
MIPS64TM Specification

Revision 1. 0
November 15, 1999

MIPS Technologies, Inc.
1225 Charleston Road

Mountain View, CA 94043-1353

Registered to: SiByte
~~~~~~~~~~---,.,..-,~~~~~~~ 

· i:sk)~t;;:~ r· 
Copyright© 1998, 1999 MIPS Technologies, 1-nc. All"fig~i~~~erv~f 

~ ~,, -·d;~,';o,',,,~~, .1' 

Unpublished rights reserved under the Copyright ~aws of the.iµriited States of America. No part of this software, 
specification, or documentation may be copied by ~y· ans w~i'tout the prior written permission of MIPS Technolo-
gies, Inc. ..;,~t~. ' ~w' 

. ;·:" .,~"t2t 

This software, specification, or docum~ntatio~,,9g,1J.tflin.s information· that is proprietary· to MIPS Technologies, Inc. · 
and is authorized for disclosure only to those em~l6'yets'·of MIPS Technologies, Inc. with a need to know, or as other
wise authorized in writing by MIPS Tecl!ri'516gies, Inc. Any use or disclosure of this software, specification, or docu
mentation which is not expressly authorized by .M~~ Technologies, Inc. in writing is strictly prohibited. 

>.,~,',·;;:.( 

MIPS Technologies, Inc. reserves the right to change this software, specification, or documentation to improve func
tion, design or otherwise. MIPS Technologies, Inc. does not assume any liability arising out of the application or use 
of this software, specification, or documentation. Any license under patent rights or any other intellectual property 
rights owned by MIPS Technologies, Inc, or third parties shall be conveyed by MIPS Technologies, Inc. in a separate 
license agreement signed by MIPS Technologies, Inc. and the licensee. 

This software, specification, or documentation constitutes "Commercial Computer Software" or "Commercial Com
puter Software Documentation," as described in FAR 12.212. This software, specification, or documentation may 
only be disclosed to the U.S. Government with prior written consent from MIPS Technologies, Inc. Such disclosure 
to the U.S. Government shall be subject to license terms and conditions at least as restrictive and protective of the 
confidentiality of this information as the terms and conditions used by MIPS Technologies, Inc. in its license agree
ments covering this software, specification, or documentation. 

MIPS. R3000, R4000, RSOOO, R8000, and RlOOOO are among the registered trademarks of MIPS Technologies, Inc., 
and R4300, R20K, MIPS16, MIPS32, MIPS64, MIPS-30, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MDMX, 
4K, 4Kc, 4Km, 4Kp, SK, 5Kc, 20K, 20Kc, and MIPS-based are among the trademarks of MIPS Technologies, Inc. 

MIPS<'\1 PROPRIETARY /CONFlDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIB !TED. 



MIPS@ PROPRIETARY /CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFlDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 

Revision Date 

0.1 January 8, 1999 

0.2 January 20, 1999 

0.21 July 1, l_?Q? , ... 

November 15, 1999 

MIPS64TM Specification 

Revision History 

Who Description 

GMU Release for first internal review 

GMU Update based on internal review in preparation for first external 
release. Changes in this revision: 
Update based on final internal review and software ISV feed
back. Changes in this revision: 

To reduce the number of software options, allow no 
FPU, one with S+D+W+L and one with 
S+D+PS+W+L. 
Explain the reason for decommitting support for the 
Branch Likely instructions. 
Explain why the SPEC2 variants of instruction multiply 
do not allow multiple destination registers. 
Add L2 cache encodings'td.the C,ache instruction. 
To provide a stable softwar~ envi~nment, upgrade the 
compliance level for PageMask, ~ount, Compare, 
Configl, PerfCnt;TagLo;"a~d Ta'gHi in situations as 
described in the PRAchapter. 
Add the WR bit.to Co~figl)". 
Reserve CPO regist~r 22 for implementations: ·t~ 
Require implement~tion of at least encodings 2 and 3 in 

,;/·}·· ~->:~~~v+:r· '·~r~,.,::. . 
the cache coherency attributes. 

'"'r4,7f"'1'~. '·\ 
• .,~Add.~~ first pass description of CPO hazards and the 

... · ssnop l~~~S~?n to sup~ort them. 
dd a$descdpffon of the' PREF and PREFX instruc-fanf'. ·;,tJ 

v~~~~A~~fs mapping description recast in terms of 
implemell')a'tion parameters for numbers of virtual and 
~~ca~ address bits, and generally expanded . 

. M.oc!i!Y~lo.~~}t:~~lz: qefinitioI!s t() ~se.rd as.the target registf?r 
J,~!~CI~:[\l· Require that software duplicate the target register in 
.. both register fields to ensure compatibility. ,. 

- i -

MIPS@ PROPRIETARY/CONFIDENTIAL: 

--

RESTRICTED DOCUMENT SUBJECT TO CONFlDENTIALITY OBLIGATIONS. DUPLIC A T!ON IS PROHIBITED. 



Revision 1.0 

Revision Date 

0.9 October 20, 1999 

November 15, 1999 

MIPS64™ Specification 

Who Description 

GMU Update with all feedback since last major release. Changes in 
this version: 

• Clarify the difference between the use of Coprocessor 
Unusable Exceptions and Reserved Instruction Excep
tions. The cases are now enumerated for each excep
tion. 
Add the COP2 interface instructions that allow the pro
cessor to communicate with a generic coprocessor. 
Clarify the intent behind the pref instruction hints and 
allow implementation dependent hints. 

• Clarify the required Cache instruction encodings and 
the boundary condition between a locked cache line 
and an intervention that hits on the line. 
Note that the VPN/PFN bits corresponding to the bits 
set in the PageMask register may be either preserved or 
zeroed during a TLB write/or a subsequent read. 
Add descriptions of all of the floating point control reg-
isters. ·\ .. ,.~~1 '·! 

• Add the floating:pprnt coritTo[reglster descriptions to 
capture the small changes from the MIPS RISC Archi-
tecture docume'nts. '•:;,iii~"'.1!',,J .. 

, "' ,,,,Ji;;? ,, 

• Clarify the exact<i~finition of all operating modes, 
including l)ebug Mode, and note that Debug Mode has 

'£''"''"" ' .. , .. ,,,,,,,, 
full access td''all Kernel Mode resources. 

BAT descriptions to Appendix A and add an 
' ed mappingMMU description to the 

,~,, 

processor operation for illegal values of 

• .. ~:-i Clarify cporder of exception priority. 
~;:~~ th~t7Soft Reset, NMI, a~d Machine Check are all 

optioja~l. 
aricy .... the exception that occurs when a parity or ECC 
or is detected on the system bus. 

• Include a warning about potential live lock in the Ran-
, ........ , )lorn register description. .. ... 
": ;:z Clarify the required and the optional cache coherency 

attribute encodings and provide some historical per
spective on use. 
Note that the behavior of the Count register in low 
power modes is implementation dependent. 
Clean up the Status register diagram and corresponding 
descriptions. 
Allow implementation dependent exception cause 
encodings 
Add a description of the PerfCnt register. 
Update the CPO hazards section. 

- ii -

MIPS@ PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64TM Specification 

Revision Date Who Description 

0.9, con- October 20, 1999 GMU Continue correction of minor errors: 

tinued . Clarify delta instruction table encoding to indicate that 
Coprocessor Unusable Exceptions are taken on copro-
cessor interface instructions only if access to the copro-
cessor is not enabled. Otherwise, a Reserved 
Instruction Exception is taken on unimplemented 
coprocessor interface instructions. . Clarify the COPz instruction to note that a Reserved 
Instruction Exception is possible if access is allowed to 
coprocessor z and the COPz instruction is not imple-
mented for that coprocessor. . Note that it is implementation dependent whether a 
watch exception occurs on a cache or prefetch instruc-
tion. The preferred implementation is not to cause a 
watch exception on these instructions. . Correct the reset state of the;I, R, and W bits in 
WatchLo. Their reset state should be zero. 

• Update the list of initiaiized state described for the 
Reset and Soft Reset exceptions fo be consistent with 
the values in the CPO register descriptions. . Clean up the use. of sign~ex.t~nd in the pseudo-code . 

• Fix TLB Write Indexed that should have been,Write 
Random inRanrj()m Register description. . Add restrictioif'6n setting StatusERL while executing in 
kif~~ \ seg,, ., 

·/"Rewrff~!l}~·s~.tions on iirtual memory to correctly 
;5~~;;:~~plain"ihe ~ufces involved in implementing 64-bit 

·' "''a(i ing. i 
• Augm;_9,t,,~f TLB-based address translation section to 
.~. clarify the;exact generation of the physical address 

;.~. 
jiJ~l,-~w pfn 'nd va, as a function of the page size in the 

;t~j;;_, ' .A''"" ~ 

matEq.irig TLB entry. 
.. ·- ,.-j. . .. ·· •··~''' Rectule the~i-ze of the address ran ere that transforms 

c/ ••'*'!~j:,:v;:;;~;qi'()m user mapped to unmapped when ERL is a one. 
"" 'I]iis increases implementation flexibility by allowing 

.,. ,,.,,;.;tthe logic that transforms ksegO or ksegl addresses to 
'"•11\i'. also be used in this instance. . Modify ~ache instruction encodings to support a unified 

secondary and a tertiary cache. 
• Add the PC bit in Configl and the M bit in the Perfor-

. -.,~ 
mance Counter Control Register to allow software to 
determine how many performance counters are imple-
mented. . Generalize the description of the XContext register to 
use the new SEGBITS parameter. 

• Reserve Cause code value 18 for precise Coprocessor 2 
exceptions. . Update the CacheErr register description to more accu-
rately reflect previous MIPS implementations. . Make it clear that access to all floating point instruc-
tions is controlled by CUI, not CU3. 

November 15, 1999 - iii -

MIPS@ PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIG!\ TlONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64™ Specification 

Revision Date Who Description 

1.0 November 15, 1999 GMU Do final edits for Revision 1.0 release. Changes in this version: 
Add assembler format for optional third (sel) operand 
of [D]MFCz and [D]MTCz instructions. 

• Correct the description of the function of the FR bit in 
the Status register. 
Correct the inconsistencies describing the enabling of 

. 64-bit operations in Supervisor Mode. When the pro
cessor is running in Supervisor Mode, 64-bit operations 
are always enabled. The PX and SX bits in the Status 
register do not affect 64-bit operations. 
Add implementation and programming notes to the 
multiply-related instructions indicating that software 
should place short operands in GPR rt and hardware 
should check that register for data-dependent latency. 

• Add a section describing changes to the MIPS RISC 
Architecture specificati!ln that are a required part of 
MIPS64. , ./ \ 

··~ ,; J. 
• If a deferred watch e,xception occ.u.rs along with another 

exception on the sa£re instructio'ii. make it implementa
tion dependent :whether .!he WP bit is set. 
Add optional cac:_he instrG~tjon encodings for Second
ary and Tertiary C:aches Also note that cache eq:or 
exceptions·bn.9ccfu. on some cache instructio~ opera-
t. . .. kidl;\,';'if<t»l!i; <';,. 
ions. ·"·-·"'''· 
,pl~liP the terminology' ar~und reset: The Col~ Reset 
s1gna~.~d\, Reset ~Sept~on and the Reset signal 

!Efffie So~iReset Exception. 
scriptiO~s for the movn.ps and movz.ps instruc-

'" ti , pich;were added to MIPS64 in the previous 
release bflffis document, but for which there was no 

ctiori: description. 
p the redundant wording in the pref instruction 

sc9ption. , ... 
te that any TLB instruction may generate a Machine 

C eek. 
• ~dd missing set of ERL on a cache error exception. 
~\ Note that cache and bus errors may be imprecise in 

some cases. 
• Note that the preferred rate at which to increment the 

Count register is once per processor cycle. 
Modify the definition of the xuseg/xsuseg/xkuseg Seg
ments to refer to the area above useg/suseg/kuseg. This 
is simply a definition (not a functional) change. 

November 15, 1999 - iv -

MIPS@ PROPRIETARY /CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICA TlON IS PROHIBITED. 



Revision 1.0 MIPS64TM Specification 

Contents 
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . • . . . . • . . . . . . . . . . . . . • . . . . . . . . . . i 

Contents ...........................................•......................•................ v 

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . • . • . . . . . . . . . ix 

List of Tables ................•..................•.............................•••........... x 

I. The MIPS64TM Architecture .........................................•......•..•.•.....•...•. 1 

1.1 Architecture and Document Feedback ..................................•.................. 1 

1.2 MIPS64 Overview ..............•....................................•.................. 1 

1.2.1 Historical Perspective ........................•..................................... 1 

1.2.2 The MIPS64 Architecture ...........................................•....•....•..... 1 

2. The MIPS64 ISA ...................................................•...................... 2 

2.1 Compliance and Subsetting ................................•.. : •' ......................... 2 

2.2 Changes to Revision 5.1 of the MIPS RISC Architecture Specification ..•. ~ ....•.......•........ 3 

2.3 CPU Architecture ...•...........•.................•..•... ': ~ • ,,. • • ~ ...•..•.•............ 3 

2.3.1 CPU Register Overview •.•..•....•...•...•.•... ~. ;·,, •.... ,·: •....•.....•.....•...... ·3 

2.3.2 Endianness •..........•.........•..•.........••...•••• ~,. ; ........•.••............. 4 
'·~·>ii' 

2.3.3 CPU Instruction Overview .......•...........•... ,~ •........••......•... , . .,,,, .......... 4 
, \ 

2.4 FPU Architecture ...•...•..•....••........... ~ • ,~ ......•.....••.•••.•.•........ 9 

2.4.1 FPU Register Overview . . . • . • . . . • . . ............•........•.•...........•.•.... 9 

2.4.2 FPU Instruction Overview .••.... 

2.5 Coprocessor Architecture ......... . 

·······~·· .....•.....•....•.....•.... 10 

.....•....•.•.••.••.••......•...... 12 

2.5.1 Coprocessor Instruction Overv,~ew .•.................••...•.•.••...••. 13 

2.6 Privileged Instruction Set Architecture ..........•••.•.............•....•.....•.•.....•... 13 
~-·:;,~,, ·',) 

2.6.1 Privileged Register Overview ......• (.· ..... .'~ ......•.........••...•••.•........•.... 13 

2.6.2 Privileged Instruction Oyerview . . . • . . . . . . ..........•...••....••......•..•...•..... 13 
·~:. ,;,( • -f,P,., ,,. "<, ,t • ",. , ;· ·~ ·. . ·:> • 

2.7 EJTAG Supportlnstructions • ~. : • ............•..•••........•........•.•.••..... 14 

2.8 Instruction Bit Encoding • . . . . . . . . . . . . . . ...............•...•........•....•••......•.. 14 

2.9 MIPS64 Instruction Descriptions . . •.• • . ....•.••......•....•..........••.•.•........... 19 

2.9.1 UNPREDICTABLE and UNDEFINED .••.•..•.•.•.•...•..........•••.••............ 19 

2.9.2 Unprivileged Instructions ...............•...•..............•.•....•••••.••...•..... 20 

2.9.3 Privileged Instructions ................•••..••.•..•..........•.....•.•.••..••...... 46 

3. Floating Point Control Registers .•.................•.•.....•..................••............ 61 

3.0.1 Floating Point Implementation Register (CPl Register 0) .......•..•...•..........•..... 61 

3.0.2 Floating Point Control and Status Register (CPl Register 31) ...........••..•............ 62 

3.0.3 Floating Point Condition Codes Register (CPl Register 25) ...................•...•...•.. 65 

3.0.4 Floating Point Exceptions Register (CPl Register 26) ..............•..........•......... 65 

3.0.5 Floating Point Enables Register (CPl Register 28) .•.............•....•...•...•........ 66 

4. The MIPS64 Privileged Resource Architecture .•..........................•................... 68 

4.1 Introduction ......................................................................... 68 

November 15, 1999 - v -

tvllPS@ PROPRIETARY /CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS, DUPLICATION IS PROl!l BlTED. 



Revision 1.0 MIPS64TM Specification 

4.2 Compliance ••.•.....•....•.••..••.•••••.••.•.............•.••.....••..•.•••.•..•..... 68 

4.3 The MIPS Coprocessor Model •.....•.•..•...••.......•..••••..•..•.......•...••..•.•..• 68 

4.3.1 CPO - The System Coprocessor .••.•.••••••...•..•..•••..•.••••.••.••••••••...•••••. 68 

4.3.2 CPO Register Summary .....••••.••••.•••..•••.••..••••.•••••••.•...•.•••.••.•••••. 68 

4.4 Operating Modes •.••••.•..•••.•.•••.•.••••••..•.•••.••...•••.•.••••.••••••••••••.•••. 71 

4.4.1 Debug Mode ..•..•.•••..•.•••.••.•.•...•......•....•...•.•••••.•.....•..•....••• 71 

4.4.2 Kernel Mode ••••••.•.•.••••••••..•••.•••.••.•..••.•..•••••....••••••.••.•..••••.. 71 

4.4.3 Supervisor Mode ••••..•••••.•.••..••.••..••••••••••••.••••••••••••••••••••••••.•. 72 

4.4.4 User Mode ..••.••••••...••.•..••••.••••.•••.•.••••••..•••••.•••••.•••••••••.••.. 72 

4.5 Other Modes· .••.•.•••.•.•....•....••.•••..••.•••.••..••.....•.•••••.•••••••••••••..•• 72 

4.5.1 64-bit Address Enable •••.•••.••.••.••..••.•......•.•.•.••••••••••••..•••••••••••.. 72 

· 4.5.2 64-bit Operations Enable ..•.•...•.•.••..•..••.•••••.••..••.•••••••••••••••••••.••. 72 

4.5.3 64-bit FPR Enable ••....••..•...•...•..••...•••••........•.•.•...•.•••.••••••.•••. 72 

4.6 Virtual Memory •.••.....•••.••..•....•••.•••••.•••.•••.•.....•.•.••••.••••••••..••••. 73 
··,.;;:;r 

4.6.1 Terminology •...•.........•...•.•...•............•.•... ···~ ~ .............•.•.••..•... 73 

4.6.2 Virtual Address Spaces •••.•••....•.•.••..•••..••.••• : •• ·'. •.•.• l .••••••••••••••••••. 73 
' ' ,/ . 

4.6.3 Compliance ••.•••••..••••••••..••.•.•.•••••••. -~ •••.•••••• • -·~··t • •••••••••••••••••••• 76 
"' . '' .. ,,.~. -

4.6.4 Access Control as a Function of Address and Operating Mode •••••••••.•••••.•••••.•.••• 76 

4.6.5 Address Translation and Cache Coherency Attribut~s for the.k'se~o and ksegl Segments •.... 79 

4.6.6 Address Translation and Cache Coherency Attributes foi: the xkphys Segment •. -;~: • ••••..•• 80 
<+:·,~/•,,,,,,.,.,.,, "'\ 

4.6.7 Address Translation for the kuseg Segment wheliStatuSERL = 1 ••••.•••••••••••••....••• 83 

4.6.8 Special Behavior for the kseg3 Segmenf~hen DebugDM = 1 :-•.•.•...•••••••••••••••••... 83 

4.6.9 Special Behavior for Data Referenc,efln UsJi,)v161fe'~ith Sta~UX = 0 .•••••...•..•••.•.•. 84 
-~' .. -~,,, ".;':{; 

4.6.10 TLB-Based Virtual Address Tripis n .f. ..... ;o .........•.....•..•....•••......... 84 
l 4.7 Interrupts •••••••••••••••.••••• ! • • • • • • • • -.·~-.· •• ~ ••••••••••••••••••••••••••••••••••••• 87 

4.8 Exceptions ••.••••••••.••..••.• ;.:: . • • ..•. '!~~1'Y/.~ ..................................... 88 
if 

.fl • ••••••••••••••••••••••••••••••••••••••• 88 4.8.1 Exception Priority ••••.• ;:::• •..•• 
,.,fit'<··~d.•.s, 

4.8.2 Exception Vector L.ocatjons ~ •• ••. • .• ~ .. ~ •.• ~ ••••.•••••••••• • .•••.••••••••••• 91 

4.8.3 General Exception Proc .•••.••••••••••••••..••••••••••.••••••••••••.• 92 

4.8.4 EJTAG Debug Exception . . . • . • . . • • • ••••••.•.•.•••.•••.•••...•••••••••••••••••••• 93 

4.8.5 Reset Exception • • • • . • • • • • • • • .••.••••••••.••••••••••••••••••••••• · ••••••.••• 93 

4.8.6 Soft Reset Exception ••••••••.••.•.••.•.• " ••••••••••••••.•••••.•••••••••••.•••••••• 94 

4.8.7 Non Maskable Interrupt (NMI) Exception ••••••••••••••••••••••••••••••••••••••••••• 95 

4.8.8 Machine Check Exception ••••..••••. • .•••••••.••••••.••••.••••••••••.•••••••••••••. 96 

4.8.9 Address Error·Exception ••••••••.•••.•••••••...•..•••••••• _ ••••••••.•••• -~·-· •.••••••• 96 

4.8.10 TLB Refill and XTLB Refill Exceptions ••.••••••••••.•.••.•.•••••••••••.•••••••••.•• 97 

4.8.11 TLB Invalid Exception •••.••••.•••••.•••...••••••.•...•.•••.•.•••••••.••.••..•... 98 

4.8.12 TLB Modified Exception ••••.•••.•.••••••.•••••.••...••••••••••••••.••••••.•..•••• 99 

4.8.13 Cache Error Exception ••.•••.•••••.•••••••••••••••.•••.•••••••••••.••••••.••.•.•. 99 

4.8.14 Bus Error Exception •.....•••••••••.•••••••••••••..••.•••••••••••••••••••..•.•.• 100 

4.8.15 Integer Overflow Exception ..•..••...••.•.•.......•.••.•••.••.•.....•••••••••••.• 100 

4.8.16 Trap Exception ....••.....•....•.....•.••••••..•......••..•...•....•.•........• 101 

4.8.17 System Call Exception ....•....•.•.......•.....•......•...•....••......•.•.•.••.• 101. 

November 15, 1999 - vi -

MIPSO\i PROPRIETARY /CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICA TlON IS PROHIBITED. 



Revision 1.0 MIPS64TM Specification 

4.8.18 Breakpoint Exception ........................................................... 101 

4.8.19 Reserved Instruction Exception ................................................... 101 

4.8.20 Coprocessor Unusable Exception ..•............................................... 102 

4.8.21 Floating Point Exception ...•...................................................•. 103 

4.8.22 Watch Exception ..................................................•..•...•..... 103 

4.8.23 Interrupt Exception ........................•.•...................•.............. 104 

4.9 CPO Registers ....•.•................................................................ 104 

4.9.1 Index Register (CPO Register 0, Select 0) .•.......................................... 105 

4.9.2 Random Register (CPO Register 1, Select 0) •......................................... 106 

4.9.3 EntryLoO, EntryLol (CPO Registers 2 and 3, Select 0) ................................. 107 

4.9.4 Context Register (CPO Register 4, Select 0) .......................................... 110 

4.9.5 PageMask Register (CPO Register 5, Select 0) ........................................ 111 

4.9.6 Wired Register (CPO Register 6, Select 0) ............................................ 112 

4.9.7 BadV Addr Register (CPO Register 8, Select 0) ........................................ 113 

4.9.8 Count Register (CPO Register 9, Select 0) .........•...... ·'· .•........................ 114 

4.9.9 Entry Hi Register (CPO Register 10, Select 0) ............•........ -~ ................... 114 

4.9.10 Compare Register (CPO Register 11, Select 0) •...••......•• •.: . • ~ ................... 116 

4.9.11 Status Register (CP Register 12, Select 0) .........•.. : • .....•.......•..............• 116 

4.9.12 Cause Register (CPO Register 13, Select 0) ......•••......•• ; ...........••........... 123 

4.9.13 Exception Program Counter (CPO Register 14, Select 0) .................... 'f•; •••••••• 126 

4.9.14 Processor Identification (CPO Register 15, Select 0): • ; •••............................• 127 

4.9.15 Configuration Register (CPO Register 16, Select 0) ....... ~ ......•.............•...... 128 

4.9.16 Configuration Register 1 (CPO Regist~~ 16;sel~ctl) .....•••..........•..•.......••... 130 

4.9.17 Load Linked Address (CPO Register 17,Sel~~t o) • ~·l .................................. 132 

4.9.18 WatchLo Register (CPO Regis_te; 18), ~: :0(·;. ~ .... / ................................... 132 

4.9.19 WatchHi Register (CPO Regist~r 1~) • . • . • . · ...........................••...•.... 134 

4.9.20 XContext Register (CPO Register 2o;select 0) ........................•....•......... 135 
'-, -- --,:~:., -,:_-_<;v~-- .. ,, 

4.9.21 Reserved for lmplementation.5 (CPO Register 22, all Select values) ...................... 136 

4.9.22 Debug Register (CPO Register 23f·:·::. ; . :'; : .. ·; .. ; ~ .... ; ... : ............... .' ........ 136 

4.9.23 DEPC Register (CPO R~gtst~r24)" .• . i_' • ••••••••••••••••••••••••••••••..•.•..•••••.. 137 

4.9.24 Performance Counter RegisterJC::}>O Register 25) ..............•..•....•............• 137 

4.9.25 ErrCtl Register (CPO Register 26, Select 0) ................•........•..........•.... 140 

4.9.26 CacheErr Register (CPO Register 27, Select 0) ....................................... 140 

4.9.27 TagLo Register (CPO Register 28, Select 0, 2) •..........•.....••.....•.•.•......•..• 142 

· 4.9.28 DataLo Register (CPO Register 28, Select 1, 3) ...•.....•..•..•..•.•••.•• ; ...........• 143 

4.9.29 TagHi Register (CPO Register 29, Select O, 2) ...........•....•.....•.....••.......... 143 

4.9.30 DataHi Register (CPO Register 29, Select 1, 3) ....................................... 144 

4.9.31 ErrorEPC (CPO Register 30, Select 0) .............................................. 144 

4.9.32 DESA VE Register (CPO Register 31) ............................................... 145 

4.10 CPO Hazards ........•...........•.................................................. 145 

Appendix A Alternative MMU Organizations .................................................. 147 

A.1 Fixed l\tlapping l\tllVIU ................................................................ 147 

A.1.1 Fixed Address Translation ........................................................ 147 

November 15, 1999 - VII -

MIPSri;; PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS.DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64™ Specification 

A.1.2 Cacheability Attributes ...........•.•••..•••.•..••.•••.•••.•.••.•••••••••.•••.••. 149 

A.1.3 Changes to the CPO Register Interface ••••••.••••••.••••••••••.••••••••••.•••••••••• 150 

A.2 Block Address Translation ••.••••••.••••••••••••••••••••••••••.•.••••••••••••••••••••• 150 

A.2.1 BAT Organization •...•..•.••..••...••••••••••••••••••••••••••••••••••••••.••••• 150 

A.2.2 Address Translation ••••••••••••••••.•••••••••••••••••••••••••••••.•••••••••••••• 151 

A.2.3 Changes to the CPO Register Interface •••••.•••••••••••..••••..••••••••••••••••••.• 152 

f 

November 15, 1999 - viii -

MIPS@ PROPRIETARY /CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DLIPLIC A TION IS PROHIBITED. 



Revision 1.0 MIPS64TM Specification 

List of Figures 
Figure 1: CPU Registers in MIPS64 Native Mode ............•..............•............•.....•... 4 
Figure 2: FPU Registers if StatusFR is 1 ......................................................... 9 
Figure 3: FPU Registers if StatusFR is 0 ............................................•........... 10 
Figure 4: Usage of Address Fields to Select Index and Way ....................................•.... 47 
Figure 5: FIR Register Format ................................................................ 61 
Figure 6: FCSR Register Format .............................................................. 62 
Figure 7: FCCR Register Format ......................................••....•......•.......... 65 
Figure 8: FEXR Register Format ........................................•.•..•.•...•.......... 66 
Figure 9: FENR Register Format ......................•............•.........•.....•.•.....•.. 66 
Figure 10: Virtual Address Spaces ...........................................•................. 7 4 
Figure 11: Address Interpretation for the xkphys Segment ...................•..................... 80 
Figure 12: Contents of a TLB Entry .............................••.•.•........•................ 85 
Figure 13: Index Register .•....................................................•..•.......... 106 
Figure 14: Random Register Format ........•................................................. 107 
Figure 15: EntryloO, EntryLol Register Format ...................... : ."~ •....................... 107 
Figure 16: Context Register Formats ..•..........................• : . : { . ....•.................. 111 
Figure 17: PageMask Register Format ............................•• / .....• ~ ..•..............•. 111 
Figure 18: Wired And Random Entries In The TLB ...........• : ~ '. •.•.••• "., •..•••................ 11_3 
Figure 19: Wired Register •.............................•.. _, ..• ~·_;. ·-.: ..•....................... 113 
Figure 20: BadV Addr Register Format ....................•........•••.............•.......... 114 
Figure 21: Count Register Format ............................•.................... : ·:--; ........ 114 
Figure 22: Entry Hi Register Format .........•..........••• · •••• ,·.-•.............................. 115 
Figure 23: Compare Register Format . . . . . . . . . . . . • .............•..•..•...... 116 
Figure 24: Status Register Format ............. ; . . . . . ...............•......... 117 
Figure 25: Cause Register Format . . . . . . . . . . · . . . . . • ......•...........•....... 124 
Figure 26: EPC Register Format ........... . 
Figure 27: PRid Register Format . . . . . . . . . . . • . . . • ...• ! ................................... 127 
Figure 28: Config Register Format . . . . . . . . . . . . . . . . . . . . ...................................• 129 
Figure 29: Configl Register Format ... _ ......•• .' ._.. . . . . . . . ........•...•.......•••..•......•.... 130 
Figure 30: LLAddr Register Format .•...•...... ; ........................................ 132 
Figure 31: WatchLo Register Format......... • •.•..••.••...•.•.••..•...•...............•....•.. 133 
Figure 32: W atchHi Register Format ...•.•........................•.............. 134 
Figure 33: XContext Register Format .......•••. ; ................ ~ ........••.•................ 136 
Figure 34: Performance Counter Control Regi~te,i,; Format •.....•.•........•..........•..•...•.... 138 
Figure 35: Performance Counter Counter Register Format. . .......•.••.•...•.••.••............... 140 
Figure 36: CacheErr Register Format •................•..................•.....•....•......... 141 
Figure 37: TagLo Register Format ........•.....................•............................. 142 
Figure 38: DataLo Register Format ....................•............•...•.•........••.......... 143 
Figure 39: TagHi Register Format •...... : ..••..•..........•....•.••.••.....•.•....•.......•.. 144 
Figure 40: DataHi Register Format .................•.......................•..•....•..•....•. 144 
Figure 41: ErrorEPC Register Format .......•.................•...•........................... 145 
Figure 42: Memory Mapping when ERL= 0 ..............•.......•.........••.•.............•. 148 
Figure 43: Memory Mapping when ERL= 1 ..........................•..•....••..........•.•.. 149 
Figure 44: Config Register Additions .......................................•...........•...... 150 
Figure 45: Contents of a BAT Entry ........................................................... 151 

November 15, 1999 - ix -

MIPS@ PROPR!ETARY/CONF1DENT1AL: 
RESTRICTED DOCUMENT SUBJECT TO CONFlDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64TM Specification 

List of Tables 
Table 1: CPU Load, Store, and Memory Control Instructions •••..•.•••••••••••.••••••.•••.•••..•••• 5 

Table 2: CPU Arithmetic Instructions •...•...••..•................•..•••.•..•.•...••.....•.•.••. 5 

Table 3: CPU Logical Instructions ••.••.•••..•••.•••.••.•••••...•••••.•....•.••••.••••••••••••.. 6 

Table 4: CPU Move Instructions ••.••..••••••.•••.•••••••.••.•......•••••.•.••.••••••••••••••••• 6 

Table 5: CPU Shift Instructions •••••.••••.•••.•.•••••••••••..•••.•...•••••.••..•••••••••••••••• 7 

Table 6: CPU Branch and Jump Instructions •••..•••••••••.••••...•.••.•••••••••••••••••••••••••• 7 

Table 7: CPU Trap Instructions .•..••••.•..••••••..•••••.•..•.•••.•.••••••••••••••••••••••••••• 7 

Table 8: Obsolete Branch Instructions ••..••..•.•••••.•.•..•••....•••..••••••••••••••••••••••.••• 8 

Table 9: Embedded Application Instructions ..•..••••.•••...••......•••.••.••••••.••...••.•..•••. 8 

Table 10: FPU Load and Store Instructions •..••..••••.••••••...•.....••••••••••••••••••.••...••. 10 

Table 11: FPU Arithmetic Instructions •...•.•...•••••••.•.......•..•.•••...•••••.•••••••••••••• 11 

Table 12:_ FPU Move Instructions ....•••.•...••..•.•.•••••••••...• '.::i;:~~~~ ........... · ~ ... ·: ........ 11 

Table 13: FPU Convert Instructions •.••......•.•.•.••••••••••...•• < .. 1~· . •• ;, .•.•••••••.•.••...... 12 

Table 14: FPU Branch Instructions •••.•.•••••..•••••••••••••• ·.: • • ••• ~ •••••••••.•••••••••. 12 

Table 15: Obsolete FPU Branch Instructions • • . • . • . • • . • • . • • • • • • . •••••••••••••.••.•••• U 

Table 16: Coprocessor Interface Instructions •••.•••.•••••••• ~.. . . . . . •.••••••••••.••••••••.. 13 
~·,':~ . " 

Table 17: Privileged Instructions....................... • • • • • • • ..•.••.••.•••••••••• ·~·· •••••••• 13 

Table 18: EJTAG Support Instructions • • • • • • . • • • • • • • • • • ••••••••••••••••••••••••••••• 14 

Table 19: Symbols Used in the Instruction Encoding'.fa~es • • . • • • . • . • • •••••••••••••••••••••••••• 14 
. • • ..i:iJii!.\i#IJ~ 

Table 20: MIPS64 Encodmg of the Opcode ~1eldl( •••• ·J~i~~;;;,.:..... . .......................... 15 

Table 21: MIPS64 SPECIAL Opcode Encodm2. on Field; ••...•••••••••••••••••••••••••••••• 15 
,,P Sf 

Table 22: MIPS64 REG IMM Encoding of rt Fiel ••• • ;I •••••••••••••••••••••••••••••••••••• 15 
··~ •. 

Table 23: MIPS64 SPECIAL2 Encoding ofFunc~ion Field . • ••••.••••••••••••••••••••••••••••.••• 16 
" .. 

Table 24: MIPS64 MOVCI Encoding of~,Bit • :: • •• • .•• • J ........................................ 16 
,;,;..~:..~r,~ . h:,.·~~! 

· Table 25: MIPS64 COPz Encoding ~}rs Fiel~.,~;s{,,;~· '. ~.V·: ·:. " .... ,. .... ·: .... ·: ...... : ........... . 16 

Table 26: MIPS64 COPz Encoding of~~~i!M;~.SWlie~15=BCz ••••••••••••••••••••••••••• ~ ••••••••••• 16 

Table 27: MIPS64 COPO Encoding of rs Field •.••• :~ ..••••••.•••••••••••••••••••••••••••.•••••••••• 16 
.J' 

Table 28: MIPS64 COPO Encoding of Function :i::~eld When rs=CO •••••••••••••••••••••••••••••••••• 17 

Table 29: MIPS64 COPl Encoding ofrs Field ••••••••.• ;· •.•••.•••.••••••.•••••••••••••••••.•.•••• 17 

Table 30: MIPS64 CO Pl Encoding of Function Field When rs=S ••..••••••••••.••••••••••••••••••••• 17 

Table 31: MIPS64 COPl E~coding of Function Field When rs=D •••.••••••••••••••••••••••••••••••• 17 

Table 32: MIPS64 COPl Encoding of Function Field When rs=W or L ................................ 18 

Table 33: MIPS64 CO Pl Encoding of Function Field When rs=PS •..••••.•.....•••••••••••.•••••••• 18 

Table 34: MIPS64 CO Pl Encoding of tf Bit When rs=S, D, or PS, Function=MOVCF •••••••••••••••••• 18 

Table 35: MIPS64 COPlX Encoding of Function Field ••.•.••••..••..••....•••••••••.•••••••••.••• 18 

Table 36: PREF hint field encodings •••...•.•.••••..•...••.•••.•••.••.•••.•••.••.••••••.•••••••• 41 

Table 37: Usage of Effective Address •......••..•••••••.••......•.••••....••....••.•••••••...•.• 46 

Table 38: Encoding of Bits[17:16] of CACHE Instruction ......•...•..•••...•••..•....••.••••..•... 47 

Table 39: Encoding of Bits [20:18] of the CACHE Instruction ..•....••..•...••...•......•...•....•. 48 

November 15, 1999 - x -

MIPS@ PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROl llBITED. 



Revision l .0 MIPS64TM Specification 

Table 40: FIR Register Field Descriptions .......•..•....•.......•....•....•••••..•..........•••. 61 

Table 41: FCSR Register Field Descriptions ..•........•.•..•.........•.....••.•.•..••..•••••.••. 62 

Table 42: Cause, Enable, and Flag Bit Definitions •.••...•••..•...•...••••••...•••..••••....•••••. 64 

Table 43: Rounding Mode Definitions ..••.•.•....•••••.•...•..••..••..•••••..•.••.•.•.••....••. 64 

Table 44: FCCR Register Field Descriptions .••.•••.•••.••••.•..•...•••••..•.•.•••••••••••••..••. 65 

Table 45: FEXR Register Field Descriptions ..••..•..•......•••....•.•••..•.••.••..••••.•....•••• 66 

Table 46: FENR Register Field Descriptions •••...•••••.•.•.•.•••••••••....••..•••••.•••••••••••. 66 

Table 47: Coprocessor 0 Registers in Numerical Order .•.•.••.••••.•••.••.•. ~ ...••••...••.•••••••. 69 

Table 48: Virtual Memory Address Spaces •..•...•..•..••.••.•.••....•.•....•••••••.••.••.•.•••• 75 

Table 49: Address Space Access and TLB Refill Selection as a Function of Operating Mode •.•.•••••.••• 77 

Table 50: Address Translation and Cache Coherency Attributes for the ksegO and ksegl Segments ..••.•. 80 

Table 51: Address Translation and Cacheability Attributes for the xkphys Segment ...•.••.•..•.•••.••. 80 

Table 52: Physical Address Generation •.....•••.•.••.••••••.•.••.••..•.••••.•.••.•.•.•..••.••.• 87 

Table 53: Mapping of Interrupts to the Cause and Status Registers .••.••• ;··:; . . ~ ••..•••••••••••••.•.. 87 

Table 54: Priority of Exceptions ••••..•.•.••.•.••••••.......•..•.•••. ~· ••••. ·~ •••••••••..••••••••• 88 

Table 55: Exception Type Characteristics ..........••.•.•...•• ·.: · •.• :~·..... : .•......••...•.•.••• 90 

Table 56: Exception Vector Base Addresses •.•...•••....•.•...•• ~~ ••....•••..•..•.•...••....••... 91 
·,. ,, 

Table 57: Exception Vector Offsets ••.•.....•.....•••.•.••.• · •• .- .....•••. ·: .•......•.•.••••..••.•••. 91 

Table 58: Exception Vectors • • . • . • • . . . . • . . • . . . • . . • • . . . . . ...... ~: .•••.••.••.•••...•.• ~'."; •.••.•••• 92 

Table 59: Index Register Field Descriptions ••..••.•••..•• -. :; : L ~:· .............................. 106 

Table 60: Random Register Field Descriptions •••• ;;~{!::: ......................................... 107 
• • :/·" • • , ::y) ,.r!VL.Y?'>' . : 

Table 61: EntryLoO, EntryLol Register Field D~scripbons ·,,: •1~.·~·~ ••••••• ; •••••••••••••••••••••••••• 107 
',:!>o"""'" , f '(.>/ :,\ 

Table 62: Cache Coherency Attributes ••..•• ;·:<::::.\ .t ...... {'l ••.•.•..••..••.••..•••....•.•••..• 109 

Table 63: Context Register Field DescriptiQ~ •••• ~ :;:~~~:"~;·,.. ~ / .••.••.•••.•.•.•.•••••••.•••.•••••• 111 

Table 64: PageMask Register Field Descriptions·~,:~ •.••.. : ':~s:" ..................................... 111 
.. / .i.. :;tT,·>s: f 

Table 65: Values for the Mask Field of the PageMaskR~gister .••.•......•..•.•.•..•.•...•.•••••••• 112 

Table 66: Wired Register Field.Desci,iptions ~~ ... ·:~ .. :- .• ~·!. ............................................ 113 
~\., . -'.rrt< · ..;;· ;,~· ~',>1;,'_~ . . 

Table 67: BadVAddr Register Field Descriptions • :;; ..••••••.••.••.•••••..•.•.•.•••..•.•.••••.... 114 

Table 68: Count Register Field Descriptl~ns . . . . ~ .•••.•••••.•••.••.••. : .••••••.•..••• ~ •..•..•• 114 

Table 69: EntryHi Register Field Descriptions . . ..••.•••••.•. • •••••••.•.••.•••..•..••.•..•.•••• 115 

Table 70: Compare Register Field Descriptions •.•••••• .' •••....•.•.••••..•.•.••••••••••••..••••• 116 

Table 71: Status Register Field Descriptions ..•..••.••.•••.....•....•.•..•••...•..••••.•••••••.• 117 

Table 72: Cause Register Field Descriptions ~ .• , •.••••.••••••. · .•. , .••••.• -: : • .••.•••••••••.•••••• 124 

Table 73: Cause Register ExcCode Field ...••••...•..•••••••.••••.•.•.••••••.•..•.••...•.••.•.• 125 

Table 74: EPC Register Field Descriptions ...•.•.•.•.••••.•..••...•.••..•••••.•..•.•••••••••••• 127 

Table 75: PRld Register Field Descriptions .•••.•....•.•...•...••...•..••••••.••....•.••..•..••• 127 

Table 76: Config Register Field Descriptions .•..•.••..•.•.•.•..•....•........••••••..•.•..•.•••• 129 

Table 77: Configl Register Field Descriptions ................................................... 130 

Table 78: LLAddr Register Field Descriptions ....•.....•...•......••••...••..•••••..•.••...•... 132 

Table 79: WatchLo Register Field Descriptions .......................•......•...•............•. 133 

November 15, 1999 - XI -

MIPS@ PROPRIETARY /CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS.DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64TM Specification 

Table 80: W atchHi Register Field Descriptions .••.•••••..••••...•••••.••••..••.•.•..••••..•••... 134 

Table 81: XContext Register Fields •.•••••••.•••..•.••.•••••..•••••.•••.•••••••..•••.•••.•••••• 136 

Table 82: Example Performance Counter Usage of the PerfCnt CPO Register ••.••••••••••••••••••.•• 137 

Table 83: Performance Counter Control Register Field Descriptions •••••••••••••••••••••••••••••••. 138 

Table 84: Performance Counter Counter Register Field Descriptions •.•••••••••.•..••.••••••••••••• 140 

Table 85: CacheErr Register Field Descriptions •••••••••••••••••••••.•••.•••••.••••••••••••.•••• 141 

Table 86: TagLo Register Field Descriptions ••••••••..••••.•••••••.•••.•••••.••••••••••••••••••• 142 

Table 87: DataLo Register Field Descriptions •••••• ; ••••••• ~ •• ·; •••.•.• · •• ; ••.••••••••••••••.••••• 143 

Table 88: TagHi Register Field Descriptions •••••••••••••••••.•.••••••..•••..•••••••••••••.••••• 144 

Table 89: DataHi Register Field Descriptions •••••••••••••••••••••••••.••••••••••••••••••••.•••• 144 

Table 90: ErrorEPC Register Field Descriptions ••••••••••••••••••••.•••.•••.••.•••••••.•.•••••• 145 

Table 91: "Typical" CPO Hazard Spacing ••••••••••••••••••••••••••...•.•••••••••••••••.•••.••• 146 

Table 92: Physical Address Generation from Virtual Addresses •.••••••••••••••••.•••.••••••••••••• 147 

Table 93: Config Register Field Descriptions....................... ~,~,;-~ ••••.••••••••••••••.••• 150 

Table 94: BAT Entry Assignments • • • • • • . • • • • • • • • • • • • • • • . • • • • . . . • • ••••••• ~ ••••.••.•• 151 

November 15, 1999 - xii -

MIPS@ PROPRIETARY /CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTI!\LITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64TM Specification 

1. The MIPS64TM Architecture 

1.1 Architecture and Document Feedback 
Comments or questions on the MIPS64TM Architecture or this document should be directed to 

Director of MIPS Architecture 
MIPS Technologies, Inc. 
1225 Charleston Road 
Mountain View, CA 94043 

or via E-mail to architecture@mips.com. 

1.2 MIPS64 Overview 

1.2.1 Historical Perspective 

The MIPS® Instruction Set Architecture (ISA) has evolved over·time from tlie'original MIPS I™ ISA to the most 
recent MIPS V™ ISA. As the ISA has evolved, all extensions have been back\vard comp'atible with previous versions 
of the ISA. With the MIPS III™ level of the ISA, 64-bit integers and addresse~ were.added to the instruction set. The 
MIPS IV™ and MIPS V™ levels of the ISA added improved floating point 9perations;"as well as a set of instructions 
intended to improve the efficiency of generated code and of data movement. Because of the strict backward-compati
ble requirement of the ISA, such changes were unavailable to 32-bit implementations of the ISA which were, by def-
inition, MIPS I™ or MIPS UTM implementations. \ ~ 

' _">, 

While the user-mode ISA was always backward compatible, the~rlvifeged._epvironment was allowed to change on a 
per-implementation basis. As a result, the R3000® privil(!geq environment wasdifferent than the R4000® privileged 
environment, and subsequent implementations, while sf~ilar to.the R4000 privileged environment, included subtle 

/l ;/._,f,'.;t';.'-':-;p.·>~~ ",,,_, 

differences. Because the privileged environment wl1:~1lever P&ll1 oftheMIPS ISA, an implementation had the flexibil-
ity to make changes to suit that particular implerrien~~9~(Unfort~9ately, this required kernel software changes to 
every operating system or kernel environment on which0"thai'.implementation was intended to run. 

-_~:;_~~~ ' ,; '.':::t;f fr~0?-'~f" 
Many of the original MIPS implementations were·targeted atc;pinputer-like applications such as workstations and 
servers. In recent years MIPS implementati9ns have haq ~igniftcant success in embedded applications to the extent 
that most of the MIPS parts that are shipped go into soill~)O~t of embedded application. Such applications tend to 
have different trade-offs than computef-like applkations including a focus on cost of implementation, and perfor
mance as a function of cost and power. f.(t;:r1'.:>>'· ; ;.;, 

1.2.2 The MIPS64 Architecture 

The MIPS64 Architecture is intended to address the need for a high-performance but cost-sensitive 64-bit MIPS 
instruction set. It is based on the MIPS V ISA and is backward compatible with the 32-bit MIPS32 Architecture. It 
also brings the privileged environment into the Architecture definition to address the needs of operating systems and 
other kernel software. The MIPS64 Architecture therefore consists of the following components: 

The Instruction Set Architecture based on the MIPS V ISA, with backward compatibility to the MIPS32 
Architecture. 
The 64-bit MIPS Privileged Resource Architecture which defines the requirements for the privileged envi
ronment. 
The provision for including MIPS Application Specific Extensions (ASEs) to address the specific needs of 
particular markets. 

November 15, 1999 - 1 -

Mirs<•D PROPRIETAR '{/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64TM Specification 

2. The MIPS64 ISA 
The MIPS64 instruction set includes the following instructions: 

The MIPS V CPU instructions 
• The MIPS V FPU instructions 

A set of new instructions targeted at embedded applications. 
The instructions which act as the ISA interface to the MIPS Privileged Resource Architecture 

This specification does not describe many of these instructions in any detail because it is assumed that the reader also 
has access to the most recent copy of the two-volume set entitled MIPS RISC Architecture. Only differences and 
additions are described in this document. Upon completion of the review process, this document will be incorporated 
into the MIPS RISC Architecture document. 

2.1 Compliance and Subsetting 
To be compliant with the MIPS64 Architecture, designs must implement a set of required features, as described in 
this document. To allow flexibility in implementations, the MIPS64 Architecture does provide subsetting rules. An 
implementation that follows these rules is compliant with the MIPS64 Archite5~r~,as long as it adheres strictly to the 
rules, and fully implements the remaining instructions. Supersetting of the MIP$64 Aichitecture is only allowed by 
adding partner-specific functions to the SPECIAL2 major opcode, by adding ~ori~rol for, ~o-processors via the COP2, , , · "~:~ ,.,, c" 0• I 

LWC2, SWC2, LDC2, and/or SDC2 opcodes, or via the addition of approved Applic~tion Specific Extensions. The 
/~.,: ~·';· H,,;.:::,.4' .,., 

subsetting rules are: './'\;>>, " 
'''··'·~ :I ,, , •• ,.,"'C,··1+t':!! 

All CPU instructions must be implemented - no subsetting is allowed. ''"'jp/ . 
The FPU and related support instructions, including the MOVF ~nd MOVT CPU instructiorl$; may be omit
ted. If the FPU is implemented, the paired single (PS) fqfwat ii:;optjonal. Therefore, the following allowable 
FPU subsets are compatible with the MIPS64 ar itecf;e:'"'~''li!l11i;ii~"1 

NoFPU .. \ 
FPU with S, D, W, and L formats and. · ~nstructionsj 

• FPU with S, D, PS, W, and L forma . o~:iinstructions 
Implementation of the full 64-bit addrefs spa .c onaJ.,:fhe processor may implement 64-bit data and 
operations with a 32-bit only addres~~ace. In th'is;c~Te.'.~,,,Pt~ MMU acts as if 64-bit addressing is always dis-
abled. · . , 

• Supervisor Mode is optional. If Sµp~rviso is not implemented, bit 3 of the Status register must be 
ignored on write and read as zerd:~ 

• The standard TLB-based mern'6ry man e~t uni may be·replaced with a simpler MMU (e.g., a Fixed 
Mapping MMU). If this is do~~),. . ,,,., '6flli~interface to the Privileged Resource Architecture must be 
preserved. If a TLB-based memo~%anageme~t unit is implemented, it must be the standard.TLB-based 
MMU as described in the Privileged Re,,~g~c~ Architecture chapter. 

• The Privileged Resource Architecture indffdes several implementation options and may be subsetted in 
accordance with those options. 

• Instruction, CPO Register, and CP l Control Register fields that are marked "Reserved" or shown as "O" in 
the description of that field are reserved for future use by the architecture and are not available to implemen

. tations. Implementations may use those fields that are explicitly reserved for implementation dependent use. 
• CPO Register and CPI Control Register encodings that are not currently used are reserved forthe future use 

of the architecture and are not available to implementations. Implementations may use those encodings that 
are explicitly reserved for implementation dependent use. 
EJTAG and the ASEs are optional and may be subsetted out. If they are implemented, they must implement 
the entire ISA applicable to the component, or implement subsets that are approved by the EJTAG or ASE 
specifications. 

• If any instruction is subsetted out based on the rules above, an attempt to execute that instruction must cause 
the appropriate exception (typically Reserved Instruction or Coprocessor Unusable). 

November 15, 1999 - 2 -

MIPS(i]) PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64TM Specification 

2.2 Changes to Revision 5.1 of the MIPS RISC Architecture Specification 
In addition to the MIPS64 Architecture described in this document, the following changes to Revision 5.1 of the 
MIPS RISC Architecture Specification are required for compliance with the MIPS64 Architecture: 

The MIPS IV ISA added a restriction to the load and store instructions which have natural alignment 
requirements (all but load and store byte and load and store left and right) in which the base register used by 
the instruction must also be naturally aligned (the restriction expressed in the MIPS RISC Architecture 
Specification is that the offset be aligned, but the implication is that the base register is also aligned, and this 
is more consistent with the in_dexed load/store instructions which have no offset field). The restriction that 
the base register be naturally-aligned is eliminated by the MIPS64 Architecture, leaving the restriction that 
the effective address be naturally-aligned. 
Early MIPS implementations required two instructions separating a mflo or mfhi from the next integer mul
tiply or divide operation. This hazard was eliminated in the MIPS IV ISA, although the MIPS RISC Archi
tecture Specification does not clearly explain this fact. The MIPS64 Architecture explicitly eliminates this 
hazard and requires that the hi and lo registers be fully interlocked in hardware for all integer multiply and 
divide instructions (including, but not limited to, the madd, maddu, msub, msubu, and mu! instructions intro
duced in this specification). 
The Implementation and Programming Notes included in this specification for the madd, maddu, msub, 
msubu, and mu! instructions should also be applied to all integer mul~ply)nd divide instructions in the 
MIPS RISC Architecture Specification. ' · 

2.3 CPU Architecture 

2.3.1 CPU Register Overview 
'.,;::'A',)}; .. <.~ . - . ~ ·,~ 

The MIPS64 Architecture defines the following CPU registers: ·-;7""; "'+~<: '-:,,_ ,-, 
32 64-bit general purpose registers (GPRs) __ :i~ \ 
a pair of special-purpose registers to hold !Re result~,~,[f~l~g~r multi~fy, divide, and multiply-accumulate 
operations (HI and LO) •"?(i'h,, -J- '?.~·; ;'·-···+1r"-"· _, -""-• 
a special-purpose program counter (PC), whi"Cfi"'j§_' cted only indirectly by certain instructions - it is not an 
architecturally-visible register. \~ "' -./ 

A MIPS64 processor always produces a 64-bit result~~:ven for those instructions which are architecturally defined to 
. .' ·.)}\".;··~ .'• ·f 

operate on 32 bits. Such instructions typically,_s_ign-extend·:~~ir 32-bit result into 64 bits. In so doing, 32-bit programs 
work as expected, even though the registers are actu:illy 64 bits wide rather than 32. 

- -- - - -~~~~:.:.::~f;: - - ,-. - - -

November 15, 1999 - 3 -

MIPS49 PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBL!Ci;\ TIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64™ Specification 

Figure 1: CPU Registers in MIPS64 Native Mode 

63 0 63 0 
..--~-......-,.,---..---~to~ze-ro.--~-. ~, ~~~~b~g.--~~~--.1 

··~~ 

0 

General Purpose Registers 

2.3.2 Endianness 
···,·······-~-- ... _ ....... · ... ·. 

~o~pliant i~ple~entation~ of the ~ ,,~~:~9hftlctiif~ must be bi~endian. Tha~ is, they. must be ~apable of running 
m either a b1g-end1an or a httle-endian b~e.oraer, as selected by an 1mplementat1on-spec1fic power-up_sequence. The 
BE bit in the Config register, set as part of the power-u~ sequence, indicates the endian mode in which the processor 
is running. It is implementation-dependent whether'.[~~erse-endian mode is implemented. 

2.3.3 CPU Instruction Overview 

Table 1 through Table 9 lisnhe CPU instructions that are part of the MIPS64 ISA. If 64-bit operations are not 
enabled, certain instructions, as described in the Instruction Bit Encoding tables, are not legal and result in a Copro
cessor Unusable Exception or Reserved Instruction Exception, as appropriate to the type of instruction. 

Note 

Although the Branch Likely instructions are included in this specification, software is strongly encouraged to 
avoid use of the Branch Likely instructions, as they will be removed from a future revision of the MIPS64 
architecture. The Branch Likely instructions were added to the ISA at a time when processor implementations 
were much simpler. Since that time, implementation of the Branch Likely instructions has been shown to be 
increasingly difficult and costly on processors with aggressive branch prediction. Continued use by software 
will result in serious performance issues as such processor designs penetrate the embedded market. The 

November 15, 1999 -4-

MIPS@ PROPRIETARY /CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64 TM Specification 

Branch Likely instructions are listed in Table 8 and Table 15. 

Table I: CPU Load, Store, and Memory Control Instructions 

Original 
Mnemonic Instruction MIPS ISA 

Level 

LB To~yte T 
LBU Load Byte Unsigned . ... .1 

LH Load Halfword I 

LHU Load Halfword Unsigned I 

LW Load Word I 

LWL Load Word Left I 

LWR Load Word Right I 

SB Store Byte I 

SH Store Halfword I 

SW Store Word ~!.2~~'.:~.~· 

SWL Store Word Left .. ./I _4; -~. ' 
SWR Store Word Right .. I 2fl_ 

·•. "»~~·~ ~,,.,,.,...... ~ 

LL Load Linked Word }'; ' ........ II>· 

SC Store Conditional Word 
d 

. ·:;;;:;::•.,,._II 

SYNC Synchronize Memory Operations "_i II 

LD Load Doubleword ~ h III 

LDL Load Doubleword Left -:.=c:.c :-i: ' •. III 
' 

LDR Load Doubleword Right •.'ili%~ :.. III 
~ ~&Fl <:~ 

LLD Load Linked Doubleword i{ 7:[. ~ .Jf_ III ::;::; 
LWU Load Word Unsigned ~ ]!J_ III 

SCD Store Conditional Doubleword ~ z III 
'i~. 

SD Store Doubleword '"1.ili' 
~ -=~ III 

SDL Store Doubleword Left ~ .,,.;/ III 
"'·" 

SDR Store Doubleword ~ight'' .. ·;~~~';:t/ III 

PREF Prefetch Memory:pata -~- · • .. ·~ ... . .. ·IV 

PREFX Prefetch Memory Dau.i:'.!ndexed ~ IV 
j( 

Table 2: CPU Arithmetidnstructions 
"'·<\ . 

Original 
Mnemonic Instruction MIPS ISA 

Level 

l\JJD ... Add Word .. ... I 

ADDI Add Immediate Word ..... I 

ADDIU Add Immediate Unsigned Word I 

ADDU Add Unsigned Word I 

DIV Divide Word I 

DIVU Divide Unsigned Word I 

MULT Multiply Word I 
MULTU Multiply Unsigned Word I 

SLT Set on Let Than I 

November 15, 1999 -5-

MIPS® PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS.DUPLICATION IS PROHIBITED. 



Revision 1.0 

Mnemonic 

-sr..Tl 
SLTIU 

SLTU 

SUB 

SUBU 

DADD 

DAD DI 

DADDIU 

DAD DU 

DDIV 

DDIVU 

DMULT 

DMULTU 

DSUB 

DSUBU 

Mnemonic 

D 

ANDI 

LUI 

NOR 

OR 

ORI 

XOR 

XOR! 

Mnemonic 

NIFHr 
MFLO 

MTHI 

MTLO 

MOVFa 

MOVN 

MOVTa 

MOVZ 

November 15, 1999 

Table 2: CPU Arithmetic Instructions 

Instruction 

Set on Less Than Immediate 

Set on Less Than Immediate Unsigned 

Set on Less Than Unsigned 

Subtract Word 

Subtract Unsigned Word 

Add Doubleword 

Add Immediate Doubleword 

Add Immediate Unsigned Doubleword 

Add Unsigned Doubleword 

Divide Doubleword 

Divide Unsigned Doubleword 

Multiply Doubleword 

Multiply Unsigned Doubleword 

Subtract Doubleword 

Subtract Unsigned Doubleword 

. . 
Table 3: CPU Logical Instructions 

Instruction 

Logical NOR 

Logical OR 

Logical OR Imm~diate_ 

Logical XOR 

Logical XOR Immeailite· 

Table 4: CPU Mo;e'f~uctions 

Instruction 
·:--

Move fromHl 

Move from LO 

Move to HI 

Move to LO 

Move Conditional on Floating Point False 

Move Conditional on Not Zero 

Move Conditional on Floating Point True 

Move Conditional on Zero 

-6-

Original 
MIPS ISA 

Level 

T 
I 

I 

I 

I 

III 
III 
III 

III 
III 
III 

>.·"·'" 

L'~II 
.L III 

~ ,);, 

·~\?'.:·.''' . ·;~·w;:·~~/~ 
..; .. ·. 

'~"'"-"· III 

~ 

I 
I 
I 
I 

I 

I 
I 

Original 
MIPS ISA 

Level 

T 

I 

I 

I 

IV 

IV 

IV 

IV 

MIPS@ PROPRIETARY/CONFIDENTIAL: 

MIPS64™ Specification 

.-:=:. 
.,..,.. 

RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 

a. These instructions require a floating point unit and may be subsetted out if no 
floating point unit is implemented. 

Table 5: CPU Shift Instructions 

Original 
Mnemonic Instruction MIPS ISA 

Level 

-S-LT Shift wororettTogtcaf T 
SLLV Shift Word Left Logical Variable I 

SRA Shift Word Right Arithmetic I 

SRAV Shift Word Right Arithmetic Variable I 

SRL Shift Word RightLogical I 

SRLV Shift Word Right Logical Variable I 

DSLL Shift Doubleword Left Logical III 

DSLL32 Shift Doubleword Left Logical + 32 III 
~ ' ......... 

DSLLV Shift Doubleword Right Logical Variable ./-'III '> 

DSRA Shift Doubleword Right Arithmetic ~,,,/III ~ 
) 

DSRA32 Shift Doubleword Right Arithmetic + 32 c~\'>.1• ··:o;JII•· ~~:,.I 

DSRAV Shift Doubleword Right Arithmetic Variable ._,:'J~"t :Ji,. III 

DSRL Shift Doubleword Right Logical 6 ··"'~~III 

DSRL32 Shift Doubleword Right Logical + 32 >· III 

DSRLV Shift Doubleword Right Logical Variable~ Eh III 

Table 6: CPU Branch and Jum~·ructions , '~ ~\("" 
) 

Ins:~ 
~'Original 

Mnemonic MIPS ISA 
Level 

lIBq Branch on Equaf ~ L I 

BGEZ Branch on Greater 1'h,~,2r Equal·Z~!J3...../ • I 

BGEZAL Branch on GreateyThan or Eql:!al ~ero:and Link . I 

BGTZ Branch on Greate~~han.Zer~r:t!f!\ I 
'' ~-1~,.e'tm:\f'.,,,., ' 1' 

BLEZ Branch on Less Thai'i'orEqual Zeip I 

BLTZ Branch on Less Than Zerq''""'"''"'"? I 

BLTZAL Branch on Less Than Zero arid·Link I 

BNE Branch on Not Equal I 

J Jump I 

JAL Jump and Link .. I . 

JALR Jump and Link Register . I 

JR Jump Register I 

Table 7: CPU Trap Instructions 

Original 
Mnemonic Instruction MIPS ISA 

Level 

~REAK Breakpoint I 

SYSCALL System Call I 

November 15, 1999 - 7 -

MIPS@ PROPRIETARY/CONFIDENTIAL: 

MIPS64TM Specification 

RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 

Table 7: CPU Trap Instructions 

Original 
Mnemonic Instruction MIPS ISA 

Level 

'fEQ Trap ifE"quar II 
TEQI Trap if Equal Immediate II 

TGE Trap if Greater Than or Equal II 

TGEI Trap if Greater Than or Equal Immediate II 

TGEIU Trap if Greater Than or Equal Immediate Unsigned II 

TGEU Trap if Greater Than or Equal Unsigned II 

TLT Trap if Less Than II 
TLTI Trap if Less Than Immediate II 

TLTIU Trap if Less Than Immediate Unsigned II 

TLTU Trap if Less Than Unsigned II 

TNE ,,., Trap if Not Equal II 
,:~···,,., 

TNEI Trap if Not Equal Immediate f'·~·n '. 

Table 8: Obsolete3 Branch Instructions ~~. ~ 
~ 9Y>lll!';J,;.r 

i'"" <;rJ~;Qriginal 
Mnemonic Instruction 

1 P\4j 
'iVi:IPS ISA 

Level 

~ Branch on Equal Likely ,,. :.;:. :,%? II 

BGEZALL Branch on Greater Than or E~d Link Ji II 
Likely .~ 

BGEZL Branch on Greater Than or E.,9~l Zero,f:.'ikel~ •'.~"" II 

BGTZL Branch on Greater Than Zeto Cike~L_ ~f II 
'• 

BLEZL Branch on Less Than orJ~,gual Zerotik~!Y~ II 

BLTZALL Branch on Less Than Zero an¢4,.ink Like1iv 
-:f•<,.11:" ·\ 

II 

BLTZL Branch on Less Thag~~~f P Likelf'I~ · II 

BNEL Branch o_n Not E~al Likely~-. .1_ II 
'. 

a. Software is strongly encourage;f:~~~Y:~1f:tfttg:ie Branch Likely instructions, 
as they will be removed from a future.revision 0¥ the MIPS64 architecture. 

··"'1: 

Table 9: Embedded Applica ion Instr~ctions 

Original 
Mnemonic Instruction MIPS ISA 

·-. Level 

CLO -CountTeac:fing lYnes in Woro NilPSJZ' 

CLZ Count Leading Zeros in Word MIPS32 

DCLO Count Leading Ones in Doubleword MIPS64 

DCLZ Count Leading Zeros in Doubleword MIPS64 

MADD Multiply and Add Word MIPS32 

MAD DU Multiply and Add Unsigned Word MIPS32 

MSUB Multiply and Subtract Word MIPS32 

MSUBU Multiply and Subtract Unsigned Word MIPS32 

November 15, 1999 - 8 -

MIPS@ PROPRIETARY/CONFIDENTIAL: 

MIPS64™ Specification 

' ..... ..... 

RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 

Table 9: Embedded Application Instructions 

Mnemonic Instruction 

2.4 FPU Architecture 

2.4.1 FPU Register Overview 

The MIPS64 Architecture defines the following FPU registers: 

32 64-bit floating point registers (FPRs). 
Five FPU control registers 

Original 
MIPS ISA 

Level 

MIPS64™ Specification 

For compatibility with MIPS32 processors, a MIPS64 processor can be configurc:d to run in a mode in which the 
FPRs are treated as 32 32-bit registers, each of which is capable of storing onlf}2-bit.data types. In this mode, the 
double-precision floating point (type D) data type is stored in even-odd pairs ofFPRs, and the long-integer (type L) 
and paired single (type PS) data types are not supported. :r.,~,·,·"w:-· ,:1.i! 

li'f~;;;;.-

Figure 2: FPU Registers if St~fusFR is 

,.;.6;;...3 -------rr.--------....;,~·"k~ill1;;~J:>.. 

31 0 
I FCRO 

FCR25 

FCR25 

FCR28 

FCSR 

General Purpose Registers Special Purpose Registers 

November 15, 1999 - 9 -

MIPS® PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DOPLIC A TI ON IS PROHIBITED. 



Revision 1.0 MIPS64TM Specification 

Figure 3: FPU Registers if StatusFR is 0 

63 32 31 0 

------n------
------r.;------
------rs------
------n------______ t'9 _____ _ 

- - - - - -rr1- - - - - -
- - - - - -fl3- - - - - -

- - - - - -rrs- - - - - -
- - - - - -rr1- - - - - -

2.4.2 FPU Instruction Overview :::n • 
i'll:.,,, 

'\¥fr'fCR25 

0 
I 

I A FCSR I 
w 

Spedal Purpose Registers 

-~P~~t. 
Table 10 through Table 15 list the FPU instructions that are part of the MIPS64 ISA. If the processor is configured to 
run in the mode providing backward ~mpa ·· iii.. IPS32 processors, certain instructions, as described in the 
Instruction-Bit Encoding tables, are riBt)J~g ~'' t in a Reserved Instruction exception. This includes those 

1"~-1; t; ·' ·~"'' 

instructions which operate on paired single :floating poiµ1 (type PS) and 64-bit fixed point (type L) data types. 

Table 10: FPU Load and Store Instructions 

:·· ... .. Original 
Mnemonic Instruction MIPS ISA 

Level 

LWCl ToaaWoro to Roatmg Pomt I 

SWCl Store Word to Floating Point I 

LDC! Load Doubleword to Floating Point II 

SDCl Store Doubleword to Floating Point II 
LDXCl Load Doubleword Indexed to Floating Point IV 

LWXCl Load Word Indexed to Floating Point IV 

SDXCl Store Doubleword Indexed to Floating Point IV 

November 15, 1999 - 10 -

MIPS@ PROPRIETARY /CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS.DUPLICATION IS PROHlBITED. 



I 
I 

Revision 1.0 MIPS64TM Specification 

Table 10: FPU Load and Store Instructions 

Original 
Mnemonic Instruction MIPS ISA 

Level 

swxcr Store word Indexed to Floating -Pomt -IV 

LUXCl Load Doubleword Indexed Unaligned to Floating v 
Point 

SUXCl Store Doubleword Indexed Unaligned to Floating v 
Point 

Table 11: FPU Arithmetic Instructions 

Original 
Mnemonic Instruction MIPS ISA 

Level 

AffS.tmt Floating Point AosoTute Value I, V 

ADD.fmt Floating Point Add ,;;>tI;;v ... 
C.cond.fmt Floating Point Compare ·1 ).V " .. , ~ 

DIV.fmt Floating Point Divide ._ ~ 
MUL.fmt Floating Point Multiply ]J_'.• .. I,v·· 

NEG.fmt Floating Point Negate :.+\ . <'.~::.;I, y 
SUB.fmt Floating Point Subtract ~ I, V 

SQRT.fmt Floating Point Square Root -Xh ~ II 
-"'.: 

MADD.fmt Floating Point Multiply Add 
~"""'"' 

. ''"'~ ~IV,V 

MSUB.fmt Floating Point Multiply Subtracy~"'"4!f~ t1IV, V ,,_ 

NMADD.fmt Floating Point Negative Multi,ply Add~ :t,~rIV, V 

NMSUB.fmt Floating Point Negative Multiply$ubti'act Jl IV,V 
''·~~>!if'"'".• It 

RECIP.fmt Floating Point Reciprocal ,Approxiiriii~~~R- •. / IV 

RSQRT.fmt Floating Point Reciprocal Squl)!e Root Appt:Oxi- IV 
@(~ 1 mation ~ f' . . 

~ ,~.;r,, 

.. 

=·~ Original ., ''i:'>:.9'-' 

Mnemonic Instruction MIPS ISA 
Level 

CFCl Copy WofclTrom rfoatmg Pomt Control Register I 

CTCl Copy Word to Floating Point Control Register I 

MFCl Move Word from FPR .. .. I 

MOV.fmt Floating Point Move I 
MTCl Move Word to FPR I 

DMFCl Move Doubleword from FPR III 

DMTCl Move Doubleword to FPR III 

MOVF.fmt Floating Point Conditional Move on FP False IV,V 

MOVN.fmt Floating Point Conditional Move on Non-Zero IV, V, MIPS64 

MOVT.fmt Floating Point Conditional Move on FP True IV,V 

MOVZ.fmt Floating Point Conditional Move on Zero IV, V, MIPS64 

November 15, 1999 - 11 -

MIPS@ PROPRlETARY/CONFIDENTlAL: 
RESTRICTED DOCUMENT SUBJECT TO CONL-IDENTIALITY OBLIGATIONS. DUPLICA Tl ON IS PROHIBITED. 



Revision 1.0 

Mnemonic 

CVT.D.fmt 

CVT.S.fmt 

CEIL.W.fmt 

FLOOR. W.fmt 

ROUND.W.fmt 

TRUNC.W.fmt 

CEIL.L.fmt 

CVT.L..fmt 

FLOOR.L.fmt 

ROUND.L.fmt 

TRUNC.L.fmt 

ALNV.PS 

CVT.PS.S 

CVT.S.PL 

CVT.S.PU 

PLL.PS 

PLU.PS 

PUL.PS 

PUU.PS 

Mnemonic 

Mnemonic 

BClTL 

Table 13: FPU Convert Instructions 

Instruction 

Floating Point Floor to Word Fixed Point 

Floating Point Round to Word Fixed Point 

Floating Point Truncate to Word Fixed Point 

Floating Point Ceiling to Long Fixed Point 

Floating Point Convert to Long Fixed Point 

Floating Point Floor to Long Fixed Point 

Floating Point Round to Long Fixed Point 

Floating Point Truncate to Long Fixed Point 

Floating Point Align Variable 

Floating Point Convert Pair to Pair Single 

Floating Point Convert Pair Lower to Single 

Floating Point Convert Pair Upper to Single 

Floating Point Pair Lower Lower 

Floating Point Pair Lower Upper 

Floating Point Pair Upper Lower 

Floating Point Pair Upper UppsF 

Instruction 

Original 
MIPS ISA 

Level 

I, III 
1,IIl,V 

II 
II 

II 
II 
III 

III 

III 

III 
":/ '"'~, 

,, 

Original 
MIPS ISA 

Level 

I, IV 

Original 
MIPS ISA 

Level 

11, IV 

a. Software is strongly encouraged to avoid use of the Branch Likely instructions, 
as they will be removed from a future revision of the MIPS64 architecture. 

2.5 Coprocessor Architecture 

MIPS64™ Specification 

The MIPS64 Architecture supports the use of an additional coprocessor to perform application-specific tasks. Support 
for this coprocessor is provided by instructions, described below, that act as the control and data movement interface 
between the CPU and the coprocessor. The flexibility of this interface places almost no restrictions on the coproces-

November 15, 1999 - 12 -

MIPS@ PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64TM Specification 

sor, other than the fact that the coprocessor load and store instructions can only address 32 coprocessor-specific regis
ters. It is implementation dependent whether all twelve coprocessor interface instructions are implemented - a subset 
of the instructions may be implemented as dictated by the requirements of the specific coprocessor. If the coprocessor 
is implemented and usage is enabled, an attempt to execute an unimplemented coprocessor interface instruction 
results in a Reserved Instruction Exception. 

2.5.1 Coprocessor Instruction Overview 

Table 16 lists.the interface instructions supported by the MIPS64 Architecture. 

Table 16: Coprocessor Interface Instructions 

Mnemonic Instruction 

CTC2 Move Control to Coprocessor 2 

DMFC2 Move Doubleword from Coprocessor 2 

DMTC2 Move Doubleword to Coprocessor 2 

LDC2 Load Doubleword to Coprocessor 2 

LWC2 Load Word to Coprocessor 2 

MFC2 Move from Coprocessor 2 

MTC2 Move to Coprocessor 2 

SDC2 Store Doubleword to CoprocessQ_i2\~1 
SWC2 Store Word to Coprocessor 2 

2.6 Privileged Instruction Set ~rchitec 
A
~, 

-~1-, 
'+ ~ ~?·;~ 

2.6.1 Privileged Register Overview'-~· - '•:, ~,/ 

Original 
MIPS ISA 

Level 

I 

MIPS I 

:;MD?.S I 

~ MIPS I \ 

MIPS III 

MIPS I 

MIPS I 

MIPS I 

MIPS II ..., 

'YF' '--~~ 

The MIPS64 Architecture defines a set:pf privil~e- gister's as described in Chapter 3: 
·:,~~;~~~!. ~J-t'.i. 
·..,t~--

> 
2.6.2 Privileged Instruction Overview / 

·-··· .. 

*'1'.f'}Y'i' 
Table 17 lists ~he privileged instructions which act as the ISA interface to the MIPS Privileged Resource Architecture. 

Table 17: Privileged Instructions 

Mnemonic ·•·.·· --. Instruction 
-"-

L.'ACHE Perform Cache Operation 

DMFCO Move Doubleword From Coprocessor Zero 

DMTCO Move Doubleword To Coprocessor Zero 

ERET Exception Return 

MFCO Move Word From Coprocessor Zero 

MTCO Move Word To Coprocessor Zero 

TLBP Translation Look Aside Buffer Probe 

TLBR Translation Look Aside Buffer Read 

November 15, 1999 - 13 -

MIPS@ PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64TM Specification 

Table 17: Privileged Instructions 

Mnemonic Instruction 

2. 7 EJTAG Support Instructions 
Table 18 lists the EJTAG support instructions that are supported by MIPS64. Refer to the EJTAG specification for 
more information about these instructions. 

Table 18: EJTAG Support Instructions 

Mnemonic Instruction 

DERET -Debug Exception l<eturn 

SDBBP Software Debug Breakpoint 

2.8 Instruction Bit Encoding , I 
'~::,~., 

Table 20 through Table 34 describe the encoding used for the MIPS64 ISA:,Table l~ describes the meaning of the. 
symbols used in the tables. .~ "• . ":-

'~ \ 

Symbol 

* 

l' 

a 

Table 19: Symbols Used in the Instruction.Encriaing Tables 
-~,¥lfl4.1~Vi{f''":,"~·~, 

.... ,. 
..... 

t t 1s §Ym 9 are reserve or uture use. xecutmg 
such an instruction must cause eserved -Iri~!tion ExcfP'tion. 

"'ft' -,::14' 

(Also italic field name.) OperatiOn' ld codesl1arked with this symbol denotes a 
field class. The instruction.word mus :aecoded by examining additional 
tables that show values for?'fnot~[ instruc eld. 

Operation or field codes.markediwithtbis symbol represent a valid encoding for a 
higher-order MIPS ISA't~%I. Exec~lfil}:~uch an instruction must cause a Reserved 
Instruction Exceptiob. l · 

-·~ 
Operation or field co9es Ji!Iri:kea wifu this symbol represent instructions which are not 

"~"·id'~¥~· ;"f 
legal if the processor is'configured tQ be backward compatible with MIPS32 proces-
sors. If the processor is execuHµg:!iti:'. Kernel Mode, Debug Mode, or 64-bit instructions 
are enabled, execution proceed~normally. In other cases, executing such an instruction 
must cause a Reserved Instruction Exception (non-coprocessor encodings or coproces
sor instruction encodings for a coprocessor to which access is allowed) or a Coproces
sor Unusable Exception (coprocessor instruction encodings for a coprocessor to which 
access is not allowed). 

Operation or field codes marked with this symbol are available to licensed MIPS part
ners. To avoid multiple conflicting instruction definitions, the partner must notify MIPS 
Technologies, Inc. when one of these encodings is used. If no instruction is encoded 
with this value, executing such an instruction must cause a Reserved Instruction Excep
tion (SPECIAL2 encodings or coprocessor instruction encodings for a coprocessor to 
which access is allowed) or a Coprocessor Unusable Exception (coprocessor instruc
tion encodings for a coprocessor to which access is not allowed). 

November 15, 1999 - 14 -

MIPS@ PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICA TlON IS PROHIBITED. 



Revision 1.0 MIPS64TM Specification 

Table 19: Symbols Used in the Instruction Encoding Tables 

Symbol Meaning 

(J TieTcf cooes markEo With this symooT represent an EJTAG support mstruct1on ana 
implementation of this encoding is optional for each implementation. If the encoding is 
not implemented, executing such an instruction must cause a Reserved Instruction 
Exception. If the encoding is implemented, it must match the instruction encoding as 
shown in the table. 

E Operation or field codes marked with this symbol are reserved for MIPS Application 
Specific Extensions. If the ASE is not implemented, executing such an instruction must 
cause a Reserved Instruction Exception. 

<1> Operation or field codes marked with this symbol are obsolete and will be removed 
from a future revision of the MIPS64 ISA. Software should avoid using these operation 
or field codes. 

Table 20: MIPS64 Encoding of the Opcode Field 

opcode bits 28 .. 26 .. 
0 1 2 3 4 s· ', 6 7 

bits 31 .. 29 000 001 010 011 100 101 /.,. 110 111 

0 000 SPEC/ALB REGIMMB J JAL BEQ BNE BLEZ BOTZ 

I 001 ADDI ADDIU SLTI SLTIU ANDI •. ., ORI ···'XOR! LUI .· 
2 010 COPOB COP/15 COP2915 COP I XU BEQL<I>. BNEL<I> BLEZL<I> BOTZL<I> 

3 Oil DADDIJ_ DADDIU J_ LDLJ_ LDRJ_ SPECIAL2 o JALXc·~' MDMXel5 * 
4 100 LB LH LWL LW LBU ·A LHU LWR LWtJJ_ 

5 101 SB SH SWL SW SDL:'.1-'1!:": ··;SDRJ_ SWR CACHE 

6 110 LL LWCI LWC29 PREF~:_;;. LLD J_ LDC! LDC29 LDJ_ 

7 Ill SC SWCI SWC29 ~ •:'.;scoJ_ SDCI. SDC29 soJ_ 

( Flli~~f ~' 
T bl 21 MIPS64 SPECIAL 6' d E. d;! ·'*\ f F f F" Id a e : ,,;.~O mgo UnCIOn Ie . ·' +/ 

function bits 2 .. 0 e-. 
,?f 

0 I 2 ·:::I .} ~ 5 6 7 

bits5 .. 3 000 001 010 :,oit~ .. ·. JOO 101 110 111 

0 000 SLL MOVC/15 SRL ... ~. SRA"'~ ~··,-~1SLLV * SRLV SRAV 

1 001 JR JALR MCiVZ MQYN. !SYSCALL .BREAK * SYNC 

2 010 MFHI MTHI MFLO ,. ~; <.i':ii:MTLO:, DSLLV J_. * DSRLV J_ DSRAV .l 

3 Oll MULT MULTU DIV;\frb .. DIVUf DMULT .l DMULTU J_ DDIV .l DDIVU .l 

4 100 ADD ADDU SUB SUBl,r' AND OR XOR NOR 

5 101 * * SLT '$~TU DADDJ_ DADDUJ_ DSUB .l DSUBU J_ 

6 110 TOE TOEU TLT TLTU ·TEQ * TNE * 
7 Ill DSLL.l * DSRL.l DSRAJ_ DSLL32 .l * DSRL32 .l DSRA32 .l 

. Table 22: MIPS64 REG/MM Encoding of rt Field 
.... 

rt bits 18 .. 16 

0 I 2 3 4 5 6 7 

bits 20 .. 19 000 001 010 011 100 101 110 111 

0 00 BLTZ BOEZ BLTZL<i> BOEZL<I> * * * * 
I 01 TOEI TOEIU TLTI TLTJU TEQI " TNEI * 
2 10 BLTZAL BOEZAL BLTZALL<I> BOEZALL<I> * * * * 
3 11 * * * * * * * * 

November 15, 1999 - 15 -

MIPS@ PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS.DUPLICATION IS PROHIBfTED. 



Revision 1.0 MIPS64™ Specification 

Table 23: MIPS64 SPECIAL2 Encoding of Function Field 

function bit.v2 .. 0 

0 I 2 3 4 5 6 7 

bits 5 . .3 000 001 010 Oil 100 IOI 110 111 
0 000 MADD MADDU MUL a MSUB MSUBU a a 
I 001 a a a a a a a a 
2 010 a a a a a a a a 
3 011 a a a a a a a a 
4 100 CLZ CLO a a DCLZ.l DCLO.l a a 
5 IOI a a a a a a a a 
6 110 a a a a a a a a 
7 Ill a a a a a a a SDBBPcr 

Table 24: MIPS64 MOVCI Encoding of tf Bit 

tr bit 16 

0 
MOVF MOVT 

Table 25: MIPS64 COPz Encoding of rs Field~,// '"nil) .... 
...... 

bits 23 .. 21 '11-"' / . ·. ;1{;ti#.~w rs 
0 1 2 3 4 j;~ 6 7 

bits 25 .. 24 000 001 010 Oil 100 -~. IOIB",':tllt, 110 111 
0 00 MFCz DMFCz.l CFCz * MTCz l\,DMTCz..L CTCz * ·~ .. 
I 01 BCzo * * * *L .. ~· * * 
2 10 . ~~,;.~ 
3 II '~ ·~ 

.Al 
. ldW'!!'i!h1 BC 1e en rs= z 

rs bits 23 .. 21 ... 
0 2 4 5 6 7 

bits 25 .. 24 .. 000 001 010 100 101 110 111 
0 00 MFCO DMFCO.l * * MTCO DMTCO.l * * 
I 01 * * * * * • * * 
2 10 
3 II 

coo 

November 15, 1999 - 16 -

MIPS@ PROPRlET ARY /CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICA TlON IS PROHIBITED. 



Revision 1.0 MIPS64TM Specification 

Table 28: MIPS64 COPO Encoding of Function Field When rs=CO 

function bits 2 .. 0 

0 I 2 3 4 s 6 7 

bits 5 .. 3 000 001 010 Oil 100 IOI 110 Ill 

0 000 * TLBR TLBWI * * * TLBWR * 
I 001 TLBP * * * .. .. * * 
2 010 .. * * * .. * * * 
3 Oil ERET * .. * * .. .. DERET cr 

4 100 WAIT * .. * .. .. * * 
s 101 .. .. * * .. * * * 
6 110 * * * .. .. * .. * 
7 Ill * * * .. * * .. * 

Table 29: MIPS64 COPJ Encoding of rs Field 

rs bits 23 .. 21 

0 I 2 3 4 s 6 7 

bits 25 .. 24 000 001 010 011 100 101 ' .. 110 Ill 

0 00 MFCI DMFCl .l CFC! * MTCI DMTCI .L \CTCI * 
I 01 BCJO !BCIANY2 Bd BC I ANY 4 B£II .. * · ... :' ,,., .. .. 

,..,,, .1 

2 10 SB DB .. .. WB 
., L B.l;o~~ .. ,;Ps Bl. .. ., . 

3 11 .. * .. .. * "ii'-~ * " .. .. 
"• --

'.: ···.·~~.;\~,,, ~~ -!} 
··Table 30: MIPS64 COPJ Encoding of Function Field When rs=S 

'""'•· 
function bits 2 .. 0 ~ '\ 

\. 

0 l 2 3 • """'"'"·?1"4~ s 6 7 

bits 5 . .3 000 001 010 9IJ;;a 100 J\ 101 110 111 

0 000 ADD SUB MUL 7l._DIV·-~ ,·0;::,SQRT ffi ABS MOY NEG 

l 001 ROUND.L..1. TRUNC.L..1. CEIL.L..1. FLOOR.I:;';!.!:· 'ROtlND.W VTRUNC.W CEIL.W FLOOR.W 

2 010 .. MOVCFS MOYZ7 ;iA19~ ['§ * RECIP..1. RSQRT l. .. 
3 Oil .. * .. ··~~1' R,ECIP2el. REC!Pl el. RSQRTlel. RSQRT2el. 

4 100 * CYT.D .. •;;;;; * ~ (Z CYT.W CYT.L..1. CYT.PS l. * ·-
s IOI * * * ~ * * * .. ... 

6 110 
C.F C.UN vC-EQ·. C.UEq~/ C.OLT C.ULT C.OLE C.ULE 

CABS.Fel. CABS.UN el. cABS.EQel. c;;ABS.UEQ'el. CABS.QLTe..l. CABS.IJLT el. CABS.OLE el. CABS.ULE el. 

7 111 
C.SF C.NGLE :;;;.. C.SEQ •Lif:• 1;1;,j;£.,NGL C.LT C.NGE C.LE C.NGT 

CABS.SF el. ~ABS.NGLEd CABs.S~Q~ CABSiNGL el. CABS.LT el. CABS.NOE el. CABS.LE el. CABS.NOT el. 

! . 
Table 31: MIPS64 CORLEncoding of Function Field When rs=D . '+~ -·· 

function bits 2 .. 0 

0 I 2 3 4 s 6 7 

bits 5 .. 3 000 001 010 Oil 100 101 110 111 

0 000 ADD SUB MUL DIV SQRT ABS MOY NEG 

l 001 ROUND.L.l TRUNC.L..1. CEIL.L..1. FLOOR.L..1. ROUND.W TRUNC.W CEIL.W FLOOR.W 

2 010 * MOVCFB MOYZ MOYN .. RECIP l. RSQRT l. * 
3 011 * .. * * RECIP2 el. RECIPI el. RSQRT!el. RSQRT2el. 

4 100 CYT.S * * * CYT.W CYT.L..1. * * 
s 101 * * * * .. .. * .. 
6 110 

C.F C.UN C.EQ C.UEQI C.OLT C.ULT C.OLE C.ULE 
CABS.Fel. CABS.UN el. CABS.EQel. CABS.UEQel. CABS.OLT el. CABS.ULT El. CABS.OLE el. CABS.ULE el. 

7 Ill 
C.SF C.NGLE C.SEQ C.NGL C.LT C.NGE C.LE C.NGT 

CABS.SF el. ~ABS.NOLE e_lj CABS.SEQ el. CABS.NOL el. CABS.LT El. CABS.NGEd. CABS.LE el. CABS.NOT el. 

November 15, 1999 - 17 -

MIPS@ PROPR!ET ARY /CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONF!DENT!AL!TY OBLIGATIONS. Dl.lPLIC A TI ON IS PROHIB !TED. 



Revision 1.0 MIPS64TM Specification 

Table 32: MIPS64 COP! Encoding of Function Field When rs=W or L3 

function bits 2 .. 0 

0 I 2 3 4 5 6 7 

bits5 .. 3 000 001 010 Oil 100 101 110 Ill 

0 000 .. .. .. .. .. .. .. .. 
I 001 .. .. .. .. .. * .. .. 
2 010 .. .. .. .. .. .. .. .. 
3 Oil .. .. .. .. .. .. * .. 
4 100 CVT.S CVT.D .. .. * .. CVT.PS.PW .. 

d_ 

5 101 * .. .. .. * .. * * 
6 110 .. .. * .. * .. .. * 
7 Ill * .. * * .. .. .. * 

a. Format type L is legal only if 64-bit operations are enabled. 

Table 33: MIPS64 COP! Encoding of Function Field When rs=PS3 

, cl '-· 
function bits 2 .. 0 

0 I 2 3 4 5 ' 6 ·' 
bits 5 . .3 000 001 010 Oil 100 ~.101 ,,. llO ·t 

0 000 ADD SUB MUL .. .. . -ABS MOY 

I 001 .. * .. * .. ·.·-1···· . '* .. 
2 010 .. MOVCFo MOVZ MOVN ···• .. ,..:.:>* *·. 

3 Oil ADORE * MULRE * RECIP2£ RECIPI E RSQRTI &':· 
4 100 CVT.S.PU * * * J::\IT.PW,?S ~ .. .. 
5 101 CVT.S.PL * * * .• ,~ PLL.PS ·•<• , PLU.PS PUL.PS 

6 llO 
C.F C.UN C.EQ ,,f.UEQi C.OLT '.'.h C.ULT C.OLE 

CABS.Fe CABS.UN£ CABS.EQE gABS.UEQ;~. :~C~BS.OLT E CABS.ULT£ CABS.OLE£ 

C.SF C.NGLE C.SEQ ~.NGif '•!·c;LT 
... 

C.NGE C.LE 
7 111 ~' ,,... 

CABS.SF£ CABS.NGLEE CABS.SEQ E' ABS~gL E CABS.LT& CABS.NGEe CABS.LEE 
' !,",' ~<''" " 

a. Format type PS is legal only if 64-bit ~rations a:e~~~~~!fl 
:;; 

Table 34: MIPS64 COP! E~~~ingj mt W,Jten rs=S, D, or PS, Function=MOVCF 

MOVT.fmt ·--·:· 

Table 35: MIPS64 COPJ~~~coding of Function Field3 

function bits 2 .. 0 

0 I 2 3 4 5 6 7 

bits 5 . .3 000 001 010 011 100 101 110 111 

0 000 LWXCI LDXCI .. .. .. LUXCl .. .. 
1 001 SWXCl SDXCI .. * .. SUXCl .. PREFX 

2 010 .. * * * * * .. * 
3 011 * .. * * * * ALNV.PS * 
4 100 MADD.S MADD.D .. * * * MADD.PS * 
5 101 MSUB.S MSUB.D * * * .. MSUB.PS .. 
6 110 NMADD.S NMADD.D * .. .. * NMADD.PS .. 
7 Ill NMSUB.S NMSUB.D * .. .. * NMSUB.PS .. 

a. COPlX instructions are legal only if 64-bit operations are enabled. 

November 15, 1999 - 18 -

MIPS@ PROPRIETARY/CONFIDENTIAL: 

7 

111 
NEG -.. 

* 
RSQRT2e 

.. 
PUU.PS 

C.ULE 
CABS.ULEE 

C.NGT 
CABS.NOTE 

RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATlONS. DllPLICA TlON IS PROHIBITED. 



Revision 1.0 MIPS64TM Specification 

2.9 MIPS64 Instruction Descriptions 
As described earlier, this specification does not include instruction descriptions for all instructions that are in the 
MIPS64 ISA. Rather, it includes by reference the MIPS RISC Architecture document for the majority of the instruc
tions. The following sections describe only those ISA-related features and any instructions that are new or modified 
by their inclusion in MIPS64. 

2.9.1 UNPREDICTABLE and UNDEFINED 

The terms UNPREDICTABLE and UNDEFINED are used throughout this specification to describe the behavior of 
the processor in certain cases. UNDEFINED behavior or operations can occur only as the result of executing instruc
tions in a privileged mode (i.e., in Kernel Mode or Debug Mode, or with the CPO usable bit set in the Status register). 
Unprivileged software can never cause UNDEFINED behavior or operations. Conversely, both privileged and 
unprivileged software can cause UNPREDICTABLE results or operations. 

2.9.1.1 UNPREDICTABLE 

UNPREDICTABLE results may vary from implementation to implementation, instruction to instruction, or as a 
function of time on the same implementation or instruction. Software can neveidepend on results that are UNPRE
DICTABLE. UNPREDICTABLE operations may cause a result to be generated or not. If a result is generated, it is 
UNPREDICTABLE. UNPREDICTABLE operations may cause arbitrary exceptions. 

UNPREDICTABLE results or operations have several implementati~~ r~stricti3As~:'.io:: 
UNPREDICTABLE results must not depend on any data so.urce (;.ri~mory or internal state) which are inac-
cessible in the current processor mode. . · · ':,,,. ··:ip ·· ..... 

UNPREDICTABLE operations must not read, write, ormodifYthe contents of memory or'intemal state 
which is inaccessible in the current processor mode. Forex~'ffipie;~PREDICTABLE operations executed 
in user mode must not access memory or intemalst~te that is only a~cessible in Kernel Mode or Debug 

Mode or in another process. ;,/' · ~ :'ft,.•{'.!¥!;'.'''·· . .:'?~ 
UNPREDICTABLE operations must not:fil!lt or h3:ngtheptocessor:¥J· 

2.9.1.2 UNDEFINED ,.r'':c.~::!°'.':~~~~;, .. _ )} 
'' ·<_}.,:,<):;·,;/' 

UNDEFINED operations or behavior may vary fromjr,ppleme~\filion to implementation, instruction to instruction, or 
as a function of time on the same implementati01ror'instruction. UNDEFINED operations or behavior may vary 
from nothing to creating an environment fn ~hich exec~ti~r1 can no longer continue. UNDEFINED operations or 
behavior may cause data loss; · · ·· · ,. . ., ... ~. ' 

:~~~t:,>:~~'· (i·;~\·::?:,~~::2 /;·- :;;f-1\ 
UNDEFINED operations or behavior hasbne'fi:nplemeiitation restriction: 

UNDEFINED operations or behavior must no'f° cause the processor to hang (that is, enter a st~te from which 
there is no exit other than powering down.the processor). The assertion of any of the reset signals must 
restore the proces.sor to an operational state. · 

November 15, 1999 - 19 -

MIPS@ PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS.DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64TM Specification 

2.9.2 Unprivileged Instructions 

2.9.2.1 The BCz instruction 

Branch on Coprocessor Condition BCz 

31 26 25 21 20 16 15 0 

I 
COPz 

I 
BC 

I 
Cond 

I 0100zz 01000 
Offset 

6 5 5 16 

Format: 
BCzCond offset MIPS64 

Purpose: 
Branch to the specified address if the coprocessor condition is met. 

Description: . c;;>,'cc'/ 

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 
16-bit offset, shifted left two bits and sign extended. Branch to th.at aCldfess if the coprocessor z condition is 
met. The cond field is specific to each coprocessor and detemiin~s the conditio~. 

Note that the BCz instruction is actually a class of instructiOJ!S, one for ~ach coprocessor number specified 
by z, and including taken and not taken variants. \., ,,. 

':\ li~~ 

Restrictions: ',::,,~:-c~~:::;~:;JJ;<{~;;,;~1'.\\ 
If the coprocessor enable bit for coprocessor zj~'iero in the Status register, access to this coprocessor is not 
allowed, and execution of this instruction res~t;in\C:?Processor l[i,l1usable Exception. If the processor is 
running in Kernel Mode or Debug Mode, '<!~ess to cbpf86e~sor 0 is el1~bled even if the CUO bit is zero in the 
Status register. ' ':! 

) ····., > . 
For coprocessor 0, this instruction is riot .~~lid and res.wts in a Reserved Instruction Exception if access is 
allowed to coprocessor 0. A Reserved Instruction Exception is also initiated if BCz is not implemented for 
coprocessor z. ,¢•}'>~ . ';"'li:'~.~.;;; 

\f '/ 

Operation: 
' _/ . 

I: if (Statuscuz = 1) or 
((z = 0) and ((StatusKsu= 002) or = 1) or (StatusEXL = 1) or (StatusERL = 1))) then 

# Access allowed to coprocessor z 
if ((z = 0) or (BCz Not Implemented)) then 

InitiateReservedinstructionException 
endif 

target_offset r sign_extend(offset II 02) 

else 
# Access not allowed to coprocessor z 
InitiateCoprocessorUnusableException(z) 

endif 
I+ l:If COPz.Condition[Cond] then 

PC r PC + target_offset 
endif 

Exceptions: 
Coprocessor Unusable Exception (Access not allowed to coprocessor) 

November 15, 1999 - 20 -

MIPS@ PROPRIETARY /CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROIIIBITED. 



Revision 1.0 MIPS64TM Specification 

Reserved Instruction Exception (Access allowed to coprocessor and coprocessor 0 or BCz not implemented 
for this coprocessor) 

--

November 15, 1999 - 21 -

MIPS@ PROPRIETARY /CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64™ Specification 

2.9 .2.2 The CFCz Instruction 

Move Control from Coprocessor z CFCz 

31 26 25 21 20 16 15 11 10 0 

I 
COPz 

I 
CF 

I 
rt 

I 
rd 

I 
0 

I 0100zz 00010 00000000000 

6 5 5 5 11 

Format: 
CFCz rt, rd MIPS64 

Purpose: 
Move the contents of a coprocessor control register to a general register. 

Description: 
The contents of the control register rd of coprocessor z are sign-extended and loaded into general register rt. 

Restrictions: , 
If the coprocessor enable bit for coprocessor z is zero in the Status register, access to this coprocessor is not 
allowed, and execution of this instruction results in a Coprocessor UmisableException. If the processor is 
running in Kernel Mode or Debug Mode, access to coprocessor 0 is j;:nabled·e~en if the CUO bit is zero in the 

Status register. ~i;;~~i!fif '.'~ 
} .:·• .. i.'!t~ 

For coprocessor 0, this instruction is not valid and results in a Reserved Instruction Exception if access is 
allowed to coprocessor 0. A Reserved Instruction Exceptr6n'is also.initiated if CFCz is not implemented for 
coprocessor z. 

~····~;;\. 

'\ \ 

The results are UNPREDICTABLE if co 
-" .·~·~"· .".\ 

sorfl1 'a6~!'.~ot contarWa control register as specified by rd. 
''.i1J4 ;;;/ 
,ff 

'". 
;7!~ 

Operation: 
if (Statuscuz = 1) or 

~' 
((z = 0) and ((StatusKsu= 002) ~r (Debll;~it = 1) or 'StatusEXL = 1) or (StatusERL = 1))) then 

#Access allowed to coproce~sor,z ' 

else 

if ((z = 0) or (CF~z Not },tjiplemente.d~). then 
InitiateReservedlnstrllctio·c~tr~,;n. • 0.Wc~'fi.Sil:f& .. . ~''.:;\\] 

end1f 1WB ;1 
temp+-- CC~[z,rd] " ,.,.r;I/ 
GPR[rt] +-- s1gn_extend(temp) Wl:lt•ii; 

# Access not allowed to coprocessor z 
InitiateCoprocessorUnusableException(z) 

endif 

Exceptions: 
Coprocessor Unusable Exception (Access not allowed to coprocessor) 
Reserved Instruction Exception (Access allowed to coprocessor and coprocessor 0 or CFCz not imple
mented for this coprocessor) 

November 15, 1999 - 22 -

MlPS<ii> PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS.DUPLICATION IS PROHIBITED. 

l .. 



Revision 1.0 MIPS64TM Specification 

2.9.2.3 The CLO Instruction) 

Count Leading Ones in Word CLO 

31 26 25 21 20 16 15 11 10 6 5 0 

I 
SPEC2 

i 

rs 

I 
rt 

I 
rd 

I 
0 

I 
CLO 

I 011100 00000 100001 

6 5 5 5 5 6 

Format: 
CLO rd, rs MIPS64 

Purpose: 
Count the number of leading ones in a word 

Description: 
Bits 31 .. 0 of GPR rs are scanned from most significant to least significant bit. The number of leading ones is 
counted and the result is written to GPR rd. If all of bits 31 .. 0 were set hi GPR rs, the result written to GPR 
rd is 32. 

Architecture Change '> < i 
Hardware/Software lmpleinentatiOn Note 

In an earlier release of this document, the destination G PR of this instruction was specified by the rt 
field. In order to align the definition of this instruction with other similar instructions, the architecture 
has changed to specify the destination G PR with the rd ~~Id. '.['he following items provide a transpar
ent transition between previous and current architect1.l~e defi~itions: 

:.>i} <:~b, '" 
t ,,.o '-,,~ ~·-:~ \ 

Software must place the same G PR number ht .both .the rt andi-d fields of the instruction. This will 
guarantee correct execution on implementatio~;ofboth previ.~us and current architecture defini-

'.· ''''·/:, ----.),_ ·'I ''.'< 

tions. This is required to be compliant with the MIPS32 and MIPS64 architecture. 
·>•.•>.. y 

New processor designs should use the rd field as.t~e destination GPR number. 
Current processor designs should be changed t~.teflect the new definition to the extent that it is 
convenient to do so. ··• •.> • :> 

' -;;.t::');:-:·,' l 

Restrictions: >' 
If GPR rs does not contain a ~ign-extel1de'd 32~bit value (bits 63 . .31 equal), then the results of the operation 
are UNPREDICTABLE. ·• . .· .. 

Operation: 
if NotWordValue(GPR[rs]) then 

UNPREDICTABLE 
endif 
temp f-- 32 
for i in 31 .. 0 

if GPR[rs]i = 0 then 
temp f-- 31 - i 
break 

endif 
endfor 
GPR[rd] f-- temp 

Exceptions: 
None 

November 15, 1999 - 23 -

M rrs@ PROPRIETARY /CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIG•\ TIONS. DU PUCA TlON IS PROHIBITED. 



Revision 1.0 MIPS64TM Specification 

2.9.2.4 The CLZ Instruction 

Count Leading Zeros in Word >CLZ 

31 26 25 21 20 16 15 11 10 6 5 0 

I 
SPEC2 

I 
rs 

I 
rt 

I 
rd 

I 
0 

I 
CLZ 

I 011100 00000 100000 

6 5 5 5 5 6 

Format: 
CLZ rd. rs MIPS64 

Purpose 
Count the number of leading zeros in a word 

Description: 
·_Bits 31 .. 0 of GPR rs are scanned from most significant to least significant bit. The number of leading zeros is 
counted and the result is written to GPR rd. If none of bits 31..0 were Jet in GPR rs, the result written to 
GPR rd is 32. ,~ ' 

A 0 I :f rchitecture Change 1;,_;: . ~· 
Hardware/Software Implemen tatfon Note 

/--';,;-~'.:'.;>~" 
: '''.'ci!i-.. ,'.-:j'{>" i . 

In an earlier release of this document, the destination GPR of this illi.ifruction was specified by the rt 
field. In order to align the definition of this instruction with 6ther similar instructions, tb.~ architecture 
has changed to specify the destination GPR with the rd field.,Jhe following items provide a transpar-

• • • , :--:~·_-_,. ;_':-,-<'.'U;.~·~·"-·-: ; ' ·t'.'::1~·\ 

ent transitmn between previous and current architecture definitions: 
·1~ 

-·->· "ts\ 
• Software must place the same G PR 'ltlmber ~~+cJ.?Q#tJ!Je rt an~jd fields of the instruction. This will 

~uarante~ ~orrect.execution on i111;~I~.m.1t?t~pons of~j>th previous and cur~ent architecture defini
tions. This 1s reqmred to be comphantmtbJhe MIPS32 and MIPS64 architecture. 

·_--.;:<trt·'/'••,f_,,,_ ';-'4 

• New processor designs should ~se the rd field,~stlle destination GPR number. 
• Current processor designs shorild be changef to;Feflect the new definition to the extent that it is 

convenient to do so. , · · 

Restrictions: ... ··. . ~ "'t••· 
If GPR rs does not contain a sig~,77~!~:I}~id 3~~bit value (bits 63 . .31 equal), then the results of the operation 
are UNPREDICTABLE. .,;t~J'Y,~·5 '' ij) 

Operation: 
if NotWordValue(GPR[rs]) then 

UNPREDICTABLE 
endif 
temp f- 32 
for i in 31 .. 0 

if GPR[rs]i = l then 

temp f- 31 - i 
break 

endif 
endfor 
GPR[rd] f- temp 

Exceptions: 
None 

November 15, 1999 - 24 -

MIPSo\; PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision l.O 

2.9.2.5 The COPz Instruction 

. Coprocessor Operation for Coprocessor z 

31 

Format: 

COPz 

0100zz 

6 

COPz rt, rd 

Purpose: 

26 25 24 

Coprocessor Function 

25 

Perfonn the coprocessor function specified by Bits [24:0]. 

Description: 

MIPS64TM Specification 

·· COPz 

0 

MIPS64 

A coprocessor function, as described by Bits (24:0], is performed that is specific to coprocessor z. Refer to 
the instruction descriptions for each coprocessor for more details. 

Restrictions: 
If the coprocessor enable bit for coprocessor z is zero in the Status register, access to this coprocessor is not 
allowed, and execution of this instruction results in a Coprocessor Unusable Exception. If the processor is 
running in Kernel Mode or Debug Mode, access to coprocessor 0 is enabled even if the CUO bit is zero in the 
Status register. · · ..... ,. 

··~ 
A Reserved Instruction Exception is taken if access is allowed.to. coprocessor z and COPz is not imple
mented for that coprocessor. 

Operation: 
if (Statuscuz = 1) or 

((z = 0) and ((StatusKsu= 002) or CQebugDM 
# Access allowed to coprocessor'z· 
if (COPz Not Implemented) then .~:· ., 

Ini tiateReservedlnstructionExceptio·; .. , .. ./ .. ·.·· 
endif . . .. ·· .v •. . · .. o:-·. .. ,1 
CoprocessorOperation(z;C:()processorFu1lc,tion) 

else 
# Access not allowed to coprocessor z 
Ini tiateCoprocessor U nusableException(z) 

endif 

Exceptions: 
Coprocessor Unusable Exception (Access not allowed to coprocessor) 
Reserved Instruction Exception (Access allowed, and COPz not implemented for this coprocessor) 

November 15, 1999 - 25 -

MIPS@ PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONfIDENTIALITY OBLIGATlONS. DUPLICATION rs PROHIBITED. 



Revision 1.0 MIPS64TM Specification 

2.9.2.6 The CTCz Instruction 

Move Control to Coprocessor z CTCz .. 
" 

31 26 25 21 20 16 15 11 10 0 

COPz CT rt rd 0 

0100zz 0 0 1 1 0 00000000000 

6 5 5 5 11 

Format: 
CTCz rt, rd MIPS64 

Purpose: 
Move the contents of a general register to a coprocessor control register. 

Description: 
.. Bits 31 .. 0 of GPR rt are loaded into the control register rd of coprocessor z. 

Restrictions: 
If the coprocessor enable bit for coprocessor z is zero in the Status register, access to this coprocessor is not 
allowed, and execution of this instruction results in a Coprocessor Uril1sableException. If the processor is 
running in Kernel Mode or Debug Mode, access to coprocessor() is enabled even if the CUO bit is zero in the 
Status register. ,1.. :.> ; 

For coprocessor 0, this instruction is not valid and result~ in ~Reserved Instruction Ex~~~t(on if access is 
allowed to coprocessor 0. A Reserved Instruction Exceptiotlis.als9:i?itiated if CTCz is not implemented for 
coprocessor z. · ·> 

contairi:a control register as specified by rd. 

Operation: 
if (Statuscuz = 1) or 

((z = 0) and ((StatusKsu= OOz) or (Debugf}M .:= 1) or \'-"'"'u•>Fx = 1) or (StatusERL = 1))) then 
.''(''.'I'-,.,, 

#Access allowed to coproce§sor z i"~~'i•;l 
if ((z = 0) or (CTCz Not ~plementeg))then. 

InitiateReservedinstructionExc~ptiori ···• 
endif ·····•·'!iii ,,;;~ ' 
temp f- GPR[rt] 
CCR[z,rd] f- temp 

else 
# Access not allowed to coprocessor z 
InitiateCoprocessorUnusableException(z) 

endif 

Exceptions: 
Coprocessor Unusable Exception (Access not allowed to coprocessor) 

.·.; 

Reserved Instruction Exception (Access allowed to coprocessor and coprocessor 0 or CTCz not imple
mented for this coprocessor) 

November 15, 1999 - 26 -

MlPSci;, PROPR!ET ARY /CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64TM Specification 

2.9.2.7 The DCLO Instruction 

Count Leading Ones in Doubleword DCLO 

31 26 25 21 20 16 15 11 10 6 5 0 

SPEC2 rs rt rd 0 DCLO 
011100 00000 100101 

6 5 5 5 5 6 

Format: 
DCLO rd, rs MIPS64 

Purpose: 
Count the number of leading ones in a doubleword 

Description: 
Bits 63 .. 0 of GPR rs are scanned from most significant to least significant bit. The number of leading ones is 
counted and the result is written to GPR rd. If all of bits 63 .. 0 were s~Un. GPR rs, the result written to GPR 
rd is 64. l / 

Architecture Change·:;,,( .•. 0 

Hardware/Software Implementation Note --
. / ;~w~:;~:· .. ;;:t{-~,~ .. ) 

In an earlier release of this document, the destination GPR of this inStruction was specified by the rt 
field. In order to align the definition of this instruction, with ~ther similar instructions, the architecture 
has changed to specify the destination GPR with the,hJJield.~lhe following items provide a transpar
ent transition between previous and current architect~~·aefi~itions: 

~ii•\;,:;:•._, I>; 
·>>"'iii.t;.'.l,!~ '.4, 

• Software must place the same GPR nfimber"'bi.botlr.the rt andfd fields of the instruction. This will 
Jti~ , ..<~ ~.,.-" '.ft1,"'1 ~t.n·~ .cf# 

guarantee correct execution on iJn,,J!le.l!':~ntations or~pth previous and current architecture defini-
tions. This is requi~ed to be compli~i "!!~~t~~ MI~S32 ~nd.MIPS64 architecture. 

• New processor designs should. use the rd field as .th,e destmatlon GPR number. 
• Current processor designs shoiifd b~J;hanged.l6:~~ftect the new definition to the extent that it is 

convenient to do so. ..,, f';;~ijl~'"~ f · 
• • ,_;1liii£!•~ ''4~ 

Restnctions: ·· ·· · ct··'r°'·· . . ; . · .... .. .. • -
This instruction is not legal unl~~~·~fs$Ws~io'=~bit operations is enabled. If access is not enabled, execution 
results in a Reserved InstructiorrException. •;; . 

J! 

Operation: "°"f'7tf.""' 
if not MIPS640perationsEnabled() then 

InitiateReservedinstructionException() 
endif 
temp f- 64 
for i in 63 .. 0 

if GPR[rs]i = 0 then 
temp f- 63 - i 
break 

endif 
end for 
GPR[rd] f- temp 

Exceptions: 
Reserved Instruction Exception 

November 15, 1999 - 27 -

MIPS@ PROPRIETARY/CONFlDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFlDENTIAL!TY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64TM Specification 

2.9.2.8 The DCLZ Instruction 

Count Leading Zeros in Doubleword DCLZ 
~\., 

31 26 25 21 20 16 15 11 10 6 5 0 

I 
SPEC2 

I 
rs 

I 
rt 

I 
rd 

I 
0 

I 
DCLZ 

I 011100 00000 100100 

6 5 5 5 5 6 

Format: 
DCLZ rd, rs MIPS64 

Purpose 
Count the number of leading zeros in a doubleword 

Description: 
Bits 63 .. 0 of GPR rs are scanned from most significant to least significant bit. The number of leading zeros is 

. : counted and the result is written to GPR rd. If none of bits 63 .. 0 wei:e set in GPR rs, the result written to 
GPR rd is 64. 

Architecture Change\•:'. j 
Hardware/Software Implementati6ii Note 

\; '·''•·. \-~:\"' 

In an earlier release of this document, the destination GPR of;~i~·inst~uction was s~~cified by the rt 
field. In order to align the definition of this instruction with 6t.her similar instructions, the architecture 
has changed to specify the destination GPR with the rd field .. i:rhe following items provide a transpar
ent transition between previous and current architecttlr~;d~fiii'itions: 

•"';,!:J~l;;j~~~ ·.· .... . ·1 ·1~ 
• Software must place the same GPR nttmber fu botlithe rt andrd fields of the instruction. This will 

4;% ., . ·.;N\:);:j.O.o'~';,+',,-<j','.~: - .,_,,;,·-/ 

guarantee correct execution on impl~111,~ntations olboth previous and current architecture defini-
tions. This is required to be compiifilit"1Wfth'the MIPS32 and MIPS64 architecture. 

0%~;~pJ-,~ . .,,_ . yY :-:-

New processor designs should~e the rd field ~:~~e destination GPR number. , 
Current processor designs shoiild be changed to';Jf~flect the new definition to the extent that it is 
convenient to do so. ...,,, >~1•'>. •• 

'."):::,:)~,.:_ £.>:;·~* ''-'"~t~t::~:~;,0~.-f?J:>: / 
;> '" 

\,;f "'!"" Restrictions: -;,:! ,_.~:.•,~;~" 

This instruction is not legal unl~~s.~~cC,;~§'tc;'·~bit operations is enabled. If access is not enabled, execution 
results in a Reserved Instructioif Exteption. 1~ 

Operation: •<. 

if not MIPS640perationsEnabled() then 
InitiateReservedlnstructionException() 

end if 
tempf-64 
for i in 63 .. 0 

ifGPR[rs]i = 1 then 

temp f- 63 - i 
break 

endif 
end for 
GPR[rd] f- temp 

Exceptions: 
Reserved Instruction Exception 

November 15, 1999 - 28 -

MIPS@ PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PRO! IIBITED. 



Revision 1.0 

2.9.2.9 The DMFCz Instruction 

Doublewo_rd Move from Coprocessor z 

31 26 25 

COPz 
0100zz 

6 

Format: 
DMFCz rt, rd 
DMFCz rt, rd, sel 

Purpose: 

21 20 

DMF 
00001 

5 

. ·-,.,. ... 
16 15 11 

rt rd 

5 5 

Move the contents of a coprocessor register to a general register. 

Description: 

MIPS64TM Specification 

,·: ·.:.: ... ·.DMFCz 

10 3 2 0 

0 sel 
00000000 

8 3 

MIPS64 

The contents of the coprocessor z register specified by the combinati~P.>2~7d and sel ·are loaded into general 
register rt. Not all coprocessors or registers within a coprocessor support the sµb-selection specified by the 
sel field. In those instances, the sel field must be set to zero · ·~\:{ ;i 

·~ .. i" 

Restrictions: . j:;J;,,,.. 
If the coprocessor enable bit for coprocessor z is zero in the.Stat~i'iegiste~. access to this coprocessor is not 
allowed, and execution of this instruction results in a Coprot~~sor Unusable Exception:·If the processor is 
running in Kernel Mode or Debug Mode, access to coprocessor Q,is enabled even if the CUO;bit is zero in the 
Status register. ,ltt'~;;~~i~~~, 

A Reserved Instruction Except~on is takeni·:ifc~~ ~~t:~~ed to c~~rocessor z and DMFCz is not imple
mented for that coprocessor or if access to~64-bit o~rations is not enabled. 

,/fM,~t1£:~~)»>l/ ';];p 
!he results are UNPR~DICTA~LE i! coprocess~~~oe~p~t co?tain a register as specified by rd and sel or 
1f the coprocessor z register specified by rd and sefis;~1~zZbit register. 

,/ 

Operation: , 
if (Statuscuz = 1) or ;t,·· ·· ,~ 1 · · ·· 

((z = 0) and ((StatusKsu = OOzJ'Q( ebug0~'f'F 1) or (StatusEXL = 1) or (StatuseRL = 1))) then 
f 

else 

if ((DMFCz Not Implemented) or . 
(not MIPS640perationsEnabled()) then 

InitiateReservedlnstructionException 
endif 
data ~ CPR[z,rd,sel] 
GPR[rt] ~ data 

InitiateCoprocessorUnusableException(z) 
endif 

Exceptions: 
Coprocessor Unusable Exception (Access not allowed to coprocessor) 
Reserved Instruction Exception (access allowed, and DMFCz not implemented for this coprocessor or 
access to 64-bit operations is not enabled) 

November 15, 1999 - 29 -

MIPS@ PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DllPLIC ATlON IS PROHIB !TED. 



Revision 1.0 

2.9.2.10 The DMTCz Instruction 

Do.ubleword Move to Coprocessor i 

31 26 25 

I 
COPz 

0100zz 

6 

Format: 
DMTCz rt, rd 
DMTCz rt, rd, sel 

Purpose: 

I 

21 

DMT 
00101 

5 

20 16 15 11 

I 
rt 

I 
rd 

I 
5 5 

Move the contents of a general register to a coprocessor register. 

Description: 

10 

0 
0000000 

8 

MIPS64™ Specification 

· ;. ·· DMT<J.z . 

3 

MIPS64 

The contents of general register rt are loaded into the coprocessor z regiSter specified by-the combination of 
rd and sel. Not all coprocessors or registers within a coprocessor support the Sub-selection specified by the 
sel field. In those instances, the sel field must be set to zero. .~ 

'"l.i., / :':r. ,i_J 
•w. • ·,;~~)~:J;f 

Restrictions: > !iJr,,"". . 
If the coprocessor enable bit for coprocessor z is zero in the Status· register, access to this coprocessor is not 
allowed, and execution of this instruction results in a Copr~c"essor Unti?able Exception.]f tjle processor is 
running in Kernel Mode or Debug Mode, access to coprocessor 0 is enabled even if the CUO bit is zero in the 

• .f!qA;;;;~":'f:-)·'" , . .,,~ 
Status register. .J!"-'·'"V!i:;;;:,~.::\ 

,~jlf:~t~ '\\ 
A Reserved Instruction Exception is takenjf'accl!s~;i~.~~p~·ed to C()pfocessor z and DMTCz is not imple-
mented for that coprocessor or if access to'64-bit o~fiHtiiis not enabled. 

~~;;Bf!~~. if ':J 
The results are UNPREDICTABLE .if coproc oesJot contain a register as specified by rd and set or 

/.... ,,,, 0 ·W 

if the coprocessor z register specified by rd and selis a:32-bit register. 
-~> l' 

Operation: 

if (Statuscuz = 1) or .. . . ,;/ . "'''""' .. , . . . . . 
((z = 0) and ((StatusKsu= OQ:z),~~ (De]:>ffeug0r.h= 1) or (StatusEXL = 1) or (StatusERL = 1))) then 

else 

't8*F"/··:tif' -::~ 
if ((DMTCz Not ImplemeMed)or ·~ 

(not MIPS640perationsEnabled()) then' 
InitiateReservedlnstructionExce'ption 

endif 
data f- GPR[rt] 
CPR[z,rd,sel] f- data 

InitiateCoprocessorUnusableException(z) 
endif 

Exceptions: 
Coprocessor Unusable Exception (Access not allowed to coprocessor) 
Reserved Instruction Exception (access allowed, and DMTCz not implemented for this coprocessor or 
access to 64-bit operations is not enabled) 

November 15, 1999 - 30 -

MIPS(l\i PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64TM Specification 

2.9.2.11 The MADD Instruction 

Multiply and Add Word _to Hi,Lo 

31 26 25 21 20 16 15 11 10 6 5 0 

SPEC2 rs rt 0 0 MADD 

011100 00000 00000 000000 

6 5 5 5 5 6 

Format: 
MADD rs, rt MIPS64 

Purpose: 
Multiply two words and add the result to Hi, Lo 

Description: 
The 32-bit word value in GPR rs is multiplied by the 32-bit value in GPR rt, treating both operands as signed 
values, to produce a 64-bit result. The product is added to the 64~bit::~oncatenated values of H/31..o and 
L031..o. The most significant 32 bits of the result is sign-extended and written into HI and the least significant 
32 bits of the result is sign-extended and written into LO. No arithmetic exception occurs under any circum
stances. 

Restrictions: :\ 
If GPRs rs or rt do not contain sign-extended 32-bit values (bits 63 .. 31 equal), then the res4Jts of the opera
tion are UNPREDICTABLE. 

Note that this instruction does not provide th~v~~i>~.~Nity of writing directly to a target GPR. 

./ .:· :;:. . \ 
Operatl·on.· _~,,>.'/i·-.;--; -~' -~.'1 

_, "' ~:, :'t,,_:/ .' 

if NotWordValue(GPR[rs]) or NotWordValue(GPR[rtl) then' 
UNPREDICTABLE > . . ·;:' 

endif • <:•, l 

temp r (HI31..o II L031..o) + (GP~[rsh1..o * GPR[rthr..~) 
",_''..;'>·;/ 

HI r sign_extend(temp63 .. 32) ./ 

LO r sign_extend(temp31..o) 

Exceptions: 
None 

Implementation Note: 
Processors which implement a multiplier array which is not square (e.g., 32 x 16), and which therefore has 
an operation latency which is data dependent; should assume that the shorter operand is in GPR rt. 

Programming Note: 
Where the size of the operands are known, software should place the shorter operand in GPR rt. This may 
reduce the latency of the instruction on those processors which implement data-dependent instruction laten
cies. 

November 15, 1999 - 31 -

MIPSC•fi PROPRIETARY /CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64™ Specification 

2.9.2.12 The MADDU Instruction 
;, 

.. Multiply and Add Unsigned ·wordto ~~Lo .... ,, < ·. ,;MADDU 

31 26 25 21 20 16 15 11 10 6 5 0 

SPEC2 rs rt 0 0 MAODU 
011100 00000 00000 000001 

6 5 5 5. 5 6 

Format: 
MADDUrs, rt MIPS64 

Purpose: 
Multiply two unsigned words and add the result to Hi, Lo 

Description: 
The 32-bit word value in GPR rs is multiplied by the 32-bit value in GPR rt, treating both operands as 
·unsigned values, to produce a 64-bit result. The product is added to t!Je6jf-bit concaten~~ed values of H/31..o 
and L031..o. The most significant 32 bits of the result is sign-extended arid wri~en into HI and the least sig

nificant 32 bits of the result is sign-extended and written into LO., No'.in:ithmeti~ exceptio~ occurs under any 
circumstances. '~:"*/ >:;:,7tifti!J? . 

:~s1;,,:;:>~. ~ ~ 
Restrictions: ,,!:,. "' ;,·:.; 

If GPRs rs or rt do not contain sign-extended 32-bit values (bfts 63 .. 31 equal), then the results of the opera-
tion are UNPREDICTABLE. \t~ '-'r 

Note that this instruction does not provide th 

Operation: 
ifNotWordValue(GPR[rs]) or NotWordValue( 

UNPREDICTABLE <ii) 

~ ~ sign_extend(temp63 . .32) 

LO~ sign_extend(temp31 .. o) 

Exceptions: 
None 

Implementation Note: 

'lity of writing dii:ectly to a target GPR. 
. :i 

·'Ii! 

Processors which implement a multiplier array which is not square (e.g., 32 x 16), and which therefore has 
an operation latency\vhich is data dependent, should assume that the shorter operand is in GPR rt. 

Programming Note: 
Where the size of the operands are known, software should place the shorter operand in GPR rt. This may 
reduce the latency of the instruction on those processors which implement data-dependent instruction laten
cies. 

November 15, 1999 - 32 -

· 1 MIPS@ PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS.DUPLICATION rs PROHIBITED. 



Revision 1.0 

2.9.2.13 The MFCz Instruction 

Mo,v.e from Coprocessor z 

31 26 25 

I 
COPz 

0100zz 

6 

Format: 
MFCz rt, rd 
MFCz rt, rd, sel 

Purpose: 

I 

21 

MF 
00000 

5 

20 16 15 11 

I 
rt I rd I 
5 5 

Move the contents of a coprocessor register to a general register. 

Description: 

MIPS64TM Specification 

.. . . MF(;z 

10 3 2 0 

0 I ·~I 00000000 

8 3 

MIPS64 

The contents of the least significant 32 bits of the coprocessor z regi~ter~~pecified by the combination of rd 
and sel are sign-extended and loaded into general register rt. Not all coprocessors or registers within a copro
cessor support the sub-selection specified by the sel field. In those insUl~ces, the sel field must be set to zero 

'<". /' . ~ ·::,"'-· '~~ c·_'f 
::·;_,~ ~ --::,;~iV;;D,,;:-:~ 

R tr.ct1'ons· r.· ·,"",~ es 1 • 1 .:.;:h... , -
If the coprocessor enable bit for coprocessor z is zero in the ,S'tatus register, access to this coprocessor is not 
allowed, and execution of this instruction results in a Coprocessor Unus~ble Exception:· If the processor is 
running in Kernel Mode or Debug Mode, access to coprocessorClis enabled even ifthe CUO .. fJit is zero in the 
Status register. '.'.•>•• "' ... ''.\ 

i{ffj_:ifr:~\ A~ 
A Reserved Instruction Exception is taken if ac'cess i~ ~llowed to coprocessor z and MFCz is not imple-

mented for that coprocessor. /JJ.','f(:~;?i:''''rfi~;;~ ;\;;T ~. i · / 

The results are UNPREDICTABLE if coprocessdr:z. does.riot contain a register as specified by rd and sel. 

''''t•,,7' 
Operation: 

if (Statuscuz = 1) or 

((z = 0) and ((StatusKsu = 002) or (Deb~.&i"M.= l) or (Statl1sEXL = 1) or (StatusERL = 1))) then 
if (MFCz Not Implemented) 'then · / ; 

InitiateReservedinstructionException·f 

endif 'T :·.t 
data f- CPR[z,rd,sel] 
GPR[rt] f- sign_extend(data) 

else 
Ini tiateCoprocessorU nusab leException( z) 

endif · 

Exceptions: 
Coprocessor Unusable Exception (Access not allowed to coprocessor) 
Reserved Instruction Exception (access allowed, and MFCz not implemented for this coprocessor) 

November 15, 1999 - 33 -

M IP Sc';; PROPRIETARY /CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLIC AT!ON IS PROHlB !TED. 



Revision 1.0 

2.9.2.14 The MOVN.PS Instruction 

Floating Point ~ov~ Conditional on Not Zero 

31 

Format: 

COP1 

010001 

6 

26 25 21 20 

I . o ':, o I 
5 

MOVN.PS fd, fs, rt 

Purpose: 

rt 

5 

16 15 

I 

To test a GPR then conditionally move an FP value. 

Description: 

MIPS64:M Specification 

MOVN~PS 

11 10 6 5 0 

fs 

I 
fd 

I 
MOVN 

I 010011 

5 5 6 

MIPS64 

Jfthe value in GPR rt is not equal to zero, then the value in FPRfs is placed in FPRfd. The source and des
tination are values in format PS. /'{g'j9~ \ 

t \ 

. If GPR rt contains zero, then FPRfs is not copied and FPRfd contaips its pr~vious va!Ue in format PS. If 
FPRfd did not contain a value either in format PS or previously-tinuseil.?Jata':fiom a load or move-to opera: 
tion that could be interpreted in format PS, then the value of FPR]d becoffif;s UNPREDICTABLE. 

The move is non-arithmetic; it causes no IEEE 754 excepti~:~\. 
"'"' ~. 

Restrictions: 
The fields fs and fd must specify FPRs valid 
UNPREDICTABLE. 

The operand must be a value in forma~,PS 
FPRfs becomes UNPREDICTABLE. 

~i 
Operation: 

if GPR[rt] t= 0 then ,~ · 
StoreFPR(fd, PS, Valu~FP 'tfs, PS)) . 

else 
StoreFPR(fd, PS, ValueFP 

endif 

Exceptions: 

•, 

.' ;~\ ' 

•Q erands of typ~ f.S; if they are not valid, the result is 

-~ 
esult is UNPREDICTABLE and the value of 

Coprocessor Unusable Exception (Access not allowed to coprocessor) 
Reserved Instruction Exception (access allowed, but 64-bit operations are not enabled or the paired single 
format is not implemented) 

November 15, 1999 - 34-

I MIPS@ PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROI IIBITED. 



Revision 1.0 MIPS64TM Specification 

2.9.2.15 The MOVZ.PS Instruction 

Floating Point Move Conditional on Zero · .. 
. ' ,, .. . .. . • ,. : ' ; : er . MOVZ.PS . .... ~ .. · . 

,.,; 

31 26 25 21 20 16 15 11 10 6 5 0 

COP1 PS rt fs fd MOVZ 
010001 1 0 1 1 0 010010 

6 5 5 5 5 6 

Format: 
MOVZ.PS fd, fs, rt MIPS64 

Purpose: 
To test a GPR then conditionally move an FP value. 

Description: 
If the value in GPR rt is equal to zero, then the value in FPR/s is placed in FPR/d. The source and destina-
tion are values in format PS. .}i);'. ;;:.-

~ ;- -~ 

If GPR rt is not zero, then FPR/s is not copied and FPRfd conta_ins i~_'previo~ value in format PS. If FPR 
fd did not contain a value either in format PS or previously unused data from" a load or move-to operation 
that could be interpreted in format PS, then the value of FPRfd b~co~es ~NPREDICTABLE. : 

,.,.. ' ~ ··, 
·~.:\ "~'.\:·.,~:',;' 

The move is non-arithmetic; it causes no IEEE 754 exceptiong:\ -~ . ' 

Restrictions: .;.,,Il~-:~;~J;.~j:; ;: ri.\ 
The fields fs and fd must specify FPRs valid f! erands of type 'J::'S; if they are not valid, the result is 
UNPREDICTABLE. J~'fili· 4, 

. ;!): .. ' .. \·£~:\ . i J~f 
The operand must be a value in format PS;.•ifcit i$ not, theJesult is UNPREDICTABLE and the value of 
FPR/s becomes UNPREDICTABL~~ , ;(fl 

Operation: 
if GPR[rt] = 0 then ~>,. 

,.;>~; ~-~,,.,~, 

StoreFPR(fd, PS, Valuef'R,R(f~. f>S)) .. 

else ~~~~l\ _ -~;p~1?~:, !/i;:d:~~;~~\ 
StoreFPR(fd, PS, ValueFPRJfd~:PS)) . 'it 

endif I ., 
l. :.·: 

Exceptions: 
~: '.1 

Coprocessor Unusable Exception (Access not allowed to coprocessor) 
Reserved Instruction Exception (access allowed, but 64-bit operations are not enabled or the paired single 
format is not implemented) 

November 15, 1999 - 35 -

MIPS® PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIB !TED. 



Revision 1.0 MIPS64TM Specification 

2.9.2.16 The MSUB Instruction 

Multiply and Subtract Word to Hi,Lo 

31 26 25 21 20 16 15 11 10 6 5 0 

SPEC2 rs rt 0 0 MSUB 
011100 00000 00000 000100 

6 5 5 5 5 6 

Format: 
MSUB rs. rt MIPS64 

Purpose: 
Multiply two words and subtract the result from Hi, Lo 

Description: 
.. The 32-bit word value in GPR rs is multiplied by the 32-bit value in GPR rt, treating both operands as signed 
values, to produce a 64-bit result. The product is subtracted from th.e 64;bit concatenate'd values of H/31..o 

and L031..o. The most significant 32 bits of the result is sign-extended and written into HI and the least sig-
·nificant 32 bits of the result is sign-extended and written No arithmetic exceptidn occurs under any 
circumstances. .,, "ti11'1:l' 

Restrictions: 
If GPRs rs or rt do not contain sign-extended 32-bit values (bits 63 .. 31 equal), then the results of the opera-
tion are UNPREDICTABLE. '•· 

Note that this instruction does not provide the c:aplibility of writing 
)~' ,,- -- -<:cvn::;~~:~ '; f <::;:1;._,~~~, 

• ~:"""' ,i:;:;;: : ,.:::0.;n;,, 
Operation: .· '''~1'?::"·! d 

if NotWordValue(GPR[rs]) or NotWordValue(GPR[rt]) th.en 
UNPREDICTABLE :,:, . r 

-~:~;:,'-L ,-"/ endif ,, / 

to a target GPR. 

temp~ (HI31..o II L031..o) - (GPR.[rsh1..o * GPR[i;t.h1,.~) 
HI~ sign_extend(temp63 .. 32)·J .• . . ':f 
LO f- sign_extend(temp3 i..0)~;.. ;?~i~f:/{ \ 

,, ; --~i<i' 

Exceptions: 
None 

Implementation Note: 
Processors which implement a multiplier array which is not square (e.g., 32 x 16), and which therefore has 
an operation latency which is data dependent, should assume that the shorter operand is in GPR rt. 

Programming Note: 
Where the size of the operands are known, software should place the shorter operand in GPR rt. This may 
reduce the latency of the instruction on those processors which implement data-dependent instruction laten
cies. 

November 15, 1999 - 36 -

MIPS('(' PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION lS PROHIBITED. 



Revision 1.0 MIPS64TM Specification 

2.9.2.17 The MSUBU Instruction 

Multiply ~nd Subt~act Unsigned Word to Hi,Lo '' 1·. MSUBU,,·· 

31 26 25 21 20 16 15 11 10 6 5 0 

SPEC2 rs rt 0 0 MSUBU 
011100 00000 00000 000101 

6 5 5 5 5 6 

Format: 
MSUBU rs, rt MIPS64 

Purpose: 
Multiply two unsigned words and subtract the result from Hi, Lo 

Description: 
The 32-bit word value in GPR rs is multiplied by the 32-bit value in GPR rt, treating both operands as 
unsigned values, to produce a 64-bit result. The product is subtractedJrC?IX). the64-bit concatenated values of 
HI31..o and L031..o. The most significant 32 bits of the result is sign-ex.tended an~ written into HI and the least 
significant 32 bits of the result is sign-extended and written into LO.·~.No aritrurtetic exception occurs under 
any Cl.rcumstances. i ');'"; • ·" ,. .... / 

> .. ~<'·~··· .'• '•-

--

Restrictions: ,\ 
If GPRs rs or rt do not contain sign-extended 32-bit values (bits 63 .. 31 equal), then the r~sults of the opera-
tion are UNPREDICTABLE. tt 

HI~ sign_extend(temp63 .. 32L, 
'· 

./ 

LO~ sign_extend(temp31..o) 

Exceptions: 
None 

Implementation Note: 
Processors which implement a multiplier array which is not square (e.g., 32 x 16), and whieh therefore has 
an operation latency which is data dependent, should assume that the shorter operand is in GPR rt. 

Programming Note: 
Where the size of the operands are known, software should place the shorter operand in GPR rt. This may 
reduce the latency of the instruction on those processors which implement data-dependent instruction laten
cies. 

November 15, 1999 - 37 -

MIPS('9 PROPRIETARY /CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 

2.9.2.18 The MTCz Instruction 

Move to Coprocessor z 

31 26 25 21 20 

COPz 
0100zz 

Format: 
MTCz 
MTCz 

Purpose: 

6 

rt, rd 
rt, rd. sel 

I 00~00 I 
5 

16 15 11 

rt rel 

5 5 

Move the contents of a general register to a coprocessor register. 

Description: 

10 

0 
0000000 

8 

MIPS64TM Specification 

MTCz 

3 

MIPS64 

The contents of general register rt are loaded into the coprocessor z r~gi§t~r specified by the combination of 
rd and sel. Not all coprocessors or registers within a coprocessor support the sub-selection specified by the 
sel field. In those instances, the sel field must be set to zero. \,/ a 

~- :F?~i~2;;~::~~~~/ 
Restrictions: · ·.·.°' 

If the coprocessor enable bit for coprocessor z is zero in the Statu;:~~gistei. access to this .coprocessor is not 
allowed, and execution of this instruction results in a Coprocessor Unu~fble Exception~ If tE.e processor is 
running in Kernel Mode or Debug Mode, access to coprocessor 0 is enabled even if the CUO bit is zero in the 
Status register ·~t':!iy:<;;::c··"·\ 

• :."'vv-n,],,,,",J;,.•".·\:,, :,.L 

A RJserved Instruction Exception is taken ·• 
mented for that coprocessor. 

lowed to cC>processor z and MTCz is not imple
,_ft'# 

For coprocessor 0, this instruction write~~ 64 bits register rt into the coprocessor register specified 
b! r~.and sel if that register is,i~,iJ>it fe'f,'ff~:'' .; 

#y 
Operation: 

if (Statuscuz = 1) or M· 

((z = 0) and ((StatusKsu = 002) or(Debug0 = 1) or (StatusEXL = 1) or (StatusERL = 1))) then 

else 

if (MTCz Not Implemented) then ~'ff;;t;f' 
InitiateReservedlnstructionException 

endif 
data ~ GPR[rt] 
if (z = 0) and (Width(CPR[z,rd,sel]) = 64) then 

CPR[z,rd,sel] ~ data 
else 

CPR[z,rd,sel] ~ data31..o 

endif 

InitiateCoprocessorUnusableException(z) 
endif 

Exceptions: 
Coprocessor Unusable Exception (Access not allowed to coprocessor) 

November 15, 1999 - 38 -

MIPS@ PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS.DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64TM Specification 

Reserved Instruction Exception (access allowed, and MTCz not implemented for this coprocessor) 

November 15, 1999 - 39 -

MIPS@ PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64TM Specification 

2.9.2.19 The MUL Instruction 

Multiply Word to GPR 
... 

~Mm.; 
~· ... 

31 26 25 21 20 16 15 11 10 6 5 0 

I 
SPEC2 

I 
rs 

I 
rt 

I rd 

I 
0 

I 
MUL 

I 011100 00000 000010 

6 5 5 5 5 6 

Format: 
MUL rd, rs, rt MIPS64 

Purpose: 
Multiply two words write the result to a GPR 

Description: 
·•T.he 32-bit word value in GPR rs is multiplied by the 32-bit value in GPR rt, treating both operands as signed 
values, to produce a 64-bit result. The least significant 32 bits of the prodt,!ct are written to GPR rd. The con
tents of HI and LO are not defined after the operation. No arithmetic ex'ceptiqn occurs. under any circum-

.::stances. 'lm,, / '' • 
.,.~ I' · .. !.·~.:~ 

• • :";;.£ . . :· . 
Restrictions: ;c<s\~., , ·.· · 

If GPRs rs or rt do not contain sign-extended 32-bit values (bits 63.~l·~ual), then the-results of the opera-
tion are UNPREDICTABLE. ''''''<:,, &:i:t,~& . .• . 

:~ '\ .. ,,,.. 
Note that this instruction does not provide the capabilit)i~t'Wntinj the result to the HI and LO registers. 

Operation: 
if NotWordValue(GPR[rs]) or NotWordVi . 

UNPREDICTABLE 
endif 
temp f- GPR[rsh1..o * GPR[rth1..o 
GPR[rd] f- sign_extend(temp31 .. o) 
HI f- UNPREDICTABLE . 
LO f- UNPREDICTABLE 

Exceptions: 
None 

-
Implementation Note: . . 

Processors which implement a multiplier array which is not square (e.g., 32 x 16), and which therefore has 
an operation latency which is data dependent, should assume that the shorter operand is in GPR rt. 

Programming Note: 
Where the size of the operands are known, software should place the shorter operand in GPR rt. This may 
reduce the latency of the instruction on those processors which implement data-dependent instruction laten
cies. 

November 15, 1999 -40-

MIPS® PROPRlETAR Y /CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFlDENTIAUTY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64TM Specification 

2.9.2.20 The PREF Instruction 

Prefetch. 

31 

Format: 

:··-·-·, 

PREF 
110011 

6 

26 25 

5 

PREF 

21 20 16 15 0 

hint Offset 

5 16 

PREF hint, offset(base) MIPS IV 

Purpose: 
To move data between memory and cache 

Description: 
PREF adds the 16-bit signed offset to the contents of GPR base to form an effective byte address. The hint 
field supplies information about how the addressed data is to be manipula~ed. 

,. 

PREF enables the processor to take some action as specified by the bi~t field,ho improve program perfor
mance. The action taken for a specific PREF instruction is both·syst~Ili:'and context dependent. Any action, 
including doing nothing, is permitted as long as it does not c'hange,archit~~turally visible state or alter the 
meaning of a program. Implementations are expected either' to do nbtliing, or take an action that increases 
the performance of the program. · '\, ·" 

, __ {~_;J_f-·--·'.~ :·~--·:··-~- .. \, _•, 
PREF does not cause addressing-related exceptions. If it does happen to raise an exception condition, the 
exception condition is ignored. If an addressiIJg:tel".lted exception C~Q.dition is raised and ignored, no data 

,,,, . ·i••.+> '" 
movement occurs. .,/ ·~;:;; . ~"~ 

;S~~,~- ~.::([~&$· .· --'.-t~;~-
PREF never generates a memory operatio'rffo~'alo~ation wiih an uncached memory access type. 

·\,i.; .;f 

·ifj~. ' .,, ·:' -----~h ' _{/~ 
For a cached location, the expected arid us.eful actioI1::.for the processor is to move a block of data between 
cache and the memory hierarchy7 The size'"P~Jlie block transferred is implementation dependent, but soft-
ware may assume that it is at least"one cache bl&k .. .,/. · 

.f#' . . ~~;··,, '"' ''Y" 
The following table defines the hin.t.fi~ldvahies. 

,~~~~'.~·:1E5~-~:r ~i 

, 
Table 36: PR,EF hint field encodings 

Value Name Data Use and Desired PREF action 

0 load Use: Prefetched data is expected to be read (not modified) 

Action: Fetch data as if for a load. 

l store Use: Prefetched data is expected to be stored or modified 

Action: Fetch data as if for a store. 

2-3 Reserved Reserved for future use - not available to implementations. 

November 15, 1999 - 41 -

MIPS@ PROPRIETARY /CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS.DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64TM Specification 

Table 36: PREF hint field encodings 

Value Name 

4 load_streamed 

5 

6 

7 

8-24 

25 

store_streamed 

load_retained 

store_retained 

Reserved 

writeback_invalidate 
(also known as nudge) 

Data Use and Desired PREF action 

Use: Prefetched data is expected to be read (not modified) 
but not reused extensively; it "streams" through the cache 

Action: Fetch data as if for a load and place it in the cache 
so that it does not displace data prefetched as "retained" 

Use: Prefetched data is expected to be stored or modified 
but not reused extensively; it "streams" through the cache 

Action: Fetch data as if for a store and place it in the cache 
so that it does not displace data prefetched as "retained" 

Use: Prefetched data is expected to be read (not modified) 
and reused extensively; it should be "retained" in the cache 

. ,fl,.;1f'2'/ . 
Action: Fetch data as if for a load~nd place it in the cache 
so that it is not displaced by_ da~ prefetc9~d as "streamed" 

;::,.., ,, l\':,··;,j ,:.:•;~'~··N" 

Use: Prefetched data is exi)ected to be.stored or modified 
and reused extensively,\fi.si16u\~J>~Jretained" int~~- cache 

,,.'t:·:~~.\ ~,~z;/ - ·.··> .• ·-1., 

Action: Fetch data as if for a store and place it in the cache 
so that it is not d~J!f~~~~~ta prefetched as "streamed" 

Reservedtfuf!µture use - not a~\lable to implementations. 
''..~ -~~·.!.:l ;t 

'.;'/.}: 1-:tt~'~\.. ,_,,l1._~ 

Use· ata is no~long~fo be expected to be used 

Action: F · bal cache, schedule a writeback of any 
mirty_ data. At , .. ;r pletion of the writeback, mark as 
invajMt~~;, state any cache lines written back. 

26-31 Implementation De~tf-1'0 ;;Unassign~~{the Architecture - available for implementa-

dent ·i ,22P:?~~~dent use 

Restrictions: 
None 

Operation: 
vAddr ~ GPR[base] + sign_extend(offset) 
(pAddr, CCA) ~ AddressTranslation(vAddr, DATA, LOAD) 
Prefetch(CCA, pAddr, vAddr, DATA, hint) 

Exceptions: 
Prefetch does not take any TLB-related or address-related exceptions under any circumstances. 

Programming Notes: 

--

Prefetch cannot access a mapped location unless the translation for that location is present in the TLB. Loca
tions in memory pages that have not been accessed recently may not have translations in the TLB, so 
prefetch may not be effective for such locations. 

November 15, 1999 - 42 -

MIPS@ PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64TM Specification 

Prefetch does not cause addressing exceptions. It does not cause an exception to prefetch using a pointer 
before the validity of the pointer is determined. 

Hint field encodings whose function is described as "streamed" or "retained" convey usage intent from soft
ware to hardware. Software should not assume that hardware will always prefetch data in an optimal way. If 
data is to be truly retained, software should use the Cache instruction to lock data into the cache. 

Implementation Notes: 
It is implementation dependent whether encodings of the hint field listed as "Implementation Dependent" or 
"Unimplemented" are treated as a NOP, or mapped to another valid encoding of the hint field. 

Hint field encodings whose function is described as "streamed" or "retained" convey usage intent from soft
ware to hardware. Processors should make an attempt to take this information into account when prefetching 
data, but are not obligated to do so. 

Processors should never implement the writeback_invalidate encoding of the hint field in such a way that the 
action moves data from memory hierarchy to the cache. This function should either take the action intended 
for the encoding (to schedule a possible writeback and subsequent .invalidation) or treat the function as a 
NO~ , I 

';. .. / '.l 

'/. • >' :-'./''.'"-O' ,;._'~: ~:.;~ 

It is implementation dependent whether a data watch is triggered by a I prefetch instruction whose addre&s 
matches the Watch register address match conditions. The preferr~d implementation is not to match on the 
prefetch instruction. : 

November 15, 1999 - 43 -

MIPS<'D PROPRIETARY /CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS.DUPLICATION IS PROIIIBITED. 



Revision 1.0 MIPS64rn Specification 

2.9.2.21 The PREFX Instruction 

Prefetch Indexed .PRE~ 

31 26 25 21 20 16 15 11 10 6 5 0 

COP1X base index hint 0 PREFX 

010011 00000 001111 

5 6 

Format: 
PREFX hint, index(base) MIPS IV 

Purpose: 
To move data between memory and cache 

Description: 
PREFX adds the contents of GPR index to the contents of GPR base to form an effective byte address. The 
hint field supplies information about how the addressed data is to be ;nanipula~ed. 

:-' 

The only functional difference between the PREF and PREFX instructions is)he addressing mode imple
mented by the two. Refer to the PREF instruction description for all other ~etails, including the encoding of 

···the hint field. '>~i+~>;'> ··" _ -

;,·,::\~. -',_/ __ ,::: '<-' ';?~. 

Note, however, that the prefx instruction is only available on "i>rocessors.that implement floating point, and 
should only be generated by compilers in situations in corresponding load and store indexed float
ing point instructions are generated. 

Restrictions: 
None 

Operation: 
if (Statuscut = 0) then 

Ini tiateCoprocessorU nusableExceptid~(l:). 
endif .· ,~, · ··'1·f!£l4l:~,:·••J 
vAddr ~ GPR[base] + GPR[i11dex] •.. ·····• .· .... ·xi/ 

· (pAddr, CCA) ~ AddressTra~~latio11(Y,t¥~d!:"PATA, LOAD) 
Prefetch(CCA, pAddr, vAddr, DA,.fA;si\int) ':; 

</ 

Exceptions: :::r:•:<7' 

Coprocessor Unusable Exception -~" 

Prefetch does not take any TLB-related or address-related exceptions under any circumstances. 

Programming Notes: 
Refer to the corresponding section in the PREF instruction description. 

Implementation Notes: 
Refer to the corresponding section in the PREF instruction description. 

November 15, 1999 - 44 -

MIPSC'iJ PROPRIETARY /CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64™ Specification 

2.9.2.22 The SSNOP Instruction 

Superscalar Inhibit NOP SSNOP 

31 26 25 21 20 16 15 11 10 6 5 0 

SPECIAL 0 0 0 1 SLL 

000000 00000 00000 00000 00001 000000 

6 5 5 5 5 6 

Format: 
SS NOP MIPS32 

Purpose: 
Break superscalar issue on a superscalar processor 

Description: 
This instruction alters the instruction issue behavior on a superscalar processor by forcing the SSNOP 
instruction to single-issue. Notwithstanding implementation depende11tissue rules, a processor must end the 
current instruction issue between the instruction previous to the SSNOP and the SSNOP. The SSNOP then 
issues alone in the next issue slot. ~~/ .:.; 

.. ;i:~: ~~"l;j;}fi~~:'.'J\ 
. SSNOP is intended for use primarily to allow the programmer;;c~ptrol ,over CPO hazards by converting 
instructions into cycles in a superscalar processor. For example, i6111s~ at least two ~ycles between an 
MTCO and an ERET, one would use the following sequence: '\ ,,, 

mtcO )dtrr:~'.:t'.~, 
'\ 
tJ 

ssnop 
ssnop 
eret 

Based on the normal issues rules of t!l.e process T 1 0 issues in cycle T. Because the SSNOP instruc-
tions must issue alone, they may iss\i6 nq earlier cle T+l and cycle T+2, respectively. Finally, the 

.,''Pl/I<, 

ERET issues no earlier than cycle T +3. ;N9te that although the instruction after an SSNOP may issue no 
earlier than the cycle after the SS~OP,,,is issuea~,.il!,~\ptstruction may issue later. This is because other imple
~entation-depen~ent js~ue. ru,(s: .m.~y ~gf~ ... ~h~~ pr~v:e:n~ a.~ _iss_ue in .the next cycle .. Processors should not 
introduce any unnecessary de, g'S~~OP mstruct10ns. _ 

~ 

On a single-issue processor, this instruction is~ nop that takes an issue slot. 
~;~'Vk~ 

Restrictions: 
None 

Operation: 

Exceptions: 
None 

November 15, 1999 - 45 -

MIPS@ PROPRIETARY/CONFlDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFlDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64TM Specification 

2.9.3 Privileged Instructions 

2.9.3.1 The CACHE Instruction 

Perform Cache Operation .. CACHE 
•;,.. ,.... / >} -~ 

31 26 25 21 20 16 15 0 

I 
CACHE 

I 
base 

I 
op 

I 101111 
Offset 

6 5 5 16 

Format: 
CACHE op, offset(base) MIPS64 

Purpose: 
'J'.o perform the cache operation specified by op . 
. ·· .. 

f y '· Description: ·, , : ·r. · · · 
The 16-bit offset is sign-extended and added to the contents of the brisc;'.registeflto form an effective address. 
The effective address is used in one of three ways based onthe. peratiOn:tobe performed and the type of 
cache as described in Table 37. . ·9'" , • ·:· ·· -

Operation 
Requires an 

Address 

Address 

Index 

November 15, 1999 

Type of 
Cache 

Virtual 

Physical 

NIA 

.. :\ .. 
, A. 

Table 37: Usage of Effective Adclress · ··~~ 

The effective~a4dressjS:'fiflcf'.~p addres~':?fhe cache. It is implementa-
tion depenif~1riC"'· er an add}ess translation is performed on the 
effectiv~ address ·· ·~ e po',sibility that a TLB Refill or TLB 
Invalicfl~xception mi • cfu.) . 

'-lfj,.. 

Th~,,.,:t;\!,Ctiv~'' · tfanslated by the MMU to a physica.l address. 
J;he physical addre then used to address the cache 
"\II' ......... ~\!"1'1',.' 

~,~~~S~~ess may be translated by the MMU to a pl.tysical 
adi:liess. It is implementation dependent whether the effective ad.dress 
or the tra~,~~physical address are used to index the cac.he. ' 

Assuming that the total cache size in bytes is CS, the associativity is 
A, and the number of bytes per tag is BPT, the following calculations 
give the fields of the address which specify the way and the index: 

OffsetBit ~ Log2(BPT) 
IndexBit f- Log2(CS I A) 
WayBit f- IndexBit + Ceiling(Log2(A)) 

Way f- AddrwayBit-1..IndexBit 

Index f- Addr1ndexBit-l .. OffsetBit 

For a direct-mapped cache, the Way calculation is ignored and the 
Index value fully specifies the cache tag. This is shown symbolically 
in Figure 4. 

- 46 -

MIPS@ PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 

Figure 4: Usage of Address Fields to Select Index and Way 

Unused 

MIPS64TM Specification 

~Off .. Bi< 

§e index 
0
1 

A TLB Refill and TLB Invalid (both with cause code equal TLBL) exception can occur on any operation. 
For index operations (where the address is used to index the cache but need not match the cache tag) soft
ware should use unmapped addresses to avoid TLB exceptions. This instruction never causes TLB Modified 
exceptions nor TLB Refill exceptions with a cause code of TLBS nor data Watch exceptions. 

A Cache Error exception may occur as a byproduct of some operations performed by this instruction. For 
example, if a Writeback operation detects a cache or bus error during the processing of the operation, that 
error is reported via a Cache Error exception. 

An Address Error Exception (with cause code equal Ad.EL) may occudf:the effective address references a 
portion of the kernel address space which would normally result in such an exception. It is implementation 
dependent whether such an exception does occur. .: .. ' · 

It is implementation dependent whether a data watch is trigge~~tl l:lY a .cache instruction whose addres~ 
matches the Watch register address match conditions. The preferred implementation is not to match on the 
cache instruction. ' · · ·:::: 

,'<,,~,r-:·· "\\. 

Bits [17:16] of the instruction specify the cache on whicti't~letlorin,the operation, as follows: 

J~ \ 
Table 38: Encoding of Bits[l 7':16}, Qf;C:ACHE InStruction 

;(( flH:t.%t:~t,~f~·~ ,·~:·;.;• 

cache 
:-"'t! 

1 1 

;,~: .. 
Bits [20:18] of the instructions~~(' e ope 
cache operations, certain encoding; must be 
ommended. 

·on to perform. To provide software with a consistent base of 
pported on all processors. The remaining encodings are rec-

November 15, 1999 - 47 -

MTPS('\l PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROIIIB !TED. 



Revision 1.0 

Code Caches 

000 

S, T 

0 O 1 "All 

November 15, 1999 

MIPS64TM Specification 

Table 39: Encoding of Bits [20:18] of the CACHE Instruction 

Name 

Index Invalidate 

Index Writeback 

Effective 
Address 
Operand 

Type 

Index 

Invalidate I Index Index 
Invalidate 

Index Writeback 
Invalidate I Index 
Invalidate 

Index Load Tag 

Index 

Operation 

oc at t e 

This required encoding may be used by 
software to invalidate the entire instruc
tion cache by stepping through all valid 
indices. 

For a write-back cache: If the state of the 

Compliance 

Required 

cache block at the specified index is valid Required 
and dirty, write the bloc.k.ba~k to the 
memory address specified by the cache 
tag. After that operadon)~ completed, set 
the state of the cache bfock to invalid. If 
the block is valid but not dirty, set the 
state of the blo~k i~ fh\ralid; 

_;::!1'-,._ , ~-'.n\;x; 

For a write-through cache: Set the state of 
the cachebI()Ck.at the specified index to 
invalid.' -·· .• , .. ""·''s\ 

fh1:;1:i~1~ i!lfil';;;r..,_ ,.,(! 
This.i¢'4uir§J,fncoding inay be used by 
oftware to invalidate the entire data 

•OJg~~he b steifping through all valid indi
ces. 

",Read the"tag for the cache block at the 
~y:,.,,_,_ @' 

· sIJ:~~~fted index into the TagLo and TagHi 
CO@' r~gis~f!rS. If the. D.ataLo and DataHi 

-;r,egisters are implemented, also read the 
"data corresponding to the byte index into 
:>the DataLo and DataHi registers. 

The granularity and alignment of the data 
read into the DataLo and DataHi registers 
is implementation-dependent, but is typi
cally the result of an aligned access to the 
cache, ignoring the appropriate low-order 
bits of the byte index. 

- 48 -

.... ~ 
~;. 

Optional 

Recommended 

l'vllPS@ PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENTS UBJECT TO CONFlDENT!ALITY OBLIGATIONS. DUPLICA T!ON IS PROHIBITED. 



Revision 1.0 MIPS64TM Specification 

Table 39: Encoding of Bits [20:18] of the CACHE Instruction 

Effective 

Code Caches Name 
Address 

Operation Compliance 
Operand 

Type 

Wnte the tag for the cache block at the 
specified index from the TagLo and TagHi 
COPO registers. 

010 All Index Store Tag Index 
This required encoding may be used by 

Required 
software to initialize the entire instruction 
of data caches by stepping through all 
valid indices. Doing so requires that the 
Tag Lo and Tag Hi registers associated with 
the cache be initialized first. 

0 1 l 
Available for implementation-dependent 

Optional 
operation ,,,~') 

If the cache block contains the specified Required 
address, set the state 6{5~e cache block to (Instruction 
invalid. " 

; Cache Encod-: ':~ '/ -I, D Hit Invalidate Address ing Only), ,, 
100 This required encodiritmay be used by Recom-

software to i~validate a railge of addresses JJ1ended other-
from the ins.~ru~tibn cache by stepping 

'<..!· 
wise 

S,T Hit Invalidate Address 
through the address'range by the line size 

Optional .ofthe cache. ,. ,,. __ '~''>;~·' '' ' 
I Fill Address _f_ Fill tW?}:a,chefrom the specified address Recommended 

Hit Writeback Address·~ For a write-back cache: If the cache block 
"' "' ';' D , Invalidate I Hit AC:oritains the specified address and it is Required 

Invalidate 
·,r,,;;>-":~1,_-,·>t,_ .· }' 

~ vahd,a~(j ,qirty, write the contents back to 

1,z,,,, }1~ 
memory?:After that operation is com-

' ,; 
'i>l,5ted, set the state of the cache block to 
iri:Jaiid. If the block is valid but not dirty, 

~ 
,; , ,,,:,:~.·,.:'.ft:I set the state of the block to invalid. 

' , • ';.:.:;.,;:~j'LJ:';::H',I ;4, 

l 0 l ~-{~~ 
.'iJ"'f!l*"'~ J•or a write-through cache: If the cache 

Hit Writeback ,:rblock contains the specified address, set 
S, T Invalidate I Hit Address <ti Optional 

Invalidate 
the state of the cache block to invalid. 

This required encoding may be used by 
software to invalidate a range of addresses 
from the data cache by stepping through 
the address range by the line size of the 
cache. 

D Hit Writeback Address If the cache block contains the specified Recommended 
address and it is valid and dirty, write the 
contents back to memory. After the opera-

l l 0 
S, T Hit Writeback Address 

tion is completed, leave the state of the 
Optional line valid, but clear the dirty state. For a 

write-through cache, this operation may 
be treated as a nop. 

November 15, 1999 - 49 -

MIPs'.•D PROPRIETARY /CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED, 



Revision 1.0 

Code Caches 

l 11 I, D 

Restrictions: 

MIPS64TM Specification 

Table 39: Encoding of Bits [20:18] of the CACHE Instruction 

· Name 

Fetch and Lock 

Effective 
Address 
Operand 

Type 

Address 

Operation 

t e cac e oes not contam t e spec1 e 
address, fill it from memory;performing a 
writeback if required, and set the state to 
valid and locked. If the cache already con
tains the specified address, set the state to 
locked. In set-associative or fully-associa
tive caches, the way selected on a fill from 
memory is implementation specific. 

Compliance 

The lock state may be cleared by execut
ing an Index Invalidate, Index Writeback 
Invalidate, Hit Invalidat~,p~, Hit Write
back Invalidate operattonto the !ocked 
line, or via an Index Stpre Tag oP,eration 
to the line that,~~e,ars th"~!'?':t~W. Note 
that clearing thelock state via'Index Store 

1' "'.-};'>·"':·.. ... 

Tag is dependent on th~~plementation- ... Recommended 
dependent caclie tag and cache line orga- . . ... 
nization, and thatlndex and Index Write- '•· 
back Inyalia~!~~~~~ions are dependent 

-~~.cache line organlza~.!on. Only Hit and 
*'HifWri ck Invalidate operations are 

genc;;thl ble aciQs~ implementa-

ritentation dependent whether a 
e is displaced as the result of an 

terna invalidate or intervention that 
ll~~ the locked line. Software must not 

:;,, epeiid on the.IOcke'd.line remaining in. .. 
~:fue cache if an external invalidate or inter
;z,~ention would invalidate the line if it were 
not locked. 

Execution of this instruction is legal only if the processor is operating in Kernel Mode or Debug Mode, or if 
the CPO enable bit is set in the Status register. In other circumstances, a Coprocessor Unusable Exception is 
taken. ·· · ·· 

The operation of this instruction is UNDEFINED for any operation/cache combination that is not imple
mented. 

The operation of this instruction is UNDEFINED for uncacheable addresses. 

November 15, 1999 - 50 -

MIPS@ PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64TM Specification 

Operation: 
if (Statuscuo = 1) or (StatusKsu= 002) or (Debug0 M = 1) or (StatusExL = 1) or (StatusERL = 1) then 

vAddr +-- GPR[base] + sign_extend(offset) 
(pAddr, uncached) +-- AddressTranslation(vAddr, DataReadReference) 
CacheOp(op, vAddr, pAddr) 

else 
InitiateCoprocessorUnusableException(O) 

endif 

Exceptions: 
TLB Refill Exception. 
TLB Invalid Exception 
Coprocessor Unusable Exception 
Address Error Exception 
Cache Error Exception 

November 15, 1999 - 51 -

MIPS@ PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64™ Specification 

2.9.3.2 The ERET Instruction 

Exception Rehlrn. 

31 

COPO 
010000 

6 

Format: 

26 25 24 

co 
1 

.-:. ,:' 
" .. '._.../, ERE'f 

0 

0 ERET 
000 0000 0000 0000 0000 011000 

19 6 

ERET MIPS64 

Purpose: 
Return from interrupt, exception, or error trap 

Description: 
ERET returns to the interrupted instruction at the completion of interrupt, exception, or error trap process-
-irig. ERET does not execute the next instruction (i.e., it has no delay ~Jot). . .. 

( 
i ,, 

R t • t" '. ;( ' es ric 10ns: ~ .. l )1 
·The operation of the processor is UNDEFINED if an ERET is placed in the delay slot of a branch or jump 

:instruction. .~:- /~~~i~;i'.;~~03J ·'""" ... -
An ERET placed between an LL and SC instruction will alway~ cause the SC to fail. .... ~ 

;,.~ '\' .,,. 
This instruction is legal only if the processor is in Kem~I'.M'oo~:2t.Pebug Mode, or if the CPO usable bit is 
set in the Status register. In other circumstance cution of this in~truction results in a Coprocessor Unus-
able Exception. . l 

~fg! 

ERET implements a software barrier fora ""·~£sin the;FPO state that could affect the fetch and decode 
of the instruction at the PC to which the ERETt'.te s, such as changes to the effective ASID, user-mode 
state, and addressing mode. ·•~ . .· 

Operation: :;;~"" i ,, _;_:;6·,.,, .• -,,t.i;r 
if (Statuscuo = 1) or (StatusKstf= 002) or (Debug0 M = 1) or (StatusEXL = 1) or (StatusERL = 1) then 

else 

. ~· .. ·. ~ . .,- ,. . . . ' 

if StatusERL = 1 then · · 

else 

PC ~ ErrorEPC 
StatusERL ~ 0 

PC~EPC 

StatusEXL ~ 0 
endif 
LLbit~O 

InitiateCoprocessorUnusableException(O) 
endif 

Exceptions: 
Coprocessor Unusable Exception 

November 15, 1999 - 52 -

MIPSQ\> PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64™ Specification 

2.9.3.3 The TLBP Instruction 
. .. 

Probe TLB for Matching Entry < ·' ; •. · ... · .TLBP· 

31 26 25 24 0 

COPO co 0 TLBP 

010000 1 000 0000 0000 0000 0000 001000 

6 19 6 

Format: 
TLBP MIPS64 

Purpose: 
Find a matching entry in the TLB. 

Description: 
The Index register is loaded with the index of the ·TLB entry whose contents match the contents of the 
Entry Hi register. If no TLB entry matches, the high-order bit of the f... · egister is set. 

y . 

Restrictions: 
This instruction is legal only if the processor is in Kernel M~de:or 
set in the Status register. In other circumstances, execution of~~';i 
able Exception. ·· 

~ 
:of!ff 

MQ<ie, or if the CPO usable bit is 
ciioii'~esults in a Coprocessor Unus

"\ 

For processors that do not include the standard TLB 
FINED. However, the preferred implementation is a Rel=BJ 

e operation of this instruction is UNDE
't, ction Exception. 

Operation: 
if (Statuscuo = 1) or (StatusKsu= 002) or 

else 

Index f- 1 II UNPREDICTABLE3J 
for i in O ... TLBEntries-1 '1•"" 

if (TLB[i]R = EntryHiR) anCll 

((TLB[i1vPN2 and not (JLB[i] 

(EntryHivPN2 and notz~J3[i1Mask)) 
(TLB[iJa or (TLB[" = E 

Index f- i 
endif 

endfor 

InitiateCoprocessorUnusableException(O) 
endif 

Exceptions: 
Coprocessor Unusable Exception 
Reserved Instruction Exception (if not implemented) 

= 1) or (StatusERL = 1) then 

Machine Check (if implemented and a TLB shutdown condition is detected on a TLB read) 

November 15, 1999 - 53 -

MIPS® PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS.DUPLICATION IS PROHIBITED. 



Revision 1.0 

2.9.3.4 The TLBR Instruction 

·Read IJ!dexed TLB ~~t;:~:~'t:~,!'.it;~f :. 
31 26 25 24 

COPO co 

MIPS64™ Specification 

0 

0 TLBR 

010000 1 000 0000 0000 0000 0000 000001 

6 19 6 

Format: 
TLBR MIPS64 

Purpose: 
Read an entry from the TLB. 

Description: 
The EntryHi, EntryLoO, EntryLol, and PageMask registers are loaded with the contents of the TLB entry 
pointed to by the Index register. Note that the value written to the En~~vEntryLoO, and Entrylol registers 
may be different from that originally written to the TLB via these re$ist~is in t\at: 
• The value returned in the VPN2 field of the Entry Hi register may .· ·m bits set to zero correspond-

ing to the one bits in the Mask field of the TLB entry (t · /;r it of VPN2 corresponds to -
the least significant bit of the Mask field). It is impleme ent whether these bits are pre-
served or zeroed after a TLB entry is written and then r~~d. .. 

• The value returned in the PFN field of the EntryLoO and BlJ;(ryLol registers may have those bits set to 
zero corresponding to the one bits in the Mask fie! · entry (the least significant bit of PFN 
corresponds to the least significant bit of the Mas .. plementation dependent whether these 
bits are preserved or zeroed after a TLB written and th~i\read. 

• The value returned in the G bit in both EntryLo,J:!registers comes from the single G bit 
,fi!W!f 

in the TLB entry. Recall that this bit ical AND of the two G bits in EntryLoO and 
EntryLol when the TLB was writt 

Restrictions: 
This instruction is legal only if the proce 
set in the Status register. In othct.,l!iB!i;i!-! 
able Exception. 

The operation is UNDEFIN 
of TLB entries in the processor. 

I Mode or Debug Mode, or if the CPO usable bit is 
tion of this instruction results in a Coprocessor Unus-

f the Index register are greater than or equal to the number 

For processors that do not include the standard TLB MMU, the operation of this instruction is UNDE
FINED. However, the preferred implementation is a Reserved Instruction Exception. 

November 15, 1999 - 54 -

MIPS® PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS.DUPLICATION IS PROHIBITED. 



Revision 1.0 

Operation: 
if- Index 

MIPS64™ Specification 

if (Statuscuo = 1) or (StatusKsu= 002) or (Debug0 M = 1) or (StatusEXL = 1) or (StatusERL = l) then 

if i > TLBEntries -1 then 
UNDEFINED 

endif 
PageMaskMask f- TLB[i]Mask 

Entry Hi f- TLB[i]R II oFill II 
(TLB[i]vPN2 and not TLB[i1Mask) II 
05 II TLB[iJAsm 

# Masking of VPN2 is implementation dependent 

EntryLol f- oFill 11 (TLB[i]pfN[ and not TLB[i1Mask) II #Masking of PFN is implementation dependent 

TLB[ilci II TLB[i]o 1 II TLB[i]v1 II TLB[ifo 

EntryLoO f- 0Fi11 11 (TLB[i]pFNQ and not TLB[i1Mask) II #Masking of PFN is implementation dependent 

TLB[i]c0 II TLB[i]o0 II TLB[i]vo II TLB[i]G 

else 
InitiateCoprocessorUnusableException(O) 

endif 

Exceptions: 
Coprocessor Unusable Exception 
Reserved Instruction Exception (if not implemented) 
Machine Check (if implemented and a TLB shutdown 

November 15, 1999 - 55 -

MIPS@ PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 

2.9.3.5 The TLBWI Instruction 

Write Indexed TLlJ;Entry; 
. > ~" : ,· . . . '" ,,~ .. i' .' 

31 26 25 24 

COPO co 
010000 1 

6 

Format: 
TLBWI 

Purpose: 

0 
000 0000 0000 0000 0000 

19 

Write a TLB entry indexed by the Index register. 

Description: 

MIPS64™ Specification 

0 

TLBWI 
000010 

6 

MIPS64 

The TLB entry pointed to by the Index register is written from the contents of the EntryHi, EntryLoO, 
Entrylol, and PageMask registers. The information written to the TLB71lntry may be different from that in 
the EntryHi, EntryLoO, and EntryLol registers, in that: ,,. ,/" 

The value written to the VPN2 field of the TLB entry may have '\J!.dse t to zero corresponding to 
the one bits in the Mask field of the PageMask register (t east 'ii~~- bit of VPN2 corresponds to. 
the least significant bit of the Mask field). It is implemen · e en ent whether these bits are pre-
served or zeroed during a TLB write. .:.~~ : 

• The value written to the PFNO and PFNl fields of the TL~ntry may have those bits setto zero corre-
sponding to the one bits in the Mask field of Page " · r (the least significant bit of PFN corre-
sponds to the least significant bit of the Mask fiel · ... entation dependent whether these bits 
are preserved or zeroed during a TLB w · ""\ 
The single G bit in the TLB entry is se. 1 AND o;'e G bits in the EntryLoO and 
EntryLol registers. ., 

The operation is UNDEFIN 
of TLB entries in the processor. 

1 Mode or Debug Mode, or if the CPO usable bit is 
tion of this instruction results in a Coprocessor Unus-

f the Index register are greater than or equal. to the number 

For processors that do not include the standard TLB MMU, the operation of this instruction is UNDE
FINED. However, the preferred implementation is a Reserved Instruction Exception. 

November 15, 1999 - 56 -

MIPS@ PROPRIETARY /CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64™ Specification 

Operation: 
i ~Index 
if (Statuscuo = 1) or (StatusKsu = 002) or (Debug0 M = I) or (StatusExL = 1) or (StatusERL = 1) then 

if i > TLBEntries -1 then 

else 

UNDEFINED 
endif 
TLB[iJMask ~ PageMaskMask 

TLB[i]R ~ EntryHiR 

TLB[i]vPN2 ~ EntryHivpN2 and not PageMaskMask #Masking of VPN2 is implementation dependent 

TLB[i]AsID ~ EntryHiAsm 

TLB[i]G ~ EntryLolG and EntryLoOG 

TLB[i]PFNl ~ EntryLolPFN and not PageMaskMask #Masking of PFN is implementation dependent 
TLB[i]c 1 ~ EntryLolc 
TLB[i]01 ~ EntryLo1 0 

TLB[i]v 1 ~ EntryLolv 

TLB[i]PFNO ~ EntryLoOpfN and not PageMaskMask #Masking of PFN is implementation dependent 

TLB[iJco ~ EntryLoOc 

TLB[iJoo ~ EntryLo00 

TLB[i]vo ~ EntryLoOv 

InitiateCoprocessorUnusableException(O) 
endif 

Exceptions: 
,it 

Coprocessor Unusable Exception ...•• ·· .•;;\ 
Reserved Instruction Exception (if not implemented) ... '.Ft .. 
Machine Check (if implemented and a Tl,J:ishutdowrico;di#on is det1~cte:d on a TLB write) 

November 15, 1999 - 57 -

tvnrs@ PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUlVlENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS.DUPLICATION IS PROHIBITED. 



Revision 1.0 

2.9.3.6 The TLBWR Instruction 

Write Random TLB, Entry . -
' ' ,. ,. . .· , 

31 26 25 24 

COPO co 
010000 1 

6 

Format: 
TLBWR 

Purpose: 

MIPS64™ Specification 

.. ."}··.' <··'"'-./' i' . ~;,. ' ' 

----£";?:''.\t+01:-;; :~::.:t:'., TLBW,Jt . __ 

0 

0 TLBWR 
000 0000 0000 0000 0000 000110 

19 6 

MIPS64 

Write a TLB entry indexed by the Random register. 

Description: 
The TLB entry pointed to by the Random register is written from the contents of the EntryHi, EntryLoO, 
EntryLol, and PageMask registers. The information written to the T ·- }\ttry may be different from that in 
the EntryHi, EntryLoO, and EntryLol registers, in that: / - , 
-• The value written to the VPN2 field of the TLB entry may hav ;rse bit t to zero corresponding to 

the one bits in the Mask field of the PageMask register (i~:~!~ast bit of VPN2 corresponds to-
the least significant bit of the Mask field). It is implementati - e en ent whether these bits are pre-
served or zeroed during a TLB write. ;~\:_ . --- · 
The value written to the PFNO and PFNl fields of the TLB_entry may have those bits set"to zero corre
sponding to the one bits in the Mask field of PageMIJ~k -~- (the least significant bit of PFN corre-

dt'*:--,-
sponds to the least significant bit of the Mask field)!"lfi entation dependent whether these bits 
are preserved or zeroed during a TLB wr" 

• The single G bit in the TLB entry is s e G bits in the EntryLoO and 
EntryLol registers. 

For processors that do not i 
FINED. However, the preferr 

November 15, 1999 

i'fv.rode or Debug Mode, or if the CPO usable bit is 
on of this instruction results in a CoprocessorUnus-

d TLB MMU, the operation of this instruction is UNDE· 
is a Reserved Instruction Exception. 

- 58 -

MIPS® PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64™ Specification 

Operation: 
i f--- Random 
if (Statuscuo = 1) or (StatusKsu= 002) or (DebugDM = 1) or (StatusEXL = 1) or (StatusERL = 1) then 

TLB[iJMask f--- PageMaskMask 

else 

TLB[i]R f--- EntryHiR 

TLB[i]vPNZ f---EntryHivPNZ and not PageMaskMask #Masking ofVPN2 is implementation dependent 

TLB[i]AsID f--- EntryHiAsID 
TLB[i]a f--- EntryLola and EntryLoOa 

TLB[i]PFNt f--- Entry Lo 1 PFN and not PageMaskMask #Masking of PFN is implementation dependent 

TLB[i]c1 f--- EntryLolc 

TLB[i]01 r EntryLol 0 

TLB[i]v 1 f--- EntryLolv 

TLB[i]PFNO f--- EntryLoOpFN and not PageMaskMask #Masking of PFN is implementation dependent 

TLB[i]c0 f--- EntryLoOc 

TLB[i]o0 f--- EntryLo00 

TLB[i]vo f--- EntryLoOv 

Ini tiateCoprocessorU nusableException(O) 
endif 

Exceptions: 
Coprocessor Unusable Exception 
Reserved Instruction Exception (if not implemented) ;f!ll~M~~ 
Machine Check (if implemented and a TLB shutdown'con etected on a TLB write) 

\ 

' 

November 15, 1999 - 59 -

MIPS@ PROPRIETARY /CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64™ Specification 

2.9.3.7 The WAIT Instruction 
... 

. Enter Standby .Mode 
, ·: ,' ' . ": ., ~ , ' )\:W,A!;Jl·t•:'· •. 

31 26 25 24 0 

COPO co WAIT 

010000 1 Implementation-Dependent Information 100000 

6 19 6 

Format: 
WAIT MIPS64 

Purpose: 
Wait for Event 

Description: 
,:f.he WAIT instruction performs an implementation-dependent operation, usually involving a lower power 
mode. Software may use bits 24 .. 6 of the instruction to communicate a<Jgitional information to the proces
sor, and the processor may use this information as control for the lower ' • ode. A value of zero for bits 

_,,24 .. 6 is the default, and must be valid in all implementations. 
.·~ 

The WAIT instruction is typically implemented by stalling thi~fp line at the completion of the instruction 
and entering a lower power mode. The pipeline is restarted. ~hen al event, such as an interrupt or 
external request occurs, and execution continues with the instr ction o lowing the WAIT instruction. It is 
implementation-dependent whether the pipeline restart ' .on-enabled interrupt is requested. In this 
case, software must poll for the cause of the restart. I :,., estarts as the result of an enabled inter-
rupt, that interrupt is taken between the WAI ction and the owing instruction (EPC for the inter
rupt points at the instruction following the 

The assertion of any reset or NMI sign 
sponding exception must be taken. 

Restrictions: 
'· 

.rait instruction is placed in the delay slot of a branch or The operation of the processor is 
a jump. 

This instruction is legal only 1 

set in the Status register. In other circu 
·able Exception. 

Operation: 

in Kernel Mode or Debug Mode, or if the. CPO usable bit is 
, execution of this instruction results in a Coprocessor Unus-

if (Statuscuo = 1) or (StatusKsu= 002) or (DebugoM = 1) or (StatusEXL = 1) or (StatusERL = 1) then 

Enter implementation dependent lower power mode 
else 

InitiateCoprocessorUnusableException(O) 
endif 

Exceptions: 
Coprocessor Unusable Exception 

November 15, 1999 - 60-

MIPS® PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DU PUCA TION IS PROHIBITED. 



Revision 1.0 MIPS64™ Specification 

3. Floating Point Control Registers 
Although all five floating point control registers are included in the MIPS RISC Architecture documentation for the 
MIPS V ISA, several changes are included in MIPS64. As such, the registers are described below. Refer to the MIPS 
RISC Architecture documentation for a full description of the MIPS Floating Point Architecture. 

3.0.1 Floating Point Implementation Register (CPl Register 0) 

The Floating Point Implementation Register (FIR) is a 32-bit read-only register that contains information identifying 
the capabilities of the floating point unit, the floating point processor identification, and the revision level of the float
ing point unit. Figure 5 shows the format of the FIR register; Table 40 describes the FIR register fields. 

31 

Fields 

Name Bits 

0 31:20 

3D 19 

PS 18 

D 17 

s 16 

Proces- 15:8 
sorID 

November 15, 1999 

Figure 5: FIR Register Format 

20 19 18 17 16 15 8 7 

0 Processor ID 

rr;~'iS~¥1:/ 
Table 40: FIR Register Field Descripti6ns/ 

Description 

Reserved for future use; reads as zero 0 

Indicates that the paired lfing 
point data type and if!~j.ructions ate'. 
0: PS floating not iiliple 
1: PS floating impleme 

,''!-.,-,, 

R 
point data typ · 

0: D floating eme 
1: D floating implemented 

Indicates that the single-p~ision (S) floating R 
point data type and instructions are implemented: 

0: S floating not implemented 
1: S floating implemented 

Identifies the floating point processor. This value R 
should normally match the corresponding field of 
the PR/d CPO register unless there are different 
floating point implementations used by a single 
CPU. 

- 61 -

MIPS® PROPRIETARY /CONFIDENTIAL: 

0 

Revision 

Reset State Compliance 

0 Reserved 

Preset Required 

Preset Required 

Preset Required 

Preset Required 

Preset Required 

RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64™ Specification 

Table 40: FIR Register Field Descriptions 

Fields 
Read/ Description 
Write 

Reset State Compliance 
Name Bits 

Revision 7:0 Specifies the revision number of the floating R Preset Optional 
point unit. This field allows software to distin-
guish between one revision and another of the 
same floating point processor type. If this field is 
not implemented, it must read as zero. 

3.0.2 Floating Point Control and Status Register (CPl Register 31) 

The Floati.ng Point Control and Status Register (FCSR) is a 32-bit register that controls the operation of the floating 
point uriit. Access to FCSR is not privileged; it can be read or written by any program that has access to the floating 
point unit (via the coprocessor enables in the Status register). Figure 6 shows the format of the FCSR register; 
Table 41 ~escribes the FCSR register fields. 

Figure 6: FCSR Register F;~rm~t ·· 

31 25 24 23 22 21 20 18 17 

FCC 

7654321 
31 30 29 28 27 26 25 

Fields 

Name Bits 

FCC 31:25, 
23 

:,::,,._ •• !<. 

''". 

FS 24 

Imp! 22:21 

November 15, 1999 

FS CC Imp! 0 Cause 

0 EVZOU I 
17 

tested for floa 
conditional m 
fied in the compare, branch, 
instruction. For backward::'$ patibility with pre-
vious MIPS ISAs, the FCC oits are separated into 
two, non-contiguous fields. 

Flush to Zero. When FS is one, denormalized 
results are flushed to zero instead of causing an 
Unimplemented Operation exception. It is imple-
mentation dependent whether denormalized 
operand values are flushed to zero before the 
operation is carried out. 

Available to control implementation dependent 
features of the floating point unit. If these bits are 
not implemented, they must be ignored on write 
and read as zero. 

- 62 -

7 6 2 1 0 

Enables Flags RM 

OUIVZOUI 
8765432 

Read/ 
Write 

Reset State Compliance 

R/W Undefined Requ~red 

R/W Undefined Required 

R/W Undefined Optional 

MIPS® PROPRIETARY /CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS.DUPLICATION IS PROHIBITED. 



Revision 1.0 

Fields 

Name Bits 

0 20:18 

Cause 17:12 

Enables 11:7 

Flags 6:2 

November 15, 1999 

Table 41: FCSR Register Field Descriptions 

Description 

Reserved for future use; Must be written as zero; 
returns zero on read. 

Cause bits. These bits indicate the exception con
ditions that arise during execution of an FPU 
arithmetic instruction. A bit is set to 1 if the cor
responding exception condition arises during the 
execution of an instruction and is set to 0 other
wise. By reading the registers, the exception con
dition caused by the preceding FPU arithmetic 
instruction can be determined. 

Refer to Table 42 for the meaning of each bit. 

Enable bits. These bits control whether or not a 
trap is taken when an IEEE exception condition. l 
occurs for any of the five conditions. The trap·,. ' 
occurs when both an Enable bit and the corr~ 
sponding Cause bit are set either during an FP\!', 
arithmetic operation or by moving a valu¢ to · 
FCSR or one of its alternative represent 
Note that Cause bit E has no . onding 
Enable bit; the non-IEEE U 
tion exception is defined 
enabled. 

exception condition that does t result in a 
Floating Point Excepti · , the Enable bit was 
oft), the corresponding bit in the Flag field are 
set, while the others remain unchanged. Arith
metic operations that result in a Floating Point 
Exception (i.e., the Enable bit was on) do not 
update the Flag bits. 

This field is never reset by hardware and must be 
explicitly reset by software. 

Refer to Table 42 for the meaning of each bit. 

- 63 -

Read/ 
Write 

0 

RJW 

RJW 

MIPS® PROPRIETARY /CONFIDENTIAL: 

MIPS64™ Specification 

Reset State Compliance 

0 Reserved 

Undefined Required 

Required 

Undefined Required 

RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS.DUPLICATION IS PROHIBITED. 



Revision 1.0 

Fields 

Name Bits 

RM 1:0 

RM Field 
Ji:~coding 
:i•-·"'" 

:;. 0 

MIPS64™ Specification 

Table 41: FCSR Register Field Descriptions 

Read/ 
Description Reset State Compliance 

Write 

Rounding mode. This field indicates the round- R/W Undefined Required. 
ing mode usedfor most floating point operations 
(some operations use a specific rounding mode). 

Refer to Table 43 for the meaning of the encod-
ings of this field. 

Table 42: Cause, Enable, and Flag Bit Definitions 

Bit Name BitMeaning 

E Unimplemented Operation (this bi 
the Cause field) 

V Invalid Operations 

z Divide by Zero ..... 

0 Overflow 

u 
I 

Rounds the result to the nearest representable value. When two representable values are 
equally near, the result is rounded to the value whose least significant bit is zero (that is, 
even) 

RZ - Round Toward Zero 

Rounds the result to the value closest to but not greater than in magnitude than the 
result. 

2 RP - Round Towards Plus Infinity 

Rounds the result to the value closest to but not less than the result. 

November 15, 1999 - 64-

MIPS® PROPRIETARY /CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64™ Specification 

Table 43: Rounding Mode Definitions 

RM Field 
Meaning 

Encoding 

3 RM - Round Towards Minus Infinity 

Rounds the result to the value closest to but not greater than the result. 

3.0.3 Floating Point Condition Codes Register (CPl Register 25) 

The Floating Point Condition Codes Register (FCCR) is an alternative way to read and write the floating point condi
tion code values that also appear in FCSR. Unlike FCSR, all eight FCC bits are contiguous in FCCR. Figure 7 shows 
the format of the FCCR register; Table 44 describes the FCCR register fields. 

31 

Fields 

Name Bits 

0 31:8 

FCC 7:0 

Figure 7: FCCR Register Format 

8 7 

0 

I 11 
!'" 

;:,~:·;·!.~.t·' 
;_,::"\. 

Table 44: FCCR Register Field Descriptfons 

Floating point condition code. R.eiffit:'to.theli 
description of this fieltr in the Fcsi/'f~gist~r. 

;,/'(~'.\:':<,,,, .,:1;/' 

./'':11;1rr~~'''1~1:::/ f 

· .... · 0 

R/W 

3.0.4 Floating Point ExceptionsRegisterJCPl Register 26) 

0 

FCC 

6 5 4 3 2 

0 Reserved 

Undefined Required 

. . -. . .-:\ . ·. ~:-f :.-;:~:!~~~;'.~t~/G _ ,, . . . , 
The Floating Point Exceptions Register.(f{t.K~).is>~n'alfernative way to read and write the Cause and Flags fields that 

+;".·'.~-rMH- _,_, 

also appear in FCSR. Figure 8 shows the rofinat of the fEXR register; Table 45 describes the FEXR register fields. 

November 15, 1999 - 65 -

MIPSG:'l PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision LO 

Figure 8: FEXR Register Format 

31 18 17 12 II 

I El viz I o I uj I 

I Couse I 0 0 

17 16 15 14 13 12 

Table 45: FEXR Register Field Descriptions 

Fields 
Description 

Name Bits 

0 31: 18, Must be written as zero; returns zero on read 
11:7, 
1:0 

Cause 17: 12 Cause bits. Refer to the description of this field in 
the FCSR register. 

Flags 6:2 Flags bits. Refer to the description of this fieldin'r.' 
the FCSR register. 

":t~ 
'''b 

3.0.5 Floating Point Enables Register (CPl Regist~~28) d,k'< 

Read/ 
Write 

0 

MIPS64™ Specification 

7 6 2 I 0 

6 5 4 3 2 

Reset State Compliance 

0 Reserved 

" 
Undefined Required 

Undefined Optional 

The Floating Point Enables Register (FENR) is an alt,,~itiye way to read and'write the Enables, FS, and RM fields 
that also appear in FCSR. Figure 9 shows the foiw~t of th~1 fE&:~,;[egister;;!f[Jable 46 describes the FENR register 

fields. i!!,•.: · , .l' ··~~j; 
~'); 

Figu~! 9: !:ENR Format 

31 12 11 7 6 3 2 I 0 

I Enables I O· .o 
vj zjojujr 

11 10 9 8 1 

Table 46: FENR Register Field Descriptions 

Fields 
Read/ 

Description 
Write 

Reset State Compliance 
Name Bits 

0 31:12, Must be written as zero; returns zero on read 0 0 Reserved 
6:3 

Enables 11:7 Enable bits. Refer to the description of this field RIW Undefined Required 
in the FCSR register. 

FS 2 Flush to Zero bit. Refer to the description of this RIW Undefined Required 
field in the FCSR register. 

November 15, 1999 - 66-

MIPS@ PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICA T!ON IS PROHIBITED. 



Revision 1.0 MIPS64™ Specification 

Table 46: FENR Register Field Descriptions 

Fields 
Read/ 

Description 
Write 

Reset State Compliance 
Name Bits 

RM 1:0 Rounding mode. Refer to the description of this RfW Undefined Required 
field in the FCSR register. 

November 15, 1999 - 67 -

MIPS@ PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DllPLICA TION IS PROHIBITED. 



Revision 1.0 MIPS64™ Specification 

4. The MIPS64 Privileged Resource Architecture 

4.1 Introduction 
The MIPS64 Privileged Resource Architecture (PRA) is a set of environments and capabilities on which the Instruc
tion Set Architecture operates. The effects of some components of the PRA are user-visible, for instance, the virtual 
memory layout. Many other components are visible only to the operating system kernel and to systems programmers. 
The PRA provides the mechanisms necessary to manage the resources of the CPU: virtual memory, caches;' excep
tions and user contexts. This chapter describes these mechanisms. 

4.2 Compliance 
Features described as Required in this document are required of all processors claiming compatibility with the 
MIPS64 Architecture. Features described as Recommended should be implemented unless there is an overriding need 
not to do ·so. Features described as Optional provide a standardization of features that may or may not be appropriate 
for a particular MIPS processor implementation. If such a feature is implemented, it must be implemented as 
described in this document if a processor claims compatibility with the MIPS6$ht2C:hitecture . 

.' -}n '' 
} fy {j,. 

In some cases, there are features within features that have different levels ofcomplianc~. For example, if there is an 
Optiona~ field within a Required register, this means that the register ust be 11 J &Red, but the field mayor may 
not be, depending on the needs of the implementation. Similarly, if th R eld within an Optional regis: 
ter, this means that if the register is implemented, it must have the sp i 

4.3 The MIPS Coprocessor Model 
The MIPS ISA provides for up to 4 coprocessors. A 
sharing the instruction fetch and execution control I · 
cessor and the floating point unit are standard pa 
ments. Coprocessors are generally optional, wit 
ISA interface to the Privileged Resource Architectur 

essor extends Junctionality of the MIPS ISA, while 
. Some cgprocessors, such as the system copro

are spedffted as such in the architecture docu
the system coprocessor, is required. CPO is the 

II control of the processor state and modes. 

4.3.1 CPO - The System Coproce~sor 
>~ ' 

CPO provides an abstraction _of. th,~ ftm_~~ons. n~c_essary t P°.~ an ()pe~atin~ system:. ex~eption handling, memory 
management, scheduling, and contro'1~5'?f criti ces. The interface to CPO is through various instructions 
encoded with the COPO opcode, inclu- move data to and from the CPO registers, and specific func-
tions that modify CPO state. The CPO regist e interaction with them make up much of the Privileged 
Resource Architecture. 

·.:~:·':·· ·-

4.3.2 CPO Register Summary 

Table 47 lists the CPO registers in numerical order. The individual registers are described later in this document. If the 
compliance level is qualified (e.g., "Required (TLB MMU)"), it applies only if the qualifying condition is true. The 

November 15, 1999 - 68 -

MIPS@ PROPRIETARY /CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64TM Specification 

Se! column indicates the value to be used in the field of the same name in the MFCO and MTCO instructions. 

Register 
Number 

0 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Sel 

0 

0 

0 

0 

0 

0 

0 

all 

0 

0 

0 

0 

November 15, 1999 

Table 47: Coprocessor 0 Registers in Numerical Order 

Register 
Name 

Index 

Random 

EntryLoO 

EntryLol 

Context 

PageMask 

Wired 

Function 

Index into the TLB array 

Randomly generated index into the TLB 
array 

Low-order portion of the TLB entry for 
even-numbered virtual pages 

Low-order portion of the TLB ent"i;{or 
odd-numbered virtual pages 

Pointer to page table entry in tiiem()fy. 

Control for variable p~gesize in TLB 
entries 

Reserved for future extensions 

BadVAddr Reports the address for the most recent 
address-related exception 

Count Processor cycle count 

Entry Hi High-order portion of the TLB entry 

Reference 

Section 4.9.l 
on page 105 

Section 4.9.2 
on page 106 

Section 4.9.3 
; pnpage 107 

section 4.9.3 
onpage 107 

<I .... 

Section 4.9.4 
'• 1 on page 110 

··)I 

Section 4.9.5 
on page 111 

Section 4.9.6 
on page 112 

Section 4.9.7 
on page 113 

Section 4.9.8 
on page 114 

Section 4.9.9 
on page 114 

Compliance 
Level 

Required 
(TLB MMU); 
Optional 
(others) 

Required 
(TLB MMU); 
Optional 
(others) 

Required 
(TLB MMU); 
Optional 
(others) 

Required (TLB · 
MMU); 
Optional ( oth
ers) 

Required 
(TLB MMU); 
Optional 
(others) 

Required 
(TLB MMU); 
Optional 
(others) 

·· Required 
(TLB MMU); 
Optional 
(others) 

Reserved 

Required 

Required 

Required 
(TLB MMU); 
Optional 
(others) 

Compare Timer interrupt control Section 4.9.10 Required 
on page 116 

- 69 -

MIPS@ PROPRIETARY /CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64™ Specification 

Table 47: Coprocessor 0 Registers in Numerical Order 

Register 
Sel 

Register 
Function Reference 

Compliance 
Number Name Level 

12 0 Status Processor status and control Section 4.9.11 Required 
on page 116 

13 0 Cause Cause of last general exception Section 4.9.12 Required 
on page 123 

14 0 EPC Program counter at last exception Section 4.9.13 Required 
on page 126 

15 0 PRld Processor identification and revision Section 4.9.14 Required 
on page 127 

·--~ 

16 0 Config Configuration register Section 4.9.15 Required 
on page 128 

-'-"" ..::: 
16 l Configl Configuration register l 

· .... •··I 
~ection4.9.16 Required 

~!J •on page 130 
b. .•. 

17 0 LLAddr Load linked address Section 4.9 .17 Optional 

31. ·~1 oricpage 132 

18 0-n WatchLo Watchpoint address 

,:~ ~"' 
Section 4.9.18 Optional 
on'

1 
page 132 

19 0-n WatchHi Watchpoint control .• :tl'i!t,. ···········~hi Section 4.9.19 Optional 

L ····~ .i_ ll on page 134 

20 0 XContext Extended Ad:~~·;:J~ootext Section 4.9.20 Required 
on page 135 (64-bit TLB 

MMU) 
Optional 

•· ::~1lh••· ~ .... ·· (Others) 

all 
/X/' ' 

Reserved 21 '-·' Reserved forfuture extensions. 
i(:\ .s::.:<fi•/;•i . 

22 all A;~itWblgfa'?'i~pl~iJientation dependent Section 4.9.21 Implementation-
use . on page 136 Dependent 

" 

23 .~;,;.. ... ;.':'. 0 Debug EJTAG Debugr~gister EJTAG Speci- Optional 
fication 

24 0 DEPC Program counter at last EJTAG debug EJTAG Speci- Optional 
exception fication 

25 0-n PerfCnt Performance counter interface Section 4.9.24 Recommended 
on page 137 

26 0 ErrCtl Parity/ECC error control and status Section 4.9.25 Optional 
on page 140 

27 0-3 CacheErr Cache parity error control and status Section 4.9.26 Optional 
on page 140 

November 15, 1999 - 70-

MIPS@ PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICA TlON IS PROHIBITED. 



Revision 1.0 MIPS64TM Specification 

Table 47: Coprocessor 0 Registers in Numerical Order 

Register 
Sel 

Register 
Function Reference 

Compliance 
Number Name Level 

28 0 TagLo Low-order portion of cache tag interface Section 4.9.27 Required 
on page 142 (Cache) 

28 1 DataLo Low-order portion of cache data interface 4.9.28 on page Optional 
143 

29 0 TagHi High-order portion of cache tag interface Section 4.9.29 Required 
on page 143 (Cache) 

29 1 DataHi High-order portion of cache data interface 4.9.30 on page Optional 
144 

30 0 ErrorEPC Program counter at last error Section 4.9 .31 Required 
on page 144 

31 0 DESAVE EJTAG debug exception save register EJTAG Speci- Optional 
fication 

. 

4.4 Operating Modes 
The MIPS64 PRA requires two operating mode: User Mode and KernelMode. When operating in User Mode, the 
programmer has access to the CPU and FPU registers that are pr9Xicie,d by}he ISA and to a fiat, uniform virtual mem
ory address space. When operating in Kernel Mode, the sys,~:ms 'r)rbg~amn:i~rhas access to the full capabilities of the 
processor, including the ability to change virtual me,mory'..rnapping, control tjle system environment, and context 
switch between processes. . ,i ·· .,.,;:,. 

',• ''<''·,:i ·'j 

In addition, the MIPS64 PRA supports the impten:ieJ.itati9n"1of tw~·~dditional modes: Supervisor Mode and EJTAG 
Debug Mode. Refer to the EJTAG specification for a descdption of pebug Mode. 

:>:::~ · '·.) .::v:!/ ~'.:--_.-,-.1._-:_::> 
Finally, the MIPS64 PRA provides backward'compNible suppot]for 32-bit programs by providing enables for both 
64-bit addressing and 64-bit operations. If access is~J)Ot enabled, an attempt to reference a 64-bit address or an 
instruction that implements a 64-bit operation results in ari ~{(ception. 

4.4.1 Debug Mode 

For processors that implement EJTAG, the processor is operating in Debug Mode if the DM bit in the Debug register 
is a one. If the processor is running in Debug M&:le, it has full access. to all resources that. are available to Kernel 
Mode operation. 

4.4.2 Kernel Mode 

The processor is operating in Kernel Mode when the DM bit in the Debug register is a zero (if the processor imple
ments Debug Mode), and any of the following three conditions is true: 

The KSU field in the Status register contains 002 

The EXL bit in the Status register is one 
The ERL bit in the Status register is one 

The processor enters Kernel Mode at power-up, or as the ·result of an interrupt, exception, or error. The processor 
leaves Kernel Mode and enters User Mode or Supervisor Mode when all of the previous three conditions are false, 
usually as the result of an ERET instruction. 

November 15, 1999 - 71 -

MIPS@ PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64™ Specification 

4.4.3 Supervisor Mode 

The processor is operating in Supervisor Mode (if that optional mode is implemented by the processor) when all of 
the following conditions are true: 

• The DM bit in the Debug register is a zero (if the processor implements Debug Mode) 
• The KSU field in the Status register contains 012 

• The EXL and ERL bits in the Status register are both zero 

4.4.4 User Mode 

The processor is operating in User Mode when all of the following conditions are true: 

The DM bit in the Debug register is a zero (if the processor implements Debug Mode) 
"rhe KSU field in the Status register contains 102 

The EXL and ERL bits in the Status register are both zero 

4.5 Ot.,.er Modes 

4.5.1 64-bit Address Enable 
,·:·.... "::t 

Access fo 64-bit addresses are enabled under any of the following con 

A legal reference to a kernel address space occurs and the · t 1d~\~thtus register is._a one 
A legal reference to a supervisor address space occurs and bit iit»tfi'e Status register is..,~ one 
A legal reference to a user address space occurs and the UX bit 1 the Status register is a one 

Note that the operating mode of the processor is not relevant t ss enables. That is, a reference to user 
address space made while the processor is operating · 1 Mode is con led by the state of the UX bit, not by 
the KX bit. 

An attempt to reference a 64-bit address space 
Exception (either AdEL or AdES, depending on e 

When a TLB miss occurs, the choice of the Ellpti 
addresses are not enabled for the reference, the T 
erence, the XTLB Refill Vector is used. 

~ ,.; . " ... ~ ' .. 

4.5.2 64'-bit Operations Enabl 
:~::t.i. 

Instructiops that perform 64-bit operations are l 

determined by the 64-bit address enable .. If 64-bit 
r is used. If 64-bit addresses are.enabled for the ref-

··er any of the following conditions: 

• The processor is operating in Kernel Mo Supervisor Mode, or Debug Mode, as described above. 
• The PX bit in the Status register is a one 

The processor is operating in User Mode, as described above, and the UX bit in the Status register is a one. 

An attempt to execute an instruction which performs 64-bit operations when such instructions are not enabled results 
in a Reserved Instruction Exception. 

4.5.3 64-bit FPR Enable 

Access to 64-bit FPRs is controlled by the FR bit in the Status register. If the FR bit is one, the FPRs are interpreted as 
32 64-bit registers that may contain any data type. If the FR bit is zero, the FPRs are interpreted as 32 32-bit registers, 
any of which may contain a 32-bit data type (W, S). In this case, 64-bit data types are contained in even-odd pairs of 
registers. 

The operation of the processor is UNPREDICTABLE under any of the following conditions: 

• The FR bit is a zero and an odd register is referenced by an instruction whose datatype is 64-bits 

November 15, 1999 - 72-

MIPS® PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64™ Specification 

The FR bit is a zero and a floating point instruction is executed whose data type is L or PS 
64-bit operations are not enabled, the FR bit is a one, and an instruction references the floating point regis
ters. 

4.6 Virtual Memory 

4.6.1 Terminology 

4.6.1.1 Address Space 

An Address Space is the range of all possible addresses that can be generated for a particular addressing mode. There 
is one 64-bit Address Space and one 32-bit Compatibility Address Space that is mapped into a subset of the 64-bit 
Address Space. 

4.6.1.2 Segment and Segment Size (SEGBITS) 

A Segment is a defined subset of an Address Space that has self-consistent reference and access behavior. A 32-bit 

Compatibility Segment is part of the 32-bit Compatibility Address Spacel,~~fl}~ eitqer 229 or 231 bytes in size, 

depending on the specific Segment. A 64-bit Segment is part of the 64-bit A'.p~i:ess S~'ce and is no larger than 262 

bytes in size, but may be smaller on an implementation dependent b~i~/The 's~~'r?BJ~EGBITS is used to represent 
the actual number of bits implemented in each 64-bit Segment. As such:1ff4 virtual address bits were implemented, 

the actual size of the Segment would be 2SEGBITS = 240 bytes. . .. 

4.6.1.3 Physical Address Size (PABITS) 

The number of physical address bits implemented is 

address bits were implemented, the size of the physi 

4.6.2 Virtual Address Spaces 

,flnted by the s '*i?ol PABITS. As such, if 36 physical 
· would be~PABITS = 236 bytes. 

. -~ 

With support for 64-bit operations and addre~cal ation, t . S64 architecture implicitly defines and provides 
support for a 64-bit virtual Address Spa9e, sub- into four Segments selected by bits 63:62 of the virtual 

address. To provide compatibility for ~2~rograms ·~JJMIPS32 processors, a 232-byte Compatibility Address 
Space is defined, separated into two n ' -conti ges~in which the upper 32 bits of the 64-bit address are the 
sign extension of bit 31. The Compat . . ace is similarly sub-divided into Segments selected by bits 
31 :29 of the virtual address. Figure 10 s the layout:of the Address Spaces, including the Compatibility Address 
Space and the segmentation of each Address Spac 

''1L 

November 15, 1999 - 73 -

MIPS@ PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64™ Specification 

Figure 10: Virtual Address Spaces 

64-bit Virtual Memory Address Space 

OxFFFF FFFF FFFF F 

xkseg 
Kernel 

Mapped 

OxCOOO 0000 0000 0000,1 ____ -+ 

xkphys 
Kernel 

Unmapped 

Ox8000 0000 0000 00001-------i 

Supervisor 
xsseg Mapped 

Ox4000 0000 0000 oooor------1 

xuseg 

32-bit Compatibility Address Space 

OxFFFF FFFF FFFF FFFF 
Kernel 

Mapped kseg3 

1------+ OxFFFF FFFF EOOO 00000 

Supervisor 
· sseg 

Mapped 
t----=---=---1 OxFFFF FFFF COOO 0000 

Kernel 
Unmapped ksegl 

Uncached OxFFFF FFFF AOOO 0000 

Kernel 
Unmapped 

ksegO 

----- OxFFFF FFFF 8000 0000 

useg 

Each Segment of an Address Space is c, 'SS1 ed as "f pped" or "Unmapped". A "Mapped" address is one that is 
translated through the TLB or other memory man ent translation unit. An "Unmapped" address is one which is 
not translated through the TLB and which provt window into the lowest portion of the physical address space, 
starting at physical address zero, and with a size corresponding to the size of the unmapped Segment. 

Additionally, the ksegl Segment is classified as "Uncached". References to this Segment bypass all levels of the 
cache hierarchy and allow direct access to memory without any interference from the caches. 

November 15, 1999 - 74 -

MIPS@ PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64™ Specification 

Table 48 lists the same information in tabular form. 

Table 48: Virtual Memory Address Spaces 

64-bit Reference 
Add- Legal Actual 

Segment Maximum Address ress Associated from Segment Segment 
VA63 .. 62 Name(s) Range Enable with Mode Mode(s) Size Type 

OxFFFF FFFF FFFF FFFF 32-bit 
kseg3 through Always Kernel Kernel 229 bytes Compati-

OxFFFF FFFF EOOO 0000 bility 

OxFFFF FFFF DFFF FFFF 
Supervisor 

32-bit 
sseg 

through Always Supervisor 229 bytes Compati-
ksseg 

OxFFFF FFFF COOO 0000 
Kernel 

bility 

OxFFFF FFFF BFFF FFFF 32-bit 
112 ksegl through Always Kernel Kernel 229 bytes Compati-

OxFFFF FFFF AOOO 0000 . bility 

OxFFFF FFFF 9FFF FFFF } 32-bit 
ksegO through Always Kernel Kernel 229 bytes Compati-

OxFFFF FFFF 8000 0000 " bility 
_i -=- ~ . 

OxFFFF FFFF 7FFF FFFF (2 SEGBITS _ 
xkseg through KX 

I 
Kernel 

231 ) bytesa 
64-bit 

OxCOOO 0000 0000 0000 

• >/.·. ..\ 
I 

8 2PABITS 

. 

1~~< 
••••• bytea 

OxBFFF FFFF FFFF FF'FFX 
,·· '''"'.<; regions 

102 xkphys through Kernel 64-bit 
Ox8000 0000 0000 0000 Ir/ within the 

., .. _2M' 

262 byte 
·1 L· Segment 

.. ··•·.' .. ·-=-=- _i_ 

012 
xsseg 

Ox7FFF FFFF,FFFF FFEf .1 
sx Supervisor 

Supervisor 2SEGBITS 
64-bit 

xksseg throu!?.n ...... ·.·.··•···· \) Kernel bytesa Ox4000 0000 oOOo 0000 

xuseg Ox3FFF FFFF FFFF FFEf:;>I User (2 SEGBITS _ 
through 

_,.g,,,,,} ux User Supervisor 64-bit xsuseg 
231 ) bytesa xkuseg OxOOOO 0000 8000 0000 Kernel 

002 
useg OxOOOO 0000 7FFF FFFF User 32-bit 
suseg through Always User Supervisor 231 bytes Compati-
kuseg OxOOOO 0000 0000 0000 Kernel bility 

a. See Section 4.6.1.2 on page 73 and Section 4.6.1.3 on page 73 for an explanation of the symbols SEGBITS and 
PABITS, respectively 

Each Segment of an Address Space is associated with one of the three processor operating modes (User, Supervisor, 
or Kernel). A Segment that is associated with a particular mode is accessible if the processor is running in that or a 
more-privileged mode. For example, a Segment associated with User Mode is accessible when the processor is run
ning in User, Supervisor, or Kernel Modes. A Segment is not accessible if the processor is running in a less privileged 
mode than that associated with the Segment. For example, a Segment associated with Supervisor Mode is not accessi-

November 15, 1999 - 75 -

MIPS@ PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64™ Specification 

ble when the processor is running in User Mode and such a reference results in an Address Error Exception. The 
"Reference Legal from Mode(s)" column in Table 48 lists the modes from which each Segment may be legally refer
enced. 

If a Segment has more than one name, each name denotes the mode from which the Segment is referenced. For exam
ple, the Segment name "useg" denotes a reference from user mode, while the Segment name "kuseg" denotes a refer
ence to the same Segment from kernel mode. 

References to 64-bit Segments (as shown in the "Segment Type" column of Table 48) are enabled only if the appro
priate 64-bit Address Enable is on (see 4.5. l on page 72, and the "64-bit Enable" column of Table 48). References to 
32-bit Compatibility Segments are always enabled. 

4.6.3 Compliance 

A MIPS64 compliant processor must implement the following 32-bit Compatibility Segments: 

useg/kuseg 
ksegO 

• ksegl 

In addition, a MIPS64 compliant processor using the TLB-based address translation mechanism must also implement 
the kseg3 32-bit Compatibility Segment. It is also strongly recommended thatthe sseg segment be implemented, 
whether Supervisor Mode is implemented or not. / 

',--)~-,'.~:.---~ -~-:,;1' 
It is implementation dependent whether a MIPS64 compliant processori111plements 64-bit addressing and the 64-bit 
Segments associated with the 64-bit Address Space. If 64-bit addressing is lmpJern,ented, it must ~e implemented as 
described here. · '•; . .;" 

It is implementation dependent whether a MIPS64 compliant prpf~~~~~}tnplements Supervisor Mode and the Seg
ments associated with that mode. If Supervisor Mode is implementel:f;citmust be implemented as described here. If 
Supervisor Mode is not implemented a processor may ~mpiement the sseg andxsseg segments, or treat references to 

;,:' ·J:}1?JI< 

them as address error exceptions. If the xsseg segm$iit is im~~~W$nted, acces~ .. to it is controlled by the SX bit in the 
Status register, just as it would be if Supervisor M~~ 'fas impl~~en,ted. · 

A MIPS64 compliant processor may implement fe~e~tha~.~.~itsjlthe virtual address by restricting all 64-bit Seg

ments to be less than 262 bytes in size. A MIPS64 compliah~·proces'~or that implements 64-bit virtual addressing must 
implement a value of SEGBITS that is no smaller ttj~!) 40 bits. Ah attempt to reference an unimplemented region of a 

segment (that between 2SEGBITS and 262~J~;;results in anl\qg~!!SS Error Exception. 

·· · r . . ·!·•~R;~v:~~<'?rr•; ·;~v. · · · · 
4.6.4 Access Control as a Function9f11\.'CJd.r~ss and Operating Mode 

''<n-,,~,;·i· -•i'' -~-/ 

Table 49 enumerates the action taken by the processor for each section of the 64-bit Address Space as a function of 
the operating mode of the processor. The selectiOJ:lof:TLB Refill vector and other special-cased behavior is also listed 

November 15, 1999 - 76 -

MIPS@ PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64™ Specification 

for each reference. 

Table 49: Address Space Access and TLB Refill Selection as a Function of Operating Mode 

Action when Referenced from Operating 
Virtual Address Range Mode 

Assuming 
.Symbolic SEGBITS = 40, Segment Supervisor 

PABITS=36 Name(s) UserMode3 Mode Kernel Mode 

Mapped 

Refill Vector: 
OxFFFF FFFF FFFF FFFF OxFFFF FFFF FFFF FFFF TLB (KX=O) 

XTLB(KX=l) 
through through kseg3 Address Error Address Error 

See 4.6.8 on 
OxFFFF FFFF EOOO 0000 OxFFFF FFFF EOOO 0000 page 83 for 

special behav-
iorwhen 

Debug0 M = 1 

OxFFFF FFFF DFFF FFFF OxFFFF FFFF DFFF FFFF Mapped Mapped 
...... 

through through Refill Vectorb: Refill Vectorb: 

OxFFFF FFFF COOO o®:I 
TLB (KX=O) TLB (KX=O) 

OxFFFF FFFF COOO 0000 /If!' ··i. XTLB(KX=l) XTLB(KX=l) 

OxFFFF FFFF BFFF FFFF 
Unmapped, 
Uncached 

through Address Error Address Error 
See Section 

OxFFFF FFFF AOOO 0000 
4.6.5 on page 

79 

OxFFFF FFFF 9FFF FFFF Unmapped 

.d 
;.~· 

through Address Error See Section through \i ksegO Address Error ,,{ 

"·~\'.,;f;_<,,,£-i/' 4.6.5 on page 
OxFFFF FFFF 8000 0000 OxFFFF FFFF 8000' 0000 79 

OxFFFF FFFF 7FFF FFFF 
OxFFFF FFFF 7FFF FFFF 

through 
through Address Error Address Error Address Error 

OxCOOO 0000 0000 0000 + 
OxCOOO OOFF 8000 0000 

2SEGB11S_ 231 

November 15, 1999 - 77 -

MIPS@ PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS.DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64™ Specification 

Table 49: Address Space Access and TLB Refill Selection as a Function of Operating Mode 

Action when Referenced from Operating 
Virtual Address Range Mode 

Assuming 
Symbolic SEGBITS = 40, Segment Supervisor 

PABITS=36 Name(s) ·· UserMode3 Mode Kernel Mode 

Address Error 
OxCOOO 0000 0000 0000 + ifKX=O 

zSEGBITS - z31 - 1 OxCOOO OOFF 7FFF FFFF 

through xkseg Address Error Address Error 
Mapped if 

through KX= 1 

OxCOOO 0000 0000 0000 
OxCOOO 0000 0000 0000 

Refill Vector: 
XTLB 

Address Error 
ifKX=Oorin 

certain 

OxBFFF FFFF FFFF FFFF OxBFFF FFFF FFFF FFFF 
addreS"s ranges 

within the 

through through Address Error 
Segment 

Ox8000 0000 0000 0000 Ox8000 0000 0000 0000 
Unmapped 

See Section 
4.6.6 on page 

80 

Ox7FFF FFFF FFFF FFFF 

through 
Address Error Address Error Address Error 

Ox4000 0000 0000 0000 + 
··ox40 ,. 

zSEGBITS 

g 
Address Error Address Error if 

Ox4000 0000 0000 0000 + "if 
ifSX = 0 ifSX=O :'"'''¢'-\:'"•~""'\~-:P"' 

zSEGB/TS _ 1 Ox4000 OOFF FFF'ELFFFF 

through 
xsseg 

Address Error 
Mapped if Mapped if 

through xksseg SX= 1 SX= 1 

Ox4000 0000 0000 0000 
Ox4000 0000 0000 0000 

Refill Vector: Refill Vector: 
XTLB XTLB 

Ox3FFF FFFF FFFF FFFF 
Ox3FFF FFFF FFFF FFFF 

through 
through Address Error Address Error Address Error 

OxOOOO 0000 0000 0000 + 
zSEGBITS OxOOOO 0100 0000 0000 

November 15, 1999 - 78 -

MIPS® PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIAUTY OBLIGATIONS. DUPLICA TfON IS PROHIBITED. 



Revision 1.0 MIPS64™ Specification 

Table 49: Address Space Access and TLB Refill Selection as a Function of Operating Mode 

Virtual Address Range 

Symbolic 

OxOOOO 0000 0000 0000 + 
2sEGBITS _ l 

through 

OxOOOO 0000 8000 0000 

OxOOOO 0000 7FFF FFFF 

through 

OxOOOO 0000 0000 0000 

Assuming 
SEGBITS = 40, 
PABITS=36 

OxOOOO OOFF FFFF FFFF 

through 

OxOOOO 0000 8000 0000 

··oxo 

Segment 

Action when Referenced from Operating 
Mode 

Name(s) User Mode3 

Supervisor 
Mode Kernel Mode 

xuseg 
xsuseg 
xkuseg 

Address Error 
ifUX=O 

Mapped if 
UX=l 

,';· . 
"f ~ 

... Rcifill_ Vect~~: 
. XTP,t~;v 

Mapped 

Refill Vector: 
TLB (UX=O) 

XTLB(QX=l) 

Address Error 
ifUX=O 

Mapped if 
UX= 1 

Refill Vector: 
XTLB 

... 

Mapped 

Refill Vector: 
TLB (UX=O) 

XTLB(UX=l) 

Address Error 
ifUX=O 

Mapped if 
UX= 1 

Refill Vector: 
XTLB 

See Section 
4.6.7 on page 
83 fo~ imple

mentation 
dependent 
behavior 

when Statu

sERL=l 

Unmapped if 
StatusERL = 1 

See Section 
4.6.7 on page 

83 

Mapped if 
StatusERL =0 

Refill Vector: 
TLB (UX=O) 
XTLB(UX=l) 

a. See Section 4.6.9 on page 84 for the special treatment of the address for data references when the processor is run
ning in User Mode and the UX bit is zero. 

b. Note thatthe Refill Vector for references to sseg/ksseg is determined by the state of the KX bit, not the sx bit. This 
simplifies the processor implementation by allowing them to treat the entire quadrant of the address space in which 
VA63 .. 62 are 112 in the same manner, as well as simplifying operating system software design which does not use 

Supervisor Mode. 

4.6.5 Address Translation and Cache Coherency Attributes for the ksegO and ksegl Seg
ments 

The ksegO and ksegl Unmapped Segments provide a window into the least significant 229 bytes of physical memory, 
and, as such, are not translated using the TLB or other address translation unit. The cache coherency attribute of the 
ksegO Segment is supplied by the KO field of the Con.fig register. The cache coherency attribute for the kseg l Segment 

November 15, 1999 - 79 -

MIPS@ PROPRIETARY /CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64™ Specification 

is always Uncached. Table 50 describes how this transformation is done, and the source of the cache coherency 
attributes for each Segment. 

Table 50: Address Translation and Cache Coherency Attributes for the ksegO and ksegl Segments 

Segment 
Name 

ksegl 

· ksegO 

Virtual Address Range 

OxFFFF FFFF BFFF FFFF 

through 

OxFFFF FFFF AOOO 0000 

OxFFFF FFFF 9FFF FFFF 

through 

OxFFFF FFFF 8000 0000 

Generates Physical Address 

OxOOOO 0000 lFFF FFFF 

through 

OxOOOO 0000 0000 0000 

OxOOOO 0000 lFFF FFFF 

through 

~·~f'\\ri., 
4.6.6 Address Translation and Cache Coherency Attributes 

~ '> 
'\\ 

Cache Attribute 

Uncached 

From KO field of 
Config Register 

The xkphys Unmapped Segment is actually composed of 8 address ranges, eac which provides a window into the 

entire zPABITS bytes of physical memory and, as such, is not trans · ~·g the TLB or other address translation unit. 
For this Segment, the cache coherency attribute is taken from .· 4.:has the same encoding as that shown in 

Table 62. An Address Error Exception occurs if VA5 re non-.zero. If.\ Address Error Exception occurs, the 

physical address is taken from VAPABITS-1..0· Figu ;;interpret.n of the various fields of the virtual 

address when referencing the xkphys Segment. 

the xkphys Segment 

63 6261 59 58 0 .;. ... , 
.• ,. . , Physical Address . . . ; 

Table 51: Address Translation and Cacheability Attributes for the xkphys Segment 

Virtual Address Range 

... 
Generates Physical· 

Symbolic 
Assuming 

PABITS=36 Address Cache Attribute 

OxBFFF FFFF FFFF FFFF 
OxBFFF FFFF FFFF FFFF 

through 
through Address Error NIA 

OxB800 0000 0000 0000 + 
OxB800 0010 0000 0000 zPABITS 

November 15, 1999 - 80-

MIPS@ PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64™ Specification 

Table 51: Address Translation and Cacheability Attributes for the xkphys Segment 

Virtual Address Range 

Symbolic 

OxB800 0000 0000 0000 + 
zPABITS _ l 

through 

OxB 800 0000 0000 0000 

OxB7FF FFFF FFFF FFFF 

through 

OxBOOO 0000 0000 0000 + 
2PABITS 

OxBOOO 0000 0000 0000 + 
2PABITS _ 1 

through 

OxBOOO 0000 0000 0000 

OxAFFF FFFF FFFF FFFF 

through 

OxA800 0000 0000 0000 + 
2PABITS 

OxA800 0000 0000 0000 + 
2PABITS _ 1 

through 

OxA800 0000 0000 0000 

OxA 7FF FFFF FFFF FFFF 

through 

OxAOOO 0000 0000 0000 + 
2PABITS 

November 15, 1999 

Assuming 
PABITS =36 

OxB800 OOOF FFFF FFFF 

through 

OxB800 0000 0000 0000 

OxB7FF FFFF FFFF FFFF 

through 

OxBOOO 0010 0000 0000 

OxBOOO OOOF FFFF FFFF 

through 

Generates Physical 
Address 

OxOOOO 0000 0000 0000 + 
zPABITS _ 1 

through 

OxOOOO 0000 0000 0000 

Address Error 

'\:,.. .· . ''·' , 

oxoooo;oooo 0000 0000 + 
1'."'PlilJ1Ts 

2 "'¥1:~!~;1 

Address Error 

Ox A 
''• ' 0:>1:00.00 0000 0000 0000 + 

zPABITS _ 1 

Cache Attribute 

Uses encoding 7 of 
Table 62 

NIA 

Uses encoding 6 of 
Table 62 

NIA 

Uses encoding 5 of 

:>Yt' 
OxA800 0000 0000 0000 

through Table 62 

OxOOOO 0000 0000 0000 

OxA 7FF FFFF FFFF FFFF . 

through Address Error NIA 

OxAOOO 0010 0000 0000 

- 81 -

MIPS® PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



--

Revision 1.0 MIPS64™ Specification 

Table 51: Address Translation and Cacheability Attributes for the xkphys Segment 

Virtual Address Range 

Symbolic 

OxAOOO 0000 0000 0000 + 
2PABITS _ 1 

through 

OxAOOO 0000 0000 0000 

Ox9FFF FFFF FFFF FFFF 

through 

Ox9800 0000 0000 0000 + 
2PABITS 

Ox9800 0000 0000 0000 + 
2PABITS _ 1 

through 

Ox9800 0000 0000 0000 

Ox97FF FFFF FFFF FFFF 

through 

Ox9000 0000 0000 0000 + 
2PABITS 

Ox9000 0000 0000 0000 +, 
:, 2PABITS _ 1 

through 
·f"S.··· 

Ox9000 0000 0000 0000 

Ox8FFF FFFF FFFF FFFF 

through 

Ox8800 0000 0000 0000 + 
2PABITS 

November 15, 1999 

Assuming 
PABITS=36 

OxAOOO OOOF FFFF FFFF 

through 

OxAOOO 0000 0000 0000 

Ox9FFF FFFF FFFF FFFF 

through 

Ox9800 0010 0000 0000 

Ox9800 OOOF FFFF FFFF 

through 

···ox9 

Ox8FFF FFFF FFFF FFFF 

· through 

Ox8800 0010 0000 0000 

- 82 -

Generates Physical 
Address 

OxOOOO 0000 0000 0000 .+ 
2PABITS _ 1 

through 

OxOOOO 0000 0000 0000 

Address Error 

Address Error 

. OxOOOO 0000 0000.0000 + 
2PABITS _ 1 

through 

OxOOOO 0000 0000 0000 

' ·Address Error " 

MIPS® PROPRIETARY/CONFIDENTIAL: 

Cache Attribute 

Uses encoding 4 of 
Table 62 

NIA 

Cacheable (see 
encoding 3 of 
Table 62) 

NIA 

Uncached (see 
encoding 2 of 
Table 62) 

NIA 

RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS.DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64™ Specification 

Table 51: Address Translation and Cacheability Attributes for the xkphys Segment 

Virtual Address Range 

Symbolic 

Ox8800 0000 0000 0000 + 
2PABITS _ 1 

through 

Ox8800 0000 0000 0000 

Ox87FF FFFF FFFF FFFF 

through 

Ox8000 0000 0000 0000 + 
2PABITS 

Ox8000 0000 0000 0000 + 
2PABITS _ 1 

through 

Ox8000 0000 0000 0000 

Assuming 
PABITS=36 

Ox8800 OOOF FFFF FFFF 

through 

Ox8800 0000 0000 0000 

Ox87FF FFFF FFFF FFFF 

through 

Ox8000 0010 0000 0000 

Ox8000 OOOF FFFF FFFF 

through 

Generates Physical 
Address 

OxOOOO 0000 0000 0000 + 
2PABITS _ 1 

through 

OxOOOO 0000 0000 0000 

Address Error 

4.6. 7 Address Translation for the kuse 
""~) A!'c,, ii 
'~'~Ji~1 Statd~E; RL = 1 

Cache Attribute 

Uses encoding 1 of 
Table 62 

NIA 

Uses encoding 0 of 
Table 62 

'f To provide support for the cache error handler, the kuse . '"tnt !J¢comes an unmapped, uncached Segment, similar 
to the kseg 1 Segment, if the ERL bit is set in t~ St~!us registef.;~Jlls allows the cache error exception code to operate 
uncached using GPR RO as a base register, ~o save ~· GPRs b~fore use. 

All processors must tran~form atleast ~e'°*'JgW~r ~29 byte ~~;lfoseg. I~ is implement~tion ,depende~t whether VA3u 9 

participates in the transformation, allo · · ons the flexibility of using the same transformation on these 
bits as would be used to transform kse 

11 
If 64-bit addressing is implemented and the UX bit ,is$ a one in the Status register, it is implementation dependent 

whether the range of addresses between 231 and2"S£!{BITS _ l are also treated as an unmapped, uncached Segment. That 
is, an implementation may choose to treat the entire xkuseg Segment in the same manner as the kuseg Segment. 

, 4.6.8 Special Behavior for the kseg3 Segment when DebugnM = 1 , 

If EJTAG is implemented on the processor, the EJTAG block may treat the virtual address range OxFFFF FFFF FF20 
0000 through OxFFFF FFFF FF3F FFFF, inclusive, as a special memory-mapped region in Debug Mode. A MIPS64 
compliant implementation that also implements EJTAG must: 

explicitly range check the address range as given and not assume that the entire region between OxFFFF 
FFFF FF20 0000 and OxFFFF FFFF FFFF FFFF is included in the special memory-mapped region. 
not enable the special EJTAG mapping for this region in any mode other than in EJTAG Debug mode. 

Even in Debug mode, normal memory rules may apply in some cases. Refer to the EJTAG specification for details on 

November 15, 1999 - 83 -

MIPS(i\> PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECTTOCONFlDENTIAUTY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64™ Specification 

this mapping. 

4.6.9 Special Behavior for Data References in User Mode with Statusux = 0 

When the processor is running in User Mode, legal addresses have VA31 equal zero, and the 32-bit virtual address is 

sign-extended (really zero-extended because VA31 is zero) into a full 64-bit address. As such, one would expect that 

the normal address bounds checks on the sign-extended 64-bit address would be sufficient. Unfortunately, there are 
cases in which a program running on a 32-bit processor can generate a data address that is legal in 32 bits, but which 
is not appropriately sign-extended into 64-bits. For example, consider the following code example: 

la rlO, Ox80000000 
lw r 10, -4(r 10) 

The results of executing this address calculation on 32-bit and 64-bit processors with UX equal zero is shown below: 

32-bit Processor 

Ox8000 0000 
+OxFFFF FFFC 

Ox?FFF FFFC 

64-bit Processor 

OxFFFF FFFF 8000 ggpo 
+OxFFFF FFFF FFF17':JFFFC 
OxFFFF FFFF 7FF~. F FC 

On a 32-bit processor, the result of this address calculation results i 
however, the sign-extended address in the base register is added to ~e sign-e . d displacement as a 64-bit quan-
tity which results in a carry-out of bit 31, producing an address that is roper y sign extended. •;. 

To provide backward compatibility with 32-bit User Mode cod mpliant processors must implement the 
rences) when the processor is running. following special case for data references (and explicitly for mstruc i 

in User Mode and the UX bit is zero in the Status re 

The effective address calculated by a load, store, 
63 .. 32 of the full 64-bit address, ignoring the pr, 

This results in a properly zero-extended ad ress fo. 
example above), and results in a proper! xt 
a one). Code running in Debug Mode 
off is prohibited from generating an e 
duced, the,operation of the instruction g 

.. ::~-,:, 

'on mu e sign extended from bit 31 into bits 
3 .. 32 of the address, before the.final address is 

che. This special-case behavior is not performed 

data addresses (which cleans up the address shown in the 
s for all illegal data addresses (those in whichhit 31 is 

tt ervisor Mode with the appropriate 64-bit address enable 
hich there is a carry~out of bit 31. If such an address is pro
address is UNPREDICTABLE . 

4.6.10 TLB-Based Virtual Address Tran lation 

This section describes the TLB-based virtual address translation mechanism. If a TLB-based translation mechanism 
is implemented, it must be the one described below. Note that sufficient TLB entries must be implemented to avoid a 

··TLB exception loop on load and store instructions. The absolute minimum is therefore two entries, but the realistic 
minimum. is a function of the operating system running on. the processor. Sixteen entries· is a realistic minimum for 
simple operating systems. More may be required for complex operating systems. 

4.6.10.1 Address Space Identifiers (ASID) 

The TLB-based translation mechanism supports Address Space Identifiers to uniquely identify the same virtual 
address across different processes. The operating system assigns ASIDs to each process and the TLB keeps track of 
the ASID when doing address translation. In certain circumstances, the operating system may wish to associate the 
same virtual address with all processes. To address this need, the TLB includes a global (G) bit which over-rides the 
ASID comparison during translation. 

November 15, 1999 - 84 -

MIPS® PROPRIETARY /CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64™ Specification 

4.6.10.2 TLB Organization 

The TLB is a fully-associative structure which is used to translate virtual addresses. Each entry contains two logical 
components: a comparison section and a physical translation section. The comparison section includes the mapping 
region specifier (R) and the virtual page number (actually, the virtual page number/2 since each entry maps two phys
ical pages, VPN2) of the entry, the ASID, the G(lobal) bit and a recommended mask field which provides the ability 
to map different page sizes with a single entry. The physical translation section contains a pair of entries, each of 
which contains the physical page frame number (PFN), a valid (V) bit, a dirty (D) bit, and a cache coherency field 
(C). There are two entries in the translation section for each TLB entry because each TLB entry maps an aligned pair 
of virtual pages and the pair of physical translation entries corresponds to the even and odd pages of the pair. 
Figure 12 shows the logical arrangement of a TLB entry. The physical arrangement of the TLB entry data is imple
mentation dependent, and the implemented size of the R, VPN2, PFNO, and PFNI fields can vary as a function of vir
tual address modes supported (32-bit versus 64-bit) and of the needs of the implementation. 

Figure 12: Contents of a TLB Entry 

____ P_a_ge_M_as_k ___ ~I .,,/f,iA'; 

VPN2 

PFNO 

PFNI 

The fields of the TLB entry correspond exactly to th • 
registers. The even page entries in the TLB (e.g., ·· 
Entry Lo I. 

4.6.10.3 Address Translation 
-.£' 

,?'' v 

AS!~ 

Cl 

. CPO PageMAsk, EntryHi, EntryLoO and EntryLol 
nJ!:E'!ltryLoO;Similarly, odd page entries come from 

When an address translation is requested, ~~ .• virt · .ber and the current process ASID are presented to the 
TLB. All entries are checked simultaneouslyT6r a match, "h occurs when all of the following conditions are true: 

f . ·- . ,. . . . 

The current process ASID (a EntryHi register) matches the ASID.field in the TLB entry, 
or the G bit is set in the TLB 
Bits 63:62 of the virtual address match the regfon code in the R field of the TLB entry. 
The appropriate bits of the virtual page'nu~Ber match the corresponding bits of the VPN2 field stored within 
the TLB entry. The "appropriate" number of bits is determined by the PageMask field in each entry by per
forming an ANDNOT operation on both the virtual page number and the TLB VPN2 field. This allows each 
entry of the TLB to support a different page size, as determined by the PageMask register at the time that the 
TLB entry was written.·lf the recommended PageMask register is not implemented, theTLB operation is as 
if the PageMask register was written with a zero. 

If a TLB entry matches the address and ASID presented, the corresponding PFN, C, V, and D bits are read from the 
translation section of the TLB entry. Which of the two PFN entries is read is a function of the virtual address bit 
immediately to the right of the section masked with the PageMask entry. 

The valid and dirty bits determine the final success of the translation. If the valid bit is off, the entry is not valid and a 
TLB Invalid exception is raised. If the dirty bit is off and the reference was a store, a TLB Modified exception is 
raised. If there is an address match with a valid entry and no dirty exception, the PFN and the cache attribute bits are 
appended to the offset-within-page bits of the address to form the final physical address with attributes. 

November 15, 1999 - 85 -

MIPS® PROPRIETARY /CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 

The TLB lookup process can be described as follows: 

found f- 0 
for i in O ... TLBEntries-1 

if (TLB[i]R = va63 .. 62) and 

MIPS64™ Specification 

((TLB[i]vpN2 and not (TLB[i]Mask)) = (vasEGBITS-1..! 3 and not (TLB[i]Mask))) and 

(TLB[ifo or (TLB[i]Asrn = EntryHiAsrn)) then 
# EvenOddBit selects between even and odd halves of the TLB as a function of 
# the page size in the matching TLB entry 
case TLB[ilMask 

OOOOOOOOOOOOi: EvenOddBit f- 12 

0000000000112: EvenOddBit f- 14 

000000001111 2: EvenOddBit f- 16 

000000111111 2: EvenOddBit f- 18 

000011111111 2: EvenOddBit f- 20 

001111111111 2: EvenOddBit f- 22 

111111111111 2: EvenOddBit f- 24 

otherwise: UNDEFINED 
endcase 
if vaEvenOddBit = 0 then 

pfn f- TLB[i]PFNO 
v f- TLB[i]vo 

cf- TLB[iJco 

else 

d f- TLB[i]00 

pfn f- TLB[i]PFNI 
v f- TLB[i]v1 

cf- TLB[iJc1 
d f- TLB[i]01 

endif 
if v = 0 then 

Initiate TLBinvalid 
endif 
if (d = 0) and (refty 

Ini tiateTLBMod1 
endif 

# pfnPABITS-1-12 .. 0 correspondsitopaPABITs-1..12 

pa f- pfnPABITS-1-12 .. EvenOddBit-12 ii vaEvenOddBit-1..0 
found f- 1 
break 

endif 
endfor 
if found = 0 then 

InitiateTLBMissException(reftype, VA64Enable) 
endif 

It is implementation dependent whether the VPN2, PFNO, and PFNl fields of the TLB are stored with the original 
value, or are pre-masked by the Mask value on a TLB write. This provides implementations with the flexibility of 
eliminating the "and not TLB[i]Mask" terms in the pseudo code above. Note that the virtual address must still be 

masked with the TLB[i]Mask value in either case. 

Table 52 demonstrates how the physical address is generated as a function of the page size of the TLB entry that 

November 15, 1999 - 86 -

MIPS@ PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64™ Specification 

matches the virtual address. The "Even/Odd Select" column of Table 52 indicates which virtual address bit is used to 
select between the even (EntryLoO) or odd (EntryLol) entry in the matching TLB entry. The "PA generated from" 
column specifies how the physical address is generated from the selected PFN and the offset-in-page bits in the vir
tual address. In this column, PFN is the physical page number as loaded into the TLB from the EntryLoO or EntryLol 
registers, and has the bit range PFNPABITS-1-12 .. 0• corresponding to PAPABITS-1..12· 

Table 52: Physical Address Generation 

Page Size 
Even/Odd 

Select 

4KBytes VA12 

16KBytes VA14 

64KBytes VA16 

256K Bytes VA1s 

IM Bytes VA20 

4MBytes VA22 

16M Bytes VA24 

4. 7 Interrupts 
The processor supports eight interrupt requests, brok 

• Software interrupts - Two software inte 
Cause register. 

• Hardware interrupts - Six hardware interrup 
dependent external requests to the priji:essor. 

• Timer interrupt - A timer interrupt is rais 
• Performance counter interrupt -

the counter is a one, and the i 

Timer interrupts, performance coun 
dependent way to create the ultimate h 

PA generated from 

PFNPABITS-1-12 .. 0 II VA11 .. o 

PFNPAB/TS-1-12 .. 2 JI VA13 .. 0 

PFNPAB/TS-1-12 .. 411 VAlS .. O 

PFNPABITS-1-12 .. 611 VA11 .. o 

PFNPABITS-1-

.. 0 

are writes to bits IPO and !Pl of the 

ed 0 through 5 are made via implementation-

nt and Compare registers reach the same value. 
interrupt is raised when the most significant bit of 

e IE bit in the performance counter control register. 

ardware interrupt 5 are combined in an implementation-

The current interrupt requests are visible via 
after an interrupt exception has occurred). The 

Id in the Cause register on any read of that register (not just 
ping of Cause register bits to the various interrupt requests is 

shown in Table 53. 

Table 53: Mapping of Interrupts to the Cause and Status Registers 

Cause Register Bit Status Register Bit 

Interrupt Type 
Interrupt 

Number Name Number Name 
Number 

0 8 IPO 8 IMO 
Software Interrupt 

1 9 !Pl 9 IMl 

November 15, 1999 - 87 -

MIPS® PROPRIETARY/CONFIDENTIAL: 
RESTRIC1ED DOCUMENT SUBJECT TO C01\1FIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64™ Specification 

Table 53: Mapping of Interrupts to the Cause and Status Registers 

Cause Register Bit 

Interrupt Type 
Interrupt 

Number Name 
Number 

0 10 IP2 

1 11 IP3 

Hardware Interrupt 2 12 IP4 

3 13 IP5 

4 14 IP6 

Hardware Interrupt, Timer Interrupt, 5 15 IP7 
or Performance Counter Interrupt 

~ . 
For each bit of the IP field in the Cause register there is a corresponding bit ·· 
interrupt is only taken when all of the following are true: 

An interrupt request bit is a one in the IP field of the Cause 
The corresponding mask bit is a one in the IM field of the St 
Table 53. 
The IE bit in the Status register is a one. 
The DM bit in the Debug register is a zero (for proces 

• The EXL and ERL bits in the Status register ar th zero. 

Status Register Bit 

Number Name 

10 IM2 

11 IM3 

12 IM4 

13 IM5 

14 IM6 

15 IM7 

Id in the Status register. An 

Logically, the IP field of the Cause register is bit-w' 
ant bits are ORed together and that value is AND 
then asserted only if both the EXL and ERL bi 
is zero, corresponding to a non-exception, non-error, • 

f the Status register, the eight result
e Sta register. The final interrupt request is 

are zero, and the DM bit in the Debug register 
essing mode . 

4.8 Exceptions 
Normal execution of instructions may exception occurs. Such events can be generated as a by-
product of instruction execution (e.g., w caused by an add instruction or a TLB miss caused by a 
load instruction), or by an event not di instruction execution (e.g., an external interrupt). When an 
exception occurs, the processor stops processi tions, saves sufficient state to resume the interrupted instruc-
tion stream, enters kernel mode, and starts a so exception handler. The saved state and the address of the soft-
ware exception handler are a function of both the type of exception, and the current state of the processor. 

4.8.1 Exception Priority 

Table 54 lists all possible exceptions, and the relative priority of each, highest to lowest. 

Table 54: Priority of Exceptions 

Exception Description Type 

Reset The Cold Reset signal was asserted to the processor Asynchro-

Soft Reset The Reset signal was asserted to the processor nous Reset 

November 15, 1999 - 88-

MIPS® PROPRIETARY /CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 

Exception 

Debug Single Step 

Debug Interrupt 

Imprecise Debug Data Break 

Nonmaskable Interrupt (NMI) 

Machine Check 

Interrupt 

Deferred Watch 

Debug Instruction Break 

Watch - Instruction fetch 

Address Error - Instruction fetch 

TLB/XTLB Refill - Instruction 
fetch 

TLB Invalid - Instruction fetch 

Cache Error - Instruction fetch· 

Bus Error - Instruction fetch 

SDBBP 

.. Instruction Validity Exceptions 

Execution Exception 

November 15, 1999 

MIPS64™ Specification 

Table 54: Priority of Exceptions 

Description 

An EJTAG Single Step occurred. Prioritized above other 
exceptions, including asynchronous exceptions, so that one 
can single-step into interrupt (or other asynchronous) han
dlers 

An EJTAG interrupt (EjtagBrk or DINT) was asserted 

An imprecise EJTAG data break condition was asserted 

The NMI signal was asserted to the processor 

An internal inconsistency was detected by the processor 

An enabled interrupt occurred 

A watch exception, deferred because EXJ..i::~as one· when 
the exception was detected, was asserte<:i"~fter EXL went to 

'1 )/~ h 
zero \.~, . )i 

An EJTAG instruction break c~~~i~i%g~ ~~§lilsi~rted. Priori
tized above instruction fetch exceptiog~.:~~ allow break on . 
illegal instruction addresses. \'i;;.l\l:'t 

ro in:fue TLB entry mapping the address 
~~ction fetch 

~ccurr~d on an instruction fetch. 
'·,;012J, 

tr.z:.;;"ifpM" .:,f! 

A bus error occt.ifred on an instruction fetch 
,,$' 

An EJTAG''SDBBP instruction was executed 

An instruction could not be completed because it was not 
allowed access to the required resources, or was illegal: · 
Coprocessor unusable, reserved instruction. If both excep-

Type 

Synchro
nous 
Debug 

Asynchro
nous 
Debug 

Asynchro
nous 

Synchro
nous 

,.,Debug 

Synchro
nous 

Synchro
nous 
Debug 

tions occur on the same instruction, the Coprocessor Unus- Synchro-
able Exception takes priority. nous 

An instruction-based exception occurred: Integer overflow, 
trap, system call, breakpoint, floating point exception 

- 89 -

MIPS® PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 

Exception 

Precise Debug Data Break 

Watch - Data access 

Address error - Data access 

MIPS64™ Specification 

Table 54: Priority of Exceptions 

Description 

A precise EJTAG data break on load/store (address match 
only) or a data break on store (address+data match) condi
tion was asserted. Prioritized above data fetch exceptions to 
allow break on illegal data addresses. 

A watch address match was detected on the address refer
enced by a load or store. Prioritized above data fetch excep
tions to allow watch on illegal data addresses. 

An unaligned address, or an address that was inaccessible in 
the current processor mode was referenced, by a load or 
store instruction 

Type 

Synchro
nous 
Debug 

TLB/XTLB Refill - Data access A TLB miss occurred on a data access Synchro-1--------------1--------------------------1 
TLB Invalid - Data access 

TLB Modified - Data access 

Cache Error - Data access 

Bus Error - Data access 

Precise Debug Data Break 

nous 
The valid bit was zero in the TLB entry;~~pping the address· 
referenced by a load or store instructi~n / ;1 · 

~\ y ·-~ 

The dirty bit was zero in the Th§,,fntry'fii) e address . 
referenced by a store instructiotl'~.;'".·· . . 

.. ·""-·· }, 
-~ '~)i;g%,.y,~,4J 

a cache error occurred on a loaCl. or stoie"Wita reference ... 
"%-.~, ----------1 

A precise EJT 
only) conditi 
aspects of 
match. 

dress+data match 
ast because all 

n order to do data 

Synchro
nous 
Debug 

The "Type" column of Table 54 describes th~'pe ble 55 explains the characteristics of each excep-
tion type . 

. Exception Type 

Asynchronous Reset 

Asynchronous Debug 

Asynchronous 

November 15, 1999 

Characteristics 

Denotes a reset-ty~~qefception that occurs asynchronously to instruction exe
cution. These exceptions always have the highest priority to guarantee that the 
processor can always be placed in a runnable state. 

Denotes an EJTAG debug exception that occurs asynchronously to instruction 
execution. These exceptions have very high priority with respect to other 
exceptions because of the desire to enter Debug Mode, even in the presence of 
other exceptions, both asynchronous and synchronous. 

Denotes any other type of exception that occurs asynchronously to instruction 
execution. These exceptions are shown with higher priority than synchronous 
exceptions mainly for notational convenience. If one thinks of asynchronous 
exceptions as occurring between instructions, they are either the lowest prior
ity relative to the previous instruction, or the highest priority relative to the 
next instruction. The ordering of the table above considers them in the second 
way. 

- 90 -

MlPS@PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64™ Specification 

Table 55: Exception Type Characteristics 

Exception Type Characteristics 

Synchronous Debug Denotes an EJTAG debug exception that occurs as a result of instruction exe-
cution, and is reported precisely with respect to the instruction that caused the 
exception. These exceptions are prioritized above other synchronous excep-
tions to allow entry to Debug Mode, even in the presence of other exceptions. 

Synchronous Denotes any other exception that occurs as a result of instruction execution, 
and is reported precisely with respect to the instruction that caused the excep-
tion. These exceptions tend to be prioritized below other types of exceptions, 
but there is a relative priority of synchronous exceptions with each other. 

4.8.2 Exception Vector Locations 

The Reset, Soft Reset, and NMI exceptions are always vectored to location OxFFFF FFFF BFCO 0000. EJTAG Debug 
exceptions are vectored to location OxFFFF FFFF BFCO 0480 or to location OVfFF FFFF FF20 0200 if the ProbEn 
bit is zero or one, respectively, in the EJTAG_Control_register. Addresses for.}ill other exceptions are a combination 

A\ ,;J ii 
of a vector offset and a base address. Table 56 gives the base address as a function of the exception and whether the 
BEV bit is set in the Status register. Table 57 gives the offsets from the:;b~se add;e~~;:~i;~ function of the exception.· 
Table 58 combines these two tables into one that contains all possible ve'~tor.addresses as a function of the state that 
can affect the vector selection. \\\J"4~~1;;w · 

··t,1~ 

Exception 

Reset, Soft Reset, NMI 

EJTAG Debug (with ProbEn = 0 
in the EJTAG_Control_register) 

EJTAG Debug (with ProbEn =. 
in the EJTAG_Control_register 

Cache Error 

1 

OxFFFF FFFF FF20 0200 

OxFFFF FFFF AOOO 0000 
",.,9' 

OxFFFF FFFF BFCO 0200 

Other OxFFFF FFFF BFCO 0200 

Table 57: Exception Vector Offsets 

.Exception Vector Offset 

TLB Refill, EXL = 0 OxOOO 

64-bit XTLB Refill, EXL = 0 Ox080 

Cache error OxlOO 

General Exception Oxl80 

Interrupt, Cause1v = l Ox200 

Reset, Soft Reset, NMI None (Uses Reset Base Address) 

November 15, 1999 - 91 -

MIPS® PROPRlET ARY /CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64™ Specification 

Table 58: Exception Vectors 

Exception BEV EXL IV 
EJTAG 

Vector 
Prob En 

Reset, Soft Reset, NMI x x x x OxFFFF FFFF BFCO 0000 

EJTAGDebug x x x 0 OxFFFF FFFF BFCO 0480 

EJTAGDebug x x x 1 OxFFFF FFFF FF20 0200 

TLB Refill 0 0 x x OxFFFF FFFF 8000 0000 

XTLB Refill 0 0 x x OxFFFF FFFF 8000 0080 

TLB Refill 0 1 x x OxFFFF FFFF 8000 0180 

XTLB Refill 0 1 x x OxFFFF FFFF 8000 0180 

TLB Refill 1 0 x x OxFFFF FFFF BFCO 0200 

XTLB Refill 1 0 x x />ixfFFF FFFF BFCO 0280 '-\ -rr f? 

TLB Refill 1 1 x BFC00380 

XTLB Refill 1 1 x 

Cache Error 0 x x 

Cache Error 1 OxFFFF FFFF BFCO 0300 

Interrupt 0 ,~ FFFF 8000 0180 

Interrupt 0 ilFFFF FFFF 8000 0200 

Interrupt OxFFFF FFFF BFCO 0380 

Interrupt OxFFFF FFFF BFCO 0400 

All others x OxFFFF FFFF 8000 0180 

All others x OxFFFF FFFF BFCO 0380 

'x' denotes don't care 

4.8.3 General Exception Processing 

With the exception of Reset, Soft Reset, and NMI exceptions, which have their own special processing as described 
below, exceptions have the same basic processing flow: 

• If the EXL bit in the Status register is zero, the EPC register is loaded with the PC at which execution will be 
restarted and the BD bit is set appropriately in the Cause register. The value loaded into the EPC register is 
the current PC if the instruction is not in the delay slot of a branch, or PC-4 if the instruction is in the delay 
slot of a branch. If the EXL bit in the Status register is set, the EPC register is not loaded and the BD bit is 
not changed in the Cause register. 

• The CE, and ExcCode fields of the Cause registers are loaded with the values appropriate to the exception. 
The CE field is loaded, but not defined, for any exception type other than a coprocessor unusable exception. 

• The EXL bit is set in the Status register. 
The processor is started at the exception vector. 

The value loaded into EPC represents the restart address for the exception and need not be modified by exception 

November 15, 1999 - 92 -

MIPS® PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64™ Specification 

handler software in the normal case. Software need not look at the BD bit in the Cause register unless is wishes to 
identify the address of the instruction that actually caused the exception. 

Note that individual exception types may load additional information into other registers. This is noted in the descrip
tion of each exception type below. 

Operation: 
if StatusEXL = 0 

if InstructionlnBranchDelaySlot then 
EPC~PC-4 

Cause80 ~ 1 

else 
EPC~PC 

Cause60 ~ 0 

endif 
if Exception Type = TLBRefill then 

vectorOffset ~ OxOOO 
elseif (ExceptionType = XTLBRefill) then 

vectorOffset ~ Ox080 

else 

elseif (ExceptionType = Interrupt) and 
(Cause1v = 1) then 

vectorOffset ~·Ox200 
else 

vectorOffset ~ Ox 180 
endif 

vectorOffset ~ Ox 180 
endif 
CauseCE ~ FaultingCoprocessorNurnber 

CauseExcCode ~ ExceptionType 

StatusEXL ~ 1 

if StatusaEV = 1 then 
PC ~ OxFFFF FFFF BFCO 0200 + v rOffset 

else PC ~ OxFFFF FFFF 800Q'l6ci"~ vector~ffs 
' ·~ ',, 

endif 1~; · 

4.8.4 EJTAG Debug Exception 

An EJTAG Debug Exception occurs when one of a number ofEJTAG-related conditions is met. Refer to the EJTAG 
Specification for details of this exception. 

Entry Vector Used . . . . .. _ 
· OxFFFF FFFF BFCO 0480 if the ProbEn bit is zero in the EJTAG_Control_register; OxFFFF FFFF FF20 

0200 if the ProbEn bit is one. · 

4.8.5 Reset Exception 

A Reset Exception occurs when the Cold Reset signal is asserted to the processor. This exception is not maskable. 
When a Reset Exception occurs, the processor performs a full reset initialization, including aborting state machines, 
establishing critical state, and generally placing the processor in a state in which it can execute instructions from 
uncached, unmapped address space. On a Reset Exception, the state of the processor in not defined, with the follow
ing exceptions: 

November 15, 1999 - 93 -

MIPS® PROPRIETARY /CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



~· ·-. 

Revision 1.0 MIPS64™ Specification 

The Random register is initialized to the number of TLB entries - 1. 
• The Wired register is initialized to zero. 

The Config and Config 1 registers are initialized with their boot state. 
The BEV, TS, SR, NMI, ERL, and RP fields of the Status register are initialized to a specified state. 

• Watch register enables and Performance Counter register interrupt enables are cleared. 
• The ErrorEPC register is loaded with PC-4 if the state of the processor indicates that it was executing an 

instruction in the delay slot of a branch. Otherwise, the ErrorEPC register is loaded with PC. Note that this 
value may or may not be predictable if the Reset Exception was taken as the result of power being applied to 
the processor because PC may not have a valid value in that case. In some implementations, the value loaded 
into ErrorEPC register may not be predictable on either a Reset or Soft Reset Exception. 

• PC is loaded with OxFFFF FFFF BFCO 0000. 

Cause Register ExcCode Value 
None 

Additional State Saved 
None 

Entry Vector Used 
Reset (OxFFFF FFFF BFCO 0000) 

Operation 
Random +- TLBEntries - 1 
Wired+-0 
Config +- ConfigurationState 
ConfigKO f- 2 # Suggested - see Confi 

Configl +- ConfigurationState 
StatusaEv +- 1 

StatusTs +- 0 

StatussR +- 0 

StatusNMI +- 0 
StatusERL +- 1 

StatusRP +- 0 
WatchLo[n]1 +- 0 

WatchLo[n]R f- 0 

WatchLo[n]w +- 0 

PerfCnt.Control[n]rn f- 0 

iflnstructionlnBranchDelaySlot then 
ErrorEPC +- PC - 4 

~Ise 
ErrorEPC +- PC 

endif 
. PC +- OxFFFF FFFF BFCO 0000 

4.8.6 Soft Reset Exception 

atch registers 

e d W:~tch registers . 
ented Watch registers 

ented PerfCnt registers 

... 

A Soft Reset Exception occurs when the Reset signal is asserted to the processor. It is implementation dependent 
whether Soft Reset is implemented. If the Soft Reset Exception is not implemented, the Reset Exception should be 
used instead. This exception is not maskable. When a Soft Reset Exception occurs, the processor performs a subset of 
the full reset initialization. Although a Soft Reset Exception does not unnecessarily change the state of the processor, 
it may be forced to do so in order to place the processor in a state in which it can execute instructions from uncached, 
unmapped address space. Since bus, cache, or other operations may be interrupted, portions of the cache, memory, or 
other processor state may be inconsistent. In addition to any hardware initialization required, the following state is 

November 15, 1999 - 94 -

MIPS® PROPRIETARY /CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64™ Specification 

established on a Soft Reset Exception: 

The BEV, TS, SR, NMI, ERL, and RP fields of the Status register are initialized to a specified state. 
Watch register enables and Performance Counter register interrupt enables are cleared. 
The ErrorEPC register is loaded with PC-4 if the state of the processor indicates that it was executing an 
instruction in the delay slot of a branch. Otherwise, the ErrorEPC register is loaded with PC. Note that this 
value may or may not be predictable. 
PC is loaded with OxFFFF FFFF BFCO 0000. 

Cause Register ExcCode Value 
None 

Additional State Saved 
None 

Entry Vector Used 
Reset (OxFFFF FFFF BFCO 0000) 

Operation 
ConfigK0 ~2 

StatusaEv ~ 1 

StatusTs ~ 0 
StatussR ~ 1 
StatusNMI ~ 0 
StatusERL ~ 1 
StatusRP ~ 0 
WatchLo[n]1 ~ 0 #For all implemented \ 

WatchLo[nfa ~ 0 #For all imJ! Watch register~'.· 
WatchLo[n]w ~ 0 #For all i · registe~ 

PerfCnt.Control[n]rn ~ 0 #For all · t registers 
./' 

if InstructionlnBranchDelaySlot then 
ErrorEPC ~ PC - 4 

else 
ErrorEPC ~ PC ]"~:,. 

endif , 
PC ~ OxFFFF FFFF BFCO oobo 

4.8. 7 Non Maskable Interrupt (NMI) Ex~,eption 
~¥/fl~' 

A non maskable interrupt exception occurs when.the NMI signal is asserted to the processor. It is implementation 
dependent whether the NMI exception is implemented. However, several embedded operating systems make use of 
the NMI exception, so its implementation is strongly recommended. 

·· Unlike all other interrupts, this exception is notmaskable. An NMI occurs only at instruction boundaries. so does not 
do any reset or other hardware initialization. The state of the cache. memory, and .other processor state is consistent 
and all registers are preserved. with the following exceptions: 

The BEV, TS, SR, NMI, and ERL fields of the Status register are initialized to a specified state. 
• The ErrorEPC register is loaded with PC-4 if the state of the processor indicates that it was executing an 

instruction in the delay slot of a branch. Otherwise, the ErrorEPC register is loaded with PC. 
PC is loaded with OxFFFF FFFF BFCO 0000. 

Cause Register ExcCode Value 
None 

November 15, 1999 - 95 -

MIPS@ PROPRIETARY /CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



.. ··~~' 

Revision 1.0 

Additional State Saved 
None 

Entry Vector Used 
Reset (OxFFFF FFFF BFCO 0000) 

Operation 
Status8 Ev ~ 1 
StatusTs ~ 0 

· StatussR ~ 0 
StatusNMI ~ 1 
StatusERL ~ 1 
if InstructionlnBranchDelaySlot then 

ErrorEPC ~ PC - 4 
.• else 

ErrorEPC ~PC 

-~!1.dif 
PC ~ OxFFFF FFFF BFCO 0000 

MIPS64™ Specification 

4.8.8 Machine Check Exception ~./ . .... . . . _ 

A machine check exception occurs when the processor detects an internaf ~!!~~nsis~ency. It is implementation depen
dent whether the M~chine Check Exc~ption is imple~ented. If no i~\mare'o~~!~~hcy checki_ng i~· ~erforrned by the 
processor, the Machme Check Exception need not be implemented. ~~,\. . ..,. 

The following conditions cause a machine check exception: ·-

Detection of multiple matching entries in the 
whether this condition is detected on the 
that detects them. In either case, the TS b" 
mentation dependent whether this cond· 
flushing the entire TLB. If the condition ca 
ma! operation. 

If the condition is detected durin 
the TLB, if possible,_ as ~h~t p 

Causif:.Register ExcCode Value 
.:MCheck 

Additional State Saved 

U. It is implementation dependent 
eates multi" le matching entries, or on a reference 

ter is se ,fu indicate this condition. It is imple
in the software exception handler, perhaps by 

ftware must clear this bit before resuming nor-

~ors should attempt to preserve the entry already in 
a~i~l'.. for ~oftware, de~ug ?f the problem. . .. 

Depends on the condition that caused the exception. See the descriptions above . 

Entry Vector Used 
· ·General exception vector (offset Ox 180) 

4.8.9 Address Error Exception 

An address error exception occurs under the following circumstances: 

• A load or store doubleword instruction is executed in which the address is not aligned on a doubleword 
boundary. 

• An instruction is fetched from an address that is not aligned on a word boundary. 
• A load or store word instruction is executed in which the address is not aligned on a word boundary. 
• A load or store halfword instruction is executed in which the address is not aligned on a halfword boundary. 
• A reference is made to a kernel address space from User Mode or Supervisor Mode. 

November 15, 1999 - 96 -

MIPS@ PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64™ Specification 

A reference is made to a supervisor address space from User Mode. 
A reference is made to a a 64-bit address that is outside the range of the 32-bit Compatibility Address Space 
when 64-bit address references are not enabled. 
A reference is made to an undefined or unimplemented 64-bit address when 64-bit address references are 
enabled. 

Note that in the case of an instruction fetch that is not aligned on a word boundary, PC is updated before the condition 
is detected. Therefore, both EPC and BadVAddr point at the unaligned instruction address. 

Cause Register ExcCode Value 
AdEL: Reference was a load or an instruction fetch 
AdES: Reference was a store 

Additional State Saved 

Register State Value 

BadVAddr failing address 

ContextvpN2 UNPREDICTABLE 

XContextvPNZ 
UNPREDICTABLE 

XContextR 

EntryHivPNZ UNPREDICTABLE 

EntryHiR 

EntryLoO UNPREDICTABLE 
,/ 

Entry Lo I UNPREDICTABLE', .. ,,>,-,, 

Entry Vector Used 2:· 
General exception vector (offset Ox180) ;.,. 

,;>1:,,1::' 

A TLB Refill or XTLB Refill exceptiJ~·()f,fiitsiH;~··n,B-based MMU when no TLB entry matches a reference to a 
mapped address space and the EXL bit is zero in the StatLs register. Note that this is distinct from the case in which an 
entry matches but has the valid bit off, in which caseiTLB Invalid exception occurs. Refill exceptions have distinct 
exception vector offsets: OxOOO for a 32-bit TLB Refill and Ox080 for a 64-bit extended TLB ("XTLB") refill. The 
XTLB refill handler is used whenever a reference is made to an enabled 64-bit address space. 

Cause Register ExcCode Value 
TLBL: Reference was a load or an instruction fetch 
TLBS: Reference was a store 

Additional State Saved 

Register State Value 

BadVAddr failing address 

November 15, 1999 - 97 -

MIPS@ PROPRIETARY /CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64™ Specification 

Register State Value 

Context The BadVPN2 field contains VA31 :13 of the failing 

address 

XContext The XContext BadVPN2 field contains VAsEG-

BITS-1:13• and the XContext R field contains 

VA63:62 of the failing address. 

Entry Hi The EntryHi VPN2 field contains VAsEGBITS-1:13 

of the failing address and the Entry Hi R field con-
tains V~3:62 of the failing address; the ASID field 

contains the ASID of the reference that missed 

EntryLoO UNPREDICTABLE 

. ,~.EntryLol UNPREDICTABLE 

., ··'$ii!'z':0'·1'~'' 
r Vector Used Ent y 
TLB Refill vector (offset OxOOO) if 64-bit addresses are not enabled 
tioo. ·~~ 

XTLB Refill vector (offset Ox080) if 64-bit addresses are enabled an4, StatusEXL = 0 at the time of exception. 

General exception vector (offset Oxl80) in either case if Statil~EXL d'"f~tJhe time of exception 
' ·~ 

4.8.11 TLB Invalid Exception 

A TLB invalid exception occurs when a TLB Pntru.·m 

entry has the valid bit off. 

Note that the condition in which no TLB entrY; )~atches a (~~(!11,~(!JO a mapped address space and the EXL bit is one 
in the Status register is indistinguishable from a TL InvalilExC,bption in the sense that both use the generaLexcep-
tion vector and supply an ExcCode value o( TLBL . Thb only way to distinguish these two cases is by prob-
ing the TLB for a matching entry (using TLBP). · 

id_,, 

Cause Register ExcCode Value ii., 
TLBL: Reference was a load or 
TLBS: Reference was a store 

Additional State Saved 

Register State 

BadVAddr failing address 

tch 

Value 

Context The BadVPN2 field contains VA31 :13 of the failing 

address 

XContext The XContext BadVPN2 field contains VAsEG-

BITS-1:13• and the XContext R field contains 

VA63:62 of the failing address. 

November 15, 1999 - 98 -

MIPS@ PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS.DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64™ Specification 

Register State Value 

Entry Hi The EntryHi VPN2 field contains VAsEGB/TS-1:13 
of the failing address and the Entry Hi R field con-
tains VA63:62 of the failing address; the ASID field 

contains the ASID of the reference that missed 

EntryLoO UNPREDICTABLE 

Entry Lo I UNPREDICTABLE 

Entry Vector Used 
General exception vector (offset Ox ISO) 

4.8.12 TLB Modified Exception 

A TLB modified exception occurs on a store reference to a mapped address when the matching TLB entry is valid, 
but the entry's D bit is zero, indicating that the page is not writable. 

Cause Register ExcCode Value 
Mod 

Additional State Saved 

Register State 

BadVAddr 

Context 

XContext 

Entry Hi 

EntryLoO 

Entry Lo I 

Entry Vector Used 

failing address 

The BadVPN2 field co1J1tai11s 

address 

The XContext BadVP~gfield co~t~jhs VAsEG

BITS-l: 13• and !be)CCoflt6xtRAield ~ontains 
VA63:62 of14th~ failing addres;."'.~/ 

The EntryID'i~Z~eld bqptains VAsEGBITS-1:13 
of the failing address andtfi'e Entry Hi R field con
tains VA63:62 of the failing address; the ASID field 

contains the ASID of the reference that missed 

UNPREDICTABLE 

UNPREDICTABLE 

General exception vector (offset Oxl80) 

4.8.13 Cache Error Exception 

A cache error exception occurs when an instruction or data reference detects a cache tag or data error, or a parity or 
ECC error is detected on the system bus when a cache miss occurs. This exception is not maskable. Because the error 
was in a cache, the exception vector is to an unmapped, uncached address. It is implementation dependent whether a 
cache error exception resulting from an access to the data cache is reported precisely with respect to the instruction 

November 15, 1999 - 99 -

MIPS@ PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 

that caused the cache error. 

Cause Register ExcCode Value 
NIA 

Additional State Saved 

Register State 

CacheErr Error state 

ErrorEPC PC 

Entry Vector Used 
Cache error vector (offset OxlOO) 

Operation 
CacheErr f- ErrorState 
StatusERL f- 1 
if InstructionlnBranchDelaySlot then 

ErrorEPC f- PC - 4 
else 

ErrorEPC f- PC 
endif 
if StatusBEV = 1 then 

PC f- OxFFFF FFFF BFCO 0200 + 
else 

PC f- OxFFFF FFFF AOOO 0000 + 
endif 

MIPS64™ Specification 

Value 

4.8.14 Bus Error Exception 

A bus error occurs when an instructio , or prefetc~,,~t~ess makes a bus request (due to a. cache miss or an 
uncacheable reference) and that req~e . , .' . ,.,, 1n'an erroi.' Note that parity errors detected during bus transac-
tions are reported as cache error exceptt us error exceptions. It is implementation dependent whether a data 
bus error exception is reported precisely with respect tcyihe instruction that caused the bus error. 

Cause Register ExcCode Value 
IBE: Error on an instruction reference 
DBE: Error on a data reference 

Additional State Saved 
None 

Entry Vector Used 
General exception vector (offset Ox 180) 

4.8.15 Integer Overflow Exception 

An integer overflow exception occurs when selected integer instructions result in a 2's complement overflow. 

November 15, 1999 - 100-

MIPS@ PROPRIETARY /CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 

Cause Register ExcCode Value 
Ov 

Additional State Saved 
None 

Entry Vector Used 
General exception vector (offset Oxl80) 

4.8.16 Trap Exception 

A trap exception occurs when a trap instruction results in a 1RUE value. 

Cause Register ExcCode Value 
Tr 

Additional State Saved 
None 

Entry Vector Used 

·.~ .. 

-General exception vector (offset Ox180) 

4.8.17 System Call Exception 
.'~~' "'. 

A system call exceptfon occurs when a SYSCALL instruction is exec,uted. · · . 

Cause Register ExcCode Value 
Sys 

Additional State Saved 
None 

Entry Vector Used A 
General exception vector (offset OxJ80) 

Cause Register ExcCode Value 
Bp 

Additional State Saved 
None 

Entry Vector Used 
General exception vector (offset Ox180) 

4.8.19 Reserved Instruction Exception 

A Reserved Instruction Exception occurs if any of the following conditions is true: 

MIPS64™ Specification 

• An instruction was executed that specifies an encoding of the opcode field (Table 20) that is flagged with "*" 
(reserved), "13" (higher-order ISA), "..L" (64-bit) if 64-bit operations are not enabled, or an unimplemented 
"E" (ASE). 
An instruction was executed that specifies a SPECIAL opcode encoding of the function field (Table 21) that 

November 15, 1999 - 101 -

MIPS® PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCillv1ENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64TM Specification 

is flagged with "*" (reserved), "W' (higher-order ISA), or "l." (64-bit) if 64-bit operations are not enabled. 
An instruction was executed that specifies a REG/MM opcode encoding of the rt.field (Table 22) that is 
flagged with "*" (reserved). 
An instruction was executed that specifies an unimplemented SP EC!AL2 opcode encoding of the function 
field (Table 23) that is flagged with an unimplemented "0'' (partner available), "..L" (64-bit) if 64-bit opera
tions are not enabled, or an unimplemented "cr'' (EJTAG). 

• An instruction was executed that specifies a COPz opcode encoding of the rs field (Table 25, Table 27, 
Table 29) that is flagged with"*" (reserved), "W' (higher-order ISA), "l." (64-bit) if 64-bit operations are not 
enabled, or an unimplemented "E" (ASE), assuming that access to the coprocessor is allowed. If access to 
the coprocessor is not allowed, a Coprocessor Unusable Exception occurs instead. For the COP I opcode, 
some implementations of previous IS As reported this case as a Floating Point Exception, setting the Unim
plemented Operation bit in the Cause field of the FCSR register. 

• An instruction was executed that specifies an unimplemented COPO opcode encoding of the function field 
when rs is CO (Table 28) that is flagged with "*" (reserved), or an unimplemented "cr" (EJTAG), assuming · 
that access to coprocessor 0 is allowed. If access to the coprocessor is not allowed, a Coprocessor Unusable 
Exception occurs instead. 
An instruction was executed that specifies a COP I opcode encoding of the function field when rs is S, D, or 
W (Table 30, Table 31, Table 32) that is flagged with "*" (reserved), ''.(}'h(higher-order ISA), "l." (64-bit) if 
64-bit operations are not enabled, or an unimplemented "E" (ASE), assuiJ!i:l~g that access to coprocessor 1 is 
allowed. If access to the coprocessor is not allowed, a Coprocessor l!J,~~table J:;~ception occurs instead. 
Some implementations of previous ISAs reported this case as~~.floatin:~r1~!P:~Exception, setting the Unim-
plemented Operation bit in the Cause field of the FCSR registeI-.:>zr. it,(I\\;.> 

y ,, • .?pt·,, 
An instruction was executed that specifies a COP I opcode ew:odfog ; , s is Lor PS (Table 32, Table 33) 
and 64-bit operations are not enabled, or with a function field ~!?-coding' at is flagged with "*'~(reserved), .· 
"13" (higher-order ISA), or an unimplemented "E" (ASE), assuming that access to coprocessor 1 is allowed. 
If access to the coprocessor is not allowed, a CoprocessdtJ1n1m1~l~ Exception occurs instead. Some imple
mentations of previous ISAs reported this cas~;is;;a.floating PoiritException, setting the Unimplemented 
Operation bit in the Cause field of the FCSRre~~ ~ .·~ 
An instruction was executed that specifies, COPl~opc6~~·;ncoding'of the function field (Table 35) that is 
flagged with"*" (reserved), or any exec7 ' tCOPlX,~pcode when 64-bit operations are not enabled, 
assuming that access to coprocessor 1 is allo cessJo the coprocessor is not allowed, a Coprocessor 
Unusable Exception occurs instead. ~9me imple "~pps of previous ISAs reported this case as a Floating 
Point Exception, setting the Unimplemente-ct eratio~;'f5it in the Cause field of the FCSR register. 

Cause Register ExcCode Value 
RI 

Additional State Saved 
None 

Entry Vector Used 
General exception vector (offset Ox180) 

4.8.20 Coprocessor Unusable Exception 

A coprocessor unusable exception occurs if any of the following conditions is true: 

A COPO or Cache instruction was executed while the processor was running in ~ mode other than Debug 
Mode or Kernel Mode, and the CUO bit in the Status register was a zero 
A COPl, COPlX. LWCl, SWCl, LDCl, SDCl or MOVCI (Special opcode function field encoding) 
instruction was executed and the CUl bit in the Status register was a zero. 
A COP2, LWC2, SWC2, LDC2, or SDC2 instruction was executed, and the CU2 bit in the Status register 
was a zero. 

November 15, 1999 -102 -

I . MIPS® PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 

Cause Register ExcCode Value 
CpU 

Additional State Saved 

Register State Value 

CausecE unit number of the coprocessor being referenced 

Entry Vector Used 
General exception vector (offset Oxl80) 

4.8.21 Floating Point Exception 

MIPS64™ Specification 

A floating point exception is initiated by the floating point coprocessor to signal a floating point exception. 

Register ExcCode Value 
FPE 

Additional State Saved 

Register State 

FCSR 

Entry Vector Used 

Value 

General exception vector (offset Ox 180 

4.8.22 Watch Exception 

The watch facility provides a software d itiating a watch exception when an instruction or data 
reference matches the address inform~( . stored· Hiaf!dWatchLo registers. A watch exception is taken 
immediately if the EXL and ERL bits of the.~ r are both zero. If either bit is a one at the time that a watch 
exception would normally be taken, the*Wlfif>it m the se register is set, and the exception is deferred until both the 
EXL and ERL bits in the Status register are zero. So are may use the WP bit in the Cause register to determine if 
the EPC register points at the instruction that cau~he watch exception, or if the exception actually occurred while 
in kernel mode. 

If the EXL or ERL bits are one in the Status register and a single instruction generates both a watch exception (which 
. is deferred by the state of the EXL and ERL bits) and a lower-priority exception, theJower priority exception is taken. 
It is implementatfon dependent whether the WP' bit is set in this case. The preferred implementation is to set the WP 
bit only if the instruction completes with no other exception. 

It is implementation dependent whether a data watch exception is triggered by a prefetch or cache instruction whose 
address matches the Watch register address match conditions. The preferred implementation is not to match on these 
instructions. 

Register ExcCode Value 
WATCH 

November 15, 1999 - 103 -

MIPS® PROPRIETARY /CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64™ Specification 

Additional State Saved 

Register State Value 

Causewp indicates that the watch exception was deferred 
until after both StatusEXL and StatusERL were zero. 

This bit directly causes a watch exception, so soft-
ware must clear this bit as part of the exception 
handler to prevent a watch exception loop at the 
end of the current handler execution. 

Entry Vector Used 
Qeneral exception vector (offset Ox 180) 

4.8.23 I.i;iterrupt Exception 
The interrupt exception occurs when one or more of the eight interrupt requests is enabled by the Status registers. See 
Section 4.7 on page 87 for more information. 

4.9 

Register ExcCode Value 
Int 

Additional State Saved 

Register State 

Cause1p 

CPO Registers 

]jY 

bit i~the Cause register is zero. 
Use register is one. 

\!J 
111 

:'?~ 

The CPO registers provide the interface between1~heJSA and the PRA. Each register is discussed below, with the reg-
'Yt"f'_'~-:> 

isters presented in numerical order, first by register number, then by select field number . 

. For each register described below, field descriptions include the read/write properties of the field, and the reset state 

November 15, 1999 - 104-

MIPS@ PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64TM Specification 

of the field. For the read/write properties of the field, the following notation is used: 

Read/Write 
Notation 

Hardware Interpretation Software Interpretation 

RfW A field in which all bits are readable and writable by software and, potentially, by hard
ware. 

R 

0 

Hardware updates of this field are visible by software read. Software updates of this 
field are visible by hardware read. 

If the Reset State of this field is "Undefined", either software or hardware must initial
ize the value before the first read will return a predictable value. This should not be 
confused with the formal definition of UNDEFINED behavior. 

A field which is either static or is updated 
only by hardware. 

If the Reset State of this field is either "O" 
or "Preset", hardware initializes this field 
to zero or to the appropriate state, respec
tively, on powerup. 

If the Reset State of this field is "Unde
fined", hardware updates this field only 
under those conditions specified in the >· 
description of the field. 

A field which hardware d()~s not update, 
and for which hardware can assume a 
zero value. 0i5f;,\f¥~}t;> •. 

,.;.,...?,>::' ;. 

A field to which the value written by soft
ware is ignored by hardware. Software 
may write any value to this field without 
affecting hardware .behavior. Software 
reads of this field return the last value 
updated by hardware. 

If the Reset State of this field is "Unde
fined", software reads of this field result. 
in an.UNPREDICTABLE valµe except 
after a hardware update done under the 
conclitibns specified in the description of 
the field.+ 

··A field to which the value written by soft
.ware must be zero. Software writes of 

· non-zero values to this field may result in 
UNDEFINED behavior of the hardware. 
Software reads of this field return zero as 
long as all previous software writes are 
zero. 

If the Reset State of this field is "Unde
fined", software must write this field with 
zero before it is guaranteed to read as 
zero. 

4.9.1 In~ex Register (CPO Register 0, Select 0) 

Compliance Level: Required for TLB-based MMUs; Optional otherwise. 

The Index register is a 32-bit read/write register which contains the index used to access the TLB for TLBP, TLBR, 
and TLBWI instructions. The width of the index field is implementation-dependent as a function of the number of 
TLB entries that are implemented. The minimum value for TLB-based MMUs is Ceiling(Log2(TLBEntries)). 

The operation of the processor is UNDEFINED if a value greater than or equal to the number of TLB entries is writ
ten to the Index register. 

Figure 13 shows the format of the Index register; Table 59 describes the Index register fields. 

November 15, 1999 - 105 -

MIPS® PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64TM Specification 

Figure 13: Index Register 

31 30 n n-1 0 

0 Index 

Table 59: Index Register Field Descriptions 

Fields 
Read/ 

Description 
Write 

Reset State Compliance 
Name Bits 

p 31 Probe Failure. Hardware writes this bit during R Undefined Required 
execution of the TLBP instruction to indicate 
whether a TLB match occurred: 

0: A match occurred, and the Index field 
:_ .. :.....-

contains the index of the matching entry 
1: No match occurred and the Index field is 

UNPREDICTABLE '·· -
TLB index. Software writes this field to provicle_1 

,,. .· ... ; 

Index n-1:0 RfW Undefined Required 
the index to the TLB entry referenced by the 

TLBR and TLBWI instructions. : \ .• , "-"•J· 

Hardware writes this field with the index of the 
matching TLB entry during execution ~fthe 
TLBP instruction. If the TLBPfails to find a 
match, the contents of t~ are QNP!tE-
DICTABLE. F . < 

'.:.c_ ; ; 

0 30:n Must be written as zero; retu~izero on read. 
-,.';;.c-:, -,. , ;'·.::::- , 0 0 Reserved 

}".' ,,,.,,, < _-. 
¢\,,_ 

4.9.2 Random Register (CPO Register l~·~~lect p) 
•ffl' .•• 

Compliance Level: Required for TLB .. based MMUs; Optional otherwise. 
/·' ·<<>·<~:;:-:>1>-:.-' "·/.o. 

The Random register is a read-only regi~tef\*1685~ val~~ is used to index the TLB during a TLBWRinstruction. The 
width of Uie Random field is calculated in the same mc~nner as that described for the Index register above. 

The value.of the register varies between an upper ~tlcl lower bound as follow: 

A lower bound is set by the number of TLB entries reserved for exclusive use by the operating system (the 
contents of the Wired register). The entry indexed by the Wired register is the first entry available to be writ
ten by a TLB Write Random operation. 
An upper bound is set by the total number of TLB entries minus l. 

Within the required constraints of the upper and lower bounds, the manner in which the processor selects values for 
the Random register is implementation-dependent. However, designers should be aware of a potential live lock condi
tion for implementations that simply increment the Random field every 'n' cycles. With such an implementation, the 
TLB/XTLB refill handler can fall into synchronization with the Random field such that the same entry is used during 
each pass through the refill handler. If the instruction causing the TLB/XTLB refill requires more than a single entry 
to complete (e.g., a load instruction requiring both an instruction and a data translation), no forward progress is made 
and a live lock condition is created. In most cases, some other event, such as an interrupt, breaks the condition. How
ever, if the offending instruction is executed in Kernel Mode with interrupts disabled, breaking the live lock may not 
be possible. Designers are encouraged to introduce some pseudo-random behavior on top of a counter implementa-

November 15, 1999 - 106 -

MIPS@ PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICA TlON IS PROHIBITED. 



Revision 1.0 MIPS64TM Specification 

tion of the Random field, such as might be provided by, for example, an LFSR. 

The processor initializes the Random register to the upper bound on a Reset Exception, and when the Wired register is 
written. 

Figure 14 shows the format of the Random register; Table 60 describes the Random register fields. 

Figure 14: Random Register Format 

31 n n·l 

0 

Table 60: Random Register Field Descriptions 

Fields 
Read/ 

Description 
Write 

Name Bits 

Random n-1:0 TLB Random Index >R 

0 3l:n Must be written as zero; returns zero on read. 0 
,~:.,-;-

,_,, 

4.9.3 EntryLoO, EntryLol (CPO Registers 2 and 3, Sefoc! 0) 

Compliance Level: EntryLoO is Required for a TLB-based MMU;Qp(iq~t1.1 otherwise. 
Compliance Level: EntryLol is Required for a TLB-based MMU; Optio"rial otherwise. 

~-- .-". -:·-·- ,__ '"'' 

Random 

Reset State 

TLB 
·Entries - l 

0 

0 

Compliance 

Required 

Reserved 

The pair of Entry Lo registers act as the interface between the TLBand the TLBR, TLBWI, and TLBWR instructions. 
EntryLoO holds the entries for even pages and EntryLol ho!~ thibiitries for odd pages. 

;,;:..:------ ,, ___ ,- :'";;.·,_. 

The contents of the EntryLoO and EntryLol regist~ts'areno~ defined3.fter an address error exception and some fields 
may be modified by hardware during the addres.s error exception sequence. 

- '.;'._d} ,. ~- ;::_·~;;:"+·;}/ 

Figure 15 shows the format of the EntryLoO and El)tryLol registers; Table 61 describes the EntryLoO and EntryLol 
register fields. "'· · ''> 

Figure 15:,EntryloO, Eriti-yLol Register Format 

63 65 3210 

Fill PFN 

Table 61: EntryLoO, EntryLol Register Field Descriptions 

Fields 
Read/ 

Description Reset State Compliance 
Name Bits 

Write 

Fill 63:30 Ignored on write; returns zero on read. R 0 Required 

November 15, 1999 - 107 -

MIPS® PROPRIETARY /CONFIDENTIAL: 
RESTRICTED DOClJlvlENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 

Fields 

Name Bits 

PFN 29:6 

c 5:3 

D 2 

v 1 

G 0 

MIPS64TM Specification 

Table 61: EntryLoO, EntryLol Register Field Descriptions 

Description 

Page Frame Number. Corresponds to 
bits[PAB!TS-1: 12] of the physical address. The 
width of this field implicitly limits the size of the 
physical address to 36 bits. If the processor 
implements fewer physical address bits than this 
limit, the unimplemented bits must be written as 
zero, and return zero on read. If the processor 
implements more physical address bits that this 
limit, the PFN field boundary moves to the left, 
compressing out bits of the Fill field. 

Coherency attribute of the page. See Table 62 
below. 

"Dirty" bit, indicating that the page is writable. If 
this bit is a one, stores to the page are permitted. 
If this bit is a zero, .stores to the page cause a <·' 
TLB Modified exception. 

Kernel software may use this bit to implement 
paging algorithms that require knowing\¥hieh.~,;>;'· . 
pages have been written. If thi !!:!&,,always zero 
when a page is initially tnap , tffi!~TU! fylodi-
fied exception that results .c;; st~Mo~th~~ 
page can be used to update' ata structures 
that indicate that the page was writt~n. 

,~c I 

·Read/ 
Write 

R/W 

R/W 

. ·~~\,:.!" q.;;if< ·', 
Valid bit, indicating that the·TLB entry; and thus R/W 

the virtual page ~;~~,i~g al~\;~~~~!;His bi~ is~ 
one, accesses t() the page are pemiilt,~Ci. If this bit 
is a zero, accesses tb the e.cause a TLB 
Invalid exceptlbn;. """ 

''·"'· 

Global bit. On a TLB write, thl logical AND of R/W 
the G bits from both EntfYL~O and EntryLol 
becomes the G bit in the TLB entry. If the TLB 
entry G bit is a one, ASID comparisons are 
ignored during TLB matches. On a read from a 
TLB entry, the G bits of both EntryLoO and 
Entry Lo! reflect the state of the TLB G bit. 

Reset State Compliance 

Undefined Required 

Undefined Required 

Required 

Undefined Required 

Undefined Required 
(TLBMMU) 

Table 62 lists the encoding of the C field of the EntryLoO and EntryLol registers and the KO field of the Con.fig regis
ter. An implement~tion may choose to implement a subset of the cache coherency attributes shown, but must imple
ment at least encodings 2 and 3 such that software can always depend on these encodings working appropriately. In 
other cases, the operation of the processor is UNDEFINED if software specifies an unimplemented encoding. 

November 15, 1999 - 108 -

MIPS® PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision l .0 MIPS64TM Specification 

Table 62 lists the required and optional encodings for the coherency attributes, in addition to giving an historical per
spective on the encodings implemented by various MIPS processors, as obtained from the processor chip specifica
tion. 

C(5:3) Value 

0 

2 

3 

4 

November 15, 1999 

Table 62: Cache Coherency Attributes 

Cache Coherency Attributes 
With Historical Usage 

Available for implementation dependent use 

Historical usage: 
Reserved (R4000®, VR5400, RlOOOO®) 
Unused, defaults to cached (R43QOTM) 
Cacheable, noncoherent, write through, no write 
allocate (RC32364, RM5200) 

Available for implementation dependent use 

Historical usage: 
Reserved (R4000) 
Unused, defaults to cached (R4300) 
Cacheable, noncoherent, write through, write allo-
cate (RC32364, RM5200) · ·· . · 
Cacheable write-through, write ~lh)cate (VR5400) 

Uncached 

Historical usage: 
Uncached (all 

Cacheable 

Historical usage: .)>,. 

Cac~e(lble noricoh~,r,ent (rioncoherent) (R4000, 
RlOOOO) <;, 
G~ched (R43()()) 
Cac.heable: ridiicoherent ( writeback) (RC32364, 
RMs200) : 
Cacheable, 'N~!teback (VR5400) 

Available for implementation dependent use 

Historical usage: 
Cacheable coherent exclusive (exclusive) (R4000, 
RlOOOO) 
Unused, defaults to cached (R4300) 
Reserved (RC32364, RM5200, VR5400) 

- 109 -

MIPS@ PROPRIETARY/CONFIDENTIAL: 

Compliance 

Optional 

Optional 

Required 

-
Required 

Optional 

RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64TM Specification 

Table 62: Cache Coherency Attributes 

C(5:3) Value Cache Coherency Attributes 
Compliance 

With Historical Usage 

5 Available for implementation dependent use Optional 

Historical usage: . Cacheable coherent exclusive on write (sharable) 
(R4000, RlOOOO) . Unused, defaults to cached (R4300) . Reserved (RC32364, RM5200, VR5400) 

6 Available for implementation dependent use Optional 

Historical usage: . Cacheable coherent update on write (update) 
(R4000) . Unused, defaults to cached (R4300) 

• Reserved (RC32364, RM5200, RlOOOO) 

7 Available for implementation dependent use Optional 

Historical usage: 
. s,~. . Reserved (R4000) .. . Unused, defaults to cached (R4300) -. Reserved (RC32364, RM5200) . Uncached accelerated (VR5400, RlOOOO) 

o<I, _,. ., 

4.9.4 Context Register (CPO Register 4, 1~~!e~t,10Y 
·.··.•·· 

<:+>:J;'.;:t 
Compliance Level: Required for TLB-based MMUs; Opiiof!a{otherwise. 

,,:,-.-:"·:., "'-·-\'_-,--_)-:-.--'; 

The Context register is a read/write register cofltaini.r:ig a pointer tO an entry in the page table entry (PTE) array'. This 
array is an operating system data structurethatstor'esV1ft~~l-to-physical translations. During a TLB miss, the operat
ing system loads the TLB with the missing translation froiri the PTE array. The Context register is primarily intended 
for use with the TLB Refill handler, but is alsoloa~~by hardware on an XTLB Refill and may be used by software 
in that handler. The Context register duplicates'isoJle of the information provided in the BadVAddr register, but is 
organized in such a way that the operatingsystem can directly reference a 16-byte structure in memory that describes 
the mapping. •1 

i 

A TLB exception (TLB Refill, XTLB Refill, TLB Invalid, or TLB Modified) causes bits VA31 :13 of the virtual address 

, to be written into the BadVPN2 field of the Context register. The PTEBase field is written and used by the operating 
system. 

The Bad"Vf'N2 field of the Context register is not defined after an address error exception and this field may be modi
fied by hardware during the address error exception sequence. 

Processor implementations must not assume that software will write the same value into the PTEBase fields of the 
Context and XContext registers (i.e., the PTEBase fields of the two registers may be set to different values, thus can
not share storage). 

Figure 16 shows the format of the Context Register; Table 63 describes the Context register fields. 

November 15, 1999 - 110 -

MIPS@ PROPRIETARY/CONFIDENTIAL: 
RF'\TRTr'TFD DOOTMENT SUBJECT TO CONFIDENT1ALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64TM Specification 

Figure 16: Context Register Formats 

63 23 22 4 3 0 

PTEBase BadVPN2 0 

Table 63: Context Register Field Descriptions 

Fields 
Read/ 

Description 
Write 

Reset State Compliance 
Name Bits 

PTEBase 63:23 This field is for use by the operating system R/W Undefined Required 
and is normally written with a value that 
allows the operating system to use the Context 
Register as a pointer into the current PTE 
array in memory 

.• <' ·;; 

;,:~L·f'. 
,,!1 

BadVPN2 22:4 This field is written by hardware on a TLB. i ;;\jU ndefined Required 
.. 

exception. It contains bits VA31 :13 of the vir:,~_,, 

. tual address that caused the exception. . .\ ":,:;; ~;\;~~;::•;:1 

0 3:0 
. - - ·~ 

Must be written as zero; returns zero on rea'.iL 
~ ~"' 

0 0 Reserved 

~J\ 

·4.9.5 PageMask Register (CPO Register 5,_ Sele~.! 0) 
if" ·~J . •<'.:i/,i~- \ 

Com liance Level: Re uired for TLB-based MMUs· o tional'otherwise. 
p q i;i~i:.*1-,:f if" '+s~ 

The PageMask register is a read/write register us'ed fof}ea&ing from"' and writing to the TLB. It holds a comparison 
mask that sets the variable page size for each:TLB entry%~"'showifin Table 65. Figure 17 shows the format of the 
PageMask register; Table 64 describes the PagffMas~ registe~-'field;. - · 

31 

0 

Fields 

Name, Bits 

Mask 24:13 

0 31:25, 
12:0 

November 15, 1999 

\~1'.. )~%~z;~·tfi .• . · . 
F:igure 17: PageMask)Register Format 

2S 24 ~!·~ .,. . .. ,4 1{,;j~f~~;;\ J 13 12 

Mask 

'>if~>/S',;:~;/' 
'•t<t, 

Table 64: PageMask Register Field Descriptions 

Read/ 
Description 

Write 

The Mask field is a bit mask in which a "l" bit R/W 
indicates that the corresponding bit of the virtual 
address should not participate in the TLB match. 

Must be written as zero; returns zero on read. 0 

- 111 -

MIPS® PROPRIETARY /CONFIDENTIAL: 

0 

0 

Reset State Compliance 

Undefined Required 

0 Reserved 

RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS.DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64TM Specification 

Table 65: Values for the Mask Field of the PageMask Register 

Bit 
Page Size 

24 23 22 21 20 19 18 17 16 15 14 13 

4 KBytes 0 0 0 0 0 0 0 0 0 0 0 0 

16 KBytes 0 0 0 0 0 0 0 0 0 0 1 1 

64 KBytes 0 0 0 0 0 0 0 0 1 1 1 1 

256 KBytes 0 0 0 0 0 0 1 1 1 1 1 1 

1 MByte 0 0 0 0 1 1 1 1 1 1 1 1 

4MByte 0 0 1 1 1 1 1 1 1 1 1 1 

16 Mbyte 1 1 1 1 1 1 1 1 1 1 1 1 

. . .s/r' ·" t 
It is implementation dependent how many of the encodings described in Table 65 are jmplemented. All processors 
must implement the 4KB page size (an encoding of all zeros). If a particular page size .encoding is not implemented 
by a processor, a read of the PageMask register must return zeros in all bits that,co11i;:~~~md to encodings that are not -
implemented. Software can determine which page sizes are supported bf~~iting the''e'ncoding for a 16MB page to the 
PageMask register, then examine the value returned from a read of the Pag~Mask r~gister. If a pair of bits reads back 
as ones, the processor implements that page size. The operation of the processbr is UNDEFINED if software loads 
the PageMask register with a value other than one of those listed in Table._65. -

· ,_;m~!'~zlliur~~~, 
4.9.6 Wired Register (CPO Register 6, Se~t'.~;~ _.,h. ''\j 
Compliance Level: Required for TLB-based MM '· ptional·titlierwise. fl 

,f· w·~;'.,' .. :/• " 

The Wired register is a read/write register that s . J .• .f boundaty between the wired and random entries in the 
TLB as shown in Figure 18. The width of tht:).Yired fie!<f>'.~~~al.culaled in the same manner as that described for the 

~S>ii: 1'; ··~·~il :·¥'£::·• · :i . 
Index register above. Wired entries are fixed, non-reHlaceable entries which are not overwritten by a TLBWR_.in.struc-
tion. Wired entries can be overwritten by a TLBWLtltlstruction. Y · . · 

,}fj:;'.>t:_~,,._ i .. <,'.~ih~~·:~1k ~J .. -· j_,;.~ 
The Wired register is set to zero by a Reset Exception. Writing the Wired register causes the Random register to reset 

to its upper bound. ' . · . · · l -· 

The operation of the processor is UNDEFI~ if a va ~e greater than or equal to the number of TLB entries is writ-
ten to the Wired register. ;;:r 

<,';qi~·,,~;;;,.}"' 

Figure 19 shows the format of the Wired register; Table 66 describes the Wired register fields. 

November 15, 1999 - 112 -

MIPS® PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64T'.l.1 Specification 

Figure 18: Wired And Random Entries In The TLB 

Entry TLBSize-1 

' 
' 
' ' 
' 
' 
' 
' ' 
' 
' 
' 
' 
I 

I 

' Wired Register [JQJ _... Entry 10 .. 
' 
' 
' 
' 
' 
I 

I 

' 
Engy_ 0 l Cl) 

.... 
. . 

Figure 19: Wired Register 

31 ·O 

0 Wired 

" ,·:~·~.~~~fut~~:, .. ~~~ 
'~~ ' 

Table 66: Wired Regl;~r Field Descripti6ns 
~>' . ,,, ·' ,~'<',_ ,', :·;, 

Fields 

Name Bits 
Write 

Reset State Compliance 

Wired n-1:0 TLB wired boundary RJW 0 Required 

0 31:n 
·~' .. 1·;~~. :'" 

Must be written' as zero; returns zero on read. 0 0 Reserved 
,. ·<;,/ ~""··.., ,/ 

··*~a11~1i'·':·' 
4.9.7 BadVAddr Register (CPO Register s,,.Select 0) 

Compliance Level: Required. 

The BadVAddr register is a read-only register that captures the most recent virtual address that caused one of the fol
lowing exceptions: 

.Address error (AdEL or AdES) 
TLB/XTLB Refill 

• TLB Invalid (TLBL, TLBS) 
TLB Modified 

The BadVAddr register does not capture address information for cache or bus errors, or for Watch exceptions, since 
none is an addressing error. 

Figure 20 shows the format of the BadVAddr register; Table 67 describes the BadVAddr register fields. 

November 15, 1999 - 113 -

MIPS@ PROPRIETARY /CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 

Figure 20: BadVAddr Register Format 

63 

Table 67: BadVAddr Register Field Descriptions 

Fields 
Description 

Name Bits 

BadVAddr 63:0 Bad virtual address 

4.9.8 Co~nt Register (CPO Register 9, Select 0) 

Compliance Level: Required. 

Read/ 
Write 

R 

MIPS64™ Specification 

0 

Reset State Compliance 

Undefined Required 

The Count register acts as a timer, incrementing at a constant rate, whether or not an instruction is executed, retired, 
or any forward progress is made through the pipeline. The rate at which the .. counter increments is implementation
dependent, and is a function of the frequency of the processor, not the 1ssue width Of the processor. The preferred · 
implementation is to increment the Count register once per processor cyde: .. ··· 

It is implementation dependent whether the Count register continues· to count or stops when the proce,~sor enters a 
low power mode, as might occur after executing the Wait instruction. · 

,l\ 

The Count register can be written for functional or diagnostic purposes, ·including at reset or to synchronize proces-

sors. · i:±~J;;:~~~ .. ,, 
· Figure 21 shows the format of the Count register; '!'.able 68 des.cn'bes the Count register fields. 

/~4:if:~>i~: .. . ~i ... 
Figure 21: Count Register Format 

,): l·,I .·'~ 

;·!,~ft"' 31 

Count 

Fields . 
.. Desc~iptlon 

Name Bits 

Count 31:0 Interval counter 

4.9.9 Entry Hi Register (CPO Register 10, Select 0) 

Compliance Level: Required for TLB-based MMU; Optional otherwise. 

Read/ 
Reset State 

Write 

R/W Undefined 

0 

Compliance 

Required 

The EntryHi register contains the virtual address match information used for TLB read, write, and access operations. 

A TLB exception (TLB Refill, XTLB Refill, TLB Invalid, or TLB Modified) causes the bits of the virtual address cor
responding to the R and VPN2 fields to be written into the Entry Hi register. The ASID field is written by software 
with the current address space identifier value and is used during the TLB comparison process to determine TLB 
match. 

November 15, 1999 - 114-

MIPS® PROPRIETARY /CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64TM Specification 

Software may determine the size oflhe virtual address space implemented by a processor by writing all ones to the 
Entry Hi register and then reading the value back. 

The VPN2 and R fields of the Entry Hi register are not defined after an address error exception and these fields may be 
modified by hardware during the address error exception sequence. Software writes of the EntryHi register (via 
MTCO or DMTCO) do not cause the implicit write of address-related fields in the BadVAddr, Context, or XContext 
registers. 

Figure 22 shows the format of the EntryHi register; Table 69 describes the EntryHi register fields. 

Figure 22: Entry Hi Register Format 

63 62 61 40 39 13 12 8 7 0 

R Fill 

Fields 

Name Bits 

VPN2 

Table 69: EntryHi Register Field Descriptions 

Description 
l{ead/ 

sWrite 
-~l.. .. 
"".'\,,.< 

0 ASID 

Reset 
State 

R 63:62 Virtual memory region, corresponding to V~j;~{> RJW ··•·· >tJndefined 

Fill 

VPN2 

00: xuseg: user address region :'' &\y 
0 l: xsseg: supervisor address region. 

If supervisor mode is not implemented, 
this encoding is reserved. 

10: Reserved 
11: xkseg: kernel address r~gib 

.{ :;;·•Jn 

This field is written by h~i~~.pg;li L i~t:ep
tion or on a TLB read, arid is Wfitten.b soft\!Care 

'""41;«>£>~ 

before a TLB write. 'l•;; 

61:40 Fill bits reserved fQ,!' expa~i~~~ltthe vi~ual 
address space. See•6e10w. Returns~eros on read, 
ignored on write. .l 

"<\ 

39: 13 VA39: 13 of the ~iftl!fir:a&d~~ss '(Virtual page num

ber/ 2). This field is written b.yhardware on a 
TLB exception or on a TLB tbd, and is written by 
software before a TLB write. The default width of 
this field implicitly limits the size of each virtual 
address space to 40 bits. If the processor imple
ments fewer virtual address bits than this default, 
the Fill field must be extended to take up the 
unimplemented VPN2 bits. If the processor imple
ments more virtual address bits than this default, 
the VPN2 field must be extended to take up some 
or all of the Fill bits. 

November 15, 1999 - 115 -

R 

R/W 

MIPS® PROPRIETARY/CONFIDENTIAL: 

0 

Undefined 

Complianc 
e 

Required 

Required 

Required 

cn::<;:TR Tr'TFn nncrnvlFNT ST JRJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 

Table 69: Entry Hi Register Field Descriptions 

Fields 
Description 

Name Bits 

ASID 7:0 Address space identifier. This field is written by 
hardware on a TLB read and by software to estab-
lish the current ASID value for TLB write and 
against which TLB references match each entry's 
TLB ASID field. 

0 12:8 Must be written as zero; returns zero on read. 

4.9.10 Compare Register (CPO Register 11, Select 0) 

Compliance Level: Required. 

Read/ 
Write 

R/W 

0 

MIPS64n1 Specification 

Reset Complianc 
State e 

Undefined Required 
(TLB 

MMU) 

0 Reserved 

The Compare register acts in conjunction with the Count register to implement a timer and timer interrupt function. 
The Compare register maintains a stable value and does not change on its own. 

When the value of the Count register equals the value of the Compare register, an interrupt request is combined in an 
implementation-dependent way with hardware interrupt 5 to set interrupt bit IP(7) in the Cause register,, This causes 
an interrupt as soon as the interrupt is enabled. · ., 

For diagnostic purposes, the Compare register is a read/write register:J!111orinal use however, the Compare register is 
write-only. Writing a value to the Compare register, as a s~de effect, clears the timer interrupt. Figure 23 shows the 
format of the Compare register; Table 70 describes the C8nipare register fields.< 

}V _- __ ., j:;~",:>:--+> 

;(;~;;-',;- , --7/,;-,;·, .. 
Figure 23: 'cl)n;pare Register Format 

31 0 

Compare 

Table70: Compare ~egister Field Descriptions 
.•.. ~ -; 

Fields 
Description 

Read/ 
Reset State Compliance 

Name Bits 
Write· 

Compare 31:0 Interval count compare value R/W Undefined Required 

4.9.11 Status Register (CP Register 12, Select 0) 

Compliance Level: Required. 

The Status register is a read/write register that contains the operating mode, interrupt enabling, and the diagnostic 
states of the processor. Fields of this register combine to create operating modes for the processor. Refer to Section 
4.4 on page 71 and Section 4.7 on page 87 for a discussion of operating modes and interrupt enable, respectively. 

Figure 24 shows the format of the Status register; Table Tl describes the Status register fields. 

November 15, 1999 - 116 -

rvups@ PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECTTOCONFlDENTIAUTY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64TM Specification 

Figure 24: Status Register Format 

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 8 7 6 4 3 2 0 

CU3-CU RP FR RE MX PX BE IM7-IMO SX UX UM RO ERL EXL IE 

KSU 

Table 71: Status Register Field Descriptions 

Fields 
Read/ 

Description 
Write 

Reset State Compliance 
Name Bits 

cu 31:28 Controls access to coprocessors 3, 2, 1, and 0, R/W Undefined Required for 
(CU3 .. respectively: all imple-
CUO) 0: access not allowed mented 

1: access allowed coprocessors 

Coprocessor 0 is always usable when the processor ' 
is running in Kernel Mode or Debug Mode, inde- ' :.·; 
pendent of the state of the CU0 bit. 

Execution of all floating point instructions, includ- '· 

ing those encoded with the COPlX opcode,~is con-
trolled by the CU l enable. CU3 is not currently 
used by MIPS64 implementations and is reserved 
for future use by the ArchitectU're. . ,, 

, . . ' 

If there is no provision for c6ri~ecting a copn;ices-
sor, the corresponding CU bit must be ignored on 
write and read as zero. However, for back~ard 
compatibility with earlier MIPS processors, CU3 
may be implemented as a read/write b~t, even 
though its state does not affect the operation of the 
processor. 

RP 27 Enables reduced power mode on' some implementa- R/W 0 Optional 
tions. The specific operation of this bit is imple-
mentation dependent. 

If this bit is not implemented, it must be ignored on 
write and read as zero. If this bit is implemented, 

' the reset state must be zero so that the processor 
starts at full performance. 

November 15, 1999 - 117 -

MIPS® PROPRIETARY /CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DllPLIC A TlON IS PROHIBITED. 



Revision 1.0 

Fields 

Name Bits 

FR 26 

RE 25 

MX 24 

PX 23 

BEV 22 

November 15, 1999 

Table 71: Status Register Field Descriptions 

Description 

Controls the floating point register mode: 
0: Floating point registers can contain any 

32-bit datatype. 64-bit datatypes are stored 
in even-odd pairs of registers. 

1: Floating point registers can contain any 
data type 

Certain combinations of the FR bit and other state 
or operations can cause UNPREDICTABLE 
behavior. See Section 4.5.3 on page 72 for a discus
sion of these combinations. 

Used to enable reverse-endian memory references 
while the processor is running in user mode: 

0: User mode uses configured endianness 
1: User mode uses reversed endianness 

Neither Kernel Mode nor Supervisor Mode refer
ences are affected by the state of this bit. 

~,, 

Read/ 
Write 

R/W 

R/W 

If this bit is not implemented, it must be ighbf~:;f 6ri · 
write and <ead"' mo. cf',;;~;;·, ·•'- ·•• -tw 
Enable access to MDMXTM resources on prOC:~s
sors implementing MDMX:lfM:D¥X is not"~ 
implemented, the bit must be ignoreg Oii write and 
read as zero. ·· _i_ ··.· '•''i1ri11j\;./' 

Enable access to 64-bitoperatiBns.i~ U~e~ mode, RJW 
without enabling 64-bit addressing: ls~· 

0: 64-bit operations are ~ofe?}abled 
1: 64-bit operati(;)I,I~ are enabled 

f 
Controls the location of exception vectors: R/W 

0: Normal • • 
1: Bootstrap 

See Section 4.8.2 on page 91 for details. 

- 118 -

MIPS® PROPRIETARY /CONFIDENTIAL: 

MIPS64TM Specification 

Reset State Compliance 

Undefined Required 

Undefined Optional 

lo,,. 

Undefined Optional 

Undefined Requir~ 

Required 

RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS.DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64TM Specification 

Table 71: Status Register Field Descriptions 

Fields 
Read/ 

Description 
Write 

Reset State Compliance 
Name Bits 

TS 21 Indicates that the TLB has detected a match on RIW 0 Required if 
multiple entries. It is implementation dependent TLB Shut-
whether this detection occurs at all, on a write to down is 
the TLB, or an access to the TLB. When such a implemented 
detection occurs, the processor initiates a machine 
check exception and sets this bit. It is implementa-
tion dependent whether this condition can be cor-
rected by software. If the condition can be 
corrected, this bit should be cleared before resum-
ing normal operation. 

If this bit is not implemented, it must be ignored on 
write and read as zero. 

Software writes to this bit may not cause a 0-to-l 
transition. Hardware may ignore software attempts 
to cause such a transition. ....:..:c. ·· 

SR 20 Indicates that the entry through the reset exceptiOn RIW l for Soft Required if 
vector was due to a Soft Reset: ··:<i Reset; 0 Soft Reset is 

0: Not Soft Reset (NMI or Reset) otherwise implemented 
l: Soft Reset 

..:.:. 

NMI 19 Indicate' that the entcy th«;~h the. <esi. .. ;,f) RIW 1 for NMI; Required if 
vector was due to an NML 't:ti;".rv{ 0 otherwise NMiis 

0: Not NMI (Soft Reset or Reset/ ~ . implemented 
l· NMI • . . ...'.::. 

0 18 Must be written as zero; retufii~ zero on read. 0 0 Reserved 
/<; 'o ' , ' ' , I 

Reserved 17: 16 These bits are implementati~ndependent and not Undefined Optional 
for defined by the aicllitep~re.'Ifth~y are not imple-
Imp le- mented, they must be ignored on.write and read as 
menta- zero. 
tions 

IM 15:8 Interrupt Mask: Controls the enabling of each of the RIW Undefined Required 
external, internal and software interrupts. Refer to 
Section 4. 7 on page 87 for a complete discussion of . enabled interrupts . 

0: interrupt request disabled 
1: interrupt request enabled 

November 15, 1999 - 119 -

MIPS® PROPRIETARY/CONFIDENTIAL: 
R FSTRTCTED DOf'I JMENT SUBJECT TO CONFIDENTIALITY OBLIG!\ TIO NS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64TM Specification 

Table 71: Status Register Field Descriptions 

Fields 
Read/ Description 
Write 

Reset State Compliance 
Name Bits 

KX 7 Enables the following behavior: R/W Undefined Required for . Access to 64-bit Kernel Segments 64-bit . Use of the XTLB Refill Vector for refer- Addressing 
ences to Kernel Segments 

0: Access to 64-bit Kernel Segments disabled, 
TLB Refill Vector used for references to 

Kernel Segments 
1: Access to 64-bit Kernel Segments enabled, 

XTLB Refill Vector used for references to 
Kernel Segments 

If 64-bit addressing is not implemented, this bit 
must be ignored on write and read as zero. 

sx 6 If Supervisor Mode is implemented, enables the .. R/W. Undefined Required if 
following behavior: both Super-. Access to 64-bit Supervisor Segments ,~isor Mode . Use of the XTLB Refill Vector for refer- and 64-bit 

ences to Supervisor Segments addressing 
are imple-

0: Access to 64-bit Supervisor Segments mented 
disabled, TLB Refill VecJ6r used'for 
references to Supervis9f~egmegts 

1: Access to 64-bit Supervis~rSegments 
enabled, XTLB Refill Vector llsedfor 
references to Supetvisor, Segments ,,,,., 

If Supervisor Mode is not im~{~~~hted, it is imp le-
mentation dependent wh;tller(lccess fo what would 
normally be 64~bit~l!pervisoraddress space is 
enabled with the SX ot KX bit. 

'.{c' 

If 64-bit addressing is not implemented, this bit 
must be ignored on write and read as zero. 

November 15, 1999 - 120 -

MIPS@ PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 

Fields 

Name Bits 

ux 5 

KSU 4:3 

November 15, 1999 

Table 71: Status Register Field Descriptions 

Description 

Enables the following behavior: 
• Access to 64-bit User Segments 

Use of the XTLB Refill Vector for refer
ences to User Segments 

• Execution of instructions which perform 
64-bit operations while the processor is 
operating in User Mode 

0: Access to 64-bit User Segments 
disabled, TLB Refill Vector used for 
references to User Segments, execution 
of instructions which perform 64-bit 
operations is disallowed while the processor 
is running in User Mode 

1: Access to 64-bit User Segments 
enabled, XTLB Refill Vector used for 
references to User Segments, execution 
of instructions which perform 64-bit 
operations is allowed while the process 
is running in User Mode 

If 64-bit addressing is not imp 
must be ignored on write an 

If Supervisor Mode is impl~~ , 
of this field denotes ths;1t?ase oper 
processor. See Section'ltA ~ a full d1 

operating modes. =~co, 
;'~~~' 

002: Base m0<¥'is Kem 
;',;;, 

01 2: Base moder· ode 

102: Base mode 1 

11 2: Reserved. The oper!,\~~ fthe processor 

is UNDEFINED if this value is written 
to the KSU field 

Note: This field overlaps the,UM and,RO fields, 
described below. 

- 121 -

Read/ 
Write 

R/W 

MIPS® PROPRIETARY/CONFIDENTIAL: 

MIPS64™ Specification 

Reset State 

Undefined 

Undefined 

Compliance 

Required for 
64-bit 

Addressing 

Required if 
Supervisor 

Mode is 
imple

mented; 
Optional 
otherwise 

RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 

Fields 

Name Bits 

UM 4 

RO 3 

ERL 2 

Table 71: Status Register Field Descriptions 

Description 

If Supervisor Mode is not implemented, this bit 
denotes the base operating mode of the processor .. 
See Section 4.4 on page 71 for a full discussion of 
operating modes. The encoding of this bit is: 

0: Base mode is Kernel Mode 
1: Base mode is User Mode 

Note: This bit overlaps the KSU field, described 
above. 

If Supervisor Mode is not implemented, this bit is 
reserved. This bit must be ignored on write and 
read as zero. 

Note: This bit overlaps the KSU field, describe 
above. 

Error Level; Set by the processor when a Re 
Soft Reset, NMI or Cache Error exceptio 
taken. 

0: normal level 
I: error level 

When ERL is set: 
• 
• 
• 

• se ar.e. treated as 
ed region. See 

n pa . This allows 
main memory to be 
ence of cache e he operation of the 
processor is UNDEFINED if the ERL bit 
is set while the processor is executing 
instructions from kuseg. 

Read/ 
Write 

R/W 

R 

November 15, 1999 - 122 -

MIPS® PROPRIETARY/CONFIDENTIAL: 

MIPS64™ Specification 

Reset State Compliance 

Undefined Required 

0 Reserved 

~· : .. 

,,. Required 

RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 

Table 71: Status Register Field Descriptions 

Fields 

Name Bits 

EXL 

IE 0 

Description 

Exception Level; Set by the processor when any 
exception other than Reset, Soft Reset, NMI or 
Cache Error exception are taken. 

0: normal level 
1: exception level 

When EXL is set: 
The processor is running in Kernel Mode 
Interrupts are disabled. 
TLB/XTLB Refill exceptions will use the 
general exception vector instead of the 
TLB/XTLB Refill vectors. 

• EPC and Cause80 will not be updated if 

another exception is taken 

Interrupt Enable: Acts as the master enable for 
ware and hardware interrupts: 

0: disable interrupts 
1: enables interrupts 

4.9.12 Cause Register (CPO Register 13, Sel ' 
,fff'·'"" 

Compliance Level: Required. 

Read/ 
Write 

R/W 

MIPS64™ Specification 

Reset State Compliance 

Undefined Required 

Required -

eption. In addition, fields also control software 
ched. With the exception of the IP[l:O], IV, and 

Figure 25 shows the format of the Cause r 

November 15, 1999 - 123 -

MIPS@ PROPRIETARY /CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 

Figure 25: Cause Register Format 

31 30 29 28 27 24 23 22 21 16 15 8 

IBnl o CE IP7:IPO 

Fields 

Name Bits 

BD 31 

CE 29:28 

IV 23 

WP 22 

November 15, 1999 

Table 72: Cause Register Field Descriptions 

Description 

Indicates whether the last exception taken 
occurred in a branch delay slot: 

0: Not in delay slot 
1: In delay slot 

The processor updates BD only if StatusEXL 

was zero when the exception occurred. 

Coprocessor unit number referenced when a 
Coprocessor Unusable exception is taken. 
field is loaded by hardware on every exception, 

but is UNPREDICTABLE for all excepti~g!~licfr::! 
except for Coprocessor Unusable:. . ··· 

•cf•• )1'5* 

Indicates whether an interrupt~~~~~ti 
• ;,,:;1· ..;},, 

the general except!On vecwr:w a sp~el 
rupt vector: tf1itt'.''.;L 

<"!.,~---. ----_,_'_\ :·:----- __ jlffl 
0: Use the generafexcep!ion vector{qxJ.80) 
1: Use the special inteq:iipty~ctor (Ox200) 

Indicates that a.i;W~t~'h''exception W~cteferred 
becawieSiatusk . fljj~~kL wefea one af 

the time the w~t~ tf~~ ~~§ detected. This 
bit both indicates that the watsh exception was 
deferred, and causes theeJ£ception to be initi
ated once StatusExL and StatusERL are both 

zero. As such, software must clear this bit as 
part of the watch exception handler to prevent a 
watch exception loop. 

Software writes to this bit may not cause a O-to-
1 transition. Hardware may ignore software 
attempts to cause such a transition. 

If watch registers are not implemented, this bit 
must be ignored on write and read as zero. 

- 124 -

Read/ 
Write 

R 

R/W 

MIPS@ PROPRIETARY/CONFIDENTIAL: 

MIPS64™ Specification 

7 6 2 1 0 

0 I Exe Code 0 

Reset State Compliance 

Undefined Required 

Required 

Undefined Required 

Undefined Required if 
watch regis

ters are 
·implemented 

RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 

Fields 

Name Bits 

Table 72: Cause Register Field Descriptions 

Description 
Read/ 
Write 

MIPS64™ Specification 

Reset State Compliance 

IP[7:2] 15: 10 Indicates an external interrupt is pending: R Undefined Required 

IP[l:O] 

ExcCode 

0 

9:8 

6:2 

30, 
27:24, 
21:16, 
7, 1:0 

15: Hardware interrupt 5, timer or 
performance counter interrupt 

14: Hardware interrupt 4 
13: Hardware interrupt 3 
12: Hardware interrupt 2 
11: Hardware interrupt 1 
10: Hardware interrupt 0 

Controls the request for software interrupts: 
9: Request software interrupt 1 
8: Request software interrupt 0 

R/W Undefined 

Exception code - see Table 73 \~/ :Pfilrndefined 

Must be written as zero; returns zern on read. ~:,~"c~:~l! ,w O 

~ ;;'L 
Exception Code Value 

Decimal Hexidecimal Description 

0 OxOO 

1 OxOl "'fication exception 

2 Ox02 
? . . . . 

exception (load or instruction fetch) 

3 Ox03 

4 Ox04 ddress error exception (load or instruction fetch) 

5 Ox05 AdES Address error exception (store) 

6 Ox06 IBE Bus error exception (instruction fetch) 

7 Ox07 DBE Bus error exception (data reference: load or store) 

8 Ox08 Sys Syscall exception 

9 Ox09 Bp Breakpoint exception 

10 OxOa RI Reserved instruction exception 

11 Ox Ob CpU Coprocessor Unusable exception 

12 OxOc Ov Arithmetic Overflow exception 

November 15, 1999 - 125 -

MIPS® PROPRIETARY /CONFIDENTIAL: 

Required 

Required 

Reserved -

RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS.DUPLICATION IS PROHIBITED. 



.,. 

Revision 1.0 MIPS64™ Specification 

Table 73: Cause Register ExcCode Field 

Exception Code Value 

Decimal Hexidecimal Mnemonic Description 

13 OxOd Tr Trap exception 

14 OxOe Reserved 

15 Ox Of FPE Floating point exception 

16-17 OxlO-Oxll Available for implementation dependent use 

18 Oxl2 C2E Reserved for precise Coprocessor 2 exceptions 

19-22 Oxl3-0xl6 Reserved 

23 Oxl7 WATCH Reference to WatchHi/WatchLo address 

24 Oxl8 MCheck Machine check 

25-29 Oxl9-0xld Reserved 
f--~~~~~+-~~~~~-t-~~~~-t-~~~~~~..,,,,...-=-~- ~-=-··"11"-~~~~~~----,,--t 

CacheErr Cache error. In n . .mod~~e error exception has1~ 
dedicated vector arid tif~· egister is not updated. If 

30 Ox le 

EJTAG is implerWented an i che error occurs while in 
,1h. '-a.~ 

Debug Mode this c . is used to indicate that re-entry to 

l-~~~~~1-~~~~~-L~~~~-L~D~e~bu~g~M~o~~~ ~b~y~a_c_ac_h_e_e_rr_o_r_·~~~~~--t 
31 Oxlf VCED 

4.9.13 Exception Program CountertfCPO 

Compliance Level: Required. 

The Exception Program Counter ( EPC)i 
after an exception has been serviced. ,:;"" 

For synchronous (precise) exceptions, 

that contains the address at which processing ~J~umes 
ister'are significant and must be writable .. 

the virtual address of the instruction tha the direct cause of the exception, or 
• the virtual address of the immediately prec ding branch or jump instruction, when the exception causing 

instruction is in a branch delay slot, and the Branch Delay bit in the Cause register is set. 

For asynchronous (imprecise) exceptions, EPC contains the address of the instruction at which to resume execution. 

The processor does not write to the EPC register when the EXL bit in the Status register is set to one. 

Figure 26 shows the format of the EPC register; Table 7 4 describes the EPC register fields. 

November 15, 1999 - 126 -

MIPS® PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS.DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64TM Specification 

Figure 26: EPC Register Format 

63 0 

EPC 

Table 74: EPC Register Field Descriptions 

Fields 
Read/ Description Reset State Compliance 

Name Bits 
Write 

EPC 63:0 Exception Program Counter FJW Undefined Required 

4.9.14 Processor Identification (CPO Register 15, Select 0) 

Compliance Level: Required. 

The Processor Identification ( PR!d) register is a 32 bit read-only register that cortta111s information identifying the 
manufacturer, manufacturer options, processor identification and the processor. Figure 27 shows the 
format of the P Rid register; Table 75 describes the PR!d register 

31 24 23 

' 
Figure 27: PRld Register F~t"mat 

,,f"+. 

16 15 

Company Options CompanyID · Processor ID 

Fields ,, 

Description 
Name Bits 

,~\:'t':' 

Company 
Options 

31 :24 Available to th~ designer, Qr ma~ijfacturer of 
the processorf~r cornpan§0il~pendent options. 
The value in ihis field is not ~pecified by the 
architecture. If this field is implemented, it 
must read as zero. 

November 15, 1999 - 127 -

8 7 

Read/ 
Write 

R 

MIPS® PROPRIETARY/COl\'FIDHrrIAL: 

0 

Revision 

Reset State Compliance 

Preset Optional 

RESTRICTED DOCillvIENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DlJPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64™ Specification 

Table 75: PRld Register Field Descriptions 

Fields 
Read/ Description 
Write 

Reset State Compliance 
Name Bits 

Company 23:16 Identifies the company that designed or manu- R Preset Required 
ID factured the processor. 

Software can distinguish a MIPS32 or MIPS64 
processor from one implementing an earlier 
MIPS ISA by checking this field for zero. If it 
is non-zero the processor implements the 
MIPS32 or MIPS64 Architecture. 

Company IDs are assigned by MIPS Technolo-
gies when a MIPS32 or MIPS64 license is 
acquired. The encodings in this field are: 

,:,\o,; 

0: Not a MIPS32 or MIPS64 processor 
1: MIPS Technologies, Inc. 
2-255: Contact MIPS Technologies, Inc. fof,;.1, 

the list of Company.ID assignments'··'·r~ 

Processor 15:8 Identifies the type of processor. This field Preset Required 
ID allows software to distinguish 

processor implementations wit~in a 
company, and is qualified 9J';fii~!~pmpanyID 
field, described above. Th.e combmatio1tof the 

'k/ '~'i;f'_::i~.Y '.~0\1'. <:«>~c< 

Company.ID and Proce~t fields creat~~ a 
><>'-""' ",Y /-___ ,-, 

unique number assigned t rocesso:i'' 
.;J:; 

implementation. -.('}' 
--l 

'.'-\·,-,;;,, 

Revision 7:0 Specifies the revision nuIµ of the ptocessor. R Preset Optional· 
This field al1~~~:;~9ftware t )~.~~uish 
between one:revision and anotherFof the same 
processor tyPt,· If . ot1mplemented, 
• '· .. ->~;·._:yt<i!h+ 
it must read as:zer 

."'''!i~/:f':il 
4.9.15 Configuration Register (CPO Register 16, Select 0) 

Compliance Level: Required. 

The Config register specifies various configuration and capabilities information. Most of the fields in the Config regis
ter are initialized by hardware during the Reset Exception process, or are constant. One field, KO, must be initialized 
by sof>tware in the reset exception handler. 

Figure 28 shows the format of the Config register; Table 76 describes the Config register fields. 
\ .. ·, ~ 

November 15, 1999 - 128 -

MIPS® PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 

Figure 28: Config Register Format 

31 30 16 15 14 13 12 10 9 7 6 

M Reserved for Implementations AT AR MT 

Table 76: Config Register Field Descriptions 

Fields 
Description 

Name Bits 

Read/ 
Write 

M 31 Denotes that the Configl register is implemented 
at a select field value of 1. 

BE 

AT 

AR 

MT 

KO 

0 

30:16 This field is reserved for implementations. Refer 
to the processor specification for the format and 
definition of this field 

15 Indicates the endian mode in which the processor 
is running: 

0: Little endian 
1: Big endian 

14: 13 Architecture type implemented by the processor: 
0: MIPS32 \ 
1: MIPS64 with 32-bit addresses onIY::~!ir)Jiil::~~ 
2: MIPS64 with 32/64-bit 
3: Reserved 

12:10 Architecture revision lev 
0: Revision 1 r 
1-7: Reserved 

9:7 MMUType: 
0: None 
1: Standar 
2: Standar 
3: Standard 
4: 
5: Reserved 
6: Reserved 
7: Reserved 

2:0 KsegO coherency algorithm. See Table 62 for the 
encoding of this field. 

6:3 Must be written as zero; returns zero on read. 

R 

R 

R/W 

0 

MIPS64™ Specification 

3 2 0 

0 KO 

Reset State Compliance 

Preset Required 

Undefined 

'~Preset or 
Gi!Extemally 
,w Set 

Preset 

Preset 

Preset 

Undefineda 

0 

Optional 

Required 

"''Required 

Required 

Required 

Optional 

Reserved 

a. It is strongly recommended that the KO field be initialized by hardware to a value th~t wd\ild allow the pro
cessor to operate correctly even if software references ksegO before initializing this value. The suggested 
value is the uncached encoding of 2. Some operating systems have been seen to reference ksegO before 
initializing the KO field, causing processors who do not initialize the KO field at reset to hang during boot. 
While this is certainly a software error, having to debug such errors during boot of a new processor may 
easily justify the minimal hardware necessary to initialize the KO field at reset. 

November 15, 1999 - 129 -

MIPS® PROPRIETARY/CONFIDENTIAL: 
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64™ Specification 

4.9.16 Configuration Register 1 (CPO Register 16, Select 1) 

Compliance Level: Required. 

The Config 1 register is an adjunct to the Config register and encodes additional capabilities information. All fields in 
the Config 1 register are read-only. 

The Icache and Dcache configuration parameters include encodings for the number of sets per way, the line size, and 
the associativity. The total cache size for a cache is therefore: 

Associativity * Line Size * Sets Per Way 

If the line size is zero, there is no cache implemented. 

Figure 29 shows the format of the Config 1 register; Table 77 describes the Config 1 register fields. 

Figure 29: Configl Register Format 

31 30 25 24 22 21 19 18 16 15 13 12 10 9 7 6 5 4 2 1 0 

j o I MMU Size - 1 I rs I IL j IA j DS j DL I DA j o jPc[W11ciftjFij 

Table 77: Configl Register Field Descriptio!JS 

Fields 
Description Reset State Compliance 

Name 

0 

MMU 
Size - 1 

IS 

Bits 

31 

30:25 

24:22 

This bit is reserved to indicate that a Con~~~r:f 
ister is present. With this revision of the architec.i.; 
ture, writes to this bit must be d, and it 
must read as zero. 

Number of entries in the Thb:minu~'~ne. fhd 
1 ·ff.·"' • .,,r ..... 

values 0 through 63 is this fieldcc)hiespond .to 1 
to 64 TLB entries. Th~value zerof§''ifuplied by 
ConfigMT having a value of.'11one'. '?' 

' . _,_,,_·,,:-,:;;\~'.'Q'>:, 

!cache sets 
0: 64 
1: 128 
2: 256 
3: 512 
4: 1024 
5: 2048 
6: 4096 
7: Reserved 

R 

R 

R 

IL 21:19 !cache line size: R 

November 15, 1999 

0: No !cache present 
1: 4 bytes 
2: 8 bytes 
3: 16 bytes 
4: 32 bytes 
5: 64 bytes 
6: 128 bytes 
7: Reserved 

- 130 -

l\1IPS® PROPRIETARY/CONFIDENTIAL: 

Preset Required 

Preset Required 

Preset 

Preset Required 

RESTRICTED DOCUMENT SUBJECT TO COl'<'FIDENTIALITY OBLIGATIONS. DlTPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64™ Specification 

Table 77: Configl Register Field Descriptions 

Fields Read/ Description 
Write 

Reset State Compliance 
Name Bits 

IA 18: 16 Icache associativity: R Preset Required 
0: Direct mapped 
1: 2-way 
2: 3-way 
3: 4-way 
4: 5-way 
5: 6-way 
6: 7-way 
7: 8-way 

DS 15: 13 Dcache sets per way: R Preset Required 
0: 64 
1: 128 
2: 256 
3: 512 
4: 1024 
5: 2048 
6: 4096 
7: Reserved 

..... ,;, 

DL 12:10 Dcache line size: Preset Required 
0: No Dcache present 
1: 4 bytes 
2: 8 bytes 
3: 16 bytes 
4: 32 bytes 
5: 64 bytes 
6: 128 bytes 
7: Reserved 

DA 9:7 Dcache associativity: R Preset Required 
0: Direct rri~l>Pe~ J 
1: 2-way .. · 

2: 3-way 
3: 4-way 
4: 5-way 
5: 6-way 
6: 7-way 
7: 8-way 

PC 4 Performance Counter registers implemented: R Preset Required 
0: No performance counter registers 

implemented 
1: At least one performance counter register 

implemented 

November 15, 1999 - 131 -

MIPS® PROPRIETARY /COl'J'FIDENTIAL: 
RESTRICTED DOCIBvlENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64TM Specification 

Table 77: Configl Register Field Descriptions 

Fields 
Read/ Description Reset State Compliance 

Name Bits 
Write 

WR 3 Watch registers implemented: R Preset Required 
0: No watch registers implemented 
1: At least one watch register implemented 

CA 2 Code compression (MIPS16) implemented: R Preset Required 
0: No code compression 
1: Code compression 

EP 1 EJTAG implemented: R Preset Reserved 
0: No EJTAG implemented 
1: EJTAG implemented 

FP 0 FPU implemented: Preset Required 
0: NoFPU 

i ,)i 1: FPU 
.•·· 

0 6:5 Must be written as zero; returns zero on read.± 0 ;;i;.'.~ \ 

0 Reserved 

t .... ):.:::} ;,-
~ .. 4.9.17 Load Lmked Address (CPO Register 17, Select 0) 

Compliance Level: Optional. 

The LLAddr register contains relevant bits of the physic.~*~d;~ss :~~d b; t~e most recent Load Linked instruction. 
This register is implementation dependent and for diagilo1stlc purposes only and serves no function during normal 
Operatl. on. }/ ;:1 •1 · w. dlic );:i\j • 

'"- -, .,_ /: \'" -,';L,J+\ ./!'" 

+f,;:;-. :, ~;:-',_~-":- _ .A// ~ ,t f 
Figure 30 shows the format of the LLAddr register; TabJ\:!18 describ~s the LLAddr register fields. 

63 

PAddr 

Table 78: LLAddr Register Field Descriptions 
_,.,,,"J;"'\·-r,-",?r 

·+ 
Fields 

Read/ Description 
Name Bits 

Write 

PAddr 63:0 This field encodes the physical address read by R 
the most recent Load Linked instruction. The for-
mat of this register is implementation-dependent, 
and an implementation may implement as many 
of the bits or format the address in any way that it 
finds convenient. 

4.9.18 WatchLo Register (CPO Register 18) 

Compliance Level: Optional. 

November 15, 1999 - 132 -

MIPS® PROPRIETARY/CONFIDENTIAL: 

Reset State 

Undefined 

\- '• ~-~ 

0 

Compliance 

Optional 

RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED. 



Revision 1.0 MIPS64™ Specification 

The WatchLo and WatchHi registers together provide the interface to a watchpoint debug facility which initiates a 
watch exception if an instruction or data access matches the address specified in the registers. As such, they duplicate 
some functions of the EITAG debug solution. Watch exceptions are taken only if the EXL and ERL bits are zero in 
the Status register. If either bit is a one, the WP bit is set in the Cause register, and the watch exception is deferred 
until both the EXL and ERL bits are zero. 

An implementation may provide zero or more pairs of WatchLo and WatchHi registers, referencing them via the 
select field of the MTCO/NIFCO and DMTCO/DMFCO instructions, and each pair of Watch registers may be dedicated 
to a particular type of reference (e.g., instruction or data). Software may determine if at least one pair of WatchLo and 
WatchHi registers are implemented via the WR bit of the Conjigl register. See the discussion of the M bit in the 
WatchHi register description below. 

The WatchLo register specifies the base virtual address and the type of reference (instruction fetch, load, store) to 
match. If a particular Watch register only supports a subset of the reference types, the unimplemented enables must be 
ignored on write and return zero on read. Software may determine which enables are supported by a particular Watch 
register pair by setting all three enables bits and reading them back to see which ones were actually set. 

It is implementation dependent whether a data watch is triggered by a prefetch or a cache instruction whose address 
matches the Watch register address match conditions. The preferred implementation is not to match on these instruc-
tions. ) v 

Figure 31 shows the format of the WatchLo register; Table 79 describes the Watqhlo r:~ister fields. 

63 

\.;;~' 
f ' ,"0·,-: 

Figure 31: WatchLo Register If~rinat c:t . >!t 

.h" l,'~h.~"\·~~'.\,'.'?{/' ~ 
,'''h,,, ''"io't'" 3 2 

VAddr 1 I Rj wj 
'' ->N.1,,o;,:,'," :; 

,,. c~:::~-~~e~-- ~}\\ 
Table 79: WatchLOi'Regist~r Fi~ld Descriptions 

;; _ // _::;:1, "' f· ' 

Fields 
Read/ 
Write 

Reset State Compliance 
Name Bits 

VAddr 63:3 

I 2 

R 

November 15, 1999 

This field specifies the virtliafaddress .to match. 
Note that this isa'd.o~bleword address, since bits 
[2:0] are used.to contr()l ttie~type of~atch. 

'~/!,, ',:-~;/~--,;_ < ::,tr<:;•,,, ', 

If this bit is one, '~atcb excepti<?ns are enabled 
for instruction fetches that match the address and 
are actually issued by th~'piOcessor (speculative 
instructions never cause Watch exceptions). 

If this bit is not implemented, writes to it must be 
ignored, and reads must return zero. 

If this bit is one, watch exceptions are enabled 
for loads that match the address. 

If this bit is not implemented, writes to it must be 
ignored, and reads must return zero. 

- 133 -

R/W 

R/W 

R/W 

~UPS® PROPRIETARY/CONFIDENTIAL: 

Undefined Required 

0 Optional 

0 Optional 

I ·, ~:~ 

RESTRICTED DOCUMENT SUBJECT TO COl'.i'"FIDENTIALITY OBLIGATIONS.DUPLICATION IS PROHIBITED. 



Revision 1.0 

Table 79: WatchLo Register Field Descriptions 

Fields 
Description 

Name Bits 

w 0 If this bit is one, watch exceptions are enabled 
for stores that match the address. 

If this bit is not implemented, writes to it must be 
ignored, and reads must return zero. 

4.9.19 WatchHi Register (CPO Register 19) 

Compliance Level: Optional. 

Read/ 
Write 

FJW 

MIPS64™ Specification 

.; 

Reset State Compliance 

0 Optional 

The WatchLo and WatchHi registers together provide the interface to a watchpoint debug facility which initiates a 
watch exception if an instruction or data access matches the address specified in the registers. As such, they duplicate 
some functions of the EJTAG debug solution. Watch exceptions are taken oaj,)iRlit:;the J;:XL and ERL bits are zero in 
the Status register. If either bit is a one, the WP bit is set in the Cause regi . ' y d th~ watch exception is deferred 
~~~~~~~~~ ·. -~ 

An implementation may provide zero or more pairs of WatchLo a · ' ers, referencing them via the
select field of the MTCO/MFCO and DMTCO/DMFCO instructions, an Watch registers may be dedicated
to a particular type of reference (e.g., instruction or data). Software fiii~detemn if at least one pair of,.WatchLo and
WatchHi registers are implemented via the WR bit of the Config I regist~, If the M bit is one in the WatchHi register
reference with a select field of 'n', another WatchHi/WatchLo P}:l! · v. ented with a select field of 'n+ I'.

The WatchHi register contains information that quar
ASID, a G(lobal) bit, and an optional address mask.
specified address will cause a watch exception. If
the ASID value in the WatchHi register matches i
optional mask field provides address masking. qualify .

Figure 32 shows the format of the WatchHi reg1ste able 80

313029 2423

G 0

virtual addre t:,{ipecified in the WatchLo register: an
· · , any v4iQal address reference that matches the

nly th8' virtual address references for which
EntryHi register cause a watch exception. The
ecified in WatchLo.

12 11 3 2 0

0 MASK 0

Table 80: WatchHi Register Field Descriptions

Fields
Read/

Description Reset State Compliance
Nai;ne Bits

Write

M 31 If this bit is one, another pair of WatchHil R .Prel!et Required
WatchLo registers is implemented at a MTCO or

I" ,; ~

MFCO select field value of 'n+l'

November 15, 1999 -134-

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0

Table 80: WatchHi Register Field Descriptions

Fields
Description

Name Bits

G 30 If this bit is one, any address that matches that
specified in the Watchlo register will cause a
watch exception. If this bit is zero, the ASID field
of the WatchHi register must match the ASID
field of the Entry Hi register to cause a watch
exception.

ASID

Mask

0

23: 16 ASID value which is requrred to match that in the
EntryHi register if the G bit is zero in the
WatchHi register.

11 :3 Optional bit mask that qualifies the address in the
WatchLo register. If this field is implemented,
any bit in this field that is a one inhibits the corre
sponding address bit from participating in the

29:24,
15:12,
. 2:0

address match.

If this field is not implemented, writes to it 111ust
be ignored, and reads must return zero. ' {\.

!-';«:,

Read/
Write

PJW

PJW

PJW

4.9.20 XContext Register (CP~~giste~ ·+~ct 0)
Compliance Level: Required for 64-bit TLB- s: Optional otherwise.

MIPS64™ Specification

Reset State Compliance

Undefined Requrred

Undefined Requrred

Undefined Optional

0 Reserved

The XContext register is a read/write reg1s n:onta a pointer to an entry in the page table entry (PTE) array. This
array is an operating system data structure that stores y,irtual-to-physical translations. During a TLB miss, the operat
ing system loads the TLB with the missing traiiS(ation from the PTE array. The XContext register is primarily
intended for use with the XTLB Refill handler, but is also loaded by hardware on a TLB Refill. However, it is unlikely
to be useful to software in the TLB Refill Handler. The XContext register duplicates some of the information provided
in the BadVAddr register, but is organized in such a way that the operating system can directly reference a 16-byte
structure in memory that describes the mapping.

A TLB exception (TLB Refill, XTLB Refill, TLB Invalid, or TLB Modified) causes bits 63:62 of the virtual address
to be written into the R field and bits SEGBITS-1:13 of the virtual address to be written into the BadVPN2 field of the
XContext register. The PTEBase field is written and used by the operating system. , . <:

The BadVPN2 field of the Context register is not defined after an address error exception and this field may be modi
fied by hardware during the address error exception sequence.

Processor implementations must not assume that software will write the same value into the PTEBase fields of the
Context and XContext registers (i.e., the PTEBase fields of the two registers may be set to different values, thus can
not share storage).

Figure 33: shows the format of the XContext register; Table 81: describes the XContext register fields. In Figure 33,

November 15, 1999 - 135 -

MIPS® PROPRIET ARY/CO['.l'FIDENTIAL:
RESTRICTED DOCU!VlENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64TM Specification

bit numbers above the figure use the symbol SEGB/TS; bit number under the figure assume that SEGB/TS has the
value 40.

63

PTEBase
63

Field

Name Bits

Figure 33: XContext Register Format

SEGBITS-13+6 / > SEGBITS-13+3

I R I BadVPN2 (V AsEGBITS-1.. 13)

33 32 31 30

Table 81: XContext Register Fields

Description
Read/
Write

4 3 0

4 3 0

Reset
State

Compliance

PTEBase 63: SEGB/TS-13+6 This field is for use by the operating sys- R/W Undefined Required

R

(63:33 assuming
SEGBITS is 40)

SEGB/TS-13+5:
SEGBITS-13+4

(32:31 assuming
SEGBITS is 40)

tern and is normally written with a value • • 1 , .

that allows the operating system to tise. the 1 ·····•.·

Context Register as a pointer into the ct.ir~
rent PTE array in memory fTI\ I

The Region field contains bits6:}:62 R
the virtual address. .•.c;_:;, ·

00 - xusecr •••\,•.. •
- 0 . -~~ ;;1. ;,;ti•, ;;

o 1: xsseg: 5iµpervis~t a~df~~.~ region .•. ; n
If supefV:J odt! is not~niple-

mented j:JJJ.{l;: .,---__ /' ;~rl

this encoding 1s r~·s~ved. J
10 = ~eserved · ·· ·.... •

S'-:>1,,,
11.= xkseg ·/~; ..

Undefined Required

BadVPN2 SEGB/TS-13+3: 4 TheB~d Vinual Page'N.~'ifzber/2 field is R Undefined

0

(30:4 assuming
SEGB/TS is 40)

3:0

wriiten b~,~(1rd.~~T·on ~ miss. It contains
bits YA.sEGBirs-1: {3,~f the virtual address
that missed. •ft

i'

Must be writt~ti as zero; returns zero on 0
read.

4.9.21 Reserved for Implementations (CPO Register 22, all Select values)

Compliance Level: Optional: Implementation Dependent.

0

CPO register 22 is reserved for implementation dependent use and is not defined by the an~hitecture.

4.9.22 Debug Register (CPO Register 23)

Compliance Level: Optional.

I·, ',

Reserved

The Debug register is part of the EJTAG specification. Refer to that specification for the format and description of this
register.

November 15, 1999 - 136 -

MIPS® PROPRIETARY /COi'<'FIDENTIAL:
RESTRICTED DOCU1'1ENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0

4.9.23 DEPC Register (CPO Register 24)

Compliance Level: Optional.

MIPS64TM Specification

The DEPC register is part of the EJTAG specification. Refer to that specification for the format and description of this
register.

All bits of the DEPC register are significant and must be writable.

4.9.24 Performance Counter Register (CPO Register 25)

Compliance Level: Recommended.

The MIPS64 Architecture supports implementation dependent performance counters that provide the capability to
count events or cycles for use in performance analysis. If performance counters are implemented, each performance
counter consists of a pair of registers: a 32-bit control register and a 32-bit counter register. To provide additional
capability, multiple performance counters may be implemented.

Performance counters can be configured to count implementation dependent events or cycles under a specified set of
conditions that are determined by the control register for the performance counter. The counter register increments
once for each enabled event. When bit 31 of the counter register is a one (the counter overflows), the performance
counter optionally requests an interrupt that is combined in an implementati6~·cl~pendent way with hardware inter
rupt 5 to set interrupt bit IP(7) in the Cause register. Counting continues afte\ ·'.counte ·~ egister overflow whether or
not an interrupt is requested or taken. ~":>)'

:~th.
Each performance counter is mapped into even-odd select values of tqe' Peff~~~refilster: Even selects access the con-
trol register and odd selects access the counter register. Table 82 show example of two performance counters and
how they map into the select values of the PerfCnt register.

Performance
Counter

0

1

PerfCnt
Register Select

Value

z):;rfCnt CPO Register
.. ,

1l:
nt Register Usage

'"""·''""'· More or less than two performance counters are also possible, extending the select field in an obvious way to obtain
the desired number of performance counters. Software may determine if at least one pair of Performance Counter
Control and Counter registers is implemented via the PC bit in the Configl register. If the M bit is one in the Perfor
mance Counter Control register referenced via a select field of 'n', another pair of Performance Counter Control and
Counter registers is implemented at the select values of 'n+2' and 'n+3'.

The Control Register associated with each performance counter controls the behavior of the performance counter.
Figure 34 shows the format of the Performance Counter Control Register; Table 83 describes the Performance
Counter Control Register fields. 1 ••• ·'.:

November 15, 1999 - 137 -

MIPS® PROPRIETARY /COi'fFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64TM Specification

Figure 34: Performance Counter Control Register Format

31 30 11 10 5 4 3 2 0

0

Table 83: Performance Counter Control Register Field Descriptions

Fields
Read/ Description
Write

Reset State Compliance
Name Bits

M 31 If this bit is a one, another pair of Performance R Preset Required
Counter Control and Counter registers is imple-
mented at a MTCO or l\1FCO select field value of
'n+2' and 'n+3'.

0 30:11 Must be written as zero; returns zero on read d0_!_ 0 Reserved

Event 10:5 Selects the event to be counted by the corre- \"; .. ,, JJndefined Requi~~d
-~{."

sponding Counter Register. The list of events i~~(J
implementation dependent, but typical events
include cycles, instructions, memory referenc;~ ~\

instructions, branch instructions, cache and TEB ""'•·
misses, etc.

•· ·.x&x,. (•

If an implementation does not.SHJ?l'9~ all possi- 1:;~\:

ble encodings of this field, it.J~'illip161Tientation
dependent how the unimpl.~i(iented erlcodlng~.are

V'ti'"f-'f~"_, _.: ,;~, _-:/it·
interpreted. The preferrediml?lementation isi'.to

:r,;-_:~.¥y:/.,'-::7 '-/·
treat them as null events that efial:)Ie no counts.

~¥4!~,:·}::f;~:f)~~:i'
Implementations that supp~flpmltiple ~rfor-
mance counters ~!19'X"ratid~'i)f~x~~!~:..e'.g., cache --~-

miss ratios if cache missan~ memdcy references

are selected as,~~: ~~~~Ji;m1~q counters

IE 4 Interrupt Enable .. Ertables the iI1ierrupt request R/W 0 Required
.(II

when the correspondingc9unter overflows (bit
31 of the counter is one):•··,.~

Note that this bit simply enables the interrupt
request. The actual interrupt is still gated by the
normal interrupt masks and enable in the Status
register.

0: Performance counter interrupt disabled I ·,~

1: Performance counter interrupt enabled

November 15, 1999 - 138 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0

Fields

Name Bits

u 3

s 2

K 1

EXL 0

MIPS64™ Specification

Table 83: Performance Counter Control Register Field Descriptions

Description

Enables event counting in User Mode. Refer to
Section 4.4.4 on page 72 for the conditions under
which the processor is operating in User Mode.

0: Disable event counting in User Mode
1: Enable event counting in User Mode

Enables event counting in Supervisor Mode (for
those processors that implement Supervisor
Mode). Refer to Section 4.4.3 on page 72 for the
conditions under which the processor is operat-
ing in Supervisor mode.

If the processor does not implement Supervisor
Mode, this bit must be ignored on write and
return zero on read.

Enables event counting in Kern
the usual definition of Kern
in Section 4.4.2 on page 71: bit

"'''~ counting only when the ~XE' ·
Status register are zero . •

tus register is zero.

0: Disable event counting while EXL = 1,
ERL=O

1: Enable event counting while EXL = 1,
ERL=O

Counting is never enabled when the ERL bit in
the Status register is one.

Read/
Write

Reset State Compliance

R/W Undefined Required

R/W Undefined Required

. ... ,.

Undefined Required

R/W Undefined Required

\ ., .
The Counter Register associated with each performance counter increments once for each enabled event. Figure 35
shows the format of the Performance Counter Counter Register; Table 84 describes the Performance Counter Counter
Register fields.

November 15, 1999 -139-

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS.DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Figure 35: Performance Counter Counter Register Format

31 0

Event Count

Table 84: Performance Counter Counter Register Field Descriptions

Fields Read/
Description

Write
Reset State Compliance

Name Bits

Event 31:0 Increments once for each event that is enabled by R/W Undefined Required
Count the corresponding Control Register. When bit 31

is one, ·an interrupt request is made if the IE bit in
the Control Register is one.

4.9.25 ErrCtl Register (CPO Register 26, Select 0)

Compliance Level: Optional. .~ · .,,.

The ErrCtl register provides an implementation dependent diagnostic iht.erlace with the error detection mechanisms
implemented by the processor. This register has been used in ptiv~ou~)rnplementations to read and write parity or
ECC information to and from the primary or secondary cache ifarN#~y~n,conjunction with specific encodings of

"•&.

the Cache instruction or other implementation-depend. od. The exacii,ormat of the ErrCtl register is imple-
me~tation depende~t ~nd not specified by the archit!lture e proc~or specification for the format of this
register and a descnpt1on of the fields. ·

4.9.26 CacheErr Register (CPO Register 27,

Compliance Level: Optional.

The CacheErr register provides an inte or detection logic that may be implemented byi~pro-
cessor.

The exact format and operation of the e: rr regzs. r is implementation dependent. The description below is an
example of a format that is similar to previous imple~ntations. Caches with substantially different sizes, organiza
tions, and error correction/detection properties may;t1quire a different format from that shown below.

Figure 36 shows the example format of the Cache Err register; Table 85 describes the Cache Err register fields.

November 15, 1999 -140-

MIPS® PROPRIETARY /CONFIDENTIAL:
RESTRICTED DOCUiVlENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

The ErrorEPC register is a read-write register, similar to the EPC register, except that ErrorEPC is used on error
exceptions. All bits of the ErrorEPC register are significant and must be writable. It is also used to store the program
counter on Reset, Soft Reset, Nonmaskable Interrupt (NMI), and Cache Error exceptions.

The ErrorEPC register contains the virtual address at which instruction processing can resume after servicing an
error. ErrorEPC contains either:

the virtual address of the instruction that was the direct cause of the exception, or
• the virtual address of the immediately preceding branch or jump instruction when the error causing instruc

tion is in a branch delay slot.

Unlike the EPC register, there is no corresponding branch delay slot indication for the ErrorEPC register.

Figure 41 shows the fonnat of the ErrorEPC register; Table 90 describes the ErrorEPC register fields.

Figure 41: ErrorEPC Register Format

63 0

ErrorEPC

{;:''! \
. ..i

Table 90: ErrorEPC Register Field Descriptjons ,~;
,:/ 'i';~ b-":--~~/"'

Fields
Description Reset State · G,~mpliance

Name Bits

ErrorEPC 63:0 Undefined Required

4.9.32 DESAVE Register (CPO Register.

Compliance Level: Optional.
3Jf

The DESAVE register is part of the EJTAG s~ification. e e{;to;that specification for the format and description of
this register. · . · '>''

4.10 CPO Hazards
Because resources controlled via Coprocessor a ect e operation of various pipeline stages of a MIPS64 proces
sor, manipulation of these resources may produce resuifs that are not detectable by subsequent instructions for some
number of execution cycles. When no hardware"irit~lock exists between one instruction that causes an effect that is
visible to a second instruction, a CPO hazard exists. Some MIPS implementations have placed the entire burden on
the kernel programmer to pad the instruction stream in such a way that the second instruction is spaced far enough
from the first that the effects of the first are seen by the second. Other MIPS implementations have added full hard
ware interlocks such that the kernel programmer need not pad. The trade-off is between kernel software changes for
each new processor vs. more complex hardware interlocks required in the processor . .
The MIPS64 Architecture does not dictate the solution that is required for a compatible implementation. The choice
of implementation ranges from full hardware interlocks to full dependence on software p~dr;lin~, to some combination
of the two. For an implementation choice that relies on software padding, Table 91 lists the "typical" spacing required
to allow the consumer to eliminate the hazard. The "typical" values shown in this table represent spacing that is in
common use by operating systems today. An implementation which requires less spacing to clear the hazard (includ
ing one which has full hardware interlocking) should operate correctly with and operating system which uses this
hazard table. An implementation which requires more spacing to clear the hazard incurs the burden of validating ker
nel code against the new hazard requirements.

Note that, for superscalar MIPS implementations, the number of instn1ctions issued per cycle may be greater than

November 15, 1999 - 145 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

one, and thus that the duration of the hazard in instructions may be greater than the duration in cycles. It is /QI' this
reason that M/PS64 defines the SSNOP instruction to conven instruction issues to cycles in a superscalardesigri.

Table 91: "Typical" CPO Hazard Spacing

Hazard
"Typical"

Producer ~ Consumer
On

Spacing
(Cycles)

TLBP, TLBR TLB entry 3

TLBWR, TLBWI ~
Load/store using new TLB entry TLB entry 3

Instruction fetch using new TLB
entry TLB entry 5

MTCO Status[CU] ~
Coprocessor instruction needs CU

Status[CU] 4 set

MTCOStatus ~ ERET Status 3

MTCO Status[IE] ~ Interrupted Instruction i's tatus[IEJ
. .. 3

TLBR ~
MFCO EntryHi Entry Hi,

3 MFCO PageMask , . ,PageMask ··•·· !' -~.;~ .

MTCO EntryLoO TLBP EntryLoO
MTCO EntryLol TLBR . ,,Entry Lo I
MTCO Entry Hi ~ TLBWI

->'Entry Hi 2·
MTCO PageMask TLBWR

Page Mask
MTCO Index Index

TLBP ~ Index 2

MTCOEPC ~ EPC 2

November 15, 1999 - 146 -

MIPS® PROPRIETARY /CO['.i'FIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DlJPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Appendix A Alternative MMU Organizations
The main body of this specification describes the TLB-based MMU organization. This appendix describes other
potential MMU organizations.

A.1 Fixed Mapping MMU
As an alternative to the full TLB-based MMU, the MIPS64 Architecture supports a lightweight memory management
mechanism with fixed virtual-to-physical address translation, and no memory protection beyond what is provided by
the address error checks required of all MMUs. This may be useful for those applications which do not require the
capabilities of a full TLB-based MMU. It is not anticipated that MIPS64 processors that implement a fixed-mapping
MMU will require a 64-bit address capability. As a result, the description below is given assuming a 32-bit address.

A.1.1 Fixed Address Translation

Address translation using the Fixed Mapping MMU is done as follows:

KsegO and Ksegl addresses are translated in an identical manner to the JLB-based MMU: they both map to
the low 512MB of physical memory. l>'c?i \
Useg/Suseg/Kuseg addresses are mapped by adding lGB to the virttial addressjvhen the ERL bit is zero in
the Status register, and are mapped using an identity mapping, when the ERLbii is one in the Status register .

.J'> ... · '~···"; ·-;'-:-..;~

• Sseg/Ksseg/Kseg2/Kseg3 addresses are mapped using an identity-mapping:''"'

Table 92 lists all mappings from virtual to physical addresses. Note tp,ai.ad~~'~U",Jr checking is stili d~ne before the
translation process. Therefore, an attempt to reference ksegO from User.Mode still results in an address''error excep-
tion, just as it does with a TLB-based MMU. '1

Table 92: Physical Address Generation from Virtllal Addresses
,(efS!J,:N~v~, :\

Segment
Name

useg
suseg
kuseg

ksegO

ksegl

sseg
ksseg
kseg2

kseg3

. y ,;;tJ

tes Physical Address

Ox 0000 0000

tlu;~gh,,.
Ox 7FFFFFFF

,~; r.vJitd*'

Ox 'g~~pg;dl"''
through

Ox 9FFF ~:;~i

Ox AOOOOOOO
through

OxBFFFFFFF

Ox cooo 0000
through._.

OxDFFFFFFF

OxEOOOOOOO
through

OxFFFFFFFF

StatusERL = 1

Ox 0000 0000
through

Ox 7FFFFFFF

Ox 0000 0000
through

Ox lFFFFFFF

Ox 0000 0000
through

Ox lFFFFFFF

OxCOOO 0000
through

OxDFFFFFFF

OxEOOOOOOO
through

OxFFFFFFFF

Note that this mapping means that physical addresses Ox2000 0000 through Ox3FFF FFFF are inaccessible when the
ERL bit is off in the Status register, and physical addresses Ox8000 0000 through OxBFFF FFFF are inaccessible
when the ERL bit is on in the Status register.

November 15, 1999 - 147 -

l'v1IPS® PROPRIETARY /CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 .MIPS64TM Specification

Figure 42 shows the memory mapping when the ERL bit in the Status register is zero; Figure 43 shows the memory
mapping when the ERL bit is one. · ""'""' ·

Ox FFFFFFFF

Figure 42: Memory Mapping when ERL = 0

OxFFFFFFFF

kseg3

Ox EOOO 00001-------1------~------+0x EOOO 0000
kseg2
ksseg

Ox COOO 00001--_...;:;s.;;;.;se;oo...._--1 ____ --1....i-------1-0x COOO 0000

ksegl

Ox AOOO 00001--------1

ksegO

Ox 800000001--------1

November 15, 1999

kuseg
suseg
useg

..1--'-------+0x 4000 0000

Ox 0000 0000 .__ ____ ___.

- 148 -

Iv1IPS® PROPRIETARY/CONrIDENTIAL:

-~, .

RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Figure 43: Memory Mapping when ERL = 1

Ox FFFFFFFF

Ox EOOO 0000

Ox COOO 0000

Ox AOOOOOOO

Ox 8000 0000

A.1.2 Cacheability Attributes

kseg3

kseg2
ksseg
sse

ksegl

ksegO

kuseg
suseg
useg

Ox FFFFFFFF

Ox EOOO 0000

Ox COOOOOOO

Ox 8000 0000

.:tf:;,,,

Because the TLB provided the cacheability attributeS:f()r. the kseg2, and kseg3 segments, some mechanism is
required to replace this capability whentliel'llxed ~appiilg)ylMU is used. Two additional fields are·added to the Con
fig register whose encoding is identicalto that oft.h.~J<O field~ These additions are the K23 and KU fields which con
trol the cacheability of the kseg2/kseg3·\111d,,th~ ~ti1~g1~gm~nts, respectively. Note that when the ERL bit is on in the
Status register, kuseg references are al;ags'.treated as··~ncacheable references, independent of the value of the KU
field. ,,.

~G~,:~,~;,-~

The cacheability attributes for ksegO and ksegl are provided i.n the same manner as for a TLB-based MMU: the
cacheability attribute for ksegO comes from the KO field of Config, and references to ksegl are always uncached.

Figure 44 shows the format of the additions to the Config register; Table 93 describes the new Config register fields.

November 15, 1999 - 149 -

MIPS® PROPRIETARY/CONFIDENTIAL:

·, ·,

RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64TM Specification

Figure 44: Config Register Additions

31 30 28 27 25 24 16 15 14 13 12 10 9 7 6 3 2 0

0

Table 93: Config Register Field Descriptions

Fields
Read/

Description
Write

Reset State Compliance
Name Bits

K23 30:28 Kseg2/Kseg3 coherency algorithm. See Table 62 R/W Undefined Optional
for the encoding of this field.

KU 27:25 Kuseg coherency algorithm when StatusERL is R/W Undefined Optional
zero. See Table 62 for the encoding of this field.

. ··y

A.1.3 Changes to the CPO Register Interface

Relative to the TLB-based address translation mechanism, the following changes.are necessary to. the CPO register -
interface:

The Index, Random, EntryLoO, EntryLol, Context, PageMask, Wired,'~nd Entry Hi registe;s ar(! no longer
required and may be removed • '\•
The TLBWR, TLBWI, TLBP, and TLBR instructions are no longer required and should cause a Reserved
Instruction Exception

A.2 Block Address Translation
This section describes the architecture for a block adckess~<U1$lation(BAT) mechanism that reuses much of the hard
ware and software interface that exists for a TLB-Based virtual address translation mechanism. This mechanism has

>-: , -<.,,; './ • -·~;;;it .
the following features: ¥•) ' l · .c.:. •

:ht;h... __ ;.k,·,'.''"Yi:ii::j!~1:'w- ,, .f'

• It preserves as much as possibl~.,of'the TLB-Basei:l.yiterface, both in hardware and software.
It provides independent base-ahd-bounds.checking'hnd relocation for instruction references and data refer-
ences. -__ ,t~\>-' ,::;:;:~:f{~:~::~-'::i;;i.3~{i'.;0,;:~_6;_~!~K:
It provides optional support for base'-and-bounds relocation of kseg2 and kseg3 virtual address regions

A.2.1 BAT Organization

The BAT is an indexed structure which is used to translate virtual addresses. It contains pairs of instruction/data
entries which provide the base-and-bounds checking and relocation for instruction references and data references,
respectively. Each entry contains a page-aligned bounds virtual page number, a base page frame number (whose
width is implementation dependent), a cache coherence field (C), a dirty (D) bit, and a valid (V) bit. Figure 45 shows
the logical arrangement of a BAT entry.

November 15, 1999 - 150 -

MIPS® PROPRIETARY /CON'FID ENTIAL:
RESTRICTED DOCUMENT SUBJECT TO COi'lFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Figure 45: Contents of a BAT Entry

Bounds VPN

BasePFN

The BAT is indexed by the reference type and the address region to be checked as shown in Table 94.

Table 94: BAT Entry Assignments

Entry Index

0

2

3

4

5

Reference
Type

Instruction

Data

Instruction

Data

Address Region

' '"':,f~~g2, l

(ork~eg2 an:dk,seg3)

r!f~v _:_::\~rz,{;,:
Entries 0 and 1 are required. Entries 2 and 3 and 4 and5are6ptiona '··· d may implemented as necessary to address

)"~'-0:-.i1:y1;>)' ___ ,;! -:·_~!(

the needs of the particular implementation. If entries fo~"·~~g2 and J<Seg3 are not implemented, it is implementation-
dependent how, if at all, these address regions a;e translat~d~'0'Il:e a,It~rnative is to combine the mapping for kseg2 and
kseg3 into a single pair of instruction/data entHes. §pftware n1'i{~!l.etermine how many BAT entries are implemented
by looking at the MMU Size field of the c~nf}g I re~iSt~r l

-~~y-<:::·.oo;':''."'-".",'"';y

A.2.2 Address Translation ;c:.,
;,·:11:·''

When a virtual address translation is req~~sted, the B.8.T entry that is appropriate to the reference type and address
region is read. If the virtual address is greater tha,rt\tle ~elected bounds address, or if the valid bit is off in the entry, a
TLB Invalid exception of the appropriate referencc!'type is initiated. If the reference is a store and the D bit is off in
the entry, a TLB Modified exception is initiated. Otherwise, the base PFN from the selected entry, shifted to align
with bit 12, is added to the virtual address to form the physical address. The BAT process can be described as follows:

i ~ Selectlndex (reftype, va)

bounds ~ BAT[ilaoundsYPN II 112

pfn ~ BAT[ilaasePFN
c ~ BAT[i]c
d ~BAT[i]o

v ~BAT[ilv

November 15, 1999 - 151 -

!YUPS® PROPRIETARY /CONFIDENTIAL:
RESTRICTED DOCUNIENT SUBJECT TO CO.NFIDENTIALITY OB LI GA TIO NS. DUPLICATION IS PROHIBITED.

Revision 1.0

if (va >bounds) or (v = 0) then
InitiateTLBinvalid.Exception(reftype)

endif
if (d = 0) and (reftype =store) then

InitiateTLBModified.Exception()
endif

pa ~ va + (pfn II 012)

1V1IPS64™ Specification

Making all addresses out-of-bounds can only be done by clearing the valid bit in the BAT entry. Setting the bounds
value to zero leaves the first virtual page mapped.

A.2.3 Changes to the CPO Register Interface

Relative to the TLB-based address translation mechanism, the following changes are necessary to the CPO register
interface:

• The Index register is used to index the BAT entry to be read or written by the TLBWI and TLBR instruc
tions.
The EntryHi register is the interface to the Bounds VPN field in the B,ATur~try.
The EntryLoO register is the interface to the BasePFN and C, D, andV fi;elds of the BAT entry. The register
has the same format as for a TLB-based MMU. ;\~1/ .:i
The Random, Entrylol, Context, PageMask, and Wired registers;:are eliJJlinatea The effects of a read or

,,,,,~_,

write to these registers is UNDEFINED. ',
The TLBP and TLBWR instructions are unnecessary. The TI.BWFand,nfBR instructions reference the
BAT entry whose index is contained in the Index register. Th~"effect~~f'i!~ecuting a TLBP or TLBWR are
UNDEFINED, but processors should prefer a Reserved!nstruw"· n Exception.

November 15, 1999 - 152 -

MIPS® PROPRIET ARY/CONFIDEl'ffIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

