
ADVANCED AND EVER ADVANCINGMITSUBISHI ELECTRIC

MITSUBISHI 16-BIT SINGLE-CHIP MICROCOMPUTER
M16C FAMILY

M16C/60
M16C/20
SERIES

<Assembler language>

MITSUBISHI
ELECTRIC

Programming Manual

Keep safety first in your circuit designs!

Notes regarding these materials

● Mitsubishi Electric Corporation puts the maximum effort into making semiconductor
products better and more reliable, but there is always the possibility that trouble may
occur with them. Trouble with semiconductors may lead to personal injury, fire or
property damage. Remember to give due consideration to safety when making your
circuit designs, with appropriate measures such as (i) placement of substitutive,
auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any
malfunction or mishap.

● These materials are intended as a reference to assist our customers in the selection
of the Mitsubishi semiconductor product best suited to the customer's application;
they do not convey any license under any intellectual property rights, or any other
rights, belonging to Mitsubishi Electric Corporation or a third party.

● Mitsubishi Electric Corporation assumes no responsibility for any damage, or
infringement of any third-party's rights, originating in the use of any product data,
diagrams, charts, programs, algorithms, or circuit application examples contained in
these materials.

● All information contained in these materials, including product data, diagrams, charts,
programs and algorithms represents information on products at the time of publication
of these materials, and are subject to change by Mitsubishi Electric Corporation
without notice due to product improvements or other reasons. It is therefore
recommended that customers contact Mitsubishi Electric Corporation or an authorized
Mitsubishi Semiconductor product distributor for the latest product information before
purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical
errors. Mitsubishi Electric Corporation assumes no responsibility for any damage,
liability, or other loss rising from these inaccuracies or errors.
Please also pay attention to information published by Mitsubishi Electric Corporation
by various means, including the Mitsubishi Semiconductor home page (http://
www.mitsubishichips.com).

● When using any or all of the information contained in these materials, including
product data, diagrams, charts, programs, and algorithms, please be sure to evaluate
all information as a total system before making a final decision on the applicability of
the information and products. Mitsubishi Electric Corporation assumes no
responsibility for any damage, liability or other loss resulting from the information
contained herein.

● Mitsubishi Electric Corporation semiconductors are not designed or manufactured
for use in a device or system that is used under circumstances in which human life is
potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized
Mitsubishi Semiconductor product distributor when considering the use of a product
contained herein for any specific purposes, such as apparatus or systems for
transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

● The prior written approval of Mitsubishi Electric Corporation is necessary to reprint
or reproduce in whole or in part these materials.

● If these products or technologies are subject to the Japanese export control
restrictions, they must be exported under a license from the Japanese government
and cannot be imported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan
and/or the country of destination is prohibited.

● Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semicon
ductor product distributor for further details on these materials or the products con
tained therein.

Preface

This manual describes the basic knowledge of
application program development for the M16C/60,
M16C/20 series of Mitsubishi CMOS 16-bit
microcomputers. The programming language used in
this manual is the assembly language.
If you are using the M16C/60, M16C/20 series for the
first time, refer to Chapter 1, "Overview of M16C/60,
M16C/20 Series". If you want to know the CPU
architecture and instructions, refer to Chapter 2, "CPU
Programming Model" or if you want to know the
directive commands of the assembler, refer to
Chapter 3, "Functions of Assembler". If you want to
know practical techniques, refer to Chapter 4,
"Programming Style".
The instruction set of the M16C/60, M16C/20 series is
detailed in "M16C/60, M16C/20 Series Software
Manual". Refer to this manual when the knowledge of
the instruction set is required.
For information about the hardware of each type of
microcomputer in the M16C/60, M16C/20 series, refer
to the user's manual supplied with your
microcomputer. For details about the development
support tools, refer to the user's manual of each tool.

Guide to Using This Manual

This manual is an assembly language programming manual for the M16C/60, M16C/20 series. This
manual can be used in common for all types of microcomputers built the M16C/60 series CPU core.
This manual is written assuming that the reader has a basic knowledge of electrical circuits, logic
circuits, and microcomputers.
This manual consists of four chapters. The following provides a brief guide to the desired chapters and
sections.

• To see the overview and features of the M16C/60, M16C/20 series
→ Chapter 1 Overview of M16C/60, M16C/20 Series

• To understand the address space, register structure, and addressing and other knowledge required for
programming

→ Chapter 2 CPU Programming Model

• To know the functions of instructions, the method for writing instructions, and the usable addressing
modes

→ Chapter 2 CPU Programming Model, 2.6 Instruction Set

• To know how to use interrupts
→ Chapter 2 CPU Programming Model, 2.7 Interrupts
→ Chapter 4 Programming Style, 4.3 Interrupts

• To check the functions of and the method for writing directive commands
→ Chapter 3 Functions of Assembler, 3.2 Writing Source Program

• To know the M16C/60, M16C/20 series' programming techniques
→ Chapter 4 Programming Style

• To know the M16C/60, M16C/20 series' development procedures
→ Chapter 4 Programming Style, 4.7 Generating Object File

M16C Family-related document list

Usages

(Microcomputer development flow)

Outline design
of system

Selection of
microcomputer

Detail design
of system

Hard-
ware
devel-
opment

System
evaluation

Soft-
ware
devel-
opment

Contents

Hardware specifications (pin assignment,
memory map, specifications of peripheral
functions, electrical characteristics, timing
charts)

Detailed description about hardware specifi-
cations, operation, and application examples
(connection with peripherals, relationship
with software)

Method for creating programs using assem-
bly and C languages

Detailed description about operation of each
instruction (assembly language)

H
ar

dw
ar

e

Type of document

Data sheet and
data book

User’s manual

Programming
manual

Software manual

S
of

tw
ar

e

M16C Family M16C/80 Series M16C/80 Group

M16C/60 Series M16C/60 Group

M16C/61 Group

M16C/62 Group

M16C/20 Series M16C/20 Group

M16C/21 Group

M16C Family Line-up

Table of contents

Chapter 1 Overview of M16C/60, M16C/20 Series

1.1 Features of M16C/60, M16C/20 Series2

1.2 Outline of M16C/60, M16C/20 Group 3

1.3 Introduction to CPU Architecture5

Chapter 2 CPU Programming Model

2.1 Address Space10

2.1.1 Operation Modes and Memory Mapping ... 10

2.1.2 SFR Area ...12

2.1.3 Fixed Vector Area.. 15

2.2 Register Set16

2.3 Data Types21

2.4 Data Arrangement23

2.5 Addressing Modes24

2.5.1 Types of Addressing Modes .. 24

2.5.2 General Instruction Addressing ... 25

2.5.3 Special Instruction Addressing ...34

2.5.4 Bit Instruction Addressing ..39

2.5.5 Instruction Formats ..46

2.6 Instruction Set 47

2.6.1 Instruction List ..48

2.6.2 Transfer and String Instructions ...64

2.6.3 Arithmetic Instructions ... 67

2.6.4 Sign Extend Instruction ... 74

2.6.5 Bit Instructions ...75

2.6.6 Branch Instructions ..77

2.6.7 High-level Language Support Instructions ...81

2.6.8 OS Support Instructions ...83

2.7 Outline of Interrupt86

2.7.1 Interrupt Sources and Control ... 86

2.7.2 Interrupt Sequence ..87

Chapter 3 Functions of Assembler

3.1 Outline of AS30 System..90

3.2 Method for Writing Source Program93

3.2.1 Basic Rules ... 93

3.2.2 Address Control .. 101

3.2.3 Directive Commands ... 108

3.2.4 Macro Functions .. 116

3.2.5 Structured Description Function .. 124

Chapter 4 Programming Style

4.1 Hardware Definition 126

4.1.1 Defining SFR Area .. 126

4.1.2 Allocating RAM Data Area... 129

4.1.3 Allocating ROM Data Area .. 130

4.1.4 Defining a Section ... 131

4.1.5 Sample Program List 1 (Initial Setting 1) .. 133

4.2 Initial Setting the CPU 136

4.2.1 Setting CPU Internal Registers ... 136

4.2.2 Setting Stack Pointer .. 136

4.2.3 Setting Base Registers (SB, FB) ... 136

4.2.4 Setting Interrupt Table Register (INTB) ... 136

4.2.5 Setting Variable/Fixed Vector .. 137

4.2.6 Setting Peripheral Functions ... 137

4.2.7 Sample Program List 2 (Initial Setting 2) .. 139

4.3 Setting Interrupts 142

4.3.1 Setting Interrupt Table Register .. 142

4.3.2 Setting Variable/Fixed Vectors .. 143

4.3.3 Enabling Interrupt Enable Flag ... 144

4.3.4 Setting Interrupt Control Register ... 144

4.3.5 Saving and Restoring Registers in Interrupt Handler Routine .. 145

4.3.6 Sample Program List 3 (Software Interrupt) ... 147

4.3.7 ISP and USP ... 150

4.3.8 Multiple Interrupts ... 153

4.4 Dividing Source File 154

4.4.1 Concept of Sections .. 154

4.4.2 Dividing Source File .. 156

4.4.3 Library File .. 162

4.5 A Little Tips... 164

4.5.1 Stack Area... 164

4.5.2 Setup Values of SB and FB Registers .. 166

4.5.3 Alignment Specification ... 167

4.5.4 Watchdog Timer .. 169

4.6 Sample Programs 172

4.7 Generating Object Files 174

4.7.1 Assembling.. 175

Chapter 1
Overview of M16C/60, M16C/20
Series

1.1 Features of M16C/60, M16C/20 Series
1.2 Outline of M16C/60, M16C/20 Group
1.3 Introduction to CPU Architecture

1

1
Overview of M16C/60, M16C/20 Series

1.1 Features of M16C/60, M16C/20 Series

2

1.1 Features of M16C/60, M16C/20 Series

The M16C/60, M16C/20 series is a line of single-chip microcomputers that have been developed for
use in built-in equipment. This section describes the features of the M16C/60, M16C/20 series.

Features of the M16C/60, M16C/20 series

The M16C/60, M16C/20 series has its frequently used instructions placed in a 1-byte op-code. For
this reason, it allows you to write a highly memory efficient program.
Furthermore, although the M16C/60, M16C/20 series is a 16-bit microcomputer, it can perform 1, 4,
and 8-bit processing efficiently. The M16C/60, M16C/20 series has many instructions that can be
executed in one clock period. For this reason, it is possible to write a high-speed processing
program.
The M16C/60, M16C/20 series provides 1 Mbytes of linear addressing space. Therefore, the
M16C/60, M16C/20 series is also suitable for applications that require a large program size.
The features of the M16C/60, M16C/20 series can be summarized as follows:
(1) The M16C/60, M16C/20 series allows you to create a memory-efficient program without

requiring a large memory capacity.
(2) The M16C/60, M16C/20 series allows you to create a high- speed processing program.
(3) The M16C/60, M16C/20 series provides 1 Mbytes of addressing space, making it suitable for

even large-capacity applications.

1.2 Outline of M16C/60, M16C/20, M16C/20 Group

This section explains the M16C/60 group as a typical internal structure of the M16C/60 series and
M16C/20 group as a typical internal structure of the M16C/20 series. The M16C/60, M16C/20 group
is a basic product of the M16C/60, M16C/20 series. For details about this product, refer to the data
sheets and user's manuals.

3

1
Overview of M16C/60 Series

1.2 Outline of M16C/60 Group, M16C/20 Group

Internal Block Diagram

Figure 1.2.1 shows a block diagram of the M16C/60 group.

 (1) M16C/60 group

Timer

Timer TA0 (16 bits)
Timer TA1 (16 bits)
Timer TA2 (16 bits)
Timer TA3 (16 bits)
Timer TA4 (16 bits)
Timer TB0 (16 bits)
Timer TB1 (16 bits)
Timer TB2 (16 bits)

Internal peripheral functions

Watchdog
timer(15 bits)

DMAC
(2 channels)

D-A converter
(8 bits X 2 channels)

Memory

ROM

RAM
10K bytes

 A-D converter
(10 bits X 8 channels

Expandable up to 10 channels)

UART/clock synchronous SI/
O(8 bits X 2 channels)

System clock generator

XIN-XOUT
XCIN-XCOUT

M16C/60 series16-bit CPU core

I/O ports Port P0

8

Port P1

8

Port P2

8

Port P3

8

Port P4

8

Port P5

8

Port P6

8

8

R0LR0H
R1H R1L

R2
R3
A0
A1
FB

R0LR0H
R1H R1L

R2
R3
A0
A1
FB

Registers

SB

ISP
USP

Stack pointer

Vector table

INTB

CRC arithmetic circuit (CCITT)
(Polynomial : X16+X12+X5+1)

Multiplier

7
8

8

P
ort P

10
P

ort P
9

P
ort P

8
5

P
ort P

8
P

ort P
7

Note : +1 UART/clock synchronous SI/O (In case of the M16C/61 group)
+1 UART/clock synchronous SI/O, +1 clock asynchronous SI/O, +3 timer B (In case of the M16C/62 group)

 (2) M16C/20 group

Figure 1.2.1 Block diagram of the M16C/60 group

AAAAA
AAAAA
AAAAA

Timer

Timer TA0 (16 bits)
Timer TB0 (16 bits)
Timer TB1 (16 bits)
Timer TX0 (16 bits)
Timer TX1 (16 bits)
Timer TX2 (16 bits)

Internal peripheral functions

Watchdog timer
(15 bits)

 A-D converter
(10 bits X 8 channels

Expandable up to 13 channels)

UART/clock synchronous SI/O
(8 bits X 1 channel)

System clock generator

XIN-XOUT
XCIN-XCOUT

M16C/60 series16-bit CPU core

I/O ports Port P0

8

Port P1

8

Port P3

6

Port P4

6

Port P5

5

Port P6

8

R0LR0H
R1H R1L

R2
R3
A0
A1
FB

R0LR0H
R1H R1L

R2
R3
A0
A1
FB

Registers

ISP
USP

Stack pointer

Vector table

INTB

UART
(8 bits X 1 channel)

Multiplier

2

Port P7

AAAAAA
AAAAAA
AAAAAA
AAAAAAMemory

ROM
(Note 1)

RAM
(Note 2)

SB FLG

PC

Program counter

Note 1: ROM size depends on MCU type.
Note 2: RAM size depends on MCU type.

1
Overview of M16C/60 Series

1.2 Outline of M16C/60 Group, M16C/20 Group

4

Outline Specifications of the M16C/60 Group

Table 1.2.1 lists the outline specifications of the M16C/60 group.

Table 1.2.1 Outline Specifications of M16C/60 Group

Item Content

Supply voltage

Package

Operating frequency

Shortest instruction execution time

Basic bus cycle

Internal memory

Operation mode

External address space

External data bus width

Bus specification

Clock generating circuit

Built-in peripheral functions

2.7 to 5.5 V (with 7 MHz external oscillator, 1 wait state)

100-pin plastic molded QFP

10 MHz (with 10 MHz external oscillator)

100 ns (with 10 MHz external oscillator)

Internal memory : 100 ns (with 10 MHz external oscillator)
External memory: 100 ns (with 10 MHz external oscillator,
 no wait state)

ROM capacity

64 Kbytes 10 Kbytes

Single-chip, memory expansion, and
microprocessor modes

1 Mbytes (linear)/64 Kbytes
Address bus: 20 bits/16 bits

8 bits/16 bits

Separate bus/multiplexed bus (4 chip select lines built-in)

2 circuits built-in (external ceramic or crystal resonator)

Interrupt

Multifunction 16-bit timer

Serial I/O

A-D converter

D-A converter

DMAC

Watchdog timer

Programmable input/output

17 internal sources, 5 external sources, 4 software
sources; 7 levels (including key input interrupt)

5 timer A + 3 timer B

2 channels (asynchronous/synchronous switchable)

10 bits, 8 + 2 channel input (10/8 bits switchable)

8 bits, 2 channel output

2 channels (trigger: 15 factors)

15-bit counter

87 lines

CRC calculation circuit 1 circuit built-in

Input port

Note: This does not include the M30600SFP, an external ROM version.

1 line (shared with P85 and NMI pin)

RAM capacity
(Note)

5

1
Overview of M16C/60 Series

1.2 Outline of M16C/60 Group, M16C/20 Group

Outline Specifications of the M16C/20 Group

Table 1.2.2 lists the outline specifications of the M16C/20 group.

Table 1.2.2 Outline Specifications of M16C/20 Group

Item Content

Supply voltage

Package

Operating frequency

Shortest instruction execution time

Basic bus cycle

Internal memory

Operation mode

Clock generating circuit

Built-in peripheral functions

2.7 to 5.5 V (with 7 MHz external oscillator, 1 wait state)

52-pin plastic molded SDIP
56-pin plastic molded QFP

10 MHz (with 10 MHz external oscillator)

100 ns (with 10 MHz external oscillator)

Internal memory : 100 ns (with 10 MHz external oscillator)

ROM capacity

32 Kbytes 1024bytes

Single-chip mode

2 circuits built-in (external ceramic or crystal resonator)

Interrupt

Multifunction 16-bit timer

Serial I/O

A-D converter

Programmable input/output

9 internal sources, 3 external sources, 4 software
sources; 7 levels (including key input interrupt)

1 timer A + 2 timer B + 3 timer X

2 channels
(one is clock asynchronous/synchronous switchable,
 the other is clock asynchronous)

10 bits, 8 + 2 channel input (10/8 bits switchable)

43 lines

RAM capacity

1
Overview of M16C/60, M16C/20 Series

1.3 Introduction to CPU Architecture

6

1.3 Introduction to CPU Architecture

This section explains the CPU architecture of the M16C/60, M16C/20 series. Each item explained
here is detailed in Chapter 2 of this manual.

Register Structure

Table 1.3.1 shows the register structure of the M16C/60, M16C/20 series. Seven registers--R0,
R1, R2, R3, A0, A1, and FB--are available in two sets each. These sets are switched over by a
register bank select flag.

Table 1.3.1 Register Structure of M16C/60, M16C/20 Series

Register structure

Data registers 16 bits x 4 (8 bits x 4)

R1H

AA
AA R1L

AA
AAR1

AA R0LAAR0
R0H

AAAA
AAAA
AAAAR0

R1
R2
R3

AAAA
AAAA

A0
A1

SB
FB

Address registers 16 bits x 2 (32 bits x 1)

Base registers 16 bits x 2

Control registers

PC
INTB

USP
ISP
FLG

20 bits x 2

16 bits x 3

(Details of FLG)

R1R3

AAAAAA
AAAAAA

R0R2

AAAAAA
AAAAAAR2R0

A0A1

AAAAAA
AAAAAAA1A0

R3R1

b0b15

U I O B S Z CD
: (PC)

AAAA
AAAA

IPL

Item Content

(32 bits x 2)

IPL :Processor interrupt priority level (Levels 0 to 7; larger the
number, higher the priority)

(PC):Saves 4 high-order bits of PC when interrupt occurs.
U :Stack pointer select flag (ISP when U = 0, USP when U = 1)
I : Interrupt enable flag (Enabled when I = 1)
O :Overflow flag (0 = 1 when overflow occurs)
B :Register bank select flag (Register bank 0 when B = 0,

register bank 1 when B = 1)
S :Sign flag (S = 1 when operation resulted in negative, S = 0

when positive)
Z :Zero flag (Z = 1 when operation resulted in zero)
D :Debug flag (Program is single-stepped when D = 1)
C :Carry flag (carry or borrow)

7

1
Overview of M16C/60, M16C/20 Series

1.3 Introduction to CPU Architecture

Addressing Modes

There are three types of addressing modes.
(1) General instruction addressing .. A 64-Kbyte area (00000H to 0FFFFH) is accessed.
(2) Special instruction addressing ... A 1-Mbyte area (00000H to FFFFFH) is accessed.
(3) Bit instruction addressing A 64-Kbyte area (00000H to 0FFFFH) is accessed in units of bits.

Table 1.3.2 lists the M16C/60, M16C/20 series addressing modes that can be used in each type of
addressing described above.

Table 1.3.2 Addressing Modes of M16C/60, M16C/20 Series

General instruction Special instructionAddressing mode Bit instruction

Item Content

Register direct R0, R1, R2, R3, A0, and A1
only

R2R0 or R3R1 or A1A0
* SHL, SHA, JMPI, and JSRI
 instructions only

Data and address
registers only

Absolute abs: 16 bits (0 to FFFFH) bit,base: 16 bits (0 to 1FFFH)abs: 20 bits (0 to FFFFFH)
* LDE, STE, JMP, and JSR
 instructions only

Address register
indirect

 [A1A0] without dsp
* LDE and STE instructions only

[A0] or [A1] without dsp [A0] or [A1] without dsp
(0 to 1FFFH)

[A0] dsp: 20 bits only
* LDE, STE, JMPI, and JSRI
 instructions only

[A0] or [A1] dsp: 8/16 bits [A0] or [A1] dsp: 8/16 bitsAddress register
relative

SB relative and
FB relative

[SB]dsp : 8/16bit
 (0 to 255 / 0 to 65534)
[FB]dsp : 8bit(-128 to +127)

[SB] dsp: 8/11/16 bits
(0 to 31/0 to 255/0 to 8191)

[FB]dsp : 8bit (-16 to +15)

x

FLG direct U, I, O, B, S, Z, D, and C flags
* FCLR and FSET instructions
 only

x x

 [SP] dsp: 8 bits (-128 to +127)
* MOV instruction only

Stack pointer
relative

x x

Program counter
relative

 label .S: +2 to +9
 .B: -128 to +127
 .W: -32768 to +32767
* JMP and JSR instructions only

x x

Control register
direct

INTBL, INTBH, ISP, USP, SB, FB,
FLG
* LDC, STC, PUSHC, and POPC
 instructions only

x x

Immediate #imm: 8/16 bits x xO

O

O

O

O

O

O

O

O

O

O

O

O O

O

O

O

O

O

OO

1
Overview of M16C/60, M16C/20 Series

1.3 Introduction to CPU Architecture

8

Instruction Set

Table 1.3.3 lists the instructions of the M16C/60, M16C/20 series classified by function. There is a
total of 91 discrete instructions.

Table 1.3.3 Instruction Set of M16C/60, M16C/20 Series

ContentItem

Instruction set 8-bit variable length: 91 instructions

Data transfer
instructions
14 instructions

• Transfer instructions
• Push/pop instructions
• Extended data area transfer instructions
• 4-bit transfer instructions
• Exchange between register and register/
 memory instruction
• Conditional transfer instructions

• Add instructions
• Subtract instructions
• Multiply instructions
• Divide instructions
• Decimal add instructions
• Decimal subtract instructions
• Increment/decrement instructions
• Sum of products instruction
• Compare instruction
• Others
 (absolute value, 2's complement, sign extension)
• Logic instructions
• Test instruction
• Shift/rotate instructions

MOV, MOVA
PUSH, PUSHM, PUSHA / POP, POPM
LDE, STE
MOVDir
XCHG

STZ, STNZ, STZX

ADD, ADC, ADCF
SUB, SBB
MUL, MULU
DIV, DIVU, DIVX
DADD, DADC
DSUB, DSBB
INC / DEC
RMPA
CMP
ABS, NEG, EXTS
AND, OR, XOR, NOT

TST
SHL, SHA / ROT, RORC, ROLC

Arithmetic/logic
instructions
31 instructions

Branch instructions
10 instructions

• Unconditional branch instruction
• Conditional branch instruction
• Indirect jump instruction
• Special page branch instruction
• Subroutine call instruction
• Indirect subroutine call instruction
• Special page subroutine call instruction
• Subroutine return instruction
• Add (subtract) and conditional branch
 instructions

JMP
JCnd
JMPI
JMPS
JSR
JSRI
JSRS
RTS
ADJNZ, SBJNZ

SMOVF, SMOVB, SSTR

• Control register manipulate instructions
• Flag register manipulate instructions
• OS support instructions
• High-level language support instructions
• Debugger support instruction
• Interrupt-related instructions
• External interrupt wait instruction
• No-operation instruction

BCLR, BSET, BNOT, BTST, BNTST, BAND,
BNAND, BOR, BNOR, BXOR, BNXOR, BMCnd,
BTSTS, BTSTC

Bit manipulate
instructions
14 instructions

String instructions
3 instructions

Other instructions
19 instructions

LDC, STC, LDINTB, LDIPL, PUSHC, POPC
FSET, FCLR
LDCTX, STCTX
ENTER, EXITD
BRK
REIT, INT, INTO, UND
WAIT
NOP

Chapter 2
CPU Programming Model

2.1 Address Space
2.2 Register Sets
2.3 Data Types
2.4 Data Arrangement
2.5 Addressing Modes
2.6 Instruction Set
2.7 Outline of Interrupt

2

2
CPU Programming Model

2.1 Address Space

10

2.1 Address Space

The M16C/60,M16C/20 series has 1 Mbytes of address space ranging from address 00000H to
address FFFFFH. This section explains the address space and memory mapping, the SFR area,
and the fixed vector area of the M16C/60 group.

2.1.1 Operation Modes and Memory Mapping

The M16C/60 group chooses one operation mode from three modes available: single-chip, memory
expansion, and microprocessor modes. The M16C/60 group address space and the usable areas
and memory mapping varies with each operation mode.

Address Space

Figure 2.1.1 shows the address space of the M16C/60 group.
Addresses 00000H to 003FFH are the Special Function Register (SFR) area. The SFR area in
each type of M16C/60 group microcomputer begins with address 003FFH and expands toward
smaller addresses.
Addresses following 00400H constitute the memory area. The memory area in each type of M16C/
60 group microcomputer consists of a RAM area which begins with address 00400H and expands
toward larger addresses and a ROM area which begins with address FFFFFH and expands toward
smaller addresses. However, addresses FFE00H to FFFFFH are the fixed vector area.

SFR area

 Internal RAM
area

External
memory area

Internal ROM
area

Direction in which
internal RAM
expands

Direction in which
internal ROM
expands

Fixed vector
area

00000H

003FFH
00400H

0FFFFH
10000H

FFE00H

FFFFFH

Direction in which
SFR area expands

Figure 2.1.1 Address space

11

2
CPU Programming Model

2.1 Address Space

Operation Modes and Memory Mapping

• Single-chip mode
In this mode, only the internal areas (SFR, internal RAM, and internal ROM) can be accessed.

• Memory expansion mode
In this mode, the internal areas (SFR, internal RAM, and internal ROM) and an external memory
area can be accessed.

• Microprocessor mode
In this mode, the SFR and internal RAM areas and an external memory area can be accessed.
(The internal ROM area cannot be accessed.)

Figure 2.1.2 shows the M16C/60 group memory mapping in each operation mode.

Internal area

AA
AA

External area
 (using external
 memory chips)

Cannot be used.

(ROM: 64 Kbytes; RAM: 10 Kbytes)

SFR area

Internal RAM area

Internal ROM area

Memory
expansion mode

Internal RAM area

SFR area

Internal ROM area

Single-chip mode

Cannot
be used

AAAAA
AAAAA
AAAAA
AAAAA

Internal reserved area

Internal reserved area

External memory
area

SFR area

Internal RAM area

Microprocessor modeAAAAA
AAAAA
AAAAA
AAAAA
AAAAA
AAAAA
AAAAA
AAAAA
AAAAA

External memory
area

Internal reserved area

00000H

00400H

02C00H

F0000H

FFFFFH

Figure 2.1.2 Operation modes and memory mapping

2
CPU Programming Model

2.1 Address Space

12

2.1.2 SFR Area

A range of control registers are allocated in this area, including the processor mode register that
determines the operation mode and the peripheral unit control registers for I/O ports, A-D converter,
UART, and timers. For the bit configurations of these control registers, refer to the M16C/60 group
data sheets and user's manuals.
The unused locations in the SFR area are reserved for the system and cannot be used by the user.

SFR Area: Control Register Allocation

Figures 2.1.3 and 2.1.4 show control register allocations in the SFR area.

000016

000116

000216

000316

000416

000516

000616

000716

000816

000916

000A16

000B16

000C16

000D16

000E16

000F16

001016

001116

001216

001316

001416

001516

001616

001716

001816

001916

001A16

001B16

001C16

001D16

001E16

001F16

002016

002116

002216

002316

002416

002516

002616

002716

002816

002916

002A16

002B16

002C16

002D16

002E16

002F16

003016

003116

003216

003316

003416

003516

003616

003716

003816

003916

003A16

003B16

003C16

003D16

003E16

003F16

004016

004116

004216

004316

004416

004516

004616

004716

004816

004916

004A16

004B16

004C16

004D16

004E16

004F16

005016

005116

005216

005316

005416

005516

005616

005716

005816

005916

005A16

005B16

005C16

005D16

005E16

005F16

INT1 interrupt control register (INT1IC)

Timer B0 interrupt control register (TB0IC)

Timer B2 interrupt control register (TB2IC)

Timer A1 interrupt control register (TA1IC)

Timer A3 interrupt control register (TA3IC)

UART0 transmit interrupt control register (S0TIC)

INT2 interrupt control register (INT2IC)

INT0 interrupt control register (INT0IC)

Timer B1 interrupt control register (TB1IC)

Timer A0 interrupt control register (TA0IC)

Timer A2 interrupt control register (TA2IC)

Timer A4 interrupt control register (TA4IC)

UART0 receive interrupt control register (S0RIC)
UART1 transmit interrupt control register (S1TIC)
UART1 receive interrupt control register (S1RIC)

DMA1 interrupt control register (DM1IC)
DMA0 interrupt control register (DM0IC)

Key input interrupt control register (KUPIC)
A-D conversion interrupt control register (ADIC)

DMA0 control register (DM0CON)

DMA0 source pointer (SAR0)

DMA0 transfer counter (TCR0)

DMA0 destination pointer (DAR0)

DMA1 control register (DM1CON)

DMA1 source pointer (SAR1)

DMA1 transfer counter (TCR1)

DMA1 destination pointer (DAR1)

Watchdog timer start register (WDTS)
Watchdog timer control register (WDC)

Processor mode register 0 (PM0)

Address match interrupt register 0 (RMAD0)

Address match interrupt register 1 (RMAD1)

Chip select control register (CSR)

System clock control register 0 (CM0)
System clock control register 1 (CM1)

Address match interrupt enable register (AIER)
Protect register (PRCR)

Processor mode register 1(PM1)

Figure 2.1.3 Control register allocation 1

13

2
CPU Programming Model

2.1 Address Space

038016

038116

038216

038316

038416

038516

038616

038716

038816

038916

038A16

038B16

038C16

038D16

038E16

038F16

039016

039116

039216

039316

039416

039516

039616

039716

039816

039916

039A16

039B16

039C16

039D16

039E16

039F16

03A016

03A116

03A216

03A316

03A416

03A516

03A616

03A716

03A816

03A916

03AA16

03AB16

03AC16

03AD16

03AE16

03AF16

03B016

03B116

03B216

03B316

03B416

03B516

03B616

03B716

03B816

03B916

03BA16

03BB16

03BC16

03BD16

03BE16

03BF16

DMA1 cause select register (DM1SL)

DMA0 cause select register (DM0SL)

UART0 transmit/receive mode register (U0MR)

UART0 transmit buffer register (U0TB)

UART0 receive buffer register (U0RB)

UART1 transmit/receive mode register (U1MR)

UART1 transmit buffer register (U1TB)

UART1 receive buffer register (U1RB)

Timer A0 (TA0)

Timer A1 (TA1)

Timer A2 (TA2)

Timer B0 (TB0)

Timer B1 (TB1)

Timer B2 (TB2)

Count start flag (TABSR)

One-shot start flag (ONSF)

Timer A0 mode register (TA0MR)
Timer A1 mode register (TA1MR)
Timer A2 mode register (TA2MR)

Timer B0 mode register (TB0MR)
Timer B1 mode register (TB1MR)
Timer B2 mode register (TB2MR)

Up-down flag (UDF)

Timer A3 (TA3)

Timer A4 (TA4)

Timer A3 mode register (TA3MR)
Timer A4 mode register (TA4MR)

Trigger select register (TRGSR)

UART0 bit rate generator (U0BRG)

UART0 transmit/receive control register 0 (U0C0)
UART0 transmit/receive control register 1 (U0C1)

UART1 bit rate generator (U1BRG)

UART1 transmit/receive control register 0 (U1C0)
UART1 transmit/receive control register 1 (U1C1)

UART transmit/receive control register 2 (UCON)

CRC data register (CRCD)

CRC input register (CRCIN)

Clock prescaler reset flag (CPSRF)

03C016

03C116

03C216

03C316

03C416

03C516

03C616

03C716

03C816

03C916

03CA16

03CB16

03CC16

03CD16

03CE16

03CF16

03D016

03D116

03D216

03D316

03D416

03D516

03D616

03D716

03D816

03D916

03DA16

03DB16

03DC16

03DD16

03DE16

03DF16

03E016

03E116

03E216

03E316

03E416

03E516

03E616

03E716

03E816

03E916

03EA16

03EB16

03EC16

03ED16

03EE16

03EF16

03F016

03F116

03F216

03F316

03F416

03F516

03F616

03F716

03F816

03F916

03FA16

03FB16

03FC16

03FD16

03FE16

03FF16

Port P0 (P0)

Port P0 direction register (PD0)
Port P1 (P1)

Port P1 direction register (PD1)
Port P2 (P2)

Port P2 direction register (PD2)
Port P3 (P3)

Port P3 direction register (PD3)
Port P4 (P4)

Port P4 direction register (PD4)
Port P5 (P5)

Port P5 direction register (PD5)
Port P6 (P6)

Port P6 direction register (PD6)
Port P7 (P7)

Port P7 direction register (PD7)
Port P8 (P8)

Port P8 direction register (PD8)
Port P9 (P9)

Port P9 direction register (PD9)
Port P10 (P10)

Port P10 direction register (PD10)

Pull-up control register 0 (PUR0)
Pull-up control register 1 (PUR1)
Pull-up control register 2 (PUR2)

A-D register 7 (AD7)

A-D register 0 (AD0)

A-D register 1 (AD1)

A-D register 2 (AD2)

A-D register 3 (AD3)

A-D register 4 (AD4)

A-D register 5 (AD5)

A-D register 6 (AD6)

A-D control register 0 (ADCON0)
A-D control register 1 (ADCON1)
D-A register 0 (DA0)

D-A register 1 (DA1)

D-A control register (DACON)

A-D control register 2 (ADCON2)

Figure 2.1.4 Control register allocation 2

2
CPU Programming Model

2.1 Address Space

14

Determination of Operation Mode

The M16C/60 group operation mode is determined by bits 0 and 1 of the processor mode register 0
(address 00004H).
Figure 2.1.5 shows the configuration of processor mode register 0.

Processor mode register 0 (Note 1)

Symbol Address When reset
PM0 000416 0016 (Note 2)

Bit name FunctionBit symbol WR

b7 b6 b5 b4 b3 b2 b1 b0

0 0: Single-chip mode
0 1: Memory expansion mode
1 0: Inhibited
1 1: Microprocessor mode

b1 b0

PM03

PM01

PM00 Processor mode bit

PM02 R/W mode select bit 0 : RD,BHE,WR
1 : RD,WRH,WRL

Software reset bit The device is reset when this bit is set
to “1”. The value of this bit is “0” when
read.

PM04 0 0 : Multiplexed bus is not used
0 1 : Allocated to CS2 space
1 0 : Allocated to CS1 space
1 1 : Allocated to entire space (Note 4)

b5 b4
Multiplexed bus space
select bit

PM05

PM06

PM07

Port P40 to P43 function

select bit (Note 3)
0 : Address output
1 : Port function
 (Address is not output)

BCLK output disable bit 0 : BCLK is output
1 : BCLK is not output
 (Pin is left floating)

Note 1: Set bit 1 of the protect register (address 000A16) to “1” when writing new values to
this register.

Note 2: If the VCC voltage is applied to the CNVSS, the value of this register when reset is
0316. (PM00 and PM01 are both set to “1”.)

Note 3: Valid in microprocessor and memory expansion modes.
Note 4: In microprocessor mode, multiplexed bus for the entire space cannot be selected.

In memory expansion mode, when multiplexed bus for the entire space is selected,
address bus range is 256 bytes in each chip select.

AAA
AAA
AAA
AAA

A
A
AA
AA

AAA
AAA

A
A
AA
AA

Figure 2.1.5 Processor mode register 0

15

2
CPU Programming Model

2.1 Address Space

2.1.3 Fixed Vector Area

The M16C/60 group fixed vector area consists of addresses FFE00H to FFFFFH.
Addresses FFE00H to FFFDBH in this area constitute a special page vector table. This table is
used to store the start addresses of subroutines and jump addresses, so that subroutine call and
jump instructions can be executed using two bytes, helping to reduce the number of program steps.
Addresses FFFDCH to FFFFFH in the fixed vector area constitute a fixed interrupt vector table for
reset and NMI. This table is used to store the start addresses of interrupt routines. An interrupt
vector table for timer interrupts, etc. can be set at any desired address by an internal register
(INTB). For details, refer to the section dealing with interrupts in Chapter 4.

Memory Mapping in Fixed Vector Area

Figure 2.1.6 shows memory mapping for the special page vector table and fixed vector area.

FFFDCH

FFFE0H

FFFE4H

FFFE8H

FFFECH

FFFF0H

FFFF4H

FFFF8H

FFFFCH

255

254

18

○

○

○

○

○

FFE00H

FFE02H

FFFDBH

FFFDCH

FFFFFH

Special page number

Special page

vector table

Interrupt

vector table

Undefined instruction
Overflow (INTO instruction)

BRK instruction

Address match

Single step

Watchdog timer

DBC

NMI

Reset

Figure 2.1.6 Memory mapping in fixed vector area

2
CPU Programming Model

2.2 Register Set

16

2.2 Register Set

This section describes the general-purpose and control registers of the M16C/60 series CPU core.

Register Structure

Figure 2.2.1 shows the register structure of the M16C/60 series CPU core. Seven registers--R0,
R1, R2, R3, A0, A1, and FB--are available in two sets each. The following shows the function of
each register.

General-purpose registers
(1) Data registers (R0, R1, R2, R3)

These registers consist of 16 bits each and are used mainly for data transfer and arithmetic/
logic operations.
Registers R0 and R1 can be used separately for upper bytes (R0H, R1H) and lower bytes
(R0L, R1L) as 8-bit data registers. For some instructions, registers R2 and R0 and registers
R3 and R1 can be combined for use as 32-bit data registers (R2R0, R3R1), respectively.

(2) Address registers (A0, A1)
These registers consist of 16 bits, and have the functions equivalent to those of the data
registers. In addition, these registers are used in address register indirect addressing and
address register relative addressing.
For some instructions, registers A1 and A0 can be combined for use as a 32-bit address
register (A1A0).

(3) Frame base register (FB)
This register consists of 16 bits, and is used in FB relative addressing.

(4) Static base register (SB)
This register consists of 16 bits, and is used in SB relative addressing.

Control registers
(5) Program counter (PC)

This counter consists of 20 bits, indicating the address of an instruction to be executed.

(6) Interrupt table register (INTB)
This register consists of 20 bits, indicating the start address of an interrupt vector table.

(7) Stack pointers (USP, ISP)
There are two stack pointers: a user stack pointer (USP) and an interrupt stack pointer (ISP).
Both of these pointers consist of 16 bits.
The stack pointers used (USP or ISP) are switched over by a stack pointer select flag (U flag).
The U flag is assigned to bit 7 of the flag register (FLG).

(8) Flag register (FLG)
This register consists of 11 bits, each of which is used as a flag.

17

2
CPU Programming Model

2.2 Register Set

R0L

R2

R3

Register bank 0

Register bank 1
Data registers

A0

A1

Address registers

FB

Frame base register

INTB

PC Program counter

Interrupt table register

SB Static base register

User stack pointer

Interrupt stack pointer

Flag register

USP

ISP

FLG

16 bits

20 bits

16 bits

R0 R0H

R1LR1HR1

16 bits

INTBH INTBL

4 bits

8 bits 8 bits

16 bits

Figure 2.2.1 Register structure

2
CPU Programming Model

2.2 Register Set

18

Flag Register (FLG)

Figure 2.2.2 shows the bit configuration of the flag register (FLG). The function of each flag is
described below.

• Bit 0: Carry flag (C flag)
This bit holds a carry or borrow that has occurred in an arithmetic/logic operation or a bit that has
been shifted out.

• Bit 1: Debug flag (D flag)
This flag enables a single-step interrupt.
When this flag is 1, a single-step interrupt is generated after instruction execution. When the
interrupt is accepted, this flag is cleared to 0.

• Bit 2: Zero flag (Z flag)
This flag is set to 1 when the operation resulted in 0; otherwise, the flag is 0.

• Bit 3: Sign flag (S flag)
This flag is set to 1 when the operation resulted in an negative number. The flag is 0 when the
result is positive.

• Bit 4: Register bank specifying flag (B flag)
This flag chooses a register bank. Register bank 0 is selected when the flag is 0. Register bank
1 is selected when the flag is 1.

• Bit 5: Overflow flag (O flag)
This flag is set to 1 when the operation resulted in an overflow.

• Bit 6: Interrupt enable flag (I flag)
This flag enables a maskable interrupt.
The interrupt is enabled when the flag is 1, and is disabled when the flag is 0. This flag is cleared
to 0 when the interrupt is accepted.

• Bit 7: Stack pointer specifying flag (U flag)
The user stack pointer (USP) is selected when this flag is 1. The interrupt stack pointer (ISP) is
selected when the flag is 0.
This flag is cleared to 0 when a hardware interrupt is accepted or an INT instruction of software
interrupt numbers 0 to 31 is executed.

• Bits 8 to 11: Reserved.

• Bits 12 to 14: Processor interrupt priority level (IPL)
The processor interrupt priority level (IPL) consists of three bits, specifying the IPL in eight levels
from level 0 to level 7.
If the priority level of a requested interrupt is greater than the IPL, the interrupt is enabled.

• Bit 15: Reserved.

19

2
CPU Programming Model

2.2 Register Set

Carry flag

Debug flag

Zero flag

Sign flag

Register bank select flag

Overflow flag

Interrupt enable flag

Stack pointer select flag

Reserved area

Processor interrupt priority level

Reserved area

Flag Register (FLG)AAAAAAAAAAAAAAA AAAAAAACDZSBOIUIPL
b0b15

Figure 2.2.2 Bit configuration of flag register (FLG)

2
CPU Programming Model

2.2 Register Set

20

Register Status after Reset is Cleared

Table 2.2.1 lists the status of each register after a reset is cleared. (See Note below.)

Table 2.2.1 Register Status after Reset Cleared

Register Name Status after Reset is Cleared

Data registers (R0, R1, R2, R3) 0000H

Address registers (A0, A1) 0000H

Frame base register (FB) 0000H

Interrupt table register (INTB) 00000H

User stack pointer (USP) 0000H

Interrupt stack pointer (ISP) 0000H

Static base register (SB) 0000H

Flag register (FLG) 0000H

Note: For the control register status in the SFR area after a reset is cleared, refer to the M16C/60 group data sheets and user's manuals.

21

2
CPU Programming Model

2.3 Data Types

2.3 Data Types

There are four data types handled by the M16C/60, M16C/20 series: integer, decimal (BCD), string,
and bit. This section describes these data types.

Integer

An integer may be a signed or an unsigned integer. A negative value of a signed integer is
represented by a 2's complement.

Signed byte (8-bit) integer

Unsigned byte (8-bit) integer

Signed word (16-bit) integer

Unsigned word (16-bit) integer

Signed long word (32-bit) integer

Unsigned long word (32-bit) integer
b31 b0

b0b15

b0b7

b31 b0

S

S

b0b15

b0b7

S

S: Sign bit

Figure 2.3.1 Integer data

Decimal (BCD)

The BCD code is handled in packed format.
This type of data can be used in four kinds of decimal arithmetic instructions: DADC, DADD, DSBB,
and DSUB.

1-byte packed format
(2 digits)

2-byte packed format
(4 digits)

b0b15

b0b7

Figure 2.3.2 Decimal data

2
CPU Programming Model

2.3 Data Types

22

String

A string is a block of data comprised of a consecutive number of 1-byte or 1-word (16-bit) data.
This type of data can be used in three kinds of string instructions: SMOVB, SMOVF, and SSTR.

• String of byte (8-bit) data

• String of word (16-bit) data

···
8

···

···

···
16

Figure 2.3.3 String data

Bit

Bit can be used in 14 kinds of bit instructions, including BCLR, BSET, BTST, and BNTST. Bits in
each register are specified by a register name and a bit number, 0 to 15. Memory bits are specified
by a different method in a different range depending on the addressing mode used. For details,
refer to Section 2.5.4, "Bit Instruction Addressing".

b0b15

R0

b0b15

A0

→ 2,R0 (R0 register, bit 2)

→ 14,A0 (A0 register, bit 14)

Figure 2.3.4 Specification of register bits

Address

00000H

(n – 1)H
nH

(n +1)H

b0b7

Memory
map

b0b7b0b7 b0b7b0b7

 n + 1 n n – 1 0

Bit map
base

→ 2,nH

(Address nH, bit 2)

Figure 2.3.5 Specification of memory bits

23

2
CPU Programming Model

2.4 Data Arrangement

2.4 Data Arrangement

The M16C/60, M16C/20 series can handle nibble (4-bit) and byte (8-bit) data efficiently. This
section explains the data arrangements that can be handled by the M16C/60, M16C/20 series.

Data Arrangement in Register

Figure 2.4.1 shows the relationship between the data sizes and the bit numbers of a register.
As shown below, the bit number of the least significant bit (LSB) is 0. The bit number of the most
significant bit (MSB) varies with the data sizes handled.

Nibble (4 bits)

Byte (8 bits)

Word (16 bits)

Long word (32 bits)

LSBMSB

b31 b0

b0b15

b0b7

b0b3

Figure 2.4.1 Data arrangement in register

Data Arrangement in Memory

Figure 2.4.2 shows the data arrangement in the M16C/60, M16C/20 series memory.
Data is arranged in memory in units of 8 bits as shown below. A word (16 bits) is divided between
the lower byte and the upper byte, with the lower byte, DATA(L), placed in a smaller address
location. Similarly, addresses (20 bits) and long words (32 bits) are located in memory beginning
with the lower byte, DATA(L) or DATA(LL).

N

N + 1

N + 2

N + 3

DATA DATA(L)

DATA(M)

DATA(H)

DATA(L)

DATA(H)

DATA(LL)

DATA(LH)

DATA(HL)

DATA(HH)

b7 b0

Byte (8 bits)

b7 b0

Word (16 bits)

b7 b0

Address (20 bits)

b7 b0

Long word (32 bits)

N

N + 1

N + 2

N + 3

N

N + 1

N + 2

N + 3

N

N + 1

N + 2

N + 3

Figure 2.4.2 Data arrangement in memory

2
CPU Programming Model

2.5 Addressing Modes

24

2.5 Addressing Modes

This section explains the M16C/60, M16C/20 series addressing.

2.5.1 Types of Addressing Modes

The three types of addressing modes shown below are available.
(1) General instruction addressing An area from address 00000H to 0FFFFH is accessed.
(2) Special instruction addressing The entire address area from 00000H to FFFFFH is

accessed.
(3) Bit instruction addressing An area from address 00000H to 0FFFFH is accessed in

units of bits. This addressing mode is used in bit instructions.

List of Addressing Modes

All addressing modes are summarized in Table 2.5.1 below.

Table 2.5.1 Addressing Modes of M16C/60, M16C/20 Series

General instruction Special instructionAddressing mode Bit instruction

Item Content

Register direct R0, R1, R2, R3, A0, and A1
only

R2R0 or R3R1 or A1A0
* SHL, SHA, JMPI, and JSRI
 instructions only

Data and address
registers only

Absolute abs: 16 bits (0 to FFFFH) bit,base: 16 bits (0 to 1FFFH)abs: 20 bits (0 to FFFFFH)
* LDE, STE, JMP, and JSR
 instructions only

Address register
indirect

 [A1A0] without dsp
* LDE and STE instructions only

[A0] or [A1] without dsp [A0] or [A1] without dsp
(0 to 1FFFH)

[A0] dsp: 20 bits only
* LDE, STE, JMPI, and JSRI
 instructions only

[A0] or [A1] dsp: 8/16 bits [A0] or [A1] dsp: 8/16 bitsAddress register
relative

SB relative and
FB relative

[SB]dsp : 8/16bit
 (0 to 255 / 0 to 65534)
[FB]dsp : 8bit(-128 to +127)

[SB] dsp: 8/11/16 bits
(0 to 31/0 to 255/0 to 8191)

[FB]dsp : 8bit (-16 to +15)

x

FLG direct U, I, O, B, S, Z, D, and C flags
* FCLR and FSET instructions
 only

x x

 [SP] dsp: 8 bits (-128 to +127)
* MOV instruction only

Stack pointer
relative

x x

Program counter
relative

 label .S: +2 to +9
 .B: -128 to +127
 .W: -32768 to +32767
* JMP and JSR instructions only

x x

Control register
direct

INTBL, INTBH, ISP, USP, SB, FB,
FLG
* LDC, STC, PUSHC, and POPC
 instructions only

x x

Immediate #imm: 8/16 bits x xO

O

O

O

O

O

O

O

O

O

O

O

O O

O

O

O

O

O

OO

25

2
CPU Programming Model

2.5 Addressing Modes

2.5.2 General Instruction Addressing

This section explains each addressing in the general instruction addressing mode.

Immediate

The immediate indicated by #IMM is the subject on which operation is performed. Add a # before
the immediate.
Symbol: #IMM, #IMM8, #IMM16, #IMM20
Example: #123 (decimal)

#7DH (hexadecimal)
#01111011B (binary)

Absolute

The value indicated by abs16 is the effective address on which operation is performed. The range
of effective addresses is 00000H to 0FFFFH.
Symbol: abs16
Example: 8000H

 DATA (label)

00000H

08000H

0FFFFH
10000H

FFFFFH

Range of effective
addresses

AAAA

DATA:8000H

Figure 2.5.1 Absolute addressing

Register direct

A specified register is the subject on which operation is performed.
However, only the data and address registers can be used here.
Symbol: 8 bits R0L, R0H, R1L, R1H

16 bits R0, R1, R2, R3, A0, A1

2
CPU Programming Model

2.5 Addressing Modes

26

Address Register Indirect

The value of an address register is the effective address to be operated on. The range of effective
addresses is 00000H to 0FFFFH.
Symbol: [A0], [A1]
Example: MOV.B #12H, [A0]

00000H

01FFFH

FFFFFH

Specifiable address
range (0 to 01FFFH)

A

b7 b0

Figure 2.5.2 Address register indirect addressing

27

2
CPU Programming Model

2.5 Addressing Modes

Address Register Relative

The value of an address register plus a displacement (dsp)(Note) is the effective address to be
operated on. The range of effective addresses is 00000H to 0FFFFH. If the addition result
exceeds 0FFFFH, the most significant bits above and including bit 17 are ignored.
Symbol: dsp:8[A0], dsp:16[A0], dsp:8[A1], dsp:16[A1]
(1) When dsp is handled as a displacement

Example: MOV.B #34H,5[A0]

00000H

01000H

01005H

0FFFFH

FFFFFH

Relative address range
(0 to FFFFH)A0 1000H + 5 = 01005H

34H

Figure 2.5.3 Address register relative addressing 1

(2) When address register (A0) is handled as a displacement
Example: MOV.B #56H,1234H[A0]

00000H

01234H

01239H

0FFFFH

FFFFFH

1234H + 0005H = 01239H

56H

A0 Relative address range
(0 to FFFFH)

Figure 2.5.4 Address register relative addressing 2

(3) When the addition result exceeds 0FFFFH
Example: MOV.B #56H,1234H[A0]

00000H

01234H

01238H

0FFFFH

FFFFFH

1234H + FFFFH = 11238H

56H

A0

Ignored

Relative address range
(0 to FFFFH)

Figure 2.5.5 Address register relative addressing 3

Note: The displacement (dsp) refers to a displacement from the reference address. In this manual, 8-bit dsp is expressed as dsp:8, and 16-
bit dsp is expressed as dsp:16.

2
CPU Programming Model

2.5 Addressing Modes

28

SB Relative

The value of the SB register plus dsp is the effective address to be operated on. The range of
effective addresses is 00000H to 0FFFFH. If the addition result exceeds 0FFFFH, the most
significant bits above and including bit 17 are ignored.
Symbol: dsp:8[SB], dsp:16[SB]
Example: MOV.B #12H,5[SB]

00000H

00100H

00105H

FFFFFH

SB 0100H + 5 = 00105H

12H

Relative address range
(0 to FFFFH)

Figure 2.5.6 SB relative addressing

29

2
CPU Programming Model

2.5 Addressing Modes

FB Relative

The value of the FB register plus dsp is the effective address to be operated on. The range of
effective addresses is 00000H to 0FFFFH. If the addition result exceeds 0FFFFH, the most
significant bits above and including bit 17 are ignored.
Symbol: dsp:8[FB]
(1) When dsp is a positive value

Example: MOV.B #12H,5[FB]
00000H

01000H

01005H

FFFFFH

12H

FB 1000H + 5 = 01005H

Relative address range
(0 to +127)

Figure 2.5.7 FB relative addressing 1

(2) When dsp is a negative value
Example: MOV.B #12H,-5[FB]

00000H

00FFBH

01000H

FFFFFH

12H

FB 1000H – 5 = 00FFBH

Relative address range
(–128 to 0)

Figure 2.5.8 FB relative addressing 2

2
CPU Programming Model

2.5 Addressing Modes

30

Column Difference between SB Relative and FB Relative

In SB relative addressing, the value of the SB register plus dsp is the effective address to be
operated on. The relative range is 0 to +255 (FFH)for dsp:8 [SB] and 0 to +65,535 (FFFFH) for
dsp:16 [SB].
In FB relative addressing, the value of the FB register plus/minus dsp is the effective address to be
operated on. The relative range is -128 to +127 (80H to 7FH). In this addressing mode, addresses
can be accessed in the negative direction. An 8-bit dsp is the only valid displacement; 16-bit dsp
cannot be used.

00000H

0FFFFH

10000H

AAAAA
AAAAA
AAAAA

dsp : 8[SB]

AAAAA
AAAAA

AAAAA
AAAAAdsp : 8[FB]

+ 255(FFH)

+ 127(7FH)

– 128(80H)

16 bits

16 bits

SB

FB

0

0

Effective address range

Figure 2.5.9 SB relative and FB relative addressing

31

2
CPU Programming Model

2.5 Addressing Modes

Column Application Example of SB Relative

SB relative addressing can be used in the specific data tables of tasks as shown in Figure 2.5.10.
The data necessary to operate on each task is switched over as tasks are switched from one to
another. If SB relative addressing is used for this purpose, data can be switched over simply by
rewriting the SB register.

<Dynamic control of SB>

AAASB AAAA

AAAAA
AAAAA
AAAAA

AAAAA
AAAAA
AAAAA

AAA
AAASB

A
A
A
A

AA

Data table specific to
task 1

Data table specific to
task 2

Figure 2.5.10 Application example of SB relative addressing

Column Application Example of FB Relative

FB relative addressing can be used for the stack frame that is created when calling a function, as
shown in Figure 2.5.11. Since the local variable area in the stack frame is located in the negative
direction of addresses, FB relative addressing is needed because it allows for access in both
positive and negative directions from the base.

<Accessing local variable area>

SP

AAAAFB AAAAAA

(Stack area)

Old FB (lower)

Return address (lower)

Local variable area

Return address (middle)

Return address (upper)

Argument

The number of bytes
used is allocated by the
ENTER instruction.

Stack frame
Old FB (upper)

Figure 2.5.11 Application example of FB relative addressing

2
CPU Programming Model

2.5 Addressing Modes

32

Stack Pointer Relative (SP Relative)

In this addressing mode, the value of SP plus dsp or the value of the SP register minus dsp is the
effective address to be operated on. This addressing mode can only be used in the MOV
instruction. Note that the immediate cannot be transferred in this mode. The range of effective
addresses is 00000H to 0FFFFH. If the addition result exceeds 0FFFFH, the most significant bits
above and including bit 17 are ignored.
Symbol: dsp:8[SP]
(1) When dsp is a positive value

Example: MOV.B R0L,5[SP]

00000H

01000H

01005H

FFFFFH

55H

SP 1000H + 5 = 01005H

R0 XXH 55H

Relative address range
(0 to +127)

Figure 2.5.12 SP relative addressing 1

(2) When dsp is a negative value
Example: MOV.B R0L,-5[SP]

00000H

00FFBH

01000H

FFFFFH

55H

SP 1000H – 5 = 00FFBH

R0 XXH 55H

Relative address range
(–128 to 0)

Figure 2.5.13 SP relative addressing 2

33

2
CPU Programming Model

2.5 Addressing Modes

Note: dsp:20 [An] can be used in LDE, STE, JMPI, and JSRI instructions.

Column Relative Address Ranges of Relative Addressing

The relative address ranges of relative addressing are summarized in Table 2.5.2.

Table 2.5.2 Relative Address Ranges of Relative Addressing

Addressing Mode

Address register
relative

SB and FBrelative

Stack pointerrelative

dsp:8[An]
dsp:16[An]
dsp:20[An]

dsp:8[SB]
dsp:16[SB]
dsp:8[FB]

dsp:8[SP]

Relative Range

0 to 255(0FFH)
0 to 65535(0FFFFH)
0 to 1048575(0FFFFFH)

0 to 255(0FFH)
0 to 65535(0FFFFH)
–128(80H) to +127(7FH)

–128(80H) to +127(7FH)

(Note)

Description Format

2
CPU Programming Model

2.5 Addressing Modes

34

2.5.3 Special Instruction Addressing

In this addressing mode, an address space from 00000H to FFFFFH can be accessed. This section
explains each addressing in the special instruction addressing mode.

20 Bit Absolute

A specified 20-bit value is the effective address to be operated on. The range of effective
addresses is 00000H to FFFFFH. This 20-bit absolute addressing can be used in LDE, STE, JMP,
and JSR instructions.

Symbol: abs20
Example: LDE.B DATA,R0L

00000H

DATA: 30000H

FFFFFH

55H

1 Mbytes of memory space

R0 XXH 55H

Figure 2.5.14 20-bit absolute addressing

35

2
CPU Programming Model

2.5 Addressing Modes

32 Bit Register Direct

A 32-bit register consisting of two concatenated 16-bit registers is the subject on which operation is
performed. Register pairs R2R0 and R3R1 can be used in SHL (logical shift) and SHA (arithmetic
shift) instructions. Register pairs R2R0, R3R1, and A1A0 can be used in JMPI (indirect jump) and
JSRI (indirect subroutine call) instructions.

Symbol: R2R0, R3R1, A1A0

R2 R0

R2R0

32 bits

Figure 2.5.15 32-bit register

(Example) SHL.L #4,R2R0 A 32-bit value in R2R0 is shifted by 4 bits to the left.

Number of times the bits are shifted

(Example) JMPI.A R2R0 Control jumps to the effective address (20000H)
 indicated by the value in R2R0.

00000H

08000H

20000H

FFFFFH

1 Mbytes of
memory space

XXH

R2R0 0002H 0000H

JMPI.A R2R0

Figure 2.5.16 32-bit register direct addressing

Control Register Direct

This is an addressing mode where a control register is accessed. This addressing mode can be
used in LDC, STC, PUSHC, and POPC instructions.
Symbol: INTBL, INTBH, ISP, SP(Note), SB, FB, FLG

Note: If SP is specified, operation is performed on the stack pointer indicated by the U flag.

2
CPU Programming Model

2.5 Addressing Modes

36

32 Bit Address Register Indirect

A 32-bit value of two concatenated address registers is the effective address to be operated on.
The range of effective addresses is 00000H to FFFFFH. If the value of the concatenated registers
exceeds FFFFFH, the most significant bits above and including bit 21 are ignored. This addressing
can be used in LDE and STE instructions.
Symbol: [A1A0]
Example: LDE.B [A1A0], R0L

00000H

20000H

FFFFFH

1 Mbytes of memory space

55H

A1A0 0002H 0000H
A1 A0

R0 XXH 55H

Figure 2.5.17 32-bit address register indirect addressing

37

2
CPU Programming Model

2.5 Addressing Modes

Address Register Relative with 20 Bit Displacement

The value of an address register plus dsp is the effective address to be operated on. The range of
effective addresses is 00000H to FFFFFH. If the addition result exceeds FFFFFH, the most
significant bits above and including bit 21 are ignored. This addressing can be used in LDE, STE,
JMPI, and JSRI instructions.
Symbol: dsp:20[A0], dsp:20[A1]
(1) When used in LDE/STE instruction

Example: LDE.B 40000H[A0], R0L

00000H

40000H

41000H

FFFFFH

0 to FFFFH

55H

40000H + 1000H = 41000H
A0

R0 XXH 55H

Figure 2.5.18 Address register relative addressing with 20-bit dsp 1

(2) When used in JMPI/JSRI instruction
Example: JMPI.A 40000H[A0]

PC

10000H
00H
00H
01H

40000H + 1000H = 41000H
A0

00000H

40000H

41000H

FFFFFH

Figure 2.5.19 Address register relative addressing with 20-bit dsp 2

2
CPU Programming Model

2.5 Addressing Modes

38

PC Relative

The value of the program counter (PC) plus dsp is the effective address to be operated on. The
value of the PC here is the start address of an instruction in which this addressing is used. The PC
relative addressing can be used in JMP and JSR instructions.
(1) When jump distance specifier (.length) is .S

Symbol: label (PC+2 ≤ label ≤ PC+9)

00000H

label

FFFFFH

Relative
address
range
(+2 to +9)

Instruction

1 Mbytes of
memory space

Figure 2.5.20 PC relative addressing 1

(2) When jump distance specifier (.length) is .B
Symbol: label (PC-128 ≤ label ≤ PC+127)

00000H

label

label

FFFFFH

Instruction

Relative
address
range
(–128 to 0)

Relative
address
range
(0 to +127)

1 Mbytes of
memory space

Figure 2.5.21 PC relative addressing 2

(3) When jump distance specifier (.length) is .W
Symbol: label(PC-32768 ≤ label ≤ PC+32767)

00000H

label

label

FFFFFH

Instruction

Relative
address range
(–32768 to 0)

Relative
address range
(0 to +32767)

1 Mbytes of
memory space

Figure 2.5.22 PC relative addressing 3

39

2
CPU Programming Model

2.5 Addressing Modes

2.5.4 Bit Instruction Addressing

In this mode, an address space from 00000H to 0FFFFH is accessed in units of bits.
This addressing is used in bit manipulating instructions. This section explains each addressing in
the bit instruction addressing mode.

Absolute

Operation is performed on the bit that is away from bit 0 at the address indicated by base by a
number of bits indicated by bit.
The range of addresses that can be specified is 00000H to 01FFFH.
Symbol: bit,base16

00000H

base

01FFFH

FFFFFH

Specifiable address
range (0 to 01FFFH)

A
A

b7 b0

Figure 2.5.23 Bit instruction absolute addressing 1

Example 1: BCLR 18,base_addr
Example 2: BCLR 4,base_addr2
Example 3: 10,base_addr2 → Example 3 cannot be specified.

b7 b0
base_addr:00000H

00001H
00002H

01FFDH
01FFEH

base_addr2:01FFFH
02000H

FFFFFH

Specifiable
address range
(0 to 01FFFH)

01234567

89101112131415

16171920212223

01234567

This bit is cleared. (Example 1)

This bit is cleared. (Example 2)

810

This bit cannot be specified.
(Example 3)

9

18

•
•
•

Figure 2.5.24 Bit instruction absolute addressing 2

2
CPU Programming Model

2.5 Addressing Modes

40

Register Direct

In this mode, a bit of a 16-bit register (R0, R1, R2, R3, A0, or A1) is specified directly. A number
from 0 to 15 is used to specify the bit position.
Symbol: bit,R0, bit,R1, bit,R2, bit,R3, bit,A0, bit,A1
Example: BCLR 6,R0

A
A b0b15 b6

R0

This bit is cleared.

Figure 2.5.25 Bit instruction register direct addressing

FLG Direct

This addressing can be used in FCLR and FSET instructions. The bit positions that can be
specified here are only the 8 low-order bits of the FLG register.
Symbol: U, I, O, B, S, Z, D, C
Example: FSET U

b0b15
FLG U I O B S Z D C

U flag is set.

Figure 2.5.26 Bit instruction FLG direct addressing

41

2
CPU Programming Model

2.5 Addressing Modes

Address Register Indirect

Operation is performed on the bit that is away from bit 0 at address 00000H by a number of bits
indicated by the address register (A0 or A1).
The range of addresses that can be specified is 00000H to 01FFFH.
Symbol: [A0], [A1]
Example: BCLR [A0]

00000H

01FFFH

FFFFFH

Specifiable address
range (0 to 01FFFH)

A

b7 b0

Figure 2.5.27 Bit instruction address register indirect addressing

Address Register Relative

Operation is performed on the bit that is away from bit 0 at the address indicated by base by a
number of bits indicated by the address register (A0 or A1).
The address range that can be specified is an 8 Kbyte area (1FFFH) from the address indicated by
base. However, the range of effective addresses is 00000H to 0FFFFH. If the address of the bit to
be operated on exceeds 0FFFFH, the most significant bits above and including bit 17 are ignored.
Symbol: base:8[A0], base:16[A0], base:8[A1], base:16[A1]
Example: BCLR 5[A0]

00000H

00005H

0FFFFH

FFFFFH

Effective address rang
(0 to 0FFFFH)

Specifiable address range
(up to 8 Kbytes from base) AA

AA

b7 b0

Figure 2.5.28 Bit instruction address register relative addressing

2
CPU Programming Model

2.5 Addressing Modes

42

SB Relative

In this mode, the address is referenced to the value indicated by the SB register. The value of the
SB register has base added without a sign. The resulting value indicates the reference address, so
operation is performed on the bit that is away from bit 0 at that address by a number of bits
indicated by bit.
The address range that can be specified is an 8 Kbyte area from the address indicated by the SB
register. However, the range of effective addresses is 00000H to 0FFFFH. If the address of the bit
to be operated on exceeds 0FFFFH, the most significant bits above and including bit 17 are
ignored.
Symbol: bit,base:8[SB], bit,base:11[SB], bit,base:16[SB]

Note: bit,base:8 [SB] : One bit in an area of up to 32 bytes can be specified.
bit,base:11 [SB] : One bit in an area of up to 256 bytes can be specified.
bit,base:16 [SB] : One bit in an area of up to 8 Kbytes can be specified.

Example: BCLR 13,8[SB]

SB address

00000H

0FFFFH

FFFFFH

Effective address range
(0 to 0FFFFH)

b0b7

6 45 3 012

12 11 10 9 8

7

13

+8

→
↓

Figure 2.5.29 Bit instruction SB relative addressing

43

2
CPU Programming Model

2.5 Addressing Modes

FB Relative

In this mode, the address is referenced to the value indicated by the FB register. The value of the
FB register has base added with the sign included. The resulting value indicates the reference
address, so operation is performed on the bit that is away from bit 0 at that address by a number of
bits indicated by bit.
The address range that can be specified is a 16 byte area in the direction toward smaller addresses
or a 15 byte area in the direction toward larger addresses from the address indicated by the FB
register. However, the range of effective addresses is 00000H to 0FFFFH. If the address of the bit
to be operated on exceeds 0FFFFH, the most significant bits above and including bit 17 are
ignored.
Symbol: bit, base:8[FB]
Example: BCLR 5,–8[FB]

00000H

0FFFFH

FFFFFH

FB address

Effective address range
(0 to 0FFFFH)

b0b7

If the value of base
is negative 7 6 5 4 3 2 1 0

 –8
↑

→

Figure 2.5.30 Bit instruction FB relative addressing

2
CPU Programming Model

2.5 Addressing Modes

44

Column Relationship between Number of Bits and Address

To get an address from a number of bits, it is necessary to convert the number of bits into a
"number of bytes and number of bits" first. For this conversion, the number of bits is divided by 8,
because one byte is eight bits. This is shown in Figure 2.5.31. The conversion is accomplished by
shifting the bit train right by three bits, so that 1234H bits are changed to "246H bytes + 4 bits" as
shown below.
Figures 2.5.32 through 2.5.34 show examples of main addressing calculations.

0 0 0 0 0 01 0 0 1 1 0 1 0 0
1 2 3

0
0 0 1 0 0 1 0

2 4

[1234H]
4

0 1 1 0 1
4

00
6

↑
Bit
position

1

Bytes

Bits

Shifted right by
three bits

[246H + 4 bits]00

Figure 2.5.31 Conversion from a number of bits to address

(1) Address register indirect
Example: BCLR [A0]

A0
1

0 0 1 0 0 0 1 1 0 1 0 0 1
5

1
2 3 4

Address

[A0 = 91A5H]
 Address: 1234H
 Bit position: Bit 5 is cleared.

Bit
position

1 0

↑

Figure 2.5.32 Calculation of bit position in address register indirect addressing

(2) Address register relative
Example: BCLR 5[A0] A0 is a number of bits; dsp is an address. Therefore, the bit train is

shifted right by three bits to obtain a number of bytes or an address.

A0
1

0 0 1 0 0 0 1 1 0 1 0 0 1
5

1
2 3 4

Address

[A0 = 91CDH]
 Address: 1239H
 Bit position: Bit 5 is cleared.

0 0 0 0 0 1 0 1
0 5

dsp8

[A0 = 91A5H]

[dsp = 05H]

+

=

A0
1

0 0 1 0 0 0 1 1 1 0 0 1 1
5

1
2 3 9

Bit
position

↑

01

01

Figure 2.5.33 Calculation of bit position in address register relative addressing

45

2
CPU Programming Model

2.5 Addressing Modes

(3) SB relative
Example: BCLR 5, 0500H [SB] Since SB and base are addresses, they are added directly.

Since bit is a number of bits, it is shifted right three bits to
calculate the address.

SB 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 0

bit

[SB = 0600H]
 Address: 0600H
 Bit position: Bit 5 is cleared.

0
0 1 0 1 0 0 0

5 0
base16

[SB = 0100H]

+

=

SB 0 0 0 0 0 1 1 0 0 0 0 0 0 1
5

1
6 0

0

0 0 0 0 1
5

10
0

dsp13

0
0 0

0
0

bit

Address Bit
position

0

00

↑

Figure 2.5.34 Calculation of bit position in SB relative addressing

2
CPU Programming Model

2.5 Addressing Modes

46

2.5.5 Instruction Formats

There are four instruction formats: generic, quick, short, and zero. The assembler chooses one
format from these four in order to reduce a number bytes in the operand as it generates code for the
instruction. Since the assembler has a function to optimize the generated code, the user do not
need to specify. Only when it is desirable to specify the format of the code generated by the
assembler, add a format specifier.

Instruction Formats

1. Generic format (:G)
The op-code contains src and dest addressing information also.

Op-code

2 bytes

src code

0 to 3 bytes

dest code

0 to 3 bytes

2. Quick format (:Q)
The op-code contains a verb and immediate data and dest addressing information also.
However, the immediate data included in the op-code is a numeral that can be expressed by -7
to +8 or -8 to +7 (varies with each instruction).

Op-code

2 bytes

dest code

0 to 2 bytes

3. Short format (:S)
The op-code contains src and dest addressing information also. This format is used in some
limited addressing modes.

Op-code

1 byte

src code

0 to 2 bytes

dest code

0 to 2 bytes

4. Zero format (:Z)
The op-code contains a verb and immediate data and dest addressing information also.
However, the immediate data is fixed to 0. This format is used in some limited addressing
modes.

Op-code

1 byte

dest code

0 to 2 bytes

47

2
CPU Programming Model

2.6 Instruction Set

Operand that does not store processing result.

Operand that stores processing result.
Operand that means an address.

16-bit absolute value.
20-bit absolute value.
8-bit displacement.

16-bit displacement.
20-bit displacement.

Immediate.
Size specifier (.B, .W)
Jump distance specifier (.S, .B, .W, .A)

Transfers in the direction of arrow.
Add.

Subtract.
Multiply.
Divide.

Logical AND.
Logical OR.

Exclusive OR.
Negate.
Absolute value.

Extend sign in ().
Flag name.

8-bit register name.
16-bit register name.
32-bit register name.

Register name.
Dir (direction) and Cnd (condition) mnemonics are shown in italic.

Indicate that JGEU/C is written as JGEU or JC, and that JEQ/Z is written as JEQ or JZ.
(Addressing) Can be used.
(Flag change) Flag changes according to execution result.

(Flag change) Flag does not change.

2.6 Instruction Set

This section explains the instruction set of the M16C/60 series. The instruction set is summarized
by function in list form. In addition, some characteristic instructions among the instruction set are
explained in detail.
The table below shows the symbols used in the list and explains their meanings.

Symbol Meaning

src

dest
label

abs16
abs20
dsp:8

dsp:16
dsp:20

#IMM
.size
.length

←
+

–
∗
/
&

|
^

| |
EXT()

U, I, O, B, S, Z, D, C
R0L, R0H, R1, R1H
R0, R1, R2, R3, A0, A1

R2R0, R3R1, A1A0
SB, FB, SP, PC

MOVDir, BMCnd, JCnd
JGEU/C, JEQ/Z
"O"

"–"

2
CPU Programming Model

2.6 Instruction Set

48

MOV.size src,dest

MOVA src,dest

MOVHH src,dest

MOVHL src,dest

MOVLH src,dest

MOVLL src,dest

POP.size dest

POPM dest

PUSH.size src

PUSHA src

PUSHM src

LDE.size src,dest

STE.size src,dest

STNZ src,dest

STZ src,dest

STZX src1,src2,dest

XCHG.size src,dest

ExplanationMnemonic

Write .W or.B
for .size.

Transfers src to dest or sets immediate in dest.

Transfers address in src to dest.

Transfers 4 high-order bits in src to 4 high-order bits in dest.

Transfers 4 high-order bits in src to 4 low-order bits in dest.

Transfers 4 low-order bits in src to 4 high-order bits in dest.

Transfers 4 low-order bits in src to 4 low-order bits in dest.

Restores value from stack area.

Restores multiple register values collectively from stack area.

Saves register/memory/immediate to stack area.

Saves address in src to stack area.

Saves multiple registers to stack area.

2.6.1 Instruction List

In this and following pages, instructions are summarized by function in list form, showing the content
of each mnemonic, addressing, and flag changes.

Transfer

Transfers src from extended data area.

Transfers src to extended data area.

Transfers src when Z flag = 0.

Transfers src when Z flag = 1.

Transfers src1 when Z flag = 1 or src2 when Z flag = 0.

Exchanges src and dest.

49

2
CPU Programming Model

2.6 Instruction Set

dsp:20[A0]

dsp:20[A0]

O

—

—

—

—

—

—

—

O

O

—

—

—

—

O

O

O

O

O

O

O

O

O

O

O*e

O*e

O*e

O

O

O

O

O

O

O

O

O

O

*a R0L register is selected for src or dest. *d R0L or R0H is selected.
*b Can be selected from R0L, R0H, R1L, or R1H. *e dsp:8 [SB] or dsp:8 [FB] is selected.
*c Immediate is 8 bits.

O

O

O

R0L*a

O*b

O*b

R0L*a

O

O

O

O

O

O

O*d

O*d

O*d

O

src

dest

src

dest

src

dest

src

dest

dest

dest

src

src

src

src

dest

src

dest

src

dest

src

dest

src1,src2

dest

src

dest

O

O

U I O B S Z D C

Addressing

O

O

Flag change

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O*C

O*C

O*C

General instruction

O
pe

ra
nd

Special instruction

16
-b

it
ab

so
lu

te

R
eg

is
te

r
in

di
re

ct

R
eg

is
te

r
di

re
ct

R
eg

is
te

r
re

la
tiv

e

20
-b

it
ab

so
lu

te

32
-b

it
re

gi
st

er
 d

ire
ct

Im
m

ed
ia

te

32
-b

it
re

gi
st

er
 in

di
re

ct

20
-b

it
re

gi
st

er
 re

la
tiv

e

C
on

tro
l

re
gi

st
er

 d
ire

ct

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

O

—

—

—

—

—

—

—

O

O

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

2
CPU Programming Model

2.6 Instruction Set

50

C flag ←src & C flag ; ANDs bits.

dest ← 0 ; Clears bit.

If C = 1, dest ← 1; otherwise, dest ← 0 ; Conditionally transfers bit.

If C = 0, dest ← 1; otherwise, dest ← 0

If Z = 1, dest ← 1; otherwise, dest ← 0

If Z = 0, dest ← 1; otherwise, dest ← 0

If C & Z = 1, dest ← 1; otherwise, dest ← 0

If C & Z = 0, dest ← 1; otherwise, dest ← 0

If S = 0, dest ← 1; otherwise, dest ← 0

If S = 1, dest ← 1; otherwise, dest ← 0

If S ^ O = 0, dest ← 1; otherwise, dest ← 0

If (S ^ O) | Z = 1, dest ←1; otherwise, dest ← 0

If (S ^ O) | Z = 0, dest ← 1; otherwise, dest ← 0

If S ^ O = 1, dest ← 1; otherwise, dest ← 0

If O = 1, dest ←1; otherwise, dest ← 0

If O = 0, dest ← 1; otherwise, dest ← 0

C flag ← src & C flag ; ANDs inverted bits.

C flag ← src | C flag ; ORs inverted bits.

Inverts dest and stores in dest ; Inverts bit.

_____ _____

Z flag ← src, C flag ← src ; Tests inverted bit.

C flag ← src ^ C flag ; Exclusive ORs inverted bits.

C flag ← src | C flag ; ORs bits.

dest ←1 ; Sets bit.

Z flag ← src, C flag ← src ; Tests bit.

Z flag ← dest, C flag ← dest, dest ← 0 ; Tests and clears bit.

Z flag ← dest, C flag ← dest, dest ←1 ; Tests and sets bit.

C flag ← src ^ C flag ; Exclusive ORs bits.

BAND src

BCLR dest

BMGEU/C dest

BMLTU/NC dest

BMEQ/Z dest

BMNE/NZ dest

BMGTU dest

BMLEU dest

BMPZ dest

BMN dest

BMGE dest

BMLE dest

BMGT dest

BMLT dest

BMO dest

BMNO dest

BNAND src

BNOR src

BNOT dest

BNTST src

BNXOR src

BOR src

BSET dest

BTST src

BTSTC dest

BTSTS dest

BXOR src

ExplanationMnemonic

Bit Manipulation

51

2
CPU Programming Model

2.6 Instruction Set

—

—

—

—

—

—

O

—

—

—

O

O

O

—

O

—

O*f

O

O

—

O

O

O

—

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

—

—

—

—

—

—

—

—

—

—

—

—

—

—

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

Addressing

 U I O B S Z D C

Flag change

src

dest

dest

src

src

dest

src

src

src

dest

src

dest

dest

src

*f Flag changes when C flag is specified for dest.

O
pe

ra
nd

Bit instruction

R
eg

is
te

r
di

re
ct

F
la

g
di

re
ct

R
eg

is
te

r
in

di
re

ct

R
eg

is
te

r
re

la
tiv

e

A
bs

ol
ut

e

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

2
CPU Programming Model

2.6 Instruction Set

52

Arithmetic

dest ← |dest| ; Absolute value of dest.

dest ← src + dest + C flag ; Adds hexadecimal with carry.

dest ← dest + C flag ; Adds carry flag.

dest ← src + dest ; Adds hexadecimal without carry.

dest - src ; Compares, result determined by flag.

dest ← src + dest + C flag ; Adds decimal with carry.

dest ← src + dest ; Adds decimal without carry.

dest ← dest - 1 ; Decrements.

R0 (quotient), R2 (remainder) ← R2R0 / src ; Divides with sign.

R0 (quotient), R2 (remainder) ← R2R0 / src ; Divides without sign.

R0 (quotient), R2 (remainder) ← R2R0 / src ; Divides with sign.

dest ← dest - src - C flag ; Subtracts decimal with borrow.

dest ← dest - src ; Subtracts decimal without borrow.

dest ← EXT(dest) ; Extends sign in dest.

dest ← dest + 1 ; Increments.

dest ← dest ∗ src ; Multiplies with sign.

ABS.size dest

ADC.size src,dest

ADCF.size dest

ADD.size src,dest

CMP.size src,dest

DADC.size src,dest

DADD.size src,dest

DEC.size dest

DIV.size src

DIVU.size src

DIVX.size src

DSBB.size src,dest

DSUB.size src,dest

EXTS.size dest

INC.size dest

MUL.size src,dest

ExplanationMnemonic
Write .W or
.B for .size.

53

2
CPU Programming Model

2.6 Instruction Set

Addressing

O

O

O

O

O

O

O

O

—

—

—

O

O

O

O

—

O

O

O

O

O

O

O

O

O

O

O

O

O

O

src

src

dest

dest

src

dest

src

dest

src

dest

src

dest

dest

src

dest

src

src

dest

src

dest

dest

dest

src

dest

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O*i

O

O

O

O

O*i

O

O

O

O

O

O

O

O

O

O

O*g

O*g

O*g

O*g

O*h

O

O

O

O*g

O*g

O*g

O*g

O*j

O*j

O

O

O

O

O

O

O

O

O

O

—

—

—

O

O

O

O

—

O

O

O

O

O

—

—

—

O

O

O

—

—

—

—

—

U I O B S Z D C

O

O

O

O

O

O

O

—

—

—

—

O

O

—

—

—

SP

*g src is selected from R0H and R1; dest is selected from R0L and R0.
*h Selected from R0L, R0H, A0, and A1.
*i dsp:8 [SB] or dsp:8 [FB] is selected.
*j Selected from R0L, R0, and R1L.

Flag change

O
pe

ra
nd

16
-b

it
ab

so
lu

te

R
eg

is
te

r
in

di
re

ct

R
eg

is
te

r
di

re
ct

20
-b

it
ab

so
lu

te

Im
m

ed
ia

te
General instruction Special instruction

32
-b

it
re

gi
st

er
 d

ire
ct

20
-b

it
re

gi
st

er
 re

la
tiv

e

32
-b

it
re

gi
st

er
 in

di
re

ct

C
on

tro
l

re
gi

st
er

 d
ire

ct

R
eg

is
te

r
re

la
tiv

e

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

2
CPU Programming Model

2.6 Instruction Set

54

dest ← dest ∗ src ; Multiplies without sign.

dest ← 0 - dest ; 2's complement.

R2R0 ← sum of products calculation using A0 as multiplicand address, A1 as multiplier
address, and R3 as operation count

dest ← dest - src - C flag ; Subtracts with borrow.

dest ← dest - src ; Subtracts without borrow.

ExplanationMnemonic

MULU.size src,dest

NEG.size dest

RMPA.size

SBB.size src,dest

SUB.size src,dest

Write .W or
.B for .size.

; Calculates sum of products.

55

2
CPU Programming Model

2.6 Instruction Set

O

O

O

O

O

O

O

O

O

O

O

O

O

O

src

dest

dest

-

src

dest

src

dest

O

O

O

O

O

O

O

O

O

O

U I O B S Z D C

O

O

O

O

O

O

O

—

O

—

O

O

—

O

—

O

O

—

O

O

O

O

Addressing
General instruction

O
pe

ra
nd

Special instruction

R
eg

is
te

r
in

di
re

ct

R
eg

is
te

r
di

re
ct

R
eg

is
te

r
re

la
tiv

e

20
-b

it
ab

so
lu

te

32
-b

it
re

gi
st

er
 d

ire
ct

Im
m

ed
ia

te

32
-b

it
re

gi
st

er
 in

di
re

ct

20
-b

it
re

gi
st

er
 re

la
tiv

e

C
on

tro
l

re
gi

st
er

 d
ire

ct

Flag change

16
-b

it
ab

so
lu

te

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

O

—

O

O

2
CPU Programming Model

2.6 Instruction Set

56

AND.size src,dest

NOT.size dest

OR.size src,dest

TST.size src,dest

XOR.size src,dest

dest ← src & dest ; Logical AND.

dest ← dest ; Inverts all bits.

dest ← src | dest ; Logical OR.

src & dest ; Test.

dest ← dest ^ src ; Exclusive OR.

ExplanationMnemonic

ROLC.size dest

RORC.size dest

ROT.size src,dest

SHA.size src,dest

SHL.size src,dest

ExplanationMnemonic

 Rotates dest left by 1 bit including C flag.

 Rotates dest right by 1 bit including C flag.

 Rotates dest the number of bits specified by src.

 Numerically shifts dest the number of bits specified by src.

 Logically shifts dest the number of bits specified by src.

Logic

Shift

Write .W or
.B for .size.

Write .W or
.B for .size.

57

2
CPU Programming Model

2.6 Instruction Set

Addressing

src

dest

dest

src

dest

src

dest

src

dest

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

U I O B S Z D C

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

dest

dest

src

dest

src

dest

src

dest

O

O

O

O

O

O

O

O

O

O

—

—

—

O

—

O

O

O

O

O

O

O

O

O

O

O

O

O

O

R1H

O

R1H

O

O

O

O

O

O

O*k

O*k

O*k

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

O

O

O

O

O

O*l

O*l

*k The range of values that can be used for the immediate is –8 ≤ #IMM ≤ +8. However, 0
cannot be used.

*l R2R0 or R3R1 is selected.

O
pe

ra
nd

R
eg

is
te

r
in

d
ir

e
ct

R
eg

is
te

r
di

re
ct

R
eg

is
te

r
re

la
tiv

e

Im
m

ed
ia

te

32
-b

it
re

gi
st

er
 in

di
re

ct

20
-b

it
re

gi
st

er
 re

la
tiv

e

C
on

tro
l

re
gi

st
er

 d
ire

ct

Flag change

16
-b

it
ab

so
lu

te

32
-b

it
re

gi
st

er
 d

ire
ct

20
-b

it
ab

so
lu

te

Special instruction

General instruction Special instruction

R
eg

is
te

r
in

di
re

ct

R
eg

is
te

r
di

re
ct

R
eg

is
te

r
re

la
tiv

e

20
-b

it
ab

so
lu

te

32
-b

it
re

gi
st

er
 d

ire
ct

Im
m

ed
ia

te

32
-b

it
re

gi
st

er
 in

di
re

ct

20
-b

it
re

gi
st

er
 re

la
tiv

e

C
on

tro
l

re
gi

st
er

 d
ire

ct

Flag change

16
-b

it
ab

so
lu

te

O
pe

ra
nd

General instruction

Addressing

—

—

—

—

—

U I O B S Z D C

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

2
CPU Programming Model

2.6 Instruction Set

58

Jump

dest ← dest + src

If result of dest + src is not 0, jump to label ; Add and conditional branch.

dest ← dest + src

If result of dest - src is not 0, jump to label ; Subtract and conditional branch.

If C = 1, jump to label; otherwise, execute next instruction ; Conditional branch

If C = 0, jump to label; otherwise, execute next instruction

If Z = 1, jump to label; otherwise, execute next instruction.

If Z = 0, jump to label; otherwise, execute next instruction

If C & Z = 1, jump to label; otherwise, execute next instruction

If C & Z = 0, jump to label; otherwise, execute next instruction

If S = 0, jump to label; otherwise, execute next instruction

If S = 1, jump to label; otherwise, execute next instruction

If S | O = 1, jump to label; otherwise, execute next instruction

If (S ^ O) | Z = 1, jump to label; otherwise, execute next instruction

If (S ^ O) | Z = 0, jump to label; otherwise, execute next instruction

If S ^ O = 1, jump to label; otherwise, execute next instruction

If O = 1, jump to label; otherwise, execute next instruction

If O = 0, jump to label; otherwise, execute next instruction

Jump to label ; Unconditional branch.

Jump to address indicated by src ; Indirect branch.

Special page branch

Subroutine call

Indirect subroutine call

Special page subroutine call

Return from subroutine

ExplanationMnemonic

ADJNZ.size src,dest,label

SBJNZ.size src,dest,label

JGEU/C label

JLTU/NC label

JEQ/Z label

JNE/NZ label

JGTU label

JLEU label

JPZ label

JN label

JGE label

JLE label

JGT label

JLT label

JO label

JNO label

JMP label

JMPI.length src

JMPS src

JSR label

JSR.length src

JSRS src

RTS

Write .A
or .W for
.length.

Write .W or
.B for .size.

59

2
CPU Programming Model

2.6 Instruction Set

O

O

O

O

O

O

O*m

O*n

O*o

O*o

O

O

O

O

O

O

O

O

O

O

O

O

label*p

label*p

label*q

label*r

dsp:20[A0]

label*r

dsp:20[A0]

src

dest

label

src

dest

label

label

label

src

src

label

src

dest

-

U I O B S Z D C

*m The range of immediate is –8 ≤ #IMM ≤ +7.
*n The range of immediate is –7 ≤ #IMM ≤ +8.
*o The immediate is 8 bits.
*p The range of label is PC –126 ≤ label ≤ PC + 129.
*q If condition is LE, O, GE, GT, NO, or LT, the range of label is –126 ≤ label ≤ PC + 129.

Otherwise, the range is –127 ≤ label ≤ PC + 128.
*r The range of label is PC –32,767 ≤ label ≤ PC + 32,768.

Addressing
General instruction

O
pe

ra
nd

Special instruction

R
eg

is
te

r
in

di
re

ct

R
eg

is
te

r
di

re
ct

R
eg

is
te

r
re

la
tiv

e

20
-b

it
ab

so
lu

te

32
-b

it
re

gi
st

er
 d

ire
ct

Im
m

ed
ia

te

32
-b

it
re

gi
st

er
 in

di
re

ct

20
-b

it
re

gi
st

er
 re

la
tiv

e

C
on

tro
l

re
gi

st
er

 d
ire

ct

Flag change

16
-b

it
ab

so
lu

te

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

2
CPU Programming Model

2.6 Instruction Set

60

String

SMOVB.size

SMOVF.size

SSTR.size

String transfer in decrementing address direction using R1H and A0 as source
address, A1 as destination address, and R3 as transfer count

String transfer in incrementing address direction using R1H and A0 as source
address, A1 as destination address, and R3 as transfer count

String store in incrementing address direction using R0 as transfer data, A1 as
destination address, and R3 as transfer count

ExplanationMnemonic

Write .W or
.B for .size.

61

2
CPU Programming Model

2.6 Instruction Set

U I O B S Z D C

-

-

-

R
eg

is
te

r
re

la
tiv

e

20
-b

it
ab

so
lu

te

32
-b

it
re

gi
st

er
 d

ire
ct

32
-b

it
re

gi
st

er
 in

di
re

ct

20
-b

it
re

gi
st

er
 re

la
tiv

e

C
on

tro
l

re
gi

st
er

 d
ire

ct

O
pe

ra
nd

Im
m

ed
ia

te
General instruction

Caution: There is no addressing that can be used for
string operation.

R
eg

is
te

r
in

di
re

ct

R
eg

is
te

r
di

re
ct

16
-b

it
ab

so
lu

te

Special instruction
Flag change

Addressing

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

2
CPU Programming Model

2.6 Instruction Set

62

Other

BRK

ENTER src

EXITD

FCLR dest

FSET dest

INT src

INTO

LDC src,dest

LDCTX abs16,abs20

LDINTB src

LDIPL src

NOP

POPC dest

PUSHC src

REIT

STC src,dest

STCTX abs16,abs20

UND

WAIT

ExplanationMnemonic

Generate BRK interrupt

Build stack frame

Clean up stack frame and return from subroutine

Clear dest flag

Set dest flag

Generate software interrupt

When O flag = 1, generate overflow interrupt

Transfer to control register of src

Restore task context from stack

Transfer src to INTB

Transfer src to IPL

No operation

Restore control register from stack area

Save control register to stack area

Return from interrupt routine ; Returns from interrupt.

Transfer from control register to dest

Save task context to stack

Generate interrupt for undefined instruction

Halt program. Program can be restarted by interrupt or reset.

63

2
CPU Programming Model

2.6 Instruction Set

O

O

O

O

O

O

O

O*w

O*w

O*w

O

-

src

-

dest

dest

src

-

src

dest

dest

src

src

-

dest

src

-

src

dest

src

-

-

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

O*s

O*t

O

O*u

O*v

—

—

—

O

O

—

—

—

—

—

—

—

O

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

O

O

—

—

—

—

—

—

—

O

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

O

O

—

—

—

—

—

—

—

O

—

U I O B S Z D C

O

O

O

O

O

O

O

O

*s The immediate can be specified using 8 bits.
*t The range of immediate is 0 ≤ #IMM ≤ 63.
*u The immediate can be specified using 20 bits.
*v The range of immediate is 0 ≤ #IMM ≤ 7.
*w Any control register except PC register can be selected.

R
eg

is
te

r
in

di
re

ct

R
eg

is
te

r
di

re
ct

R
eg

is
te

r
re

la
tiv

e

Im
m

ed
ia

te

32
-b

it
re

gi
st

er
 in

di
re

ct

20
-b

it
re

gi
st

er
 re

la
tiv

e

C
on

tro
l

re
gi

st
er

 d
ire

ct

Flag change

16
-b

it
ab

so
lu

te

32
-b

it
re

gi
st

er
 d

ire
ct

20
-b

it
ab

so
lu

te

Selected flag is cleared to 0.

Flag changes only when dest is
FLG.

Flag changes only when dest is
FLG.

Returns to FLG state before
interrupt request was accepted.

O
pe

ra
nd

General instruction Special instruction

Selected flag is set to 1.

Addressing

2
CPU Programming Model

2.6 Instruction Set

64

2.6.2 Transfer and String Instructions

Transfers normally are performed in bytes or words. There are 14 transfer instructions available.
Included among these are a 4-bit transfer instruction that transfers only 4 bits, a conditional store
instruction that is combined with conditional branch, and a string instruction that transfers data
collectively.
This section explains these three characteristic instructions of the M16C/60, M16C/20 series among
its data transfer-related instructions.

4 Bit Transfer Instruction

This instruction transfers 4 high-order or low-order bits of an 8-bit register or memory. This
instruction can be used for generating unpacked BCD code or I/O port input/output in 4 bits.
The mnemonic placed in Dir varies depending on whether the instruction is used to transfer high-
order or low-order 4 bits. When using this instruction, be sure to use R0L for src or dest.

Table 2.6.1 4 Bit Transfer Instruction

Description Format

MOVHH
MOVHL
MOVLH
MOVLL

Mnemonic

MOVDir

Note: Either src or dest must always be R0L.

src,dest
src,dest
src,dest
src,dest

Explanation

4 high-order bits: src → 4 high-order bits: dest
4 high-order bits: src → 4 low-order bits: dest
4 low-order bits: src → 4 high-order bits: dest
4 low-order bits: src → 4 low-order bits: dest

Transfer

65

2
CPU Programming Model

2.6 Instruction Set

Conditional Store Instruction

This is a conditional transfer instruction that uses the Z flag state as the condition of transfer. This
instruction allows the user to perform condition determination and data transfer in one instruction.
There are three types of conditional store instructions: STZ, STNZ, and STZX. Figure 2.6.1 shows
an example of how the instruction works.

Table 2.6.2 Conditional Store Instruction

Description Format

STNZ src,dest

STZ src,dest

STZX src1,src2,dest

Mnemonic

STZ

STNZ

STZX

Note: Only #IMM8 (8-bit immediate) can be used for src, src1, and src2.

Explanation

Transfers src to dest
when Z flag = 1.

Transfers src to dest
when Z flag = 0.

Transfers src1 to dest
when Z flag = 1.
Transfers src2 to dest
when Z flag = 0.

STZ #5,R0L

#5 is stored

YES

NO

STNZ #5,R0L

Z flag = 1?

#5 is stored

NO

YES

STZX #5,#8,R0L

First immediate
Second immediate

#5 is stored #8 is stored

YES

NO
Z flag = 1? Z flag = 1?

Figure 2.6.1 Typical operations of conditional store instructions

2
CPU Programming Model

2.6 Instruction Set

66

String Instruction

This instruction transfers data collectively. Use it for transferring blocks and clearing RAM.
Set the source address, destination address, and transfer count in each register before executing
the instruction, as shown in Figure 2.6.2. Data is transferred in bytes or words. Figure 2.6.3 shows
an example of how the string instruction works.

SMOVF/SMOVB

Destination address

A1

Source
address

R1H A0

4

Transfer count

R3

SSTR

Value to be transferred

R0

Destination address

A1

Transfer count

R3

16

16

16

16

16

16

Figure 2.6.2 Setting registers for string instructions

Table 2.6.3 String Instruction

Explanation

Transfers string in incrementing address
direction.

Description FormatMnemonic

SMOVF

SMOVB

SSTR

Transfers string in decrementing address
direction.

Stores string in incrementing address direction.

SMOVF
.B
.W

SMOVF

SMOVB .B
.WSMOVB

SSTR .B
.WSSTR

SMOVF.B SMOVB.B SSTR.B

A0

R3

A1

2 X R1H

+

A0

R3

A1

2 X R1H

+

AAA

R3

A1

R0L1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4 1

2
3
4

Figure 2.6.3 Typical operations of string instructions

67

2
CPU Programming Model

2.6 Instruction Set

2.6.3 Arithmetic Instructions

There are 31 arithmetic instructions available. This section explains the characteristic arithmetic
instructions of the M16C/60 series.

Multiply Instruction

There are two multiply instructions: signed and unsigned multiply instructions. These two
instructions allow the user to specify the desired size. When .B is specified, calculation is
performed in (8 bits) x (8 bits) = (16 bits); when .W is specified, calculation is performed in (16 bits)
x (16 bits) = (32 bits).
If .B is specified, address registers cannot be used in both src and dest. Note also that the flag
does not change in the multiply instruction. Figure 2.6.4 shows an example of how the multiply
instruction works.

Table 2.6.4 Multiply Instruction

Explanation

Signed multiply
instruction

dest ← src X dest

Description Format

MULU.B
MULU.W

MUL.B
MUL.W

Mnemonic

MUL

MULU
Unsigned multiply

instruction
dest ← src X dest

src,dest
src,dest

src,dest
src,dest

MUL

MULU

± 8 bits

8 bits

x

x

x

x

± 8 bits

=

=

=

=

± 16 bits

32 bits

16 bits

3F 14 04 EC

03 E8 01 6D 00 05 91 C8

H

H

H

H

H

H

63 x 20 = 1260

1000 x 365 = 365000

± 16 bits ± 16 bits ± 32 bits

8 bits

16 bits 16 bits

Figure 2.6.4 Typical operations of multiply instructions

2
CPU Programming Model

2.6 Instruction Set

68

Divide Instruction

There are three types of divide instructions: two signed divide instructions and one unsigned divide
instruction. All these three instructions allow the user to specify the desired size. When .B is
specified, calculation is performed in (16 bits) ÷ (8 bits) = (8 bits)... (remainder in 8 bits); when .W is
specified, calculation is performed in (32 bits) ÷ (16 bits) = (16 bits)... (remainder in 16 bits).
Only the O flag changes state in the divide instruction. Figure 2.6.5 shows an example of how the
divide instruction works.

Table 2.6.5 Divide Instruction

Explanation

Signed divide instruction
Sign of remainder matches that of
dividend.

Description Format

DIVX.B
DIVX.W

DIV.B
DIV.W

Mnemonic

DIV

DIVX

Unsigned divide instruction

src
src

Signed divide instruction
Sign of remainder matches that of
divisor.

DIVU
DIVU.B
DIVU.W

src
src

src
src

DIV

DIVX

± 8 bits (R0L)

± 16 bits (R0)

± 8 bits (src)

± 16 bits (src)

=

=

=

=

± 32 bits (R2R0)

± 16 bits (R0)

(Remainder)

± 8 bits (R0H)

± 16 bits (R2)

DIVU

=

=

04 EF

00 05 91 C9

14

01 6D

3F

03 E8

03

00 01

H

H

H

H

H

H

H

H

365001 ÷ 1000 = 365 ... 1

1263 ÷ 20 = 63 ... 3

(Remainder)

± 8 bits (R0L)± 8 bits (src)± 16 bits (R0) ± 8 bits (R0H)

(Remainder)

(Remainder)

8 bits (R0L)8 bits (src)16 bits (R0) 8 bits (R0H)

(Remainder)

(Remainder)

16 bits (R0)16 bits (src)32 bits (R2R0) 16 bits (R2)

± 16 bits (R0)± 16 bits (src)± 32 bits (R2R0) ± 16 bits (R2)

÷

÷

÷

÷

÷

÷

Figure 2.6.5 Typical operations of divide instructions

69

2
CPU Programming Model

2.6 Instruction Set

Difference between DIV and DIVX Instructions

Both DIV and DIVX are signed divide instructions. The difference between these two instructions is
the sign of the remainder.
As shown in Table 2.6.6, the sign of the remainder deriving from the DIV instruction is the same as
that of the dividend. With the DIVX instruction, however, the sign is the same as that of the divisor.

Table 2.6.6 Difference between DIV and DIVX Instructions

DIV

DIVX

33 ÷ 4 = 8 ... 1

33 ÷ (–4) = –8 ... 1

–33 ÷ 4 = –8 ... (–1)

33 ÷ 4 = 8 ... 1

33 ÷ (–4) = –9 ... (–3)

–33 ÷ 4 = –9 ... 3

The sign of the remainder is
the same as that of the dividend.

The sign of the remainder is
the same as that of the divisor.

2
CPU Programming Model

2.6 Instruction Set

70

Decimal Add Instruction

There are two types of decimal add instructions: one with a carry and the other without a carry.
The S, Z, and C flags change state when the decimal add instruction is executed. Figure 2.6.6
shows an example of how these instructions operate.

Table 2.6.7 Decimal Add Instruction

ExplanationDescription Format

DADD
DADD

.B

.W

Mnemonic

DADD

DADC

src,dest
src,dest

Add in decimal not including carry.

Add in decimal including carry.DADC
DADC

.B

.W
src,dest
src,dest

4 digits

21 3 4
09 0 0+

20 3 41
C flag

1234 + 9000 = 10234
1000's
place

100's
place

1's
place

10's
place

DADD 2 digits

6 2
5 0

1 2

+

C flag

1

62 + 50 = 112

10's place 1's place

DADC

6 2
3 0

9 3

+

0

1

C flag

62 + 30 +C flag 1 = 93

C flag

2 digits

10's place 1's place

21 3 4
09 0 0

+

20 3 51

1

C flag

1234 + 9000 + C flag 1 = 10234

C flag

4 digits

1000's
place

100's
place

1's
place

10's
place

Figure 2.6.6 Typical operations of decimal add instructions

71

2
CPU Programming Model

2.6 Instruction Set

Decimal Subtract Instruction

There are two types of decimal subtract instructions: one with a borrow and the other without a
borrow.
The S, Z, and C flags change state when the decimal subtract instruction is executed. Figure 2.6.7
shows an example of how these instructions operate.

Table 2.6.8 Decimal Subtract Instruction

ExplanationDescription Format

DSUB
DSUB

.B

.W

Mnemonic

DSUB

DSBB

Subtract in decimal not including
borrow.

Subtract in decimal including
borrow.

src,dest
src,dest

DSBB
DSBB

.B

.W
src,dest
src,dest

DSUB

DSBB

7 8
1 1

6 7

21 3 4
11 1 1

10 2 30

7 8
1 1

6 60

1

21 3 4
11 1 1

10 2 20

1

0

78 – 11 = 67 1234 – 1111 = 0123

78 – 11 – C flag 1 = 66 1234 – 1111 – C flag 1 = 0122

2 digits

C flag

C flag

10's place 1's place

4 digits

C flag

C flag

C flag C flag

2 digits 4 digits

10's place 1's place
1000's
place

100's
place

1's
place

10's
place

1000's
place

100's
place

1's
place

10's
place

Figure 2.6.7 Typical operations of decimal subtract instructions

2
CPU Programming Model

2.6 Instruction Set

72

Add (Subtract) & Conditional Branch Instruction

This instruction is convenient for determining whether repeat processing is terminated or not. The
values added or subtracted by this instruction are limited to 4-bit immediate. Specifically, the value
is -8 to +7 for the ADJNZ instruction, and -7 to +8 for the SBJNZ instruction. The range of
addresses to which control can jump is -126 to +129 from the start address of the ADJNZ/SBJNZ
instruction. Figure 2.6.8 shows an example of how the add (subtract) & conditional branch
instruction works.

Table 2.6.9 Add (Subtract) & Conditional Branch Instruction

Description FormatMnemonic

ADJNZ

SBJNZ

ADJNZ.B #IMM,dest,label
ADJNZ.W #IMM,dest,label

SBJNZ.B #IMM,dest,label
SBJNZ.W #IMM,dest,label

Note 1: #IMM can only be a 4-bit immediate (-8 to +7 for the ADJNZ instruction; –7 to +8 for the
SBJNZ instruction).

Note 2: The range of addresses to which control can jump in PC relative addressing is –126 to
 +129 from the start address of the ADJNZ/SBJNZ instruction.

Adds immediate to dest.
Jump to label if result is not 0.

Subtracts immediate from dest.
Jump to label if result is not 0.

Explanation

ADJNZ.W #2,R0,LOOP

R0 = 0 ?

YES

NO

R0 ← R0 + #2

SBJNZ.W #2,R0,LOOP

R0 = 0 ?

YES

NO

R0 ← R0 – #2

LOOP: LOOP:

Figure 2.6.8 Typical operations of add (subtract) & conditional branch instructions

73

2
CPU Programming Model

2.6 Instruction Set

Sum of Products Calculate Instruction

This instruction calculates a sum of products and if an overflow occurs during calculation,
generates an overflow interrupt. Set the multiplicand address, multiplier address, and sum of
products calculation count in each register as shown in Figure 2.6.9. Figure 2.6.10 shows an
example of how the sum-of-products calculate instruction works.

Multiplier address
A1
16

Multiplicand address
A0
16

Sum of products calculation count

R3
16

Calculation result
R2R0

16 16

*When operating in bytes, the register used to store the calculation result is R0.

Figure 2.6.9 Setting registers for sum-of-products calculation instruction

Table 2.6.10 Sum of Products Calculate Instruction

Description FormatMnemonic

RMPA

Note 1: If an overflow occurs during calculation, the overflow flag (O flag) is set to 1 before
terminating the calculation.

Note 2: If an interrupt is requested during calculation, the sum of products calculation count is
decremented after completing the addition in progress before accepting the interrupt
request.

RMPA
.B
.W

Calculates a sum of products using A0 as
multiplicand address, A1 as multiplier
address, and R3 as operation count.

Explanation

RMPA.W

A0

R3

A1

1
2
3
4

1
2
3
4

X
X

X
X

+
+
+
+

R2 R0
=

R2 R0
R2 R0
R2 R0

=
=
=

R2 R0
b0b31

1
2

3
4

(Calculation result of 1)
(Calculation result of 2)
(Calculation result of 3)
(Calculation result of 4)

Figure 2.6.10 Typical operation of sum-of-products calculation instruction

2
CPU Programming Model

2.6 Instruction Set

74

2.6.4 Sign Extend Instruction

This instruction substitutes sign bits for the bits to be extended to extend the bit length.
This section explains the sign extend instruction.

Sign Extend Instruction

This instruction performs 8-bit or 16-bit sign extension.
If .W is specified for the size specifier, the bit length is sign extended from 16 bits to 32 bits. In this
case, be sure to use the R0 register. Figure 2.6.11 show an example of how the sign extend
instruction works.

Table 2.6.11 Sign Extend Instruction

Description FormatMnemonic

EXTS
EXTS.B dest
EXTS.W R0

Sign extends dest from 8 bits to 16
bits or from 16 bits (R0) to 32 bits
(R2R0).

Explanation

8-bit sign extension
Register/memory

16-bit sign extension
R2 R0

Sign bits are substituted for the extended bits.

Figure 2.6.11 Typical operation of sign extend instruction

75

2
CPU Programming Model

2.6 Instruction Set

2.6.5 Bit Instructions

This section explains the bit instructions of the M16C/60 series.

Logical Bit Manipulating Instruction

This instruction ANDs or ORs a specified register or memory bit and the C flag and stores the result
in the C flag. Figure 2.6.12 shows an example of how the logical bit manipulating instruction works.

Table 2.6.12 Logical Bit Manipulating Instruction

Description FormatMnemonic

BAND

BNAND

BOR

BNOR

BXOR

BNXOR

BAND src

BNAND src

BOR src

BNOR src

BXOR src

BNXOR src

Explanation

C ← src & C ; ANDs C and src.

C ← src | C ; ORs C and src.

C ← src ^ C ; Exclusive ORs C and src.

C ← src & C ; ANDs C and src.

C ← src | C ; ORs C and src.

C ← src ^ C ; Exclusive ORs C and src.

C flag

BAND 4,R1

ANDs the R1 register's
bit 4 and the C flag.

Logical operation

Operation
result

R1

Figure 2.6.12 Typical operation of logical bit manipulating instruction

2
CPU Programming Model

2.6 Instruction Set

76

Conditional Bit Transfer Instruction

This instruction transfers a bit from depending on whether a condition is met. If the condition is
true, it transfers a 1; if the condition is false, it transfers a 0. In all cases, a flag is used to
determine whether the condition is true or false. This instruction must be preceded by an
instruction that causes the flag to change. Figure 2.6.13 shows an example of how the conditional
bit transfer instruction works.

Table 2.6.13 Conditional Bit Transfer Instruction

Description FormatMnemonic

BMCnd
BMCnd dest
BMCnd C

Transfers a 1 if condition is true or a
0 if condition is false.

Explanation

True/false determining conditions (14 conditions)Cnd

GEU/C

GTU

EQ/Z

N

LE

O

C = 1

C = 1 & Z = 0

Z = 1

S = 1

O = 1

Equal or greater/ Carry flag = 1

Equal/ Zero flag = 1

Negative

Equal or signed and smaller

Overflow flag = 1

Unsigned and greater

GE

LTU/NC

LEU

NE/NZ

PZ

GT

NO

LT

C = 0

Z = 0

S = 0

O = 0

Equal or signed and greater

Smaller/ Carry flag = 0

Equal or smaller

Not equal/ Zero flag = 0

Positive or zero

Signed and greater

Overflow flag = 0

Signed and smaller

(Z = 1) | (S = 1 & O = 0) | (S = 0 & O = 1)

(S = 1 & O = 1) | (S = 0 & O = 0)

C = 0 | Z = 1

(S = 1 & O = 1 & Z = 0) | (S = 0 & O = 0 & Z = 0)

(S = 1 & O = 0) | (S = 0 & O = 1)

BMGEU 3,1000H[SB]

SB = 0500H

I3 I2 I1 I0 U I O B S Z D C
100 0 0 0 00 0 00 0 0 0 0 1FLG =

SB 0500H + 1000H = 01500H
b7 b0

10 0 1 1 1 0 1

00000H

FFFFFH

01500H

(If SB and FLG register status is as follows)
Since C = 1, the condition is true.
Therefore, bit 3 at address 01500H is
set to 1.

Figure 2.6.13 Typical operation of conditional bit transfer instruction

77

2
CPU Programming Model

2.6 Instruction Set

2.6.6 Branch Instructions

There are ten branch instructions available with the M16C/60 series. This section explains some
characteristic branch instructions among these.

Unconditional Branch Instruction

This instruction causes control to jump to label unconditionally.
The jump distance specifier normally is omitted. When this specifier is omitted, the assembler
optimizes the jump distance when assembling the program. Figure 2.6.14 shows an example of
how the unconditional branch instruction works.

Table 2.6.14 Unconditional Branch Instruction

JMP LABEL1

LABEL1:

*

JMP LABEL1

The asterisk * denotes the start address
of the JMP instruction's operand.

JMP LABEL1

LABEL1:

*

JMP LABEL1

The asterisk * denotes the start address
of the JMP instruction's operand.

Figure 2.6.14 Typical operation of unconditional branch instruction

2
CPU Programming Model

2.6 Instruction Set

78

Indirect Branch Instruction

This instruction causes control to jump indirectly to the address indicated by src.
If .W is specified for the jump distance specifier, control jumps to the start address of the JMPI
instruction plus src (added including the sign). In this case, if src is memory, the instruction requires
2 bytes of memory capacity. If .A is specified for the jump distance specifier, control jumps to src. In
this case, if src is memory, the instruction requires 3 bytes of memory capacity. When using this
instruction, always be sure to specify a jump distance specifier. Figure 2.6.15 shows an example of
how the indirect branch instruction works.

Table 2.6.15 Indirect Branch Instruction

Description FormatMnemonic

JMPI JMPI
.W
.A

src

Explanation

Jumps indirectly to the
address indicated by src.

Range of jump: .W Jump in PC relative addressing from –32,768 to +32,767

.A Jump in 20-bit absolute addressing

JMPI.A [A0]

01000H

JMPI.A [A0]
A0 = 2000H

45H
23H
01H

02000H
Jump address

12345H

Figure 2.6.15 Typical operation of indirect branch instruction

79

2
CPU Programming Model

2.6 Instruction Set

≤

Special Page Branch Instruction

This instruction causes control to jump to the address that is set in each table of the special page
vector table plus F0000H. The range of addresses to which control jumps is F0000H to FFFFFH.
Although the jump address is stored in memory, this instruction can execute branching at high
speed.
Use a special page number or label to specify the jump address. Be sure to add '#' before the
special page number or '\' before the label. If a label is used to specify the jump address, the
assembler obtains the special page number by calculation. Figure 2.6.16 shows an example of
how the special page branch instruction works.

Table 2.6.16 Special Page Branch Instruction

Description FormatMnemonic

JMPS
JMPS #special page number

18 special page number 255

\lebelJMPS

JMPS #251

Special page
vector table

FFE00H

15H
00H

16H

FFE08H

Interrupt vector
table

FFFDCH

FFFFFH

FFE0AH

FFFDBH

Number 255

00H

01000H

JMPS #251

F1500H

High-order address is fixed to "0FH".

Control jumps to the
address that is set in
special page number 251
plus F0000H.Number 251

Number 250

Number 18

Figure 2.6.16 Typical operation of special page branch instruction

≤ ≤

2
CPU Programming Model

2.6 Instruction Set

80

Conditional Branch Instruction

This instruction examines flag status with respect to the conditions listed below and causes control
to branch if the condition is true or executes the next instruction if the condition is false. Figure
2.6.17 shows an example of how the conditional branch instruction works.

Table 2.6.17 Conditional Branch Instruction

Description FormatMnemonic

JCnd JCnd label

Explanation

Jumps to label if condition is true
or executes next instruction if
condition is false.

True/false determining conditions (14 conditions)Cnd

GEU/C

GTU

EQ/Z

N

LE

O

C = 1

C = 1 & Z = 0

Z = 1

S = 1

O = 1

Equal or greater/ Carry flag = 1

Equal/ Zero flag = 1

Negative

Equal or signed and smaller

Overflow flag = 1

Unsigned and greater

GE

LTU/NC

LEU

NE/NZ

PZ

GT

NO

LT

C = 0

Z = 0

S = 0

O = 0

Equal or signed and greater

Smaller/ Carry flag = 0

Equal or smaller

Not equal/ Zero flag = 0

Positive or zero

Signed and greater

Overflow flag = 0

Signed and smaller

(Z = 1) | (S = 1 & O = 0) | (S = 0 & O = 1)

(S = 1 & O = 1) | (S = 0 & O = 0)

C = 0 | Z = 1

(S = 1 & O = 1 & Z = 0) | (S = 0 & O = 0 & Z = 0)

(S = 1 & O = 0) | (S = 0 & O = 1)

Range of jump : -127 to +128 (PC relative) for GEU/C, GTU, EQ/Z, N, LTU/NC, LEU, NE/NZ, and PZ
 -126 to +129 (PC relative) for LE, O, GE, GT, NO, and LT

JEQ LABEL1

LABEL1:

JEQ LABEL1
(Jumps to LABEL1 if Z flag = 1)

Figure 2.6.17 Typical operation of conditional branch instruction

81

2
CPU Programming Model

2.6 Instruction Set

2.6.7 High-level Language Support Instructions

These instructions are used to build and clean up a stack frame. They execute complicated
processing matched to high-level languages in one instruction.

Building Stack Frame

ENTER is an instruction to build a stack frame. Use #IMM to set bytes of the automatic variable
area. Figure 2.6.18 shows an example of how this instruction works.

Table 2.6.18 Stack Frame Build Instruction

Description FormatMnemonic

ENTER ENTER #IMM

Note: #IMM indicates the size (in bytes) of the automatic variable area with
 only IMM8 (unsigned 8-bit immediate).

Builds stack frame.

Explanation

ENTER #3
1) Saves FB register to stack area.
2) Transfers SP to FB.
3) Subtracts specified immediate from SP to modify SP (to allocate automatic variable
area of called function).

[Before executing ENTER instruction]

Stack area

Return address
(low)

Return address
(middle)

Return address
(high)

Argument 2

Automatic
variable of

main

SP

FB

[After executing ENTER instruction]

SP

FB

Stack
frame

AAAAA
AAAAA
AAAAA
AAAAA

Automatic
variable area of
called function

Argument 1

Automatic
variable of

main

Stack area

Return address
(low)

Return address
(middle)

Return address
(high)

Argument 2

Argument 1

Old FB (lower)

Old FB (upper)

Figure 2.6.18 Typical operation of stack frame build instruction

2
CPU Programming Model

2.6 Instruction Set

82

Cleaning Up Stack Frame

The EXITD instruction cleans up the stack frame and returns control from the subroutine. It
performs these operations simultaneously. Figure 2.6.19 shows an example of how the stack
frame clean-up instruction works.

Table 2.6.19 Stack Frame Clean-up Instruction

Description FormatMnemonic

EXITD EXITD

Explanation

Cleans up stack frame.

EXITD

1) Transfers FB to SP.
2) Restores FB from stack area.
3) Returns from subroutine (function) (operates in the same way as RTS instruction).

[Before executing EXITD instruction]

SP

FB AAAAA
AAAAA
AAAAA
AAAAA

[After executing EXITD instruction]

SP

FB

AAAA
AAAA
AAAA
AAAA

Return

PC

Stack frame

Stack area

Return address
(low)

Return address
(middle)

Return address
(high)

Argument 2

Argument 1

Old FB (lower)

Old FB (upper)

Automatic
variable area of
called function

Automatic
variable area of
called function

Automatic
variable of

main

Stack area

Return address
(low)

Return address
(middle)

Return address
(high)

Argument 2

Argument 1

Old FB (lower)

Old FB (upper)

Automatic
variable of

main

Figure 2.6.19 Typical operation of stack frame clean- up instruction

83

2
CPU Programming Model

2.6 Instruction Set

2.6.8 OS Support Instructions

These instructions save and restore task context. They execute context switching required for task
switchover in one instruction.

OS Support Instructions

There are two types of instructions: STCTX and LDCTX. The STCTX instruction saves task
context. The LDCTX instruction restores task context. Figure 2.6.20 shows a context table of
tasks. Use the context table's register information to specify whether register values be transferred
to the stack area. Use the SP correction value to set the register bytes to be transferred. The OS
support instructions save and restore task context to and from the stack area by using these pieces
of information.

Table 2.6.20 OS Support Instructions

Description Format

LDCTX abs16,abs20

STCTX abs16,abs20

Mnemonic

STCTX

LDCTX

Saves task context.

Restores task context.

Explanation

Note 1: abs16 indicates the memory address where task number (8 bits) is stored.
Note 2: abs20 indicates the start address of the context table.

abs20
Register information of

task number 0
SP correction value of

task number 0
Register information of

task number 1
SP correction value of

task number 1

Register information of
task number 'n'

SP correction value of
task number 'n'

Start address of context table

FB SB A1 A0 R3 R2 R1 R0

Bit configuration of register information

1: Transfers register to stack area.
0: Does not transfer register to stack area.

n=0 to 255

Figure 2.6.20 Context table

2
CPU Programming Model

2.6 Instruction Set

84

Operation for Saving Context (STCTX instruction)

Operation 1
Double abs16 (task number) and add abs20
(start address of context table) to it. Read out
the memory content indicated by the
calculation result of (task number) x 2 + abs20
as register information (8-bit data).

Operation 2
Save the registers indicated by the register
information to the stack area.

R1

Stack area

R2

R3

A0

R0

SP

Operation 3
Read out the content at the address next to the
register information (i.e., an address
incremented by 1) as the SP correction value
(8-bit data).

FFFFFH

abs20

Context information

00000H

AAAAA
AAAAA
AAAAA

Task number x 2

FFFFFH

abs20

Context information

00000H

AAAAA
AAAAA
AAAAA

Task number x 2

SP correction value

Operation 4
Subtract the SP correction value from SP to
modify it.

R1

Stack area

R2

R3

A0

R0

SP

SP'

SP – SP correction
value

85

2
CPU Programming Model

2.6 Instruction Set

Operation for Restoring Context (LDCTX instruction)

Operation 1
Double abs16 (task number) and add abs20
(base address of context table) to it. Read out
the memory content indicated by the calculation
result of (task number) x 2 + abs20 as register
information (8-bit data).

Operation 2
Restore the registers indicated by the register
information from the stack area. (The SP
register value does not change at this point in
time.)

FFFFFH

abs20

00000H

AAAA
AAAA
AAAA

Context information

Task number x 2

Operation 3
Read out the content at the address next to the
register information (i.e., an address
incremented by 1) as SP correction value (8-bit
data).

FFFFFH

abs20

00000H

AAAA
AAAA
AAAA

Context information

Task number x 2

SP correction value

Operation 4
Add the SP correction value to SP to modify it.

R1

R2

R3

A0

R0

SP

SP'

Stack area

SP' + SP correction
value

R1

Stack area

R2

R3

A0

R0SP'

Restored to
each register

2
CPU Programming Model

2.7 Outline of Interrupt

86

2.7 Outline of Interrupt

This section explains the types of interrupt sources available with the M16C/60 group and the
internal processing (interrupt sequence) performed after an interrupt request is accepted until an
interrupt routine is executed. For details on how to use each interrupt and how to set, refer to
Chapter 4.

2.7.1 Interrupt Sources and Control

The following explains the interrupt sources available with the M16C/60 group.

Interrupt Sources in M16C/60 Group

Figure 2.7.1 shows the interrupt sources available with the M16C/60 group.

Hardware interrupts consist of six types of special interrupts such as reset and NMI and various
peripheral I/O interrupts(Note) that are dependent on built-in peripheral functions such as timers and
external pins. Special interrupts are nonmaskable; peripheral I/O interrupts are maskable.
Maskable interrupts are enabled and disabled by an interrupt enable flag (I flag), an interrupt
priority level select bit, and the processor interrupt priority level (IPL).
Software interrupts generate an interrupt request by executing a software interrupt instruction.
There are four types of software interrupts: an INT instruction interrupt, a BRK instruction interrupt,
an overflow interrupt, and an undefined instruction interrupt.

Hardware interrupt

Peripheral
I/O

Special

Block transfer

A-D conversion

Serial I/O

Timer

Key input

External pin

DMA0
DMA1

UART1 transmit
UART1 receive
UART0 transmit
UART0 receive

Timer A4 to A0
Timer B2 to B0

Address match interrupt 1
Address match interrupt 0

Reset
NMI
DBC
Watchdog timer
Single step
Address match

BRK instruction
INT instruction
Overflow (INTO instruction)
Undefined instruction
(UND instruction)

Software interrupts

INT2 to INT0

Figure 2.7.1 Interrupt sources in M16C/60 group

Note: Peripheral functions vary with each type of microcomputer used. For details about peripheral interrupts, refer to the data sheet and
user's manual of your microcomputer.

87

2
CPU Programming Model

2.7 Outline of Interrupt

2.7.2 Interrupt Sequence

The following explains the interrupt sequence performed in the M16C/60 group.

Interrupt Sequence

When an interrupt request occurs during instruction execution, interrupt priorities are resolved after
completing the instruction execution under way and the processor enters an interrupt sequence
beginning with the next cycle. (See Figure 2.7.2.) However, if an interrupt request occurs when
executing a string instruction (SMOVB, SMOVF, or SSTR) or sum-of-product calculating instruction
(RMPA), the operation of the instruction under way is suspended before entering an interrupt
sequence. (See Figure 2.7.3.)
In the interrupt sequence, first the contents of the flag register and program counter before the
interrupt request was accepted are saved to the stack area and interrupt-related register values(Note)

are set. When the interrupt sequence is completed, the processor goes to interrupt processing.
Note that no interrupt but a reset is accepted when executing the interrupt sequence.

1. Interrupt under normal condition

Instruction

AAAAAA
AAAAAA Interrupt sequence Instructions in interrupt routine

 Interrupt processing

18 to 20 cycles

Interrupt request accepted

Interrupt request generated

No interrupt but a reset is accepted when executing the interrupt sequence.

Figure 2.7.2 Interrupt sequence 1

2. Interrupt under exceptional condition

If an interrupt request is generated when executing one of the following instructions, the interrupt
sequence occurs in the middle of that instruction execution.
(1) String transfer instruction (SMOVF, SMOVB, SSTR)
(2) Sum-of-product calculating instruction (RMPA)

AAAAAA
AAAAAA Re-execution of suspended

instruction
Next
instruction

Instruction Interrupt sequence Instructions in interrupt routine

 Interrupt processing

18 to 20 cycles

Interrupt request accepted

Interrupt request generated

No interrupt but a reset is accepted when executing the interrupt sequence.

Figure 2.7.3 Interrupt sequence 2

Note: These include flag register and processor interrupt priority level.

2
CPU Programming Model

2.7 Outline of Interrupt

88

MEMO

Chapter 3
Functions of Assembler

3.1 Outline of AS30 System
3.2 Method for Writing Source Program

3

3
Functions of Assembler

3.1 Outline of AS30 System

90

3.1 Outline of AS30 System

The AS30 system is a software system that supports development of programs for controlling the
M16C/60,M16C/20 series single-chip microcomputers at the assembly language level. In addition
to the assembler, the AS30 system comes with a linkage editor and a load module converter.
This section explains the outline of AS30.

Functions

• Relocatable assemble function
• Optimized code generating function
• Macro function
• High-level language source level debug function
• Various file generating function
• IEEE-695 format(Note 1) file generating function

Configuration

The AS30 system consists of the following programs:
• Assembler driver (as30)
This is an execution file to start up the macroprocessor and assembler processor. This assembler
driver can process multiple assembly source files.

• Macroprocessor (mac30)
This program processes macro directive commands in the assembly source file and performs
preprocessing for the assembly processor, thereby generating an intermediate file. This
intermediate file is erased after processing by the assembler processor is completed.

• Assembler processor (asp30)
This program converts the intermediate file generated by the macroprocessor into a relocatable
module file.

• Linkage editor (ln30)
This program links the relocatable module files generated by the assembler processor to generate
an absolute module file.

• Load module converter (lmc30) (Note 2)

This program converts the absolute module file generated by the linkage editor into a machine
language file that can be programmed into ROM.

• Librarian (lb30)
By reading in the relocatable module files, this program generates and manages a library file.

• Cross referencer (xrf30)
This program generates a cross reference file that contains definition of various symbols and
labels used in the assembly source file created by the user.

• Absolute lister (abs30)
Based on the address information in the absolute module file, this program generates an absolute
list file that can be output to a printer.

Note 1: IEEE stands for the Institute of Electrical and Electronics Engineers.
Note 2: The load module converter is a program to convert files into the format in which they can be programmed into M16C/60,M16C/20 series ROMs.

91

3
Functions of Assembler

3.1 Outline of Interrupt

Outline of Processing by AS30 System

Figure 3.1.1 schematically shows the assemble processing performed by the AS30 system.

as30

Assembly source
file

lb30

ln30

Relocatable module
file

Assembler list
file

Library file

Absolute module
file

abs30

Absolute list
file

lmc30

Intel HEX format
file

Motorola S format
file

xrf30

Cross reference
file

Input file

Output file

.a30

.lst.r30

.lib .xrf

.x30

.als.hex.mot

Figure 3.1.1 Outline of assemble processing performed by AS30

3
Functions of Assembler

3.1 Outline of AS30 System

92

Input/output Files Handled by AS30

The table below separately lists the input files and the output files handled by the AS30 system.
Any desired file names can be assigned. However, if the extension of a file name is omitted, the
AS30 system automatically adds a default file extension. These default extensions are shown in
parenthesis in the table below.

Table 3.1.1 List of Input/output Files

Program Name

Assembler
as30

Linkage editor
ln30

Load module converter
lmc30

Librarian
lb30

Cross referencer
xrf30

Absolute lister
abs30

Input File Name (Extension)

Source file (.as30)
Include file (.inc)

Relocatable module file (.r30)
Library file (.lib)

Absolute module file (.x30)

Relocatable module file (.r30)
Library file (.lib)

Assemble source file (.a30)
Assembler list file (.lst)

Absolute module file (.x30)
Assembler list file (.lst)

Output File Name (Extension)

Relocatable module file (.r30)
Assembler list file (.lst)
Assembler error tag file (.atg)

Absolute module file (.x30)
Map file (.map)
Link error tag file (.ltg)

Motorola S format file (.mot)
Extended Intel HEX format file (.hex)

Library file (.lib)
Relocatable module file (.r30)
Library list file (.lls)

Cross reference file (.xrf)

Absolute list file (.als)

93

3
Functions of Assembler

3.2 Method for Writing Source Program

3.2 Method for Writing Source Program

This section explains the basic rules, address control, and directive commands that need to be
understood before writing the source programs that can be processed by the AS30 system. For
details about the AS30 system itself, refer to AS30 User's Manuals, "Operation Part" and
"Programming Part".

3.2.1 Basic Rules

The following explains the basic rules for writing the source programs to be processed by the AS30
system.

Precautions on Writing Programs

Pay attention to the following precautions when writing the source programs to be processed by the
AS30 system:
• Do not use the AS30 system reserved words for names in the source program.
• Do not use a character string consisting of one of the AS30 system directive commands with the

period removed, because such a character string could affect processing by AS30. They can be
used in names without causing an error.

• Do not use system labels (the character strings that begin with ..) because they may be used for
future extension of the AS30 system. When they are used in the source program created by the
user, the assembler does not output an error.

Character Set

The characters listed below can be used to write the assembly program to be processed by the
AS30 system.

Uppercase English alphabets
A B C D E F G H I J K L M N O P Q R

S T U V W X Y Z
Lowercase English alphabets

a b c d e f g h i j k l m n o p q r s t u

v w x y z
Numerals

0 1 2 3 4 5 6 7 8 9
Special characters

" # % & ' () ∗ + , - . / : ; [¥] ^ _ | ˜
Blank characters

(space) (tab)
New line characters

(return) (line feed)

3
Functions of Assembler

3.2 Method for Writing Source Program

94

Reserved Words

The following lists the reserved words of the AS30 system. The reserved words are not
discriminated between uppercase and lowercase. Therefore, "abs", "ABS", "Abs", "ABs", "AbS",
"abS", "aBs", "aBS" — all are the same as the reserved word "ABS".

Mnemonic
ABS ADC ADCF ADD ADJNZ AND BAND

BCLR BMC BMEQ BMGE BMGEU BMGT BMGTU

BMLE BMLEU BMLT BMLTU BMN BMNC BMNE

BMNO BMNZ BMO BMPZ BMZ BNAND BNOR

BNOT BNTST BNXOR BOR BRK BSET BTST

BTSTC BTSTS BXOR CMP DADC DADD DEC

DIV DIVU DIVX DSBB DSUB ENTER EXITD

EXTS FCLR FSET INC INT INTO JC

JEQ JGE JGEU JGT JGTU JLE JLEU

JLT JLTU JMP JMPI JMPS JN JNC

JNE JNO JNZ JO JPZ JSR JSRI

JSRS JZ LDC LDCTX LDE LDINTB LDIPL

MOV MOVA MOVHH MOVHL MOVLH MOVLL MUL

MULU NEG NOP NOT OR POP POPC

POPM PUSH PUSHA PUSHC PUSHM REIT RMPA

ROLC RORC ROT RTS SBB SBJNZ SHA

SHL SMOVB SMOVF SSTR STC STCTX STE

STNZ STZ STZX SUB TST UND WAIT

XCHG XOR

Register/flag
A0 A1 A1A0 B C D FB

FLG I INTBL INTBH IPL ISP O

PC R0 R0H R0L R1 R1H R1L

R2 R2R0 R3 R3R1 S SB SP

U USP Z

Other
SIZEOF TOPOF

IF ELIF ELSE ENDIF FOR NEXT WHILE

ENDW SWITCH CASE DEFAULT ENDS REPEAT UNTIL

BREAK CONTINUE FOREVER

System labels (all names that begin with "..")

95

3
Functions of Assembler

3.2 Method for Writing Source Program

Description of Names

Any desired names can be used in the source program as defined.
Names can be divided into the following four types. Description range varies with each type. Note
that the AS30 system reserved words cannot be used in names.(Note)
• Label
• Symbol
• Bit symbol
• Location symbol

Rules for writing names
(1) Names can be written using alphanumeric characters and "_" (underscore). Each name must

be within 255 characters in length.
(2) Names are case-sensitive, so they are discriminated between uppercase and lowercase.
(3) Numerals cannot be used at the beginning of a name.

Note: Program operation cannot be guaranteed if any reserved word is used.

3
Functions of Assembler

3.2 Method for Writing Source Program

96

Types of Names

Table 3.2.1 shows the method for defining names.

Table 3.2.1 Types of Names Defined by User

Bit symbol

Function
 Indicates a specific bit address in memory.

Definition method
 Use a directive command that defines a bit symbol.
 Example:

flag1 .BTEQU 1,flags
flag2 .BTEQU 2,flags
flag3 .BTEQU 20, flags

Reference method
 The bit symbol can be written in the operand of a
 single-bit manipulating instruction.
 Example:

BCLR flag1
BCLR flag2
BCLR flag3

Label

Function
 Indicates a specific memory address.

Definition method
 Always add ":" (colon) at the end of each name.
 There are two methods of definition.
 1. Allocate an area with a directive command.
 Example:

flag: .BLKB 1
work: .BLKB 1

 2. Write a name at the beginning of a source line.
 Example:

name1:
_name:
sum_name:

Reference method
 Write the name in the operand of an instruction.
 Example:J

MP sym_name

Symbol

Function
 Indicates a constant value.

Definition method
 Use a directive command that defines a numeral.
 Example:

value1 .EQU 1
value2 .EQU 2

Reference method
 Write a symbol in the operand of an instruction.
 Example:

MOV.W R0,value2+1
value3 .EQU value2+1

Location symbol

Function
 Indicates the current line of the source program.

Definition method
 Unnecessary.

Reference method
 Simply write a dollar mark ($) in the operand to
 indicate the address of the line where it is written.
 Example:

JMP $+5AA
AA

flags

flag1flag2

7 6 5 4 3 2 1 0

97

3
Functions of Assembler

3.2 Method for Writing Source Program

Description of Operands

For mnemonics and directive commands, write an operand to indicate the subject to be operated
on by that instruction. Operands are classified into five types by the method of description. Some
instructions do not have an operand. For details about use of operands in instructions and types of
operands, refer to explanation of the method for writing each instruction.

• Numeric value
Numeric values can be written in decimal, hexadecimal, binary, and octal. Table 3.2.2 shows
types of operands, description examples, and how to write the operand.

Table 3.2.2 Description of Operands

Type

Binary

Octal

Decimal

Hexadecimal

Floating-
point number

Name

Expression

Character
string

Description
Example

10010001B
10010001b

60702o
60702O

9423

0A5FH
5FH
0a5fh
5fh

3.4E35
3.4E-35
-.5e20
5e20

loop

256/2
label/3

"string"
'string'

Method of Description

Write 'B' or 'b' at the end of the operand.

Write 'O' or 'o' at the end of the operand.

Do not write anything at the end of the operand.

Use numerals 0 to 9 and alphabets 'a' to 'f' or 'A' to 'F'
to write the operand and add 'H' or 'h' at the end.
However, if the operand value begins with an
alphabet, add '0' at the beginning.

Write an exponent including the sign after 'E' or 'e' in
the exponent part. For 3.4 x 1035, write 3.4E35.

Write a label or symbol name directly as it is.

Use a numeric value, name, and operator in
combination to write an expression.

Enclose a character string with single or double
quotations when writing it.

3
Functions of Assembler

3.2 Method for Writing Source Program

98

1.17549435 x 10 –38 to 3.40282347 x 1038

2.2250738585072014 x 10 –308 to 1.7976931348623157 x 10308

• Floating-point number
Numeric values within the range shown below that are represented by floating-point numbers can
be written in the operand of an instruction. The method for writing floating-point numbers and
description examples are shown in Table 3.2.2 in the preceding page. Floating-point numbers
can only be used in the operands of the directive commands ".DOUBLE" and ".FLOAT". Table
3.2.3 lists the range of values that can be written in each of these directive commands.

Table 3.2.3 Description Range of Floating-point Numbers

FLOAT (32 bits long)
DOUBLE (64 bits long)

Directive Command Description Range

• Name
Label and symbol names can be written in the operand of an instruction. The method for writing
names and a description example are shown in Table 3.2.2 in the preceding page.

• Expression
An expression consisting of a combination of a numeric value, name, and operator can be written
in the operand of an instruction. A combination of multiple operators can be used in an
expression. When writing an expression as a symbol value, make sure that the value of the
expression will be fixed when the program is assembled. The value that derives from calculation
of an expression is within the range of -2,147,483,648 to 2,147,483,648. Floating-point numbers
can be used in an expression. The method for writing expressions and description examples are
shown in Table 3.2.2 in the preceding page.

• Character string
A character string can be written in the operand of some directive commands. Use 7-bit ASCII
code to write a character string. Enclose a character string with single or double quotations when
writing it. The method for writing character strings and description examples are shown in Table
3.2.2 in the preceding page.

99

3
Functions of Assembler

3.2 Method for Writing Source Program

Operator

Table 3.2.4 lists the operators that can be written in the source programs for AS30.

Table 3.2.4 List of Operators

> Left-side value is greater than right-side value
< Right-side value is greater than left-side value
>= Left-side value is equal to or greater thanright-

side value
<= Right-side value is equal to or greater thanleft-

side value
== Left-side value and right-side value are equal
!= Left-side value and right-side value are not equal

Calculation priority modifying operator

() A term enclosed with () is calculated before any
other term. If multiple terms in an expression are
enclosed with (), the leftmost term has priority.
Parentheses () can be nested.

+ Positive value
– Negative value
˜ NOT
SIZEOF Section size (in bytes)
TOPOF Start address of section

+ Add
– Subtract
∗ Multiply
/ Divide
% Remainder
>> Shift bits right
<< Shift bits left
& AND
| OR
^ Exclusive OR

Note 1: For operators "SIZEOF" and "TOPOF," be sure to insert a space or tag between the operator and operand.
Note 2: Conditional operators can only be written in the operands of directive commands ".IF" and ".ELIF".

Conditional
operators

Monadic operators

Dyadic operators

Calculation Priority

Calculation is performed in order of priorities of operators beginning with the highest priority
operator. Table 3.2.5 lists the priorities of operators. If operators in an expression have the same
priority, calculation is performed in order of positions from left to right. The priority of calculation
can be changed by enclosing the desired term in an expression with ().

Table 3.2.5 Calculation Priority

1

2

3

4

5

6

7

8

Type of Operator

(,)

+ , –, ˜ , SIZEOF , TOPOF

∗, / , %

+ , –

>> , <<

&

| , ^

> , < , >= , <= , == , !=

High

Low

Dyadic operator 1

Dyadic operator 2

Dyadic operator 3

Dyadic operator 4

Dyadic operator 5

Conditional operator

Calculation priority
modifying operator

Monadic operator 1

Priority
Level

Content

3
Functions of Assembler

3.2 Method for Writing Source Program

100

Description of Lines

AS30 processes the source program one line at a time. Lines are separated by the new line
character. A section from a character immediately after the new line character to the next new line
character is assumed to be one line. The maximum number of characters that can be written in
one line is 255. Lines are classified into five types by the content written in the line. Table 3.2.6
shows the method for writing each type of line.
• Directive command line
• Assembly source line
• Label definition line
• Comment line
• Blank line

Table 3.2.6 Types of Lines

Label Definition Line

Function
 This is the line in which only a label name is
 written.

Description method
 Always be sure to write a colon (:) immediately
 following the label name.

 Example:

start:
label: .BLKB 1
main: nop
loop:

Directive Command Line

Function
 This is the line in which as30 directive command
 is written.

Description method
 Only one directive command can be written in one
 line. A comment can be written in the directive
 command line.
 Precautions
 No directive command can be written along
 with a mnemonic in the same line.

 Example:
 .SECTION program,DATA

.ORG 00H
sym .EQU 0
work: .BLKB 1

.ALIGN

.PAGE ''newpage''

.ALIGN

Assembly Source Line

Function
 This is the line in which a mnemonic is written.

Description method
 A label name (at beginning) and a comment can be
 written in the assembly source line.
 Precautions
 Only one mnemonic can be written in one line.
 No mnemonic can be written along with a
 directive command in the same line.

 Example:
MOV.W #0,R0
RTS

main: MOV.W #0,A0
RTS

Comment Line

Function
This is the line in which only a comment is
written.

Description method
 Always be sure to write a semicolon (;) before
 the comment.

 Example:
; Comment line
 MOV.W #0,A0

Blank Line

Function
 This is the line in which no meaningful character is written.

Description method
 Write only a space, tab, or new line code in this line.

101

3
Functions of Assembler

3.2 Method for Writing Source Program

3.2.2 Address Control

The following explains the AS30 system address control method.
The AS30 system does not take the RAM and ROM sizes into account as it controls memory
addresses. Therefore, consider the actual address range in your application when writing the
source programs and linking them.

Method of Address Control

The AS30 system manages memory addresses in units of sections. The division of each section is
defined as follows. Sections cannot be nested as they are defined.

Division of section
(a) An interval from the line in which directive command ".SECTION" is written to the line in which

the next directive command ".SECTION" is written
(b) An interval from the line in which directive command ".SECTION" is written to the line in which

directive command ".END" is written

.SECTION ram,DATA Range of ram section

work: .BLKB 10

.SECTION program Range of program section

JSR sub1

.SECTION sub1 Range of sub1 section

nop

MOV.W #0,work

RTS

.END

Figure 3.2.1 Range of sections in AS30 system

3
Functions of Assembler

3.2 Method for Writing Source Program

102

Types of Sections

A type can be set for sections in which units memory addresses are managed. The instructions
that can be written in a section vary with each type of section.

Table 3.2.7 Types of Sections

Type

CODE
(program area)

DATA
(data area)

Content and Description Example

• This is an area where the program is written.
• All instructions except some directive commands that
 allocate memory can be written in this area.
• CODE-type sections must be specified in the absolute
 module that they be located in the ROM area.
 Example:

.SECTION program,CODE

• This is an area where memory whose contents can be
 changed is located.
• Directive commands that allocate memory can be written in
 this area.
• DATA-type sections must be specified in the absolute
 module that they be located in the RAM area.
 Example:

.SECTION mem,DATA

• This is an area where fixed data other than the program is
 written.
• ROMDATA-type sections must be specified in the absolute
 module that they be located in the ROM area.
 Example:

.SECTION const,ROMDATA

ROMDTA
(fixed data area)

103

3
Functions of Assembler

3.2 Method for Writing Source Program

Section Attribute

A section in which units memory addresses are controlled is assigned its attribute when assembling
the program.

Table 3.2.8 Section Attributes

Attribute

Relative

Content and Description Example

• Addresses in the section become relocatable values when
 the program is assembled.
• The values of labels defined in the relative attribute section
 are relocatable.

• Addresses in the section become absolute values when
 the program is assembled.
• The values of labels defined in the absolute attribute
 section are absolute.
• To make a section assume the absolute attribute, specify
 the address with directive command ".ORG" in the line
 next to one where directive command ".SECTION" is
 written.

Example: .SECTION program,DATA
.ORG 1000H

Absolute

Section Alignment

Relative attribute sections can be adjusted so that the start address of each of these sections
determined when linking programs is always an even address. If such adjustment is required,
specify "ALIGN" in the operand of directive command ".SECTION" or write directive command
".ALIGN" in the line next to one where directive command ".SECTION" is written.

Example:

.SECTION program,CODE,ALIGN

or

.SECTION program,CODE

.ALIGN

3
Functions of Assembler

3.2 Method for Writing Source Program

104

Address Control by AS30 System

The following shows how an assembly source program written in multiple files is converted into a
single execution format file.

Address control by as30
(a) For sections that will be assigned the absolute attribute, the assembler determines absolute

addresses sequentially beginning with a specified address.
(b) For sections that will be assigned the relative attribute, the assembler determines addresses

sequentially for each section beginning with 0. The start address of all relative attribute
sections are 0.

Address control by ln30
(a) Sections of the same name in all files are arranged in order of specified files.
(b) Absolute addresses are determined for the arranged sections sequentially beginning with the

first section.
(c) The start addresses of sections are determined sequentially for each section beginning with 0

unless otherwise specified.
(d) Different sections are located at contiguous addresses unless otherwise specified.

Address values determined by
as30

 00000

Operand values of .ORG

 00000

FILE1

.SECTION A

.SECTION B

 00000

 00000

FILE2

.SECTION A

.SECTION A

Address values determined by
ln30

 00000

 Operand values of .ORG

Absolute module file

.SECTION B

.ORG *****H

.SECTION B

.ORG *****H

.SECTION B

.SECTION C

Absolute attribute
section

Relative attribute
section

.SECTION A

.SECTION C

Figure 3.2.2 Example of address control

105

3
Functions of Assembler

3.2 Method for Writing Source Program

Reading Include File into Source Program

The AS30 system allows the user to read an include file into any desired line of the source
program. This helps to increase the program readability.

Reading include file into source program
Write the file name to be read into the source program in the operand of directive command
".INCLUDE". All contents of the include file are read into the source program at the position of this
line.
Example:

.INCLUDE initial.inc

.SECTION memory,DATA
work: .BLKB 10
flags: .BLKW 1

.SECTION init

.INCLUDE initial.inc

.SECTION program,CODE
main:

.END

Source file (sample.a30) Include file (initial.inc)

loop:
MOV.W #10,A0
MOV.B #0,work[A0]
INC.W A0
JNZ loop
MOV.W #0,flags

.SECTION memory,DATA
000000 work: .BLKB 10
00000A flags: .BLKW 1

.SECTION init
000000 .INCLUDE initial
000000 loop: MOV.W #10,A0
000002 MOV.B #0,work[A0]
000006 INC.W A0
000007 JNZ loop
000009 MOV.W #0,flags

000000 .SECTION program,CODE
main:

.END

Addresses output by as30

After program is assembled

E
xp

an
si

on
 im

ag
e

Figure 3.2.3 Reading include file into source program

3
Functions of Assembler

3.2 Method for Writing Source Program

106

Global and Local Address Control

The following explains how the values of labels, symbols, and bit symbols are controlled by the
AS30 system.
The AS30 system classifies labels, symbols, and bit symbols between global and local and
between relocatable and absolute as it handles them. These classifications are defined below.

• Global
The labels and symbols specified with directive command ".GLB" are handled as global labels
and global symbols, respectively.
The bit symbols specified with directive command ".BTGLB" are handle as global bit symbols.
If a name defined in the source file is specified as global, it is made referencible from an external
file.
If a name not defined in the source file is specified as global, it is made an external reference
label, symbol, or bit symbol that references a name defined in an external file.

• Local
All names are handled as local unless they are specified with directive command ".GLB" or
".BTGLB".
Local names can be referenced in only the same file where they are defined.
Local names are such that the same label name can be used in other files.

• Relocatable
The values of local labels, symbols, and bit symbols within relative sections are made relocatable.
The values of externally referenced global labels, symbols, and bit symbols are made relocatable.

• Absolute
The values of local labels, symbols, and bit symbols defined in an absolute attribute section are
made absolute.

The labels, symbols, and bit symbols handled as absolute have their values determined by as30.
The values of all other labels, symbols, and bit symbols are determined by ln30 when linking
programs.
Figure 3.2.4 shows the relationship of various types of labels.

107

3
Functions of Assembler

3.2 Method for Writing Source Program

.GLB ver,sub1,port

.SECTION device

.ORG 40H
port: .BLKW 1

.SECTION program

.ORG 8000H
main:

JSR sub1
.SECTION str,ROMDATA

ver: .BYTE "program version 1"
.END

file1.a30

Declaration of label as global (essential)

 Absolute labels in file1
 port Global; it can be referenced from external file.
 main Local

 Relocatable labels in file1
 ver Global; it can be referenced from external file.
 sub1 Global; it references external file.

.GLB ver,sub1,port

.SECTION program

.ORG 0C000H
sub1:

LDM.W #0,A0
loop_s1:

LDM.B ver[A0],port
INC.W A0
CMP.B ver[A0],0
JNZ loop_s1
RTS
.END

file2.a30

Declaration of label as global (essential)

 Absolute labels in file2
 sub1 Global; it can be referenced from external file.
 loop_s1 Local

 Relocatable labels in file2
 ver Global; it references external file.
 port Global; it references external file.

Figure 3.2.4 Relationship of labels

3
Functions of Assembler

3.2 Method for Writing Source Program

108

3.2.3 Directive Commands

In addition to the M16C/60 series machine language instructions, the directive commands of the
AS30 system can be used in the source program. Following types of directive commands are
available. This section explains how to use each type of directive command.

• Address control command
To direct address determination when assembling the program.

• Assemble control directive command
To direct execution of AS30.

• Link control directive command
To define information for controlling address relocation.

• List control directive command
To control the format of list files generated by AS30.

• Branch optimization control directive command
To direct selection of the optimum branch instruction to AS30.

• Conditional assemble control directive command
To choose a block for which code is generated according to preset conditions when
assembling the program.

• Extended function directive command
To exercise other control than those described above.

• Directive command output by M16C family tool software
All of this type of directive command and operand are output by the M16C family tool software.
These directive commands cannot be written in the source program by the user.

109

3
Functions of Assembler

3.2 Method for Writing Source Program

Address Control

Command

.ORG

.BLKB

.BLKW

.BLKA

.BLKL

.BLKF

.BLKD

.BYTE

.WORD

.ADDR

.LWORD

.FLOAT

.DOUBLE

.ALIGN

Function

Declares an address.

Allocates a RAM area in units of 1
byte.

Allocates a RAM area in units of 2
bytes.

Allocates a RAM area in units of 3
bytes.

Allocates a RAM area in units of 4
bytes.

Allocates a RAM area for floating-point
numbers in units of 4 bytes.

Allocates a RAM area in units of 8
bytes.

Stores data in the ROM area in length
of 1 byte.

Stores data in the ROM area in length
of 2 bytes.

Stores data in the ROM area in length
of 3 bytes.

Stores data in the ROM area in length
of 4 bytes.

Stores a floating-point number in the
ROM area in length of 4 bytes.

Stores a floating-point number in the
ROM area in length of 8 bytes.

Corrects odd addresses to even
addresses.

Usage and Description Example

Write this command immediately after
directive command ".SECTION". Unless this
command is found immediately after the
section directive command, the section is not
made a relative attribute section. This
command cannot be written in relative
attribute sections.

.ORG 0F0000H

.ORG offset

.ORG 0F0000H + offset

Write the number of areas to be allocated in
the DATA section. When defining a label
name, always be sure to add a colon (:).
Example:

.BLKB 1

.BLKW number

.BLKA number+1
label: .BLKL 1
label: .BLKF number
label: .BLKD number+1

When writing multiple operands, separate
them with a comma (,). When defining a label,
always be sure to add a colon (:).
For .FLOAT and .DOUBLE, write a floating-
point number in the operand.
Example:

 .SECTION value,ROMDATA
 .BYTE 1
 .BYTE 1,2,3,4,5
 .WORD "da","ta"
 .ADDR symbol
 .LWORD symbol+1
 .FLOAT 5E2

constant .DOUBLE 5e2

This command can be written in the relative or
absolute attribute section where address
correction is specified when defining a section.
Example:

 .SECTION program,CODE
 .ORG 0F000H

MOV.W #0,R0
 .ALIGN
 .END

3
Functions of Assembler

3.2 Method for Writing Source Program

110

Assemble Control

Command

.EQU

.BTEQU

.END

Function

Defines a symbol.

Defines a bit symbol.

Declares the end of the assemble
source.

Assumes an SB register value.

Chooses SB relative addressing.

Chooses bit instruction SB relative
addressing.

Assumes an FB register value.

Chooses FB relative addressing.

Reads a file into a specified position.

Usage and Description Example

Forward referenced symbol names cannot be
written. A symbol or expression can be written
in the operand. Symbols and bit symbols can
be specified as global.
Example:

symbol .EQU 1
symbol1.EQU symbol+symbol
bit0 .BTEQU 0,0
bit1 .BTEQU 1,symbol1

Write at least one instance of this command in
one assembly source file. The as30 assembler
does not check for errors in the lines that follow
this directive command.
Example:

.END

Always be sure to set each register before
choosing the desired addressing mode.
Since register values are not set in the actual
register, write an instruction to set the register
value immediately before or after this directive
command.
Example:

.SB 80H
LDC #80H,SB

.FB 0C0H
LCD #80H,FB

.SBSYM sym1,sym2

.FBSYM sym3,sym4

Always be sure to write the extension for the
file name in the operand. Directive command
"..FILE" or a character string including "@"
can be written in the operand.
Example:

.INCLUDE initial.a30

.INCLUDE ..FILE@.inc

.SB

.SBSYM

.SBBIT

.FB

.FBSYM

.INCLUDE

111

3
Functions of Assembler

3.2 Method for Writing Source Program

Link Control

Command

.SECTION

.GLB

.BTGLB

.VER

Function

Defines a section name.

Specifies a global label.

Specifies a global bit symbol.

Outputs a specified character string to
a map file as version information.

Usage and Description Example

When specifying section type and ALIGN
simultaneously, separate them with a comma.
The section type that can be written here is
CODE, ROMDATA, or DATA. If section type
is omitted, CODE is assumed.
Example:

 .SECTION program,CODE
NOP

 .SECTION ram,DATA
 .BLKB 10
 .SECTION dname,ROMDATA
 .BYTE "abcd"
 .END

When writing multiple symbol names in
operand, separate them with a comma (,).
Example:

 .GLB name1,name2,mane3
 .BTGLB flag4
 .SECTION program

MOV.W #0,name1
BCLR flag4

Write operands within one line. This
command can be written only once in one
assembly source file.
Example:

 .VER 'strings'
 .VER "strings"

3
Functions of Assembler

3.2 Method for Writing Source Program

112

List Control

Command

.LIST

.PAGE

.FORM

Function

Controls line data output to a list file.

Breaks page at a specified position in
a list file.

Specifies a number of columns and
number of lines in one page of a list
file.

Usage and Description Example

Write 'OFF' in the operand to stop line output
or 'ON' to start line output. If this specification
is omitted, all lines are output to the list file.
Example:

 .LIST OFF
MOV.B #0,R0L
MOV.B #0,R0L
MOV.B #0,R0L

.LIST ON

Enclose the operand with single (') or double
(") quotations when writing it. The operand
can be omitted.
Example:

.PAGE

.PAGE "strings"

.PAGE 'strings'

This command can be written a number of
times in one assembly source file. Symbols
can be used to specify the number of columns
or lines. Forward referenced symbols cannot
be used, however. If this specification is
omitted, the list file is output with 140 columns
and 66 lines per page.
Example:

.FORM 20,80

.FORM 60

.FORM ,100

.FORM line,culmn

Branch Instruction Optimization Control

Command

.OPTJ

Function

Controls optimization of branch
instruction and subroutine call.

Usage and Description Example

Various items can be written in the operand here,
such as those for optimum control of a branch
instruction and selection of an unconditional branch
instruction or subroutine call instruction to be
excluded from optimization. These items can be
specified in any order and can be omitted. If
omitted, the initial value or previously specified
content is assumed for the jump distance.
Example:
Following combinations of operands can be written.

.OPTJ OFF

.OPTJ ON

.OPTJ ON,JMPW

.OPTJ ON,JMPW,JSRW

.OPTJ ON,JMPA

.OPTJ ON,JMPA,JSRW

.OPTJ ON,JMPA,JSRA

.OPTJ ON,JMRW

.OPTJ ON,JMRA

113

3
Functions of Assembler

3.2 Method for Writing Source Program

Extended Function Directive Commands

Command

.ASSERT

?

..FILE

@

Function

Outputs a specified character string to a
file or standard error output device.

Specifies and references a temporary
label.

Indicates source file name information.

Concatenates character strings before
and after @.

Usage and Description Example

When outputting a character string enclosed
with double quotations to a file, specify the file
name following ">" or ">>". The bracket ">"
creates a new file, so a message is output to it.
If a file of the same name exists, a message is
overwritten in it. The bracket ">>" outputs a
message along with the contents of the file. If
the specified file does not exist, it creates a
new file. Directive command "..FILE" can be
written in the file name.
Example:

 .ASSERT "string" > sample.dat
 .ASSERT "string" >> sample.dat
 .ASSERT "string" > ..FILE

Write "?:" in the line to be defined as a
temporary label. To reference a temporary
label that is defined immediately before, write
"?-" in the instruction operand. To reference a
temporary label that is defined immediately
after, write "?+" in the instruction operand.
Example:

?:
JMP ?+
JMP ?-

?:
JMP ?-

This command can be written in the operand of
directive command ".ASSERT" or ".INCLUDE".
If command option "-F" is specified, "..FILE" is
fixed to the source file name that is specified in
the command line. If the option is omitted, the
indicated source file name is the file name
where "..FILE" is written.
Example:

 .ASSERT "sample" > ..FILE
 .INCLUDE ..FILE@.inc
 .ASSERT "sample" > ..FILE@.mes

This command can be written a number of
times in one line. If the concatenated character
strings are going to be used as a name, do not
enter a space or tab before and after this
command.
Example:

 .ASSERT "sample" > ..FILE@.dat

Following macro definition is also possible:
mov_nibble .MACRO p1,src,p2,dest

MOV@p1@p2 src,dest
.ENDM

3
Functions of Assembler

3.2 Method for Writing Source Program

114

Conditional Assemble Directive Commands

Command

.IF

.ELIF

.ELSE

.ENDIF

Function

Indicates the beginning of conditional
assemble.

Indicates condition for conditional
assemble.

Indicates the beginning of a block to be
assembled when condition is false.

Indicates the end of conditional
assemble.

Usage and Description Example

Always be sure to write a conditional
expression in the operand.
Example:

.IF TYPE==0
.BYTE "Proto Type Mode"

.ELIF TYPE>0
.BYTE "Mass Production Mode"

.ELSE
.BYTE "Debug Mode"

.ENDIF

Rules for writing conditional expression:
The assembler does not check whether the
operation has resulted in an overflow or
underflow. Symbols cannot be forward
referenced (i.e., symbols defined after this
directive command are not referenced). If a
forward referenced or undefined symbol is
written, the assembler assumes value 0 for the
symbol as it evaluates the expression.
Typical description of conditional expression:

sym < 1
sym < 1
sym+2 < data1
sym+2 < data1+2
'smp1' ==name

Always be sure to write a conditional
expression in the operand. This directive
command can be written a number of times in
one conditional assemble block.
Example:
Same as described above

This directive command can be written more
than once in the conditional assemble block.
This command does not have an operand.
Example:
Same as described above

This directive command must be written at least
once in the conditional assemble block.This
command does not have an operand.Example:
Same as described above

115

3
Functions of Assembler

3.2 Method for Writing Source Program

Directive Commands Output by M16C Family Tools

Command

Name
beginning
with "._"

Function

Output by M16C family tool software.

Usage and Description Example

This command cannot be written in the source
program by the user. Program operation
cannot be guaranteed unless this rule is
observed.
Example

._FILE

3
Functions of Assembler

3.2 Method for Writing Source Program

116

3.2.4 Macro Functions

This section explains the macro functions that can be used in AS30. The following shows the
macro functions available with AS30:

• Macro function
A macro function can be used by defining it with macro directive commands ".MACRO" to
".ENDM" and calling the defined macro.

• Repeat macro function
A repeat macro function can be used by writing macro directive commands ".MREPEAT" to
".ENDM".

Figure 3.2.5 shows the relationship between macro definition and macro call.

mac .MACRO p1,p2,p3
.IF ..MACPARA == 3

.IF 'p1' == 'byte'
MOV.B #p2,p3

.ELSE
MOV.W #p2,p3

.ENDIF
.ELIF ..MACPARA == 2

.IF 'p1' == 'byte'
MOV.B p2,R0L

.ELSE
MOV.W p2,R0

.ENDIF
.ELSE

MOV.W R0,R1
.ENDIF
.ENDM

.SECTION program
main

:mac word,10,r0

.END

Macro call

Example of source program

.SECTION program
main:

.IF 3 == 3
.ELSE

MOV.W #10,R0
.ENDIF

.ENDIF

.END

After expansion

Macro
definition part

Macro
expansion part

Actual argument

Dummy argument

Figure 3.2.5 Example of macro definition and macro call

117

3
Functions of Assembler

3.2 Method for Writing Source Program

Macro Definition

To define a macro, use macro directive command ".MACRO" and define a set of instructions
consisting of more than one line in one macro name. Use ".ENDM" to indicate the end of definition.
The lines enclosed between ".MACRO" and ".ENDM" are called the macro body.

All instructions that can be written in the source program but a bit symbol can be used in the macro
body. Macros can be nested in up to 65,535 levels including macro definitions and macro calls.
Macro names and macro arguments are case-sensitive, so they are discriminated between
uppercase and lowercase letters.

Macro Local

Macro local labels declared with directive command ".LOCAL" can be used in only the macro
definition. Labels declared to be macro local are such that the same label can be written anywhere
outside the macro. Figure 3.2.6 shows a description example. In this example, m1 is the macro
local label.

name .MACRO source,dest,top
.LOCLA m1

m1:
nop
jmp m1

.ENDM

Figure 3.2.6 Example of macro definition and macro call

Macro Call

The contents of the macro body defined as a macro can be called into a line by writing the macro
name defined with directive command ".MACRO" in that line. Macro names cannot be referenced
externally. When calling the same macro from multiple files, define a macro in an include file and
include that file to call the macro.

3
Functions of Assembler

3.2 Method for Writing Source Program

118

Repeat Macro Function

The macro body enclosed with macro directive commands ".MREPEAT" and ".ENDM" is expanded
into a specified line repeatedly as many times as specified. Macro call of a repeat macro is not
available.

Figure 3.2.7 shows the relationship between macro definition and macro call of a repeat macro.

rep .MACRO num
.MREPEAT num
.IF num > 49

.EXITM
.ENDIF
nop
.ENDR

.SECTION program
main:

rep 3

.END

.SECTION program
main:

nop
nop
nop
.END

Macro call

Example of source program

After expansion

Macro
definition part

Macro
expansion part

Actual argument

Dummy argument

Figure 3.2.7 Example of macro definition and macro call

119

3
Functions of Assembler

3.2 Method for Writing Source Program

Macro Directive Commands

There are following types of macro commands available with AS30:

• Macro directive commands
These commands indicate the beginning, end, or suspension of a macro body and declare a local
label in the macro.

• Macro symbols
These symbols are written as terms of an expression in macro description.

• Character string functions
These functions show information on a character string.

Macro Directive Commands

Command

.MACRO

.ENDM

.LOCAL

.EXITM

.MREPEAT

.ENDR

Function

Defines a macro name and
indicates the beginning of macro
definition.

Indicates the end of macro
definition.

Declares that the label shown in
the operand is a macro local label.

Forcibly terminates expansion of
a macro body.

Indicates the beginning of repeat
macro definition.

Indicates the end of repeat macro
definition.

Usage and Description Example

Always be sure to write a conditional expression
in the operand. Up to 80 dummy arguments can
be written. Do not enclose a dummy argument
with double quotations.
<Description format>
 Macro definition
 (macro name) .MACRO [(dummy argument)
 [,(dummy argument)...]]
 Macro call
 (macro name) [(actual argument)[,(actual
 argument)...]]
<Description example>
 Refer to Figure 3.2.5.

Write this command in relation to ".MACRO".
<Description example>
 Refer to Figure 3.2.5.

Write this command within the macro body.
Multiple labels can be written by separating
operands with a comma. The maximum number
of labels that can be written in this way is 100.
<Description example>
 Refer to Figure 3.2.6.

Write this command within the body of macro
definition.
<Description example>
 Refer to Figure 3.2.7.

The maximum number of repetitions is 65,535.
<Description example>
 Refer to Figure 3.2.7.

Write this command in relation to ".MREPEAT".
<Description example>
 Refer to Figure 3.2.5.

3
Functions of Assembler

3.2 Method for Writing Source Program

120

Macro Symbol

Command

..MACPARA

..MACREP

Function

Indicates the number of actual
arguments given when calling a
macro.

Indicates the number of times a
repeat macro is expanded.

Usage and Description Example

This symbol can be written in the body of
macro definition as a term of an expression. If
written outside the macro body, value 0 is
assumed.
<Description example>
Refer to Figure 3.2.5.

This symbol can be written in the body of
macro definition as a term of an expression. It
can also be written as an operand of
conditional assemble. The value increments
from 1 to 2, 3, and so on each time the macro
is repeated. If written outside the macro body,
value 0 is assumed.
<Description example>
Refer to Figure 3.2.5.

121

3
Functions of Assembler

3.2 Method for Writing Source Program

Character String Function

Command

.LEN

.INSTR

.SUBSTR

Function

Indicates the length of a character
string written in operand.

Indicates the start position of a
search character string in
character strings specified in
operand.

Extracts a specified number of
characters from the character
string position specified in
operand.

Usage and Description Example

Always be sure to enclose the operand with
brackets { } and the character string with
quotations. Character strings can be written
using 7-bit ASCII code characters. This
function can be written as a term of an
expression.
<Description format>
 .LEN {"(string)"}
 .LEN {'(string)'}
<Description example>
 Refer to Figure 3.2.8.

Always be sure to enclose the operand with
brackets { } and the character string with
quotations. Character strings can be written
using 7-bit ASCII code characters. If the
search start position = 1, it means the
beginning of a character string.
<Description format>
 .INSTR {"(string)","(search character string)",
 (search start position)}
 .INSTR {'(string)','(search character string)',
 (search start position)}
<Description example>
 Refer to Figure 3.2.9.

Always be sure to enclose the operand with
brackets { } and the character string with
quotations. Character strings can be written
using 7-bit ASCII code characters. If the
extraction start position = 1, it means the
beginning of a character string.
<Description format>
 .SUBSTR {"(string)",(start position),(number
 of characters)}
 .SUBSTR {'(string)',(start position),(number
 of characters)}
<Description example>
 Refer to Figure 3.2.10.

3
Functions of Assembler

3.2 Method for Writing Source Program

122

Example of .LEN Statement

In the example of Figure 3.2.8, the length of a specified character string is "13" for "Printout_data"
and "6" for "Sample".

bufset .MACRO f1,f2
buffer@f1: .BLKB .LEN{'f2'}

.ENDM

Macro expansion

Macro
definition

bufset 1,Printout_data
bufset 2,Sample

buffer1 .BLKB 13
buffer2 .BLKB 6

Macro call

Example of macro description

Figure 3.2.8 Example of .LEN statement

Example of .INSTR Statement

In the example of Figure 3.2.9, the position (7) of character string "se" from the beginning x (top) of
a specified character string (japanese) is extracted.

top .EQU 1
point_set .MACRO source,dest,top
point .EQU .INSTR{'source','dest',top}

.ENDM

point_set japanese,se,1

point .EQU 7

Macro expansion

Macro
definition

Macro call

Example of macro description

Figure 3.2.9 Example of .INSTR statement

123

3
Functions of Assembler

3.2 Method for Writing Source Program

Example of .SUBSTR Statement

In the example of Figure 3.2.10, the length of a character string given as the macro's actual
argument is given to the operand of ".MREPEAT". Each time the ".BYTE" line is executed,
"..MACREP" is incremented from 1 to 2, 3, 4, and so on. Consequently, characters are passed one
character at a time from the character string given as the actual macro argument to the operand of
".BYTE" sequentially beginning with the first character.

name .MACRO data
.MREPEAT .LEN{'data'}
.BYTE .SUBSTR{'data',..MACREP,1}
.ENDR
.ENDM

name ABCD

.BYTE "A"

.BYTE "B"

.BYTE "C"

.BYTE "D"

Macro expansion

Macro
definition

Macro call

Example of macro description

Figure 3.2.10 Example of .SUBSTR statement

3
Functions of Assembler

3.2 Method for Writing Source Program

124

3.2.5 Structured Description Function

In AS30 programming, it is possible to write structured statements using structured instructions.
This is called "structured description" in this manual.
Note that only the structured description function outline is described here. For more information
about AS30, refer to the AS30 User's Manual, "Programming Part".

The following explains AS30 structured description function.

• The assembler generates branch instructions in the assembly language that correspond to
structured description instructions.

• The assembler generates jump labels for the generated branch instructions.
• The assembler outputs the assembly language generated from structured description

instructions to an assembler list file (when a command option is specified).
• Structured description instructions allow the user to choose a control block to be branched to

by a structured description statement and its conditional expression. A control block refers to
a program section from one structured description statement not including substitution
statements to the next structured description statement.

Types of Structured Description Statements

In AS30, following 9 types of statements can be written:

Substitution statement
The right side is substituted for the left side.

IF ELIF ELSE ENDIF statement (hereafter called the IF statement)
This statement is an instruction to change the flow of control in one of two directions. The direction
in which control branches off is determined by a conditional expression.

FOR NEXT statement (hereafter called the FOR-NEXT statement)
This statement is an instruction to control repetition. The statement is executed repeatedly as long
as a specified condition is true.

FOR TO STEP NEXT statement (hereafter called the FOR- STEP statement)
This statement is an instruction to control a repeat count by specifying the initial, incremental, and
final values.

DO WHILE statement (hereafter called the DO statement)
This statement is executed repeatedly as long as a conditional expression is satisfied (true).

SWITCH CASE DEFAULT ENDS statement (hereafter called the SWITCH statement)
This statement causes control to branch to one of CASE blocks depending on the value of a
conditional expression.

BREAK statement
This statement halts execution of the relevant FOR, DO, or SWITCH statement and branches to
the next statement to be executed.

CONTINUE statement
This statement causes control to branch to a repeat statement of minimum repetition including itself
in FOR or DO statement.

FOREVER statement
This statement repeatedly executes a control block by assuming that a conditional expression in
the relevant FOR and DO statements is always true.

Chapter 4
Programming Style

4.1 Hardware Definition
4.2 Initial Setting of CPU
4.3 Interrupts
4.4 Dividing Source File
4.5 A Little Tips...
4.6 Sample Programs
4.7 Generating Object File

4

4
Programming Style

4.1 Hardware Definition

126

;--

; M30600 SFR Definition File

;--

PM0 .EQU 0004H ; Processor mode register 0

PM1 .EQU 0005H ; Processor mode register 1

CM0 .EQU 0006H ; System clock control register 0

CM1 .EQU 0007H ; System clock control register 1

CSR .EQU 0008H ; Chip select control register

AIER .EQU 0009H ; Address match interrupt enable register

PRCR .EQU 000AH ; Protect register

;

;

WDTS .EQU 000EH ; Watchdog timer start register

WDC .EQU 000FH ; Watchdog timer control register

RMAD0 .EQU 0010H ; Address match instruction register 0

RMAD1 .EQU 0014H ; Address match instruction register 1

;

SAR0 .EQU 0020H ; DMA0 source pointer

DAR0 .EQU 0024H ; DMA0 destination pointer

TCR0 .EQU 0028H ; DMA0 transfer counter

DM0CON .EQU 002CH ; DMA0 control register

SAR1 .EQU 0030H ; DMA1 source pointer

DAR1 .EQU 0034H ; DMA1 destination pointer

TCR1 .EQU 0038H ; DMA1 transfer counter

DM1CON .EQU 003CH ; DMA1 control register

;

4.1 Hardware Definition

This section explains how to define an SFR area and create an include file, how to allocate RAM
data and ROM data areas, and how to define a section.

4.1.1 Defining SFR Area

It should prove convenient to create the SFR area's definition part in an include file. There are two
methods for defining the SFR area as described below.

Definition by .EQU

Figure 4.1.1 shows an example for defining the SFR area by using directive command ".EQU".

Figure 4.1.1 Example of SFR area definition by ".EQU"

Define the address at which
processor mode register 0 is placed.
In the following lines, define the
addresses of other registers.

Define the start address of a register that
consists of more than 2 bytes.

127

4
Programming Style

4.1 Hardware Definition

;--

; M30600 SFR Definition File

;--

.SECTION SFR,DATA

.ORG 00004H

;

PM0: .BLKB 1 ; Processor mode register 0

PM1: .BLKB 1 ; Processor mode register 1

CM0: .BLKB 1 ; System clock control register 0

CM1: .BLKB 1 ; System clock control register 1

CSR: .BLKB 1 ; Chip select control register

AIER: .BLKB 1 ; Address match interrupt enable register

PRCR: .BLKB 1 ; Protect register

;

;

.ORG 0000EH

WDTS: .BLKB 1 ; Watchdog timer start register

WDC: .BLKB 1 ; Watchdog timer control register

RMAD0: .BLKA 1 ; Address match instruction register 0

.BLKB 1 ;

RMAD1: .BLKA 1 ; Address match instruction register 1

;

.ORG 00020H

SAR0: .BLKA 1 ; DMA0 source pointer

.BLKB 1 ;

DAR0: .BLKA 1 ; DMA0 destination pointer

.BLKB 1 ;

TCR0: .BLKW 1 ; DMA0 transfer counter

.BLKB 2 ;

DM0CON: .BLKB 1 ; DMA0 control register

.BLKB 3 ;

SAR1: .BLKA 1 ; DMA1 source pointer

.BLKB 1 ;

DAR1: .BLKA 1 ; DMA1 destination pointer

.BLKB 1 ;

TCR1: .BLKW 1 ; DMA1 transfer counter

.BLKB 2 ;

DM1CON: .BLKB 1 ; DMA1 control register

;

Definition by .BLKB

Figure 4.1.2 shows an example for defining the SFR area by using directive command ".BLKB".

Declare a section
name.

Allocate an area where
processor mode
register 0 is placed.

Specify an absolute address according to the
address at which processor mode register 0 is
placed.

Note that unless 0000EH is specified
for the absolute address here, the area
for the watchdog timer start register will
be set at 0000BH, a location next to the
protect register.

Allocate areas even for locations
where nothing is placed.

Figure 4.1.2 Example of SFR area definition by ".BLKB"

4
Programming Style

4.1 Hardware Definition

128

Creating Include File

When creating the source program in separate files, create an include file for SFR definition and
other parts that are used by multiple files. Normally add an extension ".INC" for the include file.

Precautions on creating include file
(1) When using ".EQU" in include file

Directive command ".EQU" defines values for symbols. It can also be used to define
addresses as in SFR definition. However, since this is not a command to allocate memory
areas, make sure that the addresses defined with it will not overlap. The include file created
using ".EQU" can be used in multiple files by reading it in.

(2) When using ".ORG" in include file
If an include file created using ".ORG" is read into multiple files, a link error will result. This is
because the include file contains the absolute addresses specified by ".ORG". Consequently,
the defined addresses overlap with each other.

(3) When using ".BLKB", ".BLKW", and ".BLKA" in include file
Directive commands ".BLKB", ".BLKW", and ".BLKA" are used to allocate memory areas. If an
include file created using these directive commands is read into multiple files, areas will be
allocated separately in each file. Although no error may occur when using symbols in the
include file locally, care must be taken when using them globally because it could result in
duplicate definitions.
If use of a common area in multiple files is desired, define the area-allocated part in a shared
definition file and link it as one of the source files. Then define the symbol's global specification
part in an include file.

Reading Include File into Source File

Use directive command ".INCLUDE" to read an include file into the source file. Specify the file
name to be read in with a full name.

Example:
When reading an include file "M30600.INC" that contains a definition of the SFR area
.INCLUDE M30600.INC

129

4
Programming Style

4.1 Hardware Definition

4.1.2 Allocating RAM Data Area

Use the following directive commands to allocate a RAM area:

.BLKB Allocates a 1-byte area (integer)

.BLKW Allocates a 2-byte area (integer)

.BLKA Allocates a 3-byte area (integer)

.BLKL Allocates a 4-byte area (integer)

.BLKF Allocates a 4-byte area (floating-point)

.BLKD..... Allocates a 8-byte area (floating-point)

Example for Setting Up Work Area

Figure 4.1.3 shows an example for setting up a work area.

char

short

long

addr

2 byte

3 byte

1 bytenH

4 byte

n + 1H

n + 3H

n + 6H

char: .BLKB 1

short: .BLKW 1

addr: .BLKA 1

long: .BLKL 1

RAM

Figure 4.1.3 Example for setting up a work area

4
Programming Style

4.1 Hardware Definition

130

4.1.3 Allocating ROM Data Area

Use the directive commands listed below to set fixed data in ROM. For a description example, refer
to Section 4.1.5, "Sample Program List 1 (Initial Setting 1)".

.BYTE Sets 1-byte data (integer)

.WORD Sets 2-byte data (integer)

.ADDR Sets 3-byte data (integer)

.LWORD Sets 4-byte data (integer)

.FLOAT Sets 4-byte data (floating-point)

.DOUBLE... Sets 8-byte data (floating-point)

Retrieving Table Data

Figure 4.1.4 shows an example of a data table. Figure 4.1.5 shows a method for accessing this
table by using address register relative addressing.

12H

34H

1 byteDATA_TABLE:

ROM

56H

78H

1 byte

1 byte

1 byte

Figure 4.1.4 Example for setting a data table

MOV.W#1,A0

LDE.B DATA_TABLE[A0],R0L ;Stores the data table's 2nd byte (34H) in R0L.

DATA_TABLE:

.BYTE 12H,34H,56H,78H ;Sets 1-byte data.

·······

····

····

Figure 4.1.5 Example for retrieving data table

131

4
Programming Style

4.1 Hardware Definition

4.1.4 Defining a Section

Directive command ".SECTION" declares a section in which a program part from the line where this
directive command is written to the next ".SECTION" is allocated.

Description Format of Section Definition

.SECTION section name [,(section type), ALIGN]
Specification in [] can be omitted.

A range of statements from one directive command ".SECTION" to a position before the line where
the next ".SECTION" or directive command ".END" is written is defined as a section. Any desired
section name can be set. Furthermore, one of section types (DATA, CODE, or ROMDATA) can be
set for each section. Note that the instructions which can be written in the section vary with this
section type. For details, refer to AS30 User's Manual, "Programming Part."
If ".ALIGN" is specified for a section, the linker (ln30) locates the beginning of the section at an
even address.

Example for Setting Up Sections

Figure 4.1.6 shows an example for setting up each section.

SECTION WORK,DATA
work: BLKB 1

 ·
 ·

.SECTION PROGRAM
NOP
 ·
 ·

.SECTION PROGRAM,CODE
NOP
 ·
 ·

.SECTION CONST,ROMDATA,ALIGN
.BYTE 12H
.END

WORK
section

PROGRAM
section

CONST
section

Specifies a section name, a section type,
and that the beginning of the section be
located at an even address.

Specifies only a section name.
(The assembler assumes section type CODE as it
processes this line.)

Specifies a section name and a
section type.

Specifies a section name and a section
type.

Figure 4.1.6 Example for setting up sections

4
Programming Style

4.1 Hardware Definition

132

Section Attributes

Each section is assigned an attribute when assembling the program. There are two attributes:
relative and absolute.
(1) Relative attribute

• Location of each section can be specified when linking source files. (Relocatable)
• Addresses in the section are made relocatable values when assembling the program.
• The values of labels defined in this type of section become relocatable.

(2) Absolute attribute
• A section is assigned an absolute attribute and handled as such by specifying addresses with

".ORG" immediately after directive command ".SECTION".
• Addresses in the section are made relocatable values when assembling the program.
• The values of labels defined in this type of section become absolute.

133

4
Programming Style

4.1 Hardware Definition

;*********************** Include***

.INCLUDE m30600.inc

;************************ Symbol definition***********************************

;

RAM_TOP .EQU 00400H ; Start address of RAM

RAM_END .EQU 02BFFH ; End address of RAM

ROM_TOP .EQU 0F0000H ; Start address of ROM

FIXED_VECT_TOP .EQU 0FFFDCH ; Start address of fixed vector

SB_BASE .EQU 00380H ; Base address of SB relative addressing

FB_BASE .EQU 00480H ; Base address of FB relative addressing

;

;*********************** Allocation of work RAM area**************************************

;

.SECTION WORK,DATA

.ORG RAM_TOP ;

;

WORKRAM_TOP:

char: .BLKB 1 ; Allocates a 1-byte area.

short: .BLKW 1 ; Allocates a 2-byte area.

addr: .BLKA 1 ; Allocates a 3-byte area.

long: .BLKL 1 ; Allocates a 4-byte area.

WORKRAM_END:

;

;*********************** Definition of bit symbol***************************************

;

char_b0 .BTEQU 0,char; Bit 0 of char

short_b1 .BTEQU 1,short; Bit 1 of short

addr_b2 .BTEQU 2,addr ; Bit 2 of addr

long_b3 .BTEQU 3,long ; Bit 3 of long

;

;**********************Program area ***

;========Startup ======================================

;

.SECTION PROGRAM,CODE ; Declares section name and section type.

.ORG ROM_TOP ; Declares start address.

.SB SB_BASE ; Declares SB register value to the assembler.

.FB FB_BASE ; Declares FB register value to the assembler.

;

START:

LDC #RAM_END+1,ISP ;Sets initial value in stack pointer.

LDC #SB_BASE,SB ; Sets initial value in SB register.

LDC #FB_BASE,SB ; Sets initial value in FB register.

4.1.5 Sample Program List 1 (Initial Setting 1)

Reads include file
into source file.

Add ":" (colon) at
the end of a label
name.

Matched to hardware
RAM area.

Declaration to the
assembler

Values declared
to the assembler
are matched.

Do not add ":" (colon)
for a bit symbol.

4
Programming Style

4.1 Hardware Definition

134

;================Main program=====================================

MAIN:

MOV.B DATA_TABLE[A0],R0L

MOV.W #1234H,R1

BSET char_b0

; .

; .

; .

JMP MAIN

;

;=============== Dummy interrupt program===============================

dummy:

REIT

;

;=================Fixed data area===================================

;

.SECTION CONSTANT,ROMDATA ; Declares section name and section type.

; .ORG XXXXXH ; Declares start address.

;

DATA_TABLE:

.BYTE 12H,34H,56H,78H ; Sets 1-byte data.

.WORD 1234H,5678H ; Sets 2-byte data.

.ADDR 123456H,789ABCH ; Sets 3-byte data.

.LWORD 12345678H,9ABCDEF0H ; Sets 4-byte data.

DATA_TABLE_END:

;

Must be matched to ROM area
in hardware.

MOV.B #03H,PRCR ;Removes protect.

MOV.W #0007H,PM0 ;Sets processor mode registers 0 and 1.

MOV.W #2008H,CM0 :Sets system clock control registers 0 and 1.

MOV.B #0,PRCR ;Protects all registers.

;

LDC #0,FLG ;Sets initial value in flag register.

;

;

MOV.W #0FFF0H,PUR1 ; Connects internal pull-up resistors.

;

MOV.W #0,R0 ; Clears WORK_RAM to 0.

MOV.W #(RAM_END - RAM_TOP)/2,R3

MOV.W #WORKRAM_TOP,A1

SSTR.W

;

Must be matched
to hardware and
the contents
selected in
programming.

135

4
Programming Style

4.1 Hardware Definition

Figure 4.1.7 Description example 1 for initial setting

Set the program start address for the
reset vector. Immediately after power-
on or after a reset is deactivated, the
program starts from the address written
in this vector.

Set jump addresses sequentially
beginning with the least significant
address of the fixed vector.

Set jump addresses for unused interrupts in
dummy processing (REIT instruction only) to
prevent the program from running out of control
when an unused interrupt is requested.

;*********************** Setting of fixed vector**************************************

;

.SECTION F_VECT,ROMDATA

.ORG FIXED_VECT_TOP

.LWORD dummy ; Undefined instruction interrupt vector

.LWORD dummy ; Overflow (INTO instruction) interrupt vector

.LWORD dummy ; BRK instruction interrupt vector

.LWORD dummy ; Address match interrupt vector

.LWORD dummy ; Single-step interrupt vector (normally inhibited from use)

.LWORD dummy ; Watchdog timer interrupt vector

.LWORD dummy ; DBC interrupt vector (normally inhibited from use)

.LWORD dummy ; NMI interrupt vector

.LWORD START ; Sets reset vector.

;

.END

4
Programming Style

4.2 Initial Setting the CPU

136

4.2 Initial Setting the CPU

Each register as well as RAM and other resources must be initial set immediately after power-on or
after a reset. If the CPU internal registers remain unset or there is unintended data left in memory
before program execution, all this could cause the program to run out of control. Therefore, the
internal resources must be initial set at the beginning of the program. This initial setting includes the
following:
• Declaration to the assembler
• Initialization of the CPU internal registers, flags, and RAM area
• Initialization of work area
• Initialization of built-in peripheral functions such as port, timer, and interrupt

4.2.1 Setting CPU Internal Registers

After a reset is canceled, normally it is necessary to set up the registers related to the processor
modes and system clock. For a setup example, refer to Section 4.2.7, "Sample Program List 2
(Initial Setting 2)".

4.2.2 Setting Stack Pointer

When using a subroutine or interrupt, the return address, etc. are saved to the stack. Therefore, the
stack pointer must be set before calling the subroutine or enabling the interrupt. For a setup
example, refer to Section 4.2.7, "Sample Program List 2 (Initial Setting 2)".

4.2.3 Setting Base Registers (SB, FB)

The M16C/60, M16C/20 series has an addressing mode called "base register relative addressing"
to allow for efficient data access. Since a relative address from an address that serves as the base
is used for access in this mode, it is necessary to set the base address before this addressing mode
can be used. For a setup example, refer to Section 4.2.7, "Sample Program List 2 (Initial Setting
2)".

4.2.4 Setting Interrupt Table Register (INTB)

The interrupt vector table in the M16C/60, M16C/20 series is variable. Therefore, the start address
of vectors must be set before using an interrupt. For a setup example, refer to Section 4.2.7,
"Sample Program List 2 (Initial Setting 2)".

137

4
Programming Style

4.2 Initial Setting the CPU

4.2.5 Setting Variable/Fixed Vector

There are two types of vectors in the M16C/60, M16C/20 series: variable vector and fixed vector.
For details on how to set these types of vectors when using interrupts, and about measures to
prevent the program from going wild when not using interrupts, refer to Section 4.2.7, "Sample
Program List 2 (Initial Setting 2)".

4.2.6 Setting Peripheral Functions

The following explains how to initial set the RAM, ports, and timers built in the M16C/60, M16C/20
series. For more information, refer to functional description in the user's manual of your
microcomputer.

Initial Setting Work Areas

Normally clear the work areas to 0 by initial setting. If the initial value is not 0, set that initial value
in each work area. Figure 4.2.1 shows an example for initial setting a work area.

;--------------------- Initial setting of work RAM ------------------------------

;

MOV.B #0FFH,char

;

MOV.W #0FFFFH,short

;

MOV.W #0FFFFH,addr

MOV.B #0FFH,addr+2

;

MOV.W #0FFFFH,long

MOV.W #0FFFFH,long+2

;

Figure 4.2.1 Example for initial setting a work area

4
Programming Style

4.2 Initial Setting the CPU

138

Initial Setting Ports

It is when a port direction register is set for output that data is output from a port. To prevent
indeterminate data from being output from ports, set the initial value in each output port before
setting their direction register for output. Figure 4.2.2 shows an example for initial setting ports.

;--------------------- Initial setting of ports---

;

MOV.W #0FFFFH,P6 ; Sets initial value in ports P6 and P7.

MOV.W #0FFFFH,PD6 ; Sets ports P6 and P7 for output.

MOV.B #04H,PRCR ; Removes protect.

MOV.W #0000H,PD8 ; Sets ports P8 and P9 for input.

;

Figure 4.2.2 Example for initial setting ports

Setting Timers

When using the M16C/60, M16C/20 series built-in peripheral functions such as a timer, initial set
the related registers (in SFR area). Figure 4.2.3 shows an example for setting timer A0.

;--------------------- Initial setting of timer A0 --

;

TA0S .BTEQU 0,TABSR

MOV.B #01000000B,TA0MR ; Setting of timer A0 mode register

; (Mode: timer mode; Divide ratio: 1/8)

MOV.B #00000111B,TA0IC ; Clears timer A0 interrupt request bit.

; Enables timer A0 interrupt (priority level: 7).

MOV.W #2500-1,TA0 ; Sets count value in timer A0.

;

BSET TA0S ; Timer A0 starts counting.

Figure 4.2.3 Example for setting timer

139

4
Programming Style

4.2 Initial Setting the CPU

4.2.7 Sample Program List 2 (Initial Setting 2)

;*********************** Include***

;

.INCLUDE m30600.inc

;

************************ Symbol definition**

;

RAM_TOP .EQU 00400H ; Start address of RAM

RAM_END .EQU 02BFFH ; End address of RAM

ROM_TOP .EQU 0F0000H ; Start address of ROM

FIXED_VECT_TOP .EQU 0FFFDCH ; Start address of fixed vector

SB_BASE .EQU 00380H ; Base address of SB relative addressing

FB_BASE .EQU 00480H ; Base address of FB relative addressing

;

;*********************** Allocation of work RAM area**************************************

;

.SECTION WORK,DATA

.ORG RAM_TOP

;

WORKRAM_TOP:

WORK_1: .BLKB 1

WORK_2: .BLKB 1

WORKRAM_END:

;

;**********************Program area***

;================== Startup ======================================

;

.SECTION PROGRAM,CODE ; Declares section name and section type.

.ORG ROM_TOP ; Declares start address.

.SB SB_BASE ; Declares SB register value to the assembler.

.FB FB_BASE ; Declares FB register value to the assembler.

;

START:

LDC #RAM_END+1,ISP ; Sets initial value in stack pointer.

LDC #SB_BASE,SB ; Sets initial value in SB register.

LDC #FB_BASE,FB ; Sets initial value in FB register.

;

MOV.B #03H,PRCR ; Removes protect.

MOV.W #0007H,PM0 ; Sets processor mode registers 0 and 1.

MOV.W #2008H,CM0 ; Sets system clock control registers 0 and 1.

MOV.B #0,PRCR ; Protects all registers.

;

LDC #0,FLG ; Sets initial value in flag register.

LDINTB #VECT_TOP ; Sets initial value in interrupt table register.

;

4
Programming Style

4.2 Initial Setting the CPU

140

MOV.W #0FFF0H,PUR1 ; Connects internal pull-up resistors.

;

MOV.W #0,R0 ; Clears WORK_RAM to 0.

MOV.W #(RAM_END - RAM_TOP)/2,R3

MOV.W #WORKRAM_TOP,A1

SSTR.W

;

;=================Main program =====================================

MAIN:

JSR INIT ; Sets initial value in work RAM.

FSET I ; Enables interrupts.

MAIN_10:

MOV.B WORK_1,R0L

; .

; .

; .

JMP MAIN_10

;

;=============== INIT routine===============================

INIT:

MOV.B #0FFH,WORK_1

MOV.B #0FFH,WORK_2

MOV.B #00000111B,TA0IC ; Clears interrupt request bit.

; Enables timer A0 interrupt (priority level: 7).

MOV.B #01000000B,TA0MR ; Sets timer A0 mode register.

MOV.W #2500-1,TA0 ; Sets count value in timer A0.

BSET 0,TABSR ; Timer A0 starts counting.

INIT_END:

RTS

;

;=============== TA0 interrupt processing program ===============================

INT_TA0:

PUSHM R0,R1,R2,R3,A0,A1

; .

; .

; Program

; .

; .

POPM R0,R1,R2,R3,A0,A1

INT_TA0_END:

REIT

;

;=============== Dummy interrupt program ===============================

dummy:

REIT

;

141

4
Programming Style

4.2 Initial Setting the CPU

;***********************Setting of variable vector table***************************************

;

.SECTIONVECT,ROMDATA

.ORG VECT_TOP+(11*4)

;

.LWORD dummy ; DMA0 interrupt vector

.LWORD dummy ; DMA1 interrupt vector

.LWORD dummy ; Key input interrupt vector

.LWORD dummy ; A-D interrupt vector

.LWORD dummy ; Unused

.LWORD dummy ; Unused

.LWORD dummy ; UART0 transmit interrupt vector

.LWORD dummy ; UART0 receive interrupt vector

.LWORD dummy ; UART1 transmit interrupt vector

.LWORD dummy ; UART1 receive interrupt vector

.LWORD INT_TA0 ; Sets jump address in timer A0 interrupt vector.

.LWORD dummy ; Timer A1 interrupt vector

.LWORD dummy ; Timer A2 interrupt vector

.LWORD dummy ; Timer A3 interrupt vector

.LWORD dummy ; Timer A4 interrupt vector

.LWORD dummy ; Timer B0 interrupt vector

.LWORD dummy ; Timer B1 interrupt vector

.LWORD dummy ; Timer B2 interrupt vector

.LWORD dummy ; INT0 interrupt vector

.LWORD dummy ; INT1 interrupt vector

.LWORD dummy ; INT2 interrupt vector

;

;*********************** Setting of fixed vector ***

;

.SECTIONF_VECT,ROMDATA

.ORG FIXED_VECT_TOP

;

.LWORD dummy ; Undefined instruction interrupt vector

.LWORD dummy ; Overflow (INTO instruction) interrupt vector

.LWORD dummy ; BRK instruction interrupt vector

.LWORD dummy ; Address match interrupt vector

.LWORD dummy ; Single-step interrupt vector (normally inhibited from use)

.LWORD dummy ; Watchdog timer interrupt vector

.LWORD dummy ; DBC interrupt vector (normally inhibited from use)

.LWORD dummy ; NMI interrupt vector

.LWORD START ; Sets reset vector.

;

.END

Figure 4.2.4 Description example 2 for initial setting

4
Programming Style

4.3 Setting Interrupts

142

4.3 Setting Interrupts

This section explains the method of processing and description that is required when executing an
interrupt handling program and how to execute multiple interrupts.
Following processing is required when executing an interrupt handling program:
(1) Setting interrupt table register
(2) Setting variable/fixed vectors
(3) Enabling interrupt enable flag
(4) Setting interrupt control register
(5) Saving and restoring register in interrupt handler routine

4.3.1 Setting Interrupt Table Register

The start address of variable vectors can be specified by the interrupt table register (INTB). The
variable vector area is comprised of 256 bytes, four bytes per vector, beginning with the address
specified in the interrupt table register. Each vector is assigned a software interrupt number,
ranging from 0 to 63.

143

4
Programming Style

4.3 Setting Interrupts

4.3.2 Setting Variable/Fixed Vectors

When an interrupt occurs, the program jumps to the address that is preset for each interrupt source.
This address is called the "interrupt vector."
To set interrupt vectors, register the start address of each interrupt handler program in the variable/
fixed vector table. For an example of how the vectors actually are registered, refer to Section 4.3.6,
"Sample Program List 3 (Software Interrupt)".

Variable Vector Table

The variable vector table is a 256-byte interrupt vector table with its start address indicated by a
value in the interrupt table register (INTB). This vector table can be located anywhere in the entire
memory space. One vector consists of four bytes, with each vector assigned a software interrupt
number from 0 to 63.

(Software interrupt
number)

.

.

.

.

.

.

.

.

.

.

.

.

INTB
0

1

2

•

•

•

•

•

•

•

62

63
.
.
.

.

.

.

address

Figure 4.3.1 Variable vector table

4
Programming Style

4.3 Setting Interrupts

144

4.3.3 Enabling Interrupt Enable Flag

Since interrupts are disabled immediately after power-on or after a reset is deactivated, they must
be enabled in the program. This can be accomplished by setting the flag register I flag to 1.
Interrupts are enabled the moment the I flag is set to 1. If interrupts are enabled at the beginning of
the program, the program could run out of control. To prevent this problem, be sure to initial set the
CPU internal resources before enabling interrupts.

4.3.4 Setting Interrupt Control Register

Bits 0 to 2 in each interrupt control register can be used to set the interrupt priority level of each
interrupt. Level = 0 results in the interrupt being, in effect, disabled. Therefore, set a level that is
equal to or greater than 1. Bit 3 of the interrupt control register is the interrupt request flag.
Although this flag is cleared to 0 after a reset is deactivated, there is a possibility that the flag
remains set (= 1). For safety reason, therefore, clear this flag to 0 before enabling the interrupt
enable flag (I flag).
For the bit arrangement of each interrupt control register, priority levels, and other details, refer to
the user's manual of your microcomputer.

145

4
Programming Style

4.3 Setting Interrupts

4.3.5 Saving and Restoring Registers in Interrupt Handler Routine

When an interrupt is accepted, the following resources are automatically saved to the stack. For
details on how they are saved and restored to and from the stack, refer to Section 4.5.2, "Stack
Area."
• PC (program counter)
• FLG (flag register)
Always be sure to use the REIT instruction to return from the interrupt handler routine. After the
interrupt processing is completed, this instruction restores the registers, return address, etc. from
the stack, thus allowing the main program to restart processing where it left off.
In addition to the automatically saved registers, there may be some other register which is used in
the interrupt handler routine and, therefore, whose previous content needs to be retained. If there is
a such a register, save it to the stack in software. For an example of how registers are saved and
restored in the interrupt handler routine, refer to Section 4.3.6, "Sample Program List 3 (Software
Interrupt)".

Methods for Saving and Restoring Registers

If in addition to the automatically saved registers there is any register which is used in the interrupt
handler routine and, therefore, whose previous content needs to be retained, save it to the stack
area in software. There are two methods for saving and restoring this register. The following
shows the processing procedure for each method.

(1) Using push/pop instructions to save and restore registers
(1a) Saving registers individually

PUSH.B R0L
PUSH.W R1

(1b) Restoring registers individually
POP.B R0L
POP.W R1

(2a) Saving registers collectively
PUSHM R0,R1,R2,R3,A0,A1

(2b) Restoring registers collectively
POPM R0,R1,R2,R3,A0,A1

(2) Switching over register banks to save and restore registers
This method will be effective when it is necessary to reduce the overhead time of interrupt
processing.
(a) Using register bank 1

FSET B

(b) Using register bank 0
FCLR B

4
Programming Style

4.3 Setting Interrupts

146

Description of Interrupt Handling Program

Figure 4.3.2 shows an example for writing an interrupt handling program.

******************Saving and restoring registers individually**************************************
INT_A0:

PUSH.B R0L ; Saves R0L.
PUSH.B R1L ; Saves R1L.
PUSH.W R2 ; Saves R2.
•
•
Interrupt handling
•
•
POP.W R2 ; Restores R2.
POP.B R1L ; Restores R1L.
POP.B R0L ; Restores R0L.
REIT ; Returns from interrupt.

;

****************** Saving and restoring registers collectively**************************************
INT_A1:

PUSHM R0,R1,R2,R3 ; Saves registers R0, R1, R2, and R3 collectively.
•
•
Interrupt handling
•
•
POPM R0,R1,R2,R3 ; Restores registers R0, R1, R2, and R3 collectively.
REIT ; Returns from interrupt.
;

****************** Switching over register banks to save and restore registers *******************
INT_A2:

FSET B ; Register bank = 1
•
•
Interrupt handling
•
•
FCLR B ; Register bank = 0
REIT ; Returns from interrupt

;

Figure 4.3.2 Saving and restoring registers in interrupt handling

Note: If both register banks 0 and 1 are used in the main program, the method for saving and restoring registers by register bank switchover
cannot be used.

If registers are saved
individually, be sure when
restoring them to reverse
the order in which they
were saved.

In this case, registers in bank 1
(R0, R1, R2, R3, A0, A1, and
FB) are used in the interrupt
program.

147

4
Programming Style

4.3 Setting Interrupts

4.3.6 Sample Program List 3 (Software Interrupt)

The INTO instruction (overflow) interrupt is a software interrupt where an interrupt is generated by
executing this instruction when the overflow flag is set to 1. Figure 4.3.3 shows an example for
using this software interrupt.

;*********************** Include**

;
.INCLUDE m30600.inc
;
************************ Symbol definition **
;
RAM_TOP .EQU 00400H ; Start address of RAM
RAM_END .EQU 02BFFH ; End address of RAM
ROM_TOP .EQU 0F0000H ; Start address of ROM
VECT_TOP .EQU 0FFF00H ; Start address of variable vector
FIXED_VECT_TOP .EQU 0FFFDCH ; Start address of fixed vector
SB_BASE .EQU 00380H ; Base address of SB relative addressing
FB_BASE .EQU 00480H ; Base address of FB relative addressing
;
;*********************** Allocation of work RAM area**************************************
;
.SECTION WORK,DATA
.ORG RAM_TOP
;
WORKRAM_TOP:
WORK_1: .BLKW 1
WORK_2: .BLKB 1
ANS_L: .BLKW 1
ANS_H: .BLKW 1
WORKRAM_END:
;
;**********************Program area ***
;==================== Startup ==
;
.SECTION PROGRAM,CODE
.ORG ROM_TOP
.SB SB_BASE ; Declares SB register value to the assembler.
.FB FB_BASE ; Declares FB register value to the assembler.
;
START:

LDC #RAM_END+1,ISP ; Sets initial value in stack pointer.
LDC #SB_BASE,SB ; Sets initial value in SB register.
LDC #FB_BASE,FB ; Sets initial value in FB register.

;
MOV.B #03H,PRCR ; Removes protect.
MOV.W #0087H,PM0 ; Sets processor mode registers 0 and 1.
MOV.W #2008H,CM0 ; Sets system clock control registers 0 and 1.
MOV.B #0,PRCR ; Protects all registers.

4
Programming Style

4.3 Setting Interrupts

148

LDC #0,FLG ; Sets initial value in flag register.

LDINTB #VECT_TOP ; Sets initial value in interrupt table register.
;

MOV.W #0FFF0H,PUR1 ; Connects internal pull-up resistors.
;

MOV.W #0,R0 ; Clears WORK_RAM to 0Ø.
MOV.W #((RAM_END+1) - RAM_TOP)/2,R3
MOV.W #WORKRAM_TOP,A1
SSTR.W

;
;=================== Main program ===============================
MAIN:

JSR INIT ; Sets initial value in work RAM.
MAIN_10:

MOV.W WORK_1,R0
DIV.B #4 ; Signed division
INTO ; If operation results in overflow, (O flag = 1) executes

; ; INTO instruction and an interrupt is generated.
MOV.B R0L,WORK_2

; •
; •
;

MOV.W #0,R0
MOV.W #0,R2
MOV.W #1234H,A0
MOV.W #5678H,A1
MOV.W #0FFH,R3
RMPA.W ; Sum of products calculation
INTO ; If operation results in overflow (O flag = 1) , executes

; ; INTO instruction and an interrupt is generated.
MOV.W R2,ANS_H
MOV.W R0,ANS_L

; •
; •

JMP MAIN_10
;
;================= INIT routine==
INIT:

MOV.W #0FFFFH,WORK_1
MOV.B #0FFH,WORK_2
MOV.W #0,ANS_L
MOV.W #0,ANS_H

INIT_END:
RTS

;

149

4
Programming Style

4.3 Setting Interrupts

;================= Overflow interrupt handling program=========================

INT_OVER_FLOW:

PUSHM R0,R1,R2,R3,A0,A1

; •

; •

; Program

; •

; •

POPM R0,R1,R2,R3,A0,A1

INT_OVER_FLOW_END:

REIT

;

;=================Dummy interrupt program ================================

dummy:

REIT

;

;*********************** Setting of fixed vector ***************************************

;

.SECTION F_VECT,ROMDATA

.ORG FIXED_VECT_TOP

;

.LWORD dummy ; Undefined instruction interrupt vector

.LWORD INT_OVER_FLOW ; Sets overflow interrupt vector.

.LWORD dummy ; BRK instruction interrupt vector

.LWORD dummy ; Address match interrupt vector

.LWORD dummy ; Single-step interrupt vector

; (normally inhibited from use)

.LWORD dummy ; Watchdog timer interrupt vector

.LWORD dummy ; DBC interrupt vector (normally inhibited from use)

.LWORD dummy ; NMI interrupt vector

.LWORD START ; Sets reset vector.

;

.END

Figure 4.3.3 Example for using software interrupt

4
Programming Style

4.3 Setting Interrupts

150

4.3.7 ISP and USP

The M16C/60 series has two stack pointers: an interrupt stack pointer (ISP) and a user stack pointer
(USP). Use of these stack pointers is selected by the U flag.

(1) ISP is used when U = 0
Registers are saved and restored to and from the address indicated by ISP.

(2) USP is used when U = 1
Registers are saved and restored to and from the address indicated by USP.

Be sure to use ISP when creating the program in only the assembly language (i.e., when not using
the OS). Although it is possible to use USP, caution is required in using peripheral I/O interrupts in
this case. For details, refer to "Relationship between Software Interrupt Numbers and Stack
Pointer" in the next page.

Assignment of Software Interrupt Numbers

In the M16C/60 series, software interrupt numbers are available in the range of 0 to 63. Numbers
11 through 31 are reserved for peripheral I/O interrupts. Therefore, assign the remaining numbers
0 through 10 and 32 through 63 to software interrupts (INT instruction).
However, for reasons of application of the M16C/60 series, software interrupt numbers 32 through
63 are assigned for the software interrupts that are used by the OS (real-time monitor MR30), etc.
Basically, Mitsubishi recommends using software interrupt numbers 0 through 10.

Reserved for peripheral I/O interrupts

User's software interrupts (INT instruction)0

Software interrupts (INT instruction)
used by the OS, etc. (Interrupts that
require context switching)

10

11

31

32

63

•
•
•

•
•
•

•
•
•

Figure 4.3.4 Assignment of software interrupt numbers

Note: When not using the OS, software interrupts can be assigned numbers 32 through 63. In this case, stack pointer setup requires caution.

151

4
Programming Style

4.3 Setting Interrupts

Relationship between Software Interrupt Numbers and Stack Pointer

(1) When an interrupt of software interrupt number 0 to 31 occurs
(a) The content of the FLG register is saved to a temporary register in the CPU.
(b) The U, I, and D flags of the FLG register are cleared.

By operation in (b)
• The stack pointer is forcibly switched to the interrupt stack pointer (ISP).
• Multiple interrupts are disabled.
• Debug mode is cleared (program is not single-stepped).

(c) The content of the temporary register in the CPU (to which FLG has been saved) and that
of the PC register are saved to the stack area.

(d) The interrupt request bit for the accepted interrupt is reset to 0.
(e) The interrupt priority level of the accepted interrupt is set to the processor interrupt priority

level (IPL).
(f) The address written in the interrupt vector is placed in the PC register.

: PC's 4 most significant
 bits are stored here.

PC low

< FLG status after interrupt request is accepted >

b15 b0
 IPL U I O B S Z D C

PC middle

FLG lower

FLG upper

ISP

< Stack status after interrupt request is accepted >

Priority level of each accepted
interrupt is stored here.

: No change

0 0 0

Figure 4.3.5 When an interrupt of software interrupt number 0 to 31 occurs

4
Programming Style

4.3 Setting Interrupts

152

Note: If multiple interrupts of the same interrupt priority level that is set in software occur simultaneously during execution of one instruction,
the interrupts are accepted according to hardware interrupt priority levels.
Example: The following lists the M16C/60 group hardware interrupt priority levels.
INT1 > Timer B2 > Timer B0 > Timer A3 > Timer A1 > INT2 >INT0 > Timer B1 > Timer A4 > Timer A2 > UART1 receive > UART0
receive > A-D conversion > DMA1 > Timer A0 > UART1 transmit > UART0 transmit > Key input interrupt > DMA0

(2) When an interrupt of software interrupt number 32 to 63 occurs
(a) The content of the FLG register is saved to a temporary register in the CPU.
(b) The I and D flags of the FLG register are cleared.

By operation in (b)
• The stack pointer used in this case is one that was active when the interrupt occurred.
• Multiple interrupts are disabled.
• Debug mode is cleared (program is not single-stepped).

(c) The content of the temporary register in the CPU (to which FLG has been saved) and that
of the PC register are saved to the stack area.

(d) The interrupt request bit for the accepted interrupt is reset to 0.
(e) The interrupt priority level of the accepted interrupt is set to the processor interrupt priority

level (IPL).
(f) The address written in the interrupt vector is placed in the PC register.

: PC's 4 most significant
 bits are stored here.

PC low

<FLG status after interrupt request is accepted>

b15 b0
 I P L U I O B S Z D C

PC middle

FLG lower

FLG upper

ISP/USP

<Stack status after interrupt request is accepted>

Priority level of each accepted
interrupt is stored here.

 : No change

0 0

Figure 4.3.6 When an interrupt of software interrupt number 32 to 63 occurs

153

4
Programming Style

4.3 Setting Interrupts

4.3.8 Multiple Interrupts

When one interrupt is enabled in normal interrupt handling, the interrupt enable flag (I flag) is
cleared to 0 (interrupts disabled). No other interrupts are accepted until after the enabled interrupt
is serviced. However, it is possible to accommodate multiple interrupts by setting the interrupt
enable flag to 1 (to enable interrupts) in the program.

Example of Multiple Interrupt Execution

As an example of multiple interrupt execution, Figure 4.3.7 shows a flow of program execution in
cases when multiple interrupts (a), (b), and (c) occur.
(a) Interrupt 1 occurs when executing the main routine
(b) Interrupt 2 occurs when servicing interrupt 1
(c) Interrupt 3 occurs when servicing interrupt 2

l=0

IPL=1

Interrupt priority level = 3

Interrupt priority
level = 5

Interrupt 1
occurs
here.

: Set in hardware

: Set in software

REIT
instruction

Interrupt priority level = 1

X
Interrupt priority level = 1

Since the priority level of
interrupt 3 is lower than that of
interrupt 1, this interrupt is not
accepted and is kept pending
execution until after interrupt 1
is serviced.

REIT
instruction

REIT
instruction

Interrupt 2
occurs
here.

Interrupt 3
occurs
here.

Interrupt 1

Interrupt 2
Interrupt 3

Interrupt 3

I=0

IPL=0

l=0

IPL=3

l=1

IPL=3

l=0

IPL=5

Main routine

AAA
AAAI 1

AAAAI 1

AAAAI 1AAAA
AAAAI 1

Figure 4.3.7 Example of multiple interrupt execution

In this example, the following is assumed:
IPL (processor interrupt priority level) = 0
Interrupt priority level of interrupt 1 = 3
Interrupt priority level of interrupt 2 = 5
Interrupt priority level of interrupt 3 = 1

4
Programming Style

4.4 Dividing Source File

154

4.4 Dividing Source File

Write the program separately in several source files. This helps to make your program put in order
and easily readable. Furthermore, since the program can be assembled separately one file at a
time, it is possible to reduce the assemble time when correcting the program. This section explains
how to divide the source file.

4.4.1 Concept of Sections

A program written in the assembly language generally consists of a work area, program area, and
constant data area. When the source file (***.AS30) is assembled by the assembler (as30),
relocatable module files (***.R30) are generated. The relocatable module files contain one or more
of these areas. A section is the name that is assigned to each of these areas. Consequently, a
section can be considered to be the name that is assigned to each constituent element of the
program.
Note that the assembler (as30) requires that even in the case of the absolute file, there must always
be at least one section specified in one file.

155

4
Programming Style

4.4 Dividing Source File

Functions of Sections

When linking the source files, the areas of the same section name are located at contiguous
addresses sequentially in order of specified files. Furthermore, the start address of each section
can be specified when linking. This means that each section can be relocated any number of times
without having to change the source program. Figure 4.4.1 shows an example of how sections
actually are located in memory.

File2File1

Work area
Section name: WORK

Program area
Section name:

PROGRAM

Vector area
 (constant data)

Section name: VECT

File3

Program area
Section name:

PROGRAM

 Interrupt program
area

Section name:
INTRRUPT

Constant data area
Section name:

CONST

Work area
Section name: WORK

Program area
Section name:

PROGRAM

 Interrupt program
area

Section name:
INTRRUPT

Section name: WORK
WORK of File1
WORK of File2

Free area

Section name:
INTRRUPT

INTRRUPT of File1
INTRRUPT of File2

Section name:
PROGRAM

PROGRAM of File1
PROGRAM of File2
PROGRAM of File3

Section name: VECT
VECT of File3

Section name: CONST
CONST of File3

Free area

Address
00400H

F0000H

ln30 File1 FIle2 File3 –ORDER WORK = 400,
PROGRAM = F0000

* The address of VECT is already
 specified to be FFF00H by
 ".ORG" in the source file.

* Sections whose addresses are
 not specified are located after
 the sections which have had
 their addresses specified
 without leaving spaces.

* Addresses are specified
 when linking.

Linked

FFF00H
* Sections whose addresses
 are fixed as in the case of
 interrupt vectors can have
 their addresses fixed by
 ".ORG".

Figure 4.4.1 Example of sections located in memory

4
Programming Style

4.4 Dividing Source File

156

4.4.2 Dividing Source File

The as30 used in this manual is a relocatable assembler. When using a relocatable assembler, it is
normally desirable to write the program source separately in several files. The following lists the
advantages that can be obtained by dividing the source file:

(1) Shared program and data
Data exchanges between development projects are facilitated, making it possible to reuse
only a necessary part from existing software.

(2) Reduced assemble time
When modifying or correcting the program, only the modified or corrected file needs to be
reasssembled. This helps to reduce the assemble time.

The following explains how to write the source program in cases when the file is divided into three
(definition, main program, and subroutine processing).

157

4
Programming Style

4.4 Dividing Source File

;**

; File 1 (WORK.A30)

;**

;=================== Allocation of work RAM area================================

;

.SECTION WORK,DATA

.ORG RAM_TOP

.GLB WORK_1,WORK_2,WORK_3,WORK_4 ; Processed as global label.

.GLB DATA_TABLE ; Processed as global label.

.BTGLB W1_b0,W2_b1 ; Processed as global bit symbol.

;

GLOBAL_WORK_TOP:

WORK_1: .BLKB 1 ; Allocates work RAM area.

WORK_2: .BLKB 1 ;

WORK_3: .BLKB 1 ;

WORK_4: .BLKB 1 ;

GLOBAL_WORK_END:

W1_b0 .BTEQU 0,WORK_1 ; Defines bit symbols.

W2_b1 .BTEQU 1,WORK_2 ;

;

;

;===================Fixed data area=====================================

;

.SECTION CONSTANT,ROMDATA

.ORG CONST_TOP

;

DATA_TABLE:

.BYTE 12H ; Sets 1-byte data.

.BYTE 34H

.BYTE 56H

.BYTE 78H

DATA_TABLE_END:

;

.END

Division Example 1: Definition (WORK.A30)

Write definitions of the work RAM area and data table in file 1.

Figure 4.4.2 Divided file 1 (WORK.A30)

In order for work RAM and labels to
be referenced from another file,
declare global labels using .GLB.

In order for bit symbol defined by
.BTEQU to be referenced from
another file, declare global symbols
using .BTGLB.

4
Programming Style

4.4 Dividing Source File

158

;**

; File 2 (MAIN.A30)

;**

;===================Declaration to assembler===============================

;

.SECTION PROGRAM,CODE

.GLB WORK_1,WORK_2,WORK_3,WORK_4 ; Processed as external reference label.

.GLB SUB_1 ; Processed as external reference label.

.BTGLB W1_b0,W2_b1 ; Processed as external reference bit symbol.

.SB 00380H ; Sets SB register value for assembler.

.FB 00480H ; Sets FB register value for assembler.

.SBSYM WORK_1,WORK_2 ; Encodes specified labels in SB relative

; addressing mode.

.FBSYM WORK_3,WORK_4 ; Encodes specified labels in FB relative

; addressing mode.

.OPTJ JSRW ; Generates subroutine call instructions that are

; not included in optimization by using "JSR.W".

;

;=================== Program area======================================

MAIN:

LDC #380H,SB ; Sets initial value in SB register.

LDC #480H,FB ; Sets initial value in FB register.

MOV.B WORK_1,WORK_2 ; Externally references each work RAM.

MOV.B WORK_3,WORK_4

;

BSET W1_b0 ; Externally references each bit symbol.

BCLR W2_b1

;

JSR SUB_1 ; Calls SUB1 in file 3.

; •

; •

; •

.END

Division Example 2: Main Program (MAIN.A30)

Write the main program in file 2.

Figure 4.4.3 Divided file 2 (MAIN.A30)

Because labels are defined in
another file, specify external
reference using .GLB.

Because bit symbols are defined in another file,
specify external reference using .BTGLB.

Because this is an externally referenced symbol, whether it is within
the base register relative addressing range cannot be determined
when assembling. Consequently, it is forcibly encoded in base
register relative addressing using .SBSYM or .FBSYM.

Accessed in SB
relative addressing.

Accessed in FB
relative addressing.

When calling (jumping to) a subroutine (label) in another file, since
addresses are not fixed yet, all addresses normally are encoded with
JSR.A. (This is because JSR instructions cannot be optimized by jump
address calculation.)
Therefore, all JRS instructions are encoded in JSR.W. using .OPTJ.
Precaution: Before specifying JSRW or JMPW for encoding, always
check to see that the subroutine (label) exists within 64 Kbytes from the
address where the call (jump) instruction exists.

Encoded in JSR.W
and branches in PC
relative addressing.

159

4
Programming Style

4.4 Dividing Source File

;**

; File 3 (SUB_1.A30)

;**

;*********************** Allocation of work RAM area**************************************

;

.SECTION WORK,DATA

;

LOCAL_WORK_TOP:

LOCAL_1: .BLKB 1 ; Allocates area for local data.

LOCAL_2: .BLKB 1

LOCAL_WORK_END:

;

;*********************** Declaration to assembler***********************************

;

.SECTION PROGRAM,CODE

.GLB SUB_1 ; Processed as global label.

.GLB DATA_TABLE ; Processed as external reference label.

;

.SB 00380H ; Sets SB register value for assembler.

.FB 00480H ; Sets FB register value for assembler.

.SBSYM LOCAL_1,LOCAL_2 ; Encodes specified label in SB relative addressing mode.

;=================== Program area ======================================

SUB_1:

LDC #380H,SB ; Sets initial value in SB register.

LDC #480H,FB ; Sets initial value in FB register.

;

MOV.B #05H,LOCAL_1 ; Accesses local data (LOCAL_1) in SB relative

; addressing.

;

MOV.W #0,A0

LDE.B DATA_TABLE[A0],LOCAL_2 ; Retrieves fixed data table by external reference.

ADD.B LOCAL_1,LOCAL_2 ; Adds local data (LOCAL_1, LOCAL_2).

; •

; •

; •

RTS ; Returns from subroutine.

.END

Division Example 3: Subroutine Processing (SUB_1.A30)

Write subroutine processing in file 3.

Figure 4.4.4 Divided file 3 (SUB_1.A30)

Unless declared as global, labels are handled
as local labels in file 3 (SUB_1.A30).

Since subroutine (SUB_1) is called from file 2
(MAIN.A30), specify SUB_1 to be a global label
using .GLB before call. (Because the label exists
in the file, this becomes a global declaration.)

Because the label is defined in another file (file 1),
specify external reference.

Because this is a relative attribute section, label addresses
remain unfixed until files are linked. Therefore, forcibly
encode it in SB register relative addressing using .SBSYM.
Caution: Before specifying data with .SBSYM (.FBSYM),
check to see that the data is within the SB/FB relative
addressing range.

4
Programming Style

4.4 Dividing Source File

160

Making Use of Include File

Normally, write part of external reference specification of symbols and bit symbols (those defined
with .EQU, .BTEQU) and/or labels (those having address information) in one include file. In this
way, without having to specify external reference in each source file, it is possible to externally
reference symbols and labels by reading include files into the source file.

(1) Example for referencing symbols

File 'a'

(2) Example for referencing global labels

Figure 4.4.5 Example of include file

.INCLUDE SYMBOL.INC

•

•

•

.SECTION WORK,DATA

•

•

•

.INCLUDE GLOBAL.INC

•

•

•

.SECTION WORK,DATA

•

•

•

"SYMBOL.INC"

ON.EQU 1

OFF .EQU 0

RAMTOP .EQU 00400H

RAMEND .EQU 02BFFH

•

•

•

"GLOBAL.INC"

.GLB WORK_1

.GLB WORK_2

.GLB WORK_3

.GLB WORK_4

.GLB DATA_TABLE

•

•

File 'b'

161

4
Programming Style

4.4 Dividing Source File

Making Use of Directive Command .LIST

By writing directive commands ".LIST ON" and ".LIST OFF" at the beginning and end of an include
file, it is possible to inhibit the include file from being output to an assembler list file. Figure 4.4.6
shows examples of assembler list files, one not using these directive commands (expansion 1) and
one using them (expansion 2).

Source file

.INCLUDE SYMBOL.INC

.SECTION WORK,DATA

 •

 •

.INCLUDE SYMBOL.INC

.LIST OFF

.LIST ON

.SECTION WORK,DATA

 •

 •

When using directive
command .LIST

When not using directive command
.LIST

Figure 4.4.6 Utilization of directive command .LIST

 .INCLUDE SYMBOL.INC

ON .EQU 1

OFF .EQU 0

RAMTOP .EQU 00400H

RAMEND .EQU 02BFFH

 •

 •

.SECTION WORK,DATA

 •

 •

"SYMBOL.INC"

 .LIST OFF

ON .EQU 1

OFF .EQU 0

RAMTOP .EQU 00400H

RAMEND .EQU 02BFFH

 •

 •

 .LIST ON

E
xp

an
si

on
 2

E
xp

an
si

on
 1

4
Programming Style

4.4 Dividing Source File

162

4.4.3 Library File

A library file refers to a collection of several relocatable module files. If there are frequently used
modules, collect them in a single library file using the librarian (lib30) that is included with the AS30
system. When linking source files, specify this library file (***.LIB). By so doing, only the necessary
modules (those specified in the file as externally referenced) can be extracted when linking. This
makes it possible to reduce the assemble time and reuse the program. The following shows an
example of how a library file is created and how it is linked.

Creating Library File

Figure 4.4.7 shows an example of how a library file is created.

Module 2

SUB2. R30

Module 3

SUB3. R30

SUB1. R30

SUB2. R30

SUB3. R30

Edited into a single library file.

Library file

LIB1.LIB

Librarian

lib30

 Module 1
 (Relocatable module file)

SUB1. R30

·
·
·
·
·
·

·
·
·
·
·
·

·
·
·
·
·
·

Figure 4.4.7 Creating a library file

163

4
Programming Style

4.4 Dividing Source File

Example for Linking Library Files

Figure 4.4.8 shows an example of how library files are linked.
FILE1.A30

JSR SUB1
·
·

JSR SUB3
·
·

JSR SUB5

FILE1

SUB1

SUB2

SUB3

* Relocatable modules required in FILE1 are
 retrieved from specified library files to link only
 the necessary modules.

FILE1.X30

FILE1.R30

·
·
·
·
·
·

Load module convert

(lmc30)

LIB1.LIB

SUB1.R30
SUB2.R30

LIB2.LIB

SUB3.R30
SUB4.R30

LIB3.LIB

SUB5.R30
SUB6.R30

FILE1.MOT(FILE1.HEX)

·
·
·
·
·
·

Assemble

(as30)

Link

(ln30)

Figure 4.4.8 Example for linking library files and relocatable module file

4
Programming Style

4.5 A Little Tips...

164

4.5 A Little Tips...

This section provides some information, knowledge of which should prove helpful when using the
M16C/60 series. This information is provided for several important topics, so refer to the items in
interest.

4.5.1 Stack Area

The following explains how to set up stack pointers and how to save and restore to and from the
stack area when using an interrupt and a subroutine.

Setting Up Stack Pointers (ISP, USP)

(a) Choosing the stack pointer to be used (ISP or USP)
When using only the assembler, normally choose the ISP. For details, refer to Section 4.3.7,
"ISP and USP".

(b) Set the initial value in the selected stack pointer register.
Since the M16C/60 group stack is a FILO type, Mitsubishi recommends setting the initial value
of the stack pointer at the last RAM address.
Example: Setting "2C00H" in interrupt stack pointer

LDC #00000000B,FLG ; Uses interrupt stack pointer (ISP).
LDC #02C00H,ISP ; Sets "2C00H" in ISP.

Note 1: FILO (first-in, last-out). When saving registers, they are stacked in order of addresses beginning with the largest address. When
restored, they are removed from the stack in order of addresses beginning with the smallest address, one that was saved last.

Note 2: FLG and ISP are control registers. Use the LDC instruction (transfer to a control register) to set up these registers.

165

4
Programming Style

4.5 A Little Tips...

Saving and Restoring to and from Stack Area

Registers and internal other resources are saved and restored to and from the stack area in the
following cases:
(1) When an interrupt is accepted

When an interrupt is accepted, the registers listed below are saved to the stack area.
Program counter (PC) → 2 low-order bytes
Flag register (FLG) → 2 bytes ... Total 4 bytes

After the interrupt is serviced, the above registers that have been saved to the stack area are
restored from the stack by the REIT instruction.

Program counter,
high (PCH)

Program counter, low (PCL)m-4

Stack area

SP
(Stack pointer after
interrupt is accepted)Program counter, middle (PCM)

Flag register, low (FLGL)

Flag register,
high (FLGH)

Stack pointer
before interrupt
occurs

m-3

m-2

m-1

m

Figure 4.5.1 Saving and restoring to/from stack when interrupt is accepted

(2) When subroutine is called (when JSR, JSRI, or JSRS instruction is executed)
When the JSR, JSRI, or JSRS instruction is executed, the following register is saved to the
stack area.
Program counter (PC)→ 3 bytes ... Total 3 bytes

After subroutine execution is completed, the above register that has been saved to the stack
area is restored from the stack by the RTS instruction.

m-3

Stack area

SP
(Stack pointer after
subroutine is called)

Stack pointer before
subroutine is called

m-2

m-1

m

Program counter, low (PCL)

Program counter, middle ((PCM)

Program counter, high (PCH)

Figure 4.5.2 Saving and restoring to/from stack when subroutine is called

4
Programming Style

4.5 A Little Tips...

166

4.5.2 Setup Values of SB and FB Registers

The following explains the setup values of the SB and FB registers.

General Setup Values of SB and FB Registers

Setting the start addresses of the areas that contain frequently accessed data in the SB and FB
registers should prove effective. Therefore, it is advisable to set the start address of the SFR or the
work RAM area in these registers.
Figure 4.5.3 shows an example for setting values in the SB and FB registers.

 SB register setup value

Effective range of SBrelative
addressing

00000H
0005FH

00380H
003FFH
00400H

0047FH
00480H

00500H
0057FH

02BFFH
02C00H

FFFFFH

Internal RAM area

By locating the SB and FB registers at
contiguous effective range of addresses, it is
possible to access data in a total 512 bytes of
area by SB and FB relative addressing.

Note: The M16C/60 group memory map is used here.

SFR area

: Less frequently
 accessed register group

: More frequently
 accessed register group

 FB register setup value
Effective range of FB relative
addressing

Figure 4.5.3 General method for setting SB and FB register values

167

4
Programming Style

4.5 A Little Tips...

4.5.3 Alignment Specification

The following explains about alignment specification.

What Does Alignment Specification Mean?

When alignment is specified, the assembler corrects the address that contains code for the line
immediately after directive command ".ALIGN" is written to an even address. If the section type is
CODE or ROMDATA, a NOP instruction is written into the space that is made blank as a result of
address correction. If the section type is DATA, the address value is incremented by 1. If the
address where this directive command is written happens to be an even address, no correction is
made.
This directive command can be written under the following conditions:
(1) For relative attribute sections

Only when address correction is specified in section definition
.SECTION WORK, DATA, ALIGN

(2) For absolute attribute sections
No specific restrictions
.SECTION WORK, DATA
.ORG 400H

4
Programming Style

4.5 A Little Tips...

168

Advantages of Alignment Specification (Correction to Even Address)

If data of different sizes such as a data table are located at contiguous addresses, the data next to
an odd size of data is located at an odd address. In the M16C/60 series, word data (2-byte data)
beginning with an even address is read/written in one access, those beginning with an odd address
requires two accesses for read/write. Consequently, instruction execution can be sped up by
locating data at even addresses. In this case, however, ROM (or RAM) efficiency decreases.
Figure 4.5.4 shows an example of a program description that contains alignment specification.

(1) For relative attribute sections

Figure 4.5.4 Example of alignment specification

Set data tables and similar other sections
at even addresses as much as possible.

 Address Code

.SECTION WORK, DATA, ALIGN

WORK_1 .BLKW 1 00000H

WORK_2 .BLKW 1 00002H

WORK_3 .BLKB 1 00004H

.ALIGN 00005H Address is incremented by 1.

;

•

•

.SECTION CONST, ROMDATA, ALIGN

.BYTE 12H 00000H 12H

.ALIGN 00001H 04H NOP code is inserted.

.WORD 3456H 00002H 5634H

•

•

(2) For absolute attribute sections

 Address Code

.SECTION WORK, DATA

.ORG 400H

WORK_1 .BLKB 1 00400H

 .ALIGN 00401H Address is incremented by 1.

WORK_2 .BLKW 1 00402H

WORK_3 .BLKA 1 00404H

 .ALIGN 00407H Address is incremented by 1.

WORK_4 .BLKL 1 00408H

;

 .SECTION PROGRAM,CODE

 .ORG 0F0000H

 MOV.W #0,R0 F0000H D900H

•

•

Set data tables and similar other
sections at even addresses as much as
possible.

169

4
Programming Style

4.5 A Little Tips...

4.5.4 Watchdog Timer

The following explains the precautions on and the method for using the watchdog timer.

What Does a Watchdog Timer Do?

The watchdog timer is a 15-bit timer used to prevent the program from going wild. If the program
runs out of control, the watchdog timer underflows, thereby generating a watchdog timer interrupt.
The program can be restarted by a software reset, etc. in the interrupt handler routine.
The watchdog timer interrupt is a nonmaskable interrupt. The watchdog timer is idle immediately
after a reset is deactivated; it is invoked to start counting by writing to the watchdog timer start
register.

Method for Detecting Program Runaway

The chart below shows an operation flow when the program is found out of control and the method
of runaway detection.

(1) Operation flow

• • • Write to the watchdog timer start register before the watchdog
timer underflows.

When normal

Runaway detected

Program restarted

• • • An interrupt is generated unless some processing is executed
to write to the watchdog timer start register before the
watchdog timer underflows due to program runaway.

• • • When a watchdog timer interrupt occurs, the program is
restarted by a software reset in the interrupt handler routine.

Figure 4.5.5 Operation flow when program runaway is detected

(2) Method of runaway detection
Program a procedure so that a write to the watchdog timer start register is performed before
the watchdog timer underflows. By writing to the watchdog timer start register, the initial count
"7FFFH" is set in the watchdog timer. (This is fixed, and not other value can be set.)
If this write operation is inserted in a number of locations, it can happen that a write to the
watchdog timer start register is performed at a place to which the program has been brought by
runaway. Thus, no where in the program can it be detected to have run out of control.
Therefore, be careful that this write operation is inserted in only one location such as the main
routine that is always executed. However, consider the length of the main routine and that of
the interrupt handler routine to ensure that a write to the watchdog timer start register will be
performed before a watchdog timer interrupt occurs.

4
Programming Style

4.5 A Little Tips...

170

(3) Restarting the program which is out of control
Program a procedure so that bit 3 (software reset bit) of processor mode register 0 is set to 1
in the interrupt handler routine. This causes a software reset to occur, allowing the program to
restart after being reset. (In this case, the internal RAM holds the contents that were stored in
it immediately before the system was reset.)
Before this facility can be used, the start address of the interrupt handling program must be set
to the interrupt vector of the watchdog timer interrupt.
When resetting the system to restart the program, be sure to use a software reset. If the same
value (address) as the reset vector happens to be set to the interrupt vector of the watchdog
timer interrupt, the IPL (processor interrupt priority level) remains 7 without being cleared.
Consequently, all other interrupts are disabled (and remain disabled) when the program is
restarted after being reset.

171

4
Programming Style

4.5 A Little Tips...

Examples of Runaway Detection Programs

Figures 4.5.6 and 4.5.7 show sample programs in which the watchdog timer is used to detect
program runaway.

Example 1: Operation (subroutine) for writing to the watchdog timer start register is executed
periodically at predetermined intervals

WDT_SET:

MOV.B R0L,WDTS ; Writes to watchdog timer start register.

RTS

Figure 4.5.6 Example of runaway detection program 1

Example 2: Interrupt handling program to restart the system is executed when a watchdog timer
interrupt occurs

WDT_INT:

LDC #00380H,SB Note 1 ; Sets SB and FB registers back again.

LDC #00500H,FB

;

BSET 1, PRCR ; Enable to write to the processor made register 0, 1

; (Removes protect.)

BSET 3, PM0 ; Software reset

;

REIT Note 2

•

•

•

.SECTION VECT,ROMDATA

.ORG 0FFFF0H

.LWORD WDT_INT ; Sets start address of interrupt handler routine to

; watchdog timer interrupt vector in advance.

•

•

Note 1: If the program runs out of control, the contents of the base registers (SB, FB) are not
guaranteed. Therefore, they must be set correctly again before writing values to the SFR.

Note 2: The system enters a reset sequence immediately after the software reset bit is set to 1.
Therefore, no instructions following it are executed.

Figure 4.5.7 Example of runaway detection program 2

Because no arbitrary value can be written
to the watchdog timer start register, the
value of R0L can be indeterminate.

Define address with ".EQU" in advance.

Define address with ".EQU" in advance.

Remove protect before setting
the software reset bit to 1 to
reset the system in software.

4
Programming Style

4.6 Sample Program

172

4.6 Sample Programs

This section shows examples of commonly used processing in programming of the M16C/60,
M16C/20 series. For more information, refer to Application Notes, "M16C/60, M16C/20 Series
Sample Programs Collection".

Conditional Branching Based on Specified Bit Status

BTST 0,WORK_1

JC LABEL1 ; Branches to LABEL1 if specified bit = 1.

 •

 •

 LABEL1:

BTST 1,WORK_1

JNC LABEL2 ; Branches to LABEL2 if specified bit = 0.

 •

 •

 LABEL2:

 ;

Figure 4.6.1 Sample program for conditional branching based on specified bit status

Retrieving Data Table

MOV.W #1,A0

LDE.B DATA_TABLE[A0],R0L ; Stores 2nd byte (34H) of data table in R0L.

•

•

 DATA_TABLE:

.BYTE 12H,34H,56H,78H ; Sets 1-byte data.

 ;

Figure 4.6.2 Sample program for table retrieval

Conditional branched by
two instructions.

Performed by address register relative addressing. Table
data is retrieved by using the start address of the table
as the base address and by placing a relative address
from that location in the address registers (A0, A1).

173

4
Programming Style

4.6 Sample Program

PARAMETER .EQU 1

MOV.W PARAMETER,A0 ; Sets A0 for argument.
SHL.W #2,A0 ; Calculates offset value of jump table.

;
JSRI.A JUMP_TABLE[A0] ; Jump table (indirect subroutine call)

•
•

;
;=========== ROUTINE1 ===
SUB1:

•
Program
•

SUB1_END:
RTS

;
;=========== ROUTINE2 ===
SUB2:

•
Program
•

SUB2_END:
RTS

;
;=========== ROUTINE3 ===
SUB3:

•
Program
•

SUB3_END:
RTS

;
;=========== ROUTINE4 ===
SUB4:

•
Program
•

SUB4_END:
RTS

;
;=========== JUMP TABLE ===
JUMP_TABLE:

.LWORD SUB1 ; Routine 1

.LWORD SUB2 ; Routine 2

.LWORD SUB3 ; Routine 3

.LWORD SUB4 ; Routine 4

JUMP_TABLE_END:

Table Jump Using Argument

Control jumps to the address indicated by a relative
value (argument) from the base address that is the start
address of the table where the jump address is set.

Since 4 bytes is set for the jump address
with "LWORD," the relative address value is
quadrupled.

Set the start address of
each subroutine in the table
in advance.

Figure 4.6.3 Sample program for table jump using argument

4
Programming Style

4.7 Generating Object Files

174

4.7 Generating Object Files

The AS30 system is a program development support tool consisting of an assembler (as30), linkage
editor (ln30), load module converter (lmc30), and other tools (lb30, abs30, and xrf30). This section
explains how to generate object files using the AS30 system.

as30

lb30

ln30

abs30lmc30

xrf30

.a30

.lst.r30

.lib .xrf

.x30

.als.hex.mot

Assembly source
file

Relocatable module
file

Assembler list
file

Library file

Absolute module
file

Absolute list
file

Intel HEX format
file

Motorola S format
file

Cross reference
file

Input file

Output file

Figure 4.7.1 Outline of processing by AS30

Note: In this manual, the AS30 system is referred to by "AS30 system" (uppercase) when it means the entire system or by "as30" (lowercase)
when it means only the assembler (as30).

175

4
Programming Style

4.7 Generating Object Files

4.7.1 Assembling

The following explains the files generated by the relocatable assembler (as30) and how to start up
the assembler.

Files Generated by as30

(1) Relocatable module file (***.R30) ... Generated as necessary
This file is based on IEEE-695. It contains machine language data and its relocation
information.

(2) Assembler list file (***.LST) ... Generated when option '-L' is specified
This file contains list lines, location information, object code, and line information. It is used to
output these pieces of information to a printer.

(3) Assembler error tag file (***.TAG) ... Generated when option '-T' is specified
This file contains error messages for errors that occurred when assembling the source file.
This file is not generated when no occur was encountered. This file allows errors to be
corrected easily when it is used an editor that has the tag jump function.

4
Programming Style

4.7 Generating Object Files

176

Method for Starting Up as30

>as30 file name.extension [file name.extension...] [option]
Be sure to write at least one file name. The extension (.A30) can be omitted.

Table 4.7.1 Command Options of as30

Command Option

-.

-A

-C

-D symbol name =
 constant

-F expansion file name

-L

-M

-N

-O directory path name

-P

-S

-T

-V

-X command name

Function

Inhibits assemble processing messages from being output.

Evaluates mnemonic operand.

Displays command options when as30 has started up mac30
and asp30.

Sets symbol constant.

Fixes expansion file of directive command ..FILE.

-L Generates assembler list file.
-LI Outputs parts that were found false in conditional

assemble to list also.
-LM Outputs expansion parts of macro description to list also.
-LIM Outputs parts that were found false in conditional

assemble as well as expansion parts of macro description
 to list.

Generates structured description instruction in byte type.

Inhibits line information of macro description from being output
to relocatable module file.

Specifies directory for file generated by assembler. Do not insert
space between the letter O and directory name. (Default is
current directory.)

Processes structured description instruction.

Outputs local symbol information to relocatable module file.
-SM System label information also is output.

Generates tag file.

Displays version of assembler system each program.

Generates error tag file and invokes command.

177

4
Programming Style

4.7 Generating Object Files

Example for Using as30 Commands

Example:

>as30 -L -O¥work SAMPLE

This command generates SAMPLE.LST and SAMPLE.R30 from SAMPLE.A30 and outputs them to

the ¥work directory.

>as30 -sm sample

This command outputs the system label and local symbol information of SAMPLE.A30 to the

relocatable module file SAMPLE.R30.

* M16C FAMILY ASSEMBLER * SOURCE LIST Wed Mar 6 15:17:37 1996 PAGE 001

 SEQ. LOC. OBJ. 0XMDA. . . . *. . . . SOURCE STATEMENT. . . . 7. . . . *. . . . 8. . . .*. . . . 9 *. . . .

 1 ;""FILECOMMENT""**

 2 ;SAMPLE PROGRAM

 3 .INCLUDE m30600.inc

 4 1 .LIST OFF

 5 1 .LIST ON

 6 1

 7 ;*********************** Allocation of work RAM area*****************************

 8 .SECTION WORK,DATA

 9 00400 .ORG 00400H

 10 ;

 11 00400 WORKRAM_TOP:

 12 00400(000001H) AAA: .BLKB 1 ;

 13 00401(000001H) BBB: .BLKB 1 ;

 14 00402(000001H) CCC: .BLKB 1 ;

 15 00403(000001H) .ALIGN

 16 00404(000002H) DDD: .BLKW 1 ;

 17 00406 WORKRAM_END:

 18 ;*********************** Definition of bit symbol ***********************************

 19 2,00000400h bitsym .BTEQU 2,AAA ; Defines bit symbol.

 20 ;*********************** Allocation of stack area ************************************

 21 00000100h STACK_SIZE .EQU 256

 22 .SECTION STACK,DATA

 23 01000 .ORG 01000H

 24 01000(000100H) STACK_TOP: .BLKB STACK_SIZE ; Allocates stack area (256 bytes).

 25 00001100h STACK_TAIL .EQU STACK_TOP + STACK_SIZE

•

•

•

Line number of list
Location address

Object code
Assemble processing information
of as30

 Assembly source line

Indicates the nested level of include file.

Separate each option with a space.
If extension is omitted, ".A30" is assumed.

Command options can be written in uppercase
or lowercase as desired.

Assembler List File

Figure 4.7.1 shows an example of the assembler list file.

4
Programming Style

4.7 Generating Object Files

178

* M16C FAMILY ASSEMBLER * SOURCE LIST Wed Mar 6 15:17:37 1996 PAGE 002

 SEQ. LOC. OBJ. 0XMDA. . . . *. . . . SOURCE STATEMENT. . . . 7. . . .* 8. . . . *. . . . 9. . . . *. . . .

 61 ;**********************Program area **********************************

 62 ;======================Startup routine=================================

 63 .SECTION PROGRAM,CODE

 64 10000 .ORG 10000H

 65 .SB 00380H ; Declares SB register value to assembler.

 66 .FB 00500H ; Declares FB register value to assembler.

 67 ;

 68 10000 START:

 69 10000 EB608003 LDC #380H,SB ; Sets initial value in SB register.

 70 10004 EB700005 LDC #500H,FB ; Sets initial value in FB register.

 71 ;

 72 10008 C7030A00 S MOV.B #03H,PRCR ; Removes protect.

 73 1000C D97F0400 Q MOV.W#0007H,PM0 ; Sets processor mode registers 0 and 1.

 74 ; (RD, WRH, WRL, all separate,

 75

 76 10010 75CF06000820 MOV.W#2008H,CM0 ;

 77

 78 10016 B70A00 Z MOV.B #0,PRCR

 79 ;

 80 10019 EB300000 LDC #0,FLG ; Sets FLG value (stack pointer ISP is used).

 81 1001D EB400011 LDC #STACK_TAIL,ISP ; Sets value of interrupt stack pointer (ISP).

 82 10021 D9EA7D Q* MOV.W#0FFFEH,PUR1 ; Port P44 to P47, port P5 to port P

 85 ;======================= Main program==============================

 87 10024 MAIN:

 88 10024 F50700 W JSR INIT ; Calls initial setup routine.

 89 ; (Jump range: -32,768 to +32,767)

 90 10027 F51400 W JSR DISP ; LED display routine

 93 ;

 94 1002A MAIN_10:

 95 1002A FEFF B JMP MAIN_10 ; (Jump range: -128 to -127)

 96 ;

•

•

•

 178 ;

 179 .END

Information List

TOTAL ERROR(S) 00000

TOTAL WARNING(S) 00000

TOTAL LINE(S) 00179 LINES

Section List

Attr Size Name

DATA 0000006(00006H) WORK

DATA 0000256(00100H) STACK

CODE 0000083(00053H) PROGRAM

ROMDATA 0000004(00004H) VECT

Figure 4.7.1 Example of assembler list file

16 output, BCLK output,
wait,
sets registers 0, 1
ratio: f (Xin), subclock

Z: Indicates that zero format has been selected for instruction format.
S: Indicates that short format has been selected for instruction format.
Q: Indicates that quick format has been selected for instruction format.

Outputs total number of errors derived from assembling, as
well as total number of warnings and total number of list lines.

Outputs section type, section size, and
section name.

S: Indicates that jump distance specifier S has been selected.
B: Indicates that jump distance specifier B has been selected.
W: Indicates that jump distance specifier W has been selected.
A: Indicates that jump distance specifier A has been selected.

179

4
Programming Style

4.7 Generating Object Files

Assemble Error Tag File

Figure 4.7.2 shows an example of an assembler error tag file.

Assemble source file name
Error messageError line number

sample.err 21 Error (asp30): Operand value is not defined

sample.err 72 Error (asp30): Undefined symbol exist "work2"

Figure 4.7.2 Example of assembler error tag file

4
Programming Style

4.7 Generating Object Files

180

4.7.2 Linking

The following explains the files generated by the linkage editor ln30 and how to start up the linkage
editor.

Files Generated by ln30

(1) Absolute module file (***.X30) ... Generated as necessary
This file is based on IEEE-695. It consists of the relocatable module files output by as30 that
have been edited into a single file.

(2) Map file (***.MAP) ... Generated when option '-M' or '-MS' is specified
This file contains link information, section's last located address information, and symbol
information. Symbol information is output to this map file only when an option '-MS' is
specified.

(3) Link error tag file (***.TAG) ... Generated when option '-T' is specified
This file contains error messages for errors that have occurred when linking the relocatable
module files. This file is not generated when no error was encountered. This file allows errors
to be corrected easily when it is used an editor that has the tag jump function.

181

4
Programming Style

4.7 Generating Object Files

Method for Starting Up ln30

>ln30 relocatable file name [relocatable file name...] [option]

Be sure to write at least one file name. The extension (.R30) can be omitted.

Table 4.7.2 Command Options of ln30

Command Option

-.

-E address value

-G

-L library file

-LD path name

-M

-MS

-NOSTOP

-O absolute file name

-ORDER

-T

-V

@ command file name

Function

Inhibits link processing messages from being output.

Sets start address of absolute module file. Always be sure to
insert space between option symbol and address value and
use label name or hexadecimal number to write address value.

Outputs source debug information to absolute module file.

Specifies library file to be referenced when linking.

Specifies directory of library file.

Generates map file. This file is named after absolute module
file by changing its extension to ".map".

Generates map file that includes symbol information.

Outputs all encountered errors to display screen. If not
specified, up to 20 errors are output to screen.

Specifies absolute module file name. File extension can be
omitted. If omitted, extension ".x30" is assumed.

Specifies section arrangement and sequence in which order
they are located. If start address is not specified, sections are
located beginning with address 0.

Outputs error tag file.

Displays version on screen. Linker is terminated without
performing anything else.

Starts up ln30 using specified file as command parameter. Do
not insert space between @ and command file name. This
option cannot be used with any other option simultaneously.

4
Programming Style

4.7 Generating Object Files

182

smp.inc 2 Warning (ln30): smp2.r30: Absolute-section is written after the

 absolute-section 'ppp'

smp.inc 2 Error (ln30): smp2.r30: Address is overlapped in 'CODE' section 'ppp'

Link Error Tag File

Figure 4.7.3 shows an example of a link error tag file.

Example:

>ln30 SAMPLE1 SAMPLE2 -O ABSSMP

This command generates ABSSMP.X30.

>ln30 @cmdfile

This command starts up ln30 using the content of cmdfile as a command parameter.

Typical description of #cmdfile

SAMPLE1 SAMPLE2 #Relocatable file name

SAMPLE3 #Relocatable file name

-ORDER RAM=80 #Specifies 80H for start address of RAM section.

-ORDER PROG,SUB,DATA #Specifies sequence in which order sections are located.

-M #Command option to generate map file

Example for Using ln30 Commands

Note: Absolute module files are output in the format based on IEEE-695. Since this format is binary, the files cannot be output to the screen
or printer; nor can they be edited.

Use hexadecimal number to write address. If address begins
with alphabet, add '0' at the beginning. Do not add 'H' to
denote hexadecimal.

Section names are discriminated
between uppercase and lowercase.

Add '#' at the beginning of a comment.

Extension ".R30" can be omitted.

Assemble source file name

Error line number Error message

Command option can be
written in uppercase or
lowercase as desired.

Figure 4.7.3 Example of link error tag file

183

4
Programming Style

4.7 Generating Object Files

##
(1) LINK INFORMATION
##
ln30 -ms smp

LINK FILE INFORMATION
smp (smp.r30)

Jun 27 14:58:58 1995

##
(2) SECTION INFORMATION
##
SECTION ATR TYPE START LENGTH ALIGN MODULENAME
ram REL DATA 000000 000014 smp
program REL CODE 000014 000000 smp

##
(3) GLOBAL LABEL INFORMATION
##
work 000000

##
(4) GLOBAL EQU SYMBOL INFORMATION
##
sym2 000000

##
(5) GLOBAL EQU BIT-SYMBOL INFORMATION
##
sym1 1 000001

##
(6) LOCAL LABEL INFORMATION
##
@ smp (smp.r30)
main 000014 tmp 00000a

##
(7) LOCAL EQU SYMBOL INFORMATION
##
@ smp (smp.r30)
sym3 00000003

##
(8) LOCAL EQU BIT-SYMBOL INFORMATION
##
@ smp (smp.r30)
sym4 1 0000000

Map File

Figure 4.7.4 shows an example of a map file.

Figure 4.7.4 Example of map file

Link information

Section information

Global label information
This information is output only
when command option '- MS'
is specified.

Global symbol information
This information is output
only when command
option '- MS' is specified.

Global bit symbol information
This information is output only
when command option '- MS'
is specified.

Local label information
This information is output
only when command
option '- MS' is specified.

Local symbol information
This information is output
only when command option
'- MS' is specified.

Local bit symbol information
This information is output only
when command option '- MS'
is specified.

4
Programming Style

4.7 Generating Object Files

184

4.7.3 Generating Machine Language File

The following explains the files generated by the load module converter lmc30 and how to start up
the converter.

Files Generated by lmc30

(1) Motorola S format file (***.MOT) ... Generated normally
This is a machine language file normally generated by the converter.

(2) Intel HEX format file (***.HEX) ... Generated when option '-H' is specified
This is a machine language file generated by the converter when an option '-H' is specified.

Method for Starting Up lmc30

>lmc30 [option] absolute module file name

Table 4.7.3 Command Options of lmc30

Command Option

-.

-E start address

-H

-L

-O

-V

Function

Inhibits all messages but error messages from being output to the file.

Sets program's start address and generates machine language file in
Motorola S format. This option cannot be specified simultaneously with
option '-H'.

Generates machine language file in extended Intel HEX format. This
option cannot be specified simultaneously with option '-E'.

Sets data length that can be handled in S2 records to 32 bytes. Sets
Intel HEX format's data length to 32 bytes.

Specifies file name of machine language file generated by lmc30. This
file is generated in current directory. Always be sure to insert space
between option and machine language file name. Extension of machine
language file can be omitted. (Motorola S format .mot; Intel HEX format .hex)

Displays version of lmc30 on screen. Converter is terminated without
performing anything else.

Example for Using lmc30 Commands

Example

>lmc30 -E 0f0000 -. DEBUG

This command generates a machine language file "DEBUG.MOT" from the absolute module file

"DEBUG.X30" using 0f0000 as the start address.

>lmc30 -O TEST DEBUG

This command generates machine language file "TEST.MOT" from the absolute module file

"DEBUG.X30".

Options are not discriminated between uppercase and lowercase.

Extension ".X30" can be omitted.

Write the option before specifying the absolute module file.

MITSUBISHI SINGLE-CHIP MICROCOMPUTERS

M16C/60,M16C/20 Series

Programming manual <Assembler language> Rev.A

July. First Edition 1998

Editioned by

 Committee of editing of Mitsubishi Semiconductor

Published by

 Mitsubishi Electric Corp., Kitaitami Works

This book, or parts thereof, may not be reproduced in any form without

permission of Mitsubishi Electric Corporation.

1998 MITSUBISHI ELECTRIC CORPORATION

	Chapter 1 Overview of M16C/60, M16C/20 Series
	1.1 Features of M16C/60, M16C/20 Series
	1.2 Outline of M16C/60, M16C/20, M16C/20 Group
	1.3 Introduction to CPU Architecture

	Chapter 2 CPU Programming Model
	2.1 Address Space
	2.1.1 Operation Modes and Memory Mapping
	2.1.2 SFR Area
	2.1.3 Fixed Vector Area

	2.2 Register Set
	2.3 Data Types
	2.4 Data Arrangement
	2.5 Addressing Modes
	2.5.1 Types of Addressing Modes
	2.5.2 General Instruction Addressing
	2.5.3 Special Instruction Addressing
	2.5.4 Bit Instruction Addressing
	2.5.5 Instruction Formats

	2.6 Instruction Set
	2.6.1 Instruction List
	2.6.2 Transfer and String Instructions
	2.6.3 Arithmetic Instructions
	2.6.4 Sign Extend Instruction
	2.6.5 Bit Instructions
	2.6.6 Branch Instructions
	2.6.7 High-level Language Support Instructions
	2.6.8 OS Support Instructions

	2.7 Outline of Interrupt
	2.7.1 Interrupt Sources and Control
	2.7.2 Interrupt Sequence

	Chapter 3 Functions of Assembler
	3.1 Outline of AS30 System
	3.2 Method for Writing Source Program
	3.2.1 Basic Rules
	3.2.2 Address Control
	3.2.3 Directive Commands
	3.2.4 Macro Functions
	3.2.5 Structured Description Function

	Chapter 4 Programming Style
	4.1 Hardware Definition
	4.1.1 Defining SFR Area
	4.1.2 Allocating RAM Data Area
	4.1.3 Allocating ROM Data Area
	4.1.4 Defining a Section
	4.1.5 Sample Program List 1 (Initial Setting 1)

	4.2 Initial Setting the CPU
	4.2.1 Setting CPU Internal Registers
	4.2.2 Setting Stack Pointer
	4.2.3 Setting Base Registers (SB, FB)
	4.2.4 Setting Interrupt Table Register (INTB)
	4.2.5 Setting Variable/Fixed Vector
	4.2.6 Setting Peripheral Functions
	4.2.7 Sample Program List 2 (Initial Setting 2)

	4.3 Setting Interrupts
	4.3.1 Setting Interrupt Table Register
	4.3.2 Setting Variable/Fixed Vectors
	4.3.3 Enabling Interrupt Enable Flag
	4.3.4 Setting Interrupt Control Register
	4.3.5 Saving and Restoring Registers in Interrupt Handler Routine
	4.3.6 Sample Program List 3 (Software Interrupt)
	4.3.7 ISP and USP
	4.3.8 Multiple Interrupts

	4.4 Dividing Source File
	4.4.1 Concept of Sections
	4.4.2 Dividing Source File
	4.4.3 Library File

	4.5 A Little Tips...
	4.5.1 Stack Area
	4.5.2 Setup Values of SB and FB Registers
	4.5.3 Alignment Specification
	4.5.4 Watchdog Timer

	4.6 Sample Programs
	4.7 Generating Object Files
	4.7.1 Assembling
	4.7.2 Linking
	4.7.3 Generating Machine Language File

