

To order Intel literature write or call:

Intel Literature Sales
P.O. Box 58130

LITERATURE

Toll Free Number:
(800) 548-4725'

Santa Clara, CA 95052-8130

Use the order blank on the facing page or call our Toll Free Number listed above to order literature.
Remember to add your local sales tax and a 10% postage charge for U.S. and Canada customers, 20% for
customers outside the U.S. Prices are subject to change.

1988 HANDBOOKS

Product line handbooks contain data sheets, application notes, article reprints and other design information.

NAME

COMPLETE SET OF 8 HANDBOOKS
Save $50.00 off the retail price of $ 175.00

AUTOMOTIVE HANDBOOK
(Not included in handbook Set)

COMPONENTS QUALITY/RELIABILITY HANDBOOK
(Available in July)

EMBEDDED CONTROLLER HANDBOOK
(2 Volume Set)

MEMORY COMPONENTS HANDBOOK

MICROCOMMUNICATIONS HANDBOOK

MICROPROCESSOR AND PERIPHERAL HANDBOOK
(2 Volume Set)

MILITARY HANDBOOK
(Not included in handbook Set)

OEM BOARDS AND SYSTEMS HANDBOOK

PROGRAMMABLE LOGIC HANDBOOK

SYSTEMS QUALITY/RELIABILITY HANDBOOK

PRODUCT GUIDE
Overview of Intel's complete product lines

DEVELOPMENT TOOLS CATALOG

INTEL PACKAGING OUTLINES AND DIMENSIONS
Packaging types, number of leads, etc.

LITERATURE PRICE LIST
List of Intel Literature

'Good in the U.S. and Canada

ORDER NUMBER

231003

231792

210997

210918

210830

231658

230843

210461

280407

296083

231762

210846

280199

231369

210620

"PRICE IN
U.S. DOLLARS

$125.00

$20.00

$20.00

$23.00

$18.00

$22.00

$25.00

$18.00

$18.00

$18.00

$20.00

N/C

N/C

N/C

N/C

"These prices are for the U.S. and Canada only. In Europe and other international locations, please contact
your local Intel Sales Office or Distributor for literature prices.

inter
LITERATURE SALES ORDER FORM

NAME: _____________________________________ __

COMPANY: ___________________________________ ___

ADDRESS: __________________________________ _

CITY: __________________ STATE: ____ ZIP: ____ _

COUNTRY: ____________________________________ _

PHONE NO.: '-(__ --'-_______________________ _

ORDER NO.

Must add appropriate postage to subtotal
(10% U.S. and Canada, 20% all other)

TITLE QTY. PRICE TOTAL

___ X _____ = __ _

___ X _____ = __ _

___ X _____ = __ _

__ X _____ = __ _

___ X ____ = __ _

___ X _____ = __ _

___ X ___ = ______ ~

___ X _____ = __ _

___ X _____ = __ _

___ X _____ = __ _

Subtotal ___ __

Must Add Your
Local Sales Tax ____ __

-----------) Postage ___ __

Total ____ __

Pay by Visa, MasterCard, American Express, Check, Money Order, or company purchase order payable
to Intel Literature Sales. Allow 2·4 weeks for delivery.
o Visa 0 MasterCard 0 American Express Expiration Date _____ __
Account No. __ _

Signature: ___ _

Mail To: Intel Literature Sales
P.O. Box 58130
Santa Clara, CA
95052-8130

International Customers outside the U.S. and Canada
should contact their local Intel Sales Office or Distributor
listed in the back of most Intel literature.
European Literature Order Form in back of book.

Call Toll Free: (800) 548-4725 for phone orders
Prices good until 12131/88.

Source HB

Mail To: Intel Literature Sales
P.O. Box 58130
Santa Clara, CA 95052-8130

80960KB
PROGRAMMER'S

REFERENCE MANUAL

1988

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors
which may appear in this document nor does it make a commitment to update the information contained
herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and may only be used to identify Intel Products:

Above, BITBUS, COMMputer, CREDIT, Data Pipeline, FASTPATH, GENIUS, i, ~ ICE,
iCEL, iCS, iDBp, iDIS, 121CE, iLBX, im, iMDDX, iMMX, Insite, Intel, intel, intelBOS,
Intelevision, inteligent Identifi~r, inteligent Programming, Intellec, Intellink, iOSP, iPDS,
iPSC, iRMX, iSBC, iSBX, iSDM, iSXM, KEPROM, Library Manager, MAP-NET, MCS,
Megachassis, MICROMAINFRAME, MULTIBUS, MULTICHANNEL, MULTI MODULE,
ONCE, OpenNET, OTp, PC-BUBBLE, Plug-A-Bubble, PROMPT, Promware, QUEST,
QueX, Quick-Pulse Programming, Ripplemode, RMX/80, RUPI, Seamless, SLD, UPI,
and VLSiCEL, and the combination of ICE, iCS, iRMX, iSBC, iSBX, MCS, or UPI and a
numerical suffix, 4-SITE.

Ethernet is a trademark of Xerox.

DEC is a trademark of Digital Equipment Corporation.

VAX is a trademark of Digital Equipment Corporation.

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered
trademark of Mohawk Data Sciences Corporation.

MULTIBUS is a patented Intel bus.

Additional copies of this manual or other Intel literature may be obtained from:

Intel Corporation
Literature Distribution
Mail Stop SC6-59
P.O. Box 58130
Santa Clara, CA 95052-8130

©INTEL CORPORATION 1988

TABLE OF CONTENTS

CHAPTER 1
GUIDE TO MANUAL

Manual Structure ... 1-1
Chapter Overview ... 1-2
Notation and Terminology .. 1-3

Reserved and Preserved .. 1-3
Set and Clear ... 1-4

CHAPTER 2
INTRODUCTION TO THE 80960 ARCHITECTURE

A New 32-Bit Architecture from Intel 2-1
High Performance Program Execution 2-1

Load and Store Model .. 2-2
On-Chip Caching of Code and Data 2-2
Overlapped Instruction Execution 2-2

Single-Clock Instructions .. 2-3
Efficient Interrupt Model ... 2-3

Simplified Programming Environment 2-4
Highly Efficient Procedure Call Mechanism 2-4
Versatile Instruction Set and Addressing 2-4
Extensive Fault Handling Capability 2-4
Debugging and Monitoring ... 2-5

Support for Architectural Extensions 2-5
Extensions Included in the 80960K Series Processors 2-5

On-Chip Floating Point .. 2-5
Interagent Communication ... 2-6

Look for More in the Future ... 2-6

CHAPTER 3
EXECUTION ENVIRONMENT

Overview of the Execution Environment 3-1
Address Space ... 3-3
Register Model ... 3-3

Global Registers ... 3-3
Floating-Point Registers ... 3-4
Local Registers .. 3-5
Register Alignment ... 3-5
Register Scoreboarding ... 3-5

Instruction Pointer ... 3-6
Arithmetic Controls .. 3-7

Initializing and Modifying the Arithmetic Controls 3-7

iii

TABLE OF CONTENTS

Functions of the Arithmetic Controls Bits 3-8
Condition Code Flags .. 3-8
Arithmetic Status Flags ... 3-9
Integer Overflow Mask ... 3-9
No Imprecise Faults Flag ... 3-10
Floating-Point Flags and Masks 3-10
Floating-Point Normalizing Mode Flag 3-10
Floating-Point Rounding Control 3-10

Process and Trace Controls ... 3-11
Instruction Caching .. 3-11

CHAPTER 4
PROCEDURE CALLS

Types of Procedure Calls ... 4-1
Call/Return Mechanism .. 4-1

Local Registers and the Procedure Stack 4-3
Procedure Linking Information .. 4-3

Frame Pointer .. 4-3
Stack Pointer .. 4-5
Padding Area ' 4-5
Previous Frame Pointer .. 4-5
Return Status and Prereturn-Trace Information 4-5
Return Instruction Pointer ... 4-6

Mapping the Local Registers to the Procedure Stack 4-7
Local Call ... 4-8

Local Call Operation .. 4-8
Local Return Operation ... 4-8

Parameter Passing .. 4-9
Passing Parameters in Global Registers 4-9
Passing Parameters in an Argument List 4-9
Passing Parameters Through the Stack 4-9

System Call ... 4-9
System Procedure Table ... 4-11

Procedure Entries .. 4-11
Supervisor Stack Pointer .. 4-11
Trace Control Flag ... 4-12
System Call to a Local Procedure 4-13

User-Supervisor Protection Model .. 4-13
User and Supervisor Modes .. 4-13
Supervisor Calls ... 4-13
Supervisor Stack .. 4-14
Hints on Using the User-Supervisor Protection Model 4-14

Branch and Link ... , 4-15

iv

inter TABLE OF CONTENTS

CHAPTERS
DATA TYPES AND ADDRESSING MODES

Data Types .. 5-1
Integers .. 5-1
Ordinals ... 5-1
Reals ... 5-2
Decimals ... 5-3
Bits and Bit Fields .. 5-4
Triple and Quad Words ... 5-4

Byte, Word, and Bit Addressing .. 5-5
Addressing Modes .. 5-5

Literals .. 5-6
Register ... 5-7
Absolute ... 5-7
Register Indirect ... 5-7
Register Indirect with Index .. 5-7
Index with Displacement ... 5-7
IP with Displacement ... 5-8

CHAPTER 6
INSTRUCTION SET SUMMARY

Instruction Formats .. 6-1
Assembly-Language Format ... 6-1
Machine Formats .. 6-1

Instruction Groups .. 6-2
Data Movement .. 6-4

Load .. 6-4
Store .. 6-5
Move .. 6-5
Load Address ... 6-6

Arithmetic ... ' .. 6-6
Add, Subtract, Multiply, and Divide 6-6
Extended Arithmetic .. 6-7
Remainder and Modulo ... 6-8
Shift and Rotate ... 6-8

Logical ... 6-9
Comparison ... 6-9

Compare and Conditional Compare 6-9
Compare and I ncrement or Decrement 6-1 0

Branch ... 6-1 0
Unconditional Branch ... 6-10
Conditional Branch ... 6-11
Compare and Branch I. • • • • • • • • • • • • • 6-11

Bit and Bit Field .. 6-12

v

inter TABLE OF CONTENTS

Bit Operations ... 6-12
Bit Field Operations .. 6-12

Byte Operations .. 6-13
Conversion .. 6-13
Call and Return .. 6-13
Atomic Instructions .. 6-14
Conditional Faults ... 6-14
Debug .. 6-14
Processor Management .. 6-15
80960KB Non-Floating-Point Instruction-Set Extensions 6-15

Synchronous Load and Move ... 6-15
Decimal .. 6-16

CHAPTER 7
PROCESSOR MANAGEMENT AND INITIALIZATION

Overview of Processor Management Facilities 7-1
I nstruction List .. 7-1
System Data Structures ... 7-1
Interrupts .. 7-3
lACs .. 7-3
Faults ... 7-3

Process Controls .. ,.... 7-3
Changing the Process Controls 7-5

Priorities .. 7-5
Processor States ... 7-6

Executing and Interrupted State 7-6
Stopped and Stopped-Interrupted States 7-6

Instruction Suspension ... 7-6
Memory Requirements ... 7-7

Memory Restrictions .. 7-7
Software Requirements for Processor Management 7-8
Processor Initialization ... 7-9

Initial Memory Image ... 7-9
Check-Sum Words .. 7-10
System Address Table ... 7-10
Processor Control Block .. 7-10
Initialization Code ... 7-12
Changing the Initial Memory Image 7-12

Building a Memory Image .. 7-12
Typical Initialization Scenario ... 7-13

First Stage of Initialization .. 7-13
Second Stage of Initialization 7-15

vi

inter TABLE OF CONTENTS

CHAPTER 8
INTERRUPTS

Overview of the Interrupt Facilities .. 8-1
Software Requirements for Interrupt Handling 8-1
Vectors and Priority ... 8-2
Interrupt Table ... 8-2
Interrupt Handler Procedures .. 8-4
Interrupt Stack ... 8-4
Interrupt Handling Actions .. 8-4

Receiving an Interrupt .. 8-5
Servicing an Interrupt ... 8-5
Executing State Interrupt .. 8-5
Interrupted State Interrupt ... 8-6
Interrupt Record ... 8-6
Stopped State Interrupt ... 8-8
Stopped-Interrupted State Interrupt 8-8
Pending Interrupts ... 8-8

Posting Pending Interrupts .. 8-9
Checking for Pending Interrupts 8-9
Handling Pending Interrupts 8-9

Signaling Interrupts .. 8-10
Interrupts From Interrupt Pins ... 8-10
lAC Interrupts ... 8-11

CHAPTER 9
FAULT HANDLING

Overview of the Fault-Handling Facilities 9-1
Fault Types .. 9-1
Fault-Handling Method ... 9-3

Multiple Fault Conditions .. 9-3
Faults and Interrupts .. 9-3

Software Requirements for Handling Faults 9-3
Fault Table .. 9-4

Location of the Fault Table in Memory 9-4
Fault-Table Entries ... 9-4

Fault-Handler Procedures .. 9-6
Program and Instruction Resumption Following a Fault 9-6

Fault Controls ... " 9-7
Signaling a Fault .. 9-8

Fault-If Instructions ... 9-8
Fault Record ... 9-8

Saved Instruction Pointer ,0 •••••••••••••••••••• 9-9
Resumption Record .. 9-9
Location of the Fault and Resumption Records 9-10

vii

TABLE OF CONTENTS

Fault Handling Action .. 9-10
Implicit, Local Call/Return .. 9-10
Implicit, Local Procedure-Table Call/Return ' 9-11
Implicit, Supervisor Call/Return : ' 9-11

Program State After a Fault 9-11
Return Without Resumption 9-12

Precise and Imprecise Faults .. 9-13
Fault Reference .. 9-14

Fault Reference Notation .. 9-14
Fault Type and Subtype .. 9-14
Function .. 9-14
Fault Record ... 9-15
Saved rp .. 9-15
Program State Changes :.. 9-15

Arithmetic Faults ... 9-16
Constraint Faults .. 9-17
Floating-Point Faults .. 9-18
Operation Faults ... 9-20
Machine Faults .. 9-21
Protection Faults ... 9-22
Trace Faults .. 9-23
Type Faults ... 9-25

CHAPTER 10
DEBUGGING

Overview of the Trace-Control Facilities 10-1
Required Software Support for Tracing 10-1
Trace Controls ... 10-1

Trace-Controls Word ... 10-2
Trace-Enable and Trace-Fault-Pending Flags 10-3
Trace Control on Supervisor Calls 10-3

Trace Modes 10-3
Instruction Trace ... 10-4
Branch Trace '...................... 10-4
Call Trace .. 10-4
Return Trace 10-4
Prereturn Trace ... 10-5
Supervisor Trace .. 10-5
Breakpoint Trace .. 10-5

Trace-Fault Handler ... 10-5
Signaling a Trace Event .. 10-6
Handling Multiple Trace Events :............ 10-6
Trace Handling Action ... 10-7

Normal Handling of Trace Events 10-7

viii

TABLE OF CONTENTS

Prereturn Trace Handling .. 10-7
Tracing and Interrupt Handlers .. 10-7
Tracing and Fault Handlers .. 10-8

CHAPTER 11
INSTRUCTION SET REFERENCE

Introduction 1 ••••••••••••••••••••• " •••••••••••••••••••••••••••• 11-1
Notation , , , " ,.................... 11-1

Alphabetic Reference , , "................ 11-1
Mnemonic , , ... ,................ 11-2
Format , ,............................. 11-2
Description ... , , ,............................. 11-3
Action , ,............................. 11-3
Faults ,............................. 11-3
Example , ... ,............................. 11-4
Opcode and Instruction Format , , 11-4
See Also , , ,.......... 11-5

Instructions ... , ,., ,.......... 11-5

CHAPTER 12
FLOATING-POINT OPERATION

Introducing the 80960KB Floating-Point Architecture , , 12-1
Real Numbers and Floating-Point Format " ,., 12-1

Real Number System , ' ... '.......... 12-1
Floating-Point Format , 12-2

Normalized Numbers ,.......... 12-3
Biased Exponent ,.......... 12-4

Real Number and Non-Number Encodings , ... , , 12-4
Signed Zeros ,.......... 12-4
Signed, Nonzero, Finite Values , , 12-4
Denormalized Numbers , 12-4

Signed Infinities .. , 12-6
NaNs , ... , ... ,...... 12-6

Real Data Types , " , ,.......... 12-7
Execution Environment for Floating-Point Operations ,', ,.......... 12-7

Registers ... , ... ,.......... 12-8
Loading and Storing Floating-Point Values ,.......... 12-9
Moving Floating-Point Values ,.......... 12-10
Arithmetic Controls , 12-11
Normalizing Mode , . 12-12
Rounding Control , ,.......... 12-12

Instruction Format , , ... , 12-14
Instruction Operands , 12-14
Summary of Floating-Point Instructions , ,. 12-15

Data Movement ,............................. 12-15

ix

inter TABLE OF CONTENTS

Data Type Conversion .. 12-15
Basic Arithmetic ... 12-17
Comparison, Branching, and Classification 12-17
Trigonometric ... 12-18
Pi ... 12-18
Logarithmic, Exponential, and Scale 12-19
Arithmetic Versus Nonarithmetic Instructions 12-20

Operations on NaNs ... 12-20
Exceptions and Fault Handling ... 12-21

Fault Handler ... 12-22
Floating Reserved-Encoding Exception 12-22
Floating Invalid-Operation Exception 12-23
Floating Zero-Divide Exception 12-23
Floating Overflow Exception .. 12-24
Floating Underflow Exception ... 12-24
Floating Inexact Exception ... 12-25
Floating-Point Underflow Condition 12-26

CHAPTER 13
INTERAGENT COMMUNICATION

Introduction to lAC Messages ... 13-1
lAC Message Format .. 13-1
Software Requirements for Handling lACs 13-2
Internal lACs ... 13-2
External lACs .. 13-3

Sending External lACs .. 13-3
Receiving and Handling an External lACs 13-4

Summary of lAC Messages ... 13-5
lAC Message Reference ... 13-5

Continue Initialiiation ... 13-6
Freeze .. 13-7
Interrupt ... 13-8
Purge Instruction Cache ... 13-9
Reinitialize Processor ... 13-10
Set Breakpoint Register ... 13-11
Store System Base ... 13-12
Test Pending Interrupts ... 13-13

APPENDIX A
INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

Instruction Quick Reference ... A-1
Instruction List by Assembler Mnemonic A-2
Instruction List by Opcode ... A-6

Summary of System Data Structures A-10
Execution Environment .. A-10

x

TABLE OF CONTENTS

Processor Management ... A-13
Interrupt Handling .. A-15
lACs .. A-17
Fault Handling .. A-17
Trace Control ... A-19

APPENDIX B
MACHINE-LEVEL INSTRUCTION FORMATS

General Instruction Format .. B-1
REG Format ... B-2
COBR Format .. B-3
CTRL Format .. B-4
MEM Format ... B-4

MEMA Format Addressing ... B-5
MEMB Format Addressing ... B-6

APPENDIXC
INSTRUCTION TIMING

Introduction .. C-1
Internal Structure of the 80960KB Processor C-1

Bus Control Logic .. C-2
Instruction Fetch Unit and Instruction Cache C-3
Instruction Decoder .. C-3

Simple Instructions .. C-4
Floating Point and Branch Instructions C-4
Complex Instructions .. C-5
Load and Store Instructions C-5

Micro-Instruction Sequencer and ROM C-6
Instruction Execution Unit .. C-6

Instruction Execution Unit Performance Enhancements C-7
Floating Point Unit ... C-8

Execution times .. C-8
Execution times for the 80960 Architecture Instructions C-9

Logical instructions .. C-9
Bit Instructions ... C-10
Register Moves ... C-11
Integer and Ordinal Arithmetic C-11
Multiply and Divide Instructions C-12
Branching ... C-13
Call/Return Instructions .. C-14
Load Instructions ... C-15
Store Operations ... C-17

Execution times for the Extended Instructions C-17
Decimal Instructions ... C-17
Floating-Point Instructions .. C-17

xi

inter

APPENDIX D
INITIALIZATION CODE

TABLE OF CONTENTS

Overview ... D-1
Example Code ... D-2

example.lst ... D-2
f_table.lst .. D-6
i_table.lst .. D-7
f_handler.c ... D-11
i_handler.c ... D-11
cold.ld ... D-11

APPENDIX E
CONSIDERATIONS FOR WRITING PORTABLE SOFTWARE

Architecture Restrictions .. E-1
SALIGN Parameter .. E-1
Boundary Alignment ... E-1
Faults .. E-2
Physical Memory ... E-2
lACs ... E-2
Interrupts ... E-2
Initialization .. E-2
Breakpoints .. E-2
Implementation Dependent Instructions E-2
Lock Pin .. E-3

Figures

3-1. Execution Environment .. 3-2
3-2. Registers Available to a Single Procedure 3-4
3-3. Arithmetic Controls ... 3-7
4-1. Local Registers and Procedure Stack 4-2
4-2. Procedure Stack Structure .. 4-4
4-3. System Call Mechanism .. 4-10
4-4. Procedure Table Structure .. 4-12
5-1. Integer Format and Range : 5-2
5-2. Ordinal Format and Range .. 5-3
5-3. Decimal Format .. 5-4
5-4. Bits and Bit Fields ... 5-4
7-1. System Defined Data Structures 7-2
7-2. Process-Controls Word ! •• 7-4
7-3. Initial Memory Image .. 7-11

xii

inter TABLE OF CONTENTS

7-4. Algorithm for First Stage of Initialization Procedure 7-14
8-1. Interrupt Table ... 8-3
8-2. Storing of an Interrupt Record on the Stack 8-7
8-3. Interrupt-Control Register ... 8-10
9-1. Fault Table and Fault-Table Entries 9-5
9-2. Fault Record ... 9-9
10-1. Trace-Controls Word ... 10-2
12-1. Binary Number System ... 12-2
12-2. Binary Floating-Point Format 12-3
12-3. Real Numbers and NaNs .. 12-5
12-4. Real Number Formats .. 12-7
12-5. Storage of Real Values in Global and Local Registers 12-9
12-6. Interaction of Floating Underflow and Inexact Exceptions 12-27
13-1. lAC Message Format ... 13-2
13-2. Encoding of Address for Processor Receiving an lAC 13-3
A-1. Arithmetic Controls (Chapter 3) A-10
A-2. Registers Available to a Single Procedure (Chapter 3) A-11
A-3. Procedure Stack Structure (Chapter 4) A-12
A-4. Process Controls (Chapter 7) A-13
A-5. Initial Memory Image (Chapter 7) A-14
A-6. Interrupt Table (Chapter 8) ... A-15
A-7. Interrupt Record on Stack (Chapter 8) A-16
A-8. lAC Message Format (Chapter 13) A-17
A-9. Fault Record (Chapter 9) ... A-17
A-10. Fault Table and Fault-Table Entries (Chapter 9) A-18
A-11. Trace Controls (Chapter 10) A-19
B-1. I nstruction Formats ... B-1
C-1. Block Diagram of the 80960KB Processor C-2
C-2. Execution Time of an Instruction C-9
C-3. Load Where the Next Instruction Requires the Fetched Data C-15
C-4. Load Where the Next Instruction Does Not Require the Fetched Data C-16
C-5. Back-to-Back Load Instructions C-16

xiii

inter TABLE-OF C€)NTENTS

Tables

1-1. Chapters of I nterest for Specific Users :'. 1-1
3-1. Condition Codes for True or False Conditions ' 3-S
3-2. Condition Codes for Inequality Conditions 3-9
3-3. Encoding of Arithmetic Status Field : 3-9
3-4. Encoding of Rounding Control Field ' 3-11
4-1. Encoding of Return Status Field " 4-6
4-2. Encodings of Entry Type Field in System Procedure Table Entry 4-11
S-1. Addressing Modes > • S-6
6-1. Summary of the S0960 Instruction Set 6-3
6-2. Summary of the S0960KB Instruction-Set Extensions 6-4
6-3. Arithmetic Operations ; ' ' 6-7
7 -1. Encoding of Processor State Field ." .. "".............................. 7-4
7-2. ROM and RAM Resident Data Structures 7-13
9-1. Fault Types and Subtypes .. 9-2
9-2. Fault Flags or Masks .. 9-7
12-1. Real Number Notation .. 12-3
12-2. Denormalization Process .. 12-6
12-3. Real Numbers and NaN Encodings 12-S
12-4. Arithmetic Controls Used in Floating-Point Operations \. 12-11
12-S. Rounding Methods .. ' .. I. • 12-13
12-6. Rounding of Positive Numbers 12-13
12-7. Rounding of Negative Numbers 12-13
12-S. Format of QNaN Results .. 12-21
13-1. lAC Messages .. 13-S
B-1. Encoding of Src1 and Src2 Fields in REG Format B-2

, B-2. Encoding of Src/Dst Field in REG Format : B-3
B-3. Addressing Modes for MEM Format Instructions' B-S
B-4. Encoding of Scale Field .. B-6
C-1. Registers Scoreboarded According to Registers Referenced C-7
C-2. Logical Instruction Timing : C-10
C-3. Bit Instruction Timing .. C-10
C-4. Scan and Span Bit Instruction Timing C-11
CoS. Move Instruction Timing .. C-11
C-6. Integer and Ordinal Arithmetic Instruction Timing C-12
C-7. Add/Subtract With Carry, Conditional Compare Instruction Timing C-12
CoS. Multiply and Divide Instruction Timing C-13
C-9.Multiply/Divide Execution Times Based on Significant Bits C-13
C-10. Branch Instruction Timing ... C-14
C-11. Decimal Instruction Timing l C-17
C-12. Simple Floating-Point Instruction Timing C-1S
C-13. Complex Floating-Point Instruction Timing C-19

xiv

Preface

PREFACE

This manual provides detailed programming information for the Intel 80960KB processor,
which is part of the 80960K series of embedded-processor products. All of the processors in
the 80960K series of products are based on the Intel 80960 architecture.

Most of the information in this manual also pertains to the Intel 80960KA processor, which
will be available from Intel in the near future. The only difference between the 80960KB and
80960KA processors, is that the 80960KA does not provide on-chip support for floating-point
operations or operations on decimal numbers.

Guide to Manual 1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I

I
I
I
I

I
I

I
I
I
I

CHAPTER 1
GUIDE TO MANUAL

This chapter describes this manual. It explains the organization of the manual, describes the
contents of each chapter, and discusses terminology used in the manual. It also shows the
chapters of the manual that should be of most interest to applications programmers, compiler
designers, and designers of operating-system kernels (or system executives).

MANUAL STRUCTURE

This manual is a reference manual for the Intel 80960KB processor. It has been designed to
serve two functions:

1. To give programmers and system designers detailed information about the processor's
programming environment and kernel (or executive) support facilities.

2. To provide reference information on the Intel 80960 architecture, the architecture on
which the 80960KB processor is based.

To meet these two goals, the manual is organized to describe the various elements of the 80960
architecture first (in Chapters 2 through 11), then to describe those additional features that are
included in the 80960KB implementation of the architecture (in Chapters 12 and 13). A
summary of those features of the 80960KB processor that are implementation dependent is
provided in Appendix E.

Some other useful features of this manual are as follows:

• Detailed reference information for all the 80960KB instructions is given in Chapter 11.
The instructions are arranged alphabetically.

• A quick reference for all of the 80960KB instructions, sorted both alphabetically and by
opcode, is given in Appendix A. Also in this chapter are a collection of illustrations of all
the system-data structures.

Table 1-1 shows those chapters that will be of most interest to applications programmers,
compiler designers, or kernel designers.

Table 1-1: Chapters of Interest for Specific Users

User Chapters

Applications Programmer Chapters 2 through 6, Chapter 11,
Chapter 12, and Appendices A and C

Compiler Designer Chapters 2 through 6, Chapter 8, Chapter 9,
Chapter 11, Chapter 12, and Appendices A, B, C and E

Kernel Designer Chapters 2 through 13, and Appendices A through E

1-1

GUIDE TO MANUAL

CHAPTER OVERVIEW

The following is a brief overview of the contents of each chapter:

Chapter 1 - Guide to Manual. Overview of this manual.

Chapter 2 - Introduction to the 80960 Architecture. Overview of the Intel 80960 architec
ture, the architecture on which the 80960KB processor is based.

Chapter 3 - Execution Environment. Description of the environment in which instructions
are executed. The topics discussed in this chapter include the address space, registers, instruc
tion pointer, and arithmetic controls.

Chapter 4 - Procedure Calls. Description of the various mechanisms available for making
procedure calls. The topics discussed here include the local call/return mechanism, procedure
stack, branch-and-link procedure calls, procedure table calls, and supervisor call mechanism.

Chapter 5 - Data Types and Addressing Modes. Description of the non-floating-point data
types and of how bits and bytes are addressed. The addressing modes provided for addressing
data in memory are also described in this chapter.

Chapter 6 - Instruction Set Summary. Overview of all the noncfloating point instructions
in the 80960KB instruction set, arranged by functional groups. Also included is a brief
description of the assembly language instruction format.

Chapter 7 - Processor Management and Initialization. Description of the processor
management facilities. Included is a discussion of the system data structures required to
operate the processor, the software requirements for processor management, and the require
ments for physical memory. Processor initialization is described at the end of the chapter.

Chapter 8 - Interrupts. Description of the interrupt mechanism, interrupt priority, interrupt
table, interrupt-handling procedures, and the software requirements for handling interrupts.

Chapter 9 - Fault Handling. Description of the processor's fault-handling mechanism.
Included here is a discussion of the fault-table structure, fault-handling procedures, and the
software requirements for handling faults. A detailed description of each fault is given in a
reference section at the end of the chapter.

Chapter 10 - Debugging. Description of the debugging and monitoring support facilities,
including the trace control register.

Chapter 11 - Instruction Set Reference. Alphabetical listing of the complete 80960KB
instruction set with detailed descriptions of each instruction, assembly-language syntax, ex
amples, and algorithms.

Chapter 12 - Floating-Point Operation. Description of the floating-point processing
facilities of the processor. This chapter includes an overview of floating-point numbers and a
description of the 80960KB floating-point data types and their relationship to the IEEE
floating-point standard. Also included is a description of the floating-point instructions, excep
tions, and faults.

1-2

GUIDE TO MANUAL

Chapter 13 - Interagent Communication. Description of the interprocessor communication
(lAC) mechanism, which allows several processors to communicate with one another on the
bus. The topics covered in this chapter include the lAC mechanism and software requirements
for using internal lACs. A detailed description of each lAC is given in a reference section at
the end of the chapter.

Appendix A - Instruction and Data Structure Quick Reference. Two lists of the 80960KB
instructions: one sorted alphabetically by assembly-language mnemonic and one sorted by
machine language opcode. A collection of illustrations showing the system data structures is
also provided here.

Appendix B - Machine-Level Instruction Formats. Description of the machine-level in
struction formats.

Appendix C - Instruction Timing. Description of the 80960KB processor's instruction
pipeline and how it affects the timing of instructions. The number of clock cycles required for
each instruction are also given in this appendix.

Appendix D - Initialization Code. Listing of code to initialize the 80960KB processor.

Appendix E - Considerations for Writing Portable Software. Discussion of various
aspects of the 80960 architecture that should be considered if code written for the 80960KB
processor is intended to be ported at a later date to other implementations of the 80960
architecture.

NOTATION AND TERMINOLOGY

The following paragraphs describe the notation and terminology used in this manual that have
special meaning.

Reserved and Preserved

Certain fields in the processor's system data structures are described as being either reserved
fields or preserved fields. A reserved field is one that other implementations of the 80960
architecture can use. To help insure that a current software design is compatible with future
processors based on the 80960 architecture, the bits in reserved fields should be set to 0 when
the data structure is initially created. Thereafter, software should not access these fields.

Some fields in system data structures are shown as being required to be set to either 1 or o.
These fields should be treated as if they were reserved fields. They should be set to the
specified value when the data structure is created and not accessed by software thereafter.

A preserved field is one that the processor does not use. Software may use preserved fields for
any function.

1-3

GUIDE TO MANUAL

Set and Clear

The terms set and clear are used in this manual to refer to the value of a bit field in a system
data structure. If a bit is set, its value is 1; if the bit is clear, its value is O. Likewise, setting a
bit means giving it a value of 1 and clearing a bit means giving it a value of O.

1-4

Introduction to the
80960 Architecture

2

CHAPTER 2
INTRODUCTION TO THE 80960 ARCHITECTURE

This chapter provides an overview of the architecture on which the 80960K series of proces
sors is based.

A NEW 32-BIT ARCHITECTURE FROM INTEL

The 80960KB processor marks the introduction of the 80960 architecture - a new 32-bit
architecture from Intel. This architecture has been designed specifically to meet the needs of
embedded applications such as machine control, robotics, process control, avionics, and in
strumentation. It represents a renewed commitment from Intel to provide reliable, high
performance processors and controllers for the embedded processor marketplace.

The 80960 architecture can best be characterized as a high-performance computing engine. It
features high-speed instruction execution and ease of programming. It is also easily extensible,
allowing processors and controllers based on this architecture to be conveniently customized to
meet the needs of specific processing and control applications.

Some of the important attributes of the 80960 architecture include:

• full 32-bit registers

• high-speed, pipelined instruction execution

• a convenient program execution environment with 32 general-purpose registers and a
versatile set of special-function registers

• a highly optimized procedure call mechanism that features on-chip caching of local vari-
ables and parameters

• extensive facilities for handling interrupts and faults

• extensive tracing facilities to support efficient program debugging and monitoring

• register score boarding and write buffering to permit efficient operation with lower perfor
mance memory subsystems

The following sections describe those features of the 80960 architecture that are provided to
streamline code execution and simplify programming. Also described are those features that
allow extensions to be added to the architecture.

HIGH PERFORMANCE PROGRAM EXECUTION

Much of the design of the 80960 architecture has been aimed at maximizing the processor's
computational and data processing speed through increased parallelism. The following
paragraphs describe several of the mechanisms and techniques used to accomplish this goal,
including:

2-1

inter INTRODUCTION TO THE 80960 ARCHITECTURE

• an efficient load and store memory-access model

• caching of code and procedural data

• overlapped execution of instructions

• many one or two clock instructions

Load and Store Model

One of the more important features of the 80960 architecture is that most of its operations are
performed on operands in registers, rather than in memory. For example, all the arithmetic,
logic, comparison, branching, and bit operations are performed with registers and literals.

This feature provides two benefits. First, it increases program execution speed by minimizing
the number of memory accesses required to execute a program. Second, it reduces memory
latency encountered when using slower, lower-cost memory parts.

To support this concept, the architecture provides a generous supply of general-purpose
registers. For each procedure, 32 registers are available (28 of which are available for general
use). These registers are divided into two types: global and local. Both these types of
registers can be used for general storage of operands. The only difference is that global
registers retain their contents across procedure boundaries, whereas the processor allocates a
new set of local registers each time a new procedure is called.

The architecture also provides a set of fast, versatile load and store instructions. These instruc
tions allow burst transfers of 1, 2, 4,8, 12, or 16 bytes of information between memory and the
registei·s.

On-Chip Caching of Code and Data

To further reduce memory accesses, the architecture offers two mechanisms for caching code
and data on chip: an instruction cache and multiple sets of local registers. The instruction
cache allows prefetching of blocks of instruction from memory, which helps insure that the
instruction execution pipeline is supplied with a steady stream of instructions. It also reduces
the number of memory accesses required when performing iterative operations such as loops.
(The size of the instruction cache can vary. With the 80960KB processor, it is 512 bytes.)

To optimize the architecture's procedure call mechanism, the processor provides multiple sets
of local registers. This allows the processor to perform most procedure calls without having to
write the local registers out to the stack in memory.

(The number of local-register sets provided depends on the processor implementation. The
80960KB processor provides four sets of local registers.)

Overlapped Instruction Execution

Another technique that the 80960 architecture employs to enhance program execution speed is
overlapping the execution of some instructions. This is accomplished through two
mechanisms: register scoreboarding and branch prediction.

2-2

inter INTRODUCTION TO THE 80960 ARCHITECTURE

Register scoreboarding permits instruction execution to continue while data is being fetched
from memory. When a load instruction is executed, the processor sets one or more scoreboard
bits to indicate the target registers to be loaded. After the target registers are loaded, the
scoreboard bits are cleared. While the target registers are being loaded, the processor is
allowed to execute other instructions that do not use these registers. The processor uses the
scoreboard bits to insure that target registers are not used until the loads are complete. (The
checking of scoreboard bits is carried out transparently from software.) The net result of using
this technique is that code can often be optimized in such a way as to allow some instructions
to be executed in zero clock cycles (that is, executed for free).

Conditional branch instructions commonly cause bottlenecks in the instruction execution
pipeline, since the instruction decoder cannot decode instructions past the branch instruction
until it knows the direction the branch is going to take. The 80960 architecture solves this
problem with a technique called branch prediction. Branch prediction allows a programmer or
compiler to select conditional branch instructions that indicate to the processor the direction a
branch is likely to go. The decoder can then continue decoding instructions beyond the branch,
even though the branch condition has not yet been tested. This technique eliminates waits
between the decoder and execution unit, while branch conditions are being evaluated.

Note

The branch prediction mechanism is not implemented in the 80960K series of processors.

Single-Clock Instructions

It is the intent of the 80960 architecture that a processor be able to execute commonly used
instructions such as moves, adds, subtracts, logical operations, and branches in a minimum
number of clock cycles (preferable one clock cycle). The architecture supports this concept in
several ways. For example, the load and store model described earlier in this chapter (with its
concentration on register-to-register operations) eliminates the clock cycles required to perform
memory-to-memory operations.

Also, all the instructions in the 80960 architecture are 32-bits long and aligned on 32-bit
boundaries. This feature allows instructions to be decoded in one clock cycle. It also
eliminates the need for an instruction-alignment stage in the pipeline.

The design of the 80960KB processor takes full advantage of these features of the architecture,
resulting in over 50 instructions that can be executed in a single clock-cycle.

Efficient Interrupt Model

The 80960 architecture provides an efficient mechanism for servicing interrupts from external
sources. To handle interrupts, the processor maintains an interrupt table of 248 interrupt
vectors (240 of which are available for general use). When an interrupt is signaled, the
processor uses a pointer from the interrupt table to perform an implicit call to an interrupt
handler procedure. In performing this call, the processor automatically saves the state of the
processor prior to receiving the interrupt; performs the interrupt routine; and then restores the
state of the processor. A separate interrupt stack is also provided to segregate interrupt
handling from application programs.

2-3

inter INTRODUCTION TO THE 80960 ARCHITECTURE

The interrupt handling facilities also feature a method of evaluating interrupts by priority. The
processor is then able to store interrupt vectors that are lower in priority than the task that the
processor is currently working on in a pending interrupt section of the interrupt table. At
certain defined times, the processor checks the pending interrupts and services them.

SIMPLIFIED PROGRAMMING ENVIRONMENT

Partly as a side benefit of its streamlined execution environment and partly by design, proces
sors based on the 80960 architecture are particularly easy to program. For example, the large
number of general purpose registers allows relatively complex algorithms to be executed with a
minimum number of memory accesses. The following paragraphs describe some of the other
features for the architecture that simplify programming.

Highly Efficient Procedure Call Mechanism

The procedure call mechanism makes procedure calls and parameter passing between
procedures simple and compact. Each time a call instruction is issued, the processor automati
cally saves the current set of local registers and allocates a new set of local registers for the
called procedure. Likewise, on a return from a procedure, the current set of local registers is
deallocated and the local registers for the procedure being returned to are restored. On a
procedure call, the program thus never has to explicitly save and restore those local variables
and parameters that are stored in local registers.

Versatile Instruction Set and Addressing

The selection of instructions and addressing modes also simplifies programming. The architec
ture offers a full set of load, store, move, arithmetic, comparison, and branch instructions, with
operations on both integer and ordinal data types. It also provides a complete set of Boolean
and bit-field instructions, to simplify operations on bits and bit strings.

The addressing modes are efficient and straightforward, while at the same time providing the
necessary indexing and scaling modes required to address complex arrays and record struc
tures.

The large 4-gigabyte address space provides ample room to store programs and data. The
availability of 32 addressing lines allows some address lines to be memory-mapped to control
hardware functions.

Extensive Fault Handling Capability

To aid in program development, the 80960 architecture defines a wide selection of faults that
the processor detects, including arithmetic faults, invalid operands, invalid operations, and
machine faults. When a fault is detected, the processor makes an implicit call to a fault handler
routine, using a mechanism similar to that described above for interrupts. The information
collected for each fault allows program developers to quickly correct faulting code. It also
allows automatic fault recovery from some faults.

2-4

inter INTRODUCTION TO THE 80960 ARCHITECTURE

Debugging and Monitoring

To support debugging systems, the 80960 architecture provides a mechanism for monitoring
processor activity by means of trace events. The processor can be configured to detect as many
as seven different trace events, including the instruction execution, branch events, calls, super
visor calls, returns, prereturns, and breakpoints. When the processor detects a trace event, it
signals a trace fault and calls a fault handler. Intel provides several tools that use this feature,
including an in-circuit emulator (ICE) device.

SUPPORT FOR ARCHITECTURAL EXTENSIONS

The 80960 architecture described earlier in this chapter provides a high-performance comput
ing engine for use as the computational and data processing core of embedded processors or
controllers. The architecture also provides several features that enable processors based on this
architecture to be easily customized to meet the needs of specific embedded applications, such
as signal processing, array processing, or graphics processing.

The most important of these features is a set of 32 special function registers. These registers
provide a convenient interface to circuitry in the processor or to pins that can be connected to
external hardware. They can be used to control timers, to perform operations on special data
types, or to perform I/O functions.

The special function registers are similar to the global registers. They can be addressed by all
the register-access instructions.

EXTENSIONS INCLUDED IN THE 80960K SERIES PROCESSORS

The 80960K series of processors offer a complete implementation of the 80960 architecture,
plus several extensions to the architecture. These extensions fall into two categories: floating
point processing and interagent communication.

On-Chip Floating Point

The 80960KB processor provides a complete implementation of the IEEE standard for binary
floating-point arithmetic (IEEE 754-185). This implementation includes a full set of floating
point operations, including add, subtract, multiply, divide, trigonometric functions, and
logarithmic functions. These operations are performed on single precision (32-bit), double
precision (64-bit), and extended precision (80-bit) real numbers.

One of the benefits of this implementation is that the floating-point handling facilities are
completely integrated into the normal instruction execution environment. Single- and double
precision floating-point values are stored in the same registers as non-floating point values.
The four, 80-bit floating-point registers are provided to hold extended-precision values.

2-5

inter INTRODUCTION TO THE 80960 ARCHITECTURE

Interagent Communication

All of the processors in the 80960K series provide an interagent communication (lAC)
mechanism, which allows agents connected to the processor's bus to communicate with one
another. This mechanism operates similarly to the interrupt mechanism, except that lAC
messages are passed through dedicated sections of memory. The sorts of tasks handled with
lAC messages are processor reinitialization, stopping the processor, purging the instruction
cache, and forcing the processor to check pending interrupts.

LOOK FOR MORE IN THE FUTURE

As has been shown in the preceding discussion, the 80960 architecture offers lots of pos
sibilities and lots of room to grow. The first implementation of this architecture (the 80960KB
processor) provides average instruction processing rates of 7.5 million instructions per second
(7.5 MIPS) at 20 MHz clock rate and 10 MIPS at a 25 MHz clock rate1. This performance
places the 80960KB at the top of the performance range for advanced, VLSI processor ar
chitectures.

However, the 80960KB is only the beginning. With improvements in VLSI technology, future
implementation of this architecture will offer even greater performance. They will also offer a
variety of useful extensions to solve specific control and monitoring needs in the field of
embedded applications.

11 MIP is equivalent to the performance of a Digital Equipment Corp. V AX 11/780.

2-6

Execution Environment 3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I

I
I
I

I
I

I
I
I
I

CHAPTER 3
EXECUTION ENVIRONMENT

This chapter describes how the 80960KB processor stores and executes instructions and how it
stores and manipulates data. The parts of the execution environment that are discussed include
the address space, the register model, the instruction pointer, and the arithmetic controls.

The execution environment's procedure stack and procedure-call mechanism are described in
Chapter 4.

OVERVIEW OF THE EXECUTION ENVIRONMENT

When the 80960KB processor is initialized, it sets up an execution environment. It then begins
executing instructions from a program, using this execution environment to store and manipu
late data.

Figure 3-1 shows the part of the execution environment that the ~rocessor sets up to execute a
procedure within a program. This environment consists of a 23 -byte address space, a set of
global and floating-point registers, a set of local registers, a set of arithmetic-controls bits, the
instruction pointer, a set of process-controls bits, and a set of trace-controls bits. All of these
items, except the address space, reside on the 80960KB chip.

Note

The floating-point registers shown in Figure 3-1 are not defined in the 80960 architecture.
They are extensions to the architecture that have been added to the 80960KB processor to
support floating-point operations on the extended-real (floating point) data type. (The
80960KA processor does not provide floating-point registers.)

The 32 special-function registers (shown in Figure 3-1 in a dashed box) are defined in the
80960 architecture. These registers are not implemented in the 80960KB and 80960KA
processors.

When the instruction stream includes a procedure call, a procedure stack and some additional
elements are added to this execution environment. These procedure-call related elements are
shown and discussed in Chapter 4.

3-1

inter

gO ,..-----..,

SIXTEEN
32·BIT

REGISTERS
g15 "-____ ...

fpO

EXECUTION ENVIRONMENT

GLOBAL
REGISTERS'

0..------,

FOUR SO·BIT REGISTERS
FLOATING
POINT
REGISTERS fp3 _______ _

rO ,..------,

SIXTEEN
32·BIT

REGISTERS
r15 "-____ ...

32·BITS

32·BITS

32·BITS

32·BITS

sfror----- ..
I I
I I
I THIRTY·TWO I

32·BIT
I REGISTERS I
I I
I I
I I sfr31 L. _____ ..

LOCAL
REGISTERS2

ADDRESS
SPACE

ARITHMETIC CONTROLS

INSTRUCTION POINTER

PROCESS CONTROLS

TRACE CONTROLS

Notes:
SPECIAL
FUNCTIONS
REGISTERS3

1 Register g 15 is reserved for
stack management functions.

2 Registers rO, r1, and r2 are
reserved for stack management
functions.

3 Special function registers are
not implemented in this
processor.

Figure 3-1: Execution Environment

3-2

EXECUTION ENVIRONMENT

ADDRESS SPACE

From the point of view of the processor, the address space is flat (unsegmented) and byte
addressable, with addresses running contiguously from 0 to 232 - 1. Programs and the kernel
can allocate space for data, instructions, and the stack anywhere within this space, with the
following exceptions:

• Instructions must be aligned on word boundaries.

• Some of the addresses in the upper 16M Bytes of the address space (addresses
FF00000016 through FFFFFFFF16) are reserved for specific functions. In general,
programs and the kernel should not use this section of the address space.

The memory requirements to support this address space are given in Chapter 7 in the section
titled "Memory Requirements."

REGISTER MODEL

The processor provides three types of data registers: global, floating-point, and local. The 16
global registers constitute a set of general-purpose registers, the contents of which are
preserved across procedure boundaries. The 4 floating-point registers are provided to support
extended floating-point arithmetic. Their contents are also preserved across procedure boun
daries. The 16 local registers are provided to hold parameters specific to a procedure (i.e.,
local variables). For each procedure th"t is called, the processor allocates a separate set of 16
local registers.

For anyone procedure within a program, 36 registers are thus available (as shown in Figure
3-2): the 16 global registers, the 4 floating-point registers, and the 16 local registers. All of
these registers are maintained on the processor chip.

Global Registers

The 16 global registers (gO through g15) are 32-bit registers. Each register can thus hold a
word (32 bits) of data. Registers gO through g14 are general-purpose registers; g15 is reserved
for the current frame pointer (FP). The FP contains the address of the first byte in the current
(topmost) stack frame. (The FP and the procedure stack are discussed in detail in Chapter 4.)

The general-purpose global registers (gO through g14) can hold any of the data types that the
processor recognizes (i.e., ordinals, integers, reals).

3-3

inter

gO

CONTENTS OF
GLOBAL AND

FLOATING-POINT
REGISTERS
PRESERVED

ACROSS
PROCEDURE
BOUNDARIES

EXECUTION ENVIRONMENT

REGISTERS gO THROUGH.g14
AVAILABLE FOR GENERAL USE GLOBAL

REGISTERS

g15 FRAME POINTER (FP)

fpO I
AVAILABLE FOR GENERAL USE FLOATI NG-POI NT

REGISTERS

fp3 L...-_____________ ---' ---.J

NEWSETOF
LOCAL

REGISTERS
ALLOCATED

FOR EACH
PROCEDURE

rO PREVIOUS FRAME POINTER (PFP)
r1 STACK POINTER (SP)
r2 RETURN INSTRUCTION POINTER (RIP)

REGISTERS r4 THROUGH r15
AVAILABLE FOR GENERAL USE

LOCAL
REGISTERS

Figure 3-2: Registers Available to a Single Procedure

Floating-Point Registers

The four floating-point registers (fpO through fp3) are 80-bit registers. These registers can be
accessed only as operands of floating-point instructions. All numbers stored in these registers
are stored in extended-real format. (This format is described in Chapter 12.) The processor

3-4

inter EXECUTION ENVIRONMENT

automatically converts floating-point values from real or long-real format into extended-real
format when a floating-point register is used as a destination for an instruction.

Note

The floating-point registers are defined in the 80960 architecture as an option for processors
such as the 80960KB that support floating-point operations. These registers may be omitted
from implementations of the architecture that do not support floating-point operations.

Local Registers

The 16 local registers (rO through r15) are 32-bit registers, like the global registers. The
purpose of the local registers is to provide a separate set of registers, aside from the global and
floating-point registers, for each active procedure. Each time a procedure is called, the proces
sor automatically sets up a new set of local registers for that procedure and saves the local
registers for the calling procedure. The program does not have to explicitly save and restore
these registers.

Local registers r3 through r15 are general-purpose registers. Registers rO through r2 are
reserved for special functions, as follows: register rO contains the previous frame pointer
(PFP); r1 contains the stack pointer (SP); and r2 contains the return instruction pointer (RIP).
(The PFP, SP, and RIP are discussed in detail in Chapter 4.) The processor accesses the local
registers at the same speed as it does the global registers.

Register Alignment

Several of the processor's instructions operate on multiple-word operands. For example, the
load-long instruction (Idl) loads two words from memory into two consecutive registers. Here,
the register number for the least significant word is specified in the instruction and the most
significant word is automatically loaded into the next higher numbered register.

In cases where an instruction specifies a register number and multiple, consecutive registers are
implied, the register number must be even if two registers are accessed (e.g., gO, g2) and an
integral multiple of four if three or four registers are accessed (e.g., gO, g4). If a register
reference for a source value is not properly aligned, the value is undefined. If a register
reference for a destination value is not properly aligned, the registers that the processor writes
to are undefined.

Register Scoreboarding

The 80960KB provides a mechanism called register scoreboarding that in certain situations
permits instructions to be executed concurrently. This mechanism works as follows. While an
instruction is being executed, the processor sets a scoreboard bit to indicate that a particular
register or group of registers is being used in an operation. If the instructions that follow do
not use registers in that group, the processor in some instances is able to execute those instruc
tions before execution of the prior instruction is complete. In effect, the register scoreboarding
mechanism allows some instructions to be executed for free (zero clock cycles).

3-5

inter EXECUTION ENVIRONMENT

A common application of this feature is to execute one or more fast instructions (instructions
that take one to three clock cycles) concurrently with load instructions. A load instruction
typically takes 3 to 9 clock cycles (depending on the design of system memory). Register
scoreboarding allows other instructions to be executed concurrently with the load instruction,
providing that the other instructions do not affect the registers being loaded. For example, the
following group of instructions loads a group of local registers while performing some other
operations on data in global registers.

Id xyz, r6
addi g4, g6, g7
addi g9, glO, gIl
Id abc, r8
and gO, Oxffff, gl
addi r6, r8, r7

r6 ~ data from address xyz
g7 ~ g4 + g6
gIl ~ g9 + glO
r6 ~ data from address abc
gl ~ gO AND Oxffff·
r7 ~ r6 + r8

Here, the two addi instructions following the first load and the and instruction following the
second load are performed for free.

The other situation where scoreboarding can be useful for procedure optimization is when
floating-point instructions are being executed. Floating-point operations are handled by a
separate execution unit in the processor. So, non-floating point instructions can often be
executed concurrently with floating-point instructions, providing that they do not use the same
registers and do not use the arithmetic-logic unit (ALU).

(A detailed description ofthe register-scoreboarding mechanism is given in Appendix C.)

INSTRUCTION POINTER

The instruction pointer (IP) is the address (in the address space) of the instruction currently
being executed. This address is 32 bits; however, since instructions are required to be aligned
on word boundaries in memory, the 2 least -significant bits of the IP are always zero.

Instructions in the processor are one or two words long. The IP gives the address of the lowest
order byte of the first word of the instruction.

The IP is stored in the processor and cannot be read directly. However, the IP-with
displacement addressing mode allows the IP to be used as an offset into the address space.
This addressing mode can also be used with the Ida (load address) instruction to read the
current value of the IP.

When a break occurs in the instruction stream (due to an interrupt or a procedure call), the IP
of the next instruction to be executed (i.e., the RIP) is stored in local register r2, which is then
stored on the stack: Refer to Chapter 4 for further discussion of this operation.

3-6

EXECUTION ENVIRONMENT

ARITHMETIC CONTROLS

The processor's arithmetic controls are made up of a set of 32 bits, which are cached on the
processor chip in the arithmetic-controls register. Figure 3-3 shows the arrangement of the
arithmetic controls bits. The arithmetic controls bits include condition code bits; floating-point
control and status bits; integer control and status bits; and a bit that controls faulting on
imprecise faults.

31 30292827262524 20 191817 16 15 12 8 6 3 2 0

II I I I I I I .. I I I I I .::JIll II I I I I I II
L,J

11 1
[TL

Figure 3-3: Arithmetic Controls

IIIIIIIIlIIII!l RESERVED
- (INITIALIZE TO 0)

CONDITION CODE

ARITHMETIC STATUS

INTEGER OVERFLOW FLAG

INTEGER OVERFLOW MASK

NO IMPRECISE FAULTS

FLOATING OVERFLOW FLAG

FLOATING UNDERFLOW FLAG

FLOATING INVALID·OP FLAG

FLOA TlNG ZERO·DIVIDE FLAG

FLOATING INEXACT FLAG

FLOATING OVERFLOW MASK

FLOATING UNDERFLOW MASK

FLOATING INVALlD·OP MASK

FLOATING ZERO·DIVIDE MASK

FLOATING INEXACT MASK

FLOATING·POINT NORMALIZING MODE

FLOATING·POINT ROUNDING CONTROL

The processor sets or clears these bits to show the results of certain operations. For example,
the processor modifies the condition code bits after each comparison operation to show the
result of the comparison. Other arithmetic control bits, such as the floating-point fault masks,
are set by the currently running program to tell the processor how to respond to certain fault
conditions.

Note

The arithmetic status flags and the floating-point flags and masks are not defined in the 80960
architecture. They are an extension to the architecture, which is provided in the 80960KB
processor to support floating-point operations. For implementations of the architecture that do
not support floating-point operations, these flags and masks are reserved bits.

Initializing and Modifying the Arithmetic Controls

The state of the processor's arithmetic controls is undefined at processor initialization or on a
processor reinitialize (initiated with a reinitialize processor lAC). Part of the initialization code
should thus be to set the arithmetic controls to a specific state.

The arithmetic controls can be examined and modified using the modify AC (modac) instruc
tion. This instruction uses a mask to allow specific bits to be checked and changed.

3-7

EXECUTION ENVIRONMENT

The processor automatically saves and restores the arithmetic controls when it services an
interrupt or handles a fault. Here, the processor saves the current state of the arithmetic
controls in an interrupt record or fault record, then restores the arithmetic controls upon return
ing from the interrupt or fault handler, respectively.

The modac instruction can be used to explicitly save and restore the contents of the arithmetic
controls.

Functions of the Arithmetic Controls Bits

The functions of the various arithmetic controls bits are as follows:

Note

In the following discussion, some of the arithmetic controls bits are referred to as "sticky flags."
A sticky flag is one that the processor never implicitly clears. Once the processor sets a sticky
flag to indicate that a particular condition has occurred, the flag remains set until the program
explicitly clears it.

Condition Code Flags

The processor sets the condition code flags (bits 0-2) to indicate the results of certain instruc
tions (usually compare instructions). Other instructions, such as conditional-branch instruc
tions, examine these flags and perform functions according to their state. Once the processor
has set these flags, it leaves them unchanged until it executes another instruction that uses these
flags to store results.

These flags are used to show either true or false conditions or inequalities (greater-than, equal,
or less-than conditions). To show true or false conditions, the flags are set as shown in Table
3-1.

Table 3-1: Condition Codes for True or False Conditions

Condition Condition
Code

010 true

000 false

The condition code flags are set as shown in Table 3-2 to show inequalities.

3-8

EXECUTION ENVIRONMENT

Table 3-2: Condition Codes for Inequality Conditions

Condition Condition
Code

000 unordered

001 greater than

010 equal

all greater than or equal

100 less than

101 not equal

110 less than or equal

111 ordered

The tenns ordered and unordered are used when comparing floating-point numbers. If, when
comparing two floating-point values, one of the values is a NaN (not a number), the relation
ship is said to be "unordered." Refer to the section in Chapter 12 titled "Comparison and
Classification" for further infonnation about the ordered and unordered conditions.

Arithmetic Status Flags

The processor uses the arithmetic status field (bits 3-6) in conjunction with the classify instruc
tions (c1assr and c1assrl) to show the class of a floating-point number. When executing these
instructions, the processor sets the arithmetic status bits as shown in Table 3-3, according to the
class of the value being classified.

Table 3-3: Encoding of Arithmetic Status Field

Arithmetic Classification
Status

sOOO zero

sOOl denonnalized number

sOlO nonnal finite number

sOlI infinity

s100 quiet NaN

s101 signaling NaN

s110 reserved operand

The "s" bit is set to the sign of the value being classified.

Integer Overflow Mask

The integer overflow mask (bit 12) and the integer overflow flag (bit 8) are used in conjunction
with the arithmetic integer-overflow fault. The mask bit masks the integer-overflow fault.

3-9

inter EXECUTION ENVIRONMENT

When the fault is masked, the processor sets the integer overflow flag whenever an integer or
decimal overflow occurs, to indicate that the fault condition has occurred even though the fault
has been masked. If the fault is not masked, the fault is allowed to occur and the flag is not set.
The integer overflow flag is a sticky flag. (Refer to the discussion of the arithmetic integer
overflow fault in Chapter 9 for more information about the integer overflow mask and flag.)

No Imprecise Faults Flag

The no imprecise faults flag (bit 15) determines whether or not imprecise faults are allowed to
be raised. If set, faults are required to be precise; if clear, certain faults can be imprecise.
(Refer to the section in Chapter 9 titled "Precise and Imprecise Faults" for more information
about this flag.)

Floating-Point Flags and Masks

The floating-point flags (bits 16 through 20) and masks (bits 24 through 28) perform the same
functions as the integer overflow flag and mask, except they are used for operations on real
(floating point) numbers. When a mask bit is set, its associated floating-point fault is masked.
If a mask bit is set, the processor sets the flag for the associated fault whenever the fault
condition occurs. All the floating-point flag bits are sticky bits. Refer to the section in Chapter
12 titled "Exceptions and Fault Handling" for a detailed discussion of the floating-point faults
and their associated flag and mask bits in the arithmetic controls.

Floating-Point Normalizing Mode Flag

The floating-point normalizing mode flag (bit 29) determines whether or not floating-point
instructions are allowed to operate on denormalized numbers. If set, floating-point instructions
are allowed to operate on denormalized numbers; if clear, the processor generates a floating
reserved-operand fault when it detects denormalized numbers that are used as operands for
floating-point instructions. (Refer to the section in Chapter 12 titled "Normalizing Mode" for
more information on the use of this flag.)

Floating-Point Rounding Control

The floating-point rounding control field (bits 31-30) indicates which rounding mode is in
effect for floating point computations. These bits are set as shown in Table 3-4, depending on
the rounding mode to be selected.

3-10

inter EXECUTION ENVIRONMENT

Table 3-4: Encoding of Rounding Control Field

Rounding Rounding Mode
Control

00 round to nearest (even)

01 Round down (toward negative infinity)

10 Round up (toward positive infinity)

11 Truncate (round toward zero)

(Refer to the section in Chapter 12 titled "Rounding Control" for more information on the use
of the floating-point rounding control bits.)

All the unused bits in the AC register are reserved and must be set to O.

PROCESS AND TRACE CONTROLS

The processor's process controls and trace controls are also cached on the processor chip. The
process controls are a set of 32 bits that control or show the current execution state of the
processor. The process controls are described in detail in Chapter 7.

The trace controls are a set of 32 bits that control the tracing facilities of the processor. The
trace controls are described in Chapter 10.

INSTRUCTION CACHING

The processor provides a 512-byte cache for instructions. When the processor fetches an
instruction or group of instructions from memory, they are stored in this cache before being fed
into the instruction-execution pipeline. The processor manages this cache transparently from
the program being run.

This instruction cache is a read-only cache, meaning that once bytes from the instruction
stream are written into the instruction cache, they cannot be changed. Because of this, the
processor does not support self-modified programs in a transparent fashion. The only way to
change the instruction stream once it has been written into the instruction cache is to purge the
instruction cache. The lAC message "purge instruction cache" is provided for this purpose, as
described in Chapter 13.

Note

The purge instruction cache lAC is not defined in the 80960 architecture. It is an
implementation-dependent feature of the 80960KB processor.

3-11

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Procedure Calls 4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I

I
I
I

I

I
I
I
I

CHAPTER 4
PROCEDURE CALLS

This chapter describes the 80960KB processor's procedure call and stack mechanism. It also
describes the supervisor call mechanism, which provides a means of calling privileged
procedures such as kernel services.

TYPES OF PROCEDURE CALLS

The processor supports three types of procedure calls:

• Local call

• System call

• Branch and link

A local call uses the processor's call/return mechanism, in which a new set of local registers
and a new frame on the stack are allocated for the called procedure. A system call is similar to
a local call, however, it provides access to procedures through a system procedure table. The
most important use of a system call is to call privileged procedures called supervisor
procedures. A system call to a supervisor procedure is called a supervisor call. A branch and
link is merely a branch to a new instruction with the return IP stored in a global register.

In this chapter, the call/return mechanism is introduced first and is followed by a discussion of
how this mechanism is used to make local calls and system calls.

Note

The processor's interrupt- and fault-handling mechanisms use implicit procedure calls. These
implicit calls' are described in detail in Chapters 8 and 9, respectively.

CALL/RETURN MECHANISM

The processor's call/return mechanism has been designed to simplify procedure calls and to
provide a flexible method for storing and handling variables that are local to a procedure.

Two structures support this mechanism: the local registers (on the processor chip) and the
procedure stack (in memory). Figure 4-1 shows the relationship of the local registers to the
procedure stack.

For each procedure, the processor automatically allocates a set of local registers and a frame on
the procedure stack. Since the local registers are on-chip, they provide fast-access storage for
local variables. If additional space for local variables is required, it can be allocated in the
stack frame.

4-1

------------- -- ----- ~----~-~---- ---~-~----~------

. inter

SET OF 16 LOCAL
REGISTERS ON THE
PROCESSOR CHIP

Note:

PROCEDURE CALLS

"+0

"+64

STACK
GROWTH*

PROCEDURE STACK
IN MEMORY

LOCAL REGISTER
SAVE AREA

OPTIONAL SPACE
FOR ADDITIONAL

VARIABLES

LOCAL REGISTER
SAVE AREA

* Stack grows from low addresses to high addresses.

Figure 4-1: Local Registers and Procedure Stack

STACK FRAME
FOR CALLING
PROCEDURE

STACK FRAME
FOR CALLED
PROCEDURE

When a procedure call is made, the processor automatically saves the contents of the local
registers and the stack frame for the calling procedure and sets up a new set of local registers
and a new stack frame for the called procedure.

This procedure call mechanism provides two benefits. First, it provides a structure for storing
a virtually unlimited number of local variables for each procedure: the on-chip local registers
provide quick access to often-used variables and the stack provides space for additional vari
ables.

Second, a program does not have to explicitly save and restore the variables stored in the local
registers and stack frames. The processor does this implicitly on procedure calls and on
returns.

A detailed description of the call/return mechanism is given in the following paragraphs.

4-2

inter PROCEDURE CALLS

Local Registers and the Procedure Stack

For each procedure, the processor allocates a set of 16 local registers. Three of these registers
(rI, r2, and r3) are reserved for linkage information to tie procedures together. The remaining
13 local registers are available for general storage of variables.

The processor maintains a procedure stack in memory for use when performing local calls.
This stack can be located anywhere in the address space and grows from low addresses to high
addresses.

The stack consists of contiguous frames, one frame for each active procedure. As shown in
Figure 4-2, each stack frame provides a save area for the local registers and an optional area for
additional variables.

To increase the speed of procedure calls, the 80960KB processor provides four sets of local
registers. Thus, when a procedure call is made, the contents of the current set of local registers
often do not have to be stored in the procedure stack. Instead, a new set of local registers is
assigned to the called procedure. When procedure calls are made greater than four deep, the
processor automatically stores the contents of the oldest set of local registers on the stack to
free up a set of local registers for the most recently called procedure.

Refer to the section later in this chapter titled "Mapping the Local Registers to the Procedure
Stack" for further discussion of the relationship between the local register sets and the proce
dure stack.

Procedure Linking Information

Global register g15 (FP) and local registers rO (PFP), rl (SP), and r2 (RIP) contain information
to link procedures together and to link the local registers to the procedure stack. The following
paragraphs describe this linkage information.

Frame Pointer

The FP is the address of the first byte of the current (topmost) stack frame. On procedure calls,
the FP for the new frame is stored in global register g15; on returns, the FP for the previous
frame is restored in g15.

The 80960KB processor aligns each new stack frame on a 64-byte boundary. Since the
resulting FP always points to a 64-byte boundary, the processor ignores the 6 low-order bits of
the FP and interprets them to be zero.

Note

The alignment boundary for new frames is defined by means of an implementation-dependent
parameter called SALIGN. The relationship of SALIGN to the frame alignment boundary is
described in Appendix E.

4-3

PROCEDURE CALLS

-r-------~PF::P:-----"r=" Ipr.IR::R~R~ rO ~ n + 0

PREVIOUS
FRAME

SP r1-

~P ~

~--------------------~
r1S

OPTIONAL VARIABLES

. PADDING AREA

STACK
GROWTH

n+64 STACK
GROWS

FROM LOW
ADDRESSES

TO HIGH
ADDRESSES

.--- PREVIOUS FRAME POINTER (PFP) I P I RRR
STACK POINTER (SP)

rO ---11 .. 0(0(----,

r1 -

CURRENT
FRAME

RETURN INSTRUCTION POINTER (RIP) r2

~--------------------~
r1S

Figure 4-2: Procedure Stack Structure

4-4

THE CURRENT FRAME
POINTER (FP) STORED

IN g15 POINTS TO
THIS WORD IN THE

STACK.

inter PROCEDURE CALLS

Stack Pointer

The procedure stack grows upward (Le., toward higher addresses). The SP points to the next
available byte of the stack frame, which can also be thought of as the last byte of the stack
frame plus one. To determine the initial SP value, the processor adds 64 to the FP.

If additional space is needed on the stack for local variables, the SP may be incremented in
one-byte increments. For example, the following instruction adds six words of additional
space to the stack:

addo sp, 24, sp # sp f- sp + 24

With the Intel80960KB Assembler, the keyword "sp" stands for register rl.

Padding Area

When the processor creates a new frame on a procedure call, it will, if necessary, add a
padding area to the stack so that the new frame starts on a 64 byte boundary. To create the
padding area, the processor rounds off the SP for the current stack frame (the value in rl) to the
next highest 64 byte boundary. This value becomes the FP for the new stack frame.

Previous Frame Pointer

The PFP is the address of the first byte of the previous stack frame. Since the 80960KB
ignores the 6 low-order bits of the FP, only the 26 most-significant bits of the PFP are stored
here. The 4 least-significant bits of rO are then used to store return status information.

Return Status and Prereturn-Trace Information

Bits 0 through 2 of local register rO contain return status information for the calling procedure
and bit 3 contains the prereturn-trace flag. When a procedure call is made (either explicit or
implicit), the processor records the call type in the return status field. The processor then uses
this information to select the proper return mechanism when returning to the calling procedure.

Table 4-1 shows the encoding of the return status field according to the different types of calls
that the processor supports. Of the five types of calls allowed, the fault call (described in
Chapter 9) and the interrupt and stopped-interrupt calls (described in Chapter 8) are implicit
calls that the processor initiates. The local call (described in this section) is an explicit call that
a program initiates using the call or calix instruction. The supervisor call (described at the end
of this chapter in the section titled "User-Supervisor Protection Model") is an explicit call that
a program makes using the calls instruction.

4-5

PROCEDURE CALLS

Table 4-1: Encoding of Return Status Field

Encoding Call Type Return Action
000 Local call or supervisor call made Local return

from the supervisor mode

001 Fault call Fault return

010 Supervisor call from user mode, Supervisor return, with the trace
trace was disabled before call enable flag in the process controls

set to 0 and the execution mode
flag set to 0

011 Supervisor call from user mode, Supervisor return, with the trace
trace was enabled before call enable flag in the process controls

set to 1 and the execution mode
flag set to 0

100 reserved

101 reserved

110 Stopped-interrupt call Stopped-interrupt return

111 Interrupt call Interrupt return

The third column of Table 4-1 shows the type of a return action that the processor takes
depending on the state of the return status field.

The processor records two versions of the supervisor call: one for when the trace-enable flag
in the process controls is set prior to a supervisor call and one for when the flag is clear prior to
the call. The trace controls are described in detail in Chapter 10.

The preretum-trace flag is used in conjunction with the call-trace and preretum-trace modes. If
the call-trace mode is enabled when a call is made, the processor sets the prereturn-trace flag;
otherwise it clears the flag. Then, if this flag is set and the prereturn-trace mode is enabled, a
prereturn trace event is generated on a return before any actions associated with the return
operation are performed. Refer to Chapter 10 for a detailed discussion of the interaction of the
call-trace and preretum-trace modes and the prereturn-trace flag.

Return Instruction Pointer

The RIP is the address of the instruction that the processor is to execute after returning from a
procedure call. This instruction is the instruction that follows the procedure call instruction.

Since the processor uses the same procedure call mechanism to make implicit procedure calls
to service faults and interrupts, programs should not use register r2 for purposes other than to
hold the RIP.

4-6

inter PROCEDURE CALLS

Mapping the Local Registers to the Procedure Stack

The availability of multiple register sets cached on the processor chip and the saving and
restoring of these register sets in stack frames should be transparent to most programs.
However, the following additional information about how the local registers and procedure
stack are mapped to one another can help avoid problems.

Since the local-register sets reside on the processor chip, the processor will often not have to
access the stack frame in the procedure stack, even though space has been allocated on the
stack for the current frame. The processor only accesses the current frame in the procedure
stack in the following instances:

1. to read or write variables other than those held in the local registers, or

2. to read local registers that were stored in the procedure stack due to the nesting of
procedures calls more than four deep.

This method of mapping the local registers to the register-save areas in the procedure stack has
several implications. First, storing information in a local register does not guarantee that it will
be stored in its associated word in the current stack frame. Likewise, storing information in the
first 16 words of a stack frame does not guarantee that the local registers associated with the
stack frame are modified.

Second, if you try to read the contents of the current set of local registers through a memory
access to the first 16 words of the current stack frame, you may not get the expected result.
This is also true if you try to read the contents of a previously stored set of local registers
through a memory address to its associated stack frame.

The processor automatically stores the contents of a local register set into the register-save area
of its associated stack frame only if the nesting of procedure calls (local or supervisor) is
deeper than the number of local register sets.

Occasionally, it is necessary to have the contents of all local register sets match the contents of
the register-save areas in their associated stack frames. For example, when debugging software
it may be necessary to trace the call history back through the nested procedures. This can not
be done unless the cached local-register frames are flushed (i.e., written out to the procedure
stack).

The processor provides the flushreg (flush local registers) instruction to allow voluntary flush
ing of the local registers. This instruction causes the contents of all the local-register sets,
except the current set, to be written to their associated stack frames in memory.

Third, if you need to modify the previous FP in register rO, you should precede this operation
with the flushreg instruction, or else the behavior of the ret (return) instruction is not predict-
able. '

Fourth, local registers should not be used for passing parameters between procedures.
(Parameter passing is discussed in the following section.)

4-7

inter PROCEDURE CALLS

Fifth, when a set of local registers is assigned to a new procedure, the processor may not clear
or initialize these registers. The initial contents of these registers are therefore unpredictable.
Also, the processor does not initialize the local register-save area in the newly created stack
frame for the procedure, so its contents are equally unpredictable.

LOCAL CALL

A local call is made using either of two local call instructions: call and calIx. These instruc
tions initiate a procedure call using the call/return mechanism described earlier in this chapter.

The call instruction s~ecifies the address of the called procedures as the IP plus a signed, 24-bit
displacement (Le., -2 3 to 223 - 4).

The calIx instruction allows any of the addressing modes to be used to specify the procedure
address. The IP with displacement addressing mode allows full 32-bit IP relative addressing.

The ret instruction initiates a procedure switch back to the last procedure that issued a call.

Local Call Operation

During a local call, the processor performs the following operations:

1. Stores the RIP in current local-register r2.

2. Allocates a new set of local registers for the called procedure.

3. Allocates a new frame on the procedure stack.

4. Changes the instruction pointer to point to the first instruction in the called procedure.

5. Stores the PFP in new local-register rOo

6. Stores the FP for the new frame in global register g15.

7. Allocates a save area for the new local registers in the new stack frame.

8. Stores the SP in new local-register r1.

Local Return Operation

On a return, the processor performs these operations:

1. Sets the FP in global register g15 to the value of the PFP in current local-register rOo

2. Deallocates the cJrrent local registers for the procedure that initiated the return and
switches to the local registers assigned to the procedure being returned to.

3. Deallocates the stack frame for the procedure that initiated the return.

4. Sets the IP to the value of the RIP in new local~register r2.

The algorithms that the call, calIx, and ret instructions use are described in greater detail in
Chapter 11.

4-8

PROCEDURE CALLS

PARAMETER PASSING

The processor supports two mechanisms for passing parameters between procedures: global
registers and argument list.

Passing Parameters in Global Registers

The global registers provide the fastest method of passing parameters. Here, the calling
procedure copies the parameters to be passed into global registers. The called procedure then
copies the parameters (if necessary) out of the global registers after the call.

On a return, the called procedure can copy result parameters into global registers prior to the
return, with the calling procedure copying them out of the global registers after the return.

Passing Parameters in an Argument List

When more parameters need to be passed than will fit in the global registers, they can be
placed in an argument list. This argument list can be stored anywhere in memory providing
that the procedure being called has a pointer to the list. Commonly, a pointer to the argument
list is placed in a global register.

Parameters can also be returned to the calling procedure through an argument list. Here again,
a pointer to the argument is generally returned to the calling procedure through a global
register.

The argument list method of passing parameters should be thought of as an escape mechanism
and used only when there are not enough global registers available for passing parameters.

Passing Parameters Through the Stack

A convenient place to store an argument list is in the stack frame for the calling procedure.
Storing the argument list in the stack provides the benefit of having the list automatically
deallocated upon returning from the procedure that set up the list. Space for the argument list
is created by incrementing the SP, as described earlier in this chapter in the section titled
"Stack Pointer."

Parameters can also be returned to the calling procedure through an argument list in the stack.
However, care should be taken when doing this. The return argument list must not be placed in
the frame for the called procedure, since this frame is deallocated on the return. Also, if the
return list is to be placed in the frame of the calling procedure, the calling procedure must
allocate space for this list prior to making the call.

SYSTEM CALL

A system call is made using the call system instruction calls. This call is similar to a local call
except that the processor gets the IP for the called procedure from a data strUcture called the
system procedure table. (System calls are sometimes referred to in this manual as "system
procedure-table calls. ")

4-9

PROCEDURE CALLS

Figure 4-3 illustrates the use of the system procedure table in a system call. The calls
instruction requires a procedure-number operand. This procedure number provides an index
into the system procedure table, which contains IPs for specific procedures.

ADDRESS
SPACE

ENTRY IN THE SYSTEM
PROCEDURE TABLE
CONTAINS AN INSTRUCTION
POINTER TO THE CALLED
PR CEDURE.

CALLING PROCEDURE
ISSU ES A calls
INSTRUCTION, WHICH
CONTAINS AN INDEX FOR
AN ENTRY IN THE
SYSTEM PROCEDURE
TABLE.

SYSTEM
PROCEDURE

TABLE

HEADER

IP

IP

IP

IP

IP

IP

Figure 4-3: System Call Mechanism

ENTRY 1

ENTRY 2

ENTRY 3

ENTRY 4

ENTRY 5

ENTRY 6

The system call mechanism supports two types of procedure calls: local calls and supervisor
calls. A local call is the same as that made with the call and calix instructions, except that the
processor gets the IP of the called procedure from the system procedure table. The supervisor
call differs from the local call in two ways: (1) it causes the processor to switch to another
stack (called the supervisor stack), and (2) it causes the processor to switch to a different
execution mode.

The system call mechanism offers two benefits. First, it supports portability for application
software. System calls are commonly used to call kernel services. By calling these services
with a procedure number rather than a specific IP, applications software does not have to be
changed each time the implementation of the kernel services is modified.

4-10

PROCEDURE CAllS

Second, the ability to switch to a different execution mode and stack allows kernel procedures
and data to be insulated from applications code. This benefit is describe in more detail later in
this chapter in the section titled "User-Supervisor Protection Model".

SYSTEM PROCEDURE TABLE

The system procedure table is a general structure, which the processor uses in two ways. The
first way is as a place for storing IPs for kernel procedures, which can then be accessed through
the system call mechanism. The processor gets a pointer to the system procedure table from
the initial memory image (IMI) as described in Chapter 7 in the section titled "System Data
Structure Pointers."

The second way a system procedure table is used is as a place for storing IPs for fault handler
procedures. Here, the processor gets a pointer to the system procedure table from entries in the
fault table, as described in Chapter 9 in the section titled "Fault-Table Entries."

The structure of the system procedure table is shown in Figure 4-4. The following sections
describe the fields in this table.

Procedure Entries

The procedure entries specify the target IPs for the procedures that can be accessed through the
system procedure table. Each entry is made up of an address (or IP) field and a type field. The
address field gives the address of the first instruction of the target procedure. Since all
instructions are word aligned, only the 30 most-significant bits of the address are given. The
processor automatically provides zeros for the least-significant bits.

The procedure entry type field indicates the type of call to execute: local or supervisor. The
encodings of this field are shown in Table 4-2.

Table 4-2: Encodings of Entry Type Field in System Procedure Table Entry

Entry Type Procedure Type
Field

00 local procedure

01 reserved

10 supervisor procedure

11 reserved

Supervisor Stack Pointer

When a supervisor call is made, the processor switches to a new stack called the supervisor
stack. The processor gets a pointer to this stack from the supervisor-stack-pointer entry (bytes
12-15, bits 2-31) in the system procedure table. Since stack frames are word aligned, only the
30 most-significant bits of the supervisor stack pointer are given.

4-11

PROCEDURE CALLS

31 1 0

HEADER

PROCEDURE ENTRIES

PROCEDURE ENTRY
2 1 0

ADDRESS I X X I
LJ
L OO-LOCAL

10 - SUPERVISOR

RESERVED (INITIALIZE TO 0)

~ PRESERVED

Figure 4-4: Procedure Table Structure

Trace Control Flag

The trace-control flag (byte 12, bit 0) specifies the new value of the trace-enable flag when a
supervisor call causes a switch from user mode to supervisor mode. The use of this bit is
described in Chapter 10.

4-12

inter PROCEDURE CALLS

System Call to a Local Procedure

When a calls instruction references a procedure entry designated as a local type (002), the
processor executes a local call to the procedure selected from the system procedure table.
Neither a mode switch nor a stack switch occurs.

The ret instruction permits returns from either a local procedure or a supervisor procedure.
The return status field in local register rO determines the type of return action that the processor
is to take. If the return status field is set to 0002, a local return is executed. In a local return,
no stack or mode switching is carried out.

USER-SUPERVISOR PROTECTION MODEL

The processor provides a mode and stack switching mechanism called the user-supervisor
protection model. This protection model allows a system to be designed in which kernel code
and data reside in the same address space as user code and data, but access to the kernel
procedures (called supervisor procedures) is only allowed through a tightly controlled inter
face. This interface is provided by the system procedure table.

The user-supervisor protection model also allows kernel procedures to be executed using a
different stack (the supervisor stack) than is used to execute applications program procedures.
The ability to switch stacks helps maintain the integrity of the kernel. For example, it would
allow system debugging software or a system monitor to be accessed, even if an applications
program crashes.

User and Supervisor Modes

When using the user-supervisor protection model, the processor can be in either of two execu
tion modes: user or supervisor. The difference between the two modes is that when in the
supervisor mode, the processor

• switches to the supervisor stack, and

• may execute a set of supervisor only instructions.

Note

In the 80960KB implementation of the 80960 architecture, the only supervisor-only instruction
is the modify process controls instruction (modpc).

Supervisor Calls

Mode switching between the user and supervisor execution modes is accomplished through a
supervisor call. A supervisor call is a call executed with the calls instruction that references a
supervisor procedure in the system procedure table (i.e., a procedure with an entry type 102),

4-13

inter PROCEDURE CALLS

When the processor is in the user mode and it executes a calls instruction, the processor
performs the following actions:

• It switches to supervisor mode

• It switches to the supervisor stack

• It sets the return status field in register RO of the calling procedure to OlX2, indicating that
a mode and stack switch has occurred.

The processor remains in the supervisor mode until a return is performed from the procedure
that caused the original mode switch. While in the supervisor mode, either the local call
instructions (call and callx) or the calls instruction can be used to call supervisor procedures.

(The call and calix instructions call local (or user) procedures in user mode and supervisor
procedures in supervisor mode. There is no stack or processor state switching associated with
these instructions.)

When a ret instruction is executed and the return status field is set to OlX2, the processor
performs a supervisor return. Here, the processor switches from the supervisor stack to the
local stack, and the execution mode is switched from supervisor to user.

Supervisor Stack

When using the user-supervisor mechanism, the processor maintains separate stacks in the
address space, one for procedures executed in the user mode (local procedures) and another for
procedures executed in the supervisor mode (supervisor procedures). When in the user mode,
the local procedure stack described at the beginning of this chapter is used. When a supervisor
call is made, the processor switches to the supervisor stack. It continues to use the supervisor
stack until a return is made to the user mode.

The structure of the supervisor stack is identical to that of the local procedure stack (shown in
Figure 4-2). The processor obtains the SP for the supervisor stack from the system procedure
table. When a supervisor call is executed while in the user mode (causing a switch to the
supervisor stack), the processor aligns this SP to the next 64 byte boundary to form the new FP
for the supervisor stack. When a local call or supervisor call is made while in the supervisor
mode, the processor aligns the SP in the current frame of the supervisor stack to the next 64
byte boundary to form the FP pointer. This operation allows supervisor procedures to be called
from supervisor procedures.

Hints on Using the User-Supervisor Protection Model

The user-supervisor has three basic uses in an embedded system application:

1. to allow the modpc instruction to be used,

2. to allow kernel code to use a separate stack from the applications code, and

3. to allow an external memory management unit (MMU) to provide protection for kernel
code and data.

4-14

inter PROCEDURE CALLS

If an application does not require any of the above features, it can be designed to not use the
user-supervisor protection model. Here, all procedure calls are to local procedures. If the
system table is used, all the entries must be the local type (i.e., entry type 002).

If access to the modpc instruction is required, but the other two features are not, it is suggested
that the system be designed to always run in supervisor mode. At initialization, the processor
automatically places itself in supervisor mode, prior to executing the first instruction. The
processor then remains in supervisor mode indefinitely, as long as no action is taken to change
the execution mode to user mode (i.e., using the mod pc instruction to change the execution
mode bit of the process controls to 0). With this technique, all of the procedure calling
instructions (call, calix, and calls) can be used. The processor only uses one stack, which is
considered the supervisor stack. It gets the supervisor stack pointer from local register r2.
(Prior to making the first procedure call, the supervisor stack pointer must be loaded into r2.)

The processor does not support the last use of the user-supervisor protection model directly. In
other words, the processor does not provide a pin or other device that indicates to external
hardware when a mode switch has occurred. Several techniques are available to perform this
operation, which are beyond the scope of this manual.

BRANCH AND LINK

The bal (branch and link) and balx (branch and link extended) instructions provide an alternate
method of making procedure calls. These instructions save the address of the next instruction
(RIP) in a specified location, then branch to a target instruction or set of instructions. The state
of the local registers and stack remains unchanged. (For the bal instruction, the RIP is
automatically stored in global register g14; for the balx instruction, the location of the RIP is
specified with one of the instruction operands.)

A return is accomplished with a bx (branch extended) instruction, where the address of the
target instruction is the one saved with the branch and link instruction.

Branch and link procedure calls are recommended for calls to procedures that (1) do not call
other procedures (i.e., for procedure calls that do not result in nesting of procedures) and (2) do
not need many local variables (i.e., allocation of a new set of local registers does not provide
any benefit). Here, local registers as well as global registers can be used for parameter passing.

4-15

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I

I
I
I

I

I
I
I
I

Data Types and
Addressing Modes

5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

CHAPTER 5
DATA TYPES AND ADDRESSING MODES

This chapter describes the data types that the 80960KB processor recognizes and the address
ing modes that are available for accessing memory locations.

DATA TVPES

The processor defines and operates on the following data types:

• Integer (8, 16, 32, and 64 bits)

• Ordinal (8, 16,32, and 64 bits)

• Real (32, 64, and 80 bits)

• Decimal (ASCII digits)

• Bit Field

• Triple-Word (96 bit)

• Quad-Word (128 bit)

Note

The real and decimal data types are not defined in the 80960 architecture. They are supported
in the 80960KB processor, but not in the 80960KA processor.

The integer, ordinal, real, and decimal data types can be thought of as numeric data types
because some operations on these data types produce numeric results (e.g., add, subtract).

The remaining data types (bit field, triple word, and quad word) represent groupings of bits or
bytes that the processor can operate on as a whole, regardless of the nature of the data
contained in the group. These data types facilitate the moving of blocks of bits or bytes.

Integers

Integers are signed whole numbers, which are stored and operated on in two's complement
format. The processor recognizes four sizes of integers: 8 bit (byte integers), 16 bit (short
integers), 32 bit (integers), and 64 bit (long integers). Figure 5-1 shows the formats for the
four integer sizes and the ranges of values allowed for each size.

Ordinals

Ordinals are a general-purpose data type. The processor recognizes four sizes of ordinals: 8
bit (byte ordinals), 16 bit (short ordinals), 32 bit (ordinals), and 64 bit (long ordinals). Figure
5-2 shows the formats for the four ordinal sizes and the ranges of numeric values allowed for
each size.

5-1

64
BITS

DATA TYPES AND ADDRESSING MODES

SIGN

63

DATA TYPE
Byte Integer
Short Integer
Integer
Long Integer

SIGN

15

SIGN

8
BITS

o

32
BITS 1.·;;.:1: .• · .• ·.··:':>:,::::::::::: :::H:)::::?::I.:~tE GEf(;'., ': : .:. ';»':':.1

• - : :.; •• '';'' ' ' .. ,','; .. ", , . ;.<:>,.;.;:.;" -

31

RANGE
_27 to 27_1
_2 15 to 215_1
_2 31 to 231 - 1
_263 to 263 - 1

DECIMAL EQUIVALENT
-128 to 127
-32,768 to ,32,767
-2.14x 109 to 2.14x 109

-9.22 x 1018 to 9.22 x 1018

Figure 5-1: Integer Format and Range

o

o

The processor uses ordinals for both numeric and non-numeric operations. For numeric opera
tions, ordinals are treated as unsigned whole numbers. The processor provides several arith
metic instructions that operate on ordinals. For non-numeric operations, ordinals contain bit
fields, byte strings, and Boolean values.

When ordinals are used to represent Boolean values, a 12 represents a TRUE and a 02
represents a FALSE.

Reals

Reals are floating-point numbers. The processor recognizes three sizes of reals: 32 bit (reals),
64 bit (long reals), and 80 bit (extended reals). The real-number format conforms to
ANSI/lEEE Std. 754-1985, the IEEE Standard For Binary Floating-Point Arithmetic. Real
numbers are discussed in greater detail in Chapter 12.

5-2

DATA TYPES AND ADDRESSING MODES

8
BITS

Blfs r :~HP'!:9:~P~:~~:k :':'1
15 0

B ~ ~S I~':~i::::::~':"':,::~i::::~:::",,::::::,:,::iii::~:::;::j:j .. ~!:i::,:,!:i::;:9:jl~i~:i:i::i:;::::;ji:)::i::::;:'::'j:::::':::~::i;'~,::::";;:i:':i,::1
31 0

64 I'''''':''''''''''''''''::'' ',.,,;.:. "':"';:'''::':' ", , ,':':",.':'""" . "":",,:,:,;,,,,:"::"';"':';':::':',.,. ,',., """":''''':';''''':',':',:' "';:, """""",::,:::,,:'';';'' ':-:'''''':'::'':';'':''''::''':'::''':''''''':':':'::'1

BI TS::"::r:,?,:::::,:,::,::::::::::::::::'i\\))j::::::~'~:::~:::~:~::::::::~~::::::::::~~~~::~~~I~~F:': :::: :::::~:} r::: :::(::; :' :,:::::i;r::::::;:):: ::i:::::::::~::,::,::':::i
~ 0

DATA TYPE
Byte Ordinal
Short Ordinal
Ordinal
Long Ordinal

Decimals

RANGE DECIMAL EQUIVALENT
o to 28_1 o to 255 o to 216_1 o to 65,535
o to 232 - 1 o to 4.29 X 109

o to 264 - 1 o to 1.84 x 1019

Figure 5-2: Ordinal Format and Range

The processor provides three instructions that perform operations on decimal values when the
values are presented in ASCII format. Figure 5-3 shows the ASCII format for decimal digits.
Each decimal digit is contained in the least-significant byte of an ordinal (32 bits). The
decimal digit must be of the form OOl1dddd2, where dddd2 is a binary-coded decimal value
from 0 to 9. For decimal operations, bits 8 through 31 of the ordinal containing the decimal
digit are ignored.

5-3

DATA TVPESAND ADDRESSING MODES

ASCII FORMAT

31 7 0

Figure 5-3: Decimal Format

Bits and Bit Fields

The processor provides several instructions that perform operations on individual bits or fields
of bits within an ordinal (32 bit) operand. Figure 5-4 shows these data types.

LENGTH L BIT NUMBER OF
LOWEST
NUMBERED BIT.

Figure 5-4: Bits and Bit Fields

An individual bit is specified for a bit operation by giving its bit number in the ordinal in which
it resides. The least-significant bit of a 32-bit ordinal is bit 0; the most-significant bit is bit 31.

A bit field is a contiguous sequence of bits of from 0 to 32 bits in length within a 32-bit
ordinal. A bit field is defined by giving its length in bits and the bit number of its lowest
numbered bit.

A bit field cannot span a register boundary.

Triple and Quad Words

Triple and quad words refer to consecutive bytes in memory or in registers: a triple word is 12
bytes and a quad word is 16 bytes. These data types facilitate the moving of blocks of bytes.
The triple-word data type is useful for moving extended-real numbers (80 bits).

The quad-word instructions (Idq, stq, and movq) offer the most efficient way to move large
blocks of data.

5-4

inter DATA TYPES AND ADDRESSING MODES

BYTE, WORD, AND BIT ADDRESSING

The processor provides instructions for moving blocks of data values of various lengths from
memory to registers (load) and from registers to memory (store). The allowable sizes for
blocks are bytes, half-words (2 bytes), words (4 bytes), double words, triple words, and quad
words. For example, the stl (store long) instruction stores an 8-byte (double word) block of
data in memory.

When a block of data is stored in memory, the least-significant byte of the block is stored at a
base memory address and the more significant bytes are stored at successively higher ad
dresses.

When loading a byte, half-word, or word from memory to a register, the least-significant bit of
the block is always loaded in bit 0 of the register. When loading double words, triple words,
and quad words, the least-significant word is stored in the base register. The more significant
words are then stored at successively higher numbered registers. Double words, triple words,
and quad words must also be aligned in registers to natural boundaries as described in Chapter
3 in the section titled "Register Alignment."

Bits can only be addressed in data that resides in a register. Bit 0 in a register is the least
significant bit and bit 31 is the most-significant bit.

ADDRESSING MODES

The processor offers 11 modes for addressing operands. These modes are grouped as follows:

• Literal

• Register

• Absolute

• Register Indirect

• Register Indirect with Index

• Index with Displacement

• IP with Displacement

Most of the instructions use only .the first two modes (literal and register). The remaining
modes are used for memory related instructions.

Table 5-1 shows all the addressing modes, a brief description of the elements of the address in
each mode, and the assembly-code syntax for each mode.

5-5

inter DATA TVPES AND ADDRESSING MODES

Table 5-1: Addressing Modes

Mode Description Assembler Syntax

Literal value value

Register register reg

Absolute offset offset exp

Register Indirect abase (reg)

Register Indirect abase + offset exp (reg)
with offset

Register Indirect abase + (index*scale) (reg) [reg*scale]
with index

Register Indirect abase + (index*scale) exp (reg) [reg*scale]
with index and + displacement
displacement

Index with (index *scale) exp [reg*scale]
displacement + displacement

IP with IP + displacement + 8 exp (IP)
displacement

Where:
reg is register and exp is expression

Literals

The processor recognizes two types of literals: ordinal literal and floating-point literal. An
ordinal literal can range from 0 to 31 (5 bits). When an ordinal literal is used as an operand,
the processor expands it to 32 bits by adding leading zeros. If the instruction defines an
operand larger than 32 bits, the processor zero-extends the value to the operand size. If an
ordinal literal is used in an instruction that requires integer operands, the processor treats the
literal as a positive integer value.

The processor also recognizes two floating-point literals (+0.0 and + 1.0). These floating-point
literals can only be used with floating-point instructions. As with the ordinal literals, the
processor converts the floating-point literals to the operand size specified by the instruction.

A few of the floating-point instructions use both floating-point and non-floating-point operands
(e.g., the convert integer-to-real instructions). Ordinal literals can be used in these instructions
for non-floating-point operands.

Note

Floating-point literals are not defined in the 80960 architecture.

5·6

DATA TYPES AND ADDRESSING MODES

Register

A register is referenced as an operand by giving the register number (e.g., gO, r5, fp3). Both
floating-point and non-floating-point instructions can reference global and local registers in
this way. However, floating-point registers can only be referenced in conjunction with a
floating-point instruction.

Absolute

Absolute addressing is used to reference a memory location directly as an offset from address 0
of the address space, ranging from _231 to 231 - 1. Typically, an assembler will allow absolute
addresses to be specified through arithmetic expressions (e.g., x + 44), symbolic labels, and
absolute values.

At the machine-level, two absolute-addressing modes are provided, depending on the instruc
tion format (i.e., MEMA or MEMB). For the MEMA format, the offset is an ordinal number
ranging from 0 to 2048; for the MEMB format, the offset is an integer (called a displacement)
ranging from _231 to 231 -1. After evaluating an absolute address, the assembler will convert
the address into an offset and select the appropriate machine-level instruction type and address
ing mode. (The machine-level addressing modes and instruction formats are described in
Appendix B.)

Register Indirect

The register indirect addressing modes allow an address to be specified with an ordinal value
(32 bits) in a register or with an offset or a displacement added to a value in a register. Here,
the value in the register is referred to as the address base (abase).

Again, an assembler will allow the offset and displacement to be specified with an expression
or symbolic label, then evaluate the address to determine whether an offset or a displacement is
appropriate.

Register Indirect with Index

The register indirect with index addressing modes allow a scaled index to be added to the value
in a register. The index is specified by means of a value placed in a register. This index value is
then multiplied by the scale factor. The allowable scale factors are 1,2,4,8, and 16.

A displacement may also be added to the abase value and scaled index.

Index with Displacement

A scaled index can also be used with a displacement alone. Again, the index is contained in a
register and is multiplied by a scaling constant before the displacement is added to it.

5-7

inter DATA TYPES AND ADDRESSING MODES

IP with Displacement

The IP with displacement addressing mode is often used with load and store instructions to
make them IP relative.

Note that with this mode the displacement plus a constant of 8 is added to the IP of the
instruction.

5-8

Instruction Set Summary 6

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I

I
I
I

I
I

I
I
I
I

CHAPTER 6
INSTRUCTION SET SUMMARY

This chapter provides an overview of the instruction set for the 80960KB processor. Included
is a discussion of the instruction fonnat and a summary of the instruction groups and the
instructions in each group.

Chapter 11 gives detailed descriptions of each of the instructions. The instructions are listed in
this chapter in alphabetical order. Included for each instruction are the assembly-language
fonnat, the action taken when the instruction is executed, and examples of how the instruction
might be used.

Appendix C provides a detailed description of the factors that affect instruction timing. It also
gives the number of clock cycles required for each instruction.

INSTRUCTION FORMATS

Instructions are described in this reference manual in two fonnats: assembly language and
machine level.

Assembly-Language Format

Throughout most of this manual, the instructions are referred to by their assembly-language
mnemonics. For example, the add ordinal instruction is referred to as the addo instruction.

An assembly-language statement consists of an instruction mnemonic, followed by from 0 to 3
operands, separated by commas. The following example shows the assembly-language state
ment for the addo instruction:

addo g5, g9, g7

Here, the ordinal operands in global registers g5 and g9 are added together and the result is
stored in g7.

A detailed description of the nomenclature used to describe assembly-language instructions is
given in Chapter 11.

Machine Formats

At the machine level of the processor, all instructions are word aligned. Most of the instruc
tions are one word long, although some addressing modes make use of a two-word fonnat.

There are four instruction fonnats: register (REG), compare and branch (COBR), control
(CTRL), and memory (MEM). Each instruction uses one of these fonnats, which is deter
mined by the opcode field of the instruction.

6-1

inter INSTRUCTION SET SUMMARY

The machine-level fonnats for the instructions are.clescribed in detail in Appendix B.

INSTRUCTION GROUPS

The 80960KB processor implements all the instructions in the 80960 instruction set, which
includes all of the data movement, arithmetic, logical, and program control instructions com
monly found in computer architectures. The processor also includes a set of floating-point
instructions and several instructions to handle architectural extensions found in the processor.

The 80960 instruction set is made up of the following groups of instructions:

• Data Movement

• Arithmetic (Ordinal and Integer)

• Logical

• Bit and Bit Field

• Comparison

• Branch

• Call1Retum

• Fault

• Debug

• Processor Management

The instruction-set extensions found in the 80960KB processor include the following groups of
instructions:

• Integer to Real Conversion

• Floating Point

• Synchronous Move and Load

• Decimal

Tables 6-1 and 6-2 give a summary of the 80960 instructions and the 80960KB instruction-set
extensions, respectively. The actual number of instructions is greater than those shown in this
list, because for some operations, several different instructions are provided to handle different
operand sizes, data types, or branch conditions.

6-2

inter INSTRUCTION SET SUMMARY

Table 6-1: Summary of the 80960 Instruction Set

Data Movement Arithmetic Logical Bit and Bit
Field

Load Add And Set Bit
Store Subtract Not And Clear Bit
Move Multiply And Not Not Bit
Load Address Divide Or Check Bit

Remainder Exclusive Or Alter Bit
Modulo Not Or Scan For Bit
Shift arNot Scan Over Bit
Extended Nor Extract

Multiply Exclusive Nor Modify
Extended Not

Divide Nand
Rotate

Comparison Branch Call/Return Fault

Compare Unconditional Call Conditional Fault
Conditional Branch Call Extended Synchronize Faults

Compare Conditional Branch Call System
Compare and Compare and Return

Increment Branch Branch and Link
Compare and

Decrement

Debug Processor Miscellaneous

Modify Trace Modify Arithmetic Atomic Add
Controls Controls Atomic Modify

Mark Modify Process Scan Byte For
Force Mark Controls Equal

Flush Local
Registers

Test Condition
Code

6-3

inter INSTRUCTION SET SUMMARY

Table 6-2: Summary of the 80960KB Instruction-Set Extensions

Conversion Floating Point Synchronous Decimal

Convert Real to Move Real Synchronous Load Move)

Integer Add Synchronous Move Add With Carry
Convert Integer to Subtract Subtract With Carry

Real Multiply
Divide
Remainder
Scale
Round
Square Root
Sine
Cosine
Tangent
Arctangent
Log
Log Binary
Log Natural
Exponent
Classify
Copy Real Extended
Compare

The following sections give a brief overview of the instructions in each of these groups. The
floating-point instructions are described in Chapter 12.

DATA MOVEMENT

The data movement instructions include those instructions that move data from memory to the
global and local registers; that move data from the global and local registers to memory; and
that move data among these registers.

Load

The load instructions (listed below) copy bytes or words from memory to a selected register or
group of registers:

ld
ldob
ldos
ldib
ldis
ldl
ldt
ldq

load
load byte ordinal
load short ordinal
load byte integer
load short integer
load long
load triple
load quad

6-4

inter INSTRUCTION SET SUMMARY

For the Id, Idob, Idos, Idib, and Idis instructions, a memory address and a register are specified
in the instruction and the value at the memory address is copied into the register. Zero and sign
extending is performed automatically for byte and short (half-word) operands.

The Id, Idl, Idt, and Idq instructions copy 4, 8, 12, and 16 bytes from memory into successive
registers.

Note

When using the load, store, and move instructions that move 8, 12, or 16 bytes at a time, the
rules for register alignment must be followed. Refer to the section in Chapter 3 titled "Register
Alignment" for a discussion of these rules.

Store

For each load instruction there is a corresponding store instruction (listed below), which copies
bytes or words from a selected register or group of registers to memory:

st
stob
stos
stib
stis
stl
stt
stq

store
store byte ordinal
store short ordinal
store byte integer
store short integer
store long
store triple
store quad

For the st, stob, stos, stib, and stis instructions, a register and memory address are specified in
the instruction and the value in the register is copied into memory. For the byte and short
instructions, the value in the register is automatically reformatted for the shorter memory
location. For the stib and stis instructions, this reformatting can lead to overflow if the register
value is too large to be represented in the shorter memory location ..

The st, stl, stt, and stq instructions copy 4, 8, 12, and 16 bytes from successive registers into
memory.

Move

The move instructions, listed below, copy data from a register or group of registers to another
register or group of registers.

mov
mavl
movt
movq

move word
move long word
move triple word
move quad word

These move instructions can only be used to move data among the global and local registers.
A set of move-real instructions (movr, movrl, and movre) are provided for moving real
number values between the global and local registers and the floating-point registers. The
move-real instructions are described in Chapter 12.

6-5

INSTRUCTION SET SUMMARY

Load Address

The Ida instruction computes an effective address in the address space from an operand
presented in one of the addressing modes. A common use of this instruction is to load a
constant into a register.

ARITHMETIC

Table 6-3 lists all the arithmetic operations for which the 80960KB processor provides instruc
tions and the data types that the instructions operate on. An "X" in this table indicates that the
80960 architecture provides an instruction for the specified operation and data type; an "E"
indicates that an 80960KB instruction-set extension provides an instruction for the specified
operation and data type. An "E*" indicates that the specified operation can be performed on
the specified data type using 80960KB extended instructions, but that a unique instruction for
this operation is not provided. For example, a specific instruction is not provided to add two
extended-real values. However, this operation can be carried out with either the add real
(addr) or the add long real (addrl) instruction.

With two exceptions, all the processor's arithmetic operations are carried out on operands in
registers. The processor does not provide instructions that perform arithmetic operations on
operands in memory.

The two instructions that are exceptions are the atadd (atomic add) and atmod (atomic
modify) instructions, which are discussed later in this chapter.

A summary of the arithmetic instructions for real (floating-point) data types is provided in
Chapter 12. The following sections describe the arithmetic instructions for ordinal and integer
data types.

Add, Subtract, Multiply, and Divide

The following instructions perform add, subtract, multiply, or divide operations on integers and
ordinals:

addi add integer
addo add ordinal
subi subtract integer
subo subtract ordinal
muli multiply integer
mulo multiply ordinal
divi divide integer
divo divide ordinal

These instructions perform operations on one-word operands in registers and store the results
in a register.

6-6

INSTRUCTION SET SUMMARY

Table 6-3: Arithmetic Operations

Arithmetic Integer Ordinal Real Long Extended
Operations Real Real

Add X X E E E*

Subtract X X E E E*

Multiply X X E E E*

Divide X X E E E*

Remainder X X E E E*

Modulo X

Shift Left X X

Shift Right X X

Shift Right X
Dividing

Scale E E E*

Round E E E*

Square Root E E E*

Sine E E E*

Cosine E E E*

Tangent E E E*

Arctangent E E E*

Exponent E E E*

Log E E E*

Log Binary E E E*

Log Epsilon E E E*

Classify E E E*

Copy Sign E

Copy Reversed E
Sign

Extended Arithmetic

The following four instructions are provided to support extended arithmetic operations to be
performed (i.e., arithmetic operations on operands greater than one word in length):

addc add ordinal with carry
subc subtract ordinal with carry
ernul extended multiply
ediv extended divide

6-7

INSTRUCTION SET SUMMARY

The ad de and sube instructions add or subtract two words (contained in registers) plus a
condition code bit (used as a carry bit). If the result has a carry, the carry bit in the condition
code is set. Also, a second condition code bit is set if the operation would have resulted in an
integer overflow condition. (The three-bit condition code is contained in the arithmetic con
trols as described in Chapter 3.)

These instructions treat the operands as ordinals, however, the indication of overflow in the
condition code facilitates a software implementation of extended-integer arithmetic.

The ernul instruction multiplies two ordinals (each contained in a register), producing long
ordinal result (stored in two registers). The ediv instruction divides a long ordinal by an
ordinal, producing an ordinal quotient and an ordinal remainder.

Remainder and Modulo

The following instructions divide one operand by another and retain the remainder of the
operation:

remi
remo
modi

remainder integer
remainder ordinal
modulo integer

The difference between the remainder and modulo instructions lies in the sign of the result.
For the remi and remo instructions, the result has the same sign as the dividend; for the modi
instruction, the result has the same sign as the divisor.

Shift and Rotate

The processor provides the following five shift instructions:

shlo shift left ordinal
shro shift right ordinal
shU shift left integer
shri shift right integer
shrdi shift right dividing integer

These instructions shift the operand a specified number of bits to the left or to the right. The
shlo, shU, shro, and shrdi instructions are equivalent to multiplying (shift left) or dividing
(shift right) by the power of 2. Bits shifted beyond the register boundary are discarded

The shri instruction performs a conventional arithmetic shift right. However, when this in
struction is used to divide an integer operand by the power of 2, it produces an incorrect
quotient for negative operands. (The shrdi instruction produces the correct quotient when this
divide operation is used on negative operands.)

The rotate instruction rotates the bits of the operand to the left (toward higher significance) by
a specified number of bits. Bits shifted beyond the left boundary of the register (bit 31) appear
at the right boundary (bit 0).

6-8

inter INSTRUCTION SET SUMMARY

LOGICAL

The following instructions perform bitwise Boolean operations on the specified operands:

and A andB
notand (not A) and B
andnot A and (not B)
xor not (A = B)
or A or B
nor (not A) and (not B)
xnor A =B
not not A
notor (not A) or B
oroot A or (not B)
nand (not A) or (not B)

COMPARISON

The processor provides several types of instructions that are used to compare two operands.
The following sections describe the compare instructions for ordinal and integer data types.
The compare instructions for real data types are discussed in Chapter 12.

Compare and Conditional Compare

The compare instructions listed below, compare two operands then set the condition-code bits
in the arithmetic controls according to the results.

cmpi
cmpo
concmpi
concmpo

compare integer
compare ordinal
conditional compare integer
conditional compare ordinal

The condition-code bits are set to indicate whether one operand is less than, equal to, or greater
than the other operand. (Refer to the section in Chapter 3 titled "Functions of the Arithmetic
Controls Bits" for a discussion of meanings of the condition-code bits for conditional
operations.)

The cmpi and cmpo instructions simply compare the two operands and set the condition-code
bits accordingly.

The concmpi and concmpo instructions first check the status of bit 2 of the condition code. If
it is not set, the operands are compared as with the cmpi and cmpo instructions. If bit 2 is set,
no comparison is performed and the condition-code bits are not changed.

The conditional compare instructions are provided specifically to optimize two-sided range
comparisons to check if A is between B and C (i.e., B ::; A ::; C). Here, a compare instruction
(cmpi or cmpo) is used to check one side of the range (e.g., A ;::: B) and a conditional compare
instruction (concmpi or concmpo) is used to check the other side (e.g., A::; C) according to the
result of the first comparison.

6-9

inter INSTRUCTION seT SUMMARY

Compare and Increment or Decrement

The following instructions compare two operands, set the condition-code bits according to the
results, then increment or decrement one of the operands:

cmpinci
cmpinco
cmpdeci
cmpdeco

compare and increment integer
compare and increment ordinal
compare and decrement integer
compare and decrement ordinal

These instructions are intended for use at the end of iterative loops.

BRANCH

The branch instructions allow the direction of program flow to be changed by explicitly
modifying the IP. The processor provides three types of branch instructions:

• unconditional branch

• conditional branch

• compare and branch

Most of the branch instructions specify the target IP by specifying a signed displacement to be
added to the current IP. Other branch instructions specify the memory address of the target IP
using one of the processor's addressing modes. This latter group of instructions are called
extended-addressing instructions (e.g., branch extended, branch and link extended)

Unconditional Branch

The following four instructions are used for unconditional branching:

b Branch
bx Branch Extended
bal Branch and Link
balx Branch and Link Extended

The band bx instructions cause program execution to jump to the specified target IP. As
described in Chapter 11, these two instructions perform the same function; however, they use
different machine-level instruction formats.

The bal and balx instructions store the address of the next instruction in a specified register,
then jump to the specified target IP. (For the bal instruction, the RIP is automatically stored in
register G 14; for the balx instruction the location of the RIP is specified with an instruction
operand.) As described in Chapter 4, the branch and link instructions provide a method of
performing procedure calls that does not use the processor's call/return mechanism. Here, the
saved instruction address is used as a return IP.

The bx and balx instructions can be made IP-relative by using the IP with displacement
addressing mode.

6-10

INSTRUCTION SET SUMMARY

Conditional Branch

With the conditional branch (branch if) instructions, the processor checks the condition-code
bits in the arithmetic controls. If these bits match the value specified with the instruction, the
processor jumps to the target IP. These instructions use the displacement plus IP method of
specifying the target IP:

be
boe
bl
ble
bg
bge
bo
boo

branch if equal
branch if not equal
branch if less
branch if less or equal
branch if greater
branch if greater or equal
branch if ordered
branch if unordered

(Refer to the section in Chapter 3 titled "Functions of the Arithmetic Controls Bits" for a
discussion of meanings ofthe condition-code bits for conditional operations.)

The bo and boo instructions refer to comparisons of real numbers. Ordered and unordered real
numbers are described in Chapter 12.

Compare and Branch

The compare and branch instructions compare two operands, then branch according to the
results. There are three subtypes of instructions in this group: compare integer, compare
ordinal, and check bit:

cmpibe
cmpiboe
cmpibl
cmpible
cmpibg
cmpibge
cmpibo
cmpiboo
cmpobe
cmpoboe
cmpobl
cmpoble
cmpobg
cmpobge
bbs
bbc

compare integer and branch if equal
compare integer and branch if not equal
compare integer and branch if less
compare integer and branch if less or equal
compare integer and branch if greater
compare integer and branch if greater or equal
compare integer and branch if ordered
compare integer and branch if unordered
compare ordinal and branch if equal
compare ordinal and branch if not equal
compare ordinal and branch if less
compare ordinal and branch if less or equal
compare ordinal and branch if greater
compare ordinal and branch if greater or equal
check bit and branch if set
check bit and branch if clear

With the compare-ordinal-and-branch and compare-integer-and-branch instructions, two
operands are compared and the condition-code bits are set, as with the compare instructions
described earlier in this chapter. A conditional branch is then executed as with the conditional
branch (branch if) instructions.

6-11

inter INSTRUCTION SET SUMMARY

With the check-bit-and-branch instructions, one operand specifies a bit to be checked in the
other operand. The condition-code bits are set according to the state of the specified bit (i.e.,
0102 if the bit is set and 0002 if the bit is clear). A conditional branch is then executed
according to the setting of the condition-code bits.

BIT AND BIT FIELD

The bit instructions perform operations on a specific bit in an ordinal operand or on a bit field.

Bit Operations

The following instructions operate on a specified bit:

set bit set bit
c1rbit clear bit
notbit not bit
chkbit check bit
alter bit alter bit
scanbit scan for bit
spanbit span over bit

The setbit, c1rbit, and notbit instructions set, clear, or complement (toggle) a specified bit in
an ordinal.

The chkbit instruction causes the condition-code bits to be set according to the state of a
specified bit in a register. The condition code is set to 0102 if the bit is set and 0002 otherwise.

The alterbit instruction alters the state of a specified bit in an ordinal according to the con
dition code. If the condition code is 0102, the bit is set; if the condition code is 0002' the bit is
cleared.

The scanbit and spanbit instructions find the most significant set bit and clear bit, respec
tively, in an ordinal.

Bit Field Operations

There are two bit field instructions extract and modify. The extract instruction converts a
specified bit field, taken from an ordinal value, into an ordinal value. In essence, this instruc
tion shifts a bit field in a register to the right and fills in the bits to the left of the bit field with
zeros.

The modify instruction copies bits from one register, under control of a mask, into another
register. Only the unmasked bits in the destination register are modified.

6-12

INSTRUCTION SET SUMMARY

BYTE OPERATIONS

The scan byte instruction perfonns a byte-by-byte comparison of two ordinals to detennine if
any two corresponding bytes are equal. The condition code is set according to the results of
the comparison.

CONVERSION

Data can be converted from one length to another by means of the load and store instructions.
For example, the ldis instruction loads a short integer from memory to a register and automati
cally converts the integer from a half word to a full word.

The 80960KB extended instruction set provides instructions to perfonn conversions between
integer and real data types. These instructions are described in Chapter 12.

CALL AND RETURN

The processor offers an on-chip call/return mechanism for making procedure calls to local
procedures and kernel procedures. This call/return mechanism is described in detail in Chapter
4. The following four instructions are provided to support this mechanism.

call
calix
calls
ret

call
call extended
call system
return

The call and calix instructions call local procedures. The call instruction specifies the target
procedure (the first instruction of the procedure) by adding a signed displacement to the IP.
The callx instruction uses extended addressing, as described for the bx and balx instructions,
to specify the target procedure. For both of these instructions, a new set of local registers and a
new stack frame are allocated for the called procedure.

The calls instruction operates similarly to the call and calix instructions, except that it gets its
target procedure address from the system procedure table. An index number included as an
operand in the instruction provides an entry point into the procedure table.

Depending on the type of entry being pointed to in the procedure table, the calls instruction can
cause a supervisor call to be executed. A supervisor call causes the processor to switch to the
supervisor stack and to switch to supervisor mode. The supervisor call is described in detail in
Chapter 4.

The ret instruction perfonns a return from a called procedure to the calling procedure (the
procedure that made the call). This instruction obtains its target IP (return IP) from linkage
infonnation that was saved for the calling procedure. The ret instruction is used to return from
local and supervisor calls and from implicit calls to interrupt and fault lIandlers.

6-13

inter INSTRUCTION SET SUMMARY

ATOMIC INSTRUCTIONS

The atomic instructions perfonn read-modify-write operations on operands in memory. They
insure that an operation on a specified memory location is completed before another agent with
access to memory is allowed to access that memory location. These instructions are par
ticularly useful in systems in which several agents have access to system memory.

There are two atomic instructions: atomic add (atadd) and atomic modify (atmod). The
atadd instruction causes an operand to be added to the value in the specified memory location.
The atmod causes bits in the specified memory location to be modified under control of a
mask.

CONDITIONAL FAULTS

Generally, the processor generates faults automatically as the result of certain operations. Fault
handling routines are then invoked to handle the various types of faults without explicit inter
vention by the currently running process. (Faults are discussed in detail in Chapter 9.)

The following conditional fault instructions pennit a fault to be generated explicitly according
to the state of the condition-code bits:

DEBUG

faulte
faultne
faultl
faultle
faultg
faultge
faulto
faultno

fault if equal
fault if not equal
fault if less
fault if less or equal
fault if greater
fault if greater or equal
fault if ordered
fault if unordered

The processor supports debugging and monitoring of program activity through the use of trace
events. The following instructions support these debugging and monitoring tools:

modtc modify trace controls
mark mark
fmark force mark

The trace functions are controlled through the processor's trace controls bits. Some of these
bits allow various types of tracing to be enabled or disabled. Other bits act as flags to indicate
when an enabled trace event has been detected. (Trace controls are described in detail in
Chapter 10.)

The modtc instruction pennits the trace controls bits to be modified.

The mark instruction causes a breakpoint trace event to be generated if the breakpoint trace
mode is enabled. The fmark instruction generates a breakpoint trace independent of the state
of the breakpoint trace mode flag. The latter two instructions allow a breakpoint to be placed
anywhere in a program.

6-14

INSTRUCTION SET SUMMARY

PROCESSOR MANAGEMENT

The processor provides several instructions for use in controlling processor-related functions.

The modpc instruction provides a method of reading and modifying the contents of the process
controls.

In certain instances, it is necessary to insure that the contents of the local-register save area of
the stack frames are the same as the local registers. The flush local registers instruction
(flushreg) automatically stores the contents of all the local register sets, except the current set,
in the register save area of their associated stack frames.

The arithmetic controls cannot be addressed with the load, move, and store instructions or the
bit instructions. Instead, special instructions are provided for this purpose.

The modify arithmetic controls instruction (modac) permits bits in the arithmetic controls
register to be modified under the control of a mask.

The following test instructions allow the state of the condition-code bits to be tested:

teste test if equal
testne test if not equal
testl test if less
testle test if less or equal
testg test if greater
testge test if greater or equal
testo test if ordered
testno test if unordered

These instructions cause a TRUE (0102)to be stored in a destination register if the condition
code matches the condition specified with the instruction. Otherwise, a FALSE (0002) is
stored in the register.

80960KB NON-FLOATING-POINT INSTRUCTION-SET EXTENSIONS

The following non-floating-point instructions are extensions to the 80960 architecture instruc
tion set. The synchronous load and move instructions are provided in both the 80960KB and
80960KA processors; the decimal instructions are provided only in the 80960KB processor.

Synchronous Load and Move

The processor's store instructions are executed asynchronously with the memory controller.
Once the processor sends data out on its bus for storage in main memory, it continues with the
next instruction in the instruction stream, assuming that its bus control logic will carry out the
operation.

The 80960KB processor provides four special instructions for performing memory operations
that perform store and move operations synchronously with memory.

6-15

inter INSTRUCTION SET SUMMARY

The synchronous load instruction (synld) loads a word from a register into memory. When
this instruction is performed, the processor waits until a condition code bit is set in the arith
metic controls, indicating that the operation has been 'completed, before it begins executing the
next instruction.

The synchronous move instructions (synmov, synmovl, and synmovq) perform synchronous
moves of data from one location in memory to another.

These instructions are used primarily for sending lAC messages, as described in Chapter 13.

Decimal

The following three instructions are provided for use in decimal-arithmetic algorithms:

dmovt move and test decimal
dad de decimal add with carry
dsube decimal subtract with carry

These instructions operate on 32-bit decimal operands that contain an 8-bit, ASCII-coded
decimal in the least-significant byte of the word (as shown in Figure 5-3).

The dmovt instruction moves a decimal operand from one register to another and tests the least
significant byte of the operand to determine if it is a decimal digit (0 to 9). It sets the condition
code according to the results of the test: 0102 if the operand contains a decimal digit and 0002
otherwise.

The dadde and dsube instructions operate similarly to the adde and sube instructions. They
add or subtract two decimal digits plus bit 1 of the condition code (used as a carry-in bit). If
the operation produces a decimal carry, the condition code is set accordingly. The subtraction
operation is carried out in lO's complement arithmetic.

These instructions can be used iteratively to add or subtract decimal values of any length.

With the 80960KB processor, the most efficient method of mUltiplying or dividing decimal
numbers is to convert them into extended-real numbers and use the muir and divr instructions.
Decimal values of up to 18 decimal digits can be handled with this technique.

6-16

Processor Management 7
and Initialization

I
I
I
I
I

I

I
I
I
I

I
I

I
I
I
I

I

I
I
I
I

I
I
I
I

I
I
I
I

CHAPTER 7
PROCESSOR MANAGEMENT AND INITIALIZATION

This chapter describes the facilities for initializing and managing the operation of the 80960KB
processor. Included is a description of the processor-management facilities and the steps
required to initialize the processor. Appendix D gives a listing of the necessary 80960KB code
to initialize the processor.

OVERVIEW OF PROCESSOR MANAGEMENT FACILITIES

This chapter and Chapters 8, 9, 10, and 13 describe the 80960KB's processor-management
facilities. These facilities are primarily software-related, although some hardware considera
tions are also discussed.

For the purpose of discussion in these chapters, it is assumed that the processor is going to
execute a program made up of a system kernel (or executive) and applications code. This
program may be located in ROM or RAM.

Such a program has the following facilities available to it to initialize, communicate with, and
control the processor:

• Instruction List

• System Data Structures

• Interrupts

• lACs

• Faults

These facilities allow system hardware and the kernel to initialize the processor and initiate
instruction execution. They also provide software or external agents with methods of inter
rupting the processor to service external I/O devices.

The following paragraphs give an overview of these processor-management facilities.

Instruction List

At the most rudimentary level, the processor is controlled through a stream of instructions that
the processor fetches from memory and executes one at a time. Once the processor is initial
ized, it begins executing instructions and continues until it is stopped.

System Data Structures

The processor defines several system data structures that reside in memory. These data struc
tures (shown in Figure 7-1) offer a means of configuring the processor to operate in a specific
way.

7-1

PROCESSOR

PROCESSOR MANAGEMENT AND INITIALIZATION

INITIAL
MEMORY

IMAGE
(1M!)

r-

INTERRUPT
TABLE

~ INTERRUPT
STACK

FAULT TABLE

SYSTEM
PROCEDURE

TABLE

STACK POINTER ~
LOCATED IN LOCAL
REGISTER r1

Figure 7-1: System Defined Data Structures

SUPERVISOR
STACK

LOCAL
PROCEDURE

STACK

The system data structures can be located anywhere in the processor's address space. The
processor gets pointers to most of these data structures from the initial memory image (IMI).
The IMI is described later in this chapter in the section titled "Initial Memory Image."

The interrupt table provides pointers to interrupt-handling procedures. The interrupt vector
numbers act as indices into this table. For the purpose of handling interrupts, a separate
interrupt stack is maintained in the address space. The interrupt mechanism is described in
Chapter 8.

The fault table provides pointers to fault-handling procedures. When the processor detects a
fault, it generates a fault vector number internally that provides an index into the fault table.
The fault mechanism is described in Chapter 9.

The system procedure table contains pointers to the kernel procedures, which are accessed
using the system call (calls) mechanism. The system table structure is described in Chapter 4
in the section titled "System Procedure Table."

The processor uses two stacks for procedures calls: the local procedure stack and the (optional)
supervisor stack. These stacks are described in Chapter 4.

The processor also contains a register, called the process controls register, that it uses to store
information about the current state of the processor and the program it is executing. The
process controls are described later in this chapter in the section titled "Process Controls."

7-2

PROCESSOR MANAGEMENT AND INITIALIZATION

Interrupts

The processor defines two methods of asynchronously requesting services from the processor:
interrupts and lAC messages. Interrupts are the more common of the two.

An interrupt is a break in the control flow of a program so that the processor can handle a more
urgent chore. Interrupt requests are generally sent to the processor from an external source,
often to request I/O services. When the processor receives an interrupt request, it temporarily
stops work on its current task and begins work on an interrupt-handling procedure. Upon
completion of the interrupt-handling procedure, the processor generally returns to the task that
was interrupted and continues work where it left off.

Interrupts also have apriority, which the processor uses to determine whether to service the
interrupt immediately or to postpone service until a later time.

lACs

The 80960KB processor provides an alternate method of communicating with other agents in
the system called lAC messages, or simply lACs. Using the lAC mechanism, other agents on
the system bus are able to communicate with the processor through messages that are ex
changed in a reserved section of memory.

Like interrupts, lACs are used to request that the processor stop work on its current task and
begin work on another task. However, where an interrupt generally causes a temporary break
in the execution of a program, an lAC often causes a permanent change in the control flow of
the processor.

The lAC mechanism is described in Chapter 13.

Faults

While executing instructions, the processor is able to recognize certain conditions that could
cause it to return an inappropriate result or that could cause it to go down a wrong and possibly
disastrous path. One example of such a condition is a divisor operand of zero in a divide
operation. Another example is an instruction with an invalid opcode. These conditions are
called faults.

The processor handles faults almost the same way that it handles interrupts. When the proces
sor detects a fault, it automatically stops its current processing activity and begins work on a
fault-handling procedure.

PROCESS CONTROLS

The process-controls word (shown in Figure 7-2) contains miscellaneous pieces of information
to control processor activity and show the current state of the processor. The various functions
of this field are described in the following paragraphs.

7-3

31

PROCESSOR MANAGEMENT. AND INITIALIZATION

1 I t TRACE ENABLE

EXECUTION MODE
----------------REsUME

'---------- TRACE-FAULT PENDING

~-------------------STATE
L-___________________________ PRIORITY

~--------------------------------------INTERNALSTATE

RESERVED (INITIALIZE TO 0)

Figure 7-2: Process-Controls Word

The execution mode flag determines whether the processor is operating in the user mode (clear)
or supervisor mode (set). The processor automatically sets this bit on a supervisor call and
clears it on a return from supervisor mode.

The priority field determines the priority (from 0 to 31) of the processor. When the processor
is in the executing state, it sets its priority according to this value.

The state flag determines the state of the processor. The encoding of this bit is shown in Table
7-1.

Table 7-1: Encoding of Processor State Field

State Processor
Field State

0 Executing

1 Interrupted

This bit tells software whether the processor

• is currently executing a program (0) or

• has been interrupted so the it can service an interrupt (1).

The trace-enable and trace-fault-pending flags control tracing. The trace-enable field deter
mines whether trace faults are to be generated (set) or not-generated (clear). The trace-fault
pending field is a flag that the processor uses to determine if a trace event has been detected
(set) or not (clear). The use of these fields is discussed in detail in Chapter 10.

7-4

PROCESSOR MANAGEMENT AND INITIALIZATION

The resume flag signals the processor that an instruction has been suspended. The processor
sets this flag whenever it suspends an instruction to handle an interrupt or fault. On a return
from the interrupt or fault handler, the processor checks this flag and performs an instruction
resumption action if the flag is set.

All of the bits in the process controls are set to zero as part of the initialization procedure. Bits
2 through 8, 11, 12, 15, and 21 through 31 are reserved. These bits should not be altered
following initialization.

Changing the Process Controls

The kernel can change the process controls using any of the following three methods:

• Modify-process-controls instruction (modpc)

• Alter the saved process controls prior to a return from an interrupt handler

• Alter the saved process controls prior to a return from a fault handler

The modpc instruction reads and modifies the process controls cached in the processor.

In the latter two methods, the kernel changes the process controls in the interrupt or fault
record that is saved on the stack. On the return from the interrupt or fault handler, the modified
process controls are copied into the processor's internal process controls.

Note

Changing the saved process controls by means of a fault handler can only be used if the fault
handler was invoked by means of an implicit supervisor call.

When the process controls are changed as described above, the processor acts on the changes
as soon as it receives the new information, except for the following situation.

If the modpc instruction is used to change the trace-enable flag, the processor does not
guarantee to act on the change until after up to four more instructions have been executed.

PRIORITIES

The processor defines a priority mechanism for determining the order in which programs,
interrupts, and lACs are worked on. Priorities range from 0 to 31, with 31 being the highest
priority. Each interrupt vector is assigned a priority. Also, when the processor is executing a
program, it sets its priority according to the priority field of the process controls.

Interrupt priorities serve two functions. First, they determine if the processor will service an
interrupt immediately or delay servicing it with respect to its current priority. Second, they
determine which interrupt of several interrupts is serviced first.

When the processor receives an lAC, it always services it immediately (i.e., treats the lAC as if
it has a priority of 31). A mechanism is provided that allows priorities to be assigned to lACs.
When using this mechanism, external hardware is required to intercept all lACs sent to the
processor and to check their priority. This hardware then determines whether to send the lAC

7-5

inter PROCESSOR MANAGEMENT AND INITIALIZATION

to the processor for servicing or delay it according to the current priority of the processor.
(The 80960KB Hardware Designer's Reference Manual provides a more complete description
of this mechanism.)

PROCESSOR STATES

The processor has four different operating states: executing, interrupted, stopped, and stopped
interrupted. The processor is placed in one of two states (executing or stopped) at initializa
tion. After that, the processor and software control the processor's state.

The processor can switch between the executing and interrupted states or between the stopped
and stopped-interrupted states. However, the processor never switches from the executing
state to the stopped state, unless it detects a series of fault conditions that it cannot handle.

Software can change the state of the processor in either of two ways: (1) issue a reinitialize
lAC or (2) issue a freeze lAC. The reinitialize lAC forces the processor to reread the pointers
from the IMI and begin executing instructions from a new IP. The freeze lAC forces the
processor into the stopped state.

Executing and Interrupted State

In the executing state, the processor is executing the program.

If the processor is interrupted while in the executing state, it saves the current state of the
program, switches to the interrupted state, and services the interrupt. Upon returning from the
interrupt handler, the processor resumes work on the program.

Stopped and Stopped-Interrupted States

In the stopped state the processor ceases all activity. The only tasks it can perform while in
this state are to service an interrupt or an lAC. While servicing an interrupt, the processor
switches to the stopped-interrupted state. It then switches back to the stopped state upon
completion of the interrupt routine. Likewise, while servicing an lAC, the processor switches
to the stopped-interrupted state. If the lAC handling action does not result in a change in the
processor's state, the processor switches back to the stopped state when it finishes the lAC
handling action.

The only way to get the processor out of the stopped state (other than to service an interrupt) is
to reinitialize the processor, either with a hardware reset or by sending it an external reinitialize
lAC.

INSTRUCTION SUSPENSION

When the processor is interrupted while it is in the midst of executing an instruction, it does
one of thr~e things before it services the interrupt:

7-6

PROCESSOR MANAGEMENT AND INITIALIZATION

1. It completes the instruction.

2. It terminates the instruction and sets the processor state so that it is as if execution of that
instruction had not yet begun.

3. It suspends the instruction and saves the necessary resumption information so that execu
tion of the instruction can be continued when the processor begins work on the program
again. This course of action is generally reserved for instructions that have a long execu
tion time and that alter the internal and external processor state as they execute.

Which of these steps the processor takes depends on the instruction being executed. However,
whichever step it takes is transparent to the software. The processor automatically saves the
necessary state information so that work on the program can be resumed with no loss of
information.

Refer to the section in Chapter 8 titled "Interrupt Handling Action" for more information on
how resumption information is saved when an interrupt is serviced.

MEMORY REQUIREMENTS

The processor provides a 232-byte address space. This address space can be mapped to
read-write memory, read-only memory, and memory-mapped I/O. (The processor does not
provided a dedicated, addressable I/O space.)

The address space is linear (or flat): there are no subdivisions of the address space such as
segments. For the purpose of memory management, an external memory management unit
(MMU) may subdivide memory into pages or restrict access to certain areas of memory to
protect kernel code and data. But from the point of view of the processor, the address space is
linear.

All of the address space is available for general use except the upper 16M bytes (FF00000016
to FFFFFFFF16), which are reserved for special functions. (These functions are described in
Chapter 13.)

An address in memory is a 32-bit value in the range 0 to FFFFFFFF16. It can be used to
reference a single byte, 2 bytes, 4 bytes, 8 bytes, 12 bytes or 16 bytes of memory depending on
the instruction being used. (Refer to the descriptions of the load and store instructions in
Chapter 11 for information on multiple-byte addressing.)

Memory Restrictions

The processor requires that the memory to which the address space is mapped has the follow
ing capabilities.

• It must be byte addressable.

• It must support burst transfers (i.e., transfers of blocks of contiguous bytes up to 16 bytes
in length).

7-7

inter PROCESSOR MANAGEMENT AND INITIALIZATION

• It must guarantee indivisible access (read or write) for memory addresses that fall within
16-byte boundaries.

• It ~ust guarantee atomic access for memory addresses that fall within 16-byte boundaries.

The latter two capabilities are required to allow multiple processors to share a common
memory conveniently.

An indivisible access guarantees that a processor reading or writing a set of memory locations
will complete the operation before another processor can read or write the same location. The
processor requires indivisible access within an aligned, 16-byte block of memory.

An atomic access is a read-modify-write operation. Here external logic must guarantee that
once a processor begins a read-modify-write operation on a set of memory locations, it is
allowed to complete the operation before another processor is allowed to access the same
location.

As described above, the processor requires that when one processor is performing an atomic
operation within an aligned, 16-byte block, other processors are delayed from performing
another atomic operation within that block until the first operation has been completed.

The 80960KB processor provides two features to aid in implementing the memory require
ments described above: SIZE lines and a LOCK line on the local bus.

The SIZE lines indicate the length of a memory access in bytes. These lines can be used to
specify 1-, 2-, 4-, 8-, 12-, or 16-byte lengths. When making a multiple-byte access, the
processor thus sends the memory controller a base address, on the address lines, and a length,
on the SIZE lines.

The LOCK line is used to synchronize atomic operations. When a processor performs an
atomic operation, it first examines the LOCK line. If it is asserted, the processor waits until the
line is not asserted (i.e., spins on the LOCK line). If the line is not asserted, the processor
asserts the LOCK line when it is performing an atomic read and deasserts the line when it
performs the companion atomic write.

The LOCK line mechanism allows only one atomic operation to be carried out in memory at
one time.

SOFTWARE REQUIREMENTS FOR PROCESSOR MANAGEMENT

The processor-management facilities described earlier in this chapter allow the processor to be
configured and operated in several ways. This section lists the data structures that the kernel
must supply to operate the processor.

To use the processor, the kernel must provide the following items:

• IMI
• Other System Data Structures

7-8

inter PROCESSOR MANAGEMENT AND INITIALIZATION

• Address Space

• Stacks

• Code

The IMI comprises the minimum data structures that the processor needs to initialize the
system.

As part of the initialization procedure, a more complete set of system data structures are
established in memory. These data structures include an interrupt table and a fault table. If the
system call mechanism is going to be used, a system procedure table is required.

Two stacks are also required: an interrupt stack and a local (or user) procedure stack. The
initial stack pointer for the interrupt stack is given in the 1M!. The initial stack pointer (SP) for
the local-procedure stack is given in local register r1; the initialization code is required to
establish the SP value in this register.

If the supervisor call mechanism is to be used, a supervisor stack must also be provided. The
initial stack pointer for this stack is given in the system-procedure table. The supervisor stack
can be placed anywhere in the address space.

Note

The section in Chapter 4 titled "Hints on Using the User-Supervisor Protection Model"
describes an application of the user-supervisor protection model, in which the processor is
always in supervisor mode. When using this application, the local stack and the supervisor
stack are the same. The processor gets the initial stack pointer for this stack from register rl.

Finally, three levels of code are required: initialization code, kernel code, and applications
code. The initialization code is part of the 1M!. (Appendix D gives an initialization code
example.) The starting IP for the initialization code is also provided in the 1M!.

PROCESSOR INITIALIZATION

This section describes how to initialize the 80960KB processor. It defines the mechanism that
the processor uses to establish its initial state and begin instruction execution. It also describes
some general guidelines for writing code to complete the initialization of the processor for
specific applications.

Note

The 80960 architecture does not define an initial memory image or an initialization procedure.
The following initialization requirements are specific to the 80960KB processor.

Initial Memory Image

The IMI performs three functions for the processor: (1) it provides check-sum words that the
processor uses in its self-test routine at start-up, (2) it provides pointers to the system data
structures, and (3) it provides scratch space that the processor uses to perform certain internal
functions. Figure 7-3 shows the structure of the 1M!.

7-9

PROCESSOR MANAGEMENT AND INITIALIZATION

The IMI is made up of four parts: the check-sum word, the system address table (SAT), and
the processor control block (PRCB), and the initialization code. In an embedded application,
all of the parts of this image will generally be held in ROM, except the scratch space of the
PRCB. For this reason, the PRCB should be copied from ROM to RAM after system in
itialization. (The reinitialize lAC, described in Chapter 13, is used to give the processor the
PRCB pointer for the relocated PRCB.)

Check-Sum Words

The check-sum words must be in memory locations 0000000016 to 000000IFI6. The first of
these words is a pointer to the base of the SAT. The second word is a pointer to the base of the
PRCB. The fourth word is the instruction pointer to the first instruction of the initialization
code.

The remaining words (word 3 and words 5 through 8) are check words, which must be chosen
such that the one's complement of the sum of the eight words plus FFFFFFFF16 equals O.

System Address Table

The SAT is 158 bytes in size and can be located anywhere in the address space. It has four
required entries. The word beginning at byte 136 must contain a pointer to the base (first byte)
of the SAT. This pointer is identical to the pointer given in the first word of the check-sum
words. The word beginning at byte 152 must contain a pointer to the base of the system
procedure table. The words beginning at byte 140 and 156 must contain OOFCOOFB 16 and
304400FB16, respectively.

All of the other words in the SAT are preserved and can be used by software.

Processor Control Block

The PRCB is 174 bytes long and can also be located anywhere in the address space. It has
seven required entries and one reserved space.

Bits 0 through 30 of the word beginning at byte 4 must be zero.

The write-external-priority flag (bit 31 of the word beginning at byte 4) instructs the processor
to write the priority of the processor to the lAC message control field whenever an interrupt
(not caused by an lAC) or the execution of the mod pc instruction occurs. When this bit is set,
the write-external-priority mechanism is enabled; when the bit is clear, the mechanism is
disabled. The use of this flag is described in Chapter 13.

7-10

inter PROCESSOR MANAGEMENT AND INITIALIZATION

PHYSICAL
r-_C_H_EC_K_-S_U_M_W_O_R_D_S_-, OADDR_ES_SE_S_~. SYSTEM ADDRESS TABLE(SAT)

SAT POI NTER)10

OFFSET

o
r-------------~

PRCB POINTER 4
r--------------4

CHECK WORD B

INSTRUCTION POINTER 12

4 CHECK WORDS

~------------~

16

20

24

28

I 'I RESERVED (INITIALIZE TO 0)

~ PRESERVED

136

140

144

148

152

3044 00FB16 156

PROCESSOR CONTROL BLOCK
(PRCB) OFFSET

o

4

8

12

20

24

28

0000027F16 32

0000027F16 36

FAULT TABLE POINTER 40

00000000,6 44

48

76

80
SCRATCH SPACE

172

INITIALIZATION CODE OFFSET

f r
Figure 7-3: Initial Memory Image

7-11

inter PROCESSOR MANAGEMENT AND INITIALIZATION

The interrupt table pointer points to the first byte of the interrupt table. The interrupt stack
pointer points to the top (first available byte) of the interrupt stack.

The words beginning at bytes 32 and 36 must each contain 0OOOO27F16.

The fault table pointer points to the first byte of the fault table.

The word beginning at byte 44 must contain all zeros.

The processor uses the scratch space in the IMI for internal functions. This field should be set
to all zeros at initialization or reinitialization of the processor and not accessed by software
thereafter.

The remaining fields in the PRCB (bytes 8 through 19, bytes 28 through 31, and bytes 48
through 79) are reserved. They should be set to all zeros at initialization or restart and not
accessed by software thereafter.

Initialization Code

The initial instruction list that the processor begins executing following its self test can be
located anywhere in the address space.

Changing the Initial Memory Image

At initialization or on a reinitialize processor lAC, the processor reads the pointers from the
IMI in memory and caches them.

In general, to change any of the IMI fields that have been cached on the processor chip, the
kernel must first modify the IMI in memory, then reinitialize the processor using the reini
tialize processor lAC. The processor then rereads the IMI and reloads the cached fields in its
internal cache.

Building a Memory Image

The IMI shown in Figure 7-3 contains the minimum data structures required for the processor
to initialize itself and begin executing code. To build a useful system, however, additional data
structures are required, such as an interrupt table, a fault table, a system procedure table, a set
of kernel procedures, a set of stacks, and a heap. Some of these data structures can be located
in ROM along with the IMI; however, others must be in RAM because they must be writable.

Table 7-2 lists the various system data structures and shows which can be in ROM and which
must be in RAM. The following paragraphs give the system limitations if a data structure is
included in ROM.

7-12

PROCESSOR MANAGEMENT AND INITIALIZATION

Table 7-2: ROM and RAM Resident Data Structures

Data Structure May Be in ROM May Be in ROM Must Be in RAM
with Limitations

IMI X

PRCB X

SAT X

Interrupt table X

Fault table X

Kernel Procedures X

Stacks and heap X

All of the PRCB except the scratch space area must be in ROM. The scratch space must be in
RAM.

The interrupt table must be in RAM for the processor to operate properly, because it contains
the interrupt pending fields, which the processor must be able to write to.

The fault table can be in ROM, providing it will never be necessary to relocate the fault
handler routines.

The kernel procedures can be in either ROM or RAM or both, depending on the design of the
kernel.

Typical Initialization Scenario

Initialization of the 80960KB processor typically is handled in two stages. In the first stage of
initialization the processor performs a self test and reads pointers from the 1M!. During the
second stage, the processor executes initialization code designed to build the remainder of the
memory image so that execution of applications code can begin.

First Stage of Initialization

The following procedure shows the steps that system hardware and the processor go through in
the first stage of initialization. The algorithm in Figure 7-4 gives the details of this procedure.

7-13

PROCESSOR MANAGEMENT AND INITIALIZATION

assert FAILURE pin;
perform self test;
if self test fails

then enter stopped state;
else

endif;

deassert FAILURE pin;
enter predefined state;
if STARTUP pin = 0

then enter stopped state;
else

endif;

x ~ memory(O); read 8 words beginning
at address 0

AC.cc ~ 0002;
temp ~ FFFFFFFF16 add_with_carry x(O);
temp ~ temp add_with_carry x(l);
temp ~ temp add_ with3arry x(2);
temp ~ temp add_with_carry x(3);
temp ~ temp add_ with3arry x(4);
temp ~ temp add_ with3arry x(5);
temp ~ temp add_with3arry x(6);
temp ~ temp add_ with_carry x(7);
if temp ::f. 0

then
assert FAILURE pin;
enter stopped state;

else
prcb_address ~ memory(4);
IP ~ memory (12)
fetch IMI;
processor.priority ~ 31;
processor. state ~ interrupted;
FP ~ IMl.interrupcstack_pointer;
clear any latched external interrupt/lAC

signals;
begin execution;

endif;

Figure 7-4: Algorithm for First Stage of Initialization Procedure

1. Hardware asserts the RESET pin on the processor.

2. The processor samples LPN to get its local processor number (lor 0). (LPN and STAR
TUP are signals that come from multiplexed information received on several processor
pins.)

3. The processor asserts the FAILURE pin and performs a self test. If the processor passes
the self test, it deasserts the FAILURE pin.

7-14

inter PROCESSOR MANAGEMENT AND INITIALIZATION

4. The processor samples STARTUP to determine whether it is the initializing processor (1)
or not (0). If the processor is the initializing processor, it continues with the initialization
procedure; if it is not, it goes into the stopped state. (In mUltiprocessing systems, all
processors except the initializing processor are put in the stopped state.)

5. The processor reads the 8 check-sum words and checks that the check sum is O.

6. Using the contents of the check-sum words, the processor determines the location of the
SAT, the PRCB, and the first instruction to be executed.

7. The processor sets its process priority to 31 (highest possible) and its state to interrupted.

8. The processor clears any latched external interrupt or lAC signals. This means that the
processor will not service any interrupts or lACs prior to beginning instruction execution.

9. The processor begins execution of the initialization instruction list.

After self test, the processor establishes its own state. For the initializing processor this state is
interrupted; for any other processors in the system this state is stopped. Also at initialization,
the trace controls are set to zero; the process controls are set to zero (except for the execution
mode, which is set to supervisor, and the priority, which is set to 31); and the breakpoint
registers are disabled.

Since the processor places itself in the interrupted state during the first stage of initialization,
the initialization code is essentially a special interrupt-handler procedure.

Second Stage of Initialization

The processor activity during the second stage of initialization, which occurs once the proces
sor begins instruction execution, is up to software. In general, this stage of initialization is
used to copy or create additional data structures in memory, such as the interrupt table, the
system-procedure table, and the fault table (if not in the initial memory image), and the kernel
procedures.

Once these jobs are completed, the processor can then begin executing applications code.

Appendix D gives an example of the 80960KB code that might be used to carry out this second
stage of initialization.

A common initialization technique is to create a new PRCB and interrupt table in RAM along
with the other system data structures that are placed in memory in the second stage of in
itialization. The processor is then reinitialized to point to the PRCB and interrupt table. (The
code in Appendix D uses this technique.)

The processor is reinitialized using the reinitialize lAC. This reinitialize lAC message includes
new pointers to the SAT and PRCB. The processor reads the new PRCB, then begins instruc
tion execution according to the control information contained in the PRCB.

7-15

Interrupts 8

CHAPTER 8
INTERRUPTS

This chapter describes the 80960KB processor's interrupt handling facilities. It also describes
how interrupts are signaled.

OVERVIEW OF THE INTERRUPT FACILITIES

An interrupt is a temporary break in the control stream of a program so that the processor can
handle another chore. Interrupts are generally requested from an external source. The inter
rupt request either contains a vector number or else points to a vector that tells the processor
what chore to do while in the interrupted state. When the processor has finished servicing the
interrupt, it generally returns to the program that it was working on when the interrupt occurred
and resumes execution where it left off.

The processor provides a mechanism for servicing interrupts, which uses an implicit procedure
call to a selected interrupt handling procedure, called an interrupt handler.

When an interrupt occurs, the current state of the program is saved. If the interrupt occurs
during an instruction that requires many machine cycles, the instruction state is also saved and
execution of the instruction is suspended.

The processor then creates a new frame on the interrupt stack and executes an implicit call to
the interrupt handler selected with the interrupt vector.

Upon returning from the interrupt handler, the processor switches back to the program that was
running when the interrupt occurred, restores it to the state it was in when the interrupt
occurred, and resumes work on it.

Another feature of this interrupt handling mechanism is that it allows interrupts to be
prioritized. If an interrupt is signaled that has the same or a lower priority than the processor's
current priority, the processor will save the interrupt vector and service the interrupt at a later
time. Interrupts that are waiting to be serviced are called pending interrupts.

SOFTWARE REQUIREMENTS FOR INTERRUPT HANDLING

To use the processor's interrupt handling facilities, software must provide the following items
in memory:

• Interrupt Table

• Interrupt Handler Routines

• Interrupt Stack

These items are generally established in memory as part of the initialization procedure. Once
these items are present in memory and pointers to them have been entered in the appropriate
system data structures, the processor then handles interrupts automatically and independently
from software.

8-1

INTERRUPTS

The requirements for these items are given in following sections of this chapter.

VECTORS AND PRIORITY

Each interrupt vector is 8 bits in length, which allows up to 256 unique vectors to be defined.
In practice, vectors 0 through 7 cannot be used, and vectors 244 through 251 are reserved and
should not be used by software.

Each vector has a predefined priority, which is defined by the following expression:

priority = vector/8

Thus, at each priority level, there are 8 possible vectors (e.g., vectors 8 through 15 have a
priority of 1, vectors 16 through 23 a priority of 2, and so on to vectors 246 through 255, which
have a priority of 31).

The processor uses the priority of an interrupt to determine whether or not to service the
interrupt immediately or to delay service. If the interrupt priority is greater than the
processor's current priority, the processor services the interrupt immediately; if the interrupt
priority is equal to or less than the processor's current priority, the processor saves the interrupt
vector as a pending interrupt so that it can be serviced at a later time.

A priority-31 interrupt is always serviced immediately.

Note that the lowest program priority allowed is O. If the current program has a 0 priority, a
priority-O interrupt will never be accepted. This is why vectors 0 through 7 cannot be used. In
fact, there are no entries provided for these vectors in the interrupt table.

INTERRUPT TABLE

The interrupt table contains instruction pointers (addresses in the address space) to interrupt
handlers. It must be aligned on a word boundary. The processor determines the location of the
interrupt table by means of a pointer in the 1M!.

As shown in Figure 8-1, the interrupt table contains one entry (i.e., one pointer) for each
allowable vector. The structure of an interrupt-table entry is given at the bottom of Figure 8-1.
Each interrupt procedure must begin on a word boundary, so the two least-significant bits of
the entry are set to O.

The first 36 bytes of the interrupt table are used to record pending interrupts. This section of
the table is divided into two fields: pending priorities (byte-offset 0 through 3) and pending
interrupts (byte-offset 4 through 35).

The pending priorities field contains a 32-bit string in which each bit represents an interrupt
priority. The bit number in the string represents the priority number. When the processor
posts a pending interrupt in the interrupt table, the bit corresponding to the interrupt's priority
is set. For example, if an interrupt with a priority of 10 is posted in the interrupt table, bit 10 is
set.

8-2

inter INTERRUPTS

31 0

0

4

PENDING INTERRUPTS

32

36 (VECTOR 8)

40 (VECTOR 9)

ENTRY 10 44 (VECTOR 10)

976 (VECTOR 243)

980 (VECTOR 244)

992 (VECTOR 247)

996 (VECTOR 248)

1000 (VECTOR 249)

1008 (VECTOR 251)

1012 (VECTOR 252)

ENTRY 255 1024 (VECTOR 255)

PROCEDURE ENTRY FORMAT
31 210

I INSTRUCTION POINTER 10 10 I

RESERVED (INITIALIZE TO 0)

Figure 8-1: Interrupt Table

The pending interrupts field contains a 256-bit string in which each bit represents an interrupt
vector. For example, byte-offset 4 is reserved, byte-offset 5 is for vectors 8 through 15,
byte-offset 6 is for vectors 16 through 23, and so on. When a pending interrupt is logged, its
corresponding bit in the pending interrupt field is set.

8-3

------- ~~-----~~--- -- -------~---- ----

INTERRUPTS

This encoding of the pending priority and pending interrupt fields pennits the processor to first
check if there are any pending interrupts with a priority greater than the current program and
then to detennine the vector number of the interrupt with the highest priority. Software should
set these fields to 0 at initialization and not access these fields after that.

Note

Refer to the section later in this chapter titled "Handling Pending Interrupts" for a description of
the processor's pending interrupt mechanism.

INTERRUPT HANDLER PROCEDURES

An interrupt handler is a procedure that perfonns a specific action that has been associated with
a particular interrupt vector. For example, a typical job for an interrupt handler is to read a
character from a keyboard.

The interrupt handler procedures can be located anywhere in the address space. Each proce
dure must begin on a word boundary.

The processor execution mode is always switched to supervisor while an interrupt is being
handled.

When an interrupt-handler procedure is called, the states of the process controls and arithmetic
controls for the interrupted program are saved. However, the interrupt handler shares the other
resources of the interrupted program, in particular the global registers and the address space.
This sharing of resources imposes one important restriction on the interrupt handler
procedures.

The interrupt handler procedures must preserve and restore the state of any of the resources
that it uses. For example, the processor allocates a set of local registers to the interrupt
handler, just as it does on an explicit procedure call. If the interrupt handler needs to use the
global or floating-point registers, however, it should save their contents before using them and
restore them before returning from the interrupt handler.

INTERRUPT STACK

The interrupt stack can be located anywhere in the address space. The processor detennines
the location of the interrupt stack by means of a pointer in the IMI.

The interrupt stack has the same structure as the local procedure stack described in Chapter 4
in the section titled "Procedure Stack."

INTERRUPT HANDLING ACTIONS

When the processor receives an interrupt, it handles it automatically. The processor takes care
of saving the processor state, calling the interrupt-handler routine, and restoring the processor
state once the interrupt has been serviced. Software support is not required.

8-4

inter INTERRUPTS

The following section describes the actions the processor takes while handling interrupts. It is
not necessary to read this section to use the interrupt mechanism or write an interrupt handler
routine. This discussion is provided for those readers who wish to know the details of the
interrupt handling mechanism.

Receiving an Interrupt

Whenever the processor receives an interrupt signal, it performs the following action:

I. It temporarily stops work on its current task, whether it is working on a program or
another interrupt procedure.

2. It reads the interrupt vector.

3. It compares the priority of the vector with the processor's current priority.

4. If the interrupt priority is higher than that of the processor, the processor services the
interrupt immediately as described in the next sections.

5. If the interrupt priority is equal to or less than that of the processor, the processor sets the
appropriate priority bit and vector bit in pending interrupt record and continues work on its
current task.

Servicing an Interrupt

The method that the processor uses to service an interrupt depends on the state the processor is
in when it receives the interrupt. The following sections describe the interrupt handling actions
for various states of the processor. In all of these cases, it is assumed that the interrupt priority
is higher than that of the processor and will thus be serviced immediately after the processor
receives it. The handling of lower priority interrupts is described later in this chapter in the
section titled "Pending Interrupts."

Executing State Interrupt

When the processor receives an interrupt while it is in the executing state (i.e., executing a
program), it performs the following actions to service the interrupt; this procedure is the same
regardless of whether the processor is in the user or the supervisor mode when the interrupt
occurs:

1. The processor saves the current state of process controls and arithmetic controls in an
interrupt record on the stack that the processor is currently using. This stack can be the
local-procedure stack or the supervisor stack. (The interrupt record is described in the
following section.)

2. If the execution of an instruction was suspended, the processor includes a resumption
record for the instruction in the current stack and sets the resume flag in the saved process
controls. (Refer to the section in Chapter 7 titled "Instruction Suspension" for a discussion
of the criteria for suspending instructions.)

3. The processor switches to the interrupted state.

8-5

INTERRUPTS

4. The processor sets the state flag in the process controls to interrupted, its execution mode
to supervisor, and its priority to the priority of the interrupt. Setting the processor's
priority to that of the interrupt insures that lower priority interrupts can not interrupt the
servicing of the current interrupt.

5. Also in its internal process controls, the processor clears the trace-fault-pending and trace
enable flags. Clearing these flags allows the interrupt to be handled without trace faults
being raised.

6. The processor allocates a new frame on the interrupt stack and switches to the interrupt
stack.

7. The processor sets the frame return status field (associated with the PFP) to 1112,

8. The processor performs an implicit call-extended operation (similar to that performed for
the calix instruction). The address for the procedure that is called is that which is
specified in the interrupt table for the specified interrupt vector.

Once the processor has completed the interrupt procedure, it performs the following action on
the return:

1. The processor deallocates the stack frame from the interrupt stack and switches to the local
or supervisor stack (whichever one it was using when it was interrupted).

2. The processor copies the arithmetic controls field from the interrupt record into its arith
metic controls register.

3. The processor copies the process controls field from the interrupt record into its internal
process controls.

4. If the resume flag of the process controls is set, the processor copies the resumption record
from the interrupt record to the resumption record field of the PRCB.

5. The processor checks the interrupt table for pending interrupts that are higher then the
priority of the program being returned to. If a higher-priority pending interrupt is found, it
is handled as if the interrupt occurred at this point.

6. Assuming that there are not pending interrupts to be serviced, the processor switches to the
executing state and resumes work on the program.

Interrupted State Interrupt

If the processor receives an interrupt while it is servicing an interrupt, and the new interrupt has
a higher priority than the interrupt currently being serviced, the current interrupt-handler
routine is interrupted. Here the processor performs the same action to save the state of the
interrupted interrupt-handler routine as is described at the beginning of this section. Here, the
interrupt record is saved on the top of the interrupt stack, prior to the new frame that is created
for use in servicing the new interrupt.

Interrupt Record

The processor saves the state of an interrupted program (or interrupt-handler) routine in an
interrupt record. Figure 8-2 shows the structure of this interrupt record.

8-6

inter

STACK
GROWTH

STACK
GROWTH

INTERRUPTS

LOCAL, SUPERVISOR, OR INTERRUPT STACK

31 0

REGISTER SAVE AREA

~ FOR CURRENT FRAME

~
ADDITIONAL VARIABLES

AND PADDING AREA
(OPTIONAL)

INTERRUPT STACK

31 7 0

PADDING AREA

RESUMPTION RECORD
FOR SUSPENDED INSTRUCTION

(OPTIONAL)

NEW FRAME

'If the interrupt is serviced while the processor is working on another
interrupt procedure, the new stack pointer (NSP) will be the same as
the SP.

tiII~1 RESERVED

Figure 8-2: Storing of an Interrupt Record on the Stack

8-7

FP

~

~

SP

NSP*

INTERRUPT
RECORD

INTERRUPTS

The resumption record within the interrupt record is used to save the state of a suspended
instruction. If no instruction is suspended, the resumption record is not created.

Stopped State Interrupt

The processor can also be interrupted while in the stopped state. The processor handles such
interrupts in essentially the same way that it handles interrupts that occur while the processor is
in the executing state, with the following exception. When the processor allocates the new
frame on the interrupt stack, it sets the frame return field to 1102, This causes the processor to
revert to the stopped state when the processor returns from the interrupt-handler procedure.

Stopped-Interrupted State Interrupt

If the processor receives an interrupt while it is in the stopped-interrupted state, it handles the
interrupt just as it would if it occurred in the interrupted state.

Pending Interrupts

As is described earlier in this chapter, the processor provides a mechanism for evaluating
interrupts according to their priority. If the interrupt priority is equal to or lower than the
processor's current priority, the processor does not service the interrupt immediately. Instead,
it posts the interrupt in the pending interrupt section of the interrupt table. The processor
checks the interrupt table at specific times and services those interrupts that have a higher
priority than its current priority. This pending interrupt mechanism provides two benefits:

1. The ability to delay the servicing of low priority interrupts (by posting them in the pending
interrupt section of the interrupt table) allows the processor to concentrate its processing
activity on higher priority tasks.

2. In a system that uses two or more 80960KB processors, both processors can share the
same interrupt table. This interrupt-table sharing allows the processors to share the inter
rupt handling load.

The following paragraphs describe how the processor handles pending interrupts.

Note

The 80960 architecture defines the section of the interrupt table for storing pending interrupts
and a mechanism for checking the interrupt table for pending interrupts. The method used for
posting interrupts to the interrupt table and circumstances under which the processor check the
interrupt table for pending interrupts is not defined.

In the following description of the pending interrupt mechanism, the information given in the
sections titled "Posting Pending Interrupts" and "Checking for Pending Interrupts" is specific to
the 80960KB processor. The information given in the section titled "Handling Pending
Interrupts" is defined in the 80960 architecture and should be common in all processors that
implement this part of the architecture.

8-8

INTERRUPTS

Posting Pending Interrupts

An interrupt can be posted in the pending-interrupt record of the interrupt table in either of the
following two ways:

1. The processor receives an interrupt with a priority equal to or lower than that of the
program the processor is currently working on. The processor then automatically posts the
interrupt in the pending-interrupt record.

2. The kernel can set the desired pending-interrupt and pending-priority bits in the interrupt
table.

Using the first method, the processor performs an atomic read/write operation that locks the
interrupt table until the posting operation has been completed. Locking the interrupt table
prevents other agents on the bus from accessing the interrupt table during this time.

The second method of posting an interrupt is risky, because it does not use this locking
technique. (The processor's atomic instructions are not able to perform a locking operation
that spans several instructions.) This method will work only if the kernel can insure the
following:

• that no external I/O agent will attempt to post a pending interrupt simultaneously with the
processor, and

• that an interrupt cannot occur after one bit (e.g., the pending priority bit) of the pending
interrupt record is set but before the other bit (the pending interrupt vector) is set.

Checking for Pending Interrupts

The processor automatically checks the interrupt table for pending interrupts at the following
times:

• After returning from an interrupt-handler procedure

• While executing a modify-process-controls instruction (modpc), if the instruction causes
the program's priority to be lowered.

• After receiving a test pending interrupts lAC message.

Handling Pending Interrupts

The processor uses the same type of atomic read/write operation to check the interrupt table for
pending interrupts as it does for posting pending interrupts. Again, this technique prevents
other agents on the bus from accessing the interrupt table until the pending-interrupt check has
been completed.

When the processor finds a pending interrupt, it handles it as if it had just received the
interrupt. The handling mechanism is the same as is described earlier in this chapter for
interrupts that are serviced as soon as they are received.

8-9

inter INTERRUPTS

If the processor finds two pending interrupts at the same priority, it services the interrupt with
the highest vector number first.

SIGNALING INTERRUPTS

Note

The 80960 architecture does not define a mechanism for signaling interrupts to the processor.
The methods of signaling interrupts described in the following section are specific to the
80960KB processor.

The 80960KB processor can be interrupted in any of the following five ways:

• Signal on its interrupt pins

• Signal on its interrupt pins from an external interrupt controller

• An lAC message from external source

• An lAC message from a program in the processor

• A pending interrupt (described earlier in this chapter)

Interrupts From Interrupt Pins

The processor has four interrupt pins, called INTO, INTI, INT2, and INT3. These pins can be
configured in either of the following three ways:

• as four interrupt-signal inputs;

• as two interrupt inputs and two pins for handshaking with an interrupt controller such as
the Intel 8259A Programmable Interrupt Controller; or

• as one lAC input and three interrupt inputs.

A 32-bit, interrupt-control register in the processor determines how these pins are used. Each
interrupt pin is associated with one 8-bit field in the register, as shown in Figure 8-3.

31 2423 1615 8 7 o
INn VECTOR INT2 VECTOR INTl VECTOR INTO VECTOR

Figure 8-3: Interrupt-Control Register

If the interrupt pins are to be used as four inputs, a different interrupt vector is stored in each of
the four fields in the interrupt-control register. Then, when an interrupt is signaled on one of
the pins, the processor reads the vector from the pin's associated field in the register. For
example, if an interrupt is signaled on pin INTO, the processor reads the vector from bits 0
through 7.

8-10

INTERRUPTS

The processor assumes that the interrupt vectors in the interrupt register are arranged in des
cending order from the INTO field to the INT3 field (e.g., the priority of INTO:::: INTI :::: INT2
:::: INT3). To insure that interrupts are handled in the proper order, software should follow this
convention.

If the INTO vector field is set to 0, the function of the INTO pin is changed to lAC, and it is
used to signal the processor that an external lAC message has been sent to it. In fact, the INTO
pin must be configured in this manner for the processor to service external lAC messages.

If the INT2 vector field is set to 0, the functions of the INT2 and INT3 pins are changed to
INTR and INTA, respectively. Here, the INTR pin is used to receive signals from an interrupt
controller and the INTA pin is used to send acknowledge signals back to the controller. When
the processor receives a signal on the INTR pin, it reads an interrupt vector from the least
significant 8 bits of its bus, then sends an acknowledge signal to the controller through INT A.
When the INT2 and INT3 pins are configured in this manner, the processor ignores the INT3
vector field.

Note

Refer to the 80960KB Hardware Designer's Reference Manual for more information on the use
of INT2 and INT3 pins with an interrupt controller.

The interrupt-control register is memory mapped to addresses FF00000416 through
FF00000716. Only the processor can read or write this register using the synchronous load
(synld) and synchronous move (synmov) instructions. External agents on the bus cannot
access this register.

The value in the interrupt-control register after the processor is initialized is FF00000016.

lAC Interrupts

The processor can also receive an interrupt request by means of the lAC mechanism. (The
lAC mechanism is described in detail in Chapter 13.) The interrupt lAC message can be sent
to the processor either from an external bus agent, such as an I/O processor or another
80960KB processor, or internally as part of the currently running program. The interrupt
vector is contained in the interrupt lAC message.

As with any other lAC message, the processor receives notice of an external interrupt-lAC
message through the INTO pin, which has been configured as an lAC pin, as described in the
previous section. The processor then reads the lAC message to get the interrupt vector.

A program running on the processor can signal an interrupt through an internal interrupt-lAC
message. An internal lAC is sent to the processor by means of a synchronous move instruc
tion. When the processor executes a synchronous move to its lAC message space, it signals an
lAC message internally. The processor then reads the lAC message as it would for an external
lAC.

8-11

Fault Handling 9

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

CHAPTER 9
FAULT HANDLING

This chapter describes the fault handling facilities of the 80960KB processor. The subjects
covered include the fault-handling data structures, the software support required for fault
handling, and the fault handling mechanism. A reference section that contains detailed infor
mation on each fault type is provided at the end of the chapter.

OVERVIEW OF THE FAULT-HANDLING FACILITIES

The processor is able to detect various conditions in code or in its internal state (called "fault
conditions") that could cause the processor to deliver incorrect or inappropriate results or that
could cause it to head down an undesirable control path. For example, the processor recog
nizes divide-by-zero and overflow conditions on integer calculations. It also detects in
appropriate operand values, uncompleted memory accesses, or references to incomplete or
non-existent system-data structures.

The processor can detect a fault while it is executing a program, an interrupt handler, or a fault
handler. (In this chapter, when a program is referred to, it generally also means any interrupt
handler or fault handler that may have been invoked while the processor was working on the
program.)

When the processor detects a fault, it handles the fault immediately and independently of the
program or handler it is currently working on, using a mechanism similar to that used to
service interrupts.

A fault is generally handled with a fault-handling procedure (called a fault handler), which the
processor invokes through an implicit procedure call. Prior to making the call, the processor
saves the state of the current program and in some cases the state of an incomplete instruction.
It also saves information about the fault, which the fault handler can use to correct or recover
from the condition that caused the fault.

If the fault handler is able to recover from the fault, the processor can then restore the program
to its state prior to the fault and resume work on the program. If the fault handler is not able to
recover from the fault, it can take any of several actions to gracefully shut down the processor.

FAULT TYPES

All of the faults that the processor detects are predefined. These faults are divided into types
and subtypes, each of which is given a number. The processor uses the type number to select a
fault handler. The fault handler then uses the subtype number to select a specific fault-
handling procedure. .

Table 9-1 lists the faults that the processor detects, arranged by type and subtype. For con
venience, individual faults are referred to in this manual by their fault-subtype name. Thus a
machine bad-access fault is referred to as simply a bad-access fault, or an arithmetic integer
overflow fault is referred to as an integer overflow fault.

9-1

FAULT HANDLING

The fifth column of Table 9-1 shows each fault as it appears in the fault record (the word at
offset 40 of the fault record is shown later in this chapter).

Table 9-1: Fault Types and Subtypes

Fault Type Fault Subtype Fault Record

No.!Bit
No. Name Position Name

1 Trace Bit 1 Instruction Trace OxXX010002
Bit 2 Branch Trace OxXX010004
Bit 3 Call Trace OxXX010008
Bit 4 Return Trace OxXX010010
Bit 5 Preretum Trace OxXX010020
Bit 6 Supervisor Trace OxXX010040
Bit 7 Breakpoint Trace OxXX010080

2 Operation 1 Invalid Opcode OxXX020001
2 Unimplemented OxXX020002
4 Invalid Operand OxXX020004

3 Arithmetic 1 Integer Overflow OxXX03 0001
2 Arithmetic Zero-Divide OxXX03 0002

4 Floating
Point

Bit 0 Floating Overflow OxXX040001

Bit 1 Floating Underflow OxXX040002
Bit 2 Floating Invalid-Operation OxXX040004
Bit 3 Floating Zero-Divide OxXX040008
Bit 4 Floating Inexact OxXX04001O
Bit 5 Floating Reserved-Encoding OxXX040020

5 Constraint 1 Constraint Range OxXX050001
2 Privileged OxXX050002

7 Protection Bit 1 Length OxXX070001

8 Machine 1 Bad Access OxXX080001

9 Structural 3 lAC OxXX090003

A Type 1 Type Mismatch OxXXOAOOOl

Note

The 80960 architecture defines a basic set of fault types and SUbtypes. Processors that provide
extensions to the architecture may recognize additional fault conditions. The encoding of fault
types and subtypes allows any of these extensions to be included in the fault table along with
the basic faults. Space in the fault table will be reserved in such a way that processors that
recognize the same fault types and subtypes will encode them in the same way.

For example, the floating-point faults (fault type 4) are an extension provided in the 80960KB
processor (but not in the 80960KA processor). Any other processors based on the 80960
architecture that also recognize floating-point faults will also encode them as fault type 4.

9-2

FAULT HANDLING

FAULT-HANDLING METHOD

The processor handles all faults through an implicit procedure call to a fault handler. When a
fault occurs while the processor is executing a program, the processor creates a fault record on
its current stack. This record includes information on the state of the program and data on the
fault. If the fault occurred while the processor was in the midst of executing an instruction, a
resumption record for the instruction may also be saved on the stack.

Following the creation of the fault and resumption records, the processor selects a fault handler
from a system-data structure called the fault table. It then invokes the fault handler (by means
of an implicit call) and begins executing the handler procedure. As is described later in this
chapter, the fault-handler call can be a local call (call-extended operation), a local system
procedure-table call (local system-call operation), or a supervisor call.

This same procedure call method is used to handle faults that occur while the processor is
servicing an interrupt or that occur while the processor is working on a fault handler.

Multiple Fault Conditions

It is possible for multiple fault conditions to occur simultaneously. For certain fault types, such
as trace faults or protection faults, bit positions in the fault-subtype field are used to indicate
the occurrence of multiple faults of the same type. As a general rule, however, the processor
does not indicate situations where multiple faults occur. Instead, it records one of the faults
and does not report on the faults that were not recorded.

If a fault occurs while the processor is executing a fault handling routine, the operating of the
processor is not predictable.

Faults and Interrupts

If an interrupt occurs during an instruction that will fault, that has just faulted, or that has
faulted while the processor is in the midst of selecting the fault handler, the processor will
handle the fault in either of the following ways:

• It includes the fault information as part of its interrupt record and services the interrupt
immediately. After it has serviced the interrupt, it handles the fault.

• It completes the selection of the fault handler, then services the interrupt just prior to
executing the first instruction of the fault handler.

SOFTWARE REQUIREMENTS FOR HANDLING FAULTS

To use the processor's fault-handling facilities, the following system-data structures and
procedures must be present in memory:

• Fault Table

• Fault-Handler Procedures

9-3

FAULT HANDLING

• Interrupt Table

• Interrupt Stack

Software should generally load these items in memory as part of the initialization procedure.
Once they are present in memory and pointers to them have been included in the IMI, the
processor then handles faults automatically and independently from software.

Requirements for the fault table and fault-handler procedures are given in the following sec
tions.

FAULT TABLE

The fault table provides the processor with a pathway to the fault handlers when the processor
is using the implicit procedure-call method of handling faults. As shown in Figure 9-1, there is
one entry in the fault table for each fault type. When a fault occurs, the processor uses the fault
type to select an entry in the fault table. From this entry, the processor then obtains a pointer to
the fault handler for the type of fault that occurred.

The fault handler reads the fault sUbtype or sUbtypes from the fault record to determine the
appropriate fault recovery action.

Location of the Fault Table in Memory

The fault table can be located anywhere in the address space. The processor obtains a pointer
to the fault table from the IMt

Fault-Table Entries

Each entry in the fault table is two words long. As shown at the bottom of Figure 9-1, there are
two types of fault-table entries allowed: local-procedure entry and system-procedure-table
entry. The entry-type field determines the entry type.

A local-procedure entry (entry type, 002) provides an instruction pointer (address in the address
space) for the fault-handler procedure. Using this entry, the processor invokes the specified
fault handler by means of an implicit call-extended operation (similar to that performed for the
calix instruction). The second word of a local-procedure entry is reserved. It should be set to
zero when the fault table is created and not accessed after that.

A system-procedure-table entry (entry type 102) provides a procedure number in the system
procedure table. Using this entry, the processor invokes the specified fault handler by means
of an implicit call-system operation (similar to that performed for the calls instruction).

Fault-handling procedures in the system procedure table can be local procedures or supervisor
procedures. A fault handler can thus be invoked through the fault table in any of three ways:
implicit local-procedure call, implicit local procedure-table call, or implicit supervisor call.

9-4

inter FAULT HANDLING

31 o

TRACE FAULT ENTRY

~--------------------------------------~

LOCAL PROCEDURE FAULT-TABLE ENTRY

31
SYSTEM-PROCEDURE-TABLE FAULT-TABLE ENTRY

FAULT-HANDLER PROCEDURE NUMBER

0000027F'6

RESERVED (INITIALIZE TO 0)

Figure 9-1: Fault Table and Fault-Table Entries

9-5

o
8

16

24

32

40

48

56

64

72

80

88

96

104

112

120

252

n

n+4

n

n+4

FAULT HANDLING

FAULT-HANDLER PROCEDURES

The fault-handler procedures can be located anywhere in the address space. Each procedure
must begin on a word boundary.

The processor can execute the procedure in the user mode or the supervisor mode, depending
on the type of fault table entry.

Note

To resume work on a program at the point where a fault occurred (following the recovery action
of the fault handler), the fault handler must be executed in the supervisor mode. The reason for
this requirement is described in a following section titled "Program and Instruction Resumption
Following a Fault." "

Many of the faults that occur can be recovered from easily. When recovery from the fault is
possible, the processor's fault-handling mechanism allows the processor to automatically re
sume work on the program or interrupt that it was working on when the fault occurred. The
resumption action is initiated with a ret instruction in the fault-handler procedure.

If recovery from the fault is not possible or not desirable, the fault handler can take one of the
following actions, depending on the nature and severity of the fault condition (or conditions, in
the case of multiple faults):

• Return to a point in the program or interrupt code other than the point of the fault

• Save the current state of the processor and call a debug monitor

• Save the current state of the processor and place the processor in the stopped state (using a
freeze lAC)

• Explicitly write the processor state, fault record, and instruction resumption record into
memory and place the processor in the stopped state

• Place the processor in the stopped state without explicitly saving the processor state or the
fault information.

When working with the processor at the development level, a common action of the fault
handler is to save the fault and processor state information and make a call to a debugging
device such as a debugging monitor. This device can then be used to analyze the fault.

Program and Instruction Resumption Following a Fault

The processor allows work on a program to be resumed at the point where the fault occurred,
following a return from a fault handler. If an instruction was suspended to handle the fault,
execution of the instruction can also be resumed on the return.

This resumption mechanism is similar to that provided for returning from an interrupt handler.
It is only useful, however, for faults from which recovery is possible, such as the trace faults.

To use this mechanism, the fault handler must be invoked using an implicit supervisor
procedure-table call. This method is required because to resume work on the program and a
suspended instruction at the point where the fault occurred, the saved process controls in the

9-6

FAULT HANDLING

fault record must be copied back into the processor on the return from the fault handler. The
processor only performs this action if the processor is in the supervisor mode on the return.

If the fault handler is invoked with an implicit local-procedure call or an implicit local
procedure-table call, the return IP determines where in the program the processor resumes
work, following a return from a fault handler. Here, the return is handled in a similar manner
to a return from an explicit call with a call or calix instruction.

The return IP (referred to later in this chapter as the saved IP) is saved in the RIP register (r2)
of the stack frame that was in use when the fault occurred. This IP may be the instruction the
processor faulted on or the next instruction that the processor would have executed if the fault
had not occurred. In either case, the resumption record is not used, so the processor might
continue work on the program without completing the instruction that the fault occurred on.

A fault handler should thus be invoked with an implicit local-procedure or local-procedure
table call only if it is not required or desirable to resume the program at the point of the fault.
The section later in this chapter titled "Return Without Resumption" discusses returning to a
point in the program code other than the point of the fault.

FAULT CONTROLS

Certain fault types and sUbtypes have masks or flags associated with them that determine
whether or not a fault is signaled when a fault condition occurs. Table 9-2 lists these flags and
masks, the system data structures in which they are located, and the fault subtype they affect.

Table 9-2: Fault Flags or Masks

Flag or Mask Name Location Fault Affected

Integer Overflow Mask Arithmetic Controls Integer Overflow

Floating Overflow Mask Arithmetic Controls Floating Overflow

Floating Underflow Mask Arithmetic Controls Floating Underflow

Floating Invalid Operation Mask Arithmetic Controls Floating
Invalid Operation

Floating Zero-Divide Mask Arithmetic Controls Floating Zero-Divide

Floating-point Inexact Mask Arithmetic Controls Floating Inexact

No Imprecise Faults Flag Arithmetic Controls All Imprecise Faults

Trace-Enable Flag Process Controls All Trace Faults

Trace-Mode Flags Trace Controls All Trace Faults

The integer and floating-point mask bits inhibit faults from being raised for specific fault
conditions (i.e., integer overflow and floating-point overflow, underflow, zero divide, invalid
operation, and inexact). The use of these masks is discussed in the fault-reference section at
the end of this chapter. Also, the floating-point fault masks are described in Chapter 12 in the
section titled "Exceptions and Fault Handling."

9-7

FAULT HANDLING

The no-imprecise-faults (NIF) flag controls the synchronizing of faults for a category of faults
called imprecise faults. This flag should be set to 1. The function of this flag is described later
in this chapter in the section titled "Precise and Imprecise Faults".

The trace-mode flags (in the trace controls) and trace-enable flag (in the process controls)
support trace faults. The trace-mode flags enable trace modes; the trace-enable flag enables the
generation of trace faults. The use of these flags is described in the fault reference section on
trace faults at the end of this chapter. Further discussion of these flags is provided in Chapter
lOin the section titled "Trace-Enable and Trace-Fault-Pending Flags."

SIGNALING A FAULT

The processor generates faults implicitly when fault conditions occur and explicitly at the
request of software. Most faults are generated implicitly. The fault control bits described in
the previous section allow the implicit generation of some faults to be either enabled (as with
the trace faults) or masked (as with the floating-point faults).

Fault-If Instructions

The fault-if instructions (faulte, faultne, faultl, faultle, faultg, faultge, faulto, and faultno)
allow a fault to be generated explicitly anywhere within an application program, kernel proce
dure, interrupt handler, or fault handler. When one of these instructions is executed, the
processor checks the condition code bits in the arithmetic controls, then signals a constraint
range fault if the condition specified with the instruction is met.

FAULT RECORD

When a fault occurs, the processor records information about the fault in a fault record. The
fault handler and processor use this information to recover from or correct the fault condition
and resume execution of the process. Figure 9-2 shows the structure of the fault record. The
use of the fields in this record are described in the following paragraphs.

The type number (byte ordinal) of a fault is stored in the fault-type field; the subtype number or
bit positions (byte ordinal) is stored in the fault-subtype field.

The fault-flags field provides a set of general-purpose flags that the processor uses to indicate
additional information about a particular fault sUbtype. Most of the faults do not use these
flags, in which case the flags have no defined values.

The address-of-the-faulting-instruction field contains the IP of the instruction that caused the
fault or that was being executed when the fault occurred.

The states of the process controls and arithmetic controls at the time that a fault is generated
are stored in their respective fields in the fault record. This information is used to resume work
on the program after the fault has been handled.

9-8

inter FAULT HANDLING

31 o
o
4

12

16

24

28

32

j---------~~~;7,~~~--------_136

40
-------1

44

RESERVED

Figure 9-2: Fault Record

Finally, a three-word fault data field is provided for the fault. The information that is stored in
these fields depends on the type of fault that occurs. Any part of a fault-data field that is not
used for a particular fault has no defined value. The information that is stored in these fields
for each fault type is given in the fault reference section at the end of this chapter.

Saved Instruction Pointer

The saved IP (the RIP that is saved in r2 of the stack frame in use when the fault occurred) is
also part of the fault information that the processor saves when a fault occurs. This IP
generally points to the next instruction that the processor would have executed if the fault had
not occurred, although it may point to the faulting instruction. It is this instruction that the
processor begins working on when the return from the fault handler is initiated.

Resumption Record

If the processor suspends an instruction as the result of a fault, it creates a 48-byte resumption
record. The criteria that the processor uses to determine whether or not to suspend an instruc
tion and the structure of the resumption record are the same as are used when an interrupt
occurs.

9-9

inter FAULT HANDLING

Location of the Fault and Resumption Records

The fault and resumption records are stored in the stack that the processor is using when the
fault occurs. This stack can be the local stack, the supervisor stack, or the interrupt stack.

FAULT HANDLING ACTION

Once a fault has occurred, the processor saves the program state, calls the fault handler, and
restores the program state (if this is possible) once the fault recovery action has been com
pleted. No software other than the fault-handler procedures is required to support this activity.

Three different types of implicit procedure calls can be used to invoke the fault handler,
according to the information in the selected fault-table entry: local call, local call through the
system procedure table, and supervisor call (also through the system procedure table).

Implicit, Local Call/Return

When the selected fault-handler entry in the fault table is an entry type 002 (local procedure),
the processor performs the following action:

1. The processor stores a fault record as shown in Figure 9-2 on the top of the stack that the
processor is currently using. The stack can be the local stack, the supervisor stack, or the
interrupt stack.

2. If the fault caused an instruction to be suspended, the processor includes an instruction
resumption record on the current stack and sets the resume flag in the saved process
controls.

3. The processor creates a new frame on the current stack, with the frame-return status field
set to 001 2,

4. Using the procedure address from the selected fault-table entry, theprocessor performs an
implicit call-extended operation to the fault handler.

If the fault handler is not able to perform a recovery action, it performs one of the actions
described in the section earlier in this chapter titled "Possible Fault-Handler Actions."

If the handler action results in a recovery from the fault, a ret instruction in the fault handler
allows processor control to return to the program that was being worked on when the fault
occurred. On the return, the processor performs the following action:

1. The processor deallocates the stack frame created for the fault handler.

2. The processor copies the arithmetic controls field fromthe fault record into the arithmetic
controls register in the processor.

3. The processor then resumes work on the program it was working on when the fault
occurred at the instruction in the return IP register.

9-10

inter FAULT HANDLING

Implicit, Local Procedure-Table Call/Return

When the fault-handler entry selects an entry in the system procedure table (entry type 102)

and the system-procedure-table entry is for local procedure, the processor performs the same
action as is described in the previous section for a local procedure call/return. The only
difference is that the processor gets the address of the fault handler from the system procedure
table rather than from the fault table.

Implicit, Supervisor Call/Return

When the fault-handler entry selects an entry in the system procedure table (entry type 102)

and the system-procedure-table entry is for a supervisor procedure, the processor performs the
same action as is described in the previous section for a local procedure call and return, with
the exceptions described in the following paragraphs.

On a supervisor fault-handler call, the processor performs the following additional actions:

1. If the processor is in user mode when the fault occurs, the fault record and resumption
record are stored in the local stack. The processor then takes the stack pointer from the
procedure table and switches to the supervisor stack. The execution mode is then set to
supervisor.

2. If the processor is already in supervisor mode when the fault occurs, the fault record is
stored in the current stack (which is the supervisor stack). The processor then creates a
new frame on the current stack and begins work on the fault-handler procedure selected
from the procedure table.

3. In both of the above cases, the processor copies the state of the trace-control flag (byte 12,
bit 1) of the procedure table into the trace-enable flag field of the process controls.

On a return from the fault handler, the processor performs the following additional actions:

1. If the processor is in supervisor mode prior to the return from the fault handler (which it
should be), it copies the saved process controls into its internal process controls.

2. If the resume flag of the process controls is set, the processor reads the resumption record
from the stack.

3. The processor then resumes work on the program at the point it was working on when the
fault occurred.

The restoration of the process controls causes any changes in the process controls through the
action of the fault handler to be lost. In particular, if the ret instruction from the fault handler
caused the trace-fault-pending flag in the process controls to be set, this setting would be lost
on the return.

Program State After a Fault

As has been described earlier in this chapter, faults can occur prior to the execution of the
faulting instruction (i.e., the instruction that causes the fault), during the instruction, or after the
instruction. When the fault occurs before the faulting instruction is executed, the instruction

9-11

inter FAULT HANDLING

can theoretically be executed on the return from the fault handler. So, the fault is not accom
panied by a change in the control flow of the program.

When a fault occurs during or after the instruction that caused a fault, the fault may be
accompanied by a change in the program's control flow such that the faulting instruction
cannot be reexecuted. For example, when an integer-overflow fault occurs, the overflow value
is stored in the destination. If the destination register was the same as one of the source
registers, the source value is lost, making it impossible to reexecute the faulting instruction.

In general, changes in the program's control flow never accompany the following fault types or
subtypes:

• All Operation Subtypes

• Arithmetic Zero-Divide

• All Floating-Point Subtypes Except Floating Inexact

• All Constraint Subtypes

• Prereturn Trace

Changes in the program's control flow,always accompany the following fault types and sub
types:

• All Trace Subtypes Except Prereturn Trace

• Integer Overflow

• Floating Inexact

Changes in the program's control flow mayor may not accompany the following fault types
and SUbtypes:

• Structural

• Bad Access

The effect that specific fault types have on a program is given in the fault reference section at
the end of this chapter under the heading "Program State Changes."

Return Without Resumption

There may be situations where the fault handler needs to return to a point in the program other
than where the fault occurred. This can be done by altering the return IP in the previous frame.
However, if resumption information was collected with the fault (resulting in the resume flag
being set in the saved process controls), such a return can cause unpredictable results.

To predictably perform a return from a fault handler to an alternate point in the program, the
fault handler should clear the following information in the process-controls field of the fault
record before the return: the resume and trace-fault-pending flags; the internal state field.

9-12

inter FAULT HANDLING

Note

A return of this type can only be performed if the processor is in supervisor mode prior to the
return.

PRECISE AND IMPRECISE FAULTS

As described in the section in Chapter 3 titled "Register Scoreboarding," the 80960KB proces
sor is, in some instances, able to execute instructions concurrently. When two instructions are
being executed concurrently, it is possible for them to generate faults simultaneously. When
this occurs, one of the faults may not be signaled or may be signaled out of order, making it
impossible to recover from that fault.

The processor provides two mechanisms to allow the circumstances under which faults are
signaled to be controlled. These mechanisms are the no imprecise faults flag (NIF flag) in the
arithmetic controls and the synchronize faults instruction (sync!). The following paragraphs
describe how these mechanisms can be used.

Faults are grouped into the following categories: precise, imprecise, and asynchronous.

Precise faults are those that are intended to be recoverable by software. For any instruction
that can generate a precise fault, the processor will (1) not execute the instruction if an
unfinished prior instruction will fault and (2) not execute subsequent out-of-order instructions
that will fault. The following faults are always precise:

• trace

• protection

Imprecise faults are those that in some instances are allowed to occur and not be signaled or be
signaled out of order. These faults include the following:

• operation

• arithmetic

• floating point

• constraint

• type

Asynchronous faults are those whose occurrence has no direct relationship to the instruction
pointer. This category includes the machine fault.

The NIF flag controls whether or not imprecise faults are allowed. When this flag is set, all
faults must be precise. In this mode, the ability to execute instructions concurrently is essen
tially disabled. All faults that occur are signaled.

When the NIF flag is clear, faults in the imprecise category can in some instances occur and
not be signaled. In this mode, the following conditions hold true:

9-13

inter FAULT HANDLING

1. When an imprecise fault occurs, the saved IP is undefined (but the address of the faulting
instruction in the fault record is valid).

2. If instructions are executed concurrently when an imprecise fault occurs, the results
produced by these instructions are undefined.

3. If instructions are executed out-of-order and multiple imprecise faults occur, only olle of
the faults is generated. The one that is selected is not predictable.

The syncf instruction forces the processor to complete execution of all instructions that occur
prior to the syncf instruction and to generate all faults, before it begins work on instructions
that occur after the syncf instruction. This instruction has two uses. One use is to force faults
to be precise when the NIF is clear. The other use is to insure that all instructions are complete
and all faults signaled in one block of code before execution of another block of code (for
example, on Ada block boundaries when the blocks have different exception handlers).

The intent of these fault-generating modes is that compiled code should execute with the NIF
clear, using the syncf instruction where necessary to ensure that faults occur in order. In this
mode, imprecise faults are considered as catastrophic errors from which recovery is not
needed.

If recovery from one or more of the imprecise faults is required (for example, a program that
needs to handle unmasked floating-point exceptions and recover from them) and the fault
handler cannot be closely coupled with the application to perform recovery even if the faults
are imprecise, the NIF should be set. Executing with the NIF set will likely lead to slower
execution times.

FAULT REFERENCE

This section describes each of the fault types and subtypes and gives detailed information
about what is stored in the various fields of the fault record. The section is organized al
phabetically by fault type.

Fault Reference Notation

The following paragraphs describe the information that is provided for each fault type.

Fault Type and Subtype

The fault-type section gives the number entered in the fault-type field of the fault record for the
given fault type. The fault-subtype section lists the fault subtypes and their associated number
or bit position in the fault-subtype field of the fault record.

Function

The function section gives a general description of the purpose of the fault type, then describes
the purpose of each of the fault subtypes in detail. It also describes how the processor handles
each fault subtype.

9-14

inter FAULT HANDLING

Fault Record

The fault record section describes how the flags, fault-data, and address-of-faulting-instruction
fields of the fault record are used for the fault type and subtypes.

SavedlP

The saved IP section describes what value is saved in the RIP register (r2) of the stack frame
the processor was using when the fault occurred.

Program State Changes

The program state changes section describes the effects that the fault subtypes have on the
control flow of a program.

9-15

inter

Arithmetic Faults

Fault Type:

Fault Subtype:

Function:

Fault Record:

SavedIP:

Prog. State Changes:

FAULT HANDLING

316

Number

o
1
2
3-F

Name

Reserved
Integer Overflow
Arithmetic Zero-Divide
Reserved

Indicates that there is a problem with an operand or the result of an
arithmetic instruction. This fault type applies only to ordinal and
integer instruction, not floating-point instructions.

The integer-overflow fault occurs when the result of an integer in
struction overflows the destination and the integer-overflow mask in
the arithmetic-controls register is cleared. Here, the n least sig
nificant bits of the result are stored in the destination, where n is the
destination size.

The arithmetic zero-divide fault occurs when the divisor operand of
an ordinal or integer divide instruction is zero.

Flags: Not used.

Fault Data:

Addr. Fault. Inst.:

Not used.

IP for the instruction on which the processor
faulted.

IP for the instruction that would have been executed next, if the
fault had not occurred.

A change in the program's control flow accompanies the integer
overflow fault, because the result is stored in the destination before
the fault is signaled. The faulting instruction can thus not be
reexecuted.

A change in the program's control flow does not accompany the
arithmetic zero-divide fault, because the fault occurs before the ex
ecution of the faulting instruction.

9-16

inter

Constraint Faults

Fault Type:

Fault Subtype:

Function:

Fault Record:

Saved IP:

Prog. State Changes:

FAULT HANDLING

516

Number

o
1
2-F

Name

Reserved
Constraint Range
Reserved

Indicates that the processor is either in or not in the required state
for the instruction to be executed.

The constraint-range fault occurs when a fault-if instruction is ex
ecuted and the condition code in the arithmetic controls matches the
condition required by the instruction.

Flags: Not used.

Fault Data:

Addr. Fault. Inst.:

Not used.

Not used.

IP for the instruction on which the processor
faulted

No changes in the program's control flow accompany the
constraint-range fault. This fault occurs after the fault-if instruction
has been executed, but the instruction has no effect on the program
state.

9-17

Floating-Point Faults

Fault Type:

Fault Subtype:

Function:

FAULT HANDLING

416

Bit Number

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bits 6 and 7

Name

Floating Overflow
Floating Underflow
Floating Invalid-Operation
Floating Zero-Divide
Floating Inexact
Floating Reserved-Encoding
Reserved

Indicates that there is a problem with an operand or the result of a
floating-point instruction. Each floating-point fault is assigned a bit
in the fault-subtype field. Multiple floating-point faults can only
occur simultaneously, however, with the floating-overflow,
floating-underflow, and floating-inexact faults.

The floating-point faults are described in detail in the section in
Chapter 12 titled "Exceptions and Fault Handling." The following
paragraphs give a brief description of each floating-point fault.

A floating-overflow fault occurs when (1) the floating-point over
flow mask is clear and (2) the infinitely precise result of a floating
point instruction exceeds the largest allowable finite value for the
specified destination format. This fault interacts with the floating
inexact fault (as described in Chapter 12).

A floating-underflow fault occurs when (1) the floating-point under
flow mask is clear and (2) the infinitely precise result of a floating
point instruction is less than the smallest possible normalized, finite
value for the specified destination format. This fault interacts with
the floating-inexact fault (as described in Chapter 12).

The floating invalid-operation fault occurs when (1) the floating
point invalid-operation mask is clear and (2) one of the source
operands for a floating-point instruction is inappropriate for the type
of operation being performed.

The floating zero-divide fault occurs when (1) the floating-point
zero-divide mask is clear and (2) the divisor operand of a floating
point divide instruction is zero.

The floating-inexact fault occurs when (1) the floating-point inexact
mask is clear and (2) an infinitely precise result cannot be encoded
in the format specified for the destination operand. This fault inter
acts with the floating-overflow and floating-underflow faults (as
described in Chapter 12).

The floating reserved-encoding fault occurs when a denormalized
value is used as an operand in a floating-point instruction and the
normalizing-mode bit in the arithmetic controls is clear.

9-18

Fault Record:

Saved IP:

Prog. State Changes:

Flags:

FAULT HANDLING

FO - Used if inexact fault occurs in conjunc
tion with overflow or underflow fault. If set,
FO indicates that the adjusted result has been
rounded toward +00; if clear, FO indicates that
the adjusted result has been rounded toward
_00.

Fl - Used with overflow and underflow
faults only. If set, Fl indicates that the ad
justed result has been bias adjusted, because
its exponent was outside the range of the
extended-real format.

Fault Data: Used only with overflow and underflow
faults. Adjusted result is stored in this field
in extended-real format (as shown in Figure
12-5).

Addr. Fault. Inst.: IP for the instruction on which the processor
faulted

IP for the instruction that would have been executed next, if the
fault had not occurred.

Changes in the program's control flow accompany the floating
overflow, floating-underflow, and floating-inexact faults, because a
result is stored in the destination before the fault is signaled. The
faulting instruction can thus not be reexecuted.

Changes in the program's control flow do not accompany the float
ing invalid-operation, floating zero-divide, and floating reserved
encoding faults, because the faults occur before the execution of the
faulting instruction.

9·19

inter

Machine Faults

Fault Type:

Fault Subtype:

Function:

Fault Record:

Saved IP:

Prog. State Changes:

816

Number

o
1
2-F

FAULT HANDLING

Name

Reserved
Bad Access
Reserved

Indicates that the processor has detected a hardware or memory
system error.

The bad-access fault is the only one of this fault type. This fault
occurs whenever an unrecoverable memory error occurs on a
memory operation. In the 80960KB processor, the processor
receives a signal on its bad access pin (BADAC) to indicate an
unrecoverable memory error. Upon receiving this signal, the
processor signals a machine bad access fault. There is one excep
tion to this action. The processor will not signal a machine bad
access fault while executing any of the synchronous load or move
instructions. Instead, it sets the condition code bits to indicate
whether or not the memory access was completed successfully.

Flags: Not used.

Fault Data: Not used.

Addr. Fault. Inst.: Not used.

Not used.

This fault may occur at any time. When it does occur, the accom
panying state of the program's control flow is undefined. As a
result, the processor is not able to return predictably from the fault
handler to the point in the program where the fault occurred.

If this fault occurs during an atomic operation, there is no guarantee
that the locking mechanism that memory uses for synchronization is
unlocked.

9-20

inter

Operation Faults

Fault Type:

Fault Subtype:

Function:

Fault Record:

Saved IP:

Prog. State Changes:

216

Number

o
1
2
3
4
5-F

FAULT HANDLING

Name

Reserved
Invalid Opcode
Unimplemented
Reserved
Invalid Operand
Reserved

Indicates that the processor cannot execute the current instruction
because of invalid instruction syntax or operand semantics.

The invalid-opcode fault occurs when the processor attempts to ex
ecute an instruction that contains an undefined opcode or addressing
mode.

The unimplemented fault occurs when unaligned memory accesses
are not allowed and the processor attempts to access an unaligned
word or group of words in memory. (The 80960KB processor does
allow unaligned memory accesses, so this fault never occurs.)

The invalid-operand fault occurs when the processor attempts to
execute an instruction for which one or more of the operands have
special requirements and one or more of the operands do not meet
these requirements. This fault sUbtype is not generated on floating
point instructions.

Flags: Not used.

Fault Data: Not used.

Addr. Fault. Inst.: IP for the last instruction executed III the
process.

IP for the instruction that would have been executed next, if the
fault had not occurred.

A change in the program's control flow does not accompany the
operation faults, because the faults occur before the execution of the
faulting instruction.

9-21

Protection Faults

Fault Type:

Fault Subtype:

Function:

Addr. Fault. Inst.:

Saved IP:

Prog. State Changes:

FAULT HANDLING

716

Bit Number

Bit 0
Bit 1
Bit 2-7

Name

Reserved
Length
Reserved

Indicates that the index operand used in a calls instruction points to
an entry beyond the extent of the system procedure table.

Fault Flags: Not used.

Fault Data: Not used.

IP for the instruction on which the processor faulted.

Same as the address-of-faulting-instruction field.

A change in the program's control flow does not accompany the
protection length fault.

9-22

inter

Trace Faults

Fault Type:

Fault Subtype:

Function:

FAULT HANDLING

116

Bit Number

Bit 0
Bit 1
Bit 2
Bit 3
Bit4
Bit 5
Bit 6
Bit 7

Name

Reserved
Instruction Trace
Branch Trace
Call Trace
Return Trace
Prereturn Trace
Supervisor Trace
Breakpoint Trace

Indicates that the processor has detected one or more trace events.
The processor's event tracing mechanism is described in detail in
Chapter 10.

A trace event is the occurrence of a particular instruction or type of
instruction in the instruction stream. The processor recognizes
seven different trace events (instruction, branch, call, return,
prereturn, supervisor, and breakpoint). It detects these events,
however, only if a mode bit is set for the event in the trace controls
word, which is cached in the processor chip. If, in addition, the
trace-enable flag in the process controls is set, the, processor
generates a fault when a trace event is detected.

The fault is generated following the instruction that causes a trace
event (or prior to the instruction for the prereturn trace event).

The following trace modes are available:

• Instruction - Generate trace event following any instruction.

• Branch - Generate trace event following any branch instruc
tion when branch is taken.

• Call - Generate trace event following any call or branch-and
link instruction, or implicit procedure call (i.e., call to fault or
interrupt handler).

• Return - Generate trace event following any return instruc
tion.

• Prereturn - Generate trace event prior to any return instruc
tion.

• Supervisor - Generate trace event following any call-system
instruction.

• Breakpoint - Generate trace event following any processor
action that causes a breakpoint condition.

There is a trace fault subtype and a bit in the fault-subtype field
associated with each of these modes. Multiple fault SUbtypes can

9-23

intel"

Fault Record:

SavedlP:

Prog. State Changes:

FAULT HANDLING

occur simultaneously, with the fault-subtype bit set for each sUbtype
that occurs.

When a fault type other than a trace fault occurs during the execu
tion of an instruction that causes a trace event, the non-trace-fault is
handled before the trace fault. An exception to this rule is the
prereturn trace fault. The prereturn trace fault will occur before the
processor has a chance to detect a non-trace-fault, so it is handled
first.

Lik~wise, if an interrupt occurs during an instruction that causes a
trace event, the interrupt is serviced before the trace fault is handled.
Again, the prereturn trace fault is an exception. Since it occurs
before the instruction, it will be handled before any interrupt that
might occur during the execution of the instruction.

Flags: Not used.

Fault Data: Not used.

Addr. Fault. Inst.: IP for the instruction that caused the trace
event, except for the prereturn trace fault.
For the preretum trace fault, this field has no
defined value.

IP for the instruction that would have been executed next, if the
fault had not occurred.

A change in the program's control flow accompanies all the trace
faults (except the prereturn trace fault), because the events that can
cause a trace fault occur after the faulting instruction is completed.
As a result, the faulting instruction cannot be reexecuted upon
returning from the fault handler.

Since the prereturn trace fault occurs before the return instruction
is executed, a change in the program's control flow does not accom
pany this fault and the faulting instruction can be executed upon
returning from the fault handler.

9-24

inter

Type Faults

Fault Type:

Fault Subtype:

Function:

Fault Record:

Saved IP:

Prog. State Changes:

A 16

Number

o
1
2-F

FAULT HANDLING

Name

Reserved
Type Mismatch
Reserved

Indicates that an attempt was made to execute the modpc instruc
tion while the processor was in the user mode.

Flags: Not used.

Fault Data: Not used.

Addr. Fault. Inst.: IP for the instruction on which the processor
faulted

Not used.

When a type mismatch fault occurs, the accompanying state of the
program is undefined. The processor is thus not able to return
predictably from the fault handler to the point in the program where
the fault occurred.

9-25

Debugging 10

CHAPTER 10
DEBUGGING

This chapter describes the tracing facilities of the 80960KB processor, which allow the
monitoring of instruction execution.

OVERVIEW OF THE TRACE-CONTROL FACILITIES

The 80960KB processor provides facilities for monitoring the activity of the processor by
means of trace events. A trace event in the 80960KB is a condition where the processor has
just completed executing a particular instruction or type of instruction, or where the processor
is about to execute a particular instruction.

By monitoring trace events, debugging software is able to display or analyze the activity of the
processor or of a program. This analysis can be used to locate software or hardware bugs or
for general system monitoring during the development of system or applications programs.

The typical way to use this tracing capability is to set the processor to detect certain trace
events either by means of the trace-controls word or a set of breakpoint registers. An alternate
method of creating a trace event is with the mark and force mark fmark instructions. These
instructions cause an explicit trace event to be generated when the processor detects them in
the instruction stream.

If tracing is enabled, the processor signals a trace fault when it detects a trace event. The fault
handler for trace faults can then call the debugging monitor software to display or analyze the
state of the processor when the trace event occurred.

REQUIRED SOFTWARE SUPPORT FOR TRACING

To use the processor's tracing facilities, software must provide trace-fault handling procedures,
perhaps interfaced with a debugging monitor. Software must also manipulate several control
flags to enable the various tracing modes and to enable or disable tracing in general. These
control flags are located in the system-data structures described in the next section.

TRACE CONTROLS

The following flags or fields control tracing:

• Trace controls

• Trace-enable flag in the process controls

• Trace-fault-pending flag in the process controls

• Trace flag (bit 0) in the return-status field of register rO

• Trace-control flag in the supervisor-stack-pointer field of the system table or a procedure
table

10-1

inter DEBUGGING

Trace-Controls Word

The trace-controls word is cached internally in the processor.

The trace controls allow software to define the conditions under which trace events are
generated. Figure 10-1 shows the structure of the trace-contrQls word.

'-------PRERETURN TRA~E MODE

'-------SUPERVISOR TRACE MODE

'--------BREAKPOINT TRACE MODE

'---------------1 NSTRUCTION TRACE EVENT

'----------------BRANCHTRACEEVENT

'---------------- CALL TRACE EVENT

'------------------RETURNTRACEEVENT
L..-________________ PRERETURN TRACE EVENT

L..-________________ SUPERVISOR TRACE EVENT

'------------------- BREAKPOINT TRACE EVENT

RESERVED (INITIALIZE TO 0)

Figure 10-1: Trace-Controls Word

This word contains two sets of bits: the mode flags and the event flags. The mode flags define
a set of trace modes that the processor can use to generate trace events. A mode represents a
subset of instructions that will cause trace events to be generated. For example, when the
call-trace mode is enabled, the processor generates a trace event whenever a call or branch
and-link operation is executed. To enable a trace mode, the kernel sets the mode flag for the
selected trace mode in the trace controls. The trace modes are described later in this chapter.

The processor uses the event flags to keep track of which trace events (for those trace modes
that have been enabled) have been detected.

A special instruction, the modify-trace-controls (modtc) instruction, allows software to set or
clear flags in the trace controls. On initialization, all the flags in ~he processor's internal trace
controls are cleared. The modtc instruction can then be used to set or clear trace mode flags as
required.

10-2

inter DEBUGGING

Software can access the event flags using the modtc instruction, however, there is no reason to.
The processor modifies these flags as part of its trace-handling mechanism.

Bits 0, 8 through 16, and 24 through 31 of the trace controls are reserved. Software should
initialize these bits to zero and not modify them.

Trace-Enable and Trace-Fault-Pending Flags

The trace-enable flag and the trace-fault-pending flag, in the process controls (shown in Figure
7-2), control tracing. The trace-enable flag enables the processor's tracing facilities. When
this flag is set, the processor generates trace faults on all trace events.

Typically, software selects the trace modes to be used through the trace controls. It then sets
the trace-enable flag when tracing is to begin. This flag is also altered as part of some of the
call and return operations that the processor carries out, as described at the end of this chapter.

The trace-fault-pending flag allows the processor to keep track of the fact that an enabled trace
event has been detected. The processor uses this flag as follows. When the processor detects
an enabled trace event, it sets this flag. Before executing an instruction, the processor checks
this flag. If the flag is set, it signals a trace fault. Sy providing a means of recording the
occurrence of a trace event, the trace-fault-pending flag allows the processor to service an
interrupt or handle a fault other than a trace fault, before handling the trace fault. Software
should not modify this flag.

Trace Control on Supervisor Calls

The trace flag and the trace-control flag allow tracing to be enabled or disabled when a
call-system instruction (calls) is executed that results in a switch to supervisor mode. This
action occurs independent of whether or not tracing is enabled prior to the call.

When a supervisor call is executed (calls instruction that references an entry in the system
procedure table with an entry type 112)' the processor saves the current state of the trace-enable
flag (from the process controls) in the trace flag (bit 0) of the return-status field of register rOo

Then, when the processor selects the supervisor procedure from the procedure table, it sets the
trace-enable flag in the process controls according to the setting in the trace-control flag in the
procedure table (bit 0 of the word that contains the supervisor-stack pointer).

On a return from the supervisor procedure, the trace-enable flag in the process controls is
restored to the value saved in the return-status field of register rOo

TRACE MODES

The following trace modes can be enabled through the trace controls:

• Instruction trace

10-3

intel" DEBUGGING

• Branch trace

• Call trace

• Return trace

• Prereturn trace

• Supervisor trace

• Breakpoint trace

These modes can be enabled individually or several modes can be enabled at once. Some of
these modes overlap, such as the call-trace mode and the supervisor-trace mode. The section
later in this chapter titled "Handling Multiple Trace Events" describes what the processor does
when multiple trace events occur.

The following sections describe each of the trace modes.

Instruction Trace

When the instruction-trace mode is enabled, the processor generates an instruction-trace event
each time an instruction is executed. This mode can be used within a debugging monitor to
single-step the processor.

Branch Trace

When the branch-trace mode is enabled, the processor generates an branch-trace event any
time a branch instruction that branches is executed. A branch-trace event is not generated for
conditional-branch instructions that do not branch. Also, branch-and-link, call, and return
instructions do not cause branch-trace events to be generated.

Call Trace

When the call-trace mode is enabled, the processor generates a call-trace event any time a call
instruction (call, calix, or calls) or a branch-and-link instruction (bal or balx) is executed. An
implicit call, such as the action used to invoke a fault handler or an interrupt handler, also
causes a call-trace event to be generated.

When the processor detects a call-trace event, it also sets the prereturn-trace flag (bit 3 of
register rO) in the new frame created by the call operation or in the current frame if a branch
and-link operation was performed. The processor uses this flag to determine whether or not to
signal a prereturn-trace event on a return instruction.

Return Trace

When the return-trace mode is enabled, the processor generates a return-trace event any time a
ret instruction is executed.

10-4

intel" DEBUGGING

Prereturn Trace

The prereturn-trace mode causes the processor to generate a prereturn-trace event prior to the
execution of any ret instruction, providing the prereturn-trace flag in rO is set. (Prereturn
tracing cannot be used without enabling call tracing.)

The processor sets the prereturn-trace flag whenever it detects a call-trace event (as described
above for the call-trace mode). This flag performs a prereturn-trace-pending function. If
another trace event occurs at the same time as the prereturn-trace event, the prereturn-trace flag
allows the processor to fault on the non-prereturn-trace event first, then come back and fault
again on the prereturn-trace event. The prereturn trace is the only trace event that can cause
two successive trace faults to be generated between instruction boundaries.

Supervisor Trace

When the supervisor-trace mode is enabled, the processor generates a supervisor-trace event
any time (1) a call-system instruction (calls) is executed, where the procedure table entry is a
supervisor procedure, or (2) when a ret instruction is executed and the return-status field is set
to 0102 or 0112 (i.e., return from supervisor mode).

This trace mode allows a debugging program to determine the boundaries of kernel procedure
calls within the instruction stream.

Breakpoint Trace

The breakpoint-trace mode allows trace events to be generated at places other than those
specified with the other trace modes. This mode is used in conjunction with the mark and
force-mark (fmark) instructions, and the breakpoint registers.

The mark and fmark instructions allow breakpoint-trace events to be generated at specific
points in the instruction stream. When the breakpoint-trace mode is enabled, the processor
generates a breakpoint-trace event any time it encounters a mark instruction. The fmark
causes the processor to generate a breakpoint-trace event regardless of whether the breakpoint
trace mode is enabled or not.

The processor has two, one-word breakpoint registers, designated as breakpoint 0 and break
point 1. Using the set-breakpoint-register lAC, one instruction pointer can be loaded into each
register. The processor then generates a breakpoint trace any time it executes an instruction
referenced in a breakpoint register.

TRACE-FAULT HANDLER

A fault handler is a procedure that the processor calls to handle faults that occur. The require
ments for fault handlers are given in Chapter 9 in the section titled "Fault-Handler Procedures."

A trace-fault handler has one additional restriction. It must be called with an implicit super
visor call, and the trace-control flag in the system-procedure-table entry must be clear. This

10-5

------- - -- - - -- ------ ---

inter DEBUGGING

restriction insures that tracing is turned off when a trace fault is being handled, which is
necessary to prevent an endless loop.

SIGNALING A TRACE EVENT

To summarize the information presented in the previous sections, the processor signals a trace
event when it detects any of the following conditions:

• An instruction included in a trace-mode group is executed or about to be executed (in the
case of a prereturn trace event) and the trace mode for that instruction is enabled.

• An implicit call operation has been executed and the call-trace mode is enabled.

• A mark instruction has been executed and the breakpoint-trace mode is enabled.

• An fmark instruction has been executed.

• An instruction specified in a breakpoint register is executed and the breakpoint-trace mode
is enabled.

When the processor detects a trace event and the trace-enable flag in the process controls is set,
the processor performs the following action:

1. The processor sets the appropriate trace-event flag in the trace controls. If a trace event
meets the conditions of more than one of the enab\ed trace modes, a trace-event flag is set
for each trace mode condition that is met.

2. The processor sets the trace-fault-pending flag in the process controls.

Note

The processor may set a trace-event flag and the trace-fault-pending flag before it has com
pleted execution of the instruction that caused the event. However, the processor only handles
trace events in between the execution of instructions.

If, when the processor detects a trace event, the trace-enable flag in the process controls is
clear, the processor sets the appropriate event flags, but does not set the trace-fault-pending
flag.

HANDLING MULTIPLE TRACE EVENTS

If the processor detects multiple trace events, it records one or more of them based on the
following precedence, where 1 is the highest precedence:

1. Supervisor-trace event

2. Breakpoint- (from mark or fmark instruction, or from a breakpoint register), branch-,
call-, or return-trace event

3. Instruction-trace event
/

When multiple trace events are detected, the processor may not signal each event; however, it
will signal at least the one with the highest precedence.

10-6

DEBUGGING

TRACE HANDLING ACTION

Once a trace event has been signaled, the processor determines how to handle the trace event,
according to the setting of the trace-enable and trace-fault-pending flags in the process controls
and to other events that might occur simultaneously with the trace event such as an interrupt or
a non-trace fault.

The following sections describe how the processor handles trace events for various situations.

Normal Handling of Trace Events

Prior to executing an instruction, the processor performs the following action regarding trace
events:

1. The processor checks the state of the trace-fault pending flag. If this flag is clear, the
processor begins execution of the next instruction. If the flag is set, the processor per
forms the following actions.

2. The processor checks the state of the trace-enable flag. If the trace-enable flag is clear, the
processor clears any trace event flags that have been set, prior to starting execution of the
next instruction. If the trace-enable flag is set, the processor performs the following
action.

3. The processor signals a trace fault and begins the fault handling action, as described in
Chapter 9.

Prereturn Trace Handling

The processor handles a prereturn-trace event the same as described above except when it
occurs at the same time as a non-trace fault. Here, the non-trace fault is handled first.

On returning from the fault handler for the non-trace fault, the processor checks the prereturn
trace flag in register rOo If this flag is set, the processor "generates a prereturn-trace event, then
handles it as described above.

Tracing and Interrupt Handlers

When the processor invokes an interrupt handler to service an interrupt, it disables tracing. It
does this by saving the current state of the process controls, then clearing the trace-enable and
trace-fault-pending flags in the current process controls.

On returning from the interrupt handler, the processor restores the process controls to the state
they were in prior to handling the interrupt, which restores the state of the trace-enable and
trace-fault-pending flags. If these two flags were set prior to calling the interrupt handler, a
trace fault will be signaled on the return from the interrupt handler .

. 10-7

DEBUGGING

Tracing and Fault Handlers

The processor can invoke a fault handler with either an implicit local call or an implicit
supervisor call. On a local call, the trace-enable and trace-fault-pending flags are neither saved
on the call nor restored on the return. The state of these flags on the return is thus dependent
on the action of the fault handler.

On a supervisor call, the trace-enable and trace-fault-pending flags are saved, as part of the
saved process controls, and restored on the return. So, if these two flags were set prior to
calling the fault handler, a trace fault will be signaled on the return from the fault handler.

Note

On a return from an interrupt handler or a fault handler (other than the trace-fault handler), the
trace-fault-pending flag is restored. If this flag is set as a result of the handler's ret instruction,
the detected trace event is lost.

10-8

Core Instruction
Reference

11

CHAPTER 11
INSTRUCTION SET REFERENCE

This chapter provides detailed information about each of the instructions for the 80960KB
processor. To provide quick access to information on a particular instruction, the instructions
are listed alphabetically by assembly-language mnemonic. An explanation of the format and
abbreviations used in this chapter is given in the following section.

INTRODUCTION

The information in this chapter is oriented toward programmers who are writing assembly
language code for the 80960KB processor. The information provided for each instruction
includes the following:

• Alphabetic reference

• Assembly-language mnemonic and name

• Assembly-language format

• Description of the instruction's operation

• Action the instruction carries out when executed (generally presented in the form of an
algorithm)

• Faults that can occur during execution

• Assembly-language example

• Opcode and instruction format

• Related instructions

Additional information about the instruction set can be found in the following chapters and
appendices in this manual:

• Chapter 6 -- Summary of the instruction set by group and description of the assembly
language instruction format

• Appendix A -- Instruction Quick Reference

• Appendix B -- Machine-Level Instruction Formats

NOTATION

To simplify the presentation of information about the instructions, a simple notation has been
adopted in this chapter. The following paragraphs describe this notation.

Alphabetic Reference

The instructions are listed alphabetically by assembly-language mnemonic. If several instruc
tions are related and fall together alphabetically, they are described as a group on a single page.

11-1

inter INSTRUCTION SET REFERENCE

The reference at the top of each page gives the assembly-language mnemonics for the instruc
tions covered on that page (e.g., subc). Occasionally, there are so many instructions covered
on the page that it is not practical to give all the mnemonics in the page reference. In these
cases, the name of the instruction group is given in capital letters (e.g., BRANCH or FAULT
IF)

A box around the alphabetic reference (such as I addr, addrl D indicates that the instruction or

group of instructions are extensions to the 80960 architecture instruction set.

Mnemonic

The Mnemonic section gives the complete mnemonic (in bold-face type) and instruction name
for each instruction covered on the page, for example:

subi Subtract Integer

Format

The Format section gives the assembly-language format of the instruction and the type of
operands allowed. The format is given in two or three lines. The following is an example of a
two line format:

sub* srcl,
reg/lit

src2,
reg/lit

dst
reg

The first line gives the assembly-language mnemonic (bold-face type) and the operands
(italics). When the format is used for two or more instructions, an abbreviated form of the
mnemonic is used. The" * " sign at the end of the mnemonic indicates that the mnemonic has
been abbreviated.

The operand names are designed to describe the functions of the operands (e.g., src, len, mask).

The second line of the format shows what is allowed to be entered for each operand. The
notation used on this line is as follows:

reg Global (gO ... g15) or local (rO ... r15) register

freg Global (gO ... g15) or local (rO ... r15) register, or floating-point (fpO ... fp3) register,
where the registers contain floating-point numbers

lit Integer or ordinal literal of the range 0 ... 31

flit Floating-point literal of value 1.0 or 0.0

disp Signed displacement of range _222 ... (222 - 1)

mem Address defined with the full range of addressing modes

In some cases, a third line will be added to show specifically what will be in a register or
memory location. For example, it may be useful to know that a register is to contain an
address. The notation used in this line is as follows:

11-2

inter INSTRUCTION REFERENCE

addr

efa

Description

Address

Effective address

The Description section describes what the instruction does and the functions of the operands.
It also gives programming hints when appropriate.

Action

The Action section gives an algorithm written in a pseudo-code that describes in detail what
actions the processor takes when executing the instruction and the precise order of these
actions. The main purpose of this section is to show the possible side effects of the instruction.
The following is an example of the action algorithm for the alter bit instruction:

if (AC.cc and 2#010#) = 0
then dst f- src and not (2A(bitpos mod 32»;
else dst f- src or 2A(bitpos mod 32);

end if;

In these action statements, the term AC.cc means the condition-code bits in the arithmetic
controls. The notation 2#value# means that the value enclosed in the "#" signs is in base 2.

Faults

The Faults section lists the faults that can be signaled as the result of execution of the instruc
tion. Faults listed with all-capital letters refer to a group of faults; faults listed with initial
capital letters refer to a specific fault.

All instructions can signal a group of general faults which are referred to as STANDARD
FAULTS. The standard faults include the trace-instruction and machine-bad-access faults. In
addition, for all instructions that have a MEM machine-format (such as, load, store, call
extended), the invalid-opcode and operation-unimplemented faults are standard faults.

The following list shows the various fault groups and the individual faults in each group:

TRACE FAULTS
Instruction Trace
Branch Trace
Call Trace
Return Trace
Prereturn Trace
Supervisor Trace
Breakpoint Trace

11-3

INSTRUCTION REFERENCE

OPERATION
Invalid Opcode
Unimplemented
Invalid Operand

ARITHMETIC
Integer Overflow
Arithmetic Zero-Divide

FLOATING-POINT
Floating Overflow
Floating Underflow
Floating Invalid-Operation
Floating Zero-Divide
Floating Inexact
Floating Reserved-Encoding

CONSTRAINT
Constraint Range
Privileged

PROTECTION
Segment Length

MACHINE
Bad Access

TYPE
Type Mismatch

Example

The Example section gives an assembly-language example of an application of the instruction.

Opcode and Instruction Format

The Opcode and Instruction Format section gives the opcode and machine language instruction
format for each instruction, for example:

subi 593 REG

The opcode is given in hexadecimal format.

The machine language format is one of four possible formats: REG, COBR, CTRL, and
MEM. Refer to Appendix B for more information on the machine-language instruction for
mats.

11-4

INSTRUCTION REFERENCE

See Also

The See Also section gives the mnemonics of related instructions, which can then be looked up
alphabetically in this chapter for comparison. For instructions that are grouped on one page
(such as addr and addrl) only the first mnemonic is given.

INSTRUCTIONS

This section contains reference information on the processor's instructions. It is arranged
alphabetically by instruction or instruction group.

11-5

addc

Mnemonic: adde

Format: adde

INSTRUCTION SET REFERENCE

Add Ordinal With Carry .

srcl,
reg/lit

src2,
reg/lit

dst
reg

Description: Adds the src2 and srcl values, and bit 1 of the condition code (used here as a
carry in), and stores the result in dst. If the ordinal addition results in a carry,
bit 1 of the condition code is set; otherwise, bit 1 is cleared. If integer
addition results in an overflow, bit 0 of the condition code is set; otherwise,
bit 0 is cleared. Regardless of the results of the addition, bits 0 and 1 of the
arithmetic controls are always written.

Action:

Faults:

Example:

Opcode:

See Also:

The ad de instruction can be used for either ordinal or integer arithmetic. The
instruction does not distinguish between ordinal and integer source operands.
Instead, the processor evaluates the result for both data types and sets bits 0
and 1 of the condition code accordingly.

An integer overflow fault is never signaled with this instruction.

Let the value of the condition code be xCx.
dst f- src2 + srcl + C;
AC.cc f- 2#OCV#;
C is carry from ordinal addition.
V is 1 if integer addition would have generated an overflow.

STANDARD

Example of double-precision arithmetic
Assume 64-bit source operands
in gO,gl and g2,g3
cmpo 1, 0 # clears Bit 1 (carry bit) of

the AC.cc
addc gO, g2, gO # add low-order 32 bits;

gO f- g2 + gO + Carry Bit
addc gl, g3, gl # add high-order 32 bits;

gl f- g3 + gl + Carry Bit
64-bit result is in gO, gl

adde 5BO REG

addo, sube

11-6

inter INSTRUCTION SET REFERENCE

Mnemonic:

Format:

addi
addo

add*

Add Integer
Add Ordinal

srcl,
reg/lit

src2,
reg/lit

dst
reg

addi, addo

Description: Adds the src2 and src1 values and stores the result in dst.

Action: dst ~ src2 + src1;

Faults:

Example:

Opcode:

See Also:

STANDARD

Integer Overflow

addi r4, gS, r9

addi
ad do

591
590

addc, addr, subi, subo

Refer to discussion of faults at the begin
ning of this chapter.

Result is too large for destination format.
This fault is signaled only when execut
ing the addi instruction and if both of the
following conditions are met: (1) the
integer-overflow mask in the arithmetic
controls registers is clear and (2) the
source operands have like signs and the
sign of the result operand is different
than the signs of the source operands.

r9 ~ gS + r4

REG
REG

11-7

inter INSTRUCTION SET REFERENCE

I addr, addrll

Mnemonics: addr Add Real
addrl

Format: addr*

Add Long Real

srcl,
freg/flit

src2,
freg/flit

dst
freg

Description: Adds the src2 and srcl values and stores the result in dst.

Src2

Action:

.co

·F

·0

+0

+F

+co

For the addrl instruction, if the srcl, src2, or dst operand references a global
or local register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., gO, g2, g4).

The following table shows the results obtained when adding various classes
of numbers, assuming that neither overflow nor underflow occurs.

Srcl

.co ·F ·0 +0 +F +co NaN

_00 -co _00 _00 _00 * NaN

-00 -F src2 src2 ±For ±O +00 NaN
_00 srel -0 ±O srel +00 NaN

-00 srel ±O +0 srel +00 NaN

-00 ±For ±O sre2 sre2 +F +00 NaN

* +00 +00 +00 +00 +00 NaN

NaN NaN NaN NaN NaN NaN NaN NaN

Notes:

F
•

Ml}ans finite-real number
Indicates floating invalid-operation exception

When the sum of two operands with opposite signs is zero, the result is +0,
except for the round toward -00 mode, in which case, the result is -0. When
zero is added to itself (e.g. srcl + srcl, where srcl is 0), the result retains the
sign of the source.

dst f- src2 + srcl;

11-8

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

STANDARD

I addr, addrll

Refer to the discussion of faults at the
beginning of this chapter.

Floating Reserved Encoding One or more operands is an unnormal
ized (including denormalized) value and
the normalizing-mode bit in the arith
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Overflow

Floating Underflow

Floating Invalid Operation

Floating Inexact

addrl g6, g8, fp3

addr
addrl

addi, subr

78F
79F

Result is too large for destination format.

Normalized result is too small for des
tination format.

Source operands are infinities of unlike
sign.

One or more operands is an SNaN value.

Result cannot be represented exactly in
destination format.

Floating overflow occurred and the over
flow exception was masked.

#fp3 ~ g6,g7 + g8,g9

REG
REG

11-9

inter

alterbit

Mnemonic: alterbit

Format: alterbit

INSTRUCTION SET REFERENCE

Alter Bit

bitpos,
reg/lit

src,
reg/lit

dst
reg

Description: Copies the src value to dst with one bit altered. The bitpos operand specifies
the bit to be changed; the condition code determines the value the bit is to be
changed to. If the condition code is XIX2, the selected bit is set; otherwise,
it is cleared.

Action: if (AC.cc and 2#010#) = 0
tben dst +-- src and not (211(bitpos mod 32»;
else dst +-- src or 211(bitpos mod 32);

end if;

Faults: STANDARD

Example: # assume condition code is 2#010#
alterbit 24, g4, g9 # g9 +-- g4, with bit 24 set

Opcode: alter bit 58F REG

See Also: checkbit, c1earbit, notbit, setbit

11-10

inter INSTRUCTION SET REFERENCE

and, andnot

Mnemonics: and And
andnot And Not

Format: and src1, src2, dst
reg/lit reg/lit reg

andnot src1, src2, dst
reg/lit reg/lit reg

Description: Performs a bitwise AND (and instruction) or AND NOT (andnot
instruction) operation on the src2 and src1 values and stores the result in dst.
Note in the action expressions below, the src2 operand comes first, so that
with the andnot instruction the expression is evaluated as

Action:

Faults:

Example:

Opcode:

See Also:

{src2 andnot (src1)}

rather than

{src1 andnot (src2) }.

and: dst ~ src2 and src1;

andnot: dst ~ src2 and not (src1);

STANDARD

and Ox17, gS, g2
andnot r3, r12, r9

and
andnot

581
582

g2 ~ gS AND Ox17
r9 ~ r12 AND NOT r3

REG
REG

nand,nor,not, notand,notor, or, ornot, xnor, xor

11-11

atadd

Mnemonic: atadd

Format: atadd

INSTRUCTION SET REFERENCE

Atomic Add

srcldst,
reg
addr

src,
reg/lit

dst
reg

Description: Adds the src value (full word) to the value in the memory location specified
with the srcldst operand. The initial value from memory is stored in dst.

Action:

Faults:

Example:

Opcode:

See Also:

The read and write of memory are done atomically (i.e., other processors are
prevented from accessing the word of memory specified with the srcldst
operand until the operation has been completed).

The memory location in srcldst is the address of the first byte (least sig
nificant byte) of the word. The address is automatically aligned to a word
boundary.

tempa f- srcldst and not (3); # force alignment to word boundary
temp f- atomic_read (tempa);
atomic_write (tempa) f- temp + src;
dst f- temp;

STANDARD

atadd r8, r2, rll # r8 f- r2 + address r8,
where r8 specifies the
address of a word in
memory; rll f- initial
value stored at address
r8 in memory

atadd 612 REG

atmod

11-12

INSTRUCTION SET REFERENCE

I atanr, atanrll

Mnemonics: atanr Arctangent Real
Arctangent Long Real atanrl

Format: atanr* src1 ,
freg/flit

src2,
freg/flit

dst
freg

Description: Calculates the arctangent of the quotient of src2/src1 and stores the result in
dst. The result is returned in radians and is in the range of -1t to +1t, in
clusive. The sign of the result is always the sign of src2.

Sre2

_00

-F

-0

+0

+F

+00

For the atanrl instruction, if the src1 , src2, or dst operand references a global
or local register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., gO, g2, g4).

These instructions are commonly used as part of an algorithm to convert
rectangular coordinates to polar coordinates. They can also be used to imple
ment the FORTRAN intrinsic functions ATAN and ATAN2. If src1 is the
floating-point literal value + 1.0, then these instructions return a result in the
range of -1t/2 to +1t/2.

The following table gives the range of results for various values of src2 and
src1 , assuming that neither overflow nor underflow occurs.

Srel

-00 -F -0 +0 +F +00 NaN

-3n/4 -n/2 -n/2 -n/2 -n/2 -n/4 NaN

-n -n to -n/2 -n/2 -n/2 -n/2 to -0 -0 NaN

-n -n -n -0 -0 -0 NaN

+n +n +n +0 +0 +0 NaN

+n +n to +n/2 1+ n/2 +n/2 +n/2 to + 0 +0 N"aN

+3n/4 +n/2 +n/2 +n/2 +n/2 +n/4 NaN

NaN NaN NaN NaN NaN NaN NaN NaN

Notes:

F Means finite-real number.

11-13

inter INSTRUCTION SET REFERENCE

! atanr, atanrl!

Action:

Faults:

Example:

Opcode:

dst t- arctan (src2Isrcl);

STANDARD

Floating Reserved Encoding

Refer to the discussion of faults at the
beginning of this chapter.

One or more operands is an unnormal
ized (including denormalized) value and
the normalizing-mode bit in the arith
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Underflow

Floating Invalid Operation

Floating Inexact

Result is too small for destination format.

One or more operands are an SNaN
value.

Result cannot be represented exactly in
destination format.

atanrl g8, gIO, fp3 # fp3 t-
arctan (glO,gll/g8,g9)

atanrl 1.0, gO, gO # gO,gl t- arctan (gO,gl)

atanr
atanrl

680
690

REG
REG

See Also: tanr

11-14

inter

Mnemonic: atmod

Format: atmod

INSTRUCTION SET REFERENCE

Atomic Modify

src,
reg
addr

mask,
reg/lit

srcldst
reg

, atmod

Description: Copies the srcldst value into the memory location specified in src. The bits
set in the mask operand select the bits to be modified in memory. The initial
value from memory is stored in srcldst.

Action:

Faults:

Example:

Opcode:

See Also:

The read and write of memory are done atomically (i.e., other processors are
prevented from accessing the word of memory specified with the srcldst
operand until the operation has been completed).

The memory location in src is the address of the first byte (least significant
byte) of the word to be modified. The address is automatically aligned to a
word boundary.

tempa ~ src and not (3); # force alignment to word boundary
temp ~ atomic_read (tempa);
atomic_write (tempa) ~ (srcldst and mask),

or (temp and not(mask»;
srcldst ~ temp;

STANDARD

atmod g5, g7, glO # g5 ~ g5 masked by g7,
where g5 specifies the
address of a word in
memory;
glO ~ initial value
stored at address g5
in memory

atmod 610 REG

atadd

11-15

inter

bal, balx

Mnemonic:

Format:

bal
balx

bal

balx

INSTRUCTION SET REFERENCE

Branch And Link
Branch And Link Extended

targ
disp

targ,
mem

dst
reg

Description: Stores the address of the next instruction (the instruction following the bal or
balx instruction) and branches to the instruction specified with the targ
operand.

I

With the bal instruction, the address of the next instruction is stored in
register g14. The targ operand can be either a label or an absolute address
that specifies the IP of the target instruction. This value can be no farther
than _223 to (223 - 4) from the current IP.

The balx instruction performs almost the same operation as the bal instruc
tion except that the target instruction can be farther than _223 to (223 - 4)
from the current IP. With the 'balx instruction, the address of the next
instruction is stored in dst. The targ operand is a memory type, which
allows the full range of addressing modes to be used to specify the IP of the
target instruction. Here, the "IP + displacement" addressing mode allows the
instruction to be IP-relative. Indirect branching can be performed by placing
the target address in a register and then using one of the register-indirect
addressing modes.

Refer to Chapter 5 for a complete discussion of the addressing modes avail
able with memory-type operands.

Note

At the machine level, the bal instruction uses the CTRL instruction fonnat.
With this fonnat, the target instruction for the branch is specified by means
of a word-displacement (represented by displacement in the following ac
tion statement for the bal instruction), which can range from _221 to (221 -
I). To detennine the IP of the target instruction, the processor converts this
displacement value to a byte displacement (i.e., multiplies the value by 4).
It then adds the resulting byte displacement to the current IP. .

11-16

inter

Action:

Faults:

Example:

Opcode:

bal:

INSTRUCTION SET REFERENCE

bal, balx

To allow labels or absolute addresses to be used in the assembly-language
version of the bal instruction, the Intel 80960KB Assembler performs the
following calculation to convert the targ value in an assembly-language
instruction to the displacement value required by the machine instruction
format:

displacement = (targ/4) - IP

For further information about the CTRL instruction format, refer to Appen
dix B.

G 14 ~ IP + 4; # destination next IP is always g 14
IP ~ IP + targ; # resume execution at the new IP

balx: dst ~ IP + inst length; # instruction length
is 4 or 8 bytes

IP ~ targ; # resume execution at the new IP

STANDARD

bal xyz # IP ~ xyz;

balx (g2), g4 # IP ~ (g2);

bal
balx

OB
85

address of return instruction
is stored in g4; example of
indirect addressing.

CTRL
MEM

See Also: b, bx

11-17

inter

b,bx

Mnemonic: b
bx

Format: b

bx

INSTRUCTION SET REFERENCE

Branch
Branch Extended

targ

targ
mem

Description: Branches to the instruction specified with the targ operand.

With the b instrUction, the targ operand can be either a label or an absolute
address that specifies the IP of the target instruction. This value can be no
farther than _2"23 to (223 - 4) from the current IP.

The bx instruction performs the same operation as the b instruction except
that the target instruction can be farther than _223 to (223 - 4) from the current
IP. With the bx instruction, the targ operand is a memory type, which allows
the full range of addressing modes to be used to specify the IP of the target
instruction. Here, the "IP + displacement" addressing mode allows the in
struction to be IP-relative. Indirect branching can be performed by placing
the target address in a register and then using one of iQe register-indirect
addressing modes.

Refer to Chapter 5 for a complete discussion of the addressing modes avail-
able with memory-type operands. '

Note

At the machine level, the b instruction uses the CTRL instruction format.
With this format, the target instruction for the branch is specified by means
of a word-displacement (represented by displacement in the following ac
tion statement for the b instruction), which can range from _221 to (221 - 1).
To determine the IP of the target instruction, the processor converts this
displacement value to a byte displacement (Le., Illultiplies the value by 4).
It then adds the resulting byte displacement to the current IP.

To allow labels or absolute addresses to be used in the assembly-language
version of the b instruction, the Intel 80960KB Assembler performs the
following calculation to convert the targ value in an assembly-language
instruction to the displacement value required by the machine instruction
format:

displacement = (targ/4) - IP

For further information about the CTRL instruction format, refer to Appen
dix B.

11-18

Action:

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

b,bx

b: IP f- IP + displacement; # resume execution at the new IP

bx: IP f- targ; # resume execution at the new IP

STANDARD

b xyz # IP f- xyz;

bx 1332 (ip) # IP f- IP + 1332;

b
bx

08
84

this example uses ip-re1ative
addressing.

CTRL
MEM

bal, balx, BRANCH IF, COMPARE INTEGER AND BRANCH, COM
PARE ORDINAL AND BRANCH

11-19

bbc,bbs

Mnemonic:

Format:

bbc
bbs

bb*

INSTRUCTION SET REFERENCE

Check Bit and Branch If Clear
Check Bit and Branch If Set

bitpos,
reg/lit

src,
reg

targ

Description: Checks the bit in src (designated by bitpos) and sets the condition code in the
arithmetic controls according to the value found. The processor then per
forms a conditional branch based on the value of the condition code.

For the bbc instruction, if the selected bit in src is clear, the processor sets
the condition code to 010z and branches to the instruction specified with the
targ operand; otherwise, it sets the condition code to OOOz and goes to the
next instruction.

For the bbs instruction, if the selected bit is set, the processor sets the con
dition code to 010z and branches to targ; otherwise, it sets the condition code
to OOOz and goes to the next instruction.

When using the Intel 80960KB Assembler, the targ o~erand can be either a
label or an absolute address that is no farther than _21 to (21Z - 4) from the
current IP.

Note

At the machine level, the bbc and bbs instructions use the COBR instruc
tion format. With this format, the target instruction for the branch is
specified by means of a word-displacement (represented by displacement in
the following action statement), which can range from _2 10 to (210 - 1). To
determine the IP of the target instruction, the processor converts this
displacement value to a byte displacement (Le., multiplies the value by 4).
It then adds the resulting byte displacement to the IP of the next instruction.

To allow labels or absolute addresses to be used in the assembly-language
versions of the bbc and bbs instructions, the Intel 80960KB Assembler
performs the following calculation to convert the targ value in an assembly
language instruction to the displacement value required by the machine
instruction format:

,displacement = (targ/4) - (IP + 4)

For fuIjther information about the COBR instruction format, refer to Appen
dix B.

11-20

inter INSTRUCTION SET REFERENCE

bbc,bbs

Action: bbc:

Faults:

Example:

Opcode:

See Also:

if (src and 2"(bitpos mod 32» = 0
then AC.cc f- 2#010#;

IP f- IP + 4 + (displacement * 4);
resume execution at the new IP

else AC.cc f- 2#000#;
IP f- IP + 4; # resume execution at the next IP

end if;

bbs:

if (src and 2"(bitpos mod 32» = 1
then AC.cc f- 2#010#;

IP f- IP + 4 + (displacement * 4);
resume execution at the new IP

else AC.cc f- 2#000#;
IP f- IP + 4; # resume execution at the next IP

end if;

STANDARD

assume bit 10 of r6 is clear
bbc 10, r6, xyz # bit 10 of r6 is checked

and found clear;

bbc
bbs

chkbit

30
37

AC.cc f- 2#010#
IP f- xyz;

COBR
COBR

11-21

BRANCH IF

Mnemonics: be
boe
bl
ble
bg
bge
bo
boo

Format: b*

INSTRUCTION SET REFERENCE

Branch If Equal
Branch If Not Equal
Branch If Less
Branch If Less Or Equal
Branch If Greater
Branch If Greater Or Equal
Branch If Ordered
Branch If Unordered

targ
disp

Description: Branches to a new instruction according to the state of the condition code in
the arithmetic controls.

For all branch-if instructions except the boo instruction, the processor
branches to the instruction specified with the targ operand, if the logical
AND of the condition code and the mask-part of the opcode is not zero.
Otherwise, it goes to the next instruction.

For the boo instruction, the processor branches to the instruction specified
with targ, if the logical AND of the condition code and the mask-part of the
opcode is zero. Otherwise, it goes to the next instruction.

When using the Intel 80960KB Assembler, the targ operand can be either a
label or an absolute address that sBecifies the IP of the target instruction.
This value can be no farther than -2 3 to (223 - 4) from the current IP.

Note

At the machine level, the branch-if instructions use the CTRL instruction
format. With this format, the target instruction for the branch is specified
by means of a word-displacement (represented by displacement in the
following action statements), which can range from _221 to (221 - I). To
determine the IP of the target instruction, the processor converts this
displacement value to a byte displacement (i.e., multiplies the value by 4).
It then adds the resulting byte displacement to the current IP.

11-22

Action:

INSTRUCTION SET REFERENCE

BRANCH IF

To allow labels or absolute addresses to be used in the assembly-language
version of the branch-if instructions, the Intel 80960KB Assembler per
forms the following calculation to convert the targ value in an assembly
language instruction to the displacement value required by the machine
instruction format:

displacement = (targ/4) - IP

For further information about the CTRL instruction format, refer to Appen
dix B.

The following table shows the condition-code mask for each instruction:

Instruction Mask Condition

bno 000 Unordered

bg 001 Greater

be 010 Equal

bge 011 Greater or equal

bl 100 Less

bne 101 Not equal

ble 110 Less or equal

bo 111 Ordered

For the bno instruction (unordered), the branch is taken if the condition code
is equal to 0002,

The mask is in bits 0-2 of the opcode.

For All Instructions Except bno:

if (mask and AC.cc) "# 2#000#
then IP ~ IP + displacement; # resume execution at new IP

end if;

bno:

if AC.cc = 2#000#
then IP ~ IP + displacement; # resume execution at new IP

end if;

11-23

INSTRUCTION SET REFERENCE

BRANCH IF

Faults:

Example:

Opcode:

,
See Also:

STANDARD

assume AC.cc AND 2#100# are * 0
b1 xyz # IP ~ xyz;

be 12 CTRL
bne 15 CTRL
bl 14 CTRL
ble 16 CTRL
bg 11 CTRL
bge 13 CTRL
bo 17 CTRL
bno 10 CTRL

b,bx

11-24

inter INSTRUCTION SET REFERENCE

call

Mnemonic: call Call

Format: call targ

Description: Calls a new procedure. The processor performs a local call operation as
described in Chapter 4 in the section titled "Local Calls." As part of this
operation, the processor allocates a new set of local registers and a new stack
frame for the called procedure. The processor then goes to the instruction
specified with the targ argument and begins execution of the new procedure.

When using the Intel 80960KB Assembler, the targ operand can be either a
label or an absolute address that specifies the IP of the first instruction in the
called procedure. This value can be no farther than _223 to (223 - 4) from the
current IP.

Note

At the machine level, the call instruction uses the CTRL instruction format.
With this format, the first instruction of the called procedure is specified by
means of a word-displacement (represented by displacement in the follow
ing action statement), which can range from _221 to (221 - 1). To determine
the IP of the target instruction, the processor converts this displacement
value to a byte displacement (i.e., multiplies the value by 4). It then adds
the resulting byte displacement to the current IP.

To allow labels or absolute addresses to be used in the assembly-language
version of the call instruction, the Intel 80960KB Assembler performs the
following calculation to convert the targ value in an assembly-language
instruction to the displacement value required by the machine instruction
format:

displacement = (targ/4) - IP

For further information about the CTRL instruction format, refer to Appen
dix B.

11-25

intel"

call

Action:

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

wait for any uncompleted instructions to finish;
temp f- (SP + 63) and not (63); # round to next boundary
RIP f- IP;
if register_set_available

then allocate as new frame;
else save a register_set in memory at its FP;

allocate as new frame;
local register references now refer to new frame
IP f- IP + displacement;
PFPf-FP;
FP f- temp;
SP f- temp + 64;

STANDARD

call xyz # IP f- xyz

call 09 CTRL

bal, calls, calIx

11-26

inter

Mnemonic: calls

Format: calls

INSTRUCTION SET REFERENCE

Call System

targ
reg/lit

calls

Description: Calls a system procedure. The targ operand gives the number of the proce
dure being called.

For this instruction, the processor performs the' system call operation
described in Chapter 4 in the section titled "System Calls." The targ operand
provides an index to an entry in the system procedure table. From this entry,
the processor gets the IP of the called procedure.

The procedure called can be either a local procedure or a supervisor proce
dure, depending on the entry type in the procedure table. If it is a supervisor
procedure, the processor also switches to supervisor mode (if it is not already
in this mode).

As part o{this operation, the processor allocates a new set oflocal registers
and a new stack frame for the called procedure. If the processor switches to
the supervisor mode, the new stack frame is created, on the supervisor stack.

11-27

inter

calls

Action:

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

if targ > 259 then raise Protection Length Fault;
wait for any uncompleted instructions to finish;
temp_p_e r memory (SPT, 48 + (4 * targ»;
SPT is pointer to system procedure table from 1M!
RIP rIP;
IP r temp_p_e.address; if (temp_p_e.type = local) or
execution_triode = superVisor

then temp r (SP + 63) and not(63);
tempRRR r 2#000#;

else temp r memory (SPTSS, 12); # supervisor call
tempRRR r 2#01 T#; . # T is process_controls.T
execution_mode r supervisor;
process_controls.T r temp.T;

endif;
if frame_avll-ilable

then allocate as new frame;
else save a frame in memory at its FP;

allocate as new frame;
local register references now refer to new frame
endif; .
PFPr.FP;
LO.RRR r tempRRR;
FPrtemp;
SP r temp + 64;

STANDARD

calls rl2 # IP r value obtained from
procedure table for procedure
number given in r12

calls 660 REG

bal, call, calix

11-28

inter

Mnemonic: calix

Format: calix

INSTRUCTION SET REFERENCE

Call Extended

targ
mem

calix

Description: Calls a new procedure. The processor petforms a local call operation as
described in Chapter 4 in the ~ection title~,."Local Calls." As part of this
operation, the processor allocates a new set of local registers and a new stack
frame for the called procedure. The processor then goes to the instruction
specified with the targ argument and begins execution of the new procedure.

Action:

This instruction petforms the same operation as the call instruction except
that the target instruction can be farther than _223 to (223 - 4) from the current
IP.

The targ operand is a memory type, which allows the full range of address
ing modes to be used to specify the IP of the target instruction. The "IP +
displacement" addressing mode allows the instruction to be IP-relative. In
direct calls can be petformed by placing the target address in a register and
then using one of the register-indirect addressing modes.

Refer to Chapter 5 for a complete discussion of the addressing modes avail
able with memory-type operands.

wait for any uncompleted instructions to finish;
temp f- (SP + 63) and not (63); # round to next boundary
RIP f- IP;
if register_secavailable

then allocate as new frame;
else save a registecset in memory at its FP;

allocate as new frame;
local register references now refer to new frame
endif;
IP f- targ;
PFP f-FP;
FP f- temp;
SP f- temp + 64;

11-29

caUx

Faults:

Example:

Opcode:

See Also: ..

INSTRUC:rION SET REFERENCE

STANDARD

calIx (g5) # IP f- (g5), where the address
in g5 is the address of the new
procedure

bal, calix· 86 MEM

call, c~lIs

11-30

inter

Mnemonic: chkbit

Format: chkbit

INSTRUCTION SET REFERENCE

Check Bit

bitpos,
reg/lit

src
reg/lit

chkbit

Description: Checks the bit in src designated by bitpos and sets the condition code accord
ing to the value found. If the bit is set, the condition code is set to 0102; if
the bit is clear, the condition code is set to 0002.

Action: if (src and 211(bitpos mod 32)) = 0
then AC.cc f- 2#000#;
else AC.cc f- 2#010#;

end if;

Faults: STANDARD

Example: chkbit 13, g8 # checks bit 13 in g8

Opcode: chkbit 5AE REG

See Also: alterbit, c1rbit, notbit, setbit

11-31

INSTRUCTION SET REFERENCE

I cl'assr, classrll

Mnemonic:

Format:

c1assr
c1assrl

c1assr*

Classify Real
Classify Long Real

src
freg/flit

Description: Checks the classification of the real number in src. and stores the class in
arithmetic-status bits (3 through 6) of the arithmetic controls.

For the c1assrl instruction, if the src operand references a global or local
register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., gO, g2, g4).

The following table shows the setting of the arithmetic-status bits depending
on the classification of the operand.

AStatus Classification

sOOO Zero

sOOI Denormalized number

sOlO Normal finite number

sOlI Infinity

s100 Quiet NaN

s101 Signaling NaN

sIlO Reserved operand

The "s" bit is set to the sign of the src operand.

Refer to Chapter 7 for a discussion of the different real number classifica
tions.

11-32

inter

Action:

Faults:

Example:

Opcode:

INSTRUCTION SET REFERENCE

S f- sign_of(src)
if src = 0

then arithmetic_status f- sOOO;
elseif src = denormalized

then arithmetic_status f- sOOl;
elseif src = normal finite

then arithmetic_status f- sOlO;
elseif src = 00

then arithmetic_status f- sOlI;
elseif src = QNaN

then arithmetic_status f- s100;
elseif src = SNaN

then arithmetic_status f- s101;
elseif src = reserved operand

then arithmetic_status f- sIlO;
end if

STANDARD

I classr, classrll

Refer to the discussion of faults at the
beginning of this chapter.

None of the floating-point exceptions can be raised.

classrl g12

c1assr
c1assrl

68F
69F

classifies long real in g12,g13

REG
REG

11-33

inter

Mnemonic: clrbit

Format: clrbit

INSTRUCTION SET REFERENCE

Clear Bit

bitpos,
reg/lit

src,
reg/lit

dst
. reg·

Description: Copies the src value to dst with one bit cleared. The bitpos operand specifies
the bit to be cleared.

Action: dst f- src and not(2A(bitpos mod 32);

Faults: STANDARD

Example:

Opcode:

See Also:

clrbit 23, g3, g6 # g6 f- g3 with bit 23
cleared

clrbit S8C REG

alter bit, chkbit, notbit, setbit

11-34

inter INSTRUCTION SET REFERENCE

cmpi, cmpo

Mnemonics: cmpi Compare Integer
Compare Ordinal cmpo

Format: cmp* srcJ,
reg/lit

src2
reg/lit

Description: Compares the src2 and srd values and sets the condition code according to
the results of the comparison. The following' table shows the setting of the
condition code for the three possible results of the comparison.

Action:

Faults:

Example:

Opcode:

See Also:

Condition Comparison
Code

100 srcl <src2

010 srcJ = src2
001 sid >src2

The cmpi instruction followed by one of the branch-if instructions is equiv
alent to one of the compare-integer-and-branch instructions. The latter
method of comparing and branching produces more compact code; however,
the former method can,result in faster running code because it takes advan
tage of the processor'spipelined architecture. The same is true for the comp
instruction and the compare-ordinal-and-branch instructions.

if srcJ < src2 then AC.cc f- 2#100#;
elseif srcJ = src2 then AC.cc f- 2#010#;
else AC.cc f- 2#001#;
end if;

STANDARD

cmpo OxlO, r9

cmpi
cmpo

SAl
SAO

compare values in r9 and OxlO
and set condition code

REG
REG

cmpibe, cmpr, cmpdeci, cmpdeco

11-35

inter INSTRUCTION SET REFERENCE

cmpdeci, cmpdeco

Mnemonics: cmpdeci Compare and Decrement Integer
Compare and Decrement Ordinal

Format:

cmpdeco

cmpdec* srcl ,
reg/lit

src2,
reg/lit

dst
reg

Description: Compares the src2 and srcl values and sets the condition code according to
the results of the comparison. The src2 operand is then decremented by one
and the result is stored in dst.

Action:

Faults:

Example:

Opcode:

See Also:

The following table shows the setting of the condition code for the three
possible resultS of the comparison.

Condition Comparison
Code

100 srcl < src2

010 srcl = src2

001 srcl > src2

These instructions are intended for use in ending iterative loops. For the
cmpdeci instruction, interger overflow is ignored to allow looping down
through the minimum integer values.

if srcl < src2 then AC.cc +- 2#100#;
elseif srcl = src2 then AC.cc +- 2#010#;
elseif srcl > src2 then AC.cc +- 2#001#;
end if;
dst +- src2 - 1; #overflow suppressed for cmpdeci

instruction

STANDARD

cmpdeci 12, g7, gl

cmpdeci SA7
cmpdeco SA6

cmpinco, cmpo

g7 and 12 are compared;
gl +- g7 - 1

REG
,REG

1~·36

INSTRUCTION SET REFERENCE

cmpinci, cmpinco

Mnemonics: cmpinci Compare and Increment Integer
Compare and Increment Ordinal cmpinco

Format: cmpinc* srcl,
reg/lit

src2,
reg/lit

dst
reg

Description: Compares the src2 and srcl values and sets the condition code according to
the results of the comparison. The src2 operand is then incremented by one
and the result is stored in dst.

Action:

Faults:

Example:

Opcode:

See Also:

The following table shows the setting of the condition code for the three
possible results of the comparison.

Condition Comparison
Code

100 sri;] < src2

010 srcl = src2

001 srcl > src2

These instructions are intended for use in ending iterative loops. For the
cmpinci instruction, integer overflow is ignored to allow looping up through
the maximum integer values.

if srcl < src2 then AC.cc f- 2#100#;
elseif srcl = src2 then AC.cc f- 2#010#;
elseif srcl > src2 then AC.ccf- 2#001#;
end if;
dst f- src2 + 1; # overflow suppressed for cmpinci

instruction

STANDARD

cmpinco r8, g2, g9

cmpinci
cmpinco

5A5
5A4

cmpdeco, cmpo .

g2 and r8 are compared;
g9 f- g2 + 1

REG
REG

11-37

inter INSTRUCTION SET REFERENCE

I cmpor, emporll

Mnemonics: cmpor Compare Ordered Real
Compare Ordered Long Real cmporl

Format: cmpor* srcJ,
freg/flit

src2
freg/flit

Description: .Compares the src2 and srcJ values and sets the condition code according to
the results of the comparison.

Action:

For the cmporl instruction, if the srcJ or src2 operand references a global or
local register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., gO, g2, g4).

The following table shows the setting of the condition code for the four
possible results of the comparison.

Condition Comparison
Code

100 srcJ < src2

010 src], = src2

001 srcl > src2

000 if either srcJ or src2
is ~NaN

The algorithm for these instructions checks the classification of the operands.
If either is in the NaN class, the condition code is set to 0002 and a floating
invalid-operation exception is raised. The cmpor and cmporl instructions
operate the same as the cmpr and cmprl instructions, except that the latter
instructions do not signal an exception if a NaN value is detected.

If a floating-reserved-encoding fault occurs, the condition code results are
undefined. .

if srcJ < src2
then AC.cc f-- 2#100#;

elseif srcJ = src2
then AC.cc f-- 2#010#;

elseif srcJ > src2
then AC.cc f-- 2#001#;

else AC.cc f-- 2#000#; # indicates one number is a NaN
raise floating invalid operation fault

end if;

11-38

inter

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

STANDARD

Floating Reserved Encoding

I empor, emporll

Refer to the discussion of faults at the
beginning of this chapter.

One or more operands is an unnormal
ized (including denormalized) value' and
the normalizing-mode bit in the arith
metic controls is set.

The following floating-point exception can be raised. Whether or not the
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Invalid Operation One or more operands are a NaN value.

cmporl g6, g12

empor
emporl

684
694

compare value in g12,g13
with value in g6,g7

REG
REG

empr, empi, BRANCH IF

11-39

INSTRUCTION SET REFERENCE

'I cmpr, cmprll

Mnemonics: cmpr Compare Real
Compare Long Real

~C!rmat:

Description:

Action:

cmprl

cmpr*

, , .

. srcl.
. freg/flit

src2
freg/flit

Compares the src2 and srcl values an,d sets the condition code according to
the results of the comparison. For the cmprl instruction. if the srcl or src2
operand references a global or local regi~ter. thjs r~gistei: is the first (lowest
numbered) of two successive registers.

The following table shows the setting of the condition code for the four
possible results of the comparison.

'Condition Comparison
Code

100 srcl < src2

010 srcl = src2
001 srcl > src2

000 if either srcl or src2
is a NaN

The algorithm for these instructions checks the classification of the operands.
If either is in the NaN class, the condition code is set to 0002, but no fault is
raised. The cmpr and cmprl instructions operate the same as the cmpor and
cmporl instructions, except that the latter instructions raise an invalid
operand exception if a NaN value is detected.

If a floating-reserved-encoding fault occurs, the condition code results are
undefined.

if srcl < src2
then AC.cc f- 2#100#;

elseif src1 = src2
then AC.cc f- 2#010#;

elseif src1 > src2
then AC.cc f- 2#001#;

else AC.cc f- 2#000#; # indicates one number is a NaN
end if;

11-40

inter

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

STANDARD

Floating Reseryed Encoding

I cmpr,' cmprll

Refer to the discussion of faults at the
beginning of this chapter.

One or more operands is an unnormal
ized (including denormalized) value and
the normalizing-mode bit in the arith
metic controls is' set.

The following floating-point exception can be raised. Whether or not the
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Invalid Operation One or more operands are an SNaN
value.

cmprl g2, g6 # compare values in g6,g7
and g2,g3

cmpr
cmprl

685
695

REG
REG

cmpor, cmpi, BRANCH IF

11-41

intel" INSTRUCTION SET REFERENCE

',COMPARE AND BRANCH
, ,'. . '" ,

Mnemonics:

Format:

cmpibe
cmpibne
cmpibl
cmpible
cmpibg
cmpibge
cmpibo'
cmpibno

Compare Integer And Branch If Equal
Compare;Integer And Branch If Not Equal
Compar~ Integer And Branch If Less
Compare Integer And Branch If Less Or Equal

, Co.:np~e Integer And' Branch' If Greater·' ,
Compare Integer And Branch If Greater Or Equal
,Compare Integer And Branch If Ordered
Compare Integer And Branch If Unordered

1/.,

cmpobe Compare Ordinal And Branch If Equal
cmpobne Compare Ordinal And Branch If Not Equal
cmpobl Compare Ordinal And Branch If Less
cmpoble " Compare Ordinal And Branch If Less Or Equal
cmpobg Compare Ordinal And Branch If Greater
cmpobge Compare Ordinal And Branch If Greater Or Equal

cmpib* src1, src2, targ
reg/lit reg

cmpob* src1, src2; targ
reg/lit reg disp

'" I

, ,
, "

Description: Compares the src2 and src1 values and sets the condition code according to
the results of the comparison. If the logical AND of the condition code and
the mask-part of the opcode is not zero, the processor branches to the instruc
tion specified with the targ operand; otherwise, the processor goes to the
next instruction.

When using the Intel 80960KB Assembler, the targ 0r.rand can be either a
label or an absolute address that is no farther than _21 to (212 - 4) from the
current IP.

Note

At the machine level, the compare-and-branch instructions use the COBR
instruction format. With this format, the target instruction for the branch is
specified by means of a word-displacement (represented bt displacement in
the following action statement), which can range from _21 to (210 - 1). To
determine the IP of the target instruction, the processor converts this
displacement value to a byte displacement (i.e., multiplies the value by 4).
It then adds the resulting byte displacement to the IP of the next instruction.

11-42

inter INSTRUCTION SET REFERENCE

COMPARE AND BRANCH

To allow labels or absolute addresses to be used in the assembly-language
versions of these instructions, the Intel 80960KB Assembler performs the
following calculation to convert the targ value in an assembly-language
instruction to the displacement value required by the machine instruction
format:

displacement = (targ/4) - (IP + 4)

For further information about the COBR instruction format, refer to Appen
dix B.

The following table shows the condition-code mask for each instruction:

Instruction Mask Branch Condition

cmpibno 000 No Condition

cmpibg 001 src1 > src2

cmpibe 010 src1 = src2

cmpibge 011 src1 <:: src2

cmpibl 100 src1 < src2

cmpibne 101 src1 ;f. src2

cmpible 110 src1 ::;; src2

cmpibo III Any Condition

cmpobg 001 src1 > src2·

cmpobe 010 src1 = src2

cmpobge 011 src1 <:: src2

cmpobl 100 src1 < src2

cmpobne 101 src1 ;f. src2

cmpoble 110 src1 ::;; src2·

The cmpibo instruction always branches; the cmpibno instruction never
branches.

The functions that these instructions perform can be duplicated with a cmpi
instruction followed by a branch-if instruction, as described in the descrip
tion of the cmpi instruction in this chapter.

11-43

INSTRUCTION SET REF.ERENCE

COMPARE AND BRANCH

Action:

Faults:

Example:

Opcode:

See Also:

if srcl < src2 thtm AC.cc ~ 2#100#;
elseif srcl ::::: src2'then AC.cc ~ 2#010#;
else AC.cc ~ 2#001#;
end if;
if mask and AC.cc *- 2#000#

then IP ~ IP + 4 + (displacement * 4);
resume execution at the new IP
else IP ~ IP + 4;

resume execution at the next IP
end if;

STANDARD

assume g3< g9
cmpibl g3, g9, XYZ # g9 is' compared

IP ~ xyz·.

assume r7 ~ 19
cmpobge r7, 19, xyz # 19 is compared

IP ~ xyz.

cmpibe 3A COBR
cmpibne 3D COBR
cmpibl 3C COBR
cmpible 3E COBR
cmpibg 39 COBR
cmpibge 3B COBR
cmpibo 3F COBR
cmpibno 38 COBR

cmpobe 32 COBR
cmpobne 35 COBR
cmpobl 34 COBR
cmpoble 36 COBR
cmpobg 31 COBR

. cmpobge 33 COBR

BRANCH IF, cmpi

11-44

with g3;

with r7

intel~ INSTRUCTION SET REFERENCE

concmpi, concmpo

Mnemonics: concmpi Conditional Compare Integer
Conditional Compare Ordinal

Format:

concmpo

concmp* srcl ,
reg/lit

src2
reg/lit

Description: Compares the src2 and srcl values if bit 2 of the condition code is not set. If
the comparison is performed, the condition code is set according to the
results of the comparison.

Action:

Faults:

Example:

Opcode:

See Also:

These instructions are provided to facilitate bounds checking by means of
two-sided range comparisons (e.g., is A between Band C?). They are
generally used after a compare instruction to test whether a value is in
clusively between two other values.

The example below illustrates this application by testing whether the value in
g3 is between the vahies in g5 and g6, where g5 is assumed to be less than
g6. First a comparison (cmpo) of g3 and g6 is performed. If g3 is less than
or equal to g6 (i.e., condition ,code is either 0102 or 001), a conditional
comparison (concmpo) of g3 and g5 is then performed. If g3 is greater than
or equal to g5 (indicating thaf'g3 is within the bounds of g5 and g6), the
condition code is set to 0102; otherwise, it is set to 001 2,

if (AC.cc and 2#100#) = 0 then
if srcl ~ src2

then AC.cc f- 2#010;
else AC.cc f- 2#001;

endif;
endif;

STANDARD

cmpo g6, g3 # compares g6 and g3 and sets
condition code

concmpo g5, g3 # if condition code is not
2#1xx#, g5 is cqmpared

concmpi 5A}
concmpo 5A2

cmpo, cmpi

with g3"

REG
REG

11-45

INSTRUCTION SET REFERENCE

I cosr, cosrH··

Mnemonics: cosr Cosine Real
Cosine Long Real cosrl

Format: cosr* src,
freg/flit

dst
freg

Description: Calculat~s the cosine of the value in src and stores the result in dst. The src
value is an angle given in radians. The resulting dst value is in the range -1
to + 1, inclusive.

Action:

For the cosrl instruction, if the src or dst operand references a global or local
register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g.j gO, g2, g4).

The following table shows the res.ults obtained when taking the cosine of
various classes of numbers with neither overflow nor underflow.

Src Dst
-00 *
-F -1 to + 1
-0 +1
+0 +1
+F -1 to + 1
+00 *
NaN NaN

Notes:
F Means finite-real number
... Indicates floating invalid-operation exception

In the trigonometric instructions, the 80960KB uses a value for 1t with a
66-bit mantissa which is 2 bits more than are available in the extended-real
format. The section in Chapter 12 titled "Pi" gives this 1t value, along with
some suggestions for representing this value in a program.

dst f- cosine (src);

11-46

intel"

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

STANDARD

I·cosr, cosrll

Refer to the discussion of faults at the
beginning of this chapter.

Floating Reserved Encoding One or more operands is an unnormal
ized (including denormalized) value and
the normalizing-mode bit in the arith
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Invalid Operation The src operand is 00.

Floating Inexact

cosrl r8, g2

cosr
cosrl

68D
69D

sinr, sinrl, tanr, tanrl

One or more operands are an SNaN
value.

Result cannot be represented exactly in
destination format.

cosine of value in r8,r9 is
stored in g2,g3

REG
REG

11-47

inter INSTRUCTION SET REFERENCE

I cpyrsre, cpysre I

Mnemonics: cpysre Copy Sign Real Extended
cpyrsre

Form~t: cpy*

Copy Reversed Sign Real Extended

srcl,
freg/flit

src2,
freg/flit

dst
freg

Description: Copies the absolute value of srcl into dst. For the cpysre instruction, the
sign of src2 is copied to dst; for the cpyrsre instruction, the opposite of the
sign of src2 is copied to dst.

Action:

Faults:

Example:

Opcode:

If the srcl, src2, or dst operand references a global or local register, this
register is the first (lowest numbered) of three successive registers. Also, the
number of this register must be a multiple of four (e.g., gO, g4, g8).

These instructions only operate on values in the extended-real format. The
same operations can be performed on real- and long-real values using the
setbit and c1earbit instructions, or a combination of the chkbit and alterbit
instructions.

cpysre

cpyrsre

if src2 is positive
then dst f- abs (srcl)
else dst f- -abs (srcl)

if src2 is negative
then dst f- abs (srcl)
else dst f- -abs (srcl)

STANDARD Refer to the discussion of faults at the
beginning of this chapter.

Floating Reserved Encoding

cpysre fpO, fpl, fp2

One or more operands is a denormalized
value and the normalizing-mode bit in
the arithmetic controls is set.

absolute value from fpO is copied to
fp2; sign from fpl is copied to fp2

cpysre
cpyrsre

6E2
6E3

REG
REG

11-48

inter INSTRUCTION SET REFERENCE

I cvtilr, cvtir I

Mnemonics: cvtilr Convert Long Integer to Real
Convert Integer to Real cvtir

Format: cvti* src,
reg/lit

dst
freg

Description: Converts the integer in src to a real and stores the result in dst. For the cvtilr
instruction, the src operand references the first (lowest numbered) of two
successive registers. Also, this register must be even numbered (e.g., gO, g2,
g4).

Action:

Faults:

Example:

Opcode:

See Also:

Converting an integer to long real format requires two instructions. First, the
integer is converted to extended real format by using the cvtir or cvtilr
instruction with a floating-point register as a destination. Then the movrl
instruction is used to move the value from the floating-point register to two
global or local registers, causing an explicit conversion to long real format.
(Note that this conversion is always exact.) The example section below
illustrates this conversion.

dst f-- real (src);

STANDARD Refer to the discussion of faults at the
beginning of this chapter.

The following floating-point exception can be raised. Whether or not the
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Inexact Can only be signaled when converting an
integer to real (32-bit) format

Conversion of an integer to a long real value
cvtir g6, fp3
movrl fp3, g8 # result stored in g8,g9

cvtir
cvtilr

cvtri, movr

674
675

REG
REG

11-49

inter INSTRUCTION SI;T REFERENCE

j cvtri, cvtril, cvtzri, cvtzrill

Mnemonics: cvtri Convert Real To Integer

Format:

cvtril
cvtzri
cvtzril

cvtri*

Convert Real To Integer Long
Convert Truncated Real To Integer
Convert Truncated Real To Long Integer

src,
freg/flit

dst
reg

Description: Converts the real value in src to an integer and stores the result in dst.

Action:

For the cvtril and cvtzril instructions, the dst operand references the first
(lowest numbered) of two successive registers. Also, this register must be
even numbered (e.g., gO, g2, g4).

The nontruncated versions of these instructions round according to the cur
rent rounding mode in the Arithmetic Controls register. The truncated ver
sions always round toward zero.

Converting a long real value to an integer requires two instructions. First,
the long real value is converted to extended real format by using the movrl
instruction with a floating-point register as a destination. (Note that this
operation is always exact.) Then one of the convert real-to-integer ins'truc
tions is used to move the value from the floating-point register to one or two
global or local registers. The example section below illustrates this conver
sion.

If the magnitude of the result cannot be represented in the destination, an
integer-overflow fault is raised, and the maximum positive or maximum

. negative value is stored in the destination (depend\ng on whether the real
value was positive or negative, respectively).

dst +- integer (src1);
srcl is rounded to integer value

11-50

intel"

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

STANDARD

I cvtri, cvtril, cvtzri, cvtzrill

Refer to the discussion of faults at the
beginning of this chapter.

The following exception can be raised. Whether or not the exception results
in a fault being raised depends on the state of its associated mask bit in the
arithmetic controls register.

Integer Overflow

Conversion of
movrl g4, fp2

Result is too large for destination format.

long real value to an integer
long-real source is
converted to extended-real
format and moved to fp2

cvtril,fp2, g12 # extended-real value is

cvtri
cvtril
cvtzri
cvtzril

cvtir, movr

6CO
6CI
6C2
6C3

converted to long integer

REG
REG
REG
REG

11-51

INSTRUCTION SET REFERENCE

Idaddcl

Mnemonicl/ daddc Decimal Add With Carry

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

daddc src1,
reg

src2,
reg

dst
reg

Adds bits 0 through 3 of src2 and src1 and bit 1 of the condition code (used
here: as a carry bit). The result is stored in bits 0 through 3 of dst. If the
addition results in a carry, bit 1 of the condition code is set. Bits 4 through
31 of src are copied to dst unchanged.

This instruction is intended to be used iteratively to add binary-coded
decimal (BCD) values in which the least-significant four bits of the operands
represent the decimal numbers 0 to 9. The instruction asssumes that the least
significant 4 bits of both operands are valid BCD numbers. If these bits are
not valid BCD numbers, the resulting value in dst is unpredictable.

Let the value of the condition code be xCx.
dst ~ src2 + src1 + C;
AC.cc ~ 2#OCO#;
C is carry from addition of bits 0 through 4 of operands
Bits 4 - 31 of dst are same as bits 4 - 31 of src2

STANDARD

daddc g5, g9, glO # glO ~ g9 + g5 + Carry Bit,
where arithmetic is

daddc 642

dsubc, dmovt

carried out only on bits 0
through 3 of the operands

REG.

11-52

Mnemonic:

Format:

divi
divo

div*

INSTRUCTION SET REFERENCE

Divide Integer
Divide Ordinal

srci,
reg/lit

src2,
reg/lit

dst
reg

divi, divo

Description: Divides the src2 value by the srci value and stores the result in dst ..

Action:

Faults:

Example:

Opcode:

See Also:

For the divi instruction, and integer-overflow fault can be signaled.

dst ~ src2 / srci;

STANDARD

Arithmetic Zero Divide

Refer to discussion of faults at the begin
ning of this chapter.

The srci operand is O.

The following fault condition can be raised with the divi instruction.
Whether or not a fault is raised depends on the state of its associated mask bit
in the arithmetic-controls register.

Integer Overflow Result is too large for destination format.

divo r3, r8, r13 # r13 ~ r8/r3

divi
divo

ediv, mulo

74B
70B

REG
REG

11-53

INSTRUCTION SET REFERENCE

! divr, divrl!

Mnemonic: divr
divrl

Divide Real
Divide Long Real

Format: divr* srcl,
freg/flit

src2,
freg/flit

dst
freg

Description: Divides the src2 value by the srcl value and stores the result in dst.

Src2

Action:

-00

-F

-0

+0

+F

+00

For the divrl instruction, if the srcl, src2, or dst operand references a global
or local register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., gO, g2, g4).

The sign of the result is always the exclusive-OR of the source signs, even if
one or more of the source values is 0, 00, or a NaN.

The following table shows the results obtained when dividing various classes
of numbers, assuming that neither overflow nor underflow occurs.

Srcl

-00 -F -0 +0 +F +00 NaN

* +00 +00 _00 _00 * NaN

+0 +F ** ** -F -0 NaN

+0 +0 * * -0 -0 NaN

-0 -0 * * +0 +0 NaN

-0 -F ** ** +F +0 NaN

* _00 _00 +00 +00 * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

Notes:

F

••

Means finite-real number.
Indicates floating invalid-operation exception.
Indicates floating zero-divide exception .

dst +- src2 / srcl;

11-54

inter

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

STANDARD

Floating Reserved Encoding

I divr, divrll

Refer to the discussion of faults at the
beginning of this chapter.

One or more operands is an unnormal
ized (including denormalized) value and
the normalizing-mode bit in the arith
metic controls is .set.

The following floating-point exception,s can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Overflow

Floating Underflow

Floating Zero Divide

Floating Invalid Operation

Floating Inexact

Result is too large for destination format.

Result is too small for destination format.

The srcl operand is 0 and the, src2
operand is numeric and finite.

Both source operands are 0 or both are
90. _

One or more operands are an SNaN
value.

Result cannot be' represented exactly in
destination format.

divrl gIO, gO, fpl # fpl ~ gO,gl / glO,gll

divr
divrl

78B
79B

ediv, muir, mulrl

REG
REG

11-55

INSTRUCTION SET< REFERENCE

I d niovt j"" '

Mnemonic,: dmovt

Format:
"

Decimal Move And Test

src,
reg

dst
reg

Description: Copies the· src value into dst. The least-significant eight bits of the src value
are tested to determine whether or not they constitute a valid ASCII decimal
(Gp1100002 , .. 0011 i0012), and the condition code is set accordingly. If the
value is a valid ASCII decimal, the condition code is set to 0002; otherwise,
it is set to 0102,

Action:

Faults:

Example:

Opcode:

See Also:

Thi!i instruction is intended to be used iteratively to validate decimal strings.
i !' • ,l ~, • '

dst ~ Sri:;
if src = 2#0011000# .. 2#00111001#

then AC.cc ~ 2#000#;
else AC.cc ~ 2#010#;

end if;

STANDARD

/' ,

,,~

dmovt gl, g6 # g6 ~ gl;
gl tested fO,r decimal value

dmovt 644 REG

daddc, dsubc

11-56

Mnemonic: dsubc

Format: dsubc

INSTRUCTrON SET REFERENCE

Decimal Subtract With Carry

srcl,
reg

src2,
reg

ds!'
reg

Idsubcl

Description: Subtracts bits 0 through 3 of src2 and srcl and bit I of the condition code
(used here as a carry bit). The result is stored in bits 0 through 3 of dst. If
the subtraction results in a carry, bit 1 of the condition code is set. Bits 4
through 31 of src are copied to dst unchanged.

Action:

Faults:

Example:

Opcode:

See Also:

This instruction is intended to be used iteratively to subtract binary-coded
decimaJ (BCD) values in which the least-significant four bits of the operands
represent the decimal numbers 0 to 9. The instruction asssumes that the least
significant 4 bits of both operands are valid BCD numbers. If these bits are
not valid BCD numbers, the resulting value in dst is unpredictable.

Let the value of the condition code be xCx.
dst ~ src2 - srcl ~ '1 + C;
AC.cc ~ 2#OCO#;
C is carry from subtraction of bits 0 through 4 of operands
Bits 4 - 31 of dst are same as bits 4 - 31 ofsrc2

STANDARD

dsubc r1, r2, r12 # r12 ~ r2 - r1 -1 + Carry
Bit, where arithmetic is

dsubc 643

daddc, dmovt

carried out only on bits 0
through 3 of the operands

REG

11-57

inter

ediv

Mnemonic: ediv

Format: ediv

INSTRUCTION, SET REFERENCE

Extended Divide

srcJ,
reg/llt

src2,
reg/lit

dst
reg

~, ,:. ' ;' /

Description: Divides src2 by srcJ and stores the result in dst. The src2 value is a long
ordinal (Le., 64 bits), which is conutined in two adjacent registers. The stt2
operand specifies the lower numbered register, which contains the least sig
nificant bits of the operand. The src'2' 'operand must be an even numbered
register (Le., rO, r2, r4, ... or gO, g2, .. :). The srcJ value is a normal ordinal
(Le., 32 bits).

Action:

Faults:

Example:

Opcode:

The remainder is stored in the register'designated by dst and the quotient is
stored in the next highest numbered ~register. The dst operand must be an
even numbered register (Le., rO, r2, r4, .. : or gO! g2, .:.).

This instruction performs ordinal arithmetic.
" ' .. "

If this operation overflows (Le., the ql,loti~nt or remainder do not fit in 32-
bits), no fault is raised and the result is undefined.

dst ~ (src2 - (src2! srcJ) * srcJ}; # remaind~t
dst + 1 ~ (src2 ! srcJ); # quotient

STANDARD, Arithmetic Integer Divide

ediv g3, g4, glO # glO ~ remainder of g4,g5/g3
gll ~ quotient of g4,g5/g3

ediv 671 REG

See Also: emul

11-58

Mnemonic: ernul

Format: ernul

INSTRUCTION SET REFERENCE

Extended Multiply

srcl,
reg/lit

src2,
reg/lit

dst
reg

emul

Description: Multiplies src2 by src1 and stores the result in dst. The result is a long
ordinal (i.e., 64 bits), which is stored in two adjacent registers. The dst
operand specifies the lower numbered register, which receives the least sig
nificant bits of the result. The dst operand must be an even numbered
register (Le., rO, r2, r4, ... or gO, g2, ...).

Action:

Faults:

Example:

Opcode:

This instruction performs ordinal arithmetic.

dst f- (srcl * src2) mod 21\32;
dst + 1 f- (src * src2)/mod 21\32;

STANDARD

ernul r4, r5, g2 # g2,g3 f- r4 * r5

ernul 670 REG

See Also: ediv

11-59

inter INSTRUCTION SET REFERENCE

I expr, exprll

Mnemonic:

Format:

expr
exprl

exp*

Exponent Real
Exponent Long Real

src,
freg/flit

dst
freg

Description: Calculates an approximation of the exponential value of 2 to the src power,
minus 1, and stores the result in dst. The src value, must be within the range
of -0.5 to +0.5, inclusive. If the src value is outside this range, the result is
undefined.

Action:

For the exprl instruction, if the src or dst operand references a global or local
register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., gO, g2, g4).

The following table shows the results obtained when computing the exponent
of various classes of numbers.

Src Dst
-0.5 to-O -(IlV2)-1 to-O

-0 -0

+0 +0

+0 to +0.5 +Otov'2-1

Notes:
••• Results are unpredictable

dst ~ (2Asrc) - 1;

11-60

intel"

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

STANDARD

Floating Reserved Encoding

I expr, exprll

Refer to the discussion of faults at the
beginning of this chapter.

One or more operands is an unnormal
ized (including denormalized) value and
the normalizing-mode bit in the arith-
1'!1etic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Underflow

Floating Invalid Operation

Result is too small for destination format.
"

One or more operands are an SNaN
value.

Floating Inexact Result cannot be represented exactly in
destination format.

y = 2AX (y and x in gO)
uses identity
2AX 2 A(I+f)
= 2AI * ((2Af - 1)+1)
where: I integer, -0.5 <= f <= +0.5
assumes round-to-nearest
does not handle infinities or NaNs
yow2x:

expr
exprl

scaler, logr

roundr gO,fpO
subr fpO,gO,gO
expr gO,gO
addr Of1.0,gO,gO
cvtri fpO,gl
scaler gl,fpO,gO

689
699

REG
REG

11-61

I in fpO
f in gO

inter

extract

Mnemonic: extract

Format: extract

INSTRUCTION SET REFERENCE

Extract

bitpos(
reg/lit

len,
reg/lit

srcldst
reg

Description: Shifts a specified bit field in srcldst right and fills the bits to the left of the
shifted bit field with zeros. The bitpos value specifies the least significant bit
of the bit field to be shifted, and the len value specifies the length of the bit
field.

Action: srcldst ~ (srcldst / 2"(bitpos mod 32»
and (2"len - 1);

Faults: STANDARD

Example: extract 5, 12, g4 41= g4 ~ g4 with bits 5
41= through 16 shifted right

Opcode: extract 651 REG

See Also: modify

11-62

Mnemonic: faulte
faultne
faultl
faultle
faultg
faultge
faulto
faultno

INSTRUCTION SET REFERENCE

Fault If Equal
Fault If Not Equal
Fault If Less
Fault If Less Or Equal
Fault If Greater
Fault If Greater Or Equal
Fault If Ordered
Fault If Unordered

FAULT IF

Format: fault*

Description: Raises a constraint-range fault if the logical AND of the condition code and
the mask-part of the opcode is not zero.

Action:

The following table shows the condition-code mask for each instruction:

Instruction Mask Condition

faultno 000 Unordered

faultg 001 Greater

faulte 010 Equal

faultge 011 Greater or equal

faultl 100 Less

faultne 101 Not equal

faultle 110 Less or equal

faulto 111 Ordered

For the faultno instruction (unordered), the fault is raised if the condition
code is equal to 2#000#.

For all instructions except faultno:

if (mask and AC.cc) "# 2#000#
then raise constraint-range fault;

end if;

faultno:

if AC.cc = 2#000#
then raise constraint-range fault;

end if;

11-63

inter
FAULT IF

Faults:

Example:

Opcode:

~Also:

INSTRUCTION SET REFERENCE

STANDARD, Constraint Range

assume 2#110# AND AC.cc ~ 2#000#
fau1t1e # raises Constraint Range Fault

faulte lA CTRL
faultne 10 CTRL
faultl lC CTRL
faultle IE CTRL
faultg 19 CTRL
faultge 1B CTRL
faulto IF CTRL
faultno 18 CTRL

be, teste

11-64

inter INSTRUCTION SET REFERENCE

flushreg

Mnemonic: flushreg Flush Local Registers

Format: flushreg

Description: Copies the contents of all the cached local-register sets into their associated
register-save areas in the procedure stack. The contents of all the local
register sets except for the current set are then marked as invalid. On a
return, the local registers for the frame being returned to are then loaded from
the stack.

Action:

Faults:

Example:

Opcode:

The flushreg instruction is provided to allow a compiler or applications
program to circumvent the normal call/return mechanism of the processor.
For example, a compiler may need to back up several frames in the stack on
the next return, rather than using the normal return mechansim that returns
one frame at a time. Here, the compiler uses the flushreg instruction to
update the stack with the current states of the saved register sets. The
compiler can then return to any frame in the stack without losing the contents
of the saved local-register sets. To return to a frame other than the frame
directly below the current frame, the complier merely modifies the PFP in
register rO of the current frame to point to the frame that it wishes to return
to.

Each register set except the current set is flushed to its associated stack frame
in memory and marked as purged, meaning that they will be reloaded from
memory if and when they become the current local register set.

STANDARD

flushreg

flushreg 66D REG

11-65

INSTRUCTION SET REFERENCE

fmark

Mnemonic: fmark Force Mark I";,

Format: fmark

Description: Generates a breakpoint trace-event, regardless of the setting of the breakpoint
trace mode flag.·

Action:

Faults:

Example:

Opcode:

When a breakpoint trace event is detected, the trace-fault-pending flag (bit
10) of the process controls word and the breakpoint-trace.-event flag (bit 23)
of the trace controls are set. Before the next instruction is executed, a trace
fault is generated.

For more information on trace-fault g~meration, refer to Chapter 12.

if process. trace _ conttols and breakpoinCtrace "':flag
then

raise trace breakpoint fault
endif

STANDARD, Breakpoint Trace

Id xyz, r4
addi ;r:4, r5, r6
fmark
Breakpoint.trace event.is generated at
this point in the instruction stream.

fmark 66C REG

See Also: mark

11-66

Mnemonic:

Format:

Id
Idob
Idos
Idib
Idis
Idl
Idt
Idq

Id*

INSTRUCTION SET REFERENCE

Load
Load Ordinal Byte
Load Ordinal Short
Load Integer Byte
Load Integer Short
Load Long
Load Triple
Load Quad

src,
mem

dst
reg

LOAD

Description: Copies a byte or string of bytes from memory into a register or group of
successive registers. The src operand specifies the address of the first byte to
be loaded. The full range of addressing modes may be used in specifying
src. (Refer to Chapter 5 for a complete discussion of the addressing modes
available with memory-type operands.)

Action:

Faults:

Example:

The dst operand specifies a register or the first (lowest numbered) register of
successive registers.

The Idob and Idib, and Idos and Idis instructions load a byte and half word,
respectively, and convert it to a full 32-bit word. The Id, Idl, Idt, and Idq
instructions copy 4, 8, 12, and 16 bytes, respectively, from memory into
successive registers.

For the Idl instruction, dst must specify an even numbered register (e.g., gO,
g2, ... , gI2). For the Idt and Idq instructions, dst must specify a register
number that is a multiple of four (e.g., gO, g4, g8). If the data extends
beyond register gl5 or r15 for the Idl, Idt, or Idq instruction, the results are
unpredictable.

dst ~ memory (src);

STANDARD

ldl 2456 (r3), rlO # rl0, rll ~ value of two
words beginning at offset
2456 plus the address in
r3 in memory

11-67

LOAD

Opcode:

See Also:

INSTRUCTION SET REFERENCE

Id
Idob
Idos
Idib
Idis
Idl
Idt
Idq

90
80
88
CO
C8
98
AO
BO

MOVE,STORE

MEM
MEM
MEM
MEM
MEM
MEM
MEM
MEM

11-68

Mnemonic: Ida

Format: Ida

INSTRUCTION SET REFERENCE

Load Address

src
mem
efa

dst
reg

Ida

Description: Computes the effective address specified with src and stores it in dst. The
src address is not checked for validity.

Action:

Faults:

Example:

Opcode:

An important application of this instruction is to load a constant longer than
5 bits into a register. (To load a register with a constant of 5 bits or less, the
move instruction (mov) can be used with a literal as the src operand.)

dst f- efa (src);

STANDARD

lda 58 (g9), gl # Computes the effective
address specified with

lda Ox749, r8

Ida 8C

~ 58 (g9) and stores it in gl

loads the constant 16#749#
in r8

MEM

11-69

INSTRUCTION SET REFERENCE

llogbnr, logbnrll

Mnemonic:

Format:

logbnr
logbnrl

logbnr*

Log Binary Real
Log Binary Long Real

src,
freg/flit

dst
freg

Description: Calculates the log2 (src) and stores the integral part of this value (i.e., the
part to the left of the binary point) as a real number in dst. The result of this
operation is an unbiased exponent. When src is a denormalized number, dst
is the unbiased exponent that src would have if the format had unlimited
exponent range.

(The fractional part of log2 (src) is ignored. If the fractional part is needed,
use the logr or logrl instruction.)

This instruction implements the IEEE recommended function 10gb. It is
useful for calculating the order of magnitude of a number.

For the logbnrl instruction, if the src2 or dst operand references a global or
local register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., gO, g2, g4).

The following table shows the results obtained when taking the log binary of
various classes of numbers, assuming that neither overflow nor underflow
occurs.

Src Dst

-00 +00
-F ±F
-0 **
+0 **
+F ±F
+00 +00
NaN NaN

Notes:
F Means finite-real number
•• Indicates floating zero-divide exception

11-70

intel"

Action:

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

Ilogbnr,logbnrll

Note that the significand of the src operand can be extracted by using the
scaler or scalerl instruction.

dst +- (Iog2 (unbiased exponent (src)) - fraction);
the integral part of the unbiased exponent of src
is stored in dst as a biased real

STANDARD Refer to the discussion of faults at the
beginning of this chapter.

Floating Reserved Encoding One or more operands is an unnormal
ized (including denormalized) value and
the normalizing-mode bit in the arith
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Underflow

Floating Invalid Operation

Floating Inexact

Floating Zero Divide

logbnrl g12, fp3

logbnr
logbnrl

logr, scaler

68A
69A

Result is too small for destination format.

One or more operands are an SNaN
value.

Result cannot be represented exactly in
destination format.

The src operand is o.

fp3 +- integral part
of log2 (g12,g13)

REG
REG

11-71

INSTRUCTION SET REFEReNCE

Iloge,pr, logeprll

Mnemonic:

Format:

logepr
logeprl

logepr*

Log Epsilon Real
Log Epsilon Long Real

srcJ,
freg/flit

src2,
freg/flit

dst
freg

Description: Calculates (src2 * log2 (srcJ + 1)), and stores the result in dst.

Src2

.00

For the logeprl instruction, if the srcJ, src2, or dst operand references a
global or local register, this register is the first (lowest numbered) of two
successive registers. Also, this register must be even numbered (e.g., gO, g2,
g4).

The following table shows the results obtained when taking the log epsilon of
various classes of numbers, assuming that neither overflow nor underflow
occurs.

Srcl

(1/"v'2) ·1 to -0 -0 +0 +OtoV2-1 NaN

_00 * * _00 NaN
·F +F +0 -0 -F NaN

·0 +0 +0 -0 -0 NaN

+0 -0 -0 +0 +0 NaN

+F -F -0 +0 +F NaN
+00 +00 * * +00 NaN

NaN NaN NaN NaN NaN NaN

Notes:

F

*
Means finite-real number.
Indicates floating invalid-operation exception.

This instruction offers optimal accuracy for values of srcJ + 1 close to 1 (Le.,
for values of srcJ close to 0). This expression is commonly found in com
pound interest and annuity calculations. The result can be simply converted
into a value in another logarithm base by including a scale factor in src2.

11-72

Action:

Faults:

INSTRUCTION SET REFERENCE

ilogepr, logeprli

The following equation is used to calculate the scale factor for a particular
logarithm base, where n is the logarithm base desired for the result stored in
dst:

scale factor = logn 2

The range of src1 is restricted to the following:

l/sqrt (2) :5; src1 + 1 :5; sqrt (2)

When the src1 operand is outside this range, the logr or logrl instruction can
be used with very insignificant loss of accuracy by adding 1.0 to src1.

dst f- src2 * log2 (src1 + 1);

STANDARD

Floating Reserved Encoding

Refer to the discussion of faults at the
beginning of this chapter.

One or more operands is an unnormal
ized (including denormalized) value and
the normalizing-mode bit in the arith
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Overflow

Floating Underflow

Floating Invalid Operation

Floating Inexact

11-73

Result is too large for destination format.

Result is too small for destination format.

The src1 operand is 0 and the src2
operand is 00.

The srcl operand does not fall within the
range defined in the above description
section.

One or more operands are an SNaN
value.

Result cannot be represented exactly in
destination format.

inter INSTRUCTION SET REFERENCE

Ilogepr, logeprll

Example: logepr gS, g4, fp2
fp2 .~ g4, g5 * log2 (gS, g9 + 1)

Opcode: logepr 681 REG
logeprl 691 REG

See Also: logr

11-74

inter INSTRUCTION SET REFERENCE

Ilogr, logrll

Mnemonic: logr Log Real
.. '

"

logrl ' Log Long Real

Format: logr* srcl, src2, dst
freg/flit freg/flit freg

Descriptlon~ Calculates (src2 * log2 (srcl», and stores the .result in dst. (The logbnr and
logbnrl instructions perform this function more efficiently, if only an es
timate is needed.)

Src2

-OIl

-F
-0

+0

+F
+011

NaN

For the logrl instruction, if the srcl, src2, or dst operand references a global
or local register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., gO, g2, g4).

The following table shows the results obtained when taking the log of
various classes of numbers, assuming that neither overflow nor underflow
Occurs.

Srel

-OIl -F -0 +0 +F +00 NaN

* * ** ** ±oo '-00 NaN

* * ** ** ~F -00 NaN

* * * * ±O * NaN :

* * * * ±O * NaN

* • ** ** ±F +00 NaN

* * ** ** ±oo +00 NaN
NaN NaN NaN ., NaN NaN NaN NaN

Notes:

F
•

••

,Means finite-real number.
Indicates floating invalid-operation exception.
Indicates floating zero-divide exception .

The logr instruction combined with the expr instruction forms the basis for
the power function xY•

11-75

intel" INSTRUCTION SET REFERENCES

Ilogr, logrll

Action:

Faults: ,

Adding 1.0 to a number to be used' as the 'srcJ operand will cause infor
mation to be lost. To perform this function, use the logepr or logeprl
instruction.

These instructions provide a simple method, of converting the result of the
logz arithmetic into a value in another logarithm base by including a scale
factor in src2. The following equation is used to calculate the scale factor for
a particular logarithm base, where n is the logarithm base desired fot the
result stored in dst;

~cale factor = logn 2

dst f- src2 * log2 (srcJ);

STANDARD

Floating Reserved Encoding

, ,

Refer to the discussion of faults at the
beginning of this chllPter.

One or more operands is an unnormal
ized (including denormalized) value and
the normalizing-mode bit 'in the arith
meticcontrols is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends'on the state of its associated
mask bit in the arithmetic controls.

Floating Overflow

Floating Underflow

Floating ZerQ Divide

Floating Invalid Operation

Floating Inexact

11-76

Result is too large for de,stination format.

Result is too small for destination format.

The srcJ operand is 0 and src2 is non
zero.

The srcJ and src2 operands are both o.
the s~d Qper&nd is, 000' and the src2
operand is O.

The srcJ operand is 1 and the src2
operand is 00.

The' srci operand is negative and non-
zero.

'One or more operands are an SNaN
value.

Result cannot be represented exactly in
destination format.

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

Ilogr, logrll

logrl r2, g8, g2 # g2,g3 ~ g8,g9 * log2(r2,r3)

logr
logrl

expr, logepr

682
692

REG
REG

11-77

inter INSTRUCTION SET REFERENCE

mark

Mnemonic: mark Mark

Format: mark

Description: Generates a breakpoint trace event if the breakpoint trace mode has been
enabled. The breakpoint trace mode is enabled if the trace-enable bit (bit 0)
of the process controls and the breakpoint-trace mode bit (bit 7) of the trace
controls have been set. Both these words are located in the PCB.

Action:

Faults:

Example:

Opcode:

See Also:

When a breakpoint trace event is detected, the trace-fault-pending flag (bit
10) of the process controls and the breakpoint-trace-event flag (bit 23) of the
trace controls are set. Before the next instruction is executed, a trace fault is
generated.

If the breakpoint-trace mode has not been enabled, the mark instruction
behaves like a no-op.

For more information on trace-fault generation, refer to Chapter 12.

raise trace breakpoint fault

STANDARD, Breakpoint Trace

Assume that the breakpoint trace mode is
enabled.
ld xyz, r4
addi r4, r5, r6
mark
Breakpoint trace event is generated at
this point in the instruction stream.

mark 66B REG

fmark, mod pc, modtc

11-78

inter

Mnemonic: modac

Format: modac

INSTRUCTION SET REFERENCE

Modify AC

mask,
reg/lit

src,
reg/lit

dst
reg

modac

Description: Reads and modifies the arithmetic controls. The src operand contains the
value to be placed in the arithmetic controls and the mask operand specifies
the bits that may be changed. Only the bits set in mask are modified in the
arithmetic controls. Once the arithmetic controls have been changed, their
initial state is copied into dst.

Action: temp ~ AC
AC ~ (src and mask) or

(AC and not (mask»;
dst~ temp;

Faults: STANDARD

Example: gl, g9, g12 # AC ~ g9, masked by gl
g12 ~ initial value of AC

Opcode: modac 645 REG

See Also: modpc, modtc

11-79

intel"

modi

Mnemonic: modi

Format: modi

INSTRUCTION SET REFERENCE

Modulo Integer

srcl,
reg/lit

src2,
reg/lit

dst
reg

Description: Divides src2 by srcl, where both are integers, and stores the modulo
remainder of the result in dst. If the result is nonzero, dst is given the same
sign as src 1.

Action:

Faults:

Example:

Opcode:

See Also:

dst f- src2 - «src2/srcl) * srcl);
if src2 * srcl < 0

then dst f- dst + srcl;
end if;

STANDARD, Arithmetic Zero Divide

modi r9, r2, r5, # r5 f- modulo (r2/r9)

modi 749 REG

div, remi

11-80

inter

Mnemonic: modify

Format: modify

INSTRUCTION SET REFERENCE

Modify

mask,
reg/lit

src,
reg/lit

src!dst
reg

modify

Description: Modifies selected bits in src!dst with bits from src. The mask operand
selects the bits to be modified: only the bits set in the mask are modified in
src!dst.

Action: src!dst ~ (src and mask) or (src!dst and not (mask));

Faults: STANDARD

Example: modify g8, gIO, r4 # r4 ~ glO masked by g8

Qpcode: modify 650 REG

See Also: alterbit, extract

11-81

modpc

Mnemonic: modpc

Format: mod pc

INSTRUCTION SET REFERENCE

Modify Process Controls .

src,
reg/lit

mask,
reg/lit

srcldst·
reg

Description: Reads and modifies the processor's internally cached process controls as
specified with mask and srcldst. The srcldst operand contains the value to be
placed in the process controls and the mask operand specifies the bits that
may be changed. Only the bits set in the mask are modified in the process
controls. Once the process controls have been changed, their initial value is
copied into srcldst. the src operand is a dummy operand that should be set
equal to the mask operand.

Action:

The processor must be in the supervisor mode to modify the process controls
using this instruction. If the mask operand is set to 0, this instruction can be
used to read the process controls, without the processor being in the super
visor mode.

If the action of this instruction results in the priority of the processor being
lowered, the interrupt table is checked for pending interrupts.

Changing the state, resume, internal state, and trace enable fields of the
process controls can lead to unpredictable behavior, as described in Chapter
7 in the section titled "Changing the Process-Controls Word."

if mask =t= 0
then if process.process30ntrols.execution_mode =t= supervisor

then raise type-mismatch fault;
end if;
temp ~ process.process_controls;
process.process_controls ~

(mask and srcldst) or
(process.process30ntrols and not (mask»;

srcl dst ~ temp;
if (temp. priority > process.process30ntrols.priority

then check_pending_interrupts;
if continue here, no interrupt to do

end if;
else srcldst ~ process.process_controls;

end if;

11-82

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

STANDARD, Type Mismatch

modpc g9, gg, g8

modpc 655

modac, modtc

process controls ~ g8
masked by g9

REG

11-83

modpc

modtc

Mnemonic: modtc

Format: modtc

INSTRUCTION SET REFERENCE

Modify Trace Controls

mask,
reg/lit

src,
reg/lit

dst
reg

Description: Reads and modifies the trace controls for the current process. The processor
changes its internally cached trace controls as specified with mask and src.
The src operand contains the value to be placed in the trace controls and the
mask operand specifies the bits that may be changed. Only the bits set in the
mask are modified in the trace controls. Once the trace controls have been
changed, their initial state is copied into dst.

Action:

Faults:

Example:

Opcode:

See Also:

This instruction only affects the trace controls cached in processor. The trace
controls in the PCB for the current process are not affected.

Since bits 8 through 15 and 24 through 31 of the trace-controls word are
reserved, the mask operand is ANDed with OOFFOOFF16 to insure that these
bits are not set in the mask.

The changed trace controls take effect on the first non-branching instruction
fetched from memory. Since instructions are prefetched four at a time, the
trace controls may not take effect for up to the next four instructions ex
ecuted.

For more information on the trace controls, refer to Chapters 12 and 16.

temp t- process. trace_controls;
tempI t- 16#OOFFOOFF# and mask;
process. trace_controls t-

(temp 1 and src) or
(process. trace_controls and not(templ));

dst t- temp;

STANDARD

modtc g12, glO, g2
trace controls t- glO masked by g12;
previous trace controls stored in g2

modtc 654 REG

modac, modpc

11-84

Mnemonic:

Format:

mov
movl
movt
movq

mov*

INSTRUCTION SET REFERENCE

Move
Move Long
Move Triple
Move Quad

src,
reg/lit

dst
reg

MOVE

Description: Copies the content of one or more source registers (specified with the src
operand) to one or more destination registers (specified with the dst
operand).

Action:

Faults:

Example:

Opcode:

See Also:

For the movl, movt, and movq instructions, the src and dst operands specify
the first (lowest numbered) register of several successive registers. The src
and dst registers must be even numbered (e.g., gO, g2) for the movl instruc
tion and an integral multiple of four (e.g., gO, g4) for the movt and movq
instructions.

When the src and dst operands overlap, the value moved is unpredictable.

dst~ src;

STANDARD

movt g8, r4

mov
movl
movt
movq

Id, movr, st

5CC,
5DC
5EC
5FC

r4, r5, r6 ~ g8, g9, glO

REG
REG
REG
REG

11-85

INSTRUCTION SET REFERENCE

I movr, movre, movrll

Mnemonic:

Format:

movr
movrl
movre

movr*

Move Real
Move Long Real
Move Extended Real

src,
freg/flit

dst
freg

Description: Copies a real value from one or more source registers (specified with the src
operand) to one or more destination registers (specified with the dst
operand).

Action:

For the movrl instruction, if the src or dst operand references a global or
local register, this register is the first (lowest numbered) of two successive
registers. For the movre instruction, if the src or dst operand references a
global or local register, this register is the first (lowest numbered) of three
successive registers.

When copying real numbers between global or local registers and floating
point registers, conversion between real or long-real format to extended-real
format is performed implicitly. Conversion between real and long-real for
mats must be done through floating-point registers and requires two instruc
tions, as illustrated in the example below.

When the movre instruction moves an operand from global or local registers
to a floating-point register, it automatically truncates the most-significant 16
bits of the word in the third register (refer to Figure 12-5). Likewise, when
this instruction is used to move an operand from a floating-point register to
global or local registers, it adds 16 zeros to the third word. The movre
instruction is not a numeric instruction; it merely manipulates bits.

The movr and movrl instructions can cause a floating-point exception to be
raised, which might result in a fault being raised, as is explained in the
section below on faults. The movre instruction can never raise an exception
and thus never faults.

dst f- src;

11-86

Faults:

Example:

Opcode:

INSTRUCTION SET REFERENCE

STANDARD

Floating Reserved Encoding

I movr, movre, movrll

Refer to the discussion of faults at the
beginning of this chapter.

One or more operands is an unnormal
ized (including denormalized) value and
the normalizing-mode bit in the arith
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Overflow

Floating Underflow

Floating Invalid Operation

Floating Inexact

Result is too large for destination format.

Result is too small for destination format.

Source operand is an SNaN value.

Result cannot be represented exactly in
destination format.

Conversion of real value in g3 to a
to a long real value, which is stored
in g4,g5
movr g3, fp2
movrl fp2, g4

movr
movrl
movre

6C9
6D9
6E9

REG
REG
REG

See Also: mov

11-87

INSTRUCTION SET REFERENCE

muli, mula

Mnemonic:

Format:

muli
mulo

Multiply Integer
Multiply Ordinal

src1,
reg/lit

src2,
reg/lit

dst
reg

Description: Multiplies the src2 value by the src1 value and stores the result in dst.

Action: dst f- src2 * src1;

Faults: STANDARD, Integer Overflow

Example:

Opcode:

See Also:

mul,i r3, r4, r9

muli
mulo

ernul, muir

741
701

r9 f- r4 TIMES r3

REG
REG

11-88

inter

Mnemonic:

Format:

muir
mulrl

mulr*

INSTRUCTION SET REFERENCE

Multiply Real
Multiply Long Real

srci,
,freg/flit

src2,
freg/flit

dst
freg

I muir, mulrll

Description: Multiplies the src2 value by the srci value and stores the result in dst.

-00

-F

-0

Sre2 +0

+F
+00

NaN

Notes:

F
•

Action:

For the mulrl instruction, if the srci, src2, or dst operand references a global
or local register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., gO, g2, g4).

The sign of the result is always the exclusive-OR of the source signs, even if
one or more of the source values is 0, 00, or a NaN.

The following table shows the results obtained when multiplying various
classes of numbers together, assuming that neither overflow nor underflow
occurs.

Srel
_00 -F -0 +0 +F +00 NaN

+00 +00 * * -00 _00 NaN
+00 +F +0 -0 -F _00 NaN

* +0 +0 -0 -0 * NaN

* -0 -0 +0 +0 * NaN
_00 -F -0 +0 +F +00 NaN
_00 -00 * * +00 +00 NaN

NaN NaN NaN NaN NaN NaN NaN

Means finite-real number.
Indicates floating invalid-operation exception .

When you need to multiply by the power of 2, the scaler and scalerl instruc
tions can also be used.

dst f- src2 * srci;

11-89

intel" INSTRUCTION SET'REFERENCE

1 muir, mulrl :1

Faults:

Example:,

Opcod&:

See Also:

STANDARD

Floating Reserved Encoding

Refer' to the discussion of faults at the
begitming of this chapter.

One or more operands is an unnormal
ized (including denormalized) value and
the normalizing-mode bit in the arith
metic controls is set.

The following floating-point exceptions ctfu 'be raised.' Whether or not an
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.' '

Floating Overflow

Floating Underflow

Floating Invalid Operation

Floating Inexact

mulrl g12, g4, fp2

muir
mulrl

78C
79C

emul, muli, scaler

Result is too large for destination format.

Result is too small for destination format.

One source operand is, 0 and the other is
00.

One or more operands are an SNaN
value.

Result cannot be represented exactly in
destination format.

fp2 ~ g4,g5 * g12,g13

REG
REG

Mnemonic: nand

Format: nand

INSTRUCTION SET REFERENCE

Nand

srcJ,
reg/lit

src2,
reg/lit

dst
reg

na,nd

Description: Perfonns a bitwise NAND operation on the src2 and srcJ values and stores
the result in dst.

Action: dst f- (not (src2» or not (srcJ);

Faults: STANDARD

Example: nand g5, r3, r7 # r7 f- r3 NAND g5

Opcode: nand 58E REG

See Also: and, andnot, nor, not, notand, notor, or, ornot, xnor, xor

11-91

inter

nor

Mnemonic: nor

Format: nor

INSTRUCTION SET REFERENCE

Nor

srcJ,
reg/lit

src2,
reg/lit

dst
reg

Description: Performs a bitwise NOR operation on the src2 and srcJ values and stores the
result in dst.

Action: dst f- not (src2) and not (srcJ);

Faults: STANDARD

Example: nor gS, 2S, r5 # r 5 f- 2 S NOR gS

Opcode: nor 588 REG

See Also: and, andnot, nand, not, notand, notor, or, ornot, xnor, xor

11-92

INSTRUCTION SET REFERENCE

not, notand

Mnemonic: not Not
notand Not And

Format: not src, dst
reg/lit reg

notand srcl, src2, dst
reg/lit reg/lit reg

Description: Performs a bitwise NOT (not instruction) or NOT AND (notand instruction)
operation on the src2 and srcl values and stores the result in dst.

Action:

Faults:

Example:

Opcode:

See Also:

not: dst ~ not (src1);

notand: dst ~ (not (src2» and src1;

STANDARD

not g2, g4 # g4 ~ NOT g2
not and r5, r6, r7 # r7 ~ NOT r6 AND r5

not
notand

58A
584

REG
REG

and,andnot, nand,nor, notor, or, ornot, xnor, xor

11-93

inter

notbit

Mnemonic: notbit

Format: notbit

INSTRUCTION SET REFERENCE

Not Bit

bitpos,
reg/lit

src,
reg/lit

dst
reg

Description: Copies the src value to dst with one bit toggled. The bitpos operand
specifies the bit to be toggled.

Action: dst ~ src xor 2A(bitpos mod 32);

Faults: STANDARD

Example: notbit r3, r12, r7 # r7 ~ r12 with the bit
specified in r3 toggled

Opcode: notbit 580 REG

See Also: alterbit, chkbit, clrbit, setbit

11-94

Mnemonic: notor

Format: notor

INSTRUCTION SET REFERENCE

Not Or

srcJ,
reg/lit

src2,
reg/lit

dst
reg

notor

Description: Performs a bitwise NOT OR operation on the src2 and srcJ values and stores
the result in dst.

Action: dst f- (not (src2» or srcJ;

Faults: STANDARD

Example: notor g12, g3, g6 # g6 f- NOT g3 OR g12

Opcode: notor 58D REG

See Also: and, andnot, nand, nor, not, notand, or, ornot, xnor, xor

11-95

inter INSTRUCTION SET REFERENCE

or,ornot

Mnemonic: or Or
ornot Or Not

Format: or srcJ, src2, dst
reg/lit reg/lit reg

ornot srcJ, src2, dst
reg/lit reg/lit reg

Description: Performs a bitwise OR (or instruction) or ORNOT (ornot instruction) opera
tion on the src2 and srcJ values and stores the result in dst.

Action:

Faults:

Example:

Opcode:

See Also:

or: dst f- src2 or srcJ;

ornot: dst f- src2 or not (srcJ);

STANDARD

or 14, g9, g3
arnot r3, r8, r11

or
ornot

587
58B

:It g3 f- g9 OR 14
:It rll f- r8 OR NOT r3

REG
REG

and, andnot, nand, nor, not, notand, notor, xnor, xor

11-96

inter

Mnemonic:

Format:

remi
remo

rem*

INSTRUCTION SET REFERENCE

Remainder Integer
Remainder Ordinal

srcJ,
reg/lit

src2,
reg/lit

dst
reg

remi, remo

Description: Divides src2 by srcJ and stores the remainder in dst. The sign of the result
(if nonzero) is the same as the sign of src2.

Action: dst f- src2 ~ «src2 / srcJ) * srcJ);

Faults: STANDARD

Integer Overflow

Example: reni.o r4, r5, r6

Opcode: remi 748
remo 708

See Also: remr, modi

Refer to discussion of faults at the begin~
ning of this chapter.

Result is too large for destination format.
This fault is signaled only when execut~
ing the remi instruction and if both of
the following conditions are met: (1) the
integer~overflow mask in the arithmetic~
controls registers is clear and (2) the
source operands have like signs and the
sign of the result operand is different
than the signs of the source operands.

r6 f- r5 rem r4

REG
REG

11-97

INSTRUCTION SET REFERENCE

I remr, remrll

Mnemonic: remr
remrl

Remainder Real
Remainder Long Real

Format: remr* srcl,
freg/flit

src2,
freg/flit

dst
freg

Description: Divides src2 by srcl and stores the remainder in dst. The sign of the result
(if nonzero) is the same as the sign of src2.

Sre2

-00

-F

-0

+0

+F

+00

For the remrl instruction, if the srcl, src2, or dst operand references a global
or local register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., gO, g2, g4).

The following table shows the results obtained when computing the
remainder of various classes of numbers, assuming that neither overflow nor
underflow occurs.

Srel

-00 -F, -0 +0 +F +00 NaN

* * * * * * NaN
src2 -For -0 ** ** -F or -0 src2 NaN

-0 -0 * * -0 -0 NaN
+0 +0 * * +0 +0 NaN

src2 +For +0 ** ** +For +0 src2 NaN

* * * * * * NaN
NaN NaN NaN NaN NaN NaN NaN NaN
Notes:

F Means finite-real number.
• Indicates floating invalid-operation exception.

• • Indicates floating zero-divide exception.

When the result is 0, its sign is the same as that of src2. When the srcl is 00,

the result is equal to the src2.

The result of this operation is always exact if the destination format is at least
as wide as the src2 and srcl.

11-98

inter

Action:

INSTRUCTION SET REFERENCE

I remr, remrll

The remainder provided with the remr and remrl instructions is different
from the remainder described in the IEEE floating-point standard. The dif
ference is related to how the quotient (N) of the expression (src2Isrc1) is
determined.

As shown below in the action statement, N for the remr and remrl instruc
tions is the nearest integer value obtained when the exact result (E) of the
expression (src2Isrc1) is truncated toward zero. N will always be less than
Of equal to the absolute value of E.

For the IEEE standard, N is simply the nearest integer value to E. Here, N
may be less than, equal to, or greater than the absolute value of E.

To help determine the IEEE remainder from the result given by the remr and
remrl instructions, the following information about the quotient is given in
the arithmetic-status field in the arithmetic:

Arithmetic Meaning
Status Bit

6 Ql, the next-to-Iast quotient bit

5 QO, the last quotient bit

4 QR, the value the next quotient bit
would have if one more reduction were
performed (the "round" bit of the
quotient)

3 QS, set if the remainder after the QR
reduction would be nonzero (the
"sticky" bit of the quotient)

The information can then be used to determine the IEEE standard remainder,
as shown in the example below.

dst f- src2 - (N * srcl);
where N = truncate (src2Isrc1.
Here, (src2Isrc1) is truncated
toward zero to the nearest integer.

11-99

inter INSTRUCTION SET REFERENCE

I remr, remrll

Faults:

Example:

Opcode:

See Also:

STANDARD

Floating Reserved Encoding

Refer to the discussion of faults at the
beginning of this chapter.

One or more operands is an unnormal
ized (including denormalized) value and
the normalizing-mode bit in the arith
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Overflow

Floating Underflow

Floating Zero Divide

Floating Invalid Operation

Floating Inexact

remrl g6, g8, fpl
fpl ~ g8,g9 rem g6,g7

remr
remrl

remi, modi

683
693

REG
REG

11-100

Result is too large for destination format.

Result is too small for destination format.

The srcl operand is O.

The src2 operand is 00.

The srcl operand is O.

One or more operands are an SNaN
value.

Result cannot be represented exactly in
destination format.

INSTRUCTION SET REFERENCE

ret

Mnemonic: ret Return

Format: ret

Description: Returns process control to the calling procedure. The current stack frame
(Le., that of the called procedure) is deallocated and the FP is changed to
point to the stack frame of the calling procedure. Instruction execution is
continued at the instruction pointed to by the RIP in the calling procedure's
stack frame, which is the instruction immediately following the call instruc
tion.

Action:

As shown in the action statement below, the action that the processor takes
on the return is determined by the return status and preretum trace bits.
These bits are contained in bits 0, through 3 of register rO of the current set of
local registers.

Refer to Chapter 4 for further discussion of the return instruction.

wait for any uncompleted instructions to finish;
case frame_status is

2#000#: FP f- PFP;
free current register_set;
if register_set (FP) not allocated

then retrieve from memory(FP);
end if;
IP f- RIP;

2#001#: x f- memory(FP-16);
y f- memory(FP-12);
do case 000 action;
arithmetic30ntrols f- y;
if execution_mode = supervisor

then process_controls f- x;
end if;

2#010#: if execution_mode::t supervisor
then go to case 000;
else process_controls.T f- 0;

execution_mode f- user;
go to case 000;

end if;

11-101

ret

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

2#0 11 #: if execution_mode :t:. supervisor
then go to case 000;
else process_controls.T f- 1;

execution_mode f- user;
go to case 000;

end if;

2#100#: undefined

2#101#: undefined

2#110#: if execution_mode = supervisor
then free current register set;

check_pending_interrupts;
if continue here, no interrupt to do
do case 000 action;

end if;

2#111#: x f- memory(FP-16);
y f- memory(FP-12);
do case 000 action;
arithmetic30ntrols f- y;
if execution_mode = supervisor

then process30ntrols f- x;
check_pending_interrupts;

end if;

STANDARD

ret

ret

process control returns to
calling procedure
environment

OA CTRL

call, calls, calix

11-102

inter

Mnemonic: rotate

Format: rotate

INSTRUCTION SET REFERENCE

Rotate

len,
reg/lit

src,
reg/lit

dst
reg

rotate

Description: Copies src to dst and rotates the bits in the resulting dst operand to the left
(toward higher significance). (The bits shifted off the left end of the word
are inserted at the right end of the word.) The len operand specifies the
number of bits that the dst operand is rotated. The len operand can range
from 0 to 31.

Action:

Faults:

Example:

Opcode:

See Also:

This instruction can also be used to rotate bits to the right. Here, the number
of bits the word is to be rotated right is subtracted from 32 to get the len
operand.

dst ~ rotate (len mod 32 (src»

STANDARD

rotate r4, r8, r12

rotate 59D

SHIFT

r12 ~ r8
with bits rotated
r4 bits to left

REG

11-103

inter INSTRUCTION SET REFERENCE

I roundr, roundrll

Mnemonic:

Format:

roundr
roundrl

roundr*

Round Real
Round Long Real

src,
freg/flit

dst
freg

Description: Rounds sy(: to the nearest integral value, depending Qn the rounding mode,
and stores the result in dst.

Action:

Faults:

Example:

Opcode:

For the roundrl instruction, if the src or dst operand references a global or
local register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., gO, g2, g4).

If the src operand is 00 the result is src. If the src operand is not an integral
value, a floating-inexact exception is raised.

STANDARD

Floating Reserved Encoding

Refer to the discussion of faults at the
beginning of this chapter.

One or more operands is an unnormal
ized (including denormalized) value and
the normalizing-mode bit in the arith
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Overflow

Floating Underflow

Floating Invalid Operation

Floating Inexact

roundrl r4, ria

Result is too large for destination format.

Result is too small for destination format.

One or more operands are an SNaN
value.

Result cannot be represented exactly in
destination format.

riO,rii ~ r4,r5 rounded

roundr
roundrl

68B
69B

REG
REG

11-104

inter

Mnemonic:

Format:

scaler
scalerl

scaler*

INSTRUCTION SET REFERENCE

Scale Real
Scale Long Real

srcl,
reg/lit

src2,
freg/flit

dst
freg

I scaler, scalerll

Description: MUltiplies src2 by 2 to the power of src1 and stores the result in dst. The
src1 operand is an integer; whereas, src2 and dst are reals.

For the scalerl instruction, if the src2 or dst operand references a global or
local register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., gO, g2, g4).

The following table shows the results obtained when scaling various classes
of numbers, assuming that neither overflow nor underflow occurs.

Sre2

Srel

-N 0 +N

-co -co -co -00

-F -F -F -F

-0 -0 -0 -0

+0 +0 +0 +0

+F +F +F +F

+00 +00 +00 +00

NaN NaN NaN NaN

Notes:

F Means finite· real number.
N Means integer.

In most cases, only the exponent is changed and the mantissa (fraction)
remains unchanged. However, when the src1 operand is a denormalized
value, the mantissa is also changed and the result may tum out to be a
normalized number. Similarly, if overflow or underflow results from a scale
operation, the resulting mantissa will differ from the source's mantissa.

11-105

inter INSTRUCTION SET REFERENCE

I scal'er, scalerll

Action:

Faults:

Example:

Opcode:

Refer to the sections titled "Floating Overflow Exception" and "Floating
Underflow Exception" in Chapter 12 for further discussion of how overflow
and underflow are handled.

dst f- src2 * (2"srcl)

STANDARD

Floating Reserved Encoding

Refer to the discussion of faults at the
beginning of this chapter.

One or more operands is an unnormal
ized (induding denormalized) value and
the normalizing-mode bit in the arith
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Overflow

Floating Underflow

Floating Zero Divide

Floating Invalid Operation

Floating Inexact

scalerl g6, g2, fpO
fpO f- g2,g3 * 2Ag6

scaler
scaled

677
676

REG,
REG

Result is too large for destination format.

Result is too small for destination format.

The srcl operand is O.

One or more operands are an SNaN
value.

Result cannot be represented exactly in
destination format.

See Also: muir

11-106

intel"

Mnemonic: scanbit

Format: scanbit

INSTRUCTION SET REFERENCE

Scan For Bit

src,
reg/lit

dst
reg

scanbit

Description: Searches the src value for the most-significant set bit (1 bit). If a most
significant 1 bit is found, its bit number is stored in dst and the condition
code is set to 0102, If the src value is zero, all l's are stored in dst and the
condition code is set to 0002'

Action: dst +- 16#FFFFFFFF#;
AC.cc +- 2#000#;

Faults:

Example:

Opcode:

See Also:

for i in 31..0 reverse loop

end loop;

if (src and 21\i) "# 0
then

end if;

dst +- i;
AC.cc +- 2#010#;
exit;

STANDARD

assume g8 is nonzero
scanbit g8, g10
g10 +- bit number of
most-significant set bit
in g8; AC.cc +- 2#010#

scanbit 641 REG

spanbit

11-107

scanbyte

Mnemonic:

Format:

INSTRUCTION SET REFERENCE

scanbyte Scan Byte Equal

scanbyte src1 ,
reg/lit

src2
reg!lit

Description: Perfonns a byte-by-byte comparison of src1 and src2 and sets the condition
code to 2#010# if any two corresponding bytes are equal. If no correspond
ing bytes are equal, the condition code is set to 0002,

Action: if (src1 and 16#000000FF#) = (src2 and 16#000000FF#) or
(srcl and 16#0000FFOO#) = (src2 and 16#OOOOFFOO#) or
(src1 and 16#OOFFOOOO#) = (src2 and 16#00FFOOOO#) or
(src1 and 16#FFOOOOOO#) = (src2 and 16#FFOOOOOO#)

then AC.cc f- 2#010#;
else AC.cc f- 2#000#;

endif;

Faults: STANDARD

Example: # assume r9 = OxllABllOO
scanbyte OxOOAB0011, r9
AC.cc f- 2#010#

Opcode: scanbyte SAC REG

11-108

inter

Mnemonic: setbit

Format: setbit

INSTRUCTION SET REFERENCE

Set Bit

bitpos,
reg/lit

src,
reg/lit

dst
reg

setbit

Description: Copies the src value to dst with one bit set. The bitpos operand specifies the
bit to be set.

Action: dst f- src or 2A(bitpos mod 32);

Faults: STANDARD

Example: setbit 15, r9, rl
rl f- r9 with bit 15 set

Opcode: setbit 583 REG

See Also: aiterbit, chkbit, clrbit, not bit,

11-109

inter

SHIFT

Mnemonic:

Format:

shlo
shro
shli
shri
shrdi

sh*

INSTRUCTION SET REfERENCE

Shift Left Ordinal
Shift Right Ordinal
Shift Left Integer
Shift Right Integer
Shift Right Dividing Integer

len,
reg/lit

src,
reg/lit

dst
reg

Description: Shifts src left or right by the number of digits indicated with the len operand
and stores the result in dst. This operation (with the exception of the shri
instruction, as described below) is e~uivalent to multiplying (shift left) or
dividing (shift right) the src value by 2 en.

Action:

The shri instruction performs a conventional arithmetic right shift, which,
when used as a divide, produces an incorrect quotient for negative src values.
To get a correct quotient for a negative src value, use the shrdi instruction,
which performs correct rounding of negative results.

shlo: if len < 32
then dst ~ src* 2A len
else dst ~ 0;
end if;

shro: if len < 32

shli:

shri:

shrdi:

then dst ~ src/2Alen
else dst ~ 0;
end if;

dst ~ src* 211len

if src ~ 0
then if len < 32

then dst ~ src/211len
else dst ~ 0;

else if len < 32
then dst ~ (src - 211len + 1)/211Ien
else dst ~ -1;
end if;

end if;

dst ~ src/211len

11-110

INSTRUCTION SET REFERENCE

SHIFT

Faults: STANDARD, Integer Overflow

Example: shli 13, g4, r6
g6 ~ g4 shifted left 13 bits

Opcode: shlo 59C REG
shro 598 REG
shli 59E REG
shri 59B REG
shrdi 59A REG

See Also: divi, muli, rotate

11-111

INSTRUCTION SET REFERENCE

I sinr, sinrll

Mnemonics: sinr Sine Real
sinrl

Format: sinr*

Sine Long Real

src,
freg/flit

dst
freg

Description: Calculates the sine of src and stores the result in dst. The src value is an
angle given in radians. The resulting dst value is in the range -1 to + 1,
inclusive.

Action:

For the sinrl instruction, if the src or dst operand references a global or local
register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., gO, g2, g4).

The following table shows the results obtained when taking the sine of
various classes of numbers, assuming that neither overflow nor underflow
occurs.

Src Dst
-00 *
-F -1 to + 1

-0 -0
+0 +0
+F -1 to + 1

+00 *'
NaN NaN

Notes:
F Means finite-real number
• Indicates floating invalid-operation exception

In the trigonmetic instructions, the 80960KB uses a value for 1t with a 66-bit
mantissa which is 2 bits more than are available in the extended-real format.
The section in Chapter 12 titled "Pi" gives this 1t value, along with some
suggestions for representing this value in a program.

dst f- sin (src);

11-112

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

STANDARD

Floating Reserved Encoding

I sinr, sinrll

Refer to the discussion of faults at the
beginning of this chapter.

One or more operands is an unnormal
ized (including denormalized) value and
the normalizing-mode bit in the arith
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Underflow

Floating Invalid Operation

Floating Inexact

sinrl g6, gO
sine of value in g6,g7
is stored in gO,gl

sinr
sinrl

cosr, tanr

68C
69C

REG
REG

11-113

Result is too small for destination format.

The src operand is 00.

One or more operands is an SNaN value.

Result cannot be represented exactly in
destination format.

spanbit

Mnemonic: spanbit

Format: spanbit

INSTRUCTION SET REFERENCE

Span Over Bit

src,
reg/lit

dst
reg

Description: Searches the src value for the most-significant clear bit (0 bit). If a most
significant 0 bit is found, its bit number is stored in dst and the condition
code is. set to OlO2' If the src value is all l's, alII's are stored in dst and the
condition code is set to 0002,

Action: dst ~ 16#FFFFFFFF#;
AC.cc ~ 2#000#;

Faults:

Example:

Opcode:

See Also:

for i in 31..0 reverse loop
if (src and 2J\i) = 0
then

dst ~ i;
AC.cc ~ 2#OlO#;
exit;

end if;
end loop;

STANDARD

assume r2 is not 16#FFFFFFFF#
spanbit r2 r9
r9 ~ bit number of
most-significant clear bit
in r2; AC.cc ~ 2#010#

spanbit 640 REG

scan bit

11-114

inter

Mnemonic:

Format:

sqrtr
sqrtrl

sqrtr*

INSTRUCTION SET REFERENCE

Square Root Real
Square Root Long Real

src,
freg/flit

dst
freg

I sqrtr, sqrtrll

Description: Calculates the square root of src and stores it in dst.

Action:

For the sqrtrl instruction, if the src or dst operand references a global or
local register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., gO, g2, g4).

The following table shows the results obtained when taking the square root
of various classes of numbers, assuming that neither overflow nor underflow
occurs.

Src Dst
-00 *
-F *
-0 -0
+0 +0
+F +F
+00 +00

NaN NaN

Notes:

F Means finite-real number
... Indicates floating invalid-operation exception

With these instructions, it is not possible to raise a floating overflow or
floating underflow fault unless the src operand is in a floating-point register
and the dst operand is not.

dst ~ sqrt (src);

11-115

INSTRUCTION SET REFERENCE

I sqrtr, sqrtrll

Faults:

Example:

Opcode:

STANDARD

Floating Reserved Encoding

Refer to the discussion of faults at the
beginning of this chapter.

One or more operands is an unnormal
ized (including denormalized) value and
the normalizing-mode bit in the arith
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Overflow

Floating Underflow

Floating Invalid Operation

Floating Inexact

sqrtrl g6, fpO
fpO ~ sqrt of g6, g7

sqrtr
sqrtrl

688
698

REG
REG

11-116

Result is too large for destination format.

Result is too small for destination format.

The src operand is less than -0.

The src operand is an SNaN value.

Result cannot be represented exactly in
destination format.

Mnemonic:

Format:

st
stob
stos
stib
stis
stl
stt
stq

st*

INSTRUCTION SET REFERENCE

Store
Store Ordinal Byte
Store Ordinal Short
Store Integer Byte
Store Integer Short
Store Long
Store Triple
Store Quad

src,
reg/lit

dst
mem

STORE

Description: Copies a byte or string of bytes from a register or group of registers to
memory. The src operand specifies a register or the first (lowest numbered)
register of successive registers.

Action:

Faults:

Example:

The dst operand specifies the address of the memory location where the byte
or the first byte of a string of bytes is to be stored. The full range of
addressing modes may be used in specifying dst. (Refer to Chapter 5 for a
complete discussion of the addressing modes available with memory-type
operands.)

The stob and stib, and stos and stis instructions store a byte and half word,
respectively, from the low order bytes of the src register. The st, stl, stt, and
stq instructions copy 4, 8, 12, and 16 bytes, respectively, from successive
registers to memory.

For the stl instruction, dst must specify an even numbered register (e.g., gO,
g2, ... , gI2). For the stt and stq instructions, dst must specify a register
number that is a multiple of four (e.g., gO, g4, g8).

memory (dst) f- src;

STANDARD, Integer Overflow Fault (stib and stis instructions only)

st g2, 1256 (g6)
word beginning at offset
1256 + (g6) f- g2

11-117

--- ------ --

inter

STORE

Opcode:

See Also:

INSTRUCTION SET REFERENCE

st
stob
stos
stib
stis
stl
stt
stq

92
82
8A
C2
CA
9A
A2
B2

LOAD,MOVE

MEM
MEM
MEM
MEM
MEM
MEM
MEM
MEM

11-118

inter

Mnemonic: subc

Format: subc

INSTRUCTION SET REFERENCE

Subtract Ordinal With Carry

src1,
reg/lit

src2,
reg/lit

dst
reg

subc

Description: Subtracts (src1 - 1) from src2, adds bit 1 of the condition code (used here as
a carry bit), and stores the result in dst. If the ordinal subtraction results in a
carry, bit 1 of the condition code is set.

Action:

Faults:

Example:

Opcode:

This instruction can also be used for integer subtraction. Here, if integer
subtraction results in an overflow, bit 0 of the condition code is set.

The subc instruction does not distinguish between ordinals and integers: it
sets bits 0 and 1 of the condition code regardless of the data type.

Let the value of the condition code be xCx.
dst ~ src2 - (src1 - 1) + C;
AC.cc ~ 2#OCV#;
C is carry from ordinal subtraction.
V is 1 if integer subtraction would have generated
an overflow.

STANDARD

subc g5, g6, g7
g7 ~ g6 - (g5 - 1)
+ Carry Bit

subc 5B2 REG

See Also: addc

11-119

INSTRUCTION SET. REFERENCE

subi, subo

Mnemonic:

Format:

subi
subo

sub*

Subtract Integer
Subtract Ordinal

srcl,
reg/lit

src2,
reg/lit

dst
reg

Description: Subtracts srcl from src2 and stores the result in dst. The binary results from
these two instructions are identical. The only difference is that subi can
signal an integer overflow.

Action: dst f- src2 - srcl;

Faults: STANDARD, Integer Overflow (subi instruction only)

Example:

Opcode:

See Also:

subi g6, g9, g12

subi
subo

593
592

addi, addr, subc, subr

g12 f- g9 - g6

REG
REG

11-120

inter INSTRUCTION SET REFERENCE

I subr, subrll

Mnemonic: subr Subtract Real
subrl Subtract Long Real

Format: subr* srcl, src2, dst
freg/flit freg/flit freg

Description: . Subtracts src1 from src2 and stores the result in dst.

Sre2

-00

For the subrl instruction, if the src1 , src2, or dst operand references a global
or local register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., gO, g2, g4).

The following table shows the results obtained when subtracting various
classes of numbers, assuming that neither overflow nor underflow occurs.

Srel

-00 -F -0 +0 +F +00 NaN

* -00 _00 -00 _00 _00 NaN

-F +00 ±For ±O src2 src2 -F _00 NaN

-0 +00 srcl ±O -0 srcl _00 NaN

+0 +00 srcl +0 ±O srcl _00 NaN

+F +00 +F si"c2 src2 ±For± 0 -00 NaN
+00 +00 +00 +00 +00 +00 * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

Notes:

F Means finite-real number .
• Indicates floating invalid-operation exception.

When the difference between two operands of like sign is zero, the result is
+0, except for the round toward -00 mode, in which case the result is -0. This
instruction also guarantees that +0 - (-0) = +0, and that -0 - (+0) = -0.

When one source operand is 00, the result is 00 of the expected sign. If both
source operands are 00 of the same sign, an invalid-operation exception is
raised.

11-121

INSTRUCTION SET REFERENCE

! subr, subrl!

Action:

Faults:

Example:

Opcode:

See Also:

dst ~ src2 - src1;

STANDARD

Floating Reserved Encoding

Refer to the discussion of faults at the
beginning of this chapter.

One or more operands is an unnormal
ized (including denormalized) value and
the normalizing-mode bit in the arith
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Overflow

Floating Underflow

Floating Invalid Operation

Floating Inexact

subrl g6, fpO, fpl
fpl ~ fpO - g6,g7

subr
subrl

78D
79D

subi, subc, addr

REG
REG

11-122

Result is too large for destination format.

Result is too small for destination format.

Source operands are infinities of like
sign.

One or more operands are an SNaN
value.

Result cannot be represented exactly in
. destination format.

inter INSTRUCTION SET REFERENCE

syncf

Mnemonic: syncf Synchronize Faults

Format: syncf

Description: Waits for any faults to be generated associated with any prior uncompleted
instructions.

Action: if arithmetic_controls.nif

Faults:

Example:

Opcode:

See Also:

then;
else wait until no imprecise faults can occUr

end if;

STANDARD

Id xyz, g6
addi r6, r8, r8
syncf

associated with any uncompleted ins'tructions;

and g6, OxFFFF, g8
the syncf instruction insures that' any faults
that may occur during the execution of the
Id and addi instructions occur before the
and instruction is executed

syncf 66F REG

mark, fmark

11-123

inter INSTRUCTION SET REFERENCE

!synld!

Mnemonic: synld Synchronous Load

Format: synld src, dst
reg reg
addr addr

Description: Copies a word from the memory location specified with src into dst and
waits for the completion of all memory operations, including those initiated
prior to the synld instruction. When the load has been successfully com
pleted, the condition code is set to 2#010#.

Action:

Faults:

The primary function of this instruction is for reading lAC messages, the
lAC Message Control word, or the lAC Interrupt Control Register.
However, this instruction is not restricted to lAC applications. It may be
used when it is important to guarantee the completion of the load operation
before proceeding or to avoid a bad-access fault.

The setting of the condition code indicates whether or not the load was
completed successfully. If the load operation results in a bad access con
dition (e.g., reading an AP-bus interconnect register), the condition code is
set to 0002, but the bad-access fault is not raised.

if PRCB.addressing_mode = physical
then tempa +- src;
else tempa +- physical_address (src);

end if;
tempa +- tempa and 16#FFFFFFFC#; # force alignment
if tempa = 16#FFOOOOO4#

then dst +- interrupccontrol_reg;
AC.cc +- 2#010#;

else dst +- memory (tempa);
if bad_access

then AC.cc +- 2#000#;
else AC.cc +- 2#010#;

end if;
end if;

STANDARD

11-124

inter

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

lda 16#FF000010#, g8
synld g8, g9 # g9 ~ word from lAC

message buffer;
AC.cc = 2#010#

synld 615 REG

synmov

11-125

Isynldl

INSTRUCTION SET REFERENCE

I synmov, synmovl, synmovq I

Mnemonic:

Format:

synmov
synmovi
synmovq

synmov*

Synchronous Move
Synchronous Move Long
Synchronous Move Quad

dst,
reg
addr

src
reg
addr

Description: Copies 1 (synmov), 2 (synmovl), or 4 (synmovq) words from the memory
location specified with src to the memory location specified with dst and
waits for the completion of all memory operations, including those initiated
prior to this instruction. When the move has been successfully completed,
the condition code is set to 0102,

The src and dst operands specify the address of the first (lowest address)
word. These addresses should be for word boundaries (synmov), double
word boundaries (synmovl), or quad-word boundaries (synmovq). If not,
the processor forces alignment to these boundaries.

The primary function of these instructions is for sending lAC messages.
However, this instruction is not restricted to lAC applications. It may be
used when it is important to guarantee the completion of the move operation
before proceeding or to avoid a Bad Access Fault.

The setting of the condition code indicates whether or not the move was
completed successfully. If the move operation results in a bad access con
dition (e.g., sending an lAC message to a non-existent agent on the AP-bus),
the condition code is set to 0002, but the Bad Access Fault is not raised.

Address FFOOOOlO16 is used to send an lAC message to the processor upon
which the instruction is executed. Refer to Chapter 11 for further infor
mation about sending internal lAC messages.

11-126

Action:

INSTRUCTION SET REFERENCE

I synmov, synmovl, synmovq I

synmov:

if PRCB.addressing_mode = physical
then tempa f-- dst;
dst is used as a physical address
else tempa f-- physical_address (dst);
dst translated into a physical address

end if;
tempa f-- tempa and 16#FFFFFFFC#;
force alignment
if tempa = 16#FFOOOO04#

then interrupccontrol_reg f-- memory (src)
AC.cc f-- 2#010#;

else temp f-- memory (src);
memory (tempa) f-- temp;
write operations into memory (tempa) are
interpreted as noncacheable
wait for completion;
if bad_access

then AC.cc f-- 2#000#;
else AC.cc f-- 2#010#;

end if;
end if;

synmovl:

if PRCB.addressing_mode = physical
then tempa f-- dst;
dst is used as a physical address
else tempa f-- physicaCaddress (dst);
dst is translated into as a physical address

end if;
tempa f-- tempa and 16#FFFFFFF8#; # force alignment
temp f-- memory (src);
memory (tempa) f-- temp;
write operations into memory (tempa) are interpreted
as noncacheable
wait for completion;
if bad_access

then AC.cc f-- 2#000#;
else AC.cc f-- 2#010#;

end if;

11-127

INSTRUCTION SET REFERENCE

I synmov, synmovl, synmovg I

Faults:

Example:

Opcode:

synmovq:

if PRCB.addressing_mode = physical
then tempa ~ dst;
dst is used as a physical address
else tempa ~ physical_address (dst);
dst is translated into as a physical address

end if;
tempa ~ tempa and 16#FFFFFFFO#; # force alignment
temp ~ memory (src);
iftempa = 16#FFOOooIO#

then AC.cc ~ 2#010#;
use temp as a received iac message;
else memory (tempa) ~ temp;
write operations into memory (tempa) are interpreted
as noncacheable

wait for completion;
if bad_access

then AC.cc ~ 2#000#;
else AC.cc ~ 2#010#;

end if;
end if;

STANDARD

Ida 16#FFOOOOIO#, g7
g7 ~ 16#FFOOOOIO
synmovq g7, g8
g7 ~ lAC message from g8

synmov 600
synmovi 601
synmovq 602

REG
REG
REG

See Also: synld

11-128

inter INSTRUCTION SET REFERENCE

I tanr, tanrll

Mnemonics: tanr Tangent Real
Tangent Long Real tanrl

Format: tanr* src, .
freg/flit

dst
freg

Description: Calculates the tangent of src and stores the result in dst. The src value is an
angle given in radians. The resulting dst value is in the range of -00 to +00,
inclusive; a result of -00 or +00 will result in a floating invalid-operation
exception being signaled.

For the tanrl instruction, if the src or dst operand references a global or local
register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., gO, g2, g4).

The following table shows the results obtained when taking the tangent of
various classes of numbers, assuming that neither overflow nor underflow
occurs.

Src Dst

-00 *
-F -F to +F
-0 -0

+0 +0
+F -F to +F

+CD *
NaN NaN

Notes:
F Means finite-real number
• Indicates floating invalid-operation exception

If the source operand is a finite value, the result will be finite, unless the src
operand is in a floating-point register and the dst operand is not.

In the trigonmetic instructions, the 80960KB uses a value for 1t with a 66-bit
mantissa which is 2 bits more than are available in the extended-real format.
The section in Chapter 12 titled "Pi" gives this 1t value, along with some
suggestions for representing this value in a program.

11-129

inter INSTRUCTION SET REFERENCE ",,'

hanr, tanrll

Action:

Faults:

Example:

Opcode:

See Also:

dst f- tangent (src);

STANDARD

Floating Reserved Encoding

Refer to the discussion of faults at the
beginning of this chapter. .

One or more operands is an unnormal
ized (including denormalized) value and
the normalizing~mode bit in the arith
metic controls is set.

The following floating-point exceptions can be raised~ Whether or not an
exception re.sults in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Overflow

Floating Underflow

Floating Invalid Operation

Floating Inexact

Result is too large for destination format.

Result is too small for destination format.

The src operand is 00. .. .
One or more operands are an SNaN
value.

Result cannot be represented exactly in
destination format.

tanrl g4, fpO # tangent of value in g4,g5 is
stored in fpO

tanr
tanrl

cosr, sinr

68E
69E

. " ~

REG
REG

11-130

Mnemonic:

Format:

teste
testne
testl
testle
testg
testge
testo
testno

test*

INSTRUCTION SET REFERENCE

Test For Equal
Test For Not Equal
Test For Less
Test For Less or Equal
Test For Greater
Test For Greater or Equal
Test For Ordered
Test For Unordered

dst
reg

TEST

Description: Stores a true (1) in dst if the logical AND of the condition code and the
mask-part of the opcode is not zero. Otherwise, the instruction stores a false
(0) in dst.

The following table shows the condition-code mask for each instruction:

Instruction Mask Condition

testno 000 Unordered

testg 001 Greater

teste 010 Equal

testge 011 Greater or equal

testl 100 Less

testne 101 Not equal ..

testle 110 Less or equal

testo 111 Ordered

For the testno instruction (Unordered), a true is stored if the condition code
is 2#000#; otherwise a false is stored.

11-131

inter

TEST

Action:

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

For All Instructions Except testno:

if (mask and AC.cc) "" 2#000#

end if;

testno:

then dst ~ 1; # dst set for true
else dst ~ 0; # dst set for false

if AC.cc = 2#000#

end if;

then dst ~ 1; # dst set for true
else dst ~ 0; # dst set for false

STANDARD

assume AC.cc = 2#100#
testl g9 # g9 ~ 16#00000001#

teste 22 COBR
testne 25 COBR
testl 24 COBR
testle 26 COBR
testg 21 COBR
testge 23 COBR
testo 27 COBR
testno 20 COBR

cmpi, cmpdeci, cmpinci

11-132

inter INSTRUCTION SET REFERENCE

xnor, xor

Mnemonic: xnor Exclusive Nor
xor Exclusive Or

Format: xnor src1, src2, dst
reg/lit reg/lit reg

xor src1, src2, dst
reg/lit reg/lit reg

Description: Performs a bitwise XNOR (xnor instruction) or XOR (xor instruction)
operation on the src2 and src1 values and stores the result in dst.

Action:

Faults:

Example:

Opcode:

See Also:

xnor: dst ~ not (src2 or src1) or
(src2 and src1);

xor: dst ~ (src2 or src1) and
not (src2 and src1);

STANDARD

xnor r3, r9, r12
xor gl, g7, g4

xnor
xor

589
586

r12 ~ r9 XNOR r3
g4 ~ g7 XOR gl)

REG
REG

and, andnot, nand, nor, not, notand, notor, or, ornot

11-133

Floating-Point Operation 12

CHAPTER 12
FLOATING-POINT OPERATION

This chapter describes the floating-point processing capabilities of the 80960KB processor.
The subjects discussed include the real number data types, the execution environment for
floating-point operations, the floating-point instructions, and fault and exception handling.

INTRODUCING THE 80960KB FLOATING-POINT ARCHITECTURE

The floating-point architecture used in the 80960KB processor is designed to allow a con
venient implementation of the IEEE Standard 754-1985 for Binary Floating-Point Arithmetic.
This hardware architecture, along with a small amount of software support, conforms to the
IEEE standard and provides support for the following data structures and operations:

• Real (32-bit), long real (64-bit), and extended real (80-bit) floating-point number formats.

• Add, subtract, multiply, divide, square root, remainder, and compare operations

• Conversion between integer and floating-point formats

• Conversion between different floating-point formats

• Handling of floating-point exceptions, including non-numbers (NaNs)

The software to support the 80960KB floating-point architecture is needed primarily to handle
conversions between real numbers and decimal strings.

In addition, the 80960KB floating-point architecture supports several functions that go beyond
the IEEE standard. These functions fall into two categories:

• functions recommended in the appendix to the IEEE standard, such as copy sign and
classify, and

• commonly used transcendental functions, including trigonometric, logarithmic, and ex
ponential functions.

REAL NUMBERS AND FLOATING-POINT FORMAT

This section provides an introduction to real numbers and how they are represented in floating
point format. Readers who are already familiar with numeric processing techniques and the
IEEE standard may wish to skip this section.

Real Number System

As shown at the top of Figure 12-1, the real-number system comprises the continuum of real
numbers from minus infinity (-00) to plus infinity (+00).

12-1

intel" FLOATING-POINT OPERATION

BINA~Y REJ);L NUMBER SYSTEM

·100 ~o ~ 0 10 100

--~------~I----+-~~---+--------+I---~-

~.

SUBSET OF BINARY REAL·NUMBERS THAT CAN BE REPRESENTED WITH
IEEE SINGLE·PRECISION (32·BIT) FLOATING·POINT FORMAT

·100 ·10·1 0 10

I· 1·········I··· .. · .. +·····+·····.~·I·
"f 'l >,~ e Y,

10.0000000000000000000000

I NUMBERS WITHIN THIS RANGE
CANNOT BE REPRESENTED

Figure 12-1: Binary Number System

100

. I

Because the size and number of registers that any computer can have is limited, only a subset
of the real-number continuum can be used in real-number calculations. As shown at the
bottom of Figure 12-1, the subset of real numbers that a particular processor supports
represents an approximation of the real number system. The range and precision of this
real-number subset is determined by the format that the processor uses to represent real num
bers.

Floating-Point Format

To increase the speed and efficiency of real number computations, computers or numeric
processors typically represent real numbers in a binary floating-point format. In this format, a
real number has three parts: a sign, a significand, and an exponent. Figure 12-2 shows the
binary floating-point format that the processor uses. This format conforms to the IEEE stan
dard.

The sign is a binary value that indicates whether the number is positive (0) or negative (1).
The significand has two parts: a one-bit bin~y integer (also referred to as the j-bit) and a
binary fraction. The j-bit is often not represented, but instead is an implied value. The
exponent is a binary integer that represents the base-2 power that the significand is raised to.

12·2

FLOATING-POINT OPERATION

EXPONENT

u I FRACTION

INTEGER OR J-BIT J +-'--------------'

Figure 12-2: Binary Floating-Point Format

Table 12-1 shows how the real number 201.187 (in ordinary decimal format) is stored in
floating-point format. The table lists a progression of real number notations that leads to the
format that th~ 80960KB processor uses. In this format, the binary real number is normalized
and the exponent is biased.

Table 12-1: Real Number Notation

NOTATION VALUE

ORDINARY DECIMAL 201.187

SCIENTIFIC DECIMAL 2.01187El02

SCIENTIFIC BINARY 1.1001001001011111E2111

SCIENTIFIC BINARY 1.1001001001011111E210000110
(BIASED EXPONEND

32-BIT SIGN BIASED EXPONENT SIGNIFICAND
FLOATING-POINT
FORMAT 0 10000110 .1001001001011111
(NORMALIZED) 1. (IMPLIED)

Normalized Numbers

In most cases, the processor represents real numbers in normalized form. Thi$, means that
except for zero, the significand is always made up of an integer of 1 and a fraction as follows:

l.fff...ff

For values less than 1, leading zeros are eliminated. (For each leading zero eliminated, the
exponent is decremented by one.)

12-3

FLOATING·POINT OPERATION

Representing numbers in normalized form maximizes the number of significant digits that can
be accommodated in a significand of a given width. To summarize, a normalized real number
consists of a normalized significand that represents a real number between 1 and 2 and an
exponent that gives the number's binary point.

Biased Exponent

The processor represents exponents in a biased form. This means that a constant is added to
the actual exponent so that the biased exponent is always a positive number. The value of the
biasing constant depends on the number of bits available for representing exponents in the
floating-point format being used. The biasing constant is chosen so that the smallest normal
ized number can be reciprocated without overflow.

Real Number and Non-Number Encodings

The real numbers that are encoded in the floating-point format described above are' generally
divided into three classes: ± 0, ± nonzero-finite numbers, and ± 00. Encodings for non
numbers (NaNs) are also defined. The term NaN stands for "Not a Number."

Figure 12-3 shows how the encodings for these numbers and non-numbers fit into the real
number continuum. The encodings shown here are for the IEEE single-precision (32-bit)
format, where the term "s" indicates the sign bit, "e" the biased exponent, and "f" the fraction.
(The exponent values are given in decimal.) .

Signed Zeros

Zero can be represented as a +0 or a -0 depending on the sign bit. Both encodings are equal in
value. The sign of a zero result depends on the operation being performed and the rounding
mode being used. Signed zeros have been provided to aid in implementing interval arithmetic.
The sign of a zero may indicate the direction from which underflow occurred, or it may
indicate the sign of an 00 that has been reciprocated.

Signed, Nonzero, Finite Values

The class of signed, nonzero, finite values is divided into two groups: normalized and denor
malized. The normalized finite numbers comprise all the nonzero finite values that can be
encoded.in a normalized real number format from zero to 00. In the 32-bit form shown in
Figure 12-3, this group of numbers includes all the numbers with biased exponents ranging
from 1 to 25410 (unbiased, the exponent range is from -12610 to + 12710).

Denormalized Numbers

When real numbers become very close to zero, the normalized-number format can no longer be
used to represent the numbers. This is because the range of the exponent is not large enough to
compensate for shifting the binary point to the right to eliminate leading zeros.

12-4

inter FLOATING-POINT OPERATION

-DENORMALIZED FINITE + DENORMALIZED FINITE

-NORMALIZED FINITE" -0 + 0 / + NORMALIZED FINITE
I" I I I I

_00

I I
+00

I I

REAL NUMBER AND NaN ENCODINGS FOR 32-BIT FLOATING-POINT FORMAT

S E F S E F

I' 1
0 0 1 -0 +0

1 0 1
0 0

I' I
0 NONZERO I -DENORMALIZED + DENORMALIZED

10 I
0 NONZERO FINITE FINITE

I' 11 ... 254 1 ANVVALUE I
-NORMALIZED + NORMALIZED

1 0 11 ... 254 1 ANVVALUE FINITE FINITE

11 I 255 0 _00 +00
1 0 1

255 0

1 X, I 255 1.0XX' -SNaN +SNaN 1 X' 1 255 1.0XX'

IX'I 255 1.1XX -QNaN +QNaN
I x'i 255 1.1XX

Notes:
1. Sign bit ignored
2. Fractions must be nonzero

Figure 12-3: Real Numbers and NaNs

When the biased exponent is zero, smaller numbers can only be represented by making the
integer bit (and perhaps other leading bits) of the significand zero. The numbers in this range
are called denormalized numbers. The use of leading zeros with denormalized numbers allows
smaller numbers to be represented. However, this denormalization causes a loss of precision
(the number of significant bits in the fraction is reduced by the leading zeros).

When performing normalized floating-point computations, a processor normally operates on
normalized numbers and produces normalized numbers as results. Denormalized numbers
represent an underflow condition.

A denormalized number is computed through a technique called gradual underflow. Table 12-2
gives an example of gradual underflow in the denormalization process. Here the 32-bit format
is being used, so the minimum exponent (unbiased) is -12610, The true result in this example
requires an exponent of -12910 in order to have a normalized number. Since -12910 is beyond
the allowable exponent range, the result is denormalized. by inserting leading zeros until the
minimum exponent of -12610 is reached.

12-5

inter FLOATING· POINT OPERATION

Table 12-2: Denormalization Process

Operation Sign Exponent* Significand

True Result 0 -129 1.01011100 ... 00

Denormalize 0 -128 0.101011100 ... 00

Denormalize 0 -127 0.0101011100 ... 00

Denormalize 0 -126 0.00101011100 ... 00

Denormal Result 0 -126 0.00101011100 ... 00

Note: *Expressed as unbiased, decimal number.

In the extreme case, all the significant bits are shifted out to the right by leading zeros, creating
a zero result.

Signed Infinities

The two infinities, +00 and -00, represent the maximum positive and negative real numbers,
respectively, that can be represented in the floating-point format. Infinity is always represented
by a zero fraction and the maximum biased exponent allowed in the specified format (e.g.,
255 10 for the 32-bit format).

Whereas denormalized numbers represent an underflow condition, the two infinity numbers
represent the result of an overflow condition. Here, the normalized result of a computation has
a biased exponent greater than the largest allowable exponent for the selected result format.

NaNs

Since NaNs are non-numbers, they are not part of the real number line. In Figure 12-3, the
encoding space for NaNs in the 80960KB floating-point formats is shown above the ends of
the real number line. This space includes any value with the maximum allowable biased
exponent and a non-zero fraction. (The sign bit is ignored for NaNs.)

The IEEE standard defines two specific NaN values: a quiet NaN (QNaN) and a signaling
NaN (SNaN). A QNaN is a NaN with the most significant fraction bit set; an SNaN is a NaN
with the most significant fraction bit clear. QNaNs are allowed to propagate thrOl,lgh most
arithmetic operations without signaling an exception. SNaNs signal an invalid-operation ex
ception whenever they appear as operands in arithmetic operations. Exceptions are discussed
later in this chapter in the section titled "Exceptions and Fault Handling."

The section at the end of this chapter titled "Operations on NaNs" provides detailed infor
mation on how the processor handles NaNs.

12-6

inter FLOATING-POINT OPERATION

REAL DATA TYPES

The processor supports three real-number data formats: real, long real, and extended real.
These formats correspond directly to the single-precision, double-precision, and double
extended precision formats in the IEEE standard. Figure 12-4 shows these data formats and
gives the resolution that each provides.

SIGN REAL

B~?S IlexPONENT F;:FMCTION
3130 23 22 '" INTEGER 0

IMPLIED

SIGN LONG REAL

B~~S IIDPONeNTE:;: FRACTION

6362 52 51 "" INTEGER IMPLIED

SIGN EXTENDED REAL

B'~S II· OOIONI!Nt
7978

DATA TYPE
Real
Long Real
Extended Real

IF;:
646362 <:: INTEGER

FRACTION

RANGE
2. 126 to 2127 <-10-45 to -1038)

2_ 1022 to 2 1023 <-10-324 to _10308)

2_16382 to 216383 <-10-4950 to -10 + 4932)

Figure 12-4: Real Number Formats

For the real and long-real formats, only the fraction is given for the significand. The integer is
assumed to be 1 for all numbers except 0 and denormalized finite numbers.

For the extended-real format, the integer is contained in bit 63, and the most-significant
fraction bit is bit 62. Here, the integer is explicitly set to 1 for normalized numbers, infinities,
and NaNs, and to 0 for zero and denormalized numbers.

Table 12-3 shows the encodings for all the classes of real numbers (i.e., zero, denormalized
finite, normalized finite, and 00) and NaNs, for each of the three real data-types.

EXECUTION ENVIRONMENT FOR FLOATING-POINT OPERATIONS

An important feature of the 80960KB processor is that the floating-point processing
capabilities have been integrated into the execution environment of the processor. Operations
on floating-point numbers are carried out using the same registers that are used for ordinals and
integers. In addition, four floating-point registers have been provided for extended-precision
floating-point arithmetic.

The following sections describe how floating-point operations are handled in the processor's
execution environment.

12-7

inter FLOATING·POINT OPERATION

Table 12-3: Real Numbers and NaN Encodings

CLASS SIGN BIASED EXPONENT

+co 0 11...11

0 11 ... 10

+ NORMALS · ·
· ·

POSITIVE 0 00 ... 01

0 00 ... 00

+OENORMALS · ·
· ·
0 00 ... 00

+ ZERO 0 00 ... 00

·ZERO 1 00 ... 00

1 00 ... 00

-OENORMALS · ·
· ·

NEGATIVE 1 00 ... 00

1 00 ... 01

· ·
·NORMALS · ·

· ·
1 11...10

.co 1 11 ... 11

SNaN X 11...11
NaN

QNaN X 11 ... 11

REAL:

LONG REAL:

EXTENDED REAL:
~ 8BITS~

... 11 BITS

15 BITS

Notes:

1.lnteger is implied for real and long real formats and is not stored.

2.Fraction for SNaN must be non-zero.

Registers

INTEGER1

1

1

·
·
1

0

·
·
0

0

0

0

0

1

·
·
·
1

1

1

1

FRACTION

00 ... 00

11 ... 11

00 ... 00

11 ... 11

·
·

00 .. 01

00 .. 00

00 .. 00

00 ... 01

·
·

11 ... 11

00 ... 00

11...11

00 ... 00

OX ... XX2

1X ... XX

~ 23BITS~
__ 52 BITS

-- 63 BITS

All of the registers in the processor's execution environment, (i.e., global, local, and floating
point) can be used for floating-point operations. When using global or local registers, real
values (i.e., 32 bits) are contained in one register; long-real values (i.e., 64 bits) are contained
in two successive registers; and extended-real values (Le., 80 bits) are contained in three
successive registers.

12-8

FLOATING-POINT OPERATION

Figure 12-5 shows how the three forms of the real data type are encoded when stored in global
and local registers. Note that long-real values must be aligned on even-numbered register
boundaries (e.g., gO, g2, ...). Extended-real values must be aligned on register boundaries that
are an integral multiple of four (e.g., gO, g4, ...).

31 2322
REAL

REGISTER
DISPLACEMENT

I I EXPONENT I
SIGN

~~ ____________ ~ _______________ F_R_A_G_IO_N ____________________ ~I n

LONG REAL
31 2019

FRACTION (LEAST SIGNIFICANT BITS) n'

J EXPONENT I FRACTION (MOST SIGNIFICANT BITS) n + 1

SIGN

EXTENDED REAL

FRAGION (LEAST SIGNIFICANT BITS) n'

n + 1

EXPONENT n+2

INTEGER SIGN

Notes:
1. Register number must be even.
2. Register number must be an integral mUltiple of four.

_ RESERVED (INITIALIZE TO 0)

Figure 12-5: Storage of Real Values in Global and Local Registers

Real values in the floating-point registers are always in the extended-real format. When a real
or long-real value is moved from global or local registers to a floating-point register, the
processor automatically reformats it for the extended-real format.

Loading and Storing Floating-Point Values

Floating-point values are loaded from memory into global or local registers using the load (ld),
load long (Idl), and load triple (Idt) instructions. Likewise, floating-point values in global or
local registers are stored in memory using the store (st), store long (stl), and store triple (stt)
instructions.

Loading a floating-point value into a floating-point register requires two steps (two
instructions). First, a floating-point value must be loaded from memory into one or more
global or local registers. Then, the value must be moved to the floating-point register using a
move real (movr), move long-real (movrl), or move extended-real (movre) instruction.

12-9

inter FLOATING·POINT OPERATION

A similar two-step procedure is required to store .avalue from a floating-point register into
memory. The value must first be moved into one or more global or local registers (using a
movr, movrl;or movre instruction), then stored in memory.

This two-step method for moving values from memory into floating-point registers and vice
versa may seem a little cumbersome; however, in practice it generally is not. Floatirig-point
registers are most often used to store and accumulate intermediate results of computations.
The contents of these registers are not normally stored in memory.

For example, the following instruction

divr r3, r4, fp2

causes the real value in local register r4 to bedivide4 by the value in r3, with the extended-real
result stored in floating-point register fp2. Here, a move' operation from the local registers' to
the floating-point registers is not required, since itis implicit in the divide operation.

Moving Floating-Ppint Values

Either the move instructions (mov, movl, or movt) or the move-real instructions (movr,
movrl, or movre) can be used to move real values among global and local registers. The move
real instructions are generally used to convert a real value from one format to another or for
moving real values between the global or local registers and floating-point registers. The move
instructions are used to move real values while keeping them in the same format.

When using the movr and movrl instructions to move floating-point nu~bers between the
global or local registers and the floating-point registers, the processor automatically converts
values from real and long-real format, respectively, into the extended-real format and vice
versa.

For example, the following instruction

movr g3, fpl

causes a 32-bit, real value in global register g3 to be converted to 80-bit, extended-real format
and placed in floating-point register fpl.

Going the opposite direction, the instruction

movrl fpO, r4

causes an extended-real value in floating-point registe)" fpO to be converted· to 64-bit, long-real
format and placed in local registers r4 and r5.

The movre instruction moves 80-bit, extended-real values between registers, without fotmat
conversion. When this instruction is used to move a value from three global or local registers
to a floating-point register, the processor extracts the 80-bit value from the three word
extended-real format. When moving a value from a floating-point register to global or local
registers, the processor inserts the 80-bit value into the three registers in the three-word format.

12-10

inter FLOATING·POINT OPERATION

Arithmetic Controls

The arithmetic controls are used extensively to control the arithmetic and faulting properties of
floating-point operations. Table 12-4 shows the bits in the arithmetic controls that are used in
floating-point operations.

Table 12-4: Arithmetic Controls Used in Floating-Point Operations

Arithmetic Function
Control
Bits

0-2 Condition code

3-6 Arithmetic status field

8 Integer overflow flag

12 Integer overflow mask

16 Floating overflow flag

17 Floating underflow flag

18 Floating invalid-operation flag

19 Floating zero-divide flag

20 Floating inexact flag

24 Floating overflow mask

25 Floating underflow mask

26 Floating invalid-operation mask

27 Floating zero-divide mask

28 Floating inexact mask

29 Normalizing mode flag

30 - 31 Rounding control

The condition code flags are used to indicate the results of comparisons of real numbers, just as
they are for integers and ordinals.

The arithmetic status field is used to record results from the classify real (classr and classrl)
and remainder real (remr and remrl) instructions. These instructions are discussed later in this
chapter.

The floating-point flags indicate exceptions to floating-point operations. Here, the term excep
tion refers to a potentially undesirable operation (such as dividing a number by zero) or an
undesirable result (such as underflow). The flags provide a means of recording the occurrence
of specific exceptions.

The floating-point masks provide a method of inhibiting the processor from invoking a fault
handler when an exception is detected.

12-11

inter FLOATING-POINT OPERATION

Use of the floating-point flag and mask bits are discussed later in this chapter in the section
titled "Exceptions and Fault Handling."

Normalizing Mode

The normalizing-mode flag specifies whether the processor operates in normalizing mode (set)
or not (clear).

Normalizing mode is the most common mode of operation. Here, the processor operates on
valid floating-point operands, regardless of whether they are normalized or denormalized
values.

When the processor is not operating in normalizing mode, it signals a reserved-encoding
exception whenever it encounters a denormalized floating-point value as a source operand. In
either mode, denormalized numbers are be produced if the underflow exception is masked.

There are no flag or mask bits in the arithmetic controls for this exception. When a reserved
encoding exception is detected, the processor generates a floating reserved-encoding fault and
leaves the destination operand unchanged (i.e., no result is stored).

The unnormalized mode of operation is provided to allow unnormalized arithmetic to be
simulated with software. Here, a fault handler routine can be llsed to perform unnormalized
arithmetic whenever a reserved-encoding exception is signaled.

Rounding Control

Often the infinitely precise result of an arithmetic operation cannot be encoded exactly in the
format of the destination operand. For example, the following value has a 24-bit fraction. The
least-significant bit of this fraction (the underlined bit) cannot be encoded exactly in the real
(32-bit) format:

1.0001000010000011 1001 011.!E2 101

The processor must then round the result to one of the following two values:

1.0001 0000 10000011 1001 011E2 101

1.0001000010000011 1001 l00E2 101

A rounded result is called an inexact result. When an inexact result is produced, the floating
point inexact flag bit in the arithmetic controls is set.

The processor rounds results according to the destination format (real, long real, or extended
real) and the setting of the rounding-mode flags of the arithmetic controls. Four types of
rounding are allowed, as described in Table 12-5.

12-12

inter FLOATING-POINT OPERATION

Table 12-5: Rounding Methods

Rounding Mode Description

Round up (toward +00) Rounded result is close to but no
less than the infinitely precise
result

Round down (toward -00) Rounded result is close to but no
greater than the infinitely precise
result

Round toward zero (Truncate) Rounded result is close to but no
greater in absolute value than the
infinitely precise result

Round to nearest (even) Rounded result is close to the in-
finitely precise result. If two
values are equally close, the result
is the even value (i.e., the one with
the least-significant bit of zero).

When the infinitely precise result is between the largest positive finite value allowed in a
particular format and +00, the processor rounds the result as shown in Table 12-6.

Table 12-6: Rounding of Positive Numbers

Rounding Mode Description

Round up (toward +00) +00

Round down (toward -00) Maximum, positive finite value

Round toward zero (Truncate) Maximum, positive finite value

Round to nearest (even) +00

When the infinitely precise result is between the largest negative finite value allowed in a
particular format and -00, the processor rounds the result as shown in Table 12-7.

Table 12-7: Rounding of Negative Numbers

Rounding Mode Description

Round up (toward +00) Maximum, negative finite value

Round down (toward -00) -00

Round toward zero (Truncate) Maximum, negative finite value

Round to nearest (even) _00

The rounding modes have no effect on comparison operations, operations that produce exact
results, or operations that produce NaN results.

12-13

inter FLOATING·POINT OPERATION

The floating-point instructions allow a result to be stored in a shorter destination than the
source operands. For example, the instruction

addr fpI, fp2, g5

produces a real (32-bit) result from two extended-real (80-bit) source operands. In all such
operations, only one rounding error occurs: the error that occurs when rounding the infinitely
precise result to the size of the destination format.

Technically, an operation which computes a narrow result from wide operands is in violation
of the IEEE standard. However, systems that are designed to conform to the IEEE standard do
not need to use this capability of the processor.

INSTRUCTION FORMAT

The instruction format for floating-point instructions is the same as for the other processor
instructions. When programming in assembly language, an assembly language statement
begins with an instruction mnemonic and is followed by from one to three operands. For
example, the multiply-real instruction muir might be used as follows:

mulr r8, r9, fp3

Here, real operands in local registers r8 and r9 are mUltiplied together and the result is stored in
floating-point register fp3.

From the machine level point of view, all floating-point instructions use the REG format.
Refer to Appendix B for details on the REG format instructions.

INSTRUCTION OPERANDS

Operands for floating-point instructions can be either floating-point literals or registers. The
processor recognizes two encodings for floating-point literals: +0.0 and + 1.0.

All of the registers in the processor's execution environment (global registers gO through g15,
local registers rO through rI5, and floating-point registers fpO through fp3) can be used as
operands in floating-point instructions. (Of course, registers g15, rO, rI, and r2 would
generally not be used for storing floating-point numbers, since they are reserved for stack
management functions.)

When global or local registers are specified as operands, the instruction mnemonic (or opcode)
determines how the values in these registers are interpreted. For example, there are two
floating-point divide instructions: divide real (divr) and divide long real (divrl). When using
the divr instruction, the processor assumes that global- or local-register operands contain real
(32-bit) values. When using the divrl instruction, global- or local-register operands are as
sumed to contain long-real (64-bit) values.

With either instruction, floating-point registers (containing extended-real values) can also be
used as operands.

12-14

inter FLOATING·POINT OPERATION

Using floating-point registers as operands allows mixed format or mixed precision arithmetic
to be performed with either real and extended-real values or long-real and extended-real
values. Mixed-format operations with real and long-real values are not supported.

SUMMARY OF FLOATING·POINT INSTRUCTIONS

The processor's floating-point instructions consist of all instructions for which as least one
operand is a real data type.

These instructions can be divided into the following groups:

• Data Movement

• Data Type Conversion

• Basic Arithmetic

• Comparison and Classification

• Trigonometric

• Logarithmic and Exponential

The following sections give a brief overview of the instructions in each group. Detailed
descriptions of the operations of these instructions are given in Chapter 11.

Data Movement

As has been described earlier in this chapter, the non-floating-point load and store instructions
are used to move real values between registers and memory. Once in registers, the non
floating-point move instructions (mov, movl, and movt) are used to move real values between
global and local registers without format conversion; whereas, the floating-point move instruc
tions (movr, movrl, and movre) are used to move real values between global and local
registers and floating-point registers.

The copy-sign-real extended (cpysre) and copy-reverse-sign real-extended (cpyrsre) instruc
tions provide a means of copying the sign of one extended-real value to another, if one of the
values is in a floating-point register. This operation is best performed on real and long-real
values using the bit instructions chkbit and alterbit.

Data Type Conversion

Two types of data type conversions are provided: conversion from one floating-point format to
another (e.g., real to extended real) and conversion between integer and real.

Conversion between floating-point formats is handled in either of two ways: explicitly by
move instructions or implicitly by using the floating-point registers as operands in instructions.

As described earlier in this chapter, the movr instruction implicitly converts values from real to
extended real, and vice versa, when moving values between global or local registers and
floating-point registers. Likewise, the movrl instruction implicitly converts values from long
real to extended real, and vice versa.

12-15

inter FLOATING·POINT OPERATION

Conversion between real and long-real fonnats requires the use of both instructions. For
example, the following two instructions convert a real value in global register g6 to a long-real
value contained in g6 and g7, using a floating-point register for intennediate storage of the
value:

movr g6, fpl
movrl fpl, g6

Implicit fonnat conversion is also provided through the arithmetic, trigonometric, logarithmic,
and exponential instructions. For example, the instruction

addr r4, r5, fp2

adds two real values together and produces an extended-real result.

The following six instructions allow conversion between integers and reals:

cvtir convert integer to real
cvtilr convert long integer to long real
cvtri convert real to integer
cvtril convert real to long integer
cvtzri convert truncated real to integer
cvtzril convert truncated real to long integer

Both the cvtir and cvtilr instructions can be used to convert an integer to an extended-real
value by specifying that the result be placed in a floating-point register.

The convert real-to-integer instructions round off the real value to the nearest integer or
long-integer value. For the cvtri and cvtril instructions, .the rounding mode detennines the
direction the real number is rounded. For the convert truncated real-to-integer instructions
(cvtzri and cvtzril), rounding is always toward zero. The latter two instructions are provided
to allow efficient implementation of FORTRAN-like truncation semantics.

Extended-real values can be converted to integers by using a floating-point register as a source
operand in either of the convert real-to-integer instructions.

Converting long-real values to integers requires two instructions, as in the following example:

movrl g6, fp3
cvtzri fp3, g6

The first instruction moves the long-real value to a floating-point register. The second instruc
tion converts the extended-real value to an integer.

12-16

inter FLOATING·POINT OPERATION

Basic Arithmetic

The following instructions perform the basic arithmetic operations specified in the IEEE stan
dard:

addr
addrl
subr
subrl
muir
mulrl
divr
divrl
remr
remrl
roundr
roundrl
sqrtr
sqrtrl

add real
add long real
subtract real
subtract long real
multiply real
multiply long real
divide real
divide long real
remainder real
remainder long real
round real
round long real
square root real
square root long real

The round instructions round the floating-point operand to its nearest integral (i.e., integer)
value, based on the current rounding mode. These instructions perform a function similar to
the convert real-to-integer instructions except that the result is in floating-point format.

Comparison, Branching, and Classification

Comparison of floating-point values differs from comparison of integers or ordinals because
with floating-point values there are four, rather than the usual three, mutually exclusive
relationships: less than, equal to, greater than, and unordered.

The unordered relationship is true when at least one of the two values being compared is a
NaN. This additional relationship is required because, by definition, NaNs are not numbers, so
they cannot have greater than, equal, or less than relationships with other floating-point values.

The following instructions are provided for comparing floating-point values:

cmpr compare real
cmprl compare long real
cmpor compare ordered real
cmporl compare ordered long real

All of these instructions set the condition code flags in the arithmetic controls to indicate the
results of the comparison. With the compare instructions (cmpr and cmprl), the condition
code flags are set to 0002 for the unordered condition. With the compare ordered instructions
(cmpor and cmporl), the condition code flags are set to 0002 and an invalid-operation excep
tion is signaled for the unordered condition.

Two branch instructions (bo and bno) allow conditional branching to be performed on an
ordered or unordered condition, respectively. With these instructions, the processor checks the
condition code flags for unordered (0002) or ordered (111 2) and branches accordingly.

12-17

inter FLOATING·POINT OPERATION

The classify-real instructions (classr and classrl) provide a means of determining the class of a
floating-point value (i.e., zero, denormalized finite, normalized finite, 00, SNaN, or QNaN).
The result of this operation is stored in the arithmetic status field of the arithmetic controls.

Trigonometric

The following instructions provide four common trigonometric functions:

sin
sinrl
cosr
cosrl
tanr
tanrl
atanr
atanrl

sine real
sine long real
cosine real
cosine long real
tangent real
tangent long real
arctangent real
arctangent long real

The arctangent instructions facilitate conversion from rectangular to polar coordinates.

Pi

The processor uses the following value for 1t in its computations:

1t = O.f * 2e

where:

f = C90FDAA2 2168C234 C16

e = 2 if significand is OJ

(The spaces in the fraction above indicate 32-bit boundaries.)

This value has a 66-bit mantissa, which is 2 bits more than is allowed in the significand of an
extended-real value. (Since 66 bits is not an even number of hex digits, two additional zeros
have been added to the value so that it can be represented in a hexadecimal format. The
least-significant hex digit (C16) is thus 11002, where the two least significant bits :r:epresent bits
67 and 68 of the mantissa.)

If the results of computations that explicitly use 1t are to be used in the sine, cosine, or tangent
instructions, the full 66-bit fraction for 1t should be used. This insures that the results are
consistent with the argument reduction algorithms that these instructions use. Using a rounded
version of 1t can cause inaccuracies in result values, which if propagated througb several
calculations, might result in meaningless results.

12-18

FLOATING·POINT OPERATION

A common method of representing the full 66-bit fraction of 1t is to separate the value into two
numbers. For example, the following two long-real values added together give the value for 1t
shown above with the full 66-bit fraction:

1t = high1t + 10w1t

where:

high1t = 400921FB 5440000016

10w1t = 3DDOB461 lA60000016

Here high1t gives the most significant 33 bits of 1t and low1t gives the least significant 33 bits.
Similar versions of 1t can also be written in the extended-real format.

When using this two-part 1t value in an algorithm, parallel computations should be performed
on each part, with the results kept separate. When all the computations are complete, the two
results can be added together to form the final result.

Logarithmic, Exponential, and Scale

The following instructions provide three different logarithmic functions, an exponential func
tion, and a scale function:

logbnr
logbnrl
logr
logrl
logepr
logeprl
expr
exprl
scaler
scalerl

log binary real
log binary long real
log real
log long real
log epsilon real
log epsilon long real
exponent real
exponent long real
scale real
scale ,long real

These instructions are described in detail in Chapter 11. The following is a brief description of
their functions.

The log binary instructions compute the IEEE recommended function 10gb (X). The result is an
integral value that is the binary log of X.

The log instructions compute the function Y * log (X), where the log of X is the base-2
logarithm.

The log epsilon instructions compute the function Y * log (X + 1), where the log of X + 1 is a
base-2 logarithm.

12-19

inter FLOATING·POINT OPERATION

The exponent instructions compute the value 2x - 1.

The scale instructions perform a multiplication of a floating-point value by a power of 2.

Arithmetic Versus Nonarithmetic Instructions

The floating-point instructions can be divided into two groups: arithmetic and nonarithmetic.
Arithmetic instructions are those that are sensitive to real values, meaning that they distinguish
among NaN, 00, normalized finite, denormalized finite, and zero values.

All but five of the floating-point instructions are arithmetic. The five nonarithmetic instruc
tions are move-real extended (movre), copy-sign real extended (cpysre), copy-reversed-sign
real extended (cpyrsre), and classify real (cIassr and cIassrl). These nonarithmetic instruc
tions are insensitive to real values and cannot generate floating-point exceptions or faults.

This distinction between arithmetic and nonarithmetic instructions is important because
floating-point exceptions and faults can be signaled only during the execution of arithmetic
instructions.

OPERATIONS ON NANS

As was described earlier in this chapter, the processor supports two types of NaNs: QNaN and
SNaN. An SNaN is any NaN value with its most-significant fraction bit set to 0 and at least
one other fraction bit set to 1. (If all the fraction bits are set to 0, the value is an 00.) A QNaN
is any NaN value with the most-significant fraction bit set to 1. The sign bit of a NaN is not
interpreted.

In general, when a QNaN is used in one or more arithmetic floating-point instructions, it is
allowed to propagate through a computation. An SNaN on the other hand causes a floating
invalid-operation exception to be signaled.

The floating invalid-operation exception has a flag and a mask bit associated with it in the
arithmetic controls. The mask bit determines how the processor handles an SNaN value. If the
floating invalid-operation mask bit is set, the SNaN is converted to a QNaN by setting the most
significant fraction bit of the value to a O. The result is then stored in the destination and the
floating invalid-operation flag is set. If the invalid operation mask is clear, a floating invalid
operation fault is signaled and no result is stored in the destination.

When the result is a QNaN, the format of the result is as shown in Table 12-8, depending on
the form of the source operands.

12·20

inter FLOATING-POINT OPERATION

Table 12-8: Format of QNaN Results

Source Operands QNaNResult

Only one operand is NaN, destina- QNaN version of NaN source
tion is same width

Only one operand is NaN, destina- QNaN version of NaN source, with
tion is longer fraction extended with zeros

Only one operand is NaN, destina- QNaN version of NaN source, with
tion is shorter fraction truncated

Both operands are NaNs QNaN version of source whose
fraction field has greatest mag-
nitude' with fraction extended or
truncated as described above

In some cases, a QNaN result is returned when none of the source operands ljIe NaNs. Here, a
standard QNaN is returned. The significand for the standard QNaN is as follows:

1.1000 ... 00

(For real and long-real destinations, the integer bit will be an implied 1.)

Other than the rules specified above, software is free to use the other bits of a NaN for any
purpose.

EXCEPTIONS AND FAULT HANDLING

Occasionally, a floating-point instruction can result in an exception being signaled. The
processor recognizes six floating-point exceptions:

• Floating Reserved Encoding

• Floating Invalid Operation

• Floating Zero Divide

• Floating Overflow

• Floating Underflow

• Floating Inexact

These exceptions can be divided into two categories:

1. Situations in which one or more source operands are inappropriate for an operation and
would cause an exception to be signaled.

2. Situations in which the result of an operation is exceptional.

The reserved encoding, invalid operation, and division-by-zero exceptions fall in the first
category; the overflow, underflow, and inexact exceptions fall in the second category.

12-21

inter FLOATING-POINT OPERATION

Except for the floating reserved-encoding exception, each of these exceptions has a flag and a
mask bit associated with it in the arithmetic controls. When an exception condition occurs, the
processor performs one of the following operations:

• If the mask bit for the exception is set, the flag for the exception is set and instruction
execution continues, substituting a default value in place of the result.

• If the mask bit for the exception is clear, the flag for the exception is not set and a
floating-point arithmetic fault is raised. The processor then stores diagnostic information
in the fault information area and diverts instruction execution to a fault handler.

Since the floating reserved-encoding exception does not have a flag or mask bit, it always
results in a fault.

Note

The floating-point exception flags are "sticky," which means that the processor does not
implicitly clear them while carrying out floating-point operations. They may be cleared by
software.

Fault Handler

As is described in Chapter 9, when a floating-point fault is signaled, the processor calls a single
fault handler. This fault handler determines how to handle the specific fault SUbtype by
interpreting the floating-point exception flags and the information in the fault record.

Floating Reserved-Encoding Exception

A reserved encoding exception occurs as a result of either of the following two conditions:

• When a reserved encoding is used as an operand in a floating-point instruction, or

• When a denormalized value is used as an operand in a floating-point instruction and the
normalizing-mode bit in the arithmetic controls is clear.

The first condition is rare. It can only occur if a program presents an extended-real value to the
processor that has a zero j-bit (integer part) and a non-zero biased exponent.

The second condition was discussed earlier in this chapter in the section titled "Normalizing
Mode." This condition is also rare, since the vast majority of programs run with the normaliz
ing mode enabled.

There is neither a flag nor a mask bit for this exception. When a reserved-encoding exception
occurs, the processor raises a floating reserved-encoding fault and does not store a result.

12-22

FLOATING-POINT OPERAnON

Floating Invalid-Operation Exception

The invalid-operation exception indicates that one of the source operands is inappropriate for
the type of operation being perfonned. The following conditions cause this exception to be
signaled:

• Any arithmetic operation on an SNaN

• Addition of infinities of unlike sign

• Subtraction of infinities of like sign

• Multiplication of zero by 00

• Division of zero by zero or 00 by 00

• Remainder of x by y, if y is zero or x is 00

• Square root of a negative, nonzero value

• Conversion of a NaN from floating-point fonnat to integer fonnat

• Sine, cosine, or tangent of 00

• y * log (x), if:

x is negative and nonzero,

y is zero and x is 00,

y and x are zero, or

y is 00 and x is 1

• Log epsilon of (y, x), if y is 00 and x is 0

• Compare ordered, if a source operand is a NaN

When a floating invalid-operation exception occurs and its mask is set, the following occurs:

• When the result is a floating-point value, the standard QNaN value is stored in the destina
tion and the floating invalid-operation flag is set. (A discussion of how the processor
handles NaNs was provided earlier in this chapter in the section titled "Operations on
NaNs.")

• When the result is an integer, the maximum negative integer is stored in the destination
and the floating invalid-operation flag is set.

When the mask is clear, no result is stored; the floating invalid-operation flag is not set; and the
floating invalid-operation fault is signaled.

Floating Zero-Divide Exception

The floating zero-divide exception is signaled when an exact non-finite result would be
produced from finite operands. (Note that a different exception, overflow, is signaled when an
infinite result is produced inexactly from finite operands.) The most common example of this
exception is a division operation, where the divisor is zero and the dividend is a nonzero, finite
value.

12-23

------- - ~ -- -----

inter FLOATING·POINT OPERATION

When the floating zero-divide mask is set: a correctly signed 00 is stored in the destination and
the floating zero-divide flag is set. When the mask is clear, no result is stored; the floating
zero-divide flag is not set; and a floating zero-divide fault is signaled.

Floating Overflow Exception

The overflow exception occurs when the infinitely precise result of a floating-point instruction
exceeds the largest allowable finite value for the specified destination format. For example, if
the destination format is real (32 bits), overflow occurs when 'the infinitely precise result falls
outside the range -1.0 * 2126 to 1.0 * 2126 (exclusive), where 126 is the unbiased exponent of
the result.

When the floating overflow mask is set, a rounded result is stored in the destination and the
floating overflow flag is set. The current rounding mode determines the method used to round
the result.

When the mask is clear: no result is stored in the destination and the floating overflow flag is
not set. Instead, the processor stores the result in extended-real format in the fault information
area. The fraction of the extended-real value is rounded to the instruction's destination preci
sion. For example, if the destination operand's format is real (32 bits), the extended-real
fraction is rounded to 23 bits, with the 40 least-significant bits filled with zeros.

If the exponent exceeds the range of the extended-real format (16383 unbiased), then the
exponent is divided by 224576 and a flag (bit 1 of the fault flags byte or override flags byte) is
set in the fault information area to indicate that the exponent has been bias adjusted. After this
fault information is stored, a floating ov~rflow fault is signaled.

When using the scale instructions (scaler or scalerl), massive overflow can occur, where the
infinitely precise result is too large to be represented, even with a bias adjusted exponent.
Here, a properly signed 00 is stored in the fault record.

The floating overflow exception cannot occur on a conversion from floating-point format to
integer format (alth(;mgh an integer overflow exception can occur).

Floating Underflow Exception

An underflow condition occurs when the infinitely precise result of a floating-point instruction
is less than the smallest possible normalized, finite value for the specified destination format.
For example, for the real (32-bit) format, underflow occurs when an infinitely precise result
falls in the range -1.0 * 2-126 to 1.0 * 2-126 (exclusive), where -126 is the unbiased exponent.

When a floating underflow condition occurs, the setting of the floating underflow mask deter
mines how the processor handles the condition.

If the mask is set when an underflow condition occurs, the processor goes ahead and denor
malizes 'the result: Then if the result is exact, it is stored in the destination and the floating
underflow exception is not signaled, nor is the floating underflow flag set. If, on the other
hand, the denormalized result is inexact, the floating underflow flag is set and the processor
goes on to handle the inexact condition as described in the next section.

12-24

inter FLOATING·POINT OPERATION

If the floating underflow mask is clear when an underflow-condition occurs, no result is stored
in the destination and the floating underflow flag is not set. Instead, the processor stores the
result in extended-real format in the fault information area, with the fraction of the extended
real value rounded to the instruction's destination precision. For example, if the destination
precision is real (23-bit fraction) the 40 least-significant bits of the fraction are set to O.

If the exponent of the value stored is less than the minimum allowable value in the extended
real format (-16,382 unbiased), then the exponent is multiplied by 224576 and a flag (bit 1 of the
fault or override flags byte) is set in the fault information area to indicate that the exponent has
been bias adjusted. After this information is stored, a floating underflow fault is signaled.

The scale instructions can cause massive underflow to occur, where the infinitely precise result
is too small to be represented, even with a bias adjusted exponent. Here, a properly signed
zero is stored in the fault record.

Refer to the section later in this chapter titled "Floating-Point Underflow Condition" for more
information on the interaction of the floating underflow and inexact exceptions.

Floating Inexact Exception

The floating inexact exception occurs when an infinitely precise result cannot be encoded in
the format specified for the destination operand. Either of the following two conditions can
cause an inexact exception to be signaled:

• When a result is rounded and the result is not exact

• When overflow occurs and the floating overflow mask is set

If the floating inexact mask is set when an inexact condition occurs and an unmasked overflow
or underflow condition does not occur, the rounded result is stored in the destination and the
floating-point inexact flag is set. The current rounding mode determines the method used to
round the result. '

If the floating inexact mask is clear when an inexact condition occurs, the floating inexact flag
is not set and one of the following operations is carried out:

• If only the inexact condition has occurred, the processor stores the rounded result in the
specified destination, then raises a floating-inexact fault.

• If the inexact condition occurs along with overflow or underflow, no result is stored in the
destination. Instead, the processor stores the result in extended-real format in the fault
information area, as described for the floating overflow and underflow exceptions, then
raises a floating inexact fault. .

Refer to the following section for more information on the interaction of the floating underflow
and inexact exceptions.

12-25

inter FLOATING-POINT OPERATION

Floating-Point Underflow Condition

Two aspects of underflow are important in numeric processings: the "tininess" of a number
and "loss ·of accuracy." A result is tiny when it is nonzero and its exponent is between ± 2Emin,
where Emin is the smallest unbiased exponent allowed in the destination format. For example,
if the destination format is long-real (64-b~t. format), a res~lt is tiny ~f ~t is nonzero and in the
range of + 1 * 2-1022 to -1 * 2-1 22. The abIlIty to detect a tmy result IS Important because such
a result may cause an exception tQ be signaled in a later operation (e.g., overflow on a
division).

Loss of accuracy occurs when a tiny result is approximated as part of the denormalization
process so that it will fit into the destination format.

In the 80960KB processor, tininess is detected after rounding as an underflow condition. Loss
of accuracy is detected as an inexact condition.

The algorithm in Figure 12-6 shows how the processor responds to these two conditions, when
a floating-point operation produces a tiny result.

An important point to note in this algorithm is that if the underflow mask is set, an underflow
exception is signaled only if the denormalized result is inexact. If the denormalized number is
exact, no flags are set and no faults are signaled.

12-26

intel" FLOATING-POINT OPERATION

generate infinitely precise result # exponent and significand;
if exponent < underflow threshold

then
if underflow fault mask clear

then
goto underflow fault handler;
exit algorithm;

else generate denormalized number
if denormalized significand equals infinitely precise significand

then
store denormalized result in destination;
no underflow is signaled;

else
set underflow flag in AC;
if inexact fault mask is clear

then
goto inexact fault handler;
exit algorithm;

else
set inexact flag in AC;
store denormalized result in destination;

end if;
end if;

end if;
else

if infinitely precise result is inexact
then

if inexact fault mask is clear
then

goto inexact fault handler;
exit algorithm;

else
set inexact flag in AC;
store normalized result in destination;

end if;
else

store normalized result in destination;
end if;

end if;
exit algorithm

Figure 12-6: Interaction of Floating Underflow and Inexact Exceptions

12-27

Interagent Communication 13

CHAPTER 13
INTERAGENT COMMUNICATION

This chapter describes the interagent communication (lAC) mechanism of the 80960KB
processor. Included is a description of the lAC message structure, the lAC message sending
and receiving mechanism, and reference information on the available lAC messages.

Note

The 80960KB processor's interagent communication mechanism is an extension to the 80960
architecture and may not be supported in other processors based on this architecture.

INTRODUCTION TO lAC MESSAGES

The lAC facilities provide a mechanism for agents connected to the processor's bus to com
municate with the processor by means of messages. The agents that use these facilities may be
other 80960KB processors, I/O processors, or special purpose hardware. Programs running on
the 80960KB processor can also use this message-passing mechanism to send messages inter
nally to the processor.

The primary function of these facilities is to provide an alternative to the interrupt mechanism
for external hardware to communicate with the processor. Also, certain processor functions
like reinitialization, purging the instruction cache, and setting breakpoint registers can only be
carried out with this mechanism.

lAC messages (referred to here as lACs) are four words in length and are exchanged by means
of message buffers that are mapped to memory. All the usable lACs are predefined. The
processor handles an lAC in much the same way as it handles an instruction.

The processor provides two mechanisms for exchanging lACs: external and internal. The
external lAC mechanism is used to pass lACs between two agents on the processor's bus. A
processor uses the internal lAC mechanism to pass an lAC to itself.

lAC MESSAGE FORMAT

Figure 13-1 shows the format for an lAC message. Each message consists of a message-type
field and up to five parameter fields.

The message type is an 8-bit binary code. Each lAC has a unique message type.

The parameters can be 8, 16, or 32-bits in length, depending on the specified field. Many of
the lACs do not require parameters. When a message type does require one or more
parameters, the processor only looks at the required parameter fields. Those fields not used are
ignored.

13-1

inter INTERAGENT COMMUNICATION

31 2423 1615

MESSAGE TYPE I FIELD 1 I FIELD2

FIELD 3

FIELD4

FIELDS

Figure 13-1: lAC Message Format

SOFTWA'RE REQUIREMENTS FOR HANDLING lACS

o
o
4

8

12

No special software, such as dedicated data structures or stacks, are required to handle lACs.
An lAC is sent with a quad synchronous move instruction (synmovq). When the processor
receives an lAC, it handles it independently from the program execution environment. It does
not use the instruction execution unit, the registers (global or local), the stack, or memory.
Thus, the state of the processor when the lAC is received does not need to be saved.

Some lACs, such as the purge instruction cache lAC, do not affect the processor's state. The
processor treats these lACs as if they were an instruction inserted in the control flow of the
process. When the lAC action is complete, the processor resumes work on the program it is
currently running.

Other lACs, such as the reinitialize processor lAC, cause the state of the processor or the
control of the currently running program to be permanently changed. In these instances, the
processor resumes activity in its new processor state, following the execution of the lAC.

All lACs are assumed to have a priority of 31, so the processor executes the action requested in
the lAC message immediately, even if the processor's current priority is 31. While the
processor is handling an lAC, it will not respond to interrupts signaled on the interrupt pins.

INTERNAL lACS

Internal lACs are used for functions such as setting breakpoint registers, purging the instruc
tion cache, or sending software initiated interrupts.

To send an internal lAC, software must perform the following steps:

1. Load the message into four consecutive words in memory, with the first word aligned on a
word boundary.

2. Execute a synmovq instruction to move the message from its source address to destination
address FFOOOO1016.

13-2

inter INTERAGENT COMMUNICATION

When the destination operand of a synmovq instruction is FFOOOO1016, the processor inter
prets the instruction as a send internal-lAC instruction. The processor then receives the lAC
by moving the message from memory into an internal message buffer.

The action of the synmovq move instruction insures that the loading of the message into the
processor is completed before the processor is allowed to perform any other chores.

Note

The address range of FF00000016 through FFFFFFFF16 is reserved for interrupt handling and
lAC message passing.

EXTERNAL lACS

External lACs are used by agents external to the processor to initiate processor actions such as
testing for pending interrupts or freezing the processor. External lACs can be sent between
two 80960KB processors that are connected to the same bus or by external logic that duplicates
the external lAC sending mechanism. The following sections describe how one processor
sends an lAC to another processor. The 80960KB Hardware Designer's Reference Manual
describes the requirements that external logic must meet to perform these same functions.

Sending External lACs

Sending an external lAC message is similar to sending an internal lAC message, except that
the address of the receiving agent is specified in a slightly different way. Figure 13-2 shows
the required encoding of the address for the receiving agent.

31 2423
10 10 I 0 10 I

14 13 9 8 4 3 0

'-------- PRIORITY

'------------------ ADDRESS OF lAC
REOPIENT

Figure 13-2: Encoding of Address for Processor Receiving an lAC

At initialization each agent on the bus is assigned a unique address in the range of FFOOOC0016
to FFFFCC0016. To send an lAC to an agent, the sending agent sends the message to the
address assigned to the receiving agent. As shown in Figure 13-2, only bits 14 through 23 of
this address are interpreted to determine the address of the receiving agent. Bits 4 through 8 of
this address are used to encode the priority of the message.

For example, to send a priority 25 10 lAC to the agent at address 00000000012, the message
address would be FF004D9016.

To send an external lAC from one 80960KB processor to another, software must perform the
following steps:

1. Load the message into four consecutive words in memory, with the first word aligned on a
word boundary.

13-3

inter INTERAGENT COMMUNICATION

2. Execute a synmovq instruction to move the message from its source address to the address
of the receiving agent (encoded in the form shown in Figure 13-2).

3. Cheek the condition code in the arithmetic controls to determine if the message was
received (0102) or rejected (0002).

The action of the synmovq move instruction insures that the sending processor does not
execute any other instructions until the synmovq instruction is complete. It also sets the
condition code bits to indicate whether or not the move was successful. A successful move is
interpreted as the lAC being received by the processor.

Receiving and Handling an External lACs

A processor receives and handles an external lAC in somewhat the same manner as it receives
and handles an interrupt. To configure a processor to receive external lACs, vector INTO of
the interrupt-control register (shown in Figure 8-3) is set to O. The INTO pin on the processor
chip then becomes the lAC pin. (Refer to the section in Chapter 8 titled "Interrupts From
Interrupt Pins" for further discussion of the interrupt pins and interrupt~control register.)

When the processor receives a signal on the lAC pin, it handles it initially as if it were
receiving an interrupt. It reads the vector number associated with this pin (bits 0 through 7 of
the interrupt-control register). If it is zero, the processor recognizes that it is receiving an
external lAC. It then reads the four-word lAC message from the bus and performs the
requested lAC.

The processor acts immediately on any lAC that it receives. For efficient system operation,
external logic must thus be provided to insure that low priority lAC messages do not interrupt
the processor while it is handling a higher priority task. The handshaking for this operation is
provided by the write-external-priority mechanism described in Chapter 7.

Using the write-external-priority mechanism, the processor keeps the external logic updated
regarding the processor's current priority. When an lAC is sent to the processor, the external
logic intercepts it and reads the priority. The external logic then determines whether the lAC
priority is above that of the processor or not. If the lAC has a higher priority, the external logic
sends an acknowledge signal to the sending processor, then signals the receiving processor by
asserting the lAC pin. If the lAC has an equal or lower priority, the external logic sends a
non-acknowledge signal to the sending processor.

The sending processor uses the acknowledge or non-acknowledge signals to set the condition
codes to complete the synmovq instruction.

While the processor is servicing an lAC, it performs some handshaking with the external logic
so that the logic knows when the processor has finished work on an lAC. The external logic is
then able to reject any lAC that it receives while the processor is servicing another lAC.

Refer to the 80960KB Hardware Designer's Reference Manual for further information on the
requirements for handling lAC messages.

13-4

inter INTERAGENT COMMUNICATION

SUMMARY OF lAC MESSAGES

Table 13-1 gives a list of the lAC messages that the processor can send either internally or
externally. The following section provides detailed reference information on these messages.

Table 13-1: lAC Messages

Interrupt Handling Processor Management
Interrupt Purge Instruction Cache
Test Pending Interrupt Set Breakpoint Register

Store System Base
Freeze
Continue Initialization
Reinitialize Processor

lAC MESSAGE REFERENCE

The following section provides detailed descriptions of the operations carried out for each of
the lACs. This section is organized alphabetically by lAC title for easy reference.

13-5

inter

Continue Initialization

Message Type:

Function:

INTERAGENT COMMUNICATION

9216

Carries out the initialization procedure that follows the processor
self test. The processor executes the initialization procedure begin
ning with reading the initial memory image from ROM. The self
test is not performed.

Refer to the section in Chapter 7 titled "Processor Initialization" for
further details on the initialization process.

13-6

INTERAGENT COMMUNICATION

Freeze

Message Type: 91 16

Function: Stops the processor. The processor puts itself in the stopped state.

inter

Interrupt

Message Type:

Parameters:

Function:

INTERAGENT COMMUNICATION

4°16

Field 1

Fields 2 - 5

Interrupt vector

Not Used

Generates an interrupt request. The interrupt vector is given in field
1 of the lAC message. The processor handles the interrupt request
just as it does interrupts received from other sources. If the inter
rupt priority is higher than the processor's current priority, the
processor services the interrupt request immediately. Otherwise, it
posts the interrupt in the pending interrupts section of the interrupt
table.

Refer to Chapter 8 for further information on the servicing of inter
rupt lACs.

13-8

inter INTERAGENT COMMUNICATION

Purge Instruction Cache

Message Type: 8916

Function: Invalidates all entries in the processor's internal instruction cache.

13-9

~-~-~-------~--~---- ~~-

inter INTERAGENT COMMUNICATION

Reinitialize Processor

Message Type: 9316

Parameters:

Function:

Fields 1 - 2

Field-3

Field-4

Field 5

Not Used

Address of System Address Table

Address of Processor Control Block

Start Instruction IP

Reestablishes the processor state. In reinitializing itself, the proces
sor first locates the system address table and the processor control
block in the IMI from the addresses given in fields 3 and 4.

The processor then begins executing the instruction list beginning
with the IP given in field 5.

13-10

INTERAGENT COMMUNICATION inter
~---

Set Breakpoint Register

Message Type:

Parameters:

Function:

8F16

Fields 1 - 2 Not Used

Field 3 Breakpoint IP

Field 4 Breakpoint IP

Field 5 Not Used

Enables or disables two breakpoints. When the processor receives
this lAC, it conditionally loads the parameters from fields 3 and 4
into breakpoint registers 0 and 1, respectively. Field 3 provides a
breakpoint IP for breakpoint register 0, and field 4 provides a break
point IP for breakpoint register 1. Bit 1 in each of these fields is a
breakpoint disable flag.

If the disable flag in one of these fields is set, the breakpoint for the
corresponding breakpoint register is disabled. Otherwise, the IP
value in the field is loaded into the corresponding breakpoint
register and the breakpoint is enabled.

Breakpoints are described in the section in Chapter 10 titled
"Breakpoint-Trace Mode."

13-11

inter

Store System Base

Message Type:

Parameters:

Function:

INTERAGENT COMMUNICATION

8°16
Fields 1 - 2

Field 3

Fields 4 - 5

Not Used

Destination Address

Not Used

Stores the current locations of the system address table and the
PRCB in a specified location in memory. The address of the system
address table is stored in the word starting at the byte specified in
field 3, and the address of the PRCB is stored in the next word in
memory (field 3 address plus 4).

13-12

INTERAGENT COMMUNICATION

Test Pending Interrupts

Message Type:

Function:

41 16

Tests for pending interrupts. The processor checks the pending
interrupt section of the interrupt table for a pending interrupt with a
priority higher than the processor's current priority. If a higher
priority interrupt is found, it is serviced immediately. Otherwise, no
action is taken.

13-13

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I

I
I
I

I
I

I
I
I
I

Append~ A
Instruction and Data
Structure Quick Reference

--,------ ---- -~-------

APPENDIX A
INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

This appendix provides quick reference for the 80960KB instructions and data structures.

INSTRUCTION QUICK REFERENCE

This section provides two lists of 80960KB instructions: one sorted by assembly-language
mnemonic and another sorted by machine-level opcode. In these lists, each entry includes the
assembly-language mnemonic for an instruction; the operands (given in the required order); the
machine-level opcode and instruction type (i.e., REG, MEM, COBR, CTRL); and the page
number in Chapter 11 where the detailed description of the instruction is given.

A-1

inter INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

Instruction List by Assembler Mnemonic

Mnemonic Operands Opcode Inst. Type' Page

addc src1, src2, dst 5BO REG 11-6
addi src1, src2, dst 591 REG 11-7
addo src1, src2, dst 590 REG 11-7
addr src1, src2, dst 78F REG 11-8
addrl src1, src2, dst 79F REG 11-8
alterbit bitpos, src, dst 58F REG 11-10
and src1, src2, dst 581 REG 11-11
andnot src1, src2, dst 582 REG 11-11
atadd srcldst, src, dst' 612 REG 11-12
atanr src1, src2, dst 680 REG 11-13
atanrl src1, src2, dst 690 REG 11-13
atmod src, mask, srcldst 610 REG 11-15
b targ 08 CTRL 11-18
bal targ OB CTRL 11-16
balx targ, dst 85 MEM 11-16
bbc bitpos, src, targ 30 COBR 11-20
bbs bitpos, src, targ 37 COBR 11-20
be targ 12 CTRL 11-22
bg targ 11 CTRL 11-22
bge targ 13 CTRL 11-22
bl targ 14 CTRL 11-22
ble targ 16 CTRL 11-22
bne targ 15 CTRL 11-22
bno targ 10 CTRL 11-22
bo targ 11 CTRL 11-22
bx targ 84 MEM 11-18
call targ 09 CTRL 11-25
calls targ 660 REG 11-27
calix targ 86 MEM 11-29
chkbit bitpos, src 5AE REG 11-31
ciassr src 68F REG 11-32
ciassrl src 69F REG 11-32
cirbit bitpos, src, dst 58C REG 11-34
cmpdeci src1, src2, dst 5A7 REG 11-36
cmpdeco src1, src2, dst 5A6 REG 11-36 . '

src1, src2 5A1 REG 11-35 cmpl
cmpibe src1, src2, targ 3A COBR 11-42
cmpibg src1, src2, targ 39 COBR 11-42
cmpibge src1, src2, targ 3B COBR 11-42
cmpibl src1, src2, targ 3C COBR 11-42
cmpible src1, src2, targ 3E COBR 11-42
cmpibne src1, src2, targ 3D COBR 11-42
cmpibno src1, src2, targ 38 COBR 11-42
cmpibo src1, src2, targ 3F COBR 11-42

A-2

inter INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

Mnemonic Operands Opcode Inst. Type Page

cmpinci src1, src2, dst 5A5 REG 11-37
cmpinco src1, src2, dst 5A4 REG 11-37
cmpo srci, src2 5AO REG 11-35
cmpobe src1, src2, targ 32 COBR 11-42
cmpobg src1, src2, targ 31 COBR 11-42
cmpobge src1, src2, targ 33 COBR 11-42
cmpobl srci, src2, targ 34 COBR 11-42
cmpoble srci, src2, targ 36 COBR 11-42
cmpobne srci, src2, targ 35 COBR 11-42
cmpor srci, src2 684 REG 11-38
cmporl src1, src2 694 REG 11-38
cmpr srci, src2 685 REG 11-40
cmprl src1, src2 695 REG 11-40
concmpi srci, src2 5A3 REG 11-45
concmpo srci, src2 5A2 REG 11-45
cosr src, dst 68D REG 11-46
cosrl src, dst 69D REG 11-46
cpyrsre srci, src2, dst 6E3 REG 11-48
cpysre src1, src2, dst 6E2 REG 11-48
cvtilr src, dst 675 REG 11-49
cvtir src, dst 674 REG 11-49
cvtri src, dst 6CO REG 11-50
cvtril src, dst 6Cl REG 11-50
cvtzri src, dst 6C2 REG 11-50
cvtzril src, dst 6C3 REG 11-50
daddc srci, src2, dst 642 REG 11-52
divi src1, src2, dst 74B REG 11-53
divo srci, src2, dst 70B REG 11-53
divr src1, src2, dst 78B REG 11-54
divrl srci, src2, dst 79B REG 11-54
dmovt src, dst 644 REG 11-56
dsubc srci, src2, dst 643 REG 11-57
ediv srci, src2, dst 671 REG 11-58
ernul srci, src2, dst 670 REG 11-59
expr src, dst 689 REG 11-60
exprl src, dst 699 REG 11-60
extract bitpos, len, src/dst 651 REG 11-62
faulte lA CTRL 11-63
faultg 19 CTRL 11-63
faultge IB CTRL 11-63
faultl lC CTRL 11-63
faultle IE CTRL 11-63
faultne 1D CTRL 11-63
faultno 18 CTRL 11-63
faulto IF CTRL 11-63
flushreg 66D REG 11-65
fmark 66C REG 11-66

A-3

inter INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

Mnemonic ' Operands Opcode Inst. Type Page

Id src, dst 90 MEM 11-67
Ida src dst 8C MEM 11-69
Idib src, dst CO MEM 11-67
Idis src, dst C8 MEM 11-67
Idl src, dst 98 MEM 11-67
Idob src, dst 80 MEM 11-67
Idos src, dst 88 MEM 11-67
Idq src, dst BO MEM 11-67
Idt src, dst AO MEM 11-67
logbnr src, dst 68A REG 11-70
logbnrl src, dst 69A REG 11-70
logepr srci, src2, dst 681 REG 11-72
logeprl srci, src2, dst 691 REG 11-72
logr srci, src2, dst 682 REG 11-75
logrl srci, src2, dst 692 REG 11-75
mark 66B REG 11-78
modac mask, src, dst 645 REG 11-79
modi srci, src2, dst 749 REG 11-80
modify mask, src, src/dst 650 REG 11-81
modpc src mask, src/dst 655 REG 11-82
modtc mask, src, dst 654 REG 11-84
mo'V src, dst 5CC REG 11-85
movl src, dst 50C REG 11-85
movq src, dst 5FC REG 11-85
movr src, dst 6C9 REG 11-86
moV're src, dst 6E9 REG 11-86
movrl src, dst 609 REG 11-86
movt src, dst 5EC REG 11-85
muli srci, src2, dst 741 REG 11-88
mulo srci, src2, dst 701 REG 11-88
muir srci, src2, dst 78C REG 11-89
mulrl srci, src2, dst 79C REG 11-89
nand srci, src2, dst 58E REG 11-91
nor srci, src2, dst 588 REG 11-92
not src, dst 58A REG 11-93
notand src, ' dst 584 REG 11-93
notbit bitpos, src, dst 580 REG 11-94
notor srci, src2, dst 580 REG 11-95
or srci, src2, dst 587 REG 11-96
ornot srci, src2, dst 58B REG 11-96
remi srci, src2, dst 748 REG 11-97
remo srci, src2, dst 708 REG 11-97
remr, sral, src2, dst 683 REG 11·98
remrl srci, src2, dst 693 REG 11-98
ret OA CTRL 11-101
rotate len, src, dst 590 REG U~103
roundr src, dst 68B REG 11-104

A-4

inter INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

Mnemonic Operands Opcode Inst. Type Page

roundrl src, dst 69B REG 11-104
scaler srcJ, src2, dst 677 REG 11-105
scalerl srcJ, src2, dst 676 REG 11-105
scanbit src, dst 641 REG 11-107
scanbyte srcJ, src2 5AC REG 11-108
setbit bitpos, src, dst 583 REG 11-109
shli len, src, dst 59E REG 11-110
shlo len, src, dst 59C REG 11-110
shrdi len, src, dst 59A REG 11-110
shri len, src, dst 59B REG 11-110
shro len, src, dst 598 REG 11-110
sinr src, dst 68C REG 11-112
sinrl src, dst 69C REG 11-112
spanbit src, dst 640 REG 11-114
sqrtr src, dst 688 REG 11-115
sqrtrl src, dst 698 REG 11-115
st src, dst 92 MEM 11-117
stib src, dst C2 MEM 11-117
stis src, dst CA MEM 11-117
stl src, dst 9A MEM 11-117
stob src, dst 82 MEM 11-117
stos src, dst 8A MEM 11-117
stq src, dst B2 MEM 11-117
stt src, dst A2 MEM 11-117
subc srcJ, src2, dst 5B2 REG 11-119
subi srcJ, src2, dst 593 REG 11-120
subo srcJ , src2, dst 592 REG 11-120
subr srcl, src2, dst 78D REG 11-121
subrl srcJ, src2, dst 79D REG 11-121
syncf 66F REG 11-123
synld src, dst 615 REG 11-124
synmov dst, src 600 REG 11-126
synmovi dst, src 601 REG 11-126
synmovq dst, src 602 REG 11-126
tanr src, dst 68E REG 11-129
tanrl src, dst 69E REG 11-129
teste dst 22 COBR 11-131
testg dst 21 COBR 11-131
testge dst 23 COBR 11-131
testl dst 24 COBR 11-131
testle dst 26 COBR 11-131
testne dst 25 COBR 11-131
testno dst 20 COBR 11-131
testo dst 27 COBR 11-131
xnor srcJ, src2, dst 589 REG 11-133
xor srcJ, src2, dst 586 REG 11-133

A-5

inter INSTRUCTION AND DATA STRUCTURE ·QUICK REFERENCE

Instruction List by Opcode

Opc:ode Inst. Type Mnemonic Operands Page

08 CTRL b targ 11-18
09 CTRL call targ 11-25
OA CTRL ret 11-101
OB CTRL bal targ 11-16
10 CI'RL bno targ 11-22
11 CTRL bg targ 11-22
12 CTRL be targ 11-22
13 CTRL bge targ 11-22
14 CTRL bl targ 11-22
15 CTRL bne targ 11-22
16 CTRL ble targ 11-22
17 CTRL bo targ 11-22
18 CTRL faultno 11-63
19 CTRL faultg 11-63
lA CTRL faulte 11-63
IB CTRL faultge 11-63
lC CTRL faultl 11-63
10 CTRL faultne 11-63
IE CTRL faultle 11-63
IF CTRL faulto 11-63
20 COBR testno dst 11-131
21 COBR testg dst 11-131
22 COBR teste dst 11-131
23 COBR testge dst 11-131
24 COBR testl dst 11-131
25 COBR testne dst 11-131
26 COBR testle dst 11-131
27 COBR testo dst 11-131
30 COBR bbc bitpos, src, targ 11-20
31 COBR cmpobg srci, src2, targ 11-18
32 COBR cmpobe srci, src2, targ 11-42
33 COBR cmpobge srci, src2, targ 11-42
34 COBR cmpobl srci, src2, targ 11-42
35 COBR cmpobne srci, src2, targ 11-42
36 COBR cmpoble srci, src2, targ 11-42
37 COBR bbs bitpos, src, targ 11-20
38 COBR cmpibno srci, src2, targ 11-42
39 COBR cmpibg srci, src2, targ 11-42
3A COBR cmpibe srci, src2, targ 11-42
3B COBR cmpibge srci, src2, targ 11-42
3<; COBR cmpibl srci, src2, targ 11-42
30 COBR cmpibne srci, src2, targ 11-42
3E COBR cmpible srci, src2, targ 11-42
3F COBR cmpibo srci, src2, targ 11-42
80 MEM Idob src, dst 11-67

A-6

inter INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

Opcode Inst. Type Mnemonic Operands Page

82 MEM stob src, dst 11-117
84 MEM bx targ 11-18
85 MEM balx targ, dst 11-16
86 MEM calix targ 11-29
88 MEM Idos src, dst 11-67
8A MEM stos src, dst 11-117
8C MEM Ida src dst 11-69
90 MEM Id src, dst 11-67
92 MEM st src, dst 11-117
98 MEM Idl src, dst 11-67
9A MEM stl src, dst 11-117
AO MEM Idt src, dst 11-67
A2 MEM stt src, dst 11-117
BO MEM Idq src, dst 11-67
B2 MEM stq src, dst 11-117
CO MEM Idib src, dst 11-67
C2 MEM stib src, dst 11-117
C8 MEM Idis src, dst 11-67
CA MEM stis src, dst 11-117
580 REG notbit bitpos, src, dst 11-94
581 REG and src1, src2, dst 11-11
582 REG andnot src1, src2, dst 11-11
583 REG setbit bitpos, src, dst 11-109
584 REG notand src, dst 11-93
586 REG xor src1 ; src2, dst 11-133
587 REG or srcl, src2, dst 11-96
588 REG nor srcl, src2, dst 11-92
589 REG xnor srcl, src2, dst 11-133
58A REG not src, dst 11-93
58B REG ornot src1, src2, dst 11-96
58C REG c1rbit bitpos, src, dst 11-34
58D REG notor src1, src2, dst 11-95
58E REG nand srcl, src2, dst 11-91
58F REG alterbit bitpos, src, dst 11-10
590 REG addo src1, src2, dst 11-7
591 REG addi src1, src2, dst 11-7
592 REG subo src1, src2, dst 11-120
593 REG subi srcl, src2, dst 11-120
598 REG shro len, src, dst 11-110
59A REG shrdi len, src, dst 11-110
59B REG shri len, src, dst 11-110
59C REG shlo len, src, dst 11-110
59D REG rotate len, src, dst 11-103
59E REG shli len, src, dst 11-110
5AO REG cmpo src1, src2 11-35
5A1 REG cmpi src1, src2 11-35
5A2 REG concmpo src1, src2 11-45

A-7

---~~-

inter INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

Opcode Inst. Type Mnemonic Operands Page

5A3 REG concmpi srci, src2 11-45
5A4 REG cmpinco srci, src2, dst 11-37
5A5 REG cmpinci srci, src2, dst 11-37
5A6 REG cmpdeco srci, src2, dst 11-36
5A7 REG cmpdeci srcl, src2, dst 11-36
5AC REG scanbyte srci, src2 11-108
5AE REG chkbit bitpos, src 11-31
5BO REG addc srcl, src2, dst 11-6
5B2 REG subc srci, src2, dst 11-119
5CC REG mov src, dst 11-85
5DC REG movl src, dst 11-85
5EC REG movt src, dst 11-85
5FC REG movq src, dst 11-85
600 REG synmov dst, src 11-126
601 REG synmovi dst, src 11-126
602 REG synmovq dst, src 11-126 .
610 REG atmod src, mask, srcldst 11-15
612 REG atadd srcldst, src, dst 11-12
615 REG synld src, dst 11-124
640 REG spanbit src, dst 11-114
641 REG scanbit src, dst 11-107
642 REG daddc srci, src2, dst 11-52
643 REG dsubc srcl, src2, dst 11-57
644 REG dmovt src, dst 11-56
645 REG modac mask, src, dst 11-79
650 REG modify mask, src, srcldst 11-81
651 REG extract bitpos, len, srcldst 11-62
654 REG modtc mask, src, dst 11-84
655 REG modpc mask, srcldst 11-82
660 REG calls targ 11-27
66B REG mark 11-78
66C REG fmark 11-66
66D REG flushreg 11-65
66F REG syncf 11-123
670 REG ernul srci, src2, dst 11-59
671 REG ediv srci, src2, dst 11-58
674 REG cvtir src, dst 11-49
675 REG cvtilr src, dst 11-49
676 REG scalerl srci, src2, dst 11-105
677 REG scaler srci, src2, dst 11-105
680 REG atanr srci, src2, dst 11-13
681 REG logepr srci, src2, dst 11-72
682 REG logr srci, src2, dst 11-75
683 REG remr srci, src2, dst 11-98
684 REG cmpor srci, src2 11-38
685 REG cmpr srci, src2 11-40
688 REG sqrtr src, dst 11-115

A-a

inter INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

Opcode Inst. Type Mnemonic Operands Page

689 REG expr src, dst 11-60
68A REG logbnr src, dst 11-70
68B REG roundr src, dst 11-104
68C REG sinr src, dst 11-112
68D REG cosr src, dst 11-46
68E REG tanr src, dst 11-129
68F REG c1assr src 11-32
690 REO atanrl srci, src2, dst 11-13
691 REG logeprl srci, src2, dst 11-72
692 REG logrl srci, src2, dst 11-75
693 REG remrl srci, src2, dst 11-98
694 REG cmporl srci, src2 11-38
695 REG cmprl srci, src2 11-40
698 REG sqrtrl src, dst 11-115
699 REG exprl src, dst 11-60
69A REG logbnrl src, dst 11-70
69B REG roundrl src, dst 11-104
69C REG sinrl src, dst 11-112
69D REG cosrl src, dst 11-46
69E REG tanrl src, dst 11-129
69F REG c1assrl src 11-32
6CO REG- cvtri src, dst 11-50
6Cl REG cvtril src, dst 11-50
6C2 REG cvtzri src, dst 11-50
6C3 REG cvtzril src, dst 11-50
6C9 REG movr src, dst 11-86
6D9 REG movrl src, dst 11-86
6E2 REG cpysre srci, src2, dst 11-48
6E3 REG cpyrsre srci, src2, dst 11-48
6E9 REG movre src, dst 11-86
701 REG mulo srci, src2, dst 11-88
708 REG remo srci, src2, dst 11-97
70B REG divo srcl, src2, dst 11-53
741 REG muli srci, src2, dst 11-88
748 REG remi srci, src2, dst 11-97
749 REG modi srci, src2, dst 11-80
74B REG divi srci, src2, dst 11-53
78B REG divr srcl, src2, dst 11-54
78C REG muir srci, src2, dst 11-89
78D REG subr srci, src2, dst 11-121
78F REG addr srci, src2, dst 11-8
79B REG divrl srci, src2, dst 11-54
79C REG mulrl srcl, src2, dst 11-89
79D REG subrl srci, src2, dst 11-121
79F REG addrl srci, src2, dst 11-8

A-9

INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

SUMMARY OF SYSTEM DATA STRUCTURES

The following pages provide a collection of the system data structures presented in this
manual. They are are grouped by function. The chapter reference below each data structure
shows where in this manual this data structure is described.

Execution Environment

11 38 21 ,. 27 ,. 25 H 20 " ,. 17 " 15 12 8 6 3 2 0

II I I I I I I ~I I I I I .:.1111 I I I I I I I
I...,....J

I I 1
,

- RESERVED
- (INITIALIZE TDO)

lT~ ~DNDITIDN CODE
ARITHMETIC STATUS
INTEGER OVERFLOW FLAG
INTEGER OVERFLOW MASK
NO IMPRECISE FAULTS
FLOATING OVERFLOW FLAG
FLOATING UNDERFLOW FLAG
FLOATING INVALlD·OP FLAG
FLOATING ZERO·DIVIDE FLAG
FLOATING INEXACT FLAG
FLOATING OVERFLOW MASK
FLOATING UNOERFLOW MASK
FLOATING INVALlD·OP MASK
FLOATING ZERO·DIVIDE MASK
FLOATING INEXACY MASK
FLOATING·POINT NORMALIZING MODE
FLOATING·POINT ROUNDING CONTROL

Figure A-1: Arithmetic Controls (Chapter 3)

A-10

inter INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

gO

CONTENTS OF
GLOBAL AND

FLOATING-POINT
REGISTERS
PRESERVED

ACROSS
PROCEDURE
BOUNDARIES

REGISTERS gO THROUGH g14
AVAILABLE FOR GENERAL USE

g15 FRAME POINTER (FP)

GLOBAL
REGISTERS

fpO I

NEWSETOF
LOCAL

REGISTERS
ALLOCATED

FOR EACH
PROCEDURE

AVAILABLE FOR GENERAL USE FLOATING-POINT
REGISTERS

fp3 "----_____________ ----' ~

rO PREVIOUS FRAME POINTER (PFP)
r1 STACK POINTER (SP)
r2 RETURN INSTRUCTION POINTER (RIP)

REGISTERS r4 THROUGH r15
AVAILABLE FOR GENERAL USE

LOCAL
REGISTERS

L ," L...----------I

Figure A-2: Registers Available to a Single Procedure (Chapter 3)

A-11

------ ~-----------

INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

PREVIOUS
FRAME

CURRENT
FRAME

PFP
SP

P RRR rO "+0

RIP

OPTIONAL VARIABLES

~--------------------~

r1
r2

r15

STACK·
GROWTH

"+64 STACK
GROWS

FROM LOW
ADDRESSES

TO HIGH
ADDRESSES

rO II(

r1

r2 THE CURRENT FRAME

r15

POINTER (FP) STORED
IN 915 POINTS TO

THIS WORD IN THE
STACK.

Figure A-3: Procedure Stack Structure (Chapter 4)

A-12

inter INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

Processor Management

,.:3~1 _____ ...:.:21:,:.20:.-_..;.;:16151413121110'9 8 2 1 0

I I t TRACE ENABLE

EXECUTION MODE
-------RESUME

L--_______ TRACE.FAULT PENDING

~--------- STATE
L--------------PRIORITY

l.-.-----------------INTERNAL STATE

_ R£SERVED (INITIALIZE TO 0)

Figure A-4: Process Controls (Chapter 7)

A-13

INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

CHECK·SUM WORDS PHYSICAL
ADORESS£S

SAT POINTER 0

PRCI POINTER 4

CHECK WORD I

INSTRUCTION POINTER 12

4 CHECK WORDS 16

20

24

28

etM RESERVED (INInAUZE TO 0)

~~ PRESERVED

•

l
SYSTEM ADDRESS TABLE (SAT) OFfSET

0

136

140

144

148

SYSTEM PROCEDURE POINTER 152

3044 156

PROCESSOR CONTROL ILOCK
(PRCI) OfFSET

0

4

8

12

20

24

28

0000027F" 32

0000027F" 36

POINTER 40

0000 iIooo16 44

48

76

80
SCRATCH SPACE

172

INInAUZA nON CODE OFfSET

f r
Figure A·5: Initial Memory Image (Chapter 7)

A·14

inter INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

Interrupt Handling

31 0

0

4

PENDING INTERRUPTS

32

36 (VECTOR 8)

40 (VECTOR 9)

ENTRY 10 44 (VECTOR 10)

976 (VECTOR 243)

980 (VECTOR 244)

992 (VECTOR 247)

996 (VECTOR 248)

1000 (VECTOR 249)

100a (VECTOR 251)

1012 (VECTOR 252)

ENTRY 255. 1024 (VECTOR 255)

PROCEDURE ENTRY FORMAT
31 210

I INSTRUCTION POINTER 1010 I

- RESERVED (INITIALIZE TO 0)

Figure A-6: Interrupt Table (Chapter 8)

A-15

inter

STACK
GROWTH

STACK
GROWTH

INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

LOCAL, SUPERVISOR, OR INTERRUPT STACK

31 0

FP

REGISTER SAVE AREA
.~ FOR CURRENT FRAME .~

.~
ADDITIONAL VARIABLES

AND PADDING AREA ~

(OPTIONAL)

SP

INTERRUPT STACK

31 7 0

NSP*

PADDING AREA

RESUMPTION RECORD
FOR SUSPENDED INSTRUCTION INTERRUPT

(OPTIONAL)

*If the interrupt is serviced while the processor is working on another
interrupt procedure, the new stack pointer (NSP) will be the same as
the SP.

RESERVED

Figure A·7: Interrupt Record on Stack (Chapter 8)

A-16

RECORD

NFP·8

NFP

inter INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

lACs

31 2423 161S

MESSAGE TYPE 1 FIELD 1 I FIELD 2

FIELD 3

FIELD4

. FIELDS

Figure A-8: lAC Message Format (Chapter 13)

Fault Handling

31 o

FAULT DATA .--PROCESS CONTROLS

IllMitiii RESERVED

Figure A-9: Fault Record (Chapter 9)

A-17

o
4

12

16

o
o
4

8

12

inter INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

31 0

TRACE FAU L T ENTRY

31
SYSTEM·PROCEDURE·TABLE FAULT·TABLE ENTRY 2·1 0

72

80

8.8

96

104

112

120

252

n

n+4

FAULT·HANDLERPROCEDURENUMBER 1110 n

0000027F'6 n + 4
~------------------~------------------~

RESERVED (INITIALIZE TO 0)

Figure A-1 0: Fault Table and Fault-Table Entries (Chapter 9)

A-18

INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

Trace Control

Jt

\

2JZZZt 201918 17 7 6 5 • J 2 t 0

,~~ ' "
~EINSTRUcnON

TRACE MODE
BRANCH TRACE MODE

CALL TRACE MODE

RETURN TRACE MODE

'------PRERETURN TRACE MODE

'-------SUPERVISOR TRACE MODE

L-------BREAKPOINT TRACE MODE

'--------------INSTRUcnON TRACE EVENT

'--------------BRANCHTRACEEVENT

'--------------- CALL TRACE EVENT

'---------------- RETURN TRACE EVENT

'---------------- PRERETURN TRACE EVENT

'----------------- SUPERVISOR TRACE EVENT

'----------------- BREAKPOINT TRACE EVENT

_ RESERVED (INInAUZE TO 0)

Figure A-11: Trace Controls (Chapter 10)

A-19

-------------- ----

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Appendix
Machine-Level
Instruction Formats

B

APPENDIX B
MACHINE-LEVEL INSTRUCTION FORMATS

This appendix describes the maChine-level format for 80960KB instructions. Included is a
description of the four instruction formats and how the addressing modes relate to these
formats. Also, a table is given that shows the relationship between the machine-level instruc
tion operands and the assembly-language-level instruction operands.

,
GENERAL INSTRUCTION FORMAT

At the machine-level, all the 80960KB instructions are one word long and begin on word
boundaries. (One group of instructions allows a second word, which contains a 32-bit
displacement.)

There are four basic instruction formats: REG, COBR, CTRL, and MEM. Figure B-l shows
these formats. Each instruction has only one format, which is defined by the opcode field of
the instruction.

31 2423 19 18 14 13 12 1110 7 6 5 4 0 REG I OPCODE I SRClDST I SRO I I I I OPCODE 1 0 0 I SRC1 I

1 t
t M1

M2

M3

31 2423 1918 14 13 12 2 1 0 COBR I OPCODE I SRC1 I SRC2 I I DISPLACEMENT 10 0 I
t M1

31 2423 2 1 0 CTRL I OPCODE I DISPLACEMENT 1 0 0 I

31 2423 1918 14131211 0 MEMA I OPCODE I SRClDST I A8ASE I 10 1 OFFSET I
t MODE

31 2423 1918 1413 10 9 7 6 5 4 0
MEMB I OPCODE I SRClDST I ABASE I MODE 1 SCALE 1001 INDEX I L _______________ ~~2~l~~~~~~ ________________ J

Figure 8-1: Instruction Formats

The following sections describe the fields in the instruction word for each format.

B-1

MACHINE·LEVEL INSTRUCTION FORMATS

REG FORMAT

The REG format is for operations that are performed on data contained in the global, local, and
floating-point registers. The majority of the 80960KB instructions use this format.

The opcode for the REG instructions is 12 bits long (3 hexadecimal digits) and is split between
bits 7 through 10 and bits 24 through 31. For example, the opcode for the addi instruction is
591 16. Here, 5916 is contained in bits 24 through 31 and 116 is contained in bits 7 through 10.

The src1 and src2 fields specify source operands for the instruction. The operands can be
either registers or literals. The mode bits (m1 for src1 and m2 for src2) and the instruction type
(non-floating point or floating point) determine whether an operand is a register or a literal.
Table B-1 shows the relationship between the instruction type, the mode bits, and the src1 and
src2 operands.

Table B-1: Encoding of Src1 and Src2 Fields in REG Format

Inst. Type MlorM2 Src1 or Src2 Register Literal
Operand Number Value
Value

Non-FP a 00000 rO

01111 r15
10000 gO

11111 g15
1 00000 a

11111 31
FP a 00000 rO

01111 r15
10000 gO

11111 g15
1 00000 fpO

00011 fp3
00100 to reserved

01111
10000 +0.0

10001 to reserved
10101
10110 +1.0

10111 to reserved
11111

B-2

inter MACHINE-LEVEL INSTRUCTION FORMATS

For non-floating-point instructions, if a mode bit is set.to 0, the respective stc1 or src2 field
specifies a global or local register. If the mode bit' is' set to 1, the field specifies an ordinal
literal in the range of 0 to 31.

For floating-point instructions, if the mode bit is set to 0, the respective src1 or src2 field
specifies a global or local register Gust as it does for non-floating-point instructions). If the
mode bit is set to 1, the field specifies either a floating-point register or one of two real-number
literals (+0.0 or + 1.0). All of the other encoding when the mode bit is set to 1 are reserved.
When a reserved encoding is used as a source, the processor either signals an invalid opcode
fault or produces an undefined value.

The src/dst field can specify either a source operand or a destination operand or both, depend
ing on the instruction. Here again, the mode bit (m3) and the instruction type (non-floating
point or floating point) determine how this field is used. Table B-2 shows this relationship.

Table 8-2: Encoding of Src/Dst Field in REG Format

Inst. Type m3 SrclDst Src Only Dst Only

Non-FP 0 gO .. glS gO .. glS gO .. glS
rO .. rlS rO .. rlS fO .. rlS

1 NA Literal NA
FP 0 NA NA gO .. glS

rO .. rlS

1 NA NA fpO .. fp4

Note: NA means not allowed

For non-floating-point instructions, if M3 is clear, the src/dst operand is a global or local
register that is encoded as shown in Table B-1. If M3 is set, the src/dst operand can be used
only as a src operand that is an ordinal literal.

For floating-point instructions, the src/dst field is only used to encode destination operands.
Here, the encoding is the same as shown in Table B-1, except that the encodings for floating
point literals are not allowed. That is, if M3 is clear, the destination operand is a, global or
local register; if M3 is set, the destination operand is a floating-point register. When a reserved
encoding or literal encoding is used as a destination, the processor either signals, an invalid
opcode fault or produces an undefined result.

COBRFORMAT

The COBR format is used primru::ily for control-and-branch instructions. (The test-if instruc
tions also use this format.) The opcode field for this fo~at is 8t>its (two hexadecimal digits).

The srct and src2 fields specify source operands for the instruction. The src1 field can specify
either a global or local register or a literal as determined by mode bit m 1. (The encoding of the
src1 field is the same as is shown in Table B-1 for the non-floating point instructions.) The
src2 field can only specify a local or global register.

8-3

inter MACHINJ:~LEVEL INSTRUCTION FORMATS

The displacement field 'contains a signed, twos. complement number that, specifies a word
displacement. The processor uses this value to eompute the address of a target instruction that
the processor goes to as the result of a comparison. The displacement field can range from _210

to (210 -1). To determine the IP of the target instruction, the processor converts the displace
ment value'to a byte displacement (i.e., multiplies the value by 4). It then adds the resulting
byte displacement to the IP of the next instruction.

Note

To allow labels or absolute I1ddresses to be used in the assembly-language version of the COBR
format instructions, the Intel 80960KB Assembler converts a targ (target) operand value in an
assembly-language instruction into the displacement value required for the COBR format, using
the following calcullltion:

displacement =' (t?r:g/4) - (IP + 4)

For the test-if instructions, only the srcl field is used. Here, this field specifies a destination
global or local register (ml is ignored).

CTRL FORMAT

The CTRL format is used for instructions that branch to a new IP, including the branch,
branch-if, bal, and call instructions. The return instruction also uses this format. The opcode
field for this format is 8 bits (two hexadecimal digits). '

The instructions that use this format have no operands. The target address for a branch is
specified with the displacement field in the same manner as is done with the COBR format
instructions. Here, the displacement field sEecifies a word displacement (also a signed, twos
co~plement number) that can range from -2 1 to 221 -1. ,

The processor ignores the displacement field for the return instruction.

(

MEM'FORMAT

The MEM format is used for instructions that require a memory address to be computed;
These instructions include the load, store, and Ida instructions., Al'so, the extended versions of
the branch,branch-and-link,and call instructions (bx, balx, and calix) uses this format. ' ,

There are two MEM formats, MEMA and MEMB. Th~ MEMB format offers the option of
including a 32-bit displacement (contained in a second word) to the instruction. Bit 12 of the
first word of the instruction determines whether the format is MEMA (clear) or MEMB (set).

For both formats the opcode field is 8 bits long. The src/dst field specifies a global or local
register. 'For load instructions, the src/dst fierd specifies the destination register for a word
loaded into the processor from memory or, for operands larger than one word, the first of
successive destination registers: For store instructions, this field specifies the register or group
of registers that contain the source operand to be stored in memory.

inter MACHINE·LEVEL INSTRUCTION FORMATS

The mode bit (or bits for the MEMB format) determine the address mode used for the instruc
tion. Table B-3 summarizes the addressing modes for the two versions of the MEM format.
The fields used in these addressing modes are described in the following sections.

Table B-3: Addressing Modes for MEM Format Instructions

Format Mode Address Computation
Bit(s)

MEMA 0 offset

1 (abase) + offset

MEMB 0100 (abase)

0101 (IP) + displacement + 8

0110 reserved

0111 (abase) + (index) * 2scale

1100 displacement

1101 (abase) + displacement

1110 (index) * 2scale + displacement

1111 (abase) + (index) * 2scale + displacement

Notes:
1. In the address computations above, a field in parentheses (e.g., (abase»

indicates that the value in the specified register is used in the computation.
2. The use of a reserved encoding causes an invalid opcode fault to be signaled.

MEMA Format Addressing

The MEMA format provides two addressing modes:

• absolute offset

• register indirect with offset

The offset field specifies an unsigned byte offset from 0 to 4096. The abase field specifies a
global or local register that contains an address in memory. The address is interpreted as either
a virtual address or a physical address depending on whether the processor is operating in
virtual-addressing or physical-addressing mode, respectively.

For the absolute offset addressing mode (the mode bit is clear), the processor interprets the
offset field as an offset from byte 0 of the current process address space. The abase field is
ignored. Using this addressing mode along with the Ida instruction allows a constant of from 0
to 4096 to be loaded into a register.

For the register indirect with offset addressing mode (the md bit is set), the value in the offset
field is added to the address in the abase register. Setting the offset value to zero creates a
register indirect addressing mode, however, this operation can generally be carried out faster
by using the MEMB version of this addressing mode.

9-5

MACHINE~LEVEL INSTRUCTION FORMATS

MEMB Format Addressing

The MEMB fonnat provides the following seven addressing modes:

• absolute displacement

• register indirect

• register indirect with displacement

• register indirect with index

• register indirect with index and displacement

• index with displacement

• IP with displacement

The abase and index fields specify local or global registers, the contents of which are used in
the address computation. When the index field is used in an addressing mode, the processor
automatically scales the value in the index register by the amount specified in the scale field.
Table B-4 gives the encoding of the scale field. The optional displacement field is contained in
the word following the instruction word. The displacement is a 32~bit, signed, twos comple
ment value.

Table 8-4: Encoding of Scale Field

Scale Scale Factor
(Multiplier)

000 1

001 2

010 4

011 8

100 16

101 to 111 reserved

Note:
The use of a reserved encoding causes
an invalid opcode fault to be signaled.

For the IP with displacement mode, the value of the displacement field plus 8 is added to the
address of the current instruction.

B-6

Appendix
Instruction Timing

c

APPENDIX C
INSTRUCTION TIMING

This appendix describes the 80960KB processor's instruction pipeline and how it affects the
timing of instructions. The number of clock cycles required for each instruction are also given
here.

INTRODUCTION

The 80960 architecture defines several mechanisms for increasing processor performance
through the use of pipelining and parallel execution of instructions. This appendix describes
how these mechanisms have been incorporated into the design of the 80960KB processor and
provides information to help programmers maximize the performance of the processor .

. INTERNAL STRUCTURE OF THE 80960KB PROCESSOR

The 80960KB processor is composed of the following six major functional units (shown in
Figure C-l):

• Bus Control Logic

• Instruction Fetch Unit and Instruction Cache

• Instruction Decoder

• Micro-Instruction Sequencer and ROM

• Instruction Execution Unit

• Floating Point Unit

C-1

INSTRUCTION TIMING

EXTENTION TO THE 80960
ARCHITECTURE

,...----------,
FLOATING

POINT
REGISTERS

t
FLOATING-
POINT UNIT

'---1--- "'---I

.. "
,. t ~,.

GLOBAL
REGISTERS AND'
LOCAL REGISTER

. SETS

t
INSTRUCTION
EXECUTION

UNIT

t ~

,.

,.
MICRO- INSTRUCTION

.. "
~,.

INSTRUCTION FETCH UNIT INSTRUCTION
SEQUENCER AND DECODER
AND ROM INSTRUCTION

CACHE

'" BUS
CONTROL

'" LOGIC

Figure C-1: Block Diagram of the 80960KB Processor

EXTERNAL
BUS

++

These units function independently from one another, but in close cooperation. The functions
of each of these units is described in the following sections.

Bus Control Logic

The Bus Control Logic (BCL) provides the interface between the processor and the external
world. This interface consists of a multiplexed, burst bus, which is capable of memory-access
rates of over 53 Megabytes/second (with a 20 Mhz CPU clock). The BCL accepts requests
from other units within the 80960KB, prioritizes them, and executes them. It attempts to
maximize bus access efficiency through buffering and burst accesses.

The BCL provides a queuing mechanism that can buffer up to three outstanding requests at any
given time. This mechanism, coupled with other 80960KB features (such as scoreboarding,
which is discussed later), allow other units in the 80960KB to continue operation without
waiting for bus requests to be completed. As a result, the execution of most memory reference'
instructions require little or no delay in the instruction execution pipeline.

C-2

inter INSTRUCTION TIMING

The BCL generates burst cycles on the external bus, which allow from one to 16 bytes of data
to be read or written in a single operation. The processor takes advantage of burst transfers in
several ways. First, multiple-register load or store operations can be carried out in a single bus
operation, using the Idl (load long), Idt (load triple), and Idq (load quad) instructions and the
corresponding stl (store, long) stt (store triple), and stq (store quad) instructions. Second,
instructions can be fetched in 16-byte bursts, thereby reducing bus traffic for instruction
fetches. Third, floating-point values of 32, 64 or 80 bits can be stored in a single bus opera
tion.

Instruction Fetch Unit and Instruction Cache

The Instruction Fetch Unit (IFU) acts as an intelligent "buffer" for the Instruction Decoder
(ID). Its purpose is to present the instruction stream to the ID in the fastest and most trans
parent way possible. The lFU uses several mechanisms to accomplish this goal, as described
in the following paragraphs.

The IFU maintains a 512 byte, direct-mapped instruction cache. This cache allows very fast
access to instructions. While the other units in the processor are executing instructions, the
IFU looks ahead in flow of instructions stored in the instruction cache. If a cache miss is
detected (that is, an instruction that will soon be needed is not in the instruction cache), the lFU
issues a prefetch request to the BCL. Upon receiving the requested instruction, the IFU
updates the instruction cache. In most cases, this fetch and load will take place before the ID
requires the instruction. The major exception to this rule happens on branch conditions.

The IFU works closely with the ID in handling branch conditions. The ID informs the lFU of
any branch operations that are about to take place. Such notifications take place on uncon
ditional branches and on conditional branches in which the condition code is valid. When the
IFU is notified of a branch, it checks for a cache hit on the desired instruction. If the
instruction is not present, the IFU begins fetching instructions for the new control path.

To further minimize delays in the instruction pipeline, the ID sends a special signal to the IFU
whenever instructions are required immediately. The lFU then passes the fetched instructions
to the ID directly, rather than writing them to the cache and reading them back out again. This
technique is called an instruction-cache bypassing.

The instruction pointer (IP) register in the processor and the IFU maintain several instruction
pointers. These pointers point to instructions at various stages of the fetch-decode-execute
pipeline. If a fault is signaled from any unit, the processor uses these pointers to determine the
problem and preserve the state of the processor.

Instruction Decoder

The ID decodes the instructions it receives from the IFU and routes them to the appropriate
execution units. In doing this, it attempts to keep the computing resources of the processor
working at the highest possible levels.

Instructions are decoded into the following four groups, according to how the instructions are
executed:

C-3

inter INSTRUCTION TIMING

Simple Instructions

Floating Point and Branch Instructions

Complex Instructions

Load and Store Instructions

The following paragraphs list the instructions in each of these groups and describe how the ID
handles them.

Simple Instructions

The instructions in the simple-instruction group require very little decoding. These instructions
include logical; comparison; shift; integer add and subtract; and ordinal add and subtract
instructions. The ID decodes these instructions and passes them to the instruction execution
unit (lEU), where they are executed, usually in a single clock period.

Floating Point and Branch Instructions

All floating-point instructions are executed by the floating-point unit (FPU). Often, the execu
tion of floating-point instructions requires interaction between the FPU, II>, and Micro
Instruction Sequencer (MIS). For example, the FPU may require access to the general-purpose
registers (maintained by the lEU). Here, the ID assists in supplying data to the FPU. Also,
many of the floating-point instructions are executed by means of microcode. The FPU gets the
microcode from the MIS.

The ID executes branch instructions directly. If the branches are unconditional, no interaction
with the processor's other execution units is required.

On conditional branch instructions, the ID uses a condition code scoreboard to streamline the
branching process. Scoreboarding is a mechanism by which various resources within the
processor can be marked as in use (or pending a result). When one of the execution units in
the processor is in the process of altering the condition code, it marks the condition code
scoreboard. When the ID prepares to execute a conditional branch instruction, it checks the
condition code scoreboard. If the scoreboard is marked as in use, the ID waits for the result
before proceeding. If the condition code scoreboard is clear, the ID signals the IFl,J im
mediately if a change in program flow is about to happen.

Conditional fault instructions (fault-if instructions) are also executed in the Ip. These opera
tions differ from conditional branches in that they result in a fault event being generated,
followed by an implicit call to the appropriate fault-handler routine.

As a result of the pipelining described above, branches can often be carried out in zero clock
cycles. For example, the branch instruction (b) shown below will execute in zero cycles, since
the branch time is overlapped completely by the execution time ofthe floating-point instruction
(sinr).

C-4

inter INSTRUCTION TIMING

sinr
b

gO, gl
some location

some location:
mov gl,g2

The branch-if instruction (be) in the following example is also executed in zero cycles:

cmp
divi
be

go_here:

OxlO, r9
rIO, rll, rIO
go_here

mov gl,g2

Here, the comparison instruction (cmp) is placed early in the instruction stream, allowing the
branch condition based on the value of r9 to take place while the integer divide instruction
(divi) is being executed.

Complex Instructions

Complex instructions are those that are executed using one or more microcode instructions.
Examples of such instructions are the flushreg (flush local registers), mark, and fmark (force
mark) instructions. The ID decodes complex instructions and forwards them to the MIS unit.
The MIS then sends the equivalent microcode to the lEU.

Load and Store Instructions

Load and store instructions are those that request data to be read from or written into memory.
The ID sends these instructions directly to the BCL, which executes them.

The ID is responsible for converting the addressing information encoded in load, store, branch,
and call instructions into an effective memory addresses. The circuitry that actually performs
effective-address calculations resides in the IFU, but the ID oversees these operations. The
generation of effective addresses is performed within a separate carry look-ahead adder, used
with hardware shift logic. The ability to calculate effective addresses independently from
instruction execution allows address calculation to be overlapped with computation. The time
required to calculate an effective address ranges from zero to four cycles; but, for the most
commonly used addressing modes, this time is less than two cycles.

Instructions that require effective addresses are executed by either the ID or the BCL, thus
preserving the pipeline and eliminating delays or resource constraints on the lEU or FPU.

C-5

INSTRUCTION TIMING

Micro-Instruction Sequencer and ROM

The MIS is a multipurpose unit designed to help in the execution of instructions that use
microcode. All of the processor's microcode is stored in ROM, which is accessed through the
MIS. When the ID receives a complex instruction (one that requires microcode to be
executed), the MIS supplies the microcode to the lEU as described earlier in the discussion of
complex instructions.

The MIS also supplies microcode for floating-point instructions; the power-up and self-test
performed during processor initialization; interrupt handling; and fault handling.

Instruction Execution Unit

The lEU contains the Arithmetic Logic Unit (ALU) and the mechanism for register and
condition-code scoreboarding. It also manages the 16 global registers and the 4 sets of 16 local
registers.

The ALU performs the following functions for the lEU:

• Addition and subtraction of integers and ordinals

• Moves between registers

• Logical operations

• Bit operations

• Shifts and rotates

• Comparisons

It is capable of performing any of these operations in a single clock cycle.

The lEU can also work with integer literals in the range of -16 to +31, which are encoded in
the REG instruction format. This method of encoding literals performs two functions. First, it
provides a more compact instruction stream. Second, when a literal is used as an argument for
an instruction, the lEU is able to execute the instruction in one less clock cycle.

The lEU handles the reading and writing of global and local registers. It also handles the
allocation of local registers sets on procedure calls. The lEU allocates a new set of local
registers on each procedure call. If all four register sets become allocated, the lEU automati
cally flushes the oldest frame to the stack on the next procedure call. The lEU also automati
cally retrieves any local register frame from the stack when required by a return operation. The
majority of procedure calls or returns do not require the processor to flush local registers to
memory. Call instructions that can be executed without flushing a register set require only 9
cycles to complete, with the corresponding return taking only 7 cycles.

The register scoreboard provides scoreboarding for the global and local registers. When, one
or more registers are being used in an operation, they are marked as in use. The register
score boarding mechanism allows the processor to continue executing subsequent instructions,
as long as those instructions do not require the contents of the scoreboarded registers.

C-6

inter INSTRUCTION TIMING

A typical event that would cause scoreboarding is a load operation. For a load from memory,
the contents of the affected registers are not valid until the BCL fetches the data and the
registers are loaded. For example, consider the sequence:

ld gO, (gl)
addi g2, g3, g4
addi g5, g4 ,g6
subi gO, g6, g6

Here, when the BCL initiates the ld operation, register gO is scoreboarded. As long as sub
sequent instructions do not require the contents of gO, the ID continues to dispatch instructions.
For example, the two addi instructions above are executed while the BCL is fetching the data
for gO. If gO is not loaded by the time the subi instruction is ready to be executed, the lEU
delays execution of the instruction until the loading of gO has been completed.

If an operation accesses a single register, only that register is scoreboarded. However, if
multiple registers are accessed (such as, with the Idl, lit, or Idq instructions), registers are
scoreboarded as shown in Table C-1, according to the base register of the the group being
accessed.

Table C-1: Registers Scoreboarded According to Registers Referenced

Base Register Block of Registers
Accessed Score boarded

gO 0-3
g2 0-3
g4 0-7
g6 0-7
g8 8-11

glO 8-11

g12 12-15

g14 12-14

Instruction Execution Unit Performance Enhancements

The execution times of instructions in the lEU are dependent on the instruction flow. Two
features iii the lEU that can enhance the performance of instruction execution are:

• Register Bypassing

• Condition Code Scoreboarding

Register Bypassing. Register bypassing is a mechanism that allows an instruction that would
ordinarily require source operands to be placed in registers to be executed without accessing
one or both of the source registers. Register bypassing occurs in either of two circumstances.
First, when the lEU executes an instruction with two source operands, register bypassing
occurs if one or both of the operands are literals. Second, register bypassing will also occur

C-7

inter INSTRUCTION TIMING

when the second of two source operands is the result of the previous instruction. The net result
of register bypassing is the saving of one clock cycle. Most instructions that the lEU executes
can be executed in a single cycle when register bypassing occurs.

Condition Code Scoreboarding. The processor requires one clock cycle to set the condition
code bits as the result of an instruction. If one of the instructions that follows depends on the
condition code, condition-code scoreboarding can be used to save one cycle of execution time.
The following example illustrates this technique:

Case 1 - 5 cycles

addc
mov
addc

Case 2 - 6 cycles

addc
addc
mov

r4, r5, rIO
gIO, gI2
r6, r7, rll

r4, r5, rIO
r6, r7, rll
gIO, gI2

Here, both Case 1 and Case 2 accomplish the same task. However, Case 2 requires a wait of
one clock cycle between the first and second addc instruction, while the condition code is set.
Case 1, on the other hand, takes advantage of condition code scoreboarding by executing the
move (mov) instruction while the condition code is being set. The code in Case 1 thus
executes one clock cycle faster than the code in Case 2.

Floating Point Unit

The FPU performs all the floating-point computations for the processor, as well as the integer
multiply and divide operations. It also manages the four 80-bit floating-point registers, which
it uses for extended-precision, floating-point calculations.

The FPU shares the resources of the processor. For example, it can use the global and local
registers as operands for floating-point operations. It also gets microcode for the execution of
complex floating-point instructions from the MIS.

To perform integer multiplication and several floating-point calculations, the FPU contains a
32-bit integer Booth-Multiplier. This multiplier performs integer multiplication operation in a
variable amount of time, depending on the number of significant bits. It is used for integer
multiplications and several floating-point calculations.

EXECUTION TIMES

The following section describes the execution times that can be expected for the various
instructions in the 80960KB processor. As illustrated in the previous sections of this appendix,
the execution time for each instruction can vary considerably, for two reasons. First, many
instructions can vary in execution time, depending on their arguments and the state of the

c-s

INSTRUCTION TIMING

on-chip resources being used. Second, by taking advantage of pipelining and overlapping of
operations, a program can be written in which some instructions, in effect, take no clock cycles
to execute.

In the following discussion of instruction timing, the execution time of an instruction is defined
as the time between the beginning of actual execution of a decoded instruction and the begin
ning of execution for the next decoded instruction. For example, the illustration in Figure C-2
shows the execution time of a two operand instruction to be two clocks, with respect to the
next instruction to be executed.

FIRST INSTRUCTION

FETCH DECODE

SECOND INSTRUCTION

EXECUTE
src1

src2

EXECUTION TIME

RESULT

...... ---,..----r - - - - ,..----,..-----,
FETCH DECODE WAIT EXECUTE RESULT

~---...... ---........ - - - - _-_...&._-_

Figure C-2: Execution Time of an Instruction

Execution times for the 80960 Architecture Instructions

The following paragraphs show the instruction times for the instructions defined in the 80960
architecture.

Logical instructions

The timing of the logical instructions depends on the lEU bypass mechanism described earlier
in this appendix, in particular for any instruction of the form:

alu_instruction src1 , src2, dst

If src1 or src2 is a literal or if src2 is the result of the previous operation, a bypass hit occurs.
Otherwise, there is no bypass hit and the instruction requires an extra clock to load the second
operand. Table C-2 shows the timing of the logical instructions depending on whether or not a
bypass hit occurs.

Note

In all the following tables, execution time is given in number of clock cycles.

C-9

inter INSTRUCTI·ON TIMING

Table C-2: Logical Instruction Timing

Instruction Normal Case Worst Case
Execution Time Execution Time

(Bypass Hit) (Bypass Miss)

and 1 2

nand 1 2

or 1 2

nor 1 2

xor 1 2

xnor 1 2

andnot 1 2

notand 1 2

not 1 1

notor 1 2

ornot 1 2

rotate 1 2

shlo 1 2

shro 1 2

shli 2 3

shri 2 3

shrdi 2 3

Bit Instructions

The execution times for the bit instructions are also dependent on whether or not a register
bypass has occurred or not, as is shown in Table C-3.

Table C-3: Bit Instruction Timing

Instruction Normal Case Worst Case
Execution Time Execution Time

(Bypass Hit) (Bypass Miss)

notbit 2 3

setbit 2 3

c1rbit 2 3

alterbit 2 3

chkbit 2 3

extract 7 7

modify 8 8

C-10

INSTRUCTION TIMING

The execution times of the scanbit and span bit instructions (shown in Table C-4 depend on
condition code scoreboarding. If the condition code is not set by the previous instruction
execution, the instruction will complete in one less clock cycle. Execution time is also depend
ent on the number of bits operated upon.

Table C-4: Scan and Span Bit Instruction Timing

Instruction Best Case Normal Case Worst Case
Execution Time Execution Time Execution Time

scanbit 8 11 14

span bit 8 11 14

Register Moves

The timing of instructions that move data between registers is directly related to the number of
words moved. One clock cycle is required to move one (as shown in Table C-5).

Table C-5: Move Instruction Timing

Instruction Execution Time

mov 1

movl 2

movt 3

movq 4

Integer and Ordinal Arithmetic

The execution times for the basic add, subtract, and comparison instructions (as shown in
Table C-6) depend on register bypass. The normal-case results are achieved when a register
bypass occurs.

C-11

INSTRUCTION TIMING

Table, C-6: Integer and Ordinal Arithmetic Instruction Timing

Instruction Normal Case Worst Case
Execution Time Execution Time

(Bypass Hit) (Bypass Miss)

addo I 2

addi I 2

subo I 2

subi I 2

cmpo I 2

cmpi I 2

cmpinco 2 3

cmpdeco 2 3

cmpinci 2 3

cmpdeci 2 3

The execution times for the add, and subtract with carry and conditional compare instructions
(shown in Table C-7) depend on condition code scoreboarding. If the instruction executed
prior to any of these instructions sets the condition code (cq, the worst case instruction
execution time occurs; if an instruction is inserted between the instruction that sets the con
dition code and one of the instructions listed in Table C-7, the instruction is executed in the
normal case time.

Table C-7: Add/Subtract With Carry, Conditional Compare Instruction Timing

Instruction Normal Case Worst Case
Execution Time Execution Time
(CC Available) (CC Not Available)

addc I 2

subc I 2

subi I 2

concmpi I 2

Multiply and Divide Instructions

Table C-8 shows the typical instruction execution times for the multiply and divide instruc
tions:

C-12

INSTRUCTION TIMING

Table C-8: Multiply and Divide Instruction Timing

Instruction Range of Typical Case
Significant Bits Execution Time

mulo 9 to 21 18

muli 9 to 21 18

divi 37 37

divo 37 37

remo 37 37

remi 37 37

modi 37 37

emul 37 24

ediv 37 40

Since the processor contains a Booth Multiplier with early out, the execution times on the
multiply and divide instructions (shown in Table C-8) depend on the number of significant bits
in the src1 operand. For example, Table C-9 shows the execution times based on the number
of significant bits in src1:

Table C-9: Multiply/Divide Execution Times Based on Significant Bits

Src1 Significant Bits Execution Time

2 9

4 10

8 11

32 21

Note that the shift instructions or the add and subtract instructions may be faster than the
multiply instructions in certain instances (for example, when mUltiplying by 3, 5, 15, etc.).

Branching

Branch instructions are executed directly by the ID and do not require lEU or FPU resources.
Because of this, branch instructions can in most cases be programmed so that their execution is
overlapped with other operations. Table C-I0 lists the ranges of times for execution of branch
instructions, from best (maximum overlap) to worst (no overlap). (The instructions in capital
letters indicate groups of instructions that branch on condition codes, such the BRANCH IF
instructions, be, bg, bl, etc.)

C·13

inter INSTRUCTION TIMING

Table C-10: Branch Instruction Timing

Instruction Best Case Worst Case
Execution Time Execution Time
(CC Available) (CC Not Available)

b o to 2 (0 to 2) o to 2 (0 to 2)

BRANCH IF o to 2 (0 to 1) o to 3 (0 to 2)

bx o to 6 (0 to 6) o to 6 (0 to 6)

BRANCH AND 2 to 8 (2 to 8) 2 to 8 (2 to 8)
LINK

COMPARE AND 3 to 5 (3 to 4) 3 to 5 (3 to 4)
BRANCH

TEST IF o to 3 (0 to 2) o to 4 (0 to 3)

FAULT IF o to 2 (0 to 1) o to 3 (0 to 2)

The second column of numbers lists execution-time ranges for conditional branches in which
the condition code was not set in the previous instruction, and the third column lists ranges for
branches in which the condition code was set by the previous instruction. Also, the first range
in each column is for the case in which the branch is taken, and the range in parentheses is for
the case in which the branch is not taken.

When writing optimized code for the 80960KB processor, it is best to perform conditional tests
at least one instruction before a conditional branch. This practice allows the execution times in
column two to be achieved. It is also important to note that the "not taken" branch case
executes in one less cycle, because there is no break in the pipeline. (Remember, instruction
time is defined as the time from the start of execution of one instruction to the start of
execution of the next instruction. If the pipeline is stalled, the fetch of the next instruction will
be delayed one clock. This delay mayor may not be hidden by the parallelism of the 80960KB
processor).

Call/Return Instructions

As described earlier in this appendix, the 80960KB processor provides four sets of local
registers. When a call instruction is executed, the processor allocates a new set of local
registers to the called procedure or interrupt routine. If, when a call or calix instruction is
executed, a set of local registers is available, the processor executes the instruction in 9 clock
cycles.

If a set of local registers is not available, the processor flushes the oldest set of registers to the
stack in memory to free up a register set. Flushing a set of local registers requires four
quad-word stores to memory. Assuming zero-wait-state memory, this operation adds 24 clocks
to the 9 clocks normally required to execute a call.

The ret (return) instruction normally requires 7 clock cycles. If the local registers being
returned to have been flushed to the stack, an additional 24 clocks must be added to this
execution time (with zero-wait-state memory) for the processor to reload the local registers

C-14

INSTRUCTION TIMING

from the stack. It is important to note that the processor only reloads the local registers when
they are required, thus eliminating unnecessary memory cycles.

Load Instructions

A load instruction requires the following steps:

1. Instruction Fetch

2. Decode

3. Compute Effective Address/Scoreboard Register(s)

4. Place Address on Bus

5. Wait State(s)

6. Receive Data on Bus

7. Place Data in target register

Of these steps, only steps 3 through 7 are included in the definition of execution time for an
instruction. The following figures show several examples of load instruction timing depending
on where the load instruction is placed in the instruction stream.

The example in Figure C-3 illustrates a load instruction where the instruction that follows
requires the fetched data. Here, the pipeline is stalled while the processor waits for the load to
complete. Assuming a one-clock-cycle effective-address calculation, the load will require 4 or
5 clock cycles to be executed, depending on whether or not zero-wait-state memory is used.

PREVIOUS INSTRUCTION

I DECODE I EXECUTE

Id INSTRUCTION

WAIT

EXECUTION TIME

INSTRUCTION USING Id RESULT

I FETCH I DECODE I EXEC~TE RESULT

Figure C-3: Load Where the Next Instruction Requires the Fetched Data

C-1S

INSTRUCTION TIMING

Figure C-4 gives an example of a load instruction where the instruction that follows does not
require the data being fetched from memory. Here, the unrelated instruction can be executed
while the load is being completed. The 2 clock cycles required to execute the unrelated
instruction are then overlapped with the 4 or 5 cycles required to execute the load (again
depending on whether or not zero-wait-state memory is used). The load instruction thus
requires a net of I or 2 clock cycles from the pipeline to be executed.

PREVIOUS INSTRUCTION

I DECODE I EXECUTE

Id INSTRUCTION

UNRELATED INSTRUCTION

FETCH DECODE EXECUTE

WAIT

4 ~
EXECUTION TIME

RESULT

Figure C-4: Load Where the Next Instruction Does Not Require the Fetched Data

Finally, Figure C-5 shows an example of two load instructions being executed back-to-back.
These two instructions can be executed in 5 or 6 clock cycles, as long as the number of BCL
requests is limited to 3 or less (which is the size of the output request FIFO in the BCL's
control queue). Here, the second load is almost completely overlapped by the first load. Times
for multiple word loads will be lengthened I cycle plus wait states for each additional word. If
more than 3 requests become outstanding, the processor will wait until the number of outstand
ing load operations goes below the size of the output FIFO.

FIRST Id INSTRUCTION

WAIT

SECOND Id INSTRUCTION

WAIT

EXECUTION TIME FOR BOTH INSTRUCTIONS

Figure CoS: 8ack-to-8ack Load Instructions

C·16

INSTRUCTION TIMING

Store Operations

Store instructions involve a posting of an address and data request to the BCL and are usually
executed in 2 to 3 clock cycles. (They do not require register scoreboarding.) If the instruction
following a store instruction is another store instruction, the second store instruction is usually
executed in 2 clock cycles. If the following instruction uses the lEU, the execution time is 3
clock cycles. The only case in which this time will increase is when the three-request output
FIFO in the BCL becomes full. Here, if another store instruction is issued, the processor waits
for the BCL to complete its operations before other instructions can execute.

Execution times for the Extended Instructions

The following paragraphs show the execution times for those 80960KB instructions that are
extensions to the 80960 architecture.

Decimal Instructions

Table C-ll shows the instruction times for the decimal instructions.

Table C-11: Decimal Instruction Timing

Instruction Execution Time

dmovt 7

daddc 8

dsubc 8

Floating-Point Instructions

Table C-12 shows the instruction execution times for the simple floating-point instructions.
Where applicable, a range and a typical observed average are given.

C-17

inter INSTRUCTION TIMING

Table C-12: Simple Floating-Point Instruction Timing

Instruction Execution Time

movr 5

movrl 5 to 7

movre 7 to 8

cpysre 8

cpyrsre 8

addr 9 to 17 (typical 10)

addrl 12 to 20 (typical 13)

subr 9 to 17 (typical 10)

subrl 12 to 20 (typical 13)

muir 11 to 22 (typical 20)

mulrl 14 to 43 (typical 36)

divr 35

divrl 77

cmpr 10

cmprl 12

cmpor 10

cmporl 12

cvtri 25 to 33

cvtril 26 to 35

cvtilr 41 to 45

cvtilr 42 to 46

cvtzri 41 to 45

cvtzril 42 to 46

roundr 56 to 69

roundrl 56 to 70

scaler 28

scalerl 30

logbnr 32 to 41

logbnrl 32 to 43

The instructions given in Table C-13 consist of the complex floating point instructions. Only
typical instruction execution rates are given here. In many cases, the clock count can vary by
30-40%. Execution time is dependent on the operands.

C-18

inter INSTRUCTION TIMING

Table C-13: Complex Floating-Point Instruction Timing

Instruction Execution Time

sqrtrl 104

expr 300

exprl 334

logepr 400

logeprl 420

logr 438

logrl 438

remr (67 to 75878)

remrl (67 to 75878)

atanr 267

atanrl 350

cosr 406

cosrl 441

tanr 293

tanrl 323

It is important to note that these floating-point instructions are interruptible. When an interrupt
is received while one of these instructions is being executed, the processor can suspend execu
tion, service the external request, then resume execution of the instruction.

C-19

Appendix
Initialization Code

D

APPENDIX D
INITIALIZATION CODE

This appendix provides an example of the initialization code required to initialize the 80960KB
processor.

OVERVIEW

The code given in this appendix demonstrates one of the methods that can be used to initialize
the 80960KB processor. To use this code, the programmer must assemble (and compile, in the
case of the C program modules) the individual files into object modules. These modules must
then be loaded into ROM (generally EPROM). The resulting EPROM will contain an IMI (as
shown in Figure 7-3; an interrupt table; a fault table; and a system procedure table; a set of
dummy interrupt and fault handler routines; and a set of dummy system procedures. (The
dummy interrupt and fault handler routines merely perform a return to the initialization code if
an interrupt or fault occurs during initialization. Likewise, the dummy system procedures
perform returns. These routines may be changed to suit the needs of a particular application.)

When the RESET pin on the processor is asserted, the processor performs its self test, then
begins executing the initialization code. This code directs the processor to perform the follow
ing rudimentary steps of initialization:

1. Copy the PRCB from the IMI into RAM.

2. Copy the interrupt table into RAM.

3. Execute a reinitialize processor lAC, to enable the processor to load the new pointers to
the PRCB and interrupt table.

The PRCB and interrupt table are copied into RAM because both of these data structures have
fields that the processor must be able to write.

Once these first steps of initialization have been completed, the processor is able to execute
additional initialization steps to configure the processor for a particular application. The
following items are examples of further initialization actions that might be included in the
initialization code:

• Copy new interrupt handler routines into RAM and change the pointers in the interrupt
table to point to these new routines.

• Copy the fault table into RAM; copy new fault handler routines into RAM; change the
pointers in the fault table to point to the new fault handler routines; and change the pointer
in the PRCB to point to the relocated fault table.

• Create a new system procedure table in RAM; copy the system procedures into RAM;
change the pointer in the PRCB to point to the new system procedure table.

Alternatively, the interrupt handler routines, fault handler routines, and system procedures can
all be loaded into ROM. Here, execution of an application program can begin directly follow
ing the reinitialization of the processor.

0-1

INITIALIZATION CODE

EXAMPLE CODE

The example code consists of the following six files:

• example.1st

• Ctable.1st

• Uable.lst

• Chandler.c

• i_handler.c

• cold.1d

The first three files are listings from the Intel 80960KB Assembler. These listings include
assembly code (such as would be included in an ".s" file) and the resulting object code. The
fourth and fifth files are C program modules. The sixth file is a load module.

The following steps describe how to use the code in these files:

1. Assemble the assembly code in files example.s,Ltable.s, and i_table.s. (Here the ".s" files
are made up of the assembly code only from the" .1st" files listed above.)

2. Compile the C code in files L handler.c and i _ handler.c.

3. Link the object modules (example.o, Ltable.o, i_table.o, Lhandler.o, and i_handler.o),
using the 80960 Linker and the script in the cold.ld file. The script in cold.ld directs the
linker to locate the linked code at address O.

4. Bum the output file from the linker in an EPROM.

example.lst

1 0000
2 0000
3 0000
4 0000
5 0000
6 0000
7 0000
8 0000
9 0000

10 0000
11 0000
12 0000
13 0000
14 0000
15 0000
16 0000
17 0000
18 0000

Below is example system initialization code and tables.
The code builds the prcb in memory, sets up the stack frame,
the interrupt, fault, and system procedure tables, and
then vectors to a user defined routine.

------ declare the below symbols public

.globl system_address_table

.globl prcbytr

.globl start_ip

. globl csl

.globl user stack

.globl sup_;tack

0-2

inter
19 0000
20 0000
21 0000
22 0000
23 0000
24 0000
25 0000
26 0000
27 0000
28 0000
29 0000 00000140
30 0004 00000020
31 0008 00000000
32 OOOe 000001e8
33 0010 00000000
34 0014 00000000
35 0018 00000000
36 001e ffffffff
37 001e
38 001e
39 001e
40 001e
41 001e
42 001e
43 0020
44 0020
45 0024
46 0028
47 002e
48 0030

00000000
00000000
00000000
00000000
00000000

49 0034 00000000
50 0038 00000f50
51 003e 00000000
52 0040 0000027f
53 0044 0000027f
54 0048 00000000
55 004e 00000000
56 0050
57 005e 00000000
58 0060
59 0068 00000000
60 006e 00000000
61 0070
62 OOaO
63 OOaO
64 OOaO
65 OOaO
66 OOaO
67 OOaO
68 DOce

69 0100
70 0100 00000000
71 0104 00000000
72 0108 00000000
73 010e 00001150
74 0110 00000000
75 0114 00000000
76 0118 00000000
77 011e 00000000
78 0120 00000000
79 0124 00000000
80 0128 00000000
81 012e 00000000
82 0130 000001eO
83 0134 000001e6
84 0134
85 0134
86 0134
87 0134
88 0138
89 0140
90 0140
91 0140
92 01e8 00000140
93 01cc OOfeOOfb
94 01dO
95 DldO

INITIALIZATION CODE

.globl intr stack

define lAC address

· set local_lAC, OxffOOOOlO

core initialization block (located at address 0)
(8 words)

.text

.word system_address_table

.word prcbytr
SAT pointer
PReE pointer

· word 0
· word start l.p Pointer to first IP
.word csl calculated at link time
.word csl = - (segtab + PReB + startup)
.word
.word -1

initial PReE

This is our startup PReE. After initialization, this will
Be copied to RAM

prcbytr:
.word OxO - reserved
.word OxO - initialize to 0
· word OxO - reserved
.word OxO 12 - reserved
.word OxO 16 - reserved
.word intr table
.word intr-stack
· word OxO
.word Ox0000027f
.word OxOD00027f
· word fault table
.word OxO
.space 12
• word OxO
· space 8
.word OxO
.word OxO
.space 48
.space 44

20 - interrupt table address
24 - interrupt stack pointer
28 - reserved
32 -
36 -
40 - fault table
44 - reserved
48 - reserved
60 - reserved
64 - reserved
72 - reserved
76 - reserved
80 - scratch space (resumptio'n)

128 - scratch space (error)

The system procedure table will only be used if software puts the
processor into user mode and makes a supervisor procedure call

.align 6
sys yroc _table:

· word 0
.word
.word
.word sup_stack
.word 0
.word
.word
.word
.word
.word
.word
.word

proc_entry 0

Reserved
Reserved
Reserved
Supervisor stack pointer
Preserved
Preserved
Preserved
Preserved
Preserved
Preserved
Preserved
Preserved

.word

.word (proc_entry 1 + Ox2)
Procedure entry

Procedure entry

initlal segment table

.align
system_address_table:

.space 136 # reserve 136 bytes

(user)
(sup.)

.word system_address_table

.word OxOOfcOOfb # inltlallzation words
· space 8

0-3

12

inter

96 01d8 00000100
97 01de 304400fb
98 01de
99 01de

100 01de
101 01de
102 01de
103 OleO
104 OleO
105 OleO
106 OleO OaOOOOOO
107 01e4
108 01e4 OaOOOOOO
109 01e4
110 01e4
111 01e4
112 01e8
113 01e8
114 01e8
115 01e8
116 01e8
117 01e8 8e800400
118 Olec 8caOOOOD
119 01fO 8e883000 00000000
120 01f8 8e903000 00000290
121 0200 000040 Ob
122 0200
123 0200
124 0200
125 0200
126 0204 8e8000bO
127 0208 8eaOOOOO
128 020e 8e883000 00000020
129 0214 8e903000 00000690
130 021e 000024 Ob
131 021e
132 021e
133 021e
134 0220 8ee03000 00000290
135 0228 92e4a014
136 0228
137 0228
138 0228
139 0228
140 0228
141 0228
142 0228
143 0228
144 0228
145 0228
146 0228
147 0228
148 0228
149 0228
150 022e
151 022e 8ea83000 ff000010
152 0234 8eb03000 00000280
153 023e 6005al15
154 023e
155 023e
156 023e
157 023e
158 0240
159 0240 bOe45e14
160 0244 b2e4ge14
161 0248 59a41094
162 024e 39851ff4
163 0250 84079000
164 0250
165 0250
166 0250
167 0250
168 0250
169 0250
170 0254
171 0254 8ef83000 00000750
172 025e 8e07f400 ffffffeO

INITIALIZATION CODe

.word sys-proc_table

.word Ox304400fb
initialization words

-- Below are two "dummy" system procedures. In reality, these
-- would contain the real system code, rather than returns

. align 4

.text
proc_entry_O:

ret
proc_entry_l:

ret

These pointers are to durruny
supervisor routines. They

are for example only

--- Processor starts execution at this spot after reset.

iac:

copy the interrupt table to RAM

1da
1da
1da
1da
bal

1024, gO
0, g4
intr table, g1
intr_ram, g2
loop_here

load length of into table
initialize offset to a
load source
load addrss of new table
branch to move routine

Processor will copy PReB to ram space, located at prcb_ram

lda
lda
lda
lda
bal

176, gO
0, g4
prcb_ptr, g1
prcb_ram, g2
loop_here

load length of prcb
initialize offset to
load source
load destination
branch to move routine

fix up the prcb to point to a new interrupt table

lda
st

intr ram, g12
g12,20(g2)

load address
store into PRCB

At this point, the prcb, and interrupt table have
been moved to RAM. It is time
to issue a REINlTIALlZE lAC, which will start us anew with
our RAM based prcb.

The lAC message, found in the 4 words locatad at the
reinitialize_iac label, contain pointers to the current
System address table, the new, RAM based PRCB, and to
the instruction pointer labeled start_again_ip

Ida local_lAC, g5
Ida reinitialize_iac, g6
synmovq g5, g6

Below is the software loop to move data

loop_here:
ldq
stq
addi
cmpibg
bx

(gl) [g4*1J, g8
g8, (g2) [g4*lJ
g4,16, g4
gO,g4, loop_here
(g14)

load 4 words into g8
store to ram proc. block
increment index
loop until done

The processor wlll begln executlon here after being
reinitialized. We will now set up the stacks and continue

start_again_ip:
lda
lda

0-4

user_stack,fp
-Ox40 (fp), pfp

set up user stack space
load pfp (just in case)

inter
173 0264
174 0264
175 0264
176 0268
177 0268
178 0268
179 0268
180 0268
181 026c
182 0274
183 0274
184 0274
185 0274
186 0274
187 0274
188 0274
189 0274
190 ~ 0274
191 0274
192 0274
193 0278
194 0278
195 0278
196 0278
197 0280
198 0280
199 0284
200 0288
201 028c
202 028c
203 028c
204 028c

205 0290
206 0290
207 0290
208 0290
209 0290
210 0290
211 0290
212 0690
213 0690
214 0690
215 0740
216 0740
217 0750
218 0750
219 0750
220 0750
221 0750
222 Of 50
223 Of 50
224 Of 50
225 Of 50
226 Of 50
227 1150
228 1150
229 1150
230 1150
231 1150
232 1150

8cOfe040

5cfOleOO

8c803000 3b001000
64840290

86003000 00000000

93000000
00000140
00000690
00000254

INITIALIZATION CODe

Ida

lda
modac

Ox40 (fp), sp

0, g14

Ox3b001000, gO
gO, gO, gO

set up current stack ptr

g14 used by C compiler
for arguement lists past
13 arguements.
Inltialize to 0

set up arith. controls
to mask unwanted
exceptions

call main code from here

Note: This setup assumes a main module "main()" written in
C. Also, no opens are done for stdin, stdout, or stderr.
If I/O is required, the devices would need to be opened
before the call to main.

calIx

reinitialize lac:
.word Ox93000000 # reinltialize iac message
.word system_address table
.word prcb_ram - # use newly copied prcb
.word start_again_ip # start here

-------------- other mlSC. stuff

.data
-- define RAM area to copy the prcb & intr to after initial bootup

.align
intr ram:

.space 1024

prcb~ram:

.space 176

.a1ign

user_stack: # reserved area for the user stack
this can be located anywhere in memory

Size is set depending on application needs
.space Ox800

reserved area for the interrupt stack
this can be located anywhere in memory

.space Ox200

sup_stack:
.space Ox400

the end

0-5

Reserve stack space for
supervisor stack

Ctable.lst

0000
0000
0000
0000
0000
0000 00000000
0004 00000000
0008 00000000
OOOe 00000000

10 0010 00000000
11 0014 00000000
12 0018 00000000
13 001e 00000000
14 0020 00000000
15 0024, 00000000
16 0028
17 002e
18 0030
19 0034
20 0038
21 003e
22 0040
23 0044
24 0048
25 004e
26 0050
27 0054
28 0058
29 005e
30 0060
31 0064
32 0068
33 006e
34 0070
35 0074
36 0078
37 007e
38 0080
39 0084
40 008S
41 OOSe
42 0090
43 0094
44 009S
45 00ge
46 OOaO
47 00a4
4S OOaS
49 OOae
50 OObO
51 00b4
52 OObS
53 OObe
54 OOeO
55 00e4
56 OOeS
5'7 DOce
58 OOdO
59 00d4
60 OOdS
61 OOde
62 OOeO
63 00e4
64 OOeS
65 aOee
66 OOfO
67 00f4
6S OOfS
69 OOfe

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

INITIALIZATION CODE

1* ** */
1* User Fault Table */

.glob1 fault_table

. align 8
fault_table:

.word _user_~eserved Type 0 Reserved Fault Handler

.word 0 4

.word user trace; 8

.word '0 -

.word user operation:

.word 0 - #

.word user arithmetic;

.word 0 - #

.word user real arithmetic;

.word '0 - - *

.word

.word

.word

.word

.word

.word

.word

.word
• 'fJord
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word

user constraint:
0-#
_user_reserved # Type 6 Reserved Fault Handler

_user-protection;
o #
_user_machine; #
o #
_user_reserved;
o
_user_type;
o #
user reserved * Type 11 Reserved Fault Handler
0-#

user reserved # Type 12 Reserved Fault Handler
0-#
_user_reserved # Type 13 R~served Fault Handler

_user_reserved # Type 14 Reserved Fault Handler

_user_reserved * Type 15 Reserved Fault Handler

_user_reserved * Type 16 Reserved Fault Handler
o #
_user_reserved * Type 17 Reserved Fault Handler

_user_reserved # Type 18 Reserved Fault Handler

_user_reserved # Type 19 Reserved Fault Handler
o #
_user_reserved * Type 20 Reserved Fault Handler

_user_reserved * Type 21 Reserved Fault Handler

_user_reserved # Type 22 Reserved Fault Handler

_user_reserved # Type 23 Reserved Fault Handler
o #
_user_res;erved * Type 24 Reserved Fault Handler

_user_reserved * Type 25 Reserved Fault Handler

_user_reserved * Type 26 Reserved Fault Handler

user reserved # Type 27 Reserved Fault Handler
0-#
_user_reserved # Type 28 Reserved Fault Handler

_user_reserved * Type 29 Reserved Fault Handler

_user_reserved # Type 30 Reserved Fault Handler

_user_reserved # Type 31 Reserved Fault Handler
o #

0-6

Ltable.lst

0000
0000
0000
0000
0000
0004

7 0024
8 0028

002e
10 0030
11 0034
12 0038
13 003e
14 0040
15 0044
16 0048
17 004e
18 0050
19 0054
20 0058
21 005e
22 0060
23 0064
24 0068
25 006e
26 0070
27 0074
28 0078
29 007e
30 0080
31 0084
32 0088
33 008e
34 0090
35 0094
36 0098
37 00ge
38 OOaO
39 00a4
40 00a8
41 OOae
42 OObO
43 00b4
44 00b8
45 OObe
46 OOeO
47 00e4
48 00e8
49 DOce
50 OOdO
51 00d4
52 OOd8
53 OOde
54 OOeO
55 00e4
56 00e8
57 aOee
58 OOfO
59 00f4
60 00 f8
61 OOfe
62 0100
63 0104
64 0108
65 010e
66 0110
67 0114
68 0118
69 011e
70 0120
71 0124
72 0128
73 012e
74 0130

00000000

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

INITIALIZATION CODE

1* Initial Interrupt Table */
.globl intr table
.align 6 -

lntr table:
.;ord a :It Pending Priorities
.fill 8,4,0 :It pending Interrupts 4 + (0->7)*4
.word user_intrh; # interrupt table entry 8
.word _user_intrh: :It interrupt table entry
.word _user_intrh; :It interrupt table entry 10
.word user intrh: :It interrupt table entry 11
.word =user=intrh; # interrupt table entry 12
· word _user_lntrh; #' interrupt table entry 13
· word _user_intrh: :/I: interrupt table entry 14
.word _user_intrh; :It interrupt table entry 15
.word _user_intrh; :#: interrupt table entry 16
.word _user_intrh: :/I: interrupt table entry 17
.word _user_intrh; # interrupt table entry 18
.word user intrh; 4/: interrupt table entry 19
.word =user:=intrh; 4/: interrupt table entry 20
· word _user_intrh; 4/: lnterrupt table entry 21
.word _user_intrh; 4/: interrupt table entry 22
.word _user_intrh; 4/: interrupt table entry 23
· word user intrh; 4/: interrupt table entry 24
.word =user:=intrh; 4/: interrupt table entry 25
.word _user_intrh: 4/: lnterrupt table entry 26
.word _user_intrh: :# interrupt table entry 27
.word _user_intrh: 4/: interrupt table entry 28
.word _user_intrh; 4/: lnterrupt table entry 29
· word user intrh; 4/: interrupt table entry 30
.word =user=intrh; 4/: interrupt table entry 31
.word _user_intrh; 4/: interrupt table entry 32
.word _user_intrh: 4/: interrupt table entry 33
.word _user_intrh; 4/: interrupt table entry 34
.word _user_lntrh; 41= interrupt table entry 35
.word _user_intrh; 4/: interrupt table entry 36
.word user intrh:
· word :=user=intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_lntrh:
.word user intrh;
.word =user=intrh;
· word _user_intrh;
.word _user_intrh;
· word user intrh;
.word =user=intrh;
· word user intrh;
.word =user=intrh:
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
· word user intrh;
.word =user=intrh;
.word _user_intrh;
.word _user_intrh:
.word _user_intrh:
.word _user_intrh;
· word user intrh;
.word =user=intrh;
· word user intrh;
.word =user=intrh:
· word user intrh;
.word =user=intrh;
.word _user_intrh;
· word user intrh;
.word =user=intrh:
.word _user_intrh;
.word
.word
.word
.word
.word
.word
.word

_user_intrh;
_user_intrh;
_user_intrh;
_user_intrh;
_user_intrh;
_user_intrh;
_user_intrh;

0·7

41= interrupt table entry 37
41= interrupt table entry 38
4/: interrupt table entry 39
41= interrupt table entry 40
4/: interrupt table entry 41
41= interrupt table entry 42
41= interrupt table entry 43
4/: interrupt table entry 44
41= interrupt table entry 45
41= interrupt table entry 46
41= interrupt table entry 47
41= interrupt table entry 48
41= interrupt table entry 49
41= interrupt table entry 50
41= interrupt table entry 51
41= interrupt table entry 52
41= interrupt table entry 53
41= interrupt table entry 54
41= interrupt table entry 55
41= interrupt table entry 56
41= interrupt table entry 57
41= interrupt table entry 58
4/: interrupt table entry 59
:# interrupt table entry 60
41= interrupt table entry 61
*' interrupt table entry 62
interrupt table entry 63
interrupt table entry 64
interrupt table entry 65
4/: lnterrupt table entry 66
interrupt table entry 67
interrupt table entry 68

interrupt table entry
interrupt table entry
interrupt table entry
interrupt table entry
interrupt table entry
interrupt table entry
interrupt table entry

69
70
71
72
73
74
75

inter
75 0134 00000000
76 0138 00000000
77 013e 00000000
78 0140 00000000
79 0144 00000000
80 0148 00000000
81 014e OOOO~OOO
82 0150 00000000
83 0154 00000000
84 0158 00000000
85 015e 00000000
86 0160 00000000
87 0164 00000000
88 0168 00000000
89 0160 00000000
90 0170 00000000
91 0174 00000000
92 0178 00000000
93 017e 00000000
94 0180 00000000
95 0184 00000000
96 0188 00000000
97 018e 00000000
98 0190 00000000
99 0194 00000000

100 0198 00000000
101 0190 00000000
102 01aO 00000000
103 01a4 00000000
104 01a8 00000000
105 Olae 00000000
106 01bO 00000000
107 01b4 00000000
108 01b8 00000000
109 01be 00000000
110 OleO 00000000
111 01e4 00000000
112 01e8 00000000
113 Dlcc 00000000
114 01dO 00000000
115 01d4 00000000
116 01d8 00000000
117 01de 00000000
118 OleO 00000000
119 01e4 00000000
120 01e8 00000000
121 01ee 00000000
122 OlfO 00000000
123 01f4 00000000
124 Olf8 00000000
125 01fe 00000000
126 0200 00000000
127 0204 00000000
128 0208 00000000
129 020e 00000000
130 0210 00000000
131 0214 00000000
132 0218 00000000
133 021e 00000000
134 0220 00000000
135 0224 00000000
136 0228 00000000
137 022e 00000000
138 0230 00000000
139 0234 00000000
140 0238 00000000
141 023e 00000000
142 0240 00000000
143 0244 00000000,
144 0248 00000000
145 024e 00000000
146 0250 00000000
147 0254 00000000
148 0258 00000000
149 025e 00000000
150 0260 00000000
151 0264 00000000

INITIALIZATION CODE

.word _user_intrh;

.word _llser_intrh;
· word _user_intrhi
.word _user_intrh;
.word _user_intrh;
.word _llser_intrh;
.word user intrh;
.word =user=intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
· word _user_intrh;
.word _user_intrhi
.word _user_intrh;
· word user intrh;
.word =user=intrh;
· word _user_intrh;
.word _user_intrh;
.word _user_intrhi
· word _llser_intrh;
· word _llser_intrh;
.word _user_intrhi
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _llser_intrh;
.word _llser_intrh;
.word _user_intrhi
.word _llser_intrhi
.word _user_intrh;
.word _user_intrh;
.word user intrh;
.word =user=intrhi
.word _user_intrhi
.word _user_intrhi
.word _user_intrhi
.word _user_intrh;
.word _user_intrh;
.word _user_intrhi
· word user_intrhi
.word user_intrhi
.word _user_intrhi
.word _user_intrhi
.word _user_intrhi
· word user intrhi
.word =user=intrhi
.word _user_intrh;
.word _user_intrh;
· word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word user intrh;
.word =user=intrh;
.word user intrh;
.word =user=intrh;
· word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh
.word _user_intrh
.word _user_intrh
.word _user_intrh

0-8

interrupt table entry 76
interrupt table entry 77
interrupt table entry 78
interrupt table entry 79
interrupt table entry 70
interrupt table entry 71
interrupt table entry 72
interrupt table entry 73
interrupt table entry 74
interrupt table entry 75
interrupt table entry 76
interrupt table entry 77
interrupt table entry 78
interrupt table entry 79
interrupt table entry 80
interrupt table entry 81
interrupt table entry 82
interrupt table entry 83
interrupt table entry 84
interrupt table entry 85
interrupt table entry 86
interrupt table entry 87

interrupt table entry 88
interrupt table entry 89
interrupt table entry 90
interrupt table entry 91
interrupt table entry 92
interrupt table entry 93
interrupt table entry 94
interrupt table entry 95
interrupt table entry 96
interrupt table entry 97
interrupt table entry 98
interrupt table entry 99
interrupt table entry 100
interrupt table entry 101
interrupt table entry 102
interrupt table entry 103
interrupt table entry 104
inte-rrupt table entry 105
interrupt table entry 106
interrupt table entry 107
interrupt table entry 108
interrupt table entry 109
interrupt table entry 110
interrupt table entry 111
interrupt table entry 112
interrupt table entry 113
interrupt table entry 114
interrupt table entry 115
interrupt table entry 116
interrupt table entry 117
interrupt table entry 118
interrupt table entry 119
interrupt table entry 120
interrupt table entry 121
interrupt table entry 122
interrupt table entry 123
interrupt table entry 124
interrupt table entry 125
interrupt table entry 126
interrupt table entry 127
interrupt table entry 128
interrupt table entry 129
interrupt table entry 130
interrupt table entry 131
interrupt table entry 132
interrupt table entry 133
interrupt table entry 134
interrupt table entry 135
interrupt table entry 136
interrupt table entry 137
interrupt table entry 138
interrupt table entry 139
interrupt table entry 140
interrupt table entry 141
interrupt table entry 142

152 0268
153 0260
154 0270
155 0274
156 0278
157 0270
158 0280
159 0284
160 0288
161 0280
162 0290
163 0294
164 0298
165 0290
166 02aO
167 02a4
168 02a8
169 02ao
170 02bO
171 02b4
172 02b8
173 02bo
174 02cO
175 0204
176 0208
177 0200
178 02dO
179 02d4
180 02d8
181 02do
182 02eO
183 02e4
184 02e8
185 02eo
186 02£0
187 02£4
188 02£8
189 02fo
190 0300
191 0304
192 0308
193 0300
194 0310
195 0314
196 0318
197 0310
198 0320
199 0324
200 0328
201 0320
202 0330
203 0334
204 0338
205 0330
206 0340
207 0344
208 0348
209 0340
210 0350
211 0354
212 0358
213 035c
214 0360
215 0364
216 0368
217 0360
218 0370
219 0374
220 0378
221 0370
222 0380
223 0384
224 0388
225 0380
226 0390
227 0394
228 0398

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

INITIALIZATION CODE

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

_llser_intrh;
_user_intrh;
_user_intrh;

user intrh;
=user~)ntrh;

user intrh;
=user~)ntrh;
_user_intrh;

user intrh;
=user~)ntrh;
_user_intrh;

user intrh;
=:user=:intrh;

user intrh;
=user~)ntrh;
_user_intrh;
_user_intrh;
_user_intrh;

user intrh:
:=user:=intrh:
_user_intrh:
_user_intrh:

user intrh:
:=user:=intrh:
_user_intrh:
_user_intrh:
_user_intrh:

user intrh;
:=user:=intrh:
_user_intrh:
_user_intrh;
_user_intrh:
_user_intrh:

user intrh:
:=user:=intrh:
_user_intrh:
_user_intrh:
_user_intrh:
_user_intrh:

user intrh:
:=user:=intrh:
_user_intrh;
_user_intrh:
_user_intrh:
_user_intrh:

user intrh;
:=user:=intrh:
_user_intrh:
_user_intrh:
_user_intrh:
_user_intrh;
_user_intrh;
_user_intrh;

user intrh;
-user-intrh;
:=user:=intrh:
_user_intrh;

user intrh;
=user:=intrh:
_user_intrh;
_user_intrh;

user intrh;
:=user:=intrh:
_user_intrh:
_user_intrh:
_user_intrh;

user intrh:
:=user=intrh:
_user_intrh;
_user_intrh;

user l.ntrh;
:=user:=intrh;
_user_intrh:
_user_intrh:
_user_intrh:
_user:..intrh:
_user_intrh:

0-9

interrupt table entry 143
interrupt table entry 144
interrupt table entry 145

* #

* #

* * #

* #

* #

* #

interrupt table entry 146
interrupt table entry 147
interrupt table entry 148
interrupt table entry 149
interrupt table entry 150
interrupt table entry 151
interrupt table entry 152
interrupt table entry 153
interrupt table entry 154
interrupt table entry 155
interrupt table entry 156
interrupt table entry 157
interrupt table entry 158
interrupt table entry 159
interrupt table entry 160
interrupt table entry 161
interrupt table entry 162
interrupt table entry 163
interrupt table entry 164
interrupt table entry 165
interrupt table entry 166
interrupt table entry 167
interrupt table entry 168
interrupt table entry 169
interrupt table entry 170
interrupt table entry 171
interrupt table entry 172
interrupt table entry 173
interrupt table entry 174
interrupt table entry 175
interrupt table entry 176
interrupt table entry 177
interrupt table entry 178
interrupt table entry 179
interrupt table entry 170
interrupt table entry 171
interrupt table entry 172
interrupt table entry 173
interrupt table entry 174
interrupt table entry 175
l.nterrupt table entry 176
interrupt table entry 177
interrupt table entry 178
interrupt table entry 179
interrupt table entry 180
interrupt table entry 181
interrupt table entry 182
interrupt table entry 183
interrupt table entry 184
interrupt table entry 185
interrupt table entry 186
interrupt table entry 187
interrupt table entry 188
interrupt
interrupt
interrupt
interrupt
interrupt
interrupt
interrupt
interrupt

table entry 189
table entry 190
table entry 191
table entry 192
table entry 193
table
table
table

194
195
196

interrupt table
interrupt table

entry
entry
entry
entry
entry

197
198

interrupt table entry 199
interrupt table entry 200
interrupt table entry 201
interrupt table entry 202
l.nterrupt table entry 203
interrupt table entry 204
interrupt table entry 205
interrupt table entry 206
interrupt table entry 207
interrupt table entry 208
interrupt table entry 209

inter
229 039c
230 03aO
231 03a4
232 03a8
233 03ac
234 03bO
235 03b4
236 03b8
237 03bc
238 03cO
239 03c4
240 03c8
241 03cc
242 03dO
243 03d4
244 03d8
245 03dc
246 03eO
247 03e4
248 03e8
249 03ec
250 03fO
251 03f4
252 03f8
253 03fc
254 0400
255 0404
256 0408
257 040c
258 0410
259 0414
260 0418
261 041c
262 0420
263 0424
264 0428
265 042c
266 0430
267 0434
268 0438
269 043c
270 0440
271 0444
272 0448
273 044c
274 0450

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

INITIALIZATION CODE

.word _user_intrh;

.word _user_intrh;
· word _user_intrh;
.word user intrh;
.word =user=)ntrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
· word _user_intrh;
· word _llser_intrh;
.word _user_l.ntrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_l.ntrh;
.word _user_intrh;
.word _llser_intrh;
.word _llser_intrh;
.word _llser_intrh;
.word _user_intrhi
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
· word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word > _user_intrh;
.word _user_intrh;
.word user intrh;
.word -user-intrh;
.word =user=intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;

0-10

* interrupt table entry 210 * interrupt table entry 211

* #

* * * * * * * #

*

interrupt table entry 212
interrupt table entry 213
interrupt table entry 214
interrupt table entry 215
interrupt table entry 216
interrupt table entry 217
interrupt table entry 218
interrupt table entry 219
interrupt table entry 220
interrupt table entry 221
interrupt table entry 222
interrupt table entry 223
~nterrupt table entry 224
interrupt table entry 225
interrupt table entry 226
interrupt table entry 227
interrupt table entry 228
interrupt table entry 229
interrupt table entry 230
interrupt table entry 231
~nterrupt

interrupt
interrupt
interrupt
interrupt
interrupt
interrupt
interrupt
interrupt
interrupt
interrupt
interrupt
interrupt
interrupt
interrupt

table entry 232
table entry 233
table entry 234
table entry 235
table entry 236
table entry 237
table entry 238
table entry 239
table entry 240
table entry 241
table entry 242
table entry 243
table entry 244
table entry 245
table entry 246

interrupt table entry 247
interrupt table entry 248
interrupt table entry 249
interrupt table entry 250
interrupt table entry 251
interrupt table entry 252
interrupt table entry 253
interrupt table entry 254
interrupt table entry 255

Chandler.c

user_reserved ()
user_machine ()
user_trace ()
user operation ()
user:= ar i thmetic ()

{)

{)

{)

{)

{)

user_real_arithmetlc () {}
user_constraint()
user_protection ()
user_type ()

user_lntrh ()
{

)

cold.ld

MEMORY
{

{)

{)

{)

rom: o=OxO,1=Ox40000
ram: o=Ox40000,1=Ox40000

SECTIONS
{

.text

} >rom

.data :
{

} >ram

.bss :

} >ram

INITIALIZATION CODE

csl - (system_address_table + prcb_ptr + start lp);

D-11

Append~ E
Considerations for
Writing Portable Software

APPENDIX E
CONSIDERATIONS FOR WRITING PORTABLE SOFTWARE

This appendix describes those parts of the 80960KB processor design that are implementation
dependent. This information is provided to facilitate the design of programs and kernel code
that will be portable to other implementations of the 80960 architecture.

ARCHITECTURE RESTRICTIONS

The following aspects of the 80960KB' s operation are deviations from the 80960KB architec
ture:

1. On all bus write operations except those of the synmov, synmovl, and synmovq instruc
tions, the processor ignores the BADAC pin (i.e., errors signaled on "normal" writes are
ignored).

2. The check for out-of-range input values for the expr, exprl, logepr, and logeprl instruc
tions is omitted; out-of-range inputs yield an undefined result.

3. Bits 5 and 6 of a machine-level instruction word in the REG and MEMB formats and bits
o and 1 of the CTRL format are provided to designate special function registers. The
80960KB processor has no special function registers.

4. The 80960KB processor does not guarantee that the value in register r2 of the current
frame is predictable.

5. (The following is a note rather than a restriction.) When using the REG-format instruc
tions, the m bit for every operand that is not defined by the instruction should be set (e.g.,
code the unused operand as an arbitrary literal). This practice may reduce overhead in
some situations.

SALIGN PARAMETER

Stack frames in the 80960KB architecture are aligned on (SALIGN*16) byte boundaries.
SALIGN is an implementation defined parameter. For the 80960KB processor, SALIGN is 4.
Stack frames for this processor are thus aligned on 64 byte boundaries.

The low-order N bits of the FP are ignored and always interpreted to be zero. The N parameter
is defined by the following expression: SALIGN*16 = 2N. Thus for the 80960KB processor,
Nis6.

BOUNDARY ALIGNMENT

The physical-address boundaries on which an operand begins has an impact on processor
performance. For the 80960KB processor, the following is true:

• An -operand that spans more word boundaries than necessary (e.g., addressing a 32-bit
operand on a nonword boundary) suffers a moderate cost in speed because of extra bus
and memory cycles.

E-1

CONSIDERATIONS FOR WRITING PORTABLE SOFTWARE

• An operand that spans a 16-byte boundary suffers a large cost in speed.

• String operands that begin ott nonword boundaries suffer a moderate cost in speed. String
operands that begin on word boundaries but not on 16-byte boundaries suffer a small cost
in speed.

FAULTS

The size of resumption records conditionally placed on the stack during faults and interrupts is
16 bytes.

PHYSICAL MEMORY

The upper 16M bytes of physical memory are reserved for special functions of local-bus
components and lACs.

lACS

The mechanism for sending, receiving, and handling lAC messages is not defined in the 80960
architecture. It is a special implementation of the 80960KB 'processor.

The write-external-priority flag in the IMI controls is not defined in the 80960 architecture.

INTERRUPTS

The interrupt lAC message, the interrupt pins, and the interrupt register are not defined in the
80960 architecture. They are special implementations for the 80960KB processor.

INITIALIZATION

The 80960 architecture does not define an initialization mechanism. The initialization
mechanism and procedures described in this manual are implementation dependent for the
80960KB processor.

BREAKPOINTS

The breakpoint registers in the 80960KB processor are not defined in the 80960 architecture.

, IMPLEMENTATION DEPENDENT INSTRUCTIONS

The synmov, synmovl, synmovq, and synld instructions are not defined in the 80960 architec
ture and are implementation dependent in the 80960KB processor.

E-2

inter CONSIDERATIONS FOR WRITING PORTABLE SOFTWARE

LOCK PIN

The LOCK pin is not defined in the 80960 architecture and is implementation dependent in the
80960KB processor.

E-3

Index

80960 Architecture

A

branch prediction 2-3
extensions included in 2-5
implementation dependent aspects of

80960KB processor E-l
instruction cache 2-2
load and store model 2-2
local register sets 2-2
overview of 2-1
parallel instruction execution 2-2
register scoreboarding 2-3

Abase 5-7

Absolute addressing mode, description of
5-7

AC.cc 11-3

Add instructions 6-6

Add with Carry Instruction 6-7

addc 6-7, 11-6

addi, addu 6-6, 11-7

addr, addrl 11-8,12-17

addr, notation 11-2

Address space
address 7-7
description of 7-7

Addressing modes, used in instructions
abase 5-7
absolute 5-7
description of 5-5
index 5-7
index with displacement 5-7
IP with displacement 5-8
literal 5-6
register 5-7
register indirect 5-7
register indirect with index 5-7
scale factor 5-7

INDEX

1-1

aIterbit 6-12,11-10,12-15

and, andnot 6-9,11-11

Architecture
See 80960 Architecture

Arithmetic controls
arithmetic status field 3-9
condition code flags 3-8
description of 3-7
fault masks and flags 9-7
floating-point flags and masks 3-10
floating-point normalizing mode flag

3-10
floating-point rounding control field

3-10
functions of bits 3-8
initializing 3-7
integer-overflow flag and mask 3-9
modify arithmetic controls instruction

6-15
modifying 3-7
no imprecise faults flag 3-10,9-13
saving and restoring 3-7
structure of 3 -7

Arithmetic faults 9-16

Arithmetic status field 12-11, 12-17
description of 3-9

Arithmetic zero-divide fault
11-53,11-58,11-80

atadd 6-6,6-14,11-12

atanr, atanrl 11-13,12-18

atmod 6-6,6-14,11-15

Atomic operations

B

atomic instructions 6-14
description of 7-8

b 6-10,11-18

Bad access fault 9-2,9-21

9-2, 9-16,

inter

bal, balx 4-15,6-10, 10-4, 11-16

bbc, bbs 6-11, 11-20
BCL C-2

be, bg, bge 6-11,11-22

Biased exponent 12-3, 12-4

Bits and bit fields
bit addressing 5-5
bit field instructions 6-12.
bit operation instructions 6-12 ,
description of 5-4

bl, ble, bne 6-11, 11-22

bno, bo 6-11,11-22,12-17
Branch and link

description of 4-15
instructions 6-10

Branch prediction 2-3

Branch trace
event flag 10-2
fault 9-2, 9-23
mode 10-4
mode flag 10-2

Breakpoint registers
description of 10-5, 10-6
set breakpoint register IAC 10-5, 13-11

Breakpoint trace
event flag 10-2
fault 9-2,9-23,11-66,11-78
mode 10-5
mode flag 10-2

Bus control logic
SeeBCL

bx 6-10, 11-18

Byte addressing 5-5

C
call 4-8,4-13,6-13,9-7,10-4,11-25

Call instructions 6-13

Call trace
event flag 10-2
fault, 9-2,9-23
mode 10-4
mode flag 10-2

INDEX

1-2

calls 4-9,4-13,6-13,9-4,10-3,10-5,11-27

calix 4-8,4-13,6-13,9-4,9-7,10-4,11-29

Check bit and branch instructions 6-11
Check-sum words 7-10,7-15

chkbit 6-12,11-31,12-15

c1assr,c1assrl 11-32,12-11,12-17,12-20

Clear, definition of 1-4
c1rbit 6-12, 11-34

cmpdeci, cmpdeco 6-10,11-36
cmpi 6-9,11-35

cmpibe, cmpibne, cmpibl,
cmpibg, cmpibge,
cmpibno 6-11, 11-42

cmpinci, cmpinco 6-10,11-37

cmpo 6-9, 11-35

cmpible,
cmpibo,

cmpobe, cmpobne, cmpobl, cmpoble,
cmpobg, cmpobge 6-11,11-42

cmpor, cmporl 11-38,12-17

cmpr, cmprl 11-40,12-17
Compare and branch instructions 6-11

Compare and decrement instructions 6-10
Compare and increment instructions 6-10

Compare instructions 6-9
concmpi, concmpo 6-9,11-45

Condition code
See Condition code flags

Condition code flags
description of 3-8
in floating-point compare instructions

12-17
in floating-point operations 12-11,

12-17
in test instructions 6-15
modification of 6-1 ~

Condition code scoreboarding C-8, C-12,
C-13

Conditional branch instructions 6-11

Conditional complU'e instructions 6-9

Constraint faults 9-17
Constraint range fault 9-2, 9-17; 11-63

inter

Continue initialization lAC 13-6

cosr, cosrl 11-46,12-18

cpyrsre, cpysre 11-48,12-15,12-20

cvtilr, cvtir 11-49,12-16

cvtri, cvtril, cvtzri, cvtzril 11-50, 12-16

o
daddc 6-16,11-52

Data length conversion 6-13

Data structures, quick reference A-1O

Data types
bits and bit fields 5-4
decimal 5-3
description of 5-1
integer 5-1
ordinal 5-1
quad word 5-4
real 5-2
triple word 5-4

Debugging support
overview of 2-5

See also Tracing

Decimal Multiplication and Division 6-16

Decimals
data type 5-3
instructions 6-16
multiplication and division 6-16

Denormalized numbers
definition of 12-4
denormalization technique 12-5

disp, notation 11-2

divi, divo 6-6, 11-53

Divide instructions 6-6

divr, divrl 11-54,12-17

drnovt 6-16,11-56

dsubc 6-16,11-57

E
ediv 6-8, 11-58

efa, notation 11-2

ernul 6-8, 11-59

INDEX

1-3

Exceptions, floating-point
See Floating point faults

Execution environment
address space 3-3
arithmetic controls 3-7
description of 3-1
floating-point registers 3-4
global registers 3-3
instruction cache 3-11
instruction pointer 3-6
local registers 3-5
process controls 3-11
trace controls 3-11

Execution mode
description of 4-13
execution mode flag 4-5,7-4

Exponent, in floating point format 12-2

expr,exprl 11-60,12-19

Extended. rnultiplyand divide instructions
6-8

External lACs
See lACs

extract 6-12, 11-62

F
FAILURE pin 7-14

Fault handling
control flags and masks 9-7
fault handler, description of 9-1
fault handler, procedures 9-6
fault handling actions 9-10
fault handling method 9-3
local calls to fault handling procedures

9-4
overview of fault-handling facilities

9-1
possible fault-handler actions 9-6
procedure table calls to fault handling

procedures 4-11
program and instruction resumption fol

lowing a fault 9-6
software requirements for handling faults

9-3

support for 2-4
system procedure table calls to fault han

dling procedures 9-4
See also Fault record, Fault table" Faults

Fault record
description of 9-8
location of fault record 9-10
location of resumption record 9·10
resumption record 9-9
saved instruction pointer 9-9

Fault table 9-3
description of . 7-2, 9"4'
fault table entries 9-4
fault table pointer in 1MI' 1-12'" .
location of in memory 9-4'
required at initialization 7-9

Fault table pointer 71'12
Fault-if instructions . 9-8

faalte, faaltne, faultl, faultle, faultg,
faultge, faulto, faultno 6-14,
11-63

Faults
arithmetic faults 9-.1 6
constraint faults 9-17
description of 7-3
fault instructions 6-14, 9-8
floating-point faults 9-18
interrupts and (aults 9-3
location of res~ption record 9-10
machine faults 9-21
multiple fault c,?nditions 9-3
operation fa,ults ~-20 ,
precise anq imprecise faults 9-13
program state after a fault 9-11
protection faults 9-22
reference information on faults /9-14
resumption Jl1C9rd 9-9
saved instruction pointer 9-9
saved process cpntrols 9-11
signaling a fault, 9-8
standard faults 11-3
trace faults 9-23

) type faults 9-25

INDEX

1-4

types and subtypes 9-1
See also Fault handling, Fault record

flit, notation 11-2

Floating inexact fault 9-2, 9-18, U-S,
11713, 11-46, 11-49, 11-60, .11-70,
11-72,11-75, 11-86, 11-89, 11-98,
11-104, 11-105, 11-112, 11-115,
11-121, 11-129, 12-25, 12-26

Floating inexact flag and mask ·9-7, 12~ 11,
12-25

Floating invalid-operation fault 9-2, 9-18,
ll-8, 11-13, 11-38, 11-40, 11-46,
11-54,11-60, 11-70, 11-72, 11-75,
11-86, 11-89, 11-98, 11-104,
11-105, 11-112, 11-115, 11-121,
11-129, 12-23

Floating invalid-operation flag and mask
9-7,12-11,12-20,12-23

Floating overflow fault 9-2, 9-18, 11-8,
11-54,11-72, 11-75, 11-86, 11-89,
11-98, 11-104, 11-105,. 11-115,
11-121, 11-129, 12-24

Floating overflow flag and mask
12-11, 12-24, 12-25

Floating point
architecture support for 12-1
arithmetic controls 12-11

9-7,

arithmetic vs. non-arithmetic instructions
12-20

basic arithmetic instructions 12-17
biased exponent 12-3, 12-4
branch instructions 12-17
classification instructions 12-17
comparison instructions 12~ 17
data movement instructions 12'-15
data type conversion 12-15
denormalized numbers 12-4
execution environment for floating-point

operations 12-7
exponent 12-2
exponential instructions 12-19
fiJlite values 12-4
floating inexact exception 12-25

inte!°

floating invalid operation exception
12-23

floating overflow exception 12-24
floating reserved encoding exception

12-22
floating underflow exception 12-24
floating zero-divide exception and fault

12-23
format of binary floating-point numbers

12-2
fraction 12-2
IEEE standard 12-1, 12-2, 12-4, 12-6,

12-7,12-14,12-17,12-19
infinities 12-6
instruction format 12-14
instruction operands 12-14
integer 12-2
j-bit 12-2
literals 12-14
loading and storing floating-point values

12-9
logarithmic instructions 12-19
moving floating-point values 12-10
NaNs 12-4, 12-20
normalized number 12-3
normalizing mode 12-12
pi 12-18
real data types 5-2,12-7
real number and NaN encodings 12-4
real number formats 12-7
real number notation '12-3
real number system 12-1
reall number and NaN encodings 12-7
register alignment for floating-point

values 12-9
registers, storage of floating-point num-

bers in 12-8
rounding control 12-12
scale instructions 12-19
sign bit 12-2
significand 12-2
summary of floating-point instructions

12-15
support for 2-5

INDEX

1-5

trigonometric instructions 12-18
underflow condition 12-26
zeros 12-4
See also Floating point faults

Floating point faults 9-18
exceptions 12-6, 12-21
fault handling 12-21, 12-22
floating inexact exception 12-21
floating invalid operation exception

12-21
floating overflow exception 12-21
floating reserved encoding exception

12-21
floating underflow exception 12-21
floating zero divide exception 12-21
override flags 12-24, 12-25

Floating point unit
SeeFPU

Floating reserved-encoding fault 9-2,9-18,
11-8,11-13, 11-38, 11-40, 11-46,
11-48, 11-54, 11-60, 11-70, 11-72,
11-75, 11-86, 11-89, 11-98,
11-104, 11-105; 11-112, 11-115,
11-121,11-129,12-22

Floating underflow fault 9-2, 9-18, 11-8,
11-13, 11-54, 11~60, 11-70, 11-72,
11-75, 11-86, 11-89, 11-98,
11-104, 11-105, 11-112, 11-115,
11-121,11-129,12-25,12-26

Floating underflow flag and mask 9-7,
12-11,12-24

Floating zero-divide fault 9-2,9-18, 11-54,
11-70, 11-75, 11-98, 11-105,
12-23

Floating zero-divide flag and mask 9-7,
12-11, 12-23

Floating-point flags and masks 3-10

Floating-point normalizing mode flag 3-10,
12-11,12-12

Floating-point registers
description of 3-4
register model 3-3

See Registers

inter

Floating-point rounding contr:ol field 3-10,
12-11

Flush local registers
instruction 6-15

flushreg 4-7,6-15,11-65

fmark 6-14,10-1,10-5, 10-6,11-66

Force Mark Instruction 6-14

FP, frame pointer 3-3,4-14
description of 4-3

FPU C-8

Fraction, in floating-point format 12-2

Frame pointer
SeeFP

Frame return status field 8-6

Freeze lAC 13-7

freg, notation 11-2

G
Global registers

description of 3-3
FP 3-3
register alignment 3-5

register model 3-3
storing of RIP on a branch and link in

struction 4-15

lAC fault 9-2

IAC pin 8-11,13-4

lACs
continue initialization lAC 13-6
description of 7-3

external lACs 13-1,13-3
freeze lAC. 13-7
lAC fault 9-2
lAC pin 13-4
internalIACs 13-1
interrupt IAC 13-8
introduction to 13-1
mechanisms for exchanging 13-1
message, description of 13-1
message, format of 13-1

INDEX

1-6

priorities 7-5
purge instruction cache lAC 13-9
receiving and handling external lACs

13-4
receiving and handling internal lACs

13-2
reference information 13-5
reinitialize processor lAC 13-10
sending external lACs 13-3
sending internal lACs 13-2
set breakpoint register lAC 13-11
software requirements for handling lACs

13-2
store system base IAC 13-12
summary of lACs 13-5
test pending interrupts lAC 13-13

ID C-3

lEU C-6

IFU C-3

IMI
caching the IMI in the processor 7-12
changing the IMI 7-12
check-sum words 7-10
description of 7-2,7-9
fault table pointer 7 -12

interrupt stack pointer 7 -I 0
interrupt table pointer 7 -10
SAT 7-10
scratch space 7-12
system procedure table pointer 4-11,

7-10
write external priority flag 7-10

Index with displacement addressing mode,
description of 5-7

Index, description of 5-7

Indivisible, description of 7-7

Inexact result, definition of 12-12

Initial memory image
See IMI

Initialization code example D-l

Initialization of the processor
Building a memory image 7-12
check-sum words 7-10

continue initialization lAC 13-6
description of 7-9
fault table 7 -13
first stage of initialization 7 -13
IMI 7-9
initialization code 7 -12
initialization code example 0-1
initialization heap 7-12
initialization PRCB 7-13
initialization stack 7 -12
interrupt table 7 -13
kernel procedures 7-13
PRCB 7-10
reading the IMI 7-12
reinitialize processor lAC 13-10
SAT 7-10,7-12
second stage of initialization 7-15
self test 7-14
typical initialization scenario 7 -13

Instruction cache
description of 2-2,3-11, C-3
purge instruction cache lAC 13-9

Instruction decoder
See ID

Instruction execution unit
See lEU

Instruction fetch unit
See IFU

Instruction list 7-1

Instruction pointer
See IP

Instruction reference
introduction to 11-1
Notation 11-1

Instruction suspension
description of 7-6

Instruction timing
bit instructions C-lO
branch instructions C-13
call and return instructions C-14
decimal instructions C-17
description of C-8
floating point instructions C-17

INDEX

1-7 .

integer and ordinal arithmetic instruc-
tions C-ll

load instructions C-15
logical instructions C-9
multiply and divide instructions C-12
register move instructions C-ll
store instructions C-17

Instruction trace
event flag 10-2
fault 9-2,9-23
mode 10-4
mode flag 10-2

Instructions
arithmetic 6-6
assembly-language format 6-1
bit and bit field 6-12
branch 6-10
call and return 6-13
comparison 6-9
data length conversion 6-13
data movement 6-4
debug 6-14
decimal 6-16
detailed reference information 11-1
extended arithmetic 6-7
fault instructions 6-14
instruction groups 6-2
logical 6-9
machine-level instruction fonttats B-1
processor management 6-15
quick reference A-I
summary of 80960KB instruction-set ex

tensions 6-3
summary of 80960 instructions 6-2
See also Machine-level formats

INTO, INTI, INT2, INT3 pins 8-10,8-11

INT A pin 8-11

Integer overflow
description of 3-9
fault 9-2, 9-12, 9-16, 11-7, 11-50,

11-53, 11-88, 11-97, 11-110,
11-117,11-120

flag 3-9,9-7,9-16,12-11

inter

mask 3-9,9-7,9-16,12-11

Integer, description of 5-1

Interagent communication messages
See lACs

Internal state field, of process controls 9-12

Interrupt control register
addresses in memory 8-11
description of 8-10
uses of 8-10

Interrupt handler
used for initialization 7 -15

Interrupt handling
interrupt control register 8-10
interrupt handler procedures 8-4
interrupt stack 8-4
interrupt table 8-2
location of interrupt handler procedures

8-4
restrictions on interrupt handler 8-4
software requirements for interrupt han

dling 8-1
support for 2-3

Interrupt lAC 8-9, 13-8
description of 8-11

Interrupt pins
description of 8-10
uses of 8-10

Interrupt record
description of 8-6

Interrupt stack
description of 7-2,8-4
interrupt stack pointer in IMI 7 -10
required at initialization 7-9

Interrupt stack pointer 7-10

Interrupt table
description of 7-2,8-2
interrupt table pointer in IMI 7-10
required at initialization 7-9

Interrupt table pointer 7-10

Interrupt vectors, description of 8-2

Interrupts
description of 7-3

INDEX

1-8

executing state interrupt 8-5
idle or stopped state interrupt 8-8
interrupt control register 13-4
interrupt handling actions 8-4
interrupt lAC 8-11,13-8
interrupt pins 8-10
interrupt record 8-6
interrupted state interrupt 8-6
overview of interrupt facilities 8-1
pending interrupts 8-8
priorities 7-5,8-2
servicing an interrupt 8-5
signaling interrupts 8-10
stopped-interrupt state interrupt 8-8
test pending interrupts lAC 13-13
vectors 8-2
See also Interrupt handling

INTR pin 8-11

Invalid opcode fault 9-2,9-20

Invalid operand fault 9-2,9-20

IP
description of 3-6
procedure-table entry 4-11
storage of 3-6

IP with displacement addressing mode 5-8

J
J-bit 12-2

K
Kernel 1-1

L

altering process controls 7-5
supervisor procedure 4-13

ld, ldib, ldis, ldl, ldob, Idos, Idq, Idt 5-4,
6-4,11-67,12-9

Ida 3-6, 6-6, 11-69

Length fault 9-2, 9-22

lit, notation 11-2

Literal
description of 5-6
floating-point 12-14

intel"

ordinal 5-6

Load address instruction 6-6

Load instructions 6-4

Local call
call operation 4-8
description of 4-8
return operation 4-8

Local registers
call/return mechanism 4-1
description of 2-2, 3-5
mapping of local register sets to proce-

dure stack 4-7
multiple local register sets 4-3
PFP 3-5
purpose of 3-5
register alignment 3-5
register model 3-3
relationship to procedure stack 4-3
RIP 3-5
SP 3-5

LOCK line 7-8

logbnr,logbnrl 11-70,12-19

logepr,logeprl 11-72,12-19

Logical instructions 6-9

logr, logrl 11-75, 12-19

M
Machine faults 9-21

Machine-level formats 6-1, B-1

Manual
guide to 1-1
structure of 1-1

mark 6-14,10-1,10-5,10-6,11-78

Mark Instruction 6-14

mem, notation 11-2

Memory requirements
description of 7-7
restrictions 7-7

Micro-instruction sequencer
See MIS

MIS C-6

INDEX

1-9

Mnemonic 11-2

modac 3-7,6-15,11-79

modi 6-8, 11-80

modify 6-12,11-81

Modify process controls instruction 6-15

Modify trace controls instruction 6-14

modpc 6-15,7-5,8-9,11-82

modtc 6-14,10-2,11-84

Modulo instructions 6-8

mov, movl, movq, movt 5-4, 6-5, 11-85,
12-10, 12-15

Move instructions 6-5

movr, movre, movrl 11-86, 12-9, 12-10,
12-15, 12-20

muli, mulo 6-6, 11-88

muir, mulrl 11-89,12-14,12-17

Multiply instructions 6-6

N
nand 6-9,11-91

NaNs
arithmetic vs. non-arithmetic instructions

12-20
classify instructions 12-17
comparison 12-17
defined 12-6
encodings 12-4,12-7
extended-real format 12-7
invalid-operation exception 12-23
operations on 12-20
QNaN 12-6,12-17,12-23
QNaN, definition of 12-20
rounding 12-13
SNaN 12-6,12-17,12-23
SNaN, definition of 12-20
unordered 12-17
unordered classification 3-9

No imprecise faults flag 3-10,9-7,9-13

nor 6-9,11-92

Normalized number 12-3

Normalizing mode, floating-point normaliz
ing mode flag 3-10

not, notand 6-9,11-93

Notation 1-3

notbit 6-12, 11-94

notor 6-9, 11-95

o
Operating-system kernel

See Kernel

Operation faults 9-20

or,ornot 6-9,11-96

Ordinal, description of 5-1

p
Padding area, description of 4-5

Parameter passing
description of 4-9
in an argument list 4-9
through global registers 4-9
through the procedure stack 4-9

Pending interrupts
checking for 8-9
handling of 8-9
posting of 8-9
servicing of 8-8

PFP 3-5,8-6
description of 4-5

Pi 12-18

PRCB
description of 7-10
store system base lAC 13-12

Prereturn trace
event flag 10-2
fault 9-2,9-23
mode 10-5
mode flag 10-2
prereturn trace flag 4-5

Preserved 1-3

Previous frame pointer
SeePFP

Priorities 7-5

Procedure calls
branch and link 4-15

INDEX

1-10

calVreturn mechanism 4-1
FP 4-3
local call 4-8
local registers 4-3
overview of 4-1
padding area 4-5
parameter passing 4-9
PFP 4-5
prereturn trace flag 4-5
procedure linking information 4-3
procedure stack 4-3
return status field 4-5
RIP 4-6
saving oflocal registers 4-1
SP 4-5
supervisor call 4-13
supervisor stack 4-14
system call 4-9
system procedure table 4-11

Procedure Stack
call/return mechanism 4-1
description of 4-3
mapping of local registers to 4-7
register save area 4-3,4-7
stack frames 4-3

Process Controls
changing of 7-5
description of 7-2,7-3
execution mode flag 7-4
internal state field 9-12
priority field 7-4
state flag 7-4
trace enable flag 7-4
trace fault pending flag 7-4

Process controls word
See Process controls

Processor
execution mode 4-13
freeze lAC 13-7
internal structure of C-l
priorities 7-5
purge instruction cache lAC 13-9
reinitialize processor lAC 13-10

self test 7-14
store system base lAC 13-12

Processor Control Block
SeePRCB

Processor management
instructions 6-15

Processor management facilities
faults 7-3
lACs 7-3
instruction list 7-1
interrupts 7-3
overview of 7-1
system data structures 7-1

Processor management, software require
ments for 7-8

Processor states
description of 7-6
executing state 7-6
interrupted state 7-6
stopped state 7-6
stopped-interrupted state 7-6

Programming environment
See Execution environment

Protection faults 9-22

Purge instruction cache lAC 13-9

Q

QNaN
SeeNaNs

Quad word, description of 5-4

R
Real number

encodings 12-4
system 12-1

reg, notation 11-2
Register bypassing C-7

Register indirect addressing modes
description of 5-7

Register indirect addressing modes, descrip
tion of 5-7

INDEX

1-11

Register save area"
See Procedure stack

Register scoreboarding 2-3, 3-5, C-6

Registers
addressing of 5-7
floating-point registers 2-5, 3-3
flush local registers instruction 6-15
global registers 3-3
local registers 3-3
register model 3-3
special function registers 3-1
See also Floating-point registers,

Global registers, Local registers,
Special function registers

Reinitialize processor lAC 3-7, 7-12, 13-10

Remainder instructions 6-8

remi, remo 6-8, 11-97
remr, remrl 11-98,12-11,12-17

Reserved 1-3

RESET pin 7-14
Resume flag 8-5,8-6,9-10,9-11,9-12

ret 4-8, 6-13, 9-6, 9-10, 9-11, 10-4, 10-5,
10-8

Return

return 11-101
from local call 4-8
from local system call 4-13
from supervisor call 4-14

Return instruction 6-13

Return instruction pointer
See RIP

Return status field 9-10
description of 4-5
encoding of 4-5
return from local system call 4-13
return from superVisor call 4-14

Return trace
event flag 10-2
fault 9-2,9-23
mode 10-4
mode flag 10-2

RIP 3-5,3-6

description of 4-6
on ,a branch and link 4-15

rotate 6-8, 11-103

Rotate instructions 6"8

Rounding control
See Floating-point rounding control

field

roundr, roundrl 11-104, 12-17

S
SAT

description of 7-10

Saved IP, forfault 9_9'f

Scale factor in addressing, description of
5-7

scaler, scalerl 11-105, 12-19, 12-24

scanbit 6-12, 11-107

scanbyte 6-13

Scoreboarding

See Register scorebOaiding

Scratch space 7-12 '

Self test, of processor 7-14

Set breakpoint register lAC 13-11

Set, definition of 1-4
setbit 6-12, 11-109

Shift instructions 6-8

shli, shlo, shrdi, shri, shro 6-8, £1-110

Significand, in floating-~int format 12-2'

sinr, sinrl 11-112, 12-18

SIZE lines 7-8

SNaN
SeeNaNs

SP 3-5,4-14
des(i!ription of 4~5

spanbit 6-12, 11-114

Special function registers
description of 3-1

sqrtr, sqrtrl B-115, 12-17

st, stib, stis, sti, stob, stos, stq, stt, ,5-4,
5-5,6-5,11-117,12-9

INDEX

1-12

Stack
See Procedure stack

Stack frame, defmition of ',4-3 "

Stack pointer
SeeSP

Standard faults 11-3

STARTUP pin 7-14

Sticky flags, definition of 3-8

Store instructions 6-5

Store system base lAC 13-12

subc 6-7,11-119

subi, subo 6-6, II-pO
subr, subrl U-121,12-17

Subtract instructions 6-6
Subtract with Carry Instruction 6-7

Supervisor call
system call instruction 6-13

Supervisor call mechanism
supervisor call 4-13

Supervisor mode,

See User-supervisor protection model

Supervisor stack
structure of 4-14

supervisor stack pointer 4:, It;: ' ' ,
Supervisor stack pointer 4-11

Supervisor trace
event flag 10-2
fault 9-2, 9-23
mode 10-5 '
mode flag 10-2

syncf 9-13, 11-123

synld 6-15, 11-124

synmov, synmovl, synmovq 6-15, 11-126,
13-2,13-3

System Address Table
See SAT

System call
description of 4-9

mech~isn;l of 4-10

System data structures
description of 7-1

inter
System executive

Kernel 1-1

System procedure table
des~ription of 7-2
procedure entry structure 4-11
structure of 4-11
supervisor stack pointer entry 4-11
system call instruction 6-13
system procedure table pointer in IMI

7-10
trace control flag 4-11

System procedure table call 4-9
See also System call

System procedure table pointer 7-10

T
tanr, taorl 11-129, 12-18
Terminology 1-3
Test instructions 6-15

Test pending interrupts lAC 13-13

teste, testoe, testl, testle, testg, testge,
testo, testoo 6-15, 11-131

Trace control flag (in system procedure
table) 4-11, 9-11, 10-1, 10-3,
10-5

Trace controls
See Tracing

Trace enable flag 7-4, 8-6,9-7,9-11, 10-1,
10-3, 10-6, 10-7, 10-8

Trace fault pending flag 7-4, 8-6, 9-12,
10-1,10-3,10-6,10-7,10-8

Trace flag (in return-status field of 1'0)

10-1, 10-3

Tracing
branch trace mode 10-4
breakpoint registers 10-5
breakpoint trace mode 10-5
call trace mode 10-4
fault handlers, tracing with 10-8
handling multiple trace events 10-6
instruction trace mode 10-4
interrupt handlers, tracing with 10-7

INDEX

1-13

modifying trace controls 10-2
overview of trace-control facilities

10-1
prereturn trace handling 10,.7
prereturn trace mode 10-5
return trace mode 10-4
signaling a trace event 10-6
software support required for tracing

10-1
supervisor trace mode 10-5
trace control flag (in system procedure

table) 10-3
trace control on supervisor calls 10-3
trace controls 10-1
trace controls word 10-2
trace enable and mode flags 9-7
trace enable flag 10-3
trace event flags 10-2
trace fault handler 10-5
trace fault pending flag 10-3
trace faults 9-23, 10-1, 10-3, 10-5
trace flag (in return-status field of 1'0)

10-3
trace handling action 10-7
trace mode flags 10-2
trace modes 10-3
tracing instructions 6-14

Triple word, description of 5-4

Type faults 9-25
Type mismatch fault 9-2, 9-25, 11-82

U
Unconditional branch instructions 6-10

Unordered
definition of 3-9
numbers 12-17

User-supervisor protection model
description of 4-13
mode switching 4-13
supervisor call 4-13
supervisor mode 4-13
supervisor procedure 4-13
user mode 4-13

W
Words

addressing of 5-5
size 3-3

write external priority flag 7-10

X
xnor, xor 6-9, 11-'133

INDEX

1-14

LITERATURE SALES FORM (EUROPE)
NAME: __ __

COMPANY: __ _

ADDRESS: __ __

PHONE NO.: __ ___

ORDER NO TITLE QTY. PRICE TOTAL

___ X ___ = ____ __

__ X ___ = ____ __

__ X __ = ____ __

___ X __ = ____ __

'--'--'--'--'--'----' - 1-1 -'--'--' _______________ _

__ X __ = ____ __

~~~~I-~~ ______ __ __ X __ = ____ __ 

__ X __ = ____ __ 

___ X __ = ____ __ 

__ X __ = ____ __ 

__ X __ = ___ __ 

__ X __ = ___ __ 

Subtotal ____ _ 

Your Local Sales Tax _______ _ 

Postage ______ _ 

Total ____ _ 

PAYMENT 

Cheques should be made payable to your local Intel Sales Office. 

Other forms of payment may be available in your country. Please contact the Literature Coordinator at your 
local Intel Sales Office for details. 

The Completed form should be marked for the attention of the LITERATURE CO-ORDINATOR and returned 
to your local Intel Sales Office. 





intJ 
ALABAMA 

l~~1 ~~ord Dr , #2 
Huntsville 35805 
Tel (205) 830·4010 

ARIZONA 

t~'1~~ ~orC8th Or , #0214 
Phoenil( 85029 
Tel (602) 869-4980 

~~t~l1r~1 Dorado Place 
Suite 301 
Tucson 85115 
Tel (602) 299-6815 

CALIFORNIA 

l\nJ1~ ~:~wen Street 
Suite 116 

~:r(Nr8r7~~~:03 

Ik~O' R~:pena' Highway 
Suite 218 

~~ S(a~3)d~::~O 
IntelCo~ 

~~~~a~e~ro ~~~1 :ulte 101 
Tel (91S) 920-8096

tlntal Corp.
4350 Executive Drive
Suite 105

~r. (~~4:~~:J80
Intel Corp'
400 N. Tustin Avenue
SUite 450
Santa Ana 92705

~J7J~~e:5~'Y4

t~+~~%~
2700 San Tomas Expressway
santa Clara, CA 95051

~'J4~~b~:8~~2':5
COLORADO

Intel Corp
4445 Northpark Orlve
Suite 100

~~IIO[::8~ :g4~6~~~07
tlntal Corp'
~~~r~r~ 51 , SUite 915 

Tel (303) 321-8086 
TWX 910-931-2289 

CONNECTICUT 

tlntal Corp 
26 Mill Plain Road 
Danbu~ 06811 

~2~,b:ts86~"~9 
FLORIDA 

~~n~e~ ~~stmonte Dr 
Suite 105 

~:jT~f ~~~~r8 32714 
FAX 305-682-6047 

Intel Corp 
11300 4th Street North 
SUite 170 
SI Petersbu~, 33702 

~~IX~~~~~~8:~=~~ 

100 

tSalea and Servloe OffiCe 
°Field ApplicatIOn Looatloo 

DOMESTIC SALES OFFICES 
OEORGIA 

!knJgI ~~~e Parkway 
Suite 200 
Noroross 30092 
Tel. (404) 449-0541 

ILUNOIS 

IntelCo~ 
~~~mb~7InB~~e7~oad, Suite 400 

Tel (312) 3~0-8031
INDIANA

~~n7t;1 ~u~~e Road
Sulle 125

~:i(~~W~~~~~~
IOWA

Intet Corp
51 Andrews BUilding
1930 St Andrews Dr e N.E
Cedar Rapids 52402
Tel. (319) 393-5510

KANSAS

~n~I~O~~Oth Street
SUite 170
Overland Park 66210
Tel (913) 345-2727

MARYLAND

Intel Corp'
7321 Parkway Drive South
SUileC
Hanover 21076
Tel (301) 796-7500
TWX 710-862-1944

Intel Corp
5th Floor
7833 Walker Drive
Greenbelt 20770
Tel (301) 441-1020

MASSACHUSETTS

tlntel Corp'
Westford Corp Center
3 Carlisle Road
Westford 01886
Tel (617)692-3222
TWX 710-343-6333

MICHIGAN

tlntelCorp
7071 Orchard Lake Road
SUite 100
West Bloomfield 48033
Tel (313) 851-8096

MINNESOTA

Intel Corp
3500 W 80th St., SUite 360

~~j<'612r835~:#~~
TWX 910-576-2867

MISSOURI

Intel Corp
4203 Earth City Expressway
SUite 131
Earth City 63045
Tel (314) 291-1990

NEW JERSEY

Intel Corp'
Parkway 109 Offloe Center
328 Newman Springs Road
Red Bank 07701
Tel' (201) 747-2233

Intel Corp
280 Corporate Center
75 LIVingston Avenue
First Floor
Roseland 07068
Tel (201)740-0111

NEW MEXICO

Intel Corp
8500 Menual Boulevard N E
Suite B 295

~:U~~~)~2~:JJ:
NEW YORK

Intel Corp
127 Main Street
Binghamton 13905
Tel (807) 773-0337

Intel Corp'

ra~~ri~~~~~s Offl08 Park

Tel (716) 425-2750
TWX 510-253-7391

Intel Corp·
300 Motor Parkway
HauPfauge 11787

~J ~~b~32j~632~06
Intel Corp
SUite 28 Hollowbrook Park
15 Myers Corners Road

~~p~~i)2::!:,~~590
TWX 510·248·0060

NORTH CAROLINA

Intel Corp
5700 EKecutlve Center Drive
SUite 213
Charlotte 28212
Tel (704) 568-8966

tlntel Corp

~~~ ~6illff Road 

~:lle(8~ 9~77~~~8022 
OHIO 

tntel Corp· 
3401 Park Center Drive 
SUite 220 
oa~on 45414 

~~5Jib~~~l55~8 
tntet Corp' 
25700 SClenoe Park Or . SUite 100 
Beaohwood 44122 

~x(2Jn!S:i~2~68 
OKLAHOMA 

~;~ ~orGroadWay 
SUite 115 
Oklahoma City 73116 
Tel (405) 848·8086 

OREGON 

r~J~~ ~o~ Greenbner Parkway, Bldg B 
Beaverton 97006 
Tel (503) 645-8051 
TWX 910-467-8741 

PENNSYLVANIA 

Intel Corp 
1513 Cedar Cliff DMe 
Camp Hill 17011 
Tel (717) 737-5035 

Intel Corp' 
455 Pennsylvania Avenue 

~~r (~,~h64~~~Oti~ 
TWX 510-681-2077 

Intel Corp· 
400 Penn Center Blvd, SUite 610 

~~~s~~rgh81~~:i70 
PUERTO RICO

Intel Mloroprocessor Corp
South Industrial Park
PO Box910
Las Piedras 00671
Tel (809) 733-8616

TEXAS

!~~eJ CAo~gerson Lane
SUite 314
AustIn 78752
Tel (512) 454-3628

tlntel Corp·
12300 Ford Road
Suite 380
Dallas 75234
Tel (214) 241-8087
TWX 910-860-5617

Intel Corp·
7322 S W Freeway
SUite 1490
Houston 77074
Tet. (713) 988-8086
TWX 910·881-2490

UTAH

Intel Corp
5201 Green Street
Suite 290

~~r(~t~J~:_8051
VtRGINIA

l~J:1 ~ao~fa Rosa Road
SUIte 108
Richmond 23288
Tel (804) 282-5668

WASHINGTON

Intel Corp
155-108 Avenue N.E
SUite 386
Bellevue 98004

~~2~b!54~:062

~nJ:1 ~°tTutlan Road
SUite 102
Spokane 99206
Tel (509) 928-8086

WISCONSIN

~"Je~ <t;~ullve Or
SUite 102
Brookfield 53005
Tel (414) 784-8087
FAX (414) 796-2115

CANADA
BRITISH COLUMBIA

Intel Semiconductor of Canada, Ltd

~~~~a~~nsgG ~Ll SUite 202 
Tel (604) 298-0387 
FAX (604) 298-8234 

ONTARIO 

~:rJ818~:~~~I~~c~~vo~ Canada, Ltd 

SUite 250 
Ottawa K2B 8H6 

t~ (~1~1~~59714 

tlntel Semiconductor of Canada, Ltd 
1 

QUEBEC 

~nJ~tS~~!~oBg~~~!r~f Canada, Ltd 

POinte Claire H9A 3K3 
Tel (514)694-9130 
TWX 514-694-9134 

CO-10/20/87 



intel~ 
DOMESTIC DISTRIBUTORS 

ALABAMA CAUFORNIA (Conl'd.l FLORIDA INDIANA (Cont'd.) MICHIGAN (Cont'd.l 

Arrow Electronics, Inc Klerulff Electronics, Inc 
1015 Henderson Road 10824 Hope Street 
Huntsville 35816 CYfress 90430 
Tel. (205) 837-6955 ~:x~~\~-:~~:~~~ 
lHamuton/Avnet Electronics 
940 Research Drive lKierUIH ElectrOniCS, Inc. Arrow ElectroniCS, Inc lPloneer Electronics 

Huntsville 35805 S~~J~su:~~:rnue 1001 N W 62nd 5t. Sle 108 3485 Stamford 

~l~~b~lle?l,~~ Ft Lauderdale 33309 LIvonia 48150 

~~xf~c:l.:!f:~:gg ~~~~b:¥555~249;6 ~~J~~~2t2~ 
PlOneerfTechnol~les Group Inc. 

tKlerulH Electronics, Inc tArrow ElectronIcs, Inc KANSAS MINNESOTA ~:~s~~~e;3~~6 quare 14242 Chamber Rd 1530 Bottlebrush N E 

~:~~g~b~li92~7 TUstin 92680 ~::nb~~ ::~~~80 ~Hamliton/Avnet Electronics 

~:I;t7'1t~~~::~~~ 219 Qulvera Road 
Overland Pa ..... 86215 

ARIZONA ~Hamllton/Avnet Electronics ~:~f99\ ,.~~:~g~ ,KlerulH Electronics, Inc F~O(a~d~;d~~!ha;V:d9 800 Varlel 5t 
Chansworth 91311 Tel' (305) 971-2900 Pioneer Electronics 

~:~~~\ ~.~~~:g~~g TLX: 510-956-3097 10551 Lackman Rd 
Lenexa 66215 

~:Ix(~\~.::~~~ 
KENTUCKY 

Hamllton/Avnet Electronics 
Hamilton/Av":et Elactronl~s 805-A Newtown Circle 

~~~5D~.t~~~~~~~~~~~ Highway 
WJt)~ g~~:nu~~~n~~oup Lexlnilton 40511

Irvine 92714 ~:IX(6~6.~:~:~~~ MISSOURI
Phoenix 85023 ~:IX (771,~.:gg:~~~g
~ :IX~~':J.::::~:~~ MARYLAND

~~I~,Dlstrlbutlon Gro.up ~~~o~~ra~~ei~~~n~c~ta 1 000 Arrow Electronics, Inc.
CALIFORNIA Alta Monte Sf-flnas 32701 8300 Guilford Road, Ste H

Ranch ~J3gn~:53~0~~ Arrow Electronics, Inc Tel. (9
19748 Dearborn Street FAX 9
Chatsworth 91311 Pioneer Electronics

~:lxf~\~3~~:~:gg 674 S. MIlitary Trail
Deerfield Beach 33442

Arrow Electronics, Inc ~J3gfb~:5$81l3 ~HamIltOn/Avnet Electronics
822 Oak Hall Lane

951 0'" Columbia 21045 , Kierul" Electronics, Inc
S. FAX, 619-565·9171 ext 274 GEORGIA ~~x(~V.:~:g:gg 11804 Borman Dr.
Tel' St Louis 63146
FA ~~~e8~~::~u~I~:n~!OUP !ArrOw Electronics, Inc ~:IX (~\ ~.~:::~::g 155 Northwoods Parkway ~~26s~It~~~f~~~~r !Arrow Electronics, Inc Santa Clara 95051 SUite A

21 Weddell Drive ~AIX(~~~.~~::~gg~ Noroross a0071 Columbia 21046 NEW HAMPSHIRE

~~ln(X~~le7 ~~~ggoo ~~IX(~~'~:~::~~~ Tel (301) 720·5020
TWX 710-828-9702 ~Arrow ElectrOniCs, Inc.

FAX' 40~.743.4770 WyleMllitary Perimeter Road
18910 Telier Avenue ~~I~O~:a~~~!I~~~~:~sEast Manchester 03103

Arrow Electronics, Inc Irvine 92715 ~~lx~~~J.:::~~ 2961 Dow Avenue ~lJ~b~357\'~9~5287 Norcross 30092
TUStin 92680 Tel (404) 447-7500

~:lx(77\~.:g~~~ FAX 714·851-8366 TWX 810·766-0432 Hamilton/Avnet ElectrOniCS
444 E Industrial Drive

Wyle Systems Pioneer Electronics MASSACHUSETTS Manchester 03103
tAvne! ElectrOnics 7382 Lampson Avenue 3100 F Northwoods Place ~~~~~.:~::~:gg 350 McCormick Avenue Garden Grove 92641 Norcross 30071 tArrow Electromcs, Inc
Costa Mesa 92626 ~Atx (77\ ~.:~~:~~~~ ~AIX (~~~.::g:~~j6 1 Arrow Drive

~~x(~11~.~~:gggj Woburn 01801 NEW JERSEY

COLORADO ILLINOIS ~J6jn~3\33~1.,a7~ ;Arrow Electromcs, Inc
Hamllton/Avnet ElectrOniCS 000 Uncoln Drive East
1175 Bordeaux Drive Arrow ElectrOniCS, Inc tArrow ElectronIcs, Inc tHamllton/Avnet ElectrOniCS Marlton 08053

~~r(x~~~e7~~~::00 1390 S Potomac Street ~~g~uEm~~nt17~treet 100 Centennial Drive ~Alx (~~~.~~:gggg SUite 136 peabod-101960
FAX 408-745-6679 Aurora 80012 ~AIX (~\~.gf~:g~~g Tel (303)696-1111 ~J.6jl b~~23~ci3081 tArrow ElectrOniCS, Inc.
tHamllton/Avnet Electronics 6 Century Drive

~;~5D~!e~r9~~:venue ~Hamllton/Avnet ElectrOnics tHamllion/Avnet ElectroniCS Klerulff ElectrOnics, Inc ~:rs(l~g~)n~3o:.g~~0 765 E Orchard Road 1130 Thorndale Avenue 13 Fortune Dr

~A~(~\~-~:j:~fgg SUite 708 BensenVille 60106 Billenca 01821 FAX 201-538-4982
Englewood 80111 Tel (312) 860·7780 Tel (617) 667-8331

~J3~b!9~5:~N7 TWX 910-227-0060 TWX 710-390-1449 tHamlllon/Avnet ElectrOniCS
tHamdton/Avnet Electromcs FAX 617-663-t754 1 Keystone Ave, Bldg 36
9650 Desoto Ave Klerulff Electronics, Inc ~~le(~;)I~g~~~10 Chatsworth 91311 tWyle Distribution Group 1140 W Thorndale Pioneer Northeast ElectrbnlCS

~~x(~\~.~~:~~~~' 6500
451 E 124th Avenue Itasca 60143 44 Hartwell Avenue TWX 710-940-0262
Thornton 80241 ~Alx(~\~-~~g:~~~ Lexmton 02173 FAX 609-751-8624
Tel (303) 457-9953 ~AIX(6W.:~~:~~~~

l~&m~~~h~~~:~~~I~t~~~dCs TWX 910·936-0770 tHamllton{Avnet ElectrOniCS

~1:0 S*~:tm~h~~~~~le 10 Industrial
Sacramento 95834 CONNECTICUT MICHIGAN Fairfield 07006

~~Ix(~\ ~.~~~:~l~g Itasca 60143 Tel (201) 575-3390
tArrow Electronics, Inc Tel (312) 773-2300 Arrow Electronics, Inc FAX 201-575-5839
12 Beaumont Road 755 PhoeniX Dnve

!Hamiiton/Avnet ElectroniCS ~~Il(~~rg6~~?~ 1
tPloneer ElectrOniCS Ann Arbor 48108 tPloneer Northeast Electronics

002 G Street 1551 Carmen Drive Tel (313) 971-8220 45 Route 46
Onlarlo 91311 TWX 710-476-0162 ~~ ~3~~i 4~~~B:a~0007 FAX 313-971-2633 Plnebrook 07058

~~x(~\~.:~:~tg Tel (201) 575-3510
Hamllton/Avnet Electronics TWX 910-222·1834 ~HamIItOn/Avnet ElectrOniCS FAX 201-575-3454
Commerce Industrial Park 2487 Schoolcraft Road

t~5tJI~n~~~I~~~~~tr~I~~s Commerce Drive INDIANA Livonia 48150 tMTI Systems Sales

~:,n~~~)0~:i.~800 ~J3J~b~li~70705 37 Kulick Rd
Culver CI' 90230 tArrow ElectrOniCS, Inc Fairfield 07006
Tel (21~ 58·2458 FAX 203-797-2866 2495 DIrectors Row, SUite H FAX 313-522-2624 Tel (201) 227·5552
FAX 21 -558-2248 Indianapolis 46241 FAX 201-575-6336

tPloneer Northeast ElectrOniCS Tel (317) 243-9353 ~:f5II~~~(tsfr:~~~~ronlc& tHarrulton Electro Sales 112 Main Street TWX 810-341-3119
3170 Pullman Street Norwalk 06851 Space A5
Costa Mesa 92626 Tel (203) 853·1515 Grand RapIds 49508

~A~(~\~.~t:~~g TWX 710-468-3373 ~X(6J~~~~~~2~
FAX 616-243-0028

tMlcrocomputer System Technical Dlstnbutor Centers CG-10/20/87

intJ
DOMESTIC DISTRIBUTORS

NEWMI!XlCO NORTH CAROUNA (Conl'd.) PENNSYLVANIA (Cont'd.) WASHINGTON ONTARIO

Plon_ ElectronIC, t Almac ElectrorllCl Corp Arrow ElICtronlC8 Inc
9801 A·Southern PIne Btvd '=i~tg·teW8'1 1093 Meyerslde Dr.
Charlotte 28217 Unit 2

~J7~~-= ~~ic~'::= Mi"i'''~' LST 1M4

~:X~~\1.:~~=
OHIO

A1row Electronics Inc

~K2~
FAX 61l'~18

NEW YORK ~mllton/Avnet Electrol'llC:S
6 A •• wood Road

Arraw ElectronICS, Inc 1:rrow Electronics, Inc TEX" Unlts3-S
25 Hub Drive 38 CocNan Road MISSI~ L4V IA2
Melville 11747 SolOn 44138 ~:'x(~\t:~~
~J5mW=8 ~~x(~~~~:tmg r'ts8 DIstribution Group
FAX 518-391·1401 150132ndAve,NE Hamltton/Avnet ElectronICs

Bellevue 98005 3688 Naahua Dr

~~IX~=~ Units 9 and 10
tArrow Etectronlca, Inc Mi ::-I'UVIM5
10899 Ktnghurst Dr ~~X(~~l:7~= SUite tOO WISCONSIN
Houston 77099

::mdton/Avnet ElectroniCS ~~x(~\:u.~~~ tArrow Electt'onlCs, Inc tHamllton/Avnet eectronIcs
Arrow ElectronlCl, Inc Sen ... Onve 200 N Patnck Blvd • Sle 100 Road Soul"
20 0 .. , Avenue D'~45459 Brookfield 53005 J5
Hau~"788 Te (51~39-6700 fArrow ElectroniCS, Inc ~:IX(~\~.~~~~rs 1700

~:X(5\1.ft~:~gw FAX 51 39-6711 2227 W Braker Lane 1184
Austin 78758

=mdton/Avnet ElectronICS ~~X(\\~-~~ Hamdton/Avnet Electromcs u:entrorllcs
Hamdton/Avnet Electrontcs 25 Bmbrldge Rd ,Bldg A 2975 Moorland Aoad llburyCourI
2060 Townhne Rd Solon 44139 New Serlin 53151 Bla;r,tgn LeT 3T4
Rochestef 14623 ~:IX(~\~~= tHamllton/Avnet electroniCS ~~X{~\~-== Tel ('~'.9800

~:X(~\~~:::~~ 1607 A W Braker Lane FAX 41 1-8320
Austin 76758

~~x(~\~-=~~ Klerulft ElectronICs, Inc tZentrOniCS
2238-E W Bluemound Rd 155 Catonnllde Road
Waukestla 53186 Unit 17

~Hamllton/Avnet electrOnics ~~X(~~~.~=:= N:r::n K2E 7K1
111 W Walnut HIli Lane ~AX(~\~~~~= Irvll,&75038

tPlOIleer Electroncs nIX2\~.=n~ CANADA 4800 E 131st Street SASKATCHEWAN
CIeve!and ,05

ALBERTA
~J2~~~~
FAX 21~587-3906 Hanlllton/Avnet Electrol'llcs

281621stStreetNE
1:TI Systems Slies OKLAHOMA ~:~'&.T~~O Harbor Park Onve

FAX 4~.250-1591 PO Box 271 Arraw BectronlCS, Inc Kterulff ElectronICS, Inc QUeBEC
Port Wathlnm 11050 3158 S 108 East Ave, Ste 210 2010 MernttOr

zentrOntCS ~:'x(\\~ Tulsa 74146 Garland 75040 l~e=IC~':t ~~x(~\m~gg ~~X(~\tm:~~~
68158ttl Street, N E, Sm 100

¥:lg(~~T~~~6 Montreal H4P 1W1
ElectroniCS

FAX 4:i.295-8714 ~:x(~',u..~~ OREGON tPlOneer ElectroniCS
1826-0 Kramer Lane

BRITISH COLUMBIA Austin 78758 Arrow ElectronICS Inc

~~X(\',~,:=
~oneer Northeast Electronics

tPloneer Electrol'llcs W CrosswaY' Par1t Weet,1797
~!~!~ ~:ia Road Tel :amllton/Avnet ElectronICS

24 S W Jean Aoad Tel (214) 386-7300
Zentrol'llCS Bldg C, Suite 10 FAX 214·490-6419

:on"r Northeast Electronics
take Osw~ 97034

tPloneer Electrol'llcs ~:~~ :JX~~ Road
o FBlrport Park ~~(~a:~~ 5853 Point West DrIVe ~~(=-m:~:~~ Fairport 14450 Houstonn036 Zentronlcs

~~(~~~.:t~~ = ~I~tr::v~~~wav ~:x~~l:~~ MAMTOBA l~7~~~~t1N4
Suite 600

ZentronlCS ~:X(\\~~~~::~~ NORTH CAROUNA Hillsboro 97124 UTAH

~:'x(~t= 60-1313 Border Street
tHamllton/Avnet ElectronICS WJn<a R3H OX4
1585 West 2100 South Tel 694-1957

PENNSYLVANIA Salt LakeC~ 84119 FAX 633-9256
32 Tel (80~ 97 -2800
32. ext 200 Arrow ElectrontcS, Inc FAX 60 ·97 9675

n-amllton/Avnet ElectronICS
R.: Sp~rest Onve

Tel (r.9~0819
TWX 51 1836 Hamllton/Avnet electronICS

=~"5~~,Bldg E
'f~ a;::~~n~=p Tel (41~ 281-4150

FAX 41 -281-8662 SwIeE

~1~~~:.r.~9
FAX 60~.972~2524

tMlcrocomputer System TechnlQll Distributor Centers

infef
DB_ARK

Intel
81. 3rd Roar 1.=nNV

.......
Intel
FWooliontle2
00380 _Inlel sa
:rfX:"~44
FIWICI!

Intel
ImmeubltBBC
4, Qual det EtroIl8

~'I 'tr'4O 88
TLX 305153

EUROPEAN SAL·ES OFFICES
"'TGIRMANY

Intel-
SeldI.tr 27
IOOOMuonchon2
t~~MI90
1.1eI
Hohenzollem Strat. 5
3000 Hannover 1
t~'i.c~.34 40 II
1.1eI
Abraham Uncotn Stra.,. 16-t 8
6200 Wktebaden

m~~~'~6050
Intel
Bruckatra"l 61
7012 Fetlbach
Sluttaart

~~ (~~2.~~ 00 82

_.
Intel·
Attidlm Industrial Plrk
P.O. Box 43202
Ttl Avly 61430

m!~,~~:080
ITALY

Intel-
Mllanotk)rl PMzzo E
20090 Alaago
Milano

~~~~,=4071 

Nl!THERLANDI 

Intel· 
AtitXllnder Poort B~lng 

--'A. 
Intel 
Hvamvelen 4-P.O Box 92 
2013S~. trx (~1018 420 

. .... 
1.1eI 
=oZ,r.:r no.2B-lloq 

~!~~4004 

OWIDeN 

Intel-m=: 
m~~~~OI00 

SWlTZIILAND 

Intel· 
Talaokar.tr .... 17 
8065 Zur1ctl 

t~!~V=29n 
UNITED KINGDOM 

Intel' 

~'::.8~hl .. SN3 lAJ 
mc(~4VOOOO 

EUROPEAN DISTRIBUTORS/ REPRESENTATIVES 
AU"""" WEST GERMANY ITALY (Conl'd.) UNITI!D KINGDOM 

aactronlC 2000 Vertnebs-AG ~a~ ~::"+:: fd ~"'tn:=~~ 20092 Cinlsatlo Balsamo 
~rx~~~OOI0 Mllllno 

~~(~2~OO'2 TLX 82 

III.LalUM ITT Muttllmmponent GmbH ~~~Centra Bahnhotstr.S18 44 Nl!THERLANDS 
7141M~ WeetemRoad 
Tal (O~ 79 ~onln=r"'an Brackn." 
TLX 7 Berks RGt2 tAW ~APOOIft ~~(=,r2211 ," 
Jef~nGmbH ~~(=09906 1m Dlchsstueck 9 

De_ 8250Llmbu& Jermyn 
~~(':'~~~-o 80 

NORWAY VaalryE ..... 
~:n=~ponant AlS OItorCtRoad 

No,(lIlk Elektronlk AlS Sa¥anoa"" 
28OOGIosIru,& PO Box 122 Kent TN14 5EU 
~~(~ 45 SmedSYIngen 4 ~~(~~k 45 OU4 1364 Hvalstad 

PINLAND ~~(~7:e6210 RaPId SilICOn 

OVFlntromcAB Proelectron Vertnebs GmbH 
R'pidHouse 

PORTUGAL Denmark SI. 
MeIkonkatu 24A M.x PI.nck Stresle 1-3 
00210 Helsinki 21 6072 DreIeIch Ollr.m 
Tei (0) 882 10 22 
TLX.124224 ~~ (~Ve~ 30 43 43 IIv M Bombarda, 133·1 0 

1000 Lllboa 
Tal (1) 54 53 13 

FRANCE IMLAND TLX 14182 RaPId Systems 

Genonm 
Rapid HOUle 

~~~Lpark SPAIN Denm.rk SI 
Z A. de Courtaboeuf =:t.~TreR Av de la BIIIb~·BP B8 ~~I:V ATO EleclronlC8 S A
91943 Les Ulls Cadex Plaza Cludad de V .. na no 6 ~~~rJ,15 02 oM
m(~~&r787a ~~(y,~6288 28040 Madrid

~~(~~4000 YUGOaLAVIA

~rnn:e ~81 SoIetI
laRAEL

ITT·SESA HR.M~Cprp
EaatronlcsLtd ~~OM=:nget no 21-3 2005 de II Cruz Blvd , Ste 223
11 AozanIiStreet Slnta CI , CA 15050
PO Box 39300 ~~~~~~~ 09 57

U.SA
Tel Avlva1392

tM'=-Tel (03) 47 51 51

~~~I TLX 33838 SWEDEN 

4, av Laurent-C~ 'TALV Nordlak Eleklronlk A.B 
92806 Asmeres Cidex ~'S~~~=' ~~~Y,1~e: 62 40 

Inteel Corporation hall, S A 
MManofiorl Palazzo E/5 17127 SoIna 

Tekllec-AlrtrOnIc 
2OOSO Aoaago t~I~~9770 Milano 

CIte elM BruyafH ~'W,1:701 Rue Car!e-Vemet • BP 2 1 ...... ..-
92310 SevrH 
~t'x(~::7536 Indultrade A G 

Hertlstra .. e31 
8304 Wailiaellen 
ttc!OalI7~30 80 40 

·FooId_ ...... t.ocaIIan CQ.10/10/17 



intJ 
INTERNATIONAL SALES OFFICES 

AUSTRALIA JAPAN 

Intel Auslralla Ply Ltd." 
=rumBUlldl~ 

Pacific H~.. "el 6 
Crowl Neat, N W, 2085 
+~~~~~.2744 
FAX: (2) 923·2632 

BRAZIL 

Intel Japan K.K.· 
Flower·HIIi Shln-machl Bldg 
1·23·9 Shlnmachl 

CHINA ~~M!4~~2i3~YO 1S4 
Intel PRC Corp4?f'atlon FAX: 03-427·7620 
lS/F, Office 1, Cltlc Bldg. 
Jlan Guo Men Wei Street Inlel Japan K K." 

~~'H~Un~~~va 
eN ~~~=~2t~~~ltama 360 

FAX. 0485·24·7518 
HONG KONG 

Intal Jag:n K.K." 
Intel Semiconductor Ltd: Mitsui- elmel MusaShl'kOSU~1 Bldg 
1701·3 Connaught Centre 915 Shlnmaruko, Nakahara- u 
1 Connauiht Road Kawasakl·shl, Kanagawa 211 

~'J6U::941~t5HK HX 
Tel: 044·733-7011 
FAX 044·733·7010 

FAX' (5) 294·589 

JAPAN (Cont'd) 

~1~6~~~:I'~iaugi Bldg 
1·2·1 A..,hi-machl 

~~1.uBk:~!~.~~~.wa 243 
FAX: 0462·29·3781 

Intel Japan K.K • 
Ryokuchl-Ekl Bldg 
2·4·1 T'rluchl 
Toronaka.shl, Osaka 560 

~%x!c:J.=:~rsl 
Intel Japan K.K. 
Shlnmeru Bldg. 
'·5-1 Marunouchl 
Chlyoda-ku, TOkyo 100 
Tel. 03·201·3821 
FAX 03·201-6850 

~~:~t~:n K K. 
1·16-30 ~el'kl Minami 
Nakamura-ku, Nagoya-shl 
Alchl450 
Tel 052-661-6181 
FAX 052-561-5317 

KOREA 

Intel TechnOlogy Asia Ltd 

~r-l~Y=O-~~~~O~~~~Ungpo-kU 
Seoul 150 

~~ (~~~'~~nLKO 
FAX. (2) 784·8096 

SINGAPORE 

TAIWAN 

Intel Technology (Far East) Ltd 
Taiwan Branch 
}~(~i,N~o~g5, Tun Hua N Aoad 

Tel' 886·2·716-9660 
TLX 13159 INTEL TWN 
FAX' 888-2·717·2455 

INTERNATIONAL 
DISTRIBUTORS/REPRESENT ATIVES 

ARGENTINA 

DAFSYS S.R L 
ChacabuCQ, 90-4 PISO 
1069·Buen08 Alrea 
Tel' 54-1-334-'871 

54-1-34-7726 
TLX: 25472 

Aeycom Electronica S.A L 
Arcoa 3831 
1429-Buenos Aires 
Tel: 54 (1) 701·4462/66 
~~: ~,q~ 11-1722 

AUSTRALIA 

Total Electronics 
P M.B 250 
9 Harker Street 
Burwood, Victoria 3125 
Tel 61·3-288-4044 
TLX. AA 31261 

Total ElectronICS 
PO. Box 139 
Artamon, N S W 2064 
Tel' 61-02-438-1655 
TLX.26297 

BRAZil 

Elebra MicroelectronlC8 
R Garaldo Flausl1\O Gomes, 78 
9 Andar , 
04575 - Sao Paulo - S.P 
Tel 55-11-534-9522 
TLX 1154591 or 11 S4593BR 
FAX 55-11-634-9637 

CHILE 

DIN Instruments 
Suecla2323 
CasUIa 6055, Corrao 22 

~:~~-225-8139 
TLX. 440422 RUDY CZ 

CHINA 

Novel PreciSion Machlne~ Co , Ltd. 

~~!s~, ~2~1~:!?We:n:tr~g· 
NT, Kowloon 

~;'iJl.~23-222 
TWX 39114 JINMI HX 
FAX 852-0-261-602 

"Fielel Appllclt10n Locat1on 

CHINA (Cont'd) 

Schmidt & Co Lld 
18/F Great Eagte Centre 
23 Harbour Fload 

0~~2g 
HMCHX 
-11754 

INDIA 

Mlcronic DeVices 
Arun Complex 
No 650 V.G. Road 

MlcronlC Devices 
403, Gagan Deep 
12, Raj8fldra Place 
New Deihl 110 008 
Tel' 91-58-97-71 

1 
BGIN 

TLX, 03163235 MONO IN 

Mlcronlc Devices 
No 5165th Floor 
Swastlk ChambeB 

~~b~;~'l:r3', Fload 
Tel' 91-52-39-63 
TLX 9531 171447 MDEV IN 

JAPAN 

Asahl Electronics Co. Ltd 
KMM Blelg 2-14-1 Asano 
Kokurakita-ku 

~:1~~~~;~~~2 
FAX: 093·551-'7861 

C Itch Techno-Science Co , Ltd 
, 2-5-1 Krta-Aoyama 
~'07 

497-4969 

JAPAN (Cont'd) 

Dla Semlcon Systems. Inc 
Wacors 64,1-37-8 sanienlaya 

~:::aB3~~~o~1YO 15 
FAX: 03-487-8088 

~~~r~ ~:~~e 
~:lk~:~;~~~la.jshl 460
FAX' 052-204-2901

Flyoyo Electro Corp
Konwa Bldg.
1-12·22 TsukiJi

!f~tots4~~f,' 04
FAX 03-546-5044

KOREA

J-Tek Corporation
6th Floor, Government PenSion Bldg
24-3 VOldo-Doni
~~p~;ongpo- u
Tet 82-2-782-8039
TLX 25299 KODIGIT
FAX' 82-2-784-8391

Sam sung Semiconductor &
Telecommunications Co • Ltc!
150, 2-KA. Tatpyung-ro, Chung-ku

e 1-3987
TLX. KOFISST
FAx' 53·0967

MEXICO

Dicopel S.A.
Toohtll368 Frace Ind. San AntoniO

~Z~~~~~exlco, D F
Tel. 52·5-561-3211
TLX 1773790DICOME

NEW ZEALAND

Northrup instruments & Systems Ltd

~~~ ~~g~::~ ~eO:~arket 
Auckland 1 
Tel 64-9-501-219.501-801 
TLX 21570 THERMAL 

Northrup Instruments & Systems Ltd 
PO Box 2406 

~~~1~~~:~8 
TLX. NZ3380
FAX 64-4-857276

SINGAPORE

FAX 2895327

SOUTH AFRICA

Electronic Building Elements. Ply Ltd
P.O Box 4609
Pine Square, 18th Street
HazelwOOd, Pretorle 0001
Tel 27-12-469921
TLX 3-227786 SA

TAIWAN

VENEZUELA

P Senavldes S A
Avllanes a Flio
Resldencia Kamarata
Locales 4 AL 7
La Candelaria, Caracas
Tel: 58-2-571-0396
TLX: 28450
FAX' 58-2-572-3321

Co-l0/20/a?

intJ
........
Intel Corp
5015 Bradford Onve. #2
HuntsVIlle 35805
Tel (205) 830-4010

ARIZONA

Intel Corp
11225 N 28th Dr. #0214
PhoeniX 85029
Ta' (602) 869-4980

Intel Corp
500 E Fry Blvd, Slllte U~15
SI8rra VISta 86835
Tel (602) 459-5010

ARKANSAS

Intel Corp
PO Box 208
Ulm 72170
Tel (5011241-3264

CAUFORNIA

Intel Corp

~=:=Js::
Tel (9fB) 351-6143

=~r.fthStreet
Sult8110
Santa Ana 92705

~:1l:'s.~4e:5
IntelCotp fa:. ~~~'f~fxpressway
Tel (40B) 970-1740

In1eIeo.p
4350 executive Dnvs
SU/lel05

tr (~~O'=~:Jeo
COLORADO

Intel Corp
650 South Cherry
Sutte915
Den¥el'80222

~~~~\~a\ 

jCAUFORNIA = S~~O;S:fxpreasway 
Tel (4081 970-1700 

CALIFORNIA 

2700 San Tomas Expressway 
Santa Clara 95051 
Tol (4081986-8086 

( 

DOMESTIC SERVICE OFFICES 
CONNECTtCUT MICHIGAN 

~mnRoad Intel Corp 
7071 Orchard Lake Road 

Donb"tIl 06811 $u1te100 

~'71~·~.W~ West BIoomI.1d 48033 
Tel (313) 851-8905 

fLORIDA MISSOURI 

~n5~ ~ 62, Suite 104 
Intel Corp 
4203 earth City Expressway 

Ft Lauderdale 33309 Sulle 143 

~~I.!:~-O:OO7 ~3~~~'5 
~~'r r?-'Ltmonta Dnvs 

NEW JERSEY 

Su1t8105 

~:t';""l"=,.32714 

GEORGIA 

Intel Corp W:~~azalll 3280 Pointe Parkway 
Suite 200 AarlianCenter 
Norcross 30092 Edison 08817 
Tel (404) 441-1171 Tol (.011225-3000 

IWNOIS NORTH CAROUNA 

=~,x.rtll'l9aIeRd =c;.,,"'t __ Road 
SUIte 300 Suite 206 

~:hi3n~3~:g;: Greensboro 27407 
Tel (919) 294-1541 

INDIANA Intel Corp 
2700 ~Itf Ad , Suite 102 

Intel Corp ~:lltIId~9fr\~-8022 87n Purdue Ad , #125 

~1(~~8~:= OHIO 

KANSAS ~~~&ralnard Bldg 
Intel Corp S.rte305 
8400W 110th Street =la~~,n22BoUlevard Suite 170 
Overland Park 68210 ~2~~~~58 Tel (913) 345-2727 

KENTUCKY Intel Corp 
B500 Poe 

Intel Corp ¥:rTs1:)s:J~5350 3525 Tatescreek Aoad, #51 

rerl(=2~~~45 OREGON 

MARYLAND Intel Corp 
15254 N W GreenbrlM parkway, Bldg B 

Intel Corp Beaverton 01886 
5th Floor ~~~~4" 7833 Walker Drive 
Greenbelt 20770 
Tel (301) 441-1020 = ~~ Elam Young Parkway 
IIASSACHUSEns HillSboro 97123 

~~CorpCenter 
3 Camsle Road 

Tel (503) 681-8080 

Westford 01886 
Tel (617) 692-1060 

CUSTOMER TRAINING CENTERS 
IWNOtS 

:Oha~mM:~~l300 
Tel (31'13'J10-5700 

IIASSACttUSEns 

3 Carhele Road 
Westford 01886 
Tel (617) 692-1000 

SYSTEMS ENGINEERING OFFICES 
ILLINOIS 

~::.mM~n~~3#300 
Tel (31'13¥0-B031 

MASS,ACHUSEns 

3 Carllale Road 
Westford 01886 
Tel (617) 692-3222 

PENNSYLVANIA 

In1eICorp. 
201 Penn ee,.. Boulevard 
SulCe301 W 

;:r~,:£h3~O 
T£XAS 

Intel Corp 
313 E Anderson Lane 
SuoIo314 
AUS1In 79752 

~~~~.~~ 
Intel Corp
12300 Ford Road
SUlte380
DoIIas 75234

~2~1~

VIRGINIA

Intel Corp
1803 Santa Rosa Ad, #109
RIChmond 23288
Tol (8041282-5888

WAllINGTON

~~~ 1~: Avenue N E 
Suite 510 
Benevue 98004 
Tel 1-800-468-3548 
TWX' 910-443-3002 

WISCONSIN 

Intel Corp 
330 S Executive Or 
Su1t8102 
Brookfield 53005 
ToI(414)7_7 

CANADA 

=:Teanelvd 
PoInte Claire, Quebec 
canada H9R 31<3 
Tol (5141694-9130 

Dnve, #250 

MARYLAND 

7833 Walker Dr., 4th Roar 
0_.0770 
Tol (3011220-3380 

NEW YORk 

=MotorP~ 
TeI~'-3300 

CG-10/20/17 




