and INT₂ respectively.

These request bits can be reset by the program but can not be set by the program. However, the interrupt enable bit can be set and reset by the program.

Since the BRK instruction and the INT₂ interrupt have the same vectored address, the contents of the B flag must be checked to determine if the BRK instruction caused the interrupt or if INT₂ generated the interrupt.

TIMER

The M37420M6-XXXSP has four timers; timer X, timer 1, timer 2 and timer 3. Since P3 (in serial I/O mode) and timer 2 use some of the same architecture, they cannot be used at the same time (see serial I/O section). Timer X has four modes which can be selected by bit 2 and 3 of the timer control register. When the timer X count stop bit (bit 5) is set to "1", the timer X will stop regardless of which mode it is in. A block diagram of timer X, timer 1, timer 2 and timer 3 is shown in Figure 5.

The $P3_3/CNTR$ pin cannot be used as CNTR when $P3_3$ is being used in the normal I/O mode.

Timer 1 and timer 2 share with a prescaler. This prescaler has an 8-bit programmable latch used as a frequency divider. The division ratio is defined as 1/(n+1), where n is the decimal contents of the prescaler latch. All four timers are down-count timers which are reloaded from the timer latch following the zero cycle of the timer (i.e. the cycle after the timer counts to zero).

The timer interrupt request bit is set to "1" during the next clock pulse after the timer reaches zero for timer 1, timer 2 and timer X. The interrupt and timer control registers are located at addresses 00FE₁₆ and 00FF₁₆, respectively (see Interrupt section). The prescaler latch and timer latch can be loaded with any number.

The four modes of timer X as follows:

- (1) Timer mode (00)
 - In this mode the clock is driven by the oscillator frequency divided by 16. When the timer down-counts to zero, the timer interrupt request bit is set to "1" and the contents of the timer's latch is reloaded into the timer and the counting begins again.
- (2) Pulse output mode [01] In this mode, the polarity of the CNTR signal is reversed each time the timer down-counts to zero.
- (3) Event counter mode [10] This mode operates in the same manner as the timer mode except, the clock source is input to the CNTR

pin, This mode will allow an interrupt to be generated whenever a specified number of external events have been generated. The timer down-counts every rising edge of the clock source.

(4) Pulse width measurement mode [11]

This mode measures the pulse width (between lows) input to the CNTR pin. The timer, driven by the oscillator frequency divided by 16, continues counting during the low cycle of the CNTR pin. When the timer contents reaches "0", the interrupt request bit is set to "1", the timer's reload latch is reloaded and the counting resumes.

The structure of the timer control register is shown in Figure 6.

When the STP instruction is executed, or after reset, the prescaler and timer latch are set to FF₁₆ and 01₁₆, respectively. Also, when the STP instruction is executed, the oscillator's frequency (divided by 16) will become the counting source, regardless of the timer X mode setting. This state will be released when the timer X interrupt request bit is set to "1", or after a reset. Timer X will then enter the mode specified by its mode bits. For more details on the STP instruction, refer to the oscillation circuit section.

The function of timer 3 is as same as that of timer 1 and timer 2, with the exception that the detection of its overflow is known by the overflow bit (bit 3 of address $00EF_{16}$). When the timer down-counts to zero, the overflow bit is set to "1" and the contents of the timer's latch is reloaded into the timer.

The reset of the overflow bit is made by;

- a) hard ware reset
- b) write "0" to overflow bit
- c) write instruction to timer 3

The structure of special function selection register is shown in Figure 7.

M37420M4-XXXSP M37420M6-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

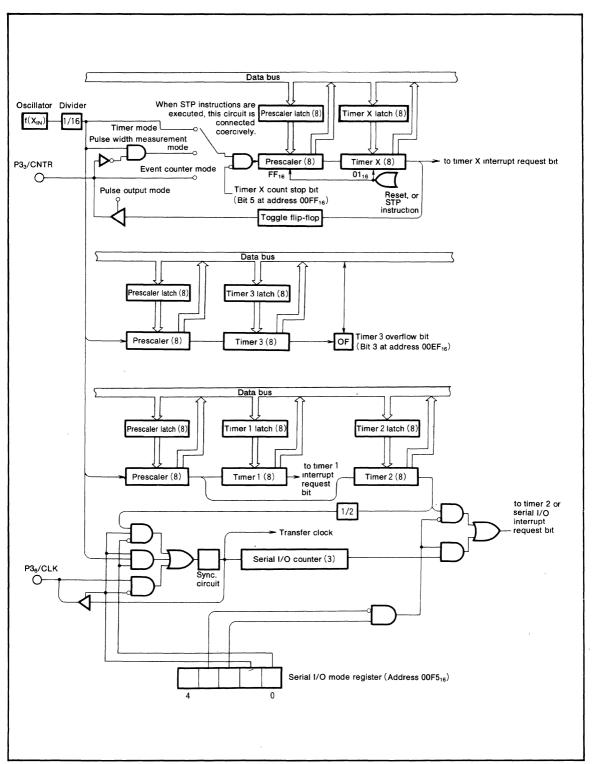


Fig.5 Block diagram of timer X, timer 1, timer 2, and timer 3



Fig.6 Structure of timer control register

Special function selection register XX(Address 00F6₁₆) P57/PWM selection bit 0: normal port 1: PWM output External trigger mode selection bit 0: P5s port 1: P5₅ external trigger output Timer 3 overflow bit 0: Timer 3 not overflow 1: Timer 3 overflow INT₁ input porality selection bit 0: interrupt by falling edge 1: interrupt by rising edge INT2 input porality selection bit 0: interrupt by falling edge 1: interrupt by rising edge

Fig.7 Structure of special function selection register

SERIAL I/O

A block diagram of the serial I/O is shown in Figure 8. In the serial I/O mode the receive ready signal $(\overline{S_{RDY}})$, synchronous input /output clock (CLK), and the serial I/O pins $(S_{OUT},\,S_{IN})$ are used as P3, P36, P35, and P34, respectively. The serial I/O mode register (address 00F516) is a 6-bit register. Bits 1 and 0 of this register is used to select a synchronous clock source.

When these bits are (00) or (01), an external clock from P3₆ is selected. When these bits are (10), the overflow signal from timer 2, divided by two, becomes the synchronous clock. Therefore, changing the timer period will change the transfer speed. When the bits are (11), the oscillator frequency divided by 16, becomes the clock.

Bit 2 to 4 decide whether parts of P3 will be used as a serial I/O or not. When bit 3 is "0" and bit 2 is "1", P3 $_6$ becomes an I/O pin of the synchronous clock. When an internal synchronous clock is selected, the clock is output from P3 $_6$. If an external synchronous clock is selected, the clock is input to P3 $_6$ and P3 $_5$ will be a serial output and P3 $_4$ will be a serial input. To use P3 $_4$ as a serial input, set the directional register bit which corresponds to P3 $_4$ to "0". For more information on the directional register, refer to the I/O pin section.

To use the serial I/O, bit 3 and bit 2 need to be set to "01", if they are "00" $P3_6$ will function as a normal I/O. Interrupts will be generated from the serial I/O counter instead of timer 2. Bit 4 determines if $P3_7$ is used as an output pin for the receive data ready signal (bit 4=1, \overline{S}_{RDY}) or used as normal I/O pin (bit 4=0). Bit 5 determines the serial I/O mode. If this bit is "0", serial I/O becomes 8-bit mode and this bit is "1", serial I/O becomes 16-bit mode. The serial I/O function is discussed below. The function of the serial I/O differs depending on the clock source; external clock or internal clock.

Internal clock—The $\overline{S_{RDY}}$ signal becomes "H" during transmission or while dummy data is stored in the serial I/O register (address $00F7_{16}$). Data is stored only to the serial I/O register L (address $00DE_{16}$) in 8-bit mode, and stored high-order 8-bit to serial I/O register H (address $00DE_{16}$) at first, then low order 8-bit to serial I/O register L (address $00DE_{16}$) in 16-bit mode. After the falling edge of the write signal, the $\overline{S_{RDY}}$ signal becomes low signaling that the M37420M6-XXXSP is ready to receive the external serial data. The $\overline{S_{RDY}}$ signal goes "H" at the next falling edge of the transfer clock. The serial I/O counter is set to 7 in 8-bit mode and 15 in 16-bit mode when data is stored in the serial I/O register. At each falling edge of the transfer

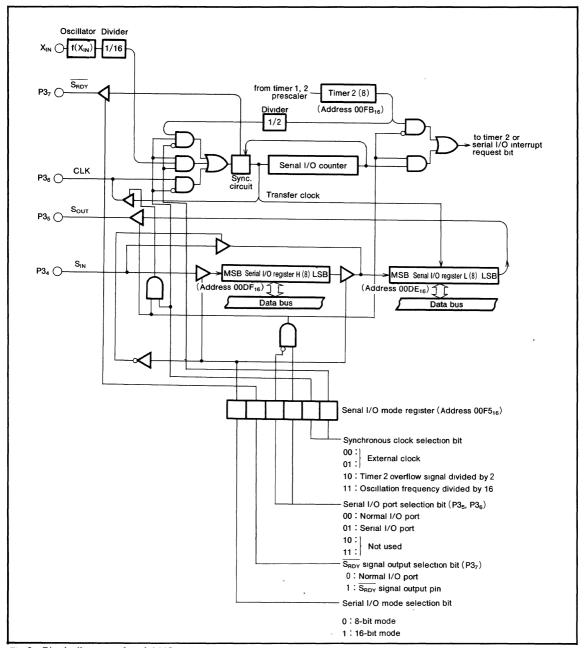


Fig.8 Block diagram of serial I/O

clock, serial data is output to $P3_5$. During the rising edge of this clock, data can be input from $P3_4$ and the data in the serial I/O register will be shifted 1 bit.

Data is output starting with the LSB. After the transfer clock has counted 8 or 16 times, the serial I/O register will be empty and the transfer clock will remain at a high level. At this time the interupt request bit will be set.

External clock—If an external clock is used, the interrupt

request will be sent after the transfer clock has counted 8 times but transfer clock will not stop.

Due to this reason, the external clock must be controlled from the outside. The external clock should not exceed 250kHz at a duty cycle of 50%. The timing diagram is shown in Figure 9. An example of communication between two M37420M6-XXXSPs is shown in Figure 10.

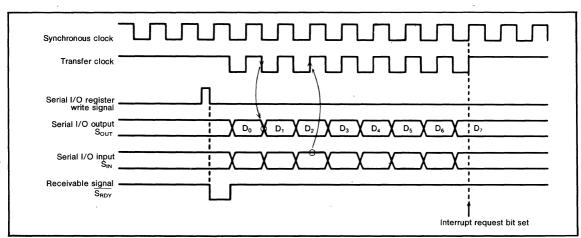


Fig.9 Serial I/O timing

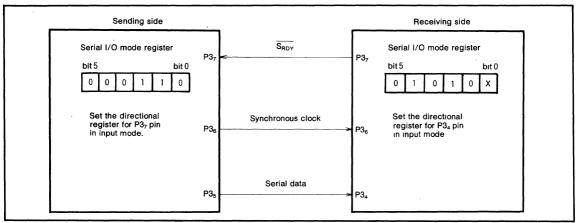


Fig.10 Example of serial I/O connection

A-D CONVERTER

An 8-bit successive approximation method of A-D conversion is employed providing a precision of \pm 3LSB. A block diagram of the A-D converter is shown in Figure 11. Conversion is automatic once it is started with the program.

The four analog inputs are used in common with pins $P4_{7}$, $P4_{6}$, $P4_{5}$ and $P4_{4}$ of port 4. Bits 2, 1 and 0 of the A-D control register (address $00F3_{16}$) are used to select which pins are used for A-D conversion. The input condition is accomplished by setting to "0" the bit in the directional register that corresponds to the pin where A-D conversion is to take place. Bit 4 of the A-D control register is the A-D conversion end bit. During A-D conversion, this bit is "0", and upon completion becomes "1". Thus, it can be ascertained whether or not A-D conversion has been completed or not by inspecting this bit. The relation between the contents of the A-D control register and the selection of input pins are shown in Figure 12.

The results of the conversion can be found be reading the contents of the successive approximation register address 00F2₁₆ which stores the results of the conversion. The procedure for executing A-D conversion is next explained. Firstly, the pin that is to be used for the A-D conversion is selected by setting bit 2, bit 1 and bit 0 of the A-D control register. Next, the successive approximation is written to upon which the A-D conversion starts. Since actual data is

not written to the successive approximation, any type of may be written. Simultaneous with its being written, the A-D conversion end bit (bit 4 of address $00F3_{16}$) is cleared to "0" signifying that A-D conversion operations are being conducted. A-D conversion completes after 198 clock cycles upon which the A-D conversion end bit is set to "1" and the results of the conversion can be found in the successive approximation register. Since the comparator consists of the capacitive coupled configuration, $f(X_{IN})$ is needed larger than 1MHz during A-D conversion. When A-D conversion is not required, power consumption can be saved by setting bit 5 of the A-D control register to "0". To carry out A-D conversion, set bit 5 to "1", and connect the resistor ladder.

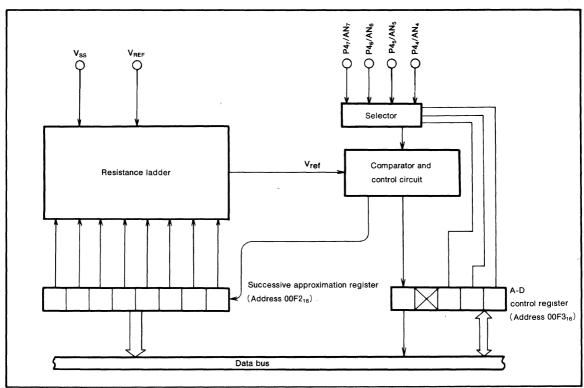


Fig.11 Block diagram of A-D converter

D-A CONVERTER

The M37420M6-XXXSP has two R-2R method D-A converters. D-A conversion starts by setting value to D-A conversion register (address $00D9_{16}$ and $00DA_{16}$).

The output port of D-A conversion result DA_1 or DA_2 is common with $P6_0$ and $P6_1$ respectively. The value of bit 7 or bit 6 of A-D control register (address $00F3_{16}$) determines whether this port is used as D-A output or normal port. When this bit is "1" this port becomes D-A output, and is "0" this port becomes normal port.

Bit 6 or bit 7 corresponds to P6₀/DA₁ or P6₁/DA₂ respectively. When using each port as D-A output, its directional register must be set to "0".

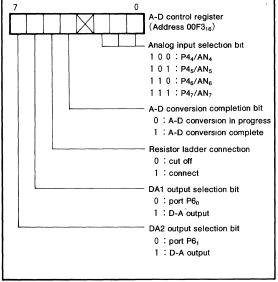


Fig.12 Structure of A-D control register

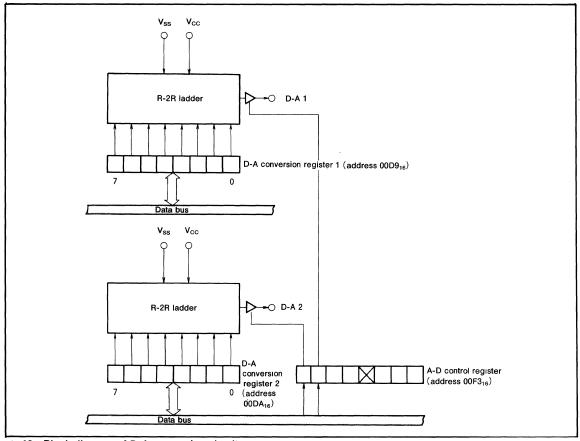


Fig.13 Block diagram of D-A conversion circuit

M37420M4-XXXSP M37420M6-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

PWM OUTPUT CIRCUIT

(1) Introduction

The M37420M6-XXXSP is equipped with 14-bit PWM. The 14-bit resolution gives PWM the minimum resolution bit width of $0.25\mu s$ (for $X_{IN}\!=\!8\text{MHz}$) and a repeat period of $4096\mu s$.

Block diagram of the PWM is shown in Figure 14. The PWM timing generator section applies control signals to PWM, using clock input X_{IN} divided by 2 as a reference signal.

(2) Data setting

The output pin PWM is in common with pin $P5_7$ (i.e. for PWM output, bit 0 of the special function selection register). When PWM is used for output, first set the higher 8-bit of the PWM1-H register (address $00F0_{16}$), then the lower 6-bit of the PWM1-L register (address $00F1_{16}$). Note that the higher 2 bits of these 8-bit registers are ignored when used 6-bit register.

(3) Transferring data from registers to latches

The data written to the PWM registers is transferred to the PWM latches at the repetition of the PWM period. The signals output to the PWM pins correspond to the contents of these latches. When data at addresses $00F0_{16}$ and $00F1_{16}$ are read, data in these latches has already been read allowing the data output by the PWM to be confirmed. When the 6-bit latch is being read, the upper 2 bits of the register becomes undefined. However, bit 7 of the PWM1-L register indicated the completion of the data transfer from the PWM1 register to the PWM1 latch. If bit 7 is "0", the transfer has been completed, if bit 7 is "1", the transfer has not yet begun.

(4) 14-bit PWM operation

The timing diagram of the 14-bit PWM1 is shown in Figure 15. The 14-bit PWM divides the data within the PWM latch into the lower 6 bits and higher 8 bits.

A high-level area within a length N times τ is output every short area of t=256 τ =64 μ s as determined by data N of the higher 8 bits. (Refer to PWM output ② in the lower part of Figure 15.)

Thus, the time for the high-level area is equal to the time set by the lower 8 bits or that plus τ As a result, the short-area period t(=64 μ s, approx. 15.6kHz) becomes an approximately repetitive period.

(5) Output after reset

At reset the output of port $P5_7$ is in the high impedance state and the contents of the PWM register and latch are undefined. Note that after setting the PWM register, its data is transferred to the latch.

Table 2. Relation between the 6 lower-order bits of data and the space set by the ADD bit

6 lower-order bits of data	Area longer by τ than that of other $t_m(m = 0 \sim 63)$
0 0 0 0 0 LSB	Nothing
000001	m=32
000010	m=16,48
000100	m = 8, 24, 40, 56
001000	m= 4, 12, 20, 28, 36, 44, 52, 60
010000	m= 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62
100000	m=1,3,5,7,·································

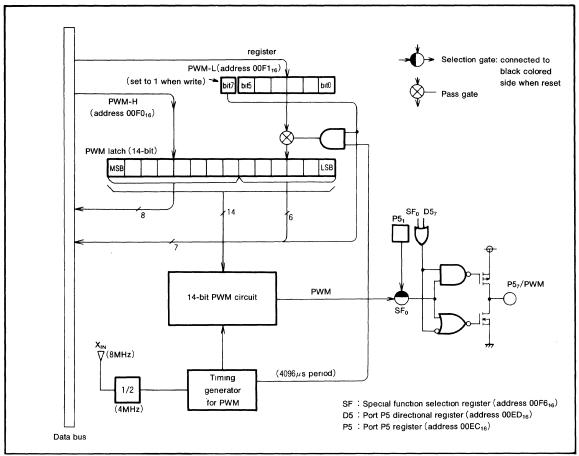


Fig.14 Block diagram of PWM circuit

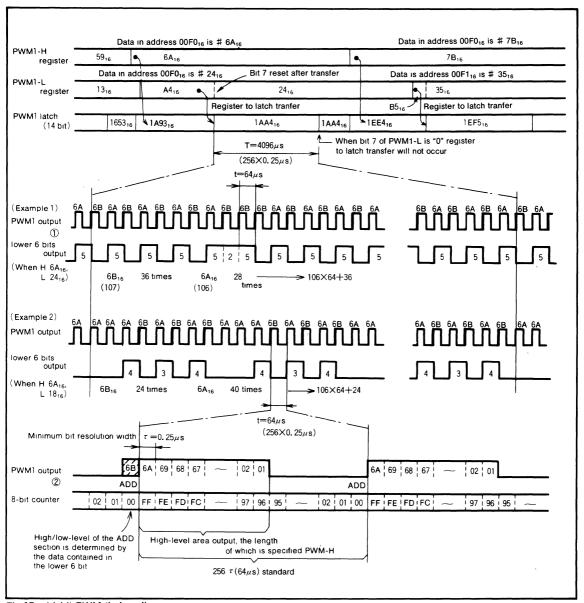


Fig.15 14-bit PWM timing diagram

V pulse and Y pulse generator

Pin 5_4 operates as the VPLS pin to output the V pulse and pin 5_3 operates as the T pin to which the trigger clock is input. These pins can be used as the V pulse output by setting bit 5 of the V pulse register $(00DD_{16})$ to "1". Pin $P5_6$ operates as the YPLS pin which outputs the Y pulse. It can be used as the Y pulse (VPF signal) output by setting bit 6 of the V pulse register to "1". Figure 17 shows the block diagram of the V pulse, Y pulse generator. Figure 18 shows the timing chart of the V pulse and Y pulse.

At the falling or rising edge of T, the VPP counter starts. By the overflow signal of the VPP counter, VPLS goes "H". By the overflow signal of VPP counter, the VPN counter starts. By the overflow signal of the VPN counter, VPLS goes "L". When the VPP counter or the VPN counter is counting, bit 4 of the V pulse register is "1".

The preset value of the VPP counter can be set by the 9-bit register with bit 1 of the V pulse register being the most significant bit and the V pulse preset value P (00DB₁₆) being the low-order eight bits. The preset value of the VPN counter can be set by the 9-bit register with bit 0 of the V pulse register being the least significant bit and the V pulse preset value N (00DB₁₆) being the low-order eight bits.

Note that values of bits 0 and 1 of the V pulse register are the current counting values in the VPP counter and the VPN counter, not the preset values of the counters.

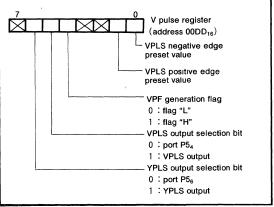


Fig.16 Structure of V pulse register

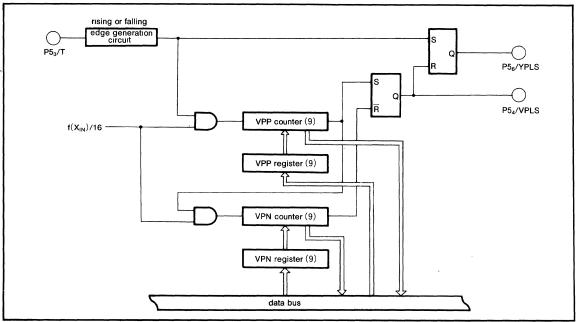


Fig.17 Block diagram of V pulse and Y pulse generator

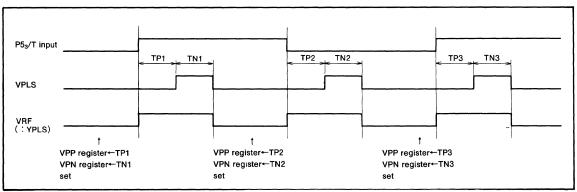


Fig.18 Timing chart of the V pulse and Y pulse

Edge sense input

Ports $P5_0 \sim P5_3$ are the input ports having the edge sense function. To use these ports as edge sense inputs, read data from address $00ED_{16}$. Address $00ED_{16}$ has a latch. $P5_0 \sim P5_2$ are set to "1" when the input changes from "H" to "L". $P5_3$ is set to "1" when the input changes from "H" to "L" and from "L" to "H". For the input pulse width, seven or more clock cycles are necessary. This latch is cleared by writing "0" at address $00ED_{16}$ by the LDM or CLB instruction. When data is read from address $00ED_{16}$, the high-order four bits are always "0's". At reset, the content of this latch is "0". When a read operation is performed from address $00EC_{16}$, the normal level sense input will result.

External trigger output

Pin P5 $_5$ operates as the pin Q which outputs the external trigger signal. Pin P5 $_3$ operates as the pin T which inputs the trigger clock. By setting bit 5 of the special function selection register (address 00F6 $_{16}$) to "1", these pins can be used as the external trigger outputs.

In the external trigger mode, every time the falling edge and rising edge of T are detected, the contents of $P5_5$ port output latch and the $P5_5$ direction register latch are output from the port. Depending on the combination of the port output latch and the directional register latch, the output to port $P5_5$ becomes as shown in Table 3. At reset, the content of this bit is "0".

Table 3. External trigger output

output latoh directional redister	0	1
0	high-impedance	high-impedance
1	L	Н

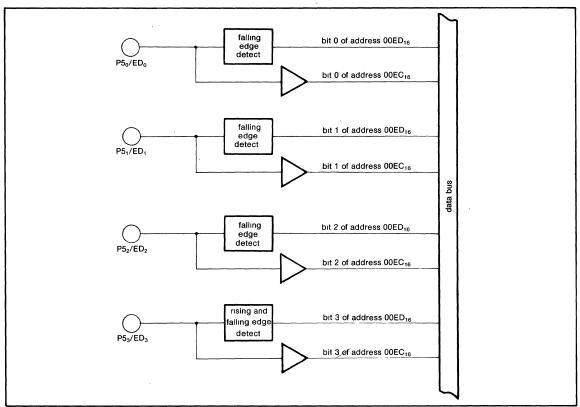


Fig.19 Block diagram of edge sence input

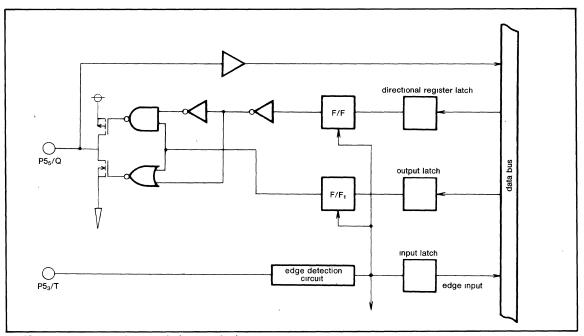


Fig.20 Block diagram of external trigger output

WATCHDOG TIMER

The watchdog timer provides the means to return to a reset condition when a program runs wild and the program will not run the normal loops.

The watchdog timer (address 00F4₁₆) is a 15-bit counter. The watchdog timer counts 1/16th the output frequency of the oscillator. The watchdog timer is set to 7FFF₁₆ when a reset is accomplished a write operation has been made to it. As well as any of the instructions that generate a write signal, such as STA, LDM, and CLB, can be used to write data to the watchdog timer. An output of the most significant bits of the watchdog timer is input to the reset circuit. When 262144 clock cycles have been counted, the most significant bit becomes "0" and reset is carried out. When reset is carried out, the watchdog timer is set to 7FFF₁₆ and reset is released. The program then begins again from reset vector address. Normally, the program is written so that a writing operation is made to the watchdog timer prior to the most significant bit's becoming "0"

Since execution of the STP instruction causes both the clock and the watchdog timer to stop, an option is offered where the STP instruction can be disabled.

RESET CIRCUIT

The M37420M6-XXXSP is reset according to the sequence shown in Figure 21. It starts the program from the address formed by using the content of address FFFF $_{16}$ as the high order address and the content of the address FFFE $_{16}$ as the low order address, when the $\overline{\text{RESET}}$ pin is held at "L" level for more than $2\mu s$ while the power voltage is in the recommended operating condition and the crystal oscillator oscillation is stable and then returned to "H" level. The internal initializations following reset are shown in Figure 22. An example of the reset circuit is shown in Figure 23.

When the power on reset is used, the RESET pin must be held "L" until the oscillation of X_{IN-}X_{OUT} becomes stable.

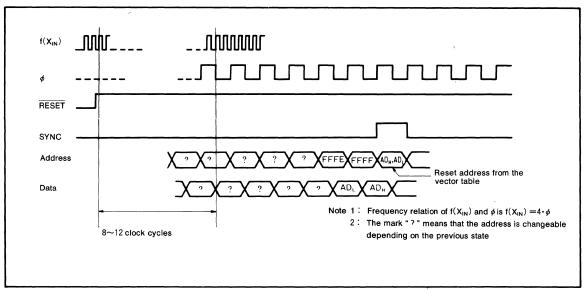


Fig. 21 Timing diagram at reset

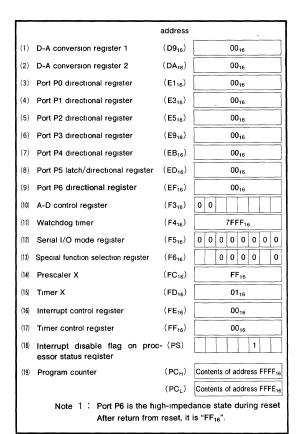


Fig.22 Internal state of microcomputer at reset

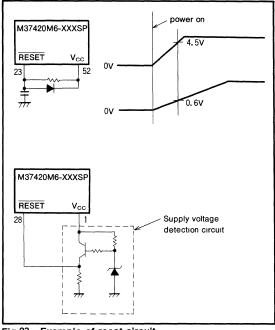


Fig.23 Example of reset circuit

M37420M4-XXXSP M37420M6-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

I/O PORTS

(1) Port P0

Port P0 is an 8-bit I/O port with N-channel open drain output.

As shown in the memory map (Figure 2), port P0 can be accessed at zero page memory address $00E0_{16}$. Port P0 has a directional register (address $00E1_{16}$) which can be used to program each individual bit as input ("0") or as output ("1"). If the pins are programmed as output, the output data is latched to the port register and then output. When data is read from the output port the output pin level is not read, only the latched data in the port register is read. This allows a previously output value to be read correctly even though the output voltage level is shifted up or down. Pins set as input are in the floating state and the signal levels can thus be read. When data is written into the input port, the data is latched only to the port latch and the pin still remains in the floating state.

(2) Port P1

Port P1 is a 6-bit I/O port and has the same function as Port P0

(3) Port P2

Port P2 has the same function as Port P0, but it has CMOS output.

(4) Port P3

Port P3 has the same function as port P0. Port P3 can also be used as serial I/O, $\overline{INT_1}$, $\overline{INT_2}$ and I/O pins for timer X.

(5) Port P4

Port P4 is a 4-bit I/O port and has the same function as port P0. But P4₇ through P4₄ can also be used as analog input pins AN₇ through AN₄.

(6) Port P5

Port $P5_3 \sim P5_0$ is an input port and can also be used as edge sence inputs. In such a case, reading is begun from $00ED_{16}$.

When port P5 is used as level sense input, read the contents of the address $00EC_{16}$.

 $P5_7 \sim P5_4$ have the same function as port P0 except that they are I/O ports and double-functioning. The PWM output pin operates as $P5_7$, the Y pulse output pin as $P5_6$, and the V pulse output pin as $P5_4$. These ports are used by selecting the function through the special function selection register and the V pulse register. For details, see the descriptions of the PWM and the V pulse, Y pulse generator. The external trigger output pin operates as $P5_5$. The external trigger output mode can be selected by setting bit 2 of the special function select register to "1". At reset, all of $P5_7 \sim P5_4$ are in the state where the nomal I/O port function is selected. The output is the CMOS output.

(7) Port P6

Port P6 is a 4-bit I/O port and has the same function as P0 except that $P6_0$ and $P6_1$ can be used as D-A output pin.

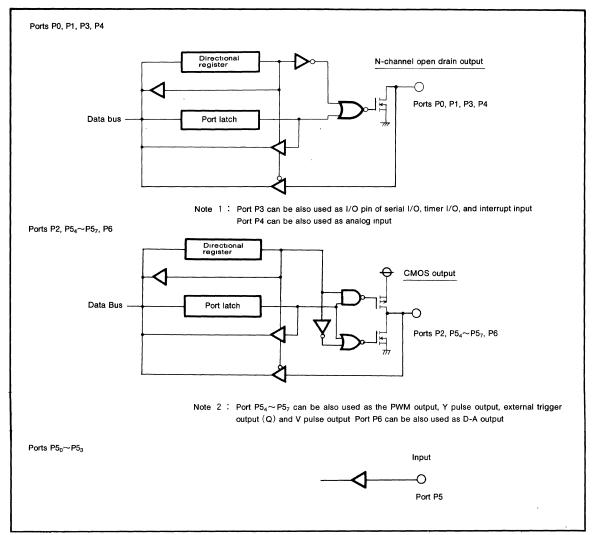


Fig.24 Block diagram of ports P0~P6

CLOCK GENERATING CIRCUIT

The built-in clock generating circuits are shown in Figure 27

When the STP instruction is executed, the oscillation of internal clock ϕ is stopped in the "H" state.

Also, the prescaler X and timer X are loaded with FF_{16} and 01_{16} , respectively. The oscillator (dividing by 16) is then connected to the prescaler input. This connection is cleared when timer X overflows or the reset is in, as discussed in the timer section.

The oscillator is restarted when an interrupt is accepted. However, the internal clock ϕ keeps its "H" level until timer X overflows.

This is because the oscillator needs a set-up period if a ceramic or a quartz crystal oscillator is used.

When the WIT instruction is executed, the internal clock ϕ stops in the "H" level but the oscillator continues running. This wait state is cleared when an interrupt is accepted. Since the oscillation does not stop, the next instructions are executed at once.

The circuit example using a ceramic oscillator (or a quartz crystal oscillator) is shown in Figure 25.

The constant capacitance will differ depending on which oscillator is used, and should be set to the manufactures suggested value.

The example of external clock usage is shown in Figure 26. X_{IN} is the input, and X_{OUT} is open.

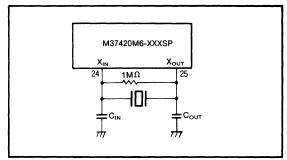


Fig.25 External ceramic resonator circuit

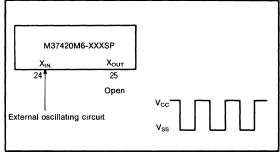


Fig.26 External clock input circuit

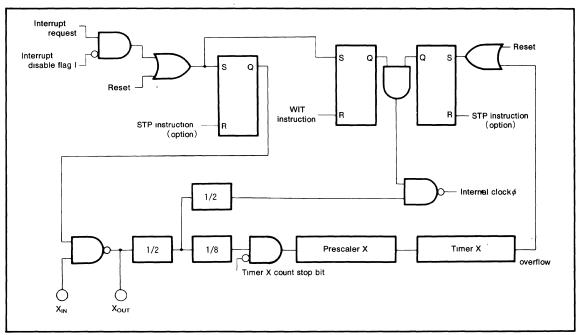


Fig.27 Block diagram of the clock generating circuit

M37420M4-XXXSP M37420M6-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

PROGRAMMING NOTES

- The frequency ratio of the timer and the prescaler is 1/(n+1).
- (2) Even though the BBC and BBS instructions are executed after the interrupt request bits are modified (by the program), those instructions are only valid for the contents before the modification. Also, at least one instruction cycle must be used (such as a NOP) between the modification of the interrupt request bits and the execution of the BBC and BBS instructions.
- (3) Reading the timer and prescaler must be avoided while the input to the prescaler is changing.
- (4) After the ADC and SBC instructions are executed (in decimal mode), one instruction cycle (such as a NOP) is needed before the SEC, CLC, or CLD instructions are executed.
- (5) A NOP instruction must be used after the execution of a PLP instruction.
- (6) Since the comparator consists of the capacitive coupled configuration, f(X_{IN}) is needed larger than 1MHz during A-D conversion. And during A-D conversion, don't use STP or WIT instruction.
- (7) Values of bits 0 and 1 of the V pulse register are the current counting values in the VPP counter and the VPN counter, not the preset values.

Therefore, if the read values of bits 0 and 1 are written as they are when other bits in the V pulse register is to be set, the preset values may be changed.

This must be kept in mind before executing the SEB or CLB instruction.

DATA REQUIRED FOR MASK ORDERING

Please send the following data for mask orders.

- (1) mask ROM confirmation form
- (2) mark specification form
- (3) ROM data EPROM 3sets Write the following option on the mask ROM confirmation form
- STP instruction option
- · Reset option for watchdog timer

M37420M4-XXXSP M37420M6-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
V _{cc}	Supply voltage		−0.3~7	٧
Vı	Input voltage X _{IN}		−0.3~7	٧
Vı	Input voltage P2 ₀ ~P2 ₇ , P4 ₂ ~P4 ₇ , P5 ₄ ~P5 ₇ , P6 ₀ ~P6 ₃		-0.3~V _{cc} +0.3	٧
Vı	Input voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₅ , P3 ₀ ~P3 ₇ , P4 ₀ , P4 ₁ , P5 ₀ ~P5 ₇	With respect to V _{SS} Output transistors cut-off	-0.3~13	v
Vı	Input voltage CNV _{SS} , RESET		-0.3~13	٧
Vo	Output voltage P2 ₀ ~P2 ₇ , P4 ₂ ~P4 ₇ , P5 ₄ ~P5 ₇ , P6 ₀ ~P6 ₃		-0.3~V _{cc} +0.3	٧
Vo	Output voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₅ , P3 ₀ ~P3 ₇		-0.3~13	٧
Pd	Power dissipation	T _a =25℃	1000	mW
Topr	Operating temperature		−10~70	°C
Tstg	Storage temperature		−40~125	°C

RECOMMENDED OPERATING CONDITIONS ($v_{cc}=5v\pm10\%$, $\tau_a=-10\sim70^{\circ}$, unless otherwise noted)

Symbol	Parameter		Limits		Unit
Symbol	Parameter	Min	Тур	Max	Onit
Vcc	Supply voltage	4.5	5	5.5	٧
Vss	Supply voltage		0		٧
V _{REF}	Reference voltage	4		V _{CC}	V
V _{IH}	"H" input voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₅ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₇ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , RESET, X _{IN} , P6 ₀ ~P6 ₃	0.8V _{CC}	-	V _{cc}	٧
VIL	"L" input voltage $P0_0\sim P0_7$, $P1_0\sim P1_7$, $P2_0\sim P2_7$, $P3_0\sim P3_7$, $P4_0\sim P4_7$, $P5_0\sim P5_7$, CNV_{SS} , $P6_0\sim P6_3$	0		0. 2V _{CC}	٧
V _{IL}	"L" input voltage RESET	0		0.12V _{CC}	٧
V _{IL}	"L" input voltage X _{IN}	0		0.16V _{CC}	V
l _{oL} (peak)	"L" peak output current $P0_0 \sim P0_7$, $P1_0 \sim P1_5$, $P2_0 \sim P2_7$, $P3_0 \sim P3_7$, $P4_0 \sim P4_7$ (Note 2)			10	mA
I _{OL(peak)}	"L" peak output current P60~P63 (Note 2)			10	mA
I _{OL} (avg)	"L" average output current $P0_0 \sim P0_7$, $P1_0 \sim P1_5$, $P2_0 \sim P2_7$, $P3_0 \sim P3_7$, $P4_0 \sim P4_7$, (Note 1)			5	mA
I _{OL} (avg)	"L" average output current P6 ₀ ~P6 ₃ (Note 1)			5	mA
I _{он(peak)}	"H" peak output current $P2_0 \sim P2_7$, $P5_4 \sim P5_7$, $P6_0 \sim P6_3$ (Note 2)			-10	mA
I _{он(avg)}	"H" average output current $P2_0 \sim P2_7$, $P5_4 \sim P5_7$, $P6_0 \sim P6_3$ (Note 1)			-5	mA
f(X _{IN})	Internal clock oscillating frequency			8	MHz

Note 1: Average output current I_{OL(avg)} and I_{OH(avg)} are the average value of a period of 100ms 2: Total of "L" output current I_{OL}, of ports P0, P1, P2, P3, P4, P6, and PWM is 80mA max Total of "H" output current I_{OH}, of port P2 is 50mA max

M37420M4-XXXSP M37420M6-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

$\textbf{ELECTRICAL} \quad \textbf{CHARACTERISTICS} \; (v_{\text{\tiny CC}} = 5 \text{V} \pm 10\%, \; v_{\text{\tiny SS}} = 0 \text{V}, \; T_{\text{\tiny A}} = -10 \sim 70 \text{°C}, \; f(x_{\text{\tiny IN}}) = 8 \text{MHz}, \; \text{unless otherwise noted})$

Symbol	Parameter	Test conditions	Limits			Unit
Symbol	Farameter	rest conditions	Mın	Тур	Max.	Onit
V _{OH}	"H" output voltage P2 ₀ ~P2 ₇ , P5 ₄ ~P5 ₇ , P6 ₀ ~P6 ₃	I _{OH} =-10mA	3			V
V _{OL}	"L" output voltage $P0_0\sim P0_7$, $P1_0\sim P1_5$, $P2_0\sim P2_7$, $P3_0\sim P3_7$, $P4_0\sim P4_7$, $P5_4\sim P5_7$, $P6_0\sim P6_3$	I _{OL} =10mA			2	٧
$V_{T+}-V_{T-}$	Hysteresis P3 ₀ , P3 ₁	When used as INT input	0.3		1	V
$V_{T+}-V_{T-}$	Hysteresis P3 ₆	When used as CLK ₂ input	0.3	0.8		V
$V_{T+}-V_{T-}$	Hysteresis P3 ₃	When used as CNTR input	0.5	1		V
$V_{T+}-V_{T-}$	Hysteresis P5 ₃	When used as T input	0.5	1		V
$V_{T+}-V_{T-}$	Hysteresis RESET			0.5	0.7	V
$V_{T+}-V_{T-}$	Hysteresis X _{IN}		0.1		0.5	V
I _{IL}	"L" input current P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₅ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₇ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₃ , PWM	V _i =0V			-5	μА
I _{IL}	"L" input current RESET, XIN	V _i =0V			-5	μA
l _{iH}	"H" input current $P0_0 \sim P0_7$, $P1_0 \sim P1_5$, $P3_0 \sim P3_7$, $P5_0 \sim P5_3$	v ₁ =12 v			12	μА
I _{IH} ,	"H" input current $\overline{\text{RESET}}$, X_{IN} , $P2_0 \sim P2_7$, $P4_4 \sim P4_7$, $P5_4 \sim P5_7$, $P6_0 \sim P6_3$	V ₁ =5V			5	μA
V _{RAM}	RAM retention voltage	At clock stop	2			٧
Icc	Supply current	ϕ , X_{OUT} , and D-A pins opened, other pins at V_{SS} , and A-D converter in the finished condition $f(X_{IN})$ =8MHz Square wave		3	6	mA

$\textbf{A-D} \quad \textbf{CONVERTER} \quad \textbf{CHARACTERISTICS} \ \, (v_{cc} = 5v \pm 10\%, \, v_{ss} = Av_{ss} = 0v, \, T_a = -10 \sim 70^\circ C, \, f(x_{IN}) = 8MHz, \, unless \, otherwise \, noted)$

	Parameter	T-A	Limits			I Inst
Symbol		Test conditions	Mın	Тур	Max	Unit
	Resolution	V _{REF} =V _{CC}			8	Bits
	Absolute accuracy	V _{REF} =V _{CC}			±3	LSB
R _{LADDER}	Ladder resistance value	V _{REF} =V _{CC}	2		10	kΩ
t _{CONV}	Conversion time				25	μs
VIA	Analog input voltage		0		Vcc	V

$\textbf{D-A} \quad \textbf{CONVERTER} \quad \textbf{CHARACTERISTICS} \; (v_{cc} = 5v \pm 10\%, \, v_{ss} = Av_{ss} = 0v, \, T_{\textbf{a}} = -10 \sim 70^{\circ}\text{C}, \, f(\textbf{X}_{\text{IN}}) = 8\text{MHz}, \, \text{unless otherwise noted})$

		T-54 44		Limits		
Symbol	Parameter	Test conditions	Mın	Тур	Max	Unit
_	Resolution	V _{REF} =V _{CC}			8	Bits
_	Error in full scale range	V _{REF} =V _{CC}			±2	%
t _{su}	Setup time	V _{REF} =V _{CC}			3	μs
Ro	Output resistance	V _{REF} =V _{CC}	1	2	4	kΩ

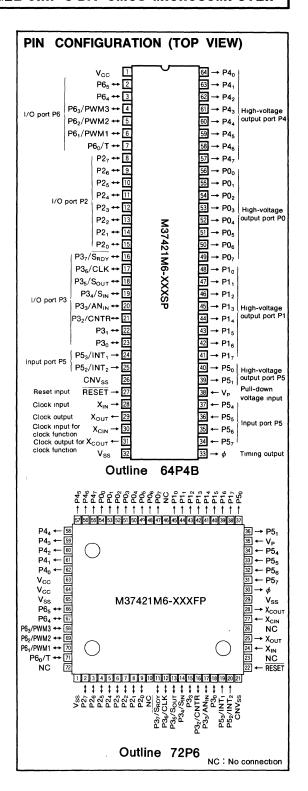
M37421M6-XXXSP/FP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

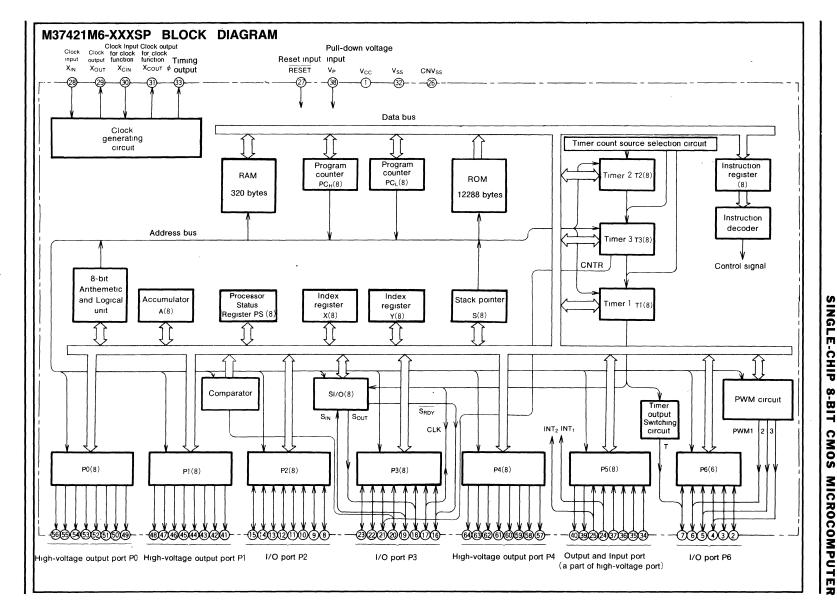
DESCRIPTION

The M37421M6-XXXSP is a single-chip microcomputer designed with CMOS silicon gate technology. It is housed in a 64-pin shrink plastic molded DIP (flat package type also available). This single-chip microcomputer is useful for business equipment and other consumer applications.

In addition to their simple instruction sets, the ROM, RAM, and I/O addresses are placed on the same memory map to enable easy programming.


The differences between the M37421M6-XXXSP and the M37421M6-XXXFP are the package outline and the power dissipation ability (absolute maximum ratings).

FEATURES


•	Number of bas	sic instructions 69
•	Memory size	ROM12288 bytes
		RAM 320 bytes
ullet	Instruction exe	ecution time
	$\cdots \cdot 0.95 \mu$ s (minimum instructions, at 4.2MHz frequency)
•	Single power	supply5V±10%
•	Power dissipa	tion
	normal oper	ation mode, at 4.2MHz frequency ··· 30mW
	low speed of	peration mode,
	at 32kHz fre	quency for clock function ······ 0.3mW
•		sting ······64 levels (Max.)
ullet	Interrupt	·····7 types, 5 vectors
•	8-bit timer ·····	······3 (2 when used as serial I/O)
•		e I/O ports (Ports P2, P3, P6) 22
•	Input ports (Po	orts P5 ₂ ~P5 ₇)6
•	High-voltage	
	(Ports P0, P	1, P4, P5 ₀ , P5 ₁) ····· 26
•		oit)1
•	PWM function	······14-bit×1
		6-bit×2
•	Two clock ger	nerator circuits (One is for main clock, the
	other is for clo	
•	Comparator ···	1
•	Generating fur	nction for clock input of EAROM

APPLICATION

Office automation equipment VCR, Tuner, Audio-visual equipment

MITSUBISHI MICROCOMPUTERS M37421M6-XXXSP/FP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

FUNCTIONS OF M37421M6-XXXSP

	Parameter		Functions	
Number of basic instructions			69	
Instruction execution time			0.95µs (minimum instructions, at 4.2MHz frequency)	
Clock frequency			4. 2MHz	
	ROM		12288 bytes	
Memory size	RAM		320 bytes	
	P0, P1, P4	Output	8-bit×3 (high-voltage P-channel open drain, V _{CC} -38V)	
	P2, P3	1/0	8-bit×2 (P3 can partially be used as among serial I/O, clock input	
			for timer 3 and normal I/O.)	
Input/output ports	P5 ₀ , P5 ₁	Output	2-bit×1 (high-voltage P-channel open drain, V _{CC} -38V)	
	P5 ₂ , P5 ₃	Input	2-bit×1 (can be used as an input for either INT ₂ or INT ₁ .)	
	P5 ₄ ~P5 ₇	Input	4-bit×1	
	P6	1/0	6-bit×1 (can be used as T ₁ output or PWM output)	
Serial I/O			8-bit×1	
Timers			8-bit timer×3 (×2, when used as serial I/O)	
Subroutine nesting			64 levels (max)	
Interrupt			Two external interrupts, three internal timer interrupts	
mterrupt			(or timer×2, serial I/O×1)	
Clock generating circuit			Two built-in circuits (externally connected ceramic or quartz crystal oscillator)	
Supply voltage (Note)			2.7~5.5V	
	at high-speed operation		30mW (clock frequency X _{IN} =4, 2MHz)	
Power dissipation	at low-speed operation		0.3mW (clock frequency X _{CIN} =32kHz)	
	at stop mode		5μW (when clock is stopped)	
· ·			12V (input/output P2, P3, P5 ₂ , P5 ₃ except P3 ₃)	
	Input/Output voltage		V _{CC} -38V (P0, P1, P4, P5 ₀ , P5 ₁)	
			-0.3V~V _{cc} +0.3V (input/output P3 ₃ and P6)	
Input/Output characteristics			10mA (P2, P3 N-channel open drain)	
	Output current		-18mA (P0, P1 high-voltage P-Channel open drain)	
	Output current		-12mA (P4, P5 ₀ , P5 ₁ high-voltage P-Channel open drain)	
			0.5~-0.5mA (P6 CMOS tri-states)	
Operating temperature range			_10~70°C	
Device structure			CMOS silicon gate process	
Package	M37421M6-XXXSP		64-pin shrink plastic molded DIP	
rachage	M37421M6-XXXFP		72-pin plastic molded QFP	

Note: At $f(X_{\text{IN}})=4$, 2MHz and $f(X_{\text{CIN}})=32$ kHz, selection of internal clock ϕ is guaranteed the following supply voltage $f(X_{\text{IN}})=4$, 2MHz ($\phi=2$, 1MHz): Voc =4,5~5,5V $f(X_{\text{CIN}})=32$ kHz ($\phi=16$ kHz): Voc =2,7~5,5V

MITSUBISHI MICROCOMPUTERS M37421M6-XXXSP/FP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

PIN DESCRIPTION

Pin	Name	Input/ Output	Functions	
V _{CC} , V _{SS}	Supply voltage	-	Power supply inputs 4.5~5.5V at $f(X_{IN})=4.2$ MHz and 2.7~5.5V below $f(X_{CIN})=32$ kHz to V_{CC} , and 0V to V_{SS}	
CNV _{ss}	CNV _{SS}		This is usually connected to V _{SS}	
V _P	Pull-down supply	Input	Pull down supply for the pull-down resistor of ports P0, P1, P4, P5 ₀ and P5 ₁	
RESET	Reset input	Input	To enter the reset state, the reset input pin must be kept at a "L" for more than 2µs (under normal conditions) If more time is needed for the crystal oscillator to stabilize, this "L" condition should be maintained for required time	
X _{IN}	Clock input	Input	This chip has an internal clock generating circuit. To control generating frequency, an external ceramic quartz crystal oscillator is connected between the X _{IN} and X _{OUT} pins. If an external clock is used, the concurs should be connected the X _{IN} pin and the X _{OUT} pin should be left open	
φ	Timing output	Output	This is the timing output pin ϕ =2MHz (when X _{IN} =4MHz)	
X _{CIN}	Clock input for clock	Input	This is the I/O pins of the clock generating circuit for the clock function. To control generating frequency,	
ACIN	function		an external ceramic or a quartz crystal oscillator is connected between the X _{CIN} and X _{COUT} pins. If an extend clock is used, the clock source should be connected to the X _{CIN} pin and the X _{COUT} pin should be	
Хсоит	Clock output for clock function	Output		
P0 ₀ ∼P0 ₇	Output port P0	Output	Port P0 is an 8-bit output port. Output structure is high-voltage P-channel open drain. A pull-down resistor is built in between the V_P pin and this port. At reset, this port is set to a "L" level	
P1 ₀ ~P1 ₇	Output port P1	Output	Port P1 is an 8-bit output port and has basically the same functions as port P0	
P2 ₀ ~P2 ₇	I/O port P2	1/0	Port P2 is an 8-bit I/O port with directional registers allowing each I/O bit to be individually programmed as input or output. At reset, this port is set to input mode. The output structure is N-channel open drain	
P3 ₀ ~P3 ₇	I/O port P3	1/0	Port P3 is an 8-bit I/O port and has basically the same functions as port P2. When serial I/O is used, P3, P36, P35, and P34 work as \overline{S}_{RDY} , CLK, S_{OUT} , and S_{IN} pins, respectively. P33 works as an analog input for comparator, and P32 works as a clock input for timer 3.	
P4 ₀ ~P4 ₇	Output port P4	Output	Port P4 is an 8-bit output port and has basically the same functions as port P0	
P5 ₀ , P5 ₁	Output port P5	Output	Bit 0 and 1 of port P5 are 2-bit output port and has basically the same functions as port P0	
P5 ₂ /INT ₂ , P5 ₃ /INT ₁	Input port P5	Input	Bit 2 and 3 of port P5 are 2-bit input port and are in common with interrupt inputs	
P5 ₄ ~P5 ₇		Input	Bit 4∼7 of port P5 are 4-bit input port	
P6 ₀ ~P6 ₇	I/O port P6	1/0	Port P6 is a 6-bit I/O port with directional registers allowing each I/O bit to be individually programmed as input or output. The output structure is CMOS tri-state output. P6 ₀ , P6 ₁ , P6 ₂ , P6 ₃ can be programmed to function as timer output pin (T), PWM output pins (PWM1, PWM2, and PWM3), respectively	

FUNCTIONAL DESCRIPTION Central Processing Unit (CPU)

The M37421 microcomputers use the standard MELPS 740 instruction set. For details of instructions, refer to the MELPS 740 CPU core basic functions, or the MELPS 740 Software Manual.

Machine-resident instructions are as follows: The FST and SLW instructions are not provided. The MUL and DIV instructions are not provided. The WIT instruction can be used The STP instruction can be used.

MEMORY

· Special Function Register (SFR) Area

The special function register (SFR) area contains the registers relating to functions such as I/O ports and timers.

• RAM

RAM is used for data storage as well as a stack area.

ROM

ROM is used for storing user programs as well as the interrupt vector area.

• Interrupt Vector Area

The interrupt vector area is for storing jump destination addresses used at reset or when an interrupt is generated.

Zero Page

Zero page addressing mode is useful because it enables access to this area with fewer instruction cycles.

Special Page

Special page addressing mode is useful because it enables access to this area with fewer instruction cycles.

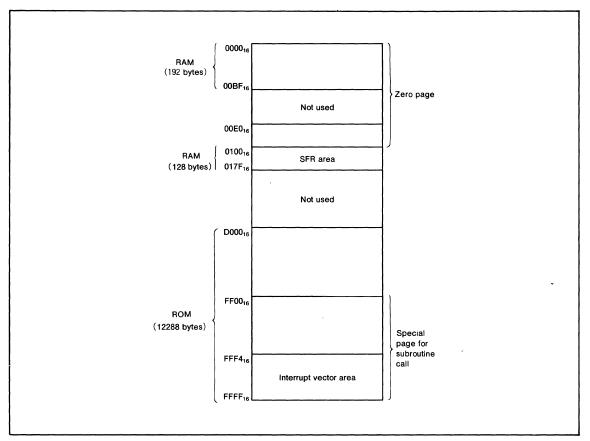


Fig.1 Memory map

MITSUBISHI MICROCOMPUTERS M37421M6-XXXSP/FP

00E0 ₁₆	Port P0	00F0 ₁₆	PWM1-H register	1
00E1 ₁₆		00F1 ₁₆	PWM1-L register	
00E2 ₁₆	Port P1	00F2 ₁₆	PWM2 register	
00E3 ₁₆		00F3 ₁₆	PWM3 register	
00E4 ₁₆	Port P2	00F4 ₁₆		
00E5 ₁₆	Port P2 directional register	00F5 ₁₆	PWM output mode register	
00E6 ₁₆		00F6 ₁₆	Serial I/O mode register	
00E7 ₁₆		00F7 ₁₆	Serial I/O register	
00E8 ₁₆	Port P3	00F8 ₁₆		
00E9 ₁₆	Port P3 directional register	00F9 ₁₆	Serial I/O register 2] .
00EA ₁₆	Port P4	00FA ₁₆	Timer 1	
00EB ₁₆		00FB ₁₆	Comparator register	
00EC ₁₆	Port P5	00FC ₁₆	Timer 2	
00ED ₁₆		00FD ₁₆	Timer 3	
00EE ₁₆	Port P6	00FE ₁₆	Interrupt control register	
00EF ₁₆	Port P6 directional register	00FF ₁₆	Timer control register	

Fig. 2 SFR (Special Function Register) memory map

INTERRUPT

The M37421M6-XXXSP can be interrupted from seven souces; INT₁, timer 3, timer 2, timer 1/serial I/O, or INT₂/BRK instruction.

The value of bit 2 of the serial I/O mode register (address $00F6_{16}$) determine whether the interrupt is from timer 1 or from serial I/O. When bit 2 is "0" the interrupt is from timer 1, and when bit 2 is "1" the interrupt is from serial I/O. Also, when the bit 2 is "1", parts of port P3 are used for serial I/O. These interrupts are vectored and their priorities are shown in Table 1. Reset is included in this table since it has the same functions as the interrupts.

When an interrupt is accepted, the contents of certain registers are pushed into specified locations, the interrupt disable flag I is set, the program jumps to the address specified by the interrupt vector, and the interrupt request bit is cleared automatically. The reset interrupt is the highest priority interrupt and can never be inhibited. Except for the reset interrupt, all interrupt are inhibited when the interrupt disable flag I is set to "1". All of the other interrupts can further be controlled individually via the interrupt control register shown in Figure 3. An interrupt is accepted when the interrupt enable bit and the interrupt request bit are both "1" and the interrupt disable flag is "0".

The interrupt request bits are set when the following conditions occur:

- (1) When the level of pins INT₁ and INT₂ change.
- (2) When the contents of timer 3, timer 2, timer 1 (or the serial I/O counter) go to "0"

These request bits can be reset by the program but cannot be set by the progream. However, the interrupt enable bit can be set and reset by the program.

Table 1. Interrupt vector address and priority

Interrupt	Priority	Vector address
RESET	1	FFFF ₁₆ , FFFE ₁₆
INT ₁	2	FFFD ₁₆ , FFFC ₁₆
Timer 3	3	FFFB ₁₆ , FFFA ₁₆
Timer 2	4	FFF9 ₁₆ , FFF8 ₁₆
Timer 1 or serial I/O	5	FFF7 ₁₆ , FFF6 ₁₆
INT ₂ (BRK)	6	FFF5 ₁₆ , FFF4 ₁₆

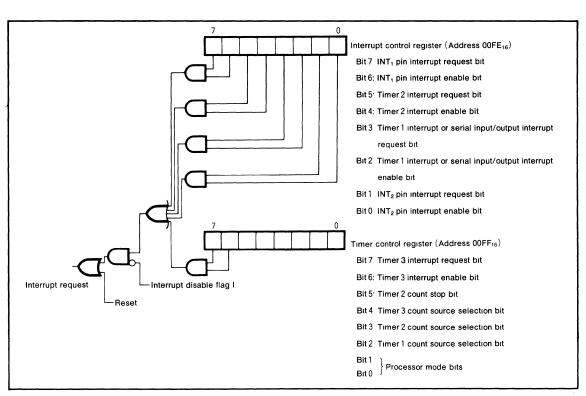


Fig.3 Interrupt control

The change in level at which the INT pins generate a interrupt varies according to the content of bits 4 and 5 of the PWM output mode register (address 00F5₁₆). When these bits are "0", the interrupt request is generated when INT changes from high-level to low-level. When these bits are "1", the interrupt request is generated when INT changes from low-level to high-level. Bits 4 (PM₄) and 5 (PM₅) correspond to INT₁ and INT₂ respectively.

Since the BRK instruction and the INT₂ interrupt have the same vectored address, the contents of the B flag must be checked to determine if the BRK instruction caused the interrupt or if INT₂ generated the interrupt.

TIMER

The M37421M6-XXXSP has three timers; timer 1, timer 2, and timer 3. Since P3 (in serial I/O mode) and timer 1 use some of the same architecture, they cannot be used at the same time (see serial I/O section). The count source for each timer can be selected by using bit 2, 3 and 4 of the timer control register (address 00FF₁₆), as shown in Figure 5.

A block diagram of timer 1 through 3 is shown in Figure 4. All of the timers are down count timers and have 8-bit latchs. When a timer counter reaches "0", the contents of the reload latch are loaded into the timer at the next clock pulse. The division ratio of the timers is 1/(n+1), where n is the contents of the timer latch.

The timer interrupt request bit is set to "1" at the next clock pulse after the timer reaches zero. The interrupt and timer control registers are located at addresses $00FE_{16}$ and $00FF_{16}$, respectively (see Interrupt section). The starting/stopping of timer 2 can be controlled by bit 5 of the timer control register. If bit 5 (address $00FF_{16}$) is "0", the timer starts counting and when bit 5 is "1", the timer stops. The count source of timer 3 can be controlled by bit 4 of the timer control register. If bit 4 (address $00FF_{16}$) is "1", the timer counts from the $P3_2/CNTR$ pin.

When the STP instruction is executed, or after reset, the timer 2 and timer 3 latch are set to FF_{16} and 07_{16} , respectivery.

After a STP instruction is executed, timer 2, timer 3, and the clock (ϕ divided by 4) are connected in series (regardless of the status of bit 2 through 4 of the timer control register). This state is canceled if the timer 3 interrupt request bit is set to "1", or if the system is reset. Before the STP instruction is executed, bit 5 of the timer control register (timer 2 count stop bit) and bit 4 of the interrupt control register (timer 2 interrupt enable bit) must be set to "0". For more details on the STP instruction, refer to the oscillation circuit section.

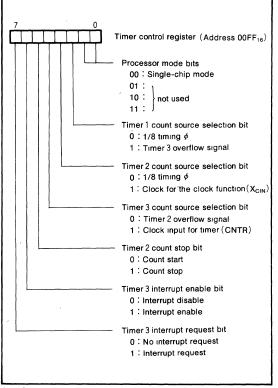


Fig.4 Structure of timer control register

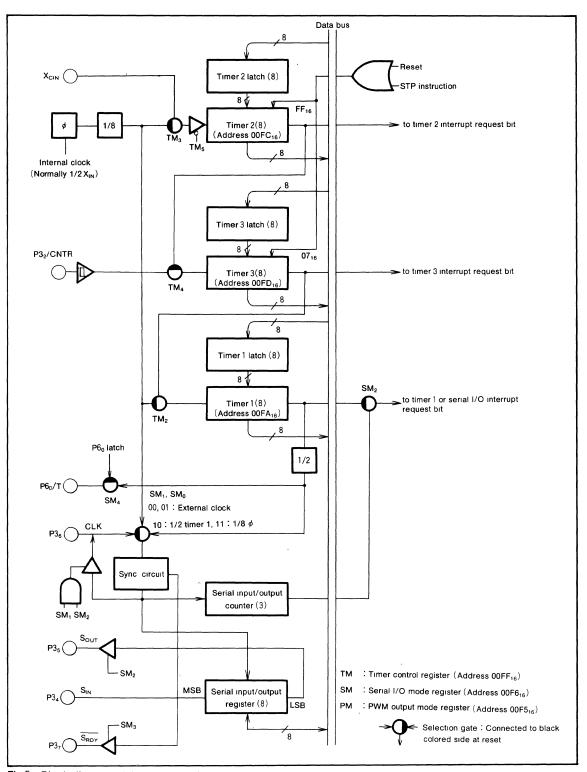


Fig.5 Block diagram of timer 1, timer 2, timer 3

SERIAL I/O

A block diagram of the serial I/O is shown in Figure 6. In the serial I/O mode the receive ready signal $(\overline{S_{RDY}})$, synchronous input /output clock (CLK), and the serial I/O pins (S_{OUT}, S_{IN}) are used as P3₇, P3₆, P3₅, and P3₄, respectively. The serial I/O mode register (address 00F6₁₆) is 8-bit register. Bits 1 and 0 of this register is used to select a synchronous clock source.

When these bits are (00) or (01), an external clock from P3₆ is selected. When these bits are (10), the overflow signal from timer 1, divided by two, becomes the synchronous clock. Therefore, changing the timer period will change the transfer speed. When the bits are (11), timing ϕ divided by 4, becomes the clock.

Bit 2 and 3 decide whether parts of P3 will be used as a serial I/O or not. When bit 2 is a "1", P3 $_6$ becomes an I/O pin of the synchronous clock. When an internal synchronous clock is selected, the clock is output from P3 $_6$. If an external synchronous clock is selected, the clock is input to P3 $_6$ and P3 $_5$ will be a serial output and P3 $_4$ will be a serial input. To use P3 $_4$ as a serial input, set the directional register bit which corresponds to P3 $_4$ to "0". For more information on the directional register, refer to the I/O pin section.

To use the serial I/O, bit 2 needs to be set to "1", if it is "0" $P3_6$ will function as a normal I/O. Interrupts will be generated from the serial I/O counter instead of timer 1. Bit 3 determines if $P3_7$ is used as an output pin for the receive data ready signal (bit 3=1, \overline{S}_{RDY}) or used as normal I/O pin

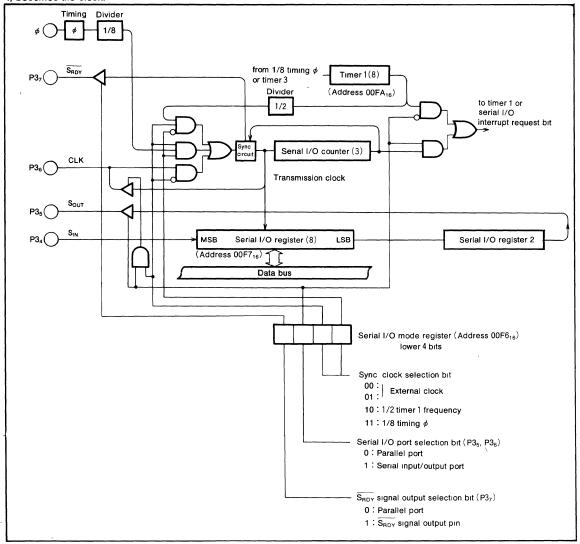


Fig.6 Block diagram of serial I/O

(bit 3=0). The serial I/O function is discussed below. The function of the serial I/O differs depending on the clock source; external clock or internal clock.

Internal clock—The $\overline{S_{RDY}}$ signal becomes "H" during transmission or while dummy data is stored in the serial I/O register (address $00F7_{16}$). After the falling edge of the write signal, the $\overline{S_{RDY}}$ signal becomes low signaling that the M37421M6-XXXSP is ready to receive the external serial data. When "H" level is input to CLK pin and the dummy data is written to serial I/O register 2, the output of $\overline{S_{OUT}}$ becomes "H" before/after the data transmission. The $\overline{S_{RDY}}$ signal goes "H" at the next falling edge of the transfer clock. The serial I/O counter is set to 7 when data is stored in the serial I/O register. At each falling edge of the transfer clock, serial data is output to P35. During the rising

edge of this clock, data can be input from P3₄ and the data in the serial I/O register will be shifted 1 bit.

Data is output starting with the LSB. After the transfer clock has counted 8 times, the serial I/O register will be empty and the transfer clock will remain at a high level. At this time the interrupt request bit will be set.

External clock—If an external clock is used, the interrupt request will be sent after the transfer clock has counted 8 times but transfer clock will not stop.

Due to this reason, the external clock must be controlled from the outside. The external clock should not exceed 250kHz at a duty cycle of 50%. The timing diagram is shown in Figure 7. An example of communication between two M37421M6-XXXSPs is shown in Figure 8.

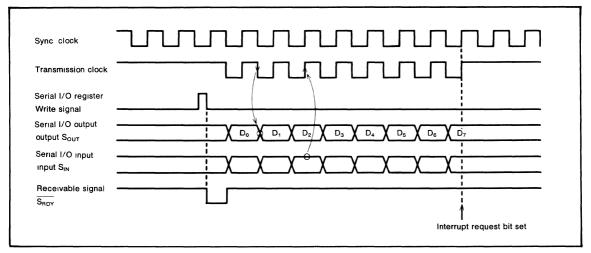


Fig.7 Serial I/O timing

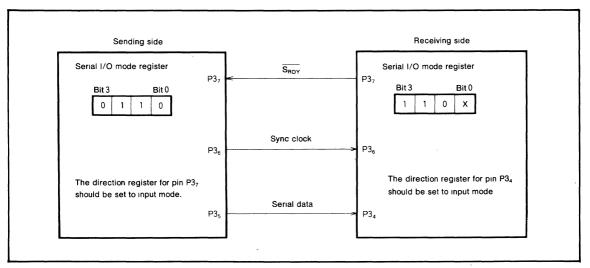


Fig.8 Example of serial I/O connection

PWM OUTPUT CIRCUIT

(1) Introduction

The M37421M6-XXXSP is equipped with one 14-bit PWM and two 6-bit PWMs. The 14-bit resolution gives PWM1 the minimum resolution bit width of 500ns (for $X_{\rm IN}$ =4MHz) and a repeat period of 8192 μ s. PWM2 and PWM3 have the same circuit configuration. PWM2 and PWM3 have a 6-bit resolution with minimum resolution bit width of 16 μ s and repeat period of 1024 μ s. The accuracy and operation guarantee range is Vcc = 4.5 \sim 5.5V regardless of the input frequency.

Block diagram of the PWM is shown in Figure 9.

The PWM timing generator section applies individual control signals to PWM $1 \sim 3$, using clock input $X_{\rm IN}$ divided by 2 as a reference signal.

(2) Data setting

The output pins PWM1, PWM2 and PWM3 are in common with pins P6₁, P6₂ and P6₃ of port P6 (i.e. for PWM output, PM1 ~ PM3 of the PWM control register and the P6 directional register D6₁ ~ D6₃ should be set). When PWM1 is used for output, first set the higher 8-bit of the PWM1-H register (address 00F0₁₆), then the lower 6-bit of the PWM1-L register (address 00F1₁₆). When either PWM2 or PWM3 is used for output, set the 6-bit in the PWM2 (address 00F2₁₆) or PWM3 (address 00F3₁₆) register, respectively. Note that the higher 2 bits of these 8-bit registers are ignored when used 6-bit register.

(3) Transferring data from registers to latches

The data written to the PWM registers is transferred to the PWM latches at the repetition of the PWM period. The signals output to the PWM pins correspond to the contents of these latches. When data at addresses $00F0_{16}\sim00F3_{16}$ is read, data in these latches has already been read allowing the data output by the PWM to be confirmed. When the 6-bit latch is being read, the upper 2 bits of the register becomes undefined. However, bit 7 of the PWM1-L register indicated the completion of the data transfer from the PWM1 register to the PWM1 latch. If bit 7 is "0", the transfer has been completed, if bit 7 is "1", the transfer has not yet begun.

(4) Operation of the 6-bit PWMs

The timing diagram of the two 6-bit PWMs (PWM2 and PWM3) is shown in Figure 10. One period (T) is composed of $64\ (2^6)$ segments.

There are six different pulse types configured from bits $0 \sim 5$ representing the significance of each bit. These are output within one period in the circuit internal section. Refer to Figure 10(a).

Six different pulses can be output from the PWM. These can be selected by bits 0 through 5. Depending on the content of the 6-bit PWM latch, pulses from $5\sim0$ is selected. The PWM output is the difference of the sum of each of these pulses. Several examples are shown in Figure 10(b). Changes in the contents of the PWM latch allows the selection of 64 lengths of highlevel area outputs varying from 0/64 to 63/64. An length of entirely high-level output cannot be output, i.e. 64/64.

(5) 14-bit PWM operation

The timing diagram of the 14-bit PWM1 is shown in Figure 11. The 14-bit PWM divides the data within the PWM latch into the lower 6 bits and higher 8 bits.

A high-level area within a length N times τ is output every short area of t=256× τ =128 μ s as determined by data N of the higher 8 bits. (Refer to PWM output ② in the lower part of Figure 11.)

Thus, the time for the high-level area is equal to the time set by the lower 8 bits or that plus τ . As a result, the short-area period t(= 128 μ s, approx. 7.8kHz) becomes an approximately repetitive period.

(6) Output after reset

At reset the output of port P6 is in the high impedance state and the contents of the PWM register and latch are undefined. Note that after setting the PWM register, its data is transferred to the latch.

Table 2. Relation between the 6 lower-order bits of data and the space set by the ADD bit

6 lower-order bits of data	Area longer by τ than that of other $t_m (m = 0 \sim 63)$
0 0 0 0 0 ^{LSB}	Nothing
000001	m=32
000010	m=16,48
000100	m=8,24,40,56
001000	m= 4, 12, 20, 28, 36, 44, 52, 60
010000	m=2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62
100000	m=1,3,5,7,57,59,61,63

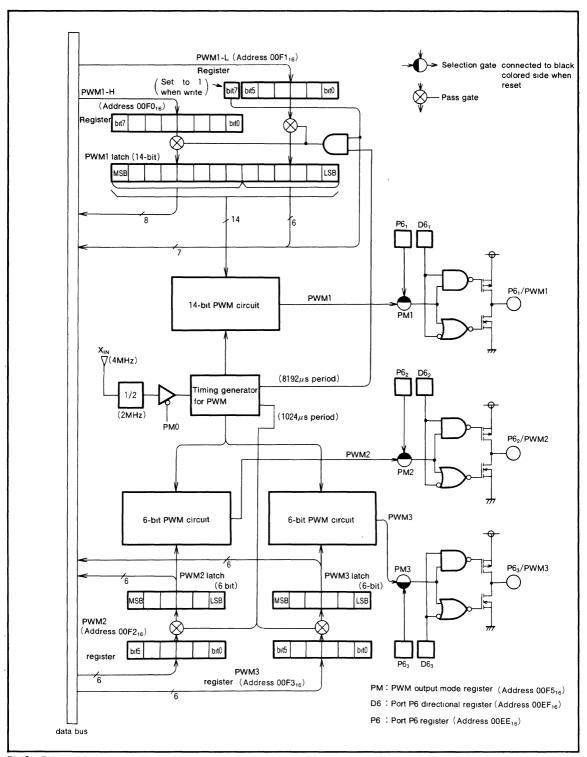


Fig.9 Bloock diagram of the PWM circuit

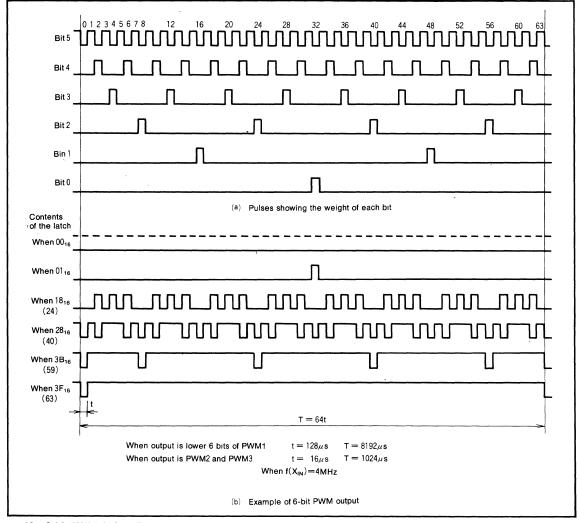


Fig.10 6-bit PWM timing diagram

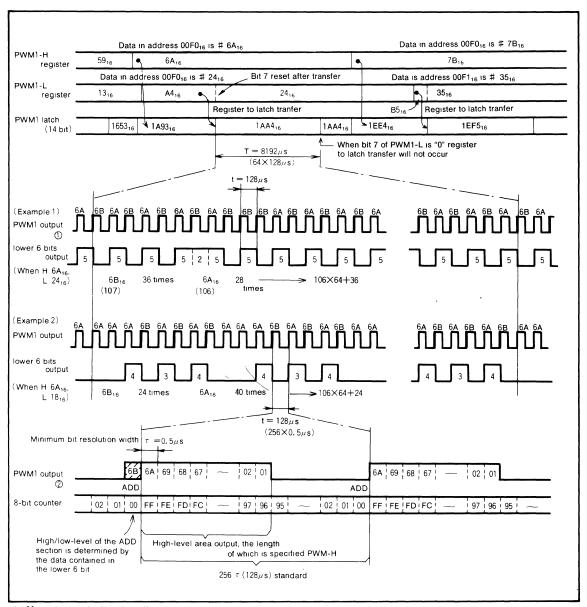


Fig.11 14-bit PWM timing diagram

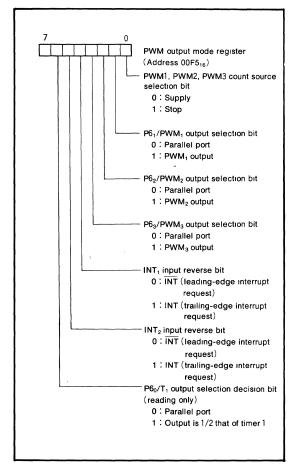


Fig.12 Structure of PWM output mode register

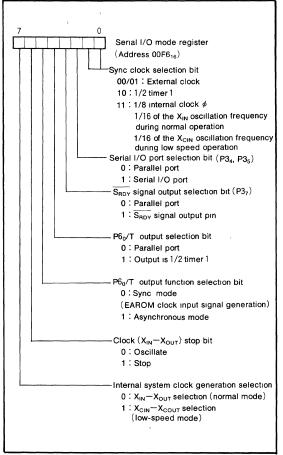
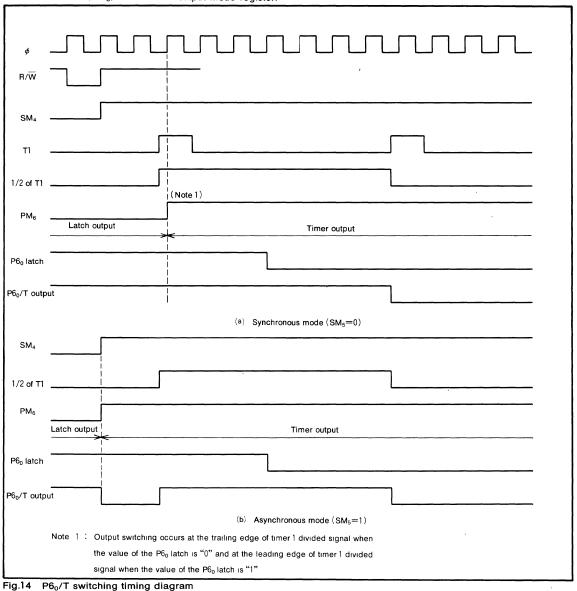


Fig.13 Structure of serial I/O mode register


PORT P6₀/TIMER 1 OUTPUT

Bit 0 of port P6 outputs 1/2 the frequency of timer 1 when $00F6_{16}$ bit 4 of the serial I/O mode register (address $00F6_{16}$) is changed. The output switching can be accomplished with either of two procedures, synchronous mode or asynchronous mode, depending on the setting of bit 5 (SM₅) of the serial I/O mode register.

When SM_5 is set to "0" the synchronous mode is set. In such a case, after SM_4 has been changed, synchronization is set to the 1/2 frequency of timer 1 and switching between the port latch and timer takes place. It is possible to ascertain whether switching actually occurred by reading the value of bit 6 (PM_6) of the PWM output mode register.

From the time that the contents of SM_4 was changed to the point where switching completes, the contents of neither SM_4 nor $P6_0$ may be changed. Use of the synchronous mode prevents the generation of a pulse shorter than the timer output during swiching. Figure 14 (a) gives an example of timing in the synchronous mode. Use of the synchronous mode allows generation of an EAROM clock input signal through the use of a simple program.

When SM_5 is set to "1", the asynchronous mode is set. In this case, the output switching occurs directly after SM_4 has been changed. Figure 14 (b) gives an example of timing in the asynchronous mode.

MITSUBISHI

M37421M6-XXXSP/FP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

COMPARATOR CIRCUIT

The comparator circuit is shown in Figure 15. The comparator circuit consists of the switch tree, ladder resistor, comparator, comparator control circuit, comparator register (address 00FB₁₆), and analog signal input pin (P3₃/AN_{IN}). The analog input pin is common with the digital input/out-put terminal to the data bus.

The 5-bit comparator register can generate $1/16V_{\rm CC}$ -step internal analog voltage, based on the settings of bits 0 to 3. Table 3 gives the relation between the descriptions of comparator register bits 0 to 3 and the generated internal anolog voltage. The comparator result of the analog input voltage and the internal analog voltage is stored in the comparator register, bit 4.

The data is compared by setting the directional register corresponding to board P3 $_3$ to "0" (board P3 $_3$ enters the input mode), to allow board P3 $_3$ /AN $_{\rm IN}$ to be used as the analog input pin. The digital value corresponding to the internal analog voltage to be compared is then written in the comparision register (address $00{\rm FB}_{16}$), bits 0 to 3. The voltage comparision starts as soon as the writing is completed. 4-cycle (required for comparating) later, the result of comparision is stored in the comparator register, bit 4. Bit 4 is "1" when analog input voltage > internal analog voltage and "0" when analog input voltage < internal analog voltage.

When voltage is compared to by setting bits 0 to 3 of the comparator register "0", bit 4 of the comparator register becomes "1" regardless of the analog input voltage.

Table 3. Relationship between the contents of comparator register and internal voltage

C	Comparator register			Internal analog voltage
bit 3	bit 2	bit 1	bit 0	Internal analog voltage
0	0	0	1	1/16V _{cc} -1/32V _{cc}
0	0	1	0	2/16V _{cc} -1/32V _{cc}
0	0	1	1	3/16V _{cc} -1/32V _{cc}
0	1	0	0	4/16V _{CC} -1/32V _{CC}
0	1	0	1	5/16V _{CC} -1/32V _{CC}
0	1	1	0	6/16V _{cc} -1/32V _{cc}
0	1	1	1	7/16V _{cc} -1/32V _{cc}
1	0	0	0	8/16V _{cc} -1/32V _{cc}
1	0	0	1	9/16V _{CC} -1/32V _{CC}
1	0	1	0	10/16V _{cc} 1/32V _{cc}
1	0	1	1	11/16V _{cc} -1/32V _{cc}
1	1	0	0	12/16V _{cc} -1/32V _{cc}
1	1	0	1	13/16V _{cc} -1/32V _{cc}
1	1	1	0	14/16V _{cc} -1/32V _{cc}
1	1	1	1	15/16V _{cc} -1/32V _{cc}

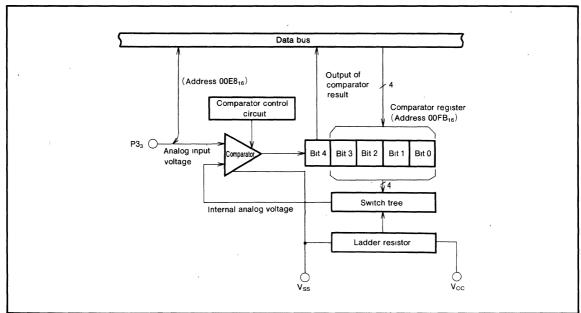


Fig.15 Comparator Circuit

RESET CIRCUIT

For the reset sequence of the M37421M6-XXXSP, one of the two modes can be selected by mask option: the normal operation start mode which executes reset by normal operation ($f(X_{IN}) = 4.2 MHz$) and the low-speed operation start mode which executes reset by low-speed operation ($f(X_{CIN}) = 32 \text{ kHz}$).

In the normal operation start mode, the supply voltage is $4.5{\sim}5.5$ V and when the RESET pin is held at "L" for 2 μ s or more and returned to "H", reset is cleared according to the sequence shown in Figure 18. Both X_{IN} clock and X_{CIN} clock start oscillating. To generate the time of waiting for stabilization of X_{IN} clock oscillation, timer 2 and timer 3 are connected and the resulting signal divided by 16 is counted 2048 times to clear the internal reset state. Then, the program starts from the address with the contents of address FFFF₁₆ being the higher address and the contents of address FFFE₁₆ being the lower address.

In the low-speed operation start mode, the supply voltage is $2.7 \sim 5.5$ V and when the RESET pin is held at "L" for

ing to the sequence shown in Figure 19. At this time, X_{IN} clock does not start oscillating. To generate the time of waiting for stabilization of X_{CIN} clock oscillation, timer 2 and timer 3 are connected and X_{CIN} is counted 2048 times to clear the internal reset state. Then, the program starts from the address with the contents of address FFFF₁₆ being the higher address and the contents of address FFFE₁₆ being the lower address. If X_{CIN} clock is stable, the wait time is about 62.5ms ($f(X_{\text{CIN}}) = 32.768 \text{ kHz}$). However, immediately after power-on, the time required to start oscillation depends on the characteristic of the oscillator. The internal initializations following reset are shown in Figure 1.

2µs or more and returned to "H", reset is cleared accord-

The internal initializations following reset are shown in Figure 16. An example of the reset circuit is shown in Figure 17. The reset input voltage must be kept below 0.6V until the supply voltage surpasses 4.5V at the normal operation start mode, and below 0.5V until the supply voltage surpasses 2.7V at the low-speed operation start mode. When selecting the ϕ output to stop, the output of ϕ pin becomes "H" level from "L" level at internal reset clear.

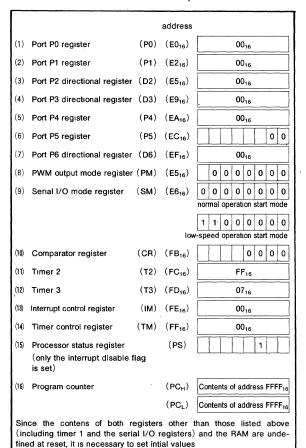


Fig. 16 Internal state of microcomputer at reset

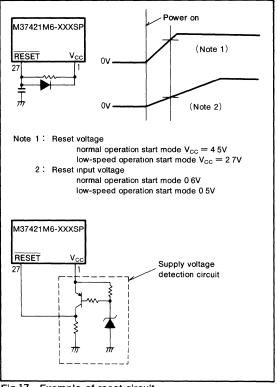


Fig.17 Example of reset circuit

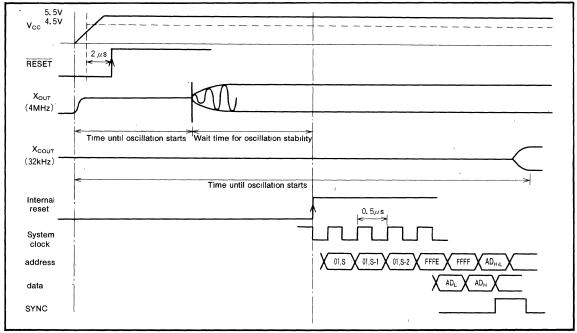


Fig.18 Reset sequence at normal operation start mode

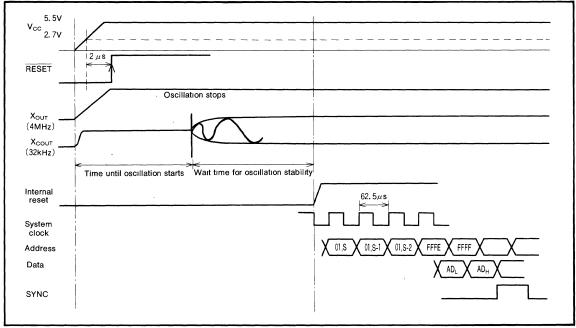


Fig.19 Reset sequence at low-speed operation start mode

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

I/O PORTS

(1) Port P0

Port P0 is an 8-bit output port with high-breakdown voltage P-channel open drain outputs featuring a breakdown voltage of $V_{\rm CC}$ -38V. Each pin contains a pull-down resistor making $V_{\rm P}$ a negative power source. As shown in the memory map in Figure 1, port P0 is used on the zero page at address $00E0_{16}$ in memory.

(2) Port P1

Port P1 has the same functions as port P0.

(3) Port P2

Port P2 is an 8-bit I/O port with N-channel open drain outputs. As shown in Figure 1, port P2 is used at address 00E4₁₆ in the memory.

Port P2 has a data direction register (address 00E5₁₆ on zero page) and programming can be undertaken for an individual bit to use the port for input or output. The pins where the data direction register is programmed to "1" are for output and those where the register is programmed to "0" are for input.

The data written into the pin programmed as an output pin are written into the port latch and supplied directly to the output pin. When reading the data from a pin programmed as an output pin, it is not the output pin contents which are read but the port latch contents. Consequently, since an LED or other similar part is driven directly, the value output previously can be read correctly even if the low-level output voltage goes high. The pin programmed as an input pin remains floating, so external signals can be read. When data is written, it is written into the port latch only and the pin remains floating.

(4) Port P3

Apart from the fact that part of the pins are also used as serial input/output pins, analog input pin and timer 3 clock input pin, its functions are the same as those of port P2.

(5) Port P4

Port P4 has the same functions as port P0.

(6) Port P5

Bits 0 and 1 of port P5 have the same functions as port P4

Bits 2 and 3 are exclusively used as inputs for mutual use as interrupt inputs. These pins feature hysteresis characteristics. These pins can also be used for fetching inputs even when being used as interrupt inputs.

The interrupt request bits (bit 7 and 1 of address $00FE_{16} = INT_1$ and INT_2 , respectively) are set to "1" when the inputs of ports $P5_3$ (INT_1) and $P5_2$ (INT_2) change. Depending on the contents of bits 4 and 5 of the PWM output mode register PM (address $00F5_{16}$), either a raising-edge interrupt or a falling-edge interrupt may be selected as the interrupt source. (Refer to Figure 12.)

Since interrupt input and normal input ports are used together in the M37421M6-XXXSP, unwanted noise may mistakenly cause interrupts. This problem can be overcome by programming.

When changing either bit $4 \, (PM_4)$ or bit $5 \, (PM_5)$ of the PWM output mode register, it is necessary for the interrupt request enable bit (either bit 6 or 0 of address $00FE_{16}$) to be set to the interrupt disable condition ("0"). If this is not done, an interrupt will be generated when either PM_4 or PM_5 is changed.

Bits 4 through 7 of port P5 is a 4-bit input port.

(7) Port P6

Port P6 is a 6-bit I/O port having the same functions as Port P2. The output is CMOS three-state. Bit 0 is used in common with the timer output. Bits $1\sim3$ are used in common with PWMs $1\sim3$.

A block diagram of ports P0 through P6 are shown in Figure 19.

(8) Clock φ output pin

The clock frequency, divided by two, is output (X_{IN}) . However, in the low-speed mode 1/2 the clock frequency for timer (X_{CIN}) is output. RESET_{OUT} signal can be output by option.

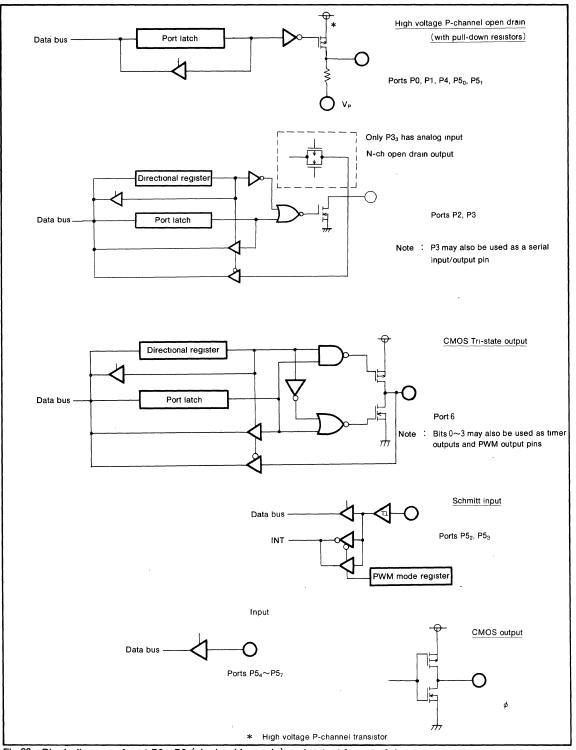


Fig.20 Block diagram of port P0 \sim P6 (single-chip mode) and output format of ϕ

CLOCK GENERATING CIRCUIT

The M37421M6-XXXSP has two internal clock generating circuits. Figure 23 shows a block diagram of the clock generating circuits. The internal ϕ after reset can be selected by option, the normal operation start mode and the low-speed operation start mode.

The frequency applied to the $X_{\rm IN}$ pin divided by two is used as the internal clock at the normal operation start mode. The frequency applied to the $X_{\rm CIN}$ pin divided by two is used as the internal clock at low-speed operation mode.

Both X_{IN} and X_{CIN} clocks start oscillation after reset at normal operation start mode. Bit 7 of serial I/O mode register (SM₇) can be used to switch the internal clock ϕ to 1/2 the frequency applied to the X_{CIN} pin. When using X_{CIN} clock pin is connected to Vss and leave the X_{OUT} pin open.

Only X_{CIN} clock starts oscillation after reset at low-speed operation start mode and starts by low-speed operation. Bit 6 of the serial I/O mode register (SM_6) must be set to "0" then bit 7 (SM_7) must be set to "0" to switch ϕ to the normal operation mode. However, the wait time until the oscillation stabilizes must be generated with a program at this case.

Figure 21 shows a circuit example using a ceramic (or crystal) oscillator. Use the manufacturer's recommended values for constants such as capacitance which will differ depending on each oscillator. When using an external clock signal, input from the $X_{IN}(X_{CIN})$ pin and leave the X_{OUT} (X_{COUT}) pin open. A circuit example is shown in Figure 22. The M37421M6-XXXSP has two low power dissipation modes; stop and wait. The microcomputer enters a stop mode when the STP instruction is executed. The oscillator (both X_{IN} clock and X_{CIN} clock) stops with the internal clock ϕ held at "H" level. In this case timer 2 and timer 3 are forcibly connected and $\phi/4$ is selected as timer 2 input. When restarting oscillation, FF₁₆ is automatically set in timer 2 and 07₁₆ in timer 3 in order to enable the oscillator to stabilize. Before executing the STP instruction, the timer 2 count stop bit must be set to supply ("0"), timer 2 interrupt enable bit and timer 3 interrupt enable bit must be set to disable ("0"), and timer 3 interrupt request bit must be set to no request ("0").

Oscillation is restarted (release the stop mode) when INT_1 , INT_2 , or serial I/O interrupt is received. The interrupt enable bit of the interrupt used to release the stop mode must be set to "1". When restarting oscillation with an interrupt, the internal clock ϕ is held "H" until timer 3 overflows and is not supplied to the CPU. When oscillation is restarted by reset, "L" level must be kept to the \overline{RESET} pin until the oscillation stabilizes because no wait time is generated.

The microcomputer enters a wait mode when the WIT instruction is executed. The internal clock ϕ stops at "H" level, but the oscillator does not stop. ϕ is re-supplied (wait mode release) when the microcomputer is reset or when it recieves an interrupt.

Instructions can be executed immediately because the oscillator is not stopped. The interrupt enable bit of the interrupt used to reset the wait mode must be set to "1" before executing the WIT instruction.

Low power dissipation operation is also achieved when the X_{IN} clock is stopped and the internal clock ϕ is generated from the X_{CIN} clock (200 μ A or less at f(X_{CIN})=32kHz). X_{IN} clock oscillation is stopped when the bit 6 of serial I/O mode register (address 00F6₁₆) is set and restarted when it is cleared. However, the wait time until the oscillation stabilizes must be generated with a program when restarting. An "L" level must be kept to the RESET pin unit the oscillation stabilizes when resetting while the X_{IN} clock is stopped. Figure 24 shows the transition of states for the system clock.

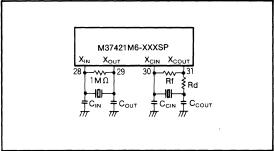


Fig.21 Example ceramic resonator circuit

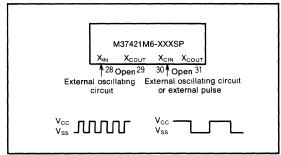


Fig.22 Example clock input circuit

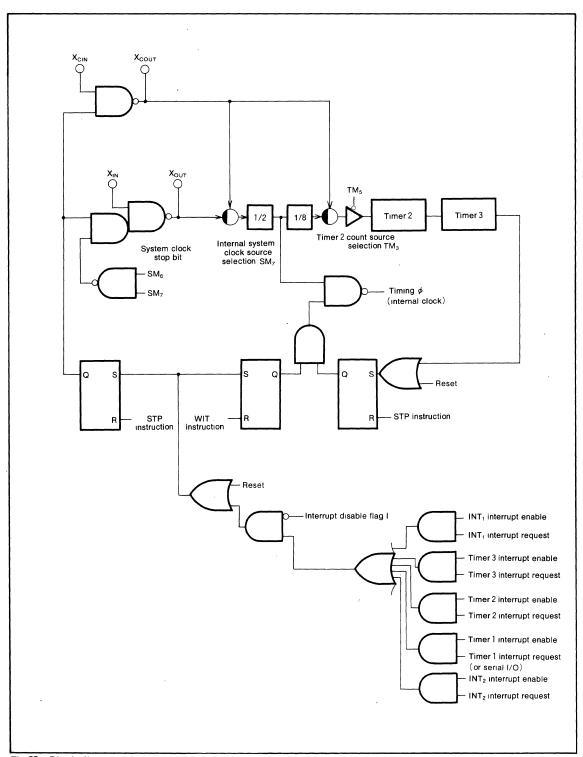


Fig.23 Block diagram of clock denerating circuit

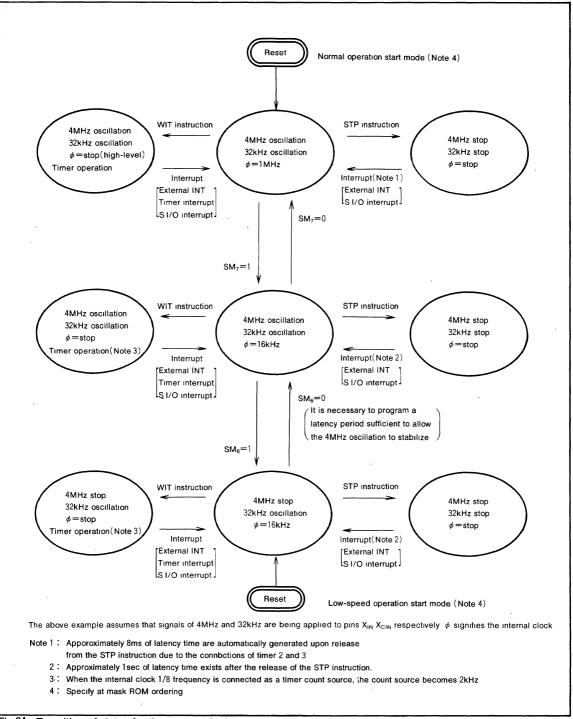
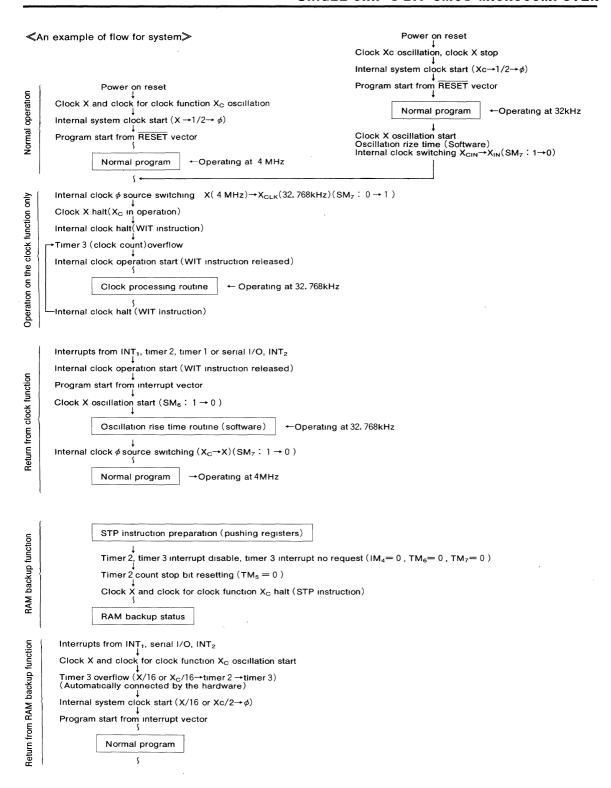



Fig.24 Transition of states for the system clock

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

PROGRAM NOTES

- The frequency ratio of the timer and the prescaler is 1/ (n+1).
- (2) Even though the BBC and BBS instructions are executed after the interrupt request bits are modified (by the program), those instructions are only valid for the contents before the modification. Also, at least one instruction cycle must be used (such as a NOP) between the modification of the interrupt request bits and the execution of the BBC and BBS instructions.
- (3) When \$\phi/4\$ or it divided by timer are used as clock for timer, the contents of the timer can be read at voluntary timing.
 - However, when an other clock (except above clocks) is input to timer, read the contents of timer either while the input of the timer is not changing or after timer count is stopped.
- (4) After the ADC and SBC instructions are executed (in decimal mode), one instruction cycle (such as a NOP) is needed before the SEC, CLC, or CLD instructions are executed.
- (5) A NOP instruction must be used after the execution of a PLP instruction.

DATA REQUIRED FOR MASK ORDERING

Please send the following data for mask orders.

- (1) mask ROM confirmation form
- (2) mark specification form
- (3) ROM data ······ EPROM 3 sets

Write the following option on the mask confirmation form

- (1) ϕ output stop option
- (2) Internal reset timing option

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		−0.3~7	٧
V _P	Pull-down input voltage	,	V _{cc} -40~V _{cc} +0.3	V
Vı	Input voltage, P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₂ , P3 ₄ ~P3 ₇ , CNV _{SS} , P5 ₂ /INT ₂ , P5 ₃ /INT ₁		−0.3~13	V
Vı	Input voltage, RESET, X _{IN} , X _{CIN}	With respect to V _{SS} .	−0.3~7	V
Vi	Input voltage, P6 ₀ ~P6 ₅ , P3 ₃	Output transistors cut-off	$-0.3 \sim V_{cc} + 0.3$	٧
Vı	Input voltage, P5 ₄ ~P5 ₇		−0.3~13	٧
Vo	Output voltage, P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₂ , P3 ₄ ~P3 ₇		−0.3~13	٧
Vo	Output voltage, P6 ₀ ~P6 ₅ , X _{OUT} , X _{COUT} , φ, P3 ₃		$-0.3 \sim V_{CC} + 0.3$	V
Vo	Output voltage, P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P4 ₀ ~P4 ₇ , P5 ₀ , P5 ₁	,	V _{cc} -40~V _{cc} +0.3	٧
Pd	Power dissipation	T _a = 25℃	1000(Note 1)	mW
Topr	Operating temperature		−10~70	င
Tstg	Storage temperature		−40~125	င

Note 1: 600mW for QFP types

RECOMMENDED OPERATING CONDITIONS ($V_{cc}=5V\pm10\%$, $T_a=-10\sim70^{\circ}C$, unless otherwise noted)

Symbol	Parameter			Limits			
Symbol	Faramen	ər	Mın	Тур	Max	Unit	
V	Supply voltage	f(X _{IN})=4.2MHz	4.5	5	5.5	٧	
V _{cc}	Supply voltage	f(X _{CIN})=32kHz	2.7	5	5.5	٧	
V _P	Pull-down supply voltage		V _{CC} -38		V _{CC}	٧	
V _{SS}	Supply voltage		0		٧		
V _{IH}	"H" input voltage $P2_0 \sim P2_7$, $P3_0 \sim P5_2/INT_2$, $P5_3 \sim P5_2/INT_2$	~P3 ₇ , CNV _{SS} (Note 1) /INT ₁ , P6 ₀ ~P6 ₅	0.75V _{CC}		V _{CC}	V	
V _{IH}	"H" input voltage RESET, XIN,	0.8V _{CC}		V _{cc}	٧		
ViH	"H" input voltage P5 ₄ ~P5 ₇		0.4V _{CC}	,	V _{cc}	٧	
V _{IL}	"L" input voltage P2 ₀ ~P2 ₇ , P3 ₀ P5 ₂ /INT ₂ , P5 ₃	~P3 ₇ , CNV _{SS} /INT ₁ , P6 ₀ ~P6 ₅	0		0.25V _{CC}	V	
V _{IL}	"L" input voltage RESET				0.12V _{CC}	V	
V _{IL}	"L" input voltage X _{IN} , X _{CIN}		0		0.16V _{cc}	٧	
VIL	"L" input voltage P5 ₄ ~P5 ₇		0		0.12V _{CC}	٧	
I _{OH(sum)}	"H" sum output current $P0_0 \sim P0_0$ P5 ₀ , P5				-120	mA	
I _{OH(sum)}	"H" sum output current P60~P6	S ₅			-5	mA	
I _{OL(Sum)}	"L" sum output current P20~P2	27, P3 ₀ ~P3 ₇ , P6 ₀ ~P6 ₅			50	mA	
I _{он(peak)}	"H" peak output current P00~F	204			-40	mA	
I _{OH} (peak)	"H" peak output current P05~F	PO ₇ , P1 ₀ ~P1 ₇			-30	mA	
I _{он(peak)}	"H" peak output current P40~F	P4 ₇ , P5 ₀ , P5 ₁			-24	mA	
I _{OH} (peak)	"H" peak output current P60~F	P6 ₅			-3	mA	
I _{OL(peak)}	"L" peak output current P2 ₀ ~P	2 ₇ , P3 ₀ ~P3 ₇			15	mA	
I _{OL(peak)}	"L" peak output current P60~P	65			3	mA	
I _{OH} (avg)	"H" average output current P00	~P0 ₇ , P1 ₀ ~P1 ₇			-18	mA	
I _{OH(avg)}	"H" average output current P40	~P4 ₇ , P5 ₀ , P5 ₁			-12	mA	
I _{OH} (avg)	"H" average output current P60	~P6 ₅			-1.5	mA	
l _{oL(avg)}	"L" average output current P20~F	P2 ₇ , P3 ₀ ~P3 ₇			10	mA	
I _{oL(avg)}	"L" average output current P60~F	P6 ₅			1.5	mA	
	Timer 3 counter clock input	f(X _{IN})=4. 2MHz			250	1.11-	
f _(P3₂/CNTR)	oscillation frequency (Note 2)	f(X _{CIN})=32kHz			50	kHz	
f(X _{IN})	Clock input oscillating frequence	y (Note 2, 3, 5)			4.2	MHz	
f(X _{CIN})	Clock oscillating frequency for	clock function		32. 768	50	kHz	

Note 1: High-level input voltage of up to $\pm 12V$ may be applied to permissible for ports $P2_0 \sim P2_7$, $P3_0 \sim$

P3₂, P3₄~P3₇, CNV_{SS}, P5₂ and P5₃

Oscillation frequency is at 50% duty cycle 3: When used in the low-speed mode, the timer clock input frequency should be $f(X_{CIN}) < f(X_{IN})/3$

4 : The average output current l_{oL(aVg)} and l_{oH(aVg)} are in period of 100ms
5 : When external clock input is used, the timer clock input frequency should be f(X_{CIN}) ≤ 50kHz

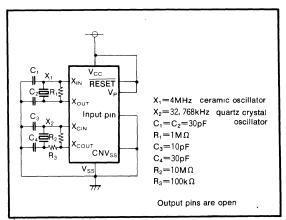
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

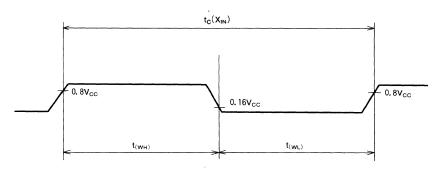
ELECTRICAL CHARACTERISTICS ($V_{cc} = 5V \pm 10\%$, $V_{ss} = 0V$, $T_a = 25^{\circ}C$, $f(X_{IN}) = 4MHz$, unless otherwise noted)

V _{ОН} "Н	Parameter		Test conditions		Limits			Linit	
		arameter	1630 00		Mın	Тур.	Max	Unit V V V V V V V V V V V V V	
VoH	"H" output voltage P60	~P6₅	I _{OH} =-0.5mA		V _{CC} -0.4			V	
V _{OH}	"H" output voltage		I _{OH} =-2.5mA		V _{cc} -2			V	
V _{OH}	"H" output voltage P00	~P0 ₇ , P1 ₀ ~P1 ₇	I _{OH} =-18mA		V _{cc} -2			٧	
V _{OH}	"H" output voltage P40	~P4 ₇ , P5 ₀ , P5 ₁	I _{OH} =-12mA		V _{cc} -2			٧	
VoL	"L" output voltage P20	~P2 ₇ , P3 ₀ ~P3 ₇	I _{OL} =10mA				2	٧	
VoL	"L" output voltage P60	~P6 ₅	I _{OL} =0.5mA				0.4	٧	
VoL	"L" output voltage ϕ		I _{OL} =2.5mA				2	V	
$V_{T+}-V_{T-}$	Hysteresis P52/INT2, P	5 ₃ /INT ₁			0.3		1	٧	
$V_{T+}-V_{T-}$	Hysteresis RESET					0.5	0.7	٧	
$V_{T+}-V_{T-}$	Hysteresis P3 ₆		When used as CLK in	nput	0.3		1	V	
I _{IL}	"L" input current P20~	P2 ₇ , P3 ₀ ~P3 ₇	V ₁ =0V				-5	μΑ	
I _{IL}	"L" input current P60~	P6 ₅	V ₁ =0V				- 5	μА	
l _{IL}	"L" input current P54~	P5 ₇	V ₁ =0V				-5		
I _{IL}	"L" input current RESE	T, X _{IN} , X _{CIN}	V _I =0V				5	μA	
l _{IL}	"L" input current P52/II	NT ₂ , P5 ₃ /INT ₁	V ₁ =0V				-5	μA	
		P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₇	V ₁ =5V				5		
l _{IH}	"H" input current	P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₂ , P3 ₃ ~P3 ₇	V ₁ =12V				12	2 μA 5 μA	
I _{IH}	"H" input current P60~		V _I =5V				5	μА	
	"H" input current P6 ₀ ~P6 ₅ "H" input current P5 ₄ ~P5 ₇	V ₁ =5V				5			
l _{IH}	"H" input current P5 ₄ ~	H" input current $P6_0{\sim}P6_5$ H" input current $P5_4{\sim}P5_7$					12	μΑ	
I _{IH}	"H" input current RESE	T, X _{IN} , X _{CIN}	V _I =5V	A., 15., 5., 15., 15., 15., 15.			5	μА	
	"H" input current P5 ₄ ~P5 ₇ "H" input current RESET, X _{IN} , X _{CIN} "H" input current P5 ₂ /INT ₂ , P5 ₃ /INT ₁	V ₁ =5V				5			
ин	"H" input current P5 ₂ /I	NT ₂ , P5 ₃ /INT ₁	V ₁ =12V				12	μA	
I _{LOAD}		P00~P07, P10~P17, P40~P47, P50, P51	V _P =V _{CC} -36V, V _{OL} =V	/ _{cc}	150	500	900	μА	
I _{LEAK}	"L" output current	P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P4 ₀ ~P4 ₇ , P5 ₀ , P5 ₁	V _P =V _{CC} -38V, V _{OL} =V	√ _{cc} −38V			30	μA	
V _{RAM}	RAM retention voltage		at clock stop		2		5.5		
			Output pins open (out	tput OFF)					
ļ			V _P =V _{CC} , V _P =V _{SS} Input a	•		6	12		
			X _{IN} =4MHz (system o					mA	
			ditto (at comparator n			6	12		
1			ditto (at wait mode)			1	ļ		
Icc	Supply current		X _{IN} -X _{OUT} stop					+	
'CC			X _{CIN} =32kHz (at system operation) all other			60	200		
			conditions same as al						
ļ			ditto (at wait mode)			40		μA	
ļ			Oscillation all stopped	Ta=25℃			1		
ļ			(at STOP mode)	Ta=70℃	 		10		

COMPARATOR CHARACTERISTICS (V_{cc}=5V±10%, V_{cc}=0V, T_a=25°C, f(X_{IN})=4MHz)

Dozometov		Unit		
Parameter	Min.	Тур	Max	Onit
Resolution			(1/16)V _{CC}	V
Internal analog voltage error	_	_	±(1/16)V _{CC}	V
Analog input voltage	0		Vcc	V




Fig.25 Supply current test circuit

TIMING REQUIREMENTS

Single-chip mode ($V_{cc} = 5V \pm 10\%$, $V_{ss} = 0V$, $T_a = 25\%$, $f(X_{IN}) = 4MHz$, unless otherwise noted)

Symbol	Parameter		Limits			
Symbol			Тур	Max	Unit	
t _{C(×IN)}	External clock input cycle time (X _{IN} input) 238		ns			
$t_{\mathbf{W}(\mathbf{x}_{ \mathbf{N}})}$	External clock input pulse width (X _{IN} input)	75		ns		
t _{C(XCIN)}	External clock input cycle time (X _{CIN})	2.0			ms	
t _{w(xcin)}	External clock input pulse width (X _{CIN})	1.0			ms	
tr	External clock rise time			25	ns	
tf	External clock fall time			25	ns	

Timing requirements of X_{IN}

Parameter	Mın.	Тур.	Max.	Unit
X _{IN} clock input cycle time tc(X _{IN})	238			
X _{IN} clock input pulse width "H" t _{WH}	tc×0.45		tc×0.55	ns
X _{IN} clock input pulse width "L" t _{WL}	tc×0.45		tc×0.55	

M37424M8-XXXSP M37524M4-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

DESCRIPTION

The M37424M8-XXXSP, M37524M4-XXXSP are single-chip microcomputers designed with CMOS silicon gate technology. They are housed in a 64-pin shrink plastic molded DIP.

This single-chip microcomputer is useful for business equipment and other consumer applications.

In addition to its simple instruction sets, the ROM, RAM, and I/O addresses are placed on the same memory map to enable easy programming.

The differences between the M37424M8-XXXSP and the M37524M4-XXXSP are noted below. The following explanations apply to the M37424M8-XXXSP.

Specification variations for other chips are noted accordingly.

Type name	Port P1 output structure
M37424M8-XXXSP	CMOS
M37524M4-XXXSP	N-channel open drain

FEATURES

•	Number of basic instructions······70
	68 MELPS 740 basic instructions ± 2 multiply/divide in-
	structions

•	Memory size	ROM1	6384	bytes
		RAM	256	bytes

•	Instruction execution time	
		ot ANALIT fr

	1,~0	\	 ٠.	 0 9 4 0 0	,
•	Single powe	r supply…	 • • • • •	 ··5V±10	1%

	_	-	-	-
•	Power	dissipatio	r	ì

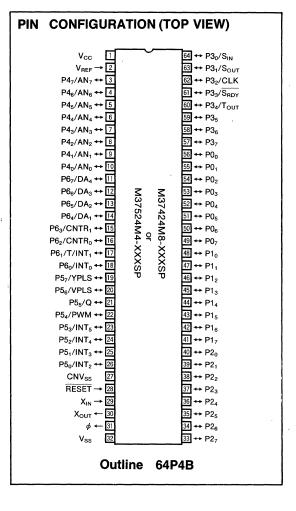
normal	operation	n mode	(at 4MHz	frequency)	 · 30m	W
					,	

•	Subroutine nesting	• • • • •	90 10	eveis	(wax.
	Interrupt	16	tyna	. 16	vector

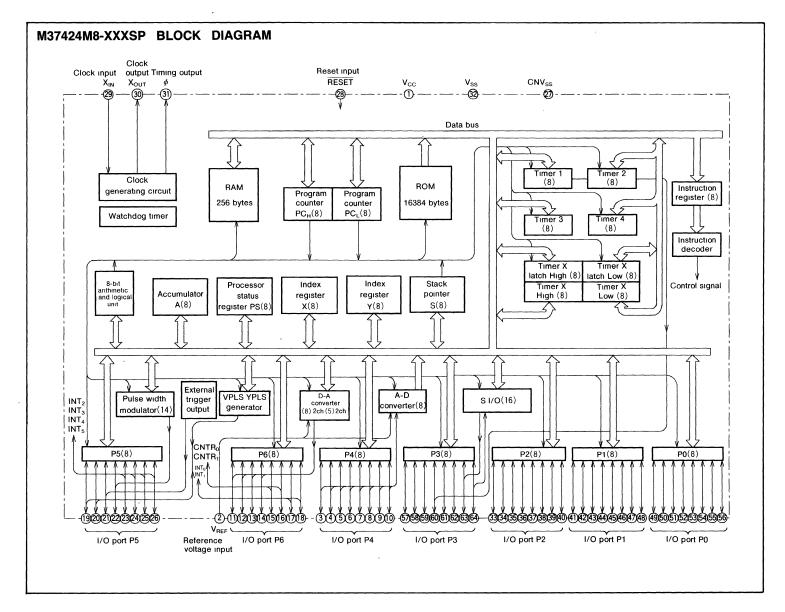
16-bit timer · · · · · · 1 Serial I/O (8-bit or 16-bit)------1

A-D converter (8-bit resolution) ······8-channel

D-A converter (5-bit resolution)2 D-A converter (8-bit resolution) ------2


Watchdog timer

External trigger output (1-bit) ························1 V pulse Y pulse generator


Programmable I/O ports

APPLICATION

Office automation equipment VCR equipment

MITSUBISHI MICROCOMPUTERS

M37424M8-XXXSP M37524M4-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

FUNCTIONS OF M37424M8-XXXSP

Parameter			Functions		
Number of basic instructions			70 (68 MELPS 740 basic instructions+2)		
Instruction execution time			1μs (minimum instructions, at 4MHz frequency)		
Clock frequency			4MHz		
Mamanualna	ROM		16384 bytes		
Memory size	RAM		256 bytes		
Input/Output ports	P0, P1, P2, P3, P4, P5, P6	1/0	8-brt×7		
Serial I/O			8-bit or 16-bit×1		
Timers			8-bit×4, 16-bit×1		
A-D conversion			8-bit×1 (8 channels)		
D-A conversion			5-bit×2, 8-bit×2		
Pulse width modulator			14-bit×1		
Watchdog timer			15-bit×1		
Subroutine nesting			96 levels (max)		
Interrupt			16 (external 8, Internal 8)		
Clock generating circuit			Built-in (ceramic or quartz crystal oscillator)		
Supply voltage			5V±10%		
Power dissipation			30mW (at 4MHz frequency)		
Operating temperature range			-10~70℃		
Device structure			CMOS silicon gate		
Package			64-pin shrink plastic molded DIP		

MITSUBISHI MICROCOMPUTERS

M37424M8-XXXSP M37524M4-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

PIN DESCRIPTION

Pın	Name	Input/ Output	Functions	
V _{CC} , V _{SS}	Supply voltage		Power supply inputs 5V \pm 10% to V $_{CC}$, and 0V to V $_{SS}$	
CNV _{ss}	CNV _{SS}		This is usually connected to V _{SS}	
V _{REF}	Reference voltage input	Input	Reference voltage input pin for A-D and D-A converter	
RESET	Reset input	Input	To enter the reset state, the reset input pin must be kept at a "L" for more than $4\mu s$ (under normal V_{CC} conditions). If more time is needed for the crystal oscillator to stabilize, this "L" condition should be maintained for the required time	
X _{IN}	Clock input	Input	This chip has an internal clock generating circuit. To control generating frequency, an external ceramic or a	
X _{OUT}	Clock output	Output	quartz crystal oscillator is connected between the X_{IN} and X_{OUT} pins. If an external clock is used, the clock source should be connected the X_{IN} pin and the X_{OUT} pin should be left open	
φ	Timing output	Output	This is the timing output pin	
P0 ₀ ~P0 ₇	I/O port P0	1/0	Port P0 is an 8-bit I/O port with directional register allowing each I/O bit to be individually programme input or output. At reset, this port is set to input mode. The output structure is CMOS output.	
P1 ₀ ~P1 ₇	I/O port P1	1/0	Port P1 is an 8-bit I/O port and has basically the same functions as port P0. The output structure M37424M8-XXXSP is CMOS output and that of M37524M4-XXXSP is N-channel open drain output.	
P2 ₀ ~P2 ₇	I/O port P2	1/0	Port P2 is an 8-bit I/O port and has basically the same functions as port P0. The output structure is CMOS output	
P3 ₀ ~P3 ₇	I/O port P3	1/0	Port P3 is an 8-bit I/O port and has basically the same functions as port P0. When serial I/O is used, P3 ₂ , P3 ₁ , and P3 ₀ work as $\overline{S_{RDY}}$, CLK, S _{OUT} , and S _{IN} pins, respectively. Also P3 ₄ works as T _{OUT} pin. The output structure is N-channel open drain	
P4 ₀ ~P4 ₇	I/O port P4	1/0	Port P4 is an 8-bit I/O port and has basically the same functions as port P0 P4 ₀ ~P4 ₇ work as analog in port AN ₀ ~AN ₇	
P5 ₀ ~P5 ₇	I/O port P5	1/0	Port P5 is an 8-bit I/O port and has basically the same functions as port P0 P5 ₇ , P5 ₆ , P5 ₅ , P5 ₄ and P5 ₃ ~P5 ₀ are in common with the YPLS output, VPLS output, Q output, PWM output and interrupt input respectively	
P6 ₀ ~P6 ₇	I/O port P6	1/0	Port P6 is an 8-bit I/O port and has basically the same functions as port P0 $P6_7 \sim P6_4$, $P6_3$, $P6_2$, and $P6_1$ $P6_0$ are in common with the D-A output, CNTR output and interrupt input respectively	

FUNCTIONAL DESCRIPTION CENTRAL PROCESSING UNIT (CPU)

The M37424, M37524 microcomputers use the standard MELPS 740 instruction set. For details of instructions, refer to the MELPS 740 CPU core basic functions, or the MELPS 740 Software Manual.

Machine-resident instructions are as follows:

The FST and SLW instructions are not provided.

The MUL and DIV instructions can be used.

The WIT instruction can be used.

The STP instruction are not provided.

CPU MODE REGISTER

The CPU mode register is allocated to address 00FB₁₆. This register has a stack page selection bit.

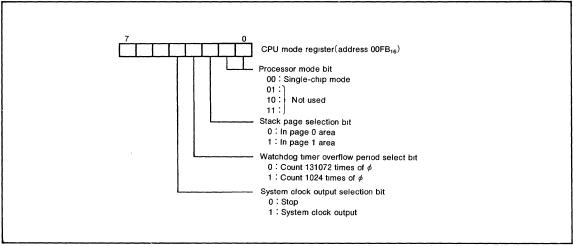


Fig.1 Structure of CPU mode register

MEMORY

- Special Function Register (SFR) Area
 The special function register (SFR) area contains the registers relating to functions such as I/O ports and timers.
- RAM

RAM is used for data storage as well as a stack area.

● ROM

ROM is used for storing user programs as well as the interrupt vector area.

● Interrupt Vector Area

The interrupt vector area is for storing jump destination addresses used at reset or when an interrupt is generated.

■ Zero Page

Zero page addressing mode is useful because it enables access to this area with fewer instruction cycles.

Special Page

Special page addressing mode is useful because it enables access to this area with fewer instruction cycles.

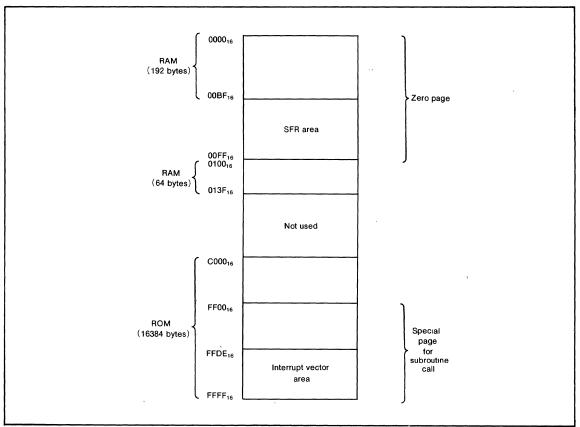


Fig.2 Memory map

MITSUBISHI MICROCOMPUTERS

M37424M8-XXXSP M37524M4-XXXSP

00C0 ₁₆	Port P0	00E0 ₁₆	
00C1 ₁₆	Port P0 directional register		
00C2 ₁₆	Port P1		
00C3 ₁₆	Port P1 directional register		/
00C4 ₁₆	Port P2		
00C5 ₁₆	Port P2 directional register		
00C6 ₁₆	Port P3		Reserved area
00C7 ₁₆	Port P3 directional register		Heserved area
00C8 ₁₆	Port P4		
00C9 ₁₆	Port P4 directional register		
00CA ₁₆	Port P5		
00CB ₁₆	Port P5 directional register		
00CC ₁₆	Port P6	00EC ₁₆	
00CD ₁₆	Port P6 directional register	00ED ₁₆	Interrupt polarity specification register
00CE ₁₆		00EE ₁₆	Special function selection register
	Reserved area	00EF ₁₆	Watchdog timer
00D0 ₁₆	, , , , , , , , , , , , , , , , , , , ,	00F0 ₁₆	Timer 1
00D1 ₁₆	D-A output enable register	00F1 ₁₆	Timer 2
00D2 ₁₆	D-A3 conversion register	00F2 ₁₆	Timer 3
00D3 ₁₆	D-A4 conversion register	00F3 ₁₆	Timer 4
00D4 ₁₆	Pulse width modulation register H	00F4 ₁₆	Timer X (low-order)
00D5 ₁₆	Pulse width modulation register L	00F5 ₁₆	Timer X (high-order)
00D6 ₁₆	V pulse preset value P	00F6 ₁₆	Timer X latch (low-order)
00D7 ₁₆	V pulse preset value N	00F7 ₁₆	Timer X latch (high-order)
00D8 ₁₆	V pulse control register	00F8 ₁₆	Timer 1, 2 mode register
00D9 ₁₆	A-D successive approximation register	00F9 ₁₆	Timer 3, 4 mode register
00DA ₁₆	A-D control register	00FA ₁₆	Timer X mode register
00DB ₁₆	D-A1 conversion register	00FB ₁₆	CPU mode register
00DC ₁₆	D-A2 conversion register	00FC ₁₆	Interrupt request register 1
00DD ₁₆	Serial I/O mode register	00FD ₁₆	Interrupt request register 2
00DE ₁₆	Serial I/O register L	00FE ₁₆	Interrupt control register 1
00DF ₁₆	Serial I/O register H	00FF ₁₆	Interrupt control register 2

Fig. 3 SFR (Special Function Register) memory map

M37424M8-XXXSP M37524M4-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

INTERRUPTS

Interrupts can be caused by 16 different events. Interrupts are vectored interrupts with priorities shown in Table 1. Reset is also included in the table because its operation is similar to an interrupt.

When an interrupt is accepted, the registers are pushed, interrupt inhibit flag I is set, and the program jumps to the address specified in the vector table. The interrupt request flag is cleared automatically. The reset and BRK instruction interrupt can never be inhibited. Other interrupt are disabled when the interrupt inhibit flag is set.

All interrupts except the BRK instruction interrupt have an interrupt request bit and an interrupt enable bit. The interrupt request bits are in interrupt request registers 1 and 2 and the interrupt enable bits are in interrupt control registers 1 and 2. Figure 5 shows the structure of the interrupt request registers 1 and 2, interrupt control registers 1 and 2 and interrupt polarity specification register.

For external interrupts (INT₀ to INT₅, CNTR₀, and CNTR₁), the polarity of each pin's interrupt input can be set. Polarity for INT₀ to INT₅ and CNTR₁ is set by bits 0 to 6 of the interrupt polarity specification register (address 00ED₁₆); polarity for CNTR₀ is set by bit 6 of the timer X mode register (address 00FA₁₆). If "0" is written to one of these bits, the corresponding interrupt request is falling-edge active; if "1" is written, the corresponding interrupt request is rising-edge active. INT₁ can also be set to be both rising-edge and falling-edge active by setting bit 7 of the interrupt polarity specification register to "1". The meaning of the CNTR₀ interrupt is different if it is used with timer X in pulse width measurement mode 1, pulse width measurement mode 2, or pulse period measurement mode. For details, see the section on timer X

Interrupts other than the BRK instruction interrupt and reset are accepted when the interrupt enable bit is "1", interrupt request bit is "1", and the interrupt inhibit flag is "0". The interrupt request bit can be reset with a program, but not set. The interrupt enable bit can be set and reset with a program.

Reset is treated as a non-maskable interrupt with the highest priority. Figure 4 shows interrupts control.

Table 1. Interrupt vector address and priority

Event	Priority	Vector addresses	Remarks
RESET	1	FFFF ₁₆ , FFFE ₁₆	Non-maskable
INT ₀ interrupt	2	FFFD ₁₆ , FFFC ₁₆	External interrupt (phase programmable)
INT ₁ Interrupt	3	FFFB ₁₆ , FFFA ₁₆	External interrupt (phase programmable)
INT ₂ interrupt	4	FFF9 ₁₆ , FFF8 ₁₆	External interrupt (phase programmable)
Timer 4 interrupt	5	FFF7 ₁₆ , FFF6 ₁₆	
Timer 1 interrupt	6	FFF5 ₁₆ , FFF4 ₁₆	
INT ₃ interrupt	7	FFF3 ₁₆ , FFF2 ₁₆	External interrupt (phase programmable)
CNTR ₁ interrupt	8	FFF1 ₁₆ , FFF0 ₁₆	External interrupt (phase programmablė)
INT ₄ interrupt	9	FFEF ₁₆ , FFEE ₁₆	External interrupt (phase programmable)
Timer X interrupt	10	FFED ₁₆ , FFEC ₁₆	
CNTR ₀ interrupt	11	FFEB ₁₆ , FFEA ₁₆	External interrupt (phase programmable)
Timer 2 interrupt	12	FFE9 ₁₆ , FFE8 ₁₆	
Timer 3 interrupt	13	FFE7 ₁₆ , FFE6 ₁₆	
Serial I/O interrupt	14	FFE5 ₁₆ , FFE4 ₁₆	
INT ₅ interrupt	15	FFE3 ₁₆ , FFE2 ₁₆	External interrupt (phase programmable)
A-D conversion completion interrupt	16	FFE1 ₁₆ , FFE0 ₁₆	
BRK instruction interrupt	17	FFDF ₁₆ , FFDE ₁₆	Non-maskable software interrupt

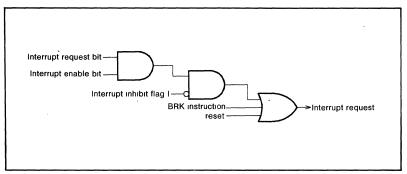


Fig.4 Interrupt control

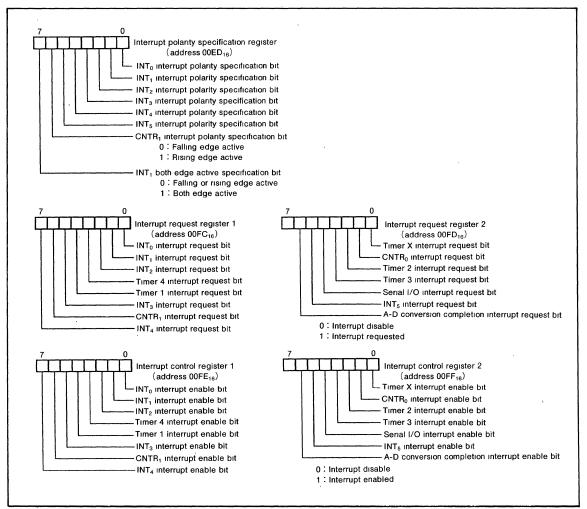


Fig.5 Structure of registers related to interrupt

TIMERS

The M37424M8-XXXSP has five timers: timer X, timer 1, timer 2, timer 3, and timer 4. A block diagram of these timers is shown in Figure 9.

Timer X is a 16-bit timer. It has an independent 16-bit timer latch and can be used in eight modes. The structure of the timer X mode register is shown in Figure 8, and the eight timer X modes are described below.

(1) 16-bit timer mode [000]

Basic mode in which timer X functions as a 16-bit reload timer and timer X generates an interrupt request when it overflows.

The count source is selected by bit 4 of the timer X mode register: if this bit is "0", the count source is the oscillation frequency divided by 2; if it is "1", the count source is the oscillation frequency divided by 16. This bit is "0" immediately after a reset.

The timer counts down the value which decrements by one from the value set in the latch. At the next count pulse after it reaches FFFF $_{16}$ from 0000_{16} , an timer X interrupt is generated, and at the same time the value in the timer latch is reloaded into the timer The value is not reloaded into the timer until it overflows, even if the contents of the timer latch are overwritten.

When writing to the timer directly, write the upper value first, then the lower value. The upper value is overwritten at the same time that the lower value is written. When reading the timer, read the lower value first, then the upper value. At the point at which the lower value is read, the upper value is latched. If reading the lower value always read the upper value as well. There are no restrictions on which part of the timer latch should be written to or read first.

(2) Event counter mode [001]

Mode in which timer X operates in exactly the same way as in timer mode, except that the count source is the external pulse input from the CNTR₀ pin The input polarity of the CNTR₀ pin can be selected by bit 6 of the timer X mode register: if this bit is "0", falling edges are counted; if it is "1", rising edges are counted.

(3) Pulse width measurement mode 1 [010]

Mode in which timer X measures the width of "H" or "L" period of the external pulse input from the CNTR₀ pin.

The count source is selected by bit 4 of the timer X mode register: if this bit is "0", the count source is the oscillation frequency divided by 2; if it is "1", the count source is the oscillation frequency divided by 16. In this mode the timer counts up at the same time that the measurement ends, the value in the timer is latched into the timer latch and a CNTR $_0$ interrupt request is generated.

Bit 6 of the timer X mode register selects whether the "H" period is measured or the "L" period. If this bit is "0", the

"L" period is measured; if it is "1", the "H" period is measured.

(4) Pulse width measurement mode 2 [011]

Mode in which timer X continuously measures the width of both "H" and "L" periods of the external pulse input from the CNTR_0 pin.

The count source is selected by bit 4 of the timer X mode register: if this bit is "0", the count source is the oscillation frequency divided by 2; if it is "1", the count source is the oscillation frequency divided by 16. The value in the timer is latched at both the rising edges and falling edges of the external pulse, and a CNTR $_0$ interrupt request is generated. Whether the measured value is the "H" period or the "L" period can be determined by checking the level of the P6 $_2$ /CNTR $_0$ pin. This mode can be used to measure the duty cycle of external pulses.

(5) Pulse period measurement mode [100]

Mode in which timer X measures the period of the external pulse input from the CNTR₀ pin.

The count source is selected by bit 4 of the timer X mode register: if this bit is "0", the count source is the oscillation frequency divided by 2; if it is "1", the count source is the oscillation frequency divided by 16. If bit 6 of the timer X mode register is "0", the period from one falling edge to the next falling edge is measured; if it is "1", the period from one rising edge to the next rising edge is measured. The measured value is latched in the timer latch, and a CNTR₀ interrupt request is generated.

(6) Pulse output mode [101]

Mode in which an waveform of duty cycle 50% which is inverted every time timer X overflows is output to the ${\sf CNTR}_0$ pin.

The count source is selected by bit 4 of the timer X mode register: if this bit is "0", the count source is the oscillation frequency divided by 2; if it is "1", the count source is the oscillation frequency divided by 16.

(7) Programmable waveform generation mode [110]

Mode in which the contents of the output level latch allocated to bit 5 of the timer X mode register are output to the CNTR₀ pin every time timer X overflows.

The count source is selected by bit 4 of the timer X mode register: if this bit is "0", the count source is the oscillation frequency divided by 2; if it is "1", the count source is the oscillation frequency divided by 16. Various different waveforms can be generated by updating the values in the output level latch, the timer and the timer latch, each time timer X overflows.

MITSUBISHI MICROCOMPUTERS

M37424M8-XXXSP M37524M4-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

(8) Programmable one-shot generation mode [111]

Mode in which the active edge of an external pulse input from the $P6_0/INT_0$ pin sets the value of the timer latch into timer X, and timer X starts to count. The $CNTR_0$ pin goes "H" at the same time of the active edge of the INT_0 pin input, and goes "L" when timer X overflows.

The count source is selected by bit 4 of the timer X mode register: if this bit is "0", the count source is the oscillation frequency divided by 2; if it is "1", the count source is the oscillation frequency divided by 16. The active edge of the INT_0 pin is set by bit 0 of the interrupt polarity specification register, and is the same as the polarity of the INT_0 interrupt.

Note that if the CNTR₀ pin is used as a pulse output pin (in pulse output mode, programmable waveform generation mode, or programmable one-shot generation mode), bit 7 of the timer X mode register must be "1". If this bit switches from "0" to "1", an "L"-level signal will be output to the CNTR₀ pin. However, be aware that if timer X is switched to another pulse output mode while this bit is "1", the level output in the previous mode will still be held by the CNTR₀ pin.

Timer 1, timer 2, timer 3, and timer 4 are all 8-bit timers with 8-bit timer latches. Writing to a timer latch sets the corresponding timer at the same time, except that, if the value written to the latch is n, the value actually set in the timer is (n-1). The timer has a count-down operation: at the next count pulse after it reaches FF_{16} from 00_{16} , the value in the timer latch is reloaded into the timer. If the value in the timer latch is n, the divide ratio is 1/(n+1). At the same time, the interrupt request bit corresponding to that timer is set to "1". Set the count source for each timer by the timer 1, 2 mode register (address $00F8_{16}$) or the timer 3, 4 mode register (address $00F8_{16}$).

If an external clock is selected as the count source for timer 2, timer counts the $P6_3/CNTR_1$ pin input. An inverting waveform every time timer 2 overflows can be output to the $P3_4/T_{OUT}$ pin, by setting bit 7 of the timer 1, 2 mode register to "1". The structure of the timer 1, 2 mode register is shown in Figure 6 and the structure of the timer 3, 4 mode register is shown in Figure 7

At reset, timer 3 is set to FF₁₆ and timer 4 is set to 07₁₆.

M37424M8-XXXSP M37524M4-XXXSP

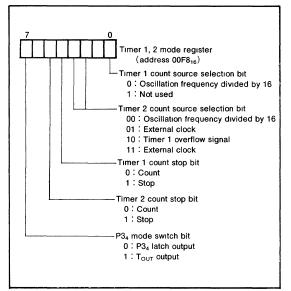


Fig.6 Structure of timer 1, 2 mode register

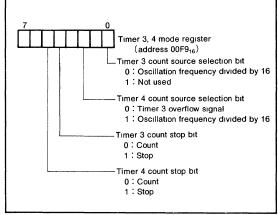


Fig.7 Structure of timer 3, 4 mode register

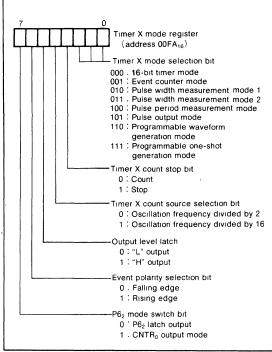


Fig.8 Structure of timer X mode register

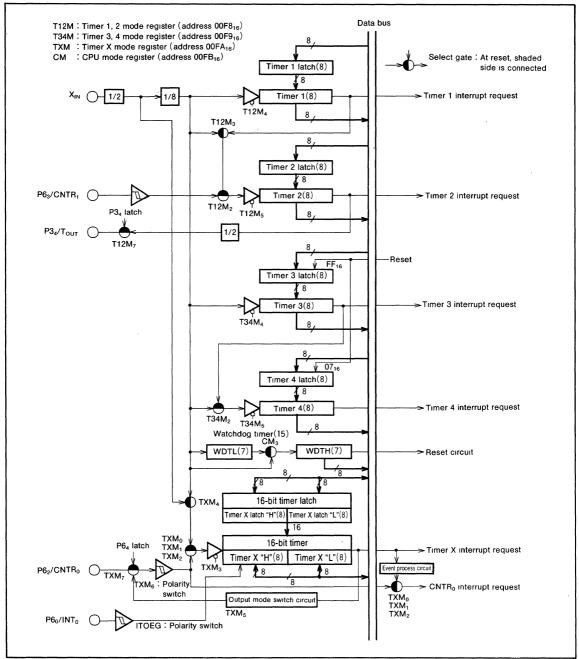


Fig.9 Block diagram of timer

SERIAL I/O

A block diagram of the serial I/O function is shown in Figure 11. The serial I/O receive enabled signal pin $(\overline{S_{RDY}})$, synchronous clock I/O pin (CLK), and data I/O pins (S_{OUT}, S_{IN}) also function as the P3₃, P3₂, P3₁, and P3₀ of the port P3.

The serial I/O mode register has an 8-bit structure. Bits 1 and 0 select the synchronous clock: the oscillation frequency is divided by 8 if they are [00], by 16 if they are [01], by 128 if they are [10], or by 512 if they are [11]. Bit 2 selects an external clock.

Bits 3 and 4 are used to select whether part of port P3 is used for serial I/O. If bit 3 is "1", the $P3_2$ is the I/O pin for the synchronous clock .

The P3 $_1$ is the serial data output pin and the P3 $_0$ is the serial data input pin. If using the P3 $_0$ as the serial data input pin, set the bit in the directional register corresponding to P3 $_0$ to "0" to set input mode. If serial I/O is being used, bit 3 must be set to "1". When bit 3 is "0", the P3 $_2$ functions as an ordinary I/O pin.

Bit 4 selects whether the P3 $_3$ is used as the output pin for the receive enabled signal $\overline{S_{RDY}}$. If this bit is "1", the $\overline{S_{RDY}}$ signal is output; if it is "0", the P3 $_3$ is an ordinary I/O pin. Serial I/O register H and serial I/O register L are 8-bit registers for data transfer that can be used in both transmission and reception. For 8-bit transfer, serial I/O register L

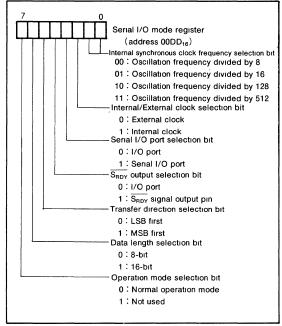


Fig.10 Structure of serial I/O mode register

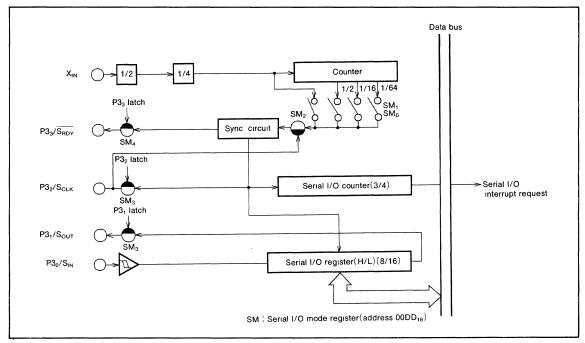


Fig.11 Block diagram of serial I/O

M37424M8-XXXSP M37524M4-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

(address $00DE_{16}$) is used; for 16-bit transfer, serial I/O register H (address $00DF_{16}$) is used for the upper byte and serial I/O register L for the lower byte. The data length to be transferred can be selected either 8 bits or 16 bits by setting bit 6 of the serial I/O mode register. Whether data transfer is MSB first or LSB first can be selected by setting bit 5 of the serial I/O mode register.

The operation of the serial I/O function will now be described. The operation differs depending on whether the internal clock or an external clock is selected as the synchronous clock. Use with the internal clock will be described first.

If the serial I/O register L is written to, the S_{RDY} signal is at "H" during the write cycle; it then goes "L" when the write cycle ends to indicate reception enabled status. If the serial I/O register's transfer clock goes "L" even once, the \overline{S}_{RDY} signal goes "H". During the write cycle to the serial I/O register, "7" is set in the serial I/O counter for 8-bit transfer or "15" for 16-bit transfer, and the serial I/O register's transfer clock is forced to "H". After the write cycle ends, data is output to the P3₁ pin each time the transfer clock goes from "H" to "L". Data is input from the P3₀ pin

each time the transfer clock goes from "L" to "H" and, at the same time, the contents of the serial I/O register are shifted one bit. If bit 5 of the serial I/O mode register is "0", the data enters from the MSB and shifts to the right, if it is "1", the data enters from the LSB and shifts to the left.

When the serial I/O counter reaches "0" after counting either 8 or 16 transfer clocks, the transfer clock stops at "H" and the corresponding interrupt request bit is set.

If an external clock is selected as the synchronous clock, it must be controlled externally because, although the interrupt request bit is set, the transfer clock does not stop. Use a clock of no more that 500kHz with a duty cycle of 50% as the external clock.

The timing at which 8-bit data is transferred LSB-first is shown in Figure 12. If an external clock is used for the transfer, the external clock must be "H" when the serial I/O counter is initialized. Make sure that the serial I/O counter is initialized after the transfer clock switches. Initialize by writing to the serial I/O register H.

A connection example for transferring data from one M37424M8-XXXSP to another is shown in Figure 13.

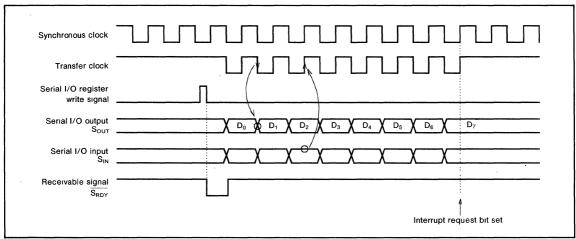


Fig.12 Serial I/O timing

M37424M8-XXXSP M37524M4-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

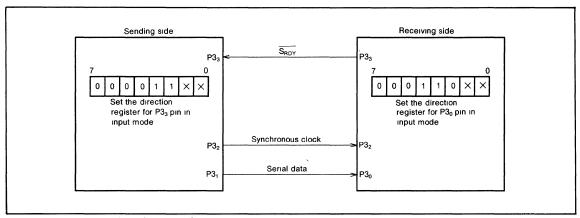


Fig.13 Example of serial I/O connection

PWM OUTPUT CIRCUIT

The M37424M8-XXXSP has a PWM function with a 14-bit resolution, a repeat period of $8192\mu s$ when the oscillation frequency X_{IN} is 4MHz (the explanation in the rest is based on the assumption that X_{IN} =4MHz), and a minimum bit resolution width of 500ns. If data is set in the lower 6 bits of the pulse width modulation register L (PWM-L : address $00D5_{16}$) and the pulse width modulation register H (PWM-H : address $00D4_{16}$), and the port P5₄ function selection bit (bit 0 of the special function selection register) is set to "1", a PWM waveform is output from port P5₄.

The period of $8192\mu s$ is resolved into 16,384 minimum pulse widths (500ns), and the pulse width can be modulated in 500ns units in accordance with the 14 bits of data written into PWM-H and PWM-L. By dividing the $8192\mu s$ repeat period into 64 short-area periods, pulses of approximately equal width can be output at a $128\mu s$ period. A block diagram of the PWM circuit is shown in Figure 14.

The data written to the PWM register is transferred to the PWM latch at the repetition of the PWM period. The signals output to the PWM pin correspond to the contents of this latch. When data of PWM-L register is read, data in this latch has already been read allowing the data output by the PWM to be confirmed. In this case, the upper 2 bits of the 8-bit register becomes undefined. However, bit 7 of the PWM-L register indicated the completion of the data transfer from the PWM-L register to the PWM latch. If bit 7 is "0", the transfer has been completed, if bit 7 is "1", the transfer has not yet begun.

The timing diagram of the 14-bit PWM is shown in Figure 15. The 14-bit PWM divides the data within the PWM latch into the lower 6 bits and higher 8 bits.

A high-level area with a length N times τ is output every short area of t=256× τ =128 μ s as determined by data N of the higher 8 bits. (Refer to PWM output ② in the lower part of Figure 15.)

The contents of the lower 6 bits of data enable the lengthening of the high signal by τ .

Thus, the time for the high-level area is equal to the time set by the higher 8 bits or that plus τ . As a result, the short-area period t(=128 μ s, approx. 7.8kHz) becomes an approximately repetitive period.

At reset the output of port P5₄ is in the high impedance state and the contents of the PWM register and latch are undefined. Note that after setting the PWM register, its data is transferred to the latch.

Table 2. Relation between the 6 lower-order bits of data and the space set by the ADD bit

6 lower-order bits of data	Area longer by τ than that of other $t_m(m = 0 \sim 63)$
0 0 0 0 0 0 0	Nothing
000001	m=32
000010	m=16, 48
000100	m=8,24,40,56
001000	m=4,12,20,28,36,44,52,60
010000	m= 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62
100000	m=1,3,5,7,57,59,61,63

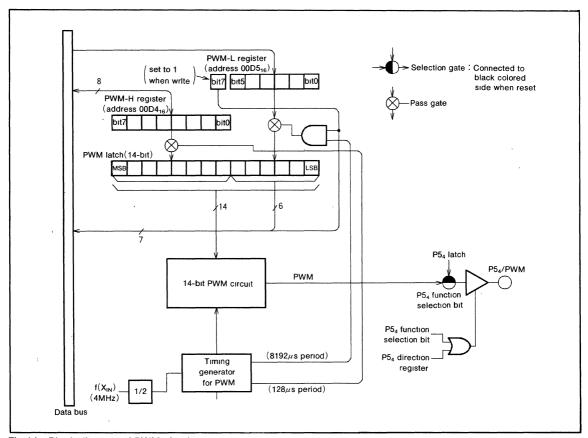


Fig.14 Block diagram of PWM circuit

M37424M8-XXXSP M37524M4-XXXSP

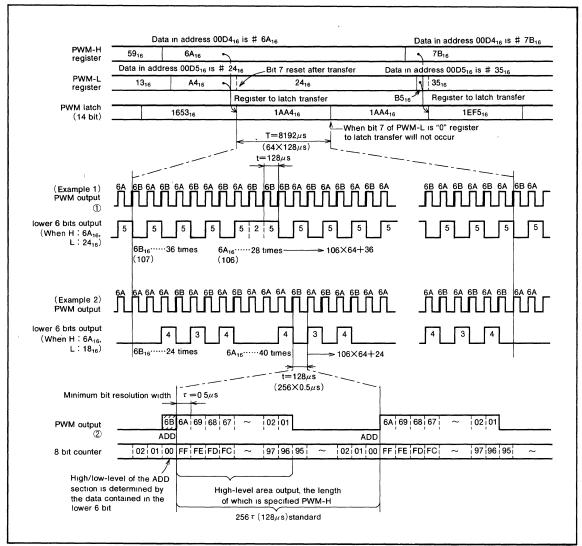


Fig.15 14-bit PWM timing diagram

A-D CONVERTER

An 8-bit successive approximation method of A-D conversion is employed providing a precision of ± 3 LSB. A block diagram of the A-D converter is shown in Figure 16. Conversion is automatic once it is started with the program.

The analog inputs are used in common with port P4. Bits 2, 1 and 0 of the A-D control register (address 00DA₁₆) are used to select which pins are used for A-D conversion. The input condition is accomplished by setting to "0" the bit in the directional register that corresponds to the pin where A-D conversion is to take place. Bit 3 of the A-D control register is the A-D conversion end bit. During A-D conversion, this bit is "0", and upon completion becomes "1". Thus, it can be ascertained whether A-D conversion has been completed or not by inspecting this bit. The relation between the contents of the A-D control register and the selection of input pins are shown in Figure 17.

The results of the conversion can be found be reading the contents of the successive approximation register address 00D9₁₆ which stores the results of the conversion.

The procedure for executing A-D conversion is next explained. Firstly, the pin that is to be used for the A-D conversion is selected by setting bit 2, bit 1 and bit 0 of the A-D control register.

Next, clear the A-D conversion end bit to "0".

When the above is done, A-D conversion is started. A-D conversion completes after 49 clock cycles upon which the A-D conversion end bit is set to "1" and the results of the conversion can be found in the successive approximation register. Since the comparator consists of the capacitive coupled configuration, $f(X_{\text{IN}})$ is needed larger than 1MHz during A-D conversion.

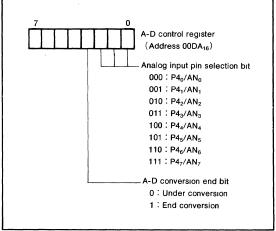


Fig.17 Structure of A-D control register

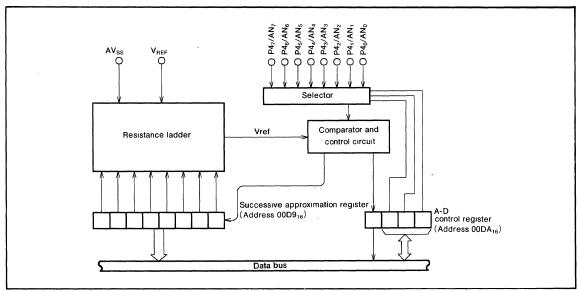


Fig.16 Block diagram of A-D converter

D-A CONVERTER

The M37424M8-XXXSP has two 8-bit resolution, R-2R method D-A converters and two 5-bit resolution D-A converters. A block diagram of the D-A converters is shown in Figure 19. If a value is written into one of the D-A conversion registers corresponding to these D-A converters, an analog voltage equivalent to that digital value is generated by the ladder resistors. If the corresponding D-A output enable bit (bit 0 to bit 3 of the D-A output enable register) is set to "1", that value is output to the corresponding output pin P6 $_4$ /DA $_1$ to P6 $_7$ /DA $_4$. In this case, the directional register of that pin must be set to "0" to set input mode.

The relationship between analog voltage and digital value is as follows:

 $V=V_{REF}\times n/256(n=0 \text{ to } 255)$: DA₁ and DA₂ $V=V_{REF}\times n/32(n=0 \text{ to } 31)$: DA₃ and DA₄

Where V is the output voltage, V_{REF} is the reference voltage, and n is the value in the D-A conversion register.

At reset, the $P6_4/DA_1$ to $P6_7/DA_4$ pins go to high impedance. D-A output does not have a built-in buffer, so if connecting a low-impedance load, connect an external buffer as well

The structure of the D-A output enable register is shown in Figure. 18.

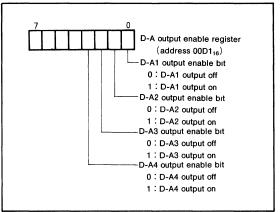


Fig.18 D-A output enable register

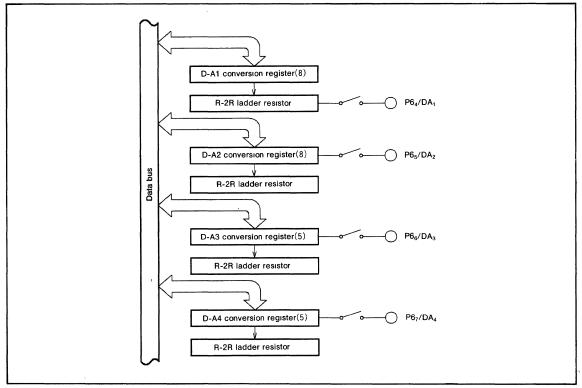


Fig.19 Block diagram of D-A converter

EXTERNAL TRIGGER OUTPUT

Port P5₅ operates as the pin Q which outputs the external trigger signal. Port P6₁ operates as the pin T which inputs the trigger clock. By setting bit 1 of the special function selection register (address $00EE_{16}$) to "1", the P6₁/T/INT₁ pin functions a trigger input pin and P6₁, P5₅ can be used as the external trigger function pins.

In external trigger mode, the value set by the external trigger output data bit is output to port P5 $_5$ each time the active edge specified by bits 1 and 7 of the interrupt polarity specification register. Combinations of bits 3 and 4 of the special function selection register set port P5 $_5$ to output mode as shown in Table 3. If using external trigger output, set the P5 $_5$ directional bit to "0". At reset, this bit is cleared to "0".

Table 3. External trigger output

External trigger output data bit External trigger output direction specify bit	0	1
0	High-impedance	High-impedance
1	L	Н

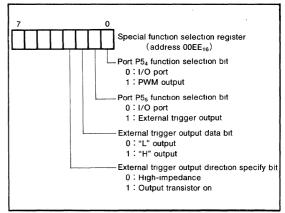


Fig.20 Structure of special function selection register

Fig.21 Block diagram of external trigger output

V PULSE AND Y PULSE GENERATOR

Port P5₆ operates as the VPLS pin to output the V pulse and port P6₁ operates as the T pin to input the trigger clock. P5₆ can be used as the V pulse output by setting bit 5 of the V pulse control register (00D8₁₆) to "1". Port P5₇ operates as the YPLS pin which outputs the Y pulse. It can be used as the Y pulse (VPF signal) output by setting bit 6 of the V pulse control register to "1". Effective edge of trigger input can be selected by setting bits 2 and 3 of V pulse control register. Figure 22 shows the block diagram of the V pulse, Y pulse generator. Figure 23 shows the timing diagram of the V pulse and Y pulse.

At the falling or rising edge of T, the VPP counter starts. By the overflow signal of the VPP counter, VPLS goes "H". By the overflow signal of VPP counter, the VPN counter starts. By the overflow signal of the VPN counter, VPLS goes "L". When the VPP counter or the VPN counter is counting, bit 4 of the V pulse control register is "1".

The preset value of the VPP conter can be set by the 9-bit register with bit 1 of the V pulse control register being the most significant bit and the V pulse preset value P (00D6₁₆) being the low-order eight bits. The preset value

of the VPN counter can be set by the 9-bit register with bit 0 of the V pulse control register being the most significant bit and the V pulse preset value N $(00D7_{16})$ being the low-order eight bits.

Note that values of bits 0 and 1 of the V pulse control register are the current counting values in the VPP counter and the VPN counter, not the preset values of the counters.

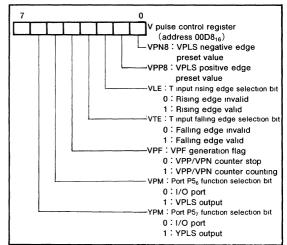


Fig.22 Structure of V pulse control register

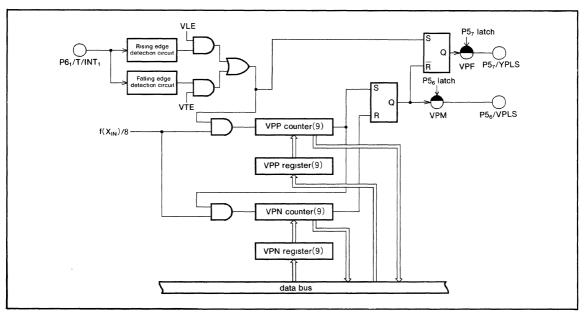


Fig.23 Block diagram of V pulse and Y pulse generator



Fig.24 Timing diagram of the V pulse and Y pulse

WATCHDOG TIMER

The watchdog timer provides a method of returning to reset status if a runaway or other cause prevents a program from running a loop normally.

The watchdog timer is a 15-bit counter consisting of a lower seven bits and an upper eight bits (address $00EF_{16}$). At reset or after the watchdog timer is written to, $7FFF_{16}$ is set in this timer and it starts to count.

When the MSB reaches "0", an internal reset is generated. Therefore programs should normally be written to ensure that the watchdog timer is written to before this bit reaches

"0". If address 00EF₁₆ is read, the value in the upper eight bits of the counter is read. Directly after a reset, the watchdog timer is stopped. After reset is released, the first write to address 00EF₁₆ validates the watchdog timer function.

The count source of the lower seven bits is a signal that is the system clock ϕ divided by eight. The count source of the upper eight bits can be selected as either the overflow signal from the 7-bit counter or a signal that is the system clock ϕ divided by eight, depending on the value of bit 3 of the CPU mode register (address 00FB₁₆).

Fig.25 Block diagram of runaway detection function

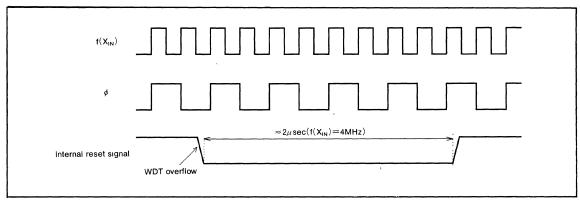


Fig.26 Timing diagram of internal reset signal

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

I/O PORTS

(1) Port P0

Port P0 is an 8-bit I/O port with CMOS output. As shown in the memory map (Figure 1), port P0 can be accessed at zero page memory address 00C0₁₆. Port P0 has a directional register (address 00C1₁₆) which can be used to program each individual bit as input ("0") or as output ("1"). If the pins are programmed as output, the output data is latched to the port register and then output. When data is read from the output port the output pin level is not read, only the latched data in the port register is read. This allows a previously output value to be read correctly even though the output voltage level is shifted up or down. Pins set as input are in the floating state and the signal levels can thus be read. When data is written into the input port, the data is latched only to the port latch and the pin still remains in the floating state.

- (2) Port P1 Port P1 has the same function as Port P0. The output structure of M37424M8-XXXSP is CMOS output. The output structure of M37524M4-XXXSP is N-channel
- (3) Port P2Port P2 has the same function as Port P0.

open drain output.

- (4) Port P3 Port P3 has the same function as port P0, but it has N-channel open drain output. Port P3 can also be used as serial I/O and timer output pins.
- (5) Port P4 Port P4 has the same function as port P0. P4₇ through P4₀ can also be used as analog input pins AN₇ through AN₀.

(6) Port P5

Port P5 has the same function as port P0. Port P5 can also be used as INT₂~INT₅, PWM output, external trigger output Q and V pulse, Y pulse output pins.

(7) Port P6

Port P6 has the same function as port P0. Port P6 can also be used as INT₀, INT₁, trigger clock input T, timer I/O and D-A output pins.

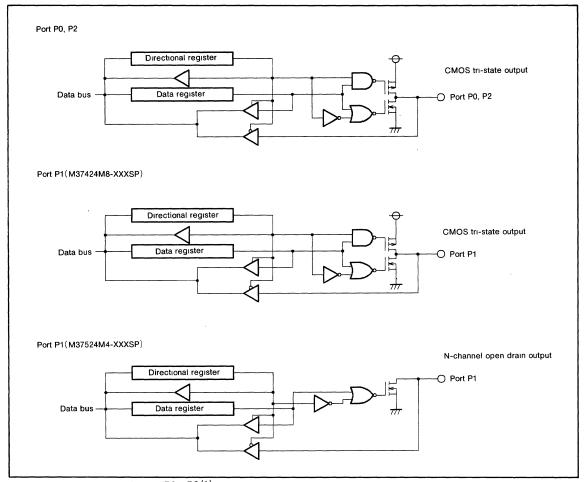


Fig.27 Block diagram of ports P0~P6(1)

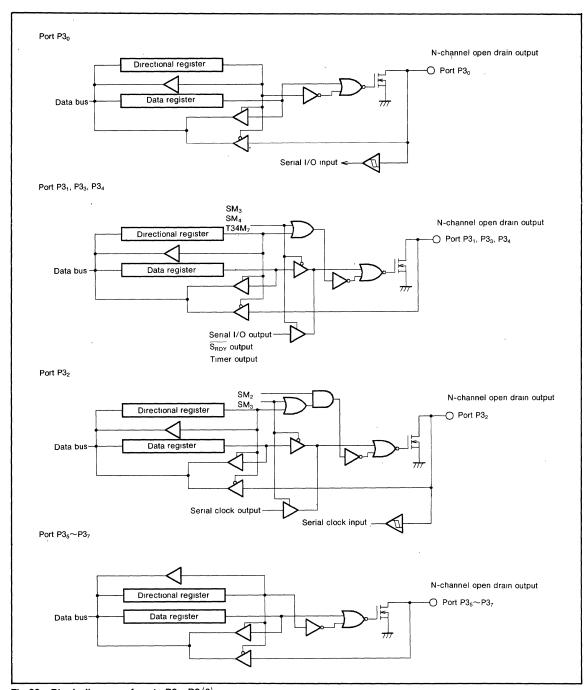


Fig.28 Block diagram of ports P0~P6(2)

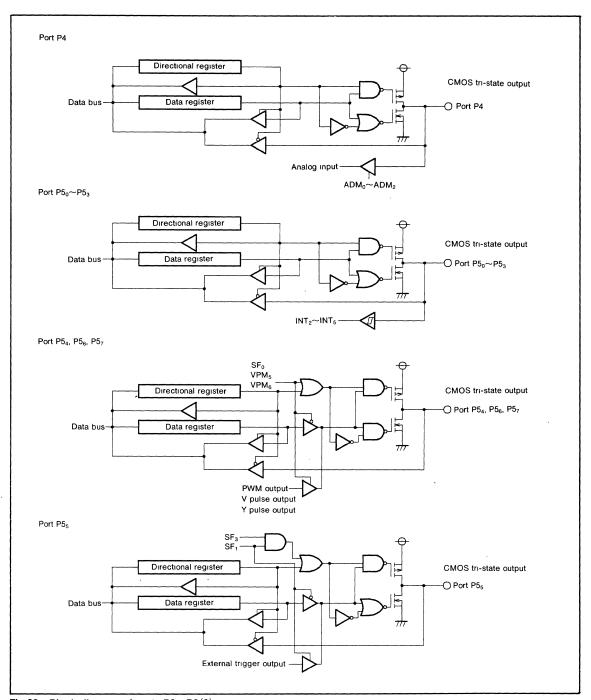


Fig.29 Block diagram of ports P0~P6(3)

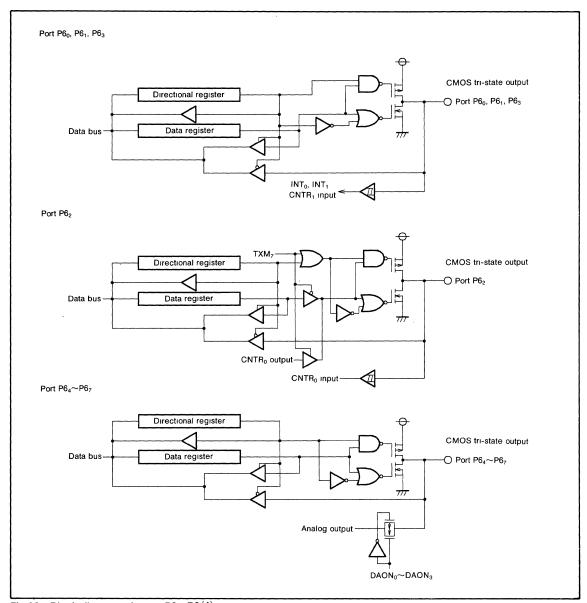


Fig.30 Block diagram of ports P0~P6(4)

RESET CIRCUIT

The M37424M8-XXXSP is reset according to the sequence shown in Figure 31. It starts the program from the address formed by using the content of address FFFF₁₆ as the high order address and the content of the address FFFE₁₆ as the low order address, when the RESET pin is held at "L" level for more than $2\mu s$ while the power voltage is in the recommended operating condition and the crystal oscillator oscillation is stable and then returned to "H" level. The internal initializations following reset are shown in Figure 33. An example of the reset circuit is shown in Figure 32.

When the power on reset is used, the RESET pin must be held "L" until the oscillation of X_{IN} - X_{OUT} becomes stable.

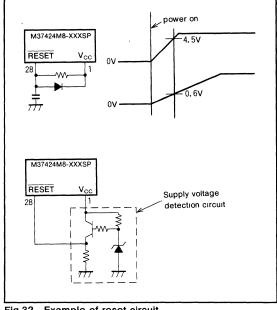


Fig.32 Example of reset circuit

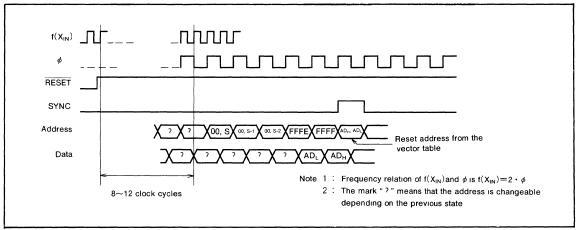


Fig.31 Timing diagram at reset

		address	
(1)	Port P0 directional register	(C 1 ₁₆)	00 ₁₆
(2)	Port P1 directional register	(C3 ₁₆)	00 ₁₆
(3)	Port P2 directional register	(C 5 ₁₆)	00 ₁₆
(4)	Port P3 directional register	(C7 ₁₆)	00 ₁₆
(5)	Port P4 directional register	(C 9 ₁₆)	0016
(6)	Port P5 directional register	(CB ₁₆)	0016
(7)	Port P6 directional register	(CD ₁₆)	0016
(8)	D-A output enable register	(D1 ₁₆)	0 0 0 0
(9)	D-A3 conversion register	(D2 ₁₆)	0016
(10)	D-A4 conversion register	(D3 ₁₆)	0016
(11)	V pulse control register	(D8 ₁₆)	0 0 0 0
(12)	A-D control register	(DA ₁₆)	0 0 0 0
(13)	D-A1 conversion register	(DB ₁₆)	0016
(14)	D-A2 conversion register	(DC ₁₆)	0016
(15)	Serial I/O mode register	(DD ₁₆)	0016
(16)	Interrupt polarity specification register	(ED ₁₆)	0016
(17)	Special function selection register	(EE ₁₆)	0000
(18)	Watchdog timer	(EF ₁₆)	7FFF ₁₆
(19)	Timer 3	(F 2 ₁₆)	, FF ₁₆
(20)	Timer 4	(F3 ₁₆)	07 ₁₆
(21)	Timer 1, 2 mode register	(F8 ₁₆)	0 0 0 0 0
(22)	Timer 3, 4 mode register	(F9 ₁₆)	0 0 0 0
(23)	Timer X mode register	(F A ₁₆)	0016
(24)	CPU mode register	(FB ₁₆)	1 0 1 0 0
(25)	Interrupt request register 1	(FC ₁₆)	0016
(26)	Interrupt request register 2	(FD ₁₆)	0016
(27)	Interrupt control register 1	(FE ₁₆)	0016
(28)	Interrupt control register 2	(FF ₁₆)	0016
(29)	Processor status register	(PS)	1
(30)	Program counter	(PC _H)	Contents of address FFFF ₁₆
		(PCL)	Contents of address FFFE ₁₆

Fig. 33 Internal state of microcomputer at reset

CLOCK GENERATING CIRCUIT

The built-in clock generating circuits are shown in Figure 36. When the WIT instruction is executed, the internal clock ϕ stops in the "H" level but the oscillator continues running. This wait state is cleared when an interrupt is accepted. Since the oscillation does not stop, the next instructions are executed at once. To return from the wait status, the interrupt enable bit must be set to "1" before executing WIT instruction.

Since the M37424M8-XXXSP does not have STP instruction, the oscillation can not be stopped.

The circuit example using a ceramic oscillator (or a quartz crystal oscillator) is shown in Figure 34.

The constant capacitance will differ depending on which oscillator is used, and should be set to the manufactures suggested value.

The example of external clock usage is shown in Figure 35. X_{IN} is the input, and X_{OUT} is open.

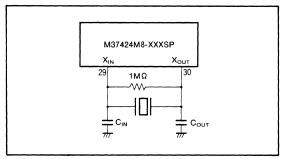


Fig.34 External ceramic resonator circuit

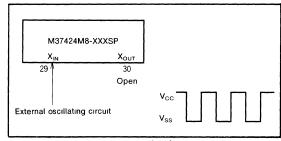


Fig.35 External clock input circuit

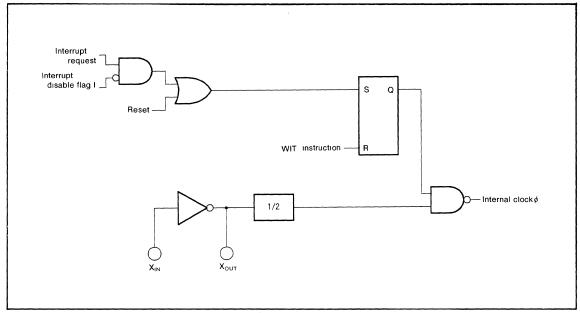


Fig.36 Block diagram of the clock generating circuit

MITSUBISHI MICROCOMPUTERS

M37424M8-XXXSP M37524M4-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

PROGRAMMING NOTES

- (1) The frequency ratio of the timer is 1/(n+1).
- (2) Even though the BBC and BBS instructions are executed after the interrupt request bits are modified (by the program), those instructions are only valid for the contents before the modification. Also, at least one instruction cycle must be used (such as a NOP) between the modification of the interrupt request bits and the execution of the BBC and BBS instructions.
- (3) After the ADC and SBC instructions are executed (in decimal mode), one instruction cycle (such as a NOP) is needed before the SEC, CLC, or CLD instructions are executed.
- (4) A NOP instruction must be used after the execution of a PLP instruction.

DATA REQUIRED FOR MASK ORDERING

Please send the following data for mask orders.

- (1) mask ROM confirmation form
- (2) mark specification form
- (3) ROM data ····· EPROM 3sets

MITSUBISHI MICROCOMPUTERS

M37424M8-XXXSP **M37524M4-XXXSP**

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

M37424M8-XXXSP **ABSOLUTE MAXIMUM RATINGS**

Symbol	Parameter	Conditions	Ratings	Unit
V _{CC}	Supply voltage		−0.3~7	٧
V _{ss}	Supply voltage		0	V
V _{REF}	Reference voltage		-0.3~V _{cc} +0.3	V
V ₁	Input voltage X _{IN} , RESET, P3 ₀ ~P3 ₇ , CNV _{SS}		−0.3~7	V
V ₁	Input voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇	With respect to V _{SS} Output transistors are at "OFF" state	-0.3~V _{cc} +0.3	v
Vo	Output voltage P3 ₀ ~P3 ₇		0.3~7	V
Vo	Output voltage $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $P2_0 \sim P2_7$, $P4_0 \sim P4_7$, $P5_0 \sim P5_7$, $P6_0 \sim P6_7$, X_{OUT} , ϕ		-0.3~V _{cc} +0.3	v
Pd	Power dissipation	T _a =25℃	1000	mW
Topr	Operating temperature		-10~70	င
Tstg	Storage temperature		-40~125	°C

RECOMMENDED OPERATING CONDITIONS ($V_{cc}=5V\pm10\%$, $T_a=-10\sim70^{\circ}C$, unless otherwise noted)

Symbol	Parameter		Limits		Unit
Symbol	Parameter	Mın	Тур	Max	Unit
V _{CC}	Supply voltage	4.5	5	5.5	V
V _{SS}	Supply voltage		0		V
V _{IH}	"H" input voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₇ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , INT ₀ ~INT ₅ , CNTR ₀ , CNTR ₁ , T, RESET, X _{IN}	0.8V _{CC}		V _{cc}	v
V _{IL}	"L" input voltage $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $P2_0 \sim P2_7$, $P3_0 \sim P3_7$, $P4_0 \sim P4_7$, $P5_0 \sim P5_7$, $P6_0 \sim P6_7$, $INT_0 \sim INT_5$, $CNTR_0$, $CNTR_1$, T	0		0. 2V _{CC}	V
V _{1L}	"L" input voltage RESET	0		0.12V _{CC}	٧
VIL	"L" input voltage X _{IN}	0		0.16V _{CC}	٧
I _{он(peak)}	"H" peak output current $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $P2_0 \sim P2_7$, $P4_0 \sim P4_7$, $P5_0 \sim P5_7$, $P6_0 \sim P6_7$ (Note 1)			-10	mA
I _{он(avg)}	"H" average output current $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $P2_0 \sim P2_7$, $P4_0 \sim P4_7$, $P5_0 \sim P5_7$, $P6_0 \sim P6_7$ (Note 1)			-5	mA
l _{oL} (peak)	"L" peak output current $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $P2_0 \sim P2_7$, $P3_0 \sim P3_7$, $P4_0 \sim P4_7$, $P5_0 \sim P5_7$, $P6_0 \sim P6_7$ (Note 2)			10	mA
I _{OL} (avg)	"L" average output current $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $P2_0 \sim P2_7$, $P3_0 \sim P3_7$, $P4_0 \sim P4_7$, $P5_0 \sim P5_7$, $P6_0 \sim P6_7$ (Note 2)		10, 11, 11	5	mA
f(X _{IN})	Clock oscillating frequency			4	MHz

Note 1. The total of "H" peak output current of port P0, P1, P2, P4, P5 and P6 is less than 65mA 2. The total of "L" peak output current of port P0, P1, P2, P3, P4, P5 and P6 is less than 65mA

ELECTRICAL CHARACTERISTICS $(V_{cc}=5V, V_{ss}=0V, T_a=25^{\circ}C, f(X_{IN})=4MHz, unless otherwise noted)$

O. mark al	Parameter	Took conditions	Limits			Unit
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V _{OH}	"H" output voltage $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $P2_0 \sim P2_7$, $P4_0 \sim P4_7$, $P5_0 \sim P5_7$, $P6_0 \sim P6_7$	I _{OH} =-10mA	3			V
VoH	"H" output voltage φ	I _{OH} =-2.5mA	3			٧
VoL	"L" output voltage P3 ₀ ~P3 ₇	I _{OL} =10mA			2	٧
V _{OL}	"L" output voltage $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $P2_0 \sim P2_7$, $P4_0 \sim P4_7$, $P5_0 \sim P5_7$, $P6_0 \sim P6_7$	I _{OL} =10mA			2	٧
VoL	"L" output voltage φ	I _{OL} =2.5mA			2	V
V+-V-	Hysteresis X _{IN}		0.1		0.5	٧
V+-V-	Hysteresis RESET			0.5	0.7	٧
$V_{+}-V_{-}$	Hysteresis INT ₀ ∼INT ₅ , CNTR ₀ , CNTR ₁ , T	Use as INT ₀ ∼INT ₅ , CNTR ₀ , CNTR ₁ , T input	0.3		1.0	V
I _{tH}	"H" input current RESET, XIN	V _{IH} =5V			5	μA
l _{IH}	"H" input current $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $P2_0 \sim P2_7$, $P4_0 \sim P4_7$, $P5_0 \sim P5_7$, $P6_0 \sim P6_7$	V _{IH} =5V			5	μA
I _{IH}	"H" input current P3 ₀ ~P3 ₇	V _{IH} =5V			5	μА
I _{IL}	"L" input current RESET, XIN	V _{IL} =0V	-5			μΑ
I _{IL}	"L" input current $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $P2_0 \sim P2_7$, $P4_0 \sim P4_7$, $P5_0 \sim P5_7$, $P6_0 \sim P6_7$	V _{IL} =0V	-5			μ A
I _{IL}	"L" input current P3 ₀ ~P3 ₇	V _{IL} =0V	- 5			μА
lcc	Supply current	$\begin{array}{l} f\left(X_{IN}\right) = 4 M Hz, \ output \ pins \ opened, \ input \\ pins \ at \ V_{SS} \ or \ V_{CC}, \ and \ A-D \ converter \ in \ the \\ finished \ condition \end{array}$		6	12 ,	mA

A-D CONVERTER CHARACTERISTICS (V_{CC}=5V, V_{SS}=0V, T_a=25°C, f(X_{IN})=4MHz, unless otherwise noted)

Ob. al	Parameter	Test conditions		Unit		
Symbol		rest conditions	Min	Тур	Max	Oill
_	Resolution	V _{REF} =V _{CC}			8	bits
	Absolute accuracy	V _{REF} =V _{CC}			±3	LSB
RLADDER	Ladder resistor	V _{REF} =V _{CC}	20	′		kΩ
t _{CONV}	Conversion time				25	μS
V _{REF}	Reference voltage		4		V _{CC}	V
VIA	Analog input voltage		0		VREF	٧

$\textbf{D-A} \quad \textbf{CONVERTER} \quad \textbf{1, 2} \quad \textbf{CHARACTERISTICS} \; (v_{cc} = 5\text{V}, \, v_{ss} = 0\text{V}, \, \tau_{a} = 25\,\text{°C}, \, f(X_{IN}) = 4\text{MHz}, \, \text{unless otherwise noted})$

Symbol	Parameter	Test conditions	Limits			Hait
Syllibol	Farameter	Test conditions	Mın	Тур	Max	Unit
_	Resolution	V _{REF} =V _{CC}			8	bits
_	Absolute accuracy	V _{REF} =V _{CC}			±2	%
Ro	Ladder resistor	V _{REF} =V _{CC}		١	4	kΩ
t _{su}	Setup time	V _{REF} =V _{CC}			3	μs
V _{REF}	Reference voltage		4		V _{CC}	V

D-A CONVERTER 3, 4 CHARACTERISTICS $(v_{cc}=5v, v_{ss}=0v, T_a=25^{\circ}, f(X_{IN})=4MHz, unless otherwise noted)$

Symbol	Parameter	Test conditions		Unit		
Symbol		rest conditions	Mın	Тур	Max	Ullit
_	Resolution	V _{REF} =V _{CC}			5	bits
_	Absolute accuracy	V _{REF} =V _{CC}			±2	%
Ro	Ladder resistor	V _{REF} =V _{CC}			4	kΩ
t _{su}	Setup time	V _{REF} =V _{CC}			3	μs
V _{REF}	Reference voltage		4		V _{CC}	V

MITSUBISHI MICROCOMPUTERS

M37424M8-XXXSP M37524M4-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

M37524M4-XXXSP **ABSOLUTE MAXIMUM RATINGS**

Symbol	Parameter	Conditions	Ratings	Unit
V _{CC}	Supply voltage		−0.3~7	V
V _{ss}	Supply voltage		0	٧
V _{REF}	Reference voltage		-0.3~V _{cc} +0.3	V
Vı	Input voltage X _{IN} , RESET, CNV _{SS}		−0. 3~ 7	V
Vı	Input voltage P1 ₀ ~P1 ₇ , P3 ₀ ~P3 ₇	With respect to V _{SS}	−0.3~13	V
Vı	Input voltage P0 ₀ ~P0 ₇ , P2 ₀ ~P2 ₇ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇	Output transistors are at "OFF" state	-0.3~V _{cc} +0.3	v
Vo	Output voltage P1 ₀ ~P1 ₇ , P3 ₀ ~P3 ₇		-0.3~13	V
Vo	Output voltage P0 ₀ ~P0 ₇ , P2 ₀ ~P2 ₇ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , X _{OUT} , φ		-0.3~V _{cc} +0.3	v
Pd	Power dissipation	Ta=25°C	1000	mW
Topr	Operating temperature		-10~70	°C
Tstg	Storage temperature		−40~125	င

RECOMMENDED OPERATING CONDITIONS ($v_{cc}=5v\pm10\%$, $\tau_a=-10\sim70^{\circ}$ C, unless otherwise noted)

Symbol	Parameter		Limits		Unit
Symbol	Farameter	Min	Тур	Max	Offic
Vcc	Supply voltage	4.5	5	5.5	V
Vss	Supply voltage		0		٧,
V _{IH}	"H" input voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₇ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , INT ₀ ~INT ₅ , CNTR ₀ , CNTR ₁ , T, RESET, X _{IN}	0.8V _{CC}		V _{cc}	٧
V _{IL}	"L" input voltage $P0_0 \sim P0$, $P1_0 \sim P1$, $P2_0 \sim P2$, $P3_0 \sim P3$, $P4_0 \sim P4$, $P5_0 \sim P5$, $P6_0 \sim P6$, $INT_0 \sim INT_5$, $CNTR_0$, $CNTR_1$, T	0		0. 2V _{CC}	, v
VIL	"L" input voltage RESET	0		0.12V _{CC}	V
V_{IL}	"L" input voltage X _{IN}	0		0.16V _{CC}	V
I _{он(peak)}	"H" peak output current $P0_0 \sim P0_7$, $P2_0 \sim P2_7$, $P4_0 \sim P4_7$, $P5_0 \sim P5_7$, $P6_0 \sim P6_7$ (Note 1)			-10	mA
I _{он(avg)}	"H" average output current P0 $_0$ ~P0 $_7$, P2 $_0$ ~P2 $_7$, P4 $_0$ ~P4 $_7$, P5 $_0$ ~P5 $_7$, P6 $_0$ ~P6 $_7$ (Note 1)	,		-5	mA
I _{OL} (peak)	"L" peak output current $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $P2_0 \sim P2_7$, $P3_0 \sim P3_7$, $P4_0 \sim P4_7$, $P5_0 \sim P5_7$, $P6_0 \sim P6_7$ (Note 2)			10	mA
I _{OL} (avg)	"L" average output current $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $ P2_0 \sim P2_7$, $P3_0 \sim P3_7$, $ P4_0 \sim P4_7$, $P5_0 \sim P5_7$, $ P6_0 \sim P6_7$ (Note 2)			5	mA
f(X _{IN})	Clock oscillating frequency			4	MHz

Note 1. The total of "H" peak output current of port P0, P2, P4, P5 and P6 is less than 65mA.

2. The total of "L" peak output current of port P0, P1, P2, P3, P4, P5 and P6 is less than 65mA

$\textbf{ELECTRICAL} \quad \textbf{CHARACTERISTICS} \; (V_{cc} = 5 \text{V}, V_{ss} = 0 \text{V}, T_{a} = 25 \text{°C}, f(X_{\text{IN}}) = 4 \text{MHz}, \text{ unless otherwise noted})$

O b1	Parameter	Test conditions	Limits			11
Symbol	Parameter	l est conditions	Mın	Тур	Max	Unit
V _{OH}	"H" output voltage $P0_0 \sim P0_7$, $P2_0 \sim P2_7$, $P4_0 \sim P4_7$, $P5_0 \sim P5_7$, $P6_0 \sim P6_7$	I _{OH} =-10mA	3		,	V
V _{OH}	"H" output voltage φ	I _{OH} =-2.5mA	3			V
VoL	"L" output voltage P1 ₀ ~P1 ₇ , P3 ₀ ~P3 ₇	I _{OL} =10mA			2	٧
V _{OL}	"L" output voltage P0 ₀ ~P0 ₇ , P2 ₀ ~P2 ₇ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇	I _{OL} =10mA			2	V
V _{OL}	"L" output voltage ∅	I _{OL} =2.5mA			2	V
V+-V-	Hysteresis X _{IN}		0.1		0.5	V
V+-V-	Hysteresis RESET			0.5	0.7	V
V+-V-	Hysteresis INT ₀ ~INT ₅ , CNTR ₀ , CNTR ₁ , T	Use as INT ₀ ~INT ₅ , CNTR ₀ , CNTR ₁ , T input	0.3		1.0	٧
I _{IH}	"H" input current RESET, XIN	V _{IH} =5V			5	μА
I _{IH}	"H" input current $P0_0 \sim P0_7$, $P2_0 \sim P2_7$, $P4_0 \sim P4_7$, $P5_0 \sim P5_7$, $P6_0 \sim P6_7$	V _{IH} =5V			5	μΑ
I _{IH}	"H" input current P1 ₀ ~P1 ₇ , P3 ₀ ~P3 ₇	V _{IH} =12V			12	μА
IIL	"L" input current RESET, XIN	V _{IL} =0V	-5			μΑ
l _{IL}	"L" input current P0 ₀ ~P0 ₇ , P2 ₀ ~P2 ₇ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇	V _{IL} =0V	-5			μΑ
I _{IL}	"L" input current P1 ₀ ~P1 ₇ , P3 ₀ ~P3 ₇	V _{IL} =0V	-5			μΑ
I _{cc}	Supply current	$\begin{array}{l} f\left(X_{IN}\right)=4MHz, \text{ output pins opened, input}\\ \text{pins at }V_{SS}\text{ or }V_{CC}, \text{ and A-D converter in the}\\ \text{finished condition} \end{array}$		6	12	mA

A-D CONVERTER CHARACTERISTICS (V_{CC}=5V, V_{SS}=0V, T_a=25°C, f(X_{IN})=4MHz, unless otherwise noted)

Symbol	Parameter	-	Limits			
	Parameter	Test conditions	Mın	Тур	Max	Unit
-	Resolution	V _{REF} =V _{CC}			8	bits
_	Absolute accuracy	V _{REF} =V _{CC}			±3	LSB
RLADDER	Ladder resistor	V _{REF} =V _{CC}	20			kΩ
t _{CONV}	Conversion time				25	μS
V _{REF}	Reference voltage		4		V _{CC}	V
VIA	Analog input voltage		0		Vece	V

D-A CONVERTER 1, 2 CHARACTERISTICS $(V_{CC}=5V, V_{SS}=0V, T_a=25^{\circ}C, f(X_{IN})=4MHz, unless otherwise noted)$

Symbol	Parameter	Test conditions		11-4		
		Test conditions	Mın	Тур	Max	Unit
	Resolution	V _{REF} =V _{CC}			8	bits
	Absolute accuracy	V _{REF} =V _{CC}			±2	%
Ro	Ladder resistor	V _{REF} =V _{CC}			4	kΩ
t _{su}	Setup time	V _{REF} =V _{CC}			3	μs
V_{REF}	Reference voltage		4		V _{CC}	V

$\textbf{D-A} \quad \textbf{CONVERTER} \quad \textbf{3, 4} \quad \textbf{CHARACTERISTICS} \ (v_{\texttt{CC}} = 5 \texttt{V}, \, V_{\texttt{SS}} = 0 \texttt{V}, \, T_{\textbf{a}} = 25 \texttt{°C}, \, f(X_{\texttt{IN}}) = 4 \texttt{MHz}, \, \text{unless otherwise noted})$

Symbol	Parameter	Test conditions		11-4		
- Cyllibol	Falametei	l est conditions		Тур	Max	Unit
	Resolution	V _{REF} =V _{CC}			5	bits
_	Absolute accuracy	V _{REF} =V _{CC}			±2	%
Ro	Ladder resistor	V _{REF} =V _{CC}			4	kΩ
t _{su}	Setup time	V _{REF} =V _{CC}			3	μs
V_{REF}	Reference voltage		4		V _{CC}	V

MITSUBISHI MICROCOMPUTERS

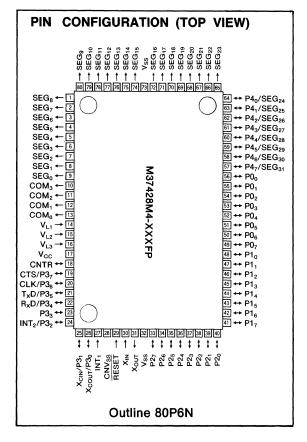
M37428M4-XXXFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

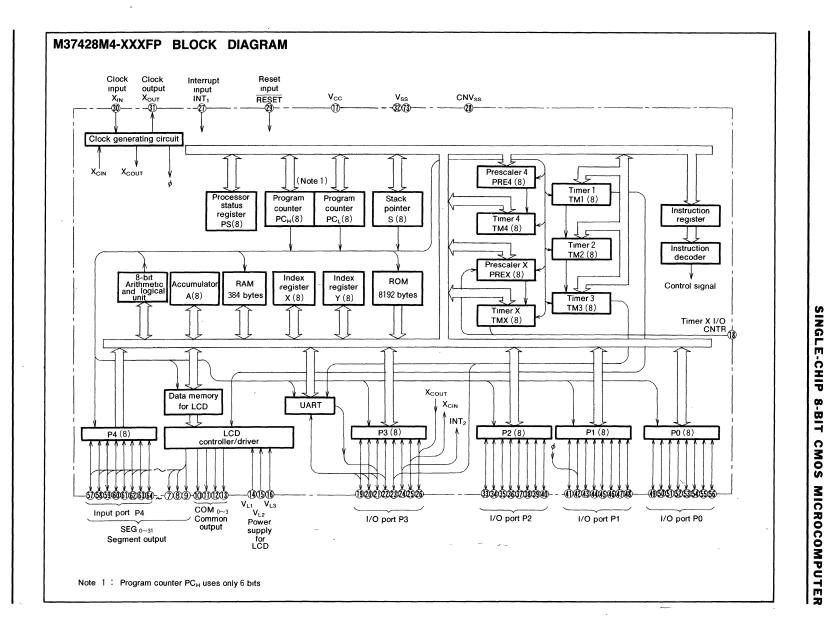
DESCRIPTION

The M37428M4-XXXFP is a single-chip microcomputer designed with high-speed CMOS silicon gate technology. It is housed in an 80-pin shrink plastic molded quad flat package.

This microcontroller's internal architecture and instruction set makes it ideal for business and office automation equipment. In addition to its simple instruction set, the ROM, RAM and I/O addresses are placed on the same memory map to enable easy programming.


This microcontroller is also suitable for applications which require control of LCD panels.

FF	Δ.	TU	RE	S
	-^			. •


LATORES	
Number of basic instructions 69	ı
Memory size	
ROM ····· 8K bytes	
RAM······ 384 bytes	i
Instruction execution time	
(shortest instruction at 8MHz)······1μs	;
Single power supply	
f(X _{IN})=8MHz ······5V±10%	
$f(X_{IN}) = 32kHz \cdots 2.8V \le V_{CC} \le 5.5V(Typ.)$	
Power dissipation	
normal operation mode (at 8MHz)	
30mW (V _{cc} =5V, Typ.)	
low-speed operation mode(at 32kHz)	
225μW (V _{CC} =5V, Typ.)	
55μ W(V _{CC} =3V, Typ.)	
stop mode················· 5μ W (V_{CC} =5V, Max.)	
 RAM retention voltage (stop mode) ·· 2.0V ≤ V_{RAM} ≤ 5.5V 	
Subroutine nesting96 (max.)	
Interrupt	;
• Timers	
8-bit timers with prescalers and reload latches ······ 2	
8-bit timers with reload latches ······	\$
UART with Baud Rate Generator(8-bit)1	
• Programmable I/O ports(Port P0, P1, P2, P3) ········ 32	!
• Input ports (Port P4)	5
• LCD controller/driver(1/2, 1/3 bias, 1/2, 1/3, 1/4 duty)	
segment output ······ 32	
common output ······	۲
Two clock generating circuits	
(One is for main clock, the other is for sub clock)	

APPLICATION

Utility meter, Home telephone, Multi function telephone

M37428M4-XXXFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

FUNCTIONS OF M37428M4-XXXFP

	Parameter		Functions		
Number of basic instruction	ons		69		
Instruction execuțion time			1μs (shortest instruction at 8MHz)		
Clock frequency			8MHz		
14	ROM		8192 bytes		
Memory size	RAM		384 bytes		
	P0, P1, P2, P3	1/0	8-bit×4		
	P4	Input	8-bit×1 (Port P4 are in common with SEG)		
Input/Output port	SEG	LCD output	32-bit×1		
	СОМ	LCD output	4-bit×1		
UART with baud rate gen	erator		1 channel		
			8-bit timers with prescalers and reload latches×2		
Timers			8-bit timers with reload latches×3		
	Bias		1/2, 1/3, bias selectable		
	Duty ratio		1/2, 1/3, 1/4 duty selectable		
LCD controller/driver	Common output		4		
	Segment output		32(SEG ₂₄ ~SEG ₃₁ are in common with port P4)		
Subroutine nesting			96 (max.)		
1-1			Three external interrupts, six internal interrupts,		
Interrupt			one software interrupt		
Clock generating circuit			Two built-in circuits (ceramic or quartz crystal oscillator)		
			5V±10%(at 8MHz)		
Supply voltage			2.8~5.5V(at 32kHz)		
			RAM retention voltage at clock stop is 2~5.5V		
	Normal operation mode	V _{CC} =5V	30mW (typ at 8MHz)		
Power dissipation	Low-speed operation m	ode V _{CC} =5V	225μW (typ at 32kHz)		
	Stop mode V _{CC} =5V		5μW (max at 25℃)		
Operating temperature ra	nge		-10~70℃		
Process technology			High-speed silicon gate CMOS		
Package			80-pin plastic molded QFP		

M37428M4-XXXFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

PIN DESCRIPTION

Pin	Name	Input/ Output	Function
V _{CC} , V _{SS}	Power supply		Connect V _{CC} to 5V±10%. Connect V _{SS} to 0V.
CNV _{ss}	CNV _{SS} input	Input	Connect to 0V to ensure proper operation in the single-chip mode
RESET	RESET input	Input	To reset the CPU, keep the RESET input terminal low for at least 2 μ sec under normal V _{CC} conditions
X _{IN}	Clock input	Input	Connect a ceramic or crystal oscillator between X _{IN} and X _{OUT} for clock oscillation. If an external clock input
X _{out}	Clock output	Output	is used, connect the clock input to the X _{IN} pin and leave the X _{OUT} pin opened
INT ₁	Interrupt input	Input	This is the highest priority interrupt input pin (except for RESET).
P0 ₀ ~P0 ₇	I/O port P0	1/0	Port P0 is an 8-bit I/O port with directional registers allowing each bit to be individually programmed as in put or output. At reset, this port is set as input. The I/O port structure is CMOS compatible.
P1 ₀ ~P1 ₇	I/O port P1	1/0	Port P1 is an 8-bit I/O port with the same function as Port P0
P2 ₀ ~P2 ₇	I/O port P2	1/0	Port P2 is an 8-bit I/O port with the same function as Port P0. It can also be used as input pins for key-control wake up. The output is CMOS compatible
P3 ₀ ∼P3 ₇	I/O port P3	1/0	Port P3 is an 8-bit I/O port with the same function as port P0. P3 ₄ , P3 ₅ , P3 ₆ and P3 ₇ can operate as R _X L T _X D, CLK and CTS, respectively, for the UART function P3 ₂ can be set to work as an external interrupt in put pin INT ₂ P3 ₁ and P3 ₀ can function as X _{CIN} and X _{COUT} , respectively, which are the input pins for the low power dissipation mode clock
P4 ₀ ~P4 ₇	I/O port P4	1/0	Port P4 is an 8-bit input port which can operate as the LCD segment output pins SEG ₂₄ ~SEG ₃₁
V _{L1} ~V _{L3}	Supply voltage for LCD	Input	For LCD operation, these pins must be connected to power such that $0V \le V_{L1} \le V_{L3} \le V_{CC}$
COM₀~ COM₃	Common output	Output	These are LCD common output pins. At 1/2 duty, COM ₂ and COM ₃ are not used. At 1/3 duty, COM ₃ is nused.
SEG₀∼ SEG₃₁	Segment output	Output	These are LCD segment output pins
CNTR	Counter I/O	1/0	This pin is used together with timer X for event counter, pulse output or PWM mode

FUNCTIONAL DESCRIPTION Central Processing Unit (CPU)

The M37428 microcomputers use the standard MELPS 740 instruction set. For details of instructions, refer to the MELPS 740 CPU core basic functions, or the MELPS 740 Software Manual.

Machine-resident instructions are as follows:

The FST and SLW instructions are not provided.

The MUL and DIV instructions are not provided.

The WIT instruction can be used.

The STP instruction can be used.

MEMORY

· Special Function Register (SFR) Area

The special function register (SFR) area contains the registers relating to functions such as I/O ports and timers.

• RAM

RAM is used for data storage as well as a stack area.

ROM

ROM is used for storing user programs as well as the interrupt vector area.

• Interrupt Vector Area

The interrupt vector area is for storing jump destination addresses used at reset or when an interrupt is generated.

Zero Page

Zero page addressing mode is useful because it enables access to this area with fewer instruction cycles.

Special Page

Special page addressing mode is useful because it enables access to this area with fewer instruction cycles.

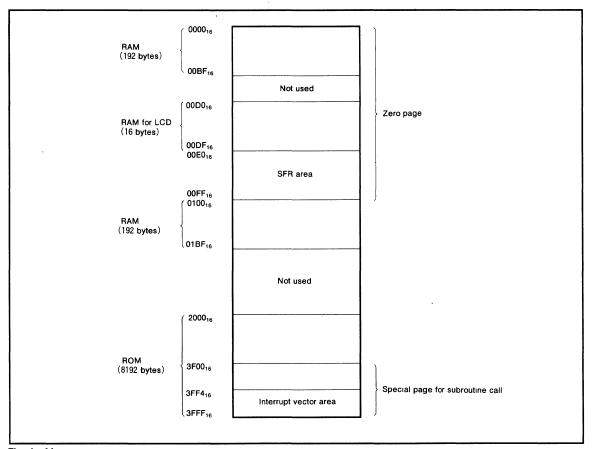


Fig. 1 Memory map

00E0 ₁₆	Port P0	00F0 ₁₆	Band rate generator	٦ .
00E1 ₁₆	Port P0 direction register	00F1 ₁₆	Receive buffer register	1
00E2 ₁₆	Port P1	00F2 ₁₆	Transmit buffer register	1
00E3 ₁₆	Port P1 direction register	00F3 ₁₆	UART status register	1
00E4 ₁₆	Port P2	00F4 ₁₆	UART mode register	1
00E5 ₁₆	Port P2 direction register	00F5 ₁₆	UART control register	1
00E6 ₁₆	Port P3	00F6 ₁₆	Timer control register 1	1
00E7 ₁₆	Port P3 direction register	00F7 ₁₆	Timer 1	7
00E8 ₁₆	Port P4	00F8 ₁₆	Timer 2	
00E9 ₁₆		00F9 ₁₆	Timer 3]
00EA ₁₆	Interrupt source recognition register 1	00FA ₁₆	Prescaler 4]
00EB ₁₆	Interrupt source recognition register 2	00FB ₁₆	Time: 4	
00EC ₁₆	System control register		Prescaler X	
00ED ₁₆		00FD ₁₆	Timer X	_i
00EE ₁₆		00FE ₁₆	Interrupt control register	
00EF ₁₆	LCD mode register	00FF ₁₆	Timer control register 2	J

Fig. 2 SFR (Special Function Register) memory map.

MITSUBISHI MICROCOMPUTERS

M37409PSS

PIGGYBACK for M37409M2-XXXSP

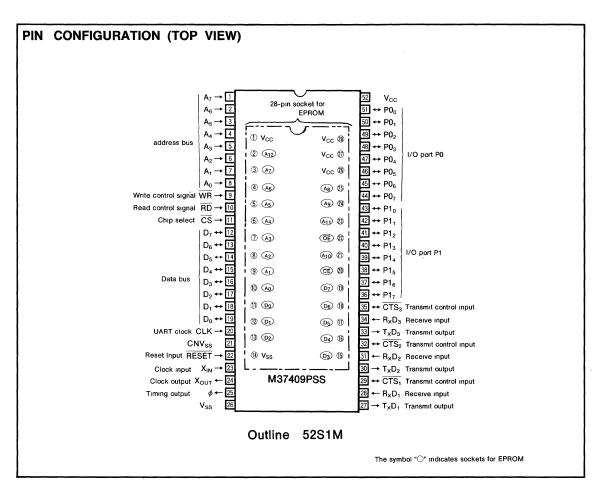
DESCRIPTION

The M37409PSS is an EPROM mounted-type microcomputer which utilizes CMOS technology, and is designed for developing programs for single-chip 8-bit microcomputers the M37409M2-XXXSP. It is housed in a piggyback-type 52-pin shrink DIP.

There is a 28-pin socket on the package for the M5L2764K or the M5L27128K EPROM.

The M37409PSS simplifies the development of programs for the M37409M2-XXXSP, and is excellent for making prototypes.

Therefore the M37409PSS can be used for the development of programs for the M37409M2-XXXSP.


FEATURES

- Differences with the M37409M2-XXXSP are:
- (1) ROMIess, EPROM is attached externally.
- (2) Suitable EPROM is the M5L2764K or the M5L27128K.

APPLICATION

Development of programs for the following systems;

Office automation equipment

PIGGYBACK for M37409M2-XXXSP

PIN DESCRIPTION

Pin	Name	Input/ Output	Functions
V _{CC} , V _{SS}	Supply voltage		Power supply inputs 5V $\pm 5\%$ to V $_{CC}$, and 0V to V $_{SS}$
CNV _{ss}	CNV _{SS}		This is usually connected to V _{SS}
RESET	Reset input	Input	To enter the reset state, the reset input pin must be kept at a "L" for more than $2\mu s$ (under normal V_{CC} conditions.) If more time is needed for the crystal oscillator to stabilize, this "L" condition should be maintained for the required time.
X _{IN}	Clock input	Input	This chip has an internal clock generating circuit. To control generating frequency, an external ceramic or a
X _{OUT}	Clock output	Output	quartz crystal oscillator is connected between the X _{IN} and X _{OUT} pins If an external clock is used, the clock source should be connected the X _{IN} pin and the X _{OUT} pin should be left open.
P0 ₀ ~P0 ₇	I/O port P0	1/0	Port P0 is an 8-bit I/O port with directional register allowing each I/O bit to be individually programmed as input or output. This port is connected to the system bus only, and can not be accessed from the local bus. At reset this port becomes input mode. The output structure is CMOS output.
P1 ₀ ~P1 ₇	I/O port P1	1/0	Port P1 is an 8-bit I/O port and has basically the same function as port P0. This port is connected to the local bus and can be used as only input port from the system bus. The output structure is CMOS output.
$T_XD_1\sim T_XD_3$	UART transfer output	Output	These are UART transfer data output pins
$R_XD_1\sim R_XD_3$	UART receive input	Input	These are UART receive data input pins
CTS₁~ CTS₃	UART transfer control input	1/0	These are UART transfer control signal input pins and can be used as I/O port which have basically same function as port P1
CLK	UART clock input	Input	This port is an external clock input pin for baud rate
A ₀ ~A ₇	Address input	Input	This port is input for system address
D ₀ ~D ₇	Data input/output	1/0	This port is input or output the system data
CS	Chip select	Input	System data can be read or written by inputting "L" to this port
RD	Read control input	Input	Memory or register data specified by $A_0 \sim A_7$ is read from $D_0 \sim D_7$ by inputting "L" to this port
WR	Write control input	Input	Data input from D ₀ ~D ₇ is written to memory or register specified by A ₀ ~A ₇ by inputting "L" to this port
(A0)~(A12)	Output port A	Output	These are for addresses to an EPROM mounted on the package.
00~07	Input port D	Input	These are for input data from an EPROM mounted on the package

PIGGYBACK for M37409M2-XXXSP

EXPLANATION OF FUNCTION BLOCK OPERATION

The differences between the M37409PSS and the M37409M2 -XXXSP are noted below. The following explanations apply to the M37409PSS. Specification variations for other chips are noted accordingly.

MEMORY

The M37409PSS is mounted an EPROM instead of an external ROM.

The address of an EPROM is $0800_{16} \sim 1 FFF_{16}$, and this memory size is 6144 bytes. Other than these, the M37409PSS has the same function as the M37409M2-XXXSP.

PRECATION FOR USE

- In case of the M5L2764K EPROM use the following areas (refer to Figure 1).
 - For use the M37409M2-XXXSP, usable ROM area is 1000₁₆~1FFF₁₆.

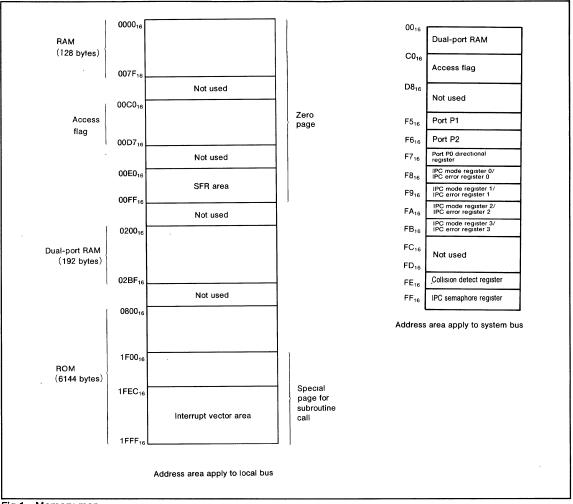


Fig.1 Memory map

PIGGYBACK for M37409M2-XXXSP

00E0 ₁₆	Port P1	00F0 ₁₆	IPC mode register 0
00E1 ₁₆	Port P1 directional register	00F1 ₁₆	IPC mode register 1
00E2 ₁₆	Dual-port RAM direction specify register	00F2 ₁₆	IPC mode register 2
00E3 ₁₆	,	00F3 ₁₆	IPC mode register 3
00E4 ₁₆	UART1 receive/transfer buffer register	00F4 ₁₆	IPC error register 0
00E5 ₁₆	UART1 status register/UART1 mode register	00F5 ₁₆	IPC error register 1
00E6 ₁₆	UART1 control register	00F6 ₁₆	IPC error register 2
00E7 ₁₆	UART1 divider for baud rate generate	00F7 ₁₆	IPC error register 3
00E8 ₁₆	UART2 receive/transfer buffer register	00F8 ₁₆	
00E9 ₁₆	UART2 status register/UART2 mode register	00F9 ₁₆	IPC semaphore register
00EA ₁₆	UART2 control register	00FA ₁₆	Collision detect register
00EB ₁₆	UART2 divider for baud rate generate	00FB ₁₆	Interrupt enable register
00EC ₁₆	UART3 receive/transfer buffer register	00FC ₁₆	Interrupt request register
00ED ₁₆	UART3 status register/UART3 mode register	00FD ₁₆	Prescaler X
00EE ₁₆	UART3 control register	00FE ₁₆	Timer X
00EF ₁₆	UART3 divider for baud rate generate	00FF ₁₆	Timer control register

Fig. 2 SFR (Special Function Register) memory map

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
V _{cc}	Supply voltage		−0. 3~ 7	٧
Vı	Input voltage X _{IN} , RESET, D ₀ ~ D ₇		−0. 3∼ 7	٧
Vı	Input voltage $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $D_0 \sim D_7$, $A_0 \sim A_7$, \overline{RD} , \overline{WR} , \overline{CS} , CLK , $R_XD_1 \sim R_XD_3$, $\overline{CTS_1} \sim \overline{CTS_3}$	With respect to V _{SS}	-0.3~V _{cc} +0.3	v
Vı	Input voltage CNV _{SS}	Output transistors cut-off	-0.3~13	V
Vo	Output voltage $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, X_{OUT} , ϕ , $D_0 \sim D_7$, $T_X D_1 \sim T_X D_3$, $\overline{CTS_1} \sim \overline{CTS_3}$, $(A_0) \sim (A_{13})$		-0.3~V _{cc} +0.3	v
Pd	Power dissipation	T _a =25℃	1000	mW
Topr	Operating temperature		-10~70	င
Tsta	Storage temperature		−40~125	°C

RECOMMENDED OPERATING CONDITIONS ($v_{cc}=5v\pm5\%$, $\tau_a=-10\sim70^{\circ}$ C, unless otherwise noted)

0	Parameter		Limits			
Symbol	Parameter	Mın.	Тур	Max	Unit	
V _{cc}	Supply voltage	4. 75	5	5. 25	٧	
V _{ss}	Supply voltage		0		٧	
V _{IH}	"H" input voltage X_{IN} , \overline{RESET} , CLK , $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $R_XD_1 \sim R_XD_3$, $\overline{CTS_1} \sim \overline{CTS_3}$	0.8V _{CC}		V _{CC}	V	
V _{IH}	"H" input voltage A ₀ ~A ₇ , D ₀ ~D ₇ , RD, WR, CS	2		V _{cc} +0.3	٧	
V _{IH}	"H" input voltage D0~D7	0.45V _{CC}		Vcc	٧	
VIL	"L" input voltage $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, CLK , $R_XD_1 \sim R_XD_3$, $\overline{CTS_1} \sim \overline{CTS_3}$	-0.3		0.2V _{CC}	V	
V _{IL}	"L" input voltage A ₀ ~A ₇ , D ₀ ~D ₇ , RD, WR, CS	-0.3		0.8	٧	
V _{IL}	"L" input voltage RESET	-0.3		0.12V _{CC}	٧	
V _{IL}	"L" input voltage X _{IN}	-0.3		0.16V _{CC}	٧	
VIL	"L" output voltage (D0)~(D7)	0		0.15V _{cc}	٧	
Іон	"H" output current $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, ϕ , $T_XD_1 \sim T_XD_3$, $\overline{CTS_1} \sim \overline{CTS_3}$			-10	mA	
Іон	"H" output current D ₀ ~D ₇			-1.0	mA ,	
I _{OL}	"L" output current $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, ϕ , $T_XD_1 \sim T_XD_3$, $\overline{CTS_1} \sim \overline{CTS_3}$			10	mA	
I _{OL}	"L" output current D ₀ ~D ₇			-1.6	mA	

Note 1: Average output current I_{OL}(avg) and I_{OH}(avg) are the average value of a period of 100ms 2: Total of "L" output current I_{OL}, of ports P0, P1, T_xD₁~T_xD₃ and $\overline{CTS_1}$ ~ $\overline{CTS_3}$ is -50mA max Total of "H" output current I_{OH}, of port P0, P1, T_xD₁~T_xD₃ and $\overline{CTS_1}$ ~ $\overline{CTS_3}$ is 50mA max

ELECTRICAL CHARACTERISTICS ($V_{cc}=5V$, $V_{ss}=0V$, $T_a=25^{\circ}C$, $f(X_{IN})=4MHz$, unless otherwise noted)

Symbol	Parameter	Test conditions		Unit		
Symbol	Parameter	rest conditions	Mın	Тур	Max	Unit
V _{OH}	"H" output voltage $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, ϕ $T_XD_1 \sim T_XD_3$, $\overline{CTS_1} \sim \overline{CTS_3}$	I _{OH} =-10mA	v _{cc} -2			V
V _{OH}	"H" output voltage D ₀ ~D ₇	I _{OH} =-1mA	2.4			٧
V _{OL}	"L" output voltage $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, ϕ $T_XD_1 \sim T_XD_3$, $\overline{CTS_1} \sim \overline{CTS_3}$	I _{OL} =10mA			2	٧
V _{OL}	"L" output voltage D ₀ ~D ₇	I _{OL} =1.6mA			0.4	٧
11	Input leak current A ₀ ~A ₇ , RD, WR, CS, CLK	V _{SS} ≦V _I ≦V _{CC}	-5		5	μA
l _i	Input leak current RESET, XIN	V _{SS} ≦V _I ≦7V	-5		5	μA
loz	Tri-state leak current $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $D_0 \sim D_7$, $\overline{CTS}_1 \sim \overline{CTS}_3$	V _{ss} +0.5≦V _o ≤V _{cc} -0.5V	-5		5	μΑ
$V_{T+}-V_{T-}$	Hysteresis RESET, CLK, R _X D ₁ ∼R _X D ₃ , CTS ₁ ∼CTS ₃			0.6		V

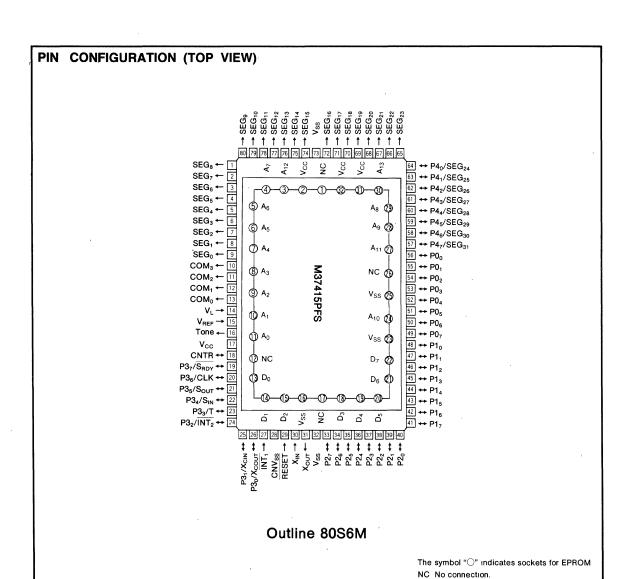
M37415PFS

PIGGYBACK for M37415M4-XXXFP

DESCRIPTION

The M37415PFS is an EPROM mounted-type microcomputer which utilizes CMOS technology, and is designed for developing programs for single-chip, 8-bit microcomputer M37415M4-XXXFP. It is housed in a piggyback-type 80-pin QFP.

There is a 32-pin socket on the package.


The M37415PFS simplifies the development of programs for the M37415M4-XXXFP and is excellent for making prototypes

FEATURES

 Diffierence with the M37415M4-XXXFP are: ROMless, EPROM is attached externally.

APPLICATION

Development of programs for home telephone, multi function telephone

M37415PFS

PIGGYBACK for M37415M4-XXXFP

PIN DESCRIPTION

Pin	Name	Input/ Output	Functions	
V _{cc} , V _{ss}	Supply voltage input		Power supply inputs 5V±10% to V _{CC} and 0V to V _{SS} .	
CNV _{ss}	CNV _{SS} input		Connect to V _{SS}	
RESET	Reset input	Input	To enter the reset state, the reset input pin must be kept at a "L" for more than 2µs (under normal V _{CC} conditions). If more time is needed for the crystal oscillator to stabilize, this "L" condition should be maintained for the required time.	
X _{IN}	Clock input	Input	These are I/O pins of internal clock generating circuit for main clock. To control generating frequency, an	
Хоит	Clock output	Output	external ceramic or a quartz crystal oscillator is connected between the X _{IN} and X _{OUT} pins. If an external clock is used, the clock source should be connected the X _{IN} pin and the X _{OUT} pin should be left open.	
ĪNT ₁	Interrupt input	Input	This is the highest order interrupt input pin. It can be measured input voltage level	
P0 ₀ ~P0 ₇	I/O port P0	I/O	Port P0 is an 8-bit I/O port with directional register allowing each I/O bit to be individually programmed as input or output. At reset, this port is set to input mode. The output structure is CMOS output.	
P1 ₀ ~P1 ₇	I/O port P1	1/0	Port P1 is an 8-bit I/O port and has basically the same functions as port P0.	
P2 ₀ ~P2 ₇	I/O port P2	1/0	Port P2 is an 8-bit I/O port and has basically the same functions as port P0	
P3 ₀ ~P3 ₇	I/O port P3	1/0	Port P3 is an 8-bit I/O port and has basically the same functions as port P0. When serial I/O is used, P3 ₇ , P3 ₈ , P3 ₅ , and P3 ₄ work as $\overline{S_{RDY}}$, CLK, S _{OUT} , and S _{IN} pins, respectively. Also P3 ₃ , P3 ₂ , P3 ₁ , and P3 ₀ work as timer 3 overflow signal divided by 2 output pin (T), $\overline{INT_2}$ pin, X _{CIN} and X _{COUT} pins, respectively.	
P4 ₀ ~P4 ₇	Input port P4	Input	Port P4 is an 8-bit input port and can be used as segment output pins	
V _L	Voltage input for LCD	Input	This is a voltage input pin for LCD. Supply voltage is 0V≤V _L ≤V _{CC} 0V~V _{LV} is supplied to LCD.	
COM₀~ COM₃	Common output	Output	These are the LCD common output pins. At 1/2 duty, COM ₂ and COM ₃ pins are not use. At 1/3 duty, COM ₃ pin is not used.	
SEG ₀ ∼ SEG ₂₃	Segment output	Output	These are LCD segment output pins	
CNTR	Counter I/O	1/0	This is an output pin for timer 4 and 5. It can be measured input voltage level	
V _{REF}	D-A convert power supply for DTMF		Reference voltage input for A-D converter of DTMF	
Tone	DTMF output	Output	This is DTMF output pin.	
A ₀ ~A ₁₃	Output port A	Output	These are for addresses to an EPROM mounted on the package	
D ₀ ~D ₇	Input port D	Input	These are for input data from the EPROM mounted on the package	

EXPLANATION OF FUNCTION BLOCK OPERATION

The differences between the M37415PFS and the M37415M4-XXXFP are noted below. The following explanations apply to the M37415PFS. Specification variations for other chips are noted accordingly.

MEMORY

The M37415PFS is mounted an EPROM instead of an internal ROM. The address of an EPROM is from 1000_{16} to $3FFF_{16}$, and this memory size is 12288 bytes. The memory size of a RAM is 512 bytes as same as the M37415M4-XXXFP.

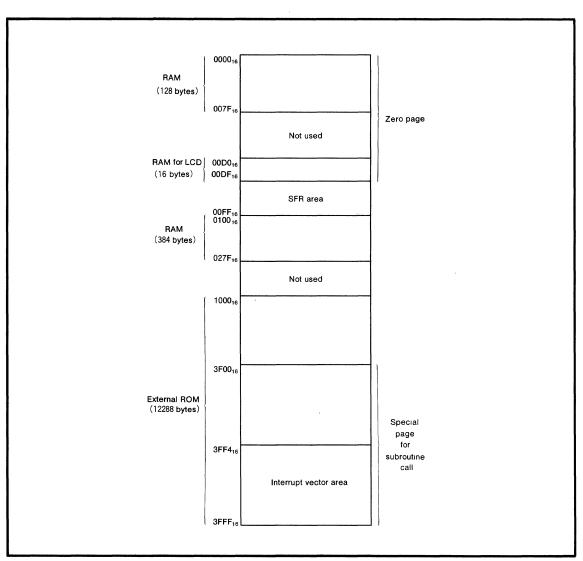


Fig.1 Memory map

MITSUBISHI MICROCOMPUTERS M37415PFS

PIGGYBACK for M37415M4-XXXFP

00E0 ₁₆	Port P0	00F0 ₁₆		
00E1 ₁₆	Port P0 directional register	00F1 ₁₆		
00E2 ₁₆	Port P1	00F2 ₁₆		
00E3 ₁₆	Port P1 directional register	00F3 ₁₆		
00E4 ₁₆	Port P2	00F4 ₁₆	DTMF register	
. 00E5 ₁₆	Port P2 directional register	00F5 ₁₆	LCD mode register	
00E6 ₁₆		00F6 ₁₆	Serial I/O mode register	٠
00E7 ₁₆		00F7 ₁₆	Serial I/O register	
00E8 ₁₆	Port P3	00F8 ₁₆	Timer 4, 5 mode register	
00E9 ₁₆	Port P3 directional register	00F9 ₁₆	Timer 1	
00EA ₁₆	Port P4	00FA ₁₆	Timer 2	
00EB ₁₆		00FB ₁₆	Timer 3	
00EC ₁₆		00FC ₁₆	Timer 4	
00ED ₁₆		00FD ₁₆	Timer 5	
00EE ₁₆		00FE ₁₆	Interrupt control register	
00EF ₁₆		00FF ₁₆	Timer control register	,
		-		=

Fig. 2 SFR (Special Function Register) memory map

PIGGYBACK for M37415M4-XXXFP

PRECAUTION FOR USE

 When developing programs with the M37415PFS, carefully consider the ROM capacity of the M37415M4-XXXFP.

Use the ROM area from 2000₁₆ to 3FFF₁₆.

(2) The M37415PFS has no options as the M37415M4-XXXFP. The condition of ports P0 \sim P3 and CNTR is noted below.

P0~P3, CNTR······without the pull-up transistor P3₅/S_{OUT}······ N-channel open drain output

(3) The way of mounting an EPROM is shown in Figure 3.

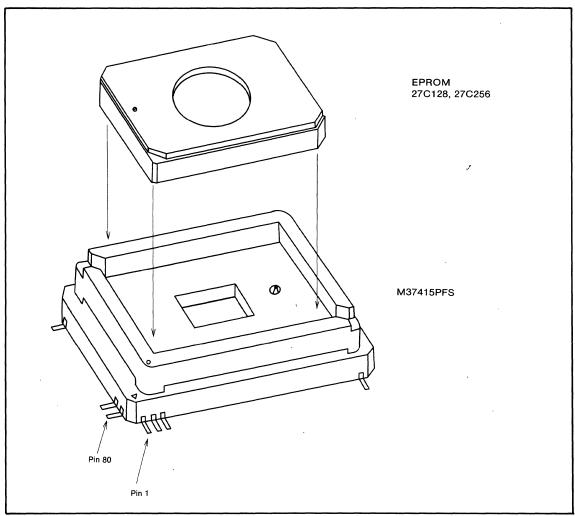


Fig.3 How to mount an EPROM

MITSUBISHI MICROCOMPUTERS **M37415PFS**

PIGGYBACK for M37415M4-XXXFP

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
V _{CC}	Supply voltage		−0.3~7	V
Vı	Supply voltage for LCD V _L		$-0.3 \sim V_{CC} + 0.3$	V
Vi	Input voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₇ , SEG ₂₄ ~SEG ₃₁ , X _{IN}		-0.3∼V _{cc} +0.3	V
Vı	Input voltage INT ₁ , CNV _{SS} , V _{REF}		−0.3~7	V
Vi	Input voltage RESET, CNTR	With respect to V _{SS}	-0.3~13	V
Vo	Output voltage $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $P2_0 \sim P2_7$, $P3_0 \sim P3_7$, $COM_0 \sim COM_3$, $SEG_0 \sim SEG_{31}$, X_{OUT}		-0.3~V _{cc} +0.3	V
Vo	Output voltage CNTR		−0.3~7	V
Pd	Power Dissipation	T _a = 25°C	300	mW
Topr	Operating temperature		−10~70	င
Tstg	Strage temperature		−40~125	°C

RECOMMENDED OPERATING CONDITIONS (V_{cc}=3.0(Note 1)~5.5V, V_{ss}=0 V, T_a=-10~70°C, unless otherwise noted)

Symbol	Parameter	Test conditions	1	Limits		
	raianieter	rest conditions	Mın	Тур	Max	Unit
		$f(X_{IN})=3.2MHz$	4.5		5.5	
V _{cc}	Supply voltage (Note 2)	f(X _{IN})=800kHz	3.0(Note 1)	5.5		V
V _{ss}	Supply voltage			0		٧
V _{REF}	Supply voltage for DTMF	R _L ≥20kΩ	1.5		V _{cc} -0.5	٧
V _{IH}	"H" input voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P3 ₀ , P3 ₁ (Note 3), P3 ₃ ~P3 ₇ (Note 4), P4 ₀ ~P4 ₇ , RESET, X _{IN} , CNV _{SS}		0.7V _{CC}		V _{cc}	٧
V _{IH}	"H" input voltage P2 ₀ ~P2 ₇ , P3 ₂ , P3 ₆ (Note 5) INT ₁ , CNTR		0.8V _{CC}		Vcc	V
V _{IL}	"L" input voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P3 ₀ , P3 ₁ (Note 3), P3 ₃ ~P3 ₇ (Note 4), P4 ₀ ~P4 ₇ , CNV _{SS}		0		0.3V _{CC}	٧
VIL	"L" input voltage P2 ₀ ~P2 ₇ , P3 ₂ , P3 ₆ (Note 5), INT ₁ , CNTR		0		0. 2V _{CC}	٧
VIL	"L" input voltage RESET		0		0.12V _{CC}	٧
VIL	"L" input voltage X _{IN}		0		0.16V _{CC}	V
İ _{он}	"H" Output current P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₇ (Note 6), X _{OUT}				-2	mA
I _{OL} (peak)	"L" peak output current P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₇ , CNTR, X _{OUT} (Note 7)				10	mA
I _{OL} (avg)	"L" average output current P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₇ , CNTR, X _{OUT} (Note 8)				5	mA
f(X _{IN})	Clock oscillating frequency (Note 9)	V _{cc} =4.5~5.5V V _{cc} =3.0(Note 1)~5.5V	380 380		3300 1000	kHz
f(X _{CIN})	Clock oscillating frequency for clock function		32		50	kHz

Note 1 : Minimum value of V_{CC} is dependent on the EPROM used. At normal temperature, this value is about 2.5V. Therefore, 3.0V is dependent on the proper operation of the EPROM at that voltage

2 : When only operating the RAM data retention, minimum value of $\mbox{V}_{\mbox{\scriptsize CC}}$ is $2\mbox{ V}$

3 : When using port P3₁ as X_{CIN} , 0. $85 \le V_{CC} \le V_{IH} \le V_{CC}$, $0 \le V_{IL} \le 0.15 V_{CC}$ for port P3₁

4 : In this case of using port P36 as normal input

5 : In this case of using port P3₆ as CLK input

The total of I_{OH} of port P0, P1, P2, P3 and X_{OUT} should be 35mA max

The total of I_{OL} (peak) of port P0, P1, P2, P3 should be 55mA max, and the total of I_{OL} (peak) of port P3, CNTR, and X_{OUT} should be 45mA max

8 : $I_{\rm OL}$ (avg) is the average current in 100ms

9: When using DTMF function, f(X_{IN}) should be 400kHz, 800kHz, 1.6MHz, or 3.2MHz

PIGGYBACK for M37415M4-XXXFP

$\textbf{ELECTRICAL} \quad \textbf{CHARACTERICS} \,\, (v_{ss} = 0 \, v, \,\, \tau_a = -10 \sim 70 \, ^{\circ}\!\!\! \text{C, unless otherwise noted})$

Symbol		Parameter		' Test cor	nditions		Limits		Uni
			-			Min	Тур	Max	
/ он	"H" output voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₄ (Note 1), P3 ₆ , P3 ₇			=5V, I _{OH} =-2mA		3			V
	1.50 1.64(1406617,1.08,1.07		+	=3V, I _{OH} =-0.7m/		2			
/он	"H" output voltage Xo	JT		=5V, I _{OH} =-1.5m/		3 2			V
	"L" output voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₇ (Note 1), CNTR		+	=3V, I _{OH} =-0.3m/	4			2	
OL.			-	=5V, I _{OL} =10mA		-		1	V
	1 30	-1 o/(Note 1 /, ONTIL		=3V, I _{OL} =3mA =5V, I _{OL} =1.5mA		-		2	
/ _{OL}	"L" output voltage Xou	л		=3V, I _{OL} =0.3mA				1	V
			V _{CC} :			0. 25		1	
$V_{T+}-V_{T-}$	Hysteresis INT ₁ , CNT	R	V _{CC} :			0.15		0.7	V
			+	en used as	V _{CC} =5V	0.15	0.5	0.7	
$V_{T+}-V_{T-}$	Hysteresis P3 ₆		1	CLK input	V _{CC} =3V		0. 4		V
			Whe	en used as	V _{CC} =5V	-	0.7		
$V_{T+}-V_{T-}$	Hysteresis P3 ₁		1	X _{CIN} input	V _{CC} =3V		0.5		٧
			V _{CC} :		*00 01		0.5		
$V_{T+}-V_{T-}$	Hysteresis P2 ₀ ∼P2 ₇ ,	P3 ₂	V _{CC}				0.4		V
			V _{CC}				0.5	0.7	
/ _{T+} -V _{T-}	Hysteresis RESET		V _{CC} :				0.35	0.7	V
			V _{CC}				0.5		
$V_{T+}-V_{T-}$	Hysteresis X _{IN}		V _{CC}				0.35		٧
	"I " input current SEG	24~SEG ₃₁ (except reset state)	+			_	0.00		
		~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₇	1	V _{CC} =5V V _I =0V				-5	
	out pull-up Tr INT ₁ , RESET, X _{IN}	V _{CC}						μΙ	
		V _I =				-4			
			=5V, V _L =5V, V _I =0		-30		-140	l	
IL	"L" input current SEG ₂₄ ~SEG ₃₁ (at reset state) V _{CC} =3V, V _L =3V, V _I =0V		-6		-45	μΙ			
	"H" input current SEG	24~SEG31 (except reset state)		V _{GC} =5V		+		15	
		$\sim P0_7$, $P1_0 \sim P1_7$, $P2_0 \sim P2_7$,	V _i =5V V _{cc} =3V				5		
ін		~P3 ₇ , INT ₁ , RESET, X _{IN}						μF	
			V _I =					4	
				=5V, V _L =5V, V _I =5	5V		 	5	
Ін	"H" input current SEG	₂₄ ~SEG ₃₁ (at reset state)	-	V _{CC} =3V, V _L =3V, V _I =3V				4	μι
			ΤŤ		at DTMF wave form output		4		
			1 1	$f(X_{IN}) = 3.2 MHz$			4		
				V _{CC} =5V	at DTMF wave form		3		m A
			e e		at DTMF wave form		0.8		
		Output pins are opened.		$f(X_{IN}) = 800 \text{kMHz}$	Hz output		0.0		
		RESET, P0 ₀ ~P0 ₇ ,	stop	v _{cc} =3v	at DTMF wave form stop		0.5		
		P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ ,	+	T_=25°C	V -5V		45		
		and P3 ₀ ∼P3 ₇ are		T _a =25°C X _{IN} =0V I(X _{CIN})=32.8kHz	V _{cc} =5V		45		μА
		connected to V _{CC} .		at low power mode (LM ₆ =1)	v _{cc} =3v		18		
I _{CC} Supply c	Supply current	Except the above pins						-	
		are connected to V _{SS} .		f(X _{IN})=3.2MHz, V _{CC} =5V			1		mA
		However, X _{IN} and X _{CIN} are input signal according	1 22 -	$f(X_{IN})=800kHz, V_0$	CC=3V		0.3		
		to the conditions	at	T _a =25℃ X _{IN} =0V	V _{CC} =5V		20		
		Without supply	at w	Ta=25°C X _{IN} =0V f(X _{CIN})=32 8kHz at low power mode (LM ₆ =1)			-		
	,	current for EPROM	"	(LM ₆ =1)	V _{cc} =3V		4		
	555 5. 2		T -05°C				μA		
			ati	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1a=25 C		0.1	1	
			$\oint_{\mathbb{R}} f(X_{CIN}) = 0$	T - 70°C					
			te l	$V_{CC}=5V$	T _a =70℃				
	RAM retention voltage		+	$(x_{CIN}) = 0, f(x_{CIN}) = 0$		2		5.5	V

Note 1 : If P3 $_{0}$ is used as X_{COUT} , capability of load driving is lower than the above

MITSUBISHI MICROCOMPUTERS M37415PFS

PIGGYBACK for M37415M4-XXXFP

DTMF CHARACTERISTICS ($V_{SS}=0$ V, $T_a=-10\sim70^{\circ}C$, unless otherwise noted)

Symbol Paran		motor	Tes conditions		Limits		Units
Symbol	Falai	meter	les conditions		Тур	Max	Units
V _{OT} Output voltage T _{one}		High frequency band group	$V_{CC}=5V$, $V_{REF}=4.5V$, $R_L=20k\Omega$	470	490	510	
	Output valtes a T	High frequency band group	$V_{CC}=3V, V_{REF}=2.5V, R_{L}=20k\Omega$	257	270	283	
	Output voltage Tone		V _{CC} =5V, V _{REF} =4.5V, R _L =20kΩ	325	345	365	mVrms
	Low frequency band group	$V_{CC}=3V$, $V_{REF}=2.5V$, $R_L=20k\Omega$	177	190	203		
dB _{CR}	Output ratio of high frequency band to low frequency band		$R_L=20k\Omega$	2.5	3	3.5	dB
DIS	Disportional percentage		R _L =20kΩ, T _a =25℃		13		%

Accuracy of DTMF output (at low frequency band value)

Standard frequency value [Hz]	Output frequency value [Hz]	Deflection	Error [%]
697	694. 44	-2 . 555	-0.367
770	769. 23	-0 . 769	-0.1
852	854. 7	2. 7	0.317
941	938. 97	-2. 033	−0. 216

Accuracy of DTMF output (at high frequency band value)

Standard frequency value [Hz]	Output frequency value [Hz]	Deflection	Error [%]
1209	1204. 8	-4. 181	-0.346
1336	1333. 3	-2.667	-0.2
1477	1470.6	-6.412	-0. 434
1633	1639. 3	6. 344	0. 389

3-409

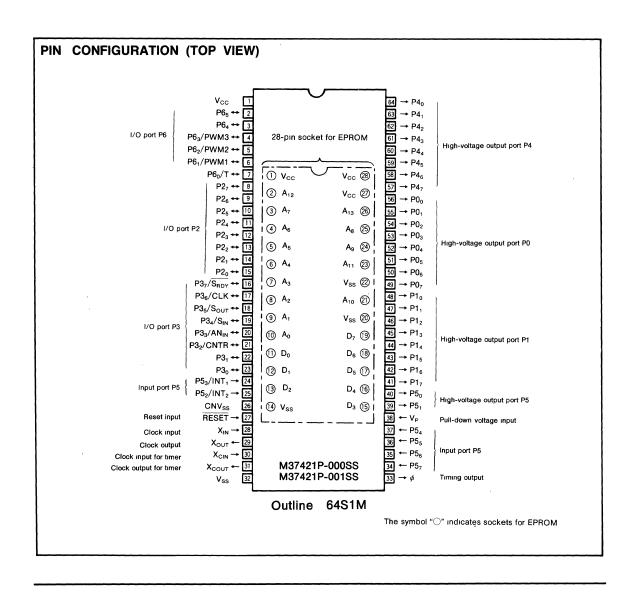
M37421P-000SS M37421P-001SS

PIGGYBACK for M37421M6-XXXSP

DESCRIPTION

The M37421P-000SS and the M37421P-001SS are EPROM mounted-type microcomputers which utilizes CMOS technology, and is designed for developing programs for single-chip 8-bit microcomputer the M37421M6-XXXSP. It is housed in a piggyback-type 64-pin shrink DIP.

There is a 28-pin socket on the package for the M5L27128K or the M5L27256K EPROM.


The M37421P-000SS and the M37421P-001SS simplify the development of programs for the M37421M6-XXXSP and is excellent for making prototypes.

FEATURES

- Differences with the M37421M6 are:
- (1) ROMIess, EPROM is attached externally.
- 2) Suitable EPROM is the M5L27128K or the M5L27256K.

APPLICATION

Development of programs for VCR, tuners, and audio-visual equipment

M37421P-000SS M37421P-001SS

PIGGYBACK for M37421M6-XXXSP

PIN DESCRIPTION

Pın	Name	Input/ Output	Functions
V _{CC} , V _{SS}	Supply voltage		Power supply inputs 5V \pm 5% to V _{CC} , and 0V to V _{SS}
CNV _{ss}	CNV _{ss}		This is usually connected to V _{SS}
V _P	Pull-down voltage	Input	This is the input voltage pin for the pull-down transistor of ports P0, P1, P4, P5 ₀ and P5 ₁
RESET	Reset input	Input	To enter the reset state, the reset input pin must be kept at a "L" for more than $2\mu s$ (under normal V_{CC} conditions) If more time is needed for the crystal oscillator to stabilize, this "L" condition should be maintained for the required time
X _{IN}	Clock input	Input	This chip has an internal clock generating circuit
X _{out}	Clock output	Output	To control generating frequency, an external ceramic or a quartz crystal oscillator is connected between the X_{IN} and X_{OUT} pins If an external clock is used, the clock source should be connected the X_{IN} pin and the X_{OUT} pin should be left open.
φ	Timing output	Output	This is the timing output pin $\phi = 2MHz$ (when $X_{IN} = 4MHz$)
X _{CIN}	Clock input for clock function	Input	This is the I/O pins of the clock generating circuit for the clock function. To control generating frequency, an external ceramic or a quartz crystal oscillator is connected between the X _{CIN} and X _{COUT} pins. If an exter-
Хсоит	Clock output for clock function	Output	nal clock is used, the clock source should be connected to the X _{CIN} pin, and the X _{COUT} pin should be left open. This clock can be used as a program controlled the system clock.
P0 ₀ ~P0 ₇	Output port P0	Output	Port P0 is an 8-bit output port. Output structure is high-voltage P-channel open drain. A pull-down transistor is built in between the V_P pin and this port. At reset, this port is set to a "L" level.
P1 ₀ ~P1 ₇	Output port P1	Output	Port P1 is an 8-bit output port and has basically the same functions as port P0
P2 ₀ ~P2 ₇	I/O port P2	1/0	Port P2 is an 8-bit I/O port with directional registers allowing each I/O bit to be individually programmed as input or output. At reset, this port is set to input mode. The output structure is N-channel open drain
P3 ₀ ~P3 ₇	I/O port P3	1/0	Port P3 is an 8-bit I/O port and has basically the same functions as port P2. When serial I/O is used, P3, P36, P35, and P34 work as $\overline{S_{RDY}}$ CLK, S_{OUT} , and S_{IN} pins, respectively
P4 ₀ ~P4 ₇	Output port P4	Output	Port P4 is an 8-bit output port and has basically the same functions as port P0
P5 ₀ , P5 ₁	Output port P5	Output	Bit 0 and 1 of port P5 are 2-bit output port and has basically the same functions as port P0
P5 ₂ /INT ₂ , P5 ₃ /INT ₁	Input port P5	Input	Bit 2 and 3 of port P5 are 2-bit input port and are in common with interrupt inputs
P5 ₄ ~P5 ₇		Input	Bit 4~7 of port P5 are 4-bit input port
P6 ₀ ~P6 ₅	I/O port P6	1/0	Port P6 is a 6-bit I/O port with directional registers allowing each I/O bit to be individually programmed as input or output. The output structure is CMOS tri-state output P6 ₀ , P6 ₁ , P6 ₂ , P6 ₃ can be programmed to function as timer output pin (T), PWM output pins (PWM1, PWM2, and PWM3), respectively
A ₀ ~A ₁₄	Output port A	Output	These are for addresses to an EPROM mounted on the package
D ₀ ~D ₇	Input port D	Input	These are for input data from an EPROM mounted on the package

PIGGYBACK for M37421M6-XXXSP

EXPLANATION OF FUNCTION BLOCK OPERATION

The differences between the M37421P-000SS, the M37421P-001SS and the M37421M6-XXXSP are noted below. The following explanations apply to the M37421P-000SS and the M37421P-001SS.

Specification variations for other chips are noted accordingly.

MEMORY

The M37421P-000SS and the M37421P-001SS are mounted an EPROM instead of an internal ROM.

RAM size is 512 bytes, and addresses 0100_{16} to $023F_{16}$ are used for the stack.

The address of an EPROM is $8000_{16} \sim \text{FFFF}_{16}$, and this memory size is 32K bytes. Other than these, the M37421P-000SS and the M37421P-001SS have the same functions as the M37421M6-XXXSP has.

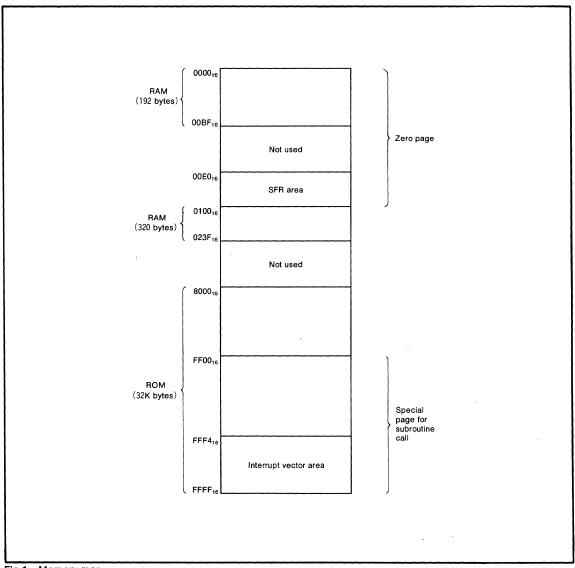


Fig.1 Memory map

		1		
00E0 ₁₆	Port P0	00F0 ₁₆	PWM1-H register	
00E1 ₁₆		00F1 ₁₆	PWM1-L register	
00E2 ₁₆	Port P1	00F2 ₁₆	PWM2 register	
00E3 ₁₆		00F3 ₁₆	PWM3 register	
00E4 ₁₆	Port P2	00F4 ₁₆		
00E5 ₁₆	Port P2 directional register	00F5 ₁₆	PWM output mode register	
00E6 ₁₆		00F6 ₁₆	Serial I/O mode register	
00E7 ₁₆		00F7 ₁₆	Serial I/O register	
00E8 ₁₆	Port P3	00F8 ₁₆		
00E9 _{.16}	Port P3 directional register	00F9 ₁₆	Serial I/O register 2	
00EA ₁₆	Port P4	00FA ₁₆	Timer 1	
00EB ₁₆		00FB ₁₆		
00EC ₁₆	Port P5	00FC ₁₆	Timer 2	
00ED ₁₆		00FD ₁₆	Timer 3	
00EE ₁₆	Port P6	00FE ₁₆	Interrupt control register	
00EF ₁₆	Port P6 directional register	00FF ₁₆	Timer control register	
		•		

Fig. 2 SFR (Special Function Register) memory map

RESET MODE

With the M37421M6-XXXSP, one of the two modes can be selected: the normal operation start mode which executes reset by normal operation (f(X_{IN})=4.2MHz) and the low-speed operation start mode which executes reset by low-speed operation (f(X_{CIN})=3.2kHz).

Therefore, two types of piggybacks are provided:

- (2) M37421P-001SS With this piggyback, pin φ is set to the internal reset signal output and the reset mode option to the lowspeed operation start mode.

PRECAUTION FOR USE

- (1) In case of the M5L27128K or the M5L27256K EPROM use the following areas (refer to Figure 1):
 - For the M37421M6-XXXSP, usable ROM area are D000₁₆~FFFF₁₆.

(2) In case of the development of programs by the M37421P-000SS or M37421P-001SS, RAM area for the stack:

M37421M6-XXXSP addresses $0100_{16} \sim 017F_{16}$ M37421P-000SS or M37421P-001SS addresses $0100_{16} \sim 023F_{16}$

PIGGYBACK for M37421M6-XXXSP

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
V _{cc}	Supply voltage		-0.3~7	V
V_P	Pulldown input voltage		V _{cc} -40~V _{cc} +0.3	V
Vı	Input voltage, P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₂ , P3 ₄ ~P3 ₇ , CNV _{SS} , P5 ₂ /INT ₂ , P5 ₃ /INT ₁		-0.3~13	٧
Vı	Input voltage, RESET, X _{IN} , X _{CIN}	With respect to V _{SS}	-0.3~7	V
Vı	Input voltage, P3 ₃ , P6 ₀ ~P6 ₅	Output transistors cut-off	-0.3~V _{CC} +0.3	V
Vı	Input voltage, P5 ₄ ~P5 ₇		-0.3~13	V
Vo	Output voltage, P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₂ , P3 ₄ ~P3 ₇		-0.3~13	V
V _o	Output voltage, P6 ₀ ~P6 ₅ , X _{OUT} , X _{COUT} , φ, P3 ₃		-0.3~V _{CC} +0.3	V
Vo	Output voltage, P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P4 ₀ ~P4 ₇ , P5 ₀ , P5 ₁		V _{cc} -40~V _{cc} +0.3	V
·Pd	Power dissipation	T _a = 25℃	1000	mW
Topr	Operating temperature		-10~70	°C
Tstg	Storage temperature		−40~125	°C

RECOMMENDED OPERATING CONDITIONS ($V_{cc}=5V\pm5\%$, $T_a=-10\sim70^{\circ}C$, unless otherwise noted)

Symbol	Dozeni otor		Limits		Unit
Symbol	Parameter	Min	Тур	Max	Unit
V _{CC}	Supply voltage	4. 75	5	5. 25	٧
V _P	Pull-down supply voltage	V _{CC} -38		V _{CC}	٧
Vss	Supply voltage		0		V
V _{IH}	"H" input voltage $P2_0 \sim P2_7$, $P3_0 \sim P3_7$, $CNV_{SS}(Note\ 1\)$ $P5_2/INT_2$, $P5_3/INT_1$, $P6_0 \sim P6_5$	0.75V _{CC}		V _{CC}	V
V _{IH}	"H" input voltage RESET, X _{IN} , X _{CIN}	0.8V _{cc}		Vcc	V
ViH	"H" input voltage P5 ₄ ~P5 ₇	0.4V _{CC}		V _{cc}	V
V _{IL}	"L" input voltage $P2_0 \sim P2_7$, $P3_0 \sim P3_7$, CNV_{SS} , $P5_2/INT_2$, $P5_3/INT_1$, $P6_0 \sim P6_5$	0		0. 25V _{CC}	٧
V _{IL}	"L" input voltage RESET	0		0.12V _{CC}	V
VIL	"L" input voltage X _{IN} , X _{CIN}	0		0.16V _{CC}	٧
V _{IL}	"L" input voltage P5 ₄ ~P5 ₇	0		0.12V _{cc}	٧
I _{он(sum)}	"H" sum output current $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $P4_0 \sim P4_7$, $P5_0$, $P5_1$			-120	mA
I _{OH} (sum)	"H" sum output current P6 ₀ ~P6 ₅			-5	mA
I _{OL} (sum)	"L" sum output current P20 \sim P27, P30 \sim P37, P60 \sim P65			50	mA
I _{он(peak)}	"H" peak output current P00~P04			-40	mA
I _{он(peak)}	"H" peak output current P05~P07, P10~P17			-30	mA
I _{он(peak)}	"H" peak output current P40~P47, P50, P51			-24	mA
I _{он(peak)}	"H" peak output current P60~P65			-3	mA
l _{oL(peak)}	"L" peak output current P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₇			15	mA
loL(peak)	"L" peak output current P6 ₀ ~P6 ₅			3	mA
I _{он(avg)}	"H" average output current P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇			—18	mA
I _{он(avg)}	"H" average output current P40~P47, P50, P51			-12	mA
I _{он(avg)}	"H" average output current P6 ₀ ~P6 ₅			-1.5	mA
I _{OL} (avg)	"L" average output current P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₇			10	mA
I _{OL(avg)}	"L" average output current P6 ₀ ~P6 ₅			1.5	mA
f	Timer 3 counter clock input f(X _{IN})=4.2MHz			250	kHz
f(P3 ₂ /CNTR)	oscillation frequency (Note 2) f(X _{CIN})=32kHz			50	NII4
f(X _{IN})	Clock input oscillating frequency (Note 2, 3, 5)			4. 2	MHz
f(X _{CIN})	Clock oscillating frequency for clock function		32. 768	50	kHz

Note 1: High-level input voltage of up to $\pm 12V$ may be applied to permissible for ports $P2_0 \sim P2_7$, $P3_0 \sim P2_7$ $P3_2$, $P3_4 \sim P3_7$, CNV_{SS} , and $P5_2 \sim P5_7$

2: Oscillation frequency is at 50% duty cycle

When used in the low-speed mode, the timer clock input frequency should be f(X_{IN}) < f(X_{IN})/3
 When external clock input is used, the timer clock input frequency should be f(X_{CIN}) ≤ 50kHz
 The average output current l_{OL(avg)} and l_{OH(avg)} are in period of 100ms.

$\textbf{ELECTRICAL} \quad \textbf{CHARACTERISTICS} \; (v_{\text{CC}} = 5 \text{V} \pm 5 \text{\%}, \; v_{\text{SS}} = 0 \text{V}, \; \tau_{\text{A}} = 25 \text{°C}, \; \text{f}(X_{\text{IN}}) = 4 \text{MHz}, \; \text{unless otherwise noted})$

Symbol	Parameter		Test conditions		Limits			
Symbol		Farametei	rest conditions	Min	Тур	Max.	Unit	
V _{OH}	"H" output voltage	P6 ₀ ~P6 ₅	I _{OH} =-0.5mA	V _{cc} -0.4			٧	
V _{OH}	"H" output voltage	φ	I _{OH} =-2.5mA	V _{cc} -2			V	
V _{OH}	"H" output voltage	P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇	I _{OH} =-18mA	V _{cc} -2			٧	
VoH	"H" output voltage	P4 ₀ ~P4 ₇ , P5 ₀ , P5 ₁	I _{OL} =-12mA	V _{cc} -2			٧	
VoL	"L" output voltage	P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₇	I _{OL} =10mA			2	V	
VoL	"L" output voltage	P6 ₀ ~P6 ₅	I _{OL} =0.5mA			0.4	V	
VoL	"L" output voltage	φ	I _{OL} =2.5mA			2	٧	
$V_{T+}-V_{T-}$	Hysteresis P5 ₂ /IN	T ₂ , P5 ₃ /INT ₁		0.3		1	٧	
V _{T+} -V _{T-}	Hysteresis RESET				0.5	0.7	V	
$V_{T+}-V_{T-}$	Hysteresis P3 ₆		When used as CLK input	0.3		1	V	
$V_{T+}-V_{T-}$	Hysteresis X _{IN}			0.1		0.5	٧	
I _{IL}	"L" input current F	P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₇	V _I =0V			-5	μА	
I _{IL}	"L" input current F	P6 ₀ ~P6 ₅	V _I =0V			5	μΑ	
I _{IL}	"L" input current P	P5 ₄ ~P5 ₇	V ₁ =0V			-5	μΑ	
I _{IL}	"L" input current F	RESET, XIN, XCIN	V _I =0V			-5	μА	
I _{IL}	"L" input current P	P5 ₂ /INT ₂ , P5 ₃ /INT ₁	V _i =0V			- 5	μА	
		P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₇	V _i =5V			5		
l _{IH}	"H" input current	P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₂ , P3 ₄ ~P3 ₇	V _I =12V			12	$\mu \mathbf{A}$	
I _{IH}	"H" input current F	P6 ₀ ~P6 ₅	V _I =5V			5	μA	
I _{IH}	"H" input current F	P5 ₄ ~P5 ₇	V _I =5V			5	μА	
I _{IH}	"H" input current F	RESET, XIN, XCIN	V _I =5V			5	μΑ	
			V ₁ =5V			5		
I _{IH}	"H" input current F	P5 ₂ /INT ₂ , P5 ₃ /INT ₁	V _I =12V			12	$\mu \mathbf{A}$	
I _{LOAD}	Output load curren	nt P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P4 ₀ ~P4 ₇ , P5 ₀ , P5 ₁	V _P =V _{CC} -36V, V _{OL} =V _{CC}	150	500	900	μΑ	
I _{LEAK}	Output leak curren	nt P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P4 ₀ ~P4 ₇ , P5 ₀ , P5 ₁	V _P =V _{CC} -38V, V _{OL} =V _{CC} -38V			30	μΑ	
V _{RAM}	RAM retention volt	age	at clock stop	2		5.5	٧	
loc	Supply current		Output pins open (output OFF) V _P =V _{CC} , V _P =V _{SS} input and I/O pins all at V _{SS} X _{IN} =4MHz (system operation)		6	12	mA	

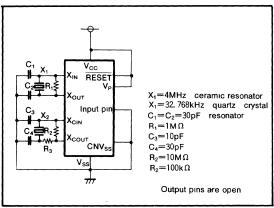


Fig.3 Supply current test circuit

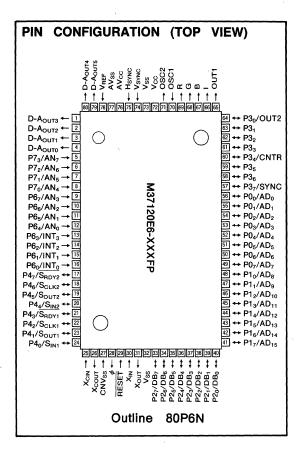
M37120E6-XXXFP

PROM VERSION of M37120M6-XXXFP

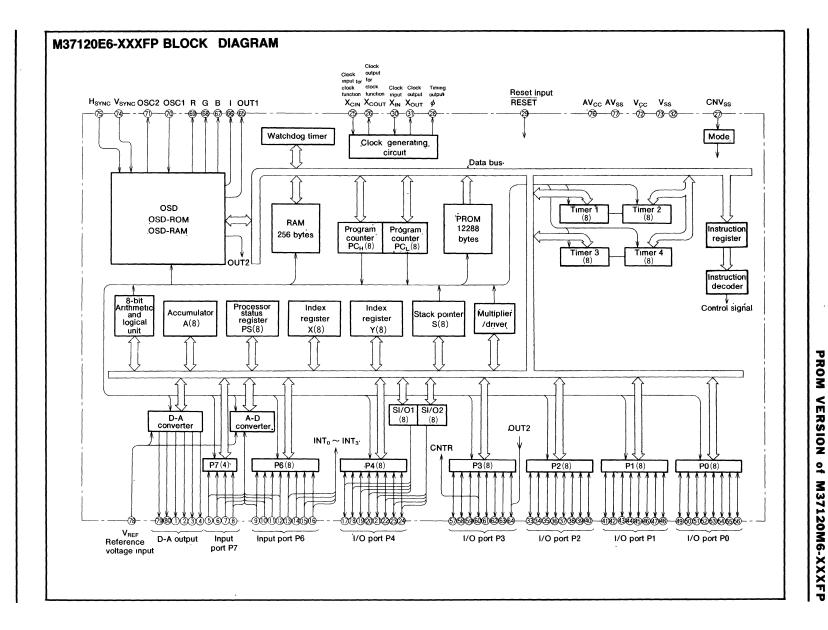
DESCRIPTION

The M37120E6-XXXFP is a single-chip microcomputer designed with CMOS silicon gate technology. It is housed in a 80-pin plastic molded QFP. The features of this chip are similar to those of the M37120M6-XXXFP except that this chip has a 12288 bytes PROM built in. This single-chip microcomputer is useful for appliance controllers.

In addition to its simple instruction sets, the PROM, RAM, and I/O addresses are placed on the same memory map to enable easy programming. Since general purpose PROM writers can be used for the built-in PROM, this chip is suitable for small quantity production runs.


FEATURES

•		
•	Number of ba	sic instructions······71
•	Memory size	PROM12288 bytes
		RAM 256 bytes
•	Instruction exe	ecution time
	1µs	(minimum instructions at 4MHz frequency)
•	Single power	supply
		Hz :5V±10%
•	Power dissipa	ation .
	normal oper	ration mode (at 4MHz frequency)
		75mW
•	Subroutine ne	esting ······ 128 levels (Max.)
•		14 types, 14 vectors
•		4
•	Programmable	e I/O ports
	(Ports P0	, P1, P2, P3, P4) ······ 40
•	Input ports (P	orts P6, P7) 12
•	Serial I/O (8-I	bit)2
•		r (8-bit resolution) ······ 8 channels
•		r (8-bit resolution) ······ 6 channels
•	Watchdog tim	
•	72-character	on screen display function
	Number of	character 24 characters ×3 lines
	Kinds of cha	aracter · · · · · · 126
•	Two clock ge	nerating circuits
		main clock, the other is for clock function)
•	PROM (equiv	alent to the M5L27256)


program voltage······12.5V

APPLICATION

TV, VCR

M37120E6-XXXFP

PROM VERSION of M37120M6-XXXFP

FUNCTIONS OF M37120E6-XXXFP

•	Parameters		Functions	
Number of basic instructions			71	
Instruction execution time			1μs (minimum instructions, at 4MHz of frequency)	
Clock frequency			4MHz	
PROM			12288bytes	
Memory size	RAM		256bytes	
	P0, P1, P2, P3	1/0	8-bit×4	
	P4	I/O	8-bit×1 (N-channel open drain output)	
	P6	Input	8-bit×1	
Input/Output port	P7	Input	4-bit×1	
	I, B, G, R, OUT1	Output	1-bit×5(for CRT display function)	
	V _{SYNC} , H _{SYNC}	· Input	1-bit×2(for CRT display function)	
	D-A _{OUT0} ~D-A _{OUT5}	Output	1-bit×6	
Serial I/O			8-bit×2	
Timers	*		8-bit timer×4	
Subrotine nesting			128(max)	
Interrupt			Four external Interrupts, nine internal interrupts, one software interrupt	
Clock generating circuit			Two built-in circuits (ceramic or quartz crystal oscillator)	
Supply voltage			5V±10%	
Operating temperature	range		-10~70℃	
Device structure			CMOS silicon gate	
Package			80-pin plastic molded QFP	
CDT display function	Number of character		24 characters×3 lines	
CRT display function	Kinds of character		126(12×16 dots)	

M37120E6-XXXFP

PROM VERSION of M37120M6-XXXFP

PIN DESCRIPTION

Pin	Mode	Name	Input/ Output	Functions	
V _{CC} , V _{SS}	Single-chip /EPROM	Power supply		Supply 5V±10% to V _{CC} and 0V to V _{SS}	
AV _{CC} ,	Single-chip	Analog power supply		Power supply input for A-D and D-A converters	
AV _{ss}	EPROM	Analog power supply		Connect to AV _{CC} to V _{CC} and AV _{SS} to V _{SS}	
CNV _{ss} /	Single-chip	CNV _{SS} input	Input	Connect to V _{SS} .	
V _{PP}	EPROM	V _{PP} input	Input	Connect to V _{PP} when programming or verifing	
V _{REF}	Single-chip	Reference voltage input	Input	Reference voltage input for A-D and D-A converters	
	EPROM	Reference voltage input	Input	Connect to V _{SS}	
RESET	Single-chip	Reset input	Input	To reset, keep this input terminal low for more than $2\mu s$ (min) under normal V_{CC} conditions if more time is needed for the crystal oscillator to stabilize, this "L" condition should be maintained for the required time	
	EPROM	Reset input	Input	Connect to 0V	
X _{IN}	Single-chip	Clock input	Input	These are I/O pins of internal clock generating circuit for main clock. To control generating frequency, an external ceramic or a quartz crystal oscillator is connected	
X _{OUT}		Clock output	Output	between the X_{IN} and X_{OUT} pins. If an external clock is used, the clock source she be connected the X_{IN} pin and the X_{OUT} pin should be left open	
X _{IN}	EPRÓM	Clock input	Input	Connect to V _{CC}	
Хоит		Clock output	Output	Open.	
X _{CIN}	Single-chip	Clock input for clock function	Input	This is the I/O pins of the clock generating circuit for the clock function	
Хсоит		Clock output for clock function	Output		
X _{CIN}	EPROM	Clock input for clock function	Input	Connect to V _{CC} .	
Хсоит		Clock output for clock function	Output	Open.	
φ	Single-chip	Timing output	Output	The function of this pin can be selected either timing output or resetout output	
	EPROM	Timing output	Output	Open	
D-A _{OUTO}	Single-chip	D-A output	Output	Analog signal from D-A converter is output	
D-A _{OUT5}	EPROM	D-A output	Output	Open	
P0 ₀ ~P0 ₇	Single-chip	I/O port P0	1/0	Port P0 is an 8-bit I/O port with directional registers allowing each I/O bit to be indi- vidually programmed as input or output At reset, this port is set to input mode. The output structure is CMOS output	
	EPROM	Address input A ₀ ~A ₇	Input	P0 works as the lower 8 bit address input (A ₀ ~A ₇)	

M37120E6-XXXFP

PROM VERSION of M37120M6-XXXFP

PIN DESCRIPTION (Continued)

Pin	Mode	Name	Input/ Output	Functions
P1 ₀ ~P1 ₇	Single-chip	I/O port P1	1/0	Port P1 is an 8-bit I/O port and has basically the same functions as port P0
	EPROM	Address input A ₈ ~A ₁₃	Input	P1 ₀ ~P1 ₆ works as the higher 6 bit address inputs (A ₆ ~A ₁₄). Connect to P1 ₇ to V _{CC} when the microcomputer accesses to program ROM Connect to P1 ₇ to V _{SS} when the microcomputer accesses to OSD ROM
P2 ₀ ~P2 ₇	Single-chip	I/O port P2	1/0	Port P2 is an 8-bit I/O port and has basically the same function as port P0
	EPROM	Data input/ output D ₀ ~D ₇	1/0	Port P2 works as an 8 bit data bus (D ₀ ~D ₇)
P3 ₀ ~P3 ₇	Single-chip	I/O port P3	1/0	Port P3 is an 8-bit I/O port and has basically the same functions as port P0. Port P3 ₀ is in common with CRT input pin and P3 ₄ is in common with counter input pin
	EPROM	Select mode	Input	P3 ₃ , P3 ₄ work as \overline{CE} and \overline{OE} , respectively Connect to P3 ₀ \sim P3 ₂ and P3 ₅ \sim P3 ₇ to V _{CC} .
P4 ₀ ~P4 ₇	Single-chip	I/O port P4	1/0	Port P4 is an 8-bit I/O port and has basically the same functions as port P0, but the output structure is N-channel open drain
	EPROM	Input port P4	Input	Connect to V _{SS}
P6 ₀ ~P6 ₇	Single-chip	Input port P6	Input	Port P6 is an 8-bit input port $P6_0 \sim P6_3$ are in common with interrupt input pins and $P6_4 \sim P6_7$ are in common with analog input pins
	EPROM	Input port P6	Input	Connect to V _{SS}
P7 ₀ ~P7 ₃	Single-chip	Input port P7	Input	This port is an 4-bit input port and is in common with analog input pins
	EPROM	Input port P7	Input	Connect to V _{SS}
OSC1	Single-chip	Clock input for CRT	Input	This is the input pin of the clock generating circuit for the CRT display function
	EPROM	display	Input	Connect to V _{CC}
OSC2	Single-chip	Clock output for CRT	Output	This is the output pin of the clock generating circuit for the CRT display function
	EPROM	display	Output	Open
H _{SYNC}	Single-chip	H _{SYNC} input	Input	This is the horizontal synchronizing signal input for CRT display
	EPROM	H _{SYNC} Input	Input	Connect to V _{SS}
V _{SYNC}	Single-chip	V _{SYNC} input	Input	This is the vertical synchronizing signal input for CRT display
	EPROM	V _{SYNC} input	Input	Connect to V _{SS}
R, G, B,	Single-chip	CRT output	Output	This is an 5-bit output pin for CRT display
I, OUT1	EPROM	CRT output	Output	Open

EPROM MODE

The M37120E6-XXXFP features an EPROM mode in addition to its normal modes. When the \overline{RESET} signal level is low ("L"), the chip automatically enters the EPROM mode. Table 1 list the correspondence between pins and Figure 1 gives the pin connections in the EPROM mode. When in the EPROM mode, ports P0, P1, P2, P3, P34 and CNVss are used for the PROM (equivalent to the M5L27256). When in this mode, the built-in PROM can be written to or read from using these pins in the same way as with the M5L27256.

Table 1. Pin function in EPROM mode

	M37120E6-XXXFP	M5L27256
V _{cc}	V _{cc}	V _{cc}
V _{PP}	CNV _{SS} /V _{PP}	V_{PP}
V _{SS}	V _{SS}	V _{ss}
Address input	Ports P0, P1	A ₀ ~A ₁₄
Data I/O	Port P2	D ₀ ~D ₇
CE	P3 ₃ /CE	CE
ŌĒ	P3₄/OE	ŌĒ

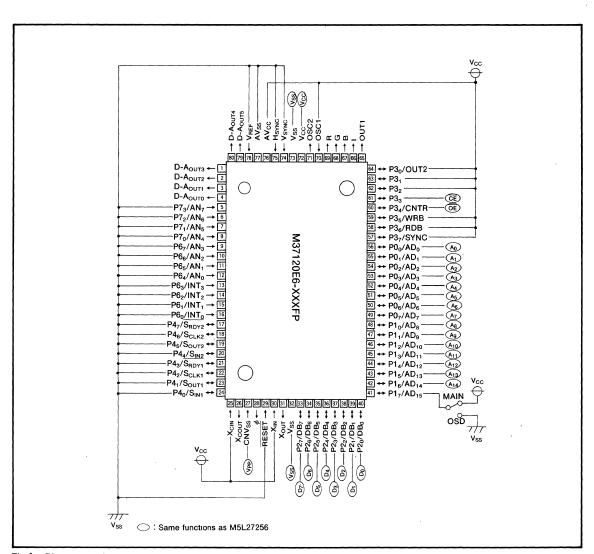
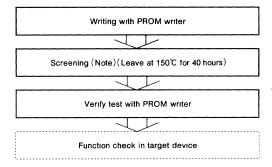


Fig.1 Pin connection in EPROM mode

PROM READING AND WRITING Reading


To read the PROM, set the \overline{CE} and \overline{OE} pins to a "L" level. Input the address of the data $(A_0 \sim A_{14})$ to be read and the data will be output to the I/O pins $D_0 \sim D_7$. The data I/O pins will be floating when the \overline{OE} pin is in the "H" state.

Writing

To write to the PROM, set the \overline{OE} pin to a "H" level. The CPU will enter the program mode when V_{PP} is applied to the V_{PP} pin. The address to be written to is selected with pins $A_0 \sim A_{14}$, and the data to be written is input to pins $D_0 \sim D_7$. Set the \overline{CE} pin to a "L" level to begin writing.

NOTES ON HANDLING

- Since a high voltage (12.5V) is used to write data, care should be taken when turning on the PROM writer's power.
- (2) For the programmable microcomputer (shipped in blank or OTP type), Mitsubishi does not perform PROM write test and screening in the assembly process and following processes. To improve reliability after write, performing write and test according to the flow below before use is recommended.

Note: Since the screening temperature is higher than storage temperature, never expose to 150℃ exceeding 100 hours.

Table 2. I/O signal in each mode

Pin	CE(61)	OE(60)	V _{PP} (27)	V _{CC} (72)	Data I/O (33~40, 42~56)
Read-out	V _{IL}	V _{IL}	5V	5 V	Output
	V _{IL}	V _{IH}	5V	5V	Floating
Output disable	V _{IH}	X	5V	5 V	Floating
Programming	V _{IL}	V _{IH}	12.5V	6V	Input
Programming verify	V _{IH}	V _{IL}	12.5V	6V	Output
Program disable	V ₁ ⊔	Vıl	12.5V	6V	Floating

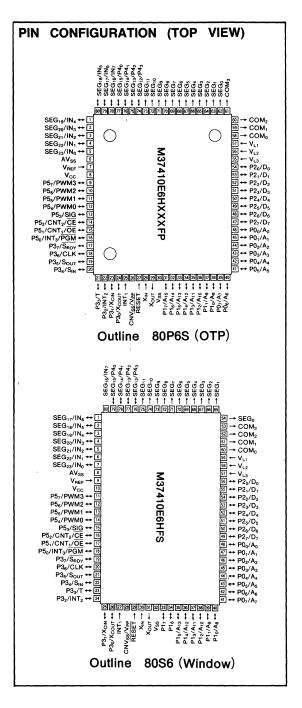
Note 1: V_{IL} and V_{IH} indicate a "L" and "H" input voltage, respectively.

2: An X indicates either V_{IL} or V_{IH}

M37410E6HXXXFP M37410E6HFS

PROM VERSION of M37410M3HXXXFP,M37410M4HXXXFP,M37410M6HXXXFP

DESCRIPTION


The M37410E6HFS, M37410E6HXXXFP are single-chip microcomputers designed with CMOS silicon gate technology. M37410E6HXXXFP is housed in a 80-pin shrink plastic molded QFP. M37410E6HFS is housed in a 80-pin ceramic QFP. The features of M37410E6HXXXFP are similar to those of the M37410M4HXXXFP except that this chip has a 12288 bytes PROM built in. This single-chip microcomputer is useful for home electrical appliances and consumer appliance controllers.

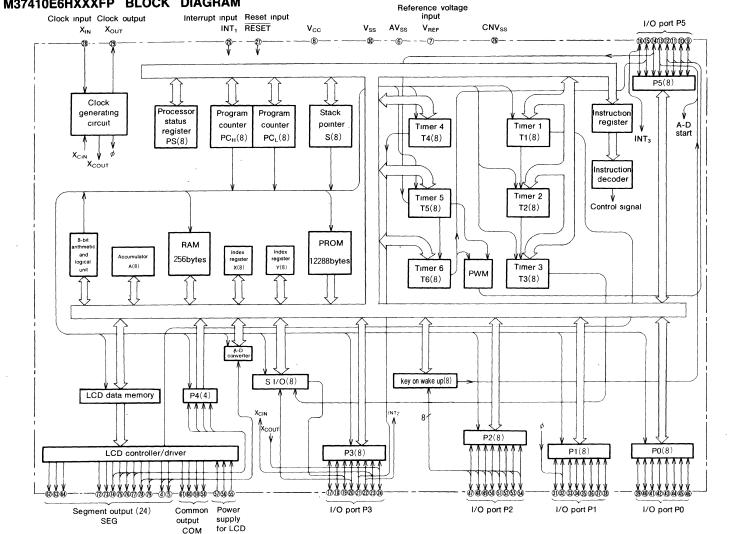
In addition to its simple instruction sets, the PROM, RAM, and I/O addresses are placed on the same memory map to enable easy programming. Since general purpose PROM writers can be used for the built-in PROM, this chip is suitable for small quantity production runs.

The M37410E6HFS are the window type. The differences between the M37410E6HXXXFP and the M37410E6HFS are the package outline and the power dissipation ability (absolute maximum ratings).

FEATURES

	_AIONES	
•	Number of ba	sic instructions······ 69
ullet	Memory size	
		RAM256 bytes
•		ecution time (minimum instructions)
	at high-spe	ed mode······1μs
	at low-spee	d mode 4μs
•	Single power	
		XXXFP 2.5~5.5V
	M37410E6H	IFS 4.5~5.5V
•	Power dissipa	tion
	normal oper	ation mode (at 8MHz frequency)
		30mW (V _{CC} =5V, Typ.)
	low-speed	operation mode (at 32kHz frequency for
		on)······54μW(V _{CC} =3V, Typ.)
•	RAM retention	voltage (stop mode)
		2.0V≦V _{RAM} ≦5.5V
•	Subroutine ne	sting ·····96 levels (Max.)
•	Interrupt	10 types, 5 vectors
•	8-bit timer ····	4
•	16-bit timer ··	········· 1 (Two 8-bit timers make one set)
•	Programmable	e I/O ports
	(Ports P0	, P1, P2, P3, P5) ······ 40
•	Input port (Po	rt P4) ······ 4
•		bit)1
•	A-D converter	8-bit, 8-channel
•		r/driver (1/2, 1/3 bias, 1/2, 1/3, 1/4 duty)
	segment ou	tput 24
	common ou	tput ······ 4
•	Two clock ge	nerating circuits
	(One is for	main clock, the other is for clock function)
•		alent to the M5L27128)
	program vo	ltage21V

APPLICATION


Audio-visual equipment Remote control Camera

ROM VERSION

MITSUBISHI MICROCOMPUTERS

M37410E6HXXXFP BLOCK DIAGRAM

M37410E6HXXXFP M37410E6HFS

PROM VERSION of M37410M3HXXXFP,M37410M4HXXXFP,M37410M6HXXXFP

FUNCTIONS OF M37410E6HXXXFP

Parameters			Functions
Number of basic instruction	Number of basic instructions		69
Instruction execution time	Instruction execution time		1μs (minimum instructions, at 8MHz of frequency)
Clock frequency			8MHz
	PROM		12288bytes (Note 1)
Memory size	RAM		256bytes
	RAM for display LCD		12bytes
	P0, P1, P2, P3, P5	1/0	8-bit×5
In a cat (O catacoat in a ma	P4	Input	4-bit×1 (Port P4 are in common with SEG)
Input/Output port	SEG	LCD output	24-bit×1
	СОМ	LCD output	4-bitX1
Serial I/O			8-bit×1
	10 to 10 to		8-bit timer×4
Timers			16-bit timerX1 (combination of two 8-bit timers)
	Bias		1/2, 1/3 bias selectable
1.00	Duty ratio		1/2, 1/3, 1/4 duty selectable
LCD controller/driver	Common output		4
	Segment output		24(SEG ₁₂ ~SEG ₂₃ are in common with port P4 and analog input pins)
Subrotine nesting			96(max)
Interrupt			Three external Interrupts, three timer interrupts (or two timer, one serial I/O)
Clock generating circuit			Two built-in circuits (ceramic or quartz crystal oscillator)
Operating temperature ran	ge		-10~70°C
Device structure			CMOS silicon gate
Package			80-pin plastic molded QFP

Note 1: The PROM programming voltage is 21V (equivalent to the M5L27128)

M37410E6HXXXFP M37410E6HFS

PROM VERSION of M37410M3HXXXFP,M37410M4HXXXFP,M37410M6HXXXFP

PIN DESCRIPTION

Pin	Mode	Name	Input/ Output	Functions
V _{CC} , V _{SS}	Single-chip /EPROM	Power supply		Supply 5V±5% to V _{CC} and 0V to V _{SS}
CNV _{ss} /	Single-chip	CNV _{SS}		Connect to V _{SS} .
V _{PP}	EPROM	V _{PP} input	Input	Connect to V _{PP} when programming or verifing
RESET	Single-chip	Reset input	Input	To reset, keep this input terminal low for more than 16 μ s (min) under normal V _{CC} conditions If more time is needed for the crystal oscillator to stabilize, this "L" condition should be maintained for the required time
	EPROM	Reset input		Connect to 0V.
X _{IN}	Single-chip	Clock input	Input	These are I/O pins of internal clock generating circuit for main clock. To control
Хоит	/EPROM	Clock output	Output	generating frequency, an external ceramic or a quartz crystal oscillator is connected between the X_{IN} and X_{OUT} pins if an external clock is used, the clock source should be connected the X_{IN} pin and the X_{OUT} pin should be left open
INT ₁	Single-chip	Interrupt input	Input	This is the highest order interrupt input pin
	EPROM Interrupt input Input Connect to 0V		Connect to 0V	
P0 ₀ ~P0 ₇	Single-chip	I/O port P0	1/0	Port P0 is an 8-bit I/O port with directional registers allowing each I/O bit to be individually programmed as input or output. At reset, this port is set to input mode. The output structure is CMOS output.
	EPROM	Address input A ₀ ~A ₇	Input	P0 works as the lower 8 bit address input (A ₀ ~A ₇).
P1 ₀ ~P1 ₇	_ Single-chip	I/O port P1	1/0	Port P1 is an 8-bit I/O port and has basically the same functions as port P0 The output structure is N-channel open drain.'
	EPROM	Address input A ₈ ~A ₁₃	Input	$P1_0 \sim P1_5$ works as the higher 6 bit address inputs ($A_8 \sim A_{13}$) Connect $P1_6 \sim P1_7$ to V_{CC}
P2 ₀ ∼P2 ₇	Single-chip	I/O port P2	1/0	Port P2 is an 8-bit I/O port and has basically the same function as port P0 Also all bits are for key on wake up input pins.
	EPROM	Data input/ output D ₀ ~D ₇	1/0	Port P2 works as an 8 bit data bus (D ₀ ~D ₇)
P3₀~P3 ₇	Single-chip	I/O port P3	I/O	Port P3 is an 8-bit I/O port and has basically the same functions as port P0 When serial I/O is used, P3 ₇ , P3 ₆ , P3 ₅ and P3 ₄ work as \overline{S}_{RDV} , CLK, S_{OUT} , and S_{IN} pins, respectively Also P3 ₃ , P3 ₂ , P3 ₁ , and P3 ₀ work as timer 4 overflow signal divided by 2 output pin (T), INT ₂ pin, X_{CIN} and X_{COUT} pins, respectively
	EPROM	Input port P3	Input	Connect to 0V
SEG ₁₂ /P4 ₃	Single-chip	Segment output /input port P4	Output /Input	SEG ₁₂ ~SEG ₁₅ are segment output pins Also these work as input port P4 by 2-bit unit
SEG ₁₅ /P4 ₀	EPROM	Input port P4	Input	Connect to V _{CC}
P5 ₀ ~P5 ₇	Single-chip	I/O port P5	1/0	Port P5 is an 8-bit I/O port and has basically the same function as P1. P5 ₀ , P5 ₁ , P5 ₂ and P5 ₃ are in common with INT ₃ , timer3 input, timer5 input and A-D trigger input respectively
	EPROM	Select mode	Input	P5 ₂ , P5 ₁ , P5 ₀ work as $\overline{\text{CE}}$, $\overline{\text{OE}}$ and $\overline{\text{PGM}}$, respectively Connect to P5 ₅ ~P5 ₇ to 0V and P5 ₃ ~P5 ₄ to V _{Cc} .

PROM VERSION of M37410M3HXXXFP,M37410M4HXXXFP,M37410M6HXXXFP

PIN DESCRIPTION (Continued)

Pın	Mode	Name	input/ Output	Functions
V _{L1} ~V _{L3}	Single-chip	Voltage input for LCD	Input	These are voltage input pins for LCD. Supply voltage as $0V \le V_{L1} \le V_{L2} \le V_{L3} \le V_{CC}$ $0 \sim V_{L3}V$ is supplied to LCD.
	EPROM	Voltage input for LCD	Input	Connect to V _{CC}
COM₀~ COM₃	Single-chip	Common output	Output	These are LCD common output pins.
	EPROM	Common output	Output	Connect to V _{CC}
SEG₀∼ SEG₁₁	Single-chip	Segment output	Output	These are LCD segment output pins
	EPROM	Segment output	Output	Connect to V _{CC}
SEG ₁₆ /IN ₇	Single-chip	Segment output /analog input	1/0	$SEG_{16} \sim SEG_{23} \ \text{work as analog input pins IN}_7 \sim IN_0 \\ SEG_{16} \sim SEG_{19} \ \text{are used by 2-bit unit and } SEG_{20} \sim SEG_{23} \ \text{by 4-bit unit}$
SEG ₂₃ /IN ₀	EPROM	Analog input	Input	Connect to V _{CC}
AV _{SS}	Single-chip	Analog voltage input	Input	GND input pin for the A-D converter
	EPROM	Analog voltage input	Input	Connect to V _{SS}
V _{REF}	Single-chip	Reference voltage input	Input	Referrence input pin for A-D converter.
	EPROM	Reference voltage input	Input	Connect to V _{CC}

PROM VERSION of M37410M3HXXXFP,M37410M4HXXXFP,M37410M6HXXXFP

EPROM MODE

The M37410E6HXXXFP, M37410E6HFS feature an EPROM mode in addition to its normal modes. When the \overline{RESET} signal level is low ("L"), the chip automatically enters the EPROM mode. Table 1 list the correspondence between pins and Figure 1, Figure 2 give the pin connections in the EPROM mode. When in the EPROM mode, ports P0, P1, P2, P50 \sim P52, and CNVsS are used for the PROM (equivalent to the M5L27128) . When in this mode, the built-in PROM can be written to or read from using these pins in the same way as with the M5L27128. The oscillator should be connected to the X_{IN} and X_{OUT} pins, or external clock should be connected to the X_{IN} pin.

Table 1. Pin function in EPROM mode

	M37410E6HXXXFP, M37410E6HFS	M5L27128
V _{cc}	V _{cc}	V _{cc}
V _{PP}	CNV _{SS} /V _{PP}	V_{PP}
V _{SS}	V _{ss}	V _{SS}
Address input	Ports P0, P1 ₀ ~P1 ₅	A ₀ ~A ₁₃
Data I/O	Port P2	$A_0 \sim A_{13}$ $D_0 \sim D_7$
CE	P5₂/CE	CE
ŌĒ	P5₁/OE	OE
PGM	P5 ₀ /PGM	PGM

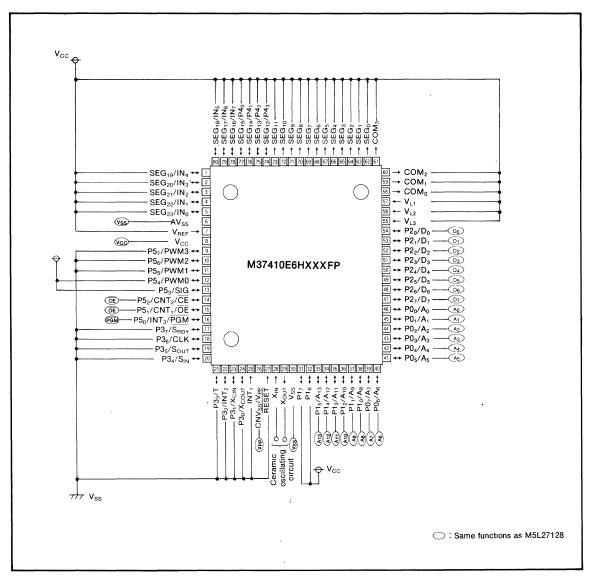


Fig.1 Pin connection in EPROM mode

PROM VERSION of M37410M3HXXXFP,M37410M4HXXXFP,M37410M6HXXXFP

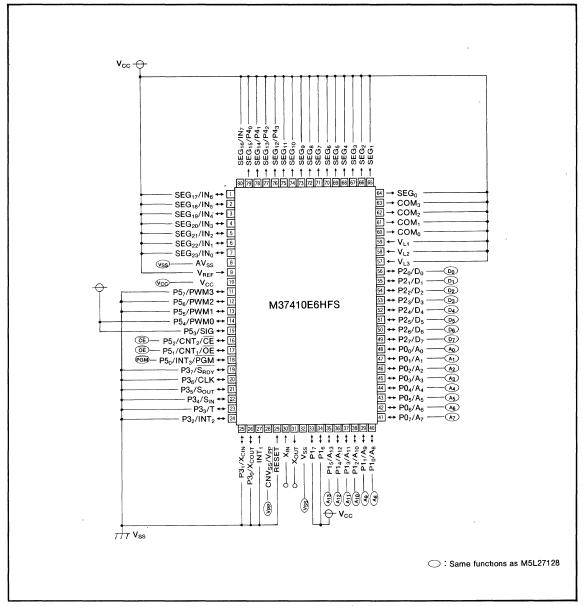


Fig.2 Pin connection in EPROM mode

PROM VERSION of M37410M3HXXXFP,M37410M4HXXXFP,M37410M6HXXXFP

PROM READING, WRITING AND ERASING Reading

To read the PROM, set the \overline{CE} and \overline{OE} pins to a "L" level, and the \overline{PGM} pin to a "H" level. Input the address of the data $(A_0 \sim A_{13})$ to be read and the data will be output to the I/O pins $D_0 \sim D_7$. The data I/O pins will be floating when either the \overline{CE} or \overline{OE} pins are in the "H" state.

Writing

To write to the PROM, set the $\overline{\text{CE}}$ pin to a "L" level and the $\overline{\text{OE}}$ pin to a "H" level. The CPU will enter the program mode when V_{PP} is applied to the V_{PP} pin. The address to be written to is selected with pins $A_0 \sim A_{13}$, and the data to be written is input to pins $D_0 \sim D_7$. Set the $\overline{\text{PGM}}$ pin to a "L" level to begin writing.

Erasing

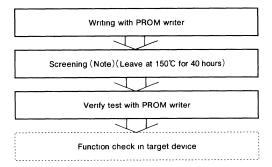
Data can only erased on the M37410E6HFS ceramic package, which includes a window. To erase data on this chip, use an ultraviolet light source with a 2537 Angstrom wave length. The minimum radiation power necessary for erasing is 15W·s/cm².

Functional diferences from M37410M3HXXXFP or M37410M4HXXXFP, M37410M6HXXXFP

(excluding characteristic differences).

	M37410M3HXXXFP M37410M4HXXXFP M37410M6HXXXFP	M37410E6HXXXFP M37410E6HFS
Port P0 pull-up resistor	Option	Not provided
Port P1 pull-up resistor	Option	Not provided
Port P2 pull-up resistor	Option	Not provided
Port P3 pull-up resistor	Option	Not provided
Port P4 pull-up resistor	Option	Not provided
Port P5 pull-up resistor	Option	Not provided
Port P2 key on wake up	Option	Provided (all bits)

NOTES ON HANDLING


(1) Sunlight and fluorescent light contain wave lengths capable of erasing data. For ceramic package types, cover the transparent window with a seal (provided) when this chip is in use. However, this seal must not contact the lead pins.

- (2) Before erasing, the glass should be cleaned and stains such as finger prints should be removed thoroughly. If these stains are not removed, complete erasure of the data could be prevented.
- (3) Since a high voltage (21V) is used to write data, care should be taken when turning on the PROM writer's power.
- (4) Note that ports P3₀ and P3₁ of M37410E6HXXXFP or M37410E6HFS can not use as I/O ports when the external A-D start enable bit is set to "1" (enabled). This is because that bit 5 of the serial I/O mode register of M37410M3HXXXFP or M37410M4HXXXFP, M37410M6H XXXFP acts differently from that of M37410E6HXXXFP or M37410E6HFS, as compared in the table.

Bit 5 of serial I/O mode register when external A-D start enable bit is "1".

	Bit 5 of serial I/O mode register
M37410M3HXXXFP M37410M4HXXXFP	Not affected
M37410M6HXXXFP	χ.
M37410E6HXXXFP M37410E6HFS	Automatically set to "1", and is fixed to "1" while external A-D start enable bit remains "1"

(5) For the programmable microcomputer (shipped in blank or OTP type), Mitsubishi does not perform PROM write test and screening in the assembly process and following processes. To improve reliability after write, performing write and test according to the flow below before use is recommended.

Note : Since the screening temperature is higher than storage temperature, never expose to 150℃ exceeding 100 hours.

Table 2. I/O signal in each mode

Pin	CE(14)	ŌE(15)	PGM(16)	V _{PP} (26)	V _{cc} (8)	Data I/O (47~54)
Read-out	V _{IL}	VIL	V _{IH}	V _{cc}	V _{CC}	Output
Programming	VIL	V _{IH}	Pulse(V _{IH} →V _{IL})	V _{PP}	V _{cc}	Input
Programming verify	VIL	VIL	V _{IH}	V _{PP}	V _{cc}	Output
Program disable	VIH	Х	Х	V _{PP}	V _{CC}	Floating

Note 1: V_{IL} and V_{IH} indicate a "L" and "H" input voltage, respectively.

2 : An X indicates either V_{IL} or V_{IH}

M37410E6HXXXFP M37410E6HFS

PROM VERSION of M37410M3HXXXFP,M37410M4HXXXFP,M37410M6HXXXFP

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
V _{CC}	Supply voltage		−0.3~7	V
Vı	LCD supply V _{L1} ~V _{L3}	V _{L1} <v<sub>L2<v<sub>L3</v<sub></v<sub>	-0.3~V _{cc} +0.3	V
Vi	Input voltage P0 ₀ ~P0 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ , P3 ₁ , P4 ₀ ~P4 ₃ , IN ₀ ~IN ₇ , V _{REF} , X _{IN}		-0.3~V _{cc} +0.3	v
Vı	Input voltage CNV _{SS} , (Note 1)		−0.3~7	V
Vı	Input voltage INT ₁ , RESET, P1 ₀ ~P1 ₇ , P3 ₂ ~P3 ₇ , P5 ₀ ~P5 ₇		-0.3~10	V
Vo	Output voltage P0 ₀ ~P0 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ , P3 ₁ , COM ₀ ~COM ₃ , SEG ₀ ~SEG ₂₃ , X _{OUT}		-0.3~V _{cc} +0.3	v
Vo	Output voltage P1 ₀ ~P1 ₇ , P3 ₂ ~P3 ₇ , P5 ₀ ~P5 ₇		-0.3~10	V
Pd	Power dissipation	T _a = 25℃	300	mW
Topr	Operating temperature		-10~70	°C
Tstg	Storage temperature		−40~125	c

Note 1: In PROM programming mode, CNV_{SS} is 21.0V

RECOMMENDED OPERATING CONDITIONS ($V_{cc} = 5 \text{ V} \pm 5 \text{ \%}, \text{ } T_a = -10 \sim 70 ^{\circ}\text{C}, \text{ unless otherwise noted}$)

Symbol	Parameter	Conditions	Limits			Unit
Symbol	Parameter	Conditions	Mın	Тур	Max	Oint
		f(X _{IN})=8MHz High-speed mode	4.5		5.5	
V _{cc}	Supply voltage (Note 1)	f(X _{IN})=8MHz Normal mode or f(X _{IN})=2MHz High-speed mode (Note 2)	2.5 (Note 3)		5.5	V
V _{ss}	Supply voltage			0		V
V _{IH}	"H" input voltage P0 ₀ ~P0 ₇ , P3 ₀ , P3 ₁ , P4 ₀ ~P4 ₃ , X _{IN} , CNV _{SS} (Note 4)		0.7V _{CC}		V _{CC}	V
V _{IH}	"H" input voltage P2 ₀ ~P2 ₇		0.8V _{CC}		V _{cc}	V
V _{IH}	"H" input voltage P1 ₀ ~P1 ₇ , P5 ₁ ~P5 ₇ , S _{IN}		0.7V _{CC}		10	٧
V _{IH}	"H" input voltage P5 ₀ , INT ₁ , INT ₂ , INT ₃ , P3 ₂ ~P3 ₇ , CNT ₁ , CNT ₂ , SIG, CLK		0.8V _{CC}		10	V
V _{IH}	"H" input voltage RESET, X _{CIN}		0.85V _{CC}		10	V
V _{IL}	"L" input voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P3 ₀ , P3 ₁ , P4 ₀ ~P4 ₃ , P5 ₁ ~P5 ₇ , S _{IN}		0		0.25V _{CC}	V
V _{IL}	"L" input voltage P2 ₀ ~P2 ₇ , P3 ₂ ~P3 ₇ , P5 ₀ , INT ₁ , INT ₂ , INT ₃ , CNT ₁ , CNT ₂ , SIG, CLK		0		0. 2V _{CC}	V
V_{IL}	"L" input voltage RESET, Xin, Xcin		0		0.15V _{CC}	V
I _{OH}	"H" output current P0 ₀ ~P0 ₇ , P2 ₀ ~P2 ₇ , X _{OUT} (Note 5)				-1	mA
I _{OL}	"L" output current P0 $_0$ ~P0 $_7$, P2 $_0$ ~P2 $_7$, P3 $_0$ ~P3 $_7$, P5 $_0$ ~P5 $_7$, X $_{\rm OUT}$, PWM0 $_2$ PWM3, T, S $_{\rm OUT}$, CLK, $\overline{\rm S}_{\rm RDY}$, SIG (Note 6)				1	mA
loL	"L" output current P1 ₀ ~P1 ₇ (Note 2)(Note 7)	V _{cc} =3V V _{cc} =5V			10 20	mA
f(X _{IN})	Clock oscillating frequency		0.2		8. 2	MHz
f(X _{CIN})	Clock oscillating frequency for clock function		30		50	kHz

Note 1: When only maintaining the RAM data, minimum value of V_{CC} is 2V.

2 : We say the high-speed mode, when the system clock is chosen X_{IN}/4, and the normal mode, when the system clock is chosen X_{IN}/16

- In case M37410E6HFS, 4.5V
 When P3 is X_{CIN} mode, the limits of V_{IH} of P3₁ is 0.85V_{CC}≤V_{IH}≤V_{CC}, 0≤V_{IL}≤0.15V_{CC}
- 5 : Total of I_{OH(peak)} of ports P0, P2 and X_{OUT} is less than 35mA
- 6: Total of I_{OL}(peak) of ports P0, P2, P3 and P5 is less than 32mA
- 7: Total of I_{OL(peak)} of P1 is less than 80mA

Total of IoL(avg) of P1 is less than 40mA

M37410E6HXXXFP M37410E6HFS

PROM VERSION of M37410M3HXXXFP,M37410M4HXXXFP,M37410M6HXXXFP

ELECTRICAL CHARACTERISTICS ($T_a = -10 \sim 70 \, \text{C}$, $V_{ss} = 0 \, \text{V}$, unless otherwise noted)

Symbol	Parameter		Test conditions		Limits			Unit
Symbol					Min	Тур.	Max.	Unit
V _{OH}	"H" output voltage P00~P07	, P2 ₀ ~P2 ₇	V _{CC} =5V, I _{OH} =-0.5mA		4			٧
V _{OH}	"H" output voltage X _{OUT}		V _{CC} =5V, I _{OH} =-0.3m	Α	4			٧
V _{OL}		, P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₇ , , T, S _{OUT} , CLK, S _{RDY} , M0~PWM3	V _{CC} =5V, I _{OL} =1mA				1	٧
VoL	"L" output voltage P1 ₀ ~P1 ₇		V _{CC} =5V, I _{OL} =20mA				2	٧
VoL	"L" output voltage X _{OUT}		V _{CC} =5V, I _{OL} =0.3mA				1	٧
V _{T+} -V _{T-}	-	C ₂ , INT ₃ , CLK, CNT ₁ , G, S _{IN} , P2 ₀ ∼P2 ₇ , X _{CIN}	V _{cc} =5V		A CONTRACTOR OF THE CONTRACTOR	0.7		٧
$V_{T+}-V_{T-}$	Hysteresis RESET		V _{cc} =5V			2		٧
$V_{T+}-V_{T-}$	Hysteresis X _{IN}		V _{cc} =5V			0.5		٧
I _{IL}	"L" input current $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $P2_0 \sim P2_7$, $P3_0 \sim P3_7, P4_0 \sim P4_3, P5_0 \sim P5_7 \text{ (Note 1)},$ $IN_0 \sim IN_7, INT_1, \overline{RESET}, X_{IN}$		v _{cc} =š∨ v _i =0∨				-5	μA
l _{iH}	"H" input current P0 ₀ ~P0 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ , P3 ₁ , P4 ₀ ~P4 ₇ , IN ₀ ~IN ₇ , X _{IN} , X _{CIN} , CNVss		V _{CC} =5V V _I =5V				5	μA
I _{tH}		P3 ₀ ~P3 ₇ , P5 ₀ ~P5 ₇ , , INT ₃ , CNT ₁ , CNT ₂ , T , S _{IN} , CLK	v _i =10V				10	μΑ
R _{COM}	Output impedance COM ₀ ~	COM ₃	V _{L1} =V _{CC} /3 V _{L2} =2V _{L1} V _{L3} =V _{CC}	V _{cc} =5V		200		Ω
Rs	Output impedance SEG ₀ ~SEG ₂₃		Other COM, SEG pins are opened	V _{cc} =5V		2		kΩ
			f(X _{IN})=8MHz High-speed mode V _{CC} =5V			6	12	mA
lcc	Committee and	at operation	$f(X_{CIN})=32kHz, V_{CC}=5V$			30	60	
	Supply current at wait state	at wait state	f(X _{CIN})=32kHz, V _{CC} =5V			15	30	μA
	at stop state		V _{CC} =5V,all clock stop	T _a =25℃		0.1	1.0	l
V _{RAM}	RAM retention voltage			1	2		5.5	V

Note 1 : Also the same as when each pin is used as INT2, INT3, CNT1, CNT2, SIG, S_{IN} and X_{IN} , respectively.

M37410E6HXXXFP M37410E6HFS

PROM VERSION of M37410M3HXXXFP,M37410M4HXXXFP,M37410M6HXXXFP

$\textbf{A-D} \quad \textbf{CONVERTER} \quad \textbf{CHARACTERISTICS} \; (V_{CC} = 5V, \, V_{SS} = AV_{SS} = 0 \; V, \, T_{\textbf{a}} = 25 \, ^{\circ}\text{C}, \, f(X_{IN}) = 8 \; \text{MHz, unless otherwise noted})$

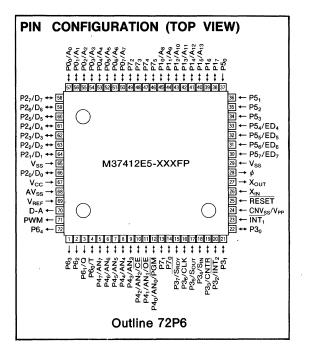
Comments and	Parameter	Test conditions	Limits				
Symbol	Parameter	Test conditions	Min.	Тур.	Max	Unit	
	Resolution				8	bits	
	N l	V _{CC} =V _{REF} =5. 12V			±2	1.05	
	Non-linearity error	V _{CC} =V _{REF} =3.072V			±2	LSE	
	DW	V _{CC} =V _{REF} =5. 12V			±0.9	— ISB	
	Differential non-linearity	V _{CC} =V _{REF} =3. 072V			±0.9		
.,	Zero transition error	V _{CC} =V _{REF} =5. 12V			2	LSB	
V _{OT}		V _{CC} =V _{REF} =3.072V			2		
.,		V _{CC} =V _{REF} =5. 12V			6	LSB	
V _{FST}	Full-scale transition error	V _{CC} =V _{REF} =3. 072V			10		
_		V _{CC} =2.5~5.5V High-speed mode		200/f(X _{IN})		μs	
T _C	Conversion time	V _{CC} =2.5~5.5V Normal mode		800/f(X _{IN})			
		V _{REF} =5V		1.0	2.5	mA	
REF	Reference input current	V _{REF} =3V		0.5	1.5		
I _{IN}	Analog port input current	V _{IN} =0~V _{CC}		1	10	μА	
VIN	Analog input voltage	V _{cc} =2.5~5.5V	AVss		Vcc	٧	
V _{REF}	Reference input voltage		2.5		V _{CC}	~	

M37412E5-XXXFP

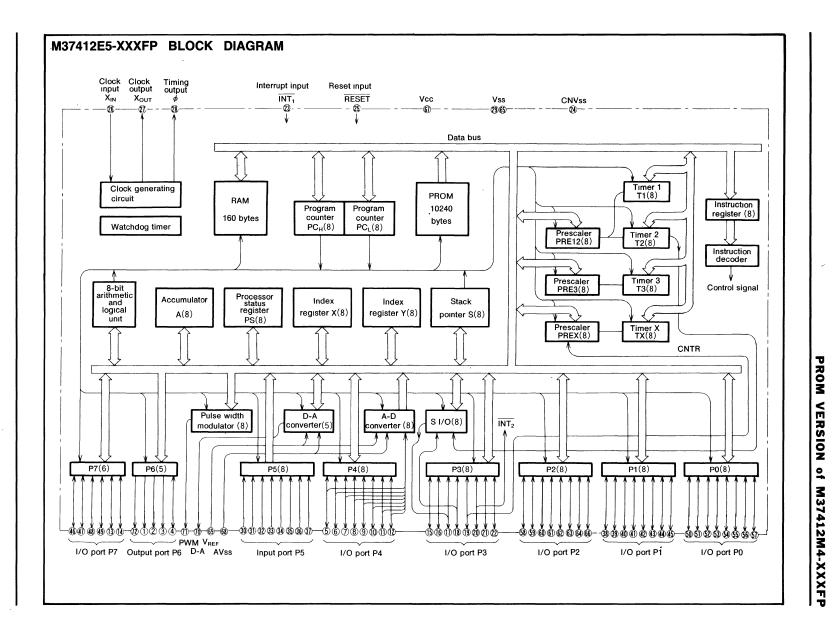
PROM VERSION of M37412M4-XXXFP

DESCRIPTION

The M37412E5-XXXFP is a single-chip microcomputer designed with CMOS silicon gate technology. It is housed in a 72-pin plastic QFP. The features of this chip are similar to those of the M37412M4-XXXFP except that this chip has a 10240 bytes PROM built in. This single-chip microcomputer is useful for home electrical appliances and consumer appliance controllers.


In addition to its simple instruction sets, the PROM, RAM, and I/O addresses are placed on the same memory map to enable easy programming. Since general purpose PROM writers can be used for the built-in PROM, this chip is suitable for small quantity production runs.

FEATURES


•	Number of basic instructions 69
•	Memory size PROM ······10240 bytes
	RAM······160 bytes
•	Instruction execution time
	······ 2μs (minimum instructions at 4MHz frequency)
•	Single power supply 5V±5%
•	Power dissipation
	normal operation mode (at 4MHz frequency) ···· 15mW
•	Subroutine nesting ······80 levels (Max.)
•	Interrupt·····7 types, 5 vectors
•	8-bit timer 4
•	Programmable I/O ports (Ports P0, P1, P2, P3, P4, P7)
	46
•	Input port (Port P5)8
•	Output port (Port P6)5
•	Serial I/O (8-bit)1
•	A-D converter 8-bit successive approximation
•	D-A converter
•	8-bit PWM function
•	Watchdog timer
•	PROM (equivalent to the M5L27128)
	program voltage ······ 21V

APPLICATION

Office automation equipment VCR, Tuner, Audio-visual equipment

PROM VERSION of M37412M4-XXXFP

FUNCTIONS OF M37412E5-XXXFP

	Parameter		Functions		
Number of basic instructions	•		69		
Instruction execution time			2μs (minimum instructions, at 4MHz frequency)		
Clock frequency			4MHz		
Mamon, Cina	PROM		10240 bytes (Note 1)		
Memory Size	Memory Size RAM		160 bytes		
	ĪNT ₁	Input	1-bit×1		
	P0, P1, P2, P3, P4	1/0	8-bit×5 (a part of P3 is common with serial I/O, timer I/O, and interrupt input)		
Input/Output ports	P5	Input	8-bit×1		
	P6	Output	5-bit×1 (a part of P6 is in common with external trigger output pin)		
	P7	I/O	6-bit×1		
Serial I/O			8-bit×1		
Timers			8-bit prescaler×3+8-bit timer×4		
A-D conversion			8-bit×1 (8 channels)		
D-A conversion			5-bit×1		
Pulse width modulator			8-bit×1		
Watchdog timer			15-bit×1		
Subroutine nesting			80 levels (max)		
Interrupt			Two external interrupts, three internal timer interrupts		
Clock generating circuit			built-in (ceramic or quartz crystal oscillator)		
Supply voltage			5V±5%		
Power dissipation			15mW (at 4MHz frequency)		
	Input/Output voltage		12V (Ports P0, P1, P3, P4, P5, P6, P7, INT ₁)		
Input/Output characteristics	Output current		5mA (Ports P0, P1, P2, P3, P4, P7)		
Memory expansion			Possible		
Operating temperature range)		-10~70℃		
Device structure			CMOS silicon gate process		
Package			72-pin plastic molded QFP		

Note 1: The PROM programing voltage is 21V (equivalent to the M5L27128)

PROM VERSION of M37412M4-XXXFP

PIN DESCRIPTION

Pin	Mode	Name	Input/ Output	Functions
V _{CC} , V _{SS}	Single-chip /EPROM	Power supply		Supply 5V±5% to V _{CC} and 0V to V _{SS}
CNV _{SS} / V _{PP}	Single-chip	CNV _{SS} input	Input	Connect to 0V
V PP	EPROM	V _{PP} input		Connect to V _{PP} when programming or verifing.
RESET	Single-chip	RESET input	Input	To reset, keep this input terminal low for more than $2\mu s$ (min) under normal V_{CC} conditions if more time is needed for the crystal oscillator to stabilize, this "L" condition should be maintained for the required time.
	EPROM	RESET input		Connect to V _{SS}
X _{IN}	Single-chip /EPROM	Clock input	Input	Connect a ceramic or a quartz crystal oscillator between X_{IN} and X_{OUT} for clock oscillation. If an external clock input is used, connect the clock input to the X_{IN} pir
X _{OUT}		Clock output	Output	and open the X _{OUT} pin.
φ	Single-chip /EPROM	Timing output	Output	For timing output
ĪNT ₁	Single-chip	Interrupt input	Input	Interrupt Input INT ₁ .
,	EPROM	Interrupt input	Input	Connect to 0V.
P0 ₀ ~P0 ₇	Single-chip	I/O port P0	1/0	Port P0 is an 8-bit I/O port with direction registers which can program each bit as input or output it is set to input mode at reset. The output format is N-ch open drain
	EPROM	Address input A ₀ ~A ₇	Input	P0 works as the lower 8 bit address input (A ₀ ~A ₇).
P1 ₀ ~P1 ₇	Single-chip	I/O port P1	1/0	Port P1 is an 8-bit I/O port which has the same function as Port P0
	EPROM	Address input A ₈ ~A ₁₃	Input	P1 ₀ ~P1 ₄ works as the higher 5 bit address inputs (A ₈ ~A ₁₃) Connect P1 ₅ ~P1 ₇ to V _{CC}
P2 ₀ ~P2 ₇	Single-chip	I/O port P2	1/0	Port P2 is an 8-bit I/O port which has the same function as port P0. The output format is CMOS.
	EPROM	Data input/ output D ₀ ~D ₇	1/0	Port 2 works as an 8 bit data bus (D ₀ ~D ₇)
P3 ₀ ~P3 ₇	Single-chip	I/O port P3	I/O	Port P3 is an 8-bit I/O port and has basically the same functions port P0. When serial I/O is used, P3 ₇ , P3 ₆ , P3 ₅ , and P3 ₄ work as $\overline{S_{RDY}}$, CLK, S_{OUT} , and S_{IN} pins, respectively Also P3 ₃ and P3 ₂ work as CNTR pin and the lowest interrupt pin ($\overline{INT_2}$) respectively. The output format is N-ch open drain
	EPROM	Input Port P3	Input	Connect to 0V
P4 ₀ ~P4 ₇	Single-chip	I/O port P4	I/O	Port P4 is an 8-bit I/O port which has the same function as port P0 Ports P4,~P4, are common with Analog inputs AN,~AN, The output format is N-ch open drain
	EPROM	Select mode	Input	P4 ₂ , P4 ₁ , P4 ₀ work as $\overline{\text{CE}}$, $\overline{\text{OE}}$ and $\overline{\text{PGM}}$ inputs, respectively Connect P4 ₅ ~P4 ₇ to 0V and P4 ₄ and P4 ₃ to V _{CC}
P5 ₀ ~P5 ₇	Single-chip	Input port	Input	Port P5 is an 8-bit input port. Ports P5 ₇ ~P5 ₄ have edge sence functions
	EPROM	Input port	Input	Connect to 0V

PROM VERSION of M37412M4-XXXFP

PIN DESCRIPTION (Continued)

Pin	Mode	Name	Input/ Output	_ Functions
P6 ₀ ∼P6 ₄	Single-chip	Output port	Output	Port P6 is an 5-bit output port. At external trigger output mode, P60 and P61 are in common with the trigger input pin (T) and the trigger output pin (Q), respectively The output structure is N-channel open drain
	EPROM	Output port	Output	Connect to 0V
P7 ₀ ~P7 ₅	Single-chip	I/O port P7	1/0	Port P7 is an 6-bit I/O port which has the same function as Port P0.
	EPROM	Input port P7	Input	Connect to 0V.
AV _{SS}	Single-chip	Analog voltage input	Input	GND pin for the A-D and D-A converters.
	EPROM	Analog voltage input	Input	Connect to 0V.
V _{REF}	Single-chip	Reference voltage input	Input	Reference input for A-D and D-A converters.
	EPROM	Reference voltage input	Input	Connect to 0V
D-A	Single-chip	D-A output	Output	D-A converter output pin
	EPROM	D-A output	Output	Connect to 0V.
PWM	Single-chip	PWM output	Output	Pulse width modulation output pin (N-ch open drain format).
	EPROM	PWM output	Output	Connect to 0V

EPROM MODE

The M37412E5-XXXFP features an EPROM mode in addition to its normal modes. When the \overline{RESET} signal level is low ("L"), the chip automatically enters the EPROM mode. Table 1 list the correspondence between pins and Figure 1 gives the pin connections in the EPROM mode. When in the EPROM mode, ports P0, P1, P2, P4 $_0$ ~ P4 $_2$, and CNV $_{SS}$ are used for the PROM (equivalent to the M5L27128). When in this mode, the built-in PROM can be written to or read from using these pins in the same way as with the M5L27128. The oscillator should be connected to the X_{IN} pins, or external clock should be connected to the X_{IN} pin.

Table 1. Pin function in EPROM mode

	M37412E5-XXXFP	M5L27128
V _{CC}	V _{cc}	V _{cc}
V _{PP}	CNV _{SS} /V _{PP}	V _{PP}
V _{SS}	V _{ss}	V _{SS}
Address input	Ports P0, P1 ₀ ~P1 ₅	A ₀ ~A ₁₃
Data I/O	Port P2	D ₀ ~D ₇
CE	P4 ₂ /CE	CE
OE	P4 ₁ /OE	ŌĒ
PGM	P4 ₀ /PGM	PGM

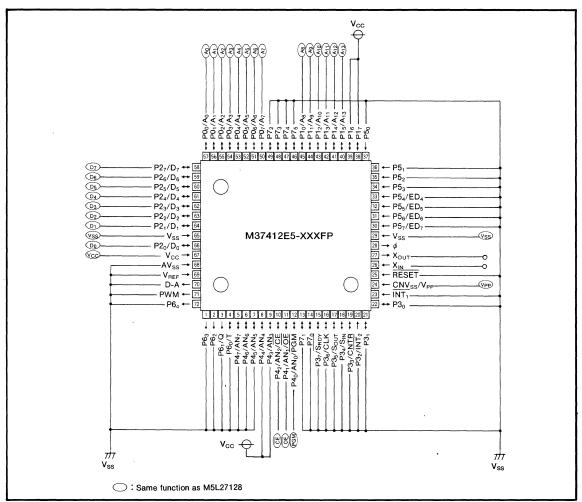
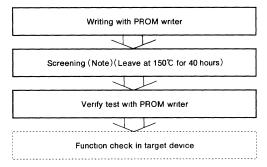


Fig.1 Pin connection in EPROM mode

PROM READING AND WRITING Reading

To read the PROM, set the \overline{CE} and \overline{OE} pins to a "L" level, and the \overline{PGM} pin to a "H" level. Input the address of the data $(A_0 \sim A_{13})$ to be read and the data will be output to the I/O pins $D_0 \sim D_7$. The data I/O pins will be floating when either the \overline{CE} or \overline{OE} pins are in the "H" state.

Writing


To write to the PROM, set the $\overline{\text{CE}}$ pin to a "L" level and the $\overline{\text{OE}}$ pin to a "H" level. The CPU will enter the program mode when V_{PP} is applied to the V_{PP} pin. The address to be written to is selected with pins $A_0 \sim A_{13}$, and the data to be written is input to pins $D_0 \sim D_7$. Set the $\overline{\text{PGM}}$ pin to a "L" level to begin writing.

Notes on Writing

When using an PROM writer, the address range should be between 1800_{16} and $3FFF_{16}$. When data is written between addresses 0000_{16} and $3FFF_{16}$, fill addresses 0000_{16} to $17FF_{16}$ with 00_{16} .

NOTES ON HANDLING

- Since a high voltage (21V) is used to write data, care should be taken when turning on the EPROM writer's power.
- (2) For the programmable microcomputer (shipped in blank or OTP type). Mitsubishi does not perform PROM write test and screening in the assembly process and following process. To improve reliability after write, performing write and test according to the flow below before use is recommended.

Note: Since the screening temperature is higher than storage temperature, never expose to 150℃ exceeding 100 hours.

Table 2. I/O signal in each mode

Pın	CE(10)	ŌE(11)	PGM(12)	V _{PP} (24)	V _{CC} (67)	Data I/O (58~64, 66)
Read-out	V _{IL}	V _{IL}	V _{IH}	V _{cc}	V _{cc}	Output
Programming	V _{IL}	V _{IH}	Pulse(V _{IH} →V _{IL})	V_{PP}	V _{CC}	Input
Programming verify	V _{IL}	V _{IL}	V _{IH}	V _{PP}	V _{cc}	Output
Program disable	V _{IH}	X	X	V _{PP}	V _{cc}	Floating

Note 1: V_{IL} and V_{IH} indicate a "L" and "H" input voltage, respectively.

2: An X indicates either V_{IL} or V_{IH}

MITSUBISHI MICROCOMPUTERS **M37412E5-XXXFP**

PROM VERSION of M37412M4-XXXFP

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		−0.3~7	٧
Vı	Input voltage X _{IN}		-0.3~ 7	٧
Vı	Input voltage P2 ₀ ~P2 ₇ , P4 ₀ ~P4 ₇		-0.3~V _{cc} +0.3	٧
Vı	Input voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P3 ₀ ~P3 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ , P7 ₀ ~P7 ₅ , INT ₁	With respect to V _{SS} With the output transistor cut-off	-0.3~13	٧
Vı	Input voltage CNV _{SS} , RESET		−0.3~13 (Note 1)	٧
Vo	Output voltage P2 ₀ ~P2 ₇ , P4 ₀ ~P4 ₇ , X _{OUT} , ϕ , D-A		$-0.3 \sim V_{cc} + 0.3$	٧
v _o	Output voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P3 ₀ ~P3 ₇ , P6 ₀ ~P6 ₄ , P7 ₀ ~P7 ₅ , PWM		-0.3~13	٧
Pd	Power dissipation	T _a =25℃	300	mW
Topr	Operating temperature		-10~70	င
Tstg	Storage temperature		−40~125	င

Note 1: In EPROM programming mode, CNV_{SS} is 22.0V

RECOMMENDED OPERATING CONDITIONS ($V_{CC}=5V\pm5\%$, $T_a=-10\sim70^{\circ}C$, unless otherwise noted)

Symbol	Parameter		Limits		Unit
Symbol	Farameter	Mın	Тур	Max	Omt
V _{CC}	Supply voltage	4. 75	5	5.25	V
V _{SS}	Supply voltage		0		V
V _{REF}	Reference voltage	4		V _{cc}	V
V _{IH}	"H" input voltage $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $P2_0 \sim P2_7$, $\frac{P3_0 \sim P3_7, P4_0 \sim P4_7, P5_0 \sim P5_7, \overline{INT_1},}{\overline{RESET}, X_{IN}, CNV_{SS}, P6_0, P7_0 \sim P7_5}$	0.8V _{CC}		V _{cc}	٧
V _{IL}	"L" input voltage P0 ₀ \sim P0 ₇ , P1 ₀ \sim P1 ₇ , P2 ₀ \sim P2 ₇ , P3 ₀ \sim P3 ₇ , P4 ₀ \sim P4 ₇ , P5 ₀ \sim P5 ₇ , $\overline{\text{INT}}_1$, CNV _{SS} , P6 ₀ , P7 ₀ \sim P7 ₅	0		0.2V _{CC}	V
VIL	"L" input voltage RESET	0		0.12V _{CC}	V
VIL	"L" input voltage X _{IN}	0		0.16V _{CC}	V
l _{oL(peak)}	"L" peak output current P0 $_0$ ~P0 $_7$, P1 $_0$ ~P1 $_7$, P2 $_0$ ~P2 $_7$, P3 $_0$ ~P3 $_7$, P4 $_0$ ~P4 $_7$, P7 $_0$ ~P7 $_5$ (Note 2)			10	mA
I _{OL} (peak)	"L" peak output current P6 ₀ ~P6 ₃ (Note 2)			15	mA
I _{OL} (peak)	"L" peak output current PWM, P64 (Note 2)			5	mA
I _{OL(avg)}	"L" average output current P0 $_0$ ~P0 $_7$, P1 $_0$ ~P1 $_7$, P2 $_0$ ~P2 $_7$, P3 $_0$ ~P3 $_7$, P4 $_0$ ~P4 $_7$, P7 $_0$ ~P7 $_8$ (Note 1)			5	mA
I _{OL} (avg)	"L" average output current P6 ₀ ~P6 ₃ (Note 1)			7	mA
loL(avg)	"L" average output current PWM, P64 (Note 1)			2.5	mA
I _{он(peak)}	"H" peak output current P2 ₀ ~P2 ₇ (Note 2)			-10	mA
I _{он(avg)}	"H" average output current P2 ₀ ~P2 ₇ (Note 1)			5	mA
f(X _{IN})	Internal clock oscillating frequency			4	MHz

Do not allow the combined high-level output current of port P2 to exceed 50mA

3: "H" input voltage of ports P0, P1, P3, P5, P6₀, P7 and $\overline{INT_1}$ is available up to $\pm 12V$

Note 1: The average output currents I_{OL(avg)} and I_{OH(avg)} are the average value of a period of 100ms 2: Do not allow the combined low-level output current of ports P0, P1, P2, P3, P4, P6, and PWM to

$\textbf{ELECTRICAL} \quad \textbf{CHARACTERISTICS} \; (V_{cc} = 5 \text{V, } V_{SS} = 0 \text{V, } T_a = 25 \, \text{°C, } f(X_{\text{IN}}) = 4 \text{MHz, unless otherwise noted})$

Symbol	Parameter	Test sens	litiano		Limits		Unit
Symbol	Parameter	Test conditions		Min	Тур.	Max	Unit
V _{OH}	"H" output voltage P2 ₀ ~P2 ₇	I _{OH} =-10mA		3			V
V _{OH}	"H" output voltage ϕ	I _{OH} =-2.5mA		3			٧
V _{OL}	"L" output voltage $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $P2_0 \sim P2_7$, $ P3_0 \sim P3_7, \ P4_0 \sim P4_7, \ P6_0 \sim P6_3, \\ P7_0 \sim P7_5 $	I _{OL} =10mA				2	V
V _{OL}	"L" output voltage P64, ø, PWM	I _{OL} =5mA				2	٧
V _{T+} -V _T	Hysteresis INT ₁			0.3		1	٧
V _{T+} -V _{T-}	Hysteresis P3 ₆	When used as CLK inpu	ıt	0.3	0.8		V
V _{T+} -V _{T-}	Hysteresis P3 ₂	When used as INT ₂ inpu	ıt	0.3		1	V
V _{T+} -V _{T-}	Hysteresis P3 ₃	When used as CNTR in	out	0.5	1		V
V _{T+} -V _{T-}	Hysteresis P6 ₀	When used as T input		0.5	1		٧
V _{T+} -V _{T-}	Hysteresis RESET				0.5	0.7	٧
V _{T+} -V _{T-}	Hysteresis X _{IN}			0.1		0.5	٧
I _{IL}	"L" input current P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₇ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₃ , P7 ₀ ~P7 ₅	V ₁ =0V				-5	μΑ
IIL	"L" input current INT ₁ , RESET, X _{IN}	V ₁ =0V				-5	μA
I _{tH}	"H" input current P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P3 ₀ ~P3 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ , P7 ₀ ~P7 ₅	V ₁ =12V			,	12	μΑ
I _{IH}	"H" input current INT ₁ , RESET, X _{IN} , P2 ₀ ~P2 ₇ , P4 ₀ ~P4 ₇	V _I =5V				5	μΑ
V _{RAM}	RAM retention voltage	At clock stop		2			٧
		φ, X _{OUT} , and D-A pins	f(X _{IN})=4MHz Square wave		3	6	mA
Icc	Supply current	opened, other pins at V _{SS} , and A-D converter in the finished condition	At clock stop Ta=25°C			1	
			At clock stop Ta=75°C			10	μΑ

$\textbf{A-D} \quad \textbf{CONVERTER} \quad \textbf{CHARACTERISTICS} \; (v_{cc} = 5v, \, v_{ss} = 4v_{ss} = 0v, \, T_a = 25\%, \, f(X_{IN}) = 4MHz, \, unless \; otherwise \; noted)$

Sýmbol	Parameter	Test conditions		Unit		
Symbol	Parameter	l est conditions	Min	Тур	Max	Onit
_	Resolution	V _{REF} =V _{CC}			8	Bits
_	Absolute accuracy	V _{REF} =V _{CC}			±3	LSB
RLADDER	Ladder resistance value	V _{REF} =V _{CC}	2		10	kΩ
t _{CONV}	Conversion time				50	μs
V _{REF}	Reference input voltage	'	2		V _{cc}	٧
VIA	Analog input voltage	,	0		V _{REF}	٧

$\textbf{D-A} \quad \textbf{CONVERTER} \quad \textbf{CHARACTERISTICS} \; (v_{cc} = 5v, \, v_{ss} = 4v_{ss} = 0v, \, \tau_{a} = 25^{\circ}c, \, f(x_{iN}) = 4\text{MHz, unless otherwise noted})$

Symbol Parameter	Parameter	Test conditions	Limits			Unit
	l est conditions	Min	Тур	Max	Unit	
_	Resolution	V _{REF} =V _{CC}			5	Bits
_	Error in full scale range	V _{REF} =V _{CC}			±1	%
t _{su}	Setup time	V _{REF} =V _{CC}			3	μs
Ro	Output resistance	V _{REF} =V _{CC}			3	kΩ
V _{REF}	Reference voltage		4		Vcc	V

PROM VERSION of M37412M4-XXXFP

TIMING REQUIREMENTS

Single-chip mode $(V_{cc}=5V\pm5\%, V_{ss}=0V, T_a=25^{\circ}C, f(X_{IN})=4MHz, unless otherwise noted)$

Combal	Parameter	Test conditions		Limits		Unit
Symbol	Parameter	rest conditions	Min	Тур.	Max	Onit
tsu(POD-ø)	Port P0 input setup time		270			ns
tsu(P1D-ø)	Port P1 input setup time		270			ns
t _{SU(P2D-ø)}	Port P2 input setup time		270			ns
t _{su(P3D—ø)}	Port P3 input setup time		270			ns
t _{SU(P4Dø)}	Port P4 input setup time	'	270			ńs
t _{Su(P5D-ø)}	Port P5 input setup time		270			ns
t _{Su(P7D-ø)}	Port P7 input setup time		270			ns
th(∲—POD)	Port P0 input hold time		20			ns
t h(<i>∲</i> —P1D)	Port P1 input hold time		20			ns
th(ø—P2D)	Port P2 input hold time		20			ns
th(∲—P3D)	Port P3 input hold time		20			ns
th(ø—P4D)	Port P4 input hold time		20			ns
t _{h(≠P5D)}	Port P5 input hold time		20			ns
th(ø—P7D)	Port P7 input hold time		20			ns
t _C	External clock input cycle time		250			ns
t _w	External clock input pulse width		75			ns
t _r	External clock rising edge time				25	ns
tf	External clock falling edge time				25	ns

Eva-chip mode (V_{cc} =5 $V\pm5\%$, V_{ss} =0V, T_a =25C, $f(X_{IN})$ =4MHz, unless otherwise noted)

				Unit		
Symbol	Parameter	Test conditions	Min	Тур.	Мах	Onit
t _{SU(POD-ø)}	Port P0 input setup time		270			ns
t _{SU(P1D-ø)}	Port P1 input setup time		270			ns
t _{SU(P2D-ø)}	Port P2 input setup time		270			ns
th(ø—POD)	Port P0 input hold time		20			ns
th(¢-P1D)	Port P1 input hold time		20			ns
th(ø—P2D)	Port P2 input hold time		20			ns

Memory expanding mode and microprocessor mode

 $(V_{CC}=5V\pm5\%, V_{SS}=0V, T_{a}=25^{\circ}C, f(X_{IN})=4MHz, unless otherwise noted)$

Symbol Parameter		T 4		Limits		Unit
	Test conditions	Mın	Тур	Max.	Onit	
t _{su(P2D—ø)}	Port P2 input setup time		270			ns
th(A P2D)	Port P2 input hold time		30			ns

SWITCHING CHARACTERISTICS

Single-chip mode ($V_{cc}=5V\pm5\%$, $V_{ss}=0V$, $T_a=25^{\circ}C$, $f(X_{IN})=4MHz$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			11-4
			Min	Тур	Max.	Unit
t _{d(∲—P0Q)}	Port P0 data output delay time	Fig 2			230	ns
t _{d(#-P1Q)}	Port P1 data output delay time				230	ns
t _{d(≠-P2Q)}	Port P2 data output delay time	Fig 3			230	ns
t _{d(∲—P3Q)}	Port P3 data output delay time	Fig 2			230	ns
td(P4Q)	Port P4 data output delay time				230	ns
t _{d(∲P6Q)}	Port P6 data output delay time				230	ns
t _{d(ø—P7Q)}	Port P7 data output delay time				230	ns

Eva-chip mode ($V_{cc}=5V\pm5\%$, $V_{ss}=0V$, $T_a=25^{\circ}C$, $f(X_{IN})=4MHz$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min	Тур	Max	Unit
t _{d(∲—POA)}	Port P0 address output delay time	Fig 2			250	ns
t _{d(∲—POAF)}	Port P0 address output delay time				250	ns
td(≠-POQ)	Port P0 data output delay time				200	ns
td(≠-POQF)	Port P0 data output delay time				200	ns
t _{d(ø—P1A)}	Port P1 address output delay time				250	ns
td(ø-P1AF)	Port P1 address output delay time				250	ns
td(ø-P1Q)	Port P1 data output delay time				200	ns
td(ø-P1QF)	Port P1 data output delay time				200	ns
t _{d(∲—P2Q)}	Port P2 data output delay time	Fig 3			300	ns
td(ø—P2QF)	Port P2 data output delay time				300	ns
t _{d(∲—R/W)}	R/W signal output delay time	Fig 2			250	ns
t _{d(∲—R/WF)}	R/W signal output delay time				250	ns
t _{d(∲—P30} Q)	Port P3₀ data output delay time				200	ns
td(ø—P30QF)	Port P3 ₀ data output delay time				200	ns
t _{d(≠-sync)}	SYNC signal output delay time				250	ns
td(ø-synce)	SYNC signal output delay time				250	ns
t _{d(∲—P31Q)}	Port P3 ₁ data output delay time				200	ns
t _{d(≠−P31QF)}	Port P3 ₁ data output delay time				200	ns

Memory expanding mode and microprocessor mode

 $(V_{CC}=5V\pm5\%, V_{SS}=0V, T_a=25^{\circ}C, f(X_{IN})=4MHz, unless otherwise noted)$

Symbol	Parameter	Test conditions	Limits			
			Mın.	Тур	Max	Unit
t _{d(∲—POA)}	Port P0 address output delay time	Fig. 2			250	ns
t _{d(∲—P1A)}	Port P1 address output delay time				250	ns
t _{d(∲—P2Q)}	Port P2 data output delay time	Fig 3			300	ns
t _{d(∲—P2QF)}	Port P2 data output delay time				300	ns
t _{d(ø—R/W)}	R/W signal output delay time	Fig 2			250	ns
td(ø_sync)	SYNC signal output delay time				250	ns

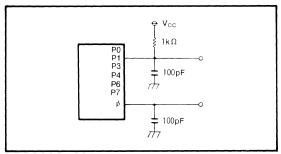


Fig. 2 Ports P0, P1, P3, P4, P6 and P7 test circuit

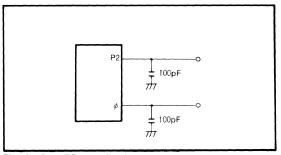
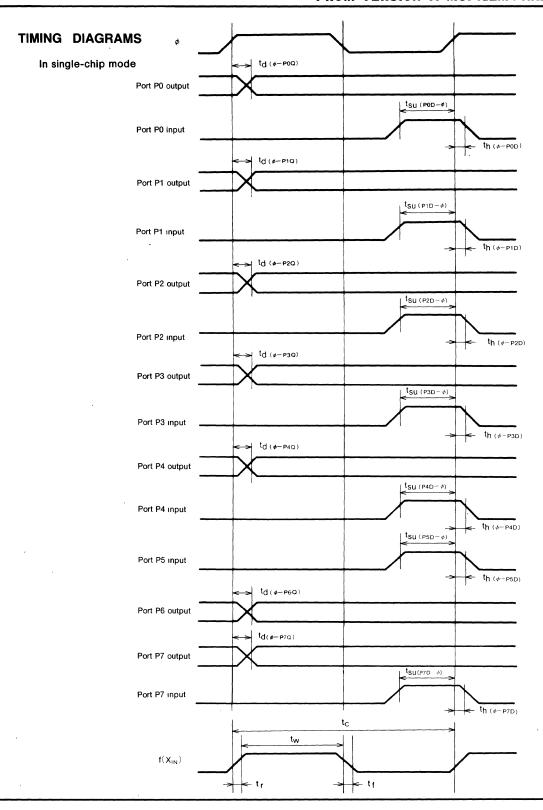
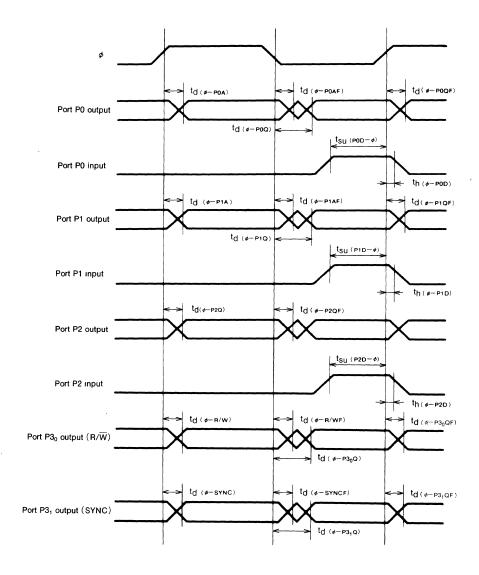
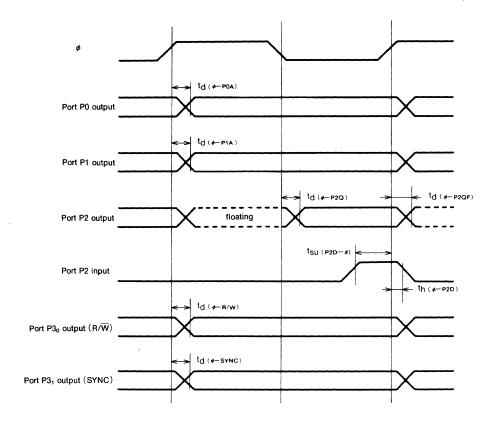




Fig. 3 Port P2 test circuit


In eva-chip mode

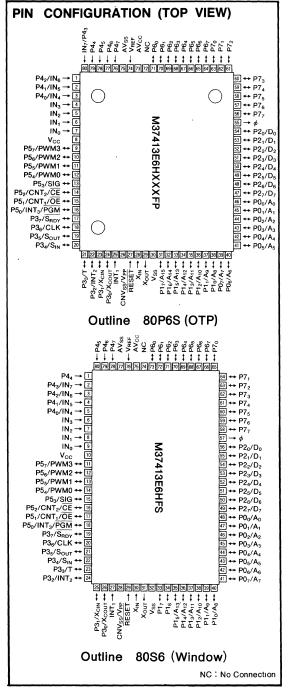
PROM VERSION of M37412M4-XXXFP

In memory expanding mode and microprocessor mode

M37413E6HXXXFP M37413E6HFS

PROM VERSION of M37413M6HXXXFP

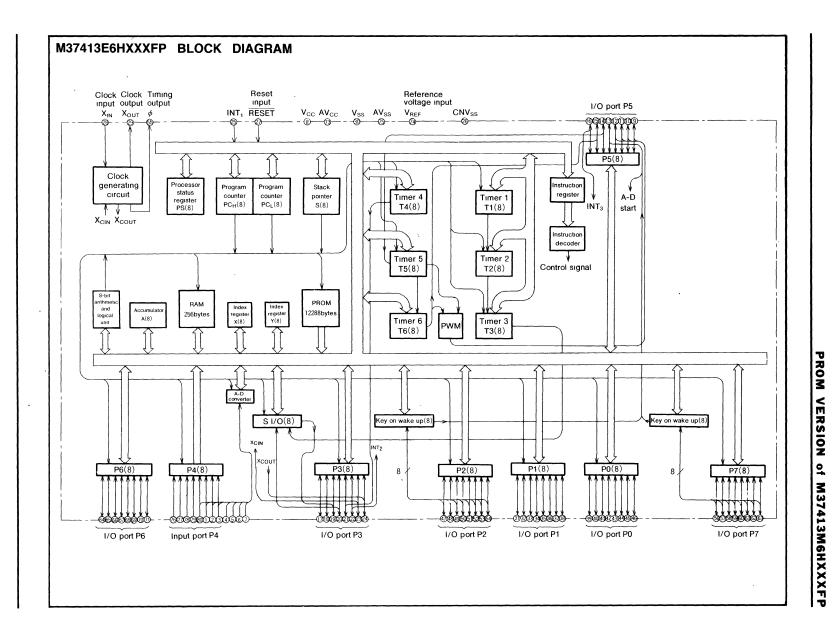
DESCRIPTION


The M37413E6HFS, M37413E6HXXXFP are single-chip microcomputers designed with CMOS silicon gate technology. M37413E6HXXXFP is housed in a 80-pin shrink plastic molded QFP. M37413E6HFS is housed in a 80-pin ceramic QFP. The features of this chip are similar to those of the M37413M4HXXXFP except that this chip has a 12288 bytes PROM built in. This single-chip microcomputer is useful for home electrical appliances and consumer appliance controllers.

In addition to its simple instruction sets, the PROM, RAM, and I/O addresses are placed on the same memory map to enable easy programming. Since general purpose PROM writers can be used for the built-in PROM, this chip is suitable for small quantity production runs.

The M37413E6HFS is the window type. The differences between the M37413E6HXXXFP and the M37413E6HFS are the package outline and the power dissipation ability (absolute maximum ratings).

FEATURES


•	Number of ba	sic instructions······ 69
•	Memory size	PROM12288 bytes
	,	RAM······ 256 bytes
•	Instruction exe	-
		structions at 4MHz frequency)
		ed mode ······ 2 μs
		d mode ······ 8µs
•	Single power	
		XXXFP 2.5~5.5V
		FS 4.5~5.5V
•	Power dissipa	
		ation mode (at 4MHz frequency)
		15mW (V _{CC} =5V, Typ.)
		operation mode (at 32kHz frequency for
		$\sin(\omega)$ $\cos(\omega)$
•		voltage (stop mode)
-		2.0V≦V _{RAM} ≦5.5V
•		sting ······96 levels (Max.)
•		······ 10 types, 5 vectors
•		······4 (3 when used as serial I/O)
•	16-bit timer ···	1
•	Programmable	
Ĭ		P1, P2, P3, P5, P6, P7)····· 56
•	Input port (Po	rt P4) ·······8
•	Serial I/O (8-I	oit)1
•		·············· 8-bit. 8-channel
•	7 D CONTORCE	conversion speed (49.5 μ s)
•	Two clock ger	nerating circuits
•	_	main clock, the other is for clock function)
•		alent to the M5L27128)
•		tage······ 21V
	program vo	11V

APPLICATION

Audio-visual equipment, VCR, Tuner, Office automation equipment, Camera

MITSUBISHI MICROCOMPUTERS

MITSUBISHI MICROCOMPUTERS M27/12EGUYYYED

M37413E6HXXXFP M37413E6HFS

PROM VERSION of M37413M6HXXXFP

FUNCTIONS OF M37413E6HXXXFP

	Parameters		Functions		
Number of basic instructions			69		
Instruction execution time 2			·2μs (minimum instructions, at 4MHz of frequency)		
			4MHz		
/M	PROM		12288bytes		
Memory size	RAM		256bytes		
P0, P2, P7 I/O		1/0	8-bit×3 (CMOS output)		
Input/Output port	P1, P3, P5, P6	1/0	8-bit×4 (N-channel open drain output)		
P4 Input		Input	8-bit×1		
Serial I/O			8-bit×1		
T1			8-bit timer×4		
Timers			16-bit timerX1		
Subrotine nesting			96(max)		
Interrupt			Three external Interrupts, three timer interrupts (or two timer, one serial I/O)		
Clock generating circuit			Two built-in circuits (ceramic or quartz crystal oscillator)		
Operating temperature range			-10~70°C		
Device structure			CMOS silicon gate		
Package			80-pin plastic molded QFP		

M37413E6HXXXFP M37413E6HFS

PROM VERSION of M37413M6HXXXFP

PIN DESCRIPTION

Pın	Mode	Name	Input/ Output	Functions
V _{CC} , V _{SS}	Single-chip /EPROM	Power supply		Supply 5V±5% to V _{CC} and 0V to V _{SS}
CNV _{ss} /	Single-chip	CNVss		Connect to V _{SS} .
V _{PP}	EPROM	V _{PP} input	Input	Connect to V _{PP} when programming or verifing
RESET	Single-chip	Reset input	Input	To reset, keep this input terminal low for more than $16\mu s$ (min) under normal V_{CC} conditions if more time is needed for the crystal oscillator to stabilize, this "L" condition should be maintained for the required time.
	EPROM			Connect to 0V.
X _{IN}	Single-chip	Clock input	Input	These are I/O pins of internal clock generating circuit for main clock. To control
Хоит	/EPROM	Clock output	Output	generating frequency, an external ceramic or a quartz crystal oscillator is connected between the X_{IN} and X_{OUT} pins. If an external clock is used, the clock source should be connected the X_{IN} pin and the X_{OUT} pin should be left open
INT ₁	Single-chip	Interrupt input	Input	This is the highest order interrupt input pin
	EPROM			Connect to 0V
P0 ₀ ~P0 ₇	Single-chip	I/O port P0	1/0	Port P0 is an 8-bit I/O port with directional registers allowing each I/O bit to be indi- vidually programmed as input or output. At reset, this port is set to input mode. The output structure is CMOS output.
÷	EPROM	Address input A ₀ ~A ₇	Input	P0 works as the lower 8 bit address input (A ₀ ~A ₇)
P1 ₀ ~P1 ₇	Single-chip	I/O port P1	1/0	Port P1 is an 8-bit I/O port and has basically the same functions as port P0 The output structure is N-channel open drain
	EPROM	Address input A ₈ ~A ₁₃	Input	P1 ₀ ~P1 ₅ works as the higher 6 bit address inputs (A ₈ ~A ₁₃) Connect P1 ₆ ~P1 ₇ to V _{SS}
P2 ₀ ~P2 ₇	Single-chip	I/O port P2	1/0	Port P2 is an 8-bit I/O port and has basically the same function as port P0 Also all bits are for key on wake up input pins.
	EPROM	Data input/ output D ₀ ~D ₇	1/0	Port P2 works as an 8 bit data bus (D ₀ ~D ₇)
P3 ₀ ~P3 ₇	Single-chip	I/O port P3	I/O	Port P3 is an 8-bit I/O port and has basically the same functions as port P0 When serial I/O is used, P3 ₇ , P3 ₆ , P3 ₅ and P3 ₄ work as \overline{S}_{RDY} , CLK, S_{OUT} , and S_{IR} pins, respectively Also P3 ₃ , P3 ₂ , P3 ₁ , and P3 ₀ work as timer 4 overflow signal divided by 2 output pin (T), INT ₂ pin, X_{CIN} and X_{COUT} pins, respectively
	EPROM	Input port P3	Input	Connect to 0V
P4 ₀ ~P4 ₇	Single-chip	Input port P4	Input	Port P4 is an 8-bit input port. P4 ₀ ~P4 ₃ work as analog input pin IN ₄ ~IN ₇
	EPROM			Connect to V _{SS}
IN₀~IN ₇	Single-chip	Input port IN	Input	These are analog input pin
	EPROM			Connect to V _{SS}
P5 ₀ ~P5 ₇	Single-chip	I/O port P5	1/0	Port P5 is an 8-bit I/O port and has basically the same function as P1 P5 ₀ , P5 ₁ , P5 and P5 ₃ are in common with INT ₃ , timer3 input, timer5 input and A-D trigger input respectively.
	EPROM	Select mode	Input	Connect to V _{SS}

M37413E6HXXXFP M37413E6HFS

PROM VERSION of M37413M6HXXXFP

PIN DESCRIPTION (Continued)

Pin	Mode	Name	Input/ Output	Functions
P6 ₀ ~P6 ₇	Single-chip	I/O port P6	1/0	Port P6 is an 8-bit I/O port and has basically the same functions as port P1
	EPROM	Input port P6	Input	Connect to V _{SS}
P7 ₀ ~P7 ₇	Single-chip	I/O port P7	1/0	Port P7 is an 8-bit I/O port and has basically the same functions as port P2
	EPROM	Input port P7	Input	Connect to V _{SS}
AV _{CC}	Single-chip	Analog voltage input	Input	Analog voltage input pin for A-D converter
	EPROM			Connect to V _{SS} .
AV _{ss}	Single-chip /EPROM	Analog voltage input	Input	Connect to V _{SS} .
V _{REF}	Single-chip	Reference voltage input	Input	Reference input pin for A-D converter.
	EPROM			Connect to V _{CC} .

PROM VERSION of M37413M6HXXXFP

EPROM MODE

The M37413E6HXXXFP, M37413E6HFS feature an EPROM mode in addition to its normal modes. When the \overline{RESET} signal level is low ("L"), the chip automatically enters the EPROM mode. Table 1 list the correspondence between pins and Figure 1, Figure 2 give the pin connections in the EPROM mode. When in the EPROM mode, ports P0, P1, P2, P50 \sim P52, and CNVsS are used for the PROM (equivalent to the M5L27128). When in this mode, the built-in PROM can be written to or read from using these pins in the same way as with the M5L27128. The oscillator should be connected to the X_{IN} and X_{OUT} pins, or external clock should be connected to the X_{IN} pin.

Table 1. Pin function in EPROM mode

	M37413E6HXXXFP, M37413E6HFS	M5L27128
V _{cc}	V _{cc}	V _{cc}
V_{PP}	CNV _{SS} /V _{PP}	V_{PP}
V _{SS}	V _{ss}	V _{ss}
Address input	Ports P0, P1 ₀ ~P1 ₅	A ₀ ~A ₁₃
Data I/O	Port P2	D ₀ ~D ₇
CE	P5 ₂ /CE	CE
OE	P5₁/OE	ŌĒ
PGM	P5 ₀ /PGM	PGM



Fig.1 Pin connection in EPROM mode

M37413E6HXXXFP M37413E6HFS

PROM VERSION of M37413M6HXXXFP

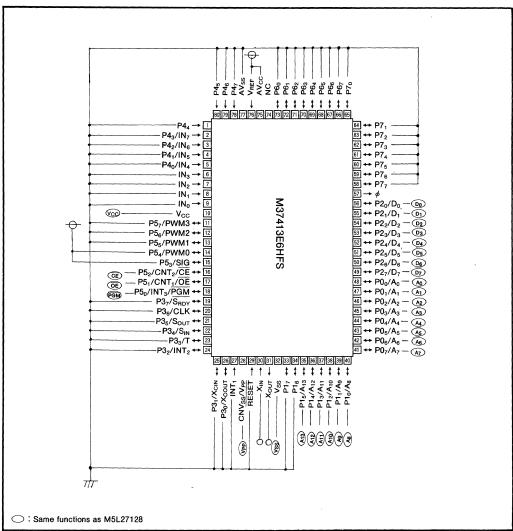


Fig.2 Pin connection in EPROM mode

M37413E6HXXXFP M37413E6HFS

PROM VERSION of M37413M6HXXXFP

PROM READING, WRITING AND ERASING Reading

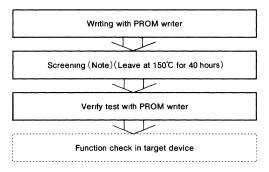
To read the PROM, set the \overline{CE} and \overline{OE} pins to a "L" level, and the \overline{PGM} pin to a "H" level. Input the address of the data $(A_0 \sim A_{13})$ to be read and the data will be output to the I/O pins $D_0 \sim D_7$. The data I/O pins will be floating when either the \overline{CE} or \overline{OE} pins are in the "H" state.

Writing

To write to the PROM, set the $\overline{\text{CE}}$ pin to a "L" level and the $\overline{\text{OE}}$ pin to a "H" level. The CPU will enter the program mode when V_{PP} is applied to the V_{PP} pin. The address to be written to is selected with pins $A_0 \sim A_{13}$, and the data to be written is input to pins $D_0 \sim D_7$. Set the $\overline{\text{PGM}}$ pin to a "L" level to begin writing.

Erasing

Data can only erased on the M37413E6HFS ceramic package, which includes a window. To erase data on this chip, use an ultraviolet light source with a 2537 Angstrom wave length. The minimum radiation power necessary for erasing is 15W·s/cm².


Functional differences from M37413M4HXXXFP

(excluding characteristic differences).

	M37413M4HXXXFP	M37413E6HXXXFP
Port P0 pull-up resistor	Option	Not provided
Port P1 pull-up resistor	Option	Not provided
Port P2 pull-up resistor	Option	Not provided
Port P3 pull-up resistor	Option	Not provided
Port P4 pull-up resistor	Option	Not provided
Port P5 pull-up resistor	Option	Not provided
Port P6 pull-up resistor	Option	Not provided
Port P7 pull-up resistor	Option	Not provided
Port P2 key on wake up	Option	Provided (all bits)
Port P7 key on wake up	Option	Provided (all bits)

NOTES ON HANDLING

- (1) Sunlight and fluorescent light contain wave lengths capable of erasing data. For ceramic package types, cover the transparent window with a seal (provided) when this chip is in use. However, this seal must not contact the lead pins.
- (2) Before erasing, the glass should be cleaned and stains such as finger prints should be removed thoroughly. If these stains are not removed, complete erasure of the data could be prevented.
- (3) Since a high voltage (21V) is used to write data, care should be taken when turning on the PROM writer's power.
- (4) For the programmable microcomputer (shipped in blank or OTP type), Mitsubishi does not perform PROM write test and screening in the assembly process and following processes. To improve reliability after write, performing write and test according to the flow below before use is recommended.

Note: Since the screening temperature is higher than storage temperature, never expose to 150℃ exceeding 100 hours.

Table 2. I/O signal in each mode

Pin	CE(14)	OE (15)	PGM(16)	V _{PP} (26)	V _{cc} (8)	Data I/O (33~54)
Read-out	V _{IL}	VIL	V _{IH}	V _{CC}	V _{cc}	Output
Programming	V _{IL}	V _{IH}	Pulse(V _{IH} →V _{IL})	V _{PP}	V _{cc}	Input
Programming verify	V _{IL}	V _{IL}	V _{IH}	V _{PP}	V _{cc}	Output
Program disable	V _{IH}	X	X	V _{PP}	V _{cc}	Floating

Note 1: V_{IL} and V_{IH} indicate a "L" and "H" input voltage, respectively.

2 : An X indicates either V_{IL} or V_{IH}

MITSUBISHI MICROCOMPUTERS

M37413E6HXXXFP M37413E6HFS

PROM VERSION of M37413M6HXXXFP

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		-0.3∼ 7	٧
AV _{CC}	Analog supply voltage	V _{CC} =AV _{CC}	−0. 3~ 7	V
Vı	Input voltage P0 ₀ ~P0 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ , P3 ₁ , P4 ₀ ~P4 ₇ , P7 ₀ ~P7 ₇ , IN ₀ ~IN ₇ , V _{REF} , X _{IN}		-0.3~V _{cc} +0.3	v
V_{l}	Input voltage CNV _{SS} , (Note 1)		−0. 3 ~ 7	V
Vı	Input voltage INT ₁ , RESET, P1 ₀ ~P1 ₇ , P3 ₂ ~P3 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇		-0.3~10	v
Vo	Output voltage P0 ₀ ~P0 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ , P3 ₁ , P7 ₀ ~P7 ₇ , X _{OUT}		-0.3∼V _{cc} +0.3	V
Vo	Output voltage P1 ₀ ~P1 ₇ , P3 ₂ ~P3 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇	,	-0.3~10	V
Pd	Power dissipation	T _a = 25℃	300	mW
Topr	Operating temperature		− 10 ~ 70	°C
Tstg	Storage temperature		−40~125	°C

Note 1: In PROM programming mode, CNV_{SS} is 21.0V

RECOMMENDED OPERATING CONDITIONS $(V_{CC}=5 \ V\pm 5 \ \%,\ T_a=-10\sim 70 \ C,\ unless\ otherwise\ noted)$

Cumbal	Dovernator	Conditions		Limits		Unit
Symbol	Parameter	Conditions	Mın.	Тур	Max	Unit
		f(X _{IN})=4MHz High-speed mode	4.5		5.5	
V_{CC}	Supply voltage (Note 1)	f(X _{IN})=4MHz Normal mode or	2.5		5, 5	V
		f(X _{IN})=2MHz High-speed mode (Note 2)	(Note 3)		5.5	
V _{SS}	Supply voltage			0		V
VIH	"H" input voltage P0 ₀ ~P0 ₇ , P3 ₀ , P3 ₁ , P4 ₀ ~P4 ₇ ,		0.714		V _{CC}	V
VIH	X _{IN} , CNV _{SS} (Note 4)	<u> </u>	0.7V _{CC}		v _{CC}	v
V _{IH}	"H" input voltage P2 ₀ ~P2 ₇ , P7 ₀ ~P7 ₇		0.8V _{CC}		V _{cc}	V
VIH	"H" input voltage P1 ₀ ~P1 ₇ , P5 ₁ ~P5 ₇ , P6 ₀ ~P6 ₇ , S _{IN}		0.7V _{CC}		10	V
VIH	"H" input voltage P5 ₀ , INT ₁ , INT ₂ , INT ₃ , P3 ₂ ~P3 ₇ ,		0.01		10	V
VIH	CNT ₁ , CNT ₂ , SIG, CLK		0.8V _{CC}		10	V
V_{IH}	"H" input voltage RESET, X _{CIN}		0.85V _{CC}		10	V
VIL	"L" input voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P3 ₀ ~P3 ₇ ,		0		0. 3V _{CC}	V
VIL	P4 ₀ ~P4 ₇ , P5 ₁ ~P5 ₇ , P6 ₀ ~P6 ₇ , S _{IN}				0. 3VCC	v
VIL	"L" input voltage P2 ₀ ~P2 ₇ , P5 ₀ , P7 ₀ ~P7 ₇ , INT ₁ , INT ₂ ,		0		0. 2V _{GG}	V
VIL	INT ₃ , CNT ₁ , CNT ₂ , SIG, CLK		0		0. 2 V CC	· ·
V _{IL}	"L" input voltage RESET, X _{IN} , X _{CIN}		0		0.15V _{CC}	V
Land	"H" output current P0 ₀ ~P0 ₇ , P2 ₀ ~P2 ₇ , P7 ₀ ~P7 ₇ ,				-1	mA
Іон	X _{OUT} (Note 5)				<u>'</u>	"""
	"L" output current P0 ₀ ~P0 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₇ ,			1		
loL	P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ ,				1	mA
OL	X _{OUT} , PWM0∼PWM3, T,				'	111/3
	S _{OUT} , CLK, S _{RDY} , SIG (Note 6)		-			
loL	"L" output current P1 ₀ ~P1 ₇ (Note 7)	V _{CC} =5V			10	mA
f(X _{IN})	Clock oscillating frequency		0.2		4	MHz
f(X _{CIN})	Clock oscillating frequency for clock function		30		50	kHz

Note 1: When only maintaining the RAM data, minimum value of V_{CC} is 2V

- 2 : We say the high-speed mode, when the system clock is chosen $X_{IN}/4$, and the normal mode, when the system clock is chosen $X_{IN}/16$
- 3 : In case M37413E6HFS, 4.5V
- 4: When P3 is X_{CIN} mode, the limits of V_{IH} of P3₁ is 0.85 $V_{CC} \le V_{IH} \le V_{CC}$, $0 \le V_{IL} \le 0.15V_{CC}$
- 5: Total of I_{OH}(peak) of ports P0, P2, P7 and X_{OUT} is less than 35mA.
- 6: Total of I_{OL(Peak)} of ports P0, P2, P3, P5, P6 and P7 is less than 32mA
- 7 : Total of I_{OL}(peak) of port P1 is less than 80mA Total of I_{OL}(avg) of port P1 is less than 40mA.

M37413E6HXXXFP M37413E6HFS

PROM VERSION of M37413M6HXXXFP

ELECTRICAL CHARACTERISTICS ($\tau_a = -10 \sim 70^{\circ}\text{C}$, $v_{ss} = 0\text{V}$, unless otherwise noted)

Symbol	Parameter	Took one division		Limits		Unit
Symbol	Parameter	Test conditions	Mın	Тур	Max	Unit
V _{OH}	"H" output voltage P0 ₀ ~P0 ₇ , P2 ₀ ~P2 ₇ , P7 ₀ ~P7 ₇	V _{CC} =5V, I _{OH} =-0.5mA	4			٧
V _{OH}	"H" output voltage X _{OUT}	V _{CC} =5V, I _{OH} =-0.3mA	4			٧
V _{OL}	"L" output voltage $P0_0 \sim P0_7$, $P2_0 \sim P2_7$, $P3_0 \sim P3_7$, $P5_0 \sim P5_7$, $P6_0 \sim P6_7$, $P7_0 \sim P7_7$, T, S_{OUT} , CLK, \overline{S}_{RDY} , SIG, $PWM0 \sim PWM3$	V _{CC} =5V, I _{OL} =1mA			1	٧
VoL	"L" output voltage P1 ₀ ~P1 ₇	V _{CC} =5V, I _{OL} =20mA			2	٧
VoL	"L" output voltage X _{OUT}	V _{CC} =5V, I _{OL} =0. 3mA			1	>
$V_{T^+} - V_{T^-}$	Hysteresis INT_1 , INT_2 , INT_3 , CLK , CNT_1 , CNT_2 , SIG , SIG , $P2_0 \sim P2_7$, $P7_0 \sim P7_7$, X_{CIN}	V _{CC} =5V		0.7		٧
$V_{T+}-V_{T-}$	Hysteresis RESET	V _{CC} =5V		2		٧
V _{T+} V _T	Hysteresis X _{IN}	V _{CC} =5V		0.5		V
l _{IL}	"L" input current $[P0_0 \sim P0_7, P1_0 \sim P1_7, P2_0 \sim P2_7, P3_0 \sim P3_7, P4_0 \sim P4_3, P5_0 \sim P5_7, P6_0 \sim P6_7, P7_0 \sim P7_7]$ Without pull-up T _f (Note 1) $[N0_0 \sim N_7, NN_1, RESET, X_N]$	$V_{CC}=5V$ $V_{I}=0V$			— 5	μΑ
I _{IH}	"H" input current $P0_0 \sim P0_7$, $P2_0 \sim P2_7$, $P3_0$, $P3_1$, $P4_0 \sim P4_7$, $P7_0 \sim P7_7$, $IN_0 \sim IN_7$, $X_{IN}, X_{CIN}, CNV_{SS}$	V _{CC} =5V V _I =5V			5	μΑ
l _{iH}	"H" input current {P1 ₀ ~P1 ₇ , P3 ₀ ~P3 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ } Without pull-up T _r INT ₁ , INT ₂ , INT ₃ , CNT ₁ , CNT ₂ , SIG, RESET, S _{IN} , CLK	v ₁ =10v			10	μΑ
	at aparation	f(X _{IN})=4MHz High-speed mode V _{CC} =5V		3	8	mA
	at operation	$f(X_{CIN})=32kHz, V_{CC}=3V$		30	60	
I _{cc}	Supply current at wait state	$f(X_{CIN})=32kHz, V_{CC}=5V$		15	30	μA
	at stop state	V _{CC} =5V, all clock stop T _a =25°C		0.1	1.0	
VRAM	RAM retention voltage		2		5.5	V

Note 1: Also the same as when each pin is used as INT2, INT3, CNT1, CNT2, SIG, SIN and XIN, respectively

A-D CONVERTER CHARACTERISTICS (V_{CC}=AV_{CC}=5V, V_{SS}=AV_{SS}= 0 V, T_a=25°C, f(X_{IN})= 4 MHz, unless otherwise noted)

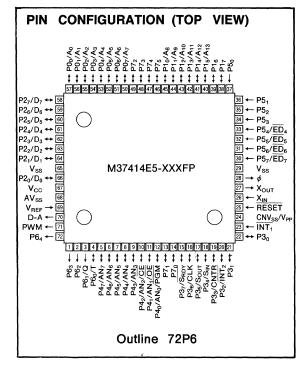
0 !	Parameter		Limits			
Symbol		Test conditions	Mın	Тур	Max	Unit
	Resolution				8	bits
	Non-linearity error	V _{CC} =V _{REF} =5.12V			±2	LSB
	Differential non-linearity	V _{CC} =V _{REF} =5. 12V			±0.9	LSB
V _{OT}	Zero transition error	V _{CC} =V _{REF} =5.12V			2	LSB
V _{FST}	Full-scale transition error	V _{CC} =V _{REF} =5.12V			8	LSB
T _C	Conversion time	V _{CC} =5V High-speed mode		25		μs
I _{REF}	Reference input current	V _{REF} =5V		1.0	2.5	mA
I _{IN}	Analog port input current	V _{IN} =0~V _{CC}		1	10	μΑ
V _{IN}	Analog input voltage	V _{cc} =5V	AVss		Vcc	٧
V _{REF}	Reference input voltage		2.5		Vcc	V

MITSUBISHI MICROCOMPUTERS M37414E5-XXXFP

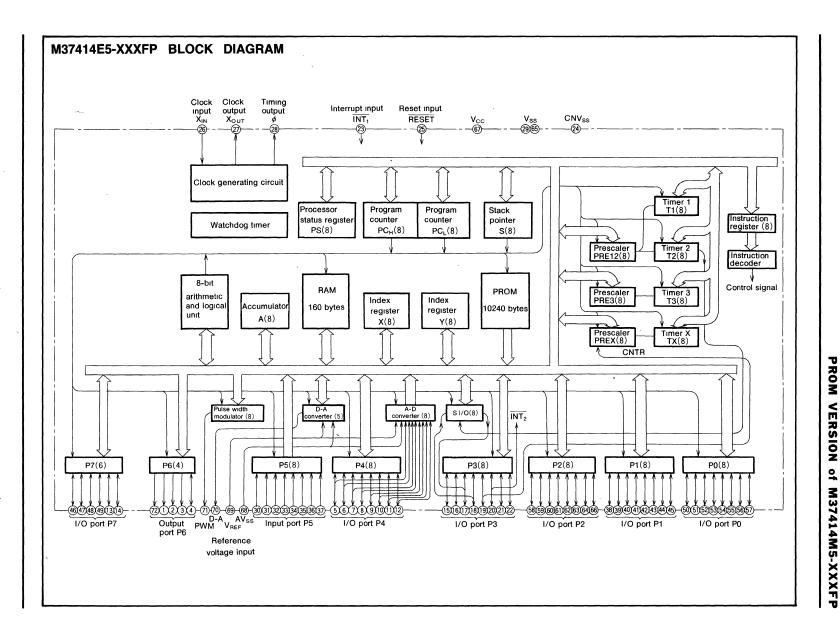
PROM VERSION of M37414M5-XXXFP

DESCRIPTION

The M37414E5-XXXFP is a single-chip microcomputer designed with CMOS silicon gate technology. It is housed in a 72-pin plastic molded QFP. The features of this chip are similar to those of the M37414M5-XXXFP except that this chip has a 10240 bytes PROM built in. This single-chip microcomputer is useful for home electrical appliances and consumer appliance controllers.


In addition to its simple instruction set, the PROM, RAM, and I/O addresses are placed on the same memory map to enable easy programming. Since general purpose PROM writers can be used for the built-in PROM, this chip is suitable for small quantity production runs.

FEATURES


	EATORES	
•	Number of basic instructions·····	69
•	Memory size ROM ······10240	
	RAM······ 160	bytes
•	Instruction execution time	
	······ 2μs (minimum instructions at 4MHz frequ	ency)
•	Single power supply 5\	/±5%
•	Power dissipation	
	normal operation mode (at 4MHz frequency)	15mW
•	Subroutine nesting80 levels (Max.)
•		ectors
•	8-bit timer ·····	4
•	Programmable I/O ports	
	(Ports P0, P1, P2, P3, P4, P7) ······	····· 46
•	Input port (Port P5) ······	8
•	Output port (Port P6)·····	5
•		
•	71 B convertor (c bit recondition)	
•	D-A converter (5-bit resolution) ······ 1 ch	annels
•	8-bit PWM function	
•	Watchdog timer	
•	PROM (equivalent to the M5L27128)	
	program voltage······	··· 21V

APPLICATION

Office automation equipment VTR, Tuner, Audio-visual equipment

M37414E5-XXXFP

PROM VERSION of M37414M5-XXXFP

FUNCTIONS OF M37414E5-XXXFP

	Parameter		Functions		
Number of basic instructions			69		
		2μs (minimum instructions, at 4MHz frequency)			
Clock frequency		4MHz			
Memory Size PROM		•	10240bytes (Note 1)		
Memory Size	RAM		160bytes		
	INT ₁	Input	1-bit×1		
	P0, P1, P2, P3, P4	1/0	8-bit×5 (a part of P3 is in common with serial I/O, timer I/O, and interrupt input)		
Input/Output port	P5	Input '	8-bit×1		
	P6	Output	5-bit×1 (a part of P6 is in common with external trigger output pin)		
	P7	1/0	6-bit×1		
Serial I/O			8-bit×1		
Timers	Timers		8-bit prescaler×3+8-bit timer×4		
A-D converter			8-bit×1 (8 channels)		
D-A converter			5-bit×1		
Pulse width modulator			8-bit×1		
Watchdog timer			15-bit×1		
Subroutine nesting			80 levels (max)		
Interrupt ·			Two external interrupts, three internal timer interrupts		
Clock generating circuit	r		built-in (ceramic or quartz crystal oscillator)		
Supply voltage			5V±5%		
Power dissipation	at high-speed operation		15mW (at 4MHz frequency)		
Input/Output characteristics	Input/Output voltage		12V (Ports P3, P4, P5, P6, P7 ₀ , P7 ₁ , \overline{INT_1})		
input/Output characteristics	Output current		5mA (Ports P0, P1, P2, P3, P4, P7)		
Memory expansion			Possible		
Operating temperature range			-10~70℃		
Device structure			CMOS silicon gate process		
Package			72-pin plastic molded QFP		

Note 1: The PROM programing voltage is 21V (equivalent to the M5L27128)

M37414E5-XXXFP

PROM VERSION of M37414M5-XXXFP

PIN DESCRIPTION

Pin	Mode	Name	Input/ Output	Functions
V _{CC} , V _{SS}	Single-chip /EPROM	Power supply		Supply 5V±5% to V _{CC} and 0V to V _{SS}
CNV _{ss}	Single-chip	CNV _{SS} input	Input	Connect to 0V
	EPROM	V _{PP} input		Connect to V _{PP} when programming or verifing
RESET	Single-chip	RESET Input	Input	To reset, keep this input terminal low for more than $2\mu s$ (min) under normal V_{Ci} conditions. If more time is needed for the crystal oscillator to stabilize, this "L" condition should be maintained for the required time
	EPROM	RESET input		Connect to V _{SS}
Xin	Single-chip /EPROM	Clock input	Input	Connect a ceramic or a quartz crystal oscillator between X _{IN} and X _{OUT} for clock
Хоит	/LFNOWI	Clock output	Output	oscillation. If an external clock input is used, connect the clock input to the X_{IN} pil and open the X_{OUT} pin.
φ	Single-chip /EPROM	Timing output	Output	For timing output
ĪNT ₁	Single-chip	Interrupt input	Input	Interrupt input INT ₁ .
	EPROM	Interrupt input	Input	Connect to 0V
P0 ₀ ~P0 ₇	Single-chip	I/O port P0	1/0	Port P0 is an 8-bit I/O port with direction registers which can program each bit as input or output. It is set to input mode at reset. The output format is CMOS output.
	EPROM	Address input A ₀ ~A ₇	Input	P0 works as the lower 8 bit address input (A ₀ ~A ₇)
P1 ₀ ~P1 ₇	Single-chip	I/O port P1	1/0	Port P1 is an 8-bit I/O port which has the same function as Port P0
	EPROM	Address input A ₈ ~A ₁₃	Input	P1 ₀ ~P1 ₅ works as the higher 6 bit address inputs (A ₈ ~A ₁₃) Connect P1 ₆ ~P1 ₇ to V _{CC}
P2 ₀ ~P2 ₇	Single-chip	I/O port P2	1/0	Port P2 is an 8-bit I/O port which has the same function as Port P0
	EPROM	Data input/ output D ₀ ~D ₇	1/0	Port 2 works as an 8 bit data bus $(D_0 \sim D_7)$.
P3 ₀ ~P3 ₇	Single-chip	I/O port P3	I/O	Port P3 is an 8-bit I/O port and has basically the same functions Port P0. When serial I/O is used, P3 ₇ , P3 ₆ , P3 ₅ , and P3 ₄ work as $\overline{S_{RDY}}$, CLK, S_{OUT} , and S_{IN} pins, respectively Also P3 ₃ and P3 ₂ work as CNTR pin and the lowest interrupt pin ($\overline{INT_2}$) respectively. The output format is N-ch open drain
	EPROM	Input Port P3	Input	Connect to 0V
P4 ₀ ~P4 ₇	Single-chip	I/O port P4	1/0	Port P4 is an 8-bit I/O port which has the same function as Port P0. Ports P4 ₇ ~P4 are common with Analog inputs AN ₇ ~AN ₀ . The output format is N-ch open drain
	EPROM	Select mode	Input	P4 ₂ , P4 ₁ , P4 ₀ work as $\overline{\text{CE}}$, $\overline{\text{OE}}$ and $\overline{\text{PGM}}$ inputs, respectively Connect P4 ₅ ~P4 ₇ to 0V and P4 ₄ and P4 ₃ to V _{CC}
P5 ₀ ~P5 ₇	Single-chip	Input port	Input	Port P5 is an 8-bit input port Ports P5,~P54 have edge sence functions.
	EPROM	Input port	Input	Connect to 0V

M37414E5-XXXFP

PROM VERSION of M37414M5-XXXFP

PIN DESCRIPTION (Continued)

Pin	Mode	Name	Input/ Output	Functions
P6₀~P6₄	Single-chip	Output port	Output	Port P6 is an 5-bit output port. At external trigger output mode, P6 $_0$ and P6 $_1$ are in common with the trigger input pin (T) and the trigger output pin (Q), respectively. The output structure is N-channel open drain.
	EPROM	Output port	Output	Connect to 0V.
P7 ₀ ∼P7 ₅	Single-chip	I/O port	1/0	Port P7 is an 6-bit I/O port and has basically the same functions as port P0 The output structure of P7 $_0$, P7 $_1$ is N-channel open drain, and the output structure of P7 $_2$ ~P7 $_5$ is CMOS output
	EPROM	Input port	Input	Connect to 0V
AV _{SS}	Single-chip	Analog voltage input	Input	GND pin for the A-D and D-A converters.
	EPROM	Analog voltage input	Input	Connect to 0V
V _{REF}	Single-chip	Reference voltage input	Input	Referrence input for A-D and D-A converters
	EPROM	Reference voltage input	Input	Connect to 0V
D-A	Single-chip	D-A output	Output	D-A converter output pin
	- EPROM	D-A output	Output	Connect to 0V
PWM	Single-chip	PWM output	Output	Pulse width modulation output pin (N channel open drain format)
	EPROM	PWM output	Output	Connect to 0V

EPROM MODE

The M37414E5-XXXFP features an EPROM mode in addition to its normal modes. When the \overline{RESET} signal level is low ("L"), the chip automatically enters the EPROM mode. Table 1 list the correspondence between pins and Figure 1 gives the pin connection in the EPROM mode. When in the EPROM mode, ports P0, P1, P2, P4 $_0$ ~P4 $_2$, and CNV $_{SS}$ are used for the PROM (equivalent to the M5L27128). When in this mode, the built-in PROM can be written to or read from using these pins in the same way as with the M5L27128. The oscillator should be connected to the X_{IN} and X_{OUT} pins, or external clock should be connected to the X_{IN} pin.

Table 1. Pin function in EPROM mode

	M37414E5-XXXFP	M5L27128
V _{cc}	V _{cc}	V _{cc}
V _{PP}	CNV _{SS} /V _{PP}	V _{PP}
V _{SS}	V _{ss}	V _{ss}
Address input	Ports P0, P1 ₀ ~P1 ₅	A ₀ ~A ₁₃
Data I/O	Port P2	$D_0 \sim D_7$
CE	P4 ₂ /CE	CE
OE	P4₁/OE	ŌĒ
PGM	P4 ₀ /PGM	PGM

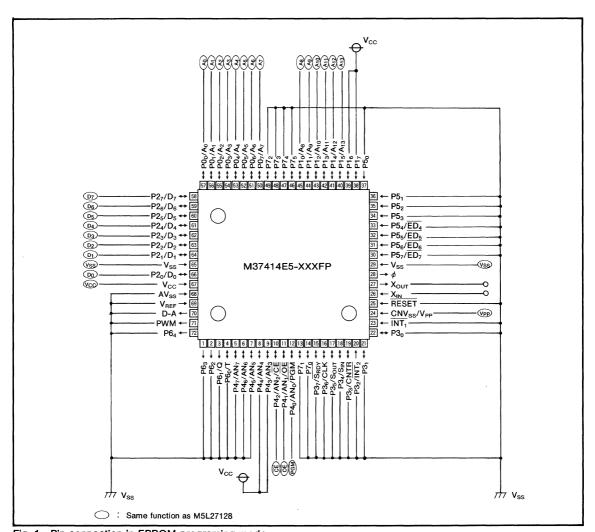
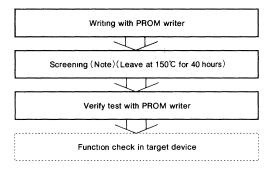


Fig. 1 Pin connection in EPROM programing mode

PROM READING AND WRITING Reading

To read the PROM, set the \overline{CE} and \overline{OE} pins to a "L" level, and the \overline{PGM} pin to a "H" level. Input the address of the data $(A_0 \sim A_{13})$ to be read and the data will be output to the I/O pins $D_0 \sim D_7$. The data I/O pins will be floating when either the \overline{CE} or \overline{OE} pins are in the "H" state.

Writing


To write to the PROM, set the $\overline{\text{CE}}$ pin to a "L" level and the $\overline{\text{OE}}$ pin to a "H" level. The CPU will enter the program mode when V_{PP} is applied to the V_{PP} pin. The address to be written to is selected with pins $A_0 \sim A_{13}$, and the data to be written is input to pins $D_0 \sim D_7$. Set the $\overline{\text{PGM}}$ pin to a "L" level to begin writing.

Notes on Writing

When using an PROM writer, the address range should be between 1800_{16} and $3FFF_{16}$. When data is written between addresses 0000_{16} and $3FFF_{16}$, fill addresses 0000_{16} to $17FF_{16}$ with 00_{16} .

NOTES ON HANDLING

- Since a high voltage (21V) is used to write data, care should be taken when turning on the PROM writer's power.
- (2) For the programmable microcomputer (shipped in blank or OTP type), Mitsubishi does not perform PROM write test and screening in the assembly process and following processes. To improve reliability after write, performing write and test according to the flow below before use is recommended.

Note: Since the screening temperature is higher than storage temperature, never expose to 150℃ exceeding 100 hours.

Table 2. I/O signal in each mode

Pin	CE (10)	ŌE(11)	PGM(12)	V _{PP} (24)	V _{CC} (67)	Data I/O (58~64, 66)
Read-out	V _{IL}	V _{IL}	V _{IH}	V _{cc}	Vcc	Output
Programming	V _{IL}	V _{IH}	Pulse(V _{IH} →V _{IL})	V _{PP}	Vcc	Input
Programming verify	V _{IL}	V _{IL}	V _{IH}	V _{PP}	Vcc	Output
Program disable	V _{IH}	X	X	V_{PP}	Vcc	Floating

Note $\ 1\ :\ V_{IL}$ and V_{IH} indicate a "L" and "H" input voltage, respectively

2: An X indicates either V_{IL} or V_{IH}

MITSUBISHI MICROCOMPUTERS **M37414E5-XXXFP**

PROM VERSION of M37414M5-XXXFP

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
V _{cc}	Supply voltage		−0.3~7	٧
Vı	Input voltage X _{IN}		−0.3~7	V
V _I	Input voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P4 ₀ ~P4 ₇ , P7 ₂ ~P7 ₅		-0.3∼V _{cc} +0.3	v
Vı	Input voltage P3 ₀ ~P3 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ , P7 ₀ , P7 ₁ , INT ₁	With respect to V _{SS}	-0.3~13	V
Vı	Input voltage CNV _{SS} , RESET	With the output transistor cut-off	-0.3~13 (Note 1)	٧
V _o	Output voltage $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $P2_0 \sim P2_7$, $P4_0 \sim P4_7$, $P7_2 \sim P7_5$, X_{OUT} , ϕ , D-A		-0.3~V _{cc} +0.3	٧
Vo	Output voltage P3 ₀ ~P3 ₇ , P6 ₀ ~P6 ₄ , P7 ₀ , P7 ₁ , PWM		-0.3~13	V
Pd	Power dissipation	T _a =25℃	300	mW
Topr	Operating temperature		−10~70	င
Tstg	Storage temperature		−40~125	င

Note 1: In PROM programming mode, CNV_{SS} is 22.0V

RECOMMENDED OPERATING CONDITIONS ($V_{cc}=5V\pm5\%$, $T_a=-10\sim70^{\circ}C$, unless otherwise noted)

0	Perometer		Limits		11-14
Symbol	Parameter	Mın	Тур	Max	Unit
V _{cc}	Supply voltage	4. 75	5	5. 25	٧
V _{ss}	Supply voltage		0		٧
V _{REF}	Reference voltage	4		Vcc	٧
V _{IH}	"H" input voltage $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $P2_0 \sim P2_7$, $\frac{P3_0 \sim P3_7}{INT_1}, \frac{P4_0 \sim P4_7}{RESET}, \frac{P5_0 \sim P5_7}{NN_1}, \frac{P8_0 \sim P7_0}{P7_0 \sim P7_5}$	0.8V _{CC}		V _{cc}	٧
V _{IL}	"L" input voltage P0 ₀ \sim P0 ₇ , P1 ₀ \sim P1 ₇ , P2 ₀ \sim P2 ₇ , P3 ₀ \sim P3 ₇ , P4 ₀ \sim P4 ₇ , P5 ₀ \sim P5 ₇ , $\overline{\text{INT}_1}$, CNV _{SS} , P6 ₀ , P7 ₀ \sim P7 ₅	0		0. 2V _{CC}	V
VIL	"L" input voltage RESET	0		0.12V _{CC}	V
VIL	"L" input voltage X _{IN}	0		0.16V _{CC}	V
l _{oL(peak)}	"L" peak output current P00 \sim P07, P10 \sim P17, P20 \sim P27, P30 \sim P37, P40 \sim P47, P70 \sim P75 (Note 2)			10	mA
l _{oL(peak)}	"L" peak output current P6 ₀ ~P6 ₃ (Note 2)			15	mA
l _{oL} (peak)	"L" peak output current PWM, P64 (Note 2)			5	mA
I _{OL(avg)}	"L" average output current P0 $_0$ ~P0 $_7$, P1 $_0$ ~P1 $_7$, P2 $_0$ ~P2 $_7$, P3 $_0$ ~P3 $_7$, P4 $_0$ ~P4 $_7$, P7 $_0$ ~P7 $_5$ (Note 1)			5	mA
loL(avg)	"L" average output current P6 ₀ ~P6 ₃ (Note 1)			7	mA
I _{OL} (avg)	"L" average output current PWM, P64 (Note 1)			2.5	mA
I _{он(peak)}	"H" peak output current P00 \sim P07, P10 \sim P17, P20 \sim P27, P72 \sim P76 (Note 2)			-10	mA
I _{он(avg)}	"H" average output current P0 $_0$ \sim P0 $_7$, P1 $_0$ \sim P1 $_7$, P2 $_0$ \sim P2 $_7$, P7 $_2$ \sim P7 $_5$ (Note 1)			-5	mA
f(X _{IN})	Internal clock oscillating frequency			4	MHz

Note 1: The average output currents I_{OL(avg)} and I_{OH(avg)} are the average value of a period of 100ms 2: Do not allow the combined low- level output current of ports P0, P1, P2, P3, P4, P6, P7 and PWM to exceed 80mA.

Do not allow the combined high-level output current of port P0, P1, P2 $P7_2 \sim P7_5$ to exceed 50mA

3: "H" input voltage of ports' P3, P5, P6₀, P7₀, P7₁ and INT₁ is available up to +12V

$\textbf{ELECTRICAL} \quad \textbf{CHARACTERISTICS} \; (V_{\text{CC}} = 5\text{V}, V_{\text{SS}} = 0\text{V}, T_{\textbf{a}} = 25^{\circ}\text{C}, f(X_{\text{IN}}) = 4\text{MHz}, \text{ unless otherwise noted})$

Symbol	Parameter	Test cond	litiono		Limits		Unit
Symbol	Farameter	Test cond	iitioris	Mın.	Тур	Мах.	Unit
V _{OH}	"H" output voltage $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $P2_0 \sim P2_7$, $P7_2 \sim P7_5$	I _{OH} =-10mA		3			V
V _{OH}	"H" output voltage ϕ	I _{OH} =−2.5mA		3			V,
V _{OL}	"L" output voltage $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $P2_0 \sim P2_7$, $P3_0 \sim P3_7$, $P4_0 \sim P4_7$, $P6_0 \sim P6_3$, $P7_0 \sim P7_5$	I _{OL} =10mA				2	٧
VoL	"L" output voltage ϕ , PWM, P6 ₄	I _{OL} =5mA				2	٧
V _{T+} -V _{T-}	Hysteresis INT ₁			0.3		1	٧
V _{T+} -V _{T-}	Hysteresis P3 ₆	When used as CLK inpu	it	0.3	0.8		٧
$V_{T+}-V_{T-}$	Hysteresis P3 ₂	When used as INT2 inpu	it	0.3		1	٧
$V_{T+}-V_{T-}$	Hysteresis P3 ₃	When used as CNTR inp	out	0.5	1		V
V _{T+} -V _{T-}	Hysteresis P6 ₀	When used as T input	7	0.5	1		٧
$V_{T+} - V_{T-}$	Hysteresis RESET				0.5	0.7	V
$V_{T+}-V_{T-}$	Hysteresis X _{IN}			0.1		0.5	V
I _{IL}	"L" input current P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₇ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ , P7 ₀ ~P7 ₅ , PWM	V _i =0V				-5	μА
I _{IL}	"L" input current INT ₁ , RESET, X _{IN}	V _i =0V				-5	μΑ
I _{IH}	"H" input current P3 ₀ ~P3 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ , P7 ₀ , P7 ₁ , PWM	V _i =12V				12	μA
l _{iH}	"H" input current INT, RESET, X _{IN} , P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P4 ₀ ~P4 ₇ , P7 ₂ ~P7 ₅	V _I =5V				5	μΑ
V _{RAM}	RAM retention voltage	At clock stop		2			V
	·	ø, X _{OUT} , and D-A pins	f(X _{IN})=4MHz Square wave		3	6	mA
Icc	Supply current	opened, other pins at V _{SS} , and A-D converter in the finished condi-	At clock stop Ta=25℃			1	^
		tion.	At clock stop Ta=75℃		1 0.8	μΑ	

$\textbf{A-D} \quad \textbf{CONVERTER} \quad \textbf{CHARACTERISTICS} \; (v_{\text{oc}} = 5\text{y}, \, v_{\text{ss}} = 4\text{V}_{\text{ss}} = 0\text{V}, \, T_{\text{d}} = 25\text{°C}, \, f(X_{\text{IN}}) = 4\text{MHz}, \, \text{unless otherwise noted})$

Symbol	Parameter	Test anditions	Limits			114
Зуппон	Farameter	Test conditions	Mın	Тур.	Max	Unit
_	Resolution	V _{REF} =V _{CC}			8	Bits
_	Absolute accuracy	V _{REF} =V _{CC}			±3	LSB
RLADDER	Ladder resistance value	V _{REF} =V _{CC}	2	,	10	kΩ
t _{CONV}	Conversion time				50	μs
V _{REF}	Reference input voltage		2		V _{CC}	٧
VIA	Analog input voltage		0		V _{REF}	V

D-A CONVERTER CHARACTERISTICS (V_{CC}=5V, V_{SS}=AV_{SS}=0V, T_a=25°C, f(X_{IN})=4MHz, unless otherwise noted)

Symbol	Parameter	Test conditions		Limits		Linut
Symbol	Farameter	Test conditions	Min.	Тур	Max	Unit
	Resolution	V _{REF} =V _{CC}			5	Bits
	Error in full scale range	V _{REF} =V _{CC}			±1	%
tsu	Setup time	V _{REF} =V _{CC}			3	μs
Ro	Output resistance	V _{REF} =V _{CC}			3	kΩ
V_{REF}	Reference voltage		4		Vcc	V

TIMING REQUIREMENTS

Single-chip mode ($V_{cc}=5V\pm5\%$, $V_{ss}=0V$, $T_a=25$ °C, $f(X_{IN})=4MHz$, unless otherwise noted)

O. mahad	Parameter	Test conditions		Limits		
Symbol	Parameter	rest conditions	Min	Тур	Max.	Unit
t _{SU(POD-#)}	Port P0 input setup time		270			ns
t _{SU(P1D} ø)	Port P1 input setup time		270			ns
t _{SU(P2D-ø)}	Port P2 input setup time		270			ns
t _{Su(P3D-#)}	Port P3 input setup time		270			ns
t _{SU(P4Dø)}	Port P4 input setup time		270			ns
t _{SU(P5D-ø)}	Port P5 input setup time		270			ns
t _{su(P7D-ø)}	Port P7 input setup time		270			ns
th(ø-POD)	Port P0 input hold time		20			ns
th(#-P1D)	Port P1 input hold time		20			ns
th(ø-P2D)	Port P2 input hold time		20			ns
th(ø-P3D)	Port P3 input hold time		20			ns
th(#P4D)	Port P4 input hold time		20			ns
th(Port P5 input hold time		20			ns
th(ø—P7D)	Port P7 input hold time		20			ns
t _C	External clock input cycle time		250			ns
tw	External clock input pulse width		75			ns
tr	External clock rising edge time				25	ns
tf	External clock falling edge time				25	ns

Eva-chip mode ($V_{cc}=5V\pm5\%$, $V_{ss}=0V$, $T_a=25^{\circ}C$, $f(X_{IN})=4MHz$, unless otherwise noted)

		T		Limits			
Symbol	Parameter	Test conditions	Mın	Тур	Max	Unit	
t _{SU(POD-ø)}	Port P0 input setup time		270			ns	
tsu(P1D-ø)	Port P1 input setup time		270			ns	
tsu(P2D-ø)	Port P2 input setup time		270			ns	
th(ø-POD)	Port P0 input hold time		20			ns	
th(P1D)	Port P1 input hold time		20			ns	
th(Port P2 input hold time		20	-		ns	

Memory expanding mode and microprocessor mode

 $(V_{CC}=5V\pm5\%, V_{SS}=0V, T_a=25^{\circ}C, f(X_{IN})=4MHz, unless otherwise noted)$

Symbol	Parameter	Test conditions		Unit		
			Min	Тур	Max	Unit
t _{SU(P2D-ø)}	Port P2 input setup time		270			ns
th(* Pap)	Port P2 input hold time		30			ns

SWITCHING CHARACTERISTICS

Single-chip mode ($V_{cc}=5V\pm5\%$, $V_{ss}=0V$, $T_a=25^{\circ}C$, $f(X_{IN})=4MHz$, unless otherwise noted)

Symbol	Parameter	Test conditions		Unit		
Symbol	Parameter	rest conditions	Min	Тур	Max	Offic
td(ø-PoQ)	Port P0 data output delay time				230	ns
t _{d(ø—P1Q)}	Port P1 data output delay time	Fig 3			230	ns
td(ø-P2Q)	Port P2 data output delay time				230	ns
t _{d(∲P3Q)}	Port P3 data output delay time	Fig. 2			230	ns
t _{d(∲P4Q)}	Port P4 data output delay time				230	ns
t _{d(∲P6Q)}	Port P6 data output delay time				230	ns
t _{d(ø—P7Q)}	Port P7 ₀ , P7 ₁ data output delay time				230	ns
	Port P7₂~P7₅ data output delay time	Fig 3			230	ns

Eva-chip mode ($V_{cc}=5V\pm5\%$, $V_{ss}=0V$, $T_a=25^{\circ}C$, $f(X_{IN})=4MHz$, unless otherwise noted)

	Parameter	T	Limits			11-4
Symbol		Test conditions	Min	Тур	Max	Unit
td(ø-POA)	Port P0 address output delay time				250	ns
td(ø-POAF)	Port P0 address output delay time				250	ns
td(≠-P0Q)	Port P0 data output delay time	Fig 3			200	ns
td(ø-POQF)	Port P0 data output delay time			1	200	ns
td(ø-P1A)	Port P1 address output delay time				250	ns
td(ø-PIAF)	Port P1 address output delay time				250	ns
t _{d(\$-P1Q)}	Port P1 data output delay time				200	ns
td(ø—P1QF)	Port P1 data output delay time				200	ns
t _{d(ø-P2Q)}	Port P2 data output delay time				300	ns
td(øP2QF)	Port P2 data output delay time				300	ns
t _{d(≠-R/W)}	R/W signal output delay time				250	ns
t _{d(≠-R/WF)}	R/W signal output delay time				250	ns
t _{d(ø—P30} Q)	Port P3 ₀ data output delay time				200	ns
td(ø-P30QF)	Port P3 ₀ data output delay time	F 0			200	ns
td(ø-sync)	SYNC signal output delay time	Fig 2			250	ns
td(ø-synce)	SYNC signal output delay time				250	ns
td(ø—P3 ₁ Q)	Port P3 ₁ data output delay time				200	ns
t _{d(∲—P3₁QF)}	Port P3 ₁ data output delay time				200	ns

Memory expanding mode and microprocessor mode

($V_{CC}=5V\pm5\%$, $V_{SS}=0V$, $T_{a}=25^{\circ}C$, $f(X_{IN})=4MHz$, unless otherwise noted)

0	Parameter	T1 d-1	Limits			11-4
Symbol		Test conditions	Min	Тур	Max.	Unit
t _{d(≠POA)}	Port P0 address output delay time	Fig 3			250	ns
t _{d(∲—P1A)}	Port P1 address output delay time				250	ns
t _{d(ø-P2Q)}	Port P2 data output delay time				300	ns
t _{d(∲—P2QF)}	Port P2 data output delay time				300	ns
t _{d(≠-R/W)}	R/W signal output delay time	Fig 2			250	ns
td(#_sync)	SYNC signal output delay time				250	ns

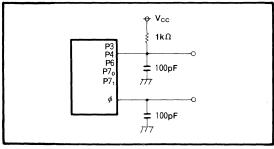


Fig. 2 Ports P3, P4, P6, P7₀, P7₁ test circuit

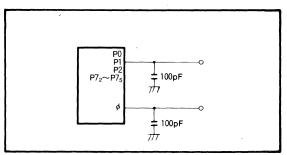
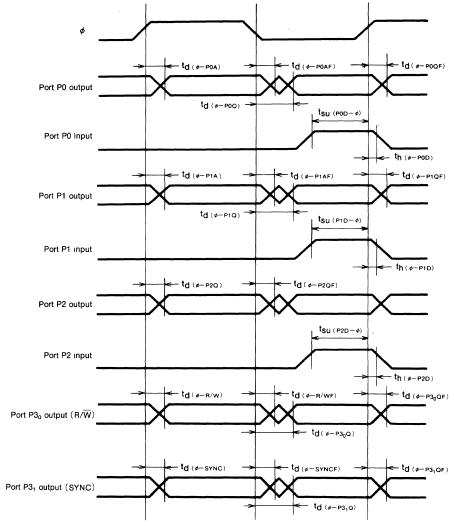



Fig. 3 Port P0, P1, P2, $P7_2 \sim P7_5$ test circuit

TIMING DIAGRAMS In single-chip mode td(ø-POQ) Port P0 output $t_{SU(P0D-\phi)}$ Port P0 input ←th(*∳*−P0D) td(ø-P1Q) Port P1 output Port P1 input ←t_{h(≠−P1D)} td(#-P2Q) Port P2 output $t_{SU(P2D-\phi)}$ Port P2 input td(ø-P3Q) Port P3 output tsu(P3D-ø) Port P3 input th(ø-P3D) td(#-P4Q) Port P4 output Port P4 input -th(ø-P4D) Port P5 input - t_{h(∳-P5D)} td(ø-P6Q) Port P6 output Port P7 output t_{SU(P7D}-ø) Port P7 input - th(ø—P7D) t_{C} $f(X_{IN})$

In eva-chip mode

In memory expanding mode and microprocessor mode - td (ø--poa) Port P0 output . td (≠--P1A) Port P1 output _ td (#-P2QF) - **td** (ø---P2Q) floating Port P2 output tsu (P2D-ø Port P2 input th (#-P2D) td (ø-R/w) Port P3₀ output (R/W) td (ø-sync) Port P3₁ output (SYNC)

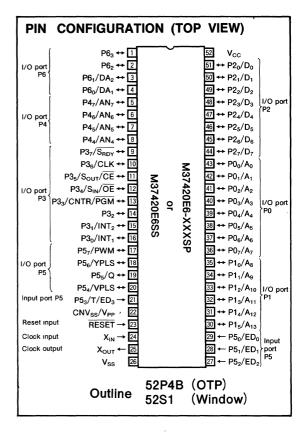
M37420E6-XXXSP M37420E6SS

PROM VERSION of M37420M6-XXXSP

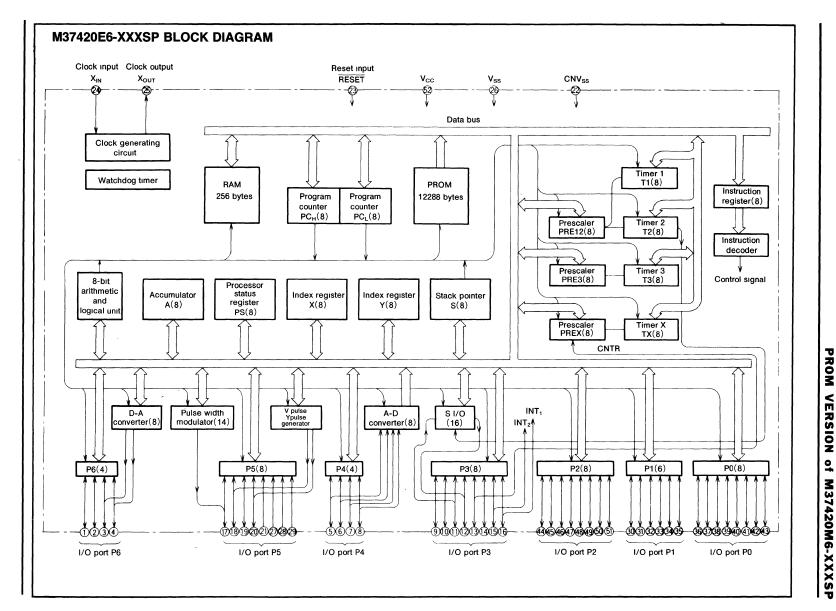
DESCRIPTION

The M37420E6-XXXSP is a single-chip microcomputer designed with CMOS silicon gate technology. It is housed in a 52-pin shrink plastic molded DIP. The features of this chip are similar to those of the M37420M6-XXXSP except that this chip has a 12288 bytes PROM built in. This single-chip microcomputer is useful for home electrical appliances and consumer appliance controllers.

In addition to its simple instruction sets, the PROM, RAM, and I/O addresses are placed on the same memory map to enable easy programming. Since general purpose PROM writers can be used for the built-in PROM, this chip is suitable for small quantity production runs.


The M37420E6SS is the window type.

FEATURES


	ATOTILO
	Number of basic instructions 69
•	Memory size ROM ······12288 bytes
	RAM 256 bytes
•	Instruction execution time
	1µs (minimum instructions at 8MHz frequency)
•	Single power supply 5V±5%
•	Power dissipation
	normal operation mode (at 8MHz frequency) ···· 30mW
	Subroutine nesting96 levels (Max.)
•	Interrupt7 types, 5 vectors
•	8-bit timer 4
•	Programmable I/O ports
	(Ports P0, P1, P2, P3, P4, P5, P6)42
•	Input port (Port P5)4
•	Serial I/O (8/16-bit)1
•	A-D converter (8-bit)
•	D-A converter (8-bit)2
•	14-bit PWM function
•	Watchdog timer
•	PROM (equivalent to the M5L27128)
	program voltage ······ 21V

APPLICATION

Office automation equipment VCR, Tuner, Audio-visual equipment

M37420E6-XXXSP M37420E6SS

PROM VERSION of M37420M6-XXXSP

FUNCTIONS OF M37420E6-XXXSP

Parameter			Functions			
Number of basic instructions			69			
Instruction execution time			1μs (minimum instructions, at 8MHz frequency)			
Clock frequency .			8MHz			
Memory size	PROM		12288 bytes (Note 1) .			
Memory size	RAM		256 bytes			
Innut/Outnut nate	P0, P1, P2, P3, P4, P5 ₄ ~P5 ₇ , P6	1/0	8-bit×3, 6-bit×1, 4-bit×3			
Input/Output ports	P5 ₀ ~P5 ₃	Input	4-bit×1			
Serial I/O			8-bit×1 or 16-bit×1			
Timers			8-bit prescaler×3+8-bit timer×4			
A-D conversion			8-bit×1 (4 channels)			
D-A conversion	10 10 10 10 10 10 10 10 10 10 10 10 10 1		8-bit×2			
Pulse width modulator			14-bit×1			
Watchdog timer			15-bit×1			
Subroutine nesting			96 levels (max)			
Interrupt			Two external interrupts, three internal timer interrupts (or timerX2, S I/OX			
Clock generating circuit			built-in (ceramic or quartz crystal oscillator)			
Supply voltage			5V±5%			
Power dissipation			30mW (at 8MHz frequency)			
Input/Output characteristics	Input/Output voltage		12V (Ports P0, P1, P3)			
Operating temperature range			-10~70°C			
Device structure			CMOS silicon gate process			
Deslace	M37420E6-XXXSP		52-pin shrink plastic molded DIP			
Package	M37420E6SS		52-pin shrink ceramic DIP			

Note 1: The PROM programing voltage is 21V (equivalent to the M5L27128)

MITSUBISHI MICROCOMPUTERS

M37420E6-XXXSP M37420E6SS

PROM VERSION of M37420M6-XXXSP

PIN DESCRIPTION

Pın	Mode	Name	Input/ Output	Functions
V _{CC} , V _{SS}	Single-chip /EPROM	Power supply		Supply 5V \pm 5% to V $_{\rm CC}$ and 0V to V $_{\rm SS}$ This voltage can be used as reference voltage for A-D or D-A converter
CNV _{ss}	Single-chip	CNV _{ss} input	Input	Connect to 0V
/V _{PP} EPROM		V _{PP} input		Connect to V _{PP} when programming or verifing
RESET	RESET Single-chip RESET input		Input	To reset, keep this input terminal low for more than $2\mu s$ (min) under normal V_{Ci} conditions If more time is needed for the crystal oscillator to stabilize, this "L" condition should be maintained for the required time
	EPROM	RESET input		Connect to V _{SS}
X _{IN}	Single-chip	Clock input	Input	Connect a ceramic or a quartz crystal oscillator between X _{IN} and X _{OUT} for clock
X _{OUT}	/EPROM	Clock output	Output	oscillation If an external clock input is used, connect the clock input to the X_{IN} pil and open the X_{OUT} pin.
P0 ₀ ~P0 ₇	Single-chip	I/O port P0	1/0	Port P0 is an 8-bit I/O port with direction registers which can program each bit as input or output. It is set to input mode at reset. The output format is N-ch open drain
	EPROM	Address input A ₀ ~A ₇	Input	P0 works as the lower 8 bit address input (A ₀ ~A ₇)
P1 ₀ ~P1 ₅	Single-chip	I/O port P1	1/0	Port P1 is an 6-bit I/O port which has the same function as port P0
	EPROM	Address input A ₈ ~A ₁₃	Input	P1 ₀ ~P1 ₅ works as the higher 6 bit address inputs (A ₈ ~A ₁₃)
P2 ₀ ~P2 ₇	Single-chip	I/O port P2	1/0	Port P2 is an 8-bit I/O port which has the same function as port P0. The output format is CMOS
	EPROM	Data input/output D ₀ ~D ₇	1/0	Port 2 works as an 8 bit data bus (D ₀ ~D ₇)
P3 ₀ ~P3 ₇	Single-chip	I/O port P3	I/O	Port P3 is an 8-bit I/O port and has basically the same function as port P0 Wher serial I/O is used, P3 ₇ , P3 ₆ , P3 ₅ , and P3 ₄ work as $\overline{S_{RDY}}$, CLK, S_{OUT} , and S_{IN} pins, respectively Also P3 ₃ , P3 ₁ and P3 ₀ work as CNTR pin, INT ₂ and INT ₁ respectively The output format is N-ch open drain
	EPROM	Input Port P3	Input	P3 ₅ , P3 ₄ and P3 ₃ work as $\overline{\text{CE}}$, $\overline{\text{OE}}$ and $\overline{\text{PGM}}$ inputs respectively. Connect P3 ₀ ~P3 ₂ to 0V and P3 ₇ and P3 ₆ to V _{CC}
P4 ₄ ~P4 ₇	Single-chip	I/O port P4	1/0	Port P4 is an 4-bit I/O port which has the same function as port P0 Ports P4 ₇ ~P4, are common with analog inputs AN ₇ ~AN ₄ The output format is N-ch-open drain
	EPROM	Select mode	Input	Connect to 0V
P5 ₀ ~P5 ₃	Single-chip	Input port P5	Input	P5 ₀ ~P5 ₃ are input port. These port can be used as edge-sence input. P5 ₀ ~P5 ₂ detects rising edge, and P5 ₃ detects both rising and falling edge. P5 ₃ is also common with external trigger output and V pulse, Y pulse generator trigger input.
	EPROM		Input	Connect to 0V
P5 ₄ ~P5 ₇	Single-chip	I/O port P5	1/0	P5 ₄ ~P5 ₇ is I/O port and has basically the same function as port P0 P5 ₇ is common with PWM. The output format is CMOS output
Ī	EPROM		Input	Connect to 0V
P6 ₀ ~P6 ₃	Single-chip	I/O port P6	1/0	Port P6 is 4-bit I/O port and has basically the same function as port P0 P6 ₀ and P6 are common with DA ₁ and DA ₂ respectively The output format is CMOS output
	EPROM		Input	Connect to 0V

M37420E6-XXXSP M37420E6SS

PROM VERSION of M37420M6-XXXSP

EPROM MODE

The M37420E6-XXXSP or M37420E6SS features an EPROM mode in addition to its normal modes. When the \overline{RESET} signal level is low ("L"), the chip automatically enters the EPROM mode. Table 1 list the correspondence between pins and Figure 1 and Figure 2 give the pin connections in the EPROM mode. When in the EPROM mode, ports P0, P1, P2, P3 $_3$ \sim P3 $_5$, and CNV $_{SS}$ are used for the PROM (equivalent to the M5L27128) . When in this mode, the built-in PROM can be written to or read from using these pins in the same way as with the M5L27128. The oscillator should be connected to the X $_{IN}$ and X $_{OUT}$ pins, or external clock should be connected to the X $_{IN}$ pin.

Table 1. Pin function in EPROM mode

	M37420E6-XXXSP, M37420E6SS	M5L27128
V _{cc}	V _{cc}	V _{cc}
V _{PP}	CNV _{SS} /V _{PP}	V_{PP}
V _{SS}	V _{ss}	V _{ss}
Address input	Ports P0, P1	A ₀ ~A ₁₃
Data I/O	Port P2	D ₀ ~D ₇
CE	P3₅/CE	CE
OE	P3₄/OE	OE
PGM	P3 ₃ /CNTR/PGM	PGM

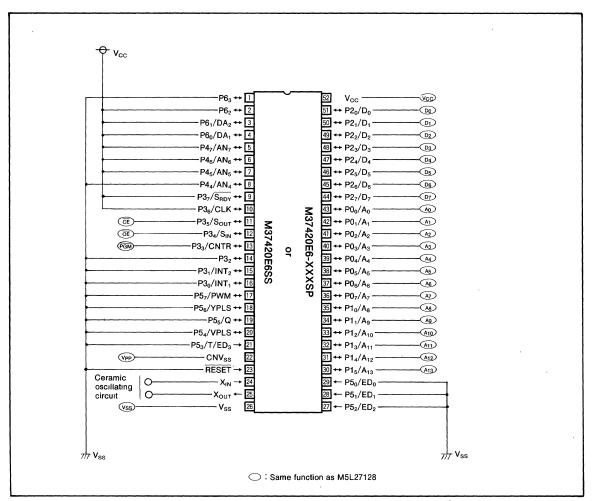


Fig. 1 Pin connection in EPROM mode

M37420E6-XXXSP M37420E6SS

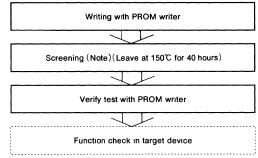
PROM VERSION of M37420M6-XXXSP

PROM READING, WRITING AND ERASING Reading

To read the PROM, set the \overline{CE} and \overline{OE} pins to a "L" level, and the \overline{PGM} pin to a "H" level. Input the address of the data $(A_0 \sim A_{13})$ to be read and the data will be output to the I/O pins $D_0 \sim D_7$. The data I/O pins will be floating when either the \overline{CE} or \overline{OE} pins are in the "H" state.

Writing

To write to the PROM, set the $\overline{\text{CE}}$ pin to a "L" level and the $\overline{\text{OE}}$ pin to a "H" level. The CPU will enter the program mode when V_{PP} is applied to the V_{PP} pin. The address to be written to is selected with pins $A_0 \sim A_{13}$, and the data to be written is input to pins $D_0 \sim D_7$. Set the $\overline{\text{PGM}}$ pin to a "L" level to begin writing.


Erasing

Data can only be erased on the M37420E6SS ceramic package, which includes a window. To erase data on this chip, use an ultraviolet light source with a 2537 Angstrom wave length. The minimum radiation power necessary for erasing is 15W·s/cm².

NOTES ON HANDLING

(1) Sunlight and fluorescent light contain wave lengths capable of erasing data. For ceramic package types, cover the transparent window with a seal (provided) when this chip is in use. However, this seal must not contact the lead pins.

- (2) Before erasing, the glass should be cleaned and stains such as finger prints should be removed thoroughly. If these stains are not removed, complete erasure of the data could be prevented.
- (3) Since a high voltage (21V) is used to write data, care should be taken when turning on the PROM writer's power.
- (4) For the programmable microcomputer (shipped in blank or OTP type), Mitsubishi does not perform PROM write test and screening in the assembly process and following process. To improve reliability after write, performing write and test according to the flow below before use is recommended.

Note : Since the screening temperature is higher than storage temperature, never expose to 150℃ exceeding 100 hours.

Table 2. I/O signal in each mode

Pin	CE(11)	ŌE(12)	PGM(13)	V _{PP} (22)	V _{CC} (52)	Data I/O (44~51)
Read-out	V _{IL}	V _{IL}	V _{IH}	V _{cc}	V _{cc}	Output
Programming	V _{IL}	V _{IH}	Pulse(V _{IH} →V _{IL})	V _{PP}	V _{cc}	Input
Programming verify	V _{IL}	V _{IL}	V _{IH}	V _{PP}	V _{cc}	Output
Program disable	V _{IH}	X	X	V _{PP}	V _{CC}	Floating

Note 1 : V_{IL} and V_{IH} indicate a "L" and "H" input voltage, respectively

2 : An X indicates either V_{IL} or V_{IH}

MITSUBISHI MICROCOMPUTERS

M37420E6-XXXSP M37420E6SS

PROM VERSION of M37420M6-XXXSP

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		-0.3~7	V
Vı	Input voltage X _{IN} , RESET		−0.3~7	٧
Vı	Input voltage P2 ₀ ~P2 ₇ , P4 ₄ ~P4 ₇ , P5 ₄ ~P5 ₇ , P6 ₀ ~P6 ₃		-0.3~V _{cc} +0.3	V
Vi	Input voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₅ , P3 ₀ ~P3 ₇ , P5 ₀ ~P5 ₇	With respect to V _{SS}	-0.3~13	٧
Vi	Input voltage CNV _{SS}	With the output transistor cut-off	-0.3~13 (Note 1)	٧
Vo	Output voltage P2 ₀ ~P2 ₇ , P4 ₀ ~P4 ₇ , P5 ₄ ~P5 ₇ , P6 ₀ ~P6 ₃		-0.3~V _{cc} +0.3	٧
Vo	Output voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₅ , P3 ₀ ~P3 ₇		-0.3~13	٧
Pd	Power dissipation	T _a =25℃	1000	mW
Topr	Operating temperature		-10~70	°C
Tstg	Storage temperature		-40~125	°C

Note 1: In EPROM programming mode, CNV_{SS} is 22. 0V

RECOMMENDED OPERATING CONDITIONS ($V_{cc}=5V\pm5\%$, $T_a=-10\sim70^{\circ}C$, unless otherwise noted)

0	Parameter		Limits			
Symbol	Parameter	Min	Тур	Max	Unit	
V _{cc}	Supply voltage	4. 75	5	5. 25	V	
Vss	Supply voltage		0		V	
V _{IH}	"H" input voltage $P0_0 \sim P0_7$, $P1_0 \sim P1_5$, $P2_0 \sim P2_7$, $P3_0 \sim P3_7$, $P4_4 \sim P4_7$, $P5_0 \sim P5_7$, $P6_0 \sim P6_3$, \overline{RESET} , X_{IN}	0.8V _{CC}	-	V _{cc}	V	
V _{IL}	"L" input voltage $P0_0 \sim P0_7$, $P1_0 \sim P1_5$, $P2_0 \sim P2_7$, $P3_0 \sim P3_7$, $P4_0 \sim P4_7$, $P5_0 \sim P5_7$, $P6_0 \sim P6_3$, CNV_{SS}	0		0.2V _{CC}	V	
V _{IL}	"L" input voltage RESET	0		0.12V _{CC}	V	
V _{IL}	"L" input voltage X _{IN}	0		0.16V _{CC}	٧	
l _{oL(peak)}	"L" peak output current $P0_0 \sim P0_7$, $P1_0 \sim P1_5$, $P2_0 \sim P2_7$, $P3_0 \sim P3_7$, $P4_0 \sim P4_7$ (Note 2)			10	mA	
I _{OL} (peak)	"L" peak output current P6 ₀ ~P6 ₃ (Note 2)			10	mA	
loc(avg)	"L" average output current $P0_0 \sim P0_7$, $P1_0 \sim P1_5$, $P2_0 \sim P2_7$, $P3_0 \sim P3_7$, $P4_4 \sim P4_7$ (Note 1)			5	mA	
I _{OL} (avg)	"L" average output current P6 ₀ ~P6 ₃ (Note 1)			5	mA	
I _{он(peak)}	"H" peak output current $P2_0 \sim P2_7$, $P5_4 \sim P5_7$, $P6_0 \sim P6_3$ (Note 2)			-10	mA	
I _{он(avg)}	"H" average output current P2 ₀ ~P2 ₇ , P5 ₄ ~P5 ₇ , P6 ₀ ~P6 ₃ (Note 1)			-5	mA	
f(X _{IN})	Internal clock oscillating frequency			8	MHz	

Do not allow the combined high-level output current of port P2, P5 and P6 to exceed 50mA

Note 1: The average output currents I_{OL(avg)} and I_{OH(avg)} are the average value of a period of 100ms.
2: Do not allow the combined low- level output current of ports P0, P1, P2, P3, P4 and P6 to exceed 80mA

M37420E6-XXXSP M37420E6SS

PROM VERSION of M37420M6-XXXSP

ELECTRICAL CHARACTERISTICS ($V_{cc}=5V$, $V_{ss}=0V$, $T_a=25^{\circ}C$, $f(X_{IN})=8MHz$, unless otherwise noted)

Symbol	Parameter	Took oon ditte	Test conditions		Limits		
Symbol	Parameter	rest condition			Тур	Max	Unit
V _{OH}	"H" output voltage P20~P27, P54~P57, P60~P63	I _{OH} =-10mA		3			V
V _{OL}	"L" output voltage $P0_0 \sim P0_7$, $P1_0 \sim P1_5$, $P2_0 \sim P2_7$, $P3_0 \sim P3_7$, $P4_0 \sim P4_7$, $P5_4 \sim P5_7$, $P6_0 \sim P6_3$	I _{OL} =10mA				2	V
$V_{T+}-V_{T-}$	Hysteresis P3 ₀ , P3 ₁	When used as INT input		0.3		1	٧
$V_{T+}-V_{T-}$	Hysteresis P3 ₆	When used as CLK input		0.3	0.8		٧
$V_{T+}-V_{T-}$	Hysteresis P3 ₃	When used as CNTR input		0.5	1		٧
$V_{T+}-V_{T-}$	Hysteresis P5 ₃	When used as T input		0.5	1		V
$V_{T+}-V_{T-}$	Hysteresis RESET				0.5	0.7	٧
$V_{T+}-V_{T-}$	Hysteresis X _{IN}			0.1		0.5	٧
I _{IL}	"L" input current $P0_0 \sim P0_7$, $P1_0 \sim P1_5$, $P2_0 \sim P2_7$, $P3_0 \sim P3_7$, $P4_0 \sim P4_7$, $P5_0 \sim P5_7$, $P6_0 \sim P6_3$	v _i =0v				-5	μΑ
I _{IL}	"L" input current RESET, XIN	V _I =0V				-5	μА
I _{iH}	"H" input current $P0_0 \sim P0_7$, $P1_0 \sim P1_5$, $P3_0 \sim P3_7$, $P5_0 \sim P5_3$	V ₁ =12V				12	μА
l _{IH}	"H" input current INT ₁ , RESET, X _{IN} , P2 ₀ ~P2 ₇ , P4 ₄ ~P4 ₇ , P5 ₄ ~P5 ₇ , P6 ₀ ~P6 ₃	V ₁ =5V				5	μА
V _{RAM}	RAM retention voltage	At clock stop		2			V
Icc	Supply current	V _{ee} , and A-D converter	(X _{IN})=8MHz Square wave		6	15	mA

$\textbf{A-D} \quad \textbf{CONVERTER} \quad \textbf{CHARACTERISTICS} \; (v_{cc} = 5\text{V}, \, V_{SS} = 4\text{V}_{SS} = 0\text{V}, \, T_{a} = 25\text{°C}, \, f(X_{IN}) = 8\text{MHz}, \, unless \; otherwise \; noted)$

Symbol	B	Test conditions Lim		Limits		Unit
	Parameter	lest conditions	Min	Тур	Max.	Unit
_	Resolution	V _{REF} =V _{CC}			8	Bits
	Absolute accuracy	V _{REF} =V _{CC}			.±3	LSB
RLADDER	Ladder resistance value	V _{REF} =V _{CC}	2		10	kΩ
t _{CONV}	Conversion time				25	μs
VIA	Analog input voltage		0		V _{CC}	V

$\textbf{D-A} \quad \textbf{CONVERTER} \quad \textbf{CHARACTERISTICS} \; (v_{cc} = 5v, v_{ss} = 4v_{ss} = 0v, \tau_{a} = 25 ^{\circ}\text{C}, \; f(x_{in}) = 8 \text{MHz}, \; \text{unless otherwise noted}) \\$

Symbol			Limits		Unit	
	Parameter	Test conditions	Mın	Тур	Max	Onic
_	Resolution	V _{REF} =V _{CC}			8	Bits
	Error in full scale range	V _{REF} =V _{CC}			±2	%
t _{su}	Setup time	V _{REF} =V _{CC}			3	μs
Ro	Output resistance	V _{REF} =V _{CC}	1	2	4	kΩ

M37424E8-XXXSP M37524E4-XXXSP

PROM VERSION of M37424M8-XXXSP.M37524M4-XXXSP

DESCRIPTION

The M37424E8-XXXSP, M37524E4-XXXSP are single-chip microcomputers designed with CMOS silicon gate technology. They are housed in a 64-pin shrink plastic molded DIP. The features of these chips are similar to those of the M37424M8-XXXSP, M37524M4-XXXSP except that these chips have a 16384 bytes PROM built in. These single-chip microcomputers are useful for home electrical appliances and consumer appliance controllers.

In addition to its simple instruction sets, the PROM, RAM, and I/O addresses are placed on the same memory map to enable easy programming. Since general purpose PROM writers can be used for the built-in PROM, these chips are suitable for small quantity production runs.

The differences between the M37424E8-XXXSP and the M37524E4-XXXSP are noted below. The following explanations apply to the M37424E8-XXXSP.

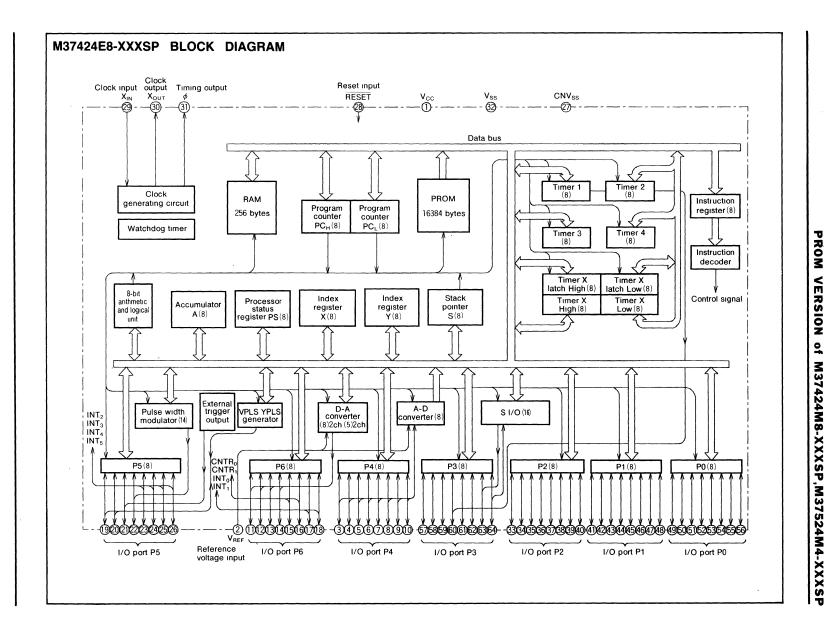
Specification variations for other chips are noted accordingly.

Type name	Port P1 output structure
M37424E8-XXXSP	CMOS
M37524E4-XXXSP	N-channel open drain

FEATURES

- Memory size PROM16384 bytes RAM256 bytes
- Instruction execution time
 1µs (minimum instructions, at 4MHz frequency)
- Single power supply 5V±10%
- Power dissipation normal operation mode (at 4MHz frequency)······30mW
 Subroutine nesting ················· 96 levels (Max.)

- Serial I/O (8-bit or 16-bit)
 PWM output (14-bit)
- A-D converter (8-bit resolution) ------8-channel
- D-A converter (5-bit resolution) ------2
- D-A converter (8-bit resolution) ------2
 Watchdog timer
- External trigger output (1-bit) ------1
- V pulse Y pulse generatorProgrammable I/O ports


PIN CONFIGURATION (TOP VIEW) 64 ++ P3₀/S_{IN} V_{CC} 2 63 ↔ P3₁/S_{OUT} V_{REF} 62 ↔ P3₂/CLK P47/AN7 ↔ 3 61 ↔ P3₃/S_{RDY} P4₆/AN₆ ↔ P4₅/AN₅ ↔ 60 ↔ P3₄/T_{OUT} 59 ↔ P3₅ P4₄/AN₄ ↔ 58 ↔ P3₆ P43/AN3 44 57 ↔ P3₇ P4₂/AN₂ ↔ 8 P4₁/AN₁ ++ 9 56 ↔ P0₀ P4₀/AN₀ ↔ 10 55 ↔ P0₁ P6₇/DA₄ ↔ 11 54 ↔ P0₂ 53 ↔ P0₃ P6₆/DA₃ ↔ 12 P6₅/DA₂ ↔ 13 52 ↔ P0₄ M37424E8-XXXSP or M37524E4-XXXSP 51 ↔ P0₅ P6₄/DA₁ ↔ 14 50 ↔ P0₆ P6₃/CNTR₁ ↔ 15 49 ↔ P0₇ P6₂/CNTR₀ ↔ 16 48 ↔ P1₀ P6₁/T/INT₁ ↔ 17 47 ↔ P1₁ $P6_0/INT_0 \leftrightarrow 18$ P5₇/YPLS ↔ 19 46 ↔ P1₂ P5₆/VPLS ↔ 20 45 ↔ P1₃ P5₅/Q ↔ 21 44 ↔ P1₄ P5₄/PWM ↔ 22 43 ↔ P1₅ P5₃/INT₅ ↔ 23 42 ↔ P1₆ P5₂/INT₄ ↔ 24 41 ↔ P1-P5₁/INT₃ ++ 25 40 ↔ P2₀ P5₀/INT₂ ↔ 26 39 ↔ P2₁ CNVss 27 38 ↔ P2₂ RESET → 28 37 ↔ P2₃ 36 ↔ P24 $X_{IN} \rightarrow 29$ 35 ↔ P2₅ 30 $X_{OUT} \leftarrow$ 34 ↔ P2₆ 31 Outline 64P4B

APPLICATION

Office automation equipment VCR equipment

MITSUBISHI MICROCOMPUTERS

MITSUBISHI MICROCOMPUTERS

M37424E8-XXXSP M37524E4-XXXSP

PROM VERSION of M37424M8-XXXSP,M37524M4-XXXSP

FUNCTIONS OF M37424E8-XXXSP

Parameter			Functions		
Number of basic instructions			70 (68 MELPS 740 basic instructions+2)		
Instruction execution time			1μs (minimum instructions, at 4MHz frequency)		
Clock frequency			4MHz		
Memory size	PROM		16384 bytes		
	RAM		256 bytes		
Input/Output ports	P0, P1, P2, P3, P4, P5, P6	1/0	8-bit×7		
Serial I/O			8-bit or 16-bit×1		
Timers			8-bit×4, 16-bit×1		
A-D conversion			8-bit×1 (8 channels)		
D-A conversion		5-bit×2, 8-bit×2			
Pulse width modulator			14-bit×1		
Watchdog timer			15-bitX1		
Subroutine nesting			96 levels (max)		
Interrupt		16 (external 8, Internal 8)			
Clock generating circuit			Built-in (ceramic or quartz crystal oscillator)		
Supply voltage			5V±10%		
Power dissipation			30mW (at 4MHz frequency)		
Operating temperature range			−10 to 70°C		
Device structure			CMOS silicon gate		
Package			64-pin shrink plastic molded DIP		

PIN DESCRIPTION

Pin	Mode	Name .	Input/ Output	Functions
V _{CC} , V _{SS}	Single-chip /EPROM	supply voltage		Power supply inputs 5V \pm 10% to V _{CC} , and 0V to V _{SS}
CNV _{ss}	Single-chip	CNV _{SS}		This is usually connected to V _{SS}
	EPROM	V _{PP} Input	Input	Connect to V _{PP} when programming or verifing
V _{REF}	Single-chip	Reference voltage input	Input	Reference voltage input pin for A-D and D-A converter
	EPROM	Reference voltage input	Input	Connected to V _{SS}
RESET	Single-chip	Reset input	Input	To enter the reset state, the reset input pin must be kept at a "L" for more than $4\mu s$ (under normal V_{CC} conditions). If more time is needed for the crystal oscillator to stabilize, this "L" condition should be maintained for the required time
	EPROM	Reset input	Input	Connected to V _{SS} .
XIN	Single-chip /EPROM	Clock input	Input	This chip has an internal clock generating circuit. To control generating frequency, an external ceramic or a quartz crystal oscillator is connected between the X _{IN} and
X _{OUT}		Clock output	Output	X_{OUT} pins. If an external clock is used, the clock source should be connected the X_{IN} pin and the X_{OUT} pin should be left open
ф	Single-chip /EPROM	Timing output	Output	This is the timing output pin
P0 ₀ -P0 ₇	Single-chip	I/O port P0	1/0	Port P0 is an 8-bit I/O port with directional register allowing each I/O bit to be individually programmed as input or output At reset, this port is set to input mode. The output structure is CMOS output.
	EPROM	Address input A ₀ -A ₇	Input	P0 works as the lower 8-bit address input

M37424E8-XXXSP M37524E4-XXXSP

PROM VERSION of M37424M8-XXXSP,M37524M4-XXXSP

PIN DESCRIPTION (Continue)

Pin	Mode	Name	Input/ Output	Functions .
P1 ₀ -P1 ₇	Single-chip	I/O port P1	1/0	Port P1 is an 8-bit I/O port and has basically the same functions as port P0. The out-put structure of M37424M8-XXXSP is CMOS output and that of M37524M4-XXXSP is N-channel open drain output.
	EPROM	Address input A ₈ -A ₁₄	Input	P1 ₀ to P1 ₆ works as the higer 8-bit address input Connect V _{CC} to P1 ₇
P2 ₀ -P2 ₇	Single-chip	I/O port P2	1/0	Port P2 is an 8-bit I/O port and has basically the same functions as port P0. The out-put structure is CMOS output
	EPROM	Data input/output D ₀ ~D ₇	1/0	P2 works as an 8-bit data bus
P3 ₀ -P3 ₇	Single-chip	I/O port P3	1/0	Port P3 is an 8-bit I/O port and has basically the same functions as port P0 When serial I/O is used, P3 ₃ , P3 ₂ , P3 ₁ , and P3 ₀ work as $\overline{S_{RDY}}$, CLK, S _{OUT} , and S _{IN} pins, respectively Also P3 ₄ works as T _{OUT} pin The output structure is N-channel open drain
	EPROM	Select mode	Input	P3 ₃ and P3 ₄ works as $\overline{\text{CE}}$ and $\overline{\text{OE}}$ inputs respectively Connect V _{CC} to P3 ₀ -P3 ₂ . Connect V _{SS} to P3 ₅ -P3 ₇
P4 ₀ -P4 ₇	Single-chip	I/O port P4	1/0	Port P4 is an 8-bit I/O port and has basically the same functions as port P0 P4 ₀ to P4 ₇ work as analog input port AN ₀ to AN ₇
	EPROM	Input port P4	Input	Connected to V _{SS}
P5 ₀ -P5 ₇	Single-chip	I/O port P5	1/0	Port P5 is an 8-bit I/O port and has basically the same functions as port P0 P5 ₇ , P5 ₈ , P5 ₅ , P5 ₄ and P5 ₃ to P5 ₀ are in common with the YPLS output, VPLS output, Q output, PWM output and interrupt input respectively
	EPROM	Input port P5	Input	Connected to V _{SS}
P6 ₀ -P6 ₇	Single-chip	I/O port P6	1/0	Port P6 is an 8-bit I/O port and has basically the same functions as port P0 P6 ₇ to P6 ₄ , P6 ₃ , P6 ₂ , and P6 ₁ , P6 ₀ are in common with the D-A output, CNTR output and interrupt input respectively
	EPROM	Input port P6	Input	Connected to V _{SS}

M37424E8-XXXSP M37524E4-XXXSP

PROM VERSION of M37424M8-XXXSP,M37524M4-XXXSP

EPROM MODE

The M37424E8-XXXSP features an EPROM mode in addition to its normal modes. When the \overline{RESET} signal level is low ("L"), the chip automatically enters the EPROM mode. Table 1 list the correspondence between pins and Figure 1 gives the pin connection in the EPROM mode. When in the EPROM mode, ports P0 to P2, P33, P34, CNVSS are used for the PROM (equivalent to the M5L27256). When in this mode, the built-in PROM can be written to or read from using these pins in the same way as with the M5L27256. The oscillator should be connected to the X_{IN} and X_{OUT} pins, or external clock should be connected to the X_{IN} pin.

Table 1. Pin function in EPROM mode

	M37424E8-XXXSP	M5L27256
Vcc	V _{cc}	V _{cc}
V _{PP}	CNVss	V _{PP}
V _{SS}	V _{ss}	V _{ss}
Address input	Ports P0, P1 ₀ -P1 ₆	A ₀ -A ₁₄
Data I/O	Port P2	D ₀ -D ₇
CE	P3 ₃	CE
ŌĒ	P3 ₄	ŌĒ

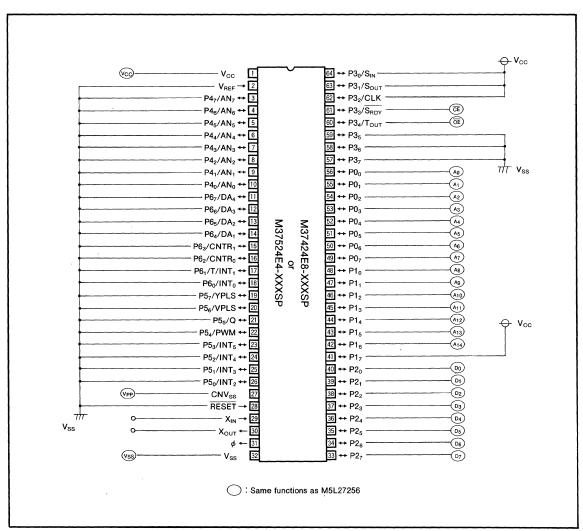


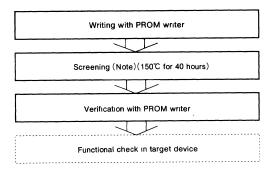
Fig.1 Pin connection in EPROM mode

PROM VERSION of M37424M8-XXXSP,M37524M4-XXXSP

PROM READING AND WRITING Reading

To read the PROM, set the \overline{CE} and \overline{OE} pins to a "L" level. Input the address of the data (A_0-A_{14}) to be read and the data will be output to the I/O pins D_0-D_7 . The data I/O pins will be floating when either the \overline{CE} or \overline{OE} pin is in the "H" state.

Writing


To write to the PROM, set the $\overline{\text{OE}}$ pin to a "H" level. The CPU will enter the program mode when V_{PP} is applied to the V_{PP} pin. The address to be written to is selected with pins A_0 - A_{14} , and the data to be written is input to pins D_0 - D_7 . Set the $\overline{\text{CE}}$ pin to a "L" level to begin writing.

Notes on Writing

When using an PROM writer, the address range should be between 4000_{16} and $7FFF_{16}$. When data is written between addresses 0000_{16} and $7FFF_{16}$, fill addresses 0000_{16} to $3FFF_{16}$ with FF_{16} .

NOTES ON HANDLING

- Since a high voltage (12.5V) is used to write data, care should be taken when turning on the PROM writer's power.
- (2) The PROM of the blank or the one-time programmable version is not tested and screened after assembly. To ensure proper operation after writing, we recommend that the procedure shown below is used to verify programming.

Note: The screening temperature is far higher than the storage temperature. Do not leave the microcomputer at 150°C for longer than 100 hours.

Table 2. I/O signal in each mode

Pin Mode	CE(61)	OE(60)	V _{PP} (27)	V _{cc} (1)	Data I/O (33 to 40)
Read-out	V _{IL}	V _{IL}	V _{cc}	V _{cc}	Output
Output disable	V _{IL}	V _{IH}	V _{cc}	V _{cc}	Floating
Programming	V _{IL}	V _{IH}	V_{PP}	V _{cc}	Input
Programming verify	V _{IH}	V _{IL}	V _{PP}	V _{cc}	Output
Program disable	V _{IH}	V _{IH}	V _{PP}	V _{cc}	Floating

Note 1 : V_{IL} and V_{IH} indicate a "L" and "H" input voltage, respectively

MELPS 740 CPU CORE BASIC FUNCTIONS

MELPS 740

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

MELPS 740 CPU CORE BASIC FUNCTIONS

Each series of the MELPS 740 Family uses the standard MELPS 740 instruction set. The functions of the MELPS 740 CPU core are explained below. The multiply and divide instructions are not available in every microcomputer, and the clock control instructions differ in each microcomputer. For details, refer to the table of machine instruction or the functional explanation of each microcomputer.

CENTRAL PROCESSING UNIT (CPU) INTERNAL REGISTERS

The central processing unit (CPU) has the six registers.

Accumulator (A)

The accumulator is an 8-bit register. Data operations such as data transfer, etc., are executed mainly through the accumulator

Index register X (X), Index register Y (Y)

Both index register X and index register Y are 8-bit registers. In the index addressing modes, the value of the OPERAND is added to the contents of register X or register Y and specifies the real address.

These index registers also have increment, decrement, comparison, and data transfer functions to allow these registers to take some of the functions of the accumulator.

When the T flag in the processor status register is set to

"1", the value contained in index register X becomes the address for the second OPERAND.

Stack pointer (S)

The stack pointer is an 8-bit register used during subroutine calls and interrupts. The stack is used to store the current address data and processor status when branching to subroutines or interrupt routines.

The lower eight bits of the stack address are determined by the contents of the stack pointer. The upper eight bits of the stack address are determined by the Stack Page Selection Bit. If the Stack Page Selection Bit is "0", then the RAM in the zero page is used as the stack area. If the Stack Page Selection Bit is "1", then RAM in page 1 is used as the stack area.

The Stack Page Selection Bit is located in the SFR area in the zero page. Note that the initial value of the Stack Page Selection Bit varies with each microcomputer type. Also some microcomputer types have no Stack Page Selection Bit and the upper eight bits of the stack address are fixed. The operations of pushing register contents onto the stack

The operations of pushing register contents onto the stack and popping them from the stack are shown in Fig. 2.

Program counter (PC)

The program counter is a 16-bit counter consisting of two 8-bit registers PC_H and PC_L . It is used to indicate the address of the next instruction to be executed.

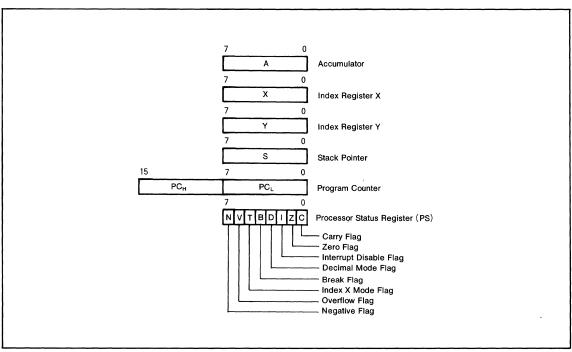


Fig. 1 MELPS 740 CPU register structure

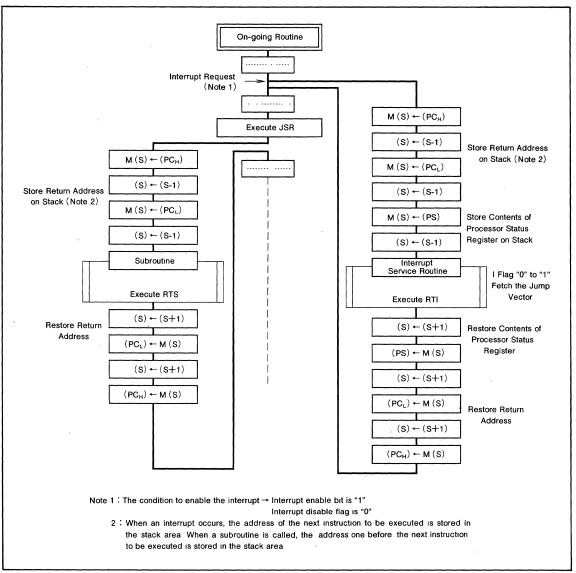


Fig. 2 Register push and pop at interrupt generation and subroutine call

Table 1. Push and pop instructions of accumulator or processor status register

	Push instruction to stack	Pop instruction from stack
Accumulator	PHA	PLA
Processor status register	PHP	PLP

Processor status register (PS)

The processor status register is an 8-bit register consisting of flags which indicate the status of the processor after an arithmetic operation. Branch operations can be performed by testing the Carry (C) flag, Zero (Z) flag, Overflow (V) flag, or the Negative (N) flag. In decimal mode, the Z, V, N flags are not valid.

After reset, the Interrupt disable (I) flag is set to "1", but all other flags are undefined. Since the Index X mode (T) and Decimal mode (D) flags directly affect arithmetic operations, they should be initialized in the beginning of a program.

- (1) Carry flag (C)
 - The C flag contains a carry or borrow generated by the arithmetic logic unit (ALU) immediately after an arithmetic operation. It can also be changed by a shift or rotate instruction.
- (2) Zero flag (Z)
 - The Z flag is set if the result of an immediate arithmetic operation or a data transfer is "0", and cleared if the result is anything other than "0".
- (3) Interrupt disable flag (1)
 - The I flag disables all interrupts except for the interrupt generated by the BRK instruction.
 - Interrupts are disabled when the I flag is "1".
 - When an interrupt occurs, this flag is automatically set to "1" to prevent other interrupts from interfering until the current interrupt is serviced.
- (4) Decimal mode flag (D)
 - The D flag determines whether additions and subtractions are executed in binary or decimal. Binary arithmetic is executed when this flag is "0"; decimal arithmetic is executed when it is "1". Decimal correction is automatic in decimal mode. Only the ADC and SBC instructions can be used for decimal arithmetic.

(5) Break flag (B)

The B flag is used to indicate that the current interrupt was generated by the BRK instruction. The BRK flag in the processor status register is always "0". When the BRK instruction is used to generate an interrupt, the processor status register is pushed onto the stack with the break flag set to "1". The saved processor status is the only place where the break flag is ever set.

(6) Index X mode flag (T)

When the T flag is "0", arithmetic operations are performed between accumulator and memory, e.g. the results of an operation between two memory locations is stored in the accumulator. When the T flag is "1", direct arithmetic operations and direct data transfers are enabled between memory locations, i.e. between memory and memory, memory and I/O, and I/O and I/O. In this case, the result of an arithmetic operation performed on data in memory location 1 and memory location 2 is stored in memory location 1. The address of memory location 1 is specified by index register X, and the address of memory location 2 is specified by normal addressing modes.

(7) Overflow flag (V)

The V flag is used during the addition or subtraction of one byte of signed data. It is set if the result exceeds +127 to -128. When the BIT instruction is executed, bit 6 of the memory location operated on by the BIT instruction is stored in the overflow flag.

(8) Negative flag (N)

The N flag is set if the result of an arithmetic operation or data transfer is negative. When the BIT instruction is executed, bit 7 of the memory location operated on by the BIT instruction is stored in the negative flag.

Table 2. Set and clear instructions of each bit of processor status register

	C flag	Z flag	I flag	D flag	B flag	T flag	V flag	N flag
Set instruction	SEC		SEI	SED		SET	_	
Clear instruction	CLC		CLI	CLD		CLT	CLV	_

4-5

ADDRESSING MODE

The MELPS 740 Family has 17 addressing modes and a powerful memory access capability.

When extracting data required for arithmetic and logic operations from memory or when storing the results of such operations in memory, a memory address must be specified. The specification of the memory address is called addressing. The MELPS 740 Family instructions can be classified as 1-byte, 2-byte, and 3-byte instructions. In each case, the first byte is known as the OPCODE which forms the basis of the instruction. A second or third byte is

called an OPERAND which affects the addressing. The contents of index registers X and Y can also effect the addressing.

Although there are many addressing modes, there is always a particular memory location specified. What differs is whether the operand, the index register contents, or a combination of both should be used to specify the memory or jump destination. Based on these 3 types of instructions, the range of variation is increased and operation is enhanced by combinations of the bit operation instructions, jump instruction, and arithmetic instructions.

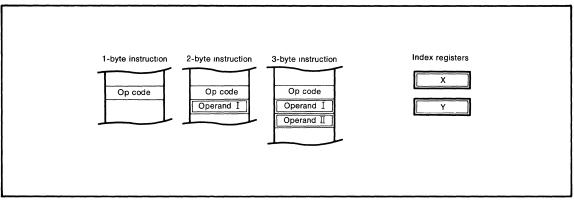


Fig. 3 Instruction byte configuration

Name

: Immediate addressing mode

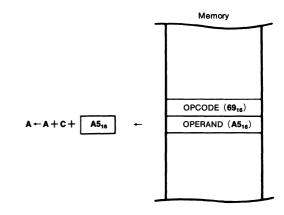
Function

: The OPERAND follows im-

mediately after the OPCODE.

Instructions: ADC, AND, CMP, CPX, CPY,

EOR, LDA, LDX, LDY, ORA,


SBC

: Mnemonic Example

Machine code

ADC #\$A5

69₁₆ A5₁₆

Name

: Accumulator addressing mode

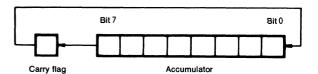
Function

: The operation is performed on

the accumulator.

Instructions: ASL, DEC, INC, LSR, ROL,

ROR


Example

: Mnemonic

Machine code

ROL A

2A₁₆

Memory

Name

: Zero page addressing mode

Function

: The operation is performed in

zero page memory (00₁₆ to

FF₁₆)

Instructions : ADC, AND, ASL, BIT, CMP,

COM, CPX, CPY, DEC, EOR, INC, LDA, LDM, LDX, LDY,

LSR, ORA, ROL, ROR, RRF,

SBC, STA, STX, STY, TST

Example

: Mnemonic

Machine code

ADC \$02 65₁₆ 02₁₆

OD₁₆

Zero page

FF₁₆

CPCODE (65₁₆)

OPERAND (02₁₆)

Name

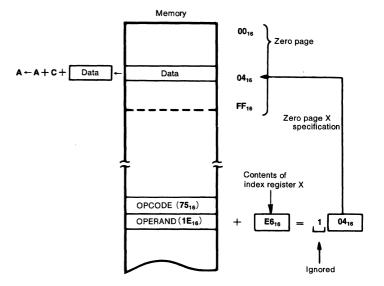
: Zero page X addressing mode

Function

The operation is performed on the zero page memory location

whose address is specified by adding the OPERAND to the contents of index register X.

Instructions : ADC, AND, ASL, CMP, DEC.


DIV, EOR, INC, LDA, LDY, LSR, MUL, ORA, ROL, ROR,

SBC, STA, STY

Example : Mnemonic

Mnemonic Machine code

ADC \$1E,X 75₁₆ 1E₁₆

Name

: Zero page Y addressing mode

Function

: The operation is performed on the zero page memory location whose address is specified by adding the OPERAND to the

contents of index register X.

Instructions : LDX, STX

Example

: Mnemonic

Machine code

LDX \$02,Y B6₁₆ 02₁₆

Memory

O0₁₆

Zero page

FF₁₆

Zero page Y specification

OPCODE (B6₁₆)

OPERAND (02₁₆)

PE6₁₆

E8₁₆

Zero page Y specification

Name

: Absolute addressing mode

Function

The operation is performed on the memory whose address is

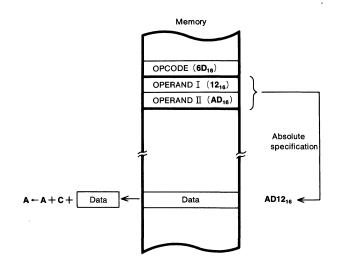
specified by first and second

OPERAND.

Instructions: ADC, AND, ASL, BIT, CMP,

CPX, CPY, DEC, EOR, INC, JMP, JSR, LDA, LDX, LDY, LSR, ORA, ROL, ROR, SBC,

STA, STX, STY


Example

: Mnemonic

Machine code

ADC \$AD12

6D₁₆ 12₁₆ AD₁₆

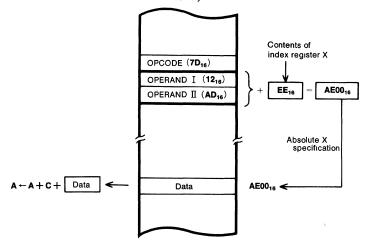
Name

: Absolute X addressing mode

Function

: The operation is performed on the memory location whose address is specified by adding the contents of index register X to the value indicated by the first and second OPERAND.

Instructions: ADC, AND, ASL, CMP, DEC, EOR, INC, LDA, LDY, LSR,


ORA, ROL, ROR, SBC, STA

Example

: Mnemonic

Machine code

ADC \$AD12,X 7D16 1216 AD16

Memory

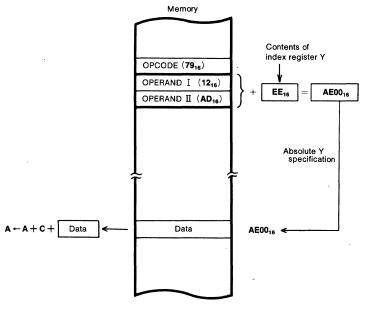
Name

: Absolute Y addressing mode

Function

: The operation is performed on the memory location whose address is specified by adding the contents of index register Y to the value indicated by the first and second OPERAND.

Instructions : ADC, AND, CMP, EOR, LDA,


LDX, ORA, SBC, STA

Example

: Mnemonic

Machine code

ADC \$AD12,Y 79₁₆ 12₁₆ AD₁₆

Name

: Implied addressing mode

Function

: Implied addressing mode op-

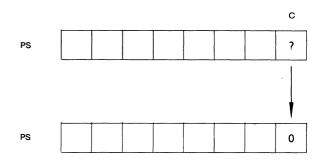
erations need no OPERAND.

Instructions : BRK, CLC, CLD, CLI, CLT,

CLV, DEX, DEY, FST, INX, INY, NOP, PHA, PHP, PLA, PLP,

RTI, RTS, SEC, SED, SEI, SET, SLW, STP, TAX, TAY, TSX,

TXA, TXS, TYA, WIT


Example

: Mnemonic

Machine code

CLC

18₁₆

Carry flag reset

Name

: Relative addressing mode

Function

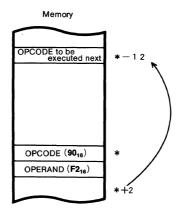
: Conditionally jumps to the

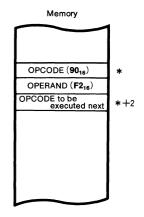
address produced by adding the Program Counter to the

OPERAND.

Instructions : BCC, BCS, BEQ, BMI, BNE,

BPL, BRA, BVC, BVS


Example : Mnemonic


Machine code

BCC *-12 90₁₆ F2₁₆ Jumps to *-12 address when carry flag(C) is cleared.

Proceed to next address when

carry flag(C) is set.

Name

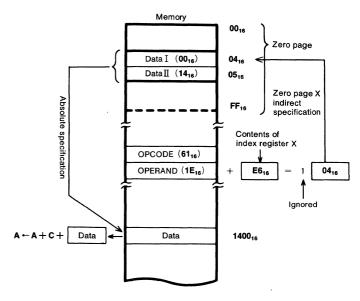
: Indirect X addressing mode

Function

: The operation is performed on the memory location indicated by the contents of two consecutive bytes in zero page memory whose first address is specified by adding the OPER-AND and the contents of index

register X.

Instructions : ADC, AND, CMP, EOR, LDA,


ORA, SBC, STA

Example

: Mnemonic

Machine code

ADC (\$1E,X) 61₁₆ 1E₁₆

In this example, data I (00_{16}) and data II (14_{16}) have been stored beforehand.

Name

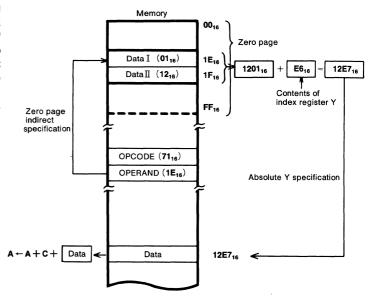
: Indirect Y addressing mode

Function

: The operation is performed on the memory location indicated by adding the contents of index register Y to the contents of two consecutive bytes in zero page memory whose first address is specified by the

OPERAND.

Instructions : ADC, AND, CMP, EOR, LDA,


ORA, SBC, STA

Example

: Mnemonic

Machine code

ADC (\$1E),Y 71₁₆ 1E₁₆

In this example, data I (01_{16}) and Data II (12_{16}) have been stored beforehand.

Name

: Indirect absolute addressing

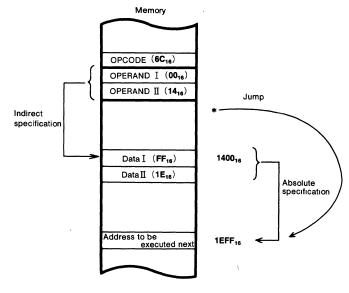
mode

Function

: Jumps to the location specified by the contents of two consecutive bytes whose first address is

specified by the first and

second OPERAND.


Instructions: JMP

Example : Mnemonic

Machine code

JMP (\$1400)

6C₁₆ 00₁₆ 14₁₆

In this example, FF_{16} as data $\ I$ and $1E_{16}$ as data $\ I$ have been stored beforehand.

Name

: Zero page indirect absolute

addressing mode

Function

: Jumps to the location specified

by the contents of two consecutive bytes in zero page memory whose first address is specified by the OPERAND.

Instructions : JMP, JSR


Example :

: Mnemonic

Machine code

JMP (\$05)

B2₁₆ 05₁₆

In this example, FF_{16} as data $\,I\,$ and $\text{1E}_{\text{16}}\,\text{as}$ data $\,I\,$ have been stored beforehand.

Name

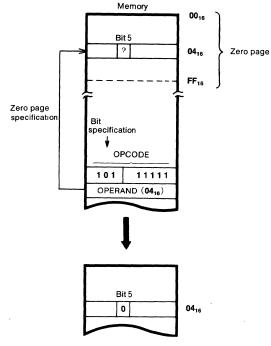
: Zero page bit addressing

mode

Function

: The operation is performed on the bit (specified by the three high order bits of the OPCODE), on the zero page memory location specified by the OPERAND.

Instructions : CLB, SEB


Example

: Mnemonic

Machine code

CLB 5,\$04

BF₁₆ 04₁₆

Name

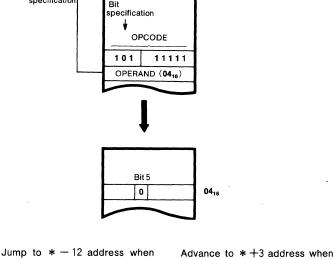
: Zero page bit relative address-

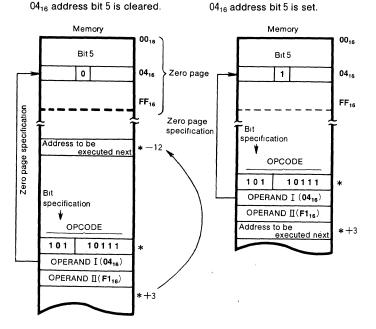
ing mode

Function

: Conditionally jumps to the address specified by adding the second OPERAND to the program counter, depending on the bit (specified by the three higher order bits of the OPCODE) in the zero page memory location specified by

the first OPERAND.


Instructions : BBC, BBS


Example

: Mnemonic

BBC 5,\$04, *-12

Machine code B7₁₆ 04₁₆ F1₁₆

Name

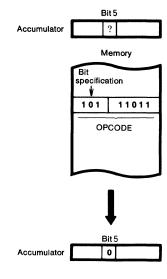
: Accumulator bit addressing

mode

Function

: The operation is performed on the bit in the accumulator

which is specified by the three high order bits of the OPCODE.


There is no OPERAND.

Instructions : CLB, SEB

Example : Mnemonic Machine code

CLB 5,A

BB₁₆

Name

: Accumulator bit relative ad-

dressing mode

Function

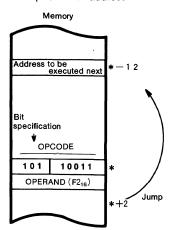
: Conditionally jumps to the address produced by adding the OPERAND to the program counter, depending on the bit in accumulator (specified by the high order three bits of the

OPCODE).

Instructions : BBC, BBS

Example

: Mnemonic


Machine code

BBC 5,A,*-12

B3₁₆ F2₁₆

When accumulator bit 5 is cleared

Bit 5 Accumulator Jump to *-12 address

When accumulator bit 5 is set

Bit 5 Accumulator

Jump to *+2 address

Memory Bit specification OPCODE 101 10011 OPERAND (F2₁₆) Address to be executed nest *+2

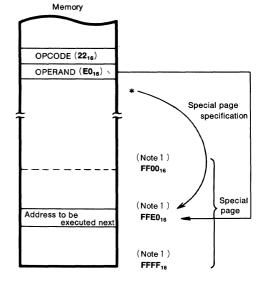
Name : Special page addressing mode

Function : Jumps to the specified address

in the special page area. The lower eight bits are specified by the OPERAND and the upper eight bits are defined by

the special page (see Note 1).

Instructions: JSR


Example : Mnemonic Machine code

JSR \\$FFE0 22₁₆ E0₁₆

Note 1: Note that the special page is defined as the highest address-

able 256 bytes of any given microcomputer and may be

"FF₁₆", "1F₁₆", "2F₁₆", etc

LIST OF INSTRUCTION CODES

<u> </u>										Γ	T 1			r			
	D ₃ ~D ₀	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
D ₇ ∼D ₄ He	xadecimal notation	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
			ORA	J\$R	BBS		ORA	ASL	BBS		ORA	ASL	SEB		OBA	ASL	SEB
0000	0	BRK	IND. X	ZP, IND	0. A	_	ZP	ZP	0. ŽP	PHP	IMM	Α	0. A	_	ABS	ABS	0, ZP
	1		ORA		BBC		ORA	ASL	ВВС		ORA	DEC	CLB		ORA	ASL	CLB
0001	1	BPL	IND, Y	CLT	0, A	_	ZP, X	ZP, X	0. ZP	CLC	ABS. Y	Α	0, A	-	ABS, X	ABS, X	0, ZP
		JSR	AND	JSR	BBS	BIT	AND	ROL	BBS		AND	ROL	SEB	eBiT.	AND	ROL	SEB
0010	2	ABS	IND, X	SP	1, A	ZP	ZP	ZP	1, ZP	PLP	IMM	Α	1, A	ABS	ABS	ABS	1, ZP
			AND		BBC		AND	ROL	BBC		AND	INC	CLB	LDM	AND	ROL	CLB
0011	3	вмі	IND, Y	SET	1, A	-	ZP, X	ZP, X	i, ZP	SEC	ABS. Y	Α	1, A	ZP	ABS. X	ABS, X	1, ZP
		-	EOR	STP	BBS	СОМ	EOR	LSR	BBS		EOR	LSR	SEB	JMP	EOR	LSR	SEB
0100	4	RTI	IND, X	(Note)	2, A	ZP	ZP	ZP	2. ZP	PHA	IMM	Α	2, A	ABS	ABS	ABS	2, ZP
			EOR	(14016)	BBC	<u> </u>	EOR	LSR	BBC		EOR		CLB	st uthings	EOR	LSR	CLB
0101	5	BVC	IND, Y	-	2, A	-	ZP, X	ZP, X	2, ŽP	CLI	ABS, Y	_		-	1.4	ABS, X	2, ZP
			ADC	MUL	BBS	TST	ADC	ROR	BBS		ADC	ROR	2, A SEB	JMP	ADC	ROR	SEB
0110	6	RTS				ZP	ZP	ZP	3. ZP	PLA				144	ABS	ABS	
			IND, X	(Note)	3, A BBC	ZP	ADC	ROR	BBC		ADC	Α	3, A CLB	IND	ADC	ROR	3, ZP CLB
0111	7	BVS		-		_			My Trucks	SEI	1.00	_		_	14 80		
	-		IND, Y	RRF	3, A BBS	STY	ZP, X STA	ZP, X STX	3, ZP		ABS, Y		3, A SEB	sty	ABS, X	ABS, X	3, ZP SEB
1000	8	BRA							4.0	DEY	-	TXA		4.55%	35 4		
			IND, X	ZP	4, A BBC	ZP STY	ZP STA	ZP STX	4, ZP BBC		STA		4, A CLB	ABS	ABS STA	ABS	4, ZP CLB
1001	9	всс		-					1 / 500 1	TYA	1 1	TXS		-	1000	141	
		1.50	IND, Y	LDV	4, A	ZP, X	ZP, X	ZP, Y	4, ZP		ABS, Y		4, A	10000	ABS, X	(2) (1) (2)	4, ZP
1010	Α	LDY	LDA	LDX	BBS	LDY	LDA	LDX	BBS	TAY	LDA	TAX	SEB	LDY	LDA	LDX	SEB
		IMM	IND, X	IMM	5, A	ZP	ZP	ZP	5, ZP		IMM		5, A	ABS	ABS	ABS	5, ZP
1011	В	BCS	LDA	JMP	BBC	LDY	LDA	LDX	BBC	CLV	LDA	TSX	CLB	LDY	LDA	FDX	CLB
			 	ZP, IND	5, A	ZP, X	ZP, X	ZP, Y	5, ZP		ABS, Y		5, A	ABS/X	ABS, X	ABS, Y	5, ZP
1100	C	CPY	СМР	SLW (Note)	BBS	CPY	CMP	DEC	BBS	INY	CMP	DEX	SEB	CPY	CMP	DEC	SEB
		IMM	IND, X	WIT	6, A	ZP	ZP	ZP	6, ZP		IMM		6, A	ABS	ABS	ABS	6, ZP
1101	D	BNE	CMP	_	BBC	_	CMP	DEC	BBC	CLD	CMP	_	CLB	_	CMP	DEC	CLB
,,,,,			IND, Y		6, A		ZP, X	ZP, X	6, ZP		ABS, Y		6, A		ABS, X	ABS, X	6, ZP
1110	E	CPX	SBC	FST (Note)	BBS	CPX	SBC	INC	BBS	INX	SBC	NOP	SEB	CPX	SBC	INC	SEB
1110		IMM	IND, X	DIV	7, A	ZP	ZP	ZP	7, ZP		IMM	.,	7, A	ABS	ABS	ABS	7, ZP
1111	F	BEQ	SBC		BBC	_	SBC	INC	BBC	SED	SBC	_	CLB	_	SBC	INC	CLB
1111	[DEQ	IND, Y		7, A		ZP, X	ZP, X	7. ZP	SED	ABS, Y		7, A		ABS, X	ABS, X	7, ZP

Note Support of these instructions depends on the microcomputer type

Instruction	Supported in the following microcomputer types
FST	M50740A-XXXSP, M50740ASP,
SLW	M50741-XXXSP, M50752-XXXSP,
SLVV	M50757-XXXSP, M50758-XXXSP
MUL	Series 7450, Series 38000,
DIV	M37424M8-XXXSP,
DIV	M37524M4-XXXSP

Instruction	Not supported in the following microcomputer types
	M50740A-XXXSP, M50740ASP,
WIT	M50741-XXXSP, M50752-XXXSP,
	M50757-XXXSP, M50758-XXXSP
	M50752-XXXSP, M50757-XXXSP,
STP	M50758-XXXSP, M37424M8-XXXSP,
	M37524M4-XXXSP

2	3-byte instruction
	2-byte instruction
	1-byte instruction

MACHINE INSTRUCTIONS

									′	Addı	ressi	ing i	mod	е			_			
Symbol	Function	Details		IMF	>		М	1		Α		E	ЗIТ,	Α		ZΡ		В	IT,Z	Р
			0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#
ADC (Note 1) (Note 6)	When T=0 A←A+M+C	Adds the carry, accumulator and memory contents. The results are entered into the accumulator.				69	2	2							65	3	2			
	When T=1 M(X) ← M(X) + M+C	Adds the contents of the memory in the address indicated by index register X, the contents of the memory specified by the addressing mode and the carry The results are entered into the memory at the address indicated by index register X																		
AND (Note 1)	When T=0 A←A∧M When T=1 M(X)←M(X)∧M	"AND's" the accumulator and memory contents. The results are entered into the accumulator "AND's" the contents of the memory of the address indicated by index register X and the contents of the memory specified by the addressing mode. The results are entered into the memory at the address indicated by index register X.				29	2	2							25	3	2			
ASL	7 0 C ←	Shifts the contents of accumulator or contents of memory one bit to the left. The low order bit of the accumulator or memory is cleared and the high order bit is shifted into the carry flag.							0A	2	1		A SAME AND A SAME AND		06	5	2			
BBC (Note 4)	Ab or Mb=0?	Branches when the contents of the bit specified in the accumulator or memory is "0"										13 2i	4	2				17 2i	5	3
BBS (Note 4)	A _b or M _b =1?	Branches when the contents of the bit specified in the accumulator or memory is "1"										03 2i	4	2				07 2i	5	3
BCC (Note 4)	C=0?	Branches when the contents of carry flag is "0"																		
BCS (Note 4)	C=1?	Branches when the contents of carry flag is "1"																		
BEQ (Note 4)	Z=1?	Branches when the contents of zero flag is "1"																		
BIT	AAM	"AND's" the contents of accumulator and mem- ory The results are not entered anywhere													24	3	2			
BMI (Note 4)	N=1?	Branches when the contents of negative flag is "1"																		
BNE (Note 4)	Z=0?	Branches when the contents of zero flag is "0"																		
BPL (Note 4)	N=0?	Branches when the contents of negative flag is "0"							Ľ											<u> </u>
BRA	PC←PC±offset	Jumps to address specified by adding offset to the program counter																		<u></u>
BRK	$\begin{array}{l} B \!\!\leftarrow \!\! 1 \\ M(S) \!\!\leftarrow \!\! PC_{H} \\ S \!\!\leftarrow \!\! S \!\!- \!\! 1 \\ M(S) \!\!\leftarrow \!\! PC_{L} \\ S \!\!\leftarrow \!\! S \!\!- \!\! 1 \\ M(S) \!\!\leftarrow \!\! PS \\ S \!\!\leftarrow \!\! S \!\!- \!\! 1 \\ PC_{L} \!\!\leftarrow \!\! AD_{L} \\ PC_{H} \!\!\leftarrow \!\! AD_{H} \end{array}$	Executes a software interrupt	00	7	1															

MITSUBISHI MICROCOMPUTERS MELPS 740

														Ad	ldre	ssin	g me	ode															F	Proc	esse	or st	atus	reç	jiste	r
Z	ZP,	<		ZP,	Y		ABS	3	Α	BS	,X	A	BS	Y,		INE)	z	P,IN	1D	11	ND,	X	1	ND	Y,		REI	-		SP		7	6	5	4	3	2	1	0
0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	N	٧	Т	В	D	ı	z	С
75	4	2				6D	4	3	7D	5	3	79	5	3							61	6	2	71	6	2							N	٧	•	•	•	•	Z	С
35	4	2				2D	4	3	3D	5	3	39	5	3							21	6	2	31	6	2							N	•	•	•	•	•	Z	•
																																			L					
16	6	2				OE	6	3	1E	7	3																						N	•	•	•	•	•	Z	С
																																	•	•	•	•	•	•	•	•
																																	•	•	•	•	•	•	٠	•
															T												90	2	2				•	•	•	•	•	•	•	•
																											В0	2	2				•	•	•	•	•	•	•	•,
																											F0	2	2				•	•	•	•	•	•	•	•
						2C	4	3															1										M ₇	M ₆	٠	•	•	•	Z	•
																											30	2	2				•	•	•	•	•	•	•	•
																											D0	2	2				•	•	•	•	•	·	•	•
																											10		2				•	·	•	•	•	•	•	·
																											80	4	2				•	·			•	•	•	·
																																1	•	•	•	1	•	1	•	

			_						_ A	aar	essi	ng r	nod	e	_					_
Symbol	Function	Details		MF	·	_ '	MM	<u> </u>	L	Α		E	ΒIT,	A		ZΡ		В	T,Z	-
			0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#
BVC (Note 4)	V=0?	Branches when the contents of overflow flag is "0"																		
BVS (Note 4)	V=1?	Branches when the contents of overflow flag is "1"																		
CLB	A _b or M _b ←0	Clears the contents of the bit specified in the accumulator or memory to "0"										1B 2i	2	1				1F 2i	5	2
CLC	C←0	Clears the contents of the carry flag to "0"	18	2	1										T				\top	_
CLD	D←0	Clears the contents of decimal mode flag to "0."	D8	2	1															
CLI	1←0	Clears the contents of interrupt disable flag to "0"	58	2	1															
CLT	T←0	Clears the contents of index X mode flag to "0"	12	2	1															_
CLV	V ← 0	Clears the contents overflow flag to "0"	В8	2	1															_
CMP (Note 3)	When T=0	Compares the contents of accumulator and memory	T			C9	2	2						T	C5	3	2			_
(Note 3)	When T=1	.Compares the contents of the memory speci-																		
	M(X)—M	fied by the addressing mode with the contents															-			
		of the address indicated by index register X																		
СОМ	M←M	Forms a one's complement of the contents of memory, and stores it into memory													44	5	2			
CPX	х-м	Compares the contents of index register X and memory.				E0	2	2							E4	3	2			
CPY	Y-M	Compares the contents of index register Y and memory				C0	2	2							C4	3	2			
DEC	A←A−1 or M←M−1	Decrements the contents of the accumulator or memory by 1							1A	2	1				C6	5	2			-
DEX	x-x-1	Decrements the contents of index register X by	CA	2	1		٠													
DEY	Y←Y-1	Decrements the contents of index register Y by	88	2	1															
DIV	A←(M(zz+X+1),	Divides the 16-bit data that is the contents of							Г				T					T	ΠŢ	
(Note 5)	M(zz+X))/A	M(zz+x+1) for high byte and the contents of					İ		ł		İ				1					
	M (S) ← 1's comple-	M(zz + x) for low byte by the accumulator				l			}				ĺ		-				1	
	ment of Remainder	Stores the quotient in the accumulator and the		İ		l	}		ļ			ļ			1				1	
	S←S—1	1's complement of the remainder on the stack							l		İ		1	1	1			l	1	
EOR	When T=0	"Exclusive-ORs" the contents of accumulator	+	-	\vdash	49	2	2	╁	-	-	┢	H	+	45	3	2	╁	\vdash	_
(Note 1)	A←A V M	and memory The results are stored in the					-	_	١.								-	ļ		
		accumulator.			ļ				İ			1								
	When T=1	"Exclusive-ORs" the contents of the memory		ļ		ļ			i									ļ		
	$M(X) \leftarrow M(X) + M$	specified by the addressing mode and the con-				ļ						ļ								
		tents of the memory at the address indicated by										l						ļ	П	
		index register X. The results are stored into the																		
		memory at the address indicated by index register X.																		
FST (Note 5)		Connects oscillator output to the X _{OUTF} pin	E2	2	1															
INC	A←A+1 or M←M+1	Increments the contents of accumulator or memory by 1							ЗА	2	1				E6	5	2		H	
INX	x-x+1	Increments the contents of index register X by	E8	2	1	\vdash							T	T	T			\vdash	\sqcap	,
INY	Y←Y+1	Increments the contents of index register Y by	CB	2	1	+	+-	-	+-	+	+	-	+	+	\vdash	\vdash	-	\vdash	\vdash	
	1	1	اک	1 -	1'	1	1		1		1	1			1			1	1	

MITSUBISHI MICROCOMPUTERS MELPS 740

															Ad	ldres	ssin	gm	ode															ı	Proc	ess	or s	tatus	reç	jiste	r]
Z	P,)	<		ZΡ	Y,		A	BS	3	Α	BS	,X	A	BS	Y,		IND)	z	P,IN	۱D	ı	ND,	X	н	ND	Y,		RE	L		SP		7	6	5	4	3	2	1	0
0P	n	#	OF	n	#	0	Р	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	N	٧	т	В	D	1	z	С
			T	T	T	T	1												Ī									-	2	-				•	•	•	•	•	•	•	•
		-	t	+	\dagger	\dagger	1			-	-		\vdash		-	-	-	\vdash	\vdash		-	\vdash	-	-				70	2	2			-	•	•			•	•	•	-
		-	\vdash	+	+	+	+	_				-	-	-	-	-	-	\vdash	-	-	-	\vdash	-		-	-	-	-	-	-		-	-	•	•	•		•		•	-
		-	\vdash	+	+	+	+			_	-	-	┝	-	H	-	_	H	-		-	-			-	-	-	-	-	-			-								0
																																		•	•	•	•	0	•	•	
						T	T																											٠	•	•	•	•	0	•	
						T																												•	•	0	•	•	•	•	
						T																	Г											•	0	•	•	•	•	•	•
D5	4	2				С	D	4	3	DD	5	3	D9	5	3							C1	6	2	D1	6	2							N	•	•	•	•	•	Z	С
																																		N	•	•	•	•	•	z	
			Γ	T		E	С	4	3																									N	•	•	•	•	•	z	С
						C	С	4	3																									N	•	•	•	•	•	z	С
D6	6	2				С	E	6	3	DE	7	3																						N	•	•	•	•	•	z	
							1																											N	•	•	•	•	•	z	
				T																														N	٠	•	•	•	•	z	•
E2	16	2																																•	•	•	•	•	•	•	•
55	4	2	-			41	D	4	3	5D	5	3	59	5	3			-				41	6	2	51	6	2							N						z	
-		,				+	+																-				-								•		•		•	•	
F6	6	2	\vdash	+	+	E	E	6	3	FE	7	3	-	-	-		-	-	-	-		-	-	-	-	-	-				-	-		N			-		•	z	
			\vdash	+	+	+	+	_				-	\vdash	-	-	-	-	-	-	-	-	\vdash	-	-			-	-			<u></u>	-									
			\vdash	+	-	+	+					-	\vdash	-	_	-		-	-	_		-	-				-		_		-			N					_	z	
				L		L							L					_					_		L									L							Ш

									-	Addr	essi	ing i	nod	e						
Symbol	Function	Details		IMI	>		IMI	И		Α		E	ЗIТ,	A		ZΡ		В	IT,ZI	P
			0P	n	#	OF	'n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#
JMP	If addressing mode is ABS PC _L ←AD _L PC _H ←AD _H If addressing mode is IND PC _L ←M (AD _H , AD _L +1) PC _H ←M (AD _H , AD _L +1) PC _L ←M (00, AD _L) PC _H ←M (00, AD _L)	Jumps to the specified address																		
JSR	M(S) ←PC _H S←S−1 M(S) ←PC _L S←S−1 After executing the above, if addressing mode is ABS, PC _L ←AD _L PC _H ←AD _H If addressing mode is SP, PC _L ←AD _L PC _H ←FF If addressing mode is ZP, IND, PC _L ←M(00, AD _L) PC _H ←M(00, AD _L +1)	After storing contents of program counter in stack, and jumps to the specified address																		
LDA (Note 2)	When T=0 A←M When T=1 M(X)←M	Load accumulator with contents of memory Load memory indicated by index register X with contents of memory specified by the addressing mode				AS	2	2							A5	3	2			
LDM	M←nn	Load memory with immediate value													3С	4	3			_
LDX	х←м	Load index register X with contents of memory				A2	2	2							Α6	3	2			
LDY	Y←M	Load index register Y with contents of memory				AO	2	2							Α4	3	2			
LSR	7 0 0 → □ → C	Shift the contents of accumulator or memory to the right by one bit The low order bit of accumulator or memory is stored in carry, 7th bit is cleared							4A	2	1				46	5	2			
MUL (Note 5)	$M(S) \cdot A \leftarrow A \times M(zz + X)$ $S \leftarrow S - 1$	Multiplies the accumulator with the contents of memory specified by the zero page X addressing mode and stores the high byte of the result on the stack and the low byte in the accumulator																		
NOP	PC←PC+1	No operation	EΑ	2	1	_	1	-	<u> </u>			_		L			ļ		\sqcup	
ORA (Note 1)	When T=0 A←AVM When T=1 M(X)←M(X)VM	"Logical OR's" the contents of memory and accumulator The result is stored in the accumulator "Logical OR's" the contents of memory indicated by index register X and contents of memory specified by the addressing mode The result is stored in the memory specified by index register X				09	2	2							05	3	2			

MELPS 740

Г														Ad	dres	sin	g me	ode																Proc	ess	or st	atus	reç	jiste	,]
7	ZP,	K	7	ZP,	Y		AB	3	A	BS	X	A	BS	Y,		INE)	z	P,IN	ID	II	ND,	X	11	ND,	Υ	ı	REI	-		SP		7	6	5	4	3	2	1	0
0P	n	#	0P	n	#				0P	n	#	0P	n	#	0P	n	#	OF	n	#	ŐР	n	#	0P	n	#	0P	n	#	0P	n	#	N	v	Т	В	D	1	z	С
						4C	3	3							6C	5	3	B2	4	2													•	•	•	•	•	•	•	•
						20	6	3										02	7	2				,						22	5	2	•	•	•	•	•	•	•	•
B 5	4	2				AD	4	3	ВD	5	3	В9	5	3							A 1	6	2	В1	6	2							2	•	•	•	•	•	Z	•
																																	٠	•	•	•	٠	•	•	•
			В6	4	2	ΑE	4	3				BE	5	3										T								-	N	•	•	•	•	•	z	
B4	4	2		-		AC	4	3	вс	5	3	-		-	-	-	+		-		-	-		-	_	-			-			-	N	•	•	•	•	•	z	\exists
56	6	2				4E	6	3	5E	7	3																						0	•	•	•	•	•	Z	С
62	15	2																															•	•	•	•	•	•	•	•
15	4	2				0D	4	3	1D	5	3	19	5	3							01	6	2	11	6	2							. 2	•	•	•	•	•	z	•

									,	ddr	ess	ing	nod	e						
Symbol	Function	Details		MF	•	ı	MN	1		Α		E	3IT,	Α		ΖP		В	T,Z	Р
			0Р	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#
PHA	M(S) ←A S←S−1	Saves the contents of the accumulator in memory at the address indicated by the stack pointer and decrements the contents of stack pointer by 1	48	3	1															
PHP	M(S)←PS S←S−1	Saves the contents of the processor status reg- ister in memory at the address indicated by the stack pointer and decrements the contents of the stack pointer by 1	08	3	1															
PLA	S←S+1 A←M(S)	Increments the contents of the stack pointer by 1 and restores the accumulator from the memory at the address indicated by the stack pointer	68	4	1															
PLP	S←S+1 PS←M(S)	Increments the contents of stack pointer by 1 and restores the processor status register from the memory at the address indicated by the stack pointer	28	4	1															
ROL	7 0 	Shifts the contents of the memory or accumula- tor to the left by one bit The high order bit is shifted into the carry flag and the carry flag is shifted into the low order bit							2A	2	1				26	5	2			
ROR	7 0 —©→——	Shifts the contents of the memory or accumula- tor to the right by one bit The low order bit is shifted into the carry flag and the carry flag is shifted into the high order bit							6A	2	1				66	5	2			
RRF	7 0	Rotates the contents of memory to the right by 4 bits													82	8	2			
RTI	S+S+1 PS+M(S) S+S+1 PC _L +M(S) S+S+1 PC _H +M(S)	Returns from an interrupt routine to the main routine	40	6	1															
RTS	S←S+1 PC _L ←M(S) S←S+1 PC _H ←M(S)	Returns from a subroutine to the main routine	60	6	1															
SBC (Note 1) (Note 6)	When T=0 A←A−M−C When T=1 M(X)←M(X)−M−C	Subtracts the contents of memory and complement of carry flag from the contents of accumulator. The results are stored into the accumulator. Subtracts contents of complement of carry flag and contents of the memory indicated by the addressing mode from the memory at the address indicated by index register X. The results are stored into the memory of the address indicated by index register X.				E9	2	2							E5	3	2			
SEB	A _b or M _b ←1	Sets the specified bit in the accumulator or memory to "1"										0 <u>ғ</u> 2і		1				0₽ 2i	5	2
SEC	C←1 D←1	Sets the contents of the carry flag to "1" Sets the contents of the decimal mode flag to "1"	38 F8	+	-		-											-		
SEI	1←1	Sets the contents of the interrupt disable flag to "1"		L	1						1									
SET	T←1	Sets the contents of the index X mode flag to "1"		2	1			1										_		
(Note 5)		Disconnects the oscillator output from the X _{OUTF} pin		2																L

MITSUBISHI MICROCOMPUTERS MELPS 740

														Ad	dres	ssing	mo	ode											Addressing mode ABS,X											
Z	(P,	(ZP,	Y	Γ.	AB	3	A	BS	,X	A	BS	Y,		INC)	z	P,IN	1D	11	ND,	X	н	ND,	Y	ı	REL	_		SP		7	6	5	4	3	2	1	0
P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	Z	v	Т	В	D	١	z	С
																																	•	•	•	•	•	•	•	•
																																	•	•	•	•	•	•	•	•
																																	Z	•	•	•	•	•	Z	•
																																	()	/alu	e sa	ved	in s	tack)	
36	6	2				2E	6	3	3E	7	3																						N	•	•	•	•	•	Z	С
76	6	2				6E	6	3	7E	7	3																						Z	•	•	•	•	•	Z	С
																																	•	•	•	•	•	•	•	•
																													,				(\	/alu	sa	ved	ın si	tack		
																																	•	•	•	•	•	•	•	•
=5	4	2				ED	4	3	FD	5	3	F9	5	3							E1	6	2	F1	6	2							Z	V	•	•	•	•	Z	С
																																	•	•	•	•	•	•	•	•
-			1	ļ.,	-	1	_	-	-	_	_	_		-		-			-	<u> </u>				_		-			_	-			•	•	٠	•	•	•	•	1
							_	_			L								_						_	<u> </u>										•		ļ		
			-	-	-	-		-	_			_			_				-		-			_										İ		•				ŀ
			-		-	-	-		_	-		-	_	-	_	_	_	-	-	-	_	_		-	_		_			L			•	1		•				ł
						1												-																-	Ĺ					

									,	Addı	ess	ing I	mod	е						
Symbol	Function	Details		IMI	•		IMN	1		Α		E	ЗΙΤ,	Α		ZΡ		В	IT,Z	P
			0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#
STA	M←A	Stores the contents of accumulator in memory.						r							85	4	2			
STP (Note 5)		Stops the oscillator	42	2	1											-				
STX	M←X	Stores the contents of index register X in memory													86	4	2			
STY	M←Y	Stores the contents of index register Y in memory													84	4	2			
TAX	X←A	Transfers the contents of the accumulator to in- dex register X	AA	2	1															
TAY	Y←A	Transfers the contents of the accumulator to in- dex register Y	A8	2	1															
TST	M=0?	Tests whether the contents of memory are "0" or not													64	3	2			
TSX	x←s	Transfers the contents of the stack pointer to in- dex register X	ВА	2	1															
TXA	A←X	Transfers the contents of index register X to the accumulator.	8A	2	1															
тхѕ	s⊷x	Transfers the contents of index register X to the stack pointer.	9A	2	1															
TYA	A←Y	Transfers the contents of index register Y to the accumulator	98	2	1						,									
WIT (Note 5)		Stops the internal clock	C2	2	1															

- Note 1: The number of cycles "n" is increased by 3 when T is 1.
 2: The number of cycles "n" is increased by 2 when T is 1.
 3: The number of cycles "n" is increased by 1 when T is 1.
 4: The number of cycles "n" is increased by 2 when branching has occurred.
 5: Support of these instructions depends on the microcomputer type

Instruction	Supported in the following microcomputer types
FST SLW	M50740A-XXXSP, M50740ASP, M50741-XXXSP, M50752-XXXSP, M50757-XXXSP, M50758-XXXSP
MUL DIV	Series 7450, Series 38000, M37424M8-XXXSP, M37524M4-XXXSP

Instruction	Not supported in the following microcomputer types
	M50740A-XXXSP, M50740ASP,
WIT	M50741-XXXSP, M50752-XXXSP,
	M50757-XXXSP, M50758-XXXSP
	M50752-XXXSP, M50757-XXXSP,
STP	M50758-XXXSP, M37424M8-XXXSP,
	M37524M4-XXXSP

6: N, V, and Z flags are invalid in decimal operation mode.

														Ad	dre	ssin	g m	ode															ı	Proc	ess	or st	atus	reç	jiste	r
Z	P,)	<	2	ZP,`	Y	Γ.	AB	s	A	BS	,X	A	BS	,Υ		INC)	z	P,IN	۱D	11	۱D,	X	11	ND,	Υ		REL	_		SP	,	7	6	5	4	3	2	1	0
0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	0P	n	#	N	٧	Т	В	D	ı	z	С
95	5	2				8D	5	3	9D	6	3	99	6	3							81	7	2	91	7	2							٠	•	•	•	•	•	•	•
																																	•	•	٠	•	•	•	•	•
			96	5	2	8E	5	3																									•	٠	•	•	•	•	•	•
94	5	2				8C	5	3																									•	•	•	•	•	•	•	•
																														Г			Ν	•	٠	٠	•	•	z	•
											T							İ															N	٠	•	•	•	•	z	•
											T							T															Ν	•	٠	•	٠	•	Z	•
											T																Г						Ν	•	•	•	•	•	z	•
																																	Ν	•	٠	٠	•	•	z	•
														,																			•	•	•	•	•	•	•	•
																																	Ν	•	•	•	•	•	Z	•
					-	İ		T			ľ							T															٠	•	•	•	٠	•	•	•

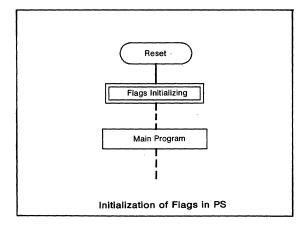
Symbol	Contents	Symbol	Contents
IMP	Implied addressing mode	+	Addition
IMM	Immediate addressing mode	-	Subtraction
Α	Accumulator or Accumulator addressing mode	٨	Logical OR
		V	Logical AND
BIT, A	Accumulator bit relative addressing mode	₩	Logical exclusive OR
			Negation
ZP	Zero page addressing mode	←	Shows direction of data flow
BIT, ZP	Zero page bit relative addressing mode	X	Index register X
		Y	Index register Y
ZP, X	Zero page X addressing mode	s	Stack pointer
ZP, Y	Zero page Y addressing mode	PC	Program counter
ABS	Absolute addressing mode	PS	Processor status register
ABS, X	Absolute X addressing mode	PC _H	8 high-order bits of program counter
ABS, Y	Absolute Y addressing mode	PC _L	8 low-order bits of program counter
IND	Indirect absolute addressing mode	ADH	8 high-order bits of address
		ADL	8 low-order bits of address
ZP, IND	Zero page indirect absolute addressing mode	FF	FF in Hexadecimal notation
		nn	Immediate value
IND, X	Indirect X addressing mode	м	Memory specified by address designation of any
IND, Y	Indirect Y addressing mode		addressing mode
REL	Relative addressing mode	M (X)	Memory of address indicated by contents of index
SP	Special page addressing mode		register X
С	Carry flag	M (S)	Memory of address indicated by contents of stack
Z	Zero flag		pointer
1	Interrupt disable flag	M(AD _H , AD _L)	Contents of memory at address indicated by AD _H and
D	Decimal mode flag		ADL, in ADH is 8 high-order bits and ADL is 8 low-
В	Break flag	}	order bits
Т	X-modified arithmetic mode flag	M(00, AD _L)	Contents of address indicated by zero page AD _L
V	Overflow flag	Ab	1 bit of accumulator
N	Negative flag	Mb	1 bit of memory
		OP	Opcode
		n	Number of cycles
	,	_ # ·	Number of bytes

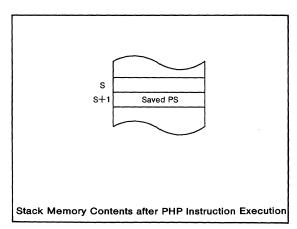
4-27

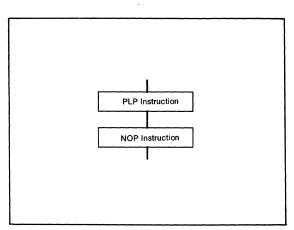
NOTES on USE

Keep the following points in mind while programming:

Processor status register


(1) Initialization of processor status register
After a reset, the contents of the processor status reg-


ister (PS) are undefined except for the I flag which is "1". Therefore, flags which affect program execution must be initialized after a reset.


In particular, it is essential to initialize the T and D flags because they have an important effect on calculations.

(2) How to reference the processor status register To reference the contents of the processor status register (PS), execute the PHP instruction once then read the contents of (S+1). If necessary, execute the PLP instruction to return the PS to its original status.

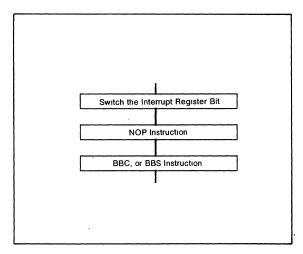
A NOP instruction should be executed after every PLP instruction. (The NOP in unnecessary when using a series 38000 microcomputer).

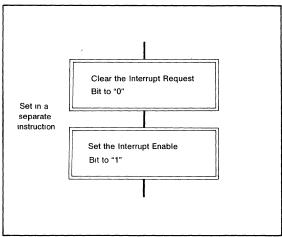
4-28

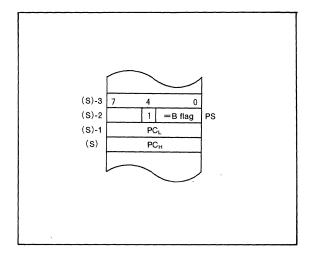
Interrupts

The contents of the interrupt request bits can be changed by software, but the values will not change immediately after being overwritten. Therefore, note the following points:

- After changing the value of the interrupt request bits, execute at least one instruction before executing a BBC, BBS, or any other read instruction.
- (2) When clearing an interrupt request bit to "0" and setting an interrupt enable bit to "1" (=setting in an interrupt enable state), it needs to be cleared or set these bits in a separate instruction. The interrupt is accepted because it becomes in the interrupt enable state before clearing the interrupt request bit, if clearing the interrupt request bit and setting the interrupt enable bit are performed in an instruction.


BRK instruction


- It can be detected that the BRK instruction interrupt event or the least priority interrupt event by referring the stored B flag state. Refer the stored B flag state in the interrupt routine, in this case.
 - However, the microcomputer that has an independent BRK instruction interrupt vector (cf. the 7450 series, the 7470 series, and the 38000 series) are not necessary this detection.
- (2) The CPU of all 8-bit microcomputers except the 38000 series have the following bug about the BRK instruction execution.


At the following status,

- ① the interrupt request bit has set to "1".
- 2 the interrupt enable bit has set to "1".
- 3 the interrupt disable flag (I) has set to "1".

if the BRK instruction is executed, the interrupt disable state is cancelled and it becomes in the interrupt enable state. So that the requested interrupts (the interrupts that corresponding to their request bits have set to "1") are accepted.

Decimal calculations

(1) Execution of decimal calculations

The ADC and SBC are the only instructions which will yield proper decimal results in decimal mode. To calculate in decimal notation, set the decimal mode flag (D) to "1" with the SED instruction. After executing the ADC or SBC instruction, execute another instruction before executing the SEC, CLC, or CLD instruction.

(2) Note on flags in decimal mode When decimal mode is selected, the values of three of the flags in the status register (the N, V, and Z flags) are invalid after a ADC or SBC instruction is executed. The Carry flag (C) is set to "1" if a carry is generated as a result of the calculation, or is cleared to "0" if a borrow is generated. To determine whether a calculation has generated a carry, the C flag must be initialized to "0" before each calculation. To check for a borrow, the C flag must be initialized to "1" before each

Set D Flag to "1" ADC or SBC Instruction NOP Instruction SEC, CLC, or CLD Instruction

JMP instruction

calculation.

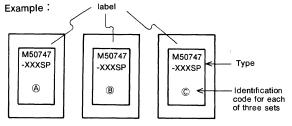
When using the JMP instruction in indirect addressing mode, do not specify the last address on a page as an indirect address.

APPENDICES

SERIES MELPS 740 MASK ROM ORDERING METHOD

SERIES MELPS 740 MASK ROM ORDERING METHOD

Mitsubishi Electric corp. accepts order to transfer EPROM supplied program data into the mask ROM in single-chip 8-bit microcomputers.


When placing such order, please submit the information described below.

- (1) Mask ROM confirmation form.....1 set (There is a specific form to be used for each model.)
- (2) Data to be written into mask ROM····· EPROM (Please provide three sets containing the identical data.)
- (3) Mark specification form1 set

NOTES

- (1) Acceptable EPROM type
 - Any EPROM made by Mitsubishi that is listed in the mask ROM confirmation form may be used.
- (2) EPROM window labeling

Please write the model name and the identification code (A, B, C) on the label for each of the three sets of data EPROMs provided.

- (3) Calculation and indication of checksum code Please calculate the total number of data in words in the EPROM, and write the number in 4-digit hexadecimal form in the checksum code field of the mask ROM confirmation form.
- (4) Options

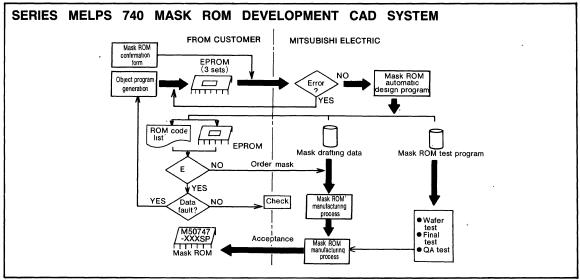
Refer to the appropriate data book entry and write the desired options on the mask ROM confirmation form.

(5) Mark specification method

The permissible mark specifications differ depending on the shape of package. Please fill out the mark specification form and attach it to the mask ROM confirmation form.

OUTLINE OF ORDER PROCESSING

Mitsubishi will produce the mask ROM if at least two of the three EPROM sets submitted contain identical data.


If we find error when the submitted EPROMs are compared, we will contact your representative.

Thus, we assume responsibility only when we produce the mask ROM that contain data other than the data correctly provided by the customer.

Mitsubishi uses an automatic mask ROM design program to generated the following:

- 1. Drafting data for mask ROM production;
- ROM code listing or EPROM for mask ROM production error check work;
- 3. Mask ROM test program.

The chart below shows the flow of mask ROM production.

GZZ-SH01-46A < 82B0 >

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37100M8-XXXSP/FP MITSUBISHI ELECTRIC

Mask ROM number							
							
	Date:						
pt	Section head signature	Supervisor signature					
Receipt							
Œ							

Note: Please fill in all items marked ...

		Company	TEL		0.0	Submitted by	Supervisor
*	Customer	name	()	uanc		
		Date issued	Date:		Issu		

%1. Confirmation

Specify the name of the product being ordered and the type of EPROMs submitted.

Three sets of EPROMs are required for each pattern (Check @ in the appropriate box).

If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based in this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.

Microcomputer name:		M37100M8-XXXSP	M3710	-8M0	XXXFP	
Checksu	m cc	ode for entire EPROM				(hexadecimal notation)

EPROM type

□ 27256	☐ 27512
0000 Character ROM1 05FF 0800 Character ROM2 0DFF 1 000 Option 1 004 4000 ROM (16K) 7FFF	0000 05FF 0 800 0DFF 1 000 1 1004 4 4000 ROM (16K)

Set "FF16" in the shaded area.

※ 2. Mark specification

Mark specification must be submitted using the correct form for the type package being ordered fill out the appropriate mark specification form (64P4B for M37100M8-XXXSP; 80P6 for M37100M8-XXXFP) and attach to the mask ROM confirmation form.

3. 1	I ² C bus Would you use I ² C bus function?	☐ Use	☐ Not use
*3. 2	Comments		

G77-	SHO	-464	(82	BU.

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37100M8-XXXSP/FP MITSUBISHI ELECTRIC

Mask R	OM numl	per	

- *** 4.** Option specification.
- 1. Port P0 pull-up transistor (if built-in is desired write 1, if not write 0)

	P1 ₇	P1 ₆	P1 ₅	P1₄	P1 ₃	P1 ₂	P1₁	P1 _o
address 1000 ₁₆								

2. Port P2 pull-up transistor (if built-in is desired write 1, if not write 0)

	P2 ₇	P2 ₆	P2 ₅	P2 ₄	P2 ₃	P2 ₂	P2 ₁	P2 ₀
address 1001 ₁₆								

3. Feedback resistors for X_{IN} , X_{CIN} oscillation (if built-in is desired write 1, if not write 0)

							X _{CIN}	X _{IN}	
address 1002 ₁₆	0	0	0	0	0	0			

4. CRT display relation polarity specifier (if negative polarity is desired write 1, if positive write 0)

				HSYNC	VSYNC	R, G, B	1	OUT
address 1003 ₁₆	0	0	0					

5. ϕ output (if ϕ clock outputs in the single-chip mode write 1, if not write 0)

								φ
address 1004 ₁₆	0	0	0	0	0	0	0	

*: Purchase of Mitsubishi Electric Corporation's I²C components converys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

GZZ-SH02-08A < 94A0 >

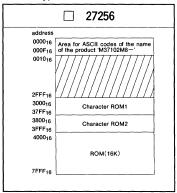
SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37102M8-XXXSP/FP MITSUBISHI ELECTRIC

Mask R	OM number	
	Date :	
Ħ	Section head signature	Supervisor signature
Receipt		
Re		

Note: Please fill in all items marked ...

*	Customer	Company name		TEL ()	ance	ature	Submitted by	Supervisor
``	Guoto.iio.	Date issued	Date :			Issu	sign		

X 1. Confirmation


Specify the name of the product being ordered and the type of EPROMs submitted.

Three sets of EPROMs are required for each pattern (Check @ in the appropriate box).

If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based in this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.

Microcomputer name:	☐ M37102M8-XXXSP	7102M8-	XXXFF)
Checksu	um code for entire EPROM			(hexadecimal notation)

EPROM type

- (1) Set "FF₁₆" in the shaded area.
- (2) Write the ASCII codes that indicates the name of the product 'M37102M8-' to addresses 0000₁₆ to 000F₁₆.

※ 2. Mark specification

Mark specification must be submitted using the correct form for the type package being ordered fill out the appropriate mark specification form (64P4B for M37102M8-XXXSP; 80P6N for M37102M8-XXXFP) and attach to the mask ROM confirmation form.

~77	-SH02-	004/	0440\

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37102M8-XXXSP/FP MITSUBISHI ELECTRIC

Write the two types of test patterns to the specified addresses.

Mask ROM number	

3. 1	I ² C bus Would you use I ² C bus function?	□Use	□Not use
*3. 2	OSD test character pattern input.		

%3.3 Comments

Writing the name of the product and character ROM data onto EPROMs.

Addresses 0000_{16} to $000F_{16}$ store the name of the product and addresses 3000_{16} to $3FFF_{16}$ store the character ROM data. Write the following ASCII codes that indicates 'M37102M8-' to addresses 0000_{16} to $000F_{16}$. If the name of the product contained in the EPROMs does not match the name on the mask ROM confirmation form, the ROM processing is disabled. Write the data correctly.

 Inputting the name of the product with the ASCII code. ASCII codes 'M37102M8-' are listed on the right.
 The addresses and data are in hexadecimal notation.

The addresses and data are in hexadecimal notation.

Address		Address	
000016	$'M' = 4 D_{16}$	0008 ₁₆	$'-'=2 D_{16}$
000116	$^{\circ}3^{\circ} = 33_{16}$	0009 ₁₆	F F 16
000216	$'7' = 37_{16}$	000A ₁₆	F F 16
000316	$'1' = 31_{16}$	000B ₁₆	F F ₁₆
000416	$0' = 30_{16}$	000C ₁₆	F F 16
000516	$^{\circ}2^{\circ} = 32_{16}$	000D ₁₆	F F 16
000616	$'M' = 4 D_{16}$	000E ₁₆	F F 16
000716	$'8' = 38_{16}$	000F ₁₆	F F 16

2. Inputting the character ROM

Input the character ROM data by dividing it into character ROM1 and character ROM2. For the character ROM data and test character patterns, see the next page and on.

*: Purchase of Mitsubishi Electric Corporation's I²C components converys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

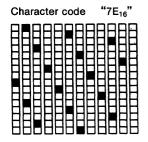
GZZ-SH02-08A < 94A0 >

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37102M8-XXXSP/FP MITSUBISHI ELECTRIC

/lask	ROM	number	

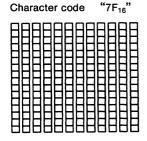
The structure of character ROM (divide of 12×16 dots font)

Example					
Zxampie		000000	00000] 🗆	
	Character code	00000] 🗆	
		00000] 🗆	
	"1A ₁₆ "			00	
	, , , , , , , , , , , , , , , , , , , ,				
				1	
		00000	00000		
		00000	00000		
			-		
		Ob	Oh	_4	
		Character ROM1	→←Chara		
	\checkmark	ROMI	HC	DM2	
	2			7	
	b ₇ b ₆ b ₅ b ₄ b ₃ b ₂ b ₁ b ₀)			b ₇ b ₆ b ₅ b ₄ b ₃ b ₂ b ₁ b ₀
Example	31AO ₁₆ 0 0000000] 00 ₁₆	Example	39A0 ₁₆	0
	\ 100000 0 00] 04 ₁₆		(1
	31AF ₁₆ 2 00000] 04 ₁₆		39AF ₁₆	2 DDD F0 ₁₆
	3 DDDDDDDD] 0A ₁₆		03Ai 16	3
	4 0000] 0A ₁₆			4
	5 000 8000	11 ₁₆			5
	6 000 000	11 ₁₆			6 • • • • • • • • • • • • • • •
	7 0008008	11 ₁₆			7 F ₁₆
	8 DD = 0000	20 ₁₆			8 ■□□□ F8 ₁₆
	9 00 60 00 00	2 0 ₁₆			9 ■□□□ F8 ₁₆
		3F ₁₆			A ■□□□ F8 ₁₆
	в 🗆 🗖 🗆 🗆 🗆 🗆] 40 ₁₆			B:
	c 08 00000	40 ₁₆			C
	₽ ₽₽₽₽₽₽] 40 ₁₆			D
	E 0000000] 00 ₁₆			E
	F 0000000	00 ₁₆			F


GZZ-SH02-08A < 94A0 >

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37102M8-XXXSP/FP MITSUBISHI ELECTRIC

Mask ROM number


Inputting the test character pattern
Write the following character pattern to the specified addresses.

(1) Pattern 1

Address	Data	Address	Data
37E0 ₁₆	40 ₁₆	3FE0 ₁₆	F0 ₁₆
37E1 ₁₆	04 ₁₆	3FE1 ₁₆	F0 ₁₆
37E2 ₁₆	0016	3FE2 ₁₆	F4 ₁₆
37E3 ₁₆	20 ₁₆	3FE3 ₁₆	F0 ₁₆
37E4 ₁₆	02 ₁₆	3FE4 ₁₆	F0 ₁₆
37E5 ₁₆	0016	3FE5 ₁₆	F2 ₁₆
37E6 ₁₆	1016	3FE6 ₁₆	F0 ₁₆
37E7 ₁₆	01 ₁₆	3FE7 ₁₆	F0 ₁₆
37E8 ₁₆	80 ₁₆	3FE8 ₁₆	F0 ₁₆
37E9 ₁₆	0816	3FE9 ₁₆	F0 ₁₆
37EA ₁₆	0016	3FEA ₁₆	F8 ₁₆
37EB ₁₆	4016	3FEB ₁₆	F0 ₁₆
37EC ₁₆	04 ₁₆	3FEC ₁₆	F0 ₁₆
37ED ₁₆	0016	3FED ₁₆	F4 ₁₆
37EE16	2016	3FEE ₁₆	F0 ₁₆
37EF ₁₆	0216	3FEF ₁₆	F0 ₁₆

(2) Pattern 2

Address	Data	Address	Data
37F0 ₁₆	0016	3FF0 ₁₆	F0 ₁₆
37F1 ₁₆	00 ₁₆	3FF1 ₁₆	F0 ₁₆
37F2 ₁₆	0016	3FF2 ₁₆	F0 ₁₆
37F3 ₁₆	0016	3FF3 ₁₆	F0 ₁₆
37F4 ₁₆	0016	3FF4 ₁₆	F0 ₁₆
37F5 ₁₆	00 ₁₆	3FF5 ₁₆	F0 ₁₆
37F6 ₁₆	0016	3FF6 ₁₆	F0 ₁₆
37F7 ₁₆	0016	3FF7 ₁₆	F0 ₁₆
37F8 ₁₆	0016	3FF8 ₁₆	F0 ₁₆
37F9 ₁₆	0016	3FF9 ₁₆	F0 ₁₆
37FA ₁₆	0016	3FFA ₁₆	F0 ₁₆
37FB ₁₆	0016	3FFB ₁₆	F0 ₁₆
37FC ₁₆	0016	3FFC ₁₆	F0 ₁₆
37FD ₁₆	0016	3FFD ₁₆	F0 ₁₆
37FE ₁₆	0016	3FFE ₁₆	F0 ₁₆
37FF ₁₆	0016	3FFF ₁₆	F0 ₁₆

GZZ-SH01-45A < 82A0 >

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37103M4-XXXSP MITSUBISHI ELECTRIC

Mask ROM number	
-----------------	--

	Date:	
Receipt	Section head signature	Supervisor signature

Note: Please fill in all items marked*.

		Company	TEL		φΦ	Submitted by	Supervisor
*	Customer	name	()	Janc Jatur		
		Date issued	Date:		Issi sigr		,

%1. Confirmation

Specify the name of the product being ordered and the type of EPROMs submitted.

Three sets of EPROMs are required for each pattern (Check @ in the appropriate box).

If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based in this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.

Checksum code for entire EPROM			(hexadecimal notation)
Checksum code for entire EPROM			(hexadecimal notation

EPROM type

□ 27128	□ 27256	□ 27512				
0000 05FF 0800 0DFF 1000 1004 2000	0000 Character ROM1 0800 0DFF 1000 1004 2000	0000 Character ROM1 0800 Character ROM2 0DFF 1000 1004 2000 000				
ROM (8K)	3FFF	ROM (8K) 3FFF FFFF				

Set "FF $_{16}$ " in the shaded area.

※ 2. Mark specification

Mark specification must be submitted using the correct form for the type package being ordered fill out the appropriate mark specification form (64P4B for M37103M4-XXXSP) and attach to the mask ROM confirmation form.

***3.** Comments

^	77	CHA4	-45A	•	904	^	١
.,		-500	-40A	٠.	O/A	w	,

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37103M4-XXXSP MITSUBISHI ELECTRIC

			,
Mask	ROM	number	

- * 4. Option specification (write the option data also at the specified address in the EPROM.)
- 1. Port P1 pull-up transistor (if built-in is desired write 1, if not write 0)

	P1 ₀	P1₁	P1 ₂	P1 ₃	P1₄	P1 ₅	P1 ₆	P1 ₇
address 1000 ₁₆								

2. Port P2 pull-up transistor (if built-in is desired write 1, if not write 0)

	P2 _o	P2 ₁	P2 ₂	P2 ₃	P2 ₄	P2 ₅	P2 ₆	P2 ₇
address 1001 ₁₆								

3. Feedback resistors for X_{IN}, X_{CIN} oscillation (if built-in is desired write 1, if not write 0)

							X _{CIN}	XIN	
address 1002 ₁₆	0	0	0	0	0	0			

4. CRT display relation polarity specifier (if negative polarity is desired write 1, if positive write 0)

				H _{SYNC}	VSYNC	R, G, B	1	OUT
address 1003 ₁₆	0	0	0					

5. ϕ output (if ϕ clock outputs in the single-chip mode write 1, if not write 0)

				-				φ
address 1004 ₁₆	0	0	0	0	0	0	0	

GZZ-SH01-45A (82A0)

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37103M4-XXXSP MITSUBISHI ELECTRIC

Mask ROM number

Inputting the character ROM

Input the character ROM data by dividing it into character ROM1 and character ROM2. The structure of character ROM (divide of 12×16 dots font)

Ехатріе		Character code "1A ₁₆ "			30 30 30 30 30 30 30 30 30 30 30		
Example	01A0 ₁₆	b ₇ b ₆ b ₅ b ₄ b ₃ b ₂ b ₁ b	Character ROM1	→←Chara RC Example	om2 09A0 ₁₆	h- h- h	₅ b ₄ b ₃ b ₂ b ₁ b ₀
,	01AF ₁₆	0	0416 0416 0416 0A16 1116 1116 1116 2016 2016 3F16 4016 4016 4016		09AF ₁₆	0 1 2 3 4 5 6 7 F ₁₆	

GZZ-SH02-89A < 9XA0 >

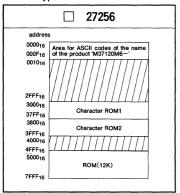
SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37120M6-XXXFP MITSUBISHI ELECTRIC

Mask ROM number					
	Date :				
Ta.	Section head signature	Supervisor signature			
Receipt					
, a					
İ					

Note: Please fill in all items marked*

		Company		TEL		Submitted by	Supervisor
*	Customer	name		()	uance nature		
		Date issued	Date :		ussl sign		

***1.** Confirmation


Specify the name of the product being ordered and the type of EPROMs submitted.

Three sets of EPROMs are required for each pattern (Check @ in the appropriate box).

If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based in this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.

Checksum code for entire EPROM			(hexadecimal notation)
' 1			

EPROM type

- (1) Set "FF16" in the shaded area.
- (2) Write the ASCII codes that indicates the name of the product 'M37120M6-' to addresses 0000₁₆ to 000F₁₆.

※ 2. Mark specification

Mark specification must be submitted using the correct form for the type package being ordered fill out the appropriate mark specification form (80P6N for M37120M6-XXXFP) and attach to the mask ROM confirmation form.

GZZ-SH02-89A < 9XA0 >

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37120M6-XXXFP MITSUBISHI ELECTRIC

Mask ROM number	

- ※ 3. 1 OSD test character pattern input.
 Write the two types of test patterns to the specified addresses.
- **%3.2** Comments

Writing the name of the product and character ROM data onto EPROMs.

Addresses 0000₁₆ to 000F₁₆ store the name of the product and addresses 3000₁₆ to 3FFF₁₆ store the character ROM data. Write the following ASCII codes that indicates 'M37120M6—' to addresses 0000₁₆ to 000F₁₆.

If the name of the product contained in the EPROMs does not match the name on the mask ROM confirmation form, the ROM processing is disabled. Write the data correctly.

As for the option, if the contents of the cofirmation and conflict with those of the EPROMs, the contents of the EPROMs are preferred.

 Inputting the name of the product with the ASCII code. ASCII codes 'M37120M6—' are listed on the right. The addresses and data are in hexadecimal notation.

Address		Address	
000016	$'M' = 4 D_{16}$	000816	$'-'=2 D_{16}$
000116	$^{\circ}3^{\circ} = 33_{16}^{\circ}$	000916	F F ₁₆
000216	$'7' = 37_{16}$	000A ₁₆	F F 16
000316	$'1' = 31_{16}$	000B ₁₆	F F 16
000416	$^{\circ}2^{\circ} = 32_{16}$	000C ₁₆	F F ₁₆
000516	$^{\circ}0^{\circ} = 30_{16}$	000D ₁₆	F F ₁₆
000616	$'M' = 4 D_{16}$	000E ₁₆	F F ₁₆
0007 ₁₆	$'6' = 36_{16}$	000F ₁₆	F F ₁₆

Recommend to writing the following pseudo-command to the start address of the assembler source program.

EPROM type	27256
The pseudo-command	*=\$8000 .BYTE△ 'M37120M6—'

This is an example when the start address of internal ROM is F000₁₆.

2. Inputting the character ROM

Input the character ROM data by dividing it into character ROM1 and character ROM2. For the character ROM data and test character patterns, see the next page and on.

GZZ-SH02-89A < 9XA0 >

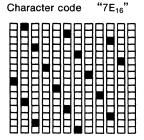
SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37120M6-XXXFP MITSUBISHI ELECTRIC

Mask ROM number

The structure of character ROM (divide of 12×16 dots font)

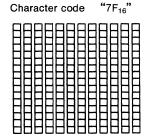
Example		Character code "1A ₁₆ "				
Example	31A0 ₁₆		O016 O416 O416 O416 OA16 OA16 1116 1116 2016 2016 3716 4016 4016 0016 O016	→←Chara RC Example	39AO ₁₆ 39AF ₁₆	b ₇ b ₆ b ₅ b ₄ b ₃ b ₂ b ₁ b ₀ 0

GZZ-SH02-89A (9XA0)


SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37120M6-XXXFP MITSUBISHI ELECTRIC

Mask ROM number

Inputting the test character pattern


Write the following character pattern to the specified addresses.

(1) Pattern 1

Address	Data	Address	Data
37E0 ₁₆	40 ₁₆	3FE0 ₁₆	F0 ₁₆
37E1 ₁₆	0416	3FE1 ₁₆	F0 ₁₆
37E2 ₁₆	0016	3FE2 ₁₆	F4 ₁₆
37E3 ₁₆	2016	3FE3 ₁₆	F0 ₁₆
37E4 ₁₆	0216	3FE4 ₁₆	F0 ₁₆
37E5 ₁₆	0016	3FE5 ₁₆	F2 ₁₆
37E6 ₁₆	1016	3FE6 ₁₆	F0 ₁₆
37E7 ₁₆	01 ₁₆	3FE7 ₁₆	F0 ₁₆
37E8 ₁₆	8016	3FE8 ₁₆	F0 ₁₆
37E9 ₁₆	0816	3FE9 ₁₆	F0 ₁₆
37EA ₁₆	0016	3FEA ₁₆	F8 ₁₆
37EB ₁₆	4016	3FEB ₁₆	F0 ₁₆
37EC ₁₆	04 ₁₆	3FEC ₁₆	F0 ₁₆
37ED ₁₆	0016	3FED ₁₆	F4 ₁₆
37EE ₁₆	2016	3FEE ₁₆	F0 ₁₆
37EF ₁₆	02 ₁₆	3FEF ₁₆	F0 ₁₆

(2) Pattern 2

Address	Data	Address	Data
37F0 ₁₆	0016	3FF0 ₁₆	F0 ₁₆
37F1 ₁₆	0016	3FF1 ₁₆	F0 ₁₆
37F2 ₁₆	0016	3FF2 ₁₆	F0 ₁₆
37F3 ₁₆	0016	3FF3 ₁₆	F0 ₁₆
37F4 ₁₆	0016	3FF4 ₁₆	F0 ₁₆
37F5 ₁₆	0016	3FF5 ₁₆	F0 ₁₆
37F6 ₁₆	0016	3FF6 ₁₆	F0 ₁₆
37F7 ₁₆	0016	3FF7 ₁₆	F0 ₁₆
37F8 ₁₆	0016	3FF8 ₁₆	F0 ₁₆
37F9 ₁₆	0016	3FF9 ₁₆	F0 ₁₆
37FA ₁₆	0016	3FFA ₁₆	F0 ₁₆
37FB ₁₆	0016	3FFB ₁₆	F0 ₁₆
37FC ₁₆	0016	3FFC ₁₆	F0 ₁₆
37FD ₁₆	0016	3FFD ₁₆	F0 ₁₆
37FE ₁₆	0016	3FFE ₁₆	F0 ₁₆
37FF ₁₆	0016	3FFF ₁₆	F0 ₁₆

GZZ-SH04-00A < 01A0 >

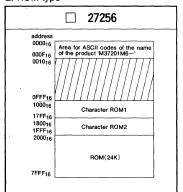
SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37201M6-XXXSP MITSUBISHI ELECTRIC

Mask R	OM number	1
	Date:	
±	Section head signature	Supervisor signature
Receipt		
Re	}	

Note: Please fill in all items marked*.

		Company		TEL		υ Φ	Submitted by	Supervisor
*	Customer	name		()	uanc		
		Date issued	Date:			lss		

※ 1. Confirmation


Specify the name of the product being ordered and the type of EPROMs submitted.

Three sets of EPROMs are required for each pattern (Check @ in the appropriate box).

If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based in this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.

Checksum code for entire EPROM				(hexadecimal notation)
i i	1	í	1	l

EPROM type

- (1) Set "FF16" in the shaded area
- (2) Write the ASCII codes that indicates the name of the product 'M37201M6-' to addresses 0000₁₆ to 000F₁₆.

※ 2. Mark specification

Mark specification must be submitted using the correct form for the type package being ordered fill out the appropriate mark specification form (64P4B for M37201M6-XXXSP) and attach to the mask ROM confirmation form.

G77	NUHO	 ′ N 1	ΛΛ.	۰

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37201M6-XXXSP MITSUBISHI ELECTRIC

Write the two types of test patterns to the specified addresses.

Mask ROM number	

3.	1	I ² C bus Would you use I ² C bus function?	□Use	□Not use
*3.	2	OSD test character pattern input.		

※ 3. 3 Comments

Writing the name of the product and character ROM data onto EPROMs.

Addresses 0000_{16} to $000F_{16}$ store the name of the product and addresses 1000_{16} to $1FFF_{16}$ store the character ROM data. Write the following ASCII codes that indicates 'M37201M6-' to addresses 0000_{16} to $000F_{16}$. If the name of the product contained in the EPROMs does not match the name on the mask ROM confirmation form, the ROM processing is disabled. Write the data correctly.

 Inputting the name of the product with the ASCII code. ASCII codes 'M37201M6-' are listed on the right. The addresses and data are in hexadecimal notation.

Address		Address	
000016	$'M' = 4 D_{16}$	000816	$'-'=2 D_{16}$
000116	$^{\circ}3^{\circ} = 33_{16}$	000916	F F 16
000216	$'7' = 37_{16}$	000A ₁₆	F F ₁₆
000316	$^{\circ}2^{\circ} = 32_{16}$	000B ₁₆	F F 16
000416	$0' = 30_{16}$	000C ₁₆	F F 16
000516	$'1' = 31_{16}$	000D ₁₆	F F ₁₆
000616	'M' = $4 D_{16}$	000E ₁₆	F F 16
000746	6' = 3646	000F46	FF

 Inputting the character ROM Input the character ROM data by dividing it into character ROM1 and character ROM2. For the character ROM data and test character patterns, see the next page and on.

*: Purchase of Mitsubishi Electric Corporation's I²C components converys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

GZZ-SH04-00A < 01A0 >

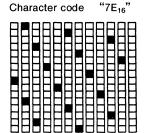
SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37201M6-XXXSP MITSUBISHI ELECTRIC

Mask	ROM	number	

The structure of character ROM (divide of 12×16 dots font)

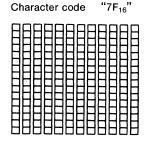
Evample					
Example	Character code "1A ₁₆ " C				
		haracter →←(OM1	Character→		
	₩ N	OMI	ROM2		
Example 11A0 ₁	0 000000000000000000000000000000000000	Example 0016 0416 0416 0416 0A16 0A16 1116 11116 2016 2016 3F16 4016 4016 0016 0016	19A0 ₁₆	b ₇ b ₆ b ₅ b ₆ 0 1 2 3 4 5 6 7 F ₁₆ 8 9 A B C D E	b3 b2 b1 b0

GZZ-SH04-00A < 01A0 >


SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37201M6-XXXSP MITSUBISHI ELECTRIC

Mask ROM number

Inputting the test character pattern


Write the following character pattern to the specified addresses.

(1) Pattern 1

Address	Data	Address	Data
17E0 ₁₆	40 ₁₆	1FE0 ₁₆	F0 ₁₆
17E1 ₁₆	04 ₁₆	1FE1 ₁₆	F0 ₁₆
17E2 ₁₆	0016	1FE2 ₁₆	F4 ₁₆
17E3 ₁₆	20 ₁₆	1FE3 ₁₆	F0 ₁₆
17E4 ₁₆	02 ₁₆	1FE4 ₁₆	F0 ₁₆
17E5 ₁₆	0016	1FE5 ₁₆	F2 ₁₆
17E6 ₁₆	10 ₁₆	1FE6 ₁₆	F0 ₁₆
17E7 ₁₆	01 ₁₆	1FE7 ₁₆	F0 ₁₆
17E8 ₁₆	8016	1FE8 ₁₆	F0 ₁₆
17E9 ₁₆	0816	1FE916	F0 ₁₆
17EA ₁₆	0016	1FEA ₁₆	F8 ₁₆
17EB ₁₆	40 ₁₆	1FEB ₁₆	F0 ₁₆
17EC ₁₆	04 ₁₆	1FEC ₁₆	F0 ₁₆
17ED ₁₆	0016	1FED ₁₆ ,	F4 ₁₆
17EE ₁₆ .	2016	1FEE ₁₆	F0 ₁₆
17EF ₁₆	02 ₁₆	1FEF ₁₆	F0 ₁₆

(2) Pattern 2

Address	Data	Address	Data
17F0 ₁₆	0016	1FF0 ₁₆	F0 ₁₆
17F1 ₁₆	0016	1FF1 ₁₆	F0 ₁₆
17F2 ₁₆	0016	1FF2 ₁₆	F0 ₁₆
17F3 ₁₆	0016	1FF3 ₁₆	F0 ₁₆
17F4 ₁₆	0016	1FF4 ₁₆	F0 ₁₆
17F5 ₁₆	0016	1FF5 ₁₆	F0 ₁₆
17F6 ₁₆	0016	1FF6 ₁₆	F0 ₁₆
17F7 ₁₆	0016	1FF7 ₁₆	F0 ₁₆
17F8 ₁₆	0016	1FF8 ₁₆	F0 ₁₆
17F9 ₁₆	0016	1FF9 ₁₆	F0 ₁₆
17FA ₁₆	0016	1FFA ₁₆	F0 ₁₆
17FB ₁₆	0016	1FFB ₁₆	F0 ₁₆
17FC ₁₆	0016	1FFC ₁₆	F0 ₁₆
17FD ₁₆	0016	1FFD ₁₆	F0 ₁₆
17FE ₁₆	0016	1FFE ₁₆	F0 ₁₆
17FF ₁₆	0016	1FFF ₁₆	F0 ₁₆

GZZ-SH03-71A (08A0)

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37202M3-XXXSP MITSUBISHI ELECTRIC

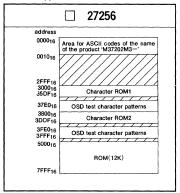
Mask ROM number	
-----------------	--

	Date :	
#	Section head signature	Supervisor signature
Receipt		
Re		
	1 1	

Note: Please fill in all items marked*.

		Company		TEL			Submitted by	Supervisor
*	Customer	name		()	ance		
		Date issued	Date:			lssu sign		

%1. Confirmation


Specify the name of the product being ordered and the type of EPROMs submitted.

Three sets of EPROMs are required for each pattern (Check @ in the appropriate box).

If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based in this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.

Checksum code for entire EPROM			(hexadecimal notation)

EPROM type

- (1) Set "FF16" in the shaded area.
- (2) Write the ASCII codes that indicates the name of the product 'M37202M3-' to addresses 0000₁₆ to 000F₁₆

% 2. Mark specification

Mark specification must be submitted using the correct form for the type package being ordered fill out the appropriate mark specification form (64P4B for M37202M3-XXXSP) and attach to the mask ROM confirmation form.

MITSUBISHI MICROCOMPUTERS

SERIES MELPS 740 MASK ROM ORDERING METHOD

\sim	77	_SH03_	71 /	1	00 4	'n	`
li	//	—5HU3-	-/ I <i>P</i>	11	USE	NE J	,

%3.3 Comments

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37202M3-XXXSP MITSUBISHI ELECTRIC

Mask ROM number	

3.	1	I ² C bus Would you use I ² C bus function?	□Use	□Not use
*3.	2	OSD test character pattern input. Write the two types of test patterns t	o the spec	ified addresses.

Writing the name of the product and character ROM data onto EPROMs.

Addresses 0000_{16} to $000F_{16}$ store the name of the product and addresses 3000_{16} to $3FFF_{16}$ store the character ROM data. Write the following ASCII codes that indicates 'M37202M3-' to addresses 0000_{16} to $000F_{16}$. If the name of the product contained in the EPROMs does not match the name on the mask ROM confirmation form, the ROM processing is disabled. Write the data correctly.

 Inputting the name of the product with the ASCII code. ASCII codes 'M37202M3-' are listed on the right. The addresses and data are in hexadecimal notation.

Address		Address	
000016	$'M' = 4 D_{16}$		$'-'=2 D_{16}$
000116	$'3' = 33_{16}$	000916	F F 16
000216	$'7' = 37_{16}$	000A ₁₆	F F 16
000316	$^{\circ}2^{\circ} = 32_{16}$	000B ₁₆	F F 16
000416	$0' = 30_{16}$	000C ₁₆	F F 16
000516	$^{\circ}2^{\circ} = 32_{16}$	000D ₁₆	F F ₁₆
000616	$'M' = 4 D_{16}$	000E ₁₆	F F 16
0007	'3' = 33	000F	F F

 Inputting the character ROM Input the character ROM data by dividing it into character ROM1 and character ROM2. For the character ROM data and test character patterns, see the next page and on.

*: Purchase of Mitsubishi Electric Corporation's I²C components converys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

GZZ-SH03-71A < 08A0 >

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37202M3-XXXSP MITSUBISHI ELECTRIC

Mask ROM	number	

The structure of character ROM (divide of 12×16 dots font)

Example										
						300				
	(Character code		1000	امموود	300				
				1000	3 6 000	300				
		"1A ₁₆ "		10001						
				10001		200		1		
						300				
						300				
					0000	300				
			C		0000					
						200				
			c		00000					
		•	Ē		00000			1		
			Ē		000001					
			Ē		00000					
					00000					
			-							
				haracter	→←Ch	aracter→				
				OM1		ROM2				
			1/			72				
		b ₇ b ₆ b ₅ b ₄ b ₃ b	. h. h.		Example	39A0 ₁₆		ha ha ha ha	b ₃ b ₂ b ₁ b ₀	
Example	31A0 ₁₆			0016	Example	(0	-, 0, 0, 0,		F0 ₁₆
	5	1 00000		04 ₁₆		>	1			
	31AF ₁₆	2 00000		04 ₁₆		39ÁF ₁₆	2			
	01711 18	3 00000		04 ₁₆		007.11 16	3		0000	
		4 0000					4			
		5 "0000000		0A ₁₆			5	•	0000	
				11 ₁₆			6		0000	
				11 ₁₆			7	F ₁₆		
		7 000000		11 ₁₆				1 16		
				20 ₁₆			8			
		9 00 00 0	100	2016			9		-	
				3F ₁₆			A			
		в Опо		40 ₁₆			В			
		c 00000		4016			С			
				40 ₁₆			D			
		E 00000		0016			Ε			
		F 00000		0016			F			J F0₁6

GZZ-SH03-71A (08A0)

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37202M3-XXXSP MITSUBISHI ELECTRIC

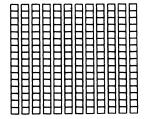
Mask ROM number

Inputting the test character pattern

"7E₁₆"

Write the following character pattern to the specified addresses.

(1) Pattern 1


Character code

		HHH	HHH	
	1.11.11	1 11 11 1		
HHH	ннн	HHH	HH	
HHE	HHH	\blacksquare \square \square	HHH	
ЦЦЦ	$\sqcup \sqcup \sqcup$			
$\neg \neg \neg$	$\neg \neg \neg$			
HHH		HHH		
ннн	FHH		HHH	
	μ		HHH	
$\neg \neg \neg$			nnn	
ннн	HHH		HHH.	
HHH	HHH	HHH	HHH.	
	$\sqcup \sqcup \sqcup$			
HHH		$\neg \neg \neg$		
HH	HHH	HHHH	IBHH.	
	HHH		инн	
			шшш	

Address	Data	Address	Data
37E0 ₁₆	40 ₁₆	3FE0 ₁₆	F0 ₁₆
37E1 ₁₆	04 ₁₆	3FE1 ₁₆	F0 ₁₆
37E2 ₁₆	0016	3FE2 ₁₆	F4 ₁₆
37E3 ₁₆	2016	3FE3 ₁₆	F0 ₁₆
37E4 ₁₆	0216	3FE4 ₁₆	F0 ₁₆
37E5 ₁₆	0016	3FE5 ₁₆	F2 ₁₆
37E6 ₁₆	1016	3FE6 ₁₆	F0 ₁₆
37E7 ₁₆	01 ₁₆	3FE7 ₁₆	F0 ₁₆
37E8 ₁₆	80 ₁₆	3FE8 ₁₆	F0 ₁₆
37E9 ₁₆	0816	3FE9 ₁₆	F0 ₁₆
37EA ₁₆	0016	3FEA ₁₆	F8 ₁₆
37EB ₁₆	40 ₁₆	3FEB ₁₆	F0 ₁₆
37EC ₁₆	04 ₁₆	3FEC ₁₆	F0 ₁₆
37ED ₁₆	0016	3FED ₁₆	F4 ₁₆
37EE ₁₆	2016	3FEE ₁₆	F0 ₁₆
37EF ₁₆	. 02 ₁₆	3FEF ₁₆	F0 ₁₆

(2) Pattern 2

"7F₁₆" Character code

Address	Data	Address	Data
37F0 ₁₆	0016	3FF0 ₁₆	F0 ₁₆
37F1 ₁₆	0016	3FF1 ₁₆	F0 ₁₆
37F2 ₁₆	0016	3FF2 ₁₆	F0 ₁₆
37F3 ₁₆	0016	3FF3 ₁₆	F0 ₁₆
37F4 ₁₆	0016	3FF4 ₁₆	F0 ₁₆
37F5 ₁₆	0016	3FF5 ₁₆	F0 ₁₆
37F6 ₁₆	0016	3FF6 ₁₆	F0 ₁₆
37F7 ₁₆	0016	3FF7 ₁₆	F0 ₁₆
37F8 ₁₆	0016	3FF8 ₁₆	F0 ₁₆
37F9 ₁₆	0016	3FF9 ₁₆	F0 ₁₆
37FA ₁₆	0016	3FFA ₁₆	F0 ₁₆
37FB ₁₆	0016	3FFB₁6	F0 ₁₆
37FC ₁₆	0016	3FFC ₁₆	F0 ₁₆
37FD ₁₆	0016	3FFD ₁₆	F0 ₁₆
37FE ₁₆	0016	3FFE ₁₆	F0 ₁₆
37FF ₁₆	0016	3FFF ₁₆	F0 ₁₆

GZZ-SH04-09A (11A0)

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37204M8-XXXSP MITSUBISHI ELECTRIC

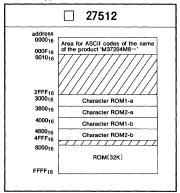
Mask R	OM number	
	Date:	

Date:	
Section head signature	Supervisor signature
	Section head

Note: Please fill in all items marked*

*	Customer	Company name		TEL ()	ance	Submitted by	Supervisor
	i	Date issued	Date:			Issu		

※ 1. Confirmation


Specify the name of the product being ordered and the type of EPROMs submitted.

Three sets of EPROMs are required for each pattern (Check @ in the appropriate box).

If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based in this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.

Checksum code for entire EPROM			(hexadecimal notation)

EPROM type

- (1) Set "FF16" in the shaded area.
- (2) Write the ASCII codes that indicates the name of the product 'M37204M8-' to addresses 0000₁₆ to 000F₁₆.

※ 2. Mark specification

Mark specification must be submitted using the correct form for the type package being ordered fill out the appropriate mark specification form (64P4B for M37204M8-XXXSP) and attach to the mask ROM confirmation form.

,	$\overline{}$	77		111	Λ 4	_09		,	4 4	٨	^	,
ı	[-i	//	>	SH	D4-	(19	м	۲.	77	Α	()	- 2

ATION FORM

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37204M8-XXXSP MITSUBISHI ELECTRIC

3.	1	I ² C bus Would you use I ² C bus function?	□Use	□Not use
※ 3.	2	OSD test character pattern input. Write the two types of test patterns	to the spec	ified addresses.

%3.3 Comments

Writing the name of the product and character ROM data onto EPROMs.

Addresses 0000₁₆ to 000F₁₆ store the name of the product and addresses 3000₁₆ to 4FFF₁₆ store the character ROM data. Write the following ASCII codes that indicates 'M37204M8-' to addresses 0000₁₆ to 000F₁₆. If the name of the product contained in the EPROMs does not match the name on the mask ROM confirmation form, the ROM processing is disabled. Write the data correctly.

 Inputting the name of the product with the ASCII code. ASCII codes 'M37204M8-' are listed on the right. The addresses and data are in hexadecimal notation.

Address		Address	
000016	$'M' = 4 D_{16}$	0008 ₁₆	$'-'=2 D_{16}$
000116	$3' = 33_{16}$	000916	F F ₁₆
000216	$'7' = 37_{16}$	000A ₁₆	F F ₁₆
000316	$^{\circ}2^{\circ} = 32_{16}$	000B ₁₆	F F ₁₆
000416	$^{\circ}0^{\circ} = 30_{16}$	000C ₁₆	F F ₁₆
000516	$'4' = 34_{16}$	000D ₁₆	FF ₁₆
000616	$'M' = 4 D_{16}$	000E ₁₆	FF ₁₆
000716	$'8' = 38_{16}$	000F ₁₆	F F 16

Inputting the character ROM
 Input the character ROM data by dividing it into character ROM1 and character ROM2. For the character ROM
 data and test character patterns, see the next page and on.

*: Purchase of Mitsubishi Electric Corporation's I²C components converys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

GZZ-SH04-09A (11A0)

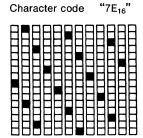
SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37204M8-XXXSP MITSUBISHI ELECTRIC

Mask ROM number

The structure of character ROM (divide of 12X16 dots font)

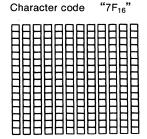
Example	Character code [["1A ₁₆ " [(Note 100 Write 100	the charactesses 3000 ₁₆ to	er code $80_{16} \sim FF_{16}$ to
`			aracter→ ROM2		
Example	31AO ₁₆ Document	00 ₁₆ 04 ₁₆ 04 ₁₆ 0A ₁₆ 0A ₁₆ 11 ₁₆ 11 ₁₆ 11 ₁₆ 120 ₁₆ 20 ₁₆ 3F ₁₆ 40 ₁₆ 40 ₁₆ 40 ₁₆	39AF ₁₆ 2	1 2 3 4 5 6	b ₃ b ₂ b ₁ b ₀

GZZ-SH04-09A (11A0)


SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37204M8-XXXSP MITSUBISHI ELECTRIC

Mask ROM number

Inputting the test character pattern


Write the following character pattern to the specified addresses.

(1) Pattern 1

Address	Data	Address	Data
37E0 ₁₆	40 ₁₆	3FE0 ₁₆	F0 ₁₆
37E1 ₁₆	04 ₁₆	3FE1 ₁₆	F0 ₁₆
37E2 ₁₆	0016	3FE2 ₁₆	F4 ₁₆
37E3 ₁₆	20 ₁₆	3FE3 ₁₆	F0 ₁₆
37E4 ₁₆	02 ₁₆	3FE4 ₁₆	F0 ₁₆
37E5 ₁₆	0016	3FE5 ₁₆	F2 ₁₆
37E6 ₁₆	10 ₁₆	3FE6 ₁₆	F0 ₁₆
37E7 ₁₆	01 ₁₆	3FE7 ₁₆	F0 ₁₆
37E8 ₁₆	8016	3FE8 ₁₆	F0 ₁₆
37E9 ₁₆	0816	3FE9 ₁₆	F0 ₁₆
37EA ₁₆	0016	3FEA ₁₆	F8 ₁₆
37EB ₁₆	4016	3FEB ₁₆	F0 ₁₆
37EC ₁₆	04 ₁₆	3FEC ₁₆	F0 ₁₆
37ED ₁₆	0016	3FED ₁₆	F4 ₁₆
37EE ₁₆	2016	3FEE ₁₆	F0 ₁₆
37EF ₁₆	0216	3FEF ₁₆	F0 ₁₆

(2) Pattern 2

Address	Data	Address	Data
37F0 ₁₆	0016	3FF0 ₁₆	F0 ₁₆
37F1 ₁₆	0016	3FF1 ₁₆	F0 ₁₆
37F2 ₁₆	0016	3FF2 ₁₆	F0 ₁₆
37F3 ₁₆	0016	3FF3 ₁₆	F0 ₁₆
37F4 ₁₆	0016	3FF4 ₁₆	F0 ₁₆
37F5 ₁₆	0016	3FF5 ₁₆	F0 ₁₆
37F6 ₁₆	0016	3FF6 ₁₆	F0 ₁₆
37F7 ₁₆	0016	3FF7 ₁₆	F0 ₁₆
37F8 ₁₆	0016	3FF8 ₁₆	F0 ₁₆
37F9 ₁₆	0016	3FF9 ₁₆	F0 ₁₆
37FA ₁₆	0016	3FFA ₁₆	F0 ₁₆
37FB ₁₆	0016	3FFB₁6	F0 ₁₆
37FC ₁₆	0016	3FFC₁6	F0 ₁₆
37FD ₁₆	0016	3FFD ₁₆	F0 ₁₆
37FE ₁₆	0016	3FFE ₁₆	F0 ₁₆
37FF ₁₆	0016	3FFF ₁₆	F0 ₁₆

GZZ-SH04-01A(0YA0)

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37250M6-XXXSP MITSUBISHI ELECTRIC

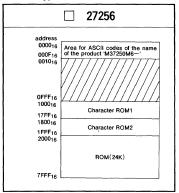
Mask R	OM number	

	Date :	
Receipt	Section head signature	Supervisor signature
Re		

Note: Please fill in all items marked%.

		Company		TEL			Submitted by	Supervisor
*	Customer	name		()	ance		
		Date issued	Date:			Issu		

※ 1. Confirmation


Specify the name of the product being ordered and the type of EPROMs submitted.

Three sets of EPROMs are required for each pattern (Check @ in the appropriate box).

If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based in this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.

Checksum code for entire EPROM			(hexadecimal notation)

EPROM type

- (1) Set "FF16" in the shaded area.
- (2) Write the ASCII codes that indicates the name of the product 'M37250M6-' to addresses 0000₁₆ to 000F₁₆.

※ 2. Mark specification

Mark specification must be submitted using the correct form for the type package being ordered fill out the appropriate mark specification form (64P4B for M37250M6-XXXSP) and attach to the mask ROM confirmation form.

GZZ-SH04-01A(0YA0)

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37250M6-XXXSP MITSUBISHI ELECTRIC

Mask ROM	number	

 $-' = 2 D_{16}$

F F 16

F F 16 F F 16 F F 16 F F 16 F F 16

※3.	1	I ² C bus*
		Mandal

Would you use I²C bus function?

☐Use ☐Not use

※ 3. 2 OSD test character pattern input.

Write the two types of test patterns to the specified addresses.

%3.3 Comments

Writing the name of the product and character ROM data onto EPROMs.

Addresses 0000_{16} to $000F_{16}$ store the name of the product and addresses 1000_{16} to $1FFF_{16}$ store the character ROM data. Write the following ASCII codes that indicates 'M37250M6-' to addresses 0000_{16} to $000F_{16}$. If the name of the product contained in the EPROMs does not match the name on the mask ROM confirmation form, the ROM processing is disabled. Write the data correctly.

Address

 Inputting the name of the product with the ASCII code. ASCII codes 'M37250M6-' are listed on the right. The addresses and data are in hexadecimal notation.

0000 ₁₆	$'M' = 4 D_{16}$	000816
0001 ₁₆	$3' = 33_{16}$	0009 ₁₆
0002 ₁₆	$'7' = 37_{16}$	000A ₁₆
0003 ₁₆	$^{\circ}2^{\circ} = 32_{16}$	000B ₁₆
000416	$^{\circ}5^{\circ} = 35_{16}^{\circ}$	000C ₁₆
0005 ₁₆	$'0' = 30_{16}$	000D ₁₆
000616	$'M' = 4 D_{16}$	000E ₁₆
0007 ₁₆	$6' = 36_{16}$	000F ₁₆

Inputting the character ROM
 Input the character ROM data by dividing it into character ROM1 and character ROM2. For the character ROM
 data and test character patterns, see the next page and on.

*: Purchase of Mitsubishi Electric Corporation's I²C components converys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

GZZ-SH04-01A(0YA0)

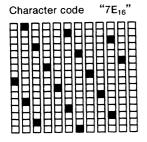
SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37250M6-XXXSP MITSUBISHI ELECTRIC

Mask	ROM	numb	er	

The structure of character ROM (divide of 12×16 dots font)

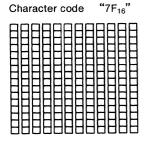
Example	Character code C "1A ₁₆ " C C C C C C C C C C C C C C C C C C C	DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD	00 00 00 00 00 00 00 00 00 00		
Example	11AO ₁₆	Example 00 ₁₆ 04 ₁₆ 04 ₁₆ 0A ₁₆ 0A ₁₆ 11 ₁₆ 11 ₁₆ 11 ₁₆ 20 ₁₆ 20 ₁₆ 3F ₁₆ 40 ₁₆ 40 ₁₆ 40 ₁₆ 00 ₁₆ 00 ₁₆	19A0 ₁₆ 19AF ₁₆	b ₇ b ₆ b ₅ b ₄ 0 1 2 3 4 5 6 7 F ₁₆ 8 9 A B C D E F	b ₃ b ₂ b ₁ b ₀ F0 ₁₆

GZZ-SH04-01A(0YA0)


SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37250M6-XXXSP MITSUBISHI ELECTRIC

Mask ROM number

Inputting the test character pattern


Write the following character pattern to the specified addresses.

(1) Pattern 1

Address	Data	Address	Data
17E0 ₁₆	40 ₁₆	1FE0 ₁₆	F0 ₁₆
17E1 ₁₆	04 ₁₆	1FE1 ₁₆	F0 ₁₆
17E2 ₁₆	0016	1FE2 ₁₆	F4 ₁₆
17E3 ₁₆	20 ₁₆ ·	1FE3 ₁₆	F0 ₁₆
17E4 ₁₆	02 ₁₆	1FE4 ₁₆	F0 ₁₆
17E5 ₁₆	0016	1FE5 ₁₆	F2 ₁₆
17E6 ₁₆	10 ₁₆	1FE6 ₁₆	F0 ₁₆
17E7 ₁₆	01 ₁₆	1FE7 ₁₆	F0 ₁₆
17E8 ₁₆	80 ₁₆	1FE8 ₁₆	F0 ₁₆
17E9 ₁₆	0816	1FE9 ₁₆	F0 ₁₆
17EA ₁₆	0016	1FEA ₁₆	F8 ₁₆
17EB ₁₆	4016	1FEB ₁₆	F0 ₁₆
17EC ₁₆	0416	1FEC ₁₆	F0 ₁₆
17ED ₁₆	0016	1FED ₁₆	F4 ₁₆
17EE ₁₆	2016	1FEE ₁₆	F0 ₁₆
17EF ₁₆	02 ₁₆	1FEF ₁₆	F0 ₁₆

(2) Pattern 2

Address	Data	Address	Data
17F0 ₁₆	0016	1FF0 ₁₆	F0 ₁₆
17F1 ₁₆	0016	1FF1 ₁₆	F0 ₁₆
17F2 ₁₆	0016	1FF2 ₁₆	F0 ₁₆
17F3 ₁₆	0016	1FF3 ₁₆	F0 ₁₆
17F4 ₁₆	0016	1FF4 ₁₆	F0 ₁₆
17F5 ₁₆	0016	1FF5 ₁₆	F0 ₁₆
17F6 ₁₆	0016	1FF6 ₁₆	F0 ₁₆
17F7 ₁₆	0016	1FF7 ₁₆	F0 ₁₆
17F8 ₁₆	0016	1FF8 ₁₆	F0 ₁₆
17F9 ₁₆	0016	1FF9 ₁₆	F0 ₁₆
17FA ₁₆	0016	1FFA ₁₆	F0 ₁₆
17FB ₁₆	0016	1FFB ₁₆	F0 ₁₆
17FC ₁₆	0016	1FFC ₁₆	F0 ₁₆
17FD ₁₆	0016	1FFD ₁₆	F0 ₁₆
17FE ₁₆	0016	1FFE ₁₆	F0 ₁₆
17FF ₁₆	0016	1FFF ₁₆	F0 ₁₆

GZZ-SH04-05A (0ZA0)

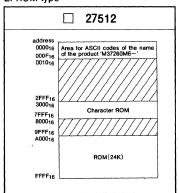
SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37260M6-XXXSP MITSUBISHI ELECTRIC

Mask F	ROM number	
	Date :	
# <u></u>	Section head signature	Supervisor signature
Receipt		

Note: Please fill in all items marked *.

Compa	Company	-	TEL			Submitted by	Supervisor	
*	Customer	name		()	ance		
		Date issued	Date:			lssu sign		

%1. Confirmation


Specify the name of the product being ordered and the type of EPROMs submitted.

Three sets of EPROMs are required for each pattern (Check @ in the appropriate box).

If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based in this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.

Checksum code for entire EPROM				(hexadecimal notation)
	•	1	}	

EPROM type

- (1) Set "FF₁₆" in the shaded area.
- (2) Write the ASCII codes that indicates the name of the product 'M37260M6-' to addresses 000016 to 000F16.

※ 2. Mark specification

Mark specification must be submitted using the correct form for the type package being ordered fill out the appropriate mark specification form (52P4B for M37260M6-XXXSP) and attach to the mask ROM confirmation form.

\sim	77	_SH	α	OE A	 771	n \

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37260M6-XXXSP MITSUBISHI ELECTRIC

Mask ROM number	

※3.	1	I ² C bus* Would you use I ² C bus function?	□Use	□Not use	
※3.	2	OSD test character pattern input. Write the two types of test patterns	to the spec	ified addresses.	
※3.	3	Comments	_		

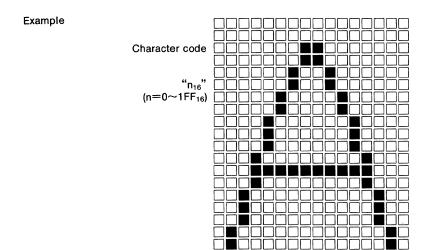
Writing the name of the product and character ROM data onto EPROMs.

Addresses 0000_{16} to $000F_{16}$ store the name of the product and addresses 3000_{16} to $7FFF_{16}$ store the character ROM data. Write the following ASCII codes that indicates 'M37260M6-' to addresses 0000_{16} to $000F_{16}$. If the name of the product contained in the EPROMs does not match the name on the mask ROM confirmation form, the ROM processing is disabled. Write the data correctly.

 Inputting the name of the product with the ASCII code. ASCII codes 'M37260M6-' are listed on the right. The addresses and data are in hexadecimal notation.

Address		Address	
000016	$'M' = 4 D_{16}$	000816	$'-'=2 D_{16}$
000116	$3' = 33_{16}$	000916	F F ₁₆
000216	$'7' = 37_{16}$	000A ₁₆	F F ₁₆
000316	$'2' = 32_{16}$	000B ₁₆	F F ₁₆
000416	$6' = 36_{16}$	000C ₁₆	F F 16
000516	$^{\circ}0^{\circ} = 30_{16}$	000D ₁₆	F F 16
000616	$'M' = 4 D_{16}$	000E ₁₆	F F ₁₆
000716	$^{\circ}6^{\circ} = 36_{16}$	000F ₁₆	F F 16

- Inputting the character ROM Input the character ROM data by dividing it into four parts. For the character ROM data and test character patterns, see the next page and on.
- *: Purchase of Mitsubishi Electric Corporation's I²C components converys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.



GZZ-SH04-05A < 0ZA0 >

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37260M6-XXXSP MITSUBISHI ELECTRIC

Mask	ROM	numbe	er	

The structure of character ROM (divide of 16×20 dots font)

Character	Character	Character	Character
ROM address	ROM data	ROM address	ROM data
$b_7 b_6 b_5 b_4 b_3 b_2$		b_7 b_6 b_5 b_4 b_3 b_2 b_4	
$3000_{16} + 20_{16} \times n_{16} + 0_{16}$	0016	$3000_{16} + 20_{16} \times n_{16} + 1_{16}$	00 ₁₆
$3000_{16} + 20_{16} \times n_{16} + 2_{16}$	0016	$3000_{16} + 20_{16} \times n_{16} + 3_{16}$	0016
$3000_{16} + 20_{16} \times n_{16} + 4_{16}$	01 ₁₆	$3000_{16} + 20_{16} \times n_{16} + 5_{16}$	80 ₁₆
3000 ₁₆ +20 ₁₆ ×n ₁₆ +6 ₁₆	01 ₁₆	$3000_{16} + 20_{16} \times n_{16} + 7_{16}$	8016
$3000_{16} + 20_{16} \times n_{16} + 8_{16}$	02 ₁₆	$3000_{16} + 20_{16} \times n_{16} + 9_{16}$	4016
3000 ₁₆ +20 ₁₆ ×n ₁₆ +A ₁₆	02 ₁₆	$3000_{16} + 20_{16} \times n_{16} + B_{16}$	4016
3000 ₁₆ +20 ₁₆ ×n ₁₆ +C ₁₆	0416	$3000_{16} + 20_{16} \times n_{16} + D_{16}$	2016
3000 ₁₆ +20 ₁₆ ×n ₁₆ +E ₁₆	0416	$3000_{16} + 20_{16} \times n_{16} + F_{16}$	2016
3000 ₁₆ +20 ₁₆ ×n ₁₆ +10 ₁₆	08 ₁₆	3000 ₁₆ +20 ₁₆ ×n ₁₆ +11 ₁₆	1016
3000 ₁₆ +20 ₁₆ ×n ₁₆ +12 ₁₆	08 ₁₆	$3000_{16} + 20_{16} \times n_{16} + 13_{16}$	1016
$3000_{16} + 20_{16} \times n_{16} + 14_{16}$	08 ₁₆	$3000_{16} + 20_{16} \times n_{16} + 15_{16}$	10 ₁₆
$3000_{16} + 20_{16} \times n_{16} + 16_{16}$	1016	$3000_{16} + 20_{16} \times n_{16} + 17_{16}$	0816
$3000_{16} + 20_{16} \times n_{16} + 18_{16} $	1F ₁₆	$3000_{16} + 20_{16} \times n_{16} + 19_{16}$	F8 ₁₆
$3000_{16} + 20_{16} \times n_{16} + 1A_{16}$	10 ₁₆	$3000_{16} + 20_{16} \times n_{16} + 1B_{16}$	08 ₁₆
$3000_{16} + 20_{16} \times n_{16} + 1C_{16}$	20 ₁₆	$3000_{16}+20_{16}\times n_{16}+1D_{16}$	04 ₁₆
$3000_{16} + 20_{16} \times n_{16} + 1E_{16}$	20 ₁₆	$3000_{16} + 20_{16} \times n_{16} + 1F_{16}$	0416
b ₇ b ₆ b ₅ b ₄ b ₃ b ₂	b ₁ b ₀	b ₇ b ₆ b ₅ b ₄ b ₃ b ₂ b	0 ₁ b ₀
$7000_{16} + 8_{16} \times n_{16} + 0_{16}$	20 ₁₆	$7000_{16} + 8_{16} \times n_{16} + 1_{16}$	04 ₁₆
$7000_{16} + 8_{16} \times n_{16} + 2_{16}$	4016	$7000_{16} + 8_{16} \times n_{16} + 3_{16}$	02 ₁₆
7000 ₁₆ +8 ₁₆ ×n ₁₆ +4 ₁₆	4016	$7000_{16} + 8_{16} \times n_{16} + 5_{16}$	02 ₁₆
7000 ₁₆ +8 ₁₆ ×n ₁₆ +6 ₁₆	0016	$7000_{16} + 8_{16} \times n_{16} + 7_{16}$	0016

GZZ-SH04-05A < 0ZA0 >

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37260M6-XXXSP MITSUBISHI ELECTRIC

Mask ROM number

Inputting the test character pattern
Write the following character pattern to the specified addresses.

(1) Pattern 1

"1FE₁₆" Character code

Address	Data	Address	Data
6FC0 ₁₆	88 ₁₆	6FD0 ₁₆	22 ₁₆
6FC1 ₁₆	11 ₁₆	6FD1 ₁₆	22 ₁₆
6FC2 ₁₆	0016	6FD2 ₁₆	00 ₁₆
6FC3 ₁₆	0016	6FD3 ₁₆	0016
6FC4 ₁₆	0016	6FD4 ₁₆	, 00 ₁₆
6FC5 ₁₆	0016	6FD5 ₁₆	0016
6FC6 ₁₆	0016	6FD6 ₁₆	0016
6FC7 ₁₆	0016	6FD7 ₁₆	0016
6FC8 ₁₆	44 ₁₆	6FD8 ₁₆	11 ₁₆
6FC9 ₁₆	44 ₁₆	6FD9 ₁₆	11 ₁₆
6FCA ₁₆	0016	6FDA ₁₆	0016
6FCB ₁₆	0016	6FDB ₁₆	. 0016
6FCC ₁₆	0016	6FDC ₁₆	0016
6FCD ₁₆	0016	6FDD ₁₆	0016
6FCE ₁₆	0016	6FDE ₁₆	0016
6FCF ₁₆	0016	6FDF ₁₆	0016
7FF0 ₁₆	0816	7FF4 ₁₆	0016
7FF1 ₁₆	88 ₁₆	7FF5 ₁₆	0016
7FF2 ₁₆	0016	7FF6 ₁₆	80 ₁₆
7FF3 ₁₆	0016	7FF7 ₁₆	11 ₁₆

(2) Pattern 2

Character code

Address	Data	Address	Data
6FE0 ₁₆	0016	6FF0 ₁₆	0016
6FE1 ₁₆	0016	6FF1 ₁₆	0016
6FE2 ₁₆	00 ₁₆	6FF2 ₁₆	0016
6FE3 ₁₆	0016	6FF3 ₁₆	0016
6FE4 ₁₆	00 ₁₆	6FF4 ₁₆	0016
6FE5 ₁₆	0016	6FF5 ₁₆	0016
6FE6 ₁₆	0016	6FF6 ₁₆	0016
6FE7 ₁₆	00 ₁₆	6FF7 ₁₆	0016
6FE8 ₁₆	0016	6FF8 ₁₆	0016
6FE9 ₁₆	0016	6FF9 ₁₆	0016
6FEA ₁₆	0016	6FFA ₁₆	0016
6FEB ₁₆	00 ₁₆	6FFB₁6	0016
6FEC ₁₆	00 ₁₆	6FFC₁6	0016
6FED ₁₆	0016	6FFD ₁₆	0016
6FEE ₁₆	0016	6FFE ₁₆	00 ₁₆
6FEF ₁₆	0016	6FFF ₁₆	00 ₁₆
7FF8 ₁₆	0016	7FFC ₁₆	0016
7FF9 ₁₆	0016	7FFD ₁₆	0016
7FFA ₁₆	0016	7FFE ₁₆	0016
7FFB ₁₆	0016	7FFF ₁₆	0016

GZZ-SH01-60A (86A0)

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37409M2-XXXSP/FP MITSUBISHI ELECTRIC

Mask ROM number	

	Date:	
Receipt	Section head signature	Supervisor signature
Rec		

Note: Please fill in all items marked ...

		Company		TEL			Submitted by	Supervisor
*	Customer	name		()	iance iature		
		Date issued	Date:			lssu		

***1.** Confirmation

Specify the name of the product being ordered and the type of EPROMs submitted.

Three sets of EPROMs are required for each pattern (Check @ in the appropriate box).

If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based in this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.

Microcomputer name:

☐ M37409M2-XXXSP

☐ M37409M2-XXXFP

Checksum code for entire EPROM

(hexadecimal notation)

EPROM type

□ 2764	□ 27128
Address 0000 ₁₆ Area for ASCII codes of the catalog name 'M37409M2—'.	Address 0000 ₁₆ Area for ASCII codes of the catalog name 'M37409M2'
0FFF ₁₆	2FFF ₁₆
1FFF ₁₆ ROM(4 K)	3FFF ₁₆ ROM(4 K)

- (1) Set "FF₁₆" in the shaded area.
- (2) Write the ASCII codes that indicates the name of the product 'M37409M2—' to addresses 0000₁₆ to 000F₁₆. ASCII codes 'M37409M2—' are listed on the right.

The addresses and data are in hexadecimal notation.

Address		Address	
000016	$'M' = 4 D_{16}$	000816	$'-'=2 D_{16}$
000116	$3' = 33_{16}$	000916	F F ₁₆
000216	$'7' = 37_{16}$	000A ₁₆	F F 16
000316	$'4' = 34_{16}$	000B ₁₆	F F ₁₆
000416	$'0' = 30_{16}$	000C ₁₆	F F ₁₆
000516	$9' = 39_{16}$	000D ₁₆	F F ₁₆
000616	$'M' = 4 D_{16}$	000E ₁₆	F F ₁₆
0007 ₁₆	$^{\circ}2^{\circ} = 32_{16}$	000F ₁₆	FF ₁₆

GZZ-SH01-60A (86A0)

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37409M2-XXXSP/FP MITSUBISHI ELECTRIC

Mask ROM number	

Recommend to writing the following pseudo-command to the start address of the assembler source program.

EPROM type	2764	27128	
The pseudo-command	*=△\$E000	*=△\$C000	
	.BYTE△ 'M37409M2—'	.BYTE△ 'M37409M2—'	

This is an example when the start address of internal ROM is F000₁₆.

*** 2.** Mark specification

Mark specification must be submitted using the correct form for the type package being ordered fill out the appropriate mark specification form (52P4B for M37409M2-XXXSP; 50P6N for M37409M2-XXXFP) and attach to the mask ROM confirmation form.

***3.** Comments

GZZ-SH04-13A (11A0)

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37410M3HXXXFP MITSUBISHI ELECTRIC

Mask F		
}	Date :	
=	Section head signature	Supervisor signature
Receipt		
~		
Ĭ		
1		

Note: Please fill in all items marked ...

		Company		TEL			Submitted by	Supervisor
*	Customer	name		()	ance ature		
		Date issued	Date:			Issu		į

※1. Confirmation

Specify the name of the product being ordered and the type of EPROMs submitted.

Three sets of EPROMs are required for each pattern (Check @ in the appropriate box).

If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based in this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.

Checksum code for entire EPROM			(hexadecimal notation)
Checksum code for entire EPHOW			(nexadecimal notation)

EPROM type

□ 27128	□ 27256	27512
address 0000 Port P0 pull-up 0001 Port P1 pull-up Port P2 pull-up Port P2 pull-up Port P3 pull-up Port P4 pull-up Port P5 pull-up Port P5 pull-up Port P5 pull-up Port P5 pull-up Port P5 pull-up Port P5 pull-up Port P5 pull-up Port P5 pull-up Port P5 pull-up Port P5 pull-up Port P5 pull-up Port P5 pull-up Port P5 pull-up Port P5 pull-up Port P5 pull-up Port P5 pull-up Port P6 pull-up Port P6 pull-up Port P6 pull-up Port P6 pull-up Port P6 pull-up Port P6 pull-up Port P6 pull-up Port P6 pull-up Port P6 pull-up Port P6 pull-up Port P6 pull-up Port P6 pull-up Port P6 pull-up Port P7 pull-up Port P7 pull-up Port P6 pull-up Port P7 pull-up P0rt P7 pull	address 0000 Port P0 pull-up 0001 Port P1 pull-up 0002 Port P2 pull-up 0003 Port P3 pull-up 0004 Port P4 pull-up 0005 Port P5 pull-up 0006 Port P4 pvll-up 0007 Port P5 pull-up 0007 Port P5 pull-up 0007 Port P5 pull-up 0007 Port P5 pull-up 0007 Port P5 pull-up 0007 Port P5 pull-up 0007 Port P5 pull-up 0007 Port P5 pull-up 0007 Port P5 pull-up 0007 Port P5 pull-up 0007 Port P5 pull-up 0005 Port P6 port P5 pull-up 0005 Port P5 p	address 0000 Port P0 pull-up 0001 Port P1 pull-up 0002 Port P2 pull-up 0003 Port P2 pull-up 0004 Port P4 pull-up 0006 Port P4 pull-up 0006 Port P4 pull-up 0006 Port P4 pull-up 0007 Port P4 pull-up 0007 Port P5 pull-up 0007 Port P4 pull-up 0007 Port P4 pull-up 0007 Port P4 pull-up 0007 Port P4 pull-up 0007 Port P4 pull-up 0007 Port P4 pull-up 0007 Port P5 pull-up 0007 Port P4 pull-up 0007 Port P5

Set "FF16" in the shaded area.

※ 2. Mark specification

Mark specification must be submitted using the correct form for the type package being ordered fill out the appropriate mark specification form (80P6S for M37410M3HXXXFP) and attach to the mask ROM confirmation form.

% 3. Comments

GZZ-SH04-13A (11A0)

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37410M3HXXXFP MITSUBISHI ELECTRIC

		 _
Mask ROM	1 number	1

- * 4. Option specification (write the option data also at the specified address in the EPROM)
- 1. Port P0 pull-up transistor (if built-in is desired write 1, if not write 0)

	P0 ₇	$P0_6$	P0 ₅	P0₄	$P0_3$	$P0_2$	P0₁	$P0_0$
address 0000 ₁₆			•					

2. Port P1 pull-up transistor (if built-in is desired write 1, if not write 0)

	P1 ₇	P1 ₆	P1 ₅	P1₄	P1 ₃	P1 ₂	P1 ₁	$P1_0$
address 0001 ₁₆								

3. Port P2 pull-up transistor (if built-in is desired write 1, if not write 0)

	P2 ₇	P2 ₆	P2 ₅	P2 ₄	P2 ₃	P2 ₂	P2₁	P2 _o	
address 0002 ₁₆									

4. Port P3 pull-up transistor (if built-in is desired write 1, if not write 0)

	P3 ₇	P3 ₆	P3 ₅	P3₄	P3 ₃	P3 ₂	P3 ₁	P3 _o
address 0003 ₁₆								

5. Port P4 pull-up transistor (if built-in is desired write 1, if not write 0)

					P4 ₃	P4 ₂	P4 ₁	P4 _o	
address 0004 ₁₆	0	0	0	0					

6. Port P5 pull-up transistor (if built-in is desired write 1, if not write 0)

	P5 ₇	P5 ₆	P5 ₅	P5₄	P5 ₃	P5 ₂	P5 ₁	P5 ₀
address 0005 ₁₆								

7. Port P2 key on wake-up (if built-in is desired write 1, if not write 0)

	KW ₇	KW ₆	KW_5	KW₄	KW ₃	KW ₂	KW₁	KW_0
address 0006 ₁₆								,

GZZ-SH04-14A < 11A0 >

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37410M4HXXXFP MITSUBISHI ELECTRIC

Mask R	OM number	
	Date:	
l a	Section head signature	Supervisor signature
Receipt		
l &		

Note: Please fill in all items marked *.

		Company		TEL			Submitted by	Supervisor
*	Customer	name		()	ance ature		
		Date issued	Date :			Issu		

※ 1. Confirmation

Specify the name of the product being ordered and the type of EPROMs submitted.

Three sets of EPROMs are required for each pattern (Check @ in the appropriate box).

If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based in this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.

EPROM type

□ 27128	□ 27256	☐ 27512
address 0000 Port P0 pull-up 0001 Port P1 pull-up 0002 Port P2 pull-up 0003 Port P3 pull-up 0004 Port P4 pull-up 0005 Port P5 pull-up 0006 Port P5 pull-up 0007 Port P5 pull-up	address 0000 Port P0 pull-up 0001 Port P1 pull-up 0002 Port P2 pull-up 0003 Port P2 pull-up 0004 Port P4 pull-up 0005 Port P5 pull-up 0006 Port P2 key on wake-up	address 0000
2000 3FFF ROM(8K)	6000 7FFF ROM(8K)	FFFF ROM(8K)

Set "FF16" in the shaded area.

X 2. Mark specification

Mark specification must be submitted using the correct form for the type package being ordered fill out the appropriate mark specification form (80P6S for M37410M4HXXXFP) and attach to the mask ROM confirmation form.

% 3. Comments

GZZ-SH04-14A (11A0)

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37410M4HXXXFP MITSUBISHI ELECTRIC

······································	
Mask ROM number	

※4.	Option specification	write the option	data also at the	specified address	in the EPROM
------------	----------------------	------------------	------------------	-------------------	--------------

1 .	Port P0 pull-up transistor	(if	built-in	is	desired	write 1	if	not	write (n)
	i dit i d buil-ub tiansistoi	(11	Duntin	10	uesiieu	WILL I		1101	WILLE	•

	P0 ₇	P0 ₆	P0 ₅	P0₄	P0 ₃	P0 ₂	P0 ₁	PO _o
address 0000 ₁₆								

2. Port P1 pull-up transistor (if built-in is desired write 1, if not write 0)

	P1 ₇	P1 ₆	P1 ₅	P1 ₄	P1 ₃	P1 ₂	P1 ₁	P1 ₀
address 0001 ₁₆								,

3. Port P2 pull-up transistor (if built-in is desired write 1, if not write 0)

	P2 ₇	P2 ₆	P2 ₅	P2₄	P2 ₃	P2 ₂	P2 ₁	P2 ₀
address 0002 ₁₆								

4. Port P3 pull-up transistor (if built-in is desired write 1, if not write 0)

	P3 ₇	P3 ₆	P3 ₅	P3 ₄	P3 ₃	P3 ₂	P3 ₁	P3 ₀
address 0003 ₁₆								

5. Port P4 pull-up transistor (if built-in is desired write 1, if not write 0)

					P4 ₃	P4 ₂	P4 ₁	P4 ₀	
address 0004 ₁₆	0	0	0	0					

6. Port P5 pull-up transistor (if built-in is desired write 1, if not write 0)

	P5 ₇	P5 ₆	P5 ₅	P5 ₄	P5 ₃	P5 ₂	P5 ₁	P5 ₀	
address 0005 ₁₆									

7. Port P2 key on wake-up (if built-in is desired write 1, if not write 0)

	KW ₇	KW ₆	KW ₅	KW ₄	KW ₃	KW ₂	KW₁	KW_{o}
address 0006 ₁₆								

GZZ-SH04-15A < 11A0 >

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37410M6HXXXFP MITSUBISHI ELECTRIC

Mask ROM number	
Mask ROW Humber	

	Date:	
Receipt	Section head signature	Supervisor signature

Note: Please fill in all items marked *.

		Company		TEL		ΦΦ	Submitted by	Supervisor
*	Customer	name		()	anc		
		Date issued	Date :			lssu sigr		

※1. Confirmation

Specify the name of the product being ordered and the type of EPROMs submitted.

Three sets of EPROMs are required for each pattern (Check @ in the appropriate box).

If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based in this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.

EPROM type

□ 27128	□ 27256	27512
address 0000 0001 0001 Port P0 pull-up 0002 Port P2 pull-up 0003 Port P3 pull-up 0004 Port P3 pull-up 0006 Port P4 pull-up 0006 Port P5 pull-up 0007 1000 ROM(12K)	address 0000	address 0000 0001 Port P0 pull-up 0002 Port P2 pull-up 0003 Port P3 pull-up 0004 Port P3 pull-up 0004 Port P4 pull-up 0006 Port P5 pull-up 0006 Port P5 pull-up 0006 ROM(12K) FFFF

Set "FF₁₆" in the shaded area.

※ 2. Mark specification

Mark specification must be submitted using the correct form for the type package being ordered fill out the appropriate mark specification form (80P6S for M37410M6HXXXFP) and attach to the mask ROM confirmation form.

***3.** Comments

GZZ-SH04-15A (11A0)

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37410M6HXXXFP MITSUBISHI ELECTRIC

Mask	ROM	number	

- * 4. Option specification (write the option data also at the specified address in the EPROM)
- 1. Port P0 pull-up transistor (if built-in is desired write 1, if not write 0)

	P0 ₇	P0 ₆	P0 ₅	P0₄	P0 ₃	PO ₂	P0 ₁	PO _o
address 0000 ₁₆								

2. Port P1 pull-up transistor (if built-in is desired write 1, if not write 0)

	P1 ₇	P1 ₆	P1 ₅	P1 ₄	P1 ₃	P1 ₂	P1 ₁	P1 ₀
address 0001 ₁₆	,							

3. Port P2 pull-up transistor (if built-in is desired write 1, if not write 0)

	P2 ₇	P2 ₆	P2 ₅	P2 ₄	P2 ₃	P2 ₂	P2 ₁	P2 _o
address 0002 ₁₆								

4. Port P3 pull-up transistor (if built-in is desired write 1, if not write 0)

	P3 ₇	P3 ₆	P3 ₅	P3 ₄	P3 ₃	P3 ₂	P3 ₁	P3 ₀
address 0003 ₁₆								

5. Port P4 pull-up transistor (if built-in is desired write 1, if not write 0)

					P4 ₃	P4 ₂	P4₁	P4 _o	
address 0004 ₁₆	0	0	0	0					

6. Port P5 pull-up transistor (if built-in is desired write 1, if not write 0)

	P5 ₇	P5 ₆	P5 ₅	P5₄	P5 ₃	P5 ₂	P5₁	P5 ₀	
address 0005 ₁₆									

7. Port P2 key on wake-up (if built-in is desired write 1, if not write 0)

	KW ₇	KW ₆	KW ₅	KW₄	KW ₃	KW ₂	KW ₁	KW_0	
address 0006 ₁₆									

GZZ-SH01-54A (83B0)

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37412M4-XXXFP MITSUBISHI ELECTRIC

	Mask ROM number	
ı	madic rio in riambor	

	Date :	
Receipt	Section head signature	Supervisor signature

Note: Please fill in all items marked ...

		Company		TEL		Φ Φ	Submitted by	Supervisor
*	Customer	name		()	uanc		
- Ouston		Date issued	Date:			lss sıgı		

※ 1. Confirmation

Specify the name of the product being ordered and the type of EPROMs submitted.

Three sets of EPROMs are required for each pattern (Check @ in the appropriate box).

If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based in this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.

Checksum code for entire EPROM (hexadecimal notation)

EPROM type

□ 27128	□ 27256	☐ 27512
Address 0000 ₁₆ Area for ASCII codes of the name of the product 000F ₁₆ 'M37412M4—'	Address 0000 ₁₆ Area for ASCII codes of the name of the product 000F ₁₆ 'M37412M4—'	Address 000016 Area for ASCII codes of the name of the product 'M37412M4—'
0010 ₁₆ STP option	0010 ₁₆ STP option	0010 ₁₆ STP option
001116	0011 ₁₆	0011 ₁₆
1FFF ₁₆ / / / / / / / / /	5FFF ₁₆ ////////////////////////////////////	DFFF ₁₆ ////////////////////////////////////
2000 ₁₆	6000 ₁₆	E000 ₁₆
ROM(8K)	ROM(8K)	ROM(8K)
3FFF ₁₆	7FFF ₁₆	FFFF ₁₆

- (1) Set "FF₁₆" in the shaded area.
- (2) Write the ASCII codes that indicates the name of the product 'M37412M4—' to addresses 0000₁₆ to 000F₁₆. ASCII codes 'M37412M4—' are listed on the right. The addresses and data are in hexadecimal notation.

Write the option data to address 0010₁₆.

Address		Addres
000016	$'M' = 4 D_{16}$	000816
000116	$^{\circ}3^{\circ} = 33_{16}$	000916
000216	$'7' = 37_{16}$	000A ₁
000316	4 3 $= 34_{16}$	000B ₁
000416	'1' = 3 1 ₁₆	000C ₁
000516	$^{\circ}2^{\circ} = 32_{16}$	000D ₁
000616	$'M' = 4 D_{16}$	000E ₁
000716	4 3 $=$ 3 4 $_{16}$	000F ₁₀

Address	
000816	$'-'=2 D_{16}$
000916	F F 16
000A ₁₆	F F 16
000B ₁₆	F F 16
000C ₁₆	F F 16
000D ₁₆	F F 16
000E ₁₆	F F 16
000F ₁₆	F F 16

GZZ-SH01-54A (83B0)

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37412M4-XXXFP MITSUBISHI ELECTRIC

Mask	ROM	numb	oer		

Recommend to writing the following pseudo-command to the start address of the assembler source program.

	EPROM type	27128	27256	27512
	The pseudo-command	*=△\$C000	* =△\$8000	* =△\$0000
		.BYTE△ 'M37412M4—'	.BYTE△ 'M37412M4—'	.BYTE△ 'M37412M4—'

This is an example when the start address of internal ROM is E000₁₆.

※ 2. Mark specification

Mark specification must be submitted using the correct form for the type package being ordered fill out the appropriate mark specification form (72P6 for M37412M4-XXXFP) and attach to the mask ROM confirmation form.

%3. Comments

1

※ 4. Option specification (write the option data also to the specified address of the EPROM)

	STP	instruction	option
--	-----	-------------	--------

When STP instruction is valid	 01 ₁₆	Address 0010 ₁₆
When STP instruction is invalid	 0016	Address 0010 ₁₆

Recommend to writing the following pseudo-command to the assembler source file :

EPROM type	27128	27256	27512
1 CTD instruction aution	*=△\$C010	* =△\$8010	*=△\$0010
1. STP instruction option	.BYTE△\$XX	.BYTE△\$XX	.BYTE△\$XX

Note: If the name of the product written to the EPROMs does not match the name of the mask confirmation, the ROM processing is disabled. Write the data correctly. As for the option, if the contents of the confirmation and conflict with those of the EPROM, the contents of the EPROM are preferred.

GZZ-SH04-35A (13A0)

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37413M4HXXXFP MITSUBISHI ELECTRIC

Mask I	ROM number	
	Date:	
t ta	Section head signature	Supervisor signature
Receipt		

Note: Please fill in all items marked %.

		Company name		TEL	nce	Submitted by	Supervisor
*	Customer	Date issued	Date:	(Issua		

※1. Confirmation

Specify the name of the product being ordered and the type of EPROMs submitted.

Three sets of EPROMs are required for each pattern (Check @ in the appropriate box).

If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based in this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.

EPROM type

□ 27128	□ 27256	☐ 27512
Address	Address	Address
000016 Area for ASCII codes of the name of the product 'M37413M4H'	0000 ₁₆ Area for ASCII codes of the name of the product 'M37413M4H'	0000 ₁₆ Area for ASCII codes of the name of the product 'M37413M4H'
0010 ₁₆ Port P0 pull-up	0010 ₁₆ Port P0 pull-up	0010 ₁₆ Port P0 pull-up
001116 Port P1 pull-up	0011 ₁₆ Port P1 pull-up	0011 ₁₆ Port P1 pull-up
001216 Port P2 pull-up	0012 ₁₆ Port P2 pull-up	0012 ₁₆ Port P2 pull-up
001316 Port P3 pull-up	0013 ₁₆ Port P3 pull-up	0013 ₁₆ Port P3 pull-up
001416 Port P4 pull-up	0014 ₁₆ Port P4 pull-up	0014 ₁₆ Port P4 pull-up
001516 Port P5 pull-up	0015 ₁₆ Port P5 pull-up	0015 ₁₆ Port P5 pull-up
001616 Port P2 key on wake up	0016 ₁₆ Port P2 key on wake up	0016 ₁₆ Port P2 key on wake up
0017 ₁₆ Port P6 pull-up	0017 ₁₆ Port P6 pull-up	0017 ₁₆ Port P6 pull-up
001816 Port P7 pull-up	0018 ₁₆ Port P7 pull-up	0018 ₁₆ Port P7 pull-up
001916 Port P7 key on wake up	0019 ₁₆ Port P7 key on wake up	0019 ₁₆ Port P7 key on wake up
001A16 1FFF16 200016	001A ₁₆ 5FFF ₁₆ 6000 ₁₆	001A ₁₆ DFFF ₁₆ E000 ₁₆
3FFF16 ROM(8K)	7FFF16 ROM(8 K)	FFFF16 ROM(8 K)

- (1) Set "FF₁₆" in the shaded area.
- (2) Write the ASCII codes that indicates the name of the product 'M37413M4H' to addresses 0000₁₆ to 000F₁₆.

Write the option data to addresses 0010₁₆ to 0019₁₆.

G	77	 R۴	40	14-	-35	Α.	(1:	ЗА	n	>

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37413M4HXXXFP MITSUBISHI ELECTRIC

Mask ROM	number	

*	2.	Mark	specificati	on

Mark specification must be submitted using the correct form for the type package being ordered fill out the appropriate mark specification form (80P6S for M37413M4HXXXFP) and attach to the mask ROM confirmation form.

- ***3.** Comments
- * 4. Option specification (write the option data also at the specified address in the EPROM.)
- 1. Port P0 pull-up transistor (if built-in is desired write 1, if not write 0)

	P0 ₇	P0 ₆	P0 ₅	P0₄	P0 ₃	PO ₂	P0₁	P0 _o
address 0010 ₁₆								

2. Port P1 pull-up transistor (if built-in is desired write 1, if not write 0)

	P1 ₇	P1 ₆	P1 ₅	P1 ₄	P1 ₃	P1 ₂	P1 ₁	$P1_0$
address 0011 ₁₆								

3. Port P2 pull-up transistor (if built-in is desired write 1, if not write 0)

	P2 ₇	P2 ₆	P2 ₅	P2 ₄	P2 ₃	P2 ₂	P2 ₁	P2 ₀
address 0012 ₁₆								

4. Port P3 pull-up transistor (if built-in is desired write 1, if not write 0)

	P3 ₇	P3 ₆	P3 ₅	P3₄	P3 ₃	P3 ₂	P3 ₁	P3 ₀
address 0013 ₁₆				,				

5. Port P4 pull-up transistor (if built-in is desired write 1, if not write 0)

	P4 ₇	P4 ₆	P4 ₅	P4 ₄	P4 ₃	P4 ₂	P4 ₁	P4 ₀	
address 0014 ₁₆									

6. Port P5 pull-up transistor (if built-in is desired write 1, if not write 0)

*	P5 ₇	P5 ₆	P5 ₅	P5 ₄	P5 ₃	P5 ₂	P5₁	P5 _o	
address 0015 ₁₆									

n	77	-SH	na.	25	•	12	 ' '

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37413M4HXXXFP MITSUBISHI ELECTRIC

Mask ROM number	

7.	Port P2 key on wake up (if built-in is desire	d writ	e 1, if	not w	rite 0)			
		KW ₇	KW ₆	KW ₅	KW ₄	KW ₃	KW ₂	KW ₁	KW _o
	address 0016 ₁₆								
8.	Port P6 pull-up transistor (if built-in is desire	ed wri	te 1, i	f not v	write ())			
		P6 ₇	P6 ₆	P6 ₅	P6 ₄	P6 ₃	P6 ₂	P6 ₁	P6 _o
	address 0017 ₁₆								
9.	Port P7 pull-up transistor (if built-in is desire	ed wri	te 1, i	f not v	write ())			
		P7 ₇	P7 ₆	P7 ₅	P7 ₄	P7 ₃	P7 ₂	P7 ₁	P7 ₀
	address 0018 ₁₆								
10.	Port P7 key on wake up (if built-in is desire	d writ	e 1, if	not w	rite 0)			
		KU₂	KUe	KUε	KU₄	KU。	KU。	KU₁	KU

address 0019₁₆

GZZ-SH04-35A < 13A0 >

Mask ROM number

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37413M4HXXXFP MITSUBISHI ELECTRIC

Writing the name of the product and option data onto EPROMs.

Addresses 0000₁₆ to 000F₁₆ store the name of the product and addresses 0010₁₆ to 0019₁₆ store the option data. Write the following ASCII codes that indicates 'M37413M4H' to addresses 0000₁₆ to 000F₁₆.

Write data according to the option data sheet to addresses 0010₁₆ to 0019₁₆.

If the name of the product contained in the EPROMs does not match the name on the mask ROM confirmation form, the ROM processing is disabled. Write the data correctly.

As for the option, if the contents of the confirmation and conflict with those of the EPROMs, the contents of the EPROMs are preferred.

1. Inputting the name of the product with the ASCII code. ASCII codes 'M37413M4H' are listed on the right. The addresses and data are in hexadecimal notation.

Adress		Address	
000016	$'M' = 4 D_{16}$	000816	$'H' = 48_{16}$
000116	$'3' = 33_{16}$	000916	F F ₁₆
000216	$'7' = 37_{16}$	000A ₁₆	F F ₁₆
0003 ₁₆	$'4' = 34_{16}$	000B ₁₆	F F 16
000416	$'1' = 31_{16}$	000C ₁₆	F F 16
000516	$'3' = 33_{16}$	000D ₁₆	F F ₁₆
000616	$'M' = 4 D_{16}$	000E ₁₆	F F ₁₆
0007 ₁₆	$'4' = 34_{16}$	000F ₁₆	F F ₁₆

Recommend to writing the following pseudo-command to the start address of the assembler source program.

EPROM type	27128	27256	27512
The pseudo-command	*=\$C000	*=\$8000	* =\$0000
	.BYTE△ 'M37413M4H'	.BYTE△ 'M37413M4H'	.BYTE△ 'M37413M4H'

This is an example when the start address of internal ROM is F000₁₆.

2. Inputting the option data onto the EPROMs. Write the following pseudo-command to the assembler source file:

EPROM type	27128	27256	27512
	*=\$C010	*= \$8010	* =\$0010
P0 pull-up	.BYTE△\$XX	.BYTE△\$XX	.BYTE△\$XX
P1 pull-up	.BYTE△\$XX	.BYTE△\$XX	.BYTE△\$XX
P2 pull-up	.BYTE△\$XX	.BYTE△\$XX	.BYTE△\$XX
P3 pull-up	.BYTE△\$XX	.BYTE△\$XX	.BYTE△\$XX
P4 pull-up	.BYTE△\$XX	.BYTE△\$XX	.BYTE△\$XX
P5 pull-up	.BYTE△\$XX	.BYTE△\$XX	.BYTE△\$XX
P2 key on wake up	.BYTE△\$XX	.BYTE△\$XX	.BYTE△\$XX
P6 pull-up	.BYTE△\$XX	.BYTE△\$XX	.BYTE△\$XX
P7 pull-up	.BYTE△\$XX	.BYTE△\$XX	.BYTE△\$XX
P7 key on wake up	.BYTE△\$XX	.BYTE△\$XX	.BYTE△\$XX

GZZ-SH04-36A < 13A0 >

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37413M6HXXXFP MITSUBISHI ELECTRIC

Masi	k ROM number	
	Date:	
=	Section head signature	Supervisor signature
Receipt		
a		

Note: Please fill in all items marked ...

		Company		TEL	υ υ	Submitted by	Supervisor
*	Customer	name		()	anciatur		
		Date ișsued	Date :	,	Issu sign		

***1.** Confirmation

Specify the name of the product being ordered and the type of EPROMs submitted.

Three sets of EPROMs are required for each pattern (Check @ in the appropriate box).

If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based in this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.

Checksum code for entire EPROM				(hexadecimal notation)
--------------------------------	--	--	--	------------------------

EPROM type

	□ 27128		□ 27256		☐ 27512
Addre		Add		Addres	
0000 ₁₆	Area for ASCII codes of the	0000 ₁₆	Area for ASCII codes of the	0000 ₁₆	Area for ASCII codes of the
001016	Port P0 pull-up		Port P0 pull-up	001016	Port P0 pull-up
001116	Port P1 pull-up	001116	Port P1 pull-up	001116	Port P1 pull-up
001216	Port P2 pull-up		Port P2 pull-up	001216	Port P2 pull-up
001316	Port P3 pull-up	00131,6	Port P3 pull-up	001316	Port P3 pull-up
001416	Port P4 pull-up	001416	Port P4 pull-up	001416	Port P4 pull-up
001516	Port P5 pull-up	001516	Port P5 pull-up	001516	Port P5 pull-up
001616	Port P2 key on wake up	001616	Port P2 key on wake up	001616	Port P2 key on wake up
001716	Port P6 pull-up	001716	Port P6 pull-up	001716	Port P6 pull-up
001816	Port P7 pull-up	001816	Port P7 pull-up	001816	Port P7 pull-up
	Port P7 key on wake up	001916	Port P7 key on wake up		Port P7 key on wake up
001A ₁₆		001A ₁₆ 4FFF ₁₆	///////////	001A ₁₆ CFFF ₁₆	V / / / / / / / / / / / /
1000 ₁₆ 3FFF ₁₆		5000 ₁₆ 7FFF ₁₆		D000 ₁₆ FFFF ₁₆	ROM(12K)

- (1) Set "FF₁₆" in the shaded area.
- (2) Write the ASCII codes that indicates the name of the product 'M37413M6H' to addresses 0000₁₆ to 000F₁₆.

Write the option data to addresses 0010₁₆ to 0019₁₆.

GZZ-SH04-36A < 13A0	1)
---------------------	----

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37413M6HXXXFP MITSUBISHI ELECTRIC

Mask ROM number	
Mask HOW HUITIDE	

※2.	Mark	specificat	ion
------------	------	------------	-----

Mark specification must be submitted using the correct form for the type package being ordered fill out the appropriate mark specification form (80P6S for M37413M6HXXXFP) and attach to the mask ROM confirmation form.

- **※3.** Comments
- * 4. Option specification (write the option data also at the specified address in the EPROM.)
- 1. Port P0 pull-up transistor (if built-in is desired write 1, if not write 0)

	P0 ₇	P0 ₆	P0 ₅	P0₄	P0 ₃	PO ₂	P0 ₁	P0 _o
address 0010 ₁₆								

2. Port P1 pull-up transistor (if built-in is desired write 1, if not write 0)

	P1 ₇	P1 ₆	P1 ₅	P1 ₄	P1 ₃	P1 ₂	P1 ₁	P1 ₀
address 0011 ₁₆								

3. Port P2 pull-up transistor (if built-in is desired write 1, if not write 0)

	P2 ₇	P2 ₆	P2 ₅	P2 ₄	P23	P2 ₂	P2 ₁	P2 ₀
address 0012 ₁₆								

4. Port P3 pull-up transistor (if built-in is desired write 1, if not write 0)

	P3 ₇	P3 ₆	P3 ₅	P3₄	P3 ₃	P3 ₂	P3 ₁	P3 ₀
address 0013 ₁₆								

5. Port P4 pull-up transistor (if built-in is desired write 1, if not write 0)

	P4 ₇	P4 ₆	P4 ₅	P4 ₄	P4 ₃	P4 ₂	P4 ₁	P4 ₀
address 0014 ₁₆								

6. Port P5 pull-up transistor (if built-in is desired write 1, if not write 0)

	P5 ₇	P5 ₆	P5 ₅	P5₄	P5 ₃	P5 ₂	P5 ₁	P5 ₀
address 0015 ₁₆								

MITSUBISHI MICROCOMPUTERS

SERIES MELPS 740 MASK ROM ORDERING METHOD

GZZ-SHU4-30A(ISAU /		

F			
Mask	ROM num	ber	

SERIES MELPS 740 MASK ROM CONFIRMATION FORM
SINGLE-CHIP MICROCOMPUTER M37413M6HXXXFP
MITSUBISHI ELECTRIC

7. Port P2 key on wake up (if built-in is desire	d writ	e 1, if	not w	rite 0)			
	KW ₇	KW ₆	KW ₅	KW ₄	KW ₃	KW ₂	KW ₁	KWo
address 0016 ₁₆							1	

8. Port P6 pull-up transistor (if built-in is desired write 1, if not write 0)

	P6 ₇	P6 ₆	P6 ₅	P6 ₄	P6 ₃	P6 ₂	P6 ₁	P6 _o
address 0017 ₁₆								

9. Port P7 pull-up transistor (if built-in is desired write 1, if not write 0)

	P7 ₇	P7 ₆	P7 ₅	P7 ₄	P7 ₃	P7 ₂	P7 ₁	P7 _o
address 0018 ₁₆								

10. Port P7 key on wake up (if built-in is desired write 1, if not write 0)

	KU ₇	KU ₆	KU₅	KU₄	KU ₃	KU ₂	KU₁	KU₀
address 0019 ₁₆								

GZZ-SH04-36A (13A0)

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37413M6HXXXFP MITSUBISHI ELECTRIC

Mask ROM number

Writing the name of the product and option data onto EPROMs.

Addresses 0000_{16} to $000F_{16}$ store the name of the product and addresses 0010_{16} to 0019_{16} store the option data. Write the following ASCII codes that indicates 'M37413M6H' to addresses 0000_{16} to $000F_{16}$.

Write data according to the option data sheet to addresses 0010₁₆ to 0019₁₆.

If the name of the product contained in the EPROMs does not match the name on the mask ROM confirmation form, the ROM processing is disabled. Write the data correctly.

As for the option, if the contents of the confirmation and conflict with those of the EPROMs, the contents of the EPROMs are preferred.

 Inputting the name of the product with the ASCII code. ASCII codes 'M37413M6H' are listed on the right. The addresses and data are in hexadecimal notation.

Adress		Address	
000016	$'M' = 4 D_{16}$	000816	$^{\circ}$ H $^{\circ}$ = 4 8 $_{16}$
000116	$3' = 33_{16}$	000916	F F 16
000216	$'7' = 37_{16}$	000A ₁₆	F F ₁₆
000316	$'4' = 34_{16}$	000B ₁₆	F F 16
000416	$'1' = 31_{16}$	000C ₁₆	F F 16
000516	$'3' = 33_{16}$	000D ₁₆	FF ₁₆
000616	'M' = $4 D_{16}$	000E ₁₆	F F 16
000716	$^{\circ}6^{\circ} = 36_{16}$	000F ₁₆	F F 16

Recommend to writing the following pseudo-command to the start address of the assembler source program.

EPROM type	27128	27256	27512
The pseudo-command	*=\$C000	* =\$8000	*=\$0000
	.BYTE△ 'M37413M6H'	.BYTE△ 'M37413M6H'	.BYTE△ 'M37413M6H'

This is an example when the start address of internal ROM is F000₁₆.

Inputting the option data onto the EPROMs.
 Write the following pseudo-command to the assembler source file:

EPROM type	27128	27256	27512
	*=\$C010	* =\$8010	*=\$0010
P0 pull-up	.BYTE△\$XX	.BYTE△\$XX	.BYTE△\$XX
P1 pull-up	.BYTE△\$XX	.BYTE△\$XX	.BYTE△\$XX
P2 pull-up	.BYTE△\$XX	.BYTE△\$XX	.BYTE△\$XX
P3 pull-up	.BYTE△\$XX	.BYTE△\$XX	.BYTE△\$XX
P4 pull-up .	.BYTE△\$XX	.BYTE△\$XX	.BYTE△\$XX
P5 pull-up	.BYTE△\$XX	.BYTE△\$XX	.BYTE△\$XX
P2 key on wake up	.BYTE△\$XX	.BYTE△\$XX	.BYTE△\$XX
P6 pull-up	.BYTE△\$XX	.BYTE△\$XX	.BYTE△\$XX
P7 pull-up	.BYTE△\$XX	.BYTE△\$XX	.BYTE△\$XX
P7 key on wake up	.BYTE△\$XX	.BYTE△\$XX	.BYTE△\$XX

GZZ-SH02-11A < 96A0 >

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37414M5-XXXFP MITSUBISHI ELECTRIC

Mask ROM number	

	Date:	
ipt	Section head signature	Supervisor signature
Receipt		
ш.		

Note: Please fill in all items marked ...

		Company	;	TEL		υ υ	Submitted by	Supervisor
*	Customer	name		()	atur		
•	Gustomer	Date issued	Date :			lssu sign		

※1. Confirmation

Specify the name of the product being ordered and the type of EPROMs submitted.

Three sets of EPROMs are required for each pattern (Check @ in the appropriate box).

If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based in this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.

Checksum code for entire EPROM (hexadecimal notation)

EPROM type

	□ 27128		27256		27512
Addre 0000 ₁₆	**************************************	Addre 0000 ₁₆		Addre 0000 ₁₆	
001016	STP option	001016	STP option	001016	STP option
0011 ₁₆		0011 ₁₆		0011 ₁₆	
1800 ₁₆		5800 ₁₆		D800 ₁₆	
	ROM(10K)		ROM(10K)		ROM(10K)
3FFF ₁₆		7FFF ₁₆		FFFF ₁₆	

- (1) Set "FF₁₆" in the shaded area.
- (2) Write the ASCII codes that indicates the name of the product 'M37414M5—' to addresses 0000₁₆ to 000F₁₆. ASCII codes 'M37414M5—' are listed on the right. The addresses and data are in hexadecimal notation.

Write the option data to address 0010₁₆.

Aaaress		Add
000016	$'M' = 4 D_{16}$	00
000116	$^{\circ}3^{\circ} = 33_{16}$	00
0002 ₁₆	$'7' = 37_{16}$	00
000316	4 3 4 16	00
000416	$'1' = 31_{16}$	00
000516	$4' = 34_{16}$	00
000616	$'M' = 4 D_{16}$	00
000716	$^{\circ}5^{\circ} = 35_{16}$	00

	Address	
	000816	$'-'=2 D_{16}$
	000916	F F ₁₆
	000A ₁₆	F F 16
	000B ₁₆	F F ₁₆
1	000C ₁₆	F F ₁₆
1	000D ₁₆	F F 16
]	000E ₁₆	F F 16
1	000F ₁₆	F F 16

	GZZ-	-SH02-	≟11A<	96A0 >
--	------	--------	-------	--------

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37414M5-XXXFP MITSUBISHI ELECTRIC

Mask	ROM	number	

Recommend to writing the following pseudo-command to the start address of the assembler source program.

EPROM type	27128	27256	27512
	*=△\$C000	*=△\$8000	* =△\$0000
The pseudo-command	.BYTE△ 'M37414M5—'	.BYTE△ 'M37414M5—'	.BYTE△ 'M37414M5—'

This is an example when the start address of internal ROM is D800₁₆.

※ 2. Mark specification

Mark specification must be submitted using the correct form for the type package being ordered fill out the appropriate mark specification form (72P6 for M37414M5-XXXFP) and attach to the mask ROM confirmation form.

- **%3.** Comments
- ¾ 4. Option specification (write the option data also to the specified address of the EPROM)
 - 1. STP instruction option

When STP instruction is valid	01 ₁₆	Address 0010 ₁₆
When STP instruction is invalid	00 ₁₆	Address 0010 ₁₆

Recommend to writing the following pseudo-command to the assembler source file :

EPROM type	27128	27256	27512
1. STP instruction option	*=△\$C010	* =△\$8010	*=△\$0010
	.BYTE△\$XX	.BYTE△\$XX	.BYTE△\$XX

Note: If the name of the product written to the EPROMs does not match the name of the mask confirmation, the ROM processing is disabled. Write the data correctly. As for the option, if the contents of the confirmation and conflict with those of the EPROM, the contents of the EPROM are preferred.

GZZ-SH01-86A < 91A0 >

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37415M4-XXXFP MITSUBISHI ELECTRIC

Mask R	OM number	
	Date :	
	Section head	Supervisor

Note: Please fill in all items marked ...

		Company		TEL		φφ	Submitted by	Supervisor
*	Customer	name		()	anc atur		
		Date issued	Date:			Issu		

***1.** Confirmation

Specify the name of the product being ordered and the type of EPROMs submitted.

Three sets of EPROMs are required for each pattern (Check @ in the appropriate box).

If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based in this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.

Checksum code for entire EPROM (hexadecimal notation	Checksum code for entire EPROM					(hexadecimal notation
--	--------------------------------	--	--	--	--	-----------------------

EPROM type

□ 27128	□ 27256	☐ 27512
Address 0000	Address 0000	Address 0000 Port P0 pull-up 0001 Port P1 pull-up 0002 Port P2 pull-up 0003 Port P2 pull-up 0004 P3c output type 0005 CNTR pull-up 0006 E000 ROM(8K)

Set "FF16" in the shaded area.

※ 2. Mark specification

Mark specification must be submitted using the correct form for the type package being ordered fill out the appropriate mark specification form (80P6S for M37415M4-XXXFP) and attach to the mask ROM confirmation form.

***3.** Comments

G77-	01104	004	101	401

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37415M4-XXXFP MITSUBISHI ELECTRIC

Mask ROM number	

- * 4. Option specification (write the option data also at the specified address in the EPROM)
- 1. Port P0 pull-up transistor (if built-in is desired write 1, if not write 0)

	P0 ₇	P0 ₆	P0 ₅	P0₄	P0 ₃	PO ₂	P0₁	$P0_0$
address 0000 ₁₆								

2. Port P1 pull-up transistor (if built-in is desired write 1, if not write 0)

	P1 ₇	P1 ₆	P1 ₅	P1 ₄	P1 ₃	P1 ₂	P1 ₁	P1 ₀
address 0001 ₁₆								

3. Port P2 pull-up transistor (if built-in is desired write 1, if not write 0)

	P2 ₇	P2 ₆	P2 ₅	P2 ₄	P2 ₃	P2 ₂	P2 ₁	P2 _o
address 0002 ₁₆								

4. Port P3 pull-up transistor (if built-in is desired write 1, if not write 0)

	P3 ₇	P3 ₆	P3 ₅	P3₄	P3 ₃	P3 ₂	P3 ₁	$P3_0$
address 0003 ₁₆								

5. Port P3₅ output type (if Nch open drain is desired write 1, if CMOS write 0)

							,	P3 ₅	
address 0004 ₁₆	0	0	0	0	0	0	0		

6. CNTR pin pull-up transistor (if built-in is desired write 1, if not write 0)

								CNTR
address 0005 ₁₆	0	0	0	0	0	0	0	

GZZ-SH01-83A (8ZA0)

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37416M2-XXXSP/FP MITSUBISHI ELECTRIC

Mask ROM number	

	Date:	
Receipt	Section head signature	Supervisor signature
ш		

Note: Please fill in all items marked*.

		Company		TEL			Submitted by	Supervisor
*	Customer	name		()	nance nature		
		Date issued	Date:			Issu		

※ 1. Confirmation

Specify the name of the product being ordered and the type of EPROMs submitted.

Three sets of EPROMs are required for each pattern (Check @ in the appropriate box).

If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based in this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.

Checksum code for entire EPROM (hexadecimal notation)

EPROM type

□ 2764	□ 27128	□ 27256
Address	Address	Address
Area for ASCII codes of the name of the product	0000 ₁₆ Area for ASCII codes of the name of the product	of the product
000F ₁₆ ('M37416M2—'	000F ₁₆ 'M37416M2-'	000F ₁₆ 'M37416M2-'
100016	300016	700016
ROM(4K)	ROM(4K)	ROM(4K)
1FFF ₁₆	3FFF ₁₆	7FFF ₁₆

- (1) Set "FF₁₆" in the shaded area.
- (2) Write the ASCII codes that indicates the name of the product 'M37416M2—' to addresses 0000₁₆ to 000F₁₆. ASCII codes 'M37416M2—' are listed on the right. The addresses and data are in hexadecimal notation.

Address		Address	
0000 ₁₆	$'M' = 4 D_{16}$	0008 ₁₆	$'-'=2D_{16}$
0001 ₁₆	$3' = 33_{16}$	000916	F F 16
000216	$'7' = 37_{16}$	000A ₁₆	F F 16
000316	4 2 $= 34_{16}$	000B ₁₆	F F 16
000416	$'1' = 31_{16}$	000C ₁₆	F F ₁₆
000516	$6' = 36_{16}$	000D ₁₆	FF ₁₆
000616	$'M' = 4 D_{16}$	000E ₁₆	F F ₁₆
000716	$^{\circ}2^{\circ} = 32_{16}$	000F ₁₆	F F 16

GZZ-SH01-83A (8ZA0)

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37416M2-XXXSP/FP MITSUBISHI ELECTRIC

Mask	ROM	number	

Recommend to writing the following pseudo-command to the start address of the assembler source program.

EPROM type	2764	27128
Th	*=△\$E000	*=△\$C000
The pseudo-command	.BYTE△ 'M37416M2—'	.BYTE△ 'M37416M2—'

This is an example when the start address of internal ROM is F000₁₆.

*** 2.** Mark specification

Mark specification must be submitted using the correct form for the type package being ordered fill out the appropriate mark specification form (52P4B for M37416M2-XXXSP; 56P6N for M37416M2-XXXFP) and attach to the mask ROM confirmation form.

%3. Comments

GZZ-SH02-17A (96A0)

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37420M4-XXXSP MITSUBISHI ELECTRIC

Mask ROM number							
	Date:						
l ta	Section head signature	Supervisor signature					
Receipt							
č							
ł							

Note: Please fill in all items marked %.

		Company		TEL		45	Submitted by	Supervisor
*	Customer	name		()	uance nature		
		Date issued	Date:			Issi sigr		

※ 1. Confirmation

Specify the name of the product being ordered and the type of EPROMs submitted.

Three sets of EPROMs are required for each pattern (Check @ in the appropriate box).

If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based in this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.

Checksum code for entire EPROM (hexadecimal notation)

EPROM type

27128	□ 27256	27512
Address	Address	Address
Area for ASCII codes of the name of the product	0000 ₁₆ Area for ASCII codes of the name of the product	0000 ₁₆ Area for ASCII codes of the name of the product
000F ₁₆ 'M37420M4'	000F ₁₆ 'M37420M4'	000F ₁₆ 'M37420M4'
0010 ₁₆ STP option	0010 ₁₆ STP option	0010 ₁₆ STP option
0011 ₁₆ WDOG option	0011 ₁₆ WDOG option	0011 ₁₆ WDOG option
200016	600016	E000 ₁₆
ROM(8K)	ROM(8K)	ROM(8K)
3FFF ₁₆	7FF ₁₆	FFFF ₁₆

- (1) Set "FF₁₆" in the shaded area.
- (2) Write the ASCII codes that indicates the name of the product 'M37420M4—' to addresses 0000₁₆ to 000F₁₆. ASCII codes 'M37420M4—' are listed on the right. The addresses and data are in hexadecimal notation.

Write the option data to addresses 0010_{16} and 0011_{16} .

Address	
000016	$'M' = 4 D_{16}$
000116	$'3' = 33_{16}$
000216	$'7' = 37_{16}$
0003 ₁₆	$'4' = 34_{16}$
0004 ₁₆	$^{\circ}2^{\circ} = 32_{16}$
000516	$0' = 30_{16}$
000616	$'M' = 4 D_{16}$
0007 ₁₆	4 3 4 16

Address 0008 ₁₆	'-' = 2 D ₁₆
0009 ₁₆ 000A ₁₆	F F 16
000B ₁₆	F F ₁₆
000C ₁₆ 000D ₁₆	F F ₁₆
000E ₁₆ 000F ₁₆	F F ₁₆

GZZ-	CLI	വ	17A	/ n	C A	۰ ۱
(1//-	:5H	1/-	1 / A	٧ч	nAI	

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37420M4-XXXSP MITSUBISHI ELECTRIC

Mask ROM number	

Recommend to writing the following pseudo-command to the start address of the assembler source program.

EPROM type	27128	27256	27512	
The manual command	*=△\$C000	* =△\$8000	* =△\$0000	
The pseudo-command	.BYTE△ 'M37420M4—'	.BYTE△ 'M37420M4—'	.BYTE△ 'M37420M4—'	ĺ

This is an example when the start address of internal ROM is E000₁₆.

※ 2. Mark specification

Mark specification must be submitted using the correct form for the type package being ordered fill out the appropriate mark specification form (52P4B for M37420M4-XXXSP) and attach to the mask ROM confirmation form.

%3. Comments

* 4. Option specification (write the option data also to the specified address of the EPROM)

1.				
	STP instruction is valid		01 ₁₆	A -l-l 0040
	STP instruction is invalid		0016	Address 0010 ₁₆
		*		
2.				
	Reset by the watchdog timer is valid		01 ₁₆	Addross 0011
	Reset by the watchdog timer is invalid		0016	Address 0011 ₁₆

Recommend to writing the following pseudo-command to the assembler source file :

EPROM type	27128	27256	27512
	*=△\$C010	* =△\$8010	*=△\$0010
STP instruction option	.BYTE△\$XX	.BYTE△\$XX	.BYTE△\$XX
W.D.T option	.BYTE△\$XX	.BYTE△\$XX	.BYTE△\$XX

Note: If the name of the product written to the EPROMs does not match the name of the mask confirmation, the ROM processing is disabled. Write the data correctly. As for the option, if the contents of the confirmation and conflict with those of the EPROM, the contents of the EPROM are preferred.

GZZ-SH01-96A < 92A0 >

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37420M6-XXXSP MITSUBISHI ELECTRIC

Mask R	OM number	
	Date:	
Receipt	Section head signature	Supervisor signature

Note: Please fill in all items marked*.

	Company	Company		TEL			Submitted by	Supervisor
*	Customer	name		()	ance		
		Date issued	Date:			lssu sign		

***1.** Confirmation

Specify the name of the product being ordered and the type of EPROMs submitted.

Three sets of EPROMs are required for each pattern (Check @ in the appropriate box).

If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based in this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.

Checksum code for entire EPROM (hexadecimal notation)

EPROM type

	☐ 27128		□ 27256		☐ 27512
Address 0000 ₁₆	codes of the name of the product	Address 0000 ₁₆ 000F ₁₆	codes of the name of the product	Address 0000 ₁₆	Area for ASCII codes of the name of the product 'M37420M6—'
001016	STP option	001016	STP option	001016	STP option
001116	WDOG option	001116	WDOG option	001116	WDOG option
1000 ₁₆	ROM(12K)	5000 ₁₆	ROM(12K)	D000 ₁₆	ROM(12K)

- (1) Set "FF₁₆" in the shaded area.
- (2) Write the ASCII codes that indicates the name of the product 'M37420M6—' to addresses 0000₁₆ to 000F₁₆. ASCII codes 'M37420M6—' are listed on the right. The addresses and data are in hexadecimal notation.

Write the option data to addresses 0010_{16} and $0011_{16}. \label{eq:control_16}$

Address	
000016	$'M' = 4 D_{16}$
0001 ₁₆	$3' = 33_{16}$
000216	$'7' = 37_{16}$
000316	$'4' = 34_{16}$
000416	$^{\circ}2^{\circ} = 32_{16}$
000516	$'0' = 30_{16}$
000616	$'M' = 4 D_{16}$
000716	$'6' = 36_{16}$

Address	
000816	$'-'=2 D_{16}$
000916	F F 16
000A ₁₆	F F ₁₆
000B ₁₆	F F ₁₆
000C ₁₆	F F 16
000D ₁₆	F F ₁₆
000E ₁₆	F F 16
000F ₁₆	F F 16

GZZ-SH01-96A < 92A0 >

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37420M6-XXXSP MITSUBISHI ELECTRIC

Mask ROM	number	

Recommend to writing the following pseudo-command to the start address of the assembler source program.

EPROM type	27128	27256	27512
The needle command	*=△\$C000	* =△\$8000	*=△\$0000
The pseudo-command	.BYTE△ 'M37420M6—'	.BYTE△ 'M37420M6—'	.BYTE△ 'M37420M6—'

This is an example when the start address of internal ROM is D000₁₆.

※ 2. Mark specification

Mark specification must be submitted using the correct form for the type package being ordered fill out the appropriate mark specification form (52P4B for M37420M6-XXXSP) and attach to the mask ROM confirmation form.

***3.** Comments

※ 4	. Option	specification	(write the	option	data als	o to the	specified	address	of the	EPROM.
------------	----------	---------------	------------	--------	----------	----------	-----------	---------	--------	--------

	STP instruction is valid	 01 ₁₆	Address 0010 ₁₆
	STP instruction is invalid	 00 ₁₆	Address 0010 ₁₆
2.			
	Reset by the watchdog timer is valid	 01 ₁₆	
			Address 0011 ₁₆
	Reset by the watchdog timer is invalid	 00 ₁₆	

Recommend to writing the following pseudo-command to the assembler source file :

EPROM type	27128	27256	27512
	*=△\$C010	* =△\$8010	*=△\$0010
STP instruction option	.BYTE△\$XX	.BYTE△\$XX	.BYTE△\$XX
W.D.T option	.BYTE△\$XX	.BYTE△\$XX	.BYTE△\$XX

Note: If the name of the product written to the EPROMs does not match the name of the mask confirmation, the ROM processing is disabled. Write the data correctly. As for the option, if the contents of the confirmation and conflict with those of the EPROM, the contents of the EPROM are preferred.

GZZ-SH03-33A (01A0)

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37424M8-XXXSP MITSUBISHI ELECTRIC

Mask ROM number	

Date:	
Section head signature	Supervisor signature
	Section head

Note: Please fill in all items marked ...

		Company		TEL			Submitted by	Supervisor
*	Customer	name		()	uance nature		
		Date issued	Date :			Issu		

%1. Confirmation

Specify the name of the product being ordered and the type of EPROMs submitted.

Three sets of EPROMs are required for each pattern (Check @ in the appropriate box).

If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based in this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.

Checksum code for entire EPROM (hexadecimal notation)

EPROM type

□ 27256	i	□ 27512		
Area for ASCII codes of the name of the product 'M37424M8-'	0000 ₁₆	Area for ASCII codes of the name of the product 'M37424M8—'	0000 ₁₆	
ROM(16K)	4000 ₁₆	ROM(16K)	C000 ₁₆	
	7FFF ₁₆		FFFF ₁₆	

- (1) Set "FF₁₆" in the shaded area.
- (2) Write the ASCII codes that indicates the name of the product 'M37424M8—' to addresses 0000₁₆ to 000F₁₆. ASCII codes 'M37424M8—' are listed on the right. The addresses and data are in hexadecimal notation.

Address					
000016	'M'	=	4	D	16
000116	'3'	=	3	3	16
000216	'7'	=			16
000316	'4'	=	3	4	16
000416	'2'	=	3	2	16
000516	'4'	=			
000616	'M'	=	4	D	16
000716	'8'	=	3	8	16

Address 0008 ₁₆ 0009 ₁₆ 000A ₁₆ 000B ₁₆ 000C ₁₆ 000D ₁₆	$'-' = 2 D_{16}$ $F F_{16}$ $F F_{16}$ $F F_{16}$ $F F_{16}$ $F F_{16}$
000D ₁₆ 000E ₁₆ 000F ₁₆	

GZZ-SH03-33A (01A0)

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37424M8-XXXSP MITSUBISHI ELECTRIC

Mask ROM number	

Recommend to writing the following pseudo-command to the start address of the assembler source program.

EPROM type	27256	27512
The pseudo-command	* =△\$8000	* =△\$0000
	.BYTE△ 'M37424M8—'	.BYTE△ 'M37424M8—'

This is an example when the start address of internal ROM is C000₁₆.

※ 2. Mark specification

Mark specification must be submitted using the correct form for the type package being ordered fill out the appropriate mark specification form (64P4B for M37424M8-XXXSP) and attach to the mask ROM confirmation form.

※3. Comments

GZZ-SH03-53A < 04A0 >

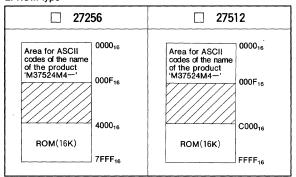
SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37524M4-XXXSP MITSUBISHI ELECTRIC

Mask R	OM number	
	Date :	
<u>_</u>	Section head signature	Supervisor signature
Receipt		
- å		
		*

Note: Please fill in all items marked*.

		Company		TEL			Submitted by	Supervisor
*	Customer	name		()	ance		
		Date issued	Date:			Issu		

***1.** Confirmation


Specify the name of the product being ordered and the type of EPROMs submitted.

Three sets of EPROMs are required for each pattern (Check @ in the appropriate box).

If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based in this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.

Checksum code for entire EPROM (hexadecimal notation)

EPROM type

- (1) Set "FF₁₆" in the shaded area.
- (2) Write the ASCII codes that indicates the name of the product 'M37524M4—' to addresses 0000₁₆ to 000F₁₆. ASCII codes 'M37524M4—' are listed on the right. The addresses and data are in hexadecimal notation.

Address 0000 ₁₆ 0001 ₁₆ 0002 ₁₆ 0003 ₁₆ 0004 ₁₆ 0005 ₁₆ 0006 ₁₆	'M' = 4 D ₁₆ '3' = 3 3 ₁₆ '7' = 3 7 ₁₆ '5' = 3 5 ₁₆ '2' = 3 2 ₁₆ '4' = 3 4 ₁₆ 'M' = 4 D ₁₆	Address 0008 ₁₆ 0009 ₁₆ 000A ₁₆ 000B ₁₆ 000C ₁₆ 000E ₁₆	'-' = 2 D ₁₆ F F ₁₆ F F ₁₆ F F ₁₆ F F ₁₆ F F ₁₆ F F ₁₆
0006 ₁₆	$^{\circ}4^{\circ} = 4 D_{16}$	000E ₁₆	F F ₁₆

GZZ-SH03-53A < 04A0 >

Mask ROM number	

SERIES MELPS 740 MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37524M4-XXXSP MITSUBISHI ELECTRIC

Recommend to writing the following pseudo-command to the start address of the assembler source program.

EPROM type	27256	27512
The pseudo-command	*=△\$8000	*=△\$0000
	.BYTE△ 'M37524M4—'	.BYTE△ 'M37524M4—'

This is an example when the start address of internal ROM is C000₁₆.

※ 2. Mark specification

Mark specification must be submitted using the correct form for the type package being ordered fill out the appropriate mark specification form (64P4B for M37524M4-XXXSP) and attach to the mask ROM confirmation form.

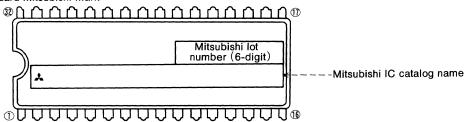
%3. Comments

MITSUBISHI MICROCOMPUTERS

MARK SPECIFICATION FORM

MARK SPECIFICATION FORM

The mark specification form varies depending on the package type. Fill out the mark specification form for the package being ordered, and submit the form with the mask ROM confirmation form.


MARK SPECIFICATION FORM

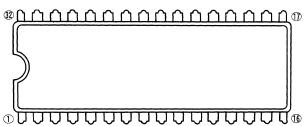
32P4B (32-PIN SHRINK DIP) MARK SPECIFICATION FORM

Mitsubishi IC catalog name	

Please choose one of the marking types below (A, B, C), and enter the Mitsubishi IC catalog name and the special mark (if needed).

A. Standard Mitsubishi Mark

B. Customer's Parts Number + Mitsubishi Catalog Name



Note1: The mark field should be written right aligned.

- 2: The fonts and size of characters are standard Mitsubishi type.
- 3: Customer's parts number can be up to 16 characters:
 Only 0~9, A~Z, +, -, /, (,), &, ©, . (period), and , (comma) are usable.
- 4: If the Mitsubishi logo ★ is not required, check the box on the right.

▲Mitsubishi logo is not required

C. Special Mark Required

Note1: If the special mark is to be printed, indicate the desired layout of the mark in the upper figure. The layout will be duplicated as close as possible. Mitsubishi lot number (6-digit) and mask ROM number (3-digit) are always marked.

2: If the customer's trade mark logo must be used in the special mark, check the box below. Please submit a clean original of the logo.

For the new special character fonts a clean font original (ideally logo drawing) must be submitted.

Special logo required

42P4B (42-PIN SHRINK DIP) MARK SPECIFICATION FORM

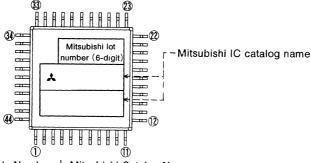
Mitsubishi IC catalog name
Please choose one of the marking types below (A, B, C), and enter the Mitsubishi IC catalog name and the special nark (if needed).
Mitsubishi lot number (6-digit) The standard Mitsubishi Mark Mitsubishi lot number (6-digit) The standard Mitsubishi Mark Mitsubishi lot number (6-digit) The standard Mitsubishi Mark Mitsubishi lot number (6-digit)
B. Customer's Parts Number + Mitsubishi Catalog Name
@ DOO OO OO OO OO OO OO OO OO OO OO OO OO
Customer's parts number Note: The fonts and size of characters are standard Mitsubishi type. ———————————————————————————————————
Note1 : The mark field should be written right aligned.
2 : The fonts and size of characters are standard Mitsubishi type. 3 : Customer's parts number can be up to 15 characters:
Only $0\sim 9$, $A\sim Z$, $+$, $-$, $/$, $($, $)$, $\&$, \bigcirc , . (period), and , (comma) are usable.
4 : If the Mitsubishi logo ★ is not required, check the box on the right. ★Mitsubishi logo is not required
C. Special Mark Required
⊕ បัរថ្មីប្រជាប្រជាប្រជាប្រជាប្រជ ្ឈ

Note1: If the special mark is to be printed, indicate the desired layout of the mark in the upper figure. The layout will be duplicated as close as possible. Mitsubishi lot number (6-digit) and mask ROM number (3-digit) are always marked.

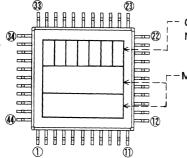
2: If the customer's trade mark logo must be used in the special mark, check the box below. Please submit a clean original of the logo.

For the new special character fonts a clean font original (ideally logo drawing) must be submitted.

Special logo required


MARK SPECIFICATION FORM

44P6N (44-PIN QFP) MARK SPECIFICATION FORM


Mitsubishi IC catalog name

Please choose one of the marking types below (A, B, C), and enter the Mitsubishi IC catalog name and the special mark (if needed).

A. Standard Mitsubishi Mark

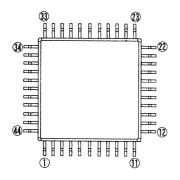
B. Customer's Parts Number + Mitsubishi Catalog Name

Customer's parts number

Note: The fonts and size of characters are standard Mitsubishi type.

Mitsubishi IC catalog name and Mitsubishi lot number

Note4: If the Mitsubishi logo ♣ is not required, check the box below.


★Mitsubishi logo is not required

Note1: The mark field should be written right aligned.

- 2: The fonts and size of characters are standard Mitsubishi type.
- 3: Customer's parts number can be up to 7 characters:

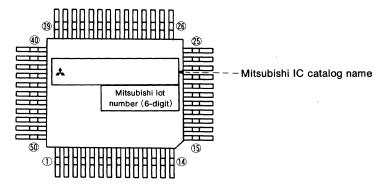
Only $0\sim9$, $A\sim Z$, +, -, /, (,), &, ©, . (period), and , (comma) are usable.

C. Special Mark Required

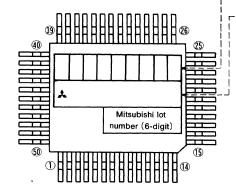
- Note1: If the special mark is to be printed, indicate the desired layout of the mark in the left figure. The layout will be duplicated as close as possible.

 Mitsubishi lot number (6-digit) and mask ROM number (3-digit) are always marked.
 - 2: If the customer's trade mark logo must be used in the special mark, check the box below. Please submit a clean original of the logo. For the new special character fonts a clean font original (ideally logo drawing) must be submitted.

Special logo required



50P6 (50-PIN QFP) MARK SPECIFICATION FORM


Mitsubishi IC catalog name

Please choose one of the marking types below (A, B, C), and enter the Mitsubishi IC catalog name and the special mark (if needed).

A. Standard Mitsubishi Mark

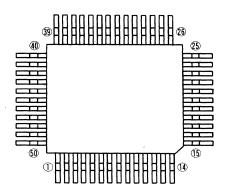
B. Customer's Parts Number + Mitsubishi Catalog Name

Customer's parts number

Note: The fonts and size of characters are standard Mitsubishi type.

-- Mitsubishi IC catalog name

Note1: The mark field should be written right aligned.


- 2: The fonts and size of characters are standard Mitsubishi type.
- 3 : Customer's parts number can be up to 9 characters:

Only $0\sim9$, $A\sim Z$, +, -, \swarrow , (,), &, \mathbb{C} , . (period), and , (comma) are usable.

4: If the Mitsubishi logo ★ is not required, check the box below.

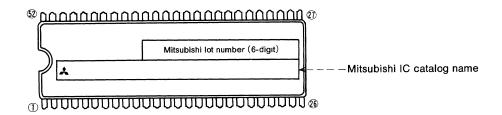
★Mitsubishi logo is not required

C. Special Mark Required

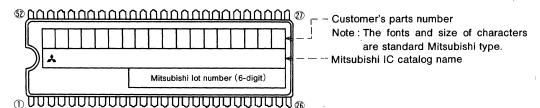
- Note1: If the special mark is to be printed, indicate the desired layout of the mark in the left figure. The layout will be duplicated as close as possible.

 Mitsubishi lot number (6-digit) and mask ROM number (3-digit) are always marked.
 - 2: If the customer's trade mark logo must be used in the special mark, check the box below. Please submit a clean original of the logo. For the new special character fonts a clean font original (ideally logo drawing) must be submitted.

Special logo required



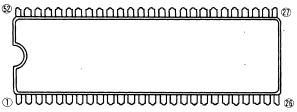
52P4B (52-PIN SHRINK DIP) MARK SPECIFICATION FORM


Mitsubishi IC catalog name	

Please choose one of the marking types below (A, B, C), and enter the Mitsubishi IC catalog name and the special mark (if needed).

A. Standard Mitsubishi Mark

B. Customer's Parts Number + Mitsubishi Catalog Name



Note1: The mark field should be written right aligned.

- 2: The fonts and size of characters are standard Mitsubishi type.
- 3: Customer's parts number can be up to 18 characters:
 Only 0~9, A~Z, +, -, /, (,), &, ©, .(period), and ,(comma) are usable.
- 4: If the Mitsubishi logo ▲ is not required, check the box on the right.

▲Mitsubishi logo is not required

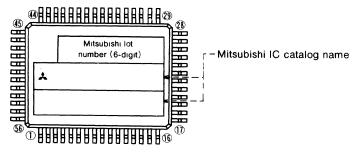
C. Special Mark Required

Note1: If the special mark is to be printed, indicate the desired layout of the mark in the upper figure. The layout will be duplicated as close as possible. Mitsubishi lot number (6-digit) and mask ROM number (3-digit) are always marked.

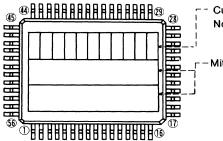
2: If the customer's trade mark logo must be used in the special mark, check the box below. Please submit a clean original of the logo.

For the new special character fonts a clean font original (ideally logo drawing) must be submitted.

Special logo required



56P6N (56-PIN QFP) MARK SPECIFICATION FORM


Mitsubishi IC catalog name

Please choose one of the marking types below (A, B, C), and enter the Mitsubishi IC catalog name and the special mark (if needed).

A. Standard Mitsubishi Mark

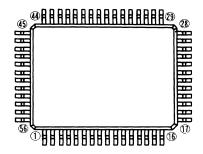
B. Customer's Parts Number + Mitsubishi Catalog Name

Customer's parts number

Note: The fonts and size of characters are standard Mitsubishi type.

Mitsubishi IC catalog name and Mitsubishi lot number

Note4: If the Mitsubishi logo ♣ is not required, check the box below.


▲ Mitsubishi logo is not required

Note1: The mark field should be written right aligned.

- 2: The fonts and size of characters are standard Mitsubishi type.
- 3: Customer's parts number can be up to 11 characters:

Only 0~9, A~Z, +, -, \checkmark , (,), &, \bigcirc , . (period), and , (comma) are usable.

C. Special Mark Required

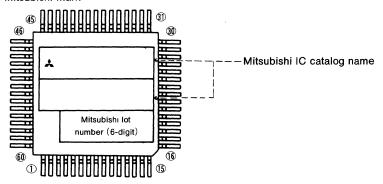
5: Arrangement of Mitsubishi IC catalog name and Mitsubishi lot number is dependent on number of Mitsubishi IC catalog name and that Mitsubishi logo ♣ is required or not.

Note1: If the special mark is to be printed, indicate the desired layout of the mark in the left figure. The layout will be duplicated as close as possible.

Mitsubishi lot number (6-digit) and mask ROM number (3-digit) are always marked.

2: If the customer's trade mark logo must be used in the special mark, check the box below. Please submit a clean original of the logo. For the new special character fonts a clean font original (ideally logo drawing) must be submitted.

Special logo required



60P6 (60-PIN QFP) MARK SPECIFICATION FORM

Mitsubishi IC catalog name

Please choose one of the marking types below (A, B, C), and enter the Mitsubishi 1C catalog name and the special mark (if needed).

A. Standard Mitsubishi Mark

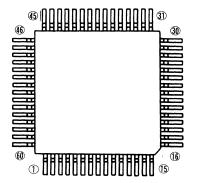
B. Customer's Parts Number + Mitsubishi Catalog Name

 Customer's Parts Number

Note: The fonts and size of characters are standard Mitsubishi type.

--Mitsubishi IC catalog name

Note1: The mark field should be written right aligned.


- 2: The fonts and size of characters are standard Mitsubishi type.
- 3: Customer's parts number can be up to 12 characters:

Only 0~9, A~Z, +, -, \nearrow , (,), &, \bigcirc , . (period), and , (comma) are usable.

4: If the Mitsubishi logo ★ is not required, check the box below.

♣ Mitsubishi logo is not required

C. Special Mark Required

Note1: If the Special Mark is to be printed, indicate the desired layout of the mark in the left figure. The layout will be duplicated as close as possible.

Mitsubishi lot number (6-digit) and mask ROM number (3-digit) are always marked.

2: If the customer's trade mark logo must be used in the special mark, check the box below. Please submit a clean original of the logo. For the new special character fonts a clean font original (ideally logo drawing) must be submitted.

Special logo required

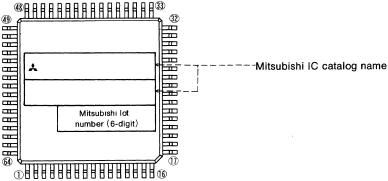
64D4R	(64-PIN	SHRINK	DID)	MARK	SPECIFIC	:ATION	FORM
04F4D	(04-FIIV	SHRINK	DIF	MAUL	SPECIFIC		I OLIM

64P4B (64-PIN SHRINK DIP) MARK SPECIFICATION FORM
Mitsubishi IC catalog name
Please choose one of the marking types below (A, B, C), and enter the Mitsubishi IC catalog name and the specia mark (if needed).
A. Standard Mitsubishi Mark
Mitsubishi lot number (6-digit) The state of the state o
B. Customer's Parts Number + Mitsubishi Catalog Name
® 000000000000000000000000000000000000
Mitsubishi lot number (6-digit)
① DUDUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU
4: If the Mitsubishi logo ★ is not required, check the box on the right. ★ Mitsubishi logo is not required. C. Special Mark Required
(a) DODOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
Note1: If the special mark is to be printed, indicate the desired layout of the mark in the upper figure. The layout will be duplicated as close as possible. Mitsubishi lot number (6-digit) and mask ROM number (3-digit) are all

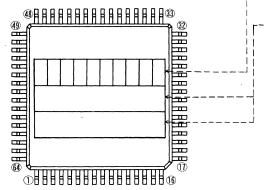
- ١ ways marked.
 - 2: If the customer's trade mark logo must be used in the special mark, check the box below. Please submit a clean original of the logo.

For the new special character fonts a clean font original (ideally logo drawing) must be submitted.

Special logo required

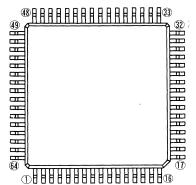


64P6N (64-PIN QFP) MARK SPECIFICATION FORM


Mitsubishi IC catalog name

Please choose one of the marking types below (A, B, C), and enter the Mitsubishi IC catalog name and the special mark (if needed).

A. Standard Mitsubishi Mark


B. Customer's Parts Number + Mitsubishi Catalog Name

Note1: The mark field should be written right aligned.

2: The fonts and size of characters are standard Mitsubishi type. (The character size became smaller than A (standard Mitsubishi mark) type)

C. Special Mark Required

Customer's parts number

Note: The fonts and size of characters are standard Mitsubishi type.

Mitsubishi IC catalog name

Note3: Customer's parts number can be up to 10 characters:

Only $0\sim 9$, $A\sim Z$, +, -, /, (,), &, \bigcirc , . (period), and , (comma) are usable.

4: If the Mitsubishi logo ♣ is not required, check the box below.

★Mitsubishi logo is not required

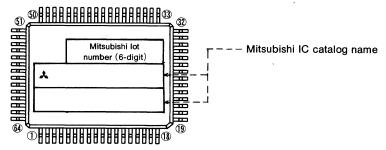
5: Arrangement of Mitsubishi IC catalog name and Mitsubishi lot number is dependent on number of Mitsubishi IC catalog name and that Mitsubishi logo ★ is required or not.

Note1: If the special mark is to be printed, indicate the desired layout of the mark in the left figure. The layout will be duplicated as close as possible.

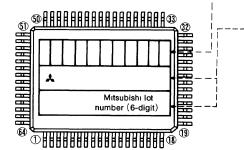
Mitsubishi lot number (6-digit) and mask ROM number (3-digit) are always marked.

2: If the customer's trade mark logo must be used in the special mark, check the box below. Please submit a clean original of the logo. For the new special character fonts a clean font original (ideally logo drawing) must be submitted.

Special logo required

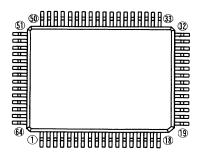


64P6S (64-PIN QFP) MARK SPECIFICATION FORM


Mitsubishi IC catalog name

Please choose one of the marking types below (A, B, C), and enter the Mitsubishi IC catalog name and the special mark (if needed).

A. Standard Mitsubishi Mark


B. Customer's Parts Number + MitsubishiCatalog Name

 $Note 1: The \ mark \ field \ should \ be \ written \ right \ aligned.$

2: The fonts and size of characters are standard Mitsubishi type. (The character size become smaller than A (standard Mitsubishi mark) type)

C. Special Mark Required

Customer's Parts Number

Note: The fonts and size of characters are standard Mitsubishi type.

Mitsubishi IC catalog name and Mitsubishi lot number

Note3: Customer's parts number can be up to 11 characters:

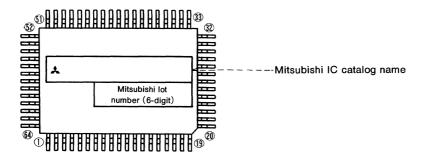
Only $0\sim9$, $A\sim Z$, +, -, \swarrow , (,), &, \bigcirc , . (period), and , (comma) are usable.

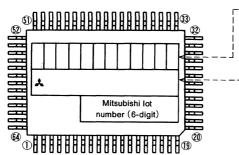
4: If the Mitsubishi logo ♣ is not required, check the box below.

★Mitsubishi logo is not required

- 5 : Arrangement of Mitsubishi IC catalog name and Mitsubishi lot number is dependent on number of Mitsubishi IC catalog name and that Mitsubishi logo ♣ is required or not.
- Note1: If the special mark is to be printed, indicate the desired layout of the mark in the left figure. The layout will be duplicated as close as possible.

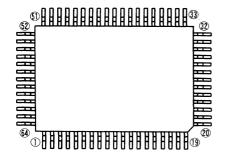
 Mitsubishi lot number (6-digit) and mask ROM number (3-digit) are always marked.
 - 2 : If the customer's trade mark logo must be used in the special mark, check the box below. Please submit a clean original of the logo. For the new special character fonts a clean font original (ideally logo drawing) must be submitted.


Special logo required


64P6W (64-PIN QFP) MARK SPECIFICATION FORM

Please choose one of the marking types below (A, B, C), and enter the Mitsubishi IC catalog name and the special mark (if needed).

A. Standard Mitsubishi Mark



B. Customer's Parts Number + Mitsubishi Catalog Name

Note1: The mark field should be written right aligned.

- 2: The fonts and size of characters are standard Mitsubishi type.
- C. Special Mark Required

Customer's parts number

Note: The fonts and size of characters are standard Mitsubishi type.

- Mitsubishi IC catalog name

Note3: Customer's parts number can be up to 12 characters:

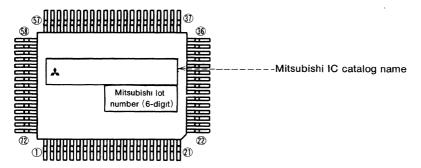
Only $0\sim9$, $A\sim Z$, +, -, /, (,), &, \mathbb{C} , . (period), and . (comma) are usable.

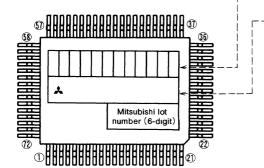
4: If the Mitsubishi logo ♣ is not required, check the box below.

▲Mitsubishi logo is not required

Note1: If the special mark is to be printed, indicate the desired layout of the mark in the left figure. The layout will be duplicated as close as possible. Mitsubishi lot number (6-digit) and mask ROM number (3-digit) are always marked.

2: If the customer's trade mark logo must be used in the special mark, check the box below. Please submit a clean original of the logo. For the new special character fonts a clean font original (ideally logo drawing) must be submitted.


Special logo required


72P6 (72-PIN QFP) MARK SPECIFICATION FORM

Please choose one of the marking types below (A, B, C), and enter the Mitsubishi IC catalog name and the special mark (if needed).

A. Standard Mitsubishi Mark

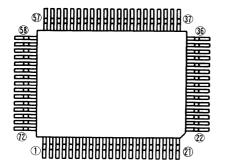
B. Customer's Parts Number + Mitsubishi Catalog Name

Customer's parts number

Note: The fonts and size of characters are standard Mitsubishi type.

Mitsubishi IC catalog name

Note1: The mark field should be written right aligned.


- 2: The fonts and size of characters are standard Mitsubishi type.
- 3: Customer's Parts Number can be up to 12 characters:

Only $0\sim9$, $A\sim Z$, +, -, /, (,), &, \mathbb{C} , . (period), and , (comma) are usable.

4 If the Mitsubishi logo ★ is not required, check the box below.

★Mitsubishi logo is not required

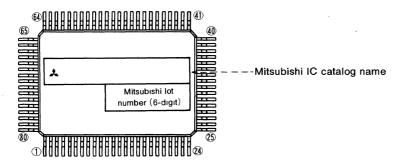
C. Special Mark Required

Note1: If the special mark is to be printed, indicate the desired layout of the mark in the left figure. The layout will be duplicated as close as possible.

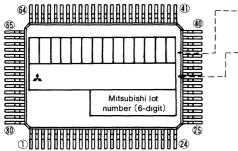
Mitsubishi lot number (6-digit) and mask ROM number (3-digit) are always marked.

2: If the customer's trade mark logo must be used in the special mark, check the box below. Please submit a clean original of the logo. For the new special character fonts a clean font original (ideally logo drawing) must be submitted.

Special logo required

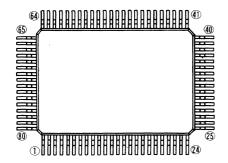


80P6 (80-PIN QFP) MARK SPECIFICATION FORM


	(
Mitsubishi IC catalog name	,

Please choose one of the marking types below (A, B, C), and enter the Mitsubishi IC catalog name and the special mark (if needed).

A. Standard Mitsubishi Mark


B. Customer's Parts Number + Mitsubishi Catalog Name

Note1: The mark field should be written right aligned.

2: The fonts and size of characters are standard Mitsubishi type.

C. Special Mark Required

Customer's parts number

Note: The fonts and size of characters are standard Mitsubishi type.

- Mitsubishi IC catalog name

Note3: Customer's parts number can be up to 14 characters:

Only $0\sim 9$, $A\sim Z$, +, -, /, (,), &, ©, . (period), and , (comma) are usable.

4: If the Mitsubishi logo ♣ is not required, check the box below.

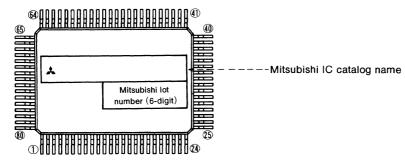
★Mitsubishi logo is not required

Note1: If the special mark is to be printed, indicate the desired layout of the mark in the left figure. The layout will be duplicated as close as possible.

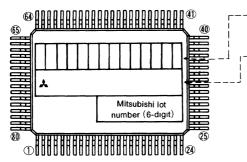
Mitsubishi lot number (6-digit) and mask ROM number (3-digit) are always marked.

2: If the customer's trade mark logo must be used in the special mark, check the box below. Please submit a clean original of the logo. For the new special character fonts a clean font original (ideally logo drawing) must be submitted.

Special logo required

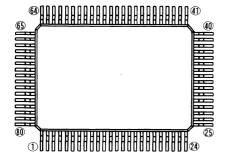


80P6N (80-PIN QFP) MARK SPECIFICATION FORM


Mitsubishi IC catalog name	,
----------------------------	---

Please choose one of the marking types below (A, B, C), and enter the Mitsubishi IC catalog name and the special mark (if needed).

A. Standard Mitsubishi Mark



B. Customer's Parts Number + Mitsubishi Catalog Name

Note1: The mark field should be written right aligned.

- 2: The fonts and size of characters are standard Mitsubishi type.
- C. Special Mark Required

- Customer's parts number

Note: The fonts and size of characters are standard Mitsubishi type.

-Mitsubishi IC catalog name

Note3: Customer's parts number can be up to 14 characters.

Only $0\sim9$, $A\sim Z$, +, -, /, (,), &, \mathbb{C} , . (period), and , (comma) are usable.

4: If the Mitsubishi logo ♣ is not required, check the box below.

★Mitsubishi logo is not required

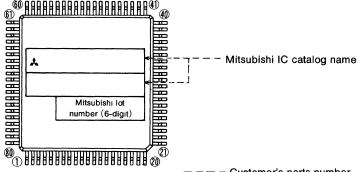
Note1: If the special mark is to be printed, indicate the desired layout of the mark in the left figure. The layout will be duplicated as close as possible.

Mitsubishi lot number (6-digit) and mask ROM number (3-digit) are always marked.

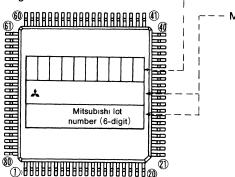
2: If the customer's trade mark logo must be used in the special mark, check the box below. Please submit a clean original of the logo. For the new special character fonts a clean font

original (ideally logo drawing) must be submitted.

Special logo required



80P6S (80-PIN QFP) MARK SPECIFICATION FORM


Mitsubishi IC catalog name	,

Please choose one of the marking types below (A, B, C), and enter the Mitsubishi IC catalog name and the special mark (if needed).

A. Standard Mitsubishi Mark

B. Customer's Parts Number + Mitsubishi Catalog Name

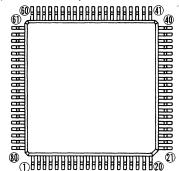
Customer's parts number

Note: The fonts and size of characters are standard Mitsubishi type.

Mitsubishi IC catalog name

Note3: Customer's parts number can be up to 10 characters:

Only $0\sim9$, $A\sim Z$, +, -, /, (,), &, \mathbb{C} , . (period), and , (comma) are usable.


4: If the Mitsubishi logo ♣ is not required, check the box below.

★Mitsubishi logo is not required

Note1: The mark field should be written right aligned.

2: The fonts and size of characters are standard Mitsubishi type. (The character size become smaller than A (standard Mitsubishi mark) type)

C. Special Mark Required

5: Arrangement of Mitsubishi IC catalog name and Mitsubishi lot number is dependent on number of Mitsubishi IC catalog name and that Mitsubishi logo ★ is required or not.

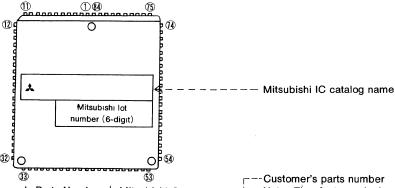
Note1: If the special mark is to be printed, indicate the desired layout of the mark in the left figure. The layout will be duplicated as close as possible. Mitsubishi lot number (6-digit) and mask ROM number (3-digit) are always marked.

If the customer's trade mark logo must be used in the special mark, check the box below. Please submit a clean original of the logo.

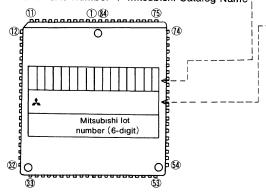
For the new special character fonts a clean font critical (ideally logo drawing) must be sub-

For the new special character fonts a clean font original (ideally logo drawing) must be submitted.

Special logo required

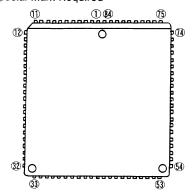


84P0 (84-PIN PLCC) MARK SPECIFICATION FORM


Mitsubishi IC catalog name	

Please choose one of the marking types below (A, B, C), and enter the Mitsubishi IC catalog name and the special mark (if needed).

A. Standard Mitsubishi Mark


B. Customer's Parts Number + Mitsubishi Catalog Name

Note1: The mark field should be written right aligned.

2: The fonts and size of characters are standard Mitsubishi type. (The character size become smaller than A (standard Mitsubishi mark) type)

C. Special Mark Required

Customer's parts number

Note: The fonts and size of characters are standard Mitsubishi type.

Mitsubishi IC catalog name

Note3: Customer's parts number can be up to 16 char-

Only $0\sim 9$, $A\sim Z$, +, -, /, (,), &, \bigcirc , . (period), and, (comma) are usable.

4: If the Mitsubishi logo A is not required, check the box below.

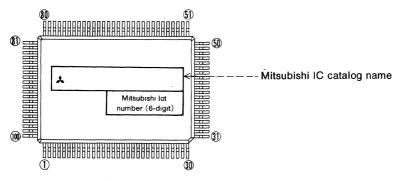
★ Mitsubishi logo is not required

5: Arrangement of Mitsubishi IC catalog name and Mitsubishi lot number is dependent on number of Mitsubishi IC catalog name and that Mitsubishi logo A is required or not.

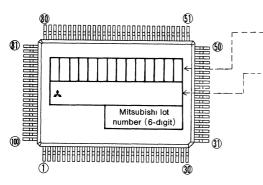
Note1: If the special mark is to be printed, indicate the desired layout of the mark in the left figure. The layout will be duplicated as close as possible. Mitsubishi lot number (6-digit) and mask ROM number (3-digit) are always marked.

2: If the customer's trade mark logo must be used in the special mark, check the box below. Please submit a clean original of the logo. For the new special character fonts a clean font original (ideally logo drawing) must be submitted.

Special logo required


MARK SPECIFICATION FORM

100P6S (100-PIN QFP) MARK SPECIFICATION FORM


Mitsubishi IC catalog name

Please choose one of the marking types below (A, B, C), and enter the Mitsubishi IC catalog name and the special mark (if needed).

A. Standard Mitsubishi Mark

B. Customer's Parts Number + Mitsubishi Catalog Name

Note1 : The mark field should be written right aligned.

- 2: The fonts and size of characters are standard Mitsubishi type.
- C. Special Mark Required

Customer's parts number

Note: The fonts and size of characters are standard Mitsubishi type.

Mitsubishi IC catalog name

Note3: Customer's parts number can be up to 14 characters:

Only $0\sim 9$, $A\sim Z$, +, -, /, (,), &, \mathbb{C} , . (period), and , (comma) are usable.

4: If the Mitsubishi logo ♣ is not required, check the box below.

▲Mitsubishi logo is not required

Note1: If the special mark is to be printed, indicate the desired layout of the mark in the left figure. The layout will be duplicated as close as possible. Mitsubishi lot number (6-digit) and mask ROM number (3-digit) are always marked.

2: If the customer's trade mark logo must be used in the special mark, check the box below. Please submit a clean original of the logo.

For the new special character fonts a clean font original (ideally logo drawing) must be submitted.

Special logo required

CONTACT ADDRESSES FOR FURTHER INFORMATION

Semiconductor Marketing Division Mitsubishi Electric Corporation 2-3. Marunouchi 2-chome Chiyoda-ku, Tokyo 100, Japan Telex 24532 MELCO J

Telephone: (03) 3218-3473 (03) 3218-3499 Facsimile: (03) 3214-5570

Overseas Marketing Manager Kita-Itami Works 4-1, Mizuhara, Itami-shi, Hyogo-ken 664, Japan

526408 KMELCO J Telex: Telephone: (0727) 82-5131 Facsimile. (0727) 72-2329

HONG KONG:

Mitsubishi Electric (H.K.) Ltd. 41st fl., Manulife Tower, 169, Electric Road, North Point, Hong Kong 60800 MELCO HX Telex:

Telephone[.] 510-0555 Facsimile. 510-9830, 510-9822, 510-9803

SINGAPORE =

MELCO SALES SINGAPORE PTE,

307 Alexandra Road #05-01/02 Mitsubishi Electric Building

Singapore 0315 **RS 20845 MELCO** Telex: Telephone: 4732308

4738944 Facsimile:

TAIWAN =

MELCO-TAIWAN CO., Ltd. 1st fl., Chung-Ling Bldg , 363, Sec. 2, Fu-Hsing S Road, Taipei R.O.C.

Telephone: (02) 735-3030

Facsimile: (02) 735-6771

Telex: 25433 CHURYO "MELCO-

TAIWAN"

U.S.A.

NORTHWEST

Mitsubishi Electronics America, Inc. 1050 East Arques Avenue Sunnyvale, CA 94086 Telephone: (408) 730-5900 Facsimile: (408) 730-4972

SAN DIEGO

Mitsubishi Electronics America, Inc. 16980 Via Tazon, Suite 220 San Diego, CA 92128 Telephone: (619) 451-9618 Facsimile: (619) 592-0242

DENVER

Mitsubishi Electronics America, Inc. 4600 South Ulster Street Metropoint Building, 7th Floor Denver, CO 80237

Telephone: (303) 740-6775 Facsimile: (303) 694-0613

SOUTHWEST

Mitsubishi Electronics America, Inc. 991 Knox Street Torrance, CA 90502 Telephone: (213) 515-3993 Facsimile: (213) 217-5781

SOUTH CENTRAL

Mitsubishi Electronics America, Inc 1501 Luna Road, Suite 124 Carrollton, TX 75006 Telephone: (214) 484-1919 Facsimile: (214) 243-0207

NORTHERN

Mitsubishi Electronics America, Inc.

15612 Highway 7 # 243 Minnetonka, MN 55345 Telephone: (612) 938-7779 Facsimile: (612) 938-5125

NORTH CENTRAL

Mitsubishi Electronics America, Inc. 800 N. Bierman Circle Mt. Prospect, IL 60056

Telephone: (312) 298-9223 Facsimile. (312) 298-0567

NORTHEAST

Mitsubishi Electronics America, Inc 200 Unicorn Park Drive Woburn, MA 01801

Telephone: (617) 932-5700 Facsimile: (617) 938-1075

MID-ATLANTIC

Mitsubishi Electronics America, Inc 800 Cottontail Lane

Somerset, NJ 08873 Telephone: (201) 469-8833 Facsimile: (201) 469-1909

SOUTH ATLANTIC

Mitsubishi Electronics America, Inc. 2500 Gateway Center Blvd., Suite 300 Morrisville. NC 27560 Telephone: (404) 368-4850 Facsimile: (404) 662-5208

SOUTHEAST

Mitsubishi Electronics America, Inc Town Executive Center 6100 Glades Road #210 Boca Raton, FL 33433 Telephone: (407) 487-7747 Facsimile: (407) 487-2046

CANADA

Mitsubishi Electronics America, Inc. 6185 Ordan Drive, Unit #110 Mississauga, Ontario, Canada L5T 2E1 Telephone: (416) 670-8711 Facsimile: (416) 670-8715

Mitsubishi Electronics America, Inc 300 March Road, Suite 302 Kanata, Ontario, Canada K2K 2E2 Telephone (416) 670-8711 Facsimile: (416) 670-8715

GERMANY =

Mitsubishi Electric Europe GmbH

Headquarters Gothear Str 8

4030 Ratingen 1, Germany Telex: 8585070 MED D Telephone (02102) 4860 Facsimile: (02102) 486-115

Munich Office. Arabellastraße 31

8000 München 81, Germany Telex: 5214820 Telephone: (089) 919006-09 (089) 9101399 Facsimile:

FRANCE :

Mitsubishi Electric Europe GmbH

 55. Avenue de Colmar 92563 Rueil Malmaison Cedex

Telex: 632326 Telephone[.] 47087871 Facsimile: 47513622

ITALY =

Mitsubishi Electric Europe GmbH Centro Direzionale Colleoni

Palazzo Cassiopea 1

20041 Agrate Brianza I-Milano Telephone: (039) 636011 Facsimile: (039) 6360120

SWEDEN :

Mitsubishi Electric Europe GmbH Lastbilsvägen 6B

5-19149 Sollentuna, Sweden 10877 (meab S) Telex:

Telephone: (08) 960468 Facsimile: (08) 966877

U.K. =

Mitsubishi Electric (U K.) Ltd.

Travellers Lane Hatfield

Herts AL10 8×B, England, U K Telephone (0044) 7072 76100 Facsimile (0044) 7072 78692

AUSTRALIA =

Mitsubishi Electric Australia Pty. Ltd

348 Victoria Road

Rydalmere Nsw 2116, Australia Private Bag No.2 Rydalmere Nsw 2116 Telex. MESYDAA 126614 Telephone (02) 684-7200

(02) 638-7072 Facsimile:

MITSUBISHI DATA BOOK SINGLE-CHIP 8-BIT MICROCOMPUTERS Vol.1

May. First Edition 1992

Editioned by

Committee of editing of Mitsubishi Semiconductor Data Book

Published by

Mitsubishi Electric Corp., Semiconductor Division

This book, or parts thereof, may not be reproduced in any form without permission of Mitsubishi Electric Corporation.

© 1992 MITSUBISHI ELECTRIC CORPORATION Printed in Japan

MITSUBISHI SEMICONDUCTORS SINGLE-CHIP 8-BIT MICROCOMPUTERS Vol. 1

If these products or technologies fall under Japanese and/or COCOM strategic restrictions, diversion contrary thereto is prohibited.