
APPLICATION
NOTE

Ap·86

July 1980

143006

RELATED INTEL PUBLICATIONS

Introduction to the iRMX 86™ Operating System 9803124

iRMX 86™ Nucleus, Terminal Handler, and Debugger Reference Manual 9803122

iRMX 86™ 1/0 System Reference Manual 9803123

iRMX 86™ System Programmer's Reference Manual 142721

iRMX 86™ Installation Guide for ISIS-II Users 9803125

iRMX 86™ Configuration Guide for ISIS-II Users 9803126

The 8086 Family User's Manual 9800722

iSBC 86112™ Single Board Computer Hardware Reference Manual 9800645

iSBC 534™ Four Channel Communications Expansion Board Hardware Reference Manual 9800450

PL/M 86 Programming Manual 9800466

MSC-86™ Assembly Language Reference Manual 9800640

MCS-86™ Software Development Utilities Operating Instructions for ISIS-II Users 9800639

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any
errors which may appear in this document nor does it make a commitment to update the information
contai ned herei n.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR
7-104.9 (a) (9). Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry
embodied in an Intel product. No other circuit patent licenses are implied.

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and may only be used to identify Intel products:

ICE
iAPX
Intellec
Megachassis

Prompt
iSBC
Insite
Library Manager

Micromap
UPI
iSBX
MUL TIMODULE

Intel
MCS
MULTIBUS
Scope

and the combinations of iAPX, ICE, iSBC, MCS, iSBX or iRMX and a numerical suffix.

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

© INTEL CORPORATION, 1980

iCS
CREDIT
iRMX

AFN·01540A

Using the iRMX 861M

Operating System
Contents

INTRODUCTION 1

OVERViEW 1

INTRODUCTION TO THE iRMX 86
OPERATING SYSTEM. .. 4

Architecture. .. 5
Tasks 5
Job and Free Space Management. 5
Segments 6
Communication &Synchronization 7
Interrupt Management 7
Error Management. .. 7
Asynchronous I/O .. 7
Synchronousl/O 8
Loaders 8
File Management. .. 9
Human Interface Subsystem 9
Debugging Subsystem. 9
Configuration and Initialization. 9

DESIGN METHODOLOGY 10

Application Example 1 10
System Requirements 10
Hardware Requirements 10
System Design 11

Application Example 2 13
Overview of Device Driver Construction 13
Design of an iSBC 534™ Driver 15

CODE EXAMPLES 16

APPENDIX A 25
Code Listings

APPENDIX B 51
Configuration Listings/Worksheets

AP·86

INTRODUCTiON
'Companies seeking to develop microcomputer appli
cations are faced with two significant problems. First,
applications are growing more and more sophisticated.
With competition always present, products are con
tinually being enhanced with new features. This bur
dens the underlying computer system by increasing
both the complexity of the software and the number of
events and functions that must be handled by the
system.

The second problem is a management problem. These
newer and more sophisticated application systems
must be developed quickly in order to hit shrinking
market windows. Also, they must be developed with
lower manpower costs to be feasible in an engineering
community struck by insufficient technical personnel
and skyrocketing software development costs.

These are the needs addressed by the iRMX 86™ Oper
ating System. The two goals in the development of this
product have been power/flexibility to meet the needs
of increasingly complex application systems, and ease
of understanding and use, to boost the productivity of
available engineering resources. Users of Intel's line of
iSBC 86™ Single Board Computers or custom-designed
8086-based boards can now obtain the same benefits
from Intel supplied system software as they can from
Intel supplied system hardware.

The reader of this application note is provided with
information in four subject areas.

• The requirements of operating systems are
discussed along with traditional solutions.

• The iRMX 86 Operating System is introduced
and its features are discussed in relation to the
requirements studied earlier.

• System design using the iRMX 86 Operating
System is studied using example solutions.

• Code for two example systems is examined to
learn the details of system implementation.

Some of the topics in this note may not be of interest
to all readers. For example, an experienced real-time
programmer may not need to read the entire overview
of real-time systems. For those who want to brush up
on a few topics, the overview is organized to allow the
reader to focus attention on areas of specific interest.

Throughout this application note, various terms and
concepts are introduced and discussed. If further
information on any of these topics is desired, the
references listed in the front of this note should be
used.

1

OVERVIEW
This overview is provided to investigate both the prob
lems encountered in the design of applications soft
ware and also the classical solutions to these problems.

Multitasking
A real-time system is defined to be a system that
reacts to events occurring external to the computer
and which monitors or controls these events as they
occur (or in "real-time"). The converse of a real-time
system is known as a batch system where the outcome
of a program does not depend on when it is run (for
example, a payroll program).

Two other characteristics typically encountered in a
real-time system are asynchronous event occurrences
and concurrent activity. The first characteristic is
caused by events occurring randomly rather than at
scheduled intervals. The second characteristic, con
current activity, takes place when two or more events
occur nearly at the same time, requiring simultaneous
activity.

One method of dealing with the requirements of a
real-time system would be to write a program that
knows what events could potentially occur (for
example, an interrupt occurrence, a real-time clock
counting down to zero, a byte in memory being
modified by another program). This program could
then execute a large loop checking for the occurrence
of these events.

There are several problems with this approach. While
processing one event which has occurred, the program
is not responsive to other events. Also, the
programmer has no way of prioritizing the importance
of the various events. From a maintenance standpoint,
this program is complex and difficult to enhance or
modify.

The traditional solution to these problems is a tech
nique called multitasking. Essentially, this involves
writing many small routines instead of one large one.
Each of these routines (tasks) can process events in
dependent of the other tasks in the system. In addi
tion, a priority can be assigned each task so that the
operating system can decide as to which task is the
most important when more than one task requests
con trol of the CPU.

The support for multitasking involves a scheduler
which is part of the service provided by the operating
system. The scheduler allows each task to execute its
program as if it has sole control of the CPU, ensuring
that all tasks desiring CPU time are serviced according
to the priority associated with each task.

AFN-01540A

Ap·86

From the standpoint of system design, multitasking
has many desirable qualities. Large and potentially
complex application programs can be decomposed into
smaller more manageable units. This makes feasible
the use of programmer teams to implement the appli
cation. Perhaps even more importantly, the potential
ly overwhelming problems surrounding concurrent exe
cution and interrupt handling become transparent to
the application programmer. Also, multitasking
makes the modi fica tion of existing tasks and the
addition of new ones become a manageable objective
since the interaction between tasks is minimized.

Interrupt Handling
A common event in a real-time system is the occur
rence of an interrupt. Because this event is so com
mon, an important feature of a real-time operating
system is its interrupt processing capabilities.

From the standpoint of application software, interrupt
handling can be cumbersome. The currently running
task must be preempted, various hardware devices
must be manipulated and perhaps a hardware inter
rupt controller must be dealt with.

A re-Hl-tlmp o'!1prHting f;!Vf;!tpm {,l=!n l=!hRt"!"~{'+ t'hr- !"\r-r-m"

rence of an interrupt into something more consistent
with the way other events are handled. A task can
simply inform the scheduler that it does not require
any CPU time until an interrupt occurs. The relative
priority of different interrupts can also be handled in
the same manner as the priority of multiple tasks are
handled. Thus, the application programmer need only
deal with the actual processing related to interrupt
occurrence.

Reliability
,Reliability is a keyword in all real-time systems. In
this type of system, reliability does not refer to mean
time between failure. In fact, the software in a real
time application typically cannot be allowed to fail.
The difficulty imposed on the software by the en
vironment comes from the near infinite number of
permutations that can occur. A system that appears to
be fully debugged can fail in the field because of a
combination of simultaneous events that never
occurred before.

The only means to avoid failure in these instances is
through the use of a consistent, well-thought-out
model for handling events. Any special-cased solution
is subject to failure when the special cases that were
designed for are violated in the real world.

Error handling can also add reliability to an appli
cation system. When the application software is

2

unable to anticipate the outcome of certain conditions,
or the software has undiscovered bugs, it is vital for
the operating system to gracefully handle the situation
and allow for further processing to continue as best as
possible.

110 Handling
Many applications for I6-bit microcomputers require a
variety of 1/0 devices. The support for I/O opera
tions on these devices is typically provided by the
operating system. Both sequential access and random
access devices are typically encountered and, in addi
tion, flexibility in handling I/O requests and acknowl
edgements is important.

The flexibility necessary typically involves the sched
uling of a task's execution after an I/O request has been
made. The greatest flexibility can be obtained by an
asynchronous I/O system. In this system, a task makes
an I/O request by calling the operating system. Once
the processing of the request has begun, control is
returned to the calling task.

program while the I/O operation is progressing. When
the results of the operation are desired, the task can
call the operating system again to wait for the com
pletion of the previous I/O request.

The second type of 1/0 support is less flexible but also
easier to use. An operating system that supports syn
chronous I/O allows a task to make a single operating
system call to make an I/O request. Once control is
returned to the calling task, the I/O operation is
complete and the results are immediately available.
This type of I/O support sometimes takes advantage of
a technique known as autobuffering to regain some of
the performance advantage of the overlapped 110
found in the asynchronous system.

Debug Support
The inherent characteristics of the real-time environ
ment sometimes make it difficult to debug new soft
ware. If the simultaneous occurrence of two events
causes a bug in the software, detection may be difficult
because the next time the system is run the error is not
reproduced. Also, because of the fact that the software
is broken down into many independent tasks, the in
teraction may be difficult to track using standard
debugging techniques.

The solution to these problems is a piece of software
called the system debugger. The debugger typically
has three characteristics.

AFN·01540A

AP·86

1) It is designed to interact with the operating system
and therefore has intimate knowledge of code, data
structures and system objects.

2) Since the debugger is just another task in the
system, it does not affect the operation of the other
tasks that are running.

3) Through the use of sophisticated breakpointing
facilities, the debugger allows the designer to track
the tasks in the system, investigate their interac
tion with other tasks and selectively stop one or
more tasks without stopping the entire system.

Multiprogramming
In some application systems, there arises the require
ment to run several "applications" on the computer at
the same time. This may be due to the desire to
squeeze more use out of the hardware or it may be due
to some system design consideration. These separate
"applications" (often termed jobs) share many system
resources (especially the CPU) but at the same time
they need to be protected as much as possible from
other jobs. In essence, it should be possible to develop
two jobs independently and then run them both on the
same hardware without any interaction. If interaction
is desired, the operating system should support some
well-defined protocol for jobs to use to communicate.

Free Space Management
One of the most important resources in the computer
system is the memory. In some applications, the
amount of memory needed can be determined when
the system is designed. In the more general case, the
amount of memory needed by the system fluctuates.
One solution to this management problem is to have
available the amount needed in the worst possible
case. A more flexible and economical solution is to
dynamically allocate memory from a central pool upon
demand and return it when possible. This service
provides two tangible advantages. First, total memory
needs are reduced. Second, this service allows for ease
of use by the application programmer because there is
no need to set aside blocks of memory and implement
code to maintain information about current usage.

File Management
The ability to easily store and retrieve data stored on
mass storage devices is a requirement in many appli
cation systems. Devices such as disks, tapes and bubble
memories are used to store program code, data files
and parameter tables. The operating system is called
upon to store and retrieve the data and organize it
such that application programs can easily find and
manipulate the data when necessary.

AFN-01540A 3

Typically, this service is provided through the use of a
file system. The mass storage device is partitioned into
blocks and logical addresses are assigned to the blocks.
Files are created to serve as directories where the
names of other files can be cataloged and looked up.

In many systems, the directory structure can go many
levels deep (see Figure 1). This provides several advan
tages. Directory searches can be done much faster if
the general area where a file exists is known. Also, if
several jobs are running at the same time, each can be
given its own directory and therefore isolated from the
others. Lastly, for human users, it is much easier to
manage the information on the disk when some logical
structure of files exists.

- OBSTETRICS

GYNECOLOGY r-

ROOT
DIRECTORY

PRENATAL f

'---t--_DE_L_I V_E R_Y---I

- IN-LABOR

POST-PARTUM f-

EMPTY
DIRECTORY

EMPTY
DIRECTORY

IN-PATIENT

OUT-PATIENT I--/\~
'-----~

A A
/ \ / \

Figure 1. Hierarchical File System

AP-86

Device Independence
One of the unfortunate characteristics of 1/0 devices is
that they all tend to present different interfaces to the
system software. When this is the case, the application
programmer must become familiar with the unique
characteristics of each device in order to communicate
with it. One solution is to create an 1/0 driver which
does the actual I/O. This driver can then be called by
the application program whenever communication
with the device is desired.

The problem with this solution is that the programmer
must still know what type of device is being talked to
since the I/O driver is specialized. If the system con
figuration changes, all of the software must be
rewritten to call new device drivers. The best solution
is to design a standard interface to device drivers and
postpone until run-time the decision about which
devices to use. With this type of system, an application
program can be written assuming that at run-time the
human or program that invokes it will provide a speci
fication of which devices should be used.

High-Level Man-Machine Interface
In artrtition to the services nroviclecl for ::mnli(,:ltion
programs by the operating system, a set of services
typically is offered to the human user sitting at the
system console. System utilities are needed for file
copying, disk formatting, and directory maintenance.
Programs need to be loaded off disk to run and the
programs themselves must be able to retrieve
parameters passed to them by the opera tor. All of
these functions are usually provided by the man
machine interface software in the operating system.

Make Versus Buy
The previous sections dealt with operating system re
quirements. These requirements are encountered in
the application development process. Whether the
solution to meet the needs comes from the individual
application designer or from a computer system
vendor, the requirements do not change.

There usually exists a rather simple tradeoff between
designing a custom opera ting system or buying a
generalized system and tailoring it to the individual
needs of the application. There are advantages to the
custom solution. The system can often be made
smaller since the requirements are known in great
detail. Also, some small performance improvements
can sometimes be made by taking advantage of the
special cases to speed things up.

1) Engineering resources are becoming scarce. The use
of an opearting system from a vendor allows atten
tion to be focused on the application software.

2) The time taken to bring the product to market can
be shortened, thereby gaining a competitive edge
and generating early revenue.

3) Long-term maintenance costs can be reduced be
cause the vendor supports the operating system
software.

4) Personnel in all branches of the company can be
come familiar with one software architecture and
apply this knowledge to a range of products.
This applies not only to the design engineers, but
also to quality assurance, customer engineers and
system analysts.

5) The computer system vendor has knowledge of
future technological advances coming in the prod
uct lines. For this reason, the operating system can
be constructed so that applications software can be
transported to future hardware without the need
for expensive redesign.

In summary, the trade-offs are clear. An operating
system from a computer system vendor is not the
answer for every application. But in most cases, the
mo~t p('()nomi('~l ~nr1 ~~fpQt hPt lQ to t~1rP ~r1v~nt~O"P nf

the expertise of the vendor for the system software
and use engineering resources to more quickly solve
the application problem.

INTRODUCTION TO THE iRMX 861M

OPERATING SYSTEM
The iRMX 86 Operating System meets the needs of
real-time applications while simultaneously providing
the full set of services normally found in a general
purpose operating system.

The overall picture of the iRMX 86 Operating System
is shown in Figure 2. The iRMX 86 Nucleus provides

Buying an operating system from a computer system Figure2. Layers of Support in the iRMX86™System
vendor offers five advantages.

4 AFN·01540A

Ap·86

support for multitasking, multiprogramming, inter
task communication, interrupt handling and error
checking. The Basic I/O System provides support for
device independent and file format independent
manipulation of data on I/O devices. The Extended I/O
system provides synchronous I/O calls, automatic
buffering, logical file name support and high-level job
management. The application loader provides the
ability to load code and data from mass storage devices
into RAM memory. The Human Interface provides for
a high-level man-machine interface as well as file
utilities and parsing support for application programs.

The following sections deal in more detail with each of
these iRMX 86 pieces. If more information is desired on
the features discussed, please refer to the documents
listed in the front of this application note.

Architecture
The iRMX 86 architecture is an object-oriented archi
tecture. This means that the operating system is
organized as a collection of building blocks that are
manipulated by operators. The building blocks of the
iRMX 86 system are called objects and are of several
types. Some of the object types are tasks, jobs, mail
boxes, semaphores and segments. These types are
explained in subsequent sections of this application
note.

This type of architecture has two major advantages.
First, the system is easier to learn and use. The at
tributes of the various objects and the operations that
can be performed on them are well defined and con
sistent. Once an object type is understood, all objects
of that type are understood.

The second advantage to an object-oriented archi
tecture is the ease with which the operating system
can be tailored to the application. If there is no need
for a given object in the application, all operators for
that object are not included in the final configured
system. On the other hand, if the application designer
needs a more complex building block that is not in the
basic system, he can define and use a new object type.

Table 1 lists all of the system calls in the iRMX 86
Nucleus. There are three groupings of system calls in
this table.

1) The general system calis apply to ali objects uni
formly.

2) The first two system calls for each object are the
create and delete calls. These calls simply create a
new object and initialize its attributes or delete an
existing object.

AFN-01540A 5

3) The remaining system calls are specific to the at
tributes of a particular object. With this organiza
tion in mind, the entire operation of the iRMX 86
nucleus can be glimpsed in a single table.

Tasks
Tasks are the active objects in the iRMX 86 archi
tecture. Tasks execute program code and therefore are
the only objects that can manipulate other objects. The
attributes of a task include its program counter, stack,
priority and dispatcher state.

Tasks compete with each other for CPU time and the
iRMX 86 scheduler determines which task to run based
upon priorities. The dispatcher states for an iRMX 86
task are shown in Figure 3. At any given point in time,
the highest priority task that is ready to run has
control of the CPU. Control is transferred to another
task only when

(NON-EXiSTENT;

t(1 j

/1 ,,:n3) I,
ASLEEP I. (4) , RUNNING 1 (6) .. ,..., S-USPE-NDE-D~I :J

/- (8}

~I~DEDI '51
(8)L:]

'------.. ~-~----------~
t(10)

(NON-EXISTENT)

Figure 3. Task State Transition Diagram

1) the runmng task makes a request that cannot im
mediately be filled and is, therefore, moved to the
asleep state,

2) an interrupt occurs causing a higher-priority task to
become ready to run or

3) the running task causes a higher-priority asleep
task to become ready by releasing some resource.

The suspended and asleep-suspended states are
entered whenever the suspend system call is invoked
for a particular task.

Job and Free Space Management
Support for multiprogramming is provided by the job
object. A job provides the environment for tasks to
execute their programs. All other objects needed for a
particular application are contained within the job.

Ap·86

Table 1. Nucleus Object Management System Calls

System Calls for
O.S. Objects Attributes

All Objects

JOBS Tasks
Memory pool
Object directory
Exception handler

TASKS Priority
Stack
Code
State
Exception handler

CATALOG$OBJECT

UNCATALOG$OBJECT

LOOKUP$OBJECT SEGMENTS Buffer with length

ENABLE$DELETION

DISABLE$DELETION
MAILBOXES List of objects

List of tasks waiting for objects

FORCE$DELETE

r,FT$TYPF SEMAPHORES Semaphore unit value

List of tasks waiting for units

REGIONS List of tasks waiting for critical
section

FR License rights to a given extension
OBJECTS type

New object template

I

A specific attribute of the job is a free memory pool
from which blocks can be allocated only by tasks
within the job. Also, the job contains an object direc
tory which can be used by tasks to catalog objects
under ASCII names so that other tasks, knowing the
ASCII name, can look up the object and thereby gain
addressability to it.

Object-Specific
System Calls

CREATE$JOB
DELETE$JOB
SET$POOL$MIN
GET$POOL$AnRIB
OFFSPRING

CREATE$T ASK
DELETE$T ASK
SUSPEND$TASK
RESUME$TASK
GET$EXCEPTION$HANDLER
SET$EXCEPTION$HANDLER
SLEEP
GET$TASK$TOKENS
GET$PRIORITY
SET$PRIORITY

CREATE$SEGMENT
DELETE$SEGMENT
GET$SIZE

CREATE$MAILBOX
DELETE$MAILBOX
SEND$MESSAGE
RECEIVE$MESSAGE

CREATE$SEMAPHORE
Ut:LI:: I C:.}~C:IVIJl-\f""nUnl:.

RECEIVE$UNITS
SEND$UNITS

CREATE$REGION
DELETE$REGION
RECEIVE$CONTROL
ACCEPT$CONTROL
SEND$CONTROL

CREATE$EXTENSION
DELETE$EXTENSION

CREATE$COMPOSITE
DELETE$COMPOSITE
I NSPECT$COM POSITE
AL TER$COMPOSITE

More than one job can co-exist in the computer system.
Tasks within jobs can also create children jobs forming
a hierarchical tree of jobs (see Figure 4). Each job in
the system has its unique set of contained objects, its
own memory pool and its own object directory.

Figure 4. iRMX 86™ Job Tree Example

Segments
A fundamental resource that tasks need is memory.
Memory is allocated to tasks in the form of the

6

segment object. The segment is a block of contiguous
memory. The attributes of a segment are its base
address and size. A task needing memory requests a
segment of whatever size it requires. The Nucleus
attempts to create a segment from the memory pool
given to the task's job when the job was created.

AFN-01540A

Ap·86

If there is not enough memory available, the Nucleus
will try to get the needed memory from ancestors of
the job.

Communication and Synchronization
In many cases it is necessary for two tasks to com
municate in order to exchange data and commands.
This is supported through the use of an object known
as a mailbox. As its name implies, a mailbox is a
holding place for objects. One task can send an object
to a mailbox, causing the object to be queued there.
Another task can later receive an object from the mail
box and thereby gain access to it (see Figure 5). If a
task tries to receive an object from a mailbox and there
are no objects there, the task can optionally be made to
sleep for a specified time for an object to appear.

Figure 5. Intertask Communication via Mailboxes

Note that any object can be sent to a mailbox to be
received by another task. Typically, the object sent is a
segment which is a block of memory and can contain
any commands or data. The term message is often used
to describe the object during the time it is being sent
through a mailbox.

In those cases where there is a requirement for syn
chronization between tasks but no data need be sent, a
simpler more efficient mechanism exists. The sem
aphore object provides for the allocation of abstract
entities called units. The primary attribute of the
semaphore is an integer number. Tasks may send units
to a semaphore thereby increasing the integer number
or they can request units, thereby decreasing the
number. If a task makes a request for more units than
are available, it can optionally be made to sleep for a
specified amount of time. This mechanism can be used
for synchronization, resource allocation and mutual
exclusion.

AFN-01540A 7

Interrupt Management
When an interrupt is sensed by the 8086 hardware, a
user interrupt handler is executed. The interrupt
handler can either perform all interrupt processing
itself without making any iRMX 86 system calls, or it
can signal an interrupt task allowing more general
interrupt processing including calls to the operating
system.

The operating system maps hardware interrupt priori
ties into the software priority scheme allowing the
designer to specify what software functions are im
portant enough to have some interrupt levels masked
off during their execution. Although this mapping
should always be kept in mind during design, the
mechanics of dealing with interrupt control are
handled by the operating system.

Error Management
One of the central themes in the design of the iRMX
86 operating system has been reliability. The results of
these efforts are evident in two particular features of
the architecture. Beyond the ease of understanding
brought about by the symmetry of the system, the
reliability of applications using the iRMX 86 software
is increased.

The general case (as opposed to checking only for
specific combinations of errors) has been designed for.
Because of this, an unexpected combination of events
or the simultaneous occurrence of interrupts will
never catch the system by surprise.

In the event that errors do occur, the operating system
is set to detect them. Virtually all parameters in calls
to the operating system are checked for validity. Any
inconsistency causes a jump to an error routine to
handle the problem. Two types of errors can poten
tially occur and there are two ways of handling errors.

The first error type is the programmer error condition
which comes about due to some mistake in the coding
of a system call. The second type is an environmental
condition which arises due to factors out of the control
of the engineer (e.g. insufficient memory). Each of
these error types can be handled in-line by checking a
status code upon return from the call or can cause an
error handling subroutine to be called by the system.
The system designer can choose the desired method for
the system, for a specific job, and even for individual
tasks within a job.

Asynchronous 1/0
Asynchronous I/O system calls are provided to
support device independent 1/0 to any device in the

Ap·86

system. The type of 1/0 and the type of device are
interrelated as shown in Figure 6. Every device driver
in the 1/0 system is required to support a standard
interface. In this manner, all devices look the same to
higher level software. In the same manner, the
individual file drivers, which provide the different
types of file systems, all have a standard interface and
call upon the various device drivers to perform 1/0.
These interface standards

1) provide for the device independence in the higher
layers of the I/O system

2) make it easier for Intel to add future device drivers
as new devices become available and

3) make it possible for iRMX 86 users to add their own
drivers for custom 110 devices.

Figure 6. 1/0 System Structure

The iRMX 86 I/O system provides both asynchronous
and synchronous system calls. The asynchronous 110
calls are faster, provide more flexibility in the
selection of options and allow the program making the
call to perform other functions while waiting for the
110 operation to complete.

The method by which the 110 system responds to the
requestor is through the use of a mailbox. When any
call is made to the asynchronous I/O system, one of the
parameters indicates a mailbox where the caller
expects to receive a segment containing the results of
the operation (see Figure 7).

Synchronous 1/0
The alternative to using the asynchronous 110 system
is to use synchronous 110 system calls. As shown in
Figure 8, the number of options available are fewer
and the caller cannot continue execution until the
entire 110 operation is completed but from an ease-of
use standpoint, the situation is much simplified.

8

Response$mailbox$token = RQ$create$
mailbox (0, @status);

CALL RQAread(connection$token, buf$ptr,
count, response$mailbox$token, @status);

IORS$token = RQ$receive$message
(response$mailbox$token,OFFFFH,
@ resp$t, @ status);

{check status}
Call RQ$delete$segment(IORS$token,

@status);

Figure 7. Asynchronous 1/0 Call

Call RQSread(connection$token,buf$ptr,
count, @status);

{check status}

Figure 8. Synchronous 1/0 Call

Two other features provided by the Extended 110
System are logical name support and autobuffering.
Logical names allow the application designer to post
pone the decision concerning which files to use until
1"11n_til"nt) FQQt)ntll31h, .,11 n ... "rnon " nn 'hn ..,. • ...;++,,- ,,_.l

- -
compiled using logical file names and then these
logical names can be mapped into real file names at
run-time.

The use of autobuffering regains much of performance
advantage offered by overlapped I/O. When a user task
opens a file for input, one or more buffers are auto
matically created and filled with data from the file.
Thus, when the user task makes an I/O request, the
data may already be available in memory. A similar
case exists for write requests in that the 110 system
will buffer data to be written to a device, allowing the
user task to continue on.

Loaders
The iRMX 86 application loader and bootstrap loader
perform a variety of services for the user software.
The following is a brief summary of the available
features.

1) Systems can be boot loaded from mass storage
devices at system reset. This saves not only ROM or
EPROM memory, but also reduces field mainte
nance costs by allowing easy field updates.

2) Users can design their own SYSGEN procedure
allowing tailoring of an application system to the
individual installation.

3) Infrequently used programs can be brought in from
mass storage when needed instead of using system
memory unnecessarily.

AFN-01540A

AP·86

File Management
There are three types of files supported by the iRMX
86 I/O system, named files, physical files and stream
files. Named files are supported on devices possessing
mass storage capability. Files in this system have
ASCII pathnames and are cataloged in directories.
Each device in the system contains a directory tree as
shown previously in Figure 1. Access protection is
provided through the use of access lists for each file.
Each user or group of users in the system can be given
different types of access to the file or can be denied
access to it.

For devices that cannot support a named file structure
(e.g. printers and terminals) the physical file driver is
used. Devices in this category are treated strictly as
data going into and/or out of the device. If it is
desirable to treat a mass storage device strictly as a
large mass of data, it can also be addressed through
the physical file driver.

The third type of file is the stream file. This file type
has no correlation with any physical device but rather
uses system memory for temporary storage of data. An
example of the usage of a stream file is a job that gets
its input stream of data from a file. Depending on
which time the job is run, this file might be a named
file on disk, a terminal, or a stream file being written
to by another job (see Figure 9).

RUN 1
~ INPUT ~ OUTPUT ~
~~

RUN 2-1 INPUT ~ OUTPUT ~
LJ~

TERMINAL
RUN3

Figure 9. Stream File Example

Human Interface Subsystem
The highest level of support provided by the iRMX 86
Operating System is the Human Interface Subsystem.
This piece of software provides two basic services.
Programs can be invoked by typing the program name
at the system console. The Human Interface will load
the given program into memory, set it up as a job and
start it running. The invoked program can then call
upon the Human Interface routines to determine what
parameters were passed to it as part of the operator
input.

AFN-01540A 9

The Human Interface also contains a set of system
utility routines which are used to copy files and disks,
format disks, dynamically alter the system configura
tion and others.

Debugging Subsystem
The iRMX 86 Debugging Subsystem allows the de
signer to interact with the prototype system and iso
late and correct program errors. Since the debugger is
an object-oriented debugger and is aware of the in
ternal structure of the operating system, it can provide
detailed information concerning objects and can mon
itor mailboxes and semaphores providing a breakpoint
facility as well as error detection.

Specifically, the iRMX 86 Debugging Subsystem
provides six sets of functions:

1) Wake-up upon operator invocation. The operator
types a control-D key to cause the debugger to
wakeup.

2) View system lists. The debugger can view lists of
objects either globally or specifically for a given
job. Also, lists of objects and tasks queued at mail
boxes and semaphores can be seen.

3) Inspect objects. A detailed report on any object can
be requested showing the current state of all
relevant attributes.

4) Inspect and modify memory.
5) Breakpoint control. Any number of breakpoints

can be set causing a single task to break on either
execution of particular instructions or sends and
receives of messages or units.

6) Error handling. The debugger can be set up to be
the system default error handler thus catching
system exceptions.

Configuration and Initialization
Once the application is designed and coded, the
engineer needs a mechanism to inform the operating
system of the software and hardware configuration.
Essentially, this involves building tables of informa
tion using tools provided with the iRMX 86 product.

As shown earlier in Figure 4, the jobs in an iRMX 86
system form a hierarchical tree. The root in every job
tree is known as the root job and is supplied as part of
the iRMX 86 system. There are three important fea
tures of this job.

1) The root job has an object directory for cataloging
and looking up objects. The special feature of this
directory is that is is accessible by all tasks in the
system since everyone can address the root job. For
this reason the root object directory is useful for
setting up inter-job communication paths.

AP·86

2) The root job initially contains all free space in the
system. Part of the system initialization code per
forms a memory scan to automatically determine
the amount of free RAM in the system. This
memory is put into the free space pool of the root
job and parceled out as user jobs are created.

3) The root job contains only one task, the root task.
This task scans the configuration tables generated
by the user and creates the user-specified jobs.

Examples of configuration, initialization and the
LINK 86 and LOC 86 operations needed to generate a
system will be presented in the Code Examples section.

DESIGN METHODOLOGY
This section describes the design process involved in
using the iRMX 86 system to solve application prob
lems and presents two example solutions.

System design with the iRMX 86 Operating System
should be viewed as a process starting with the highest
level definition of system requirements and succes
sively adding more detail until the end product is
program code. This description sounds very much like
the description of top-down design and, of course, it
Ol.lUU1U. .11il8 me U100010GY OIlers not oruy qwcker
designs, fewer design flaws and easier implementation,
but also easier maintenance and enhancement.

In general, every iRMX 86 design progresses through
the following steps:

1) Define system requirements.
2) Breakdown into highest level sub-functions (jobs).
3) Define job functions.
4) Determine inter-job command and data flow.
5) Break down each job into sub-functions.
6) Based upon requirements, assign tasks to perform

job functions.
7) Determine inter-task command and data flow.
8) Write program code for each task.

Step 8 becomes the design process associated with the
application programs themselves. The code for each
task is essentially a sequential program that performs
one of the functions of the computer system. Standard
techniques for top-down design can therefore be used
here to specify each module and its inputs and outputs
as well as global and local data structures etc. The end
product of this procedure is a modularized application
system that should be easy to debug.

APPLICATION EXAMPLE 1
The first example presented here is based on the dis
tributed local network diagrammed in Figure 10. Each

10

FILE
SHARING

NODE

Figure 10. Block Diagram of Example System 1

workstation shown is an intelligent terminal having
local data and program storage. The stations all use
the File Sharing Node (FSN) for storage and retrieval
of records in much the same way as the secretaries in
an office would make use of a filing cabinet. The FSN
main tains the files on a fixed disk device and responds
to requests from the workstations for access to the
data. The design to follow concentrates on the File
Sharing Node.

System Requirements
Each intelligent terminal in the network has command
proceSSIng sottware. W hen a fHe reference is made
that cannot be satisfied by the local file system, a
request is made to the File Sharing Node. This request
consists of a log-on request followed by a string of 110
requests and ultimately a log-off request.

The number of intelligent terminals (workstations)
hooked up to the FSN varies from installation to
installation. Therefore, the FSN must be capable of
handling many simultaneous requests and no assump
tions can be made about the maximum number of
workstations or requests that may need to be handled.

Each node in the network has a unique address. A
packet is sent onto the network by one node and the
address field is examined by all other nodes. If this
field does not match the node's address the packet is
ignored. If a match is found the packet is retrieved
from the network.

Hardware Requirements
The three main hardware building blocks needed by
this application are shown in Figure 11. The iSBC
86/12A Single Board Computer will communicate
with the iSBC 544 Intelligent Communications Con
troller to establish and maintain communications with
the network. The Intel8085A on the iSBC 544 board
will perform all of the address recognition, acknowl
edgements, packet retrieval and packet transmittal.
The iSBC 206 Hard Disk Controller will be used to

AFN-01540A

Ap·86

create, maintain and access the data fUes which are at
the heart of this application.

Figure 11. Hardware Block Diagram

System Design
The first step in the system design process is the
breakdown of the system functions into one or several
jobs. The reasons for doing this are system modularity
and protection. With this type of design, each job can
be designed separately, perhaps even by a different
engineer or engineering team. The input and output
requirements will be specified very tightly and the job
will take on the appearance of a black box to other jobs
in the system. If the job is enhanced or modified at a
later date, the rest of the system can be left undis
turbed providing that the input and output response
remains the same.

The job object in the iRMX 86 operating system also
affords a degree of software protection for the tasks
and other objects contained within the job. Each job
has a separate memory pool, a separate object
directory and a separate identification to the I/O
system.

The two primary groupings of functions in this appli
cation are those related to the network communica
tions and those related to processing the file trans
action request. A list of a possible split-up of system
functions is shown in Figure 12.

AFN-01540A 11

COMMUNiCATiONS JOB

• iSBC 544™ INPUT INTERRUPT
SERVICE

FILE TRANSACTION JOB

• RETRIEVE INPUT REQUEST
PACKETS FOR SERVICING

• iSBC 544™ OUTPUT INTERRUPT • DETERMINE WORKSTATION
SERVICE STATUS

• SERVICE OUTPUT REQUEST • SERVICE TRANSACTION
MAILBOX REQUESTS

• QUEUE PACKETS OF INPUT DATA • PERFORM LOG-ON AND LOG-OFF
AT INPUT MAILBOX FUNCTIONS

• ACKNOWLEDGEMENT
GENERATION

• BUILD AND SEND RESPONSE
MESSAGES

Figure 12. Function Split-up

The communication between the file transaction job
and the communication job must fulfill two basic
needs. The communication job will receive interrupts
when packets addressed to the FSN are received.
In order to remain attentive to new requests coming
in, the communications job should have the capability
to "spool" the requests off to the file transaction job.
This buffering can be provided by using the mailbox
object. Segments can be created to contain the packet
request data and can then be sent to a mailbox where
the file transaction job can receive and process them.

When the file transaction job must send a packet to a
workstation, the requirement is seen for another
queue of requests. Since the communications board
can only put one packet at a time on the network, a
mailbox should be provided to allow tasks in the file
transaction job to send output request segments into
the queue and then continue on (see Figure 13).

I
I
\

,-

,

", ---------

'"

",
...... _----

COMMUNICATIONS JOB

.... ----- -,
.....

~----, "
WORKER

TASK

-,'
'" .. '

FILE TRANSACTION JOB

,-

Figure 13. Output Maiibox Queue

\
I

I

Since tasks in both the file transaction job and the
communications job must have access to these input
and output mailboxes, some means must be set up to
''broadcast'' the identifier for these objects.

In the iRMX 86 system, each object has associated
with it a 16-bit number called a token. Whenever an
object is referenced in an operating system call, the

Ap·86

token for the object is used. For example, assume that
a segment must be sent to a mailbox. The segment and
mailbox each have a token and these tokens are passed
to the operating system as parameters in the
send$message system call.

There are three major ways to get the token for an
object. The first way is to create an object. Whenever
the operating system is called to create a new object,
the value returned from the procedure call is the token
for the new object. The second way to receive a token
is through the receive message system call where an
object is received from the queue at a mailbox where it
was sent by another task.

The third major mechanism for the receipt of a token
is provided by the object directory concept. As men
tioned previously, each job in the system has an object
directory.

If a task in a job has the token for an object and wishes
to let other tasks in other jobs have access to the
object, the task can "catalog" the object in the object
directory. The catalog$object system call takes the
token for an object and an ASCII name as parameters
and creates an entrv in thp ohiPf't. r1irpf't.orv If j:ln()th~r

task knows the ASCII name for an object, it can obtain
the token by performing a lookup$object call.

The object directory mechanism will be used in this
example to allow the communications job to ''broad
cast" the tokens for the input and output mailboxes.
The jobs for this application are shown in Figure 14.

Figure 14. Job Structure

The next step of the design methodology calls for each
job to be further divided into sub-functions. In this
application note, only the file transaction job is
studied.

In time sequence, the file transaction job will:

12

1) Retrieve input requests from the mailbox set up by
the communication job.

2) Determine state of specified workstation (for ex
ample, is it logged on?).

3) Perform 1/0 operation or log-on or log-off.
4) Build and send response to the workstation.

Recall from the discussion of system requirements
that the number of nearly simultaneous requests that
may be received by the FSN is not known. For this
reason, some mechanism must be provided to allow
parallel processing of many requests. This should
prove feasible since the performance of step 3 will
involve many delays while waiting for the operating
system to perform I/O operations.

One straightforward way to provide for parallel
processing is to create a task for each workstation that
logs on. In this manner, each I/O request will be
handled by a unique task. Through the use of the
iRMX 86 scheduler, maximum CPU utilization will be
gained by allowing each task to individually compete
for CPU time. These "worker" tasks fulfill function 3
and 4 for the file transaction job.

task will wait at the input mailbox set up by the
communications job. When a packet is received that
requests a log-on operation, the "listener" task will
create a new "worker" task to handle the request.
Figure 15 shows a picture of the design.

Figure 15. Diagram of Design of
File Transaction Job

The string of transaction requests that follow will
simply be demultiplexed by the listener task. The
workstation ID will be searched for and, if found, the
packet will be sent to the appropriate worker task. If a
request comes in from a station that is not logged on,
an error response is sent directly to the communica
tions output mailbox for transmittal to the station
that made the request.

AFN-01540A

Ap·86

If the request packet indicates that a station desires to
log-off, the listener task will delete all local reference
to the station and pass the packet along. The listener
task cannot simply delete the worker since the worker
may be in the process of servicing a previous liO
request. In general, it is never a good idea to arbi
trarily delete another task. A better protocol is to pass
along the message signaling the worker task to delete
itself when convenient.

An investigation of the intertask communications
needs highlights the requirement for passing data
between tasks. The interjob communications protocol
discussed earlier specified that the listener task will
receive input request segments from the communica
tions job via a mailbox.

Within these segments are fields containing the work
station ID and the command. Based upon these fields
one of two things happens. If the command indicates
that the station wishes to log on, a new worker task
must be created to process the I/O requests that will
follow.

The code executed by all worker tasks will be identical
since they all perform identical functions. However,
some unique pieces of information must be passed to a
new worker task. This can be accomplished by having
the worker task first wait at a "log on" mailbox. Here it
will receive a segment from the listener task which
contains the necessary information (see Figure 16).

LISTENER

TASK

WORKER

TASK

SERVICE
MAILBOX TOKEN

RESPONSE
MAILBOX TOKEN

WORKSTATION
10

--
SEGME NT

MAT FOR

Figure 16. Communications Between Listener
Task and a Newly Created Worker Task

After this initialization is complete, the workstation
requests that are received by the listener task can be
sent to the service mailbox associated with the work
station. The token for the service mailbox is one of the
pieces of information contained in the log on segment.

The last communication path needed is predefined by
the interjob communication protocol. When either the

AFN-01540A 13

listener task or one of the worker tasks needs to
transmit a packet to a workstation, a segment is sent
to the output request mailbox of the communication
job.

The final step in the design methodology is to write
program code for the tasks in the system. This step is
performed in the Code Examples section.

APPLICATION EXAMPLE 2
This example will deal with the design of a custom
device driver for the iRMX 86 operating system. As
shown in Figure 6, a device driver accepts high-level
commands from the file drivers (such as read, write,
seek, etc.) and transforms these commands into 1/0
port read and write commands in order to commu
nicate with the device itself. By studying the construc
tion of a driver for the iSBC 534 Serial Communication
Expansion Board, a better understanding of the iRMX
86 I/O system will be gained along with an example of
the use of nucleus facilities to construct a higher-level
software function.

Overview of Device Driver Construction
Each I/O device consists of a controller and one or
more units. A device as a whole is identified by a
device number. Units are identified by unit number
and device-unit number. The unit number identifies
the unit within the device and the device-unit number
identifies the unit among all the units on all of the
devices.

A device driver must be provided for every device in
the hardware configuration. That device driver must
handle the I/O requests for all of the units on the
device. Different devices can use different device
drivers; or if they are the same kind of device, they can
use the same device driver code.

At its highest level, a device driver consists of four
procedures which are called directly by the I/O
System. These procedures can be identified according
to purpose, as follows:

Initialize I/O
Finish IiO
QueuellO
Cancel lIO

\Vhen a USer makeS an I/O System call to manipulate a
device, the lIO System ultimately calls one or more of
these procedures, which operate in conjunction with
an interrupt handler to coordinate the actual lIO
transfers. This section provides a general description
of each of these procedures, and the interrupt handler.

Ap·86

INITIALIZE 1/0

This procedure creates all of the iRMX 86 objects
needed by the remainder of the routines in the device
driver. It typically creates an interrupt task and a seg
ment to store data local to the device. It also performs
device initialization, if any such is necessary. The 110
System calls this routine just prior to the first attach
of a unit on the device (the first RQAPHYSICAL
$ATrACH$DEVICE system call). The time sequence
of calls to these procedures will be described a little
later.

FINISH 1/0

The 110 System calls this procedure after all units of
the device have been detached (the last RQA
PHYSICAL$DETACH$DEVICE system call). The
finish$IO procedure performs any necessary final
processing on the device and deletes all of the objects
used by the device handler, including the interrupt
task and the device-local data segment.

QUEUE 1/0

This procedure places 110 requests on a queue, so that
they can start when the appropriate unit becomes
available. If the device is not busy, the queue$IO
pJ.U\;tUUlt ot..d..1~ LIlt reque~L.

CANCEL 1/0

This procedure cancels a previously queued 110
request. Unless the device is such that a request can
take an indefinite amount of time to process (such as
keyboard input from a terminal), this procedure can
perform a null operation.

INTERRUPT HANDLERS AND INTERRUPT TASKS

After a device finishes processing an 1/0 request, it
sends an interrupt to the iRMX 86 system. As a
consequence, the interrupt handler for the device is
called. This handler either processes the interrupt
itself or signals an interrupt task to process the
interrupt. Since an interrupt handler is limited in the
types of system calls that it can make, an interrupt
task usually services the interrupt. The interrupt task
feeds the results of the interrupt back to the appli
cation software (data from a read operation, status
from other types of operations). It then gets the next
110 request from the queue and starts the device
processing this request. This cycle continues until the
device is detached. The interrupt task is normally
created by the initialize 110 procedure.

The 110 System calls each one of the four device driver
procedures in response to specific conditions. Three of
the procedures are called under the following
conditions.

14

1) In order to start I/O processing, the user must make
an 110 request. This can be done by making a variety
of system calls. However, the first 110 request to
each device-unit must be the RQAPHYSICAL$
ATrACH$DEVICE system call.

2) The I/O System checks to see if the 110 request
results from the first RQAPHYSICAL$A TT ACH
$DEVICE system call for the device (the first unit
attached in a device). If it is, the 110 System realizes
that the device has not been initialized and calls the
initialize 110 procedure first, before queueing the
request.

3) Whether or not the 110 System called the initialize
110 procedure, it calls the queue 1/0 procedure to
queue the request for execution.

4) The 110 System checks to see if the request just
queued resulted from the last RQAPHYSICAL$
DETACH$DEVICE system call for the device (de
taching the last unit of a device). If so, the 1/0
System calls the finish 110 procedure to do any
final processing on the device and clean up objects
used by the device driver routines.

The I/O System calls the fourth device driver
, J 1"

p_ v u.u~ ... , " " " ,,\J...i V ,P'" v\...I;;:UU.l.I;;:, utlutJ.lit

following conditions:

• If the user makes an RQAPHYSICAL$
DETACH$DEVICE system call specifying the
hard detach option, in order to forcibly detach
the connection objects associated with a device
unit.

• If a job containing the task which made the
request is deleted.

Each procedure will now be discussed in more detail.
The initialize $10 procedure takes three parameters:

init$io: Procedure (duib$p, ret$data$t$p, status $p)

The duib$p parameter contains a pointer to a device
unit information block (DUIB) which is the configu
ration table for the device in question. The structure of
this table is shown in Figure 17. Note that this table
contains pointers to device and unit information tables
which can contain hardware specific information (such
as 110 base addresses, interrupt levels etc.).

The second parameter is a pointer to a word which can
be assigned the value of a token for an iRMX 86 object.
Quite often this object would be a segment which could
be created by the init$io procedure and filled with
information needed by the other procedures in the
driver. The token for this segment will be provided to
the other procedures when they are called.

AFN-01540A

Ap·86

I NAME I (14)

F!LE DR!VERS I I

STATUS I
UNIT STATUS

FUNCTIONS

DEVICE
GRANULARITY

DEVICE SIZE

DEVICE
f-----

UNIT

DEVICE UNIT

INITSIO

QUEUE$IO

CANCEL$IO

FINISH$IO

DEVICE INFORMATION
POINTER

UNIT INFORMATION POINTER

Figure 17. DUIB Format

The final argument in the call is a pointer to a status
word. This word should be assigned by the init$io
procedure before a RETURN is executed. If a non-zero
value is returned indicating an error condition, the I/O
System assumes that init$io has deleted any objects
created before the error was encountered.

The finish$io procedure is called by the I/O System just
after the last detach$device call is made on the device.
This procedure is expected to delete any objects
created by the init$io procedure and shut down the
connected device.

finish$io: Procedure (duib$p, ret$data$t);

Once again, the first parameter to the call is a pointer
to a DUIB. The second parameter is the token returned
by the init$io procedure.

The queue$io procedure is called to initiate an I/O
request.

queue$io: Procedure (IORS$t,duibp, retdata$t)

The specifics of the request are indicated in an I/O
request segment (IORS) which is provided by the first
parameter. The format of this segment is shown in
Figure 18. The most important fields here are the
count, function, status and buffer pointer fields which
tell the queue$io procedure what needs to be done. The
second and third parameters are once again the
pointer to the DUIB and the token for the object

AFN-01540A 15

DEVICE

UNIT

FUNC
TION

SUBFUNCTION

DEVICE LOCATION

BUFFER POINTER

COUNT

AUXILLIARY POINTER

LINK FORWARD

LINK BACKWARD

Figure 18. 1/0 Request Segment Format

created by the init$io procedure.

The final device driver procedure is cancel$io. This
procedure is called by the 1/0 System to cancel a
previous 1/0 request. If the device is of such a nature
that a request will complete in a bounded amount of
time, this procedure can be a null procedure. The
parameters to the call are identical to those for the
queue$io call.

In addition to the elementary support discussed here,
the I/O System provides extra support to the designer
of a device driver if some simplifying assumptions
about the device can be made. Also, if the device
supports random access (such as disks, magnetic
bubbles, etc.), support routines can be used to simplify
the process of blocking and deblocking I/O requests.
More detail on the process of writing I/O drivers can be
found in the manual titled "A Guide to Writing Device
Drivers for the iRMX 86 I/O System."

Design of an iSBC 534™ Device Driver
The following section will discuss an example device
driver for the iRMX 86 Operating System. The driver
will be for the iSBC 534 board which contains four
8251 US ART devices; therefore, there is one device
and four units on the device.

The init$io procedure for this driver initializes the
hardware, creates an interrupt task, creates other
necessary objects and creates a segment to contain the
relevant information.

Ap·86

The structure of the queue$io procedure is more
complex. When calls are made to this procedure to per
form data reading and writing, the actual operation
could be somewhat lengthy (especially an input
operation). Since the queue$io procedure is called by
the I/O system, it is not efficient to perform the entire
operation before control is returned to the 1/0 system.

A more efficient mechanism is to have an independent
task take the request and fulfill it while the queue$io
procedure returns to the I/O system allowing other
operations to be started in parallel. This leads to the
structure diagrammed in Figure 19. When a read or a
write request is received, the I/O request segment is
sent to the request mailbox where it is received by an
I/O handler task. When the request is complete, the
I/O task sends the segment to the response mailbox
indica ted in the segment.

Figure 19. Queue$io Procedure Interface
to 1/0 Tasks

The remaining design of the device driver is concerned
with interrupt handling. The iSBC 534 board contains
four 8251 USART devices. Each device supplies two
interrupts; one indicating that the receiver has a data
character available and the other indicating that the
transmitter is ready to accept a character. Each of
these interrupts (8 in all) are connected to one of the
8259 Interrupt Controllers on the board. The software
on the iSBC 86/12A board must read a register in the
8259 controller to determine which of the eight sources
caused the current interrupt. This information must
then be fed to the I/O task which may be waiting for
the event.

One way to meet this requirement uses an interrupt
task for the iSBC 534 board. The task receives the
interrupt, determines which device caused it, and
sends a unit to a semaphore to indicate the occurrence
of the event. Thus, when an I/O task wishes to be
informed of a receiver or transmitter interrupt, it
simply tries to receive a unit from the appropriate
semaphore. If a unit is available, the receiver has a
character or the transmitter is ready. If the unit is not

16

available, the USART is not ready and the task will be
put in the asleep state until the interrupt occurs and
the unit is sent.

CODE EXAMPLES
This chaper will present and analyze some sample code
for the iRMX 86 applications presented in Chapter 4.
The code listings are contained in Appendix A and the
individual modules are numbered sequentially. When
a specific line or sequence of lines of code must be
pointed out in the text, a two part number is used
where the first part is the module number and the
second is the compiler-assigned line number. For
example, 3.27 would be used to point out line 27 in
module 3.

A standard set of suffixes to labels will be followed in
the code to follow. A PL/M-86 WORD variable that
will contain the token for an iRMX 86 object will have
the suffix "$t." A POINTER variable will be followed
by "$p" and a structure used to overlay a POINTER
allowing access to the base and offset will be followed
by "po.~'

I i~tp.nAr Task

The first module to be studied contains the code for
the listener task. The various include statements bring
in literal declarations and external procedure decla
rations. The file NUCPRM.EXT is on the iRMX 86
diskette and contains the external declarations for all
iRMX 86 nucleus system calls.

Line 1.323 contains all of the declarations for the
module. The literal req$segment$struc is used to
access the fields of a segment returned from the com
munications job. The format of a request packet from
a workstation is shown in Figure 20. The literal node is
used to access the information in a segment used as a
workstation descriptor in a list maintained by the
listener task. The format of a node in this list is shown
in Figure 21. The structure at the end of the declara
tion statement is used to individually access the two
halves of a 32-bit PL/M-86 POINTER.

Note in line 1.330 that the task is coded as a public
procedure having no parameters. A main procedure
should never be used for a task's code since the pre
amble for a main procedure sets the stack pointer.

The mailbox to be used for sending a newly created
worker task an information segment is called the
logoninfo$mbox. This mailbox is created in line
1.331. Lines 1.332-1.334 perform the operation of
finding the tokens for the communication job's input
and output request mailboxes in the object directory of

AFN·01540A

Ap·86

FUNCTION

COUNT

ACTUAL

EXCEPTION CODE

WORKSTATION 10

COMMAND

SHARE

MODE

STATUS

FILE NAME
(64)

BUFFER
(128)

Figure 20. Request Packet Format

N""FO W RD LI K R A

LINK BACKWARD

WORKSTATION 10

SERVICE MAILBOX

WORKER TASK TOKEN

RESPONSE MAILBOX

Figure 21. Workstation Descriptor Format

the root job. The token for the root job is obtained by
the system call in 1.332.

Whenever a workstation logs on, various actions are
taken by the listener task. One of these actions
involves adding a descriptor for the workstation to a
list so that the state of the workstation can be main
tained by the listener task. The list structure is shown
in Figure 22. Statements 1.336-1.340 create the root
of this list and initialize the list to an empty state.

Line 1.340 marks the beginning of an infinite loop.
Most often a task executes a procedure which performs
some initialization and then enters an endless loop
performing the necessary processing. The literal "for
ever" translates into "while 1."

A packet is received from the input mailbox by the call
in line 1.341. The command field of the message is
checked in line 1.343. If the command indicates that a
log on request is being made, lines 1.345-1.356 are
executed. A log on information segment is created in
line 1.345. A mailbox is created to handle further
request packets and another is created to be used by
the worker task as a response mailbox. The worker

AFN-01540A 17

Figure 22. Workstation Descriptor List Structure

task that will handle I/O requests from this work
station is created in line 1.351. Note the use of the
structure datasegp$o, which is declared at the same
address as the POINTER datasegp. The POINTER is
initialized to equal the beginning of the data segment
of the worker task module (1.323) and then the base
portion is used as a parameter in the create task call.

Once the worker task is created, it will wait at the
logoninfo$mbox for a segment giving it its initiali
zation information. The segment is sent in line 1.352
and received back as an acknowledgement in line 1.353.
At this point, the segment is inserted on the list of
active workstation descriptors by the call in line 1.354.
Finally the request packet itself is sent to the worker
task via the service mailbox for the new worker.

If a log off request is received, lines 1.358 to 1.366 are
executed. First, the active workstation list is searched
for the ID of the requesting station. If the station is
not found to be logged on, the status field is set and
the request segment is sent to the workstation through
the communications job. If the station is logged on, the
descriptor is deleted from the list, the packet is sent
along to the worker task, and the descriptor is deleted.

If the command is anything but log on or log off, lines
1.368-~.376 are executed. Once again the station ID is
checked to see if it is logged on. If not, an error
message is returned. If the station is logged on, the
request packet is sent along to the worker task.

Ap·86

WORKER TASK

The code for the worker task is shown in module 2.
Upon creation of a new worker task, a segment is
received at the logoninfo$mbox (2.242). The data in
this segment is copied into local variables and the
segment is returned (2.247).

The initialization task for this job has already created
a user object for this job and has also set up a prefix
which points to the root directory for the disk device.
These tokens have been cataloged in the root object
directory. The worker task obtains these tokens
through the sequence of calls 2.248-2.250.

The worker task now enters an infinite loop servicing
the workstation it is assigned to. The specific action to
be taken by the worker is determined by inspecting the
cmd field of the request message.

If the command is a log on, the code from 2.256-2.263
is executed. The file name specified in the request
segment is attached and opened and thereby made
ready for subsequent I/O requests. After this, an ac
knowledgement is sent back to the workstation via the
output$request$mailbox (2.263).

If a log off command is received, the file is closed and
detached, the service and response mailboxes are
deleted, a response is sent to the workstation and the
worker task is deleted.

If the command is either a read or write command, the
operation is performed by calling the 1/0 system.
When the response is received, an acknowledgement is
sent to the workstation. Note that the task would
normally perform more processing. In this example its
duties have been kept simple.

POINTERIZE PROCEDURE

The ASM-86 code for the pointerize support routine is
shown in Module 3. The token for a segment is the
base portion of a 32-bit POINTER to the memory. In
order to access the data in a segment, this 16-bit token
must be loaded into the base part of a POINTER while
the offset portion of the POINTER is set to zero. The
base and offset values are returned in the ES and BX
regusters as specified by the PL/M-86 calling con
ventions. This is the operation performed by the
pointerize routine.

LIST MANIPULATION ROUTINES

Lines 4.1-4.4 7 provide three subroutines used by the
tasks in this system to manipulate the list of work
station descriptors. Insertonlist (4.15-4.26) inserts
the indicated node at the head of the list whose root is
given as the first parameter.

18

Dele te$from$lis t (4.27-4.35) unlinks the indicated
node from the list it belongs to. Search$list (4.36-4.46)
searches a list for the workstation ID given. If the ID is
not found, a zero is returned. If the ID is found, the
token for that node is returned.

At this point an overview of the configuration process
is needed. A more detailed coverage of the process of
configuring an iRMX 86 system is provided in the
manual entitled "iRMX 86 Configuration Guide for
ISIS-II Users."

For each iRMX 86 application, the following steps
must be performed.

1) Program code for each task in the system must be
written and compiled or assembled.

2) A memory map for the software must be drawn up.
3) The system software must be linked and located.
4) The application jobs must be linked and located.
5) Tables of configuration data must be drawn up.
6) The tabular data from step 5 must be formatted

into a memory data block through the use of a set
of ASM-86 macros provided with the iRMX 86
product.

7) The root job must be linked and located.

The code executed by the root task is part of the iRMX
86 system code. This task is initially the only task in
the system. The root task will access the data block
constructed by the ASM -86 macros and will create the
user jobs specified by the macros. The data for the
configuration process for example 1 is shown in
AppendixB.

The first page diagrams the memory map for the
example. The iterative link and locate process to put
these pieces together begins on the second page. The
LINK86 and LOC86 commands shown place the
iRMX/86 nucleus into memory. The LOCATE map
indicates that the last memory location used by the
nucleus was 077DFH. Therefore, the next contiguous
piece, the I/O system, is located at 077EOH.

This process is repeated for the remainder of the jobs
in the system.

When the link and locate process is complete, the
information for the ASM-86 macros must be brought
together. Worksheets are provided in the iRMX 86
configuration guide to simplify this process.

The filled-out worksheets for the macros are shown in
the appendix. A configuration file is constructed using

I~ l:"IJ.(1' 540A

Ap·86

the editor and the worksheet information is entered
into this file. When the file is complete, the con
figuration table is created by assembling the file
CTABLE. A86. This file accesses the configuration file
built earlier.

The configuration tables are then linked and located
together with the code for the root task and the system
generation process is complete.

EXAMPLE 2

INIT$IO AND FINISH$IO

The startandfinish module (5.1-5.371) contains the
code for the init534io and finish534io pro
cedures. The init534io procedure creates a seg
ment, shown in Figure 23, which is used to hold the
various pieces of information needed by the other
driver procedures (5.323). The discussion of this
procedure in Chapter 4 pointed out that any errors
encountered in the initialization are indicated by the
non-zero status and that the assumption is made that
any partial creations must be cleaned up by the init$io
procedure. This assumption is carried out by the check
at line 5.324 (and the others at 5.331,5,335,5.339 and
5.342).

INTERRUPT LEVEL I
1/0 BASE
ADDRESS

INTERRUPT
PENDING SEMAPHORE (8)

INTERRUPT TASK TOKEN

REQUEST MAILBOX TOKEN

USARTCOM·
MAND PORT(4)

USART DATA
PORT (4)

TIMER COM·
MAND PORT (4)

TIMER LOAD
PORT (4)

TIMER COM·
MAND(4)

Figure 23. init$S34$io Segment Format

The device information contained in the device unit
information block for this device is retrieved in line
5.328-5.329. A mailbox to be used for sending I/O
request segments to the I/O handler tasks is created in
line 5.330. The interrupt task for this job is created by
the call in line 5.337.

The do loop starting at line 5.340 is executed to create
eight semaphores to be used by the interrupt task to
indicate the occurrence of an interrupt. Note that the
initial value of the semaphore is zero (no interrupt

AFN-01540A 19

pending) and the maximum value is one. Since the
nature of the 8251 USART device does not support
buffering, when a new character overruns the previous
character before the interrupt can be serviced, the
data is lost. Therefore, there is no need to indicate the
occurrence of multiple interrupts pending on the same
device.

The call at line 5.345 initializes the programmable
devices on the iSBC 534 board. If execution has
proceeded to line 5.346, the initialization is complete
and a zero status is returned. If an error occurred at
any point, the code in lines 5.348-5.356 will clean up
the partial ini tializa tion.

The finish534io procedure (5.358-5.370) undoes the
work of the init534io procedure. The segment,
mailbox, interrupt task and semaphores are all
deleted.

The queue534io procedure is shown in lines 6.1-
6.382. In line 6.322 the function field of the I/O
request segment is checked to see if it is within
bounds. If it is not, a bad status code is returned. If the
function is valid, a do case block is executed using the
function code as the index.

If a read request is encountered, the auxiliary pointer
is set to point to the ret$data structure (initialized
earlier by the init534io procedure). In line 6.327 the
segment is then sent to the request mailbox to be
received and processed by an I/O processor task. In
lines 6.330-6.334 the same action is taken with write
requests.

Since this driver does not support seeking and special
functions, the code for these two cases simply returns
an error condition.

In the case of an attach$device call, the code in lines
6.341-6.361 is executed. First, two I/O processing
tasks are created. All of these tasks execute identical
code and each task is capable of servicing a read or a
write request on any 8251. Two tasks are created for
each 8251 device so that the peak load can always be
handled (that is, all receivers and transmitters going
simultaneously). Lines 6.346-6.357 perforni the initi
alization of the 8251 USART and the baud rate gen
erators for this channel. The calls in line 6.358 and
6.359 accept. an interrupt and a character from the
semaphore associated with the receiver just initialized.
This is done to clear off an interrupt generated by the
8251 whenever it is initialized.

In the case of a detach$device call, the code in lines
6.363-6.367 sends the I/O request segment to the

Ap·86

request mailbox twice. This is done to signal. two of the
I/O handler tasks to delete themselves. As discussed
earlier in the attach$device section, none of the I/O
handler tasks is any different from any of the others.
There are two created for each 8251 device which is
attached. The protocol set up for their deletion is
shown here. When an I/O handler task receives a
segment of type "detach$device" it will send the
segment to the response mailbox and then delete itself.

The code for the open and close requests is the same.
Both cases are supported but are NOPs since no
specific action needs to be taken by the driver.

Lines 6.379-6.382 contain the code for the cancel$
534$io procedure. As discussed earlier, this pro
cedure is simply a placeholder and serves no par
ticular purpose.

INTERRUPT CONTROL MODULE

The interrupt handler and interrupt task are shown in
lines 7.1-7.329. The interrupt task is the first piece
executed. It is created by the init534io procedure. It
calls RQsetinterrupt in line 7.325 to indicate to the
iRMX 86 nucleus that it is an interrupt task.

Once the initialization is complete, the task enters an
infinite loop. The call to RQ$wait$interrupt in line
7.322 causes the task to be put into the asleep state
until an interrupt occurrence is signaled. The task will
be returned to the READY state when an interrupt
occurs, the interrupt handler is started, and the call to
RQ$signal$interrupt is executed at line 7.312. The
current interrupt level is then determined by polling
the 8259 chip on the iSBC 534 board. Using the
encoded level number, a unit is sent to the appropriate
semaphore to indicate that an interrupt is pending.

1/0 TASK

The final procedure that makes up this driver contains
the code for the tasks that perform the actual I/O to
the iSBC 534 board. The loop executed by each task
starts by waiting at the request mailbox for an 1/0
request segment. When the segment is sent by the
queue534IO procedure, its function code is checked
(line 8.327, 8.332, 8.340). If the function is {$
detach$device, the task sends the segment to the
response mailbox and then deletes itself.

If the request was for a read, the task fills the buffer
with input data. The call at line 8.334 waits for a unit
at the semaphore which will indicate a receiver ready
on the input line. When the unit is sent by the in
terrupt task, the character is read in, the pointers and
counts are updated, and another unit is requested.

20

The last request which is recognized by the I/O task is
for a write operation. The code for this request is
almost identical to the code for a read request. An
interrupt from the transmitter is awaited, a character
is output and the counts are updated in lines 8.341-
8.346.

Once the request is fulfilled, the message is sent to the
response exchange in line 8.350.

The configuration of this system is studied next. The
code for the iSBC 534 driver is linked directly to the
rest of the I/O system libraries. The entry point
addresses for the queue534io, cancel534io, init$
534$io, and {inish$534$io procedures are declared in
the IOCNFG.A86 file on the I/O system disk. This file
also contains the device unit information block (DUIB)
structures for the four units on the iSBC 534 board.
The unique information for the iSBC 534 device and
the units on the device is contained in the device and
unit information tables. Pointers to these tables are
contained in the DUIB structures. All of this
information is shown in Figure 24.

The submit file used to build an I/O system using the
. nT"l"'" ,.,. n.. ,. • ~ ,
........... ~v uU:&. \A.Jt...a."~.&. .&.trJ. ":>.I..LU".i.l .L.a..!. .I..'.1.f)U.1.C ~tJ. ~.1Jt:: lilt:

DRV534.LIB contains the object files generated by
PL/M-86 and ASM-86 from the source code shown in
modules 5-9.

SUMMARY
This application note is an introduction to the iRMX
86 Operating System. The requirements of operating
systems were studied along with traditional solutions.
Following this, the iRMX 86 Operating System was
introduced and its correlation with the requirements
was studied.

Later in the application note, the topic of system
design was covered. Example solutions were studied to
solidify a methodology for solving application
problems and then the code for these solutions was
discussed to gain insight into the details of imple
menting iRMX 86 systems.

The purpose of a configurable, real-time, multi
purpose operating system is to provide a solid foun
dation for application software. The iRMX 86 system
provides this foundation, giving the software engineer
a means to quickly and easily implement new designs.
In addition, the iRMX 86 architecture is the bridge to
future technology providing the designer with an up
grade path to future hardware and software products.

AFN-01540A

AFN-01540A

,

Ap·86

extrn
extrn
extrn
extrn

init534io: near
queue534io: near
cance1534io: near
finish534io: near

,
; Duib(8): iSBC 534, unit
,
define duib
&

<
'i534.1',

&
&
&

&

&

03H,
00033H,
0,
0, (I,

3,
1,
fi,

&
&

&
&
&

&

&
&

&>

init534io,
finish534io,
gueue534io,
cance1534io,
dev 534 info,
unit 534 1 info

; 534 device info

dev 534 info dw
db
db

unit info: iSBC 534.0
,
unit 534 0 info db

dw

unit info: iSBC 534.1

unit 534 1 info db
dw

unit info: iSBC 534.2
,
unit 534 2 info db

dw

unit info: iSBC 534.3
,
unit 534 3 info db

dw

48H
61
040H

4EH
8

4EH
8

4EH
8

4EH
8

name (14)

supp$opt
file drivers
granularity
device size

device
unit
device unit
init$io
finishSio
queueS io
cancel$io
device info
uni t info

level
priority
base address

usart$cmd
ba ud rate

usart$cmd
baud rate

usart$cmd
baud rate

usartScmd
baud rate

Figure 24.IOCNFG A8S File Entries for iSBC 534™ Driver

ios(date,origin)
Sample I/O System .csd file to link and locate an I/O System.

This file links an I/O System with the timer included.

This .csd file assumes the I/O System configuration module is
iocnfg.a86 (found on the release diskette).

The origin parameter sets the low address of the I/O System;
all the segments are contiguous in memory.

asm86 :fl:iocnfg.a86 date(%0) print(:f5:iocnfg.lst)
link86 &

:fl:ios.lib(ioinit), &
:fl:iocnfg.obj, &

:f 1: ios.l ib, &
:fl:drv534.1ib, &
:f4:rpifc.lib &

I..U :fl:ios.lnk map print(:fl:ios.mpl)
loc86 :fl:ios.lnk to :fl:ios map sc(3) print(:fl:ios.mp2) &

oc(noli,nopl,nocm,nosb) &

order(classes(code,data,stack,memory)) &
addresses(classes(code(%l))) &
segsize(stack(0))

Figure 25. Submit File for Generating an 1/0 System with the iSBC 534™ Driver

21

Ap·86

22

APPENDIX A 25
APPENDIX B 51

23

Ap·86

24

APPENDIXA
Code Listings

25

Ap·86

26

Ap·86

Module 1

ISIS-II PL/M-86 V2.0 COMPILATION OF MODULE LISTENERMODULE
OBJECT MODULE PLACED IN :Fl:1isten.OBJ
COMPILER INVOKED BY: plm86 :Fl:1isten.plm PRINT(:Fl:LISTEN.LST)
DEBUG COMPACT OPTIMIZE(3) ROM DATE(5/28/8e

1

11

24

321
322

1

1

1
2

listener$module:
do;

/**

LISTENER: TASK.

This task creates segments, sends them to the input service
job to be filled with input packet info. Upon response
the info is checked to see what action needs to be taken.
If a log$on request is sensed, a worker task, service
mailbox, and response mailbox are created and the packet is
sent along to the worker task. If a log$off is sensed all
local reference to the workstation is deleted and the packet
is sent along to tell the worker to delete himself. If an
I/O request is sensed the station ID is checked to make
sure it is logged on. If it is, the packet is sent along to
the worker. If it isn't an error packet is sent back to the
requesting workstation.

**/

$include(:f2:common.lit)
$SAVE NOLIST
$ inc 1 ud e (: f 1 : nod e • 1 it)
/* literal declaration o~ node descriptor for list utilities */

declare
node literally 'structure(

link$f word,
link$b word,
work$station$ID word,
service$mbox$t word,
worker$task$t word,
resp$mbox$t word) ';

$ inc 1 ud e (: f 1 : 1 stu t 1 • ext)
/* external declarations for list manipulation utilities */

$save nolist
$include(:fl:pointr.ext)
/* external declaration of pointerize procedure */
$save nolist
$include(:fl:rqpckt.lit)
/* literal declaration for request packet structure */

declare req$segment$struc literally 'structure(
funct word,
count wo rd,
act ua 1 wo r d ,
exS val wo rd.
work$statio~$ID word,
cmd word,
share word,
mode word,
s tat 11 s wo r d ,
fileSname (64) byte,
buf (128) byte)';

$ inc 1 ud e (: f 2 : n llC p r m • ext)
$SAVE NOLIST

worker$task: procedure external;
end worker$task;

27

323

324

325
326
327
328
1?Q

330

331
332
333

334

335
336
337
338

339

340

341

342

343
344

1

1

2
2
2
2
?

1

2
2
2

2

2
2
2
2

2

2

3

3

3
3

Ap·86

Module 1, continued

declare
begin$listener$task$data byte public,
begin$worker$taskSdata byte external,
logoninfo$mbox$t token public,
ex$ val wo rd ,
10gSon$mbox$name (7) byte data(6,'LOG$ON'),
packet$size literally '132',
f$read literally'S',
f$write literally '6',
log$on literally '0',
log$off literally '1',
not$logged$on literally '1',
(root$ j ob$ t, i nput$ reqlJest$mbox$ t) token,
(0 utpu t$ reques t$mbox$ t , r esp$mbox$ t) to ken,
(wo r k $ s tat ion $ 1 i s t $ roo t $ t r r e q$ s e 9 men t $ t) to ken,
(logS on$ in fo$ seg$ t,d ummyt, wsdesc$ t) token,
(req$segment$p,work$station$list$rootSp) pointer,
(logoninfosegp,datasegp,ws$desc$p) pointer,
(req$segment based req$segment$p) req$segment$struc,
(work$station$list$root based work$station$list$root$p) node,
(logoninfo$seg based log$on$info$seg$p) node,
datasegp$o structure(offset word, base word) at(@datasegp),
(ws$desc based ws$desc$p) node;

return$error$to$WS: procedure;

req$segment.funct=f$write;
reg$segment.status=not$logged$on;
call rq$send$message(output$request$mboxt,regsegment$t,0,@ex$val);
return;

Listener: procedure public; /* task */

10gSon$info$mbox$t=rq$createSmailbox(0,@ex$val) ;
rootjobt=rqgettask$tokens(3,@ex$val);
inpllt$request$mbox$t=rqSlookup$object(

/* job */ rootjobt,
/* name */ @(9,'INPUT$REQ'),
/* time limit */ 0FFFFH,
/* statlls ptr */ @ex$val);

output$reguest$mbox$t=rg$lookup$object(
/* job */ rootjobt,
/* name */ @(10,'OUTPUT$REQ'),
/* time limit */ 0FFFFH,
/* status ptr */ @ex$val);

resp$mbox$t=rg$create$mailbox(0,@ex$val);
work$station$list$root$t=rg$create$segment(16,@ex$val);
work$station$list$root$p=pointerize(work$station$list$root$t);
work$station$list$root.link$f,
work$station$list$root.link$b=work$station$list$root$t;
work$station$listSroot.workstation$ID=0;

do forever;

reg$segment$t = rq$receive$message(
/* mbox token */ input$request$mbox$t,
/* time limit */ 0FFFFH,
/* response ptr */ @dummy$t,
/* status ptr */ @ex$val);

reg$segment$p=pointerize(reg$segment$t) ;

if reg$segment.cmd= log$on then
do;

28 AFN·01540A

345

346

347

348

349

350
351

352

353

354

355

356

357
358
359

360
361

362
363
364

36'3

366

367

368
369

4

4

4

4

4

4
4

4

4

4

4

4

3
3
4

4
4

4
5
5

5

5

4

3
4

AFN-01540A

end;

Ap·86

Module 1, continued

logoninfosegt=rq$create$segment(
/ * size * / 16,
/* status ptr*/ @ex$val);

logoninfosegp=pointerize(
logoninfosegt);

logoninfo$seg.service$mbox$t=
rq$create$mailbox(0,@ex$val);

logoninfo$seg.resp$mbox$t=
rq$create$mailbox(0,@ex$val);

10goninfo$seg.work$station$ID=
req$segment.work$station$ID;

datasegp=@begin$worker$task$data;
logoninfo$seg.worker$task$t=
rq$create$task(
/* priority */
/* start addr */
/* data seg ptr */
/* stack pointer */
/* stack size */
/* task flags */
/* status ptr */

200,
@ wo r k e r $ t ask ,
datasegp$o.base,
0,
500,
0,
@ex$val) ;

call rq$send$message(
/* mbox token */ logoninfo$mbox$t,
/* object token */ logoninfosegt,
/* response token */ resp$mbox$t,
/* status ptr */ @ex$val);

10gSon$info$seg$t=rq$receive$message(
/* mailbox token */ resp$mbox$t,
/* time limit */ 0FFFFH,
/* response token */ @dummy$t,
/* status ptr */ @ex$val);

call insertonlist(work$station$list$root$t,
10goninfo$segSt);

call rq$send$message(
/* mbox tok */ logoninfo$seg.service$mbox$t,
/* obj tok */ req$segment$t,
/* response */ 0,
/* status */ @ex$val);

else if req$segment.cmd = log$off then
do;

end;

else
do;

ws$desc$t=search$list(work$stationSlist$root$t,
req$segment.work$station$ID);

if ws$desc$t = 0 then

else
call retll[n$error$to$WS;

do;

end;

ws$descp=pointerize(wsSdesc$t) ;
call delete$fromSlist(

ws$desc$ t) ;
call rq$send$message(

ws$desc.service$mbox$t,
req$segment$t,
0,
@ex$val) ;

ws$desc$t=search$list(work$station$list$root$t,
req$segment.work$station$ID);

29

370
371

372
373
374

375
376
377
378

379

38eJ

4
4

4
5
5

5
4
3
3

2

1

end;

Ap·86

Module 1, continued

if ws$desc$t=0 then
call return$error$to$WS;

else
do;

end;

ws$descp=poiryterize(ws$desc$t) ;
call rq$send$message(

ws$desc.service$mbox$t,
req$segment$t,
0,
@ex$val) ;

call rq$delete$segment(req$segment$t,@ex$val);
end; /* of do forever */

end; /* of listener task */

end listener$module;

MODULE INFORMATION:

CODE AREA SIZE
CONSTANT AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
694 LINES READ
eJ PROGRAM ERROR(S)

':"lUi vs:: r'L/I·l-OtJ l,UMr'lLA'l'lUN

eJ281H
0eJeJeJH
eJeJ2BH
eJeJISH

641D
eJD

43D
24D

30 AFN-01540A

Ap·86

Module 2

ISIS-II PL/M-86 V2.0 COMPILATION OF MODULE WORKERTASK
OBJECT MODULE PLACED IN :Fl:worker.OBJ
COMPiLER INVOKED BY: plm86 :Fl:worker.plm PRINT(:Fl:WORKER.LST)
DEBUG COMPACT OPTIMIZE(3) ROM DATE(5/28/80)

1

239

240

241

242

243
244
245
246

1

1

2

2

2
2
2
2

wo r k e r $ t ask:
do;

/***

WORKER$TASK: TASK.

This module contains the code executed by the worker tasks.
When started, the task goes to a mailbox to receive a segment
containing initialization information. Using this information
the task services a service mailbox performing any I/O functions
requested of it. When a log$off request comes in the worker
task closes and detaches the file and deletes itself.

***/

$include(:fl:nucprm.ext)
$SAVE NOLIST
$ inc 1 ud e (: f 1 : i 0 s ys • ext)
$save nolist
$include(:rl:node.lit)
/* literal declaration of node descriptor for list utilities
$save nolist
$include{:f2:common.lit)
$SAVE NOLIST
$include{:fl:pointr.ext)
/* external declaration of pointerize procedure */
$save nolist
$include{:fl:rqpckt.lit)
/* literal declaration for request packet structure */

$save nolist

declare
read literally 'I',
write literally'S',
log$on literally '2',

* / I

log$off literally '3',
(logoninfo$mbox$t,output$request$mbox$t) token external;

worker$task: procedure reentrant public;

declare
(logoninfosegt,logonresp$mbox$t,resp$mbox$t,
rootjobt,user$object$t,prefix$t,iors$t,
serv ice$mbox$ t ,conn$ t, req$ seg$ t) token,
(logoninfop,reqseg$p) pointer,
(req$ seg based req$ seg$ p) req$ segmentS st r uc ,
(logoninfo based logoninfo$p) node,
(dummyt,exval,work$station$ID) word;

10goninfosegt=rg$receiveSmessage(
/* mbox token */ 10gSon$info$mbox$t,
/* time limit */ 0FFFFH,
/* response ptr */ @logonresp$mbox$t,
/* statlls ptr */ @ex$valj i

10goninfoSp=pointerize(10g$onSinfo$seg$t) ;
service$mbox$t=logoninfo.service$mbox$t;
resp$mbox$t=logoninfo.resp$mbox$t;
work$station$ID=logSon$info.work$station$ID;

31

247

248
249·

250

251

252

253

254
255
256

257

258
259

260

261
262
263

264

265
266
267

2

2
2

2

2

3

3

3
3
4

4

4
4

4

4
4
4

4

3
3
4

Ap·86

Module 2, continued

call rq$send$message(
/* mbox token */ logonresp$mbox$t,
/* object token */ logoninfosegt,
/* response token */ 0,
/* status ptr */ @ex$val);

rootjobt=rqgettask$tokens(3,@ex$val);
user$object$t=rq$lookup$object(
/* job token */ rootjobt,
/* name * / @ (11, 'USER$OBJECT') ,
/* time limit */ 0FFFFH,
/* status ptr */ @ex$val);
prefix$t=rq$lookup$object(
/* job token */ rootjobt,
/* name */ @(6,'PREFIX'),
/* time limit */ 0FFFFH,
/* status ptr */ @ex$val);

do forever;

reqsegt=rq$receive$message(
/* mailbox token */ service$mbox$t,
/* time limit */ 0FFFFH,
/* response ptr */ @dummy$t,
/* statlls ptr */ @ex$val);

reqsegp=pointerize(reqsegt);

if req$seg.cmd=log$on then
do;

end;

(";.=311 rO~rI~AttArh~filp(

/* user object */ user$object$t,
/* prefix token */ prefix$t,
/* pathname */ @req$seg.file$name,
/* resp token */ resp$mbox$t,
/* status ptr */ @ex$val);
iors$t=rqSreceive$message(
/* mbox token */ resp$mbox$t,
/* time limit */ 0FFFFH,
/* resp ptr */ @dummy$t,
/* statlls ptr */ @ex$val);
call rq$delete$segment(iors$t,@ex$val);
call rqaopen(
/* connection */ conn$t,
/* mode */ req$seg.mode,
/* share */ req$seg.share,
/* resp token */ resp$mbox$t,
/* status ptr */ @ex$val);
iors$t=rq$receive$message(
/* mbox token */ resp$mbox$t,
/* time limit */ 0FFFFH,
/* resp ptr */ @dummy$t,
/* status ptr */ @ex$val);
call rq$delete$segment(iors$t,@ex$val);
req$seg.status=0;
call rq$send$message{
/* mbox token */ output$request$mbox$t,
/* object token */ reqsegt,
/* resp ptr */ 0,
/* status ptr */ @ex$val) ;

else if req$seg.cmd=logSoff then
do;

call rqaclose(
/* connection */
/* resp token */
/* status ptr */

32

conn$t,
resp$mbox$t,
@ex$val) ;

AFN-01540A

268

269
270

271

272
273
274
275
276

277
278

279
280

281

282

283
284
285

286

287
288

289

290

291

4

4
4

4

4
4
4
4
4

4
4

3
3

4

4

4
4
4

4

3
3

4

4

4

end;

Ap·86

Module 2, continued

iors$t= rq$receive$message(
/* mbox token */ resp$mbox$t,
/* time limit */ 0FFFFH,
/* resp ptr */ @dummy$t,
/* status ptr */ @ex$val);
call rq$delete$segment(iors$t,@ex$val);
call rqadelete$connection(
/* connection */ conn$t,
/* response ptr */ resp$mbox$t,
/* statlls ptr */ @ex$val) i
iors$t=rq$receive$message(
/* mbox token */ resp$mbox$t,
/* time limit */ 0FFFFH,
/* response ptr */ @dummy$t,
/* status ptr */ @ex$val);
call rq$delete$segment(iors$t,@exSval)i
call rq$delete$mailbox(service$mbox$t,@ex$val)i
call rq$deleteSmailbox(r~sp$mboxSt,@ex$val)i
req$seg.status=0;
call rq$send$message(
/* mbox token */ output$request$mbox$t,
/* object token */ reqsegt,
/* resp token */ 0,
/* status ptr */ @ex$val)i
call rq$delete$task(0,@ex$val);

else if req$seg.cmd=read then
do;

end;

call rq$ a$ read (
/* connection */ conn$t,
/* buf ptr */ @reqSseg.buf,
/* count */ req$seg.count,
/* resp token */ resp$mbox$t,
/* status ptr */ @ex$val);
iors$t=rqSreceive$message(
/* mbox token */ resp$mbox$t,
/* time limit */ 0FFFFH,
/* resp ptr */ @dummy$t,
/* status ptr */ @ex$val)i
call rq$delete$segment(iors$t,@ex$val);
req$seg.status=0;
call rq$send$messag~(
/* mbox token */ outpllt$request$mbox$t,
/* object token */ reqsegt,
/* resp token */ 0,
/* status ptr */ @ex$val);

else if req$seg.cmd=write then
do;

call rqawrite(
/* connection */
1* h"F nt-y *1 I Ia.J \"&.L t"' '-.... I

conn$t,
lny<=>nC: c::<=>n _ hllf _
\.- - """1 - - J,. -- ,

/* count */ req$seg.count,
/* resp token */ resp$mbox$t,
/* status ptr */ @ex$val);
iors$t=rq$receive$message(
/* mbox token */ resp$mbox$t,
/* time limit */ 0FFFFH,
/* resp ptr */ @dummy$t,
/* status ptr */ @ex$val);
call rqSdelete$segment1iors$t,@ex$val);

33

Ap·86

Module 2, continued

292 4 call rq$send$message(
/* mbox token */ output$request$mbox$t,
/* object token */ reqsegt,
/* resp token */ 0,
/* status ptr */ @ex$val);

293 4 end;
end; /* of do forever */

295 2 end; /* of task */

296 1 end wo r k e r $ t ask ;

MODULE INFORMATION:

CODE AREA SIZE
CONSTANT AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
717 LINES READ
o PROGRAM ERROR(S)

END OF PL/M-86 COMPILATION

0288H
0000H
0000H
0034H

648D
0D
0D

52D

34 AFN-01540A

Ap·86

Module 3

ISIS-II MCS-86 MACRO ASSEMBLER V2.0 ASSEMBLY OF MODULE POINTR
OBJECT MODULE PLACED IN :F1:POINTR.OBJ
ASSEMBLER INVOKED BV' asm86 :fl:pointr.a86 debug pr(:f5:pointr.lst)

LOC OBJ LINE SOURCE

1 Stitle(pointerize Ut iIi t y)

0004

0000 55
(0001 8.B EC

0004 []

0003 8E4604
0006 33DB

0008 5D
0009 C20200

2
3
4
5
f)

7
8
9

10
1]
12
13
] 4
15
16
17
18
19
20
21
22
23
24
25
26

arg off

code
code

cg ro up
code

pointerize

token

pointerize
code
end

ASSEMBLY COMPLETE, NO ERRORS FOUND

AFN-01540A

equ 4 i

segment word public 'CODE'
ends

group code
segment
assume cs: cgroup

proc near
public pointerize
push bp
mov bp, sp

equ word ptr [bp + arg

mov es, token
xor bx, bx

mov sp, bp
pop bp
ret 2
endp
ends

35

set args for

save
mark stack

off + 0]

get base
zap offset

restore stack

"DELUXE"

Ap·86

Module 4

ISIS-II PL/M-8~ X167 COMPILATION OF MODULE LISTUTILITIESMODULE
OBJECT MODULE PLACED IN :F1:lstutl.OBJ
COMPILER INVOKED BY: plm86 :F1:lstutl.plm PRINT(:F5:LSTUTL.LST)
DEBUG COMPACT OPTIMIZE(3) ROM DATE(3/7/80)

1 list$utilities$module:
do;

/**

15

16

17
18
19
20
21
22
23
24
25

26

27

28

29
30
31
32
33
34

1

2

2
2
2
2
2
2
2
2
2

2

1

2

2
2
2
2
2
2

LIST$UTILITIES: PUBLIC PROCEDURES.

This module contains three list manipulation utilities.
Insertonlist takes the given node and inserts it on the
list indicated by the root node parameter. Delete$from
list unlinks the indicated node from the list it is
linked to. Search$list scans the list from the root looking
for the indicated node. If found, the token for the node
is returned. If not found, a zero is returned.

**/

Sinclude(:f4:common.lit)
$SAVE NOLIST
$include(:f1:node.lit)
/* literal declaration of node descriptor for list utilities */
$save nolist
$include(:fl:pointr.ext)
/* external declaration of pointerize procedure */
$save nolist

Insertonlist: procedure(rootSt,newSdesc$t) reentrant public;

declare
(root$ t ,new$descS t, fwd$desc$ t) token,
(rootSp,newSdescp,fwddescSp) pointer,
(root based root$p) node,
(newSdesc based new$desc$p) node,
(fwdSdesc based fwdSdescSp) node;

root$p=pointerize(rootSt);
new$desc$p=pointerize(newSdesc$t);
fwd$desc$t=root.link$f;
fwd$descSp=pointerize(fwdSdescSt);
root.linkSf=newSdesc$t;
newSdesc.linkSf=fwd$descSt;
new$desc.linkSb=root$t;
fwdSdesc.linkSb=newSdescSt;
return;

end; /* insertSonSlist */

Delete$fromSlist: procedure(desc$t) reentrant public;

declare
descSt token,
(des c $ p , b S des c S p , f S des c S p) po in t e r ,
(desc based descSp) node,
(bSdesc based bSdescSp) node,
(fSdesc based fSdesc$p) node;

desc$p=pointerize(descSt);
bSdescSp=pointerize(desc.linkSb) ;
f S d es c S p= po i n t e r i ze (d es c . 1 ink Sf) ;
bSdesc.linkSf=desc.linkSf;
fSdesc.linkSb=desc.linkSb;
return;

36 AFN-01540A

35

36

37

38
39

40
41
42
43
44
45

46

47

2

1

2

2
2

2
2
2
2
2
2

2

1

Ap·86

Module 4, continued

end; /* delete$fromSlist */

search$list: procedure(root$t,WS$ID) word reentrant public;

declare
(roott,WSID) word,
(s $ des c $ p , roo t $ p) po i n t e r ,
(root based rootSp) node,
(s$desc based s$desc$p) node,
s$desc$p$o structure (offset word, base word) at(@s$desc$p),
temp pointer;

s$desc$p=pointerize(rootSt);
next$node:

if s$desc.work$station$ID=WS$ID then
return s$descSp$o.base;

if s$desc.linkSf = root$t then
return 0;

temp=pointerize(sSdesc.link$f);
s$desc$p=ternp;
goto next$node;

end; /* searchSlist */

end list$utilities$rnodule;

MODULE INFORMATION:

CODE AREA SIZ E
CONSTANT AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
114 LINES READ
o PROGRAM ERROR(S)

END OF PL/M-86 COMPILATION

AFN·01540A

00FEH
0000H
0000H
0018H

37

254D
0D
0D

74D

Ap·86

Module 5

ISIS-II PL/M-86 X167 COMPILATION OF MODULE STARTANDFINISH
OBJECT MODULE PLACED IN :Fl:strfin.OBJ
COMPILER INVOKED BY: plm86 :Fl:strfin.plm PRINT(:FS:STRFIN.LST)
DEBUG COMPACT OPTIMIZE(2) ROM DATE{4/28/80)

1

314
315
316

317
318

319

320

321

1
2
2

1
2

1

1

2

startandfinish:
do;

/***

INIT$S34$IO and FINISH$S34$IO: PUBLIC PROCEDURES.

This module contains the init$S34$IO and the FINISH534IO
procedures which can be called by the RMX/86 I/O system. START$IO
is called just before the first attachSdevice is performed.
It will create the interrupt task and the eight interrupt$pending
semaphores. The FINISH$IO procedure is called just after the
last detach$device is performed. It undoes everything the START$IO
call did.

***/

$include(:f4:nucprm.ext)
$SAVE NOLIST
$include(:f4:common.lit)
$SAVE NOLIST
$inc1ude(:f1:duib.lit)
/* duib structure definition */
Ssave nolist
$include{:f4:nerror.lit)

$SAVE NOLIST
$ inc 1 ud e (: f 1 : poi n t r • ext)
/* external declaration of pointerize procedure */
$save nolist
$ inc 1 ud e (: f 1 : ret d t a • 1 it)
/* literal declaration of ret$data structure for initS534Sio */
$save nolist

init$534S~w: procedure{data$p) external;
declare dataSp pointer;

end init534hw; /* initializes 534 hardware */

int534task: procedure external;
end int$534Stask;

declare
beginint534Sdata byte external,
IO$base$addr byte public,
int$level word public,
gretdata$p pointer public,
req$mbox$t token public;

init534IO: procedure(duibp,retdatatp,status$p) reentrant public;

declare
(duibSp,ret$d2.r~St~p,stntusSp) pointer,
(duib based ouibSp) oev$unltSinfoSb..l.ock,
(ret$dataSt basen retSoatnStSp) token,
(s tat usb a sen s tat u s $ p) wo r d ,
dev$infoSp pointer,
nevSinfo based dev$infoSp structure(

1 evel wo rd ,
priority byte,
IOSbaseSaddr byte),

38 AFN·01540A

322

323
324
325
326
327
328
329

330

331
332

333
334
335

336
337

338
339

342

343

344
345
346
347

348

349
350
351
352

353

354

AFN-01540A

2

2
2
2
2
2
2
2

2

2
2

2
2
2

2
2

2
2

2
3

3

3

3
2
2
2

2

3
3
2
2

2

2

Ap·86

Module 5, continued

exS val wo rd ,
datasegp pointer,
datasegp$o structure{offset word,base word) at(@datasegp) I

(i , j) byte;

declare
ret$dataSp pointer,
retSdata based ret$dataSp structure(ret$dataSstruc);

retSdata$t=rq$createSsegment (si ze (ret$data) ,@ex$val) ;
if ex$val <> 0 then

goto err0;
gretdataSp,ret$data$p=pointerize(ret$dataSt)i
dev$info$p=duib.dev$info$p;
IO$base$addr,ret$data.IO$base=dev$i~fo.IOSbase$addr;
int$level,ret$data.intSlevel=devSinfo.level;

/* create the request mailbox */

ret$data.request$mbox$t,reqSmbox$t
=rq$create$mailbox(0,@ex$val) i

if ex$val <> 0 then
goto errl;

ret$data.resp$mbox$t=rq$create$mailbox(0,@ex$val);
if ex$val <> 0 then

goto err2; /* clean up partial creation */

datasegp=@beginint534Sdata;
ret$data.int$taskSt=rqScreateStask(

/* priority */ devSinfo.priority,
/* entry point */ @intS534$task,
/* data segment */ data$segSpSo.base,
/* stack pointer */ 0,
/* stack size */ 400,
/* task flags */ 0,
/* status pointer */ @ex$val);

if ex$val <> 0 then
goto err3; /* can't create. clean up partial creation */

do i=0 to 7; /* create semaphores */

end;

ret$data.int$sema(i)=rq$create$semaphore(
/* initial value */ 0,
/* max value */ 1,
/* priority queue */ 1,
/* status ptr */ @ex$val);

if ex$val <> 0 then

goto err4; /* clean up partial creation */

call init$534Shw(ret$data$p);
status=ESOK;
return;

err4:
do j=0 to i;

call rqSdelete$semaphore(retSdata.int$sema(j) ,status$p);
end;
call rq$resetSinterrupt(dev$info.level,status$p);

err3:
call rqSdeleteSmailbox(retSdata.respSmboxSt,statusSp)i

err2:
call rqSdeleteSmailbox(retSdata.requestSmbox$t,status$p);

errl:
call rq$deleteSsegment(ret$dataSt,status$p);

39

355

356
357

358
359

360
361
362
363
364
365
366

367
368
369
370
371

2

2
2

1
2

2
2
2
2
2
2
3

3
2
2
2
1

Ap·86

Module 5, continued

err0:
status=exSvali /* restore original status condition */
return;

end; /* of procedure */

finishS534$IO: procedure(duibSp,retSdataSt) reentrant public;
declare

d u i b $ P po i n t e r ,
dev$info$p pointer,
dev$info based devSinfoSp structure(

level wo rd ,
priority byte,
IOSbase$addr byte),

retSdata$p pointer,
ret$data based ret$dat('l$p structure (retSdata$struc) ,
(duib based duibSp) devSunit$info$block,
ret$dataSt token,
i byte,
ex $ val wo r d ;

dev$info$p=duib.devSinfoSp;
ret$data$p=pointerize(ret$dataSt);
call rg$reset$interrupt(dev$info.level,~exSval);
call rgSdelete$mailbox(ret$data.reguest$mbox$t,@ex$val);
call rg$delete$mailbox(ret$data.respSmboxSt,@ex$val);
do i=0 to 7;

end;

call rg$delete$semaphore(
ret$data.i:1t$sema(i) ,
Idex$val);

call ro~rlplptp~C:::C>rlmprt-l ... pt-(:il;ot"'¢~ t;l",v¢··::-1\.

return;
end; /* of procedure */
end start$andSfinish;

MODULE INFORMATION:

CODE AREA SIZE
CONSTANT AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
67.1 LINES READ
o PROGRAM ERROR(S)

END OF PL/M-86 COMPILATION

0220H
0000H
0009H
0034H

5Ll4D
0D
9D

52D

40 AFN·01540A

Ap·86

Module 6

ISIS-II PL/M-86 Xln7 COMPILATION OF MODULE QUEUE534IOMODULE
OBJECT-MODULE PLACED IN :Fl:queio.OBJ
COMPILER INVOKED BY: plm8~ :Fl:queio.plm PRINT(:F5:QUEIO.LST)
DEBUG COMPACT OPTIMIZE(2) ROM DATE(4/25/80)

1

315
316

317

318

319

AFN-01540A

1
2

1

1

2

queueS53~iomodule:

do;

/***

QUEUE$534SIO. PUBLIC PROCEDURE.

This procedure is called by the I/O System to queue
an I/O request to the 534 board. The function field
in the IORS is used to determine what specific action
to take. Module also contains a dummy cancel534io
procedure.

***/

$include(:f4:nucprm.ext)
$SAVE NOLIST
$include(:f4:common.lit)
$SAVE NOLIST
Sinclude(:f~:nerrorelit)

$SAVE NOLIST
$include(:fl:pointr.ext)
/* external declaration of pointerize procedure */
$save nolist
$ inc 1 ud e (: f 1 : d u i b .1 it)
/* duib structure definition */
$save nolist
$ inc 1 ud e (: f 1: i 0 r s.l it)
/* literal declaration for iors */
$save nolist
$ inc 1 ud e (: f 1 : ret d t a . 1 it)
/* literal declaration of ret$data structure for initS534Sio */
$save nolist

io534task: procedure external;
end i 0$ 534 $task;

declare
beginiotaskSdata byte external;

queueS534$io: procedure(iors$t,duibSp,ret$dataSt) reentrant public;

declare
(iorst,retdata$t) token,
datasegp pointer,
datasegp$o structure(offset word,base word) at(@dataSsegSp),
IDDR literally '2AH',
(d u i b $ p , ret S d a t aSp, i 0 r sSp) po i n t e r ,
(duib based duibSp) dev$unitSinfoSblock,
(ret$data based retSdataSp) structure (retSdataSstruc) ,
(iors based iors$p) IOSrequestSresult.Ssegment,
io$taskSt token,
unit$infoSp pointer,
unitSinfo based unitSinro$p structure(

usart$cmd byte,
baud S rat e wo r d) ,

i byte,
d urn m y S t to ken,
e x S val wo r d i

.A1

320
321

322
323

324

325
326
327

328
329

330
331
332

333
334

335
336

338
339
340

341

342
343
344

345

346
347
348
349
350
351

352
353
354

355

356

2
2

2
2

2

3
4
4

4
4

3
4
4

4
4

3
4

3
4
4

3

4
4
5

5

4
4
5
5
4
4

4
4
4

4

4

Ap·86

Module 6, continued

iors$p=pointerize(iors$t)j
ret$datn$p=pointerize(ret$data$t)j

if iors.funct > 7 then
goto bad$requestj

do case iors.functj

do; 1* case 0-- read *1
iors.aux$p=ret$data$p;
call rq$send$message(

end;

1* mbox *1 ret$data.request$mbox$t,
1* token *1 iors$t,
1* resp *1 0,
1* status ptr*1 ~ex$val);

return;

dOj 1* case 1-- write *1
iors.aux$p=ret$data$p;
call rq$send$message(

end;

1* mbox *1 ret$data.request$mbox$t,
1* token *1 iors$t,
1* resp *1 0,
1* status ptr*1 @ex$val)j

return;

do; 1* case 2--seek (illegal) *1
goto bad$request;

dOj 1* case 3-- special (illegal) *1
goto bad$request;

end;

do; 1* case 4-- attach$device *1

1* create two 1/0 tasks *1

data$segSp=@begin$IO$task$data;
do i=0 to 1;

end;

io$task$t= rq$create$task(
1* priority *1 150,
1* entry pnt *1 @io534task,
1* data seg *1 datasegp$o.base,
1* stack ptr *1 0,
1* stack size *1
/* task flags */
/* status ptr *1

500,
0,
(clex~val)j

unitSinfoSp=duib.unitSinfo$p;
do i=0 to 3;

output(retSdata.usart$cmdSport(iors.unit»=0;
end;
out put (ret $ d a t a • usa r t Scm d S po r t (i 0 r s • un it)) = 4 0 H ;
output(ret$data.usnrt~cmdSport(iors.unit»=

unitSinfo.usartScmd;
output(retSdata.usartScmdSport(iors.unit»=27H;
output(retSdatn.IOSbase+0CH)=Oj 1* select cntr1 b1k *1
output(ret$data.timer$cmdSport(iors.unit)):

retSdata.timerScmd(iors.unit) ;
out put (ret S d a t a • tim e r $ loa d S po r t (i 0 r s • un it)) =

low (un i t $ in f 0 • baud $ rat e) ;
out put (ret S d a t a • tim e r S loa d S po r t (i 0 r s • u nit)) =

h i g h (un i t $ i n f 0 • baud S rat e) j

42 AFN·01540A

357

358

359
360
361

362

363

364

365

366

367
368

369
370
371

372
373
374
375
376
377

378
379

380

381
382

383

384

385

4

4

4
4
4

3

4

4

4

4

4
4

3
4
4

3
4
4
3
2
2

2
2

2

2
2

1

2

2

Ap·86

Module 6, continued

output(ret$data.IO$base+0DH)=0; 1* select data blk */

/* accept interrupt and character from receiver */

end;

dummySt=rq$receive$units(
/* serna */ ret$data.int$sema(2 * iors.unit),
/* units */ 1,
/* time$out */ 0,
/* status */ @ex$val);
i=input(ret$data.usart$data$port(iors.unit);
goto okSsend$resp;

do; /* case 5-- detach$device */

/* send two copies of the detach request to the request mailbox.
This will signal to two of the I/O tasks that they are to
delete themselves */

end;

call rq$send$message(
/* mbox token */ ret$data.request$mbox$t,
/* object token */ iors$t,
/* response */ ret$data.resp$mbox$t,
/* status */ @ex$val);
dummy$t=rq$receive$message(
/* mbox token */ ret$data.resp$mbox$t,
/* time$limit */ 0FFFFH,
/* response ptr */ @dummySt,
/* status ptr */ @ex$val)i
call rq$send$message(
/* mbox token */ ret$data.request$mbox$t,
/* object token */ iors$t,
/* response */ ret$data.resp$mbox$t,
/* status */ @ex$val);
dummySt=rq$receive$message(
/* mbox token */ ret$data.resp$mboxSt,
/* time$limit */ 0FFFFH,
/* response ptr */ @dummy$t,
/* status ptr */ @ex$val);
goto ok$send$resp;

do; /* case 6-- open */
goto ok$send$resp;

end;

do; /* case 7-- close */
goto ok$send$resp;

end;
end; /* do case */
return;

bad$request:
iors.status=IDDR;
goto send$resPi

ok$send$resp:
.;.-..,..~ ~""'::t.""I,C'"-~C'ntl •
.LVi. ';:'.o.J'-U'-U~-U"""'-'''''\,

send$resp:
call rq$send$message(iors.resp$mbox,iorsSt,0,@ex$val);
return;

end; /* procedure */

cancel$S34$io: procedure(iors$t,duib$p,ret$data$t) public;

declare
(iorst,retdata$t) token,

d u i b$ P po i n t e r i

return;

386
387

MODULE

END OF

2
1

Ap·86

Module 6, continued

end;
end gueueS534SioSmodule;

INFORMATION:

CODE AREA SIZ E 020CH 524D
CONSTANT AREA SIZE 0000H ~D

VARIABLE AREA SIZE 0000H 0D
MAXIMUM STACK SIZE 0038H 50D
729 LINES READ
o PROGRAM ERROR(S)

PL/M-86 COMPILATION

44 AFN·01540A

Ap·86

Module 7

ISIS-II PL/M-86 V2.0 COMPILATION OF MODULE INTERRUPT534MODULE
OBJECT MODULE PLACED IN :Fl:int534.0BJ
COMPILER INVOKED BY: plm86 :Fl:int534.plm PRINT(:Fl:INT534.LST)
DEBUG COMPACT OPTIMIZE(2) ROM DATE(5/28/80)

1

308

309

310

311
312
313
314

315

316

317
318
319
320

AFN-01540A

1

1

2

2
2
2
2

1

2

2
2
2
2

$nointvector
Interrupt534module:

do;

/***

INT534TASK and INT534HND:
PUBLIC PROCEDURES:

This module contains the interrupt handler and the interrupt
task for the 534 board interrupt. The handler simply calls
signa1$interrupt and the task reads the ISR on the 534
board's 8259 and sends a unit to one of eight interruptS
pending semaphores to signal the occurrence of the event.

***/

$include(:f2:nucprm.ext)
$SAVE NOLIST
$ inc 1 ud e (: f 1 : ret d t a • 1 it)
1* literal declaration of ret$data structure for init$534$io */
$save nolist
$include(:f2:common.lit)
$SAVE NOLIST

declare
beginint534$data byte public q

gretdata$p pointer external,
IO$baseSaddr byte external,
intSlevel word external;

int534hnd: procedure interrupt 5;

declare
I wo rd,
ex$val word;

l=rqgetlevel(@ex$val) ;
call rq$signal$interrupt(l,@ex$val);
return;
end;

int534task: procedure reentrant public;

declare
IO534base byte,
int534level word,
ret$data$p pointer,
ret$data based ret$dati$p structure(ret$data$struc) ,
c$level byte,
ex $ val wo r d :
eoi literally '20H';

IO534base=IO$base$addr;
int534level=int$level;
ret$data$p=gretdataSp;
call rqsetinterrupt(

/* level */ int534level,
/* flags */ 1,
/ * en try po in t * / i n t err up t $ p t r (i n t $ 5 34 $ h n d) ,
/* data segment */ 0,
/* status ptr */ @ex$val);

45

321
322
323
324
325
326
327
328

329

MODULE

END OF

2
3
3
3
3
3
3
2

1

Ap·86

Module 7, continued

do forever;
call rq$wait$interrupt(int534level,@ex$val);
output(IO534base+8)=0CH;
c$level=input(IO$534$base+8) and 07H;
call rq$send$units(ret$data.int$sema(c$level) ,l,@ex$val);
output(IO534base+8)=EOI;

end; /* of do forever */
end; /* of procedure */

end interrupt534module;

INFORMATION:

CODE AREA SIZE 00B5H
CONSTANT AREA SIZE 0000H
VARIABLE AREA SIZE 0005H
MAXIMUM STACK SIZE 0026H
541 LINES READ
o PROGRAM ERROR(S)

PL/M-86 COMPILATION

1810
00
5D

380

46 AFN·01540A

Ap·86

Module 8

ISIS-II PL/M-86 X167 COMPILATION OF MODULE I0534TASKMODULE
OBJECT MODULE PLACED IN :Fl:iotask.OBJ
COMPILER INVOKED BY: plm86 :Fl:iotask.plm PRINT(:F5:IOTASK.LST)
DEBUG COMPACT OPTIMIZE(2) ROM DATE(4/25/8~)

1

314

315

316

317
318

319
320
321

1

1

2

2
3

3
3
3

AFN-01540A

io534task$module:
do;

/***

IO534TASK: TASK.

This task receives IORS segments from the queueSio
procedure and performs the necessary input or
output operations on the iSBC 534 board.

***/

$include(:f4:common.lit)
$SAVE NOLIST
$ inc 1 ud e (: f 1 : poi n t r • ext)
/* external declaration of pointerize procedure */
$save nolist
$ inc 1 ud e (: f 4 : n uc p r m • ext)
$SAVE NOLIST
$include(:f4:nerror.lit)

$SAVE NOLIST
$include(:f1:retdta.lit)
/* literal declaration of retSdata structure for initS534Sio */
$save nolist
$include(:f1:iors.lit)
/* literal declaration for iors */
$save nolist

declare
begin$ioStask$data byte public,
req$mbox$t token external,
f$detach$device literally '5',
f$read literally '~',
fSwrite literally 'I';

IO534task: procedure reentrant public;

/*

declare
iors$t token,
iorsSp pointer,
iors based iors$p IOSrequest$resultSsegment,
ex $ val wo r d ,
resp$t token,
buff$p pointer,
buf based buff$p (1) byte,
i wo rd,
unit byte,
ret$data$p pointer,
.- - .I.... ". _, _ .I.... _ L ___ ...JI _.- £.. ,... ~ _ .L _ tAo _ _.L. _ ... _ .&.. ... __ I __ ~ e ~ _ ~ ~ e ~ ~ W'" I"'" \
[t=L;:>UdLd Ud::>t=U Lt::l..;;;>Udl..CI;;;>P ::;l..LU~I...ULC~LCI..."'UO'-O""'::>'-LU""I'

c$ val wo rd;

do forever;
iors$t=rq$receive$message(regSmboxSt,0FFFFH,0respSt,@exSval);

check for non-existence of mailbox. IF last device has been detached
the mailbox will be deleted In this case, delete thyself */

if ex$val= ESexist thep
call rgSdeleteStask(0,@ex$val);

iors$p=pointerize(iorsSt);

47

322
323
324
325
326

327
328
329

330
331

332
333
334

335
336
337
338
339

340
341
342

343
344
345
346
347

349
350
351

352

353

3
3
3
3
3

3
3
4

4
4

3
3
4

4
4
4
4
4

3
3
4

4
4
4
4
4

3
3
3

2

1

Ap·86

Module 8, continued

buffSp=iors.buffSp;
unit=iors.unit;
iors.actual=0;
i=0;
ret$dataSp=iors.auxSp;

if iors.funct = fSdetachSdevice then
do;

end;

call rgSsendSrnessage(
/* rnbox token */ respSt,
/* object token */ iors$t,
/* response token */ 0,
/* status ptr */ @exSval);
call rgSdeleteStask(0,@exSval);

if iors.funct= fSread then
do while iors.count >0;

cSval=rgSreceive$units(

end;

/* serna */ ret$data.intSserna(2*unit),
/* units */ 1,
/* time */ 0FFFFH,
/* status*/ @exSval);

buf(i)=input(retSdata.usartSdata$port(unit» and 07FH;
i=i+1;
iors.count=iors.count-l;
iors.actual=iors.actual+l;

else if iors.funct= fSwrite then
do while iors.count >0;

c$val=rg$receiveSunits(
/* serna */ retSdata.intSsema(2*unit+1),
/* units */ 1,
/* time */ ~FFFFH,

/* status*/ @exSval);
output(retSdata.usartSdataSport(unit»=buf(i) ;
i=i+1;
iors.count=iors.count-l;
iors.actual=iors.actual+l;

end;
iors.status=E$OK;
iors.done==TRUE;
call rgSsend$rnessage(iors.respSmbox,iorsSt,~,@exSva1);

end; /* of do forever */

end; /* of procedure */

end ioS534Stask$rnodule;

MODULE INFORMATION:

CODE AREA SIZE
CONSTANT AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
624 LINES READ
o PROGRAM ERROR(S)

END OF PL/M-86 COMPILATION

018DH
0000H
000lH
0028H

397D
0D
ID

40D

48 AFN·01540A

Ap·86

Module 9

ISIS-II PL/M-86 X167 COMPILATION OF MODULE INIT534HW
OBJECT MODULE PLACED IN :F1:inithw.OBJ
COMPILER INVOKED BY: plm86 :Fl:inithw.plm PRINT(:F5:INITHW.LST)
DEBUG COMPACT OP.TIMIZE(2) ROM DATE(4/25/80)

1

12

13

14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29

30
31
32
33

1

2

2
2
2
2
2
2

2
2
2
2
3
3
3
3
2
2

2
2
2
1

init534hw:
do;

/***

init534hw: PUBLIC PROCEDURE.

This procedure initializes the iSBC 534 hardware and
sets up the device dependent fields of the ret$data
segment which will be used by the queueSio procedures.

***/

$include(:f4:common.lit)
$SAVE NOLIST
$ inc I ud e (: f 1 : ret d t a • 1 it)
/* literal declaration of ret$data structure for initS534Sio */
$save nolist

init534hw: procedure(retSdataSp) reentrant public;

declare
ret$data$p pointer,
ret$data based ret$data$p structure(ret$data$struc),
(base, i) byte;

base=ret$data.io$base;
output(base+0FH)=0; /* board reset */
output(base+0DH)=0; /* select data block */
output(base+8)=16H; /* output ICWI */
output(base+9)=0; /* output ICW2 */
output(base+9)=0; /* output mask word */

/* attach$device calls will initialize usarts and timers */
/* set up tables of port addresses for use by queue$io procs */

.:>nn·

ret$ data. t imer$ cmd (0) , r et$ data. tim er$ cmd (3) = 3 6H ;
ret$data.timer$cmd(1)=76H;
ret$data.timer$cmd(2)=0B6H;
do i=0 to 3;

retSdata.usartScmd$port(i)=base+2*i+1;
ret$data.usart$dataSport(i)=base+2*i;
ret$data.timer$loadSport(i)=base+i;

end;
ret$data.timer$load$port(3)=base+4;
ret$data.timer$cmdSport(0) ,
ret$data.timer$cmd$port(l) ,
ret$data.timer$cmdSport(2)=base+3;
ret$data.timer$cmdSport(3)=base+7;
return;

~~d' init$534Shw;

MODULE INFORMATION:

CODE AREA SIZE
CONSTANT AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZF
77 LINES READ
o PROGRAM ERROR(S)

END OF PL/M-86 COMPILATION

AFN·01540A

00E4H
""000H
0000H
(HH~8H

2280
0D
0D
8D

49

Ap·86

50

APPENDIX B
Configuration Listings/Worksheets

J;1

Ap·86

FREE
SPACE

ROOT
JOB

APPLICATION
JOB

COMMUNICATIONS
JOB

1/0 SYSTEM

NUCLEUS

INTERRUPT VECTOR

System Memory Map

--*-*-*-*-*-*-*-*-*-*-- NUCLNK.CSD --*-*-*-*-*-*-*-*-*-*-*-*-*

'4&.....,;,V&.JI·J.i. &..I~ " .. ,'\v .L,u, v""" a ... v....,;.

i
:F0:LINK86 &
:Fl:NUC86.LIB(NENTRY), &
:Fl:NUC86.LIB &
TO :Fl:NUCLUS.LNK MAP PRINT(:Fl:NUCLUS.MPl} NAME(NUCLEUS)

--*-*-*-*-*-*-*-*-*-*-- NUCLOC.CSD --*-*-*-*-*-*-*-*-*-*-*-*-*
i
iTHIS SUBMIT FILE LOCATES THE NUCLEUS IN MEMORY.

: F0: LOC86 &
:Fl:NUCLUS.LNK TO :Fl:NUCLUS MAP PRINT(:Fl:NUCLUS.MP2) SC(3) &
RESERVE(0 TO 7FFH) SEGSIZE(STACK(0}} &
ORDER(CLASSES(CODE,DATA,STACK,MEMORY}) &
OBJECTCONTROLS(NOLINES,NOCOMMENTS,NOPUBLICS,NOSYMBOLS)

Nucleus Link and Locate Commands

52 AFN·01540A

Ap·86

ios(date,origin)
Sample I/O System .csd file to link and locate an I/O System.

This file links an I/O System with the timer included.

This .csd file assumes the I/O System configuration module is
iocnfg.a86 (found on the release diskette) • .

The origin parameter sets the low address of the I/O System;
all the segments are contiguous in memory.

asm86 :fl:iocnfg.a86 date(%0)
link86 &

:fl:ios.lib(ioinit), &
:fl:iocnfg.obj, &
:fl:ios.lib, &
:fl:rpifc.lib &

to :fl:ios.lnk map print(:fl:ios.mpl)
loc86 :fl:ios.lnk to :fl:ios map sc(3) print(:fl:ios.mp2) &

oc(noli,nopl,nocm,nosb) &
order(classes(code,data,stack,memory» &
addresses(classes{code(%l») &
segsize(stack(0»

1/0 System Link and Locate Commands

Submit file to generate located version of file transaction job
;
link86 &

:fl:ftinit.obj, &
:fl:listen.obj, &
:fl:worker.obj, &
:fl:pointr.obj, &
:fl:rpifc.lib &

to :fl:apexl.lnk map print(:fl:apexl.mpl)

J

loc86 :fl:apexl.lnk to :fl:apexl map sc(3) print(:fl:apexl.mp2) &

;

oc(noli,nopl,nocm,nosb) &
order(classes(code,data,stack,memory» &
addresses(classes(code(%l») &
segsize(stack(0»

File Transaction Job; Link and Locate Commands

Submit file to generate located version of communications job

link86 &
:fl:cminit.obj, &
:fl:comm.lib, &

:fl:pointr.obj, &
:fl:rpifc.lib &

to :fl:comm.lnk map print(:fl:apexl.mpl)
10c86 :fl:comm.lnk to :fl:comm map sc(3) print(:fl:comm.mp2) &

oc{noli,nopl,nocm,nosb) &
order(classes(code,data,stack,memory)) &
addresses(classes(code(%l») &
segsize(stack(0»

Communications Job; Link and Locate Commands

53 AFN-01540A

Ap·86

077EH 10E4H PUB INITDEVICETABLES 077EH 0FBCH PUB NAMEDDELETE
077EH 0EB3H PUB DECRUSECOUNT 077EH 0E51H PUB UNLINKCONN
077EH 0CA8H PUB NAMEDCHANGEACCES 077EH 0B5AH PUB ATTACHNAMEDFILE

-S
--.077EH 073EH PUB ATTACHDEVICETASK 077EH 0574H PUB I LLEGALFUNCT

077EH 003EH PUB RQAIOSINITTASK 077EH 0006H PUB COPYRIGHT

SEGMENT MAP

START STOP LENGTH ALIGN NAME CLASS

077E0H 1453EH CD5FH W CODE CODE
14540H 145FFH 00C0H W REQ TABLE CODE
14600H 146DFH 00E0H W lOS-TABLE CODE

--.146E0H 14745H 0066H W DATA DATA
14746H 14746H 0000H W STACK STACK
14750H 14750H 0000H G ??SEG

--.14750H 14750H 0000H W MEMORY MEMORY

Locate Map for 1/0 System
(The "--." indicates entries for job macros and memory map)

147SH e79EH PUB $ETUP544 1475H 06C5H PUB PACKETINPUT

147SH 0SB5H PUB INDEX --.1475H 0572H PUB COMMINITTASKENTRY
-ESS

SEGMENT MAP

START STOP LENGTH ALIGN NAME CLASS

147S0H lSBCDH 147DH W CODE CODE
--'lSBD0H 170D2H 1502H W DATA DATA

170D2H 1712EH 004CH W STACK STACK
17130H 17130H 0000H G ??SEG

--'17130H 17130H 0000H W MEMORY MEMORY

Locate Map for Communications Job

17D6H 03BSH PUB BEGINLISTENERTASKDATA1713H 0153H PUB POINTERIZE
--.1713H 0112H PUB INITTASKENTRY 1713H 0401H PUB WORKERTASK

SEGMENT MAP

START STOP LENGTH ALIGN NAME CLASS

17130H 17DS9H 0C29H W CODE CODE
17D60H 1 7E 28H 00C8H W DATA DATA
17E30H 17E9AH 006AH W STACK STACK

Locate Map for File Transaction Job

54 AFN·01540A

Ap·86

Macrocal_I: ___________________ s~Y~S~T~E~M~(s~y~s~te~m~p~a~ra_m_e~t~e~rs~) ____________________ __

Number of calls required: exactly one
----------------~~--------------------------------

CONFIGURATION FILENAME~~~~~~~~~~~~~~~~~~~~~_

FORMAT:

suggested
parameter type default value

0/0 SYSTEM (nucleus_entry, base 80:0
rOd_size, word (0) 1D
min_trans_size, work (64) 6g
debugger, see note (A)

1 N
defau It_e_h_provided, see note (N)

2 N
mode) word 1

NOTES:

1. Valid entries for the debugger parameter include:

A Debugger available
N No debugger available

2. Valid entries for the default_e_h_provided parameter include:

Y Yes
D Debugger
N No

%SYSTEM Macro Worksheet

AFN-01540A 55

Ap·86

Macro call: SAB (for system address blocks)
----------------------~--~--------------~-------------------

Number of calls required: one or more --
CONFIGURATION FILE NAME: APEX1 ---

FORMAT:

parameter type

%SAB (start_base, base
end_base, base
type) see note

1

NOTES:

1. The type parameter is reserved for future use. Enter
the character U for this parameter.

suggested
default

U

2. A SAB is declared between start_base:O and end_base:F, inclusive.

%SAB Macro Worksheet

56

value

0
J~OO

U

AFN·Q1540A

Ap·86

Macro call: JOB (defines first-level jobs)

Number of calls required: one for each first-level job
------------------------~---------------------------

CONFIGURATION FILE NAME: APEX 1

FORMAT:

suggested
parameter type default value

%JOB (directory_size, word (0) Q
pool_min, word OFFFF
pool_max, word (OFFFFH) QEFFF
max_objects, word FFFF
max_tasks, word FFFF
max_job_priority, byte 129
exception_handler_entry, addr (0:0) 0:0
exception_handler_mode, byte (1) 1
job_flags, word (0) 0
init_tasLpriority, byte 1713:112
dat~segment_base, base (0) 1706
stacLpoi nter, addr (0:0) 0:0
stacLsize, word (512) 512
tasLflags) word (0) 0

NOTE:

1. addr is specified as base:offset

%JOB Macro Worksheet

AFN-01540A 57

AP·86

%sab(0,1900,U)
%job(0,300h,0FFFh,0ffffh,0ffffh,0,0:0,0,0,128,77e:3e,1 46e,0:0,512,0)
%job(0,lFFH,0FFFH,0FFFFH,0FFFFH,128,0:0,0,0,131,1475:572,15bd,0:0,400,0)
%job(~,300H,0FFFFH,0FFFFH,0FFFFH,128,0:0,1,0,130,1713:II2,17d6,0:0,400H,0)

%system(80,10,64,N,N,I)

Configuration File Apex 1.CN F

;
;*-*-*-*-*-*-*-*-*-*-*-- CTABLE.CSD --*-*-*-*-*-*-*-*-*-*-*

SUBMIT :Fx:CTABLE{ fsys, fin, fout, config_file, date

.; Th i s submit file
fsys
fin
fout
config file
date -

assembles the CTABLE module, where:
the system disk containing ASM86
the source/input disk (FI is assumed)
the object/listing/output disk
the path-name of the configuration file
the date

copy ~,j t: 0 : r J. ; con r 1 9 • t: 11 L U

:%0:asm86 :%1:ctable.a86 pr(:%2:ctable.lst) oj(:%2:ctable.obj) date{%4) &
xref debug ep

Submit File to Generate Configuration Table

;*-*-*-*-*-*-*-*-*-*-*-- CLNKRJ.CSD --*-*-*-*-*-*-*-*-*-*-*

SUBMIT :Fx:CLNKRJ(fsys, fin, fout)

This submit file links the Root-Job, where:
fsys the system disk containing LINK86
fin the source/inp1lt disk
fout the object/listing/output disk

;
:%0:link86 :%l:croot.lib(root),&

: %2:ctable.obj,&
:%I:croot.lib &

to :%2:rootjb.lnk map pr{:%2:rootjb.mpl)

Submit File to Link the Root Job

58 AFN·01540A

AFN-01540A

Ap·86

;
;*-*-*-*-*-*-*-*-*-*-*-- CLOCRJ.CSD --*-*-*-*-*-*-*-*-*-*

SUBMIT :Fx:CLOCRJ(fsys, fin, fout)

This submit file locates the Root-Job, where:
fsys the system disk containing LOC86
fin = source/input disk
fout = object/listing/output disk

;-- NOTE: BE SURE TO REPLACE THE "?????" BELOW WITH THE APPROPRIATE
;-- ADDRESS THE ROOT-JOB IS TO BE LOCATED AT!!
;
:%0:1oc86 :%2:rootjb.lnk to :%2:rootjb &
map pr(:%2:rootjb.mp2) sc(3) &
name(ROOT JOB) oc(nocm,noli,nopl,nosb) &
segsize(stack(200h)) &
order(classes(data,stack,memory,code)) &
addresses(classes(data(12C00H)))

Submit File to Locate Root Job

59

REQUEST FOR READER'S COMMENTS

Using the iRMX 86™
Operating System

Ap·86

The Microcomputer Division Technical Publications Department attempts to provide documents that meet the needs of all

I ntel product users. Th is form lets you participate directly in the documentation process.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions for improvement .

.:S. IS this the nght type ot document tor your needs? Is It at the nght level? What other types ot documents are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating. _____ _

NAME ___ DATE __________________________ ___

TITLE __ _

COMPANYNAME/DEPARTMENT __ __
ADDRESS __ _

CITY _______________________________________ STATE _________________ ZIPCODE __________________ _

Please check here if you require a written reply. 0

Please mail to: Intel Corporation
Attention: Joe Barthmaier
5200 N.E. Elam Young Parkway
Hillsboro, Oregon 97123

3065 Bowers Avenue
Santa Clara, California 95051
Tel: (408) 987-8080
TWX: 910-338-0026
TELEX: 34-6372

ALABAMA

Intel Corp.
303 Williams Avenue, SW.
Suite 1422
Huntsville 35801
Te!: (205) 53-3·93-5-3

Pen-Tech Associates, Inc.
Holiday Office Center
3322 Memorial Pkwy., SW.
Huntsville 35801
Tel: (205) 881-9298

ARIZONA

Intel Corp.
10210 N. 25th Avenue, Suite 11
Phoenix 85021
Tel: (602) 997-9695

BFA
4426 North Saddle Bag Trail
Scottsdale 85251
Tel: (602) 994-5400

CALIFORNIA

Intel Corp.
7670 Opportunity Rd.
Suite 135
San Diego 92111
Tel: (714) 268-3563

Intel Corp."
2000 East 4th Street
Suite 100
Santa Ana 92705
Tel: (714) 835-9642
TWX: 910-595-1114

Intel Corp.'
15335 Morrison
Suite 345
Sherman Oaks 91403
Tel: (213) 986-9510
TWX: 910-495-2045

Intel Corp."
3375 Scott Blvd.
Santa Clara 95051
Tel: (408) 987-8086
TWX: 910-339-9279

910-338-0255

Earle AssOCiates, Inc.
4617 Ruffner Street
Suite 202
San Diego 92111
Tel: (714) 278-5441

Mac-I
2576 Shattuck Ave.
Suite 4B
Berkeley 94704
Tel: (415) 843-7625

Mac-I
P.O. Box 1420
Cupertino 95014
Tel: (408) 257-9880

Mac-I
558 Valley Way
Calaveras Business Park
Milpitas 95035
Tel: (408) 946-8885

Mac-I
P.O. Box 8763
Fountain Valley 92708
Tel: (714) 839-3341

Mac-I
1321 Centinela Avenue
Suite 1
Santa Monica 90404
Tel: (213) 829-4797

Mac-I
20121 Ventura Blvd., Suite 240E
Woodland Hills 91364
Tel: (213) 347-5900

COLORADO

Intel Corp.'
650 S. Cherry Street
Suite 720
Denver 80222
Tel: (303) 321-8086
TWX: 910-931-2289

Westek Data Products, Inc.
25921 Fern Gulch
P.O. Box 1355
Evergreen 80439
Tel: (303) 674-5255

Westek Data Products, Inc.
1322 Arapahoe
Boulder 80302
Tei: (303; 44S-2620

Westek Data Products, Inc.
1228 W. Hinsdale Dr.
Littleton 80120
Tel: (303) 797-0482

u.s. AND CANADIAN SALES OFFICES

CONNECTICUT

Intel Corp.
Peacock Alley
1 Padanaram Road, Suite 146
Danbury 06810
Te!: (203) 792-8366
TWX: 710-456-1199

FLORIDA

Intel Corp.
1001 NW. 62nd Street, Suite 406
Ft. Lauderdale 33309
Tel: (305) 771-0600
TWX: 510-958-9407

Intel Corp.
5151 Adanson Street, Suite 203
Orlando 32804
Tel: (305) 628-2393
TWX: 810-853-9219

Pen-Tech ASSOCiates, Inc.
201 S.E. 15th Terrace, Suite K
Deerfield Beach 33441
Tel: (305) 421-4989

Pen-Tech ASSOCiates, Inc.
111 So. Maitland Ave., Suite 202
P.O. Box 1475
Maitland 32751
Tel: (305) 645-3444

GEORGIA

Pen Tech Associates, Inc.
Cherokee Center, Suite 21
627 Cherokee Street
Marietta 3C06O
Tel: (404) 424-1931

ILLINOIS

Intel Corp.'
2550 Golf Road, Suite 815
Rol!ing Meadows 60008
Tel: (312) 981-7200
TWX: 910-651-5881

Technical Representatives
1502 North Lee Street
Bloomington 61701
Tel: (309) 829-8080

INDIANA

Intel Corp.
9101 Wesleyan Road
Suite 204
Indianapolis 46268
Tel: (317) 299-0623

IOWA

Technical Representatives, Inc.
St. Andrews Building
1930 St. Andrews Drive N.E.
Cedar Rapids 52405
Tel: (319) 393-5510

KANSAS

Intel Corp.
9393 W. 110th St., Ste. 265
Overland Park 66210
Tel: (913) 642-8080

Technical Representatives, Inc.
8245 Nieman Road, Suite 100
Lenexa 66214
Tel: (913) 888-0212, 3, & 4
TWX: 910-749-6412

Technical Representatives, Inc.
360 N. Rock Road
Suite 4
Wichita 67206
Tel: (316) 681-0242

MARYLAND

Intel Corp.'
7257 Parkway Drive
Hanover 21076
Tel: (301) 798-7500
TWX: 710-862-1944

Mesa Inc.
11900 Parklawn Drive
Rockville 20852
Tel: Washington (301) 881-8430

Baltimore (301) 792-0021

MASSACHUSETTS

Intel Corp.'
27 Industrial Ave.
Chelmsford 01824
Tel: (617) 667-8126
TWX: 710-343-6333

EMC Corp.
381 Elliot Street
Newton 02164
Tel: (617) 244-4740
TWX: 922531

MICHIGAN

Intel Corp.'
26500 Northwestern Hwy.
Suite 401
Southfield 48075
Te!: (313) 353-0920
TWX: 810-244-4915

Lowry & ASSOCiates, Inc.
135 W. North Street
Suite 4
Brighton 48116
Tel: (313) 227-7067

Lowry & ASSOCiates, Inc.
3902 Costa N E
Grand Rapids 49505
Tel: (616) 363-9839

MINNESOTA

Intel Corp.
7401 Metro Blvd.
Suite 355
Edina 55435
Tel: (612) 835-6722
TWX: 910-578-2867

MISSOURI

Intel Corp.
502 Earth City Plaza
Suite 121
Earth City 63045
Tel: (314) 291-1990

Technical Representatives, Inc.
320 Brookes Drive, Suite 104
Hazeiwood 63042
Tel: (314) 731-5200
TWX: 910-762-0618

NEW JERSEY

Intel Corp.'
Raritan Plaza
2nd Floor
Raritan Center
Edison 08817
Tel: (201) 225-3000
TWX: 710-480-6238

NEW MEXICO

BFA Corporation
P.O. Box 1237
Las Cruces 88001
Tel: (505) 523-0601
TWX: 910-983-0543

BFA Corporation
3705 Westerfield, N.E.
Albuquerque 87111
Tel: (505) 292-1212
TWX: 910-989-1157

NEW YORK

Intel Corp.'
350 Vanderbilt Motor Pkwy.
Suite 402
Hauppauge 11787
Tel: (516) 231-3300
TWX: 510-227-6236

Intel Corp.
80 Washington St.
Poughkeepsie 12601
Tel: (914) 473-2303
TWX: 510-248-0060

Intel Corp.'
2255 Lyell Avenue
Lower Floor East Suite
Rochester 14606
Tel: (716) 254-6120
TWX: 510-253-7391

Measurement Technology, Inc.
159 Northern Boulevard
Great Neck 11021
Tel: (516) 482-3500

T-5quared
4054 Newcourt Avenue
Syracuse 13206
Tel: (315) 463-8592
TWX: 710-541-0554

T·Squared
2 E. Main
Victor 14564
Tel: (716) 924-9101
TWX: 510-254-8542

NORTH CAROLINA

Intel Corp.
154 Huffman Mill Rd.
Burlington 27215
Tei: (9i9) 584-363i

Pen-Tech Associates, Inc.
1202 Eastchester Dr.
Highpoint 27260
Tel: (919) 883-9125

OHIO

Inlel Corp.'
6500 Poe Avenue
Dayton 45415
Tel: (513) 890-5350
TWX: 810-450-2528

Intel Corp.'
Chagrin-Brainard Bldg., No. 2Hl
28001 Chagrin Blvd.
Cleveland 44122
Tel: (216) 464-2736
TWX: 810-427-9298

OREGON

Intel Corp.
10700 S.W. Beaverton
Hillsdale Highway
Suite 324
Beaverton 97005
Tel: (503) 641-8086
TWX: 910-467-8741

PENNSYLVANIA

Intel Corp.'
275 Commerce Dr.
200 Office Center
Suite 300
Fort Washington 19034
Tel: (215) 542-9444
TWX: 510-661-2077

Q.E.D. Electronics
300 N. York Road
Hatboro 19040
Tel: (215) 674-9600

TEXAS

Intel Corp.'
2925 L.B.J. Freeway
Suite 175
Dallas 75234
Tel: (214) 241-9521
TWX: 910-860-5617

Intel Corp.'
6420 Richmond Ave.
Suite 280
Houston 77057
Tel: (713) 784-3400
TWX: 910-881-2490

Industrial Digital Systems Corp.
5925 Sovereign
Suite 101
Houston 77036
Tel: (713) 988-9421

Intel Corp.
313 E. Anderson Lane
Suite 314
Austin 78752
Tel: (512) 454-3628

WASHINGTON

Intel Corp.
Suite 114, Bldg. 3
1603116th Ave. N.E.
Bellevue 98005
Tel: (206) 453-8086
TWX: 910-443-3002

WISCONSIN

Intel Corp.
150 S. Sunnyslope Rd.
Brookfield 53005
Tel: (414) 784-9060

CANADA

Intel Semiconductor Corp.'
Suite 233, Bell Mews
39 Highway 7, Bells Corners
Ottawa, Ontario K2H 8R2
Tel: (613) 829-9714
TELEX: 053-4115

Intel Semiconductor Corp.
50 Galaxy Blvd.
Unit 12
Rexdale, OntariO
M9W4Y5
Tel: (416) 675-2105
TELEX: 06983574

MuitiieK, inc.::
15 Grenfell Crescent
Ottawa, Ontario K2G OG3
Tel: (613) 228-2365
TELEX: 053-4585

Multilek, Inc.
Toronto
Tel: (416) 245-4622

Multilek, Inc.
Montreal
Tel: (514) 481·1350

• Field Application Location

Intel INTERNATIONAL SALES AND MARKETING OFFICES

INTERNATIONAL DISTRIBUTORS/REPRESENTATIVES

ARGENTINA

Micro Sistemas SA
9 De Julio 561
Cordoba
Tel: 54-51-32-880
TELEX: 51837 BICCO

AUSTRALIA

A.J.F. Systems & Components Pty. ltd.
310 Queen Street
Melbourne
Victoria 3000
Tel:
TELEX:

Warburton Franki
Corporate Headquarters
372 Eastern Valley Way
Chats wood, New South Wales 2067
Tel: 407-3261
TELEX: AA 21299

AUSTRIA

Bacher Elektronische Geraete GmbH
Rotenmulgasse 26
A 1120 Vienna
Tel: (0222) 83 63 96
TELEX: (01) 1532

Rekirsch Elektronik Geraete GmbH
Lichtensteinstrasse 97
A1000 Vienna
Tel: (222) 347646
TELEX: 74759

BELGIUM

Inelco Belgium SA
Ave. des Croix de Guerre 94
B1120 Brussels
Tel: (02) 216 01 60
TELEX: 25441

BRAZIL

0511-Av. Mutinga 3650
6 Andar
Pirituba-Sao Paulo
Tel: 26HI211
TELEX: (011) 222 ICO BR

CHILE

DIN
Av. Vic. Mc kenna 2Q.1
Casilla 6055
Santiago
Tel: 227564
TELEX: 3520003

CHINA

C.M. Technologies
525 University Avenue
Suite A-40
Palo Alto, CA 94301

COLOMBIA

International Computer Machines
Adpo. Aereo 19403
Bogota 1
Tel: 232-6635
TELEX: 43439

CYPRUS

Cyprus Eltrom Electronics
P.O. Box 5393
Nicosia
Tel: 21-27982

DENMARK

STL-Lyngso Komponent AlS
Ostmarken 4
DK-2860 Soborg
Tel: (01) 67 00 77
TELEX: 22990

Scandinavian Semiconductor
Supply AlS
Nannasgade 18
DK-2200 Copenhagen
Tel: (01) 83 50 90
TELEX: 19037

FINLAND

Oy Fintronic AB
Melkonkatu 24 A
SF-00210
Helsinki 21
Tel: 0-692 6022
TELEX: 124 224 Ftron SF

FRANCE

Celdis SA'
53, Rue Charles Frerot
F-94250 Gentilly
Tel: (1) 58100 20
TELEX: 200 485

Feutrier
Rue des Trois Glorieuses
F-42270 St. Priest-en-Jarez
Tel: (77) 74 67 33
TELEX: 300 0 21

Metrologie'
La Tour d'Asnieres
4, Avenue Laurent Cely
92606-Asnieres
Tel: 791 44 44
TELEX: 611448

Tekelec Airtronic'
Cite des Bruyeres
Rue Carle Vernet
F-92310 Sevres
Tel: (1) 534 7535
TELEX: 204552

GERMANY

Electronic 2000 Vertriebs GmbH
Neumarkter Strasse 75
0-8000 Munich 80
Tel: (089) 434061
TELEX: 522561

Jermyn GmbH
Postfach 1180
0-6077 Cam berg
• :....,. ,\0,01'·· .. • 1 ... 0.1·

TELEX: 484426

Kontron Elektronik GmbH
Breslauerstrasse 2
8057 Eching B
D-8OOO Munich
Tel: (89) 319.011
TELEX: 522122

Neye Enatechnik GmbH
Schillerstrasse 14
0-2085 Quickborn-Hamburg
Tel: (04106) 6121
TELEX: 02-13590

GREECE

American Technical Enterprises
P.O. Box 156
Athens
Tel: 30-1-8811271

30-1-8219470

HONG KONG

Schmidt & Co.
28/F Wing on Center
Connaught Road
Hong Kong
Tel: 5-455-644
TELEX: 74766 Schmc Hx

INDIA

Micronic Devices
104/109C, Nirmal Industrial Estate
Sion (E)
Bombay 400022, India
Tel: 486-170
TELEX: 011-5947 MDEV IN

ISRAEL

Eastronics ltd.'
11 Rozanis Street
P.O. Box 39300
Tel Aviv 61390'
Tel: 475151
TELEX: 33638

ITALY

Eledra 3S S.P.A.'
Viale Elvezia, 18
I 20154 Milan
Tel: (02) 34.93.041-31.85.441
TELEX: 332332

JAPAN

Asahi Electronics Co. ltd.
KMM Bldg. Room 407
2-14-1 Asano, Kokura
Kita-Ku, Kitokyushu City 802
Tel: (093) 511-6471
TELEX: AECKY 7126-16

Hamilton-Avnet Electronics Japan ltd.
YU and YOU Bldg. 1-4 Horidome-Cho
Nihonbashi
Tel: (03) 662-9911
TELEX: 2523774

Nippon Micro Computer Co. ltd.
Mutsumi Bldg. 4-5-21 Kojimachi
Chlyoda-ku, Tokyo 102
Tel: (03) 230-0041

Ryoyo Electric Corp.
Konwa Bldg.
1-12-22, Tsukiji, 1-Chome
Chuo-Ku, Tokyo 1Q.1
Tel: (03) 543-7711

Tokyo Electron ltd.
No.1 Higashikata-Machi
Midori-Ku, Yokohama 226
Tel: (045) 471-8811
TELEX: 781-4473

KOREA

Koram Digital
Room 411 Ahil Bldg.
49-4 2-GA Hoehyun-Dong
Chung-Ku Seoul
Tel: 23-8123
TELEX: K23542 HANSINT

Leewooo Internallonal, inC.
C.P.O. Box 4046
112-25, Sokong-Dong
Chung-Ku, Seoul 100
Tel: 28-5927
CABLE: "LEEWOOD" Seoul

NETHERLANDS

Inelco Nether. Compo Sys. BV
Turfstekerstraat 63
Aalsmeer 1431 0
Tel: (2977) 28855
TELEX: 14693

Koning & Hartman
Koperwerf 30
2544 EN Den Haag
Tel: (70) 210.101
TELEX: 31528

NEW ZEALAND

W. K. McLean ltd.
P.O. Box 18-065
Glenn Innes, Auckland, 6
Tel: 587-037
TELEX: NZ2763 KOSFY

NORWAY

Nordisk Elektronik (Norge) A/S
Postoffice Box 122
Smedsvingen 4
1364 Hvalstad
Tel: 02 78 62 10
TELEX: 17546

PORTUGAL

Ditram
Componentes E Electronica LDA
Av. Miguel Bombarda, 133
Lisboa 1
Tel: (19) 545313
TELEX: 14347 GESPIC

SINGAPORE

General Engineers Associates
Blk 3, 1003-1008, 10th Floor
P.S.A. Multi-Storey Complex
Telok Blangah/Pasir Panjang
Singapore 5
Tel: 271-3163
TELEX: RS23987 GENERCO

SOUTH AFRICA

Electronic Building Elements
Pine Square
18th Street
Hazelwood, Pretoria 0001
Tel: 789221
TELEX: 30181SA

SPAIN

Interface
Av. Generalisimo 51 9'
E-Madrid 16
Tel: 456 3151

ITISESA
Miguel Angel 16
Madrid 10
Tel: (1) 4190957
TELEX: 27707/27461

SWEDEN

AB Gosta Backstrom
Box 12009
10221 Stockholm
Tel: (08) 541 080
TELEX: 10135

Nordisk Electronik AB
Box 27301
S-10254 Stockholm
Tel: (08) 635040
TELEX: 10547

SWITZERLAND

Industrade AG
Gemsenstrasse 2
Postcheck 80 - 21190
CH-8021 Zurich
Tel: (01) 60 22 30
TELEX: 56788

TAIWAN

Taiwan Automation Co.'
... 1.0 , .w , ~ , •

Nanking East Road
Taipei
Tel: 771.()940
TELEX: 11942 TAIAUTO

TURKEY

Turkelek Electronics
Apapurk Boulevard 169
Ankara
Tel: 189483

UNITED KINGDOM

Com way Microsystems ltd.
Market Street
68-Bracknell, Berkshire
Tel: (344) 51654
TELEX: 847201

G.E.C. Semiconductors ltd.
East Lane
North Wembley
Middlesex HA9 7PP
Tel: (01) 904-9303/908-4111
TELEX: 28817

Jermyn Industries
Vestry Estate
Sevenoaks, Kent
Tel: (0732) 501.44
TELEX: 95142

Rapid Recall, ltd.
6 Soho Mills Ind. Park
Wooburn Green
Bucks, England
Tel: (6285) 24961
TELEX: 849439

Sintrom Electronics ltd."
Arkwright Road 2
Reading, Berkshire RG2 OLS
Tel: (0734) 85464
TELEX: 847395

VENEZUELA

Componentes y Circuilos
Eiectronicos TTLCA C.A.

Apartado 3223
Caracas 101
Tel: 718-100
TELEX: 21795 TELETIPOS

"Field Application Location

INTERNATIONAL SALES AND MARKETING OFFICES

INTEL@ MARKETING OFFICES

AUSTRALIA

Intel Australia
Suite 2, Level 15, North Point
100 Miller Street
North Sydney, NSW, 2060
Tel: 450-847
TELEX: AA 20097

BELGIUM

Intel Corporation SA
Rue du Moulin a Papier 51
Boite 1
B-1160 BrusselS
Tel: (02) 660 30 10
TELEX: 24814

DENMARK

Intel Denmark AlS'
Lyngbyvej 32 2nd Floor
DK-2100 Copenhagen East
Tel: (01) 182000
TELEX: 19567

FINLAND

Intel Scandinavia
Sentnerikuja 3
SF - 00400 Helsinki 40
Tel: (0) 558531
TELEX: 123 332

FRANCE

Intel Corporation, S.A.R.l.·
5 Place de la Balance
Silic 223
94528 Rungis Cedex
Tel: (01) 687 22 21
TELEX: 270475

GERMANY

Intel Semiconductor GmbH"
Seidlstrasse 27
8000 Muenchen 2
Tel: (089) 53 891
TELEX: 523 177

Intel Semiconductor GmbH
Mainzer Strasse 75
6200 Wiesbaden 1
Tel: (06121) 700874
TELEX: 04186183

Intel Semiconductor GmbH
Wernerstrasse 67
P.O. Box 1460
7012 Fellbach
Tel: (0711) 580082
TELEX: 7254826

Intel Semiconductor GmbH
Hindenburgstrasse 28/29
3000 Hannover 1
Tel: (0511) 852051
TELEX: 923625

HONG KONG

Intel Trading Corporation
99-105 Des Voeux Rd., Central
18F, Unit B
Hong Kong
Tel: 5-450-847
TELEX: 63869

ISRAEL

Intel Semiconductor Ltd.'
P.O. Box 2404
Haifa
Tel: 972/4524261
TELEX: 92246511

ITALY

Intel Corporation Italia, S.p.A.
Corso Sempione 39
1-20145 Milano
Tel: 2/34.93287
TELEX: 311211

JAPAN

Intel Japan K.K.·
Flower Hill-Shinmachi East Bldg.
1-23-9, Shinmachi, Setagaya-ku
Tokyo 154
Tel: (03) 426-9261
TELEX: 781-28426

NETHERLANDS

Intel Semiconductor B.V.
Cometongebouw
Westblaak 106
3012 Km Rotterdam
Tel: (10) 149122
TELEX: 22283

NORWAY

Intel Norway AlS
P.O. Box 92
Hvamveien 4
N-2013
Skjetten
Tel: (2) 742 420
TELEX: 18018

SWEDEN

Intel Sweden A.B.'
Box 20092
Alpvagen 17
5-16120 Bromma
Tei: (OS) 98 53 90
TELEX: 12261

SWITZERLAND

Intel Semiconductor A.G.
Forchstrasse 95
CH 8032 Zurich
Tel: 1-55 45 02
TELEX: 55789 ich ch

UNITED KINGDOM

Intel Corporation (U.K.) Ltd.
Broadfield House
4 Between Towns Road
Cowley, Oxford OX4 3NB
Tel: (0865) 77 1431
TELEX: 837203

Intel Corporation (U.K.) Ltd.'
5 Hospital Street
Nantwich, Cheshire CW5 5RE
Tel: (0270) 62 65 60
TELEX: 36620

Intel Corporation (U.K.) ltd.
Dorcan House
Eldine Drive
Swindon, Wiltshire SN3 3TU
Tel: (0793) 26101
TELEX: 444447 tNT SWN

• Field Application Location

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 • (408) 734-8102 x598

Printed in U.S.A.lB261/0780/10K/BO&A/BL

AFN·01540A

