

intel·

1995 Flash Memory Databook
Documentation Update

1995

I

Information is this document is provided in connection with Intel products. Intel assumes no liability whatsoever, including
infringement of any patent or copyright, for sale and use of Intel products except as provided in Intel's Terms and Conditions of
Sale for such products.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product order.

MDS is an ordering code only and is not used as a product name or trademark of Intel Corporation.

'Other brands and names are the property of their respective owners.

tSince publication of documents referenced in this document, registration of the Pentium, OverDrive, and iCOMP trademarks
has been issued to Intel Corporation.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be
obtained from:

Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1 -800-879-4683

I!l>INTEL CORPORATION 1995

PREFACE

Information in the 1995 Flash Memory Databook Documentation. Update replaces information
found in the 1995 Flash Memory Databook, Volumes I and II. In some chapters of the
databook, individual pages have been revised. In some cases, entire documents have been
replaced.

Please note that this update contains several additional documents not found in the 1995 Flash
Memory Databook:

• AP-603 Symmetric Block Format Exchanging Data with FFS Systems

• AP-608 Implementing a Plug and Play BIOS Using Intel's Boot Block Flash Memory

• AP-609 Interfacing the Intel386™ EX Embedded Processor to Intel Flash

• AP-61O Flash Memory In-System Code and Data Update Techniques

Thank you for your interest in Intel's Flash memory products.

I
iii

1995 FLASH MEMORY DATABOOK DOCUMENTATION UPDATE

Contents
PAGE

New Documents
AP-6l 0 Flash Memory In-System Code and Data Update Techniques 1
AP-609 Interfacing the Intel386™ EX Embedded Processor to Intel Flash 15
AP-608 Implementing a Plug and Play BIOS Using Intel's Boot Block Flash Memorv 35
AP-603 Symmetric Block Format Exchanging Data with FFS Systems 65

Revised Documents
28F016XS 16-Mbit (l-Mbit x 16, 2-Mbit x 8) Synchronous Flash Memory Datasheet.. 101
28F016XD 16-Mbit (l-Mbit x 16, 2-Mbit x 8) Synchronous Flash Memory Datasheet 151
Interfacing the 28F016)(S to the i486™ Microprocessor Family Technical Paper 205
Interfacing the 28F016XS to the i96Q® Microprocessor Family Technical Paper 233

Revised Pages
Flash Memory Overview .. 271
DD28F032SA 32-Mbit (2-Mbit x 16, 4-Mbit x 8) FlashFile™ Memory Datasheet 275
28F016SV 16-Mbit (l-Mbit x 16, 2-Mbit x 8) FlashFile™ Memory Datasheet 283
28F016SA 16-Mbit (l-Mbit x 16, 2-Mbit x 8) FlashFile™ Memory Datasheet.. 297
Extended Temperature 28F016SA 16-Mbit (l-Mbit x 16, 2-Mbit x 8)

FlashFile™ Memory Datasheet. .. 303
4-Mbit (256K x 16, 512K x 8) SmartVoltage Boot Block

Flash Memory Family Datasheet ... 311
2-Mbit (128K x 16, 256K x 8) SmartVoltage Boot Block

Flash Memory Family Datasheet ... 319
28FOOl BX-T/28F001BX-B 1M (128K x 8) CMOS Flash Memory Datasheet 327
28F020 2048K (256K x 8) CMOS Flash Memory Datasheet .. 331
28F010 1024K (128K x 8) CMOS Flash Memory Datasheet .. 337
AP-600 Performance Benefits and Power/Energy Savings of

28F016XS-Based System Designs ... 343
AP-399 Implementing Mobile Intel486™ SX Microprocessor PC Designs

Using FlashFile™ Components .. 347
AP-398 Designing with the 28F016XS .. 353
AP-384 Designing with the 28F016XD .. 357
AP-377 16-Mbit Flash Product Family Software Drivers 28F016SA,

28F016SV, 28F016XS, 28F016XD ... 365
AP-343 Solutions for High Density Applications Using Intel Flash Memory 369
AP-325 Guide to First Generation Flash Memory Programming ... 373
ER-33 ETOXTM IV Flash Memory Technology: Insight to Intel's Fourth
Generation Process Innovation ... 377

Intel 28F016XD Embedded Flash RAM Product Brief .. 381

I
v

New Documents

I

AP-610

APPLICATION
NOTE

Flash Memory
In-System Code and
Data Update Techniques

BRIAN DIPERT
SENIOR TECHNICAL
MARKETING ENGINEER

February 1995

I

Order Number: 292163-002

/

1.0 INTRODUCTION

The ability to update flash memory contents with the
system operational distinguishes flash memory from
other nonvolatile technologies such as ROM and
EPROM. This capability is key for using flash memory
in a wide range of applications:

• Code storage/execution (code DRAM and ROM
replacement),

• Data storage (EEPROM, battery RAM emulation,
etc.), and

• File storage (flash-based solid state drive)

System software implementations for in-system code
and data update must comprehend algorithm execution
during flash memory program/erase. Implementations
also vary according to the level of system code/data
access required during update.

This application note discusses these topics and gives
general recommendations that can be tailored to specific
system needs. It focuses on Intel's Boot Block,
FlashFile™ and Embedded Flash RAM memories which
have on-chip program/erase automation and block
erasure. However, many of the concepts can be equally
applied to Intel's bulk erase flash memories.

2.0 GENERAL INFORMATION

Definition of Terms

Design engineers can select from up to three unique
approaches to update stored flash memory infonnation.
Before proceeding, let's define these terms to make it

New Code/
Data

System
CPU

AP-61 0

clear what we will and won't be discussing in this
application note:

1. In-System Write (ISW): As first described earlier,
during an in-system update the system is powered up
and either partially or fully operational. The system
CPU (see Figure 1) executes the flash memory
program/erase algorithms and obtains new code/data
from one of several sources (serial or parallel port,
floppy or hard disk drive, modem, etc.).

2. On-Board Programming (OBP): In this approach,
the flash memory is also installed on the system
board. However, OBP does not use the system CPU
and, in fact, commonly powers down the processor
or holds it in a HALT mode. The flash memory
connects to an off-board "computer" such as a board
tester or prom programmer. This off-board
intelligence provides the necessary commands and
data to erase and reprogram the flash memory. This
technique is covered in other documentation
available from Intel Corporation. See the Additional
Infonnation section of this application note.

3. PROM ProW"llIlImillg: This approach was first made
popular back in the days of PROMs and EPROMs.
The flash memory is initially programmed, and is
reprogrammed, by removing it from the system
board and socketing it in dedicated hardware called a
PROM programmer. Intel works closely with a wide
range of PROM programmer vendors to ensure
support for all of its flash memory products. See the
Additional Information section of this application
note for details.

Flash
Memory

Figure 1. The System CPU Controls the In-System-Write Flash Memory Update

I
3

AP-610

Read-While-Write

The fundamental concept to understand when
considering in-system updates is that of read-while
write. Stated simply, it is currently NOT possible with
any of today's flash memory technology alternatives to
read from the flash memory array while simultaneously
programming or erasing it. There are several basic
reasons for this:

a. During program or erase, the flash memory row
and column decode architecture results in high
voltages present throughout the array. Isolating
these voltages to a specific byte/word or block
would have excessive die size and (therefore)
silicon cost impacts given that inexpensive
system implementation alternatives exist.· Keep
reading for details!

b. Intel's Boot Block, FlashFile and Embedded
Flash RAM memories all have on-chip
program/erase automation. After these. flash
memories receive program or erase command
sequences, they automatically transition to a
mode where they provide status register
information (versus array or other data). This
transition quickly provides the system with the
information it needs to determine program/erase
status, minimizing system software overhead and
maximizing effective write/erase performance.

Flash memory array reads (to access code or data) CAN
take place at any time that the flash memory automation
is READY (either completed or suspended). Figure 2
gives a simple flash memory update algorithm example.
It shows portions of the code that must be executed off
chip, and shaded areas show "windows" where the flash
memory array can be accessed, if needed, by writing the
Read Array command and then reading from desired
locations. These "windows" will be described in detail
in Section 4.0. Thanks to on-chip automation, the
amount of code executed off-chip to actually
program/erase the flash. memory is very small. Overhead
needed to obtain new code/data from the system varies
with the method chosen.

4

2163_02

Figure 2. Simple Code/Data Block Update
Algorithm Shows Shaded "Window"

Opportunities for Array Reads

I

What Amount of System Functionality Is
Needed During Update?

The answer to the above question is key to
understanding the amount of software architecting
needed to integrate flash memory into your design. Use
the following question as a. reference for where to
continue reading:

Q. Can you dedicate the system exclusively to the flash
memory update and ignore all other non-related
interrupts? Said another way, can you take the system
"off-line" during flash memory updates?

AI. If your answer is "yes," the software implementation
is very straightforward. See Sections 3.0 and 5.0.

A2. If your answer is ''no,'' the specific software
implementation varies. One approach uses redundant
system memory to separate the execution and
storagelbackup regions. Another technique eliminates
this redundancy but depends on an understanding of
interrupt latency, interrupt frequency and its variability
with time. See Sections 4.0 and 5.0.

Dedicated Blocks for System Boot Code:
Recovery from System Power Loss or Reset
during Flash Memory Update

Several of the approaches described in Sections 3.0 and
4.0 that follow use system RAM to execute the flash
memory update algorithms. This brings up a logical
question; what happens if the system resets. or loses
power in the middle of a flash memory update? In this
case, system RAM contents will be invalid, including
the flash memory update code. The byte being
programmed or the block being erased when system
reset/power loss occurs will be left in an indeterminate
state and will need to be reprogrammed/erased.

Flash memory's blocked architecture provides
protection for system boot code and enables the system
to recover fully from incomplete code updates. All boot
block components as well as l6-/32-Mbit FlashFile and
embedded flash RAM memories also allow hardware
"lock" of boot code for additional protection. This boot
code, after minimally initializing system hardware,
should execute a checksum verify of the remainder of
the flash memory. If this checksum "passes," system
boot can continue. If a checksum "fail" is obtained, this
reflects an incomplete program or erase, and the system
should alert the user and execute a repeat update. Figure
3 flowcharts this algorithm.

I

AP-61 0

Figure 3. Checksum Validation Confirms Flash
Memory Integrity

Intel's l6-/32-Mbit FlashFile and embedded flash RAM
memories indicate via Status Register feedback whether
an erase in progress has been aborted by power loss or
hardware power-down. The l6-Mbit Flash Product
Family User's Manual covers this topic in detail. See the
Additional Information section of this application note.

3.0 "OFF-LINE" FLASH MEMORY
UPDATES

Reviewing the Q-and-A discussion earlier, you should
be reading this section if you can ensure that the system
will receive no interrupts that will require flash memory
array access during the update process. Examples of this
scenario are numerous:

• Cellular phones that are placed in a special
"maintenance" mode for updates.

• PC BIOS applications where the user runs a
dedicated "update" routine to upgrade the resident
flash memory code.

• Laser printers that can be taken "off-line" prior to the
update process.

• Many other applications

5

AP-610

Again referencing Figure 2, we see that the shaded areas
of the algorithm can be ignored since flash memory
array access is not needed until after the update is
complete. The resultant algorithm, shown in Figure 4, is
small in size and straightforward in implementation. It
can be stored within one of the flash memory blocks if
desired, and is copied to/executed from an external
memory. Scenarios that follow show two of the many
possible implementation options.

Technique 3.1 : Algorithm Execution from RAM

The RAM in this technique can be located in several
different places within the system, such as:

• In a discrete SRAM or DRAM chip

• Integrated within an embedded microprocessor or
microcontroller

• Integrated within a system ASIC

• In a Page Buffer of a separate 16-Mbit FlashFile
memory

An important requirement is that the system be able to
execute code (not just read and write data) out of the
RAM. Ideally, to minimize system overhead and
maximize effective update throughput, the update
algorithm should be present in RAM at all times during
system operation. If this is not possible due to "RAM
crunch," the up-front time required to upload the
algorithm to RAM must be factored into system update
performance calculations.

6

intel®

Figure 4. The Block EraselProgram Algorithm
Is Simplified for "Offline" Updates

I

Figure 5. Executing the Update Algorithm
Requires Minimal System RAM

AP-610.

Figure 5 shows the overall . flowchart used when
executing the update algorithm out of system RAM. As
mentioned earlier, flash memory automation means that
the amount of code executed off-chip to actually
program/erase the flash memory is very small. Overhead
needed to obtain new code/data from the system varies
with the method chosen (diskette, modem, serial or
parallel port, etc.).

Does your system include at least one 16-/32-Mbit
FlashFile memory and other flash memories? If so, you
can potentially use the 256 byte page buffer of the
FlashFile memory as the execution RAM while updating'
the other flash memories! Note: it is NOT possible to
completely execute an update algorithm from the page
buffer of a flash memory while simultaneously updating
that same memory.

Technique 3.2: Algorithm Execution from
Nonvolatile Memory

If the system contains multiple flash memories,
implementation is very straightforward. Store a
duplicate copy of the update code in each flash memory,
and execute from one device while updating the other(s).
Figure 6 gives one example, using two Intel 28FOOIBX
Boot Block flash memories.

This same technique can be applied to any other
nonvolatile memory in the system. Examples include
boot ROM, ROM locations within an ASIC or
nonvolatile memory integrated within an embedded
microprocessor or microcontroller.

~
Update Algorithm
Executed Here ...

... Erases and
Reprograms This

Flash Memory Block

Figure 6. Executing the Flash Memory Update Algorithm from Another Nonvolatile Memory Requires
No Dedicated RAM

I
7

AP-610

System RAM

Uncompressed
Code

(Execution)

System Flash Memory

Boot Kernel

Compressed Code
(Storage)

Figure 7. Redundant System RAM Enables Access to All Code during Flash Memory Update

4.0 "ON-LINE" FLASH MEMORY
UPDATES

Reviewing the Q-and-A discussion earlier, you should
be reading this section if the system must be partially or
fully operational during the flash memory update
process. Said another way, it must be able to detect and
service some or all possible system interrupts. Examples
of this scenario include:

• Cellular base stations that must be able to service
incoming connection requests.

• Data Communications router and hub networks that
cannot be taken off-line.

• Telecommunications PBX switch networks that must
be always-operational.

Technique 4.1: Code Redundancy in System
RAM

This system memory configuration, shown in Figure 7,
is relatively common today in high-performance
systems. The system boots from flash memory, copies

8

code to code DRAM (sometimes decompressing in the
process) and jumps to DRAM for execution. DRAM is
used here primarily because of its high-performance
reads.

In this case, the system has access to all interrupt service
routines during the flash memory update process. After
update is complete, a quick system "reset" will reboot
the system and load DRAM with the new code. The
amount of time that the system cannot service interrupts
is the combination of system reboot and copy-to-DRAM
delays.

Technique 4.2: Code Redundancy in System
Flash Memory

Figure 8 gives an example of this system memory
configuration. Two banks of flash memory components
store "previous" and "latest" versions of system code.
The system executes from one bank while updating the
other bank. Once update successfully completes, an
address or control signal "toggle" swaps the "previous"
and "latest" banks and enables immediate execution of
the latest software version.

I

AP·61 0

s

Primary Flash
Memory Bank

Figure 8. Dual Flash Memory Banks Eliminate RAM Reload Delays

The obvious advantage of this approach include constant
access to all interrupt service routines and a non-existent
reboot delay. Memory redundancy will incur additional
system cost, which must be balanced against advantages
and compared to total system cost (and price) to
determine applicability of this approach.

Technique 4.3: Leveraging Flash Memory
Automation: Programming Performance and
Erase Suspend Latency

This approach eliminates both the redundancy of
multiple memories and the reboot delay of the
flashlDRAM solution in Technique 4.1. It is especially
attractive for use with Intel's Embedded Flash RAM
memories, whose read performance approaches or
exceeds that of DRAM. In this case, the need for
redundant code DRAM (for performance reasons) is
eliminated.

Before continuing your reading of this section, please do
the following research:

I

• Analyze the latencies of each of your system
interrupt routines. Which routines take the longest to
execute, and how long do they take?

o Analyze the profile of frequency of interrupts. How
often do interrupts occur, and how does this
frequency vary with time of day, week, month and
year? Can updates be scheduled for times when the
interrupt frequency is low (or ideally, zero)?

The flash memory automation approach "hides"
byte/word programming operations within the time
delay between interrupts. It also "hides" slow block
erase by using erase suspend/resume to read from the
flash memory when required. Referring back to
Figure 2, we see that reads from the flash memory (to
access interrupt service routines) can occur at the
conclusion of programming, at the conclusion of erase
and while erase is suspended. This approach exploits
these access "windows."

As an example, we'll construct the following scenario
(reference Figure 9).

9

AP-610

Flash Memory Block Architecture as Seen by System System Memory Map

Flash
Memory

Other
Peripherals

SRAM

Figure 9. Leveraging Flash Memory Automation Eliminates System Memory Redundancy, Enables
Fu" Interrupt Servicing throughout the Update Process

10

I

AP-61 0

Interrupt Interrupt • •
Interrupt Peiiod (1/Frequency)

Figure 10. Available Time between System Interrupts Enable Flash Memory Programming

Components

Two 28FOl6SV flash memories (5V Vee, 12V Vpp),
each x16, interfacing to a x32 system bus

Small system SRAM

Timings

System interrupt frequency (period) = every 200 ,",s.

Longest interrupt service routine latency = 50 ,",s.

Flash memory per-location programming time = 6 ,",S
(typical)

Flash memory erase suspend latency = 10 ,",S (typical)

Interrupts During Programming

Looking first at programming (Figure 10), we see that
the goal is to execute at least one programming
operation within the period between interrupts. In the
scenario described above, subtracting interrupt. service
routine latency from interrupt period gives alSO ,",S
''window'' in which programming can occur. At 6 ,",S per
double-word, up to 25 locations can be programmed
within each interrupt period.

I

200 ps (interrupt period) - 50 ,",S (lSR latency) - 150 ,",S
(programming "window")

ISO ps (window)/6 ,",S (programming time per location)
= 25 locations

Intel's 16-/32-Mbit FlashFile memories contain on-chip
page buffers, each 256 bytes in size, that dramatically
increase effective per-byte programming performance.
For example (averaged over a page), typical
programming performance for the Intel 28FOl6SV is 2.1
,",slbyte at 5V Vee and 12V Vpp. Using these page
buffers may, in some cases, allow the system to program
even more bytes within each interrupt programming
"window."

Interrupts During Erase

Now for erase. If an interrupt occurs during erase, the
system must be able to suspend erase, read the flash
memory array and service the interrupt, all before the
next interrupt. Looking at Figure 11, adding erase
suspend latency to interrupt service routine latency and
subtracting from interrupt period shows that 140 ps of
flash memory erase automation can execute between
each interrupt. Obviously, block erase time will extend
beyond that specified in the device datasheet since erase
is being repeatedly suspended.

200 ps (interrupt period) - [10 ,",S (erase suspend
latency) + 50 ,",S (ISR latency)] = 140 ,",S (erase
"window")

11

AP-610

Interrupt

~
Interrupt Service Routine

Latency

Interrupt

~

Interrupt Period (l/Frequency)

Figure 11. Available Time between System Interrupts Enables Flash Memory Erase, and Erase
Suspend Allows Array Access for Interrupt Service Routines

Accessing the Existing Version of Code in a Block Being
Updated

All well and good. We've shown how to access code in
other flash memory blocks (for example blocks 2-30)
while erasing or reprogramming another block (for
example, block 1). But what happens if the code you
need to read is the code in the process of being updated?
Where do you put the previous version of this code?

One approach, shown in Figure 9, assumes that at least
one spare block is available in each flash memory (for
example, block 31). Before updating any block, copy
that block's contents· to the spare block and redirect
appropriate interrupt vectors to point to that block. After
update is complete, redirect interrupt vectors back to the
original block, erase the spare block and move to the
next block to be updated. This approach will obviously
"cycle" block 31 more than any of the others, but this is
often acceptable if the number of expected code updates
through system lifetime is not excessive.

If spare blocks are not available or expected updates are
numerous, copy block information to RAM before
updating. This approach requires dedicated RAM for
this function but needs much less RAM than a technique
like Technique 4.1, where the entire flash memory array
is shadowed.

Putting It All Together

Referring back to our example scenario in Figure 9, we
conclude with the following summary.

Component block 0 is locked and stores system boot
code and the flash memory update routine. The interrupt
vector table, stored in an unlocked block to enable its
revision, is copied from flash memory to RAM on
system power-up. During flash memory update, interrupt
vector table contents point to the flash memory update
routine, also copied to RAM. When an interrupt occurs,
this routine determines via a bit "flag" if block erase is

12

in progress and if so, suspends erase before jumping to
the necessary interrupt service code. After servicing the
interrupt, the update routine resumes erase or executes
location programming operations, depending on where
in the update the interrupt occurred.

Ideally, to minimize system overhead and maxmuze
effective update throughput, the update algorithm should
be present in RAM at all times during system operation.
If this is not possible due to "RAM crunch," the up-front
time required to upload the algorithm to RAM must be
factored into system update performance calculations.

Before erasing and reprogramming a flash memory
block, system software copies block contents to the
spare block and appropriately redirects the interrupt
vector table. After block erase/reprogram completes, the
update routine redirects interrupts back to the block,
erases the spare block and moves to the next block to be
updated.

Program/Erase Suspend Performance, Typical/Max vs.
Cycling

Depending on how "tight" the timings are using the
equations of Technique 4.3 with your specifications, and
depending on the expected flash memory update
frequency (cycling) through system lifetime, additional
information may be needed to determine whether this
technique is applicable to your design. In this case,
please contact your local Intel or distribution sales office
for additional information on typical/max program, erase
and erase suspend specifications as a function of cycling
for the Intel flash memory of interest.

What If Interrupt Period Is too Short or InterrUpt
Latency Is too Long?

Technique 4.3 assumes that system interrupt timings
allowed sufficient time for erase suspend and byte/word
programming. If at first inspection this does not seem to
be the case for your design, answer the following

I

questions in the process of further analyzing your
system interrupt profile:

• Do interrupts occur fairly regularly as a function of
time, or in bursts of activity followed by periods of
"quiet?" If the latter, your system software can hold
off attempting location programming or resuming
erase until it detects a specified time span of system
"inactivity."

• Do one or several interrupt service routines have
substantially longer latencies than others? If so,
system software can hold off attempting
programming or initiating/resuming erase when these
specific interrupts occur.

In some cases, it may be difficult to hold off
programming due to a fixed data write transfer rate to
the flash memory subsystem. In these cases, a small
RAM FIFO can potentially be integrated within the
interface logic (ASIC, FPGA, etc.). This FIFO acts as a
buffer between system and flash memory and
accommodates programming delays due to interrupt
bursts or long ISR latencies.

As an alternative, the approaches described in
Techniques 4.1 and 4.2 can be reviewed to determine
applicability with your system design criteria.

Programming (Writing) during Erase

Some system designs require both the ability to quickly
read code from flash memory and to quickly write
information to flash memory in response to an interrupt.
Intel's l6-Mbit FlashFile memories offer enhanced on-

Order
Number

AP-61 0

chip automation that, among its features, automatically
suspends block erase to service queued programming
operations to other blocks.

5.0 CONCLUSION

Intel has developed a wide range of documentation and
other collateral to assist you in developing system
software solutions and profiling cycling through system
lifetime. Please contact your local Intel or Distribution
Sales Office for more information on Intel's flash
memory products.

6.0 ADDITIONAL INFORMATION

Documentation

Device datasheets provide in-depth information on
device operating modes and specifications.

The l6-Mbit Flash Product Family User's Manual (order
#297372) gives detailed information on the enhanced
automation of Intel's l6-/32-Mbit FlashFile and
Embedded Flash RAM memories. Included flowcharts
assist you in developing system software.

The following application notes deal specifically with
software interfacing to Intel flash memories:

Document

292046 AP-316 "Using Flash Memory for In-System Reprogrammable
Nonvolatile Storage"

292059 AP-325 "Guide to First Generation Flash Memory Reprogramming"

292077 AP-341 "Designing an Updateable BIOS Using Flash Memory"

292095 AP-360 "28F008SA Software Drivers"

292099 AP-364 "28F008SA Automation and Algorithms"

292148 AP-604 "Using Intel's Boot Block Flash Memory Parameter Blocks to Replace
EEPROM"

292126 AP-377 "16-Mbit Flash Product Family Software Drivers"

NOTES:
Please call the Intel Literature Center at 1-800-548-4725 to request Intel documentation. International customers should contact
their local Intel or distribution sales office.

Additional information can be requested from Intel's automated FaxBACK* system at 1-800-628-2283 or 916-356-3105
(+44(0)793-496646 in Europe).

I
13

AP-610

FLASH Builder

This Windows-based utility is a hypertext aid to
understanding the automation of Intel's 16-Mbit
FJashFile and Embedded Flash RAM memories.
FLASHBuilder automatically generates code segments
in C or ASM-86 for flash memory program/erase that
you can easily "paste" into your system software. It also
includes a cycling utility and power/performance
benchmark utilities for the 28F0l6XS and 28F016XD.

FLASHBuilder is available from the Intel Literature
Center via order number #297508. It can also be
downloaded from the Intel BBS at 916-356-3600
(+44(0)793-49-6340 in Europe).

VHDL and Verilog Models

VHDL functional simulation models for the 28FOI6SV,
28FOl6XD and 28FOl6XS are available now; please
contact your local Intel or distribution sales office.
Verilog models for these devices will be available in
early 1995.

14

PROM Programming Support

Intel works closely with a large number of world-wide
PROM programmer vendors to ensure timely support for
its flash memory products. This programming support
information, updated frequently, is available on
FaxBACK.

On-Board Programming

An application note will be available in early 1995 that
discusses hardware and software recommendations for
OBP using either a board tester or PROM programmer.
Contact your local Intel or distribution sales office for
more details.

I

AP-609

APPLICATION
NOTE

Interfacing the
Intel386™ EX
Embedded Processor to
Intel Flash

TONY SHABERMAN
TECHNICAL MARKETING
ENGINEER

DR. MAHESH RAO
APPLICATIONS ENGINEER

January 1995

I

Order Number: 292160-001

15

1.0 INTRODUCTION

The Intel386™ microprocessor family has gained a wide
acceptance in the world of embedded applications. The
Intel386 EX embedded processor is a very highly
integrated member of the Inte1386 microprocessor
family. There is a vast base of embedded applications
developed for the 80CI86 product family. When these
applications require higher performance and address
space, the Inte1386 EX architecture provides a natural
migration path to protect the code investment in the Intel
architecture along with DOS compatibility. A DOS
based PC provides an easy, cost-effective means to
develop, test, debug and port embedded application
code.

As embedded system designers take advantage of DOS
capability in the PC platform, a revolutionary system
architecture is required to meet space and power
requirements.

• An architecture that is not bound by what has been
done before with existing memory architecture, but
free to meet the demanding requirements of
embedded end-users.

• An architecture free to adopt and accommodate new
technological advances in software and hardware,
while protecting end-users initial base hardware
investment.

Implementing this new system architecture requires an
alternative to the traditional PC storage media such as
ROM, DRAM, floppy disk and hard disk. The solution
is Intel's Boot Block and FlashFile™ memory (see
architecture comparison in Figure I).

OATA CODE FILE & CODE

APPLICATION MANIPULATION EXECUTION STORAGE

DRAM DRAM/ROM FDDIHDD

Oesk1Dps

• DRAM , .:!' FLASH FLASH
• Resident Disk

Embedded
• Aash Card

- Aash Drive

Figure 1. Architecture Comparison

I PRELIMINARY

AP-609

Intel Flash memory provides in-system write
capabilities, along with selective block erase and
program/erase automation which are gaining wide
acceptance in the embedded market. These features help
cost-effective field updates and provide quick time-to
market solutions inmost applications.

By combining flash memory with this new system
architecture, completely new types of computers are
now possible that fit in the palm of your hand and
replace or integrate many of the code or storage
functions of other memory types. Flash memory can be
used for storing eXecute-In-flace (XIP) code, such as
ROMed DOS, in the system's memory map while
additionally functioning like a disk for file and program
storage. Since this type of design features flash memory
resident on the embedded system's motherboard and is
typically arranged in an array, it is described as a
Resident Flash Array (or RFA). To further differentiate
the two tasks of an RF A, the file store task is called a
Resident Bash Uisk (RFD), while.the XIP task is called
Resident Bash for XIP (or RFX) code storage.

1.1 Why a New Memory
Architecture?

The ideal embedded memory system is:

• Power Conscious (prolongs battery life and reduces
heat)

• Dense (stores lots of code and data in a small amount
of space but weighs very little)

• Updateable (allows in-situ code enhancements)

• Fast (lets you read and write data quickly)

• Inexpensive (low cost-per-megabyte)

• Reliable (retains data when exposed to extreme
temperature and mechanical shock)

While embedding the PC architecture, designers. have
grappled with how to construct memory systems that
meet the above criteria. Embedded computing makes the
system design even tougher with more stringent
requirements for low power, hJW volume, less weight
and harsh environments. The best combination available
for embedded PC designs in their infancy was the same
as used for the desktop; solid-state memory and
magnetic storage, Le., SRAMs, DRAMs plus magnetic
hard disks. DRAMs are dense and inexpensive, yet
slower than the processors they serve, and they are
volatile. SRAMs, although fast enough to keep pace
with processors, are relegated to caching schemes
(compensating for DRAM's slowness) due to low
density and high cost while also being volatile.

17

AP-609

Magnetic hard disks are dense, inexpensive on a cost
per-megabyte basis and nonvolatile. However, they are
also slow, power-hungry, susceptible to damage from
physical shock, and take up a sizable amount of volume.

Embedded computing designs cannot depend on hard
dri ves as do desktop or portable PCs, due to the size
limitations. Furthermore, vitally important data such as
credi t card numbers or transactions, signatures, or
patient monitoring information demands reliability of
the highest order. The solution is Intel Flash memory.

1.2 The Flash Memory Alternative

High Density

Intel's ETOX™ IV flash memory cell is 30% smaller
than equivalent DRAM ,cells; therefore, it will closely
track DRAM density. Flash memory is more scaleable
than DRAM because the flash storage cell is not
sensi Ii ve to soft error failure; therefore, it can have a
more simple cell structure. As density increases and
process lithography continues to shrink, flash memory
will pace, and ultimately overtake, the DRAM
technology treadmill.

UpdateabJe

ROMs and EPROMs may offer lower device costs, but if
servicing the customer or end-user is important to an
OEM, overall system cost must be factored in. Although
ROMs and EPROMs are nonvolatile, changing the code
within them is either very difficult (in the case of
EPROMs), or entirely impossible (in the case of ROMs).
Whole inventories of ROMs could be lost in the event of
a catastrophic bug, while an innovative design with flash
memory can be updated in the factory or by end-users
via networks, OEM Bulletin Board Systems, or' other
memory cards. Updating systems could actually become
a second source of income for OEMs and Independent
Software Vendors (lSVs), enhancing the quality of the
product while increasing end-user satisfaction.

Power Conscious.

Intel's flash memory provides a deep power-down
mode, reducing power consumption to typically less
than 0.2 J.IA. Typical read current is only 20 rnA, while
typical standby current (flash memory not being
accessed with CE# high) is only 30 J.IA. Additionally,
flash devices operating at 3.3Y are available for state-of
the-art low-power consumption designs.

18

intel®
Fast

Do not be misled by technology-to-technology speed
comparisons. Architecting a system around flash
memory bypasses the code/data bottleneck created by
connecting slow mechanical serial memory (such as
disks) to a high-performance, parallel bus system. For
example, data seek time for a 1.8" magnetic hard disk is
20 ms, plus an 8 ms average rotational delay, while flash
memory write time is less than 0.1 ms. At the chip level,
read speeds for flash memory are about 70 ns. Therefore,
either direct execution of code from flash memory or
downloading to system RAM will dramatically enhance
overall system performance.

Nonvolatile

Unlike DRAM or SRAM, flash memory requires no
battery back-up. Further, Intel's flash devices retain data
well beyond the useful lifetime of most applications.

Rugged and Reliable

On average, today's hard-disk drives can withstand up to
10 Gs of operating shock. Intel's flash memory can
withstand as much as 1000 Gs. Flash components can
operate beyond 70°C while magnetic drives are limited
to 55°C. Intel's flash memory can be cycled 100,000
times per block or segment. By employing wear-leveling
techniques, the cycling of a device can be minimized.
For example, a lO-KB file written every 5 minutes,
24-hours.a day to a 20-MB flash array takes 16 million
hours, or 1826 years, before reaching the 100,000 cycle
level.

1.3 Summary

Many applications benefit from ROMed or XIP versions'
of code, particularly hand-held personal computers,
vertical application pen-based clipboards, and industrial
control and data accumulation equipment. These
applications pose system design constraints requiring
small form factor, low-power consumption, and rugged
construction due to active mobile users or harsh
environments. Exposure to shock, vibration, or
temperature extremes is common, precluding the use of
rotating media. Flash memory provides an excellent
code storage choice for such system designs featuring
thin TSOP packaging, low (deep power-down mode) or
zero (capability to shut off power without losing data)
power consumption, 1000 G shock resistance and
extended temperature products. Additionally, flash
memory provides remote or end-user update capability

PRELIMINARY I

allowing OEMs to service their products more
efficiently and add new software features and
applications after the sale.

Compared to RAMs and ROMs, the timing requirements
for flash are slightly different. This application note
explores those differences and provides a detailed
analysis of the interface between the 28F400BX and the
Inte1386 EX CPU. Along with the analysis, one possible
solution is provided. To make all of the read and write
calculations easier for the users, a spreadsheet-based
timing analysis for the Inte1386 EX CPU interface to
flash is posted on Intel's application support BBS at

AP-609

916-356-3600. The filename is EXFLASH.ZIP and it is
located in the E3X\REF J)SGN section. A snapshot of
this spreadsheet is provided in Appendix C.

2.0 FLASH TIMING PARAMETERS

The timing parameters provided in Tables 1 and 2 lists
the most important parameters to pay attention to when
interfacing to Intel's Boot Block and FlashFile memory
families. .

Table 1. Read Timing Parameters

Timing Description 28FOO1BX 28F200BV(2) 28F400BV(3) 28FOO8SA(6) 28F016SA 28F016SV

Address Valid to Data 120 ns 60 ns 60 ns 85 ns 70ns 65 ns
Valid, tACc/tAVQV (max)
CE# Valid to Data 120 ns 60 ns 60 ns 85 ns 70ns 65 ns
Valid, tOF/tELQV (max)
OE# Valid to Output 50 ns 30 ns 30 ns 40ns 30ns 30 ns
Delay, tOeltGLQV (max)
OE# High to Data 30 ns 20ns 20 ns 30 ns 25 ns 25 ns
Float, tOF/tGHQZ (max)

Table 2. Write Timing Parameters

Timing Description 28FOO1BX 28F200BV(2) 28F400BV(3) 28FOO8SA(6) 28F016SA 28F016SV

Address Valid to WE# 50 ns 50 ns 50 ns 40ns 50 ns 40 ns
Hiah, tAs/tAVWH (min)
Data Valid to WE# 50 ns 50 ns 50 ns 40ns 50 ns 40ns
High, tOsltOVWH (min)
WE# Pulse Width, 50 ns 50 ns 50 ns. 40 ns 50 ns 45 ns
twp/tWLWH (min)
Address Hold from WE# 10 ns 10 ns 10 ns 5 ns 10 ns 10 ns
Hiah, tAH/tWHAX (min)
WE# Pulse Width High, 50 ns 10 ns 10 ns 30ns 30 ns 15 ns
twPH/twHwL (min)

NOTES:
1. The read and write timings provided in Tables 1 and 2 were taken from the respective component's datasheet and assume

a commercial temperature range, 30 pF test load, and Vee 5V:!: 5% for the fastest part available. The 28F001 BX is the only
exception with V cc :!: 10% and a 100 pF test load.

2. The timings listed in Tables 2 and 3 for the 28F200BV are the same for the 28F002BX, 28F200BX, and 28F002BV.
3. The timings listed in Tables 2 and 3 for the 28F400BV are the same for the 28F004BX, 28F400BX, and 28F004BV.
4. The write timing parameters assume WE#-controlled writes.
5. As can be seen from the preceding tables, the majority of the flash timing parameters are close enough to each other that

the interface to the Intel386 EX processor will not change much.
6. In addition to the 28F008SA, Intel also makes a 28FOO8BV and 28F800BV. These parts are 8-Mbit members of Intel's Boot

Block Flash memory family and incorporate SmartVoltage technology. However, at the time of publication for this
document, Ale timing information was unavailable.

I PRELIMINARY 19

AP-609

3.0 READ TIMING ANALYSIS

The remaining sections of this application note analyze
the interface between a 25 MHz Inte1386 EX CPU and a
60 ns 28F400BX boot block flash. The procedure used
to analyze this interface should be used when interfacing
the Inte1386 EX CPU to any Intel flash device. When
comparing the Inte1386 EX CPU parameters to flash,
this application note will refer to the flash signals names
CE#, OE# and WE#. However, the Inte1386 EX CPU
respective signals are called CS#, RD# and WR#. Note
that the Intel386 EX CPU also has a W/R# signal that
can be used to distinguish between read and write
cycles. CLK2 refers to the 50 MHz clock that drives the
Intcl386 EX CPU. This clock is internally divided by
two to make a 25 MHz internal clock for the internal
peripherals.

Table 3 provides the memory requirements for a zero
wait-state read cycle. Unfortunately, the memory
requirements for a zero wait -state design are too difficult
for most memory devices to meet. By adding one wait
state a 60 ns flash device can successfully interface to
the Intel386 EX CPU. Table 4 compares the 28F400BX
parameters to the Inte1386 EX CPU parameters in a one
wait-state design.

The timings for the 28F400BX listed in Tables 4 and 6
are the same for the 28F400BV. This application note
analyzes the interface to the 28F400BX in order to
address issues with current designs. However, Intel
recommends that all new designs use the 28F400BV.
The 28F400BV has SmartVoltage technology enabling
read capability at 3.3V or 5V, and program/erase
capability at 5V or 12V.

Table 3. Read Parameter Time Comparison at Zero Wait-States

Timing Description i3BS EX CPU Paramete(4) Memory Parameter

Address Valid to Data Valid t47 = 4CLK2-36 = 44 ns max Must Be Less Than 44 ns

CE# Valid to Data Valid t47a = 4CLK2-46 = 34 ns max Must Be Less Than 34 ns

OE# Valid to Data Valid t48 = 3CLK2-36 = 24 ns max Must Be Less Than 24 ns

OE# High to Data Float tso = 1 0 ns max Must Be Less Than 10 ns

Table 4. Read Parameter Time Comparison at One Wait-State

i3BS EX CPU Parameter 2BF400BX Parameter(5) Violated Timing?

t47 = 44+2CLK2 = 84 max (2) tACC = 60 ns Max (1) 84> 60, No

t47a = 34+2CLK2 = 74 max (2) tCE = 60 ns Max (1) 74> 60, No

t48 = 24+2CLK2 = 64 max (2) tOE = 30 ns Max (1) 64> 30, No

tso = 10 ns max tDF = 20 ns Max 10 < 20, Yes(3)

NOTES:

1. These parameters assume the flash data lines are connected directly to the Intel386 EX CPU. They do not include any
additional delays due to a buffer.

2, For every wait-state it is necessary to add 2CLK2 to each parameter dependent on CLK2. 2CLK2 is added to the first three
parameters for a one wait-state system.

3. Adding additional wait-states will not fix the tDF timing violated.

4. Allintel386 EX CPU timings were taken from the fourth revision datasheet (order #272420-004).

5. All 28F400BX timings were taken from the third revision datasheet (order #290451-003).

20 PRELIMINARY I

3.1 Read Timing Solution

3.1.1 OE# HIGH TO DATA FLOAT

Table 4 indicates that OE# high to data float is violated.
After OE# goes inactive, the 28F400BX takes a
maximum of 20 ns for its data lines to go to a high
impedance state. This becomes a problem when the
Intel386 EX CPU tries to do a write immediately after
reading from the 28F400BX. This problem is solved by
either using a buffer to control the bus contention, or by
making sure your code has a NOP in between every read
from flash followed by a write. In this example, a buffer
will be used to address this issue. Section 4.1 details the
specific implementation of the buffer. Figure 9 shows a
complete timing diagram for a read followed by a write.

3.1.2 DATA READ SETUP TIME
VERIFICATION

At 25 MHz, the Inte1386 EX CPU requires a min of 7 ns
of data setup time before the end of the read cycle. The
end of a one wait-state cycle at 25 MHz is 120 ns. In
order to meet the read setup time, data must be presented
to the processor no later than 113 ns into the read cycle.
The processor provides a valid chip select a max of
39 ns into the read cycle. The 28F400BX will respond
with data 60 ns later. Since a buffer is used, 11 ns
propagation delay (tpLH, max) is added to the
calculation. This means that data is presented to the
processor a max of 110 ns (39+60+11) from the
beginning of the read cycle (see Figure 2). Since this is
less than 113 ns, the read setup time is met.

3.1.2.1 Capacitive Loading

An access time of 60 ns on the 28F400BX was specified
with a 30 pF load (see high speed test configuration in
datasheets). Derating curves for the 28F400BX show
that at 50 pF the access time only increases by
approximately 2 ns. Since our example meets the data
read setup time by 3 ns, a one wait-state read cycle at
50 pF is still possible to achieve. If the systems
capacitive loading is higher than 50 pF, a faster buffer
will be needed in order to achieve a one wait-state
system.

3.1.3 DATA READ HOLD TIME
VERIFICATION

The Intel386 EX CPU requires a min of 5 ns of data
hold time after the end of the read cycle. The 28F400BX
will hold its data as long as OE#, CE# and the address

I PRELIMINARY

AP-609

are active. In this implementation, a PLD turns off the
buffer's EN# line as early as 2 ns (teo!) after the end of
the read cycle. As long as the buffer has a min tpLZ and a
min tpHZ of 3 ns or more, the data read hold time will be
met (see Figure 2). In general, as long as the PLD's teo!
plus the buffers tpLZ or tpHZ are at least 5 ns, the data
read hold time will be met.

3.1.4 READ SUMMARY

A one wait-state read cycle is possible with a 60 ns
28F400BX with loads up to 50 pF by using the given
implementation. It is advised to use a buffer in order to
prevent bus contention on read followed by write cycles
This will fix the flash memory data float delay violation
(tso). Adding a buffer has other benefits as well. It makes
the load to the flash data lines smaller for faster read
performance, and it makes the load to the CPU smaller
so it can drive more devices. In addition to flash
memory, typical embedded systems will incorporate
some SRAM or DRAM. Some RAM is necessary in
order to do in-circuit programming of flash. The
Intel386 EX CPU has CMOS inputs so the buffer helps
the other memory devices drive to these levels. See
Figure 7 for a complete read timing diagram, and
Figure 9 for a read followed by write timing diagram.

IOns 150ns 1100ns
I I I I I I I I I I I I

CLK2

PH2

CS#

Flash 0[0:.15) ----.,.-----i

Buffer EN# -----""""'\

Buffer ----------

Figure 2. Read Setup and Hold Timing

21

AP-609

4.0 WRITE TIMING ANALYSIS

Table 5 provides the memory requirements for a ·zero
wait-state write cycle. Unfortunately, the memory
requirements for a zero wait-state design are too difficult
for most memory devices to meet. Table 6 compares the
28F400BX parameters to the Inte1386 EX parameters in
a one wait-state design. Section 4.1.2 provides a detailed
explanation for why two wait-states are required for this
interface.

ClK2, , , , ,
PH2l , , , , ,
WR#!

NOTE:

lostT2
of First Write

I

Tl
of Second Write: , , ,

, , , , , ,
L I I , , , , , , ,
: I I U

WR# will go inactive in phase 1 of the first T-state after the
last T2 of the write. WR# will go active in phase 2 of T1. For
back-to-back writes WR# will go inactive for one CLK2.

Figure 3. WR# Active/lnactive Timings

Table 5. Write Parameter Time Comparison at Zero Wait-State

Timing Description 1386 EX CPU Parameter Memory Parameter

Address Valid to WE# High t46+t41 = 3CLK2-15 = 45 ns min Must Be Less Than 45 ns

Data Valid to WE# High t43 = 3CLK2-27 = 33 ns min Must Be Less Than 33 ns

WE# Pulse Width t46 = 3CLK2-15 = 45 ns min Must Be Less Than 45 ns

Address Hold from WE# High t42 = 5 ns min Must Be Less Than 5 ns

WE# Pulse Width High Implied 20 ns(l) min Must Be Less Than 20 ns

NOTE:

1. The implied 20 ns comes from the fact that WR# on the Intel386 EX CPU goes inactive from the previous write in phase 1
of T1, and goes active for the current write in phase 2 of T1. At 25 MHz each phase is 20 ns, therefore the WR# pulse high
time would be 20 ns (See Figure 3 above).

Table 6. Write Parameter Time Comparison at One Wait-State

1386 EX CPU Parameter 28F400BX Parameter Violated Timing?

t46+t41 = 45+2CLK2 = 85 ns min (2) tAS = 50 ns min 85>50, No

t43 = 33+2CLK2 = 73 ns min (2) tDS = 50 ns min (1) 73>50, No

t46 = 45+2CLK2 = 85 ns min (2) twp = 50 ns min 85>50, No

t42 = 5 ns min tAH = 10 ns min 5<10, Yes (3)

Implied 20 ns min tWPH = 10 ns min 20>10, No

NOTES:

1. These parameters assume the flash data lines are connected directiy to the Intel386 EX CPU. They do not include any
additional delays due to a buffer.

2. For every wait-state it is necessary to add 2CLK2 to each parameter dependent on CLK2. 2CLK2 is added to the first three
parameters for a one wait-state system.

3: Adding additional wait-states will not fix the tAH timing violated.

22 PRELIMINARY I

4.1 Write Timing Solution

4.1.1 ADDRESS HOLD FROM WE# HIGH

Table 6 indicates that address hold from WE# high is
violated. The 28F400BX requires that the processor hold
the address 10 ns after WE# goes inactive. The Intel386
EX CPU only guarantees that it will hold the address for
5 ns (142). This can be fixed by controlling WE# with a
PLD. If the PLD pulls WE# high at least 5 ns earlier,
then the problem is solved.

4.1.2 DATA VALID TO WE# HIGH AT ONE
WAIT-STATE

The section above states that pulling WE# high early
with a PLD solves the violated write timing. However,
pulling WE# high early shortens tos (Data Valid to WE#
high). If WE# is pulled high too early, tos will be
violated. Figure 4 illustrates the timings for WE#. WE#
is pulled high one CLK2 early by a PLD with a
minimum propagation delay of 2 ns. With one wait
state, this occurs 102 ns into the write cycle. For the
28F400BX, tos is 50 ns, therefore data has to be valid
no later than 52 ns into the write cycle (102-50). The
Inte1386 EX CPU places data on the bus as late as 51 ns

CLK2

PH2

1 wait state WE#

2 wait state WE#

AP-609

from the beginning of the write cycle (31 ns from the
middle of Tl). However, in order to avoid bus'
contention on a read followed by write cycle, a buffer
was added causing additional delays of up to 11 ns in
worst case (see Section 3.1.1). These additional delays
cause tos to be violated in a one wait-state write cycle.
Since tos is violated, it becomes necessary to add a
second wait-state to the write cycle.

4_1.3 TWO WAIT-STATE WRITE

With a second wait-state, the write cycle extends to
160, ns. WE# still needs to be pulled high one CLK2
early. With two waits states, this occurs 142 ns into the
write cycle (see Figure 4). With a tos of 50 ns, data has
to be valid no later than 92 ns into the write cycle (142-
50). This leaves plenty of time to meet tos.

4.1.4 WRITE SUMMARY

By controlling WE# with a PLD as implemented above,
a two wait-state write cycle is achieved. For the Inte1386
EX CPU, these two wait-states could be easily
programmed using the internal chip-select logic or
implemented with external ready logic. Ready
generation is explained in detail in Section 5.2. See
Figure 8 for a complete write timing diagram.

CPU D(0:15)

31-1

-----t(==========~~
Figure 4. WE# Control Timing

I PRELIMINARY 23

AP-609

OSC

CLK2 ~
A[1:18] A[O:17]

RDft OEft

CSft CEft

i386™ EX CPU
L-t

28F400BX
L--t

PLD
ADSft

LBAft WEft

W/Rft

READYft

L
RESET

,---.

I RPft
!

0[0:15] J ENft DIR I 0[0:15]
"

BUFFER I BYTEft

I PWRGD t--
Vcc

2180J!5

Figure 5. System Block Diagram

5.0 INTERFACE LOGIC

This design example will show how to interface the
Intel386 EX CPU to the 28F400BX with a PLD (22VlO)
and a buffer. Figure 5 shows the basic block diagram of
the interface.

5.1 WEi Control

From the Write Timing Analysis in Section 4.0, address
hold from WEft high and eEft hold from WEft high are
the parameters which are violated. These parameters can
be met by controlling WEft with a PLO as indicated in
Section 4.1 and Figure 4. WEft'is enabled during a write

24

cycle in the middle of the first T2 and is then disabled in
the middle of the third T2. A complete timing diagram
illustrating the write cycle is found in Figure 8. The PLD
equation for WEft is provided in Appendix A.

5.2 Ready Generation

In this example, the read cycle requires one wait-state
and the write cycle requires two. This can be achieved
by setting the RDY bit in the UCSADL or CSADL
register and generating READYft with the PLD. Another
approach would be to use the ready logic built into the
Intel386 EX CPU chip-select unit. For this approach the
chip select unit would need to be programmed to

PRELIMINARY I

generate two wait-states for both read and . write cycles.
However, since the read cycle only requires one
wait-state, this is not the optimum solution. For this
example, a PLD generates one wait-state for a read cycle
and two wait-states for a write cycle. READY# is also
brought in as an input and is used to disable the buffer.
Timing diagrams illustrating READY# generation for
read and write cycles are provided in Figures 7 and 8
respectively. The PLD equations for READY# are
provided in Appendix A.

5.3 Reset Conditions

Upon reset, the UCSADL register defaults to FF6FH.
This means that the Intel386 EX CPU will insert
15 wait-states and drive READY#. If you are using a
PLD to drive READY# (like in this example) it is
necessary to tristate the PLD's READY# to avoid bus
contention with the CPU's READY#. This can be
accomplished by sampling LBA#. The Intel386 EX CPU
will assert LBA# on accesses where it is driving
READY#. When the PLD samples LBA# active it will
tristate its READY#. The PLD equation for tristating
READY# is provided in Appendix A.

For the interface implemented in Figure 5, PWRGD
(power good) is the signal that indicates to the PLD to
RESET the CPU. It is also important to connect
PWRGD to RP# (reset/power-down) on the flash device
for two reasons. First, it is important for the flash

CLK2

PH2

W/R#

Buffer EN#

Buffer

Ap·609

command user interface (CUI) to reset at the same time
as the CPU, putting the CUI in read array mode. At
power-up the CUI will default to read array mode.
However, some designs allow the system to reset while
the power remains on (reset button). At reset, the CUI
may not be in read array mode for the CPU to boot,
therefore it is necessary for the system to reset the CUI
at the same time as the CPU. Triggering RP# with
PWRGD ensures that this happens. The second reason is
to guard against spurious writes. With bus signals in an
indeterminate state at power-up, connecting PWRGD to
RP# provides memory protection by masking unwanted
bus conditions.

5.4 Buffer Control

The 28F400BX data float time is longer than the
allowable limit specified in the Intel386 EX CPU
datasheets. One solution to this problem is to add a
buffer. In this implementation, a PLD controls the
enabling of the buffer. For a write, the buffer is enabled
in the middle of the first T2 and then is disabled at the
end of the third T2 (see Figure 6 below). For a read, the
buffer is enabled in the middle of the first T2 and is
disabled at the end of the second T2. The direction of
the buffer is controlled by the Intel386 EX CPU RD#
signal (see Figure 5). A complete timing diagram
illustrating the buffers enable and disable during a read
followed by write cycle is found in Figure 9. The PLD
equation for EN# is provided in Appendix A.

. Figure 6. Buffer EN# Control I PRELIMINARY 25

AP-609

6.0 READ TIMING DIAGRAM

NOTE:

CLK2

PH2

ADS#

A(l:l8)

W/R#

RD#

BufferEN#

(4,9)

1100ns I
I
I

DIlI':'IA
~----I

--t (2,~) --I (2,E
---------!r----~,,&a.~,_+'----r_--~n?~w7.~t---~--~m4',

1~4,39) -f.
CS# .jwm~%'.l

r:
Flash D(O:l5)

Buffer

READY#

The processor puts the address and W/Rtt on the bus a max of 29 ns from the beginning of T1. CStt goes active a max of
39 ns from the beginning of T1. The PLD samples W/Rtt in the middle of the first T2 and enables the buffer. Data from the
28F400BX is guaranteed 60 ns after CStt is active. Since the buffer hasa max delay of 11 ns, data will be on the data bus a
max of 110 ns from the beginning of T1. This gives 1q ns of setup time before the data is latched. In this example, the PLD
could disable the buffer as soon as 2 ns after the data is latched. With 3 ns of tPHZ and tpLZ for the buffer, data will hold for a
minimum of 5 ns after it is latched.

Figure 7. Read Timings for the Interface

26 PRELIMINARY I

7.0 WRITE TIMING DIAGRAM

NOTE:

CLK2
I

: Tl : T2 I T2 : T2 : Tl :

:~L.Il
I 1 ! 1_'(4.19) ! 1 !
1---+.-11 (4.*9) !
am@w Hi}\ : l@i@f]WWT I \1!1jhM '\@\ :

PH2

ADS#

1---+.-1.1 (4.i9)
A(l : 18) wwwn N@(I X$lMW ;BIt I

t;;;;j~'~(4.:;:i9~) -t-~---~_-I-_-ft=~1 (4.~9)
W IR# 3MWK IM1Y #%iVI Wk

WE#

CS#

CPU D(O:15)

Buffer

READY#

L-_-+, J (4.31

I
I

--I (.15) !
,UAU

I

------~----+-----~--~(U\~(2·~i--~~~s~;

AP-609

The processor puts the address and W/R# on the bus a max of 29 ns from the beginning of T1. CS# goes active a max of
39 ns from the beginning of T1. The PLD samples W/R# in the middle of the first T2 (60 ns into the write cycle) and enables
WE# as well as the buffer. The PLD enables the buffer a max of 8 ns from the middle of the first T2. The buffer has a max tpHZ
and tpLZ of 11 ns, therefore data will be presented to the 28F400BX a max of 79 ns into the write cycle (60+8+ 11). WE# is
pulled high as early as 2 ns from the middle of the third T2 (142 ns into the write cycle). This yields a min of 64 ns (142-79) of
data setup to WE# high.

Figure 8. Write Timings for the Interface

I PRELIMINARY 27

AP-609

8.0 READ FOLLOWED BY WRITE TIMING DIAGRAM

CLK2

PH2

ADS# , , , , , ,

At the end of the read cycle the 28F400BX requires a max of 20 ns from RD# high to go to a high impedance state. If the next
bus cycle is a write, the processor will drive data on to the bus. This causes the potential for bus contention and can be seen in
the figure by the overlap of Flash D[0:15] with CPU 0[0:15]. A solution to this problemis to tum off the buffer during this period
of overlap. This allows the 28F400BX to float its data lines, and allows the processor to drive the data bus without contention.

Figure 9. Read Followed by Write Timing Cycles

28 PRELIMINARY I

AP-609

9.0 ADDITIONAL INFORMATION

9.1 References

Order Title
Number

272420 Intel386™ EX Embedded Microprocessor Datasheet

290406 28F001 BX 1·Mbit Boot Block Flash Memory Datasheet

290429 28F008SA 8-Mbit FlashFile™ Memory Datasheet

290448 28F200BX, 28F002BX 2-Mbit Boot Block Flash Memory Family Datasheet

290451 28F400BX, 28F004BX 4-Mbit Boot Block Flash Memory Family Datasheet

290531 2-Mbit SmartVoltage Boot Block Flash Memory Family

290530 4-Mbit SmartVoltage Boot Block Flash Memory Family

290539 8-Mbit SmartVoltage Boot Block Flash Memory Family

290489 28F016SA 16-Mbit FlashFile™ Memory Datasheet

290528 28F016SV 16-Mbit FlashFile™ Memory Datasheet

272425 AP-499, "Introducing Intel's Family of Embedded Intel386™ Microprocessors"

292163 AP-610, "Flash Memory In-System Code and Data Update Techniques"

I PRELIMINARY 29

AP-609

APPENDIX A
PLD EQUATIONS

*These PLD equation are posted on the BBS under EXFLASH.ZIP

TITLE
PATTERN
REVISION
AUTHOR
COMPANY
DATE

MEMORY INTERFACE
PDS
2.0
TONY SHABERMAN
INTEL
1120/95

; This design has not been verified, it is sample code only.
; Intel assumes no responsibility for any errors which may appear
; in this code. This PLD performs the functions necessary for interfacing
; the Intel386™ EX CPU to the 28F400BX. It controls WE# to the 28F400BX,
; EN# to the buffer, READY# and RESET to the processor.

; NOTES:

; T2_1 will go active for the first half of the first T2 on all cycles (1 clk2).
; T2_1 will stay active for the second half of T2 if CS# is active. It is
; necessary to place CS# at the second half of the equation because CS# has a
; 39 ns max valid delay (1 ns before the first half of the equation is sampled).

; T2_2 will go active for the duration of the second T2 under the condition
; that the second half of T2_1 was generated

; T2_3 will go active for the duration of the third T2 under the conditions
; that the second half of T2_2 was generated and it is a write cycle

; EN will go active in the middle of the first T2 if CS# is active. EN is
; disabled either by the CPU or the PLD driving RDY _1#. Since the CPU could
; drive RDY_I# early in the last T2, a third term (EN and PHI) is added to the
; equation to ensure that the buffer stays active during the second half of
; the last T2.

; READY# is represented by two pins, RDY _1# (ready in) and RDY _0# (ready out).
; When booting from flash, the CPU will drive RDY _1# so the PLD must tristate
; its RDY _0#. Some PLD devices support a pin feedback feature which would
; eliminate the need for using two pins.

30 PRELIMINARY I

CHIP MEMORY_INTERFACE iPLD22VIO

; INPUTS
PIN 2 CLK2
PIN PWRGD
PIN W_R
PIN lADS
PIN ICS
PIN ILBA
PIN IRDY_I

; OUTPUTS
PIN /WE
PIN lEN
PIN IRDY_O
PIN RESET

; NODES
NODE PHI
NODE T2_I
NODE T2_2
NODE T2_3

EQUATIONS

; 2X INPUT CLOCK (50 MHZ)
; POWER GOOD USED TO GENERATE RESET TO CPU
; FROM CPU WIR# SIGNAL
; FROM CPU ADS# SIGNAL
; FROM CPU CS# SIGNAL
; FROM CPU LBA# SIGNAL
; FROM CPU READY# SIGNAL AND PLD RDY _0# SIGNAL

; TO FLASH WE# SIGNAL
; TO BUFFEROUTPUT ENABLE SIGNAL
; TO CPU READY# SIGNAL AND PLD RDY_I SIGNAL
; TO CPU RESET SIGNAL

; MATCHES CPU PHI, USED FOR TIMING
; ACTIVE DURING FIRST T2, USED FOR TIMING
; ACTIVE DURING SECOND T2, USED FOR TIMING
; ACTIVE DURING THIRD T2, USED FOR TIMING

RESET:=IPWRGD
PHI:=(IPHI *IRESET) ; PHI SYNCS BY RESET
T2_I :=(lPHI * ADS)+(PHI *T2_I *CS)
T2_2:=(IPHI *T2_l)+(PHI *T2_2)
T2_3:=(IPHI *T2_2*W _R)+(PHI *T2_3)

; T2_I ACTIVE FOR 2 CLK2 CYCLES AFfER ADS#
; T2_2 ACTIVE FOR 2 CLK2 CYCLES AFfER T2_1
; T2_3 ACTIVE FOR 2 CLK2 CYCLES AFfER T2_2

AP-609

WE:=W _R * (T2_I + T2_2) ; WE ACTIVE FROM MIDDLE OF T2_1 TIL MIDDLE OF T2_3
EN:= CS*(T2_I +(EN*/RDY _I)+(EN*PHI)); EN ACTIVE UNTIL READY
RDY_O:=(W_R*T2_3) ; 2 WAIT STATE READY GENERATION FOR WRITE

+(/W_R*T2_2) ; I WAIT STATE READY GENERATION FOR READ
RDY_O,TRST=ILBA ; RDY_O TRISTATED WHEN LBA# IS ACTIVE (CPU

; GENERATING RESET)

SIMULATION

TRACE_ON CLK2 PHI PWRGD RESET LBA T2_I T2_2 T2_3 ADS CS WE EN RDY_O RDY_I
SETF CLK2IPWRGD lADS ICS ILBA IRDY_I
PRLDF IPHI/T2_I/T2_2/T2_3

I PRELIMINARY 31

Ap·609

CLOCKFCLK2
CLOCKFCLK2
CLOCKFCLK2
CLOCKFCLK2
SETFPWRGD
CLOCKFCLK2
CLOCKFCLK2
SETF ADS IW _R CS
CLOCKFCLK2
CLOCKFCLK2
SETF lADS LBA
CLOCKFCLK2
CLOCKFCLK2
CLOCKFCLK2
CLOCKFCLK2
CLOCKFCLK2
CLOCKFCLK2
SETFRDY_I
CLOCKFCLK2
CLOCKFCLK2
SETF ICS ILBA /RDY_I
CLOCKFCLK2
CLOCKFCLK2
SETF ADS W _R CS
CLOCKFCLK2
CLOCKFCLK2
SETF/ADS
CLOCKFCLK2
CLOCKFCLK2
CLOCKFCLK2
CLOCKFCLK2
CLOCKFCLK2
SETFRDY_I
CLOCKFCLK2
SETF/CS
CLOCKFCLK2
SETFIRDY_I
CLOCKFCLK2
SETF CS ADS IW_R
CLOCKFCLK2
CLOCKFCLK2
SETF/ADS
CLOCKFCLK2
CLOCKFCLK2
CLOCKFCLK2
SETFRDY_I
CLOCKFCLK2
CLOCKFCLK2
SETFIRDY_I
CLOCKFCLK2
CLOCKFCLK2
CLOCKFCLK2

32 PRELIMINARY I

CLK2

PH1

PWRGD

RESET

ADS#

CS#

WE#

EN#

RDYJ#

NOTES:

Reset

APPENDIX B
PlDShell Plus* WAVEFORM

Booting from 28F400BX I I
(only 3 of 15 wait states shown)

1 n 1 T2 1 T2 1 T2 I T2 li T1

2 Wait State I
Write Cycle

IT21T21T2

1 Wa~State I
Read Cycle

nlT21T2

AP-609

li 1 li

________ ~r_l~ __________ ~r_l~ ________ ~r_l~ ____ __
__________ ~Il Il II~ ___ _

LJ LJ
n

Il
LJ

n

:..----E~~--===cl I I LJ
LJ LJ

LJ
U
Lr-

1. This waveform was exported from PLDShell PLUS'. The waveform files are included on the BBS under EXFLASH.ZIP.
The T-state annotation was added and is not normally included with the PLDshell PLUS waveform.

2. PHi is generated by the PLD and is used instead of PH2 for consistency with the EV386EX evalution board. PHi is simply
the inverse of the PH2 as seen in all the previous figures.

3. T2_1, T2_2, and T2_3 are used to provide timing for WE# and RDY _0# generation. When booting from the 28F400BX the
Intel386 EX CPU drives REAOY# so T2_1 and T2_2 are not needed. However, they are still be generated and can be
ignored.

4. For this simulation, CLK2, PWRGD, LBA#, ADS#, CS#, and ROY _1# are all forced inputs.

PLDShell PLUS· Waveform

I PRELIMINARY 33

AP·609 intel®
APPENDIXC

SAMPLE MEMORY REQUIREMENT
CALCULATIONS

This spreadsheet is posted on the Intel Application
Support BBS @ 916-356-3600. The filename is

. EXFLASH.ZIP and it is located in the E3X\REF _DSGN
section.

The flash memory timing specs must lie within the
minimum and maximum specs given below for a desired
wait-state perfonnance. However, these calculations do
not take into account the delays due to needed glue logic
or buffers and assume a non-pipelined interface.

Memory Requirements for the Intel386 EX Microprocessor

16 MHz 20 MHz 25 MHz

Read Specs OWS 1 WS 2WS OWS 1WS 2WS OWS 1 WS 2WS

tAVQV Address Valid Max 74 137 199 53 103 153 44 84 124

tAcc to Data Valid

tELQV CE# Valid to Max 64 127 189 46 93 143 34 74 114

tCE Data Valid

tGLQV OE# Valid to Min 43 105 168 30 70 80 24 64 104

tOE Data Valid

tGHQZ OE# High to Max 18 18 18 15 15 15 10 10 10

tOF Output High Z

Write Specs

tAvwH Address Valid Min 79 141 204 60 110 160 45 85 125

tAS to WE# High

tovwH Data Valid to Min 54 116 179 39 89 139 33 73 113

tos WE#High

twLwH WE# Pulse Min 79 141 204 60 110 160 45 85 125
twp Width

tWHAX Address Hold Min 5 5 5 5 5 5 5 5 5

tAH from WE#
High

tWHWL WE# Pulse Min 31 31 31 25 25 25 20 20 20

tWPH Width High

34 PRELIMINARY I

inteJ® AP-608

APPLICATION
NOTE

Implementing a Plug
and Play BIOS Using
Intel's Boot Block Flash
Memory

CHARLES A. ANYIMI
TECHNICAL MARKETING
ENGINEER

February 1995

I

Order Number: 292161-001

35

1.0 INTRODUCTION

Today's PC can perform a myriad of functions, perhaps
far more than the original designers of the PC ever
envisioned. The number of software packages available
for mass consumption is staggering, and more are being
unveiled each year. Multimedia has enabled the PC to
invade every nook and cranny of the home. The number
of systems being purchased with CD-ROMS, sound
cards, and graphics accelerators is growing at a
phenomenal rate. The demand for additional hardware
has led to an unprecedented craze for add-in cards and
peripherals. While all this growth has been a tremendous
boon, it has had its downside as well. The PC has
become so sophisticated that new bus structures have
been defined, new protocols have been introduced and
new system configurations have emerged. All these
changes have made an already complex tool more
difficult to use by the PC user.

With the advent of Plug and Play (PnP), it seems a
solution is in sight. Simply put, Plug and Play is a way
of adding new features to a system without the usual
headaches-like reconfiguring switches and jumpers,
updating system configuration files or other frustrating
things. PnP enables a system to automatically configure
system components, peripherals and add-in devices just
prior to boot time. The basic input/output system (BIOS)
of PnP is responsible for the majority of the auto
configuration of the system.

With its previous history of changes and the obvious
future changes that will take place as a result of PnP, it
only makes sense to store the BIOS on a medium that
allows the most flexible means of updating, while
maintaining a high level of reliability. Of course, all this
has to be accomplished without adding to system costs
or making it more difficult for the PC user to get their
work done. A PnP BIOS based on Intel's b(lot block
flash meets all of these demands and more. The PnP
Specification, for instance, requires nonvolatile storage
for old bus standards; the parameter blocks of the boot
block flash were designed for such a function. As far as
recovery code is concerned, the hardware-lockable boot
block area of the boot block flash memory provides
unparalleled data protection and guarantees system
recovery. The inherent updateability of the boot block
flash memory, while in-system, reduces cost by
'IIDDorting easy code changes and eliminating sockets.

I

Ap·608

2.0 BENEFITS OF A PNP BOOT
BLOCK FLASH BIOS

Perhaps you are wondering why flash is the medium of
choice advocated in this application note as the means
for storing system BIOS, particularly for Plug and Play?
From a PC user's perspective, a PnP flash BIOS enables
users to install new hardware without having to call the
support number. This translates to ease-of-use:

• Easily updatable code assuring optimal BIOS
performance

• No need to edit the CONFIG.SYS file.

G No need to determine system type and match,
somehow, to jumper settings.

• No need to investigate available system resources
and muddle through reassigning them.

• No need to fiddle with system memory re8IIocation.

• No need to buy a new system every time something
changes (increases system's useful lifespan).

Plug and Play can make the usual experience of adding
new functionality to an existing system as easy as:

1. Tum the system off.

2. Insert the new device.

3. Turn the system on.

PnP flash BIOS can also extend the life of the PC. By
enabling simple updates to the BIOS (simply insert the
upgrade disk and the software programs the new BIOS),
the user can get more out of their PC investment.

37

AP·608

From an OEM or system manufacturer's standpoint, a
PnP flash BIOS enables the following benefits:

• Eliminates the need for excessive EPROM
inventories.

• Reduces the need for sockets since flash can be
soldered onto the motherboard and updated in
system

• Minimizes system chip count and system cost.

• Reduces support costs.

• Improves end-user perception of product
upgradeability and ease-of-use.

When new features are added to the BIOS, a simple disk
sent to the user or a connection to an on-line network is
all it takes for the user to achieve the upgrade. This has
one very important benefit for the OEMlmanufacturer
it strengthens user faith in the product (and its
manufacturer) and enhances their perception of the
product's ease-of-use-which can be a great
differentiation. Additionally, since each user no longer
needs to call the technical support line as often, this
costly overhead can be reduced, saving even more
money.

All these benefits are a result of the capabilities that a
flash PnP BIOS enables. Looking back to the original
PC, it was a fairly simple machine (by today's
standards) with simple code designed to perform
computational math functions, database creation and
management, and word processing. Even though the

38

BIOS code was elementary, few people understood it (or
needed to). Since that time, the PC BIOS haS (and will)
continued to evolve in order to accommodate the
growing needs of the PC user.

2.1 The Old BIOS Paradigm

In the original PC architecture, the BIOS code was fairly
straightforward and required little memory space-about
32 KB total. BIOS code provided the lowest-level of
interface between the opemting system and the
hardware. It was located at the top of memory for the
8088 system (the original PC had a memory limit of
1 MB). Even though only 32 KB were required, the PC
designers knew the benefit of "breathing room" and,
with great foresight, reserved a total of 128 KB (from
hex address EOOOOh to FFFFFh) for BIOS code stomge,
as shown in Figure 1. When the AT was launched in
1984, its BIOS functions were extended by another
32 KB, making a total of 64 KB.

However, the introduction of BIOS created a crutch that
has been integrated into the PC: every new system
hardware component that was not already supported in
the BIOS required a new BIOS to be generated, or at
least an upgrade of the existing BIOS. This meant OEMs
and system manufacturers needed to keep abundant
quantities of ROMs and EPROMs handy to
accommodate new BIOS versions. This was a
cumbersome and expensive solution, but it was soon
accepted as the norm. And, as long as the frequency of
change to the BIOS remained minimal, this solution was
adequate.

I

Ap·608

1 MB DOS Memory Map
,. '. BIOS Code

FFFFFI) ,.
FOo(}6~ (64 KB)

.. // Additional ~.

28F001B-T
Boot Block Flash

fo'boOOh
BIOS Space 28F002B-T

Boot Block Flash
164 KB) .. '.

Boot Code
/ Adapter and Boot Code 16 KB

8KB
8KB

,
,
,

Graphic Space

BIOS Parameters j
(256 KB) BIOS Parameters

4KB

4KB Configuration Utilities
,
,

Configuration Utilities

Additional BIOS
ServiceS

8KB

96 KB

Main BIOS Code,

70h
User Area

112 KB Runtime Services, (638.75 KB) Main BIOS Code, 128 KB
Drivers, etc. Runtime Services,

, ¢0500h

00400h
l BIOS Data Area Drivers, etc. ,

(256 Bytes)
BIOS Stack Area

00300h (256 Bvtes)
Interrupt Vector Table

000 DOh (768 Bytes)

21eC01

Figure 1. Possible BIOS Segmentations Using Flash Components (1-Mbit or 2-Mbit)

2.2 Beyond the 128 KB Limit

Since then, BIOS code has undergone continual
development, including the addition of custom features
to enhance system flexibility and more complex set-up
routines. Today's BIOS includes support for previously
"advanced" features such as system configuration
analysis (diagnostics), power management, networking
capability and I/O support for devices with extremely
high transfer rates. This expansion continued until the
AT BIOS eventually consumed the entire reserved BIOS
space-all 128 KB!

So now what? With the definition of new bus
specifications (EISA, VL, PC I, to name a few) and the
further proliferation of features such as ROM versions of
application software and enhanced video BIOS, the
potential for future BIOS changes looms larger than
ever, and the frequency of change seems no less
daunting. A further look at the 1-MB memory map of
the PC indicates that BIOS needs to prepare for more
change and remain open-minded about the future (and it
would not hurt any if the BIOS acquired more memory

I

space either-but this would mean changing the
architectun: of the standard PC).

Today, PnP BIOS requirements may extend beyond
128 KB. A standard system BIOS consumes roughly
64 KB; I'nl' support is another 12 KB; automatic power
management support adds 2 to 10 KB; PCI (Peripheral
Components Interconnect) extensions hoard some
20 KB of the BIOS; and on-board VGA (Video Graphics
Adapter) controllers utilize an extra 30 KB to 40 KB of
space. The potential size of the BIOS for such a system
is almost 150 KB. Since new developments for the PC
show no signs of abatement, it seems clear that a means
of updating as well as expanding BIOS quickly and
easily has become a necessity. Plug and Play is only one
of the many technologies that can be implemented better
with flash. As users realize the benefits of PnP, the
demand generated will drive the number of Plug and
Play systems upward.

39

AP-608

3.0 PLUG AND PLAY

The Plug and Play architecture is intended to alleviate
configuration woes and provide the end-user with an
easy means of expanding the capability of their PC. To
support PnP, several new components need to be added
to the host system and add-in cards. For instance, a new
type of add-in card capable of auto-configuration is
required. Additionally, system firmware and software is
necessary to supervise the allocation of system resources
and carry out the configuration of these new add-in
cards. For widespread acceptance, PnP has to support all
the major bus structures. PnP executes on the PCI bus by
design. The PnP-ISA extensions enable Plug and Play
functionality on the ISA bus while maintaining support
for traditional (non-PnP) add-in cards-affectionately
referred to as legacy devices. All systems that claim PnP
support must recognize the existence of legacy devices
and auto-configure new PnP devices around these static
devices. On-going development will soon qualify Plug
and Play on the VL, EISA and MCA bus structures as
well as the PCMCIA interface.

3.1 PnP Components

For a system to be fully PnP-compliant, four basic
elements are required:

1. SystemlPnP BIOS

2. PnP operating system

3. PnP hardware devices

4. PnP application software

40

While waiting for full-featured PnP operating systems
like Windows* 95, Windows NT and PnP versions of
OS/2*, solutions are available from individual vendors,
including Phoenix Technologies*, SystemSoft* and
Jntel. In addition, the requirements for PnP
implementation vary slightly depending on which bus
architecture is being utilized. Even though Plug and Play
is an extension of the emerging PCI bus definition, it
will revolutionize standard buses like ISA and EISA by
making them more user-friendly. The software
architecture for supporting PnP consists of the following
components (see Figure 2):

1. Platform BIOS: interfaces to the PnP BIOS
Extensions block; provides error reporting, buffer
allocation and platform-specific configuration;
provides ESCD interface.

2. PnP BIOS Extensions: auto-configures PCI cards,
add-in cards, and system board devices during
power-up as part of the power-on self test (POST)
procedure; provides run-time support to system.

I

Applications PnPAware
Applications

AP-60B

O/SI L.. __ M_S-_D_0_S_*_I_W_in_d_o_W_S*_3_.1_1_0_S_'_2* __ ...J

Configuration
Software

DriversG ~
~

BIOS l __ p_la_tf_O_rm __ ..l . BIOS
216C02

Figure 2. Plug and Play Software Architecture Components.
Note the many layers that depend on the ESCD. The parameter blocks of the boot block

flash memory enable this nonvolatile storage capability of Plug and Play.

The following components are operating system
dependent:

4. Configuration Manager (CM): a DOSlWin device
driver that auto-configures any ISA add-in cards not
configured by the PnP BIOS Extensions during
POST; provides other device drivers and PnP-aware
applications like the ICU access to configuration
information for all system devices (two VxDs
provide similar access privileges to PnP-aware
drivers and applications running under windows);
provides interfaces for PCMCIA software to get
configuration data, but does not provide
configuration services.

5. ISA Configuration Utility (ICU)I: a utility designed
to assist users in selecting conflict-free

I The Intel PnP Kit R1.2I and R1.23 update include
both DOS and Windows versions of the ICU (release
R1.3 and RI.4 are Windows only at this time. Other
configuration kits are also available: SystemSoft offers
PnPView and Phoenix Technologies offers Phoenix
System Essential.

I

configurations for legacy ISA add-in cards; advises
end-users on resource settings and saves this new
information into the extended system configuration
data (ESCD) for future use by PnP BIOS Extensions
or the CM; supports manual configuration of PnP
devices. (Caution: it is best to know what you are
doing before embarking down this road-advanced
users haven.)

Of the components listed above, the platform BIOS, PnP
BIOS extensions, and ESCD are the system critical
portions without which PnP support would be
incomplete. The configuration manager and the ISA
configuration utility provide functionality that may be
incorporated into the firmware of the operating system.
The PnP BIOS and the ESCD are the components that
initialize the system when power is applied.

3.2 PnP Functionality

As already mentioned, the PnP BIOS is an essential part
of the PnP system. The traditional system BIOS does not
address resource management. Its knowledge is limited
to hard-wired devices, only. In a PnP environment, the

41

AP-608

system BIOS knows what resources are being used by
system board devices and peripherals. During POST, the
system BIOS communicates this information to the PnP
BIOS, which then detects any PnP hardware devices and
initializes them. PnP BIOS also adds the capability of
runtime configuration; the system can now dynamically
change the resources allocated to system board devices
and add-in peripherals (if they have been so designed)
after the operating system has been loaded. Working in
tandem with the existing system BIOS, thePnP BIOS
can detect newly installed devices during the POST and
communicate this information to the system at runtime
(see Figure 3).

Furthermore, the PnP BIOS is capable of event
management. Through its event management interfaces,
the POP BIOS can alert the system about new devices,
like a notebook docking station, added or removed
during runtime.

The POST procedure of the PnP BIOS identifies, tests,
and configures the system before passing control to the
operating system. The POST process must maintain
previolls POST compatibility, configure all legacy
devices known to the PnP BIOS, arbitrate resources,
initialize the IPL (Initial Program Load-this is how the
operating system is launched), and.suPllOrt both PnP and
non-PnP operating systems. Upon completion of the
POST process, the BIOS attempts to have all necessary
system devices initialized and enabled before the
operating system is loaded; the PnP BIOS aspires further
to provide the operating system a coriflict-free
environment in which to boot.

The kcy to a conflict-free operating environment is
effectivc management of system resources;
unfortunately there.is no definitive directive on how

, system resources should be allocated. The firmware of
. most devices does not contain information on how much
memory the device will need. Even if this knowledge

.. was available, there is no consistent way of extracting
this information. The PnP BIOS Specification identifies
thfee. methods for attaining effective resource
management: . static resource allocation, dynamic
resource allocation, and combined resource allocation.
The choice of which is used depends on the devices that
.are being supported by the system.

• Static Reso'urce Allocation: This method advocates
the allocation of system resources based on the Last
Working Configuration (LWC) and is best for
systems that have many legacy or static devices that
must be rcsou~ced. As its name implies, the resource
allocation for, ,all configurable devices is
predetermined and fixed. This information 'on the
specific rcsourcesassignedto all configurnble

42

devices must be stored in some nonvolatile location
until needed. The. ESCD is the structure specified for
storing this information. The ESCD in this allocation
scheme requires updateability (in case a new device
is added and the resource allocations have to be
adjusted) and nonvolatility (so the information is
always available to the system BIOS during POST).
As long as new devices are not added, or previous
ones removed, coriflict detection and resolution
(CDR) is not necessary and the LWC is used at each
boot. However, the capability to perform CDR must
be available when it is needed.

• l)ynamic Resource Allocation: This approach
assumes that all PnP devices know exactly how
much space they will require and what resources will
be needed. This approach is best suited for systems
with few static . devices or a system whose
configuration changes frequently. A complete
knowledge of which legacy devices are being used
and what resources they consume is necessary to
insure true conflict-free operation. The legacy device
information (and any locked PnP card configuration)
should be stored in nonvolatile memory. The
principle benefits of this approach are its minimal
nonvolatile memory requirements and the flexibility
of support for PnP devices. Each boot could
potentially yield a different configuration and PnP
devices could be added or removed without changing
the legacy information in the ESCD. The CDR
algorithm 'will run each time a new system
configuration has to be determined.

.. Combined Static arid /lynamic Resource Allocation:
This method bases resource allocation on the last
working configuration (stored in the ESCD) and also
probes other devices, whose information is not
contained in the ESCD, for their resource needs. A
balanced environment is the primary t~et for this
type of allocation. The system dynamically caters to
its new requirements, shuffling previous resource
assignments as necessary to satisfy as many devices
as possible. Once a new coriflict-free environment is
established, the system updates the ESCD with the
new configuration and checks against this new
information during the next boot or system reset. As
with the dynamic scheme, every new system
configuration that must be determined requires some
kind of CDR algorithm in order to insure a conflict
free operating enviromlu:nt.

I

Non·PnP BIOS ISA Configuration

Power On

Plug and Play logical devices
required for boot come up active
using defaults.

Plug and Play logical devices
not required for boot come up
inactive.

BIOS

POST

BOOT

OIS Plug 'n Play Support
1. Isolate a PnP card.
2. Assign a handle.
3. Read resource data.
4. Repeat #1 • #3 until all cards done.
5. Arbitrate system resources for Pnp

cards.
6. Configure and activate each card.

PnP BIOS ISA Configuration

Power On

Plug and Play logical devices
required for boot come up active
using defaults.

Plug and Play logical devices
not required for boot come up
inactive.

PnP BIOS will. ..
1. Isolate a PnP card.
2. ASSign a handle.
3. Read resource data.
4. Repeat #1 • #3 until all cards

are done.
5. For each logical boot device:

a) Check ESCD for conflict-free
assignments.

b) Activate the logical device.
6. Optionally, configure all other

logical devices and activate or
leave inactive.

POST

BOOT

OIS Plug 'n Play Support
1. Get PnP information from BIOS.
2. Read resource data for all cards.
3. Arbitrate system resources.
4. Assign conflict-free resources for

for all inactive logical devices.
5. Activate all logical devices just

confirmed.
6. Load device drivers.

Ap·608

216C03

Figure 3. Possible PnP/Non·PnP 8105 ISA Add·ln Card Configuration Flow. Note the importance of
the ESCD in the Plug and Play Configuration Flow

Without an ESCD, the PnP BIOS must perform resource
allocation as well as conflict detection and resolution
each and every time the system is booted, and any
locking of devices must be done by the supporting PnP
operating system. Although the need for nonvolatile

I

storage cannot be disputed, the amount of storage
required depends on whether or not the PnP system
needs real time updates. Ultimately, it will be decided
by the methodology selected for resource management.
A static or dynamic allocation scheme requires a fixed

43

AP-608

amount of nonvolatile memory for the ESCD and other
BIOS parameters. A combined scheme for allocation
constantly adds or removes from the ESCD data
structure. Other parameters may need to be updated as a
rcsult. Regardless of the storage method chosen, the
BIOS must know how to resolve any untimely
interruption of a crucial system or BIOS. function. The
underlying mechanism for appeasing all these
requirements is flash, and Intel's boot block flash is the
solution for today's demands and tomorrow's
inclinations.

4.0 INTEL'S BOOT BLOCK: THE
PNP FLASH BIOS SOLUTION

With the background information 011 Plug and Play
explained in the previous sections, a full analysis of the
Intel boot block and how it meets the needs of Plug and
Play follows. Included are a description of the boot
block family of products, how they meet the PnP
requirements, and a hardware design example.

The Intel boot block (BB) flash memory products are
particularly well· suited for BIOS applications. Boot
block flash is segmented into a lockable boot block, two
parameter blocks and one or more main blocks. All boot
block devices are manufactured on Intel's ETOXTM flash

44

memory process technology. An on-chip Write State
Machine (WSM) provides automated program and erase
algorithms with an SRAM-compatible write interface.
The key feature of the boot· block architecture that
differentiates it from other flash memories is its
hardware-lockable boot block, which allows system
recovery from fatal crashes. Additional features of boot
block flash include:

• Hardware write protection via pin

• Hardware locking of boot block

• Hardware pin for system reset during write

• High performance reads (for speedy access to data)

• Deep power-down mode (a key feature for "green"
PCs)

• Extended cycling capability (100,000 block/erase
cycles)

Armed with this impressive array of features, Intel's
boot block flash memory tackles the PnP BIOS
challenge and prevails with a winning solution. Boot
block flash memory· meets the needs of the Plug and
Play BIOS, the PnP data storage area (ESCD), and the
PnP BIOS boot code.

The main block(s) of the boot block flash can be used to
house PnP BIOS code. This code will doubtless include
the standard AT BIOS code (all 64 Kbytes) as well as
the PnP specific additions to the standard BIOS, an extra
10 Kbytes-20 Kbytes. Any additional features that
particular OEMs or vendors wish to implement
(Le., power management, virus protection, PCI, etc.) will
exhaust more memory. The main block of the 1-Mb boot
block is 112 KB; the 2-Mb has one 96-KB main block
and one 128-KB block. The 4-Mb boot block is similar
to the 2-Mb except it has three 128-KB main blocks.
The choice of which boot block to use depends on BIOS
specifications and other system requirements. For some
systems, the 1-Mb boot block is sufficient. However,
other systems have advanced features that require more
memory, for example

• Improved help files

• System diagnostics code

• Foreign language support

• Integrated SCSI subsystems

For these applications, a 2-Mb boot block is the prudent
choice. With twice the memory space as the standard PC
memory map allots to BIOS, the 2-Mb boot block flash
offers plenty of head room-just what a growing PC
needs.

I

The previous section touched on some of the methods
available for resource management and the amount of
nonvolatile memory necessary for each approach. Boot
block flash solves the issue of the ESCD for each of the
possible allocation schemes.

The static allocation scheme stores the resource
requirements for all system and add-in devices within
the ESCD. These system configurations can be
programmed into one of the parameter blocks of the
boot block flash as the ESCD. Parameter blocks are
either 4 KB (l-Mb boot block flash) or 8 KB (2-Mb and
4-Mb boot block flash) in size. The ESCD Specification
calls for 4 KB of nonvolatile memory for the ESCD. Of
course, an OEM may elect to derme its own version of
the ESCD, but that structure will still need to be stored
in some nonvolatile location. If the OEM or system
manufacturer decides to include additional features
within the ESCD (or keep a second copy of the ESCD
for recovery purposes), the other parameter block can
certainly be used for this purpose.

With 'dynamic resource allocation, the boot block
architecture's parameter block is an excellent choice for
storing the resource information of legacy devices.
When systems are being put together, all devices on that
system can be pre-assigned specific resources and this
information is saved into the ESCD. This implies that
some conflict resolution protocol or intelligent
allocation algorithm needs to be implemented to assign
resources to any devices added to the system by the end
user. This protocol can be included in the BIOS or as
part of the operating system.

For the combined approach, the dual parameter blocks
of the boot block family again come into play. Using
this feature of the boot block architecture, two versions
of working system configurations can be saved. This
means that the last two working configurations are
always available to the system, further insuring recovery
in case of irreconcilable conflicts. If this is not desired,
then the ESCD can be written alternatively to each
parameter block, thereby minimizing the number of
writes to the same location and extending the life of the
flash component.

Finally, the hardware-lockable boot block of the flash
architecture is ideal for BIOS boot code. The boot code
is the first piece of code executed each and every time
the system is turned on or rebooted. Boot code consists
of a jump vector, checksum routine and recovery code.
The jump vector, which is 16 bytes long, is the
beginning address of the main BIOS. This is the address
jumped to after the checksum routine returns a valid
checksum, indicating that the current BIOS is good. If
the checksum routine does not validate the goodness of

I

Ap·608

the available BIOS, the recovery code is then used to
load a new BIOS.

In the AT system, the boot code was usually no more
than 8 KB in size. However, the improvements made to
start-up routines, checksum routines and recovery code
to keep up with the constantly changing times have
forced this boot code to grown outside of its intended
limit. Further PC enhancements will advance rather than
curb this growth. The boot block area of the l-Mb flash,
with its 8 KB size, is the consummate solution for
storage of the standard boot code. The 16 KB size of the
2-Mb and 4-Mb boot block is the answer to the growing
needs of today, and the unyielding promise oftomorrow,
by enabling the boot code to expand beyond itself to
better serve the user.

Since this boot code is so important to the operation of
the system, it is easy to understand why it needs to be
protected. Storing it within the hardware locked boot
block provides maximum protection to the system. If a
reset occurs during reprogramming of the flash, for
instance (the dog has been known to run over the power
cord at the most inopportune times), a hardware-locked
boot code means that system recovery is not only
possible, it is guaranteed! This capability is an asset to
OEMs users alike. The user no longer needs to suffer
long delays following a system crash; OEMs (and
system manufacturers) no longer need to incur the cost
of person-dependent recovery. The user does not feel
helpless and out of control and the OEM saves money
and gains a faithful customer in the process.

5.0 IMPLEMENTING A PNP FLASH
BIOS USING A 2-Mb BOOT
BLOCK

By now it is evident that Intel's boot block flash
memory is an ideal solution for implementing PnP BIOS
within a system. However, there are implementation
criteria that need to be explained:

• How does this hardware-locking of the boot block
work?

• How does one connect the flash memory to a
system?

• What about address mapping?

• How does one utilize a 256-KB BIOS within an
defined l28-KB BIOS space?

These are just some of the implementation concerns that
need to be addressed. The following section will shed
some light on these questions and provide an example
implementation of a PnP flash BIOS.

45

AP-608

5.1 Overview of the 2-Mb Boot
Block

Figure 1 showed that either a 1-Mb or 2-Mb flash device
can be used to implement BIOS. The choice of device
depends on the contents of the BIOS and the level of
sophistication desired in the design. The 1-Mb boot
block flash memory is an established standard for
implementing flash BIOS, not just for PnP. However,
more BIOS space will be needed to support
standardization of current features (like power
management and virus aids) and impending future
enhancements (like Windows 95 and Desktop
Management Interfaces*, DMI). As consumers clamor
for "more bang for the buck," more features and
functions will be integrated into the standard Pc. The
migration beyond a 128-KB BIOS is inevitable.
Already, some vendors have adopted code compression
of BIOS in order to adhere to this 128-KB space
limitation. This is a viable alternative that requires
additional code decompression algorithms and consumes
additional RAM space to store the full BIOS.
Fortllnately, Intel provides a secure means of code
storage as well as a built-in growth path with its boot
block architecture.

28F002B-T Memory Map

3FFFFh
16-Kbyte Boot Block

3COOOh
3BFFFh 8-Kbyte Parameter Block
3AOOOh
39FFFh 8-Kbyte Parameter Block
38000h
37FFFh

96-Kbyte Main Block

20000h
lFFFFh

128-Kbyte Main Block

OOOOOh~----------------~

Within this implementation section, references to the
flash BIOS device assume the 28F002B boot block
flash. A similar approach can be followed to implement
a similar solution using the 1-Mb boot block. However,
some of the techniques included in this design example
will not be applicable. The organization and addressing
scheme of the 28F002B device, along with that of the
1-Mb boot block (as reference), is depicted is Figure 4.
The pinout for the Thin Small Outline Package (TSOP)
and Plastic Small Outline Package (PSOP) of the
28F002B are shown in the Appendix. A table listing the
functions of each of the pins identified in the pin
diagrams is also available in the Appendix. The five,
independently erasable blocks consist of the hardware
lockable boot block (16 KB), the two parameter blocks
(8 KB each), and two main blocks (a 96-KB block and a
128-KB block). The hardware-lockable boot block can
be located at either the top (28F002B-T) or bottom
(28F002B-B) of the 1-MB memory map, enabling easy
interface to all Intel architecture microprocessors as well
as embedded processor like. the i960® processor
(KNSA) and non-Intel microprocessors that support
location of the BIOS memory area at the low address.

28FOOl B-T Memory Map

lFFFFh
8-Kbyte Boot Block

1 EOOOh 4-Kbyte Parameter Block
1 DOOOh 4-Kbvte Parameter Block
lCOOOH

112-Kbyte Main Block

OOOOOh

Figure 4. Architectural Organization of 28F002B-T and 28F001 B-T Flash Memory Devices

46

I

The 16-KB boot block is intended for storage of the
system critical BIOS boot code. This block is unlocked
when the RP# pin is between the specified range for
VPPH; after unlocking, program and erase operations can
be performed. Taking the RP# pin below the specified
minimum value for VPPH locks this block, disabling
program and erase functions. The two parameter blocks
can contain supplementary boot code or the system
configuration information (ESCD). They are intended
for storage of frequently updated system parameters or
configurations. In addition to the ESCD, the nonvolatile
parameter blocks can be used to retain a copy of the
CMOS setup or to store/track add-in card addresses,
DMA channels, or interrupt valuesllevel. . The main
blocks may be used for the storage of the main PnP
BIOS code and runtime services. The WE# input
provides write protection for the entire flash memory
device. The Vpp pin offers additional write protection
since standard boot block flash requires V PPH be
between 11.4V and 12.6V before any Program or Erase
command sequences are recognized.

A complete solution cannot be achieved without
mention of available package options. The Boot block
products are offered in PDIP, PLCC, PSOP, and TSOP
form factors. Due to handling similarities in the
manufacturing flow, more vendors are changing from
the previous PLCC package standard to the smaller
PSOP package.

I

5.2 PnP Boot Block Flash BIOS
Implementation . (Hardware)

In order to implement a PnP flash BIOS, certain
hardware criteria must be met. For standard boot block
flash and SmartVoltage boot block in 12V mode, there
must be a means for raising Vpp to 12V and lowering it
to normal levels after programming or· erasure is
complete. There must also exist a method for write
enabling the entire flash device. A way of gating the
RP# input is necessary to insure the integrity of the
program signal for the boot block (usually a
POWERGOOD signal is appr()priate). Bi-directional
transceivers or data bUffers may be needed for the DQ
pins. Lastly, there must be a means for relocating the
recovery code after· the system boots when a 2-Mb
density boot block flash is used. .

5.2.1 BIOS BOOT CODE RELOCATION

Following a system reset or power-on, the typical
system first goes to the high memory area of the I-MB
memory map, where the boot code is stored. The
checksum routine (or whatever means of verification is
employed) is run to verify the status of the BIOS
currently available to the system. If the main BIOS is
determined to be good, this code proceeds to initialize
the system and its peripherals and passes control to the
operating system; as mentioned earlier, this is done by
jumping to the address pointed to by the jump vector. If,
however, the main BIOS is found to be corrupted or
unusable (i.e., the checksum value read does not match
the expected value), the BIOS recovery code must
reconstruct a new BIOS. The recovery code reconstructs
the BIOS by reading the BIOS update file from a floppy
or COM port (modem), erasing all the other blocks
(except the boot block), reprogramming the flash with
the new BIOS data, and initiating a RESET to reboot the
system. As a result, there are two modes of operation in
which the system can function: boot mode and runtime
mode.

In boot mode, which occurs at power-up, the system
expects the kernel code to be located at physical address
FEOOOh-FFFFFh. The system then validates the status
of main BIOS. If this check results in a good BIOS, the
system is initialized and control is transferred to the
operating system via the jump vector. At this point
runtime mode is entered; the system now expects the
main BIOS to be located at physical address EOOOOh
FFFFFh (see Figure 5). The I-Mb boot block maps
directly into this 128-KB space allocated for BIOS
usage. The 2-Mb boot block, however, must be able to
switch between its upper 128-KB block (which includes
the boot and parameter blocks) and its lower 128-KB
block (which is where the main BIOS should be stored).

47

AP-608

The system initialization routine and the configuration
utilities should be located in the upper 128-KB block of
the 2-Mb boot block. The lower 128-KB block should
be used for runtime BIOS services and other advanced
features.

To achieve this swapping of boot BIOS and main BIOS,
several methods can be applied. A small piece of logic
can be added to the board to swap the address ranges; an
easier approach is to simply invert the A17 input to the
flash. For runtime mode operation, A17 is maintained at
logic low, thus mapping the lower 128-KB block of the
2-Mb boot block to the 128-KB BIOS area in main
memory. During recovery, the polarity of A17 can be
flipped to shift the kernel code to the F segment, i.e.,
swap the lower 128-KB block for the upper 128-KB
block. A keyboard sequence, motherboard switch, or
jumper can be used to toggle A17. The hardware
example in Figure 6 illustrates the use of this tactic.
Another approach would be to locate the flash BIOS at a
high memory area (above I MB) and use BIOS

48

extension calls to access the runtime BIOS services in
the 128-KB block. This method, however, takes quite a
bit of time because of the overhead associated with the
software BIOS call (saving status, return location after
call, etc.). Note that depending on the particular BIOS
implementation (i.e., vendor, platform, etc.), the
addresses indicated in this example may change slightly.

When the flash memory is being reprogrammed, it is
necessary to relocate the BIOS recovery code to RAM
before proceeding, as Figure 5 illustrates. Although the
flash memory allows suspension of an erase cycle to
permit reading of another block, attempting to read one
of the flash blocks while a write to another block is in
progress is not permitted. This is a characteristic of all
flash products currently on the market today. As a result,
the BIOS recovery code must be copied to RAM and
executed out of RAM in order to reprogram the flash
memory with the new BIOS code.

I

AP-608

28F002B·T Upper Memory Area: BIOS Space

3FFFFh System Init., , FFOOOh
Power-On Self Test (POST) \ ...

::::: I-__ :_:O_nf_~g_:_~:_:~_ov~_e_~ C-til-:-e:--; \\/ :~~~~~~~~~~~~~~~~~~~: ::::::
.... ,,1.\

Additional Boot \\ / ""'"

20000h I-__ B_I_O_S_' D_r_iv_er_s_, e_tC_' __ -f'_'/_"':_>_::::_\''':\'1,_\''_\'_'''''''''";-,, :1--------------------------------------O-J :::::

1/0 Support, Drivers,
Runtime BIOS Services,
Additional Card Config.

\. \~ System RAM

!XE:~:3
1//

//
,I' OOOOOh '--________ --1

BBB
BOOT RUNTIME UPDATE

Figure 5. BIOS Relocation for 2·Mb Boot Block

5.2.2 Vpp GENERATION AND WRITE
PROTECTION

The Vpp pin enables programming and erasure of the
flash device. In addition to this, Vpp also provides write
protection of the flash memory blocks. If Vpp is below
its required level, no Program or Erase command
sequence, whether valid or not, will have any affect on
the flash. If code (or data) security is of paramount
importance to a particular design then a flash memory
device with a dedicated Vpp pin is the best choice.

As for PnP, the BIOS will be tweaked from time to time
by vendors, new features will be added, and standard
routines will be enhanced. One particular allocation
scheme of PnP requires that the ESCD be re-written
each time a new system device is added. Although flash
memory enables all these benefits, none of them can be
achieved without the generation of the programming

I

voltage, Vpp. It is imperative that Vpp be generated
cleanly to avoid incorrect programming or erase as well
as spurious writes (which can lead to unwanted system
crashes). Keep in mind that a clean Vee is as important
for fail-safe flash operation as a clean V pp.

The IBM PC technical reference manual specifies a 12V
supply with a tolerance of + 5% to - 4%. The Vpp
specifications of the boot block flash memory align to
this standard. If the power supply employed in the
design meets the IBM specification and has CMOS
logic, the 12V supply from the power supply can be tied
directly to the 28F002B. This approach, however, is not
recommended since it can degrade program/erase
perfonnance or unfavorably affect reliability. In most
desktops, an unregulated 12V supply exists in addition
to a 5V. It is recommended that 5V be used to obtain the
12V ± 5% rail. In addition to being more efficient and
more economical than the unregulated method, this

49

AP-608

approach does not require a minimum load to maint31n
the regulation, as is necessary when buffering an
unregulated supply using modular . soluti(Jns.· Likewise,
Vpp can be generated by regulating (or stepping down)
. from a higher voltage. Additional information on Vpp
generation strategies can be found in Application
Note 357: "Power Supply Solutions for Flash Memory,"
(order # 292092) and the technical paper entitled "Small
and Low-Cost Power Supply Solutions for Intel's Flash
Memory Products," (order # 297534).

Of course, if a 5V environment is necessary,
SmartVoltage is the irrefutable choice. These' voltage
sensing devices allow manufacturers or OEMs to choose

. either al2V or .5V Vpp level, depending on their
specific design needs. In this way, the extra write
protection provided by having a separate Vpp pin is
retained and the appropriate hardware environment can
be lIIaintained. When Vpp falls below the specified value
for VPPL (VPPLK for SmartVoltage devices), program and
erase cycles to the flash device are prohibited (ignored),
although the device can still be read normally;
Additional software protection for Vpp can be added by
requiring a password before enabling Vpp to proper
program/erase levels. The RP# pin, gated by the
POWER GOOD signal of the power supply and the
system RESET# pin, provides further write protection
for the information stored within the boot block.

·5.2.3 HARDWARE DESIGN EXAMPLE

Figure 6 shows an example design for implementing a
flash memory-based BIOS within a PC motherboard.
Speci fic signal generation is discussed in the following
sections. The Vpp generation circuit used can drive
200 rnA of Vpp current with an efficiency rating of 88%.
Even though a transceiver may not be necessary, it is
specified in . this example as reference. Standard PCs
expect a ROM-based BIOS and do not enable the data
bus to the BIOS ROM during write sequences (in fact,
standard PCs do not generate the write enable signal
when the address decoded references the BIOS area).
The transceiver are used to allow reading and writing of
the flash BIOS .within specified timings.

50

5.2.3.2 RP#

This section gives a sample implementation of the PnP
flash BIOS. The block diagram that supports this
implementation is shown in Figure 6. The RP# gating
methodology described in the previous section is
implemented in this sample design; the PWRGOOD
signal (or Vee input) and the hardware generated
RESET# signal are monitored for appropriate voltage
levels using a voltage monitor. This scheme masks
invalid bus conditions from the flash device, thus
providing additional' buffering accidental erasure. As
one might expect, the flash memory defaults to read
array mode. It may also be desirable to gate RP# with a
General Purpose Input/Output (GPIO) line to enable
shutting off the BIOS after it has been shadowed. A
jumper to 12V(with some kind of protection, like
decoupling capacitors or buffer circuit) can be used to
unlock the boot block. This control may also be
accomplished via software interrupt, although this is a
less secure means than the straight hardware method.
TheSmartVoltage boot block products support this type
of boot block locking and unlocking; however,there is a
separate WP# pin that permits locking and unlocking of
the boot block with 5V if 12V is not being supplied to
the flash memory.

I

5.2.3.3 WE#

The WE# signal generated by the processor usually
cannot be used in this implementation because the
processor does not expect this area to be writeable (i.e.,
it thinks the BIOS is stored in a ROM). Therefore, the
WE# signal must be generated externally using the bus
definition signals and some discrete components. A
write condition to the BIOS is established when the
M1IO# (memory or I/O) signal indicates memory and the
MEMWIR# (memory write or read) signal indicates
write. Figure 6 illustrates this scheme. Further write
protection for the BIOS can be achieved by gating the
WE# signal with a GPIO line, effectively disabling
writes to the flash BIOS unless permitted by the BIOS
update algorithm. I/O port bits can be ANDed with the
actual write pin to control the generation of the WE#
signal to the flash memory. The bits used should be both
readable and writeable. Flash memory devices that do
not have a WE# pin suffer from more frequent spurious
writes. Such memories use the CE#, OE#, and Vpp pins
to decode a write sequence. Because the CE# input is
decoded from switching address pins, it is not unheard
of for this input to incur glitches. With V pp at specified
tolerance levels, this glitching can initiate writes
hardly a favorable state when updating BIOS code.

5.2.3.4 CE#

The CE# input is defined by the address condition that
enables the flash device. No access to the flash chip will
be permitted if the CE# input is deasserted. This input
can be generated multiple ways as well. Chip sets often
take care of this type of decoding internally, returning
the lone chip select signal on one of their output pins. If
a chipset is not used, IJPLD or decoder can be used to
generate the CE# input based on the address inputs used
to indicate the flash memory device. Boot block
products allow both CE# controlled programlerase as
well as WE# controlled programlerase. The logic is such

I

AP·608

that whichever is asserted first controls the current
programlerase sequence and latches the valid address.
The WSM begins operation when that signal is
deasserted (see Command User Interface, Section
5.3.2.2, for more details).

5.2.3.5 OE#

Whenever a read cycle is performed, the OE# input
needs to be asserted. OE# is therefore gated by a
memory read to the flash when it is enabled. This
example uses the MEMW/R# signal to control the
generation of OE#. It may be necessary to invert this
signal in order to provide the correct signal polarity to
this input. As with the WE# input, I/O bits as well as
discrete components (that define, in this case, a read
cycle) can be used.

5.2.3.6 Address Inversion for 2·Mb Boot
Block

The address inversion scheme described earlier is used
in this example. This input to the flash can also be gated
by I/O port control bits if a software implementation is
more appropriate. This example uses the BootlRuntime
Mode (BIRM#) selection pin (which may be software
generated-controlled, say, by the checksum value) to
control the inversion of A17 Alternatively, a
programmable device (like a IJPLD) can be used to
actually decode the high order address bits and achieve
the same result as the bit inversion.

Some of the features employed in this example may be
incorporated into a chipset, and therefore, the external
circuitry may be unnecessary. The CE# input, for
example, is available on most chipsets as a ROMCS#
output and can be hooked directly to the CE# input of
the flash memory.

51

AP-608

SA[0:16)

SD[0:7)

MEMW/R#

SA17

BIAM#

. Optional

·iAlter

1'· .. · .. ····· ···· ····· ·1

! i 12V1200 mA
! .

~~~~i~ ~~!~----<~ 

01: 1N58171 i[' ~ 

L. .... ~: .. ~.~.!.~~ .... ~-= s 

A[0:16) 

Flash 
Memory 

4.75V - 5.5V 

RP# .-----. , 

MlIO# 

BIOSADDR 
CONDITION 

NOTES (LT1302CS8): 
Input Range: 3.0Vto 10V 
Output Current: Up to 200 mA @ VIN = 5V 
Typical Efficiency: 88% @ ILOAD = 200 mA, VIN = 5V 
Switching Frequency: 155 Khz 
Operating Quiescent Current: 120 IJA (typical) 
Shutdown Feature 
Shutdown Quiescent Current: 15 IJA (max.) 
Rise time from shutdown: 1.2 ms (typical) 

NOTES (MAX662A): 
Input Range: 4.75V - 5.5V 
Output Current: Up to 30 mA @ VIN = 5V 
Typical Efficiency: 74% @ ILOAD = 30 rnA, VIN = 5V 
Switching Frequency: 500KHz 
Operating Quiescent Current: -320 (JA 

Shutdown Feature 
Shutdown Quiescent Current: -70 (JA 

Rise time from shutdown: -500 IJS (typical) 

Figure 6. PnP Boot Block Flash BIOS Hardware Implementation Example 

52 

2181J)8 

I 



5.3 PnP Boot Block Flash BIOS 
Implementation (Software) 

In order to update the PnP BIOS, some type of flash 
programming utility must be employed. This utility 
cannot program the boot block due to the hardware 
protection provided by the RP# pin (or the WP# pin on 
SmartVoltage flash memory), thereby preserving the 
boot or recovery code contained therein. In most cases, 
however, this programming utility will be unique for 
each system because it is dependent on the hardware 
used in the design. The method of raising and lowering 
Vpp, for instance, is dependent on hardware, as is the 
methodology for disabling shadow RAM or cache. Since 
reprogramming of the flash memory will result in a 
reboot, it is not necessary to keep track of system status 
information. (like shadow status, cache status, power 
management status, cursor position, etc.). 

Boot block devices have on-board programming and 
erase algorithms with a built-in SRAM-compatible 
interface for simplified software creation and debugging. 
This is accomplished through the on-chip write state 
machine (WSM), status and command registers. These 
registers perform all of the necessary actions, from Vpp 
monitoring to erase suspend. The WSM even times the 
programming pulses, obviating the need for program 
timers and preconditions blocks as part of its erase 
process, eliminating the need to "0" program prior to 
erase. 

5.3.1 PROGRAMMING CONSIDERATIONS 

Due to the difficulty of discussing every possible PnP 
flash programming utility in this application note, a 
generic programming utility that can work on all 
platforms will be examined. Inherent to this approach is 
an interface between the programming utility and the 
PnP BIOS. This interface is accomplished by selecting a 
ROM BIOS interrupt number and assigning a function 
number through which all flash-specific functions can be 
accessed. Table I lists some possible functions that 
might be defined for the interface. Table 4, in the 
Appendix, provides a list of the ROM BIOS interrupts 
currently used or preassigned. Once an available (or 
unused) interrupt number andlor function has been 
determined, the flash programming functions can then 
be defined. For this example, assume interrupt 17, 
function OFh has been selected for implementing the 
flash programming subfunctions. 

I 

AP·608 

Table 1. Generic Subfunctions for Flash 
Programming Utility 

Subfunction Description 

OOh Validate Checksum 

01h Raise Programming Voltage (Vpp) 

02h Lower Programming Voltage (Vpp) 

03h Flash Write Enable 

04h Flash Write Disable 

OSh - FEh Reserved for Future Use 

FFh Generate System RESET 

The generic specification is as follows: 

Input: AH = OFh 

AL = Subfunction 

Output: If CARRY FLAG set = Error 

If CARRY FLAG clear = Success 
AL= 85h 

(If 85h is defined as a subfunction in the future, a new 
return value must be specified.) 

The carry flag was chosen because most instruction sets 
include specific instructions for setting and clearing this 
bit. The overflow or zero flag may be used in place of 
the carry flag. Likewise, a register value may be 
returned in case of an error (as is done with the success 
case in this example). The methodology may be changed 
but the function must be preserved, i.e., regardless of 
how it is done, there must be some way of informing the 
system of a successful or unsuccessful instruction 
execution. 

A few caveats of which to be aware: 

1. A PnP BIOS version subfunction may be defined 
for distinction or to enable/disable features not 
supported in every system 

2. If both a flash chip and an EPROM exist on the 
system board (for example SCSI or keyboard 
BIOS), two additional subfunctions need to be 
defined to select the flash memory instead of the 
EPROM. 

3. The Validate Checksum function can be defined 
many ways, but basically it needs to be able to 
compare the checksum of the current BIOS (this 

53 



AP·608 

may need to be calculated) with the saved 
checksum value. If they match, then boot can 
continue; otherwise, a new BIOS needs to be 
uploaded. 

4. Keep in mind that all registers used by these 
subfunctions will be destroyed. If their value needs 
to be maintained, the register should be pushed 
onto the stack (or saved) prior to use and then 
restored afterwards. 

SlIbfunction OOh: Validate Checksum--checks the 
chccksum of the loaded BIOS against that stored in 
mcmory. If they match, it returns true, else it returns an 
error and a new BIOS should be loaded. 

Input: AH=OFh 

AL=OOh 

Output: CF set = Error 

CF clear = Success 

AL=85h 

SlIbfunction Oth: Raise Programming Voltage 
(Vpp)-raises Vpp to the required voltage level (in this 
case, greater than llAV) and waits until the voltage is 
sleady. 

Input: AH=OFh 

AL=01h 

Output: CF set = Error 

CF clear = Success 

AL=85h 

If the boot block area of the flash memory is to be 
accessed and software control of the RP# input is 
desired, this function may be? used to raise the voltage on 
the RP# signal. Alternatively, another subfunction may 
be defined to accomplish this purpose. Remember, 
however, that software control of the RP# input is not 
recommended as it eliminates the hardware protection 
feature of the boot block. 

Subfllnction 02h: Lower Programming Voltage 
{Vcc}-lowers Vpp to its normal level (in this case, less 
than 6.5V) and waits until the voltage is steady. 

54 

Input: AH = OFh 

AL=02h 

Output: CF set = Error 

CF clear = Success 

AL=85h 

If access to the boot block area of the flash memory is 
completed and software control of the RP# input is in 
effect, this function may be used to lower the voltage on 
the RP# signal. Alternatively, another subfunction may 
be defined to accomplish this purpose. Remember, 
however, that software control of the RP# input is not 
recommended as it eliminates the hardware protection 
feature of the boot block. 

Subfunction 03h: Flash Memory Write Enable
enables erase/program commands to the flash chip and 
waits the required amount of time for stabilization (if 
necessary). 

Input: AH = OFh 

AL=03h 

Output: CF set = Error 

CF clear = Success 

AL=85h 

Subfunction 04h: Flash Memory Write Disable
disables EraseIProgram commands to the flash chip and 
waits the required amount of time for stabilization. (if 
necessary). 

Input: AH = OFh 

AL=04h 

Output: CF set = Error 

CF clear = Success 

AL=85h 

Subfunction FFh: Generate System RESET-issues 
the RESET command necessary to reboot the system 
after the flash memory has been altered. 

Input: AH = OFh 

AL=FFh 

Output: None 

5.3.2 REPROGRAMMING 
CONSIDERATIONS 

One of the prime benefits of a flash-based PnP BIOS is 
the ability to do in-system updating. When a flash chip 
is soldered directly onto a system board, there are two 
methods available for reprogramming: in-system writing 
(ISW) and on-board programming (OBP). The major 
difference is in how Vpp is supplied and whether the 
programming process is controlled by the system or 
some external hardware. The Vpp voltage is supplied 
locally and the system is responsible for reprogramming 
with the ISW approach. With OBP, the external PROM 
programmer supplies the necessary Vpp for 

I 



programming, and controls the reprogramming process. 
Cost, ease-of-implementation, and reprogramming 
environment are some of the trade-offs that must be 
made when considering which methodology is best. 
There are advantages to both methods. This application 
note focuses on the ISW approach. 

6.3.2.1 In-System Write Considerations 

The following items are required to have an ISW 
capable system for updating the PnP BIOS: 

o Microprocessor or controller (to control the 
reprogramming process) 

o PnP BIOS boot code, communications software, and 
PnP BIOS update algorithm 

o Data import capability (floppy disk, serial, network, 
etc.) 

o Vpp generator or regulator (12V products only) 

Vpp Generation 

v pp generation has already been discussed in previous 
sections, and since most ISW systems include voltage 
divider circuits that provide a path to ground, ESD 
protection is not needed for the Vpp pin. If, however, a 
system does not have this voltage divider circuitry 
(check the schematics) or the V pp supply is switched 
directly, a resistor to ground should be added to prevent 
damage due to electrostatic discharge. The tolerance of 
the V pp pin is also important to be wary of. Although 
5% tolerance is tighter than 10%, it usually yields a 
higher programming time. Such a trade-off may be 
necessary to make for certain applications. When using 
the SmartVoltage devices in 12V mode, the same care 
must be taken in generating Vpp as with the standard 
boot block. In the 5V mode of the SVT devices, 
however, this extra protection is not necessary. 
Nonetheless, the Vee signal should be as clean as the 
Vpp signal. 

Data Import Capability 

The flash memory does not care how the new PnP 
update code is fed to it-any convenient means of 
downloading the necessary information is acceptable. 
This means the flash memory will not be a barrier to 
completion if, for instance, design constraints call for a 
parallel link instead of a serial link. Even though most 
communication is serial, error free serial communication 
still needs some kind of buffering to allow for proper 
packet reconstruction after transmission. The download 
time is another factor in deciding on a data import 

I 

AP-60S. 

methodology. Although a serial interface, like JT AG, is 
easier to implement, in practice it is actually slower than 
other methods. An assembly line will see noticeable 
differences in program time when ·using a JTAG 
interface versus a parallel interface, for instance. 

ISW Boot Code 

The PnP BIOS boot code stored in the boot block of the 
flash memory should be able to handle remote updates 
by the processor as well as basic communication and 
reprogramming capabilities. This insures that any 
interruption of the reprogramming process would be 
recovered by resetting the flash and checking BIOS 
status or some reprogramming flags. 

Suppose the boot code begins execution after a system 
reset or power-on and determines that an invalid PnP 
BIOS is loaded in the system. This code should begin 
the reprogramming process by preparing the flash device 
for erasure and establishing a connection to the 
reprogramming protocol, perhaps through an interrupt, 
say R_INTR. Once this connection is established, the 
reprogramming can commence. Some kind of valid (or 
complete) signal needs to be provided to the boot code 
to let it know that reprogramming is complete, sayan 
R_DONE interrupt from the update protocol. Should this 
reprogramming be interrupted, the boot code should be 
able to recover by recognizing that a valid BIOS still has 
not been loaded and re-initiating the reprogram 
algorithm. 

Communications Software 

Whatever means is used to download the information to 
be programmed should guarantee accurate data 
transmission. The protocol employed can be a simple 
read-back technique or a complex error-free 
communications protocol. The simple read-back 
methodology consists of the CPU indicating to the 
system that it wishes to update the BIOS by asserting the 
R_INTR interrupt. Once the PnP BIOS acknowledges 
this request, it prepares the. flash device for updating and 
transfers control to the processor. The flash memory 
then waits for the R_DONE interrupt. Once the 
reprogramming is complete, the system should resend 
the update code to verify the programming sequence. 

PnP BIOS Reprogramming Routine 

In system reprogramming of the system BIOS is one of 
the many advantages that flash memory brings to BIOS 
world. The algorithm needed to accomplish this 
reprogramming will vary from vendor to vendor. Rather 
than advocate anyone method of implementation, the 

65 



AP-608 

flowchart in Figure 7 is provided to serve as a guide. 
This enables flexibility of design while insuring that all 
necessary components are incorporated into the 
reprogramming code. Even though the flowchart may 
1I0t indicate so, user consideration should be embedded 
in the update routine, i.e., status bars, confirmation 
prompts, etc. 

5.3.2.2 Command User Interface 

The built-in Command User Interface (CUI) of the boot 
block (and all Intel second-generation flash devices) 

provides a standard interface to the internal Write State 
Machine (WSM) of the flash memory. Table 2 lists the 
commands available through the CUI and the number of 
cycles each requires. The CUI simplifies processor 
interfacing by granting full read/write functionality to 
the CE#, WE#, and OE# inputs. Raising Vpp to VPPH or 
lowering it to VPPL toggles the flash memory between 
read/write mode and read-only mode. When in read-only 
mode, only the first three commands listed in Table 2 
are accessible. In read/write mode, all commands are 
permitted. 

Transfer Control 
to Main BIOS 

Display Update Options; 
Prompt User to Choose; 

Load File to Memory 

56 

Inform User; 
Prompt for File 

or Exit 

Figure 7. Flowchart for Update Algorithm. 
Note that although this is a fairly generic algorithm, similar flows 
have been Implemented by BIOS vendors and OEMs since 1991. 

216C07 

I 



AP-608 

Table 2. CUI Commands for the 28F200/002B Flash Memory 

Command #of First Bus Cycle Second Bus Cycle 
Cycles 

Oper Addr Data Oper Addr Data 

Read Array/Reset 1 Write X FFh 

Intelligent Identifier 3 Write X 90h Read IA 110 

Read Status Register 2 Write X 70h Read X SRD 

Clear Status Register 1 Write X 50h 

Erase Setup/Erase Confinn 2 Write BA 20h Write BA DOh 

Word/Byte Write SetupIWrite 2 Write WA 40h Write WA WD 

Erase Suspend/Erase Resume 2 Write X BOh Write X DOh 

Alternate Word/Byte Write 2 Write WA 10h Write WA WD 
SetupIWrite 

NOTE: 
To avoid excess current usage, the high order 8-bits of the data bus should be tied to Vee or Vss if a 16-bit wide data bus is 
being used (16-bit data bus only valid for the 28F200B devices) 

Block Address to be erased 

Address to be programmed 

Data to be programmed at address WA 

BA= 

WA= 

WD= 

IA= Identifier Address: OOh for manufacturer code; 01 h for device code 
(following this command, two read operations access the manufacturer and device codes) 

110= 

SRD= 

Intelligent Identifier Data 

Status Register Data 

Read Array/Reset (FFh): This single command points 
the read path at the memory array. If the processor 
performs a CE#/OE#-controlled read following a two
write sequence, the device will output the status register 
contents. If the read command is given following an 
Erase Setup command, the device is reset to read the 
array. Two sequential Read Array commands is required 
to place the device in read array mode after write setup. 
If the system leaves Vpp turned on during a system reset, 
incorporate. a command register device reset into the 
hardware initialization routine. This is a safeguard in 
case the flash device is being programmed or erased 
when the system reset occurs. 

Intelligent Identifier (90h): This commands points the 
output path to the Intelligent Identifier circuitry. Only 
values at address 0 and 1 can be read (only address Ao is 
valid in this mode). All other inputs are ignored. 

I 

Read Status Register (70h): After this command, the 
subsequent read will output the contents of the status 
register, regardless of the value on the address pins. This 
is one of two commands that can be issued while the 
WSM is operating. The device automatically enters this 
mode following write (program) or erase completion. 

Clear Status Register (501.): This command clears the 
program status and erase status bits of the status register. 
The WSM is only allowed to set these bits when it is 
performing one of these tasks; however, it cannot clear 
them. This is to allow synchronization with the 
processor. 

Erase Setup (20h): This command prepares the flash 
memory for erasure and waits for the Erase Confirm 
command. If the next command is not the Erase Confirm 
command, then the program status and erase status bits 
of the status register are set. The device is placed in read 
status register mode and awaits the next command. 

57 



AP-608 

Erase Confirm (DOh): If the previous command is 
verified to be the Erase Setup command, the CUI 
cnables the WSM, latches the address and data lines and 
responds only to the Read Status Register and Erase 
Suspend comm.ands. While the WSM is operating, 
toggling the OE# input causes the device to output 
Status Register information. 

Erase Suspend (BOh): This command is only valid 
when the WSM is executing an Erase command 
sequence. Once it has been acknowledged, the CUI 
instructs the WSM to suspend its current erase 
operation; the CUI then waits for the Read Status 
Register or Erase Resume commands, ignoring all other 
commands. When the WSM responds to the CUI that it 
has suspended erase operations (by setting the WSM 
status bit in the Status register), the Read Array 
command can also be recognized by the CUI. Even 
though the address and data latches are locked, the 
address lines can still drive the read path. The WSM will 
continue to run after the suspend. 

Erase Resume (DOh): This command causes the CUI to 
clear the WSM status bit in the Status Register and 
instructs the WSM to resume the last suspended erase 
operation. This is only done if an Erase Suspend 
command was previously issued; otherwise, this 
command has no affect. 

More information on the specific state of input pins and 
the actual bus definitions for these commands can be 
round in the datasheets. 

6.0 DESIGNING FOR THE FUTURE 

Due to the abundance of healthy competition in the flash 
market, vendors and OEMs always seek out alternative 
solutio.ns for designs. Most of the discussions seem 
centered around three areas: programming voltage, write 
protection, and blocking architecture. Intel is committed 
to the boot block architecture and has invested 
considerable time and resources into proliferating the 
family to meet market demands. 

6.1 The 5V-Only Question 

Many system manufacturers are concerned with the cost, 
space and analog design necessary to accommodate the 
12V requirement for program or erase of a, flash 
memory. 

58 

is is a justified concern, one that is answerable a number 
of ways. The question that must be answered, however, 
is not "What new changes are needed to support an on
board 12V supply?" but rather, "What is the best 
solution for the problem of reprogramming in-system?" 
Intel set out to answer the latter question-the result is 
the SmartVoltage (SVT) boot block products. 

Simply put, SmartVoltage flash memory supports either 
the 12V or the 5V paradigm. Manufacturers and OEMs 
can now decide which method is best for their particular 
environment and proceed with their choice without 
having to purchase separate components. An OEM 
might have some platforms that need 12V to support 
highest performance write systems. Low-end systems, 
however, are typically more power and cost-sensitive. 
SmartVoltage supports both implementations, allowing 
the OEM to make the trade-offs necessary for the 
intended market The desired program/erase speed is one 
of the considerations that will determine which choice is 
best for a particular application, since performing 
program/erase at 12V is faster than at 5V. 

With the move from 12V / 5V to 5V / 3V on the 
horizon, it is easy to see howSmartVoltage technology 
will enable all types of system capabilities with its dual 
supply capability. The same SmartVoltage device can be 
programmed in the manufacturing flow with 12V for 
improved throuput. When the product is in the field and 
12V is no longer available, the same SmartVoltage 
device adapts to the environment, enabling updates 
using a 5V VPp supply and 3.3V or 5V Vee supply. This 
is the type of flexibility and ease of design that 
SmartVoltage flash memory products will drive. 

I 



SVT Write Protection 

Vpp RP# WP# Write Protection 

VIL X X All Blocks Locked 

VPPLK VIL X All Blocks Locked 

VPPLK VHH X All Blocks Unlocked 

VPPLK VIH VIL Boot Block Locked 

VPPLK VIH VIH All Blocks Unlocked 

In addition to being backwards-compatible to the 
standard boot block products, SVT products include 
other features. In the event that a 12V trace is not 
supplied to the Vpp input, there is a 5V tolerant WP#. pin 
that allows the boot block to be locked/unlocked without 
the need for high voltage. Only one of these locking 
schemes needs to be utilized; the internal circuitry is 
smart enough to figure out which is being used and 
adjusts accordingly, shifting VIL and. VIH levels to ~atch 
the supply source. Unlike other architectures, there IS no 
need to apply 12V to some of the input pins to unlock 
blocks or access certain features. SmartVoltage offers 
uncompromised 5V-only technology. SmartVoltage is 
even capable of 3.3V read and will have 2.7V read 
capability in the future. 

7.0 SUMMARY 

PC users have always felt that the computer should be as 
simple to use as possible. To them, it was simply 
common sense that if they added something new to the 
system, it should simply work. In their opinion, if 
something changed in the system, the system should 
correct itself to adapt to this change, even if they (the 
user) caused this change. From their perspective, for all 
the money they spend on the computer, they shouldn't 
have to worry about how to fix it too. We have all 
shared some of these thoughts, but up until now, it has 
always seemed just beyond our reach. 

Plug and Play promises to bring some of these long 
sought -after requests to fruition. The prospect of 
alleviating installation frustrations for end-users is very 
compelling, especially for the end-user. This concept 

I 

AP-608 

even has appeal for manufacturers and designers alike, 
promising cost savings, consumer confidence in their 
products, and product differentiation. As it turns out, 
one of the ways of enabling this saving grace is using 
boot block flash to implement the system BIOS. 

In this application note, the features of boot block flas~, 
as it relates to the PnP BIOS, have been carefully lrod 
out. First the needs of Plug and Play were outlined: 

I. System BIOS storage 

2. Nonvolatile area for system configuration database 

3. Recovery code for updateability 

4. Backwards compatibility to established standards 

Then the pertinent issues for implementing this design 
were examined-from hardware lockability to 
generating progranuuing voltages; from software 
requirements to BIOS recovery code; fr?m 
implementation specific options to reprogranuumg 
algorithms. An example implementation was also 
provided, which included both hardware and software 
considerations. Even the benefits to the user as well as 
the manufacturer were explored. The solution to the 
BIOS challenges brought about by Plug and Play have 
been met. Boot block flash caters to all the requirements 
of a PnP BIOS without compromising design flexibility 
or creativity. 

Plug and Play is more than just a term used to mean 
making the PC more like a Mac (what foolishness-you 
cannot even add hardware to a Mac). It is a real 
specification that will change the way PCs are used .in 
the future. As the buzzword garners momentum, Its 
implementation will become more wides~rea? This 
expansion will bring forth more people delvmg mto the 
make-up of PnP and attempting to "tweak" it for 
differing purposes. BIOS must be able to support the 
current standards and conform to all the new techniques 
and implementations yet to come. Intel's boot block 
flash offers the best solution to this quiet revolution. 

59 



AP-608 

8.0 ADDITIONAL INFORMATION 

8.1 References 

For more information the concepts and ideas presented 
in this application note, the reader is directed to the 
following reference materials for further reading. 

Order Number Document 

292077 AP-341: "Designing an Updateable BIOS Using Flash Memory" 

292092 AP-357: "Power Supply Solutions for Flash Memory" 

292098 AP-363: "Extended Flash BIOS Concepts for Portable PCs" 

292148 AP-604: "Using Intel's Boot Block Flash Memory Parameter Blocks to 
Replace EEPROM" 

290406 28F001 BX-T/28F001 BX~B 1 M CMOS Flash Memory Datasheet 

290448 28F200BX-T/B, 28F002BX-T/B 2-Mbit Boot Block Flash Memory Family 
Datasheet 

290531 2-Mbit SmartVoltage Boot Block Flash Memory Familyt 

Contact Intel/Distribution Plug and Play BIOS Specification v1.0A by Compaq, Phoenix, & Intel, 
Sales Office May 1994 

Contact Intel/Distribution Extended System Configuration Data Specification v1.02A by Compaq, 
Sales Office Phoenix,.& Intel, May 1994 

Contact Intel/Distribution Plug and Play ISA Specification v1.0A by Microsoft and Intel, May 1994 
Sales Office 

Contact Intel/Distribution Plug and Play BIOS Extensions Design Guide v1.2 by Intel, May 1994 
Sales Office 

Dcsi&nin& with Flash Memory by Brian Dipert and Markus Levy, 1993 Annabooks Publishers 

PC Interrupts by Ralf Brown and Jim Kyle, 1991 Addison-Wesley 

"Transforming the PC: Plug and Play" by Tom Halfhill, September 1994 Byte Magazine 

Plug and Play SCSI Specification by Adaptec, DEC, et. al., March 1994 

60 

I 



I 

APPENDIX A 
PINOUTS, LEAD DESCRIPTIONS AND 

BiOS-SPECIFIC INTERRUPTS 

A16 1 0 40 A17 
A15 2 39 GNC 
A14 3 38 NC 
A13 4 37 NC 
A12 5 36 Al0 
All 6 35 D07 
Ag 7 34 D06 
AS 8 2BFOO2BX 33 D05 

WE# 9 40-LEAD TSOP 32 D04 
RP# 10 10mmx20mm 31 Vee 
Vpp 11 30 Vee 
DU 12 (WP# lor SVT) TOP VIEW 29 NC 
NC 13 28 D03 
A7 14 27 D02 
A6 15 26 DOl 
A5 16 25 DOo 
A4 17 24 OE# 
A3 18 23 GNC 
A2 19 22 CE# 
Al 20 21 Ao 

Figure 8. 40-Lead TSOP 28F002BX Flash Device Pinout 

Vpp 10 44 RP# 
(WP# lor SVT) DU 2 43 WE# 

NC 3 42 A, 
A7 4 41 A. 
A6 5 40 A,a 
As 6 28F200BX 39 A" 
A, 7 44-Lead PSO P 38 A'2 
A3 8 (0.525" x 1.110") 37 A'3 
A2 9 13.33 mm x 27.94 mm 36 A" 
A, 10 35 A15 
Aa 11 TOP VIEW 34 A'6 

CE# 12 33 BYTE# 
GND 13 32 GND 
OE# 14 31 D0 15 /A., 

DOo 15 30 D0 7 
DO, 16 29 DO" 
DO, 17 28 D06 
DO. 18 27 DO'3 
D0 2 19 26 DOs 
DO,o 20 DO'2 
D0 3 21 DO, 
DO" 22 Vee 

Figure 9. 44-Lead PSOP 28F002BX Flash Device Pinout 

AP-608 

216C08 

216C09 

61 



AP-608 

Table 3. Definition of 28F002B Pins 

Symbol Name and Function 

Ary-A17 ADDRESS INPUT PINS: Address inputs for memory addresses. Addresses are internally 
latched during a write cycle (on the rising edge of the WE# pulse). 

As ADDRESS INPUT 9: When As is at 12V, the signature mode is accessed. In this mode, Ao 
decodes between the manufacturer and device IDs. 

DOry-D07 DATA INPUT/OUTPUT PINS: Inputs array data on the second CE# and WE# cycle during 
a program command. Inputs commands to the Command User Interface when CE# and 
WE# are active. Data is internally latched during write and program cycles. Outputs array, 
intelligent identifier, and status register data. The data pins float to tri-state when the chip is 
deselected or outputs are disabled. 

CE# CHIP ENABLE: Activates the device's control logic, input buffers, decoders, and sense 
amplifiers. When this active low signal is at logic high, it disables the memory device and 
reduces power consumption to standby levels. When CE# is logic low, the memory device 
is enabled. 

RP# RESET/DEEP POWER-DOWN: When this signal is at logic high, VIH (6.4V max.), it locks 
the boot block from program and erase. When RP# is 11.4V min., the boot block is 
unlocked and can be programmed or erased. When RP# is at logic low, VIL, the boot block 
is locked, deep power-down mode is engaged and the WSM prevents all blocks from being 
programmed or erased. When RP# transitions from low to high, the device entered the 
read-array mode. 

OE# OUTPUT ENABLE: Gates the device's outputs through the data buffers during a read 
cycle. This signal is active low. 

WEI WRITE ENABLE: Controls writes to the Command Register and array blocks. This signal 
is active low. Address and data are latched on the rising edge of WEI pulse. 

Vpp PROGRAM/ERASE POWER SUPPLY: 12V ± 10%, 12V ± 5% 

Vce DEVICE POWER SUPPLY: 5V ± 10%, 5V ± 5% 

GND GROUND: Ground for all internal circuitry. 

NC NO CONNECT: Pin may be driven or left floating. 

DU DO NOT USE PIN: This pin is replaced by the WP# pin on the SmartVoltage products. To 
insure upgrade to SVT, connect this pin to Vee, GND, or a control pin as necessary. 

62 

I 



AP-608 

Table 4. Full Listing of BIOS-Specific Interrupts 

Interrupt Number Function 

05 Print Screen 

10 Function OOh - 13h: Standard Video Functions 

Function 14h - 15h: LCD Functions 

Function 1 Ah - 1 Ch: VGA Functions 

Function 30h: 3270PC Function 

Function 40h - 4Fh: Hercules VGA Functions 

Function 6Ah - 70h: Various VGA Functions 

Function 71h -73h: Tandy 2000 Functions 

Function 80h - 82h: DESQview v2.0x Functions 

Function BFh: .Compaq Notebook Functions 

Function CCh -CDh: UltraVision BIOS Functions 

Function EFh: Extended Hercules Functions 

Function FOh - F7h: EGA RIL Functions 

Function FAh: EGA RIL Function 

Function FFh: DJ G032.EXE Extender Function 

11 Get Equipment List 

12 Get Memory Size 

15 Function OOh - 03h: Cassette (PC & PCjr) Functions 

Function 04h - 05h: PS & PS2 System ABIOS Table 

Function OFh: PS/2 Format ESDI Drive 

Function 20h - 21 h: OIS Functions 

Function 40h - 44h: System Functions 

Function 4Fh: PS/2 Keyboard Intercept 

Function 53h: AMI BIOS APM Functions 

Function 80h - 89h: OIS & System Functions 

Function 90h - 91h: OIS Functions 

Function COh: Get system Configuration 

Function C1 h - C2h: PS/2 BIOS Functions 

Function C3h - C5h: OIS & System Functions 

Function C6h - CFh: PS/2 Model 95 Functions 

Function D8h: AMI BIOS EISA Support 

I 
63 



AP-608 

Table 4. Full Listing of BIOS-Specific Interrupts (Continued) 

Interrupt Number Function 

16 Function OOh - OSh: Keyboard Functions 

Function 10h - 12h: Extended Keyboard Functions 

Function 12h: AT & PS/2 Extended keyboard Functions 

Function FOh - F4h: AMIBIOS CPU & Cache Controller Functions 

17 Function OOh - 02h: Printer Functions 

18 Start Cassette Basic (Genuine IBM Machines Only) 

19 System Bootstrap Loader 

1A Function OOh - OBh: Real-Time Clock Functions 

Function 80h, 83h-90h: AMIBIOS Socket Functions 

Function 9Sh-A1h, AEh: AMI BIOS Socket Function 

Function B1 h: AMI BIOS PCI Functions 

1B Control"Break Handler 

1C System Timer Tick 

64 

I 



Symmetric Block 
Format 

AP-603 

APPLICATION 
NOTE 

Exchanging Data with 
FFS Systems 

PETER J. TORELLI 
MCD SOFfW ARE MARKETING 
ENGINEER 

January 1995 

I 

Order Number: 292155-001 

65 





1.0 INTRODUCTION 

The flexibility of the Microsoft Flash File System (FFS) 
data structures makes it possible to arrange data in a 
symmetric layout on an Intel Flash PCMCIA card and 
still maintain FFS compatibility. Embedded applications 
that would like to have the exchangeability of FFS 
without the overhead of FFS can use this concept to 
their advantage. The FFS Symmetric Block Format 
(SBF) is a method of formatting a card to maintain FFS 
compatibility without using FFS in the embedded 
system. 

Symmetric Block Formatting is not a Flash File System, 
but rather a method to store data on a flash PCMCIA 
card by placing it within the flash space an FFS would 
perceive as file space. This is accomplished by 
formatting a card with FFS data structures present for a 
predetermined number of files. By defining where FFS 
looks for the files, we can alter the data contained within 
that space without upsetting the FFS format. The format 
operates on one assumption: the size and number of data 
objects must be known before formatting. This is where 
a Symmetric Block Format differs from a complete FFS: 
after the card is formatted, there can be no deviation 
from the size and number of files that were created 
unless the card is erased and reformatted. 

Symmetric Block Formatting fulfills the requirements of 
many embedded applications via a way to store data 
from an embedded system to a flash card, insert it into a 
PC running FFS, and be able to retrieve the data through 
FFS. The only variation, or implementation specific 
detail is the format, which is derived from the nature of 
the data. 

Before attempting to explain how to create a custom 
format, the following sections will introduce a basic 
Symmetric Block Format and explain concepts behind 
creating a custom Symmetric Block Format. 

I 

AP-603 

2.0 THE SYMMETRIC FORMAT 

Each time FFS writes a file to a flash PCMCIA card, it 
creates several data structures within the card's flash 
array that contain the file data. Where the structures end 
up in the card is anyone's guess. It varies on the 
previous usage of the card and between one FFS 
implementation to another, but it's usually scattered 
across the flash card in varying sized extents (see 
Figure 1). Only another FFS compatible driver can 
locate and reassemble the file correctly. 

FFS data structures permit data to be placed anywhere 
on the card. That is the first concept the Symmetric 
Block Format uses to its advantage. The format places 
all of the file data extents in contiguous locations within 
the flash array, and all of the structure data into a fixed 
location in each block. 

The first example of a format divides each block in the 
flash card into a fixed number of same sized pseudo
files; the total number is an even multiple of the block 
size. In the sample code at the end of this document, this 
is referred to as "Symmetric Formatting" (see Figure 2). 
For each block, the uppermost pseudo-file, known as a 
structure file, contains the structure data that enables 
FFS to read the card. . 

A card formatted to the above conditions is just a card 
with a number of files containing FFH. However, notice 
that the lile data is located contiguously within each 
block. A simple embedded program could write data to a 
flash address within the card without any difficulty. It 
could keep writing, as long as it avoided every fourth 
file by skipping the number the address range containing 
the structure lile data. In fact, it could keep writing until 
it ran out of space. The card would then contain the 
embedded system's data written to the space that FFS 
believes to be a file. If this card was removed from the 
embedded system and placed in a PC with Microsoft's 
FFS loaded, FFS would be able to manage the files. If a 
file was opened with a file editor, it would contain the 
embedded system's data. For systems that store x 
number of same-size records, this is all they would need 
to transfer data from an embedded system to a desktop. 

As we will see, this concept can be expanded to place 
the file space anywhere on the card within any number 
of files. 

67 



Ap·603 

File Entry Structure 

FILE.015 FILE.OO? FILE.OO6 

FILE.OO3 FILE.014 

File Entry Structure File Entry Structure 

File Entry Structure FILE.OOB 

FILE.OO2 FILE.013 FILE.OO9 

FILE.OOl File Entry Structure 

File Entry Structure File Entry Structure 

FILE.Ol0 File Entry Structure FILE.012 

FILE.OO5 FILE.Oll 

File Entry Structure FILE.OO4 File Entry Structure 

File Entry Structure File Entry Structure File Entry Structure File Entry Structure 

2155_o1 

Figure 1. Normal Appearance of FFS Media 

FILE.OOl FILE.OO4 FILE.OO7 FILE.Ol0 FILE.013 

FILE.OO2 FILE.OO5 FILE.OOB FILE.Oll FILE.014 

FILE.OO3 FILE.OO6 FILE.OO9 FILE.012 FILE.015 

Boot Record File Entry Structures File Entry Structures File Entry Structures File Entry Structures 
DEIFEIFI Structures Allocation Structures! Allocation Structures! Allocation Structures! Allocation Structures! 
Allocation Members Members Members Members Members 

Figure 2. Symmetric FFS Format 

68 

I 



3.0 FFS FUNDAMENTALS 

FFS stores a file as a linked-list with each link a 
structure containing a pointer to a portion of that file's 
data, called an extent. By traversing the list of structures, 
FFS reassembles the file into the proper order. FFS 
stores file names and subdirectories the same way: File 
entries have a structure that points to the first extent of 
the file's data, and directory entries have a structure that 
points to the first file entry structure inside it. These 
linked-lists and data structures allow FFS to manage 
flash media effecti vel y. 

The Symmetric Block Format has no knowledge of what 
these structures mean, they merely exist on the card to 
manipulate FFS into treating specific regions of the card 
as files. The structures are explained to facilitate the 
creation of a custom format. 

3.1 FFS Data Structures 

Microsoft defines (in their FFS Media Control Structures 
Specification, available from Microsoft) four different 
data structures for storing and arranging data in the MS-

. FFS format: File Entry, Directory Entry, File Info, and 
Boot Record. The Boot Record structure contains data 
describing the media's geometry, as well as FFS version 
information. Since only one copy of the Boot Record 
exists, it will be excluded from all future references to 
the term "data structures" in this document for clarity. 

struct FileOrDirectoryEntry { 

word Status; 
dword SiblingPtr; 
dword PrimaryPtr; 
dword SecondaryPtr; 
byte Attributes; 
word Time; 
word Date; 
word VarStructLen; 
byte NameLen; 
byte Name [8]; 
byte Ext[3]; 

} ; 

AP-603 

The file-directory hierarchy exists in the PEDE list (file 
Entry llirectory Entry). Typing "DIR" (or "Is" in 
UNIX) lists that directory's entries. III an FFS formatted 
flash card, the information displayed corresponds to the 
file and directory entries in that directory's PEDE chain 
(see Figure 4). All files or subdirectory entries at the 
same level are part of one PEDE chain, and are referred 
to as siblings. If a subdirectory exists in that PEDE 
chain, it points to another PEDE chain. The tree 
continues if more subdirectories exist in that PEDE 
chain, and so on. 

Actual File Entry file data resembles the PEDE list, 
except each entry in the file's list is a File Info Structure. 
This list of File Info Structures sequentially points to the 
regions of the card that contain the file's data. FFS 
performs a read file request by locating the proper file 
entry, traversing its File Info chain, and returning the 
requested data. 

The File Entry and Directory Entry structures contain 
three pointers: Primary, Sibling and Secondary (see 
Figure 3). The Sibling Pointer always points to the next 
entry in the same level as that structure. The Primary 
Pointer of a Directory Entry points to the first entry in 
that directory's PEDE chain. The Primary Pointer of a 
File Entry points to that file's File Info chain. The 
Secondary Pointers of both structures point to files or 
directories that supersede the existing structures. 

struct FilelnfoStructure { 

word Status; 
dword SiblingPtr; 
dword ExtentPtr; 
dword SecondaryPtr; 
byte Attributes; 
word Time; 
word Date; 
word VarStructLen; 
word UncompressedExtentLen 
word CompressedExtentLen 

} ; 

Figure 3. File Entry, Directory Entry and File Info Data Structures 

I 
69 



AP-603 

FNULL 

70 

I·······~~~~·~·:~:··~~:;·~··········l 

P"+~l I 
I I i"" ...................... O .... I.R .... E .... C ... r .... 1 ...................... 1 

I i p"r~ FEDE ChID' 

I Sibil" 

f I Sibling 

I 

I , Sibling 

l_" __ :_N~~~ ____ " 
Figure 4. FEDE Chain Hierarchy 

j" ................................................................ ! 

I F~g~~~~in I 
pri~ary I 

i I 
i j 

I Sibilog I 

I~I 
t .............................................................. .1 

I 



The chain of File Info Structures point to regions of the 
card that contain file data, called extents. The maximum 
size of an extent is 65,535 bytes. Like File Entries and 
Directory Entries, File Info Structures contain Sibling 
and Secondary Pointers, but the Primary Pointer has 
been replaced by an Extent Pointer. The Extent Pointer 
points to the first extent of that file's data. The Sibling 
Pointer addresses the next File Info Structure in the 
chain, and the Secondary Pointer indicates where to find 
updated or superseded extent data. 

3.2 Allocation of Flash Media 
Space for Structures and File 
Data 

The pointers in the previously explained structures don't 
explicitly reference the physical address of a structure or 
extent within a block; instead, they point to Block 
Allocation Members, which in turn point to the physical 
location of that structure. This brings us to the second 
detail ofFFS: Allocation Members. 

struct BlockAllocMember { 
byte Status; 
byte Offset [3] ; 
word Len; 

} ; 

Ap·603 

To maintain organization of the above data structures 
and file extents, FFS uses Wock Allocation Members 
(BAM). Every File Entry, File Info Structure, Boot 
Record, Directory Entry or File Extent MUST have a 
BAM associated with it. These six-byte fields begin at 
the top of each erase block and grow downwards as 
more structures and extents are written to that block. 
They contain the length of the data region pointed to, 
the beginning offset of that data relative to address zero 
of that block, and a status field indicating whether or not 
the data being pointed to is valid or deleted. The status 
field allows FFS to determine which regions of the card 
are useful, and which can be discarded during a clean-up 
operation (called Reclaim). 

The Rlock Allocation Structure (BAS) in Figure 5 exists 
at the topmost address of every erase block. It contains 
the block's logical number, whether or not it is a spare, 
the block's erase count, etc. The erase count field helps 
the FFS wear-leveling algorithm decide the priority of 
that blocks clean-up status. This feature benefits all flash 
media by insuring that the difference between the 
number of times adjoining blocks have been erased 
never exceeds a certain threshold, which has the 
potential to corrupt data in adjacent blocks. 

struct BlockAllocStructure { 

} ; 

dword 
dword 
word 
word 
word 

BootRecordPtr; 
EraseCount; 
BlockSeq; 
BlockSeqChecksum; 
Status; 

Figure 5. Block Allocation Structures 

I 
71 



AP-603 

4.0 SYMMETRIC BLOCK 
FORMATTING EXPLAINED 

All FFS fonnatted cards must contain the following 
infonnation: 

• One Boot Record + its BAM 

• One Root Directory Structure + its BAM 

• A BAS in every block with a unique logical block 
number 

These three requirements are necessary for all fonnats. 

£hysical Block One 
OOOOOH to 

When FFS writes a file to a flash card, it creates the 
following structures: 

• File Entry (appended to FEDE Chain) + its BAM 

• File Info + its BAM 

~ Extent + its BAM 

• + Additional File InfolExtent Pairs, depending on the 
size of the File Entry 

Modeling a custom fonnat is just a matter of arranging 
the above structures to inhabit a reserved location in 
each block. Since 64 KB - I is the largest size of an FFS 
extent, files larger than that need mUltiple File Info 
structures. 

To help in the visualization of what needs to be written 
to the card, observe Figure 6. 

All other Physical Blocks (e.g,. Block #2) 
20000H to 

IBFFFH - Pseudo file data space 3BFFF - Pseudo file data space 
(extents) for next 7 files. (extents) for first 7 16-Kbyte 

files. 

;Start Structure File space here ... 
lCOOOH - Boot Record 
lCOlAH - ROOT Directory Entry 
lC03BH - Volume Label 
lC05CH - File Entry {FILE. 001) 
lC07DH 
lC096H 

lClBBH 
lClD9H 

- File Info (FILE.OOl)· 
- File Entry (FILE.002) 

- File Entry (FILE.007) 
- File Info (FILE.007) 

lC1F2H to lFF61H - Not Used 

IFF6BH - BAM (Extent for FILE.007) 

IFFCEH - BAM (FE FILE.002) 
IFFD4H - BAM (Extent for FILE.OOl) 
lFFDAH - BAM (FI FILE. 001) 
IFFEOH - BAM (FE FILE. 001) 
IFFE6H - BAM (Volume Label) 
IFFECH - BAM (ROOT Directory) 
IFFF2H - BAM (Boot Record) 

20000H - BAS (Logical Block 0) 

NOTE: 

;Start Structure File space here ... 
3COOOH - File Entry (FILE.OOB) 
3C021H 
3C03AH 

3C15CH 
3C17DH 

- File Info (FILE.OOB) 
- File Entry (FILE.009) 

- File Entry (FILE.014) 
- File Info (FILE.014) 

3C196H to 3FF73H - Not Used 

3FF7AH - BAM (Extent for FILE.014) 

3FFEOH - BAM (FE FILE.009) 
3FFE6H - BAM (Extent for FILE.OOB) 
3FFECH - BAM (FI FILE.OOB) 
3FFF2H - BAM (FE FILE.OOB) 

40000H BAS (Logical Block 1 ... ) 

This layout assumes a flash card with 128-Kbyte erases blocks. The format divides each block by eight, resulting in seven 
16-Kbyte pseudo-files and a 16-Kbyte space for one data structure. 

Figure 6. Symmetric Format Example 

72 

I 



Thus, a 2-Mbyte card would appear to FFS as a 2-MB 
drive with 112 16-Kbyte files, and to the embedded 
system as a storage space capable of holding 128 files, 
but every eighth file should be skipped. 

The code in Appendix A provides three procedures for 
formatting the card: InitialFormat, DoSymmetric and 
DoEntireCard. InitialFormat writes a Boot Record, 
ROOT Directory Entry and Volume Label to the card's 
block zero. DoSymmetric performs the symmetric 
format described earlier. DoEntireCard is another 
variation on the Symmetric Block Format. This 
procedure formats the entire card as one large file. The 
reference code is described in the last section of this 
application note. 

5.0 EMBEDDED SYSTEM 
REQUIREMENTS 

The difference between a Symmetric Block Format in an 
embedded system and a full FFS implementation lies in 
the amount of FFS capability built into the embedded 
system. Deciding how much functionality to build into 
the embedded system can be associated with a "Kbyte 
per level of functionality" cost. Adding more FFS-like 
features requires larger embedded code. The following 
sections describe how to implement four fundamental 
FFS concepts based on MS-FFS data structures. 

5.1 Where to Put the Formatter 

Regardless of the amount of functionality desired, the 
key to the SBF lies in the format of the card. Formatting 
requires writing all of the data and allocation structures 
to the card before it's used. A special formatter located 
either on a PC or on the embedded system itself writes 
the structure file data to the card. 

Using the formatter outside the embedded system and on 
the PC shrinks the size of the embedded code, but 
requires the extra handling of an external program. 

Designing the formatter into the embedded system 
increases the size of the embedded code, but insures that 
formatting and downloading can be done at the same 
location. 

Regardless of where the formatter is located, it must 
perform the same function: writing the necessary 
structures to convince FFS that files exist on the card. If 
all of the format data is known, a simple hex dump to 
the card at the proper address in each block can be used. 
This way, the computer doesn't have to calculate where 

I 

AP-603 

to place all of the structures, it merely copies the 
numbers from internal storage to the card. However, 
having the format data in hardware makes it non
updateable. The other way to format requires a utility 
that prompts the user for the specific number of files and 
their size. This utility then calculates how to pack the 
structures into a small enough space in the block and 
displays to the user where the forbidden structure file 
locations exist. 

5.2 Writing to the Formatted Card 

Since all of the pseudo-file space created by the 
formatter exists in a contiguous region of flash, the 
embedded system needs to know how to avoid this 
forbidden region. This can be done two ways, depending 
on the read/write mechanism of the embedded system. 

The first method employs a protection algorithm that's 
inserted into the embedded system's normal write 
algorithm. Typically, a generic write algorithm wonld 
look something like Figure 7. When the embedded 
system decides to write a byte, it obtains the current 
address, calls the flash programming algorithm, and then 
increments the address. The protection algorithm, shown 

. in Figure 8 avoids the region of space at the top of the 
block reserved for the structure file. Since the size of the 
structure file may vary, its location is determined by 
subtracting the size of the file from the block size. 
Reference code for these algorithms are located in 
AppendixA. 

Figure 7. Conventional Byte-Write Process 

73 



AP-603 

74 

Write a Byte with 
Protection Code 

Yes 

Figure 8. Byte-Write Protection Algorithm 

I 



; Values defined before compile time. 
define BLOCK_SIZE block size 
define BLOCK_BOUND = 2's complement of block size 
define IN_BLOCK 
define CHECK 

Assuming ebx 

protection_check: 

mov eax, ebx 
and eax, IN_BLOCK 
sub eax, CHECK 

= block size - 1 
block size - structure file size 

= (32-bit) address in the card about to be written to 

Grab the current address 
; Truncate the address to a single block 

Subtract the distance to the structure file 

If accumulator goes negative, we're safe 

and ebx, BLOCK_BOUND; Otherwise, mask the address to a block boundary 
add ebx, BLOCK_SIZE and increment to the next block 

Figure 9. Protection Code for Byte-by-Byte Writing 

AP-603 

Another way to write to the fonnatted card involves 
using equally sized records. For example, a data logging 
device that needs to write a 4-KB record every so often 
can speed up the write process by eliminating the need 
to use protection code. Assuming the card has been 
fonnatted to 4-KB file sizes, the embedded system need 

only be aware of what file number is being written. A 
128-Kbyte erase block partitioned into 4-KB pseudo
files would have 32 file spaces, with every 32nd space 
being a structure file. By avoiding the 32nd space and 
writing 4 KB at a time, the embedded system would 
successfully write to the card. 

I 
75 



AP-603 

Here is the code for file"oriented data writing on a 
record-by-record basis. Assuming 4-Kbyte records: 

define FILES_P~LOCK 

define FILE_SIZE 
cx 

find_flas~start_address: 

mov ax, FILE_SIZE 
mul ex 
callwrite_4kbytes_to~eard 

increment_to_next_file: 
inc ex 
mov ax, ex 
mov bx, FILES_P~BLotK' 
div bx 

or dx, dx 
jnz done 
inc cx 

done: 

'= C Number of (,' PseudoFiles + Structure 'Files ) I 
block 

= Next available filespace's number 

Put the pseudo-file size in AX 
Multiply, AX by the cl,lrreI,lt filespace's number 
Call the: routine to write 4K to the found address 

'; Increment 'to next 'va'lid filespace 
Move this number into AX 
prepare' tSl'do a mOdu'lus op~ra~ion 
Divide n~er of files 'by the current file nUmber 
(Remainder in DX) 
Was the remainder Zero? 
Was the remainder Zero? 
Then skip this filespaee 

Figure 9., Record-by-Record Flle-Qriented Data Writing 

In most instances, this is the maximum functionality the 
embedded system would need: insert a freshly foanatted 
c~ into the embedded machine,Jet it dump its ,data, 
and now the card can be inserted and read I?y any PC 
running FFS. 

6.0 READING FROM THE 
FORMATTED CARD 

6.1 Embedded System to an FFS
Based PC 

The entire process of writing data to the foanatted card 
enables any FFS-based PC the ability to read the data off 
the card. This case has already been defined. 

6.2 Embedded System to Same 
Type of Embedded System 

Passing data between two of the same embedded 
systems is quite simple, assuming they both expect the 

76 

same format. The only way an embedded system can 
read data from ,the card is if it knows where the data is. 
A file pointer that: references the start of a pseudo file 
thattheeinbedded, system wishes to reference can be 
oburlned from thefopDat infoanation that the system has 
alre~dy heen progrilnmIed to, understand. If the data is a 
binary image (Le" a large graphic picture taking up the 
entire card), the same protection algorithm must be used 
for reading as well as writing in order to recreate the file. 

6.3 'FFS-Based PC to an Embedded 
System 

Since the write algorithm operates on the principle of 
peananent structure file space, a full FFS &mlDQ1 ~ to 
a card. If the card is inserted into a PC running FFS, and 
a file is written to it, the format will be lost. Therefore, 
there is no direct way to write data from a PC to the 
formatted card using FFS. If a designer wishes to place 
data into the Symmetric Block Format, it must be done 
with a separate PCMCIA hex dump/editor utility. 

I 



7.0 REFERENCE CODE FOR DOS
BASED PCs 

When compiled, the reference code in this section will 
fonnat the card to either of the following options: A 
Symmetric Format with a user-definable number of files, 
and an Entire Card Format which uses the entire space 
of the card as one large file. The fonnatter uses the DOS 
Generic IOCTL interface supplied by a PCMCIA 
Compliant Memory Card Device Driver. Intel's 
iCardrvl, iCard2.9 and iCardrv3 all provide the Generic 
IOCTL services used here, as well as Card Drivers by 
Phoenix, AMI, SystemSoft and Award. These drivers 
must be loaded in CONFIG.SYS for this program to 
work properly. If iCardrvl or 2.9 is being used, this 
program will support Intel Series I, 2 and 2+ Flash 
memory cards. Otherwise, the proper technology driver 
must be loaded. 

Although the low-level portion of this program is based 
on a DOS interface, these routines may be removed and 
replaced with other platform-specific low-level 
functions. The formatting concepts remain the same for 
all FFS based systems. 

The first thing the program does upon invocation is to 
obtain the card's geometry: size, number of blocks, size 
of block, etc. This information will be used later to 
calculate how many structures will be needed to fonnat 
the card. Next, the program prompts the user for a 
fonnat selection. At this point, the user may select either 
a symmetric format or an entire card format. Selecting a 
symmetric fonnat further queries the user as to the 
number of files per block. The program determines this 
range dynamically by computing the maximum and 
minimum amount of files that may be written to a block. 
Note, that this calculation is made to keep the structure 
file data within one file space. Depending on the 
implementation, the structure file space can be any size: 
it's up to the implementation to tailor the embedded 
system to the fonnat. The second option: Entire Card 
will format the entire card as one large file. Before the 
fonnat is installed, the program will ask whether or not 
the card needs to be erased. 

I 

AP-603 

The three reference code procedures of interest are: 
InitiaiFonnatO, DoSymmetricO and DoEntireCardO. 
InitiaiFormatO places on the card the basic elements 
provided by an FFS Format: a Boot Record, ROOT 
Directory entry and a Volume Label. In reality, the 
Volume Label is optional and may be excluded from the 
format, but it's included as an additional reference. Two 
important variables are initialized by this procedure: 
BottomPtr and BAMptr. BottomPtr references the base 
address of the structure file within that block. If the 
block size is 128 KB and the structure file is 8 KB, the 
BottomPtr would be 128 KB-8 KB or 1 EOOOH. Each 
time a structure is added to the file, the BottomPtr 
increases by the size of the structure. A 25-byte File 
Info structure increases the BottomPtr by 25 bytes. Each 
time the formatter enters a new block, it resets the 
BottomPtr. The BAMptr always references the currently 
available BAM. Each time a new structure is written to 
the structure file, its BAM should be chosen using the 
BAMptr and then written with the function 
WriteBAMO. WriteBAMO calculates the correct address 
within the card to write the BAM. All the user needs to 
specify is the 32-bit BAM value and the structure 
containing the BAM's data. Each time a BAM is used, 
BAMptr is incremented. If the next structure needs to be 
placed in thc next block, BAMptr is incremented by 
IOOOOH. 

DoSymmetricO takes the BAMptr and BottomPtr as well 
as the user-specified PseudoFileCount values and 
formats each block with x number of files. 
DoSymmetricO iterates through each block in the card 
(except the spare) and writes a File Entry and File Info 
structure for each file. The result of this fonnat is a 

. PEDE chain of File Entries. 

DoEntireCardO writes a single File Entry to block zero 
and multiple 32-KB file extents to each block, thus 
encapsulating the entire flash card as one file. The 
procedure does not use the PseudoFile values; instead, it 
uses the InfoCountvalue calculated by the program 
before calling this function. InfoCount indicates the 
number of File Info Structures required in each block 
based on the size of the block. 

n 



AP-603 

APPENDIX A 
FFS FILE IMAGE FORMATTER 

/***************************************************************************** 

* 
* FFS File Image Formatter 
* 
* Copyright (c) Intel Corporation, 1994 
* 
* Peter J Torelli/James R. Massoni 
* 
* 
* 
* 
* 
* 
* 

Revision History: 

1.00 
1.01 
1. 02 

First release: symmetric formatting only (PJT,6-17~94) 
Added entire card capability. 
Modified program structure (JRM, 8-26-94) 

* Future modifications: 
* 
* 1. Better error handling. 
* 2. Check for Card Driver 
* 3. Query IOCTLs first 
* 
* Environment: 
* 
* 
* 
* 
* 

Borland C/C++ 3.1 IDE, Example: BCC -mh SBM.C 
Huge Memory Model 
Force pointers as "far" for DWORD compatibility 

***********************************************~.***** ************************* 

PAGE 
**************************************************'*** **********~******.*****,**/ 

#include <conio.h> 
#include <ctype.h> 
#include <dos.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 

#include "sbm.h" 
#include "sbm...msg.h" 

/* 
** Global Variables 
*/ 

78 

I 



intel® AP.603 

DWORD InfoCount=OUL; 
DWORD ResidualSpace=OUL; 

/* Number of FileInfos for Entire Format */ 

DWORD BottomPtr=OUL; /* 
DWORD BAMptr=OUL; /* 

/* Non 32K extent for Entire Card Format */ 
Bottom of FFS Structure File */ 
Incremental BAM pointer */ 

/* Structure File Size */ 
/* PseudoFile Size */ 

DWORD StructureFileSize=OUL; 
DWORD PseudoFileSize=OUL; 
WORD PseudoFileCnt=O; /* Number of Pseudo Files */ 

/* Current Drive number */ 
/* Current Card's Geometry */ 

BYTE DriveNumber=O; 
CardInfo Card; 

union IOCTLDataPkt DataPkt; 
union IOCTLDataPkt *pDataPkt=&DataPkt; 

/* 
** Function Prototypes 
*/ 

WORD GenericIOCTL ( BYTE, union IOCTLDataPkt far * BYTE); 
void CommonWrite ( DWORD, BYTE *, WORD ); 
void CommonRead ( DWORD, BYTE *, WORD ); 
WORD Log2Phy ( WORD lblock ); 
void WriteBAM ( DWORD, BlockAllocMember ); 
void WriteBAS ( WORD, WORD, WORD ); 
void DoSymmetric ( void ); 
void DoEntireCard ( void ); 
void InitialFormat ( void ); 

/***************************************************************************** 

PAGE 
****************************************************************'***********.*** 

* 
* Title: Main 
* 
* Description: Entry point for Symmetric Block Manager. This utility 
* is used to format a flash PCMCIAcard symmetrically so 
* data may be written to the card at pre-known addresses. 
* 
****************************************************** *********~~************/ 

void main ( int argc, char *argv[] 
{ 

I 

/* Calculation Values. */ 
DWORD CompareSize=OUL; 
WORD FileOverhead=O; 
WORD BaseOverhead=O; 
WORD TotalOverhead=O; 
WORD 
WORD 

MinFiles=O; 
MaxFiles=O; 

/* User Input. */ 
BYTE format_type=O; 
BYTE keypress=O; 

/* Initial Format fields. */ 
WORD flags=O; 

79 



AP-603 

80 

WORD 

fprintf( stdout, LOGON_MSG, REVISION ); 

if ( argc < 2 ) 
{ 

fprintf( stderr, SPECIFY_MSG ); 
fprintf( stderr, USAGE_MSG ); 
exit ( 1 ); 

else if ( argc > 2 ) 
{ 

fprintf( stderr, TOO_MANY_MSG ); 
fprintf( stderr, USAGE_MSG ); 
exit( 1 ); 

if « DriveNumber=toupper(argv[l] [O])-'A'+l ) < 1 ) II 
( DriveNumber > 26 ) ) 

fprintf( stderr, INVL DRV_LET_MSG ); 
fprintf( stderr, USAGE_MSG ); 
exit ( 1 ); 

/* Get Card Size Metrics. */ 
fprintf( stdout, OBTAINING_MSG ); 
pDataPkt->MediaInfo.Len=sizeof( pDataPkt->MediaInfo ); 
GenericIOCTL( DriveNumber, pDataPkt, MEDIA_INFO ); 

Card. BlockSize=pDataPkt->MediaInfo. BlockSize; 
Card. Size=pDataPkt->MediaInfo. PartSize; 
Card.NumBlocks=(DWORD) Card. Size / (DWORD) Card.BlockSize; 

fprintf( stdout, CHOOSE_MSG ); 
format_type=toupper(getche(»; 
fprintf( stdout, DBL_CRLF_MSG ); 

switch ( format_type) 
case SYMMETRIC: { 

/* Calculate min/max number of symmetric files. */ 
MinFiles (DWORD) Card.BlockSize / Ox8000; 
MaxFiles = 0; 

/* Determine the base overhead. */ 
BaseOverhead = sizeof( BlockAllocStruct ) + 

sizeof( BootRecord ) + 
sizeof( BlockAllocMember ) + 
sizeof( DirectoryEntry ) + 
sizeof( BlockAllocMember ) + 
sizeof( FileEntry ) + 
sizeof( BlockAllocMember ); 

/* Determine the amount of overhead per file. */ 
FileOverhead = sizeof( FileEntry ) + 

sizeof( BlockAllocMember ) + 

I 



I 

sizeof( FileInfo ) + 
sizeof( BlockAllocMember ) + 
sizeof( BlockAllocMember ); 

1* Do a maximin calculation to determine the number 
of files per block based on block size. *1 

do { 
MaxFiles++; 
TotalOverhead 
BaseOVerhead; 
CompareSize = 

( MaxFiles * FileOverhead ) + 

DWORD) ((DWORD)Card.BlockSize) I ((DWORD)MaxFiles); 
while ( CompareSize > TotalOverhead ); 

MaxFiles--; 

1* Offer the user a range to choose from. *1 
fprintf( stdout, NUM_PFILES_MSG, MinFiles, MaxFiles ); 
scanf ( "%d", &PseudoFileCnt ); 
fflush( stdin ); 
fprintf( stdout, CRLF_MSG ); 

1* Calculate the Pseudo File Size. *1 
PseudoFileSize=(DWORD) Card.BlockSize I PseudoFileCnt; 
StructureFileSize=PseudoFileSize; 
BottomPtr=Card.BlockSize-StructureFileSize; 
break; 

case ENTIRE: { 

1* Calculate the Base Overhead *1 
BaseOverhead =sizeof( BlockAllocStruct ) + 

sizeof( BootRecord ) + sizeof( BlockAllocMember ) + 
sizeof( DirectoryEntry ) + 
sizeof( BlockAllocMember ) + 
sizeof( FileEntry ) + sizeof( BlockAllocMember ) + 
sizeof( FileEntry ) + sizeof( BlockAllocMember ); 

1* Determine how many 32k extents fill a block.*1 
InfoCount = (DWORD) Card.BlockSize I OxBOOO; 

1* Determine how many File lnfos would be needed to store those 
** extents. Each Fl has an FI struct, FI BAM and 
** Extent BAM. * I 
FileOVerhead =lnfoCount * ( sizeof( BlockAllocMember ) + 

sizeof( FileInfo ) + 
sizeof( BlockAllocMember ) ); 

1* Combine the two overheads to determine the structure file 
** size. *1 
StructureFileSize=BaseOverhead + FileOverhead; 

1* The last extent of each block is some # less than 32k. *1 
ResidualSpace=OxBOOO-StructureFileSize; 

1* Adjust the bottom pointer. *1 

AP-603 

81 



AP-603 

82 

} 

BottomPtr=Card.BlockSize-StructureFileSize; 

/* The file is the size of the card minus all structure 
** files. */ 
PseudoFileSize=BottomPtr * (Card.NumBlocks-I); 
PseudoFileCnt=l; 
break; 

default: { 
fprintf( stdout, INVL_SELECT_MSG ); 
exit(l); 

fprintf( stdout, ERASE_PROMPT_MSG ); 
keypress=toupper( getche() ); 
fprintf( stdout, CRLF_MSG ); 
if ( keypress == YES ) 
{ 

fprintf( stdout, PLEASE_WAIT_MSG ); 
GenericIOCTL( DriveNumber, pDataPkt, ERASE_DRIVE); 
fprintf( stdout, DONE_MSG ); 

fprintf( stdout, CRLF_MSG ); 

/* Write BASs. */ 
block_ctr=O; . 
fprintf( stdout, WRITE_BAS_MSG, block ctr ); 
while ( block_ctr < Card.NumBlocks ) { 

if( block_ctr == 0 ) { 
flags 1= BOOT_RECORD; 

if( block_ctr+l == Card.NumBlocks ) { 
flags 1= SP~E_BLOCK; 

} 
W:d teBAS( block..;.ctr, block_ctr, flags ); 
flags=O; . 
block_ctr++; 
fprintf( stdout, "%c%c%c%c%03Xh" , B,B,B,B,block_ctr ); 

fprintf( stdout, DOT_DONE_MSG ); 

/* Lay down initial format. */ 
InitiaIFormat(); 

/* Do the specific format. */ 
switch (format_type) { 

case SYMMETRIC: { 
DoSymmetric () ; 

/* Reset the.drive so our format info is recognized by DOS. */ 
fprintf( stdout, RESET_MEDIA_MSG ); 
GenericIOCTL( DriveNumber, pDataPkt, MEDIA~CHANGE ); 
fprintf( stdout, DOT_DONE_MSG ); 

/* Display the format information. */ 

I 



AP-603 

fprintf( stdout, SYMM_INFO_MSG, 
«DWORD) PseudoFileCnt * (Card.NumBlocks-l))
(Card.NumBlocks-l ), 

Card.NumBlocks-l, «DWORD) PseudoFileCnt * (Card.NumBlocks-l)), 
(DWORD) PseudoFileSize/1024, Card. BlockSize-StructureFileSize, 
Card.BlockSize-l ); 
break; 

case ENTIRE: 
DoEntireCard ( ) ; 

/* Reset the drive so our format info is recognized by DOS. */ 
fprintf( stdout, RESET_MEDIA_MSG ); 
GenericIOCTL( DriveNumber, pDataPkt, MEDIA_CHANGE ); 
fprintf( stdout, DOT_DONE_MSG ); 

/* Display the format information. */ 
fprintf( stdout, ENTIRE_INFO_MSG, «DWORD) PseudoFileCnt), 
Card.NumBlocks-l, (DWORD) PseudoFileSize/1024, 
Card.BlockSize-StructureFileSize, Card.BlockSize-l ); 
break; 

default: break; 

/***************************************************************************** 

PAGE 
****************************************************************************** 

* 
* Title: GenericIOCTL 
* 

Description: This procedure invokes a DOS generic IOCTL 440Dh. 

* 
*****************************************************************************/ 

WORD GenericIOCTL 
( 

BYTE DriveNumber, union IOCTLDataPkt far *pPkt, BYTE Code) 

union 
struct 
WORD 

REGS inregs, outregs; 
SREGS sregs; 
ReturnAX=O; 

inregs.x.ax=GENERIC_IOCTL; 
inregs.h.bl=DriveNumber; 
inregs.h.bh=O; 
inregs.h.ch=DISK_DRIVE; 
inregs.h.cl=Code; 
inregs.x.dx=FP_OFF(pPkt); 
sregs.ds=FP_SEG(pPkt); 
ReturnAx=intdosx(&inregs,&outregs,&sregs); 
if( outregs.x.cflag ) 

fprintf( stderr, ERROR_MSG ); 
return ( outregs.x.cflag ? ReturnAX 0); 

/***************************************************************************** 

I 
83 



AP-603 

PAGE 
******************************~*************************************~********* 

* 
* Title: CommonWrite 
* 
* Description: Common memory write procedure. 
* 
*****************************************************************************/ 

void CommonWrite ( DWORD to, BYTE *data, WORD length ) 
( 

pDataPkt->CommonMemWrite.Len=length; 
pDataPkt->CommonMemWrite.Offset=to; 
pDataPkt->CommonMemWrite.PtrBuffer=data; 
GenericIOCTL( DriveNumber, pDataPkt, COMM_WRITE ); 

/*********************~********************~****************~***************** 

PAGE 
****************************************************************************** 

* 
* Title: CommonRead 
* 
* Description: Common memory read procedure. 
* 
****************************************************.*************************/ 

void CommonRead ( DWORD to, BYTE *data, WORD length ) 
( 

pDataPkt->CommonMemRead.Len=length; 
pDataPkt->CommonMemRead.Offset=to; 
pDataPkt->CommonMemRead.PtrBuffer=data; 
Generic IOCTL( DriveNumber,·pDataPkt, COMM~READ'); 

/***************************************************************************** 
PAGE 

****************************************************************************** 

* 
* 
* 

Title: Log2Phy 

* Description: This procedure converts a logical block number to a 
* physical one by reading each BAS sequence number. 
* 
*****************************************************************************/ 

WORD Log2Phy ( WORD lblock ) 
( 

84 

BlockA110cStruct CurBAS; 
DWORD address=OUL; 
WORD block=1; 

/* Mustn't try to read a block that doesn't exist. */ ' 
if (lblock>=Card.NumBlocks) return (ERROR); 

/* Read each BAS. */ 

I 



AP-603 

while ( block <= Card.NurnBlocks ) 
{ 

address=(DWORD) block * (DWORD) Card.BlockSize; 
address-=sizeof( BlockAllocStruct ); 
ComrnonRead( address, pBYTE &CurBAS, sizeof( BlockAllocStruct ); 
if( CurBAS.BlockSeq == lblock ) return block; 
block++; 

return (ERROR); 

/***************************************************************************** 

PAGE 
****************************************************************************** 

* 
* 
* 
* 
* 
* 
* 

Title: WriteBAM 

Description: This procedure writes the current BAM to the location 
specified by the BAM pointer. The actual physical 
address of the BAM is derived from the BAM pointer. 

*****************************************************************************/ 

void WriteBAM ( DWORD BAMptr, BlockAllocMember CurBAM ) 
{ 

WORD block; 
DWORD address; 

block=Log2Phy( (DWORD)BAMptr » 16 ); 
address=block*Card.BlockSize; 
address-=sizeof( BlockAllocStruct ); 
address-=( ( ( BAMptr & OxFFFF ) + 1 * sizeof( BlockA11ocMember ) ); 
ComrnonWrite( address, pBYTE &CurBAJl, sizeof( B1ockAllocMember ) ); 

/***************************************************************************** 

PAGE 
******************************,******~**************** ************************* 

* 
* 
* 
* 
* 
* 
* 
* 

Title: WriteBAS 

Description: This procedure writes a BAS to a physical block. The 
lblock value assigns the physical block it's unique logical 
number. The flags field determines whether or not the 
block is spare, and if the boot record is present. 

*****************************************************************************/ 

void WriteBAS ( WORD LogBlock, WORD PhyBlock, WORD Flags ) 
{ 

I 

DWORD CurAddress=OUL; 
BlockAllocStruct CurBAS; 

CurBAS.BootRecordPtr=FNULL; 
CurBAS.EraseCount=69; 
CurBAS.BlockSeq=LogBlock; 

85 



AP-603 

CurBAS.BlockSeqChecksurn=CurBAS.BlockSeqAOxFFFF; 
CurBAS.Status=OxC3FF; 

/* Make Spare Block Modifications */ 
if( Flags & SPARE_BLOCK) 
{ 

CurBAS.BlockSeq=OxFFFF; 
CurBAS.BlockSeqChecksurn=OxFFFF; 
CurBAS.Status=OxFFF3; 

/* Make Boot Record Modifications. */ 
if( Flags & BOOT_RECORD) 
{ 

CurBAS.BootRecordPtr=((DWORD)LogBlock«16)+O; 
CurBAS.Status=OxC3FE; 

/* Calculate where. to write the BAS. */ 
CurAddress=((( PhyBlock+l ) * Card.BlockSize )-sizeof( BlockAllocStruct »; 
CommonWrite( CurAddress, pBYTE &CurBAS, sizeof( BlockAllocStruct ) ); 

/***************************************************************************** 
PAGE 

***********************************************************.******************* 

* 
* 
* 

Title: DoSymmetric 

* Description: Symmetric formatter procedure. It writes x number of 
* pseudo files per block as specified by the user in main(). 
* 
*****************************************************************************/ 

void DoSymmetric ( void 
{ 

86 

DWORD pfile_nurn=O; 
WORD block_ctr=O; 
WORD file_ctr=O; 
DWORD CurrentBase=OUL; 
BYTE tempname[8]; 
BlockAllocMember BAM; 
FileEntry FE; 
FileInfo FI; 

/* Current File Number. */ 
/* Current block. */ 

/* Current File Counter. */ 
/* Base address of current block. */ 
/* Temporary extension field. */ 

/* Begin writing the pseudo files for each block. */ 
while ( block_ctr < (Card.NurnBlocks-l) ) 
{ 

/* Calculate the physical base of the block. */ 
CurrentBase=(DWORD) Card.BlockSize * block_ctr; 

/* The BottomPtr of the structure file is initially set from 

I 



I 

** the InitialFormat procedure. */ 
if( block_ctr > 0 ) 
{ 

/* If this isn't block zero, then recalculate the new 
BottomPtr. */ 
BottomPtr=(DWORD) Card.BlockSize-PseudoFileSize; 
BAMptr=(DWORD) block_ctr « 16; 

/* For each block, write x number of PseudoFiles. */ 
while ( file_ctr < (PseudoFileCnt - 1) ) 
{ 

/* Write FileEntry BAMs. */ 
BAM.Status=Ox3F; 
BAM.Offset[O]=BottomPtr&OxFF; 
BAM.Offset[l]=(BottomPtr»B)&OxFF; 
BAM.Offset[2]=(BottomPtr»16)&OxFF; 
BAM. Len=sizeof( FileEntry ); 
WriteBAM( BAMptr, BAM ); 
BAMptr++; 

/* Write File Entry. */ 
FE.Status=OxOOA7; 

/* Last PseudoFile? */ 
if((file_ctr+1)==(PseudoFileCnt-1)) 
{ 

/* Last block? */ 
if( block_ctr == ( Card.NumBlocks - 2 ) ) 
{ 

FE.SiblingPtr=FNULL; 
FE.Status=OxOOE7; 

else 
{ 

FE. SiblingPtr= ( (DWORD) ( block_ctr + 1 ) 
« 16 ); 

else 
{ 

FE.SiblingPtr=BAMptr+2; 

FE.PrimaryPtr=BAMptr; 
FE.Secondaryptr=FNULL; 
FE.Attributes=OxOO; 
FE.Time=OxBBOO; 
FE.Date=Ox02F4; 
FE.VarStructLen=O; 
FE.NameLen=OxOB; 
sprintf ( tempname, "%OBld", pfile_num ); 
strncpy( FE.Name, tempname, B ); 
strncpy( FE. Ext, "BIN", 3 ); 
CommonWrite( BottomPtr+CurrentBase, pBYTE &FE, 
sizeof( FileEntry ) ); 
BottomPtr+=sizeof( FileEntry ); 

Ap·603 

87 



AP-603 

} 

1* Write FileInfo BAMs. *1 ' 
BAM.Status=Ox3F; 
BAM.Offset[O]=BottomPtr & OxFF; 
BAM.Offset[l]=( BottomPtr » B ) & OxFF; 
BAM.Offset[2]=( BottomPtr » 16 ) & OxFF; 
BAM. Len=sizeof( FileIhfo ); 
WriteBAM( BAMptr, BAM ); 
BAMptr++; 

1* Write File Info Structures. *1 
FI.Status=OxFCBB; 
FI.ExtentPtr=BAMptr; 
FI.PrimaryPtr=FNULL; 
FI.SecondaryPtr=FNULL; 
FI.Attributes=OxOO; 
FI.Time=OxBBOO; 
FI.Date=Ox02F4; 
FI.VarStructLen=O; 
FI.UncompressedExtentLen=PseudoFileSize; 
FI.CompressedExtentLen=PseudoFileSize; 
CommonWrite( BottomPtr+CurrentBase, pBYTE &FI, 
sizeof( FileInfo ) ); 
BottomPtr+=sizeof( FileInfo ); 

1* Write Extent BAMs *1 
1* Last BAM in block? *1 
if ( (file_ctr+1)==(PseudoFileCnt-1) ) BAM.Status=OxBF; 
else BAM.Status=Ox3F; 
BAM.Offset[O]=«DWORD)PseudoFileSize*fil9_ctr)&OxFF; 
BAM.Offset[l]=«(DWORD)PseudoFileSize*file_ctr»>B)&OxFF; 
BAM.Offset[2]=«(DWORD)PseudoFileSize*file_ctr»>16)&OxFF; 
BAM. Len=PseudoFileSize; 
WriteBAM( BAMptr, BAM ); 
BAMptr++; 

1* Update the display. */ 
pfile_num++; 
fprintf( stdout, "%c%c%c%c%c%5d", B,B,B,B,B,pfile_num ); 
file_ctr++; 

fprintf( stdout, DOT_DONE_MSG ); 

/***************************************************************************** 
PAGE 

*******~********************************************** ************************ 

* 
* 
* 
* 
* 
* 
* 

Title: DoEntireCard 

Description: This procedure formats the entire card as one huge file. 
It creates InfoCount number of File Info's and Extents in 
each block's structure file space. 

****************************************************** *.**************~*******/ 

88 

I 



void DoEntireCard ( void 
( 

I 

WORD 
WORD 

block_ctr=O; 
info_ctr=O; 

/* Block counter. */ 
/* FI counter. */ 

DWORD CurrentBase=OUL; 
block.*/ 

BlockAllocMernber BAM; 
FileEntry FE; 
FileInfo FI; 

/* Current structure file address in 

fprintf( stdout, WRITING_FILE_MSG ); 

/* We only need one file entry structure. */ 
/* Write FileEntry BAM. */ 
BAM.Status=Ox3F; 
BAM.Offset[O]=BottomPtr&OxFF; 
BAM.Offset[l] = (BottomPtr»8) &OxFF; 
BAM.Offset[2] = (BottomPtr»16) &OxFF; 
BAM.Len=sizeof( FileEntry ); 
WriteBAM( BAMptr, BAM ); 
BAMptr++; 

/* Write File Entry. */ 
FE.SiblingPtr=FNULL; 
FE.Status=OxOOE7; 
FE.PrimaryPtr=BAMptr; 
FE.Secondaryptr=FNULL; 
FE.Attributes=OxOO; 
FE.Time=Ox8800; 
FE.Date=Ox02F4; 
FE.VarStructLen=O; 
FE.NameLen=DOS83; 
strncpy( FE.Name, "00000001", 8 ); 
strncpy( FE. Ext, "BIN", 3 ); 
CornrnonWrite( BottomPtr+CurrentBase, pBYTE &FE, sizeof( FileEntry ) ); 
BottomPtr+=sizeof( FileEntry ); 

/* Loop through the blocks. */ 
while ( block_ctr < ( Card.NurnBlocks - 1 ) ) ( 

info_ctr=O; 

/* Calculate the physical base of the block. */ 
CurrentBase=(DWORD) Card.BlockSize * block_ctr; 

/* The BottomPtr of the structure file is initially set from 
** the InitialFormat procedure. */ 
if( block_ctr > 0 ) 
( 

/* If this isn't block zero, then recalculate the new 
BottomPtr. */ 
BottomPtr=(DWORD) Card.BlockSize-StructureFileSize; 
BAMptr=(DWORD) block_ctr « 16; 

/* For each block, write x number of InfoCounts. */ 
while ( info_ctr < InfoCount ) { 

Ap·603 

89 



AP-603 

90 

/* Write FileInfo BAMs. */ 
BAM.Status=Ox3F; 
BAM.Offset[O]=BottomPtr & OxFF; 
BAM.Offset[l]=( BottomPtr » 8 ) & OxFF; 
BAM.Offset[2]=( BottomPtr » 16 ) & OxFF; 
BAM. Len=sizeof( Fi1eInfo ); 
WriteBAM( BAMptr, BAM ); 
BAMptr++; 

/* Write File Info Structures. */ 
FI.Status=OxFCAB; 
FI.ExtentPtr=BAMptr; 

/* Last file info? */ 
if( info_ctr == ( InfoCount - 1 ) ) 
{ 

/* Last block? */ 
if( b1ock_ctr == ( Card.NumBlocks - 2 ) ) 
{ 

FI.PrimaryPtr=FNULL; 
FI.Status=OxFCBB; 

else 
{ 

FI.PrimaryPtr=( (DWORD) ( block_ctr + 1 )
« 16 ); 

else 
{ 

FI.PrimaryPtr=BAMptr+1; 

FI.Secondaryptr=FNULL; 
FI.Attributes=OxOO; 
FI.Time=Ox8800; 
FI.Date=Ox02F4; 
FI.VarStructLen=O; 

/* Last File Info in block? */ 
if( info_ctr == ( InfoCount - 1 ) ) 
{ 

FI.UncompressedExtentLen=ResidualSpace; 
FI.CompressedExtentLen=Residua1Space; 

else 
{ 

FI.UncompressedExtentLen=Ox8000; 
FI.CompressedExtentLen=Ox8000; 

CommonWrite( BottomPtr+CurrentBase, pBYTE &FI, sizeof( 
FileInfo ) ); 
BottomPtr+=sizeof( FileInfo ); 

/* Write Extent BAMs */ 
/* Last BAM in block? */ 
if( info_ctr == ( InfoCount - 1 ) ) 

I 



AP-603 

BAM.Status=OxBF; 
BAM. Len=ResidualSpace; 

else 
{ 

} 

BAM.Status=Ox3F; 
BAM. Len=Ox8000; 

BAM.Offset[O]=«DWORD)Ox8000*info_ctr)&OxFF; 
BAM.Offset[1]=«DWORD)Ox8000*info_ctr»8)&OxFF; 
BAM.Offset[2]=«DWORD)Ox8000*info_ctr»16)&OxFF; 
WriteBAM( BAMptr, BAM ); 
BAMptr++; 
info_ctr++; 

fprintf( stdout, DOT_DONE_MSG ); 

/***************************************************************************** 
PAGE 

****************************************************************************** 

* 
* 
* 
* 
* 
* 

Title: InitialFormat 

Description: This procedure places a Boot Record, ROOT Directory and 
Volume Label in'block zero (at address BottomPtr) of the 
card. 

* 
*****************************************************************************/ 

void InitialFormat ( void ) 
{ 

I 

/* Initial Format Structures. */ 
BlockAllocMember BAM; 
FileEntry FE; 
DirectoryEntry DE; 
BootRecord BR; 

/* Write Boot Record BAM in Physical Block Zero. */ 
BAM.Status=Ox3F; 
BAM.Offset[O]=BottomPtr & OxFF; 
BAM.Offset[l]=( BottomPtr » 8 ) & OxFF; 
BAM.Offset[2]=( BottomPtr » 16 ) & OxFF; 
BAM. Len=sizeof( BootRecord ); 
fprintf( stdout, WRITE_BAM_MSG ); 
WriteBAM( BAMptr, BAM ); 
BAMptr++; 
fprintf( stdout, DONE_MSG ); 

/* Write Boot Record in physical 
BR.Signature=OxF1A5; 
BR.SerialNumber=Ox66677788UL; 
BR.FFSWriteVersion=FFS_WRITE_VER; 

block zero. */ 

91 



AP-603 

92 

BR.FFSReadVersion=FFS_READ_VER; 
BR.TotalBlockCount=Card.NumBlocks; 
BR.SpareBlockCount=l; 
BR. BlockLen=Card. BlockSize; 
BR.RootDirectoryPtr=BAMptr; 
BR.Status=OxFFFF; 
BR.BootCodeLen=O; 
fprintf( stdout, WRITE_BOOT_MSG ); 
CommonWrite( BottomPtr, pBYTE &BR, sizeof( BootRecord ) ); 
BottomPtr+=sizeof( BootRecord ); 
fprintf( stdout, DONE_MSG ); 

/* Write ROOT Directory BAM in physical block zero. */ 
BAM.Status=Ox3F; 
BAM.Offset[O]=BottomPtr & OxFF; 
BAM.Offset[l]=( BottomPtr » 8 ) & OxFF; 
BAM.Offset[2]=( BottomPtr » 16 ) & OxFF; 
BAM.Len=sizeof( DirectoryEntry ); 
fprintf( stdout, WRITE_ROOT_BAM_MSG ); 
WriteBAM( BAMptr, BAM ); 
BAMptr++; 
fprintf( stdout, DONE_MSG ); 

/* Write ROOT Directory Entry. */ 
DE.Status=OxFFE3; 
DE.SiblingPtr=FNULL; 
DE.PrimaryPtr=BAMptr; 
DE.Secondaryptr=FNULL; 
DE.Attributes=Ox10; 
DE.Time=Ox8800; 
DE. Date=Ox02F4; 
DE.VarStructLen=O; 
DE.NameLen=DOS83; 
strncpy( DE.Name ,"ROOT 8); 
strncpy( DE. Ext ," 3); 
fprintf( stdout, WRITE_ROOT_MSG ); 
CommonWrite( BottomPtr, pBYTE &DE, sizeof( DirectoryEntry ) ); 
BottomPtr+=sizeof( DirectoryEntry ); 
fprintf( stdout, DONE_MSG ); 

/* Write Volume Label BAM in physical block zero. */ 
BAM.Status=Ox3F; 
BAM.Offset[O]=BottomPtr & OxFF; 
BAM.Offset[l]=( BottomPtr » 8 ) & OxFF; 
BAM.Offset[2]=( BottomPtr » 16 ) & OxFF; 
BAM. Len=sizeof( FileEntry ); 
fprintf( stdout, WRITE_VOL_BAM_MSG ); 
WriteBAM( BAMptr, BAM ); 
BAMptr++; 
fprintf( stdout, DONE_MSG ); 

/* Write Volume Label 
FE.Status=OxOOB7; 
FE.SiblingPtr=BAMptr; 
FE.Primaryptr=FNULL; 
FE.Secondaryptr=FNULL; 

Entry. */ 

I 



FE.Attributes=Ox28; 
FE.Time=Ox8800; 
FE.Date=Ox02F4; 
FE.VarStruetLen=O; 
FE.NameLen=DOS83; 
strnepy(FE.Name,"EMBEDDED",8); 
strnepy(FE.Ext,"FFS",3); 
fprintf( stdout, WRITE_VOLUME_MSG ); 
CommonWrite( BottomPtr, pBYTE &FE, sizeof( FileEntry ) ); 
BottomPtr+=sizeof( FileEntry ); 
fprintf( stdout, DONE_MSG ); 

/* End of File: SBM.C 
** COPYRIGHT (e) 1994 Intel Corporation, ALL RIGHTS RESERVED 

AP-603 

***************************************************************************/ 

I 
93 



AP-603 

/***************************************************************************** 

* 
* FILE NAME: SBM.H 
* 
* PURPOSE: 
* 

Defines, Typedefs, and Structures for file Symmetric Block 
Manager. 

* 
* AUTHOR: Peter J Torelli/James R. Massoni 
* 
* COPYRIGHT (c) 1994 Intel Corporation, ALL RIGHTS RESERVED 
* 
*****************************************************************************/ 

#ifndef SBM.H 
#define SBM.H 

/* 

/* Has this file been included before? */ 
/* No, remember it has been now */ 

** Defines **************************************************************** 
*/ 

#define REVISION 1. 02 
#define BOOT_RECORD OxOl 
#define COMM_READ Ox71 
#define COMM_WRITE Ox51 
#define DISK_DRIVE OxOS 
#define DOSS3 OxOB 
#define ENTIRE 'E' 
#define ERASE_DRIVE Ox54 
#define ERROR -1 
#define FFS_READ_VER Ox200 
#define FFS_WRITE_VEROx200 
#define FNULL OxFFFFFFFFUL 
#define GENERIC_IOCTLOx440D 
#define MEDIA_CHANGE Ox52 
#define MEDIA_INFO Ox73 
#define SPARE_BLOCK Ox02 
#define SYMMETRIC ' S' 
#define YES 'Y' 
#define pBYTE (BYTE * ) 

/* 
** 
*/ 

Typedefs **************************************************************** 

typedef unsigned char BYTE; 
typedef unsigned int WORD; 
typedef unsigned longDWORD; 

typedef struct { 
DWORD Size; 
DWORD BlockSize; 
WORD NumBlocks; 

CardInfo; 

typedef struct 
BYTE Status; 

94 

I 



AP-603 

BYTE Offset[3]; 
WORD Len; 

BlockAllocMember; 

typedef struct { 
DWORD BootRecordPtr; 
DWORD 
WORD 
WORD 

EraseCount; 
BlockSeq; 
BlockSeqChecksum; 

WORD Status; 
BlockAllocStruct; 

typedef struct { 
WORD Signature; 
DWORD SerialNumber; 
WORD FFSWriteVersion; 
WORD FFSReadVersion; 
WORD TotalBlockCount; 
WORD SpareBlockCount; 
DWORD BlockLen; 
DWORD RootDirectoryPtr; 
WORD Status; 
WORD BootCodeLen; 

/ * BYTE BootCode [0] ; 
} BootRecord; 

Boot Code is ZERO. */ 

typedef struct 
WORD Status; 
DWORD Siblingptr; 
DWORD PrimaryPtr; 
DWORD SecondaryPtr; 
BYTE Attributes; 
WORD 
WORD 
WORD 
BYTE 
BYTE 
BYTE 

Time; 
Date; 
VarStructLen; 
NameLen; 
Name [8] ; 
Ext[3]; 

FileEntry, DirectoryEntry; 

typedef struct { 

/* 

WORD Status; 
DWORD ExtentPtr; 
DWORD Primaryptr; 
DWORD Secondaryptr; 
BYTE Attributes; 
WORD Time; 
WORD Date; 
WORD VarStructLen; 
WORD UncompressedExtentLen; 
WORD CompressedExtentLen; 

Filelnfo; 

** Unions and Structures *************************************************** 
*/ 

I 
95 



AP-603 

union IOCTLDataPkt{ 

} ; 

struet EraseDrive 
BYTE Status; 

} ED; 

struet CommonMemReadWritePkt 
BYTE Status; 
WORD Len; 
DWORD Offset; 
BYTE far *PtrBuffer; 

CommonMemRead, CommonMemWrite; 

struct MediaInfoPkt 
BYTE Status; 
BYTE 
BYTE 
WORD 
BYTE 
BYTE 

Len; 
DevType; 
JedecID; 
DriveSlot; 
TotalSlots; 

BYTE PartType; 
DWORD PartBegin; 
DWORD PartSize; 
DWORD MediaSize; 
DWORD BlockSize; 
BYTE PartNum; 
BYTE CurPartInS1ot; 
BYTE MaxPartInSlot; 
BYTE TotPartInS1ot; 
BYTE DevInfoNum; 
BYTE DevInfoSize; 
void far *DevInfoPtr; 
WORD InitYear; 
BYTE InitMonth; 
BYTE Ini tDay; 
BYTE Ini tHour; 
BYTE InitSec; 
WORD BatRepYear; 
BYTE BatRepMonth; 
BYTE BatRepDay; 
WORD BatExpYear; 
BYTE BatExpMonth; 
BYTE BatExpDay; 
WORD Flags; 
BYTE VendorName[11]; 
WORD ChangeCount; 
DWORD Reserved[5]; 

MediaInfo; 

#endif 

/* 
** 

End of File: SBM.H 
COPYRIGHT (e) 1994 Intel Corporation, ALL RIGHTS RESERVED 

*************************************************************~*~*********~***/ 

96 

I 



AP·603 

/***************************************************** ***************~******** 

* 
* FILE NAME: SBM_MSG.H 
* 
* PURPOSE: 
* 
* 
* AUTHOR: 
* 

Defines, Typedefs, and Structures for file Symmetric Block 
Manager. 

Peter J Torelli/James R. Massoni 

* COPYRIGHT (c) 1994 Intel Corporation, ALL RIGHTS RESERVED 
* 
*****************************************************************************/ 

#ifndef SBM_MSG.H 
#define SBM_MSG.H 

/* 

/* Has this file been included before? */ 
/* No, remember it has been now. */ 

** Defines **************************************************************** 
*/ 

#define CHOOSE_MSG "Done\n\nChoose a format:\n\t(S)ymmetric\n\t(E)ntire\ 
Card as One File\n\nSelection (S/E): " 

#define CRLF_MSG 
#define DBL_CRLF_MSG 

"\n ll 

"\n\n" 
#define DONE~SG "Deme. \n" 
#define DOT_DONE_MSG " ... Done.\n" 
#define ERASE PROMPT_MSG "Note: The media must be erased before\ 
formatting. \nDoes this media need to be erased? (y/n): " 

#define OBTAINING_MSG 
#define LOGON_MSG 
Corporation\n\n" 

#define NUM_PFILES_MSG 
#define PLEASE_WAIT_MSG 
#define RESET_MEDIA_MSG 
#define WRITE_BAM_MSG 
#define WRITE_BAS_MSG 
#define WRITE_BOOT_MSG 
#define WRITE_PSEUDO~SG 
#define WRITE_ROOT_MSG 
zero ... " 

"Obtaining media geometry ... " 
"LFM Linear File Formatter v%.2f (c) Intel\ 

"Enter the number of PseudoFiles/Block [%d-%dJ: " 
"\nPlease wait, media being erased ... " 
"Resetting media" 
"Writing Boot Record BAM in physical block zero ... " 
"Writing BAS block %03Xh" 
"Writing Boot Record in physical block zero ... " 
"Writing Pseudo File number %OSd" 
"Writing ROOT Directory Entry in physical block\ 

#define WRITE_ROOT_BAM_MSG 
#define WRITE_VOL_BAM_MSG 
#define WRITE_VOLUME_MSG 
#define WRITING_FILE_MSG 

"Writing ROOT BAM in physical block zero ... " 
"Writing Volume Label BAM in physical block zero ... " 
"Writing Volume Label in physical block zero ... " 
"Writing File ... " 

/* Define the format symmetric block 
#define SYMM_INFO~SG "\n\ 
Symmetric Preformat installed.\n\n\ 

Number of Pseudo Files: 
+ Number of Structure Files: 

screen */ 

%6ld\n\ 
%6d\n\ _____________________________________ \n\ 

Total Number of Pseudo File Spaces: %6ld\n\n\ 

I 
97 



AP·603 

Each Pseudo File Space is%ldk. \n\n\ 
Avoid address ranges %lX-%lX in each block.\n" 

/* Define the format entire screen */ 
#define ENTIRE_INFO_MSG "\n\ 
Entire-Card Preformat installed.\n\n\ 

Number of Pseudo Files: %6ld\n\ 
%6d\n\n\ Number of Structure Files: 

The Pseudo File is %ldk.\n\n\ 
Avoid address ranges%lX-%lX in each block.\n" 

/* 
** 
*/ 

Error Messages: 

#define ERROR_MSG 
#define INVL_DRV_LET_MSG 
#define INVL_SELECT_MSG 
#define SPECIFY_MSG 
#define TOO_MANY_MSG 
letter.'\n'! 

#define USAGE_MSG 

#endif 

End of File:SBM_MSG.H 

"\nError" 
"The drive letter entered is invalid.\n" 
"Error, Invalid selection.\n" 
"Please specify one drive letter.\n" 
"Too many parameters, please specify only a drive\ 

"Correct usage example: C:>SBM E:\n" 

/* 
** COPYRIGHT (c) 1994 Intel Corporation, ALL RIGHTS RESERVED 
*****************************************************************************/ 

98 I 



Revised Documents 

I 





28F016XS 
28F016XS Flash Memory 

16-MBIT (1 MBIT X 16, 2 MBIT X 8) 
SYNCHRONOUS FLASH MEMORY 

• Effective Zero Wait-State Performance 
up to 33 Mhz 
- Synchronous Pipelined Reads 

• SmartVoltage Technology 
- User-Selectable 3.3V or 5V Vee 
- User-Selectable 5V or 12V Vpp 

• 0.33 MB/sec Write Transfer Rate 

• Configurable x8 or x16 Operation 

• 56-Lead TSOP Type I Package 

• Backwards-Compatible with 28F008SA 
Command-Set 

• 2 IJA Typical Deep Power-Down 

• 1 rnA Typical Active lee Current in 
Static Mode 

• 16 Separately-Erasable/Lockable 
128-Kbyte Blocks 

• 1 Million Erase Cycles per Block 

• State-of-the-Art 0.6 IJm ETOXTM IV Flash 
Technology 

Intel's 28F016XS 16-Mbit Flash memory is a revolutionary architecture which is the ideal choice for designing 
truly revolutionary high-performance products. Combining very high read performance with the intrinsic 
non-volatility of flash memory, the 28F016XS eliminates the traditional redundant memory paradigm of 
shadowing code from a slow nonvolatile storage source to a faster execution memory, such as DRAM, for 
improved system performance. The innovative capabilities of the 28F016XS enable the design of 
direct-execute code and mass storage data/file flash memory systems. 

The 28F016XS is the highest performance high density nonvolatile read/write flash memory solution available 
today. Its synchronous pipelined read interface, flexible Vcc and Vpp voltages, extended cycling, fast write 
and read performance, symmetrically blocked architecture, and selective block locking provide a highly 
flexible memory component suitable for resident flash component arrays on the system board or SIMMs. The 
synchronous pipelined interface and x8/x16 architecture of the 28F016XS allow easy interface with minimal 
glue logic to a wide range of processors/buses, providing effective zero wait-state read performance up to 
33 MHz. The 28F016XS's dual read voltage allows the same component to operate at either 3.3V or 
S.OV V cc. Programming voltage at SV Vpp minimizes external circuitry in minimal-chip, space critical designs, 
while the 12V Vpp option maximizes write/erase performance. Its high read performance combined with 
flexible block locking enable both storage and execution of operating systems/application software and fast 
access to large data tables. The 28F016XS is manufactured on Intel's 0.6 J.lm ETOXTM IV process 
technology. 

Order Number 290532-002 

I ADVANCE INFORMATION 101 





1.0 INTRODUCTION 

The documentation of the Intel 28F016XS Flash 
memory device includes this datasheet, a detailed 
user's manual, a number of application notes and 
design tools, all of which are referenced at the end 
of this datasheet. 

The datasheet is intended to give an overview of 
the chip feature-set and of the operating AC/DC 
specifications. The 16-Mbit Flash Product Family 
User's Manual provides complete descriptiqns of 
the user modes, system interface examples and 
detailed descriptions of all principles of operation. It 
also contains the full list of software algorithm 
flowcharts, and a brief section on compatibility with 
the Intel 28F008SA. 

Significant 28F016XS feature revisions occurred 
between datasheet revisions 290532-001 and 
290532-002. These revIsions center around 
removal of the following features: 

• All page buffer operations (read, write, 
programming, Upload Device Information) 

o Command queuing 

o Software Sleep and Abort 

o Erase all Unlocked Blocks and Two-Byte Write 

• RY/BY# reconfiguration as part of the Device 
Configuration command 

Intel recommends that all customers obtain the 
latest revisions of 28F016XD documentation. 

1.1 Product Overview 

The 28F016XS is a high-performance, 16-Mbit 
(16,777,216-bit) block erasable nonvolatile random 
access memory organized as either 1 Mword x 16 
or 2 Mbyte x 8, subdivided into even and odd 
banks. Address A1 makes the bank selection. The 
28F016XS includes sixteen 128-Kbyte (131,072 
byte) blocks or sixteen 64-Kword (65,536 word) 
blocks. Chip memory maps for x8 and x16 modes 
are shown in Figures 3 and 4. 

The implementation of a new architecture, with 
many enhanced features, will improve the device 
operating characteristics and result in greater 
product reliability and ease-of-use as compared to 
other flash memories. Significant features of the 
28F016XS as compared to previous asynchronous 
flash memories include: 

I ADVANCE INFORMATION 

28F016XS·Flash Memory 

• Synchronous Pipelined Read Interface 

• Significantly Improved Read and Write 
Performance 

• SmartVoltage Technology 

- Selectable 3.3V or 5.0 Vcc 

- Selectable 5.0Vor 12.0 Vpp 

• Internal 3.3V/5.0V Vcc Detection Circuitry 

• Block Write/Erase Protection 

The 28F016XS's synchronous pipelined interface 
dramatically raises read performance far beyond 
previously attainable levels. Addresses are 
synchronously latched and data read from a 
28F016XS bank every 30 ns (5V Vcc, SFI 
Configuration = 2). This capability translates to 
O-wait-state reads at clock rates up to 33 MHz at 
5V Vce, after an initial address pipeline fill delay 
and assuming even and odd banks within the flash 
memory are alternately accessed. Data is latched 
and driven valid 20 ns (teHQv) after a rising ClK 
edge. The 28F016XS is capable of operating up to 
66 MHz (5V Vee); its programmable SFI 
Configuration enables system design flexibility, 
optimizing the 28F016XS to a specific system clock 
frequency. See Section 4.9, SFI Configuration 
Table, for specific SFI Configurations for given 
operating frequencies. 

The SFI Configuration optimizes the 28F016XS for 
a wide range of system operating frequencies. The 
default SFI Configuration is 4, which allows system 
boot from the 28F016XS at any frequency up to 
66 MHz at 5V Vee. After initiating an access, data 
is latched and begins driving on the data outputs 
after a ClK count corresponding to the SFI 
Configuration has elapsed. The 28F016XS will hold 
data valid until CEx# orOE# is deactivated or a 
ClK count corresponding to the SFI Configuration 
for a subsequent access has elapsed. 

The ClK and ADV# inputs, new to the 28F016XS in 
comparison to previous flash memories, enable 
synchronous latching of input addresses for reads. 
The ClK input controls the device latencies, 
decrements the SFI Configuration counter and 
synchronizes data outputs. ADV# indicates the 
presence of a valid address on the 28F016XS 
address inputs. During read operations, addresses 
are latched and accesses are initiated on a rising 
ClK edge in. conjunction with ADV# low. Both ClK 
and ADV# are ignored by the 28F016XS during 
command/data write sequences. 

103 



28F016XS Flash Memory 

The 28F016XS incorporates SmartVoltage 
technology, providing Vee operation at both 3.3V 
and 5.0V and program and erase capability at 
Vpp = 12.0V or 5.0V. Operating at Vec = 3.3V, the 
28F016XS consumes less than one half the power 
consumption at 5.0V Vee, while 5.0V Vec provides 
highest read performance capability. Vpp operation 
at 5.0V eliminates the need for a separate 12.0V 
converter, while the Vpp = 12.0V option maximizes 
write/erase performance. In addition to the flexible 
program and erase voltages, the dedicated Vpp 
gives complete code protection with Vpp S; VPPLK. 

Internal 3.3V or 5.0V Vee detection automatically 
configures the device for optimized 3.3V or 5.0V 
read/write operation. Hence, the 28F016SA's 
3/5# pin is not required and is a no-connect (NC) on 
the 28F016XS, maintaining pin-out backwards
compatibility between components. 

A Command User Interface (CUI) serves as the 
system interface between the microprocessor or 
microcontroller and the internal memory operation. 

Internal Algorithm Automation allows byte/word 
writes and block erase operations to be executed 
using a Two-Write command sequence to the CUI 
in the same way as the 28F008SA 8-Mbit 
FlashFile™ memory. 

Software locking of memory blocks is an added 
feature of the ·28F016XS as compared to the 
28F008SA. The 28F016XS provides selectable 
block locking to protect code or data such as direct
executable operating systems or application code. 
Each block has an associated nonvolatile lock-bit 
which determines the lock status of the block. In 
addition, the 28F016XS has a master Write Protect 
pin (WP#) which prevents any modifications to 
memory blocks whose lock-bits are set. 

Writing of memory data is performed in either byte 
or word increments, typically within 6 IJsec at 12.0V 
Vpp, which is a 33% improvement over the 
28F008SA. A block erase operation erases one of 
the 16 blocks in typically 1.2 sec, independent of 
the other blocks. 

Each block can be written and erased a minimum of 
100,000 cycles. Systems can achieve one million 
Block Erase Cycles by providing wear-leveling 
algorithms and graceful block retirement. These 
techniques have already been employed in many 
flash file systems and hard disk drive designs. 

104 

All operations are started by a sequence of Write 
commands to the device. Three Status Registers 
(described in detail later in this datasheet) and a 
RY/BY# output pin provide information on the 
progress of the requested operation. 

The following Status Registers are used to provide 
device and WSM operation information to the user: 

• A Compatible Status Register (CSR) which is 
100% compatible with the 28F008SA FlashFile 
memory Status Register. The CSR, when used 
alone, provides a straightforward upgrade 
capability to the 28F016XS from a 28F008SA
based design. 

• A Global Status Register (GSR) which also 
informs the system of overall Write State 
Machine (WSM) status. 

• 16 Block Status Registers (BSRs) which 
provide block-specific status information such 
as the block lock-bit status. 

The GSR and BSR memory maps for Byte-Wide 
and Word-Wide modes are shown in Figures 5 
and 6. 

The 28F016XS incorporates an open drain RY/BY# 
output pin. This feature allows the user to OR-tie 
many RY/BY# pins together in a multiple memory 
configuration such as a Resident Flash Array. 

The 28F016XS also incorporates a dual chip
enable function with two input pins, CEo# and CE1#. 
These pins have exactly the same functionality as 
the regular chip-enable pin, CE#, on the 28F008SA. 
For minimum chip designs, CE1# may be tied to 
ground and system logiC may use CEo# as the chip 
enable input.. The 28F016XS uses the logical 
combination of these two signals to enable or 
disable the entire chip. Both CEo# and CE1# must 
be active low to enable the device. If either one 
becomes inactive, the chip will be disabled. This 
feature, along with the open drain RY/BY# pin, 
allows the system designer to reduce the number of 
control pins used in a large array of 16-Mbit 
devices. 

ADVANCE INFORMATION I 



28F016XS Flash Memory 

C~-----+---------.------~ 
ADV# -----+--------, 

l'l a 
«: 

Y Gating/Sensing 

Even Bank 

Q) 

i ~ I ~ 
;;: ~ g g g 

'" '" '" 

Odd Bank 

Y Gating/Sensing 

Figure 1. 28F016XS Block Diagram 
Architectural Evolution Includes Synchronous Pipelined Read Interface, 

SmartVoltage Technology, and Extended Status Registers 

I ADVANCE INFORMATION 

WE# 

WP# 

RP# 

-GND 

0532.-01 

105 



28F016XS Flash Memory 

The BYTE# pin allows either xB or x16 read/writes 
to the 2BF016XS. BYTE# at logic low selects B-bit 
mode with address Ao selecting between low byte 
and high byte. On the other hand, BYTE# at logic 
high enables 16-bit operation with address A1 
becoming the lowest order address and address Ao 
is not used (don't care). A device block diagram is 
shown in Figure 1. 

The 2BF016XS incorporates an Automatic Power 
Saving (APS) feature, which substantially reduces 
the active current when the device is in static mode 
of operation (addresses not switching). In APS 
mode, the typical Icc current is 1 mA at 5.OV (3 mA 
at 3.3V). 

A deep power-down mode of operation is invoked 
when the RP# (called PWD# on the 2BFOOBSA) pin 
transitions low. This mode brings the device power 
consumption to less than 2.0 (JA, typically, and 
provides additional write protection by acting as a 
device reset pin during power transitions. A reset 
time of 300 ns (5V Vee) is required from RP# 
switching high before latching an address into the 

NC NC 1 0 CE1# CE1# CE 1# 2 
NC NC NC 3 
A'XJ A'XJ A'XJ 4 
A19 A19 A19 5 
Ala Ala AIS 6 
A17 Au Au 7 
A16 A16 A16 8 
Vee Vee Vee 9 
AIS AIS AIS 10 
A14 A14 A14 11 E28FOl6XS 

intel® 
28F016XS. In the Deep Power-Down state, the 
WSM is reset (any curr/3nt operation will abort) and 
the CSR, GSR and BSR registers are cleared. 

. A CMOS standby mode of operation is enabled 
when either CEo# or CE1# transitions high and RP# 
stays high with all input control pins at CMOS 
levels. In this mode, the device typically draws an 
Icc standby current of 70 (JA at 5V Vee. 

The 2BF016XS is available in a 56-Lead, 1.2mm 
thick, 14mm x 20mm TSOP Type I package. The 
package's form factor and pinout allow for very high 
board layout densities, 

2.0 DEVICE PINOUT 

The 2BF016XS is pinout compatible with the 
2BF016SAlSV 16-Mbit FlashFile memory 
components, providing a performance upgrade path 
to the 2BF016XS. The 2BF016XS 56-Lead TSOP 
pinout configuration is shown in Figure 2. 

2aFOl6SV 2aFOl6SA 

WP# WP# WP# 
WE# WE# WE# 
OE# OE# OE# 
RV/BV# RV/BV# RV/BV# 
DQ15 DQ15 DQ15 
DQ7 DQ7 DQ7 
DQ 14 DQ 14 DQ 14 
DQs DQs DQs 
GND GND GND 
DQla DQla DQla 
DQs DQs DQs 

Ala Ala A13 12 56-LEAD TSOP PINOUT DQ 12 DQ12 DQ12 
A12 A12 A12 13 DQ4 DQ4 DQ4 

CEdi CEdi CEdi 14 Vee Vee Vee 
Vpp Vpp Vpp 15 GND GND GND 
RP# RP# RP# 16 14mmx20mm DQll DQll DQll 
All All All 17 TOP VIEW DQ a DQ a DQa 
Am Am Am 18 DQm DQ10 DQm 
A9 A9 A9 19 DQ2 DQ2 DQ2 
Aa Aa As 20 Vee Vee Vee 

GND GND GND 21 DQ 9 DQ 9 DQ 9 
A7 A7 A7 22 DQ l DQl DQ l 
As As As 23 DQ a DQ a DQ a 
As As As 24 DQ o DQo DQ o 
A4 A4 A4 25 Ao Ao Ao 
Aa Aa Aa 26 BVTE# 
A2 A2 A2 27 ADV# 
Al Al Al 28 ClK 

0532-02 

Figure 2. 28F016XS 56-Lead TSOP Pinout Configuration Shows Compatibility with 
the 28F016SAlSV, Allowing for Easy Performance Upgrades from Existing 16-Mbit Designs 

106 ADVANCE INFORMATION I 



28F016XS Flash Memory 

2.1 Lead Descriptions 

Symbol Type Name and Function 

Ao INPUT BYTE·SELECT ADDRESS: Selects between high and low byte when device is 
in xB mode. This address is latched in xB data writes and ignored in x16 mode 
(Le., the Ao input buffer is turned off when BYTE# is high). 

Al INPUT BANK·SELECT ADDRESS: Selects an even or odd bank in a selected block. 
A 12S-Kbyte block is subdivided into an even and odd bank. Al = 0 selects the 
even bank and Al = 1 selects the odd bank, in both byte-wide mode and word-
wide mode device configurations. 

A2-A16 INPUT WORD·SELECT ADDRESSES: Select a word within one 12B-Kbyte block. 
Address Al and A7-16 select 1 of 204B rows, and A2-6 select 16 of 512 
columns. These addresses are latched during both data reads and writes. 

A17-A20 INPUT BLOCK·SELECT ADDRESSES: Select 1 of 16 Erase blocks. These 
addresses are latched during data writes, erase and lock-block operations. 

DQo-D07 INPUT LOW·BYTE DATA BUS: Inputs data and commands during CUI write cycles. 
OUTPUT Outputs array, identifier or status data in the appropriate read mode. Floated 

when the chip is de-selected or the outputs are disabled. 

D08-D015 INPUT HIGH·BYTE DATA BUS: Inputs data during x16 data-write operations. Outputs 
OUTPUT array or identifier data in the appropriate read mode; not used for Status 

Register reads. Outputs floated when the chip is de-selected, the outputs are 
disabled (OE# = V1H) or BYTE# is driven active. 

CEo#, CE1# INPUT CHIP ENABLE INPUTS: Activate the device's control logic, input buffers, 
decoders and sense amplifiers. With either CEo# or CE1# high, the device is 
de-selected and power consumption reduces to standby levels upon 
completion of any current data-write or erase operations. Both CEo# and CE1# 
must be low to select the device. 

All timing specifications are the same for both signals. Device Selection occurs 
with the latter falling edge of CEo# or CE1#. The first rising edge of CEo# or 
CE1# disables the device. 

RP# INPUT RESETIPOWER·DOWN: RP# low places the device in a Deep Power-Down 
state. All circuits that consume static power, even those circuits enabled in 
standby mode, are turned off. When returning from Deep Power-Down, a 
recovery time of tpHCH is required to allow these circuits to power-up. 
When RP# goes low, the current WSM operation is terminated, and the device 
is reset. All Status Registers return to ready, clearing all status flags. Exit from 
Deep Power-Down places the device in read array mode. 

OE# INPUT OUTPUT ENABLE: Drives device data through the output buffers when low. 
The outputs float to tri-state off when OE# is high. CEx# overrides OE#, and 
OE# overrides WEI. 

WEI INPUT WRITE ENABLE: Controls access to the CUI, Data Register and Address 
Latch. WEI is active low, and latches both address and data (command or 
array) on its rising edge. 

I ADVANCE INFORMATION 107 



28F016XS Flash Memory intel® 
2.1 Lead Descriptions (Continued) 

Symbol Type Name and Function 

ClK INPUT CLOCK: Provides the fundamental timing and internal operating frequency. 
ClK latches input addresses in conjunction with ADV#, times out the desired 
output SFI Configuration as a function of the ClK period, and synchronizes 
device outputs. ClK can be slowed or stopped with no loss of data or 
synchronization. ClK is ignored during write operations. 

ADV# INPUT ADDRESS VALID: Indicates that a valid address is present on the address 
inputs. ADV# low at the rising edge of ClK latches the address on the address 
inputs into the flash memory and initiates a read access to the even or odd 
bank depending on the state of A,. ADV# is ignored during write operations. 

RY/BY# OPEN READY/BUSY: Indicates status of the internal WSM. When low, it indicates 
DRAIN that the WSM is busy performing an operation. RY/BY# high indicates that the 

OUTPUT WSM is ready for new operations, Erase is Suspended, or the device is in deep 
power-down mode. This output is always active (Le., not floated to tri-state off 
when OE# or CEo#, CE,# are high). 

WP# INPUT WRITE PROTECT: Erase blocks can be locked by writing a nonvolatile lock-bit 
for each block. When WP# is low, those locked blocks as reflected by the 
Block-lock Status bits (BSR.6), are protected from inadvertent data writes or 
erases. When WP# is high, all blocks can be written or erased regardless of 
the state of the lock-bits. The WP# input buffer is disabled when RP# 
transitions low (deep power-down mode). 

BYTE# INPUT BYTE ENABLE: BYTE# low places device in x8 mode. All data is then input or 
output on 000-7, and D08-'5 float Address Ao selects between the high and 
low byte. BYTE# high places the device in x16 mode, and turns off the Ao input 
buffer. Address A, then becomes the lowest order address. 

Vpp SUPPLY WRITE/ERASE POWER SUPPLY (12.0V :t O.6V, S.OV :t O.SV) : 
For erasing memory array blocks or writing words/bytes into the flash array. 
Vpp = 5.0V ± 0.5V eliminates the need for a 12V converter, while the 12.0V ± 
0.6V option maximizes Write/Erase Performance. 

Successful completion of write and erase attempts is inhibited with Vpp at or 
below 1 .5V. Write and Erase attempts with V pp between 1.5V and 4.5V, 
between 5.5V and 11.4V, and above 12.6V produce spurious results and 
should not be attempted. 

Vee SUPPLY DEVICE POWER SUPPLY (3.3V :t O.3V, S.OV:t O.SV): 
Internal detection configures the device for 3.3V or 5.0V operation. To switch 
3.3V to 5.0V (or vice versa), first ramp Vee down to GND, and then power to 
the new Vee voltage. Do not leave any power pins floating. 

GND SUPPLY GROUND FOR ALL INTERNAL CIRCUITRY: 
Do not leave any ground pins floating. 

NC NO CONNECT: 
lead may be driven or left floating. 

108 ADVANCE INFORMAnONI 



3.0 MEMORY MAPS 

xS Mode 

12S-Kbyte Block 15 

12S-Kbyte Block 14 

12S-Kbyte Block 13 

128-Kbyte Block 12 

128-Kbyte Block 11 

128-Kbyte Block 10 

128-Kbyte Block 9 

128-Kbyte Block 8 

128-Kbyte Block 7 

128-Kbyte Block 6 

128-Kbyte Block 5 

128-Kbyte Block 4 

128-Kbyte Block 3 

128-Kbyte Block 2 

128-Kbyte Block 1 

128-Kbyte Block a 

A20-0 

1FFFFF 

1 EOOOO 
1DFFFF 

1COOOO 
1BFFFF 

1 AOOOO 
19FFFF 

180000 
17FFFF 

160000 
15FFFF 

1j~~~~ 

100000 
OFFFFF 

OEOOOO 
OOFFFF 

OCOOOO 
OBFFFF 

OAOOOO 
09FFFF 

080000 
07FFFF 

060000 
05FFFF 

8m~~ 
020000 
01FFFF 

000000 

Figure 3_ 2SF016XS Memory Map 
(Byte-Wide Mode) 

I ADVANCE INFORMATION 

28F016XS Flash Memory 

x16 Mode 

64-Kword Block 15 

64-Kword Block 14 

64-Kword Block 13 

64-Kword Block 12 

64-Kword Block 11 

64-Kword Block 10 

64-Kword Block 9 

64-Kword Block 8 

64-Kword Block 7 

64-Kword Block 6 

64-Kword Block 5 

64-Kword Block 4 

64-Kword Block 3 

64-Kword Block 2 

64-Kword Block 1 

64-Kword Block 0 

A20-1 

FFFFF 

FOOOO 
EFFFF 

EOOOO 
OFFFF 

00000 
CFFFF 

CODOO 
BFFFF 

BOOOO 
AFFFF 

AOOOO 
9FFFF 

90000 
8FFFF 

80000 
7FFFF 

60000 
5FFFF 

40000 
3FFFF 

30000 
2FFFF 

20000 
1FFFF 

00000 

Figure 4_ 2SF016XS Memory Map 
(Word-Wide Mode) 

109 



28F016XS Flash Memory 

3.1 Extended Status Register Memory Map 

x8 Mode 

RESERVED 

RESERVED 

GSR 

RESERVED 

BSR15 

RESERVED 

RESERVED 

• 
• 
• 

RESERVED 

RESERVED 

GSR 

RESERVED 

BSRO 

RESERVED 

RESERVED 

A 20-0 

1FFFFFH 

1 E0006H 

1 E0005H 

.1 E0004H 

·1 E0003H 

1 E0002H 
1E0001H 
1 EOOOOH 

01FFFFH 

000006H 

000005H 

000004H 

000003H 

000002H 

000001H 
OOOOOOH 

Figure 5. Extended Status Register Memory 
Map (Byte-Wide Mode) 

110 

x16 Mode A 20-1 

.-------------------, FFFFFH 

RESERVED 

1------"""""':"""---:-1 F0003H 
RESERVED 

GSR 
1------. -R-ES-E""'R-V-E..,-D----'-------i F0002H 
...............................•....................................................... 

BSR15 
I----------------------i F0001 H 

RESERVED 

RESERVED FOO OH 
~----...,_--------~--~ 0 

• 
• 
• 

.-----~------------, OFFFFH 

RESERVED 

1--------------------1 00003H 
RESERVED 

GSR 
1-------...,_-----------1 00002H 

RESERVED 

BSRO 
1---------------------; 00001 H 

RESERVED 

RESERVED 
'--------------------~ OOOOOH 

Figure 6. Extended Status Register Memory 
Map (Word-Wide Mode) 

ADVANCE INFORMA TlONI 



28F016XS Flash Memory 

4.0 BUS OPERATIONS, COMMANDS AND STATUS· REGISTER DEFINITIONS 

4.1 Bus Operations for Word-Wide Mode (BYTE# =VIH) 

Mode Notes RP# CEO_1# OE# WEI ADV# ClK A1 DQo,.15 RY/BY# 

Latch Read 1,9,10 VIH VIL X V1H VIL i X X X 
Address 

Inhibit 1,9 VIH VIL X VIH VIH i X X X 
Latching 
Read Address 

Read 1,2,7,9 VIH VIL VIL VIH X i X DOUT X 

Output 1,6,7,9 VIH VIL VIH VIH X X X HighZ X 
Disable 

Standby 1,6,7,9 VIH VIL X X X X X HighZ X 

Deep 1,3 VIL X X X X X X HighZ VOH 
Power-Down 

Manufacturer 1,4,9 VIH VIL VIL VIH X i VIL 0089H VOH 
ID 

Device ID 1,4,8,9 VIH VIL VIL VIH X i VIH 66A8H VOH 

Write 1,5,6,9 VIH VIL VIH VIL X X X DIN X 

NOTES: 
1. X can be VIH or VIL foraddress or control pins except for RY/BY#, which is either VOL or VOH, or High Z or DOUT for data 

pins depending on whether or not OE# is active. 
2. RY/BY# output is open drain. When the WSM is ready, Erase is suspended, or the device is in deep power-down mode, 

RY/BY# will be at VOH if it is tied to Vee through a resistor. RY/BY# at VOH is independent of OE# while a WSM operation 
is in progress. 

3. RP# at GND ± O.2V ensures the lowest deep power-down current. 
4. Ao and A1 at VIL provide device manufacturer codes in xS and x16 modes respectively. Ao and A1 at VIH provide device ID 

codes in xS and x16 modes respectively. All other addresses are set to zero. 
5. Commands for erase, data write, or lock-block operations can only be completed successfully when Vpp = VPPH1 or 

Vpp = VpPH2' 
6. While the WSM is running, RY/BY# stays at VOL until all operations are complete. RY/BY# goes to VOH when the WSM is 

not busy or in erase suspend mode. 
7. RY/BY# may be at VOL while the WSM is busy performing various operations (for example, a Status Register read during a 

write operation). 
S. The 28F016XS shares an identical device identifier with the 2SF016XD. 
9. CE()-1# at V1L is defined as both CEo# and CE1# low, and CE()-1# at VIH is defined as either CEo# or CE1# high. 
10. Addresses are latched on the rising edge of ClK in conjunction with ADV# low. Address A1 = 0 selects the even bank and 

A1 = 1 selects the odd bank, in both byte-wide mode and word-wide mode device configurations. 

I ADVANCE INFORMATION 111 



28F016XS Flash Memory 

4.2 Bus Operations for Byte-Wide Mode (BYTE#= Vld 

Mode Notes RP# CEO_1# OE# WE# ADV# ClK Ao DQ0-7 RYIBY# 

Latch Read 1,9,10 VIH VIL X VIH VIL j X X X 
Address 

Inhibit 1,9 V1H VIL X VIH VIH j X X X 
Latching 
Read Address 

Read 1,2,7,9 VIH VIL VIL VIH X j X DOUT X 

Output 1,6,7,9 VIH VIL VIH VIH X X X HighZ X 
Disable 

Standby 1,6,7,9 VIH VIH X X X X X HighZ X 

Deep 1,3 VIL X X X X X X HighZ VOH 
Power-Down 

Manufacturer 1,4,9 VIH VIL VIL VIH X j VIL 89H VOH 
ID 

Device ID 1,4,8,9 VIH VIL VIL VIH X j VIH A8H VOH 

Write 1,5,6,9 VIH VIL VIH VIL X X X DIN X 

NOTES: 
1. X can be VIH or VIL for address or control pins except for RY/BY#, which is either VOL or VOH, or High Z or DOUT for data 

pins depending on whether or not OE# is active. 
2. RY/BY# output is open drain. When the WSM is ready, Erase is suspended, or the device is in deep power-down mode, 

RY/BY# will be at VOH if it is tied to Vcc through a resistor. RY/BY# at VOH is independent of OE# while a WSM operation 
is in progress. 

3. RP# at GND ± 0.2V ensuresthe·lowest deep power-down current. 
4. Ao and A1 at VIL provide device manufacturer codes in x8 and x16 modes respectively. Ao and A1 at VIH provide device ID 

codes in x8 and x16 modes respectively. All other addresses are set to zero. 
5. Commands for erase, data write, or lock-block operations can only be completed successfully when Vpp = VPPH1 or 

Vpp = VPPH2. 
6. While the WSM is running, RY/BY# stays at VOL until all operations are complete. RYIBY# goes to VOH when the WSM is 

not busy or in erase suspend mode. 
7. RY/BY# may be at VOL while the WSM is busy performing various operations (for example, a Status Register read during a 

write operation). 
8. The 28F016XS shares an identical device identifier with the 28F016XD. 
9. CE()..j# at VIL is defined as both CEo# and CE1# low, and CE()"1# at VIH is defined as either CEo# or CE1# high. 
10. Addresses are latched on the rising edge of ClK in conjunction with ADV# low. Address A1 = 0 selects the even bank and 

A1 = 1 selects the odd bank, in both byte-wide mode and word-wide mode device configurations. 

112 ADVANCE INFORMATION I 



28F016XS Flash Memory 

4.3 28F008SA-Compatible Mode Command Bus Definitions 

. First Bus Cycle Second Bus Cycle 

Command Notes Oper Addr Data(C) Oper Addr Data(C) 

Read Array Write X xxFFH Read AA AD 

Intelligent Identifier 1 Write X xx90H Read IA 10 

Read Compatible Status Register 2 Write X xx70H Read X CSRO 

Clear Status Register 3 Write X xx50H 

Word/Byte Write Write X xx40H Write WA we 
Alternate Word/Byte Write Write X xx10H Write WA WO 

Block Erase/Confirm Write X xx20H Write BA xxOOH 

Erase Suspend/Resume Write X xxBOH Write X xxDOH 

ADDRESS DATA 
AA = Array Address AD = Array Data 

BA = Block Address CSRD = CSR Data 

IA = Identifier Address 10 = Identifier Data 

WA = Write Address WD = Write Data 

x = Don't Care 

NOTES: 
1. Following the Intelligent Identifier command, two read operations access the manufacturer and device signature codes. 
2. The CSR is automatically available after device enters data write, erase, or suspend operations. 
3. Clears CSR.3, CSR.4 and CSR.5. Also clears GSR.5 and all BSR.5, BSR.4 and BSR.2 bits. See Status Register 

definitions. 
4. The upper byte of the data bus (08-15) during command writes is a "Don't Care" in x16 operation of the device. 

I ADVANCE INFORMATION 113 



28F016XS Flash Memory 

4.4 28F016XS-Enhanced Command Bus Definitions 

Command, 

Read Extended Status Register 

Lock Block/Confirm· . 

Upload Status Bits/Confirm 

Device Configuration 

ADDRESS 

BA = Block Address 
, . , " 

RA = Extended Register Address 

WA = Write Address 

X = Don't Care 

NOTES: 

, 
First Bus Cycle Second Bus Cycle 

Notes· O"er Addr Data(4i Oper . Addr Data(4) 

1 Write .. 
X xx71H Read RA .·GSRD 

.. 
BS~D 

Write X xx77H Write BA xxDOH 

2 Write X xx97H Write X xxDOH 

3 Write X xx96H Write X DCCD 

DATA 

AD = Array Data 

BSRD = BSR:Data 

GSRD = GSR Data 

DCCD = Device Configuration Code Data 

1. RA can be the GSR address or any BSR address. See Figures 4 and 5 for Extended Status Register memory maps. . 
2. Upon device power-up, all BSR lock-bits come up locked. The Upload Status Bits command must be written to reflect the 

actual lock-bit status. 
3. This command sets the SFI Configuration allowing the device to be optimized for the specific sytem operating frequency. 
4. The upper byte of the Data bus (08-15) during command writes is a "Don't Care" in x16 operation of the device. 

114 ADVANCE INFORMATION I 



4.5 Compatible Status Register 

WSMS ESS ES DWS 

7 6 5 4 

CSR.7 = WRITE STATE MACHINE STATUS 
1 = Ready 
0= Busy 

CSR.6 = ERASE-SUSPEND STATUS 
1 = Erase Suspended 
0= Erase In Progress/Completed 

CSR.5 = ERASE STATUS 
1 = Error In Block Erasure 
o = Successful Block Erase 

CSR.4 = DATA-WRITE STATUS 
1 = Error in Data Write 
o = Data Write Successful 

CSR.3 = Vpp STATUS 
1 = V PP Error Detect, Operation Abort 
o =Vpp OK 

28F016XS Flash Memory 

VPPS R R R 

3 2 o 

NOTES: 

RY/BY# output or WSMS bit must be checked to 
determine completion of an operation (Erase, 
Erase Suspend, or Data Write) before the 
appropriate Status bit (ESS, ES or DWS) is 
checked for success. 

If DWS and ES are set to "1" during an erase 
attempt, an improper command sequence was 
entered. Clear the CSR and attempt the 
operation again. 

The VPPS bit, unlike an AID converter, does not 
provide continuous indication of Vpp level. The 
WSM interrogates Vpp's level only after the Data 
Write or Erase command sequences have been 
entered, and informs the system if Vpp has not 
been switched on. VPPS is not guaranteed to 
report accurate feedback between VpPLK(max) 
and VpPH1 (min), between VpPH1 (max) and 
VpPH2(min), and above VpPH2(max). 

CSR.2-0 = RESERVED FOR FUTURE ENHANCEMENTS 
These bits are reserved for future use; mask them out when polling the CSR. 

I ADVANCE INFORMATION 
115 



28F016XS Flash Memory 

4.6 Global Status Register 

WSMS 055 DOS R 

? 6 5 4 

GSR.? = WRITE STATE MACHINE STATUS 
1 = Ready 
0= Busy 

GSR.6 = OPERATION SUSPEND STATUS 
1 = Operation Suspended 
o = Operation in Progress/Completed 

GSR.5;= DEVICE OPERATION STATUS 
1 = Operation Unsuccessful 
o = Operation Successful or Currently 

Running 

R R R R 

3 2 o 

NOTES: 

RY/BY# output or WSMS bit must be checked to 
determine completion of an operation (Block 
Lock, Suspend, Upload Status Bits, Erase or 
Data Write) before the appropriate Status bit 
(055 or DOS) is checked for success. 

GSR.4-0 = RESERVED FOR FUTURE ENHANCEMENTS 
These bits are reserved for future use; mask them out when polling the GSR. 

116 ADVANCE INFORMATION I 



28F016XS Flash Memory 

4.7 Block Status Register 

BS BLS BOS 

7 6 5 

BSR.7 = BLOCK STATUS 
1 = Ready 
0= Busy 

BSR.6 = BLOCK LOCK STATUS 
1 = Block Unlocked for Write/Erase 
o = Bloci< Locked for Write/Erase 

BSR.5 = BLOCK OPERATION STATUS 
1 = Operation Unsuccessful 
o = Operation Successful or 

Currently Running 

BSR.2 = Vpp STATUS 

R 

4 

1 = Vpp Error Detect, Operation Abort 
o =Vpp OK 

BSR.1 = V pp LEVEL 
1 = Vpp Detected at 5.0V ± 10% 
0= Vpp Detected at 12.0V ± 5% 

R VPPS VPPL R 

3 2 o 

NOTES: 

RY/BY# output or BS bit must be checked to 
determine completion of an operation (Block 
Lock, Suspend, Erase or Data Write) before the 
appropriate Status bits (BOS, BLS) is checked 
for success. 

BSR.1 is not guaranteed to report accurate 
feedback between the VpPH1 and VpPH2 voltage 
ranges. Writes and erases with Vpp between 
VpPLK(max) and VpPH1 (min), between 
VpPH1 (max) and VpPH2(min), and above 
VpPH2(max) produce spurious results and should 
not be attempted. 

BSR.4,3,0 = RESERVED FOR FUTURE ENHANCEMENTS 
These bits are reserved for future use; mask them out when polling the BSRs. 

I ADVANCE INFORMATION 117 



28F016XS Flash Memory 

4.8 Device Configuration Code 

R R SFI2 

7 6 5 

DCC.5-DCC.3 = SFI CONFIGURATION 
(SFI2-SFIO) 
001 = SFI Configuration 1 
010 = SFI Configuration 2 
011 = SFI Configuration 3 
100 = SFI Configuration 4 

(Default) 

SFI1 

4 

SFIO R R R 

3 2 o 

NOTES: 

Default SFI Configuration on power-up or return 
from deep power-down mode is 4, allowing 
system boot from the 28F016XS at any 
frequency up to the device's maximum 
frequency. Undocumented combinations of 
SFI2-SFI0 are reserved by Intel Corporation for 
future implementations and should not be used. 

DCC.7-6,2-0 = RESERVED FOR FUTURE ENHANCEMENTS 
These bits are reserved for future use; mask them out when reading the Device Configuration Code. 
Set these bits to "0" when writing the desired SFI Configuration to the device. 

4.9 SFI Configuration Table 

SFI 28F016XS-15 28F016XS-20 28F016XS-25 
Configuration Notes Frequency (MHz) Frequency (MHz) Frequency (MHz) 

4 1 66 (and below) 50 (and below) 40 (and below) 

3 50 (and below) 37.5 (and below) 30 (and below) 

2 33 (and below) 25 (and below) 20 (and below) 

1 16.7 (and below) 12.5 (and below) 10 (and below) 

NOTE: 
1. Default SFI Configuration after power-up or retum from deep power-down mode via RP# low. 

118 ADVANCE INFORMATION I 



5.0 ELECTRICAL SPECIFICATIONS 

5.1 Absolute Maximum Ratings* 

Temperature Under Bias .................... O°C to +80°C 

Storage Temperature ................... -65°C to +125°C 

v cc = 3.3V ± 0.3V Systems 

Symbol Parameter 

TA Operating Temperature, Commercial 

Vcc Vcc with Respect to GND 

Vpp Vpp Supply Voltage with Respect to GND 

V Voltage on any Pin (except Vcc,Vpp) with 
Respect to GND 

I Current into any Non-Supply Pin 

lOUT Output Short Circuit Current 

Vec = 5.0V ± 0.5V Systems 

Symbol Parameter 

TA Operating Temperature, Commercial 

Vce Vcc with Respect to GND 

Vpp Vpp Supply Voltage with Respect to GND 

V Voltage on any Pin (except Vce,Vpp) with 
Respect to GND 

I Current into any Non-Supply Pin 

lOUT Output Short Circuit Current 

NOTES: 

28F016XS Flash Memory 

NOTICE: This datasheet contains information on 
products in the sampling and initial production 
phases of development. The specifications are 
subject to change without notice. Verify with your 
local Intel Sales office that you have the latest 
datasheet before finalizing a design. 

·WARNING: Stressing the device beyond the 
"Absolute Maximum Ratings" may cause 
permanent damage. These are stress ratings 
only. Operation beyond the "Operating 
Conditions" is not recommended and extended 
exposure beyond the "Operating Conditions" may 
affect device reliability. 

Notes Min Max Units Test Conditions 

1 0 70 °C Ambient Temperature 

2 -0.2 7.0 V 

2,3 -0.2 14.0 V 

2,5 -0.5 Vcc V 
+ 0.5 

5 ±30 mA 

4 100 mA 

Notes Min Max Units Test Conditions 

1 0 70 °C Ambient Temperature 

2 -0.2 7.0 V 

2,3 -0.2 14.0 V 

2,5 -2.0 7.0 V 

5 ±30 rnA 

4 100 mA 

1. Operating temperature is for commercial product defined by this specification. 

2. Minimum DC voltage is -D.5V on input/output pins. During transitions, this level may undershoot to -2.0V for periods <20 
ns. Maximum DC voltage on input/output pins is Vee +0.5V which may overshoot to Vcc +2.0V for periods <20 ns. 

3. Maximum DC voltage on Vpp may overshoot to +14.0V for periods <20 ns. 

4. Output shorted for no more than one second. No more than one output shorted at a time. 

5. This specification also applies to pins marked "NC." 

I ADVANCE INFORMATION 119 



28F016XS Flash Memory 

5.2 Capacitance 
v S Fora 3.3 ±0.3V )Ystem: 

Symbol Parameter Notes Typ Max Units Test Conditions 

CIN Capacitance Looking into an 1 6 8 pF T A = 25°C, f = 1.0 MHz 
Address/Control Pin 

COUT Capacitance Looking into an 1 8 12 pF T A = 25°C, f = 1.0 MHz 
Output Pin 

CLOAD Load Capacitance Driven by 1 50 pF For the 28F016XS-20 
Outputs for Timing Specifications and 28F016XS-25 

F 50V 05V S t or ± sys em: 

Symbol Parameter Notes Typ Max Units Test Conditions 

CIN Capacitance Looking into an 1 6 8 pF T A = 25°C, f = 1.0 MHz 
Address/Control Pin 

COUT Capacitance Looking into an 1 8 12 pF T A = 25°C, f = 1.0 MHz 
Output Pin 

CLOAD Load Capacitance Driven by 1 100 pF For the 28F016XS-20 
Outputs for Timing Specifications 

30 pF For the 28F016XS-15 

NOTE: 
1. Sampled, not 100% tested. Guaranteed by design. 
2. To obtain iBIS models for the 28F016XS, please contact your 10calinteVDistribution Sales Office. 

120 ADVANCE INFORMATION I 



28F016XS Flash Memory 

5.3 Transient Input/Output Reference Waveforms 

2.4 2.0 
OUTPUT 2.0> < TEST POINTS 

0.8 

INPUT 

0.8 
0.45 

AC test inputs are driven at VOH (2.4 VTTL) for a Logic "1" and VOL (0.45 VTTL) for a Logic "0." Input timing begins at V1H 
(2.0 VTTL) and V1L (0.8 VTTL). Output timing ends at V1H and V1L. Input rise and fall times (10% to 90%) <10 ns. 

3.0 

0.0 

Figure 7. Transient Input/Output Reference Waveform (Vcc = 5.0V:t O.5V) 
for Standard Testing Configuration(1) 

OUTPUT 

0532..07 

AC test inputs are driven at 3.DV for a Logic "1" and D.DV for a Logic "D." Input timing begins, and output timing ends, at 1.5V. 
Input rise and fall times (1 D% to 9D%) <10 ns. 

NOTES: 

Figure 8. Transient Input/Output Reference Waveform (Vcc = 3.3V:t O.3V) 
High Speed Reference Waveform(2) (V cc = 5.0V :t O.5V) 

1. Testing characteristics for 28F016XS-20 at 5V V cc. 

2. Testing characteristics for 28FD16XS-15 at 5V Vcc and 28FD16XS-20/28F016XS-25 at 3.3V Vcc. 

I ADVANCE INFORMATION 121 



28F016XS Flash Memory 

5.4 DC Characteristics 
v 3 3V ± 0 3V T O°C to + 70°C 'ee= , A= 

Symbol Parameter Notes Min Typ Max Units Test Conditions 

III Input Load Current 1 ±1 I1A Vee = Vee Max, 
V1N = Vee or GND 

ILO Output Leakage 1 ±10 I1A Vee = Vee Max, 
Current VOUT = Vee or GND 

Ices Vee Standby 1,5 70 130 I1A Vee = Vee Max, 
Current CEo#, CE1#, RP# = Vee ± 

0.2V 
BYTE#, WP# = Vee ± 0.2V 

orGND ± 0.2V 

1 4 rnA Vee = Vee Max, 
CEo#, CE1#, RP# = V1H 

BYTE#, WP# = V1H or V1L 

IceD Vee Deep 1 2 5 I1A RP# = GND ± 0.2V 
Power-Down BYTE# = Vee ± 0.2Vor 
Current GND ±0.2V 

leeR1 Vee Word/Byte 1,4,5 65 85 rnA Vee = Vee Max 
Read Current CMOS: CEo# ,CE1# = GND 

±0.2V 
BYTE# = GND ± 0.2V or 

Vee ± 0.2V 
Inputs = GND ± 0.2V or Vee 

±0.2V 
4-Location Access 

Sequence: 3-1-1-1 
(clocks) 

f = 25 MHz, lOUT = 0 rnA 

leeR2 Vee Word/Byte 1,4, 60 75 rnA Vee = Vee Max 
Read Current 5,6 CMOS: CEo#, CE1# = GND 

±0.2V 
BYTE# = GND ± 0.2V or 

Vee ± 0.2V 
Inputs = GND ± 0.2V or Vee 

±0.2V 
4-Loeation Access 

Sequence: 3-1-1-1 
(clocks) 

f = 16 MHz, lOUT = 0 rnA 

122 ADVANCE INFORMATION I 



28F016XS Flash Memory 

5.4 DC Characteristics (Continued) 

Vee - 3 3V ± 0 3V TA - O°C to +70°C - , -
Symbol Parameter Notes Min Typ Max Units Test Conditions 

leew Vee Write Current 1,6 8 12 rnA Word/Byte Write in Progress 
Vpp = 12.0V ± 5% 

8 17 rnA Word/Byte Write in Progress 
Vpp = 5.0V ± 10% 

IeeE Vee Block Erase 1,6 6 12 mA Block Erase in Progress 
Current Vpp = 12.0V ± 5% 

9 17 rnA Block Erase in Progress 
Vpp = 5.0V ± 10% 

leeEs Vee Erase 1,2 3 6 rnA CEo#, CE1# = V1H 
Suspend Current Block Erase Suspended 

Ipps Vpp Standby/Read 1 ±1 ±10 IJA Vpp !(, Vee 

IpPR Current 30 200 IJA Vpp > Vee 
IpPD Vpp Deep Power- 1 0.2 5 IJA RP# = GND ± 0.2V 

Down Current 

Ippw Vpp Write Current 1,6 10 15 rnA Vpp = 12.0V ± 5% 
Word/Byte Write in Progress 

15 25 rnA Vpp = 5.0V ± 10% 
Word/Byte Write in Progress 

IpPE Vpp Erase Current 1,6 4 10 rnA Vpp = 12.0V ± 5% 
Block Erase in Progress 

14 20 rnA Vpp = 5.0V ± 10% 
Block Erase in Progress 

IpPES Vpp Erase 1 30 50 IJA Vpp = VPPH1 or VPPH2, Block 
Suspend Current Erase Suspended 

V1L Input Low Voltage 6 -0.3 0.8 V 
V1H Input High Voltage 6 2.0 Vee V 

+0.3 

VOL Output Low 6 0.4 V Vee = Vee Min and 
Voltage IOL=4rnA 

VoH1 Output High 6 2.4 V IOH =-2.0 rnA 
Voltage 

I-
Vee = Vee Min 

VoH2 Vee V IOH =-100 IJA 
-0.2 Vee = Vee Min 

I ADVANCE INFORMATION 123 



28F016XS Flash Memory 

5.4 DC Characteristics (Continued) 

Vee = 3 3V ± 0 3V TA = DoC to +70°C , 

Symbol Parameter Notes Min Typ Max Units Test Conditions 

VpPLK Vpp EraselWrite 3,6 0.0 1.5 V 

Lock Voltage 

VpPH1 Vpp during 3 4.5 5.0 5.5 V 
Write/Erase 
Operations 

VpPH2 Vpp during 3 11.4 12.0 12.6 V 

Write/Erase 
Operations 

VLKO Vee EraselWrite 2.0 V 

Lock Voltage 

NOTES: 

1. All currents are in RMS unless otherwise noted. Typical values at Vcc = 3.3V, VPP = 12.0Vor 5.0V, T = 25°C. These 
currents are valid for all product versions (package and speeds). 

2. ICCES is specified with the device de-selected. If the device is read while in erase suspend mode, current draw is the sum of 
ICCES and ICCR' 

3. Block erases, wordlbyte writes and lock block operations are inhibited when V PP $ V PPLK and not guaranteed in the ranges 
between VpPLK(max) and VpPH1 (min), between VPPH1 (max) and VpPH2(min) and above VpPH2(max). 

4. Automatic Power Savings (APS) reduces ICCR to 3 mA typical in static operation. 

5. CMOS Inputs are either V cc ± 0.2V or GND ± 0.2V. TTL Inputs are either V1L or V1H. 

6. Sampled, but not 100% tested. Guaranteed by design. 

124 ADVANCE INFORMATION I 



28F016XS Flash Memory 

5.5 DC Characteristics 
vee = 5 OV ± 0 5V T A = O°C to +70°C , 

Symbol Parameter Notes Min Typ Max Units Test Conditions 

III Input Load Current 1 ± 1 llA Vee = Vee Max 
VIN = Vee or GND 

ILO Output Leakage 1 ±10 llA Vee = Vee Max 
Current VOUT = Vee orGND 

lees Vee Standby 1,5 70 130 llA Vee = Vee Max 
Current CEo#, CE1#, RP# = Vee ± 

0.2V 
BYTE#, WP# = Vee ± 0.2V 
orGND ± 0.2V 

2 4 rnA Vee = Vee Max 
CEo#, CE1#, RP# = V1H 
BYTE#, WP# = VIH or VIL 

leeD Vee Deep Power- 1 2 5 llA RP# = GND ± 0.2V 
Down Current BYTE# = Vee ± 0.2V or 

GND ±0.2V 

leeR1 Vee Read Current 1,4,5 120 175 rnA Vee = Vee Max, 
CMOS: CEo# ,CE1# = GND 

± 0.2V 
BYTE# = GND ± 0.2V 

or Vee ± 0.2V 
Inputs = GND ± 0.2V or 

Vee ± 0.2V 
4-Location Access 

Sequence: 3-1-1-1 
(clocks) 

f = 33 MHz, lOUT = 0 rnA 

leeR2 Vee Read Current 1,4, 105 150 rnA Vcc = Vee Max, 
5,6 CMOS: CEo#, CE1# = GND 

±0.2V 
BYTE# = GND ± 0.2V 

or Vee ± 0.2V 
Inputs = GND ± 0.2V or 

Vee ± O.2V 
4-Location Access 

Sequence: 3-1-1-1 
(clocks) 

f = 20 MHz, lOUT = 0 rnA 

I ADVANCE INFORMATION 125 



28F016XS Flash Memory 

5.5 DC Characteristics (Continued) 

Vee = 5 OV ± 0 5V TA = O°C to +70°C , 

Symbol Parameter Notes Min Typ Max Units Test Conditions 

leew Vee Write Current 1,6 25 35 rnA Word/Byte in Progress 
Vpp = 12.0V ± 5% 

25 40 rnA Word/Byte in Progress 
Vpp = 5.0V ± 10% 

IeeE Vee Erase 1,6 18 25 rnA Block Erase in Progress 
Suspend Current Vpp = 12.0V ± 5% 

20 30 rnA Block Erase in Progress 
Vpp = 5.0V ± 10% 

leeEs Vee Block Erase 1,2 5 10 rnA CEo#, CE1# = VIH 
Current Block Erase Suspended 

Ipps V pp Standby/Read 1 ±1 ±10 IJA Vpp ~Vee 

IpPR Current 30 200 IJA Vpp > Vee 

IpPD V pp Deep Power- 1 0.2 5 IJA RP# = GND ± 0.2V 
Down Current 

Ippw Vpp Write Current 1,6 7 12 rnA Vpp = 12.0V ± 5% 
Word/Byte Write in Progress 

17 22 rnA Vpp = 5.0V ± 10% 
Word/Byte Write in Progress 

IpPE Vpp Block Erase 1,6 5 10 rnA Vpp = 12.0V ± 5% 
Current Block Erase in Progress 

16 20 rnA Vpp = 5.0V ± 10% 
Block Erase in Progress 

IpPES Vpp Erase 1 30 50 IJA Vpp = VPPH1 or VpPH2, Block 
Suspend Current Erase Suspended 

V1L Input Low Voltage 6 -0.5 0.8 V 

V1H Input High Voltage 6 2.0 Vee V 

+0.5 

VOL Output Low 6 0.45 V Vee = Vee Min 
Voltage IOL =5.8 rnA 

VoH1 Output High 6 0.85 V IOH=-2.5 rnA 
Voltage Vee ----=-=-- Vee = Vee Min 

VoH2 Vee IOH =-100 IJA 
-0.4 Vee = Vee Min 

126 ADVANCE INFORMATION I 



28F016XS Flash Memory 

5.5 DC Characteristics (Continued) 

Vee = 5 OV ± 0 5V TA = DoC to +70°C , 

Symbol Parameter Notes Min Typ Max Units Test Conditions 

VPPLK VPP Write/Erase 3,6 0.0 1.5 V 

Lock Voltage 

VpPH1 VPP during 4.5 5.0 5.5 V 

Write/Erase 
Operations 

VpPH2 VPP during 11.4 12.0 12.6 V 

Write/Erase 
Operations 

VLKO Vee Write/Erase 2.0 V 

Lock Voltage 

NOTES: 
1. All currents are in RMS unless otherwise noted. Typical values at V cc = S.OV, V PP = 12.0V or S.OV, T = 25°C. These 

currents are valid for ali product versions (package and speeds) and are specified for a CMOS risellall time (10% to 90%) of 
<5 ns and a TTL rise/fall time of <10 ns. 

2. ICCES is specified with the device de-selected. If the device is read while in erase suspend mode, current draw is the sum of 
ICCES and ICCR. 

3. Block erases, word/byte writes and lock block operations are inhibited when VPP ~ VpPLK and not guaranteed in the ranges 
between VpPLK(max) and VpPH1 (min), between VpPH1 (max) and VpPH2(min) and above VpPH2(max). 

4. Automatic Power Saving (APS) reduces ICCR to 1 mA typical in static operation. 

5. CMOS Inputs are either V cc ± 0.2V or GND ± 0.2V. TTL Inputs are either V1L or V1H. 

6. Sampled, but not 100% tested. Guaranteed by design. 

I ADVANCE INFORMATION 127 



28F016XS Flash Memory 

5.6 Timing Nomenclature 

All 3.3V system timings are measured from where signals cross 1.SV. 

For S.OV systems, use the standard JEDEC cross point definitions (standard testing) or from where signals 
cross 1.SV (high speed testing). 

Each timing parameter consists of S characters. Some common examples are defined below: 

128 

tELCH time(t) from CE# (E) going low (l) to ClK .(C) going high (H) 

tAVCH time(t) from address (A) valid (V) to ClK (C) going high (H) 

tWHDX time(t) from WE# (W) going high (H) to when the data (D) can become undefined (X) 

Pin Characters Pin States 

A Address Inputs H High 

C ClK (Clock) l low 

D Data Inputs V Valid 

Q Data Outputs X Driven, but Not Necessarily Valid 

E CE# (Chip Enable) Z High Impedance 

F BYTE# (Byte Enable) l latched 

G OE# (Output Enable) 

W WE# (Write Enable) 

P RP# (Deep Power-Down Pin) 

R RY/BY# (Ready Busy) 

V ADV# (Address Valid) 

SV Vcc at 4.SV Minimum 

3V Vcc at 3.0V Minimum 

ADVANCE INFORMATION I 



28F016XS·Flash Memory 

5.7 AC Characteristics-Read Only Operations(1) 
vcc = 3.3V ± 0.3V, TA = O·C to +70·C 

Versions(3) 28F016XS-20 28F016XS-25 

Symbol Parameter Notes Min Max Min Max Units 

fCLK ClK Frequency 7 50 40 MHz 

tCLK ClK Period 20 25 ns 

tcH ClK High Time 6 8.5 ns 

tCl ClK low Time 6 8.5 ns 

tclCH ClK Rise Time 4 4 ns 

tcHCl ClK Fall Time 4 4 ns 

tElCH CEx# Setup to ClK 6 25 35 ns 

tVlCH ADV# Setup to ClK 20 25 ns 

tAvCH Address Valid to ClK 20 25 ns 

tcHAX Address Hold from ClK 0 0 ns 

tcHVH ADV# Hold from ClK 0 0 ns 

~lCH OE# Setup to ClK 20 25 ns 

tcHQV ClK to Data Delay 30 35 ns 

tpHCH RP# High to ClK 480 480 ns 

tcHQX Output Hold from ClK 2 6 6 ns 

tElQX CEx# to Output low Z 2,6 0 0 ns 

tEHQZ CEx# High to Output High Z 2,6 30 30 ns 

tGlQX OE# to Output low Z 2 0 0 ns 

tGHQZ OE# High to Output High Z 2 30 30 ns 

tOH Output Hold from CEx# or OE# 6 0 0 ns 
Change, Whichever Occurs First 

I ADVANCE INFORMATION 129 



28F016XS Flash Memory 

5.7 AC Characteristics-Read Only Operations(1) (Continued) 

Vcc = 5.0V ± 0.5V, TA = O°C to +70°C 
Versions(3) 28F016XS-15(4) 

Symbol Parameter Notes Min Max 

fClK ClK Frequency 7 66 

tClK ClK Period 15 

tCH ClK High Time 3.5 

tCl ClK low Time 3.5 

tClCH ClK Rise Time 4 

tcHCl ClK Fall Time 4 

tElCH CEx# Setup to ClK 6 25 

tVlCH ADV# Setup to ClK 15 

tAVCH Address Valid to ClK 15 

tcHAX Address Hold from ClK 0 

tCHVH ADV# Hold from ClK 0 

tGlCH OE# Setup to ClK 15 

tCHQV ClK to Data Delay 20 

tpHCH RP# High to ClK 300 

tCHQX Output Hold from ClK 2 5 

tElQX _ CEx# to Output low Z 2,6 0 

tEHQZ CEx# High to Output High Z 2,6 30 

~lQX OE# to Output low Z 2 0 

tGHQZ OE# High to Output High Z 2 30 

tOH Output Hold from CEx# or OE# 6 0 
Change, Whichever Occurs First 

NOiES: 
1. See AC Input/Output Reference Waveforms for timing measurements. 

2. Sampled, not 100% tested. Guaranteed by design. 

3. Device speeds are defined as: 

15 ns at V CC = 5.0V equivalent to 20 ns at V cc = 3.3V 

20 ns at V CC = 5.0V equivalent to 25 ns at V CC = 3.3V 
4. See the high speed AC Input/Output Reference Waveforms. 

5. See the standard AC Input/Output Reference Waveforms. 

28F016XS-20(5) 

Min Max 

50 

20 

6 

6 

4 

4 

30 

20 

20 

0 

0 

20 

30 

300 

5 

0 

30 

0 

30 

0 

6. CEx# is defined as the latter of CEo# or CE1# going low, or the first of CEo# or CE1# going high. 

Units 

MHz 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

7. Page buffer reads are valid at any frequency up to the corresponding SFI Configuration setting of 2. Page buffer reads 
above this frequency may produce invalid results and should not be attempted. See Section 4.9 for SFI Configuration 
frequency settings. 

130 ADVANCE INFORMATION I 



28F016XS Flash Memory 

t CLCH t CHCL 

0532_09 

Figure 9. eLK Waveform 

CLK 

ADDR 

I i 
I I , 

ADV# 

, 1 CLK Periods I 
tAVCH! 

-v~ ItiltA 
t~cU I 

i I 

IXXXA I AXXXXXXXXXXXX~XXXXXXX 
i tCHVH I 

.\1 ! I I tEHQZ 

i I 
i I 

I : I 
CEx# 

OE# 

DATA 

NOTE: 
1. The 28F016XS can sustain an optimized burst access throughout the 28F016XS array assuming alternating bank 

accesses; the length of the burst access is dictated by the control CPU or bus architecture. 

Figure 10. Read Timing Waveform(1) 
(SFI Configuration = 1, Alternate-Bank Accesses) I ADVANCE INFORMATION 131 



28F016XS Flash Memory 

elK 

OE# 

DATA 
----+--------r-------+~ 

NOTE: 

: tCHQX 

1. The 28F016XS can sustain an optimized burst access throughout the 28F016XS array assuming alternating bank 
accesses; the length of the burst access is dictated by the control CPU or bus architecture. 

Figure 11. Read Timing Waveform(1) 
(SFI Configuration = 2, Alternate-Ba.nk Accesses) 

0532..11 

132 ADVANCE INFORMATION I 



28F016XS Flash Memory 

ADD 

OE# 

DAT~A __ r-____ +-____ +-____ ~ 

NOTES: 

teHQ~ 
t+ 

1. The 28F016XS can sustain an optimized burst access throughout the 28F016XS array assuming alternating bank 
accesses; the length of the burst access is dictated by the control CPU or bus architecture. 

2. Depending on the actual operation frequency, a consecutive alternating bank access can be initiated one clock period 
earlier. See AP-396 for further information. 

Figure 12. Read Timing Waveform(1) 
(SFI Configuration = 3, Alternate-Bank Accesses) 

I ADVANCE INFORMATION 133 



28F016XS Flash Memory 

AD 

CE 
lCHVH: 

~----+---~--~~--~---+----+----r--~----+----+----+----f~ ~~HQZ 

! 

OE# 

DAT~A~ ____ ~ ____ ~ ____ +-__ ~4 

RP# 

NOTE: 

j.- tpHCH i 
, ! 

!ICHQX lcHQV I 
! 

1. The 28F016XS can sustain an optimized burst access throughout the 28F016XS array assuming altemating bank 
accesses; the length of the burst access is dictated by the control CPU or bus architecture. 

Figure 13. Read Timing Waveform(1) 
(SFI Configuration = 4, Alternating Bank Accesses) 

134 ADVANCE INFORMATION I 



28F016XS Flash Memory 

5.8 AC Characteristics for WEI-Controlled Write Operations(1) 
vcc = 3.3V ± 0.3V, TA = DOC to +70°C 

Versions 28F016XS-20 28F016XS-25 

Symbol Parameter Notes Min Typ Max Min Typ Max Unit 

tAVAV Write Cycle Time 75 75 ns 

tvpwH1,2 Vpp Setup to WE# GOing 3 100 100 ns 
High 

tpHEL RP# Setup to CEx# Going 3,7 480 480 ns 
Low 

tELWL CEx# Setup to WE# Going 3,7 0 0 ns 
Low 

tAVWH Address Setup to WE# 2,6 60 60 ns 
Going High 

tOVWH Data Setup to WE# Going 2,6 60 60 ns 
High 

tWLWH WE# Pulse Width 60 60 ns 

tWHOX Data Hold from WEI High 2 5 5 ns 

tWHAX Address Hold from WEI 2 5 ·5 ns 
High 

tWHEH CEx# hold from WEI High 3,7 5 5 ns 

tWHWL WEI Pulse Width High 15 15 ns 

tGHWL Read Recovery before 3 0 0 ns 
Write 

tWHRL WEI High to RY/BY# 3 100 100 ns 
Going Low 

tRHPL RP# Hold from Valid 3 0 0 ns 
Status Register (CSR, 
GSR, BSR) data and 
RY/BY# High 

tpHWL RP# High Recovery to 3 480 480 ns 
WEI Going Low 

tWHCH Write Recovery before 20 20 ns 
Read 

tawL1,2 Vpp Hold from Valid Status 3 0 0 I.Is 
Register (CSR, GSR, BSR) 
Data and RY/BY# High 

twHov1 Duration of Word/Byte 3,4, 5 9 TBD 5 9 TBD I.IS 
Write Operation 5,8 

tWHov2 Duration of Block Erase 3,4 0.6 1.6 20 0.6 1.6 20 sec 
Operation 

I ADVANCE INFORMATION 135 



28F016XS Flash Memory 

5.8 AC Characteristics for WEI-Controlled Write Operations(1) (Continued) 

Vcc = 5.0V ± 0.5V, TA = O°C to +70°C 

Versions 28F016XS-15 28F016XS-20 

. Symbol Parameter Notes Min Typ Max Min Typ Max Unit 

tAVAV Write Cycle Time 65 65 ns 

tvPWH1,2 Vpp Setup to WE# Going 3 100 100 ns 
High 

tpHEL RP# Setup to CEx# Going 3,7 300 300 ns 
Low 

tELWL CEx# Setup to WE# Going 3,7 0 0 ns 
Low 

tAVWH Address Setup to WE# 2,6 50 50 ns 
Going High 

toVWH Data Setup to WE# Going 2,6 50. 50 ns 
High 

tWLWH WE# Pulse Width 50 50 ns 

tWHDX Data Hold from WE# High 2 0 0 ns 

tWHAX Address Hold from WE# 2 5 5 ns 
High 

tWHEH CEx# hold from WE# High 3,7 5 5 ns 

tWHWL WE# Pulse Width High 15 15 ns 

tGHWL Read Recovery before 3 0 0 ns 
Write 

tWHRL. WE# High to RY/BY# 3 100 100 ns 
Going Low 

tRHPL RP# Hold from Valid 3 0 0 ns 
Status Register (CSR, 
GSR, BSR) data and 
RY/BY# High 

tpHWL RP# High Recovery to 3 300 300 ns 
WE# GOing Low 

tWHCH Write Recovery before 20 20 ns 
Read 

tQWL1,2 Vpp Hold from Valid Status 
Register (CSR, GSR, BSR) 

3 0 0 !.Is 

Data and RYIBY# High 

tWHQV1 Duration of Word/Byte 3,4, 4.5 6 TBD 4;5 6 TBD !.Is 
Write Operation 5,8 

tWHQv2 Duration of Block Erase 3,4 0.6 1.2 20 0.6 1.2 20 sec 
Operation 

136 ADVANCE INFORMATION I 



28F016XS Flash Memory 

NOTES: 
1. Read timings during write and erase are the same as for normal read. 

2. Refer to command definition tables for valid address and data values. 

3. Sampled, but not 100% tested. Guaranteed by design. 

4. Write/Erase durations are measured to valid Status Register (CSR) Data. 

5. Word/byte write operations are typically performed with 1 Programming Pulse. 

6. Address and Data are latched on the rising edge of WE# for all command write operations. 

7. CEx# is defined as the latter of CEo# or CE1# going low, or the first of CEo# or CE1# going high. 

8. The TBD information will be available in a technical paper. Please contact Intel's Application Hotline or your local sales 
office for more information. 

I ADVANCE INFORMATION 137 



28F01f;iXS Flash Memory 

C(J( 

NO~6 

VH 
.ADDRESSES (A) 

""~I 
V L 

V H 
N)[)RESSES(A) 

NOTE 2 V. 

AINt 

NOH 

VH 
~I(E) 

NOTE 4 V L 

VH 
OE'(G) V L 

VH 
WEICN) 

V L 

VH 
DATA(D/Q) 

V L 

V"" 
rNfBYI{R) 

VOl 

VH 
RPI(l') 

V L 

VpPH2 

VppM 
V","I 

V1'AJ( 

VL 

NO~8 

NOTES: 

'VPWHl ""~7 

"=RA 

I READ COMPATIBLE 
STATUS REGISTER DATA 

1. This address string depicts Data Write/Erase cycles with corresponding verification via ESRD. 

2. This address string depicts Data Write/Erase cycles with corresponding verification via CSRD. 

3. This cycle is invalid when using CSRD for verification during data write/erase operations. 

4. CEx# is defined as the latter of CEo# or CE1# going low or the first of CEo# or CE1# going high. 

5. RP# low transition is only to show tRHPL; not valid for above Read and Write cycles. 

6. Data Write/Erase cycles are asynchronous; CLK and ADV# are ignored. 

7. V PP voltage during data write/erase operations valid at both 12.0V and 5.0V. 

8. V PP voltage equal to or below V PPLK provides complete flash memory array protection. 

Figure 14. AC Waveforms for WEi-Command Write Operations, 
Illustrating a Two Command Write Sequence Followed by an Extended Status Register Read 

0532-14 

138 ADVANCE INFORMATION I 



28F016XS Flash Memory 

5.9 AC Characteristics for CEx#-Controlied Write Operations(1) 
v cc = 3 3V ± 0 3V T A = O°C to + 70°C , 

Versions 28F016XS·20 28F016XS·25 

Symbol Parameter Notes Min Typ Max Min Typ Max Unit 

tAvAV Write Cycle Time 75 75 ns 

tVPEH1,2 Vpp Setup to CEx# Going 3,7 100 100 ns 
High 

tpHWL RP# Setup to WEI GOing 3 480 480 ns 
Low 

tWLEL WEI Setup to CEx# Going 3,7 0 0 ns 
Low 

tAvEH Address Setup to CEx# 2,6,7 60 60 ns 
Going High 

tDvEH Data Setup to CEx# Going 2,6,7 60 60 ns 
High 

tELEH CEx# Pulse Width 7 60 60 ns 

tEHDX Data Hold from CEx# High 2,7 10 10 ns 

tEHAX Address Hold from CEx# 2,7 10 10 ns 
High 

tEHWH WE hold from CEx# High 3,7 5 5 ns 

tEHEL CEx# Pulse Width High 7 15 15 ns 

tGHEL Read Recovery before 3 0 0 ns 
Write 

tEHRL CEx# High to RY/BY# 3,7 100 100 ns 
GOing Low 

tRHPL RP# Hold from Valid Status 3 0 0 ns 
Register (CSR, GSR, BSR) 
Data and RY/BY# High 

tpHEL RP# High Recovery to 3,7 480 480 ns 
CEx# Going Low 

tEHCH Write Recovery before 20 20 ns 
Read 

tQVVL 1,2 Vpp Hold from Valid Status 3 0 0 IJs 
Register (CSR, GSR, BSR) 
Data and RY/BY# High 

tEHQV1 Duration of Word/Byte 3,4,5,8 5 9 TBD 5 9 TBD IJs 
Write Operation 

tEHQV2 Duration of Block Erase 3,4 0.6 1.6 20 0.6 1.6 20 sec 
Operation 

I ADVANCE INFORMATION 139 



28F016XS Flash Memory 

5.9 AC Characteristics for CEx~Controlied Write Operations(1) (Continued) 

V 5 OV ± 0 5V T O°C to +70°C 'CC = , A= 

Versions 28F016XS-15 ·28F016XS-20 

Symbol Parameter Notes· Min Typ Max Min . Typ Max· Unit 

tAVAV Write Cycle Time 60 60 ns 

tvPEH1,2 Vpp Setup to CEx# Going 3,7 100 100 ns 
High 

tpHWL RP# Setup toWE# Going 3 300 300 ns 
Low 

tWLEL WE# Setup to CEx# Going 3,7 0 0 ns 
Low 

tAVEH Address Setup to CEx# 2,6,7 45 45 ns 
Going High 

tOVEH Data Setup toCEx# Going 2,6,7 45 45 ns 
High 

tELEH CEx# Pulse Width 7 45 45 ns 

tEHOX Data Hold from CEx# High 2,7 0 0 ns 

tEHAX Address Hold from CEx# 2,7 5 5 ns 
High 

tEHWH WE hold from CEx# High 3,7 5 
.. 

5 ns 

tEHEL CEx# Pulse Width High 7 15 15 ns 

tGHEL Read Recovery before 3 0 0 ns 
Write 

tEHRL . CEx# High to RY/BY# 3,7 100 100 ns 
Going Low 

tRHPL RP# Hold from Valid Status 3 0 0 ns 
Register (CSR, GSR, BSR) , 
Data and RY/BY# High 

tpHEL RP# High Recovery to 3,7 300 300 ns 
CEx# Going Low 

tEHCH Write Recovery before 20 20 ns 
Read 

tQWL1,2 Vpp Hold from Valid Status 3 0 0 IJs 
Register (CSR, GSR, BSR) : 
Data and RY/BY# High 

tEHQV1 Duration of Word/Byte 3,4,5,8 4.5 6 TBD 4.5 6 TBD IJs 
Write Operation 

tEHQV2 Duration of Block Erase 3,4 0.6 1.2 20 0.6 1.2 ·20 sec 
Operation 

140 ADVANCE INFORMATION I 



28F016XS Flash Memory 

NOTES: 
1. Read timings during write and erase are the same as for normal read. 
2. Refer to command definition tables for valid address and data values. 
3. Sampled, but not 100% tested. Guaranteed by design. 
4. Write/Erase durations are measured to valid Status Register (CSR) Data. 
5. Wordlbyte write operations are typically performed with 1 Programming Pulse. 
6. Address and Data are latched on the riSing edge of WE# for all command write operations. 
7. GEx# is defined as the latter of CEo# or CE1# going low, or the first of CEo# or CE1# going high. 
8. The TSD information will be available in a technical paper. Please contact Intel's Application Hotline or your local sales 

office for more information. 

I ADVANCE INFORMATION 141 



28F016XS Flash. Memory 

"'VI 
NOlE6 

VH 
WEI(N) 

V l 

VH 
OEI(G) V l 

CExr(E) 
VH 

NaTE 4 
V l 

VH 
DATA (D/Q) 

V l 

VOII 
RY/IlY'(R) 

VOl. 

V. 
RP,(p) 

V l 

V",", 

Vpp M VPPH' 

V""" 
NOTE 7 

V l 

NOTES 

NOTES: 

1. This address string depicts Data Write/Erase cycles with corresponding verification via ESRD. 

2. This address string depicts Data Write/Erase cycles with corresponding verification via CSRD. 

3. This cycle is invalid when using CSRD for verification during data write/erase operations. 

4. CEx# is defined as the latter of CEo# or CE1# going low or the first of CEo# or CE1# going high. 

5. RP# low transition is only to show tRHPL; not valid for above Read and Write cycles. 

S. Data Write/Erase cycles are asynchronous; ClK and ADV# are ignored. 

7. Vpp voltage during data write/erase operations valid at both 12.0V and 5.0V. 

8. V PP voltage equal to or below V PPLK provides complete flash memory array protection. 

Figure 15. AC Waveforms for CEx#-Controlled Write Operations, 
Illustrating a Two Command Write Sequence Followed by an Extended Status Register Read 

053Z,..15 

142 ADVANCE INFORMATION I 



5.10 Power-Up and Reset Timings 

VeePOWER.UP 

RP# 

(P) 
---~/j 

Vee 

(3V,5V) 

NOTE: 

3.0V 
OV 

, 

!3.3V 

, 
~ 
it 3VPH i 

For read timings following reset see Section 5.7. 

28F016XS Flash Memory 

\j !.; 
i 5.0V. 

I ~~t5-V-PH--~i----------------

~·i· ~l 
~ ~i 

Figure 16. Vee Power-Up and RP# Reset Waveforms 

Symbol Parameter Notes Min Max Unit 

tpLSV RP# Low to Vee at 4.5V (Minimum) 2 0 \-Is 

tpL3V RP# Low to Vee at 3.0V (Minimum) 2 0 \-IS 

!SVPH Vee at 4.5V Minimum) to RP# High 1 2 \-IS 

t3VPH Vee at 3.0V (Minimum) to RP# High 1 2 \-Is 

NOTES: 

1. The tSVPH and/or t3VPH times must be strictly followed to guarantee all other read and write specifications for the 28F016XS. 

2. The power supply may start to switch concurrently with RP# going low. 

I ADVANCE INFORMATION 143 



28t=016XS Flash Memory 

5.11 Erase and Word/Byte Write Performance(3,4) 
vee = 3.3V ± 0.3V, v pp = 5.0V ± 0.5V,TA = O·C to +70·C 

Symltol Parameter Notes Min Typ(1) Max Units Test Conditions 

tWHRH1A Byte Write Time 2,5 TBD 29 TBD I-ls 

tWHRH1B Word Write Time 2,5 TBD 35 TBD I-ls 

tWHRH2 Block Write Time 2,5 TBD 3.8 TBD sec Byte Write Mode 

tWHRH3 Block Write Time 2,5 TBD 2.4 TBD sec Word Write Mode 

Block Erase Time 2,5 TBD 2.8 TBD sec 

Erase Suspend 1.0 12 75 I-ls 
Latency Time to Read 

Vee = 3.3V ± 0.3V, Vpp = 12.0V ± 0.6V, TA = O·C to +70'C 

Symbol Parameter Notes Min Typ(1) Max Units Test Conditions 

tWHRH1 Word/Byte Write Time 2,5 5 9 TBD I-ls 

tWHRH2 Block Write Time 2,5 TBD 1.2 4.2 sec Byte Write Mode 

tWHRH3 Block Write Time 2,5 TBD 0.6 2.0 sec Word Write Mode 

Block Erase Time 2 0.6 1.6 20 sec 

Erase Suspend 1.0 9 55 I-ls 
Latency Time to Read 

144 ADVANCE INFORMATION I 



28F016XS Flash Memory 

Vee = 5.0V ± 0.5V, Vpp = 5.0V ± 0.5V, T A = O°C to +70°C 

Symbol Parameter Notes Min Typ(1) Max Units Test Conditions 

tWHRH1A Byte Write Time 2,5 TBD 20 TBD I.ls 

tWHRH1B Word Write Time 2,5 TBD 25 TBD I.ls 

tWHRH2 Block Write Time 2,5 TBD 2.8 TBD sec Byte Write Mode 

tWHRH3 Block Write Time 2,5 TBD 1.7 TBD sec Word Write Mode 

Block Erase Time 2,5 TBD 2.0 TBD sec 

Erase Suspend 1.0 9 55 I.ls 
Latency Time to Read 

Vee =50V±05V Vpp =120V±06V TA =0°Cto+70°C , , 

Symbol Parameter Notes Min Typ(1) Max Units Test Conditions 

tWHRH1 Word/Byte Write Time 2,5 4.5 6 TBD I.ls 

tWHRH2 Block Write Time 2,5 TBD 0.8 4.2 sec Byte Write Mode 

tWHRH3 Block Write Time 2,5 TBD 0.4 2.0 sec Word Write Mode 

Block Erase Time 2 0.6 1.2 20 sec 

Erase Suspend 1.0 7 40 I.ls 
Latency Time to Read 

NOTES: 

1. 25°C, and nominal voltages. 

2. Excludes system-level overhead. 

3. These performance numbers are valid for all speed versions. 

4. Sampled, but not 100% tested. Guaranteed by design. 

5. The TBD information will be available in a technical paper. Please contact Intel's Application Hotline or your local sales 
office for more information. 

I ADVANCE INFORMATION 145 



28F016XS Flash Memory 

6.0 MECHANICAL SPECIFICATIONS 

'.,,-sEE DETAIL A 

~' . 

DETAILB DETAIL A 

.~ 
0532 • .19 

Figure 17. Mechanical Specifications ofthe 28F016XS 56-Lead TSOP Type I Package 

Family: Thin Small Out-Line Package 

Symbol Millimeters Notes 

" 
Minimum Nomimil Maximum 

A 1.20 

A1 , 0.50 

A2 0.965 0.995 1.025 

b 0.100 0.150 0.200 

c 0.115 0.125 0.135 

D1 18.20, 18.40 18.60 

E 13.80 14.00 14.20 

e 0.50 

D 19.80 20.00 20.20 

L 0.500 0.600 0.700 

N 56 

0 00 30 50 

,Y 0.100 

Z 0.150 0.250 0.350 

146 ADVANCE INFORMATION I 



28F016XS Flash Memory 

DEVICE NOMENCLATURE AND ORDERING INFORMATION 

Option 

1 

2 

Product line designator for all Intel Flash products 
....-'--. 

y 
Package 
E =TSOP 

Order Code 

E28F016XS15 

E28F016XS20 

L...,-J 
Period of Maximum elK 
Input Frequency (ns) 

Vee = 3.3V ± 0.3V, 
SO pF load, 

1.SV 1/0 Levels(1) 

28F016XS-20 

28F016XS-25 

Device Type 
S = Synchronous Pipelined 

Interface 

Valid Combinations 

Vee = S.OV ± 10%, 
100 pF load 

TTL 1/0 Levels(1) 

28F016XS-20 

I ADVANCE INFORMATION 

Vee = S.OV ± 10%, 
30 pF load 

1.SV 110 Levels(1) 

28F016XS-15 

147 



28F016XS Flash Memory 

ADDITIONAL INFORMATION 

Order Number DocumentfTool 

297372 16-Mbit Flash Product Family User's Manual 

292165 AB-62, "Compiling Optimized Code for Embedded Flash RAM Memories" 

292126 AP-360, "16-Mbit Flash Product Family Software Drivers, 
28F016SAlSV IXDIXS" 

292147 AP-398, "Designing with the 28F016XS' 

292146 ----" AP-600, "Performance Benefits and Power/Energy Savings of 28F016XS 
Based System Designs" 

292163 AP-610, "Flash Memory In-System Code and Data Update Techniques" 

297500 "Interfacing the 28F016XS to the i960® Microprocessor Family" 

297504 "Interfacing the 28F016XS to the Intel486™ Microprocessor Family" 

294016 ER-33, "ETOXTM Flash Memory Technology-Insight to Intel's Fourth 
Generation Process Innovation" 

297508 FLASHBuilder Utility 

Contact Intel/Distribution 28F016XS Benchmark Utility 
Sales Office 

Contact Intel/Distribution Flash Cycling Utility 
Sales Office 

Contact Intel/Distribution 28F016XS iBIS Models 
Sales Office 

Contact Intel/Distribution 28F016XS VHDUVerilog Models 
Sales Office 

Contact Intel/Distribution 28F016XS Timing Designer Library Files 
Sales Office 

Contact Intel/Distribution 28F016XS OrcadNiewlogic Schematic Symbols 
Sales Office 

148 ADVANCE INFORMATION I 



28F016XS Flash Memory 

DATASHEET REVISION HISTORY 

Number Description 

001 Original Version 

002 Removed support of the following features: 

• All page buffer operations (read, write, programming, Upload Device Information) 

• Command queuing 

• Software Sleep and Abort 

• Erase all Unlocked Blocks and Two-Byte Write 
0 RY/BY# Configuration as part of the Device Configuration command 

Changed definition of "NC." Removed "No intemal connection to die" from description. 

Added "xx" to Upper Byte of Command (Data) Definition in Sections 4.3 and 4.4. 

Modified parameters "V" and "I" of Section 5.1 to apply to "NC" pins. 

Increased IpPR (Vpp Read Current) for Vpp > Vcc to 200 IJA at Vcc = 3.3V/5.0V. 

Changed Vcc = 5.0V DC Characteristics (Section 5.5) marked with Note 1 to indicate 
that these currents are specified for a CMOS rise/fall time (10% to 90%) of <5 ns 
and a TTL rise/fall time of <10 ns. 

Corrected tpHCH (RP# High to ClK) to be a "Min" specification at Vcc = 3.3V/5.0V. 

Corrected the graphical representation of tWHCH and tEHCH in Figures 14 and 15. 

Increased Typical "Byte/Word Write Times" (tWHRH1A/tWHRH1B) for Vpp = 5.0V (Sec. 5.13): 
tWHRH1A from 16.5 IJs to 29.0 IJs and tWHRH1B from 24.0 IJs to 35.0 IJs at 

Vcc =3.3V 
tWHRH1A from 11.0 IJs to 20.0 IJs and tWHRH1 B from 16.0 IJs to 25.0 IJs at 

Vcc =5.0V. 

Increased Typical "Block Write Times" (tWHRH2/ tWHRH3) for Vpp = 5.0V (Section 5.13): 
tWHRH2 from 2.2 sec to 3.8 sec and tWHRH3 from 1.6 sec to 2.4 sec at Vcc = 3.3V 
tWHRH2 from 1.6 sec to 2.8 sec and tWHRH3 from 1.2 sec to 1.7 sec at Vcc = 5.0V. 

Changed ''Time from Erase Suspend Command to WSM Ready" spec name to "Erase 
Suspend latency Time to Read"; Modified typical values and Added Min/Max 
values at Vcc =3.3/5.0V and Vpp =5.0/12.0V (Section 5.13). 

Minor cosmetic changes throughout document. 

I ADVANCE INFORMATION 149 





ADVANCE INFORMATION 
28F016XD 

16-MBIT (1 MBIT x 16) 
DRAM-~NTIERFACIE FLASH MEMORY 

[I 85 ns Access Time (tRAC> 
- Supports both Standard and Fast

Page-Mode Accesses 

l:liI Multiplexed Address Bus 
- RAS# and CAS# Control Inputs 

• No-Glue Interface to Many Memory 
Controllers 

r::J SmartVoltage Technology 
- User-Selectable 3.3V or 5V Vee 
- User-Selectable 5V or 12V Vpp 

[2J 0.33 MB/sec Write Transfer Rate 

Il:l It:16 Architecture 

1/1 56-Lead TSOP Type I Package 

['J Backwards-Compatible with 28F008SA 
Command Set 

I!!I 2 ~A Typical Deep Power-Down Current 

• 1 mA Typical lee Active Current in Static 
Mode 

IIiI 32 Separately-Erasable/Lockable 
64-Kbyte Blocks 

[] 1 Million Erase Cycles per Block 

Iil State-of-the-Art 0.6 ~m ETOXTM IV Flash 
Technology 

Intel's 28F016XD 16·Mbit Flash memory is a revolutionary architecture which is the ideal choice for deSigning 
truly revolutionary high·performance products. Combining its DRAM-like read performance and interface with 
the intrinsic nonvolatility of flash memory, the 28F016XD eliminates the traditional redundant memory 
paradigm of shadowing code from a slow nonvolatile storage source to a faster execution memory, such as 
DRAM, for improved system performance. The innovative capabilities of the 28F016XD enable the design of 
direct· execute code and mass storage data/file flash memory systems. 

The 28F016XD's DRAM·like interface with a multiplexed address bus, flexible Vee and Vpp voltages, power 
saving features, extended cycling, fast write and read performance, symmetrically blocked architecture, and 
selective block locking provide a highly flexible memory component suitable for resident flash component 
arrays on the system board or SIMMs. The DRAM-like interface with RAS# and CAS# control inputs allows 
for easy migration to flash memory in existing DRAM-based systems. The 28F016XD's dual read voltage 
allows the same component to operate at either 3.3V or 5.0V Vee. Programming voltage at 5V Vpp minimizes 
external circuitry in minimal-chip, space critical designs, while the 12V V pp option maximizes write/erase 
performance. The x16 architecture allows optimization of the memory-to-processor interface. Its high read 
performance combined with flexible block locking enable both storage and execution of operating 
systems/application software and fast access to large data tables. The 28F016XD is manufactured on Intel's 
0.6 !-1m ETOXTM IV process technology. 

Order Number 290533-002 

I 
151 





1.0 INTRODUCTION 

The documentation of the Intel 28F016XD flash 
memory device includes this datasheet, a detailed 
user's manual, and a number of application notes 
and design tools, all of which are referenced at the 
end of this datasheet. 

The datasheet is intended to give an overview of 
the chip feature-set and of the operating AC/DC 
specifications. The 16-Mbit Flash Product Family 
User's Manual provides complete descriptions of 
the user modes, system interface examples and 
detailed descriptions of all principles of operation. 
It also contains the full list of software algorithm 
flowcharts, and a brief section on compatibility 
with the Intel 28F008SA. 

Significant 28F016XD feature revisions occurred 
between datasheet revisions 290533-001 and 
290533-002. These revisions center around 
removal of the following features: 

• All page buffer operations (read, write, 
programming, Upload Device Information) 

• Command queuing 

• Software Sleep and Abort 

• Erase all Unlocked Blocks 

• Device Configuration command 

Intel recommends that all customers obtain the 
latest revisions of 28F016XD documentation. 

1.1 Product Overview 

The 28F016XD is a high-performance, 16-Mbit 
(16,777,216-bit) block erasable, nonvolatile 
random access memory, organized as 
1 Mword x 16. The 28F016XD includes thirty-two 
32-KW (32,768 word) blocks. A chip memory map 
is shown in Figure 3. 

The implementation of a new architecture, with 
many enhanced features, will improve the device 
operating characteristics and result in greater 
product reliability and ease-of-use as compared to 
other flash memories. Significant features of the 
28F016XD include: 

o No-Glue Interface to Memory Controllers 

• Improved Word Write Performance 

I ADVANCE INFORMATION 

28F016XD FLASH MEMORY 

• SmartVoltage Technology 

- Selectable 3.3Vor 5.0V Vec 

- Selectable 5.0V or 12.0V Vpp 

• IntemaI3.0Vl5.0V Vce Detection Circuitry 

• Block Write/Erase Protection 

The 28F016XD's multiplexed address bus with 
RAS# and CAS# inputs allows for a "No Glue" 
interface to many existing in-system memory 
controllers. As such, 28F016XD-based SIMMs 
(72-pin JEDEC Standard) offer attractive 
advantages over their DRAM counterparts in many 
applications. For more information on 28F016XD
based SIMM designs, see the application note 
referenced at the end of this datasheet. 

The 28F016XD incorporates SmartVoltage 
technology, providing Vec operation at both 3.3V 
and 5.0V and program and erase capability at 
Vpp = 12.0V or 5.0V. Operating at Vce = 3.3V, the 
28F016XD consumes less than 60% of the power 
consumption at 5.0V Vee, while 5;OV Vee provides 
the highest read performance capability. 
Vpp = 5.0V operation eliminates the need for a 
separate 12.0V converter, while Vpp = 12.0V 
maximizes write/erase performance. In addition to 
the flexible program and . erase voltages, the 
dedicated Vpp gives complete code protection with 
Vpp ~ VpPLK· 

Internal 3.3V or 5.0V Vee detection automatically 
configures the device for optimized 3.3V or 5.0V 
read/write operation. 

A Command User Interface (CUI) serves as the 
system interface between the microprocessor or 
microcontroller and the internal memory operation. 

Internal Algorithm Automation allows word writes 
and block erase operations to be executed using a 
Two-Write command sequence to the CUI in the 
same way as the 28F008SA 8-Mbit FlashFile™ 
memory. 

Software Locking of Memory Blocks is an added 
feature of the 28F016XD as compared to the 
28F008SA. The 28F016XD provides selectable 
block locking to protect code or data such as 
direct-executable operating systems or application 
code. Each block has an associated nonvolatile 
lock-bit which determines the lock status of the 
block. In addition, the 28F016XD has a master 
Write Protect pin (WP#) which prevents any 
modifications to memory blocks whose lock-bits 
are set. 

153 



28F016XD FLASH MEMORY 

Writing of memory data is performed in word 
increments typically within 6 IJsec (12.0V Vpp)-a 
33% improvement over the 28 F008SA. A block 
erase operation erases one of the 32 blocks in 
typically 0.6 sec (12.0V Vpp), independent of the 
other blocks, which is about a 65% improvement 
over the 28F008SA. 

Each block can be written and erased a minimum 
of 100,000 cycles. Systems can achieve one 
million Block Erase Cycles by providing wear
leveling algorithms and graceful block retirement. 
These techniques have already been employed in 
many flash file systems and' hard disk drive 
designs. 

All operations are started by a sequence of Write 
commands to the device. Three types of Status 
Registers (described in detail later in this 
datasheet) and a RY/BY# output pin provide 
information on the progress of the requested 
operation. 

The following Status Registers are used to provide 
device and WSM information to the user: 

• A Compatible Status Register (CSR) which is 
100% compatible with the 28F008SA FlashFile 
memory Status Register. The CSR, when used 
alone, provides a straightforward upgrade 
capability to the 28F016XD from a 28F008SA
based design. 

• A Global Status Register (GSR) which also 
informs the system of overall Write State 
Machine (WSM) status. 

• 32 Block Status Registers (BSRs) which 
provide block-specific status information such 
as the block lock-bit status. 

The GSR and BSR memory maps are shown in 
Figure 4. 

154 

The 28F016XD incorporates ;;tnopen drain 
RY/BY# output pin. This feature allows the user to. 
OR-tie many RY/BY# pins together in a multiple 
memory configuration such as a Resident Flash 
Array. 

The 28F016XD is specified for a maximum fast 
page mode cycle time of 65 ns (tpe,R) at 5.0V 
operation (4.75V to 5.25V) over the commercial 
temperature range (O°C to +70°C). A 
corresponding maximum fast page mode cycle 
time of 75 ns at 3.3V (3.0V to 3.6V and O°C. to 
+70°C) is achieved for reduced power 
consumption applications. 

The 28F016XD incorporates an Automatic Power 
Saving (APS) feature, which substantially reduces 
the active current when the device is in static 
mode of operation (addresses not switching). In 
APS mode, the typical Icc current is 1 rnA at 5.0V 
(3.0 rnA at 3.3V). 

A deep power-down mode of operation is invoked 
when the RP# (called PWD# on the 28F008SA) 
pin transitions low. This mode brings the device 
power consumption to less than 2.0 IJA, typically, 
and provides additional write protection by acting 
as a device reset pin during power transitions. A 
reset time of 300 ns (5.0V Vee operation) is 
required from RP# switching high until dropping 
RAS#. In the Deep Power-Down state, the WSM is 
reset (any current operation will abort) and the 
CSR, GSR and BSR registers are cleared. 

A CMOS standby mode of operation is enabled 
when RAS# and CAS# transition high and RP# 
stays high with all input control pins at CMOS 
levels. In this mode, the device typically draws an 
Icc standby current of 70 IJA at 5V Vee. 

The 28F016XD is available in a 56-Lead, 1.2mm 
thick, 14mm x 20mm TSOP Type I package. This 
form factor and pinout allow for very high board 
layout densities. 

2.0 DEVICE PINOUT 

The 28F016XD 56-Lead TSOP Type I pinout 
configuration is shown in Figure 2. 

ADVANCE INFORMATION I 



'" 6 
« 

RAS# 

CAS# 

Input 
Buffer! 

Address 
De-Mux 

Address 
Counter 

28F016XD FLASH MEMORY 

y 

~~ ~-
.0-" 

,",0 ,",0 
• .9 • .9 

;;1m ;;1m 

DO 
0-7 

Y Gating/Sensing 

IDO >-M 
.0-" 
,",0 

~~ 

ID_ >-M 
.0-" 
,",0 
..J.B ",m 

Figure 1. 28F016XD Block Diagram 
Architectural Evolution Includes Multiplexed Address Bus, 

SmartVoltage Technology, and Extended Registers 

i4-----wP# 

i4-----RP# 

1--___ --I~RY/BY# 

I ADVANCE INFORMATION 155 



28F016XD FLASH MEMORY 

NC 0 WP# 
GND 2 WE# 

NC 3 OE# 
Ag 4 RY/BY# 
AS 5 DQ15 
A7 6 DQ 7 
A6 7 DQ14 
A5 8 DQ 6 

Vee 9 GND 
RAS# 10 DQ13 
CAS# 11 DQS 

NC 12 OQ12 
NC 13 E28F016XD DQ4 

GND 14 56-LEAD TSOP PINOUT Vee 
Vpp 15 GND 
RP# 16 DQ11 

NC 17 14mmx20 mm DQ3 
NC 18 TOP VIEW OQ10 
NC 19 DQ2 
NC 20 Vee 

GND 21 OQg 
NC 22 DQ1 
NC 23 DQs 
A4 24 DQo 
A3 25 NC 
A2 26 Vee 
A1 27 NC 
Ao 28 NC 

0533_02 

Figure 2. 28F016XD 56-Lead TSOP Type I Pinout Configuration 

156 ADVANCE INFORMATION I 



28F016XD FLASH MEMORY 

2.1 Lead Descriptions 

Symbol Type Name and Function 

ArrAg INPUT MULTIPLEXED ROW/COLUMN ADDRESSES: Selects a word within 
one of thirty-two 32-Kword blocks. Row (upper) addresses are latched on 
the falling edge of RAS#, while column (lower) addresses are latched on 
the falling edge of CAS#. 

DOrrD01s INPUT/OUTPUT DATA BUS: Inputs data and commands during CUI write cycles. Outputs 
array, identifier or status data (DOo-7) in the appropriate read mode. 
Floated when the chip is de-selected or the outputs are disabled. 

RAS# INPUT ROW ADDRESS STROBE: Latches row address information on inputs 
Ag.o when RAS# transitions low. A subsequent CAS# low transition 
initiates 28F016XD read or write operations. 

CAS# INPUT COLUMN ADDRESS STROBE: Latches column address information on 
inputs Ag_O when CAS# transitions low. When preceded by a RAS# low 
transition, CAS# low initiates 28F016XD read or write operations, along 
with OE# and WE#. Subsequent CAS# low transitions, with RAS# held 
low, enable fast paqe mode reads/writes 

RP# INPUT RESET/POWER·DOWN: RP# low places the device in a Deep Power-
Down state. All circuits that consume static power, even those circuits 
enabled in standby mode, are turned off. When returning from Deep 
Power-Down, a recovery time of 300 ns at 5.0V Vee is required to allow 
these circuits to power-up. 
When RP# goes low, the current WSM operation is terminated, and the 
device is reset. All Status Registers return to ready (with all status flags 
cleared). 
Exit from Deep Power-Down places the device in read array mode. 

OE# INPUT OUTPUT ENABLE: Gates device data through the output buffers when 
low in combination with RAS# and CAS# low. The outputs float to tri-state 
off when OE# is high. OE# can be tied to GND if not controlled by the 
system memory controller. RAS# and CAS# high override OE# low. WE# 
low also overrides OE# low. 

WE# INPUT WRITE ENABLE: Controls access to the CUI, Data Register and Address 
Latch. WE# is active low and initiates writes in combination with RAS# 
and CAS# low. WE# low overrides OE# low. RAS# and CAS# high 
override WE# low. 

RY/BY# OPEN DRAIN READY/BUSY: Indicates status of the internal WSM. When low, it 
OUTPUT indicates that the WSM is busy performing an operation. RY/BY# floating 

indicates that the WSM is ready for new operations, Erase is Suspended, 
or the device is in deep power-down mode. This output is always active 
(Le., not floated to tri-state off when OE#, RAS# or CAS# are high). 

WP# INPUT WRITE PROTECT: Erase blocks can be locked by writing a nonvolatile 
lock-bit for each block. When WP# is low, those locked blocks as 
reflected by the Block-Lock Status bits (BSR.6), are protected from 
inadvertent Data Writes or Erases. When WP# is high, all blocks can be 
written or erased regardless of the state of the lock-bits. The WP# input 
buffer is disabled when RP# transitions low (deep power-down mode). 

I ADVANCE INFORMATION 157 



28F016XD FLASH MEMORY 

2.1 Lead Descriptions (Continued) 

Symbol Type Name and Function 

Vpp SUPPLY WRITE/ERASE POWER SUPPLY (12.0V:I: O.6V, S.OV:I: O.SV): For 
erasing memory array blocks or writing words into the flash array. Vpp = 
5.0V :I: O.5V eliminates the need for a 12V converter, while connection to 
12.0V:I: O.6V maximizes Write/Erase Performance. 

NOTE: 
Successful completion of write and erase attempts is inhibited with Vpp at 
or below 1.5V. Write and Erase attempts with Vpp between 1.5Vand 
4.5V, between 5.5V and 11.4V, and above 12.6V produce spurious 
results and should not be attem~ed. 

Vcc SUPPLY DEVICE POWER SUPPLY (3.3V :I: O.3V, S.OV :I: O.SV): 
Internal detection configures the device for 3.3V or 5.0V operation. To 
switch 3.3V to 5.0V (or vice versa), first ramp Vee down to GND, and then 
power to the new Vee voltage. 
Do not leave any power pins floating. 

GND SUPPLY GROUND FOR ALL INTERNAL CIRCUITRY: 
Do not leave any groundQins floati~. 

NC NO CONNECT: 
Lead m~ be driven or left floati~. 

158 ADVANCE INFORMATION I 



intel® 28F016XD FLASH MEMORY 

3.0 MEMORY MAPS 

A(19-0) 
FFFFF 

f&XXl 32-Kword Block 31 
F7FFF 

RXXlJ 32-Kword Block 30 
EFFFF 

E&XXl 32-Kword Block 29 
E7FFF 

EOCOO 32-Kword Block 28 
DFFFF 

D&XXl 32-Kword Block 21 
07FFF 

= 32-Kword Block 26 
CFFFF 

C80CXJ 32-Kword Block 25 
C7FFF 

= 32-Kword Block 24 

Bffff 

B&XXl 
32-Kword Block 23 

B7fff 

8{lllJ 
32-Kword Block 22 

A8FFF 

A&XXl 32-Kword Block 21 
A7FFF 

N1JD 32-Kword Block 20 
9FFFF 

9&XXl 32-Kword Block 19 
97fff 

9(lll] 
32-Kword Block 18 

8FFFF 

B&XXl 32-Kword Block 11 
87FFF 
8{lllJ 32-Kword Block 16 
7ffff 

7&XXl 32-Kword Block 15 
77FFF 

700:0 32-Kword Block 14 
6ffff 

6&XXl 32-Kword Block 13 
67fff 

600XJ 32-Kword Block 12 
5FFFF 

5&XXl 32-Kword Block 11 
57FFf 

500XJ 
32-Kword Block 10 

4FFFF 

4&XXl 32-Kword Block 9 
47FFF 

400XJ 32-Kword Block 8 
3FFFF 

3&XXl 32-Kword Block 1 
37FFf 

300:0 32-Kword Block 6 
2ffff 

2&XXl 32-Kword Block 5 
27fff 

200:0 32-Kword Block 4 
1ffff 

1&XXl 32-Kword Block 3 
17FFF 

100:0 32-Kword Block 2 
Offff 

0&XXl 32-Kword Block 1 
07fff 

OOOXJ 32-Kword Block 0 

NOTE: 

The upper 10 bits (A19-10) reflect 28F016XD addresses A9-0' latched by RAS#. 
The lower 10 bits (A ) reflect 28F016XD addresses A • latched by CAS#. 

Figure 3. 28F016XD Memory Map 

I ADVANCE INFORMATION 159 



28F016XD FLASH MEMORY 

3.1 Extended Status Registers Memory Map 

A 19-0 

FFFFFH 

RESERVED 

F8003H 

RESERVED 

GSR F8002H 

RESERVED 

BSR31 F8001H 

RESERVED 

RESERVED F8000H 

07FFFH 

RESERVED 

00003H 

RESERVED 

GSR 00002H 

RESERVED 

BSRO 00001H 

RESERVED 

RESERVED OOOOOH 

NOTE: 

The upper 10 bits (A19-10) reflect 28F016XD addresses A9-Q. latched by RAS# . 

. The lower 10 bits (A ) reflect 28F016XD addresses A • latched by CAS#. 

Figure 4. Extended Status Registers Memory Map 

160 ADVANCE INFORMATION I 



28F016XD FLASH MEMORY 

4.0 BUS OPERATIONS, COMMANDS AND STATUS REGISTER DEFINITIONS 

4.1 Bus Operations 

Mode Notes RP# RAS# CAS# OE# WE# 000-15 RYIBY# 

Row Address Latch 1,2,9 VIH t VIH X X X X 

Column Address Latch 1,2,9 VIH VIL t X X X X 

Read 1,2,7 VIH VIL VIL VIL VIH DOUT X 

Output Disable 1,6,7 VIH VIL VIL VIH VIH HighZ X 

Standby 1,6,7 VIH VIH VIH X X HighZ X 

Deep Power-Down 1,3 VIL X X X X HighZ VOH 

Manufacturer ID 4,8 VIH VIL VIL VIL VIH 0089H VOH 

Device ID 4,8 VIH VIL VIL VIL VIH 66A8H VOH 

Write 1,5,6 VIH VIL VIL X VIL DIN X 

NOTES: 

1. X can be VIH or VIL for address or control pins except for RY/BY#, which is either VOL or VOH, or High Z or DOUT for data 
pins depending on whether or not OE# is active. 

2. RY/BY# output is open drain. When the WSM is ready, Erase is suspended or the device is in deep power-down mode, 
RY/BY# will be at VOH if it is tied to Vcc through a resistor. RY/BY# at VOH is independent of OE# while a WSM operation 
is in progress. 

3. RP# at GND ± O.2V ensures the lowest deep power-down current. 

4. Ao (latched by CAS#) at VIL provides the Manufacturer ID code. Ao (latched by CAS#) at VIH provides the Device ID code. 
All other addresses (row and column) should be set to zero. 

5. Commands for erase, data write, or lock-block operations can only be completed successfully when Vpp = VpPH1.or 
Vpp = VPPH2. 

6. While the WSM is running, RY/BY# stays at VOL until all operations are complete. RY/BY# goes to VOH when the WSM is 
not busy or in erase suspend mode. 

7. RY/BY# may be at VOL while the WSM is busy performing various operations (for example, a Status Register read during a 
write operation). 

8. The 28F016XD shares an identical device identifier with the 28F016XS. 

9. Row (upper) addresses are latched via inputs AO-9 on the falling edge of RAS#. Column (lower) addresses are latched via 
inputs AO-9 on the falling edge of CAS#. Row addresses must be latched before column addresses are latched. 

I ADVANCE INFORMATION 161 



28F016XD FLASH MEMORY 

4.2 28F008SA-Compatible Mode Command Bus Definitions 

First Bus Cycle Second Bus Cycle 

Command Notes 

Read Array 

Intelligent Identifier 1 

Read Compatible Status Register 2 

Clear Status Register 3 

Word Write 

Alternate Word Write 

Block Erase/Confirm 

Erase Suspend/Resume 

NOTES: 

ADDRESS 
AA = Array Address 
BA = Block Address 
IA = Identifier Address 
WA = Write Address 
X = Don't Care 

Oper 

Write 

Write 

Write 

Write 

Write 

Write 

Write 

Write 

Addr Data") 

X xxFFH 

X xx90H 

X xx70H 

X xx50H 

X xx40H 

X xx10H 

X xx20H 

X xxBOH 

DATA 
AD = Array Data 
CSRD = CSR Data 
10 = Identifier Data 
WD = Write Data 

Oper Addr Data") 

Read AA AD 

Read IA ID 

Read X CSRD 

Write WA WD 

Write WA WD 

Write BA xxDOH 

Write X xxDOH 

1. Following the Intelligent Identifier command, two read operations access the manufacturer and device signature codes. 

2. The CSR is automatically available after device enters data write, erase, or suspend operations. 

3. Clears CSR.3, CSR.4 and CSR.5. Also clears GSR.5 and all BSR.5, BSR.4 and BSR.2 bits. See Status Register 
definitions. 

4. The upper byte olthe data bus (08-15) during command writes is a "Don't Care." 
I , I" 

162 ADVANCE INFORMATION I 



28F016XD FLASH MEMORY 

4.3 28F016XD-Enhanced Command Bus Definitions 

Command 

Read Extended Status Register 

Lock Block/Confirm 

Upload Status Bits/Confirm 

ADDRESS 
BA = Block Address 
RA = Extended Register Address 
WA = Write Address 
X = Don't Care 

NOTES: 

Notes 

1 

2 

First Bus Cycle 

Oper Addr 

Write X 

Write X 

Write X 

DATA 
AD = Array Data 
BSRD = BSR Data 
GSRD = GSR Data 

Data") 

xx71H 

xx77H 

xx97H 

Second Bus Cycle 

Oper Addr DataP) 

Read RA GSRD 
BSRD 

Write BA xxDOH 

Write X xxDOH 

1. RA can be the GSR address or any BSR address. See Figure 4 for the Extended Status Register memory map. 
2. Upon device power-up, all BSR lock-bits come up locked. The Upload Status Bits command must be written to reflect the 

actual lock-bit status. 
3. The upper byte of the data bus (08-15) during command writes is a "Don't Care." 

I ADVANCE INFORMATION 
163 



28F016XD FLASH MEMORY 

4.4 Compatible Status Register 

WSMS I ESS I ES I DWS 

7 6 5 4 

CSR.7 = WRITE STATE MACHINE STATUS 
1 = Ready 
0= Busy 

CSR.6 = ERASE-SUSPEND STATUS 
1 = Erase Suspended 
o = Erase In Progress/Completed 

CSR.5 = ERASE STATUS 
1 = Error In Block Erasure 
o = Successful Block Erase 

CSR.4 = DATA-WRITE STATUS 
1 = Error in Data Write 
o = Data Write Successful 

CSR.3 = Vpp STATUS 
1 = Vpp Error Detect, Operation Abort 
0= VppOK 

VPPS R R R 

3 2 o 

NOTES: 

RY/BY# output or WSMS bit must be checked to 
determine completion of an operation (Erase, 
Erase Suspend, or Data Write) before the 
appropriate Status bit (ESS, ES or DWS) is 
checked for success. 

If DWS and ES are set to "1" during an erase 
attempt, an improper command sequence was 
entered. Clear the CSR and attempt the 
operation again. 

The VPPS bit, unlike an AID converter, does not 
provide continuous indication of Vpp level. The 
WSM interrogates Vpp's level only after the Data 
Write or Erase command sequences have been 
entered, and informs the system if Vpp has not 
been switched on. VPPS is not guaranteed to 
report accurate feedback between VpPLK(max) 
and VpPH1(min), between VpPH1(max) and 
VpPH2(min) and above VpPH2(max). 

CSR.2-0 = RESERVED FOR FUTURE ENHANCEMENTS 
These bits are reserved for future use; mask them out when polling the CSR. 

164 ADVANCE INFORMATION I 



28F016XD FLASH MEMORY 

4.5 Global Status Register 

WSMS OSS I DOS R 

7 6 5 4 

GSR.7 = WRITE STATE MACHINE STATUS 
1 = Ready 
0= Busy 

GSR.6 = OPERATION SUSPEND STATUS 
1 = Operation Suspended 
o = Operation in Progress/Completed 

GSR.5 = DEVICE OPERATION STATUS 
1 = Operation Unsuccessful 
o = Operation Successful or Currently 

Running 

R R R R 

3 2 o 
NOTES: 
RY/BY# output or WSMS bit must be checked to 
determine completion of an operation (Block 
Lock, Suspend, Upload Status Bits, Erase or 
Data Write) before the appropriate Status bit 
(OSS or DOS) is checked for success. 

GSR.4-0 = RESERVED FOR FUTURE ENHANCEMENTS 
These bits are reserved for future use; mask them out when polling the GSR. 

I ADVANCE INFORMATION 
165 



28F016XD FLASH MEMORY 

4.6 Block Status Register 

BS BLS I BOS 

7 6 5 

BSR.7 = BLOCK STATUS 
1 = Ready 
0= Busy 

BSR.6 = BLOCK LOCK STATUS 
1 = Block Unlocked for Write/Erase 
o = Block Locked for Write/Erase 

BSR.5 = BLOCK OPERATION STATUS 
1 = Operation Unsuccessful 
o = Operation Successful or 

Currently Running 

BSR.2 = Vpp STATUS 

R 

4 

1 = V pp Error Detect, Operation Abort 
0= Vpp OK 

BSR.1 = Vpp LEVEL 
1 = V PP Detected at 5.0V ± 10% 
0= Vpp Detected at 12.0V ± 5% 

R VPPS VPPL R 

3 2 o 
NOTES: 
RY/BY# output or BS bit must be checked to 
determine completion of an operation (Block 
Lock, Suspend, Erase or Data Write) before the 
appropriate Status bits (BOS, BLS) is checked 
for success. 

BSR.1 is not guaranteed to report accurate 
feedback between the VPPH1 and VPPH2 voltage 
ranges. Writes and erases with Vpp between 
VpPLK(max) and VPPH1 (min), between 
VpPH1 (max) and VpPH2(min), and above 
VpPH2(max) produce spurious results and should 
not be attempted. 
BSR.1 was a RESERVED bit on the 2BF016SA. 

BSR.4,3,0 = RESERVED FOR FUTURE ENHANCEMENTS 
These bits are reserved for future use; mask them out when polling the BSRs. 

166 ADVANCE INFORMATION I 



5.0 ELECTRICAL SPECIFICATIONS 

5.1 Absolute Maximum Ratings* 

Temperature Under Bias .................... O°C to +80°C 

Storage Temperature ................... -6SoC to +12SoC 

Vcc = 3.3V:t 0.3V Systems 

Sym Parameter 

TA Operating Temperature, Commercial 

Vee Vee with Respect to GND 

Vpp Vpp Supply Voltage with Respect to GND 

V Voltage on any Pin (except Vee,Vpp) with 
Respect to GND 

I Current into any Non·Supply Pin 

lOUT Output Short Circuit Current 

V cc = S.OV :t O.SV Systems 

Sym " Parameter 

TA Operating Temperature, Commercial 

Vee Vee with Respect to GND 

Vpp Vpp Supply Voltage with Respect to GND 

V Voltage on any Pin (except Vee,Vpp) with 
Respect to GND 

I Current into any Non·Supply Pin 

lOUT Output Short Circuit Current 

NOTES: 

28F016XD FLASH MEMORY 

NOTICE: This datasheet contains information on 
products in the sampling and initial production 
phases of development. The specifications are 
subject to change without notice. Verify with your 
local Intel Sales office that you have the latest 
datasheet before finalizing a design. 
'WARNING: Stressing the device beyond the 
"Absolute Maximum Ratings" may cause 
permanent damage. These are stress ratings 
only. Operation beyond the "Operating 
Conditions" is not recommended and extended 
exposure beyond the "Operating Conditions" may 
affect device reliability. 

Notes Min Max Units Test Conditions 

1 0 70 °C Ambient Temperature 

2 -0.2 7.0 V 

2,3 -0.2 14.0 V 

2,S -O.S Vee V 
+ O.S 

S ±30 mA 

4 100 mA 

Notes Min Max Units Test Conditions 

1 0 70 °C Ambient Temperature 

2 -0.2 7.0 V 

2,3 -0.2 14.0 V 

2,S -2.0 7.0 V 

S ±30 mA 

4 100 mA 

1. Operating temperature is for commercial product defined by this specification, 

2, Minimum DC voltage is ·O,SV on input/output pins. During transitions, this level may undershoot to ·2,OV for periods <20 ns. 
Maximum DC voltage on input/output pins is Vee + O.SV which, during transitions, may overshoot to Vee + 2.0V for periods 
<20 ns. 

3. Maximum DC voltage on V pp may overshoot to + 14.0V for periods <20 ns. 

4. Output shorted for no more than one second, No more than one output shorted at a time. 

5. This specification also applies to pins marked "NC." 

I ADVANCE INFORMATION 167 



28F016XDFLASH MEMORY 

5.2 Capacitance 

For a 3~3V :t O.3V System: 

Sym Parameter Notes Typ Max Units Test Conditions 

CIN Capacitance Looking into an 1 6 8 pF T A = 25°C, f = 1.0 MHz 
Address/Control Pin 

COUT Capacitance Looking into an 1 8 12 pF T A = 25°C, f = 1.0 MHz 
Output Pin 

CLOAD Load Capacitance Driven by 1,2 50 pF 
Outputs for Timing Specifications 

For S.OV :t O.SV System: 

Sym Parameter Notes Typ Max Units Test Conditions 

CIN Capacitance Looking into an 1 6 8 pF T A = 25°C, f = 1.0 MHz 
. Address/Control Pin 

COUT Capacitance Looking into an 1 8 12 pF T A = 25°C, f = 1.0 MHz 
Output Pin 

CLOAD Load Capacitance Driven by 1,2 100 pF 
Outputs for Timing Specifications 

NOTE: 

1. Sampled, not 100% tested. 

2. To obtain iBIS models for the 28F016XD, please contact your local Intel/Distribution Sales Office. 

168 ADVANCE INFORMATION I 



28F016XD FLASH MEMORY 

5.3 Transient Input/Output Reference Waveforms 

2.4 

2.0> < TEST POINTS 

0.8 

2.0 
OUTPUT INPUT 

0.8 
0.45 

AC test inputs are driven at VOH (2.4 VTTL) for a Logic "1" and VOL (0.45 VTTL) for a Logic "0." Input timing begins at V1H 
(2.0 VTTL) and V1L (0.8 VTTL). Output timing ends at V1H and V1L. Input rise and fall times (10% to 90%) <10 ns. 

Figure 5. Transient Input/Output Reference Waveform for Vcc = 5.0V:t O.5V(1) 

3.0 

OUTPUT 

0.0 

0533_06 

AC testinputs are driven at 3.0V for a Logic "1" and O.OV for a Logic "0." Input timing begins, and output timing ends, at 1.5V. 
Input rise and fall times (10% to 90%) <10 ns. 

Figure 6. Transient Input/Output Reference Waveform for V cc = 3.3V :t O.3V(2) 

NOTES: 

1. Testing characteristics for 28F016XD-85. 

2. Testing characteristics for 28F016XD-95. 

I ADVANCE INFORMATION 169 



28F016XD FLASH MEMORY inteJ® 
5.4 DC Characteristics 
vee = 3.3V ± 0.3V, TA = O°C to +70°C 

Sym Parameter Notes Min Typ Max Unit Test Condition 

lee1 Vee Word Read 1,4,5 50 70 mA Vee = Vee Max 
Current RAS#, CAS# = V1L 

RAS#, CAS#, Addr. Cycling @ 
tRe = min 

lOUT = 0 mA 
Inputs = TTL or CMOS 

lee2 Vec Standby Current 1,5 1 4 mA Vee = Vee Max 
RAS#, CAS#, RP# = V1H 

WP# = V1L or V1H 

IceS Vee RAS#-Only 1,5 50 70 mA Vee = Vee Max 
Refresh Current CAS#= V1H 

RAS# = V1L 

RAS#, Addr. Cycling @tRe = min 
Inputs = TTL or CMOS 

lee4 Vee Fast Page Mode 1,4,5 40 60 mA Vee = Vee Max 
Word Read Current RAS#, CAS# = V1L 

CAS#, Addr. Cycling @tpe = min 

lOUT = 0 mA 
Inputs = V1L or V1H 

lee5 Vee Standby Current 1,5 70 130 IlA Vee = Vee Max 
RAS# CAS# RP# = Vee ± 0.2V 
WP# = Vee ± 0.2Vor GND ± 
0.2V 

lee6 Vee CAS#-before- 1,5 40 55 mA Vee = Vee Max 
RAS# Refresh Current CAS#, RAS# = V1L 

CAS#, RAS#, Addr. Cycling @tRC 
=min 
Inputs = TTL or CMOS 

Ice7 Vee Standby Current 1,5 40 55 mA Vee = Vee Max 
(Self Refresh Mode) RAS#, CAS# = V1L 

lOUT = 0 mA 
Inputs = V1L or V1H 

III Input Load Current 1 ±1 IlA Vee = Vee Max 
V1N = Vce or GND 

ILO Output Leakage 1 ±10 IlA Vee = Vee Max 
Current VOUT = Vee or GND 

IceD Vee Deep Power-Down 1 2 5 IlA RP# = GND ± 0.2V 

Current 

170 ADVANCE INFORMATION I 



5.4 DC Characteristics (Continued) 
Vee = 3.3V ± 0.3V, TA = O°C to +70°C 

Sym Parameter Notes 

leew Vee Word Write Current 1,6 

IeeE Vee Block Erase 1,6 

Current 

leeEs Vee Erase Suspend 1,2 
Current 

Ipps V pp Standby/Read 1 

Current 

IpPD Vpp Deep Power-Down 1 
Current 

Ippw Vpp Word Write Current 1,6 

IpPE V pp Block Erase 1,6 
Current 

IpPES Vpp Erase Suspend 1 
Current 

V1L Input Low Voltage 6 
V1H Input High Voltage 6 

VOL Output Low Voltage 6 

VOH1 Output High Voltage 6 

VOH2 6 

VPPLK V pp Erase/Write Lock 3,6 
Voltage 

VpPH1 Vpp during Write/Erase 3 

Operations 

VpPH2 Vpp during Write/Erase 3 
Operations 

VLKO Vee Erase/Write Lock 
Voltage 

I ADVANCE INFORMATION 

Min 

-0.3 

2.0 

2.4 

Vee-
0.2 

0.0 

4.5 

11.4 

2.0 

28F016XD FLASH MEMORY 

Typ Max Unit Test Condition 

8 12 mA Word Write in Progress 
Vpp = 12.0V ± 5% 

8 17 mA Word Write in Progress 
Vpp = 5.0V ± 10% 

6 12 mA Block Erase in Progress 
Vpp = 12.0V ± 5% 

9 17 mA Block Erase in Progress 
Vpp = 5.0V ± 10% 

1 4 mA RAS#, CAS# = V1H 
Block Erase Suspended 

± 1 ±10 (JA Vpp ~Vee 
30 200 (JA Vpp > Vee 
0.2 5 (JA RP# = GND ± 0.2V 

10 15 mA Vpp = 12.0V ± 5% 
Word Write in Progress 

15 25 rnA Vpp = 5.0V ± 10% 
Word Write in Progress 

4 10 rnA Vpp = 12.0V ± 5% 
Block Erase in Progress 

14 20 rnA Vpp = 5.0V ± 10% 
Block Erase in Progress 

30 50 (JA Block Erase Suspended 

0.8 V 

Vee + V 
0.3 

0.4 V Vee = Vee Min 
IOL = 4.0 rnA 

V IOH =-2.0 rnA 

Vee = Vee Min 
V IOH =-100 (JA 

Vee = Vee Min 
1.5 V 

5.0 5.5 V 

12.0 12.6 V 

V 

171 



28F016XD FLASH MEMORY 

NOTES: 
1. All currents are in RMS unless otherwise noted. Typical values at Vcc = 3.3V, VPP = 12.0Vor S.OV, T = 25°C. 
2. ICCES is specified with the device de-selected. If the device is read while in Erase Suspend mode, current draw is the 

sum of ICCES and ICC1/Ic04" ' 
3. Block erases, word writes and lock block operations are inhibited when VPP = VpPlK and not guaranteed in the ranges 

between VpPLK(max) and VPPH1(min), between VPPH1(max) and VPPH2(min), and above VPPH2(max). 
4. Automatic Power Saving (APS) reduces ICCl and IC04 to 3.0 rnA typical in static operation. 
5. CMOS inputs are either VCC :I: 0.2V or GND :I: O.2V. TTL inputs are either Vil or VIH. 
6. Sampled, but not 100% tested. Guaranteed by design. 

172 ADVANCE INFORMATION I 



28F016XD FLASH MEMORY 

5.5 DC Characteristics 
vee = 5.0V ± 0.5V, TA = O°C to +70°C 

Sym Parameter Notes Min Typ Max Unit Test Condition 

lee1 Vee Word Read Current 1,4,5 90 120 mA Vee = Vee Max 
RAS#, CAS# = VIL 
RAS#, CAS#, Addr. Cycling @ 

tRe = min 

louT=OmA 
Inputs = TTL or CMOS 

lee2 Vee Standby Current 1,5 2 4 mA Vee = Vee Max 
RAS#, CAS#, RP# = VIH 
WP# = VIL or V1H 

lee3 Vee RAS#-Only 1,5 90 120 mA Vee = Vee Max 
Refresh Current CAS#=VIH 

RAS#=VIL 
RAS#, Addr. Cycling @tRe = min 
Inputs = TTL or CMOS 

lee4 Vee Fast Page Mode 1,4,5 80 110 mA Vee = Vee Max 
Word Read Current RAS#, CAS# = VIL 

CAS#, Addr. Cycling @tpe = min 

louT=OmA 
Inputs = VIL or VIH 

lee5 Vee Standby Current 1,5 70 130 IlA Vee = Vee Max 
RAS#,CAS#,RP# = Vee ± 0.2V 
WP# = Vee ± 0.2Vor 

GND±0.2V 

lee6 Vee CAS#-before- 1,5 50 65 mA Vee = Vee Max 
RAS# Refresh Current CAS#, RAS# = VIL 

CAS#, RAS#, Addr. Cycling @tRe 
= min 
Inputs = TTL or CMOS 

lee7 Vee Standby Current 1,5 50 65 mA Vee = Vee Max 
(Self Refresh Mode) RAS#, CAS# = VIL 

IOUT=OmA 
Inputs = VIL or VIH 

III Input Load Current 1 ±1 IlA Vee = Vee Max 
VIN = Vee or GND 

ILO Output Leakage 1 ±10 IlA Vee=Vcc Max 
Current VOUT = Vee or GND 

IceD Vee Deep Power-Down 1 2 5 IlA RP# = GND ± 0.2V 
Current 

leew Vee Word Write Current 1,6 25 35 mA Word Write in Progress 
Vpp = 12.0V ± 5% 

25 40 mA Word Write in Progress 
Vpp = 5.0V ± 10% 

I ADVANCE INFORMATION 173 



28F016XD FLASH MEMORY 

5.5 DC Characteristics (Continued) 
Vcc = 5.0V ± 0.5V, TA = O·C to +70·C 

Sym Parameter Notes 

ICCE V cc Block Erase 1,6 
Current 

leeEs Vee Erase Suspend 1,2 
Current 

Ipps Vpp Standby/Read 1 
Current 

IpPD Vpp Deep Power-Down 1 
Current 

Ippw Vpp Word Write Current 1,6 

IpPE Vpp Block Erase 1,6 
Current 

IpPES Vpp Erase Suspend 1 
Current 

V1L Input Low Voltage 6 
V1H Input High Voltage 6 

VOL Output Low Voltage 6 

VOH1 Output High Voltage 6 

-VOH2 6 

VpPLK Vpp EraselWrite Lock 3,6 
Voltage 

VpPH1 Vpp during Write/Erase 3 
Operations 

VpPH2 Vpp during Write/Erase 3 
Operations 

VLKO Vee EraselWrite Lock 
Voltage 

174 

Min 

-0.5 
2.0 

0.85 
Vee 
Vee-
0.4 

0.0 

4.5 

11.4-
'! 

2.0 

Typ Max Unit Test Condition 

18 25 rnA Block Erase in Progress 
Vpp = 12.0V ± 5% 

20 30 rnA Block Erase in Progress 
Vpp = 5.0V ± 10% 

2 4 rnA RAS#, CAS# = V1H 
Block Erase Suspended 

± 1 ±10 IJA Vpp ~ Vcc 
30 200 IJA Vpp > Vce 
0.2 5 IJA RP# = GND ±O.2V 

7 12 rnA Vpp = 12.0V ± 5% 
Word Write in Progress 

17 22 rnA Vpp = 5.0V ± 10% 
Word Write in Progress 

5 10 rnA Vpp = 12.0V ± 5% 
Block Erase in Progress 

16 20 rnA Vpp = 5.0V ± 10% 
Block Erase in Progress 

30 50 IJA Block Erase Suspended 

0.8 V 

Vee + V 
0.5 
0.45 V Vee = Vee Min 

IOL=5.8 rnA 
V IOH=-2.5 rnA 

Vee = Vee Min 
V IOH=-1OO IJA 

Vee '= Vee Min 
1.5 V 

5.0 5.5 V 

12.0 12.6 " V 

V 

ADVANCE INFORMATION I 



28F016XD FLASH MEMORY 

NOTES: 
1. All currents are in RMS unless otherwise noted. Typical values at VCC = 5.0V, VPP = 12.0Vor 5.0V, T = 25°C. These 

currents are specified for a CMOS rise/fall time (1 0% to 90%) of <5 ns and a TTL rise/fall time of <10 ns. 

2. ICCES is specified with the device de-selected. If the device is read while in Erase Suspend mode, current draw is the 
sum of ICCES and ICC1/ICC4' 

3. Block erases, word writes and lock block operations are inhibited when VPP = VpPLK and not guaranteed in the ranges 
between VpPLK{max) and VpPH1 {min), between VpPH1{max) and VpPH2{min), and above VpPH2{max). 

4. Automatic Power Saving (APS) reduces ICC1 and ICC4 to 1 mA typical in static operation. 

5. CMOS inputs are either VCC ± 0.2V or GND ± 0.2V. TTL inputs are either VIL or V1H. 

6. Sampled, not 100% tested. Guaranteed by design. 

I ADVANCE INFORMATION 175 



28F016XD FLASH MEMORY 

5.6 AC Characteristics(11) 
vcc = 3.3V± 0.3V, TA = O~C to +70°C 

Read, Write, Read-Modify-Write and Refresh Cycles (Common Parameters) 

Versions 28F016XD-95 Units 

Sym Parameter Notes Min. Max 

tRP RAS# precharge time 10 ns 

tcp CAS# precharge time 15 ns 

tASR Row address set-up time 9 0 ns 

tRAH Row address hold time 9 15 ns 

tASC Column address set-up time 9 0 ns 

tCAH Column address hold time 9 20 ns 

tAR Column address hold time referenced to RAS# 3,9 35 ns 

tRAO RAS# to column address delay time 8,9 15 15 ns 

tCRP CAS# to RAS# precharge time 10 ns 

tOED OE# to data delay 10 30 ns 

tDZO OE# delay time from data-in 10 0 ns 

tozc CAS# delay time from data-in 10 0 ns 

tr Transition time (rise and fall) 10 2 4 ns 

Read Cycle 

Versions 28F016XD-95 Units 

Sym Parameter Notes Min Max 

tRC(R) Random read cycle time 105 ns 

tRAS(R) RAS# pulse width (reads) 95 00 ns 

tCAS(R) CAS# pulse width (reads) 40 00 ns 

tRCO(R) RAS# to CAS# delay time (reads) 1 15 55 ns 

tRSH(R) RAS# hold time (reads) 30 ns 

tCSH(R) CAS# hold time (reads) 95 ns 

tRAC Access time from RAS# 1,8 95 ns 

tCAC Access time from CAS# 1,2 40 ns 

tAA Access time from column address 8 75 ns 

tOEA OE# access time 40 ns 

176 ADVANCE INFORMATION I 



28F016XD FLASH MEMORY 

Read Cycle (Continued) 

Versions 28F016XD-95 Units 

Sym Parameter Notes Min Max 

tROH RAS# hold time referenced to OE# 40 ns 

tRCS Read command setup time 5 ns 

tRCH Read command hold time referenced to CAS# 6,10 0 ns 

tRRH Read command hold time referenced to RAS# 6,10 0 ns 

tRAl Column address to RAS# lead time 9 15 ns 

tCAl Column address to CAS# lead time 9 75 ns 

tCLZ CAS# to output in Low-Z 0 ns 

tOH Output data hold time 0 ns 

tOHO Output data hold time from OE# 0 ns 

tOFF Output buffer turn-off delay 4 30 ns 

tOEZ Output buffer turn off delay time from OE# 30 ns 

tcoo CAS# to data-in delay time 30 ns 

Write Cycle 

Versions . 28F016XD-95 Units 

Sym Parameter Notes Min Max 

tRC(W) Random write cycle time 90 ns 

tRAS(W) RAS# pulse width (writes) 80 00 ns 

tCAS(W) CAS# pulse width (writes) 65 00 ns 

tRCO(W) RAS# to CAS# delay time (writes) 1 15 15 ns 

tRSH(W) RAS# hold time (writes) 65 ns 

tCSH(W) CAS# hold time (writes) 80 ns 

twcs Write command set-up time 5 0 ns 

tWCH Write command hold time 15 ns 

tWCR Write command hold time referenced to RAS# 3 30 ns 

twp Write command pulse width 15 ns 

tRWl Write command to RAS# lead time 65 ns 

tCWl Write command to CAS# lead time 65 ns 

tos Data-in set-up time 7,9 0 ns 

tOH Data-in hold time 7,9 15 ns 

tOHR Data-in hold time referenced to RAS# 3,9 30 ns I ADVANCE INFORMATION 
177 



28F016XD FLASH MEMORY 

Read-Modify-Write Cycle 

Versions 28F016XD-95 Units 

Sym Parameter Notes Min Max 

tRwc Read-modify-write cycle time 10 200 ns 

tRwD RAS# to WE# delay time 5,10 125 ns 

tcWD CAS# to WE# delay time 5,10 70 ns 

tAwD Column address to WE# delay time 5,9,10 105 ns 

tOEH OE# command hold time 10 15 ns 

Fast Page Mode Cycle 

Versions 28F016XD-95 Units 

Sym Parameter Notes Min Max 

tpC(R) Fast page mode cycle time (reads) 75 ns 

tpC(W) Fast page mode cycle time (writes) 80 ns 

tRASP(R) RAS# pulse width (reads) 95 00 ns 

tRASP(W) RAS# pulse width (writes) 80 00 ns 

tCPA Access time from CAS#precharge 85 ns 

tcpw WE# delay time from CAS# precharge 10 0 ns 

tCPRH(R) RAS# hold time from CAS# precharge (reads) 75 ns 

tCPRH(W) RAS# hold time from CAS# precharge (writes) 80 ns 

Fast Page Mode Read-Modify-Write Cycle 

Versions 28F016XD-95 Units 

Sym Parameter Notes Min Max 

tpRwc Fast page mode read-modify-write cycle time 10 170 ns 

178 ADVANCE INFORMATION I 



28F016XD FLASH MEMORY 

Refresh Cycle 

Versions 28F016XD-95 Units 

Sym Parameter Notes Min Max 

tCSR CAS# set-up time (CAS#-before-RAS# refresh) 10 10 ns 

tCHR CAS# hold time (CAS#-before-RAS# refresh) 10 10 ns 

tWRP WE# setup time (CAS#-before-RAS# refresh) 10 10 ns 

tWRH WE# hold time (CAS#-before-RAS# refresh) 10 10 ns 

tRPC RAS# precharge to CAS# hold time 10 10 ns 

tRASS RAS# pulse width (self-refresh mode) 10 0 ns 

tRPS RAS# precharge time (self-refresh mode) 10 10 ns 

tCPN CAS# precharge time (self-refresh mode) 10 10 ns 

tCHS CAS# hold time (self-refresh mode) 10 0 ns 

Refresh 

Versions 28F016XD-95 Units 

Sym Parameter Notes Min Max 

tREF Refresh period 10 co ms 

Misc. Specifications 

Versions 28F016XD-95 Units 

Parameter Notes Min Max 

RP# high to RAS# going low 10 480 ns 

RP# set-up to WE# going low 10 480 ns 

Vpp set-up to CAS# high at end of write cycle 10 100 ns 

WE# high to RY/BY# going low 10 100 ns 

RP# hold from valid status register data and RY/BY# high 10 0 ns 

Vpp hold from valid status register data and RY/BY# high 10 0 ns 

I ADVANCE INFORMATION 179 



28F016XD FLASH MEMORY 

NOTES: 

1. Operation within the tRCD(max) limit insures that tRAC(max) can be met. tRCD(max) is specified as a reference point. 

2. Assumes that tRCD ~tRCD(max). 

3. tAR, tWCR' tDHR are referenced to tRAD(max)· 

4. tOFF(max) defines the time at which the output achieves the open circuit condition and is not referenced to VOH or VOL. 

5. twcs. tRWD. tCWD and tAWD are non restrictive operating parameters. They are included in the datasheet as electrical 
characteristics only. If twcs ~tWCS(min) the cycle is an early write cycle and the data output will remain high impedance for 
the duration of the cycle. If leWD ~leWD{min). tRWD ~RWD(min). tAWD ~tAWD(min). then the cycle is a read-write cycle and 
the data output will contain the data read from the selected address. If neither of the above conditions are satisfied. the 
condition of the data out is indeterminate. 

6. Either tRCH or tRRH must be satisfied for a read cycle. 

7. These parameters are referenced to the CAS# leading edge in early write cycles and to the WE# leading edge in read
write cycles. 

8. Operation within the tRAD(max) limit ensures that tRAC(max) can be met. tRAD(max) is specified as a reference pOint only. If 
tRAD is greater than the specified tRAD(max) limit. then the access time is controlled by tM. 

9. Refer to command definition tables for valid address and data values. 

10. Sampled. but not 100% tested. Guaranteed by design. 

11. See AC Input/Output Reference Waveforms for timing measurements. 

180 ADVANCE INFORMATION I 



5.7 AC Characteristics(11) 
vcc = 5.0V ± 0.5V, TA = O°C to +70°C 

28F016XD FLASH MEMORY 

Read, Write, Read-Modify-Write and Refresh Cycles (Common Parameters) 

Versions 28F016XD-85 Units 

Sym Parameter Notes Min Max 

tRP RAS# precharge time 10 ns 

tcp CAS# precharge time 15 ns 

tASR Row address set-up time 9 0 ns 

tRAH Row address hold time 9 15 ns 

tASC Column address set-up time 9 0 ns 

tCAH Column address hold time 9 20 ns 

tAR Column address hold time referenced to RAS# 3,9 35 ns 

tRAD RAS# to column address delay time 8,9 15 15 ns 

tCRP CAS# to RAS# precharge time 10 ns 

tOED OE# to data delay 10 30 ns 

tDZO OE# delay time from data-in 10 0 ns 

tDzC CAS# delay time from data-in 10 0 ns 

tT Transition time (rise and fall) 10 2 4 ns 

I ADVANCE INFORMATION 
181 



28F016XD FLASH MEMORY 

Read Cycle 

Versions 28F016XD-85 Units 

Sym 
'. 

Parameter Notes Min Max 

tRC(R) Random read cycle time 95 ns 

tRAS(R) . RAS# pulse width (reads) 85 00 ns 

tCAS(R) CAS# pulse width (reads) 35 00 ns 

tRCD(R) RAS# to. CAS# delay time (reads) 1 15 50 ns 

tRSH(R) RAS# ho.ld time (reads) 30 ns 

tCSH(R) CAS# ho.ld time (reads) 85 ns 

tRAC Access time fro.m RAS# 1,8 85 ns 

tcAC Access time from CAS# 1,2 35 ns 

tM Access time fro.m co.lumn address 8 65 ns 

toEA OE# access time, 35 ns 

tROH RAS# ho.ld time referenced to. OE# 35 ns 

tRCS Read command setlJp time 5 ns 

tRCH Read co.mmand ho.ld time referenced to. CAS# 6,10 0 ns 

tRRH Read co.mmand ho.ld lime referenced to. RAS# 6,10 0 ns 

tRAl Co.lumn address to. RAS# lead time 9 15 ns 

tCAl Co.lumn address to. CAS# lead time 9 65 ns 

tCLZ CAS# to. o.utput in Lo.w-Z 10 0 ns 

tOH Output data ho.ld time 10 0 ns 

tOHO Output data ho.ld time fro.m OE# 10 0 ns 

tOFF Output buffer turn-off delay 4,10 30 ns 

tOEZ Output buffer turn o.ff delay time fro.m OE# 10 30 ns 

tCDD CAS# to. data-in delay time 10 30 ns 

182 ADVANCE INFORMATION I 



28F016XD FLASH MEMORY 

Write Cycle 

Versions 28F016XD-85 Units 

Sym Parameter Notes Min Max 

tRC(W) Random write cycle time 75 ns 

tRAS(W) RAS# pulse width (writes) 65 00 ns 

tCAS(W) CAS# pulse width (writes) 50 00 ns 

tRCD(W) RAS# to CAS# delay time (writes) 1 15 15 ns 

tRSH(W) RAS# hold time (writes) 50 ns 

tCSH(W) CAS# hold time (writes) 65 ns 

twcs Write command set-up time 5 0 ns 

tWCH Write command hold time 15 ns 

tWCR Write command hold time referenced to RAS# 3 30 ns 

twp Write command pulse width 15 ns 

tRWL Write command to RAS# lead time 50 ns 

tCWL Write command to CAS# lead time 50 ns 

tDS Data-in set-up time 7,9 0 ns 

tDH Data-in hold time 7,9 15 ns 

tDHR Data-in hold time referenced to RAS# 3,9 30 ns 

Read-Modify-Write Cycle 

Versions 28F016XD-85 Units 

Sym Parameter Notes Min Max 

tRWC Read-modify-write cycle time 10 175 ns 

tRWD RAS# to WE# delay time 5,10 115 ns 

tCWD CAS# to WE# delay time 5,10 65 ns 

tAWD Column address to WE# delay time 5,9,10 100 ns 

tOEH OE# command hold time 10 15 ns 

Fast Page Mode Cycle 

Versions 28F016XD-85 Units 

Sym Parameter Notes Min Max 

tpC(R) Fast page mode cycle time (reads) 65 ns 

tpC(W) Fast page mode cycle time (writes) 65 ns 

I ADVANCE INFORMATION 183 



28F016XD FLASH MEMORY 

Fast Page Mode Cycle Continued 

Versions 28F016XD-85 Units 

Sym Parameter Notes Min Max 

tRASP(R) RAS# pulse width (reads) 85 00 ns 

tRASP(W) RAS# pulse width (writes) 65 00 ns 

tCPA Access time from CAS# precharge 70 ns 

tcpw WE# delay time from CAS# precharge 10 0 ns 

tCPRH(R) RAS# hold time from CAS# precharge (reads) 65 ns 

tCPRH(W) RAS# hold time from CAS# precharge (writes) 65 ns 

Fast Page Mode Read-Modify-Write Cycle 

Versions 28F016XD-85 Units 

Sym Parameter Notes Min Max 

tpRWC Fast page mode read-modify-write cycle time 10 145 ns 

Refresh Cycle 

Versions 28F016XD-85 Units 

Sym Parameter Notes Min Max 

tCSR CAS# set-up time (CAS#-before-RAS# refresh) 10 10 ns 

tCHR CAS# hold time (CAS#-before-RAS# refresh) 10 10 ns 

tWRP WE# setup time (CAS#-before-RAS# refresh) 10 10 ns 

tWRH WE# hold time (CAS#-before-RAS# refresh) 10 10 ns 

tRPC RAS# precharge to CAS# hold time 10 10 ns 

tRASS RAS# pulse width (self-refresh mode) 10 0 ns 

tRPS RAS# precharge time (self-refresh mode) 10 10 ns 

tCPN CAS# precharge time (self-refresh mode) 10 10 ns 

tCHS CAS# hold time (self-refresh mode) 10 0 ns 

Refresh 

Versions 28F016XD-85 Units 

Sym Parameter Notes Min Max 

tREF Refresh period 10 00 ms 

184 ADVANCE INFORMATION I 



28F016XD FLASH MEMORY 

Misc Specifications ... 

Versions 28F016XD-85 Units 

Parameter Notes Min Max 

RP# high to RAS# going low 10 300 ns 

RP# set-up to WE# going low 10 300 ns 

VPP set-up to CAS# high at end of write cycle 10 100 ns 

WE# high to RY/BY# going low 10 100 ns 

RP# hold from valid status register data and RY/BY# high 10 0 ns 

VPP hold from valid status register data and RY/BY# high 10 0 ns 

NOTES: 

1. Operation within the tRCD(max) limit insures that tRAC(max) can be met. tRCD(max) is specified as a reference point. 

2. Assumes that tRCD~tRCD(max)' 

3. tAR, tWCR' tDHR are referenced to tRAD(max)' 

4. tOFF(max) defines the time at which the output achieves the open circuit condition and is not referenced to VOH or VOL' 

5. twcs, tRWD, tCWD and tAWD are non restrictive operating parameters. They are included in the datasheet as electrical 
characteristics only. If twcs~tWCS(min) the cycle is an early write cycle and the data output will remain high impedance for 
the duration of the cycle. If tCWD~tCWD(min)' tRWD~tRWD(min)' tAWD<:tAWD(min), then the cycle is a read-write cycle and the 
data output will contain the data read from the selected address. If neither of the above conditions are satisfied, the 
condition of the data out is indeterminate. 

6. Either tRCH or tRRH must be satisfied for a read cycle. 

7. These parameters are referenced to the CAS# leading edge in early write cycles and to the WE# leading edge in read
write cycles. 

8. Operation within the tRAD(max) limit ensures that tRAC(max) can be met, tRAD(max) is specified as a reference point only. If 
tRAD is greater than the specifiedtRAD(max) limit, then the access time is controlled by 1M' 

9. Refer to command definition tables for valid address and data values. 

10. Sampled, but not 100% tested. Guaranteed by design. 

11. See AC Input/Output Reference Waveforms for timing measurements. 

I ADVANCE INFORMATION 185 



28F016XD FLASH MEMORY 

5.8 AC Waveforms 

IRAS I RP 

RAS# 

~ II 1\ 
ICSH I CRP 

I ReD IRSH 

II ... ...... I CAS 

CAS# 

IRAQ lRAl 

CAL 

I ASR lRAH IASC lCAH ......... - 1- .......... 
Address • Row *- Column 

I RRH 
I ReS I RCH -

\' 
WE# !J I DZC 

. ICDD 

OPEN 
Din 

I DZO IOEA I OED 

~ 

\' 
I. OE# 

(\\ 

- 1M 
Ir..r. ~ ..... IOEZ 

~ ..... ~IOHO lRAC Off 

~ 
--- ..... IOH 

Doul 

~ 
Doul 

~ : Don'l Core 

Figure 7. AC Waveforms for Read Operations 

186 ADVANCE INFORMATION I 



28F016XD FLASH MEMORY 

... .. 
... tRAS .. tRP 

RAS# 

\ 
tCSH tCRP 

tRCD tRSH 

tT .... .... tCAS 

CAS# 
r\ 

tASR tRAH tASC tCAH 
~ - -

• ~ Row Column v... Address 

t rvCS tWCH 

~ 

WE# I, 

t DS 
I ... 

tDH - I .. 

OPEN 
Dout---------------------------------------------------------

OE# : Don't Care 

~ : Don't Care 

twcs 2 twcs (min) 052'_08 

Figure 8. AC Waveforms for Early Write Operations 

I ADVANCE INFORMATION 187 



28F016XD FLASH MEMORY intel® 

... ~ 

tRAS tRP 

RAS# 

\ 1\ 
~CSH _ .. t CRP 

tRCD tRSH 
. 

tT.., f---
tCAS 

CAS# 

tASR tRAH tASC tCAH 
~ - -

Address • Row ~ Column 

tRCS tCWL -- tRWL 

twp 

tDZC 
tDS -- .... 

tDH I ...... 

WEi 

OPEN ~ Din 
~ t DZO tQED tQEH -- .... - ... ~ 

Din 

\' (I 

/, I tQEZ 
OE# 

-tCLZ .. J,...----..., 
flnvalid 

~ 
Dout 

~ : Don't Care 

Figure 9. AC Waveforms for Delayed Write Operations 

188 ADVANCE INFORMATION I 



28F016XD FLASH MEMORY 

• Rwe • 
I RAS IRP 

RAS# 

\ / 1\ 
I RCD .... I CAS .. I CRP 

IT ... 
~ 

CAS# 
V 

IRAD 

I ASR IRA~ IA~ ICAH 

~ ~ ~ 

• ~ Row Column 

IRC~ ICWD lew 
~ 

-~ I- IAWD RWL 

Address 

I RWD IWp 

WE# /1 
I 

~ 
IDS ID~ 

:- 1- ~ ... 
OP N ~"l Din r 

I DZO IOE_C 10EH 
10·;: 

.... 
Din 

.... 
OE# 

\\ 

I 

~~ IA 
IOEZ 

I RAC ~ 
. 

Dou 
~: 

,.----, 

t V Dout 

ICLZ 
'------' 

: n~ r ~ Do Cae 

0533..10 

Figure 10. AC Waveforms for.Read-Modify-Write Operations 

I ADVANCE INFORMATION 189 



28F016XD FLASH MEMORY 

-
RAS# 

CAS# 

t A .. r"C L 

tASR tRAH tASC tCAH tASC tCAH tA~ tCA 
Address .......... ~~ .... ~ ~ .. 

)Ir--R-O..,wf----dt Column 1 ~ ~ Column 2 ~~ ~fol~um~n ~N~~mii~\\ 

tCDD tCDC 
.... ~ 

~ Din j}, 
OPEN OPEN 

I'll! 
t DZO tOE tDZ tOE 

-i I-I-H' -

OE# 

tRAC 'r.PJ 
te to A 

Dout 

t 14-+-I--'ltgH 

~ffi"·'" TOH( t OE t e":" OHO I~FF 
t OEA ~ ~ ~ ~ (ij:f~ ~ 

tCAC___ _ tOFF ~ ~ tc~ 
t ~ 't - t ~ ~ .-.nF_ 

CLZ ... r-~ ... ~ 1_ .01::Lt 4!~ J: __ --v-_t_Q_EZ_ ~~~_-:~ 

----------f6l~~ Dout 1 ~ Dout2 ~ DoutN 
W 1'---- W ~ Wl'---__ -' 

~ : Don't Care 

Figure 11, AC Waveforms for Fast Page Mode Read Operations 

190 ADVANCE INFORMATION I 



28F016XD FLASH MEMORY 

t RASP I RP .. .. .. .. 
RAS# 

IRSH 

tRP 

CAS# 

Address 

WE# 

Din 

OPEN 
Dout 

CEil : Oont Care 

~ : Don't Care 

t WCS >= t VoICS (min) 

Figure 12. AC Waveforms for Fast Page Mode Early Write Operations 

I ADVANCE INFORMATION 191 



28F016XD FLASH MEMORY 

!RASP 

RAS# 

CAS# 

. Address 

WE# •• nn 
DinDlf-~ 

Dout----------------~_i--------~~~------_6--i_----------

~. : Don't Care Invalid Dou! Invalid Dou! Invalid Dou! 

Figure 13. AC Waveforms for Fast Page Mode Delayed Write Operations 

192 ADVANCE INFORMATION I 



28F016XD FLASH MEMORY 

t RASP 
tRP ..., ~ 

---

RAS# 1\ 
t tpRWC tCRP T ...... l- t tcp I-

~ -- -- f-
tRCD tCAS tCAS tr.A~ 

I" h 
CAS# 1\ II 

tRAD 
t t tASC A~ I- ..... f4 ASC ~ 

Address 

tRA~ -- t tCAH 
~ 

.~~~ ,/l1i, ~ Column 2 
'--I--'t 

Column 1 "~ 
t 'QSlU 

RW t~ tcpw ~ 
t AWD tAWn.. 

tCWD tCWD 
tR~ R~ I-

WE# 
twp LI twp ru 

OE# 

Dout 

Figure 14. AC Waveforms for Fast Page Mode Read-Modify-Write Operations I ADVANCE INFORMATION 
193 



28F016XD FLASH MEMORY 

... RC 
~ 

tRAS tRP 

RAS# \ 

r\ 
tT ___ " 

14- tRPC tCRP 

~ '~ 

CAS# 

tASR tRAH ...... .- ... 
\\'NW' 'YY' _/\ 

ROW .'V 
Address 

tOFF 

Do~ ~ _______________________________ O_P_E_N ______________ __ 

OEII,WEII : Don't Care 

~ : Don't Care 

Figure 15. AC Waveforms for RAS#-Only Refresh Operations 

194 ADVANCE INFORMATION I 



RAS# 

CAS# 

Address 

Dout 

... 

OPEN 

28F016XD FLASH MEMORY 

OE#: Don't Care 

~ :Don~Care 

Figure 16. AC Waveforms for CAS#-before-RAS# Refresh Operations 

I ADVANCE INFORMATION 195 



28F016XD FLASH MEMORY 

RC RC 

RAS# 

IRAS IRP IRAS IRP IRAS IRP 

----, ~ I~ 
V 1"-IT 

IRSH ICHR ICRP 
IRCD .. .. 

CAS# 
tRAD ~RAL 

lAS 

~ ... IR~ lAS 

~~ hf-~ 
.-

Ro ~~ Column 
1/ 
\\ lL- l-' 

Address 

IRRH 

IFPS IRCH 

\' • /1 
WEI 

I ZC ICDD 
~ f--

WI 
Din ~ 

IDZO IOED 

-I 
IOEA ~ 
~ 

L rtf 
/1 \\ OE# 

I AG.. 1--- IOEZ 
lAA rOFF IOHO 

IRA IOH 
~j ~ Doul }--

W Dout 

~ : Don'l Care 

...... '7 

Figure 17. AC Waveforms for Hidden Refresh Operations 

196 ADVANCE INFORMATION I 



28F016XD FLASH MEMORY 

t RASS 

t RPC 
\ / -1 55 

t CPN t t CHS 
IJs~ ~ 

RAS# 

CAS# / ~ II 
55 

tOFF 
~ 

HI-Z 
55 

Figure 18. AC Waveforms for Self-Refresh Operations 

I ADVANCE INFORMATION 197 



28F016XD FLASH MEMORY 

5.9 Power-Up and Reset Timings 

Vee POWER-UP 

RP# 

(P) 

!1i-i --------.,. 
------' ! 

Vee 
(3V,SV) 

3.0V 

I i 3.3V 

i--_______ A 
5.0V , 

,--~-------

053:U9 

Figure 19. Vee Power-Up and RP# Reset Waveforms 

Sym Parameter Notes Min Max Unit 

IpLSV RP# Low to Vee a14.5V (Minimum) 2 0 IJs 

IpL3V RP# Low 10 Vee a13.0V (Minimum) 2 0 IJs 

ISVPH Vee a14.5V Minimum) 10 RP# High 1 2 IJs 

13vPH Vee a13.0V (Minimum) 10 RP# High 1 2 IJs 

NOTES: 
For Read Timings following Reset, see sections 5.6 and 5.7. 

1. The' tSVPH and/or t3VPH times must be strictly followed to guarantee all other read and write specifications for the 28F016XD 
2. The power supply may start to switch concurrently with RP# going low. 

198 ADVANCE INFORMATION I 



28F016XD FLASH MEMORY 

5.10 Erase and Word Write Performance(3,4) 

vee = 3.3V ± 0.3V, vpp = 5.0V ± 0.5V, TA = O°C to +70°C 

Symbol Parameter Notes 

tWHRH1 Word Write Time 2,5 

tWHRH3 Block Write Time 2,5 

Block Erase Time 2,5 

Erase Suspend Latency Time to Read 

Vee = 3.3V ± 0.3V, Vpp = 12.0V ± 0.6V, TA = O°C to +70°C 

Symbol Parameter Notes 

tWHRH1 Word Write Time 2,5 

tWHRH3 Block Write Time 2,5 

Block Erase Time 2 

Erase Suspend Latency Time to Read 

Vee = 5.0V ± 0.5V, Vpp = 5.0V ± 0.5V, TA = O°C to +70°C 

Symbol Parameter Notes 

tWHRH1 Word Write Time 2,5 

tWHRH3 Block Write Time 2,5 

Block Erase Time 2,5 

Erase Suspend Latency Time to Read 

Vee = 5.0V ± 0.5V, Vpp = 12.0V ± 0.6V, TA = O°C to +70°C 

Symbol Parameter Notes 

tWHRH1 Word Write Time 2,5 

twHRH3 Block Write Time 2,5 

Block Erase Time 2 

Erase Suspend Latency Time to Read 

NOTES: 

1. 25°C, and nominal voltages. 

2. Excludes system-level overhead. 

3. These performance numbers are valid for all speed versions. 

4. Sampled, but not 100% tested. Guaranteed by design. 

Min 

TBD 

TBD 

TBD 

1.0 

Min 

5 

TBD 

0.3 

1.0 

Min 

TBD 

TBD 

TBD 

1.0 

Min 

4.5 

TBD 

0.3 

1.0 

Typ(l) Max Units 
35.0 TBD IJS 

1.2 TBD sec 

1.4 TBD sec 

12.0 75.0 IJS 

Typ(l) Max Units 

9 TBD IJS 

0.3 1.0 sec 

0.8 10 sec 

9.0 55.0 IJS 

Typ(l) Max Units 

25.0 TBD IJs 

0.85 TBD sec 

1.0 TBD sec 

9.0 55.0 IJS 

Typ(l) Max Units 

6 TBD IJs 

0.2 1.0 sec 

0.6 10 sec 

7.0 40.0 IJS 

5. The TBD information will be available in a technical paper. Please contact Intel's Application Hotline or your local sales 
office for more information. 

I ADVANCE INFORMATION 
199 



28F016XD FLASH· MEMORY 

6.0 MECHANICAL SPECIFICATIONS 

r-' ~EEDErAILA 
.~rrf=: ~~~~~ 

DErAILS DErAIL A 

~ 

SEATING 
PlANE 

Figure 20.. Mechanical Specifications of the 28F016XD 56-Lead TSOP Type I Package 

, Family: Thin Small Out-Line Package 

Symbol Millimeters Notes 

Minimum Nominal Maximum 

A 1.20. 

A1 0..50. 

A2 0..965 0..995 1.0.25 

b 0..10.0. 0..150. 0..20.0. 
c 0..115 .0..125 0..135 

01 18.20. 18.40. 18.60. 

E 13.80. 14.0.0. 14.20. 
e 0..50. 
D 19.80. 20..0.0. 20..20. 
L 0..50.0. 0..60.0. 0..70.0. 
N 56 
0 D° 3° 5° 
Y 0..10.0. 

Z 0..150. 0..250. 0..350. 

20.0. ADVANCE INFORMATION I 



28F016XD FLASH MEMORY 

DEVICE NOMENCLATURE AND ORDERING INFORMATION 

Product line designator for all Intel Flash products 
~ 

IE 12lalFlol116lxlol-lalsl 
~;T~6pe J 
Device Density 
016 = 16-Mbit 

Product Family 
X= Embedded 

Flash RAM 

Random Access Time 
(tRAd at 5V \CC (ns) 

Device Type 
D = DRAM-Interface 

Valid Combinations 

Order Code Vee = 3.3V:t 0.3V, SO RF load, 
1.SV 1/0 Levels 1) 

Vee = S.OV:t 10%,100 RF load, 
TTL 1/0 Levels( ) 

E28F016XD 85 E28F016XD-95 E28F016XD-85 

NOTE: 

1. See Section 5.2 for Transient Input/Output Reference Waveforms. 

I ADVANCE INFORMATION 201 



28F016XD FLASH MEMORY 

ADDITIONAL INFORMATION 

Order Number DocumentITool 

297372 16-Mbit Flash Product Family User's Manual 

292152 AB-58, "28F016XD-Based SIMM Designs' 

292165 AB-62, ·Compiling Optimized Code for Embedded Flash RAM Memories" 

292092 AP-357, "Power Supply Solutions for Flash Memory" 

292123 AP-374, "Flash Memory Write Protection Techniques" 

292126 AP-377, "16-Mbit Flash Product Family Software Drivers, 
28F016SA/SVIXDIXS" 

292131 AP-384, "DeSigning with the 28F016XD" 

292163 AP-610, "Flash Memory In-System Code and Data Update Techniques" 

292168 AP-614, "Using the 28F016XD in Embedded PC Designs" 

294016 ER-33, "ETOXTM Flash Memory Technology-Insight to Intel's Fourth 
Generation Process Innovation" 

297508 FlashBuilder Utility 

.. Contact Intel/Distribution 28F016XD Benchmark Utility 
Sales Office 

Contact Intel/Distribution Flash Cycling Utility 
Sales Office 

Contact Intel/Distribution 28F016XD iBIS Models 
Sales Office 

Contact Intel/Distribution 28F016XD VHDLNerilog Models 
Sales Office 

Contact Intel/Distribution 28F016XD Timing Designer Library Files 
Sales Office 

Contact Intel/Distribution 28F016XD Drcad and ViewLogic Schematic Symbols 
Sales Office 

202 ADVANCE INFORMATION I 



28F016XD FLASH MEMORY 

DATASHEET REVISION HISTORY 

Number Description 

001 Original Version 

002 Removed support of the following features: 
• All page buffer operations (read, write, programming, Upload Device Information) 
• Command queuing 
• Software Sleep and Abort 
0 Erase All Unlocked Blocks 
0 Device Configuration command 

Changed definition of "NC." Removed "No intemal connection to die" from description. 
Added ''xx" to Upper Byte of Command (Data) Definition in Sections 4.2 and 4.3. 
Modified parameters ''V'' and "I" of Section 5.1 to apply to "NC" pins. 
Increased Ipps (Vpp Read Current) for Vpp > Vee to 200 IJA at Vee = 3.3V/S.OV. 
Changed Vee = 5.0V DC Characteristics (Section 5.5) marked with Note 1 to indicate 

that these currents are specified for a CMOS rise/fall time (10% to 90%) of <5 ns 
and a TIL rise/fall time of <10 ns. 

Corrected "RP# high to RAS# going low" to be a "Min" specification at Vee = 3.3V15.0V. 
Increased Typical 'Word/Block Write Times" (twHRH1/twHRH3) for Vpp = 5.0V: 

tWHRHl from 24.0 IJS to 35.0 IJS and twHRH3 from 0.8 sec to 1.2 sec at Vee = 3.3V 
twHRHl from 16.0 IJs to 25.0 IJs and twHRH3 from 0.6 sec to 0.85 sec at Vee = 5.0V 

Changed "Time from Erase Suspend Command to WSM Ready" spec name to "Erase 
Suspend Latency Time to Read"; modified typical values and added MinIMax 
values at Vee =3.3/5.0V and Vpp =S.0/12.0V (Section 5.10). 

Minor cosmetic changes throughout document. 

I ADVANCE INFORMA1l0N 203 





TECHNICAL 
PAPER 

Interfacing the 
28F016XS to the 
Intel486™ 
Microprocessor Family 

KEN MCKEE 
TECHNICAL MARKETING 
ENGINEER 

PHILIP BRACE 
APPLICATIONS ENGINEER 

February 1995 Order Number: 297504-002 

I 
205 





1.0 INTRODUCTION 

This technical paper describes designs interfacing the 
high perfonnance 28F016XS flash memory to the 
Inte1486™ microprocessor. These designs are based on 
preliminary 28F016XS specifications. Please contact 
your Intel or distribution sales office for up-to-date 
infonnation. 

The 28F0l6XS is a 16-Mbit flash memory with a 
synchronous pipelined read interface. This optimized 
flash memory interface delivers equivalent or better 
read perfonnance compared to DRAM. The 28F016XS 
combines ROM-like non-volatility, DRAM-like read 
performance and in-system updateability into one 
memory technology. These inherent capabilities will 
improve perfonnance and lower the over-all system 
cost. The 28F016XS delivers optimal perfonnance 
when interfacing to a burst processor; such as the 
Intel486 microprocessor. The Intel486 microprocessor 
sees widespread use in a variety of applications ranging 
from the PC to numerous embedded products, while 
providing code compatibility with thousands of 
commercially available software packages and the 
perfonnance necessary for today's leading-edge 
systems. The Intel486 microprocessor's bus interface 
provides a burst transfer mechanism whereby four 
consecutive data items are fetched in one access 
sequence. The 28F016XS's synchronous pipelined read 
interface makes special use of the burst transfer 
mechanism to achieve extremely high read 
perfonnance. 

When interfacing the 28F016XS to a processor that 
executes an Intel or linear burst cycle, up to three 
simultaneous read accesses can be pipelined into the 
28F016XS, sustaining a high read transfer rate. At 
33 MHz, the 28F0l6XS-15 delivers zero wait-state 

I PRODUCT PREVIEW 

28F016XSllntel486 CPU Interface 

perfonnance after the initial pipeline fill. This 
enhanced read perfonnance eliminates the costly 
expense of shadowing code from slow non-volatile 
memory (ROM, hard disk diive, etc.) to fast DRAM for 
increased system perfonnance. The 28F016XS enables 
direct code execution out of the flash memory array, 
eliminating unnecessary software and hardware 
overhead involved in shadowing code. 

In an Intel486 microprocessor-based environment, 
BAPCo benchmarking analysis revealed a 13% system 
perfonnance improvement using the 28F016XS-15 
over 70 ns DRAM. 

In addition to the increased read perfonnance, the 
28F016XS offers an Intel486 microprocessor-based 
system a low power, non-volatile memory that is 
electrically updateable via local processor control. The 
28F016XS's low power consumption reduces system 
power dissipation and heat emission, and its 
updateability increases code flexibility and system 
reliability. Combined, the 28F016XS and the Intel486 
rnicroprocessor deliver a high perfonnance, low power 
and cost-effective system solution. 

The Intel486 microprocessor interface to the 
28F0l6XS requires minimal logic while offering 
significant system enhancements. One programmable 
logic dev.ice (PLD), a 22VI0-15, generates and 
monitors all 28F016XS and Intel486 mi~roprocessor 
control signals. This technical paper explores the 
interface between the 28F016XS-15 and the Intel486™ 
SX-33 microprocessor, describing the interface 
circuitry, explaining the read and write cycles and 
providing the interfacing PLD equations. It also 
provides detailed design suggestions for interfacing the 
28F016XS to other Intel486 microprocessors. 

207 



28F016XS/intel486 CPU Interface 

2.0 OPTIMIZED 28F016XS IINTEL486 SX MICROPROCESSOR INTERFACE 

~ 
U3l-O D,s-o 

"21-'1' A 20-3 
i486 1l11 SX-33 

Microprocessor 3 -22 logic ~ c, ... '"" 
ll. 

CE# 28F016XS 

"3-2 

=~r 
A 2_1 

b 
~ MUX Vpp Switched 

ADS# ADV# ADV# 
-5Vor12V 

W/R# OE# OE# BYTE# _5V 
BlAST# WE# WE# WP# _GPIO 

KEN# RV/BV# .... INT 
BRDV# Interface 
RESET~ RESET ~ logic 

~Sr-BOFF# BOFF# ~ (22V10-15) ClK 
ClK CFG.--t 

33 MHz B ff r 
Clock u er 
Input 

Figure 1._ Optimized 28F016XS Interface tothe Intel486 Microprocessor 
with Wait-State Profile of 2-0~O-O Up to 33 MHz 

The 28F016XS-15 interface to the Intel486 SX-33 
microprocessor, illustrated in Figure I, delivers 2-0-0-0 
wait-state read performance. Consult your Intel or 
distribution sales office for schematic and PLD files for 
this design .. 

See Section 3.0 for an alternative design. 

2.1 Circuitry Description 

This section will describe the circuitry involved in this 
design. 

Memory Configuration 

This design uses two 28F016XS-15s, each configured in 
x 16 mode and arranged in parallel to match the Intel486 
SX microprocessor's 32-bit data bus. This memory 
configuration 

208 

provides 4 Mbytes of flash memory for system usage. 
Signals A21 _4 from the Intel486 SX microprocessor and 
CTR1_O from the PLD select locations within the 
28FOI(jXS memory sp!).ce, arranged as I Meg double 
words. The two-bit counter implemented in the PLD 
supplies consecutive burst addresses to the 28FO 16XSs. 

Reset 

The Intel486 SX microprocessor requires an active high 
reset signal, while the 28FOl6XSs use an active low 
RESET#. Figure 2 illustrates a suggested logic 
configuration for generating both an active high and low 
reset signal. The active high RESET controls the 
Intel486 SX microprocessor and PLD RESET inputs, 
while the active low RESET# drives the 28FOl6XS RP# 
input. 

PRODUCT PREVIEW I 



SYSTEM RESET - MR# 

J 
Voltage Monitor 

RESET# 

RESET 

MAX707 

28F016XS/intel486 CPU Interface 

28F106XS 

RP# 

1 RESET# -
1---------- RESET 

Figure 2. RESET Generation Method 

Chip Select logic 

Chip select decode logic may use A31 -22 to generate 
active low chip select signals, CEX#, for the 28F016XS 
memory space and other system peripherals. The chip 
select addressing the 28FO 16XS memory space drives 
CEo# on each 28FO l6XS-15 and a control input to the 
PLD. The 28F016XS-15s' CE 1# inputs are grounded. 
For many systems, using the upper address bits in a 
linear selection scheme may provide a sufficient number 
of chip select signals, thus eliminating chip select 
decode logic. (See Figure 3 for an example of using 
linear selection for chip selects.) When using a linear 
chip select scheme however, software must avoid using 
addresses that may select more than one device, which 
could result in bus contention. For example, addresses 
01 OOOOOOH through 01 OFFFFFH drive both A22 and A 23 
to a logic "0," which inadvertently selects two peripheral 
devices. 

ClK Option 

A 33 MHz eLK drives the Intel486 SX microprocessor. 
The buffer in Figure 1 delays this processor CLK input 
and drives the PLD and the 28F016XS-15s. The buffer 
introduces an intentional system clock skew. This skew 
provides additional time for the processor to meet the 
28F016XSs' address setup time. 

I PRODUCT PREVIEW 

Intel486™ 
SXCPU 

Chip Select 

1 
2 
3 

A22 '-- Chip Select 

A 23 _ Chip Select 

A24 _ Chip Select 

Address Space 

01800000 - 01 BFFFFF H 
01400000 - 017FFFFF H 
OOCOOOOO - OOFFFFFF H 

Figure 3. Example of Using Linear Chip 
Selection with Active low 

Chip Select Signals 

209 



28F016XS/intel486 CPU Interface 

Multiplexer (MUX) 

To achieve this type of wait-state profile, the Intel486 
SX microprocessor directly loads the 28F016XS with 
the address of the first read access. The interface logic 
enables the MUX to permit the processor's lower 
address lines A3-2 access to the lower flash memory 
address lines during the initial access of a burst or single 
read transaction. Next, the interface logic switches the 
data flow path through the MUX in anticipation of a 
burst transaction. The two-bit counter integrated into the 
control logic then takes over driving the 28FO 16XSs' 
A2.!. The counter supplies the flash memory with 
consecutive burst addresses for the remaining duration 
of the transaction. 

Interface Control Signals 

The interfacing state machine monitors the Intel486 SX 
microprocessor's external. bus signals to control the two
bit counter and generate OE#, WEI and ADV# signals 
to the 28FOI6XS-15s. At the beginning of the burst 
cycle, the interface logic loads the two-bit counter. The 
state machine also generates KEN# and BRDY# signals, 
informing the Intel486 SX microprocessor of the nature 
of the· bus cycle. 

Configuration Signal 

A general purpose input/output (GPIO) generates the 
configuration signal input to the state. machine. The 
configuration signal must reset to logiC "0" on power-up 
and system reset to ensure that the operation of the state 
machine matches the initial SFI Configuration of the 
28F016XS-15s. After optimizing the SF! Configuration, 
the GPIO must switch to logic "1" in order to take 
advantage of the optimized flash memory state. See 
Section 2.3 for more information regarding the 
configuration signal. 

Additional 28F016XS Control Signals 

The BYTE# input to the 28F016XS-15s is tied to 5.0V 
to configure the 28F016XS-15s for x16 mode, and Ao is 
tied to GND (Ao is only used for byte addressing). A 
GPIO controls the write protect input, WP#, to the 
28FOI6XS-15s. The 28F016XS is compatible with 
either a 5.0V or a 12.0V Vpp voltage and is completely 
protected from data alteration when V pp is switched to 
GND. With Vpp ~ VPPLK' the 28F016XS will not 
successfully complete Data Write and Erase operations, 

210 

resulting in absolute flash memory data protection. 
Figure 1 also illustrates the 28F016XS-15's RYIBY# 
output connecting directly to a system interrupt, which 
enables background Write/Erase operations. RYIBY#, 
WP#, and Vpp implementations are application 
dependent. Consult the Additional Information section 
of this technical paper for documentation covering these 
topics in more detail. 

2.2 Interfacing Signal Definitions 

The interface logic that controls the 28F016XS-15 
interface to the Intel486™ SX-33 microprocessor 
monitors and regulates specific system signals. The next 
two sections describe these signals in detail. 

2.2.1 28F016XS Signal Descriptions 

This section describes the 28F016XS signals that are 
pertinent to this design. 

ADV# - Address Valid (Input) 

This active low signal informs the 28F016XS .that a 
valid address is present on its address pins. ADV#, in 
conjunction with a rising CLK edge, initiates a read 
access to the 28FOI6XS. This signal is ignored during 
write operations. 

ClK - Clock (Input) 

CLK provides the fundamental timing and internal 
operating read frequency for the 28FOI6XS. CLK 
initiates read accesses (in conjunction with ADV#), 
times out the SFI Configuration, and synchronizes 
device outputs. CLK can be slowed or stopped with no 
loss of data synchronization. This signal, like ADV#, is 
ignored during write operations. 

OE# - Output Enable (Input) 

This active low signal activates the 28F016xs's output 
buffers when OE# equals "0". The outputs tri-state when 
OE# is driven to "1". 

WEI - Write Enable (Input) 

This active low signal controls access to the Control 
User Interface (CUI). Addresses (command or array) and 
data are latched on the rising edge of WEI during write 
cycles. 

PRODUCT PREVIEW I 



2.2.2 INTEL486 SX Microprocessor Signal 
Descriptions 

This section describes the Intel486 SX microprocessor 
signals that are relevant to this interface. This interface 
assumes processor inputs are driven by only one 
controlling device (the PLD). If more than one device 
drives a processor input, the PLD output should be 
configured as open drain to avoid signal contention. 
Many PLDs, FPGAs and ASICs provide output 
configuration capability. 

ADS# - Address Status (Output) 

This active low output signal from the Intel486 SX 
microprocessor indicates the presence of valid bus cycle 
and address signals on the bus. ADS# is driven in the 
same clock as the address signals. Typically, external 
circuitry uses ADS# to indicate the beginning of a bus 
cycle. 

KEN# - Cache Enable (Input) 

This active low input to the Intel486 SX microprocessor 
determines whether data being returned in the current 
bus cycle will be cached. In order for the current data to 
be cached, KEN# must be returned active in the clock 
prior to the first RDY# or BRDY# of the cycle and must 
also be returned active in the last clock of the data 
transfer. 

BRDY# - Burst Ready (Input) 

This active low input to the microprocessor performs the 
same function during a burst cycle as RDY# performs 
during a non-burst cycle. During a burst cycle, BRDY# 
is sampled on the rising edge of every clock. Upon 
sampling BRDY# active, the data on the data bus will be 
latched into the microprocessor (for burst reads). ADS# 
will be negated during the second transfer of the burst 
cycle; however, the lower address lines and byte enables 
may change to indicate the next data item requested by 
the processor. 

BLAST# - Burst Last (Output) 

This active low output from the microprocessor signals 
the final transfer in a burst cycle. The next time BRDY# 
is returned, it will be treated the same as RDY# and thus 
terminate any multiple cycle transfers. 

I PRODUCT PREVIEW 

28F016XS/intel486 CPU Interface 

2.3 System Interface Requirement 

The system logic controlling the 28F016XS-15 interface 
to the Intel486 SX microprocessor incorporates an initial 
and an optimized read configuration, which correlates to 
specific SFI Configuration values. The interface read 
configuration is dependent upon the value of CFG (PLD 
input). CFG informs the interface of the SFI 
Configuration status. Note, the SFI Configuration status 
does not affect Write operations. 

Initial Read Configuration 

Upon power-up/reset, the 28F016XS-15 defaults to a 
SFI Configuration value of 4, and the interface logic 
supports burst read accesses to the flash memory space. 
The interface returns BRDY# to inform the processor 
that the interface supports burst read transaction. A 
general purpose input/output (GPIO) informs the system 
interface of the status of the SFI Configuration. 

The GPIO entitled CFG is set to logic "0" on 
power-up/reset. With CFG driven low, the state machine 
correctly matches the 28F016XS-15s' default 
configuration. 

Optimized Read Configuration 

At 33 MHz, the 28F016XS-15 operates at highest 
performance with a SFI Configuration value set to 2. To 
reconfigure the 28F016XS-15, program control should 
jump to an area of RAM to execute the configuration 
sequence. After reconfiguring the 28F016XS-15, the 
GPIO value must change to logic "1," in order to take 
advantage of the 28F016XS-15's optimized 
configuration. A pseudocode flow for this configuration 
sequence is shown below. 

Execute Device Configuration command sequence 
Activate CFG signal 
End 

In the· optimized read configuration, the system logic 
supports burst cycles by generating BRDY#, which 
informs the microprocessor that the memory subsystem 
is capable of handling a burst transfer. The 
28F016XS-15 memory array, after the initial pipeline fill 
delay from the first access, transfers data to the 
processor at a rate of 133 Mbytes/sec. 

211 



28F016XS/intel486 CPU Interface 

2.4 Read Control for Burst 
Transactions 

The interface logic controlling the handshaking between 
the 28FOl6XS and processor performs one of two 
different read cycles, depending upon the CFO input 
signal. 

Read Abort Condition 

A read cycle will abort only when an external system 
bus master asserts BOFF#, which forces the processor to 
give immediate bus control to the requester. When this 
situation occurs, the Intel486 SX microprocessor floats 
the address bus, which will cause the address decode 
logic to de-select the 28F0l6XS memory space. 
Monitoring BOFF#, the interfacing logic will transition 
to an idle state and wait for the processor to re-initiate 
the interrupted bus cycle after the bus master has 
relinquished the bus to the processor. OE# is 
immediately driven high, deactivating the 28FOI6XS-
15's output buffers, upon detecting BOFF# driven 
active. This BOFF# condition can occur in both the 
initial and optimized configurations described in the 
paragraphs that follow. 

Initial Configuration 

Refer to Figures 4 and 5 for the following read cycle 
discussion. 

With CFO set to logic "0," the interfacing read state 
machine executes cacheable burst read cycles. This 
configuration occurs upon power-up and reset. 

Initially, the interface logic drives ADV# and MUX 
active while waiting for the Intel486 SX processor to 
initiate a bus cycle targeting the 28FOI6XS. With the 
MUX active, the processor's A3-2 drive the lower flash 
memory address lines in anticipation of a flash memory 
access. During this anticipation state, CE# is active to 
prevent a tELCH violation on the first access initiated by 
the processor. The delayed CLK also prevents a possible 
timing violation, providing the processor with sufficient 
time to meet the 28FOI6XSs' tAVCH specification when 
initiating the first access. 

212 

When the microprocessor does initiate a read access to 
the 28F016XS memory space, it will provide an address, 
drive WIR# low and activate ADS#. Monitoring these 
signals, the state machine transitions into read control. 

If ADS# = 0 and WIR# = 0 then READ CONTROL 

At this point, CFO and CS# are examined to determine 
the configuration status of the 28F0l6XS-15s, and 
whether or not the current address targets the 28F016XS 
memory space. If CS# = "I," the state machine returns 
to an idle state waiting for a new access. Otherwise, the 
state machine will continue the read access, regulating 
ADV#, BRDY# and OE#. 

At N = 1 (Figure 5), the interfacing read state machine 
loads and increments the two-bit counter. The counter is 
incremented because the processor supplies the flash 
memory with the initial address. The counter then 
provides the flash memory with the subsequent burst 
addresses throughout the remaining duration of the bus 
transaction. 

With ADV# at logic "0," the interface initiates a read 
access to the 28F016XS-15s at N = 1. Next, ADV# 
immediately switches to a logic "I" at N = I and then 
toggles active on every other clock edge until N = 8. 
After this time, ADV# will remain inactive. 

In the default SFI Configuration (SFI Configuration 
= 4), the first data will be accessible to the processor at 
N = 6. The rest remaining data will be available for the 
processor to retrieve at N = 8, 10 and 12. The 
28FOI6XS-15's output buffers are enabled at N = 3 and 
BRDY# is driven low at N = 5. The processor will 
sample BRDY# active and latch the information residing 
on the data bus at N = 6. If the processor drives 
BLAST# inactive, indicating a burst transaction is in 
process, the interface logic will drive BRDY# active on 
every other clock edge until BLAST# is sampled active 
by the interface logic. Then the state machine will 
transition to an idle state where it deactivates OE# and 
waits for the processor to initiate a new bus cycle. 

PRODUCT PREVIEW I 



Initial Configuration Timing Consideration 

In this initial read configuration design, there are 
important timing considerations that need to be taken 
into consideration. 

First, the buffer delay can cause possible timing 
violations if not chosen correctly. The purpose of the 
buffer is to provide time for the processor to load the 
28FO 16XSs with the initial address during read 
transactions. Therefore, the buffer must have a minimum 
delay which satisfies the flash memory's' tAVCH. 

tAvCH+t6-1133 MHz = 1 ns 

28F016XS/intel486 CPU Interface 

The buffer can also affect the processor's data setup 
time. Hence, the buffer must have a maximum delay of 
no greater than: 

1133 MHz - tCHQV - t22 = 5 ns 

Another important timing parameter is the Inte!486 SX 
microprocessor's data hold time. Since the 28F016XS 
specifies a 0 ns guaranteed data hold time from CE# or 
OE# high, these two signals must be driven active until 
the processor's hold time is satisfied. CE# hold delay 
will not be concern because CE# is held active during 
the state machine's idle state. OE# has only .5 ns of 
margin to the processor's specification for the buffer 
used in this design. OE# hold time equals: 

tPZX(min) + tPHL(min) = 3.5 ns 

Consult the appropriate datasheets for full timing 
information. 

BLAST8=O 
+cS,=Q 

+ BOFF'=O 

Figure 4. Optimized Read State Diagram for Burst Read Control (Interface Shown in Figure 1) I PRODUCT PREVIEW 213 



2BF016XS/lhtel486 CPU Interface intel® 
ClK 

Delayed 
ClK 

ADS# 

Address 

BLAST# 

CEO 

ADV. 

KEN# 

DE. 

CR<1:0> 

BRDY# 

Dala 

Symbol 

tpHL,PLH 

Is 
tea 

t22 

tELCH 

tVLcH 

tGLCH 

tCHQV 

tpzx 

NOTE: 

N=O N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12 

::r;:L-L IL IL IL IL L LlLiLJL-"-1L1L 
Jtl JL n n n n JL rrnnJfLnn 
-~ / 
~ 
-~ , 

~ 
WA 

I,,,, 
f--oI 

tfIJ 'f!:A tfIJ 'f!:A tfIJ 'f!:A tfIJ 
I;':;;;~ A 

I 'f!:A 
~ 
lux)' 

I,,,, 
IOlCH 1-;;-1 

It/J. YJ..X '!Ii. ru. It:ZX \:::~ 
--t f--oI 

'f!:A tfIJ '\fA !Jtj WJ. tffj I'@ 
I~ 

111 YJJ YIf:.. .NVW 
WIM 

Figure 5. Example Initial Burst Read Cycle Showing Key Timing 
Specifications Requiring Consideration 

Table 1. Example Optimized Read Cycle Specifications at 5V Vee 

Description Min Max 

Buffer Delay 1.5 5 

ADS# Delay (Inte1486 SX-33 microprocessor) 3 16 

BLAST# Delay (Inte1486 SX-33 microprocessor) 3 20 

0 31 -0 Setup Time (lrite1486 SX-33 microprocessor) 5 

CEx# Setup Time to ClK (28F016XS-15) 25 

ADV# Setup Time to elK (28F016XS-15) 15 

OE# Setup Time to elK (28F016XS-15) 15 

ClK to Data Delay (28F016XS-15) 20 

elK Output Delay (22V10-15) 2 8 

tpZX{mlnl 

b-

Unit 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

Con~ult appropriate datasheets for up-to-date,specifications. 

214 PRODUCT PREVIEW I 



Optimized Configuration 

Refer to Figures 4 and 6 for the following discussion. 

With the 28F016XS-15s in the optimized configuration 
(SF! Configuration = 2 at 33 MHz), and CFG set to a 
logic "I" value, the system interface executes cacheable 
burst cycles. 

Like the initial configuration, the connecting logic 
initially drives ADV# and MUX active while waiting for 
the Intel486 SX processor to initiate a bus cycle 
targeting the 28F016XS. With the MUX active, the 
processor's A3.2 drive the lower flash memory address 
lines in anticipation of a flash memory access. During 
this anticipation state, CE# is active to prevent a taLCH 
violation on the first access initiated by the processor. 
The delayed CLK also inhibits also possible timing 
violations from occurring. It provides the processor with 
sufficient time to meet the 28F016XSs' tAVCH 
specification when initiating the first access. 

When the processor drives ADS# low, it notifies the 
interface logic that a valid address is on the address bus. 
Monitoring the external bus of the Intel486 SX 
microprocessor, the state machine then transitions into 
read control. 

If ADS# = 0 and WIR# = 0 then READ CONfROL 

In optimized read control, the state machine controls 
OE#, KEN# and BRDY#. If CS# = "0," the state 
machine at N = 1 loads and increments the two-bit 
counter, switches the data flow path through the MUX 
and holds ADV# active for the next three consecutive 
clock periods. While ADV# is driven low, the counter 
increments through the Intel burst order (Table 2), 
supplying the 28F016XS-15s with a new address at 
N = 2, 3 and 4. If CS# ="1," the state machine returns to 
an idle state waiting for a new memory access. 

I PRODUCT PREVIEW 

28F016XSllntel486 CPU Interface 

Table 2. Intel Burst Order (A3 2) -
First Second Third Fourth 

Address Address Address Address 

0 4 8 C 

4 0 C 8 

8 C 0 4 

C 8 4 0 

At N = 2, the state machine drives KEN# active and 
holds it active until the end of the burst cycle, thereby 
executing a cache line fill. 

The state machine activates the 28F0I6XS-15 output 
buffers (OE# driven to a logic "0" value) at N = 2 and 
holds them active throughout the burst read cycle. 

With the SFI Configuration value set to 2, data will be 
available at N = 4,5,6 and 7. Driving BRDY# low at N 
= 3, the Intel486 SX microprocessor will sample 
BRDY# active at N = 4, which informs the processor of 
valid information on data pins D31-0 and that the 
28F016XS memory space supports a burst read transfer. 
BRDY# is held low until the end of the burst cycle while 
the processor retrieves data on every rising clock edge. 
BRDY# is driven high upon sampling BLAST# low, 
marking the end of the burst cycle. Then the state 
machine will transition to and idle state where it· 
deactivates OE# and waits for the processor to initiate a 
new bus cycle. 

Optimized Configuration Timing Considerations 

In the optimized configuration, the same timing 
consideration regarding the buffer propagation delay and 
OE# hold time require attention. For information 
regarding these concerns, see Section 2.4 Initial 
Configuration Timing Considerations. 

215 



28F016XSIInte1486. CPU Interface 

Symbol 

tpHL,PLH 

is 
taa 

~2 

tELCH 

tVLCH 

tGLCH 

tCHQV 

t pzx 
NOTE: 

CLK 

Delayed 
CLK 

ADS# 

Address 

BlAST# 

CE# 

ADV# 

KEN# 

OE# 

CR<l:O> 

BRDY# 

Dato 

Figure 6. Example Burst Read Timing Waveform Illustrating Key Timing 
Specifications Requiring Consideration 

Table 3. Example Optimized Read Cycle Specifications at 5V Vcc 

Description Min Max 

Buffer Delay 1.5 5 

ADS# Delay (lnte1486 SX-33 microprocessor) 3 16 

BlAST# Delay (lnte1486 SX-33 microprocessor) 3 20 

D31 -0 Setup Time (Inte1486 SX-33 microprocessor) 5 

CEx# Setup Time to ClK (28F016XS-15) 25 

ADV# Setup Time to ClK (28F016XS-15) 15 

OE# Setup Time to ClK (28F016XS-15) 15 

ClK to Data Delay (28F016XS-15) 20 

ClK Output Delay (22V10-15) 2 8 

Consult appropriate datasheets for up-tO-date specifications. 

Unit 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

216 PRODUCT PREVIEW I 



2.5 Write Cycle Control 

Refer to Figures 7 and 8 for the following write cycle 
discussion. 

Write Abort Condition 

A write cycle will abort only when an external system 
bus master asserts BOFF#, which forces the processor to 
give immediate bus control to the requester. When this 
situation occurs, the Intel486 SX microprocessor will 
float the address bus, causing the address decode logic 
to de-select the 28FO 16XS memory space. The 
interfacing logic, monitoring BOFF#, will transition to 
an idle state where it will wait for the processor to re
initiate the interrupted bus cycle after the bus master has 
relinquished the bus to the processor. WE# is 
immediately deactivated upon sensing BOFF# low. 

RESET=O 

Figure 7. Non-Burst Write State Diagram 
Controlling the Interface Shown in Figure 1 

Write Cycle Description 

The 28F016XS-15 executes asynchronous write cycles 
like traditional flash memory components such as the 
28FOI6SNSV. The SFI Configuration does not 

I PRODUCT PREVIEW 

28F016X5/1ntel486 CPU Interface 

influence write operations; therefore, the interfacing 
state machine does not examine CFG once detecting a 
write cycle. 

During the first clock period, the Intel486 SX 
microprocessor drives ADS# low and W!R# high. The 
state machine, upon detecting a write cycle, immediately 
switches the data flow p~th through the MUX. The 
processor does not drive the flash memory's lower 
address lines during write cycles. The counter loads and 
supplies the address to the 28FOI6XSs' lower two 
address lines, A2-1. The state machine then transitions to 
write control at N = I. The counter only supplies the 
28FO 16XS-15 with one address throughout the entire 
write operation. A write transaction must complete fully 
before issuing a second write operation. 

If ADS# = a and WIR# = 1 then WRITE CONTROL 

In write control, the state machine performs 
WE#-controlled command write operations to the 
28FO 16XS-15s. Data is written to the 28FO 16XS 
memory space via processor control. The interface only 
supports double word writes. 

For the next two clock periods the state machine holds 
WE# low to satisfy the 28FOI6XS-15s' WE# active 
requirement. At N = 4, WE# transitions to a logic "I," 
which latches the address and data into the 
28FO 16XS-15s. 

BRDY# is not returned to the processor at N = 4 because 
the Intel486 SX microprocessor will only hold an 
address 3 ns after sampling BRDY# low. Instead, the 
interface activates BRDY# after N = 4, causing the 
processor to hold the address valid for an additional 
clock cycle, which satisfies tlie 28FOI6XS-15's address 
hold specification (tWHAX)' The state machine then 
returns to an inactive state at N = 5, waiting for a new 
memory access. 

Write Timing Consideration 

When performing a write operation, CS# is a critical 
system timing parameter, which must satisfy the 
interface logic's required setup time. The 22VIO-15 
requires a 9 ns setup time to CLK. Therefore, the system 
decode logic must generate a valid CS# to the interface 
within: 

2 x 1/33 MHz - t6 - tsu =35 ns 

Consult the appropriate datasheets for full timing 
information. 

217 



28F016X5nnte1486 CPU Interface 

ClK 

ADS# 

A<31:4> 

CE# 

CTR 

--1---.t:;;~-I""'" tovwH 
WE# 

RDY# 

~il4Io-+-- t OVWH 

Data 

Figure a.Example Write Cycle Showing Key Timing Specifications Requiring Consideration 

Table 4. Example Write Cycle Timing Specifications at 5V Vee 

Symbol Description Min Max Unit 

fa ADS# Delay(lntel486 SX-33 microprocessor) 3 16 ns 

t10 Data Write Valid 'Delay (Inte1486 SX-33 
microprocessor) 

3 18 ns 

tll Data Write Float Deiay (Inte1486 SX-33 20 ns 
microprocessor) 

tWLWH WE# Pulse Width (28F016XS-15) 50 ns 

tOVWH Data Setup to WE# Going High (28F016XS-15) 50 ns 

tpzx elK Output Delay (22V10-15) 2 8 ns 

NOTE: 
Consult appropriate datasheets for up-to-date specifications. 

218 PRODUCT PREVIEW I 



28F016X5/1ntel486 CPU Interface 

3.0 STANDARD 28F016XS IINTEL486 SX MICROPROCESSOR INTERFACE 

o 

i486™SX-33 
Microprocessor 

r""""--;=====;------"I A2Q-3 

H------JlCE# 28F016XS 

AOS# I--------fi 
W/R#I--------tI 

BLAST# I--------fi 

AOV# 1--------PiAOV# 
Vpp 

Switched 
SVor12V 

OE# OE# BYTE# 
WP# 

RY/BY# 

SV 
WE# WEB GPIO 

KEN# 11---------1 
BROY# It---------l 
RESET 
BOFF# 

ClK 

Interface 
logic 

(22V10-1S) 

INT 

RESET# 

L-______ .J. ... / 

Figure 9. Minimal Glue Logic In Interfacing the 28F016XS-15 to the Intel486 SX-33 Microprocessor 
with a Wait-State Profile of 3-0-0-0 Up to 33 MHz 

The 28FOI6XS-I5 interface to the Intel486 SX-33 
microprocessor illustrated in Figures 1 delivers 3-0-0-0 
wait-state read perfonnance. The design requires only 
one 22VIO to handle all interfacing requirements. 
Consult your Intel or distribution sales office for 
schematic and PLD equations for the interface 
documented in this section. 

See Section 2.0 for an alternative design. 

3.1 Interface Circuitry Description 

This interface is extremely similar to the optimized 
design described in Section 2. The circuitry elements 
involved in the design are exactly the same except to for 
the elimination of the buffer and multiplexer in this 
interface. For specific circuitry infonnation about the 
individual aspects of this design, refer to Section 2. 

I PRODUCT PREVIEW 

ClK Option 

Unlike the optimized 28FOl6XS/lntel486 SX 
microprocessor interface, a buffer is not implemented in 
this design. The processor's 33 MHz CLK input drives 
both the PLD and flash memory. To reduce system clock 
skew, position the PLD and 28F016XSs within close 
proximity to the microprocessor. 

3.2 Read Control For Burst 
Transactions 

Similar to the optimized design described in Section 2, 
the read state machine will perform one of two different 
read cycles, depending upon the CFG input value. This 
section will concentrate on the differences between the 
read operations between the optimized and standard 
interface. 

Initial Configuration 

Refer to Figures 10 and 11 for the following read cycle 
discussion. 

219 



28F016XSIIntel486 CPU Interface 

With CFG set to logic "0," the interfacing read state 
machine executes cacheable burst read cycles. This 
configuration will occur upon power-up and reset. 

The microprocessor initiates a read access to the 
28FOI6XS memory space by providing an address, 
driving WIR# low and activating ADS#. Monitoring the 
external bus of the Intel486 SX microprocessor, the state 
machine transitions into read control. 

If ADS# = 0 and WIR# = 0 then READ CONTROL 

At this point, CFG and C8# are examined to determine 
the configuration status of the 28FOI6XS-I5s, and 
whether or not the current address targets the 28FOI6XS 
memory space. If C8# = "1," the state machine returns 
to an idle state waiting for a new access. Otherwise, the 
state machine will continue read access. In the initial 
configuration (CFG = "0"), read control will regulate 
ADV#, BRDY# and 08#. 

At N = 1 (Figure 5), the counter loads address bits A3_2 
and transitions ADV# low. With ADV# at logic "0," the 
interface initiates a read access to the 28F016XS-15s at 
N = 2. After initiating the read access, ADV# 
immediately switches to a logic "I" at N = 2 and then 
toggles active on every other clock edge until N = 8. 
After which, ADV# will remain inactive. 

In the default SF! Configuration (SF! Configuration 
= 4), the first data will be accessible to the processor at 
N = 7. The rest of the data will be available for the 
processor to retrieve at N = 9, 11 and 13. The 
28F016XS-15's output buffers are enabled at N = 4 and 

220 

BRDY# is driven low at N = 6. The processor will 
sample BRDY# active and latch the information residing 
on the data bus at N = 7. If the processor drives 
BLAST# inactive indicating a burst transaction is in 
process, the interface logic will drive BRDY# active on 
every other clock edge until BLAST# is sampled active 
by the interface logic. 

The Intel486 SX microprocessor requires a 3 ns hold 
time after sampling BRDY# active, therefore, the state 
machine will hold 08# active for 15 ns after the 
processor reads the last double-word. Then, the state 
machine will transition to an idle state where it 
deactivates ,08# and waits for the Intel486 SX 
microprocessor to initiate a new bus cycle targeting the 
28F016XS memory space. 

Initial Configuration Timing, CO,nsideratlon 

In the initial read configuration, CE# setup is a key 
system timing parameter. 

To satisfy the 28FOI6XS-15 setup requirement, C8#, 
must be valid 25 ns prior to the first rising CLK edge 
with ADV# = "0." Therefore, the maximum time 
allotted for the address decoding logic to generate C8# 
equals: 

2*1/33 MHz - ~ - tELCH = 19 ns 

Consult the appropriate datasheets for full timing 
information. 

PRODUCT PREVIEW I 



28F016XS/intel486 CPU Interface 

Figure 10. State Diagram of Single and Burst Read Control 
(Interface Shown in Figure 1) 

I PRODUCT PREVIEW 

BLAST#=O 
+ BOFF#=O 

221 



28F016XS/intel486 CPU Interface 

CL K -
-

ADS# 

Addres s_ 

BLAST # 

CE # 

ADV# 

KEN # 

OE # 

CR<1:0 > 

BRDY # 

Dal 

Symbol 

Is 
t1S 

t22 

tELCH 

tVLCH 

tGLCH 

tCHQV 

tpzx 

NOTE: 

N=O N=I N=2 N=3 N=4 N=5 N=6 N=7 N=B N=9 NolO N=II N=12 N=13 

~ L Il-ll-L Il-Il-ll-L IL ll-L ll-L 
rJJJ. / 
..:!.oj 

WJ.. 
~ 
~ 

~ 

\ 
~ i---IlPZl( 

xm It1tf rroJ. IJfj I(ID It1tf xm ff;{;f 
t:;;: ~ 

rJfA 
~ 
xm 

10;:. ft;;:;;-' 

L kXx f1I. r:t1 f1I. 
I~' 

~ ~ 
rwA rm ,'@. Iff;{;f rooA ff;{;f rwA 
I:CHOV I'''' 
I~ 1'ffJ.. 1'ffJ.. 1'ffJ.. 

Figure 11. Example Initial Burst Read Cycle Showing Key Timing Specifications 
Requiring Consideration 

Table S. Example Initial Read Cycle Timing Specifications at SV Vcc 

Description Min Max 

ADS# Delay (Inte1486 SX-33 microprocessor) 3 16 

RDY# Setup Time (Inte1486 SX-33 microprocessor) 5 

D31 •0 Setup Time (Inte1486 SX-33 microprocessor) 5 

CEx# Setup Time to ClK (28F016XS~15) 25 

ADV# Setup Time to ClK (28F016XS-15) 15 

OE# Setup Time to ClK (28F016XS-15) 15 

ClK to Data Delay (28F016XS-15) 20 

ClK Output Delay (22V10-15) 2 8 

}--

I 

I 

f!tJ 
tpzx~mln) 

mr 
}--

Unit 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

Consult appropriate datasheets for up-to-date specifications. 

222 PRODUCT PREVIEW I 



Optimized Configuration 

Refer to Figures 10 and 12 for the following discussion. 

With the 28FOI6XS-I5s in the optimized configuration 
(SFl Configuration = 2 at 33 MHz), and CFO set to a 
logic "I" value, the system interface executes cacheable 
burst cycles. 

The Intel486 SX processor drives ADS# low, notifying 
the interface logic that a valid address is on the address 
bus. Monitoring the external bus of the Intel486 SX 
microprocessor, the state machine then transitions into 
read control. 

If ADS# = 0 and WIR# = 0 then READ CONTROL 

In optimized read control, the state machine controls 
OE#, KEN# and BRDY#. If CE# = "0," the state 
machine at N = 1 loads the two-bit counter (A3_2) and 
activates ADV# (ADV# = "0") for the next four 
consecutive clock periods (N = 1 through. 5). While 
ADV# is driven low, the counter increments. through the 
Intel burst order (Table 2), supplying the 28FOI6XS-I5s 
with a new address at N = 2,3,4 and 5. If CE# ="1," the 
state machine returns to an idle state waiting for a new 
memory access. 

I PRODUCT PREVIEW 

28F016XS/intel486 CPU Interface 

With the SFI Configuration value. set to 2, new data wilJ 
be available at N = 5, 6, 7 and 8. Driving BRDY# low at 
N = 4, the Intel486 SX microprocessor wilJ sample 
BRDY# active at N = 5, which informs the processor of 
valid information on data pins D31-0 . and that the 
28FOI6XS memory space supports a burst read transfer. 
BRDY# is held low until the end of the burst cycle while 
the processor retrieves data on every rising clock edge. 
BRDY# is driven high upon sampling BLAST# low, 
marking the end of the burst cycle. 

The Intel486 SX microprocessor requires a 3 ns hold 
time after sampling the last BRDY# active in a burst 
cycle. Therefore, the state machine wilJ hold OE# active 
for 15 ns after the microprocessor samples the last 
double-word. At N = 9, the state machine transitions to 
an idle state, where it deactivates OE# and waits for the 
Intel486 SX microprocessor to initiate a new bus cycle 
targeting the 28FOI6XS memory space. 

Optimized Configuration Timing Considerations 

In the optimized configuration, CE# setup time is again 
a key system timing parameter. For information 
regarding the CE# setup time requirement, see the Initial 
Configuration Timing Considerations Timing section. 

223 



28F016XS/intel486 CPU Interface 

N=l N=5 N=7 N=8 N=9 

ClK - ~ ~ Il ~ L L Il Il III 
- :--I t, 

~ I ADS 

f--I t , 

s- "fJJ. Addres 

f.--..It" 

I -
# rw:A BLAST 

tElcH 

CE# \ I 
--oItpzx Htpzx 

ADV ~ vm 
~ --01 tpzx 

KEN# ~ 
--01 !"zx tPZX(mk'l) ~ ~ OE# 

e 'ftC 
t;; w.-0> ~ ro. CR<l: 

~tpZl I---oi tpzx 

BRDY# '@. Iff!j 

if IfJL-IJtL ~D I~~ 

Data 

Figure 12. Example Burst Read Cycle Showing Key Timing Specifications Requiring Consideration 

Table 6. Example Optimized Read Cycle Specifications at 5V V cc 

Symbol Description Min Max Unit 

ts ADS# Delay (Inte1486 SX-33 microprocessor) 3 16 ns 

taa BlAST# Delay (Inte1486 SX-33 microprocessor) 3 20 ns 

l:12 D31 -0 Setup Time (Inte1486 SX-33 microprocessor) 5 ns 

tELCH CEx# Setup Time to ClK (28F016XS-15) 25 ns 

tVLCH ADV# Setup Time to ClK (28F016XS-15) 15 ns 

tGLCH OE# Setup Time to ClK (28F016XS-15) 15 ns 

tCHQV ClK to Data Delay (28F016XS-15) 20 ns 

tpzx ClK Output Delay (22V1 0-15) 2 8 ns 

NOTE: 

Consult appropriate datasheets for up-to-date specifications. 

224 PRODUCT PREVIEW I 



3.3 Write Cycle Control 

The write interface in for this design functionally 
behaves like the optimized design's write interface. The 
only difference between the two designs is the absence 
of the MUX in the standard interface. Therefore, the 
interface logic for this design does not have to concern 
itself with changing the data flow through the MUX. 
Instead, the interface simply loads and holds the address 
for the duration of the write operation. 

For further detailed information about this cycle and 
write timing waveform, refer to Section 2.4. 

4.0 INTERFACING TO OTHER 
INTEL486 MICROPROCESSORS 

The Intel486 microprocessor family provides designers a 
large and diverse selection of CPUs, which offers 
designers different performance points to meet different 
market segment needs. Throughout the product family, 
the external bus architecture has remained consistent, 
which makes the 28FOl6XS interface to the entire 
Intel486 microprocessor family similar, if not identical, 
to the Intel486 SX microprocessor interface described in 
Sections 2 and 3. The 28F016XS-15 interface to the 
Intel486 SX-33 microprocessor works equally well for 
the following microprocessors at 5.0V Vee. 

o Intel486™ SX-20, 25 processors 

o Intel486™ SX2-50 processor 

• Intel486™ DX-25, 33 processors 

• Intel486™ DX2-40, 50, 66 processors 

• IntelDX4™-75, 100 processors(IIO buffers 
configured for 5.0V, Vee5 = 5.0V) 

The 28F016XS-15 interface to the Intel486 SX-33 
microprocessor also works well for the following 
Intel486 microprocessors at 3.3V Vee. The 3.3V Vce 
design utilizes a 22V 10-15 low voltage PLD to control 
the interface between the 28F016XS-15 (operating at 
3.3V Vee) and the processor. 

• Intel486 SX-20, 25 processors 

• Intel486 DX-25 processor 

• Intel486 DX2-40, 50 processors 

• IntelDX4-75 processors 
(110 buffers configured for 3.3V, Vee5 = 3.3V) 

When the external bus frequency falls outside the 
16.7 MHz through 33 MHz frequency range at 5.0V Vee 
(12.5 MHz through 25 MHz at 3.3V Vee), the optimized 

I PRODUCT PREVIEW 

28F016XS/intel486 CPU Interface 

SFI Configuration value for the 28F016XS-15 differs in 
respect to the Intel486 SX-33 microprocessor design 
documented earlier. The state machine, therefore, 
requires slight modifications to accommodate the 
different SFI Configuration. Note, the initial read 
configuration and write control state machine remains 
consistent throughout all designs because they are not 
affected by the optimized SFI Configuration. 

Intel486 SX-16 Microprocessor Interface at 
5.0VVcc 

The 28FOI6XS-15's optimized SFI Configuration at 
16 MHz equals 1. Therefore, 28F016XS-15 will begin 
driving data one CLK period after initiating the first read 
access. The optimized state machine must drive BRDY# 
and OE# active upon initiating the first access to the 
28F016XS-15. BRDY# and OE# remain low throughout 
the burst cycle. The optimized and standard 
28F016XS-15 interface to the Inte1486 SX-16 
microprocessor at this specific frequency deliver 1-0-0-0 
and 2-0-0-0 wait-state read performance respectively. 

Intel486 OX-50 Microprocessor Interface at 
5VVcc 

Operating at 50 MHz, the 28F016XS-15's optimized SFI 
Configuration equals 3. The interface loads the two-bit 
counter and drives ADV# active at the first rising CLK 
edge after the processor initiates the read access. The 
optimized read state machine increments the two-bit 
counter and drives ADV# low every other CLK, thereby 
adhering to the Altemating-A 1 and Same-A 1 access rules 
(see Additional Information). The optimized and 
standard 28F016XS-15 interface to the Intel486 DX-50 
microprocessor at this given frequency deliver 4-1-1-1 
and 5-1-1-1 wait-state read performance respectively. 

Intel486 OX-33 and Inte10X4-100 Microprocessor 
Interface at 3.3V Vec 

Operating at 33 MHz with 3.3V V ce, the 
28FOI6XS-15's optimized SFI Configuration equals 3. 
The interface loads the two-bit counter and drives ADV# 
active at the first rising CLK edge after the processor 
initiates the read access. The optimized read state 
machine increments the two-bit counter and drives 
ADV# low for two CLK periods and then strobes ADV# 
high for one CLK period. ADV# is again driven low for 
two CLK periods finishing the burst cycle. Refer to the 
Altemating-A 1 and Same-A 1 access rules (see 
Additional Information) for further information on 
consecutive accesses. The optimized and standard 
28F016XS-15 interface to the Intel486 microprocessor 

225 



28F016XS/intel486 CPU Interface 

at this frequency deliver 3-0-1-0 and 4-0-1-0 wait-state 
read performance respectively. 

5.0 CONCLUSION 

This technical paper has described the interface between 
the 28F016XS 16-Mbit flash memory component and 
the Intel486 microprocessor. This simple design has 
been implemented with a minimal number of 
components and achieves exceptional read 

226 

performance. The 28F016XS provides the 
microprocessor with the non-volatility and updateability 
of flash memory and the performance of DRAM. For 
further information about 28F016XS-15, consult 
reference documentation for a more comprehensive 
understanding of device capabilities ~d design 
techniques. Please contact your local Intel or distribution 
sales office for more infomiation on Intel's flash 
memory products. . 

PRODUCT PREVIEW I 



28F016XS/intel486 CPU Interface 

ADDITIONAL INFORMATION 

Order Number DocumentITools 

290532 28F016XS Datasheet 

297500 "Interfacing the 28F016XS to the i960® Microprocessor 
Family" 

292147 AP-398, "Designing with the 28F016XS" 

292146 AP-600, "Performance Benefits and Power/Energy Savings of 
28F016XS Based System Designs" 

292163 AP-610, "Flash Memory In-System Code and Data Update Techniques" 

292165 AB-62, "Compiled Code Optimizations For Embedded Flash RAM 
Memories" 

297372 16-Mbit Flash Product User's Manual, 

297508 FLASHBuilder Utility 

Contact Intel/Distribution 
Sales Office 

28F016XS Benchmark Utility 

Contact Intel/Distribution 28F016XS iBIS Models 
Sales Office 

Contact Intel/Distribution 28F016XS VHDLNeriiog Models 
Sales Office 

Contact Intel/Distribution 28F016XS Timing Designer Library Files 
Sales Office 

Contact Intel/Distribution 28F016XS Orcad and ViewLogic Schematic Symbols 
Sales Office 

REVISION HISTORY 

Number Description 

001 Original Version 

002 Incorporated initial read burst configuration, replacing the single read cycle 
Added optimized deSign, improving system read performance 

I PRODUCT PREVIEW 
227 



28F016XSJlntel486 CPU Interface 

APPENDIX A 
PLD FILE FOR THE 28F016XS 
INTEL486 MICROPROCESSOR 

INTERFACE 

PLD file for the optimized interface described in Section 2, 

228 

TITLE 
PATTERN 
REVISION 
AUTHOR 
COMPANY NAME 
DATE 

Optimized 28FOl6XS 1486lnterface 
PDS 
I 
Example 
Intel 
216/95 

CHIP OPTIMIZED_28FOI6XS386_INTERFACE 85C22VlO 

; input pins 
PIN I CLK 
PIN ADS 
PIN WR 
PIN BLAST 
PIN CE 

; c1k frequency 33mhz 
; address strobe from 486 
; multiplexed read/write strobe 
; BLAST from the 486 
; CE from the address decoding logic 

PIN CFG 
PIN A2 

; informs interface to changes to the SFI Configuration 
; lower address lines from the 486 used 

PIN A3 
PIN RESET 
PIN 25 GLOBAL 
; output pins 
PIN ADV 
PIN IKEN 
PIN IOE 
PIN /WE 
PIN IBRDY 
PIN SWITCH 
PIN QO 
PIN CTRO 
PIN CTRI 

STRING LD '(lADS)' 
STRING INC '(/ADV)' 

; in loading the counter 
; system reset 

; address valid input 
; cache control 
; output enable input 
; write enable input 
; initiating a burst cycle, 486 input 
; control MUX switching 
; state variable 
; lower bit of the 2bit counter 
; higher' bit of the 2bit counter 

; load 
; increment 

STATE MOORE_MACHINE 
DEFAULT_BRANCH SO 

; state assignments 
SO =/ADV * IBRDY * IOE * /WE * /KEN * ISWITCH * IQO 
SI =/ADV * IBRDY * IOE * /WE * IKEN * SWITCH * IQO 
S2 =/ADV * IBRDY * OE * /WE * KEN * SWITCH * IQO 
S3 = IADV * BRDY * OE * /WE * KEN * SWITCH * IQO 
S4 = ADV * BRDY * OE * /WE * KEN * SWITCH * IQO 
S5 = ADV * IBRDY * OE * /WE * KEN * SWITCH * IQO 

PRODUCT PREVIEW I 



28F016XS/intel486 CPU Interface 

S6 = ADV * IBRDY * IOE * !WE * lKEN * SWITCH * QO 
S7 = ADV * IBRDY * IOE * !WE * KEN * SWITCH * QO 
S8 = ADV * BRDY * OE * !WE * KEN * SWITCH * QO 
S9 = I ADV * IBRDY * OE * !WE * KEN * SWITCH * QO 
SIO = ADV * IBRDY * IOE * !WE * lKEN * SWITCH * IQO 
S 11 = ADV * IBRDY * IOE * WE * IKEN * SWITCH * IQO 
S12 = ADV * IBRDY * IOE * WE * IKEN * SWITCH * QO 
Sl3 = ADV * BRDY * IOE * !WE * IKEN * SWITCH * IQO 

; state transitions 
SO := (fADS * IWR * ICFG) 

+ (lADS *!WR * CFG) 
+ (lADS * WR) 

SI:= (lCFG * ICE * BOFF) 
+ (CFG * ICE * BOFF) 
+ CE * IBOFF 

S2:= ICFG * BOFF 
+ CFG * BOFF 

S3:= /BLAST + IBOFF 
+ BLAST 

S4:= IBLAST + IBOFF 
+ (BLAST * ICFG) 
+ (BLAST * CFG) 

S5:= BOFF 
+ /BOFF 

S6:= BOFF 
+ IBOFF 

S7:= BOFF 
+ IBOFF 

S8:= IBLAST + IBOFF 
+ BLAST 

S9:= BOFF 
+ IBOFF 

SIO:= ICE 
+ CE+/BOFF 

Sl1:= BOFF 
+ IBOFF 

SI2:= BOFF 
+ IBOFF 

S13:= VCC 

EQUATIONS 
; implement RESET 
GLOBAL.RSTF = !RESET 

; implement 2-bit burst counter 

-> S6 ; initial config READ cycle 
-> S I ; optimized config READ cycle 
-> SIO 

+-> SO 
-> S7 
-> S2 
-> SO 
-> S8 
-> S3 

+->SO 
->SO 
-> S4 
-> SO 
-> S5 
-> S4 
-> S4 
-> SO 
-> SI 
-> SO 
-> S2 
-> SO 
-> SO 
-> S9 
-> S4 
-> SO 
-> S 11 ; write cycle 
-> SO 
-> S12 ; WE low for two clocks 
-> SO 
-> S13 
-> SO 
-> SO ; ready 

CTRI := (LD * A3) + (ILD * INC * ICTRI * S1) 
+ (ILD * INC * CTRI * lSI) + (ILD * IINC * CTRI * IS 1) 

CTRO := (!WR * LD * IA2) + (WR * LD * A2) 
+ (fLD * INC * ICTRO) + (ILD * IINC * CTRO) 

I PRODUCT PREVIEW 
229 



28F016XSnntel486 CPU Interface 

PLD file for the standard interface described in Section 3. 

Title Standard 28F016XS I Intel486™ Interface 
Pattern PDS 
Revision 1 
Author Example 
Company Name Intel 
Date 2114/94 

CHIP 28F016XS_486_Interface 85C22V1O ; 85C22V10-15 

; input pins 
PIN 1 
PIN 
PIN 
PIN 
PIN 

CLK 
ADS 
WR 
BLAST 
CE 

; clk frequency 33mhz 
; address strobe from 486 
; multiplexed read/write strobe 
; BLAST from the 486 
; CE from the address decoding logic 

PIN 
PIN 

CFG 
BOFF 

; informs interface to changes to the SFI Configuration 
; BOFF input to processor 

230 

PIN 
PIN 
PIN 
PIN 25 
;output pins 

A2 
A3 
RESET 
GLOBAL 

PIN IADV 
PIN IKEN 
PIN IOE 
PIN /WE 
PIN IBRDY 
PIN QO 
PIN Q1 
PIN CONTO 
PIN CONTl 

STRING LD '(lADS)' 
STRING INC '(lADY)' 

; lower address lines from the 486 used 
; in loading the counter 
; system reset 

; address valid input 
; cache control 
; output enable input 
; write enable input 
; initiating a burst cycle, 486 input 
; state variable 
; state variable 
; lower bit of the 2bit counter 
; higher bit of the 2bit counter 

; load 

STATE MOORE_MACHINE 
DEFAULT_BRANCH SO 
; state assignments 
SO =/ADV * IKEN * /WE * IBRDY * IQO * IQ1 
S1 = ADV * /KEN * /WE * IBRDY * IQO * IQ1 
S2 = ADV * KEN * /WE * IBRDY * IQO * IQ1 
S3 = ADV * KEN * /WE * IBRDY * IQO * Q1 
S4 = ADV * KEN * /WE * BRDY * IQO * IQl 
S5 =/ADV * KEN * /WE * BRDY * IQO * IQ1 
S6 =/ADV * IKEN * /WE * IBRDY * IQO * Q1 
S7 =/ADV * KEN * /WE * IBRDY * IQO * IQ1 
S8 = IADV * KEN * /WE * IBRDY * IQO * Q1 
S9 = ADV * KEN * /WE * BRDY * IQO * Q1 
SIO =/ADV * KEN * /WE * IBRDY * QO * Q1 
Sl1 =/ADV * IKEN * /WE * IBRDY * QO * IQ1 

PRODUCT PREVIEW I 



28F016XS/intel486 CPU Interface 

Sl2 =/ADV * lKEN * WE * IBRDY * IQO * IQI 
S13 = IADV * lKEN * WE * /BRDY * IQO * Ql 
Sl4 =/ADV * lKEN * !WE * BRDY * QO * IQI 

; state transitions 
SO := ADS * !BOFF 

+ lADS *!WR * IBOFF 
+ lADS * WR * IBOFF 

Sl := ICFG * ICE 
+ CFG * ICE 
+ CE 

S2 := ICFG * BOFF 
+ CFG * BOFF 
+!BOFF 

S3 := ICFG * BOFF 
+ CFG* BOFF 
+!BOFF 

S4 := !BLAST + !BOFF 
+ BLAST 

S5 := IBLAST + !BOFF 
+ ICFG * BLAST 
+ CFG * BLAST 

S6 :=!BOFF 
+ BOFF 

S7 :=!BOFF 
+ BOFF 

S8 := !BOFF + !BLAST 
+ BOFF 

S9 :=!BOFF 
+ BOFF 

SIO :=/BOFF 
+ BOFF 

Sll :=/CE 
+ CE+/BOFF 

S12 :=/BOFF 
+ BOFF 

S13 :=!BOFF 
+ BOFF 

S14:= VCC 

EQUATIONS 

-> SO 
-> Sl 
-> Sll 
-> S6 
-> S2 
-> SO 
-> S7 
-> S3 
-> SO 
-> S8 
-> S4 
-> SO 
-> SO 
-> S5 
-> SO 
-> SlO 
-> S5 
-> SO 
-> S2 
-> SO 
-> S3 
-> SO 
-> S9 
->SO 
-> S5 
-> SO 
-> S5 
-> Sl2 
-> SO 
-> SO 
-> S13 
-> SO 
-> Sl4 
-> SO 

; implement RESET 
GLOBAL.RSTF = /RESET 

; implement 2-bit burst counter 

; start of an access 

; not reconfigured 
; reconfig active low 

; if chip enable is de-asserted, 
; quit the access and return 

; situations will only ocur during 
; a BOFF. 
; continous cycling until BLAST is 
; presented - end the burst cycle 

; situation will only occur during 
; during a BOFF. 

CTRI := (LD * A3) + (ILD * INC * ICTRI * Sl) 
+ (ILD * INC * CTRI * IS2) + (ILD * IINC * CTRI * IS2) 

CTRO := (!WR * LD * A2) + (ILD * INC * ICTRO) + (/LD * IINC * CTRO) 
; output enable control, triggered on falling clock edge 

OE := S2 + S3 + S4 + S5 + S7 + S8 + S9 + SlO 
OE.CLKF = ICLK 

I PRODUCT PREVIEW 
231 





TECHNICAL 
PAPER 

Interfacing the 
28F016XS to the i960® 
Microprocessor Family 

KENMCKEE 
TECHNICAL MARKETING ENGINEER 

TIM KELLY 
ENGINEER 

RANNA PRAJAPATI 
ENGINEER 

February 1995 

I 

Order Number: 297500-002 

233 





1.0 INTRODUCTION 

This technical paper describes several designs 
interfacing the high-performance 28F016XS Flash 
memory to the i960® microprocessor family. All 
designs are based on preliminary 28F016XS 
specifications. Please contact your Intel or distribution 
sales office for up-to-date specifications before 
finalizing any design. 

The 28F0l6XS is a 16-Mbit block erasable flash 
memory with a high-performance synchronous 
pipelined read interface. This optimized interface can 
sustain a high read transfer rate and makes the 
28F016XS the ideal flash memory component when 
interfacing to a burst processor, such as the 
i960 microprocessor. The 28F016XS combines ROM
like non-volatility, DRAM-like read performance and 
in-system update ability in one memory technology. 
These characteristics enable code execution directly 
from the 28F016XS memory space, replacing the 
costly practice of shadowing code from HDD or ROM 
to DRAM. The i960 microprocessor family sees 
widespread use in various applications, including 
imaging and data communications. Combined, the 
28F0l6XS and the i960 processor constitute a rugged, 
high performance and cost-effective solution. 

The 28F016XS performs synchronous pipelined reads. 
Up to three accesses can be initiated before reading 
data output from the initial cycle. This pipelined 
structure is ideal for use with the i960 microprocessor's 
burst transfer mechanism. The 2BF016XS brings 
significant system performance enhancements to an 
i960 microprocessor-based environment. This technical 
paper describes processor-to-memory interfaces that 
exploit these capabilities to achieve maximum system 
performance. Figures 1 and 2 illustrate relative system 
performance enhancements that the 28F0l6XS brings 
to an i960 microprocessor-based environment, 
compared to other technologies. The benchmark 
parameters are documented in Appendix B. 

I 

28F016XS/i960® Microprocessor Interface 

RalatlvG System 
Performance (%) 

100 

OJ 

eo 
70 .. 
50 .. 
30 

'" I. 
UDPnp Net.Yartdng ....... "" 

7600..01 

Figure 1. Relative System Performance 
Enhancement of the 28F016XS Compared to 

Other Memory Technologies In an 
1960 KB-25 Microprocessor-Based Design 

RGlativa System 
Performance (%) 

100 

eo 

.. 
40 

'" 
UDP/IP NellM:lrldng .......... imaging Banchnark 

7SOCL02 

Figure 2. Relative System Performance 
Enhancement of the 28F016XS Compared to 

Other Memory Technologies in an 
i960 CA-33 Processor-Based Design 

235 



28F016XS/i960® Microprocessor Interface 

2.0 i960 CA-33 MICROPROCESSOR INTERFACE 

............ ,,31,0 ...... ,' ........... ' 

' .. .. ,.,', I"k+<· ' .. ,., ... 
i960®CA 

.~ Microprocesso Chip Select 
logic 

r--

33 MHz 
ClKIN ~CIOCk 

Input 

~ ClKMOD ~5V 

~ 
CTR 

ADS ADV# 
W/R OE# 

BLAST WE# 

Interface 
logic 

RESm~ RESE~~ (22V10·15) 
PClK CFG 

1 

~ 
.. , ................... ' .. D15_0 

A 20-3 

CE# 28F016XS 

••••• 
..... A 2_1 

Vpp 
ADV# 
OE# Vee 
WE# BYTE# 

WP# 
RY/BY# 

RESET#-----t RP# r ClK 

./: 

.. / 

I-

f-
I-

~ 

Switched 
5Vor 12V 

5V 
5V 
GPIO 
INT 

Figure 3. Minimal Logic Required in Interfacing the 28F016XS·15 to the i960 CA·33 Microprocessor to 
Sustain 3·0·0·0·2·0·0·0 .. Burst Pipelined Read Performance Up to 33 MHz 

Using this interface, an i960 CA-33 microprocessor 
based system executing code directly out of the 
28FOl6XS can achieve 3-0-0-0-2-0-0-0. . .wait-state 
read performance. This interface supports both burst 
transfers and address pipelining. For schematic and PLD 
files contact your Intel or distrution sales office. 

2.1 Circuit Description 

This section describes the 28FO 16XS-IS interface to the 
i960 CA-33 microprocessor interface block diagram in 
Figure 3. 

Memory Configuration 

This design uses two 28FO 16XS-ISs, in x 16 mode, to 
match the i960 CA microprocessor's 32-bit data bus, 
providing 4 Mbytes of flash memory. Signals A21 _4 from 
the i960 CA microprocessor and CTR 1_O from the PLD 
select locations within the 28FO 16XS memory space, 
arranged as I-Meg double words. The two-bit counter 
implemented in the PLD loads from the processor's 
lower addresses at the beginning of each memory cycle 

236 

and generates the lower. two bits of the burst addresses 
on its outputs CTR1_O. The counter feeds burst addresses 
so that the 28FOI6XS-ISs do not stall waiting for the 
processor to supply the next address. 

Chip Select Logic 

Chip select decode logic may use A31 -22 to generate an 
active low chip select signal, CE#, for the 28FOI6XS-IS 
memory space and other system peripherals. The chip 
select drives CEo# on each 28FO 16XS-IS and a control 
input to the PLD. The 28FOI6XS-IS's CE 1# input is 
grounded. 

In support of address pipelining, the chip select logic 
latches CE#, holding it active throughout the duration of 
the memory access. This will prevent potential CE# 
problems caused by using combinatorial logic when 
utilizing the address pipelining capability of i96d CA 
microprocessor. 

If address pipelining functionality is not implemented, 
simple combinatorial logic can be utilized in generating 
the system CE# for the 28FOl6XS memory space, and 

I 



28F016XS/i960® Microprocessor Interface 

the chip select logic shown in Figure 3 does not examine 
BLAST# and ADS#. For many systems using the upper 
address bits in a linear selection scheme may provide a 
sufficient number of chip select signals, thus eliminating 
system chip select decode logic. (See Figure 4 for an 

example of using linear selection for chip selects.) When 
using a linear chip select scheme however, the software 
must avoid using addresses that may select more than 
one device, which could result in bus contention. 

I 

Separate Address Bus 

A 22 - Chip Select 1 

A 23 - Chip Select 2 
Processor 

A 24 - Chip Select 3 

Chip Select 

1 
2 
3 

Multiplexed Address I Data Bus 

1960® 
Processor 

Address Space 

01800000 - 01BFFFFF H 
01400000 - 017FFFFF H 
OOCOOOOO - OOFFFFFF H 

" 
LAD 31.0) 

Octal 
Latches 

Figure 4. Example of Using Linear Chip Selection 

Flash 

A22 

A23 

A24 

Memory 

Vee RP# 

I 
Voltage Monitor 

SYSTEM_RESET # MR# 
PWR 

GOOD 

MAX705 

Figure 5. Example RESET Generation Circuitry 

Chip Select 1 

Chip Select 2 

Chip Select 3 

RESET# 

237 



28F016XSli9600 Microprocessor Interface 

CLKOption 

A 33· MHz clock signal drives the i960 CA 
microprocessor CLKIN input. Driving CLKMODE to a 
logic "I" configures the i960 CA microprocessor for a 
Ix CLK input. The i960 CA microprocessor outputs an 
internally-referenced 33 MHz clock on its PCLKI and 
PCLK2 pins (the signals on PCLKI and PCLK2 are 
identical), which drives the CLK inputs of the PLD and 
the 28FOI6XS-15s, 

Reset 

An active-low reset signal, RESET#, connects to the 
RESET# inputs of the i960 CA microprocessor, and the 
PLD, and to the RP# input of the 28FOI6XS-15s. 
Figure 5 illustrates a suggested logic configuration for 
generating RESET#. 

Interface Control Signals 

The i960 CA-33 microprocessor external bus signals, 
BLAST#, ADS# and W/R#, serve as inputs to the state 
machine, which controls the two-bit counter and 
generates OE#, WE# and ADV#. The counter is loaded 
at the beginning of the memory access, generating the 
burst addresses to the 28FOI6XS-15s. ADV# indicates 
that a valid address is available to the 28FOI6XS-15. 
Addresses are latched and a read cycle is initiated on a 
rising CLK edge. WE# controls writes to the 28F016XS-
15, latching data into the 28F016XS-15 on its rising 
edge if the applicable timing requirements are satisfied. . 

Configuration Signal 

A general purpose input/output (GPIO) generates the 
configuration signal input to the state machine. The 
configuration signal must reset to logic "0" on power-up 
and system reset to ensure that the operation of the state 
machine matches the initial configurations of the 
28F016XS-15s and the i960 CA microprocessor. After 
optimizing the 28F016XS-15s and i960 CA 
microprocessor, the configuration. signal must switch to 
logic "1." 

Additional 28F016XS Control Signals 

The BYTE# input to the 28F016XS-15s is tied to 5.0V 
to configure the 28F016XS-15s for xl6 mode, and Ao is 
tied to GND (Ao is only used for byte addressing). A 
GPIO controls the write protect input, WP#, to the 
28FOI6XS-15s. As shown in Figure 3, the 28F016XS-15 
is compatible with either a 5.0V or a 12.0V Vpp voltage 
and is completely write protected by switching Vpp to 

238 

intel® 
GND. When Vpp drops below VPPLK' the 28F016XS-15 
will not successfully complete Program and Erase 
operations. Figure 3 also illustrates the 28F016XS-15 
RYIBY# output connected to a system interrupt for 
background erase operation. RYIBY#,WP#, and Vpp 
implementation are application dependent. See the 
Additional Information section of this technical paper· 
for documentation that cover these topics in more detail. 

2.2 Software Interface Considerations 

Boot-up Capability I Configuration 

This interface supports processor boot-up from the 
28F016XS memory space upon power-up or system 
reset. However, the boot code must follow some 
restrictions until it has properly configured the 
28F016XS-15s, i960 CA microprocessor and CFG state 
machine input valve. In the default configuration state,. 
the i960 CA microprocessor supports only non-burst 
reads and writes. Program control should jump to an 
area of RAM to execute the configuration sequence. The 
code will configure the 28F016XS-15s and all necessary 
i960 CA microprocessor programmable attributes before 
setting the CFG input to logic "1." Table I illustrates the 
required configuration settings for both the 
28F016XS-15s and the i960 CA-33 microprocessor. 

Table 1. Configuration Settings for the 
28F016XS-15 and 1960 CA-33 Microprocessor 

Employing Address PipeJiningat 33 MHz 

Part Parameter Setting 

28F016XS-15 
(5VVccl 

SFI Configuration 2 

i960CA-33 Ready Inputs OFF 
Microprocessor 

Byte Ordering LITTLE 
ENDIAN 

Bus Width 32-BIT 

Wait-States: 3 
Nrad 

Nrdd 0 

Nwad 2 

Nwdd 2 

Nxda 0 

Address. Pipelining ON 

Burst mode ON 

I 



28F016XS/i960® Microprocessor Interface 

2.3 Single and Burst Read Cycle 
Description 

Refer to the read cycle timing diagrams (Figures 7 and 
8) and the state diagram (Figure 6) for the following 
read cycle discussion. 

RESET 

NOTE: 
OE# and WE# are clocked on the inverted elK edge 

_----II~S9 

BLAST#=O 
• ADS#=1 

Figure 6. Read State Diagram of Single and Address Pipelined Burst Control Interface 
Shown in Figure 3 

I 
239 



28F016XSJl960C1D Microprocessor Interface 

Initial Configuration 

Figure 7 illustrates a read cycle with the 28F016XS-15s 
and i960 CA microprocessor in a power-up/reset 
configuration state. The initial configuration permits 
only non-burst transfers. The i960 CA microprocessor 
initiates a read cycle by asserting ADS# with WfR# = 
"0," presenting the valid address and control signals. At 
N = I, the two-bit counter loads the values on the 
processor's lower address lines, A3•2• The state machine 
asserts ADV# for the next clock (N = 2), where the 
28F016XS-15 will latch in the address if CE# is 
asserted. If CE# is not asserted, the state machine returns 
to inactive state at N = 2. 

BLAST 

A31-4 )@( 

A3·2 me 

If the flash memory is selected, the state machine will 
assert ADV# for only one clock before entering a hold 
state to await the assertion of BLAST# by the i960 CA 
microprocessor. The state machine asserts OE# (to meet 
timing requirements OE# is falling-edge triggered) on 
the falling edge between N = 2 and N = 3 to enable the 
28F0l6XS-15 data output buffers. With SF! 
Configuration = 4, the data will be valid at the N = 7. 
The 28F0l6XS-15s will hold data on the bus until the 
i960 CA microprocessor asserts BLAST#. During the 
clock period following N = y, the state machine returns 
to its inactive state, de-asserting OE# to tri-state the 
28F016XS-15 data outputs. 

~,....---+-
=kxxxxmxx 
=:kxxxxxxMxx 

°310() X) ~--+----;--~-r----+---~-----+~ 
i tSU1 .~.;: ~ 

cs, 

CFG 

AOV# 

OE. 

WE. 

CTRlO() 

----~~~I.~~L-__ ~----+_--~~--_+----+_ 
----i! tSUt • 

~.-! 

\ 

----~kr~-+----r---;----+----r---~ 
i 

--trI 
I 

__ -+-__ -J,,-
I 

Figure 7. Example Read Cycle, Initial Configuration, Showing Key Specifications Requiring 
Consideration 

240 

I 



Optimized Configuration 

Figure 8 illustrates a two double-word burst read 
followed by a four double-word burst read with the 
28FOI6XS-15s, i960 CA microprocessor and state 
machine configured for optimum read performance. 
With CFG = I, the counter increments the two lower bits 
of the address at N = 2, N = 3 and N = 4, and ADV# 
remains asserted so that the 28F016XS-15 latches in 
four successive addresses at N = 2-5. With 
SF! Configuration = 2, the first data will be available at 
N = 5 for the processor to read. If a second read cycle 
follows the current read cycle, the i960 CA 
microprocessor will assert ADS# one clock after 
asserting BLAST#. The state machine will respond by 
immediately re-entering the read cycle. Otherwise, the 

PCLK 
(33MHl) 

ADSI 

W/R# 

28F016XSli960® Microprocessor Interface 

state machine will return to its inactive state waiting for 
a new access targeting the 28FOl6XS memory space. 

When implementing the i960 CA microprocessor 
address pipelining capability, the state machine 
controlling CE# monitors the upper address lines, ADS# 
and BLAST#. CE# is held active upon detecting an 
access targeting the flash memory space until BLAST# 
is asserted with ADS# de-asserted. When BLAST# and 
ADS# are active at the same time, a pipelined read 
access is in progress. If the current pipelined access is 
aimed at the 28F016XS memory space, the CE# state 
machine will hold CE# active until BLAST# is sampled 
active again. 

BlAST# !tsu,!...t -+----+--+----+---t-----:r .JtsU . .:..1 _+-__ ----~~--_r--~--~~. ~ 

A314 ~~:i;--+_-_+_--+--__+_~X I. ~lOootllOi;<JaOr:7Vr:J 
~tSUI ~ •• 

A~2 ~~J~--_+----7---_r----r-~X~+_--k~l --~----~---+----~---T---4~ 
, DJ 1 Ok i lik+3 

CSt 
---HeitElcH 1 

CFG ___ -+-...J/1 ... .itsUl i i 
, ........ !'VlCH . tVlCH 1 1 

ADVI ----~\~_+!--_+.--~--_r!r-i\~I·~·;--_+--_r--~!/r--~--~~~-4---
i tGlCH i ! i : l 

,"~ ! ! /i\.!. ~;-.!. _-+_--.; __ +-_-+-_-;-...... 1 DEI 

tvtGH ! 
::: t~ ----tI~r---!-:-J+-::3-r----tI~f---+i k:-"+-::3-+---+--+---

I I I II! I I I 

I 

Figure 8. Example Two Double-Word Burst Read Followed by Pipelined Four Double Word Burst 
Read Showing Key Specifications Requiring Consideration 

241 



28F016XS/i960® Microprocessor Interface 

Critical Timings 

Table 2 describes the critical timings illustrated in 
Figures 7 and 8. One particularly critical timing in this 
designs, is the data hold time. The i960 CA-33 
microprocessor requires a 5 ns hold time after the clock 
edge. The 28F0l6XS-15 guarantees a 5 ns data hold 
after clock, meeting the' processor's hold requirement 
with 0 ns of margin. 

This design provides 7 ns of margin to meeting the 3 ns 
setup time of the i960 CA-33 microprocessor data 
inputs, outputting data tcHQV after a rising CLK edge. 

Another critical area concerns CE# during pipelined 
read accesses. Since the 28F016XS-15 specifies zero 

data hold from CE# going high, the chip select state 
machine must hold CE# active for 5 ns to satisfy the 
i960 CA-33 microprocessor data input hold specification 
of 5 ns. Hence, the chip select state machine holds CE# 
active for an additional clock period after detecting 
BLAST# active. 

The i960 CA-33 microprocessor control outputs ADS# 
and WfR# have 3 ns of margin and BLAST# has 5 ns of 
margin to meeting the 22V 10-15 input setup 
requirement. 

Consult the appropriate datasheets for full timing 
information. 

Table 2. Example Read Cycle Timing Specifications at 5V Vcc 

Part Symbol Parameter Minimum Specified 
Value (ns) 

22V10-15 tSU1 Input Setup Time to ClK 9 

i960CA-33 
Microprocessor 

T1s1 input Setup 0 31 -0 3 

TIH1 input Hold 0 31-0 5 

28F016XS-15 tElCH CE# Setup to ClK 25 

tVlCH AOV# Setup to ClK 15 

tAVCH Address Setup to ClK 15 

tGlCH OE# Setup to ClK 15 

NOTE: 
Consult appropriate datasheets for up-to-date specifications. 

242 

I 



2.4 Single Burst Write Cycle 
Description 

Refer to the write cycle timing diagrams and the state 
diagram (Figure 9) for the following write cycle 
discussion. 

I 

Figure 9. Write State Diagram of Control 
Interface Shown In Figure 3 

28F016XSJi9600> Microprocessor Interface 

Initial Configuration 

Figure 10 illustrates a write cycle. In the reset/power-up 
configuration state, the interface supports only non-burst 
writes. The i960 CA microprocessor initiates a write 
cycle by asserting ADS# with WfR# = "I," presenting a 
valid address and control signals. At N = 1, the two-bit 
counter loads the values on address bits A3_2. The state 
machine asserts WE# (to meet timing requirements, 
WE# is falling-edge triggered) on the falling edge 
between N = 1 and N = 2. WE# remains asserted for two, 
clock periods, in order to meet the 28F016XS-15 timing 
requirements. The state machine then enters a holding 
state until the processor asserts BLAST#, after which 
time the interface state machine will return to SO. 

Optimized Configuration 

Figure 11 illustrates a two double-word burst write with 
CFO = "1." When the first data write is complete at 
N = 4, the counter increments the two lower address bits, 
and the state machine asserts WE# on the next falling 
clock edge to begin the next the 28F016XS-15 data 
write. The i960 CA microprocessor must provide the 
next data during the clock period following N = 4. The 
data writes continue to 'the next consecutive addresses 
until the i960 CA microprocessor asserts BLAST#, 
indicating the end of the burst write cycle. 

243 



28F016XS/i960Qi) Microprocessor Interface 

244 

PCLK N 
(33 MHz) 

AOS# i !'SU"-'_---ii-__ +-__ + __ ---i_ 
--;--"'\~ r 

! '-----i-I 

WIR' b.....J.,sul 
BLAST# i ! 

A 3-2 

cs. 

CFG 

AOV. 
OE. 

WE. 

~~~--~~~--~--~ 
~~I~---4----~--+---4-

! ~ IOVWl- i_ i+-tWHDX

--+----i.~~WLi
!~~+-~--~--++--~~

-+----lh.\

--f---+--,~ 'WLW.!.---... 1-+---+-i tAVWL r"-T- ---: ~

i j..- -I ~ I+-'WHAX
CTR,.() -+---:'"'X'--'--+ __ -+ __ --'!"'X'-_-+_

'I i !

~
--+-_-+-! lOOOOO!X -+----+: lOOOOO!X

---+--+llOOOOO!X

+---+I-Ir-

Figure 10. Example Write Cycle, Initial Configuration, Showing Key Specifications Requiring
Consideration

PCLK N=
(33 MHz)

ADS#" i itSU1
~~-+----+----+----r---~--~~---

WIR' LJ'SUI ,

BLASn i i !1SU1

d.;-
!.. 'WHAX

A314
XJOO(XX

A 3-2 i.
XJOO(XX 1

°31-0
~ 'OVWH ,_ i+-'WHOX

OJ , !XXXX 0 +"
CS' -;----!.~~~~'E+W-Li-I----f--_++_--+--__+--_+.j-.~11 'WHEH
CFG

,
ADVtI

OE'

WE.

CTR1-o
i X 1+1 i X

Figure 11. Example Two Double-Word Burst Write Illustrating Key Specifications Requiring
Considerations

I

28F016XS/i960® Microprocessor Interface

Critical Timings

Table 3 describes the critical timings illustrated in
Figures 10 and II.

Also notice that CTR I _o must be valid before WEI is
asserted. CTR I _o are guaranteed valid 8 ns after the
rising clock edge, providing 9 ns of margin.

One critical hold time to notice is twHAX. WEI is
guaranteed to transition within 8 ns from the falling
clock edge. Therefore. the tWHAX requirement has 2 ns
of margin on CTR I-D. and 5 ns of margin on A31 _4.

Consult the appropriate datasheets for full timing
information.

Table 3. Example Write Cycle Timing Parameters at 5V Vcc

Part Symbol Parameter Minimum Specified
Value (ns)

22V10-15 tsu1 Input Setup Time to elK 9

28F016XS-15 tELWL eE# Setup to WEI Going low 0

tAvwL Address Setup to WEI Going low 0

tWLWH WEI Pulse Width 50

tovwH Data Setup to WEI Going High 50

tWHOX Data Hold from WEI High 0

tWHAX Address Hold from WEI High 5

tWHEH eE# Hold from WEI High 5

NOTE:
Consult appropriate datasheets for up-to-date specifications.

I
245

28F016XS/i960® Microprocessor Interface

3.0 Optimized 1960 JF MICROPROCESSOR INTERFACE

i960®JF
Microprocessor

ADS.I-+---------f
W~.Ir-t---------f

BLAST. r-t---------f
RDVCRV. It--t------------j

CTR

MUX
ADYI

OEI
WE.

j--------ftCE. 28F016XS

A 2-1

Vpp Switched
5Vor 12V ADVI

OE. Vee 5V
WE' BYTE. 5V

WP' GPIO Interface RV/BV. INT logic
RESET. (t--- (22Vl0-15) RESET.

CLKIN ,/

750lU2

Figure 12. Minimal Interface Logic Required In Interfacing the 28F016XS-15 to the
1960 JF-33 Microprocessor to Sustain 2-0-0-0 Burst Read Performance Up to 30 MHz

Using this interface, the 28F016XS interface to the i960
JF-33 microprocessor can achieve 2-0-0-0 wait-state
read perfonnance up to 30 MHz, supporting burst
transfers. Contact your Intel or distribution sales office
for schematic and PLO files for the design documented
in the section.

See Section 4.0 for an alternative i960 JF design.

3.1 Circuit Description

This . design, illustrated in Figure 12, uses two
28F016XS-15s to match the 32-bit data bus of the i960
IF-33 microprocessor. This configuration provides the
system with 4 Mbytes of flash memory. Four octal
latches, enabled by the LE signal, de-multiplex the 32-
bit address from the AO bus. The latched address bits
QA21_4 and the counter outputs CTRI_o from the PLO
select locations within the 28F016XS memory space.
The two-bit counter implemented in the PLO loads and
increments the processor's lower address lines at the
beginning of each memory cycle. The processor supplies
the 28F016XS-15s with the initial address during a read
transaction, and the counter provides the subsequent

246

burst addresses for the remaining duration of the read
transaction.

CLKOption

A 33 MHz clock signal drives the i960 CA
microprocessor CLKIN input. The buffer then delays the
system CLK and drives the PLO and 28F016XS-15s.
The buffer introduces an intentional system clock skew,
providing additional time for the processor to meet the
28F016XSs' address setup time. At a slower operating
frequency, this intentional delay may not be required to
satisfy the 28F016XSs' address setup specification.

Multiplexer (MUX)

To achieve this type of wait-state profile, the proCessor
directly loads the 28F016XSs with the address of the
first access. The interface logic enables the MUX to
permit the processor's lower address lines, A3-2, access
to the lower flash memory address lines during the
initial access of a burst or single read transaction. Next,
the interface logic switches the data flow path through
the MUX. The two-bit counter integrated into the
control logic then takes over, driving the 28F016XSs'

I

AZ-l address inputs. The counter supplies the flash
memory with consecutive burst addresses for the
remaining duration of the read transaction.

Reset

An active-low reset signal, RESET#, connects to the
RESET# inputs of the i960 JF microprocessor and PLD
and to the RP# input of the 28FOI6XS-15. Figure 5
illustrates a suggested logic configuration for generating
RESET#.

Interface Control Signals

ADS# and WIR# i960 JF microprocessor signals, just as
in the i960 CA microprocessor design, serve as inputs to
the state machine, which controls the two-bit counter
and generates the OE#, WE# and ADV# signals for the
28F016XS-15s. The state machine also generates the
RDYRCV# signal for the i960 JF microprocessor to
control the insertion of wait -states during data transfers.

Configuration Signal

A general purpose input/output (GPIO) generates the
configuration signal for input to the state machine. The
configuration signal must be reset to logic "0" on power
up and system reset to ensure that the operation of the
state machine matches the 28FOI6XS-15s. After
optimizing the 28FOI6XS-15s, the reconfiguration
signal must switch to a logic "I" to take advantage of
the new configuration.

I

28F016XS/i960® Microprocessor Interface

Additional Control Signals

For information regarding BYTE#, WP#, RYIBY# and
Vpp, see Section 2.1.

3.2 Software Interface Considerations

Boot-up Capability

This interface supports processor boot-up from the
28F016XS-15 memory space after power-up or system
reset. Burst reads and writes may commence with no
configuration. However, read wait-state performance
will be 4-1-1-1 until the SFI Configuration is set to 2
and the CFG input is set to logic "I." Program control
should jump to an area of RAM to execute the
configuration sequence. A pseudocode flow for this
configuration sequence is shown below.

Execute Device Configuration command sequence
Activate CFG signal
End

The SFI Configuration must be set to 2 before the CFG
input is set to logic "I." Thereafter, burst read wait-state
performance will improve to 2-0-0-0.

247

28F016XS/i960® Microprocessor Interface

3.3 Burst Read Cycle Description

Refer· to the read cycle timing diagrams and state
diagram (Figure 13) for the following discussions of the
read cycle.

BLAST#=1
• CFG=O

RESET

~_--t~S13

Figure 13. Read State Diagram of Burst Control Interface Shown in Figure 12

248

I

28F016XS/i960® Microprocessor Interface

W/R. ±y~~ I I I I I I I
!lAST' ! I il I ! I I L i I' I 1,-~----'-r------j-----+------i@(~~+I---i~"","~':+1 i ----1roooc=~·'+, I--~ LAD31..Q

I I

A,., !\I\i I I I JI\. 1,1 11·2 i 1J+3 IJIl\l\M.!\I\i

, IOO\M va- 1 I I IX: u;

tB.Oi i I I I I I I I i i I I I I I I I I I I I I I I

I I I I I I I I I i'{"' I I I I I I I ! I I eEl

,~ ! 1 I I 1 I I I 1 I Ix I I I I CfG

I J IVtcH i ; i

O£l

I~I -+---+1 l.tGlOj .1 I

i~';:: 1,-NJV.

WE.
I I i I I I I I ! I I ,I J"

RD'IRCV'

Figure 14. Example Four Double-Word Burst Read in Initial Configuration Showing Key
Specifications Requiring Consideration

Initial Configuration

Figure 14 illustrates a four double-word burst read cycle
with the 28F016XS-15s and state machine in a
reset/power-up configuration state.

Initially, the interface logic drives LB, ADV# and MUX
active while waiting for the processor to initiate a read
cycle targeting the 28F016XSs. With the MUX active,
the processor drives the lower flash memory address
lines in anticipation of a flash memory access. During
this anticipation state, CE# is active to prevent a tELCH
violation on the first access initiated by the processor.
The delayed CLK also prevents a possible timing
violation from occurring by providing the processor with
sufficient time to meet the 28F016XSs' tAVCH
specification when initiating the first access.

When the i960 JF microprocessor initiates a read cycle
by asserting ADS# with WIR# = "0," presenting a valid
address and control signals, the state machine loads and
increments the two-bit counter. The counter is
incremented upon the initial load sequence because the
processor supplies the flash memory with the initial
address.

The state machine will then de-assert ADV# at N = 1
and switches the data flow path through the MUX. The
two-bit count then drives the flash memory's lower

I

address lines for the remaining duration of the read
transaction. The state machine then asserts ADV# at N =
3 to load the next read address into the 28F016XS-15s.
De-asserting ADV# for one clock cycle (at N = 2, 4, 6
and 8) between accesses forces the 28F016XS-15s to
hold data output for two clock cycles (access stretching),
which allows time for the data to stabilize and meet the
timing requirements of the i960 JF microprocessor bus.

While ADV# is asserted, the counter increments the two
lower bits of the address, providing successive burst
addresses. The state machine asserts OE# at N = 4 to
enable the 28F0l6XS-15 data output buffers. With the
SF! Configuration = 4, the data will be valid at the
i960 JF microprocessor data inputs at N = 6, 8, 10 and
12.

The state machine asserts RDYRCV# to inform the
i960 JF microprocessor that the data is valid.
RDYRCV# is returned active at N = 6, 8, 10 and 12. The
interface will follow this methodology until the
processor asserts BLAST#, which identifies the end of
the burst transaction. Upon detecting BLAST# active,
the interface will transition to its idle state, waiting for
another bus transaction to take place.

249

28F016XSJi960® Microprocessor Interface

Optimized Configuration

Figure 15 illustrates a four double-word burst read with
the 28F016XS-15s and state machine configured for
optimum read performance. While the state machine
waits for the i960 JF microprocessor to initiate a read
cycle, ADV#, LE and MUX are held active enabling the
processor with the capability of providing the flash
memory with the initial address.

CLK
(3OMHz)

After the first access is initiated at N = 1, ADV# is held
active and the counter increments through the remaining
burst sequence. Data from the initial access will be
available at N = 4. Subsequent data will be valid at
N = 5, 6 and 7. All other signal monitoring and
generation is identical to the reset/power-up
configuration read cycle documented in the preceding
section.

Delayed
CLK

ADS#
~~----4-------~----~------~------+-------~------

1 tSUl :

250

W/R# ""T"\~
BlAST#

QA21-4

I' r-~.~. Addl'ess:.,r······················!.,:·············:.,: ~.Y\....:;:....-',J'L.....,=;..;.;..'''''ur1=.;.~''"'''''
~ ~ 1+1 k,---"I+.:..:2"---l~ 1+3 ~
_ i valiJAdd,e~ i :",: ! I XXXXXXXX
~! I II
p'.'

LAD3]'()
DI+~

CE#

CFG

ADV#

OE# --t-------+-------h ~i
~L~ ___ ~i~---4__ __ __+------+----~:r---

WEI

Figure 15. Example Four Double-Word Burst Read Illustrating Important Timing Parameters
Requiring Consideration

I

Critical Timings

In these two read configurations, there are some
important timing considerations that need to be taken
into consideration. Table 4 depicts critical timings that
are illustrated in Figures 14 and 15.

First, the buffer delay can cause possible timing
violations if not chosen correctly for a given system
operating frequency. The purpose of the buffer is to
provide sufficient time for the processor to load the
28FOl6XSs with the initial address during a read
transaction. Therefore, the buffer must have a minimum
delay that satisfies the flash memory's tAVCH.

Latch Delay - tOVI - tAVCH -lICLKIN = Buffer Delay

28F016XS/i960® Microprocessor Interface

As the previous equation illustrates, the minimum buffer
delay i~ dependent upon several different variables:
CLKIN frequency and latch delay. At a slow operation
frequency, the interface does not require a buffer delay.

The buffer can also affect the processor's data setup
time. Hence, the buffer must have a maximum delay of
no greater than:

lICLKIN - tcHQV - tlSI = Buffer Delay

Consult the appropriate datasheets for full timing
information.

Table 4 Example Read Cycle Timing Parameters at 5V Vee

Part Symbol Parameter Minimum Specified
Value (ns)

Buffer tPHL,PLH Buffer Delay 1.5

22V10-15 tsu1 Input Setup Time to ClK 9

28F016XS-15 tELCH CE# Setup to ClK 25

tVLCH ADV# Setup to ClK 15

tAvCH Address Setup to ClK 15

tGLCH OE# Setup to ClK 15

NOTE:
Consult appropriate datasheets for up-to-date specifications.

I
251

28F016XS/i960® Microprocessor Interface intel®
3.4 Burst Write Cycle Description at

33 MHz
Write Configu~ation

Figure 16. Write State Diagram of Burst Control
Interface Shown in Figure 12

Figure 17 illustrates a two double-word burst write
cycle. The i960 JF microprocessor initiates a write cycle
by asserting ADS# with WIR# == 1 and presenting a
valid address and control signals. When detecting a
write operation, the state machine immediately switches
the data flow path through the MUX. The counter is
given sole control to drive the 28F016XSs' lower
address lines during write operations. At N = 1 with
ADS# = 0, the two-bit counter loads the values on the
processor's lower address lines. The state machine
asserts WE# (to meet timing requirements, WE# is
falling-edge triggered) on the falling edge between N =
1 and N = 2. WE# remains asserted· for four clock
periods, in order to meet 28F016XS-15 timing
requirements. The state machine asserts RDYRCV# for
N =4 to inform the. i960 KB microprocessor to supply
the next data. At N = 4, the counter increments the two
lower address bits,·and the state machine asserts WE#on
the next falling clock edge to begin the next data write
to the 28F016XS-15s. The data writes continue until the
processor asserts BLAST#, noting the end of the current
write transaction. The SF! Configuration haS no effect

. on the write cycle.

252.

~--~---+----~~r--~----+----
!

,

!x OJ+l! ~

--+---+---+---+---~! \ I r---
! twH'--O-x-+-----!---Ie4I-Ho lWHOX

X j+l xxxxxxx

/

'--~~ ___ ~ ___ +'! Xr--j-+l-+---~---~----
i l12!r11 +---+----+----iih\J' 'i' 'Vr----i----ih\ ____ -tJr---
j j

Figure 17. Two Double-Word Burst Write

I

28F016XS/i960® Microprocessor Interface

Critical Timings Consult the appropriate datasheets for full timing
information.

Table 5 describes the critical timings illustrated in
Figure 17.

Notice that CTR1_O' and CS# must be valid before WE#
is asserted. CTR1_O are guaranteed valid 8 ns after the
rising clock edge, providing 12 ns of margin.

Table 5. Example Write Cycle Timing Parameters at 5V Vee

Part Symbol Parameter Minimum Specified
Value (ns)

22V10-15 tsu1 Input Setup Time to ClK 9

28F016XS-15 tELWL CE# Setup to WE# Going low 0

tAVWL Address Setup to WE# Going low 0

tWLWH WE# Pulse Width 50

tDVWH Data Setup to WE# Going High 50

tWHDX Data Hold from WE# High 0

tWHAX Address Hold from WE# High 5

tWHEH CE# Hold from WE# High 5

NOTES:
Consult appropriate datasheets for up-to-date specifications.

I
253

28F016XS/i960® Microprocessor Interface

4.0 Standard i960 JF MICROPROCESSOR INTERFACE

DH;()

i960®JF
Microprocessor

~~~~~~~~A~ 

CEI 

ADS.I------------Ji 
W/R.I------------Ji 

BLAST. I------------Ji 
RDYCRV.it-----------i 

RESET. 
CFG 

33 MHz 

~-----JlCE# 28F016XS 

ADV.I-.,------~ADV. 
OE# OEI 
WEI WEI 

Interface 
logic 

(22Vl0-1S) RESET. 

Vee 
BYTE. 

WP. 
RY/BY. 

L-_____ ---l-..... . 

Switched 
SVor12V 

SV 
SV 
GPIO 
INT 

Clock --_-----------' 
Input 

7500..:12 

Figure 18. Minimal Interface Logic Required in Interfacing the 28F016XS-15 to the 
i960 JF-33 Microprocessor to Sustain 3-0-0-0 Burst Read Performance Up to 33 MHz 

The 28F016XS-15 interface to the i960 JF-33 
microprocessor, illustrate in Figure 12, delivers 3-0-0-0 
wait-state read performance up to 33 MHz. The design 
requires only one 22VlO to handle all interfacing 
requirements. Contact your Intel or distribution sales 
office for schematic and PLD files for the interface 
documented in this section. 

See Section 3.0 for an alternative design. 

4.1. Circuit Description 

This interface is very similar to the optimized i960 JF 
design described in Section 3.0. This design however, 
eliminates the buffer and multiplexer requirement. For 
specific circuitry information involved in this standard 
interface, reference Section 3.0. 

CLKOption 

Unlike the optimized design in Section 3.0, a buffer is 
not implemented in this interface. The 33 MHz system 
clock drives the processor, PLD and flash memory. To 
reduce system clock skew, position the PLD and 

254 

28FOl6XSs within close proximity to the 
microprocessor. 

4.2. Software Interface Considerations 

This interface supports processor boot-up from the flash 
memory space after power-up or system reset. Initially, 
the read wait-state performance will be 5-1-1-1 until the 
SF! Configuration value is modified. The 28F016XS 
operates at optimal performance with a 
SFI Configuration value of 2 at 33 MHz. Program 
control should jump to an area of RAM to execute a 
configuration sequence which optimizes the flash 
memory and interface state machine for the given 
operating frequency. 

4.3 Burst Read Cycle Description at 
33 MHz 

Refer to the read cycle timing diagrams and state 
diagram (Figure 13) for the following discussions of the 
read cycle. 

I 



I 

G 
BLAST#=1 
• CFG=1 

BLAST#=1 
• CFG=O 

28F016XS1i960® Microprocessor Interface 

RESET 
ADS#=O • W_R#=1 

_-----il.-S13 

CS#=O 
• CFG=O 

BLAST#=1 

Figure 19. Read State Diagram of Burst Control Interface Shown in Figure 18 

255 



28F016XSli960Cii> Microprocessor Interface 

~~~HZ)_-.'. 
AD" I ~~l

ISU I I! 1 I I I
W/R. n i ! ! ! i I ! i ! I I. , i I Ii! i i .; j: I

.... m 1 i I· iii iii i i jf i Ir-
! , ; ! ! ; I I I' I

LAtb,.o ~'"""M·"·"··"··1··"'M"M"· .. _ .. ·t ··" .. ·,, .. ··-·'1"··"'··""" .. ·· .. ···!·" .. ·· .. · .. ····_ .. ·ttxXX DI ; ilOC O,+1j IX.: UDJ+2 ;IW 01+3; 100 ux;

A :x: , KX J • ! i! 1 11+1 '1+2 '+3 ~
3·2 1 I i I

CSt

-+ __ -+i~ VLC~ I; !
! I I4--+j I • I Ii! !

CF.

ADYI

I I ! I I~' r="', I I I, I
!! i! i ! i· I I ,

DE.

WE.

I ~ r ,., I r;., I ~ ,.3: ! i I ! !

Ii! I I I' ir--f-. I~ Ir-+ Ir-RDYRCV'

I I I! I '-----t' ! '--t' ! '--t' ! '---T

Figure 20. Example Four Double-Word Burst Read in Initial Configuration Showing Key
Specifications Requiring Consideration

Initial Configuration

Figure 20 illustrates a four double-word burst read cycle
with the 28FOi 6XS-15s and the state machine in the
reset/power-up configuration state. The i960 JF
microprocessor initiates a read cycle by asserting ADS#
with W!R# = "0," presenting a valid address and control
signals~ At N = 2 with ADS# = "0" and CLK = "0," the
two-bit counter loads the values on the address bits A3-2•

The state machine asserts ADV# after clock edge N = 1
where the 28F016XS-15s will clock in the first address
at the next rising clock edge (N=2), if CS# is asserted. If
CS# is not asserted, the state machine will return to its
inactive state at N = 2.

The state machine de-asserts ADV# at N = 2. The state
machine then asserts ADV# at N = 3 to load the next
read address into the 28F016XS-15s. De-asserting
ADV# for one clock cycle (at N = 2, 4, 6 and 8) between
accesses forces the 28F016XS-15s to hold data output
for two clock cycles (access stretching), which allows
time for the data to stabilize and meet the timing
requirements of the i960 IF microprocessor bus.

256

The counter increments the two lower bits of the address
at N = 3, 5 and 7 to provide the four successive burst
addresses. The state machine asserts OE# at N = 4 to
enable the 28F016XS-15 data output buffers. With the
SF! Configuration = 4, the data will be valid at the
i960 IF microprocessor data inputs at N = 7.

The state machine asserts RDYRCV# to inform the
i960 IF microprocessor that the data is valid.
RDYRCV# is returned active at N = 7, 9, 11 and 12.
When sampling BLAST# active, the state machine ends
the read transfer and returns to an idle state. In the idle
state, the state machine simply waits for the processor to
initiate another bus transaction.

I

28F016XS/i960® Microprocessor Interface

Optimized Configuration from the initial access will be valid for transfer at N = 5.
Subsequent data will be valid at N = 6, 7 and 8. This
interface and 28F016XS-15 configuration improve read
wait-state performance to 3-0-0-0. All other signal
monitoring and generation are identical to the
reset/power-up configuration read cycle documented in
the preceding section.

Figure 15 illustrates a four double-word burst read with
the 28F016XS-15s and state machine configured for
optimum read performance. With the
SF! Configuration = 2, ADV# is held active and the
counter increments at N = 2, 3 and 4, supplying the
28F016XS-15s with four consecutive accesses. Data

CLK
(33MHz)

j .tSUljr-____ ~----~----~------+_----~------~----~------
~

I

ADS#

i 4tsu~i l=' i W/R#

BLAST# I

CS#

:j--l--:-t ~,--,-j'l---'!r,--,-j '_2_~r--:-j ."":'s---+'!XXXXXXXX

XXXXXXXXXXr!----~V~al~7:A~d~dr-.s-s--~------~------r------T-------T------~.,.,.~
i \MI~i--__ tE_LC_H~~! !

. tsuli

LAD:J1.(J

~ CFG
i i lVLe,,!

\LI· __ +·i ____ ~----~--~1 ADV#

OE#

~----+---~---+----~--+_~r--
WE#

CTRj.O

RDYRCV#

Figure 21. Example Four Double-Word Burst Read Illustrating Important Timing Parameters
Requiring Consideration

257

28F016XS/i960® Microprocessor Interface

Critical Timings

Table 4 describes the critical timings illustrated in
Figures 14 and 15. One particularly critical timing in
this design is the data hold time, which the
28F016XS-15 meets with 0 ns margin. The 28F016XS
holds data for 5 ns after a rising clock.

The 28F016XS-15 will provide data 10 ns before the
rising edge of the system clock, which satisfies the
i960 JF-33 microprocessor's data input requirement.

ADV# and CTR1_O are guaranteed valid 8 ns after the
rising clock edge_ Setup times for these inputs to
28F016XS-15 are each 15 ns. Since the clock period is
30 ns, this allows 7 ns margin for these timings.

RDYRCV# is guaranteed valid 8 ns after the rising
clock edge to met the microprocessor's setup time to
rising clock edge.

Consult the appropriate datasheets for full timing
information.

Table 6. Example Write Cycle Timing Parameters at 5V Vce

Part Symbol Parameter Minimum Specified
Value (ns)

22V10-15 tsul Input Setup Time to CLK 9

28F016XS-15 tELCH CE#. Setup to CLK 25

tVLCH ADV# Setup to CLK 15

tAVCH Address Setup to CLK 15

tGLCH OE# Setup to CLK 15

NOTE:

Consult appropriate datasheets for up-to-date specifications.

258

I

4.4 Burst Write Cycle Description at
33 MHz

The write interface in for this design behaves similar to
the optimized design's write interface described in
Section 3.4. The only difference between the two
designs is the absence of the MUX. Therefore, this
design's write state machine does not have to concern
itself with changing the data flow through the MUX.
Instead, the interface simply loads and holds the address
presented by the processor for the duration of the write
operation.

For further details information about this cycle and write
timing waveform, refer to Section 3.4.

5.0 INTERFACING TO OTHER i960
MICROPROCESSORS

1960 CF-16, 1960 CF-25 and 1960 CF-33
Microprocessors

The i960 CF microprocessor bus interface is completely
compatible with the i960 CA microprocessor bus
interface. Therefore, the 28F016XS-15 interfaces
described above for the i960 CA-33 microprocessor
work equally well with the i960 CF-25 and 33 MHz
microprocessors.

At 16 MHz, the interface requires a slight modification
because the SFI Configuration value at 16 MHz
equals 1. The 28F016XS-15 will begin driving the data
pin 1 CLK period after initiating a read access. The
interface returns READY# to the i960 CF-16
microprocessor, 1 CLK cycle earlier. Therefore, the
28F016XS-15 interface to the i960 CF-16
microprocessor will deliver 3-0-0-0 wait-state read
performance.

1960 KA and i960 KB Microprocessors

The 28F016XS interface to the i960 Kx microprocessor
series will be very similar to the i960 JF interface
described in Sections 3.0 and 4.0. The only difference
between the two designs is the i960 Kx' s lack of a

I

28F016XS/i960® Microprocessor Interface

BLAST# output signal. The i960 JF interfaces use this
signal to determine the end to the burst transaction.
Since the i960 Kx microprocessor does not have a
BLAST# signal, the interface logic must examine the
processor's lower address lines to determine the length
of the read tra:lsaction.

For further detailed information about this interface,
please reference the i960 JF interfaces. Contact your
Intel or distribution sales office for schematic and PLD
files for the 28F016XS interface to the i960 Kx
microprocessor.

1960 SA Microprocessor, 1960SB
Microprocessor

The 28F016XS's interface to the i960 Sx microprocessor
series will be similar to the i960 JF microprocessor
interfaces, with the following differences:

• The i960 Sx microprocessor series has a 16-bit data
bus multiplexed with the lower 16 of 32 address bits.
Therefore, a single 28F016XS will match the width
of the data bus.

o The i960 Sx microprocessor series supports eight
double-word burst transfers. Therefore, the
28F016XS interface will require a three-bit counter
to generate the lower three bits of the burst
addresses.

6.0 CONCLUSION

This technical paper has described the interface between
the 28F016XS 16-Mbit Flash memory component and
the i960 microprocessor family. This simple design has
been implemented with a minimal number of
components and achieves exceptional read performance.
The 28F016XS provides the microprocessor with the
non-volatility and updateability of flash memory and the
performance of DRAM. For further information about
the 28FOI6XS, reference the Additional Information
section of this technical paper. Please contact your local
Intel or distribution sales office for more information on
Intel's flash memory products.

259

28F016XS/i960® Microprocessor Interface

ADDITIONAL INFORMATION

Order Number DocumentITools

290532 28F016XS Datasheet

297500 "Interfacing 28F016XS to the Intel486™ Microprocessor
Family"

292147 AP-398, "Designing with the 28F016XS"

292146 AP-600, "Perforrnance Benefits and Power/Energy Savings of 28F016XS
Based System Designs"

292163 AP-610, "Flash Memory In-System Code and Data Update Techniques"

292165 AB-62, "Compiled Code Optimizations For Embedded Flash RAM
Memories"

297372 16-Mbit Flash Product Family User's Manual

297508 FLASHBuilder Utility

Contact Intel/Distribution
Sales Office

28F016XS Benchmark Utility

Contact Intel/Distribution 28F016XS iBIS Models
Sales Office

Contact InteVDistribution
Sales Office

28F016XS VHDUVeriiog Models

Contact InteVDistribution
Sales Office

28F016XS Timing Designer Library Files

Contact Intel/Distribution
Sales Office

28F016XS Orcad and ViewLogic Schematic Symbols

REVISION HISTORY

Number Description

001 Original Version

002 Added Optimized i960 JF Microprocessor Interface that Delivers 2-0-0-0 Wait-State
Performance Up to 30 MHz.

Removed Detailed i960 KB Microprocessor Interface Description

Added i960 KB Microprocessor Interfacing Guidelines to Section 5.0, "Interfacing to
Other i960 Microprocessors"

260

I

28F016XS/i960® Microprocessor Interface

APPENDIX A
PLD FILES

PLD file for the standard 28F016XS interface to the i960 CA Microprocessor described in Section 2.0.

Title
Pattern
Revision
Authors
Company
Date

28F016XS I i960® CA Microprocessor Interface State Machine
PDS
1
Example
Intel Corporation - Folsom, California
1-25-94

CHIP STATEMACHINE 85C22VlO

; inputs
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN 25

; outputs
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN

CLK
ADS_n
W_R_n
BLASLn
CS_n
CFG
A2
A3
RESET
GLOBAL

CTRO
CTR1
/WE
IDE
QO
Q1
IADV
Q3

; address status - i960 CA microprocessor
; WIR# - i960 CA microprocessor
; burst last - i960 CA microprocessor
; chip select - 28F016XS
; 28FO 16XS/i960 CA microprocessor config status set input
; LAD bit 2
; LAD bit 3
; resets all FFs in device
; virtual pin to implement reset

; burst counter out - 28F016XS-A1
; burst counter out - 28F016XS-A2
; write enable - 28F016XS
; output enable - 28F016XS
; state variables

; state variable and address valid - 28F016XS

; burst counter control signals
STRING LD '(lADS_n)' ; load
STRING INC '(/ADV + ADV * Q3 * Q1 * QO),

STATE MOORE_MACHINE
DEFAULT_BRANCH SO

; state assignments
SO=

I

Sl =
S2=
S3 =
S4=

IQ3 * IADV * IQ1 * IQO
IQ3 * ADV * IQl * IQO
Q3 * ADV * IQ1 * IQO
Q3 * ADV * IQ1 * QO

IQ3 * ADV * IQl * QO

; increment

261

28F016XS/i96()@ Microprocessor Interface

S5 = IQ3 * IADV * IQl * QO
S6= IQ3*/ADV* Ql*/QO
S7 = Q3 * IADV * Ql * IQO
S8 = Q3 * IADV * IQl * IQO

; state transitions
SO:= (I ADS_n * /W _R_n) -> SI

+ (I ADS_n * W _R_n) -> S6
+->SO

SI := (/CS_n * ICFG) -> S5
+ (fCS_n * CFG) ->S2

+->SO
S2:= VCC ->S3
S3 := VCC ->S4
S4:= (IBLAST_n * ADS_n) -> SO

+ (IBLAST_n * IADS_n) -> SI
+->S5

S5:= (IBLAST_n * ADS_n) -> SO
+ (IBLAST_n * IADS_n) -> SI

+->S5
S6:= ICS_n -> S7

+->SO
S7 := VCC -> S8
S8:= (BLAST_n * CFG) -> S6

+ (BLAST_n * ICFG) -> S8
+->SO

; transition outputs
SO.OUTF := IOE * /WE
Sl.OUTF := IOE * /WE
S2.0UTF := OE * /WE
S3.0UTF := OE * /WE
S4.0UTF := OE * /WE
S5.0UTF := OE * /WE
S6.0UTF := OE * /WE
S7.0UTF:= IOE * WE
SS.OUTF:= IOE * WE
S9.0UTF := IOE * /WE

EQUATIONS
; implement RESET

GLOBAL.RSTF = IRESET

; READ cycle
; WRITE cycle
; else, stay
; 28F016XS selected, initial configurations
; 28F016XS selected, 28F016XS and i960 CA microprocessor configured
; else, return to idle state

; 28F016XS is configured to wait 4 clocks
; 1 double word read
; pipelined read
; else, continue
; burst read finished
; pipelined read
; else, continue
; 28F016XS selected, continue
; else, return to idle state

continue burst
pre-config write
write is finished

; implement 2-bit burst counter - registered counter equations
CTRI := (LD * A3) + (ILD * INC * CTRO * ICTR1)

+ (ILD * INC * ICTRO * CTR1) + (ILD * nNC * CTR1)
CTRO := (LD * A2) + (fLD * INC * ICTRO) + (ILD * IINC * CTRO)

; flop OE and WE on falling edge
OE.CLKF = ICLK
WE.CLKF = ICLK

262

I

28F016XS/i960® Microprocessor Interface

PLD file for the optimized 28F016XS interface to the i960 JF Microprocessor described in Section 3.0.

Title
Pattern
Revision
Authors
Company
Date

CHIP

; inputs
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN 25

; outputs
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN

Optimized 28F016XS/i960® JF Microprocessor Interface State Machine
PDS
1
Example
Intel Corporation - Folsom, California
2-16-95

STATEMACHINE

CLK
ADS
W_R
BLAST
CS
CFG
A2
A3
RESET
GLOBAL

CTRO
CTR1
!WE
IOE
IRDYRCV
MUX
QO
Q1
IADV
Q3

85C22VlO

; address status - i960 JF microprocessor
; WIR# - i960 JF microprocessor
; burst last - i960 JF microprocessor
; chip setect
; 28F016XS/i960 JF microprocessor config status set input
; A bit 2
; A bit 3
; resets all FFs in device
; virtual pin to implement reset

; burst counter out - 28F016XS-A1
; burst counter out - 28FO 16XS-A2
; write enable - 28F016XS
; output enable - 28F016XS
; wait-state control
; control data flow through the multiplexer
; state variables

; state variable and address valid - 28FO 16XS

; burst counter control signals
STRING LD '(lADS)' ; load
STRING INC '(/ADV + IRDYRCV * Q3 * Q1 * QO)' ; increment

STATE MOORE_MACHINE
DEFAULT_BRANCH SO

; state assignments

I

SO = IRDYRCV * IQ3 * ADV * IQ1 * IQO * IOE * !WE * IMUX
Sl = IRDYRCV * IQ3 * ADV * IQ1 * QO * OE * !WE* MUX
S2 = IRDYRCV * IQ3 * ADV * Q1 * IQO * OE * !WE * MUX
S3 = RDYRCV * IQ3 * ADV * Q1 * QO * OE * !WE* MUX
S4 = RDYRCV * IQ3 * IADV * IQ1 * QO * OE * !WE* MUX
S5 = IRDYRCV * IQ3 * IADV * Q1 * IQO * IOE * !WE* MUX

263

28F016XSli960® Microprocessor Interface

56 = IRDYRCV * Q3 * ADV * IQl * IQO * OE * IWE * MUX
57 = IRDYRCV * IQ3 * IADV * Ql * QO * OE * IWE* MUX
58 = IRDYRCV * Q3 * ADV * IQl * QO * OE * IWE* MUX
59 = RDYRCV * Q3 * IADV * IQl * IQO * OE * IWE* MUX
510 = IRDYRCV * Q3 * ADV * Ql * IQO * OE * IWE* MUX
511 = IRDYRCV * Q3 * IADV * IQl * QO * OE * IWE* MUX
513 = IRDYRCV * Q3 * IADV * Ql * IQO * IOE * WE* MUX
514 = IRDYRCV * Q3 * IADV * Ql * QO * IOE * WE* MUX
515 = RDYRCV * Q3 * IADV * Ql * QO * IOE * IWE* MUX

; state transitions
50:= (/AD5 * IW_R * CPO) -> SI

+ (lADS * IW_R * ICFO) ->S5
+ (lADS * W_R) -> S13

SI :=
+

S2:=
S3:=

54:=
+
+

S5 :=
S6:=
S7 :=
S8 :=
S9:=

+
S1O:=
Sl1:=
S13:=

+
SI4:=
SI5:=

+

ICS
CS

VCC
(/BLAST)

/BLAST
(BLAST * CFO)
(BLAST * ICFO)
VCC
VCC
VCC
VCC
/BLAST
BLAST
VCC
VCC
CS
ICS
VCC
BLAST
/BLAST

EQUATIONS

+->SO
->S2
->SO
-> S3
-> SO

+->S4
->SO
->S4
-> Sl1
->S6
-> S7
-> S8
->S9
->SO
-> S10
->S4
->S4
->SO
-> S14
-> SIS
-> S13
-> SO

; implement RESET
OLOBAL.RSTF = IRESET

; READ cycle

; WRITE cycle
; else, stay
; 28F016XS selected, init configurations
; 28F016XS selected, optimized configured

; 1 double word read
; else, continue
; burst read finished
; continue, optimized configuration
; continue, initial configuration

; BLAST - end of the burst read transaction

; write cycle control

; BLAST - end of burst write transaction

; implement 2-bit burst counter - registered counter equations
CTRI := (IWR * LD * A3 * IA2) + (WR * LD * A3) + (ILD * INC * CTRO * ICTRl)

+ (ILD * INC * ICTRO * CTRl) + (ILD * IINC * CTRl)
CTRO := (IWR * LD * IA2) + (WR * LD * A2) + (ILD * INC * ICTRO) + (ILD * IINC * CTRO)

264

I

28F016XS/i960® Microprocessor Interface

PLD file for the standard 28F016XS interface to the i960 JF Microprocessor described in Section 4.0.

Title
Pattern
Revision
Authors
Company
Date

CHIP

; inputs
PIN 1
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN 25

; outputs
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN

28F016XS/i960® JF Microprocessor Interface State Machine
PDS
I
Example
Intel Corporation - Folsom, California
8-16-94

STATEMACHINE

CLK
ADS
W_R
BLAST
CS
CFG
A2
A3
RESET
GLOBAL

CTRO
CTR1
/WE
IOE
IRDYRCV
QO
Q1
IADV
Q3

85C22V10

; address status - i960 FJ microprocessor
; WIR# - i960 FJ microprocessor
; burst last - i960 JF microprocessor
; chip setect
; 28F016XS/i960 JF microprocessor config status set input
; A bit 2
; A bit 3
; resets all FFs in device
; virtual pin to implement rcset

; burst counter out - 28F016XS-Al
; burst counter out - 28FO l6XS-A2
; write enable - 28F016XS
; output enable - 28F016XS
; wait-state control
; state variables

; state variable and address valid - 28F016XS

; burst counter control signals
STRING LD '(lADS)' ; load
STRING INC '(lADV + IRDYRCV * Q3 * Q1 * QO), ; increment

STATE MOORE_MACHINE
DEFAULLBRANCH SO

; state assignments
SO =
Sl =
S2 =
S3 =
S4 =
S5 =
S6 =

I

IRDYRCV * IQ3 * IADV * IQ1 * IQO * IOE * /WE
IRDYRCV * IQ3 * ADV * IQ1 * IQO * IOE * /WE
IRDYRCV * IQ3 * ADV * IQ1 * QO * OE * /WE
IRDYRCV * IQ3 * ADV * Q1 * IQO * OE * /WE
RDYRCV * IQ3 * ADV * Q1 * QO * OE * /WE
RDYRCV * IQ3 * IADV * IQ1 * QO * OE * /WE

IRDYRCV * IQ3 * IADV * Q1 * IQO * IOE * /WE

265

,

28F016XSli9600 Microprocessor Interface

S7 = IRDYRCV * Q3 * ADV * IQI * IQO * DE * /WE
S8 = IRDYRCV * IQ3 * IADV * QI * QO * DE * /WE
S9 = IRDYRCV * Q3 * ADV * IQI * QO * DE * /WE
SIO = RDYRCV * Q3 * IADV * IQI * IQO * DE * /WE
Sl1 = IRDYRCV * Q3 * ADV * QI * IQO * DE * /WE
SI2 = IRDYRCV * Q3 * IADV * IQI * QO * DE * /WE
S13 = IRDYRCV * Q3 * IADV * QI * IQO * IDE * WE
SI4 = IRDYRCV * Q3 * IADV * QI * QO * IDE * WE
SI5 = RDYRCV * Q3 * IADV * QI * QO * IDE * /WE

; state transitions
SO:= (lADS * /W _R) -> SI

+ (lADS * W_R) -> S13
+->SO

SI := (lCS * ICFG) -> S6
+ (lCS * CFG) ->S2

+->SO
S2:= VCC -> S3
S3:= VCC -> S4
S4:= (!BLAST * ADS) ->SO

+->S5
S5:= !BLAST ->SO

+ (BLAST * CFG) ->S5
+ (BLAST * ICFG) ->SI2

S6:= VCC ->S7
S7:= VCC -> S8
S8:= VCC ->S9
S9:= VCC -> SIO
SIO:= !BLAST ->SO

+ BLAST -> Sl1
Sl1:= VCC ->S5
SI2:= VCC ->S5
SI3:= CS -> SO

+ ICS -> S14
SI4:= VCC -> SI5
SI5:= BLAST -> S13

+ !BLAST ->SO

EQUATIONS
; implement RESET

GLOBAL,RSTF = IRESET

; READ cycle
; WRITE cycle
; else, stay
; 28F,0 16XS selected, init configurations
; 28FOl6XS selected, optimized configured
; else, return to idle state

; 28FOl6XS is configured to wait 4 clocks
; I double word read
; else, continue
; burst read finished
; continue, optimized configuration
;, continue, initial configuration

; BLAST - end of the buist read transaction

; write cycle control

; BLAST - end of burst write transaction

; implement 2-bit burst counter - registered counter equations
CTRI := (LD * A3) + (fLD * INC * CTRO * ICTRI)

266

+ (fLD * INC * ICTRO * CTRI) + (fLD * IINC * CTRI)
CTRO := (LD * A2) + (fLD * INC * ICTRO) + (fLD * IINC * CTRO)

I

28F016XS/i960® Microprocessor Interface

APPENDIX B
BENCHMARK PERFORMANCE

ANALYSIS

The following section provides detailed memory technology information used in the performance analysis (UDP/IP
Networking and Imaging Benchmarks) contained in the introduction. The performance analysis was based on actual
memory component performance in an i960 processor-based environment. System interface delay between
microprocessor and memory was not included in the analysis. The two benchmarks illustrate relative system memory
performance.

A. 28F016XS Flash Memory

28F016XS is capable of 3-1-1-1-1-1-1-1. .. read performance at 5.0V Vee and 33 MHz or 25 MHz
(2-0-0-0-0-0-0-0 .. .in terms of wait-states). The benchmarking analysis is shown below:

UDPI1P Networking Benchmark Imaging Benchmark
Time (sec) Time (sec)

i960 KB-25 1.30 1.64
Microprocessor

i960CA-33 .89 .89
Microprocessor

i960 CF-33 .53 .59
Microprocessor

B. 16·Mbit DRAM

16-Mbit DRAMs were, at the time this technical paper was published, only beginning to ramp into production. Only
advance information for the wider x16, 16-Mbit DRAMs was available for use in the calculations that follow.

Sequential reads allow use of the DRAM fast page mode. Assumed DRAM specifications are shown below:

• 80 ns tRAe, 40 ns tAA (5.0V Vee)

• 256 word (512 byte) page buffer

Therefore, 16-Mbit DRAMs are capable of 3-2-2-2-2-2-2-2. . .read performance at 33 MHz and 25 MHz
(2-1-1-1-1-1-1-1 in terms of wait-states ...). The benchmarking analysis is shown below:

UDPI1P Networking Benchmark Imaging Benchmark
Time (sec) Time (sec)

i960 KB-25 1.88 1.89
MicroJJrocessor

i960 CA-33 1.06 1.03
Microprocessor

i960 CF-33 .59 .64
Microprocessor

I
267

28F016XSJi9600 Microprocessor Interface

C. 4-Mblt EPROM

Calculations that follow used the x16 version of the 4-Mbit EPROM (Intel 27C400 or equivalent).

The assumed 5.0V Vee 4-Mbit EPROM random access time is 150 os. Therefore, 4-Mbit EPROMs are capable of 5-5-
5-5-5-5-5-5 ... read performance at 5.0V Vee and 33 MHz (4-4-4-4-4-4-4-4 .. .in terms of wait-states). The
benchmarking analysis is shown below: '.

UDPIIP Networking Benchmark Imaging Benchmark
Time (sec) Time (sec)

i960 KB-25 NA NA
Microprocessor

i960 CA-33 1.56 1.49.
Microprocessor

i960CF-33 .78 .81
Microprocessor

D. 16-Mbit PAGED MASK ROM

Calculations that follow used the xl6,version of the .16~Mbit paged mask ROM, which is not yet widely available from
multiple vendors. The x8, 16-Mbit paged mask ROM is 'the more common version today.

Sequenti3J. reads allow use of the mask ROM page mode. The assumed 5.0V Vee 16-Mbit mask ROM random access
time is 150 ns, with 75 ns accesses in page mode (4-word page). Therefore, 16-Mbit mask ROMs are capable of 5-3-3~
3-5-3-3-3 ... read performance at 5.0V Vee and 33 MHz (4-2-2-2-4-2c2-2 .. .in terms of wait-states). The benchmarking
analysis is shown below:

UDPIIP Networking Benchmark Imaging Benchmark (sec)
Time (sec) Time (sec)

i960 KB-25 NA NA
Microprocessor

i960CA-33 1.35 1.30
Microprocessor

i960CF-33 .71 .73
Microprocessor

268

I

Revised Pages

I

Flash Memory Overview

271

I

In contrast, Intel flash memory is inherently nonvolatile,
and the single transistor cell design of Intel's ETOX
manufacturing process is extremely scaleable, allowing
the development of continuously higher densities and
steady cost improvement over SRAM (Figure 2).

1000

500

N 200
~
i'J 100
;;;

50

~ 20

g 10

~

2.0 1.5 1.2 1.0 0.6 0.7 0.6 O.S

MINIMUM fEATURE SIZE ("")

Figure 2

296101-1

- EPROM (electrically programmable read-only
memory) is a mature, high-density, nonvolatile
technology which provides a degree of
updatability not found in ROM. An OEM may
program EPROM as needed to accommodate
code changes or varying manufacturing unit
quantities. Once programmed, however, the
EPROM may only be erased by removing it from
the system and then exposing the memory
component to ultraviolet light-an impractical
and time-consuming procedure form many OEMs
and a virtually impossible task for end-users.

Unlike EPROM, flash memory is electrically re-writable
within the host system, making it a much more flexible
and easier to use alternative. Flash memory offers
OEMs not only high density and nonvolatility, but
higher functionality and the ability to differentiate their
systems. .

Intel EEPROM
ETOXFlash

Transistors 1 2
Cell Size 15 !l 38 !l
(1-Micro Lithography)
Cycling Features 0.1% 5%

Figure 3

- EEPROM (electrically erasable programmable
read-only memory) is nonvolatile and electrically
byte-erasable. Such byte-alterability is needed in
certain applications but involves a more complex

I

FLASH MEMORY OVERVIEW

cell structure, and significant trade-offs in terms
of limited density, lower reliability and higher
cost, making it unsuitable as a mainstream
memory.

Unlike EEPROM, Intel flash memory technology
utilizes a one-transistor cell, allowing higher densities,
scalability, lower cost, and higher reliability, while
taking advantage of in-system, electrical eras ability
(Figure 3).

- DRAM (dynamic random access memory) is a
volatile memory known for its density and low
cost. Because of its volatility, however it requires
not only a constant power supply to retain data,
but also an archival storage technology, such as
disk, to back it up.

Partnered with hard disks for permanent mass storage,
DRAM technology has provided a low-cost, yet space
and power-hungry solution for today's pes.

With ETOX process technology, Intel manufactures a
flash memory cell that is 30% smaller than equivalent
DRAM cells. Flash memory's scalability offers a price
advantage as well, keeping price parity with DRAM,
and also becoming more attractive as a hard disk
replacement in portable systems as densities grow and
costs decline.

Intel flash memory combines advantages from each of
these memory technologies. In embedded memory
applications, flash memory provides higher-performance
and more flexibility than ROM and EPROM, while
providing higher density and better cost effectiveness
than battery-backed SRAM and EEPROM. Moreover,
the true nonvolatility and low power consumption
characteristics of flash memory make it a compelling
alternative to DRAM in many applications.

ETOX III TECHNOLOGY

Unlike other approaches to flash memory, Intel ETOX is
a proven technology. As its name suggest, ETOX (or
"EPROM tunnel oxide") technology evolved from
EPROM. With 95% process compatibility with EPROM,
ETOX taps experience gained from a mature high
volume manufacturing base pioneered by Intel in the
1970s.

Representing the third generation of Intel flash memory
technology, the ETOX III 0.8 !l process delivers 100,000
write cycles per block. This capability significantly
exceeds the cycling requirements of even the most
demanding applications.

273

/

DD28F032SA, 32-Mbit
FlashFile™ Memory Datasheet

I
275

The DD2BF032SA contains three types of Status
Registers to accomplish various functions:

• A Compatible Status Register (CSR) which is
100% compatible with the 2BFOOBSA FlashFile
memory's Status Register. This register, when
used alone, provides a straightforward upgrade
capability to the DD2BF032SA from a
2BFOOBSA-based design.

• A Global Status Register (GSR) which informs
the system of command Queue status, Page
Buffer status, and overall Write State Machine
(WSM) status.

• 64 Block Status Registers (BSRs) which
provide block-specific status information such
as the block lock-bit status.

The GSR and BSR memory maps for Byte-Wide
and Word-Wide modes are shown in Figures 4
and 5.

The DD2BF032$A incorporates an open drain
RY/BY# output pin. This feature allows the user to
OR-tie many RY/BY# pins together in a multiple
memory configuration such as a Resident Flash
Array. Other configurations of the RY/BY# pin are
enabled via special CUI commands and are
described in detail in the 16-Mbit Flash Product
Family User's Manual.

The DD2BF032SA also incorporates three chip
enable input pins, CEo#, CE1# and CE2#. The
active low combination of CEo# and CE1# controls
the first 2BF016SA. The active low combination of
CEo# and CE2# controls the second 2BF016SA.

I ADVANCE INFORMATION

DD28F032SA

The BYTE# pin allows either xB or x16 read/writes
to the DD2BF032SA. BYTE# at logic low selects
B-bit mode with address Ao selecting between low
byte and high byte. On the other hand, BYTE# at
logic high enables 16-bit operation with address A1
becoming the lowest order address and address
Ao is not used (don't care). A device block diagram
is shown in Figure 1.

The DD2BF032SA incorporates an Automatic
Power Saving (APS) feature which substantially
reduces the active current when the device is in
static mode of operation (addresses not
switching).

A deep power-down mode of operation is invoked
when the RP# (called PWD# on the 2BFOOBSA)
pin is driven low. This mode provides additional
write protection by acting as a device reset pin
during power transitions. In the Deep Power
Down state, the WSM is' reset (any current
operation will abort) and the CSR, GSR and BSR
registers are cleared.

A CMOS standby mode of operation is enabled
when either CEo#, or both CE1# and CE2#,
transition high and RP# stays high with all input
control pins at CMOS levels.

2.0 DEVICE PINOUT

The DD2BF032SA Standard 56L-Dual Die TSOP
Type I pinout configuration is shown in Figure 2.

277

DD28F032SA

2.1 Lead Descriptions

Sym~ol Type Name and Function

Ao INPUT BYTE-SELECT ADDRESS: Selects between high and low byte when
device is in x8 mode. This address is latched in x8 Data Writes. Not used
in x16 mode (Le., the An input buffer is turned off when BYTE# is high).

Al - A15 INPUT WORD-SELECT ADDRESSES: Select a word within one 64-Kbyte block.
Ae·15 selects 1 of 1024 rows, and Al.5 selects 16 of 512 columns. These
addresses are latched during Data Writes.

A16 - A20 INPUT BLOCK-SELECT ADDRESSES: Select 1 of 64 Erase blocks. These
addresses are latched during Data Writes, Erase and Lock-Block
operations.

000- 007 INPUT/OUTPUT LOW-BYTE DATA BUS: Inputs data and commands during CUI write
cycles. Outputs array, buffer, identifier or status data in the appropriate
read mode. Floated when the chip is de-selected or the outputs are
disabled.

DOs- 0015 INPUT/OUTPUT HIGH-BYTE DATA BUS: Inputs data during x16 Data-Write operations.
Outputs array, buffer or identifier data in the appropriate read mode; not
used for Status register reads. Floated when the chip is de-selected or the
outputs are disabled.

CEo# INPUT CHIP ENABLE INPUTS: Activate the device's control logiC, input buffers,
CEx#= decoders and sense amplifiers. CEo# or CE1# enable/disable the first
CE1#or 28F016SA (16 Mbit No.1) while CEo#, CE2# enable/disable the second
CE2# 28F016SA (16 Mbit No.2). CEo# active low enables chip operation while

CE1# or CE2# select between the first and second device, respectively.
CE1# or CE2# must not be active low simultaneously. Reference Table
3.0.

RP# INPUT RESETIPOWER-DOWN: RP# low places the device in a Deep Power-
Down state. All circuits that burn static power, even those circuits enabled
in standby mode, are turned off. When returning from Deep Power-Down,
a recovery time of 400 ns is required to allow these circuits to power-up.
When RP# goes low, any current or pending WSM operation(s) are
terminated, and the device is reset. All Status registers return to ready
(with all status flaos cleared).

OE# INPUT OUTPUT ENABLE: Gates device data through the output buffers when
low. The outputs float to tri-state off when OE# is high.

NOTE:
CEx# overrides OE#, and OE# overrides WE#.

WE# INPUT WRITE ENABLE: Controls access to the CUI, Page Buffers, Data Oueue
Registers and Address Oueue Latches. WE# is active low, and latches
both address and data (command or array) on its risino edoe.

278 ADVANCE INFORMATION I

6.4 DC Characteristics

Vee = 3.3V ± 0.3V, TA = O°C to +70°C
3/5# = Pin Set High for 3.3V Operations

Symbol Parameter Notes

IlL Input Leakage 1
Current

ILO Output Leakage 1
Current

Ices Vee Standby 1,5,6

Current

IceD Vee Deep Power- 1
Down Current

leeR1 Vee Read Current 1,4,5,
6

leew Vee Write Current 1,7

I ADVANCE INFORMATION

Min Typ

100

2

2

25

26

8

DD28F032SA .

Max Units Test Conditions

±2 IlA Vee = Vee Max,
VIN = Vee or GND

±20 IlA Vee = Vee Max,
VIN = Vee or GND

200 IlA Vee = Vee Max,
CEo#, CEx#, RP#, = Vee ±
0.2V

BYTE#, WP#, 3/5# = Vee ±
0.2V or GND ± 0.2V

8 rnA Vee= Vee Max,
CEo#, CEx#, RP# = VIH
BYTE#, WP#, 3/5# = VIH or
VIL

10 IlA RP# = GND ± 0.2V

BYTE# = Vee ± 0.2V or
GND ±0.2V

30 rnA Vee = Vee Max
CMOS:CEo#, CEx# = GND
±0.2V
BYTE# = GND ± O.2V or

Vee ± 0.2V
Inputs = GND ± O.2V or Vee
± 0.2V

f = 6.67 MHz, lOUT = 0 rnA
34 rnA TTL: CEo#, CEx# = VIL,

BYTE# = VIL or VIH
INPUTS = VIL or VIH,

f= 6.67 MHz, lOUT = 0 rnA
12 rnA Word/Byte Write in Progress

279

DD28F032SA

6.11 Erase and Word/Byte Write Performance, Cycling Performance and Suspend
Latency(1,3)

Vcc = 3.3V ± 0.3V, Vpp = 12.0V ± 0.6V, TA = O°C to +70°C

Sym Parameter Notes Min Typ(1) Max Units Test Conditions

Page Buffer Byte Write Time 2,4 3,26 Note 6 !-IS

Page Buffer Word Write 2,4 6.53 Note 6 !-Is
Time

tWHRH1 Word/Byte Write Time 2 9 Note 6 !-Is

tWHRH2 Block Write Time 2 0.6 2.1 Sec Byte Write Mode

twHRH3 Block Write Time 2 0.3 1.0 Sec Word Write Mode

Block Erase Time 2 0.8 10 Sec

Full Chip Erase Time 2 51.2 Sec

Erase Suspend Latency 7.0 !-IS
Time to Read

Auto Erase Suspend Latency 10.0 !-Is
Time to Write

Erase Cycles 5 100,000 1,000,000 Cycles

Vcc = 5.0V ± 0.5V, Vpp = 12.0V ± 0.6V, T A = O°C to +70°C

Sym Parameter Notes Min Typ(1) Max Units Test Conditions

Page Buffer Byte Write Time 2,4 2.76 Note 6 !-IS

Page Buffer Word Write 2,4 5.51 Note 6 !-Is
Time

tWHRH1 Word ByteIWrite Time 2 6 Note 6 !-Is

tWHRH2 Block Write Time 2 0.4 2.1 Sec Byte Write Mode

tWHRH3 Block Write Time 2 0.2 1.0 Sec Word Write Mode

Block Erase Time 2 0.6 10 Sec

Full Chip Erase Time 2 38.4 Sec

Erase Suspend Latency 5.0 !-Is
Time to Read

Auto Erase Suspend Latency 8.0 !-Is
Time to Write

Erase Cycles 5 100,000 1,000,000 Cycles

NOTES:
1. 25°C, Vee = 3.3V or 5.0V nominal, 10K cycles.
2. Excludes system-level overhead.
3. These performance numbers are valid for all speed versions.
4. This assumes using the full Page Buffer to Write to Flash (256 bytes or 128 words).
5., 1,000,000 cycle performance assumes the application uses block retirement techniques.
6. This information will be available in a technical paper. Please call Intel's Application hotline or your local sales office for

more information.

280 ADVANCE INFORMATION I

DD28F032SA

DEVICE NOMENCLATURE/ORDERING INFORMATION

lolol21alFlol3121slAI -1017101
y I

I
I

DUAL DIE ACCESS SPEED (ns)
70 ns

100 ns
NOTES:
Two valid combinations of speeds exist:
DD28F032SA-070, DD28F032SA-080, DD28F032SA-120

or
DD28F032SA-100, DD28F032SA-150

Option Order Code Valid Combinations

Vee = 3,3V Vee =S.OV Vee = S.OV
:l:0.3V, SO pF :l:S%,30pF :I: 10%, 100 pF

1 DD28F032SA 070 DD28F032SA-150 DD28F032SA-070 DD28F032SA-080
2 DD28F032SA 100 DD28F032SA-150 DD28F032SA-100

ADDITIONAL INFORMATION
Order Item

Number

297372 16-Mbit Flash Product Family User's Manual

290489 28F016SA 16-Mbit FlashFile™ Memory Data Sheet

290528 28F016SV FlashFile™ Memory Data Sheet

290429 28F008SA Data Sheet

292159 AP-607 "Multi-Site Layout Planning w/lntel's FlashFile™ Components Including ROM
Compatibility"

292144 AP 393 "28F016SV Compatibility with 28F016SA"

292127 AP 378 "System Optimization Using the Enhanced Features of the 28F016SA"

292126 AP 377 "28F016SA Software Drivers"

292124 AP 375 "Upgrade Considerations from the 28F008SA to the 28F016SA"

292123 AP 374 "Flash Memory Write Protection Techniques"

292092 AP 357 "Power Supply Solutions For Flash Memory"

294016 ER 33 "ETOXTM Flash Memory Technology-Insight to Intel's Fourth Generation
Process Innovation"

297508 FLASH Builder Design Resource Tool

297534 Small and Low-Cost Power Supply Solution for Intel's Flash Memory Products
(Technical Paper)

Please check with Intel Literature for availability.

I ADVANCE INFORMATION
281

DD28F032SA

DATASHEET REVISION HISTORY

Number Description

001 Original Version

002 NeverPublished

003 Full Datasheet with Specifications

CEo#, CE1# control 28F016SA No.1
CEo#, CE2# control 28F016SA No.2

004 Lead Descriptions: Block Select Addresses: Select 1

of 64 Erase Blocks

DC Characteristics (3.3V Vee): leeR1 (TTL):

BYTE# = VIL or VIH

Full Chip Erase Time (3.3V Vee) = 51.2 sec typ

Full Chip Erase Time (5.0V Vee) = 38.4 sec typ

Minor cosmetic changes

282 ANCE INFORMATION I

28F016SV, 16-Mbit
FlashFile™ Memory Datasheet

I
283

28F016SV FlashFile™ MEMORY

2.1 Lead Descriptions (Continued)

Symbol Type Name and Function

RY/BY# OPEN DRAIN READY/BUSY: Indicates status of the internal WSM. When low, it
OUTPUT indicates that the WSM is busy performing an operation. RY/BY# floating

indicates that the WSM is ready for new operations (or WSM has
completed all pending operations), or Erase is Suspended, or the device
is in deep power-down mode. This output is always active (Le., not floated
to tri-state off when OE# or CEo#, CE,# are high), except if a RY/BY# Pin
Disable command is issued.

WP# INPUT WRITE PROTECT: Erase blocks can be locked by writing a nonvolatile
lock-bit for each block. When WP# is low, those locked blocks as
reflected by the Block-Lock Status bits (BSR.6), are protected from
inadvertent Data Writes or Erases. When WP# is high, all blocks can be
written or erased regardless of the state of the lock-bits. The WP# input
buffer is disabled when RP# transitions low (deep power-down mode).

BYTE# INPUT BYTE ENABLE: BYTE# low places device in x8 mode. All data is then
input or output on DOD-7' and D08-15 float. Address Ao selects between
the high and low byte. BYTE# high places the device in x16 mode, and
turns off the Ao input buffer. Address A" then becomes the lowest order
address.

Vpp SUPPLY WRITE/ERASE POWER SUPPLY (12.0V:t 0.6V, 5.0V:t 0.5V) : For
erasing memory array blocks or writing words/bytes/pages into the flash
array. Vpp = S.OV:t O.SV eliminates the need for a 12V converter, while
connection to 12.0V :t O.6V maximizes Write/Erase Performance.

NOTE:
Successful completion of write and erase attempts is inhibited with Vpp at
or below 1.SV. Write and Erase attempts with Vpp between 1.5V and
4.5V, between 5.SV and 11.4V, and above 12.6V produce spurious
results and should not be attempted.

Vee SUPPLY DEVICE POWER SUPPLY (3.3V :t 0.3V, 5.0V :t 0.5V, 5.0 :t 0.25V):
Internal detection configures the device for 3.3V or S.OV operation. To
switch 3.3V to S.OV (or vice versa), first ramp Vee down to GND, and then
power to the new Vee voltage.
Do not leave any power pins floating.

GND SUPPLY GROUND FOR ALL INTERNAL CIRCUITRY:
Do not leave any ground pins floating.

NC NO CONNECT:
Lead maybe driven or left floating.

I ADVANCE INFORMATION 285

28F016SV FlashFile™ MEMORY

4 4 28F016SV-Performance Enhancement Command Bus Definitions
Command Mode Notes

Read Extended 1
Status Register

Page Buffer Swap 7

Read Page Buffer

Single Load to
Page Buffer

Sequential Load to xa 4,6,10
Page Buffer

x16 4,5,6,10

Page Buffer Write xa 3,4,9,10
to Flash

x16 4,5,10

Two-Byte Write xa 3

Lock Block/Confirm

Upload Status 2
Bits/Confirm

Upload Device 11
Information/Confirm

Erase All Unlocked
Blocks/Confirm

RY/BY# Enable to a
Level-Mode

RY/BY# a
Pulse-On-Write

RY/BY# a
Pulse-On-Erase

RY/BY# Disable a

RY/BY# Pulse-On- a
Write/Erase

Sleep 12

Abort

ADDRESS
BA ~ Block Address
PA ~ Page Buffer Address
RA ~ Extended Register Address
WA ~ Write Address
X ~ Don't Care

286

First Bus Cycle Second Bus Cycle Third Bus Cycle

Oper

Write

Write

Write

Write

Write

Write

Write

Write

Write

Write

Write

Write

Write

Write

Write

Write

Write

Write

Write

Write

Addr Data Oper

X xx71H Read

X xx72H

X xx75H Read

X xx74H Write

X xxEOH Write

X xxEOH Write

X xxOCH Write

X xxOCH Write

X xxFBH Write

X xx77H Write

X xx97H Write

X xx99H Write

X xxA7H Write

X xx96H Write

X xx96H Write

X xx96H Write

X xx96H Write

X xx96H Write

X xxFOH

X xxaOH

DATA
AD ~ Array Data
PD ~ Page Buffer Data
BSRD ~ BSR Data
GSRD ~ GSR Data

Addr

RA

PA

PA

X

X

AO

X

AO

BA

X

X

X

X

X

X

X

X

Data Oper Addr Data

GSRD
BSRD

PD

PD

BCL Write X BCH

WCL Write X WCH

BC(L,H) Write WA BC(H,L)

WCL Write WA WCH

WD(L,H) Write WA WD(H,L)

xxDOH

xxDOH

xxDOH

xxDOH

xx01H

xx02H

xx03H

xx04H

xx05H

WC (L,H) ~ Word Count (Low, High)
BC (L,H) ~ Byte Count (LOW, High)
WD (L,H) ~ Write Data (Low, High)

ADVANCE INFORMATION I

28F016SV FlashFile™ MEMORY

NOTES:

1. RA can be the GSR address or any BSR address. See Figures 4 and 5 for Extended Status Register memory maps.

2. Upon device power-up, all BSR lock-bits come up locked. The Upload Status Bits command must be written to reflect the
actual lock-bit status.

3. AD is automatically complemented to load second by1e of data. BYTE# must be at V1L•
AD value determines which WD/BC is supplied first: AD = 0 looks at the WDUBCl, AD = 1 looks at the WDH/BCH.

4. BCHIWCH must be at OOH for this product because of the 256-by1e (128-word) Page Buffer size, and to avoid writing the
Page Buffer contents to more than one 256-by1e segment within an array block. They are simply shown for future Page
Buffer expandability.

5. In x16 mode, only the lower by1e DOO•7 is used for WCl and WCH. The upper by1e D08•15 is a don't care.

6. PA and PD (whose count is given in cycles 2 and 3) are supplied starting in the fourth cycle, which is not shown.

7. This command allows the user to swap between available Page Buffers (0 or 1).

8. These commands reconfigure RY/BY# output to one of three pulse-modes or enable and disable the RY/BY# function.

9. Write address, WA, is the Destination address in the flash array which must match the Source address in the Page Buffer.
Refer to the 16-Mbit Flash Product Family User's Manual.

10. BCl = OOH corresponds to a by1e count of 1. Similarly, WCl = OOH corresponds to a word count of 1.

11. After writing the Upload Device Information command and the Confirm command, the following information is output at
Page Buffer addresses specified below:

Address
06H, 07H (By1e Mode)
03H (Word Mode)
1 EH (By1e Mode)
OFH (D00-7)(Word Mode)
1 FH (By1e Mode)
OFH (D08-15)(Word Mode)

Information
Device Revision Number
Device Revision Number
Device Configuration Code
Device Configuration Code
Device Proliferation Code (OIH)
Device Proliferation Code (01 H)

A page buffer swap followed by a page buffer read sequence is necessary to access this information. The contents of all
other Page Buffer locations, after the Upload Device Information command is written, are reserved for future implementation
by Intel Corporation. See Section 4.8 for a description of the Device Configuration Code. This code also corresponds to
data written to the 28F016SV after writing the RY/BY# Reconfiguration command.

12. To ensure that the 28FOI6SV's power consuption during Sleep Mode reaches the Deep Power-Down current level, the
system also needs to de-select the chip by taking either or both CE,# or CE,# high.

13. The upper by1e of the data bus (08-15) during command writes is a "Don't Care" in x16 operation of the device.

I ADVANCE iNFORMATION 287

28F016SV FlashFile™ MEMORY

5.0 ELECTRICAL SPECIFICATIONS

5.1 Absolute Maximum Ratings·

Temperature Under Bias O°C to +80°C

Storage Temperature -6SoC to +12SoC

v cc = 3.3V :t O.3V Systems

Sym Parameter

TA Operating Temperature, Commercial

Vee Vee with Respect to GND

Vpp Vpp Supply Voltage with Respect to GND

V Voltage on any Pin (except Vee,Vpp) with
Respect to GND

I Current into any Non-Supply Pin

lOUT Output Short Circuit Current

Vcc = S.OV:t O.SV, S.OV:t O.2SV Systems(6)

Sym Parameter

TA Operating Temperature, Commercial

Vee Vee with Respect to GND

Vpp Vpp Supply Voltage with Respect to GND

V Voltage on any Pin (except Vee,Vpp) with
Respect to GND

I Current into any Non-Supply Pin

lOUT Output Short Circuit Current

NOTES:

NOTICE: This datasheet contains information on
products in the sampling and initial production
phases of development. The specifications are
subject to change without notice. Verify with your
local Intel Sales office that you have the latest
datasheet before finalizillft a design.
'WARNlNG: Stressing the device beyond the
"Absolute Maximum Ratings" may cause
permanent damage. These are stress ratings
only. Operation beyond the "Operating
Conditions" is not recommended and extended
exposure beyond the "Operating Conditions" may
affect device reliability.

Notes Min Max Units Test Conditions

1 0 70 °C Ambient Temperature

2 -0.2 7.0 V

2,3 -0.2 14.0 V

2,S -O.S Vee V

+ O.S

S ±30 mA

4 100 mA

Notes Min Max Units Test Conditions

1 0 70 °C Ambient Temperature

2 -0.2 7.0 V

2,3 -0.2 14.0 V

2,S -2.0 7.0 V

S ±30 mA

4 100 mA

1. Operating temperature is for commercial product defined by this specification.

2. Minimum DC voltage is -0.5V on inpuVoutput pins. During transitions, this level may undershoot to -2.0V for periods <20 ns.
Maximum DC voltage on inpuVoutput pins is V cc + 0.5V which, during transitions, may overshoot to V cc + 2.0V for periods
<20 ns.

3. Maximum DC voltage on V pp may overshoot to + 14.0V for periods <20 ns.

4. Output shorted for no more than one second. No more than one output shorted at a time.

5. This specification also applies to pins marked nNC."

6. 5% V cc specifications refer to the 28F016SV-065 and 28F016SV-070 in its high speed test configuration.

288 ADVANCE INFORMATION I

5.3 DC Characteristics (Continued)
Vee = 3.3V ± 0.3V, TA = ODC to +70DC

Sym Parameter Notes

leew Vee Write Current 1,6

IeeE Vee Block Erase 1,6

Current

leeEs Vee Erase 1,2
Suspend Current

Ipps Vpp Standby/Read 1

IpPR Current

IpPD Vpp Deep Power- 1
Down Current

Ippw V pp Write Current 1,6

IpPE Vpp Erase Current 1,6

IpPES Vpp Erase 1
Suspend Current

V1L Input Low Voltage 6

V1H Input High Voltage 6

VOL Output Low 6
Voltage

I ADVANCE INFORMATION

Min

-0.3

2.0

28F016SV FlashFile™ MEMORY

Typ Max Units Test Conditions

8 12 mA Word/Byte Write in Progress
Vpp = 12.0V ± 5%

8 17 mA Word/Byte Write in Progress
Vpp = 5.0V ± 10%

6 12 mA Block Erase in Progress
Vpp = 12.0V ± 5%

9 17 mA Block Erase in Progress
Vpp = 5.0V ± 10%

1 4 mA CEo#, CE,# = V1H
Block Erase Suspended

±1 ±10 \lA Vpp ~Vee

30 200 \lA Vpp > Vee

0.2 5 \lA RP# = GND ± 0.2V

10 15 rnA Vpp = 12.0V ± 5%
Word/Byte Write in Progress

15 25 rnA Vpp = 5.0V ± 10%
Word/Byte Write in Progress

4 10 rnA Vpp = 12.0V ± 5%
Block Erase in Progress

14 20 rnA Vpp = 5.0V ± 10%
Block Erase in Progress

30 50 \lA Vpp = VpPH1 or VPPH2, Block
Erase Suspended

0.8 V

Vee V

+
0.3

0.4 V Vee = Vee Min and
IOL=4mA

289

28F016SV FlashFile™ MEMORY

5.4 DC Characteristics (Continued)
Vee = 5.0V ± 0.5V, 5.0V ± 0.25V, TA = O·C to +70·C

Sym Parameter Notes Min Typ Max Units Test Conditions

leew Vee Write Current 1,6 25 35 rnA Word/Byte in Progress
Vpp = 12.0V ± 5%

25 40 rnA Word/Byte in Progress
Vpp = 5.0V ± 10%

IeeE Vee Block Erase 1,6 18 25 rnA Block Erase in Progress
Current Vpp = 12.0V ± 5%

20 30 rnA Block Erase in Progress
Vpp = 5.0V ± 10%

leeEs Vee Erase 1,2 2 4 rnA CEo#, CE1# = VIH
Suspend Current Block Erase Suspended

Ipps V pp Standby/Read 1 ±1 ±10 IJA Vpp ::;Vee

IpPR Current 30 200 IJA Vpp > Vee

IpPD Vpp Deep Power- 1 0.2 5 IJA RP# = GND ± 0.2V
Down Current

Ippw V pp Write Current 1,6 7 12 rnA Vpp = 12.0V ± 5%
Word/Byte Write in Progress

17 22 rnA Vpp = 5.0V ± 10%
Word/Byte Write in Progress

IpPE V pp Block Erase 1,6 5 10 rnA Vpp = 12.0V ± 5%
Current Block Erase in Progress

16 20 rnA Vpp = 5.0V ± 10%
Block Erase in Progress

IpPES Vpp Erase 1 30 50 IJA Vpp = VpPH1 or VpPH2' Block
Suspend Current Erase Suspended

V1L Input Low Voltage 6 -0.5 0.8 V

V1H Input High Voltage 6 2.0 Vee V
+0.5

290 ADVANCE INFORMATION I

28F016SV FlashFile™ MEMORY

5.4 DC Characteristics (Continued)
Vee = 5.0V ± 0.5V, 5.0V ± 0.25V, T A = O°C to +70°C

Sym Parameter Notes Min Typ Max Units Test Conditions

VOL Output Low 6 0.45 V Vee = Vee Min
Voltage IOL=5.8rnA

VoH1 Output High 6 0.85 V IOH =-2.5 rnA
Voltage Vee Vee = Vee Min

r---
VoH2 6 Vee IOH = -100 IJA

-0.4 Vee = Vee Min
VpPLK VPP Write/Erase 3,6 0.0 1.5 V

Lock Voltage

VpPH1 Vpp during 4.5 5.0 5.5 V

Write/Erase
Operations

VpPH2 Vpp during 11.4 12.0 12.6 V

Write/Erase
Operations

VLKO Vee Write/Erase 2.0 V
Lock Voltage

NOTES:
1. All currents are in RMS unless otherwise noted. Typical values atVcc = 5.0V, VPP = 12.0Vor 5.0V, T = 25°C. These

currents are valid for all product versions (package and speeds) and are specified for a CMOS riseJfalllime (10% to 90%) of
<5 ns and a TTL riselfall time of <10 ns.

2. ICCES is specified with the device de-selected. If the device is read while in erase suspend mode, current draw is the sum of
ICCES and ICCR.

3. Block Erases, Word/Byte Writes and Lock Block operations are inhibited when V PP S V PPLK and not guaranteed in the
ranges between VpPLK(max} and VpPH1 (min}, between VpPH1 (max) and VpPH2(min} and above VpPH2(max}.

4. Automatic Power Saving (APS) reduces ICCR to 1 mA typical in Static operation.
5. CMOS Inputs are either V cc ± 0.2V or GND ± 0.2V. TTL Inputs are either V1L or V1H.
6. Sampled, not 100% tested. Guaranteed by design.

I ADVANCE INFORMATION 291

28F016SV FlashFile™ MEMORY

VH
ADDRESSES(A}

NOTE' V.

VH

""<'>
NOTE'

V L

VH
OE'(G) V L

VH
WE'rNJ

V L

VH
DATA(D/Q)

V L

VOH
RY/BYtf(R)

Va.

VH
RPI(p)

V L

VPPH,

V M VPAi1
pp VPPIJ(

VL

NOTE'

NOTES:

NO~3

NO~6

READ COMPATI!lE
SlAM REGISTER DATA

1. This address string depicts Data Write/Erase cycles with corresponding verification via ESRD.

2. This address string depicts Data Write/Erase cycles with corresponding verification via CSRD.

3. This cycle is invalid when using CSRD for verification during Data Write/Erase operations.

4. CEx# is defined as the latter of CEo# or CE1# going low or the first of CEo# or CE1# going high.

5. RP# low transition is only to show tRHPL; not valid for above Read and Write cycles.

6. V PP voltage during Write/Erase operations valid at both 12.0V and 5.0V.

7. V PP voltage equal to or below V PPLK provides complete flash memory array protection.

Figure 15. AC Waveforms for Command Write Operations

2900538_15

292 ADVANCE INFORMATION I

28F016SV FlashFile™ MEMORY

t AVAV

VH
WE'rHl

Vl

VH
OEl(G) Vl

CEd(E)
VH

N01EA
Vl

VH
DATA(O/Q)

Vl

Va<
rri{BY' 00

VOl

VH
""(P)

Vl

VpM

Vpp M
VPPH1 - - - - -
VPRJ(NO'"
Vl

N01E7

290538_16

NOTES:
1. This address string depicts Data Write/Erase cycles with corresponding verification via ESRD.

2. This address string depicts Data Write/Erase cycles with corrr;lsponding verification via CSRD.

3. This cycle is invalid when using CSRD for verification during Data Write/Erase operations.

4. CEx# is defined as the latter of CEo# or CE1# going low or the first of CEo# or CE1# going high.

5. RP# low transition is only to show tRHPL; not valid for above Read and Write cycles.

6. VPP voltage during Write/Erase operations valid at both 12.0V and S.OV.
7. VPP voltage equal to or below V pPLK provides complete flash memory array protection.

Figure 16. Alternate AC Waveforms for Command Write Operations

I ADVANCE INFORMATION 293

28F016SV FlashFile™ MEMORY

5.12 Erase and Word/Byte Write Performance(3,5)

vee = 3.3V ± 0.3V, V pp = 5.0V ± 0.5V, T A = O°C to + 70°C

Sym Parameter Notes Min Typ(1)

Page Buffer Byte Write 2,6 TBD 8.0
Time
Page Buffer Word Write 2,6 TBD 16.0
Time

tWHRH1A Byte Write Time 2 TBD 29.0

tWHRH1B Word Write Time 2 TBD 35.0

tWHRH2 Block Write Time 2 TBD 1.9

tWHRH3 Block Write Time 2 TBD 1.2

Block Erase Time 2 TBD 1.4

Full Chip Erase Time 2 TBD 44.8

Erase Suspend 4 1.0 12

Latency Time to Read

Auto Erase Suspend 4.0 15

Latency Time to Write

Vec = 3.3V ± 0.3V, Vpp = 12.0V ± 0.6V, TA = O°C to +70°C

Sym Parameter Notes Min Typ(1)

Page Buffer Byte Write 2,6 TBD 2.2
Time

Page Buffer Word 2,6 TBD 4.4
Write Time

tWHRH1 Word/Byte Write Time 2 5 9

tWHRH2 Block Write Time 2 TBD 0.6

tWHRH3 Block Write Time 2 TBD 0.3

Block Erase Time 2 0.3 0.8

Full Chip Erase Time 2 TBD 25.6

Erase Suspend 4 1.0 9
La~ency Time to Read

Auto Erase Suspend 4.0 12
Latency Time to Write

Max Units Test Conditions

TBD Ils

TBD Ils

TBD Ils

TBD IlS

TBD sec Byte Write Mode

TBD sec Word Write Mode

TBD sec

TBD sec

75 Ils

80 Ils

Max Units Test Conditions

TBD IlS

TBD IlS

TBD Ils

2.1 sec Byte Write Mode

1.0 sec Word Write Mode

10 sec

TBD sec

55 Ils

60 Ils

294 ADVANCE INFORMATION I

28F016SV FlashFile™ MEMORY

5.12 Erase and Word/Byte Write Performance(3,5) (Continued)
Vee = 5.0V ± 0.5V, 5.0V ± 0.25V, Vpp = 5.0V ± 0.5V, T A = O°C to +70°C

Sym Parameter Notes Min Typ(1) Max

Page Buffer Byte Write Time 2,6 TBD 8.0 TBD

Page Buffer Word Write Time 2,6 TBD 16.0 TBD

tWHRH1A Byte Write Time 2 TBD 20 TBD

tWHRH1B Word Write Time 2 TBD 25 TBD

tWHRH2 Block Write Time 2 TBD 1.4 TBD

tWHRH3 Block Write Time 2 TBD 0.85 TBD

Block Erase Time 2 TBD 1.0 TBD

Full Chip Erase Time 2 TBD 32.0 TBD

Erase Suspend Latency Time 4 1.0 9 55

to Read

Auto Erase Suspend Latency 3.0 12 60

Time to Write

Vee = S.OV ± 0.5V, 5.0V ± 0.25V, Vpp = 12.0V ± 0.6V, TA = O°C to +70°C

Sym Parameter Notes Min Typ(1) Max

Page Buffer Byte Write Time 2,6 TBD 2.1 TBD

Page Buffer Word Write Time 2,6 TBD 4.1 TBD

tWHRH1 Word/Byte Write Time 2 4.5 6 TBD

tWHRH2 Block Write Time 2 TBD 0.4 2.1

tWHRH3 Block Write Time 2 TBD 0.2 1.0

Block Erase Time 2 0,3 0.6 10

Full Chip Erase Time 2 TBD 19.2 TBD

Erase Suspend Latency Time 4 1.0 7 40
to Read

Auto Erase Suspend Latency 3.0 10 45
Time to Write

NOTES:
1, 25°C, and nominal voltages,

2, Excludes system-level overhead,

3. These performance numbers are valid for all speed versions.

Units Test Conditions

Ils

Ils

Ils

Ils

sec Byte Write Mode

sec Word Write Mode

sec

sec

Ils

Ils

Units Test Conditions

Ils,

Ils

Ils

sec Byte Write Mode

sec Word Write Mode

sec

sec

Ils

IlS

4, Specification applies to interrupt latency for Single Block Erase. Suspend latency for Erase All Unlocked Block operation
extends the maximum latency time to 270 ~s,

5. Sampled, but not 100% tested. Guaranteed by deSign.

6. Assumes using the full Page Buffer to write to flash (256 Bytes or 128 Words),

I ADVANCE INFORMATION 295

intel®

28F016SA, 16-Mbit
FlashFile ™ Memory Datasheet

I
297

The 2BF016SA contains three types of Status
Registers to accomplish various functions:

• A Compatible Status Register (CSR) which is
100% compatible with the 2BFOOBSA FlashFile
memory's Status Register. This register, when
used alone, provides a straightforward
upgrade capability to the 2BF016SA from a
2BFOOBSA-based design.

• A Global Status Register (GSR) which informs
the system of command Queue status, Page
Buffer status, and overall Write State Machine
(WSM) status.

.. 32 Block Status Registers (BSRs) which
provide block-specific status information such
as the block lock-bit status.

The GSR and BSR memory maps for Byte-Wide
and Word-Wide modes are shown in Figures 5
and 6.

The 2BF016SA incorporates an open drain
RY/BY# output pin. This feature allows the user to
OR-tie many RY/BY# pins together in a multiple
memory configuration such as a Resident Flash
Array.

Other configurations of the RY/BY# pin are
enabled via special CUI commands and are
described in detail in the 16-Mbit Flash Product
Family User's Manual.

The 2BF016SA also incorporates a dual chip
enable function with two input pins, CEo# and
CE1#. These pins have exactly the same
functionality as the regular chip-enable pin CE# on
the 2BFOOBSA. For minimum chip designs, CE1#
may be tied to ground and use CEo# as the chip
enable input. The 2BF016SA uses the logical
combination of these two signals to enable or
disable the entire chip. Both CEo# and CE1# must
be active low to enable the device and, if either
one becomes inactive, the chip will be disabled.
This feature, along with the open drain RY/BY#
pin, allows the system designer to reduce the
number of control pins used in a large array of
16-Mbit devices.

I PRELIMINARY

28F016SA

The BYTE# pin allows either xB or x16 read/writes
to the 2BF016SA. BYTE# at logic low selects B-bit
mode with address Ao selecting between low byte
and high byte. On the other hand, BYTE# at logic
high enables 16-bit operation with address Al
becoming the lowest order address and address
Ao is not used (don't care). A device block diagram
is shown in Figure 1.

The 2BF016SA is specified for a maximum access
time of 70 ns (tACC) at 5.0V operation (4.75V to
5.25V) over the commercial temperature range (00

C to +70°C). A corresponding maximum access
time of 120 ns at 3.3V (3.0V to 3.6V and O°C to
+70°C) is achieved for reduced power
consumption applications.

The 2BF016SA incorporates an Automatic Power
Saving (APS) feature which substantially reduces
the active current when the device is in static
mode of operation (addresses not switching).

In APS mode, the typical Icc current is 1 mA at
5.0V (O.B mA at 3.3V).

A deep power-down mode of operation is invoked
when the RP# (called PWD on the 2BFOOBSA) pin
transitions low. This mode brings the device power
consumption to less than 1.0 \lA, typically, and
provides additional write protection by acting as a
device reset pin during power transitions. A reset
time of 400 ns is required from RP# switching high
until outputs are again valid. In the Deep Power
Down state, the WSM is reset (any current
operation will abort) and the CSR, GSR and BSR
registers are cleared.

A CMOS standby mode of operation is enabled
when either CEo# or CE1# transitions high and
RP# stays high with all input control pins at CMOS
levels. In this mode, the device typically draws an
Icc standby current of 50 \lAo

2.0 DEVICE PINOUT

The 2BF016SA 56 lead TSOP Type I pinout
configuration is shown in Figure 2. The 56 lead
SSOP pinout configuration is shown in Figure 3.

299

28F016SA

5.11 Erase and Word/Byte Write Performance, Cycling Performance and
Suspend Latency(1,3)

Vee = 3.3V ± 0.3V, Vpp = 12.0V ± 0.6V, TA = O°C to +70°C

Sym Parameter Notes Min Typ Max Units Test Conditions

Page Buffer Byte Write Time 1,2,4 3.26 Note 6 I.ls

Page Buffer Word Write Time 1,2,4 6.53 Note 6 I.ls

tWHRH1 Word/Byte Write Time 1,2 9 Note 6 I.ls

tWHRH2 Block Write Time 1,2 0.6 2.1 Sec Byte Write Mode

tWHRH3 Block Write Time 1,2 0.3 1.0 Sec Word Write Mode

Block Erase Time 1,2 O.B 10 Sec

Full Chip Erase Time 1,2 25.6 Sec

Erase Suspend Latency Time 7.0 I.ls
to Read

Auto Erase Suspend Latency 10.0 I.ls
Time to Write

Erase Cycles 5 100,000 1,000,000 Cycles

V cc = 5 OV ± 0 5V V pp = .12 OV ± 0 6V T A = O°C to + 70°C , ,

Sym Parameter Notes Min Typ Max Units Test Conditions

Page Buffer Byte Write Time 1,2,4 2.76 Note 6 I.ls

Page Buffer Word Write Time 1,2,4 5.51 Note 6 I.ls

tWHRH1 Word ByteIWrite Time 1,2 6 Note 6 I.lS

twHRH2 Block Write Time 1,2 0.4 2.1 Sec Byte Write Mode

tWHRH3 Block Write Time 1,2 0.2 1.0 Sec Word Write Mode

Block Erase Time 1,2 0.6 10 Sec

Full Chip Erase Time 1,2 19.2 Sec

Erase Suspend Latency Time 5.0 I.ls
to Read

Auto Erase Suspend Latency B.O I.lS
Time to Write

Erase Cycles 5 100,000 1,000,000 Cycles

NOTES:
1. 25°C, Vpp = 12.0V nominal, 10K cycles.

2. Excludes system-level overhead.
3. These performance numbers are valid for all speed versions.
4. This assumes using the full Page Buffer to Write Flash (256 bytes or 128 words).

5. Typical 1 ,000,000 cycle performance assumes the application uses block retirement techniques.
6. This information will be available in a technical paper. Please call Intel's Application Hotline or your local Intel Sales office

for more information.

300
PRELIMINARY I

28F016SA

9.0 DEVICE NOMENCLATURE AND ORDERING INFORMATION

lolAl2lalFlol1lalslAI-lol7lol
I I

DA = COMMERCIAL TEMPERATURE ACCESS SPEED
56-LEAD SSOP

E = COMMERCIAL TEMPERATURE 70 ns
56-LEAD TSOP 100 ns

Valid Combinations

Option Order Code Vee = 3.3V:I: 0.3V, Vee = 5.0V:I: 10%, Vec = 5.0V :I: 5%,
50 pF Load 100 pF Load 30 pF Load

1 E28F016SA-070 E28F016SA-120 E28F016SA-080 E28F016SA-070

2 E28F016SA-100 E28F016SA-150 E28F016SA-100

3 DA28F016SA-070 DA28F016SA-120 DA28F016SA-080 DA28F016SA-070

4 DA28F016SA-100 DA28F016SA-150 DA28F016SA-100

9.1 References

Order Number DoeumentITool

297372 16-Mbit Flash Product Family User's Manuall

290490 DD28F032SA 32-Mbit FlashFile™ Memory Datasheet

290528 28F016SV FlashFile ™ Memory Datasheet

290435 28F008SA 8-Mbit FlashFile™ Memory Datasheet

292159 AP-607 Multi-Site Layout Planning with Intel's Flash File™ Components

292144 AP-393 28F016SV Compatibility with 28F016SA

292127 AP-378 System Optimization Using the Enhanced Features of the 28F016SA

292126 AP-377 28F016SA Software Drivers

292124 AP-375 Upgrade Considerations from the 28F008SA to the 28F016SA

292123 AP-374 Flash Memory Write Protection Techniques

292092 AP-357 Power Supply Solutions for Flash Memory

I PRELIMINARY
301

28F016SA

Order Number DocumenVTool

294016 ER-33 ETOXTM Flash Memory Technology - Insight to Intel's Fourth Generation
Process Innovation

297534 Small and Low-Cost Power Supply solution for Intel's Flash Memory Products
(Technical Paper)

297508 FLASH Builder DeSign Resource Tool

9.2 Revision History

Number Description

001 Original Version

002 - Added 56 Lead SSOP Package

-Separated AC Reading Timing Specs tAVEL, tAVGL for Extended Status Register
Reads

- Modified DEVICE NOMENCLATURE

- Added ORDERING INFORMATION

- Added Page Buffer Typical Write Performance numbers

- Added Typical Erase Suspend Latencies

- For ICCD (Deep Power-Down current, BYTE# must be at CMOS levels)

- Added SSOP package mechanical specifications

003 - Renamed referenced "28F016SA User's Manual" as "16-Mbit Flash Product Family
User's Manual

-Section 5.11: Renamed specification "Erase Suspend Latency Time to Write" as "Auto
Erase Suspend Latency Time to Write"

- Minor cosmetic changes

302 PREUMINARYI

Extended Temperature
28F016SA, 16 .. Mbit
FiashFilel'M Memory Datasheet

I
303

28F016SA

2.1 Lead Descriptions
Lead Descriptions

Symbol Type Name and Function

Ao INPUT BYTE-SELECT ADDRESS: Selects between high and low byte when device is
in x8 mode. This address is latched in x8 Data Writes. Not used in x16 mode
(Le., the A-"J inlJut buffer is turned off when BYTE# is high).

A1-A15 INPUT WORD-SELECT ADDRESSES: Select a word within one 64-Kbyte block. A6-15
selects 1 of 1024 rows, and A1-5 selects 16 of 512 columns. These addresses
are latched during Data Writes.

A1s-A2o INPUT BLOCK-SELECT ADDRESSES: Select 1 of 32 Erase blocks. These addresses
are latched during Data Writes, Erase and Lock-Block operations.

DQo-DQ? INPUTI LOW-BYTE DATA BUS: Inputs data and commands during CUI write cycles.
OUTPUT Outputs array, buffer, identifier or status data in the appropriate read mode.

Floated when the chip is de-selected or the outputs are disabled.
DQs-DQ15 INPUTI HIGH-BYTE DATA BUS: Inputs data during x16 Data-Write operations.

OUTPUT Outputs array, buffer or identifier data in the appropriate read mode; not used
for Status Register reads. Floated when the chip is de-selected or the outputs
are disabled.

CEo#, CE1# INPUT CHIP ENABLE INPUTS: Activate the device's control logic, input buffers,
decoders and sense amplifiers. With either CEo# or CE1# high, the device is de-
selected and power consumption reduces to standby levels upon completion of
any current Data-Write or Erase operations. Both CEo#, CE1# must be low to
select the device.
All timing specifications are the same for both signals. Device Selection occurs
with the latter falling edge of CEo# or CE1#. The first rising edge of CEo# or
CE,# disables the device.

RP# INPUT RESET/POWER-DOWN: RP# low places the device in a Deep Power-Down
state. All circuits that burn static power, even those circuits enabled in standby
mode, are turned off. When returning from Deep Power-Down, a recovery time
of 550 ns at 5.0V Vee is required to allow these circuits to power-up.
When RP# goes low, any current or pending WSM operation(s) are terminated,
and the device is reset. All Status Registers return to ready (with all status flags
cleared).
Exit from Deep Power-Down places the device in read array mode.

OE# INPUT OUTPUT ENABLE: Gates device data through the output buffers when low.
The outputs float to tri-state off when OE# is high.

NOTE:
CEx# overrides OE#, and OE# overrides WE#.

WE# INPUT WRITE ENABLE: Controls access to the CUI, Page Buffers, Data Queue
Registers and Address Queue Latches. WE# is active low, and latches both
address and data (command or array) on its rising edge.
Paqe Buffer addresses are latched on the fallinq edqe of WE#.

RY/BY# OPEN READY/BUSY: Indicates status of the internal WSM. When low, it indicates that
DRAIN the WSM is busy performing an operation. RY/BY# high indicates that the WSM
OUTPUT is ready for new operations (or WSM has completed all pending operations), or

Erase is Suspended, or the device is in deep power-down mode. This output is
always active (Le., not floated to tri-state off when OE# or CEo#, CE1# are
high), except if a RY/BY# Pin Disable command is issued.

I ADVANCE INFORMATION
305

28F016SA

V1H

CEX#
(E)

V1L

V1H

WEI
(W)

V1L

V1H

ADDRESSES (A)

V1L L--'--"--"-'"

inteJ®

I ELWL

IWHWL

I WLWH

VALID

DATA
(D/Q)

:_::~HIGH~Z~~{~._I_~H~~N __ ·I=:J ________ ~<=
Figure 14. Page Buffer Write Timing Waveforms

(Loading Data to the Page Buffer)

5.11 Erase and Word/Byte Write Performance, Cycling Performance and
Suspend Latency(1, 3): EXTENDED TEMPERATURE OPERATION

, vee = 3.3V ± 0.3V, vpp = 12.0V ± 0.6V, TA = -40°C to +85°C

Symbol Parameter Notes Min Typ(1) Max Units Test Conditions

Page Buffer Byte Write Time 1,2,4 3.26 ~s

Page Buffer Word Write Time 1,2,4 6.53 ~s

tWHRH1 Word/Byte Write Time 1,2 9 ~s

tWHRH2 Block Write Time 1,2 0.6 sec Byte Write Mode

twHRH3 Block Write Time "'1,2 0.3 sec Word Write Mode

Block Erase Time 1 ,2 1.5 sec

Full Chip Erase Time 1 ,2 48 sec

Erase Suspend Latency . 7.0 ~s

Time to Read .

Auto Erase Suspend Latency 10.0 ~s

Time to Read

Erase Cycles 5 100,000 1,000,000 Cycles

306 ADVANCE INFORMATION I

28F016SA

5.11 Erase and Word/Byte Write Performance (1,3) (Continued): EXTENDED
TEMPERATURE OPERATION

Vee = 5.0V ± 0.5V, Vpp = 12.0V ± 0.6V, TA = -40°C to +85°C

Sym Parameter Notes Min Typ(1) Max Units Test Conditions

Page Buffer Byte Write Time 1,2,4 2.76 Note IJs
6

Page Buffer Word Write Time 1,2,4 5.51 Note IJs
6

tWHRH Word Byte/Write Time 1,2 6 Note IJs

tWHRH Block Write Time 1,2 0.4 2.1 sec Byte Write Mode

tWHRH Block Write Time 1,2 0.2 1.0 sec Word Write Mode

Block Erase Time 1,2 1.2 10 sec

Full Chip Erase Time 1,2 41.6 sec

Erase Suspend Latency 5.0 IJs
Time to Read

Erase Suspend Latency 8.0 IJs
Time to Write

Erase Cycles 5 100,000 1,000,000 Cycles

NOTES:

1. 25'C, and normal voltages.

2. Excludes system-level overhead.

3. These performance numbers are valid for all speed versions.

4. This assumes using the full Page Buffer to Write to Flash (256 bytes or 128 words).

5. Typical 1 ,000,000 cycles performance assumes the application uses block retirement techniques.

6. This information will be available in a technical paper. Pleas call Intel's application Hotline or your local sales office for
more information.

I ADVANCE INFORMATION
307

28F016SA

DEVICE NOMENCLATURE

DT = EXTENDED
56-LEAD SSOP

Valid Combinations

I
ACCESS SPEED

100 ns (5V). 150 ns
290541-16

Order Code Vcc = 3.3V:I: 0.3V Vcc = 5.0V:I: 10%

DT28F016SA-100 DT28F016SA-150 DT28F016SA-100

ADDITIONAL INFORMATION

Item Order
Number

16-Mbit Flash Product Family User's Manual 297372

Commercial Temperature 28F016SA 16-Mbit FlashFile™ Memory 290489
Datasheet
Commercial Temperature 28F016SV SmartVoltage 16-Mbit FlashFile™ 290528
Memory Datasheet
28F008SA 8 Mbit FlashFile™ Memory Datasheet 290429

AP393 28F016SV Compatibility with 28F016SA 292144

AP378 System Optimization Using the Enhanced Features of the 28F016SA 292127

AP377 28F016SA Software Drivers 292126

AP375 Upgrade Considerations from the 28F008SA to the 28F016SA 292124

AP-357 Power Supply Solutions for Flash Memory 292092

ER33 ETOXTM Flash Memory Technology-Insight to Intel's Fourth Generation 294016
Process Innovation

Please check with Intel Literature for availability.

308 ANCE INFORMATION I

28F016SA

DATA SHEET REVISION HISTORY

Number Description

001 Original Version

002 Renamed referenced "28F016SA User's Manual" as 16-Mbit Product Family User's
Manual"

Section 5.11: Renamed specification "Erase Suspend Latency Time to Write" as "Auto
Erase Suspend Latency Time to Write"

Section 2.1 RP# recovery time is 550 ns

Minor cosmetic changes

I ADVANCE IN FORMATION
309

4-Mbit SmartVoltage
Boot Block Flash Memory
Family Datasheet

I
311

Refer to the DC Characteristics Table, Section 4.2
(commercial temperature) and Section 5.2
(extended temperature), for complete current and
voltage specifications. Refer to the AC
Characteristics Table, Section 4.3 (commercial
temperature) and Section 5.3 (extended
temperature), for read, write and erase performance
specifications.

1.3 Applications

The 4-Mbit boot block flash memory family
combines high-density, low-power, high
performance, cost-effective flash memories with
blocking and hardware protection capabilities. Their
flexibility and versatility reduce costs throughout the
product life cycle. Flash memory is ideal for Just-In
Time production flow, reducing system inventory
and costs, and eliminating component handling
during the production phase.

When your product is in the end-user's hands, and
updates or feature enhancements become
necessary, flash memory reduces the update costs
by allowing user-performed code changes instead
of costly product retums or technician calls.

The 4-Mbit boot block flash memory family provides
full-function, blocked flash memories suitable for a
wide range of applications. These applications
include extended PC BIOS and ROM-able
applications storage, digital cellular phone program
and data storage, telecommunication boot/firmware,
printer firmware/font storage and various other
embedded applications where program and data
storage are required.

Reprogrammable systems such as personal
computers, are ideal applications for the 4-Mbit
flash memory products. Increasing software
sophistication greatens the probability that a code

I PRODUCT PREVIEW

40MBIT SmartVoltage BOOT BLOCK FAMILY

update will be required after the PC is shipped. For
example, the emerging of "plug and play" standard
in desktop and portable PCs enables auto
configuration of ISA and PCI add-in cards.
However, since the "plug and play" specification
continues to evolve, a flash BIOS provides a cost
effective capability to update existing PCs. In
addition, the parameter blocks are ideal for storing
the required auto-configuration parameters,
allowing you to integrate the BIOS PROM and
parameter storage EEPROM into a single
component, reducing parts costs while increasing
functionality.

The 4-Mbit flash memory products are also
excellent design solutions for digital cellular phone
and telecommunication switching applications
requiring very low power consumption, high
performance, high-density storage capability,
modular software designs, and a small form factor
package. The 4-Mbit's blocking scheme allows for
easy segmentation of embedded code with
16 Kbytes of hardware-protected boot code, four
main blocks for program code, and two 8-Kbyte
parameter blocks for frequently updated data
storage and diagnostic messages (e.g., phone
numbers, authorization codes).

Intel's high integration flash architecture provides a
flexible voltage solution for the different design
needs of various applications. The asymmetrically
blocked memory map allows the integration of
several memory components into a single flash
device. The boot block provides a secure boot
PROM; the parameter blocks can emulate
EEPROM functionality for parameter store with
proper software techniques; and the main blocks
provide code and data storage with access times
fast enough to execute code in place, decreasing
RAM requirements.

313

4-MBIT SmartVoltage BOOT BLOCK FAMILY

:; ADDRESS
A[16:18] LATCHES I---

~
LE

As-A15 ~ Ao-A1s
80C188EB

ALE

ft ~ ADDRESS - 28F004-T
ADo-AD7

'\s- F LATCHES
LE

~ DOo-D07
UCS# CE#

Vee

WR#
f1OK!l

WE#
RD# OE#

RESIN# RP#

L System Reset
Vee

P1.x r··)j Vpp
....... , :

P1.X -= WP#

29053<Kl2

Figure 2. 28F0041nterface to Intel80C188EB 8-Bit Embedded Microprocessor

1.4 Pinouts

Intel's SmartVoltage Boot Block architecture
provides upgrade paths in most package pinout to
the 8-Mbit density. The 28F004 40-lead TSOP
pinout for space-constrained designs is shown in
Figure 3. The 28F400 44-lead PSOP pinout follows
the industry-standard ROM/EPROM pinout, as
shown in Figure 4. For designs that require x16
operation but have space concerns, refer to the

314

48-lead pinout in Figure 5. Furthermore, the 28F400
56-lead TSOP pinout shown in Figure 6 provides
backwards compatibility with exisiting 28F400BX
designs.

Pinouts for the corresponding 2-Mbit and 8-Mbit
components are also provided for convenient
reference. 4-Mbit pinouts are given on the chip
illustration in the center, with 2-Mbit and 8-Mbit
pinouts going outward from the center.

PRODUCT PREVIEW I

intel® 4-MBIT SmartVoltage BOOT BLOCK FAMILY

28FOO8B 28F002B 28F002B 28FOOBB

A16 A 16 1 0 40 A17 A17 A17
A 1S A 1S 2 39 GND GND GND
A14 A14 3 38 NC NC

~ A13 A13 4 37 NC NC
A12 A12 5 28FOO4B 36 AlO AlO 10
A11 A11 6 40-Lead TSOP 35 D07 D07 D07
Ag Ag 7 10mmx20mm 34 D06 D06 D06
AS AS 8 33 DOS DOS DOS

WE# WE# 9
TOP VIEW

32 D04 D04 D04
RP# RP# 10 31 VCC VCC VCC
Vpp Vpp 11 30 VCC VCC VCC

WP# WP# 12 29 NC NC NC
A,S NC 13 28 D03 D03 D03
A7 A7 14 27 D02 D02 D02
AS A6 15 26 DOl D01 D01
AS AS 16 25 DOo DOo DOo
A4 A4 17 24 OE# OE# OE#
A3 A3 18 23 GND GND GND
A2 A2 19 22 CE# CEil CE#
A1 A1 20 21 Ao Ao Ao

290530_o3

NOTE:

1. Pin 12 is DU for BXlBl 12V Vpp Versions.

2. The 28F008B pinout shown is for the 8-Mbit boot block and not the 28F008SA FlashFile™ memory.

Figure 3. The 40-Lead TSOP Offers the Smallest Form Factor for Space-Constrained Applications

2BFBOO 2BF200 28F200 28F800

Vpp Vpp Vpp 10 RP# RP# RP#

~ WP#

~
2 WE# WE# WE#

17 NC A17 7 3 42 AB AB AB
A7 A7 4 41 A. A. A.
A, A, As 5 A,. A,. A10
As As As 6 PA28F400 A" A" A"
A. A. A. 7 44-Lead PSOP A'2 A'2 A'2
A3 A3 A3 8 0.525" x 1.110" A'3 A'3 A'3
A2 A2 A2 9 A,. A,. A'4
A, A, A, 10 35 A,s A,s A,s
A. A. A. 11 TOP VIEW A,s A16 A,s
CE# CEil CEil 12 33 BYTEII BYTE# BYTE#
GND GND GND 13 32 GND GND GND
OEII OEII OE# 14 31 DO,s/A., DO,s/A., DO,s/A.,
DO. DO. DO. 15 D0 7 D0 7 D0 7
DO B DO B DO B 16 DO '4 DO'4 DO,.
DO, DO, DO, 17 28 DOs DOs DOs
DO. DOg DOg 18 27 DO '3 DO'3 DO'3
D0 2 D0 2 D0 2 19 26 DOs DOs DOs
DO,. DO,. DO,. 20 DO '2 DO'2 DO '2
D0 3 D0 3 D0 3 21 D0 4 D0 4 D0 4
DO" DO" DO" 22 Vee Vee Vee

29053o_04

NOTE: Pin 2 is DU for BXlBl 12V Vpp Versions, but for the 8-Mbit device, pin 2 has been changed to A1B (WP# on 214 Mbit).
Designs planning on upgrading to the 8-Mbit density from the 214-Mbit density in this package should design pin 2 to control
WP# functionality at the 214-Mbit level and allow for pin 2 to control A'B after upgrading to the 8-Mbit density.

Figure 4. The 44-Lead PSOP Offers a Convenient Upgrade from JEDEC ROM Standards I PRODUCT PREVIEW
315

4·MBIT SmartVoltage BOOT BLOCK FAMILY

Register is set to a "1" to indicate a Program
Failure. If bit 3 is set to a "1," then Vpp was not
within acceptable limits, and the WSM did not
execute the programming sequence. If the program
operation fails, bit 4 of the Status Register will be
set within 1.5 ms as determined by the timeout of
theWSM.

The Status Register should be cleared before
attempting the next operation. Any CUI instruction
can follow after programming is completed;
however, reads from the Memory Array, Status
Register, or Intelligent Identifier cannot be
accomplished until the CUI is given the Read Array
command.

3.3.4 ERASE MODE

Erasure of a single block is initiated by writing the
Erase Setup and Erase Confirm commands to the
CUI, along with the addresses identifying the block
to be erased. These addresses are latched
internally when the Erase Confirm command is
issued. Block erasure results in all bits within the
block being set to "1."

The WSM will execute a sequence of internally
timed events to:

1. Program all bits within the block to "0."

2. Verify that all bits within the block are
sufficiently programmed to "0."

3. Erase all bits within the block.

4. Verify that all bits within the block are
sufficiently erased.

While the erase sequence is executing, bit 7 of the
Status Register is a "0."

When the Status Register indicates that erasure is
complete, the status bits, which indicate whether
the Erase operation was successful, should be
checked. If the Erase operation was unsuccessful,
bit 5 of the Status Register will be set to a "1,"
indicating an Erase Failure. If Vpp was not within
acceptable limits after the Erase Confirm command

316

is issued, the WSM will not execute an erase
sequence; instead, bit 5 of the Status Register is
set to a "1" to indicate an Erase Failure, and bit 3 is
set to a "1" to identify that Vpp supply voltage was
not within acceptable limits.

The Status Register should be cleared before
attempting the next operation. Any CUI instruction
can follow after erasure is completed; however,
reads from the Memory Array, Status Register, or
Intelligent Identifier cannot be accomplished until
the CUI is given the Read Array command.

3.3.4.1 Suspending and Resuming Erase

Since an erase operation requires on the order of
seconds to complete, an Erase Suspend command
is provided to allow erase-sequence interruption in
order to read data from another block of the
memory. Once the erase sequence is started,
writing the Erase Suspend command to the CUI
requests that the WSM pause the erase sequence
at a predetermined point in the erase algorithm. The
Status Register must then be read to determine if
the erase operation has been suspended.

At this point, a Read Array command can be written
to the CUI in order to read data from blocks other.
than that which is being suspended. The only other
valid command at this time is the Erase Resume
command or Read Status Register command.

During erase suspend mode, the chip can go into a
pseudo-standby mode by taking CE# to VIH, which
reduces active current draw.

To resume the erase operation, the chip must be
enabled by taking CE# to VIL, then issuing the
Erase Resume command. When the Erase Resume
command is given, the WSM will continue with the
erase sequence and complete erasing the block. As
with the end of a standard erase operation, the
Status Register must be read, cleared, and the next
instruction issued in order to continue.

PRODUCT PREVIEW I

4-MBIT SmartVoltage BOOT BLOCK FAMILY

(Start Bus Command Comments

• Operation

l Write40H, I
Write Setup Data = 40H

Word/Byte Address
Program Addr = Word/Byte to Program

• Write
Data = Data to Program

Program

I Write Word/Byte J
Addr = Location to Program

Data/Address

• Read Status Register Data
Toggle CEI or OEI

I ~
to Update SRD.

Read
Status Register

Standby Check SR.7
1 =WSM Ready

NO O=WSM Busy <$.: Repeat for subsequent Word/Byte Writes.

YES SR Full Status Check can be done after each Word/Byte
Write, or after a sequence of Word/Byte Writes.

I Full Status I
Wr~e FFH after the last write operation to reset device to

Check if Desired read array mode.

• (WordiByte Program
Complete

FULL STATUS CHECK PROCEDURE

(Read Status Register Bus Command Comments
Data (See Above) Operation

Standby Check SR.3

1
1 = Vpp Low Detect

SR.3= Vpp Range Error

0 Standby Check SRA
1 = Word/Byte Program Error

1 Word/Byte Program
SR.4 = Error

SR.3 MUST be cleared, if set during a program attempt,

0 before further attempts are allowed by the Write State Machine.

I Word/Byte Program I
SRA is only clear by the Clear Status Register Command,
in cases where multiple bytes are programmed before full

Successful status is checked.

If error is detected, clear the Status Register before attempting
retry or other error recovery.

290530_09

Figure 9. Automated WordIByte Programming Flowchart

I PRODUCT PREVIEW
317

4-MBIT SmartVoltage BOOT BLOCK FAMILY

Block Erase
Complete

FULL STATUS CHECK PROCEDURE

Read Status Register
Data (See Above)

Vpp Range Error

Command Sequence
Error

Block Erase
Error

Bus Command Comments
Operation

Write Erase Setup Data = 20H
Addr = Within Block to be Erased

Write Erase Data = DOH
Confinm Addr = Within Block to be Erased

Read Status Register Data
Toggle CEil or DE#
to Update Status Register

Standby Check SR.?
1 =WSM Ready
O=WSM Busy

Repeat for subsequent block erasures.
Full Status Check can be done after each block erase,

or after a sequence of block erasures.
Write FFH after the last operation to reset device to read

array mode.

Bus Command Comments
Operation

Standby Check SR.3
1 = Vpp Low Detect

Standby Check SRA,5
Both 1 = Command

Sequence Error

Standby Check SR.5
1 = Block Erase Error

SR.3 MUST be cleared, if set during an erase attempt, before further
attempts are allowed by the Write State Machine.

SR.5 is only clear by the Clear Status Register Command, in
cases where multiple blocks are erase before full status is checked.

If error is detected, clear the Status Register before attempting
retry or other error recovery.

Figure 10. Automated Block Erase Flowchart

318 PRODUCT PREVIEW

I

2=Mbit SmartVoltage
JE((J)(Q)~ BRock Flash Memory
JF2Blmilly Datasheet

319

2-MBIT SmartVoltage BOOT BLOCK FAMILY

~
ADDRESS

A[16:17] LATCHES f----

I
LE

As-A15 : > Ao-A17
80C188EB

ALE

~
~ ADDRESS - 28FOO2-T

ADo-AD7 F LATCHES
LE

~ DOo-D07
UCS# CE#

Vee
..

WR#
"flOK!l

WE#
RD# OE#

RESIN# RP#

L System Reset
Vee

P1.X ... ::::7.5 Vpp

P1.X = WP# ~

290531-02

Figure 1. 28F002 Interface to Intel80C188EB 8-Bit Embedded Microprocessor

1.4 Pinouts

Intel's SmartVoltage Boot Block architecture
provides upgrade paths in every package pinout to
the 8-Mbit density. The 28F002 40-lead TSOP
pinout for space-constrained designs is shown in
Figure 3. The 28F200 44-lead PSOP pinout follows
the industry-standard ROM/EPROM pinout, as
shown in Figure 4. For designs that require xi6
operation but have space concems, refer to the

I ADVANCE INFORMATION

48-lead pinout in Figure 5. Furthermore, the 28F200
56-lead TSOP pinout shown in Figure 6 provides
density upgrades to the 28F400BV as well as
backwards compatibility with existing 28F200BXlBL
designs.

Pinouts for the corresponding 4-Mbit and 8-Mbit
components are also provided for convenient
reference. 2-Mbit pinouts are given on the chip
illustration in the center, with 4-Mbit and 8-Mbit
pinouts going outward from the center.

321

2-MBIT SmartVoltage BOOT BLOCK FAMILY intel®
28F008B 28F004B 28FOO4B 2SF008B

A 16 A16 A16 1 0 40 A17 A17 A17
A 1S A1S A1S 2 39 GND GND GND
A14 A14 A14 3 38 NC NC

~ A13 A13 A13 4 37 NC NC
A12 A12 A12 S 36 A10 A10
A11 A11 A11 6 35 D07 D07 D07
Ag Ag Ag 7 34 DOS DOS DOS
AS AS AS 8 28FOO2B 33 DOS DOS DOS

WE# WE# WE# 9 40·LEAD TSOP 32 D04 D04 D04
RP# RP# RP# 10

10mmx20 mm
31 Vee Vee Vee

Vpp Vpp Vpp 11 30 Vee Vee Vee
WP#

~
WP# 12 TOP VIEW 29 NC NC NC

A 1S NC 13 28 D03 D03 D03
A7 A7 A7 14 27 D02 D02 D02
As 6 As 15 26 D01 D01 D01
As As As 16 25 DOo DOo DOo
A4 A4 A4 17 24 OE# OE# OE#
A3 A3 A3 18 23 GND GND GND
A2 A2 A2 19 22 CE# CE# CE#
A1 A1 A1 20 21 Ao Ao Ao

290531_o3

NOTES:

1. Pin 12 is DU for BXlBL 12V Vpp Versions.

2. The 28F008B pinout shown is for the 8·Mbit boot block and not the 28F008SA FlashFile™ memory.

Figure 3. The 40-Lead TSOP Offers the Smallest Form Factor for Space-Constrained Applications

28F800 2SF400 28F400 28FSOO

Vpp Vpp Vpp 10 RP# RP# RP#
@ 't{0 WP# 2 WE# WE# WE#
A1? A17 NC 3 Ae Ae Ae
A7 A? A7 4 Ae A9 A9
Aa Aa Aa 5 A10 A 10 A10
A5 A5 A5 6 PA28F200 A11 A11 A11
A. A. A. 7 44·Lead PSOP A12 A12 A12

·A 3 A3 A3 8 0.525" x 1.110" A 13 A 13 A 13
A2 A2 A2 9 A1' A1' Al'
A1 A1 A1 10 A 15 A 15 A 15
Ao Ao Ao 11 TOP VIEW A 1a A 1a A 1a
CE# CE# CE# 12 BYTE# BYTE# BYTE#
GND GND GND 13 GND GND GND
OE# OE# OE# 14 DO 15/A.1 D015/A.1 D015/A.1
DO o DOo DO o 15 D0 7 DO? D0 7
DOs DO. DOe 16 D01' D014 D014
D01 D01 D01 17 DOa DOa DOa
DOg DOg DOg 18 0013 00 13 00 13
00 2 00 2 00 2 19 DOs D0 5 D0 5
0010 0010 0010 20 0012 D012 D012
003 003 D0 3 21 DO. DO. DO.
0011 0011 00 11 22 Vee Vee Vee

290531_04

NOTE: Pin 2 is DU for BXlBL 12V Vpp Versions, but for the 8·Mbit device, pin 2 has been changed to A1e (WP# on 214 Mbit).
Designs planning on upgrading to the 8·Mbit density from the 214-Mbit density in this package should design pin 2 to control
WP# functionality at the 214·Mbit level and allow for pin 2 to control A1B after upgrading to the 8-Mbit density.

Figure 4. The 44-Lead PSOP Offers a Convenient Upgrade from JEDEC ROM Standards

322 ANCE INFORMATION I

Register is set to a "1" to indicate a Program
Failure. If bit 3 is set to a "1," then Vpp was not
within acceptable limits, and the WSM did not
execute the programming sequence. If the program
operation fails, bit 4 of the Status Register will be
set within 1.5 ms as determined by the timeout of
the WSM.

The Status Register should be cleared before
attempting the next operation. Any CUI instruction
can follow after programming is completed;
however, reads from the Memory Array, Status
Register, or Intelligent Identifier cannot be
accomplished until the CUI is given the Read Array
command.

3.3.4 ERASE MODE

Erasure of a single block is initiated by writing the
Erase Setup and Erase Confirm commands to the
CUI, along with the addresses identifying the block
to be erased. These addresses are latched
intemally when the Erase Confirm command is
issued. Block erasure results in all bits within the
block being set to "1."

The WSM will execute a sequence of internally
timed events to:

1. Program all bits within the block to "0."

2. Verify that all bits within the block are
sufficiently programmed to "0."

3. Erase all bits within the block.

4. Verify that all bits within the block are
sufficiently erased.

While the erase sequence is executing, bit 7 of the
Status Register is a "0."

When the Status Register indicates that erasure is
complete, the status bits, which indicate whether
the Erase operation was successful, should be
checked. If the Erase operation was unsuccessful,
bit 5 of the Status Register will be set to a "1,"
indicating an Erase Failure. If Vpp was not within

I ADVANCE INFORMATION

2-MBIT SmartVoltage BOOT BLOCK FAMILY

acceptable limits after the Erase Confirm command
is issued, the WSM will not execute an erase
sequence; instead, bit 5 of the Status Register is
set to a "1" to indicate an Erase Failure, and bit 3 is
set to a "1" to identify that Vpp supply voltage was
not within acceptable limits.

The Status Register should be cleared before
attempting the next operation. Any CUI instruction
can follow after erasure is completed; however,
reads from the Memory Array, Status Register, or
Intelligent Identifier cannot be accomplished until
the CUI is given the Read Array command.

3.3.4.1 Suspending and Resuming Erase

Since an erase operation requires on the order of
seconds to complete, an Erase Suspend command
is provided to allow erase-sequence interruption in
order to read data from another block of the
memory. Once the erase sequence is started,
writing the Erase Suspend command to the CUI
requests that the WSM pause the erase sequence
at a predetermined point in the erase algorithm. The
Status Register must then be read to determine if
the erase operation has been suspended.

At this point, a Read Array command can be written
to the CUI in order to read data from blocks other
than that which is being suspended. The only other
valid command at this time is the Erase Resume
command or Read Status Register command.

During erase suspend mode, the chip can go into a
pseudo-standby mode by taking CE# to VIH, which
reduces active current draw.

To resume the erase operation, the chip must be
enabled by taking CE# to VIL, then issuing the
Erase Resume command. When the Erase Resume
command is given, the WSM will continue with the
erase sequence and complete erasing the block. As
with the end. of a standard erase operation, the
Status Register must be read, cleared, and the next
instruction issued in order to continue.

323

2-MBIT SmartVoltage BOOT BLOCK FAMILY

FULL STATUS CHECK PROCEDURE

Vpp Range Error

Word/Byte Program
Error

Bus
Operation

Write

Write

Read

Standby

Command

Setup
Program

Program

Comments

Data=40H
Addr = Word/Byte to Program

Data = Data to Program
Addr = Location to Program

Status Register Data
Toggle CEil or DEli
to Update SRD.

CheckSR.7
1 =WSM Ready
O=WSM Busy

Repeat for subsequent Word/Byte Writes.
SR Full Status Check can be done after each Word/Byte

Write, or after a sequence of Word/Byte Writes.
Wrne FFH after the last write operation to reset device to

read array mode.

Bus
Operation

Standby

Standby

Command Comments

CheckSR.3
1 = Vpp Low Detect

Check SRA
1 = Word/Byte Program Error

SR.3 MUST be cleared, if set during a program attempt,
before further attempts are allowed by the Wrtte State Machine.

SR.4 is only clear by the Clear Status Register Command,
in cases where multiple bytes are programmed before full
status is checked.

" error is detected, clear the Status Register before attempting
ret or other error recove .

29053C09

Figure 9. Automated WordIByte Programming Flowchart

324 ANCE INFORMATION I

Start

FULL STATUS CHECK PROCEDURE

Vpp Range Error)

Command Sequence
Error

Block Erase
Error

2-MBIT SmartVoltage BOOT BLOCK FAMILY

Bus Command Comments
Operation

Write Erase Setup Data =2OH
Addr = Within Block to be Erased

Write Erase Data = DOH
Confirm Addr = Within Block to be Erased

Read Status Register Data
Toggle CE# or OE#
to Update Status Register

Standby Check SR.7
1 =WSM Ready
O=WSM Busy

Repeat for subsequent block erasures.
Full Status Check can be done after each block erase,

or after a sequence of block erasures.
Write FFH after the last operation to reset device to read

array mode.

Bus Command Comments
Operation

Standby Check SR.3
1 =Vpp Low Detect

Standby Check SR.4,5
Both 1 = Command

Sequence Error

Standby Check SR.5
1 = Block Erase Error

SR.3 MUST be cleared, if set during an erase attempt, before further
attempts are allowed by the Write State Machine.

SR.5 is only clear by the Clear Status Register Command, in
cases where multiple blocks are erase before full status is checked.

If error is detected, clear the Status Register before attempting
retry or other error recovery.

29053C10

Figure 10. Automated Block Erase Flowchart

I ADVANCE INFORMATION 325

28FOOIBX-T/28FOOIBX-B
1M CMOS Flash Memory

I
327

Program Setup/Program Commands

Programming is executed by a two-write sequence.
The Program Setup command (40H) is written to
the Command Register, followed by a second write
specifying the address and data (latched on the
rising edge of WE#) to be programmed. The WSM
then takes over, controlling the program and verify
algorithms internally. After the two-command
program sequence is written to it, the 28F001 BX
automatically outputs Status Register data when
read (see Figure 9: Byte Program Flowchart). The
CPU can detect the completion of the program
event by analyzing the WSM Status bit of the
Status Register. Only the Read Status Register
command is valid while programming is active.

When the Status Register indicates that
programming is complete, the Program Status bit
should be checked. If program error is detected, the
Status Register should be cleared. The internal
WSM only detects errors for "1 s" that do not
successfully program to "Os". The Command
Register remains in Read Status Register mode
until further commands are issued to it. If byte
programming is attempted while Vpp = VPPL, the
Vpp Status bit will be set to "1". Program attempts
while VPPL < Vpp < VPPH produce spurious results
and should not be attempted.

EXTENDED ERASE/PROGRAM CYCLING

EEPROM cycling failures have always concerned
users. The high electric fields required by thin oxide
EEPROMs for tunneling can literally tear apart the
oxide at defect regions. To combat this, some
suppliers have implemented redundancy schemes,
reducing cycling failures to insignificant levels.
However, redundancy requires that cell size be
doubled-an expensive solution.

Intel has designed extensive cycling capability into
its ETOX flash memory technology. Resulting
improvements in cycling reliability come without
increasing memory cell size or complexity. First, an
advanced tunnel oxide increases charge carrying
ability ten-fold. Second, the oxide area per cell
subjected to the tunneling electric field is one-tenth
that of common EEPROMs, minimizing the
probability of oxide defects in the region. Finally,
the peak electric field during erasure is
approximately 2 MV/cm lower than EEPROM. The
lower electric field greatly reduces the oxide stress
and the probability of failure.

I

28F001 BX-T/28F001 BX-B

The 28F001 BX-B and the 28F001 BX-T are capable
of 100,000 program/erase cycles on each
parameter block, main block, and boot block.

ON-CHIP PROGRAMMING ALGORITHM

The 28F001 BX integrates the Quick-Pulse
programming algorithm of prior Intel flash memory
devices on-chip, using the Command Register,
Status Register, and Write State MaChine (WSM).
On-chip integration dramatically simplifies system
software and provides processor-like interface
timings to the Command and Status Registers.
WSM operation, internal program verify, and Vpp
high voltage presence are monitored and reported
via appropriate Status Register bits. Figure 9 shows
a system software flowchart for device
programming. The entire sequence is performed
with Vpp at VPPH. Program abort occurs when RP#
transitions to VIL or Vpp drops to VPPL. Although the
WSM is halted, byte data is partially programmed at
the loc&tion where programming is aborted. Block
erasure or a repeat of byte programming will
initialize this data to a known value.

ON-CHIP ERASE ALGORITHM

As above, the Quick-Erase algorithm of prior Intel
flash memory devices is implemented internally,
including all preconditioning of block data. WSM
operation, erase success, and Vpp high voltage
presence are monitored and reported through the
Status Register. Additionally, if a command other
than Erase Confirm is written to the device after
Erase Setup has been written, both the Erase
Status and Program Status bits will be set to "1".
When issuing the Erase Setup and Erase Confirm
commands, they should be written to an address
within the address range of the block to be erased.
Figure 10 shows a system software flowchart for
block erase.

Erase typically takes 1-4 seconds per block. The
Erase Suspend/Erase Resume command sequence
allows interruption of this erase operation to read
data from a block other than the block in which
erase is being performed. A system software
flowchart is shown in Figure 11.

The entire sequence if performed with Vpp at VPPH.
Abort occurs when RP# transitions to VIL or Vpp
falls to VPPL, while erase is in progress. Block data
is partially erased by this operation, and a repeat if
the erase is required to obtain a fully erased block.

329

28F020
2048K CMOS Flash Memory

I
331

Program-Verify Command

The 28F020 is programmed on a byte-by-byte
basis. Byte programming may occur sequentially or
at random. Following each programming operation,
the byte just programmed must be verified.

The program-verify operation is initiated by writing
COH into the command register. The register write
terminates the programming operation with the
riding edge of its WE# pulse. The program-verify
operation stages the device for verification of the
byte last programmed. No new address information
is latched.

The 28F020 applies its internally-generated margin
voltage to the byte. A microprocessor read cycle
outputs the data. A successful comparison between
the programmed byte and the true data means the
byte was successfully programmed. Programming
then proceeds to the next desired byte location.
Figure 5, the 28F020 Quick-Pulse algorithm,
illustrates how commands are combined with bus
operations to perform byte programming. Refer to
AC Programming Characteristics and Waveforms
for specific timing parameters.

Reset Command

A reset command is provided as a means to safely
abort the erase- or program-command sequences.
Following either setup command (erase or program)
with two consecutive write of FFH will safely abort
the operation. Memory contents will not be altered.
A valid command must then be written to place the
device in the desired state.

EXTENDED ERASE/PROGRAM CYCLING

EEPROM cycling failures have always concerned
users. The high electric fields required by thin oxide
EEPROMs for tunneling can literally tear apart the
oxide at defect regions. To combat this, some
suppliers have implemented redundancy schemes,
reducing cycling failures to insignificant levels.
However, redundancy requires that cell size be
doubled-an expensive solution.

Intel has designed extensive cycling capability into
its ETOX flash memory technology. Resulting
improvements in cycling reliability come without
increasing memory cell size or complexity. First, an
advanced tunnel oxide increases charge carrying

I

28F020

ability ten-fold. Second, the oxide area per cell
subjected to the tunneling electric field is one-tenth
that of common EEPROMs, minimizing the
probability of oxide defects in the region. Finally,
the peak electric field during erasure is
approximately 2 MV/cm lower than EEPROM. The
lower electric field greatly reduces the oxide stress
and the probability of failure.

The 28F020 is capable of 100,000 program/erase
cycles. The device is programmed and erased
using Intel's Quick-Pulse Programming and Quick
Erase algorithms. Intel's algorithmic approach uses
a series of operations (pulses), along with byte
verification, to completely and reliably erase and
program the device.

For further information, see Reliability Report
RR-60.

QUICK-PULSE PROGRAMMING ALGORITHM

The QuiCk-Pulse Programming algorithm uses
programming operations of 10 ms duration. Each
operation is followed by a byte verification to
determine when the addressed byte has been
successfully programmed. The algorithm allows (for
up to 25 programming operations per byte, although
most bytes verify on the first or second operation.
The entire sequence of programming and byte
verification is performed with Vpp at high voltage.
Figure 5 illustrates the Quick-Pulse Programming
algorithm.

QUICK-ERASE ALGORITHM

Intel's Quick-Erase algorithm yields fast and reliable
electrical erasure of memory contents. The
algorithm employs a closed-loop flow, similar to the
Quick-Pulse Programming algorithm, to
simultaneously remove charge from all bits in the
array.

Erasure begins with a read of memory contents.
The 28F020 is erased when shipped from the
factory. Reading FFH from the device would
immediately be followed by device programming.

For devices being erased and programmed, uniform
and reliable erasure is ensured by first
programming all bits in the device to their charged
state (Data = OOH). This is accomplished, using the
Quick-Pulse Programming algorithm, in
approximately four seconds.

333

28F020

Erase execution then continues with an initial erase
operation. Erase verification (Data = FFH) begins at
address OOOOH and continues through the array to
the last address, or until data other than FFH is
encountered. With each erase operation, an
increased number of bytes verify to the erased
state. Erase efficiency may be improved by storing
the address of the last byte verified in a register.
Following the next erase operation, verification
starts at that stored address location. Erasure
typically occurs in two seconds. Figure 6 illustrates
the Quick-Erase algorithm.

334

I

1. See DC Characteristics for the value of VPPH and VPPL

2. Erase Verify is performed only after chip-erasure. A

final read/compare may be performed (optional) after

the register is written with the Read command.

28F020

Bus
Command

Operation Comments

Entire Memory Must = OOH
before Erasure

Use Quick-Pulse
Programming Algorithm
(Figure 5)

Standby WaitforVpp RamptoVpPH (1)

Initialize Addresses and
Pulse-Count

Write Set-Up Data=20H Erase

Write Erase Data=20H

Standby Duration of Erase Operation
(tWHWH2)

Write
Erase (2)

Addr = Byte to Verify; Verify Data = AOH; Stops Erase
Operation (3)

Standby tWHGL

Read Ready Byte to Verify Erasure

Standby Compare Output to FFH
Increment Pulse-Count

Write
Read Data = OOH, Resets the

Register for Read Operations

Standby WaitforV pp Ramp to VpPH (1)

2902'
3. Refer to principles of operation.
4. CAUTION: The algorithm MUST BE FOLLOWED

to ensure proper and reliable operation of the
device.

Figure 6. 20F020 Quick-Erase Algorithm

I
335

~

Versions Vcc+5% 28F020-70(4)
Vcc+10% 28F020-70(S) 28F020-90(S) 28F020-150(S) Unit

Symbol Characterisitcs Notes Min Max Min Max Min Max Min Max
tAVAV/tRC Read Cycle Time 70 80 90 150 ns
tELav/tcE Chip Enable 70 80 90 120 ns

Access Time
tAvav/lAcc Address Access 70 80 90 120 ns

Time
tGLav/toE Output -Enable 28 30 35 50 ns

Access Time

~'I> I\)
CCI

3 0 ~ -a 0 I\)
CD::t Q .. »
!.::a C»
(;0
'tJ-I .. m o::a a..-crn
n::!
"0 0 r

::a
m a..

tELax/tLZ Chip Enable to 2,3 0 0 0 0 ns
Output in Low Z

tEHaz Chip Disable to 2 35 40 45 55 ns
Output in Hiah Z

tGLax/tOLZ Output Enable to 2,3 0 0 0 0 ns
Output in Low Z

tGHazltDF Output Disable to 2 30 30 30 30 ns

0
::J
-<
0
i a
0"
::J

Ouput in High Z
tOH Output Hold from 1,2 0 0 0 0 ns

Address, CE#, or
OE#Chanae

twHGL Write Recovery 6 6 6 6 J.ls

i
0
0
3
3
CD

Time before Read .. n
NOTES: !:
1. Whichever occurs first. AI
2. Sampled, not 100% tested.
3. Guaranteed by design.
4. See High Speed AC Input/Output reference Waveforms and High Speed AC Testing Load Circuits for testing characteristics.

5. See AC Input/Output reference Waveforms and AC Testing Load Circuits for testing characteristics.

::J a..
m
~ --CD
::J

cf
a..
CD a..

@

28FOIO
l024K CMOS Flash Memory

337

I

Program-Verify Command

The 28F010 is programmed on a byte-by-byte
basis. Byte programming may occur sequentially or
at random. Following each programming operation,
the byte just programmed must be verified.

The program-verify operation is initiated by writing
COH into the command register. The register write
terminates the programming operation with the
riding edge of its WE# pulse. The program-verify
operation stages the device for verification of the
byte last programmed. No new address information
is latched.

The 28F010 applies its internally-generated margin
voltage to the byte. A microprocessor read cycle
outputs the data. A successful comparison between
the programmed byte and the true data means the
byte was successfully programmed. Programming
then proceeds to the next desired byte location.
Figure 5, the 28F010 Quick-Pulse algorithm,
illustrates how commands are combined with bus
operations to perform byte programming. Refer to
AC Programming Characteristics and Waveforms
for specific timing parameters.

Reset Command

A reset command is provided as a means to safely
abort the erase- or program-command sequences.
Following either setup command (erase or program)
with two consecutive writes of FFH will safely abort
the operation. Memory contents will not be altered.
A valid command must then be written to place the
device in the desired state.

EXTENDED ERASE/PROGRAM CYCLING

EEPROM cycling failures have always concerned
users. The high electric fields required by thin oxide
EEPROMs for tunneling can literally tear apart the
oxide at defect regions. To combat this, some
suppliers have implemented redundancy schemes,
reducing cycling failures to insignificant levels.
However, redundancy requires that cell size be
doubled-an expensive solution.

Intel has designed extensive cycling capability into
its ETOX flash memory technology. Resulting
improvements in cycling reliability come without
increasing memory cell size or complexity. First, an
advanced tunnel oxide increases charge carrying

I

28F010

ability ten-fold. Second, the oxide area per cell
subjected to the tunneling electric field is one-tenth
that of common EEPROMs, minimizing the
probability of oxide defects in the region. Finally,
the peak electric field during erasure is
approximately 2 MV/cm lower than EEPROM. The
lower electric field greatly reduces the oxide stress
and the probability of failure.

The 28F010 is capable of 100,000 program/erase
cycles. The device is programmed and erased
using Intel's Quick-Pulse Programming and Quick
Erase algorithms. Intel's algorithmic approach uses
a series of operations (pulses), along with byte
verification, to completely and reliably erase and
program the device.

For further information, see Reliability Report
RR-60.

QUICK-PULSE PROGRAMMING ALGORITHM

The Quick-Pulse Programming algorithm uses
programming operations of 10 IJS duration. Each
operation is followed by a byte verification to
determine when the addressed byte has been
successfully programmed. The algorithm allows for
up to 25 programming operations per byte, although
most bytes verify on the first or second operation.
The entire sequence of programming and byte
verification is performed with Vpp at high voltage.
Figure 5 illustrates the Quick-Pulse Programming
algorithm.

QUICK-ERASE ALGORITHM

Intel's Quick-Erase algorithm yields fast and reliable
electrical erasure of memory contents. The
algorithm employs a closed-loop flow, similar to the
Quick-Pulse Programming algorithm, to
simultaneously remove charge from all bits in the
array.

Erasure begins with a read of memory contents.
The 28F010 is erased when shipped from the
factory. Reading FFH from the device would
immediately be followed by device programming.

For devices being erased and programmed, uniform
and reliable erasure is ensured by first
programming all bits in the device to their charged
state (Data = OOH). This is accomplished, using the
Quick-Pulse Programming algorithm, in
approximately four seconds.

339

28F010

Erase execution then continues with an initial erase
operation. Erase verification (Data = FFH) begins at
address OOOOH and continues through the array to
the last address, or until data other than FFH is
encountered. With each erase operation, an
increased number of bytes verify to the erased
state. Erase efficiency may be improved by storing
the address of the last byte verified in a register.
Following the next erase operation, verification
starts at that stored address location. Erasure
typically occurs in two seconds. Figure 6 illustrates
the Quick-Erase algorithm.

340

I

c ,..
c

~
C')

u..
co
('II "0

CI)
"0
C
CI) -><
W
"0
C

'"
'" 'u

Versions VCC+5% 28F010-65(4)

VCC + 10% 28F010-65(5) 28F010-90(5) 28F010-120(5) 28F010-150(5) Unit

Svmbol Characterisitcs Noles Min Max Min Max Min Max Min Max Min Max ...
CI) tAVAV/tRC Read Cycle Time 65 70 90 120 150 ns

E
E

tELQV/tCE Chip Enable Access 65 70 90 120 150 ns
Time

0
0 tAVQV/tACC Address Access Time 65 70 90 120 150 ns

I
II)

tGLQV/tOE Output Enable Access 25 28 35 50 55 ns
Time

c
0 tELQXltLZ Chip Enable to Output 2,3 0 0 0 0 0 ns

+=
~
CI)
0.

in Low Z

tEHQZ Chip Disable to Output 2 35 40 45 55 55 ns
in HiqhZ

0 tGLQX/tOLZ Output Enable to 2,3 0 0 0 0 0 ns

~ Output in Low Z
c
0
"0

'"

tGHQz/tDF Output Disable to 2 30 30 30 30 35 ns
Ouput in Hiqh Z

tOH Output Hold from 1,2 0 0 0 0 0 ns
CI)

0:
I

en 011)
~u en::l
-"0

Address, CE#, or OE#
Chanqe

tWHGL Write Recovery Time 6 6 6 6 6)JS

before Read

NOTES:
1. Whichever occurs first.

0:0
W'" I-D.
OCl)

@ « ...

J>
o:.a
<C~
J:CI)
00.

t: OE .- <C~

2. Sampled, not 100% tested.
3. Guaranteed by design.
4. See High Speed AC Input/Output reference Waveforms and High Speed AC Testing Load Circuits for testing characteristics.
5. See AC Input/Output reference Waveforms and AC Testing Load Circuits for testing characteristics.

28F010

ERASE AND PROGRAMMING PERFORMANCE

Parameter Notes Min Typical Max Unit

Chip Erase Time 1,3,4 2 30 Sec

Chip Program Time 1,2,4 4 25 Sec

NOTES:
1. "Typicals' are not guaranteed, but based on samples from production lots. Data taken at 25"C, 12.0V Vpp.
2. Minimum byte programming time excluding system overhead is 161lsec (10 Ilsec program + 61lsec write recovery), while

maximum is 400 Ilseclbyte (16llsec x 25 loops allowed by algorithm). Max chip programming time is specified lower than
the worst case allowed by the programming algorithm since most bytes program significantly faster than the worst case
byte.

3. Excludes OOH programming prior to erasure.
4. Excludes system level overhead.

342

I

Application Note-600

I
343

CPU

BOOT
MEMORY

AP-600

L2

CACHE DRAM

L3

CACHE

NETWORK
DRIVE

29214&<>4

Figure 4. The Traditional System Memory Architecture
Adds Complexity in Order to Optimize Performance

DRAM

CPU

28F016XS
FLASH

MEMORY

MASS
STORAGE

Figure 5. A Flash Memory-Based System Memory Architecture
Achieves Performance without Tradeoffs

This application note compares the read performance
and power consumption of Intel's 28F016XS Rash
memory to that of more traditional memory alternatives,
based on specifications available at the time this
document was published. The 28FOl6XS Rash memory
is a new member of the Intel 16-Mbit flash memory
product family. Significant 28F016XS enhancements
compared to previous flash memories include:

• A synchronous pipelined read interface that
optimizes the performance of today's leading-edge
microprocessors and buses, and

• SmartVoltage technology

I ADVANCE INFORMATION

This analysis focuses on the highest read performance
versions of the highest-density products for each
memory technology. Also discussed, are 28FOI6XS
based system memory architecture advantages over
traditional alternatives in terms of performance,
complexity, cost, power consumption and reliability. For
complete information on Intel's 28F016XS flash
memory, consult documentation listed in the Additional
Information section.

345

Application Note-399

I
347

getting the system's BIOS code to copy the file before or
during POST.

Either option is possible. The choice is dependent on
determining which is easier, modifying hardware or
modifying a BIOS boot-up process.

3.4 RFA Control Logic Overview

This section describes the logic design for the RFA
controller. Timing analysis is also provided to draw
special attention to some of the difficulties and their
resolutions. Lastly, a discussion of possible future
enhancements is presented.

AP-399

As shown in the block diagram, Figure 1, the EPX780
provides the interface between the CPU and the flash
memory. The following components are utilized in
this sub-system design:

• 25 MHz 3.3V 486 SX CPU

• Altera's EPX780-I32 PLO

• 4 28F016SV-75 1M x 16-bit flash memory devices

• 32-bit Transceiver
(4 x 8-bit or 2 x 16-bit, tpD <15 ns)

The signal names used in the diagrams are described in
Table 1

Intel486™ SX CPU-RFA Sub-System Oesign

A2.3-A2. (ABUSi) 1 I A2.1-A2 (ABUSo)

28F016SV 28F016SV
AOS# I-~ 4,
Wllo# CEO-1#(H,L)

D/C#
A i486SX EPX780 OE#

CPU BEO-3#

W/R# WE#

ROYiI

KENiI

~

DT/R#
DO-09

1 28F016SV 28F016SV
~~

031-00 (OBUS) D31-DO .I TRANSCEIVER I
I 74HL33623 (4) or I 74LVT16245 (2)

RY/BY#

D31-DO ~

(FLASH OBUS)
MSB LSB

031-016 t 015-00 t
292149-7

Figure 1. RFA Block Diagram

I
349

AP-399

Table 1. Signal Name Descriptions

~Ignal name Signal Description

CLK Clock input to the subsystem, assumed 25 MHz

ADS# Address Strobe from the CPU

W/R# Write/Read# signal from CPU

Mli/o# Memory/i/o# signal from CPU

O/C# Oata/Code# signal from CPU

WE# Write Enable# signal from EPX780 to flash memory

OE# Output Enable# signal from EPX780 to flash memory

ROY# Ready# signal from EPX780 to CPU

KEN# Cache Enable# signal from EPX780 to CPU

OT/R# Oata TransmitlReceive# signal from EPX780 to transceiver

ABUSi Address Bus, A23-A2 from CPU to EPX780

ABUSo Address Bus, A21-A2 from EPX780 to flash memory

BSEL# Byte Enable# signals, BEO-3# from CPU to EPX780

CE# Chip Enable# signals, CEHO-1# & CELO-1 from EPX780 to flash memory

OBUS Oata Bus, 031-00 from CPU to EPX780 and transceiver

FLASH OBUS Oata Bus, 031-00 from transceiver to flash memory

ADSWREG Sliding Window Register select

ADS1 .. 4 Address Strobe delay flip-flop chain

SWREG Sliding Window Register

NOTE:
A "#" after the name means inverted or active low. Sliding Window Address Register Interface

Logic Design

The logic design (see Figure 8) for the EPX780 RFA
controller was split into the following three subdivisions
from a design standpoint:

• Sliding Window Address Register interface

• ROM Stub Window mapping function

• Chip enable logic for memory devices

350

The necessary address decoding for the actual loading of
the Sliding Window Address Register with the base
address of the window on the data bus is done using a
simple AND function. Similarly, allowing the address
bits to propagate out of the register to the address bus
upon access to the window is done using a 2xl mux for
each bit with the address decode as the select.

I

APPENDIX D
PLD EQUATIONS

Included below are the equations for the EPX780

EPX780-10 PLD

; Functional model for Simulation of Resident Flash Array design
Title 486SX RFA design
Pattern 1
Revision 4.0
Author Rajiv Parikh
Company Intel Corporation
Date 9120/94

; This design has not been verified, it is sample code only.
; Intel assumes no responsibility for any errors which may appear
; in this code.

OPTIONS DRIVE_LEVEL = 3VOLT ; Default voltage is 3 Volts
CHIP U1 NFX780_132

; Pinlist
; inputs
PIN CLK
; Control signals from CPU
PIN W_R
PIN M_IO
PIN lADS
PIN D_C

; main clock (used by register)

; Write/Read# from CPU
; Mli/o# from CPU
; ADS# from CPU
; D/C# from CPU

PIN A[23:2] ; Address lines from CPU, 0,1,24-31 not used
PIN IBE[3:0] ; Byte Enable lines from CPU
; Control signals from PLD to memory
; outputs
PIN
PIN
PIN

PIN
PIN

B[23:2]
ICEH[I:0]
ICEL[1:0]

!WE
IOE

; Other signals
; input
PIN RY_BY
; outputs
PIN IRDY
PIN lKEN

I

; Address lines out of PLD to memory (23,22 NC)
; Chip enable out of PLD to memory high word
; Chip enable out of PLD to memory low word

; Write Enable# from PLD to memory
; Output Enable# from PLD to memory

; ReadylBusy# from memory to PLD/486

; Ready# from PLD to CPU
; Cache enable# from PLD to CPU

AP-399

351

Application Note-398

I
353

AP-398

A ADDRESS/DATA ~

'r- r

CPU 28F016XS

lL INTERFACE

L~
lOGIC

ADV#

T WE#
ClK

OE#

READY CE# ..
~ -

Figure 6. Comparing Past Address with Current Address to Determine Whether an Alternating-A1 or
Same-A1 Access Occurs When Interfacing the 2BF016XS to a Pipelined Bus Processor

Pipelined Bus

A pipelined bus activates the address and control signals
for the next cycle before completing the current cycle.
Pipelined buses have no defined access order; therefore,
Alternating-A] accesses are not guaranteed. The
interface must guard against a possible mixture of
consecutive Alternating-A] and Same-A] accesses.
Figure 6 illustrates a pipelined bus interface to the
28F016XS.

In a pipelined interface, the system logic does not
increment the 28F016XS's lower addresses. The system
logic instead latches address A 1 and compares it to A 1 of
the following cycle. Comparing AI' the interface logic
can identify Alternating-A] and Same-A] accesses,
which directly infonns the interface logic when it can
initiate a read access to the 28F0l6XS. The Alternating
A] and Same-A] access rules define the minimum delay
between consecutive accesses (see Section 4.2 and 4.3).

In the past, external latches were required to latch the
next address and control signals. The 28FOl6XS
eliminates this extra system overhead, latching the next
address internally and initiating the next cycle prior to
completing the current cycle. The 28FOI6XS's
synchronous pipelined interface takes full advantage of
a pipelined bus.

I ADVANCE iNFORMATION

4.0 INTERFACING TO THE 28F016XS

The 28FOl6XS can interface to a wide range of CPUs
and bus architectures. Glue logic is minimal and the
perfonnance enhancements are significant. Below are
key considerations to keep in mind when interfacing to
the 28FOI6XS:

o Clocking Options

o Alternating-A] Access Rule

o Same-A] Access Rule

o Optimizing Read Performance in x8 Mode

o Consecutive Accesses across Bank Boundaries

o Handling Asynchronous Write Cycles

o System Boot-Up out of the 28FOl6XS

4.1 Clocking Options

In choosing a CLK option, keep in mind that the
28FOl6XS operates at optimum perfonnance with a
CLK frequency at an upper SFI Configuration boundary
(50 MHz and 33 MHz are two of four SFI Configuration
upper boundaries for the 28F016XS-15 at 5.0V Vee).
See Section 2.3 for infonnation about the SFI
Configuration.

355

AP-398

292147~3

NOTE:
Refer to the 28F016XS datasheet for timing specifications.

Figure 23. Consecutive Alternating-A1 Accesses Crossing Bank Boundaries,
One OE# per Bank (28F016XS-15, SFI Configuration = 2)

4.7 Handling Asynchronous Writes

The 28FOl6XS write interface is asynchronous, similar
to other Intel flash memories. The 28FOI6XS's write
interface is not pipelined, therefore a write cycle must
complete before another begins.

When the interfacing CPU can execute a burst write
cycle, the system logic needs to manage the write cycle,
allowing only one write cycle to the 28F016XS at a
time. Write-back caches, for example, support burst
write cycles.

356

When the interfacing CPU does not support burst writes,
the 28FOI6XS's asynchronous write interface is not an
issue. The processor will only execute one write cycle at
a time.

When executing a write cycle, the interfacing processor
or bus will drive a write signal informing the system of
the desired operation. Monitoring this signal, the
interfacing logic can correctly transition into an
appropriate state machine sequence. In this situation, the
interfacing logic directly controls the 28FOI6XS's write
control signals (Figure 24), just as with asynchronous
Intel flash memories.

ADVANCE INFORMATION I

intel®

Application Note-384

I
357

1.0 INTRODUCTION

This application note discusses comparisons between the
28FOl6XD and DRAM memories. It also offers
recommendations for determining compatibility between
the 28FOl6XD and DRAM controllers, and provides
suggestions for designing DRAM controllers with the
28FOl6XD in mind. The 28FOI6XD, an Intel 16-Mbit
Flash memory component, retains full software
backwards-compatibility with the 28F008SA and adds
the following features:

• Multiplexed address/address interface with RAS#
and CAS# control inputs

• SmartVoltage technology

• Internal 3.3V/5.0V

The 28FOl6XD leverages the existing DRAM controller
in system designs and thereby minimizes the glue logic
required to interface to flash memory. It is a 16-Mbit
device, organized as I Mbyte x 16. The 28FOl6XD has
ten row addresses and ten column addresses,
multiplexed on inputs Ao-A9'

The 28FOl6XD is fully non-volatile, giving it significant
power and performance advantages over the traditional
disk-plus-DRAM alternative. The 28FOl6XD does not
lose data when power is removed from the device. By
permanently storing and executing programs from the
28F016XD, the inherently slow disk drive-to-DRAM
load delay is eliminated. The 28FOl6XD also does not
require refresh cycles (although the 28FOl6XD will
properly ignore any refresh cycles that are issued to it).

I ADVANCE INFORMATION

AP-384

2.0 28F016XD COMPARISONS TO
DRAM

The following sections discuss specific areas of
comparison between the 28FOl6XD and 16-Mbit (1M x
16) DRAMs in 60 ns and 70 ns speed bins. Please
reference the 28FOl6XD datasheet for a full description
of the 28FOI6XD.

2.1 Voltage and Current
Specifications

One obvious difference between the 28FOl6XD and
DRAMs is that flash memory specifications reference a
Vpp voltage, used with Data Write and Erase operations.
All V pp-related voltage and current specifications are
unique to the 28FOI6XD. Note that the 28FOl6XD
offers the option to connect Vpp either to 12.0V ± 5% or
to 5.0V ± 10% (which may also be the Vee operating
voltage). The 28FOl6XD includes Vee current
specifications during Data Write, Erase and Erase
Suspend operations. These operations are unique to flash
memory; therefore, these specifications are not found in
DRAM datasheets.

The 28FOl6XD specifies a VLKO (lockout) voltage. This
specification relates to circuitry within the flash memory
that protects it from unwanted data alteration. The V LKO

specification is not found in DRAM datasheets. The
28FOl6XD also provides the deep power-down mode,
not available on DRAMs. 28FOl6XD read, standby
(CMOS), RAS#-only refresh and CAS#-before-RAS#
refresh currents are lower than those seen with DRAMs.

A comparison between the 28FOl6XD and
representative 16-Mbit DRAMs (valid at the time this
application note was written) is shown in Table I.

359

AP-384

Table 2. 28F016XD Added/Revised DC Characteristics (Continued)
Vee - 3 3V + 0 3V TA - oDe to + 700e - , -

Sym Parameter Min Typ Max Unit Test Condition

lee7 Vee Standby Current 40 55 mA Vee = Vee Max
(Self Refresh Mode) RAS#, CAS# = VIL

lOUT = 0 mA
Inputs = VIL or VIH

IceD Vee Deep Power-Down 2 5 IlA RP# = GND ± 0.2V
Current

leew Vee Word Write Current 8 12 mA Word Write in Progress
Vpp = 12.0V ± 5%

8 17 mA Word Write in Progress
Vpp = 5.0V ± 10%

IeeE Vee Block Erase Current 6 12 rnA Block Erase in Progress
Vpp = 12.0V ± 5%

9 17 rnA Block Erase in Progress
Vpp = 5.0V ± 10%

leeEs Vee Erase Suspend 1 4 rnA RAS#, CAS# = VIH
Current Block Erase Suspended

Ipps Vpp Standby/Read ±1 ±10 IlA Vpp ~Vee
Current 30 200 IlA Vpp > Vee

IpPD Vpp Deep Power-Down 0.2 5 IlA RP# = GND ± 0.2V
Current

Ippw Vpp Word Write Current 10 15 rnA Vpp = 12.0V ± 5%
Word Write in Progress

15 25 rnA Vpp = 5.0V ± 10%
Word Write in Progress

IpPE Vpp Block Erase Current 4 10 rnA Vpp = 12.0V ± 5%
Block Erase in Progress

14 20 rnA Vpp = 5.0V ± 10%
Block Erase in Progress

IpPES Vpp Erase Suspend 30 50 IlA Block Erase Suspended
Current

VPPLK Vpp EraselWrite Lock 0.0 1.5 V

Voltage

VpPH1 Vpp during Write/Erase 4.5 5.0 5.5 V
Operations

VpPH2 Vpp during Write/Erase 11.4 12.0 12.6 V
Operations

VLKO Vee EraselWrite Lock 2.0 V
Voltage

360 ADVANCE INFORMATION I

AP-384

Table 3. 28F016XD AddecllRevised DC Characteristics (Continued)
Vcc-50V+05V TA-0°Cto+70°C - -

Sym Parameter Min

Ipps Vpp Standby/Read

Current

IpPD Vpp Deep Power-Down
Current

Ippw Vpp Word Write Current

IpPE Vpp Block Erase Current

IpPES Vpp Erase Suspend

Current

VPPLK Vpp Erase/Write Lock 0.0
Voltage

VpPH1 Vpp during Write/Erase 4.5

Operations

VpPH2 Vpp during Write/Erase 11.4
Operations

VLKO Vee Erase/Write Lock 2.0
Voltage

2.2 Timing Specifications

28F016XD timing specifications are divided into the
following categories in the datasheet:

• Common Parameters

• Read Cycle

• Write Cycle

• Read-Modify-Write Cycle

• Fast Page Mode Cycle (including fast page mode
read-modify-write)

• Refresh Cycle (including refresh period)

• Miscellaneous

Many 28F016XD specifications match or improve on
those of 60 ns and 70 ns DRAMs. Programming
additional DRAM controller wait states will
accommodate most slower 28F016XD specs.

I ADVANCE INFORMATION

Typ Max Unit Test Condition

±1 ±10 I-IA Vpp < Vee

30 200 I-IA Vpp > Vee

0.2 5 I-IA RP# = GND ± 0.2V

7 12 mA Vpp = 12.0V ± 5%
Word Write in Progress

17 22 mA Vpp = 5.0V ± 10%
Word Write in Progress

5 10 mA Vpp = 12.0V ±. 5%
Block Erase in Progress

16 20 mA Vpp = 5.0V ± 10%
Block Erase in Progress

30 50 I-IA Block Erase Suspended

1.5 V

5.0 5.5 V

12.0 12.6 V

V

In some cases, specifications that have identical values
for both reads and writes to DRAM (such as RAS# and
CAS# pulse widths and hold times), have been
differentiated (separate specs for read and write) on the
28F016XD. This differentiation both accurately reflects
28F016XD functionality and improves the DRAM
controller interface to 28F016XD, in some cases.

Common Parameters

Table 4 compares 28F016XD common parameters to
DRAM, with incompatible specifications shaded for
emphasis. Areas where the 28F016XD improves upon
DRAM specifications are outlined in bold. Notice that
the 28F016XD's RAS# precharge time specification is
much shorter than that for DRAM, while the
28F016XD's CAS# precharge time specification is
slightly longer. Also, the 28F016XD's row address hold
time after RAS#, column address hold time after CAS#
and CAS#-to-RAS# precharge time are slightly longer
than those for DRAM.

361

AP-384

Fast Page Mode Cycle Specifications

28F016XD fast page mode cycle specification
incompatibilities compared to DRAM have the same
root causes as the read and write cycle incompatibilities
described earlier. Fast page mode read-modify-write
cycles to the 28F016XD will not occur in the majority of
applications.

Table 8 compares 28F016XD fast page mode cycle
specifications to DRAM, with incompatible
specifications shaded for emphasis. Areas where the
28F016XD improves upon DRAM specifications are
outlined in. bold.

362

.intel®
Refresh Cycle Specifications

Flash memory does not require refresH to retain stored
data contents. However, by interfacing to a DRAM
controller, it will automatically receive the same refresh
cycles that DRAM receives. The 28F016XD supports all
common refresh cycles; CAS#-before-RAS#, RAS#
only, hidden and self-refresh. In these modes, it will
either drive or float the data bus just as a DRAM would.
Refresh cycles have no other effect OIi 28F0l6XD stored
data.

Table 9 compares 28F016XD refresh cycle
specifications to DRAM, with incompatible
specifications shaded for emphasis. Areas where the
28F016XD improves upon DRAM specifications are
outlined in bold.

ADVANCE INFORMATION I

Table 10 28F016XD Added/Revised AC Timings (Continued)
Vee = 3.3V ± O.3V, Vpp = S.OV ± O.SV, TA = ooe to +7ooe

Sym Parameter Min

tWHRH1 Word Write Time TBD

tWHRH3 Block Write Time TBD

Block Erase Time TBD

Erase Suspend Latency Time to Read 1.0

Vee = 3.3V ± O.3V, V pp = l2.0V ± O.6V, T A = ooe to + 700 e

Sym Parameter Min

tWHRH1 Word Write Time 5

tWHRH3 Block Write Time TBD

Block Erase Time 0.3

Erase Suspend Latency Time to Read 1.0

Table 11. 28F016XD Added/Revised AC Timings
Vee = S.OV ± O.SV, TA = oDe to +70oe

Typ

35

1.2

1.4

12

Typ

9

0.3

0.8

9

AP-384

Max Units

TBD ~s

TBD sec

TBD sec

75 ~s

Max Units

TBD ~s

1.0 sec

10 sec

55 ~s

Versions 28F016XD - 85

Parameter Min Max Unit

RP# High to RAS# going low 300 ns

RP# Set-Up to WE# going low 300 ns

Vpp Set-Up to CAS# high at end of write cycle 100 ns

WE# High to RY/BY# going low 100 ns

RP# Hold from Valid Status Register Data and RY/BY# High 0 ns

Vpp Hold from Valid Status Register Data and RY/BY# High 0 ns

Vee at 4.5V (minimum) to RP# High 2 ~s

I ADVANCE INFORMATION 363

AP-384

Table 11 28F016XD AddedlRevised AC Timings (Continued)
V c£ = 5.0V ± O.5V, V pp = 5.0V ± 0.5V, TA = ODC to + 70DC

Sym Parameter

tWHRH1 Word Write Time

tWHRH3 Block Write Time

Block Erase Time

Erase Suspend Latency Time to Read

v c£ = 5.0V ± 0.5V, V pp = 12.0V ± 0.6V, TA = ODC to + 70DC

Sym Parameter

tWHRH1 Word Write Time

tWHRH3 Block Write Time

Block Erase Time

Erase Suspend Latency Time to Read

2.3 Package and Pinout

Although the 28F016XD includes all necessary inputs
and outputs for interfacing to DRAM controllers, its
pinout and package 'do not match those of DRAMs but
instead evolve from other 16-Mbit Intel flash memories.
The 28F016XD uses a 56-lead TSOP package, with
pinout shown in Figure 1 and package dimensions
shown in Figure 2.

Comparable 1M x 16 (16-Mbit) DRAMs use two
packages, a 42-lead SOJ and 44-lead TSOP. Examples
of these DRAM pinouts are shown in Figures 3 and 4.

364

Min Typ Max Units

TBD 25 TBD IJs

TBD 0.85 TBD sec

TBD 1.0 TBD sec

1.0 9 55 IJS

Min Typ Max Units

4.5 6 TBD IJs

TBD 0.2 1.0 sec

0.3 0.6 10 sec

1.0 7 40 IJS

Table 12 summarizes pinout comparisons between the
28F016XD in 56-lead TSOP and various DRAM
package options.

If compatibility between the 28F016XD and DRAM
"footprints" is desired, 28F016XD flash memories can
be placed on DRAM-compatible SIMMs. Please see the
Additional Information section of this application note
for documentation that covers this topic in more detail.

ADVANCE INFORMATION I

Application Note-377

I
365

28F016SA Commands

The 28F016SA command set is a superset of the
28F008SA command set, giving existing 28F008SA
code the ability to run on the 28F016SA with minimal
modifications.

28F008SA-Compatible Commands

00 invalid/reserved

20 single block erase

40 wordlbyte write

50 clear status registers

70 readCSR

90 read ID codes

BO erase suspend

DO confirm/resume

FF read flash array

28F016SA Performance-Enhancement
Commands

OC page buffer write to flash

71 read GSR and BSRs (i.e. the ESR)

72 page buffer swap

74 single load to page buffer

75 read page buffer

77 lock block

80 abort

96,xx RYIBY# reconfiguration and SF!
configuration (28F016XS)

97 upload BSRs with lock bit

99 upload device information

A7 erase all unlocked blocks

EO sequential load to page buffer

FO sleep

FB two-byte write

I

AP-377

28F016XD and 28F016XS Feature Sets

The following features are not supported on the
28F016XD and 28F016XS Embedded Flash RAM
memories (as compared to the 28F016SAlSV/32SA
FlashFile™ memories):

• All page buffer operations (read, load, program,
Upload Device Information)

• Command queuing

• Erase All Unlocked Blocks and Two-Byte Write

• Software Sleep and Abort

o RYIBY# reconfiguration via the Device
Configuration command

367

Application Note-343

369

I

Memory Cards

Many computer manufacturers are pursuing the IC
memory card to incorporate a removable mass storage
medium. This is an ideal application for the Intel Flash
Memory TSOP, due to the package's minimal height.

Solid-State Memory Alternatives

ROM and SRAM are currently the dominant IC card
memory technologies. ROM has the advantage of being
inexpensive, but is not changeable. When newer
software revisions (e.g., Lotus* 123, Windows, etc.) are
available, the user must buy a new ROM card for each
upgrade. Intel Flash Memory's reprogrammability
minimizes the user's expense and the OEM's inventory
risk.

SRAM is reprogrammable but requires batteries to
maintain data, risking data loss. Like magnetic disks,
flash memory is truly nonvolatile and thus has very long
storage time with power off. Additionally, SRAM is

Ien o o
LLI
~

5
LLI
0:::

SYSTEM LEVEL

Voltage Battery
State Conversion Detect 5V-12V Circuit

FLASH SRAM

AP-343

expensive and not a high density solution. Intel Flash
Memory provides a denser, more cost effective and
reliable solution.

System level cost is about the same for Intel Flash
Memory and SRAM + battery-

Flash memory requires 12V for programming and
erasing. If a 12V supply is not available, 5V can easily
be boosted. (See Application Note AP-316.) SRAM +
battery requires battery state detect circuitry.

Card level cost differences are substantial (Figure 3)-

SRAM must have a battery to retain data. It also requires
a Vee monitor and Write Lockout circuitry. Intel's Flash
Memory only requires Write Lockout circuitry
(switching Vpp to OV is an alternative write protect).
This leads to increased area for memory components.
More importantly, Intel's Flash Memory density is
4 times that of static RAM, yielding lower cost per bit.

CARD LEVEL

Battery

Higher Densities Vce Monitor
Circuits

Increased Area
for Memory

Write Components
Lockout
Circuit

Write
Lockout Lower
Circuit Densities

FLASH SRAM
292079-23

Figure 3. Support Circuitry Cost Comparison

I
371

intel®

Application Note-325

I
373

292059-1

Figure 1. The flow chart shows the fundamental
nature of an adaptive algorithm. Based on the
outcome of program verification, the flow may

loop back for another program operation.

Moving Charge and Other Factors You
Should Know

This section discusses the mechanics of flash memory
programming. For most' system designers, transistor-

AP-325

level discussions were last heard in college. We may
recall that DRAM consists of a storage capacitor and a
transistor. We remember this clearly because failure to
refresh that capacitor causes systems to malfunction. In
like fashion, one should understand the fundamentals
of flash memory reprogramming. The understanding
will enable error-free memory operation and reliable
system performance.

In simplest terms, each data bit equates to a memory
cell. Intel's flash memory uses one transistor per cell
with the smallest possible architecture. This delivers the
lowest cost per bit and highest capacity, levering system
software (rather than bulky, complex cells) for
reprogramming control.

Figure 2 shows a simplified cross section of Intel's flash
memory transistor. Note the structure; the cell is a
stacked gate MOS transistor. An isolated floating gate
stores the memory charge. The floating gate consists of a
layer of (conductive) polysilicon surrounded by (non
conductive) oxide layers.

On a DRAM cell, each transistor connects to a capacitor
which stores the memory charge. The major difference
between flash memory and DRAM derives from their
cell structure. The DRAM cell loses its charge if not
refreshed within a few milliseconds. On the other hand,
the flash memory floating gate maintains its charge as a
fully nonvolatile memory, similar to ROM or EPROM.
The structure is isolated and insulated by the field and
gate oxides-hence the name "floating" gate.

ETQ}(TM Flash Memory Cell"

Control Gate

Floating Gate

(~s_o_u_r_ce ____ ~) l'-___ D_r_ai_n4(

) Substrato)

='YI~"
/ S

Floating Gate

I

292059-2

'Patented Intel Processes

Figure 2. Simplicity of design assures increasing densities, manufacturability and reliability.
These are the attributes that drive mainstream memories.

375

intel®

Engineering Report-33

I
377

Cycling Performance

Cycling durability has made tremendous gains from
early first-generation devices, such as the 28F256-
170P1C2 with a 100-cycle specification. Current
products, such as Intel's ETOX III 28F008SA, are
registering above 1,000,000 cycles. Experiments with
these units have been conducted to prove their
reliability. These parts typically do not produce hard
failures, instead they see program and erase timings
push out.

ETOX cycling longevity has progressed due to
continued improvements in tunnel-oxide quality. As
oxide layers become cleaner and more consistent,
cycling-induced electron trapping minimizes. Reduced
electron trapping helps keep VI distributions tight.
Additionally, reduced electron trapping improves
program and erase pulsing efficiencies. This improved
efficiency lessens the number of pulses required for a
given operation to succeed, which in turn also reduces
electron trapping. Since trapping is the primary source
of program/erase time pushout (i.e., more pulses
required), higher quality oxides reduce this degradation
and extend cycling performance.

Improved source-to-floating gate coupling consistency
via enhanced cell/array uniformity also extends cycling
longevity by lowering the number of erase pulses
required. Additionally, the Intel ETOX cell, in
combination with optimal WSM control, typically
requires a very low number of pulse repetitions to
achieve a program or erase state (typically one pulse for
programming). This also lessens the pulse count,
extending cycling livelihood.

Improvements in isolation, both from cell to cell and
around the floating gate, have mitigated charge retention
and data disturb concerns.

Read Access

Intel Flash Memory architecture has evolved by leaps
and bounds since its inception. Read access time (tACe)
has made significant gains, while maintaining very high

I

ER-33

levels of noise immunity. The 27F64's fastest speed bin
was 150 ns, while the 28F016SA will offer a 5.0V 70-
ns/80-ns version with ±5%/10% Vee tolerance and a
3.3V ±0.3V 120-ns version.

Double metal, introduced on ETOX III, has been the
biggest contributing factor toward improving read
access times. This enhancement reduces wordline and
bitline resistance, thereby enabling faster cell turn-on
and sensing paths during read operations. Continually
improved circuit designs also contribute to shorter read
timings. Again, cell and array compaction enables
inclusion of new/additional circuitry that enhance read
performance, and will also allow future 3.3V parts with
access times much faster than their 5.0V predecessors.

FLASH VS. OTHER SEMICONDUCTOR
MEMORY TECHNOLOGIES

Intel's scaling advances in flash memory manufacturing
and design provide optimal cell/array compaction. In
roughly twenty-two years, Intel non-volatile memory
density has grown from 2,048 bits to 16,777,216 bits, a
factor of 8192x. Figure 15 compares other memory
types to show relative density progression. The fast
ramp in ETOX flash memory density results from its
similarity to EPROM.

Figure 16 illustrates the relationship between cell sizes
of different memory types and minimum geometries. As
dimensions scale, certain memory types become cell
size limited (i.e. some components cannot shrink
proportionally). The memory cost-per-bit learning curve
shows flash in a strong position. This curve, shown in
Figure 17, reflects how Intel's experience reduces cost
for increased memory density.

Since the late 1980's, a new memory sub-system has
arrived on the market offering an alternative to high
density file system media. Intel's Series 2+ Flash
Memory Cards take advantage of the 28F016SA and its
third-generation architecture to provide card densities of
up to 40 Mbytes and new functionality. This relatively
new technology offers a solid-state file system (Figure
18) that will double in density with new ETOX
generations.

379

intel®

28F016XD
Embedded Flash RAM
Product Brief

I
381

Intel 28FO 16XD Embedded Flash RAM
Product Brief

Product .. Innovative embedded flash

Highlights RAM device:
DRAM·like system interface
Nonvolatile, updatable and
low power

.. Better price and performance
than DRAM + ROM and
DRAM+HDD:

Offers higher integration and
3.3V capability

Requires lower power and less
board space

III Ideal for embedded applications:
Datacom
Office automation
Telecom
Computing
Games

.. Simple DRAM·like interface:
Allows use of standard

DRAM controllers
Optimizes time to market
Sits directly on a cachable
bus

.. Ideal for portable
applications

IlII Easy interface to systems using
embedded processors:

For i960®KX, i960CS, i960JX
and InteI386T"EX CPU·based
systems

.. Internally partitioned into 32
software·lockable, 64·KB blocks

.. SmartVoltage feature:
Supports both SV and 12V
device writes and SV or 3.3V
device reads

.. First flash memory device with
DRAM·like interface

Product Description
The Intel 28FO 16XD embedded flash RAM is an innovative 16Mb memory
component that combines a DRAM· like system interface with the nonvolatility,
updatability and lower power of flash memory. The 28FO 16XD embedded flash
RAM is an ideal solution for embedded applications where redundant code DRAM
+ ROM or code DRAM + HDD were used for code execution/storage memory .

Its simple DRAM· like interface allows use of standard DRAM controllers, opti·
mizing time to market. In addition, the Intel 28FO 16XD embedded flash RAM is
in·system updatable, reducing the risk of early manufacturing as compared to
DRAM + ROM and DRAM + OTP EPROM options. The Intel 28FOl6XD
embedded flash RAM can easily interface to systems using such embedded
processors as the i960®KX, i960X, i960JX and the Inte1386™EX CPU·based
systems. Several vendors offer 28FO 16XD embedded flash RAM SIMM modules,
making it easier to upgrade code DRAM designs to embedded flash RAM .

The Intel 28FO 16XD embedded flash RAM is internally partitioned into 32
software·lockable, 64·KB blocks. Like Intel's 28FOl6SV SmartVoltage device,
the 28FO 16XD embedded flash RAM supports both 5V and 12V device writes as
well as 5V or 3.3V device reads. Because the Intel 28FOl6XS embedded flash
RAM is a nonvolatile, code storage and execution solution, there is no need for
refresh, redundant memory or HDD "spin·up" latency when returning from deep
power·down mode. It also enables instant·on system design .

The [nteI28FOI6XD embedded flash RAM, which is the first flash memory device
with a DRAM·like interface, is particularly well suited for data communications,
office automation, telecommunications, computing and games.

*Other brands and names are the property of their respective owners.

Printed in USN0395n.5K1ASULK
© 1995 Intel Corporation

Order Number: 297547·002

383

