USER'S MANUAL

M37700M2-XXFP M37700M2AXXFP USER'S MANUAL

MITSUBISHI SEMICONDUCTORS

Difference between Original M37700 and Revised Version (Version –A)

Difference between Original M37700 and Revised Version (Version -A)

For the M37700/M37701 series, original version and -A version are available for the following 14 product types:

M37700SFP/M37700SAFP M37700E2FP/M37700E2AFP M37700E2FS/M37700E2AFS M37700S4FP/M37700S4AFP M37700E4FP/M37700E4AFP M37700E4FS/M37700E4AFS M37701E2SP/M37701E2ASP

The -A version are indicated by the suffix "-A" following the product type.

	Original product	–A version
Product	AM37700SFP	AM37700SFP–A
type	XXXXXX	XXXXXX

The differences between the original version and the -A version are as follows:

(1)HOLD function

Original product

The HOLD function does not work properly. Therefore, in memory expansion mode and microprocessor mode, the P4₀/HOLD pin must be held at "H" level to prevent the use of the HOLD function. In single-chip mode, this pin can be a normal port P4₀.

●–A version

The HOLD function can be used properly.

(2)P4₂/ø function

Original product

When ø output is selected from the P4₂/ø pin in memory expansion mode and microprocessor mode, the ø output stops at "L" level when the P4₁/RDY pin is pulled to "L" level.

A version

When ø output is selected from the P4₂/ø pin in memory expansion mode and microprocessor mode, the ø output does not stop at "L" level when the P4₁/RDY pin is pulled to "L" level.

(3)PWM output function of the timer A

Original product

Pulse width must be changed while the PWM output is at "L". If write is performed while the PWM output as "H", the PWM output frequency temporarily changes.

A version

Pulse width can be changed at any time. The PWM output frequency does not change when write is performed while the PWM output is "H". However, the "L" interval (width) of the PWM output must be at least two timer clock source cycles. In other words, the value that can be set in the timer is 0016 to FD16 for 8-bit PWM mode and 000016 to FFFD16 in 16-bit PWM mode.

(4)Reading from processor mode register (5E₁₆) and one-shot start flag (42₁₆)

Original product

The software reset bit in the processor mode register and the bits corresponding to timers A0 to A4 in the oneshot start flag are unpredictable when read. Therefore, read-modify-write type instructions cannot used for these addresses.

A version

The software reset bit in the processor mode register and the bits corresponding to timers A0 to A4 in the oneshot start flag returns a "0" when read. Therefore, read-modify-write type instructions can be used for the addresses.

Preface

This manual describes the hardware of the Mitsubishi CNOS 16-bit microcomputer M37700M2-XXXFP. After reading this manual, the user should be able to fully utilize the functions of the M37700 family of microcomputers.

For details concerning the softwares for the M37700 family, refer to the MELPS 7700 software manual. For details concerning the development support tools (assembler, option boards), refer to the respective operation manuals.

Table of Contents

CHAPTER 1. DESCRIPTION	
1.1 Description	2
1.2 M37700 Family	
1.2.1 M37700 family	
1.2.2 Difference between types	
1.2.3 Meaning of type name	5
1.3 Performance Overview	
1.4 Pin Configuration	
1.5 Pin Description	8
1.6 Block Diagram	
CHAPTER 2. FUNCTIONAL DESCRIPTION	
2.1 Central Processing Unit (CPU)	
2.1.1 Accumulator (Acc)	
2.1.2 Index register X	
2.1.3 Index register Y	
2.1.4 Stack pointer (S)	
2.1.5 Program counter (PC)	14
2.1.6 Program bank register (PG)	14
2.1.7 Data bank register (DT)	14
2.1.8 Direct page register (DPR)	
2.1.9 Processing status register (PS)	
2.2 Internal Bus Interface	
2.2.1 Internal bus interface overview	
2.2.2 Bus interface unit functions	
2.2.3 Bus interface unit operations	
2.2.4 Data read/write operations	
2.3 Addressable memory space	
2.3.1 Banks	
2.3.2 Direct page	
2.4 Memory Allocation	
2.4.1 Internal memory and peripheral device memory allocation	
2.4.2 Processor modes	
2.4.3 External memory area bus control	
2.5 Input/Output Pins	4
2.5.1 Programmable I/O ports	
2.5.2 Pin functions	
2.5.3 Single-chip mode pin functions	
2.5.4 Memory expansion and microprocessor mode pin functior	
2.6 Interrupts	
2.6.1 Interrupt functions	
2.6.2 Source of interrupts	
2.6.3 Interrupt control	
2.6.4 Interrupt order	
2.6.5 Interrupt priority detection circuit	
2.6.6 Interrupt priority detection time	
2.6.7 Interrupt processing sequence	
2.6.8 Interrupt service routine	
2.6.9 Returning from an interrupt service routine	
2.6.10 Interrupt response time	

2.7 Timer A	
2.7.1 Timer A description	
2.7.2 Block description	57
2.7.3 Timer mode	62
2.7.4 Event counter mode	66
2.7.5 One-shot pulse mode	70
2.7.6 PWM (Pulse Width Modulation) mode	74
2.8 Timer B	
2.8.1 Timer B description	
2.8.2 Block diagram	
2.8.3 Timer mode	82
2.8.4 Event counter mode	
2.8.5 Pulse cycle/pulse width measurement mode	
2.9 Serial I/O	
2.9.1 Serial I/O description	
2.9.2 Block description	90
2.9.3 Serial I/O operation mode selection	
2.9.4 Clock synchronous serial I/O	
2.9.5 Clock asynchronous serial I/O (UART)	
2.10 A-D Converter	
2.10.1 A-D converter description	
2.10.2 Block description	
2.10.3 A-D conversion mode operation	
2.11 Watchdog Timer	
2.11.1 Watchdog timer description	
2.11.2 Operation description	127
2.11.3 Watchdog timer usage	127
CHAPTER 3. RESET	
3.1 Reset	
3.1.1 Reset operation	
3.1.2 Internal states at reset	
3.2 Reset circuit	
3.3 Software reset	

CHAPTER 4. OSCILLATING CIRCUIT

CHAFTER 4. USCILLATING CINCOTT	
4.1 Oscillating Circuit	
4.1.1 Circuit using a ceramic oscillator or a crystal oscillator	
4.1.2 External clock input circuit	
4.2 Clock Generation Circuit	
CHAPTER 5. ELECTRICAL CHARACTERISTICS	
5.1 Absolute Maximum Ratings	
5.2 Recommended Operating Conditions	
5.3 M37700M2-XXXEP DC/AC Characteristics	
5.3.1 Electrical characteristics	
5.3.2 A-D converter characteristics	
5.3.3 Timing requirements	
5.3.3 Timing requirements 5.3.4 Switching characteristics	
5.4 M37700M2AXXXFP DC/AC Characteristics	
5.4.1 Electrical characteristics	
5.4.2 A-D converter characteristics	
5.4.3 Timing requirements	
5.4.4 Switching characteristics	154
5.5 Timing Diagrams	

CHAPTER 6. STANDARD CHARACTERISTICS	
6.1 Standard Port Characteristics	
6.2 Icc-f(XIN) Standard Characteristics	
6.3 A-D Converter Standard Characteristics	164
CHAPTER 7. USAGE PRECAUTIONS	
7.1 Software	
7.1.1 Stack pointer (S)	
7.1.2 Program bank register (PG) and data bank register (DT)	
7.1.3 Direct page register (DPR)	
7.1.4 Processor status register (PS)	
7.1.5 Register save and restore instructions	
7.1.6 PSH instruction	169
7.1.7 BRK instruction	169
7.1.8 BRA instruction	
7.1.9 Instruction execution time (instruction execution cycle)	
7.2 Hardware	
7.2.1 Memory related features	170
7.2.2 Input/output pin related features	170
7.2.3 Interrupts	171
7.2.4 Timers related features	
7.2.5 Serial I/O	
7.2.6 A-D conversion	176
7.2.7 Watchdog timer	
7.2.8 Reset related features	
7.2.9 Microprocessor status during stop, wait, one-shot wait, ready, and hold	

CHAPTER 8.TREATMENT OF INTERNAL PROM TYPE

8.1 Description	
8.2 Functional Description	
8.3 EPROM Mode	
8.4 Fast Programming Algorithm	
8.5 Notes	
8.5.1 Notes on an built-in PROM types	
8.5.2 Notes on one-time PROM type	
8.5.3 Notes on EPROM type	
2	

CHAPTER 9.M37701M2-XXXSP

9.1 Description	
9.2 M37701 Family	
9.3 M37701M2-XXXSP Characterictics	
9.4 M37701M2-XXXSP Performance Overview	
9.5 Diferences Between M37701M2-XXXSP and M37700M2-XXXFP	
9.6 M37701 Functional Description	
9.6.1 A-D converter	
9.6.2 Timers	
9.6.3 Serial I/O	
9.6.4 Ports	

TABLE OF CONTENTS

APPENDIX 1. OUTLINE DRAWING	
1.80-pin plastic molded QFP (80P6)	
2.80-pin ceramic LCC (80D0O)	
3.Outline of EPROM Type IC Socket	
4.Outline of EPROM Type IC Socket	
5.Outline of One-time PROM Type IC Socket	
6.Common Printed Circuit Foot Pattern for 80P6, 80P6N, LCC IC Sockets	
APPENDIX 2. SETTING OF UNUSED PINS 1.Setting of unused pins in single-chip mode	000
2.Setting of unused pins in memory expansion and microprocessor mode	200
2.Setting of unused pins in memory expansion and microprocessor mode	200
APPENDIX 3. M37700 FAMILY PERFORMANCE OVERVIEW	
1.M37700 family common performance	
2. Difference in external clock input frequency by type	
3.Memory characteristics and size by type	
4.External ROM types	
5.Package	
APPENDIX 4. M37700 FAMILY MEMORY MAP	
1.Memory map in single-chip mode	
2.Memory map in memory expansion mode	
3.Memory map in microprocessor mode (and external ROM type)	
APPENDIX 5. SFR AREA MEMORY MAP	
APPENDIX 6. CONTROL REGISTERS	014
1.Port Pi data direction registers (i=0~8) 2.A-D control register	
3.UARTi transmit/receive mode registers (i=0, 1)	
4.UARTi transmit/receive control register 0 (i=0, 1)	
5.UARTi transmit/receive control register 0 (i=0, 1)	
6.Count start flag	
7.One-shot start flag	
8.Up-down flag	
9.Timer Ai mode registers (i=0~4)	······································
(1) Timer mode	- 219
(2) Event counter mode	
(3) One-shot pulse mode	
(4) PWM mode	
10.Timer Bi mode registers (i=0~2)	
(1) Timer mode	
(2) Event counter mode	
(3) Pulse cycle/pulse width measurement mode	
11.Processor mode register	
12.Interrupt control registers	
A-D conversion	
UART0/1 transmission	
UART0/1 receive	
timers A0~A4	
timers B0~B2	
13.INT0~INT2 interrupt control registers	
APPENDIX 7.INSTRUCTION CODE TABLE	
APPENDIX 8.MACHINE INSTRUCTIONS	
APPENDIX 9.MASK ROM ORDERING METHOD	2/8
APPENDIX 10.Q & A	

CHAPTER 1 DESCRIPTION

CHAPTER 1.DESCRIPTION

1.1 Description

The M37700M2-XXXFP is a 16-bit single-chip microcomputer designed with high-performance CMOS silicon gate technology. It is housed in an 80-pin plastic molded flat package.

This single-chip microcomputer has a large 16M bytes address space, three instruction queue buffers, and two data buffers for high-speed instruction execution. The CPU is a 16-bit parallel processor that can also be switched to perform 8-bit parallel processing. This microcomputer is suitable for office, business, and industrial equipment controllers that require high-speed processing of large amounts of data.

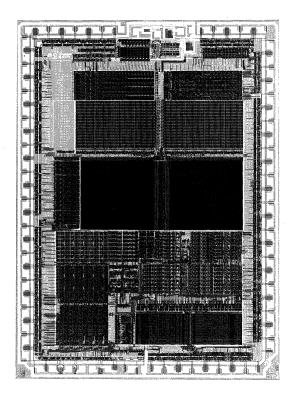


Photo of M37700M2-XXXFP Chip

1.2 M37700 Family

1.2.1 M37700 family

The M37700 family consists of chips shown in Table 1.2.1 with the M37700M2-XXXFP as the base chip. These chips are all pin compatible and provide a variety of memory characteristics, memory size, and operating clock frequencies to enable the user to select the chip best suited for his system. Hereafter, the M37700 family microcomputers will be referred to simply as the M37700 unless there is a specific difference by type.

Type name	ROM size (bytes)	RAM size (bytes)	Clock frequency (MHz)	Remarks
M37700M2-XXXFP	16K (Mask ROM)	512	8	
M37700M2AXXXFP	16K (Mask ROM)	512	16	High-speed type of M37700M2-XXXFP
M37700SFP		512	8	External ROM type of M37700M2-XXXFP
M37700SAFP		512	16	External ROM type of M37700M2AXXXFP
M37700E2-XXXFP	16K (One-time PROM)	512	8	One-time PROM type of M37700M2-XXXFP
M37700E2AXXXFP	16K (One-time PROM)	512	16	One-time PROM type of M37700M2AXXXFP
M37700E2FS	16K (EPROM)	512	8	EPROM type of M37700M2-XXXFP
M37700E2AFS	16K (EPROM)	512	16	EPROM type of M37700M2AXXXFP
M37700M4-XXXFP	32K (Mask ROM)	2048	8	Memory expansion type of M37700M2-XXXFP
M37700M4AXXXFP	32K (Mask ROM)	2048	16	Memory expansion type of M37700M2AXXXFP
M37700S4FP		2048	8	External ROM type of M37700M4-XXXFP
M37700S4AFP		2048	16	External ROM type of M37700M4AXXXFP
M37700E4-XXXFP	32K (One-time PROM)	2048	8	One-time PROM type of M37700M4-XXXFP
M37700E4AXXXFP	32K (One-time PROM)	2048	16	One-time PROM type of M37700M4AXXXFP
M37700E4FS	32K (EPROM)	2048	8	EPROM type of M37700M4-XXXFP
M37700E4AFS	32K (EPROM)	2048	16	EPROM type of M37700M4AXXXFP

Table 1.2.1 M37700 Family

CHAPTER 1.DESCRIPTION

1.2.2 Differences between types

- Mask ROM type microcomputer This type of microcomputers has programs printed using a mask during the manufacturing process.
 - Applicable types: M37700M2-XXXFP/M37700M2AXXXFP M37700M4-XXXFP/M37700M4AXXXFP
- ② External ROM type microcomputer This type of microcomputers has no internal ROM. External ROMs must be provided. The function is identical with the mask ROM version microcomputer when it is operating in microprocessor mode.
 - Applicable types: M37700SFP/M37700SAFP M37700S4FP/M37700S4AFP
- ③ One-time PROM type microcomputer This type of microcomputer is equipped with one-time PROM (Programmable ROM). Programs can be written using commercially available PROM writers. However, programs can be written only once and the written program cannot be erased.
 - Applicable types: M37700E2-XXXFP/M37700E2AXXXFP M37700E4-XXXFP/M37700E4AXXXFP

④ EPROM type microcomputer

This type of microcomputer is equipped with EPROM and programs can be written using commercially available PROM writers. Furthermore, programs can be re-written by exposing the window on top of the package to an ultraviolet rays.

 Applicable types: M37700E2FS/M37700E2AFS M37700E4FS/M37700E4AFS

1.2.3 Meaning of type name

The names of the Mitsubishi Single-chip microcomputers indicate the differences in functions and characteristics. The name of the M37700 family has the following meaning:

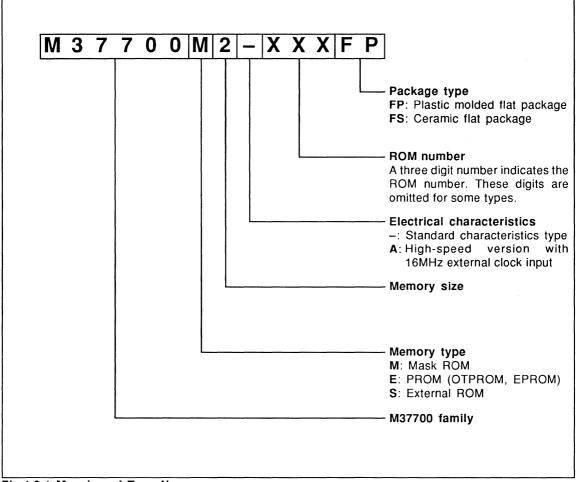
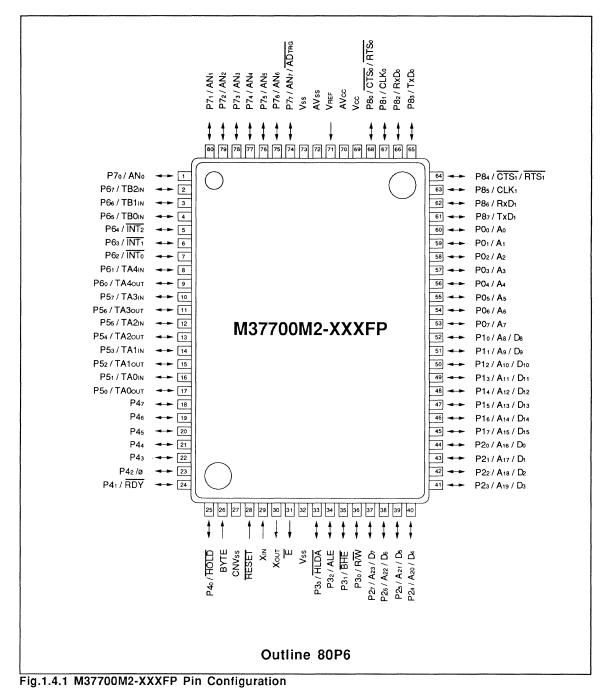


Fig.1.2.1 Meaning of Type Name

CHAPTER 1.DESCRIPTION

1.3 Performance Overview


Table 1.3.1 shows the performance overview of the M37700M2-XXXFP/ M37700M2AXXXFP. Refer to "Appendix 3. M37700 Family Performance Overview" for the performance of other types.

Parameters		Functions
Number of basic instructions		103
Instruction execution time	M37700M2-XXXFP	500ns (shortest instruction at 8MHz frequency)
	M37700M2AXXXFP	250ns (shortest instruction at 16MHz frequency)
Clock frequency	M37700M2-XXXFP	8MHz (maximum)
	M37700M2AXXXFP	16MHz (maximum)
Memory size	ROM	16384 bytes
	RAM	512 bytes
Input/Output ports	Ports P0~P2, P4~P8	8 bits x 8
	Port P3	4 bits x 1
Multi-function timers	TA0, TA1, TA2, TA3, TA4	16 bits x 5
	TB0, TB1, TB2	16 bits x 3
Serial I/O		(UART or clock synchronous serial I/O) x 2
A-D converter		8 bits x 1 (8 channels)
Watchdog timer		12 bits x 1
Interrupts		3 external, 16 internal (priority levels 0 to 7 can
		be set for each interrupt with software)
Clock generating circuit		Built-in (externally connected to a ceramic
		resonator or quartz crystal oscillator)
Supply voltage		5V±10%
Power dissipation		30mW (at external 8MHz frequency)
Input/Output characteristics	Input/Output voltage	5V
	Output current	5mA
Memory expansion		Maximum 16M bytes
Operating temperature range	}	–10 to 70°C
Device structure		CMOS high-performance silicon gate process
Package		80-pin plastic molded QFP

Table 1.3.1	M37700M2-XXXFP/M37700M2AXXXFP	Performance Overview
-------------	-------------------------------	----------------------

1.4 Pin Configuration

1.4 Pin Configuration

7

CHAPTER 1.DESCRIPTION

1.5 Pin Description

Table 1.5.1 Pin Description (a)

Pin	Name	Input/Output	Functions
Vcc, Vss	Power supply		Supply 5V±10% to Vcc and 0V to Vss.
CNVss	CNVss input	Input	This pin controls the processor mode. Connect to Vss
			for single-chip mode. It must be connected to Vcc for
			external ROM types.
RESET	Reset input	Input	The microcomputer is reset when this pin is set to "L'
			level.
XIN	Clock input	Input	These are the I/O pins of the internal clock generating
			circuit. Connect a ceramic or quartz crystal resonator
Хоџт	Clock output	Output	between XIN and XOUT. When an external clock is used
			the clock source should be connected to the XIN pin and
			the Xour pin should be left open.
Ē	Enable output	Output	Data or instruction read and data write are performed
			when output from this pin is "L".
BYTE	Bus width selection input	Input	When in memory expansion mode or microprocessor
			mode, this pin determines whether the external data
		i.	bus is 8-bit width or 16-bit width. The width is 16 bits
	· · · · ·		when the signal level is "L" and 8 bits when the signa
			level is "H".
AVcc, AVss	Analog supply input		Power supply for the A-D converter. Externally connect
			AVcc to Vcc and AVss to Vss.
VREF	Reference voltage input	Input	This is a reference voltage input pin for the A-D con-
			verter.
P00~P07	I/O port P0	I/O	This port is a CMOS I/O port. An I/O direction register is
			available so that each pin can be programmed for input
			or output. Address (Ao~A7) is output in memory expan-
			sion mode or microprocessor mode.
P10~P17	I/O port P1	I/O	This port is an 8-bit I/O port with the same function as
			P0. When the BYTE pin is set to "H" in memory expan-
			sion mode or microprocessor mode, address (A8~A15) is
			output. When the BYTE pin is set to "L", an address
			$(A_8 \sim A_{15})$ is output when \overline{E} pin level is "H" and high-order
			data (D ₈ ~D ₁₅) is input or output when E pin level is "L"
P20~P27	I/O port P2	I/O	This port is an 8-bit I/O port with the same function as
			P0. In memory expansion mode or microprocesso
			mode, an address ($A_{16} \sim A_{23}$) is output when \overline{E} pin level is
			"H" and low-order data (Do~D7) is input or output wher
			E pin output is "L".
P30~P33	I/O port P3	I/O	This port is a 4-bit I/O port with the same function as P0
			In memory expansion mode or microprocessor mode
			P30~P33 become R/W, BHE, ALE, and HLDA signals are
			output respectively.
P40~P47	I/O port P4	I/O	This port is an 8-bit I/O port with the same function as
			P0. P4 ₂ can be programmed as a \emptyset output pin. In mem-
			ory expansion mode or microprocessor mode, P4 ₀ and
			P41 become HOLD and RDY input pin respectively.

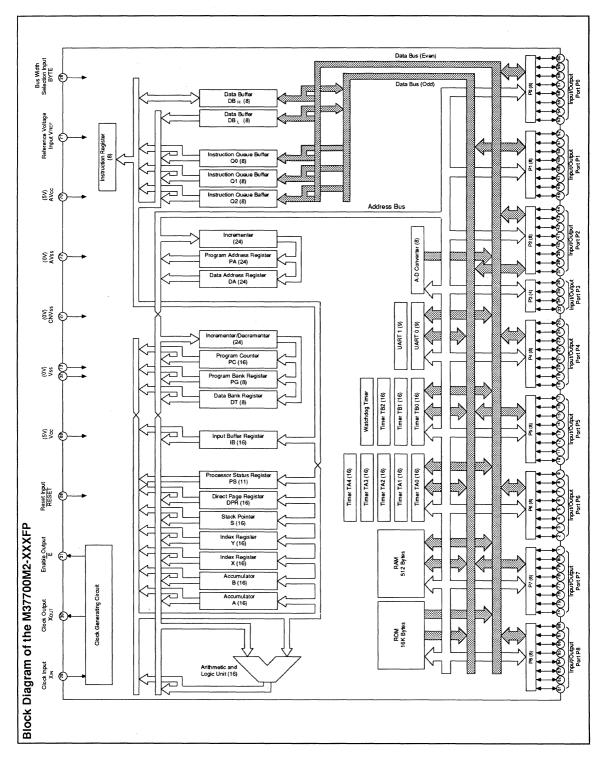

Pin	Name	Input/Output	Functions
P50~P57	I/O port P5	1/0	This port is an 8-bit I/O port with the same function as P0. These pins can also be programmed as I/O pins for timers A0~A3.
P60~P67	I/O port P6	I/O	This port is an 8-bit I/O port with the same function as P0. These pins can be programmed as I/O pins for timer A4, external interrupt input pins for $\overline{INT_0}$ - $\overline{INT_2}$, and input pins for timers B0~B2.
P70~P77	I/O port P7	I/O	This port is an 8-bit I/O port with the same function as P0. These pins can be programmed as analog input pins AN ₀ ~AN ₇ . P7 ₇ also has an A-D conversion trigger input function.
P80~P87	I/O port P8	I/O	This port is an 8-bit I/O port with the same function as P0. These pins can be programmed as CTS/RTS, CLK, RxD, TxD pins for UART0 and UART1.

Table 1.5.1 Pin Description (b)

.

CHAPTER 1.DESCRIPTION

1.6 Block Diagram

10

CHAPTER 2 FUNCTIONAL DESCRIPTION

2.1 Central Processing Unit (CPU)

The MELPS 7700 Series CPU has ten registers as shown in Figure 2.1.1. Each of these registers is described below.

2.1.1 Accumulator (Acc)

Accumulators A and B are available and each can be used as 8-bit or 16-bit register as necessary.

(1) Accumulator A (A)

Accumulator A is the main register of the microcomputer. Data operations such as calculations, data transfer, and input/output are executed mainly through accumulator A. It consists of 16 bits and the lower 8 bits can be used separately. The data length flag (m) determines whether the register is used as a 16-bit register or as an 8-bit register. It is used as a 16-bit register when flag m is "0" and as an 8-bit register when flag m is "1". Flag m is a part of the processor status register (PS) which is described later.

(2) Accumulator B (B)

Accumulator B has the same functions as accumulator A. The series MELPS 7700 instructions can use accumulator B instead of accumulator A, but the use of accumulator B requires more instruction bytes and execution cycles than accumulator A. Accumulator B is also controlled by the data length flag m.

2.1.2 Index register X

Index register X consists of 16 bits and the lower 8 bits can be used separately. The index register length flag (x) determines whether the register is used as a 16-bit register or as an 8-bit register. It is used as a 16-bit register when flag x is "0" and as an 8-bit register when flag x is "1". Flag x is a part of the processor status register (PS) which is described later.

In index addressing mode, register X is used as the index register and the contents of this address is added to obtain the real address.

Also, when executing a block transfer instruction MVP or MVN, the contents of the index register X indicates the low-order 16 bits of the source data address. The third byte of the MVP and MVN is the high-order 8 bits of the source data address.

2.1.3 Index register Y

Index register Y is a 16-bit register with the same function as index register X. As with index register X, the index register length flag (x) determines whether this register is used as a 16-bit register or as an 8-bit register. Also, when executing a block transfer instruction MVP or MVN, the content of index register Y indicates the low order 16 bits of the destination data address. The second byte of the MVP and MVN is the high-order 8 bits of the destination data address.

2.1 Central Processing Unit

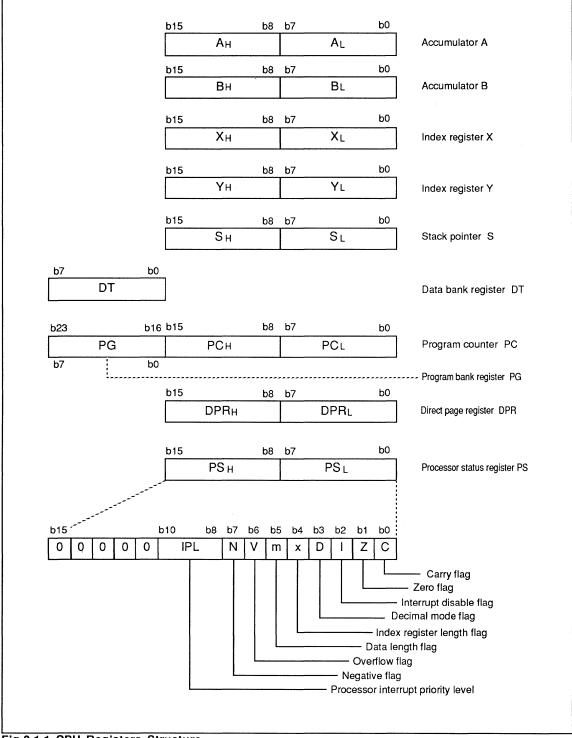


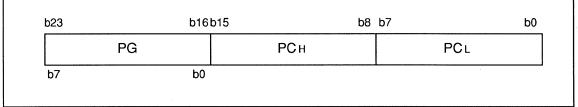
Fig.2.1.1 CPU Registers Structure

2.1.4 Stack pointer (S)

Stack pointer S is a 16-bit register. It is used during a subroutine call or interrupt. It is also used during addressing modes using the stack. The contents of the stack pointer S indicates the address (stack area) for saving registers during subroutine calls and interrupts. Normally, the stack area is reserved in internal RAM.

When an interrupt occurs, the contents of the program bank register PG is saved at the address indicated by the content of the stack pointer S and the content of the stack pointer is decremented by 1. Then the contents of the program counter PC and the processor status register PS are saved with the high-order bytes followed by the low-order bytes (PCH, PCL, PSH, PSL). The contents of the stack pointer S after an interrupt is equal to the content before the interrupt -5. When returning to the original routine after processing the interrupt, the registers saved in the stack area are restored to the original registers in the reverse sequence and the content of the stack pointer is returned to the status before the interrupt. The same operation is performed during a subroutine call, but the content of the processor status register PS is not saved (the content of the program bank register PG may not be saved either depending on the addressing mode).

The user is responsible for saving registers other than those described above during interrupts or subroutine calls. In addition, the stack pointer S must be initialized at the beginning of the program because its content is unpredictable after a reset. Normally, the stack pointer is initialized with the highest address of the internal RAM. The contents of the stack area changes when subroutines are nested or when multiple interrupts occur. Therefore, make sure necessary data in the internal RAM are not destroyed when nesting subroutines.


2.1.5 Program counter (PC)

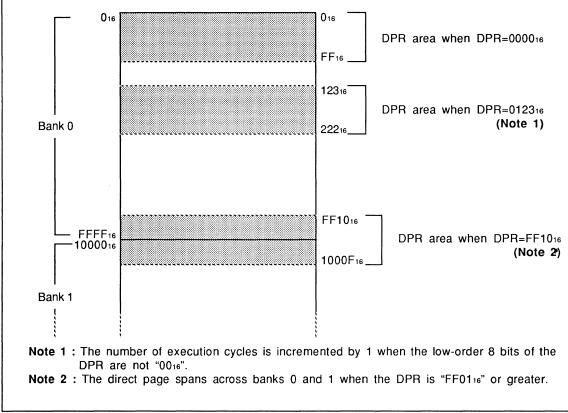
Program counter PC is a 16-bit counter that indicates the low-order 16 bits of the next program memory address to be executed.

2.1.6 Program bank register (PG)

Program bank register PG is an 8-bit register that indicates the high-order 8 bits (bank) of the next program memory address to be executed. When a carry occurs after incrementing the content of the program counter, the content of the program bank register PG is incremented by 1. Also, when a carry or borrow occurs after adding or subtracting the content of the program counter PC, the content of the program bank register PG is incremented by 1 so that programs can be written without considering bank boundaries.

In single-chip mode, do not store values other than " 00_{16} " because only address between 0000_{16} and FFFF₁₆ can be accessed.

Fig.2.1.2 Program Counter and Program Bank Register

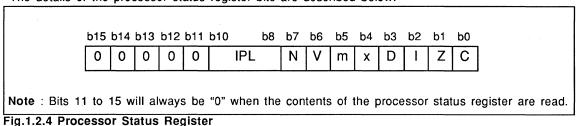

2.1.7 Data bank register (DT)

Data bank register DT is an 8-bit register. With some addressing modes, the content of this register is used as the high-order 8 bits of a 24-bit address. In single-chip mode, do not store values other than "0016" because only address between 000016 and FFFF16 can be accessed.

2.1.8 Direct page register (DPR)

Direct page register DPR is a 16-bit register. The content of this register indicates whether the direct page area is allocated in bank 0 or spans across bank 0 and 1. This area can be accessed with two bytes by using the direct page addressing mode.

The content of the DPR is the base address (lowermost address) of the direct page area which extends 256 bytes above this address. The DPR can contain a value from 000016 to FFFF16. If it contains a value equal to or greater than "FF0116", the direct page area spans across banks 0 and 1. If the low-order 8 bits of the DPR is "0016", the number of cycles required to generate an address is minimized. Therefore, the low-order 8-bits of the DPR should normally be set to "0016".



CHAPTER 2.FUNCTIONAL DESCRIPTION

2.1.9 Processor status register (PS)

Processor status register is an 11-bit register. It consists of flags to indicate the result of operation and CPU interrupt levels. The flags C, Z, V, and N are tested by branch instructions. The details of the processor status register bits are described below.

(1)Carry flag (C)

The carry flag is assigned to bit 0 of the processor status register. It contains the carry or borrow bit from the arithmetic and logic unit (ALU) after an arithmetic operation. This flag is also affected by shift and rotate instructions. This flag can be set with the SEC or SEP instruction and cleared with the CLC or CLP instruction.

(2)Zero flag (Z)

The zero flag is assigned to bit 1 of the processor status register. It is set if the result of an arithmetic operation or data transfer is zero and cleared if otherwise. This flag can be set and cleared directly with the SEP and CLP instructions.

Note : The content of this flag has no meaning during decimal mode addition (ADC instruction).

(3)Interrupt disable flag (I)

The interrupt disable flag is assigned to bit 2 of the processor status register. It disables all maskable interrupts (interrupts other than watchdog timer, **BRK** instruction, and zero divide). Interrupts are disabled when this flag is "1". When there is an interrupt, it is set automatically to prevent multiple interrupts. This flag can be set with the **SEI** or **SEP** instruction and cleared with the **CLI** or **CLP** instruction. This flag is set during reset.

(4)Decimal mode flag (D)

The decimal mode flag is assigned to bit 3 of the processor status register. It determines whether addition and subtraction are performed in binary or decimal. Binary arithmetic is performed when this flag is "0". If it is "1", decimal arithmetic is performed with each word treated as two or four digit decimal (determined by the data length flag m). Decimal adjust is performed automatically (Decimal operation is possible only with the **ADC** and **SBC** instructions.) This flag can be set and cleared with the **SEP** and **CLP** instructions. This flag is cleared during reset.

(5) Index register length flag (x)

The index register length flag is assigned to bit 4 of the processor status register. It determines whether the index register X or index register Y is used as a 16-bit register or an 8-bit register. The register is used as a 16-bit register when flag x is "0" and as an 8-bit register when it is "1". This flag can be set and cleared with the SEP and CLP instructions. This flag is cleared during reset.

(6) Data length flag (m)

The data length flag is assigned to bit 5 of the program status register. It determines whether to treat data as 16-bit or as 8-bit. A data is treated as 16-bit when flag m is "0" and as 8-bit when it is "1". This flag can be set with the **SEM** or **SEP** instruction and cleared with the **CLM** or **CLP** instruction. This flag is cleared during reset.

(7)Overflow flag (V)

The overflow flag is assigned to bit 6 of the processor status register. It is used when adding or subtracting a word as signed binary. When the data length flag m is "0", the overflow flag is set when the result of addition or subtraction is outside the range between -32768 and +32767. When the data length flag m is "1", the overflow flag is set when the result of addition or subtraction is outside the range between -128 and +127. It is cleared in all other cases. The overflow flag can also be set and cleared directly with the SEP, CLV, and CLP instructions. Note : This flag no meaning in decimal mode.

(8)Negative flag (N)

The negative flag is assigned to bit 7 of the processor status register. It is set when the result of arithmetic operation or data transfer is negative (Data bit 15 is 1 when data length flag m is "0" or data bit 7 is 1, when data length flag m is "1".). It is cleared in all other cases. It can also be set and cleared with the SEP and CLP instructions.

Note : This flag has no meaning in decimal mode.

(9)Processor interrupt priority level (IPL)

The processor interrupt priority level (IPL) is assigned to bits 8, 9, and 10 of the processor status register. These three bits determine the priority level of processor interrupts from level 0 to level 7. Interrupt is enabled when the interrupt priority level of the requested interrupt (set with the interrupt control register) is higher than the processor interrupt priority. When an interrupt occurs, the IPL is saved in the stack and the processor interrupt priority is replaced by the interrupt priority of the accepted interrupt. This simplifies control of multiple interrupts.

There are no instructions to directly set or clear the IPL. It can be changed by placing the new IPL on the stack and updating the processor status register with a **PUL** or **PLP** instruction.

2.2 Internal Bus Interface

2.2.1 Internal bus interface overview

A bus interface unit (BIU) is provided between the CPU and the internal bus. Transfer of data between the CPU and memory or I/O device is always performed through the BIU. When the CPU reads data from memory or an I/O device, it sends the address to be read to the BIU. The BIU reads the data from the specified address and the CPU receives the data from the BIU. Similarly, the CPU sends the address to be written to the BIU when writing data. Thus the BIU controls the transfer of data between the CPU and bus.

Figure 2.2.1 shows a block diagram of the bus interface unit.

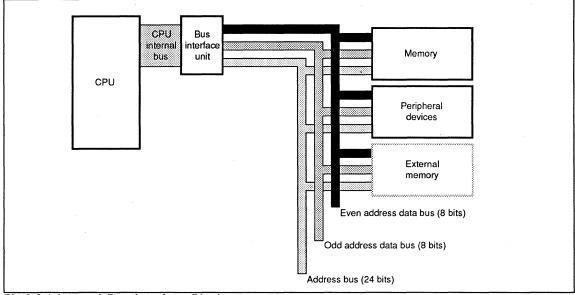


Fig.2.2.1 Internal Bus Interface Block

2.2.2 Bus Interface unit functions

The M37700 uses the clock \emptyset (=f(X|N)/2) as the clock. The CPU also uses clock \emptyset as the clock. However, since the CPU clock may be extended due to CPU wait under certain conditions, it is referred to as \emptyset_{CPU} to distinguish it from clock \emptyset .

The M37700 internal bus (address bus and data bus) operate at timing \overline{E} which is slower than clock \emptyset The operating clock of the CPU is different from the bus cycle because timing \overline{E} is normally f(XIN)/4. Therefore, a BIU is provided between the CPU and bus to synchronize the transfer of data to and from memory and I/O device. The BIU enables the CPU to transfer data to and from memory through the bus without decreasing the instruction execution speed.

The BIU consists of four registers as shown in Figure 2.2.2. Table 2.2.1 summarizes the functions of each register and buffer.

Name	Function					
Program address register	Indicates the address of the program.					
Instruction queue buffer	A three bytes buffer for temporarily holding instruction prefetched from memory.					
Data address register	Indicates the address to be read from or to be written to memory or I/O.					
Data buffer	A two bytes buffer for temporarily holding data read from memory or I/O device by the BIU or data written to memory or I/O device by the CPU.					

Table 2.2.1 Functions of BIU Registers and Buffers

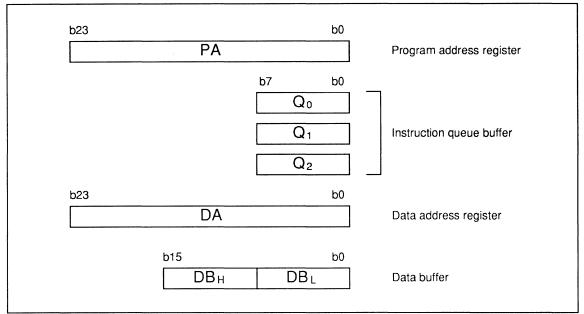


Fig.2.2.2 Bus Interface Unit Registers

The BIU performs the following operations.

1.Prefetches an instruction code from the program memory (area where the program is stored) and stores it in the instruction queue buffer.

Normally, a program is executed sequentially in ascending order of addresses. Therefore, if the next instruction code is prefetched in the instruction queue buffer, the CPU can execute instructions simply by obtaining the instruction code from the instruction queue buffer. This will eliminate the time needed by the CPU to access the memory.

When the CPU is not using the bus (for example when performing register to register operation), the BIU reads an instruction code from the program memory (area where the program is stored) and stores it in the instruction queue buffer. Data up to three bytes can be prefetched because the instruction queue buffer is three bytes long. Refer to "Section 2.2.4" for more information concerning instruction code prefetch.

2.Reads data at the specified address into the BIU when the CPU requests data in memory and transfers it to the CPU.

When executing instructions that processes data in memory or I/O device, the CPU must access the address assigned to the memory or I/O device and read the data. Because the operating clock of the CPU and bus are different, the CPU reads the data through the data buffer of the BIU.

3.Writes the data obtained from the CPU to the specified address in memory.

When writing data to a specific address, the CPU sends the address and data to the BIU. And after that, the CPU continue to execute the next instruction extracting from the instruction queue buffer, because actual writing to memory or I/O device is performed by the BIU.

4.Controls read of word data from odd number address and outputs the control signals required to access external memory in byte unit.

The transfer of data between the CPU and BIU is always performed through a 24-bit address bus and 16-bit data bus. This is also true between the BIU and internal memory or I/O device. The wait bit and BYTE pin (external bus width selection input pin) determine the data width only when an external memory is accessed.

CHAPTER 2.FUNCTIONAL DESCRIPTION

2.2.3 Bus Interface unit operations

Figure 2.2.3 shows the operating waveforms of the bus interface unit in memory expansion mode or microprocessor mode. The M37700 BIU always operates at one of the waveforms shown in Figure 2.2.3. The meaning of signals ALE and \overline{E} in Figure 2.2.3 are as follows:

• ALE (Address Latch Enable)

Signal used to latch only address signals from multiplexed signals containing data and address.

• E

Signal set to "L" level when the bus interface unit reads instruction code or data from memory or when it writes data to memory. Table 2.2.2 shows the bus status according to $\overline{\mathsf{E}}$ and $\mathsf{R}/\overline{\mathsf{W}}$ signals.

Table :	2.2.2	Bus	Status	According	to	E and	R/W
---------	-------	-----	--------	-----------	----	-------	-----

Ē	R/W	Bus Status
Н	Н	Not used
Н	L	Not used
L	Н	Read
L	L	Write

(1)Basic operation

Waveform (a) is the bus interface operating waveform under the following conditions:

- When a one byte internal/external memory is accessed.
- When two bytes in internal memory are accessed together (starting on an even address).
- When two bytes in external memory are accessed together (starting on an even address when the BYTE pin is at "L" level).

Waveform (b) is the bus interface operating waveform when accessing in byte unit under the following conditions:

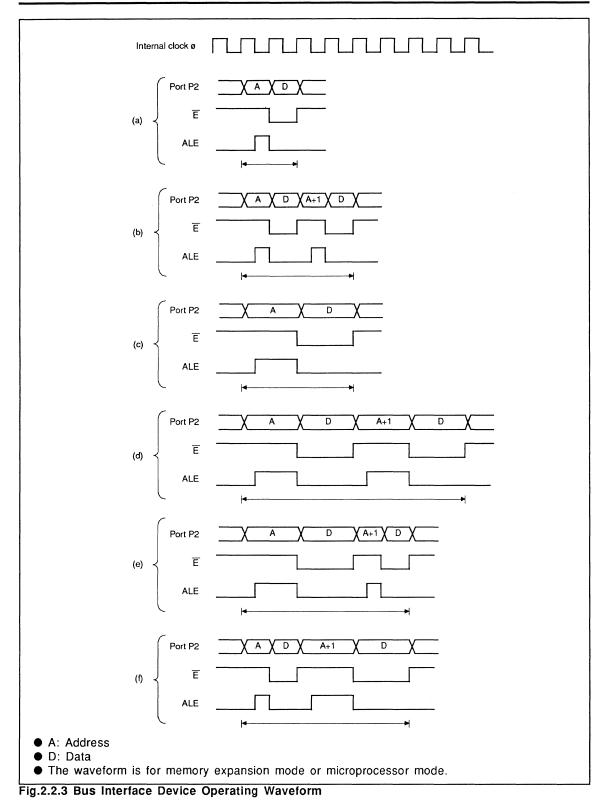
When two bytes in internal/external memory are accessed together (starting on an odd address).

• When two bytes in external memory are accessed together with the BYTE pin at "H" level.

As obtaining the instruction code from memory into the instruction queue buffer, waveform (a) is only used.

Waveforms (a) and (b) are the basic operating waveforms of the BIU. Waveform (a) or (b) is always used when accessing the internal memory. However, signals other than \overline{E} cannot be observed in single-chip mode because the port P3 is used as a programmable I/O port.

(2)Effect of the wait bit


When accessing the external memory area, the BIU operating waveform changes according to the wait bit.

With the M37700, the external memory access time can be doubled (signal \overline{E} is doubled) by clearing the wait bit (bit 2) in the processor mode register (005E₁₆). This enables external expansion of slow memories and peripheral LSIs.

Note : Internal memory access is not affected by the wait bit.

Figure 2.2.3 (c) to (f) show the effect of the wait bit on waveforms (a) and (b). Waveform (c) is the waveform when an external memory area is accessed under the conditions for waveform (a) with the wait bit cleared.

Waveforms (d) to (f) are the waveforms when an external memory area is accessed under the conditions for waveform (b) with the wait bit cleared. The entire waveform is affected by the wait bit for waveform (d) and the first half or the last half is affected respectively for waveforms (e) and (f).

2.2.4 Data read/write operations

(1)Instruction code read

The CPU reads instructions codes from the instruction queue buffer of the BIU and executes them. The CPU notifies the BIU that an instruction code is needed during the instruction code fetch cycle. At this point, the operation depends on whether the instruction queue buffer contains an instruction code or not. If there is an instruction code in the instruction queue buffer, it is passed to the CPU. If there is no instruction code in the instruction queue buffer, or if the amount of data in the instruction queue buffer is less than the necessary instruction code, the BIU halts the CPU until a sufficient amount of instruction codes is stored in the instruction queue buffer.

Even when there is no request for instruction code from the CPU, if the instruction queue buffer is empty or if there is only one instruction code and the bus is available at the next cycle (the CPU does not use the bus at the next cycle), the BIU reads instruction codes from memory and stores them in the instruction queue buffer (instruction prefetch). During instruction prefetch, if the first address accessed when reading an instruction code from memory is even, then the data at the next odd number address is also read and stored in the instruction queue buffer. If the first accessed address is odd, only one byte is read and stored in the instruction queue buffer. However, if the instruction code is read from external memory with the BYTE pin at "H" (external bus width 8-bits) in memory expansion or microprocessor mode, only one byte is read regardless of the accessed address.

Instruction code read is performed with operation (a) or (c) shown in Figure 2.2.3. When a branch or a jump or subroutine call instruction or an interrupt is executed, the content of the instruction queue buffer is cleared and a new instruction code is read from the new address.

(2)Data read/write

The CPU reads and writes data from/to the BIU data buffer. The CPU issues a request to BIU when it attempts to read or write data. At this point, if the BIU is using the bus or if there is a higher priority request, the CPU is made to wait until the BIU becomes ready. When the bus is available for data read or write, the BIU operates at one of the waveforms (a) to (f) shown in Figure 2.2.3.

Data Read

When the CPU requests data from the BIU, it waits until the data is became complete data in the data buffer. The BIU sends the address received from the CPU on the address bus, reads the content of memory when \overline{E} is "L", and stores it in the data buffer.

Data Write

The CPU sends address data (address at which the data is written) and data to BIU.

The address data is written in the BIU data address register and the data is written in the data buffer. The actual writing in memory is performed by BIU and the CPU can proceed to the next step without waiting for the BIU to complete writing data in memory. The BIU sends the address data it received from the CPU to the address bus, sends the contents of the data buffer to the data bus, and writes it to memory when \overline{E} is "L".

2.3 Addressable memory space

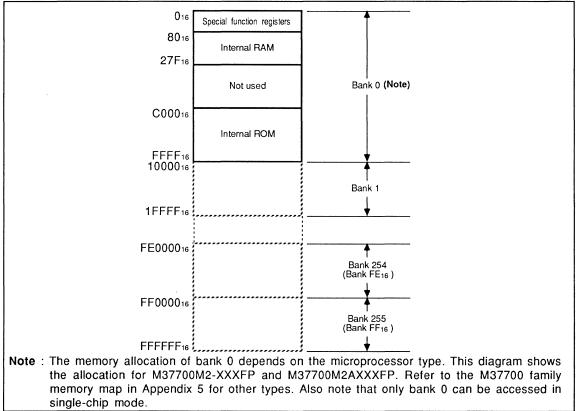
The M37700 allocates all ROM, RAM, I/O, and various control registers in the same memory space. Therefore, data transfer and operation can be performed with the same instruction without distinguishing memory and I/O area.

The M37700 program counter (PC) consists of 16 bits. It is used together with an 8-bit program bank register (PG) to directly address a 16M-byte address space from 016 to FFFFF16.

2.3.1 Banks

The M37700 address space is divided into 64K byte blocks called banks. The Series MELPS 7700 can access 256 banks from bank 0 to bank 255 (FF16) in memory expansion or microprocessor mode.

The high order 8 bits of the 24-bit address indicate the bank and the content of the program bank register (PG) or the data bank register (DT) indicates the bank to be used.


If the program counter overflows at a bank boundary, the content of the program bank register is incremented by 1. If a borrow occurs in the program counter register, the content of the program bank register is decremented by 1. Therefore, programs can be written without considering the bank boundaries. The banks can be accessed efficiently by using an addressing mode that uses the data bank register.

Bank 0 (addresses 0₁₆ to FFF₁₆) contains the internal ROM, internal RAM, and internal I/O control registers.

Note : In single-chip mode, only bank 0 can be accessed.

2.3.2 Direct Page

By using the direct page register (DPR), bank 0 or a 256-byte space spanning across bank 0 and bank 1 can be accessed with fewer instruction cycles in direct page addressing mode. This area is referred to as the direct page and is normally used for frequently accessed information (see "Section 2.1.8 Direct Page Register").

Fig.2.3.1 Addressable Memory Space

CHAPTER 2.FUNCTIONAL DESCRIPTION

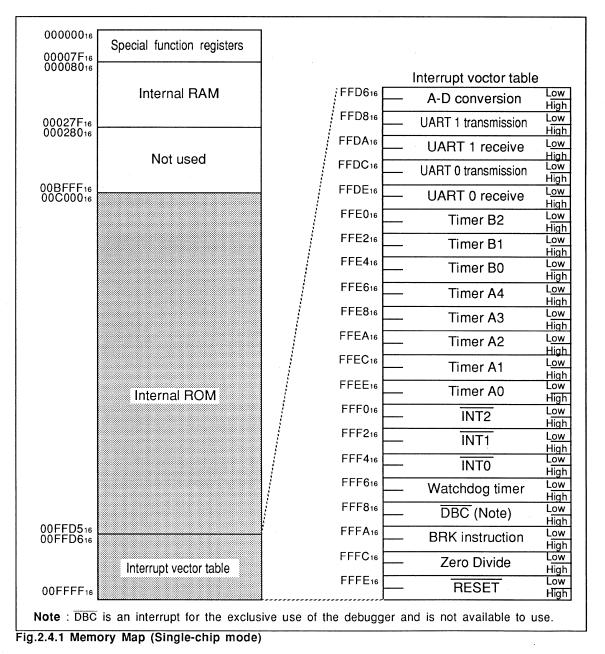

2.4 Memory Allocation

Figure 2.4.1 shows the memory map in single-chip mode. The allocated memory and I/O are described below.

2.4.1 Internal memory and peripheral device memory allocation

(1)SFR area

Addresses 000016 to 007F16 of bank 0 are the SFR (Special Function Register) area. This area contains the control registers of internal peripheral devices, I/O ports, timers, and so on. Internal peripheral devices can be accessed through these registers. Figure 2.4.2 shows the memory map of the SFR area.

2.4 Memory Allocation

Address (Hexadecimal notation)

aaress (He)	,
000000	
000001	
000002	Port P0 register
000003	Port P1 register
000004	Port P0 data direction register
000005	Port P1 data direction register
000006	Port P2 register
000007	Port P3 register
000008	Port P2 data direction register
000009	Port P3 data direction register
000003 00000A	Port P4 register
00000A	Port P5 register
00000B	Port P4 data direction register
	Port P5 data direction register
00000D	
00000E	Port P6 register
00000F	Port P7 register
000010	Port P6 data direction register
000011	Port P7 data direction register
000012	Port P8 register
000013	
000014	Port P8 data direction register
000015	
000016	
000017	
000018	
000019	
00001A	
00001B	
00001C	
00001D	
00001E	A-D control register
00001F	X
000020	A-D register 0
000021	
000022	A-D register 1
000023	
000024	A-D register 2
000025	
000026	A-D register 3
000020	A-D legister 0
000028	A-D register 4
	A-D legisler 4
000029	A D register 5
00002A	A-D register 5
00002B	A D register 6
00002C	A-D register 6
00002D	A D ve viete z
00002E	A-D register 7
00002F	
000030	UART 0 transmit/receive mode register
000031	UART 0 baud rate generator
000032	UART 0 transmission buffer register
000033	
000034	UART 0 transmit/receive control register 0
000034	UART 0 transmit/receive control register 0 UART 0 transmit/receive control register 1
000034 000035	UART 0 transmit/receive control register 0 UART 0 transmit/receive control register 1 UART 0 receive buffer register
000034 000035 000036	UART 0 transmit/receive control register 0 UART 0 transmit/receive control register 1 UART 0 receive buffer register
000034 000035 000036 000037	UART 0 transmit/receive control register 0 UART 0 transmit/receive control register 1
000034 000035 000036 000037 000038	UART 0 transmit/receive control register 0 UART 0 transmit/receive control register 1 UART 0 receive buffer register UART 1 transmit/receive mode register UART 1 baud rate generator
000034 000035 000036 000037 000038 000039	UART 0 transmit/receive control register 0 UART 0 transmit/receive control register 1 UART 0 receive buffer register UART 1 transmit/receive mode register
000034 000035 000036 000037 000038 000039 00003A 00003B	UART 0 transmit/receive control register 0 UART 0 transmit/receive control register 1 UART 0 receive buffer register UART 1 transmit/receive mode register UART 1 transmit/receive mode register UART 1 baud rate generator UART 1 transmission buffer register
000034 000035 000036 000037 000038 000039 00003A	UART 0 transmit/receive control register 0 UART 0 transmit/receive control register 1 UART 0 receive buffer register UART 1 transmit/receive mode register UART 1 transmit/receive mode register UART 1 baud rate generator UART 1 transmission buffer register UART 1 transmit/receive control register 0
000034 000035 000036 000037 000038 000039 00003A 00003B 00003C 00003D	UART 0 transmit/receive control register 0 UART 0 transmit/receive control register 1 UART 0 receive buffer register UART 1 transmit/receive mode register UART 1 transmit/receive mode register UART 1 baud rate generator UART 1 transmission buffer register UART 1 transmit/receive control register 0 UART 1 transmit/receive control register 1
000034 000035 000036 000037 000038 000039 00003A 00003B 00003C	UART 0 transmit/receive control register 0 UART 0 transmit/receive control register 1 UART 0 receive buffer register UART 1 transmit/receive mode register UART 1 transmit/receive mode register UART 1 baud rate generator UART 1 transmission buffer register UART 1 transmit/receive control register 0

dress (Hex	adecimal notation)
•	,
000040	Count start flag
000041	
000042	One-shot start flag
000043	Lin dawa firm
000044	Up-down flag
000045 000046	
000048	Timer A0 register
000047	
000049	Timer A1 register
00004A	T' AO '
00004B	Timer A2 register
00004C	Timer A3 register
00004D	Timer AS register
00004E	Timer A4 register
00004F	
000050	Timer B0 register
000051	
000052	Timer B1 register
000053	
000054	Timer B2 register
000055	Timor A0 modo registor
000056 000057	Timer A0 mode register Timer A1 mode register
000037	Timer A2 mode register
000018	Timer A3 mode register
000053	Timer A4 mode register
00005B	Timer B0 mode register
00005C	Timer B1 mode register
00005D	Timer B2 mode register
00005E	Processor mode register
00005F	<u> </u>
000060	Watchdog timer
000061	Watchdog timer frequency selection flag
000062	
000063	
000064	
000065	
000066	
000067	
000068	
000069	
00006A 00006B	
00006B	
00006C	
00006E	
00006F	
000070	A-D conversion interrupt control register
000071	UART 0 transmission interrupt control register
000072	UART 0 receive interrupt control register
000073	UART 1 transmission interrupt control register
000074	UART 1 receive interrupt control register
000075	Timer A0 interrupt control register
000076	Timer A1 interrupt control register
000077	Timer A2 interrupt control register
000078	Timer A3 interrupt control register
000079	Timer A4 interrupt control register
00007A	Timer B0 interrupt control register
00007B	Timer B1 interrupt control register
00007C	Timer B2 interrupt control register
00007D	INT 0 interrupt control register
00007E 00007F	INT 1 interrupt control register INT 2 interrupt control register
00007P	INT 2 interrupt control register

Fig.2.4.2 SFR Area Memory Map

CHAPTER 2.FUNCTIONAL DESCRIPTION

Each bit in the register can be either read only, write only, or read/write bit. An attempt to write to a read only bit is ignored and the result is unpredictable when a write only bit is read. Some registers in the SFR area prohibits the use of instructions such as **CLB** or **SEB** that performs read-modify-write. See "Chapter 7. Usage Precautions" for more details.

(2)RAM

The M37700M2-XXXFP and M37700M2AXXXFP have a 512-byte static RAM at addresses 0080₁₆ to 027F₁₆ (Note) of bank 0. In addition to storing data, the internal RAM area is used as stack area during subroutine calls and interrupts. Therefore, be careful of subroutine nesting levels and multiple interrupt levels so that important data is not destroyed.

Note : See "Appendix 4. M37700 Family Memory Map" for other types.

(3)ROM

The M37700M2-XXXFP and M37700M2AXXXFP have a 16K-byte mask ROM at addresses C000₁₆ to FFFF₁₆ (Note) of bank 0. Addresses FFD6₁₆ to FFFF₁₆ are allocated to the interrupt vector table containing branch destinations (address of interrupt handling routines) when a reset or interrupt occurs. This area must be allocated to ROM in microprocessor mode and external ROM version (S version) which prohibit internal ROM.

Note : See "Appendix 4. M37700 Family Memory Map" for other types.

2.4.2 Processor modes

The M37700 can operate in single-chip mode, memory expansion mode, and microprocessor mode. The functions of some pins, memory organization, and address space depend on the processor mode. The processor mode can be selected internally or externally as described below.

• Externally changing the processor mode

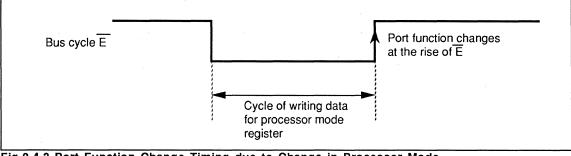

The processor mode after a reset start can be selected with the input level to the CNVss pin during reset start. Table 2.4.1 shows the relationship between the processor mode and the input level to the CNVss pin.

Table 2.4.1 Relationship between the Processor Mode and CM	NVss Pin Input Level
--	----------------------

CNVss Pin	Processor Mode
Vss level (0V)	Starts in single-chip mode after a reset.
4.	One of the three modes can be selected by changing the processor mode bit.
Vcc level (5V)	Starts in microprocessor mode after a reset.
	The other mode must not be selected by changing the processor mode bit.

Internally changing the processor mode

After a reset start with the CNVss pin set to Vss level, the processor mode can be changed internally from a program by changing the processor mode bits (bits 1 and 0 at address $5E_{16}$) in the processor mode register. Figure 2.4.4 shows the bit configuration of the processor mode register. When changing the processor mode internally, the actual function of each pin changes when the bus cycle \overline{E} used to write to the processor mode register returns to "H" level.

(1)Single-chip mode

This mode is entered when starting after a reset with pin CNVss set to Vss level. In this mode, the address bus and data bus are not output externally and all ports function as programmable I/O pins (internal peripheral device I/O pins when internal peripheral devices are used). Also note that in single-chip mode, a non-zero value must not be stored in the data bank register and program bank register because only bank 0 is accessible. Furthermore, in this mode, the wait bit, which is described later, is ignored and internal memory and I/O are always accessed at no wait.

	 		1			[Processor mode bits
				L		 b1	b0	Mode
						0	0	Single-chip mode
						0	1	Memory expansion mode
						1	0	Microprocessor mode
						1	1	This connot be avaolable
								Wait bit
					·	 0	Ν	/ait during external access
						1	N	o wait
								Software reset bit
						1	S	oftware reset activated by writing "1"
·							Inter	rupt priority detection time selection bits
						b5	b4	Detection time
						0	0	7 cycles at internal clock ø
						0	1	4 cycles at internal clock ø
						1	0	2 cycles at internal clock ø
						1	1	This connot be avaolable
L	 	 				 - _ _	his t	bit must be "0"
								Internal clock ø output selection bit
						 0		output disabled /in 4₂is normal I/O port)
						1	ø	output enabled /in 4₂is ø output pin)

Fig.2.4.4 Processor Mode Register Bit Structure

(2)Memory expansion mode

This mode is used when just using internal memory and I/O is not sufficient. In this mode, the memory and peripherals can be expanded to any area within a 16M-byte addressable memory space.

When the memory expansion mode is selected, ports P0 to P2 become the address bus and data bus and port P3 and part of P4 become the control signal I/O pins. In this case, the port register area associated with ports P0~P3 and part of P4 become unusable and lose their normal I/O pin functions, but other memory and peripherals can be used. See "Section 2.5 Input/Output Pins" for more details concerning the functions of ports P0~P4 when the memory expansion mode is selected. If an area overlapping the internal memory area is read when the external memory is extended, only the data in the internal memory is read into the CPU and the data in the external memory is not read into the CPU. However, if data is written in this area, it is written both in the internal memory and external memory.

Furthermore, the accessing of external memory in this mode is affected by the level of the BYTE pin and wait bit described in the next section.

(3)Microprocessor mode

The function of this mode is the same as the memory expansion mode except that access to internal ROM is disabled. This mode is suitable for small volume production or prototype models before full scale production because external ROM can be installed easily.

Figure 2.4.5 shows the memory allocation in each processor mode. See "Section 2.5 Input/Output Pins" for the change in port functions.

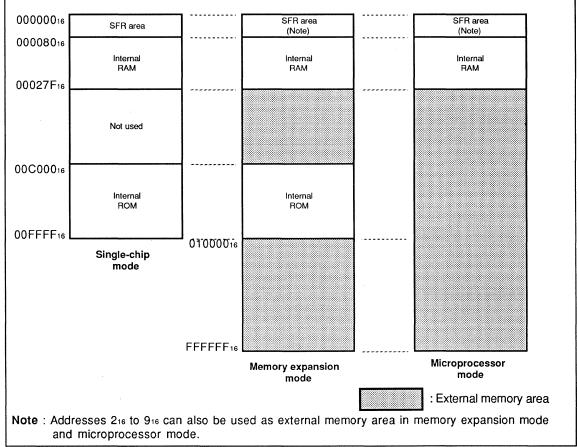


Fig.2.4.5 Memory Map in Each Processor Mode (M37700M2-XXXFP)

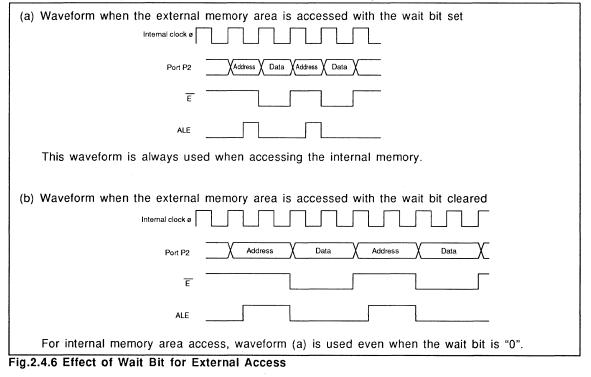
2.4.3 External memory area bus control

The BYTE pin and the wait bit are provided to simplify access to external memory area in memory expansion mode and microprocessor mode. The BYTE pin and the wait bit are valid only when accessing external memory area and have no effect when accessing internal memory or internal peripherals. Therefore, the BYTE pin and the wait bit are ignored in single-chip mode.

(1)BYTE pin (external bus width selection pin)

When accessing the external memory in memory expansion mode or microprocessor mode, the input level to the BYTE pin is used to select between 8-bit data bus and 16-bit data bus. (See (2) Data bus in section 2.5.4)

The external bus width becomes 8-bits when the BYTE pin is at "H" level. In this case, data read/ write to the external area is always performed in 8-bit (1-byte) unit and the port P2 pins become the data ($D_0 \sim D_7$) I/O pins. The use of 8 bit peripheral ICs is simplified by setting the bus width for external area to 8-bits.


The external bus width becomes 16-bits when the BYTE pin is at "L" level. In this case, data read/ write to the external area is always performed in 16-bit (1 word) unit and the port P2 pins become the data I/O pins for the low order byte (even address data: $D_0 \sim D_7$) of a 16-bit data and the port P1 pins become the data I/O pins for the high order byte (odd address data: $D_8 \sim D_{15}$) of a 16-bit data.

The data width is always 16-bits when accessing the internal memory area regardless of the BYTE pin level.

(2)Wait bit

The wait bit (processor mode register bit 2) is provided to attach slower memory when expanding external memory or I/O in memory expansion mode or microprocessor mode. When the wait bit is "0", a wait for external area access is enabled (one-shot wait mode) and bus operation is performed at 1/2 the bus cycle (f(X|N)/4) during no wait. When the wait bit is "1", bus operation becomes no wait mode and bus cycle is f(X|N)/4.

The wait bit is cleared during reset and the system starts in one-shot wait mode. Internal memory access is always performed at no wait because this bit is ignored.

2.5 Input/Output Pins

2.5.1 Programmable I/O ports

Each of the programmable I/O ports (P0~P8) has a data direction register which is used to select the input/output direction one bit unit. A port is used as an output pin when the corresponding bit in the port data direction register is "1" and as an input pin when the corresponding bit is "0". The port data direction register is allocated in the SFR area of bank 0. The input level/data can be read/write from a pin set to input/output by performing read/write to the port register, respectively.

(1)Data direction register

A data direction register corresponding to each port is allocated in the SFR area of bank 0. Each bit of the data direction register corresponds to a pin. Figure 2.5.1 shows the relationship between the direction register bits and pins. The I/O direction of the port is selected using the data direction register bits. The port is set to input pin when the corresponding bit is "0" and to output pin when the corresponding bit is "1".

At reset, the data direction registers are initialized to "0016". Therefore, I/O ports are set to input.

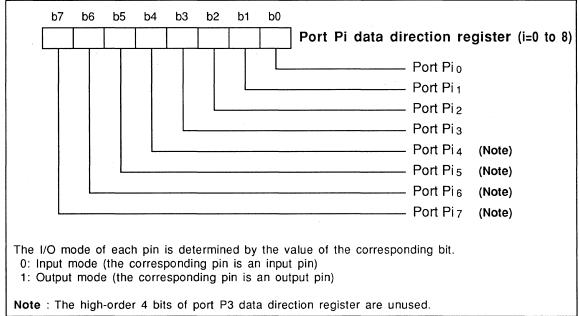
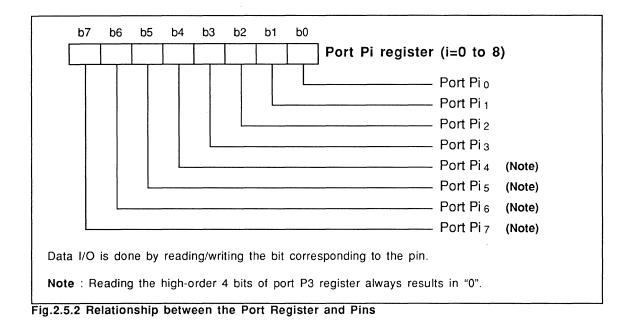



Fig.2.5.1 Relationship between the Port Data Direction register and Pins

(2)Port register

The port register is used to transfer data with external devices through the I/O ports. To output data from a port set to output, the data must be written to the corresponding bits of the port register. This data is written in the port latch and is output from the port that is set to output. If a port programmed for output is read, the content of the port latch is read. Therefore, the previously output value can be read correctly even when the output "H" voltage drops or "L" voltage rises due to external load. A pin programmed for input is floated and the value input to the pin can be read by reading the corresponding bit of the port register. If a value is written to a pin programmed for input, it is written in the port latch and the pin remains floating.

2.5.2 Pin functions

Figure 2.5.3 shows the port peripheral circuits. The functions of some pins depend on the processor mode while others are not affected. This section describes those pins that are not affected by the processor mode. The next section describes the pin functions according to the processor mode.

(1)Effect of processor mode on pin functions

The function of some pins depends on the processor mode. Tables 2.5.1 and 2.5.2 show the pin functions according to processor mode. The function of port P1 also depends on the input level of the BYTE pin (external bus selection input pin). The details of the following pins are described in the next section.

Mode	Single-chip mode	Memory expansion mode		
Pin	enigie enip mede	External 16-bit bus (BYTE="L")	External 8-bit bus (BYTE="H")	
Port P0	Programmable I/O port	Address bus (Ao~A7)		
Port P1	Programmable I/O port	Address bus (A ₈ ~A ₁₅)	Address bus (A ₈ ~A ₁₅)	
		/Data bus (D8~D15)		
Port P2	Programmable I/O port	Address bus (A16~A	23)/Data bus (Do~D7)	
Port P3	Programmable I/O port	P30R/W output pin		
		P31BHE output pin		
		P32ALE output pin		
		P33HLDA output pin		
Port P4	Programmable I/O port	P40HOLD input pin		
	Note : P42 pin can be	P41RDY input pin		
	programmed as	P42~P47Same as single-chip	mode	
	ø output pin.	Note : P42 pin can be program		
BYTE	Ignored	External bus selection input pin		

Table 2.5.1 Pin Functions According to Processor Mode

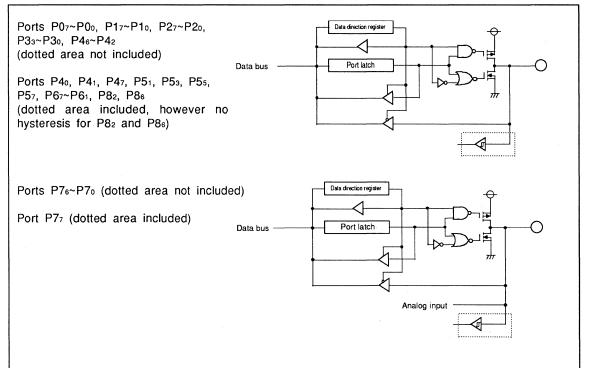


Fig 2.5.3 Port Peripheral Circuit (a)

2.5 Input/Output Pins

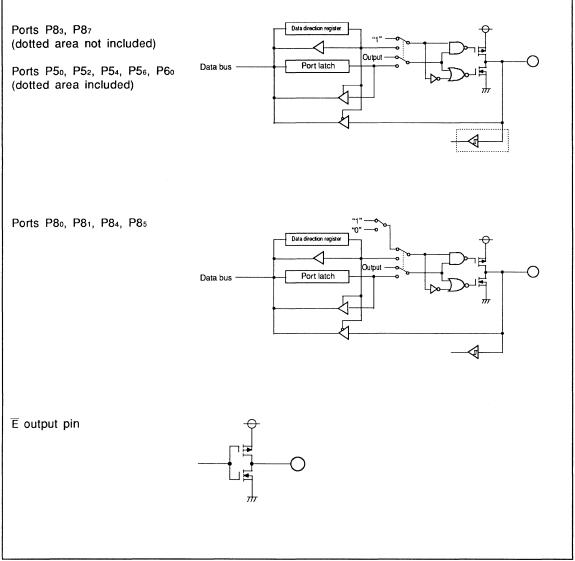
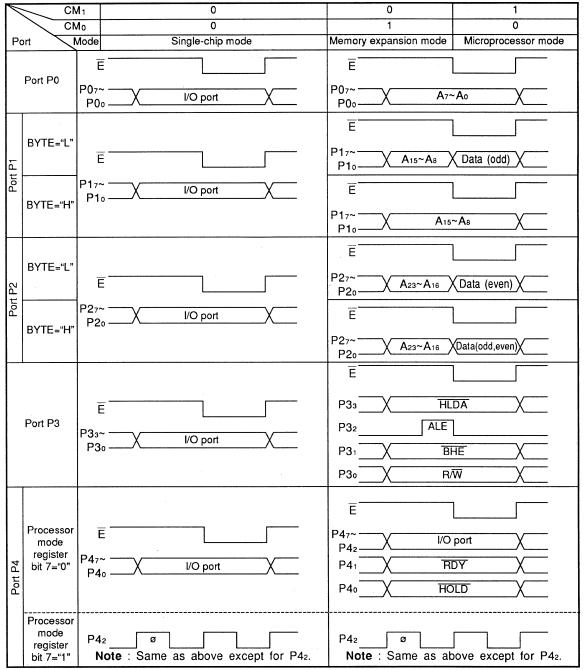



Fig 2.5.3 Port Peripheral Circuit (b)

Table 2.5.2 Functions of Ports P0~P4 by Processor Mode

(2)Functions of pins unaffected by processor mode

Table 2.5.3 shows the functions of pins not affected by processor mode. The functions of these pins are the same in all modes.

Table 2.5.3	Functions of Pins Unaffected by Processor Mode
Pin	Function
Port P5	8-bit programmable I/O pin. (Also used as timer I/O pin.)
Port P6	8-bit programmable I/O pin. (Also used as timer I/O and external interrupt input pin.)
Port P7	8-bit programmable I/O pin. (Also used as analog input pin.)
Port P8	8-bit programmable I/O pin. (Also used as serial I/O pin.)
Vcc, Vss	Supply voltage pins. 5V±10% is applied to Vcc and Vss is connected to GND.
CNVss	This pin controls the processor mode. The processor mode is selected by changing the
	input voltage level to this pin (except change after reset start). See "Section 2.4.2 Processor
	Modes" for detail information concerning the processor mode. In single-chip mode, this pin
	must be set to the same level as Vss.
AVcc, AVss	A-D conversion circuit supply voltage pins. Connect AVcc to Vcc and AVss to Vss.
VREF	Reference voltage input pin for the A-D converter. Analog input voltage from Vss level to
	the level of this pin can be converted. Apply any voltage up to Vcc level to this pin.
Xin, Xout	Clock I/O pin for the internal oscillator circuit. The M37700 is equipped with an internal clock
	generator and the oscillating frequency is set by connecting a ceramic resonator or quartz
	crystal oscillator between XIN and XOUT. When an external clock is used, the clock source
	should be connected to the X _{IN} pin and the X _{OUT} pin should be left open.
	The maximum clock input frequency is 8MHz for M37700M2-XXXFP and 16MHz for
	M37700M2AXXXFP.
RESET	Reset input pin. Set this pin to "L" level to enter the reset state. Then when this pin is
	returned to "H" level, the reset state is deactivated and program loading starts from the
	address set in the reset vector. See "Chapter 3. Reset" for the contents of registers
	immediately after returning from reset.
E	Internal bus cycle E is output.

Ports P5 to P8 have the programmable I/O port function as well as special functions such as I/O pins for external interrupt, timer, A-D convertor, and serial I/O. When these multiple function ports are used as special function output pins, they are automatically set to output mode, but when they are used as special function input pins, the port direction register must be set to input mode. In this case, the pin input level can be read from the port register. The methods for selecting special functions are described under each function.

As for port P4₂, an internal clock ϕ is output from this pin when the processor mode register bit 7 is set.

All ports function as programmable I/O port immediately after returning from reset.

2.5.3 Single-chip mode pin functions

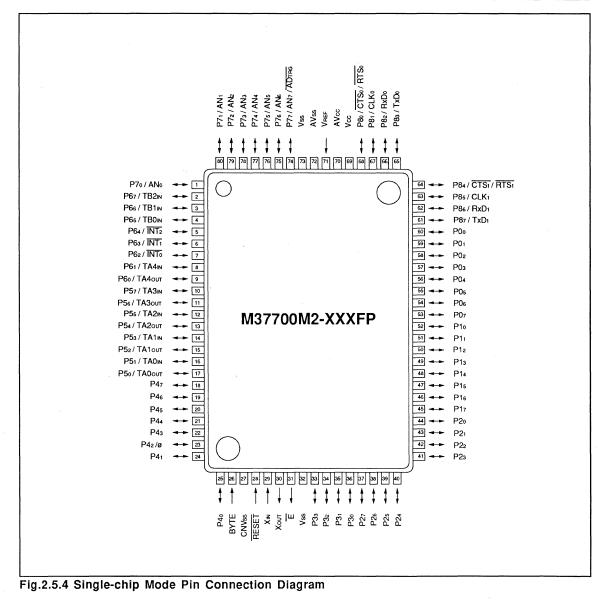

In single-chip mode, 68 ports can be used as programmable I/O pins (using multiple function pins as I/O ports).

Figure 2.5.4 shows the I/O pins during single-chip mode.

Table 2.5.4 shows the functions of processor mode dependent pins (ports P0~P4, BYTE) during singlechip mode. See section "2.5.1 Programmable I/O Ports" for the programmable I/O port functions. See table 2.5.3 for the functions of other pins.

Table 2.5.4 Functions of Ports P0~P4 and BYTE Pin in Single-Chip Mode

Pin	Functions	Pin	Functions
Port P0	8-bit programmable I/O port	Port P3	4-bit programmable I/O port
Port P1	8-bit programmable I/O port	Port P4	8-bit programmable I/O port
Port P2	8-bit programmable I/O port	BYTE	Ignored in single-chip mode

Port P4₂ can be programmed to output ø by setting the processor mode register (PMR). When the ø output selection bit in the processor mode register is set to enable, ø output starts at the rising edge of bus cycle \overline{E} that was pulled "L" to write "1" in the ø output selection bit.

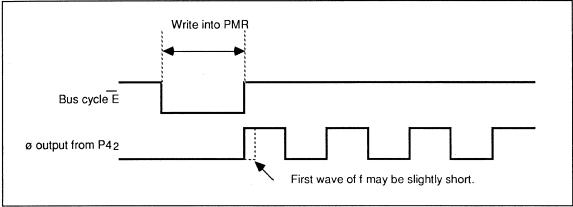


Fig.2.5.5 ø Output Start Timing

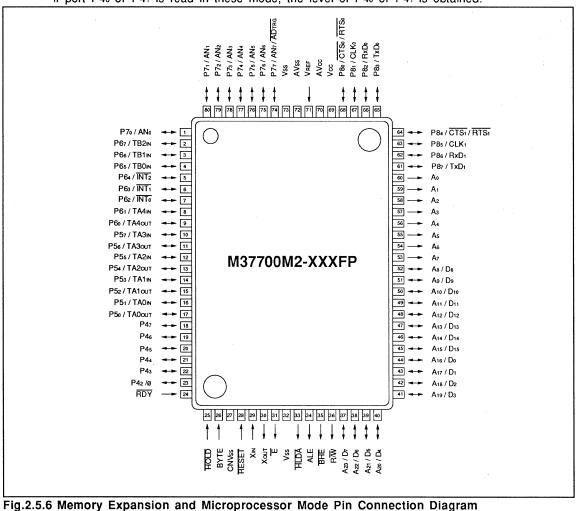
2.5.4 Memory expansion and microprocessor mode pin functions

The only difference between the memory expansion mode and microprocessor mode is whether access to internal ROM is disabled or not. (See section "2.4.2 Processor Modes".) The function of each pin is identical in memory expansion mode and microprocessor mode.

In memory expansion mode and microprocessor mode, there are 38 I/O ports (ports $P4_2 \sim P4_7$ and $P5 \sim P8$) as shown in Figure 2.5.6. The internal address bus and data bus can be used externally.

Table 2.5.5 shows the functions of processor mode dependent pins (ports P0~P4 and BYTE) in memory expansion mode and microprocessor mode.

See Table 2.5.3 for the functions of other pins.

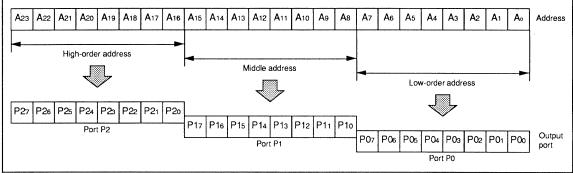

Table 2.5.5 Pin	Functions in	n Memor	y Expansion	and Micro	processor Mode

Pin	Functions	Pin	Functions
Port P0	Address bus	Port P3	External memory control signal output
Port P1	Address bus/data bus (Note1)	P41 and P40	External control signal input (Note 2)
Port P2	Address bus/data bus	BYTE	External bus width selection signal input

Note 1 : This may be address bus only depending on the input level of the BYTE pin.

Note 2 : In memory expansion mode and microprocessor mode, the data direction registers of ports P4₀ and P4₁ must be set to input mode.

If port P4o or P41 is read in these mode, the level of P4o or P41 is obtained.



The functions of each pin in memory expansion mode and microprocessor mode are described below.

(1)Address bus Ports P0, P1, and P2

Ports P0, P1, and P2 become address signal output pins and lose their programmable I/O port functions.

The M37700 allows direct access to 16M-byte memory space from address 00000016 to FFFFF16. Therefore, 24 address signals are output externally in memory expansion mode and microprocessor mode which allow memory and I/O to be expanded externally.

Fig.2.5.7 Address Bus

(2)Data bus

In addition to address signal (high-order and middle address bus) output function, ports P1 and P2 also function as data I/O pins. The level of the BYTE pin can be used to select between 8-bit or 16-bit data bus width.

•When the BYTE pin is at "L" (16-bit external bus width)

When the BYTE pin is at "L", the external bus width is 16 bits and even address data and odd address data are output simultaneously.

Ports P1 and P2 are used as address bus and data bus and multiplexed (address signal and data signal) signals are output from these ports.

Port P1 performs time division multiplexing of address data ($A_{15} \sim A_8$) output and odd address data input/output. Middle address data is output while \overline{E} is at "H", and odd address data input/output is performed while \overline{E} is at "L".

Similarly, Port P2 performs time division multiplexing of address data (A_{23} ~ A_{16}) output and even address data input/output. High-order address data is output while \overline{E} is at "H", and even address data input/output is performed while \overline{E} is at "L".

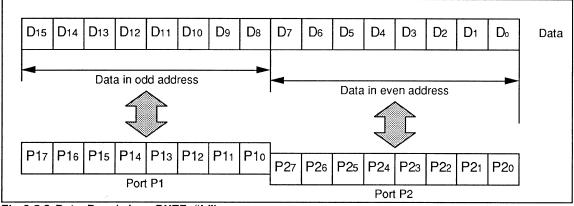


Fig.2.5.8 Data Bus (when BYTE="L")

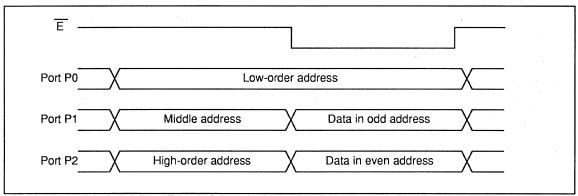


Fig.2.5.9 Bus Timing when External Bus Width is 16 Bits

•When the BYTE pin is at "H" (8-bit external bus width)

When the BYTE pin is at "H", the external bus width becomes 8 bits and the output of data and address data $(A_{23} \sim A_{16})$ are multiplexed.

Address data is output while \overline{E} is at "H", and 8-bit data is input/output when \overline{E} is at "L".

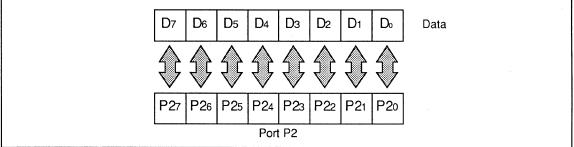


Fig.2.5.10 Data Bus (when BYTE="H")

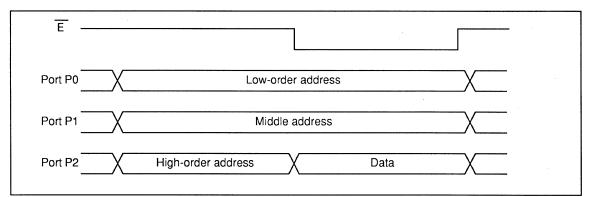


Fig.2.5.11 Bus Timing when External Bus Width is 8 Bits

(3)R/W output pin

A read/write signal indicating the data bus direction is output. The data bus is read when the level of this pin is at "H", and data is written to data bus when it is at "L". This signal is used for external memory input/output requests.

(4)BHE output pin

A byte high enable signal is output. This pin is at level "L" when an odd number address is accessed. This signal is used to expand the 8-bit memory and I/O when the external bus is used at 16-bit width.

(5)ALE signal output pin

This signal is used to obtain only address signal from the multiplexed signals of ports P1 and P2. A latch is opened externally when the ALE signal is at "H" to obtain the address data and the latched content is held while the ALE signal is at "L".

(6)HOLD input pin

This pin is used to input hold request signals. The microcomputer is held while this pin is at "L". When the hold request signal becomes "L", ϕ_{CPU} (CPU clock; $f(X_{IN})/2$) is stopped and the bus cycle \overline{E} stops at "H". The hold status is cancelled and processing continues when the HOLD pin level becomes "H". Note that internal peripherals can continue to operate because only ϕ_{CPU} is stopped (internal clock ϕ is not stopped). However, the watchdog timer is stopped during a hold. Table 2.5.6 shows the port status during a hold.

Table 2.5.6 Port Status During Hold

Port	Status during hold
P0~P2, P30, P31	Floating
P32, P33	Outputs "L" level
P43~P47, P5~P8	Holds the port status when "L" is applied to HOLD pin

(7)HLDA signal output pin

This pin is used to externally output a hold acknowledge signal. The hold acknowledge signal indicates that "L" is input to the HOLD pin and the microcomputer is in a hold state. An "L" level is output from this pin while the microcomputer is in a hold state.

(8) RDY signal input pin

This is a ready signal input pin. The bus cycle \overline{E} can be stopped (ready state) when "L" is input to this pin. The port and bus status when "L" is input to the \overline{RDY} pin is held while ready. The \overline{RDY} signal is used when slow memory is externally connected.

(9)E output pin

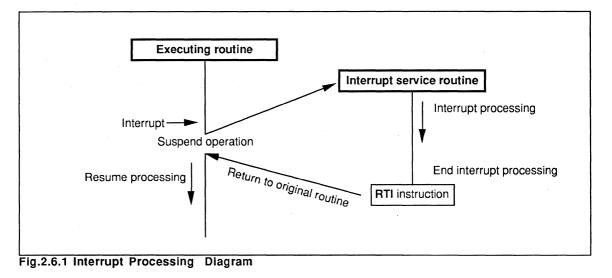
This is the enable signal output pin. Data I/O is performed when the output of this pin is at "L". This signal controls the time division multiplexing of address information and data.

(10)BYTE pin

This is the byte enable signal input pin. The input level to this pin determines whether the external memory is used with 16-bit data width or 8-bit. When the BYTE pin input level is at "L", the data width is 16 bits and ports P1 and P2 become the data I/O pins (data bus). When the BYTE pin input level is at "H", the data width is 8 bits and port P2 becomes the data I/O pin (data bus). However, the data width is always 16 bits regardless of the BYTE pin level when accessing an internal memory.

(11)CNVss pin

This pin controls the microprocessor operating mode. Memory expansion and microprocessor modes are selected by resetting the microcomputer after setting this pin to the same level as the Vss pin and then changing the processor mode bit in the processor mode register.


The microprocessor mode can also be selected by setting this pin to the same level as the Vcc pin and then resetting. This pin must be set to Vcc level for external ROM version microprocessors such as the M37700SFP (see "Section 2.4.2 Processor Modes").

2.6 Interrupts

2.6.1 Interrupt functions

The M37700 has 19 different sources of interrupts. When an interrupt occurs, a branch is made to the address (branch address) corresponding to the source. Therefore, a branch address corresponding to each interrupt must be stored at the address (interrupt vector address) corresponding to each interrupt at addresses FFD6₁₆ to FFFF₁₆ (interrupt vector table) in bank 0. These branch addresses are the start addresses of the interrupt handling routines (interrupt service routine).

When interrupt processing completes, the control must be returned to the original routine to resume processing. Therefore, the contents of the program counter (PC), program bank register (PG), and the processor status register (PS) just before an interrupt are automatically stored in the stack area (register saving). Then when interrupt processing is completed, the **RTI** instruction (return from interrupt service routine) can be used to restore the contents of the PC, PG, and PS registers to the respective registers and resume the original routine.

2.6.2 Sources of interrupts

Table 2.6.1 shows the sources of interrupts and the corresponding vector address. Store the address of the interrupt service routine at the vector address shown in this table.

	Vector address		
Interrupt source	High-order	Low-order	Remarks
	address	address	
Reset (Note 1)	00FFFF16	00FFFE16	Non-maskable
Zero divide	00FFFD16	00FFFC16	Non-maskable software interrupt
BRK instruction	00FFFB16	00FFFA16	Non-maskable software interrupt
DBC (Note 2)	00FFF916	00FFF816	Not available to general user
Watchdog timer	00FFF716	00FFF616	Non-maskable interrupt
INTO	00FFF516	00FFF416	External interrupt due to INTo pin input signal
INT1	00FFF316	00FFF216	External interrupt due to INT1 pin input signal
INT2	00FFF 1 16	00FFF016	External interrupt due to INT2 pin input signal
Timer A0	00FFEF16	00FFEE16	Timer A0 internal interrupt
Timer A1	00FFED16	00FFEC16	Timer A1 internal interrupt
Timer A2	00FFEB16	00FFEA16	Timer A2 internal interrupt
Timer A3	00FFE916	00FFE816	Timer A3 internal interrupt
Timer A4	00FFE716	00FFE616	Timer A4 internal interrupt
Timer B0	00FFE516	00FFE416	Timer B0 internal interrupt
Timer B1	00FFE316	00FFE216	Timer B1 internal interrupt
Timer B2	00FFE 1 16	00FFE016	Timer B2 internal interrupt
UART0 receive	00FFDF16	00FFDE16	Valid only when the UART0 function is selected
UART0 transmit	00FFDD16	00FFDC16	
UART1 receive	00FFDB16	00FFDA16	Valid only when the UART1 function is selected
UART1 transmit	00FFD916	00FFD816	1.
A-D conversion	00FFD716	00FFD616	Internal interrupt that occurs when A-D conversion completes.

Table 2.6.1 Interrupt Sources and Vector Address

Note1: Reset is included because its operation is identical to an interrupt.

Note2: The DBC interrupt is a debug control interrupt and is not available to general users.

Each interrupt source is described below.

(1)Internal interrupt

Table 2.6.2 shows the internal interrupt sources.

Interrupt	Interrupt source		
Zero divide	Occurs when 0 is specified as the divisor for a DIV instruction.		
	(See "MELPS 7700 Software Manual")		
BRK instruction	Occurs when a BRK instruction is executed. (See "MELPS 7700 Software Manual")		
Watchdog timer	Occurs when the topmost bit of the 12-bit watchdog timer becomes "0".		
	(See section "2.12 Watchdog Timer")		
Timer Ai	Occurs when timer Ai (i=0 to 4) overflows. (See section"2.7 Timer A")		
Timer Bi	Occurs when timer Bi (i=0 to 2) overflows. (See section"2.8 Timer B")		
UARTi receive	Occurs during UARTi (i=0,1) receive (See section "2.9 Serial I/O")		
UARTi transmit	Occurs during UARTi (i=0,1) transmit (See section "2.9 Serial I/O")		
A-D conversion	Occurs when A-D conversion completes (See section "2.11 A-D Converter")		

Table 2.6.2 Internal Interrupt Sources

(2)External interrupt (INTo~INT2)

These are interrupts that are caused by input level or input edge to pins $\overline{INT_0}$ to $\overline{INT_2}$. The interrupt sources can be selected using bits 4 and 5 of the $\overline{INT_1}$ interrupt control register shown in Figure 2.6.2. Pins $\overline{INT_0} \sim \overline{INT_2}$ are shared with ports P6₂~P6₄. Therefore, the corresponding bit in the port P6 data direction register must be cleared to "0" in order to use these pins as external interrupt input pins. If the $\overline{INT_1}$ interrupts are not used, the $\overline{INT_1}$ interrupt priority should be set to "0" because the INTi interrupts always monitor the status of P6₂~P6₄ pins to raise interrupt requests.

The input signal to the \overline{INTi} pins must have pulse width greater than 250ns at "H" or "L" regardless of the source oscillating frequency (f(XIN)).

Table 2.6.3 INTi Interrupt Sources

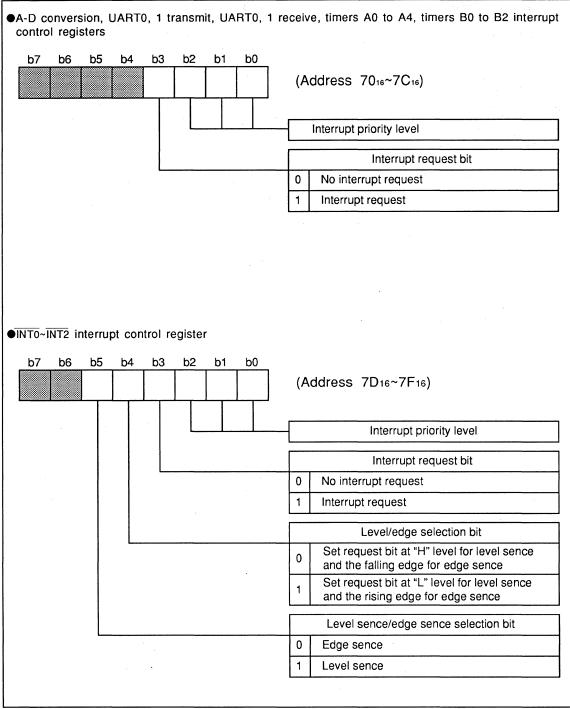
b5	b4	Interrupt Source
0	0	Falling edge of the signal input to the INTi pin
0	1	Rising edge of the signal input to the INTi pin
1	0	When the INTi pin status becomes "H"
1	1	When the INTi pin status becomes "L"

2.6.3 Interrupt control

The enabling and disabling of interrupts are controlled by the interrupt request bit, interrupt priority level, processor interrupt priority (IPL), and interrupt disable flag (I) (excluding some software interrupts). The interrupt disable flag and the processor interrupt priority level are assigned to the processor status register (PS). The interrupt request bit and the interrupt priority level are assigned to the interrupt control register of the respective interrupt. Figure 2.6.3 shows the structure of the interrupt control register. However, there is no interrupt control register for non-maskable interrupts such as zero divide interrupt, **BRK** instruction interrupt, and watchdog timer interrupt.

- Non-maskable interrupt: An interrupt that causes branch to the interrupt service routine regardless of the interrupt control flags.
- Maskable interrupt: An interrupt that can be disabled with the interrupt control flags.

The interrupt control flags are described below.


(1)Interrupt disable flag (I flag)

The interrupt disable flag (I flag) is assigned to bit 2 of the processor status register. This flag can be used to disable all maskable interrupts. All maskable interrupts are masked when the I flag is set and enabled when it is cleared. This flag is set during reset and must be cleared if interrupts are to be enabled.

(2)Interrupt request bit

When an interrupt occurs, the interrupt request bit which is assigned to bit 3 of the corresponding interrupt control register is set. The interrupt request bit remains set until the interrupt is accepted and is cleared when the interrupt is accepted. This flag is used to indicate that an interrupt has occurred. This bit can be set and cleared from a program.

Address	
70 16	A-D conversion interrupt control register
71 16	UART0 transmit interrupt control register
72 16	UART0 receive interrupt control register
73 16	UART1 transmit interrupt control register
74 16	UART1 receive interrupt control register
75 16	Timer A0 interrupt control register
7616	Timer A1 interrupt control register
77 16	Timer A2 interrupt control register
78 16	Timer A3 interrupt control register
79 16	Timer A4 interrupt control register
7A 16	Timer B0 interrupt control register
7B ₁₆	Timer B1 interrupt control register
7C16	Timer B2 interrupt control register
7D16	TNT0 interrupt control register
7E16	INT1 interrupt control register
7F16	TNT2 interrupt control register
g.2.6.2 Interrupt Control Re	

(3)Interrupt priority level and processor interrupt priority level (IPL)

An interrupt priority level between 0 and 7 can be assigned to each interrupt using the interrupt priority level selection bits which are assigned to bits 0 to 2 of each interrupt control register. When an interrupt is raised, this priority level is compared with the processor IPL in the processor status register.

An interrupt is enabled when its interrupt priority level is greater than the IPL. Therefore, an interrupt can be disabled by setting its priority level to 0.

The interrupt disable flag, interrupt request bit, interrupt priority level, and IPL are independent of each other and do not affect other flags. An interrupt occurs only when the condition of these flags satisfy the interrupt occurrence condition. The combination of these flags can control the variety interrupt priority operation by programming.

Table 2.6.4 Interrupt Priority Level

Interru	Interrupt control register		Interrupt Priority Level	Priority
b2	b1	b0	interrupt i nonty Level	Thomy
0	0	0	Level 0 (Interrupt disabled)	
0	0	1	Level 1	Low
0	1	0	Level 2	
0	1	1	Level 3	T
1	0	0	Level 4	
1	0	1	Level 5	1
1	1	0	Level 6	V
1	1	1	Level 7	High

Table 2.6.5 Interrupt Enable Level and Enabled Interrupts

IPL ²	IPL1	IPL ₀	Enabled interrupt priority level
0	0	0	Enable level 1 and above interrupts
0	0	1	Enable level 2 and above interrupts
0	1	0	Enable level 3 and above interrupts
0	1	1	Enable level 4 and above interrupts
1	0	0	Enable level 5 and above interrupts
1	0	1	Enable level 6 and above interrupts
1	1	0	Enable level 7 interrupts
1	1	1	Disable all maskable interrupts

IPLo: Processor status register bit 8 IPL1: Processor status register bit 9 IPL2: Processor status register bit 10

2.6.4 Interrupt order

All interrupts are assigned a priority order. When all interrupts are enabled and more than one interrupt occurs during the same sampling interval (interval in which interrupt requests are checked), the one with the highest priority is accepted.

The priority order of all of the 19 sources except software interrupts (zero divide and **BRK** instruction interrupt) and watchdog timer interrupt can be set from a program using the interrupt priority level bits in the interrupt control register. Reset (the highest priority) and watchdog timer priorities are set by the hardware. Figure 2.6.4 shows the hardware interrupt priorities.

The M37700 is equipped with an interrupt priority order detection circuit to select the highest priority when more than one interrupt occurs within the same sampling interval.

Note : When a BRK instruction is executed or a zero divide is performed in an interrupt service routine, a BRK interrupt or a zero divide interrupt occurs and that interrupt is serviced. However, if multiple interrupts are enabled by setting the I flag to "0", interrupts with priority higher than IPL are accepted because the IPL is not changed. Furthermore, the watchdog timer interrupt is always enabled.

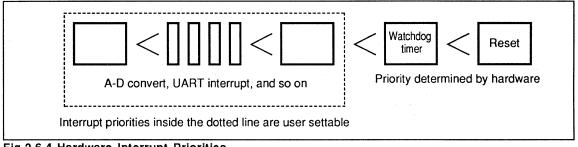


Fig.2.6.4 Hardware Interrupt Priorities

2.6.5 Interrupt priority detection circuit

Figure 2.6.5 shows the interrupt priority detection circuit.

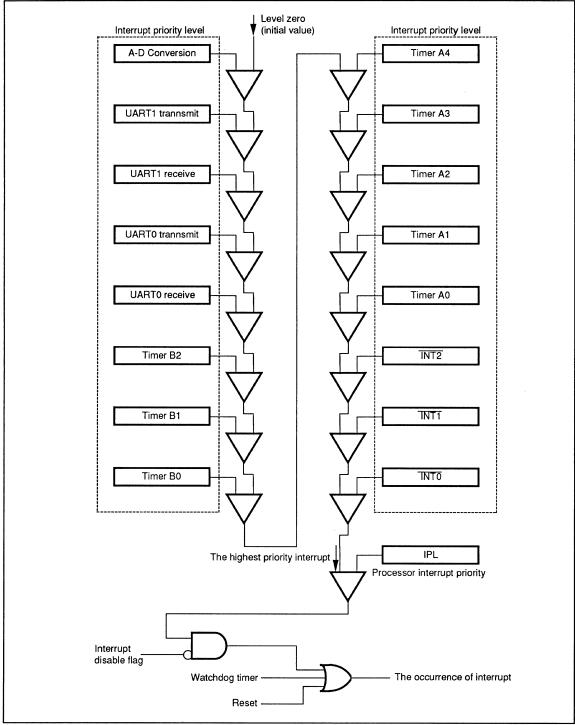


Fig.2.6.6 Interrupt Priority Detection Circuit

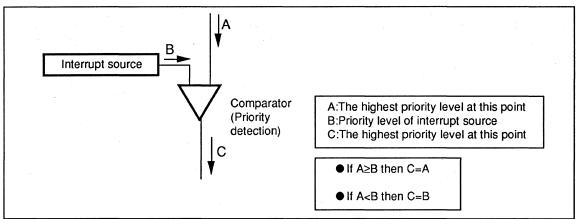
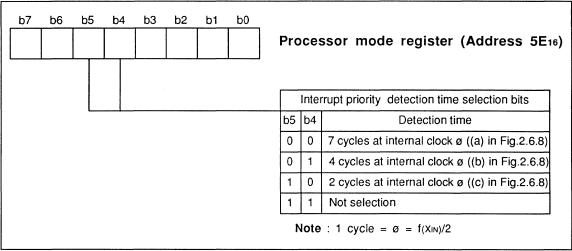


Fig.2.6.6 Interrupt Priority Detection Model

The interrupt priority level of the requested interrupt (B in Figure 2.6.6) is compared ,in the order shown in Figure 2.6.5, with the highest priority interrupt at this point (A in Figure 2.6.6) and the higher level interrupt is sent out as C to be compared with the next interrupt (A is initially 0). Unrequested interrupts are not compared and A is passed to C. If the priority levels of A and B are the same, A is selected. Therefore, the following relation exists if the software set priority levels are the same.

INTO < INT1 < INT2 < Timer A0 < Timer A1 < Timer A2 < Timer A3 < Timer A4 < Timer B0 < Timer B1 < Timer B2 < UART0 receive < UART0 transmit < UART1 receive < UART1 transmit < A-D conversion


As the result of this comparison, the interrupt with the highest priority is selected when there are multiple interrupts within the same sampling interval. Then that interrupt is enabled and its interrupt service routine is executed if its interrupt priority level is higher than the processor interrupt level (IPL) and the interrupt disable flag is "0".

The detection of interrupt priority level is synchronized with the sampling pulse generated during the operation code fetch cycle. While the interrupt level is being checked, the interrupt request bit and the interrupt priority level are latched so that they do not changed. They are sampled at the first half of the operation code fetch cycle and latched from the last half to the end of the level detection. Note that while the priority is being checked, no sampling pulse is generated even when it is the operation code fetch cycle (See Figure 2.6.8).

2.6.6 Interrupt priority detection time

With the M37700, the time it takes for the interrupt priority detection circuit to determine the level of an interrupt can be set by software. This is performed by setting the interrupt priority detection time selection bits in the processor mode register (PMR). Table 2.6.7 shows detection time corresponding to each combination of PMR bits 4 and 5. Figure 2.6.8 shows the relationship between the interrupt priority detection time and the sampling pulse.

After a reset, the interrupt priority level detection time selection bits are initialized to "00" and seven cycle mode is selected.

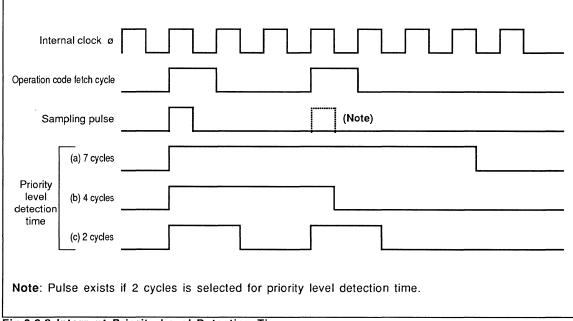
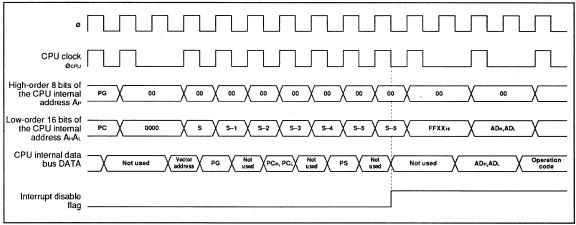


Fig.2.6.8 Interrupt Priority Level Detection Time

2.6.7 Interrupt processing sequence


When an interrupt is accepted, interrupt processing starts from the next cycle of an instruction under execution at this point.

After execution of an instruction, under execution at accepting an interrupt, completes, an INTACK (Interrupt Acknowledge) sequence is executed and branch to the beginning of the interrupt service routine. The INTACK sequence operates as follows.

When an INTACK sequence starts, the contents of the program counter (PC) and the program bank register (PG) (indicates the address of the instruction code to be executed next) are saved in stack in the order of PG, PCH (PC high-order byte), and PCL (PC low-order byte). Then the contents of the processor status register (PS) are saved in stack in the order of PSH (PS high-order byte) and PSL (PS low-order byte), and the interrupt disable flag is set to "1". At the same time, the request bit of the accepted interrupt is cleared and the IPL in the processor status register is replaced by the interrupt priority level of the accepted interrupt. Then the vector address of the interrupt is stored in the program counter and PG becomes 00_{16} .

Note: IPL is set to the values shown in Table 2.6.6 when a reset, watchdog timer, or software interrupt occurs. This is useful when processing multiple interrupts. (See "2.6.8 Interrupt Service Routine".)

Interrupt source	Change in processor interrupt leve		
Reset	0 (0002)		
Watchdog timer	7 (1112)		
Zero divide	No change		
BRK instruction	No change		
Other interrupt	Priority level of the accepted interrupt		

Fig.2.6.9 INTACK Sequence

The INTACK sequence is described below.

- ① Save the contents of PG and PC in stack before passing control to the interrupt service routine.
- ② Save the contents of the PS in stack just before passing control to the interrupt service routine
 ③ Set the interrupt disable flag to "1" to prohibit multiple interrupts.
- Set the interrupt disable hag to 1 to prohibit multiple interrupt.
 Clear the request flag of the accepted interrupt.
- Set the IPL to the priority level of the accepted interrupt.
- (Useful when multiple interrupts are enabled.)
- (6) Change the contents of the PG and PC to branch to the interrupt service routine. (Store 0016 in PG and the contents at the vector address for the interrupt in PC.)

2.6.8 Interrupt service routine

When control is passed to the interrupt service routine, the interrupt disable flag is set to "1" (interrupt is disabled). In addition, the interrupt request bit of the accepted interrupt is cleared. However, the request bit is retained if the interrupt was rejected by the interrupt priority level detection circuit. Furthermore, the IPL in the processor status register changes to the interrupt level of the accepted interrupt. This simplifies enabling of interrupts with higher interrupt level in the interrupt service routine (multiple interrupts). If multiple interrupts are allowed, the interrupt disable flag is cleared in the interrupt service routine. This enables accepting of higher priority interrupts as long as the IPL is not changed. Only the contents of the PC, PG, and PS are saved when control is passed to the interrupt service routine. Therefore, other necessary registers must be saved at the beginning of the interrupt service routine. The M37700 provides the **PSH** instruction to save all registers except the stack pointer with one instruction.

2.6.9 Returning from an interrupt service routine

A **RTI** instruction is used at the end of the interrupt service routine to return to the interrupted routine and continue processing. The **RTI** instruction restores the contents of the PG, PC, and PS saved before entering the interrupt service routine to their original registers. The other registers saved within the interrupt service routine must be restored with the **PUL** instruction before executing the **RTI** instruction. The request bit of other interrupts are retained after branching to the interrupt service routine. Therefore, if these interrupts are to be disabled after returning, these request bits must be cleared before executing the **RTI** instruction.

2.6.10 Interrupt response time

The time it takes an interrupt to be serviced after it has occurred is determined as follows:

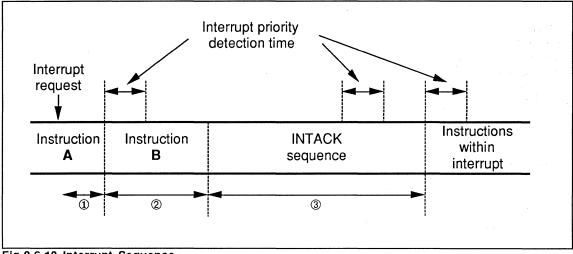


Fig.2.6.10 Interrupt Sequence

① Interval between interrupt occurrence and the end of instruction A that was interrupted.

Interval between the start of the instruction B (interrupt priority detection start) and the end of instruction being executed when interrupt level detection has ended.

③ Time required for INTACK sequence such as saving registers and jumping to vector table address (13 cycles minimum).

Also note the following:

Interrupt priority detection is performed at the start of each instruction and during INTACK sequence. However, if the current instruction completes and the next instruction starts before detection completes, current detection is continued without starting detection for the next instruction.

The interrupt priority detection interval is selected with the processor mode register bits 4 and 5. The available intervals are two, four, or seven ø cycles.

Interrupts are not allowed while executing an instruction. Therefore, when using instructions that require some time to execute (such as MVP, MVN, and RLA instructions) at places where interrupts may occur, care must be taken the handling time.

Table 2.6.7 shows the interrupt response time for a certain instruction.

Table 2.6.7 Interrupt Response Time Example

		Minimum	Maximum instruction		
		instruction	(A)	(B)	(C)
Time required for interrupt detection,					
priority detectior execution.	n, and single instruction	2	917522	106	28
Time required to	save the program counter,				
program bank register, and processor		13	15	15	15
status register					
General register A		5	6	6	6
save time	A, B, X, Y	20	26	26	26
	A, B, X, Y, DPR, DT	23	31	31	31
Total (cycles)	A	19	917543	127	49
	A, B, X, Y	35	917563	147	69
	A, B, X, Y, DPR, DT	38	917568	152	74
	A	2.375	114692.875	15.875	6.125
Time (µs)	A, B, X, Y	4.375	114695.375	18.375	8.625
	A, B, X, Y, DPR, DT	4.750	114696.000	19.000	9.250

(A) MVP instruction (when 64K-byte data is transferred)

(B) DIV instruction (direct indirect long indexed Y)

(C) AND instruction (direct indirect long indexed Y)

2.7 Timer A

2.7.1 Timer A description

Timer A consists of five external output function timers TA0~TA4. These timers have identical functions (excluding two-phase pulse signal processing function) and are independent. There are four operating modes depending on the setting of the timer Ai (i=0~4) mode selection bit in the timer Ai mode register which is described later.

•Timer mode [00]*

This mode counts the selected internal clock and generates interrupt at an arbitrary frequency. Gate function (enable/disable count operation with the input level to the TAiın pin) and polarity output function (output signal that changes phase each time the timer underflows from the TAiout pin) are available and can be selected by program.

•Event count mode [01]*

This mode counts the external clock input from the TAi_N pin. Whether to use it as an incremental counter or as a decremental counter can be selected internally or externally. An interrupt is generated at an arbitrary frequency. In addition, the pulse output function (output a signal that changes phase each time the counter underflows or overflows from the TAiouT pin) can be selected by program. The two-phase pulse signal processing function can be selected for TA2, TA3, and TA4.

One-shot pulse mode [10]*

In this mode, the timer is driven by an internal or external trigger and "H" level is output from the TAiout pin for an arbitrary interval.

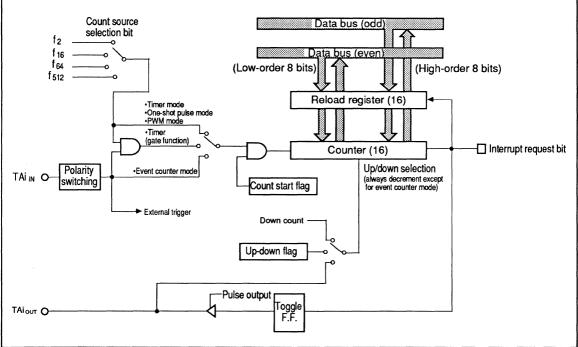
●PWM (pulse width modulation) mode [11]*

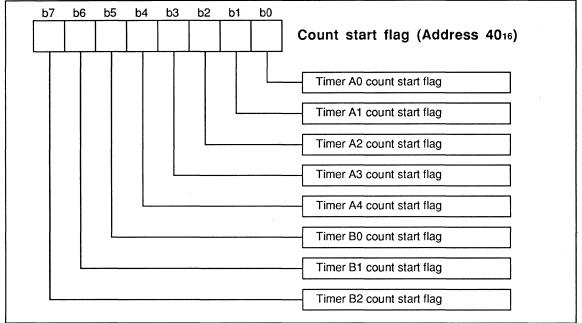
In this mode, an arbitrary pulse width signal is output repeatedly from TAiout. PWM output is started by an internal or external trigger.

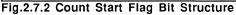
*The numbers in brackets are the contents of the timer Ai mode selection bit described later.

2.7.2 Block diagram

Figure 2.7.1 shows the block diagram of timer Ai. It is followed by the description of timer Ai related registers.




Fig.2.7.1 Timer Ai Block Diagram


(1)Counter and reload register

The counter and reload register consist of 16 bits. The counter counts the clock (count source) selected with the TAi mode register and its content is incremented (+1) or decremented (-1) each time a clock is input. The reload register is used to store the initial value of the counter. Values are set in the counter with the timer Ai register (except PWM mode). The value written in the timer Ai register is also written in the counter and the reload register. Thereafter, the content of the counter changes each time a count clock (count source) is input, but not the content of the reload register.

(2)Count start flag

This register consists of flags used to start and stop each counter. The operation of each counter is controlled by the corresponding flag in this register. A count clock is input to the timer when this flag is set to "1" and disabled when it is set to "0". Each flag is automatically cleared and count is disabled when a value is set in the timer (a value is written in timer Ai register). (Except PWM mode.)

(3)One-shot start flag

This register consists of one-shot start flags that are used during one-shot pulse mode. A one-shot start internal trigger is generated by setting the bit corresponding to each timer to "1". This register consists of write only bits and the LDM or STA instructions must be used to write to it. (Do not use instructions such as CLB and SEB which perform read modify write.)

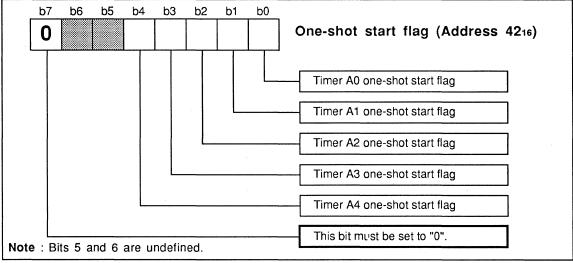
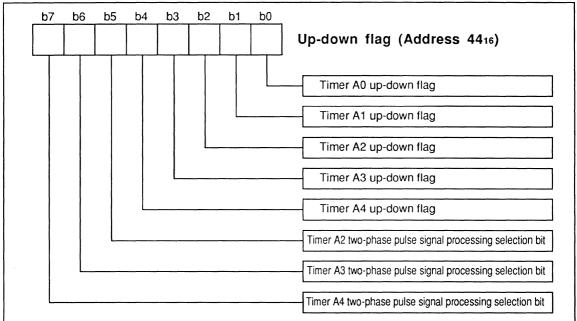



Fig.2.7.3 One-shot Start Flag Bit Structure

(4)Up-down flag

This register consists of up-down flags used during event count mode and two-phase pulse signal selection bits. Bits 7 to 5 are write only bits, but read modify write type instructions such as **CLB** and **SEB** can be used for this register.

Fig 2.7.4 Up-down Flag Bit Structure

•Timer Ai up-down flags

These flags are valid during event count mode when the count up-down flag is selected as the increment/decrement trigger. A counter is decremented when this flag is "0" and incremented when it is "1".

Two-phase signal processing selection bit

In event count mode, the counter can be controlled using two waveforms with their phases shifted by 90° (two-phase pulse signal processing function). This bit must be set to "0" when the two-phase pulse signal processing function is not used and in other modes.

(5)Timer Ai register

The data written in this register is stored in the counter and the reload register. Reading this register returns the content of the counter at that point.

The timer Ai register is divided in to high-order byte and low-order byte. Writing data and reading of halted timer can be performed in byte or word unit. However, the high-order and low-order bytes must be read simultaneously when the counter is operating.

Timer Ai register	High-order byte	Low-order byte	
Timer A0 register	Address 4716	Address 4616	
Timer A1 register	Address 4916	Address 4816	
Timer A2 register	Address 4B ₁₆	Address 4A16	
Timer A3 register	Address 4D16	Address 4C16	
Timer A4 register	Address 4F16	Address 4E16	

Table 2.7.1 Timer Ai Register Address

(6)Timer Ai mode register

The timer Ai mode registers control the timer operating modes and counter source and function selection. Bits 1 and 0 control the timer operating modes. Note that the meaning of each bit differs according to the timer operating mode. Refer to the description of the respective operating mode for the bit configuration in each operating mode.

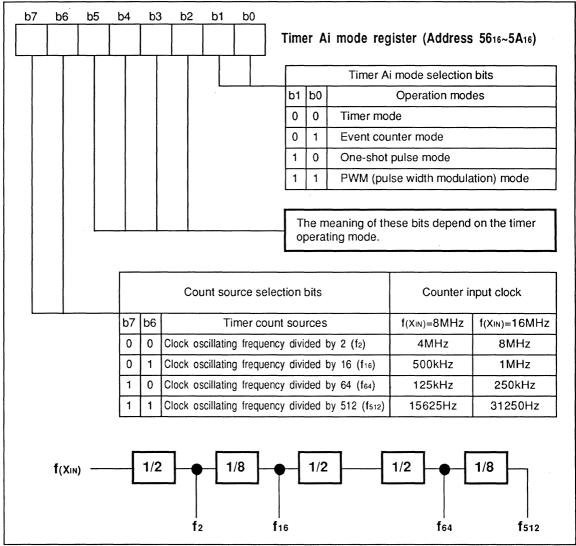
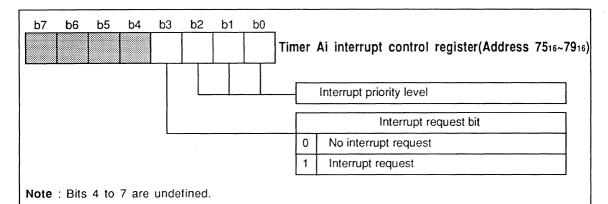


Fig.2.7.5 Timer Ai Mode Register Bit Structure

•Timer Ai mode selection bits


These bits are used to control the timer operating modes.

•Counter source selection bits

These bits are used to select the counter source (except in event counter mode).

(7)Timer Ai interrupt control register

The timer Ai interrupt control register consists of interrupt priority level selection bits and interrupt request bits.

Fig.2.7.6 Timer Ai Interrupt Control Register Bit Structure

OINTERRUPT PRIORITY level selection bit

This bit is used to select the interrupt priority level. It should be set to a level between 1 and 7 when using a timer Ai interrupt. An interrupt is allowed only when this level is greater than the processor interrupt priority level (IPL) in the processor status register (PS). (When interrupt disable flag I is "0".) Set these bits to "0002" to disable timer Ai interrupt.

Interru	pt control r	register	Interrupt priority level	Priority
b2	b1	b0	interrupt phonty level	Thomy
0	0	0	Level 0 (Interrupt disabled)	
0	0	1	Level 1	Low
0	1	0	Level 2	
0	1	1	Level 3	T
1	0	0	Level 4	
1	0	1	Level 5	
1	1	0	Level 6	
1	1	1	Level 7	High

Interrupt request bit

This bit is set to "1" when a timer Ai interrupt request occurs. This bit can be set or cleared by program.

2.7.3 Timer mode [00]

A timer mode is selected by setting the timer Ai mode register bits 1 and 0 to "0". When this mode is selected, bit 5 of the timer Ai mode register must be set to "0".

Figure 2.7.7 shows the bit configuration of the timer Ai mode register in timer mode.

(1)Functions

In timer mode, the selected internal clock is decremented and an interrupt occurs when the counter underflows.

The following functions can be selected with the timer Ai mode register.

Gate function

Controls count with input signal to timer Ai input pin Ain.

Pulse output function

Outputs signal that changes polarity every time the content of the counter becomes "000016" from the timer Ai output pin TAiouT.

(2)Basic function

First the mode, count source, gate function, and pulse output function are selected with the timer Ai mode register bits. Then when a value n (between 000016 and FFFF16) is written in the timer Ai register, the count start flag is cleared (count disabled) and n is stored in the counter and the reload register.

When the count start flag is set to "1" (count enabled), the internal clock selected with the source selection bit is input to the counter. The content of the counter is decremented by 1 each time a clock is input. At the next clock input after the content of the counter reaches 0_{16} , the content of the reload register is loaded in the counter and the interrupt request bit is set to "1". Counting continues in this manner and the interrupt request bit is set to "1" each time the content of the counter changes from 0_{16} to n. Therefore, a timer Ai interrupt request occurs at every n+1 count of the clock input. The interrupt request bit remains set until the interrupt is accepted or it is cleared by program.

The content of the counter can be read at any time by reading the content of the timer Ai register, but the content of the reload register cannot be read.

Note : Interrupts must be enabled in order to use timer Ai interrupt. See "Section 2.6 Interrupts" for more information.

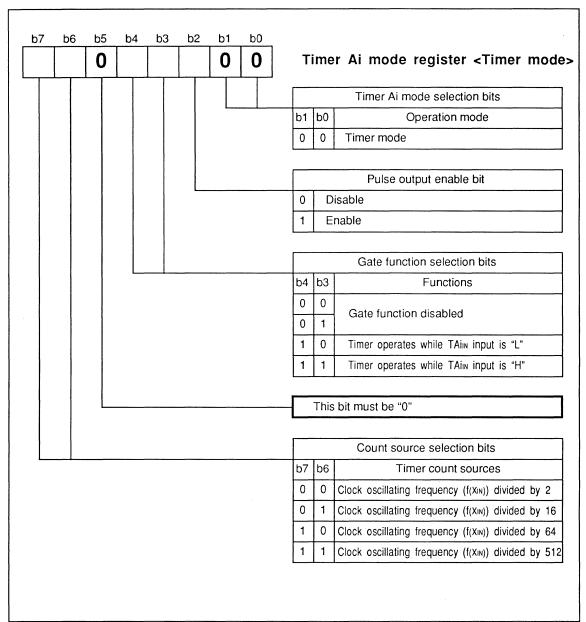


Fig.2.7.7 Timer Ai Mode Register Bit Structure in Timer Mode

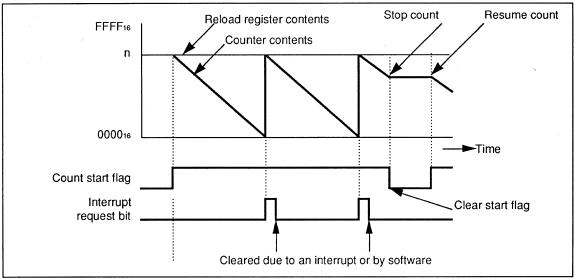


Fig.2.7.8 Timer Mode Operation

(3)Selection function

In timer mode, a gate function and a pulse output function can be selected by program. These functions can be used together.

•Gate function

When the gate function is enabled (timer Ai mode register bit 4 set to "1"), the starting and stopping of the timer count can be controlled by the level of the signal input to the TAIN pin. The effective level is selected with the timer Ai mode register bit 3.

When the gate function is enabled, counting is performed only when the count start flag is "1" and the input to pin TAim is at the effective level. Counting stops if the input level is ineffectively. However, the content of the counter is preserved and counting can resume when the input level returns to an effective level.

Precautions when using the gate function

1.The TAi_N pin is in common with normal port pins. Therefore, the data direction register of the corresponding port must be set to input when using the gate function.

2. The pulse width of the TAin pin input signal during count interval and count halt interval must be at least 2 cycles of the timer count source.

•Pulse output function

When the pulse output function is enabled (timer Ai mode register bit 2 is set to "1"), a signal that changes polarity every time the content of the counter becomes "000016" is output from the TAiour pin.

An "L" level is output from the TAiout pin when the count start flag is "0" (count disabled).

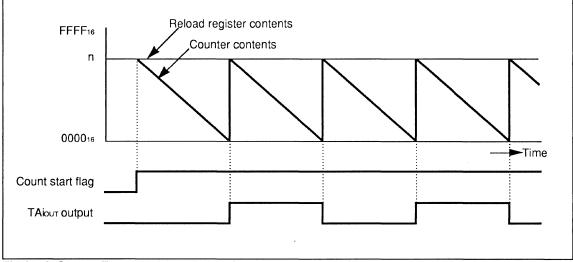


Fig.2.7.9 Output Example when Pulse Output Function is Selected

Precautions when using the pulse output function

- 1. When the content of the timer Ai register is changed while counting, the count start flag becomes "0" (count disabled) and the TAiout pin level becomes "L".
- 2. The TAiout pin is in common with normal port pins. When the pulse output function is enabled, the corresponding port is forced to output mode and functions as a timer output pin losing its programmable I/O port function. It can be used as a programmable I/O port once the pulse output function is disabled.

2.7.4 Event counter mode [01]

The event counter mode is selected by setting the timer Ai mode register bit 1 to "0" and bit 0 to "1". When this mode is selected, the timer Ai mode register bit 5 must be set to "0".

Figure 2.7.10 shows the bit configuration of the timer Ai mode register and the up-down flag during event counter mode.

(1)Functions

In event counter mode, the external clock input from the TAi_N pin is counted and an interrupt occurs each time the counter overflows or underflows.

In event counter mode, the counter can be incremented or decremented. This selection is made with the contents of the up-down flag or the input signal to the TAiour pin.

Timer dividing ratio	Incremental counter1/(n+1) Decremental counter1/(FFFF16-n+1)
	n: Value set in timer Ai register

(a value between 000016 and FFFF16)

In addition, in this mode, the pulse output function and two-phase pulse signal processing function can be selected from a program (two-phase pulse signal processing function is available only with timers A2, A3, and A4)

•Pulse output function

A pulse that changes phase every time the content of the counter becomes "000016" (decremental count) or "FFFF16" (incremental count) is output from timer Ai output pin TAiout.

•Two-phase pulse signal processing function

Whether to increment or decrement the counter can be selected using two signals with different phases. This function is selected with bits 5 to 7 of the up-down flag (address 44₁₆).

(2)Basic function

First the mode, up-down selection bit, effective edge of the count source, and whether to enable or disable pulse output function is selected with the timer Ai mode register. Then when, a value n $(n=0000_{16} \text{ to FFF}_{16})$ is written in the timer Ai register, the count start flag is cleared to "0" (count disabled) and the value n is stored in the counter and the reload register.

Then, when the count start flag is set to "1" (count enabled), the external clock input to the TAi_N pin is input to the counter. The counter counts at the falling (when the count polarity selection bit is "0") or rising (when the count polarity selection bit is "1") edge of the input clock.

Whether to increment or decrement the counter can be selected with the up-down flag or the level of the input signal to the TAiour pin. The content of the up-down flag is used if the up-down switching factor selection bit (bit 4) in the timer Ai mode register is "0" and the TAiour pin input signal level is used if it is "1".

•When using the content of the up-down flag

The counter is decremented when the bit corresponding to the timer Ai (bit i) in the up-down flag (address 44₁₆) is set to "0" and incremented when it is set to "1".

•When using the TAiout input signal

The counter is decremented when the TAiout pin input level is at "L" and incremented when it is at "H".

Precautions when externally controlling increment/decrement

- 1. The TAiout pin is in common with normal port pins. Therefore, the data direction register of the corresponding port pin must be set to input when the input level of the TAiout pin is used to control increment/decrement.
- 2. The pulse output function, which is described later, cannot be used when the input level to the TAiour pin is used to control increment/decrement.

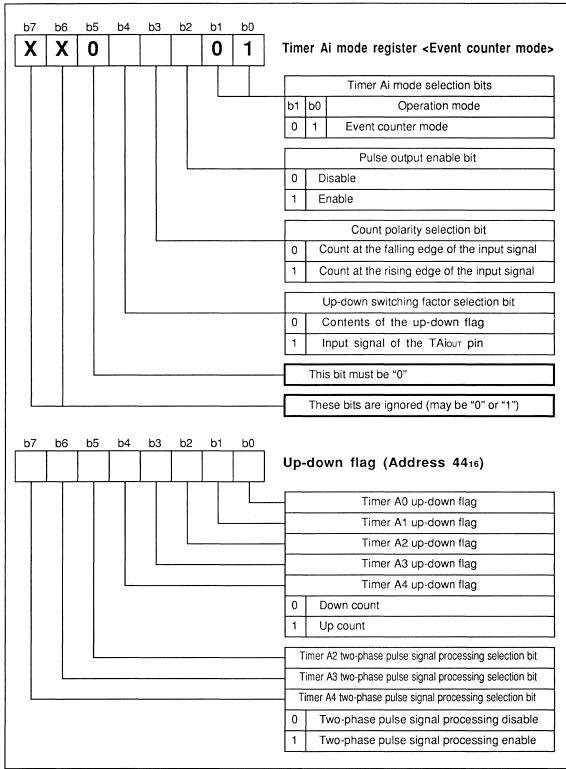
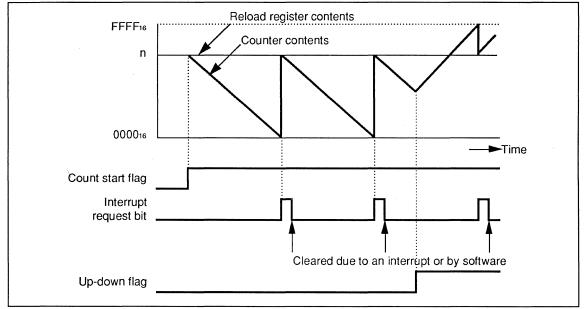



Fig 2.7.10 Event Counter Mode Related Registers Bit Structure

The count direction can be changed while counting. However, in this case, the increment interval and the decrement interval must be at least two cycles of the timer count source.

The content of the reload register (n) is loaded in the counter and an interrupt request bit is set to "1" at the next clock input when the content of the counter reaches "000016" (when decrementing) or "FFFF16" (when incrementing). Counting continues and the interrupt request bit is repeatedly set at a certain interval. The interrupt request bit remains set until it is accepted or is cleared from a program.

The content of the counter can be read by reading the content of the timer Ai register, but the content of the reload register cannot be read.

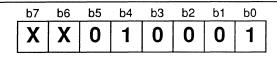
(3)Selection function

In event counter mode, a pulse output function and a two-phase pulse signal processing function can be selected by program. However, only timers A2, A3, and A4 can use the two-phase pulse signal processing function.

•Pulse output function

When the pulse output function is enabled (timer Ai mode register bit 2 is set to "1"), a signal that changes polarity every time the content of the counter becomes " 0000_{16} " (decremental count) or "FFF₁₆" (incremental count) is output from the TAiout pin.

An "L" level is output from the TAiout pin when the count start flag is "0" (count disabled).


Precautions when using the pulse output function

- 1. The counter up-down selection cannot be made externally because the pulse output function uses the TAiout pin.
- 2.When the content of the timer Ai register is written a value (if the same value) while counting, the count start flag becomes "0" (count disabled) and the TAiour pin level becomes "L".
- 3. The TAiour pin is in common with normal port pins. When the pulse output function is enabled, the corresponding port is forced to output mode and functions as a timer output pin losing its programmable I/O port function. It can be used as a programmable I/O port once the pulse output function is disabled.

•Two-phase pulse signal processing function

Timers A2 to A4, for which the event counter mode is selected, can use the two-phase pulse signal processing function which controls the counter increment/decrement with two input pulses shifted by 90°.

When using the two-phase pulse signal processing function, the high-order three bits of the updown flag which is used timer (timer A2, A3, or A4) must be set to "1". And the timer Aj mode register (j=2, 3, 4) must be set as follows:

Timer Aj mode register (j=2, 3, 4)

("X" may be "0" or "1")

Fig.2.7.12 Setting value at Using Two-phase Pulse Signal Processing Function

After setting the timer Aj mode register, when a value n (n=000016 to FFFF16) is written in the timer Aj register, the count start flag is cleared to "0" and the value n is loaded in the counter and reload register. When using the two-phase pulse signal processing function, the reference pulse must be input to the TAjour pin and a pulse shifted by 90° from the reference pulse must be input to the TAjour pin.

The counter is enabled when the count start flag is set to "1". After the input signal to the TAjour pin changes from "L" to "H", the counter is incremented when a rising edge is input to the TAjiN pin and is decremented when a falling edge is input.

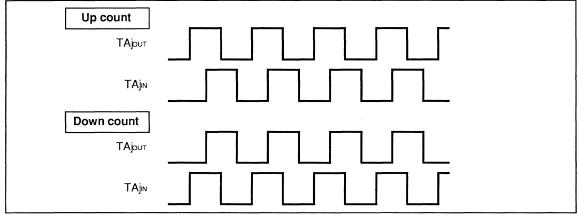


Fig.2.7.13 Two-Phase Pulse Signal Processing Function

Precautions when selecting two-phase signal processing function

1. When using the two-phase pulse signal processing function, the pulse output function cannot be used because the TAjout pin is used as the reference pulse input pin.

- 2. The phase difference between the reference pulse and the pulse input to the TAjıN pin must be between 80° and 100°.
- 3.If the input pulse changes direction as shown below, the following error occurs in the count value.

2.7.5 One-shot pulse mode [10]

The one-shot pulse mode is selected by setting the timer Ai mode register bit 1 to "1" and bit 0 to "0". When this mode is selected, the timer Ai mode register bit 5 must be set to "0" and bit 2 must be set to "1".

Figure 2.7.15 shows the bit configurations of the timer Ai mode register and one-shot start flag during one-shot pulse mode.

(1)Functions

In one-shot pulse mode, the level of the timer Ai output pin (TAiout) is held at "H" for an arbitrary interval after a trigger.

The trigger can be either internal or external. The source of trigger is selected using bit 4 of the timer Ai mode register. A software trigger (internal trigger) is selected when this bit is "0" and a TAim pin input signal (external signal) is selected when this bit is "1".

•Software trigger

Internal trigger is generated by setting the bit corresponding to each timer in the one-shot start flag (address 4216) to "1". Use LDM or STA instruction to write to the one-shot start flag (do not use read-modify-write type instructions such as SEB).

•External trigger (TAin pin input pulse)

An input signal from the TAi_N pin is used as the trigger. Whether to trigger at the rising edge or falling edge of the input signal is selected with bit 3 of the timer Ai mode register. A trigger occurs at the falling edge when this bit is "0" and at the rising edge when it is "1".

Precautions when using an external trigger

The TAin pin is in common with normal port pins. Therefore, the data direction register of the corresponding port must be set to input when using an external trigger.

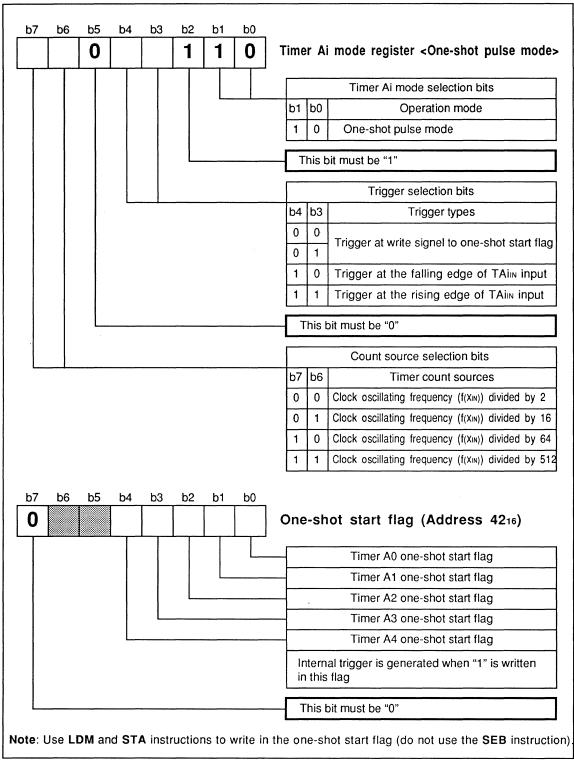
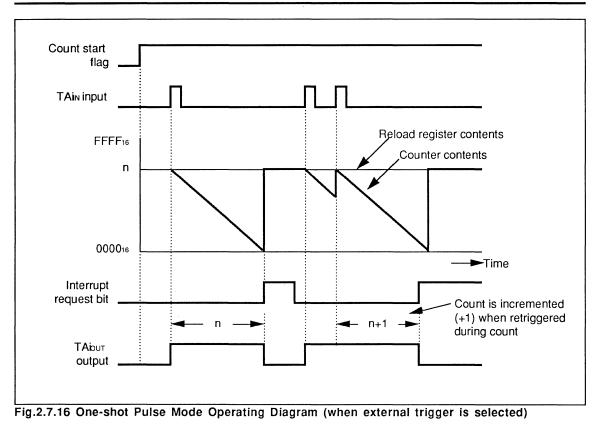


Fig.2.7.15 One-shot Pulse Mode Related Register Bit Structure

(2) One-shot pulse mode operation

First the mode, count source, and trigger source are selected with the timer Ai mode register bits. Next, when a value n (between 0000_{16} and FFF₁₆) is written in the timer Ai register, the count start flag is cleared (count disabled) and n is stored in the counter and the reload register. Then count is enabled when the count start flag is set to "1", but the counter does not start until it is triggered. If bit 4 of the timer Ai mode register is "0", an internal trigger is generated by setting the bit corresponding to each timer in the one-shot start flag to "1". If bit 4 is "1", a trigger is generated at the rising edge of the TAi_N pin input signal (whether to trigger at the rising edge or falling edge is selected with bit 3 of the timer Ai mode register).

When triggered, the TAiout pin level becomes "H" and the timer starts counting (however, if the timer Ai register contains "000016", the TAiout pin level remains at "L" and counting does not start). The counter is decremented and when its content reaches "000116", the TAiout pin level becomes "L", the content of the reload register is loaded in the counter, and counting stops. An interrupt occurs and the interrupt request bit is set to "1" when the TAiout pin level changes from "H" to "L". The interrupt request bit remains set until the interrupt is accepted or it is cleared by program. The count resumes at the next trigger and this operation is repeated.


The "H" width of the pulse output from the TAiout pin is (count source cycle) \times n.

If the count start flag is "0" (count disabled), the TAiout pin output is at "L" level. Therefore, an arbitrary pulse width can be generated by setting a value in the timer Ai register before setting the timer Ai count start flag to "1".

If another trigger is received before a triggered operation completes, the content of the reload register is transferred to the counter and decrement continues from that value. In this case, the TAiout pin level becomes "L" at n+1 count after the trigger. A trigger never causes the content of the reload register to be transferred to the counter except when it is received while a triggered operation is being executed. In this case, there should be at least one cycle of the timer count source between triggers.

Precautions when using one-shot pulse mode

If the low-order eight bits of the timer Ai register is set to "0016" in one-shot pulse mode, the value must be reset and the count start flag must be set to "1" before the next trigger after a one-shot pulse output.

2.7.6 PWM (Pulse Width Modulation) mode [11]

The PWM mode is selected by setting bits 1 and 0 of the timer Ai mode register to "1". When this mode is selected, bit 2 of the timer Ai mode register must be set to "1". Figure 2.7.17 shows the bit configuration of the PWM mode related registers.

(1)Functions

The PWM mode continuously outputs an arbitrary pulse width signal from the TAiour pin. A 16-bit PWM mode or an 8-bit PWM mode can be selected from a program.

●16-bit PWM mode

The counter functions as a 16-bit pulse width modulator.

•8-bit PWM mode

The reload register and the counter are both divided into 8-bit halves. The high-order 8-bits of the counter function as a pulse width modulator and the low-order 8-bits function as a prescaler.

(2) Operation

First the mode, count source, and trigger source are selected with the timer Ai mode register bits. Next, when data is written in the timer Ai register with the timer Ai start flag set to "0" (pulse width modulator operation halted), it is stored in the counter and the reload register. In PWM mode, the count start flag is not cleared when writing to the timer Ai register.

The trigger can be either internal or external. The source of trigger is selected with bit 4 of the timer Ai mode register. A software trigger is selected when this bit is "0" (internal trigger) and an external trigger is selected when it is "1".

Software trigger

An internal trigger is generated by setting the count start flag to "1".

•External trigger (TAin pin input pulse)

After the count start flag is set to "1", a trigger is generated at the effective edge of the input signal to the TAi_N pin. The effective edge is selected with bit 3 of the timer Ai mode register. A trigger is generated at the falling edge if bit 3 is "0" and at the rising edge if it is "1".

Precautions when using an external trigger

The TAiN pin is in common with normal port pins. Therefore, the data direction register of the corresponding port must be set to input when using an external trigger.

The pulse width modulator starts when triggered and outputs an arbitrary pulse from the TAiour pin. The pulse width modulator cannot be retriggered once it is started.

b7	b6	b5	b4	b3	b2	b1	b0	Ъ		
					1	1	1	Tir	ner	Ai mode register <pwm mode=""></pwm>
										Timer Ai mode selection bits
						L		b1	b0	Operation mode
								1	1	PWM mode
								T	his	bit must be "1"
										Trigger selection bits
			L					b4	b3	Trigger types
								0	0 1	- Internal trigger
								1	0	Trigger at the falling edge of TAin input
								1	1	Trigger at the rising edge of TAiN input
									16/	8-bit pulse modulation width selection bit
								0		16-bit length pulse width modulation
								1	8	3-bit length pulse width modulation
										Count source selection bits
								b7	b6	Timer count sources
								0	0	Clock oscillating frequency (f(XIN)) divided by 2
								0	1	Clock oscillating frequency (f(XIN)) divided by 16
								1	0	Clock oscillating frequency (f(XIN)) divided by 64
								1	1	Clock oscillating frequency (f(XIN)) divided by 512
b7	b6	b5	b4	b3	b2	b1	b0] Co	un	t start flag (Address 4016)
							L			Timer A0 count start flag
										Timer A1 count start flag
					L					Timer A2 count start flag
				L		·····				Timer A3 count start flag
			L							Timer A4 count start flag
		1								Timer B0 count start flag
	L									Timer B1 count start flag
										Timer B2 count start flag
te :		PWM r rnal tri					jer is	genera	ted	by writing "1" in the count start flag. (w

Fig.2.7.17 Pulse Width Modulation Mode Timer Ai Mode Register Bit Configuration

(3)Selection function

A 16-bit or an 8-bit pulse width modulation mode can be selected from a program. A 16-bit PWM mode is selected when bit 5 of the timer Ai mode register is "0" and an 8-bit PWM mode is selected when it is "1".

●16-bit PWM mode

In 16-bit PWM mode, the cycle and width of the pulse output from the TAiout pin are as follows:

Figure 2.7.18 shows the output waveform during 16-bit PWM mode. An interrupt request signal is generated and the interrupt request bit in the timer Ai interrupt control register is set at each falling edge of the output pulse. To change the pulse width while it is being output, data must be written in the timer Ai register while the output pulse is at "L" (this also applies to 8-bit PWM mode). This data is written only in the reload register. The counter and count start flag are unaffected. The content of the reload register is transferred to the counter just before the rising edge of the next pulse and the output pulse is updated at the next pulse cycle.

The content of the reload register is obtained if the timer Ai register is read during PWM mode.

•8-bit PWM mode

When 8-bit PWM mode is selected, both the reload register and the counter are divided into 8bit halves. The low-order 8 bits of the counter function as a prescaler and the high-order 8 bits function as an 8-bit pulse width modulator.

The prescaler counts the clock selected with bits 6 and 7 of the timer Ai mode register and a pulse is generated when its content reaches "0016". At the same time, the content of the reload register is written in the prescaler and count continues. The counter counts the pulse generated by the prescaler. Therefore, the cycle and width of the pulse output from the TAiout pin are as follows:

Output pulse cycle	$(1/f_i) \times (n+1) \times (2^8-1)$ [s]
Output pulse "H" width	$(1/f_i) \times (n+1) \times m [s]$
	where
	fi: Clock frequency [Hz]
	m: Value in the high-order 8 bits of the reload register

The Value in the law order 0 bits of the relead register

n: Value in the low-order 8 bits of the reload register

Figure 2.7.19 shows the output waveform during 8-bit PWM mode. The operation in this mode is similar to 16-bit PWM mode except that the bit length is 8-bits.

Precautions when using 8-bit PWM mode

In 8-bit PWM mode, if pulse output from the TAiout pin is started with a trigger, the pulse output starts after an "L" level is output for the specified "H" pulse width.

2.7 Timer A

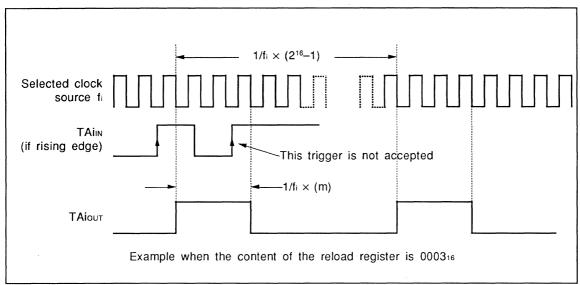


Fig.2.7.18 Output Waveform During 16-bit PWM Mode

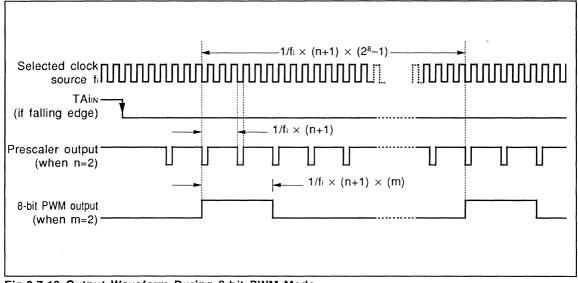


Fig.2.7.19 Output Waveform During 8-bit PWM Mode

2.8 Timer B

2.8.1 Timer B description

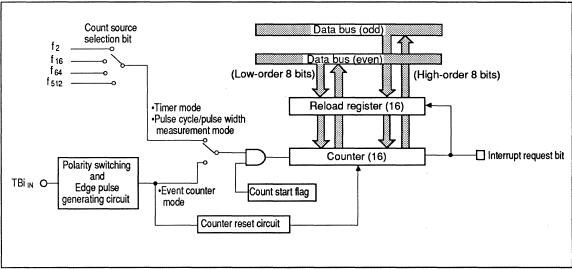
Timer B consists of three independent identical function timers TB0, TB1, and TB2. Three operation modes can be selected with the timer Bi mode selection bits of the timer Bi mode register (i=0, 1, 2).

•Timer mode [00]*

In this mode the selected internal clock is counted and an interrupt request is generated at an arbitrary frequency.

Event counter mode [01]*

In this mode the external clock input to the TBin pin is counted. The counter is decremented and an interrupt occurs when the timer underflows.


●Pulse cycle /pulse width measurement mode [10]*

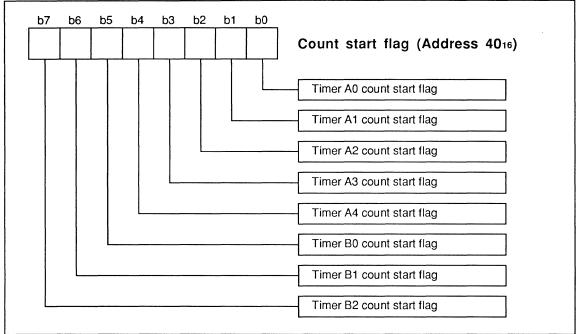
In this mode, the frequency or the pulse width of the signal input to the TBin pin is measured.

* The numbers in bracket indicate the timer Bi mode selection bits which are described later.

2.8.2 Block diagram

Figure 2.8.1 shows a block diagram of the timer Bi and the related registers.

Fig.2.8.1 Timer Bi Block Diagram


(1)Counter and reload register

The counter and reload register consists of 16 bits. The counter counts the clock (count source) selected by the TBi mode register. It is decremented each time a clock is input. The reload register contains the initial value of the counter.

A value is set in the counter through the timer Bi register. The value written in the timer Bi register is written in the counter and the reload register. The content of the counter changes with clock input, but the content of the reload register remains unchanged.

(2)Count start flag

The count start flag consists of flags that starts and stops individual timers. Each bit controls the count operation of the corresponding timer. The count clock is input to the counter when this bit is "1" and count clock is inhibited when this bit is "0". These bits are cleared and the count is halted when a value is set in the timer (a value is written in the timer Bi register).

Fig.2.8.2 Count Start Flag Bit Structure

(3)Timer Bi register

The data written in this register is set in the counter and the reload register. The current value of the counter can be determined by reading this register.

The timer Bi register is divided into high-order byte and low-order byte and data read while the counter is halted or data write can be performed either in byte or word unit. However, the Bi register must be read in word unit when the counter is operating.

Table 2.8.1 Timer Bi Register Address

Timer Bi register	High-order byte	Low-order byte		
Timer B0 register	Address 5116	Address 5016		
Timer B1 register	Address 5316	Address 5216		
Timer B2 register	Address 5516	Address 5416		

(4)Timer Bi mode register

The timer Bi mode registers control the timer operating modes and counter source selection. Bits 1 and 0 control the timer operating modes. Note that the meaning of each bit differs according to the timer operating mode. Refer to the description of the respective operating mode for the bit configuration in each operating mode.

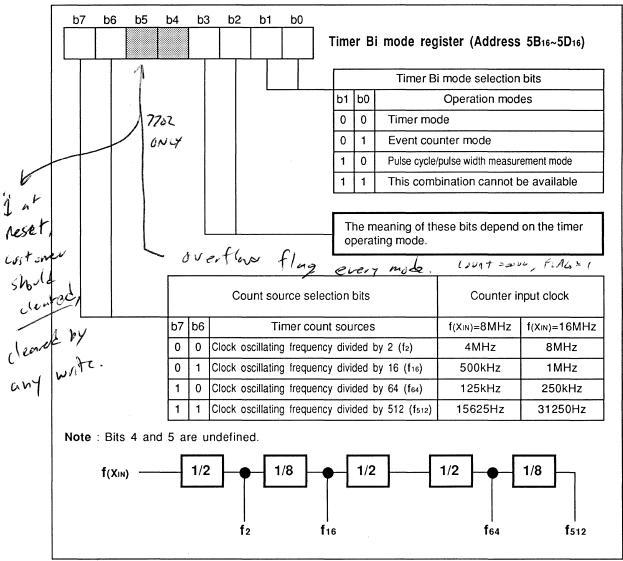
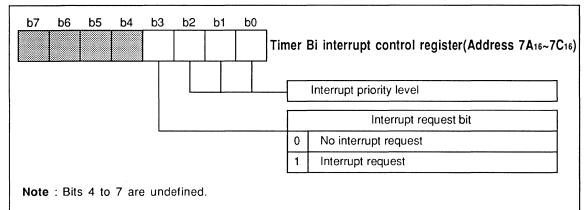
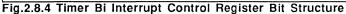


Fig.2.8.3 Timer Bi Mode Register Bit Structure

•Timer Bi mode selection bits


These bits are used to control the timer operating modes.


•Count source selection bits

These bits are used to select the counter source (except in event counter mode).

(5)Timer Bi interrupt control register

The timer Bi interrupt control register consists of interrupt priority level selection bits and interrupt request bits.

Interrupt priority level selection bit

This bit is used to select the interrupt priority level. It should be set to a level between 1 and 7 when using timer Bi interrupt. An interrupt is allowed only when this level is greater than the processor interrupt priority level (IPL) in the processor status register (PS). (When interrupt disable flag I is "0".) Set these bits to "0002" to disable the timer Bi interrupt.

Interru	pt control r	register	Interrupt priority level	Priority
b2	b1	b0	interrupt phonty level	inomy
0	0	0	Level 0 (Interrupt disabled)	
0	0	1	Level 1	Low
0	1	0	Level 2	
0	1	1	Level 3	
1	0	0	Level 4	
1	0	1	Level 5	
1	1	0	Level 6	
1	1	1	Level 7	High

Interrupt request bit

This bit is set to "1" when a timer Bi interrupt request occurs. This bit can be set or cleared from a program.

2.8.3 Timer mode [00]

A timer mode is selected by setting timer Bi mode register bits 1 and 0 to "0". When this mode is selected, bits 2 and 3 of the timer Bi mode register are ignored.

Figure 2.8.5 shows the bit configuration of the timer Bi mode register in timer mode.

(1)Functions

In timer mode, the selected internal clock is decremented and an interrupt occurs when the counter underflows.

(a value between 000016 and FFFF16)

(2)Timer mode operation

First, the mode and count source are selected with the timer Bi mode register. Then when a value $n (n=0000_{16} \text{ to FFF}_{16})$ is written in the timer Bi register, the count start flag is cleared (count disabled) and n is stored in the counter and the reload register.

When the count start flag is set to "1" (count enabled), the internal clock selected with the source selection bit is input to the counter. The content of the counter is decremented by 1 each time a clock is input. At the next clock input after the content of the counter reaches 0_{16} , the content of the reload register is loaded in the counter and the interrupt request bit is set to "1". Count operation continues in this manner and the interrupt request bit is set to "1" each time the content of the counter changes from 0_{16} to n. Therefore, a timer Bi interrupt request occurs at every n+1 count of the clock input. The interrupt request bit remains set until the interrupt is accepted or it is cleared from a program.

The content of the counter can be read at any time by reading the content of the timer Bi register, but the content of the reload register cannot be read.

Note : Interrupts must be enabled in order to use timer Bi interrupt. See "Section 2.6 Interrupts" for more information.

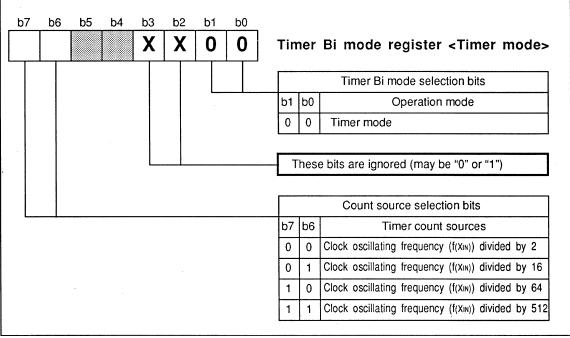


Fig.2.8.5 Timer Bi Mode Register Bit Configuration in Timer Mode

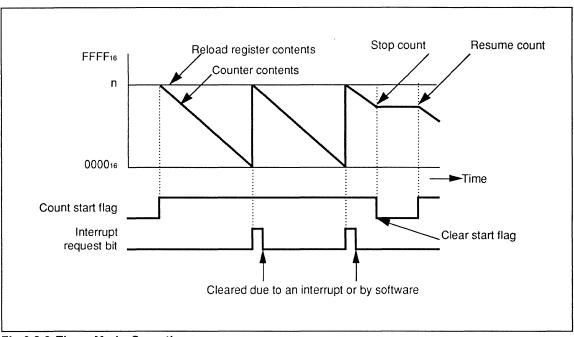


Fig.2.8.6 Timer Mode Operation

2.8.4 Event counter mode [01]

The event counter mode is selected by setting the timer Bi mode register bit 1 to "0" and bit 0 to "1". When this mode is selected, the timer Bi mode register bits 7 and 6 are ignored. Figure 2.8.7 shows the bit configuration of the timer Bi mode register during event counter mode.

(1)Functions

In event counter mode, the external clock input from the TBi_N pin is counted and an interrupt occurs each time the counter underflows.

Timer dividing ratio1/(n+1)

n: Value set in timer Bi register (value between 000016 and FFFF16)

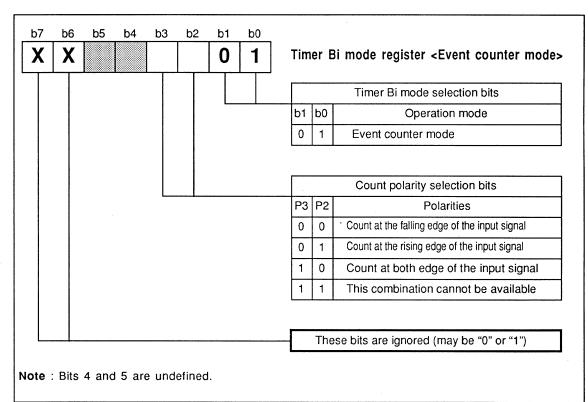


Fig.2.8.7 Timer Bi Mode Register Bit Configuration in Event Counter Mode

(2)Event counter mode operation

First, the mode and count polarity are selected with the timer Bi mode register. Then when a value n (n=000016 to FFFF16) is written in the timer Bi register, the count start flag is cleared (count disabled) and n is stored in the counter and the reload register.

When the count start flag is set to "1" (count enabled), the effective edge of the signal input to the TBi_N pin is detected and counted. When the count edge selection bits (timer Bi mode register bits 3 and 2) are "00", count is made at the falling edge of the input signal, when the bits are "01", count is made at the rising edge, and when they are "10", count is made at both edge of the input signal.

The content of the counter is decremented by 1 each time an effective edge is detected. The content of the reload register is loaded in the counter and the interrupt request bit is set to "1" at the next clock input after the content of the counter reaches 0_{16} . Count operation continues in this manner and the interrupt request bit is set to "1" each time the content of the counter changes from 0_{16} to n. Therefore, a timer Bi interrupt request occurs at every n+1 count of the clock input. The interrupt request bit remains set until the interrupt is accepted or it is cleared by program.

The content of the counter can be read at any time by reading the content of the timer Bi register, but the content of the reload register cannot be read.

The operation in event counter mode is identical to that of the timer mode except that an externally input clock is counted.

Precautions when using the event counter mode

When the event counter mode is selected, the data direction register bit of the port corresponding to the TBin pin must be set to input ("0").

2.8.5 Pulse cycle/pulse width measurement mode [10]

The pulse cycle/pulse width measurement mode is selected by setting the timer Bi mode register bit 1 to "1" and bit 0 to "0".

Figure 2.8.8 shows the timer Bi mode register bit configuration during pulse cycle/pulse width measurement mode.

(1)Functions

This mode measures the cycle or width of the TBin pin input signal.

b7	b6	b5	b4	b3	b2	b1	ьо О			Bi mode register cycle/pulse width measurement mode>
							1			Timer Bi mode selection bits
						L		b1	ь0	Operation mode
								1	0	Pulse cycle/pulse width measurement mode
										Measurement interval selection bits
								b3	b2	Measurement intervals
								0	0	Pulse cycle measurement mode (from falling edge to the next falling edge)
								0	1	Pulse cycle measurement mode (from rising edge to the next rising edge)
								1	0	Pulse width mesurement mode
								1	1	This combination cannot be available
										Count source selection bits
L							· · · · · · · · · · · · · · · · · · ·	b7	b6	Timer count sources
								0	0	Clock oscillating frequency (f(XIN)) divided by 2
								0	1	Clock oscillating frequency (f(XIN)) divided by 16
								1	0	Clock oscillating frequency (f(XIN)) divided by 64
								1	1	Clock oscillating frequency (f(XIN)) divided by 512

Note : Bits 4 and 5 are undefined.

Fig.2.8.8 Timer Bi Mode Register Bit Configuration in Pulse Cycle/Pulse Width Measurement Mode

(2)Pulse Cycle /pulse width measurement mode description

First, the mode, count source, and whether to measure the pulse cycle or width are selected with the timer Bi mode register. The operation of the pulse cycle measurement and pulse width measurement are the same except for the effective edge of the TBin at which the count is triggered. When the count start flag is set to "1" (count enabled), the counter starts and the selected count source is input to the counter. The counter is an incremental counter with its content incremented (+1) each time a count source clock is input.

When the effective edge (Note 2) of the TBin input signal is detected, the content of the counter (measurement result) is transferred to the reload register.

Note 1: In this mode, the reload register functions as a buffer register. The content of the reload register can be read by reading the timer Bi register.

Note 2: The effective edge is selected with timer Bi mode register bits 3 and 2.

When the content of the counter is transferred to the reload register, it is cleared and counting continues. This operation is repeated each time an effective edge is detected.

A timer Bi interrupt request occurs when the content of the counter is transferred to the reload register. When an interrupt request occurs, the timer Bi interrupt request bit is set to "1". The interrupt request bit remains set until the interrupt is accepted or the bit is cleared by program.

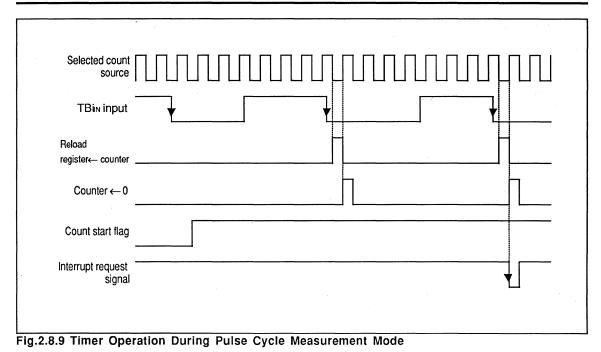

However, an interrupt request does not occur when the content of the counter is transferred to the reload register at the first effective edge detected after the count start flag is set to "1".

Table	2.8.3	Effective	Edge	Types
-------	-------	-----------	------	-------

b3	b2	Effective edge	Measurement Mode
0	0	Falling edge (from "H" to "L")	Pulse cycle
0	1	Rising edge (from "L" to "H")	Pulse cycle
1	0	Both edges (level change)	Pulse width

Precaution when using pulse cycle/pulse width measurement mode

- 1. The TBin pin is used as the pulse input pin. Therefore, the data direction register of the corresponding port must be set to input mode.
- 2.When measuring signals other than 50% duty in pulse width measurement mode, whether the content of the reload register is measured at "H" level or "L" level must be determined by program. In addition, the count interval must be at least 2 cycles of the count source.
- 3.In this mode, an interrupt occurs when the timer overflows. Therefore, an appropriate count source must be selected to prevent timer overflow.

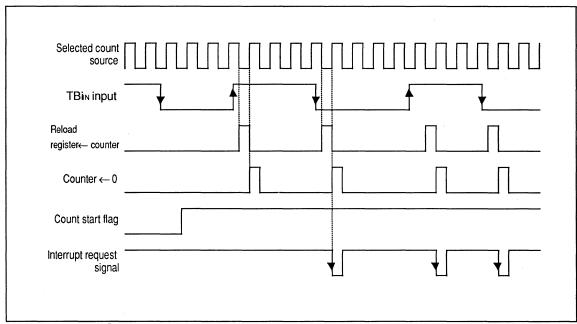


Fig.2.8.10 Timer Operation During Pulse Width Measurement Mode

ŝ

2.9 Serial I/O

2.9.1 Serial I/O description

The M37700 has two serial I/O ports that can operate either as clock synchronous serial I/O port or asynchronous serial I/O (UART) port. These two ports are independent, but have identical functions. Each serial I/O port has a transfer clock generation timer (baud rate generator) and can be set a variety of data transfer rate.

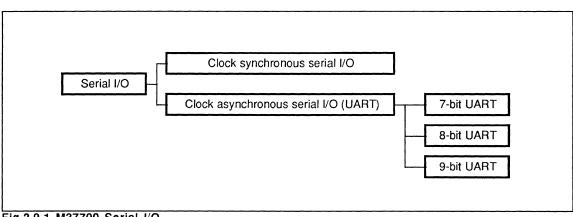
Each serial I/O has four operating modes. The following modes are available:

•Clock synchronous serial I/O [001]*

In this mode, both the transmission side and receiving side use the same clock to transfer data.

●7-bit UART [100]*

In this mode, the data is transferred at an arbitrary rate and data format. The data (character) length is 7 bits.


•8-bit UART [101]*

This mode is identical to 7 bit UART except that the data length is 8 bits.

●9-bit UART [110]*

This mode is identical to 7 bit UART except that the data length is 9 bits.

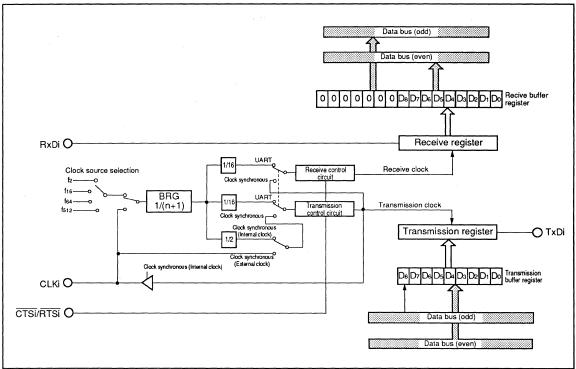

*The number in brackets are the content of the serial I/O mode selection bits which are described later.

Fig.2.9.1 M37700 Serial I/O

2.9.2 Block description

Figure 2.9.2 shows a block diagram of serial I/O. The function of each block is described below.

Fig.2.9.2 Serial I/O Block Diagram

(1)UARTi transmit/receive mode register

The UARTi (i=0, 1) transmit/receive mode register consists of 8 bits. This register is used to set the serial I/O mode and transfer format. Figure 2.9.3 shows the bit configuration of the UARTi transmit/ receive mode register.

Bits 0 to 2—Serial I/O mode selection bits

These bits are used to enable/disable serial I/O and select the function of port P8. When these bits are set to "000", serial I/O is disabled and ports P8₀ to P8₃ and P8₄ to P8₇ function as programmable I/O ports. When one of the serial I/O modes is selected, port P8 has the function shown in Table 2.9.1 and loses its programmable I/O port function (except some pins in UART mode).

Table 2.9.1 Function of Port 8 when Serial I/O is Selected	Table 2.9.1	Function	of Port 8	when	Serial	I/O	is	Selected
--	-------------	----------	-----------	------	--------	-----	----	----------

Using UART0	Using UART1	Function
P80	P8₄	CTS/RTS (transmission control signal I/O pin)
P81	P85	CLK (transfer clock I/O pin) (Note)
P82	P86	RxD (serial data input pin)
P83	P87	TxD (serial data output pin)

Note: This depends on the internal/external clock selection bit as follows:

When external clock is selected : Clock input pin

When internal clock is selected : Clock output pin in clock synchronous mode and normal I/O port in UART mode

When the $\overline{\text{CTS}}$ input (P8₀ or P8₄), external transfer clock (P8₁ or P8₅), and RxD (P8₂ or P8₆) are used, the corresponding data direction register must be set to "0" (input mode).

b7	b6	b5	b4	b3	3	b2	b1	b					
												nit/receive mode register (Address 3 nit/receive mode register (Address 3	
												Serial I/O mode selection bits	
						L		I	 b2	b1	b0	Mode	
									0	0	0	Serial I/O prohibited	
									0	0	1	Clock synchronous serial I/o	
									1	0	0	7-bit UART	
									1	0	1	8-bit UART	
									1	1	0	9-bit UART	
									L	I			
											Inte	ernal/external clock selection bit	
				L					 0 Internal clock				
									1 External clock				
										Sto	p bit	length selection bit (in UART mode)	
									0	C)ne s	stop bit	
									1	Т	wo s	stop bits	
										Odd	/eve	n parity selection bit (in UART mode)	
									0	C)dd p	parity	
									1	E	ven	parity	
											Pa	arity enable bit (in UART mode)	
									0	F	arity	disabled	
									1	F	arity	enabled	
										Sle	ep fi	unction selection bit (in UART mode)	
L									 0	· · · · ·		function disabled	
									1	$\frac{1}{c}$	10.01	function enabled	

Note:Bits 4 to 6 are ignored in clock synchronous mode. Bit 7 must be set to "0" when using clock synchronous mode. This register is cleared to "0016" at reset.

Fig.2.9.3 UARTI Transmit/Receive Mode Register Bit Configuration

•Bit 3—Internal/external clock selection bit

[Clock synchronous mode]

This bit is used to select either an internal clock or an external clock as the synchronous clock (shift clock) for data transfer.

When this bit is set to "0" to select an internal clock, the later described BRGi generated clock divided by 2 is used as the shift clock. In addition, the CLKi pin becomes the output pin and the shift clock is output from this pin.

When this bit is set to "1" to select an external clock, The CLKi pin becomes the input pin and data transfer is synchronized with the clock input to this pin.

[UART mode]

This bit is used to select either an internal clock or an external clock as the input to the BRGi which is described later.

When this bit is set to "0" to select an internal clock, the clock selected with the BRG count source selection bit in the UARTi control register becomes the BRG input clock. In this case, the CLKi pin can be used as a programmable I/O pin.

When this bit is set to "1" to select an external clock, the CLKi pin becomes the clock input pin and the clock input to this pin becomes the BRGi input clock.

●Bit 4—Stop bit length selection bit

[Clock synchronous mode]

This bit is ignored. (It can be either "0" or "1".)

[UART mode]

This bit is use to select between 1 and 2 bits as the stop bit to indicate the end of data.

Bit 5—Odd/even parity selection bit

[Clock synchronous mode]

This bit is ignored (it can be either "0" or "1").

[UART mode]

This bit is used to select between even parity and odd parity. This bit is ignored if the parity enable bit is set to "0" (disabled).

•Bit 6—Parity enable bit

[Clock synchronous mode]

This bit is ignored (it can be either "0" or "1").

[UART mode]

This bit is used to specify whether to add a parity bit at the end of transfer data. Whether to use odd parity or even parity is specified with bit 5.

•Bit 7—Sleep function selection bit

[Clock synchronous mode] This bit must be set to "0".

[UART mode]

This bit is used to enable or disable the sleep function (see "2.9.5 (6) Sleep mode"). If the sleep function is enabled, the data is ignored when the most significant bit (MSB) of the received data is "0". This function is used when multiple microcomputers are connected through the serial I/O port.

(2)UARTi transmit/receive control register 0

The UARTi transmit/receive control register 0 consists of bits to select the BRG count source and CTS/RTS pin function, and a flag that indicates the transmission register status. Figure 2.9.4 shows the bit configuration of the UARTi transmit/receive control register 0.

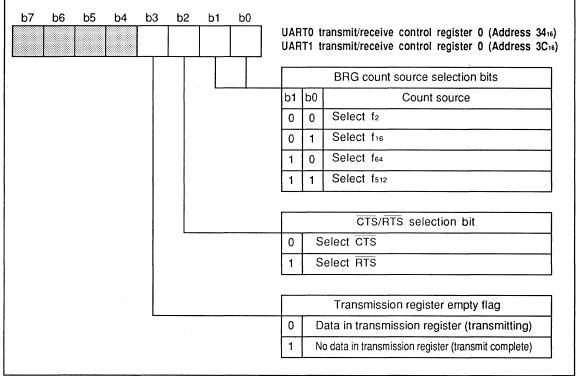
•Bit 0 to 1—BRG counter source selection bits

This bit is used to select the count source of the baud rate generator (BRG) when an internal clock is selected. The count source can be either 1/2 (f_2), 1/16 (f_{16}), 1/64 (f_{64}), or 1/512 (f_{512}) of the source oscillating frequency f(X|N).

●Bit 2—CTS/RTS function selection bit

This bit is used to specify whether to use the $P8_0$ pin (when using UART0) or $P8_4$ (when using UART1) as \overline{CTS} input pin or \overline{RTS} output pin.

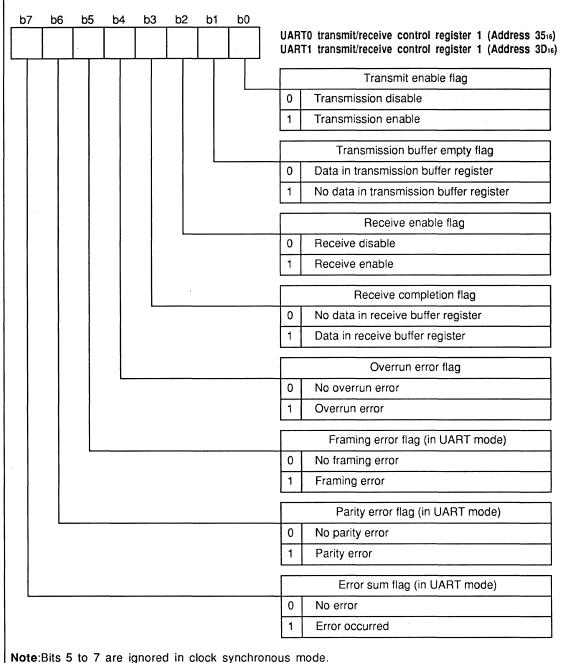
When this bit is "0", P8o or P84 becomes a CTS input pin and this pin must be at "L" level in order for transmission to start.


When this bit is "1", P8o or P84 becomes an $\overline{\text{RTS}}$ output pin and "H" level is output when receive is disabled (receive enable flag is "0") and "L" level is output when receive is enabled (receive enable flag is "1"). It returns to "H" when receive starts.

•Bit 3—Transmit register empty flag

This bit is set to "0" when the content of the transmit buffer is transferred to the transmission register. It is set to "1" when transmission completes and the transmission register becomes empty.

•Bits 4 to 7


These bits are undefined because no memory is allocated.

(3) UARTi transmit/receive control register 1

The UARTi transmit/receive control register 1 consists of serial I/O enable bit, serial I/O status flag, and serial I/O error flags. Figure 2.9.5 shows the bit configuration of the UARTi transmit/ receive control register 1.

Each error flag is cleared when the content of the receive buffer register is read.

Fig.2.9.5 UARTI Transmit/Receive Control Register 1 Bit Configuration

Bit 0—Transmission enable bit

Serial I/O transmission is enabled when this bit is set to "1".

Bit 1—Transmission buffer empty flag

This bit indicates the status of the transmission buffer register. It is set to "1" when the content of the transmission buffer is sent to the transmission shift register. It is automatically cleared when data is written in the transmission buffer register.

Bit 2—Receive enable flag

Serial I/O receive is enabled when this flag is set to "1". If the RTS function is selected, the RTS pin level becomes "L" when this flag is set to "1".

•Bit 3—Receive completion flag

This flag is set to "1" when the data in the receive register is transferred to the receive buffer register (receive completion). This bit is cleared when the low-order byte of the receive buffer register is read or when the receive enable flag is set to "0" (receive disabled).

Bit 4—Overrun error flag

This flag is set to "1" when receiving of the next data completes and the content of the receive buffer register is updated while there is data remaining in the receive buffer register (before the content of the receive buffer register is read).

This flag is cleared when the low-order byte of the receive buffer register is read or when the receive enable flag is set to "0" (receive disabled).

Bit 5—Framing error flag

[Clock synchronous mode] This bit is ignored.

[UART mode]

This flag is set to "1" when the number of stop bits is not the number specified with bit 4 of the UARTi transmission mode register. This flag is cleared when the low-order byte of the receive buffer register is read or when the receive enable flag is set to "0" (receive disabled).

●Bit 6—Parity error flag

[Clock synchronous mode] This bit is ignored.

[UART mode]

This flag is set to "1" when there is a parity error. This flag is cleared when the low-order byte of the receive buffer register is read or when the receive enable flag is set to "0" (receive disabled).

•Bit 7—Error sum flag

[Clock synchronous mode] This bit is ignored.

[UART mode]

This flag is set when either an overrun error, a framing error, or a parity error occurs. This flag is cleared when the low-order byte of the receive buffer register is read or when the receive enable flag is set to "0" (receive disabled).

(4)Transmission register and transmission buffer register

When transmit conditions are satisfied, the transmit data written in the transmission buffer register is transferred to the transmission register and is synchronously transmitted from the TxD pin with the specified clock. In clock synchronous mode and 7 or 8 bit UART mode, only the low-order byte of the transmission buffer register is used. In 9 bit UART mode, bit 8 of the transmit data is written in bit 0 of the high-order byte, and the remaining 7 to 0 bits are written in the low-order byte. The transmission buffer register becomes empty after the data is transferred to the transmission register. Therefore, the next transmit data can be written during transmission.

The content of the transmission buffer register cannot be read because it is a write only register.

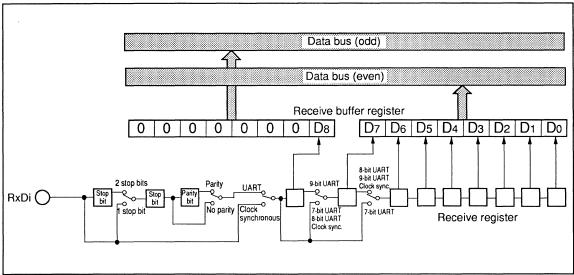
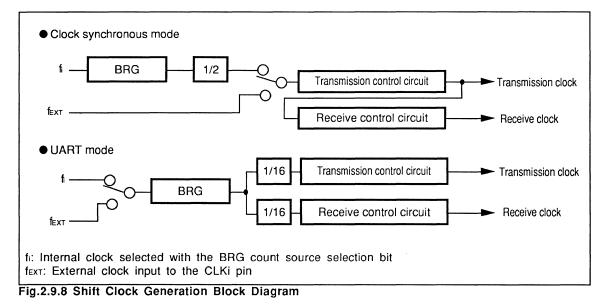


Fig.2.9.6 Serial I/O Transmission Block Diagram

(5)Receive register and receive buffer register

The receive register converts serial data input from the RxD pin to parallel data. The RxD pin level is moved bit by bit to the receive register synchronized with the rising edge of the synchronous clock. The contents of the high-order 7 bits of the receive buffer register can be always read "0". And, the unused bits (D_7 and D_8 in 7-bit UART mode and D_8 in 8-bit UART mode) of the low-order 9 bits can be read the same data as the MSB (most significant bit) of effective receive data. Note that the content of the receive buffer register will be updated if the next receive data becomes available before the receive buffer register is read.

2.9 Serial I/O


(6)Baud rate generator

The baud rate generator (BRG) is a timer used exclusively for serial I/O. It is equipped with a reload register and consists of 8 bits. The BRG divides the input clock by (n+1), where n is the value set in the BRG register. This register can contain a value between 0 (00₁₆) and 255 (FF₁₆).

In clock synchronous serial I/O mode, BRG becomes effective when an internal clock is selected and the BRG output divided by two becomes the transmit/receive clock.

In UART mode, the BRG is effective regardless of the clock type and the BRG output divided by 16 becomes the transmit/receive clock.

The content of the BRG register cannot be read because it is a write only register.

(7) UARTI transmission interrupt control register/UARTI receive interrupt control register

Transmission interrupt and receive interrupt can be used when the serial I/O function is selected. Each of these interrupts has an interrupt control register which is used to set the enable condition (priority level) and check the existence of an interrupt request.

Interrupt priority level

These bits specify an interrupt priority level between 0 and 7. When an interrupt occurs, this level is compared with the IPL in the processor status register. The interrupt is enabled when this priority level is higher than the IPL (see "Section 2.6 Interrupts").

Interrupt request bit

The transmission interrupt request bit is set to "1" when data is transferred from the transmission buffer register to the transmission register for data transmission.

The receive interrupt request bit is set to "1" when data receive completes and data is transferred from the receive register to the receive buffer register.

7 b6 b5 b4 b3 b2 b1 b0 UART0 transmission interrupt control register (Ad UART1 transmission interrupt control register (Ad			
Interrupt priority level selection bits	Interrupt priority level selection bits		
b2 b1 b0 Level			
0 0 0 Level 0 (interrupt disabled)			
0 0 1 Level 1			
0 1 0 Level 2			
0 1 1 Level 3			
1 0 0 Level 4			
1 0 1 Level 5			
1 1 0 Level 6			
1 1 1 Level 7			
Interrupt request bit	Interrupt request bit 0 No interrupt request		
0 No interrupt request			
1 Interrupt request	1 Interrupt request		

Note: The bit configuration of the UARTi receive interrupt control register is the same as the UARTi transmission interrupt control register (i=0, 1).

Fig.2.9.9 UARTi Transmission Interrupt Control Register Bit Configuration

2.9.3 Serial I/O operation mode selection

In order to use the serial I/O function, the serial I/O operation mode must be selected first. The operation mode is selected with bits 2 to 0 (serial I/O mode selection bits) of the UARTi transmit/receive mode register (see Table 2.9.3). When a serial I/O mode is selected, the serial I/O function becomes effective and port P8 (P8o to P83 when using UART0 and P84 to P87 when using UART1) changes to serial I/O pin. When a port changes to a serial I/O port, it loses its programmable I/O port function and the corresponding data direction register and port register are ignored.

The clock synchronous serial I/O and the clock asynchronous serial I/O (UART) functions are described below.

Table 2.9.2 Serial I/O Mode Selection Registers					
Serial I/O mode	Operation mode selection register				
UART0	UART0 transmit/receive mode register (address 3016)				
UART1	UART1 transmit/receive mode register (address 3816)				

.

Table 2.9.3 Relation between Serial I/O Mode Selection Bits and Operation Mode

b2	b1	b0	Operation Mode	Port P8 Function
0	0	0	Serial I/O disabled	Programmable I/O port
0	0	1	Clock synchronous serial I/O	Serial I/O function pins
0	1	0	This cannot be available	
0	1	1	This cannot be available	
1	0	0	7-bit UART	Serial I/O function pins
1	0	1	8-bit UART	Serial I/O function pins
1	1	0	9-bit UART	Serial I/O function pins
1	1	1	This cannot be available	

Note: The serial I/O mode selection bits must be set to "000" when serial I/O is not used. These bits must not be set to "010", "011", or "111".

2.9.4 Clock Synchronous serial I/O

Table 2.9.4 shows the performance of clock synchronous mode serial I/O.

Table 2.9.4 Clock Synchronous Serial I/O Description

Parameter Data format		Function	
		8 bit fixed, LSB first	
Transmission speed	Internal clock	BRG output/2	
	External clock	2Mbps maximum (at f(XIN)=8 MHz)	
		4Mbps maximum (at f(XIN)=16MHz)	
Transmit/receive control		CTS input or RTS output can be selected by a program.	

(1)Synchronous clock (shift clock)

The serial I/O data transfer rate is determined by the synchronous clock (shift clock). The M37700 can select whether to generate this clock internally or to use an external clock. The synchronous clock is generated internally when the transmission mode register bit 3 is set to "0" and externally when it is set to "1".

Internal generation of synchronous clock

When the clock internal/external selection bit is set to "0", the BRG output divided by 2 is used as the synchronous clock. In this case, the CLK pin becomes output mode and the transmit synchronous clock is output from the CLK pin.

The BRG is a serial I/O timer consisting of 8 bits and is used as a frequency divider to generate the desired frequency. The BRG divides the clock selected with UARTi transmit/receive control register 0 bits 1 and 0 by n+1 and then by 2. "n" is the value set in the BRG register. It can be a value between 0_{16} and FF₁₆.

Synchronous clock frequencyfi/(2(n+1))

fi : BRG input frequency

Eight synchronous clocks are generated by activating the transmitter.

•Using external input clock as synchronous clock

When an external clock is selected, the CLK pin becomes the input pin and the clock input to this pin becomes the synchronous clock.

Precautions when using clock synchronous serial I/O

In clock synchronous mode, the synchronous clock used for data transfer is generated by activating a transmitter. Therefore, the transmitter must be activated even when performing receive only.

(2)Serial I/O data transmission

The data transmission method in clock synchronous serial I/O mode is described below.

[Setting the control registers]

Set each serial I/O control register for transmission.

Transmit/receive mode register

•Operation mode

Set the serial I/O mode selection bits to 001.

•Synchronous clock

Select either an internal clock ("0") or an external clock ("1") with the synchronous clock selection bit.

•Set bit 7 to "0" (disable sleep mode).

Transmit/receive control register 0

•Enable/disable CTS function

CTS is used when the start of serial data transmission is controlled externally. One of the conditions of starting transmission is setting the CTS pin to "L" when using the CTS function.

•Transmit/receive control register 1

•Set transmission enable flag to "1".

After initialization, write the data to be transmitted in the low-order byte of the transmission buffer register. At the same time, the transmission buffer register empty flag becomes "0".

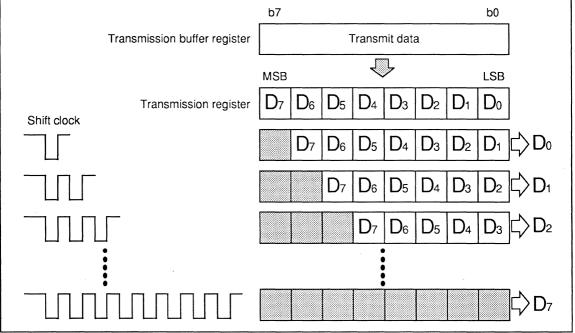
b7	b6	b5	b4	b3	b2	b1	b0				
0	X	X	X		0	0	1	UART0 transmit/receive mode register (Address 3016) UART1 transmit/receive mode register (Address 3816)			
									Serial I/O mode selection bits		
					L	I		b2	b1	b0	Mode
								0	0	1	Clock synchronous serial I/o
										Inte	ernal/external clock selection bit
				Louise		R		0	Ir	nterr	nal clock
								1	E	xter	nal clock
									Slee	ep fu	unction selection bit (in UART mode)
b7	b6	b5	b4	b3	b2	b1	b0	0	S	leep	function disabled
								UART0 transmit/receive control register 0 (Address 3416) UART1 transmit/receive control register 0 (Address 3C16)			
											CTS/RTS selection bit
								0	S	elec	et CTS
b7	b6	b5	b4	b3	b2	b1	b0	1	S	elec	at RTS
X	X	X					1				mit/receive control register 1 (Address 3516) mit/receive control register 1 (Address 3D16)
											Transmission enable flag
							L	1	Tr	ans	mission enable
Fig.2.9	.10 S	ettina	the	Contr	ol Re	aiste	rs	•••••			

[Transmit operation]

The transmission of serial data starts when the following conditions are satisfied.

(Transmission enabled (transmission enable flag is "1").

Transmit data is available in the transmission buffer (transmission buffer empty flag is "0").
Transmit data is available in the transmission buffer (transmission buffer empty flag is "0").


(Note: This condition is ignored if the CTS function is not selected.)

When the above three conditions are satisfied (two if $\overline{\text{CTS}}$ function is not selected), the content of the transmission buffer register is transferred to the transmission register and eight shift clocks are generated. At this point, the transmission buffer empty flag is set to "1" and the transmission register empty flag is cleared to "0". The shift clock is input to the transmission control circuit and the data in the transmission register is transmitted bit by bit from the TxD pin (starting at the low-order bit) at each falling edge of this clock. When the 1-byte data transmission is completed by the eighth shift clock, the transmission register empty flag is set to "1".

The synchronous clock is generated continuously if the conditions for the next data are satisfied when a transmission completes. Therefore, to transmit data continuously, the next data should be written in the transmission buffer register while data is being transmitted (when the transmission register empty flag is 0). If the conditions to transmit the next data are not satisfied, the synchronous clock halts at "H".

[Transmission interrupt]

The transmission interrupt request bit is set to "1" when the content of the transmission buffer register is transferred to the transmission register. To use the transmit interrupt, the interrupt priority level in the UARTi transmission interrupt control register must be set to 1 or greater before an interrupt occurs. In addition, the interrupt disable flag must be cleared to "0". (See "Section 2.6 interrupts" for more information on interrupt enable conditions.) The transmission interrupt request flag is cleared when an interrupt is accepted. It can also be cleared from a program.

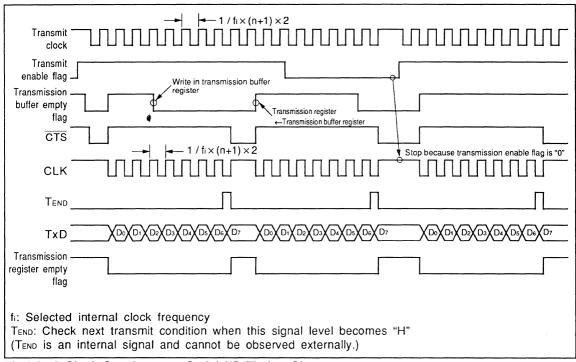


Fig.2.9.12 Clock Synchronous Serial I/O Timing Chart

(3) Serial data receive

The data receive method in clock synchronous serial I/O mode is described below.

[Setting the control registers]

Transmit/receive mode register

- •Operation mode
- Set the operation mode selection bits to 001.
- Synchronous clock

Select either an internal clock ("0") or an external clock ("1") with the synchronous clock selection bit.

•Set bit 7 to "0" (disable sleep mode).

Transmit/receive control register 0

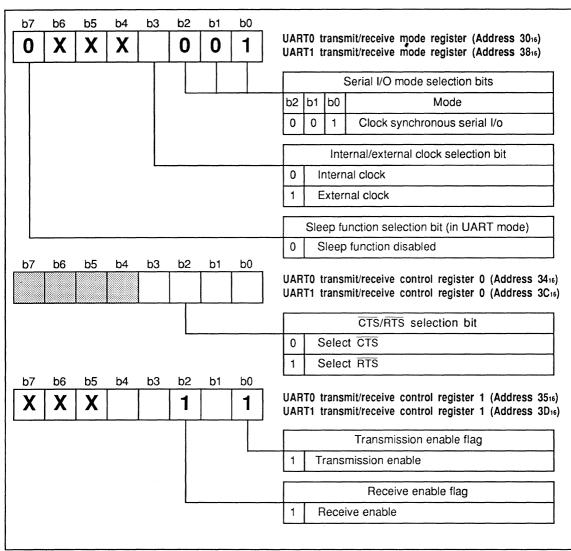
•Enable/disable CTS function

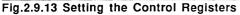
- CTS, RTS selection bit
- "0": RTS function disabled (CTS function selected).
- "1": RTS function selected.

The RTS function is used to notify externally when ready to receive serial data. The RTS pin is normally at "H" level. It becomes "L" when the receive enable flag is set to "1".

Transmit/receive control register 1

- •Set transmission enable flag to "1" (transmission enabled).
- •Set receive enable flag to "1" (receive enabled).


•Write data in transmission buffer register


Internal clock \rightarrow Shift clock is generated and receiving starts. External clock \rightarrow Starts receiving as soon as clock is input to CLK pin.

Precautions when using clock synchronous serial I/O receive

In clock synchronous serial I/O, the shift clock is generated by activating a transmitter. Therefore, a transmit operation must be performed even when performing receive only. Note that in this case, a dummy data is output from the TxD pin.

When an internal shift clock is selected, the shift clock is generated by enabling transmission and writing a dummy data in the transmission buffer register. When an external shift clock is selected, receive starts as soon as the shift clock is input to the CLK when the transmission enable bit is set to "1" and a dummy data is written in the transmission buffer register.

[Receive operation] (When using an external clock)

Serial data receive is enabled by enabling transmission and setting the receive enable flag to "1". When the receive enable flag is set to "1" the RTS pin level becomes "L" to indicate externally that the microprocessor is ready to receive serial data (when RTS function is selected). The transmit and receive timing can be synchronized by connecting the RTS output to the CTS pin on the transmit side. The RxD pin level is used to establish the most significant bit of the receive register at the rising edge of the shift clock input to the CLK pin and the content of the receive register is shifted 1 bit to the receive register after eight transmit clocks, the content of the receive register is transferred to the receive buffer. At the same time the receive completion flag and the receive buffer register is read. When receiving data continuously, an overrun error occurs and bit 4 of the UART transmit/receive control register 1 (overrun error flag) is set if the next receive data becomes available in the receive register while the receive completion flag is "1" (before reading the content of the receive buffer.

register). In this case, the next data is written in the receive buffer register. Therefore, if an overrun occurs, the transmit and receive programs must make arrangements to re-transmit the data.

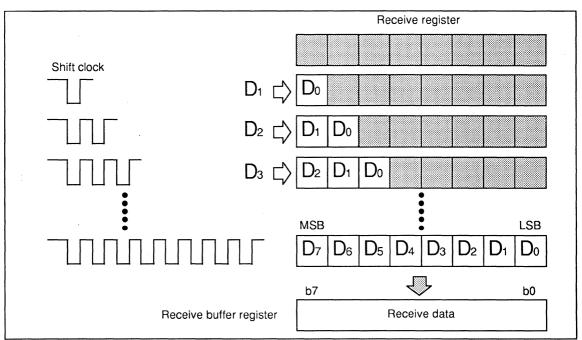


Fig.2.9.14 Serial I/O Receive Operation

[Receive interrupt]

A receive interrupt occurs and the receive interrupt request bit is set to "1" when receiving of one byte completes and the data is transferred from the receive register to the receive buffer register. To use the receive interrupt, the interrupt priority level in the UARTi receive interrupt control register must be set to 1 or greater before an interrupt occurs. In addition, the interrupt disable flag must be cleared to "0". (See "Section 2.6 interrupts" for more information on interrupt enable conditions.) The receive interrupt request flag is cleared when an interrupt is accepted. It can also be cleared from a program.

2.9.5 Clock asynchronous serial I/O (UART) (1)UART description

Table 2.9.5 shows the serial I/O characteristics in UART mode.

Parameter		Function	
Data format	Start bit	1 bit	
	Data bit (character length)	7 bits, 8 bits, or 9 bits	
	Parity bit	0 bit or 1 bit (odd or even selectable)	
	Stop bit	1 bit or 2 bit	
Baud rate	Internal clock	BRG output/16	
	External clock	125Kbps maximum (8MHz version)	
		250Kbps maximum (16MHz version)	
		4 types (overrun, parity, framing, error sum)	
		(Error sum can be used to check existence of error.)	

Table 2.9.5 UART Description

In UART mode the baud rate and the data format must be set beforehand. The setting of the baud rate and the transfer format are described below.

(2)Transmission rate

The serial data transfer rate is determined by the baud rate (frequency of the clock used for transmission and receive). With the M37700, the baud rate is set by the BRG. The BRG is a frequency divider that consists of 8 bits. The BRG input clock can be either an internal clock or an external clock input to the CLK pin depending on the internal/external clock selection bit.

When an internal clock is selected, 1/2, 1/16, 1/64, or 1/512 of the $f(X_{IN})$ is selected with the count source selection bit. When an external clock is selected, the clock input from the CLK pin is input to the BRG.

The clock input to BRG is divided by (n+1) and then by 16 to obtain the baud rate.

Baud Rate	e (bps)	Selected	Value set in	BRG register
Rated	Actual	clock	f(XIN)=8MHz	f(Xin)=16MHz
75	75.12	f512	12 (0C ₁₆)	25 (1916)
110	110.04	f 64	70 (4616)	141(8D16)
134.5	134.70	f 64	57 (3916)	115 (7316)
150	150.24	f 64	51 (3316)	103 (6716)
300	300.48	f 64	25 (1916)	51 (3316)
600	600.96	f 64	12 (0C16)	25 (1916)
1200	1201.92	f 16	25 (1916)	51 (3316)
2400	2403.85	f 16	12 (0C16)	25 (1916)
4800	4807.69	f2	51 (3316)	103(6716)
9600	9615.39	f2	25 (1916)	51 (3316)
19200	19230.77	f2	12 (0C16)	25 (1916)
31250	31250.00	f2	7 (0716)	15 (0F16)
62500	62500.00	f2	3 (0316)	7 (0716)
125000	125000.00	f2	1 (0116)	3 (0316)
250000	250000.00	f2	0 (0016)	1 (0116)
500000	500000.00	f2		0 (0016)

Table 2.9.6 Baud Rate Selection Table

(3) Transfer format

The format of the transfer data is set in the UARTi transmit/receive mode register. In M37700 UART mode, data can be transferred in the following modes.

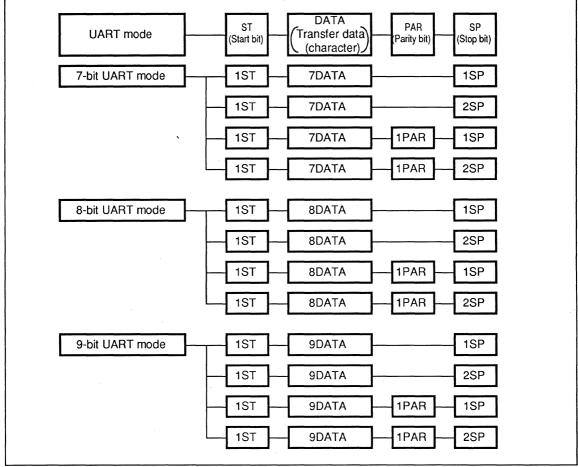


Fig.2.9.15 Data Format

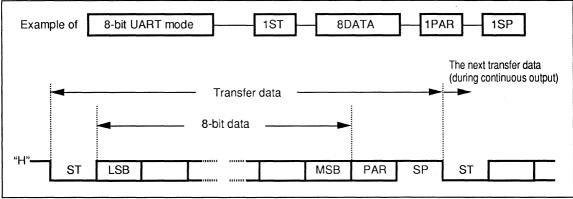


Fig.2.9.16 Data Format Example

Table 2.9.7 Transfer Data in UART Mode

Item	Function
ST	This bit indicates the start of data transmission. A 1 bit "L" signal is appended in
(Start bit)	front of the transmission data.
DATA	This is the transmission data written in the transmission buffer register.
(Character)	
SP	This bit appends after the data (or after the parity bit if it is included) to indicate
(Stop bit)	the end of transmission. An 1 or 2 bit "H" signal is output as a stop bit.
PAR	This bit appends to the end of data to indicate the data parity. This bit is appended
(Parity bit)	so that the number of 1s in the data including the parity bit is always even or odd.

(4)Serial data transmission

The UART mode data transmission method is described below.

[Setting control registers]

Set each serial I/O control register for transmission.

Transmit/receive mode register

- •Set operation mode.
- Select the data length with the serial I/O mode selection bits.
- •Set transfer format.

Select stop bit length, parity enable/disable, and odd/even parity if parity is enabled.

•Set baud rate.

Select whether to use an internal clock ("0") or external clock ("1") as the BRG count source with the clock selection bit.

•Enable/disable sleep mode.

(See "2.9.5 (6) Sleep mode" for detail information concerning sleep mode.)

Transmit/receive control register 0

Select CTS/RTS function

CTS is used when externally controlling the start of serial data transmission. One of the conditions of starting transmission is setting the CTS pin to "L" when using the CTS function.

•Transmit/receive control register 1

•Set the transmission enable flag to "1".

After initializing the control registers for transmission, write the data to be transmitted in the loworder byte of the transmit buffer register in 7-bit or 8-bit UART mode. In 9-bit UART mode, write the data into the high-order 1 bit and the low-order 1 byte of the transmit buffer register. When the data is written, the transmission buffer register empty flag becomes "0".

b7 b6 b5 b4 b3 b2 b1 b0	UARTO transmit/receive mode register (Address 3016) UART1 transmit/receive mode register (Address 3816)		
	Serial I/O mode selection bits		
	b2 b1 b0 Mode		
	1 0 0 7-bit UART		
	1 0 1 8-bit UART		
	1 1 0 9-bit UART		
	Stop bit length selection bit (in UART mode)		
	0 One stop bit		
	1 Two stop bits		
	Odd/even parity selection bit (in UART mode)		
	0 Odd parity		
	1 Even parity		
	Parity enable bit (in UART mode)		
	0 Parity disabled		
	1 Parity enabled		
	Sleep function selection bit (in UART mode)		
	0 Sleep function disabled		
	1 Sleep function enabled		
b7 b6 b5 b4 b3 b2 b1 b0	UART0 transmit/receive control register 0 (Address 3416) UART1 transmit/receive control register 0 (Address 3C16)		
	CTS/RTS selection bit		
	0 Select CTS		
	1 Select RTS		
	UART0 transmit/receive control register 1 (Address 3516) UART1 transmit/receive control register 1 (Address 3D16)		
	Transmission enable flag		
	1 Transmission enable		

Fig.2.9.17 Setting the Control Registers

[Transmit operation]

The only difference between 7-bit UART, 8-bit UART, and 9-bit UART is the length of the transmitted data. The low-order byte of the transmissiont buffer register is used for 7-bit and 8-bit UART and the low-order byte and bit 0 of the high-order byte is used for 9-bit UART.

The transmission of serial data starts when the following conditions are satisfied.

Transmission is enabled (transmission enable flag is "1")

Transmit data is available in the transmission buffer (transmission buffer empty flag is "0")
Transmit data is available in the transmission buffer (transmission buffer empty flag is "0")

(Note: This condition is ignored if the CTS function is not selected.)

When the above three conditions are satisfied (two if CTS function is not selected), the content of the transmission buffer register is transferred to the transmission register and data transmission starts from the TxD pin. At this point, bit 1 of the transmit/receive control register 1 (transmission buffer empty flag) is set to "1" and bit 3 of the transmit/receive control register 0 (transmission register empty flag) is cleared to "0".

When transmission starts, data is output from the TxD pin in the format specified by the transmit/ receive mode register. The data is output bit by bit in the order;

 $ST \rightarrow DATA(LSB) \rightarrow ... \rightarrow DATA(MSB) \rightarrow PAR \rightarrow SP.$

After the stop bit has been output, the transmission register empty flag is set to "1" to indicate that the transmission has completed. If the next data is available when transmission completes, a start bit is generated following the stop bit and the next data is transmitted. In order to continuously transfer data, the next transmission data should be written in the transmission buffer register during the transmit operation (when the transmission register empty flag is "0"). If the transmit condition for the next data is not satisfied, "H" level is output from the TxD pin.

[Transmission interrupt]

The transmission interrupt request bit is set to "1" when the content of the transmission buffer is transferred to the transmission register. To use the transmission interrupt, the interrupt priority level in the UARTi transmission interrupt control register must be set to 1 or greater before an interrupt occurs. In addition, the interrupt disable flag must be cleared to "0". (See "Section 2.6 interrupts" for more information on interrupt enabling conditions.) The transmission interrupt request flag is cleared when an interrupt is accepted. It can also be cleared from a program.

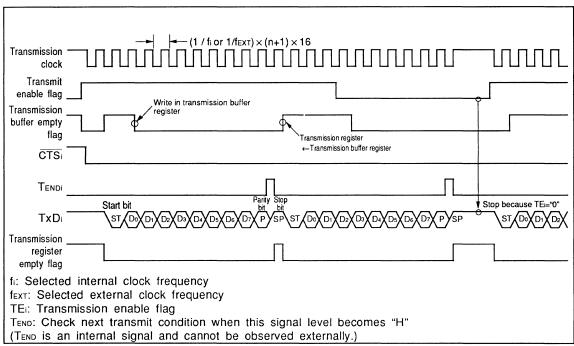
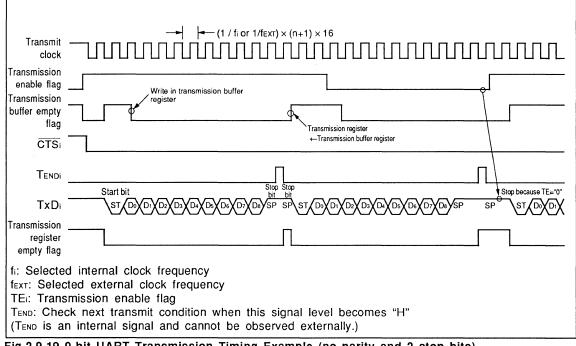



Fig.2.9.18 8-bit UART Transmission Timing Example (with parity and 1 stop bit)

(5)Receiving serial data

The UART mode data receiving method is described below.

[Setting control registers]

Transmit/receive mode register

Match the format with the transmitting side.

•Set operation mode.

Select the data length with the serial I/O mode selection bits.

- •Set transfer format.
- Select stop bit length, parity enable/disable, and odd/even parity if parity is enabled.
- •Set baud rate.

Select whether to use an internal clock ("0") or external clock ("1") as the BRG count source with the clock selection bit.

•Enable/disable sleep mode.

(See "2.9.5 (6) Sleep mode" for detail information concerning sleep mode.)

•Transmit/receive control register 0

•Select CTS/RTS function.

CTS/RTS selection bit

"0": CTS function selected

"1": RTS function selected

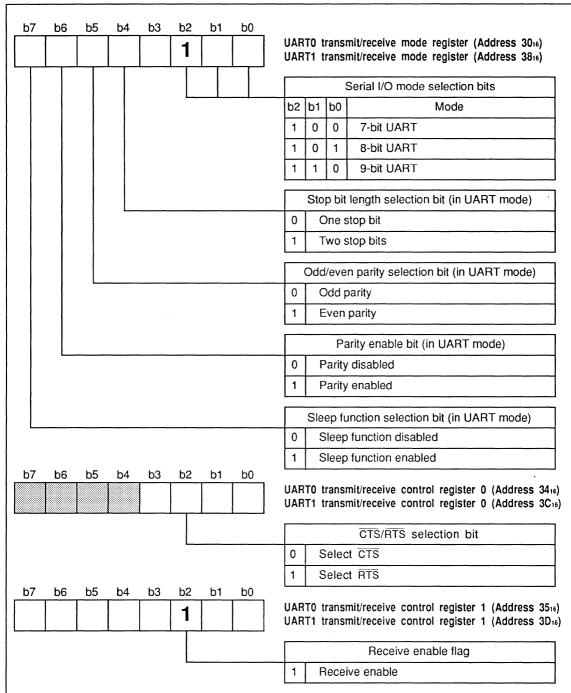
The RTS function is used to indicate externally that data can be received.

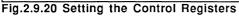
Transmit/receive control register 1

•Set the receive enable flag to "1" (receive enabled).

[Receive operation] (when using an external clock)

Serial data receive is enabled by setting the receive enable flag to "1". When the receive enable flag is set to "1", the $\overline{\text{RTS}}$ pin level becomes "L" to indicate externally that the microprocessor is ready to receive serial data (when $\overline{\text{RTS}}$ function is selected). The transmit and receive timing can be synchronized by connecting the $\overline{\text{RTS}}$ output to the $\overline{\text{CTS}}$ pin on the transmit side.


When the RxD pin detects a start bit, a receive clock is generated and data receive starts. At the same time the RTS pin level returns to "H". The RxD pin level is received in the receive register at the rising edge of the receive clock and the content of the receive register is shifted 1 bit to the right. This operation is repeated to receive the entire data from ST to SP. Then the content of the receive register is transferred to the receive buffer register. At the same time the receive completion flag and the receive interrupt request bit are set. The receive completion flag is cleared when the receive buffer register is read.


When receiving data continuously, an overrun error occurs and bit 4 of the UART control register 1 (overrun error flag) is set if the next receive data becomes available in the receive register while the receive completion flag is "1" (before reading the content of the receive buffer register). In this case, the next data is written in the receive buffer register. Therefore, if an overrun occurs, the transmit and receive programs must make arrangements to re-transmit the data.

[Receive interrupt]

A receive interrupt occurs and the receive interrupt request bit is set to "1" when a stop bit indicating the end of data is detected.

To use the receive interrupt, the interrupt priority level in the UARTi receive interrupt control register must be set to 1 or greater before an interrupt occurs. In addition, the interrupt disable flag must be cleared to "0". (See "Section 2.6 interrupts" for more information on interrupt enable conditions.) The receive interrupt request flag is cleared when an interrupt is accepted. It can also be cleared from a program.

[Error flag]

During UART mode operation, transmission data errors can be detected using four error flags. These errors are detected when transferring data from the receive register to the receive buffer register. The error flags are cleared when the low-order byte of the receive buffer register is read or when the receive enable flag is set to "0".

Overrun error

An overrun error occurs and the overrun error flag is set to "1" when the next receive data becomes available before the content of the receive buffer register is read.

•Framing error

A framing error occurs and the framing error flag is set to "1" when there is insufficient number of stop bits.

Parity error

A parity error occurs and the parity error flag is set to "1" when parity checking is enabled and the number of 1s in the data including the parity bit conflicts with the parity specified by bit 5 of the UARTi transmit/receive mode register.

•Sum error

The error sum flag is set to "1" when either an overrun error, a framing error, or a parity error occurs. The existence of errors can be determined by checking the error sum flag.

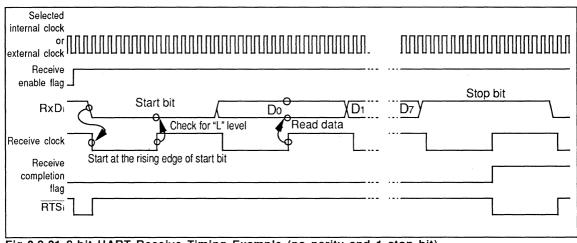


Fig.2.9.21 8-bit UART Receive Timing Example (no parity and 1 stop bit)

(6) Sleep mode

Sleep mode is used for communication between certain computers when multiple microcomputers are connected through serial I/O.

Sleep mode is entered by setting the UARTi transmit/receive mode register bit 7 to "1". In sleep mode, the content of the receive register is not transferred to the receive buffer register when the most significant bit (bit 7 if 8-bit UART mode, bit 6 if 7-bit UART mode, and bit 8 if 9-bit UART mode) of the received data is "0". In this case, the receive completion flag and the error flags remain unchanged and no receive interrupt occurs. Normal receive operation is performed only when the most significant bit of the received data is "1".

The following is a description of sleep mode usage in 8-bit UART mode. The main microcomputer first sends a data with bit 7 set to "1" and the remaining bits 0~6 forming the address of the destination microcomputer. Then all subordinate microcomputers receive the same data. Each subordinate microcomputer checks the received data and sets the sleep selection bit to "0" if the address matches its own address and to "1" if otherwise. Next the main microcomputer starts sending data with bit 7 set to "0". Then only the microcomputer with the sleep selection bit set to "0" will receive this data. This enables communication between the main microcomputer and a specific subordinate microcomputer.

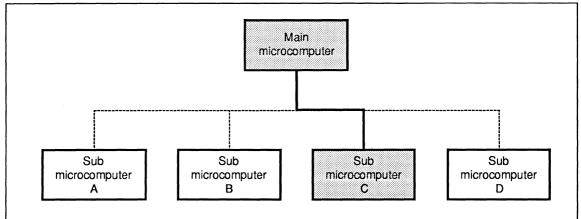


Fig.2.9.22 Sleep Mode

2.10 A-D Converter

2.10.1 A-D converter description

Table 2.10.1 describes the characteristics of the A-D converter and Figure 2.10.1 show its block diagram.

Parameter	Description
Analogi Input pin	8 pins (AN₀ to AN7)
A-D conversion mode	One-shot mode
	Repeat mode
	Single sweep mode
	Repeat sweep mode
A-D conversion method	Successive approximation
Resolution	8 bits
Absolute accuracy	±3 LSB
Conversion speed	57øAD cycles, ØAD: A-D converter operating clock (for 1 analog input pin)

Table 2.10.1 A-D Converter Characteristics

The M37700 A-D converter provides the following four A-D conversion modes.

One-shot mode

The input voltage to the selected analog input pin is converted. After conversion, the result is stored in the corresponding A-D register and an A-D conversion interrupt is occurred.

Repeat mode

The input voltage to the selected analog input pin is repeatedly converted. The results are stored in the corresponding A-D register, but no A-D conversion interrupt is occurred.

•Single sweep mode

Inputs to analog input pins AN₀, AN₁,...AN₇ are converted in this order and an A-D conversion interrupt is occurred when conversion of AN₇ completes. The result is stored in the corresponding A-D register when each pin is converted.

•Repeat sweep mode

This is similar to single sweep mode except that conversion is repeated without occurring an interrupt after converting the AN_7 pin.

2.10 A-D Converter

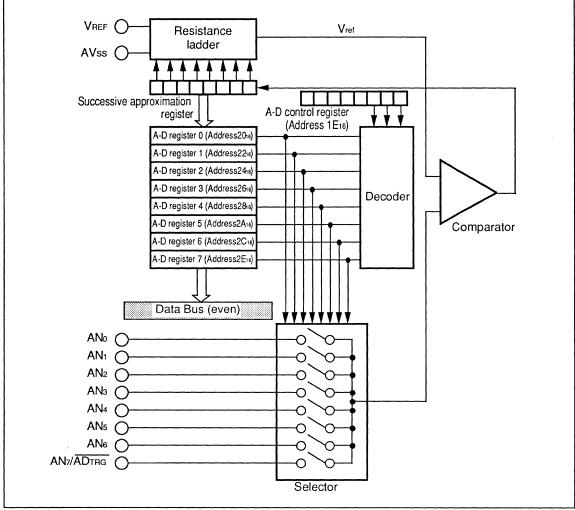


Fig.2.10.1 A-D Converter Block Diagram

2.10.2 Block description

(1)A-D control register The A-D control register is used to control the A-D converter.

b7 b6 b5 b4 b3 b2 b1 b0	A-D control register (Address 1E ₁₆)		
	Analog input selection bits		
	b2 b1 b0 Selected port		
	0 0 0 Select ANo		
	0 0 1 Select AN1		
	0 1 0 Select AN ₂		
	0 1 1 Select AN ₃		
	1 0 0 Select AN4		
	1 0 1 Select AN₅		
	1 1 0 Select AN6		
	1 1 1 Select AN7 (Note)		
	A-D mode selection bits		
	b4 b3 A-D conversion mode		
	0 0 One-shot mode		
	0 1 Repeat mode		
	1 0 Single sweep mode		
	1 1 Repeat sweep mode		
	P		
	Trigger selection bit		
	0 Software trigger (internal trigger)		
	1 ADTRG input trigger (external trigger)		
	F		
	A-D conversion start flag		
	0 Stop A-D conversion		
	1 Start A-D conversion		
	A-D conversion frequency (ØAD) selection flag		
	0 Select f(XIN)/8		
	1 Select f(XIN)/4		
Note: If an external trigger is used, pin AN7 cal	nnot be used as analog voltage input pin.		

Fig.2.10.2 A-D Control Register Bit Configuration

Analog input selection bits

This bit is used to select the analog input pin in one-shot mode and repeat mode. These bits are ignored in other modes.

Precautions when selecting analog pin

The analog input pin is in common with programmable I/O port P7. Therefore, when using a pin as analog input pin and $\overline{AD_{TRG}}$ input pin, the corresponding bit in the port 7 data direction register must be set to "0" (input mode). Note that pin AN₇ cannot be used as analog input pin when using an external trigger.

•A-D mode selection bits

The A-D mode selection bits are used to select among the four A-D conversion modes. Table 2.10.2 A-D Mode Selection Bit

b4	b3	A-D mode selection bit
0	0	One-shot mode
0	1	Repeat mode
1	0	Single sweep mode
1	1	Repeat sweep mode

•Trigger selection bit

An A-D conversion operation is started by a trigger. The trigger selection bit is used to select between an internal trigger and an external trigger. An internal trigger (software trigger) is selected when this bit is "0" and an external trigger (ADTRG pin input signal) is selected when this bit is "1".

<Internal trigger>

A trigger is generated and A-D conversion starts when bit 6 (A-D conversion start flag) of the A-D control register is set to "1".

<External trigger>

A trigger is generated when the signal input to the \overline{ADTRG} pin changes from "H" to "L" (falling edge) while the A-D conversion start flag is "1". When an external trigger is selected, a retrigger can be available during A-D conversion. In this case, the conversion is repeated from the beginning.

Precautions when using an external trigger

The $\overline{AD_{TRG}}$ pin is common with pin P7₇/AN₇. Therefore, the AN₇ pin cannot be used as analog input pin when external trigger is selected in one-shot mode or repeat mode. In addition, when external trigger is selected, the data direction register bit (bit 7 at address 11₁₆) for the P7₇ pin must be set to input mode ("0").

•A-D conversion start flag

The A-D conversion start flag can be used to start or stop A-D conversion.

<Internal trigger>

An internal trigger is generated and A-D conversion starts when the A-D conversion start flag is set to "1". A-D conversion stops when it is cleared to "0". This bit is automatically cleared after A-D conversion in one-shot mode and single sweep mode. It is not cleared in other modes.

<External trigger>

The A-D conversion start flag must be set to "1" before generating an external trigger. If external trigger is selected, this flag is not cleared after conversion.

●A-D conversion Frequency (ØAD) selection flag

This flag is used to select the A-D converter operating frequency (\emptyset AD). When this flag is "0", the clock frequency f(X|N) divided by 8 is selected. When this flag is "1", the clock frequency f(X|N) divided by 4 is selected.

In one-shot mode and repeat mode, A-D conversion completes after 57 × ØAD cycles from the beginning of A-D conversion. In single-sweep and repeat sweep mode, A-D conversion of the AN₇ pin completes after 456 × ØAD cycles from the beginning of A-D conversion.

Table 2.10.3 A-D Converter Operation Frequency and Conversion Time

Frequency selection fla	g	"0"	"1"
A-D converter operating	g clock	ØAD=f(XIN)/8	ØAD=f(XIN)/4
Conversion time (Note) f(XIN)=8MHz		57.0µs	28.5µs
	f(Xin)=16MHz	28.5µs	14.25µs

Note: Conversion time per analog input pin

Precautions when selecting ØAD

The A-D converter operating clock ØAD during A-D conversion must be no less than 250kHz because the comparator in the A-D conversion circuit consists of capacity coupling amplifiers.

(2) A-D register i (i=0 to 7)

The A-D registers are 8-bit read only registers. The conversion results are stored in these registers. There are eight A-D registers numbered from 0 to 7 with each corresponding to an analog input pin. The content of the A-D register can be read during A-D conversion. However, if the A-D register corresponding to the analog pin being converted is read, the previous conversion result is obtained.

Analog input pin Register containing the result Address AN₀ A-D register 0 2016 AN₁ A-D register 1 2216 2416 AN₂ A-D register 2 AN₃ 2616 A-D register 3 AN₄ A-D register 4 2816 AN5 2A16 A-D register 5 AN₆ A-D register 6 2C16 AN₇ A-D register 7 2E16

Table 2.10.4 Combination between Analog Input Pin and Register Containing the Result

(3)Comparator and successive approximation register

When A-D conversion is triggered, the following operation starts and an analog value is converted to a digital value.

Initialization of successive approximation register

The successive approximation register is cleared to "0016"

②Setting the most significant bit (bit 7)

The successive approximation register bit 7 is set to "1". Then the reference voltage V_{ref} is compared with the input voltage V_{N} and bit 7 changes as follows:

Unchanged if $V_{ref} < V_{IN}$ Cleared to "0" if $V_{ref} > V_{IN}$

Note : The compare reference voltage V_{ref} depends on the value in the successive approximation register. Table 2.10.5 shows the relationship between V_{ref} and the value in the successive approximation register.

Step (2) above is repeated for all bits from bit 7 to bit 0 and the value in the successive approximation register (digital equivalent of the analog input voltage) is stored in the A-D register when comparison of bit 0 completes.

Table 2.10.5 Relationship between the Content of the Successive Approximation Register and Vref

Content of successive approximation register	0	1~255
Comparison reference voltage V _{ref} (V)	0	Vref/256 × (n-0.5)
		n is the content of the successive
		approximation register

Table 2.10.6 Change in Successive Approximation Register and Compare Voltage During A-D Conversion

Successive approximation register Compare voltage VREF b7 b0 0 0 0 0 0 0 0 0 0 [V] Conversion start $\frac{V_{REF}}{2} - \frac{V_{REF}}{512} \quad [V]$ 0 0 0 0 0 0 0 1 First comparison $\frac{V_{REF}}{2} \pm \frac{V_{REF}}{4} - \frac{V_{REF}}{512} \quad [V]$ 0 Second comparison 0 0 0 0 0 n₇ 1 1st comparison result $\frac{V_{REF}}{2} \pm \frac{V_{REF}}{4} \pm \frac{V_{REF}}{8} - \frac{V_{REF}}{512}$ 1 0 0 0 0 0 [V] Third comparison n7 n6 2nd comparison result n₇ n6 | n5 n4 n₃ $n_2 \mid n_1$ 1 Eighth comparison Conversion end n₇ n₆ n₅ l n₄ n₃ n₂ n₁ no

2.10.3 A-D conversion mode operation

Four different A-D conversion modes can be selected with A-D mode selection bits. In each mode, the trigger selection bit is used to determine whether to use a software trigger (internal trigger) or an external input signal (external trigger).

Each conversion mode is described below for case using an internal trigger and an external trigger.

(1)One-shot mode [00]*

The input voltage to the analog input pin selected with the analog input pin selection bit of the A-D control register is converted and an A-D conversion interrupt is generated when conversion completes. In this mode, the analog input pin must be selected before the A-D conversion trigger. The pins not used as analog input pin can be used as normal I/O ports.

•When an internal trigger is used to start A-D conversion

When the A-D start flag is set to "1", an internal trigger is generated and A-D conversion starts. After 57 cycles of $ø_{AD}$, A-D conversion ends, the content of the successive approximation register (converted result) is transferred to the A-D register, and the A-D interrupt request bit is set to "1" (\rightarrow generate A-D interrupt request). Then the A-D start flag is cleared to "0" and A-D converter stops.

•When an external trigger is used to start A-D conversion

A-D conversion starts when the A-D start flag is set to "1" and the input level of the $\overline{AD_{TRG}}$ pin changes from "H" to "L" (\rightarrow external trigger). When A-D conversion completes after 57 cycles of \emptyset_{AD} , the content of the successive approximation register (converted result) is transferred to the A-D register and the A-D interrupt request bit is set to "1" (\rightarrow generate A-D interrupt request). At this point, the A-D start flag is not cleared and A-D conversion can be repeated by generating another trigger. A trigger can also be generated during A-D conversion.

Precautions when using an external trigger

When an external trigger is selected, the AN_7 pin must not be selected as an analog input pin because it is used as the trigger input pin ($\overline{AD_{TRG}}$) to the A-D converter.

(2)Repeat mode [01]*

In this mode, the input voltage to the analog input pin selected with the analog input selection bit of the A-D control register is repeatedly converted. No interrupt request is generated and the A-D conversion flag is not cleared. The conversion of the selected pin is repeated while the A-D start flag is "1". The A-D conversion result can be read at any time. In this mode, the analog input pin must be selected before the A-D trigger is received. Pins not used as analog input pin can be used as normal I/O ports.

•When an internal trigger is used to start A-D conversion

When the A-D start flag is set to "1", an internal trigger is generated and A-D conversion starts. Each time a conversion is completed, the content of the successive approximation register (converted result) is transferred to the A-D register. The A-D converter does not stop at this point and conversion is repeated.

•When an external trigger is used to start A-D conversion

A-D conversion starts when the A-D start flag is set to "1" and the $\overline{AD_{TRG}}$ pin input level changes from "H" to "L" (\rightarrow external trigger). When A-D conversion completes, the content of the successive approximation register (conversion result) is transferred to the A-D register. The A-D converter does not stop at this point and conversion is repeated.

Precautions when using an external trigger

When an external trigger is selected, the AN_7 pin cannot be used as analog input pin because it is used as the trigger input pin ($\overline{AD_{TRG}}$) to the A-D converter.

(3)Single sweep mode [10]*

In this mode, inputs from pins AN₀ to AN₇ are converted and the results are stored in the respective A-D register. An A-D interrupt occurs when the result of converting pin AN₇ is stored in the A-D register. In this mode, the data direction register for port P7 must be set to "00₁₆" (input mode) before an A-D trigger is received.

•When an internal trigger is used to start A-D conversion

When the A-D start flag is set to "1", an internal trigger is generated and A-D conversion of pin AN₀ starts. When conversion of pin AN₀ ends, the result is stored in A-D register 0. Then pin AN₁ is converted and the result is stored in A-D register 1. This is repeated up to pin AN₇. When the result of converting pin AN₇ is stored in A-D register 7, the A-D interrupt request bit is set to "1" (\rightarrow generate A-D interrupt request). At this point the A-D start flag is cleared and the A-D converter stops.

•When an external trigger is used to start A-D conversion

Pins AN₀ to AN₇ are converted when the A-D start flag is set to "1" and the $\overline{AD_{TRG}}$ pin input level changes from "H" to "L" (\rightarrow external trigger). The result is stored in the corresponding A-D register each time a pin is converted and an A-D interrupt request bit is set to "1" when conversion of pin AN₇ completes. At this point the A-D start flag is not cleared to "0". Therefore, conversion can be repeated from pin AN₀ by generating another trigger. A trigger can also be generated during A-D conversion.

Precautions when using an external trigger

When an external trigger is selected, the result of converting the trigger input is stored in A-D register 7 because pin AN₇ is used as the trigger input pin $(\overline{AD_{TRG}})$ to the A-D converter.

(4)Repeat sweep mode [11]*

Inputs from pins AN₀ to AN₇ are converted and stored in the respective A-D register as with single sweep mode. However, conversion does not stop after converting all pins. Instead, it is repeated from pin AN₀. In this mode, the data direction register of port P7 must be set to " 00_{16} " (input mode) before the A-D trigger is received.

•When an internal trigger is used to start A-D conversion

When the A-D start flag is set to "1", an internal trigger is generated and A-D conversion starts. The content of the successive approximation register (conversion result) is transferred to the A-D register each time a pin (AN₀ to AN₇) is converted. This is repeated until the A-D start flag is cleared to "0".

•When an external trigger is used to start A-D conversion

A-D conversion starts when the A-D start flag is set to "1" and the $\overline{AD_{TRG}}$ pin input level changes from "H" to "L" (\rightarrow external trigger). The content of the successive approximation register (conversion result) is transferred to the A-D register each time a pin (AN₀ to AN₇) is converted. Conversion is repeated until the A-D start flag is cleared to "0".

Precautions when using an external trigger

When an external trigger is used, the result of converting the trigger input is stored in A-D register 7 because the AN_7 pin is used as the trigger input pin ($\overline{AD_{TRG}}$) to the A-D converter.

The numbers in brackets are the contents of the A-D mode selection bits.

2.11 Watchdog Timer

2.11.1 Watchdog timer description

The watchdog timer is a 12-bit timer that is used to detected unexpected execution sequence caused by software run-away. It is also used to stabilize the oscillator when returning from a **STP** instruction. Figure 2.11.1 shows a block diagram of the watchdog timer.

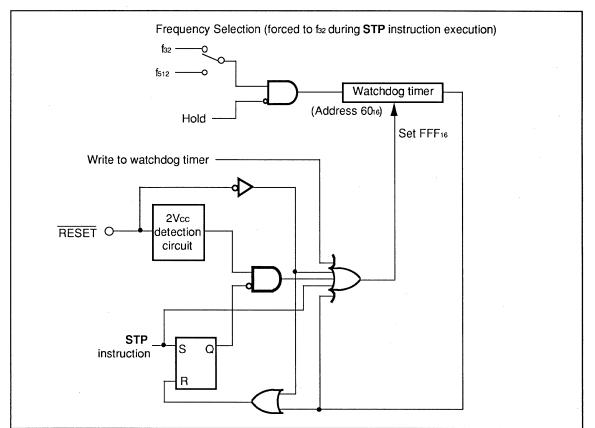
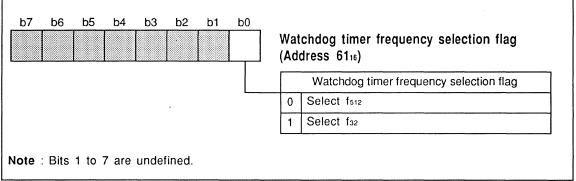
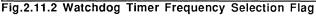


Fig.2.11.1 Watchdog Timer Block Diagram

2.11.2 Operation description


The watchdog timer consists of 12 bits and its content is decremented (-1) each time the clock selected with the watchdog timer frequency selection bit is input to the watchdog timer. The watchdog timer frequency selection bit is assigned to bit 0 at address 61₁₆ and f₅₁₂ (source oscillating frequency f(XIN)/512) is selected as the watchdog timer count source after a reset. Thereafter, it can also be set to f₃₂ (source oscillating frequency f(XIN)/32) by changing the watchdog timer frequency selection flag by program.


When there is a reset, "FFF₁₆" is set in the watchdog timer. Then the count source f_{512} is counted. The content of the watchdog timer is decremented each time a clock is input. An interrupt is raised when the most significant bit of the watchdog timer becomes "0" after 2048 counts. A watchdog timer interrupt is a non-maskable interrupt with the highest priority.

An arbitrary value cannot be set in the watchdog timer. A value "FFF16" is automatically set in the watchdog timer when there is a reset, when an **STP** instruction is executed, or when a dummy data is written in the watchdog timer (address 6016). Address 6016 is a write only register and its content cannot be read.

In order to stop the watchdog timer (disable its function), a voltage twice the V_{cc} voltage must be applied to the $\overrightarrow{\text{RESET}}$ pin. During this time, the watchdog timer stops with "FFF₁₆" set. Also, while the HOLD pin is "L" level (hold state) in memory expansion or microprocessor mode, the watchdog timer goes into a hold state and clock input to the watchdog timer is prohibited.

In addition to detecting program run-away, the watchdog timer is also used as a return timer from a stop mode (halting of oscillating circuit with the **STP** instruction). When a **STP** instruction is executed, the watchdog timer count source is forced to f₃₂ and "FFF₁₆" is set in the watchdog timer. Then when the watchdog timer is started with an external interrupt, a watchdog timer interrupt occurs and an internal clock ø is supplied. This is because some time is required for the oscillator to stabilize. See "Section 4.2 Clock Generation Circuit" for more detail concerning the stop mode.

2.11.3 Watchdog timer usage

When using the watchdog timer to detect program run-away, the program must write to the watchdog timer before its most significant bit becomes "0". Then if this code is not executed due to program run-away, the most significant bit of the watchdog timer becomes "0" and an interrupt occurs. Thereafter, the control should be passed to the interrupt service routine.

To restart from reset after detecting a program run-away, bit 3 of the processor mode register (software reset bit) must be set to "1" in the watchdog timer interrupt service routine. In this way, a run-way program can be automatically reset and returned to normal routine.

МЕМО

CHAPTER 3.RESET

3.1 Reset

3.1.1 Reset operation

The CPU is reset when "L" level is applied to the $\overrightarrow{\text{RESET}}$ pin when the supply voltage is 5V±10%. The reset is deactivated and a program starts from address formed by using the contents at bank 0 address FFFF₁₆ as the high-order address and address FFFE₁₆ as the low-order address, when the $\overrightarrow{\text{RESET}}$ pin is returned to "H" level after "L" input is applied for a sufficient duration (approximately 10ms) that is the oscillator requires time to stabilize such as when cancelling stop mode with a **STP** instruction.

(1) Singl	e-chip mode and memory expansion mode
ø	
CPU clock ØcPu	
High-order 8 bits of the CPU internal address Ap	0016
Low-order 16 bits of the CPU internal address ArAL	00001s FFFE1s ADH, AD.
CPU internal data bus DATA	AD+, AD.
Ē	
R/W	"H" state
(2) Micro	processor mode
ø	
CPU clock ØCPU	
High-order 8 bits of the CPU internal address Ap	001ø
Low-order 16 bits of the CPU internal address AHAL	0000016 / FFFE16 / ADH,ADL /
CPU internal data bus DATA	V VPL vector Not used Not used ADu, ADu The next operation code
E	
R/W	Writes

Fig.3.1.1 Internal Processing Sequence After a Reset

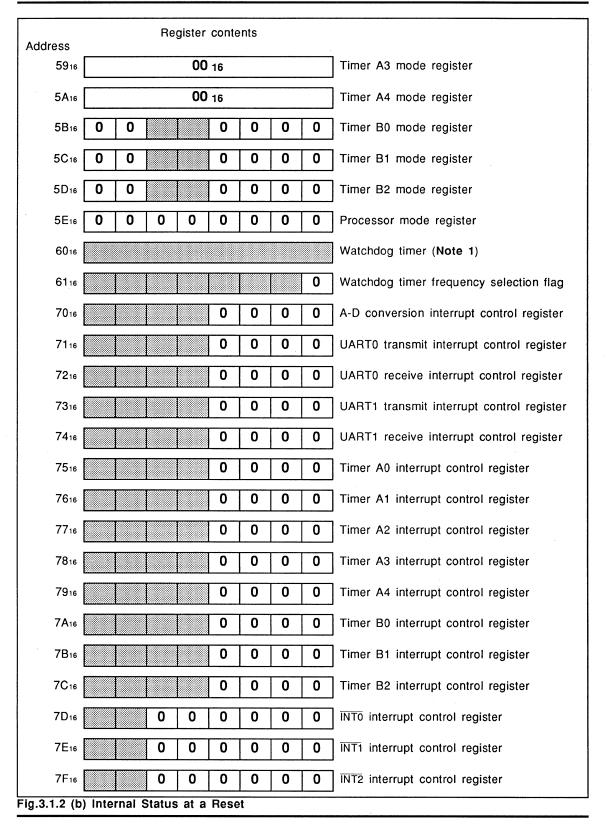

3.1.2 Internal status at a reset

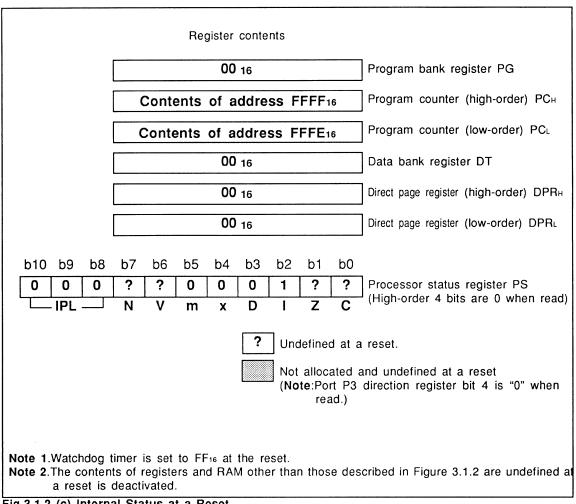
Figure 3.1.2 (a) to (c) show the contents of internal registers immediately at a reset.

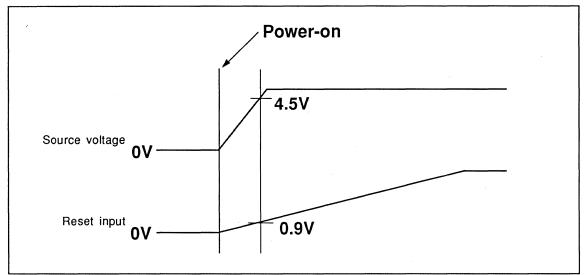
Address	Register contents	
416	00 16	Port P0 data direction register
516	00 16	Port P1 data direction register
816	00 16	Port P2 data direction register
916	0 0 0	Port P3 data direction register
C16	00 16	Port P4 data direction register
D16	00 16	Port P5 data direction register
1016	00 16	Port P6 data direction register
1116	00 16	Port P7 data direction register
1416	00 16	Port P8 data direction register
1E16	0 0 0 0 0 ? ? ?	A-D control register
3016	00 16	UART0 transmit/receive mode register
3416		UART0 transmit/receive control register 0
3516	0 0 0 0 0 0 1 0	UART0 transmit/receive control register 1
3816	00 16	UART1 transmit/receive mode register
3C16		UART1 transmit/receive control register 0
3D16	0 0 0 0 0 0 1 0	UART1 transmit/receive control register 1
4016	00 16	Counter start flag
4216	0 0 0 0 0	One-shot start flag
4416	0 0 0 0 0 0 0 0	Up-down flag
5616	00 16	Timer A0 mode register
5716	00 16	Timer A1 mode register
5816	00 16	Timer A2 mode register

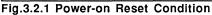
Fig.3.1.2 (a) Internal Status at a Reset

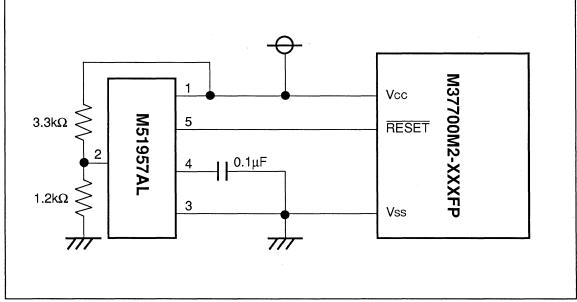
CHAPTER 3.RESET

3.1 Reset



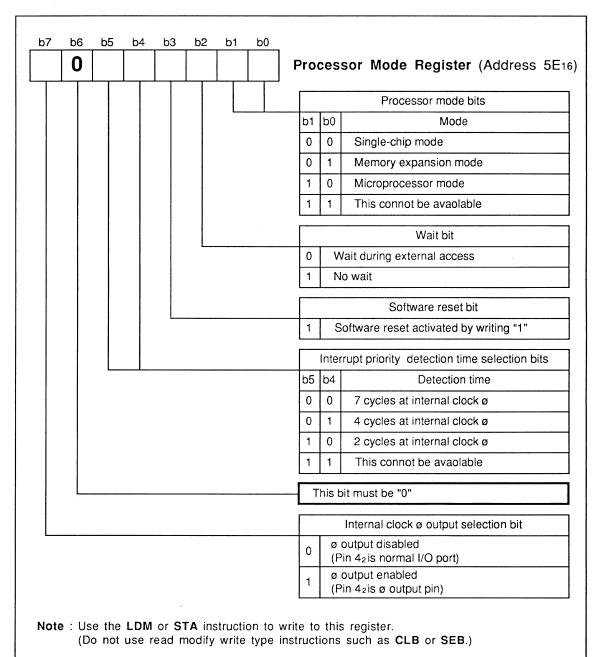

Fig.3.1.2 (c) Internal Status at a Reset


CHAPTER 3.RESET


3.2 Reset circuit

The reset circuit must be designed so that the reset input voltage drops below 0.9V when the source voltage reaches 4.5V as shown in Figure 3.2.1.

Figure 3.2.2 shows an example of power-on reset circuit using a system reset IC M51957AL.



3.3 Software reset

The M37700 can be reset internally with a program. This is done by setting the processor mode register bit 3 to "1'. Figure 3.3.1 shows the bit configuration of the processor mode register.

Fig.3.3.1 Processor Mode Register Bit Structure

CHAPTER 3.RESET

Software reset is the same as hardware reset (when the reset pin is pulled to "L" and then restored to "H") except that the contents of the internal RAM are preserved. Therefore, the contents of each register after a software reset is initialized to values shown in Figure 3.1.2.

CHAPTER 4 OSCILLATING CIRCUIT

CHAPTER 4.OSCILLATING CIRCUIT

4.1 Oscillating Circuit

The M37700 is equipped with an oscillating circuit to generate the necessary clock. The frequency input to the clock input pin X_{IN} is divided in half to obtain the internal clock \emptyset . This \emptyset is further divided in half to obtain the bus cycle. Either a ceramic resonator or a crystal oscillator can be connected externally to the internal oscillating circuit.

4.1.1 Circuit using a ceramic oscillator or a crystal oscillator

Figure 4.1.1 shows a circuit example using a ceramic resonator and Figure 4.1.2 shows a circuit example using a crystal resonator. An oscillating pircuit is formed by connecting the resonator between XIN and XOUT as shown in the figures. The circuit constants such as Rf, Rd, CIN, and COUT must be set to the resonator manufacturer's recommended values.

Table 4.1.1 and Table 4.1.2 show the recommended circuit constants for each type of oscillator.

4.1.2 External clock input circuit

An external clock signal can be supplied to the internal oscillating circuit. Figure 4.1.3 shows the circuit example for this case. Note that the external clock must be input from pin X_{IN} , and pin X_{OUT} must be left open.

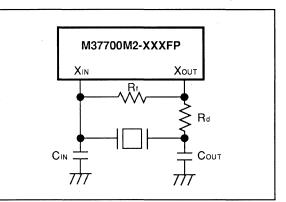


Fig.4.1.1 Oscillating Circuit Using a Ceramic Resonator

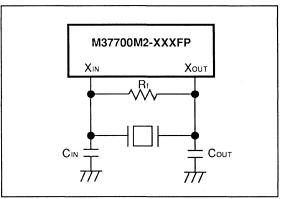


Fig.4.1.2 Oscillating Circuit Using a Crystal Resonator

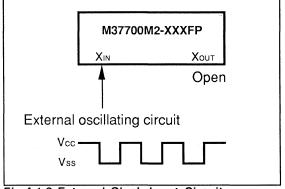


Fig.4.1.3 External Clock Input Circuit

4.1 Oscillating Circuit

Table 4.1.1 Recommended Circui	Constants when Using a Ceramic	Resonator (See Figure 4.1.1)
		needinater (eeee rigare 4111)

Manufacturer	Type name	Oscillating frequency	Rf	Cin	Соит	Pd
Mandracturer	Type name	(MHz)	(MΩ)	(pF)	(pF)	(Ω)
MURATA MFG. CO., LTD.	CSA8.00MT	8	1	30	30	220
MURATA MFG. CO., LTD.	CST8.00MT	8	1	30*	30*	220
KYOCERA CORP.	KBR-8.0M	8	1	33	33	470
MURATA MFG. CO., LTD.	CSA16.00MX040	16	1	47	47	

* Built in the oscillator

Table 4.1.2 Recommended Circuit Constants when Using a Crystal Resonator (See Figure 4.1.2)

Manufacturer	Type name	Oscillating frequency (MHz)	Rf (MΩ)	Cı⊳ (pF)	Соυт (pF)
DAIWA SHINKU CORP.	HC-49/u8.000MHz	8	1	39	39
DAIWA SHINKU CORP.	HC-49/u16.000MHz	16	1	39	39

CHAPTER 4.OSCILLATING CIRCUIT

4.2 Clock Generation Circuit

The oscillating circuit consists of an oscillating gate which functions as an amplifier to obtain the necessary gain and an oscillation control flip-flop to control it. Therefore, the oscillation can be started or stopped as necessary. The M37700 is equipped with a clock generation circuit shown in Figure 4.2.1. When an STP instruction is executed, the internal clock ø stops at "L" state. At the same time, FFF16 is set in the watchdog timer and the watchdog timer input is connected to f32. When the most significant bit of the watchdog timer becomes "0" or when the system is reset, this connection is freed and the watchdog timer is connected to the input determined by the watchdog timer frequency selection flag. Oscillation resumes when an interrupt is received, but the internal clock ø remains at "L" till the most significant bit of the watchdog timer becomes "0". This is to avoid the unstable oscillation period at the rising edge when using a ceramic resonator. In order to enable the STP instruction, the STP option must be specified when ordering the mask.

When a WIT instruction is executed, the internal clock ø stops at "L" state, but the oscillator does not stop. ø is resumed when an interrupt is received. An instruction is executed immediately because the oscillator is not stopped.

If an instruction using the bus is executed just before execution the STP or WIT instruction, the program may run-away after recovering from a stop or wait state. Therefore, a NOP instruction should be inserted before an STP or WIT instruction to delay execution. If there is an instruction to change the port output or RAM content just before an STP or WIT instruction, the port output or the RAM content might not be changed. In this case, insert the number of NOP instruction, as shows the following, before the STP or WIT instruction to adjust the execution timing.

•The data is written into internal RAM or SFROne NOP instruction •The data is written into external memory or I/O without one-shot waitOne NOP instruction •The data is written into external memory or I/O with one-shot waitThree NOP instructions

The stop or wait state is canceled with an interrupt or with a reset.

- These states are canceled with an interrupt, the following interrupts can be used:
 - -External interrupt (INT0, INT1, and INT2) •Stop state
 - Clock synchronous serial I/O interrupts (transmission, receive) using external clock -UART interrupts (UART0 receive, UART0 transmission, UART1 receive, UART1 trans
 - mission) using external clock
 - -Timer interrupts (however, timer which is used to cancel has to sets the event counter mode before executing STP instruction.)
 - •Wait state -All hardware interrupts

However, interrupts must be enabled before executing an STP or WIT instruction.

•These states are canceled with reset, hardware reset can be only used.

After cancel, the contents of internal RAM is kept and the contents SFR and CPU registers are shown in Figures 3.1.2(a) to (c).

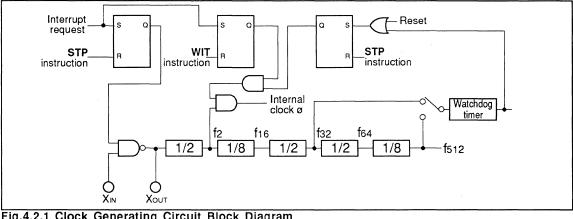


Fig.4.2.1 Clock Generating Circuit Block Diagram

CHAPTER 5 ELECTRICAL CHARACTERISTICS

5.1 Absolute Maximum Ratings

Absolute Maximum Ratings

Symbol		Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage			-0.3~7	V
AVcc	Analog supply v	voltage		-0.3~7	V
Vi	Input voltage	RESET, CNVss, BYTE		-0.3~12	V
Vı	Input voltage	P00~P07, P10~P17, P20~P27, P30~P33 P40~P47, P50~P57, P60~P67, P70~P77 P80~P87, Vref, XIN		-0.3~Vcc+0.3	V
Vo	Output voltage	P00~P07, P10~P17, P20~P27, P30~P33 P40~P47, P50~P57, P60~P67, P70~P77 P80~P87, Xout, Ē		-0.3~Vcc+0.3	V
Pd	Power dissipati	on	Ta=25°C	300	mW
Topr	Operating temp	erature		-10~70	°C
Tstg	Storage temper			-40~125	°C

5.2 Recommended Operating Conditions

Recommended On	erating Conditions	$(V_{CC}=5V+10\%)$	Ta=-10~70°C	unless otherwise noted)
neconinenaca op	cluting conditions	$(* CC - C * \pm 10)0,$	1u= 10 70 0,	

Sumbol		Parameter		Limits	Limits Nom. Max.		
Symbol		Farameter	Min.			Unit	
Vcc	Supply voltage		4.5	5.0	5.5	V	
AVcc	Analog supply voltage			Vcc		V	
Vss	Supply voltage			0		V	
AVss	Analog supply voltage			0		V	
Vін	High-level input voltage	P00~P07, P30~P33, P40~P47 P50~P57, P60~P67, P70~P77 P80~P87, XIN, RESET, CNVss BYTE	0.8Vcc		Vcc	V	
Vн	High-level input voltage	P10~P17, P20~P27 (in single-chip mode)	0.8Vcc		Vcc	V	
Vін	High-level input voltage	P10~P17, P20~P27 (in memory expansion mode and microprocessor mode)	0.5Vcc		Vcc	V	
Vı∟	Low-level input voltage	P00~P07, P30~P33, P40~P47 P50~P57, P60~P67, P70~P77 P80~P87, XIN, RESET, CNVss BYTE	0		0.2Vcc	V	
VIL	Low-level input voltage	P10~P17, P20~P27 (in single-chip mode)	0		0.2Vcc	V	
VIL	Low-level input voltage	P10~P17, P20~P27 (in memory expansion mode and microprocessor mode)	0		0.16Vcc	V	
OH (peak)	High-level peak output cu				-10	mA	
ЮН (avg)	High-level average output	current P00~P07, P10~P17, P20~P27 P30~P33, P40~P47, P50~P57 P60~P67, P70~P77, P80~P87			-5	mA	
OL (peak)	Low-level peak output cur	P30~P33, P40~P47, P50~P57 P60~P67, P70~P77, P80~P87			10	mA	
IOL (avg)		current P0o~P07, P1o~P17, P2o~P27 P3o~P33, P4o~P47, P5o~P57 P6o~P67, P7o~P77, P8o~P87			5	mA	
f(XIN)	External clock frequency i	nput M37700M2-XXXFP, M37700SFP			8	MHz	
		M37700M2AXXXFP, M37700SAF	>		16	MHz	

Note 1. Average output current is the average value of a 100ms interval.

2. The sum of lot(peak) for ports P0, P1, P2, P3, and P8 must be 80mA or less.

The sum of IoH(peak) for ports P0, P1, P2, P3, and P8 must be 80mA or less.

The sum of loc(peak) for ports P4, P5, P6, and P7 must be 80mA or less.

The sum of IoH(peak) for ports P4, P5, P6, and P7 must be 80mA or less.

5.3 M37700M2-XXXFP DC/AC Characteristics 5.3.1 Electrical characteristics

Electrical characteristics (Vcc=5V, Vss=0V, Ta=25°C, f(XiN)=8MHz, unless otherwise noted)

Symbol	Par	ameter	Test conditions		Limits		Unit
-				Min.	Тур.	Max.	
Vон	High-level output voltage	P00~P07, P10~P17, P20~P27 P30, P31, P33, P40~P47 P50~P57, P60~P67, P70~P77 P80~P87	loн=−10mA	3			V
Vон	High-level output voltage	P00~P07, P10~P17, P20~P27 P30, P31, P33	Іон=–400µА	4.7			V
Vон	High-level output voltage	P32	Іон=—10mA Іон=—400µА	3.1 4.8			V V
Vон	High-level output voltage	E	Іон=—10mA Іон=—400µА	3.4 4.8			V V
Vol	Low-level output voltage	P00~P07, P10~P17, P20~P27 P30, P31, P33, P40~P47 P50~P57, P60~P67, P70~P77 P80~P87	loL=10mA			2	V
Vol	Low-level output voltage	P00~P07, P10~P17, P20~P27 P30, P31, P33	lo∟=2mA			0.45	V
Vol	Low-level output voltage	P32	Io∟=10mA Io∟=2mA		_	1.9 0.43	V V
Vol	Low-level output voltage	Ē	lo∟=10mA lo∟=2mA			1.6 0.4	V V
Vt+-Vt-		Y, TAOIN~TA4IN, TBOIN~TB2IN ADTRG, CTS0, CTS1, CLK0, CLK1	· · · · · · · · · · · · · · · · · · ·	0.4		1	V
VT+-VT-	Hysteresis	RESET		0.2		0.5	V
VT+-VT-	Hysteresis	Xin		0.1		0.3	V
Ін	High-level input current	P00~P07, P10~P17, P20~P27 P30~P33, P40~P47, P50~P57 P60~P67, P70~P77, P80~P87 XIN, RESET, CNVss, BYTE	Vi=5V			5	μA
lıL	Low-level input current	P00~P07, P10~P17, P20~P27 P30~P33, P40~P47, P50~P57 P60~P67, P70~P77, P80~P87 XIN, RESET, CNVss, BYTE	Vi=0V			-5	μA
Vram	RAM hold voltage		When clock is stopped.	2			V
lcc	Power supply current		In single-chip f(XIN)=8MHz mode. an output square waveform	-	6	12	mA
			pin is kept open Ta=25°C, when and other pins clock is stopped.			1	μA
			are connected to Ta=70°C, when Vss during reset. clock is stopped.			10	μA

5.3.2 A-D converter characteristics

A-D converter characteristics (Vcc=5V, Vss=0V, Ta=25°C, f(XIN)=8MHz, unless otherwise noted)

Symbol	Parameter	Test conditions		Unit		
Symbol	Falameter		Min.	Тур.	Max.	
—	Resolution	VREF=VCC			8	Bits
—	Absolute accuracy	VREF=VCC			±3	LSB
RLADDER	Ladder resistance	VREF=VCC	2		10	kΩ
tconv	Conversion time		28.5			μs
Vref	Reference voltage		2		Vcc	V
Via	Analog input voltage		0		VREF	V

5.3.3 Timing requirements (Vcc=5V±10%, Vss=0V, Ta=25°C, f(XIN)=8MHz, unless otherwise noted)

External clock input

Cumhal	Parameter		Limits			
Symbol	Parameter		Тур.	Max.	Unit	
tc	External clock input cycle time	125			ns	
tw(H)	External clock input high-level pulse width	50			ns	
tw(∟)	External clock input low-level pulse width	50			ns	
tr	External clock rise time			20	ns	
tr	External clock fall time			20	ns	

Single-chip mode

Symbol	Baramatar		Limits		1.1
Symbol	Parameter	Min.	Тур.	Max.	Unit
tsu(POD-E)	Port P0 input setup time	200)	ns
tsu(P1D-E)	Port P1 input setup time	200			ns
tsu(P2D-E)	Port P2 input setup time	200			ns
tsu(P3D-E)	Port P3 input setup time	200			ns
tsu(P4D-E)	Port P4 input setup time	200			ns
tsu(P5D-E)	Port P5 input setup time	200			ns
tsu(P6D-E)	Port P6 input setup time	200			ns
tsu(P7D-E)	Port P7 input setup time	200			ns
tsu(P8DE)	Port P8 input setup time	200			ns
t h(EP0D)	Port P0 input hold time	0			ns
th(E-P1D)	Port P1 input hold time	0			ns
th(E-P2D)	Port P2 input hold time	0			ns
th(E-P3D)	Port P3 input hold time	0			ns
t h(E-P4D)	Port P4 input hold time	0			ns
t h(EP5D)	Port P5 input hold time	0			ns
t h(E-P6D)	Port P6 input hold time	0			ns
t h(E-P7D)	Port P7 input hold time	0			ns
th(E-P8D)	Port P8 input hold time	0			ns

Memory expansion mode and microprocessor mode

Symbol	Parameter		Limits		
	Farameter	Min.	Тур.	Max.	Unit
tsu(POD-E)	Port P1 input setup time	60			ns
tsu(P2D-E)	Port P2 input setup time	60			ns
tsu(E-RDY)	RDY input setup time (when wait bit is "1")	0		60	ns
tsu(E-RDY)	RDY input setup time (when wait bit is "0", and external memory is accessed)	0		300	ns
th(E-P1D)	Port P1 input hold time	0			ns
th(E-P2D)	Port P2 input hold time	0			ns

CHAPTER 5.ELECTRICAL CHARACTERISTICS

Timer A input (count input in event counter mode)

Cumhal	Parameter		Limits			
Symbol	Farameter		Тур.	Max.	Unit	
tc(TA)	TAin input cycle time	250			ns	
tw(TAH)	TAin input high-level pulse width	125			ns	
tw(TAL)	TAin input low-level pulse width	125			ns	

Timer A input (gating input in timer mode)

Symbol	Deremeter	Limits			Unit
	Parameter	Min.	Тур.	Max.	
tc(TA)	TAin input cycle time	2000			ns
tw(tah)	TAin input high-level pulse width	1000			ns
tw(TAL)	TAin input low-level pulse width	1000			ns

Timer A input (external trigger input in one-shot pulse mode)

Symbol	Decometer	Limits			Unit
	Parameter	Min.	Тур.	Max.	Unit
tc(TA)	TAin input cycle time	500			ns
tw(TAH)	TAin input high-level pulse width	250			ns
tw(TAL)	TAin input low-level pulse width	250			ns

Timer A input (external trigger input in pulse width modulation mode)

Symbol	Deremeter		Limits		Unit
	Min.	Тур.	Max.	Unit	
tw(tah)	TAin input high-level pulse width	250			ns
tw(tal)	TAin input low-level pulse width	250			ns

Timer A input (up-down input in event counter mode)

Symbol	Parameter	Limits			Linit
	Farameter	Min.	Тур.	Max.	Unit
tc(UP)	TAiout input cycle time	2000			ns
tw(UPH)	TAiout input high-level pulse width	1000			ns
tw(UPL)	TAiout input low-level pulse width	1000	·		ns

Timer B input (count input in event counter mode)

Symbol	Parameter	Limits			Unit
	Farameter	Min.	Тур.	Max.	
tc(TB)	TBin input cycle time	500			ns
tw(твн)	TBin input high-level pulse width	250			ns
tw(TBL)	TBin input low-level pulse width	250			ns

Timer B input (pulse period measurement mode)

Symbol	Parameter		Unit		
		Min.	Typ.	Max.	Unit
tc(тв)	TBin input cycle time	2000			ns
tw(твн)	TBin input high-level pulse width	1000			ns
tw(TBL)	TBin input low-level pulse width	1000			ns

5.3 M37700M2-XXXFP DC/AC Characteristics

Timer B input (pulse width measurement mode)

Symbol	Parameter	Limits			Unit
	Faiamelei	Min.	Тур.	Max.	Unit
tc(тв)	TBin input cycle time	2000			ns
tw(TBH)	TBin input high-level pulse width	1000			ns
tw(TBL)	TBin input low-level pulse width	1000			ns

A-D trigger input

Symbol	Boromotor		Limits		Linit
	Parameter	Min.	Тур.	Max.	Unit
tc(AD)	ADTRG input cycle time (minimum allowable trigger)	2000			ns
tw(ADL)	ADTRG input low-level pulse width	250			ns

UART clock input

Symbol	Baramator		Limits			
	Parameter	Min.	Typ.	Max.	Unit	
tc(CK)	CLKi input cycle time	500	-		ns	
tw(CKH)	CLKi input high-level pulse width	250			ns	
tw(CKL)	CLKi input low-level pulse width	250			ns	

External interrupt INTi input

External i	nterrupt INTi input				
Cumbal	Beremeter		Limits		Linit
Symbol	Parameter	Min.	Тур.	Max.	Unit
tw(INH)	INTi input high-level pulse width	250			ns
	INTi input low-level pulse width	250			ns

CHAPTER 5.ELECTRICAL CHARACTERISTICS

5.3.4 Switching characteristics (Vcc=5V±10%, Vss=0V, Ta=25°C, f(XiN)=8MHz, unless otherwise noted)

Single-chip mode

Cumphel	Doromatór	Decomption Test conditions				Daramatar Loct appditiona	Limits		Unit
Symbol	Parameter	Test conditions	Min.	Тур.	Max.				
td(E-POQ)	Port P0 data output delay time				200	ns			
td(E-P1Q)	Port P1 data output delay time				200	ns			
td(E-P2Q)	Port P2 data output delay time				200	ns			
td(E-P3Q)	Port P3 data output delay time				200	ns			
td(E-P4Q)	Port P4 data output delay time	Figure 5.3.1			200	ns			
td(E-P5Q)	Port P5 data output delay time				200	ns			
td(E-P6Q)	Port P6 data output delay time				200	ns			
td(E-P7Q)	Port P7 data output delay time				200	ns			
td(E-P8Q)	Port P8 data output delay time				200	ns			

Memory expansion mode and microprocessor mode (when wait bit is "1")

Sumbol	Baramatar	Test conditions		Limits		Unit
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
td(POA-E)	Port P0 address output delay time *		100			ns
td(E-P1Q)	Port P1 data output delay time (BYTE="L")				120	ns
tPXZ(E-P1Z)	Port P1 floating start delay time (BYTE="L")				40	ns
td(P1A-E)	Port P1 address output delay time *		100			ns
td(E-P2Q)	Port P2 data output delay time				120	ns
tPXZ(E-P2Z)	Port P2 floating start delay time]			40	ns
td(P2A-E)	Port P2 address output delay time *		100			ns
td(E-HLDA)	HLDA output delay time				100	ns
td(ALE-E)	ALE output delay time		-10			ns
tw(ALE)	ALE pulse width *		100			ns
td(BHE-E)	BHE output delay time *		100			ns
td(R/W-E)	R/W output delay time *	Figure 5.3.1	100			ns
th(E-POA)	Port P0 address hold time		20			ns
th(E-P1A)	Port P1 address hold time (BYTE="L")		20			ns
th(E-P1Q)	Port P1 data hold time (BYTE="L")		20			ns
tPZX(E-P1Z)	Port P1 floating release delay time (BYTE="L")		20			ns
th(E-P1A)	Port P1 address hold time (BYTE="H")		20			ns
th(E-P2A)	Port P2 address hold time		20			ns
th(E-P2Q)	Port P2 data hold time]	20			ns
tPZX(E-P2Z)	Port P2 floating release delay time]	20			ns
th(E-BHE)	BHE hold time		20		5	ns
th(E-R/W)	R/W hold time		20			ns

5.3 M37700M2-XXXFP DC/AC Characteristics

Cumbal	Baramatar	Test conditions		Limits	· · · · · · · · · · · · · · · · · · ·	1 Imit
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
td(POA-E)	Port P0 address output delay time *		350			ns
td(E-P1Q)	Port P1 data output delay time (BYTE="L")				120	ns
tPXZ(E-P1Z)	Port P1 floating start delay time (BYTE="L")				40	ns
td(P1A-E)	Port P1 address output delay time *		350			ns
td(E-P2Q)	Port P2 data output delay time				120	ns
tPXZ(E-P2Z)	Port P2 floating start delay time				40	ns
td(P2A-E)	Port P2 address output delay time *		350			ns
td(E-HLDA)	HLDA output delay time				100	ns
td(ALE-E)	ALE output delay time		-10			ns
tw(ALE)	ALE pulse width *		350			ns
td(BHE-E)	BHE output delay time *	Eiguro 5.2.1	350			ns
td(R/W–E)	R/W output delay time *	Figure 5.3.1	350			ns
th(E-P0A)	Port P0 address hold time		20			ns
th(E-P1A)	Port P1 address hold time (BYTE="L")		20			ns
th(E-P1Q)	Port P1 data hold time (BYTE="L")		20			ns
tPZX(E-P1Z)	Port P1 floating release delay time (BYTE="L")		20			ns
th(E-P1A)	Port P1 address hold time (BYTE="H")		20			ns
th(E-P2A)	Port P2 address hold time		20			ns
th(E-P2Q)	Port P2 data hold time		20			ns
tPZX(E-P2Z)	Port P2 floating release delay time		20			ns
th(E-BHE)	BHE hold time		20			ns
th(E-R/W)	R/W hold time		20			ns

Memory expansion mode and microprocessor mode (when external memory area is accessed, and wait bit is "0")

* The value of port **Pi** address output delay time (i=0, 1, or 2), \overline{BHE} output delay time, R/W output delay time, and ALE pulse width are dependent on the clock oscillating frequency (f(XIN)), and these value are defined by the following expressions.

Symbol	Parameter	Wait bit ="1"	Wait bit ="0"
td(PiA-E)	Port Pi address output delay time		
	BHE output delay time	100+(2×10 ⁹ /f(XIN))–250ns	350+(4 × 10 ⁹ /f(Xıℕ))–500ns
td(R/W-E)	R/W output delay time		
tw(ALE)	ALE pulse width	(1 × 10 ⁹ /f(Xℕ))−25ns	(3 × 10 ⁹ /f(X _{IN}))–25ns

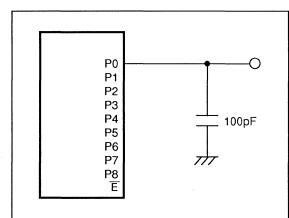


Fig.5.3.1 Testing Circuit for Ports P0~P8

CHAPTER 5.ELECTRICAL CHARACTERISTICS

5.4 M37700M2AXXXFP DC/AC Characteristics 5.4.1 Electrical characteristics

Electrical characteristics (Vcc=5V, Vss=0V, Ta=25°C, f(XIN)=16MHz, unless otherwise noted)

Symbol	Par	ameter	Test conditions		Limits		Unit
-				Min.	Тур.	Max.	
Vон	High-level output voltage	P00~P07, P10~P17, P20~P27 P30, P31, P33, P40~P47 P50~P57, P60~P67, P70~P77 P80~P87	loн=−10mA	3	· · · · ·		V
Vон	High-level output voltage	P00~P07, P10~P17, P20~P27 P30, P31, P33	Іон=−400µА	4.7			V
Vон	High-level output voltage	P32	Іон=—10mA Іон=—400µА	3.1 4.8			V V
Vон	High-level output voltage	Ē	Іон=—10mA Іон=—400µА	3.4 4.8			V V
Vol	Low-level output voltage	P00~P07, P10~P17, P20~P27 P30, P31, P33, P40~P47 P50~P57, P60~P67, P70~P77 P80~P87	lo∟=10mA			2	V
Vol	Low-level output voltage	P00~P07, P10~P17, P20~P27 P30, P31, P33	Iol=2mA			0.45	V
Vol	Low-level output voltage	P32	lo∟=10mA lo∟=2mA			1.9 0.43	V V
Vol	Low-level output voltage	Ē	lo∟=10mA lo∟=2mA			1.6 0.4	V V
	INTo~INT2,	Y, TAOIN~TA4IN, TBOIN~TB2IN ADTRG, CTS0, CTS1, CLK0, CLK1		0.4		1	V
Vt+–Vt-	Hysteresis	RESET		0.2		0.5	V
Vt+-Vt-	Hysteresis	Xin		0.1		0.3	V
Ін	High-level input current	P00~P07, P10~P17, P20~P27 P30~P33, P40~P47, P50~P57 P60~P67, P70~P77, P80~P87 Xin, RESET, CNVss, BYTE	Vi=5V			5	μA
lıı.	Low-level input current	P00~P07, P10~P17, P20~P27 P30~P33, P40~P47, P50~P57 P60~P67, P70~P77, P80~P87 XIN, RESET, CNVss, BYTE	VI=0V			-5	μA
Vram	RAM hold voltage		When clock is stopped.	2			V
lcc	Power supply current		In single-chip f(XIN)=16MHz mode, an output square waveform		12	24	mA
			pin is kept open Ta=25°C, when and other pins clock is stopped.			1	μA
			are connected to Ta=70°C, when Vss during reset. clock is stopped.			10	μA

5.4.2 A-D converter characteristics

A-D converter characteristics (Vcc=5V, Vss=0V, Ta=25°C, f(XiN)=16MHz, unless otherwise noted)

Symbol	Parameter	Test conditions		Unit		
Symbol			Min.	Тур.	Max.	Unit
	Resolution	VREF=VCC			8	Bits
	Absolute accuracy	VREF=VCC			±3	LSB
RLADDER	Ladder resistance	VREF=VCC	2		10	kΩ
t CONV	Conversion time		14.25			μs
VREF	Reference voltage		2		Vcc	V
Via	Analog input voltage		0		VREF	V

5.4.3 Timing requirements (Vcc=5V±10%, Vss=0V, Ta=25°C, f(XIN)=16MHz, unless otherwise noted)

External clock input

	Parameter		Limits			
Symbol	Parameter	Min.	Тур.	Max.	Unit	
tc	External clock input cycle time	62			ns	
tw(H)	External clock input high-level pulse width	25			ns	
tw(L)	External clock input low-level pulse width	25			ns	
tr	External clock rise time			10	ns	
tr	External clock fall time			10	ns	

Single-chip mode

Symbol	Parameter		Limits		Linit
Symbol		Min.	Тур.	Max.	Unit
tsu(POD-E)	Port P0 input setup time	100			ns
tsu(P1D-E)	Port P1 input setup time	100			ns
tsu(P2D-E)	Port P2 input setup time	100			ns
tsu(P3D-E)	Port P3 input setup time	100			ns
tsu(P4D-E)	Port P4 input setup time	100			ns
tsu(P5D-E)	Port P5 input setup time	100			ns
tsu(P6D-E)	Port P6 input setup time	100			ns
tsu(P7D-E)	Port P7 input setup time	100			ns
tsu(P8D-E)	Port P8 input setup time	100			ns
th(E-POD)	Port P0 input hold time	0			ns
th(E-P1D)	Port P1 input hold time	0			ns
th(E-P2D)	Port P2 input hold time	0			ns
th(E-P3D)	Port P3 input hold time	0			ns
th(E-P4D)	Port P4 input hold time	0			ns
th(E-P5D)	Port P5 input hold time	0			ns
th(E-P6D)	Port P6 input hold time	0			ns
th(E-P7D)	Port P7 input hold time	0			ns
t h(E-P8D)	Port P8 input hold time	0			ns

Memory expansion mode and microprocessor mode

Symbol	Parameter		Limits		
Symbol	raidifietei	Min.	Тур.	Max.	Unit
tsu(Pod-E)	Port P1 input setup time	45			ns
tsu(P2D-E)	Port P2 input setup time	45			ns
tsu(E-RDY)	RDY input setup time (when wait bit is "1")	0		10	ns
tsu(E-RDY)	RDY input setup time (when wait bit is "0", and external memory is accessed)	0		120	ns
th(E-P1D)	Port P1 input hold time	0			ns
th(E-P2D)	Port P2 input hold time	0			ns

CHAPTER 5.ELECTRICAL CHARACTERISTICS

Timer A input (count input in event counter mode)

Symbol Parameter tc(TA) TAin input cycle time tw(TAH) TAin input high-level pulse width tw(TAL) TAin input low-level pulse width	Baramatar	Limits			Unit	
	Parameter	Min.	Тур.	Max.	Unit	
tc(TA)	TAin input cycle time	125			ns	
tw(tah)	TAin input high-level pulse width	62			ns	
tw(TAL)	TAin input low-level pulse width	62			ns	

Timer A input (gating input in timer mode)

Cumhal	Deremeter	Limits Min. Typ. Max.			
Symbol	Parameter	Min.	Тур.	Max.	Unit
tc(TA)	TAin input cycle time	1000			ns
tw(tah)	TAin input high-level pulse width	500			ns
tw(TAL)	TAin input low-level pulse width	500			ns

Timer A input (external trigger input in one-shot pulse mode)

Symbol	Boromotor	Limits			Unit
	Parameter	Min.	Тур.	Max.	Unit
tc(TA)	TAil input cycle time	250	•••		ns
tw(TAH)	TAin input high-level pulse width	125			ns
tw(TAL)	TAin input low-level pulse width	125			ns

Timer A input (external trigger input in pulse width modulation mode)

Symbol Parameter tw(TAH) TAin input high-level pulse width TAin input low layed pulse width	Deremeter	Limits			Unit
	Parameter	Min.	Тур.	Max.	Unit
tw(tah)	TAin input high-level pulse width	125			ns
tw(TAL)	TAin input low-level pulse width	125			ns

Timer A input (up-down input in event counter mode)

tw(UPH) TA	Parameter		Limits		
	Parameter	Min.	Тур.	Max.	Unit
tc(UP)	TAiout input cycle time	1000			ns
tw(UPH)	TAiout input high-level pulse width	500			ns
tw(UPL)	TAiout input low-level pulse width	500			ns

Timer B input (count input in event counter mode)

Symbol	Parameter		Limits		
		Min.	Тур.	Max.	Unit
tc(TB)	TBin input cycle time	/ 250			ns
tw(TBH)	TBin input high-level pulse width	125			ns
tw(TBL)	TBin input low-level pulse width	125			ns

Timer B input (pulse period measurement mode)

Symbol	Parameter	Limits			Linit
		Min.	Тур.	Max.	Unit
tc(TB)	TBin input cycle time	1000			ns
tw(твн)	TBin input high-level pulse width	500			ns
tw(TBL)	TBin input low-level pulse width	500			ns

5.4 M37700M2AXXXFP DC/AC Characteristics

Timer B input (pulse width measurement mode)

Symbol	Parameter		Limits		
		Min.	Тур.	Max.	Unit
tc(TB)	TBin input cycle time	1000			ns
tw(TBH)	TBin input high-level pulse width	500			ns
tw(TBL)	TBin input low-level pulse width	500			ns

A-D trigger input

Symbol	Deremeter		Limits			
	Parameter	Min.	Тур.	Max.	Unit	
tc(AD)	ADTRG input cycle time (minimum allowable trigger)	1000			ns	
tw(ADL)	ADTRG input low-level pulse width	125			ns	

UART clock input

Symbol	Decemeter		Limits		
	Parameter	Min.	Тур.	Max.	Unit
tc(ck)	CLKi input cycle time	250			ns
tw(CKH)	CLKi input high-level pulse width	125			ns
tw(CKL)	CLKi input low-level pulse width	125			ns

External interrupt INTi input

Symbol	Parameter		Linit		
		Min.	Тур.	Max.	Unit
tw(INH)	INTi input high-level pulse width	250			ns
tw(INL)	INTi input low-level pulse width	250			ns

CHAPTER 5.ELECTRICAL CHARACTERISTICS

5.4.4 Switching characteristics (Vcc=5V±10%, Vss=0V, Ta=25°C, f(XIN)=16MHz, unless otherwise noted)

Single-chip mode

Symbol	Parameter	Test conditions	Limits			1.1	
Symbol	Farameter	Test conditions	Min.	Тур.	Max.	Unit	
td(E-POQ)	Port P0 data output delay time				100	ns	
td(E-P1Q)	Port P1 data output delay time				100	ns	
td(E-P2Q)	Port P2 data output delay time				100	ns	
td(E-P3Q)	Port P3 data output delay time				100	ns	
td(E-P4Q)	Port P4 data output delay time	Figure 5.4.1			100	ns	
td(E-P5Q)	Port P5 data output delay time				100	ns	
td(E-P6Q)	Port P6 data output delay time				100	ns	
td(E-P7Q)	Port P7 data output delay time				100	ns	
td(E-P8Q)	Port P8 data output delay time				100	ns	

Memory expansion mode and microprocessor mode (when wait bit is "1")

Symbol	Parameter	Test conditions	Limits			Unit
Symbol	Falallelel	Test conditions	Min.	Тур.	Max.	Onit
td(POA-E)	Port P0 address output delay time *		30			ns
td(E-P1Q)	Port P1 data output delay time (BYTE="L")				80	ns
tpxz(E-P1Z)	Port P1 floating start delay time (BYTE="L")				40	ns
td(P1A-E)	Port P1 address output delay time *		30			ns
td(E-P2Q)	Port P2 data output delay time				80	ns
tPXZ(E-P2Z)	Port P2 floating start delay time				40	ns
td(P2A-E)	Port P2 address output delay time *		30			ns
td(E-HLDA)	HLDA output delay time				50	ns
td(ALE-E)	ALE output delay time		-10			ns
tw(ALE)	ALE pulse width *		40			ns
td(BHE-E)	BHE output delay time *		30			ns
td(R/W-E)	R/W output delay time *	Figure 5.4.1	30			ns
th(E-POA)	Port P0 address hold time		20			ns
th(E-P1A)	Port P1 address hold time (BYTE="L")		20			ns
th(E-P1Q)	Port P1 data hold time (BYTE="L")		20			ns
tPZX(E-P1Z)	Port P1 floating release delay time (BYTE="L")		20			ns
th(E-P1A)	Port P1 address hold time (BYTE="H")		20			ns
th(E-P2A)	Port P2 address hold time		20			ns
th(E-P2Q)	Port P2 data hold time		20			ns
tPZX(E-P2Z)	Port P2 floating release delay time]	20			ns
th(E-BHE)	BHE hold time	1	20			ns
th(E-R/W)	R/W hold time		20			ns

5.4 M37700M2AXXXFP DC/AC Characteristics

Symbol	Parameter	Test conditions		Limits		Unit
Symbol	Falameter		Min.	Тур.	Max.	
td(POA-E)	Port P0 address output delay time *		155			ns
td(E-P1Q)	Port P1 data output delay time (BYTE="L")				80	ns
tPXZ(E-P1Z)	Port P1 floating start delay time (BYTE="L")]			40	ns
td(P1A-E)	Port P1 address output delay time *		155			ns
td(E-P2Q)	Port P2 data output delay time				80	ns
tPXZ(E-P2Z)	Port P2 floating start delay time]			40	ns [·]
td(P2A-E)	Port P2 address output delay time *		155			ns
td(E-HLDA)	HLDA output delay time				50	ns
td(ALE-E)	ALE output delay time		-10			ns
tw(ALE)	ALE pulse width *		165			ns
td(BHE-E)	BHE output delay time *		155			ns
td(R/W-E)	R/W output delay time *	Figure 5.4.1	155			ns
th(E-P0A)	Port P0 address hold time		20			ns
th(E-P1A)	Port P1 address hold time (BYTE="L")		20			ns
th(E-P1Q)	Port P1 data hold time (BYTE="L")		20			ns
tPZX(E-P1Z)	Port P1 floating release delay time (BYTE="L")		20			ns
th(E-P1A)	Port P1 address hold time (BYTE="H")		20			ns
th(E-P2A)	Port P2 address hold time		20			ns
th(E-P2Q)	Port P2 data hold time		20			ns
tPZX(E-P2Z)	Port P2 floating release delay time		20			ns
th(E-BHE)	BHE hold time	1	20			ns
th(E-R/W)	R/W hold time]	20			ns

Memory expansion mode and microprocessor mode (when external memory area is accessed, and wait bit is "0")

* The value of port **Pi** address output delay time (i=0, 1, or 2), \overline{BHE} output delay time, R/W output delay time, and ALE pulse width are dependent on the clock oscillating frequency (f(XIN)), and these value are defined by the following expressions.

Symbol	Parameter	Wait bit ="1"	Wait bit ="0"
td(PiA-E)	Port Pi address output delay time		
td(BHE-E)	BHE output delay time	$30+(2 \times 10^{9}/f(X_{IN}))-125$ ns	155+(4 × 10 ⁹ /f(XiN))–250ns
td(R/W-E)	R/W output delay time		
tw(ALE)	ALE pulse width	$(1 \times 10^{9}/f(X_{IN}))-22.5ns$	$(3 \times 10^{9}/f(X_{IN}))-22.5$ ns

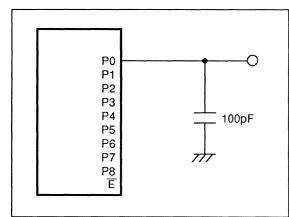
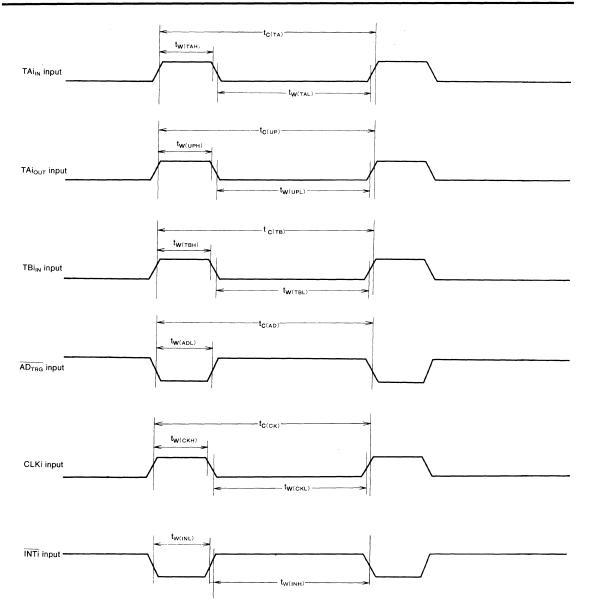



Fig.5.4.1 Testing Circuit for Ports P0~P8

CHAPTER 5.ELECTRICAL CHARACTERISTICS

5.5 Timing Diagrams

Single-chip mode	$t_r \rightarrow t_r \leftarrow t_r \leftarrow t_c \rightarrow t_{W(H)} \leftarrow t_{W(L)}$
$f(\mathbf{x_{IN}})$	
Ē	td(E-POQ)
Port P0 output	
Port P0 input	th(E−POD) td(E−P1Q)
Port P1 output	
Port P1 input	th(E−P1D) td(E−P2Q)
Port P2 output	t _{su(P2D-E)}
Port P2 input	th(E−P2D) td(E−P3Q)
Port P3 output	
Port P3 input	th(ε-psp) td(ε-p4q)
Port P4 output	
Port P4 input	th(E-P4D) td(E-P5Q)
Port P5 output	
Port P5 input Port P6 output	$\xrightarrow{ t_{h(E-PSD)}} t_{d(E-PSQ)}$
Port P6 input	
Port P7 output	
Port P7 input	tsu(P7D-E) + th(E-P7D)
Port P8 output	
Port P8 input	tsu(P80-E) th(E-P80)

157

CHAPTER 5.ELECTRICAL CHARACTERISTICS

$f_{(\mathbf{x}_{1N})}$					
Ē		th(E-POA)	<	td(poa-e)	/
Port P0 output $(A_0 \sim A_7)$	th(E-P1A)	Address		Address	
Port P1 output $(A_8 \sim A_{15}/D_8 \sim D_{15})$ (BYTE="L")	Address	Data	Address	┣┼	- Address
Port P1 output (A ₈ ~A ₁₅) (BYTE="H")	Х	th(E-P1A) Address		td(PIA-E) Address t _{SU(PID-E)}	th(E-P1D)
Port P1 input	t _{h(E-P2A)}		th(E−P2Q)	t _{PXZ.E-F2Z})	
Port P2 output ($A_{16} \sim A_{23}/D_0 \sim D_7$)	Address	Data	Address	td(P2A-E)	t _{PZX(E-P2Z)} Address
Port P2 input			< → td(e-hlda)	t _{su(P2D-E)}	\
Port P3 ₃ output (HLDA)	turres				
Port P3 ₂ output (ALE)				< ^t d(ale−e)	
Port P3 ₁ output			с.) t _{h(Е-вне)}		Y
(BHE)					
Port $P3_0$ output (R/ \overline{W})					
Port P4 ₁ input (RDY)			tsu(rdy-e)		

Memory expansion mode and microprocessor mode (when wait bit="1")

Test conditions

- Vcc=5V±10%
- Output timing voltage : VoL=0.8V, VoH=2.0V
- Ports P1 and P2 input : VIL=0.8V, VIH=2.5V
- Port P41 input : VIL=1.0V, VIH=4.0V

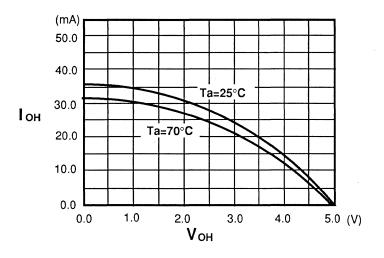
Memory expansion mode and microprocessor mode (when wait bit="0", and external memory area is accessed)

f(_{XIN})		μλλλ		$h \wedge h \wedge h$	
Ē		λ	ļ		/
Port P0 output (A₀∼A⁊)	χ	th(E-POA) Address		t _{d(POA-E)} Address	
Port P1 output ($A_8 \sim A_{15}/D_8 \sim D_{15}$ (BYTE="L")) Address	Data	th(E-PIQ)	t _{PXZ(E-P1Z)}	+ t _{PZX(E-P1Z)} - Address
Port P1 output $(A_8 \sim A_{15})$	χ	th(E-P1A) Address		t _{d(P1A-E)} Address	X
(BYTE="H") Port P1 input					th(E-P1D)
Port P2 output $(A_{16} \sim A_{23}/D_0 \sim D_7)$	Address	Data	Address	td(P2A-E)	Address th(E-P2D)
Port P2 input Port P3 ₃ output (HLDA)			td(e-hlda)	tsu(P2D-E)	\
				← ^t d(ALE←E)	
Port P3 ₂ output (ALE)	/ /	-	th(е-вне)		
Port P3 ₁ output (BHE)	X		Х		Х
Port P3 ₀ output (R/\overline{W})		-	th(E-R/W)		
Port P4 ₁ input (RDY)			tsu(rdy-e)		

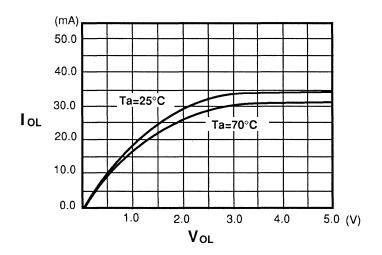
Test conditions

- Vcc=5V±10%
- Output timing voltage : VoL=0.8V, VoH=2.0V
- Ports P1 and P2 input : VIL=0.8V, VIH=2.5V
- Port P41 input : VIL=1.0V, VIH=4.0V

Memo

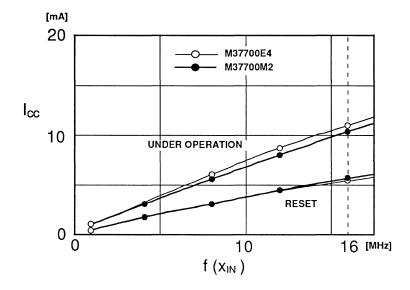

CHAPTER 6 STANDARD CHARACTERISTICS

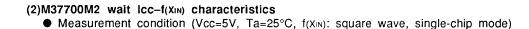
The data described in this chapter are characteristic examples and are not guaranteed values. Refer to "Chapter 5. Electrical Characteristics" for rated values.

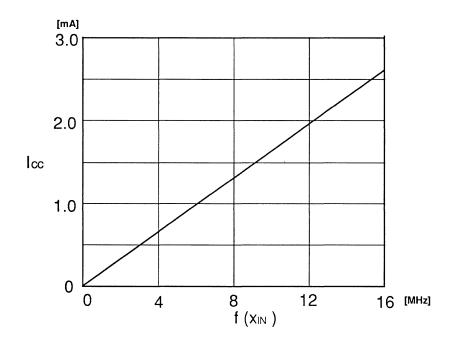

6.1 Standard Port Characteristics

(1)Programmable I/O port (CMOS output) P channel $I_{\text{OH}}-V_{\text{OH}}$ characteristics

Supply voltage Vcc=5V

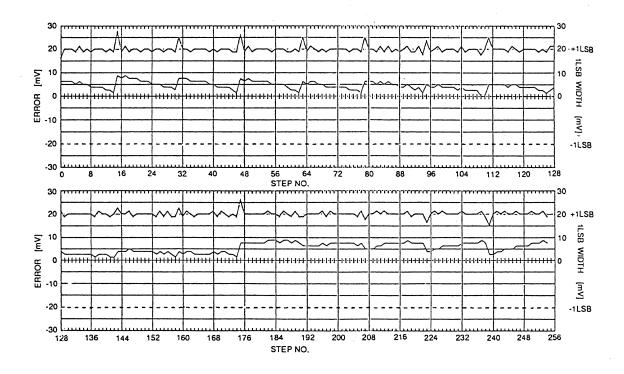

(2)Programmable I/O port (CMOS output) N channel IoL−VoL characteristics ● Supply voltage Vcc=5V




6.2 Icc-f(XIN) Standard Characteristics

(1)M37700M2 and M37700E4 operating and reset Icc-f(XIN) characteristics

• Measurement condition (Vcc=5V, Ta=25°C, f(XIN): square wave, single-chip mode)


CHAPTER 6.STANDARD CHARACTERISTICS

6.3 A-D Converter Standard Characteristics

The lines at the bottom of the graph indicate the absolute precision errors. These are expressed as the deviation from the ideal value when the output code changes. For example, the change in output code from 00₁₆ to 01₁₆ should occur at ANi=10mV, but the measured value is 6.5mV. Therefore, the measured point of change is 10+6.5=16.5mV.

The lines at the top of the graph indicate the input voltage width for which the output code is constant. For example, the measured input voltage width for which the output code is 0F₁₆ is 27.5mV. Therefore, the differential non-linear error is 27.5-20=7.5mV (0.375LSB).

- Vcc = 5.12[V]
- VREF = 5.12[V]
- XIN = 16[MHz]
- Temp. = 25[deg.]

CHAPTER 7 USAGE PRECAUTIONS

7.1 Software

Note the following when programming the M37700 and M37701 series of microprocessors.

7.1.1 Stack pointer (S)

The content of the stack pointer (S) is unpredictable immediately after a reset. Be sure to initialize it before using.

Example) LDX #27FH TXS

7.1.2 Program bank register (PG) and data bank register (DT)

When using in single-chip mode, do not set values other than "0016" in the program bank register and the data bank register.

7.1.3 Direct page register (DPR)

The execution cycle is reduced by one cycle, by setting the low-order 8-bits of the direct page register (DPRL) to "0016".

7.1.4 Processor status register (PS)

(1) Decimal mode flag (D flag)

When a decimal arithmetic operation is performed with the D flag set to "1", •Only the C flag is valid and the Z, N, and V flags are invalid for ADC instruction. •The C and Z flags are valid and the N and V flags are invalid for SBC instruction. Note: Only the ADC and SBC instructions can be used for decimal arithmetic.

(2) Data length selection flag (m) and index register length selection flag (x)

Using 16-bit immediate data with the m flag set to "1" (data length: 8-bits) or 8-bit immediate data with the m flag set to "0" (data length: 16-bits) will cause programs to run wild. The same is true for the index register length selection flag x. Check the status of these flags when writing programs.

7.1.5 Register save and restore instructions

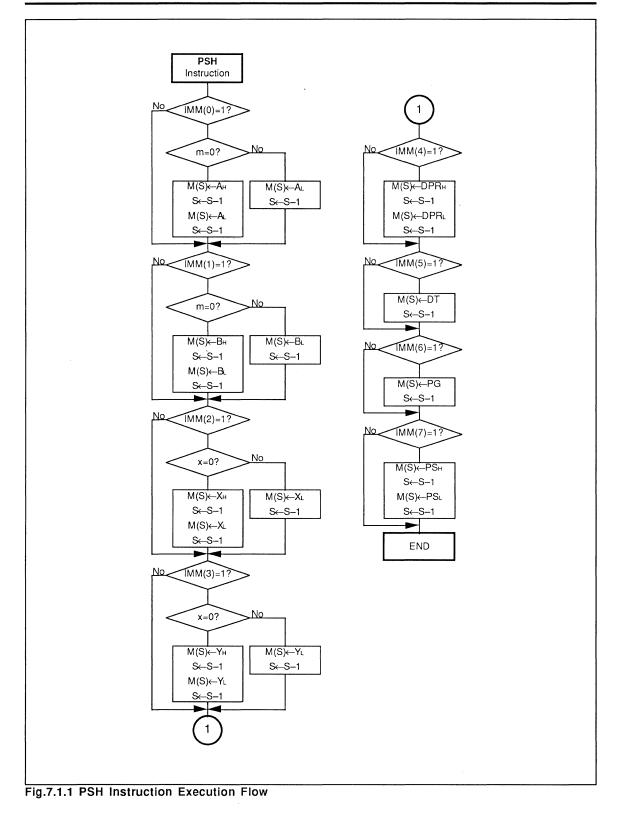
(1) Saving registers with PSH instruction and restoring registers with PUL instruction When saving and restoring registers with the PSH and PUL instructions, the accumulators A and B are affected by the data length selection flag m and the index registers X and Y are affected by the index register length selection flag x (see Figures 7.1.1 and 7.1.2).

(2) Restoring processor mode register and accumulator B with the PUL instruction When executing the PUL instruction with the data length selection flag m set to "0", if the processor

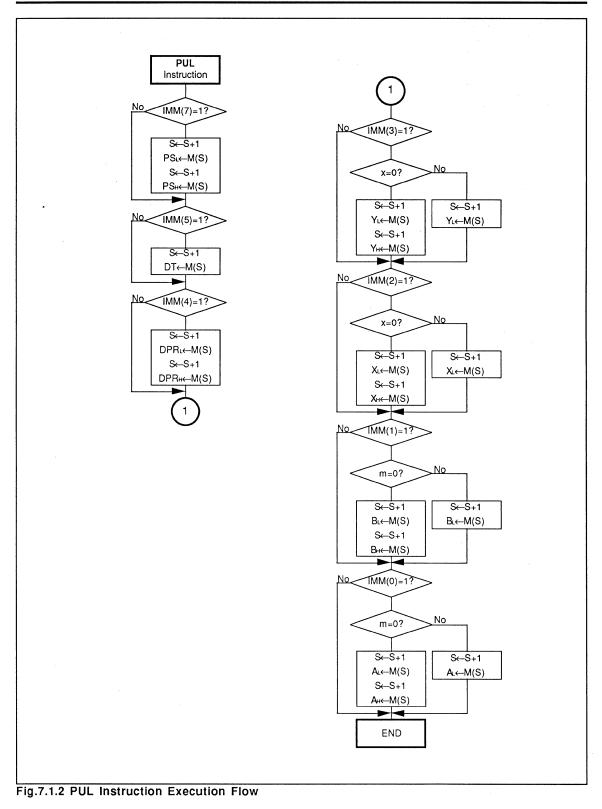
status register is included in the register to be restored and its data length selection flag m is set to "1", the high-order 8-bits of the accumulator B may change. In this case, save and restore the processor status register with separate instructions.

Example) PHP PSH A,B,X,Y ... PUL A,B,X,Y PLP

(3) PUL instruction


The N and Z flags change when the PLA instruction is executed, but the contents of the processor status register do not change if only accumulator A is restored with the PUL instruction.

Also, in addressing modes using the direct page register (DPR), the instruction execution cycle is reduced by one cycle if the content of the low-order 8 bits of DPR is "0016".


The subsequent instruction execution cycle may be not reduced when the PUL instruction is used to restore the DPR containing "0016". Therefore, do as follows:

Example)	PUL #X0X1XXXXB PRD	Restore registers including DPR; Save DHR;
	PLD	;Restore DPR

7.1 Software

CHAPTER 7.USAGE PRECAUTIONS

(4) PSH instruction

The program bank register PG can be saved to stack by setting the **PSH** instruction operand bit 6 to 1, but the **PUL** instruction cannot be used to restore PG.

7.1.6 Block transfer instructions (MVN, MVP)

With the block transfer instructions MVP and MVN, the content of accumulator A indicates the number of bytes to be transferred. For both the MVN and MVP instructions, the content of accumulator A is affected by flag m. The maximum number of bytes that can be transferred is 65535 bytes when m=0 and 255 bytes when m=1. Furthermore, no transfer is performed when the content of accumulator A is 0. Index registers X and Y indicate the transfer origin and destination addresses respectively and are affected by flag x. The transfer is within a 64K-byte address space when x=0 and within 256 bytes when x=1. When performing block transfer with x=1, the transfer is scrolled in cases such as shown Figure 7.1.3. Note that the data is overwritten if the number of transfer bytes is 256 bytes or more when m=0 and x=1.

Therefore, check the status of flags m and x when using the MVP or MVN instruction.

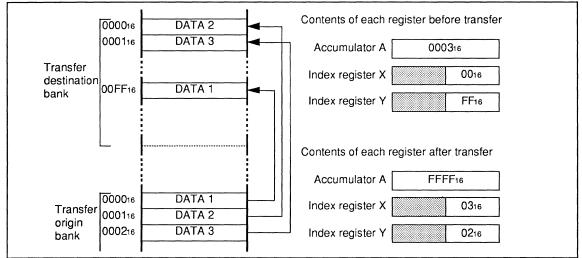


Fig.7.1.3 MVN Instruction Execution Example (when x=1)

7.1.7 BRK instruction

The CPU is unaffected regardless of the content of the second byte of the BRK instruction.

7.1.8 BRA instruction

Long relative branch with BRA instruction can only be used within bank 0.

7.1.9 Instruction execution time (instruction execution cycle)

(1) Time required for instruction execution

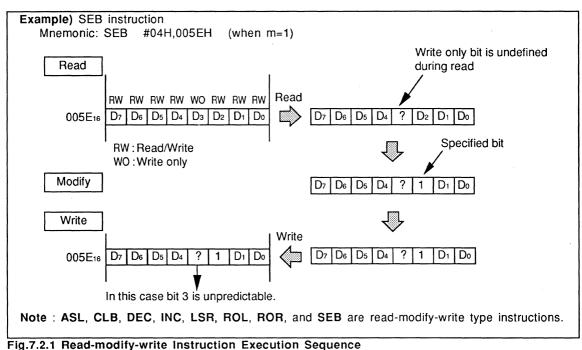
The MELPS 7700 Series uses a three byte instruction queue buffer and performs instruction prefetch to increase processing speed. Therefore, the number of instruction execution cycles depend on the amount of data in the instruction queue buffer. When programming timers, note that the number of cycles shown in the list of machine instructions are for the shortest case. (See "MELPS 7700 <SOFTWARE> User's Manual")

Also, when creating ROMs, note that except when using 16-bit bus width (BYTE="L") and no wait (no software wait or hardware wait due to $\overline{\text{RDY}}$ pin) in memory expansion or microprocessor mode, the execution time required to fetch programs from internal ROM is different from that for external ROM.

(2) 16-bit data access

When accessing 16-bit data, the processing speed can be increased by aligning the data on even number address.

7.2.Hardware


7.2.1 Memory related features

(1) Special function registers

The special function registers located at addresses 0₁₆ to 7F₁₆ are used to control internal devices such as timers and serial I/O. The bits of these registers are classified into read only, write only, and read/write bits. An attempt to write to a read only bit is ignored and the result of reading a write only bit is unpredictable (there are exceptions).

Read-modify-write type instructions such as CLB or SEB must not be used when modifying the content of a register containing write only bits or when one of the unspecified bits (see Figure 7.2.1) returns an unpredictable result when read. In these cases, use the LDM or STA instruction.

- Note : Do not use a CLB or SEB instruction for the following registers:
 - •One-shot start flag (Address 4216)

Processor mode register (Address 5E16)

(2) Wait bit

The wait bit is cleared to "0" at reset and program execution starts in one-shot wait mode (\overline{E} output pulse width is doubled during external area access). Single-chip mode is unaffected by this bit, but in memory expansion and microprocessor modes, the wait bit must be switched from a program when externally expanded memory or I/O satisfies the timing specification without wait.

7.2.2 Input/Output pin related features

(1) Double function port

When a double function pin that acts as an input pin to internal device and as a programmable I/ O pin is used as input pin to internal device, the data direction register of the corresponding port must be set to input mode before selecting the function.

For ports that are shared as internal device output pin, the pin is forced as output when the function is selected regardless of the content of the corresponding data direction register.

(2) Memory expansion mode and microprocessor mode

In memory expansion and microprocessor mode, the data direction registers for ports P4₀ and P4₁ must be set to input mode. (All programmable I/O pins are set to input mode at reset.)

7.2.3 Interrupts

The priority detection time selection bits (bits 5 and 4) in the processor mode register are both set to "0" at reset to select the longest interval. The shortest priority detection time can be used for the M37700 family. Therefore, if execution is to be performed immediately after accepting an interrupt, bit 5 should be set to "1" and bit 4 should be set to "0". Furthermore, the interrupt request bit of the M37700 and M37701 can be set and cleared by software.

7.2.4 Timers related features

(1) Reading a timer that is operating

To read a timer that is operating, set flag m to "0" and read all 16 bits of the timer register at once.

(2) One-shot start flag

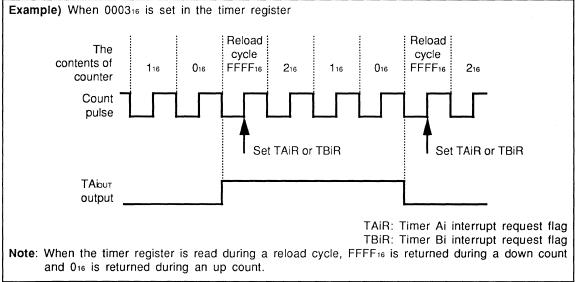
Bit 7 of the one-shot start flag (42_{16}) must be set to "0" regardless of whether the timer is used or not (this bit is set to "0" at reset).

(3) Up-Down flag

When the two-phase pulse signal processing function (valid only in event counter mode) is not used, bits 7 to 5 of the up-down flag (44₁₆) must be set to "0".

(4) Writing to timer register

When a value is written in the timer while it is operating, the count start flag is cleared to "0" and the timer stops (except in PWM mode). To resume count, set the count start flag of the corresponding timer to "1".


(5) Timer interrupt request timing for timer A and timer B

•Timer mode and event counter mode for timer A and timer B

The interrupt request flag is set at the timing shown in Figure 7.2.2.

•Timer A one-shot pulse mode and PWM mode

The interrupt request flag is set as soon as the pulse output from pin TAiout falls.

Fig.7.2.2 Interrupt Request Generation Timing in Timer Mode and Event Counter Mode

CHAPTER 7.USAGE PRECAUTIONS

(6) Changing counter direction in timer A event counter mode

In event counter mode, the input signal to the TAiout pin should be internally synchronized with the event input (input signal to TAiN pin) so that the counter direction can be changed externally with the input signal from the TAiout pin.

- •When the falling edge is selected, the input level of the TAiout pin is captured while the TAin pin input signal is "L" and that level becomes effective when the input signal becomes "H".
- •When the rising edge is selected, the input level of the TAiour pin is captured while the TAin pin input signal is "H" and that level becomes effective when the input signal becomes "L".

Therefore, in case such as shown in Figure 7.2.3, there is a displacement in the counter values (the same is true when the counter direction is changed with software). Thus the recommended relationship between up/down switching input and event input is as follows:

When the falling edge is selected, switch direction while the TAin pin input signal is at "L".
 When the rising edge is selected, switch direction while the TAin pin input signal is at "H".

Figure 7.2.4 shows the recommended waveform when the rising edge is selected. Furthermore, the count start flag should be set after the up/down input level has been established (see Figure 7.2.5).

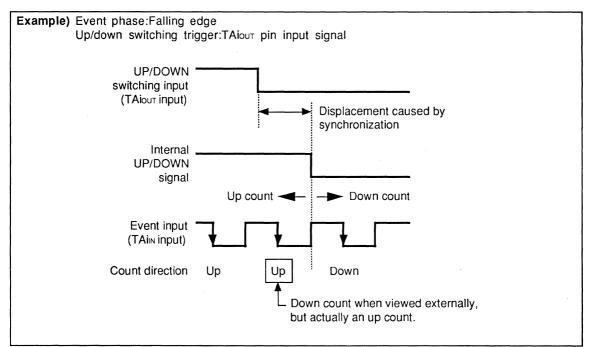


Fig.7.2.3 Displacement Caused by Up/Down Switching

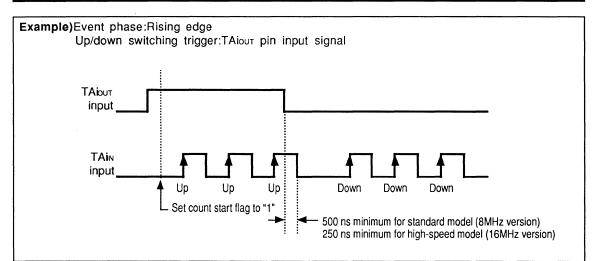


Fig.7.2.4 Recommended Waveform for Up/Down Switching Input and Event Input

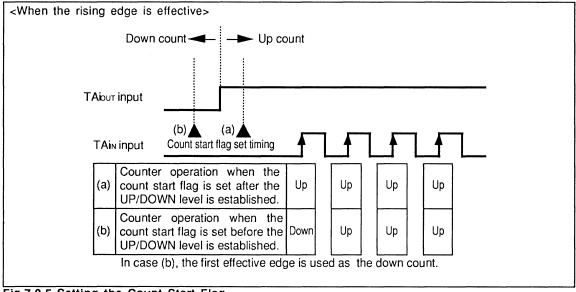


Fig.7.2.5 Setting the Count Start Flag

CHAPTER 7.USAGE PRECAUTIONS

(7) Two-phase pulse signal processing function in timer A event counter mode

When the two-phase pulse signal processing function is selected in event counter mode and the input pulse changes direction at the timing shown in Figure 7.2.6, an error occurs in the counter value.

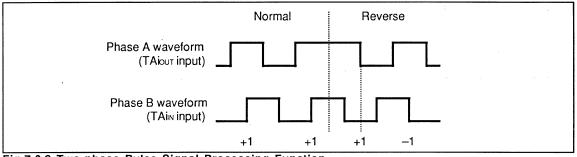


Fig.7.2.6 Two-phase Pulse Signal Processing Function

Therefore, do as follows in a system that requires the two-phase signal processing of input pulse changing direction.

Disable timer Ai two-phase pulse signal processing function, and use the normal event counter mode. Select the falling edge as the effective edge and select an external up/down switching trigger. Externally connect the circuit shown in Figure 7.2.7 and perform the count shown in Figure 7.2.8 using this circuit. Set the "H" and "L" width of phase A and phase B to at least 1 µs.

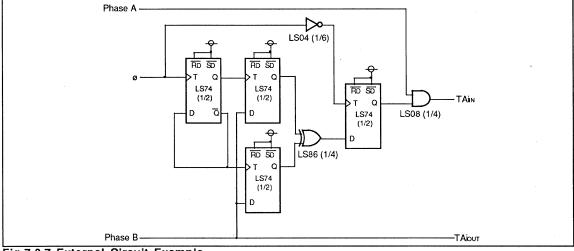
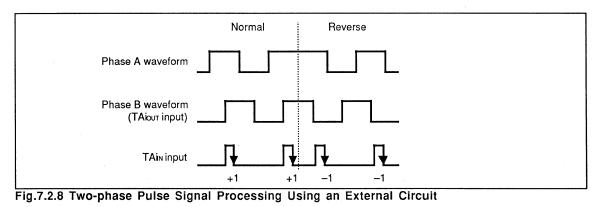



Fig.7.2.7 External Circuit Example

(8) Timer A one-shot pulse mode

When "0016" is set in low-order 8 bits of the timer Ai register in one-shot pulse mode, pulse output is performed normally at the first start trigger and the pulse width is incorrect for the subsequent triggers. In this case, reset the value immediately after one-shot pulse output, set the count start flag to "1" (count enabled), and wait for the next trigger.

Furthermore, if the timer Ai mode register bit 2 is set to "0" during timer A one-shot pulse output mode, the external output is disabled and the corresponding port can be used as a programmable I/O pin.

(9) Start trigger for Timer A one-shot pulse mode and PWM mode

Note that the start trigger is synchronized to the timer count pulse and if a low frequency count pulse is selected, it may take some time for a pulse to be generated after a trigger is issued.

(10) Updating output pulse width in timer A PWM mode

When changing the content of timer Ai register (changing output pulse width) during PWM output interval, it should be performed while the PWM output is "L". If the content of the timer Ai register is changed while the PWM output is "H", the "L" width becomes the inverse of the updated value as shown in Figure 7.2.9 and the pulse cycle will be different from the rest.

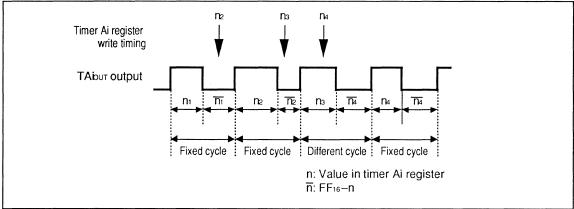


Fig.7.2.9 Output Pulse Cycle in PWM Mode

CHAPTER 7.USAGE PRECAUTIONS

(11) Pulse output start in timer A PWM mode

The interval between a trigger and the actual PWM output differs between 16-bit PWM mode and 8-bit PWM mode.

●In 16-bit PWM mode

PWM output starts immediately after a trigger as shown in Figure 7.2.10. However, the start trigger is internally synchronized and depending on the count source, it may take some time for the pulse output to start (see section 7.2.4 (9)).

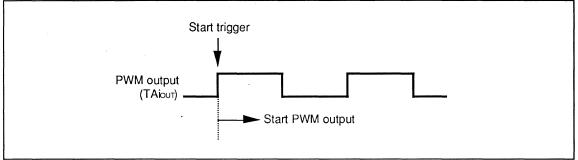


Fig.7.2.10 Pulse Output Start in 16-bit PWM Mode

●In 8-bit PWM mode

PWM output starts after "L" level is output for n to n+1 cycles (proportional to the prescaler value) as shown in Figure 7.2.11.

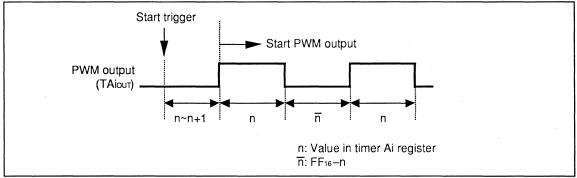


Fig.7.2.11 Pulse Output Start in 8-bit PWM Mode

7.2.5 Serial I/O

(1) Clock synchronous serial I/O

In this mode, the transmitter must be operating even in receive only mode because the receive clock for serial data input is generated by the transmitter.

(2) UART mode

Error detection must be performed before reading the receive buffer register because the error flags in the transmission control register 1 are initialized when the receive buffer register is read.

7.2.6 A-D conversion

If the conversion speed is of priority, set A-D control register bit 7 (A-D conversion frequency selection flag) to "1" from a program because this bit is initialized to "0" at reset and the slowest clock is selected.

7.2.7 Watchdog Timer

When the watchdog timer is disabled by applying $2 \times V_{cc}$ to the RESET pin, a watchdog timer interrupt may occur if the rise of the 10V ($2 \times V_{cc}$) applied to the RESET pin is later than the rise of the 5V power supply voltage. In this case, do as follows:

a) Program to set software reset bit to "1" in the watchdog timer interrupt routine.

b)Set the content of the watchdog timer interrupt vector equal to the reset vector.

7.2.8 Reset Related Features

If the oscillator is stable, the microcomputer can be reset by applying "L" level for a minimum of 2µs to the RESET pin. However, for power-on reset or reset while executing an **STP** instruction, the "L" level must be sufficiently long (approximately 10ms).

7.2.9 Microcomputer Status During Stop, Wait, One-shot Wait, Ready, and Hold

Table 7.2.1 shows the microcomputer status during stop, wait, one-shot wait, ready, and hold.

Table 7.2.1 Microcomputer Status During Stop, Wait, One-shot Wait, Ready, and Hold

Status Parameter	Enabling condition	Oscillator (Note 1)	ø output	Eoutput	Port status	Watchdog timer status	Status reset
STP instruction (stop mode)	Specify 'STP instruction enabled" on the mask ROM confirmation form.	Halted	Halt at "L"	Halt at "H" or "L"	Retain bus and port status when the STP instruction is executed (Note 2)	Halt (set "FFF16" in watchdog timer and select count source b2)	Reset or external interrupt (INT or serial I/O using external clock, timer A and B with event counter mode)
WIT instruction (wait mode)	Enabled in all modes	Operating	Operating	Halt at "H" or "L"	Retain bus and port status when the WIT instruction is executed (Note 2)	Operating	Reset or hardware interrup
Wait bit (one-shot wait mode)	Access external area with processor mode register bit 2 set to "0"	Operating	Operating	"H" or "L" pulse width is doubled during external area access		Operating	Set processor mode register bit 2 to "1"
RDY input (ready status)	During memory expansion mode or microprocessor mode	Operating	Operating	Halt at "H" or "L"	Retain bus and port status when "L" level is applied	Operating	When RDY input returns to "H"
HOLD input (hold status)	During memory expansion mode or microprocessor mode	Operating	Operating	Halt at "H"	Ports P0, P1, P2, P3o, and P3i are floating. Ports P32 and P33 hait at "L". Ports P43 to P4, P5, P6, P7, and P8 retain port status when "L" is applied.	Halted	When HOLD input returns to "H"

Note 1 : Timer A, timer B, serial I/O, and A-D converter can be used when oscillating.

Note 2 : If there is an instruction to change the port output or RAM content just before an STP or WIT instruction, the port output or the RAM content might not be changed. In this case, insert the number of NOP instruction, as shows the following, before the STP or WIT instruction to adjust the execution timing.

•The data is written into internal RAM or SFR	.One	NOP	instruction
•The data is written into external memory or I/O without one-shot wait	One	NOP	instruction
•The data is written into external memory or I/O with one-shot wait	Three		P instructions

•The data is written into external memory or I/O with one-shot wait......Three NOP instructions

MEMO

CHAPTER 8 TREATMENT OF INTERNAL PROM TYPE

CHAPTER 8.TREATMENT OF INTERNAL PROM TYPE

8.1 Description

The M37700E2-XXXFP/M37700E4-XXXFP (one-time PROM) and M37700E2FS/M37700E4FS (EPROM) are microcomputers with a built-in programmable ROM (PROM). Each has a high-speed version using a 16MHz external clock. By using a program writing adapter (note 1), normal PROM writers can be used to write programs in the PROM of these microprocessors. Therefore, these microprocessors are suitable for small volume/large variety productions. The one-time PROM type enables programs to be written once. The EPROM type enables programs to be erased by exposing the erase window on top of the package to an ultra-violet light. Therefore, it is suited for program development and prototype use. Table 8.1.1 shows the PROM types of the M37700 family. A corresponding PROM type is available for each mask ROM type with the same amount of memory. These products have identical functions with only differences among them being the ROM type and supply voltage (EPROM types have different package). The EPROM types use a ceramic LCC package, but the foot pattern can be made equal to an 80-pin plastic molded QFP type by using a special IC socket.

Built-in PRO	И Туре	External clock	Memory Si	ize (Bytes)	Corresponding mask
One-time PROM type	EPROM type	input frequency	PROM	RAM	ROM type
M37700E2-XXXFP	M37700E2FS	8MHz	16K	512	M37700M2-XXXFP
M37700E2AXXXFP	M37700E2AFS	16MHz			M37700M2AXXXFP
M37700E4-XXXFP	M37700E4FS	8MHz	32K	2K	M37700M4-XXXFP
M37700E4AXXXFP	M37700E4AFS	16MHz			M37700M4AXXXFP

Table 8.1.1 M37700 Family Built-in PROM Types

Table 8.1.2 Difference between Built-in PROM Type and Mask ROM Type

Parameter	PROM type	Mask ROM type
ROM type	One-time PROM or EPROM	Mask ROM
Supply voltage Vcc	5V±5%	5V±10%

Note 1. The following write adapters are available for the built-in PROM type.

Туре	Package	Program writing adapter
One-time PROM type	80-pin plastic molded QFP (80P6)	PCA4707
EPROM type	80-pin ceramic LCC (80D0)	PCA4708

8.2 Functional Description

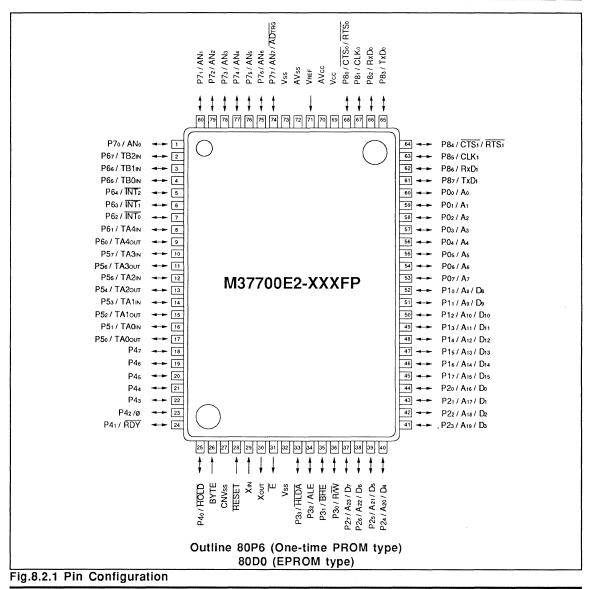

Figure 8.2.1 shows the pin connection diagram of the built-in PROM type. The pin arrangement is identical to the mask ROM type. The built-in PROM types have a normal operating mode which provides the same functions as the mask ROM type and an EPROM mode used to write to the PROM. The pin functions depend on the mode. In normal operation mode, the pin functions are equivalent to the corresponding mask ROM type. Table 8.2.1 shows the function of each pin in EPROM mode.

Table 8.2.1 Pin Description in EPROM Mode

Pin	Name	Input/Output	Functions
Vcc, Vss	Power supply		Supply 5V±5% to Vcc and 0V to Vss.
CNVss	VPP input	Input	Connect to VPP when programming or verifying.
BYTE	VPP input	Input	Connect to VPP when programming or verifying.
RESET	Reset input	Input	Connect to Vss.
Xin	Clock input	Input	Connect a ceramic or quartz crystal resonator between XIN and XOUT. When an external clock is
Xout	Clock output	Output	used, the clock source should be connected to the XIN pin and the XOUT pin should be left open.
E	Enable output	Output	Open.
AVcc, AVs	s Analog power supply input		Externally connect AVcc to Vcc and AVss to Vss.

8.2 Functional Description

Pin	Name	Input/Output	Functions
VREF	Reference voltage input	Input	Connect to Vss.
P00~P07	Address input	Input	The low-order 8-bit (A7~A0) address input pins.
P10~P17	Address input	Input	P10~P16 are high-order 7-bit address input pins.
			Connect P17 to Vcc.
P20~P27	Data input/output	1/0	8-bit data (Do~D7) input/output pins.
P3₀~P3₃	Input port P3	Input	Connect to Vss.
P40~P47	Input port P4	Input	Connect to Vss.
P50~P57	Control input	Input	P51 and P52 function as OE and CE input. Connect
			P50, P53, P54, and P55 to Vcc, and P56 and P57 to
			Vss.
P60~P67	Input port P6	Input	Connect to Vss.
P70~P77	Input port P7	Input	Connect to Vss.
P80~P87	Input port P8	Input	Connect to Vss.

8.3 EPROM Mode

The EPROM mode is entered by pulling the RESET pin "L". In EPROM mode, ports P0, P1, P2, P51, P52 and pins CNVss and BYTE become EPROM pins (M5M27C256K equivalent) and read/write to built-in PROM can be performed in the same manner as for M5M27C256K. However, there is no device identification code. Therefore, program conditions must be set carefully. XIN and XOUT pins must be connected to a clock (ceramic resonator or an external input).

Table 8.3.1 shows the pin assignments in EPROM mode and Figure 8.3.1 shows the pin connections in EPROM mode.

The program area should specify the following:

Addresses 400016~7FFF16 for M37700E2-XXXFP, M37700E2AXXXFP, M37700E2FS, M37700E2AFS Addresses 000016~7FFF16 for M37700E4-XXXFP, M37700E4AXXXFP, M37700E4FS, M37700E4AFS

	Built-in PROM type	M5M27C256K
Vcc	Vcc	Vcc
Vpp	CNVss, BYTE	Vpp
Vss	Vss	Vss
Address input	Ports P0, P1o~P16	A0~A14
Data I/O	Port P2	D0~D7
CE	P52	CE
OE	P51	ŌĒ

Table 8.3.1 Pin Assignments in EPROM Mode

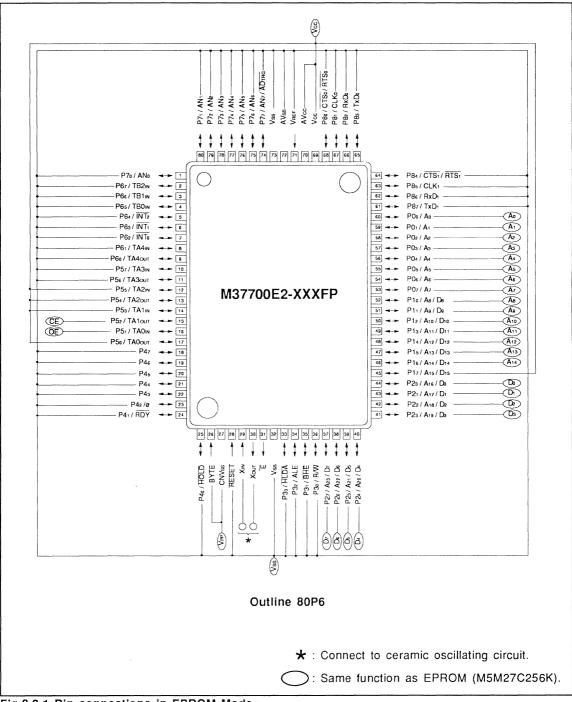
(1) Read

To read the EPROM, set the \overline{CE} and \overline{OE} pins to "L" level and input the address of the data (A₀~A₁₄) to be read. The data will be output to the I/O pins D₀~D₇. The data I/O pins will be floating when either the \overline{CE} or \overline{OE} pin is at "H".

(2) Write

To write to the EPROM, set the \overline{OE} pin to "H" level. The CPU enters the program mode when V_{PP} is applied to the V_{PP} pin. Set the address to be written to with pins A₀~A₁₄ and input the data to be written through pins D₀~D₇. The data is written when the \overline{CE} pin is pulled to "L" level.

(3) Erase (EPROM type only)


The program is erased by exposing the glass window on top to an ultra-violet light having a wave length of 2537 Angstrom. The light must be at least 15W S/cm².


				Data 1/0
CE	OE	VPP	Vcc	Data I/O
VIL	VIL	5V	5V	Output
VIL	Vін	5V	5V	Floating
Viн	Х	5V	5V	Floating
VIL	Vін	12.5V	6V	Input
Vін	VIL	12.5V	6V	Output
Vін	Vін	12.5V	6V	Floating
	VIL VIH VIL VIH	VIL VIL VIL VIH VIH X VIL VIH VIL VIH VIL VIH VIH VIH	VIL VIL 5V VIL VIH 5V VIH X 5V VIH X 5V VIL VIH 12.5V VIH VIL 12.5V	VIL VIL 5V 5V VIL VIH 5V 5V VIH X 5V 5V VIH X 5V 6V VIL VIH 12.5V 6V VIH VIL 12.5V 6V

Table 8.3.2 Input/Output Signals in Each Mode

Note: An X indicates either VIL or VIH.

8.3 EPROM Mode

CHAPTER 8.TREATMENT OF INTERNAL PROM TYPE

8.4 Fast Programming Algorithm

To program the built-in PROM type using a fast programming algorithm, first set Vcc=6V, VPP=12.5V, and address to 0_{16} . Then apply a 1ms write pulse, check that the data can be read, and if it cannot be read, repeat the procedure until the data can be read. Record the number of pulses applied (N) before the data was read and then write the data again, further applying three times the number of pulses (3 x N ms). When this series of write operation is complete, increment the address and repeat the above procedure until the last address is reached.

Finally, after writing to all addresses, read with Vcc=VPP=5V (or Vcc=VPP=5.25V).

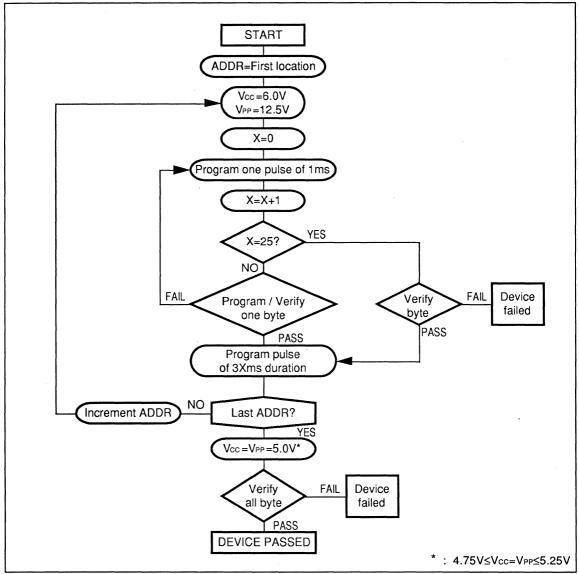
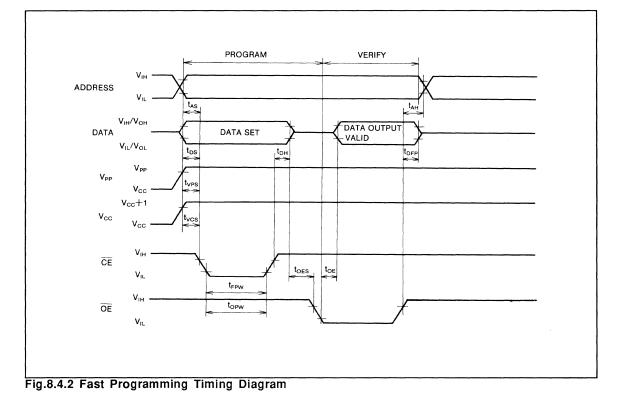



Fig.8.4.1 Fast Programming Algorithm Flow Chart

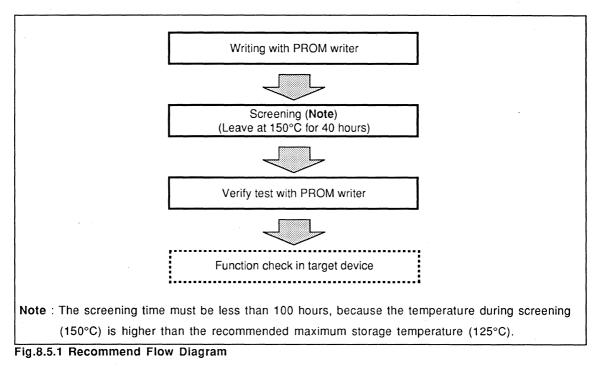
8.4 Fast Programming Algorithm

Fast Program Operation Table 8.4.1 AC Electrical Characteristics (Ta=25±5°C, Vcc=6V±0.25V, VPP=12.5±0.3V, unless otherwise noted)

0	Deservation		Limits		11	
Symbol Parameter		Min.	Тур.	Max.	Unit	
tas	Address setup time	2			μs	
toes	OE setup time	2			μs	
tos	Data setup time	2			μs	
taн	Address hold time	0			μs	
tон	Data hold time	2			μs	
tofp	Output enable to output float delay	0		130	ns	
tvcs	Vcc setup time	2			μs	
tvps	VPP setup time	2			μs	
tfpw	CE initial program pulse width	0.95	1	1.05	ms	
topw	CE over program pulse width	2.85		78.75	ms	
toe	Data valid from OE			150	ns	

CHAPTER 8.TREATMENT OF INTERNAL PROM TYPE

8.5 Notes


8.5.1 Notes on all built-in PROM types

High voltage is required to write to the built-in PROM. However, be careful not to apply excessive voltage. Be especially careful during power-on.

8.5.2 Notes on one-time PROM type

User programmable one-time PROM types (M37700E2FP, M37700E2AFP, M37700E4FP, and M37700E4AFP) are not given write test and screening after assembly.

To improve their reliability after writing, we recommend that they are written and tested as shown in the flow diagram below before use.

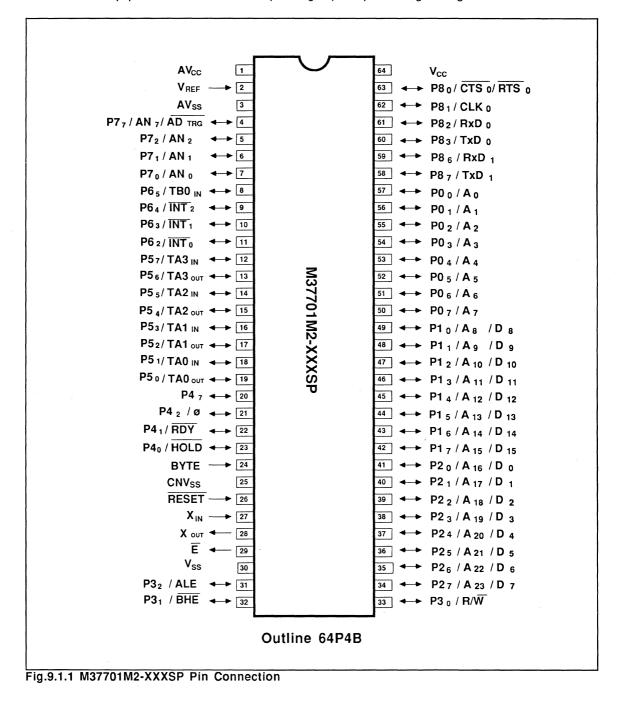
8.5.3 Notes on EPROM type

•Cover the transparent glass window during read mode because exposing to sun light or fluorescent lamp can cause the information to be erased.

•A shield to cover the transparent window is available from Mitsubishi. Be careful that the shield does not touch the microcomputer lead pins.

•Clean the transparent glass when erasing. If the window is unclean, erasing may be incomplete.

•The EPROM type is enclosed in an 80-pin ceramic LCC package. However, a special IC socket can be used to make the foot pattern similar to the 80-pin QFP type so that it can be used as a prototype for the mask ROM type.


CHAPTER 9 M37701M2-XXXSP

CHAPTER 9.M37701M2-XXXSP

9.1 Description

The M37701M2-XXXFP is a 16-bit single-chip microcomputer designed with high-performance CMOS silicon gate technology. It is housed in a 64-pin shrink plastic molded DIP.

This single-chip microcomputer has a large 16M-byte addressable space, three instruction queue buffers, and two data buffers for high-speed instruction execution. The CPU is a 16-bit parallel processor that can also be switched to perform 8-bit parallel processing. This microcomputer is suitable for office, business, and industrial equipment controllers that require high-speed processing of large data.

9.2 M37701 Family

The M37701M2-XXXSP of products is equal to the M37700M2-XXXFP enclosed in a 64-pin shrink plastic molded DIP. The M37701 family includes the types shown in table 9.2.1. All of these types are pin compatible with each other. Only the memory type, size, and operating clock are different. The user can select the element best suited for his use.

Type name	ROM size (bytes)	RAM size (bytes)	Clock frequency (MHz)
M37701M2-XXXSP	16K (Mask ROM)	512	8
M37701M2AXXXSP	16K (Mask ROM)	512	16
M37701SSP		512	8
M37701SASP		512	16
M37701E2-XXXSP	16K (One-time PROM)	512	8
M37701E2AXXXSP	16K (One-time PROM)	512	16
M37701M4-XXXSP	32K (Mask ROM)	2048	8
M37701M4AXXXSP	32K (Mask ROM)	2048	16
M37701S4SP		2048	8
M37701S4ASP		2048	16
M37701E4-XXXSP	32K (One-time PROM)	2048	8
M37701E4AXXXSP	32K (One-time PROM)	2048	16

Table 9.2.1 M37701 Family

9.3 M37701M2-XXXSP Characteristics

•Number of basic inst	ructions	
●Memory size	ROM	16K bytes
	RAM	
●Instruction execution	time (shortest instruction at 8MHz)	
•Single power supply.	·····	5V±10%
	n (at 8MHz)	
Interrupts		
●Multi-function16-bit til	mers	
●8-bit A-D converter		4 channel input
Watchdog timer		
●Programmable I/O (p	orts P0, P1, P2, P3, P4, P5, P6, P7, and P8)	53

CHAPTER 9.M37701M2-XXXSP

9.4 M37701M2-XXXSP Performance Overview

Table 9.4.1 shows the performance overview of the M37701M2-XXXSP.

Table 9.4.1 M37701M2-XXXSP Performance Overview

Parameters		Functions	
Number of basic instructions		103	
Instruction execution time	M37701M2-XXXSP	500ns (shortest instruction at 8MHz frequency)	
	M37701M2AXXXSP	250ns (shortest instruction at 16MHz frequency)	
Clock frequency	M37701M2-XXXSP	8MHz (maximum)	
	M37701M2AXXXSP	16MHz (maximum)	
Memory size	ROM	16384 bytes	
	RAM	512 bytes	
Input/Output ports	Ports P0, P1, P2, P5	8 bits x 4	
	Port P8	6 bits x 1	
	Ports P4, P6, P7	4 bits x 3	
	Port P3	3 bits x 1	
Multi-function timers	TA0, TA1, TA2, TA3, TA4	16 bits x 5(4 with I/O functions and 1 internal timer)	
	TB0, TB1, TB2	16 bits x 3(1 with I/O functions and 2 internal timers)	
Serial I/O		Clock asynchronous serial I/O x 2	
		(UART0 can also be used as clock synchronous)	
A-D converter		8 bits x 1 (4 channels)	
Watchdog timer		12 bits x 1	
Interrupts		3 external, 16 internal (priority levels 0 to 7	
		can be set for each interrupt with software)	
Clock generating circuit		Built-in (externally connected to a ceramic	
	·	resonator or quartz crystal resonator)	
Supply voltage		5V±10%	
Power dissipation		30mW (at external 8MHz frequency)	
Input/Output characteristics	Input/Output voltage	5V	
	Output current	5mA	
Memory expansion		Maximum 16M bytes	
Operating temperature range)	–10 to 70°C	
Device structure		CMOS high-performance silicon gate process	
Package		64-pin shrink plastic molded DIP	

9.5 Differences Between M37701M2-XXXSP and M37700M2-XXXFP

Table 9.5.1 shows the differences between M37701M2-XXXSP and M37700M2-XXXFP.

Func	tions		M37701M2-XXXSP	M37700M2-XXXFP
I/O ports			53 (in single-chip mode)	68 (in single-chip mode)
	Port P0		8 bits	8 bits
	Port P1		8 bits	8 bits
	Port P2		8 bits	8 bits
	Port P3		3 bits (P3 ₃ /HLDA unavailable)	4 bits
	Port P4		4 bits (P43~P46 unavailable)	8 bits
	Port P5		8 bits	8 bits
	Port P6	-	4 bits (P60, P61, P66, and P67 unavailable)	8 bits
	Port P7		4 bits (P7₃~P76 unavailable)	8 bits
	Port P8		6 bits (P8₄ and P8₅ unavailable)	8 bits
Timers			16 bits \times 8	16 bits \times 8
	Timer A	TA0	Timer I/O pins available	Timer I/O pins available
		TA1	Input=TAin, output=TAiout (i=0~3)	Input=TAi _{IN} , output=TAiout (i=0~4)
		TA2		
		ТАЗ		
		TA4	Internal timer (TA4IN and TA4out unavailable)	
	Timer B	TB0	Timer input pin (TB0IN) available	Timer input pin (TBin) available
		TB1	Internal timer (TB1IN and TB2IN	(i=0~2)
		TB2	unavailable)	
Serial I/O			2	2
	UART0		Clock asynchronous/synchronous serial I/O	Clock asynchronous/synchronous serial I/O
	UART1		Clock asynchronous serial I/O	
	UARTI		Clock asynchronous senar no	Clock asynchronous/synchronous
A-D converter	1		One 8-bit resolution	One 8-bit resolution
A-D converter				
			4-channel analog input pin	8-channel analog input pin
			AN_0 , AN_1 , AN_2 , AN_7	AN_0 , AN_1 , AN_2 , AN_3
			(AN₃~AN₅ unavailable)	AN4, AN5, AN6, AN7
			Note : Pin AN ₇ is in common with	Note : Pin AN7 is in common with
<u>_</u>			external trigger pin.	external trigger pin.
Package			64-pin shrink plastic molded DIP (64P4B)	80-pin plastic molded QFP (80P6)

Table 9.5.1 Differences between M37701M2-XXXSP and M37700M2-XXXFP

CHAPTER 9.M37701M2-XXXSP

9.6 M37701 Functional Description

The internal circuit of the M37701M2-XXXSP is identical to that of the M37700M2-XXXFP including the control registers and memory allocation in SFR area. However, since the M37701M2-XXXSP has only 64 pins, some I/O pins are not provided externally. Therefore, there are some restrictions in the I/O ports and built-in peripheral device functions. Otherwise it can be used in the same manner as the M37700M2-XXXFP. The precautions when using each function are as follows.

9.6.1 A-D converter

The analog selection bit in the A-D control register must be "000", "001", "010", or "111" because analog inputs are $AN_0 \sim AN_2$ and AN_7 (four channels).

The A-D conversion time for sweep mode is the same as that of the M37700 family. The contents of A-D registers 3~6 are unpredictable in sweep mode.

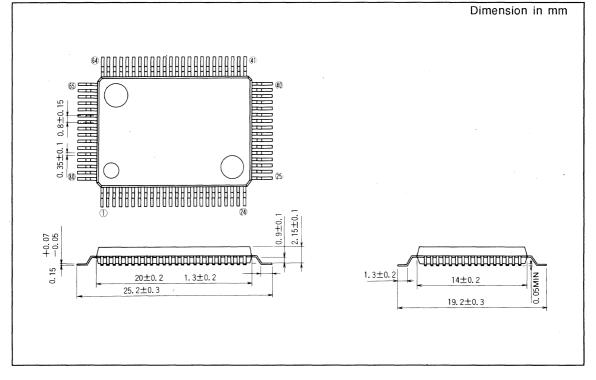
9.6.2 Timers

Timers TA4, TB1, and TB2 are internal timers without I/O. Do not select the timer I/O functions for the I/O pins in the timer Ai (i=4) or Bi (i=1, 2) mode register.

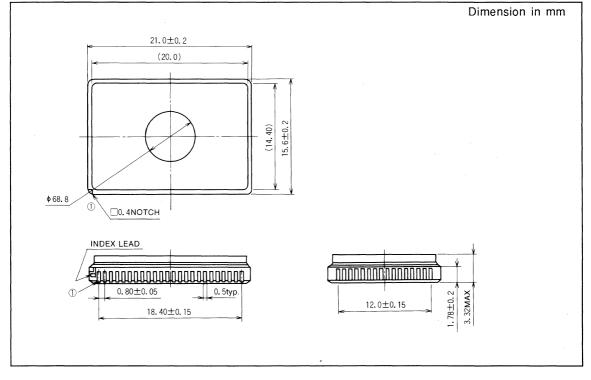
9.6.3 Serial I/O

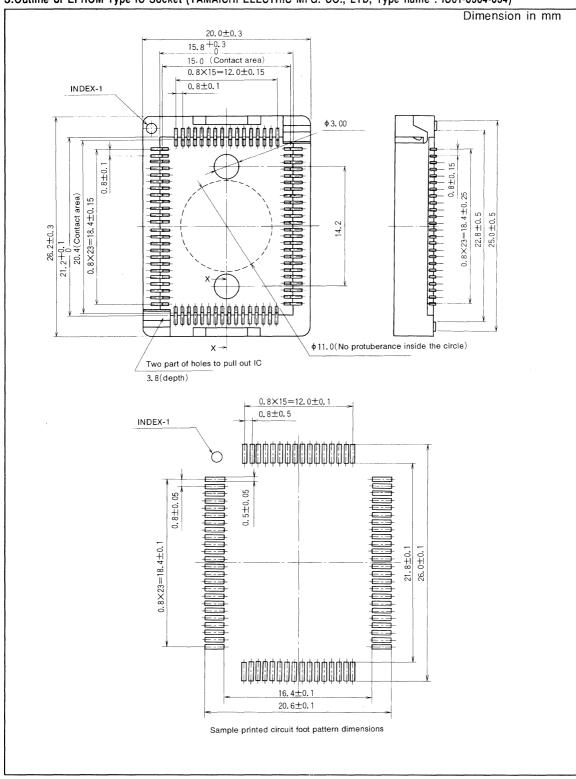
UART1 can only be used in UART mode. It cannot be used in clock synchronous serial I/O mode. Therefore, the serial I/O mode selection bit in the UART1 transmission mode register must not be set to "001".

The CTS/RTS selection bit in the UART1 transmission control register 0 must be set to "1" (this bit is set to "0" at reset).

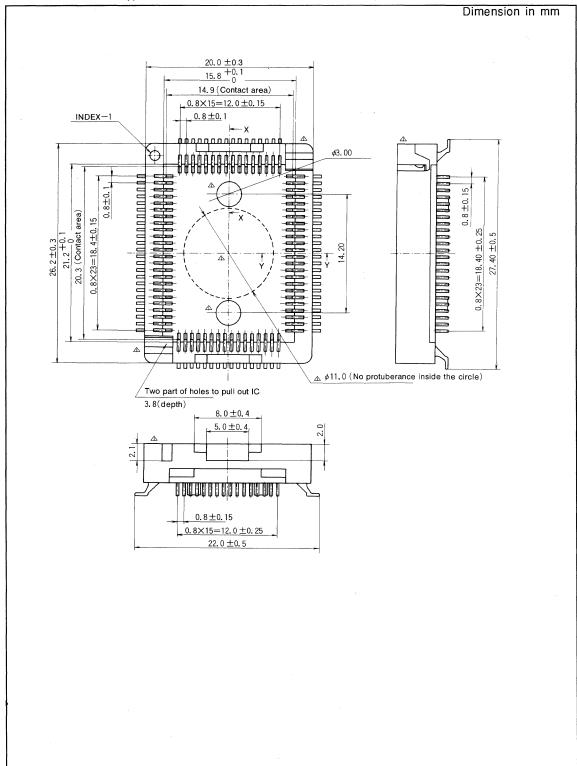

9.6.4 Ports

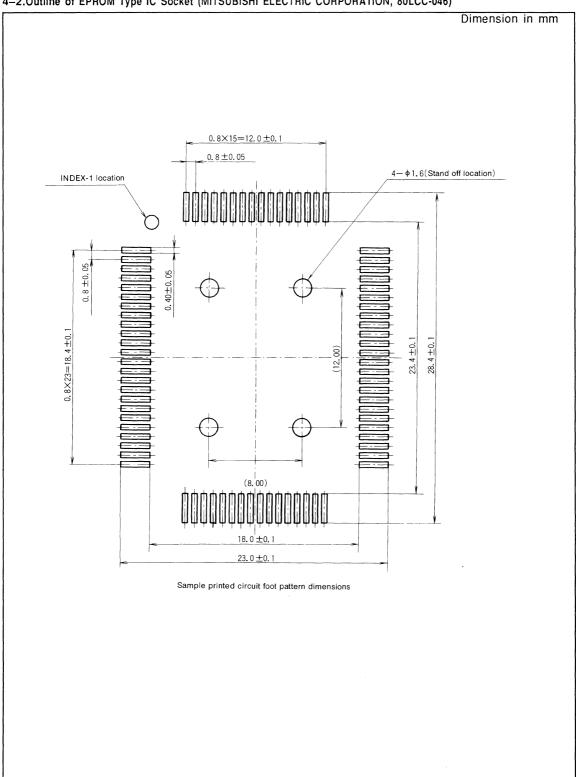
The port registers and data direction registers for ports P4, P6, P7, and P8 contain 8 bits. However, the bits in the data direction register with no corresponding pins must be set to "1" (output) and in the port register must be set to "0" (the data direction register is set to "0" at reset). This is also required when using special functions such as timer I/O.

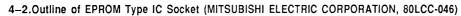

APPENDIX 1 OUTLINE DRAWING


APPENDIX 1.OUTLINE DRAWING

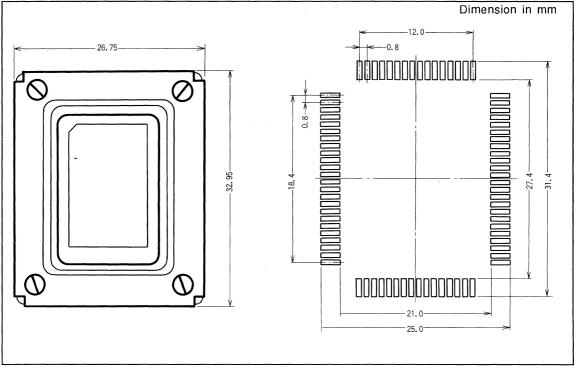
1.80-pin plastic molded QFP (Type name:80P6)


2.80-pin ceramic LCC (Type name:80D0)

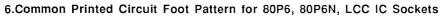


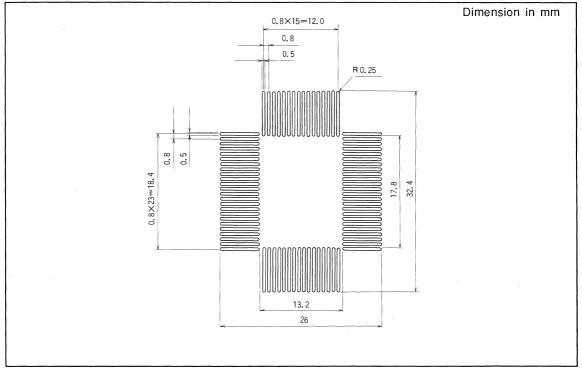

3.Outline of EPROM Type IC Socket (YAMAICHI ELECTRIC MFG. CO., LTD, Type name : IC61-0804-034)

APPENDIX 1.OUTLINE DRAWING



4-1.Outline of EPROM Type IC Socket (MITSUBISHI ELECTRIC CORPORATION, 80LCC-046)





APPENDIX 1.OUTLINE DRAWING

5.Outline of One-time PROM Type IC Socket (YAMAICHI ELECTRIC MFG. CO., LTD, Type name : IC138-080-003-S5)

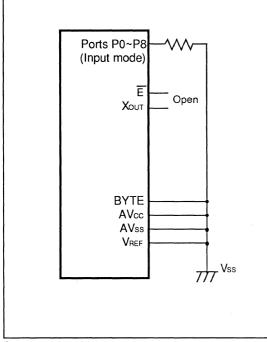
APPENDIX 2 SETTING OF UNUSED PINS

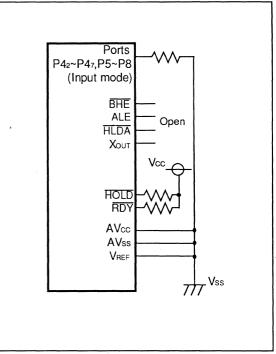
APPENDIX 2.SETTING OF UNUSED PINS

1.Setting of unused pins in single-chip mode

Setting
Set to input mode and connect to Vss through a resistor (pull-down)
Open
Connect to Vcc or Vss
Connect to Vss

Note 1: When external clock is input to XIN.


2.Setting of unused pins in memory expansion and microprocessor mode


Setting
Set to input mode and connect to Vss through a resistor (pull-down)
Open
Connect to Vcc through a resistor (pull-up)
Connect to Vcc or Vss
Connect to Vss

Note 2: When BYTE="H".

Note 3: When BYTE="H" and address space is 64K bytes.

Note 4: When external clock is input to XIN.

Memory Expansion and Microprocessor Mode

Single-chip Mode

APPENDIX 3 M37700 FAMILY PERFORMANCE OVERVIEW

APPENDIX 3. M37700 FAMILY PERFORMANCE OVERVIEW

1.M37700 family common performance

The following table shows the performance common to the M37700 family.

Parameters		ters	Functions	
Programmable I/O ports			68 in single-chip mode (Note)	
Interrupt s	sources		3 external types, 16 internal types	
Built-in	Timers	Timer A	16-bit timer x 5	
devices		Timer B	16-bit timer x 3	
	Serial I/O		(UART or clock synchronous) x 2	
	A-D convert	er	8-bit A-D converter (8 channel)	
Watchdog timer		mer	12 bit x 1	
Clock generating circuit			Built-in (externally connected to a ceramic resonator or quartz crystal resonator)	
Power dissipation			30mW (at external 8MHz frequency)	
Input/output voltage			5V	
Output current			5mA	
Memory expansion			16M bytes maximum	
Operating temperature range		ange	–10 to 70°C	
Device structure			CMOS high-performance silicon gate process	

Note: 38 during memory expansion mode and microprocessor mode and for external ROM version.

2.Difference in external clock input frequency by type

All types of the M37700 family are available in 8MHz external clock input version and 16MHz version (high-speed).

External clock input	Mask ROM version	External ROM version	One-time PROM version	EPROM version
8MHz (max.)	M37700M2-XXXFP	M37700SFP	M37700E2-XXXFP	M37700E2FS
	M37700M4-XXXFP	M37700S4FP	M37700E4-XXXFP	M37700E4FS
16MHz (max.)	M37700M2AXXXFP	M37700SAFP	M37700E2AXXXFP	M37700E2AFS
	M37700M4AXXXFP	M37700S4AFP	M37700E4AXXXFP	M37700E4AFS

The shortest instruction execution time 500ns at f(XIN) input frequency 8MHz

250ns at f(XIN) input frequency 16MHz (High-speed version)

3. Memory characteristics and size by type

The following table shows the difference in memory characteristics and size by type.

			sj tjpe:
Memory size (Byte)	Mask ROM	One-time PROM	EPROM
ROM16K	M37700M2-XXXFP	M37700E2-XXXFP	M37700E2FS
RAM512	M37700M2AXXXFP	M37700E2AXXXFP	M37700E2AFS
ROMExternal	M37700SFP	<u> </u>	
RAM512	M37700SAFP	—	
ROM32K	M37700M4-XXXFP	M37700E4-XXXFP	M37700E4FS
RAM2K	M37700M4AXXXFP	M37700E4AXXXFP	M37700E4AFS
ROMExternal	M37700S4FP	-	
RAM2K	M37700S4AFP		

Note that the operating voltage differs as follows according to the built-in ROM type.

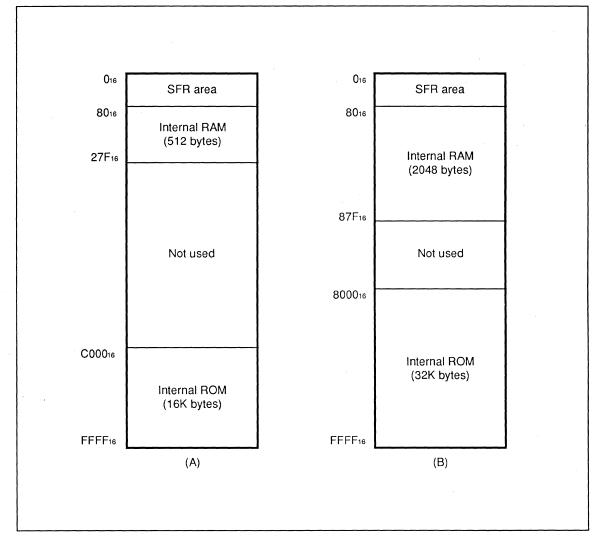
ROM Type	Operating Voltage
Mask ROM type	5V±10%
External ROM type	
One-time PROM type	5V±5%
EPROM type	

4.External ROM types

The external ROM types have the same RAM size, function, and electrical characteristics as the following mask ROM size in microprocessor mode.

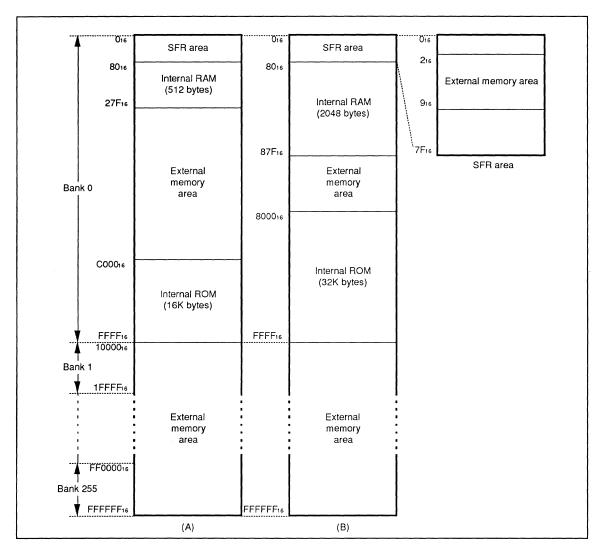
Type name	Mask ROM type	RAM size	Operating clock
M37700SFP	M37700M2-XXXFP	512 bytes	8MHz
M37700SAFP	M37700M2AXXXFP	512 bytes	16MHz
M37700S4FP	M37700M4-XXXFP	2048 bytes	8MHz
M37700S4AFP	M37700M4AXXXFP	2048 bytes	16MHz

5.Package

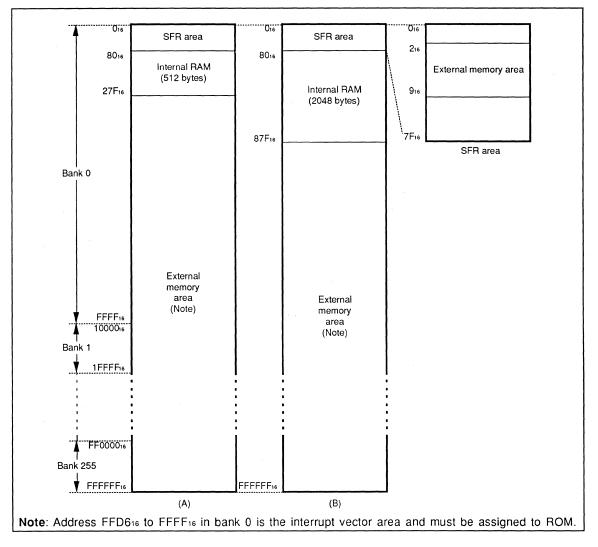

All types except the EPROM type are packaged in an 80-pin plastic molded QFP (type name: 80P6). The EPROM version is packaged in a ceramic LCC (type name: 80D0).

MEMO

APPENDIX 4 M37700 FAMILY MEMORY MAP


APPENDIX 4. M37700 FAMILY MEMORY MAP

1.Memory map in single-chip mode



No.	Type name	Internal ROM type
(A)	M37700M2-XXXFP/M37700M2AXXXFP	Mask ROM
	M37700E2-XXXFP/M37700E2AXXXFP	One-time PROM
	M37700E2FS/M37700E2AFS	EPROM
(B)	M37700M4-XXXFP/M37700M4AXXXFP	Mask ROM
	M37700E4-XXXFP/M37700E4AXXXFP	One-time PROM
	M37700E4FS/M37700E4AFS	EPROM

2.Memory map in memory expansion mode

No.	Type name	Internal ROM type
(A)	M37700M2-XXXFP/M37700M2AXXXFP	Mask ROM
	M37700E2-XXXFP/M37700E2AXXXFP	One-time PROM
	M37700E2FS/M37700E2AFS	EPROM
(B)	M37700M4-XXXFP/M37700M4AXXXFP	Mask ROM
	M37700E4-XXXFP/M37700E4AXXXFP	One-time PROM
	M37700E4FS/M37700E4AFS	EPROM

3.Memory map in microprocessor mode (and external ROM type)

No.	Type name
(A)	M37700SFP/M37700SAFP
	M37700M2-XXXFP/M37700M2AXXXFP (microprocessor mode)
	M37700E2-XXXFP/M37700E2AXXXFP (microprocessor mode)
	M37700E2FS/M37700E2AFS (microprocessor mode)
(B)	M37700S4FP/M37700S4AFP
	M37700M4-XXXFP/M37700M4AXXXFP (microprocessor mode)
	M37700E4-XXXFP/M37700E4AXXXFP (microprocessor mode)
	M37700E4FS/M37700E4AFS (microprocessor mode)

APPENDIX 5 SFR AREA MEMORY MAP

APPENDIX 5.SFR AREA MEMORY MAP

Address (Hexadecimal notation)	Access
00000016		
00000116		
00000216	Port P0 register	RW
00000316	Port P1 register	RW
00000416	Port P0 data direction register	RW
00000516	Port P1 data direction register	RW
	Port P2 register	RW
	Port P3 register	\rightarrow
	Port P2 data direction register	RW
	Port P3 data direction register	\rightarrow
	Port P4 register	RW
	Port P5 register	RW
	Port P4 data direction register	RW
	Port P5 data direction register	RW
	Port P6 register	RW
	Port P7 register	RW
	Port P6 data direction register	BW
	Port P7 data direction register	RW
	Port P8 register	RW
00001216		
	Port P8 data direction register	RW
00001416	Port Po data direction register	
00001516		
00001D16		
	A-D control register	RW
00001 F16		
00002016	A-D register 0	RO
00002116		
00002216	A-D register 1	RO
00002316		
00002416	A-D register 2	RO
00002516		
00002616	A-D register 3	RO
00002716		
00002816	A-D register 4	RO
00002916		
	A-D register 5	RO
00002B16		
	A-D register 6	RO
00002D16		
	A-D register 7	RO
00002E16		
00002116	L	

RO: Read only WO: Write only RW: Read/Write ?: Definite when read

b7	b6	b5	b4	b3	b2	b1	b0
0	0	0	0	RW	RW	RW	RW
b7	b6	b5		b3	b2		
0	0	0	0	RW	RW	RW	RW

The high-order 4 bits of the port 3 register and port P3 data direction register are write prohibited and always return "0" when read.

The CLB and SEB instructions can be used.

00003016 00003116 00003116 00003216 00003316 00003316 00003316 00003316 00003416 00003416 00003416 00003516 00004516 00004516 00004416 0	Address (I	Hexadecimal notation)	Access
00003216 00003416UART 0 transmission buffer registerLWO00003416 00003516UART 0 transmit/receive control register 0 \rightarrow 00003516 00003516UART 0 transmit/receive control register 1 \rightarrow 00003616 00003716UART 0 receive buffer registerLRO00003516 00003716UART 1 transmit/receive mode registerRW00003616 00003916UART 1 baud rate generatorWO00003016 00003016UART 1 transmit/receive control register 0 \rightarrow 00003016 00003016UART 1 transmit/receive control register 1 \rightarrow 00003016 0000316UART 1 receive buffer register 1 \rightarrow 00003216 0000316UART 1 receive buffer register 1 \rightarrow 00003216 0000416UART 1 receive buffer register 1 \rightarrow 00003216 00004116One-shot start flagWO00004116 00004216One-shot start flagWO00004316 00004416Timer A0 register 1 \rightarrow 00004416 00004416Timer A1 register 1 H 00004516 00004416Timer A2 register 1 H 00004516 00004516Timer A3 register 1 H 00004516 00004416Timer A4 register 1 H 00004516 00004516Timer B0 register 1 H 00005116 00005116Timer B1 register 1 H 00005216 00005316Timer B1 register 1 H 00005416Timer B1 register 1 H 00005416Timer B2 register 1 H	00003016	UART 0 transmit/receive mode register	RW
00003316UART 0 transmission butter registerHWO00003416UART 0 transmit/receive control register 0 \rightarrow 00003516UART 0 transmit/receive control register 1 \rightarrow 00003516UART 0 receive buffer registerL00003516UART 1 transmit/receive mode registerRW00003916UART 1 baud rate generatorWO00003016UART 1 transmission buffer registerH00003016UART 1 transmit/receive control register 0 \rightarrow 00003016UART 1 transmit/receive control register 1 \rightarrow 00003016UART 1 transmit/receive control register 1 \rightarrow 0000316UART 1 transmit/receive control register 1 \rightarrow 0000316UART 1 receive buffer registerLRO0000316UART 1 receive buffer registerH \rightarrow 0000316One-shot start flagWO0000416One-shot start flagWO00004316Up-down flag \rightarrow 00004416Timer A0 registerH00004416Timer A1 registerH00004416Timer A2 registerH00004416Timer A3 registerH00004516Timer A4 registerH00004516Timer A4 registerH00005116Timer B0 registerH00005116Timer B1 registerH00005216Timer B1 registerH00005416Timer B2 registerL00005416Timer B2 registerL00005416Timer B1 registerL<	00003 1 16	UART 0 baud rate generator	WO
00003516UART 0 transmit/receive control register 1→00003616UART 0 receive buffer registerLRO00003716UART 1 transmit/receive mode registerRW00003916UART 1 transmit/receive mode registerRW00003916UART 1 baud rate generatorWO00003016UART 1 transmission buffer registerL00003016UART 1 transmit/receive control register 0→00003016UART 1 transmit/receive control register 1→00003016UART 1 receive buffer registerL00003176UART 1 receive buffer registerL00003516UART 1 receive buffer registerL0000416One-shot start flagWO00004216One-shot start flagWO00004316Up-down flag→00004416Timer A0 registerL00004516Timer A1 registerL00004416Timer A2 registerH00004516Timer A3 registerH00004516Timer A3 registerH00004516Timer A4 registerH00004516Timer B0 registerH00004516Timer B1 registerH00005116Timer B1 registerH00005116Timer B2 reoisterH00005416Timer B2 reoisterH00005416Timer B2 reoisterH		LIART 0 transmission buffer register	wo
00003616 00003716UART 0 receive buffer registerLRO00003816UART 1 transmit/receive mode registerRW00003916UART 1 baud rate generatorWO00003016UART 1 transmission buffer registerL00003016UART 1 transmit/receive control register 0 \rightarrow 00003016UART 1 transmit/receive control register 1 \rightarrow 00003016UART 1 transmit/receive control register 1 \rightarrow 00003016UART 1 transmit/receive control register 1 \rightarrow 00003016UART 1 receive buffer registerLRO00003016UART 1 receive buffer registerH \rightarrow 0000416Count start flagWO0000416One-shot start flagWO00004316Up-down flag \rightarrow 00004516Timer A0 registerL00004316Timer A1 registerH00004316Timer A2 registerH00004316Timer A3 registerH00004416Timer A3 registerH00004516Timer A3 registerH00004516Timer A4 registerH00004516Timer B0 registerH00005016Timer B1 registerH00005216Timer B2 reoisterLRW00005416Timer B2 reoister	00003416	UART 0 transmit/receive control register 0	\rightarrow
UART 0 receive buffer registerH \rightarrow 00003716UART 1 transmit/receive mode registerRW00003916UART 1 transmit/receive mode registerWO00003016UART 1 transmission buffer registerL00003016UART 1 transmit/receive control register 0 \rightarrow 00003016UART 1 transmit/receive control register 1 \rightarrow 00003016UART 1 transmit/receive control register 1 \rightarrow 00003016UART 1 receive buffer registerL00003016UART 1 receive buffer registerL0000316UART 1 receive buffer registerH0000416Count start flagWO0000416One-shot start flagWO00004316Up-down flag \rightarrow 00004416Up-down flag \rightarrow 00004516Timer A0 registerL00004816Timer A1 registerH00004816Timer A2 registerH00004816Timer A3 registerH00004216Timer A3 registerH00004516Timer A4 registerH00004516Timer B0 registerH00004516Timer B1 registerH00005216Timer B1 registerH00005416Timer B2 reoisterLRWN00005416Timer B2 reoisterLRW00005416Timer B2 reoisterLRW00005416Timer B2 reoisterLRW00005416Timer B2 reoisterLRW </td <td>00003516</td> <td>UART 0 transmit/receive control register 1</td> <td>\rightarrow</td>	00003516	UART 0 transmit/receive control register 1	\rightarrow
00003716H→00003816UART 1 transmit/receive mode registerRW00003916UART 1 baud rate generatorWO00003A16UART 1 transmission buffer registerL00003C16UART 1 transmit/receive control register 0→00003D16UART 1 transmit/receive control register 1→00003E16UART 1 transmit/receive control register 1→00003E16UART 1 receive buffer registerLRO00003F16UART 1 receive buffer registerH→00004016Count start flagWO00004116Image: Count start flagWO00004216One-shot start flagWO00004516Image: Count start flagH00004516Image: Count start flagH00004516Image: Count start flagH00004516Image: Count start flagH00004516Image: Count start flagH0000516Imag	00003616		RO
00003916UART 1 baud rate generatorWO00003A16UART 1 transmission buffer register L WO00003B16UART 1 transmit/receive control register 0 \rightarrow 00003D16UART 1 transmit/receive control register 1 \rightarrow 00003E16UART 1 transmit/receive control register 1 \rightarrow 00003F16UART 1 receive buffer register L 00004D16Count start flagRW000041160000411600004416One-shot start flagWO0000451600004416WO00004516Imer A0 register L 00004516Timer A1 register L 00004416Timer A2 register H 00004416Timer A3 register H 00004416Timer A3 register H 00004516Timer A4 register H 00004516Timer B0 register H 00005116Timer B1 register H 00005116Timer B1 register H 00005416Timer B1 register H 00005416	00003716	UART 0 receive buffer register H	\rightarrow
00003A16 00003B16UART 1 transmission buffer registerLWO00003C16UART 1 transmit/receive control register 0 \rightarrow 00003D16UART 1 transmit/receive control register 1 \rightarrow 00003E16UART 1 transmit/receive control register 1 \rightarrow 00003F16UART 1 receive buffer registerL00004016Count start flagRW00004116One-shot start flagWO00004216One-shot start flagWO00004516Immer A0 registerL00004516Timer A1 registerL00004816Timer A2 registerH00004816Timer A2 registerH00004816Timer A3 registerH00004216Timer A3 registerH00004516Timer A4 registerH00004516Timer B0 registerH00005116Timer B1 registerH00005116Timer B1 registerH00005416Timer B1 r	00003816	UART 1 transmit/receive mode register	RW
00003B16UART 1 transmission butter registerHWO00003C16UART 1 transmit/receive control register 0 \rightarrow 00003D16UART 1 transmit/receive control register 1 \rightarrow 00003E16UART 1 transmit/receive control register 1 \rightarrow 00003E16UART 1 receive buffer registerL00003F16Count start flagRW00004016Count start flagWO00004216One-shot start flagWO00004316	00003916	UART 1 baud rate generator	WO
00003B16H00003C16UART 1 transmit/receive control register 0 \rightarrow 00003D16UART 1 transmit/receive control register 1 \rightarrow 00003E16UART 1 receive buffer register H 00003F16UART 1 receive buffer registerH00004016Count start flagRW00004216One-shot start flagWO00004316Image: Constant flagWO00004316Image: Constant flagWO00004316Image: Constant flagImage: Constant flag00004516Image: Constant flagImage: Constant flag0000516Image: Constant flagImage: Constant	00003A16	LIABT 1 transmission buffer register	WO
00003D16UART 1 transmit/receive control register 1→00003E16UART 1 receive buffer registerLRO00003F16UART 1 receive buffer registerH→00004016Count start flagRW00004116One-shot start flagWO00004216One-shot start flagWO00004316Image: Comparison of the start flagWO00004416Up-down flag→00004516Image: Comparison of the start flagWO00004516Image: Comparison of the start flagH00004516Image: Comparison of the start flagH00005216Image: Comparison of the start flagH00005216Image: Comparison of the start flagH00005416Image: Comparison of the start flagH00005416Image: Comparison of the start flagH00005416Image: Comparison of the start flagH <td< td=""><td>00003B16</td><td>H</td><td>1000</td></td<>	00003B16	H	1000
00003E16 00003F16UART 1 receive buffer registerLRO00004016 00004116Count start flagRW00004116Count start flagWO00004216 00004316One-shot start flagWO00004316Image: Come shot start flagWO00004416 00004416Up-down flagImage: Come shot start flag00004516Image: Come shot start flagImage: Come shot start flag00004816Timer A0 registerLRW00004816Timer A1 registerLRW00004816Timer A2 registerLRW00004816Timer A3 registerLRW00004816Timer A4 registerLRW00004816Timer B0 registerLRW00005116Timer B1 registerLRW00005216Timer B1 registerLRW00005416Timer B2 registerLRW	00003C16	UART 1 transmit/receive control register 0	\rightarrow
UART 1 receive buffer registerImage: How start00003F16Count start flagRW00004116Count start flagWO00004216One-shot start flagWO00004316Image: Decision start flagWO00004416Up-down flagImage: Decision start flag00004516Image: Decision start flagImage: Decision start flag00004816Timer A0 registerImage: Decision start flag00004816Timer A1 registerImage: Decision start flag00004816Timer A2 registerImage: Decision start flag00004816Timer A3 registerImage: Decision start flag00004816Timer A4 registerImage: Decision start flag00004816Timer B0 registerImage: Decision start flag00005116Timer B1 registerImage: Decision start flag00005216Timer B1 registerImage: Decision start flag00005416Timer B2 registerImage: Decision start flag00	00003D16	UART 1 transmit/receive control register 1	\rightarrow
00003F16H00004016Count start flagRW00004116One-shot start flagWO00004216One-shot start flagWO00004316One-shot start flagH00004416Up-down flag→00004516Imer A0 registerH00004716Timer A0 registerH00004816Timer A1 registerH00004816Timer A2 registerH00004816Timer A2 registerH00004816Timer A2 registerH00004816Timer A3 registerH00004816Timer A3 registerH00004816Timer A3 registerH00004516Timer A4 registerH00004516Timer B0 registerH00005116Timer B1 registerH00005216Timer B1 registerH00005416Timer B2 registerH00005416Timer B2 registerH	00003E16	LIART 1 reacive buffer register	RO
00004116WO00004216One-shot start flagWO00004316Image: Constant flagImage: Constant flag00004416Up-down flagImage: Constant flag00004516Image: Constant flagImage: Constant flag00004516Timer A0 registerImage: Constant flag00004716Timer A1 registerImage: Constant flag00004816Timer A1 registerImage: Constant flag00004816Timer A2 registerImage: Constant flag00004816Timer A2 registerImage: Constant flag00004816Timer A3 registerImage: Constant flag00004816Timer A3 registerImage: Constant flag00004816Timer A4 registerImage: Constant flag00004816Timer B0 registerImage: Constant flag00005116Timer B1 registerImage: Constant flag00005216Timer B1 registerImage: Constant flag00005416Timer B2 registerImage: Constant fla	00003F16	H H	\rightarrow
00004216One-shot start flagWO00004316	00004016	Count start flag	RW
000043_{16} Up -down flag \rightarrow 000045_{16} Up -down flag \rightarrow 000045_{16} Timer A0 register H 000047_{16} Timer A1 register H 000048_{16} Timer A1 register H 000048_{16} Timer A2 register H 000048_{16} Timer A2 register H $00004B_{16}$ Timer A2 register H $00004B_{16}$ Timer A3 register H $00004E_{16}$ Timer A4 register H $00004E_{16}$ Timer B0 register H 000051_{16} Timer B1 register H 000052_{16} Timer B1 register H 000053_{16} Timer B2 register H 000054_{16} Timer B2 register H	00004116		
00004416Up-down flag→00004516Imer A0 registerImer A0 register00004616Timer A0 registerImer A0 register00004816Timer A1 registerImer A1 register00004816Timer A1 registerImer A1 register00004816Timer A2 registerImer A1 RW00004B16Timer A2 registerImer A2 Register00004E16Timer A3 registerImer A2 RW00004E16Timer A4 registerImer A2 RW00005016Timer B0 registerImer A2 RW00005216Timer B1 registerImer A2 RW00005416Timer B1 registerImer B2 RW00005416Timer B2 registerImer B2 RW	00004216	One-shot start flag	WO
000045_{16} Imer A0 registerImer A0 register 000047_{16} Timer A0 registerImer A1 register 000048_{16} Timer A1 registerImer A1 register 000048_{16} Timer A2 registerImer A2 register $00004B_{16}$ Timer A2 registerImer A2 register $00004C_{16}$ Timer A3 registerImer A2 register $00004E_{16}$ Timer A4 registerImer A2 register $00004E_{16}$ Timer A4 registerImer A2 register 000051_{16} Timer B0 registerImer A2 RW 000052_{16} Timer B1 registerImer A2 RW 000054_{16} Timer B1 registerImer B2 register 000054_{16} Timer B2 registerImer BW	00004316		
$\begin{array}{c cccc} 000046_{16} \\ 000047_{16} \\ 000047_{16} \\ \hline \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	00004416	Up-down flag	\rightarrow
000047_{16} Timer A0 registerHRW 000048_{16} Timer A1 registerLRW 000049_{16} Timer A1 registerHRW $00004B_{16}$ Timer A2 registerHRW $00004C_{16}$ Timer A3 registerHRW $00004D_{16}$ Timer A3 registerLRW $00004E_{16}$ Timer A4 registerHRW $00004E_{16}$ Timer A4 registerLRW 000051_{16} Timer B0 registerLRW 000051_{16} Timer B1 registerLRW 000053_{16} Timer B1 registerLRW 000054_{16} Timer B2 registerLRW	00004516		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	00004616	L	
000049_{16} Timer A1 registerHRW $00004A_{16}$ Timer A2 register L RW $00004B_{16}$ Timer A2 register H RW $00004D_{16}$ Timer A3 register L RW $00004E_{16}$ Timer A4 register H RW $00004F_{16}$ Timer B0 register H RW 000050_{16} Timer B0 register H RW 000052_{16} Timer B1 register H RW 000053_{16} Timer B1 register H RW 000054_{16} Timer B2 register H RW	00004716	Himer Ab register	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	00004816	Timor A1 register	DW/
$00004B_{16}$ Timer A2 registerHRW $00004C_{16}$ Timer A3 registerLRW $00004E_{16}$ Timer A4 registerHRW $00004F_{16}$ Timer A4 registerLRW 000050_{16} Timer B0 registerHRW 000052_{16} Timer B1 registerLRW 000053_{16} Timer B1 registerLRW 000054_{16} Timer B2 registerLRW	00004916	Himer AT legister	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	00004A16	Timor A2 register	
$00004D_{16}$ Timer A3 registerHRW $00004E_{16}$ Timer A4 registerLRW 000050_{16} Timer B0 registerLRW 000051_{16} Timer B1 registerLRW 000053_{16} Timer B1 registerLRW 000054_{16} Timer B2 registerLRW	00004B16	Himer Az register	
00004D16 H 00004E16 Timer A4 register L 00005016 Timer B0 register L 00005216 Timer B1 register L 00005316 Timer B2 register L 00005416 Timer B1 register L 00005416 Timer B1 register L 00005416 Timer B2 register L	00004C16	Timor A2 register	DW
$100004F_{16}$ Timer A4 registerHRW 000050_{16} Timer B0 registerLRW 000052_{16} Timer B1 registerLRW 000053_{16} Timer B2 registerLRW 000054_{16} Timer B2 registerLRW	00004D16	Himer AS register	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	00004E16	Timor A4 register	DW
00005116 Timer B0 register H RW 00005216 Timer B1 register L RW 00005316 Timer B2 register L RW	00004F16	Himer A4 register	
00005116 H 00005216 Timer B1 register L 00005316 H H 00005416 Timer B2 register L	00005016	Timor B0 register	DW
00005316 Timer B1 register H RW 00005416 Timer B2 register L RW	00005116	Himei Bo register	
00005316 H 00005416 Timer B2 register L BW	00005216	Timer B1 register	
Limer B2 register	00005316	Himer BT register H	
	00005416	Timor B2 register	
	00005516	Hiner Dz register H	

The high-order 4 bits of the UARTi transmit/receive control register 0 are write prohibited and are unpredictable when read.

b7			b4				
?	?	?	?	RO	RW	RW	RW
RO	RO	RO	RO	RO	RW	RO	RW
b7	b6	b5	b4	b3	b2	b1	b0

0 0 0 0 0 0 0 0 0 RO The UARTi receive buffer register is write prohibited and the high-order 7 bits are always "0" when read.

b7	b6	b5	b4	b3	b2	b1	b0
?	?	?	?	RO	RW	RW	RW
RO	RO	RO	RO	RO	RW	RO	RW
b7	b6	b5	b4	b3	b2	b1	b0
0	0	0	0	0	0	0	RO

b7			b4						
WO	WO	WO	RW	RW	RW	RW	RW		
WO WO WO RW RW RW RW RW The high-order 3 bits of the up-down									
flag are write only. The CLB and SEB									
instructions can be used.									

RO: Read only WO: Write only RW: Read/Write ?: Definite when read

APPENDIX 5.SFR AREA MEMORY MAP

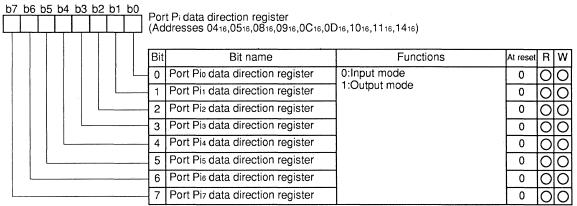
Address (I	Hexadecimal notation)	Access
00005616	Timer A0 mode register	RW
00005716	Timer A1 mode register	RW
00005816	Timer A2 mode register	RW
00005916	Timer A3 mode register	RW
00005A16	Timer A4 mode register	RW
00005B16	Timer B0 mode register	RW
00005C16	Timer B1 mode register	RW
00005D16	Timer B2 mode register	RW
00005E16	Processor mode register	\rightarrow
00005F16		
00006016	Watchdog timer	WO
00006116	Watchdog timer frequency selection flag	RW
00006216		
00006F16		
00007016	A-D conversion interrupt control register	RW
000 071 16	UART 0 transmission interrupt control register	
00007216		RW
00007316	UART 1 transmission interrupt control register	
00007416	UART 1 receive interrupt control register	RW
00007516	Timer A0 interrupt control register	RW
00007616	Timer A1 interrupt control register	RW
00007716	Timer A2 interrupt control register	RW
00007816	Timer A3 interrupt control register	RW
00007916	Timer A4 interrupt control register	RW
00007A ₁₆	Timer B0 interrupt control register	RW
00007B16	Timer B1 interrupt control register	RW
00007C16	Timer B2 interrupt control register	RW
00007D16	INTO interrupt control register	RW
00007E16	INT1 interrupt control register	RW
00007F16	INT2 interrupt control register	RW
00008016	Internal RAM	

RO: Read only WO: Write only RW: Read/Write ?: Definite when read

b7 b6 b5 b4 b3 b2 b1 b0 RW RW RW RW WO RW RW RW Bit 3 of the processor mode register is write only. The CLB and SEB instructions cannot be used to change the content of this register. Use LDM or STA instructions instead.

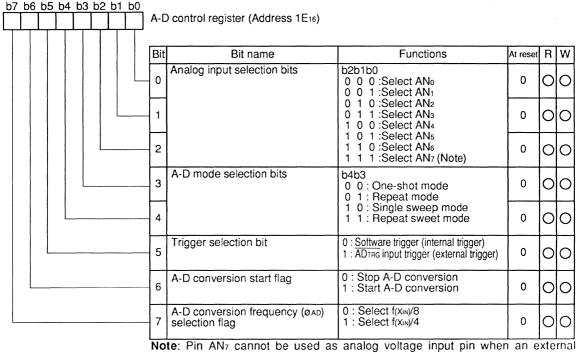
APPENDIX 6 Control registers

APPENDIX 6.CONTROL REGISTERS


The bit configurations of each control register allocated in the SFR area are shown on the following pages. Each table shows the bit names, functions, content when reset is deactivated, and bit attributes.

* Bit attributes: Each bit in the control register is either read only, write only, or read/write. The following abbreviations are used to indicate the attribute.

R: read W: write O: Allowed X: Not allowed


If an attempt is made to write to a read only bit, the data is not written. If a write only bit is read, the result is definite.

1.Port Pi data direction registers (i=0~8)

Note: The high-order 4 bits of port P3 data direction register are write prohibited and these bits will always return "0" when read.

2.A-D control register

trigger is selected.

3.UARTi transmit/receive mode registers (i=0, 1)

b7 b6 b5 b4 b3 b2 b1 b0		RT0 transmit/receive mode registe RT1 transmit/receive mode registe				
	Bit	Bit name	Functions	At rese	R	W
	0	Serial I/O mode selection bits	b2b1b0 0 0 0 :Serial I/O prohibited 0 0 1 :Clock synchronous serial I/O	0	0	0
	1		0 1 0 :This cannot be available 0 1 1 :This cannot be available 1 0 0 :7-bit UART	0	0	0
	2		1 0 1 :8-bit UART 1 1 0 :9-bit UART 1 1 1 :This cannot be available	0	0	0
	3	Internal/external clock selection bits	0 : Internal clock 1 : External clock	0	0	0
	4	Stop bit length selection bit (in UART mode)	0 : One stop bit 1 : Two stop bits	0	0	0
	5	Odd/even parity selection bit (in UART mode)	0 : Odd parity 1 : Even parity	0	0	0
	6	Parity enable bit (in UART mode)	0 : Parity disabled 1 : Parity enabled	0	0	0
	7	Sleep function selection bit (in UART mode)	0 : Sleep function disabled 1 : Sleep function enabled	0	0	0
	No	te: Bits 4 to 6 are ignored in Bit 7 must be "0" when us	clock synchronous mode.	- 4		

Bit 7 must be "0" when using clock synchronous mode.

APPENDIX 6.CONTROL REGISTERS

4.UARTi transmit/receive control register 0 (i=0, 1)

b7 b6 b5 b4 b3 b2 b1 b	ע ר	RT0 transmit/receive control registe RT1 transmit/receive control registe				
	Bit	Bit name	Functions	At reset	R	W
	0	BRG count source selection bits	b1b0 0 0 :Select f(XIN)/2 (f2) 0 1 :Select f(XIN)/16 (f16)	0	0	0
	1		1 0 :Select f(XIN)/64 (f64) 1 1 :Select f(XIN)/512 (f512)	0	0	0
	2	CTS/RTS selection bit	0 : Select <u>CTS</u> 1 : Select RTS	0	0	0
	3	Transmission register empty flag	0 : Data in transmission register (transmitting) 1 : No data in transmission register (transmit complete)	1	0	×
		These bits cannot be written to be The result of reading these bits is	cause no memory is allocated.	Undefined	Х	X
	- 5			Undefined	X	Х
	6			Undefined	\times	×
	7			Undefined	X	X

5.UARTi transmit/receive control register 1 (i=0, 1)

b7 b6 b5 b4 b3 b2 b1 b0	UA UA	RT0 transmit/receive control registe RT1 transmit/receive control registe	er 1 (Address 3516) er 1 (Address 3D16)			
	Bit	Bit name	Functions	At reset	R	W
	0	Transmission enable flag	0 : Transmission disable 1 : Transmission enable	0	0	0
	1	Transmission buffer empty flag	0 : Data in transmission buffer register 1 : No data in transmission buffer register	1	0	X
	2	Receive enable flag	0 : Receive disable 1 : Receive enable	0	0	0
	3	Receive completion flag	0 : No data in receive buffer register 1 : Data in receive buffer register	0	0	X
	4	Overrun error flag	0 : No overrun error 1 : Overrun error occurred	0	0	X
	5	Framing error flag (in UART mode)	0 : No framing error 1 : Framing error occurred	0	0	X
· · ·	6	Parity error flag (in UART mode)	0 : No parity error 1 : Parity error occurred	0	0	X
	7	Error sum flag (in UART mode)	0 : No error 1 : Error occurred	0	0	X

Note: Bits 5 to 7 are ignored in clock synchronous mode.

Each error flag is cleared to "0" when the receive buffer register is read.

6.Count start flag

b7 b6 b5 b4 b	<u>53 b2</u>	b1 b0	Cou	unt start flag (Address 4016)				
			Bit	Bit name	Functions	At reset	R	W
			0	Timer A0 count start flag	0:Count stop	0	0	0
			1	Timer A1 count start flag	1:Count start	0	0	0
			2	Timer A2 count start flag		0	0	0
			3	Timer A3 count start flag		0	0	0
	w		4	Timer A4 count start flag		0	0	0
		·	5	Timer A5 count start flag		0	0	0
			6	Timer A6 count start flag		0	0	0
L			- 7	Timer A7 count start flag		0	0	0

7.One-shot start flag

0

b7 b6 b5 b4 b3 b2 b1 b0 One-shot start flag (Address 4216)

		В	t Bit name	Functions	At reset	R	W	
			Timer A0 one-shot start flag	1:One-shot start	0	X	0	
		1	Timer A1 one-shot start flag	7	0	X	0	
		2	Timer A2 one-shot start flag	7	0	Х	0	
		3	Timer A3 one-shot start flag		0	Х	0	
	L		Timer A4 one-shot start flag		0	Х	0	
	L	5	These bits cannot be written to be	These bits cannot be written to because no memory is allocated.				
		6	The result of reading these bits is	Undefined	X	X		
L	5	7	This bit must be set to "0".		0	X	0	

Note: Do not use ready-modify-write type instructions such as CLB and SEB for these registers. Use LDM or STA instructions to write to these registers.

APPENDIX 6.CONTROL REGISTERS

8.Up-down flag

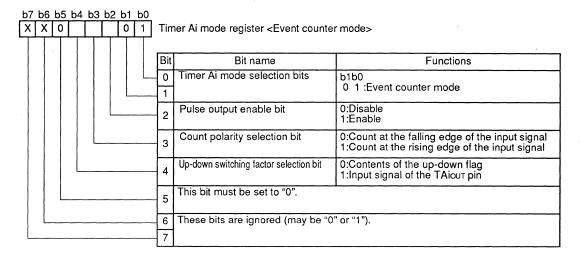
b7	b6	b5	<u>64</u>	Т	$\frac{2}{1}$	<u>b1</u>	ЬС		o-down flag (Address 4416)	÷			
								В	it Bit name	Functions	At reset	R	Tw
			-10	Timer A0 up-down flag	0:Down count	0	O	I					
				Timer A1 up-down flag	1:Up count	0	0	NO					
			-2	2 Timer A2 up-down flag		0	0						
				-3	Timer A3 up-down flag		0	0					
			L	 					Timer A4 up-down flag		0	0	O
			 				{	Timer A2 two-phase pulse signal processing selection bit	0:Two-phase pulse signal processing disable 1:Two-phase pulse signal	0	×	:0	
						Timer A3 two-phase pulse signal processing selection bit	processing enable	0	×	:0			
							Timer A4 two-phase pulse signal processing selection bit		0	×	:0		

Note: The high-order 3 bits of this register are write only, but read-modifywrite type instructions such as CLB and SEB can be used.

9.Timer Ai mode registers (i=0~4)

b7 b6 b5 b4 b3 b2 b1 b0 Timer Ai mode register (Addresses 5616~5A16) Bit Bit name Functions At reset RW Timer Ai mode selection bits b1b0 0 0 Ο 0 0 :Timer mode Ο 0 1 :Event counter mode 1 0 :One-shot pulse mode 1 1 :PWM mode 1 0 Ο Ο 2 The meaning of these bits depend on the timer operation mode. 0 \cap \cap 3 0 С С 4 0 5 0 \cap Count source selection bits b7b6 6 0 0 :Select f(XIN)/2 (f2) 0 Ο Ο 0 1 :Select f(XiN)/16(f16) 1 0 :Select f(XiN)/64 (f64) 1 1 :Select f(XiN)/512 (f512) 7 0 С

(1)Timer mode


b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 Timer Ai mode register <Timer mode>

		E	it Bit name	Functions
			Timer Ai mode selection bits	b1b0 0 0 :Timer mode
			Pulse output enable bit	0:Disable 1:Enable
		[:	Gate function selection bit	b4b3 0 X :Gate function disabled 1 0 :Timer operates while TAi⊪ input is "L"
	l	'	1	1 1 :Timer operates while TAin input is "H"
		{	This bit must be set to "0"	
		[Count source selection bits	b7b6 0 0 :Select f(XIN)/2 (t2)
L		[7	0 1 :Select f(XIN)/16(f16) 1 0 :Select f(XIN)/64 (f64) 1 1 :Select f(XIN)/512 (f512)

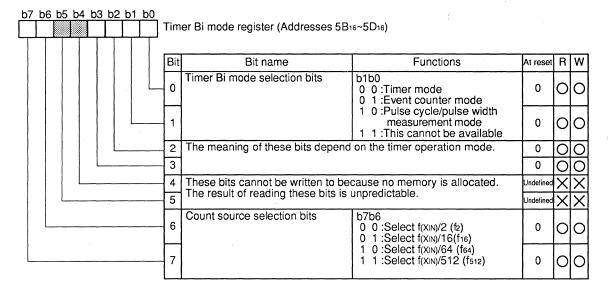
APPENDIX 6.CONTROL REGISTERS

(2)Event counter mode

(3)One-shot pulse mode

0

b7 b6 b5 b4 b3 b2 b1 b0 1 1 0 Timer Ai mode register <One-shot pulse mode>


Bit	Bit name	Functions
0	Timer Ai mode selection bits	b1b0 1 0 :One-shot pulse mode
2	This bit must be set to "1".	
3	Trigger selection bits	b4b3 0 X :Internal trigger (software trigger) 1 0 :Trigger at the falling edge of TAin input
4		1 1 :Trigger at the rising edge of TAilN input
- 5	This bit must be set to "0".	
6	Count source selection bits	b7b6 0 0 :Select f(XIN)/2 (f2) 0 1 :Select f(XIN)/16(f16)
 7		1 0 :Select f(XIN)/64 (fs4) 1 1 :Select f(XIN)/512 (f512)

(4)PWM mode

b7 b6 b5 b4 b3 b2 b1 b0	Timer Ai mode register <pwm mode:<="" th=""><th>></th></pwm>	>
	Bit Bit name	Functions
	0 Timer Ai mode selection bits	b1b0 1 1 :PWM mode
	2 This bit must be set to "1".	
	3 Trigger selection bits	b4b3 0 X :Internal trigger (software trigger) 1 0 :Trigger at the falling edge of TAiwinput
	4	1 0 :Trigger at the falling edge of TAin input 1 1 :Trigger at the rising edge of TAin input
	5 16/8-bit pulse modulation width selection bit	0:16-bit width PWM 1:8-bit width PWM
	6 Count source selection bits	b7b6 0 0 :Select f(XIN)/2 (½) 0 1 :Select f(XIN)/16(f16)
	7	1 0 :Select f(XiN)/64 (f64) 1 1 :Select f(XiN)/512 (f512)

APPENDIX 6.CONTROL REGISTERS

10.Timer Bi mode registers (i=0~2)

(1)Timer mode]

þ	7 b6 b5 b4 b	3 b2	b1 b 0 (ner Bi mode register <timer mode=""></timer>	
				Bit	Bit name	Functions
				0	Timer Bi mode selection bits	b1b0 0 0 :Timer mode
		L		2	These bits are ignored (may be "0'	' or "1").
		L		-3		
				- 4	These bits cannot be written to be	
				5	The result of reading these bits is	unpredictable.
				6	Count source selection bits	b7b6 0 0 :Select f(XIN)/2 (f2) 0 1 :Select f(XIN)/16(f16)
				- 7		1 0 :Select f(XIN)/64 (f64) 1 1 :Select f(XIN)/512 (f512)

(2)Event counter mode

b7 b6 b5 b4 b3 b2 b1 b0 X X 0 1	Tim	er Bi mode register <event counte<="" th=""><th>r mode></th></event>	r mode>
	Bit	Bit name	Functions
	0	Timer Bi mode selection bits	b1b0 0 1 :Event counter mode
	2	Count polarity selection bits	b3b2 0 0 :Count at the falling edge of the input signal 0 1 :Count at the rising edge of the input signal 1 0 :Count at both edge of the input signal 1 1 :This cannot be available
	4	These bits cannot be written to be	cause no memory is allocated.
	5	The result of reading these bits is	unpredictable.
	6	These bits are ignored (may be "0	" or "1").
	7		

(3)Pulse cycle/pulse width measurement mode

b7 b6 b5 b4 b3 b2 b1 b0

1 0 Timer Bi mode register <Pulse cycle/pulse width measurement mode>

Bit	Bit name	Functions
0 1	Timer Bi mode selection bits	b1b0 1 0 :Pulse cycle/pulse width measurement mode
2	Count polarity selection bits	b3b2 0 0 :Pulse cycle measurement mode (from falling edge to the next falling edge)
3		 0 1 :Pulse cycle measurement mode (from rising edge to the next rising edge) 1 0 :Pulse width measurement mode 1 1 :This cannot be available
4 5	These bits cannot be written to be The result of reading these bits is	
6	Count source selection bits	b7b6 0 0 :Select f(XiN)/2 (f2) 0 1 :Select f(XiN)/16(f16)
 7		1 0 :Select f(XIN)/64`(fé4) 1 1 :Select f(XIN)/512 (f512)

APPENDIX 6.CONTROL REGISTERS

11.Processor mode register

I I I I	Pro	cessor mode register (Address 5E	Ξ16)			
	Bit	Bit name	Functions	At reset	R	W
	0	Processor mode bits	b1b0 0 0 :Single-chip mode 0 1 :Memory expansion mode	0	Ö	0
	1		1 0 :Microprocessor mode 1 1 :This cannot be available	0	0	0
	2	Wait bit	0:Wait during external access 1:No wait	0	0	0
	3	Software reset bit	Software reset activated by writing "1".	0	×	0
	4	Interrupt priority detection time selection bits	b5b4 0 0 :Select f(XIN)/14 0 1 :Select f(XIN)/8	0	0	0
	5		1 0 :Select f(XIN)/4 1 1 :This cannot be available	0	0	0
	6	This bit must be set to "0".		0	0	0
	7	Internal clock ø output selection bit	0:ø output disabled (P42 is normal I/O port) 1:ø output enable (P42 is ø output pin)	0	0	0

b7 b6 b5 b4 b3 b2 b1 b0

Note: Bit 3 is write only.

Do not use read-modify-write type instructions such as CLB or SEB for this register. Use LDM or STA instructions to write to this register.

12.A-D conversion, UART 0/1 transmission, UART 0/1 receive, timers A0~A4, timers B0~B2,interrupt control registers

	conversion, UART0/1 transmission, UART(rs B0~B2 interrupt control registers (A				
Bit	Bit name	Functions	At reset	R	W
0	Interrupt priority level selection bits	b2b1b0 0 0 0 :Level 0 (Interrupt disabled) 0 0 1 :Level 1	0	0	0
1		0 1 0 :Level 2 0 1 1 :Level 3 1 0 0 :Level 4	0	0	0
2		1 0 1 :Level 5 1 1 0 :Level 6 1 1 1 :Level 7	0	0	0
3	Interrupt request bit	0:No interrupt request 1:Interrupt request	0	0	0
4	These bits cannot be written to be		Undefined	X	X
5	The result of reading these bits is	unpredictable.	Undefined	X	Х
6			Undefined	X	Х
7			Undefined	X	\times

13.INT0~INT2 interrupt control registers

b7 b6 b5 b4 b3 b2 b1 b0

INTO~INT2 interrupt control registers (Addresses 7D16~7F16)

	Bit	Bit name	Functions	At reset	R	W
	0	Interrupt priority level selection bits	b2b1b0 0 0 0 :Level 0 (Interrupt disabled) 0 0 1 :Level 1	0	0	0
	1		0 1 0 :Level 2 0 1 1 :Level 3 1 0 0 :Level 4	0	0	0
	_ 2		1 0 1 :Level 5 1 1 0 :Level 6 1 1 1 :Level 7	0	0	0
	3	Interrupt request bit	0:No interrupt request 1:Interrupt request	0	0	0
	4	Polarity selection bit	 0:Set request bit at "H" level for level sense and the falling edge for edge sense 1:Set request bit at "L" level for level sense and the rising edge for edge sense 	0	0	0
	5	Level/edge sense selection bit	0:Edge sense 1:Level sense	0	0	0
	- 6	These bits cannot be written to b		Undefined	X	X
7		The result of reading these bits is unpredictable.				X

MEMO

APPENDIX 7 INSTRUCTION CODE TABLE

INSTRUCTION CODE TABLE-1

\bigwedge	D ₃ ~D ₀	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
D ₇ ~D ₄	exadecimal notation	0	1	2	3	4	5	6	7	8	9	A	в	с	D	E	F
0000	0	0.01/	QRA		ORA	SEB	ORA	ASL	ORA	РНР	ORA	ASL	PHD	SEB	ORA	ASL	ORA
0000	U	BRK	A,(DIR,X)		A,SR	DIR,b	A,DIR	DIR	A,L(DIR)	РПР	A,IMM	Α	РНО	ABS,b	A,ABS	ABS	A,ABL
0001		BPL	ORA	ORA	ORA	CLB	ORA	ASL	ORA	CLC	ORA	DEC	TAS	CLB	ORA	ASL	ORA
0001	'	DFL	A,(DIR),Y	A,(DIR)	A,(SR),Y	DIR,b	A,DIR,X	DIR,X	A,L(DIR),Y	OLC	A,ABS,Y	Α	TAS	ABS,b	A,ABS,X	ABS,X	A,ABL,X
0010	2	JSR	AND	JSR	AND	BBS	AND	ROL	AND	PLP	AND	ROL	PLD	BBS	AND	ROL	AND
0010	2	ABS	A,(DIR,X)	ABL	A,SR	DIR,b,R	A,DIR	DIR	A,L(DIR)	FLF	A,IMM	А	PLD	ABS,b,R	A,ABS	ABS	A,ABL
0011	3	вмі	AND	AND	AND	BBC	AND	ROL	AND	SEC	AND	INC	TSA	BBC	AND	ROL	AND
0011	3	BMI	A,(DIR),Y	A,(DIR)	A,(SR),Y	DIR,b,R	A,DIR,X	DIR,X	A,L(DIR),Y	SEC	A,ABS,Y	А	154	ABS,b,R	A,ABS,X	ABS,X	A,ABL,X
0100		DTI	EOR		EOR		EOR	LSR	EOR	DUIA	EOR	LSR	DUO	JMP	EOR	LSR	EOR
0100	4	RTI	A,(DIR,X)	Note 1	A,SR	MVP	A,DIR	DIR	A,L(DIR)	PHA	A,IMM	A	PHG	ABS	A,ABS	ABS	A,ABL
0101	5	BVC	EOR	EOR	EOR	MVN	EOR	LSR	EOR	011	EOR	РНҮ	TAD	JMP	EOR	LSR	EOR
0101	Э	BVC	A,(DIR),Y	A,(DIR)	A,(SR),Y		A,DIR,X	DIR,X	A,L(DIR),Y	CLI	A,ABS,Y	РНТ	TAD	ABL	A,ABS,X	ABS,X	A,ABL,X
0110	6	DTO	ADC	050	ADC	LDM	ADC	ROR	ADC		ADC	ROR	DTI	JMP	ADC	ROR	ADC
0110	6	RTS	A,(DIR,X)	PER	A,SR	DIR	A,DIR	DIR	A,L(DIR)	PLA	A,IMM	А	RTL	(ABS)	A,ABS	ABS	A,ABL
	_	-	ADC	ADC	ADC	LDM	ADC	ROR	ADC		ADC			JMP	ADC	ROR	ADC
0111	7	BVS	A,(DIR),Y	A,(DIR)	A,(SR),Y	DIR,X	A,DIR,X	DIR,X	A,L(DIR),Y	SEI	A,ABS,Y	PLY	TDA	(ABS,X)	A,ABS,X	ABS,X	A,ABL,X
		BRA	STA	BRA	STA	STY	STA	STX	STA					STY	STA	STX	STA
1000	8	REL	A,(DIR,X)	REL	A,SR	DIR	A,DIR	DIR	A,L(DIR)	DEY	Note 2	ТХА	PHT	ABS	A,ABS	ABS	A,ABL
			STA	STA	STA	STY	STA	STX	STA		STA			LDM	STA	LDM	STA
1001	9	BCC	A,(DIR),Y	A,(DIR)	A,(SR),Y	DIR,X	A,DIR,X	DIR,Y	A,L(DIR),Y	TYA	A,ABS,Y	TXS	TXY	ABS	A,ABS,X	ABS,X	A,ABL,X
		LDY	LDA	LDX	LDA	LDY	LDA	LDX	LDA		LDA			LDY	LDA	LDX	LDA
1010	A	ІММ	A,(DIR,X)	імм	A,SR	DIR	A,DIR	DIR	A,L(DIR)	TAY	A,IMM	TAX	PLT	ABS	A,ABS	ABS	A,ABL
			LDA	LDA	LDA	LDY	LDA	LDX	LDA		LDA			LDY	LDA	LDX	LDA
1011	В	BCS	A,(DIR),Y	A,(DIR)	A,(SR),Y	DIR,X	A,DIR,X	DIR,Y	A,L(DIR),Y	CLV	A,ABS,Y	TSX	түх	ABS,X	A,ABS,X	ABS,Y	A,ABL,X
		CPY	CMP	CLP	CMP	CPY	CMP	DEC	СМР		CMP			CPY	СМР	DEC	CMP
1100	С	імм	A,(DIR,X)	імм	A,SR	DIR	A,DIR	DIR	A,L(DIR)	INY	A,IMM	DEX	WIT	ABS	A,ABS	ABS	A,ABL
	_		CMP	СМР	CMP		CMP	DEC	СМР		СМР		ar	JMP	CMP	DEC	CMP
1101	D	BNE	A,(DIR),Y	A,(DIR)	A,(SR),Y	PEI	A,DIR,X	DIR,X	A,L(DIR),Y	CLM	A,ABS,Y	PHX	STP	L(ABS)	A,ABS,X	ABS,X	A,ABL,X
		CPX	SBC	SEP	SBC	СРХ	SBC	INC	SBC		SBC			CPX	SBC	INC	SBC
1110	E	ІММ	A,(DIR,X)	ІММ	A,SR	DIR	A,DIR	DIR	A,L(DIR)	INX	A,IMM	NOP	PSH	ABS	A,ABS	ABS	A,ABL
			SBC	SBC	SBC		SBC	INC	SBC		SBC			JSR	SBC	INC	SBC
1111	F	BEQ	A,(DIR).Y	A,(DIR)	A,(SR),Y	PEA	A,DIR.X	DIR.X	A,L(DIR),Y	SEM	A,ABS,Y	PLX	PUL	(ABS.X)	A,ABS,X	ABS.X	A,ABL.X

Note 1 : 42_{16} specifies the contents of the INSTRUCTION CODE TABLE-2.

About the second word's codes, refer to the INSTRUCTION CODE TABLE-2.

Note 2 : 89₁₆ specifies the contents of the INSTRUCTION CODE TABLE-3.

About the third word's codes, refer to the INSTRUCTION CODE TABLE-2.

INSTRUCTION CODE TABLE-2 (The first word's code of each instruction is 4216)

	$D_3 \sim D_0$	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
D ₇ ~D₄ H€	exadecimal notation	0	1	2	3	4	5	6	7	8	9	A	в	с	D	E	F
			ORA		ORA		ORA		ORA		ORA	ASL			ORA		ORA
0000	0		B,(DIR,X)		B,SR		B,DIR		B,L(DIR)		B,IMM	в			B,ABS		B,AB
			ORA	ORA	ORA	h	ORA		ORA		ORA	DEC			ORA		ORA
0001	1		B,(DIR),Y	B,(DIR)	B,(SR),Y		B,DIR,X		B,L(DIR),Y		B,ABS,Y	в	TBS		B,ABS,X		B,ABL
			AND		AND		AND		AND		AND	ROL			AND		AND
0010	2		B,(DIR,X)		B,SR		B,DIR		B,L(DIR)		в,імм	в			B,ABS		B,AB
		- Children or Ranne Street	AND	AND	AND		AND		AND		AND	INC			AND		AND
0011	3		B.(DIR).Y	B.(DIR)	B,(SR),Y		B,DIR,X		B,L(DIR),Y		B,ABS,Y	в	TSB		B,ABS,X		B,ABL
			EOR		EOR		EOR		EOR		EOR	LSR			EOR		EOF
0100	4		B.(DIR,X)		B,SR		B,DIR		B.L(DIR)	PHB	в,імм	в			B,ABS		B,AB
			EOR	EOR	EOR		EOR		EOR		EOR				EOR		EOF
0101	5		B.(DIR).Y	B.(DIR)	B,(SR),Y		B,DIR,X		B,L(DIR),Y		B,ABS,Y		TBD		B,ABS,X		B,ABL
			ADC		ADC		ADC		ADC		ADC	ROR			ADC		ADC
0110	6		B,(DIR,X)		B,SR		B,DIR		B,L(DIR)	PLB	B,IMM	в			B,ABS		B,AB
			ADC	ADC	ADC		ADC		ADC		ADC				ADC		ADC
0111	7		B.(DIR).Y	B.(DIR)	B,(SR),Y		B,DIR,X		B,L(DIR),Y		B,ABS,Y		TDB		B,ABS,X		B,ABL
			STA		STA		STA		STA						STA		STA
1000	8		B,(DIR,X)		B,SR		B,DIR		B,L(DIR)			тхв			B,ABS		B,AB
			STA	STA	STA		STA		STA		STA				STA		STA
1001	9		B (DIR) Y	B (DIB)	B,(SR),Y		B,DIR,X		B,L(DIR),Y	TYB	B,ABS,Y				B,ABS,X		B,ABL
			LDA	-,	LDA		LDA		LDA		LDA				LDA		LDA
1010	A		B,(DIR,X)		B,SR		B,DIR		B,L(DIR)	TBY	B,IMM	твх			B,ABS		B,AB
			LDA	LDA	LDA		LDA		LDA		LDA				LDA		LDA
1011	В		B (DIR).Y	B.(DIR)	B,(SR),Y		B,DIR,X		B,L(DIR),Y		B,ABS,Y				B,ABS,X		B,ABL
			CMP		CMP		CMP		CMP		CMP				CMP		СМІ
1100	С		B,(DIR,X)		B,SR		B,DIR		B,L(DIR)		B,IMM				B,ABS		B,AE
			CMP	CMP	CMP		CMP		CMP		CMP				CMP		CMI
1101	D		B (DIB) Y	B.(DIR)	B,(SR),Y		B;DIR,X		B,L(DIR),Y		B,ABS,Y				B,ABS,X		B,ABL
			SBC	_,(2,11)	SBC		SBC		SBC		SBC				SBC		SBC
1110	E		B,(DIR,X)		B,SR		B,DIR		B,L(DIR)		B,IMM				B,ABS		B,AB
			SBC	SBC	SBC		SBC		SBC		SBC				SBC		SBC
1111	F		B.(DIR).Y				B,DIR,X		B,L(DIR),Y		B,ABS,Y]	B,ABS,X		B,ABL

APPENDIX 7.INSTRUCTION CODE TABLE

INSTRUCTION CODE TABLE-3 (The first word's code of each instruction is 8916)

\bigwedge	D ₃ ~D ₀	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
D ₇ ~D₄ H	exadecimal notation	0	1	2	3	4	5	6	7	8	9	A	в	с	D	Е	F
0000			MPY		MPY		MPY		MPY		MPY				MPY		MPY
0000	0		(DIR,X)		SR		DIR		L(DIR)		імм				ABS		ABL
0001	1		MPY	MPY	MPY		MPY		MPY		MPY				MPY		MPY
0001	1		(DIR),Y	(DIR)	(SR),Y		DIR,X		L(DIR),Y		ABS,Y				ABS,X		ABL,X
0010			DIV		DIV		DIV		DIV		DIV				DIV		DIV
0010	2		(DIR,X)		SR		DIR		L(DIR)	XAB	імм				ABS		ABL
			DIV	DIV	DIV		DIV		DIV		DIV				DIV		DIV
0011	3		(DIR),Y	(DIR)	(SR),Y		DIR,X		L(DIR),Y		ABS,Y				ABS,X		ABL,X
			1								RLA						
0100	4										імм						
0101	5																
									· ·								
0110	6																
0111	7																
			· · · · · · · · · · · · · · · · · · ·														
1000	8																
	1																
1001	9																
	1.																
1010	A																
1011	в																
			-	LDT													
1100	с							([]								
				IMM													
1101	D																
1110	E														4		
1111	F						1]				

SYMBOLS

The following notations are used for the following descriptions.

Symbol	Description	Symbol	Description
IMP	Implied addressing mode	\forall	Exclusive OR
IMM	Immediate addressing mode	-	Negation
А	Accumulator addressing mode	←	Movement to the arrow direction
DIR	Direct addressing mode	Acc	Accumulator
DIR, b	Direct bit addressing mode	Acch	Accumulator's upper 8 bits
DIR, X	Direct indexed X addressing mode	ACCL	Accumulator's lower 8 bits
DIR, Y	Direct indexed Y addressing mode	А	Accumulator A
(DIR)	Direct indirect addressing mode	A _H	Accumulator A's upper 8 bits
(DIR, X)	Direct indexed X indirect addressing mode	AL	Accumulator A's lower 8 bits
(DIR), Y	Direct indirect indexed Y addressing mode	в	Accumulator B
L (DIR)	Direct indirect long addressing mode	B _H	Accumulator B's upper 8 bits
L (DIR), Y	Direct indirect long indexed Y addressing mode	B∟	Accumulator B's lower 8 bits
ABS	Absolute addressing mode	х	Index register X
ABS, b	Absolute bit addressing mode	Х _н	Index register X's upper 8 bits
ABS, X	Absolute indexed X addressing mode	XL	Index register X's lower 8 bits
ABS, Y	Absolute indexed Y addressing mode	Y	Index register Y
ABL	Absolute long addressing mode	Yн	Index register Y's upper 8 bits
ABL, X	Absolute long indexed X addressing mode	YL	Index register Y's lower 8 bits
(ABS)	Absolute indirect addressing mode	S	Stack pointer
L (ABS)	Absolute indirect long addressing mode	PC	Program counter
(ABS, X)	Absolute indexed X indirect addressing mode	PCH	Program counter's upper 8 bits
STK	Stack addressing mode	PCL	Program counter's lower 8 bits
REL	Relative addressing mode	PG	Program bank register
DIR, b, REL	Direct bit relative addressing mode	DT	Data bank register
ABS, b, REL	Absolute bit relative addressing mode	DPR	Direct page register
SR	Stack pointer relative addressing mode	DPRH	Direct page register's upper 8 bits
(SR), Y	Stack pointer relative indirect indexed Y addressing		Direct page register's lower 8 bits
	mode	PS	Processor status register
BLK	Block transfer addressing mode	PS _H	Processor status register's upper 8 bits
С	Carry flag	PS∟	Processor status register's lower 8 bits
Z	Zero flag	PSb	Processor status register's b-th bit
1	Interrupt disable flag	M(S)	Contents of memory at address indicated by stack
D	Decimal operation mode flag		pointer
x	Index register length selection flag	Mb	b-th memory location
m	Data length selection flag	AD _G	Value of 24-bit address's upper 8-bit $(A_{23} \sim A_{16})$
V	Overflow flag	ADH	Value of 24-bit address's middle 8-bit $(A_{15} \sim A_8)$
N	Negative flag	ADL	Value of 24-bit address's lower 8-bit $(A_7 \sim A_0)$
IPL	Processor interrupt priority level	ор	Operation code
+	Addition	n	Number of cycle
	Subtraction	#	Number of byte
*	Multiplication	l i	Number of transfer byte or rotation
/	Division	l ₁ , l ₂	Number of registers pushed or pulled
\wedge	Logical AND		
\vee	Logical OR		

NOTES

The number of cycle shown in the table is described in case of the fastest mode for each instruction. The number of cycles shown in the table is calculated for DPRL=0. The number of cycles in the addressing mode concerning the DPR when DPRL \neq 0 must be incremented by 1.

The number of cycles shown in the table differs according to the bytes fetched into the instruction queue buffer, or according to whether the memory read/write address is odd or even. It also differs when the external region memory is accessed by BYTE="H".

- Note 1.The operation code at the upper row is used for accumulator A, and the operation at the lower row is used for accumulator B.
- Note 2.When setting flag m=0 to handle the data as 16-bit data in the immediate addressing mode, the number of bytes increments by 1.
- Note 3.The number of cycles increments by 2 when branching.
- Note 4.The operation code on the upper row is used for branching in the range of -128~+127, and the operation code on the lower row is used for branching in the range of -32768~+32767.
- Note 5. When handling 16-bit data with flag m=0, the byte in the table is incremented by 1.
- Note 6.The number of cycles corresponding to the register to be pushed. The number of cycles when no pushing is done is 12.

Type of register	A	В	Х	Y	DPR	DT	PG	PS
Number of cycles	2	2	2	2	2	1	1	1

i1 indicates the number of registers among A, B, X, Y, DT, and PS to be saved, when i2 indicates the number of registers among DT and PG to be saved.

Note 7.The number of cycles corresponding to the register to be pulled are added. The number of cycles when no pulling is done is 14.

Type of register	A	В	Х	Y	DPR	DT	PS
Number of cycles	3	3	3	3	4	3	3

in indicates the number of registers among A, B, X, Y, DT, and PS to be restored, while i₂=1 when DPR is to be restored.

- Note 8. The number of cycles is the case when the number of bytes to be transferred is even. When the number of bytes to be transferred is odd, the number is calculated as; $7 + (i/2) \times 7 + 4$, note that, (i/2) shows the integer part when i is divided by 2.
- Note 9.The number of cycles is the case when the number of bytes to be transferred is even. When the number of bytes to be transferred is odd, the number is calculated as; 9 + (i/2) X 7 + 5, note that, (i/2) shows the integer part when i is divided by 2.
- Note 10.The number of cycles is the case in the 16-bit + 8-bit operation. The number of cycles is incremented by 16 for 32-bit + 16-bit operation.
- Note 11.The number of cycles is the case in the 8-bit X 8-bit operation. The number of cycles is incremented by 8 for 16-bit X 16-bit operation.
- Note 12. When setting flag x=0 to handle the data as 16-bit data in the immediate addressing mode, the number of bytes increments by 1.

Note 13. When flag m is 0, the byte in the table is incremented by 1.

MACHINE INSTRUCTION

			-		-1			-						res	T-1			17-		-							_
Symbol	Function	Details	+	IMP	-	IM		-	A	+	DI	-	L	R,b	+-	DIR	-		IR,Y		DIR		(DIF		I	-	-
			op	n	-+	-+	+	+	n	-+-	+	+	+ +	n‡	+	+		-	n ‡	-	+-+		op n	-			-
ADC (Note 1,2)	A _{CC} ,C ← A _{CC} +M+C	Adds the carry, the accumulator and the memory contents. The result is entered into the accumulator. When the D flag is "0", binary additions is done, and when the D flag is "1", decimal addition is done.			4		2			4		2				5				1	2 8	34	51 7 42 9 51	3			
AND (Note 1,2)	$A_{CC} \leftarrow A_{CC} \wedge M$	Obtains the logical product of the contents of the accumu- lator and the contents of the memory. The result is en- tered into the accumulator.			2	29 2	2			4		2				5					2 8	2 2	21 7 42 9 21	3			
ASL (Note 1)	$m=0$ $C \leftarrow b_{15} \cdots b_{0} \leftarrow 0$ $m=1$ $C \leftarrow b_{7} \cdots b_{0} \leftarrow 0$	Shifts the accumulator or the memory contents one bit to the left. "0" is entered into bit 0 of the accumulator or the memory. The contents of bit 15 (bit 7 when the m flag is "1") of the accumulator or memory before shift is entered into the C flag.	ł						2		67	2			16	57	2										-
BBC (Note 3,5)	Mb=0?	Tests the specified bit of the memory. Branches when all the contents of the specified bit is "0".			T					T				1					T	T			Ť			1	-
BBS (Note 3,5)	Mb=1?	Tests the specified bit of the memory. Branches when all the contents of the specified bit is "1".								T					T					T			T				
BCC (Note 3)	C=0?	Branches when the contents of the C flag is "0".																									-
BCS (Note 3)	C=1 ?	Branches when the contents of the C flag is "1".																									
BEQ (Note 3)	Z=1 ?	Branches when the contents of the Z flag is "1".																									
BMI (Note 3)	N=1 ?	Branches when the contents of the N flag is "1".																									
BNE (Note 3)	Z=0?	Branches when the contents of the Z flag is "0".																									
BPL (Note 3)	N=0?	Branches when the contents of the N flag is "0".																									
BRA (Note 4)	PC←PC±offset PG←PG+1 (carry occured) PG←PG-1 (borrow occured)	Jumps to the address indicated by the program counter plus the offset value.																									
BRK	$\begin{array}{l} PC\!$	Executes software interruption.	00	15	2																						
BVC (Note 3)	V=0?	Branches when the contents of the V flag is "0".																									
BVS (Note 3)	V=1?	Branches when the contents of the V flag is "1".																									
CLB (Note 5)	Мb⊷0	Makes the contents of the specified bit in the memory "0".											14	8 3													
CLC	C←0	Makes the contents of the C flag "0".	+	2	-+-	_	1		4		1	\perp		_					_	1			1				
CLI	1⊷0	Makes the contents of the flag "0".	+	2	-+	_				_	1			-	1	1	1			1			1			_	
CLM CLP	m⊷0 PSb⊷0	Makes the contents of the m flag "0". Specifies the bit position in the processor status register by the bit	+	2	1	2 4	2	╞		+	+	+		+	+		-	$\left \right $	+	+	$\ $	+	+	+		+	_
		pattern of the second byte in the instruction, and sets "0" in that bit.	+	++	+	-	+			+	+	-		_	+	-	-	-		+	$\left \right $	-	+	+		_	_
CLV CMP	V←0 A _{CC} −M	Makes the contents of the V flag "0". Compares the contents of the accumulator with the contents of	+-	2	1	C9 2	2	-		-	25 4	2	$\left \right $	+	D	5 5	2	$\left \right $		D	2 6	2	C1 7	2	D1	8	2
(Note 1,2)		the memory.				12 4 29	3				26	5 3			42 D5	2 7	3			42 D			42 9 C1		42 D1	10	3

																		-									Ad	dd	res	ssi	ing	1 0	no	de	_	-																								Т		P	Proc	es	sor	st	atı	us r	ea	iste	er	
L(D	B)	6	D	R) '	γT		B	S	T	AF	35	h	1	AB	S	x	A	BS	S Y	Л	A	в		4	B	_	- T				1	-			(A	35	x)	6	STI	ĸ	Г	RE		T	DIF	Rb	R	A	BS	b,R	T	s	R	T	(SI	R)	Y	F	SLF		10		8	1.00	-	- - -						0
op n																																																														IPI		+								c
67 1 C										4		#									6F							+	-		10p	Ť	+	-	op	-	-++	υþ		++	10		+	-	-qc	-	#	-op		+"			5					υþ	-	#		r	T	+	+		-+-					c
						- 1									1									Į												ļ	ļ					Į.									P	٦ľ	1	′ `	3	0	4				•	ŀ	·		V	Ϊ	•	•	•	•	2	$ ^{c}$
42 12 67	2 3	42	2 1: 7	3 3		42 5D	6	4					4:	2 8	В	4	42 79	8		4 4	42 6F	8	5	42 78	2 9	15																									4	2 7	7	3 4	12 1 73	10	3															
27 10	2	37	71	1 2	2 2	20	4	3	T	1			30	5 6	6	3	39	6	1	3	2F	6	4	31	7	4	I	T			T		T								T	T		T	1					T	2	3 5	5 2	2 3	33	8	2				•	•		N				•	•	•	z	•
42 12	2	1			t,								L				40	-			42	0	5			╡,							1				İ																		- Î								-									
27	3	37		3		+2 2D	0	4		ł						4	42 39	8	1		42 2F	8		31		1							Į			ł	i													ŀ	2	2 . 3	7 :	3 4	+2 1 33		3															
ht	+	t	t	1	-	DE	7	3	t	1			ħ	E 8	8	_	-	t	+	+				t		t	+	+	-	-	t	t	t		•	-				+	t	+	t	+	-†	-	-		1	-	t	t	+	1	+	1		-			•			N	+	t					7	C
																-																																				100 mm																				
$\left \right $	t	T	+-	+	1	+		-	t	1			+-	t	-				t	+				ſ	t	1	t	1	1		T	1	1			-					t	1	T	3	34	7	4	3C	8	5	t	T		1	1	1		-			•	•	ŀ	•	1.	-	•	•	•	•	•	•
	-	-	+		1	+			t	1			-	+	1		-		-	- 7					+	••••	+				ļ	+	t		-					+	-	1	t	2	24	7	4	2C	8	5	+	+	-	+	+	-			-	-	•	•	•	•	1.		•	•	•	•		•
\vdash	-	+	+	+	+	-		-	+	-		-	+	+			-	-	1	+				+	-	+	+	+	-		╞	ł	+		-					-	90) 4			+				-	+-	+	+	+	+	-	-		-			•				1.	+	-		•			
\mid	-	╞	+	+	+	-			$\left \right $			-	ŀ	+	-			-	-	+				Ļ	+	-	+	+	_		-	-	+		_					-	L	L		1	-			-	-	+	+	+	_	+	-	_	_	_									1			_		
		\downarrow		+	-			-	-	-			-	+	-				-						+	-	+	+			L	-	+									4	1	-	_	_			L	-	1	+	_	-											1	-	1				ŀ	Ľ
																																									F	4		2																	•	•	•	•	•		•	•	•	•	•	•
																																									30	4		2					1												•	•	ŀ	•	•		•	•	•	•	•	ŀ
			T		T				T	1				T						1					Ī		T	1					T								D	4	i i	2	1					T	T	1	1	t	1		-				•	ŀ	•	•	•		•	•	•	•	•	ŀ
\vdash	\uparrow	t	t	1	t	1		-	t	-	-	-	T	1				-	t	1					t	+-	t	+	1		t	+	+		-	-	-		-	f	10) 4		2	1		-	-	1	t	t	t	+	1	+	+	-	-			•	•	•	•	•		•	•	•	•		•
	-	+	+	-	+	+		-	+	-		-	ł	+	+			$\left \right $	+	+	-		_	-	+	+	+	+	-		-	+	+	-		-	_	-		-	80) 4		2	+	-	-	-	+	+	+	+	-	+	+	-	-	-	-	_	•						+	•	•			-
																																									82	2 4		3																												
																																																													•	•	•	•	•		•	•	•	•	•	•
•						and the second sec	-															-							-												5() 4		2																	•	•	•						•	•	•	
						-		-	+	-			ŀ	1				Ļ		-							1	1	4								_			-	70				-				-		1	+	+	+	-	_		_														
				-																		_				1	-	ļ													70	4		2								1										ļ		ļ.,	ļ		4					1
									ľ	С	9	4										_																																							•	•	•	ŀ	•	1	•	•	•	•	•	•
			T	T	T			Ι	T				Γ	T					Γ	T																																									•	•	•	•	•		•	•	•	•	•	0
	1	1							T	1			Γ	Τ	1				Ţ	1				Γ	1	T	T	T	1				T		1					1	T	T		T	1					T	T		1	T	T	1					•	•	•	•	•	1	•	•	•	0	•	•
\vdash	t	t	1-	T	1	1	-	1	t	1			t	1	1			1	ţ	t		-		t	t	1	t	+	1		t	t	+		-				-	t	t	t	1	\dagger	1	1		-	1-	T	t	+	t	+	+	-	-		-		•				1.		5					1.
\vdash	t	t	t	\dagger	1	+	-	t	t	1		-	t	t	1		1	t	t	+	-			t	+	t	t	+	+		1	t	+	1	+		-	Η		1-	\uparrow	t	+	╉	1				+	1	t	+	+	t	+	+				+	•	-		+			L.			g	h	e-
							_																													1								-							1														om					3		-
		T			T				T	1			T							T					Τ	T	T	T	T			1	1		1					1				T	1				1		T	1	1	1	1	1					•	•	•	•	0		•	•	•	•	•	•
C7 10	2	D	71	1 2	2 0	D	4	3	1				DI	DE	6	3	D9	6	3	3	CF	6	4	D	7	1	T	T	1		T	1	1	1		1			-	1	t	1	1	1	1				1	T	c	3 5	5 2	2 0	3	8	2				•			N		†.	.†	•	•	•	z	c
42 12 C7	3	L	2 1:		3 4		6		Į.				4: Di	2 8 D	8	4	42 D9	8	4	4 4	42 CF	8	5	42 Di	2 9	1 5																	-								4		7	3 4																		

					T		,					A	dd	ress	sing	m	ode	e		-		_,_				
Symbol	Function	Details	IN	1P	1	MN	1		A		DIF	3	DI	R,b	C	IR	,Х	DI	R,Y	(1	DIR) (DIR,	()	(DIR),Y
			op r	n #	ор	n	#	ор	n #	‡ op	n	#	op	n #	юр	n	#	ор	n #	ор	n :	# 0	n	# 0	p n	T‡
CPX (Note 2)	х-м	Compares the contents of the index register X with the contents of the memory.			E0	2	2			E4	4	2														
CPY (Note 2)	Y-M	Compares the contents of the index register Y with the contents of the memory.			C0	2	2			C4	4	2														
DEC (Note 1)	A _{CC} ←A _{CC} −1 or M←M−1	Decrements the contents of the accumilator or memory by 1.					1		2 1 4 2		7	2			D6	7	2									
DEX	X ← X −1	Decrements the contents of the index register X by 1.	CA 2	2 1	11		+	1	+	t	1		1	1	1				1			+	\uparrow	+	+	t
DEY	Y ⊷ Y −1	Decrements the contents of the index register Y by 1.	88 2	2 1									1		1	t				Н		+		+	+	t
DIV (Note 2,10)	A(quotient)←B,A/M B(remainder)	The numeral that places the contents of accumulator B to the higher order and the contents of accumulator A to the lower order is divided by the contents of the memory. The quotient is entered into accumulator A and the remainder into accumulator B.			89 29		3			89 25	29	3			89 35	30	3			89 32	31	3 89		3 8 3	19 33 11	3
EOR (Note 1,2)	A _{CC} ←A _{CC} ₩M	Logical exclusive sum is obtained of the contents of the accumulator and the contents of the memory. The result is placed into the accumulator.			49 42	4				42	4 6				42	5 7				42	8	3 42	2 9	3 4	51 8 2 10	ì
INC (Note 1)	$A_{CC} \leftarrow A_{CC} + 1$ or M $\leftarrow M + 1$	Increments the contents of the accumulator or memory by 1.			49		2	12	2 1 4 2		+	2			55 F6	7	2			52		41		5		
INX	x ← x +1	Increments the contents of the index register X by 1.	E8 2	2 1	$\left \cdot \right $		-	BA	+	+		$\left \right $	-	+	-	-		$\left \right $	+	$\left \right $	+	+		+	+-	┝
INY	Y⊷Y+1	Increments the contents of the index register X by 1.	C8 2	+	$\left \right $		+	+	+	+		$\left \right $	+	-	+	-		\vdash		$\left \right $		+		+		┝
JMP	ABS $PC_{L} \leftarrow AD_{L}$ $PC_{H} \leftarrow AD_{H}$ ABL	Places a new address into the program counter and jumps to that new address.																						+		
1	$\begin{array}{l} ABL \\ PC_{L} \leftarrow AD_{L} \\ PC_{H} \leftarrow AD_{H} \\ PG \leftarrow AD_{G} \end{array}$							-																		
	(ABS) PC _L \leftarrow (AD_H, AD_L) PC _H \leftarrow (AD_H, AD_L+1)																									
	$ L(ABS) PC_L \leftarrow (AD_H, AD_L) PC_H \leftarrow (AD_H, AD_L+1) PG \leftarrow (AD_H, AD_L+2) $																									
	$\begin{array}{l} (\text{ABS, X}) \\ \text{PC}_L \leftarrow (\text{AD}_H, \text{AD}_L + X) \\ \text{PC}_H \leftarrow (\text{AD}_H, \text{AD}_L + X) \\ +1) \end{array}$																									
JSR	$\begin{array}{l} ABS \\ M(S) \gets PC_H \\ S \leftarrow S - 1 \\ M(S) \gets PC_L \\ S \leftarrow S - 1 \\ PC_L \leftarrow AD_L \\ PC_H \leftarrow AD_H \end{array}$	Saves the contents of the program counter (also the con- tents of the program bank register for ABL) into the stack, and jumps to the new address.																								
	$\begin{array}{l} ABL \\ M(S) \leftarrow PG \\ S \leftarrow S - 1 \\ M(S) \leftarrow PC_{H} \\ S \leftarrow S - 1 \\ M(S) \leftarrow PC_{L} \\ S \leftarrow S - 1 \\ PC_{L} \leftarrow AD_{L} \\ PC_{H} \leftarrow AD_{H} \end{array}$																									
	$\begin{array}{l} PG \leftarrow AD_{G} \\ (ABS, X) \\ M(S) \leftarrow PC_{H} \\ S \leftarrow S - 1 \\ M(S) \leftarrow PC_{L} \\ S \leftarrow S - 1 \\ PC_{L} \leftarrow (AD_{H}, AD_{L} + X) \\ PC_{H} \leftarrow (AD_{H}, AD_{L} + X) \\ + 1) \end{array}$																									

																						A	١dc	ire	ssi	ing	m	ode	•																						Pro	ces	sor	sta	atus	reg	gist	er
) F	٩)	L(1	DIR),Y	,	٩B	s	A	BS	,b	A	BS	,Χ	A	BS,	,Y	1	B	-	A	3L,	x	(🏾	B	S)	L(.	AB	S)	(AE	BS,X)T	ST	ĸ	F	REL	.]	DIF	R, b, F		BS,	b,R	Γ	SR	1	SR),Y	E	BLK	1	0 9	3	3 7	6	5	4	3	2	1
1	#	ор	n	#	ор	n	#	ор	n	#	ор	n	#	ор	n	#	ор	n	#	ор	n	#	ор	n	#	ор	n	#	ор	n	‡ of	n	#	ор	n	#	op	n ‡	# 0	p n	#	ор	n	# c	p r	#	ор	n	#	IF	2	N	1 V	m	x	D	1	z
1				1	EC	4	3																							1	T	T	T				1		1		T				1				Ţ.		•	• •	1.	•	ŀ	•	•	z
+	_	-	-	-	-		-	-								-					_	-		_		L.,				_	+	+	-			_		+			+			-	-	-			+	+	+	+	+	+	+			
					CC	4	3									ĺ		i															1																1		• •	• •	•	•		•	1.	z
t			T	T	CE	7	3	T			DE	8	3			t													1	T	1	1	T				1	t	T	T	T					1				•	•	• •	1.	•	1.	•		z
						ł		ł																													ļ																-					
	_					1																							1																					1								
4	_					L.						_	L				ļ				_								_	_	_		1			_		_	_	_				_	4.	ļ.,			Ľ		-+-		1.		+		•	+
+	_			-		-		-	-	_	-			_								-				-		_		_	+	-	-	-					+	+-				-	_					-+-	-+		1.	+	-		ŀ	2
		89 37	36		89 2D		4				89 3D			89 39	31		89 2F			89 3F	32	5												ļ								89 23	30	38	19 3: 13	3 3			1	•	• •	•	1 V			•	ŀ	2
4	_			-		-	-	-	_			-	-			-			_			_		_					_	_	_	-	+			_	_		+	-				\downarrow	-				-	-	-			+-	+	-		
2	2	57	11	2	4D	4	3				5D	6	3	59	6	3	4F	6	4	5F	7	4																			l			2 5					1	•	•	•	1.	1.		ŀ	•	4
2		42 57	13	3	42 4D		4				42 5D			42 59	8		42 4F			42 5F	9	5																				42 43		34	210	3												
t	-	57	+	-		7	3	F		-		8				-	1			51	-	-		-				-		+	-+	+-	t	-	-	-	+	-	+	+	+			Ť		+			+			· N	1.		+.	•		1
							1																											•																								
							1						1																												ļ																	
																																																		•	•	• •	1.	•	•	•	•	
ļ																				_	_																	_						_		-				•	+	• •	-	+	ŀ	+	•	╈
				ł	4C	2	3						{			Į	5C	4	4				6C	4	3	DC	8	3	70	6	3																		1	•	• •	• •	•	1.	•	•	•	
				ļ												{																																										
							l																																		l																	
													1																					l							Į.																ł	
						l	ł						l																																						Į						ļ	
													ŀ																																													
											i																							1																								
																													ļ									ļ			ĺ																	
																																						ł																				
l																																		{																			ł					
						ł.										ł														Ì																											ļ	
ļ												1		1		}																									1												ł				ł	
													}			{																																										
+	_	\vdash	-	-		-	-	-				-	ļ			-	-				_	_							_	-	+	+-	+	-		4	_	+	+	+				_	+-	-	-		-	+	+	_	+	+	+	-	-	-
					20	6	3										22	8	4										FC	8	3															ĺ			1	•	•	• •	1.		1.	•	•	
												1	{																																													
						1						ļ				ĺ																																					1					
						1																																			ł												ł					
ĺ						Į																												ł																						l		
				1								Į.				{																																										
													{			{																																										
																ļ																					1																					
																ļ																														ļ												i
l			l													Ì																													1									l			İ.	Į
																ł					1								1																													
Į																{																								Į					1		l											
							[ĺ																			ł																		
							[l		Į																		
1																					ļ																																					
l																																																				1	ļ					
1									ι 6																																							1	- 1									

					T-	_		<u> </u>					m	dre				~						T.				
Symbol	Function	Details	١N		+	М			A		DI		+	NR,		-	IR,			IR,Y	-	(DI	-	+			(DI	R),
			op	n #	ор	n	#	ор	n	# 0	p n	1 #	эþ	n	_		n		ор	n	# 0	p n	#	op	n	#	op	n :
LDA (Note 1,2)	A _{CC} ← M	Enters the contents of the memory into the accumulator.				4	2 3			L	2 6	1 2 5 3					5 7				4	2 6 2 8 2			9	3		
LDM (Note 5)	M ← IMM	Enters the immediate value into the memory.								6	4 4	3				74	5	3			T	T	-	T	Π		1	Ť
LDT	DT ← IMM	Enters the immediate value into the data bank register.			89 C2		3					T	T								T				Π			T
LDX (Note 2)	X ← M	Enters the contents of the memory into index register X.			A2	2	2			A	.6 4	2							B6	5	2							
LDY (Note 2)	Y ← M	Enters the contents of the memory into index register Y.			A0	2	2			A	4 4	2				B4	5	2										
LSR (Note 1)	$m=0$ $0 \rightarrow \boxed{b_{15} \cdots b_0} \rightarrow C$ $m=1$ $0 \rightarrow \boxed{b_7 \cdots b_0} \rightarrow C$	Shifts the contents of the accumulator or the contents of the memory one bit to the right. The bit 0 of the accumulator or the memory is entered into the C flag. "0" is entered into bit 15 (bit 7 when the m flag is "1".)							2		67	2				56	7	2										
MPY (Note 2,11)	B, A←A * M	Multiplies the contents of accumulator A and the contents of the mem- ory. The higher order of the result of operation are entered into accu- mulator B, and the lower order into accumulator A.			89 09		5 3			8		B 3				89 15	19	3				9 20 2	3	89 01			89 2 11	:2
MVN (Note 8)	Mn+i⊷Mm+i	Transmits the data block. The transmission is done from the lower order address of the block.																										
MVP (Note 9)	Mn−i←Mm−i	Transmits the data block. Transmission is done form the higher order address of the data block.																			T							
NOP	PC+PC+1	Advances the program counter, but performs nothing else.	EA 3	2 1																1	T	T			Π		T	T
ORA (Note 1,2)	A _{CC} ←A _{CC} VM	Logical sum per bit of the contents of the accumulator and the contents of the memory is obtained. The result is en- tered into the accumulator.				4	2 3				2 6	3				15 42 15	5 7	2 3			4	26 28 2			9	3		
PEA	$\begin{array}{l} M(S) \leftarrow IMM_2\\ S \leftarrow S - 1\\ M(S) \leftarrow IMM_1\\ S \leftarrow S - 1 \end{array}$	The 3rd and the 2nd bytes of the instruction are saved into the stack, in this order.			0.5											13						2				_		+
PEI	$\begin{array}{c} M(S) \leftarrow M((DPR) + IMM \\ +1) \\ S \leftarrow S - 1 \\ M(S) \leftarrow M((DPR) + IMM) \\ S \leftarrow S - 1 \end{array}$	Specifies 2 sequential bytes in the direct page in the 2nd byte of the instruction, and saves the contents into the stack.																										
PER	$\begin{array}{l} EAR \leftarrow PC + IMM_2, IMM_1 \\ M(S) \leftarrow EAR_{H} \\ S \leftarrow S - I \\ M(S) \leftarrow EAR_{L} \\ S \leftarrow S - I \end{array}$	Regards the 2nd and 3rd bytes of the instruction as 16-bit numerals, adds them to the program counter, and saves the result into the stack.																										
РНА	$\begin{array}{l} m=0 \\ M(S) \!$	Saves the contents of accumulator A into the stack.																										
РНВ		Saves the contents of accumulator B into the stack.																			+							

									_																		Ad	dre	ess	sin	g ı	mo	de	 ;																										F	roc	es	sor	st	atu	ıs ı	egi	iste	er	
L()	DIF	oTi	L(C	DIF	R), Y	1	A	3S	T	A	35	b,b	A	B	s,	$\langle $	AE	35	Y	T	AE	3L	T	AE	BL,		r			- T-					3S,	X)	5	ST	ĸ	Т	RE	EL.	T	DIF	R, b, l	R	AE	BS,b	R		SF	1	(5	SR)),Y	E	BLI	$\langle $	10		-		-							C
	n	1							_											1					_					_			_		_		_	-			_				_					L			1		_	1				IPI	J	+	-		-		D			÷
	10									-1			BC															-	t	Ť	t	-		-1			- 1			f	t		t	+	1										2						•	+		+	•	-+-	•			┢
	12	3 4		13			2 6						42 80		;		42 B9			4: A			5 4	12 3F	9	5																								42 A3			42 B3		3										2					
1	1		5/					5	4		-		+	e E	;	-+	55		-			-	ſ	5			ŀ		ł	t	+	1						-	\uparrow	t	t	+	+	+	1					AJ			65	-	-	1	F		·	•	•	•	1.	+	•†	•	•	•	•	ſ
1		+	-					1		-	-	-	t	t	+	+	-		-	+			+	1	-		-	-		$\frac{1}{1}$	t	1						-	+	t	+	Ì	+	+						-	ŀ		F	ł	-	ŀ	-		•	•	•	•	•	+	•†	•	•	•	•	-
1		+	-			A	E ·	4	3	-		-	ſ	ł	t	1	ЗE	6	3	ł	t		1	1	-	-	t			t	+	1					-		ŀ	t	t	t	t	+							ŀ		-	-	-	ł	-		•	1.	ŀ	N	1	+	•	•	•	•	z	ſ
1	1	1			T	A	;	4	3				вс	e	5	3				1	T	T	1		-				1	t	t	1			-			-	1	t	1-	+	+	+															•	•	•	N	•		•	•	•	•	Z	ſ
1		1				4		7	3				5E	8	;	3				+	t	-	+							t	1											1		+													-		•	•	•	0	•		•	•	•	•	z	(
															-																																																							
39)7	24	3 8	39 17	25	5 3	8	9 1)	8	4				89 10)	0	4	39 19	20	4	89 01	9 2	0 9	5 8	39 : IF	21	5																								89 03	19	3	89 13	22	3				•	•	•	N	•		•	•	•	•	z	
																																																									7 + 2×		•	•	•	•	•		•	•	•	•	•	
														Ī							T									T										l																44		3	•	•	•	•	•		•	•	•	•	•	
		1			1		t	1	1			1	ľ	t	t	1	1		$\left \right $	t	t	T	t	1	-	-	F	t	1	t	t	1				-		-		ſ	r	+	t	t	1										1	1	ĺ		•	•	•	•			•	•	•	•	•	t
	10		- 1										10 42						(6									T																							1		2				•	•	·	N	•		•	•	•	•	z	
7	12	1	17	-	5 3	01		2	4	_		-	10		-	+	+2 19	-		01		-		+2 1F	9	5			-	+	-	-	_	_		_	54	-	-			+		-	-					42 03	Ĺ	3	13	10	3									-	-	_	•			
																																					F4	5	3																					•	•		•		•	•	•	•	•	
																																					D4	5	2																				•	•	•	•	•		•	•	•	•	•	
																																					62	5	3																				·	•	•	•	•		•	•	•	•	•	
																																					48	4	1																				•	•	•	•	•		•	•	•	•	•	
																																					42 48	6	2																				•	•	•	•	•		•	•	•	•	•	

			-		r		-			-				ress	T					-						
Symbol	Function	Details	IN		+	ММ	-		A	-	DI	-		R,b	-				R,Y	-	DIF	-	-		+)(R),'
PHD	$M(S) \leftarrow DPR_{H}$ S \leftarrow S - 1 $M(S) \leftarrow DPR_{L}$ S \leftarrow S - 1	Saves the contents of the direct page register into the stack.	op r	n #	op	n	# 0	op I	n (#	‡ 0	n	#	op	n ‡	‡ or	n	#	op	n ‡	‡ or	n	#	op n	#	op	n
PHG	M(S)←PG S←S-1	Saves the contents of the program bank register into the stack.				-	1	+	t	+	+		-	T	t	1				T			1	\uparrow		Π
РНР	$\begin{array}{l} M(S) \leftarrow PS_{H} \\ S \leftarrow S - 1 \\ M(S) \leftarrow PS_{L} \\ S \leftarrow S - 1 \end{array}$	Saves the contents of the program status register into the stack.																								
РНТ	M(S)←DT S←S-1	Saves the contents of the data bank register into the stack.																								
РНХ	$\begin{array}{l} x=0\\ M(S)\leftarrow X_{H}\\ S\leftarrow S-1\\ M(S)\leftarrow X_{L}\\ S\leftarrow S-1\\ x=1\\ M(S)\leftarrow X_{L}\\ S\leftarrow S-1 \end{array}$	Saves the contents of the index register X into the stack.																								
РНҮ	$ \begin{array}{l} x=0 \\ M(S)\leftarrow Y_H \\ S\leftarrow S-1 \\ M(S)\leftarrow Y_L \\ S\leftarrow S-1 \\ x=1 \\ M(S)\leftarrow Y_L \\ (S\leftarrow S-1 \end{array} $	Saves the contents of the index register Y into the stack.																								
PLA	$ \begin{array}{l} m=0 \\ S+S+1 \\ A_{L}\leftarrow M(S) \\ S+S+1 \\ A_{H}\leftarrow M(S) \\ m=1 \\ S+S+1 \\ A_{L}\leftarrow M(S) \end{array} $	Restores the contents of the stack on the accumulator A.																								
PLB	$\begin{array}{l} m=0 \\ S + S + 1 \\ B_{L} + M(S) \\ S + S + 1 \\ B_{H} + M(S) \\ m=1 \\ S + S + 1 \\ B_{L} + M(S) \end{array}$	Restores the contents of the stack on the accumulator B.																								
PLD	$S \leftarrow S+1$ $DPR_{L} \leftarrow M(S)$ $S \leftarrow S+1$ $DPR_{H} \leftarrow M(S)$	Restores the contents of the stack on the direct page reg- ister.																								
PLP	$S \leftarrow S+1$ $PS_{L} \leftarrow M(S)$ $S \leftarrow S+1$ $PS_{H} \leftarrow M(S)$	Restores the contents of the stack on the processor status register.																								
PLT	S←S+1 DT←M(S)	Restores the contents of the stack on the data bank reg- ister.		1			1	+	T	T	1				t				1	ſ	Π	+	T	t	H	+
PLX	x=0 $S \leftarrow S+1$ $X_L \leftarrow M(S)$ $S \leftarrow S+1$ $X_H \leftarrow M(S)$ x=1 $S \leftarrow S+1$	Restores the contents of the stack on the index register X.														1										

Γ																							-				Ac	dd	res	ssi	na	m	100	Je							_									-										Т		Pr		es	sor	st	tati	us	re	gis	ter		
L(DIF	a)]	L(I	DIF	R), Y	1	A	BS		A	BS	,b	T	AB	IS.	x	A	BS	5, Y	1	A	BL		A	BL		-		_							s,	0	s	тк			RE	L	T	DIR	,b,F	1	AB	S,b	,R	Γ	SF	2	0	SR),Y	T	BL	ĸ	1	0	9											0
ор																																															_		_													IPL		+	+	-	-			1	-		-
op			op						,					*		-	0,0					-								-	φp							DB			4				1			σμ			οp									-	-	•	-	+		-	-+	•	-	•	-	-+-	
$\left \right $		-		-	1	╞	+												ł									+		-				t		1	-	18	3	1				+		t	1	-	-			-	-	+	-	+	-	$\left \right $	t	t	•	·	•	•		+	•	•	•	•		•	•
						t							+			_											Ì							Ì			0	80	4	1												-								T	•	·	•	•	•		•	•	•	•	•	•	•
		-			+	╀	+	+					ł	+		_		t	t	+	-	-				$\left \right $	+	+	+	-	-	$\left \right $	+	t	+			в	3	1			-	ł	t	$^{+}$	1			_		+-		-	t	+		+	+	+	•	·	•	•	•	+	•	•	•	•	•	•	•
																																						DA	4	1																					•	•	•	•	•		•	•	•	•	•	•	•
		-							-																			+										5A	4	1																					•	•	•	•			•	•	•	•	•	•	•
																																						68	5	1																					•	•	•	N	•		•	•	•	•	Z	<u>,</u>	•
																																						42 68	7	2																					•	•	•	N			•	•	•	•	ī	Z	•
																																						2B	5	1																					•	•	•	•	•		•	•	•	•			•
																																						28																								alue		-	-		_				T		
						1																													-			AB							-														-	1	•			N	1			•	•		1	z	_
																																						FA	5	1																					•	•	•	~			•	•	•	•		z	•

1			L		T			–					Т		ress	T					T		-				
Symbol	Function	Details	-	MP		IM			A			DIR		-	R,b		-	_	L	IR,Y	+		-+	(DIR			-
PLY	x=0 S←S+1 Y _L ←M(S) S←S+1 Y _H ←M(S)	Restores the contents of the stack on the index register Y.	op	n ‡	‡ 0	p n	#	op	n	#	ор	n	# c	ap I	n #	οp	n	#	op	n #	op	n	# 0	op n	#	op	n
	x=1 S←S+1 Y _L ←M(S)																										
PSH (Note 6)	M(S)←A, B, X…	Saves the registers among accumulator, index register, direct page register, data bank register, program bank register, or processor status register, specified by the bit pattern of the second byte of the instruction into the stack.																									
PUL (Note 7)	A, B, X···←M(S)	Restores the contents of the stack to the registers among accumulator, index register, direct page register, data bank register, or processor status register, specified by the bit pattern of the second byte of the instruction.																									
RLA (Note 13)	m=0 n bit rotate left $f(x) = 0$ $m=1$ n bit rotate left $f(x) = 0$ $f(x) = 0$	Rotates the contents of the accumulator A, n bits to the left.			8	96																					
ROL (Note 1)	m=0 $m=1$ $m=1$ $m=1$	Links the accumulator or the memory to C flag, and rotates result to the left by 1 bit.							4		26	7	2			36	7	2									
ROR (Note 1)	$m=0$ $\Box \subset \rightarrow b_{15} \cdots b_{0} \rightarrow b_{15}$ $m=1$ $\Box \subset \rightarrow b_{7} \cdots b_{0} \rightarrow b_{0}$	Links the accumulator or the memory to C flag, and rotates result to the right by 1 bit.							4		66	7	2			76	57	2									
RTI	$\begin{array}{l} S \!$	Returns from the interruption routine.	40 1	11 1																							
RTL	$\begin{array}{l} S \leftarrow S+1 \\ PC_L \leftarrow M(S) \\ S \leftarrow S+1 \\ PC_H \leftarrow M(S) \\ S \leftarrow S+1 \\ PG \leftarrow M(S) \end{array}$	Returns from the subroutine. The contents of the program bank register are also restored.	6В	8 1	1																						
RTS	$S \leftarrow S+1$ $PC_{L} \leftarrow M(S)$ $S \leftarrow S+1$ $PC_{H} \leftarrow M(S)$	Returns from the subroutine. The contents of the program bank register are not restored.	60	5 1	1																						
SBC (Note 1,2)	A _{CC} , C←A _{CC} −M−C	Subtracts the contents of the memory and the borrow from the contents of the accumulator.			4	9 2 2 4						4		Ť			2 7					8	34	E1 7 12 9 E1	3		1

					_			_										_						A	dd	res	sir	ng	m	od	e																										F	Pro	ces	so	rs	tat	us	reç	gist	ter	
L(DI																						AE																	EL						BS,I			S									9	8	7	1	6	5	4	3	2	1	0
op n	#	op	n	#	op	n	#	0	p r	nĮŧ	#	op	n	#	ор	n	#	0	r	1	‡ c	pp	n	#	ор	n	#	ор	n	#	op	n	#	or	r	1 #	‡ c	p	n	#	op	n	#	op	n	#	op	p n	#	op	n	#	op	n	#		IP	L	N	1	V	m	x	D	I	z	C
																																		7/	. 5	5 1																				•	•	•	P	1	•	•	•	•	•	z	•
												+															-							EE	3 1. -+ 2i1-	2 2	2																			•	•	•	•		•	•	•	•	•	•	•
										+		_		_			-		+	+	+	+	+	-	+	-	+	_			-	-	ļ	FF	1	4 2	,	+	+		-		_					-	-	-						If		sto		4 +	he		nt	ent		T F	
																																		1	14	-412	Ł																			it	b	ecc	me	es	its	v	alu	ent e. ngi	An		
																											+																													•	•	•			•	•	•	•	•	•	•
					2E	7	3				1	3E	8	3																																										•	•	•	-		•	•	•	•	•	z	С
					6E	7	3					7E	8	3																																										•	•	•	N	1	•	•	•	•	•	z	c
																																																								V	alu	es	sav	ed	in	sta	ack	ς.			
																																																								•	•	•	•		•	•	•	•	•	•	•
														-		-					ł		Ť	1																1																•	•	•	•		•	•	•	•	•	•	·
E7 10 42 12 E7			- 1					1								ł.	1	I I		- 1		F 2											-													í –	1				8 10				-	•	•	•	N		/	•	•	•	•	z	С

APPENDIX 8.MACHINE INSTRUCTIONS

			_								-		A	ddi	ress	T		-						—				
Symbol	Function	Details	-	MF			им	-+-	_		+	DIF	-+		R,b	+	DIR,	-		R,	-+-		7.	+ -	<u> </u>	0 (-7	1
SEB (Note 5)	Мь⊷1	Makes the contents of the specified bit in the memory "1".	op	n	#	op	n 1	# c	n qo	n #	ор	n		op 1 04 1	-	+-	n	#	ор	n	# 0	<u>ח נ</u>	#	ор	n	# 0	p n	#
SEC	C⊷1	Makes the contents of the C flag "1".	38	2	1		1	1	1	T	T		1	1	1	t				1	+	T	H		1	+	t	t
SEI	1⊷1	Makes the contents of the I flag "1".	78	2	1		1	1	1		1		1	1		1				1	1	T	П			T	T	t
SEM	m+−1	Makes the contents of the m flag "1".	F8	2	1		T	T	T	1	T			T	T	T					1	1	П			1	T	T
SEP	PSb+1	Set the specified bit of the processor status register's lower byte ($\mbox{PS}_{\mbox{L}})$ to "1".				E2	3	2													T					T	T	T
STA (Note 1)	M←Acc	Stores the contents of the accumulator into the memory.										4 6	1				7	2 3			9 4 9	29	2				29	
STP		Stops the oscillation of the oscillator.	DB	3	1	-	+	+	+	+	00	$\left \cdot \right $	-	+	-	95	-	-	-	+	9	4	+-		+	-	+	┝
STX	M←X	Stores the contents of the index register X into the memory.		5	-	-	+	+	+	+-	86	4	2	+		+	+	-	96	5	2	+-		H		+	+	┝
STY	M←Y	Stores the contents of the index register X into the memory.		H		-	+	╉	+	+	+-	4	-+	+	+	94	5	-	30	-	+	+	Η	H	-+	+	+	+-
TAD	DPR-A	Transmits the contents of the accumulator A to the direct	5B	2	1		+	+	+	+	1	H	-	+	+	1	ſ	-		+	+	+	+	H	+	+	+	+
1AB	Din K	page register.		-																								l
TAS	S←A	Transmits the contents of the accumulator A to the stack pointer.	1B	2	1					T						T					T	T				T	T	Γ
ТАХ	X←A	Transmits the contents of the accumulator A to the index register X.	AA	2	1																T					T	T	
ΤΑΥ	Y←A	Transmits the contents of the accumulator A to the index register Y.	A8	2	1																T							
TBD	DPR←B	Transmits the contents of the accumulator B to the direct page register.	42 58		2																							
TBS	S←B	Transmits the contents of the accumulator B to the stack pointer.	42 1B	((2																							
твх	Х←В	Transmits the contents of the accumulator B to the index register X.	42 AA	4	2																							
ТВҮ	Y←B	Transmits the contents of the accumulator B to the index register Y.	A8		2																							
TDA	A←DPR	Transmits the contents of the direct page register to the accumulator A.			1																							
TDB	B←DPR	Transmits the contents of the direct page register to the accumulator B.	7B																									
TSA	A←S	Transmits the contents of the stack pointer to the accumulator A.	3B		1			_						_	1					-	1	\downarrow			4	4	\perp	1
TSB	B←S	Transmits the contents of the stack pointer to the accumulator B.	3B		2		_															1						1
TSX	X←S	Transmits the contents of the stack pointer to the index register X.			1		_		-													1						
ТХА	A←X	Transmits the contents of the index register X to the accumulator A.						1													_							
тхв	B←X	Transmits the contents of the index register X to the accumulator B.	42 8A				_		-													1				_		
TXS	S←X	Transmits the contents of the index register X to the stack pointer.																										
ТХҮ	Y⊷X	Transmits the contents of the index register X to the index register Y.	9B	2	1									1														
ΤΥΑ	A←Y	Transmits the contents of the index register Y to the accu- mulator A.	L																									
ТҮВ	B←Y	Transmits the contents of the index register Y to the accumulator B.	98																									
ТҮХ	Х←Ү	Transmits the contents of the index register Y to the index register X.	BB	2	1																							
WIT		Stops the internal clock.	СВ	3	1																							
ХАВ	A≒B	Exchanges the contents of the accumulator A and the con- tents of the accumulator B.	89 28	6	2																							

																													sin																																ş	Pro	oce	ess	or	sta	tus	re	gis	ste	r
DI																																																	S,b			SF) 9	9	8	7	6	5	4	3	2	T	1]
n																																												ор	n	#	‡ c	pp	n	#	op	n									IP	·		N							
Ħ						-1			9			-	+	-			Ľ	t	Ť			t	T	t	1	-		t	t	1		1	t	1	+	1	-1		t	T	Ť	1	1			t	t	1				1	t	1-	t	1	t	T	1		1.		•		•	•	•	•	•	t	
										1														1											i							1					1	1						İ.	L	Ł	1					1									
										[l	1				İ				l.	Ì		1						1					1.														•	•	•	•	•	•	٠	•	•	•		•
											T							T															Ì	ĺ	1						I						T													•		•	- 1	•			•		1		•
	1									1	T	1	T						1			1	ľ		I								T	T	Ī				1	Γ	T						T							T		I	Ī	Γ					•	•	•	1	•				•
					1					t	t	Ť	1	1		t	t	t	1			t	1	t	t			t	T	1		1	1	Ţ	ľ		1	-	1	T	t	-			1	t	Ť	1	1			-		1	Ť	1	T	t	1	•	1.	•	•	Sp	ec	ifie	d	f	lag	- 1 -,	be
							. 1			1	1								1			_		1								Į	1	1	_						1.					L						L	1			1				ļ	1	1		cc	me	es '	1"			-	
10	2	97	11	2	BD	5	3				9	D	5	3	99	5	3	8	F	6	4	9F	7	4	1	ļ						{		l						ł							1				83	5	2	93	3 8	2				•		·	•	•	•	•	•	ŀ	•		۰ł
12	3	42	13	3	42	7	4				4	2	7	4	42	7	4	4	2	8	5	42	2 9	+	5	1						1		١							ł		1					l			42	7	3	42	210	3														Ì	1
		97			BD							D			99			8				9F																			l							1			83			93						İ.									Į		
											1							T					T					Τ													ĺ	1				1							1	Τ	Τ			Γ	Ι	•	•	•	•	•	•	•	•	•			•
					8E	5	3		1	Ĩ	T	1	1					T						T				T	T											T							T						Ţ		Ţ			Γ					•	•	•	•	•				•
11	1				BC	5	3			t	1	1	1	1		1	T	T	1			1	t	T	T			T	T	1		T	t	1	1	1			T	Γ	T	Ť	1			T	t	1	1			1	Ţ	1		T	T	T	T	•	•	1	•	•	•	•		•		Ť	
11									l	l	t	1	Ť	t		ţ.	t	t	t			t	t	ľ	Ì			-	t	1		ľ	t	1		Ť		1	t	t	1	1				t	t	1	1			T	T	T	1	T	1	ſ	T	1.	•	•	•	•	•	•	•		1.	Ť	•
									_			1					L							1					1				1		_					L	+	1				1	1									1		L	1			1									
											1																	L																		l														ŀ		•	•	·	•	•	•	•	•		•
									-																				1																			1												•			•	N	•	•	•	•	•		z
- 1	_	_		-		_			-	-	+	-	_			-	1	+	-+			-	 	+	+		-	1	-			Į.,	1.	+			.	-	ļ	 		-	+			-	-					ļ		1	.	1	1	Ļ.	-		1	+	-					ļ	L	-	
																1	1								ĺ								ĺ	ł												Ì.								1			Ì			ŀ		1	•	N	•	•	•	 •			Z
	-	-		+	-	-	-		-	+	+	+	+	-		+-	+	+	+	-			ł	+	+		-	+	+	-		+-	+	÷	-	-+	-	-	╞	╞	+	-	+		-	+	+	+	-	_	\vdash	+-	+	+	╀	+	+-	-	+		+		•		-				t.	÷	-
					1	ł													Ì				1	ł	Ì					1		Į		Į					Į.							Ĺ								Į.						1	1	1		•	•	·	ľ	ľ	1		Ī
									t	1	t	+	+	1		t	t	t	1			t	t	t	t			1	t	-†		1	t	t	1	t	-	-	1	t	t		1		t	t	t	+			-	t	+	t	t		t	t	t			+		•					1.	t	•
																																			1																																	1			
										ļ	i																																					1												•		٠T	•	Ν	•	•	•	•	•		z
		_			_				Ļ	╞	+	-	-	_			1	Ļ	-	_			Ļ	-	+			+-	-	-		-	+	+	-	_	_				+	+	_			ļ		-+				_	-	+	-		ļ		-	-	-	-	_					-	-		
					ļ						ł		1																						ł						ł		ł															Ľ		ŀ		•	•	N	•	•	•	•	•		Ζ
$\left \right $	-			-	-	_			-	+	+	+	+	+			+	+	+	-		-	╞	+	+			+-	+				÷	+	+	+	-		+	┢	+	+	+		-	+	+	+	-		-	+-	+	+	┢	+	+	-	+	1.	t	+		N	-		•	ł.	1.	+	-
									ĺ.		1	1												ł	1	1	ĺ								ĺ						Ì.	1	1			İ.														[1					·		1		1	-
		-						-	F		t		1	1			t	t	Ť				T	1	1		-	t	t	1		t	t	1	t	1			t	t	t	1	1			t	t	1	1			t	1	1	t	1	t	-	1	1.	t.	+		N	•	•	•				z
																																																										_												1	
																																		ļ							T							1									Γ			•		•	•	N	•	•	•	•	•		z
										Γ	T							T						T				T	T			Γ	T		1						T						Τ			1		-								•	•	•	•	N	•	•	•	•	•		z
					4	_	_	_	ļ_	Ļ	+	_	4	-		L		1	4	_		L	1		-	_	-	1	+	-		1	1	+	-	-	_	ļ			1	1	-			L	1	1			_		-	-	1	-	ļ	1	1	-	Ļ	_	_	_						+	
																		1															ľ																		ĺ				l			1		·	•	•	•	N	•	•	•	•	•	ľ	Z
	-	-	$\left \right $	-	-		-			╞	+	+	+	+		-		+-	-+-			\vdash	-	+	+	-		÷	+				+-	+-	+	- †			+-	-	╀	+	+		-	+	+	+	+		-	-	+-	╀	ł	t	╀	+-	+		+	+	+	N	_		•	+		t.	-
				1																					İ										ĺ	Ì	Ì		ł	ŀ							1							1						1.	1.		•	N	•	•	ŀ		1	ľ	-
											t		1	1	-		t	t	1	1	_	t	t	t	t		-	t	t	1	-	t	t	t	+		1	F	t	t	t	t			-	t	t	1			-	1		t	T	t	t	ŀ	t		1.			N	•	•					z
										L			Ĺ					L										I.																																										}	
]			ſ														Į															1					ľ																ľ					•		•	•[•	•	•	•	•	•		•
		-		4	-	-	_			+-	+	-	+	-	_	-	-	+	+	_		-	+	+	+	_	-	+	+			-	╀	+	+	4	_	_	-	-	+-	-	_			-	+	+	+			-	+	-	-	+	-	-	-	-	+	+	-				-		-	-	_
												}														ł								1			Ì		ł							1												1		•		•	•	N	•	•	•	•	•	1	Z
			\vdash	+	+				-	+	+	+	+	+		┝	+-	+	+	-		+	┢	+	+	-	-	+	+	+		-	+	+	+	+	-	-	+	┢	+	+	+	-	+-	+-	+	+	+			-	+-	+	+	+	+-	1	+	1.	+	+	+	N	-	-	-		+-	+	7
																		1								ļ								1						1								ĺ												Ē	ľ		1	IN		·	Ū	ľ	1	1	-
			Π	1	1			-	-	T	T	1	1	1		1	t	t	1	1		T	t	1	1		Γ	t	t			t	T	t	1	1		-	t	t	t	t	1		-	t	t	1	1				T	T	1	T	t	1	t	•	ţ.	. † .	•	N	•	•					z
										L								L				L	L					L																													1				1									1	
					ſ															ļ							ĺ	ľ				[ł	ſ																				ľ			ľ	•			۰Ī	N	•	•	•	•	•	1	z
					-	_			-	L	+		+	_			\vdash	+	+	_			-	-	+	_	_	+	+	4			+	+-	+	_	-	-	-		+	+	-	-	_	-	+	+	_				+	+-	-	+	-	1	1	-	+	+	-	_				-	-	-	_
		_		_	4	_		_		-	1	+	-	4		-	-	1	+	-		L	1	-	+	_	_	1	+			-	+	+	+	-	-	-	1	-	+	+	-	_		-	+		-			-	+	+-	-	-	1	1	ļ	ŀ				•							
															ļ	ļ																															1									ł.		ĺ		·	1.	•	•	N	•	٠	•	•	•		Ζ

MEMO

APPENDIX 9 MASK ROM ORDERING METHOD

APPENDIX 9.MASK ROM ORDERING METHOD

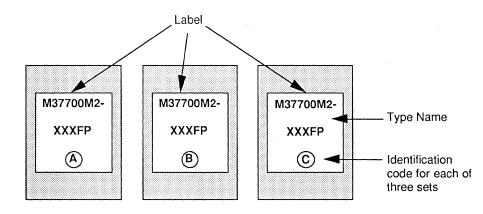
Mask ROM Ordering Method

Mitsubishi Electric Corporation accepts order to transfer EPROM supplied program data into the mask ROMs in single-chip 16-bit microcomputers. When placing such order, please submit the information description below.

1.Mask ROM Order Confirmation Form	1 set
(There is a specific form to be used for each model.)	
2.Data to be written into mask ROM	EPROM
(Please provide three sets containing the identical data.)	
3.Mark Specification Form	1 set

Please use the Mask ROM Order Confirmation Form and Mark Specification Form on the latest data book.

Notes


(1) Acceptable EPROM type

Any EPROM made by Mitsubishi Electric Corporation that is listed in the Mask ROM Order Confirmation Form may be used.

(2) EPROM window labeling

Example :

Please write the type name and the identification code (A, B, C) on the label for each of the three sets of data EPROMs provided.

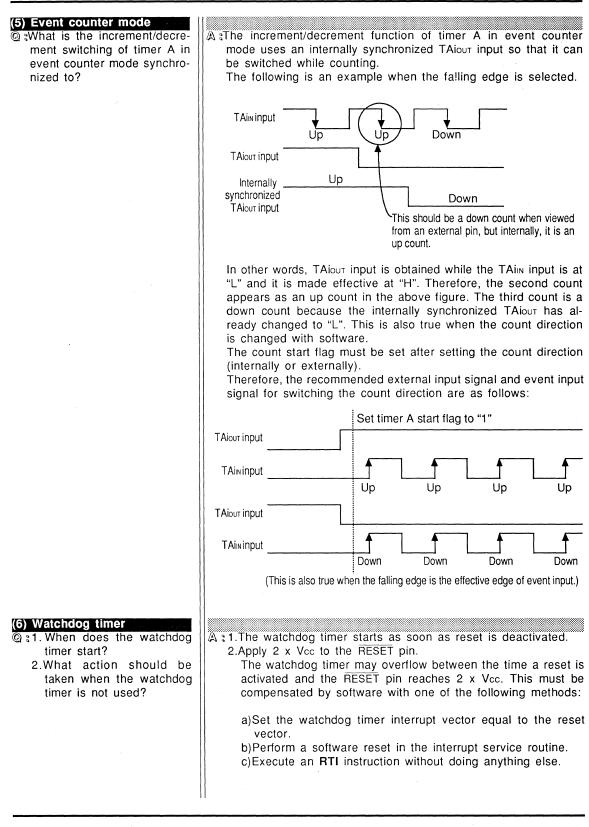
(3)Calculation and indication of check sum code

Please calculate the total number of data in words in the EPROM, and write the number in 4-digit hexadecimal form in the check sum code field of the Mask ROM Order Confirmation Form. (4)Options

Refer to the appropriate data book entry and write the desired options on the Mask ROM Order Confirmation Form.

(5)Marking specification method

The permissible marking specifications differ depending on the shape of package. Please fill out the Marking Specification Form and attach it to the Mask ROM Order Confirmation Form.

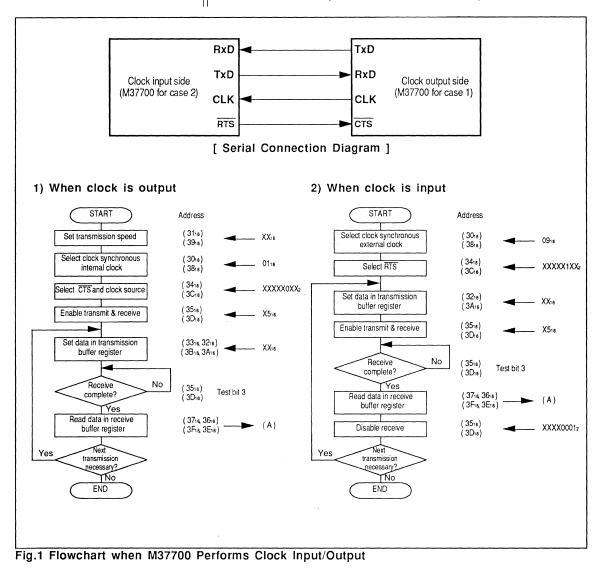

Mark Specification Form

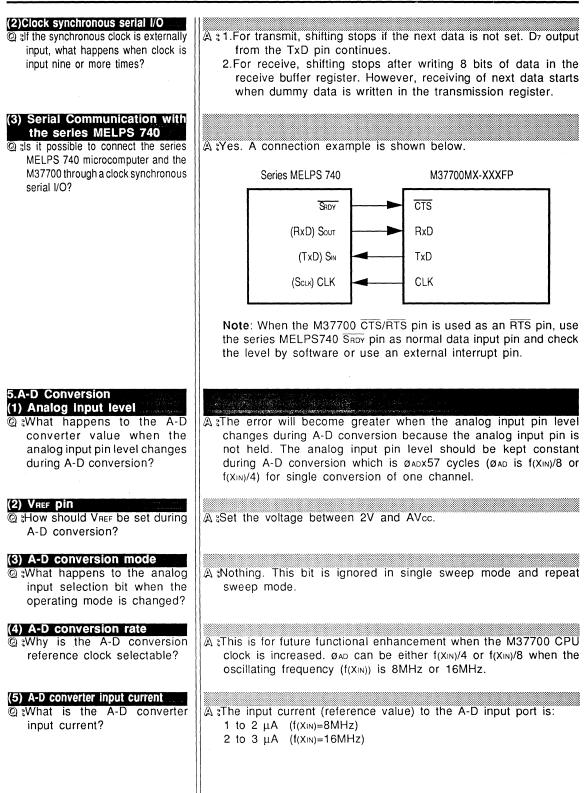
Mark specification format differs depending on the package type.

Fill out the Mark Specification Form for the package type being ordered, and submit the form with the Mask ROM Order Confirmation Form.

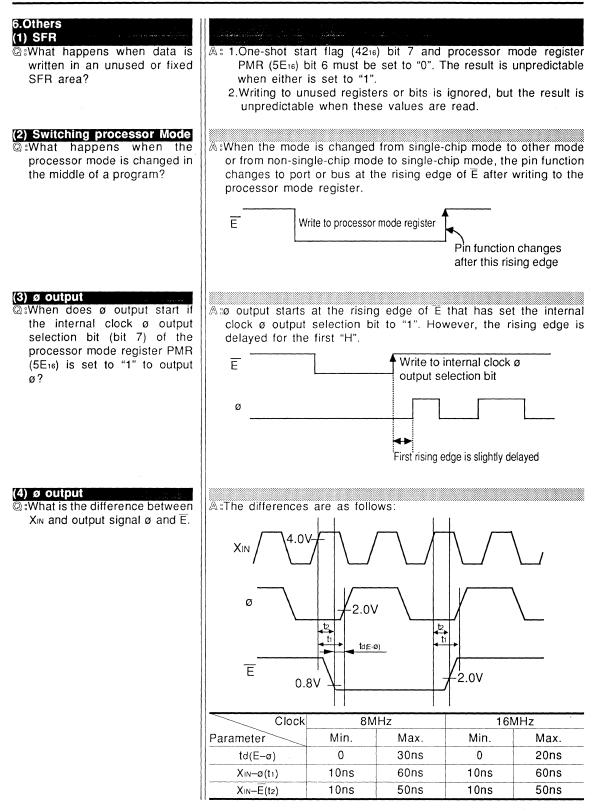
 1.Parallel ports (1) Port P4 (a) What is read from port P40 (HOLD) and P41 (RDY) when port P4 is read in memory expansion mode or micro- processor mode? 	A The P4o and P4o level is obtained.
2.Interrupt (1) Interrupt priority level @ Which type of interrupts has higher priority; software inter- rupts or other interrupts?	A When a BRK instruction is executed or a zero divide is performed in an interrupt handling routine, a BRK interrupt or a zero divide interrupt occurs and that interrupt is serviced. However, if mul- tiple interrupts are enabled by setting the I flag to "0", interrupts with priority higher than IPL are accepted because the IPL is not changed. Furthermore, the WDT interrupt is always enabled.
 (2) Processor mode register (a) What are bits 4 and 5 (interrupt priority level detection interval selection bits) in the processor mode register (5E₁₆) used for? 	A These bits are reserved for future functional enhancements when the processor speed or the number of interrupt sources is in- creased. When the oscillating frequency is 8MHz or 16MHz and the number of interrupt sources is 19, the shortest interval (bits 5,4=1,0) can be used.
 3.Timer/Counter (1) Reading the timer register (2) als the result of reading the timer register in timer A or timer B timer mode/event counter mode not the same as the value set in the reload register? 	A sThe following figure shows an example where the rising edge is selected for event counter mode. (Falling edge and timer mode is also the same.) Taininput (TBininput) Read Decrement count (Decrement count (TBininput) Read Decrement count (TBininput) Read Decrement count (TBininput) Read Decrement count (FFFD ₁₆) (FFFE ₁₆) (FFFF ₁₆) (FFFF ₁₆) (TFFF ₁₆) (

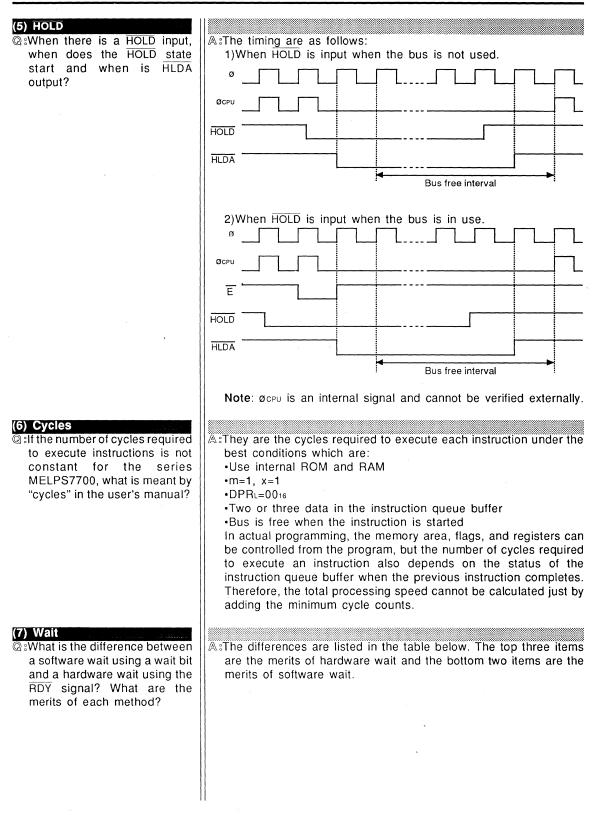
(2) Timer interrupt request (2) When is the interrupt request flag set? How is it related to the output pulse change tim- ing?	A :•Timer mode and event counter mode The TAiouT output pulse changes direction at the effective edge of the count pulse after the counter has reached "000016" ('FFFF16" if increment count is selected in event counter mode). The interrupt request flag is set when the effective edge changes direction (same for timer B).
	Example) Timer A timer mode and event counter mode (falling edge effective, decrement count)
	Counter content 1_{16} 0 FFFF16 n-1 2_{16} 1_{16} 0 FFFF16 n-1 Count pulse 1_{16} Co
	TAbur output
	 One-shot pulse mode and PWM mode The interrupt request flag is set at the falling edge of the TAioum output.
(3) Timer I/O pins ② 3Can the pin levels of pins TAi _{IN} , TAiouT, and TBi _{IN} be read when these pins are used as timer I/O pins?	A : If the direction register is set to "input", the pin level can be read. If the direction register is set to "output" the port latch data is re- turned instead of the pin level.
(4) Timer A (2): Is it possible to use timer A as an 8-bit timer+8-bit prescaler in modes other than pulse width modulation mode?	A Timers operate basically in 16-bit mode. However, when perform- ing pulse width modulation, the output pulse frequency can only be selected with the clock source (four types) if the timer is 16 bits. Therefore, in 8-bit pulse width modulation mode, the timer is divided into 8 bit halves with the low-order 8 bits used to select the pulse output frequency and the high-order 8 bits used to set the "H" width of the pulse output. In other modes, only 16-bit timers are available because they are more precise than 8-bit prescaler+8-bit timer.


4.Serial Port


(1) Clock synchronous serial I/O (2) a Can the same clock be used to perform output and input (concurrently)?

A:1.When M37700 outputs the clock


If the communication partner (clock input side) can perform concurrent data I/O using an external clock, data output and input can be performed concurrently according to the procedure shown by the flowchart in Figure 1. However, in this example, the clock input side is assumed to set the M37700 CTS pin to "L" when it is ready to receive data and has set the output data. 2.When M37700 inputs the clock


If the communication partner (clock output side) can perform concurrent data I/O using its own output clock, data output and input can be performed concurrently according to the procedure shown by the flowchart in Figure 1. However, in this example, the clock output side is assumed to start clock and data output when "L" is output from the M37700 RTS pin.

6.Others

Parameter	Software wait	Hardware wait
Time required for one wait	Twice the time required for zero wait	1.5 times the time required for zero wai
Wait area	All external memory area	Required area only
Number of wait states	One cycle only	1 to ∞
External hardware	Not required	Required
Contribution to access time	Two ø cycles	n ø cycle
		(n is inserted wait count)

program execution speed r between single-chip mode i and memory expansion mode a or microprocessor mode? I r	he instruction execution speed for memory expansion mode or nicroprocessor mode is the same as in single-chip mode if there is zero wait state due to wait bit or RDY input and if "L" level is applied to the BYTE pin (16-bit external bus). If the above conditions are not satisfied, the execution speed for nemory expansion mode and microprocessor mode is slower. Figure 2 shows the difference in execution speed when a sample program is executed under various conditions.
--	--

	LDY	#69 (m=0, x=1)		
LO	OPO: LDX	#69		
LO	DP1: ASL	ss,X	-	
	SEM			
	ROL	ss+2,X		
	ROL	В		
	CLM			
	ROR	А		
	DEX			
	DEX			
	DEX			
	BNE	LOOP1		
	STA	A,dddd,Y		
	SEM			
	STA	B,dddd+2,Y		
	CLM			
	DEY			
	DEY			
	DEY			
	BNE	LOOPO		
ecution sp. ssuming 8	eed in memor MHz single-chi	y expansion mode and microp p mode execution speed is 1	processor mode .)	
Wait bit	External bus	width (and used memory)	Execution Time (ms)	Ratio
		16 bits	5.54	1.00
1	8 bits (internal	memory is only RAM) (Note)	5.98	1.08
		8 bits	6.52	1.18
	16 bits (interna	I memory is only RAM) (Note)	6.79	1.23
0	8 bits (internal	memory is only RAM) (Note)	9.78	1.77
-		8 bits	10.86	1.96

Fig.2 Sample Program Execution Speed Comparison

CONTACT ADDRESSES FOR FURTHER INFORMATION

JAPAN =

Semiconductor Marketing Division Mitsubishi Electric Corporation 2-3, Marunouchi 2-chome Chiyoda-ku, Tokyo 100, Japan Telex: 24532 MELCO J Telephone: (03) 218-3473 (03) 218-3499 Facsimile: (03) 214-5570

Overseas Marketing Manager Kita-Itami Works 4-1, Mizuhara, Itami-shi, Hyogo-ken 664, Japan Telex: 526408 KMELCO J Telephone: (0727) 82-5131 Facsimile: (0727) 72-2329

HONG KONG =

MITSUBISHI ELECTRIC (H.K.) LTD. 25 Floor, Leighton Centre, 77, Leighton Road. Causeway Bay. Hong Kong Telex: 60800 MELCO HX Telephone: (5) 773901-3 Facsimile: (5) 895-3104

SINGAPORE -----

MELCO SALES SINGAPORE PTE. LTD. 230 Upper Bukit Timah Road # 03-01/15 Hock Soon Industrial Complex Singapore 2158 Telex: RS 20845 MELCO Telephone: 4695255 Facsimile: 4695347

TAIWAN =

MELCO-TAIWAN CO., Ltd. 1st fl., Chung-Ling Bldg., 363, Sec. 2, Fu-Hsing S Road, Taipei R.O.C. Telephone: (02) 735-3030 Facsimile: (02) 735-6771 Telex: 25433 CHURYO "MELCO-TAIWAN"

U.S.A. NORTHWEST

Mitsubishi Electronics America, Inc. 1050 East Arques Avenue Sunnyvale, CA 94086 Telephone: (408) 730-5900 Facsimile: (408) 730-4972

SAN DIEGO

Mitsubishi Electronics America, Inc. 11545 West Bernardo Court Suite 100 San Diego, CA 92128 Telephone: (619) 592-1445 Facsimile: (619) 592-0242

DENVER

Mitsubishi Electronics America, Inc. 4600 South Ulster Street Metropoint Building, 7th Floor Denver, CO 80237 Telephone: (303) 740-6775 Facsimile: (303) 694-0613

SOUTHWEST

Mitsubishi Electronics America, Inc. 991 Knox Street Torrance, CA 90502 Telephone: (213) 515-3993 Facsimile: (213) 217-5781

SOUTH CENTRAL

Mitsubishi Electronics America, Inc. 1501 Luna Road, Suite 124 Carrollton, TX 75006 Telephone: (214) 484-1919 Facsimile: (214) 243-0207

NORTHERN

Mitsubishi Electronics America, Inc. 15612 Highway 7 # 243 Minnetonka, MN 55345 Telephone: (612) 938-7779 Facsimile: (612) 938-5125

NORTH CENTRAL

Mitsubishi Electronics America, Inc. 800 N. Bierman Circle Mt. Prospect, IL 60056 Telephone: (312) 298-9223 Facsimile: (312) 298-0567

NORTHEAST

Mitsubishi Electronics America, Inc. 200 Unicorn Park Drive Woburn, MA 01801 Telephone: (617) 932-5700 Facsimile: (617) 938-1075

MID-ATLANTIC

Mitsubishi Electronics America, Inc. 800 Cottontail Lane Somerset, NJ 08873 Telephone: (201) 469-8833 Facsimile: (201) 469-1909

SOUTH ATLANTIC

Mitsubishi Electronics America, Inc. 2500 Gateway Center Blvd., Suite 300 Morrisville. NC 27560 Telephone: (404) 368-4850 Facsimile: (404) 662-5208

SOUTHEAST

Mitsubishi Electronics America, Inc. Town Executive Center 6100 Glades Road #210 Boca Raton, FL 33433 Telephone: (407) 487-7747 Facsimile: (407) 487-2046

CANADA

Mitsubishi Electronics America, Inc. 6185 Ordan Drive, Unit # 110 Mississauga, Ontario, Canada L5T 2E1 Telephone: (416) 670-8711 Facsimile: (416) 670-8715

Mitsubishi Electronics America, Inc. 300 March Road, Suite 302 Kanata, Ontario, Canada K2K 2E2 Telephone: (416) 670-8711 Facsimile: (416) 670-8715

WEST GERMANY ===

Mitsubishi Electric Europe GmbH Headquarters: Gothear Str. 8 4030 Ratingen 1, West Germany Telex: 8585070 MED D Telephone: (02102) 4860 Facsimile: (02102) 486-115

Munich Office: Arabellastraße 31 8000 München 81, West Germany Telex: 5214820 Telephone: (088) 919006-09 Facsimile: (089) 9101399

FRANCE =

Mitsubishi Electric Europe GmbH 55, Avenue de Colmar 92563 Rueil Malmaison Cedex Telex: 632326 Telephone: 47087871 Facsimile: 47513622

ITALY =

Mitsubishi Electric Europe GmbH Centro Direzionale Colleoni Palazzo Cassiopea 1 20041 Agrate Brianza I-Milano Telephone: (039) 636011 Facsimile: (039) 6360120

SWEDEN

Mitsubishi Electric Europe GmbH Lastbilsvägen 6B 5-19149 Sollentuna, Sweden Telex: 10877 (meab S) Telephone: (08) 960468 Facsimile: (08) 966877

U.K. =

Misubishi Electric (U.K.) Ltd. Travellers Lane Hatfield Herts AL10 8×B, England, U.K. Telephone: (0044) 7072 76100 Facsimile: (0044) 7072 78692

AUSTRALIA :

Mitsubishi Electric Australia Pty. Ltd. 73-75, Epping Road, North Ryde, P.O. Box 1567, Macquarie Centre, N.S.W., 2113, Australia Telex: MESYD AA 26614 Telephone: (02) (888) 5777 Facsimile: (02) (887) 3635

MITSUBISHI SEMICONDUCTORS M37700M2-XXXFP, M37700M2AXXXFP USER'S MANUAL

December First Edition 1989 Editioned by Committee of editing of Mitsubishi Semiconductor USER'S MANUAL

Published by Mitsubishi Electric Corp., Semiconductor Marketing Division

This book, or parts thereof, may not be reproduced in any form without permission of Mitsubishi Electric Corporation. ©1989 **MITSUBISHI ELECTRIC CORPORATION**

MITSUBISHI SEMICONDUCTORS M37700M2-XXXFP M37700M2AXXXFP

These products or technologies are subject to Japanese and/or COCOM strategic restrictions, and diversion contrary thereto is prohibited.

H-E0214-A Printed in Japan (ROD) © 1989 MITSUBISHI ELECTRIC CORPORATION New publication, effective Dec. 1989. Specifications subject to change without notice.